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In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique 

to analyze and model complex dynamic real-world systems is presented. This method 

derives, directly from data, computationally efficient reduced-order models (ROMs) 

which can replace too onerous or unavailable high-fidelity physics-based models. 

Optimizations and extensions to the standard implementation of the methodology are 

proposed, investigating diverse case studies related to the decoding of complex flow 

phenomena. The flexibility of this data-driven technique allows its application to high-

fidelity fluid dynamics simulations, as well as time series of real systems observations. 

The resulting ROMs are tested against two tasks: (i) reduction of the storage 

requirements of high-fidelity simulations or observations; (ii) interpolation and 

extrapolation of missing data. The capabilities of DMD can also be exploited to 

alleviate the cost of onerous studies that require many simulations, such as uncertainty 

quantification analysis, especially when dealing with complex high-dimensional 

systems. In this context, a novel approach to address parameter variability issues when 

modeling systems with space and time-variant response is proposed. Specifically, 

DMD is merged with another model-reduction technique, namely the Polynomial 

Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD 

deployment result from the study, together with the demonstration of its potential to 

ease diagnosis and scenario analysis when complex flow processes are involved. 
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PhD in Civil, Chemical, Environmental, and Materials Engineering

Decoding complex flow phenomena via Dynamic
Mode Decomposition

A dissertation submitted for the degree of
Doctor of Philosophy

Candidate:

Giulia Libero

PhD Coordinator:

Prof. Alessandro Tugnoli

Advisor:

Prof. Valentina Ciriello

Co-Advisor:

Prof. Daniel M. Tartakovsky

2023









“Je suis la nature sans la pouvoir saisir,
et puis, cette rivière qui baisse, remonte,
un jour verte, puis jaune, tantôt à sec, et
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Abstract

In this thesis, the viability of the Dynamic Mode Decomposi-
tion (DMD) as a technique to analyze and model complex dy-
namic real-world systems is presented. This method derives, di-
rectly from data, computationally efficient reduced-order models
(ROMs) which can replace too onerous or unavailable high-fidelity
physics-based models. Optimizations and extensions to the stan-
dard implementation of the methodology are proposed, investigat-
ing diverse case studies related to the decoding of complex flow
phenomena. The flexibility of this data-driven technique allows its
application to high-fidelity fluid dynamics simulations, as well as
time series of real systems observations. The resulting ROMs are
tested against two tasks: (i) reduction of the storage requirements
of high-fidelity simulations or observations; (ii) interpolation and
extrapolation of missing data. The capabilities of DMD can also
be exploited to alleviate the cost of onerous studies that require
many simulations, such as uncertainty quantification analysis, es-
pecially when dealing with complex high-dimensional systems. In
this context, a novel approach to address parameter variability is-
sues when modeling systems with space and time-variant response
is proposed. Specifically, DMD is merged with another model-
reduction technique, namely the Polynomial Chaos Expansion, for
uncertainty quantification purposes. Useful guidelines for DMD
deployment result from the study, together with the demonstra-
tion of its potential to ease diagnosis and scenario analysis when
complex flow processes are involved.
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1 Introduction

The world around us constantly evolves, in an endless chain of
causes and effects, and humans are asked to face new challenges
to adapt and secure a liveable and sustainable future for all within
this complex system.

Water resources management is a central issue in this frame-
work. Although approximately 70% of our planet is made up of
water, the majority of this resource is stored in the oceans, and
the remaining freshwater supply is not adequately distributed in
space and time to meet all current and foreseeable water demands
(Gourbesville, 2008). This has evident impacts on agricultural
productivity and energy production, limiting economic develop-
ment and having undeniable social implications. The lack of ad-
equate clean water is moreover a constraint on human health as
well as on the maintenance of a clean environment and healthy
ecosystems (Cosgrove and Loucks, 2015).

Climate change now occurring makes this picture even more
alarming. As described in the latest report of the IPCC (2023b),
widespread adverse impacts and related losses and damages to
nature and people demonstrate that climate change is an evident
threat to human well-being and planetary health. Food and water
security (see Simpson and Jewitt (2019) for details on the Water-
Energy-Food Nexus concept) have already been affected by global
warming, changing precipitation patterns, reduction of cryospheric
elements, and greater frequency and intensity of climatic extremes.
Adverse impacts have been reported on human physical and men-
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tal health, livelihoods, and infrastructure in urban settings. Fur-
thermore, economic and societal impacts are affecting people and
systems disproportionately across sectors and regions, contribut-
ing to humanitarian crises and conflicts.

As any further delay can result in compounding and cascading
risks across sectors and regions, global actions are urgently nec-
essary (IPCC, 2023b). Specifically, responding to climate change
involves a two-pronged approach: on one hand, we need to reduce
emissions of and stabilize the levels of greenhouse gases in the at-
mosphere (mitigation) (IPCC, 2014b); while on the other, we have
to design strategies to adapt to present and future impacts of cli-
mate change (adaptation) (IPCC, 2014a). At the same time, all
the strategies we define should be carefully conceived to guarantee
equality and sustainability worldwide.

Thus, the first goal we need to pursue is limiting human impact
on climate and environment, to avoid an escalation of negative ef-
fects (mitigation). Over the past century, as the global population
quadrupled and economic production increased about 20-fold, to
meet the growing demand for resources and food we have inten-
sively exploited the environment causing depletion of resources,
contamination, and impacting climate (Steer, 2014). Past pat-
terns of energy and natural resource use, agricultural practices,
and urbanization proved largely unsustainable. Now we need to
reduce the human footprint (Mu et al., 2022) and move to a more
sustainable model of development. To this aim, innovative strate-
gies and technologies are designed and tested to reduce resource
consumption and limit emissions or production of contaminant
substances. Notable efforts involve the energy sector, where re-
search focuses both on the sustainable exploitation of resources
(Hilborn et al., 1995) and the design of technologies to achieve
carbon neutrality and global greenhouse gas emissions reduction
(Wang et al., 2021; Fankhauser et al., 2021).

As we are already committed to some level of climate change,
the second focal point is the development of strategies and tech-
nologies to adapt to existing and future negative impacts (Herman
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et al., 2020; Füssel, 2007). Adaptation seeks to facilitate adjust-
ment to actual or expected climate and its effects and moderate or
avoid harm or exploit beneficial opportunities. It’s not only nec-
essary to adjust our way of living to thrive in a new environment,
but we also need to enhance our resilience. This means being able
to anticipate and manage stress and shocks and recover from their
impacts quickly and effectively. In the past, we have disrupted and
overallocated river flow regimes, overdrawn groundwater aquifers,
and polluted many water bodies. This amplifies our vulnerability
to extreme weather events, such as drought and floods. As the in-
tensity and frequency of these phenomena increase due to climate
change (Swain et al., 2020), we need to improve the resilience of
infrastructures and water management strategies to defend our-
selves from the negative consequences. Appropriate actions should
be designed to protect urban areas against flood damage and at
the same time to guarantee water supplies even during long and
intense drought periods (Baldassarre et al., 2017). For this rea-
son, the civil and environmental engineering sector is carefully
focused on the observation of present and past occurrences, to de-
rive predictions of future events and draw adaptation solutions.
Measurements of phenomena are collected and experimental sim-
ulations are performed to investigate systems behavior and evalu-
ate alternative solutions (Herman et al., 2020; Hallegatte, 2009).
The challenges we need to face are not limited to the quantitative
availability of water but also refer to the quality of the resource.
Contamination, indeed, further exacerbates the critical conditions
in which water bodies find themselves and deeply influences the
health of the surrounding ecosystems, reflecting on food security
and human health (Lu et al., 2015). To limit the negative effects,
such as disease spreading and loss in food production, and guar-
antee a safe, sustainable, and prosperous future, effective remedi-
ation interventions to preserve and restore water quality are being
designed. To derive robust adaptation strategies growing atten-
tion is being paid also to the interactions between water and eco-
logical systems (Rinaldo and Rodriguez-Iturbe, 2022; D'Odorico
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et al., 2010). Modeling and interpretation of these connections
involve many diverse sectors, ranging from chemistry to biology,
from hydrology to sociology. Since the warming climate is already
producing effects on human body function (Patz et al., 2005; Mora
et al., 2022), and the freshwater shortage is closely linked to mal-
nutrition and poor hygiene conditions (Lin et al., 2022; Howard
et al., 2016), even the medical sector is involved. The focus in this
case is on the diagnosis of dysfunctions, and on the development
of cheap and efficient treatments for widely and quickly spreading
diseases.

The third key element in the definition of efficient and sustain-
able responses to global water challenges is ensuring universal and
equitable access to water for all (WSH, 2014; Cetrulo et al., 2020).
Climate change is expected to emphasize the differences in water
availability around the globe, majorly affecting developing coun-
tries, while the global population continues its growth (Cappelli
et al., 2021). To avoid humanitarian crises and conflicts (Kreamer,
2012; Nandalal and Simonovic, 2003), policies and actions should
fight these disproportions and inequalities, encouraging integrated
water resources management at all levels, and transboundary co-
operation.

The design and development of efficient technologies and strate-
gies to support all these urgent actions require us to deal with
a highly intricate framework of acting variables and phenomena
(Leavesley, 1994). Specifically, we are commonly asked to model
dynamical real-world systems, which are usually highly complex
to interpret, generally nonlinear, and with a multi-scale behavior
in both space and time (Phan et al., 2021). The dense network
of interactions between different phenomena and variables further
complicates the tasks, introducing uncertainty and variability in
the framework (Herman et al., 2020; Hallegatte, 2009). For this
reason, the direct use of physical laws or governing equations to
reproduce complex dynamical systems’ behavior is often an elusive
task.

Nowadays, the vast amount of data collected in all scientific
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fields, either directly through observation or using simulations,
together with the development of efficient techniques to handle
them, offers new opportunities for analyzing dynamic systems. In
many research sectors, ranging from the medical (Pegolotti et al.,
2023) to the environmental one (Song and Tartakovsky, 2021),
data-driven models are emerging as powerful tools to overcome
computational problems and manage uncertainty when complex-
ity and high dimensions make traditional modeling impracticable
(Tartakovsky et al., 2020; Vespignani, 2011). The primary goal
of data-driven modeling is building efficient and computationally
cheap models for future state prediction, but also interpreting and
identifying physical insights on the phenomena directly from data.

Computational efficiency is a crucial feature in complex system
modeling, especially when large numbers of simulations are re-
quired to solve time-dependent problems or to explore the impacts
of parameter variability on the model response (e.g., uncertainty
quantification analysis). Order-reduction methods stand out for
their specific ability to reduce the computational burden in case of
high-dimensional problems (Kutz et al., 2016). These techniques
typically capture the key features of the underlying dynamics of a
complex system directly from high-fidelity simulations or observa-
tional data and then employ these elements to derive an efficient
reduced-order model (ROM) of the system state (Pegolotti et al.,
2021; Ciriello et al., 2019; Oladyshkin et al., 2012). The specific
model-reduction technique can be selected to, e.g., relate the key
governing parameters in input and the model response in out-
put (like response surface methods) or to approximate dynamic
system behavior with simple but accurate mathematical relation-
ships. Its simple form reduces the computational cost and allows
the generation of a large number of simulations while preserving
the high-fidelity representation of the phenomena (Focaccia et al.,
2021; Ciriello et al., 2017, 2012; Oladyshkin et al., 2012).

The Dynamic Mode Decomposition (DMD) method is a promis-
ing data-driven technique based on Singular Value Decomposition
(SVD) for the generation of ROMs of complex dynamical systems
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(Schmid et al., 2010). It originated in the fluid dynamics commu-
nity as a technique to identify spatio-temporal coherent structures
from high-dimensional data (Rowley et al., 2009; Schmid et al.,
2010; Schmid, 2010; Bagheri, 2013; Pan et al., 2021; Liu et al.,
2021; Ohh and Spedding, 2022). In this field, many optimizations
have been developed to adapt the algorithm to several different
contexts and applications (Kutz et al., 2016; Schmid, 2022). Later,
its data-based, equation-free, and flexible structure encouraged its
spreading in very different environments (Brunton et al., 2016;
Proctor and Eckhoff, 2015; Mann and Kutz, 2016; Erichson et al.,
2016). The method seeks to compute, by means of the SVD,
the best-fit linear operator which relates time-shifted snapshots
of the state of the system. The DMD-based ROM generation is
purely based on data, equally valid for experimental and numerical
datasets. Hence, major advantages can derive from its application
when traditional physics-based models are too complex to design
and employ, but a large number of observations of the system
evolution in time are available. Physical interpretability of the
structure of DMD-based models, guaranteed by the connection of
DMD with Koopman operator theory (Rowley et al., 2009; Mezić,
2013), is a further advantage. Indeed, DMD-based models can be
used not only as faster and cheaper ROMs but their structure can
also be interpreted to discover patterns and physical features in
the phenomena.

In this research, the employment of the DMD method with
respect to the task of modeling complex flow phenomena is pre-
sented. The use of DMD is promising in the diagnosis of complex
hydraulic systems ranging from water resources flow and trans-
port in natural domains to fluid mechanics applications. Thanks
to its flexibility, DMD can be applied to high-fidelity fluid dynam-
ics simulations, as well as time series of real systems observations,
to obtain computationally efficient ROMs. These can replace too
complex or unavailable high-fidelity physics-based models when
onerous scenario and uncertainty analysis are needed, reducing
the computational cost and speeding up the development of ap-
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propriate solutions. Specifically, we present the use of DMD-based
ROMs to accomplish two tasks: (i) reduction of the storage re-
quirements of high-fidelity simulations or observations; and (ii)
interpolation and extrapolation of missing data. To demonstrate
the usefulness of the technique with respect to these objectives,
two different innovative applications of DMD in the fluid dynamic
context are presented. To the best of our knowledge, we are the
first to apply an extended version of the DMD algorithm to 3D
simulations of a complex dynamic system, and then to a time se-
ries of satellite global observations. Moreover, we propose a novel
approach to address parameter variability issues when modeling
systems with space and time-variant responses. Here, DMD is
exploited to alleviate the calibration cost of the procedure, and
hence make onerous analysis, such as uncertainty quantification,
practicable.

The Thesis is organized as follows. In Chapter 2 we intro-
duce the mathematical definition of dynamical systems and we
present the DMD method. We describe the standard algorithm
and an extended version adapted to deal with possible problem
inhomogeneity. We propose an optimized implementation of the
algorithms and we discuss the key role played by the selection
of an appropriate SVD truncation rank to guarantee efficiency,
accuracy, and generalizability of the model. The second part of
the Chapter is devoted to the description of another model reduc-
tion technique that is a response surface method: the Polynomial
Chaos Expansion (PCE); we describe the algorithm, prove its use-
fulness by briefly presenting results from the first of our papers,
and conclude by discussing the efficiency limits of PCE when ap-
plied to dynamical systems. This introduction to the PCE method
serves as a base for the development of an integrated DMD-PCE
framework for the robust reduction of models with time-variant
response that is presented in Chapter 5. A common thread guides
us from this methodological description to the different applica-
tions involving complex flow phenomena proposed in the following
chapters.
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In Chapter 3 we investigate the viability of DMD as a method
to reduce the computational cost and storage/memory require-
ments related to fluid dynamics simulations. Applying the ex-
tended DMD (xDMD) algorithm for the first time to a set of three-
dimensional cardiovascular simulations, we test the efficacy and
robustness of the method and explore the influence of SVD trun-
cation on accuracy. Given an optimal low-rank truncation, which
balances accuracy, generalizability, and computational saving, the
xDMD proves to be a successful tool for data compression and re-
construction of the system’s dynamics. This could help speed up
the modeling phase, with positive impacts on the diagnosis and
the optimization of intervention choice.

In Chapter 4 we analyze the ability of DMD to derive accu-
rate ROMs directly from high-dimensional datasets of measure-
ments/observations of the real system behavior. Differently from
the previous application, here no high-fidelity model is available,
and heavenly-spaced simulations are replaced by time series of ob-
servations, which may present gaps and suffer from measurement
errors and biases. Specifically, the analysis is performed on a novel
application of DMD to satellite data concerning water distribution
on Earth. We test the performances of the standard (sDMD) and
the extended (xDMD) algorithms on the task of reconstruction
and extrapolation of data, demonstrating that DMD could be an
innovative technique to decode precious satellite mission products.

In Chapter 5 we propose the combination of the capabilities of
DMD and PCE into an integrated novel approach to address pa-
rameter variability issues when modeling systems with space-time
variant response. The DMD method is a powerful tool to reduce
the computational cost of dynamic systems modeling. Still, it is
not suitable to explore the system response in the space of vari-
ability of parameters. On the other hand, the PCE technique
is widely employed to address parameters’ variability issues, but
the huge number of simulations required for training inhibits its
use in case of time-space variant problems. Here, we propose a
DMD-informed PCE, where part of the high-fidelity simulations
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required to calibrate the polynomial model is replaced by low-cost
DMD reconstructions. The novel approach is tested against a sce-
nario of a non-linear 2D multiphase flow in a heterogeneous media,
considering different replacement rates and employing either the
standard (sDMD) or the extended (xDMD) version of the method
for the interpolation task. Thanks to its computational efficiency
and accuracy the proposed framework could ease onerous studies
such as uncertainty quantification analysis.

Remarks from each application are collected at the end of each
chapter and then reinterpreted in a set of general conclusions and
future perspectives in Chapter 6 which closes the thesis.
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2 Methods

Dynamical systems allow us to represent the evolution of a quan-
tity of interest (QoI) over time, as a consequence of unsteady phe-
nomena. However, complexity, non-linearity, and the multi-scale
behavior in space and time, often prevent the systematic use of
physically-based high-fidelity models (HFMs) to investigate the
behavior of the QoI. Nowadays, the large amount of data available
and the development of efficient techniques to handle these data
offer new opportunities to analyze and understand complex dy-
namical systems. Data-driven methods, in particular, are emerg-
ing as powerful tools to derive physical insights on the phenomena
directly from data and build efficient surrogate models for future
state prediction. Computational efficiency is crucial when large
numbers of simulations are required to explore how the variability
of the input parameters impacts the model response (e.g., uncer-
tainty quantification analysis). Hence, order-reduction techniques
can be employed to reduce the computational burden of the anal-
ysis in case of high-dimensional problems.

In this chapter, we present the Dynamic Mode Decomposition
(DMD) method, a promising data-driven technique based on Sin-
gular Value Decomposition (SVD) for the generation of reduced-
order models (ROMs) of complex dynamical systems. DMD is
a data-based, equation-free method whose flexible structure en-
courages its use in different fields, primarily where traditional
physically-based models are too complex to employ and a large
amount of data describing the temporal and spatial evolution of
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the system is available. We describe the algorithm and introduce
optimizations for its implementation. We also propose criteria for
appropriate matrix truncation and metrics to explore the method
performances.

Besides the DMD, the featured method of the whole project, a
second technique is presented: the Polynomial Chaos Expansion
(PCE). As it will be discussed in Chapter 5, in fact, the attitude
of DMD can be combined with the capabilities of PCE to ap-
proximate the system’s response in the space of variability of the
parameters to obtain a new robust framework for the reduction of
high-dimensional models with time-variant response.

The chapter structure is as follows: in Section 2.1 we intro-
duce the mathematical definition of dynamical systems; Section
2.2 is devoted to presenting the DMD, describing a standard and
an extended algorithm to implement the method, and finally dis-
cussing performances and proposing optimizations; in Section 2.3
the focus is on the PCE technique, with the description of the
algorithm and proof of its usefulness through the results from a
paper of ours, and the discussion of its limits when applied to
dynamical systems.

12



2.1 Dynamical Systems

Consider a dynamical system

dx(t)

dt
= f(x(t), t;µ), (2.1)

where x(t) is a vector representing the state of the system at time
t, µ contains parameters of the system, and f(x, ·) represents the
dynamics.

In general, x(t) ∈ M is an n-dimensional state that lives on
a smooth manifold M, and f is an element of the tangent bun-
dle TM of M so that f(x(t)) ∈ Tx(t)M. However, we typically
consider the simpler case where x(t) ∈ M = RN is a vector of
the system state discretized on a numerical mesh of N elements,
and f is a Lipschitz continuous function, guaranteeing existence
and uniqueness of solutions to Equation 2.1 (Brunton and Kutz,
2019).

The evolution in time of the system state can also be described
in a discrete-time form:

xk = F(xk−1). (2.2)

This formulation is more general than the continuous one in Equa-
tion 2.1, encompassing discontinuous and hybrid systems as well,
and is usually more appropriate and natural to be used when con-
sidering experimental data.

Sampling the trajectory of Equation 2.1 in time, discrete-time
dynamics may be induced from the continuous-time dynamics, so
that xk = x(k∆t). The discrete-time propagator F, also known
as flow map, is now parameterized by the time step ∆t:

xk = F∆t(xk−1). (2.3)

In this formulation, xk and xk−1 can be interpreted as snap-
shots of the system taken at a distance in time equal to the time
step ∆t. These vectors contain the values of the QoI measured or
simulated at several points in the space domain. The evolution of
the variable from time tk−1 to tk in each point is described by F∆t.
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2.2 Dynamic Mode Decomposition (DMD)

DMD originated in the fluid dynamics community, where Schmid
et al. (2010) first proposed this method to identify spatiotempo-
ral coherent structures from high-dimensional data. The method
seeks to compute the best-fit linear operator to relate time-shifted
snapshots of the system’s state to model the complex system be-
havior directly from the data.

Based on the well-known SVD, DMD is classified as a typical
order-reduction technique. The selection of an appropriate trun-
cation rank for the SVD allows us to control the dimension of the
model and balance accuracy and computational cost. The result
is a computationally efficient mathematical representation of the
complex system directly inferred from data, commonly referred
to as ROM. A ROM typically captures the key features of the
system’s dynamics directly from high-fidelity simulations or mea-
surements and acts as a surrogate to get predictions at a negligible
computational cost. Its simple mathematical form allows for the
generation of a large number of simulations while preserving the
high-fidelity representation of the phenomena.

As explored in Rowley et al. (2009) and Mezić (2013) soon
after its first development, the linear DMD-based ROM can be
viewed, given an appropriate selection of observables, as a finite-
dimensional linear approximation of the linear, infinite-dimensional
Koopman operator (Koopman, 1931). That guarantees the possi-
bility of physically interpreting the structure of the model, which,
as a consequence, can serve not only as an efficient model to repro-
duce the system behavior but also as a tool to discover dominant
features of the phenomena.

Similarly to the Proper Orthogonal Decomposition (POD),
based on the information contained in the SVD, the DMD can
identify spatiotemporal patterns that can be analyzed to decode
the system behavior and then recombined to reconstruct and pre-
dict system states. However, while POD provides a hierarchy of
features (i.e., modes) that only considers spatial correlation and
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energy content, ignoring any temporal information, DMD provides
spatial modes together with the description of their evolution over
time, in terms of frequency, oscillations, and growth or decay rate
(i.e., time dynamics). Hence, this method can be seen as a com-
bination of the favorable aspects of the POD/SVD technique and
the Fast Fourier Transform for temporal frequency identification.

The interpretability of the model structure makes DMD dif-
ferent from many other data-driven methods, such as Neural Net-
works, which are typical ”black-box” models. In this case, the
ROM is useful not only for the prediction or reconstruction of
the evolution of a QoI in space and time but also to provide in-
sights into the structure of the phenomena, and patterns that can
be related to physical influencing factors. The connection offered
by DMD between nonlinear dynamical systems and a linear, in-
terpretable, and computationally straightforward framework has
raised considerable interest in this method.

The primary field where DMD has been largely employed since
its origin is fluid dynamics (Rowley et al., 2009; Schmid et al.,
2010; Schmid, 2010; Bagheri, 2013; Pan et al., 2021; Liu et al.,
2021; Ohh and Spedding, 2022). Many optimizations have been
developed to adapt the algorithm to several different contexts and
applications in this field, as discussed in the reviews by Kutz et al.
(2016) and more recently by Schmid (2022). Nevertheless, its
equation-free and flexible structure is encouraging the spreading
in very different fields, from neuroscience (Brunton et al., 2016) to
epidemiology (Proctor and Eckhoff, 2015), from financial trading
(Mann and Kutz, 2016) to video processing (Erichson et al., 2016).

DMD is purely based on data, equally valid for experimental
and numerical datasets, and doesn’t require knowledge of the gov-
erning equations. The main advantages derive from its application
when traditional physics-based models are too complex to design
and employ, and a large amount of data describing the temporal
and spatial evolution of the system is available. In these cases,
DMD-based models are used not only as cheaper surrogates but
their structure can also be investigated to discover patterns and

15



m
o

d
es

𝑋 =
| |
𝑥1 𝑥2
| |

| |
… 𝑥𝑚−1
| |

DMD

Prediction
𝐱1

𝑡

tim
e d

yn
a

m
ics

Data Interpretation

𝐱2

𝐱𝑀

high fidelity simulations or observations

Figure 2.1: Dynamic Mode Decomposition to interpret and predict
complex dynamical systems’ behavior. The method derives from high-
fidelity simulations or observations a reduced-order model, whose struc-
ture can be decomposed into spatial patterns (modes) and respective
temporal evolution (time dynamics), which can be physically inter-
preted and recombined to predict future states of the system.

physical features in the phenomena.

2.2.1 Standard DMD Algorithm

Among different versions of the original standard DMD (sDMD)
formulation, the exact DMD framework developed by Tu et al.
(2014) is commonly considered the most general and rigorous.

DMD is inherently data-driven hence, the first step concerns
the collection and management of data. Suppose to have a set of
M pairs of snapshots representing the state of the system in N
points in space as it evolves in time. Each pair m = 1, 2, . . . ,M
can be denoted by {x(tk),x(t′k)}m, where tk is the k-th instant in
the observed temporal interval of system evolution, t′k = tk +∆t,
and ∆t is a fixed time step for all the pairs. Each snapshot can be
arranged into a vector and two time-shifted matrices, X ∈ RN×M

and X′ ∈ RN×M , can be built such that the first element x(tk) of
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each pair becomes a column of X, while the second element x(t′k)
becomes a column of X′:

X =

 x(t1) x(t2) ... x(tM)

 ,

X′ =

 x(t′1) x(t′2) ... x(t′M)

 ,

(2.4)

In the original formulations provided by Schmid et al. (2010)
and Rowley et al. (2009), the sampling in time was assumed to be
uniform, hence tk = k∆t and t′k = tk + ∆t = tk+1. In this case,
the notation can be simplified in xk = x(k∆t). The two matrices
X and X′, in this particular case, are formed with a collection of
sequential snapshots, evenly spaced in time and therefore the first
m− 1 columns of X′ can be obtained by simply shifting X by one
time step:

X =

 x0 x1 ... xM−1

 ,

X′ =

 x1 x2 ... xM

 ,

(2.5)

In the standard version of the DMD algorithm (sDMD), the
relationship between X and X′ is approximated with the best-fit
linear operator A as follows:

X′ ≈ AX. (2.6)

If we assume uniform time sampling, the temporal evolution of
the variable x(t) is approximated by a linear model:

xk+1 ≈ Axk. (2.7)
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The best-fit operator A establishes a linear dynamical system that
best advances snapshot measurements forward in time. It is math-
ematically defined as:

A = argmin
A

∥ X′ −AX ∥F= X′X† ∈ RN×N (2.8)

where ∥ · ∥F is the Frobenius norm and † denotes the pseudo-
inverse.

In a typical application, the number of snapshot pairs is much
smaller than the number of elements in each snapshot (sampling
points), M ≪ N , so that the rank of A is at most M . Anyway,
computing A through Equation 2.8 is generally onerous. Alterna-
tively, the pseudo-inverse X† in Equation 2.8 is computed via the
truncated SVD of X = UΣV⊤, with rank r < M . It follows:

A ≈ X′VΣ−1U⊤, (2.9)

where U ∈ RN×r, Σ ∈ Rr×r, V ∈ RM×r. If r is smaller than the
number of nonzero singular values (i.e., the rank of X), then the
truncated SVD is a proxy of X.

Possibly, the problem dimensionality can be further reduced by
projecting A onto the leading singular vectors of X (POD modes),
thus resulting in a new matrix Ã ∈ Cr×r:

Ã = U⊤AU = U⊤X′VΣ−1 (2.10)

The matrix Ã defines a low-dimensional linear model of the dy-
namical system on POD coordinates

x̃k+1 ≈ Ãx̃k, (2.11)

from which it is possible to reconstruct the high-dimensional state
xk+1 as:

xk+1 = Ux̃k+1 = U
(
Ãx̃k

)
. (2.12)

Note that computing the spectral decomposition of Ã:

ÃΦÃ = ΦÃΛ (2.13)
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provides the DMD eigenvalues Λ of matrix A which corresponds
to eigenvalues of matrix Ã; while the DMD modes, i.e. the eigen-
vectors of A, can be computed from the eigenvectors ΦÃ of Ã as
follows: ΦA = X′VΣ−1ΦÃ.

While the matrix A can be directly used as a ROM of the
system behavior to reconstruct and/or predict the system state
at given time steps, the eigenvalues and eigenvectors resulting
from its spectral decomposition allow the identification of spa-
tial and temporal patterns in the data. These structures can be
re-combined to reproduce and/or predict future states, but more
importantly, they can be studied to unveil the physics of the un-
derlying phenomena.

2.2.2 Extended DMD Algorithm

One of the main advantages of DMD is its simple, flexible, and
equation-free structure. For this reason, several methodological
innovations have been included to optimize and adapt the standard
formulation to different problems.

Here, we briefly present the development of an extended version
of the classical DMD algorithm proposed by Lu and Tartakovsky
(2021) to adapt the method to inhomogeneous conditions.

To allow for a problem’s inhomogeneity, the generalized DMD
(gDMD) algorithm adds a bias term bg ∈ RN (Qin et al., 2019)
to the standard formulation described by Equation 2.7, such that

xk+1 ≈ Agxk + bg. (2.14)

Here, [Ag bg] = X′X̃† ∈ RN×N+1, where X̃⊤ = [X 1] and X̃ ∈
RN+1×M . As in the sDMD algorithm, the SVD of the matrix
X̃ ≈ UgΣgV

⊤
g is employed to reduce the computational cost of

the best-fit linear operator estimation:

[Ag bg] ≈ X′VgΣ
−1
g U⊤

g , (2.15)

where Ug ∈ RN+1×r,Σg ∈ Rr×r,Vg ∈ RM×r.
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The extended DMD (xDMD) approach (Lu and Tartakovsky,
2021) endows gDMD (Equation 2.14) with a residual-learning idea
(Chen and Xiu, 2021). It approximates the relationship between
Y = X′ −X and X such that

yk+1 = Bxxk + bx. (2.16)

Here, [Bx bx] = YX̃† ∈ RN×N+1, and X̃⊤ ∈ RN+1×M is defined
as before. For computational saving, the best-fit linear operator
is obtained through the SVD of the matrix X̃ as

[Bx bx] ≈ YVgΣ
−1
g U⊤

g . (2.17)

The matrices A (Equation 2.9) and [Bxbx] (Equation 2.17)
can be equally employed as ROMs of the system state evolution,
if this is described by nonlinear PDEs, whose solution is confined
in H ⊆ RN (to satisfy the assumptions in Lemma 2.1 in Lu and
Tartakovsky (2021)).

2.2.3 Optimized DMD Implementation

Both the sDMD and xDMD algorithms have a simple mathemat-
ical formulation. However, as any application of practical signifi-
cance involves high-dimensional datasets, careful code implemen-
tation is crucial to guarantee efficiency and accuracy.

More robust and accurate results can be achieved if chained
multiplications of matrices are broken into convenient groups using
parentheses to dictate the order of the operations. Thus, here we
propose an efficient computational strategy to derive predictions
from Equation 2.16:

yk+1 = CxDx, (2.18)

where Cx = YVgΣ
−1
g ∈ RN×r, and Dx = U⊤

g

[
xk

1

]
∈ Rr×1.

A similar computational approach can be conveniently adopted
to derive prediction from Equation 2.7:

xk+1 = CsDs, (2.19)
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where Cs = YVΣ−1 ∈ RN×r, and Ds = U⊤xk ∈ Rr×1. Thanks
to this convenient implementation fewer operations and less in-
termediate memory usage are required and the consequence is a
speed-up in computations.

2.2.4 Truncation Rank in DMD Models

As described for all the different DMD formulations, the core of the
algorithm is the computation of the pseudoinverse (Equation 2.8)
via a truncated SVD of the original matrix of data X = UΣV⊤,
with rank r < M . This step allows for a reduction in computa-
tional costs and guarantees the applicability of the method. How-
ever, the efficiency and accuracy of the resulting ROM depend on
the selected truncation rank r. In practice, choosing this rank
is one of the most important and subjective steps in computing
DMD, and in dimensionality reduction in general.

Here, we propose a series of truncation criteria that can be
applied and compared, to find an optimal balance between com-
putational efficiency and accuracy.

One possible option is neglecting a number of features that
contain a small percentage of the total information according to
the cumulative energy curve associated with the diagonal elements
σk of the diagonal matrix Σ. We can use, e.g., a truncation rank
r = r90 corresponding to the number of diagonal elements of Σ
accounting for 90% of the cumulative energy in the SVD of X.

An alternative method is setting a threshold ζ to be applied
on the order of magnitude of σk as follows:

r∗ = min(n) : σn ≤ ζ

M−1∑
k=0

σk. (2.20)

A third option could be using functions from the libraries of
the employed coding software. The function rank(Z) of MATLAB
returns the number of linearly independent columns in the matrix
Z. This rank is computed as the number of singular values that
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are larger than a tolerance. The tolerance is set by default as:

max(size((Z)))*eps(norm((Z))), (2.21)

but a different value can be specified in rank(Z,tol).

2.2.5 Performances of DMD Algorithms

To evaluate the suitability of the different algorithms and guide the
selection of the optimal truncation rank, the snapshots predicted
by the DMD-based ROMs can be compared with the high-fidelity
reference data.

The difference between the state of the system predicted by the
generic DMD model L and the real snapshot at time tk is defined
as

dL
k = xL

k − xk, (2.22)

where xk is the true solution induced by the flow map F∆t at time
tk, and xL

k its DMD approximation.
The performances of the different DMD versions can be as-

sessed and compared in terms of the relative error defined as:

εLk =
∥dL

k ∥2

∥xk∥2
, (2.23)

where ∥ · ∥ denotes the vector 2-norm.

2.3 Polynomial Chaos Expansion (PCE)

Among the techniques for the construction of ROMs, the Polyno-
mial Chaos Expansion (PCE) is an efficient tool to derive, directly
from high-fidelity simulations, an approximation of the model re-
sponse surface in the form of a polynomial series in the space
of variability of the governing parameters (Sudret, 2008; Ghanem
and Spanos, 1991; Wiener, 1938).

This series is given by the truncation to a finite order of an
expansion made of multi-variate polynomials (orthonormal with
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respect to the joint pdf of the parameters), multiplied by deter-
ministic coefficients that embed the space-time dependence of the
response (Xiu and Karniadakis, 2002). The form of the multi-
variate orthogonal polynomials depends on the input variables’
probability distribution function, while the coefficients need to be
computed using high-fidelity data.

The efficiency of the method depends on the minimization of
the number of high-fidelity simulations required for the calibra-
tion. Calibration can be accomplished through a non-intrusive
regression-based method (Sudret, 2008; Webster et al., 1996) which
requires the solution of a minimization problem on an optimum
set of regression points provided by the Probabilistic Collocation
Method (PCM). These points correspond to combinations of val-
ues properly selected to span the entire space of variability of the
input parameters.

The resulting polynomial is a ROM, built to replace the com-
plex and computationally onerous HFM. The PCE can capture,
based on a limited number of runs of the HFM, the essential fea-
tures of the underlying dynamics for the specific QoI and provide
a surrogate to simulate at a reduced computational cost the sys-
tem behavior for different input scenarios. The simple polynomial
form of the surrogate guarantees a negligible computational cost
for each simulation, compared to physics-based simulations per-
formed with the HFM. The drastic reduction of the computational
cost allows us to perform in-depth analyses (otherwise unfeasible
on the HFM) such as global sensitivity analysis and Monte Carlo
simulations (Ciriello et al., 2019; Focaccia et al., 2021). The re-
sult is an increased and improved ability to diagnose the systems’
behavior, as influenced by different phenomena and parameters
affected by variability and uncertainty.

One major field of application of PCE-based surrogates is hy-
drogeology (Oladyshkin et al., 2012; Ciriello et al., 2012; Riva
et al., 2015; Ciriello et al., 2019), where the PCE has been suc-
cessfully employed to build ROMs of many flow and transport
problems, accelerating uncertainty quantification and other oner-
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ous analyses, otherwise computationally prohibitive if performed
directly on a high-fidelity model (Ciriello et al., 2017; Ciriello and
de Barros, 2020).

In recent years, PCE-based surrogates have also been used in
different research fields, such as cardiovascular research. Here,
PCE can be employed to ease uncertainty quantification analysis
and support the identification of relevant information to assist the
clinical practice (Sankaran and Marsden, 2011; Schiavazzi et al.,
2015; Quicken et al., 2016).

A cardiovascular application of this surrogate modeling tech-
nique is illustrated in Appendix A. Here, the PCE method is
employed to derive surrogate models of the dynamics of selected
quantities of interest that describe the left ventricle function. The
resulting surrogates are directly employable in clinical analysis,
can be used to perform global sensitivity analysis at a negligible
computational cost and provide insights on the impact of differ-
ent diagnostic metrics on the left ventricle function. The biofluid
application, reported in this thesis to briefly illustrate the use and
potentialities of the PCE technique, is the object of our work Sur-
rogate models provide new insights on metrics based on blood flow
for the assessment of left ventricular function (Collia et al., 2022).
For a more detailed discussion of the methods and the results
please refer to the paper.

2.3.1 The PCE algorithm

Let f(·) be a HFM predicting a QoI x (output) depending on a
vector of governing parameters p (inputs), whose variability can be
reproduced by modeling them as independent random variables.

If the variance of the QoI σ2
x is finite, the PCE may be applied

to generate an approximation x̂ of the response surface in the
random parameters space in terms of a polynomial series as follows
(Wiener, 1938; Ghanem and Spanos, 1991; Xiu and Karniadakis,
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2002):

x = f(p) → x̂ =
P−1∑
j=0

ajΨj(p), P =
(Npar + q)!

Npar!q!
, (2.24)

where Ψj are multivariate polynomials that constitute an orthonor-
mal basis with respect to the joint PDF of p, and coefficients aj are
the deterministic coordinates of the spectral decomposition. The
number of terms of the series P depends on the number of pa-
rameters Npar = dim p and the maximum degree of the expansion
q.

To guarantee optimum convergence rate in the case of non-
Gaussian processes, the family of the multivariate polynomials Ψj

is selected, based on the PDF of the inputs, from a variety of
possible polynomial families, according to the generalized PCE
scheme introduced by Xiu and Karniadakis (2002).

The PCE coefficients aj are computed through a non-intrusive
regression-based approach. According to this method, the variance
of the residual ε = |x̂−x| is minimized with respect to the vector
of coefficients a (Sudret, 2008) as follows:

a = Argmin
1

NRP

NRP∑
i=1

{
x−

P−1∑
j=0

ajΨj(p)

}2

, (2.25)

where NRP is the number of regression points. This is done on a
limited dataset of high-fidelity simulations generated for an opti-
mal set of values of p provided by the Probabilistic Collocation
Method (PCM) (Webster et al., 1996). These values are named
collocation points and they are selected based on the same argu-
ments adopted for integral estimation through Gaussian quadra-
ture; specifically, the PCM employs the roots of the polynomial
of one order higher than q to assure proper sampling of the re-
gion associated with the largest probability in the distributions
of the input parameters (Webster et al., 1996). The efficiency of
the PCE method resides in this procedure: the less the number
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of collocation points (NRP = NCP ) the more the effectiveness of
the PCE. Note that NCP ≥ P , i.e. it increases with Npar and q
(Ciriello et al., 2012).

2.3.2 PCE Efficiency and Dynamical Systems

If we approximate the behavior of a dynamical system that evolves
both in space and time, i.e. f(s, t,p), the space-time dependence
of the response x is included in the PCE coefficients a:

x̂ (s, t) =
P−1∑
j=0

aj (s, t)Ψj(p). (2.26)

In this case, a PCE model has to be built at each point (s, t) of
interest, which means that the coefficients should be computed
based on high-fidelity simulations of x generated at the same
space-time locations for each value of p provided by the PCM.

It follows that if we have a complex dynamical process, solved
numerically by means of a HFM over a grid of N elements and for
M time instants, we need to compute our QoI x for each point in
space and time inNCP differently parameterized scenarios (Ciriello
and de Barros, 2020).

This results in N ×M ×NCP evaluations of x. Using the PCE
technique to evaluate how complex dynamical systems respond
to the variability of input parameters becomes unfeasible, limited
by the prohibitive computational cost related to the high-fidelity
simulations required for the calibration.

A proper combination of the PCE with other techniques to
build ROMs can help overcome these difficulties. A possible op-
tion is reducing the computational burden related to the genera-
tion of the training simulations, through the replacement of the
high-fidelity data with data provided by interpolation with the
DMD. In Chapter 5 we propose a robust framework based on the
combination of DMD and PCE techniques for the reduction of
models with time-variant response.
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3 DMD for Order Reduction in High-
Fidelity Simulations

Dynamic Mode Decomposition (DMD) is a powerful method to
extract the key underlying dynamics of a complex system directly
from high-fidelity data and recombine them into a reduced-order
model (ROM) of the system behavior. Thanks to their efficiency,
DMD-based ROMs can provide a viable solution to reduce the
computational cost and storage requirements related to fluid dy-
namics simulations.

In this chapter, we investigate the efficacy and robustness of
the extended DMD (xDMD) version, testing its ability to derive
ROMs from high-fidelity flow simulations. The method is applied
to a set of three-dimensional cardiovascular simulations.

We explore the ROMs’ performances in representation, inter-
polation, and extrapolation, and we identify relationships between
the accuracy and the truncation rank applied to the Singular Value
Decomposition (SVD). Different truncation criteria are proposed
and tested to investigate the impact of this choice, which under-
pins DMD and other approaches to ROM construction, on the
efficiency of the method. The innovation is to relate the trunca-
tion rank to the singular values of the original flow problem so
that a priori guidelines are established for the xDMD use.

The study demonstrates that, given an optimal low-rank trun-
cation, able to balance accuracy, generalizability, and computa-
tional saving, the xDMD can be successfully employed as a means
of data compression and reconstruction of the system’s dynamics.
This method could help speed up the modeling phase, with posi-
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tive impacts on the diagnosis and the optimization of intervention
choice.

The chapter is organized as follows: in Section 3.1 we introduce
the concept of high-fidelity models’ (HFMs) reduction; in Section
3.2 we present the test case, describing high-fidelity data gener-
ation and the structure of the analysis; Section 3.3 is devoted to
the discussion of results; while a set of final remarks is reported in
Section 3.4.

The study presented in this chapter is related to the paper G.
Libero, A. Chiofalo, V. Ciriello, D.M. Tartakovsky, Dynamic mode
decomposition for order reduction in high-fidelity cardiovascular
simulations expected to be submitted soon to Physics of Fluids.
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3.1 High-Fidelity Model Reduction

HFMs are commonly developed to reproduce the behavior of spe-
cific systems of interest accurately. They provide detailed and
reliable descriptions of complex interactions among different phe-
nomena and variables, and they are mainly physics-based. How-
ever, the complexity of reality poses limits to the applicability of
these models. On one hand, the wide framework of variables con-
sidered in the model requires a detailed characterization, which is
not always feasible, and often limits model validity to case-specific
domains. On the other hand, the time and resources required to
run simulations of such complex structures are not compensated
by the rapid and constant growth in computational power.

Model reduction techniques are emerging as powerful tools to
derive models with a lower computational burden, suitable for
a wider and more flexible description of how the world around
us evolves. A prove is the vast literature concerning the use of
these instruments to model complex flow and transport processes
in fields as diverse as geosciences and biomedicine (Lu and Tar-
takovsky, 2020; Ciriello and de Barros, 2020; Dutta et al., 2021;
Callaham et al., 2022; Karbasian and Vermeire, 2022; Collia et al.,
2022; Pegolotti et al., 2021). These techniques can derive, from
a limited number of high-fidelity simulations, computationally ef-
ficient mathematical representations of the relationships between
the governing variables and the quantity of interest. ROMs can
reconstruct the leading dynamics of the system and provide simu-
lations of its state at a low computational cost. Thus, a large num-
ber of simulations can be performed, allowing uncertainty quan-
tification and other onerous analyses that would be prohibitive
if performed directly on an HFM (Focaccia et al., 2021; Ciriello
et al., 2017, 2012; Oladyshkin et al., 2012). The key feature of
a ROM is efficiency, defined as a balance between the accuracy
and the computational cost related to the generation of the high-
fidelity data required for the model’s construction (Ciriello et al.,
2017).
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In all the methods for ROM generation that rely on the Sin-
gular Value Decomposition (SVD), such as the Dynamic Mode
Decomposition (DMD), the efficiency is governed by the selection
of the truncation rank. The DMD method aims at extracting,
through the SVD of a set of system states’ simulations, the spa-
tiotemporal structures characterizing the system behavior (Kutz
et al., 2016). The truncation applied to the SVD governs the
identification of the dominant structures, which converge in the
construction of the DMD-based ROM. The complexity of the re-
sulting model depends on the number of structures recombined
to reproduce the underlying processes. As a result, the truncation
rank selection impacts the computational demand of the ROM but
also controls the degree of order reduction and therefore accuracy.
Truncating at higher levels we maintain a larger number of infor-
mative features from the original data. This may lead to better
performances in the calibration phase when the ROM reproduces
the same training data. Though, the error may increase for sys-
tems states out of the train set and the costs of running the model
could be prohibitive. Low-rank truncation, instead, prevents over-
fitting and also cuts the computational expense. Despite its im-
portance, the selection of an appropriate rank is typically done
via experimentation, rendering the methods’ implementation sub-
jective (Lu and Tartakovsky, 2021). The definition of a-priori
guidelines for the selection of an optimal truncation rank could be
crucial to the success of DMD.

In this chapter, we analyze how the error of a DMD-based
ROM is linked to the truncation rank in SVD, which, in turn, is
linked to the singular values of the problem. We test the accuracy
of the approximation in terms of both reconstruction of snapshots
employed for the training phase, and extrapolation or interpola-
tion of system states not included in the train set. Different trun-
cation ranks are applied and the resulting errors are compared
to define optimal truncation criteria for the use of DMD as a vi-
able method for both data compression and reconstruction of the
system’s dynamics.
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3.2 Data and Application

3.2.1 3D Cardiovascular Modeling

Numerical simulations of fluid dynamics have gained considerable
attention during the last decades as a valuable quantitative tool for
diagnosis and scenario analysis in the medical sector. In particu-
lar, by modeling blood flow in the cardiovascular system we can get
key insights for the identification of long and short-term patholo-
gies, but we can also simulate hypothetical scenarios to evaluate
diverse intervention choices (Pegolotti et al., 2021; Bao et al., 2014;
Collia et al., 2022; Pedrizzetti et al., 2014). Blood dynamics are
typically modeled through Navier Stokes equations, discretized by
numerical methods, such as the finite element method. This often
leads to HFMs, which are incompatible with clinical practice due
to the time and resources required to run simulations.

Here we apply the extended version of DMD (xDMD) to prove
its usefulness in this context and investigate its settings and ef-
ficiency. The xDMD method could help speed up the modeling
phase, with positive impacts on the diagnosis and the optimization
of intervention choice. The crucial advantage is the possibility to
learn the dynamics directly from a small number of high-fidelity
simulations. We test the method on a set of three-dimensional
(3D) cardiovascular simulations of blood flow in a patient-specific
aorta.

High-fidelity data are generated with the SimVascular soft-
ware (simvascular.github.io), which provides a complete pipeline,
from medical image data segmentation to patient-specific blood
flow simulations (Updegrove et al., 2016). We employ this fully
open-source software package to solve 3D incompressible Navier-
Stokes equations describing blood flow in a patient-specific aorta
with a homogeneous Dirichlet boundary condition (rigid wall).

The reference geometry is selected from the Vascular Model
Repository (www.vascularmodel.com), a library of patient-specific
cardiovascular models developed on volumetric image datasets and
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relevant physiologic data (Wilson et al., 2013). The quantity of
interest is the velocity magnitude, for which 1929 snapshots are
collected over 7.7 s, covering about 12 pulsations. Each snapshot
contains the values of the velocity simulated for the N = 343352
elements of the triangular mesh employed to discretize the spatial
domain. The size of the dataset is ≈ 50 Gb.

On this dataset, we calibrate xDMD-based ROMs truncated at
different ranks and we evaluate their ability to reconstruct snap-
shots from the training set (representation regime). Results from
this analysis can prove the viability of using xDMD as an efficient
technique for data compression. We also test the performance of
the ROMs to predict extra-snapshots, referring to time steps lo-
cated in between (interpolation regime) and after (extrapolation
regime) the ones employed for training. The impact of the trun-
cation rank selection is investigated in all three regimes. We test
the three truncation criteria presented in Section 2.2.4, to identify
useful a-priori guidelines to get an optimal balance of accuracy,
generalizability, and computational saving. In particular, r90 cor-
responds to the minimum number of singular values accounting
for 90% of the cumulative energy in the SVD of X̃; r∗ is identified
setting ζ = 10−5 in Equation 2.20; while r = rank(X̃) is computed
with the standard MATLAB function.

3.3 Results and Discussion

3.3.1 Representation Error and Data Compres-
sion

We employ xDMD to generate ROMs based on the entire dataset
of snapshots of the velocity magnitude simulated by the HFM and
test their ability to reproduce these training data. Given the 1929
high-fidelity snapshots, we build the xDMD training matrices as
described in Sections 2.2.1 and 2.2.2: X̃ ∈ RN+1×M and Y ∈
RN×M with M = 1928 and N = 343352. This exercise quantifies
the representation error of xDMD. The application of different
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truncation ranks to the SVD produces a sequence of ROMs.

The accuracy of xDMD is explored at low-rank truncations,
which are relied upon to identify dominant spatiotemporal struc-
tures in the data to reconstruct the high-fidelity simulations. This
is also relevant for the evaluation of xDMD effectiveness for data
compression and storage.

We first investigate the structure of the dataset of high-fidelity
simulations used to train the ROMs. We perform the SVD of the
matrix X̃ (see Sections 2.2.1 and 2.2.2 for matrix construction from
data) and we analyze the distribution of the information among
the singular values. Panels (a) and (b) of Figure 3.1 represent the
singular values and the associated cumulative energy, respectively.
As the singular values rapidly decrease to zero, the cumulative en-
ergy quickly reaches the maximum value, becoming approximately
equal to 1 already at r∗. This indicates that a limited number of
dominant modes, captured by r∗, are sufficient to describe and
reproduce the system states with high accuracy. As a result, the
remaining features (n > 404) are interpreted as noise and, for the
purpose of data compression, can be neglected.

Given these insights on the informative content of the training
set, we investigate the influence of the truncation rank on the
ability of the method to reconstruct training snapshots. Panel
(c) of Figure 3.1 shows the representation error, computed with
Equation (2.23) and averaged over all the time steps, for several
ROMs truncated at different ranks r. As expected, by increasing
the truncation rank r we decrease the representation error. The
lowest error is measured when r = rank(X̃), i.e. in the absence of
truncation, and it is equal to 1.4 · 10−14. However, high accuracy
is already reached for relatively low r: setting r = r∗ or r = r90
leads to errors of 2.96 · 10−5 or 1.49 · 10−1, respectively.

To elucidate further the effects of the truncation rank on the
accuracy of xDMD-based ROMs, in Figure 3.2 we compare the
original data (Panel (a)) with the corresponding reconstructed
snapshots provided by the ROMs truncated at r90 (Panel (b)) and
r∗ (Panel (c)). Even if r90 returns a slightly worse approximation,
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Figure 3.1: (a) Singular values and (b) cumulative energy associated
with the SVD of X̃ when all (N = 343352, M = 1928) data are used
to train the ROMs, both plotted as a function of the singular values
number n. (c) Representation error (averaged over the time instants)
plotted as a function of the truncation rank r of the SVD. In all panels,
the blue, green, and red dots correspond to r = r90, r = r∗, and
r = rank(X̃), respectively. In this example, r90 = 34, r∗ = 404, while
rank(X̃) = M = 1928 results in no truncation.
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Figure 3.2: Magnitude of the flow velocity u in the aorta, as pre-
dicted by (a) direct numerical simulations, and xDMD-based ROMs
with truncation ranks (b) r90, and (c) r∗. The velocity is plotted at
times k = 643, k = 1286, and k = 1929 in the first, second, and third
rows, respectively.
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Table 3.1: Data considered for representation, interpolation, and ex-
trapolation tests, with the respective values of the three truncation
criteria.

Case Operation Train Test r = r90 r = r∗ rank(X̃)
0 representation k = 1 : 1929 k = 1 : 1929 34 404 1928
1 interpolation k = 1 : 2 : 1929 k = 2 : 2 : 1929− 1 31 281 964
2 interpolation k = 1 : 3 : 1929 k = 2 : 3 : 1929− 2 31 279 642
3 extrapolation k = 1 : 1 : 965 k = 966 : 1 : 1929 41 418 963

both ROMs can capture the salient features of the flow, reproduc-
ing the general velocity patterns. Hence, xDMD proves to be a
suitable method to interpret and reproduce 3D cardiovascular sim-
ulations. It follows that xDMD-based ROMs can be successfully
employed to replace high-fidelity simulations with compressed re-
constructions. The rate of compression depends on the truncation
applied to the SVD, which can be selected based on the accuracy
required by the application.

To test the method’s robustness, we train ROMs on datasets
with missing spatial data. This reduces the dimension of the
dataset but also generates a loss in spatial continuity. Specifically,
N/10 and N/100 elements are randomly selected from the original
mesh of size N to obtain two reduced-size datasets. Representa-
tion error of the resulting ROMs, trained on all M = 1928 tempo-
ral snapshots, is shown in Figure 3.3, as a function of the trunca-
tion rank. Note that values of r = r90, r = r∗, and r = rank(X̃)
are the same for all the three cases. For low-rank ROMs, consider-
ing only the dominant spatiotemporal structures of the underlying
flow, the data loss does not affect the accuracy. The effects of the
missing spatial data increase with r, causing the error to reach
tens of orders of magnitude for r = rank(X̃).

Another facet of xDMD’s robustness is its sensitivity to the
number of temporal snapshots available for training. Figure 3.4
shows the time-averaged representation error of ROMs trained on
N/100 velocity measurements and 200 snapshots, as a function of
the truncation rank. The 200 snapshots are selected from the full
dataset of size 1929 using either the first 200 images or every 4th
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Figure 3.3: Dependence of time-averaged representation error of
ROMs on the SVD truncation rank r. The ROMs are alternatively
trained on the data in all N pixels and on the data at randomly se-
lected N/10 and N/100 pixels; in all three cases, using M = 1928
snapshots. The blue, green and red dots correspond to r = r90, r = r∗

and r = rank(X̃), respectively.

or every 8th image. Both the reduction of the number of train-
ing snapshots, compared to the case in Figure 3.1, and the use
of different time steps between the snapshots, do not affect the
ROM’s accuracy. Hence, we can state that the xDMD algorithm
is robust and able to provide a good approximation of nonlinear
flow phenomena.

3.3.2 Interpolation and Extrapolation Errors

The typical application of ROMs is predicting the values of a quan-
tity of interest at space-time points wherein the output of high-
fidelity simulations is unavailable. Therefore, in the second part of
our study, we test the performance of our xDMD-based ROMs in
both the interpolation and extrapolation regimes. Dimensions of
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Figure 3.4: Dependence of time-averaged representation error of
ROMs on the SVD truncation rank r. The ROMs are alternatively
trained on the first 200 snapshots and on the 200 snapshots selected
with time intervals 4 or 8; in all three cases, using N/100 pixels.
The blue, green and red dots correspond to r = r90, r = r∗ and
r = rank(X̃), respectively.
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the training and testing matrices for all the cases considered and
corresponding truncation ranks are reported in Table 3.1.

We start by constructing three ROMs associated with the trun-
cation ranks r = rank(X̃), r = r∗ and r = r90, and trained on half
of the snapshots (Case 1 in Table 3.1). Predictions are carried
out for the missing half of time steps, and interpolation errors are
computed through Equation (2.23) at interpolated instants k not
considered during calibration. The errors associated with the three
ROMs and computed for each interpolated time step are plotted
in Panel (a) of Figure 3.5. While truncating at r = rank(X̃) leads
to an anomalous trend of the error increasing in time, the ROMs
truncated at r = r∗ and r = r90 assure high accuracy and stability.
When we reduce the size of the training set (Case 2 in Table 3.1)
the three different ROMs (Panel (b) of Figure 3.5) present aligned
error picks and similar periodicity. The magnitude of the errors is
similar, with r = r∗ providing a slightly smaller error.

The capability of xDMD in predicting future values of the
quantity of interest is evaluated by training the ROMs on the first
half of the dataset and testing the performance on the remain-
ing half (Case 3 in Table 3.1). The representation (training) and
extrapolation (test) errors are shown in Figure 3.6. The ROM
truncated at r = rank(X̃) exhibits a trend that increases with
time. We also notice a significant discontinuity between represen-
tation and extrapolation regimes that reveals the overfitting of the
model on training data. More stable performances are associated
with the ROMs truncated at r = r∗ and r = r90: the error of the
first ROM varies in 10−4−100, while the error of the second one is
in 10−6−10−3, with less visible but aligned negative picks and sim-
ilar periodicity. These results provide actionable indicators for the
truncation rank selection and clarify the role played by the non-
dominant modes. When all the modes are included in the training
phase, r = rank(X̃), the ROM suffers from overfitting and loses
accuracy in interpolation and extrapolation; this is true regardless
of how many data are used for training. In addition, the loss in
accuracy is difficult to predict given the unstable behavior of the
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Figure 3.5: Interpolation errors for (a) Case 1 and (b) Case 2 in Table
3.1. In each plot different lines correspond to the ROMs with different
truncation ranks: r = r90, r = r∗ and r = rank(X̃).

error. Hence, the use of low-rank truncation not only aligns with
a ROM’s purpose (identification of the dominant modes) but also
increases the ROM’s prediction reliability at space-time locations
where high-fidelity data are not available.

To provide a local view of the accuracy of the ROMs, in Figure
3.7 and Figure 3.8 we compare the velocities simulated by the
HFM in 4 points of the geometry, with the corresponding series
of values provided by the ROMs truncated at r = r90 and r = r∗,
respectively. Panel (a) and (b) refer to the first and second aorta’s
cross-section, where we pick one point near the wall (blue) and
one near the center of the aorta (red). As expected, the ROM
truncated at rank r = r∗ (Figure 3.8) has high accuracy both
in representation and extrapolation for all the points considered.
The ROM truncated at r = r90 (Figure 3.7), instead, adequately
reproduces the overall system state but loses accuracy, especially
in extrapolation as time increases. The ROM’s performance is
not affected by the selection of the points near the wall or in the
middle of the aorta.
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Figure 3.6: Representation (shaded) and extrapolation (not shaded)
errors for Case 3 in Table 3.1. In each plot different lines correspond
to the ROMs with different truncation ranks: r = r90, r = r∗ and
r = rank(X̃).

41



Figure 3.7: Flow velocity u at kth time step, provided by the HFM
(continuous line) and estimated by the ROM (dashed line) in the repre-
sentation (shaded) and extrapolation (not shaded) regimes. The ROM
is trained for Case 3 in Table 3.1 and truncated at r = r90. Panels (a)
and (b) show data for the two aorta’s cross-sections shown on the left.
The red series refer to the points located near the center of the aorta,
and the blue ones to the points near the wall.
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Figure 3.8: Flow velocity u at kth time step, provided by the HFM
(continuous line) and estimated by the ROM (dashed line) in the repre-
sentation (shaded) and extrapolation (not shaded) regimes. The ROM
is trained for Case 3 in Table 3.1 and truncated at r = r∗. Panels (a)
and (b) show data for the two aorta’s cross-sections shown on the left.
The red series refer to the points located near the center of the aorta,
and the blue ones to the points near the wall.
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3.4 Final Remarks

We analyzed the performance of the extended version of DMD
(xDMD) proposed by Lu and Tartakovsky (2021) on the task of
ROM construction to approximate the high-fidelity simulations
of 3D blood flow in a patient-specific aorta. Our results show
that xDMD can identify dominant spatiotemporal structures in
the high-fidelity dataset and provide an accurate approximation of
high-fidelity simulations. The SVD truncation rank choice proved
to be crucial in ROM generation to balance accuracy, generaliz-
ability, and computational saving. We explored the ROMs’ ability
in representation, interpolation, and extrapolation regimes, and
related the performance to the choice of the truncation rank, defin-
ing optimal truncation criteria. We found that a low-rank trunca-
tion, which preserves almost all the cumulative energy in the data,
retaining only the singular values corresponding to the most rele-
vant spatiotemporal structures, avoids overfitting and yields high
accuracy and error stability. Optimal truncation guarantees the
successful use of DMD as a data compression technique, but also
to predict values of the quantity of interest at space-time points
wherein the output of the HFM is not available. Given an ap-
propriate truncation, the xDMD-based ROMs also demonstrate a
remarkable robustness to the number of space-time training data.
Finally, the accuracy of xDMD was also verified locally, when used
to predict time series at selected points in the flow domain. Over-
all, this study suggests that the use of xDMD, when optimal trun-
cation criteria are applied, is beneficial for time-dependent data
compression and computational saving when used in place of oner-
ous HFMs.
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4 DMD for Global-scale Time Series

In several diverse scientific fields, the improved capability to col-
lect observations of real systems evolution needs to be paired and
supported by efficient methods to successfully impact complex
problem modeling. In this context, data-driven approaches are
emerging as key tools for capturing and translating information
stored in high-dimensional datasets into valuable evidence to feed
models and interpret phenomena.

Here, we present Dynamic Mode Decomposition (DMD) as
a new viable approach to extract reduced-order models (ROMs)
from high-dimensional datasets of observations. Differently from
the case study described in Chapter 3, high-fidelity data are col-
lected directly as measurements/observations of the real system
behavior, and no high-fidelity model (HFM) is available.

In particular, we explore the capabilities of both the standard
(sDMD) and extended (xDMD) versions of the method to learn
the dynamics of global water distribution from high-dimensional
satellite observations. The DMD-based ROMs are derived from
the latest release of total water storage anomaly (TWSA) data pro-
vided by the Gravity Recovery and Climate Experiment (GRACE)
and its successor, the GRACE Follow-On (GRACE-FO) satellite
missions. Their performances are tested in terms of reproduction
of training snapshots and extrapolation of future states of the sys-
tem.

The study demonstrates that the idea of using snapshots of a
system evolving in time to derive a linear ROM of a phenomenon

45



perfectly fits the case of satellite data interpretation. This novel
application proves that DMD can detect patterns, extract ROMs,
and predict climate-related time series based on previous satel-
lite observations. This method could enable analyses of data with
improved spatial and temporal resolution currently available from
satellite technologies, leading to significant advancements in mod-
eling and understanding the water cycle. The impacts of climatic
and anthropogenic pressures on water availability worldwide could
be identified, analyzed, and quantified, deriving important evi-
dence for the development of mitigation and adaptation strategies.

The chapter is organized as follows: Section 4.1 describes the
opportunities deriving from the application of data-driven tech-
niques, in particular DMD, to satellite observations; in Section
4.2 we present the GRACE and GRACE-FO missions and specify
the details of our case study; in Section 4.3 results are presented
and discussed; Section 4.4 closes the chapter with a set of final
remarks.

The study presented in this chapter is related to the paper V.
Ciriello, G. Libero, D.M. Tartakovsky, Reconstruction of GRACE
satellites data via Dynamic Mode Decomposition expected to be
submitted soon to Advances in Water Resources.
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4.1 Data-Driven Techniques and Satellite Data

The sky above us is teeming with satellites, launched by inter-
national agencies, such as the well-known NASA and ESA, but
also by emerging private companies, to serve different scopes,
from communications to military aims, from astronomic obser-
vations to Earth monitoring. In the early 1970s, the launch of
the first in a series of Landsat satellites developed by NASA and
operated by USGS paved the way for modern land surface satel-
lite observations. Since then, dozens of satellite missions have
been developed by the major Space Agencies, which have also
initiated strong collaborations to join efforts, resources, and ex-
pertise to strengthen our global understanding of Earth’s evolu-
tion. These Earth-observing satellites can measure with improved
spatial coverage and temporal resolution variables describing the
physical and chemical processes of land, ocean, atmosphere, and
cryosphere. These observations allow for a better understanding
of how the Earth’s systems evolve and support the development
of strategies for humans’ adaptation to changes.

An important field that could benefit from the use of the vast
amount of satellite data collected is the study of all the phenomena
related to water distribution on the Planet. The terrestrial water
cycle is a notoriously complex and sensitive balance of thousands
of different phenomena, increasingly forced and perturbed by cli-
matic and anthropogenic pressures which have significant impacts
on water availability worldwide (IPCC, 2023a). To identify and
design appropriate strategies for adaptation and mitigation, both
monitoring and modeling activities are crucial to get a deeper un-
derstanding of global hydrological processes and support the sus-
tainable exploitation of water resources. In this context, satellite
technologies can offer a valuable alternative to traditional oner-
ous monitoring campaigns (Sheffield et al., 2018). While local
modeling of the water cycle can be based on detailed in-situ mea-
surements, the high costs and times required for the collection of
these observations make their use impracticable for global analy-
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sis. Satellites, instead, with their wide and timely-regular cover-
age, provide more homogeneous and cheaper datasets, particularly
suitable for global assessments.

Translating satellites’ observations into valuable information
to feed both physics-based and data-driven modeling approaches,
though, requires appropriate tools and efforts. In particular, the
large availability of observations and their increasing level of de-
tail pose new challenges in their use and interpretation. Data-
driven methods, able to discover constitutive relations of the ob-
served complex real-world problems directly from data, represent
a promising tool in this context. Thanks to their efficiency and
flexibility, they can unmask the physics hidden in these datasets
without compromising speed and accuracy (Tartakovsky et al.,
2020; Asher et al., 2015).

A commonly employed technique is represented by Neural Net-
works. Several literature examples discuss the efficiency and ac-
curacy of all sorts of Neural Networks (He and Tartakovsky, 2021;
Lu et al., 2020; Qin et al., 2019; Pan et al., 2019). However, they
are “black box” models, their structure remains uninterpretable
and cannot provide any insights into the functions being approxi-
mated and the physics governing the system cannot be discovered
through them.

Differently, Dynamic Mode Decomposition (DMD) derives di-
rectly from satellite observations interpretable reduced-order mod-
els (ROMs), which can both efficiently reproduce the system state
and learn its primary features in space and time. As discussed
in Section 2.2, the connection between the DMD method and
the Koopman theory, explored in Mezić (2013) and Rowley et al.
(2009), guarantees the possibility of physically interpreting the
structure of the model to characterize the system’s behavior. Ma-
jor advantages can therefore derive from the application of DMD
when traditional physics-based models are too complex to design
and employ, but a large amount of observations of the spatial and
temporal evolution of the system are available. This is the case
with vast satellite data archives. DMD-based models can be used
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not only as faster and cheaper ROMs, but their structure can also
be interpreted to discover patterns and physical features in the
phenomena. Despite the increasing diffusion of DMD in very dif-
ferent fields (Ohh and Spedding, 2022; Pan et al., 2021; Liu et al.,
2021; Brunton et al., 2016; Mann and Kutz, 2016; Erichson et al.,
2016; Proctor and Eckhoff, 2015), to our knowledge only a few
recent studies discussed the application of this technique to satel-
lite data (Chi-Durán and Buffett, 2023; Fulton and Hegerl, 2021;
Hogg et al., 2020).

In this chapter, we demonstrate how efficient and accurate
ROMs of complex real-world phenomena can be derived using
DMD directly from satellite data. Specifically, we focus on data
concerning water distribution on Earth. The DMD method could
be an innovative technique to thoroughly investigate the infor-
mation contained in the precious satellite mission products and
therefore to gain a deeper understanding of how the hydrological
cycle works.

4.2 Data and Application

4.2.1 GRACE and GRACE-FO Missions

The Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission (Tapley et al., 2004), which was in orbit from April
2002 to October 2017, and its successor, the GRACE Follow-On
(GRACE-FO) (Landerer et al., 2020), launched in 2018 and still
working, take advantage of gravity field measurements, to derive
information about mass distribution changes on Earth. In almost
20 years of operation, GRACE missions provided pioneering and
detailed measurements of Earth’s gravity field changes, revolution-
izing research about Earth’s water reservoirs over land, ice, and
oceans, as well as earthquakes and crustal deformations. Each
mission counts a pair of orbiting satellites continuously tracking
how their relative positions in space are affected by Earth’s grav-
ity field variations. When the satellites encounter a change in the
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distribution of Earth’s mass, the distance between them changes,
as represented in Figure 4.1.

By precisely and continuously tracking this variation, regional
and temporal gravity changes can be measured with high precision.
These changes reflect mass distribution variations on the planet,
primarily due to changes in water content as it moves through
the water cycle. Hence, GRACE missions allow the monitoring of
global water distribution evolution in time, considering ice sheets
and glaciers melting, surface and underground water storage de-
pletion, and changes in sea level and ocean currents (Figure 4.2).

All the measurements from the satellites are sent to three
data processing centers, where they are translated into monthly
matrices of centimeters of equivalent water thickness anomalies
with respect to a baseline mean (Jan 2004 - Dec 2009) (Watkins
et al., 2015). Global monthly maps of total water storage anomaly
(TWSA) are available from April 2002 to the present, with some
short-term gaps and a major interruption due to the transition
between the missions. The native resolution is 3 degrees in both
latitude and longitude, but a 0.5-degree scaling factor map is pro-
vided to compensate for the signal attenuation during sampling
and post-processing (Wiese et al., 2016). This also acts as a mask,
removing oceans and areas around the poles, where specific solu-
tions should be considered. Both the collection of TWSA monthly
maps and the scale factor map are freely downloadable from the
NASA archives and from the specific data storage systems of the
three processing centers, where all the guidelines for GRACE data
interpretation are also available. The importance of this exclusive
set of global water distribution observations is proved by the pub-
lication of several studies where GRACE data are analyzed to
quantify the impact of climatic and anthropogenic changes on wa-
ter distribution at regional and global scales (Rodell and Reager,
2023; Thomas and Famiglietti, 2019; Rodell et al., 2018; Castle
et al., 2014; Joodaki et al., 2014; Döll et al., 2014; Famiglietti
et al., 2011; Leblanc et al., 2009).
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gravity pull

forward speed

Figure 4.1: Simplified example of how GRACE and GRACE-FO mis-
sions measure gravity changes: (a) both spacecrafts fly over the ocean
at a constant distance; (b) Spacecraft 1 encounters land and is acceler-
ated pulled by land’s higher gravity force; (c) Spacecraft 2 encounters
land too, while Spacecraft 1 is pulled back slightly by the higher gravity
of land before reaching the ocean again; (d) the spacecrafts return to
their original inter-distance.
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Figure 4.2: GRACE missions (a) monitor variations in water content
as it moves through the water cycle and (b) translate them into cm/year
of anomalies of equivalent water thickness relative to the baseline mean
2004-2009.

4.2.2 Definition of dataset for the analysis

For this study, the most recent GRACE product (RL06.1Mv03)
was downloaded from the Jet Propulsion Laboratory (JPL) archive
(NASA/JPL, 2023), together with the scaling factor file and a list
of the months of activity of the two missions. Note that here we fo-
cus only on the land areas; dedicated products can be downloaded
from the same archive if interested in ocean studies. Differently
from simulated datasets, the temporal continuity of this series of
real measurements is interrupted by some gaps, as can be seen in
Panel (b) of Figure 4.3. The dataset collects 215 monthly snap-
shots of TWSA, captured in the time interval of T = 248 months
between April 2002 (t = 1) and November 2022 (t = 248). Each
snapshot is a map, which counts N = 58908 grid elements placed
on land areas. All the other elements of the mesh located on the
oceans or around the Poles are automatically set as void when the
scale factor is applied and therefore not considered in the model
generation. Panel (a) of Figure 4.3 represents the snapshot corre-
sponding to November 2022.

52



04/2002 11/2022

11/2022

Total Water Storage Anomaly - TWSA (cm)

(JPL mascon RL06M.MSCNv03) 

Figure 4.3: (a) Example of TWSA map for t = 248 and (b) months
of activity of GRACE and GRACE-FO missions.
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While the majority of the literature concerning GRACE and
GRACE-FO is based on the construction of empirical relationships
between TWSA and related hydrologic variables for the interpo-
lation of missing observations (Li et al., 2020; Sun et al., 2020),
here we aim at learning DMD-based ROMs able to both recon-
struct and extrapolate global water distribution time series, solely
depending on previous GRACE observations. We apply both the
standard algorithm of DMD (sDMD) and the extended version
(xDMD), described in Chapter 2, and we analyze their perfor-
mances in terms of reconstruction of training data and extrapo-
lation of snapshots of the future state of the system. The study
also includes a preliminary analysis of truncation criteria for an
efficient and accurate model reduction.

4.3 Results and Discussion

4.3.1 Reconstruction of Time Series

As a first step, both the standard (sDMD) and the extended
(xDMD) version of the DMD algorithm are employed to gener-
ate ROMs based on the entire dataset of available snapshots. To
the aim of our analysis, we need pairs of snapshots equally shifted
in time to build the matrices X and X′ for DMD training (see Sec-
tion 2.2.1 for matrix construction). Hence, we extract, from the
original dataset of 215 snapshots, M = 196 couples of data shifted
by ∆t = 1month and train the ROMs on them. The ability of
both methods to reproduce their same training set is tested and
quantified as representation error.

As introduced in Section 2.2.4, a key role in ROM generation is
played by the selection of the Singular Value Decomposition (SVD)
truncation rank, which should guarantee an optimal balance of
accuracy and generalizability of the model. Here, as we did in
the application presented in Chapter 3, we explore the accuracy
of a sequence of ROMs obtained truncating the SVD at different
ranks and we test the truncation criteria defined in Section 2.2.4.
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Table 4.1: Data sets and ranks considered for (1) representation and
(2) extrapolation tests.

Train Test r90 r∗ rank(X)
(1) M = 196 in t = 1 : 248 M = 196 in t = 1 : 248 79 122 195
(2) Mtr = 148 in t = 1 : 200 Mts = 48 in t = 200 : 248 72 124 147

In particular, we compare r = r90, equal to the minimum number
of singular values accounting for 90% of the cumulative energy in
the SVD of X, and r = r∗, identified setting ζ = 10−3 in Equation
2.20, with r = rank(X), computed with the standard MATLAB

function and resulting in no truncation.
The curve of the cumulative energy in Panel (a) of Figure 4.4

shows how the informative content carried by the training data is
decomposed and distributed among the elements of the SVD. As
expected from its definition, the cumulative energy associated with
r = rank(X) is equal to 1; 10% of the information is cut instead
when r90 is considered; while truncating at r∗ keeps around 95%
of the energy. All truncation rank values are listed in Table 4.1.

The representation error, computed with Equation 2.23 and
averaged over all the time steps, is evaluated for different trunca-
tion ranks and plotted in Panel (b) of Figure 4.4 for sDMD-based
ROMs and in Panel (c) for xDMD-based ROMs. Both the curves
are steeper at the beginning, where maintaining one more single
element in the SVD truncation corresponds to a big gain in infor-
mation and therefore in model accuracy. The error continues its
decay slower in the middle so that truncating at r90 or r∗ yields
very similar performances. The end of the curve, instead, marks
the difference between the standard and the extended version of
the algorithm: while the xDMD-based ROM without truncation
(r = rank(X)) reaches an error of the order of almost 10−30, in the
case of sDMD the performance of the model with no truncation is
around 10−3.5.

To deeper investigate the performances of both the DMD ver-
sions in the representation regime, in Figure 4.5 we compare how
the errors associated with the sDMD-based (Panel (a)) and xDMD-
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Figure 4.4: (a) Cumulative energy associated with the SVD of X
plotted as function of the singular values number n. Representation
error of (b) the sDMD-based ROM and (c) the xDMD-based ROM
(averaged over the time instants) as a function of the truncation rank
r of the SVD. In all panels, the blue, green, and red dots correspond
to r = r90, r = r∗, and r = rank(X), respectively.
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Figure 4.5: Representation errors of (a) the sDMD-based and (b)
the xDMD-based ROMs. In each plot different lines correspond to
the ROMs with different truncation ranks: r = r90, r = r∗, and r =
rank(X).

based (Panel (b)) ROMs, truncated at r90, r
∗ and r = rank(X),

evolve in time. As already announced by Figure 4.4, for both
sDMD and xDMD, truncating at r90 or r∗ yields very close per-
formances, with a little advantage for r∗. More noticeable and
interesting is the behavior of the error when r = rank(X): while
xDMD performance oscillates near 10−30 for the entire time in-
terval, sDMD shows a localized increase for t = 23 ÷ 94. This
time interval corresponds to months between January 2004 and
December 2009, the same taken as the baseline of GRACE mis-
sions data. Considering that all GRACE data are provided as
anomalies with respect to that reference interval—which means
that the baseline mean is subtracted from all the measurements—
the subset of snapshots in 2004-2009 has zero mean, while the rest
of the dataset has not. This peculiarity of the GRACE dataset
is better interpreted by the xDMD, which can count on the bias
term and the residual learning (Equation 2.16) to better model
this behavior. However, this advantage is evident only when no
truncation is applied to the SVD, otherwise, sDMD and xDMD
have very similar performance.

In Figure 4.6 the representation performances of both the for-
mulations of DMD are analyzed from a spatial point of view. On
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Figure 4.6: Maps of TWSA provided by GRACE at times (a) t =
124 and (b) t = 248 and respective differences of the reconstructions
provided by (c-d) the sDMD-based ROM and (e-f) the xDMD-based
ROM, both truncated at r90. In panels (c-f) the curves represent the
mean of the differences by latitude (vertical) and longitude (horizontal).
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Figure 4.7: Probability distribution of the differences, mapped in
Figure 4.6, between the reference maps of GRACE for time t = 124
and t = 248 and the respective reconstructions provided by (a-b) the
sDMD-based ROM and (c-d) the xDMD-based ROM, both truncated
at r90.
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the first row (Panels (a) and (b)), two maps, serving as references,
show the original values of TWSA provided by GRACE for t = 124
and t = 248. The differences dL

k between them and the respec-
tive reconstructions provided by DMD algorithms are computed
through Equation 2.22 and plotted in the remaining Panels. Pan-
els (c) and (d) show how sDMD reconstructions for t = 124 and
t = 248 differ from the respective original snapshots in Panels (a)
and (b), while Panels (e) and (f) refer to the xDMD approxima-
tions for the same times. All the ROMs are truncated at r90. In
the xDMD case, we notice locally higher differences - for example
in the South of Africa, in Siberia, or on the East Coast of North
America - but the global patterns and order of magnitude are sim-
ilar to those observed in the sDMD case. Moreover, the level of
accuracy remains unchanged from time t = 124 to t = 248, as
already evinced from Figure 4.5.

Each of the 4 maps in Panels (c)-(f) is accompanied by two
curves: in the vertical graph is the mean by row of the differ-
ences plotted in the map; in the horizontal plot, instead, is the
mean by column. These two curves serve to identify possible in-
homogeneities in ROMs’ behavior in space. Higher differences are
reported for higher latitudes, where the presence of perennial ice
and topographic adjustments affect the accuracy of original data
and as a consequence the performance of the ROMs too. Changing
the longitude, instead, doesn’t seem to have a significant impact
on the error, except for a negative pick in Panels (c) and (e), lo-
cated in a predominantly oceanic meridian. The small number of
land pixels in this longitude range are all located in Iceland and
hence probably affected by the same difficulties described above.

The difference between the original TWSA by GRACE and
the DMD reconstructions is computed locally so that at each time
tk corresponds a vector of differences dL

k containing N = 58908
estimated values dL

k , one for each pixel located on a land area in
the map. The probability distribution of these difference values is
described by the histograms of Figure 4.7. Each plot symmetri-
cally refers to the corresponding map in Panels (c)-(f) of Figure
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Figure 4.8: Extrapolation errors of (a) the sDMD-based and (b) the
xDMD-based ROMs. In each plot different lines correspond to the
ROMs with different truncation ranks: r = r90, r = r∗, and r =
rank(X).

4.6. The distributions are approximately Gaussian. The major-
ity of the cells are included in the classes near dL

k = 0, and the
probability quickly decays to zero for values of |dL

k | > 5.

4.3.2 Extrapolation of Time Series

A typical application of ROMs is the prediction of the values of the
quantity of interest at space-time points where measured data or
high-fidelity simulations are unavailable. To test the performance
of our ROMs in the extrapolation regime, the original GRACE
dataset is split into a training set, counting Mtr = 148 pairs of
snapshots, extracted from t = 1 to t = 200, and a test set made
with the remaining Mts = 48 pairs, from t = 201 to t = 248. The
first group of data is employed to train both sDMD and xDMD
models, which are then used to predict the following Mts states
of the system. The performance is assessed by comparing the
DMD predictions with the test set elements. The same truncation
criteria applied in the previous section are employed here: all the
corresponding values are reported in Table 4.1.

Panel (a) of Figure 4.8 shows the evolution in time of the ex-
trapolation error of the sDMD-based ROM truncated at r90, r

∗
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Figure 4.9: Maps of TWSA provided by GRACE at times (a) t = 224
and (b) t = 248 and respective differences of the predictions provided
by (c-d) the sDMD-based ROM and (e-f) the xDMD-based ROM, both
truncated at r90. In panels (c-f) the curves represent the mean of the
differences by latitude (vertical) and longitude (horizontal).
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Figure 4.10: Probability distribution of the differences, mapped in
Figure 4.9, between the reference maps of GRACE for time t = 224 and
t = 248 and the respective predictions provided by (a-b) the sDMD-
based ROM and (c-d) the xDMD-based ROM, both truncated at r90.
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and r = rank(X); Panel (b) shows the same for xDMD. For both
the DMD formulations, truncating at r90 guarantees the best per-
formance, while the selection of r = rank(X), which provided the
lowest representation error (Figure 4.5), becomes the worst op-
tion in the extrapolation regime. In the following, we will always
truncate at r90. As expected, all the ROMs have slightly higher
errors when used to extrapolate future states of the system, com-
pared to the use in the representation regime (Figure 4.5), where
the model was asked to reproduce data already seen during the
training phase. A slowly increasing trend of the error can also be
noticed as we extend the number of predicted time steps. The
difference between sDMD and xDMD is quite small to be noticed
when r = r∗ or r = rank(X), it becomes more visible for r = r90.

Figure 4.9 focuses on the distribution of the ROMs’ perfor-
mances on the global map. The structure is the same as Figure
4.6, but here the maps refer to t = 224 and t = 248, as the focus is
specifically on the extrapolated part of the series (t = 201÷ 248).
The TWSA maps provided by GRACE for t = 224 and t = 248
are plotted on the first row, in Panels (a) and (b). The differences
between them and the corresponding maps predicted by sDMD
are on the second row (Panels (c) and (d)), while the plots of the
third row (Panels (e) and (f)) refer to the xDMD case. Compared
to the representation regime (Figure 4.6), here the differences be-
tween original data and DMD predictions are bigger and tend to
increase moving from t = 224 to t = 248. The xDMD-based ROM
has a slightly better performance than sDMD, more evident for
t = 248. The curves plotted over and next to each map con-
firm major difficulties of interpretation and therefore prediction
for higher latitudes, as it was in Figure 4.6.

The histograms in Figure 4.10, symmetrically paired to the
maps of Panels (c)-(f) in Figure 4.9, describe the probability dis-
tributions of the difference values in each map. The shape of the
distribution does not change from t = 224 (first column) to t = 248
(second column) but is affected by the choice of the DMD version.
In the xDMD case (Panels (c) and (d)) values of difference near
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dL
k = 0 are more likely to happen, according to the more narrow

and high shape of the distribution.
The maps in Figure 4.6 and 4.9 already proved that DMD is

able to reproduce and even predict the global patterns of TWSA.
Figure 4.11 offers a more detailed evaluation of the local perfor-
mance. For 6 random points on the Planet, the time series of
TWSA provided by GRACE are compared to the reconstructions
(k ≤ 200) and predictions (k > 200) computed by the xDMD-
based ROM. Reconstruction is successfully performed in all situ-
ations. Differences are more evident after k = 200, especially for
points (e) and (f), even there, though, the ROMs can reproduce a
plausible behavior of the variable.

4.4 Final Remarks

We tested the viability of DMD as an efficient data-driven tech-
nique to interpret satellite data series. In particular, we analyzed
the performances of the standard algorithm (sDMD) and the ex-
tended implementation (xDMD) on the task of reconstruction and
extrapolation of data from GRACE missions. Our results confirm
that a careful selection of the SVD truncation rank is a key fac-
tor in the generation of accurate DMD-based ROMs. A low-rank
truncation, which preserves the majority of the total cumulative
energy in the data, avoids overfitting and yields high accuracy
and error stability. Given an optimal truncation choice, the recon-
struction of GRACE observations is accurately performed by both
the sDMD and xDMD algorithms. Some major difficulties are re-
ported only at higher latitudes, where GRACE data are known
to be less reliable. As for extrapolation of future TWSA on the
globe, the robustness of xDMD formulation makes it preferable
compared to sDMD, providing more stable performance. Finally,
we verified the local accuracy of xDMD when used to reconstruct
and predict time series at selected points on the global map.

Overall, our work suggests that the use of DMD is beneficial
for the interpretation of satellite data series. As expected, the
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Figure 4.11: (a-f) Time series of TWSA for the six points on the
map, provided by GRACE (continuous grey line) and estimated by the
xDMD-based ROM truncated at r90 (dashed line) in the representation
(shaded) and extrapolation (not shaded) regimes. The reference map
represents the mean over time of TWSA by GRACE.

66



performances of the ROMs are strictly related to the reliability
of the training data, hence the typical inhomogeneity in measure-
ments reflects on the final accuracy of the model. For this reason,
the magnitude of the error is higher when we derive ROMs from
observations than simulations (Chapter 3) and some localized dif-
ficulties appear. However, given the appropriate truncation, com-
putationally efficient and accurate ROMs can be learned directly
from satellite observations and replace HFMs in system modeling.

The applicability of DMD to satellite data also paves the way
for future studies regarding the structure of the DMD-based ROM
and its connections to the systems’ leading order dynamics. More
benefits are expected from this further step: the complex physics
that stands behind the data collected by the satellites could be
unveiled by analyzing the spatial patterns and temporal trends
contained in the DMD-based model.
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5 DMD-Informed Polynomial Chaos
Expansion

As uncertainty usually characterizes real-world phenomena, to
strengthen our ability to interpret complex systems we are gen-
erally interested in exploring the space of variability of the param-
eters and evaluating the effects on the system’s response. This task
requires large sets of simulations, resulting in prohibitive compu-
tational costs if performed through high-fidelity models (HFMs).

Even if Dynamic Mode Decomposition (DMD) is a powerful
tool that allows for low-cost simulations of dynamical systems, this
method can generate reduced-order models (ROMs) that strictly
represent the system behavior for given values of the parameters.
Therefore, even if DMD may reduce the computational cost of
dynamic systems’ modeling, it is not suitable to explore the system
response in the space of variability of parameters.

On the other hand, Polynomial Chaos Expansion (PCE) is
a widely employed technique to address the effect of parameter
variability on the model response but its use in case of unsteady
processes (and models) is hindered by the simulations required to
calibrate the PCE-based surrogate at each space-time location of
interest.

In this chapter, we suggest the combination of DMD with
PCE into a robust model-reduction framework suitable to ad-
dress parameter variability issues when modeling systems with
time-variant responses. Specifically, we propose a DMD-informed
PCE, where DMD is used to interpolate high-fidelity data, thus
contributing to the dataset required to calibrate the PCE. We in-
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vestigate the accuracy of the DMD-informed PCE by testing the
method against a scenario of a non-linear 2D multiphase flow in a
heterogeneous media. We test the approach for different replace-
ment rates and explore the use of the standard (sDMD) and the
extended (xDMD) versions of the DMD method for the interpola-
tion task.

The study proves the effectiveness of the novel framework, in
particular when the PCE is informed by xDMD. As the xDMD-
ROMs have lower and more stable interpolation errors, they guar-
antee better performances of the xDMD-informed PCE, which
does not suffer from the same degradation visible for the sDMD-
informed PCE when the replacement rate increases.

The chapter is organized as follows: Section 5.1 introduces
the theme of uncertainty quantification and the modeling require-
ments of these analyses; Section 5.2 is devoted to the presentation
of the proposed methodological framework; Section 5.3 describes
the case study selected to exemplify our approach and the cor-
respondent implementation of the methodological framework; in
Section 5.4 we discuss the results focusing on the different devel-
opment step of the framework; while Section 5.5 provides final
remarks.

The study presented in this chapter is related to the paper G.
Libero, D.M. Tartakovsky, V. Ciriello, Dynamic Mode Decompo-
sition enhances Polynomial Chaos for order reduction of dynamic
processes under review in Advances in Water Resources.
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5.1 Model Reduction for Uncertainty Quantifi-
cation

Our ability to model complex systems is usually limited by the
uncertainty. For this reason, it is crucial for the development of
robust and reliable models to explore the space of variability of
the parameters and evaluate the effects on the system’s response,
such as in the case of uncertainty quantification or scenario de-
velopment. A typical example is the interpretation of hydrologi-
cal processes and, specifically, of flow and transport phenomena.
These typically time-dependent processes (Benettin et al., 2022;
Di Dato et al., 2018; Botter et al., 2010; Dentz et al., 2004, 2000;
Tartakovsky and Neuman, 1998) are strongly influenced by para-
metric uncertainty and wide literature concerns uncertainty quan-
tification in this field (Kang et al., 2022; Zhan et al., 2022; Ciriello
and de Barros, 2020; Guo et al., 2020).

To obtain accurate predictions, HFMs are usually required.
However, their prohibitive computational cost limits the applica-
tion when many simulations are needed, such as in uncertainty
quantification or scenario analysis (Ciriello et al., 2012, 2017). In-
deed, despite rapid advances in software and hardware develop-
ment, the growth in computational power is going hand in hand
with that in model complexity so that our ability to perform high-
fidelity physics-based simulations remains practically unchanged.

In this context, ROMs are efficient mathematical represen-
tations that capture the key underlying dynamics of a complex
system directly from a small collection of HFM’s output and/or
observational data and reproduce at a low cost the system be-
havior (Kang et al., 2022; Zhan et al., 2022; He and Tartakovsky,
2021; Tartakovsky et al., 2020; Ciriello et al., 2019; Oladyshkin
et al., 2012). The basic idea behind the use of suitable model re-
duction techniques for uncertainty quantification is to provide a
simple mathematical relationship to relate the key governing in-
put features and the model response in output. Thus, providing
a viable tool to perform a large number of simulations in the pa-
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rameter space while preserving the high-fidelity representation of
the phenomena (Focaccia et al., 2021; Ciriello et al., 2017, 2012;
Oladyshkin et al., 2012).

DMD is a promising data-driven technique to generate ROMs
of complex dynamical systems (Schmid et al., 2010; Tu et al.,
2014). However, this approach, based on the identification of
spatiotemporal structures that are dominant in the data through
singular value decomposition (Kutz et al., 2016), is only able to
reconstruct the underlying processes for a specific point in the
parameter space. In other terms, a DMD-based ROM strictly
represents the system described by its training data and cannot
be generalized to differently parameterized situations. Therefore,
even if DMD is a powerful tool to reduce the computational cost
of dynamic systems’ modeling, it is not suitable to explore the
system response in the space of variability of parameters.

A suitable and widely employed technique to address param-
eters variability issues is the PCE. This meta-modeling approach
can accelerate uncertainty quantification and other onerous analy-
ses otherwise computationally prohibitive if performed directly on
an HFM, as demonstrated by several literature examples concern-
ing flow and transport problems (Ciriello and de Barros, 2020;
Oladyshkin et al., 2012). The method provides an approxima-
tion of the response computed with the HFM in the parameter
space in the form of a series expansion truncated to a finite order
(Sudret, 2008; Ghanem and Spanos, 1991; Wiener, 1938). The
result is a surrogate polynomial model made of a basis of multi-
variate polynomials (orthonormal with respect to the joint pdf of
the parameters), multiplied by deterministic coefficients that em-
bed the space-time dependence of the response (Sudret, 2008; Xiu
and Karniadakis, 2002).

Its effectiveness, as for all ROMs, depends on the amount of
high-fidelity simulations required for the calibration phase. As de-
scribed in Section 2.3.1, this burden can be reduced by limiting
the training of the surrogate’s coefficients to a small number of
optimal regression points (namely collocation points) provided by
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the Probabilistic Collocation Method (PCM). The PCM is em-
ployed to optimize the procedure reducing the HFM runs to some
optimal combinations of values identified to span the entire space
of variability of the model’s parameters (Sudret, 2008; Webster
et al., 1996). However, the number of regression points (i.e. HFM
simulations needed to train the PCE) rapidly increases with the
parameter space dimension, with the truncation order, and when
the process is space-time dependent. In this case, we need to com-
pute the PCE coefficients at each space-time location of interest
(Ciriello and de Barros, 2020). As a result, the computational cost
required by the calibration increases and hence efficiency drasti-
cally diminishes limiting the applicability of the method to prob-
lems involving complex dynamical systems.

Here, we suggest the combination of PCE and DMD in a ro-
bust model-reduction framework for models with time-variant re-
sponse. The approach takes advantage of the capability of PCE
to approximate the system’s response in the space of variability
of the parameters (thus enabling to perform stochastic analysis
and scenario development) and the attitude of DMD to interpo-
late high-fidelity data in time. Specifically, we propose a DMD-
informed PCE (hereinafter DMD-PCE) where DMD has the role
of informing PCE, replacing a large number of the simulations re-
quired from the HFM with reconstructions generated at a lower
computation cost.

5.2 Integrated Model Reduction Framework

To calibrate the surrogate polynomial model described by Equa-
tion 2.26, the regression given by Equation 2.25 has to be solved
at each space-time location where we want to compute the PCE
approximation. When we need to approximate a dynamical sys-
tem, the number of space-time locations increases rapidly, together
with the computational burden associated with the generation of
the training high-fidelity data.

To reduce the computational cost of this step, which is the only
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HFM simulations

DMD interpolation

DMD-informed PCE

Figure 5.1: Methodological framework of the DMD-informed PCE
approach.
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relevant cost related to the PCE framework, we suggest solving the
regression on a mixed dataset of high and low-fidelity data. High-
fidelity snapshots are generated by the HFM only for the (1−η)%
of the time instants, while DMD is employed to interpolate data
for the others η% time steps (Figure 5.1). Note that if η = 0
the PCE coefficients are computed based only on the HFM, which
corresponds to the traditional PCE approach.

The accuracy of the method depends on the accuracy of the
DMD interpolation, which depends on the replacement rate η% in
turn, and finally on the capabilities of the PCE technique. A first
assessment of the performance consists of a comparison between
the PCE coefficients calibrated on the mixed database, for a given
η, and the coefficients trained on all high-fidelity data (η = 0).
Secondly, we can directly compare the PCE approximation of the
response for a given η, i.e. x̂η, and the approximation in case of
η = 0, i.e. x̂η=0. Finally, we can compare both the approximations
to the reference high-fidelity dataset, i.e. x.

5.3 Data and Application

5.3.1 Physically-Based HFM

Modeling multi-phase flow is a challenging task that plays a no-
table role in many phenomena, ranging from contaminant mi-
gration to geothermal flow, and carbon sequestration (Mo et al.,
2019). The need to solve strongly non-linear governing PDEs re-
sults in a high, often prohibitive, computational cost. This limits
any detailed study requiring a large number of simulations, such as
uncertainty quantification analysis (Song and Tartakovsky, 2021).

Here, we test our methodology on a 2D case study of mul-
tiphase flow in a heterogeneous media. Two incompressible and
immiscible fluids, with viscosities µ1 and µ2, flow in a heteroge-
neous, incompressible, and isotropic porous medium, characterized
by porosity ϕ and intrinsic permeability k(s) (Taverniers et al.,
2020; Song and Tartakovsky, 2021). Combining the mass conser-
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vation equation

ϕ
∂Sl

∂t
+∇ · vl + ql = 0, s ≡ (s1; s2)

⊤ ∈ D; t ∈ [0;T ]; (5.1)

and the generalized Darcy’s law

vl = −k
krl
µl

∇Pl (5.2)

we can describe the propagation of each phase (l=1,2). Here,
Sl(s, t) is the phase saturation, constrained by S1 + S2 = 1, while
ql is the source/sink term. According to Equation 5.2, the macro-
scopic velocity vl(s, t) depends on the relative permeability of the
phase, which in turn varies with the corresponding saturation,
krl = krl(Sl), in accordance with the Brooks-Corey constitutive
model (Corey, 1954). The pressure is assumed to be equal within
the two phases P = P1 = P2 ≡ P (s, t), hence the capillarity forces
are ignored (Taverniers et al., 2020).

Similarly to Taverniers et al. (2020), we study the flow on a
square simulation domain D of size 150 m x 150 m, with imper-
meable bottom Γb and top Γt boundaries, and Dirichlet conditions
imposed along the left Γl and right Γr boundaries:

∂P

∂s2
= 0, s ∈ Γb ∪ Γt; P = 10, s ∈ Γr;

P = 10 + ∆p ∧ S1 = 1.0, s ∈ Γl.

(5.3)

Initial conditions are:

P (s, 0) = 10.1, S1(s, 0) = 0, s ∈ D. (5.4)

Pressure P is expressed in MPa.
The flow is simulated for two different intrinsic permeability

scenarios (SC1, SC2), to account for the role played by hetero-
geneity. The two permeability maps are generated as second-order
stationary random field, such that Y (s) = lnk is multivariate
Gaussian with mean µY (s) = 0, variance σ2

Y = 2.0 and correlation
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length λY = 19m in the first case and µY (s) = 0, σ2
Y = 3.0 and

λY = 10m in the second case. The field Y (s) is approximated
by means of a truncated Karhunen–Loève expansion, counting 31
terms, chosen to capture 95% of the energy of Y (Taverniers et al.,
2020). Panels (a) of Figure 5.2 and Figure 5.3 show the two per-
meability fields SC1 and SC2, respectively.

Equations 5.1 and 5.2 are discretized using a finite volume
scheme in space and an implicit Euler scheme in time. The result-
ing highly non-linear system of equations is solved iteratively at
each time step using the Newton-Raphson method, with modified
Appleyard saturation update damping (Appleyard et al., 1981) to
improve convergence. To ensure convergence of both flow ad trans-
port solutions three convergence criteria are specified: normalized
residual norm, maximum saturation update, and maximum rela-
tive pressure update, with respective tolerances set to ε1 = 10−6,
ε2 = 10−2, and ε3 = 10−3 (Taverniers et al., 2020; Song and Tar-
takovsky, 2021).

5.3.2 Application to the Case Study

Among all the input parameters of the HFM (Taverniers et al.,
2020), we focus on possible uncertainty related to the porosity ϕ,
and the external pressure difference at the boundaries ∆p. We as-
sume the two input variables to be independent random variables,
described by two normal distributions: ϕ ≃ N (mϕ = 0.25;σϕ =
0.05), ∆p ≃ N (m∆p = 0.20MPa;σ∆p = 0.04MPa). As a con-
sequence, the Hermite Polynomials should be used to build the
PCE surrogate polynomial model in Equation 2.24 (Xiu and Kar-
niadakis, 2002). We choose a second-order PCE approximation,
i.e. q = 2, and then P = 6. Under these conditions, the PCM
identifies NCP = 6 optimal collocation points in the random pa-
rameter space, i.e. six combinations of values for the two uncertain
inputs, ϕ and ∆p.

For each collocation point, we perform high-fidelity simulations
for both the permeability scenarios SC1 and SC2. Each high-
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Figure 5.2: (a) the log-perm field Y (s) = ln(k) (with k expressed in
mDarcy) for the first scenario (SC1) and the corresponding saturation
maps simulated by the HFM at time steps (b) k = 910 and (c) k = 1820.

78



Figure 5.3: (a) the log-perm field Y (s) = ln(k) (with k expressed in
mDarcy) for the second scenario (SC2) and the corresponding satura-
tion maps simulated by the HFM at time steps (b) k = 910 and (c)
k = 1820.
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fidelity simulation involves the computation of the saturation of
the first fluid, S1, on a 64x64 grid for 1828 time instants, from
t = 0 to t = 1827 days, with a time step ∆t = 1 day. The first 8
snapshots of each series are not considered for the analysis, because
the initial transient behavior of the phenomena could affect their
accuracy, hence, the snapshots available for the training of DMD-
based ROMs are 1820. Panels (b) and (c) in Figure 5.2 and Figure
5.3 show the saturation maps simulated by the HFM for k =
910 (t = 917 days) and k = 1820 (t = 1827 days), for the two
permeability scenarios SC1 and SC2. Vectorizing each snapshot,
we obtain, for each combination provided by the PCM, a matrix
counting n = 64 ∗ 64 = 4096 rows and 1820 columns.

When high-fidelity simulations are performed for all six collo-
cation points, we can use them to calibrate the polynomial surro-
gate model at all the space-time locations of interest. The result
is a PCE completely trained on high-fidelity data (hereinafter this
will be indicated as HF-PCE). Alternatively, for each collocation
point, we propose to use a limited number of high-fidelity simu-
lations to calibrate a DMD-based ROM able to approximate the
evolution of the response in time, and then use it to interpolate
and fill the missing high-fidelity data. The DMD-informed PCE
(hereinafter also indicated as DMD-PCE) is then compared to the
HF-PCE in terms of accuracy.

In this study, different replacement rates are considered, specif-
ically: η = (0.5, 0.75, 0.9). For each value of η, a different DMD
approximation is computed testing both sDMD and xDMD and
considering the three different truncation criteria described in Sec-
tion 2.2.4 r=(rank(X), r∗, r90). Note that r90 corresponds to the
minimum number of singular values accounting for 90% of the cu-
mulative energy in the SVD of X; r∗ is identified setting ζ = 10−5

in Equation 2.20; while r = rank(X) is computed with the dedi-
cated MATLAB function. A summary of the cases considered in this
analysis is reported in Table 5.1. The framework of the proposed
new approach and its application to the case study is described in
Figure 5.4.
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HFM simulation

HF data

𝑘 = 1 ÷ 𝐾 = 1820

HF - PCE

ROM simulation

DMD - PCE

HF data

𝑘 = 1 ∶ ∆𝑘 ∶ 𝐾

DMD data

𝑘 = 2 ÷ 1 + ∆𝑘 : ∆𝑘: 𝐾

DMD calibration

DMD interpolation

𝑗 = 1 ÷ 𝑁𝐶𝑃 = 6

PCM

(𝜙𝑗, △𝑝𝑗)

𝑆𝐶𝑖

∆𝑘 =
1

(1 − 𝜂)

Figure 5.4: Methodological framework of the DMD-informed PCE
approach applied to the case study. Given a permeability scenario SCi,
for each collocation point identified by the PCM we perform an HFM
simulation of 1820 snapshots. We employ (1− η)% of the high-fidelity
snapshots to train DMD and use the resulting ROM to interpolate the
remaining time steps. We repeat the procedure for NCP = 6 collo-
cations points. All 6 series of high-fidelity snapshots are employed to
train the HF-PCE; while the mixed datasets with DMD-interpolated
snapshots are sent to the DMD-PCE.
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Table 5.1: Datasets and truncation ranks corresponding to the three
different replacement rates η, for the two permeability scenarios (SC1,
SC2).

SC Train (representation) Test (interpolation) r90 r∗ rank(X)
Case 1: (1) k = 1 : 2 : 1820 k = 2 : 2 : 1820 11-16 75-129 890-909
η = 0.5 (2) k = 1 : 2 : 1820 k = 2 : 2 : 1820 8-13 61-105 765-908
Case 2: (1) k = 1 : 4 : 1820 k = (2 : 4) : 4 : 1820 10-16 75-129 454
η = 0.75 (2) k = 1 : 4 : 1820 k = (2 : 4) : 4 : 1820 8-13 61-104 454
Case 3: (1) k = 1 : 10 : 1820 k = (2 : 10) : 10 : 1820 10-16 74-128 181
η = 0.9 (2) k = 1 : 4 : 1820 k = (2 : 4) : 4 : 1820 8-13 60-104 181

5.4 Results and Discussion

5.4.1 DMD Calibration

We start by assessing the accuracy of both the standard (sDMD)
and the extended (xDMD) algorithm in reproducing the same set
of high-fidelity data employed for their calibration (hereinafter rep-
resentation error). We test the performances for different dimen-
sions of the training set (see Table 5.1).

Specifically, for each of the two permeability scenarios and the
six collocation points, 3 different subsets, counting 50%, 25%, and
10% of high-fidelity data provided by the numerical model de-
scribed in Section 5.3.1, are used for training. Based on these
subsets, we derive DMD-based ROMs for 3 different truncation
criteria to explore the accuracy of the two algorithms (see Table
5.1).

Figure 5.5 shows the results for the permeability scenario SC1,
while Figure 5.6 refers to SC2. In both the Figures, columns cor-
respond to Cases 1-3 in Table 5.1 (i.e. different dimensions of the
training set), while the 6 different lines in each plot correspond
to the 6 different combinations of values (i.e. collocation points)
provided by the PCM to span the entire space of variability of the
parameters. The three plots on the first row represent the singular
values associated with the Singular Value Decomposition (SVD)
of the matrix X of each of the 6 combinations for the three cases.
The representation error, averaged over all the time instants, is
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plotted as a function of the truncation rank r of the SVD in Pan-
els (d)-(f) for the sDMD-based ROMs and in Panels (g)-(i) for the
xDMD-based ROMs. The ranks corresponding to different trun-
cation criteria are also reported: pointed in red is r = rank(X),
in green r = r∗, and in blue r = r90.

We note that the range of values associated with r90 is sensibly
the same for the three cases, for both SC1 and SC2. The same
holds for r∗, even if the range of values associated with the 6
realizations is slightly wider (see also Table 5.1). On the other
hand, rank(X) changes from case to case, being equal (Cases 2-3)
or very close (Case 1) to the number of training snapshots. In
addition, it can be noticed that the majority of the information
is carried by a limited number of singular values which is sensibly
captured by r∗ and does not change increasing the dimension of the
training set. This is confirmed by the plots on the second and third
row: the representation error becomes unstable after r∗, especially
for SC2, suggesting all the exceeding features (correspondent to
r > r∗) can be interpreted as noise or negligible details. For
this reason, in all the following computing steps, we truncate the
DMD models at r = r∗. Finally, comparing the performance of
the sDMD and xDMD algorithms in Figures 5.5 and 5.6, we can
verify that xDMD returns a better approximation in both the
permeability scenarios.

5.4.2 DMD Interpolation

We consider the sDMD and xDMD models calibrated in the previ-
ous Section on 50%, 25%, and 10% of the entire set of high-fidelity
data, and truncated at r = r∗, and we employ them to interpolate
the model response. We reconstruct the saturation maps for the
missing time steps, i.e. thus corresponding to a replacement rate
equal to η = 0.5, 0.75, 0.9, respectively (see Table 5.1 Cases 1-3).

Interpolation performance is explored in Figure 5.7 and Fig-
ure 5.8 for permeability scenarios SC1 and SC2, respectively. In
both the Figures, columns correspond to Cases 1-3 in Table 5.1,
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Figure 5.5: For the first permeability scenario (SC1): (a)-(c) repre-
sent the singular values associated with the SVD of X for Cases 1-3
in Table 5.1, respectively. For the same cases (d)-(f) and (g)-(h) show
the representation error (averaged over the time instants) of the sDMD
and xDMD as a function of the truncation rank r of the SVD. Different
lines in each panel correspond to the simulations for the 6 collocation
points. In each panel, dots correspond to rank(X) (in red), r∗ (in
green), r90 (in blue) (the numerical values are in Table 5.1).
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Figure 5.6: For the second permeability scenario (SC2): (a)-(c) rep-
resent the singular values associated with the SVD of X for Cases 1-3
in Table 5.1, respectively. For the same cases (d)-(f) and (g)-(h) show
the representation error (averaged over the time instants) of the sDMD
and xDMD as a function of the truncation rank r of the SVD. Different
lines in each panel correspond to the simulations for the 6 collocation
points. In each panel, dots correspond to rank(X) (in red), r∗ (in
green), r90 (in blue) (the numerical values are in Table 5.1).
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while the 6 differently colored lines in each panel correspond to
the 6 collocation points. Specifically, Panels (a)-(c) show the in-
terpolation error, computed through Equation 2.23, of the sDMD,
while the results for xDMD are shown in Panels (d)-(f). Focusing
on the first row (Panels (a)-(c)), we observe that the logarithm
of the error provided by the sDMD is in the range (−5,−1) for
all the cases, but an increasing instability affects the performance
when the dimension of the training set decreases. Conversely, for
xDMD (Panels (d)-(f)) the logarithm of error is sensibly lower,
within (−9,−3), and the variability between the 6 series is less
remarkable. The error decreases with time for all the cases, and
instabilities are smaller than for sDMD, denoting higher robust-
ness in the behavior of the xDMD algorithm. This holds for both
SC1 and SC2. On the third row of both the Figures (Panels (g)-
(i)), we focus on the difference between the high-fidelity satura-
tion map and the correspondent map interpolated by xDMD at
k = m− 1. The difference is maximum for Case 3, though in the
range (−5 · 10−5, 5 · 10−5).

The interpolation errors discussed in this Section have a great
influence on the accuracy of the overall method, as they propagate
in the DMD-PCE computation as discussed below.

5.4.3 DMD-Informed PCE Accuracy

At this point, for each case, new databases can be formed merging
the snapshots interpolated through sDMD or xDMD together with
the high-fidelity data employed for the training. In Case 1 half
of the dataset is made of high-fidelity data and the other half is
simulated by DMD; in Case 2 75% of data is provided by the DMD
surrogate; while in Case 3 the surrogate provides 90% of the entire
set. As the replacement rate increases, the computational cost to
produce the dataset decays.

PCE surrogate models are built according to Equation 2.26
and trained on these new datasets. Calibration of the PCE surro-
gate consists of the computation of a set of 6 coefficients aj(s, t)
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Figure 5.7: For the first permeability scenario (SC1): (a)-(c) repre-
sent the sDMD interpolation error in time for Cases 1-3 in Table 5.1;
(d)-(f) show the same for xDMD; (g)-(h) show the difference between
real data and the corresponding snapshots interpolated by xDMD at
k = 1819 (t = 1826) for Cases 1-3.
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Figure 5.8: For the second permeability scenario (SC2): (a)-(c) rep-
resent the sDMD interpolation error in time for Cases 1-3 in Table 5.1;
(d)-(f) show the same for xDMD; (g)-(h) show the difference between
real data and the corresponding snapshots interpolated by xDMD at
k = 1819 (t = 1826) for Cases 1-3.
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for each point in space and time. We repeat this calibration for
the three different replacement rates and both the permeability
scenarios. The coefficients aLj (s, t) resulting from the calibration
of the PCE polynomial structure on the mixed datasets (DMD-
PCE) are compared to the coefficients aj(s, t) calibrated entirely
on high-fidelity data (HF-PCE). The error between the two ap-

proaches is computed for each coefficient as ε
aj
k =

∥aLj (s,k)−aj(s,k)∥2

∥aj(s,k)∥2 ,

where aLj (s, k) is the vector of values of the coefficient aj provided
by the DMD-PCE at a specific time instant k and for all the space
locations collected in the vector s and aj(s, k) is the corresponding
vector of coefficients from HF-PCE.

Boxplots in Figure 5.9 describe the distribution of the error
when replacing η = 0.5, 0.75, 0.9 of high-fidelity data computed
for SC1, with sDMD interpolated snapshots. Figure 5.10, instead,
refers to the case where interpolation is performed through xDMD.
Figure 5.11 and Figure 5.12 show the same for SC2.

As expected, the growth of the replacement rate always corre-
sponds to an error increase. Furthermore, even if the magnitude of
the error varies from one coefficient to the other, it can be noticed
that xDMD is confirmed to always guarantee better performance
than sDMD. Also, the differences in SC1 and SC2 have a very
small impact on the coefficients’ error, which varies within similar
ranges.

The accuracy of the DMD-informed PCE approach is finally
tested comparing the approximation of the response given by the
PCE-DMD surrogates with the results given by the traditional
PCE model entirely trained on high-fidelity data (HF-PCE).

In the regression plots of Figure 5.13 and Figure 5.14 results
from PCE surrogates informed by sDMD and xDMD are compared
with the reference prediction of the HF-PCE generated for the
permeability scenario SC1. In both Figures, Panel (a) refers to
replacement rate η = 0.5, Panel (b) to η = 0.75, and Panel (c) to
η = 0.9. Figure 5.15 and Figure 5.16 show the same for the second
permeability scenario SC2. Where sDMD is employed to inform
the PCE, the accordance with the reference case declines as the
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Figure 5.9: For the first permeability scenario (SC1): error in the
estimate of PCE coefficients aj when using sDMD interpolation in place
of the HFM data for η = 0.5, 0.75, 0.9.
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Figure 5.10: For the first permeability scenario (SC1): error in the
estimate of PCE coefficients aj when using xDMD interpolation in place
of the HFM data for η = 0.5, 0.75, 0.9.
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Figure 5.11: For the second permeability scenario (SC2): error in
the estimate of PCE coefficients aj when using sDMD interpolation in
place of the HFM data for η = 0.5, 0.75, 0.9.
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Figure 5.12: For the second permeability scenario (SC2): error in
the estimate of PCE coefficients aj when using xDMD interpolation in
place of the HFM data for η = 0.5, 0.75, 0.9.
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replacement rate increases. High accuracy is maintained, instead,
for all the tested replacement rates when xDMD is employed.

5.5 Final Remarks

A new framework for robust reduction of models with time-variant
response is obtained from the combination of DMD and PCE, and
its accuracy is tested against a scenario of a non-linear 2D multi-
phase flow in a heterogeneous media. In this novel approach, the
DMD method is employed to replace part of the high-fidelity sim-
ulations required to calibrate the PCE with reconstructions gener-
ated at a lower computation cost. The ability of both sDMD and
xDMD to reproduce and interpolate high-fidelity data is explored
for different replacement rates, and xDMD is proved to better ap-
proximate the system’s states. As in the applications discussed
in the previous chapters, we also investigated the truncation rank
selection and identified r = r∗ as the optimal truncation criteria.
The resulting sDMD and xDMD-based ROMs are then employed
to generate, at a low computational cost, part of the simulations
required for the PCE calibration. A first assessment of the ac-
curacy of the approach is performed by comparing the PCE co-
efficients calibrated on the mixed database (DMD-PCE) and the
coefficients trained on all high-fidelity data (HF-PCE). The com-
parison between the approximations of the system’s response pro-
vided by the DMD-PCE and the HF-PCE further demonstrates
the effectiveness of the novel framework. In particular, we prove
that when the PCE is informed by xDMD, the lower and more
stable interpolation errors guarantee better and more robust per-
formances of the method. The demonstrated computational ben-
efit and accuracy of the proposed method support the diffusion of
this framework to ease onerous studies such as uncertainty quan-
tification analysis.
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Figure 5.13: For the first permeability scenario (SC1): (a)-(c) show
the sDMD-informed PCE prediction associated with η = 0.5, 0.75, 0.9
respectively vs the PCE prediction obtained for η = 0.
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Figure 5.14: For the first permeability scenario (SC1): (a)-(c) show
the xDMD-informed PCE prediction associated with η = 0.5, 0.75, 0.9
respectively vs the PCE prediction obtained for η = 0.
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Figure 5.15: For the second permeability scenario (SC2): (a)-(c) show
the sDMD-informed PCE prediction associated with η = 0.5, 0.75, 0.9
respectively vs the PCE prediction obtained for η = 0.
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Figure 5.16: For the second permeability scenario (SC2): (a)-(c) show
the xDMD-informed PCE prediction associated with η = 0.5, 0.75, 0.9
respectively vs the PCE prediction obtained for η = 0.
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6 Conclusions

In this thesis, the opportunities offered by the application of Dy-
namic Mode Decomposition (DMD) in the analysis of complex
dynamic real-world systems are explored. Specifically, the capabil-
ities of the DMD method are tested and investigated with respect
to complex flow phenomena decoding.

The potential of this technique resides in its flexibility. As a
purely data-driven and equation-free method, it can be equally
employed in diverse fields, ranging from environmental science to
medicine. The only requirement is the availability of a training set
of snapshots of the system’s evolution in time. As demonstrated
by the applications proposed in this work, this dataset can col-
lect either direct observations of reality or simulations performed
through a physics-based model.

The method can derive from high-fidelity data computation-
ally efficient reduced-order models (ROMs) with a twofold scope:
reconstruct available snapshots, and interpolate or extrapolate the
system state where data are missing. The ability to reconstruct
high-fidelity data at a low computational rate justifies the success-
ful use of DMD as a technique for data compression. On the other
hand, the possibility of using the reduced-order model to predict
the state of the system where no high-fidelity data are available
can drastically reduce the computational burden of complex dy-
namical system analysis.

A key role in the accomplishment of both these tasks is played
by the selection of an appropriate truncation. Indeed, in all the
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applications reported in this thesis, the truncation rank selection
proved crucial to guarantee a suitable level of efficiency and accu-
racy in representation, interpolation, and extrapolation regimes.

One of the limits of the DMD method resides in the non-
generalizability of the resulting ROMs, which are strictly valid
for the system described by the training data. Hence, DMD by
itself is not suitable for exploring the system response in the space
of variability of parameters. However, it can be used to alleviate
the computational cost related to uncertainty quantification anal-
ysis or other onerous studies performed with methods that require
many simulations, especially when dealing with complex high-
dimensional systems. In this context, an integrated framework for
the reduction of models with time-variant response, which com-
bines DMD with the Polynomial Chaos Expansion (PCE) tech-
nique, is proposed and tested in this thesis. In the DMD-informed
PCE, part of the high-fidelity simulations required to calibrate the
polynomial model is replaced by low-cost DMD reconstructions,
reducing the overall computational demand of the method.

The applications presented in this thesis demonstrate that the
DMD method if optimally implemented and eventually combined
with PCE, can represent a powerful tool to ease diagnosis and
scenario analysis when complex flow processes are involved.

The DMD-based approximations can replace the existing oner-
ous high-fidelity models, allowing for faster but meaningful and ro-
bust predictions of flow and transport phenomena in very diverse
fields. The possibility of performing reliable and cheap scenario
analysis could positively impact the remediation of contaminated
sites or the extraction of underground resources; while in the medi-
cal field, this translates to fast diagnosis of diseases or dysfunctions
and efficient comparison of different options for intervention.

Even greater advantages can derive from the use of DMD when
traditional physics-based models are not available, and the system
evolution is only described by time-series of direct observations.
In this case, the DMD-based models not only provide a valid
approximation of the system behavior but also contain in their
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structure physically meaningful dynamics characterizing systems
and processes. A typical example is the interpretation of satellite
datasets: DMD could represent a key tool to decode these high-
dimensional archives and take advantage of the embedded infor-
mation to deeply understand global phenomena related to climate
or the distribution of resources.

Future research could further investigate this aspect and prove
that physical interpretability is another key feature in the char-
acterization of DMD as a powerful tool to support and speed up
humans’ response to systems evolution.
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A Appendix: PCE to Assess Cardiovascu-
lar Function

Motivated by the efficiency of the PCE technique and the im-
portance of diagnosis in the cardiovascular field, we tested the
use of the PCE-based surrogate models to provide metrics based
on blood flow for the assessment of the left ventricular function
(Collia et al., 2022). The objective of the study is to explore the
existence of relationships and dependencies between the clinical
metrics commonly used to assess cardiac function and advanced
flow-related quantities.

To this aim, we combine high-fidelity numerical simulations of
blood flow in the left ventricle with PCE surrogates. The HFM
is given by a direct numerical simulation method of intraventric-
ular fluid dynamics that allows simulation and analysis of cardiac
flow in individual patients. Numerical simulations are based on
the immersed boundary method, often employed to analyze fluid
dynamics in the left ventricle. Surrogate models are calibrated on
the high-fidelity simulations to approximate four QoIs describing
blood transit in the left ventricle: (i) the direct volume Vd, which
is the volume of blood that enters the ventricle and is ejected dur-
ing the same heartbeat; (ii) the residual volume Vr, which is the
amount of blood that is present in the ventricle at the beginning
of diastole and is not ejected during systole; (iii) the ventricular
kinetic energy KEEpeak; (iv) the vorticity ωEpeak. The approxima-
tions of these quantities are derived in the space of variability of
four input parameters. The selected parameters are the ejection
fraction (EF ); the ratio between the early (E-wave) and atrial
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(A-wave) peaks of the mitral inflow velocity (E/A); the left ven-
tricle shape ratio (LVr); and the ratio between the diameter of the
mitral valve annulus and that of the entire left ventricle valvular
plane (MV LVr). These parameters, selected among the standard
diagnostic clinical metrics, embed relevant information on the left
ventricle’s geometry and function and help discriminate between
healthy and diseased patients. Optimal combinations of values of
these four input parameters are given by the PCM and applied to
a parameterized geometry on which the HFM is run. The result-
ing high-fidelity dataset is employed for calibration and validation
of the surrogate models (Figure A.1).

Once the PCE surrogates are available, we compare their pre-
dictions to the results of the HFM for several patient-specific cases
under both healthy and diseased conditions to assess the robust-
ness of the method (Figure A.2).

The surrogates also allow us to perform global sensitivity anal-
ysis at a negligible computational cost. The sensitivity indices of
Sobol are computed as analytical post-processing of the PCE co-
efficients for each governing parameter and employed to assess the
relative impact of input variability on the quantities of interest
(Figure A.3).

This study demonstrates that the application of the PCE tech-
nique can provide us with surrogates that are directly employable
to speed up clinical analysis, but also allow us to uncover relation-
ships between common global flow transit quantities and standard
clinical parameters. Such surrogate models require an initial com-
putational effort to generate the high-fidelity simulations for the
calibration, then they present a notable simplicity and can be em-
ployed in real-time during the clinical analysis. Merging surrogate
models and HFMs, hence, results in a promising winning approach
to describe important metrics behavior in the cardiology field.
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Figure A.1: Comparison between HFM and PCE predictions for the 4
quantities of interest (KEEpeak, ωEpeak, Vd, Vr) on a set of 30 synthetic
cases. Solid green lines represent the linear regressions, while dashed
grey lines are the bisectors.
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Figure A.2: Comparison between HFM and PCE predictions for the
4 quantities of interest (KEEpeak, ωEpeak, Vd, Vr) on a set of 20 real,
patient-specific, cases. Solid green lines represent the linear regressions,
while dashed grey lines are the bisectors.
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Figure A.3: Total sensitivity indices (TSI) of Sobol computed for the
input parameters (EF , E/A, LVr, and MV LVr) with respect to each
quantity of interest (Vd, Vr, KEEpeak, ωEpeak).
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