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Abstract of thesis entitled

Advances in the design of carpet cloaks for
surface elastic waves

submitted by
Zinon Chatzopoulos

for the degree of Doctor of Philosophy
at University of Bologna

The objective of this Ph.D. thesis pertains to the conception and design of an innovative device, called
elastic carpet cloak, to protect structures from surface elastic waves, i.e. Love and Rayleigh waves.
The cloak smoothly redirects surface waves around objects, without any scattering or energy loss by
adjusting its material properties based on transformational elastodynamics principles. Initially, we
delve into cloaking of Love waves within an isotropic layered medium. By leveraging the form invari-
ance of the governing equation, we derive the requisite anisotropic mechanical characteristics of ideal
cloaks to hide triangular and parabolic-shaped defects. We validate our approach through dispersion
analyses and harmonic simulations, matching ideal cloaks with pristine mediums. Then, for trian-
gular defects, we adapt the ideal properties into layered cloaks of monoclinic double-material unit
cells, demonstrating great convergence with ideal case, as the unit cell size decreases. Next, we explore
cloaking of Rayleigh waves in homogeneous mediums. By utilizing transformation elastodynamics
and assuming identity gauge for the displacements, we obtain the effective cloaking properties, char-
acterized by non-symmetric elastic tensors. To address this, we employ a symmetrization technique
to approximate the non-symmetric behavior by symmetric, yet anisotropic, composites. Symmetrized
cloakswith triangular and semi-circular shapes are evaluated through simulations and dispersion anal-
yses, with a semi-circular design exhibiting superior performance. Finally, we construct 3-D cloaks for
Rayleigh and Love waves, pointing out the distinctions between 3-D cloaking with the superposition
of Love and Rayleigh waves and its impact on symmetrization. In particular, prismatic, and cylindri-
cal cloaks are designed according to symmetrizationmethod driven by the weak form solution of Love
waves. Time-harmonic simulations and dispersive analyses show that a symmetrized cylindrical cloak,
constructed by the ”Maximal”mean, provides significant cloaking protection across all computed fre-
quencies. This study advances the design of feasible and efficient broadband elastic cloaks for surface
waves.
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1
Introduction

1.1 Cloaking & invisibility: an overview

In this thesis, we delve into the challenge of cloaking surface elastic waves using the principles of trans-

formational elastodynamics.

Wave cloaking is the ability to reroute waves around an object/region without any scattering ef-

fects or loss of energy. As a result, it stands as a fundamental objective within the realm of solid me-
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chanics. The concept of invisibility has been a subject of profound research in recent years. Pioneer-

ing contributions by Pendry et al.61 and Leonhart41 established theoretical frameworks for cloaking

electromagnetic waves, building upon the invariance of Maxwell’s equations under arbitrary coordi-

nate transformations77. Furthermore, Schurig et at.71 and Liu et al.63 fuelled the research interest

in cloaking by demonstrating the possibility of a practical electromagnetic cloaking device (Fig. 1.1).

The notion of transformation optics28,29,37,10,47,15 emerged due to an earlier fundamental result by

Greenleaf et al.1,30, pertaining singular transformations with cloaking applications in conductivity.

The traditional approach to cloaking via transformation theory entails mapping a single point, such

as the origin, to an inner boundary corresponding to a specific geometric shape (e.g., a circle), and to

an outer boundary (e.g., larger circle) thatmaps to itself, thus forming the cloak’s structure. However,

such transformation becomes singular at the origin, resulting in singular material properties, that are

challenging, if not impossible, to realize in practise. Addressing this issue, Greenleaf et al.27 proposed

the strategy of finite energy solutions of the Helmholtz and Maxwell’s equations for such singular

electromagnetic parameters. In the samework, an identity between the transformed scalar wave equa-

tion and the metric of the deformed configuration was derived, aiding the calculation of the effective

materials properties of the cloak. Alternatively, to overcome the singularity in the transformed do-

main, Kohn et al.39 proposed a near-cloaking transformation, whichmaps a small ball of finite radius

instead of the origin.

In the spirit of acoustics, Norris57 formulated the theory of acoustic cloaking by showing that

for perfect cloaking efficiency the total mass of the cloaking region must be infinite. However, he

pointed out that this could be circumvented by imposing the density and the elastic properties of

the cloak to be anisotropic. Cummer et al.19 verified the existence of transformation-type solutions

for the 2D acoustic equations with anisotropic mass density. Building upon those ideas Chen et

al.12 proposed a scheme to realize a two dimensional (2D) acoustic cloak via acoustic metamaterials,

which was further expanded to 3D acoustic cloaking. Additionally, Cummer et al.18 modeled a 3-D

8



Fig. 1.1: (a) 2D microwave cloaking structure with a plot of the material parameters that are implemented. (b) The
design of the non‐resonant elements and the relation between the unit cell geometry and the effective index. (c) Snap‐
shots of time‐dependent, steady‐state electric field patterns. The fields shown are (A) the simulation of the cloak with
the exact material properties, (B) the simulation of the cloak with the reduced material properties, (C) the experimen‐
tal measurement of the bare conducting cylinder, and (D) the experimental measurement of the cloaked conducting
cylinder. The right‐hand scale indicates the instantaneous value of the field. (d) 2D field mapping (E‐field) of the per‐
turbation and ground‐plane cloaked perturbation, illuminated by the waves from the left side (A) perturbation and (B)
ground‐plane cloaked perturbation. Reproduced with permission from71,63
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acoustic cloaking shell through scattering theory capable of bending the pressure and velocity fields

around the object. Naturally, the idea of cloaking extends to various scientific domains, such as ther-

modynamics79,55,33,72,81,11,70, quantummechanics85,26,43,42,44,23, diffusion32,66,31 and fluid mechan-

ics82,88,54,34,35,76,86. Extended reviews on transformation optics in metamaterials in different fields,

with a focus on experimental results, are extensively covered in24,25,36,64,62.

The first ideas around invisibility can be traced back in 1949, when Reissner et al.65 designed

reinforced holes in a plane sheet in order to maintain the same displacement and stress fields of the

structure as it was before the inclusion. This technique paved the way for the concept of neutral

inclusions introduced by Mansfield46, that has been studied extensively in the past decades, see for

instance49,67. It includes the insertion of an inclusion in a medium subjected to a uniform stress field

so it does not disturb the original outside field. The inclusion is surrounded by a coating of a specific

geometric shape, such as a sphere made of an isotropic material. In the same vein, similar shielding

results with neutral holes can be obtained with the idea of neutral inhomogeneities, which involves

the introduction of a foreign body in a host solid and modifying the contact mechanism between

them so as to leave the stress field in the host solid undisturbed. This modification can be achieved,

for example, by a suitably designed thick or thin interphase between them. As a result, the importance

of the concept of neutral inhomogeneities in the design of composite structures and in its relevance

with cloaking has been investigated mymany researchers in68,4,6,3,5,13,75. However, the characteristics

and the shape of the inclusion and the coating itself are inherently dependent on the imposed external

load. This represents the main distinction with cloaking.

The formal cloaking scheme for elasticity was first investigated in 2006 by Milton et al.48. Sur-

prisingly, the authors found that theNavier elastodynamic equations are not form invariant under an

arbitrary curvilinear transformation and are mapped to a more general system with non-scalar den-

sity and additional third-order tensors. As a result, all three components of the elastic waves are fully

coupled in the transformed medium, making the cloaking problem in elasticity far more challenging
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than in optics or acoustics. However, the same authors48 demonstrated that, for a particular choice of

gauge between the displacement fields, a more general constitutive model (the so-calledWillis model)

remains invariant under an arbitrary coordinate transformation yielding symmetric stress but tensorial

density. Notably, the choice of the map between the displacements and their transformed counter-

part directly affects the symmetry of the stress tensor. Brun et al.8 realized that choosing an identity

map to connect the displacement fields (gauge) makes the Navier equation retain its form invariance,

but breaks the minor symmetries of the transformed elasticity tensor. Norris et al.56 further gener-

alised those ideas by deriving a more general system of transformed equations that depend on both

the transformation and the choice of gauge. In particular. the transformed equations can either be

of Willis-form, where the elastic stress is symmetric but with the presence of third-order tensors, or

of Cosserat form, where the transformed equations retain their structure but contain non-symmetric

constitutive relations. As a result, both cases possess severe constraints toward the realization of a 3-D

elastodynamic cloak.

A notable approach to address this challenge pertains to the adoption of the so-called Cosserat or

micropolarmaterials of chiral (i.e. non-centrosymmetric) behaviour for cloaking applications52,53,51,14,87,78

(Fig. 1.2a). Those engineered lattice-based materials, see22 for a review, can establish the necessary

non-symmetric stress tensorby introducing an additional rotational degree of freedom, realized through

mechanism like a body torque torque51,80 (Fig. 1.2b) or rotational resonance53,83 (Fig. 1.3). Similarly,

mechanical cloaking designs enforcing direct lattice transformation have shown promising cloaking

applications in the static9,69 and dynamic38 regimes, respectively.

In 2012, Parnell58 introduced an alternative technique for elastic cloaking in the form of elas-

tic pre-stress (Fig. 1.4). In particular, he showed that cloaking objects from anti-plane waves can be

achieved by applying elastic pre-stress upon neo-Hookean59 or Mooney–Rivlin60 type of nonlinear

materials. It turns out that the equation governing antiplane waves in the pre-stressed medium is

equivalent to the antiplane equation in an unstressed medium with inhomogeneous and anisotropic
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Fig. 1.2: Design of the discrete mass‐spring polar lattice for a carpet cloak. (a) Geometric transformation for realizing a
carpet cloak concealing a triangular void; (b) The mass‐spring lattice is designed using the discrete transformation. For
the design, α = 60, and the lengths of springs, k1, k2, k3, and the rigid masses are α[1 − 2

√
3

3 tanθ], α[1 −
√
3
3 tanθ],

α[1−
√
3
3 tanθ], and 2

√
3α
3 tanθ, respectively; (c) Zero‐mode of the transformed lattice is equivalent to the rigid rotation

of the virtual lattice. Reproduced with permission from14.

Fig. 1.3: Hexachiral lattices. (a) Nonresonant lattice: black circles are rigid masses and black segments are massless
elastic rods; contact points are perfect hinges. The highlighted angle is the twisting angle γ. (b) Isotropic zero mode:
the lattice expands (black) from its reference configuration (gray) without stretching any rods. (c) Polar metamaterial:
black disks are embedded resonators; colored coating is elastic and massless. (d) Resonance modes under imposed
outer displacement: translational to the left and rotational to the right. Reproduced with permission from53
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Fig. 1.4: The incompressible neo‐Hookean cylindrical annulus is pre‐stressed as depicted on the right. This annulus
then creates a cloak when slotted into a cylindrical cavity in an unbounded elastic medium, as illustrated on the left.
Reproduced with permission from60

shear modulus and isotropic scalar mass density. Notably, this approach was successfully applied in

the development of ground cloaks84 and periodic structures2.

Surprisingly, there are certain geometric configurations in elasticity where the governing equa-

tions retain their form, such as the case of elastic thin plates. Indeed, Farhat et al.21 introduced a

cylindrical cloak to control bending waves in thin plates by exploiting the form invariance of the bi-

harmonic equation (adopting the hypothesis of von Kármán). It was shown that a heterogeneous

orthotropic cloak with an anisotropic Young modulus and a radially dependent isotropic mass den-

sity was sufficient to make object surrounded by such a coat neutral for flexural waves in thin elastic

plates. Although thosematerial properties are tougher to realize than conventional ones, one can easily

mimic such behaviour by structuring the plate with concentric layers of piece-wise isotropic homoge-

neous materials by means of homogenization theory as shown in20. Building upon this idea, Stenger

et al.73, provided an experimental proof of this cloak using homogeneous and locally isotropic rings,

achieving a fractional bandwidth of around one octave (Fig. 1.5). Several other approaches in the con-

text of elastic plates involve non-linear45 or conformal40 mappings, wave conversion techniques74,

omnidirectional cloaking designs50 and ’push-out’ tranformations17. In the spirit or push-out’ trans-

formations, Colquitt et al.16 and Brun et al.7 both showed that a formulation for flexural waves in

a Kirchhoff-Love plate, after the cloaking transformation, includes additional terms in the governing

13



Fig. 1.5: (a) Blueprint of the circular elastic cloak (only one‐quarter is shown). White parts correspond to PVC, black
parts to PDMS. The table on the right‐hand side gives the elastic moduli (real parts) for the 16 different metamaterials
in 20 concentric rings. The clamped region to be cloaked is shown in red, the surrounding region with homogeneous
porosity (f = 40% PVC filling fraction) is highlighted in yellow. The plate thickness is h = 1mm. (b) Oblique‐view
photograph of a cloak before filling with PDMS.

equation in the formof in-plane body forces and pre-stress. This is in contrast with thework of Farhat

et al.21, where the biharmonic fourth order equation retained its form.

1.2 Thesis objective & Contribution

While extensive research has been conducted on cloaking methods for elastic waves, there remains a

significant gap in exploring applications related to elastic surface waves. This thesis aims to address

this gap by investigating the potential for cloaking Love and Rayleigh-type elastic surface waves.

Rayleigh and Love are elastic waves that propagate along the surface of a medium. In stratified

or heterogeneous media both types of waves exhibit dispersive characteristics, where their velocity

depends on the wavelength. The concept of bending these surface waves around an object has been of

major interest due to its numerous applications in engineering. Notably, Rayleigh and Love waves are

the primary surfacewaves generated during earthquake events, which canpotentially lead to structural
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damage or failure on the Earth’s surface. Thus, having the possibility to cloak objects from thesewaves

represents a tremendous advancement in seismic protection.

In Chapter 2, we investigate the novel concept of hiding surface defects from Love waves, a sce-

nario that has not previously been studied. Love waves are antiplane shear waves traveling along a

heterogeneous medium’s free surface. These waves are guided by an elastic layer over a stiffer sub-

strate and exhibit unique properties due to their layered, semi-infinite nature. Our study involves two

key steps: designing ideal carpet cloaks for surface defects and their practical realization. We create

carpet pinched cloaks for surface-level defects within profiles of depth-increasing shear velocity, us-

ing coordinate transformation andmapping techniques based on the form-invariance property of the

Helmholtz equation. We validate our approach with dispersion analysis and simulations, revealing

that the cloaked defects have minimal scattering, demonstrating the invariance of Love waves disper-

sive properties.

In Chapter 3, we address the challenge of cloaking an object on the free surface of an elastic

medium from Rayleigh waves. Unlike other cloaking scenarios, we must consider full in-plane elas-

ticity due to the vector nature of Rayleigh waves. We derive transformed equations for in-plane elas-

ticity by assuming a Cosserat gauge between the displacement fields in the virtual (reference) and the

transformed (cloaked) domain, and subsequently substitute the non-symmetric components of the

elasticity tensor with symmetrized ones using the arithmetic mean. Our goal is to assess how this

symmetrization affects the cloaking of Rayleigh waves. We investigate various cloaking designs, in-

cluding a triangular and semi-circular cloaks with different radial transformations. We evaluate their

performance by comparing wave fields and dispersion relations between symmetrized and ideal cloak-

ing designs. Our analysis employs the inverse participation ratio (IPR) to quantify displacement field

localization and surface mode identification. Furthermore, we use harmonic simulations to compare

transmitted displacement fields after the cloak in both symmetrized and ideal scenarios. Finally, our

investigation culminates in the examination of the requirements for a symmetric elastic tensor in the
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context of circular cloaks, specifically analyzing the necessary conditions for each type of radial trans-

formation (Ci). Our investigation reveals that a symmetrized semi-circular cloakwith effective proper-

ties obtained from a quadratic transformation offers the best cloaking performance among the designs

studied.

InChapter 4, we explore the potential for creating 3-D cloaks to effectively reroute bothRayleigh

and Love waves around an object of interest. Again, we adopt a Cosserat kinematic relation for the

displacements to acquire the necessary non-symmetric mechanical properties for cloaking. We design

3-D cloaks by using the cylindrical analogue of the 2-D transformations studied in the previousChap-

ter, i.e. of triangular and semi-circular cross-sections, respectively. Importantly, the 3-D problem dif-

fers from the superposition of Love and Rayleigh waves due to its need for a heterogeneous system,

primarily because Love waves propagate exclusively in layered media, leading to Rayleigh waves with

dispersive characteristics. In addition, by comparing theweak formulation of the 3-D equation ofmo-

tion with the separate weak forms of Love and Rayleigh waves, we identify an extra set of coefficients

in the transformed elasticity tensor that didn’t appear in the previous cases. Furthermore, the sym-

metrization of the elasticity tensor has a direct consequence on the effective shear moduli required

for cloaking Love waves. This phenomenon did not appear in Chapter 2 since the transformation

of the scalar Helmholtz equation does not produce non-symmetric mechanical properties. To avoid

this, we introduced a symmetrization strategy, constraining related symmetric coefficients to match

the weak-form solution of Love waves and symmetrizing the remaining terms using the generalized

mean. This approach aimed to find the ideal combination of symmetrization and cloak geometry for

optimal cloaking efficiency. To verify the effectiveness of our designs, we conducted time-harmonic

simulations and dispersion analyses, specifically examining how the proposed cloaks performed under

different symmetrization schemes and various angles of incidence. Our findings revealed that a sym-

metrized semi-circular cylindrical cloak constructed using the ”Maximal” mean offered substantial

cloaking protection across all tested frequencies.
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Finally, Chapter 5 summarizes the main contributions of the previous chapters, and provides

possible directions for future developments of the topic of elastic cloaking.
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2
Cloaking of Love waves

The contents and the figures of the presented chapter are (except for Appendix B.2.7) adopted and

reproduced with permission from93 Copyright 2022, Elsevier Ltd.

Love waves are antiplane elastic waves which propagate along the surface of a heterogeneous

medium. Under time-harmonic regime, they are governed by a scalar equation of the Helmholtz

type. We exploit the invariance of this governing equation under an in-plane arbitrary coordinate

transformation to design broadband cloaks for surface defects. In particular, we apply transforma-
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tion elastodynamics to determine the anisotropic, position dependent, mechanical properties of ideal

cloaks able to hide triangular and parabolic-shaped defects. Dispersion analysis and time-harmonic

numerical simulations are employed to validate the proposed strategy. Next, we utilize layered mon-

oclinic materials, with homogenized properties matching those of the ideal cloaks, to design feasible

triangular-shaped cloaks. The performance of the layered cloaks is validated via parametric analysis

of the dispersion curves, which converge to those of the ideal cloak when the unit cell-wavelength

ratio vanishes. Finally, time-harmonic numerical simulations confirm a significant reduction of the

defect-generated scattered fields by the layered cloaks.

2.1 Introduction

The prospect of rerouting the propagation of elastic waves around an object and isolate it from un-

wanted mechanical vibrations has fuelled the research interest towards the realization of elastic cloak-

ing devices. A cloak is a region of a medium surrounding a defect, or a target object, purposely de-

signed to make it scattering free from particular waves. Among the approaches existing to design a

cloak, transformation elastodynamics has been extensively employed in recent works as it allows for

the direct derivation of passive cloaks material properties 101. In brief, transformation elastodynam-

ics consists in a coordinate transformation to map (or stretch) a spatial region embedding a defect,

the cloak, to a region as if no obstacle were there. In general, this coordinate transformation turns a

homogeneous and isotropic material into an inhomogeneous and anisotropic material, posing some

challenges for the practical realization of a cloak.

A necessary mathematical prerequisite for material-parameter transformation to work is that the

underlying equations must be invariant with respect to general coordinate transformations. Milton

et al.110 showed that, in the general case of an elastic medium, the equations of motion are not form

invariant under an arbitrary transformation, leading to non-scalar density and additional third-order
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elastic tensors. Also, the choice of the map linking the displacements to their transformed counter-

part is proven vital, since the symmetry of the stress tensor is dependent upon it. Brun et al.92 realized

that choosing an identitymap linking these displacementsmakes theNavier equation transformation

invariant, but breaks the minor symmetries of the transformed elasticity tensor. Norris et al.115 con-

sidered multiple types of map (constant, identity, etc), that resulted in having materials breaking the

stress symmetry. In these cases, the resulting material parameters are impractical and very difficult to

handle. An ample number of ideas tackled those situations, including the adoption of the so-called

Cosserat or micropolar cloaks with chiral behaviour. Chiral materials allow to obtain the required

non-symmetric stress tensor, by enforcing an additional rotational degree of freedom in the form of

a body torque 114,113,132 or rotational resonance 133. As an extension, Chen et al.94 proposed the use

of discrete transformation elasticity upon an architected lattice-based material to achieve the chiral

behavior required to design a cloak. Conversely, Achaoui et al.89 considered aWillis medium as back-

groundmaterial and, exploiting its form invariance110, developed a Cosserat-Willis type cloak. Other

strategies include the use of pentamodematerials to achieve the required effective properties, although

their mechanical instability is a considerable impedance factor for their practical manufacture102.

Noteworthy, there are configurations where the governing equation retains its form under a co-

ordinate transformation, such as antiplane elastic waves and bending waves in thin-plate geometries.

For antiplane shear waves, Parnell et al.119 proposed to exploit non-linear elastic pre-stress upon an in-

compressible neo-Hookean material to derive the required elastic properties for cloaking. Parnell and

Shearer120 extended this seminal work by considering aMooney–Rivlin hyperelastic model to obtain

a more feasible cloak design. Later, Zhang and Parnell134 exploited hyperelastic materials to design

a ground cloak for antiplane shear waves. More recently, a multi-layered cloak for antiplane shear

waves was considered in128 to account for the stiffness of the inclusion; results for cavities, elastic and

rigid inclusions are given. For thin plates, Farhat et al.97 proposed a cloak to control bending waves

for a wide range of frequencies. Subsequently, Stenger et al.125, building upon this theory, provided
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an experimental proof by fabricating an elastic cloak using homogeneous and locally isotropic rings.

Further experiments by Misseroni et al.111,112 showed the possibility of cloaking flexural vibrations

in structured plates. However, control of flexural pulse dynamics remains a further challenge122,127.

We remark that most of the above literature concerns passive cloaking designs, since it exploits the

concept of geometric transformation, in the tracks of what was earlier proposed for electromagnetic

waves104. Some alternative path to cloaking using active sources can reduce the plate design complex-

ity in the time harmonic regime117. Active cloaking has been proposed for acoustic and transverse

elastic waves129,130.

Besides the rich literature on passive and active cloaking for elastic waves, applications for surface

waves are still rare. The most relevant studies, to the best of our knowledge, are those that exploit

micropolar materials103 or near-cloaking techniques124 to hide surface defects from Rayleigh waves.

In this work, we explore the possibility of cloaking surface defects from waves of the Love type,

a scenario that has not been considered yet. Love waves are antiplane shear waves propagating at the

free surface of a heterogeneous medium with a stiffness profile increasing with depth. They share the

same scalar governing equation of antiplane shear bulk waves, but are characterized by a dispersive

and multi-modal nature due to the layered and semi-infinite nature of the support. Addressing the

capabilities of a cloak to preserve the dispersive and multi-modal nature of Love waves can have a sig-

nificant technological/engineering relevance in various fields, spanning from seismology to the design

of lab-on-chip devices. We note that some control of Love waves has been achieved using locally res-

onant elements atop the air-soil interface118,107, but these works do not make use of the concept of

artificial anisotropy, as required by geometric (non conformal) transforms. Here instead, by exploit-

ing the invariant form of antiplane shear waves, we apply transformation elastodynamics to design

cloaks for surface defects. In particular, we focus our attention on carpet pinched cloaks able to hide

a defect placed at the surface of the domain.

First, we apply transformation elastodynamics to normally dispersive profiles, i.e., with increasing
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shear speed for increasing depth of the medium, to design ideal cloaks. We describe the proposed

mapping and provide the space dependent anisotropic properties of the mapped material. We prove,

via numerical finite element simulations, the validity of the proposed mapping, showing both the

invariance of the dispersive properties of Love waves and the near zero scattering for configurations

with cloaked defects.

Next, for a surface triangular defect,we apply a straightforwardhomogenization technique91,109,90

tomap thematerial properties of the ideal cloak onto amonoclinic double-material unit cell. The unit

cell allows the realization of a layered cloak with a feasible microstructure. We confirm the validity of

the adopted homogenization step by both comparing the harmonic wave fields of the layered and

ideal cloaks, and showing the invariance of the dispersive properties of Love waves. We conclude by

discussing the potential and limitations of the proposed strategy.

2.2 Statement of the problem

We present an approach to cloaking of Love waves that involves a coordinate stretch in the medium

vertical plane, thus affecting the surfacewave trajectory along the sameplane, see Fig. ??. This approach

is in stark contrast to118 where the wave control was achieved in the horizontal plane.

2.2.1 Antiplane surface waves in vertically heterogeneous media

Following the cloaking strategy proposedbyLi andPendry in the context of electromagneticwaves104,

we propose the design of a carpet cloak for Love waves by applying a geometric transformation at the

free surface of the heterogeneous substrate. Our aim is to stretch this interface in such a way that

Love waves propagate along a curved path without experiencing some scattering in the substrate. The

reference configuration consists in an isotropic vertically heterogeneous half-space extending from

X2 = 0, to X2 = −∞ (see Fig. 2.1a.). The medium is characterized by shear modulus μ(X2) and
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density ρ(X2) which vary along the depth of the half-space only. We consider the propagation of

time harmonic antiplane shear waves travelling along theX1 direction and confined at the free surface

of the medium, X2 = 0. The displacement field is restricted to the out-of-plane componentU =

[U1,U2,U3] = [0, 0,U3] and the governing equation is given by the two-dimensional scalar equation:

∇X · (μ(X2)∇XU3(X1,X2)) + ω2ρ(X2)U3(X1,X2) = 0 (2.1)

where∇X= (∂/∂X1, ∂/∂X2)
T is the gradient operatorwith respect to the coordinatesX1 andX2 and

ω the wave angular frequency.

Here, we restrict our investigation to normally dispersive profiles, i.e., vertically heterogeneous

media with increasing shear velocity cs(X2) =
√

μ(X2)
ρ(X2)

with depth, such that the velocity of propaga-

tion of surface waves decreases for increasing frequency98. The simplest normally dispersive config-

uration consists in a soft layer with shear velocity cs1 overlying a stiffer half-space with shear velocity

cs2 > cs1. Antiplane surface waves propagating in this double-layered medium are known as Love

waves105. By extension, we use the same label for antiplane surface waves propagating in any normally

dispersive half-space.

In what follows, we discuss how to hide a surface defect located in such heterogeneous, normally

dispersive, half-space from the propagating Love waves.

2.2.2 Geometric transformation for carpet cloaking

Let us recall the fundamental results of transformation elastodynamic theory for an antiplane shear

wave problem. Given the scalar nature of the governing equation in Eq. (2.1), we can mutate the

approach developed for cloaking of acoustic waves116. Hence, we consider a point-wise invertible

transformation χ that maps the reference configuration (virtual domain)X ∈ Ψ (in Fig. 2.1a) to the

deformed region (real domain) as x = χ(X) ∈ ψ (in Fig. 2.1b). The deformation gradients for the
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Fig. 2.1: (a) Reference configuration virtual domain. (b) A generic carpet‐pinched cloak (purple region ψ) to conceal a de‐
fect (white region) from the propagating surface Love waves (real domain). (c) Schematic of a triangular pinched‐carpet
cloak in a layered isotropic medium. (d) Schematic of a parabolic pinched‐carpet cloak in an isotropic heterogeneous
medium characterized by a parabolic velocity profile along the depth of the half space. (e) Schematic of the FE model
domain used in the simulations (not in scale).
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transformed and the reference domain are F = ∇Xx and F−1 = ∇X, respectively. Given x =

{x1, x2} the coordinates for the transformed domain, the forward transformation gradientF reads:

F = ∇Xx =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

 (2.2)

and, by the chain rule, the relation between the gradient operator in both domains is given by124:

∇x = F−T∇X. (2.3)

By using the identity99:

∇X · ∇X → J∇x · (J−1FFT∇x) (2.4)

where J = det(F) is the determinant of the Jacobian matrix, we obtain the transformed governing

Eq. (2.1) in the new coordinates x as:

∇x · μ′(x)∇xu3(x) + ρ′(x)ω2u3(x) = 0 (2.5)

with:

μ′(x) =
Fμ(x(X))FT

J
=

Fμ(x)FT

J
, ρ′(x) =

ρ(x(X))

J
=

ρ(x)
J

. (2.6)

Note that, inEq. (2.6) thedifferentiation is appliedwith respect to the vector variablex andu3(x(X)) =

U3(X). The anisotropic shearmodulus μ′(x) and the density ρ′(x) provided in Eq. (2.6) describe the

properties of the cloak region in ψ with μ(x(X)) = μ(X) and ρ(x(X)) = ρ(X) being the isotropic

shear modulus and density mapped from the virtual domainX to the real domain x(X).

Let us now specify our derivation for a two-dimensional carpet pinched cloak like the one shown

in Fig. 2.1b. We denote with z1(x1) and z2(x1) the interior and exterior boundaries of the cloak,

35



respectively. The transformation χ that maps the region enclosed between two curves (X1; 0) and

(X1; z2(X1)) of the virtual domain to the one comprised between (x1; z1(x1)) and (x1; z2(x1)) of the

real domain is:


x1 = X1

x2 = (1− ξ)X2 + z1(X1)

(2.7)

where ξ = z1(X1)
z2(X1)

. Note that (X1; 0) is mapped on (x1; z1(x1)) while (X1; z2(X1)) is point-wise fixed.

The Jacobian of the transformation reads:

F =

1 0

L 1− ξ

 (2.8)

whereL = −∂ξ(X1)
∂X1

X2+
∂z1(X1)
∂X1

. Bymeans ofEqs. (2.6), we canobtain the transformed shearmodulus

and density within the carpet cloak as:

μ′(x) =

μ′11(x) μ′12(x)

μ′12(x) μ′22(x)

 =

1 L

L (L2 + (1− ξ)2)

 μ(x)
1− ξ

, ρ′(x) =
ρ(x)
1− ξ

(2.9)

Note that carpet-cloak requires a material with an inhomogenous and anisotropic shear modulus

and an inhomogenous density. The nature of material inhomogeneity depends on both the geomet-

rical transformation and the vertically heterogeneity of the host material properties. Conversely, the

degree of anisotropicity depends only on the geometrical transformation. In what follows, we eluci-

date these aspects with two illustrative examples. As an aside, we remind that the derived transformed

shear moduli and density would work also in the case of bulk antiplane waves, although their investi-

gation is out of the scope of this work.
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2.3 Ideal cloaks: two illustrative examples

We analyse the propagation of Love waves in two distinct half-spaces: (i) a double-layered medium

hosting a triangular-shaped defect (Fig. 2.1c); (ii) a heterogeneous medium with continuous vary-

ing shear velocity profile with a parabolic-shaped defect (Fig. 2.1d). For both configurations, carpet

pinched cloaks obtained by stretching the geometry of surface defects are considered, in accordance

with the geometrical transformation in Eq. (2.7).

2.3.1 Triangular pinched cloak

First, we present the simplest configurationwhere carpet-cloaking of Lovewaves can be tested, namely

a triangular pinched cloak located inside the soft layer of a double-layered semi-infinite medium. The

shear velocities in the soft layer (1) and the bottom half-space (2) are cs1 and cs2, respectively, with

γ = cs1
cs2 = 0.3. The density ρ is assumed constant over the whole semi-infinite medium, ρ1 = ρ2 = ρ.

We denote the depth of the soft layer by h1. Numerical values of the above geometrical andmechanical

quantities are collected in Table 2.1.

We consider a triangular defect with length 2c = 1.8h1 and depth a = 0.6h1. The defect is

surrounded by a cloak which extends up to the depth b = h1. The boundaries of the cloak are thus

markedby linear functions z1(X1) =
a
c |X1|−a and z2(X1) =

b
c |X1|−b, where |.|denotes the absolute

value. The Jacobian matrix of the geometrical transformation

F =

 1 0

sgn(x1) ac
b−a
b

 (2.10)

is constant within each symmetric half of the cloak. Similarly, the shear modulus μ(x) = μ1 is con-

stant within the cloak, since its geometry is fully contained within the first layer. Hence, accord-

ing to Eq. (2.9), each symmetric half of the triangular-pinched cloak presents a homogeneous and
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anisotropic effective shear modulus and homogeneous density given as:

μ′ =

 1 sgn(x1) ac

sgn(x1) ac
(ab)2+(bc)2+(ca)2−2abc2

(bc)2

 μ1
b

b− a
, ρ′ = ρ

b
b− a

(2.11)

The coefficients μ′11, μ
′
12, μ

′
22, as obtained from Eq. (2.11), are displayed in Appendix A (Fig. 2.7(a)−

(c)). Note that inboth transformations there are no singularities like in the case of semi-circular cloaks,

where a small ball of radius εmust be considered. However, for the triangular cloak, the existence of

sharp edges introduces the possibility of numerical errors that could affect the performance of the

cloak, but such investigation is beyond the scope of this study.

To evaluate the cloaking capabilities of this configuration,wefirst perform time-harmonic simula-

tions in a finite element environment (COMSOLMultiphysics) modeling a 3D strip of the medium

with dimensions W × H × d along the Cartesian axes (x1, x2, x3), embedding the described cloak

(see Fig. 2.1e). Fixed constraints are imposed at the bottom base of the model, continuity boundary

conditions are imposed along the out-of-plane x3 direction, and Perfectly Matched Layers (PML) are

applied to suppress reflections from themodel terminal sections. PML are used in numerical analyses

to terminate finite element approximations of scattering problems. They can be derived through an-

alytic continuation and coordinate transformation in the complex plane to convert oscillating waves

into exponentially decaying ones (see95). Shear waves are generated by imposing at the surface of the

model a time-harmonic line source along the x3 direction located at 0.4W distance from the origin.

The domain displacements components u2 = u1 = 0 are restrained to limit our investigation to

antiplane waves u3 ̸= 0.

To generalize the results of our calculations, we introduce the following normalized quantities:

• ω⋆ = ω
ωc1 the normalized circular frequency, where ωc1 = π

h1
√

1
cs21

− 1
cs22

is the cut-off frequency

of the first higher-order Love wave mode;
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• k⋆ = ωc1
cs2 , the normalized wavenumber, so that λ⋆ = 2π

k⋆ is the normalized wavelength.

Accordingly, the dimensions of themodel are chosen asW = 8λ⋆,H ≈ 0.69λ⋆ and d ≈ 0.01λ⋆.

We compare the results of harmonic simulations performed in (i) the pristine configuration, i.e.,

the domainwithnodefect (“Reference”), (ii) in the domain including the defect (“Obstacle”), and (iii)

in the domain with the cloaked defect (“Ideal Cloak”). Snapshots of the related displacements fields

as obtained from FE harmonic simulations at ω⋆ = [1, 2] are shown in Fig. 2.2(a)− (f). We remark

that the propagation of Love waves has a dispersive nature; up to the first cut-off frequency the wave

field is dominated by the fundamental Lovemode, see Fig. 2.2a; conversely, for harmonic simulations

atω⋆ = 2, Fig. 2.2b, the total field results from the superposition of the first twomodes. Regardless of

the dispersive and multi-modal nature of Love waves, the triangular pinched cloak smoothly reroutes

the waves around the defect (Fig. 2.2(c) − (d)). As a result, before and after the cloaked region, the

displacement field fully resembles the one of the reference configuration. The performance of the

cloak is better appreciated by comparing the cloaked wave fields with those obtained in the uncloaked

scenarios (see Fig. 2.2(e) and (f)). In the latter, scattering effects can be seen both before and after the

defect.

As a further proof of the broad band capabilities of the proposed carpet cloak, we compare the

dispersive properties of Love waves propagating along the pristine double-layered medium and along

the cloaked domain. Our aim is to prove that in the cloaked configuration, the geometrical transfor-

mation and the related transformed shearmodulus in Eq. (2.11) allows to fully replicate the dispersive

properties of the pristine layered medium.

For this purpose, we model a portion, namely a unit cell, of the cloak in a finite element envi-

ronment (COMSOL Multiphysics). The unit cell has dimension H × Lc × d (see Fig. 2.2g), with

Lc = λ⋆/20. We apply fixed boundary conditions at the bottom surface of the cell, continuity con-

ditions along the x2 direction, and Bloch boundary conditions along the x1 direction. As for the har-

monic simulations, the domain displacements components u2 = u1 = 0 are restrained. An equiv-
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Fig. 2.2: Displacement fields of the Reference (a)−(b), Ideal Cloak (c)−(d) and Obstacle (e)−(f) configurations, for
the triangular pinched cloak case of section 3.1 computed at frequencies ω⋆ = 1 and ω⋆ = 2. (g) Dispersive curves
(first 4 modes) for the Reference (blue lines) and the Ideal Cloak (red lines) configurations, as obtained by considering
the unit cell in the schematic (R and IC), respectively. The analytical solution for the reference configuration is also
presented (black lines). See Table 2.1 for the shear velocity Csi and density ρi of homogeneous isotropic layer i in R.
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alent unit cell is used to model the “Reference” configuration. For all the scenarios, the dispersive

properties are obtained by solving an eigenvalue problem by varying the wavenumber inside the first

Brillouin zone, kx1 = [ π
400Lc ;

π
Lc ] and extracting the angular frequency ω. The numerical solutions are

then sorted to remove spurious plate-like (and leaky) modes with phase velocity cp = ω/kx1 > cs2

resulting from the finite dimensions of the model.

Thedispersive curves of the “Reference” and“IdealCloak” configurations are reported inFig. 2.2g

as blue and red lines, respectively. Markers indicate thewavenumber-frequency couples obtained from

the numerical simulations. The results of the reference configuration are validated against those ob-

tained from the solution of the classical Love wave dispersion law105 (reported in Fig. 2.2g as solid

black lines):

tan

 ω
cp
h1

√
c2p
c2s1

− 1

 =

μ2

√
1− c2p

c2s2

μ1

√
c2p
c2s1
− 1

(2.12)

where cp = ω
k the phase velocity of the propagating Love waves, respectively.

The reader can appreciate how the portion of the cloaked defect supports the propagation of

Lovewaveswith dispersive properties identical to the pristine scenario. We recognize that the obtained

dispersion curves describe a geometrical layout where the portion of the defect is periodically repeated

along the direction of the wave propagation. Nonetheless, in our scenario the obtained dispersive

properties are invariantw.r.t. the chosen lengthLc of the cell, and thus represent the effective dispersive

properties of the transformed medium. More information on the dynamics of shear elastic waves

across periodically perforated elastic media can be found in the recent work byMeirbekova et al.108.
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Layer Shear velocity Density Depth
1 cs1=300m/s 1600 kg/m3 60m
2 cs2=1000m/s 1600 kg/m3 ∞

Table 2.1: Mechanical and geometrical properties of the double‐layered substrate.

2.3.2 Parabolic pinched cloak

In the second example, we consider a vertically inhomogeneous medium characterized by a constant

density ρ and shear velocity profile given by:

cs(X2) =


cs1 + cs2−cs1

(h1)2 (X2)
2, if |X2| < |h1|

cs2, otherwise
(2.13)

namely, a parabolic profile varying between the shear velocities cs1 and cs2 along the depth h1 sup-

portedby a homogeneous half-spacewith velocity cs2. In thismedium, a parabolic-shapeddefect is sur-

rounded by a cloak enclosed within the boundaries z1(X1) =
a
c2 (X1)

2− a and z2(X1) =
b
c2 (X1)

2− b,

see Fig. 2.1(d). The shear velocities cs1, cs2 and the geometrical parameters a, b, c are identical to the

ones assumed in the previous example.

The distribution of the shear modulus in the cloak region is:

μ(x) = ρ(cs(x))2 = ρ

cs1 +
cs2 − cs1

h21

(
x2 − a

c2 x
2
1 + a

1− a
b

)2
2

, x = χ(X) ∈ ψ (2.14)

where the inverse transformation of Eq. (2.7) is used:


X1 = x1

X2 =
x2−z1(x1)

1−ξ

(2.15)
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The Jacobian of the transformation for the given cloak geometry is:

F =

 1 0

2a
c2 x1

b−a
b

 . (2.16)

Overall, this leads to an anisotropic inhomogenous effective shear modulus:

μ′ =

 1 2a
c2 x1

2a
c2 x1

4a2
c4 x

2
1 +

(b−a)2
b2

 μ(x)
b

b− a
, ρ′ = ρ

b
b− a

(2.17)

The reader can fully appreciate the distribution of the effective shearmodulus coefficients μ′11, μ
′
12, μ

′
22

inside the domain of the cloak in the Figure provided in Appendix A (Fig. 2.7(d)− (f))

As for the configuration in Sect. 3.1, we test the performance of the parabolic-shaped cloak with

FE harmonic simulations performed in the “Reference”, “Obstacle” and “Ideal Cloak” scenarios. The

displacements fields, obtained for harmonic sources atω⋆ = [1, 2], confirm thepossibility of smoothly

detouring antiplane surface waves propagating in a heterogenous medium around a defect of generic

shape, see Fig. 2.3(a) − (f). Similarly, the dispersion analysis, conducted in analogy to what shown

for the triangular cloak, corroborate the possibility of replicating the dispersive properties of the pris-

tine scenario using the transformed shear modulus and density obtained according to Eq.(2.17), see

Fig. 2.3(g).

Although the implementation of the transformedmedium in a FEnumerical simulation software

is straightforward, the practical realization of suchmaterial presents a number of complexities related

to its heterogeneity and anisotropicity. Thus, following a consolidated approach developed for both

thermal100 and acoustic123 cloaking, we utilize a composite medium, structured at a microscale level,

to mimic at the macroscale the required mechanical properties of the transformed medium. The de-

sign of this composite material is guided by classical results of homogenization theory.
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Fig. 2.3: Displacement fields for the Reference (a)− (b), Ideal Cloak (c)− (d) and Obstacle (e)− (f) configurations,
considering the parabolic pinched cloak case of section 3.2 computed at frequencies ω⋆ = 1 and ω⋆ = 2. (g)
Dispersive curves (first 2 modes) for the Reference (blue lines) and the Ideal Cloak (red lines) configurations, as obtained
by considering the unit cell in the schematic (R and IC), respectively.
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Fig. 2.4: (a) Details of the monoclinic unit cell and (b‐c) schematic representation of the layered cloaks.

2.4 Cloak realization via composite media

Wehere analyse the possibility of approximating the theoretical anisotropic inhomogeneousmaterials

obtained in the previous section by means of layered composite media.

2.4.1 Effective properties of a monoclinic layered medium

We restrict our interest to the realization of a triangular pinched cloak. As shown in the context of

acoustics126 and electromagnetic waves131, a layered periodic composite with 2D oblique geometry,

i.e., a monoclinic crystal, suffices to achieve this purpose.

Thus, we consider a unit cell made of two isotropic materials, with shear moduli μa and μb, and

density ρa and ρb, respectively (Fig. 2.4a). The lattice unit cell has dimensions l1 × l2 along the lattice

vectors e1 and e2 which enclose the oblique angle θ. The layer a has a thickness α · l1. Our aim is to

find the geometrical parameters θ and α and the mechanical parameters μa, μb, ρa, ρb to mimic, at the
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macroscale, the mechanical properties of the cloak. We first recall the expressions of the homogenized

density ρhom = (1−α)ρb+αρa andhomogenized elastic properties of the layered cell along its principal

directions η, ξ91,109:

μhom(η, ξ) =

⟨μ−1⟩−1 0

0 ⟨μ⟩

 =

 μaμb
(1−α)μa+αμb

0

0 (1− α)μb + αμa

 (2.18)

where θ is the rotation angle between the principal (η, ξ) and reference (x1, x2) axes.

Then, we diagonalize the cloak elastic tensor as:

μ′(η, ξ) =

μ′I 0

0 μ′II

 (2.19)

with:

θ′ =
1
2
arctan

(
μ′12 + μ′21
μ′11 − μ′22

)
(2.20)

being the related rotation angle. At this stage, we impose θ = θ′ and find the parameters α, μa, μb, ρa,

ρb which fulfill the expressions:



(1− α)μb + αμa = μ′I
μaμb

(1−α)μa+αμb
= μ′II

(1− α)ρb + αρa = ρ′

(2.21)

The set of parameters which fulfill Eq. (2.21) is not unique. In the examples collected in the next

section, we will fix α, select ρa = ρb = ρ′ and obtain μa and μb from the solution of Eq. (2.21).

Finally, we point out that for more complex unit cell geometries, there are no analytical solutions

available. Hence, the use of numerical techniques is mandatory for the adequate approximation of

the effective properties of the cloak. Such strategy is presented in Appendix B in the form of a genetic
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algorithm.

2.4.2 Numerical examples

We here design and show the performance of two triangular pinched cloaks, constructed using the

layered medium discussed in the previous section. For the first example, we consider the geometry in

Fig. 2.4b, where the cloak lies within the boundaries of the first layer. From Eq. (2.11), we factor out

the common term J = b
b−a to obtain:

μ′ =

 1 sgn(x1)0.6667

sgn(x1)0.6667 0.6044

 μ1, ρ′ = ρ (2.22)

According to Eq. (2.19), the elastic tensor in the principal direction reads:

μ′(η, ξ) =

1.4976 0

0 0.1068

 μ1 (2.23)

with θ′ = ±0.6412 rad. Assuming a value of α = 0.5, from Eq. (2.21) we obtain: μa = 0.0544μ1

and μb = 2.9409μ1.

Equipped with the mechanical parameters of the layered unit cell, we perform harmonic simula-

tion via FE models to analyse the performance of the layer triangular pinched cloak. The adopted FE

model resembles the one used to model the ideal cloak in Sect. 3.1. The layered domain comprises

unit cells with dimensions l1 = l2 = 0.1h1 = 6m. As for the ideal scenario, we perform harmonic

simulations at ω⋆ = [1, 2]

The displacement field u3 extracted along the free surface of the model, x2 = 0, before and after

the cloaked region, are shown in Fig. 2.5(a) and (c) and compared with those of an ideal cloak. The

reader can appreciate how the displacement fields of the layered cloak (LC)match the ones of the ideal

case (IC) obtained from the geometric transformation.
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Fig. 2.5: Comparison between the Ideal (IC) and the Layered Cloak (LC) displacement fields, for a cloak fully contained
inside the first layer (1st column, panels (a) and (c)) and for a cloak exceeding the first layer (2nd column, panels (b) and
(d)). The harmonic simulations are performed at two different normalized frequencies ω⋆ = [1− 2].
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The sameoccurs inside the cloak, as confirmedby the results collected in the inset of theFig. 2.5(a)

and (c), showing the displacement fields extracted along the boundary z1(x) of the cloak (2nd row in

Fig. 2.5(a) and (c)). The minor discrepancies between layered and ideal cloak in Fig. 2.5 can be at-

tributed to numerical errors due to the FE mesh and the finite dimensions of the unit cell. The latter

lead to the presence of several partial cells at the interface between the cloak and the half-space which

degrades the overall performance of the cloak. Such boundary layer effects, which characterize a lay-

eredmedium filled with a non integer number of cells, have been studied in106 in the context of scalar

waves. Thus, we recognize that our effective medium formula (2.18) would benefit from the intro-

duction of some corrective terms depending upon the wave frequency.

Additionally, we remark that even in the absence of such issues, the performance of the layered

cloak decreases with an increase in the frequency of the incident waves. A noticeable improvement of

the cloaking capabilities is obtained by means of a larger number of cells, namely a smaller unit cell

dimension, in accordance with classical error estimates in homogenization theory, as already noticed

in the context of thermal layered cloaks121.

In this regard, the reader can refer toFig. 2.6where thewavefields of the layered cloak are evaluated

for higher frequencies ω⋆ = [3, 4] and comparing different unit cell dimensions l1 = l2 = 6m, l1 =

l2 = 1.5m. Thewave field of the harmonic analysis shows a significant loss of performance forω⋆ = 4

when the cloak is realized with a bigger unit cell l1 = l2 = 6m (Fig. 2.6(d)). At the same frequency, a

smaller unit cell, l1 = l2 = 1.5m, provides adequate cloaking performances (Fig. 2.6(f)). The reader

can refer to the supplementalmaterial for further details on the behavior of the cloak against increasing

frequency.

To generalize this argument, we performed a parametric study on the dispersion curves by varying

the dimension of the unit cell. The results are depicted in Fig. 2.6(g). It is evident that for a unit

cell of 6m, significant discrepancy between the layered and the ideal dispersion curves is found for

ω⋆ ≥ 4, which corroborates the results found in the harmonic analysis. Conversely, the layered cloak
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dispersion curves converge to the ideal one, as the length of the unit cell decreases. Indeed, this result

can be interpreted by evaluating the ratio rbetween the unit cell dimension and the shortest Lovewave

wavelength r = l1
λmin

at the frequencyof interest. When this ratio tends to zero, as for the configuration

with the smallest unit cell (r = 0.05), the homogenization ensures a proper approximation of the

mechanical behaviour of the layered unit cell.

Overall, for practical purpose, the proposeddesign strategy is a good trade-offbetween complexity

and cloaking efficiency.

Following the same modelling approach, we consider a cloak with dimensions b′, c, enclosing a

defect that penetrates through the half-space (Fig. 2.4(c)). For this scenario, the layered cloak requires

the use of 2 different unit cells, tiling two distinct regions of the cloak. The properties of these unit

cells are again given by μa = 0.5544μ(x2) and μb = 2.4004μ(x2) and θ′ = ±0.5544 with:

μ(x2) =


μ1, if |x2| < |χ(h1)|

μ2, otherwise
(2.24)

Fig. 2.5(b) and (d) (2nd column) shows a good agreement between the displacements for the ideal

(IC) and the layered (LC) cloak along the surface. The reader can refer to the supplemental material

for a detailed investigation on the cloaking performance w.r.t. the frequency of the incident Love

waves, whose trend resembles the one discussed for the cloak geometry fully contained in the soft

layer, Sect. 3.1. Further performance losses are again attributed to boundary layer effects since the

two cloak regions are filled with a non integer number of cells. We refer once again to106 for such

issues.
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2.5 Conclusion

In this work we proposed a strategy to design carpet cloaks that make surface defects scattering free

from the viewpoint of the propagation of shear polarized surface waves. Our approach relies on the

invariance of the shear wave equation in 2D setting when subjected to a geometric transformation of

coordinates. The change of coordinates, applied to a pinched region embedding the surface defect,

is used to mathematically mask the defect. Its application yields a transformed wave equation in the

cloaked region which in turn provides the local material properties to be used. Notably, in the pro-

posed cases, the shear modulus of the material turns out to be a point dependent two-by-two fully

populated tensor and the mass density a point dependent scalar value. We exploited these formulas

to design two ideal cloaks, triangular and parabolic ones. Using finite element simulations, we then

demonstrated the capability of the cloaks to render the surface defects transparent to Love waves. As

further proof, we showed that a periodically repeated portion of these cloaked defects supports the

propagation of classical Love waves, identical to the ones propagating in the pristine substrate.

Finally, we provided a viable strategy to realize the triangular cloak using layered media. To such

purpose, we used a monoclinic unit cell with two isotropic materials and exploited results of homog-

enization theory to devise the dimensions of the two materials over the unit cell, their shear moduli,

and the angle of the cell, such that the homogenized properties of the unit cell coincide with those

derived from Eq. (2.11) for the ideal cloak. We applied this approach by shaping a second triangular

cloak for a defect extending not only within the soft layer but also in the underlying half-space. We

verified, via FE simulations, the capabilities of the layered cloaks and found performances in excellent

agreement to the ideal ones.

We recognize that the assumption of a 2D geometry (invariant along the out-of-plane direction)

restricts the dynamics of the cloak toplanewaveswith orthogonal incidencew.r.t. the cloak. Nonethe-

less, we underline that a 2D geometry (invariant along the out-of-plane direction) is the common sce-
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nariowhere cloaking strategies for antiplanewaves have been derived and discussed in the past research

works. In addition, we investigated the performance of the layered cloaks for increasing frequency. In

this regard, the use of homogenization techniques to obtain a monoclinic unit cell limits the opera-

tional frequency range of the cloak to those ranges where the characteristic wavelengths of Love waves

are larger than the unit cell dimensions. Furthermore, the adopted homogenization technique cannot

account for the presence of boundary layer effects, which characterize a layered medium filled with a

non integer number of cells. This aspect, introduces some extra deterioration in the performance of

the cloak.

In terms of perspectives, experimental realizations of the proposed layered cloak should confirm

thepossibility of hiding surface defects fromLovewaves and contribute to advancements of devices for

surfacewaves control. Furthermore, an analogous strategy to design carpet cloaks should be developed

for Rayleigh waves. In that case, the transformed elasticity tensor loses its minor symmetry92. Thus,

the definition of an effective medium for the cloak design requires a specific treatment involving, for

example, a symmetrization of the transformed elasticity tensor96.

2.6 Appendix A. Distribution of the effective shear modulus.

In this appendix we provide the distribution of the effective shear moduli for the triangular and the

parabolic cloak, as obtained from Eq. (2.11) and Eq. (2.17), respectively. For the triangular cloak μ′11 ,

μ′12 and μ
′
22 are constant inside the cloak and the layer, with μ12 being anti-symmetric w.r.t. the cloak

vertical axis (Fig. 2.7(a)− (c)). The parabolic cloak presents a symmetric distribution for μ′11 and μ
′
22,

and an anti-symmetric one for μ′12, respectively (Fig. 2.7(d)− (f)).
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2.7 Appendix B. Inverse homogenization-Genetic Algorithm

Here we present a more general inverse homogenization approach to approximate the anisotropic

effective properties of the pinched triangular cloak by a piece-wise isotropic medium. This can be

achieved by adjusting the size, shape and the characteristics of the complex mediumwhose properties

will derive from the homogenization theory. In90 it was shown that the family of partial differen-

tial equation with periodical oscillating coefficients, two-scale converges to the homogenization limit,

which is the main result used here. If y is the microscopic variable of the unit cell, the properties of

the effective medium are given by:

μhom =

⟨μ⟩ − ⟨μ∂y1w1⟩ −⟨μ∂y1w2⟩

−⟨μ∂y2w1⟩ ⟨μ⟩ − ⟨μ∂y2w2⟩

 (2.25)

where ⟨·⟩ is the mean operator over the unit cell, ∂ywj is the partial derivative with respect to the

microscopic variable y of wj, which is the solution of the so-called cell problem and plays the role of a

correction factor:

∇y · (μ(∇ywj(y) + ej)) = 0 (2.26)

for j = 0, 1, where e1 = (1, 0) and e2 = (0, 1) are the unit vectors. The cell problem is described

by a set of 4 parameters (μa, μb, α, θ) , where μa and μb are the shear modulus of the two isotropic

materials a and b, α is a point along the cut line between the two materials and θ is the angle of the

cell with respect to the horizontal axis y2, see Fig. 2.4(a). Our goal is to optimize those 4 parameters

to mimic the effective properties of the transformed medium i.e. μhom ≈ μ′. Taking into account the

high accuracy demanded by our problem, the application of a genetic algorithm (GA) is compulsory.

The Genetic Algorithm is a numerical technique that targets to optimize a function over a set of
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defined parameters. Some of the main advantages that the (GA) possesses, is that it does not require

higher order terms i.e. derivatives and it is well-suited of solving problems of complex naturewhen the

traditional approaches fail miserably. In our case, we define γ as the cost (fitness) function we would

like to minimize as:

γ =
∑
i,j

(μ′ij − μhomij )2

(μ′ij)2
(2.27)

The smaller the function γ gets, the better the approximation of the effective property μ′. As μhom

derives from the solution of the annex problem, the optimization procedure depends on the set of the

geometrical parameters introduced in section 2.3.1. Hence, a MATLAB routine had been prepared

to run the (GA). Initially, individual sets of those parameters are generated randomly and defined

as the Population SizeN. Then, for each set, homogenization theory is being applied, solving the of

annex problemusing (PDE)module inCOMSOL.The results of each individual are being compared,

neglecting the ones with poor convergence. Then, a new set of parameters is imported, based on the

top performance of the previous iteration. Each iteration can be identified as a Gene (G) (from the

Biological term). For each particular Gene, we define those best 2 individuals as Parents (p1) and (p2)

and the new set as Children (c1)with the relation:

c1 =
p1 + p2

2
(2.28)

Here we demonstrate the efficacy of the generic algorithm for the case of the triangular pinched

cloak with the defect inside the layer. For our purpose, we set the population size (N) to 20 and the

number of generations (G) to 50. The results obtained through the (GA) (Fig. 2.8) are compared

with the analytical solution provided in Section 2.4, as depicted in Table 2.2 (the set solutions is not

unique). It is clear that the (GA) is capable of providing an adequate approximation of the effective

mechanical properties of the layered cloak. We point out that by constraining the number of unit cell

parameters, for instance, by setting α = 0.5, the (GA) converges even closer to the theoretical values
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of the effective properties.

Parameters Analytical Genetic Algorithm
α 0.5 0.8203
μ′a
μ1

0.0544 0.0958
μ′b
μ1

2.9409 7.8180
θ′ ±0.6412 ±0.6424
μ′11
μ1

1 0.9926
μ′12
μ1

=
μ′21
μ1

±0.6667 ±0.6556
μ′22
μ1

0.6044 0.6070
γ 0 0.000623

Table 2.2: Mechanical properties obtained from the Analytical solution and the Generic Algorithm for the monoclinic
unit cell of the triangular pinched cloak.
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Fig. 2.6: Parametric study on the dispersion curves with respect to the unit cell dimension of the layered cloaks. The
dispersion of the Ideal cloak is provided for reference.
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Fig. 2.7: Contour plots of the transformed shear moduli coefficients over a rectangular domain (−c, c) × (−b, 0), for
the triangular (a)− (c) and the parabolic (d)− (f) shaped cloaks, respectively.
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Fig. 2.8: Results of the genetic algorithm, including the fitness value, the value of each parameter, the fitness of each
individual and the time of convergence.
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3
Cloaking of Rayleigh waves

The contents and the figures of the presented chapter are adopted and reproduced with permission

from140 Copyright 2023, Elsevier Ltd.

In this chapterwe propose a strategy based on coordinate transformation to cloakRayleighwaves.

Rayleigh waves are in-plane elastic waves which propagate along the free surface of semi-infinite me-

dia. They are governed byNavier equations that retain their form for an in-plane arbitrary coordinate

transformation x = Ξ(X), upon choosing the specific kinematic relation U(Ξ(X)) = u(x) be-
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tween displacement fields in virtual, i.e. reference, (U) and transformed, i.e. cloaked, (u) domains.

However, the elasticity tensor of the transformed domain is no longer fully symmetric, and thus, it is

difficult to designwith commonmaterials. Motivated by this issue, wepropose a symmetrization tech-

nique, based on the arithmeticmean, to obtain anisotropic, yet symmetric, elastic tensors forRayleigh

wave near-cloaking. In particular, by means of time-harmonic numerical simulations and dispersion

analyses, we compare the efficiency of triangular and semi-circular cloaks designed with the original

non-symmetric tensors and the related symmetrized versions. In addition, different coordinate trans-

formations, e.g. linear, quadratic and cubic, are adopted for the semi-circular cloaks. Through the

analyses, we show that a symmetrized semi-circular cloak, obtained upon the use of a quadratic trans-

formation, performs better than the other investigated designs. Our study provides a step toward the

design of feasible and efficient broadband elastic metamaterial cloaks for surface waves.

3.1 Introduction

Controlling surface waves with architected materials is an open challenge in several engineering ap-

plications, ranging from microdevices for electronic components153, namely SAW devices, to meter-

sized barriers175,159,167,157,152,179,180,162 and seismic cloaks182 for ground-borne vibrations. In the lat-

ter context, two large-scale experiments recently demonstrated that one can reflect136 or even focus137

surfaceRayleighwaves in structured sedimentary soils. These experimentswere the result of collabora-

tive work between geotechnical engineers and wave physicists that explored analogies betweenmodels

of electromagnetic and elastodynamic waves in metamaterials148,150,183,145,191,158,184.

Based on those experiments, it was argued that one might build a cloak for Rayleigh waves with

concentric layers of structured soil around a building one may wish to protect. Such an approach

amounts to considering a physical setup in a plane parallel to the surface. Many numerical works

followed, mostly considering the same approach, notably a proposal to reroute Love waves176 in the
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transverse plane thanks to a graded metasurface, and some conversion of Love waves into downward

propagating anti-plane shear bulk waves via a wedge effect in the vertical plane160. In parallel, small-

scale experiments on the control of surface seismic waves143,174,144 have shown that one can also act

upon the deflection of Rayleigh waves in the vertical plane with an array of resonators atop, or buried,

in the soil. The corresponding physical setups consider devices acting on a plane orthogonal to the

surface.

Following this approach, some authors of this manuscript investigated the cloaking of surface

Love waves by transforming the elastic medium along the vertical plane141. At first sight, this strategy

for cloaking of Love waves should equally work for Rayleigh waves. However, unlike Love waves,

which are polarized out-of-plane and can thus be modelled by a scalar Helmholtz equation in the

vertical plane, Rayleigh waves are governed by the Navier equations, where the coupling between in-

plane pressure and shear waves cannot be avoided.

In this regard, we stress that amajor hurdle inRayleighwave cloaking is that theNavier equations

are not form invariant under an arbitrary geometric transformation165, leading to non-scalar density

and additional third-order elastic tensors in the transformed medium. Notably, Norris et al.172 in-

vestigated the relation, e.g. the gauge, between the displacement field of the reference domain and

the transformed one and showed that it directly affects the symmetry of the elastic tensor. Recently,

2D elastodynamic cloaking has been approached either by direct design and homogenization of the

so-called micropolar metamaterials170,171,169,194,187, which can achieve the required non-symmetric

elastic tensor, or by utilizing symmetrization techniques to restore the symmetries of the elastic ten-

sor182,147. An alternative route to achieve cloaking exploits the use of non-linear elastic pre-stress in

hyperelastic material models to relax the constraints on material properties177,178,173,135,193.

Relevant studies in the context of Rayleigh waves cloaking include the use of micropolar materi-

als to hide a cylinder embedded in the medium155 and near-cloaking techniques to decouple P and S

waves181. Here, we focus, instead, on the use of symmetrized tensors, since micropolar materials can
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exhibit zero-modes and mechanical instabilities, making them complex to manufacture154. Specifi-

cally, our scope is to delve into the effects of symmetrization on the cloaking performance of Rayleigh

waves, considering different transformation and cloaking geometries.

To this aim, we organize our manuscript as follows: we first recall the Navier equations for the

reference and transformed semi-infinite media. We stress that depending on the choice of the gauge,

one can either assume a modifiedWillis medium, or a Cosserat mediumwith a non-symmetric elastic

tensor.

After adopting the latter, we manipulate its non-symmetric components using the arithmetic

mean and assess the effect of symmetrization on the cloaking of Rayleigh waves. Our analysis con-

siders a triangular pinched cloak and 3 types of semi-circular cloaks, distinguished by the adopted

radial transformationCi (linearC1, quadraticC2, cubicC3). The cloaking performance is analyzed by

comparing the harmonic wave fields and dispersion relations of ideal, e.g. non-symmetric, and sym-

metrized cloaks. In particular, the dispersive analysis exploits the inverse participation ratio (IPR),

which addresses the localization level of the displacement fields, to identify and count the surface

modes (of interest).

Next, the performance analysis is continued bymeans of harmonic simulations and by comparing

the transmitted displacement fields after the cloak of symmetrized and ideal cases. We conclude the

investigationwith a focus on the circular cloaks by examining the requirements for a symmetric elastic

tensor for each Ci type of transformation.

3.2 Governing Equations for 2-D Elasticity

Weconsider a homogeneous isotropic semi-infinite half-spacewithmaterial properties (λ, μ, ρ), where

λ and μ are the Lamé coefficients and ρ the mass density, respectively, and the spatial coordinates for

the reference domain areX = (X1,X2). For in-plane surface waves, i.e. Rayleigh waves, propagating
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along the horizontal X1 direction, the governing Navier elastodynamic equation reads:

∇X · (C : ∇XU) = ρUtt (3.1)

whereC is the isotropic 4th order elasticity tensor,U = (U1,U2) is the displacement andUtt denotes

the second order derivative in time of U. Under the assumption of plane-strain elasticity, the elastic

tensor can be written in Voigt’s notation {1, 2, 6} = {11, 22, 12} as:

CIJ =


λ + 2μ λ 0

λ λ + 2μ 0

0 0 μ

 , (3.2)

where I, J = 1, 2, 6.

We apply a point-wise invertible transformation that maps the reference configuration (virtual

domain)X∈Ψto thedeformed region (physical domain) asx = (X) ∈ ψ and the remainingdomain

to itself (X /∈ Ψ). As a result, we derive the transformed elasticity tensor in the cloaked region. In

Figs. 3.1(a)− (d), we show two examples of carpet cloaks, a triangular and a semi-circular one, with

the related virtual and deformed domains. The transformation gradients for the deformed and the

reference domains areF = ∇Xx andF−1 = ∇xX, respectively. Also, J = det(F) is the determinant

of the transformation gradient. Given x = {x1, x2} the coordinates for the physical domain, the

transformation gradientF reads:

F = ∇Xx =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

 (3.3)

As discussed in the literature, see for example165, Eq. (4.1) is not form invariant upon an arbitrary

coordinate transformation and it depends on the choice of the gaugeU((X)) = Au(x), whereA is
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a non-singular matrix. In particular, the choice A = F leads to the so-called Willis setting that guar-

antees symmetric stress tensor165,172. Despite possessing such a symmetry, a medium that is governed

by theWillis equation is difficult to design due to the presence of two additional 3rd order symmetric

tensors, which may require the introduction of pre-stresses146,188. Additionally, in the Willis setting

thematerial density is a 2nd order symmetric tensor, a requirement which can be physically replicated

only within narrow frequency bands using resonant microstructures.

For this reason, in the present work, we refrain from using Willis materials and we employ a

Cosserat setting. Inparticular, following the idea byNorris et al.172, by assuming the gaugeU((X)) =

u(x) (A = I) for the displacements139,138, we derive the governing equation in the physical domain

x = (x1, x2) as:

∇x · (Ceff : ∇xu) = ρeffutt (3.4)

where

Ceff
ijkl = J−1CIjKlFiIFkK

ρeff = ρJ−1
(3.5)

are the transformed mechanical parameters of the cloaked region (purple region in Fig.3.1b and blue

region in Fig.3.1d) in Einstein summation. As a result, the transformed elasticity tensorCeff preserves

the major symmetries (Ceff
ijkl = Ceff

klij, etc.), but does not possess the minor ones as:

Ceff
ijkl ̸= Ceff

jikl ̸= Ceff
ijlk ̸= Ceff

jilk (3.6)

except for very special cases such as in the framework of conformal transformations. Nonetheless, the

medium can still be described by a single 4th-order non-symmetric and, eventually, inhomogeneous

elastic tensor.
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3.3 Carpet cloaking for Rayleighwaves: Transformation

Due to the vectorial nature of Rayleigh waves, cloaking has been hindered by the requirement of a

material with non-symmetric elasticity tensor. Indeed, several researchers142,192,151,194 have presented

metamaterials that can obtain the non-symmetric behaviour required for cloaking. Here, however,

we focus our investigation on a different aspect, aiming at analysing and comparing different linear

and non-linear transformations, as well as symmetrization strategies, to obtain an easy-to-realize, well-

performing, symmetric cloaks for Rayleigh waves. Specifically, we delve into the behaviour of carpet

cloaks with boundaries described by either linear functions (triangular shape) or semi-circular ones.

3.3.1 Triangular carpet cloak

We first consider a two-dimensional carpet cloak of triangular shape. Given a set of cartesian coordi-

nates centred along the cloak symmetry axis (X = {X1,X2}, x = {x1, x2}), we denote with z1(x1)

and z2(x1) the interior and exterior boundaries of the cloak, respectively. The transformation ΞT that

maps the region enclosedbetween two curves (X1; 0) and (X1; z2(X1))of the virtual domain, Fig. 3.1a,

to the one comprised between (x1; z1(x1)) and (x1; z2(x1)) of the real domain, Fig. 3.1b, is:

ΞT :


x1 = X1

x2 = ( z2(X1)−z1(X1)
z2(X1)

)X2 + z1(X1)

(3.7)

Note that (X1; 0) is mapped on (x1; z1(x1)) while (X1; z2(X1)) is point-wise fixed. Let z1(x1) =

a
c |x1| − a and z2(x1) = b

c |x1| − b be piece-wise linear curves, where a, b, c are the geometric pa-

rameters of the cloak, as illustrated in Fig. 3.1b. Then, using CartesianX = {X1,X2}, x = {x1, x2}
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coordinates the Jacobian of the transformation reads:

FT =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

 =

 1 0

F21(x1) F22

 (3.8)

where F21(x1) = sign(x1) ac and F22 = det(FT) = b−a
b . According to Eq. (3.5) and adopting the

augmented Voigt notation for the plane problem as {1, 2, 6, 6} = {11, 22, 12, 21}, we obtain the

following transformed elastic tensor and material density properties within the cloak domain:

C
effT
IJ =



λ+2μ
F22 λ 0 F21(x1)

F22 (λ + 2μ)

λ F21(x1)2μ+F222(λ+2μ)
F22

F21(x1)
F22 μ F21(x1)(λ + μ)

0 F21(x1)
F22 μ μ

F22 μ
F21(x1)
F22 (λ + 2μ) F21(x1)(λ + μ) μ F21(x1)2(λ+2μ)+F222μ

F22


, ρeffT = ρF−1

22

(3.9)

for I, J = 1, 2, 6, 6̄. Note that the effective density is constant. As anticipated in the previous section,

the elastic tensor of Eq. (3.9) is non-symmetric. In particular, it has 3 non-symmetric entries, which

in the augmented Voigt notation read:



CeffT
16 ̸= CeffT

16

CeffT
26 ̸= CeffT

26

CeffT
66 ̸= CeffT

66 ̸= CeffT
66

(3.10)
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Fig. 3.1: (a) Reference configuration (virtual domain) of the triangular cloak. (b) Deformed configuration (physical do‐
main) obtained by the action of (ΞT) that maps the (virtual domain) into a defect (white region) surrounded by the cloak
(purple region). (c) Reference configuration (virtual domain) of the semi‐circular cloak. (d) Deformed configuration (phys‐
ical domain) obtained by the action of (ΞCi ) that maps the (virtual domain) into a defect (white region) surrounded by
the cloak (blue region). (e) Schematic representation of the FEM model.
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3.3.2 Circular carpet cloak

We now consider the case of annulus shaped semi-circular cloaks located at the free-surface of the

semi-infinite domain (Fig. 3.1d). To simplify the definition of the transformedmechanical properties,

we introduce a set of polar coordinates X = {R,Θ} centered within the cloaked domain, where

R =
√

X1
2 + X2

2 and Θ = arctan X2
X1
[π], where [π] specifies the branch cut taken for arctan.

For such a configuration, we consider and compare 3 different types of radial transformations

ΞCi : (R,Θ) −→ (r, θ) that map the origin (0,0) of the reference system, Fig. 3.1c, onto an inner circle

of radius ri = a in the physical one, and the outer circleRo = ro = b to itself (see Fig. 3.1d):

ΞC1 :


r = b−a

b R+ a 0 ≤ R ≤ Ro

θ = Θ
(3.11)

ΞC2 :


r = A2R2 + A1R+ A0 0 ≤ R ≤ Ro

θ = Θ
(3.12)

where:

A2 =
a
b2
, A1 =

b− 2a
b

, A0 = a. (3.13)

ΞC3 :


r = B3R3 + B2R2 + B1R+ B0 0 ≤ R ≤ Ro

θ = Θ
(3.14)

where:

B3 =
2a
b3

, B2 =
−3a
b2

, B1 = 1, B0 = a. (3.15)
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The general form of the Jacobian of such transformation in polar basis reads:

FC =

 ∂r
∂R

∂r
R∂Θ

r∂θ
∂R

r∂θ
R∂Θ

 (3.16)

Specifically, for each transformation Ci in Eqs. (3.11), (3.12), (3.14) we obtain:

FC1 =

FC1
11 0

0 FC1
22

 =

 (b−a)
b 0

0 (b−a)
(r−a)

r
b

 (3.17)

FC2 =

FC2
11 0

0 FC2
22

 =


√
b2−4ab+4ar

b 0

0 2ar
2ab−b2+b

√
b2−4ab+4ar

 (3.18)

FC3 =

FC3
11 0

0 FC3
22

 =

 6aR2(r)
b3 − 6aR(r)

b2 + 1 0

0 r
R(r)

 (3.19)

where:

R(r) =
b
2
+

b2
4 − b3

6 a(√(
a b3−b3 r

4 a − b3
8 + b4

8 a

)2
−
(
b2
4 − b3

6 a

)3
− a b3−b3 r

4 a + b3
8 − b4

8 a

)1/3+

√(a b3 − b3 r
4 a

− b3
8
+

b4
8 a

)2
−
(
b2
4

− b3
6 a

)3
− a b3 − b3 r

4 a
+

b3

8
− b4

8 a

1/3

. (3.20)

We remark that the above transformations are singular, since they map the origin (a point) into a

circle of radius ri. The proper approach to avoid such singularities requires considering a very small

circle of radius ε instead of the origin156. The reader can find a more detailed discussion concerning

the offset parameter ε in the Appendix A.
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Additionally, we underline that the parameters Ai, Bi in C2 and C3 types of transformations, re-

spectively, are obtained fromthe traction continuity requirementon theouter boundary i.e. ∂r
∂R(Ro) =

1, since the surrounding space of Ψ is mapped onto itself. In contrast, this requirement is not satisfied

in the C1 transformation.

At this stage, using the augmented Voigt notation for the plane strain problem in polar coordi-

nates: {1, 2, 6, 6} = {rr, θθ, rθ, θr} = {11, 22, 12, 21}, we obtain the following effective properties

for any type of transformation (i = 1, 2, 3):

C
effCi
IJ =



FCi11
FCi22

(λ + 2μ) λ 0 0

λ FCi22
FCi11

(λ + 2μ) 0 0

0 0 FCi11
FCi22

μ μ

0 0 μ FCi22
FCi11

μ


, ρeffCi =

ρ
det(FCi)

(3.21)

for I, J = 1, 2, 6, 6̄. Again, the elastic tensor presents non-symmetric components:

CeffCi
66 ̸= CeffCi

66 ̸= CeffCi

66 (3.22)

Hence, compared to the triangular-shaped cloak, the circular one presents a reduced number of non-

symmetric elastic tensor components. In what follows, we discuss and show how this feature impacts

the performance of symmetrized cloaks.

3.4 Carpet cloaking for Rayleighwaves: Symmetrization

The symmetrization of an elastic tensor is a simple, yet effective, strategy to approximate the non-

symmetric constitutive behavior of an ”ideal” cloakwith a standardCauchy-typematerial, easily realiz-
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able with commonmedia. Different symmetrization strategies, such as geometric182 or arithmetic147

means have already been explored to realize feasible cloaks for bulk and flexural waves. In this study,

we build upon a recent work proposed by Craster et al.146, where it is shown that a symmetric tensor

CSym obtained from the arithmetic mean nullifies the variational problem:

minA∈M|((Ceff −CSym) : A) : A| = 0 (3.23)

whereM stands for the space of symmetric squarematrices. In other words, the elastic energy per unit

volume due to strain remains unchanged upon replacing the transformed Cosserat material (Ceff, ρ)

by the corresponding approximated Cauchy material (CSym, ρ).

Our strategy is to choose the tensor components in such a way that the constraints above are

satisfied, whilst keeping the remaining entries unaltered. For the triangular cloak, the requirements

for a symmetric elastic tensor are:



CSym
16 = CSym

16

CSym
26 = CSym

26

CSym
66 = CSym

66 = CSym
66

(3.24)

Then, from Eqs. (3.23)-(3.24) we have:

|((CeffT −CSym) : A) : A| = |(Ceff
16 + Ceff

16 + Ceff
61 + Ceff

61 − 4CSym
16 )A11A12

+(Ceff
26 + Ceff

26 + Ceff
62 + Ceff

62 − 4CSym
26 )A22A12 + (Ceff

66 + Ceff
66 + Ceff

66 + Ceff
66 − 4CSym

66 )A2
12|

(3.25)

Conversely, for the circular cloaks Ci (i = 1, 2, 3) we get the condition:

CSym
66 = CSym

66 = CSym
66 (3.26)
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In similar fashion, using Eq. (3.26) we obtain:

|((CeffCi −CSym) : A) : A| = (Ceff
66 + Ceff

66 + Ceff
66 + Ceff

66 − 4CSym
66 )A2

12| (3.27)

i.e. the variational problem is equal to zero if we choose the function CSym
IJ =

Ceff
IJ +Ceff

IJ
+Ceff

IJ
+Ceff

IJ
4 for

I, J = 1, 2, 6, where: {1, 2, 6, 6} = {11, 22, 12, 21}.

Regarding the symmetrization approach and the related design of composite materials matching

the symmetrized effective properties, we remark that the set of possible (symmetric) effective elasticity

tensors of composites built from two materials with isotropic elasticity tensors has been studied in

a number of papers, see e.g.163 for a review. Additionally, if one restricts the analysis to mechanical

metamaterials consisting of two phases, one of which being void, then microgeometries within the

elementary cells can be found in164; these would be good candidates to design themetamaterial cloak.

Conversely, it is possible to follow a different route avoiding the symmetrization and approximating

the elasticity tensor without the minor-symmetries with chiral elastic metamaterials. However, the

latter approach cannot achieve the required effective elasticity tensor over a finite bandwidth.

3.5 Numerical results and comparisons

We analyse the propagation of Rayleigh waves in a homogeneous half-space hosting a triangular or

semi-circular shaped defect. For both configurations, the cloak mechanical parameters are obtained

according to the geometrical transformation in Eq. (3.7) and Eqs. (3.11)-(3.14). For the numerical

example, we consider a material density ρ = 1600kg/m3, shear and pressure velocities equal to cs =

300m/s and cp =
√
3cs, respectively.

We introduce the following normalized quantities to ease and generalize the discussion of the
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Fig. 3.2: Displacement fields for the Reference (a)−(b), Ideal Cloak (c)−(f) and Obstacle (g)−(j) configurations, of
the triangular T and the circular Ci type of cloaks, computed at frequencies f⋆ = [1, 2], respectively. (k) Performance
of the ideal cloaks and the obstacle cases, computed by using the average of the total displacement of the transmitted
field along the surface beyond the cloaked region. 79



Fig. 3.3: Schematics of the unit cells for the referenceR (a), triangular T (b) and circular Ci (c) cloak configurations,
respectively. (d)‐(e) Dispersion curves for the reference (diamond dots) and the ideal cloaks (contour circle dots) config‐
urations, respectively. (f) Snapshots of surface modes displacement field, as obtained for the triangular T (left) and the
circular C2 (right) ideal cloaks, respectively.
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results:

• Normalized wavelength λ⋆ = b, so that k⋆ = 2π
λ⋆ , i.e. we normalize with respect to a wave-

length which is equal to the depth of the cloak.

• Normalized frequency f⋆ = cR
λ⋆ , where cR is Rayleigh wave velocity, which can be approxi-

mated by the following formula: cR = cs 0.826+1.14ν
1+ν where ν is the Poisson’s ratio.

To assess the cloaking abilities, we perform time-harmonic simulation using the finite element

softwareCOMSOLMultiphysics. Webeginbymodeling a2DdomainofdimensionsW×H (Fig. 3.1e).

The dimensions of the model are chosen asW = 12.5λ⋆ andH ≈ 4.305λ⋆.

Thebottomof thehalf-spacemodel is fixed, the surface is stress-free, andPerfectlyMatchedLayers

are used to diminish reflections from themodel boundaries. Rayleighwaves are generated by a surface

point source located at 0.35W from the left edge of the model. The triangular-shaped inclusion has

length a = 0.0774H and width 2c = 0.309H, and is surrounded by a cloak of related shape that

extends along the depth of b = 3a = 0.232H. The semicircular defect has radius a and its adjoined

cloak has radius b.

3.5.1 Ideal cloaks

Webegin our investigation by analyzing the performance of the “Ideal Cloaks”, namely domains with

mechanical parameters defined according to the transformation in Eq. (3.5). Our aim is to verify

that such Cosserat (non-symmetric) cloak can perfectly hide a surface defect from the propagation of

Rayleigh waves in a broadband frequency range.

To this purpose, time-harmonic simulations are performed in order to compare the surface dis-

placement field of the system in (i) the pristine configuration, i.e., the domain with no defect (“Ref-

erence”), (ii) the domain with the defect (“Obstacle”), and (iii) the domain with the cloaked defect
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(“Ideal Cloak”). In particular, we display the fields as computed for harmonic excitation at f⋆ = [1, 2]

in Fig. 3.2. The results for the pinched triangular T and semi-circular cloaks Ci at both selected fre-

quencies verify that the displacement field of the reference configuration (Fig. 3.2(a) and (b)) is al-

most perfectly approximated by the case with the ideal (non-symmetric) cloak (Figs. 3.2(c)− (f)), as

the waves are smoothly detoured around the obstacle. The performance of the cloaks is better un-

derstood by comparing the cloaked wave fields with those obtained in the uncloaked scenarios (see

Figs. 3.2(g) − (j)). In the latter, scattering effects dominate the field around the cloak and lead to

bulk mode conversion. To generalize these results, we calculate the normalized transmitted displace-

ment field ⟨u⟩
⟨uRef⟩ , namely the ratio between the average surface displacement ⟨u⟩ computed beyond

the obstacle for the ideal cloaks and the obstacle cases, and the same average displacement computed

for the reference configuration ⟨uRef⟩. The results depicted in Fig. 3.2k indicate perfect performance

of the ideal cloaks ( ⟨u⟩
⟨uRef⟩ ≈ 1), whereas the cases of a defect without the cloaking device are unable

to provide adequate efficiency since the transmitted surface field is highly reduced compared to the

reference.

For a more complete description of the capabilities of the cloak, we compare the dispersive prop-

erties of Rayleigh waves propagating along a homogeneous reference medium and along the cloaked

setting. Here, our scope is to prove that a cloak with effective properties given by Eqs. (3.9) or (3.21)

is able to fully duplicate the properties of the pristine homogeneous medium in a broadband range

of frequencies. Thus, for both the triangular and semi-circular defects, we investigate a small portion

(unit cell) of the 2D medium enclosing the analyzed cloaks. The unit cells have dimension H × Lc

(see top of Figs. 3.3(a)− (b)) and are modeled with FE using COMSOLMultiphysics. To obtain the

dispersive properties of surface elastic waves propagating in such media, we impose fixed boundary

conditions at the bottom surface of the cell, and Bloch boundary conditions along the x1 direction.

Note that, as in Ref.141, the transformation for the triangular carpet cloak is invariant along the x1

direction and thus the unit cell could be chosen accordingly by varying the wavenumber inside the
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first Brillouin zone of interest, kx1 = [ π
100Lc ;

π
Lc ]. In contrast, for radial transformations discussed in

this work, a unit cell of dimension smaller than the dimension of the cloak (Lc < ro = b) subjected

to Bloch boundary conditions along the x1 direction leads to overlapping transformation, In this re-

gard, Meirbekova et. al.161 recently showed that in such scenario discrepancies arise in the dispersive

properties due to the intersection of the cloak with the boundary of the unit cell. Hence, to avoid this

phenomenon, the unit cell must be at least the size of the cloak (we choose Lc = 2.1ro). However, the

above restriction on the dimension of the unit cell narrows the size of the first Brillouin zone (which is

inversely proportional to the unit cell length) and forces the calculation ofmultiplemodes (> 500) for

eachwavenumber to compute frequencies up to f⋆ = 2.5. Among these, only a small portion of them

represent waves confined at the surface (in particular, in a homogeneous medium, there exists only a

Rayleigh mode). The problem is thus shifted into the collection/recognition of such surface modes

among the plethora of wave solutions computed with a finite cell. For this purpose, we utilize the

inverse participation ratio (IPR)186,149,168,185,166, computed in terms of the displacements, according

to the relation:

IPR =

∫∫
ψ⋆ ∥u∥

4 dx1 dx2
(
∫∫

ψ⋆ ∥u∥
2 dx1 dx2)2

|ψ⋆| (3.28)

where we normalize the ratio bymultiplying it with the area of themodel |ψ⋆| and ∥u∥ =
√

u21 + u22

is the total displacement. The IPR has been used extensively in solid state physics to measure the

localization of particles-atoms over a domain. In our context, the IPR measures the localization of

the displacement field which will occur at the free-surface for the domain of interest; in practice, the

larger the IPR the higher is the localization of the displacement field.

In particular, for our example, an IPR> 3.5 allows us to clearly distinguish surface modes from

bulk ones. In Figs. 3.3(d) − (e) we display with colored dots (based on the IPR values) the surface

wave modes traveling within the triangular and semicircular cloak, respectively. The remaining bulk
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modes (IPR< 3.5) are marked in the background by smaller gradually sized dots. The reader can

appreciate the matching between Rayleigh modes within the cloaked domains and the Rayleigh so-

lution within the reference field, which demonstrate the broadband cloaking capabilities of the ana-

lyzed non-symmetric cloaks. As an example, surface modes pertaining to two wavenumber solutions

(k⋆ = [0.2192, 0.2381]) for each of the T and C2 cloaks are portrayed in Fig. 3.3f.

3.5.2 Symmetrized cloaks

In what follows, we delve into the behavior of symmetrized cloaks with triangularT and semi-circular

Ci transformations. Our scope is to find which combination of symmetrization/cloak geometry pro-

vides thebest cloakingperformance. Thedisplacementfieldofharmonic solutions for the symmetrized

cloaks at frequencies f⋆ = [1, 2] are displayed in Figs. 3.4(a)−(h). For f⋆ = 1, all the investigated sym-

metric cloaks areunable to efficiently reroute thewavefield around thedefect (seeFigs. 3.4(a), (c), (e), (g))

and have a similar response with the ”Obstacle” case (Figs. 3.2(g) and (i)). Conversely, at frequency

f⋆ = 2 the symmetric cloaks are able tobetter reroute thewavefield around theobstacle (seeFigs. 3.4(b), (d), (f)

and (h)). To quantify the performance of the cloak over a broader frequency range, we compute again

the normalized average transmitted field ⟨uSym⟩
⟨uIdeal⟩ along the domain’s surface after the cloak. Here, the

surface displacement field is normalized by the field of the ideal case. The ratio ⟨uSym⟩
⟨uIdeal⟩ versus the fre-

quency of excitation is reported in Fig. 3.4i for all the considered symmetric cloaks. For f⋆ = 0.5, all

cases have similar behavior, since the wavelength is too long compared to the dimension of the cloak.

Furthermore, all the cloaks show a performance drop at around f⋆ = 1, where the wavelength is equal

to the size of the cloak. In particular, for the triangular inclusion, the uncloaked obstacle transmits

more energy than symmetrized cloak until frequencies at around f⋆ = 1.4. The poorer performance

of the triangular-shaped cloak w.r.t. the circular ones, can be possibly attributed to the larger num-

ber of conditions (3) required for its symmetrization, as compared to the circular one (1), as shown

in Eqs. (3.24) and (3.26). Better cloak efficacy is obtained in the higher frequency regime, i.e. when
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f⋆ > 1.5, with a peak performance around f⋆ = 2. Overall, from Fig. 3.4i, it is clear that the C2

transformation provides the best performance compared toC1 andC3. To better appreciate the above

results, we replicate the dispersive analysiswith unit cells consisting of symmetrized cloaks. The results

are depicted in Fig. 3.5. It is evident that up to f⋆ = 0.75, the dispersive properties of the symmetrized

cloak match the ones of the reference, since at those frequencies the wavelength is small compared to

the dimension of the cloak. In addition, the C2 transformation (Fig. 3.5c) shows the highest number

of surfacemodes, 417 out of the 520 of the ideal case in Figs. 3.3(d) and (e), followed by 388modes in

the triangular pinched cloakT (Fig. 3.5a), 370modes inC1 (Fig. 3.5b) and 296modes inC3 (Fig. 3.5d)

upon the same IPR value. This is a further indication of the better performance of the C2 cloak. The

reader can find examples of such localized surface modes obtained for symmetrized T and C2 cloaks

in Fig. 3.5e.

To further support the premise that the C2 transformation presents better performance w.r.t.

other ones, we notice that fromEqs. (3.21) and (3.26) the approximation of the symmetrized circular

cloak depends on the ratioDCi =
FCi11
FCi22

. A value ofDCi = 1 represents a scenario where the ideal tensor

is symmetric, namely a scenariowhere symmetrization is not required. Note that, according toMilton

et al165 this cannot be achieved with our choice of gauge. Nonetheless we can rank the level of minor

symmetry breaking introduced by the different transformation by using the ratioDCi .

SinceDCi varies along the radial coordinate, we compute its mean value along the radial direction

of the cloak as:

⟨DCi⟩ = 1
rcloak

∫
rcloak

DCidr (3.29)

where rcloak = ro − ri = b − a is the radial length of the cloak. The results obtained for the 3 types

of transformations Ci are collected in Table 3.1:

As expected, the DC2 is higher than the analogous ratio computed for the linear C1 and cubic

transformation C3, thus indicating a lower deterioration of the performance upon symmetrization.
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Fig. 3.4: Displacement field of the symmetrized cloaks for the T (a)‐(b), C1 (c)‐(d), C2 (e)‐(f) and C3 (g)‐(h) class
of transformations, computed at frequencies f⋆ = 1.5 and f⋆ = 2, respectively. (i) Performance of the cloaks
using the ratio of the transmitted field of the symmetrized cloak over the ideal one, calculated at normalized frequencies
f⋆ = [0.5− 2.5].
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Fig. 3.5: Dispersion curves for the Triangular T (a) and Circular Symmetrized cloaks of C1 (b), C2 (c) and C3 (d) type
of transformation, respectively, as obtained from the IPR method. (e) Snapshots of particular surface modes of the
displacement fields, as obtained for the triangular T (Left) and the Circular C2 (Right) symmetrized cloaks, respectively.
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Transformation ⟨DCi⟩
C1 0.45069
C2 0.63
C3 0.4527

Table 3.1: Average value of the ratio FCi11
FCi22
of each symmetrized circular cloak.

3.6 Conclusion

In this study, we investigated the cloaking ofRayleighwaves bymeans of cloakswith symmetrized elas-

tic tensors. Since the Navier elastodynamic equation is not form-invariant for in-plane surface waves,

we assumed a Cosserat gauge for the displacements to recover the form invariance of the governing

equation. However, this step comes at the cost of demanding a material with effective properties that

do not satisfy the minor symmetries of the elasticity tensor. For this reason, our strategy relied on

the symmetrization of the elasticity tensor using the arithmetic mean. In particular, we examined the

performance of cloaks with pinched triangular and semi-circular shapes, respectively. For the latter,

we delved into 3 types of transformations: linear (C1), quadratic (C2) and cubic (C3) and we com-

pared their cloaking performance via FE harmonic simulations computing the normalized transmit-

ted displacement field in each case. We found that a symmetrized semi-circular cloak obtained from

a quadratic (C2) transformation provided the best approximation of the ideal one. Additionally, we

conducted dispersive analyses and employed the inverse participation ratio (IPR) as a tool to identify

the surface modes among all the wave solutions. Again, we compared the results obtained for the

ideal and the symmetrized scenarios and found that the C2 transformation was able to support the

propagation of the highest number of surface modes in comparison with all the other types of trans-

formations. As a further proof, we discussed the value of the ratioDCi and addressed its connection

with the performance of the symmetrized cloak by computing its mean value with respect to the pa-
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rameter r. The results converged with the findings of the time-harmonic numerical simulations and

the dispersive properties of the cloaks, concluding that the quadraticC2 transformation displayed the

best overall cloaking protection.

We stress that a classical homogenization procedure could be implemented to mimic the now

symmetric, yet anisotropic behaviour of the cloaks via isotropic layered media, providing a feasible

protection from incident Rayleigh waves. Finally, since experiments on elastodynamic cloaking are

scarce and only recently Xianchen, et al.189 made the first physical realization of a polar cloak that

provided shielding fromstatic loads,wehope this study couldpave theway towardsmore experimental

validation for cloaking from surface elastic waves.

3.7 Appendix A. Transformations with offset parameter ε.

In this sectionwepresent the so-calledKohn’s transformation156, which amounts to transforming the

region ε ≤ R ≤ Ro to the cloaking region ri ≤ r ≤ ro, where ε is a small positive number introduced

to remove the singularity at the origin. In addition, for the Cε
1 type transformation we provide the

more general scenario, which is parametric with respect toN:

ΞCε
1(N) :


r = N

√
bN−aN
bN−εN R

N + aN − εN bN−aN
bN−εN 0 ≤ R ≤ Ro

θ = Θ
(3.30)

Note that when ε = 0, forN = 1 in Eq. (3.30) we obtain the classical ”Pendry” transformation

of Eq. (3.11). The case of N = 2 has been used in191,158 for cloaking of elastic plates and in190 for

cloaking of shallowwaterwaves, andhas the special property that its determinantdet(FC1) is constant.
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In a similar fashion, the general Cε
2 type of transformation is given by:

ΞCε
2 :


r = Aε

2R2 + Aε
1R+ Aε

0 0 ≤ R ≤ Ro

θ = Θ
(3.31)

where

Aε
2 =

a− e
(b− e)2

, Aε
1 = −2 b (a− e)− (b− e)2

(b− e)2
, Aε

0 =
b2 (a− e)
(b− e)2

(3.32)

Finally the Cε
3 reads:

ΞCε
3 :


r = Bε3R3 + Bε2R2 + Bε1R+ Bε0 0 ≤ R ≤ Ro

θ = Θ
(3.33)

where

Bε3 = 2
(a− ε)
(b− e)3

, Bε2 =
3 (b+ ε) (ε− a)

(b− ε)3
, Bε1 =

b3 − 3 b2 ε− 3 b ε2 + 6 a b ε− ε3

(b− ε)3
,

Bε0 =
b2 (a− ε) (b− 3 ε)

(b− ε)3
,

(3.34)

Note that when ε = 0, Eqs. (3.31)-(3.34) reduce to Eqs. (3.11)-(3.15).
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4
3-D Elastic cloaking

In this Chapter, we propose a design for cloaking Rayleigh and Love surface waves, extending the

results of Chapters 2 & 3. To such purpose, we utilize the invariance of the Navier elastodynamic

equation under geometric transformby assuming identical displacements in original and transformed

media (Cosserat gauge). In particular, we apply transformational elastodynamics to obtain the req-

uisite mechanical properties for a 3-D prismatic and cylindrical carpet cloak of triangular and semi-

circular cross section, respectively. By comparing the formulated 3-D elastic cloaking problem with
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the superposition of the in-plane (Rayleigh) and out-of-plane (Love) cases, it reveals an extra set of

elasticity components and additional broken symmetries of the elasticity tensor. Dispersion analysis

and time-harmonic simulations are conducted to validate the performance of the cloak characterized

by an elasticity tensorwithoutminor symmetries (Cosseratmedium). Finally, an original symmetriza-

tion technique of the elasticity tensor is applied, driven by the weak form solution of Love waves and

the concept of generalized mean, to approximate the anisotropic and chiral properties of the cloak by

isotropic Cauchy materials.

4.1 Introduction

Rayleigh and Love waves are elastic waves that propagate over the free surface of an elastic half-space.

In stratified or heterogeneousmedia both types ofwaves are characterized by a dispersive naturewhere

their velocity becomes dependent on the wavelength. The concept of bending these surface waves

around an object (so-called cloaking) has been of major interest due to its ample applications in engi-

neering. In particular, Rayleigh and Love waves are the predominant surface waves ignited upon an

earthquake event. As a result, they can cause damages to structures placed on the earth surface. Thus,

having thepossibility to cloak targets from themwouldbe a tremendous advancement towards seismic

protection. Additionally, due to their proximity to the surface, these waves are easily generated and

measured, thus finding applications in non-destructive testing and source identification245,246,214.

The notion of invisibility has been a subject of profound research in recent years. Pioneering

contributions by Pendry et al.238 and Leonhart222 established theoretical frameworks for cloaking

electromagnetic waves, building upon the invariance of Maxwell’s equations under arbitrary coordi-

nate transformations248. Consequently, similar techniques were also applied in transformations op-

tics216,217,219,199,223,205, thermodynamics251,232,218,242,252,200,241, cloaks for water waves253,257,231,247

and acoustics234,210,203. However, in the context of elasticity Milton et al.225 found that the Navier
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elastodynamic equations are not form invariant under an arbitrary curvilinear transformation and are

mapped to a more general system with non-scalar density and additional third-order tensors. As a re-

sult, all three components of the elastic waves are fully coupled in the transformed medium, making

the cloaking problem in elasticity significantly more challenging than in optics or acoustics. Brun et

al.197 observed that choosing an identity map to connect the displacement fields (gauge) allows the

Navier equation to retain its form invariance. However, this choice breaks the minor symmetries of

the transformed elasticity tensor resulting in a so calledCosseratmaterial form. Further contributions

by Norris et al.233 extended these ideas by deriving a more general system of transformed equations,

dependent on both the transformation and the choice of gauge. Notably, the transformed equations

can either take the formofWillis, where the elastic stress is symmetric but involves third-order tensors,

or Cosserat, where the transformed equations maintain their structure but include non-symmetric

constitutive relations. Hence, both scenarios impose significant constraints on realizing a 3-D elasto-

dynamic cloak.

An interesting approach to address these challenge involves the direct architecture of lattice-based

Cosserat or micropolar metamaterials229,230,228,204,256,250,254 which can establish the necessary non-

symmetric behavior by introducing an additional rotational degree of freedom or by applying sym-

metrization techniques to the elasticity tensor212,243,208. In similar fashion, mechanical cloaking de-

signs enforcingdirect lattice transformationhave also shownpromising cloaking applications198,240,220.

Notably, an alternative technique pertains to the use of non-linear elastic pre-stress in hyperelasticma-

terials236,237,195,235,255.

While considerable research has been dedicated to cloaking of elastic waves, there exists a signifi-

cant gap in exploring applications related to elastic surface waves. In the context of Love waves, some

authors of this work investigated cloaking designs by means of transformational elastodynamics202.

On the other hand, studies related to cloaking of Rayleigh waves include concealing of an embed-

ded cylinder221 or a triangular-shaped defect204 incorporating micropolar elasticity or applying near-
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cloaking techniques under quasi conformal mappings to uncouple the elastic wave potentials239. Re-

cently, a near-cloaking strategy for Rayleigh waves was developed built upon the symmetrization of

the elasticity tensor by using materials of classical symmetry and providing efficient cloaking perfor-

mance201. However, none of the above works directly explore the potential for creating 3-D cloaks

to effectively redirect both Rayleigh and Love waves around an object of interest. In contrast, a 3D

acoustic cloak has been well understood and analyzed in numerous recent studies203,209,226. In this

study, we explore such possibility and by assuming cylindrical symmetry we develop 3-D triangular

and semi-circular carpet cloaks.

We structure our manuscript as follows: First we revisit the Navier equations concerning both

the reference and the transformed semi-infinite layered media. By employing a Cosserat kinematic

relation, we restore the form invariance of the transformed equation of motion and achieve the nec-

essary non-symmetric mechanical properties for cloaking. The design involves applying cylindrical

analogues of 2-D transformations studied in earlier works, with triangular and semi-circular cross-

sections.

Remarkably, the 3-D problem differs from superimposing Love and Rayleigh waves due to its re-

quirement for a heterogeneous system, as Love waves propagate exclusively in layeredmedia, resulting

in dispersive Rayleigh waves. By comparing the weak formulation of the 3-D equation with separate

weak forms of Love and Rayleigh waves reveals additional coefficients in the transformed elasticity

tensor. In addition, the symmetrization of the elasticity tensor impacts the effective shear moduli

which is crucial for cloaking Love waves, a phenomenon absent in202 due to the scalar Helmholtz

equation’s transformation lacking non-symmetric properties. To address this, we introduce a new

symmetrization strategy, aligning symmetric coefficients with the weak-form solution of Love waves

and symmetrizing the rest using the generalized mean. This approach seeks the optimal combination

of symmetrization and cloak geometry for efficient cloaking.

To validate our designs, we perform time-harmonic simulations and dispersion analyses, compar-
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ing thewave fields of cylindrical cloakswith pinched triangular and semi-circular cross-sections, under

different symmetrization schemes and angles of incidence. In particular, we examine the transmitted

displacement fields after the cloak and measure the scattering ratio of symmetrized and ideal cases.

Next, the dispersive analysis employs a 3-D version of inverse participation ratio (IPR) used in201

to recognize the localization level of the displacement fields, enabling the identification and count-

ing of surface modes. Our findings indicate that a symmetrized semi-circular cylindrical cloak, using

the ”Maximal” mean, offers substantial cloaking protection across all tested frequencies compared to

other designs.

4.2 Governing Equations

We consider a homogeneous, isotropic elastic layer of thickness h1 andmaterial properties (λ1, μ1, ρ1)

coupled to a semi-infinite medium with properties (λ2, μ2, ρ2) where λi and μi are the Lamé co-

efficients and ρi the mass densities and the spatial coordinates for the reference domain are X =

(X1,X2,X3). The layered medium presents a surface defect that extends within the thickness of the

upper layer. Then, the governing Navier elastodynamic equation reads:

∇X · Ci : ∇XUi = ρiUi,tt (4.1)

whereCi is the isotropic 2nd order elasticity tensor,Ui is the displacement andUi,tt denotes the

second order derivative in time of U of the layer (i = 1) and the semi-infinite medium (i = 2),

respectively.

Following the cloaking strategy by225,233 as in Chapters 2 & 3 and assuming U = u (Cosserat

gauge) for the displacements197,211, we derive the governing equation in the transformed coordinate
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system x = (x1, x2, x3) as:

∇x · Ceff : ∇xui = ρeffi ui,tt (4.2)

where

Ceff
ijkl = J−1CIjKlFiIFkK

ρeff = ρJ−1
(4.3)

are the transformed mechanical parameters of the cloaked region on Einstein summation, F = ∇Xx

is the deformation gradient and J = det(F) its determinant.

4.2.1 Prismatic triangular carpet cloak

Let us consider a triangular carpet cloak, as the one in Figs. 4.1(a) and (b). For such configuration,

we apply a prismatic (x3 = X3) coordinate transformation ΞP(XXX → xxx) as:

ΞP :



x1 = X1

x2 = ( z2(X1)−z1(X1)
z2(X1)

)X2 + z1(X1)

x3 = X3

(4.4)

stretching the field between z = 0 and z = z1(X1)of the reference domain into the regionbetween the

curves z1(x1) and z2(x1) of the transformeddomain (blue region). The Jacobian of the transformation

in Cartesian coordinates is:

FT =


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 =


1 0 0

FP21 FP22 0

0 0 1

 (4.5)
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where FP21 = sign(x1) ac and FP22 = det(FT) = b−a
b with a, b, c representing the geometric pa-

rameters of the pinched triangular cloak introduced inChapters 1&2Adopting the augmentedVoigt

notation for the 3-D problem as {1, 2, 3, 4, 4 , 5, 5 , 6, 6} = {11, 22, 33, 23, 32, 31, 13, 12, 21}, the

transformed elastic tensor and material density properties within the cloak domain reads:

C
effP
IJ =



λ+2μ
FP22

λ λ
FP22

0 0 0 0 0 FP21
FT22

(λ + 2μ)

λ (FP21)2μ+(FP22)2(λ+2μ)
FP22

λ 0 0 0 0 FP21
FP22

μ FP21(λ + μ)

λ
FP22

λ λ+2μ
FP22

0 0 0 0 0 FP21
FP22

λ

0 0 0 (FP21)2μ+(FP22)2μ
FP22

μ FP21
FP22

μ FP21
FP22

μ 0 0

0 0 0 μ μ
FP22

0 0 0 0

0 0 0 FP21
FP22

μ 0 μ
FP22

μ
FP22

0 0

0 0 0 FP21
FP22

μ 0 μ
FP22

μ
FP22

0 0

0 FP21
FP22

μ 0 0 0 0 0 μ
F22 μ

FP21
FP22

(λ + 2μ) FP21(λ + μ) FP21
FP22

λ 0 0 0 0 μ (FP21)2(λ+2μ)+(FP22)2μ
FP22


(4.6)

ρeffP = ρ(FP22)−1 (4.7)

As shown in the previousChapters, the effective properties of the triangular pinched cloak consist

of homogeneous non-symmetric components of the elasticity tensor and constant effective density.

In particular, it has 5 non-symmetric entries (instead of 3 in the plain strain problem), which in the
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augmented 3D Voigt notation read:



CeffP
16 ̸= CeffP

16

CeffP
26 ̸= CeffP

26

CeffP
36 ̸= CeffP

36

CeffP
44 ̸= CeffP

44 ̸= CeffP
44

CeffP
45 = CeffP

45 ̸= CeffP
45 = CeffP

45

CeffP
66 ̸= CeffP

66 ̸= CeffP
66

(4.8)

4.2.2 Cylindrical circular carpet cloak

In the same vein, we formulate the scenario of a cylindrical semi-circular cloak located at the free-

surface. We introduce a set of cylindrical polar coordinates centered at the cloaked region (X =

{R,Θ,X3},x = {r, θ, x3}) centered within the cloaked domain, where R =
√

X1
2 + X2

2 , r =

√
x12 + x22, Θ = arctan X2

X1
[π] and θ = arctan x2

x1 [π].

For such a configuration, we utilize the 3-D cylindrical extension of radial quadratic transforma-

tion that was used for the case of Rayleigh waves in Chapter 2 as ΞC ≡ ΞC2 : (R,Θ,X3) −→ (r, θ, x3)

thatmaps the origin (0,0) of the reference systemonto an inner cylinder of radius ri = a in the physical

one, and the outer cylinderRo = ro = b to itself (see Figs. 4.1(c) and (d)):

ΞC2 :



r = A2R2 + A1R+ A0 0 ≤ R ≤ Ro

θ = Θ

x3 = X3

(4.9)
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Fig. 4.1: (a) 3‐D Schematic of a triangular carpet‐pinched cylindrical cloak. (b) In‐plane (X3 = 0) model representa‐
tion. (c) 3‐D Schematic of a semi‐circular carpet cylindrical cloak. (d) In‐plane (X3 = 0) model representation.
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where:

A2 =
a
b2
, A1 =

b− 2a
b

, A0 = a. (4.10)

Now, the Jacobian of such transformation becomes:

FC2 =


FC2
11 0 0

0 FC2
22 0

0 0 1

 (4.11)

Using the augmentedVoigtnotation for the3-Dproblem inpolar cylindrical coordinates: {1, 2, 3, 4, 4 , 5, 5 , 6, 6} =

{rr, θθ, x3x3, θx3, x3θ, x3r, rx3, rθ, θr} =

{11, 22, 33, 23, 32, 31, 13, 12, 21}, we obtain the following effective properties:

C
effC2
IJ =



FC211
FC222

(λ + 2μ) λ λ
FC222

0 0 0 0 0 0

λ FC222
FC211

(λ + 2μ) λ
FC211

0 0 0 0 0 0

λ
FC222

λ
FC211

λ+2μ
FC211 F

C2
22

0 0 0 0 0 0

0 0 0 FC222
FC211

μ μ
FC211

0 0 0 0

0 0 0 μ
FC211

μ
FC211 F

C2
22

0 0 0 0

0 0 0 0 0 μ
FC211 F

C2
22

μ
FC222

0 0

0 0 0 0 0 μ
FC222

FC211
FC222

μ 0 0

0 0 0 0 0 0 0 FC211
FC222

μ μ

0 0 0 0 0 0 0 μ FC222
FC211

μ



,

(4.12)

ρeffC2 =
ρ

det(FC2)
(4.13)
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for I, J = {1, 2, 3, 4, 4̄ , 5, 5̄ , 6, 6̄}. Again, the elastic tensor presents 3 sets non-symmetric com-

ponents (instead of only 1 for the plain strain problem):



CeffC2
44 ̸= CeffC2

44 ̸= CeffC2

44

CeffC2
55 ̸= CeffC2

55 ̸= CeffC2

55

CeffC2
66 ̸= CeffC2

66 ̸= CeffC2

66

(4.14)

Similarly with the separate cases of Love and Rayleigh waves in Chapters 2 & 3, respectively, the

problem of 3-D cloaking is now shifted on finding the required materials to approximate the coeffi-

cients of the effective elastic tensor and the density. In particular, the effective parameters of the elas-

ticity tensor are described by an anisotropic behaviour that is required to cloak incident Love waves

as well as anisotropic and non-minor symmetric for the in-plane case of Rayleigh waves. We have al-

ready discussed the challenges to fabricate such materials in the in-plane scenario. Although microp-

olar metamaterials have been a proper candidate by exhibit such non-symmetries of the elasticity ten-

sor229,230,228, theirmechanical instabilities (such as zero-modes) posses amajor constrain towards their

feasibility. In addition, the extension from a 2-D to a 3-D chiral metamaterial to support both Love

and Rayleigh waves is not always straightforward as extra set of anisotropicities and non-symmetries

will arise. This is further analyzed in the next section. Notably, Golgoon et al.215 rigorously formu-

lated the problem of elastic cloaking using principles of differential geometry. The authors showed

that, in fact, elastodynamic cloaking in 2-D or 3-D in the general ideal case is not possible, even by

using a micropolar continuum or Cosserat solids. They proved that the obstruction for cloaking is

the violation of balance of angular momentum or the kinematic constrain for the acceleration terms

in the non-linear regime. This suggest that near-cloaking techniques such as symmetrization of the

elastic tensor are necessary. Then, the fully symmetric (major and minor) elasticity tensor and can be

approximated by isotropic composite materials through homogenization theory196.
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4.3 3-D cloaking vs out-of-plane and in-plane cloaking

In this section, we compare the effective properties associated with the full 3-D cloaking problem

and the separate cases of Love and Rayleigh waves that were investigated in202,201, respectively. Our

goal is to highlight the additional complexities associated with the full 3-D cloaking scheme and its

symmetrization.

As showed previously, by adopting the kinematic constraint U = u (Cosserat gauge) for the dis-

placements, the cloaking formulation yields non-symmetric stresses and strains, leading to the coeffi-

cients of the elasticity tensor losing their minor-symmetries. The strain-stress constitutive relation of

the effective medium is described as follows:

σij = Ceff
ijklul,k

εij = uj,i
(4.15)

It it worth noting that strains and stresses are not symmetric, e.g. (σ12 ̸= σ21 and ε12 ̸= ε21).

Considering a ”smooth-enough” test function û and domain Ω the equation of motion (neglecting

external forces and boundary terms) for the effective medium can be expressed using the divergence

theorem as: ∫
Ω
σ : ∇û dΩ =

∫
Ω
σ : ε̂ dΩ =

∫
Ω
(Ceff

ijkl : ε) : ε̂ dΩ = 0 (4.16)

Let us now delve into the formulation of the equation of motion for Love and Rayleigh waves,

independently.

4.3.1 Love waves-weak formulation

Wefirst revisit the case of anti-plane shear waves (Lovewaves) covered inChapter 1. For this reason, all

the in-plane displacement are constrained i.e. u = (0, 0, u3) and continuity along the out-of-plane di-
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rection is imposed. In3-DVoigtnotation ({1, 2, 3, 4, 4 , 5, 5 , 6, 6} = {11, 22, 33, 23, 32, 31, 13, 12, 21})

the vanishing strain terms read: ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = ε6 = 0. For the triangular carpet

pinched cloak, taking into account Eq. (4.6) and Εq. (3.5), Eq. (4.16) in the Love setting becomes:

(CeffP
44 ε4 + CeffP

45 ε5)ε̂4 + (CeffP
54 ε4 + CeffP

55 ε5)ε̂5 = 0 (4.17)

Note that the coefficients,CeffP
44 ,CeffP

45 ,CeffP
54 ,CeffP

55 represent nothingmore than the effective shear

modulus of Eq. (2.9) written in Voigt notation.

In similar fashion, the weak formulation for a semi-circular cloak, considering Eq. (4.12) and

Εq. (3.5) is:

(CeffC2
44 ε4)ε̂4 + (CeffC2

55 ε5)ε̂5 = 0 (4.18)

4.3.2 Rayleighwaves-weak formulation

Next, we turn our attention to the in-plane case of Rayleigh waves that was explored in Chapter 2.

As a result, the in-plane displacement vector reads u = (u1, u2, 0). Thus, all out-of-plane strains are

zero: ε3 = ε4 = ε4 = ε5 = ε5 = 0.

For the triangular cloak, using the transformed elastic tensor of Eq. (??), the weak formulation is:

(CeffP
11 ε1 + CeffP

12 ε2 + CeffP
16 ε6)ε̂1 + (CeffP

21 ε1 + CeffP
22 ε2 + CeffP

26 ε6 + CeffP
26 ε6)ε̂2+

(CeffP
62 ε2 + CeffP

66 ε6 + CeffP
66 ε6)ε̂6 + (CeffP

61 ε1 + CeffP
62 ε2 + CeffP

66 ε6 + CeffP
66 ε6)ε̂6 = 0

(4.19)

For the semi-circular type cloaks the weak form using Eq. (4.12) is as follows:

(CeffC2
11 ε1 + CeffC2

12 ε2)ε̂1 + (CeffC2
21 ε1 + CeffC2

22 ε2)ε̂2+

(CeffC2
66 ε6 + CeffC2

66 ε6)ε̂6 + (CeffC2

66 ε6 + CeffC2

66 ε6)ε̂6 = 0
(4.20)

110



4.3.3 3-D cloaking problem-weak formulation

Now, we focus on the full 3-D problem of cloaking a finite region, which is located at the free surface

of an elastic medium, from incident elastic surface waves using cylindrical-shaped cloaking devices. In

the absence of any constraints, the weak formulation of the elastodynamic equation ofmotion for the

cloak with a triangular cross section is:

(CeffP
11 ε1 + CeffP

12 ε2 + CeffP
13 ε3 + CeffP

16 ε6)ε̂1 + (CeffP
21 ε1 + CeffP

22 ε2 + CeffP
23 ε3 + CeffP

26 ε6 + CeffP
26 ε6)ε̂2+

(CeffP
31 ε1 + CeffP

32 ε2 + CeffP
33 ε3 + CeffP

36 ε6)ε̂3 + (CeffP
44 ε4 + CeffP

44 ε4 + CeffP
45 ε5 + CeffP

45 ε5)ε̂4+

(CeffP
44 ε4 + CeffP

44 ε4)ε̂4 + (CeffP
54 ε4 + CeffP

55 ε5 + CeffP
55 ε5)ε̂5 + (CeffP

54 ε4 + CeffP
55 ε5 + CeffP

55 ε5)ε̂5+

(Ceff
62ε2 + CeffP

66 ε6 + CeffP
66 ε6)ε̂6 + (CeffP

61 ε1 + CeffP
62 ε2 + CeffP

63 ε3 + CeffP
66 ε6 + CeffP

66 ε6)ε̂6 = 0

(4.21)

whereas for the semi-circular cylindrical cloak we get:

(CeffC2
11 ε1 + CeffC2

12 ε2 + CeffC2
13 ε3)ε̂1 + (CeffC2

21 ε1 + CeffC2
22 ε2 + CeffC2

23 ε3)ε̂2+

(CeffC2
31 ε1 + CeffC2

32 ε2 + CeffC2
33 ε3)ε̂3 + (CeffC2

44 ε4 + CeffC2

44 ε4)ε̂4+

(CeffC2

44 ε4 + CeffC2

44 ε4)ε̂4 + (CeffC2
55 ε5 + CeffC2

55 ε5)ε̂5 + (CeffC2

55 ε5 + CeffC2

55 ε5)ε̂5+

(Ceff
66ε6 + CeffC2

66 ε6)ε̂6 + (CeffC2

66 ε6 + CeffC2

66 ε6)ε̂6 = 0

(4.22)

It should be noted that since the elasticity tensor is represented in the augmented Voigt notation,

all its components are symmetric, i.e., Ceff
ij = Ceff

ji . With the formulation of all the equations of mo-

tion, we can now discuss the similarities and differences between the 3-D problem and the separate

scenarios of Love andRayleigh problems for both the triangular and semi-circular cloaks. By compar-

ing Eqs. (4.17) and (4.19) with Eq. (4.21) it is evident that there exists an extra set of the following 15
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elastic coefficients that were ”eliminated” upon tackling the separate scenarios:

{CeffP
13 ,CeffP

31 ,CeffP
23 ,CeffP

32 ,CeffP
33 ,CeffP

36 ,CeffP
63 ,CeffP

44 ,CeffP
44 ,CeffP

44 ,CeffP
45 ,CeffP

54 ,CeffP
55 ,CeffP

55 ,CeffP
55 } (4.23)

In the same vein, for the circular cloak, a comparison of Eqs. (4.18) and (4.20) with Eq. (4.22)

points to an additional list of 11 parameters of the elasticity tensor stated bellow:

{CeffC2
13 ,CeffC2

31 ,CeffC2
23 ,CeffC2

32 ,CeffC2
33 ,CeffC2

44 ,CeffC2

44 ,CeffC2

44 ,CeffC2
55 ,CeffC2

55 ,CeffC2

55 } (4.24)

In 3-D cloaking, it is essential not to neglect the non-vanishing components mentioned above,

as they play a crucial role in inducing additional anisotropic behaviours, such as Ceff
33, or extending

the demands for symmetrization, as shown with Ceff
44. Aside from the fact that 3-D cloaking is not

a simple ’superposition’ of the two distinct Love and Rayleigh wave phenomena, it also necessitates

the presence of a heterogeneous system, as Love waves propagate exclusively in layered media. As a

result, Rayleigh waves will also exhibit dispersive characteristics and will account for multiple modes.

This differs from the scenario presented in Chapter 2, where Rayleigh waves were investigated upon

a homogeneous medium, supporting only a single mode. Furthermore, the loss of minor symmetry

of the elastic tensor along with its approximation using symmetric materials may mitigate the cloak-

ing efficiency in the out-of-plane direction (Love waves). When studied independently, the effective

cloaking requirements can be perfectly matched by isotropic materials, as we demonstrated in Chap-

ter 2. Finally, it is worth mentioning that the statement of the problem in the full 3-D setting can

now support wave shielding phenomena from multiple angles of incidence. This scenario could not

be investigated in the previous Chapters, as in both we assumed 2-D geometry.
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4.4 Carpet cloaking for Surface elastic waves: Symmetrization

In section 3.4 we used the arithmeticmean as a function to symmetrize the components of the elastic-

ity tensor, building upon the fact that it minimized the variational problem of the PDEs between the

ideal cloak and the cloak with symmetric elastic coefficients. This approach led to promising results

and efficient shielding effect from incident Rayleigh waves. However, this metric does not guarantee

optimum performance, especially in the elastodynamic regime, where the performance is highly de-

pendent upon the frequency range. Since the 3-Dproblemconsist of additional sets of non-symmetric

components compared to the plane-strain scenario, it is of great importance to delve into the sym-

metrization problem by conducting a parametric study regarding the symmetrization function.

4.4.1 GeneralizedMean

For a more comprehensive symmetrization approach, we utilize the concept of the generalized or

power mean. We recall that if p is a real number and x1, ..., xn are positive real numbers, then the

power mean is defined as :

Gp(x1, ..., xn) = (
1
n

n∑
i=1

xpi )
1/p (4.25)

A few well-known specific cases include:the quadratic mean (p = 2), the arithmetic (p = 1), the

geometric (p = 0) and the harmonic (p = −1), respectively. Moreover, M = G∞(x1, ..., xn) =

max(x1, .., xn) is the maximum andm = G−∞(x1, ..., xn) = min(x1, .., xn) is the minimum value

of the set. Another useful fact is that the power means are connected via the power mean inequality.

If p1 ≤ p2 then:

m = G−∞(x1, ..., xn) ≤ Gp1(x1, ..., xn) ≤ Gp2(x1, ..., xn) ≤ G∞(x1, ..., xn) = M (4.26)

with the equality condition applied if and only if all the variables are equal.
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4.4.2 Love waves-driven symmetrization

This subsection is motivated to present an effective approach towards the symmetrization of the elas-

ticity tensor in the 3-D scenario. Our goal is to discuss a possible ”mixed” symmetrization technique

that utilizes the generalized mean, but imposes constraints on specific elastic coefficients. We begin

by recalling the non-symmetries of the elasticity tensor that resulted from the kinematic constrain

(Gauge) of the displacement field and the applied transformation that connects the reference with

the cloaked domain. For the triangular cloak T the non-symmetries are given in Eqs. (4.8). Thus, a

symmetrized elastic tensor of a triangular-shaped cloak should satisfy the following requirements:



CSymP
16 = CSymP

16

CSymP
26 = CSymP

26

CSymP
36 = CSymP

36

CSymP
44 = CSymP

44 = CSymP
44

CSymP
45 = CSymP

45 = CSymP
45 = CSymP

45

CSymP
66 = CSymP

66 = CSymP
66

(4.27)

In order to ”eliminate” the requirements for cloaking of Love waves, considering Eqs. (4.17), we

set the symmetrized coefficients as follows:


CSymP
44 = CSymP

44 = CSymP
44 = CeffP

44

CSymP
45 = CSymP

45 = CSymP
45 = CSymP

45 = CeffP
45

(4.28)

Similarly, for the semi-circular cylindrical cloak the requirements for symmetric tensor based on

114



Eqs. (4.14) read: 

CSymC2
44 = CSymC2

44 = CSymC2

44

CSymC2
55 = CSymC2

55 = CSymC2

55

CSymC2
66 = CSymC2

66 = CSymC2

66

(4.29)

Thus, by letting the symmetrized coefficients to satisfy the Love wave governing equation given

by Eqs. (4.18) we get: 
CSymC2
44 = CSymC2

44 = CSymC2

44 = CeffC2
44

CSymC2
55 = CSymC2

55 = CSymC2

55 = CeffC2

55

(4.30)

Having established the conditions for a symmetrized cloak to have identical shielding capabilities

with the ideal scenario, we can now utilize the approach of generalized mean (Eqs. (4.25)) discussed

above for the remaining coefficients and delve into the performance of such cloaks in the 3-D setting.

This will be illustrated in the next section.

4.5 Numerical Results and comparisons

We analyze the propagation of Love andRayleighwaves in a bi-layeredmedium that host a cylindrical-

shaped defect of triangular or semi-circular cross section, respectively. This model of a half-space, in-

troduced inChapter 2, is the simplest possible configuration that permits the existence of Love waves.

For both cross section configurations, the carpet cloaks are located inside the soft layer of a double-

layered semi-infinite medium and the mechanical parameters are given according to the Eq. (4.4) and

Eq. (4.9). For this particular study, numerical of geometrical and mechanical quantities are depicted

in Table 4.1.

To facilitate the discussion and analysis of our results, we introduce the following normalized

quantities:
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Layer Shear velocity Pressure velocity Density Depth
1 cs1=300m/s cp1 =

√
3cs1 m/s 1600 kg/m3 h1=40m

2 cs2=800m/s cp2 =
√
3cs2 m/s 1600 kg/m3 ∞

Table 4.1: Mechanical and geometrical properties of the double‐layered substrate.

• We normalize the wavelength, denoted as λ⋆ = b, to be equal to the depth of the cloak, result-

ing in a normalized wave number k⋆ = 2π
λ⋆ .

• The normalized frequency, denoted as f⋆ = cR
λ⋆ , where cR is Rayleigh wave velocity, which can

be approximated by the following formula: cR = cs 0.826+1.14ν
1+ν where ν is the Poisson’s ratio.

• fL1 = ωL1
2π = 1

2h1
√

1
cs21

− 1
cs22

which is the cut-off frequency of the first higher-order Love wave

mode. In our example, we have f⋆
fL1 ≈ 1.7;

To evaluate the capabilities of the cloaking devices, we conduct time-harmonic simulations utiliz-

ing the finite element software COMSOLMultiphysics. For these simulations, we model a 3-D strip

of the mediumwith dimensionsW×H× d along the Cartesian axes (x1, x2, x3) (see Fig. 4.1e). The

dimensions of the model are chosen as W = 12.35λ⋆, H ≈ 4.75λ⋆ and d = 0.2λ⋆. Fixed con-

straints are applied to the bottom of the model, continuity boundary conditions are imposed along

the out-of-plane x3 direction and the surface is stress-free. Additionally, Perfectly Matched Layers are

applied at the boundaries of themodel to diminish reflections. Rayleigh and Lovewaves are generated

by imposing at the surface of the model a time-harmonic line source along the x3 direction located at

0.35W distance from the origin. The cylindrical inclusion of triangular cross-section which has a

height a = 0.4h1 ≈ 0.0842H, width 2c = 0.7h1 ≈ 0.2947H and thickness d, is shielded by a cloak

of identical shape which extends up to the depth of the soft layer (b = h1). On the other hand, the

semi-circular shaped cylindrical defect has radius a, and its surrounding semi-circular cloak has radius

b, both expanded along the domain’s thickness d.
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Fig. 4.2: Out‐of‐plane Displacement fields for the Reference (a1) − (a3), Ideal Cloak (b1) − (c3) and Obstacle
(d1) − (e3) configurations, of the triangular T and the circular C type of cloaks, computed at frequencies f⋆ =
[1, 1.5, 2], respectively. (f) Performance of the ideal cloaks and the obstacle cases, computed by using the average of
the total displacement of the transmitted field along the surface beyond the cloaked region at 21 frequencies in the
range f⋆ = [0.5, 1.5, 2]. 117



Fig. 4.3: In‐plane Displacement fields for the Reference (a1) − (a3), Ideal Cloak (b1) − (c3) and Obstacle (d1) −
(e3) configurations, of the triangular T and the circular C type of cloaks, computed at frequencies f⋆ = [1, 1.5, 2],
respectively. (f) Performance of the ideal cloaks and the obstacle cases, computed by using the average of the total
displacement of the transmitted field along the surface beyond the cloaked region at 21 frequencies in the range f⋆ =
[0.5, 0.1, 2.5]. 118



Fig. 4.4: Schematics of the cross‐section of the unit cell for the referenceR (a), triangular T (b) and circular C2 (c) cloak
configurations, respectively. All the unit cells have thickness d.

4.5.1 Ideal Cloaks

Adopting a similar approach with the previous Chapters, we begin our study by testing the perfor-

mance of the “Ideal Cloaks” in the 3-D setting. These cloaks are characterized bymechanical parame-

ters defined according to the to the transformation detailed in Eqs. (4.3). Our objective is to confirm

whether such Cosserat (non-symmetric) cylindrical cloaks can effectively conceal cylindrical surface

defects from incident Love and Rayleigh waves across a broad range of frequencies.

Harmonic Analysis

Thus, we conduct time-harmonic simulations to compare the surface displacement field of the system

in three scenarios: (i) the pristine configuration, denoted as “Reference”, (ii) the domain equipped

with the cloaked defect, referred to as “Ideal Cloak”, and (iii) the domain containing the bare defect,

referred to as ”Obstacle.”. Specifically, we present the computed displacement fields for harmonic

excitation at frequencies f⋆ = [1, 1.5, 2]. Tomake our claimsmore clear, instead of calculating the to-

tal modulus of the displacement fields, we split the portrayed displacement field into an out-of-plane
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scenario which is generated by incident Love waves (Fig. 4.2 and an in-plane case that amounts for

Rayleighwaves (Fig. 4.3. We remark that both Love andRayleighwaves now exhibit as a dispersive na-

ture, as expected from the theory. For Lovewaves (Fig. 4.2(a1)-(e3) the reference domain (Fig. 4.2(a1)-

(a3) is almost perfectly approximated by both cylindrical cloaks of triangular and semi-circular shaped

cross sections (Fig. 4.2(b1)-(c3). On the other hand, the uncloaked scenarios (Fig. 4.2(d1)-(e3) exhibit

scattering effects across the bi-layered domain, with more severe effects being observed at frequency

f⋆ = 1.5. In addition, we provide the normalized transmitted out-of-plane displacement field ⟨|u3|⟩
⟨|u3|Ref⟩ ,

as the ratio between the average out-of-plane displacement at the surface ⟨|u3|⟩ computed beyond the

obstacle for the ideal cloaks and the obstacle cases, and the same average displacement computed for

the reference configuration as well ⟨vRef⟩. The results depicted in Fig. 4.2f near flawless performance

of the ideal cloaks with ⟨|u3|⟩
⟨|u3|Ref⟩ approaching unity. In stark contrast, scenarios involving defects with-

out the cloaking device exhibit significant inefficiency, as evidenced by the substantial reduction in

the transmitted surface field compared to the reference configuration. In similar fashion, the displace-

ment fields for the now dispersive propagating Rayleigh waves (Fig. 4.3(a1)-(e3), confirm near exact

matching of the pristine medium (Fig. 4.2(a1)-(a3) with both cylindrical cloaking devices of triangu-

lar and semi-circular shape ((Fig. 4.3(b1)-(c3). As expected, the bare obstacle cases (Fig. 4.3(d1)-(e3)

display scattering effects and thus, inefficient protection. Furthermore, we present the normalized

displacement field at the u1 − u2 plane, denoted as ⟨|uuu|⟩
⟨|uuu|Ref⟩ , where |uuu| =

√
u21 + u22 is the displace-

ment modulus using the Euclideanmetric, in the same spirit as the case of Love waves. The results, as

illustrated in Fig. 4.3f, reveal the remarkable effectiveness of ideal cloaks, with ⟨|uuu|⟩
⟨|uuu|Ref⟩ ≈ 1. For both

geometries, the cases involving only an obstacle had a significant loss of performance, especially in the

higher frequency regime.
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Fig. 4.5: Dispersion curves of Love wave surface modes for the reference (diamond dots), and ideal cloaks (contour
circle dots) of triangular (left column) and semi‐circular cross‐sections (right column), respectively, computed at different
angles of incidence φ = [0◦, 30◦, 45◦]
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Fig. 4.6: Dispersion curves of Rayleigh wave surface modes for the reference (diamond dots), and ideal cloaks (contour
circle dots) of triangular (left column) and semi‐circular cross‐sections (right column), respectively, computed at different
angles of incidence φ = [0◦, 30◦, 45◦]
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Dispersive Analysis

To further demonstrate the broadband capabilities of the proposed carpet cloaks, we compare the

dispersive characteristics of Love and Rayleigh waves propagating through both the pristine and the

cloaked double-layered medium. The primary objective of this study is to establish that within the

cloaked configuration with effective properties given by Eqs. (??) or (4.12) and their related geomet-

rical transformations, as outlined in Eqs. (4.4) or (4.9), the cloak enable an accurate replication of the

dispersive properties observed in the pristine layeredmedium. To achieve this, we employed a finite el-

ement modeling using COMSOLMultiphysics environment to simulate a 3-D unit cell of the cloak

and the reference, respectively. The unit cells have dimensions Lc × H × d, with Lc = 2.2b (See

Fig. 4.4(a)-(c)). Fixed boundary conditions are imposed at the base of the unit cell, continuity con-

ditions are implemented along the x2 direction and Bloch-Floquet boundary conditions are applied

along the x1 direction. Moreover, an equivalent unit cell is used to model the “Reference” config-

uration. In all scenarios, the dispersive properties were determined through an eigenvalue analysis,

involving variations in the wavenumber within the first Brillouin zone, specifically kx1 = [ π
400Lc ;

π
Lc ],

with subsequent extraction of the frequency f. According to the results discussed in section 3.5.1, the

length of the unit cell must be at least equal with the size of the cloak (we set Lc = 2.2b) to avoid

overlapping transformations, see224. However, this restriction has the consequence of limiting the

size of the first Brillouin zone (FBZ). As a result, to calculate frequencies up to f⋆ = 2.5, multiple

modes (>200)must be computed for each wavenumber. To address the issue of separating the surface

modes from rest of the wave solutions, we again employ the concept of the inverse participation ratio

(IPR)249,213,227,244,226 for the 3-Dmodel as:

IPR =

∫∫∫
V⋆ ∥u∥4 dx1 dx2 dx3

(
∫∫∫

V⋆ ∥u∥2 dx1 dx2 dx3)2
|V⋆| (4.31)
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wherewenormalize the ratiobymultiplying itwith the volumeof themodel |V⋆| and∥u∥ =
√

u21 + u22 + u23

is the total displacement. For our case-study an IPR> 15 allows us to clearly differentiate surface

modes from bulk ones. Furthermore, to obtain a better understanding of the results from the pro-

posed strategy we split the collected surface modes into two subsets according to the absolute value

of the out-of-plane component u3 of the displacement field. We found that the condition ⟨|u3|⟩ >

10−4m, where the average is taken over the surface line, extending across the length Lc of the unit cell,

is sufficient to isolate the Love from the Rayleigh wave solutions. Figs. 4.5 and 4.6 depict the surface

modes of Love and Rayleigh type, respectively traveling within the triangular T (left column) and the

semi-circular cloak C2 (right column), using coloured dots based upon their IPR values. In addition,

the 3-D scenario gives us the leverage to test the performance of the cloaks upon multiple angles of

incidence, φ = [0◦, 30◦, 45◦], where φ is the angle on the x1 − x3 plane (see Figs. 4.1(a) and (c)), as

shown in each row of Figs. 4.5 and 4.6. This phenomenon significantly improves the quality of the

cloaking effect and unlocks further the potential applications. Overall, this visualization allows the

reader to observe the correspondence between surfacemodes within the cloaked domains and the sur-

face wave solutionwithin the reference field, thereby highlighting the broadband cloaking capabilities

of the non-symmetric cloaks under investigation.

4.5.2 Symmetrized Cloaks

Following the excellent performance of the ideal cloaks and the benefits of a 3-D study of cloaking,

we will delve into the behavior of symmetrized cloaks featuring triangular (T) and semi-circular (C2)

transformations, respectively. In accordance with Chapter 2, our primary objective is to identify the

combination of symmetrization and cloak geometry that yields optimal cloaking efficiency. For this

reason, we will adopt the strategy described in Section 4.4. In particular, we start by symmetrizing the

coefficients of the effective elasticity tensor according to the Love wave solution given by Eqs. (4.28)

and (4.30), for both the triangular and the semi-circular cloak, respectively. Then, the remaining
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components in Eqs. (4.27) and (4.29) are symmetrized by employing different values of the gener-

alized mean given by (4.25). For our study we will use the following statistical means: ’Harmonic’

(p = −1), ’Geometric’ (p = 0), ’Arithmetic’ (p = 1), ’Quadratic’ (p = 2) and the ’Maximum’ mean

(p = ∞).

Harmonic Analysis

We begin by computing the ratio of the the out-of-plane (Fig. 4.7(a)-(b)) (Love waves) and the in-

plane (Rayleigh) (Fig. 4.7(c)-(d)) transmitted displacement field of the symmetrized cloaks over the

ideal ones for the triangular and the semi-circular cloaks, respectively. The reader can appreciate the

excellent ( ⟨|u3|Sym⟩⟨|u3|Ideal⟩ ≈ 1) out-of-plane performance of the symmetrized cloaks across all frequencies

(see Figs. 4.7(a)-(b)), as predicted by Section 4.4.2. Nowwe turn our attention to the case of Rayleigh

waves. The performance of the triangular-shaped cylindrical cloak with symmetric elastic tensor is

illustrated in Fig. 4.7(c). We remark that due to the presence of a layered substrate with depth equal

to the size of the cloak, the transmitted field can be impacted by reflections across the boundaries be-

tween the substrate and the half-space. This can lead to values ⟨|uuu|Sym⟩
⟨|uuu|Ideal⟩ > 1. To avoid any confusions

in the plots, all such values will be replaced by their reciprocals. From Fig. 4.7(c), it is clear that the

’Maximum’ mean (p = ∞), portrayed with red circles, fails to deliver sufficient cloaking protection,

performing worse than the obstacle case in at most of the examined frequencies. For frequencies up

to f⋆ = 1.4, it is observed that the ’Quadratic’ mean (p = 2) demonstrates a better overall perfor-

mance that the other designs. However, a shift in performance can be seen for higher frequencies

(f⋆ ≥ 1.4) as the triangular cloak design based on the ’Arithmetic’ mean prevails over the rest of the

cloaks. This unstable behaviour of the symmetrized triangular cloaks, questions their practical real-

ization for a wide range of operating frequencies. Moreover, we point out that the cases pertaining

the ’Harmonic’ (p = −1) and the ’Geometric’ (p = 0) means produced inefficient solutions (not

shown here) and were excluded from the investigation. On the other hand, the symmetrized semi-
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circular cylindrical cloak exhibits a more well-rounded performance (see Fig. 4.7(d)). Overall, most

of the applied symmetrization techniques achieved superior performance to the ’Obstacle’ case, thus

providing a clear shielding effect. This can be attributed to the smaller number of conditions (3) re-

quired for its symmetrization compared to the triangular scenario (6), as outlined in Eqs. (4.27) and

(4.29). In particular, the symmetrized construction driven by the ’Maximum’ mean, represented by

circle-marked red line in Fig. 4.7(d), leads to themost efficient cloaking protection across themajority

of the frequency range.

Furthermore, to better asses the efficacy of the invisibility cloaks we utilize another quantifiable

measure. For the present work, we will use the scattering measure for the transmission field used

in207,206, as a tool to quantify the effectiveness of the cloak as:

Δi =

√∑
(|uuu|i − |uuu|Ideal)2√∑

|uuu|Ideal2
(4.32)

where the index i corresponds to the symmetrized cloak (Sym) or the obstacle (Obs), and (Ideal)

stands for the ideal cloak. The summation is computed over 5000 uniformly distributed points on the

line segment located at the free surface of the transmitted field. We recall that a perfect cloaking perfor-

mance is translated to a vanishing scattering field i.e. Δi ≈ 0. The results displayed in Figs. 4.7(e)-(f)

for the triangular and the semi-circular cloaks, respectively, further corroborate the previous findings,

as the symmetrized triangular cloak fails to provide an efficient and consistent protection, with scat-

tering measures up to 20 times of a bare obstacle. In stark contrast, the semi-circular cloaking designs

provide an adequate suppression of the scattering effects, especially utilizing the ”Maximum” mean

solution, which enhances the protection upon all the calculated frequencies. Finally, The reader can

appreciate the in-planewavefield of the symmetrized cloaks for 3 calculated frequencies in Fig. 4.8. In-

deed, by comparing the ”Reference” (Fig. 4.8(a1)-(a3)) with the cloaks symmetrized through ’Arith-

metic’ (p = 1) (Fig. 4.8(b1)-(c3)), ’Quadratic’ (p = 2) (Fig. 4.8(d1)-(e3)) and the ’Maximum’ mean
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(p = ∞) (Fig. 4.8(f1)-(g3)), it is clear that the semi-circular cloaks provide superior cloaking effi-

ciency compared to the triangular cloaking designs.

Dispersion Analysis

We conclude our investigation by conducting a dispersive analysis, incorporating unit cells composed

of symmetrized cloaks. At this stage, we restrict the investigation to the study of the semi-circular

C2 cylindrical cloak symmetrized acoording to the ’Maximum’ mean function. Our goal is assess

how well the symmetrized cloak is able approximate the dispersive characteristics of a pristine ”Ref-

erence” medium, upon different angles of incidence. The results are depicted in Fig. 4.9 for φ = 0◦

(Figs. 4.9(a)-(b)), φ = 30◦ (Figs. 4.9(c)-(d)) and φ = 45◦ (Figs. 4.9(e)-(f)), respectively. It is evident

that for the Love waves scenario, the dispersive properties of the symmetrized cloakmatch the ones of

the reference, as expected by our symmetrization strategy (see Figs. 4.9(a),(c) and (e)). In addition, for

case of Rayleigh waves, the symmetrized cloak obtained through aC2 type cylindrical transformation

and symmetrized according to themaximum function is able towell-approximate theRayleighmodes

of the referencemedium, replicating 224 out of 377 referencemodes forφ = 0◦ (Fig. 4.9(b)), 216 out

of 376 reference modes for φ = 30◦ and 224 out of 377 reference modes for φ = 45◦, all upon the

same IPR value (> 15). These results further validate the concept that a cylindrical quadratic (C2)

cloak with a semi-circular cross-section, utilizing the ’Maximum’ mean function (where p = ∞),

provides an effective form of cloaking protection against incident surface elastic waves.

4.6 Conclusion

In this study, we introduced a method for designing three-dimensional carpet cloaks that suppress

scattering effects and mechanical vibrations caused by the propagation of Love and Rayleigh waves

around defects. Our approach utilized geometric transformations on theNavier elastodynamic equa-
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Fig. 4.7: (a)‐(d) Performance of the cloaks using the ratio of the transmitted field of the symmetrized cloaks over
the ideal one, for Love (a)‐(b) and Rayleigh (c)‐(d) waves, respectively. (e)‐(f) Scattering percentage ratio of the
symmetrized cloaks over the obstacle configuration for the triangular (e) and the semi‐circular (f) shaped cloaks, re‐
spectively. The results are calculated at normalized frequencies f⋆ = [0.5− 2.5].
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Fig. 4.8: In‐plane Displacement fields for the Reference (a1) − (a3), and symmetrized cloaks obtained through the
’Arithmetic’ (p = 1) (b1) − (c3), ’Quadratic’ (p = 2) (d1) − (e3) and ’Maximum’ mean (p = ∞) (f1) − (g3), of tri‐
angular and semi‐circular cross sections, respectively. The harmonic simulations are performed at 3 different normalized
frequencies f⋆ = [1, 1.5, 2].
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Fig. 4.9: Dispersion curves of Love (Left column) and Rayleigh (right column) surface modes, for the reference (diamond
dots) and the symmetrized (p = ∞) semi‐circular C2 cloak (contour circle dots), respectively, computed at different
angles of incidence φ = [0◦, 30◦, 45◦]
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tion that encompasses a Cosserat gauge for the displacements, in order to maintain the invariance of

the governing equation. However, the 3-D cloaking problem includes additional terms in the effective

elasticity tensor compared to theRayleigh andLove isolated cases and yields to an increased number of

non-symmetric entries. Due to this complexity, practical applications may seem challenging. Hence,

we restricted ourselves into near-cloaking regimes and concentrated on the symmetrization of the elas-

ticity tensor. Specifically, we allowed the ”Love wave” coefficients dictate the symmetrization for the

out-of-plane effective components, focusing exclusively on in-plane cloaking performance. To assess

the efficacy of our designs, we conducted time-harmonic simulations utilizing finite element meth-

ods for cloaks with various symmetrized configurations. We compared the transmitted displacement

fields and calculated the scattering measure ratio of the cloaks over the obstacle. To gain a more com-

prehensive understanding of these results, we conducted dispersive analyses, employing symmetrized

semi-circular cloaks, and examined their performance under three different angles of incidence. Our

findings indicate that a semi-circular cloak symmetrized using the maximum function provided the

most accurate approximation of the ideal cloak.
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5
Conclusions & future outlook

In this Ph.D. thesis we investigated the conception and design of a novel device, termed elastic car-

pet cloak, which can protect structures from surface elastic waves, by smoothly detouring the waves

around it, without any scattering effect or loss of energy. The wave guiding was achieved by properly

designing the material properties of the cloak, based on principles from transformation elastodynam-

ics.
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5.0.1 Main conclusions

In Chapter 2, we examined the elastodynamic equations for cloaking of Love waves in an isotropic

layered medium. Exploiting the invariance of the equations under a curvilinear coordinate transfor-

mation, it is possible tomap the properties of the initial system to the transformed one. Weproved, via

numerical finite element simulations, the validity of the proposed mapping, showing both the invari-

ance of the dispersive properties of Love waves and the near zero scattering for configurations with

cloaked defects. Next, for a surface triangular defect, we applied a straightforward homogenization

technique to map the material properties of the ideal cloak onto a monoclinic double-material unit

cell. The unit cell allows the realization of a layered cloakwith a feasiblemicrostructure. We confirmed

the validity of the adopted homogenization step by comparing the performances of the layered cloak

with those of the ideal cloak. In addition, by performing parametric analyses with respect to the size of

the unit cell, we concluded that the layered cloak’s dispersion curves converged to the ideal one, as the

length of the unit cell decreased. This methodology showcased excellent performance and feasibility

for cloaking Love waves.

As a further step, in Chapter 3, we explored the possibility of cloaking Rayleigh waves. In par-

ticular, the ability to cloak incident Rayleigh waves would represent a significant scientific advance-

ment toward seismic and vibrations isolation of structures. In this study, we developed a strategy

to cloak surface defects from incident Rayleigh waves by means of symmetrized anisotropic elastic

tensors. To this purpose, we used transformation elastodynamics and exploit the invariance of the

Navier elastodynamic equation by assuming a Cosserat kinematic constrain (gauge) between the dis-

placement fields. The obtained transformed cloaked region is thus characterized by a non-symmetric

elastic tensor. For this reason, we adopted a symmetrization technique exploiting the arithmeticmean

to approximate the non-symmetric Cosserat material with a composite material of symmetric elastic

tensors. We investigated the efficacy of the proposed design by performing time-harmonic numerical
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simulations and dispersion analyses, analyzing cloaks with a triangular shape and semi-circular ones

with different radial distributions (linear and non-linear). Among these designs, the symmetrized

semi-circular cloak with effective properties obtained from quadratic transformation demonstrated

the most effective cloaking performance.

Finally, in Chapter 4, we delved into the possibility of designing a full 3-D cloak for Rayleigh

and Love waves. As in the previous chapter, we employed a Cosserat kinematic relation for the dis-

placements to acquire the requisite mechanical properties for cloaking. Assuming only cylindrical

symmetry we designed cylindrical cloaks of triangular and semi-circular cross sections, respectively.

Notably, the 3-D problem proved distinct from the superposition of Love and Rayleigh waves since

it required a heterogeneous system due to the exclusive propagation of Love waves in layered media,

resulting in Rayleigh waves with dispersive characteristics. In addition, by comparing the weak for-

mulation for the 3-D equation of motion and the separate weak form solutions of Love and Rayleigh

waves, we denoted the presence of an extra set of coefficients in the transformed elasticity tensor that

was eliminated at each of the previously examined cases. Under this 3-D setting, we proposed a sym-

metrization strategy involving constraining the related symmetric coefficients to satisfy theweak-form

solution of Love waves and symmetrize the remaining terms according to the generalized mean. This

strategy aimed to identify the combination of symmetrization and cloak geometry that yields optimal

cloaking efficiency. Time-harmonic simulations and dispersion analyses were conducted to validate

the performance of the cloaks designed according to the developed framework. In contrast with the

previous chapters, where the assumption of a 2D geometry restricted the dynamics of the cloak to

plane waves with orthogonal incidence w.r.t the cloak, through this 3-D formulation we tested the

dispersive properties of the proposed cloaks uponmultiple angles of incidence. Through the analyses,

we showed that a symmetrized semi-circular cylindrical cloak, constructed by the so-called ”Maximal”

mean, provided significant cloaking protection across all the computed frequencies.

In summary, this Ph.D. thesis represents a significant contribution to the field ofwave protection,
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demonstrating innovative methods for cloaking both Love and Rayleigh waves. Throughmeticulous

analysis, numerical simulations, and material design, this research could pave the way for practical

applications in seismic and structural engineering, potentially revolutionizing seismic protection for

structures and infrastructure.

5.0.2 Future outlook

As a sequel of this work, we envisage many possible future studies, including:

• Exploring three-dimensional cloaking shapes beyond cylindrical structures, such as a pyramid

or a sphere. It will be interesting to compare the impact of symmetrization in such cases, since

both cloaks will exhibit a higher number of non-symmetric entries in the elasticity tensor.

• In our current analyses, we focused exclusively on piece-wise isotropic semi-infinite mediums.

Further developments could revolve aroundextendingour cloaking strategies to arbitrarywaveg-

uides, considering diverse shapes and distributions of the mechanical parameters.

• Cloaking in the elastodynamic regime is inherently connected to the frequency of interest,

making it challenging to establish a single performance metric to achieve broadband cloaking

capabilities. An extension of our research could pertain to derive the elastic scattering coeffi-

cients for both ideal and symmetrized cloaks, with a goal of identifying the most suitable, if

any, symmetrization function.

• It is important to acknowledge that the concept of cloaking is essentially a complex, multi-

variable problem that depends on the given geometry, the mechanical parameters and also in

the frequency range of interest. Consequently, formulating an optimal design strategy for elas-

todynamic cloaks is imperative.
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