

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 36

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

LEARNING-DRIVEN AND DISTRIBUTED OPTIMAL CONTROL METHODS FOR
LARGE-SCALE AND MULTI-AGENT SYSTEMS

Presentata da: Lorenzo Sforni

Supervisore

Giuseppe Notarstefano

Esame finale anno 2024

Coordinatore Dottorato

Michele Monaci

Co-supervisore

Ivano Notarnicola

Abstract

In recent years, the interest of the control community in large-scale systems has

surged, driven by their capacity to encompass behaviors that integrate human, cyber, and

physical resources. The inherent complexity of these dynamical systems, characterized

by several interconnected units, represents a significant challenge when developing

effective optimal control policies. This timely topic is addresses in this thesis from a

threefold perspective: (i) tackling the complex nature of such settings by leveraging

data-driven strategies over traditional model-based approaches, (ii) taking advantage

of the patterns and interconnections typical of these large-scale applications at design

level, and (iii) developing efficient and scalable centralized and distributed optimal

control algorithms.

We start by developing data-driven strategies for the resolution of the Linear Quadratic

Regulator (LQR) problem when the underlying dynamics are unknown. First, we

propose an on-policy algorithm, where the system matrices are identified while simul-

taneously optimizing the control policy. Second, we design data-driven algorithms to

generate feedback controllers that adhere to particular structural constraints, such as

mirroring the inherent patterns of the large-scale system.

Subsequently, we develop a novel first-order framework for nonlinear optimal control

tailored to large-scale systems. This centralized methodology is then extended to the

distributed optimal control setting. Here, we tackle a novel problem formulation that

leverages the aggregative optimization framework, an approach designed to encap-

sulate collective (aggregate) behaviors. We then propose a learning-driven version of

the approach, based on a concurrent optimization and learning scheme. Eventually,

the proposed methodology is extended to the stochastic optimal control scenario via a

stochastic gradient descent scheme.

Finally, we consider the challenge of developing safe-by-design control policies within

the multi-layer control formalism. This novel framework is tailored to analyzing the

control architectures traditionally deployed in robotics applications, where a low-level,

easy-to-deploy control policy interacts with a more advanced high-level planning strat-

egy. In this context, we present an optimization-based trajectory generation strategy,

ensuring compliance to safety-critical constraints, specifically designed for multi-layer

control architectures.

Keywords: Large-scale Systems, Data-driven Control, First-order Methods, Reinforce-

ment Learning, Gaussian Processes, Optimal Control, Nonlinear Systems, Linear Quadratic

Regulator, Multi-layer Control Architectures, Safety-critical Control.

Contents

Introduction 3

1 Nonlinear and Learning-driven Optimal Control Frameworks 11

1.1 Data-driven Optimal Control of Linear Systems 11

1.2 Optimal Control of Nonlinear Systems . 14

1.2.1 Distributed Optimal Control of Multi-agent Cyber-physical Systems 16

1.2.2 Learning-driven Optimal Control of Uncertain Nonlinear Systems 18

1.2.3 Optimal Control of Systems with Stochastic Uncertainties 19

1.3 Safety-critical Optimal Control of Nonlinear Systems 21

2 Reinforcement Learning and Data-driven Optimal Control for Large-Scale

and Multi-Agent Systems 25

2.1 Literature Review . 26

2.2 On-policy Data-driven Linear Quadratic Regulator 28

2.2.1 On-Policy LQR via Recursive Least Squares Algorithm 30

2.2.2 Algorithm Analysis . 35

2.2.3 Numerical Simulations . 48

2.3 Structured Policy Design via Reinforcement Learning 51

2.3.1 LMI-based Design Strategy for Structured Q-learning: Algorithm

Description and Analysis . 55

2.3.2 Numerical Simulations . 61

2.4 Structured Policy Design via Data-driven Lagrangian Methods 63

2.4.1 Data-driven Lagrangian Algorithm for Sparse Control Design . . 67

2.4.2 Algorithm Analysis . 70

2.4.3 Regularized Approach for Noisy Data 73

2.4.4 Numerical Simulations . 79

3 Feedback Embedding Paradigm for Numerical Optimal Control of Large-scale,

Multi-agent and Uncertain Systems 83

3.1 Literature Review . 84

i

3.2 GoPRONTO: Generalized first-Order PROjectioN operator method for

Trajectory Optimization . 89

3.2.1 Feedback Embedding Paradigm for Nonlinear Optimal Control:

GoPRONTO Algorithm Description and Analysis 93

3.2.2 Enhanced Versions of GoPRONTO 101

3.2.3 Numerical Simulations . 104

3.3 Distributed Multi-agent Aggregative Optimal Control 110

3.3.1 Tracking-based Distributed GoPRONTO for Aggregative Optimal

Control . 113

3.3.2 Algorithm Analysis . 116

3.3.3 Numerical Simulations . 134

3.4 Data-driven Optimal Control of Nonlinear Uncertain Dynamics 137

3.4.1 Learning-driven Optimal Control via Gaussian Process Regression 138

3.4.2 GP-Enhanced GoPRONTO: Algorithm Description and Analysis . 142

3.4.3 Numerical Simulations . 148

3.5 Optimal Control of Nonlinear Systems with Stochastic Uncertainties . . . 150

3.5.1 Stochastic Gradient Descent-based GoPRONTO 153

3.5.2 Algorithm Analysis . 157

3.5.3 Numerical Simulations . 161

4 Optimization-based Safe Control of Multi-layer Systems 163

4.1 Literature Review . 163

4.2 Safe Trajectory Generation for Multi-layer Control Architectures 164

4.2.1 CBF Characterization of Control Invariance 168

4.2.2 Safe Trajectory Generation via CBF-based Receding Horizon Con-

trollers . 171

4.2.3 Numerical Simulations . 174

Conclusions 177

A Basics on Nonlinear Optimization 179

B First- and Second-order Numerical Methods for Optimal Control 185

C Averaging Theory for Two-time-scale Systems 197

Bibliography 217

ii

Notation

Given a matrix M , its right-pseudo inverse is M †. Given a square matrix M , its Frobe-

nius norm is ‖M‖F while Tr[M] is its trace. If M is positive definite (resp. semi-

definite) we write M > 0 (resp. M ≥ 0). Given two matrices M1 ∈ Rn×n and

M2 ∈ Rn×n, we define the inequality M1 ≥M2 sticking to the convention that their dif-

ference is a positive semidefinite matrix (i.e., M1 − M2 ≥ 0). The n × m all-ones

matrix is 1n×m, the n × m all-zeros matrix is 0n×m, the n × n identity matrix is

In, and ◦ is the Hadamard product. The symbol ⊗ denotes the Kronecker product.

We denote with diag(v1, . . . , vn) the diagonal matrix whose i-th diagonal element is

given by vi. Given a symmetric, positive-definite matrix Q ∈ Rn×n, and x ∈ Rn,

we define the Q-norm of x as ‖x‖Q =
√
x>Qx Given x ∈ Rn and X ⊆ Rn, we de-

fine w(x,X) := infy∈X ‖x − y‖. Given d vectors x1 ∈ Rn1 , . . . , xd ∈ Rnd , their ver-

tical stack is denoted by col(x1, . . . , xd). Given a function ` : Rn1 × · · · × Rnd →
R, its (total) gradient at a given point (x̄1, . . . , x̄d) is denoted as ∇`(x̄1, . . . , x̄d) :=

col(∇1`(x̄1, . . . , x̄d), . . . ,∇d`(x̄1, . . . , x̄d)), where ∇k`(x̄1, . . . , x̄d) ∈ Rnk denotes the par-

tial derivative of ` with respect to its k-th variable for all k ∈ {1, . . . , d}. We denote

the i-th term of ∇k`(x̄1, . . . , x̄d) ∈ Rnk , i ∈∈ {1, . . . , nk} as
[
∇k`(x̄1, . . . , x̄d)

]
i
. Given a

vector field f : Rn → Rm, the gradient of f is ∇f(x) := [∇f1(x) . . .∇fm(x)] ∈ Rn×m.

For a given T ∈ N, we denote the discrete-time horizon as [0, T] := {0, 1, 2, . . . , T}. A

function ` : Rn → R is said to be radially unbounded if ∀c > 0, ∃r > 0 such that,

∀x ∈ Rn, ‖x‖ > r ⇒ `(x) > c. Given a probability space (Ω,F ,P) with Ω sample space,

F σ-algebra and P probability measure, we denote as w the random variable induced

by the probability space, such that w : Ω → Rp. Each random variable is denoted in

roman font. Each realization of w random variable is denoted as w. Given a random

variable w we define the associated probability density function as pw. With the symbol

w ∼ pw, we imply that w is a realization of the random variable w with probability

density function pw.

1

Introduction

Motivation and Challenges

The scope of control applications has continuously increased over the past few decades,

moving from feedback control of a single device or system to optimization-based control

and decision-making in large-scale systems, system-of-systems, and infrastructure

systems [10]. These complex systems are of particular interest, due to their ability of

capturing complex behaviors that integrate human, cyber and physical resources, e.g.,

sharing economy [67], smart infrastructure systems [204], and smart societies [200, 239].

The goal is to design control strategies to address the complexity of these large-scale

systems while simultaneously optimizing a wider range of performance targets.

First, the uncertain, and complex nature of such problems makes the use of data-

driven and learning-based control strategies appealing over traditional model-based

approaches. The use of data for control design is gaining traction in the recent years

thanks to the technological advantages which enabled the use of machine learning

techniques in a range of previously inaccessible scenarios. See the recent surveys [72,

159, 196], for an overview of possible solutions and applications.

Second, the envisioned solutions should take advantage of the patterns and intercon-

nections often arising in these large-scale dynamics. From a control point of view, this

translates into the need for certain structural properties and limitations on the control

policy. This topic is currently of high interest, e.g., for the design of fast and flexible

controllers suited for multi-agent applications, e.g., in [89, 112, 146]. From an optimiza-

tion perspective, the intrinsic interdependency among units in these large-scale systems

paves the way to innovative problem formulations that accurately model collective

behaviors and resource utilization. More in detail, it is worth considering the extension

into the optimal control field of optimization frameworks capable of considering also

some sort of aggregate information, e.g., the aggregative optimization framework [146],

which proved to be capable of capturing a variety of applications, from cooperative

robotics to network congestion control [21, 122, 176, 178].

Third, the proposed algorithmic strategies should exhibit beneficial scalability properties

as the number of nodes and agents increases. Scalable optimization algorithms are a

3

Introduction

timely research topic [102]. Among the others, first-order algorithms are well recognized

effective tools in optimization over large-scale models, e.g., in neural network training,

where the parameter tuning in performed via stochastic gradient descent [103]. The

widespread diffusion of computationally enabled devices capable of cooperating by

processing local data and information made attractive the alternative represented by

the distributed computation paradigm. These solutions can be advantageous not only

when the scale of the network and the number of agents make centralized approaches

impracticable due to the amount of data to be shared, but also as a way to lower privacy

risks when personal data and information are involved. This distributed computation

model has been successfully addressed in a variety of frameworks, from consensus

algorithms to distributed optimization and control. See, e.g., [165, 170, 244].

Additionally, this thesis investigates the design of optimization-based control policies

within the multi-layer control framework. This emerging theoretical framework is

specifically tailored to the analysis and development of rigorous control strategies

intended for deployment in robotics applications, see, e.g., [68, 193]. In these practical

scenarios, computational tractability and real-time implementation constraints often

necessitate a layered architecture, where a low-level, real-time control policy interacts

with a more advanced high-level planning strategy. Notably, these high-level approaches,

while offering transformative potential, can introduce vulnerabilities leading to fragile

failure modes, as discussed in recent surveys [10, 45]. This calls for the development

of safe-by-design high-level control policies. In this thesis, we tackle this challenge

through optimal control-based solutions.

Summary of Main Contributions

The methodologies developed in this thesis contribute to the field of optimal control

of large-scale systems from a threefold perspective: (i) leveraging on data for optimal

control design, (ii) developing control strategies specifically designed to take advantage

of the patterns and interconnections typical of large-scale applications, (iii) designing

scalable and efficient numerical optimal control algorithms, both in centralized and

distributed settings. Furthermore, it is investigated the development of safe-by-design

control strategies within the formalism of multi-layer control architectures, with a

special focus on optimal control-based planning strategies.

First, this thesis studies the problem of designing control policies for unknown

linear systems within the context of Linear Quadratic (LQ) optimal control. We start

by proposing a data-driven on-policy strategy. The developed algorithmic solution is

based on a simultaneous identification and optimization process, where the dynamics

is identified via recursive least squares while the policy is improved using a gradient

method. This results in a time-varying, iteratively updated, control policy, for which we

4

proved convergence towards the optimal Linear Quadratic Regulator (LQR) solution.

Afterwards, we address the challenge of designing data-driven control policies matching

the inherent patterns of large-scale systems, e.g., mimic the communication graph of a

network system. From an optimal control perspective, this results in the introduction of a

structural (equality) constraint within the (unconstrained) LQR formulation. We remark

that also in this setting, the dynamics is assumed to be unknown. This challenging

scenario is tackled from a dual perspective, (i) we introduce a Reinforcement Learning

framework based on a Q-learning scheme, where the desired policy structure is ensured

via an LMI-based policy improvement step, (ii) we reformulate the gain design process

as a direct policy search, proposing a data-driven approach for computing the optimal

gain with the desired structure based on the combination of a gradient method and an

augmented Lagrangian approach.

Second, the investigation shifts towards the design of numerical optimal control

strategies for large-scale systems. Overall, we propose a computationally efficient first-

order algorithmic framework, denoted as GoPRONTO, short for Generalized first-Order

PROjectioN operator method for Trajectory Optimization. Initially formulated within a

centralized, model-based context, this framework has been comprehensively extended

to the challenging scenarios of distributed optimal control applications, and learning-

based optimal control of partially unknown nonlinear systems. More in detail, the

generalized GoPRONTO methodology consists of a class of first-order algorithms, that

leverage the incorporation of a feedback policy into the problem formulation. This

approach is referred to as the feedback embedding paradigm. Via this methodology,

we can reinterpret the optimal control problem as a cost function minimization task,

paving the way for advanced numerical optimal control strategies. These ideas are

instrumental in extending the GoPRONTO approach to a distributed optimal control

framework. We address the novel class of aggregative optimal control problems. Within

this setting, the introduction of an aggregate optimization variable enables the modeling

of behavioral patterns characteristic of multi-agent systems. The resulting strategy is a

fully distributed optimal control algorithm that relies on inter-agent communication

to efficiently reconstruct quantities that may not be available to individual agents. The

GoPRONTO framework is further extended towards the design of optimal control

strategies for partially unknown systems. Specifically, we introduce a data-driven

optimal control strategy that assumes the ability to actuate control input sequences onto

a real system while only an inaccurate description of the dynamics is available for the

control design. This approach integrates trajectory optimization with Gaussian process

regression, iteratively refining the model and performing optimization steps. Ultimately,

the GoPRONTO framework is adapted for stochastic optimal control. The proposed

strategy implements a Stochastic Gradient Descent (SGD) scheme, leveraging on the

convenient reformulation enabled by the feedback embedding paradigm.

5

Introduction

Finally, the focus moves on the design of safe trajectories for multi-layer control

architectures. We propose an high-level, trajectory generation strategy, based on optimal

control, that ensures satisfaction of safety-critical constraints. The constraints are

enforced through Control Barrier Functions (CBFs), that represent the state-of-art

approach for the generation of safe-by-design controllers. We extend the application

of CBFs to nonlinear non-autonomous control systems, providing both sufficient and

necessary safety guarantees, as CBFs are originally proven to ensure safety only for

autonomous systems. As a result, the proposed multi-layer controller can simultaneously

deliver optimal performance and ensure the satisfaction of safety constraints.

Organization and Chapter Contributions

The thesis organization follows the contribution scheme outlined in the previous section.

In Chapter 1, we formally present the optimal control frameworks central to this

thesis. Initially, we define the Linear Quadratic Regulator (LQR) problem in the context

of unknown dynamics, which is then specialized to generate a structured feedback policy.

Next, we explore the nonlinear optimal control problem, considering its applications in

large-scale systems, multi-agent scenarios, and applications with unknown dynamics.

Lastly, we introduce the concept of safe optimal control.

In Chapter 2, we investigate the data-driven LQR framework, which we then extend

to the constrained case. We start by developing an on-policy control scheme where the

proposed policy is applied to the actual (unknown) linear system, while concurrently

refined towards the optimal solution of the LQR problem. The proposed method relies

on the so-called direct policy search reformulation of the LQR problem, which is an

optimization problem with the control policy gain being the decision variable and

parametrized in the system matrices. This optimization problem is addressed via a

gradient-based method combined with an estimation procedure to deal with the missing

knowledge of the system dynamics. In particular, the system matrices are progressively

reconstructed via a Recursive Least Squares (RLS) mechanism that iteratively elaborates

the state-input samples obtained from the actual, closed-loop system. The on-policy

nature of the scheme stems from the fact that each state-input sample is gathered by

actuating the (yet non-optimal) state feedback. To ensure persistency of excitation, a

probing dithering signal is also fed into the (running) closed-loop dynamics. The stability

properties of the resulting closed-loop system are by resorting to Lyapunov arguments

and averaging theory for two-time-scale systems. We show the exponential stability of a

properly defined steady state, in which: (i) the feedback policy is the optimal solution

of the LQR problem; (ii) the estimates of the unknown matrices are exact; and (iii) the

system state oscillates about the origin with an amplitude arbitrarily tunable setting the

initial conditions magnitude of the dither. We then propose a Reinforcement Learning

6

framework to solve the infinite-horizon LQR problem with unknown dynamics and with

a user-defined sparsity of the feedback control law. To solve the problem, we propose

a Q-learning approach able to enforce the desired controller structure. The developed

algorithm has the form of a policy iteration scheme that progressively improves the

cost by appropriate manipulation of the system Q-function. Specifically, at each time

step we first solve a system of linear equations to evaluate the performance of a given

controller and then solve a Linear Matrix Inequality (LMI) to compute a new feedback

gain improving on the previous one and enforcing the desired sparsity. Under mild

assumptions, we demonstrate that the developed algorithm produces at each iteration a

feedback matrix with the imposed structure that also guarantees asymptotic stability

of the system, and with a non-increasing associated Q-function. As a consequence,

also every limit point of the computed feedback matrices is sparse and stabilizing.

Finally, we leverage on a data-driven approach to design a structured, static linear

feedback law, specifically tailored to LQR problems in which the system dynamics

is unknown. We consider the LQR problem reformulated in terms of a direct policy

search and include the sparsity constraints as an additional constraint in the resulting

optimization problem. Hence, we tackle the challenge of gain design by casting it as a

nonconvex constrained optimization problem. We propose an algorithm that combines

an augmented Lagrangian method with a data-driven gradient method. The results of

this chapter are based on [205, 206, 210].

In Chapter 3, we present a class of robustified first-order optimal control algorithms,

specifically developed for large-scale systems. This methodology is also successfully

extended to the design of optimal trajectories for multi-agent and uncertain nonlinear

systems. We start by formally introducing this novel class of numerically-robust first-

order algorithms for discrete-time optimal control, which we termed GoPRONTO. In

our approach we combine the introduction of a nonlinear tracking system (the so-called

embedded feedback) into the nonlinear optimal control problem, with a gradient-based

resolution strategy. The innovative combination of these two approaches results in a

novel first-order numerical optimization framework which enjoys several appealing

features in the optimal control context. From the embedding of the feedback policy,

our approach enjoys the highly desired properties of: (i) numerical robustness, even

when dealing with unstable dynamics, and (ii) recursive feasibility, i.e., a state-input

trajectory can be computed, at each iteration, via a closed-loop integration of the non-

linear dynamics. This property is of particular interest in the case of, e.g., unstable

systems. From the gradient-based approach, our methodology inherits the simplicity of

implementation of the descent-direction search, namely a costate equation update. This

adaptable update rule makes our algorithmic strategy flexible enough to be extended

to problems involving large-scale dynamics. As in other optimization domains with

very large decision variables (e.g., neural network training) Newton’s methods are im-

7

Introduction

practicable while first-order approaches are preferred. We then show how this general

framework gives rise to several first-order optimization algorithms that can speed up the

resolution of the optimal control problem. Indeed, novel algorithms can be implemented

by means of appropriate modifications in the structure of our algorithmic approach,

e.g., by variations in the state-input curve update or by the evaluation of the costate

equation and the system-linearization in different curves. We then develop a distributed

scheme to address a novel class of nonlinear optimal control problems over networks of

multi-agent systems. Such a class of problems is formulated by adopting the problem

structure introduced in the context of aggregative optimization. We address the nonlin-

ear aggregative optimal control problem according to a peer-to-peer paradigm that does

not require any centralized unit accessing global data and making global decisions. In-

spired by the aforementioned centralized GoPRONTO strategy, our multi-agent method

uses, in each agent, a local feedback mechanism updated according to a distributed

optimization-oriented scheme. Such an optimization scheme, due to the aggregative

terms of the local cost functions, would require local knowledge of unavailable global

quantities. Thus, we resort to a set of local, auxiliary variables named trackers that

asymptotically reconstruct these global quantities through suitable consensus-based

dynamics relying on inter-agent communication. Interlacing this mechanism with the

optimization-oriented part of the algorithm gives rise to a complex interconnected sys-

tem. In order to analyze its evolution, we exploit the adopted feedback-based algorithmic

structure which allows for reformulating the multi-agent optimal control problem as

an (unconstrained) nonconvex optimization problem. Moreover, the feedback-based

nature ensures stability and, thus, allows for analyzing the overall distributed strategy

with tools from system theory. In detail, we exploit LaSalle-based arguments to prove

that the sequence of generated trajectories converges to the set of state-input trajectories

satisfying the first-order necessary conditions for optimality of the considered optimal

control problem. Then, we propose a learning-based optimization strategy to solve non-

linear finite-horizon optimal control problems with partially unknown dynamics. We

propose a two-step iterative procedure, based on the embedded-feedback gradient-like

update combined with a Gaussian process regression, in which the optimization process

and the learning phase are concurrently performed while running experiments on the

real system. Specifically, the unknown term in the dynamics is approximated through

an iteratively refined Gaussian Process (GP) and at each iteration the gradient-like

step is performed by taking derivatives of the nominal dynamics enhanced with the

GP. The current optimal input estimate is then perturbed with the computed descent

direction and actuated on the real system. During this experiment, novel measurements

from the system evolution are collected and used in the learning phase. Under suitable

technical conditions on the collected system trajectories, the proposed strategy is proved

to converge to a neighborhood of a stationary point of the optimal control problem. In

8

order to prove the result, the algorithmic updated is recast into a suitable gradient-with-

error update with error uniformly bounded across iterations. Eventually, we extended

the GoPRONTO framework of optimal control of stochastic systems. We propose a

numerical procedure based on the Stochastic Gradient Descent algorithm. The descent

direction is computed via a Gradient Estimator which is then showed to be unbiased.

Convergence in expectation is show under mild assumptions. The results of this chapter

are based on [208, 209, 212].

Finally, in Chapter 4, a continuous-time high-level planning approach tailored

to multi-layer applications is proposed. Our method generates safe trajectories with

adjustable time length, thus achieving balance between point-wise optimal safety filters

and safe infinite-time optimal control. Since, safety is ensured through a CBF constraint,

we provide a new characterization of CBFs as necessary and sufficient for the controlled

invariance of safe sets. Utilizing this, we show that as the time horizon extends to infinity

the constrained optimal control problem is retrieved, conversely as the time horizon is

shrink to zero, a safety filter is obtained. The proposed strategy is then deployed within

a multi-layer control architecture. The results of this chapter are based on [211].

As a complementary part of this thesis, we include Appendix A providing some basic

concepts of numerical nonlinear optimization. Appendix B overviews few numerical

methods for optimal control which laid the foundation of the algorithms developed in

this work. Finally, Appendix C contains some useful results about averaging theory for

for two-time-scale systems.

9

Chapter 1

Nonlinear and Learning-driven
Optimal Control Frameworks

In this chapter, we introduce the different optimal control frameworks that are central

to this thesis. We commence by defining the data-driven optimal control framework

for unknown linear systems. This framework is then extended to the development

of structured control policies for multi-agent and large-scale systems. Subsequently,

we address scenarios where the dynamics are nonlinear, while specifying the optimal

control problem to large-scale systems, multi-agent distributed control and data-driven

control of unknown and uncertain dynamics. Finally, we introduce the concept of safe

optimal control within a multi-layer control architecture.

1.1 Data-driven Optimal Control of Linear Systems

As a first setting, we consider an optimal control framework in which our objective is to

design optimal feedback policies, i.e., feedback control laws, for unknown linear systems.

The problem is formalized as the so-called Linear Quadratic Regulator (LQR) problem,

a cornerstone within the control systems community. Recently, this setting has received

renewed attention for its benchmark role in the development of innovative reinforcement

learning and data-driven strategies. In this setting, we consider a dynamics which is

linear and time-invariant, i.e., in the form

xt+1 = A?xt +B?ut, x0 = xinit (1.1)

where xt ∈ Rn are ut ∈ Rm the state and the input of the system at time t, xinit ∈ Rn

represents the initial condition, and A? ∈ Rn×n and B? ∈ Rn×m are the state and input

matrices, respectively. The matrices A?, B? are assumed to be unknown. Formally, our

11

Nonlinear and Learning-driven Optimal Control Frameworks

goal it to solve the optimal control problem

min
xt,ut,K

∞∑
t=0

x>t Qxt + u>t Rut (1.2a)

subj.to xt+1 = A?xt +B?ut (1.2b)

ut = Kxt (1.2c)

where K ∈ Rm×n is the feedback gain, and Q ∈ Rn×n, Q = Q> ≥ 0 and R ∈ Rm×m, R =

R> > 0, are the state and input cost matrices respectively. Notice that constraint (1.2c)

is explicitly introduced to highlight that our focus is on the design of control policies

among the class of linear state feedback laws, i.e., in the form

ut = Kxt. (1.3)

Importantly, the presence of constraint (1.2c) makes Problem (1.2) nonconvex. Overall,

under the challenging assumption that the dynamics (1.1) is unknown, our goal it so

find the optimal feedback gain K? solution of (1.2), such that (i) the closed-loop system

is asymptotically stable, i.e., all the eigenvalues of the closed-loop matrix (A? +B?K
?)

are within the unit disk, (ii) the infinite horizon cost functional (1.2a) is minimized.

Through this dissertation, we will also consider a variant of Problem (1.2) tailored to

the design of control policies for large-scale and distributed control systems. Indeed, in

these scenarios, the design of the feedback control law (1.3) often requires the feedback

gain K to satisfy some structural constraints, e.g., have a sparse structure mirroring

the system’s communication network. Specifically, certain entries in K are required

to be zero, aligning with structural and communication constraints within the system.

More formally, in a large-scale, multi-agent control setting, we seek for a solution of the

constrained infinite-horizon Linear Quadratic Regulator problem

min
xt,ut,K

∞∑
t=0

x>t Qxt + u>t Rut (1.4a)

subj.to xt+1 = A?xt +B?ut (1.4b)

ut = Kxt

K ◦ S = 0 (1.4c)

where the constraint (1.4c) is meant to enforce the desired structure on the gain K, with

S being a binary matrix modeling the desired structural profile. The challenge of solving

Problem (1.4) is twofold, (i) the unknown system dynamics hampers the applicability of

model-based optimal control methods, (ii) the design of a sparse feedback gain K calls

for different solution approaches.

12

1.1. Data-driven Optimal Control of Linear Systems

Motivating example: Distributed Control of Sparse Dynamics

We now give an exemplary application of the general set-up (1.4), consider a network of

N dynamical systems (or agents) that communicate according to an undirected graph

G = (V, E), where V = {1, . . . , N} is the set of agents and E ⊆ V × V is the set of edges.

An edge (i, j) belongs to E if and only if agents i and j communicate with each other, in

which case we have also (j, i) ∈ E . We denote as Ni = {j : (i, j) ∈ E} the neighbors of

each agent i. The systems have unknown linear dynamics with graph-induced coupling.

In the linear case, this can be written as

xi,t+1 = Aiixi,t +
∑
j∈Ni

Aijxj,t +Biui,t, ∀i ∈ V,

where xi,t ∈ Rni is the i-th system’s state at time t ∈ N, ui,t ∈ Rmi is the input applied

to the i-th system at time t, and Aij ∈ Rni×nj and Bi ∈ Rni×mi are the (unknown) i-th

system’s matrices. The goal is to find a distributed linear feedback of the type

ui,t = Kiixi,t +
∑
j∈Ni

Kijxj,t,

with each Kij ∈ Rmi×nj . Namely, we search for a control law matching the communica-

tion graph, see e.g. [243]. This scenario is enclosed by Problem (1.4) as a special case,

where the desired control is in the form (1.3) with the sparsity constraint K ◦ S = 0 and

the (i, j)-th entry of S is equal to

S(i,j) :=

 0, if j ∈ Ni,
1, if j /∈ Ni,

(1.5)

where 1 and 0 denote matrices of suitable dimension with all ones and zeros, and

If the optimal, non-sparse gain K?, solution of Problem (1.2) was used, the controller

would have the form

ui,t =
N∑
j=1

K?
ijxi,t,

which would not satisfy the required graph-induced sparsity and would not be imple-

mentable in practice. Among the different engineering use cases, this general setup

finds applications in controlling power networks [79] as well as in the formation control

of vehicles [150]. This setting is graphically represented in Figure 1.1.

13

Nonlinear and Learning-driven Optimal Control Frameworks

f1

f2 f3

f4

∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗

Communication network K

Figure 1.1: Distributed Control of Sparse Dynamics: the gain K is required to match the network
structure.

1.2 Optimal Control of Nonlinear Systems

The second scenario we investigate in this thesis deals with the design of optimal trajecto-

ries for nonlinear dynamical systems. Specifically, we consider nonlinear, discrete-time

systems described by

xt+1 = f(xt, ut), x0 = xinit (1.6)

where xt ∈ Rn and ut ∈ Rm are the state and the input of the system at time t, respec-

tively, while xinit ∈ Rn represents the fixed initial condition. The time t assumes only

discrete values, i.e., t ∈ N, t ≥ 0. The map f : Rn × Rm → Rn is the vector field describ-

ing the nonlinear dynamics. Given a time-horizon T , we define the T -long sequences of

states and inputs as

x := col(x1, . . . , xT) ∈ RnT , u := col(u0, . . . , uT−1) ∈ RmT .

A pair (x,u) ∈ RnT ×RmT is said to be a trajectory of the system described by (1.6) if its

components satisfy the constraint represented by the dynamics (1.6) for all t ∈ [0, T − 1]

with initial condition xinit. To each state-input sequence (x,u) it is associated a user

defined cost functional ` : RnT × RmT → R defined as

`(x,u) :=
T−1∑
t=0

`t(xt, ut) + `T (xT) (1.7)

where `t : Rn × Rm → R is the stage cost and `T : Rn → R represents the terminal cost.

Overall, our objective is to design a trajectory (x,u) of system (1.6), such that the

cost functional (1.7) is minimized. More formally, we seek for a solution of the optimal

control problem

min
x,u

T−1∑
t=0

`t(xt, ut) + `T (xT) (1.8a)

14

1.2. Optimal Control of Nonlinear Systems

subj.to xt+1 = f(xt, ut), t ∈ [0, T − 1]

x0 = xinit.
(1.8b)

where x and u are the decision variables.

The resolution of Problem (1.8) becomes particularly challenging in a variety of

modern engineering applications. Throughout this dissertation, we will introduce

several variants of Problem (1.8), by suitably manipulating the structure of the dy-

namics (1.8b) and the cost functional (1.8a). Specifically, we will develop numerical

algorithms tackling versions of Problem (1.8), tailored to (i) large-scale systems, (ii)

distributed multi-agent systems, (iii) partially unknown dynamical systems, (iv) systems

affected by stochastic uncertainties.

In the following paragraphs, we will introduce these settings, presenting them via

both motivating examples and thorough formalizations.

Remark 1.1. For the sake of exposition, the algorithms presented in this thesis are

tailored to unconstrained optimal control problems, i.e., neglecting the presence of state-

input constraints. However, constraints can be addressed by adopting barrier function

approaches (e.g., [114]). Although these approaches may influence the numerical prop-

erties and performance of the algorithm, they have demonstrated successful results

in various settings (cf. the review paper [3] and references therein). We apply these

methodologies in an example of constrained optimal control provided in Sec. 3.2.3. 4

Motivating example: Optimal Control of Large-Scale Systems

θi

κpθ̇i

Mpg

Mc

wi

θN

κpθ̇N

Mpg

Mc

wN

θ1

κpθ̇1

Mpg

Mc

w1

κsκs κsκs

Figure 1.2: Scheme of the train of inverted pendulum-on-cart systems.

As a motivating example of optimal control of a large-scale system, consider the

task of generating an optimal trajectory for a large-scale system made by a train of N

inverted pendulums on carts as shown in Figure 1.2. For each system i ∈ {1, . . . , N}, the

nonlinear dynamics is given by

Mpl
2θ̈i + fpθ̇i −Mpl sin(θi)ẅ −Mplg sin(θi) = 0

15

Nonlinear and Learning-driven Optimal Control Frameworks

(Mc +Mp)ẅi + fcẇi −
1

2
Mpl cos(θ)θ̈ +

1

2
Mpl sin(θ)θ̇2 − κswi+1 + κswi−1 = ui,

where θi is the angle measured from the vertical upward position and wi is the the lateral

position of the cart. Each system is controlled through a force ui applied to the cart. Since

the state space of the overall system scale linearly with the number of the subsystems,

this scenario represents a challenging setting for numerical optimal control algorithms

due to the large dimension of the decisions variables. Similar dynamical systems find

applications in various engineering fields, such as in modeling the continuous surfaces

of telescope mirrors which are actuated using a discrete number of actuators [158].

In this thesis, the design of the proposed optimal control algorithms draws inspira-

tion from reinterpreting neural network training — notoriously large-scale models —

within an optimal control context. Observing that neural network training primarily

relies on first-order gradient-based algorithms, we introduce, in Chapter 3, a first-order

algorithmic framework specifically devised for these large-scale systems.

1.2.1 Distributed Optimal Control of Multi-agent Cyber-physical Systems

We now specify Problem (1.8) to a multi-agent setting. We assume there exists a net-

work of N systems, called agents, that have communication, computation, and control

capabilities. The agents behavior evolves according to the heterogeneous nonlinear

dynamics

xi,t+1 = fi(xi,t, ui,t), xi,0 = xi,init (1.9)

for all i ∈ {1, . . . , N}, where fi : Rni × Rmi → Rmi , xi,t ∈ Rni is the state of agent i

at time t, and ui,t ∈ Rmi is the control input applied to agent i at time t. The initial

condition, for all i ∈ {1, . . . , N}, is fixed and given by xi,init ∈ Rni . Our goal is to design

a control law for the N dynamical systems (1.9) such that a global performance index is

minimized. More formally, we aim at solving the optimal control problem

min
xi,0,...,xi,T
ui,0,...,ui,T−1

i=1,...,N

N∑
i=1

T−1∑
t=0

`i,t(xi,t, ui,t, σt(xt, ut)) + `i,T (xi,T , σT (xT)) (1.10a)

subj.to xi,t+1 = fi(xi,t, ui,t) t = 0, . . . , T − 1 (1.10b)

xi,0 = xi,init i = 1, . . . , N, (1.10c)

where `i,t : Rni×Rmi×Rq → R represents the so-called stage cost, while `i,T : Rni×Rq →
R is the terminal cost. The variables σt(·, ·) and σT (·) are the so-called aggregative
variables, which couple the states and inputs of all agents. More formally, the aggregate

16

1.2. Optimal Control of Nonlinear Systems

variables, i.e., σt : Rn × Rm → Rq, for all t ∈ [0, T − 1], and σT : Rn → Rq couple the

states and inputs of all the agents according to

σt(xt, ut) =
1

N

N∑
i=1

ϕi,t(xi,t, ui,t), σT (xT) =
1

N

N∑
i=1

ϕi,T (xi,T), (1.11a)

where, n =
∑N

i=1 ni and m =
∑N

i=1mi, and we define the stacks of the states and inputs

of all the agents at time t as

xt :=col(x1,t,. . ., xN,t)∈Rn

ut :=col(u1,t,. . ., uN,t)∈Rm.

The functions ϕi,t : Rni ×Rmi → Rq, for all t ∈ [0, T − 1], and ϕi,T : Rni → Rq, represent

the contribution of agent i to the aggregative variable, for all and i ∈ {1, . . . , N}. Impor-

tantly, the local cost function of agent i depends on both the local state and input and

the aggregative variables coupling the states and the inputs of all the agents. Notice that

the presence of the aggregate variable σ(·) allows Problem (1.10) to capture collective

behaviors. This proved to be effective in a variety of applications, from cooperative

robotics to energy management, see, e.g., [21, 122, 176, 178, 223]

Due to the possible huge number of agents, Problem (1.10) calls for a resolution via

a distributed optimization algorithm, namely a numerical strategy leveraging on the

computational power of each agent, while exchanging information within the network.

Specifically, we assume the N agents to be able to communicate among each others via a

network modeled as an undirected graph G = (V, E), where V = {1, . . . , N} is the set

of agents and E ⊆ V × V is the set of edges. An edge (i, j) belongs to E if and only if

agents i and j communicate with each other, in which case we have also (j, i) ∈ E . We

denote as Ni = {j : (i, j) ∈ E} the neighbors of each agent i.

Notice that, due to the coupling represented by the aggregative variables (1.11), each

agent has only a partial knowledge of Problem (1.10) and must cooperate with each

other in order to find a solution.

Motivating example: Distributed Surveillance via Heterogeneous Robotics Systems

As an example of application of optimal control of multi-agent systems, we consider a

team of N heterogeneous quadrotors employed in a robotic surveillance scenario. Each

quadrotor i has a continuous-time dynamics described by

p̈x,i =
ui,1+ui,2

Mi
sin θi

p̈y,i =
ui,1+ui,2

Mi
cos θi − g

θ̈i = Li
2Ji

(ui,1 − ui,2)

17

Nonlinear and Learning-driven Optimal Control Frameworks

Robot

Robot

Robot

Target

σ(x)

Robot

Robot

Robot

Target

σ(x)

Figure 1.3: Surveillance scenario, each robot patrols an area invaded by malicious intruders,
while keeping the formation barycenter over the target.

where px,i, py,i is the position of the robot in the x−y plane, θi its orientation, ui,1 and ui,2
are the control inputs, i.e., the thrust applied to the right and left motor. The mechanical

parameters Mi, Ji, Li denote the mass, the inertia and the width of each quadrotor. The

goal of each robot is to patrol a pre-defined area trying to stay as close as possible to

a given reference trajectory while keeping the formation barycenter over a (moving)

target. This scenario can be captured by means of the distributed aggregative optimal

control scenario formalized via Problem (1.10). Specifically, for each quadrotor i we can

suitably define a local cost function such that (i) a local reference signal (xref
i ,uref

i) is

tracked, (ii) the formation barycenter, modeled via σt(xt, ut), is maintained as close as

possible to the target located at bt ∈ R2 at time t. More formally, the stage cost, for each

i and t, is defined as

`i,t(xi,t, ui,t, σt(xt)) = ‖xi,t − xdes
i,t ‖2Qi,t + ‖ui,t − udes

i,t ‖2Ri,t + ‖σ(xt)− bt‖2Qσi,t

for suitably chosen cost matrices Qi,t, Ri,t and Qσi,t. The aggregative variables denoting

the weighted center of mass of the team reads as

σ(xt) :=
N∑
i=1

Hixi,t

where Hi = [I2 02×4] for all i = 1, . . . , N . We define similarly the terminal cost function

`i,T (xi,T , σT (xT)). An illustrative concept of this framework is provided in Figure 1.3.

1.2.2 Learning-driven Optimal Control of Uncertain Nonlinear Systems

Finally, we show how Problem (1.8) can be suitably extended to the case where the

dynamics (1.8b) is unknown. Throughout the dissertation, we will also address problems

where the key challenge that the dynamics f(·) is composed by a nominal, known model

(e.g., derived from first principles), and an unknown part as

f(xt, ut) = f?(xt, ut) + g?(xt, ut) (1.12)

18

1.2. Optimal Control of Nonlinear Systems

where f? : Rnx × Rnu → Rnx models the nominal dynamics while g? : Rnx × Rnu → Rnx

is unknown. We investigate nonlinear optimal control problems in which we look for

trajectories of the unknown system (1.12) that minimize a performance criterion defined

over a fixed, time horizon [0, T]. Formally, we aim to solve the problem

min
x1,...,xT
u0,...,uT−1

T−1∑
t=0

`t(xt, ut) + `T (xT) (1.13a)

subj.to xt+1 = f?(xt, ut) + g?(xt, ut), t ∈ [0, T − 1],

x0 = xinit,
(1.13b)

with stage costs `t : RmT → R, for all t, and terminal cost `T : RmT → R. The main

challenge of the optimal control problem (1.13) is that the dynamics is only partially

known and the presence of the unknown term calls for novel learning techniques to be

combined into an optimal control scheme.

Motivating example: Inverted Pendulum with Unknown Friction

Consider a canonical testbed for nonlinear control given by the inverted pendulum,

shown in Figure 1.4, which is governed by the following nonlinear continuous-time

dynamics

Ml2θ̈ = +Mgl sin(θ)− f`lθ̇ − fclθ̇
3 + u,

where θ is the angle, θ̇ is the velocity and u is the input with the same sign of θ. Moreover,

M is the mass, l is the pendulum length, g is the gravity acceleration, f` = f`,0 + ∆f`

is the linear friction coefficient and fc is the cubic friction coefficient. We assume to

partially know only the linear coefficient, while the cubic term fc is totally not modeled.

It is a realistic framework since not modeled friction-like effects are usually present in

more complex applications as, e.g., drag forces in quadrotors or tyre frictions in cars.

Importantly, we assume we can recover knowledge of the true dynamics by collecting

measurements during experimental sessions. Exemplary applications can be found

in the field of autonomous driving, see, e.g., [129] The uncertainties in the model

dynamics make unpractical the traditional, model-based approaches, thus calling for

novel, data-driven, optimal control algorithms.

1.2.3 Optimal Control of Systems with Stochastic Uncertainties

A challenging instance of Problem (1.8) is represented by the scenario in which the

original nonlinear dynamics (1.6) is affected by stochastic disturbances. In this setting,

we consider discrete-time nonlinear dynamics subjected to stochastic disturbance in the

19

Nonlinear and Learning-driven Optimal Control Frameworks

θ

u

f`θ̇ + ∆f`θ̇ + fcθ̇3

known

unknown

Mg

known

Figure 1.4: Graphical representation of an inverted pendulum moving in an environment with
partially unknown dynamics.

form

xt+1 = f(xt, ut, wt) (1.14)

in which f : Rn ×Rm ×Rp → Rn and xt ∈ Rn represent the state of the system at time t,

ut ∈ Rm the control input and wt ∈ Rp is stochastic disturbance, realization of a properly

defined random variable wt. Considering a time-horizon T , we define the sequence of T

random variables wt as w := col(w0, . . . ,wT−1), which is a random variable itself. We

then denote as w ∈ RpT a realization of w.

Assuming a deterministic sequence of inputs u ∈ RmT , for a given initial condition

x0 = xinit and a specified time horizon T , one can see the resulting state trajectory x as

a function of the random variable w. This comes from the composition of each random

variable wt, for t = 0, . . . , T − 1, through the nonlinear dynamics (1.14). Hence, we

resort to the minimization of the performance index (1.7) taken in expectation with

respect to the random variable w. Overall, we aim at solving the following stochastic

optimal control problem

min
x,u

Ew

[T−1∑
t=0

`t(xt, ut) + `T (xT)

]
(1.15a)

subj.to xt+1 = f(xt, ut, wt), x0 = xinit (1.15b)

wt ∼ pwt (1.15c)

where, the operator Ew[·] denotes the expected value taken with respect to w and pwt

denotes the probability density function associated to wt.

20

1.3. Safety-critical Optimal Control of Nonlinear Systems

θ

u

f(w)θ̇

uncertain

Mg

known

Figure 1.5: Graphical representation of an inverted pendulum moving in an environment with
parametric uncertainties in dynamics. The friction f(w) is function of the random variable w.

Motivating example: Inverted Pendulum with Parametric Uncertainties

Consider again the inverted pendulum system, shown in Figure 1.5, which is governed

by the following nonlinear continuous-time dynamics

Ml2θ̈ = +Mgl sin(θ)− f(wt)lθ̇ + u,

where θ is the angle, θ̇ is the velocity and u is the input with the same sign of θ. Moreover,

M is the mass, l is the pendulum length, g is the gravity acceleration, f(wt) is the linear

friction coefficient. We assume the friction coefficient to be uncertain and normally

distributed with (known) mean value f0 and variance σf .

1.3 Safety-critical Optimal Control of Nonlinear Systems

Finally, we consider the task of generating safe trajectories for nonlinear systems accord-

ingly to some optimality criteria. In this scenario, we consider the novel framework of

layered control architectures.

A multi-layer control architecture consists of (at least) two, interconnected, dynami-

cal systems with different roles and objectives. In this work, we consider an architecture

where a trajectory generation layer is coupled with a low-level tracking controller. More

formally, we frame this control scheme considering, (i) a low-level model, with dynamics

ẋ`(t) = f`(x`(t), u`(t)) (1.16)

where f` : Rn → Rn and state x` ∈ Rnl , and input u` ∈ Rml . This dynamics usually

captures the “true” system dynamics. And, (ii) an high-level reference model

ẋh(t) = fh(xh(t), uh(t)) (1.17)

where fh : Rnh → Rnh and xh ∈ Rnh , high-level state, uh ∈ Rmh , high-level control

21

Nonlinear and Learning-driven Optimal Control Frameworks

signal. In general the objective is to design an high-level control law, applied to the

low-level dynamics via a projection map πuh
(uh) = u`, while leveraging the information

from the low-level dynamics, whose state is related to the high-level one via πx`(x`) = xh.

Additionally, in the considered control scenario, the state of the high-level model xh(t)

is constrained to satisfy some state constraints in the form

h(xh(t)) ≥ 0, t ≥ 0 (1.18)

where h : Rnh → R is a continuously differentiable function. These constraints represent

some safety conditions for dynamics (1.17), i.e., they encode a set S of safe states defined

as the superlevel set of the function h(xh), i.e.,

S := {xh(t) ∈ Rnh | h(xh(t)) ≥ 0} ⊆ Rnh . (1.19)

The concept of safety, associated to system (1.17), is framed in the context of enforcing

invariance of the set of states S. More formally, system (1.17) is said to be safe with

respect to S if S is forward invariant, i.e., if, for every xh(0) ∈ S, xh(t) ∈ S for all t ≥ 0.

Nevertheless, our goal is to generate trajectories for a multi-layer system that are not

only safe, but also optimize a user defined cost functional. More formally, our goal is to

generate trajectories for the high-level system (1.17), solution of the following optimal

control problem

min
x,u

∫ ∞
0

q(xh(τ)) + uh(τ)>uh(τ) dτ (1.20a)

subj.to ẋh = fh(xh(t), uh(t)), xh(0) = xinit (1.20b)

h(xh(t)) ≥ 0 (1.20c)

where q : Rnh → R positive-definite function, i.e., q(x) > 0 for all x 6= 0, and con-

tinuously differentiable, i.e., of class C1, and we denote as x : [t0, tf] → Rnh the state

trajectory solution of (1.17) with initial condition xinit, under a given control signal uh(t)

and time interval [t0, tf], t0, tf ∈ R≥0, tf > t0. Similarly, u : [t0, tf] → Rmh represents

the corresponding input signal. The high-level trajectory solution of (1.20) represents

then a reference trajectory for the low-level system (1.16). Then, the idea is to update the

initial condition of (1.20) at discrete time instants, according to the state of the low-level

dynamics(1.16).

Motivating example: Safe Exploration of Unknown Enviroments

As a motivating example, consider the scenario where an autonomous robot is tasked

with exploring an unknown environment. In this setting, the robot must navigate

while avoiding obstacles, relying on its onboard sensors for guidance. This illustrative

22

1.3. Safety-critical Optimal Control of Nonlinear Systems

vx

vy ṗh,x = vx

ṗh,y = vy

v̇x = uh,x

v̇y = uh,y

v

θ

I

ṗ`,x = v cos θ

ṗ`,y = v sin θ

θ̇ = ω.

Low-level dynamics

High-level dynamics

πuh πx`

Goal

I

Figure 1.6: (Left) Representation of a two-layer control architecture: with low-level unicycle
dynamics, and high-level double-integrator dynamics. The interface between the two layers is
provided by the maps πx`

(x`) and πuh(uh, xh). (Right) Graphical representation of a differential-
drive robot traversing an area with N obstacles modeled via N safety constraint hi(xh) =
‖xh − xc,i‖2 − ri.

scenario is depicted in Figure 1.6. A differential-drive robot admits as low-level model

representation the unicycle dynamics, i.e.,

ṗ`,x = v cos θ, (1.21)

ṗ`,y = v sin θ, (1.22)

θ̇ = ω, (1.23)

with x` = (p`,x, p`,y, θ) ∈ R3, and u` = (v, ω) ∈ R2. Being (1.21) differentially flat, a valid

high-level dynamics is

ẋh =

[
02 I2

02 02

]
xh +

[
02

I2

]
uh (1.24)

with xh ∈ R4, uh ∈ R2. The low level dynamics (1.21) is coupled with (1.24) via

πx`(x`) =
[
p`,x p`,x ṗ`,x ṗ`,x

]>
(1.25a)

πuh(uh, xh) =
[√

x2
h,3 + x2

h,4,
−xh,4uh,1+xh,3uh,2

x2
h,3+x2

h,4

]>
(1.25b)

Our goal then is to design a control law such that the overall system (i) reaches a desired

goal pose, encoded in the cost function q(xh), (ii) avoids the obstacles along the way. The

obstacles can be modeled asN circumferences centered at xc,i, thus resulting in a safe set

S defined as the intersection of N safety constraints in the form hi(xh) ≥ 0, i = 1, . . . N .

This scenario can be framed in the resolution of a specific instance of Problem (1.20).

23

Chapter 2

Reinforcement Learning and
Data-driven Optimal Control for
Large-Scale and Multi-Agent
Systems

In this chapter, we explore novel approaches for the resolution of the Linear Quadratic

Regulator (LQR) problem tailored to large-scale unknown dynamics.

We propose a set of algorithmic strategies based on data-driven approaches, which

are then instrumental for the development of numerical solutions for the design of

structurally constrained feedback control policies.

In Section 2.2, we propose an on-policy strategy for the resolution of the LQR

problem. This approach involves identifying system matrices while simultaneously

optimizing the control policy applied to the real system. This results in a time-varying

control policy that is iteratively updated based on the latest system matrix estimates,

aiming towards the optimal LQR solution. In Sections 2.3 and 2.4, we tackle the problem

of designing of data-driven control strategies for large-scale and distributed control

systems with structural constraints. In Section 2.3, we introduce a Reinforcement

Learning framework based on a Q-learning scheme. This framework maintains the

desired policy structure through an LMI-based policy improvement step. Meanwhile,

in Section 2.4 we reformulate the gain design process as a direct policy search. We

propose a data-driven approach for computing the optimal structured gain based on the

combination of a gradient method and an augmented Lagrangian approach. The results

of this chapter are based on [205–207, 210].

25

Reinforcement Learning and Data-driven Algorithms

2.1 Literature Review

The Linear Quadratic Regulator problem is a cornerstone in the history of Control The-

ory, with a vast and extensive body of literature surrounding it. Next we review various

model-based and data-driven approaches for resolving the LQR problem, including

cases where structural constraints on the feedback gain are applied.

The model-based LQR solution has a long history in control and can be efficiently ad-

dressed resorting to dynamic programming and Riccati equations, see, e.g., [9, 29]. The

extension of LQR problems to a data-driven scenario, however, relies manly on solution

approaches where the optimal control problem is solved directly in the policy space,

i.e., in terms of the feedback gain, see e.g., the Anderson-Moore algorithm or Klein-

man policy iteration presented in [137, 143, 186]. Indeed, these approaches are early

versions of policy iteration and policy gradient methods developed in reinforcement

learning [29,221]. In data-driven control and reinforcement learning, a fundamental

distinction between online and offline methods exists. While online methods involve

collecting system data while concurrently refining the controller, offline approaches

leverage on a shwred data collection phase before developing the controller. Former

derivations of Reinforcement Learning methods for LQ regulation trace back to [44].

Offline approaches can be further distinguished between direct, where data are used

directly in the policy design phase, and indirect approaches, where a preliminary identi-

fication step is performed. Direct strategies often tackle the LQR problem by exploiting

Persistently Exciting (PE) data together with semi-definite programming and Linear

Matrix Inequalities (LMI) approaches, as introduced in [70]. These methodologies are

thoroughly studied also in [70,197, 233]. The work in [198] extends these concepts to

unknown linear systems with switching time-varying dynamics. These LMI-based solu-

tions also allowed for the design of control policies in case of noisy data, as explored in

[71, 81]. The recent survey [73] also includes an extension to nonlinear systems. Instead,

the work [75] proposes a safe-learning strategy for LQR via an indirect approach, i.e., the

unknown dynamics is firstly estimated, so that the control gain is optimized on the esti-

mated quantities. As for online methods, a further classification distinguishes between

off-policy and on-policy algorithms. Off-policy algorithms pursue a value iteration

approach, learning the optimal value function from data that may be independent of the

current policy. Conversely, on-policy algorithms employ a policy iteration framework,

evaluating the value function of the current policy using data stemming from the same

policy. In the context of off-policy methodologies, we find iterative methods inspired by

the Kleinman algorithm, involving either parameter identification or direct estimate of

the policy [142,155,161,172,173,184]. An off-policy adaptive value-iteration strategy is

analyzed in [183]. The paper [155] investigates an off-policy Q-learning strategy, with an

additional focus on the the computational complexity. The recent works [33, 182, 253]

26

2.1. Literature Review

proposes iterative algorithms that at do not assume the existence of a stabilizing initial

policies. Conversely, on-policy control techniques are proposed in the continuous-time

framework in [124, 136, 160, 191, 192, 236]. In [183] stability guarantees on the learning

dynamics are provided without the assumption of an initial stabilizing policy. In [39], an

on-policy algorithm is proposed leveraging on model-reference adaptive control tools.

Notice that, although these strategies are developed in a continuous-time framework,

the policy is updated at discrete-time instants only, as soon as enough informative data

have been collected. In [231] a gradient-based Q-learning approach is proposed. In [173]

robustness of the policy iteration for continuous-time systems under additive, bounded

disturbances is studied. The discrete-time framework has received significant attention

in the learning community. In recent years [188], it is investigated the connection be-

tween the early works in the adaptive control field, e.g. [52] and on-policy reinforcement

learning. A model-free approache for discrete-time LQR based based on reinforcement

learning are studied and developed in [135]. Beyond these distinctions, in the recent

years, the LQR problem has been addressed also via policy-gradient methods. The con-

vergence properties of the (policy) gradient methods are thoroughly studied in [91] for

discrete-time LQR. A model-free, gradient-based, strategy is proposed in [250]. While

in [162], the sample complexity and convergence properties for the continuous-time

case are examined. Recent works also explored the non-asymptotic performances of

model-free LQR algorithms. Sub-linear regret result is given in [1]. Poly-logarithmic

regret bounds are given in [4, 58]. Finally, the sample complexity for model-free LQR is

studied in [74].

The rising interest towards the development of distributed control policies moti-

vated the research for algorithmic strategies for the design feedback laws with a given

structural profiles. Such structured control policies find application in control of power

networks [79] as well as in formation control of vehicles [150]. A variety of method-

ologies have been proposed in the model-based framework, i.e., the system dynamics

is supposed to be known. In a model-based scenario, LQR design methods to han-

dle a sparsity constraints are proposed in [149, 151] in the continuous-time case. An

LMI-based approach for the continuous-time case is proposed in [179]. In [249], con-

straints over the policy structure are introduced to handle statistical modeling, as well

as sensor and actuator selection. The discrete-time setting is considered in [87], where

sequential convex programming and LMIs are employed. The problem of designing

sparse feedback matrices solving a minimum-gain eigenvalue pole placement problem

is considered in [131]. Sparse LQR has been also used to design linear controllers

for spatially distributed systems in [217] and [216]. Other approaches for distributed

control in network systems have been developed in [40, 125, 235, 251] and [243]. All

the mentioned approaches require exact knowledge of the model. However, in many

cases an accurate model of the dynamical system may be impractical to obtain, which

27

Reinforcement Learning and Data-driven Algorithms

impacts on the reliability of the developed controller. Data-driven solutions represent an

interesting way to compute a (optimal) control strategy when the dynamics is completely

unknown. See, e.g., [71] and [23]. As a matter of fact, Reinforcement Learning methods

are recently getting more and more attention from the control community. Distributed

scenarios with Reinforcement Learning for LQR, are studied both in discrete [146] and

in continuous-time context [126, 127]. In [146], the policy optimization methodology

have been extended to the zero-th order optimization framework, i.e., without using

gradient related information, see, e.g.. Another zeroth-order optimization algorithm for

a distributed instance of the model-free LQR problem is proposed in [98]. Alongside

policy gradient approaches, a different line of research has been devoted to the exploita-

tion of data directly in the in the controller synthesis. In the continuous-time framework,

LQR design methods to handle a sparsity constraint on the static feedback are proposed

in [149, 151]. In [87] the discrete-time case is considered resorting to sequential convex

programming and LMIs. In [112], a data-driven solution to the sparse H2 feedback

gain design is proposed for continuous-time systems. In [98], model-free methods for

output-feedback finite-horizon LQR problems with sparsity feedback constraints are

studied for distributed systems resorting to zero-th order optimization approaches.

In [59], the problem of sparse feedback design is faced in the context of pole placement

and eigenstructure assignment. The design of policies with a decentralized structure is

considered also in [156] and [108]. Similar scenarios are also considered in the context

of distributed reinforcement learning, see, e.g., [146].

2.2 On-policy Data-driven Linear Quadratic Regulator

We consider discrete-time, linear and time-invariant systems described by the dynamics

xt+1 = A?xt +B?ut, x0 ∼ px0 , (2.1)

where xt ∈ Rn and ut ∈ Rm denote, respectively, the state and the input of the system

at time t ∈ N, while A ∈ Rn×n and B ∈ Rn×m represent, respectively, the state and the

input matrix. As for the initial condition x0 ∈ Rn, we assumed that it is sampled from a

random variable x0, with (know) probability distribution px0 . We enforce the following

properties on (A?, B?).

Assumption 2.1. The pair (A?, B?) is controllable and unknown. 4

As it will be useful later, we collect the pair (A,B) in a single variable θ? ∈ R(n+m)×n

defined as

θ? :=

[
A>?
B>?

]
. (2.2)

28

2.2. On-policy Data-driven Linear Quadratic Regulator

We would like to design a controller for system (2.1) under Assumption 2.1 resorting to

an LQR approach. Specifically, we consider an infinite horizon LQR problem

min
x1,x2,...,
u0,u1,...

1
2

∞∑
t=0

(
xt
>Qxt + ut

>Rut

)
(2.3a)

subj.to xt+1 = A?xt +B?ut, x0 ∼ x0, (2.3b)

where the cost matrices Q ∈ Rn×n and R ∈ Rm×m are both symmetric and positive

definite, i.e., Q = Q> > 0 and R = R> > 0. It is well-known that, when (A?, B?) are

known the optimal solution is given by a linear time-invariant policy uk = K?xk with

K? ∈ Rm×n given by

K? = −(R+B>? P?B?)
−1B>? P?A?,

where P? ∈ Rn×n solves the Discrete-time Algebraic Riccati Equation (DARE) associated

to Problem (2.3), see [9].

Our goal is to devise a data-driven feedback policy for (2.1) while designing a control

strategy that concurrently

(i) learns the unknown dynamics (2.1);

(ii) improves the policy towards the solution of Problem (2.3);

(iii) actuates the (real) system with the currently available state-feedback policy.

In the model-based case, cf. Appendix B.1, Problem (2.3) admits a reduced problem

formulation that explicitly imposes the linear feedback structure to the optimal input

and is amenable for gradient-based algorithmic solutions. Specifically, letting the

feedback gain be K ∈ Rm×n Problem (2.3) can be rewritten as

min
K∈D

J(K, θ?), (2.4)

where θ? is defined in (2.2), the cost function J : D × R(n+m)×n → R is given by

J(K, θ?):=
1
2 Tr

∞∑
t=0

(A? +B?K)t,>(Q+K>RK)(A? +B?K)t, (2.5)

and the set D ⊂ Rm×n := {K ∈ Rm×n | J(K, θ?) < ∞} is the domain of J , i.e., the set

over which J is well-defined. Notice that, the interior of D coincides with the set of

stabilizing gains K := {K ∈ Rm×n | A? +B?K is Schur} ⊆ Rm×n, see [48, Lemma 3.2].

Hence, being the set of stabilizing gains open [49, Lemma IV.3] and connected [49,

Lemma IV.6], and, if the pair (A?, B?) were known, a gradient descent method could

29

Reinforcement Learning and Data-driven Algorithms

be used to solve Problem (2.4), where, at each iteration k ∈ N, the estimate Kk of K? is

iteratively updated according to

Kk+1 = Kk − γΓ(Kk, θ?), (2.6)

where γ > 0 is the stepsize, while Γ : Rm×n × R(n+m)×n → Rm×n is the gradient of J

with respect to K evaluated at (Kk, θ?), when Rm×n is equipped with the Frobenius

inner product. The gradient Γ(Kk, θ?), see also Lemma B.1 in Appendix B.1, can be

computed as

Γ(Kk, θ?) =
(
RKk +B>? Pk(A? +B?Kk)

)
Wk. (2.7a)

where Wk ∈ Rn×n and Pk ∈ Rn×n are solutions to the Lyapunov equations

(A? +B?Kk)Wk(A? +B?Kk)
> −Wk = −In

(A? +B?Kk)
>Pk(A? +B?Kk)− Pk = −(Q+Kk

>RKk).
(2.7b)

Notice that under Assumption 2.1, Problem (2.4) is to be solved without resorting to the

knowledge of θ?, i.e., when (A?, B?) are unknown. Therefore, in our framework, it is not

possible to implement update (2.6).

2.2.1 On-Policy LQR via Recursive Least Squares Algorithm

In this section, we present the concurrent learning and optimization algorithm developed

to solve Problem (2.3) under Assumption 2.1. The proposed on-policy strategy feeds the

real system dynamics at each iteration k with the current feedback input including also

an additive exogenous dithering signal wk. Then, a new sample data from the system

is collected and used to progressively improve the estimates (Ak, Bk) of the unknown

(A,B) via a learning process inspired by Recursive Least Squares (RLS). In turn, (Ak, Bk)

is used to refine the feedback gain Kk for (2.3), and the procedure is repeated. The

overall scheme is shown in Figure 2.1.

wk+1 = Fwk

uk = Kt xk + Ewk

xk+1 = A?xk +B?uk

Optimization Process Learning Process

Kk

(Ak, Bk)

(xk, uk)

Figure 2.1: Representation of the concurrent learning and optimization scheme.

The overall strategy is reported in Algorithm 1 where, for notational convenience,

30

2.2. On-policy Data-driven Linear Quadratic Regulator

we denote as θk ∈ R(n+m)×n the estimate of θ? at iteration k ∈ N. Consistently, Ak ∈
Rn×n and Bk ∈ Rn×m are the corresponding estimates of A? and B?. Moreover, Hk ∈
R(n+m)×(n+m) and Sk ∈ R(n+m)×m denote two additional states of the learning process,

λ ∈ (0, 1) is a forgetting factor, while γ is the stepsize as in (2.6). Finally, in order to

prescribe the initialization K0, we introduce the set Br?(K?) ⊂ Rm×n constructively

defined as follows. Being the matrix A? + B?K? Schur, then, there must exist by

continuity r > 0 such that A? +B?K is Schur for all K ∈ Br(K?). Therefore, let r? > 0

be the largest value allowed for r ensuring that A? +B?K is Schur for all K ∈ Br?(K?).

Algorithm 1 On-policy LQR for Unknown Systems

Initialization: x0 ∈ Rn, H0 ∈ R(n+m)×(n+m), S0 ∈ R(n+m)×n, θ0 ∈ R(n+n)×n,K0 ∈
Rm×n and w0 ∈ Rnw .
for k = 0, 1, 2 . . . do

Data collection: generate

wk+1 = Fwk

dk = Ewk

and apply

uk = Kkxk + dk

xk+1 = A?xk +B?uk

yk = xk+1
>

Learning process: compute

Hk+1 = λHk +

[
xk
uk

] [
xk
uk

]>
(2.8a)

Sk+1 = λSk +

[
xk
uk

]
yk (2.8b)

θk+1 = θk − γH†k (Hkθk − Sk) . (2.8c)

Optimization process: update

Kk+1 = Kk − γΓ(Kk, θk). (2.9)

Next, we detail the main steps of the proposed algorithm.

31

Reinforcement Learning and Data-driven Algorithms

Data collection Data from the controlled System (2.1) are recast in an identification-

oriented form described by

xk+1
>︸ ︷︷ ︸

yk

=
[
xk
> uk

>
]

︸ ︷︷ ︸
g(xk, uk)

>

[
A>?
B>?

]
︸ ︷︷ ︸
θ?

. (2.10)

Learning process The adopted learning strategy to compute an estimate of θ? relies

on the interpretation of the least squares problem as an online optimization. Specif-

ically, with the measurements (2.10) at hand, we consider, at each k ∈ N, the online

optimization problem

min
θ∈R(n+m)×n

1
2

k∑
i=0

λk−i
∥∥∥g(xi,ui)

>θ − yi
∥∥∥2
, (2.11)

where we recall that λ is a forgetting factor. We aim to solve (2.11) through an iterative

algorithm that progressively refines a solution estimate θk ∈ R(n+m)×n. In particular,

we update such an estimate θk according to a “scaled” gradient method with Newton’s

like scaling matrix. If applied to problem (2.11), the iteration would read

θk+1 = θk − γ
(

k∑
i=0

λk−iH(xi,ui)

)†(k∑
i=0

λk−i (H(xi, ui)θk − S(xk, ui, yi))

)
,

where H : Rn × Rm → R(n+m)×(n+m) and S : Rn × Rm → R(n+m)×n × Rn reads as

H(xi, ui) := g(xi,ui)g(xi, ui)
>, S(xi,ui, yi) := g(xi,ui)yi.

To overcome the issue of storing the whole history of H(·, ·) and S(·, ·), we iteratively

keep track of them through the matrix states Hk ∈ R(n+m)×(n+m) and Sk ∈ R(n+m)×n

giving rise to (2.8).

Optimization process The estimate θk is concurrently exploited in the update of the

feedback gain Kk, replacing the unavailable θ? into (2.6) giving rise to (2.9). To ensure

sufficiently informative data, we equip our feedback policy with an additive dithering

signal dk ∈ Rm. Namely, we implement

uk = Kkxk + dk, (2.12)

32

2.2. On-policy Data-driven Linear Quadratic Regulator

where dk is the output of an exogenous system evolving according to a marginally stable

linear discrete-time oscillator dynamics (see, e.g., [228]) described by

wk+1 = Fwk (2.13a)

dk = Ewk, (2.13b)

where wk ∈ Rnw , with nw ≥ n + m, is the state of the exogenous system having

F ∈ Rnw×nw and E ∈ Rm×nw as state and output matrix, respectively. The matrix F is

a degree of freedom to properly shape the oscillation frequency of wk. The following

assumption formalizes the requirements for the design of the exogenous System (2.13).

Assumption 2.2. There exist α1, α2, kw, td > 0 such that, if w0 6= 0nw , then the two
following conditions hold true

α1Inw ≤
k̄+kw∑
i=k̄+1

wiw
>
i ≤ α2Inw , for all k̄ ∈ N (2.14a)

rank




d0 d1 . . . dtd−n−1

d1 d2 dtd−n
...

...
. . .

...
dn dn+1 . . . dtd−1


 = m(n+ 1). (2.14b)

Moreover, the eigenvalues of F lie on the unit disk. 4

The property (2.14a) is usually referred to as persistency of excitation of the signal

wk, see, e.g., [14]. As for the property in (2.14b), it corresponds to the sufficient richness
of order n+ 1 in the early reference [14], while, more recently, such property has been

referred to as persistency of excitation of order n+ 1 [70, 238].

The overall dynamics presented in Algorithm 1 can be written as

wk+1 = Fwk (2.15a)

xk+1 = (A? +B?Kk)xk +B?Ewk (2.15b)

Hk+1 = λHk +

[
xk

Kkxk + Ewk

][
xk

Kkxk+Ewk

]>
(2.15c)

Sk+1 = λSk +

[
xk

Kkxk+Ewk

][
xk

Kkxk+Ewk

]>
θ? (2.15d)

θk+1 = θk − γH†k (Hkθk − Sk) (2.15e)

Kk+1 = Kk − γΓ(Kk, θk), (2.15f)

in which we have used the explicit expressions for yk (cf. (2.10)) and uk (cf. (2.12)). Next,

33

Reinforcement Learning and Data-driven Algorithms

we provide the main result, i.e., the convergence properties of System (2.15).

Theorem 2.1. Consider System (2.15) and let Assumptions 2.1 and 2.2 hold. Then, for
each (w0, x0, H0, S0, θ0,K0) ∈ Rn × R(n+m)×(n+m) × R(n+m)×n × R(n+m)×n × Br?(K?)

such that w0 6= 0, A0 + B0K0 is Schur, there exist Πx ∈ Rn×nw , ΠH ∈ R(n+m)2×n2
w ,

ΠS ∈ R(n+m)m×n2
w , a1, a2, a3, a4, a5, a6, a7, a8, γ̄ > 0 such that, it holds

‖xk −Πxwk‖ ≤ a1 ‖x0 −Πxw0‖ exp(−a2k) (2.16a)∥∥∥Hk − unvec
(

ΠHvec
(
wkw

>
k

))∥∥∥
≤ a3

∥∥∥H0 − unvec
(

ΠHvec
(
w0w

>
0

))∥∥∥ exp(−a4k) (2.16b)∥∥∥Sk − unvec
(

ΠSvec
(
wkw

>
k

))∥∥∥
≤ a5

∥∥∥S0 − unvec
(

ΠSvec
(
w0w

>
0

))∥∥∥ exp(−a6k) (2.16c)∥∥∥∥∥
[
θk − θ?
Kk −K?

]∥∥∥∥∥ ≤ a7

∥∥∥∥∥
[
θ0 − θ?
K0 −K?

]∥∥∥∥∥ exp(−a8k), (2.16d)

for all γ ∈ (0, γ̄). 4

The proof of Theorem 2.1 is provided in the following sections.

Notice that the initialization in Theorem 2.1 does not necessarily require the knowl-

edge of (A,B). Indeed, one can compute a stabilizing controller K0 in a data-based

fashion, see, e.g., [233] and the discussion in [155].

Remark 2.1. Since the size of the ball Br(K?) heavily depends on problem data, e.g., the

choice of cost matrices and Lipschitz constants of J(·), it may generally be challenging

to ensure that the initial gain K0 belongs to Br(K?). However, by appropriately selecting

the step size γ, it is possible to expand Br(K?) to ensure that K0 ∈ Br(K?). 4

The result (2.16a) of Theorem 2.1 ensures that Πxwk is a practically exponentially

stable equilibrium for (2.15b). Indeed Theorem 2.1 allows us to choose the initial

condition of the exogenous system w0 so that xk exponentially converges into the ball

Bρ(0n) for any desired radius ρ > 0. More in details, since wk evolves according to a

marginally stable oscillating dynamics (cf. Assumption 2.2), it holds ‖wk‖ = ‖w0‖ for

all k ∈ N. Thus, in order to make Bρ(0n) attractive for the trajectories of (2.15b), it is

sufficient to choose w0 such that

‖w0‖ ≤
ρ

‖Πx‖
.

Furthermore, the result (2.16d) ensures that (K?, θ?) is exponentially stable for (2.15e)

and (2.15f). Hence, we asymptotically (i) reconstruct the unknown system matrices

(A,B) and (ii) compute the optimal gain matrix K?.

34

2.2. On-policy Data-driven Linear Quadratic Regulator

We finally point out that, as a byproduct, Theorem 2.1 formally ensures the well-

posedness of Algorithm 1. In fact, if the closed-loop matrix Ak +BkKk were not Schur

(recall that θk = col(A>k , B
>
k)), then the gradient Γ(Kk, θk) would not be computable,

so that the update in (2.9) becomes ill-posed. However, in light of the exponential

stability claimed in (2.16), one can invoke the converse Lyapunov theorem (see, e.g., [13,

Theorem 2.1.1]) to guarantee the existence of a Lyapunov function for System (2.15).

Notice that (i) such a Lyapunov function is bounded from below and from above by

quadratic functions and (ii) its level sets are invariant. Then, one can show that the cost

variation J(Kk+1, θk+1) − J(Kk, θk) is always bounded along trajectories of (2.15). In

turn, this guarantees thatAk+BkKk is Schur for all k ≥ 0 and, hence, the well-posedness

of Algorithm 1.

2.2.2 Algorithm Analysis

In this section, we perform a thorough analysis of Algorithm 1 leveraging on the stability

analysis of the associated closed-loop dynamics. We first write the algorithm dynamics

with respect to suitable error coordinates. Second, we resort to the averaging theory to

prove the exponential stability of the origin for the averaged system associated to the

error dynamics. This result is then exploited to prove Theorem 2.1.

Closed-Loop Dynamics in Error Coordinates

As a preliminary step, System (2.15) is expressed into suitably defined error coordinates.

First, we consider vectorized versions of the matrix updates in (2.15c)-(2.15d). To this

end, let the new coordinates Hvc ∈ R(n+m)2
and Svc ∈ R(n+m)n be defined asHk

Sk
7−→

Hvc
k := vec (Hk)

Svc
k := vec (Sk) .

(2.17)

Therefore, (2.15c)-(2.15d) can be recast as

Hvc
k+1 =λHvc

k +vec

[xk

Kkxk+Ewk

][
xk

Kkxk+Ewk

]> (2.18a)

Svc
k+1 =λSvc

k +vec

[xk

Kkxk+Ewk

][
xk

Kkxk+Ewk

]>
θ?

. (2.18b)

Next, we will inspect (2.18) together with (2.15b) to provide the steady-state locus

(see, e.g., [120, Ch. 12] for a formal definition) when the system is fed with the signal

wk, which evolves according to (2.15a). To this end, set nχ := n+ (n+m)2 + (n+m)n

35

Reinforcement Learning and Data-driven Algorithms

and let χ ∈ Rnχ be defined as

χ :=

 x

Hvc

Svc

 .
Then, using (2.18), the dynamics in (2.15a)-(2.15d) can be compactly expressed in the

new coordinates as

wk+1 = Fwk (2.19a)

χk+1 = AK(Kk)χk + φ(χk,Kk, wk) (2.19b)

where, we introduced AK : Rm×n → Rnχ×nχ and φ : Rnχ × Rm×n × Rnw → Rnχ be

defined as

AK(K) :=

A? +B?K 0 0

0 λI 0

0 0 λI

 (2.20a)

φ(χ,K,w) :=



B?Ew

vec

[x

Kx+Ew

][
x

Kx+Ew

]>
vec

[x

Kx+Ew

][
x

Kx+Ew

]>
θ?




. (2.20b)

Notice that to keep the notation light, we use a hybrid notation with χ on the left-hand

side and its (unvectorized) components (x,H, S) on the right-hand side.

System (2.19) together with the exosystem (2.15a) is a cascade whose steady-state

locus can be characterized by the nonlinear map χss : Rnw → Rnχ defined as

χss(w) :=

 Πxw

ΠHvec
(
ww>

)
ΠSvec

(
ww>

)
 , (2.21)

where Πx, ΠH , and ΠS are the same as in Theorem 2.1 (see (2.25) and (2.29) for their

explicit definition). Formally, the following lemma holds true.

Lemma 2.1. Let the assumptions of Theorem 2.1 hold true. Consider the map χss defined
in (2.21), the feedback gain K? solving (2.3), the matrix f as in (2.13), and the functions AK
and φ defined in (2.20). Then, it holds

χss(Fw) = AK(K?)χ
ss(w) + φ(χss(w),K?, w), (2.22)

36

2.2. On-policy Data-driven Linear Quadratic Regulator

for all w ∈ Rnw . Moreover,

(θ?
> ⊗ In+m)ΠH = ΠS . (2.23)

holds true. 4

Proof. We note that (2.22) is formally obtained by setting Kk = K? in System (2.19)

(which compactly collects the updates (2.15a), (2.15b), and (2.18)). Hence, we start by

inspecting (2.15a) and (2.15b) restricted to the manifold in which Kk = K?, which gives

wk+1 = Fwk (2.24a)

xk+1 = (A? +B?K?)xk +B?Ewk. (2.24b)

System (2.24) is a cascade, therefore its steady-state solution is col(wk, xk) = col(Inw ,Πx)wk,

with Πx ∈ Rn×m solution to the following Sylvester equation

ΠxF = (A? +B?K?)Πx +B?E. (2.25)

Being F marginally stable (cf. Assumption 2.2) and A? +B?K? Schur (so that σ(F) ∩
σ(A? +B?K?) = ∅) the solution Πx exists and is unique. Then, we inspect the dynamics

of System (2.18) restricted to the manifold in which xk = Πxwk and Kk = K?. Let the

matrix M ∈ R(n+m)×(n+m) be defined as

M :=

[
Πx

K?Πx + E

]
, (2.26)

then it holds

vec
(
wk+1w

>
k+1

)
= vec

(
Fwkw

>
k F
>
)

(2.27a)

Hvc
k+1 = λHvc

k + vec
(
Mwkw

>
kM

>
)

(2.27b)

Svc
k+1 = λSvc

k + vec
(
Mwkw

>
kM

>θ?
)
, (2.27c)

where the first equation comes from the vectorization of (2.15a). By exploiting the

vectorization properties1, we can manipulate (2.27) to obtain the system

vec
(
wk+1w

>
k+1

)
=(F ⊗ F)vec

(
wkw

>
k

)
(2.28a)

Hvc
k+1 =λHvc

k +(M ⊗M)vec
(
wkw

>
k

)
(2.28b)

1Given any X1 ∈ Rn1×n2 , X2 ∈ Rn2×n3 , and X3 ∈ Rn3×n4 , it holds vec (X1X2X3) = (X>3 ⊗
X1)vec (X2).

37

Reinforcement Learning and Data-driven Algorithms

Svc
k+1 =λSvc

k +(θ?
>M ⊗M)vec

(
wkw

>
k

)
, (2.28c)

which enjoys again a cascade structure. Thus, let ΠH ∈ R(n+m)2×n2
w and ΠS ∈ R(n+m)n×n2

w

be the solution to the Sylvester equations associated to the cascade in (2.28) given by

ΠH(F ⊗ F) = λΠH +M ⊗M (2.29a)

ΠS(F ⊗ F) = λΠS + (θ?
>M)⊗M. (2.29b)

Being F marginally stable (cf. Assumption 2.2) and λ ∈ (0, 1), then σ(F ⊗F)∩σ(λI) = ∅
and, thus, the solutions ΠS and ΠH to (2.29) exist and are unique. The proof of (2.22)

follows by (i) noticing that (Πx,ΠH ,ΠS) are used to define χss (cf. (2.21)), and (ii)

plugging (2.25) and (2.29) into System (2.19).

As for (2.23), it can be shown using an algebraic manipulation of (2.29). Indeed, by

premultiplying (2.29a) by θ?> ⊗ In+m we can write

(θ?
> ⊗ In+m)ΠH(F ⊗ F − λI) = (θ?

> ⊗ In+m)(M ⊗M)

(a)
= (θ?

>M)⊗M
(b)
= ΠS(F ⊗ F − λI), (2.30)

where in (a) we used the mixed-product property of the Kronecker operator2, while (b)

follows from (2.29b). So that the proof is complete. �

It is worth noting that, despite the fact that System (2.19) is fed by Kk, the expres-

sion (2.22) involves K?. Indeed, as one may expect, the pair (θ?,K?) is an equilibrium

of (2.15e)-(2.15f) when χk = χss(wk). Thus, it makes sense to provide the steady state

in terms of K? rather than Kk Also, condition (2.23) turns out to be very useful to

simplify the update (2.15e) when Hk and Sk lie in the steady-state locus. Indeed, when

χk = χss(wk) the driving term −γH†k (Hkθk − Sk) of the integrator dynamics in (2.15e)

can be simplified by noticing that

(Hkθk − Sk)
∣∣∣
χk=χss(wk)

= unvec
(

ΠSvec
(
wkw

>
k

))
θk

− unvec
((
θ?
> ⊗ In+m

)
ΠHvec

(
wkw

>
k

))
(a)
= unvec

(
ΠHvec

(
wkw

>
k

))
(θk − θ?) ,

where in (a) we used a property of the vectorization operator.3 From the above equality,

one can notice that the mentioned driving term vanishes in steady state if θk = θ?, i.e.,

2Given anyX1 ∈ Rn1×n2 ,X2 ∈ Rn3×n4 ,X3 ∈ Rn2×n5 , andX4 ∈ Rn4×n6 , it holds (X1⊗X2)(X3⊗X4) =
(X1X3)⊗ (X2X4).

3Given any two matrices X1 ∈ Rn1×n2 and X2 ∈ Rn2×n3 , it holds vec (X1X2) = (X>2 ⊗ In1)vec (X1).

38

2.2. On-policy Data-driven Linear Quadratic Regulator

when perfect estimation is achieved.

As it will become useful later, we also introduce Hss
k ∈ R(n+m)×(n+m) defined as

Hss
k := unvec

(
ΠHvec

(
wkw

>
k

))
, (2.31)

which represents the steady-state value of the state Hk.

Before proceeding, let us collect also the remaining states in (2.15) in z ∈ Rnz , with

nz := (n+ 2m)× n, defined as

z :=

[
θ

K

]
.

In order to prove Theorem 2.1, we need to show the convergence of χ and z toward

χss(w) and col(θ?,K?), respectively. Therefore, with Lemma 2.1 at hand, let us introduce

error coordinates χ̃ ∈ Rnχ and z̃ ∈ Rnz given by the following change of coordinates


w

χ

z

7−→



w

χ̃ :=


I 0 0

0 γI 0

0 0 γI

 (χ− χss(w))

z̃ := z −

 θ?
K?

 .
(2.32)

For notational convenience, we will sometimes refer to the components of z̃ as col(θ̃, K̃).

Finally, the closed-loop dynamics (2.15) in the new coordinates (2.32) reads as

χ̃k+1 = A(z̃k)χ̃k + h(z̃k, k) + γg(χ̃k, z̃k, k) (2.33a)

z̃k+1 = z̃k + γf(χ̃k, z̃k, k), (2.33b)

whereA(z̃) := AK(K̃+K?) and we introduced h : Rnz ×N→ Rnz , g : Rnχ ×Rnz ×N→
Rnχ , and f : Rnχ × Rnz × N→ Rnz defined respectively as

h(z̃, k) :=

B?K̃Πxwk

0

0

 (2.34a)

g(χ̃, z̃, k) :=

[
0

γφ(x̃+ Πxwk, K̃ +K?, wk)

]
(2.34b)

f(χ̃, z̃, k) := −
[

(H̃ +Hss
k)†

(
(H̃ +Hss

k)θ̃ + (H̃ − S̃)θ?

)
Γ(K̃ +K?, θ̃ + θ?)

]
. (2.34c)

39

Reinforcement Learning and Data-driven Algorithms

Notice that for the sake of readability, in (2.34) we used the shorthands χ̃ := col(x̃, H̃, S̃)

and z̃ = col(θ̃, K̃), while Hss
k is defined in (2.31).

Some remarks are in order. We point out that with this transformation we obtained

a dynamical system with two-time scales as the one described in Appendix C (cf. Sys-

tem (C.1)). As customary in the context of singularly perturbed systems, we distinguish

between (i) the fast dynamics (2.33a) with state χ̃, and (ii) the slow one (2.33b) with

state z̃. Figure 2.2 shows the mentioned interconnected structure of System (2.33).

χ̃k+1 = A(z̃k)χ̃k + h(z̃k, k) + γg(χ̃k, z̃k, k)

fast system

z̃k+1 = z̃k + γf(χ̃k, z̃k, k),

slow systemz̃k χ̃k

Figure 2.2: Block diagram describing System (2.33).

It is also worth noting that, in this reformulation, the effect of the exogenous/dithering

signal wk has been embedded in the time-dependency of h, g, and f . As for the equilib-

rium manifold, we observe that, for all k ∈ N, it holds

h(0, k) = 0, g(0, 0, k) = 0, f(0, 0, k) = 0. (2.35)

Finally, the matrix A(z̃) is Schur for all K̃ ∈ Rm×n such that (K̃ +K?) ∈ Br?(K?).

Averaged System Analysis

Next, we carry out the stability analysis of the time-varying System (2.33) by leverag-

ing on the averaging and singular perturbations theories (cf. Appendix C for further

details). Indeed, since System (2.33) enjoys a two-time-scale structure (cf. the generic

System (C.1)), we can study (2.33) by only investigating an auxiliary system typically

termed as the averaged system. The latter is obtained by considering the slow dynam-

ics (2.33b) in which (i) the fast state is frozen to its equilibrium, i.e., with χ̃k = 0 for all

k ≥ 0, and (ii) the vector field describing the dynamics is averaged with respect to time.

The following results are instrumental to properly formulate the averaged system.

Lemma 2.2. Let the assumptions of Theorem 2.1 hold true. Then, the matrix Hss
k , defined

in (2.31), is invertible for all k ∈ N.

We recall that Hss
k is the unvectorized version of the second block-component of

χss(wk) (see (2.21) and (2.31)).

Proof. We will prove the invertibility property of the matrix Hss
k by investigating the

evolution of Hk. The dynamics of Hk in (2.15c) restricted to the manifold in which

40

2.2. On-policy Data-driven Linear Quadratic Regulator

xk = Πxwk and Kk = K? reads as

Hk+1 = λHk +Mwkw
>
kM

>, (2.36)

with M as in (2.26). The explicit solution of (2.36) is

Hk = λkH0 +M

(
k−1∑
i=0

λk−1−iwiw>i

)
︸ ︷︷ ︸

Wk

M>. (2.37)

Being λ ∈ (0, 1), the free evolution λkH0 in (2.37) vanishes as k →∞. Hence, it does not

impact on the invertibility of the steady-state solution.

Therefore, let us focus on the forced response MWkM
> only. We first notice that

α1Inw ≤
∑k̄+kw

i=k̄+1
wiw

>
i ≤ α2Inw for all k̄ ∈ N (cf. Assumption 2.2). Hence we can

invoke [128, Lemma 1] to assert the positive definiteness ofWk for all k ≥ kw. Let us

consider the Cholesky decomposition ofWk given byWk = CkC>k , with Ck ∈ Rnw×nw

invertible. Then4, for all k ≥ kw, we can write

rank
(
MWkM

>
)

= rank(MCk)
(a)
= rank(M), (2.38)

where in (a) we used the full-rankness of Ck and a property of the rank operator.5

In order to compute rank(M), we consider again the dynamics in (2.15a) and (2.15b)

restricted to the manifold in which Kk = K?, namely

wk+1 = Fwk (2.39a)

xk+1 = (A? +B?K?)xk +B?Ewk. (2.39b)

Recalling that dk = Ewk satisfies condition (2.14b) (cf. Assumption 2.2) and that the

pair (A,B) is controllable (cf. Assumption 2.1), we can invoke [238, Cor. 2] to claim that

rank

([
x0 . . . xtd−1

d0 . . . dtd−1

])
= n+m, (2.40)

for all (x0,d0) ∈ Rn × Rm. When the initial condition of (2.39b) lies in the invariant

steady-state locus (cf. (2.25)), i.e., when x0 = Πxw0, the condition in (2.40) simplifies to

rank
(
M
[
w0 . . . wtd−1

])
= n+m, (2.41)

4Given any X ∈ Rn×m, it holds rank(XX>) = rank(X) = rank(X>).
5Given X1 ∈ Rn1×n2 and X2 ∈ Rn2×n3 it holds rank(X1X2) = rank(X1) if rank(X2) = n2.

41

Reinforcement Learning and Data-driven Algorithms

with M as in (2.26). Equation (2.41) allows us to conclude that6

rank(M) ≥ n+m.

Moreover, being rank(M) ≤ n + m by construction, the above inequality yields to

rank(M) = n+m, which, in turn, combined with (2.38), allows us to write

rank
(
MWkM

>
)

= n+m, (2.42)

for all k ≥ kw. Next, we characterize the rank(MWkM
>) after the transient phase. Being

λ ∈ (0, 1), it holds that MWkM
> exponentially converges to Hss

k . Therefore, using a

continuity argument there must exist k∞ ≥ kw such that also

rank(Hss
k) = n+m,

for all k ≥ k∞. Finally, being Hss
k a static function of the periodic signal wk, then Hss

k is

periodic as well so that its full-rankness is independent of k. Therefore, it must be that

rank(Hss
k) = n+m for all k ∈ N, and the proof follows. �

Lemma 2.3. Let the assumptions of Theorem 2.1 hold true. Consider f defined in (2.34c).
Then, it holds

lim
T→∞

1

T

k̄+T∑
i=k̄+1

f(0, z̃, i) = −
[

θ̃

Γ(K̃ +K?, θ̃ + θ?)

]
(2.43)

uniformly in k̄ ∈ N and for all z̃ = col(θ̃, K̃) ∈ Rnz . 4

Proof. We start recalling that, by Lemma 2.2, the invertibility of Hss
k is established. Let

us label the two components of fav as[
fav

1 (z̃)

fav
2 (z̃)

]
:= lim

T→∞
1

T

k̄+T∑
i=k̄+1

f(0, z̃, i).

As for fav
1 (z), we can write

fav
1 (z̃) = − lim

T→∞
1

T

k̄+T∑
i=k̄+1

(Hss
i)†Hss

i θ̃
(a)
= −θ̃,

where in (a) we used Lemma 2.2 to guarantee the invertibility of Hss
k for all k ∈ N . As

for fav
2 (z), its existence is trivially shown by observing that it does not depend on k.

6Given X1 ∈ Rn1×n2 and X2 ∈ Rn2×n3 , it holds rank(X1X2) ≤ min{rank(X1), rank(X2)}.

42

2.2. On-policy Data-driven Linear Quadratic Regulator

Hence, it holds

fav
2 (z̃) := −Γ(K̃ +K?, θ̃ + θ?),

where we used z̃ = col(K̃, θ̃). �

Lemma 2.3 provides a suitable approximation of the dynamics of z̃ in (2.33b) when

(i) the convergence of the fast state χ̃ to its equilibrium has already occurred and (ii) by

averaging over time k the vector field f(0, z̃, k). Specifically, under this approximation,

Lemma 2.3 ensures that the two components of the driving term of the dynamics of z̃

are given by (i) a proportional term −γθ̃ and (ii) an approximate version of the correct

gradient Γ(K̃ +K?, θ?). Next, we will leverage averaging theory to prove the stability of

the origin for System (2.33).

Once the averaged vector field has been characterized in Lemma 2.3, we can intro-

duce fav : Rnz → Rnz given by

fav(z̃) := lim
T→∞

1

T

k̄+T∑
i=k̄+1

f(0, z̃, k)=−
[

θ̃

Γ(K̃ +K?, θ̃ + θ?)

]
,

in which we used z̃ = col(θ̃, K̃). Then, we define the averaged system, with state

z̃av
k ∈ Rnz , associated to (2.33) as

z̃av
k+1 = z̃av

k + γfav(z̃av
k). (2.44)

Exploding the expression of fav (cf. (2.43)) and z̃k := col(θ̃k, K̃k), the dynamics in (2.44)

results in a cascade as depicted in Figure 2.3.

K̃av
k+1 = K̃av

k − γG(K̃av
k +K?, θ̃avk + θ?)

θ̃avk+1 = (1− γ)θ̃avk

averaged system

θ̃avk
K̃av

k

Figure 2.3: Block diagram describing System (2.44) with z̃av
k = col(θ̃av

k , K̃
av
k).

The dynamics of θ̃av
k is trivially exponentially convergent to zero, while in the follow-

ing we will formally show that the dynamics of K̃av
k is input-to-state (ISS) exponentially

stable (cf. [107]).

For the sake of compactness, let us also introduce the (averaged) estimates Aav
k ∈

43

Reinforcement Learning and Data-driven Algorithms

Rn×n and Bav
k ∈ Rn×m of the matrices A and B, defined as

[
Aav
k Bav

k

]>
:= θ̃av

k + θ?, (2.45)

where we recall that θ̃av
k is the first component of z̃av

k . Under the same assumptions

of Theorem 2.1, the next result establishes exponential stability of the origin for Sys-

tem (2.44).

Proposition 2.1. Let the assumptions of Theorem 2.1 hold true. Consider the averaged
System (2.44). Then, for all z̃av

0 ∈ R(n+2m)×n such that the correspondingAav
0 +Bav

0 (K̃av
0 +K?)

and A?+B?(K̃
av
0 +K?) are Schur matrices, there exists γ̄av > 0 such that, for all γ ∈ (0, γ̄av),

the origin of (2.44) is exponentially stable. 4

Proof. The proof resorts to a suitable Lyapunov candidate function whose increment

along trajectories of System (2.44) will allow us to claim exponential stability of the

origin. To ease the notation, we start by decomposing the state of (2.44) as z̃av
k :=

col(θ̃av
k , K̃

av
k). Then, we recall [48, Lemma 3.12] to guarantee that the cost function J ,

defined in (2.5), is gradient dominated, that is for all K ∈ D it holds

J(K, θ?)− J(K?, θ?) ≤ µ ‖Γ(K, θ?)‖2 , (2.46)

for some µ > 0, where Γ denotes the gradient of J . Now, let us consider the Lyapunov

candidate function V : Rm×n × R(n+m)×n → R defined as

V (K̃av, θ̃av) := κ
(
J(K̃av +K?, θ?)− J(K?, θ?)

)
+ 1

2

∥∥∥θ̃av
∥∥∥2
, (2.47)

with κ > 0, whose specific value will be set later. Being K? the unique minimizer of

J(·, θ?) [48], we note that V is positive definite. Now, given any c > 0, let us introduce

the level set Ωc ⊂ Rm×m × R(n+m)×n of V , defined as

Ωc :=
{

(K̃av, θ̃av) ∈ Rm×n × R(n+m)×n | J(K̃av +K?, θ?)−J(K?, θ?)+ 1
2

∥∥∥θ̃av
∥∥∥2
≤ c
}
.

Let c0 > 0 be the smallest number such that (K̃av
0 , θ̃

av
0) ∈ Ωc0 and define

β1 := max
(K̃av,θ̃av)∈Ωc0

{∥∥∥∥∥∂Γ(K̃av +K?, θ̃
av + θ?)

∂K̃av

∥∥∥∥∥
}

(2.48a)

β2 := max
(K̃av,θ̃av)∈Ωc0

{∥∥∥∥∥∂Γ(K̃av+K?, θ̃
av+θ?)

∂θ̃av

∥∥∥∥∥
}
. (2.48b)

In light of [48, Proposition 3.10], it holds that ∂Γ(K̃av+K?,θ̃av+θ?)

∂K̃av is a continuous function

of K̃av. Similarly, also continuity of ∂Γ(K̃av+K?,θ̃av+θ?)

∂θ̃av with respect to θ̃av can be shown.

44

2.2. On-policy Data-driven Linear Quadratic Regulator

Hence, (β1, β2) are well posed, i.e., finite. We remark that [48, Corolllary 3.7.1] guar-

antees that, given any c > 0, the level set of the cost function J , namely {K̃ ∈ Rm×n |
J(K̃av +K?, θ?)− J(K?, θ?) ≤ c} ⊂ Rm×n, is compact and, thus, so is Ωc.

Next, we show that Ωc0 is (forward) invariant for System (2.44). To this end, assume

that (K̃av
k , θ̃

av
k) ∈ Ωc0 and let us prove the invariance of Ωc0 using an induction argument.

Recall that, the cost J(K̃av
k + K?, θ̃

av
k + θ?) is finite for all z̃av

k ∈ Ωc0 , and, hence,

iteration (2.44) is well-posed. The increment ∆V of V along trajectories of System (2.44)

is given by

∆V (K̃av
k , θ̃

av
k) := V (K̃av

k+1, θ̃
av
k+1)− V (K̃av

k , θ̃
av
k)

= κ
(
J(K̃av

k+1 +K?, θ?)− J(K̃av
k +K?, θ?)

)
− γ (1− γ/2)

∥∥∥θ̃av
k

∥∥∥2

(a)

≤ κJ(K̃av
k +K? − γΓ(K̃av

k +K?, θ̃
av
k + θ?), θ?)− κJ(K̃av

k +K? − γΓ(K̃av
k +K?, θ?), θ?)

+ κJ(K̃av
k +K?−γΓ(K̃av

k +K?, θ?), θ?)− κJ(K̃av
k +K?, θ?)− γ (1− γ/2)

∥∥∥θ̃av
k

∥∥∥2

(b)

≤ κJ(K̃av
k +K?−γΓ(K̃av

k +K?, θ̃
av
k + θ?), θ?)− κJ(K̃av

k +K?−γΓ(K̃av
k +K?, θ?), θ?)

− γκ
(

1− γ β1

2

)∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2
− γ (1− γ/2)

∥∥∥θ̃av
k

∥∥∥2
, (2.49)

where in (a) we used the update of K̃av
k+1 and added±κJ(K̃av

k +K?−γΓ(K̃av
k +K?, θ?), θ?),

in (b) we used the Taylor expansion of J(·, ·) about (K̃av
k +K?, θ?) evaluated at (K̃av

k +

K? − γΓ(K̃av
k +K?, θ?), θ?) and used (2.48a)..

Next, we manipulate the difference between the first two terms in (2.49). By expand-

ing J(·, ·) about (K̃av
k +K?, θ?) evaluated at (K̃av

k +K?− γΓ(K̃av
k +K?, θ̃

av
k + θ?), θ?) and

(K̃av
k +K?− γΓ(K̃av

k +K?, θ?), θ?) and using (2.48a) and the Cauchy-Schwarz inequality,

we can write

J(K̃av
k +K? − γΓ(K̃av

k +K?, θ̃
av
k + θ?), θ?)− J(K̃av

k +K? − γΓ(K̃av
k +K?, θ?), θ?)

≤ γ
∥∥∥Γ(K̃av

k +K?, θ?)
∥∥∥∥∥∥Γ(K̃av

k +K?, θ̃
av
k +θ?)−Γ(K̃av

k +K?, θ?)
∥∥∥

+
γ2β1

2

∥∥∥Γ(K̃av
k +K?, θ̃

av
k + θ?)

∥∥∥2
+
γ2β1

2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2

(a)

≤ γβ2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥+
γ2β1

2

∥∥∥Γ(K̃av
k +K?, θ̃

av
k + θ?)± Γ(K̃av

k +K?, θ?)
∥∥∥2

+
γ2β1

2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2

(b)

≤ γβ2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥+ γ2β1β2

∥∥∥θ̃av
k

∥∥∥2
+ γ2β1

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2

+
γ2β1

2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2
, (2.50)

where in (a) we exploited the Lipschitz continuity expressed on (2.48b) and added

45

Reinforcement Learning and Data-driven Algorithms

±Γ(K̃av
k +K?, θ?) inside the norm of the second term, while in (b) we exploited again

the Lipschitz continuity and a standard property of the square norm.7 Plugging the

bound in (2.50) into (2.49) and restricting κ ∈ (0, 1), we get

∆V (K̃av
k , θ̃

av
k) ≤ −γκ

(
1− γ 3β1

2

)∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2
− γ

(
1− γ 1 + β1β

2
2

2

)∥∥∥θ̃av
k

∥∥∥2
,

+ γκβ2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥ (2.51)

where we used κβ1β
2
2 ≤ β1β

2
2 .

Let us consider two arbitrary scalars ν1, ν2 ∈ (0, 1). Then, for all γ ∈ (0, γ̄av) with

γ̄av := min
{

1, 2ν1
3β1

, 2ν2

1+β1β2
2

}
, the inequality (2.51) can be manipulated as

∆V (K̃av
k , θ̃

av
k) ≤−γκν1

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2
+γκβ2

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥−γν2

∥∥∥θ̃av
k

∥∥∥2

(a)
= −γ

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥
>U(κ)

∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥∥∥∥θ̃av
k

∥∥∥
, (2.52)

where in (a) we have simply rearranged the terms in a quadratic form with

U(κ) :=

[
κν1 −κβ2

2

−κβ2

2 ν2

]
.

In light of the Sylvester criterion, the matrix U(κ) is positive definite if and only if

its determinant is positive. Therefore, to enforce the positive definiteness of U(κ) we

further restrict κ ∈ (0, κ̄), with κ̄ := min{β2/(4ν1ν2), 1}. Let η > 0 be the smallest

eigenvalue of U(κ), then (2.52) can be bounded as

∆V (K̃av
k , θ̃

av
k) ≤ −γη

(∥∥∥Γ(K̃av
k +K?, θ?)

∥∥∥2
+
∥∥∥θ̃av

k

∥∥∥2
)

(a)

≤ −γ η
µ

(
J(K̃av

k +K?, θ?)− J(K?, θ?)
)
− γη

∥∥∥θ̃av
k

∥∥∥2

(b)

≤ −γηmin
{

1
µκ , 1

}
V (θ̃av

k , K̃
av
k), (2.53)

where (a) follows from the gradient dominance of J (cf. (2.46)), while (b) recovers the

formulation of V (cf. (2.47)) by negleting a negative term. Being the right-hand side

of (2.53) always non-positive, it holds

V (K̃av
k+1, θ̃

av
k+1) ≤ V (K̃av

k , θ̃
av
k)

(a)

≤ J(K̃av
k +K?, θ?)−J(K?, θ?)+ 1

2

∥∥∥θ̃av
k

∥∥∥2
, (2.54)

7Given any two vectors v1, v2 ∈ Rn, it holds ‖v1 − v2‖2 ≤ 2 ‖v1‖2 + 2 ‖v2‖2.

46

2.2. On-policy Data-driven Linear Quadratic Regulator

where (a) holds because κ ≤ 1. In light of the definition of Ωc0 , the inequality (2.54)

guarantees that (K̃av
k+1, θ̃

av
k+1) ∈ Ωc0 hence proving the invariance.

Since System (2.44) is initialized into Ωc0 , then its trajectories satisfy (2.53). Hence,

the exponential stability of the origin for System (2.44) is implied (cf. [109, Theo-

rem 13.2]) and the proof follows. �

Once this result has been posed, we can proceed with the proof of Theorem 2.1 in

the next subsection.

Proof of Theorem 2.1

We will use Theorem C.1 given in Appendix C to guarantee the exponential stability of

the origin for System (2.33). More specifically, in order to apply Theorem C.1, we need

to verify

(i) the exponential stability of the origin for the associated averaged system,

(ii) the Lipschitz continuity of the vector field of (2.33),

(iii) that the origin is an equilibrium point of (2.33), and

(iv) that ∥∥∥∥∥∥ 1

T

k̄+T∑
i=k̄+1

∆f(z̃, i)

∥∥∥∥∥∥ ≤ ν(T) ‖z̃‖ ,

∥∥∥∥∥∥ 1

T

k̄+T∑
i=k̄+1

∂f̃(z̃, i)

∂z̃

∥∥∥∥∥∥ ≤ ν(T), (2.55)

where ∆f(z̃, i) := f(0, z̃, i)− fav(z̃) and ν(k) is a nonnegative strictly decreasing

function with the property ν(k)→ 0 as k →∞.

As for condition (i), it follows from Proposition 2.1. Condition (ii) is satisfied by

using the quantities defined in (2.48) as the required Lipschitz constants of the vector

field of (2.33). Condition (iii) can be verified by means of (2.35). Finally, in order to

check condition (iv) (cf. (2.55)), note that

f̃(z̃, k) = (Hss
k)†Hss

k θ̃ − θ̃
(a)
= 0, (2.56)

where in (a) we use the fact that Hss
k is invertible for all k ∈ N (cf. Lemma 2.2).

Therefore, the conditions in (2.55) are satisfied and, thus, we can apply Theorem C.1.

This result guarantees the existence of γ̄ > 0 such that, for all γ ∈ (0, γ̄), the origin is an

exponentially stable equilibrium point for System (2.33). The proof follows backtracking

to the original coordinates (x, θ,K).

47

Reinforcement Learning and Data-driven Algorithms

2.2.3 Numerical Simulations

In this section, we provide some numerical simulations to corroborate our theoretical

findings. We consider the linear model of a highly maneuverable aircraft derived from

the linearization of its longitudinal dynamics at an altitude of 3000 [ft] and a velocity of

0.6 [Mach], see [130]. The resulting linear time-invariant dynamics in continuous-time

reads as

ẋ =


−0.0151 −60.5651 0 −32.174

−0.0001 −1.3411 0.9929 0

0.00018 43.2541 −0.86939 0

0 0 1 0

x+


−2.516 −13.136

−0.1689 −0.2514

−17.251 −1.5766

0 0

u, (2.57)

where the state x ∈ R4 represents the forward velocity, the attack angle, the pitch rate

and the pitch angle, while the inputs u ∈ R2 are the elevator and flaperon angles. The

discrete-time system matrices A? and B? of (2.1) are discretized from the continuous-

time system (2.57) using a Zero Order Hold on the input with sampling time Ts = 0.05

[s]. Notice that the resulting matrix A? has one eigenvalue outside the unit disk, i.e., it

is not Schur. The cost matrices Q ∈ R4×4 and R ∈ R2×2 are randomly generated, while

ensuring that Q = Q> ≥ 0 and R = R> > 0. We set γ = 10−4 and ‖w0‖ = 0.01.

Exogenus System Design Procedure

Before providing the results of the numerical simulations, we propose a procedure

tailored to design an exogenous system such that Assumption 2.2 is guaranteed. For

the sake of completeness, we consider the general case with the state dimension being

n and the input dimension being m. First, we set q := n + 1, nw = qm, and F :=

blkdiag(F1, . . . , Fq), where, for all i ∈ {1, . . . , q},

Fi :=

[
cos(ωi) sin(ωi)

− sin(ωi) cos(ωi)

]
,

for some given ωi > 0 such that ωi and ωj are uncorrelated for each pair i, j ∈ {1, . . . , q}
with i 6= j. By choosing an initial condition w0 that satisfies

([w0]2i+1)2 + ([w0]2i+2)2 6= 0, 0 ≤ i ≤ q − 1, (2.58)

the chosen structure of F guarantees (2.14a) according to [171, Th.2]. As for (2.14b), we

achieve it by selecting E such that
[
E> (EF)> . . . (EFn)>

]
is nonsingular.

48

2.2. On-policy Data-driven Linear Quadratic Regulator

Aircraft Control

We start by considering the LTI system (2.57). We run Algorithm 1 with the exogenus

signal generated via the procedure detailed above. In Figure 2.5 (left) it is possible

to observe the evolution of the normalized cost error |J(Kk, θ?) − J?|/J?, with J? :=

J(K?, θ?) and θ? := [A? B?]
>, in logarithmic scale. On the right of Figure 2.5 it is

depicted the evolution of the normalized estimation error ‖θk − θ?‖ / ‖θ?‖ in logarithmic

scale. Notice that, in both cases, convergence to the optimal cost J? and true parameters

θ? is achieved. Finally, in Figure 2.4 the state trajectory of the closed-loop system is

depicted. The initial condition x0 is sampled from a normal distribution with mean

value 10 for each state. Notice that, after a transient, the states oscillate about the origin

due to the exogenous system.

0 1 2 3 4 5

·104
10−16

10−7

102

t

|J
(K

t
,θ

?
)
−
J
?
|/
J
?

0 1 2 3 4 5

·104
10−8

10−5

10−2

t

‖θ
t
−
θ
?
‖/
‖θ

?
‖

Figure 2.4: (left) Evolution of the normalized cost error |J(Kk, θ?)− J?|/J?. (right) Evolution of
the normalized estimation error about ‖θk − θ?‖ / ‖θ?‖ (left).

0 100 200 300 400 500

−10

−5

0

5

t

S
ta
te

tr
a
je
ct
or
y

x1
x2
x3
x4

Figure 2.5: State trajectory of the closed-loop system. The states x1, x2, x3, x4 correspond,
respectively, the forward velocity, the attack angle, the pitch rate and the pitch angle.

49

Reinforcement Learning and Data-driven Algorithms

Aircraft Control with Drifting Parameters

To better highlight the capabilities of our algorithm, we also consider the case where the

system matrices A?, B?, slowly change over time. The new time-varying state and input

matrices are denoted as Ak? and Bk
? , respectively. More in detail, the time-varying system

matrices Ak? and Bk
? smoothly evolve from A? and B? toward a new pair of matrices A+

and B+, according to the update law

Ak? = (1− σ(k))A? + σ(k)A+

Bk
? = (1− σ(k))B? + σ(k)B+,

for all k ≥ 0, with σ(k) being a sigmoid function defined as σ(k) = 1/(1 + exp(k−t
trigger

α

)
),

where α ∈ R determines the transition width and ttrigger ∈ N defining the center of the

transition. We select ttrigger = 1.5 · 105 and α = 5 · 103, while the entries a+
ij and b+i` of A+

and B+ are randomly generated according to

a+
ij =

 aij if aij = 0

aij + σvAij otherwise
, b+i` =

 bi` if bij = 0

bi` + σvBi` otherwise
,

for all i, j ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}, where vAij and vBi` are random variables

normally distributed and σ = 0.1 is the chosen variance. In Figure 2.6, we compare

J(Kk, θ?) and J?k . In Figure 2.7 (right), it is possible to observe the evolution of the

normalized cost error |J(Kk, θ?)− J?k |/J?k , with J?k := J(K?, θ?) and θ? :=
[
Ak? Bk

?

]>
,

in logarithmic scale. Finally, in Figure 2.7 (left) it is depicted the evolution of the

normalized estimation error ‖θk − θ?‖ / ‖θ?‖ in logarithmic scale. Notice that, in both

cases, convergence to the optimal cost J?k and true parameters θ? is achieved. As one

may expect, in the neighborhood of the inflection point k ≈ ttrigger, both error quantities

increase. However, we note that our policy shows its adaptability by quickly recovering

convergence toward the optimal gain and exact estimation.

0 0.5 1 1.5 2 2.5 3 3.5 ·105200

400

600

800

t

J(Kt, θt)

J?
t

Figure 2.6: Comparison between J(Kk, θ?) and J?k .

50

2.3. Structured Policy Design via Reinforcement Learning

0 1 2 3

·105
10−16

10−8

100

t

|J
(K

t
,θ

? t
)
−
J
? t
|/
J
? t

0 1 2 3

·105
10−8

10−4

100

t

‖θ
t
−
θ
? t
‖/
‖θ

? t
‖

Figure 2.7: (Left) Evolution of the normalized cost error |J(Kk, θ?)− J?k |/J?k . (right) Evolution
of the normalized estimation error ‖θk − θ?‖ / ‖θ?‖ (left).

2.3 Structured Policy Design via Reinforcement Learning

In this section, we develop a Reinforcement Learning strategy for the design of structured

feedback policies for large-scale networked systems using data. Specifically, we consider

discrete-time linear systems of the form

xt+1 = A?xt +B?ut, x0 = xinit (2.59)

where xt ∈ Rn and ut ∈ Rm denote the system’s state and input at time t ∈ N, while

A? ∈ Rn×n and B? ∈ Rn×m are the system’s matrices and xinit ∈ Rn the initial condition.

We assume that the matrices A? and B? are not known and that the objective is to develop

a linear state feedback of the form

ut = Kxt, (2.60)

where K ∈ Rm×n, such that the closed-loop system is asymptotically stable. Clearly,

this is not directly possible since we do not know the system matrices. Furthermore, for

the design of such controller, we aim at imposing a certain sparsity on K (that is, some

entries must be zero) and to optimize an infinite-horizon quadratic cost. This can be

formulated as the optimal control problem

min
xt,ut,K

∞∑
t=0

x>t Qxt + u>t Rut

subj.to xt+1 = A?xt +B?ut

ut = Kxt

K ◦ S = 0

(2.61)

where Q = Q> > 0 ∈ Rn×n and R = R> > 0 ∈ Rm×m are the cost matrices associated

to state and input, the symbol > indicates that the matrices are positive definite and ◦

51

Reinforcement Learning and Data-driven Algorithms

denotes item-by-item matrix multiplication. The binary matrix S ∈ {0, 1}m×n models

the desired sparsity in the sense that its (i, j)-th entry S(i,j) is

S(i,j) :=

 0, if K(i,j) is free;

1, otherwise.

The challenge of solving problem (2.61) is twofold. We do not know the system

dynamics, which hampers applicability of model-based optimal control methods. More-

over, even if this was the case, the design of a sparse K calls for different solution

approaches. In order to tackle both problems, we will rely on a suitably designed

Q-learning algorithm. Before describing the proposed approach, in the remainder of

this section we show a motivating example and introduce the necessary preliminaries

on Q-learning.

Remark 2.2 (Model-based non-sparse LQ solution). If the sparsity constraint K ◦ S = 0

was not present in problem (2.61), the problem could be treated with LQ techniques [29].

In the model-based case, the solution to the problem is known to be a linear feedback

ut = K?xt with

K? = −(R+B>? P?B?)
−1(B>? P?A?), (2.62)

where P? is the (unique) positive definite solution of the Algebraic Riccati Equation

associated to problem (2.61), i.e.,

P? = Q+A>? P?A? −A>? P?B?(R+B>? P?B?)
−1B>? P?A?.

The optimal gain matrix K? cannot be guaranteed to be sparse. As such, in general

K? ◦ S 6= 0. 4

Review of Reinforcement Learning and Q-learning in an LQ framework

Let us introduce the needed formalism for Q-learning techniques applied to LQ frame-

works, see e.g. [29]. This technique is a Reinforcement Learning scheme for solving

optimal control problems without any knowledge on the system dynamics. Formally,

consider a linear system of the form (2.59) and consider a quadratic stage cost of being

at a state x and applying an input u,

`(x, u) = x>Qx+ u>Ru.

The objective is to find an optimal input sequence u to minimize the infinite-horizon

cost associated to an initial state xk. To tackle this problem with Reinforcement Learning

approaches, one typically considers an input policy ut = Kxt, which is a linear state

52

2.3. Structured Policy Design via Reinforcement Learning

feedback, and defines the so-called Value function associated to the gain matrix K,

which associates to the gain matrix K, its infinite horizon cost under dynamics (2.59).

More specifically, assume to have a given gain matrix K, and initial state xk. The state

trajectory for all t > k, under the feedback control policy ut = Kxt, can be written as

xt = (A? +B?K)t−kxk. (2.63)

We can evaluate the cost of the control policy ut = Kxt cost starting from xk via the

Value Function V : Rn × Rm×n → R, defined as

V(xk;K) :=
∞∑
t=k

x>t (Q+K>RK)xt (2.64a)

(a)
= x>k

[∞∑
t=k

(A? +B?K)t−k,>(Q+K>RK)(A? +B?K)t−k
]
xk (2.64b)

(b)
= x>k

[∞∑
τ=0

(A? +B?K)τ,>(Q+K>RK)(A? +B?K)τ
]
xk (2.64c)

where in (a) we leveraged on (2.63), and in (b) we performed a change of indexes in

the summation. If K is stabilizing, then
∞∑
τ=0

(A? +B?K)τ,>(Q+K>RK)(A? +B?K)τ is

finite and equal to the solution PK of the Lyapunov equation

(A? +B?K)>PK(A? +B?K)− PK +Q+K>RK = 0. (2.65)

Hence, we can write the Value Function associated to an initial state xk as

V(xk;K) = x>k P
Kxk. (2.66)

This function represents the cost obtained by starting system (2.59) at a certain initial

state x0 and applying the policy ut = Kxt.

Similarly, we can define the Q-function under policy K, denoted as Q : Rn × Rm ×
Rn×m → R, as the cost of starting from xk, using an arbitrary input uk at time k, and

following ut = Kxt from t > k onward. The Q-function is defined as

Q(xk, uk;K) = x>k Qxk + u>k Ruk +
∞∑

t=k+1

x>t (Q+K>RK)xt (2.67a)

= x>k Qxk + u>k Ruk

+ x>k+1

[∞∑
t=k+1

(A? +B?K)t−k−1,>(Q+K>RK)(A? +B?K)t−k−1

]
xk+1

= x>k Qxk + u>k Ruk

53

Reinforcement Learning and Data-driven Algorithms

+ x>k+1

[∞∑
τ=0

(A? +B?K)τ,>(Q+K>RK)(A? +B?K)τ
]
xk+1

= x>k Qxk + u>k Ruk + x>k+1P
Kxk+1

= x>k Qxk + u>k Ruk + (A?xk +B?uk)
>PK(A?xk +B?uk)

= x>k Qxk + u>k Ruk + V(A?xk +B?uk;K) (2.67b)

which can be written, more compactly, as

Q(xk, uk;K) =

[
xk

uk

]> [
Q+A>? P

KA? A>? P
KA?

? R+B>? P
KB?

]
︸ ︷︷ ︸

=:ΘK

[
xk

uk

]
. (2.68)

We highlight that the recursive relationship (2.67b) is known in literature as the

Bellman’s equation which holds for all x ∈ Rn and u ∈ Rm and relates the Value Function

with the Q-function. Moreover, it also holds

Q(x,Kx;K) = V(x;K).

Building on this information, the generic Q-learning algorithm is obtained as a form

of so-called policy iteration, which is an iterative scheme composed by two phases: (i)
policy evaluation, (ii) policy improvement. Specifically, policy evaluation is performed

exploiting an observed trajectory of the system in order to estimate the Q-function

associated to a certain gain matrix K (more details on this step will be given next), while

policy improvement is performed by finding a new gain K ′ minimizing the obtained

cost. Since the dynamics is unknown, Q-learning assumes knowledge of a trajectory

{xt, ut}Tt=0 of length T = 1
2(n+m+ 1)(n+m) (cf. also [154]), where we recall that n and

m are the dimension of state and input respectively. This trajectory may be obtained by

either forward simulation of the system dynamics (2.59) or by direct observation on the

real system. The following table summarizes the generic iteration of Q-learning.

54

2.3. Structured Policy Design via Reinforcement Learning

Algorithm 2 An iteration of Q-learning
Input: gain matrix K, trajectory {xt, ut}Tt=0

Policy evaluation: fit Q-function for given K from {xt, ut}Tt=0

Q(x, u;K) =

[
x

u

]> [
ΘK
xx ΘK

xu

ΘK
ux ΘK

uu

][
x

u

]

Policy improvement: compute new feedback policy

argmin
u
Q(x, u;K) = −(ΘK

uu)−1ΘK
ux︸ ︷︷ ︸

:=K′

x, (2.69)

Output: new gain matrix K ′

Note that nothing can be said on the sparsity of K ′. Indeed, in general it does not

hold K ′ ◦ S = 0. In the next section, we introduce a suitably designed Q-learning

approach that guarantees sparsity of the computed policy.

2.3.1 LMI-based Design Strategy for Structured Q-learning: Algorithm De-
scription and Analysis

In this section, we present our Structured Off-policy Q-learning scheme and provide a

mathematical analysis.

Let us now introduce the proposed scheme for the data-driven derivation of struc-

tured feedback policies for LQR. The algorithm is inspired to the Q-learning scheme

(Algorithm 2), where the policy improvement step is modified such that the newly

computed policy obeys the desired sparsity pattern while granting recursive stability

to the scheme. Let k ∈ N be an iteration index and let Kk ∈ Rm×n be the feedback

gain obtained at a certain iteration k of the algorithm. Initially, a system trajectory is

collected and any initial stabilizing matrix K0 with the desired sparsity is found. Then,

the proposed algorithm follows an iterative procedure that repeats a policy evaluation

step, consisting in computing Θk as the solution of a linear system of equations (2.70),

with

Θk =

[
Θk
xx Θk

xu

Θk
xu
>

Θk
uu

]
∈ R(n+m)×(n+m),

and a policy improvement step, consisting in the solution of an LMI (2.71). The proposed

Q-learning scheme is summarized in Algorithm 3.

55

Reinforcement Learning and Data-driven Algorithms

Algorithm 3 Structured-policy Q-learning
Off-policy data gathering: collect {xt, ut}Tt=0

Find any initial stabilizing gain K0 with K0 ◦ S = K0.

for k = 0, 1, . . . do

Policy evaluation: find Θk as solution to linear system[
xt

ut

]>
Θ

[
xt

ut

]
=

[
xt

ut

]>[
Q 0

0 R

][
xt

ut

]
+

[
xt+1

Kkxt+1

]>
Θ

[
xt+1

Kkxt+1

]

for t = 0, . . . , T − 1 (2.70)

Policy improvement: let Φk := 2Θk
xuK

k + Kk>Θk
uuK

k, then find Kk+1 as the solution to
LMI

find K

subj.to

Φk − 2Θk
xuK (Θk

uuK)>

Θk
uuK Θk

uu

 ≥ 0 (2.71a)

K ◦ S = 0 (2.71b)

As regards the computational load of the algorithm, at each iteration only a linear

system of equations and an LMI must be solved, both of which are easily and quickly

performed with open-source or commercial solvers. We once again stress that the

proposed algorithm is an off-policy scheme, that is, the computed policies need not be

implemented on the real system while they are being learned. This is useful in situations

where it is not possible to actually run the system many times, and indeed our algorithm

only requires offline observation of a single trajectory.

Next we state the theoretical results for Algorithm 3. To this end, we now introduce

the needed assumptions. The first one is standard for LQR.

Assumption 2.3. Pair (A?, B?) is assumed to be controllable and (A?, C) is assumed to be
observable with C such that Q = C>C. 4

In order for the approach to work properly, the trajectory must satisfy a persistence of
excitation property, which informally speaking allows for the identification of the modes

of the system and ensures that the policy evaluation step can be performed correctly.

This is formalized next.

Assumption 2.4. The trajectory {xt, ut}Tt=0, with T = 1
2(n + m + 1)(n + m), is obtained

with a Persistently Exciting (P.E.) input sequence {ut}Tt=0 of order n + 1, namely is such
that (2.14b) hold. 4

56

2.3. Structured Policy Design via Reinforcement Learning

The third assumption regards stability and sparsity of the initial condition provided

to the algorithm.

Assumption 2.5. The initial feedback matrix K0 is stabilizing and satisfies K0 ◦ S = 0. 4

With these assumptions in place, we can state the main theoretical result.

Theorem 2.2. Let Assumptions 2.3, 2.4 and 2.5 hold. Consider the sequence of control
policies {Kk}k≥0 generated by Algorithm 3. Then, for all k ∈ N, the matrix A? + B?K

k

is Schur and it holds Kk ◦ S = 0. Moreover, every limit point K̄ of {Kk}k≥0 is such that
A? +B?K̄ is Schur and K̄ ◦ S = 0. 4

Before giving the proof of Theorem 2.2 we state some preparatory results. From now

on, we use Qk(x, u) = Q(x, u;Kk) as a shorthand to denote the Q-function associated to

the policy u = Kkx of iteration k.

The following two lemmas ensure that the algorithm is well posed if an initial sparse

stabilizing gain is known and formalize the properties of policy evaluation and policy

improvement.

Lemma 2.4 (Policy evaluation). Let Assumptions 2.3 and 2.4 hold and assume that at
a certain iteration k the gain Kk is stable, i.e., A + BKk is Schur. Then, the system of
equations (2.70) admits a unique solution Θk and the Q-function associated to the gain Kk is
equal to

Qk(x, u) =

[
x

u

]> [
Θk
xx Θk

xu

Θk
xu
>

Θk
uu

]
︸ ︷︷ ︸

Θk

[
x

u

]
. (2.72)

Proof. A proof of the existence and uniqueness of the solution to the system of equa-

tions (2.70) can be found in [154, Theorem 2]. As regards the second point, we proceed

as follows. Recall from Section 2.3 the Bellman equation for the Q-function (2.67b)

associated to the gain Kk,

Qk(x, u) = x>Qx+ u>Ru+Qk(Ax+Bu,Kk(A?x+B?u)) ∀x, u.

Using the fact that the Q-function is quadratic (2.68), it follows that there exist matrices

Θk
xx, Θk

xu and Θk
uu such that[

x

u

]> [
Θk
xx Θk

xu

Θk
xu
>

Θk
uu

][
x

u

]

=

[
x

u

]> [
Q 0

0 R

][
x

u

]
+

[
A?x+B?u

Kk(A?x+B?u)

]> [
Θk
xx Θk

xu

Θk
xu
>

Θk
uu

][
A?x+B?u

Kk(A?x+B?u)

]

57

Reinforcement Learning and Data-driven Algorithms

for all x, u, with In particular, choosing in the previous equation x, u along the trajectory

obtained with the P.E. input, we obtain exactly the system of equation (2.70), which

shows that indeed the solution of the system is

Θk =

[
Θk
xx Θk

xu

Θk
xu
>

Θk
uu

]
,

and thus the Q-function associated to Kk is (2.72). �

Lemma 2.5 (Policy improvement). Let Assumption 2.3 hold and assume that at a certain
iteration k the (sparse) gainKk is stable, i.e.,A+BKk is Schur. Then, the policy improvement
step (2.71) is feasible and produces a new gain Kk+1 such that

Qk(x,Kk+1x) ≤ Qk(x,Kkx), ∀x ∈ Rn, (2.73)

and satisfying the sparsity pattern Kk+1 ◦ S = 0. 4

Proof. Let Kk+1 denote the solution of the policy improvement step (2.71). We will

later show that there always exists at least one such solution. By construction, Kk+1

satisfies the desired sparsity pattern, i.e., Kk+1 ◦ S = Kk+1. Moreover, it holdsΦk − 2ΘxuK
k+1 (Θk

uuK
k+1)>

(Θk
uuK

k+1) Θk
uu

 ≥ 0 (2.74)

with Φk = 2Θk
xuK

k +Kk>Θk
uuK

k. By Schur complement (see, e.g., [42]), matrix inequal-

ity (2.74) is equivalent to

Θk
uu ≥ 0 (2.75a)

(Θk
uuK

k+1)>(I −Θk
uu
−1

Θk
uu) = 0 (2.75b)

Φk−2Θk
xuK

k+1−(Θk
uuK

k+1)>Θk
uu
−1

(Θk
uuK

k+1)≥0 (2.75c)

In particular, condition (2.75c) can be rewritten as

Φk − 2Θk
xuK

k+1 −Kk+1>Θk
uuK

k+1 ≥ 0 (2.76)

By adding and subtracting Θk
xx and changing the sign, we can write

Θk
xx + 2Θk

xuK
k+1 +Kk+1>Θk

uuK
k+1 −Θk

xx − 2Θk
xuK

k −Kk>Θk
uuK

k ≤ 0 (2.77)

where the term Φk has been expanded.

As a consequence, the quadratic form associated to the matrix in the left-hand side

58

2.3. Structured Policy Design via Reinforcement Learning

of (2.77) satisfies

x>Θk
xxx+ x>2Θk

xuK
k+1x+ x>Kk+1>Θk

uuK
k+1x

− x>Θk
xxx− 2x>Θk

xuK
kx> − x>Kk>Θk

uuK
kx> ≤ 0,

for all x. Using (2.72), this is equivalent to

Qk(x,Kk+1x) ≤ Qk(x,Kkx), ∀x ∈ Rn. (2.78)

As regards solvability of the policy improvement step (2.71), note that there always

exists at least a sparse matrix K satisfying (2.78), namely Kk+1 = Kk. Thus all the

steps in the proof can be repeated backward to conclude that Kk is a feasible solution

to (2.71). �

As a consequence of the previous lemma, we have the following fundamental result,

which formalizes the non-increasing infinite-horizon cost property of our algorithm.

Proposition 2.2. Consider the same assumptions of Lemma 2.5 and consider the gain Kk of
a certain iteration k and the updated gain Kk+1. Then, the Q-functions associated with these
two feedbacks satisfy

Qk+1(x, u) ≤ Qk(x, u), ∀x, u. (2.79)

Proof. We begin by noting a basic property. Indeed, combining the definition of Q-

function in (2.67a) with (2.73) we see that

Qk(x0,K
k+1x0) = x>0 (Q+Kk+1>RKk+1)x0+

∞∑
t=1

x>t (Q+Kk>RKk)xt

∣∣∣∣
xt+1=(A?+B?Kk)xt

≤ QKk
(x0,K

kx0)

=

∞∑
t=0

x>t (Q+Kk>RKk)xt

∣∣∣∣
xt+1=(A?+B?Kk)xt

(2.80)

To prove the proposition, one notes that the summation in the left-hand side of (2.80)

is equal to Qk(x1,K
kx1) for a suitable x1 and applies recursively the inequality. Namely

Qk(x0, u) = x>0 Qx0 + u>Ru+
∞∑
t=1

x>t (Q+Kk>RKk)xt

∣∣∣∣
xt+1=(A?+B?Kk)xt

(2.80)
≥ x>0 Qx0 + u>Ru+ x>1 (Q+Kk+1>RKk+1)x1

59

Reinforcement Learning and Data-driven Algorithms

+
∞∑
t=2

x>t (Q+Kk>RKk)xt

∣∣∣∣
xt+1=(A?+B?Kk)xt

(2.80)
≥ x>0 Qx0 + u>Ru+

2∑
t=1

x>t (Q+Kk+1>RKk+1)xt

∣∣∣∣
xt+1=(A?+B?Kk+1)xt

+

∞∑
t=3

x>t (Q+Kk>RKk)xt

∣∣∣∣
xt+1=(A?+B?Kk)xt

and so on. In the limit, we obtain for all x0 and u

Qk(x0, u) ≥ x>0 Qx0+u>Ru+
∞∑
t=1

x>t (Q+Kk+1>RKk+1)xt

∣∣∣∣
xt+1=(A?+B?Kk+1)xt

= Qk+1(x0, u).

The proof follows. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2

Since K0 is stabilizing by assumption, using Lemma 2.4 the system (2.70) is well posed

and the Q-function at iteration k can be written as (2.72). Lemma 2.5 ensures that the

policy improvement step (2.71) is well posed and produces a new gain K1 satisfying the

sparsity constraint, i.e., K1 ◦ S = 0. Moreover, by Proposition 2.2, it follows that

Q1(x, u) ≤ Q0(x, u), ∀x, u. (2.81)

Expanding the previous inequality using the definition of Q-function, we obtain

∞∑
t=0

x>t (Q+K1>RK1)xt

∣∣∣∣
xt+1=(A?+B?K1)xt

≤
∞∑
t=0

x>t (Q+K0
>RK0)xt

∣∣∣∣
xt+1=(A?+B?K0)xt

< +∞, (2.82)

where in the last inequality we used the fact that K0 is stabilizing and that xt goes to

zero exponentially (and thus the infinite-horizon cost is finite). Thus, the generic term

of the series in the left-hand side goes to zero:

lim
t→∞

x>t (Q+K1>RK1)xt = 0. (2.83)

Since Q + K1>RK1 is positive definite, then limt→∞ xt = 0, that is, K1 is stabilizing.

60

2.3. Structured Policy Design via Reinforcement Learning

Repeating the same arguments by induction, we conclude thatKk is stable, i.e., A+BKk

is Schur, and sparse, i.e, Kk ◦ S = 0, for all k ≥ 0. To conclude, consider a limit point K̄

(if it exists) and consider a subsequence of indices {kn}n≥0 such that limn→∞Kkn = K̄.

Since each Kk is sparse, then Kkn ◦ S = 0 for all n, and by taking the limit as n→∞
we obtain K̄ ◦ S = 0. Moreover, by iterating the reasoning as in (2.82) for all k, it follows

that the infinite-horizon cost corresponding to K̄ is finite, and therefore K̄ is stabilizing,

i.e., A+BK̄ is Schur. 4

Remark 2.3. To guarantee existence of limit points of {Kk}k≥0, a sufficient condition is

to ensure boundedness of the sequence. This can be done by adding a constraint of the

type −M ≤ Kij ≤M for all i, j to LMI (2.71), with M > 0 sufficiently large.

2.3.2 Numerical Simulations

In this section we present computations on a distributed control scenario. Let us consider

a network of N = 10 agents with coupled dynamics,

xi,t+1 = Aiixi,t +
∑
j∈Ni

Aijxj,t +Biui,t, i = 1, . . . , N.

The state and input matrices are Aii =
[

1.1 0.1
0.1 −1.1

]
, Aij =

[
0.5 0
0 −0.5

]
, and Bi =

[
1 0
0 1

]
, thus,

ni = 2, mi = 2 and n = 20, m = 20. Interaction among the systems occurs according to

a randomly generated Erdős-Rényi graph with edge probability p = 0.05. The obtained

system is unstable, indeed the maximum eigenvalue of the overall system matrix A is

equal to 2. We consider a quadratic stage cost with a sparsity matching the graph, i.e.,

`(x, u) =
∑N

i=1 `i(x, u) with

`i(x, u) = x>i

(
Qixi +

∑
j∈Ni

Qijxj

)
+ u>i Riui,

for i = 1, . . . , N , where Qi = 5 · I2, Ri = 0.5 · I2 and Qij = I2, for all j ∈ Ni. This

can be easily recast as `(x, u) = x>Qx + u>Ru with appropriate matrices Q ∈20×20

and R ∈20×20. We next show simulation results of running our Algorithm 3 in two

different cases, namely (i) without imposing sparsity on K, and (ii) by imposing a

sparsity matching the interaction graph.

Results Without Sparsity Constraints

First of all, we show that Algorithm 3, in absence of sparsity constraints, is capable

of computing the optimal K?, solution of the infinite-horizon LQ problem. We first

compute K? by using the system model as described in Remark 2.2 and then run

Algorithm 3 without sparsity constraints, i.e. by imposing S as matrix of ones. The

61

Reinforcement Learning and Data-driven Algorithms

starting matrix K0 is initialized randomly upon checking that it stabilizes the system.

The offline data gathering is performed with a random sequence of inputs with full-rank

Hankel matrix (cf. Assumption 2.4).

In Figure 2.8 (left) we plot the error (in norm) between K? and the Kk computed

along the algorithmic evolution. Then we consider the infinite-horizon cost error of

each policy u = Kkx. Specifically, we sample random initial state x0 and we consider

V?(x0) = V(x0;K?), the infinite-horizon cost associated to K?, and Vk(x0) = V(x0;Kk),

the infinite-horizon cost associated to Kk. In Figure 2.8 (right) we plot the error between

these two quantities as the algorithm evolves. The two graphs highlight that, when

no sparsity is imposed on K, the algorithm converges to the optimal K? and reaches a

minimal infinite-horizon cost.

0 20 40 60
10−6

10−3

100

iteration k

‖K
k
−

K
?
‖

0 20 40 60
10−6

10−2

102

iteration k

|V
k
(x

0
)
−
V?

(x
0
)|

Figure 2.8: Results for non-sparse case. Left: norm of the difference between gain Kk computed
by Algorithm 3 at iteration k, and the optimal gain K?. Right: infinite-horizon cost error of
policies u = Kkx computed by Algorithm 3 with respect to optimal policy.

Results With Sparsity Constraints

Now we turn our attention to the design of a sparse distributed controller of the

form (2.60). We run the algorithm with the same settings as before, with the only

difference that now we impose the sparsity constraint K ◦ S = 0. Namely, we impose

K ◦ S, where the ij-th element of S ∈20×20.

Sij =

 1 if (i, j) ∈ E
0 if (i, j) /∈ E .

The sequence of gains {Kk}k≥0 converges to a limit matrix K̄, which has a structure

matching the interaction graph among the systems, as represented in Figure 2.9.

Also in this case, we consider the infinite-horizon cost error of the gainsKk computed

by the algorithm, with the same x0 as before. In Figure 2.10, we plot the error between

V (x0;K?) and V(x0;K?). A comparison with Figure 2.8 (right) reveals that, although

now there are sparsity constraints to be respected, the infinite-horizon cost error is not

particularly large if compared to the non-sparse case.

62

2.4. Structured Policy Design via Data-driven Lagrangian Methods

K̄

Figure 2.9: Representation of the sparse structure of K̄. Blue dots represent the elements of K̄,
with color intensity proportional to their magnitude. The gray squares represent the desired
structure defined by S.

0 5 10 15 20

10−2

100

102

iteration k

|V
k
(x

0
)
−
V?

(x
0
)|

Figure 2.10: Infinite-horizon cost error of sparse policies u = Kkx computed by Algorithm 3
with respect to optimal policy.

2.4 Structured Policy Design via Data-driven Lagrangian Meth-

ods

We consider discrete-time, linear and time-invariant systems in the form

xt+1 = A?xt +B?ut, x0 ∼ px0 (2.84)

where xt ∈ Rn and ut ∈ Rm are the state and the input at time t ∈ N, while A? ∈ Rn×n

and B? ∈ Rn×m are the state and input matrices, respectively. The initial condition x0 is

assumed to be randomly distributed according to a known uniform probability distribu-

tion px0 . As formally stated in the following assumption, we assume the dynamics given

in (2.84) to be unknown.

Assumption 2.6. The system matrix A? is unknown. 4

The control objective is to design, for the system (2.84), a static feedback policy in

the form

ut = Kxt (2.85)

63

Reinforcement Learning and Data-driven Algorithms

1

2 3

4

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1

Communication network S

Figure 2.11: Illustrative example of structured feedback matrix. In this case, the goal is to
generate a gain matrix matching the communication structure of a network of agents. In this
case, each agent i = 1, . . . , 4, has dynamics with two dimensional state and scalar input.

where the gain matrix K ∈ Rm×n must

(i) stabilize the closed-loop system, i.e., A? + B?K must have all the eigenvalues

inside the open unit disk;

(ii) minimize a quadratic performance index;

(iii) match a given sparse structure, that is, having some prescribed entries equal to

zero.

To enforce the (iii), let us introduce a matrix Sc ∈ Rm×n whose (i, j)-th entry Sc(i,j) is

Sc(i,j) :=

 1, if K(i,j) is free;

0, otherwise.

Then, defining its logical complement

S := 1m×n − Sc, (2.86)

the desired sparsity of the gain matrix K can be compactly imposed via the matrix

constraint

K ◦ S = 0m×n.

Figure 2.11 schematically represents a distributed control scenario, where the feedback

K is designed to match a graph structure representing the coupling among the agent

dynamics.

Formally, the control requirements described so far can be posed in terms of an

optimal control problem. Specifically, we want to design a feedback gain K, under

Assumption 2.6, such that the state-input trajectory under the closed-loop policy (2.85)

is a solution of the following constrained infinite-horizon LQR problem

min
x1,x2,...
u0,u1,...,K

E
[∞∑
t=0

(
x>t Qxt + u>t Rut

)]
(2.87a)

64

2.4. Structured Policy Design via Data-driven Lagrangian Methods

subj.to xt+1 = A?xt +B?ut, x0 ∼ px0 (2.87b)

ut = Kxt (2.87c)

K ◦ S = 0 (2.87d)

where the linear constraint in (2.87d) is meant to enforce a structure on the gain K while

E[·] denotes the expectation operator over the random distribution px0 . The cost matrices

are Q ∈ Rn×n and R ∈ Rm×m are such that Q = Q> ≥ 0 and R = R> > 0. Moreover, the

pair (A?, B?) is controllable and the pair (A?, Q
1/2) is observable. To overcome the lack

of knowledge imposed by Assumption 2.6, the controller must be synthesized based on

data, i.e., system trajectories collected during experimental sessions.

Remark 2.4. Notice that, differently from the standard LQR framework, the problem

formulation (2.87) explicitly considers the feedback matrix K as a decision variable in

order to enforce the desired policy structure. 4

Remark 2.5. Notice that, without the sparsity requirement imposed by (2.87d), the

conditions (A?, B?) controllable and (A?, Q
1/2) observable are sufficient to guarantee

the existence of the (unique) optimal gain K? (see, e.g., [29]). 4

In the following, we assume that the desired sparse structure S ensures the existence

of (at least one) stabilizing gain K?, solution of problem (2.87).

Remark 2.6. The design of a procedure to ensure the feasibility of (2.87), i.e., if there

exists a stabilizing feedback K for dynamics (2.84) such that K ◦ S =, is it still under

investigation. Also in the full knowledge case, i.e., when (A,B) are known, assessing

the existence of a sparse static feedback K is an NP-hard problem, cf. [131]. 4

In the considered data-driven scenario, we have access to T -long sequences of inputs,

states and successor states

U := [u0, u1, . . . , uT−1] ∈ Rm×T (2.88a)

X := [x0, x1, . . . , xT−1] ∈ Rn×T (2.88b)

X+ := [x1, x2, . . . , xT] ∈ Rn×T , (2.88c)

with T > 0. Each tuple (uτ , xτ , xτ+1), with uτ , xτ being the τ -th column of U , X,

respectively, and xτ+1, being the (τ + 1)-th column of X+, satisfies the dynamics con-

straint (2.87b) for all τ = 0, . . . , T − 1. Hence, it can be shown that (U,X,X+) in (2.88)

satisfy

X+ =
[
A? B?

] [X
U

]
. (2.89)

65

Reinforcement Learning and Data-driven Algorithms

Then, we require an identifiability condition that data must meet for the learning

objectives of this work. Formally, we consider the following assumption.

Assumption 2.7. The state-input data are sufficiently informative in the sense that

rank

[
X

U

]
= n+m, (2.90)

namely, the matrix [X> U>]> is full-row rank. 4

Remark 2.7. Condition (2.90) can be ensured by leveraging on Willems’ lemma (cf. [238]),

i.e., by choosing an input signal ut persistently exciting of a sufficiently high order. 4

The subspace relations (2.89) and (2.90) can be exploited to parametrize the opti-

mization problem (2.87) by data matrices (cf. [70]). Specifically, we are interested in a

data-based representation of the closed-loop dynamics (A? +B?K). Indeed, for any K,

the rank condition (2.90) ensures the existence, by the Rouché-Capelli theorem, of a

matrix G ∈ RT×n satisfying [
I

K

]
=

[
X

U

]
G. (2.91)

Thus, defining the closed-loop matrix

Acl := A? +B?K (2.92)

and, leveranging on (2.89) and (2.91), we can compute an equivalent data-based repre-

sentation of the closed-loop dynamics Acl as

Acl = X+G. (2.93)

Such data-based parametrization can be then exploited to replace the closed-loop matrix

(A? +B?K) leading to a direct formulation of the LQR problem (see, e.g., [70]), i.e., by

leveraging on the closed-loop matrix representation given in (2.93) the optimal solution

of the unconstrained optimal control problem is computed exploiting the collected data.

Remark 2.8. Notice that for T ≥ n + m, for any given K, the set G of parametrizing

matrices G is given by

G :=

[
X

U

]† [
I

K

]
+ ker

[
X

U

]
. (2.94)

Namely, the nullspace of [X> U>]> is nontrivial. 4

66

2.4. Structured Policy Design via Data-driven Lagrangian Methods

2.4.1 Data-driven Lagrangian Algorithm for Sparse Control Design

In this section, we formally introduce Data-driven AL Algorithm for Sparse Feedback

Design, consisting of a bi-level optimization algorithm to design a sparse, stabilizing

gain matrix K from data. We employ a data-driven approach to deal with the un-

known dynamics and we use an augmented Lagrangian method to handle the sparsity

constraints inspired by the approaches proposed in the continuous-time model-based

framework in [149, 151].

First of all, we recall the reduced cost formulation of Problem (2.87) (see also Ap-

pendix B.1) with the additional constraint represented by the desired sparse structure

to the gain K. The reduced problem reads as

min
K∈K

J(K) (2.95a)

subj.to K ◦ S = 0 (2.95b)

with S as in (2.86) and J(·) defined as

J(K) :=Tr

[∞∑
t=0

(A? +B?K)t>(Q+K>RK)(A? +B?K)t
]
.

The leading idea is to address the constrained optimization problem (2.95) using the

augmented Lagrangian (AL) approach. Specifically, the AL of (2.95) is given by

Lc(K,Λ) = J(K) + Tr
[
Λ>K ◦ S

]
+
c

2
‖K ◦ S‖2F , (2.96)

where c > 0 is a penalty parameter while Λ ∈ Rm×n collects the Lagrange multipliers

associated to the constraint in (2.95). The augmented Lagrangian method (see, e.g., [30,

Section 5.2]) applied to (2.95) results in an iterative procedure in which at each iteration

` ∈ N the following steps are performed

K`+1 = argmin
K

Lc`(K,Λ`) (2.97a)

Λ`+1 = Λ` + c`(K`+1 ◦ S) (2.97b)

c`+1 = βc` (2.97c)

with c` > 0 being the penalty parameter, and β > 0 the scaling factor. Notice that a

routine tailored to matrix variables, e.g., based on the gradient method, is needed to

solve (2.97a).

In Algorithm 4, we present the proposed data-driven method based on the aug-

mented Lagrangian approach solving problem (2.87). Starting from an initial possibly

non sparse gain K0 and multiplier Λ0, at each iteration ` ∈ N the following steps occur.

67

Reinforcement Learning and Data-driven Algorithms

An updated gain matrix K`+1, minimizer of (2.97a), is computed by executing a data-

driven routine with steps indexed by i ∈ N. Specifically, it consists of a policy evaluation
step (2.98), followed by a gradient-based policy improvement step (2.99). Finally, the

multiplier matrix Λ`+1 is updated according to the ascent step (2.100a), and the penalty

term c`+1 is increased in (2.100b).

Algorithm 4 Data-driven AL Algorithm for Sparse Feedback Design

Require: Initial guess K0, Λ0 = 0 and system data X+, X, U , c0, β a given threshold
ε > 0
for ` = 0, 1, 2 . . . do

Set K0
in = K`

for i = 0, 1, 2 . . . do
Policy Evaluation
Compute Gi such that [

I
Ki

in

]
=

[
X
U

]
Gi (2.98a)

Compute P i solution of

Gi,>X+>PX+Gi − P +Q+Ki,>
in RKi

in = 0 (2.98b)

Compute W i solution of

X+GiWGi,>X+> −W + I = 0 (2.98c)

Policy Improvement
Compute the descent direction ∆Ki as

∆Ki=−(RKi
in+B>? P

iX+Gi)W i−Λ`−c`(Ki
in ◦ S) (2.99a)

Update the gain matrix as

Ki+1
in = Ki

in + γi∆Ki (2.99b)

Break if ‖∆Ki‖ ≤ ε`
Set K`+1 = Ki+1

in
Update the multiplier and the penalty parameter as

Λ`+1 = Λ` + c`(K`+1 ◦ S) (2.100a)

c`+1 = βc` (2.100b)

At each i ∈ N, the evaluation of Ki
in (2.99), consists in the resolution of two data-

driven Lyapunov, equations (2.98b) and (2.98c). Namely, the closed-loop matrix is

substituted with its data-driven representation X+Gi obtained from (2.98a). The so-

68

2.4. Structured Policy Design via Data-driven Lagrangian Methods

lutions, P i and W i are then used to compute the update direction, i.e., the gradient

of (2.96) evaluated at (Ki
in,Λ

`), for c = c`. The gradient is then used as descent direction

in the policy improvement step (2.99b). The current solution Ki
in is updated along the

descent direction with step-size γi > 0, selected by Armijo back-tracking line-search.

The step-size selection plays a pivotal role in ensuring the stability of the closed-loop

system. This procedure is terminated as soon as the threshold ε` ∈ R for the descent

direction is met and it outputs the updated K`+1, approximate solution of (2.97a).

Before providing the convergence result for Algorithm 4, we make the following

assumption about the step-size γi in (2.99b).

Assumption 2.8. At every iteration i, the step-size γi ∈ R, γi > 0 is selected using the
Armijo selection rule [30]. 4

Assumption 2.9. The threshold ε` is chosen such that, for all ` ∈ N, ε` ≥ 0 and ε` → 0 as
`→∞. 4

Finally, an assumption over the initial gain K0 is needed.

Assumption 2.10. The initial gain K0 ∈ Rm×n is stabilizing for the dynamics (2.84),
namely, the closed-loop system A? +B?K

0 has all the eigenvalues inside the open unit disk.4

Remark 2.9. Assumption 2.10 can be satisfied by employing non-structured data-driven

gain design strategies utilizing the already available data that satisfies Assumption 2.7,

as discussed in, e.g., [70]. 4

The next Theorem presents the first main result of this paper.

Theorem 2.3. Let Assumptions 2.7 and 2.8 hold. Let {K`,Λ`}`≥0 be the sequence of gain-
multiplier matrices generated by Algorithm 4. Then, any limit point (K̄, Λ̄) of the sequence
{K`,Λ`}`≥0 satisfies the first order necessary conditions for optimality associated to the
optimal control problem (2.87). Moreover, at each `, the matrix K` is such that (A? +B?K

`)

is Schur, i.e., K` is a stabilizing feedback for the closed-loop system. 4

Corollary 2.1. Let Assumptions 2.6, 2.7, 2.8, 2.9 and 2.10 hold. Then, for any limit point
K̄ of the sequence {K`}`∈N generated by Algorithm 4, there exists a sufficiently large ¯̀∈ N
such that, for all converging subsequences {K l}l∈N and for all l ≥ ¯̀, the projection of K l

over the set of the gains feasible for the sparsity constraint (2.87d) is stabilizing for the
dynamics (2.84). 4

Proof. Let K ⊂ Rm×n be the set of stabilizing gains for dynamics (2.84), defined as

K := K ∈ Rn×m | (A? +B?K) is Schur, (2.101)

69

Reinforcement Learning and Data-driven Algorithms

and let KS ⊂ Rm×n be the set of sparse gains, i.e.,

KS := K ∈ Rn×m | K ◦ S = 0. (2.102)

Denote the projection onto KS as PS : Rm×n → KS . By assumption, the intersection

between (2.101) and (2.102) is non-empty. Moreover, since K is open (see, e.g., [48]) and

KS is an affine subspace of Rn×m, their intersection is an open set. Let K̄ be a limit point

of the sequence of gain matrices generated by Algorithm 4. By Theorem 3.1, K̄ is sparse

and stabilizing for dynamics (2.84), i.e., K̄ ∈ K ∩ KS . By the definition of a limit point,

there exists a subsequence K ll ∈ N such that

lim
l→∞

K l = K̄. (2.103)

Namely, K l
(i,j) = K̄(i,j) for all i = 1, . . . ,m, j = 1, . . . , n. Hence, for all δ > 0, there exists

¯̀> 0 such that |K l − K̄| ≤ δ for all l ≥ ¯̀. Note that, by Theorem 3.1, all K l ∈ K, but not

necessarily K l ∈ KS . Now, for all l ≥ ¯̀, consider the projection PS(K l) ∈ KS . It holds

that |PS(K l) − K̄| ≤ |K l − K̄| ≤ δ, namely, PS(K l) ∈ K ∩ KS for all l ≥ ¯̀. The proof

follows �

2.4.2 Algorithm Analysis

Before providing the formal proof of Theorem 2.3, we leverage on some auxiliary

lemmas to constructively show how Algorithm 4 implements an augmented Lagrangian

approach to solve problem (2.95). Specifically, since the matrix A? is not known we

can neither compute the reduced cost J(K) nor the augmented Lagrangian associated

to problem (2.95) nor their gradient (cf. Appendix B.1.3). To overcome this issue, we

assume to have access to a set of system dataX,U,X+ satisfying condition (2.90). Notice

that, given a solution of the inner minimization problem in (2.97a), the step (2.97) does

not require any knowledge about the system dynamics. Indeed, for a fixed multiplier

Λ`, we seek a solution of the inner minimization problem

min
Kin

Lc`(Kin,Λ
`) (2.104)

leveraging on a gradient descent method. Starting from an initial guess K0
in, the solution

is iteratively updated following the rule

Ki+1
in = Ki

in + γi∆Ki (2.105)

for all inner-loop iterations i ∈ N, where for a given Ki
in, the update direction ∆Ki is

computed as in (2.99a), with Gi, P i, W i solutions of (2.98a)-(2.98c).

The update direction ∆Ki is designed such that the following holds true.

70

2.4. Structured Policy Design via Data-driven Lagrangian Methods

Lemma 2.6. Let Assumption 2.7 hold. Assume Ki
in is stabilizing, i.e., such that the closed-

loop matrix (A+BKi) is Schur. Consider the update direction ∆Ki defined as

∆Ki = −(RKi
in +B>? P

iX+Gi)W i − Λ` − c`(Ki
in ◦ S)

where Gi is such that [
I

Ki
in

]
=

[
X

U

]
Gi

holds and (P i,W i) are, respectively, the solutions of

Gi,>X+>PX+Gi − P +Q+Ki,>
in RKi

in = 0, X+GiWGi,>X+> −W + I = 0

Then, ∆Ki is a descent direction for the unconstrained optimization problem (2.104). 4

Proof. The gradient of the augmented Lagrangian function (2.96) is

∇1Lc`(Ki
in,Λ

`) =
(
∇J(Ki

in) + Λ` + c`(Ki
in ◦ S)

)
(2.106)

where in (2.106) we leverage on the fact that

Tr
[
Λ>(Kin ◦ S)

]
= Tr

[
(Λ ◦ S)>Kin

]
(2.107)

and on the properties of the derivative of the trace. For which it holds that, defining

g(Kin,Λ) := Tr
[
(Λ` ◦ S)>Kin

]
,

the gradient of g(·, ·) with respect to Kin, is equal to

∇1g(Ki
in,Λ

`) = (Λ` ◦ S)
(a)
= Λ` (2.108)

where in (a) we exploit the fact that, by construction (cf. (2.100a)) at each iteration Λ`

is such that Λ` ◦ Sc = Λ`. Notice that, the descent direction ∇1Lc`(Ki
in,Λ

`) requires

the calculation of the gradient of the reduced cost function J(Kin) with respect to its

argument. By Lemma B.1, we know that, ∇J(Kin) evaluated at Ki can be computed as

∇J(K) =
(
RKi

in +B>P i(A? +B?K
i
in)
)
W i (2.109a)

where P i, W i are the solutions of

(A? +B?K
i
in)W (A? +B?K

i
in)> −W = −I, (2.109b)

(A? +B?K
i
in)>P (A? +B?K

i
in)− P = −(Q+Ki>RKi). (2.109c)

71

Reinforcement Learning and Data-driven Algorithms

Notice that matrix (A? +B?K
i
in) is not available since the system matrix A? is unknown.

We know that, see e.g. [70], under Assumption 2.7, it holds,

(A? +B?K
i
in) = X+Gi

where Gi is such that (2.98a) hold. Hence, replacing the highlighted terms in (2.109)

with X+Gi, the gradient of the augmented Lagrangian function (2.106) with respect to

its argument Kin reads

∇1L(Ki
in,Λ

`) =
(
RKi

in +B>? P
iX+Gi

)
W i + Λ` + c`(Ki

in ◦ S) (2.110)

with P i, W i such that

Gi,>X+>P iX+Gi − P i +Q+Ki,>
in RKi

in = 0 (2.111a)

X+GiW iGi,>X+> −W i + I = 0. (2.111b)

The proof follows by setting ∆Ki = ∇1L(Ki
in,Λ

`). Moreover, iteration (2.105) imple-

ments a gradient method applied to (2.104). �

Lemma 2.7. Let Assumptions 2.7 and 2.8 hold and let {Ki
in}i>0 be the sequence generated

by the inner routine of Algorithm 4. Then, for any stabilizing initial condition K0
in, ev-

ery limit point K̄in of {Ki
in}i>0 is a stationary point of problem (2.104), i.e., is such that

∇1Lc`(K̄in,Λ
`) = 0. Moreover, at each iteration i > 0, the current solution Ki

in is stabilizing
for dynamics (2.84). 4

Proof. For a fixed (Λ`, c`), consider the sequence {Ki
in}i>0 generated by the inner-loop

steps (2.98) and (2.99). Leveraging on Theorem 2.6, we know that at each iteration i,

the current solution is updated following a descent method where the descent direction

∆Ki is the gradient of the of the augmented Lagrangian Lc`(Kin,Λ
`) evaluated atKi

in. In

light of Assumption 2.8, the inner loop implements a gradient method for the resolution

of (2.104) with step-size γi chosen following the Armijo rule. Hence, each limit point

K̄in of the sequence {Ki
in}i>0 is a stationary point of problem (2.104). The proof of the

first statement follows.

We now prove the second statement. First of all, notice that the function J(·) in-

creases to infinity as the gain approaches the boundary of the (compact) set of stabilizing

gains. Now, by definition of the Armijo rule, it holds, for all i > 0,

Lc`(Ki+1
in ,Λ`) ≤ Lc`(Ki

in,Λ
`). (2.112)

i.e., the sequence {Lc`(Ki
in,Λ

`)}i>0 is non-increasing and bounded from above by

Lc`(K0
in,Λ

`) < +∞. This is sufficient to ensure the stability of the feedback gain Ki
in at

72

2.4. Structured Policy Design via Data-driven Lagrangian Methods

each iteration i. �

Proof of Theorem 2.3

We are now in the position to give a formal proof of Theorem 2.3. The proof strategy re-

lies on showing that Algorithm 4 implements an augmented Lagrangian algorithm with

inexact minimization, i.e., the minimum of the augmented Lagrangian for a fixed (Λ`, c`)

is not found exactly. We leverage on the convergence result given in [30, Proposition

5.2.2], presented in Appendix A.2.

Let {K`}`∈N, {Λ`}`∈N, {c`}`∈N, {ε`}`∈N be the sequences generated by Algorithm 4.

Notice that the cost function J(K) is continuously differentiable over its domain, while

the (linear) constraint K ◦ S is of class C∞. Firstly, for any fixed pair (Λ`, c`) the inner

routine (cf. Theorem 2.6) implements a gradient method for the resolution of the aug-

mented Lagrangian minimization. Hence, there always exists an inner loop iteration i?,

such that∇1L`c(Ki?

in ,Λ
`) ≤ ε`. Since in Algorithm 4, we set, at each `, K` = Ki?

in , Assump-

tion (i) in Theorem A.1 is satisfied. Secondly, the Lagrangian multiplier Λ` is updated

such that the sequence {Λ`} is bounded (see [26, Section 2.5]). Hence, Assumption (ii)

in Theorem A.1 is satisfied. Third, Choosing β ∈ R, β > 0 ensures the sequence {c`}`∈N
to be such that lim`→∞ c` =∞, and 0 ≤ c` ≤ c`+1 for all `. Hence, Assumption (iii) in

Theorem A.1 is satisfied. Finally, by Assumption 2.9, Assumption (iv) in Theorem A.1 is

trivially satisfied. As a consequence, from Theorem A.1, we have that any limit point

(K̄, Λ̄) of the sequences {(K`,Λ`)}`∈N is such that the first order KKT conditions for

optimality associated to problem (2.95), and hence of (2.87), are satisfied. The proof

follows. 4

2.4.3 Regularized Approach for Noisy Data

Notice that, in Algorithm 4, when evaluating matrix Gi in (2.98a), we do not take ad-

vantage of the additional degree of freedom represented by the nontrivial nullspace of

the data matrix [X> U>]>, cf. Remark 2.8. Indeed, it could be convenient to bias the

selection of G towards matrices with favorable properties, e.g., noise rejection in case of

noisy samples. Technically speaking, this could be achieved by leveraging on a regu-

larized, LMI-based, policy evaluation step. In the following, we provide a robustified

implementation of Data-driven AL Algorithm for Sparse Feedback Design, which we

termed Regularized Data-driven AL for Sparse Feedback Design, leveraging an LMI-

based regularized policy evaluation step. Before giving the formal implementation of

the robustified strategy, we motivate the need for a regularized algorithm by considering

the case in which the system evolution is also affected by an additive noise. Namely,

73

Reinforcement Learning and Data-driven Algorithms

data are collected from a discrete-time linear and time-invariant system in the form

xt+1 = A?xt +B?ut + dt, x0 ∼ D0 (2.113)

where dt ∈ Rn is a disturbance term. Hence, by setting

D := [d0, d1, . . . , dT−1] ∈ Rn×T , (2.114)

the following condition, in place of (2.89), is satisfied

(X+
d −D) =

[
A? B?

] [Xd

U

]
. (2.115)

where Xd and X+
d collect the state trajectories of (2.113). Consider now a gain matrix

K ∈ Rm×n and introduce the data matrix G ∈ RT×n satisfying (2.91). In light of (2.115),

we can parametrize the closed-loop matrix as

(A? +B?K) = (X+
d −D)G. (2.116)

Notice that, matrix G is selected such that[
I

K

]
=

[
Xd

U

]
G. (2.117)

Necessary and sufficient conditions for a gain matrix K to stabilize the noisy sys-

tem (2.113), are that there exists a symmetric, positive-definite matrix P , such that

G>(X+
d −D)>P (X+

d −D)G− P +Q+K>RK ≤ 0. (2.118)

Notice that, measurements of the noise are typically not available, i.e., D is unknown.

Hence, D should be disregarded and we employ directly the (noisy) measurements of

the state trajectories X+
d . Thus, we can only impose

G>X+
d
>
PX+

d G− P +Q+K>RK ≤ 0, (2.119)

where G is chosen such that (2.93), rather than its noisy version (2.116), holds. A regu-

larization term can hence be exploited to bias the choice of G towards solutions that (try

to) also satisfy (2.118), while enforcing (2.119). The implication of the feasibility (2.118)

from the feasibility of the corresponding (2.119) has been investigated in [71, 80].

74

2.4. Structured Policy Design via Data-driven Lagrangian Methods

Regularized data-driven algorithm

Moving from Algorithm 4, the policy evaluation steps (2.98a)-(2.98b), can be rewritten

as an equivalent optimization problem, which gives room for the introduction of a

regularizing term.

Consider a generic inner loop iteration i ∈ N, with associated gain Ki
in. Then, a

solution (P i, Gi) of (2.98a) and (2.98b) can be equivalently computed as the solution of

min
P,G

Tr[P] (2.120a)

subj.to G>X+
d
>
PX+

d G−P +Q+Ki
in
>
RKi

in ≤ 0 (2.120b)

P > 0 (2.120c)[
I

Ki
in

]
=

[
Xd

U

]
G. (2.120d)

Notice that, operatively, problem (2.120) is solved by resorting to an equivalent convex

reformulation.

Let the function r : RT×n → R represent the regularizer. To obtain a regularized

instance of problem (2.120), we can add to the original cost (2.120a) a regularization

term to be applied on G, see, e.g., the discussion in [80]. The operative numerical

strategy to be implemented in the regularized case is summarized in Algorithm 5.

Differently from Algorithm 4, the policy evaluation steps (2.121)–(2.122) are performed

concurrently at each iteration via a regularized version of problem (2.120). More in

detail, we choose r(GP−1) = λ‖GP−1‖2F .

Notice that, the policy evaluation step (2.121), represents a tractable reformulation

of the regularized version of problem (2.120). The equivalence is formally stated in the

the following Theorem which is the second main result of the paper.

Theorem 2.4. Let Assumption 2.7 hold. Consider a gain Ki
in stabilizing for dynamics (2.84).

Let (Y i
sdp, L

i
sdp, Z

i
sdp) be a solution of the semi-definite program (2.121), where Y i

sdp ∈ Rn×n,
Lisdp ∈ RT×n andZisdp ∈ RT×T . Then, the solution pair (Preg, Greg) computed as Preg = Y −1

sdp ,
Greg = LsdpY

−1
sdp , represents a solution to a regularized version of problem (2.120) which

reads as

min
P,G

Tr[P] + λ‖GP−1‖2F (2.123a)

subj.to G>X+
d
>
PX+

d G− P +Q+Ki
in
>
RKi

in ≤ 0 (2.123b)

P > 0 (2.123c)[
I

Ki
in

]
=

[
Xd

U

]
G. (2.123d)

75

Reinforcement Learning and Data-driven Algorithms

Algorithm 5 Regularized Data-driven AL for Sparse Feedback Design
Require: The same of Algorithm 4

for ` = 0, 1, 2 . . . do
Set K0

in = K`

for i = 0, 1, 2 . . . do
Policy Evaluation
Find (Y i, Li, Zi) solution of

min
Y,L,Z

Tr[Y −1] + λTr[Z] (2.121a)

subj.to

 Y L>X+
d Y

X+
d L Y 0

Y 0 (Q+Ki
in
>
RKi

in)−1

 > 0 (2.121b)

[
I
Ki

in

]
Y =

[
Xd

U

]
L (2.121c)[

Z L
L> In

]
> 0 (2.121d)

Set P i = (Y i)−1, Gi = Li(Y i)−1

Compute W i solution of

X+
d G

iWGi,>X+
d
> −W + I = 0 (2.122)

Policy Improvement
Compute the descent direction ∆Ki as in (2.99a)
Update the gain matrix Ki+1

in as in (2.99b)
Break if ‖∆Ki‖ ≤ ε`

Set K`+1 = Ki+1
in

Update the multiplier Λ`+1 and the penalty parameter c` as in (2.100)

76

2.4. Structured Policy Design via Data-driven Lagrangian Methods

with λ‖GP−1‖2F being the regularization term, where λ ≥ 0 is a tuning parameter. Indeed,
larger values λ favors solutions with GP−1 having small norm. 4

Proof. The proof follows by showing the equivalence between (2.121) and (2.123). We

start by manipulating the constraint (2.123b). Pre- and post-multiplying (2.120b) by

P−1, we obtain

P−1G>X+
d
>
PX+

d GP
−1 − P−1 (2.124)

+ P−1QP−1 + P−1Kin
>RKinP

−1 ≤ 0.

Next, let us introduce the variables Y ∈ Rn×n and L ∈ RT×n such that

(P,G) 7−→ (Y, L) = (P−1, GP−1) (2.125)

Hence, we can write (2.124) as

L>X+>Y −1X+L− Y + Y QY + Y Kin
>RKinY ≤ 0 (2.126)

with Y > 0. Inequality (2.126) can be further rewritten as[
X+L

Y

]> [
Y 0

0 (Q+Kin
>RKin)−1

]−1 [
LX+

Y

]
− Y ≤ 0

which, by applying the Schur complement lemma, is also equivalent to

Y 0

0 (Q+Kin
>RKin)−1

 ≥ 0

Y −

X+L

Y

> Y 0

0 (Q+Kin
>RKin)−1

−1 X+L

Y

 ≥ 0

⇐⇒

 Y L>X+> Y

X+L Y 0

Y 0 (Q+Kin
>RKin)−1

 ≥ 0. (2.127)

As for the constraint (2.120d), it can be post-multiplied by P−1 and reformulated as

0 =

[
I

Kin

]
P−1 −

[
X

U

]
GP−1

(a)
=

[
I

Kin

]
Y −

[
X

U

]
L

where in (a) we introduce variables Y andL (cf. (2.125)). Finally, consider the regularizer

77

Reinforcement Learning and Data-driven Algorithms

λ‖GP−1‖2F . The equivalence between (2.123) and (2.121) is ensured by means of the

cost (2.121a) and the constraint (2.121d). Indeed, one can observe that

‖GP−1‖2F = Tr
[
GP−1P−1G>

] (a)
= Tr

[
LL>

]
. (2.128)

where (a) holds by (2.125). We can now rewrite problem (2.123) as

min
Y,L

Tr[Y −1] + λTr[LL>]

subj.to

 Y L>X+
d Y

X+
d L Y 0

Y 0 (Q+Ki
in
>
RKi

in)−1

 > 0

[
I

Ki
in

]
Y =

[
Xd

U

]
L

Introducing the variable Z ∈ RT×T and leveraging an epigraph reformulation, we

further rewrite the problem as

min
Y,L,Z

Tr[Y −1] + λTr[Z]

subj.to

 Y L>X+
d Y

X+
d L Y 0

Y 0 (Q+Ki
in
>
RKi

in)−1

 > 0

[
I

Ki
in

]
Y =

[
Xd

U

]
L

Z − LL> > 0.

By applying the Schur complement lemma, it holdsZ − L>InL ≥ 0

In ≥ 0
⇐⇒

[
Z L

L In

]
≥ 0 (2.129)

which admits a convex reformulation via the S-procedure. Hence, problem (2.120) can

be written as (2.121), which can be effectively processed by any LMI solver. Calling Y i
sdp,

Lisdp the solution of (2.121), we can compute Preg
i, Greg

i as

Preg
i = (Y i

sdp)−1, Greg
i = Lisdp(Y i

sdp)−1.

This concludes the proof. �

Remark 2.10. The choice of the regularizer λ‖GP−1‖ in (2.123a) is motivated by the

78

2.4. Structured Policy Design via Data-driven Lagrangian Methods

fact that, with (2.124) at hand, one could bias the term GP−1 to have small norm in

order to try to satisfy (2.118), while enforcing (2.119), i.e., (2.124). 4

Remark 2.11. Notice that, in the noise free case, the semi-definite program (2.121), with

λ = 0, solves problem (2.120). 4

2.4.4 Numerical Simulations

In this section we present numerical computations on a distributed control scenario. the

coupling among the agents dynamics is modeled by an undirected graph G = (V, E),

where V = {1, . . . , N} is the set of agents and E ⊆ V × V is the set of edges. An edge

(i, j) belongs to E if and only if agents i and j are coupled with each other, in which case

we have also (j, i) ∈ E . We denote as Ni = {j ∈ V : (i, j) ∈ E} the neighbors of each

agent i. The graph is randomly generated according to an Erdős-Rényi model with edge

probability p = 0.05. The unknown linear dynamics is defined, for all i = 1, . . . , N , as

xi,t+1 = Aiixi,t +
∑
j∈Ni

Aijxj,t +Biui,t, (2.130)

where xi ∈ R2, ui ∈ R2 for all i = 1, . . . , N . The state and input matrices are Aii =[
1.01 0.1
0.1 −1.01

]
, Aij =

[
0.5 0
0 −0.5

]
, for all j ∈ Ni, and Bi = I2. Accordingly, A? ∈ R2N×2N

is a block matrix whose ij-th block A?,(i,j) ∈ R2×2 is defined as A?,(i,j) = Aii, if i = j,

j ∈ Ni, A?,(i,j) = Aij , if i 6= j, j ∈ Ni, A?,(i,j) = 02×2, otherwise. Similarly, B? ∈ R2N×2N

is a block diagonal matrix whose ij-th block B?,(i,j) ∈ R2×2 is defined as B?,(i,j) = Bi,

if i = j, else, B?,(i,j) = 02×2. Thus, n = 2N , m = 2N . We point out that the open-loop

system is unstable, as the maximum eigenvalue of A? is greater than 2. The quadratic

cost is designed such that the matrixQ = Q> ≥ 0 ∈ R2N×2N matches the graph topology,

i.e., Q is a block matrix whose ij-th block Q(i,j) ∈ R2×2 is defined as Q(i,j) = 10 · I2

if i = j, j ∈ Ni, Q(i,j) = I2 if i 6= j, j ∈ Ni, while Q(i,j) = 02 otherwise. The matrix

R ∈ R2N×2N is chosen as R = 5 · I2N . The initial conditions are assumed to be normally

distributed about the origin. We next consider two different settings: (i) a deterministic

scenario, i.e., measurements of the states xi,t are noise free, to showcase the capabilities

of Algorithm 4, and (ii) a setting where measurements are corrupted by random noise,

to highlight the role of the regularized approach implemented by Algorithm 5.

Results in a deterministic setting

We evaluate the performances of Data-driven AL Algorithm for Sparse Feedback Design

by running a Monte-Carlo simulation with nMC = 100 different scenarios. In each sce-

nario, we consider N = 100 agents communicating accordingly to a different, randomly

generated, graph. The data-set X,U,X+ is obtained by applying a sequence of randomly

generated control inputs on the dynamics to ensure that Assumption 2.7 is satisfied.

79

Reinforcement Learning and Data-driven Algorithms

Each control input is drawn from a normal distribution with mean value 1 and variance

1. Algorithm 4 is implemented with parameters c0 = 5 and β = 5. To ensure numerical

stability, the parameter c` is saturated at 103.

In Figure 2.12 (above), it is represented the evolution along the iterations of the

average infinite horizon cost associated to the gain computed by Algorithm 4 and its

3-standard deviation band over nMC Monte Carlo simulations. The average infinite

horizon cost is defined, for all ` ∈ N as

Ĵ ` = 1
nMC

nMC∑
m=1

Tr

[
Acl

`
m
>

(Q+K`
m
>
RK`

m)Acl
`
m

]

where Acl
`
m = (A? + B?K

`
m) for all m = 1, . . . , nMC. As a benchmark, we depict also

the average infinite horizon cost, denoted as Junc, associated to the optimal uncon-
strained gain Kunc

m , solution of the unconstrained instance of Problem 2.87, for all

m = 1, . . . , nMC. Notice that, as the sparsity constraints have to be respected, the average

infinite-horizon cost converges to a value which is greater than the unconstrained one.

The average violation of the sparsity constraint computed as 1
nMC

nMC∑
m=1
‖K`

m ◦Sc‖F and its

3-standard deviation band over nMC Monte Carlo simulations is depicted in Figure 2.12

(below). Notice that the violation is progressively decreased along iterations. Finally,

in Figure 2.13 it is possible to observe the structure of the feedback gain across the

iterations. Notice that the sparsity degree of matrix K` is progressively refined until the

desired structure is obtained.

0 5 10 15 20 25

1,200

1,300

1,400

Iterations `

C
o
st

Ĵ`

Junc

0 5 10 15 20 25

10−3

10−1

101

Iterations `

V
io
la
ti
o
n

Figure 2.12: (Left) Evolution along iterations ` ∈ N of the average infinite horizon cost associated
to to the gain computed by Data-driven AL Algorithm for Sparse Feedback Design Ĵ` (blue) and
the average infinite horizon cost associated to the optimal unconstrained gain Junc (dashed red)
computed over 100 Monte Carlo simulations. In light blue it is depicted the 3-standard deviation
band associated to Ĵ`. (Right) Evolution along iterations ` ∈ N of the average constraint violation
associated to to the gain computed by Data-driven AL Algorithm for Sparse Feedback Design
and the 3-standard deviation band over 100 Monte Carlo simulations.

80

2.4. Structured Policy Design via Data-driven Lagrangian Methods

K0 K5

K10 K25

Figure 2.13: Representation of the sparse structure of the first 60 × 60 components of K` at
iterations ` = 0, 5, 10, 25 associated to a single Monte Carlo simulation. Blue dots represent the
elements of K`, with color intensity proportional to their magnitude. The gray squares represent
the desired structure defined by S.

Results in a noisy setting

We now consider the original dynamics, corrupted by additive noise, namely for all

i = 1, . . . , N ,

xi,t+1 = Aiixi,t +
∑
j∈Ni

Aijxj,t +Biui,t + di,t (2.131)

where Aii, Aij and Bi are the same as above, for all i, j = 1, . . . , N , and di,t is a random

noise sampled from a normal distribution with mean value 0.01, and variance 1. We

start considering a scenario with N = 10 agents and communication graphs with edge

probability p = 0.05. The noisy dataset Xd, U,X
+
d is collected, as before, by applying a

sequence of randomly generated inputs until Assumption 2.7 is satisfied. We first run

Regularized Data-driven AL for Sparse Feedback Design with regularization parameter

λ = 10. The resulting violation of the sparsity constraint is depicted in Figure 2.14 as

the norm of the constraint (2.87d) across iterations.

The importance of the regularization process is highlighted by running Algorithm 5

over ntest = 20 different scenarios for different regularization values λ in two settings

with different edge probability values for the communication graph, namely p = 0.05

and p = 0.2. Each scenario corresponds to a different, randomly generated, graph and

noisy dataset. In Figure 2.15 the percentage of controllers generated, from noisy data,

by Algorithm 5 that are stabilizing for the original dynamics (2.131). Notice that the

81

Reinforcement Learning and Data-driven Algorithms

0 5 10 15 20 25
10−7

10−4

10−1

Iterations `

‖K
`
◦S

c
‖ F

Figure 2.14: Evolution along iterations ` ∈ N of the constraint violation associated to to the gain
computed by Algorithm 5.

percentage of stabilizing controllers is proportional to λ.

10−2 10−1 100 101 102
0

20

40

60

80

100

Regularization parameter λ

S
ta
b
il
iz
in
g
K

[%
] p = 0.05

p = 0.20

Figure 2.15: Percentage of controllers stabilizing for the original dynamics (2.131) generated by
Algorithm 5 using noisy data for different values of λ.

82

Chapter 3

Feedback Embedding Paradigm for
Numerical Optimal Control of
Large-scale, Multi-agent and
Uncertain Systems

In this chapter, we introduce a novel class of numerical optimal control algorithms

tailored for solving nonlinear optimal control problems. These algorithms are applicable

in various contexts, from large-scale scenarios to multi-agent settings.

First-order methods are well recognized effective tools for the resolution of optimiza-

tion problems with large number of decision variables, e.g., neural network training.

Drawing inspiration from their success, we introduce a framework of first-order nu-

merical strategies developed for the resolution of optimal control problems involving

large-scale dynamics and multi-agent systems. Central to our approach is the feedback
embedding paradigm relying on the introduction of a feedback policy within the problem

formulation. This technique not only improves the numerical stability of the developed

algorithms but also enables us to recast the optimal control problem into a reduced

optimization problem, amenable to state-of-art numerical optimization strategies. This

feature has been instrumental in extending our methodology to the distributed optimal
control framework, where tracking-like approaches can be deployed for the reconstruc-

tion of global quantities. Furthermore, it paved the way for the development of novel

learning-based methodologies that integrate model-based and data-driven strategies for

nonlinear optimal control. Finally, the inherent flexibility of the proposed framework en-

abled the extension of the method to stochastic settings, leveraging a Stochastic Gradient

Descent (SGD) scheme.

Section 3.2 introduces the general feedback-embedding framework for solving non-

linear discrete-time optimal control problems in a large-scale setting. This framework,

83

Feedback Embedding Paradigm for Numerical Optimal Control

which we termed GoPRONTO, short for Generalized first-Order PROjectioN opera-

tor method for Trajectory Optimization1, incorporates the original dynamics into a

closed-loop system. By utilizing this feedback-based methodology, we can reinterpret

the optimal control problem as a cost function minimization task, paving the way for

advanced first-order numerical optimal control strategies. In Section 3.3, we expand the

feedback-embedding paradigm to address distributed optimal control problems within

networks of cooperative multi-agent systems. The resultant algorithm is a distributed

scheme that iteratively updates solutions through a distributed tracking mechanism.

This mechanism leverages inter-agent communication to effectively reconstruct global

quantities. In Section 3.4 we combine model-based and data-driven optimal control

strategies by assuming the ability to actuate control input sequences onto a real system

while only an inaccurate description of the dynamics is available for the control design.

This approach integrates trajectory optimization with Gaussian process regression, itera-

tively refining the model and performing optimization steps. Finally, Section 3.5 details

how our first-order framework is adapted for a stochastic optimal control setting. The

proposed scheme, implementing a SGD algorithm, shows asymptotic convergence in

expectation. The results of this chapter are based on [208, 209, 212].

3.1 Literature Review

A vast number of engineering applications in Automation and Robotics require the

resolution of an optimal control problem involving a nonlinear system. Next we review

some numerical methods for nonlinear optimal control. First of all, we consider the

classical centralized framework, i.e., all the calculations are performed by a central

unit. Then, we review the most recent contributions to the distributed and multi-agent

optimal control framework, together with the latest works on learning-driven and

stochastic optimal control.

Literature on Numerical Optimal Control

Existing centralized numerical methods for the resolution of optimal control problems

are typically classified as indirect methods (see the recent works [177, 203]) and direct
ones (see [77] for an overview). While indirect methods aim to satisfy the necessary

conditions of optimality and typically solve a (two-point) boundary-value problem

arising from calculus of variations (see, e.g., [134, 201]) or from Pontryagin’s Maximum

Principle (see, e.g., [181]), direct methods rely on the parameterization of the control, the

discretization of the states by an appropriate integration scheme, and then the solution

of the resulting nonlinear program (NLP). In the overview paper [77], direct methods

1This acronym is chosen as a tribute to professor Hauser’s PRONTO, see [113]

84

3.1. Literature Review

are subclassified into two different categories: simultaneous and sequential. Simultaneous

approaches commonly take into account the constraints within the optimization, so

that all the original variables, i.e., the controls and the states, are treated as decision

variables. In general, the NLP formulation of the original optimal control problem is

obtained via collocation methods [34, 227] as well as multiple shooting methods [38].

In these approaches, the optimality conditions of the original optimal control problem

are related to the Karush-Kuhn-Tucker (KKT) optimality conditions of the NLP [32].

The NLP is then addressed solving directly the KKT conditions of the problem by

Newton’s type optimization algorithms due to their fast convergence rate [169]. The

two major families of Newton type optimization methods are Sequential Quadratic

Programming (SQP) and Interior Point optimization (IP). The literature on SQP is

quite vast and we refer the interested reader to [77, 169] for detailed overviews. SQP

methods for the resolution of optimal control problems have been employed in various

applications. For example, in [248], an algorithm based on SQP is proposed to solve

a vehicle coordination optimal control problem. For IP methods, instead, we refer

to [43, 240]. Widely adopted implementations of nonlinear IP methods are represented

by the toolboxes IPOPT [35] and the more recent FORCES [246]. The major drawback

of these approaches is that they do not enjoy a “dynamic feasibility”. That is, the

state-input curves computed at each iteration do not satisfy the dynamics in general.

However this feature can be extremely important in real-time control schemes (as, e.g.,

in Model Predictive Control) since it may allow for suboptimal schemes stopping after

few iterations. Approaches to deal with feasibility of the dynamic constraints in SQP

methods have been presented in [222] and in [17]. In contrast to simultaneous methods,

sequential approaches tackle the NLP in the reduced space of control variables only.

Indeed, the state trajectory associated to any input sequence can be recovered by forward

simulation of the dynamics with the advantage that a system trajectory is available at

each iteration. A first-order sequential approach for the resolution of nonlinear optimal

control problems is presented, e.g., in [27, Section 1.9], where an adjoint equation is

used to compute the descent direction.

Dynamic Programming (DP) gives raise to other numerical approaches solving the

optimal control problem by relying on the well-known principle of optimality, see,

e.g., [22, 31, 46]. Since it produces the optimal control policy for any state of the system,

feasibility of the trajectory is always granted. The extension of DP to the nonlinear

framework is represented by Differential Dynamic Programming (DDP). DDP proceeds

iteratively by quadratic approximations about the current state-input trajectory of the

cost and the dynamics. It is worth observing that DDP can be seen as a sequential, direct

method where a Newton’s step is adopted [82]. Remarkably, DDP must evaluate second-

order derivatives of the dynamics when computing the feedback controller. Moreover,

DDP exhibits only local convergence to the optimum. Other algorithms based on the

85

Feedback Embedding Paradigm for Numerical Optimal Control

resolution of quadratic approximations of the nonlinear optimal control problem about

a state-input trajectory are presented in [69, 82, 147, 174]. In [144] Iterative-LQR, an ad-

hoc version of the DDP approach, is presented. In [113], the PRojection Operator Newton
Method for Trajectory Optimization (PRONTO) is proposed. Here, through the use of a

control feedback, the dynamically constrained optimization problem is converted into

an unconstrained one to which a Newton’s method is applied. Extensions of PRONTO

have been proposed for constrained optimization [114] and optimal control on Lie

groups [199]. PRONTO has been applied to several contexts as motion planning of

single and multiple vehicles, see, e.g., [3] and references therein. In [93] an iterative

numerical method based on PRONTO is developed, where the optimal control problem

is tackled via a constrained-gradient descent. A discrete-time counterpart of PRONTO

is presented in [17] with a projected SQP reformulation.

A literature intimately connected with optimal control is the one associated with

Model Predictive Control (MPC). In this approach, at each time instant a finite-horizon

optimal control problem is solved and the first (optimal) control input is applied. A

detailed overview is provided, e.g., in [187]. Economic MPC represents the extension of

MPC to generic cost functions, see, e.g., [90] for a detailed overview. MPC controllers

are applied in a great variety of problem fields. Recent applications include, e.g., vehicle

coordination [119], supply chain management [139] and autonomous racing [129]. In

the MPC domain, computational tractability of the optimal control algorithms is an

open issue. For example, in embedded MPC (where only limited computational time

and power is available) the deployment of methods based only on first-order derivatives

is often considered, see e.g., in [123, 141]. Decomposition techniques to reduce the

computational complexity are proposed instead in [213], while a suboptimal strategy

exploiting fixed sensitivities is presented in [247].

Literature on Multi-agent and Distributed Optimal Control

Another current area of research is represented by the extension to a distributed com-

putation framework of state-of-art centralized strategies. In [95] distributed optimal

control problems are addressed in the context of multiscale dynamical systems, where

microscopic control laws at the agent level are derived from the optimal macroscopic

description of the system. Distributed control schemes based on an Alternating Direc-

tion Method of Multipliers (ADMM) approach are proposed in [111, 190, 202, 214, 232]

with applications in multi-robot systems. An extension of DDP to a multi-agent set-

ting is proposed in [132, 215], where some game theoretic DDP-based methods are

presented. Distributed optimal control algorithms represent a building block for co-
operative distributed Model Predictive Control (MPC) to plan feasible trajectories. The

survey paper [164] provides an overview of distributed (economic) MPC approaches,

however in several works a distributed algorithm for the solution of the optimal control

86

3.1. Literature Review

problem is assumed. From an algorithmic perspective, in [101] an accelerated gradient

method is proposed for distributed cooperative MPC, while in [118] an augmented

Lagrangian method is proposed in the context of convex MPC. Augmented Lagrangian

and ADMM-based distributed optimization and optimal control algorithms gained

traction in both cost- and constraint-coupled scenarios [16, 85]. For constraint coupled

problems in [51] a distributed MPC scheme, GRAMPC, is developed based on the

ADMM approach. A distributed augmented Lagrangian algorithm is proposed in [83],

which may be extended to optimal control applications. Notice that, a coordination

step is required to ensure consensus among the dual variables. In [219], a decentralized

Sequential Quadratic Programming approach, based on ADMM methods, tailored for

nonlinear (constraint-coupled) problems. The implementation of real-time distributed

MPC schemes on robotic platforms is studied in [220], for constraint-coupled optimal

control problems.

Noticeably, the problem structure and the way the decisions variables are coupled

play a pivotal role in the algorithm development. Indeed, the proposed solution ad-

dresses multi-agent optimal control problems where the problem structure reflects

the aggregative optimization framework. This optimization setting takes inspiration

from the recently emerged distributed aggregative optimization framework introduced

in [146] for a static, unconstrained case. In this context, differently from the aggregative

games [20, 55, 84, 99, 175], the network agents cooperate (rather than compete with

each other) to minimize the sum of local functions that depend both on a local decision

variable and an aggregation of them. It is worth noticing that the aggregative opti-

mization setting is a general distributed framework in which agents do not necessarily

need to do consensus (as in cost-coupled problems). This makes the aggregative setting

very versatile, especially for robotic applications. The recent survey [223] offers an

overview of popular tasks arising in cooperative robotics (e.g., surveillance and resource

allocation) that can be cast in this distributed aggregative optimization framework.

Moreover, applications such as smart grids management, economic market analysis,

electric vehicles charging, and network congestion control are modeled in the litera-

ture as aggregative games [21, 122, 176], i.e., a network of players that compete with

each other to minimize individual costs depending on both local quantities and an

aggregation of all of them. Therefore, problem (3.43) allows for reformulating these

tasks in cooperative scenarios. We also remark that, differently from problem (3.43),

the mentioned references [21, 122, 176, 223] deal with dynamic systems (e.g., robots

or energy generators) without optimizing or considering their low-level control. An

online version of the problem is addressed in [54, 145], while in [57] a learning-based

distributed algorithm is proposed to deal with partially unknown local objective func-

tions. In [56, 60], the aggregative framework is investigated in a continuous-time setup.

Distributed algorithms based on a Franke-Wolfe update [237] and on ADMM [105] are

87

Feedback Embedding Paradigm for Numerical Optimal Control

proposed for a static, constrained setup. In [62] the setup with finite bits for communi-

cation among the agents is addressed. We remark that, differently from the above works,

our solution extends the aggregative optimization framework to the optimal control

scenario, hence addressing the task of generating a trajectory for a nonlinear dynamical

system while optimizing a cost functional involving an aggregate variable.

Literature on Learning-driven Optimal Control

Classic system identification methods adopt parametric models and exploit observation

to tune their parameters to achieve model accuracy [63, 153]. In view of the recent

success in the field of machine learning, data-driven control techniques have gained

growing interest in the control system community [117, 196]. Different data-driven

approaches have been considered, e.g., reinforcement learning [106], model fitting

[12, 75] and stochastic nonparametric estimation [152]. Gaussian Processes (GP) and

their associated nonparametric regression techniques are well recognized in the field

of controls for its flexibility in modelling complex unknown dynamics [138]. GPs have

also been recently exploited in the quantification of model uncertainty [245]. In the

field of optimal control, GPs have been exploited as a valid alternative to the prominent

approach of modeling uncertainty as a stochastic disturbance. In [76] GPs are used

in a dynamic programming framework. In [229], a scenario-based optimal control

strategy is proposed based on a GP approximation of the dynamics. In [121] a combined

Bayesian approach and GPs is proposed to select the most informative data for optimally

updating a nominal model. Many interesting applications can be found also in the field

of adaptive control [18,24,230]. GPs have been also successfully applied in robotics [167,

168], aircraft control [65] and power demand management [166]. Finally, also Model

Predictive Control (MPC) schemes based on GP have been investigated [36, 94, 194].

Among the other works, we refer to [116] where a MPC approach that integrates a

nominal system with an additive unknown dynamics modeled as a GP is exploited. The

strategy is then extended to autonomous racing driving in [129]. While GPs have been

successfully applied, most approaches lack formal guarantees for GP models. Recently,

some control approaches with formal guarantees have been developed in [19,86]. Bounds

on the estimation error, in particular, are deeply analyzed in the field of Bayesian

optimization [140, 218]. A theoretical analysis of the GP-based MPC controllers is

presented in [157].

Literature on Stochastic Optimal Control

The literature on solving stochastic optimal control problems encompasses various

approaches, each tailored to specific problem settings. Dynamic Programming (DP)

serves as one of the main approaches to solving such problems [25]. DP, however, offers

88

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

tractable solutions only in cases characterized by finite state and control spaces, linear

dynamics, and convex quadratic cost functions. Consequently, several strategies aim to

reformulate optimal control problems to fit within these frameworks. In the work [224],

stochastic differential dynamic programming is introduced, employing DP principles

along with stochastic dynamics featuring multiplicative noise. The approach involves

second-order expansions and discretization around a given trajectory, facilitating the cal-

culation of the expected value due to the presence of zero-mean multiplicative Gaussian

noise. In [225] an iterative Linear Quadratic Gaussian (LQG) methods is presented. By

linearizing dynamics and quadratizing the cost around a trajectory, an affine cost-to-go

function is obtained. The concept of addressing stochastic control with affine dynamics

is extended in [15] , encompassing finite switching modes, stochastic disturbances, and

random switching. The synthesis of data-based controllers in the presence of stochastic

disturbances, is described in [92]. The control policies are parametrized as a feedback

gain with a feedforward term. The approach employs stochastic gradient descent and

iteratively improves the system model for control synthesis.

3.2 GoPRONTO: Generalized first-Order PROjectioN operator

method for Trajectory Optimization

In this section, we introduce the GoPRONTO optimization framework for general

nonlinear optimal control problems.

We start by considering a nonlinear, discrete-time systems described by

xt+1 = f(xt, ut) t ∈ N (3.1)

where xt ∈ Rn and ut ∈ Rm are the state and the input of the system at time t, re-

spectively. The map f : Rn × Rm → Rn is the vector field describing the nonlinear

dynamics. The initial condition of the system is a fixed state xinit ∈ Rn. For notational

convenience, we use x ∈ RnT and u ∈ RmT to denote, respectively, the stack of the states

xt for all t ∈ [1, T] and the inputs ut for all t ∈ [0, T − 1], that is x := col(x1, . . . , xT) and

u := col(u0, . . . , uT−1).

As already introduced in Section 1.2, our objective is to generate a trajectory (x,u)

for system (3.1) such that an user defined cost functional is minimized. Before explicitly

stating the problem setup, we need to formalize the concept of trajectory.

Definition 3.1 (Trajectory). A pair (x,u) ∈ RnT ×RmT is called a trajectory of the system
described by (3.1) if its components satisfy the constraint represented by the dynamics (3.1)

for all t ∈ [0, T − 1]. In particular, x is the state trajectory, while u is the input trajectory.

89

Feedback Embedding Paradigm for Numerical Optimal Control

More formally, we define the set Txinit ⊆ RnT × RmT such that

Txinit :=

{
(x,u) ∈ RnT × RmT | x0 = xinit, xt+1 = f(xt, ut) ∀t ∈ [0, T]

}
(3.2)

as the space of trajectories of system (3.1) with initial condition xinit ∈ Rn. 4

Conversely, we refer to a generic pair (α,µ) ∈ RnT × RmT with α := col(α1, . . . , αT)

and µ := col(µ0, . . . , µT−1) as a state-input curve. Notice that a curve (α,µ) is not

necessarily a trajectory, i.e., it does not necessarily satisfy the dynamics (3.1). It can be

shown that the tangent space to the space of trajectories (3.2) at a given trajectory (point),

denoted as T(x,u)T , is represented by the set of trajectories satisfying the linearization

of the nonlinear dynamics f(·, ·) about the trajectory (x,u).

Formally, our goal is to compute a state-input sequence (x,u) (i) satisfying Defini-

tion 3.1, (ii) solution of the the optimal control problem

min
x∈RnT ,u∈RmT

T−1∑
t=0

`t(xt, ut) + `T (xT) (3.3a)

subj.to xt+1 = f(xt, ut), t ∈ [0, T − 1] (3.3b)

with initial condition x0 = xinit ∈ Rn, stage cost `t : Rn × Rm → R and terminal cost

`T : Rn → R.

Assumption 3.1. All functions `t(·, ·), `T (·) and f(·, ·) are twice continuously differentiable,
i.e., they are of class C2 with respect to their arguments. 4

Problem (3.3) can be compactly reformulated by rewriting the nonlinear dynam-

ics (3.3b) as an implicit equality constraint h : RnT×RmT → RnT×RmT given by

h(x,u) :=


f(x0, u0)− x1

...

f(xT−1, uT−1)− xT

 . (3.4)

and by compactly defining the cost function (3.3a) as

`(x,u) :=
T−1∑
t=0

`t(xt, ut) + `T (xT). (3.5)

Therefore, problem (3.3) can be rewritten as

min
x∈RnT ,u∈RmT

`(x,u)

subj.to h(x,u) = 0

or min
(x,u)∈T

`(x,u)

90

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

It is worth noting that, in light of the nonlinear equality constraint h(x,u) = 0 of

the nonlinear dynamics, problem (3.3) is a nonconvex program. Figure 3.1 provides

a graphical representation of the optimal control problem as a nonlinear (nonconvex)

program.

µ

α

T

T
(x̄,ū) T

(x̄, ū)

Figure 3.1: Two dimensional representation of the optimal control problem: in gray the level
curves of the cost function `(·, ·), in black the nonlinear constraint representing the trajectory
manifold T , in green its tangent space T(x̄,ū)T about (x̄, ū).

The Feedback Embedding Paradigm

The Feedback Embedding approach draws inspiration by the Projection Operator method,

firstly introduced in continuous time by [113]. The underlying idea is to design a

feedback policy mapping generic elements (α,µ) of the space RnT × RmT , the so-called

curves, into the space of trajectories Txinit feasible for the dynamics (3.3b). Among the

different possibilities, the feedback policy is implemented, for all t ∈ {1, . . . , T − 1}, via

the nonlinear tracking system

ut = µt +Kt(αt − xt)
xt+1 = f(xt, ut),

(3.6)

where Kt ∈ Rn × Rm is a suitably chosen feedback which is stabilizing for the dynamics

f(·, ·), e.g., a linear quadratic regulator involving the system linearization about the

current trajectory (x,u). As it become clearer later, the feedback term Kt(αt − xt) is

fundamental to guarantee numerical stability of the algorithm.

Remark 3.1. The feedback gain Kt in (3.6) should ensure local stability about the

current state-input trajectory. Among different alternatives, a viable strategy could be

leveraging a linear quadratic regulator involving the system linearization about the

current trajectory. Also, one can use more advanced design approaches, e.g., linear

91

Feedback Embedding Paradigm for Numerical Optimal Control

parameter varying controllers [216]. 4

Notice that, the feedback system (3.6) implements a nonlinear projection operator

P : RnT × RmT → Txinit which maps state-input curves into trajectories of the nonlinear

system. More formally, P(α,µ) is designed such that, for any (α,µ) ∈ RnT × RmT and

(x,u) ∈ Txinit it holds [
α

µ

]
7−→

[
x

u

]
:= P(α,µ) =

[
φ(α,µ)

ψ(α,µ)

]
, (3.7)

where φ(α,µ) and ψ(α,µ) are the state and input components of P(α,µ). For all

t ∈ [0, T − 1], we can also define the maps

xt = φt(α,µ) (3.8a)

ut = ψt(α,µ) (3.8b)

The closed-loop policy (3.6) can be embedded as a redundant constraint in prob-

lem (3.3), thus resulting into the following optimal control problem

min
x,u,α,µ

T−1∑
t=0

`t(xt, ut) + `T (xT) (3.9a)

subj.to xt+1 = f(xt, ut) t = 0, . . . , T − 1

ut = µt +Kt(αt − xt)
(3.9b)

x0 = xinit.

Remark 3.2. The independent decision variables of problem (3.9) are the curves (α,µi.

Indeed, once the curves (α,µ) are computed, the variables (x,u) are uniquely deter-

mined by means of the (projection) policy (3.6). 4

We can recast problem (3.9) in its reduced form by expressing both the state xt and

the input ut as functions of a state-input curve (α,µ) via (3.8). Namely, we obtain a

reduced instance of problem (3.3) given by

min
α,µ

T−1∑
t=0

`t(φt(α,µ), ψt(α,µ)) + `T (φT (α,µ)) = min
α,µ

J(α,µ). (3.10)

Importantly, problem (3.10) is an unconstrained optimization problem in (α,µ).

92

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

3.2.1 Feedback Embedding Paradigm for Nonlinear Optimal Control: Go-
PRONTO Algorithm Description and Analysis

We are ready to present the general set of first-order approaches, called GoPRONTO, for

numerical optimal control. We start by describing a pure gradient (or steepest) descent

implementation which we call Gradient GoPRONTO.

The founding idea of GoPRONTO is to formulate and solve the reduced embedded

feedback optimization problem via a first-order method, while, at the same time, taking

also advantage from the beneficial effects of the embedded feedback control policy. Our

embedded feedback approach is inspired by the first- and second-order approaches

detailed in Appendix B, and presented in [27, 113].

The proposed procedure is summarized in Algorithm 6, where we use the shorthand

notation

akt := ∇1`t(x
k
t , u

k
t), bkt := ∇2`t(x

k
t , u

k
t), (3.11a)

Akt := ∇1f(xkt , u
k
t)
>, Bk

t := ∇2f(xkt , u
k
t)
>. (3.11b)

We also assume that, for all k, the state-input trajectory is initialized at xk0 = xinit.

Algorithm 6 Gradient GoPRONTO

for k = 0, 1, 2 . . . do
set λkT = ∇`T (xkT)
for t = T − 1, . . . , 0 do

Step 1: compute descent direction

λkt = (Akt −Bk
tKt)

>λkt+1 + akt −K>t bkt (3.12a)

∆µkt = −Bk>
t λkt+1 − bkt (3.12b)

∆αkt = K>t ∆µkt (3.12c)

for t = 0, . . . , T − 1 do
Step 2: update (unfeasible) curve

αk+1
t = αkt + γk ∆αkt

µk+1
t = µkt + γk ∆µkt

(3.13)

Step 3: compute new (feasible) trajectory

uk+1
t = µk+1

t +Kt(α
k+1
t − xk+1

t)

xk+1
t+1 = f(xk+1

t , uk+1
t)

(3.14)

Algorithm 6 implements a numerically robust gradient descent method to solve

problem (3.9) in the space of the curves by exploiting the beneficial effect of the feedback

93

Feedback Embedding Paradigm for Numerical Optimal Control

operator. This algorithm averages a gradient method to solve the reduced problem

formulation (3.10) in the space of curves (α,µ). Specifically, at each iteration k ∈
N, a descent direction is provided by computing ∆αkt and ∆µkt through a backward

integration of the closed-loop dynamics (3.12). This adjoint update can be seen as a

closed-loop (robustified) version of the equation appearing in adjoint sensitivity methods.

Then, in (3.13), such a direction is used to update the current curve. Finally, the new

(updated) trajectory is obtained by applying the (feedback) policy onto the updated

curve (3.14). Notice that, although GoPRONTO involves a forward-backward sweep

typical of many Dynamic Programming-based approaches, it differs in the sense that

(i) it does not seek to compute a Value Function and (ii) it retains the flexibility of the

feedback gain design in (3.6). Moreover, the problem reformulation in (3.9) allows also

for a perturbation of the state sequence α to further improve the cost (cf. (3.13)).

A visual representation of this optimization problem is provided in Figure 3.2.

µ

α

T

(xk−1,uk−1)

P

(αk−1,µk−1)
(∆

α,∆
µ)

(∆
α
,∆

µ
)(xk,uk)

(xk+1,uk+1)

P

P (αk+1,µk+1)

(αk,µk)

Figure 3.2: Representation of GoPRONTO approach: in gray the level curves of the reduced cost
J(·, ·), in black the trajectory manifold T , in blue the descent directions. At each iteration k, the
current curve (αk,µk) is updated along the (generic) descent direction defined by the gradient
of the reduced cost J(·, ·). The updated curve (αk+1,µk+1) is, then, projected onto the trajectory
manifold T by the projection operator P (dotted line).

Algorithm analysis

In the following, we show how our strategy reads as a gradient descent method ap-

plied on (3.10) We start by noticing that the reduced embedded feedback optimization

problem (3.10) is an unconstrained optimization problem with nonconvex, twice contin-

uously differentiable cost function J(·, ·) (obtained as the composition of C2 functions).

Therefore, we apply the gradient method in which the tentative solution (αk,µk) is

iteratively refined as

αk+1 = αk − γk∇1J(αk,µk), µk+1 = µk − γk∇2J(αk,µk) (3.15)

94

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

where k > 0 is the iteration index while γk is the step-size. We can see that the descent

direction is searched in the entire space of curves (α,µ) Moreover, the update-direction

search is not restricted to any tangent space.

The update (3.15) can be expressed also in a component-wise fashion as

αk+1
t = αkt − γk

[
∇1J(αk,µk)

]
t︸ ︷︷ ︸

−∆αkt

(3.16a)

µk+1
t = µkt − γk

[
∇2J(αk,µk)

]
t︸ ︷︷ ︸

−∆µkt

(3.16b)

for all t ∈ [0, T − 1], in which each pair (∆αkt ,∆µ
k
t) ∈ Rn × Rm represents the descent

direction in (3.12). As it can be seen in Figure 3.2, each (updated) state-input curve

(α,µ) is then projected by the projection operator P onto the trajectory manifold T as

per (3.14).

Before providing the convergence result for Algorithm 6, let us make an assumption

on the step-size.

Assumption 3.2. Let the step-size γk ∈ R, γk > 0 be chosen via Armijo backtracking line
search. 4

The following theorem holds true.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Let {αk,µk}k≥0 be the sequence gen-
erated by Algorithm 6. Every limit point (α?,µ?) of the sequence {αk,µk}k≥0 satisfies
∇J(α?,µ?) = 0. Moreover, let (x?,u?) be the trajectory associated to state-input curve
(α?,µ?) and λ∗ the associated costate trajectory generated by Algorithm 6 in correspon-
dence of (α?,µ?). Then, (x?,u?) represents a trajectory satisfying the first order necessary
conditions for optimality in correspondence of costate trajectory λ∗. 4

Proof. The proof is arranged in two main parts. In the first part, we prove that any limit

point (α?,µ?) of the sequence {αk,µk}k≥0 generated by Algorithm 6 is a stationary point

of the unconstrained problem (3.10), i.e., it satisfies ∇J(α?,µ?) = 0. Specifically, we

show that Algorithm 6 represents a gradient descent method applied to problem (3.10).

Let us prove that the descent direction computed in (3.12) is the gradient of J(·, ·)
evaluated at the point (αk,µk). To this end let us express the nonlinear dynamics in (3.9)

95

Feedback Embedding Paradigm for Numerical Optimal Control

as an implicit equality constraint h̃ : RnT × RmT × RnT × RmT → RnT+mT defined as

h̃(x,u,α,µ) :=



f(x0, u0)− x1

...

f(xT−1, uT−1)− xT
µ0 +K0(α0 − x0)− u0

...

µT−1 +KT−1(αT−1 − xT−1)− uT−1


. (3.17)

Therefore, by means of (3.5), we can compactly recast problem (3.9) as

min
x,u,α,µ

`(x,u)

subj.to h̃(x,u,α,µ) = 0.
(3.18)

Then we can introduce an auxiliary function2 associated to problem (3.18), say

L : RnT × RmT ×RnT × RmT × RnT → R, defined as

L(x,u,α,µ,λ) := `(x,u) + h̃(x,u,α,µ)>λ (3.19)

where the (multiplier) vector λ ∈ RnT+mT is arranged as

λ := col(λ1, . . . , λT , λ̃1, . . . , λ̃T)

with each λt ∈ Rn and λ̃t ∈ Rm. By defining φ(·) and ψ(·) as the vertical stack of the maps

φt(·) and ψt(·) (Cf. (3.8)), we can see that, by construction, for all (α,µ) ∈ RnT × RmT it

holds

h̃(φ(α,µ), ψ(α,µ),α,µ) = 0. (3.20)

Since J(α,µ) ≡ `(φ(α,µ), ψ(α.µ)) (Cf. (3.10) and (3.5)), the auxiliary function (3.19)

enjoys the following property

L(φ(α,µ), ψ(α,µ),α,µ,λ) = J(α,µ) (3.21)

for all (α,µ) and for all λ ∈ RnT+mT . Therefore, in this formulation we can think about

λ as a parameter or a degree of freedom. As a consequence of (3.21), it also results

∇L(φ(α,µ), ψ(α,µ),α,µ,λ) = ∇J(α,µ) (3.22)

2It is evidently the Lagrangian function of problem (3.18). However, since we do not pursue a Lagrangian
approach, we prefer not to use such nomenclature.

96

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

for all (α,µ) and, again, for all λ, where the gradient of L(·) is meant to be calculated

only with respect to (α,µ).

In the following, we exploit (3.22) together with the degree of freedom represented

by λ in order to efficiently compute ∇J(·, ·). In fact, we can write the two components

of the gradient of J(·, ·) as

∇1J(α,µ) = ∇1φ(α,µ)∇1L(φ(α,µ), ψ(α,µ),α,µ,λ)

+∇1ψ(α,µ)∇2L(φ(α,µ), ψ(α,µ),α,µ,λ)

+∇3L(φ(α,µ), ψ(α,µ),α,µ,λ)

and

∇2J(α,µ) = ∇2φ(α,µ)∇1L(φ(α,µ), ψ(α,µ),α,µ,λ)

+∇2ψ(α,µ)∇2L(φ(α,µ), ψ(α,µ),α,µ,λ)

+∇4L(φ(α,µ), ψ(α,µ),α,µ,λ).

Both these expressions involve the calculation of∇φ(·) and∇ψ(·) which may be difficult

to compute. However, since (3.22) holds for any λ, we set this degree of freedom to

greatly simplify the previous formulas. In fact, the underlined terms∇xL(·) and∇uL(·)
have the following peculiar structure

∇1L(·) = ∇1`(φ(α,µ), ψ(α,µ)) +∇1h̃(φ(α,µ), ψ(α,µ),α,µ)>λ (3.24a)

and

∇2L(·) = ∇2`(φ(α,µ), ψ(α,µ)) +∇2h̃(φ(α,µ), ψ(α,µ),α,µ)>λ. (3.24b)

Therefore, with a proper choice of λ we can annihilate (3.24). In fact, by choosing λ = λ̄

such that

∇1L(φ(α,µ), ψ(α,µ),α,µ, λ̄) = 0, ∇2L(φ(α,µ), ψ(α,µ),α,µ, λ̄) = 0

i.e., by setting

∇1`(φ(α,µ), ψ(α,µ)) +∇1h̃(φ(α,µ), ψ(α,µ),α,µ)>λ̄ = 0 (3.25a)

∇2`(φ(α,µ), ψ(α,µ)) +∇2h̃(φ(α,µ), ψ(α,µ),α,µ)>λ̄ = 0, (3.25b)

both the terms involving ∇φ(·) and ∇ψ(·) cancel out. Hence, the gradient components

97

Feedback Embedding Paradigm for Numerical Optimal Control

of J(·, ·) reduces to

∇1J(α,µ) = ∇3L(φ(α,µ), ψ(α,µ),α,µ, λ̄)

∇2J(α,µ) = ∇4L(φ(α,µ), ψ(α,µ),α,µ, λ̄).

By using again the definition of L(·), the latter terms can be written as

∇1J(α,µ) = ∇3h̃(φ(α,µ), ψ(α,µ),α,µ)>λ̄

∇2J(α,µ) = ∇4h̃(φ(α,µ), ψ(α,µ),α,µ)>λ̄.
(3.26)

With this derivation at reach, let us now focus on the k-th iteration of Algorithm 6. In

correspondence of the current state-input curve (αk,µk), which represents a tentative

solution of problem (3.10), we can compute the vector

λk := col(λk1, . . . , λ
k
T , λ̃

k
1, . . . , λ̃

k
T)

such that (3.25) holds with (α,µ) = (αk,µk) and λ̄ = λk. Therefore, by recalling the

definitions of `(·) and h̃(·) in (3.5) and (3.17) and since the functions f(·), `t(·), `T (·) are

differentiable by Assumption 3.1, the components λkt of λk need to satisfy

∇`T (φT (αk,µk))− λkT = 0

and, for all t ∈ [0, T − 1],

akt +Ak>t λkt+1 − λkt −K>t λ̃kt = 0

which descends from (3.25a). As for the components λ̃kt of λk, they needs to be such

that for all t ∈ [0, T − 1]

bkt +Bk>
t λkt+1 − λ̃kt = 0

which comes from (3.25b). More compactly, a vector λk ∈ RnT+mT such that for λ̄ = λk

(3.25) is satisfied for a given (αk,µk), can be obtained by backward simulation of the

adjoint system dynamics

λkt = (Akt −Bk
tKt)

>λkt+1 + akt −K>t bkt λ̃kt = bkt +Bk>
t λkt+1 (3.28)

with terminal condition λkT = ∇`T (φT (αk,µk)). With a suitable λk at hand, we can

now compute the gradient of J(·, ·) as in (3.26), with (α,µ) = (αk,µk) and λ̄ = λk.

Considering a generic time instant t and recalling the structure of h̃(·) in (3.17), we have

98

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

[
∇1J(αk,µk)

]
t

= K>t λ̃
k
t = K>t

(
bkt +Bk>

t λkt+1

)
(3.29a)

and

[
∇2J(αk,µk)

]
t

= λ̃kt = bkt +Bk>
t λkt+1 (3.29b)

for all t ∈ [0, T − 1]. Comparing (3.12) in Algorithm 6 with (3.29), we can see that

∆αkt ,∆µ
k
t in (3.12) must satisfy

∆αkt := −
[
∇1J(αk,µk)

]
t
, ∆µkt := −

[
∇2J(αk,µk)

]
t
.

Therefore, we proved that Algorithm 6 tackles problem (3.10) via a gradient descent

method. In light of Assumption 3.2 the step-size γk in (3.13) is selected according to the

Armijo rule on the cost function J(α,µ). Therefore, we can conclude that every limit

point (α∗,µ∗) of {αk,µk}k≥0 is a stationary point of J(α,µ), i.e., ∇J(α∗,µ∗) = 0. This

completes the first part of the proof.

In the second part, we prove that the trajectory (x?,u?) = (φ(α?,µ?), ψ(α?,µ?)) to-

gether with the costate vectors λ∗ ∈ RnT generated by Algorithm 6 in correspondence of

(α?,µ?), satisfies the first order necessary optimality conditions for the optimal control

problem (3.3). To this end, let us introduce the Hamiltonian function of problem (3.3)

given by

Ht(xt, ut, λt+1) := `t(xt, ut) + f(xt, ut)
>λt+1

and next we show that ∇2Ht(x
∗
t , u
∗
t , λ
∗
t+1) = 0

∇2Ht(x
∗
t , u
∗
t , λ
∗
t+1) = 0

and

λ∗t = ∇1Ht(x
∗
t , u
∗
t , λ
∗
t+1) (3.30)

with terminal condition λ∗T = ∇`T (x∗T).

In light of the projection-operator step (3.14), the point (x?,u?) satisfies the dynam-

ics (3.3b) by construction, i.e., it is a trajectory.

Let us define the shorthand for the linearization of the cost and the dynamics about

the trajectory (x?,u?)

a∗t := ∇1`t(x
∗
t , u
∗
t), b∗t := ∇2`t(x

∗
t , u
∗
t), (3.31a)

99

Feedback Embedding Paradigm for Numerical Optimal Control

A∗t := ∇1f(x∗t , u
∗
t)
>, B∗t := ∇2f(x∗t , u

∗
t)
>. (3.31b)

Then, we can define λ∗ as the stack of the costate vectors λ∗t ∈ Rn, obtained from the

adjoint equation (3.12a) evaluated at (α?,µ?), i.e., for all t ∈ [T − 1, 0]

λ∗t =
(
A∗t −B∗tK∗t

)>
λ∗t+1 + a∗t −K>t b∗t (3.32)

with terminal condition λ∗T = ∇`T (x∗T). Equation (3.32) corresponds to the gradient

with respect to xt of the Hamiltonian evaluated along the trajectory (x?,u?), i.e., the

first order necessary condition for optimality (3.30) holds by construction.

Finally, with λ∗ at hand, we can see that condition

∇2Ht(x
∗
t , u
∗
t , λ
∗
t+1) = 0

can be written as

∇2Ht(x
∗
t , u
∗
t , λ
∗
t+1) = b∗t +B∗>t λ∗t+1 (3.33)

which corresponds to ∆µkt , the gradient of J(·, ·) in (3.29b) evaluated at (α?,µ?). In light

of the first part of the proof, this term is equal to zero. Therefore, the first order necessary

conditions for optimality are satisfied by the trajectory (x?,u?), thus concluding the

proof. �

Remark 3.3. We point out that Theorem 3.1 can be extended with suitable assumptions

to different step-size selection rules other than Armijo backtracking line-search, e.g.,

constant step-size and diminishing step-size. 4

Comparison with the gradient method presented in [27]: GoPRONTO and the gra-

dient method for optimal control (cf. Section B.2.1 in Appendix B.1) share the same idea

of the resolution of the optimal control problem via a gradient method in which the

derivatives are computed through a costate dynamics. However, the introduction of the

projection operator implies two fundamental improvements for GoPRONTO. First, we

highlight that GoPRONTO enjoys numerical stability thanks to the different structure of

the costate dynamics (3.12a). In fact, while the dynamical system represented by (B.25a)

is governed by the matrix Akt , in our algorithm the adjoint system is governed by the

matrix Akt −Bk
tKt, which for a proper choice of the gain matrices Kt represents a stabi-

lized, time-varying system as the horizon length goes to infinity. Moreover, thanks to

the projection operator, in GoPRONTO the input trajectory uk+1 implements a nonlin-

ear tracking controller of the (updated) state-input curve (αk+1,µk+1). Therefore, the

trajectory update (3.14) is performed under a closed-loop strategy rather than in open

100

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

loop as in (B.26), so that dynamical systems subject to instability issues can be taken

into account.

Comparison with the PRONTO method presented in [113]: Both GoPRONTO and

PRONTO (cf.Section B.2.2 in Appendix B) iteratively refine a state-input curve which

is remapped, using the feedback embedding approach, into a state-input trajectory.

An important difference relies on how these curves are calculated at each iteration. In

PRONTO, see (B.32), the next state-input curve is obtained by perturbing the current

trajectory with a descent direction obtained via an LQ problem. Therefore the direction

is sought on the tangent space of the trajectory manifold at the current iterate. In

GoPRONTO, instead, we proceed from curve to curve following the descent direction

defined by the gradient of the reduced cost (cf. (3.16)) obtained through the adjoint

system (3.12). Since no constraints are imposed on the descent direction and no LQ

problems are solved to find the descent direction, a lower computation cost is in general

required. As a final remark, we point out that our algorithmic framework GoPRONTO

can be exploited as a globalization technique for Newton’s type optimization methods,

see [27, Section 1.4] for a discussion.

3.2.2 Enhanced Versions of GoPRONTO

In this section we show how the embedded feedback framework (thanks to the efficient

computation of the gradient of the cost function in (3.10)) can be combined with acceler-

ated gradient-based optimization techniques available in the literature. This produces

accelerated versions of Algorithm 6 as described next.

Conjugate GoPRONTO: In the seminal paper [115], the Conjugate Gradient (CG)

method is presented as an approach to solve symmetric, positive-definite linear systems.

Nevertheless, many strategies were developed in the nonlinear system framework, as

detailed in [110]. Details on its implementation are given in Appendix A.

The Conjugate GoPRONTO optimal control method is obtained by applying CG to

problem (3.10). Let, for all k > 0 and for all t ∈ [0, T − 1],

αk+1
t = αkt + γk∆α̃kt

µk+1
t = µkt + γk∆µ̃kt

where γk is chosen via Armijo backtracking line search, and the descent directions ∆α̃kt

and ∆µ̃kt are obtained according to the GC algorithm as

∆α̃kt := ∆αkt + ρkαt∆α̃
k−1
t (3.34a)

∆µ̃kt := ∆µkt + ρkµt∆µ̃
k−1
t (3.34b)

101

Feedback Embedding Paradigm for Numerical Optimal Control

with ρkαt and ρkµt defined as

ρkαt :=
∆αkt

>
(∆αkt −∆αk−1

t)

‖∆αk−1
t ‖2

, ρkµt :=
∆µkt

>
(∆µkt −∆µk−1

t)

‖∆µk−1
t ‖2

. (3.35a)

Recalling that

∆αkt = −
[
∇1J(αk,µk)

]
t
, ∆µkt = −

[
∇2J(αk,µk)

]
t

(3.36a)

can be computed by means of (3.12), the procedure in Algorithm 7 is obtained.

Algorithm 7 Conjugate GoPRONTO

for k = 0, 1, 2 . . . do

for t = T − 1, . . . , 0 do

Step 1: compute descent direction ∆αkt ,∆µ
k
t as in (3.12)

for t = 0, . . . , T − 1 do

compute CG update parameters ρkαt , ρ
k
µt as in (3.35)

compute CG update direction:

∆α̃kt = ∆αkt + ρkαt∆α̃
k−1
t

∆µ̃kt = ∆µkt + ρkµt∆µ̃
k−1
t

Step 2: update (unfeasible) curve

αk+1
t = αkt + γk∆α̃kt

µk+1
t = µkt + γk∆µ̃kt

Step 3: compute new (feasible) trajectory via (3.14)

As expected, when implemented with the necessary cautions, e.g., restarting policies

and conjugacy tests, this method exhibits a faster convergence rate with respect to its

plain gradient counterpart, see Section 3.2.3 for implementative details.

Heavy-Ball GoPRONTO: The Heavy-Ball method is a two-step procedure for the

resolution of unconstrained optimization problems. It improves the convergence rate

with respect to the plain gradient descent.

The Heavy-Ball GoPRONTO optimal control method is obtained by applying the

102

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

Heavy-ball iteration to problem (3.10), i.e., for all k > 0 and for all t ∈ [0, T −1], we have

αk+1
t = αkt − γk

[
∇1J(αk,µk)

]
t︸ ︷︷ ︸

−∆αkt

+γhb(αkt − αk−1
t)

µk+1
t = µkt − γk

[
∇2J(αk,µk)

]
t︸ ︷︷ ︸

−∆µkt

+γhb(µkt − µk−1
t),

where γk > 0 and γhb > 0 are suitable step-sizes. The descent directions ∆αkt ,∆µ
k
t are

computed by means of the costate equation (3.12). The resulting procedure is recapped

in Algorithm 8.

Algorithm 8 Heavy-Ball GoPRONTO

for k = 0, 1, 2 . . . do

for t = T − 1, . . . , 0 do

Step 1: compute descent direction ∆αkt ,∆µ
k
t as in (3.12)

for t = 0, . . . , T − 1 do

Step 2: update (unfeasible) curve

αk+1
t = αkt + γk∆αkt + γhb(αkt − αk−1

t)

µk+1
t = µkt + γk∆µkt + γhb(µkt − µk−1

t)

Step 3: compute new (feasible) trajectory via (3.14)

We point out that, although a faster convergence rate of the Heavy-Ball method (with

respect to the plain gradient descent) is rigorously proved for convex problems only,

the practical implementation of this approach within our methodology confirmed these

expectations (see Section 3.2.3).

Nesterov’s GoPRONTO: Nesterov’s accelerated gradient represents an alternative

momentum method for the resolution of unconstrained optimization problems and has

a faster convergence rate than the plain gradient methods.

The Nesterov’s GoPRONTO optimal control algorithm is obtained by applying

Nesterov’s iteration (cf. (A.3)) to problem (3.10). Let, for all k > 0 and for all t ∈ [0, T−1],

αk+1
t = α̃kt − γk

[
∇1J(α̃k, µ̃k)

]
t︸ ︷︷ ︸

−∆α̃kt

µk+1
t = µ̃kt − γk

[
∇2J(α̃k, µ̃k)

]
t︸ ︷︷ ︸

−∆µ̃kt

, (3.37a)

where γk is the step-size, while α̃k and µ̃k are the stacks of α̃kt and µ̃kt , which are

103

Feedback Embedding Paradigm for Numerical Optimal Control

respectively defined as

α̃kt = αkt + k
k+3(αkt − αk−1

t) µ̃kt = µkt + k
k+3(µkt − µk−1

t). (3.37b)

The procedure is summarized in Algorithm 9.

Algorithm 9 Nesterov’s GoPRONTO

for k = 0, 1, 2 . . . do

for t = T − 1, . . . , 0 do

Step 1: compute descent direction

λkt =
(
Ãkt − B̃k

tKt

)>
λkt+1 + ãkt −K>t b̃kt

∆µ̃kt = −B̃k>
t λkt+1 − b̃kt

∆α̃kt = K>t ∆µ̃kt .

(3.38)

for t = 0, . . . , T − 1 do

compute α̃kt , µ̃
k
t as in (3.37b)

Step 2: update (unfeasible) curve

αk+1
t = α̃kt + γk∆α̃kt

µk+1
t = µ̃kt + γk∆µ̃kt

Step 3: compute new (feasible) trajectory via (3.14)

We point out that the descent direction (∆α̃kt ,∆µ̃
k
t) in Algorithm 9 is computed at

the current auxiliary curve (α̃k, µ̃k) rather than (αk,µk) (cf. (A.3b)). The immediate

consequence is that the linearization considered when evaluating the adjoint equations

is computed about the system trajectory associated to (α̃k, µ̃k). In (3.38), in fact, the

matrices Ãkt , B̃
k
t , ã

k
t , b̃

k
t are defined as

ãkt := ∇1`t(x̃
k
t , ũ

k
t), b̃kt := ∇2`t(x̃

k
t , ũ

k
t),

Ãkt := ∇1f(x̃kt , ũ
k
t)
>, B̃k

t := ∇2f(x̃kt , ũ
k
t)
>,

with (x̃kt , ũ
k
t) = (φt(α̃

k, µ̃k), ψt(α̃
k, µ̃k)) for all k and t.

3.2.3 Numerical Simulations

In this section, we give extensive, explanatory simulation of the algorithms proposed in

the previous sections. First of all, we show the basic implementation of the feedback

embedding framework, detailed in Algorithm 6 and, then, we propose comparisons

104

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

Table 3.1: Parameters of each pendulum-on-cart system.

Length of Pendulum l 1.0 [m]
Mass of Pendulum Mp 0.2 [kg]
Mass of Cart Mc 6.0 [kg]
Damping of Pendulum fp 0.01 [Nms

rad]
Damping of Cart fc 10.0 [Ns

m]
Spring Constant κs 0.5 [N

m]
Gravitational Acceleration g 9.81 [m

s2]

with the enhanced versions. We implement a trajectory generation task, i.e., we aim at

defining the optimal trajectory while tracking a given reference curve. We consider a

challenging, large-scale system made by a train of N inverted pendulums on carts as

shown in Figure 3.3. Each cart is connected with its preceding and its subsequent by

means of a spring, with the only exception of the extremal carts.

θi

κpθ̇i

Mpg

Mc

wi

θN

κpθ̇N

Mpg

Mc

wN

θ1

κpθ̇1

Mpg

Mc

w1

κsκs κsκs

Figure 3.3: Scheme of the train of inverted pendulum-on-cart systems.

For each system i ∈ {1, . . . , 50}, the nonlinear dynamics is given by

Mpl
2θ̈i + fpθ̇i −Mpl sin(θi)ẅ −Mplg sin(θi) = 0

(Mc +Mp)ẅi + fcẇi −
1

2
Mpl cos(θ)θ̈+

+
1

2
Mpl sin(θ)θ̇2 − κswi+1 + κswi−1 = ui,

where θi is the angle measured from the vertical upward position and wi is the the lateral

position of the cart. Each system is controlled through a force ui applied to the cart. The

parameters are identical for all carts and their values are reported in Table 3.1. The state

space representation of the dynamics has states xi = (θi, θ̇i, wi, ẇi)
> ∈ R4 with input

ui ∈ R for all i. Thus, the full state of the system is x := col(x1, . . . , xN) ∈ R4×N and

the full input is u := col(u1, . . . , uN) ∈ RN . Then, we use a multiple step Runge-Kutta

integrator of order 4 to obtain a discretized version of the plant given by xt+1 = f(xt, ut)

with sampling period δ = 0.05 seconds. The sensitivities are computed by Algorithmic

Differentiation. For the sake of compactness the discrete time state-space equations are

omitted. This curve tracking problem has a quadratic cost function, where `t(xt, ut) =∥∥xt − xref,t
∥∥2

Q
+
∥∥ut − uref,t

∥∥2

R
and `T (xT) =

∥∥xT − xref,T
∥∥2

Qf
with symmetric, positive-

definite matrices Q := diag(Q1, . . . , QN) ∈ R4N×4N and R := diag(R1, . . . , RN) where,

105

Feedback Embedding Paradigm for Numerical Optimal Control

for all i = 1, . . . , N ,

Qi =


100 0 0 0

0 1 0 0

0 0 0.1 0

0 0 0 0.1

 , Ri = 10−1.

The terminal cost matrix Qf is, instead, defined as the solution of the (discrete-time)

algebraic Riccati equation evaluated at the linearization of the system about the equi-

librium. We aim at performing a swing manoeuver between +30◦ and −30◦ along a

smooth curve which represents the reference signal for each θi. The desired angular

velocity is determined differentiating the smooth curve for θi. Finally, the reference

positions, velocities and inputs are set to zero. The feedback gain Kt in (3.6) is selected

solving a LQR problem associated to the linearization of the nonlinear system about the

trajectory (xk,uk) available at the current iteration with quadratic cost matrices defined

as Qreg = Q, Rreg = I and Qf,reg = Qf .

The reference curve is defined, for each cart i = 1, . . . , N , as

θi,ref(t) =
θrad

amp tanh(t−T/2)(1−tanh2(t−T/2))

max
t∈[0,T]

θrad
amp tanh(t−T/2)(1−tanh2(t−T/2))

where θrad
amp represent the desired amplitude in radians. The desired angular velocity is

determined by differentiating the smooth curve θi,ref(t). The other reference signals are

zero.

We start considering N = 50 and performing a swing manoeuver between ±θamp,

θamp = 30◦ along the smooth reference curve θi,ref(t) representing the angular reference

signal for each θi. The state-input optimal trajectory together with some intermediate

trajectories for the first cart-pole system are presented in Figure 3.4 while the reference

signals are depicted in dashed green.The optimal trajectory for the angular position of

some of the 50 carts is represented in Figure 3.5.

0 10 20 30

−20

0

20

Time [s]

θ 1
[d
eg

]

0 10 20 30

0

50

Time [s]

θ̇ 1
[d
eg

·s−
1
]

0 10 20 30

−2

0

2

Time [s]

w
1
[m

]

0 10 20 30

0

2

4

Time [s]

ẇ
1
[m

·s−
1
]

0 10 20 30

0

2

4

Time [s]

u
1
[N

]

Figure 3.4: Optimal trajectory obtained one cart out of 50 via GoPRONTO. In blue the optimal
trajectory, in dashed green the reference signals. In red, yellow and cyan the trajectory at
iteration k = 0, 2, 4, respectively.

106

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

0 10 20 30

−20

0

20

Time [s]

θ 1
[d
eg

]

Cart 1

0 10 20 30

−20

0

20

Time [s]

θ 1
5
[d
eg

]

Cart 15

0 10 20 30

−20

0

20

Time [s]

θ 3
0
[d
eg

]

Cart 30

0 10 20 30

−20

0

20

Time [s]

θ 5
0
[d
eg

]

Cart 50

Figure 3.5: Optimal trajectory for state θi for carts 1, 15, 30, 50 obtained via GoPRONTO. In blue
the optimal trajectory, in dashed green the reference signal.

20 30 40

−50

0

50

Time [s]

θ 1
[◦
]

20 30 40

0

5

10

Time [s]

u
1
[N

]

Figure 3.6: Optimal angle and input trajectory obtained for the first (of 100) pendulum-on-cart
generated via GoPRONTO with θamp = 80◦. In blue the optimal trajectory, in dashed green the
reference signals. In red, yellow and cyan the trajectories at iteration k = 0, 2, 4, respectively.

Comparison with existing numerical methods In this subsection, we compare Go-

PRONTO and the SQP-based algorithms for optimal control based on qpOASES, qp-

DUNES, HPIPM and the first-order OSQP, available in, e.g., acados [234]. For all

algorithms, we consider the same numerical formulation of the optimal control problem

and discretization scheme described above for N = 3, 50, 100 systems. Now, we aim

at performing a swing maneuver between ±θamp, θamp ∈ {60◦, 80◦} along the smooth

reference curve θi,ref(t). This scenario represents a challenging setting for numerical

optimal control algorithms due to the large dimension of the decisions variables for the

NLP. Moreover, for θamp = 80◦, the problem is even more challenging since it represents

an asymptotically ill-posed problem. We chose this specific setting to provide an insight

about the possibilities offered by GoPRONTO, which aims at representing a valid al-

terative in particular scenarios (e.g., quasi ill-posed problems and large-scale systems)

where other approaches may face challenge. We remark the fact that GoPRONTO is

implemented as in Algorithm 6 without pre-conditioning nor code optimization. The

stepsize is selected via Armijo-line search and the shooting nodes coincide with the

discretization time steps. The initial trajectory is θi,t ≡ 0, θ̇i,t ≡ 0, wi,t ≡ 0, ẇi,t ≡ 0, for

all t and i. The reference signals and the optimal trajectories obtained via GoPRONTO

are shown in Figure 3.6 for the first of 100 pendulum-on-carts.

The full condensing versions of qpOASES and HPIPM fail to provide a solution for

all N for both references. This can be due to the fact that full condensing approaches

eliminate state variables via the unstable dynamics. The partial condensing version

107

Feedback Embedding Paradigm for Numerical Optimal Control

of HPIPM, in which only few state variables are eliminated, successfully solves the

problem for N = 3, 50 for both reference signals. Being HPIPM a second-order solver a

faster convergence rate than GoPRONTO is achieved. A comparable convergence rate is

achieved only with θamp = 80◦ and N = 50. This can be due to the significant first-order

acceleration required by the ill-posedness of the problem. For N = 100 HPIPM gives

segmentation fault. As for partial condensing qpDUNES, it never reaches convergence.

Finally, we compare GoPRONTO with the first-order solver OSQP. QSQP has a slower

convergence rate for N = 3 and θamp = 80◦, while it has a faster convergence rate for

θamp = 60◦. In the other cases it fails to provide a solution. Table 3.2 summarizes the

performances achieved by the solvers that succeeded in at least one task.

Table 3.2: Iterations up to convergence of Gradient GoPRONTO, partial condensing HPIPM and
OSQP (×means failure).

N
SQP solvers

GoPRONTO
Partial HPIPM First-order OSQP

θamp 60◦ 80◦ 60◦ 80◦ 60◦ 80◦

3 8 9 14 50 30 34
50 14 43 × × 35 39
100 × × × × 40 42

Comparison with inspiring methods: Next, Gradient GoPRONTO is implemented

on the previously presented setup with N = 2. In this case and in the following

simulations, the swing maneuver is performed between +30◦ and −30◦. Algorithm 6

is compared with the Gradient Method (cf. Sec. B.2.1) and the first-order version of

PRONTO (cf. Sec. B.2.2). The step-size γk is selected by Armijo line search rule. The

evolution of the norm of the gradient∇J(αk,µk), is presented in Figure 3.7. Notice that

the Gradient Method diverges after very few iterations, while the first-order version of

PRONTO exhibits a slower convergence rate compared with Algorithm 6.

0 10 20 30 40 50
10−8

103

1014

Iterations k

‖∇
J
(α

k
,µ

k
)‖

Gradient GoPRONTO

Gradient Method

First-order PRONTO

Figure 3.7: Evolution of the norm of the gradient ‖∇J(αk,µk)‖ in Gradient GoPRONTO, the
Gradient Method and PRONTO.

Table 3.3 compares GoPRONTO and PRONTO in terms of the computation time

required to compute the descent direction and the total computation time with N =

2, 3, 5, 10. Since PRONTO computes the descent direction by solving an LQ problem, as

108

3.2. GoPRONTO: Generalized first-Order PROjectioN operator method for Trajectory

Optimization

the state-input dimensions increases, larger computation time per iteration is required

with respect to GoPRONTO. In GoPRONTO, the total computation time includes the

time required to compute the projection gain, which is recomputed only when it looses

its stabilizing property, (2-3 times per simulation). While the total computation time

is higher with low state dimension, GoPRONTO shows a faster convergence with high

state dimensions. Notice that, in PRONTO, one could use the feedback gain obtained

by solving the LQ problem at the price of loosing the additional degree of freedom

represented by the projection gain.

Table 3.3: Computation times per iteration in [s].

Computation time per iteration [s]
Number of carts N 2 5 10 50 100
PRONTO 0.12 0.24 0.79 40.86 260.29
GoPRONTO 0.05 0.08 0.18 6.73 33.13

Total computation time [s]
PRONTO 0.84 1.92 7.9 449.6 3123.48
GoPRONTO 1.76 3.36 9.28 328.63 1807.30

In the following, we compare Gradient GoPRONTO with its enhancements.

Comparison with Conjugate GoPRONTO: Here,N = 2 and the step-size γk is chosen

via Armijo line search as required by the Conjugate Gradient method. Since the CG

method is applied to a nonquadratic function, we need to deal with the resulting loss

of conjugacy. The implemented method operates in cycles of conjugate direction steps,

with the first step of each cycle being a basic gradient step. We choose to restart the

policy when the conjugacy test fails, i.e. as soon as |∇J(αk+1,µk+1)>∇J(αk,µk)| >
0.7‖∇J(αk,µk)‖2. The evolution of the descent direction, i.e., the norm of the gradient

∇J(αk,µk), is presented in Figure 3.8. We can see that the descent direction decreases

with a faster rate when the CG-enhanced version is adopted.

0 5 10 15 20 25 30 35
10−8

100

108

Iterations k

‖∇
J
(α

k
,µ

k
)‖

Gradient GoPRONTO

Conjugate GoPRONTO

Figure 3.8: Evolution of ‖∇J(αk,µk)‖ in Gradient GoPRONTO and Conjugate GoPRONTO for
N = 2. γk is chosen via Armijo line-search.

Comparison with Heavy-Ball GoPRONTO and Nesterov’s GoPRONTO: Finally, we

consider N = 50 resulting in xt ∈ R200 and ut ∈ R50. The step-size γk is fixed with

109

Feedback Embedding Paradigm for Numerical Optimal Control

γk ≡ γ = 10−3 while the Heavy-ball step γhb = 0.5. The evolution of the norm of the

gradient ∇J(αk,µk), is presented in Figure 3.9. Notice that the enhanced versions of

GoPRONTO present a faster convergence rate than its basic implementation.

0 20 40 60 80 100 120 140 160 180 200
10−9

100

109

Iterations k

‖∇
J
(α

k
,µ

k
)‖

Gradient GoPRONTO

Heavy-Ball GoPRONTO

Nesterov’s GoPRONTO

Figure 3.9: Evolution of ‖∇J(αk,µk)‖ in Gradient GoPRONTO, Nesterov’s GoPRONTO and
Heavy-Ball GoPRONTO for N = 50. The stepsize is constant with γk ≡ 10−3.

Constrained optimal control: In Figure 3.10 we present an example of optimal trajec-

tory where input constraints are enforced. The problem setup is the same as above with

θamp = 80◦. For all carts, i.e., for all i = 1, . . . , N , the maximum input is saturated at

umax = 5 [N] g(xi,t) = ‖ui,t/umax‖ − 1 ≥ 0, for all t = [0, T] added to the optimal control

problem (3.3). This constraint is enforced via the barrier function approach proposed

in [114].

0 200 400 600

−50

0

50

Time [s]

θ 1
[◦
]

0 200 400 600

0

5
umax

Time [s]

u
1
[N

]

Figure 3.10: Constrained optimal angle and cart position trajectory for the first pendulum-on-
cart. In blue the optimal trajectory, in dashed green the reference trajectory, in dashed red the
bound on the control action.

3.3 Distributed Multi-agent Aggregative Optimal Control

In this section, we leverage on the Embedded Feedback Optimization framework, intro-

duced in Section 3.2, to develop a distributed optimal control algorithm, tailored for

multi-agent aggregative optimal control problems.

We start by formalizing the problem setup introduced in Section 1.2.1. We consider

a network of N (possibly) heterogeneous agents evolving according to the nonlinear

110

3.3. Distributed Multi-agent Aggregative Optimal Control

dynamics

xi,t+1 = fi(xi,t, ui,t), (3.39)

for all i ∈ {1, . . . , N}, where fi : Rni × Rmi → Rmi , xi,t ∈ Rni is the state of agent i at

time t, and ui,t ∈ Rmi is the control input applied to agent i at time t. The stacks of the

states and inputs of all the agents at time t are denoted as

xt :=col(x1,t,. . ., xN,t)∈Rn ut :=col(u1,t,. . ., uN,t)∈Rm,

where n =
∑N

i=1 ni and m =
∑N

i=1mi. Moreover, in parallel with the notation adopted

in Section 3.2, considering a time horizon of length T ∈ N, for each agent i ∈ {1, . . . , N},
we define as xi ∈ RniT and ui ∈ RmiT the stack of the states xi,1, . . . , xi,T and inputs

ui,0, . . . , ui,T−1, respectively. For notational convenience, we also denote the stack of all

xi, ui as

x := col(x1, . . . ,xN) ∈ RnT , u := col(u1, . . . ,uN) ∈ RmT .

Then, we introduce the aggregative variables σt : Rn × Rm → Rq, for all t ∈ [0, T − 1],

and σT : Rn → Rq that couple the states and inputs of all the agents according to

σt(xt, ut) =
1

N

N∑
i=1

ϕi,t(xi,t, ui,t), σT (xT) =
1

N

N∑
i=1

ϕi,T (xi,T), (3.40)

where, for all and i ∈ {1, . . . , N}, the functions ϕi,t : Rni×Rmi → Rq, for all t ∈ [0, T−1],

and ϕi,T : Rni → Rq represent the i-th contribution to the aggregative variable. We will

use the symbol σ(x,u) ∈ Rq(T+1) to denote the stack of all σt(·, ·), for all t ∈ [0, T − 1],

and σT (·), i.e., we define

σ(x,u) :=


σ0(x0, u0)

...

σT−1(xT−1, uT−1)

σT (xT)

 =
1

N

N∑
i=1

ϕi(xi,ui),

where ϕi(xi,ui) := col(ϕi,0(xi,0, ui,0), . . . , ϕi,T (xi,T)). The agents of the network aim to

cooperatively minimize the overall cost ` : RnT × RmT × Rq(T+1) → R given by

`(x,u,σ(x,u)) :=

N∑
i=1

`i(xi,ui,σ(x,u)), (3.41)

in which, for all i ∈ {1, . . . , N}, the local function `i : RnT ×RmT ×Rq(T+1) → R of agent

111

Feedback Embedding Paradigm for Numerical Optimal Control

i depends on both the local state and input and the aggregative variable σ coupling the

states and the inputs of all the agents. Specifically, `i reads as

`i(xi,ui,σ(x,u)) :=
T−1∑
t=0

`i,t(xi,t, ui,t, σt(xt, ut)) + `i,T (xi,T , σT (xT)), (3.42)

where `i,t : Rni×Rmi×Rq → R represents the so-called stage cost, while `i,T : Rni×Rq →
R is the terminal cost. Overall, our goal is to design a system trajectory (x,u) such that

the global performance index (3.41) is minimized. More formally, we aim at solving the

optimal control problem

min
x1,...,xN
u1,...,uN

N∑
i=1

T−1∑
t=0

`i,t(xi,t, ui,t, σt(xt, ut)) + `i,T (xi,T , σT (xT)) (3.43a)

subj.to xi,t+1 = fi(xi,t, ui,t) t = 0, . . . , T − 1 (3.43b)

xi,0 = xi,init i = 1, . . . , N, (3.43c)

where xi,init ∈ Rni represents the initial condition of agent i, for all i ∈ {1, . . . , N}.
We consider an instance of problem (3.43) in which the dynamics, the cost function

and the aggregation functions satisfy the following assumptions.

Assumption 3.3 (Dynamics and cost regularity). For all i ∈ {1, . . . , N}, the dynamics
function fi(xi,t, ui,t) and the cost functions `i,t(·, ·, ·), `i,T (·, ·) and ϕi(·, ·) are C2. Moreover,
the cost functions `(·, ·,σ(·, ·)) are radially unbounded. 4

Although a solution to (3.43) could be retrieved via a centralized optimal control

solver, due to the network dimension (and thus the problem one) and to robustness

issues, “centralized” approaches where a single unity knows all data and controls all the

agents are often undesirable or even not applicable. In the following, we develop a dis-

tributed method meant as an algorithm involving cooperation via local communication

(over a network) among the N control nodes to solve (3.43), while taking advantage of

the computational power available to each system.

The communication model, fundamental for the optimal control algorithm develop-

ment, is formalized resorting to graph theory.

More formally, we assume the agents exchange information among each other ac-

cording to a directed graph G = ({1, . . . , N}, E), where E ⊂ {1, . . . , N} × {1, . . . , N}
is the so-called edge set. Agent i receives information from agent j only if the edge

(j, i) ∈ E . The set of in-neighbors of i is Ni := {j ∈ {1, . . . , N} | (j, i) ∈ E}. We associate

to the graph G a weighted adjacency matrixW ∈ RN×N whose entries match the graph,

i.e., wij > 0 whenever (j, i) ∈ E and wij = 0 otherwise. Specifically, we consider graphs

and adjacency matrices matching the following definitions.

112

3.3. Distributed Multi-agent Aggregative Optimal Control

Definition 3.2 (Connectivity [50]). A directed graph G is said to be strongly connected if
for every pair of nodes (i, j) there exists a path of directed edges that goes from i to j. If G is
undirected, we say that G is connected. 4

Definition 3.3 (Stochastic matrices [50]). The matrix A ∈ RN×N is said to be row stochas-

tic if it holds A1N = 1N . Analogously, A is said to be column stochastic if it holds
1>NA = 1>N - If A is both row and column stochastic, then it is said to be doubly stochastic.4

In the following assumption we formalized the considered time-invariant network

topology.

Assumption 3.4 (Network). The directed graph G is strongly connected and the matrixW
is doubly stochastic. 4

Inspired by the general (single-agent) case detailed in Section 3.2, we design, for

each agent i, a (local) feedback policy mapping (local) state-input curves into trajectories

for the i-th system. Operatively, such a policy is implemented via the nonlinear tracking

system

ui,t = µi,t +Ki,t(αi,t − xi,t), xi,t+1 = fi(xi,t, ui,t), (3.44)

where the matrix Ki,t ∈ Rmi×ni is chosen to ensure local stability about a given state-

input trajectory for the local nonlinear dynamics (3.39). The introduction of the feedback

operator in (3.44) leads to the closed-loop formulation of (3.45) described by

min
xi,ui,αi,µi
i=1,...,N

N∑
i=1

T−1∑
t=0

`i,t(xi,t, ui,t, σt(xt, ut)) + `i,T (xi,T , σT (xT)) (3.45a)

subj.to xi,t+1 = fi(xi,t, ui,t) t = 0, . . . , T − 1 (3.45b)

ui,t = µi,t +Ki,t(αi,t − xi,t) (3.45c)

xi,0 = xi,init i = 1, . . . , N. (3.45d)

Notice that the cost functions of problem (3.45) have an aggregative structure, while the

constraints are local to each agent.

3.3.1 Tracking-based Distributed GoPRONTO for Aggregative Optimal Con-
trol

In this section, we detail the distributed optimization algorithm to solve (3.45) coop-

eratively via a protocol in which each agent employs only local data and exchanges

information only with its neighbors. Let k ∈ N be the iteration index. At each iteration

k, each agent i updates its local estimate (xki ,u
k
i ,α

k
i ,µ

k
i) of the i-th component of an

113

Feedback Embedding Paradigm for Numerical Optimal Control

optimal solution to problem (3.45). Specifically, for each agent i, we first update the in-

dependent variables (αki ,µ
k
i), i.e., the curve, and, then, via the feedback operator (3.44)

projecting curves into trajectories, we recover the corresponding trajectory (xki ,u
k
i).

The rationale behind the update mechanism of the curve (αki ,µ
k
i) (cf. (3.47)) is to

approximate the centralized (gradient-related) dynamics by replacing the global in-

formation (not locally available) with local proxies si,t and yi,t for all t ∈ [0, T]. That

is, for each t ∈ [0, T], agent i updates two auxiliary variables ski,t ∈ Rq and yki,t ∈ Rq

in order to reconstruct the aggregative variable σt(xkt , u
k
t) and the related gradient∑N

i=1∇3`i(x
k
i,t, u

k
i,t, σt(x

k, uk)), respectively. Specifically, for all i ∈ {1, . . . , N} and

t ∈ {0, . . . , T}, each variable si,t is tracking the quantity σt(xkt , u
k
t) that varies along

the iterations k. To this end, we update each si,t by combining a consensus term∑
j wijs

k
j,t with the correction one ϕi,t(xk+1

i,t , uk+1
i,t) − ϕi,t(xki,t, uki,t) giving rise to the so-

called perturbed consensus dynamics widely adopted in the context of distributed

average tracking, see, e.g., [133, 252]. The same arguments apply also for the set of

trackers yi,t. Informally, the desired asymptotic behavior of ski,t and yki,t is

ski,t
tracks−→ σt(x

k
t , u

k
t) =

1

N

N∑
j=1

ϕj,t(x
k
j,t, u

k
j,t)

yki,t
tracks−→ 1

N

N∑
j=1

∇3`j,t(x
k
j,t, u

k
j,t, σt(x

k
t , u

k
t)),

for all t ∈ [0, T − 1]. Similar behaviors are desired for ski,T and yki,T too.

The overall strategy is presented in Algorithm 10 from the perspective of agent i,

and by adopting the shorthands

Aki,t := ∇1fi(x
k
i,t, u

k
i,t)
>, Bk

i,t := ∇2fi(x
k
i,t, u

k
i,t)
>

for all i ∈ {1, . . . , N} and t ∈ [0, T − 1].

Notice that, the computational burden for each agent is proportional to the local state,

input and aggregate variable dimensions and time length only. As for the communication

network usage, steps (3.49)–(3.50) require agents to exchange T pairs of vectors in Rq.
Thereby, the data exchanged between agents consists of 2q(T + 1) floats.

Algorithm Convergence Result

In this section, we provide the convergence result characterizing Algorithm 10.

For the sake of readability, we define the stacks ski , yki , and Gi,3(xki ,u
k
i ,σ(xk,uk)) as

ski := col(ski,0, . . . , s
k
i,T) ∈ Rq(T+1), yki := col(yki,0, . . . , y

k
i,T) ∈ Rq(T+1)

Gi,3(xki ,u
k
i , s

k
i) :=

114

3.3. Distributed Multi-agent Aggregative Optimal Control

Algorithm 10 Tracking-based Distributed GoPRONTO Algorithm – Agent i
for k = 0, 1, 2 . . . do

set λki,T = ∇1`i,T (xki,T , s
k
i,T) +∇ϕki,T (xki,T)yki,T

for t = T − 1, . . . , 0 do
Compute proxy variables based on ski,t and yki,t

ai,t=∇1`i,t(x
k
i,t, u

k
i,t, s

k
i,t)+∇1ϕ(xki,t, u

k
i,t) y

k
i,t

bi,t=∇2`i,t(x
k
i,t, u

k
i,t, s

k
i,t)+∇2ϕ(xki,t, u

k
i,t) y

k
i,t

(3.46a)

Compute local proxy descent direction

λi,t = (Aki,t −Bk
i,tK

k
i,t)
>λi,t+1 + ai,t (3.46b)

∆µki,t = −bi,t −Bk>
i,t λi,t+1 (3.46c)

∆αki,t = K>i,t∆µ
k
i,t (3.46d)

Update the local solution estimates and trackers
for t = 0, . . . , T − 1 do

Update curve

αk+1
i,t = αki,t + ∆αki,t

µk+1
i,t = µki,t + ∆µki,t

(3.47)

Compute new (feasible) trajectory with xk+1
i,0 = xi,init

uk+1
i,t = µk+1

i,t +Ki,t(α
k+1
i,t − xk+1

i,t) (3.48a)

xk+1
i,t+1 = fi(x

k+1
i,t , uk+1

i,t) (3.48b)

Update trackers

sk+1
i,t =

∑
j∈Ni

wijs
k
j,t+ϕi,t(x

k+1
i,t , uk+1

i,t)− ϕi,t(xki,t,uki,t)

yk+1
i,t =

∑
j∈Ni

wijy
k
j,t+∇3`i,t(x

k+1
i,t , uk+1

i,t , sk+1
i,t)−∇3`i,t(x

k
i,t, u

k
i,t, s

k
i,t)

(3.49)

sk+1
i,T =

∑
j∈Ni

wijs
k
j,T + ϕi,T (xk+1

i,T)− ϕi,T (xki,T)

yk+1
i,T =

∑
j∈Ni

wijy
k
j,T +∇2`i,T (xk+1

i,T , sk+1
i,T)−∇2`i,T (xki,T , s

k
i,T)

(3.50)

115

Feedback Embedding Paradigm for Numerical Optimal Control

col
(
∇3`i,0(xki,0, u

k
i,0, s

k
i,0), . . . ,∇3`i,T−1(xki,T−1, u

k
i,T−1, s

k
i,T−1),∇2`i,T (xki,T , s

k
i,T)
)
∈ Rq(T+1).

The next theorem establishes the convergence guarantees of Algorithm 10.

Theorem 3.2. Consider the distributed optimal control Algorithm 10. Let Assumptions 3.3
and 3.4 hold. For any initial condition (x0

i ,u
0
i , s

0
i ,y

0
i) ∈ RniT × RmiT × Rq(T+1) × Rq(T+1)

such that (x0
i ,u

0
i) is a trajectory and

s0
i = ϕi(x

0
i ,u

0
i), ∀i ∈ {1, . . . , N}

y0
i = Gi,3(x0

i ,u
0
i , s

0
i) ∀i ∈ {1, . . . , N},

(3.51)

there exists γ̄ > 0 such that, for any γ ∈ (0, γ̄), it holds

lim
k→∞

w
(

(xk,uk),Ξ?
)

= 0.

where the symbol Ξ? denotes the set of trajectories (x?,u?) satisfying the first-order necessary
conditions for optimality of the original problem (3.43). 4

The complete proof of Theorem 3.2 is provided in Section 3.3.2. We underline that

the result of Theorem 3.2 is semi-global restricted to the set defined by conditions (3.51).

Notice that, as customary in nonconvex optimization (cf. Assumption 3.3), Theorem 3.2

ensures that Algorithm 10 asymptotically converges to a point satisfying the first-order

necessary conditions of optimality for problem (3.43). Indeed, since the costs are

nonconvex and the dynamics nonlinear, the solution of problem (3.43) is, in general,

not unique. However, as detailed extensively in Remark 3.4, in a neighborhood of

an (isolated) local minimum of (3.43) satisfying second-order sufficient conditions of

optimality, Algorithm 10 shows a linear rate of convergence.

3.3.2 Algorithm Analysis

The analysis of the Distributed Aggregative GoPRONTO algorithm relies on the follow-

ing cornerstone steps. First, in Section 3.3.2, the local feedback-based controllers (3.48a)

allow us to reformulate (3.45) as a reduced (unconstrained) optimization problem.

Second, in Section 3.3.2, we show that our strategy reads as an approximation of the

gradient descent method (cf. Lemma 3.1) interlaced with the dynamics of the proxies

for the unavailable global quantities (cf. Lemma 3.2). Third, in Section 3.3.2, we rewrite

Algorithm 10 via a change of variables (cf. Lemma 3.3) that (i) highlights the approxima-

tion error due to the proxies and (ii) removes the influence of their average components

on the algorithm dynamics. Finally, in Section 3.3.2, we close the proof of Theorem 3.2

via LaSalle’s based arguments.

116

3.3. Distributed Multi-agent Aggregative Optimal Control

Reduced Reformulation of the Optimal Control Problem: Given an initial condition

xi,0 ∈ Rni , we define the space of trajectories of agent i as Ti,xi,init ⊆ RniT ×RmiT defined

as for all i ∈ {1, . . . , N}

Ti,xi,init :=

{
(xi,ui) ∈ RniT × RmiT | xi,0 = xi,init, xi,t+1 = fi(xi,t, ui,t) ∀t ∈ [0, T]

}
.

Specifically, for each agent i ∈ {1, . . . , N}, the local policy (3.44) implements a (local)

feedback-projection operator Pi : RniT ×RmiT → Ti,xi,init , which maps (local) state-input

curves into trajectories for the i-th system. More formally, Pi(αi,µi) is designed such

that for any (αi,µi) ∈ RniT × RmiT and (xi,ui) ∈ Ti,xi,init , it holds[
αi

µi

]
7−→

[
xi

ui

]
:= Pi(αi,µi) :=

[
φi(αi,µi)

ψi(αi,µi)

]
, (3.52)

where φi(αi,µi) and ψi(αi,µi) are the state and input components of Pi(αi,µi). Notice

that it holds Pi(αi,µi) ∈ Ti,xi,init and it satisfies the projection property Pi(xi,ui) =

(xi,ui). For all t ∈ [0, T − 1] and i ∈ {1, . . . , N}, we can also define the maps

xi,t = φi,t(αi,µi), ui,t = ψi,t(αi,µi), (3.53)

where φi,t : RniT × RmiT → Rni and ψi,t : RniT × RmiT → Rmi . We denote as φi(·, ·)
and ψi(·, ·) the stack of all φi,t(·, ·) and ψi,t(·, ·) for all t = 0, . . . , T − 1 and, similarly, as

φ(·, ·), ψ(·, ·) the stack of the maps φi(·, ·), ψi(·, ·) for all i ∈ {1, . . . , N}. The maps (3.53)

are compositions of continuous functions and thus continuous. Therefore, we can

reformulate problem (3.45) as

min
α1,...,αN
µ1,...,µN

N∑
i=1

Ji(αi,µi, ς(α,µ))︸ ︷︷ ︸
J(α,µ,ς(α,µ))

, (3.54)

where

Ji(αi,µi, ς(α,µ)) := `i(φi(αi,µi), ψi(αi,µi),σ(φ(α,µ), ψ(α,µ))),

in which ς(α,µ) is denoted as

ς(α,µ) :=
1

N

N∑
i=1

ϕ̄i(αi,µi),

117

Feedback Embedding Paradigm for Numerical Optimal Control

with ϕ̄i : RniT × RmiT → Rq(T+1) is defined as

ϕ̄i(α,µ) := col(ϕi,0(φi,t(αi,µi), ψi,t(αi,µi)), . . . , ϕi,T (φi,T (αi,µi), ψi,T (αi,µi))).

Problem (3.54) is an unconstrained optimization problem in (α,µ). Thus, it can be

addressed by a distributed implementation of the gradient descent method. In this

context, each agent i iteratively updates its local estimate (αki ,µ
k
i) ∈ RniT × RmiT about

the i-th component of a solution of problem (3.54), with k ∈ N denoting the iteration

index. The gradient method update applied to problem (3.54) reads as

αk+1
i = αki − γΓαi(α

k
i ,µ

k
i , ς(α

k,µk)) (3.55a)

µk+1
i = µki − γΓµi(α

k
i ,µ

k
i , ς(α

k,µk)), (3.55b)

for all i ∈ {1, . . . , N}, γ > 0 is the so-called step-size, and we introduced the operators

Γαi : RnT × RmT × Rq(T+1) → RniT and Γµi : RnT × RmT × Rq(T+1) → RmiT defined as

Γαi(α
k
i ,µ

k
i , ς(α

k,µk)) :=
∂J(αi,µ

k
i , ς(α,µ

k))

∂αi

∣∣∣∣∣
α=αki

Γµi(α
k
i ,µ

k
i , ς(α

k,µk)) :=
∂J(αki ,µi, ς(α

k,µ))

∂µi

∣∣∣∣∣
µi=µ

k
i

.

In order to implement (3.55), we need to overcome two main challenges. Firstly, being

the cost function in (3.54) a composition of `i with maps (3.53), we need to calculate

∇φi and ∇ψi, which, in general is non trivial. Secondly, the cost function (3.54) also

exhibits a composition with the aggregative variable ς that couples all the variables

(α,µ) of the network. Consequently, the update (3.55) requires, for each agent in the

network, the knowledge of unavailable global information. This issue is tackled by

properly exploiting a consensus-based strategy. The next section is devoted to providing

insights into these two aspects.

Descent Direction and Local Proxies: In this section, we formally define a useful

numerical routine for the computation of the gradient of the reduced cost function

J(α,µ, ς(α,µ)). Then, we show how to compensate for the unavailable global informa-

tion required by this routine.

Lemma 3.1. For all i = 1, . . . , N , consider the integration backward in time from t =

T − 1, . . . , 0 of the closed-loop costate equation

λi,t = (Ai,t −Ki,tBi,t)
>λi,t+1 + ai,t,

118

3.3. Distributed Multi-agent Aggregative Optimal Control

where λi,t ∈ Rni ,

ai,t = ∇2`i,t(xi,t, ui,t, σt(xt, ut))+∇2ϕi,t(xi,t, ui,t)
N∑
j=1

∇3`j,t(xj,t, uj,t, σt(xt, ut)), (3.56a)

and the initial condition λi,T ∈ Rni , is set as

λi,T = ∇`i,T (xi,T , σT (xT)) +∇ϕi,T (xi,T)
N∑
j=1

∇2`j,T (xj,T , σt(xT)). (3.56b)

Then, for all i = 1, . . . , N , the gradient of the reduced cost function (3.54) with respect to µi,t
and αi,t can be calculated respectively as

Γαi(α
k,µk, ς(αk,µk)) = −bi,t −Bi,tλi,t+1 (3.57a)

Γµi(α
k,µk, ς(αk,µk)) = K>i,t∆µi,t, (3.57b)

where

bi,t = ∇2`i,t(xi,t, ui,t) +∇2ϕi,t(xi,t, ui,t)
N∑
j=1

∇3`j,t(xj,t, uj,t, σt(xt, ut)). (3.58)

for all t = 0, . . . , T 4

Proof. The proof extends the arguments we leverage in the proof of Theorem 3.1 to the

multi-agent case. First of all, we rewrite the equality constraints represented by the

nonlinear dynamics in (3.45b) and the closed-loop structure of the control input (3.45c)

in its implicit form h : RniT × RmiT × RniT × RmiT → RniT defined as

hi(xi,ui,αi,µi) :=



fi(xi,0, ui,0)− xi,1
...

fi(xi,T−1, ui,T−1)− xi,T
µi,0 +Kt(αi,0 − xi,0)− ui,0

...

µi,T−1 +Ki,t(αi,T−1 − xi,T−1)− ui,T−1


. (3.59)

We can now introduce an auxiliary function L : RnT ×RmT ×RnT ×RmT ×RnT+m → R,

defined as

L(x,u,α,µ,λ) :=
N∑
i=1

(
`i(xi,ui,σ(x,u)) + hi(xi,ui,αi,µi)

>λi

)
, (3.60)

119

Feedback Embedding Paradigm for Numerical Optimal Control

where, for all i ∈ {1, . . . , N}, the (multiplier) vector λi ∈ RniT+miT is arranged as

λi := col(λi,1, . . . , λi,T , λ̃i,1, . . . , λ̃i,T),

with λi,t ∈ Rn and λ̃i,t ∈ Rm, for all t ∈ [0, T]. By construction, for any (α,µ) ∈
RnT × RmT , it holds

hi(φi(αi,µi), ψi(αi,µi),αi,µi) = 0. (3.61)

Hence, the auxiliary function (3.60) enjoys the property

L(φ(α,µ), ψ(α,µ),α,µ,λ) =
N∑
i=1

`i(φi(αi,µi), ψi(αi,µi,σ(φ(α,µ), ψ(α,µ)))

=

N∑
i=1

Ji(αi,µi, ς(α,µ)), (3.62)

for any (α,µ) and λ ∈ RnT+mT . Therefore, in this formulation, we can interpret λ as

a parameter or a degree of freedom. Indeed, building on (3.62), one can simplify the

computation of the gradient of J with a proper choice of λ (see [212] for further details).

Such a choice gives rise to the decoupled computation

λi,t = (Ai,t −Ki,tBi,t)
>λi,t+1 + ai,t,

which, in turn, leads to

Γαi(α
k,µk, ς(αk,µk)) = −bi,t −Bi,tλi,t+1 (3.63a)

ΓµiJ(αk,µk, ς(αk,µk)) = K>i,t∆µi,t, (3.63b)

where

ai,t = ∇1`i,t(xi,t, ui,t, σt(xt, ut))+∇1ϕi,t(xi,t, ui,t)

N∑
j=1

∇3`j,t(xj,t, uj,t, σt(xt, ut)) (3.64a)

bi,t = ∇2`i,t(xi,t, ui,t)+∇2ϕi,t(xi,t, ui,t)
N∑
j=1

∇3`j,t(xj,t, uj,t, σt(xt, ut)). (3.64b)

Equations (3.63) should be calculated backward in time from t = T − 1, . . . , 0, with

initial condition λi,T = aT , where

ai,T = ∇1`i,T (xi,T , σT (xT)) +∇ϕi,T (xi,T)
N∑
j=1

∇2`j,T (xj,T , σt(xT)).

120

3.3. Distributed Multi-agent Aggregative Optimal Control

The proof follows. �

Notice that, the terms in (3.56) and (3.58) require the local knowledge of the global

quantities σt(·, ·),
∑N

j=1∇3`j,t(xj,t, uj,t, σt(·, ·)), σT (·), and
∑N

j=1∇2`j,T (xj,T , σT (·)). For

this reason, in the computation of each ai,t, bi,t, and ai,T , these global quantities are

replaced by the trackers si,t and yi,t. Concurrently, these trackers are updated accord-

ing to perturbed consensus dynamics exploiting inter-agent communication (cf. (3.49)

and (3.50)). Hence, we formally show the relationship between the directions ∆αki and

∆µki computed via Algorithm 10 and the derivative of the reduced costs Ji with respect

to αi and µi.

Lemma 3.2 (Local proxy of the descent direction). Consider Algorithm 10. Then, it holds

∆αki = −Γαi(α
k
i ,µ

k
i , s

k
i)−∇1ϕ̄i(α

k
i ,µ

k
i) yki

∆µki = −Γµi(α
k
i ,µ

k
i , s

k
i)−∇2ϕ̄i(α

k
i ,µ

k
i) yki ,

for all i ∈ {1, . . . , N}. 4

Proof. At each iteration k, consider the quantities ski and yki as the numerical prox-

ies of the centralized quantities σt(xt, ut) and
∑N

i=1∇3`i,t(xi,t, ui,t, σt(xt, ut)), respec-

tively. Considering equations (3.56)-(3.57) of Lemma 3.1, one can see that the backward

sweep (3.46) computes the approximated gradient of the reduced cost J at the current

iteration. �

Algorithm reformulation: average and perpendicular dynamics of the trackers in

error coordinates: Next, we provide a reformulation of Algorithm 10 used to prove

Theorem 3.2. The initial condition (x0
i ,u

0
i) is a trajectory, (s0

i ,y
0
i) is such that (3.51)

holds, and Assumptions 3.3 and 3.4 hold. By exploiting Lemma 3.2, the local update

describing Algorithm 10 can be summarized as

αk+1
i = αki −γ

(
Γαi(α

k
i ,µ

k
i , s

k
i)+∇1ϕ̄i(α

k
i ,µ

k
i , s

k
i)y

k
i

)
(3.65a)

µk+1
i = µki −γ

(
Γµi(α

k
i ,µ

k
i , s

k
i)+∇2ϕ̄i(α

k
i ,µ

k
i , s

k
i)y

k
i

)
(3.65b)

sk+1
i =

∑
j∈Ni

wijs
k
j + ϕ̄i(α

k+1
i ,µk+1

i)− ϕ̄i(αki ,µki) (3.65c)

yk+1
i =

∑
j∈Ni

wijy
k
j +∇3Ji(α

k+1
i ,µk+1

i , sk+1
i)−∇3Ji(α

k
i ,µ

k
i , s

k
i). (3.65d)

Now, we set W := W ⊗ Iq(T+1) and use (3.65) to compactly describe the update of all

the variables of the network as

αk+1 = αk − γ(Γα(αk,µk, sk) +∇1ϕ̄(αk,µk)yk) (3.66a)

121

Feedback Embedding Paradigm for Numerical Optimal Control

µk+1 = µk − γ(Γµ(αk,µk, sk) +∇2ϕ̄(αk,µk)yk) (3.66b)

sk+1 = W sk + ϕ̄(αk+1,µk+1)− ϕ̄(αk,µk) (3.66c)

yk+1 = Wyk + Γς(α
k+1,µk+1, sk+1)− Γς(α

k,µk, sk), (3.66d)

where we introduced the operators Γα : RnT × RmT × Rq(T+1)N → RnT , Γµ : RnT ×
RmT × Rq(T+1)N → RmT , and Γς : RnT × RmT × Rq(T+1)N → Rq(T+1)N defined as

Γα(α,µ, s) := col(Γα1(α1,µ1, s1), . . . ,ΓαN (αN ,µN , sN)) (3.67a)

Γµ(α,µ, s) := col(Γµ1
(α1,µ1, s1), . . . ,ΓµN (µN ,µN , sN)) (3.67b)

Γς(α,µ, s) := col(∇3J1(α1,µ1, s1), . . . ,∇3JN (αN ,µN , sN)), (3.67c)

with α := col(α1, . . . ,αN), µ := col(µ1, . . . ,µN), and s := col(s1, . . . , sN), with αi ∈
RniT , µi ∈ RmiT , and si ∈ Rq(T+1) for all i ∈ {1, . . . , N}. The next lemma introduces

a useful change of coordinates which simplifies the analysis of the algorithm. Before

providing its formal statement, let us introduce the compact notation 1 := 1N ⊗ Iq(T+1)

and the operators Γξ : R(n+m)T × R2q(T+1)N → R(n+m)T , u1 : R(n+m)T × R2q(T+1)N →
q(T + 1)N , and u2 : R(n+m)T → 2q(T + 1)N defined as

Γξ(ξ, s) :=

[
Γα(ξ, s)

Γµ(ξ, s)

]
+∇ϕ̄(ξ)Γς(ξ, s) (3.68a)

u1(ξ,ϑ) := Γς(ξ,1ς(ξ) +
[
R 0

]
ϑ)− Γς(ξ,1ς(ξ)) (3.68b)

u2(ξ, ξ′) :=

[
ϕ̄(ξ)− ϕ̄(ξ′)

Γς(ξ,1ς(ξ))− Γς(ξ
′,1ς(ξ′))

]
, (3.68c)

where, with a slight abuse of notation, we joined the first two arguments of the operators

ς , ϕ̄, Γα, Γµ, and Γς to adapt them for this notation using ξ instead of (α,µ).

Lemma 3.3 (Dynamics reformulation). Consider (3.66). Then, there exists a set of coordi-
nates (ξk,ϑk) ∈ R(n+m)T × R2(N−1)q(T+1) such that (3.66) is equivalent to

ξk+1 = ξk − γΓξ(ξ
k,1ς(ξk) +

[
R 0

]
ϑk)− γ

[
0 ∇ϕ̄(ξk)R

]
ϑk (3.69a)

ϑk+1 = Aϑk + B1u1(ξk,ϑk) + B2u2(ξk, ξk+1), (3.69b)

where R ∈ RN(q(T+1))×(N−1)(q(T+1)) is such that R>R = I, R>1 = 0 and A, B1, B2 are
given matrices defined as

A :=

[
R>WR 0

0 R>WR

]
, B1 :=

[
0

R>(W − I)

]
, B2 :=

[
R> 0

0 R>

]
. (3.70)

Proof. Let ξki := col(αki ,µ
k
i) for all i ∈ {1, . . . , N}, and ξk := col(ξk1, . . . , ξ

k
N). Then, by

122

3.3. Distributed Multi-agent Aggregative Optimal Control

using the notation adopted in (3.67), we rewrite (3.66) as

ξk+1 = ξk − γ
[

Γα(ξk, sk)

Γµ(ξk, sk)

]
+∇ϕ̄(ξk)

[
sk

yk

]
(3.71a)

sk+1 = W sk + ϕ̄(ξk+1)− ϕ̄(ξk) (3.71b)

yk+1 = Wyk + Γς(ξ
k+1, sk+1)− Γς(ξ

k, sk), (3.71c)

where, with a slight abuse of notation, we joined the first two arguments of the operators

Γα and Γµ. Let us introduce the new coordinates wk, zk ∈ RNq(T+1) defined as

wk := sk − ϕ̄(sk), zk := yk − Γς(ξ
k, sk),

which allow us to rewrite (3.71) as

ξk+1 = ξk − γΓξ(ξ
k, ϕ̄(ξk) +wk)− γ∇ϕ̄(ξk)zk (3.72a)

wk+1 = Wwk + (W − I)ϕ̄(ξk) (3.72b)

zk+1 = Wzk + (W − I)Γς(ξ
k, ϕ̄(ξk) +wk), (3.72c)

where the operator Γξ is given in (3.67). Note that the initialization asked in Theorem 3.2

leads to

w0 = 0, z0 = 0. (3.73)

Let S ⊂ R(n+m)T × Rq(T+1) × Rq(T+1) be defined as

S := {(ξ,w, z) | 1>w0 = 0,1>z0 = 0}. (3.74)

Since W is doubly stochastic (cf. Assumption 3.4), it holds 1>W = 1> and, thus,

1>(W−I) = 0. This property allows for verifying that S is invariant for (3.72). Moreover,

W has all the eigenvalues strictly inside the unit circle except for the q(T + 1) equal

to 1 with eigenvectors equal to columns of 1. We leverage these properties to isolate

the invariant portion of (3.72). A suitable decomposition of W is encoded into the

transformation matrix T defined as T :=
[

1
N R

]>
, where R ∈ RN(q(T+1))×(N−1)(q(T+1))

such that R>R = I , R>1 = 0. Moreover, the following useful relation holds true

RR> = I − 1
N 11>. (3.75)

123

Feedback Embedding Paradigm for Numerical Optimal Control

Now, with T at hand, we perform the change coordinates

 ξ
k

wk

zk

 7−→

ξk

wk
avg

ηk

zkavg

ζk

 :=

I 0 0

0 T 0

0 0 T


 ξ

k

wk

zk

 , (3.76)

with ηk, ζk ∈ R(N−1)q(T+1) and wk
avg, z

k
avg ∈ Rq(T+1). System (3.72) in the new coordi-

nates (3.76) reads as

ξk+1 =ξk−γΓξ(ξ
k, ϕ̄(ξk)+Rηk+ϕ̄(ξk)1wk

avg)−γ∇ϕ̄(ξk)Rζk−γ∇ϕ̄(ξk)1zkavg (3.77a)

wk+1
avg = wk

avg (3.77b)

ηk+1 = R>WRηk +R>(W − I)ϕ̄(ξk) (3.77c)

zk+1
avg = zkavg (3.77d)

ζk+1 = R>WRζk +R>(W − I)Γς(ξ
k, ϕ̄(ξk) +Rηk + 1wk

avg). (3.77e)

We observe that R>WR is Schur and that wk
avg = w0

avg and zkavg = z0
avg for any k ≥ 0.

Further, the initialization (3.73) implies w0 = z0 = 0 and, thus, wk
avg = 0 and zkavg = 0

for all k ≥ 0. Hence, with this initialization, we ignore the variables wk
avg and zkavg

rewriting (3.77) as the reduced, equivalent system

ξk+1 =ξk − γΓξ(ξ
k, ϕ̄(ξk) +Rηk)− γ∇ϕ̄(ξk)Rζk (3.78a)

ηk+1 =R>WRηk +R>(W − I)ϕ̄(ξk) (3.78b)

ζk+1 =R>WRζk+R>(W−I)Γς(ξ
k, ϕ̄(ξk)+Rηk). (3.78c)

By using the fact thatW is doubly stochastic (cf. Assumption 3.4) and the relation (3.75),

it is possible to show that, for any ξk ∈ R(n+m)T , the point

h(ξk) :=

[
−R>ϕ̄(ξk)

−R>Γς(ξ
k,1σ(ξk))

]
∈ R2(N−1)q(T+1),

represents an equilibrium of (3.78b) and (3.78c) parametrized in ξk. Hence, we define

the error coordinates ϑk ∈ R2(N−1)(q(T+1)) with respect to h(sk) as[
ηk

ζk

]
7−→ ϑk :=

[
ϑk1

ϑk2

]
:=

[
ηk

ζk

]
− h(ξk), (3.79)

which, exploiting the fact thatW is doubly stochastic (cf. 3.4) and the relation (3.75),

124

3.3. Distributed Multi-agent Aggregative Optimal Control

allow us to rewrite system (3.78) as

ξk+1 = ξk − γΓξ(ξ
k,1ς(ξk) +

[
R 0

]
ϑk)− γ

[
0 ∇ϕ̄(ξk)R

]
ϑk

ϑk+1 =

[
R>WR 0

0 R>WR

]
ϑk +

[
R> 0

0 R>

][
ϕ̄(ξk+1)− ϕ̄(ξk)

(Γς(ξ
k+1,1ς(ξk+1))− Γς(ξ

k,1ς(ξk)))

]

+

[
0

R>(W − I)

](
Γς(ξ

k,1ς(ξk) +
[
R 0

]
ϑk)−

[
0

R>(W − I)

]
Γς(ξ

k,1ς(ξk))

)
.

The proof follows by using the operators in (3.68) and setting using the definitions of A,

B1 and B2 in Lemma 3.3. �

As it will be clearer from the proof of Lemma 3.3, the average value across the net-

work of sk and yk is invariant along the algorithm evolution and it is set to zero via the ini-

tialization (3.51). The new variable ϑk describes the evolution of the error of both sk and

yk with respect to the global information ς(µk,αk) and
∑N

i=1∇3Ji(µ
k
i ,α

k
i , ς(µ

k,αk))

while neglecting the aforementioned invariant components.

We are now ready to give the proof of the main theorem.

Proof of Theorem 3.2

Leveraging on Lemma 3.3, we provide the proof of Theorem 3.2 by going through three

main steps. In step (i), we show that ∇J , Γς , and ϕ̄ are locally Lipschitz continuous

and compute the related constants. In step (ii), we employ these results to perform

a LaSalle-based analysis demonstrating that the sequence {αk,µk}k≥0 generated by

Algorithm 10 converges to the set of stationary points of the reduced cost function

J(α,µ, ς(α,µ)). In step (iii), we show that the state-input trajectory (x?,u?) obtained

by projecting (α?,µ?) satisfies the first-order necessary conditions for optimality in

correspondence of the costate sequence λ?.

Step (i): Lipschitz continuity of ∇J , Γς , and ϕ̄ Let us define the function V :

R(n+m)T × R2(N−1)q(T+1) → R as

V (α,µ,ϑ) := J(ξ, ς(ξ)) + ϑ>Pϑ, (3.80)

where P ∈ R2(N−1)q×2(N−1)q(T+1) has the diagonal structure

P :=

[
P1 0

0 pP2

]
,

with P1, P2 ∈ R(N−1)q(T+1) with P1 = P>1 > 0 and P2 = P>2 > 0, while p ∈ (0, 1]

is a parameter that we will fix later. In particular, we arbitrarily choose Q1, Q2 ∈

125

Feedback Embedding Paradigm for Numerical Optimal Control

R(N−1)q(T+1) such that Q1 = Q>1 > 0 and Q2 = Q>2 > 0 and pick P1 and P2 as the

solutions of the Lyapunov equations

P1 − (R>WR)>P1(R>WR) = Q1 (3.81a)

P2 − (R>WR)>P2(R>WR) = Q2. (3.81b)

Indeed, in light of Assumption 3.4, the matrix R>WR is Schur and, thus, given Q1 =

Q>1 > 0 and Q2 = Q>2 > 0, there always exist P1 and P2 solving (3.81). Now, let

(ξ0,ϑ0) ∈ R(n+m)T ×R2(N−1)q(T+1) be the vectors corresponding to the initial conditions

x0
i , u

0
i , s0

i , and y0
i assumed in Theorem 3.2 and, hence, satisfying (3.51). Let ϑ :=

col(ϑ1,ϑ2) with ϑ1,ϑ2 ∈ R(N−1)q(T+1) and let c0 ∈ R and r0 > 0 be the smallest number

such that

J(ξ0, ς(ξ0)) + ϑ1
0>Pϑ1

0 ≤ c0, ‖ϑ2
0‖ ≤ r0. (3.82)

Then, for any c ≥ c0, the corresponding level set Ωc
1 ⊂ R(n+m)T×R(N−1)q(T+1) is denoted

as

Ωc
1 := {(ξ,ϑ1) | J(ξ0, ς(ξ0)) + ϑ1

0>P1ϑ1
0 ≤ c}. (3.83)

We underline that, as before, with a slight abuse of notation, we joined the first two

arguments of J to adapt it for the notation using ξ instead of (α,µ). Since J(ξ, ς(ξ))

is the composition of C2 functions (see Section 3.3.2 and Assumption 3.3), then it is

C2. Specifically, on a compact set the function itself and its derivatives, up to the

second order, are bounded. Moreover, being the cost function radially unbounded (cf.

Assumption 3.3), also the composition J(ξ, ς(ξ)) is radially unbounded. Hence, each

level set of J is compact. The same holds for J(ξ) + ϑ1
>P1ϑ1. Let us define

M1 := max{‖ξ‖ | (ξ,ϑ1) ∈ Ωc
1}

M2 := max{‖ϑ1‖ | (ξ,ϑ1) ∈ Ωc
1}

M3 := max{‖Γξ(ξ, ς(ξ) +Rϑ1)‖ | (ξ,ϑ1) ∈ Ωc
1}

M4 := max{‖∇ϕ̄(ξ)‖ | (ξ,ϑ1) ∈ Ωc
1}

M5 := max{‖u1(ξ,ϑ)‖ | (ξ,ϑ1) ∈ Ωc
1}

M6 := max{‖Γς(ξ,1ς(ξ) +Rϑ1)‖ | (ξ,ϑ1) ∈ Ωc
1},

(3.84)

whose existence is guaranteed since each continuous function on a compact set is

bounded, being J , V C2 functions on the compact set Ωc
1. Now, given r > 0, we define

M7 := M6 +M4 ‖R‖ r,

126

3.3. Distributed Multi-agent Aggregative Optimal Control

and the related sets Bc
ξ ⊂ R(n+m)T , Br

2 ⊂ R(N−1)q(T+1) given by

Bc
ξ := {ξ ∈ R(n+m)T | ‖ξ‖ ≤M1 +M7}. (3.85a)

Br
2 := {ϑ2 ∈ R(N−1)q(T+1) | ‖ϑ2‖ ≤ r}. (3.85b)

Now, assume (ξ,ϑ1) ∈ Ωc
1 and ϑ2 ∈ Br

2 . Then, the update (3.69a) allows us to write the

bound

∥∥ξ+
∥∥ ≤‖ξ‖+ γ ‖Γξ(ξ, ς(ξ) +Rϑ1)‖+ γ ‖∇ϕ̄(ξ)Rϑ2‖

(a)

≤M1 + γ(M6 +M4 ‖R‖ r︸ ︷︷ ︸
M7

), (3.86)

where in (a) we exploited the bounds expressed in (3.84). Thus, by combining the

inequality (3.86) and the fact that γ ≤ 1, it holds
∥∥ξ+

∥∥ ≤ M1 + M7, namely it holds

ξ+ ∈ Bc
ξ (cf. (3.85a)). Now, let us define

Bc
1 :=

{
(ξ,ϑ1) ∈ R(n+m)T × R(N−1)q(T+1) | (ξ,ϑ1) ∈ Ωc

1, ξ ∈ Bc
ξ

}
⊆ Ωc

1.

From this definition, it holds (ξ,ϑ1) ∈ Bc
1 for any (ξ,ϑ1) ∈ Ωc

1. Moreover, such a

definition guarantees that, if (ξ,ϑ1) ∈ Ωc
1, then it holds ξ ∈ Bc

ξ. Now, letHς : R(n+m)T ×
RNq(T+1) → R(n+m)T be the operator defined as

Hς(ξ, s) =


∇2

2J1(ξ1, s1)
...

∇2
2JN (ξN , sN)

 , (3.87)

where ξ := col(ξ1, . . . , ξN) and s := col(s1, . . . , sN), with ξi ∈ R(ni+mi)T and si ∈
Rq(T+1) for all i ∈ {1, . . . , N}. Since ∇J , Γς , and ϕ̄ are compositions of continuous and

differentiable functions (cf.Assumption 3.3) and B1 is a compact set, we can define the

finite constants L, L2 and L3 as

L := max{‖∇2J(ξ, ς(ξ))‖ | ξ ∈ Bc
ξ}

L2 := max{‖Hς(ξ,1ς(ξ) +Rϑ1)‖ | (ξ,ϑ1) ∈ Bc
1}

L3 := max{‖∇ϕ̄(ξ)‖ | ξ ∈ Bc
ξ}.

Hence, ∇J(·, ·), Γς , and ϕ̄ are Lipschitz with constants L, L2, and L3 , respectively, over

Bc
1.

127

Feedback Embedding Paradigm for Numerical Optimal Control

Step (ii): LaSalle-based analysis Let us define c := c0 + ‖P2‖ r2
0 and assume that

(ξk,ϑk1) ∈ Ωc
1 and ϑk2 ∈ Br0

2 (see (3.83) for the definitions of these sets). Such an

assumption will be verified later by a proper selection of γ. Thus, for the arguments

above, it holds ξk, ξk+1 ∈ Bc
ξ . Thus, by using the Lipschitz continuity over Bc

1 of the

functions Γς(·, ·) and ϕ̄(·), we can bound the norm of u1(ξk,ϑk) (cf. (3.67)) as∥∥∥u1(ξk,ϑk)
∥∥∥ ≤ L2 ‖R‖

∥∥∥ϑk1∥∥∥ . (3.88)

With the same arguments, we can bound the norm of u2(ξk+1, ξk) (cf. (3.67)) as∥∥∥u2(ξk+1, ξk)
∥∥∥ ≤ (L3 + L2

∥∥∥11>/N
∥∥∥L3)

∥∥∥ξk+1 − ξk
∥∥∥

(a)

≤ γc1

∥∥∥Γξ(ξ
k,1ς(ξk) +

[
R 0

]
ϑk)
∥∥∥+ γc1L3 ‖R‖

∥∥∥ϑk2∥∥∥
(b)

≤ γc1‖∇J(ξk,1ς(ξk))‖+ γc2‖ϑk1‖+ γc3‖ϑk2‖,

where in (a) we defined c1 := L3 +L2

∥∥11>/N
∥∥L3, used the update (3.69a), the triangle

inequality, the Cauchy-Schwarz inequality, and the Lipschitz continuity of ∇ϕ over Ωc
1,

while in (b) we added and subtracted ∇J(ξk,1ς(ξk)) within the first norm, we applied

the triangle inequality and the Lipschitz continuity of Γξ over Ωc
V , and defined c2 := c1L2

and c3 := c1L3. With these results at hand, we use the function V (·, ·) defined in (3.80) as

a candidate Lyapunov function. By evaluating ∆V (ξk,ϑk) := V (ξk+1,ϑk+1)−V (ξk,ϑk)

along the trajectories of system (3.69), we obtain

∆V (ξk,ϑk)=J(ξk+1, ς(ξk))−J(ξk, ς(ξk))−ϑk>(P−A>PA)ϑk + 2ϑk
>A>PB1u1(ξk,ϑk)

+ 2ϑk
>A>PB2u2(ξk, ξk+1) + 2u1(ξk,ϑk)>B>1 PB2u2(ξk, ξk+1)

+ u1(ξk,ϑk)>B>1 PB1u1(ξk,ϑk)+u2(ξk, ξk+1)>B>2 PB2u2(ξk, ξk+1). (3.89)

Now, we consider the term ϑk
>A>PB1u1(ξk,ϑk) and exploit the structure of A>PB1 to

write

ϑk
>A>PB1u1(ξk,ϑk) = pϑk2

>
(R>WR)>P2R

>u1(ξk,ϑk)

(a)

≤ p
∥∥∥(R>WR)>P2R

>
∥∥∥L2 ‖R‖ ‖ϑk2‖‖ϑk1‖

(b)

≤ pc4‖ϑk2‖‖ϑk1‖, (3.90)

where in (a) we apply the Cauchy-Schwarz inequality and the bound (3.88), and in (b)

we set c4 :=
∥∥(R>WR)>P2R

>∥∥L2 ‖R‖. Now, consider the term ϑk
>

(P − A>PA)ϑk +

128

3.3. Distributed Multi-agent Aggregative Optimal Control

2ϑk
>A>PB1u1(ξk,ϑk) and use the results (3.81) and (3.90) to write

ϑk
>

(P −A>PA)ϑk + 2ϑk
>A>PB1u1(ξk,ϑk)

≤ −ϑk1
>
Q1ϑ

k
1 − pϑk2

>
Q2ϑ

k
2 + 2c4p‖ϑk2‖‖ϑk1‖

(a)

≤ −
[
‖ϑk1‖ ‖ϑk2‖

] [q1 −pc4

−pc4 pq2

]
︸ ︷︷ ︸

Q̃

[
‖ϑk1‖
‖ϑk2‖

]
, (3.91)

where in (a) we have rearranged the terms in a matrix form by introducing the smallest

(positive) eigenvalues q1 and q2 of the matrices Q1 and Q2, respectively. By using the

Sylvester Criterion, we know that if we pick p such that p < min{q1q2/c
2
4, 1}, then the

symmetric matrix Q̃ ∈ R2×2 introduced in (3.91) to bound (3.91) as

ϑk
>
(P−A>PA)ϑk+2ϑk

>A>PB1u1(ξk,ϑk)≤ −q̃‖ϑk‖2,

where the (positive) smallest eigenvalue q̃ of the matrix Q̃ has been introduced. Thus,

by leveraging this inequality, we can upper bound (3.89) as

∆V (ξk,ϑk) ≤ J(ξk+1, ς(ξk))− J(ξk, ς(ξk))− q̃‖ϑk‖2 + 2ϑk
>A>PB2u2(ξk, ξk+1)

+ 2u1(ξk,ϑk)>B>1 PB2u2(ξk,ϑk) + u1(ξk,ϑk)>B>1 PB1u1(ξk,ϑk)

+ u2(ξk, ξk+1)>B>2 PB2u2(ξk, ξk+1)

(a)

≤ J(ξk+1, ς(ξk))− J(ξk, ς(ξk))− q̃‖ϑk‖2 + γ2c5‖ϑk‖
∥∥∥∇J(ξk, ς(ξk))

∥∥∥
+ γc6‖ϑk‖2 + γ2c7‖ϑk‖2 + γ2c8‖∇J(ξk, ς(ξk))‖2

+ γ2c9‖∇J(ξk, ς(ξk))‖‖ϑk‖, (3.92)

where in (b) the triangle inequality, the Cauchy-Schwarz inequality, the trivial relations

‖ϑk1‖ ≤ ‖ϑk‖ and ‖ϑk2‖ ≤ ‖ϑk‖ and the result (3.88) has been exploited to bound the

terms. Moreover, we shortened the notation by introducing the constants

c5 := c1

(∥∥∥A>PB2

∥∥∥+ L2 ‖R‖
∥∥∥G>PD∥∥∥)

c6 := 2(c2 + c3)
(∥∥∥A>PB2

∥∥∥+ L2 ‖R‖
∥∥∥B>1 PB2

∥∥∥)
c7 :=

∥∥∥B>1 PB1

∥∥∥L2
2 ‖R‖2 +

∥∥∥B>2 PB2

∥∥∥ (c2
2 + c2

3 + 2c2c3

)
c8 :=

∥∥∥B>2 PB2

∥∥∥ c2
1 c9 := 2

∥∥∥B>2 PB2

∥∥∥ c1(c2 + c3).

Now we consider the term J(ξk+1, ς(ξk))− J(ξk, ς(ξk)). By performing a Taylor expan-

sion (see, e.g., [96, Theorem 2]) of J(ξk+1, ς(ξk)) around the point ξk and by using the

129

Feedback Embedding Paradigm for Numerical Optimal Control

update (3.69a), we can write

J(ξk+1, ς(ξk))− J(ξk, ς(ξk)) =− γ‖∇J(ξk, ς(ξk))‖2 − γ∇J(ξk, ς(ξk))>uk4(ξk,ϑk)

+ Lξk,2(−γ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk))), (3.93)

where we shortened the notation by using

uk4(ξk,ϑk) := [0 ∇φ(ξk)R]ϑk +∇ϕ̄(ξk)u1(ξk,ϑk), (3.94)

and the remainder term Lξk,2(−γ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk))) given by

Lξk,2(−γ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk)))

:=
∑
|α|=2

∂αJ
(
ξk − τγ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk))

)
−γ(∇J(ξk,ς(ξk))+uk4(ξk,ϑk))

α! ,

for some τ ∈ (0, 1). By Lipschitz continuity of the gradients of J , we know that

∂αJ(ξ, σ(ξ)) ≤ L for all ξ ∈ Bξ and |α| = 2. Thus, by applying [96, Corollary 1],

we can bound Lξk,2(−γ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk))) as

Lξk,2(−γ(∇J(ξk, ς(ξk)) + uk4(ξk,ϑk))) ≤ γ2L2

2

∥∥∥∇J(ξk, ς(ξk)) + uk4(ξk,ϑk)
∥∥∥2

(a)

≤ γ2c10

∥∥∥∇J(ξk, ς(ξk))
∥∥∥2

+ γ2c11‖ϑk‖2

+ γc12

∥∥∥∇J(ξk, ς(ξk))
∥∥∥ ‖ϑk‖, (3.95)

where in (a) we exploited the square and applied the bound (3.88) and we introduce the

constants c10 := L2
2 , c11 := L2

2 (L1 + L1
2)2‖R‖2, c12 := L2

2 (L1 + L1
2)‖R‖. Hence, we can

use (3.95) to bound (3.93) as

J(ξk+1, ς(ξk))− J(ξk, ς(ξk)) ≤− γ
∥∥∥∇J(ξk, ς(ξk))

∥∥∥2
− γ∇J(ξk, ς(ξk))>uk4(ξk,ϑk)

+ γ2c10

∥∥∥∇J(ξk, ς(ξk))
∥∥∥2

+ γ2c11‖ϑk‖2 + γc12

∥∥∥∇J(ξk, ς(ξk))
∥∥∥ ‖ϑk‖

(a)

≤ − γ‖∇J(ξk, ς(ξk))‖2 + γ2c10‖∇J(ξk, ς(ξk))‖2

+ (γc13 + γ2c11)‖ϑk‖2

+ γc12‖∇J(ξk, ς(ξk))‖‖ϑk‖, (3.96)

where in (a) we use the local Lipschitz continuity of ϕ̄, the Cauchy-Schwarz inequality,

and the result (3.88) to bound the term −γ∇J(ξk, ς(ξk))>uk4(ξk,ϑk) and we set c13 :=

130

3.3. Distributed Multi-agent Aggregative Optimal Control

(L1 + L1
2)‖R‖. Now, we can use (3.96) to upper bound (3.92) as

∆V (ξk,ϑk) ≤− γ
∥∥∥∇J(ξk, ς(ξk))

∥∥∥2
+ γ2c10

∥∥∥∇J(ξk, ς(ξk))
∥∥∥2

+ (γc13 + γ2c11)‖ϑk‖2 + γc12

∥∥∥∇J(ξk, ς(ξk))
∥∥∥ ‖ϑk‖

− q̃‖ϑk‖2 + γ2c5‖ϑk‖
∥∥∥∇J(ξk, ς(ξk))

∥∥∥+ γc6‖ϑk‖2

+ γ2c7‖ϑk‖2 + γ2c8

∥∥∥∇J(ξk, ς(ξk))
∥∥∥2

+ γ2c9

∥∥∥∇J(ξk, ς(ξk))
∥∥∥ ‖ϑk‖

(a)

≤ −
[∥∥∇J(ξk, ς(ξk))

∥∥
‖ϑk‖

]>
M

[∥∥∇J(ξk, ς(ξk))
∥∥

‖ϑk‖

]
, (3.97)

where in (a) we rearranged the inequality in a matrix form with

M :=

[
γ − γ2c14 −γc15 − γ2c16

−γc15 − γ2c16 q̃ − γc17 − γ2c18

]
,

and

c14 := c10 + c8 c15 :=
c12 + c9

2
+ c5 c16 := c9

c17 := c13 + c6 c18 := c11 + c7.

By Sylvester Criterion, we know that the matrix M = M> ∈ R2×2 introduced in (3.97)

is positive definite if and only if its principal minors are positive, namely if it holds γ > γ2c14

γq̃ > (γc15 + γ2c16)2 + γ2(c17 + c14q̃)− γ3(c14c18 + c14c17)− γ4c14c18.
(3.98)

We notice the terms on the right-hand sides of (3.98) are linear in γ, while the left

ones have higher orders. Then, there exists γ̄ > 0 such that for any γ ∈ (0, γ̄) both

conditions (3.98) are satisfied leading to the positive definiteness of M which allows us

to rewrite (3.97)

∆V (ξk,ϑk) ≤ −m(‖∇J(ξk, ς(ξk))‖2 + ‖ϑk‖2), (3.99)

where m is the smallest (positive) eigenvalue of the matrix M . Notice that, inequal-

ity (3.99) implies that, for all (ξk,ϑk1,ϑ
k
2) ∈ Ωc

1 ×Br0
2 , it holds

V (ξk+1,ϑk+1) ≤ V (ξk,ϑk). (3.100)

131

Feedback Embedding Paradigm for Numerical Optimal Control

By using (i) pϑk2
>
P2ϑ

k
2 ≥ 0 for any ϑk and (ii) p ≥ 1, the result (3.100) leads to

J(ξk+1) + ϑk+1
1

>
P1ϑ

k+1
1 ≤ J(ξk) + ϑk1

>
P1ϑ

k
1 + ‖P2‖ r2,

which guarantees (ξk+1,ϑk+1
1) ∈ Ωc

1. This fact, combined with the variables’ initializa-

tion (cf. (3.82)), guarantees that (ξk,ϑk1) ∈ Ωc
1 for all k ≥ 0, which, in turns, allows us to

claim that (3.99) is verified for all k ≥ 0. However, we point out that the inequality (3.99)

does not implies the negative definiteness of ∆V (ξk,ϑk) because the right-hand side

term of (3.99) is null on the subspace E ⊂ R(n+m)T +×R2(N−1)q(T+1) defined as

E := {col(ξ,ϑ) ∈ R(n+m)T +×R2(N−1)q(T+1) | ‖∇J(ξ, ς(ξ))‖ = 0,ϑ = 0}. (3.101)

Now, we study the system (3.69) restricted to the subspace E defined in (3.101). It holds

ξk+1
∣∣∣
(ξk,ϑk)∈E

= ξk, ϑk+1
∣∣∣
(ξk,ϑk)∈E

= ϑk. (3.102a)

By inspecting system (3.102), we can conclude that the E is invariant for system (3.69).

Thus, we can conclude by LaSalle’s Invariance Principle (cf. [Theorem 3.7] [100]) that

lim
k→∞

w

([
ξk

ϑk

]
, E

)
= 0.

Turning out to the original coordinates (α,µ, s,y), it follows that the trajectories of

the system (3.66), i.e., the sequence produced by Algorithm 10, converge within the

subspace

X :=

{
(α?,µ?, s?,y?) | ∇J(α?,µ?, ς(α?,µ?)) = 0,

s? =
1>

N
ϕ̄(α?,µ?), y? = 1>∇Ja(ς(α?,µ?))

}
. (3.103)

Namely, the sequence {αk,µk} converges to the set of stationary points of J(·, ·, ς(·, ·)).

Step (iii): first-order necessary conditions for optimality This final step builds on

the proof of Theorem 3.1 and extends it to the multi-agent setting. Let us consider

any point (α?,µ?) such that ∇J(α?,µ?, ς(α?,µ?)) = 0. Then, let us consider the

corresponding state-input trajectories (x?,u?) computed projecting (α?,µ?) and the

costate vectors λ? ∈ RnT . Specifically, for all i = 1, . . . , N , we calculate (x?i ,u
?
i) =

Pi(α?i ,µ?i) via (3.48). As for λ? ∈ RnT , each λ?i ∈ RniT is computed via (3.46b). Next, we

show that the tuple (x?,u?,λ?) satisfies the first order necessary optimality conditions

132

3.3. Distributed Multi-agent Aggregative Optimal Control

for the optimal control problem (3.43). Hence, for all t ∈ [0, T − 1], we introduce the

Hamiltonian function of problem (3.43) given by

Ht(xt, ut, λt+1) =
N∑
i=1

Hi,t(xi,t, ui,t, λi,t+1) (3.104)

where

Hi,t(xi,t, ui,t, λi,t+1) := `i,t(xi,t, ui,t) + gi,t(σt(xt, ut)) + fi(xi,t, ui,t)
>λi,t+1.

Next we show that, for all i = 1, . . . , N ,
∇2H1,t(x

?
1,t, u

?
1,t, λ

?
1,t+1)

...

∇2HN,t(x
?
N,t, u

?
N,t, λ

?
N,t+1)

 = 0,

and

λi,t
? = ∇1Hi,t(x

?
i,t, u

?
i,t, λ

?
t+1), (3.105)

with terminal condition λ?i,T = ∇`i,T (x?i,T , σT (x?T)). In light of the projection-operator

step (3.48), the point (x?i ,u
?
i) satisfies the dynamics (3.43b) by construction, i.e., it is

a trajectory. Now, let us define the shorthand for the linearization of the cost and the

dynamics about the trajectory (x∗i ,u
∗
i)

A?i,t := ∇1fi(x
?
i,t, u

?
i,t)
>, B?

i,t := ∇2fi(x
?
i,t, u

?
i,t)
>.

Notice that, since the sequence {sk,yk} generated by Algorithm 10 converges to the

subspace defined by (3.103), namely, for all i = 1, . . . , N we have that the proxies

in (3.46a) are equal to

ai,t=∇1`i,t(x
?
i,t, u

?
i,t, σt(x

?
i,t, u

?
i,t))+∇1ϕi,t(x

?
i,t, ui,t)

N∑
j=1

∇3`j,t(x
?
j,t, u

?
j,t, σt(x

?
t , u

?
t))

bi,t = ∇2`i,t(x
?
i,t, u

?
i,t)+∇2ϕi,t(x

?
i,t, ui,t)

N∑
j=1

∇3`j,t(x
?
j,t, u

?
j,t, σt(x

?
t , u

?
t))

and

ai,T = ∇`i,T (x?i,T , σT (x?T)) +∇ϕi,T (x?i,T)
N∑
j=1

∇2`j,T (x?j,T , σT (x?T)).

133

Feedback Embedding Paradigm for Numerical Optimal Control

Then, we can define λ?i as the stack of the costate vectors λ?i,t ∈ Rn, obtained from the

adjoint equation (3.46b) evaluated at (α?i ,µ
?
i), i.e., for all t ∈ [T − 1, 0]

λ?i,t =
(
A?i,t −B?

i,tK
?
i,t

)>
λ?i,t+1 + ai,t −K?,>

i,t bi,t (3.106)

with terminal condition λ?i,T = ai,T . Equation (3.106) corresponds to the gradient with

respect to xi,t of the Hamiltonian evaluated along the trajectory (x?i ,u
?
i), i.e., the first

order necessary condition for optimality (3.105) holds by construction. Now, we recall

that

∇2Hi,t(x
?
i,t, u

?
i,t, λ

?
i,t+1) = bi,t +B?>

i,t λ
?
i,t+1, (3.107)

for all i ∈ {1, . . . , N} and t ∈ [0, T − 1]. The right hand side of (3.107) corresponds

to the derivative of J(·, ·, ς(·, ·)) with respect to µi,t evaluated at (α?,µ?). Notice that,

the costate λ?i , solution of (3.106), coincides with the Lagrange multipliers associated

to the dynamics constraints at (x?,u?). In light of the first part of the proof, this

term is equal to zero. Therefore, the first-order necessary conditions for optimality are

satisfied by the trajectory (x∗i ,u
∗
i), for all i. Hence, for any point (α?,µ?) such that

∇J((α?,µ?), ς(α?,µ?)) = 0, it holds that the corresponding point (x?,u?) is such that

(x?,u?) ∈ Ξ?. This concludes the proof.

Notice that, any stationary state-input curve (α?,µ?) corresponds to a trajectory

(x?,u?) satisfying the first-order optimality conditions for (3.43).

Remark 3.4. If the reduced cost J(·, ·, ς(·, ·)) (cf. (3.54)) is strongly convex, then prob-

lem (3.54) has a unique minimizer ξ? ∈ R(n+m)T . Thus, in this case, one can apply the

well-known Polyak-Lojasiewicz (PL) inequality to further bound the right-hand side

of (3.99) as

∆V (ξk,ϑk) ≤ −m̃V (ξk,ϑk), (3.108)

for some m̃ > 0 depending on m and the strong convexity parameter. In turn, global

exponential stability of col(ξ?, 0) holds for (3.69) and thus linear convergence of Algo-

rithm 10 toward the (unique) solution of optimal control problem (3.43). Notice that

PL inequality holds true in the neighborhood of local minima of (3.43) that satisfy the

second order sufficient conditions for optimality. 4

3.3.3 Numerical Simulations

In this section, we show simulations of the proposed algorithm in a multi-agent coopera-

tive robotics setting. We consider a team of N = 50 quadrotors in a robotic surveillance

scenario. Each robot has to patrol a pre-defined area trying to stay as close as possible

134

3.3. Distributed Multi-agent Aggregative Optimal Control

to a given reference position while keeping the formation barycenter over a (moving)

target. Each quadrotor i has a continuous-time dynamics described by

p̈x,i =
ui,1+ui,2

Mi
sin θi p̈y,i =

ui,1+ui,2
Mi

cos θi − g
θ̈i = Li

2Ji
(ui,1 − ui,2)

where px,i, py,i is the position of the robot in the x − y plane, θi its orientation, ui,1
and ui,2 are the control inputs, i.e., the thrust applied to the right and left motor

respectively. Agents have heterogeneous dynamics. The mechanical parameters are

randomly assigned to each agent, i.e., for all i, Mi ∈ {1, 5, 10} [kg], Li ∈ {0.5, 1.0} [m],

while Ji = MiL
2
i /12 [m · kg2].

For each agent i, the discrete-time dynamics, with state xi,t ∈ R6 with xi,t :=

(px,i,t, ṗx,i,t, py,i,t, ṗy,i,t, θi,t, θ̇i,t)
> ∈ R6 and input ui,t := (ui,1,t, ui,2,t) ∈ R2 is obtained via

a Runge-Kutta integrator of order 4 with sampling period δ = 0.05 seconds. Hence, we

have ni = 6, mi = 2 and n = 60, m = 20. The time horizon is tf = 30 [s], resulting in

T = 600 samples. The network modeled as a randomly generated Erdós-Rényi graph

with edge probability p = 0.5. The weighted adjacency matrix W is generated via

the Metropolis-Hastings rule using disropt [88]. Each quadrotor i wants to track its

reference signal (xref
i ,uref

i). The team also aims to maintain the formation barycenter,

modeled via σt(xt, ut), as close as possible to the target located at btarget
t ∈ R2 at time t.

Each stage cost is defined as `i,t(xi,t, ui,t, σt(xt)) = ‖xi,t − xdes
i,t ‖2Qi,t + ‖ui,t − udes

i,t ‖2Ri,t +

‖σ(xt)−bt‖2Qσi,t whereQi,t ∈ Rni×ni ,Ri,t ∈ Rmi×mi ,Qσi,t ∈ Rq×q, and ‖·‖M denotes the L2

norm weighted by matrix M . The terminal cost is defined by `i,T (·) = ‖xi,T − xdes
i,T ‖2Qi,f +

‖σ(xT) − bT ‖2Qσi,f where Qi,f ∈ Rni×ni , and Qσi,f ∈ Rq×q. The aggregate variable is

defined as σ(xt) :=
∑N

i=1Hixi,t where Hi = [I2 02×4] for all i = 1, . . . , N . We set

Qi,t = diag(10, 1, 10, 1, 0.01, 0.01), Qi,f = Qi,t, Ri,t = diag(0.1, 0.1), Qσi,t = diag(100, 100),

Qσi,f = 10Qσi,t. The reference signal consists of a randomly generated fixed position

in the x − y plane, while the reference input is the equilibrium thrust. Formally, we

define (xdes
i,t , u

des
i,t) as pdes

x,i,t = p̄x, pdes
y,i,t = p̄y, udes

i,t = 1
2Mig1mi , where p̄x and p̄y are

drawn randomly from an uniform distribution between p̄x,min = −5, p̄x,max = 5, and

p̄y,min = −5, p̄y,max = 5, respectively. All the other reference states are set identically

equal to 0. The target position in bt ∈ R2 is defined via a second-order polynomial

between the checkpoints (0, 0), (1, 1) and (1, 1.5) reached at the time 0, T/2 and T

respectively. Algorithm 10 is run with a fixed stepsize γ = 10−4. The initial trajectory

(x0,u0) is chosen as the equilibrium trajectory at the local reference signal for each

agent. The positions associated to the optimal trajectories (x?i ,u
?
i) of the 50 quadrotors

are depicted in Fig. 3.11. In Fig. 3.12 (above and center) we compare the cost and the

input trajectory of the distributed algorithm with the ones computed by a centralized

solver. Finally, below, notice that the trackers converge to the desired value.

135

Feedback Embedding Paradigm for Numerical Optimal Control

−4 −2 0 2 4

−4

−2

0

2

4

px

p
y

bt
σ(xt)

Figure 3.11: Quadrotor positions in the x-y plane: optimal trajectories (x?i ,u
?
i) (solid), reference

position xdes
i (crosses), target position bt (starred blue), formation barycenter σt(x?t) (orange

diamonds).

0 0.5 1 1.5 2 ·10410−4

101

106

Iterations k

|J
(α

k
,µ

k
)
−

J
c
e
n
t
|

0 0.5 1 1.5 2 ·10410−3

101

105

Iterations k

‖u
k
−

u
c
e
n
t
‖

0 0.5 1 1.5 2 ·104
10−7

100

107

Iterations k

T
ra
ck
er
s
er
ro
r

Figure 3.12: (Above) Error between the cost J(αk,µk) with respect to the cost Jcent computed
by a centralized solver. (Center) Error between the input sequence uk with respect to the
input sequence ucent computed by a centralized solver. (Below) Tracking error for the tracking
variables sk, yk. In blue ‖sk − 1σ(xk,uk)‖. In red ‖yk − 1 1

N

∑N
i G

k
i,3‖ where we define Gki,3 :=

Gi,3(xki ,u
k
i ,σ(xk,uk)).

136

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

3.4 Data-driven Optimal Control of Nonlinear Uncertain Dy-

namics

In this section we introduce a learning-driven optimal control algorithm designed to

deal with discrete-time nonlinear systems described by dynamics

xt+1 = f(xt, ut), t ∈ [0, T − 1], (3.109)

with [0, T − 1] := {0, 1, . . . , T − 1}, where xt ∈ Rnx is the state, ut ∈ Rnu is the input

at time t, and f : Rnx × Rnu → Rnx is the vector field modeling the dynamics. The

initial condition x0 = xinit with xinit ∈ Rnx given. The key challenge addressed is that

the dynamics f(·) is composed by a nominal, known model (e.g., derived from first

principles), and by an unknown part as

xt+1 = f?(xt, ut) + g?(xt, ut), t ∈ [0, T − 1], (3.110)

where f? : Rnx×Rnu → Rnx models the nominal dynamics while g? : Rnx×Rnu → Rnx is

unknown. We will refer both to (3.110), when we want to highlight the peculiar structure

of the dynamics, and to (3.109) when we mean the real, though unknown, system. We

investigate nonlinear optimal control problems in which we look for trajectories of the

unknown system (3.109) that minimize a performance criterion defined over a fixed,

time horizon [0, T]. Formally, we aim to solve the problem

min
x1,...,xT
u0,...,uT−1

T−1∑
t=0

`t(xt, ut) + `T (xT) (3.111a)

subj.to xt+1 = f?(xt, ut) + g?(xt, ut), t ∈ [0, T − 1],

x0 = xinit,
(3.111b)

with stage costs `t : RmT → R, for all t, and terminal cost `T : RmT → R.

Assumption 3.5. All functions `t(·, ·), `T (·) and f(·, ·) are twice continuously differentiable,
i.e., they are of class C2 with respect to their arguments. 4

The main challenge of the optimal control problem (3.111) is that the dynamics is

only partially known and the presence of the unknown term calls for novel learning

techniques to be combined into an optimal control scheme. Indeed, we point out that

Algorithms like GoPRONTO, introduced in Section 3.2, cannot be implemented if the

dynamics are partially unknown.

Let x := col(x1, . . . , xT) ∈ RnT and u := col(u0, . . . , uT−1) ∈ RmT . A pair (x,u) is

called a trajectory of the real system if its components satisfy the dynamics (3.109) for

137

Feedback Embedding Paradigm for Numerical Optimal Control

all t ∈ [0, T − 1], i.e., it satisfies Definition 3.1. Let us also recall the shorthand notation

akt := ∇1`t(x
k
t , u

k
t), bkt := ∇2`t(x

k
t , u

k
t), (3.112a)

Akt := ∇1f(xkt , u
k
t)
>, Bk

t := ∇2f(xkt , u
k
t)
>. (3.112b)

3.4.1 Learning-driven Optimal Control via Gaussian Process Regression

In this section we present an optimization-based control strategy for nonlinear systems

with partially unknown dynamics. We start by reviewing the key concepts behind

Gaussian Process regression. Then, we show how to implement the iterative learning

phase specifically tailored for dynamics learning and then we embed it in the novel

optimal control strategy.

Review on Gaussian Process Regression

We now recall a popular nonparametric regression technique in machine learning based

on Gaussian processes as presented, e.g., in [185]. It represents a powerful tool to infer

from data a nonlinear vector-valued function ϕ : Rnz → R describing a nonlinear map

between the input z and its corresponding output y = ϕ(z). We suppose to have access

to a data-set

D :=
(

(z1, y1), . . . , (zH , yH)
)

with each pair (zh, yh) ∈ Rnz× ∈ Rny obtained as

yh = ϕ(zh) + εh

where εh ∈ Rny is a white Gaussian noise with covariance matrix σ2
ε Iny .

In Gaussian process regression, we assume that values of the components ϕa, a =

1, . . . , ny, of ϕ are drawn from independent Gaussian distributions. A GP is fully

specified by a mean m function m : Rnz → Rny and a kernel covariance function

κ : Rnz × Rnz → R. To maintain computational feasibility, it is customary to train

independent GPs for each component ϕa(·) of the vector field ϕ(·).

We choose the commonly adopted squared exponential kernel defined for any z, z′ ∈
Rnz as

κ(z, z′) = σ2
ϕ exp

(
−‖z − z

′‖2
2Lϕ

)
(3.113)

where Lϕ > 0 denotes the signal length scale while σ2
ϕ is its variance.

Given the data-set D and the kernel covariance function, we introduce the Gram

matrix K ∈ RH×H whose (i, j)-th entry is Khi = κ(zh, zi) and the kernel vector κ(z) ∈

138

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

RH at a generic z ∈ Rnz with h-th component κh(z) = κ(zh, z).

We specify a zero mean prior on ϕ(·) which means that no prior knowledge is

available. Based on the previous definitions, the posterior predictive distribution of

each component ϕa(·) conditioned on the data-set D at a given point z is Gaussian with

mean and covariance

ma(z) = κ(z)>(K + σ2
ε IH)−1Ya (3.114a)

σ2(z) = κ(z, z)− κ(z)>(K + σ2
ε IH)−1κ(z), (3.114b)

for all a = 1, . . . , ny, where Ya ∈ RH collects only the a-th component of measurements

yh ∈ Y . The resulting posterior of the vector field ϕ(·) is

ϕ(z) ∼ N (m(z),Σ(z))

with

m(z) := col
(
m1(z), . . . ,mny(z)

)
Σ(z) := Iny ⊗ σ2(z)

with ⊗ being the Kronecker product.

In the forthcoming strategy, we will also use the derivative of a GP, which since

differentiation is a linear operator, is another Gaussian process [185]. Specifically, each

component ma(·) of m(·) has a posterior multivariate Gaussian

∇ma(z) ∼ N (m′a(z),Σ
′
a(z))

with mean and covariance

m′a(z) := ∇κ(z)>(K + σ2
ε IH)−1Ya (3.115a)

Σ′a(z) := ∇2κ(z, z)−∇κ(z)>(K + σ2
ε IH)−1∇κ(z) (3.115b)

where ∇2κ(z, z) =
σ2
ϕ

L2
ϕ
IH while the h-th row of the matrix ∇κ(z) ∈ RH×nz is

∇κh(z) = 1
L2
ϕ
κ(zh, z) (zh − z)>.

Remark 3.5. A well-known issue in GP regression is the computational burden of the

prediction which involves the inverse of the Gram matrix. Therefore, the computational

complexity is cubic in the number of data points H . One can employ sparsification

schemes to improve performance, but this is out of the scope of the present work. 4

139

Feedback Embedding Paradigm for Numerical Optimal Control

Dynamics Learning via Gaussian Process Regression

In this subsection we exploit Gaussian Process regression in the dynamics learning

process. To this end, we start by modeling the unknown dynamics g?(·) in (3.110) using

a Gaussian process. To ease the presentation and without loss of generality, we consider

in this part a scalar system, i.e., with state x ∈ R and input u ∈ R. Therefore, the

unknown function is g?(·) : R × R → R. As a consequence, also the mean and the

variance of the GP are scalar functions. The results can be extended to vector-valued

functions by considering one scalar GP for each component.

We consider observations of g?(·) taken in the following form. For each trajectory

(x,u) of the real system (3.109), we define T observation pairs ((z1, y1), . . . , (zT , yT)) as

zt := (xt, ut)

yt := xt+1 − f0(xt, ut)︸ ︷︷ ︸
ϕ(zt)

+εt (3.116)

for all t ∈ [0, T − 1], where εt is a white Gaussian noise with variance σ2
ε .

The leading idea that will be explored in Section 3.4.2 is iteratively refine the GP

approximation as the optimization process proceeds. Therefore, we suppose to arrive

at a given iteration k with data-set Dk = (Zk, Y k) collecting state-input trajectories

explored up to k. We assume that g(·) is drawn from a GP prior, and we compute its

posterior distribution which is Gaussian

g(x, u) ∼ N
(
mk(x, u),Σk(x, u

)
where the mean and the variance are computed as in (3.114).

Once the GP regression on g(·) has been posed, we choose to approximate the

partially unknown dynamics (3.109) using a deterministic approach where g(·) is ap-

proximated by the posterior mean of the GP, i.e.,

xt+1 = f0(xt, ut) +mk(xt, ut), t ∈ [0, T − 1]. (3.117)

Notice that the use of the squared exponential kernel (3.113) induces differentiability

and boundedness properties to all functions represented by the GP [185]. Thus also the

posterior mean function mk(x, u) is smooth and its derivative is a GP itself

∇mk(xt, ut) ∼ N (m′k(xt, ut),Σ′k(xt, ut)) (3.118)

with mean and covariance computed as in (3.115).

Clearly, we are also interested in providing a quantitative measure on the quality of

the approximation made using the approximation described so far. We define the model

140

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

estimation error ∆gk? (xt, ut) ∈ R, for all k as

∆gk? (xt, ut) := |g?(xt, ut)−mk(xt, ut)|.

At each iteration k new data are collected and we expect that ∆gk? (xt, ut) becomes smaller

and smaller. This behavior strongly depends on the data informativity. Moreover, due

to the stochastic nature of regression framework, the approximation error ∆gk? (xt, ut)

can be characterized only probabilistically. According to [218], the maximum distance

of the true function g?(·) from the mean function mk(xt, ut) can be bounded with high-

probability only for a restricted class of functions as stated in the next assumption.

Assumption 3.6. The function g?(·) belongs to the reproducing kernel Hilbert space (RKHS)
H associated to the kernel function κ(·, ·) in (3.113). Moreover, it has bounded RKHS norm
with respect to κ(·, ·), i.e., ‖g?(·)‖2κ ≤ Bg. 4

The concepts of RKHS and RKHS norm, required by Assumption 3.6, are intimately

related to kernel methods and Gaussian process regression (see, e.g., [53]). Indeed, given

a (positive definite) kernel function κ, the Moore-Aronszajn Theorem (cf. [11]) provides

a one-to-one correspondence between κ and particular Hilbert spaces of functions H
known as Reproducing Kernel Hilbert Spaces. That is, given a nonempty set X and an

Hilbert space H of real functions g : X → R, H is a Reproducing Kernel Hilbert Space

endowed with inner product 〈·, ·〉H and norm ‖g(·)‖ :=
√
〈g(·), g(·)〉κ, if there exists a

kernel function κ : X × X → R such that (i) κ(·, ·) has the reproducing property, i.e.,

〈g(·), κ(·, x)〉H = g(x) and, (ii) for every x, κ(·, x) ∈ H. A key property of RKHS is that,

by Mercer’s Theorem, the kernel function κ can be expressed as

κ(x, x′) =
d∑
i=1

βiρi(x)ρi(x
′).

Then, it can be proved that (i) the basis functions ρi : X → R, i = 1, . . . , d span the

whole RKHS H, (ii) each function g ∈ H can be expressed as

g(x) =

d∑
i=1

αiρi(x)

and, (iii) given a function g ∈ H, the RKHS norm with respect to κ, i.e., ‖g‖2κ =√
〈g(·), g(·)〉κ is defined via the inner product

〈g(·), g(·)〉κ =

d∑
i=1

α2
i
βi
. (3.119)

Consequently, the functions in the RKHS H strongly inherit the properties of the kernel

141

Feedback Embedding Paradigm for Numerical Optimal Control

κ and, in the context of our applications, it results that the unknown function g? is

searched for in the high-dimensional space represented by the RKHS induced by the

kernel function κ.

We now recall a result based on [218, Thm. 6].

Lemma 3.4. Let Assumption 3.6 hold and define

ρkδ :=
√

2Bg + 300 · γk log3((|Dk|+ 1)/δ)

for all δ ∈ (0, 1), where |Dk| is the cardinality of the Dk, γk is the maximum mutual
information3 that can be obtained about g?(·) from the data-set Dk. Then, for all δ ∈ (0, 1), it
holds

Pr

{
|mk(x, u)− g?(x, u)| ≤ ρkδΣk(x, u),∀ (x, u), k ∈ N

}
≥ 1− δ,

with mk(·) and Σk(·) being the posterior mean and variance given data-set Dk. 4

If, moreover, we assume that the data points belong to a compact set, i.e., (x, u) ∈
X× U with X and U being compact sets, then a uniform bound on γk can be established

[218]. Therefore, under the compactness requirement, Lemma 3.4 also provides a

uniform quantitative bound on the error made by the approximation.

3.4.2 GP-Enhanced GoPRONTO: Algorithm Description and Analysis

Consider the optimal control problem (3.111) in which the dynamics is only partially

known. We exploit the Gaussian process regression presented in Section 3.4.1 to include

an iteratively refined approximation the unknown term g?(·) in the optimal control

strategy. Specifically, we insert the learning procedure in the optimal control strategy and

let both optimization and learning be concurrently performed as shown in Figure 3.13.

Optimization
Process

Learning
Process

Real
System

u

x(m(·),Σ(·))

Figure 3.13: Scheme representing the information flow of the proposed learning-driven optimal
control strategy.

Given the data-set Dk and the corresponding approximation at iteration k, the

3See [218, Sec. IV] for a definition of γk. Informally, it quantifies the quality of the data for the learning
purposes.

142

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

optimal control problem to be solved can be written as

min
x1,...,xT
u0,...,uT−1

T−1∑
t=0

`t(xt, ut) + `T (xT)

subj.to xt+1 = f0(xt, ut) +mk(xt, ut), t ∈ [0, T − 1],

x0 = xinit,

(3.120)

in which the dynamics constraint includes the posterior mean mk(·) in place of the

unknown term g?(·). With problem formulation (3.120) in place, we can resort to the

approach described previously Section 3.2.

First of all, we assume to have access to a nonlinear feedback policy in the form

ut = µt +Kt(αt − xt),
xt+1 = f(xt, ut)

(3.121)

which allows us to map state-input curves (α,µ) into trajectories of system (3.109). The

matrix Kt ∈ Rn×m is known and designed to ensure local stability about a given state-

input trajectory for the nonlinear dynamics (3.109). We can now rewrite problem (3.120)

in its closed-loop reformulation, i.e.,

min
x,u,α,µ

T−1∑
t=0

`t(xt, ut) + `T (xT)

subj.to xt+1 = f0(xt, ut) +mk(xt, ut)

ut = µt +Kt(αt − xt)
t ∈ [0, T − 1],

x0 = xinit.

(3.122)

Problem (3.122) admits a reduced problem formulation, amenable to resolution via a

first-order algorithm, e.g. Algorithm 6, (cf. Section 3.2). Notice that the descent direction

in (3.12) cannot be computed as done earlier in Section 3.2 since g?(·) and, hence, Akt , B
k
t

are not known. Therefore, we consistently adapt the adjoint system (3.12) to compute

the descent direction based on the approximated dynamics. In fact, the Gaussian process

approximation of the unknown vector field allows us to easily evaluate the linearization

matrices about any point (xkt , u
k
t). Specifically, the derivative of the mean function is a

Gaussian process itself. Thus, let the shorthands in (3.112b) be adapted as

Akt 7−→ Âkt +m′kx (xkt , u
k
t), Bk

t 7−→ B̂k
t +m′ku (xkt , u

k
t),

where m′kx (xkt , u
k
t) and m′ku (xkt , u

k
t) are the components of the mean function m′k(xkt , u

k
t)

in (3.118) corresponding to the state and to the input, respectively. As for the cost

143

Feedback Embedding Paradigm for Numerical Optimal Control

linearization akt and bkt they are defined as before, i.e., as in (3.112a). The descent

direction based on the approximation of the dynamics based on GP can be therefore

computed as shown in (3.123).

Next, we take advantage of the iterative nature of the optimization algorithm to

design a concurrent learning phase. Given a (possibly suboptimal) state-input curve

(αk,µk), it is applied to the real system (mathematically modeled by the unknown

dynamics (3.109)) via (3.121) in an experimental session. This results in T novel mea-

surements taken from the resulting state-input trajectory (xk,uk) as in (3.116). These

measurements are then included in the new data-set Dk+1 = (Zk+1, Y k+1). The pro-

posed method described so far is summarized in Algorithm 11.

Algorithm 11 GP-Enhanced Gradient Method for Optimal Control

Require: trajectory (x0,u0), data-set (Z0, Y 0) with associated posterior m0(·) and Σ0(·)
for k = 0, 1, 2 . . . do

set λkT = ∇`T (xkT)

for t = T − 1, . . . , 0 do

compute descent direction vkt as

λkt =
[
(Âkt +m′kx (xkt , u

k
t))− (B̂k

t +m′ku (xkt , u
k
t))Kt

]>
λkt+1 (3.123a)

+ akt −K>t bkt

∆µkt = −
(
B̂k
t +m′ku (xkt , u

k
t)
)>
λkt+1 − bkt (3.123b)

∆αkt = K>t ∆µkt (3.123c)

for t = 0, . . . , T − 1 do

compute the perturbed state-input curve

αk+1
t = αkt + γk ∆αkt

µk+1
t = µkt + γk ∆µkt

(3.124)

run the real system

uk+1
t = µk+1

t +Kt(α
k+1
t − xk+1

t)

xk+1
t+1 = f(xk+1

t , uk+1
t)

(3.125)

collect a measurement

yk+1
t = xk+1

t+1 − f0(xk+1
t , uk+1

t) + εk+1
t

update data-set (Zk+1, Y k+1).

144

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

Remark 3.6. We implicitly assumed in Algorithm 11 that the state trajectory is initial-

ized with xk0 = xinit for all k. 4

Remark 3.7. The GP regression included in Algorithm 11 requires that at each iteration

k the overall inference phase is repeated. One can reduce the computational complexity

by employing, e.g., a dictionary-based strategy. 4

Remark 3.8. In order to improve the learning performance and to reduce uncertainty

one can devise various strategies based on the usual exploitation-exploration trade-off.

For instance, data informativity can be enriched by injecting exploration noise εkexp,t in

the perturbed input, i.e., one can set uk+1
t = uk+1

t = µk+1
t +Kt(α

k+1
t − xk+1

t) + εkexp,t to

reduce the variance of the posterior GP approximation. 4

In the following, we analyze Algorithm 11. Inspired by the gradient-based Algo-

rithm 15, tailored for fully known systems, also Algorithm 11 is based on a gradient

method. Specifically, we show that the GP-enhanced version realizes a gradient descent

method with error.

Let us rewrite the approximate dynamics (3.117) into an equivalent form as

xt+1 = f0(xt, ut) +mk(xt, ut)± g?(xt, ut)
= f(xt, ut) + ∆k(xt, ut) (3.126)

where

∆k(xt, ut) := mk(xt, ut)− g?(xt, ut).

Let ∆′kx,t and ∆′ku,t be the matrices obtained, respectively, by differentiating ∆k(x, u)

with respect to x and u about any state-input pair (xkt , u
k
t).

Assumption 3.7. The time-varying matrices {∆′kx,t}t∈[0,T−1] and {∆′ku,t}t∈[0,T−1] are uni-
formly bounded in t and k. 4

Assumption 3.8. The sets A ⊂ RnT and M ⊂ RmT are compact and the vectors αk ∈ A and
µk ∈M, for all k ≥ 0. 4

Theorem 3.3. Let Assumptions 3.6, 3.7 and 3.8 hold. Hence, any limit point (α?,µ?) of the
sequence {αk,µk}k≥0 generated by Algorithm 11 is such that the corresponding state-input
trajectory (x?,u?) calculated via (3.125) belongs to a neighborhood of a stationary point of
problem (3.111) with high probability. 4

Proof. The proof relies on showing that the strategy implemented in Algorithm 11 is

equivalent to a gradient method with error, which is then proved to be bounded. In

145

Feedback Embedding Paradigm for Numerical Optimal Control

light of (3.126), the adjoint system in (3.123a) can be rearranged equivalently as

λkt = (Akt −Bk
tKt)

>λkt+1 + akt −K>t bt +(∆′kx,t −∆′ku,tKt)
>λkt+1, (3.127)

where the underlined quantity are the term associated with the true dynamics f(·).

We can write

λkt = λ̄kt + ∆λkt , (3.128)

where λ̄kt is the term computed with by the full knowledge algorithm 7 and ∆λkt evolves

according to

∆λkt =
[
(Akt + ∆′kx,t)− (Bk

t + ∆′ku,t)Kt]
>∆λkt+1 + (∆′kx,t −∆′ku,tKt)λ̄

k
t+1 (3.129)

with terminal condition ∆λkT = 0.

The descent direction in (3.123b) is an algebraic time-varying map depending on

λkt+1 and bkt and can be expressed as

∆µkt
(a)
= −Bk>

t λ̄kt+1 − bkt −Bk>
t ∆λkt+1 −∆′k>u,t λ

k
t+1

(b)
= ∆µ̄kt + ∆µ̃kt

where in (a) we have used (3.128), and in (b) the term ∆µ̄kt is the same computed by the

full-knowledge Algorithm 3.12b and we have defined

∆µ̃kt := −(Bk
t −∆′ku,t)

>∆λkt+1 −∆′k>u,t λ̄
k
t+1. (3.130)

Similarly, we can express (3.123c) as:

∆αkt = Kt∆µ̄
k
t +Kt∆µ̃

k
t

(c)
= ∆ᾱkt + ∆α̃kt

where in (c) the term ∆ᾱkt is the same computed by the full-knowledge Algorithm 3.12c

and we have defined ∆α̃kt := Kt∆µ̃
k
t .

Therefore, the components of the updated curve (αk+1,µk+1) are

αk+1
t = αkt + γk ∆ᾱkt +γk ∆α̃kt , µk+1

t = µkt + γk ∆µ̄kt +γk ∆µ̃kt (3.131)

where (∆ᾱkt ,∆µ̄
k
t) are the t-th component of the negative gradient of the reduced cost

function J(α,µ) associated with problem (3.111) using the true, though unknown,

dynamics.

146

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

By forward simulation of the closed-loop dynamics (3.121) we can compute xk :=

φ(αk,µk) and uk := ψ(αk,µk), for all k, with φ(·, ·) and ψ(·, ·) being the continuous

shooting maps described in (3.8). Since f is smooth, it holds that xk ∈ X and uk ∈ U for

all k, where X and U are compact set defined as

X := {x ∈ RnT | x = φ(α,µ), ∀(α,µ) ∈ A×M},
U := {u ∈ RmT | u = ψ(α,µ), ∀(α,µ) ∈ A×M}

Consider now the linearization of the dynamics as in (3.112b). From (αk,µk) ∈ A×M,

we have that Akt = ∇1f(φt(α
k,µk), ψt(α

k,µk))> is uniformly bounded in t and in k.

That is, for all t and k it holds

‖Akt ‖ ≤ A0

for some A0 > 0. Similarly, for all t and k we have

‖Bk
t ‖ ≤ B0

for some B0 > 0. By exploiting the linearity of (3.12a) and defining λ̄k := (λ̄k1, . . . , λ̄
k
T),

we can write

λ̄
k

= Φ̂k
1λ̄

k
T +Rk1ak +Kk1bk

for suitably defined matrices Φ̂k
1 (collecting the state transition matrices for each t,

made by bounded state matrices), R̂k1 and Kk1 (involving the convolution between the

state and the input matrices, both bounded) where ak := (ak0, . . . , a
k
T−1) and bk :=

(−bk0, . . . ,−bkT−1). Since λ̄kT , ak and bk are bounded, we can write

‖λ̄k‖ ≤ c1

for all k and for some c1 > 0. Then, using similar arguments for the linear system (3.129),

we introduce ∆λk := (∆λk1, . . . ,∆λ
k
T) and write

∆λk = Φ̂k
2 ∆λkT

=0

+R̂k2λ̄
k

+Kk2bk

for suitable matrices Φ̂k
2 and R̂k2 , which are defined similarly to Φ̂k

1 and R̂k1 . Leveraging

on Lemma 3.4, the norm of ∆λk can be bounded with high probability as

‖∆λk‖ ≤ c2‖λ̄k‖ ≤ c2c1

for all k and for some c2 > 0. Finally, leveraging on their definition and stacking all the

147

Feedback Embedding Paradigm for Numerical Optimal Control

components ∆α̃kt and ∆µ̃kt in two vectors ∆α̃k and ∆µ̃k, we can compactly write

∆µ̃k = Ĉk1 ∆λk + D̂kλ̄
k

= (Ĉk1R
k
2 + D̂k)λ̄

k

and

∆α̃k = Ĉk2 ∆µ̃k = Ĉk2 (Ĉk1R
k
2 + D̂k)λ̄

k

for suitably defined matrices Ĉk1 , Ĉk2 , and D̂k. Taking the norms we can write

‖∆µ̃k‖ ≤ ‖Ĉk1Rk2 + D̂k‖‖λ̄k‖ ≤ c3c2c1 (3.132a)

and

‖∆α̃k‖ ≤ ‖Ĉk2 Ĉk1Rk2 + D̂k‖‖λ̄k‖ ≤ c4c3c2c1 (3.132b)

for all k and for some c3 > 0 and c4 > 0.

Then, Algorithm 11 generates a sequence of state-input trajectories {αk,µk}k≥0 that

can be associated to a gradient method with error given by (3.131). Being the error

uniformly bounded by (3.132), we can invoke convergence results for a gradient method

with error (see, e.g., [28, Chap. 1]) to conclude the proof. �

It is worth noting that Assumption 3.7 is reasonable since one expects mk(·) get

close to g(·) when data are informative and Assumption 3.6 is satisfied. Assuming that

(x, u) ∈ X × U, with X and U compact sets, Lemma 3.4 gives a uniform quantitative

bound on the distance of the posterior mean from g(·). Moreover, if also ∇g(·) lives in a

RKHS then a uniform bound on the derivatives can be established as well.

Theorem 3.3 states that the scheme generates a sequence of curves (αk,µk) such

that the corresponding state-input trajectories (xk,uk) converge to a neighborhood of

a stationary point. However, if, as just discussed, m(·) approaches the unknown value

of g?(·), then in the limit ∆λk vanishes, thus giving a vanishing error in the gradient

scheme.

3.4.3 Numerical Simulations

We consider a canonical testbed for nonlinear control given by the inverted pendulum,

shown in Figure 3.14, which is governed by the following nonlinear continuous-time

dynamics

Ml2θ̈ = +Mgl sin(θ)− f`lθ̇ − fclθ̇
3 + u, (3.133)

148

3.4. Data-driven Optimal Control of Nonlinear Uncertain Dynamics

where θ is the angle, θ̇ is the velocity and u is the input with the same sign of θ. Moreover,

M is the mass, l is the pendulum length, g is the gravity acceleration, f` = f`,0 + ∆f` is

the linear friction coefficient and fc = fc,0 + ∆fc is the cubic friction coefficient.

θ

u

(f` + fc θ̇2)θ̇

Mg

Figure 3.14: Scheme of the pendulum.

We suppose to partially know only the linear coefficient, while the cubic term is

totally unmodeled, i.e., fc = ∆fc. It is a realistic framework since unmodeled friction-

like effects are usually present in more complex applications as, e.g., drag forces in

quadrotors or tyre frictions in cars.

Let us consider a discrete-time state-space representation of (3.133), obtained for

simplicity via forward Euler, given by[
x1,t+1

x2,t+1

]
=

[
x1,t

x2,t

]
+δ

[
x2,t

a sin(x1,t) + bx2,t + cx3
2,t

]
+δ

[
0

d

]
ut

where x1 corresponds to θ, x2 corresponds to θ̇, δ is the sampling period, a= g
l , b=− f`

Ml ,

c= fc
Ml and d= 1

Ml2
.

By making explicit the uncertain terms, we can obtain a system in the form (3.109),

i.e., as the sum of a known and unknown term given respectively by

f0(xt, ut) =

[
x1,t

x2,t

]
+ δ

[
x2,t

a0 sin(x1,t) + b0x2,t

]
+ δ

[
0

d0

]
ut

with a0 = g
l , b0 =− f`,0

M0l
, d0 = 1

Ml2
, and

g?(xt, ut) = δ

[
x2,t

∆bx2,t + ∆cx3
2,t

]

with ∆b = − ∆f
M0l

, ∆c = −∆fc
M0l

. We consider as nominal parameters l = 1 m, M0 = 1 Kg,

f`,0 = 0.5 Nm s
rad and fc,0 = 0 Nm s

rad . The uncertain terms are ∆M = 1 Kg, ∆f` = 37.5

Nm s
rad and ∆fc = 30 Nm s

rad .

We consider a tracking problem, which translates in the following quadratic cost

149

Feedback Embedding Paradigm for Numerical Optimal Control

function

T−1∑
t=0

`t(xt, ut) + `T (xT) =

T−1∑
t=0

(∥∥xt − xref,t
∥∥2

Q
+
∥∥ut − uref,t

∥∥2

R

)
+
∥∥xT − xref,T

∥∥2

Qf

where Q ∈ R2×2, Qf ∈ R2×2 and R ∈ R are

Q =

[
10 0

0 1

]
, Qf =

[
10 0

0 102

]
, R = 10−3.

We set the sampling period to δ = 10−3s−1 so that the horizon length T = 20s/δ = 20·103.

As reference trajectory we used a step signal between two equilibrium configurations,

namely from (xref, i, uref, i) = (0, 0, 0) to (xref, f, uref, f) = (0.5rad, 0,−M0gl sin(0.5rad)).

The step-size is diminishing with βk = 0.1/k0.009. The parameters of the squared

exponential kernel (3.113) are σ2
ϕ = 1 and Lϕ = diag(10−4, 10, 10−4).

The cost error is represented in Figure 3.15 and shows the difference between

J(αk,µk), the cost evaluated at the k-th iteration of the GP-enhanced algorithm, and

J(αk,µk), the optimal cost computed with a full knowledge of f(·). The cost error

diminishes across iterations as the optimization proceeds with a sublinear rate, as

customary in gradient methods with diminishing step-size.

0 50 100 150 200

101

103

105

Iteration k

J
(α

k
,µ

k
)−

J
(α

∗ ,
µ

∗)

Figure 3.15: Evolution of the cost error across iterations.

In Figure 3.16 a comparison between the state-input trajectories of the two algorithms

is proposed. It can be appreciated that the discrepancies between the real system and

its nominal model are well captured by the GP regression. Indeed the red and the blue

trajectories overlap showing the effectiveness of the proposed approach.

3.5 Optimal Control of Nonlinear Systems with Stochastic Un-

certainties

In this section, we specialize the GoPRONTO framework to the stochastic optimal control

scenario. The considered discrete-time nonlinear dynamics subjected to stochastic

150

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

0 5 10 15 20
0

10

20

30

Time [s]

P
o
si
ti
o
n
[d
eg

]

0 5 10 15 20
0

10

20

Time [s]
V
el
o
ci
ty

[d
eg

/
s]

0 5 10 15 20

0

10

20

Time [s]

In
p
u
t
[N

m
]

Figure 3.16: Comparison among the reference curve (dashed blue) and the results of the algo-
rithms based on full-knowledge (red) and on the Gaussian process regression (blue).

disturbance reads as

xt+1 = f(xt, ut, wt), x0 = xinit, wt ∼ pwt (3.134)

in which f : Rn ×Rm ×Rp → Rn and xt ∈ Rn represent the state of the system at time t,

ut ∈ Rm the control input and wt ∈ Rp is stochastic disturbance, realization of a random

variable wt(ω) with probability density function pwt . Considering a time-horizon of

length T , we define the sequence of T random variable wt as

w(ω) := col(w0(ω), . . . ,wT−1(ω)) (3.135)

which is a random variable itself, i.e., w : Ω→ RpT . Notice that we denote as w ∈ RpT a

realization of w(ω). For the sake of compactness, we omit the dependence of the random

variables on the samples ω. The expected value taken with respect to w of a function of

random variable h(w), h : RpT → R is defined as

Ew

[
h(w)

]
:=

∫
RpT

h(w)pw(w)dw (3.136)

where pw represents the probability density function associated to w4.

To each trajectory (x,u), we associate a performance metrics by means of the nonlin-

ear cost function

`(x,u) :=
T−1∑
t=0

`t(xt, ut) + `T (xT) (3.137)

where `t : Rn × Rm → R is the so-called stage cost and `T : Rn → R represents the

4It holds that

Ew

[
h(w)

]
:=

∫
Ω

h(w(ω)) dP(ω) =

∫
Rp

h(w) pw(w) dw.

151

Feedback Embedding Paradigm for Numerical Optimal Control

terminal cost.

Assuming a deterministic sequence of inputs u ∈ RmT , for a given initial condition

x0 = xinit and a specified time horizon T , one can see the resulting state trajectory x as

a function of the random variable w. This comes from the composition of each random

variable wt, for t = 0, . . . , T − 1, through the nonlinear dynamics (3.134). Hence, we

have resort to the minimization of the performance index (3.137) taken in expectation

with respect to the random variable w.

Remark 3.9. Notice that, we can interpret the state sequence x as the realization of a

random variable x : Ω→ RnT characterized by composition of each random variable wt,

t = 0, . . . , T − 1 via the nonlinear dynamics (3.134). 4

Overall, our goal is to choose the input sequence u such that the performance

index (3.137) is minimized. Due to the presence of the stochastic disturbance wt in the

system dynamics, each system trajectory represents a realization of a function of the

random variable w. Hence, we resort to the minimization of the performance index

taken in expectation with respect to the random variable w. Overall, we aim at solving

the following stochastic optimal control problem

min
x,u

Ew

[T−1∑
t=0

`t(xt, ut) + `T (xT)

]
(3.138a)

subj.to xt+1 = f(xt, ut, wt) (3.138b)

x0 = xinit (3.138c)

wt ∼ pwt (3.138d)

where xinit ∈ Rn is the (given) initial condition. Notice that, although the random vari-

able w and its realizations do not appear in the performance index explicitly, in (3.138a)

we take the expected value with respect to w due to its effect via the nonlinear dynam-

ics (3.134). Our theoretical analysis is based on some smoothness assumptions which are

standard in nonconvex stochastic optimization. Before introducing said assumptions,

let us give an useful definition.

Definition 3.4 (Lipschitz function). A function h : Rn → R is said to be uniformly
Lipschitz continuous with Lipschitz constant L̄ (or uniformly L-Lipschitz continuous) if there
exists a constant 0 < L <∞ such that

‖h(x)− h(x′)‖ ≤ L‖x− x′‖ (3.139)

for all x, x′ ∈ Rn. The Lipschitz constant L̄ is the smallest L such that (3.139) holds.
A function g : Rn → R is said to have L′-Lipschitz continuous gradient if its gradient
∇g : Rn → Rn is uniformly L′-Lipschitz continuous. 4

152

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

Let us now take the following assumptions.

Assumption 3.9 (Dynamics). Function f : Rn × Rm × Rp → Rn is twice continuously
differentiable, i.e., is of class C2. Moreover, f is Lf -Lipschitz continuous and with Lf ′-
Lipschitz continuous gradient. 4

Assumption 3.10 (Cost Functions). The cost function `t : Rn × Rm → R is twice contin-
uously differentiable, i.e., is of class C2, and with L`′t-Lipschitz continuous gradient for all
t = 0, . . . , T − 1. Similarly, function `T : Rn → R is is twice continuously differentiable, i.e.,
is of class C2, and with L`′T -Lipschitz continuous gradient. 4

3.5.1 Stochastic Gradient Descent-based GoPRONTO

We now extend the strategy proposed in Section 3.2 by introducing a stochastic version

of the nonlinear tracking feedback policy represented by the closed-loop dynamics

in (3.6). Specifically, given a stabilizing gain Kt and a certain µt ∈ Rm and αt ∈ Rn, we

can define a feedback-based nonlinear controller as

ut = µt +Kt(αt − xt) (3.140a)

xt+1 = f(xt, ut, wt) (3.140b)

Therefore, for a given curve (α,µ), the feedback system (3.140) implements a stochastic

projection operator P : RnT × RmT × Rp → Txinit which maps state-input curves into

trajectories of the nonlinear system. This stochastic projection operator can be compactly

represented as [
α

µ

]
7−→

[
x

u

]
:= P(α,µ,w) =

[
φ(α,µ,w)

ψ(α,µ,w)

]
, (3.141)

where φ(α,µ,w) and ψ(α,µ,w) are the state and input components of P(α,µ,w).

Notice that, for a deterministic curve (α,µ), the resulting (x,u).state-input trajectory

(x,u) is a function of the random variable w. The embedding feedback reformulation of

the original stochastic optimal control problem (3.138), reads as

min
x,u,α,µ

Ew

[T−1∑
t=0

`t(xt, ut) + `T (xT)

]
(3.142a)

subj.to xt+1 = f(xt, ut, wt), (3.142b)

ut = µt +Kt(αt − xt) t = 0, . . . , T − 1 (3.142c)

x0 = xinit (3.142d)

wt ∼ pwt (3.142e)

153

Feedback Embedding Paradigm for Numerical Optimal Control

Remark 3.10. We point out that xt and ut must be regarded as realizations of random

processes, since they depend on the specific realization of w. Conversely, the state-input

curve (α,µ) is a deterministic state-input sequence, i.e., a non-random parameter of the

optimal control problem.

Indeed, to each deterministic curve (α,µ) we are able to associate, for each time-

instant t, a pair of random variables xt and ut defined by the composition of the closed-

loop dynamics (3.140) and w.

Stochastic Optimization Reduced Problem Formulation

For a given initial condition x0 = xinit and curve (α,µ) and a random variable realization

w, the stochastic counterparts of the maps (3.8) read

xt = φt(α,µ,w) (3.143a)

ut = ψt(α,µ,w) (3.143b)

where φt : RnT × RmT × RpT → Rn and ψt : RnT × RmT × RpT → Rm. Again, these

functions can be seen as functions of the random variable w. With (3.143) at hand, we

can rewrite the performance index (3.137) as

`(φ(α,µ;w), ψ(α,µ,w)) =

T−1∑
t=0

`t(φt(α,µ,w), ψt(α,µ,w)) + `T (φT (α,µ,w))

= J(α,µ,w) (3.144a)

where J(α,µ,w) is the so-called reduced cost. Notice that, due to its dependence

on a specific realization w of w, we can write J(α,µ,w) which is a function of ran-

dom variable. Now, we are in the position to reformulate the original optimal control

problem (3.142) in its reduced form, i.e.,

min
α,µ

Ew

[
J(α,µ,w)

]
= min

α,µ
J̄(α,µ), (3.145)

Problem (3.145) is an unconstrained stochastic optimization problem, which falls in the

setting detailed in Section A.3. Notice that, the expected value in (3.145), according to

its definition in (3.136) is equivalent to

Ew

[
J(α,µ,w)

]
=

∫
RpT

J(α,µ,w)pw(w) dw = J̄(α,µ) (3.146)

where pw(·) is the probability density function coming from the composition of each

random variable wt, t = 0, . . . , T − 1 via the nonlinear dynamics (3.134) and, in general,

154

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

it is hard to characterize. To overcome these issues, in this work we resort to a stochastic

gradient descent method (introduced in Section A.3).

Stochastic GoPRONTO Algorithm

In the following, we detail the unconstrained stochastic optimization algorithm used to

solve problem (3.145). Our algorithm implements a stochastic gradient descent method

(see Section A.3), where the solution to problem (3.145) is iteratively improved from an

initial guess (α0,µ0) following, for all k ≥ 0, the update rule

αk+1 = αk − γkGα(αk,µk,wk) (3.147)

µk+1 = µk − γkGµ(αk,µk,wk) (3.148)

where Gα(αk,µk,wk) ∈ RnT and Gµ(αk,µk,wk) represent the estimators for the gra-

dient of the reduced cost J̄(α,µ) with respect to its components α and µ respectively.

These estimators are computed in correspondence the noise realizationwk. Here, assume

we have access to an oracle which gives us a realization wk of w.

Meta-algorithm: Gradient estimator We start by providing the meta-algorithm used

for the gradient estimator G(α,µ,w) of ∇J̄(α,µ), needed to solve problem (3.145) via

SGD (cf. Appendix A.3). The procedure is detailed in Algorithm 12, where, we consider

a realization w of the random variable w and we adopt the following notation

at := ∇1`t(xt, ut), At(w) := ∇1f(xt, ut, wt)
>, (3.149a)

bt := ∇2`t(xt, ut), Bt(w) := ∇2f(xt, ut, wt)
>. (3.149b)

155

Feedback Embedding Paradigm for Numerical Optimal Control

Algorithm 12 Gradient estimator for ∇J̄(α,µ)

Require: State-input curve (α,µ) and realization w

Compute trajectory (x,u) projecting the curve (α,µ) via forward integration of

for t = 0, . . . , T − 1 do

ut = µt +Kt(αt − xt)
xt+1 = f(xt, ut, wt)

(3.150)

Set λT = ∇`T (xT)

for t = T − 1, . . . , 0 do

Compute At(w), Bt(w), at(w) and bt(w).

Compute estimator via

λt = (At(w)−Bt(w)Kt)
>λt+1 + at(w)−K>t bt(w) (3.151a)

∆µt = −Bt(w)>λt+1 − bt(w) (3.151b)

∆αt = K>t ∆µt (3.151c)

return G(α,µ,w) =

[
∆α

∆µ

]

SGD GoPRONTO With the Gradient Estimator procedure at hand, we are now in the

position to solve problem (3.145) by means of a SGD scheme. The proposed procedure

in summarized in Algorithm 13.

Algorithm 13 Stochastic GoPRONTO

Start with an initial trajectory (x0,u0) and disturbance realization w0.

for k = 0, 1, 2 . . . do

Given a state-input curve (αk,µk) and disturbance realization wk compute

G(αk,µk,wk) via Algorithm 12.

for t = 0, . . . , T − 1 do

Update the deterministic (unfeasible) curve

αk+1
t = αkt + γkGαt(α

k,µk,wk)

µk+1
t = µkt + γkGµt(α

k,µk,wk)
(3.152)

Before giving the convergence result, let us introduce some preliminary assumptions.

156

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

Assumption 3.11. The dynamics f is Lf -Lipschitz continuous. Moreover, the functions f ,
`t and `T have, respectively, Lf ′-, L`′t-,L`′T -Lipschitz continuous gradients for all t ≥ 0.

Assumption 3.12. The gradient of `t, `T is uniformly bounded for all x ∈ Rn, u ∈ Rm.

Assumption 3.13. The sets A ⊂ RnT and M ⊂ RmT are compact and the vectors αk ∈ A
and µk ∈M, for all k ≥ 0. 4

Finally, we make the following assumptions about the stepsize.

Assumption 3.14. Assume the stepsize sequence {γk}k>0 in Algorithm 13 be chosen such
that

∞∑
k=0

γk =∞
∞∑
k=0

(γk)2 ≤ ∞ (3.153)

e.g., a diminishing stepsize. 4

We are now able to state the following result.

Theorem 3.4. Let Assumptions 3.9, 3.10, 3.11, 3.13, and 3.12 hold and consider as descent
direction the output of the gradient estimator generated by Algorithm 12. Assume also that
the random variable w is bounded. Then, Algorithm 13 implements a Stochastic Gradient
Descent method and inherits its convergence results. Specifically, if the stepsize is chosen
accordingly to Assumption 3.14, it holds true, with ΓN :=

∑N
k=1 γ

k

lim
N→∞

E
[

1

ΓN

N∑
k=1

γk‖∇J̄(αk,µk)‖
]

= 0. 4

The proof of Theorem 3.4 is given in the following Section.

3.5.2 Algorithm Analysis

Before giving a formal proof of Theorem 3.4 let us introduce some preparatory lemmas.

We start by showing that the gradient estimator implemented via Algorithm 12

represents an unbiased estimator of the true gradient of ∇J̄(α,µ).

Proposition 3.1. The gradient estimator G(α,µ,w) obtained via Algorithm 12 is an unbi-
ased estimator of ∇J̄(α,µ). 4

Proof. The proof goes through two main steps. Firstly, we show that Algorithm 12 per-

forms an exact computation of the gradient of the random variable J(α,µ,w) associated

to a given realization of the noise w. Secondly, we complete the proof showing that if

gradient estimator computes exactly ∇J(α,µ,w) then it is an unbiased estimator of

∇J̄(α,µ). Assume to have access to a realization w̄ of the disturbance w, i.e., to gather

157

Feedback Embedding Paradigm for Numerical Optimal Control

the sequence {w̄t}t=0,...,T−1, via e.g., an oracle. We can see that the quantity J(α,µ, w̄)

is a deterministic quantity representing the reduced cost associated to a deterministic
optimal control problem parametrized in w̄. Namely, for a given w̄, the original problem

associated with J(α,µ, w̄) reads as

min
x,u,α,µ

T−1∑
t=0

`t(xt, ut) + `T (xT) (3.154a)

subj.to xt+1 = f(xt, ut, w̄t) (3.154b)

ut = µt +Kt(αt − xt) t = 0, . . . , T − 1 (3.154c)

x0 = xinit. (3.154d)

Along the lines of Section 3.2, we manipulate (3.154) to compute the gradient of

J(α,µ, w̄) with respect to its components α and µ. The nonlinear dynamics in (3.154b)

and the closed-loop structure on the control input (3.154c), can be written as an equality

constraint h : RnT × RmT × RnT × RmT × RpT → RnT defined as

h(x,u,α,µ, w̄) :=



f(x0, u0, w̄0)− x1

...

f(xT−1, uT−1, w̄T−1)− xT
µ0 +Kt(α0 − x0)− u0

...

µT−1 +Kt(αT−1 − xT−1)− uT−1


. (3.155)

We can now introduce an auxiliary function say L : RnT × RmT × RnT × RmT × RpT ×
RnT+m → R, defined as

L(x,u,α,µ, w̄,λ) := `(x,u) + h(x,u,α,µ, w̄, w̄)>λ (3.156)

where the (multiplier) vector λ ∈ RnT+mT is arranged as

λ := col(λ1, . . . , λT , λ̃1, . . . , λ̃T)

with each λt ∈ Rn and λ̃t ∈ Rm. By defining φ(·) and ψ(·) as the vertical stack of the

maps φt(·) and ψt(·) , we can see that, by construction, for all (α,µ) ∈ RnT × RmT it

holds

h̃(φ(α,µ, w̄), ψ(α,µ, w̄),α,µ) = 0. (3.157)

Since J(α,µ, w̄) ≡ `(φ(α,µ, w̄), ψ(α,µ, w̄)) (Cf. (3.137)), the auxiliary function (3.156)

158

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

enjoys the following property

L(φ(α,µ, w̄), ψ(α,µ, w̄),α,µ,λ) = J(α,µ) (3.158)

for all (α,µ), w̄, and for all λ ∈ RnT+mT . Therefore, in this formulation we can think

about λ as a parameter or a degree of freedom. Building on (3.158), one can simplify

the computation of the gradient of the reduced cost function J(ᾱ, µ̄, w̄) with a proper

choice λ. Such a choice will eventually give rise to (3.151). We refer the interested reader

to [212] for a detailed derivation. Since Algorithm 12 computes exactly the gradient of a

realization of J(α,µ,w) we can prove, by Leibniz integral rule that this is an unbiased

estimator of the gradient J̄(α,µ). First of all, notice that the random variable w can be

seen as the seed for generating the output of Algorithm 12, i.e., G(α,µ,w) is a function

of the random variable w. Since G(α,µ,w) = ∇J(α,µ,w) for all w, we can take its

expectation with respect to w and observe that

Ew[G(α,µ,w)] = Ew[∇J(α,µ,w)]

=

∫
RpT
∇J(α,µ,w)pw(w)dw

(a)
= ∇

[∫
RpT

J(α,µ,w)pw(w)dw

]
= ∇J̄(α,µ)

where in (a) we exploited the Leibniz integral rule. This chain of equalities show that

G(α,µ,w) is an unbiased estimator of the gradient of J̄(α,µ). The proof follows. �

Lemma 3.5. Let Assumption 3.11 hold. Then, the stacks of the shooting maps (3.143) are
Lipschitz continuous with Lipschitz continuous gradient. 4

Proof. Being the composition of Lipschitz functions with Lipschitz gradient, see As-

sumption 3.11, φt(·, ·, ·) and ψt(·, ·, ·) are Lipschitz functions with Lipschitz gradient.

Their stacks inherit the same properties. �

Lemma 3.6. The reduced cost function J̄(α,µ) has LJ ′-Lipschitz gradient. 4

Proof of Lemma 3.6. First of all, given a noise realization w consider the gradient of

J(α,µ,w). It holds, for all α ∈ RnT and µ ∈ RmT ,

∇J(α,µ,w) =∇φ(α,µ,w)∇x`(φ(α,µ,w), ψ(α,µ,w))︸ ︷︷ ︸
(a)

+∇ψ(α,µ,w)∇u`(φ(α,µ,w), ψ(α,µ,w))︸ ︷︷ ︸
(b)

.

159

Feedback Embedding Paradigm for Numerical Optimal Control

namely, ∇J(α,µ,w) is the sum of the two terms (a) and (b). Now we compute the

Lipschitz constant of term (a). The gradient of φ is Lipschitz continuous by Lemma 3.5,

moreover, since by the same lemma φ is Lipschitz continuous its gradient needs to be

bounded. Gradient ∇x`(φ(·), ψ(·)) is Lipschitz continuous being the composition of

Lipschitz continuous functions (by Assumption 3.11 and Lemma 3.5) and bounded due

to Assumption 3.12. It follows that term (a) is Lipschitz continuous. The same reasoning

applies to (b). Hence, ∇J(α,µ,w) is Lipschitz continuous being the sum of Lipschitz

continuous functions. The proof follows. �

Proof of Theorem 3.4

We are now in the position to prove Theorem 3.4. Our goal is to show that Algorithm 13

implements a SGD scheme, thus inheriting its convergence results (see Theorem A.2

in Appendix A.3), assuming that the reduced cost function is bounded from below, i.e.,

the problem (3.138) is well-posed. More specifically, in order to apply Theorem A.2, we

need to verify

(i) The reduced cost function J̄(α,µ) is continuously differentiable and the gradient

of J̄ , namely, is Lipschitz continuous,

(ii) The stochastic direction G(α,µ,w) is an unbiased estimator of ∇J̄(α,µ),

(iii) The second moment of the random variable ‖G(x,w)−∇¯̀(x,w)‖ is bounded, i.e.,

Ew[‖G(α,µ,w)−∇J̄(α,µ)‖2] ≤M2. (3.159)

for all (α,µ) and for M > 0.

As for condition (i), it follows from Lemma 3.6. Condition (ii) is ensured by Proposi-

tion 3.1). Finally, in order to check that condition (iii) holds, note that

Ew[‖G(α,µ,w)−∇J̄(α,µ)‖2] = Ew[‖G(α,µ,w)‖2]︸ ︷︷ ︸
(a)

+ ‖∇J̄(α,µ)‖2︸ ︷︷ ︸
(b)

where we used the fact that G(α,µ,w) is an unbiased estimator of ∇J̄(α,µ) (see Propo-

sition 3.1). Boundedness of (a) can be proved leveraging on similar arguments as in

Theorem 3.3, observing that the random variable w is bounded by assumption. As for (b)

it follows being J̄ and ∇J̄ continuous functions on compact sets. Hence, we can choose

M sufficiently large such that (A.16) holds. The necessary conditions of Theorem A.2

are then satisfied, the proof follows. 4

160

3.5. Optimal Control of Nonlinear Systems with Stochastic Uncertainties

3.5.3 Numerical Simulations

We consider an inverted pendulum, with nonlinear continuous-time dynamics

Ml2θ̈ = +Mgl sin(θ)− f(wt)lθ̇ + u, (3.160)

where θ is the angle, θ̇ is the velocity and u is the input with the same sign of θ. Moreover,

M = 1 [kg] is the mass, l = 1 [m] is the pendulum length, g is the gravity acceleration,

f(wt) is the linear friction coefficient. We assume the friction coefficient to be uncertain

and normally distributed with (known) mean value f0 = 0.5 [N m s/rad] and vari-

ance σf = 3 · 10−2. The discrete-time state-space representation of dynamics (3.160),

discretized, via a forward Euler discretization with sampling period δ = 10−2, reads as[
x1,t+1

x2,t+1

]
=

[
x1,t

x2,t

]
+δ

[
x2,t

a sin(x1,t) + b(wt)x2,t

]
+δ

[
0

c

]
ut

where x1 ∈ R and x2 ∈ R correspond, respectively, to the angle θ and the velocity θ̇,

while a= g
l , b=− f(wt)

Ml and c= 1
Ml2

.

We consider a tracking problem, which translates in the quadratic cost function∑T−1
t=0 `t(xt, ut)+`T (xT) =

∑T−1
t=0

∥∥xt − xref,t
∥∥2

Q
+
∥∥ut − uref,t

∥∥2

R
+
∥∥xT − xref,T

∥∥2

Qf
where

Q = diag(10, 1), Qf = diag(10, 100) and R = 10−3. The horizon length is set to T = 10,

[s]. As reference trajectory we used a step signal between two equilibrium configurations,

namely from (xref, i, uref, i) = (0, 0, 0) to (xref, f, uref, f) = (0.5rad, 0,−M0gl sin(0.5rad)).

We implemented Algorithm 13 in a Heavy-Ball fashion, cf. Section 3.2.2. Moreover,

we implemented the batch version of the SGD algorithm, where, at each iteration,

the gradient estimator G computed via Algorithm 12 is calculated as the empirical

mean over a batch of B = 50 realizations of w. These improvements provide better

convergence rate. In Figure 3.17 we show the optimal state-input trajectory computed

by Algorithm 13. The trajectory is computed in correspondence of a single realization

of w.

0 2 4 6 8 10

0

0.2

0.4

Time [s]

P
o
si
ti
o
n
[r
a
d
]

0 2 4 6 8 10

−4

−2

0

Time [s]

In
p
u
t
[N

m
]

Figure 3.17: Optimal position and input trajectory computed by Algorithm 13.

The cost error is represented on the left of Figure 3.18 and shows the difference

161

Feedback Embedding Paradigm for Numerical Optimal Control

between an approximation of both J̄(αk,µk), the expected cost evaluated at the k-th

iteration, and of J̄(α?,µ?), the cost at the last iteration. The values of J̄(αk,µk) are

approximated by the empirical mean computed over a batch of B = 50 realizations

of w. Notice that the cost error diminishes and converges to a neighborhood of the

optimal value. This is due to the approximation introduced by the empirical mean

used to compute the expected values J̄ . On the right of Figure 3.18, the norm of the

empirical mean among the directions computed by Algorithm 12 over a batch of B = 50

realizations of w is depicted. The norm decreases as expected, but it saturates to a

negligible value due to the approximation introduced by the empirical mean.

0 50 100 150 200
10−4

101

106

Iterations k

|J
k B
−

J
? B
|

0 50 100 150 200
10−4

102

108

Iterations k

‖G
k B
‖2

Figure 3.18: (Left) Cost error: difference between J̄(αk,µk) ≈ 1
B
∑B
i=1 J(αk,µk,wi) =: JkB and

of J̄(α?,µ?) ≈ 1
B
∑B
i=1 J(α?,µ?,wi) =: J?B, for all k ≥ 0. (Right) Descent direction: norm of the

descent
[
∆α
∆µ

]
= 1
B
∑B
i=1G(αk,µk,wi) =: GkB, for all k ≥ 0.

162

Chapter 4

Optimization-based Safe Control of
Multi-layer Systems

In this chapter, we focus on the design of safe trajectory generation strategies for

continuous time control systems. The core of our investigation are multi-layer control

systems, i.e., control architectures consisting of (at least) two, interconnected, dynamical

systems with different roles and objectives. We propose an high-level, continuous-time

trajectory generation strategy, based on optimal control, which ensures satisfaction of

safety-critical constraints. In this optimal control formulation, we ensure constraint

enforcement through Control Barrier Functions (CBFs). To this end, we provide a new

characterization of CBFs as necessary and sufficient for the controlled invariance of safe

sets. The results of this chapter are based on [211].

4.1 Literature Review

In recent years, the challenge of designing safe trajectories for autonomous and robotic

systems has intensified. The concept of safety, in a formal sense, is linked to maintaining

the forward invariance of a so-called safe set, as explored in [37]. The framework of Con-

trol Barrier Functions (CBFs), detailed in [7], presents a mechanism for ensuring safety

in nonlinear dynamics through safety filters. These filters, manifesting as quadratic

programs (QPs), aim to provide point-wise optimal control inputs that minimally alter

potentially unsafe control inputs to maintain safety.

Nevertheless, a significant limitation is the potential of the CBF approach for myopic

behavior, allowing trajectories to closely approach the boundary of the safe set before

intervention. This might lead to QP infeasibility and failure, as discussed in [241].

Furthermore, this framework may introduce undesired minima, a challenge highlighted

in [189]. The generation of safe trajectories that are both optimal and feasible is ad-

dressed through state constrained optimization problems, as investigated in [78, 97].

163

Optimization-based Safe Control of Multi-layer Systems

Recent studies have delved into the relationship between CBFs and optimal control,

as seen in [5, 6, 61, 66]. Additionally, methodologies based on Hamilton-Jacobi-Bellman

(HJB) equations for the development of CBFs have been examined in [64, 226]. An inno-

vative approach for controller synthesis, employing high-order CBFs to track optimally

generated trajectories from unconstrained control problems, is proposed in [242].

Recently, the design of multi-layer control schemes gained traction in developing

safe control policies. In the precursory work [193] it is proposed a layered control

approach based on Model Predictive Control. This method utilizes a layered architec-

ture, combining a low-level controller with a high-level planner operating at different

frequencies. This approach has seen successful application across diverse areas, from

robotics [2, 163, 195] to the control of feedback linearizable systems [68].

4.2 Safe Trajectory Generation for Multi-layer Control Archi-

tectures

In this section we introduce the concept of multi-layer control architectures together with

the problem setup. Next, we provide some preliminaries on safe trajectory generation.

Multi-layer Control Architectures

A multi-layer control architecture consists of (at least) two, interconnected, dynamical

systems with different roles and objectives. In this work, we consider an architecture

where a trajectory generation layer is coupled with a low-level tracking controller. More

formally, we frame this control architecture considering (i), a low-level model, with

dynamics

ẋ`(t) = f`(x`(t), u`(t)) (4.1)

where f` : Rn → Rn and state x` ∈ Rnl , and input u` ∈ Rml . This dynamics usually

captures the “true” system dynamics. And, (ii) an high-level reference model

ẋh(t) = fh(xh(t), uh(t)) (4.2)

where fh : Rnh → Rnh and xh ∈ Rnh , high-level state, uh ∈ Rmh , high-level control

signal. The two models are interconnected via a projection map πx`(x`) = xh relating

low- and the high-level state, and an embedding of the high-level input uh into the

low-level dynamics via πuh
(uh) = u`. Given a sampling time Ts ∈ R≥0, the set T =

∪∞i=0(iTs, (i+1)Ts), i ∈ N, collects the open time intervals from time iTs to time (i+1)Ts,

and its complement T c = ∪∞i=0{iTs} collects the time instances iTs. In general, while

the control input u`(t) is designed such that the low-level state x`(t) tracks the projected

164

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

high-level state trajectory xh(t) for all t ∈ T , the high-level state-input trajectory is

updated only at discrete time instants, i.e., each t ∈ T c. In this work, we design a control

law such that the state trajectory xh(t), t ∈ T , updated at each t ∈ T c, satisfies some

user-defined safety constraints.

Safe Trajectory Generation for Robotic Systems

The high-level dynamics is represented as a nonlinear system with control affine dynam-

ics

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = xinit (4.3)

with state x ∈ X ⊆ Rn, input u ∈ U ⊆ Rn, drift dynamics f : Rn → Rn and g : Rn →
Rn×m, xinit ∈ Rn is the initial condition. For notational convenience, we drop the h

subscript. We assume x(t) ≡ 0 is an equilibrium of (4.3) if u(t) ≡ 0 and X is an open

and connected neighborhood of x = 0. The system (4.3) is assumed to be forward

complete. In the considered control scenario, the state x(t) is constrained to satisfy state

constraints in the form

h(x(t)) ≥ 0, t ≥ 0 (4.4)

where h : Rn → R is a continuously differentiable function. These constraints may

represent some safety conditions for dynamics (4.3), i.e., they can encode a set S of safe
states

S := {x(t) ∈ Rn | h(x(t)) ≥ 0} ⊆ X . (4.5)

The goal is to ensure that S is forward invariant. Note that h(x) implicitly depends on

u(t) via the nonlinear dynamics (4.3). That is, since x(t) needs to satisfy (4.3) ∀t ≥ 0,

differentiating h with respect to time yields

ḣ(x, u) =
∂h

∂x
|xf(x)︸ ︷︷ ︸

:=Lfh(x)

+
∂h

∂x
|xg(x)︸ ︷︷ ︸

:=Lgh(x)

u. (4.6)

This observation allows us to leverage the CBF formalism.

Definition 4.1 (CBF). Let S ⊂ Rn be the 0-superlevel set of a continuously differentiable
function h : Rn → R with 0 regular value1. Then, h(x) is a CBF for the system (4.3) if there

1A point a ∈ R is a regular value of h if ∂h
∂x
6= 0 for all x s.t. h(x) = a.

165

Optimization-based Safe Control of Multi-layer Systems

exists a class K function2 α such that, for all x ∈ X ,

sup
u∈Rm

[
ḣ(x, u)

]
= sup

u∈Rm

[
Lfh(x) + Lgh(x)u

]
≥ −α(h(x)) (4.7)

Notice that, an alternative formulation can be considered. The function h is a CBF

if (4.7) is replaced by

Lgh(x) = 0 =⇒ Lfh(x) > −α(h(x)). (4.8)

CBFs are widely employed in the design of safety filters, which are known to be only

point-wise optimal. In this work, we propose a design strategy to generate a control

action u(t) such that the resulting system trajectory (x,u)3 minimizes a user-defined

cost functional with instantaneous cost q(x(t)) + u(t)>u(t), where q : Rn → R positive-

definite function, i.e., q(x) > 0 for all x 6= 0, and continuously differentiable, i.e., of class

C1.

Review of safe optimization-based control

In this section, we recall different optimization-based strategies to generate safe trajecto-

ries for robotic systems.

Constrained Optimal Control: Consider the case where the state is constrained to

satisfy the safety constraints (4.4). Given an initial condition xinit ∈ X , a safe trajectory

can be retrieved by designing a controller Φopt
safe : Rn → Rm, such that the resulting

state-input trajectory is solution of

min
x,u

∫ ∞
0

q(x) + u>udτ (4.9a)

subj.to ẋ = f(x) + g(x)u, x(0) = xinit (4.9b)

h(x) ≥ 0 (4.9c)

where constraint (4.9c) ensures the trajectory (xsafe,usafe) solution of (4.9) to be safe. In

general, problem (4.9) is solved numerically leveraging on Euler-Lagrange equations or

calculus of variations (cf. [47, 148]).

Remark 4.1. In the unconstrained case, i.e., without (4.9c), the optimal feedback con-

troller Φopt : Rn → Rm such that for an initial condition xinit the corresponding state-
2A scalar function, α : [0, a)→ [0,∞) is said to belong to class K if it is strictly increasing, and it is such

that α(0) = 0.
3For a given initial condition xinit, a given control signal u(t) – or feedback controller Φ, s.t., u(t) =

Φ(x(t)) – and time interval [t0, tf], t0, tf ∈ R≥0, tf > t0 , we denote as x : [t0, tf]→ Rn the state trajectory
solution of (4.3) with initial condition xinit. Similarly, u : [t0, tf]→ Rm represent the corresponding input
signal.

166

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

min
u∈Rm

‖u− Φ
opt

(x)‖2

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))

min
x,u

∫ T

0

q(x) + ‖u‖2dτ + v(x(T))

s.t. ẋ = f(x) + g(x)u, x(0) = x

Lfh(x) + Lgh(x)u ≥ −α(h(x))

min
x,u

∫ ∞

0

q(x) + ‖u‖2 dτ

s.t. ẋ = f(x) + g(x)u, x(0) = x

h(x) ≥ 0

T →∞T → 0

Figure 4.1: Conceptual representation of the proposed control strategy considering a collision
avoidance task (obstacles in orange, robot in blue). As the parameter T approaches zero, a safety
filter is applied, prioritizing close obstacles for collision avoidance. Conversely, as T approaches
infinity, the strategy retrieves the safe optimal controller, enabling the generation of trajectories
over the entire map for the collision avoidance task.

input trajectory (xopt,uopt) minimizes the cost functional (4.9a) can be characterized

via HJB equations. Define the value function J∗ : Rn → R as the function that associates,

to each initial condition xinit ∈ X the cost associated to the optimal controller Φopt.

This function satisfies the HJB equation, i.e., for all t, (where the time index has been

suppressed)

0 = min
u∈Rm

[
∂J∗

∂x

∣∣∣
x

(f(x) + g(x)u) + u>u+ q(x)

]
. (4.10)

Importantly, the optimal controller can be found by solving the minimization prob-

lem (4.10), i.e.,

u = Φopt(x) = −1
2g
>(x)

(
∂J∗

∂x

∣∣∣
x

)>
:= −1

2LgJ
∗(x)> (4.11)

Substituting (4.11) into (4.10) results in a reformulation of the HJB equation that is only

function of the state. This partial differential equation, if it can be solved, yields J∗ and

therefore the optimal controller (4.11). 4

Safety Filters: Definition 4.1 leads to an entire class of safe controllers that makes

S forward invariant. As shown in [7], any locally Lipschitz continuous controller

u = Φ(x) s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)) for all x ∈ S renders (4.3) safe w.r.t.

S. A standard example is represented by safety filters [7]. Given a desired (but not

necessarily safe) controller Φd(x), a minimally invasive safety critical controller can be

synthesized solving the QP

min
u∈Rm

‖u− Φd(x)‖2

subj.to Lfh(x) + Lgh(x)u ≥ −α(h(x)).
(4.12)

167

Optimization-based Safe Control of Multi-layer Systems

Our objective is to design a control strategy that bridges safety filters and constrained

optimal control. In order to do that, we firstly need to extend the concept of CBFs to

control systems.

4.2.1 CBF Characterization of Control Invariance

In this section, CBFs are extended to control systems (instead of dynamical systems)

where direct knowledge of the specific controller yielding forward invariance is not

required. We first make precise the notion of control invariance:

Definition 4.2. The constraint set S = {x ∈ Rn : h(x) ≥ 0} is control invariant if there
exists a controller u = Φ(x) such that S is forward invariant for the closed loop system
ẋ = f(x) + g(x)Φ(x), i.e., x(0) ∈ S implies x(t) ∈ S ∀ t ≥ 0.

It was established in [7] that, in the case when S is compact, barrier functions are

necessary and sufficient for forward set invariance, i.e., invariance of S is equivalent to:

ḣ(x) ≥ −αs(h(x)) ∀ x ∈ S, (4.13)

for some K function αs. Since this result was proven for dynamical systems, and not

control systems, it requires knowledge of a feedback controller u = Φ(x) that renders S
forward invariant (i.e., Φ determines αs). We extend this result to control systems such

that direct knowledge of the feedback controller is not required.

Theorem 4.1. Let Assumption 4.1 hold, assume S to be control invariant and h to have
constant rank on S. Then there exists a constant κmin > 0 s.t.

sup
u∈Rm

ḣ(x, u) ≥ −κh(x), ∀ κ > κmin, x ∈ S. (4.14)

Namely, CBFs with linear class K functions α(r) = κr are necessary and sufficient for control
invariance, i.e., ∀κ ≥ κmin

S control invariant ⇐⇒ sup
u∈Rm

ḣ(x, u) ≥ −κh(x). 4

Proof. For any r ≥ 0, the set h−1
[0,r] = {x ∈ Rn : 0 ≤ h(x) ≤ r} is a compact subset of S.

Under the assumption that S can be rendered forward invariant by a feedback controller

u = Φ(x), since 0 is a regular value of h:

sup
u∈Rm

ḣ(x, u) ≥ ḣ(x,Φ(x)) ≥ 0 ∀ x ∈ ∂S.

168

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

Define function γ : R→ R by:

γ(r) := − inf
x∈h−1

[0,r]

[
ḣ(x,Φ(x))

]
. (4.15)

Since h−1
[0,0] = ∂S, we have that γ(0) ≤ 0, cf. (4.13). Being γ(r) non-decreasing, for r2 > r1,

since h−1
[0,r1] ⊂ h

−1
[0,r2], it holds γ(r2) ≥ γ(r1). Hence, it follows that

αs(r) := γ(r)− γ(0) + α(r) ≥ γ(r) (4.16)

for any class K function α. We conclude that αs(0) = 0, αs is strictly increasing, and

−αs(r) ≤ −γ(r) Therefore, αs is a class K function satisfying:

sup
u∈Rm

ḣ(x, u) ≥ ḣ(x,Φ(x)) ≥ inf
x∈h−1

[0,h(x)]

[
ḣ(x,Φ(x))

]
= −γ(h(x)) ≥ −αs(h(x)), (4.17)

from which the necessary condition in (4.13) derives. To establish (4.14) we must further

characterize γ.

Lemma 4.1. The function γ given in (4.15) is continuously differentiable if h has constant
rank (∂h∂x |x 6= 0 for all x ∈ S). 4

Proof. Note that γ can be expressed as:

γ(r) = max
x∈S

− ḣ(x,Φ(x)) (4.18)

s.t. h(x) ≥ 0, h(x) ≤ r

where sup = max since S is compact. We can view r as a “parameter” of this optimiza-

tion problem, and thereby leverage the Envelope Theorem. Consider the Lagrangian

associated with the optimization problem (4.18):

L(x, µ, r) = −ḣ(x,Φ(x)) + µ1h(x) + µ2(r − h(x))

with Lagrange multipliers µ = (µ1, µ2) ∈ R2. Let x∗(r) and µ∗(r) be a solution of (4.18),

by the Envelope Theorem,

∂γ

∂r

∣∣∣
r

=
∂L
∂r

∣∣∣
(x∗(r),µ∗(r),r)

= µ∗2(r)

Therefore, γ is continuously differentiable, with derivative µ∗2(r), if µ2 is continuous. To

169

Optimization-based Safe Control of Multi-layer Systems

establish this, consider the function F : (S× R)× R→ R given by:

F ((x, µ1), µ2) := −∂ḣ
∂x

∣∣∣
(x,Φ(x))

+ µ1
∂h

∂x

∣∣∣
x
− µ2

∂h

∂x

∣∣∣
x

The solution (x∗(r), µ∗(r)) must be a saddle point of the Lagrangian, i.e., F ((x∗, µ∗1), µ∗2) =

0. Then, by the implicit function theorem, µ2(x, µ1) is locally smooth if

∂F

∂µ∗2(r)

∣∣∣
(x∗(r),µ∗1(r))

= −∂h
∂x

∣∣∣
x∗(r)

6= 0.

This holds by assumption that h has constant rank. It follows that there exists a continu-

ously differentiable functionG such that µ∗2(r) = G(x∗(r), µ∗1(r)) and F ((x, µ1), G(x, µ1)) =

0 for all x, µ1 in a neighborhood W of (x∗(r), µ∗1(r)). Therefore, locally, it holds that

∂γ

∂r

∣∣∣
r

= G(x, µ1), ∀ (x, µ1) ∈W.

As this holds uniformly over S, it follows that γ is continuously (twice) differentiable. �

Proof of Theorem 4.1 (Continued). The fact that γ is continuously differentiable im-

plies that it is locally Lipschitz. Since S is compact, let rmax = maxS h(x) wherein

γ : [0, rmax]→ R. It follows that γ is globally Lipschitz on [0, rmax]. Call this Lipschitz

constant Lγ , wherein γ(r)− γ(0) ≤ Lγr. Additionally, pick α(r) = kr with k > 0, i.e., a

linear class K function. Then (4.16) yields:

γ(r) ≤ Lγr + kr = κminr, κmin := Lγ + k

=⇒ −γ(r) ≥ −αs(r) ≥ −κr, κ ≥ κmin

From (4.17), it follows that (4.14) holds with κmin = Lγ + k. �

Remark 4.2. Note that the assumption that S is compact and h has constant rank is,

in fact, rather strong. Compact sets often results in points ∂h
∂x |x 6= 0. Yet, these points

(and the potential loss of differentiability in γ) are not practically relevant if they are

sufficiently far from the boundary, i.e., h > 0 large. To see this, note that even if γ is not

differentiable (4.17) holds. And, for κ > 0 sufficiently large, it follows αs(h) < κh (since

h > 0 is large). 4

Remark 4.3. While calculating κmin requires knowledge of the optimal safe controller

Φopt
safe, Theorem 4.2 holds for all κ > κmin. Therefore, taking κ sufficiently large means

that direct knowledge of Φopt
safe is not required for (4.19c) = (4.9c). 4

170

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

4.2.2 Safe Trajectory Generation via CBF-based Receding Horizon Controllers

In this section, we present a receding horizon scheme that extends the concept of CBFs

to incorporate a user-defined prediction horizon. Leveraging on the length of the time-

horizon, the resulting system trajectory achieves a balance between safety filters (as

T → 0) and safe optimal control (as T → ∞). This idea is conceptually represented

in Figure 4.1. Consider the following optimal control problem where, for notational

convenience, we dropped the dependence on the integration variable

min
x,u

∫ T

0
q(x) + u>udτ + v(x(T)) (4.19a)

subj.to ẋ = f(x) + g(x)u, x(0) = xinit (4.19b)

Lfh(x) + Lgh(x)u ≥ −α(h(x)), (4.19c)

where T ∈ R≥0 is the time-horizon, the term q(x) + u>u is the Lagrange term, v :

Rn → R is the Meyer term, a positive-definite function of class C1, and α some class K
function. Notice that, differently from (4.9), in this formulation we impose the barrier

condition (4.19c) instead of (4.9c). In the following we show that, (i) a safe trajectory

for system (4.3) is generated for all T ≥ 0, (ii) for a specific choice of class K function

α(h) = κh, for κ > 0 sufficiently large, as T → ∞ problem (4.19) is equivalent to the

constrained optimal control problem (4.9) (iii) for a specific choice of the terminal cost

v(·), as T → 0 the safety filter (4.12) over the optimal unconstrained controller (4.11) is

retrieved.

Assumption 4.1. The safe set S = {x ∈ Rn : h(x) ≥ 0} is compact with 0 regular value of
h. 4

Lemma 4.2. Let Assumption 4.1 hold. Then, for all T ≥ 0 and for any class K function α,
the optimal solution (xrhc,urhc) of (4.19), is a safe trajectory for (4.3) w.r.t. the safe set S.4

Proof. It follows observing that (4.19c) implies (4.4). �

Theorem 4.2. Let Assumption 4.1 hold and assume that h has constant rank. Then, as
T → ∞, there exists a constant κmin > 0, such that, for all K functions α(r) = κr with
κ ≥ κmin, r ∈ R, the CBF constrained optimal control problem (4.19) is equivalent to the
state constrained optimal control problem (4.9). 4

Remark 4.4. Given a class K function α one obtains suboptimal solutions to the optimal

control problem (4.9). In fact, different class K functions, while they enforce h(x) ≥ 0,

they may require more control effort to do so. 4

Proof. First, notice that, as T → ∞, (4.19a) goes as (4.9a). Let Φrhc
∞,κ be the controller

such that the closed-loop trajectory (xrhc,urhc) is the solution of (4.19) as T →∞, for

171

Optimization-based Safe Control of Multi-layer Systems

a class K function of the form α(r) = κr. Define Jrhc(x,Φ
rhc
∞,κ) as the optimal cost

of problem (4.19) as T → ∞ associated to Φrhc
∞,κ with initial condition x. Similarly,

define as Jsafe(x,Φ
opt
safe) the optimal cost of problem (4.9) associated to the optimal

controller Φopt
safe. To prove Theorem 4.2, we show that ∃κmin ≥ 0, s.t.,, Jrhc(x,Φ

rhc
∞,κ) =

Jsafe(x,Φ
opt
safe), establishing inequalities in both directions. We begin by showing that

Jsafe(x,Φ
opt
safe) ≤ Jrhc(x,Φ

rhc
∞,κ) ∀κ > 0. We need to establish that the system trajectory

associated with Φrhc
∞,κ(x) represents a suboptimal solution to problem (4.9), i.e., the

trajectory is feasible for problem (4.9). This follows from the fact that (4.19c) implies

(4.9c) for every class K function α, and therefore α(r) = κr for all κ > 0. Next, we prove

that Jrhc(x,Φ
rhc
∞,κ) ≤ Jsafe(x,Φ

opt
safe), ∀κ ≥ κmin > 0. Namely, it must be established that

ḣ(x,Φopt
safe(x)) ≥ −κh(x) for all κ ≥ κmin That is, that (4.9c) implies (4.19c), for certain

κmin associated with Φ = Φopt
safe. �

This last result will be established in Section 4.2.1 via Theorem 4.1, but first, we

consider the case when T → 0.

Theorem 4.3. Let Assumption 4.1 hold. Moreover, let v(·) be chosen as the value function
J∗(·) associated to the unconstrained optimal control problem, cf. (4.1). Then, as T → 0, the
optimal controller solution of (4.19) is equivalent to the safety filter (4.12) with Φd = Φopt.4

Proof. With x = x(t), u = u(t), we expand x(t+ T) = x+ (f(x) + g(x)u)T + o(T) and

v(x(t + T)) = v(x) +
[
Lfv(x) + Lgv(x)u

]
T + o(T). Notice that

∫ T
0 q(x) + u>u dτ =[

q(x) + u>u
]
T + o(T). We can now substitute the above equations in (4.19) and take

the limit as T → 0, thus obtaining

min
u

q(x) + u>u+ v(x) + Lfv(x) + Lgv(x)u

subj.to Lfh(x) + Lgh(x)u ≥ −α(h(x)).
(4.20)

namely, the minimum is taken over the instantaneous value of u at time t in corre-

spondence of the state x(t). The Lagrangian of (4.20), with Lagrange multiplier µ ∈ R,

reads

L(u, µ) =q(x) + r(u) + v(x̂) + Lfv(x) + Lgv(x)u

+ µ
[
Lfh(x) + Lgh(x)u+ α(h(x))

]
.

(4.21)

Suppressing the dependence of all functions on x for notational simplicity, we can write

172

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

the KKT conditions as

KKT conditions



u = −1
2Lgv

> − 1
2µLgh

µ ≥ 0

Lfh+ Lghu+ α(h) ≥ 0

µ[Lfh+ Lghu+ α(h)] = 0

(4.22)

which are necessary and sufficient since the cost is quadratic in u, and the constraints

are affine. From (4.22), we have

Lfh+ Lghu+ α(h) > 0⇒ µ = 0 ⇒ u = −1
2Lgv

>

and, with µ > 0, Lfh+ Lghu+ α(h) = 0

⇒ µ = −2
Lfh+ Lgh

(
− 1

2Lgv
>)+ α(h)

LghLgh>
=

2S

‖Lgh‖2

⇒ u = S
Lgh

>

‖Lgh‖2
− 1

2Lgv
>

where S := Lfh+ Lgh
(
− 1

2Lgv
>)+ α(h). Therefore, we define the controller solution

of (4.19) with T → 0 as

Φrhc
0 (x) := −1

2Lgv(x)> +

 0 S(x) ≤ 0

S(x)
Lgh(x)>

‖Lgh(x)‖2 S(x) > 0.
(4.23)

Now, consider the safety filter (4.12) applied to the optimal unconstrained controller

Φopt = −1
2LgJ

∗>, i.e., Φd = Φopt. Choosing the Meyer term to be the optimal un-

constrained value function, i.e., v = J∗, and noticing that for Φd = −1
2LgJ

∗> and

v = J∗,

argmin
u∈Rm

‖u− Φd‖2 = argmin
u∈Rm

[
u>u+ LgJ

∗u
]

(4.24)

which is the argument minimizing (4.20). Since the constraints both in (4.12) and (4.20)

are the same, the result follows. �

173

Optimization-based Safe Control of Multi-layer Systems

4.2.3 Numerical Simulations

In this section, we present numerical simulations demonstrating the implementation of

the proposed control strategy within a two-layer control architecture modeled as

High: ẋh(t) = fh(xh(t)) + gh(xh(t))uh

Low: ẋ`(t) = f`(x`(t)) + g`(x`(t))ufb(e(t), uff(t)) + w
t ∈ T

Coupling: xh(iTs) = πx`(x`(iTs)), uff(t) = πuh
(uh(t)),

e(t) = xh(t)− πx`(x`(t))

where ufb : Rnh × Rml → Rm is a feedback controller. The interconnection between the

layers relies on a feedforward term uff ∈ Rml , the tracking error e(t) ∈ Rnh , and the

projection of the low-level state, πx`(x`(iTs)) at each t ∈ T c. The low-level dynamics

is assumed to be affected by a bounded disturbance, i.e., the signal w(t) : R≥0 → Rnl .

The low-level feedback controller ufb can be designed such that the error e(t) belongs

to a robust control invariant set D ⊂ Rnh , see, e.g., [2, 68]. As for the high-level control,

a new trajectory of length T = Ts is generated solving an instance of problem (4.19)

defined for the high-level dynamics, with initial condition xh(iTs) = πx`(x`(iTs)), thus

defining a reference trajectory (xh(t), uh(t)), t ∈ [iTs, (i+ 1)Ts]. The choice of the initial

condition ensures e(iTs) = 0 ∈ D. To ensure safety for the low-level system, S is defined

considering the maximum tracking error, i.e., the size of D.

Multi-layer control of a unicycle robot

The low-level model is the unicycle dynamics

ṗ`,x = v cos θ, ṗ`,y = v sin θ, θ̇ = ω. (4.25)

with x` = (p`,x, p`,y, θ) ∈ R3, and u` = (v, ω) ∈ R2. Being (4.25) differentially flat, a valid

high-level dynamics is

ẋh = Axh +Buh (4.26)

with xh ∈ R4, uh ∈ R2, A =
[

02 I2
02 02

]
, B =

[
02
I2

]
, where 0n, In denote the zero and the

identity n×n matrices respectively. The low level dynamics (4.25) is coupled with (4.26)

via

πx`(x`) =
[
p`,x p`,x ṗ`,x ṗ`,x

]>
(4.27a)

πuh(uh, xh) =
[√

x2
h,3 + x2

h,4,
−xh,4uh,1+xh,3uh,2

x2
h,3+x2

h,4

]>
(4.27b)

174

4.2. Safe Trajectory Generation for Multi-layer Control Architectures

In [2], the following low-level feedback controller is proposed: ufb = πuh
(ue(t), xh(t)),

where ue(t) = uh(t) + K̃(xh(t) − πx`(x`(t))) with K̃ the gain matrix associated to a

modified Riccati equation s.t. ufb ensures the existence of a robustly control invariant

set D. The objective is to reach the origin optimally with respect to an instantaneous

cost with q(xh) = x>h xh. The safe set S of obstacle free configurations is defined as the

intersection of N safety constraints hi(xh) ≥ 0 where, for all i = 1, . . . , N , hi(xh) =

‖x− xc,i‖2 − ri defines a circle of radius ri centered at xc,i (randomly generated). The

radius is tightened considering the diameter of the ellipsoid D. Being hi of degree

2 with respect to (4.26), we consider its extended version he,i = ḣi(xh) + α(hi(xh)).

Terminal cost in (4.19) is defined as v(xh) = x>h Pxh, with P solution of the algebraic

Riccati equation associated with the linear dynamics (4.26). Hence, v is the optimal

value function of the unconstrained optimal control problem. The time-horizon is set as

T = Ts. Fig. 4.2 shows the simulation results with Ts = 2 [s].

−1 0 1 2 3 4 5

x1

−3

−2

−1

0

x
2

High-level

Low-level

Figure 4.2: State trajectory in the 2-d plane of high- (blue) and low-level (green) positions. Initial
condition (•), goal position (?). Zoomed-in focus on the differences due to noise. Safety is
ensured by shrinking the safe set.

Fixed safe set Firstly, we consider a fixed safe set with N = 1. Fig. 4.3 shows the high-

level trajectory where (4.19) is solved numerically ∀t ∈ T c. Note that, the safe optimal

trajectory solution of (4.9) minimally deviates to avoid the obstacle. Moreover, observe

the practical ramifications of Theorem 4.2: for small κ the trajectory is suboptimal, but

as κ grows the solutions of (4.19) converge to the safe optimal trajectory solution of (4.9).

Time-varying safe set: on-the-fly trajectory replanning In this section, the safe set

varies through time with N = 7. At each t ∈ T c, problem (4.19) is solved with a safe

set including only the obstacle in range, i.e., within a radius of 2 [m] from the current

position. The high-level trajectory in the 2 dimensional plane is depicted in Figure 4.4.

Notice that, for T = 5 [s], the trajectory is unsafe, namely, it results to an impact with an

175

Optimization-based Safe Control of Multi-layer Systems

0 1 2 3 4

x1

−3

−2

−1

0

x
2

κ = 0.1 – Jrhc=131.74

κ = 10.0 – Jrhc=120.59

κ = 100.0 – Jrhc=90.25

κ = 1000.0 – Jrhc=83.47

Jsafe=83.47

Figure 4.3: High-level state trajectory in the 2-d plane for different κ and corresponding total cost.
Obstacle is fixed. Jsafe := Jsafe(x,Φopt

safe), Jrhc := Jrhc(x,Φrhc
∞,κ). Of particular note, Jrhc → Jsafe as

κ becomes large.

obstacle not in range at planning time. T = 2 [s] results in the safest trajectory with the

lower cost.

0 1 2 3 4

x1

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

x
2

Thor = 0.01 – Jrhc=668.59

Thor = 1.00 – Jrhc=269.70

Thor = 2.00 – Jrhc=87.59

Thor = 5.00 – Failed (impact)

CBF – Jcbf=754.09

Figure 4.4: State trajectory in the 2-d plane for different prediction horizon T and corresponding
total cost along the trajectory. Impacts with obstacles (×). CBF = (4.12) with Φd = Φopt. Notice
that, Φrhc → (4.12) as T → 0.

176

Conclusions

In recent decades, the control community’s interest has significantly shifted towards

large-scale systems, whose complexity challenges the development of efficient control

policies. This thesis contributed to the field by (i) applying data-driven strategies to

address the complexities of large-scale systems, (ii) leveraging inherent patterns and

connections for optimal control policy design, and (iii) creating scalable algorithms for

both centralized and distributed control. Our exploration began with the application

of data-driven techniques to the Linear Quadratic Regulator (LQR) problem under

uncertain dynamics. This included an on-policy algorithm for simultaneous system

matrix identification and control policy optimization. Always within the LQR domain,

we proposed numerical solutions to generate feedback controllers that comply with

specific structural constraints, thus mirroring the large-scale system’s architecture.

Subsequently, we considered the nonlinear optimal control setting, proposing a novel

first-order framework for nonlinear optimal control, termed GoPRONTO, based on a

feedback embedding paradigm. This framework was then adapted to distributed control

scenarios, applying an aggregative optimization approach to model collective behaviors.

A learning-driven variant of GoPRONTO was also developed, combining optimization

and learning. The GoPRONTO framework is then adapted for stochastic optimal control

implementing a SGD scheme. Finally, we tackled the challenge of formulating inherently

safe control policies for multi-layer systems.

Future research directions involve the combination of the developed schemes and

methodologies within a nonlinear data-driven setting, leveraging on the algorithmic

strategies established in the first part of this thesis for designing the tracking control pol-

icy essential to the feedback embedding paradigm. Additionally, extending the proposed

strategies for designing structured control policies to the on-policy framework presents

another challenging direction, thus facilitation the application of our approaches in

real-world scenarios, where data must be collected while the system is governed by a

feasible sparse controller. Another intriguing area of research involves extending the

tools examined and developed in the final chapter of this thesis, i.e., safe controllers and

multi-layer architectures, to a learning-driven context. Finally, the implementation of

the proposed solutions in real-world robotics applications is an active area of work.

177

Appendix A

Basics on Nonlinear Optimization

A.1 First-order methods for Nonlinear Programming

For the sake of completeness, we briefly recall here the alterative, gradient-based meth-

ods to solve unconstrained optimization problems in the form

min
x∈Rd

g(x) (A.1)

where g : Rd → R is twice continuously differentiable.

The plain gradient descent update reads is an iterative procedure in which a tentative

estimate xk of a stationary point of (A.1) is updated for all k > 0 as

xk+1 = xk − γk∇g(xk)

where γk ∈ R is the step-size.

A.1.1 Conjugate Gradient Method

The Conjugate Gradient (CG) iteration applied to problem (A.1) reads

xk+1 = xk + γkdk

where γk ∈ R is the step-size obtained by line search and dk ∈ Rn is computed at k = 0

as d0 = −∇f(x0), while for k = 1, 2, . . . as

dk = −∇f(xk) + ρkdk−1. (A.2)

179

Appendix A. Optimization Basics

The CG update parameter ρk ∈ R can be chosen adopting alterative methods. A common

way [180] to compute ρk is

ρk =
∇f(xk)>(∇f(xk)−∇f(xk−1))

∇f(xk−1)>∇f(xk−1))
.

A.1.2 Heavy-ball Method

The Heavy-ball method introduces a so-called momentum term with step-size γkhb ∈ R
to the plain gradient step. Formally, it reads for all k > 0 as

xk+1 = xk − γk∇g(xk) + γkhb(xk − xk−1)

The term xk − xk−1 nudges xk+1 in the direction of the previous step, hence the name

momentum.

A.1.3 Nesterov’s Accelerated Gradient Method

The Nesterov’s accelerated gradient iteration applied to problem (A.1) reads

x̃k = xk + k
k+3(xk − xk−1) (A.3a)

xk+1 = x̃k − γk∇g(x̃k) (A.3b)

where γk ∈ R is the step-size. It differs from the plain gradient since it perturb the point

at which the gradient step is computed by exploiting information from past iterates.

A.2 Inexact Augmented Lagrangian Method for Constrained

Minimization

Consider the constrained optimization problem

min
x∈Rn

f(x) (A.4a)

subj.to h(x) = 0 (A.4b)

where f : Rn → R cost function and h : Rn → Rm constraint function. Assume

f ∈ C1 and h ∈ C1. The augmented Lagrangian Lc : Rn × Rm × R → R associated to

problem (A.4) is

Lc(x, λ) = f(x) + λ>h(x) +
c

2
‖h(x)‖2 (A.5)

180

A.3. Unconstrained Stochastic Optimization

where c > 0 is a penalty parameter and λ ∈ Rm is the Lagrange multiplier. In the

augmented Lagrangian algorithm, at each iteration ` ∈ N, the inner minimization

problem

min
x∈Rn

Lc`(x, λ`) (A.6)

is terminated a point x` such that

‖∇xLc`(x`, λ`)‖ ≤ ε` (A.7)

where with Lc`(x`, λ`) we denote the augmented Lagrangian evaluated at x`, λ`, c`. The

following holds true.

Theorem A.1 ([30, Proposition 5.2.2]). Assume f and h are continuously differentiable.
For ` = 0, 1, . . . let the following hold

(i) x` satisfies, for all `,

‖∇xLc`(x`, λ`)‖ ≤ ε`; (A.8)

(ii) the sequence {λ`}`≥0 is bounded;

(iii) the sequence {c`}`≥0 is such that c`→∞, and, for all `,

0 ≤ c` ≤ c`+1; (A.9)

(iv) the sequence {ε`}`≥0 is such that ε` → 0 and ε ≥ 0 for all `.

For any subsequence {x`}`∈C that converges to a point x̄ such that ∇h(x̄) is full-row rank,
the subsequence

{λ`c`h(x`)}`∈C → λ̄ (A.10)

where the pair (x̄, λ̄) satisfies the first order necessary conditions for optimality associated to
problem (A.4). 4

A.3 Unconstrained Stochastic Optimization

Consider the minimization of the expected value

min
x∈Rn

Ew

[
`(x,w)

]
= min

x∈Rn
¯̀(x) (A.11)

181

Appendix A. Optimization Basics

where ` : Rn × Rp → R is a function of decision variable x ∈ Rn and a random variable

w induced by a certain probability space. We refer as ¯̀(x) the expected value of the

function of random variable `(x,w). In many cases, the calculation of the expected value

in (A.11) is not of practical use, e.g., the probability density function pw may be not

known. To overcome this issue, numerous resolution strategies were proposed in the

literature.

Empirical Expectation Approximation The expected value in (A.11) can be approxi-

mated by the so-called empirical expectation, i.e., consideringM realizationsw1, . . . , wM

of the random variable, the expected value Ew[·] is approximated as

Ew

[
`(x,w)

]
≈ 1

M

M∑
i=1

`(x,wi). (A.12)

The approximation (A.12) leads to a numerically tractable approximation of prob-

lem (A.11), which can then be solved by means of, e.g., a gradient descent method.

Stochastic Gradient Descent Stochastic Gradient Descent (SGD) represents an iter-

ative method to solve problem (A.11) without recurring to numerical approximation

strategies. Indeed, SGD takes the random variable w as a seed for generating a descent

direction. Specifically, at each iteration of the algorithm, the gradient of ¯̀(x), i.e., the

descent direction, is computed by means of a gradient estimator G(x,w) built over some

observations of w. The update law at iteration k > 0 reads

xk+1 = xk − γkG(xk, wk) (A.13)

where wk represent a realization of w at iteration k and γk ∈ R ≥ 0 is the so-called

stepsize chosen at iteration k. For the classic SGD algorithm convergence the following

result holds. See [41] for a detailed discussion.

Theorem A.2. Let the following assumptions hold:

1. The objective function ¯̀ is bounded from below, i.e., there exists a `inf ∈ R such that
¯̀(x) ≥ ¯̀

inf for all x ∈ Rn.

2. The objective function ¯̀ is continuously differentiable and the gradient of ¯̀, namely,
∇¯̀(x) : Rn → Rn, is Lipschitz continuous with Lipschitz constant L, i.e.,

‖∇¯̀(x)−∇¯̀(x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ Rn. (A.14)

182

A.3. Unconstrained Stochastic Optimization

3. The stochastic direction G(x,w) is an unbiased estimator of ∇¯̀(x), i.e.,

Ew

[
G(x,w)

]
= ∇¯̀(x). (A.15)

4. The second moment of the random variable ‖G(x,w)−∇¯̀(x,w)‖ is bounded, i.e.,

Ew[‖G(x,w)−∇¯̀(x,w)‖2] ≤M2 (A.16)

for all x and with M > 0.

Then, for the sequence {xk}k>0 generated via iteration (A.13) with stepsize sequence {γk}k>0

selected such that

∞∑
k=0

γk =∞
∞∑
k=0

(γk)2 ≤ ∞ (A.17)

it holds true

lim
N→∞

E
[

1

ΓN

N∑
k=1

γk‖∇¯̀(xk)‖
]

= 0 (A.18)

where ΓN :=
∑N

k=1 γ
k. 4

183

Appendix B

First- and Second-order Numerical
Methods for Optimal Control

B.1 Linear Quadratic Regulator

Next, we recall the key ingredients for devising a model-based gradient method to

address problem

min
x1,x2,...,
u0,u1,...

1
2 E
[∞∑
t=0

(
xt
>Qxt + ut

>Rut
)]

(B.1a)

subj.to xt+1 = A?xt +B?ut, x0 ∼ px0 (B.1b)

where xt ∈ Rn and ut ∈ Rm are the state and the input at time t ∈ N, while A? ∈
Rn×n and B? ∈ Rn×m are the state and input matrices, respectively. The operator E[·]
denotes the expectation taken with respect to the probability distribution px0 . The initial

condition x0 is assumed to be randomly distributed according to a known uniform

probability distribution px0 .

First of all, we recall an equivalent (unconstrained) formulation of Problem (B.1) that

explicitly imposes the linear feedback structure to the optimal input and is amenable for

gradient-based algorithmic solutions. Letting K ∈ Rm×n, Problem (B.1) is rewritten by

substituting in the dynamics and in the cost function the input in linear feedback form

ut = Kxt.

where K is to be computed. Such a formulation clearly highlights that (i) the overall

problem actually depends on the gain K only, and, (ii) the optimal gain K? does not

depend on the initial condition x0. First of all, given any gain K, the original (open-loop)

dynamics (B.1b) admits the closed-loop formulation xt+1 = (A+BK)xt. So that, for all

185

Appendix B. Numerical Methods for Optimal Control

t ≥ 0, the state is uniquely determined as

xt = (A+BK)tx0, x0 ∼ px0 . (B.2)

Hence, for all initial conditions x0, Problem (B.1) can be compactly written as

min
K

1
2 E
[
x>0
(∞∑
t=0

(A+BK)t>(Q+K>RK)(A+BK)t
)
x0.
]

By averaging on the initial condition, we obtain

min
K

1
2 Tr

(∞∑
t=0

(A+BK)t>(Q+K>RK)(A+BK)tΣ0

)
where Σ0 := E[x0x

>
0]. Without loss of generality, we consider px0 to be a uniform

distribution about the unit sphere. Therefore, we can finally write

min
K∈D

J(K), (B.3)

where the cost function J : D → R is given by

J(K) := 1
2 Tr

∞∑
t=0

(A+BK)t,>(Q+K>RK)(A+BK)t, (B.4)

and the set D ⊂ Rm×n := {K ∈ Rm×n | J(K) <∞} is the domain of J , i.e., the set over

which J is well-defined.

Remark B.1. It is possible to show that the set of stabilizing gainsK := {K ∈ Rm×n | A+

BK is Schur} ⊆ Rm×n coincides with the interior of D, see [48, Lemma 3.2]. Therefore,

it must be that the optimal gain K? belongs to D. 4

B.1.1 Gradient of the reduced cost function J

As for the gradient ∇J(K) of the reduced cost function J the following holds.

Lemma B.1. The gradient of the reduced cost function J(K) evaluated at K ∈ Rm×n can be
operatively computed as

∇J(K) =
(
RK +B>? PAcl

)
W (B.5)

where P ∈ Rn×n and W ∈ Rn×n are the solutions of

(A+BK)W (A+BK)> −W = −I (B.6a)

(A+BK)>P (A+BK)− P = −(Q+K>RK) (B.6b)

186

B.1. Linear Quadratic Regulator

which, for a stabilizing K, admit unique symmetric positive-definite solutions. 4

Proof. Consider a perturbation ∆K ∈ Rm×n. The first order approximation of J , with

and ε > 0 ∈ R, reads as

J(K + ε∆K) = J(K) + εDJ(K) ·∆K + o(ε|∆K|) (B.7)

Let us write

J(K + ε∆K) = 1
2 Tr

∞∑
t=0

(
(A+BK + εB∆K)t>

· (Q+ (K + ε∆K)>R(K + ε∆K))(A+BK + εB∆K)t
)

= 1
2 Tr

∞∑
t=0

((
(A+BK)t + ε

t−1∑
τ=0

(A+BK)t−1−τB∆K(A+BK)τ
)>

· (Q+ (K + ε∆K)>R(K + ε∆K))

·
(

(A+BK)t + ε
t−1∑
τ=0

(A+BK)t−1−τB∆K(A+BK)τ
))

+ o(ε|∆K|)

We start by observing that the following holds

Q+ (K + ε∆K)>R(K + ε∆K) = (Q+K>RK) + εK>R∆K + ε∆K>RK + o(ε|∆K|)

Computing the products and highlighting the first order terms only, we have

J(K + ε∆K) = 1
2 Tr

∞∑
t=0

(
(A+BK)t,>(Q+K>RK)(A+BK)t

+ 2ε(A+BK)t,>(K>R∆K)(A+BK)t

+ ε
(t−1∑
τ=0

(A+BK)t−1−τB∆K(A+BK)τ
)>

(Q+K>RK)(A+BK)t

+ ε(A+BK)t,>(Q+K>RK)
(t−1∑
τ=0

(A+BK)t−1−τB∆K(A+BK)τ
))

+ o(ε|∆K|)

Notice that Tr(M) = Tr(M>), hence we can write

J(K + ε∆K)− J(K) = ε1
2 Tr

∞∑
t=0

(
2(A+BK)t(A+BK)t,>K>R∆K

187

Appendix B. Numerical Methods for Optimal Control

+ 2

t−1∑
τ=0

(A+BK)τ (A+BK)t,>(Q+K>RK)

· (A+BK)t−1−τB∆K

)
+ o(ε|∆K|)

= εTr
(
M(K)∆K

)
+ o(ε|∆K|)

with the matrix M(K) ∈ Rn×m defined as

M(K) :=

∞∑
t=0

(
(A+BK)t(A+BK)t,>K>R

+
t−1∑
τ=0

(A+BK)τ (A+BK)t,>(Q+K>RK)(A+BK)t−1−τB
)

Invoking the Kleinman’s lemma (see Section B.1.5), we can write

∇J(K) = M(K)>

having the same dimension of the matrix K ∈ Rm×n.

Remark B.2. We can write a representation of the Frèchet derivative as the inner product

of ∇J(K) and ∆K as

DJ(K) ·∆K = 〈∇J(K),∆K〉 = Tr
(
∇J(K)>∆K

)
4

We are now ready to provide an explicit calculation of ∇J(K). Specifically, it holds

∇J(K) =
∞∑
t=0

(
RK(A+BK)t(A+BK)t,>

)
︸ ︷︷ ︸

(a)

+
∞∑
t=0

t−1∑
τ=0

(
B>(A+BK)t−1−τ,>(Q+K>RK)(A+BK)t(A+BK)τ,>

)
︸ ︷︷ ︸

(b)

The term (a) is equivalent to

∞∑
t=0

(
RK(A+BK)t(A+BK)t,>

)
= RK

∞∑
t=0

(A+BK)t(A+BK)t,>

=(B.6a) (if K stabilizing)

188

B.1. Linear Quadratic Regulator

As for the term (b), by exchanging the summations it can be written as

∞∑
τ=0

∞∑
t=τ+1

(
B>(A+BK)t−1−τ,>(Q+K>RK)(A+BK)t(A+BK)τ,>

)
and changing summation variable t 7→ ξ = t− τ − 1 we have

∞∑
τ=0

∞∑
t=τ+1

(
B>(A+BK)t−1−τ,>(Q+K>RK)(A+BK)t(A+BK)τ,>

)
=

∞∑
τ=0

∞∑
ξ=0

(
B>(A+BK)ξ,>(Q+K>RK)(A+BK)ξ+τ+1(A+BK)τ,>

)
= B>

∞∑
ξ=0

(A+BK)ξ,>(Q+K>RK)(A+BK)ξ+1
∞∑
τ=0

(A+BK)τ (A+BK)τ,>

=(B.6a) (if K stabilizing)

= B>
∞∑
ξ=0

(A+BK)ξ,>(Q+K>RK)(A+BK)ξ

=(B.6b) (if K stabilizing)

(A+BK)
∞∑
τ=0

(A+BK)τ (A+BK)τ,>

=(B.6a) (if K stabilizing)

where we set ξ = t − τ − 1 (and, hence, t = ξ + τ + 1). The highlighted terms, for K

stabilizing, can be computed as solutions of the Lyapunov equations in (B.6)1. More in

detail, definying P ∈ Rn×n and W ∈ Rn×n as the solutions of the lyapunov equations

(A+BK)W (A+BK)> −W = −I,
(A+BK)>P (A+BK)− P = −(Q+K>RK),

we can write

∇J(K) = RKW +B>P (A+BK)W.

The proof follows. �

B.1.2 First-order Necessary Conditions for Optimality of Problem (B.3)

Formally, a given K? satisfies the FNC of problem (B.3) if ∇J(K?) = 0, that is

RK?Wc(K
?) +B>P (K?)(A+BK?)Wc(K

?) = 0 (B.15a)

1Consider the autonomous system xt+1 = Axt and the Lyapunov equation A>XA−X +Q = 0. If A is

stable, X can be computed explicitly as X =
∞∑
t=0

At,>QAt.

189

Appendix B. Numerical Methods for Optimal Control

with Wc(K
?) and P (K?) obtained, respectively, as solutions of

(A+BK?)Wc(A+BK?)> −Wc = −I (B.15b)

(A+BK?)>P (A+BK?)− P = −(Q+K?>RK?) (B.15c)

B.1.3 Gradient method for LQR

Being the set of stabilizing gainsK open [49, Lemma IV.3] and connected [49, Lemma IV.6],

the gradient descent method could be used to solve Problem (B.3) (see, e.g., [48]). Namely,

at each iteration k ∈ N, an estimate Kk of K? is maintained and iteratively updated

according to

Kk+1 = Kk − γ∇J(Kk), (B.16)

where γ > 0 is the stepsize, while ∇J : Rm×n → Rm×n is the gradient of J with respect

to K evaluated at Kk, when Rm×n is equipped with the Frobenius inner product. It

is possible to show that, by initializing K0 ∈ K and selecting a proper stepsize γ, the

optimal gain K? is an exponentially stable equilibrium of the dynamical system (B.16),

see [48, Theorem 4.6].

B.1.4 Anderson-Moore Algorithm

The Anderson-Moore Algorithm, cf [8] is is a fixed point iteration applied to the first

order necessary conditions (B.15) of problem (B.3) Given a stabilizing K0, the Anderson-

Moore algorithm reads for all iterations k ≥ 0

Algorithm 14 Anderson-Moore Algorithm

Require: Stabilizing gain K0

for k = 0, 1, 2 . . . do

Compute W k solution of

(A+BKk)W (A+BKk)> −W = −I

Compute P k solution of

(A+BKk)>P (A+BKk)− P = −(Q+Kk>RKk)

Find Kk+1 such that RKW k +B>P k(A+BK)W k = 0, i.e., set

Kk+1 = −(R+B>P kB)−1B>P kA

190

B.2. Nonlinear Optimal Control

Remark B.3. One can also introduce a globalization enhancement of the method by

replacing the last step with

Kk+1 = Kk − γk
(
Kk + (R+B>P kB)−1B>P kA

)
4

B.1.5 Kleinman Lemma

Definition B.1 (Trace function). A scalar function f : Rm×p → R is called a trace function

of the matrix L ∈ Rm×p if it is defined as the following composition

f(L) = Tr
(
g(L)

)
(B.17)

where g : Rm×p → Rr×r is continuously differentiable. 4

The following lemma holds.

Lemma B.2 (Kleinman). Let f(K) be a trace function of K ∈ Rm×p. If one can write

f(K + ε∆K)− f(K) = εTr(M(K)∆K) + εo(|∆K|) (B.18)

where M(K) ∈ Rp×m, then

df(K)

dK
= ∇f(K) = M(K)> (B.19)

with ∇f(K) ∈ Rm×p. 4

B.2 Nonlinear Optimal Control

In the following, we review two numerical methods for the resolution of nonlienare

optimal control problems in the form

min
x∈RnT ,u∈RmT

T−1∑
t=0

`t(xt, ut) + `T (xT) (B.20a)

subj.to xt+1 = f(xt, ut), t ∈ [0, T − 1] (B.20b)

with initial condition x0 = xinit ∈ Rn, stage cost `t : Rn × Rm → R and terminal cost

`T : Rn → R.

B.2.1 Gradient Method for Optimal Control

In this subsection we recall a numerical strategy proposed, e.g., in [27, Section 1.9] to

solve a discrete-time optimal control problem as in (B.20) based on the gradient method.

191

Appendix B. Numerical Methods for Optimal Control

The leading idea is to express the state xt at each t ∈ [0, T − 1] as a function of the

input sequence u only. Formally, for all t we can introduce a map φt : RmT → Rn such

that

xt := φt(u), (B.21)

so that problem (B.20) can be recast into the reduced version

min
u

T−1∑
t=0

`t(φt(u), ut) + `T (φT (u)) = min
u
J(u) (B.22)

where the optimization variable is only the input sequence u ∈ RmT . Problem (B.22) is

an unconstrained optimization problem in uwith a C2 cost function. Notice that the cost

function J(u) inherits from (B.20) its smoothness properties, but also its nonconvexity.

Hence, problem (B.22) can be addressed via a gradient descent method in which a

tentative solution uk ∈ RmT is iteratively updated as

uk+1 = uk − γk∇J(uk), (B.23)

where k > 0 denotes the iteration counter, while the parameter γk > 0 is the so-called

step-size.

Denoting ∆ukt = −∇utJ(uk), the previous update can be also written in a component-

wise fashion for t ∈ [0, T − 1] as

uk+1
t = ukt + γk∆ukt . (B.24)

The gradient of J(·) at every uk can be efficiently computed by properly exploiting a

costate difference equation (to be simulated backward in time) based on the linearization

of the cost and the system dynamics at a given trajectory (xk,uk) according to (3.11).

Algorithm 15 summarizes the overall procedure, with system state initialized at xk0 =

xinit for all k.

192

B.2. Nonlinear Optimal Control

Algorithm 15 Gradient Method for Optimal Control
for k = 0, 1, 2 . . . do

set λkT = ∇`T (xkT)

for t = T − 1, . . . , 0 do

Step 1: compute descent direction

λkt = Ak>t λkt+1 + akt (B.25a)

∆ukt = −Bk>
t λkt+1 − bkt (B.25b)

for t = 0, . . . , T − 1 do

Step 2: compute new input sequence

uk+1
t = ukt + γk ∆ukt

Step 3: (open-loop) update new (feasible) trajectory

xk+1
t+1 = f(xk+1

t , uk+1
t) (B.26)

As mentioned above, the update of the costate λk = col(λk1, . . . , λ
k
T) involves the

linearization of both the cost and the dynamics at the current input estimate uk and

corresponding state xk (cf. (3.11)). Then, the component ∆ukt ∈ Rm of the update

(descent) direction in (B.24) is obtained via (B.25). Thus, the algorithm makes explicit

use of the state sequence xk (associated to the current input estimate uk), which is

obtained by forward simulation of the dynamics (B.20b) over the horizon [0, T − 1] so

that (xk,uk) is a trajectory (cf. (B.26)).

Remark B.4. We stress that, as it results from (B.26), each state trajectory xk+1 is

generated by an open-loop simulation of the dynamics, so that the method is not

practically implementable for systems exhibiting unstable behaviors. 4

Since Algorithm 15 generates a sequence of inputs {uk}k≥0 associated to a gradient

method applied to (B.22), it inherits its convergence results. Notice that the presented

backward-forward sweep algorithm could be seen as the reverse mode of the so-called

Algorithmic Differentiation, see [104] for details.

B.2.2 Discrete-time PRONTO

In this section, along the lines of [17], we present a discrete-time version of the optimal

control algorithm PRONTO proposed in [113] in a continuous-time framework.

193

Appendix B. Numerical Methods for Optimal Control

The key idea of PRONTO is to use a stabilizing feedback in an optimal control

method to gain numerical stability, and to interpret such (tracking) controller as a

projection operator that maps (state-input) curves into system trajectories. Given a

state-input curve (α,µ), let us formally consider a nonlinear tracking system given by

ut = µt +Kt(αt − xt),
xt+1 = f(xt, ut),

(B.27)

where Kt ∈ Rn×m is a properly selected gain matrix. Thanks to the feedback pol-

icy (B.27), the optimal control problem (B.20) can be written as

min
α,µ

`(φ(α,µ), ψ(α,µ)). (B.28)

Figure B.1 also provides a graphical interpretation of PRONTO. At each iteration of the

algorithm an update direction (in blue) is sought onto the tangent space to the trajectory

manifold (in green). Then, the updated (infeasible) curve is projected back onto the

trajectory manifold (in black) by the projection operator. Specifically, the PRONTO algo-

rithm iteratively refines, for all k > 0, a tentative solution of problem (B.28) according

to the update [
xk+1

uk+1

]
= P

([
xk

uk

]
+ γk

[
∆xk

∆uk

]
︸ ︷︷ ︸

(αk+1,µk+1)

)
, (B.29)

where γk ∈ (0, 1] is the step-size, while the update direction (∆xk,∆uk) ∈ RnT ×RmT is

obtained by minimizing a quadratic approximation of the cost in (B.28) over the tangent

space T k(x,u)T at the current trajectory (xk,uk).

The update direction (∆xk,∆uk) is obtained as the minimizer of the following

problem

min
(∆x,∆u)∈Tk

(x,u)
T
∇`(xk,uk)>

[
∆x

∆u

]
+

[
∆x

∆u

]>
W (xk,uk)

[
∆x

∆u

]
,

where W (xk,uk) is a square matrix. In the pure Newton version of PRONTO, W (xk,uk)

is the second order derivative of the reduced problem (B.28), including also second

order derivatives of the projection operator, i.e.,

W (xk,uk) :=∇2`(xk,uk) +∇2P(αk,µk)∇`(xk,uk)

We refer to [113] for a detailed discussion.

194

B.2. Nonlinear Optimal Control

µ

α

T

(xk−1,uk−1)

T k−1
(x,u)T

T k
(x

,u
) T

(∆x,∆u) (αk,µk)

(∆
x,∆

u)

(xk,uk)

(xk+1,uk+1) P (αk+1,µk+1)

Figure B.1: Representation of PRONTO approach: in gray the level curves of the cost function
`(·, ·), in black the trajectory manifold T , in green its tangent space at various trajectories. At
each iteration k, the update direction (∆x,∆u) in blue is sought on the tangent space at the
current trajectory (xk,uk). The updated curve (αk+1,µk+1) is then projected onto T by the
projection operator P (dotted line).

Remark B.5. Depending on the choice of W (xk,uk) some lower-order versions of

PRONTO are possible, e.g., setting W (xk,uk) = I , with I being the identity matrix, we

obtain a first-order method. Another possibility is to chose W (xk,uk) as the second-

order derivatives of the cost only. 4

It can be shown that the update direction (∆xk,∆uk) is obtained solving the Linear

Quadratic (LQ) problem

min
∆x,∆u

T−1∑
t=0

([
akt

bkt

]>[
∆xt

∆ut

]
+

1

2

[
∆xt

∆ut

]>[
Qkt Skt

Sk>t Rkt

][
∆xt

∆ut

])
+ ak>T ∆xT + ∆x>TQ

k
T∆xT

subj.to ∆xt+1 = Akt∆xt +Bk
t ∆ut, t ∈ [0, T − 1]

∆x0 = 0,

(B.30)

where Qkt ∈ Rn×m, Skt ∈ Rn×m and Rkt ∈ Rm×m are proper weight matrices, components

of W (xk,uk), while Akt , B
k
t , a

k
t , b

k
t follow the shorthand notation in (3.11). Algorithm 16

recaps the procedure described so far.

195

Appendix B. Numerical Methods for Optimal Control

Algorithm 16 PRONTO

for k = 0, 1, 2 . . . do

Step 1: compute descent direction (∆xk,∆uk) by solving the LQ problem

min
∆x,∆u

T−1∑
t=0

([
akt

bkt

]>[
∆xt

∆ut

]
+

1

2

[
∆xt

∆ut

]>[
Qkt Skt

Sk>t Rkt

][
∆xt

∆ut

])
+ ak>T ∆xT + ∆x>TQ

k
T∆xT

subj.to ∆xt+1 = Akt∆xt +Bk
t ∆ut, t ∈ [0, T − 1]

∆x0 = 0,

(B.31)

for t = 0, . . . , T − 1 do

Step 2: update (unfeasible) curve

αk+1
t = xkt + γk∆xkt

µk+1
t = ukt + γk∆ukt

(B.32)

Step 3: compute new (feasible) trajectory

uk+1
t = µk+1

t +Kt(α
k+1
t − xk+1

t)

xk+1
t+1 = f(xk+1

t , uk+1
t)

196

Appendix C

Averaging Theory for
Two-time-scale Systems

We report [13, Theorem 2.2.4], which is a useful result in the context of averaging theory

for two-time-scale systems. Consider the time-varying system

χk+1 = A(zt)χk + h(zt, k) + εg(χk, zt, k), (C.1a)

zt+1 = zt + εf(χk, zt, k), (C.1b)

with χk ∈ Rnχ , zt ∈ Rnz , g : Rnχ × Rnz × N → Rnχ , f : Rnχ × Rnz × N → Rnχ , and

A : Rnz → Rnχ×n. We enforce the following assumptions.

Assumption C.1. There exists r such that f , g, and h are Lipschitz continuous intoBr(0nχ+nz).
4

Assumption C.2. It holds h(0, k) = 0, g(0, 0, k) = 0, and f(0, 0, k) = 0 for all k ∈ N. 4

Assumption C.3. There exist r,m1,m2 > 0 and a1, a2 ∈ (0, 1) such that

m1a
k
1 ≤

∥∥∥A(z)k
∥∥∥ ≤ m2a

k
2,

for all z ∈ Br(0nz) and k ∈ N. Moreover, there exists ka > 0 such that∥∥∥∥∂A(z)

∂zi

∥∥∥∥ ≤ ka,
for all i ∈ {1, . . . ,m} and z ∈ Br(0nz). 4

Assumption C.4. The function f is piecewise continuous in k with the limit

f av(z) := lim
T→∞

1

T

t̄+T∑
i=t̄+1

f(0, z, i) (C.2)

197

Appendix C. Averaging Theory for Two-time-scale Systems

existing uniformly in k̄ ∈ N and for all z ∈ Br(0nz). 4

We associate a so-called averaged system to (C.1) given by

zav
k+1 = zav

k + εfav(zav
k). (C.3)

Assumption C.5. Consider f av as defined in (C.2) and let ∆f : Rnz × N→ Rnz be defined
as

∆f(z, k) := f(0, z, k)− f av(z).

Then, there exists a nonnegative strictly decreasing function ν(k) such that

lim
k→∞

ν(k) = 0,

and ∥∥∥∥∥∥ 1

T

k̄+T∑
i=k̄+1

f̃(z, i)

∥∥∥∥∥∥ ≤ ν(T) ‖z‖ ,

∥∥∥∥∥∥ 1

T

k̄+T∑
i=k̄+1

∂f̃(z, i)

∂z

∥∥∥∥∥∥ ≤ ν(T),

uniformly in k̄ ∈ N and for all z ∈ Br(0nz). 4

Theorem C.1. [13, Theorem 2.2.4] Consider System (C.1) and let Assumptions C.1, C.2, C.3, C.4
and C.5 hold. If there exists ε0 > 0 such that, for all ε ∈ (0, ε0), the origin is exponentially
stable for System (C.3), then there exists ε1 > 0 such that, for all ε ∈ (0, ε1), the origin is an
exponentially stable equilibrium of System (C.1). 4

198

199

Ringraziamenti

Quello che si conclude con queste pagine è stato, per me, uno dei viaggi più sfidanti,

duri e formativi della mia vita. Al contempo, è stato anche un percorso incredibile, al

quale guardando indietro, faccio a volte fatica a credere.

È inevitabile quindi rivolgere il ringraziamento più grande a Giuseppe, che ha

reso tutto questo possibile. Grazie per avermi offerto questa opportunità, grazie per

aver riposto in me fiducia anche quando nemmeno io riuscivo ad averne, grazie per

essere stato capace di accettare e gestire questa mia adolescenza scientifica, grazie per

tutto quello che mi hai insegnato, non solo sul piano scientifico, ma anche umano,

comunicativo e lavorativo. Spero di essere stato, almeno in parte, all’altezza. Grazie

anche per aver creato un gruppo in cui il valore umano ed il rispetto sono sempre stati al

primo posto. È evidente per tutti noi che quello che viviamo quotidianamente è prima di

tutto un gruppo di persone, per quanto particolari, dal valore umano impareggiabile, in

cui la metrica di valore non è solamente scientifica, ma anche, e soprattutto, personale.

Questo è sicuramente merito tuo. Grazie di tutto, di cuore.

Un grazie enorme va poi ad Ivano, un mentore ed un amico, a cui devo tantissimo,

che mi ha cresciuto quasi quotidianamente dai tempi della tesi magistrale. Grazie per

tutte le chiacchierate, scientifiche e filosofiche, che abbiamo avuto in questi anni, sento

che buona parte della mia formazione umana e professionale sia passata anche da lı̀.

Grazie anche per tutte le lezioni, dal come fare il caffè all’ADMM, dal principio del

modello interno alle regole del basket durante le partite della Virtus. Sei prof nell’animo

e ti stimo profondamente. Grazie per avermi insegnato a non aver paura dell’ignoto.

Thanks to Professor Ames, who gave me the opportunity to spend a remarkable

semester at Caltech, my months in California were an incredible opportunity where I

learned a lot from every point of view. Thank you so much.

Thanks to John (Hauser), an incredible genius whom I had the opportunity to meet,

who illuminated few weeks in November with functional analysis and delightful wine-

based dinners. I now completely understand why Giuseppe admires him so much.

Grazie poi a Lorenzo (Pichierri), amico prima e collega poi, compagno di inter-

minabili giornate ed infinite serate scientifiche e non, conclusesi sempre nella fedelis-

sima Piazza San Francesco. Grazie per aver reso il lavoro meno lavoro e grazie per

201

Ringraziamenti

avermi sempre spronato, con le buone o con le cattive, nei momenti più bui. Dalle salite

in bicicletta alle notti americane, le bestie erano sempre lı̀ a proteggermi.

Grazie al CASY e ¡hasta l’otimization siempre! Grazie a tutti i fantastici colleghi che

compongono la nostra Comune: grazie al nostro illuminato Presidente Guido, grazie

a Marco (scheggia impazzita), allo zio Testa, a Simone, Trama, Alice, Riccardino, il

ministro Cecconi e Biagio(ne). Grazie per esserci sempre stati, dalle discussioni alla

lavagna ai più eleganti Pizza CASY. E grazie anche ai colleghi passati Lolgent, Marione e

Andrea (Camisa), anche lui mentore sotto tantissimi aspetti. Grazie.

Grazie a tutti i miei amici. Grazie alla nostra semi-disfunzionale famiglia bolognese

e grazie agli amici di sempre di Verona. Vi ringrazio veramente dal profondo del cuore,

sono veramente fortunato ad avervi accanto.

Grazie a Mamma e Papà, sempre presenti, per il supporto quotidiano, per l’amore e

l’affetto che mi avete sempre dato e per i valori che mi avete insegnato. Vi devo tutto.

Grazie a mio fratello, Pietro, esempio di passione, entusiasmo ed umanità. Ti ammiro

moltissimo, ho molto da imparare da te.

Grazie alle mie nonne, al loro carattere straordinario e al loro caldo affetto, sono

quello che sono anche grazie a voi. Mi avete insegnato tanto.

Grazie a mio zio Gianfranco, mio riferimento ingegneristico, grazie per le lunghe

chiacchierate e i buonissimi spunti, letterari e non solo.

Grazie a Martina, alla tua famiglia per avermi accolto con amore e, soprattutto, a

te. Non ho parole per ringraziarti, sei stata complice e faro nella notte di questa strana

avventura. E lo sei stata, letteralmente, dal primo giorno. Non posso fare altro che

ringraziarti, per tutto, per l’amore e per ogni singolo istante passato insieme. Sei un

fiore unico dal valore inestimabile.

Queste poche righe non possono certo esaurire tutte le straordinarie persone che

hanno condiviso con me qualche passo di questo incredibile percorso. Grazie a tutti.

Lorenzo

202

203

Bibliography

[1] Y. Abbasi-Yadkori and C. Szepesvári, Regret bounds for the adaptive control of linear quadratic systems,
Proceedings of the 24th annual conference on learning theory, 2011, pp. 1–26.

[2] D. R Agrawal, H. Parwana, R. K Cosner, U. Rosolia, A. D Ames, and D. Panagou, A constructive method
for designing safe multirate controllers for differentially-flat systems, IEEE Control Sys. Letters 6 (2021),

2138–2143.

[3] A P. Aguiar, F. A Bayer, J. Hauser, A. J Häusler, G. Notarstefano, A. M Pascoal, A. Rucco, and A.

Saccon, Constrained optimal motion planning for autonomous vehicles using PRONTO, Sensing and

control for autonomous vehicles, 2017, pp. 207–226.

[4] M. Akbari, B. Gharesifard, and T. Linder, Achieving logarithmic regret via hints in online learning of
noisy LQR systems, IEEE 61st conference on decision and control (cdc), 2022, pp. 4700–4705.

[5] H. Almubarak, N. Sadegh, and E. A Theodorou, Safety embedded control of nonlinear systems via barrier
states, IEEE Control Systems Letters 6 (2021), 1328–1333.

[6] H. Almubarak, E. A Theodorou, and N. Sadegh, Hjb based optimal safe control using control barrier
functions, 2021 60th IEEE conf. on decision and control, 2021, pp. 6829–6834.

[7] A. D Ames, X. Xu, J. W Grizzle, and P. Tabuada, Control barrier function based quadratic programs for
safety critical systems, IEEE Trans. on Automatic Control 62 (2016), no. 8, 3861–3876.

[8] B. D. O. Anderson and J. B. Moore, Optimal Control - Linear Quadratic Methods, Prentice-Hall

International, Inc., 1989.

[9] B. D. Anderson and J. B Moore, Optimal control: linear quadratic methods, Courier Corporation, 2007.

[10] A. M Annaswamy, K. H Johansson, G. J Pappas, et al., Control for societal-scale challenges: Road map
2030, IEEE Control Systems Society (2023).

[11] N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society 68
(1950), no. 3, 337–404.

[12] A. Aswani, H. Gonzalez, S S. Sastry, and C. Tomlin, Provably safe and robust learning-based model
predictive control, Automatica 49 (2013), no. 5, 1216–1226.

[13] E-W Bai, L-C Fu, and S. S. Sastry, Averaging analysis for discrete time and sampled data adaptive systems,
IEEE Transactions on Circuits and Systems 35 (1988), no. 2, 137–148.

[14] E.-W. Bai and S. S. Sastry, Persistency of excitation, sufficient richness and parameter convergence in
discrete time adaptive control, Systems & control letters 6 (1985), no. 3, 153–163.

[15] S. Barratt and S. Boyd, Stochastic control with affine dynamics and extended quadratic costs, IEEE

Transactions on Automatic Control 67 (2021), no. 1, 320–335.

[16] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, Asynchronous distributed optimization over lossy
networks via relaxed ADMM: Stability and linear convergence, IEEE TAC 66 (2020), no. 6, 2620–2635.

205

Bibliography

[17] F. A Bayer, G. Notarstefano, and F. Allgöwer, A projected SQP method for nonlinear optimal control
with quadratic convergence, IEEE conference on decision and control CDC, 2013, pp. 6463–6468.

[18] T. Beckers, D. Kulić, and S. Hirche, Stable Gaussian process based tracking control of Euler–Lagrange
systems, Automatica 103 (2019), 390–397.

[19] T. Beckers, J. Umlauft, and S. Hirche, Stable model-based control with Gaussian process regression for
robot manipulators, IFAC-PapersOnLine 50 (2017), no. 1, 3877–3884.

[20] G. Belgioioso, A. Nedić, and S. Grammatico, Distributed generalized Nash equilibrium seeking in
aggregative games on time-varying networks, IEEE TAC 66 (2020), no. 5, 2061–2075.

[21] G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel, Distributed generalized Nash equilibrium seeking: An
operator-theoretic perspective, IEEE CSM 42 (2022), no. 4, 87–102.

[22] R. Bellman, Dynamic programming, Princeton University Press, 1957.

[23] J. Berberich, A. Koch, C. W Scherer, and F. Allgöwer, Robust data-driven state-feedback design, 2020

american control conference (acc), 2020, pp. 1532–1538.

[24] F. Berkenkamp, A. P Schoellig, and A. Krause, Safe controller optimization for quadrotors with Gaussian
processes, International conference on robotics and automation (icra), 2016, pp. 491–496.

[25] D. Bertsekas and S. E Shreve, Stochastic optimal control: the discrete-time case, Vol. 5, Athena Scientific,

1996.

[26] D. P Bertsekas, Constrained optimization and lagrange multiplier methods, Athena Scientific, 1982.

[27] , Nonlinear programming (1999).

[28] , Nonlinear programming, Athena Scientific, 1999.

[29] , Dynamic programming and optimal control, 3rd ed., Vol. 2, Athena Scientific, Belmont (MA),

2011.

[30] , Nonlinear programming, Athena Scientific, 2016.

[31] D. P. Bertsekas, Dynamic programming and optimal control, 2nd ed., Vol. 1, Athena Scientific, 2005.

[32] J. T. Betts, Practical methods for optimal control using nonlinear programming, Society for Industrial

and Applied Mathematics, Philadelphia, PA, 2001.

[33] T. Bian and Z.-P. Jiang, Value iteration and adaptive dynamic programming for data-driven adaptive
optimal control design, Automatica 71 (2016), 348–360.

[34] L. T Biegler, Solution of dynamic optimization problems by successive quadratic programming and
orthogonal collocation, Computers & chemical engineering 8 (1984), no. 3-4, 243–247.

[35] L. T Biegler and V. M Zavala, Large-scale nonlinear programming using IPOPT: An integrating framework
for enterprise-wide dynamic optimization, Computers & Chemical Engineering 33 (2009), no. 3, 575–

582.

[36] M. Binder, G. Darivianakis, A. Eichler, and J. Lygeros, Approximate explicit model predictive controller
using Gaussian processes, IEEE conference on decision and control (CDC), 2019, pp. 841–846.

[37] F. Blanchini et al., Set-theoretic methods in control, Springer, 2008.

[38] H. G. Bock and K. J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems,
Proceedings of the 9th ifac world congress budapest (hungary), 1984July, pp. 242 –247.

[39] M. Borghesi, A. Bosso, and G. Notarstefano, On-policy data-driven linear quadratic regulator via model
reference adaptive reinforcement learning, 2023 62nd IEEE conference on decision and control (CDC),

2023, pp. 32–37.

206

Bibliography

[40] F. Borrelli and T. Keviczky, Distributed LQR design for identical dynamically decoupled systems, IEEE

Transactions on Automatic Control 53 (2008), no. 8, 1901–1912.

[41] L. Bottou, F. E Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, Siam

Review 60 (2018), no. 2, 223–311.

[42] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control
theory, SIAM, 1994.

[43] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.

[44] S. J Bradtke, B E. Ydstie, and A. G Barto, Adaptive linear quadratic control using policy iteration,

Proceedings of 1994 american control conference-acc’94, 1994, pp. 3475–3479.

[45] L. Brunke, M. Greeff, A. W Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P Schoellig, Safe learning in
robotics: From learning-based control to safe reinforcement learning, Annual Review of Control, Robotics,

and Autonomous Systems 5 (2022), 411–444.

[46] A. E. Bryson and Y.-C. Ho, Applied Optimal Control - Optimization, Estimation, and Control, Hemi-

sphere Publishing Cooperation, 1975.

[47] A. E. Bryson and Y.-C. Ho, Applied optimal control: Opt., estimation and control, Routledge, 1975.

[48] J. Bu, A. Mesbahi, M. Fazel, and M. Mesbahi, LQR through the lens of first order methods: Discrete-time
case, arXiv preprint arXiv:1907.08921 (2019).

[49] J. Bu, A. Mesbahi, and M. Mesbahi, On topological properties of the set of stabilizing feedback gains, IEEE

Transactions on Automatic Control 66 (2020), no. 2, 730–744.

[50] F. Bullo, Lectures on network systems, Vol. 1, Kindle Direct Publishing Seattle, DC, USA, 2020.

[51] D. Burk, A. Völz, and K. Graichen, A modular framework for distributed model predictive control of
nonlinear continuous-time systems (graMPC-d), Optimization and Engineering (2021), 1–25.

[52] M. C Campi and P. Kumar, Adaptive linear quadratic gaussian control: the cost-biased approach revisited,

SIAM Journal on Control and Optimization 36 (1998), no. 6, 1890–1907.

[53] A. Carè, R. Carli, A. Dalla Libera, D. Romeres, and G. Pillonetto, Kernel methods and gaussian processes
for system identification and control: A road map on regularized kernel-based learning for control, IEEE

Control Systems Magazine 43 (2023), no. 5, 69–110.

[54] G. Carnevale, A. Camisa, and G. Notarstefano, Distributed online aggregative optimization for dynamic
multi-robot coordination, IEEE TAC (2022).

[55] G. Carnevale, F. Fabiani, F. Fele, K. Margellos, and G. Notarstefano, Tracking-based distributed equilib-
rium seeking for aggregative games, preprint arXiv:2210.14547 (2022).

[56] G. Carnevale, N. Mimmo, and G. Notarstefano, Aggregative feedback optimization for distributed
cooperative robotics, IFAC-PapersOnLine 55 (2022), no. 13, 7–12.

[57] G. Carnevale and G. Notarstefano, A learning-based distributed algorithm for personalized aggregative
optimization, Cdc, 2022, pp. 1576–1581.

[58] A. Cassel, A. Cohen, and T. Koren, Logarithmic regret for learning linear quadratic regulators efficiently,

International conference on machine learning, 2020, pp. 1328–1337.

[59] F. Celi, G. Baggio, and F. Pasqualetti, Data-driven eigenstructure assignment for sparse feedback design,

2023 62nd IEEE conference on decision and control (cdc), 2023, pp. 618–623.

[60] M. Chen, D. Wang, X. Wang, Z.-G. Wu, and W. Wang, Distributed aggregative optimization via finite-
time dynamic average consensus, IEEE Transactions on Network Science and Engineering (2023).

[61] Y. Chen, M. Ahmadi, and A. D Ames, Optimal safe controller synthesis: A density function approach,

2020 american control conf., 2020, pp. 5407–5412.

207

Bibliography

[62] Z. Chen and S. Liang, Distributed aggregative optimization with quantized communication, Kyber. 58
(2022), no. 1, 123–144.

[63] A. Chiuso and G. Pillonetto, System identification: A machine learning perspective, Annual Review of

Control, Robotics, and Autonomous Systems 2 (2019), 281–304.

[64] J. J Choi, D. Lee, K. Sreenath, C. J Tomlin, and S. L Herbert, Robust control barrier–value functions for
safety-critical control, 2021 60th IEEE conf. on decision and control, 2021, pp. 6814–6821.

[65] G. Chowdhary, H. A Kingravi, J. P How, and P. A Vela, Bayesian nonparametric adaptive control using
Gaussian processes, IEEE Transactions on Neural Networks and Learning Systems 26 (2014), no. 3,

537–550.

[66] M. H Cohen and C. Belta, Approximate optimal control for safety-critical systems with control barrier
functions, 2020 59th IEEE conf. on decision and control, 2020, pp. 2062–2067.

[67] E. Crisostomi, B. Ghaddar, F. Häusler, J. Naoum-Sawaya, G. Russo, R. Shorten, et al., Analytics for the
sharing economy: Mathematics, engineering and business perspectives, Springer, 2020.

[68] N. Csomay-Shanklin, A. J Taylor, U. Rosolia, and A. D Ames, Multi-rate planning and control of
uncertain nonlinear systems: Model predictive control and control lyapunov functions, 2022 IEEE 61st

conf. on decision and control, 2022, pp. 3732–3739.

[69] J. De O. Pantoja, Differential dynamic programming and newton’s method, International Journal of

Control 47 (1988), no. 5, 1539–1553.

[70] C. De Persis and P. Tesi, Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE

Transactions on Automatic Control 65 (2019), no. 3, 909–924.

[71] , Low-complexity learning of linear quadratic regulators from noisy data, Automatica 128 (2021),

109548.

[72] , Learning controllers for nonlinear systems from data, Annual Reviews in Control (2023),

100915.

[73] , Learning controllers for nonlinear systems from data, Annual Reviews in Control (2023),

100915.

[74] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, On the sample complexity of the linear quadratic
regulator, Foundations of Computational Mathematics 20 (2020), no. 4, 633–679.

[75] S. Dean, S. Tu, N. Matni, and B. Recht, Safely learning to control the constrained linear quadratic
regulator, IEEE american control conference (ACC), 2019, pp. 5582–5588.

[76] M. P Deisenroth, J. Peters, and C. E Rasmussen, Approximate dynamic programming with Gaussian
processes, American control conference (ACC), 2008, pp. 4480–4485.

[77] M. Diehl, H. J. Ferreau, and N. Haverbeke, Efficient numerical methods for nonlinear MPC and moving
horizon estimation, Nonlinear model predictive control, 2009, pp. 391–417.

[78] A. Dontchev and W. Hager, Lipschitzian stability for state constrained nonlinear optimal control, SIAM

Jour. on Control and Opt. 36 (1998), no. 2, 698–718.

[79] F. Dörfler, M. R Jovanović, M. Chertkov, and F. Bullo, Sparsity-promoting optimal wide-area control of
power networks, IEEE Transactions on Power Systems 29 (2014), no. 5, 2281–2291.

[80] F. Dörfler, P. Tesi, and C. De Persis, On the role of regularization in direct data-driven LQR control, IEEE

conference on decision and control (CDC), 2022, pp. 1091–1098.

[81] , On the certainty-equivalence approach to direct data-driven LQR design, IEEE Transactions on

Automatic Control (2023).

208

Bibliography

[82] J. C Dunn and D. P Bertsekas, Efficient dynamic programming implementations of Newton’s method for
unconstrained optimal control problems, Journal of Optimization Theory and Applications 63 (1989),

no. 1, 23–38.

[83] A. Engelmann et al., Decomposition of nonconvex optimization via bi-level distributed aladin, IEEE

Transactions on Control of Network Systems 7 (2020), no. 4, 1848–1858.

[84] F. Fabiani, M. A. Tajeddini, H. Kebriaei, and S. Grammatico, Local Stackelberg equilibrium seeking in
generalized aggregative games, IEEE TAC 67 (2021), no. 2, 965–970.

[85] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, Tracking-ADMM for distributed constraint-
coupled optimization, Aut. 117 (2020), 108962.

[86] Y. Fanger, J. Umlauft, and S. Hirche, Gaussian processes for dynamic movement primitives with applica-
tion in knowledge-based cooperation, International conference on intelligent robots and systems (IROS),

2016, pp. 3913–3919.

[87] M. Fardad and M. R Jovanović, On the design of optimal structured and sparse feedback gains via
sequential convex programming, 2014 american control conference, 2014, pp. 2426–2431.

[88] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano, Disropt: a python framework for
distributed optimization, IFAC-PapersOnLine 53 (2020), no. 2, 2666–2671.

[89] S. Fattahi, G. Fazelnia, J. Lavaei, and M. Arcak, Transformation of optimal centralized controllers into
near-globally optimal static distributed controllers, IEEE Transactions on Automatic Control 64 (2018),

no. 1, 66–80.

[90] T. Faulwasser, L. Grüne, M. A Müller, et al., Economic nonlinear model predictive control, Now Founda-

tions and Trends, 2018.

[91] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, Global convergence of policy gradient methods for the linear
quadratic regulator, International conference on machine learning, 2018, pp. 1467–1476.

[92] L. Ferrarotti and A. Bemporad, Synthesis of optimal feedback controllers from data via stochastic gradient
descent, 2019 18th european control conference (ecc), 2019, pp. 2486–2491.

[93] M. Filo and B. Bamieh, Function space approach for gradient descent in optimal control, IEEE american

control conference (ACC), 2018, pp. 3447–3453.

[94] J. F Fisac, A. K Akametalu, M. N Zeilinger, S. Kaynama, J. Gillula, and C. J Tomlin, A general safety
framework for learning-based control in uncertain robotic systems, IEEE Transactions on Automatic

Control 64 (2018), no. 7, 2737–2752.

[95] G. Foderaro, S. Ferrari, and T. A Wettergren, Distributed optimal control for multi-agent trajectory
optimization, Aut. 50 (2014), no. 1, 149–154.

[96] G. Folland, Higher-order derivatives and Taylor’s formula in several variables, Preprint (2005), 1–4.

[97] H. Frankowska and S. Plaskacz, Semicontinuous solutions of hamilton–jacobi–bellman equations with
degenerate state constraints, Jour. of math. analysis and appl. 251 (2000), no. 2, 818–838.

[98] L. Furieri, Y. Zheng, and M. Kamgarpour, Learning the globally optimal distributed LQ regulator,

Conference on learning for dynamics and control, 2020, pp. 287–297.

[99] D. Gadjov and L. Pavel, Single-timescale distributed gne seeking for aggregative games over networks via
forward–backward operator splitting, IEEE TAC 66 (2020), no. 7, 3259–3266.

[100] T. Ge, W. Lin, and J. Feng, Invariance principles allowing of non-lyapunov functions for estimating
attractor of discrete dynamical systems, IEEE TAC 57 (2011), no. 2, 500–505.

[101] P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer, Accelerated gradient methods
and dual decomposition in distributed model predictive control, Aut. 49 (2013), no. 3, 829–833.

209

Bibliography

[102] P. Giselsson and A. Rantzer, Large-scale and distributed optimization: An introduction, Springer, 2018.

[103] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT press, 2016.

[104] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentia-
tion, SIAM, 2008.

[105] P. D Grontas, M. W Fisher, and F. Dörfler, Distributed and constrained h 2 control design via system
level synthesis and dual consensus ADMM, Cdc, 2022, pp. 301–307.

[106] S. Gros and M. Zanon, Data-driven economic nMPC using reinforcement learning, IEEE Transactions on

Automatic Control 65 (2019), no. 2, 636–648.

[107] L. Grüne, E. D Sontag, and F. R Wirth, Asymptotic stability equals exponential stability, and iss equals
finite energy gain—if you twist your eyes, Systems & Control Letters 38 (1999), no. 2, 127–134.

[108] X. Guo, D. Keivan, G. Dullerud, P. Seiler, and B. Hu, Complexity of derivative-free policy optimization
for structured H∞ control, Advances in Neural Information Processing Systems 36 (2024).

[109] W. M Haddad and V. Chellaboina, Nonlinear dynamical systems and control, Nonlinear dynamical

systems and control, 2011.

[110] W. W Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific journal of

Optimization 2 (2006), no. 1, 35–58.

[111] T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, A survey of distributed optimization methods for
multi-robot systems, preprint arXiv:2103.12840 (2021).

[112] S. Hassan-Moghaddam, M. R Jovanović, and S. Meyn, Data-driven proximal algorithms for the design of
structured optimal feedback gains, IEEE american control conference (ACC), 2019, pp. 5846–5850.

[113] J. Hauser, A projection operator approach to the optimization of trajectory functionals, IFAC Proceedings

Volumes 35 (2002), no. 1, 377–382.

[114] J. Hauser and A. Saccon, A barrier function method for the optimization of trajectory functionals with
constraints, Cdc, 2006, pp. 864–869.

[115] M. R Hestenes, E. Stiefel, et al., Methods of conjugate gradients for solving linear systems, Journal of

research of the National Bureau of Standards 49 (1952), no. 6, 409–436.

[116] L. Hewing, J. Kabzan, and M. N Zeilinger, Cautious model predictive control using Gaussian process
regression, IEEE Transactions on Control Systems Technology 28 (2019), no. 6, 2736–2743.

[117] L. Hewing, K. P Wabersich, M. Menner, and M. N Zeilinger, Learning-based Model Predictive Control:
Toward safe learning in control, Annual Review of Control, Robotics, and Autonomous Systems 3
(2020), 269–296.

[118] B. Houska and J. Shi, Distributed MPC with aladin—a tutorial, Acc, 2022, pp. 358–363.

[119] R. Hult, M. Zanon, S. Gros, and P. Falcone, Optimal coordination of automated vehicles at intersections:
Theory and experiments, IEEE Transactions on Control Systems Technology 27 (2018), no. 6, 2510–

2525.

[120] A. Isidori, Lectures in feedback design for multivariable systems, Springer, 2017.

[121] A. Jain, T. Nghiem, M. Morari, and R. Mangharam, Learning and control using Gaussian processes,
Acm/IEEE international conference on cyber-physical systems (iccps), 2018, pp. 140–149.

[122] M. K. Jensen, Aggregative games and best-reply potentials, Economic theory 43 (2010), no. 1, 45–66.

[123] J. L Jerez, P. J Goulart, S. Richter, G. A Constantinides, E. C Kerrigan, and M. Morari, Embedded online
optimization for model predictive control at megahertz rates, IEEE Transactions on Automatic Control

59 (2014), no. 12, 3238–3251.

210

Bibliography

[124] Y. Jiang and Z.-P. Jiang, Computational adaptive optimal control for continuous-time linear systems with
completely unknown dynamics, Automatica 48 (2012), no. 10, 2699–2704.

[125] J. Jiao, H. L Trentelman, and M K. Camlibel, A suboptimality approach to distributed linear quadratic
optimal control, IEEE Transactions on Automatic Control 65 (2019), no. 3, 1218–1225.

[126] G. Jing, H. Bai, J. George, and A. Chakrabortty, Model-free optimal control of linear multiagent systems
via decomposition and hierarchical approximation, IEEE Transactions on Control of Network Systems 8
(2021), no. 3, 1069–1081.

[127] G. Jing, H. Bai, J. George, A. Chakrabortty, and P. K Sharma, Learning distributed stabilizing controllers
for multi-agent systems, IEEE Control Systems Letters 6 (2021), 301–306.

[128] R. M Johnstone, C R. Johnson Jr, R. R Bitmead, and B. D. Anderson, Exponential convergence of
recursive least squares with exponential forgetting factor, Systems & Control Letters 2 (1982), no. 2,

77–82.

[129] J. Kabzan, L. Hewing, A. Liniger, and M. N Zeilinger, Learning-based model predictive control for
autonomous racing, IEEE Robotics and Automation Letters 4 (2019), no. 4, 3363–3370.

[130] P. Kapasouris, M. Athans, and G. Stein, Design of feedback control systems for unstable plants with
saturating actuators, Proc. IFAC symp. on nonlinear control system design, 1990, pp. 302–307.

[131] V. Katewa and F. Pasqualetti, Minimum-gain pole placement with sparse static feedback, IEEE Transac-

tions on Automatic Control 66 (2020), no. 8, 3445–3459.

[132] T. Kavuncu, A. Yaraneri, and N. Mehr, Potential iLQR: A potential-minimizing controller for planning
multi-agent interactive trajectories, preprint arXiv:2107.04926 (2021).

[133] S. S Kia, B. Van Scoy, J. Cortes, R. A Freeman, K. M Lynch, and S. Martinez, Tutorial on dynamic
average consensus: The problem, its applications, and the algorithms, IEEE Control Systems Magazine 39
(2019), no. 3, 40–72.

[134] D. E. Kirk, Optimal control theory, Prentice-Hall Inc., 1970.

[135] B. Kiumarsi, F. L Lewis, and Z.-P. Jiang, H∞ control of linear discrete-time systems: Off-policy reinforce-
ment learning, Automatica 78 (2017), 144–152.

[136] B. Kiumarsi, F. L Lewis, M.-B. Naghibi-Sistani, and A. Karimpour, Optimal tracking control of unknown
discrete-time linear systems using input-output measured data, IEEE transactions on cybernetics 45
(2015), no. 12, 2770–2779.

[137] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Transactions on Auto-

matic Control 13 (1968), no. 1, 114–115.

[138] J. Kocijan, Modelling and control of dynamic systems using Gaussian process models, Springer, 2016.

[139] P. N Köhler, M. A Müller, J. Pannek, and F. Allgöwer, Distributed economic model predictive control for
cooperative supply chain management using customer forecast information, IFAC Journal of Systems and

Control 15 (2021), 100125.

[140] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, Learning-based model predictive control for safe
exploration, IEEE conference on decision and control (CDC), 2018, pp. 6059–6066.

[141] D. Kouzoupis, H. J. Ferreau, H. Peyrl, and M. Diehl, First-order methods in embedded nonlinear model
predictive control, 2015 european control conference (ecc), 2015, pp. 2617–2622.

[142] K. Krauth, S. Tu, and B. Recht, Finite-time analysis of approximate policy iteration for the linear quadratic
regulator, Advances in Neural Information Processing Systems 32 (2019).

[143] W. Levine and M. Athans, On the determination of the optimal constant output feedback gains for linear
multivariable systems, IEEE Transactions on Automatic control 15 (1970), no. 1, 44–48.

211

Bibliography

[144] W. Li and E. Todorov, Iterative linear quadratic regulator design for nonlinear biological movement
systems., International conference on informatics in control, automation and robotics, 2004, pp. 222–

229.

[145] X. Li, X. Yi, and L. Xie, Distributed online convex optimization with an aggregative variable, IEEE

Transactions on Control of Network Systems 9 (2021), no. 1, 438–449.

[146] Y. Li, Y. Tang, R. Zhang, and N. Li, Distributed reinforcement learning for decentralized linear quadratic
control: A derivative-free policy optimization approach, IEEE Transactions on Automatic Control (2021).

[147] L-Z Liao and C. A Shoemaker, Convergence in unconstrained discrete-time differential dynamic program-
ming, IEEE Transactions on Automatic Control 36 (1991), no. 6, 692–706.

[148] D. Liberzon, Calculus of variations and optimal control theory: a concise introduction, Princeton univer-

sity press, 2011.

[149] F. Lin, M. Fardad, and M. R Jovanovic, Augmented Lagrangian approach to design of structured optimal
state feedback gains, IEEE Transactions on Automatic Control 56 (2011), no. 12, 2923–2929.

[150] , Optimal control of vehicular formations with nearest neighbor interactions, IEEE Transactions

on Automatic Control 57 (2011), no. 9, 2203–2218.

[151] F. Lin, M. Fardad, and M. R Jovanović, Design of optimal sparse feedback gains via the alternating
direction method of multipliers, IEEE Transactions on Automatic Control 58 (2013), no. 9, 2426–2431.

[152] M. Liu, G. Chowdhary, B. C. Da Silva, S.-Y. Liu, and J. P How, Gaussian processes for learning and
control: A tutorial with examples, IEEE Control Systems Magazine 38 (2018), no. 5, 53–86.

[153] L. Ljung, System identification, Wiley encyclopedia of electrical and electronics engineering (1999),

1–19.

[154] V. G Lopez, M. Alsalti, and M. A Müller, Efficient off-policy Q-learning for data-based discrete-time LQR
problems, arXiv preprint arXiv:2105.07761 (2021).

[155] , Efficient off-policy Q-learning for data-based discrete-time LQR problems, IEEE Transactions on

Automatic Control (2023).

[156] J. Ma, Z. Cheng, X. Zhang, M. Tomizuka, and T. H. Lee, Optimal decentralized control for uncertain
systems by symmetric gauss–seidel semi-proximal alm, IEEE Transactions on Automatic Control 66
(2021), no. 11, 5554–5560.

[157] M. Maiworm, D. Limon, J. M. Manzano, and R. Findeisen, Stability of Gaussian process learning based
output feedback model predictive control, IFAC-PapersOnLine 51 (2018), no. 20, 455–461.

[158] M. Manetti, M. Morandini, and P. Mantegazza, Servo-fluid-elastic modeling of contactless levitated
adaptive secondary mirrors, Computational Mechanics 50 (2012), 85–98.

[159] I. Markovsky and F. Dörfler, Behavioral systems theory in data-driven analysis, signal processing, and
control, Annual Reviews in Control 52 (2021), 42–64.

[160] H. Modares and F. L Lewis, Linear quadratic tracking control of partially-unknown continuous-time
systems using reinforcement learning, IEEE Transactions on Automatic Control 59 (2014), no. 11,

3051–3056.

[161] H. Modares, F. L Lewis, and Z.-P. Jiang, Optimal output-feedback control of unknown continuous-time
linear systems using off-policy reinforcement learning, IEEE Transactions on Cybernetics 46 (2016),

no. 11, 2401–2410.

[162] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R Jovanović, Convergence and sample complexity of
gradient methods for the model-free linear–quadratic regulator problem, IEEE Transactions on Automatic

Control 67 (2021), no. 5, 2435–2450.

212

Bibliography

[163] T. G Molnar, R. K Cosner, A. W Singletary, W. Ubellacker, and A. D Ames, Model-free safety-critical
control for robotic systems, IEEE Rob. and Aut. Letters 7 (2021), no. 2, 944–951.

[164] M. A Müller and F. Allgöwer, Economic and distributed model predictive control: Recent developments in
optimization-based control, SICE Jour. of Control, Measurement, and Sys. Integration 10 (2017), no. 2,

39–52.

[165] A. Nedić and J. Liu, Distributed optimization for control, Ann. Rev. of Contr., Rob., and Aut. Sys. 1
(2018), 77–103.

[166] T. X Nghiem and C. N Jones, Data-driven demand response modeling and control of buildings with
gaussian processes, 2017 american control conference (acc), 2017, pp. 2919–2924.

[167] D. Nguyen-Tuong and J. Peters, Model learning for robot control: a survey, Cognitive processing 12
(2011), no. 4, 319–340.

[168] D. Nguyen-Tuong, M. Seeger, and J. Peters, Model learning with local Gaussian process regression,

Advanced Robotics 23 (2009), no. 15, 2015–2034.

[169] J. Nocedal and S. J. Wright, Numerical optimization, Springer, 1999.

[170] G. Notarstefano, I. Notarnicola, and A. Camisa, Distributed optimization for smart cyber-physical
networks, Found. and Trends® in Systems and Control 7 (2019), no. 3, 253–383.

[171] A. Padoan, G. Scarciotti, and A. Astolfi, A geometric characterization of the persistence of excitation
condition for the solutions of autonomous systems, IEEE Transactions on Automatic Control 62 (2017),

no. 11, 5666–5677.

[172] B. Pang, T. Bian, and Z.-P. Jiang, Data-driven finite-horizon optimal control for linear time-varying
discrete-time systems, 2018 IEEE conference on decision and control (cdc), 2018, pp. 861–866.

[173] , Robust policy iteration for continuous-time linear quadratic regulation, IEEE Transactions on

Automatic Control 67 (2021), no. 1, 504–511.

[174] J. D. O Pantoja and D. Mayne, Sequential quadratic programming algorithm for discrete optimal control
problems with control inequality constraints, International Journal of Control 53 (1991), no. 4, 823–836.

[175] F. Parise, S. Grammatico, B. Gentile, and J. Lygeros, Distributed convergence to Nash equilibria in
network and average aggregative games, Aut. 117 (2020), 108959.

[176] F. Parise and A. Ozdaglar, Analysis and interventions in large network games, Ann. Rev. of Control,

Robotics, and Autonomous Sys. 4 (2021), 455–486.

[177] S. Park, D. Lee, H. J. Ahn, C. Tomlin, and S. Moura, Optimal control of battery fast charging based-on
Pontryagin’s minimum principle, Cdc, 2020, pp. 3506–3513.

[178] L. Pichierri, G. Carnevale, L. Sforni, A. Testa, and G. Notarstefano, A distributed online optimization
strategy for cooperative robotic surveillance, 2023 IEEE icra, 2023, pp. 5537–5543.

[179] B. Polyak, M. Khlebnikov, and P. Shcherbakov, An lmi approach to structured sparse feedback design in
linear control systems, 2013 european control conference (ecc), 2013, pp. 833–838.

[180] B. T Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics

and Mathematical Physics 9 (1969), no. 4, 94–112.

[181] L. S. Pontryagin, V. G. Boltyanskii, R. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory
of Optimal Processes, Wiley (NY), 1962.

[182] C. Possieri and M. Sassano, Q-learning for continuous-time linear systems: A data-driven implementation
of the kleinman algorithm, IEEE Transactions on Systems, Man, and Cybernetics: Systems 52 (2022),

no. 10, 6487–6497.

213

Bibliography

[183] , Value iteration for continuous-time linear time-invariant systems, IEEE Transactions on Auto-

matic Control (2022).

[184] C. Qin, H. Zhang, and Y. Luo, Online optimal tracking control of continuous-time linear systems with
unknown dynamics by using adaptive dynamic programming, International Journal of Control 87 (2014),

no. 5, 1000–1009.

[185] C. E. Rasmussen, C. K. Williams, and F. Bach, Gaussian processes for machine learning, MIT Press,

2006.

[186] T. Rautert and E. W Sachs, Computational design of optimal output feedback controllers, SIAM Journal

on Optimization 7 (1997), no. 3, 837–852.

[187] J. B. Rawlings, D. Q Mayne, and M. Diehl, Model predictive control: theory, computation, and design,

Vol. 2, Nob Hill Publishing Madison, WI, 2017.

[188] B. Recht, A tour of reinforcement learning: The view from continuous control, Annual Review of Control,

Robotics, and Autonomous Systems 2 (2019), 253–279.

[189] M. F Reis, A P. Aguiar, and P. Tabuada, Control barrier function-based quadratic programs introduce
undesirable asymptotically stable equilibria, IEEE Control Sys. Letters 5 (2020), no. 2, 731–736.

[190] F. Rey, Z. Pan, A. Hauswirth, and J. Lygeros, Fully decentralized admm for coordination and collision
avoidance, 2018 european control conference (ecc), 2018, pp. 825–830.

[191] S. A. A. Rizvi and Z. Lin, Output feedback reinforcement q-learning control for the discrete-time linear
quadratic regulator problem, 2017 IEEE 56th annual conference on decision and control (cdc), 2017,

pp. 1311–1316.

[192] , Reinforcement learning-based linear quadratic regulation of continuous-time systems using
dynamic output feedback, IEEE transactions on cybernetics 50 (2019), no. 11, 4670–4679.

[193] U. Rosolia and A. D Ames, Multi-rate control design leveraging control barrier functions and model
predictive control policies, IEEE Control Sys. Letters 5 (2020), no. 3, 1007–1012.

[194] U. Rosolia and F. Borrelli, Learning model predictive control for iterative tasks. a data-driven control
framework, IEEE Transactions on Automatic Control 63 (2017), no. 7, 1883–1896.

[195] U. Rosolia, A. Singletary, and A. D Ames, Unified multirate control: From low-level actuation to high-level
planning, IEEE Trans. on Automatic Control 67 (2022), no. 12, 6627–6640.

[196] U. Rosolia, X. Zhang, and F. Borrelli, Data-driven predictive control for autonomous systems, Annual

Review of Control, Robotics, and Autonomous Systems 1 (2018), 259–286.

[197] M. Rotulo, C. De Persis, and P. Tesi, Data-driven linear quadratic regulation via semidefinite programming,

IFAC-PapersOnLine 53 (2020), no. 2, 3995–4000.

[198] , Online learning of data-driven controllers for unknown switched linear systems, Automatica 145
(2022), 110519.

[199] A. Saccon, J. Hauser, and A P. Aguiar, Optimal control on lie groups: The projection operator approach,

IEEE TAC 58 (2013), no. 9, 2230–2245.

[200] D. Sadigh, S. Sastry, S. A Seshia, and A. D Dragan, Planning for autonomous cars that leverage effects on
human actions., Robotics: Science and systems, 2016, pp. 1–9.

[201] A. P. Sage, Optimum systems control, Prentice-Hall, 1968.

[202] A. D Saravanos, A. Tsolovikos, E. Bakolas, and E. A Theodorou, Distributed covariance steering with
consensus ADMM for stochastic multi-agent systems., Robotics: Science and systems, 2021.

[203] M. Sassano and A. Astolfi, Combining pontryagin’s principle and dynamic programming for linear and
nonlinear systems, IEEE TAC 65 (2020), no. 12, 5312–5327.

214

Bibliography

[204] R. Sengupta, S. Amin, A. Annaswamy, S. Moura, and V. Bulusu, Smart cities and control, IEEE Control

Systems Magazine 35 (2015), no. 6, 20–21.

[205] L. Sforni, A. Camisa, and G. Notarstefano, Structured-policy Q-learning: an LMI-based design strategy
for distributed reinforcement learning, IEEE conference on decision and control (CDC), 2022, pp. 4059–

4064.

[206] L. Sforni, G. Carnevale, I. Notarnicola, and G. Notarstefano, On-policy data-driven linear quadratic
regulator via combined policy iteration and recursive least squares, IEEE 62nd conference on decision

and control (CDC), 2023, pp. 5047–5052.

[207] , Stability-certified on-policy data-driven lqr via recursive learning and policy gradient, arXiv

preprint arXiv:2403.05367 (2024).

[208] L. Sforni, G. Carnevale, and G. Notarstefano, A distributed feedback-based framework for nonlinear
aggregative optimal control, IEEE Transactions on Automatic Control (2023). (submitted).

[209] L. Sforni, I. Notarnicola, and G. Notarstefano, Learning-driven nonlinear optimal control via gaussian
process regression, 2021 60th IEEE conference on decision and control (CDC), 2021, pp. 4412–4417.

[210] , Sparse data-driven LQR via augmented lagrangian-based policy search, IEEE Transactions on

Control of Network Systems (2024). (submitted).

[211] L. Sforni, G. Notarstefano, and A. D. Ames, Receding horizon CBF-based multi-layer controllers for safe
trajectory generation, 2024 american control conference (ACC), 2024. (accepted).

[212] L. Sforni, S. Spedicato, I. Notarnicola, and G. Notarstefano, Gopronto: a feedback-based framework for
nonlinear optimal control, arXiv preprint arXiv:2108.13308 (2021).

[213] S. Shin, T. Faulwasser, M. Zanon, and V. M Zavala, A parallel decomposition scheme for solving long-
horizon optimal control problems, IEEE conference on decision and control (CDC), 2019, pp. 5264–

5271.

[214] O. Shorinwa, T. Halsted, and M. Schwager, Scalable distributed optimization with separable variables in
multi-agent networks, Acc, 2020, pp. 3619–3626.

[215] O. So, K. Stachowicz, and E. A Theodorou, Multimodal maximum entropy dynamic games, preprint

arXiv:2201.12925 (2022).

[216] S. Spedicato, S. Mahesh, and G. Notarstefano, A sparse polytopic LPV controller for fully-distributed
nonlinear optimal control, IEEE european control conference (ECC), 2019, pp. 554–559.

[217] S. Spedicato and G. Notarstefano, Cloud-assisted distributed nonlinear optimal control for dynamics over
graph, IFAC-PapersOnLine 51 (2018), no. 23, 361–366.

[218] N. Srinivas, A. Krause, S. M Kakade, and M. W Seeger, Information-theoretic regret bounds for Gaussian
process optimization in the bandit setting, IEEE Transactions on Information Theory 58 (2012), no. 5,

3250–3265.

[219] G. Stomberg, A. Engelmann, and T. Faulwasser, Decentralized non-convex optimization via bi-level SQP
and ADMM, Cdc, 2022.

[220] G. Stomberg et al., Cooperative distributed MPC via decentralized real-time optimization: Implementation
results for robot formations, Control Engineering Practice 138 (2023), 105579.

[221] R. S Sutton and A. G Barto, Reinforcement learning: An introduction, MIT press, 2018.

[222] M. J. Tenny, S. J. Wright, and J. B. Rawlings, Nonlinear model predictive control via feasibility-perturbed
sequential quadratic programming, J. Comp. Optim. Appl. 28 (2004Apr.), no. 1, 87–121.

[223] A. Testa, G. Carnevale, and G. Notarstefano, A tutorial on distributed optimization for cooperative
robotics: from setups and algorithms to toolboxes and research directions, preprint arXiv:2309.04257

(2023).

215

Bibliography

[224] E. Theodorou, Y. Tassa, and E. Todorov, Stochastic differential dynamic programming, Proceedings of

the 2010 american control conference, 2010, pp. 1125–1132.

[225] E. Todorov and W. Li, A generalized iterative lqg method for locally-optimal feedback control of constrained
nonlinear stochastic systems, Proceedings of the 2005, american control conference, 2005., 2005,

pp. 300–306.

[226] S. Tonkens and S. Herbert, Refining control barrier functions through hamilton-jacobi reachability, 2022

IEEE/rsj int. conf. on intel. robots and sys., 2022, pp. 13355–13362.

[227] T. Tsang, D. Himmelblau, and T. F Edgar, Optimal control via collocation and non-linear programming,

International Journal of Control 21 (1975), no. 5, 763–768.

[228] C. S Turner, Recursive discrete-time sinusoidal oscillators, IEEE Signal Processing Magazine 20 (2003),

no. 3, 103–111.

[229] J. Umlauft, T. Beckers, and S. Hirche, Scenario-based optimal control for Gaussian process state space
models, European control conference (ECC), 2018, pp. 1386–1392.

[230] J. Umlauft and S. Hirche, Feedback linearization based on Gaussian processes with event-triggered online
learning, IEEE Transactions on Automatic Control 65 (2019), no. 10, 4154–4169.

[231] K. G Vamvoudakis, Q-learning for continuous-time linear systems: A model-free infinite horizon optimal
control approach, Systems & Control Letters 100 (2017), 14–20.

[232] R. Van Parys and G. Pipeleers, Distributed MPC for multi-vehicle systems moving in formation, Robotics

and Autonomous Systems 97 (2017), 144–152.

[233] H. J Van Waarde, J. Eising, H. L Trentelman, and M K. Camlibel, Data informativity: a new perspective
on data-driven analysis and control, IEEE Transactions on Automatic Control 65 (2020), no. 11, 4753–

4768.

[234] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli, B. Novoselnik, T. Albin,

R. Quirynen, and M. Diehl, Acados–a modular open-source framework for fast embedded optimal control,
Mathematical Programming Computation 14 (2022), no. 1, 147–183.

[235] E. E Vlahakis and G. D Halikias, Distributed LQR methods for networks of non-identical plants, 2018

IEEE conference on decision and control (cdc), 2018, pp. 6145–6150.

[236] D. Vrabie, O Pastravanu, M. Abu-Khalaf, and F. L Lewis, Adaptive optimal control for continuous-time
linear systems based on policy iteration, Automatica 45 (2009), no. 2, 477–484.

[237] T. Wang and P. Yi, Distributed projection-free algorithm for constrained aggregative optimization, preprint

arXiv:2207.11885 (2022).

[238] J. C Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, A note on persistency of excitation,

Systems & Control Letters 54 (2005), no. 4, 325–329.

[239] C. Wilson and H. Dowlatabadi, Models of decision making and residential energy use, Annu. Rev.

Environ. Resour. 32 (2007), 169–203.

[240] S. J Wright, Primal-dual interior-point methods, SIAM, 1997.

[241] W. Xiao, C. A Belta, and C. G Cassandras, Sufficient conditions for feasibility of optimal control problems
using control barrier functions, Automatica 135 (2022), 109960.

[242] W. Xiao, C. G Cassandras, and C. A Belta, Bridging the gap between optimal trajectory planning and
safety-critical control with applications to autonomous vehicles, Automatica 129 (2021), 109592.

[243] L. Xu, B. Guo, C. Galimberti, M. Farina, R. Carli, and G. F. Trecate, Suboptimal distributed LQR design
for physically coupled systems, IFAC-PapersOnLine 53 (2020), no. 2, 11032–11037.

216

Bibliography

[244] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H Johansson, A
survey of distributed optimization, Annual Reviews in Control 47 (2019), 278–305.

[245] L. Yingzhao and C. Jones, On Gaussian process based Koopman operator, Ifac world congress, 2020.

[246] A. Zanelli, A. Domahidi, J Jerez, and M. Morari, Forces nlp: an efficient implementation of interior-point
methods for multistage nonlinear nonconvex programs, International Journal of Control 93 (2020), no. 1,

13–29.

[247] A. Zanelli, R. Quirynen, and M. Diehl, Efficient zero-order NMPC with feasibility and stability guarantees,
IEEE european control conference (ECC), 2019, pp. 2769–2775.

[248] M. Zanon, S. Gros, H. Wymeersch, and P. Falcone, An asynchronous algorithm for optimal vehicle
coordination at traffic intersections, IFAC-PapersOnLine 50 (2017), no. 1, 12008–12014.

[249] A. Zare, H. Mohammadi, N. K Dhingra, T. T Georgiou, and M. R Jovanović, Proximal algorithms for
large-scale statistical modeling and sensor/actuator selection, IEEE Transactions on Automatic Control

65 (2019), no. 8, 3441–3456.

[250] K. Zhang, B. Hu, and T. Basar, Policy optimization for H2 linear control with H∞ robustness guarantee:
Implicit regularization and global convergence, Learning for dynamics and control, 2020, pp. 179–190.

[251] Y. Zhang and M. M Zavlanos, Distributed off-policy actor-critic reinforcement learning with policy
consensus, IEEE conference on decision and control (cdc), 2019, pp. 4674–4679.

[252] M. Zhu and S. Martı́nez, Discrete-time dynamic average consensus, Aut. 46 (2010), no. 2, 322–329.

[253] I. Ziemann, A. Tsiamis, H. Sandberg, and N. Matni, How are policy gradient methods affected by the
limits of control?, 2022 IEEE 61st conference on decision and control (cdc), 2022, pp. 5992–5999.

217

	Introduction
	Nonlinear and Learning-driven Optimal Control Frameworks
	Reinforcement Learning and Data-driven Optimal Control for Large-Scale and Multi-Agent Systems
	Feedback Embedding Paradigm for Numerical Optimal Control of Large-scale, Multi-agent and Uncertain Systems
	Optimization-based Safe Control of Multi-layer Systems
	Conclusions
	Basics on Nonlinear Optimization
	First- and Second-order Numerical Methods for Optimal Control
	Averaging Theory for Two-time-scale Systems
	Bibliography

