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Abstract

Most cognitive functions require the encoding and routing of information across
distributed networks of brain regions. Information propagation is typically at-
tributed to physical connections existing between brain regions, and contributes to
the formation of spatially correlated activity patterns, known as functional connec-
tivity. While structural connectivity provides the anatomical foundation for neural
interactions, the exact manner in which it shapes functional connectivity is complex
and not yet fully understood. Additionally, traditional measures of directed func-
tional connectivity only capture the overall correlation between neural activity, and
provide no insight on the content of transmitted information, limiting their abil-
ity in understanding neural computations underlying the distributed processing of
behaviorally-relevant variables.

In this work, we first study the relationship between structural and functional
connectivity in simulated recurrent spiking neural networks with spike timing depen-
dent plasticity. We use established measures of time-lagged correlation and overall
information propagation to infer the temporal evolution of synaptic weights, showing
that measures of dynamic functional connectivity can be used to reliably reconstruct
the evolution of structural properties of the network.

Then, we extend current methods of directed causal communication between
brain areas, by deriving an information-theoretic measure of Feature-specific Infor-
mation Transfer (FIT) quantifying the amount, content and direction of information
flow. We test FIT on simulated data, showing its key properties and advantages over
traditional measures of overall propagated information. We show applications of
FIT to several neural datasets obtained with different recording methods (magneto-
and electro-encephalography, spiking activity, local field potentials) during various
cognitive functions, ranging from sensory perception to decision making and motor
learning. Overall, these analyses demonstrate the ability of FIT to advance the
investigation of communication between brain regions, uncovering the previously
unaddressed content of directed information flow.
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Chapter 1

Introduction

1.1 The brain as an information processing

machine

The mammalian brain is possibly the most complex [1, 2] and efficient [3, 4] in-
formation processing machine in nature. It constantly orchestrates a huge variety
of operations, underlying our thoughts, actions, emotions, and perceptions [5–7].
These operations are supported by different degrees of structural and functional
complexity, ranging from controlling simple reflexes [8] using relatively simple neu-
ral circuits, to higher cognitive processes like decision-making and problem-solving
[9, 10], involving the integrated activity of neural populations in several brain ar-
eas [11, 12]. The brain can be broadly divided into two main regions: the cerebral
cortex and the subcortical structures [13]. The cerebral cortex, is the exterior part
of the brain and is thought to be responsible for many of our higher-order cognitive
functions, such as sensory perception [14], voluntary and goal-directed motor control
[15, 16], and decision making [17]. Beneath the cortex lie the subcortical structures,
including the thalamus, basal ganglia, and brainstem, among others [13]. These
areas play crucial roles such as regulating vital functions [18], driving automatic
movements [19, 20], process early-stage sensory information [21–23], and releasing
neurotransmitters [24–26].

Neurons are the primary functional units of the brain. Central to their function
is the ability to generate action potentials, also known as spikes. Spikes are brief
electrical impulses generated when the summation of excitatory inputs to a neuron
surpasses a certain threshold, resulting in a nonlinear depolarization of the neu-
ron’s membrane potential [13, 27]. Once generated, the action potential propagates
down the neuron’s axon, ultimately leading to the release of neurotransmitters into
synapses, influencing neighboring neurons. When large groups of neurons fire ac-
tion potentials in a synchronized manner, the resultant electric activity summates,
producing detectable macroscopic electrical signals [28].

At the core of its operations, the brain encodes environmental stimuli into neural
activity [14, 29], transfers information through its densely connected networks [30,

1



2 CHAPTER 1. INTRODUCTION

31], and uses such information to generate actions or drive learning [9]. However,
neural activity is very variable [32] as it results from the integrated dynamics of
many stochastic units (e.g. ion channels) and due to the concurrent processing of
many cognitive and regulatory functions [33]. To partially reduce such variability
when trying to understand neural information processing, it is common to study
neural activity collected during environmentally controlled cognitive tasks.

At the microscopic scale, neural systems comprise billions of neurons intercon-
nected via synapses [13], while from a macroscopic perspective the brain can be
conceptualized as a system of highly interconnected brain areas [1] functionally spe-
cialized yet adapting their function depending on the ongoing computations [10,
29]. The dense connectivity in neural circuitry and brain areas led researchers to
conceptualize structural (i.e. physical links between regions) and functional (i.e.
correlations in neural activity) connections in the brain as forming networks of neu-
rons or areas [1]. Crucially, both types of connections are dynamic: they evolve
over time due to the temporal plasticity of physical connections [34, 35] and the
varying cognitive and operational states governing functional interactions [36–38].
However, the relationship between structural and functional connectivity remains
elusive [39–42]. In Chapter two, we use measures of time-lagged correlation and
causal information transfer to study whether, in simulated recurrent spiking neural
networks with spike timing-dependent plasticity [43], it is possible to infer the tem-
poral evolution of structural properties of the network from measures of dynamic
functional connectivity [44].

Our capacity to explore neural information processing magnifies as technological
advancements, notably in throughput-intensive neural-data-acquisition techniques
[45–47] and computational resources available to process data [48, 49], ease the
recording and analysis of activity simultaneously recorded from several neurons or
brain areas. It is essential to accompany such technological developments with new
versatile mathematical tools that can be used to analyze distributed computations
involving the encoding and transmission of task-relevant variables across several
regions. In Chapter three and four, we derive and validate on several simulated and
real neural datasets [50, 51] a new measure, termed Feature-specific Information
Transfer (FIT). FIT advances traditional measures of causal communication between
the activity of simultaneously recorded brain regions, by isolating the components
of information transmitted about specific variables of interest.

1.2 Recording neural activity

Nowadays experimental techniques allow the recording of neural activity across
many spatial and temporal scales.

Recordings with individual cell resolution, allowed researchers to study funda-
mental properties of neural information processing, such as the role of individual
spikes (in the scale of milliseconds) in encoding sensory information [52, 53] and the
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emergence of population-codes arising from the tiling of information across single
cells in space and time [17, 54, 55]

The superposition of the coortinated action potentials of many neuron generate
frequency-rich voltage fluctuations in the extracellular medium [28]. These lower
dimensional signals capture the aggregate activity of hundreds up to billions of
neurons, depending on the recording technique. Over the decades, recordings of
these aggregate signals shed light on the multiple functions of oscillations in the
brain, from providing a common reference relative to which spiking activity can carry
information [56], to the study of information carried [11, 57, 58] and transmitted
[30, 31, 59] by neural activity in specific frequency-bands.

1.2.1 Invasive recording techniques

Invasive recording techniques, such as electrophysiology and calcium imaging, allow
measuring the spiking activity of individual cells and populations of neurons with
high temporal resolution (milliseconds to tens of milliseconds).

Electrophysiology uses electrodes to measure voltage changes in the extracellu-
lar medium, capturing a range of signals, from low-frequency fluctuations to high-
frequency spikes. Broadband recording can be high-passed filtered and processed
with spike-sorting algorithms [60] to isolate the spike trains from up to hundred of
individual neurons [45]. In Chapter two, we study communication between simu-
lated spike trains obtained from the activity of recurrent spiking neural networks
[44]. In Chapter four, we include analyses of spike train data recorded from motor
cortex and dorsolateral striatum of rats learning a reach-to-grasp task [51].

Broadband activity obtained from electrophysiological recordings can also be
used to measure aggregate (or mass) signals from neural populations. The two
most common aggregate electrophysiological signals are multi-unit activity (MUA)
and local-field potentials (LFPs) [28]. MUA is the combined spiking activity of
multiple neurons nearby the recording site. It is derived by high-pass filtering the raw
extracellular recording to capture the fast voltage transients associated with action
potentials of neurons. LFPs reflect the slower changes in the extracellular voltage
that arise primarily from the combined synaptic activity within a local population
of neurons [61] - typically on a larger spatial scale than the one captured by MUA.
LFPs are obtained by low-pass filtering the raw extracellular voltage recording.

In Chapter three, we show applications of FIT to MUA data recorded from
the thalamocortical system of mice, to prove the specificity of sensory modality
processed by different thalamocortical pathways [50]. In Chapter four, we include
extensive analyses of LFP recordings from motor cortex and dorsolateral striatum
of rats learning of a reach-to-grasp task [51].

Another common invasive imaging technique is calcium imaging [17, 62], in which
calcium-sensitive fluorescent indicators are used to optically measure the activity of
cells [63]. This technique allows recording from large-scale populations of neurons
[46], and is compatible with optogenetic techniques for the manipulation of neural
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activity, giving the possibility to simultaneously record and perturb neural circuits
[9]. Additionally, calcium imaging has been key in discovering the active informa-
tion processing properties of glial cells in the brain, such as astrocytes [64]. Since
these cells do not generate electric activity, their rich calcium dynamics have been
overlooked for decades, and recent studies performed with calcium imaging started
unraveling their contribution in different aspects of neural computations [65–67].

1.2.2 Non-invasive recording techniques

Non-invasive neuroimaging techniques provide a window into the brain’s activity
without the need for surgical interventions, minimizing the associated risks. Most
common techniques include Electroencephalography (EEG), Magnetoencephalogra-
phy (MEG) and functional Magnetic Resonance Imaging (fMRI).

EEG measures the electrical activity generated by the synchronous activity of
populations of neurons, recorded using electrodes placed on the scalp [28]. It pro-
vides high temporal resolution, on the order of milliseconds, making it particularly
suitable for studying the dynamics of neural oscillations and event-related potentials.
However, its spatial resolution is limited.

In Chapter three we present application of FIT to EEG recordings, to study
stimulus-feature specific information transfer across hemispheres in the human brain
during a face detection task [50] .

MEG measures the magnetic fields produced by neural electrical activity using
highly sensitive magnetometers. Like EEG, MEG offers high temporal resolution,
but has typically higher spatial resolution. Additionally, magnetic fields are less
distorted by the skull and scalp compared to electric ones [28]. However, MEG
requires specialized facilities due to its high sensitivity to external magnetic noise.

In chapter three, we show applications of FIT to MEG recordings, quantifying
the stimulus- and choice-specific information transfer in a network of visual regions
of human participants during a perceptual decision-making task [50].

Functional Magnetic Resonance Imaging (fMRI) measures changes in blood oxy-
genation levels, which is an indirect indicator of neural activity. It offers high spatial
resolution, allowing researchers to discern activity in different cortical and subcorti-
cal regions. However, its temporal resolution is lower than EEG or MEG, capturing
changes over seconds rather than milliseconds.

1.3 Information theory in neuroscience

The brain continuously performs a huge set of operations. Therefore, even in con-
trolled experimental scenarios, neural activity is highly variable across experimental
trials [32]. Variability in neural recordings can be divided as coming from two main,
conceptually distinct sources. The first source of variability is the intrinsic ongoing
spontaneous activity that is not related to the feature of interest (determined by en-
dogenous factors including the ongoing operational state of neural populations [29],
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attention [68], thirst [69], or the processing of other relevant variables). The second
is the measurement noise arising from the recording technology, biological sources
like muscle activity, and external interferences. This second type of variability can
be reduced using appropriate signal processing techniques.

Given such large variability, most common techniques to study the relation-
ship between neural activity and external world variables rely on probabilistic ap-
proaches. Such techniques include generalized linear models (GLMs) [17, 70], linear
discriminant analysis, support vector machines [71], and more sophisticated deep-
learning-based decoders [72]. While these different modelling techniques proved to
be key in understanding how external world variables are encoded in neural activity,
they are conceptually limited by the assumptions (e.g., on the type of noise and the
nature of interactions) they take when describing neural activity. A very natural
and almost assumption-free probabilistic framework to study neural computations is
information theory [73], which revolves around a very general definition of variability
and relationship between stochastic variables.

1.3.1 A brief history of information theory in neuroscience

First quantitative works posing the basis to current conceptualization of the brain
as an information processing system go back to early 1940s. In 1943 Pitts and Mc-
Culloch [74] proposed neurons as binary threshold units capable of logical computa-
tions, introducing the first mathematical model imitating the functionality biological
neurons. A few years later, in 1948 C. Shannon [75] provided a mathematical defini-
tion of the elusive concept of information and introduced a framework (information
theory) which proved to be essential in designing artificial (and understanding bi-
ological) computing systems [76]. Upon the introduction of information theory,
McCulloch [77] promptly recognized Shannon’s work and applied it shortly after
[78] to set theoretical limits to the amount of information that can be transmitted
through a synapse, showing that neurons can in principle transmit large amount
of information. This line of research lead to the first attempts to use information
theory to characterize information encoding in real neural systems [79].

As it was succinctly expressed by D. Perkel and T. Bullock in 1968: “Whereas
the heart pumps blood and the lungs effect gas exchange, . . . ., the nervous system
processes information” [80]. As suggested by its name, information theory offers a
very natural yet rigorous framework to study information processing. Unsurpris-
ingly then, over the course of the following decades, information theory has been
successfully applied to study the encoding and transmission of information across
several spatial and temporal scales in individual neurons [81], neural populations
[54, 82, 83], and large brain networks [31, 84, 85].

1.3.2 Information Encoding

At the center of information theory lies the concept of entropy [75]. Entropy of
a random variable X is a quantity that can be computed from the probability
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distribution P (X) and measures the overall variability (or uncertainty) of X [73].
In our context, the variable X could be the number of spikes emitted by a neuron in
a given time window [81, 86]. By quantifying the intersection between the entropy
of neural response X and the one of an external world feature S (such as a feature of
a sensory stimulus), mutual information measures the amount of neural variability
that is explained, at a single-trial level, by the variability of the feature. This
approach is conceptually similar to quantifying the information encoded by X about
feature S as the explained variance coefficient R2 of a Pearson correlation between X
and S, or the deviance explained about X by the predictor S using a GLM [17, 70].
However, mutual information quantifies relationship in term of the full probability
distribution of X and S, and is therefore a non-parametric measure sensitive to both
linear and non-linear interactions between variables [87, 88].

Moreover, the information theoretic framework is intrinsically fit for studying
the relationship between source variables (e.g. two neurons X1 and X2) in carrying
information about a target (such as a feature of a sensory stimulus S). Indeed, given
that mutual information is additive for independent variables [73], if X1 and X2 in-
dependently encode S, then the joint mutual information carried by the two neurons
is equal to the sum of the information carried individually by the two cells [87, 89].
If the sum of the two individual information is larger than the joint information,
then the two neurons carry redundant (or shared) information about S. If, instead,
the sum of the individual information is smaller than the joint information, the two
neurons carry synergistic information about S, i.e. a component of information that
is not present in either neuron alone but is available when observing both neurons
together.1

1.3.3 Information Transmission and Causality

Common neural computations involve the transmission of activity and information
across networks of neurons or brain areas. Indeed, even in regular sensorimotor
processing, sensory variables are first encoded in subcortical areas (typically in the
thalamus), they are transmitted to primary sensory cortical areas, then further flow
toward downstream areas, where information is integrated with contextual and pre-
viously acquired knowledge, and finally be transformed into appropriate actions [90].
To perform this type of processing, areas have to communicate to each other, sending
and receiving information about specific variables at each stage of the computation.

1To better explain redundancy and synergy, we make two examples. In the first example X2 is
a copy of X1. Therefore, the joint feature information carried by X1 and X2 equals the information
encoded individually by each variable. The joint information is half the sum of the two individual
information, meaning that all of the information encoded in the response a neuron in redundant
with the other one [87]. In the second example the feature S modulates the correlation between
X1 and X2, without affecting the average response nor the noise magnitude of any neuron. In
this example, X1 and X2 individually carry zero feature information but the joint information is
larger than zero. This exemplifies synergistic information encoding provided by feature-dependent
single-trial correlations [89].
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Importantly, this communication always requires some time due to physical limits
in the speed of propagation of electrical signals along axons [13]. Therefore, finding
significant relationships in the time-lagged activity between a putative sender and
a putative receiver area is mandatory to infer directed communication. However,
time-lagged correlation in the activity is not enough to infer directed causal com-
munication [91]. For the stronger claim of causality, it is required that the past
activity of the sender explains the variability of receiver’s present activity beyond
the past of the receiver itself. Otherwise, current activity in the receiver could not
be attributed communication with the sender. This principle of causal communi-
cation is know as Wiener-Granger causality principle [92, 93]. The application of
Wiener-Granger causality principle to probabilistic models, typically in the form of
Vectorial Autoregressive Models, has led to the definition of the measure of Granger
causality [94]. Given its parametric nature, Granger Causality has been mainly
applied to study communication between mass signals (whose noise distributions
are approximately normal) simultaneously recorded in two or more areas [59, 95].
However, extensions of these methods also exist to non-normal data, and Granger
causality has also been used to study communication in networks of neurons [83,
96].

Transfer Entropy (TE) encapsulates Wiener-Granger causality in non-parametric,
information theoretic terms, and is equivalent to Granger casuality for linear Gaus-
sian systems [97]. Transfer Entropy has also been widely applied to neuroscience
[31, 85, 98], proving to be a reliable tool to infer brain communication, also be-
ing sensitive to nonlinear interactions [84]. However, TE is only sensitive to the
propagation of overall information by neural activity, lacking the ability of specifi-
cally select feature-related components of transmitted information. To conceptually
advance the investigation of information transfer in the brain, it is fundamental
to overcome this limitation by developing methods quantifying how much of the
transmitted information is about specific features of interest.

In Chapter two we use time-lagged correlations and transfer entropy to recon-
struct structural connectivity properties from the activity of a recurrent neural net-
work and infer the temporal evolution of the synaptic weights from measures of
dynamic functional connectivity [44].

In Chapter three [50] and four we extensively apply TE to simulated and real
neural data, showing its strengths and limitations in estimating the overall propa-
gation of information between brain regions.

1.3.4 Partial Information Decomposition

Multivariate information theory has, so far, been crucial in understanding neural
information processing. Many of most prominent application of information the-
ory in neuroscience benefited from the rigorous framework offered by information
theory when studying the relationship between several neurons or regions in en-
coding external world features [52, 54]. Over the years, theoretical developments
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of multivariate Shannon information theory allowed researchers to study important
properties of population coding, such as the role of correlations in enhancing or
limiting the amount of information encoded at the population level [89, 99].

However, classical multivariate information theory has two main issues. The
first one is that it can only quantify the net effect of synergistic and redundant
information encoding [100], lacking the ability to provide a separate quantification
of these conceptually different terms [76, 101]. The second is that multivariate
information quantities defined within Shannon framework have issues generalizing to
more than two source variables , providing unintuitive results when used to quantify
redundancy or synergy between three or more variables [102].

In 2010, Williams and Beer [100] introduced a mathematical framework, called
Partial Information Decomposition (PID), to quantify how information that two or
more source variables carry about a target variable is distributed among the sources.
PID braks down the joint mutual information carried by source variables about a
target into non-negative components representing shared (redundant) encoding be-
tween the sources, unique encoding by some of the sources, or synergistic encoding
in the combination of different sources [100, 103]. In the case of two source variables
(e.g., two neurons) encoding a feature, PID decomposes the joint feature informa-
tion carried by the two neurons into a piece of shared information carried by both
neurons, two pieces of unique information (carried by either one of the two neurons,
but not by the other), and a piece of synergistic information that is only available
when observing the two neurons simultaneously.

By providing a separate quantification of redundancy and synergy, and a frame-
work that naturally generalizes to three or more source variables, PID opened the
venue to a new set of scientific questions that can be addressed about computations
in neural [104–106], other biological [107], and arificial [108, 109] processing systems.

While PID is still a very active research field [110], with the community still
discussing the fundamental properties of PID measures [111, 112] and structures
[105, 113], in the recent years it has already provided methodological advances
in the analysis of neural data. These include providing a rigorous information-
theoretic definition of neural codes in decision making [83, 104] (i.e. quantify the
amount of sensory information encoded in neural activity that is readout to guide
decisions), separating redundant and synergistic functional connectivity between
pairs of neurons or brain regions [41, 101, 114], and quantifying the shared, unique
and synergitic representation of multimodal sensory stimuli in the brain [115, 116].

In Chapter three and four we use PID to define and validate on simulated and
real neural data a new nonparametric measure of Feature-specific Information Trans-
fer, that can capture - within the overall propagated information between areas -
the amount of communication about a specific variable of interest. By merging the
Wiener-Granger causality principle with content-specificity, FIT can improve our un-
derstanding of how brain regions communicate, uncovering previously unaddressed
feature-specific information flow.



Chapter 2

Inferring the Temporal Evolution
of Synaptic Weights from
Dynamic Functional Connectivity

The content of this chapter was published and awarded as the best conference paper
at the 15th International Conference on Brain Informatics, held in Padua, Italy, in
July 15-17 2022 [117]. An extended and refined version of the paper was published,
under invitation, in the Brain Informatics journal [44].

2.1 Introduction

Neurons in biological networks are sparsely connected by directed, plastic synapses,
with communication delays that can vary across different pairs of cells [1, 118,
119]. The patterns of synaptic connectivity have a profound influence on the com-
putations and functions of neural circuits [120–122]. Importantly, such synaptic
connectivity is not static. The strength of each synapse can change over different
time scales—ranging from milliseconds to days—due to processes including synap-
tic potentiation and depression [34]. Such changes in synaptic weights are thought
to be neural-activity dependent and driven by local Hebbian mechanisms of plas-
ticity such as spike timing-dependent plasticity (STDP). In these mechanisms, the
potentiation and depression of synaptic weights depends on the precise temporal
relationship between pre- and post-synaptic spikes [43].

It is challenging to directly measure time changes of synaptic weights in vivo.
One possible approach to study in vivo changes in synaptic strength is to simulta-
neously record the spiking activity of several neurons within a network and estimate
changes in their functional connectivity with the statistical analysis of simultane-
ous recordings. Though the relationship between fixed structural connectivity and
“static” time-averaged functional connectivity (FC), in which FC is computed over
long time intervals, has been studied extensively [39, 40, 123], how changes in synap-
tic and functional connectivity relate at different time scales remains unclear.

9
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Understanding the relationship between changes in synaptic and functional con-
nectivity is relevant to a range of neuroscientific questions, such as the role of sleep
in synaptic homeostasis and memory formation. Several theories and experimental
findings posit that non-REM sleep is accompanied by profound changes in anatom-
ical synaptic connectivity, including the general down-scaling of synaptic connectiv-
ity related to homeostasis [124–126] as well as context-specific upscaling in synaptic
connectivity, such as sleep-dependent dendritic spine formation after motor learning
[127]. The anatomical and theoretical evidence for changes in synaptic strength in
sleep have been accompanied by evidence for changes in FC, as observed across the
motor network during motor learning [128, 129]. It remains challenging to relate
the evidence for structural and functional changes during sleep [130, 131], as ro-
bust methods to relate dynamic functional connectivity (DFC) to the underlying
temporal evolution of synaptic connectivity are not yet established.

Neural network models are a powerful tool to relate structural and functional
connectivity, as the former is known because it is put into the model’s equation by
the modeler, and the latter can be computed by activity generated by the model
[39, 132]. Previous studies have utilized network models of Izhikevich neurons [118]
to investigate the relationship between FC measures and synaptic connectivity be-
cause these models are generated by simple equations that can produce firing pat-
terns resembling several types of cortical neurons in vivo [133, 134]. These studies
highlighted that static bivariate FC measures, such as cross-covariance and transfer
entropy, provide robust estimates of the underlying fixed structural synaptic connec-
tivity in simulated networks. However, they did not examine the temporal evolution
of functional and synaptic connectivity within spiking networks incorporating STDP.

Here, we relate the temporal evolution of synaptic connectivity to DFC in a neu-
ral network model. We examined the performance of several different DFC methods
in estimating the temporal dynamics of synaptic weights (termed dynamic synaptic
connectivity or DSC) from up to 90 min of spiking activity in simulated spiking
networks whose synaptic strength changed over time due to STDP. We first deter-
mined the performance of static FC measures in inferring fixed structural properties
of the simulated networks (such as presence or absence of pairwise synaptic connec-
tivity and the associated communication delays). We then applied these measures
with a sliding time window approach to compute DFC and quantify its relationship
with DSC. We found cross- covariance outperformed other DFC measures in cap-
turing the evolution of synaptic weights over time. We also established how to use
the information obtained from the static, time-averaged analysis of the network, to
enhance the estimate of DSC from DFC.
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2.2 Simulated spiking network and inference

pipeline

To investigate the relationship between DSC and DFC, we simulated a spiking neural
network in which the strength of synaptic weights changed over time according to an
STDP rule. We then compared the performance of different functional connectivity
measures in estimating both the ground truth structure of the network (i.e. which
pairs of neurons were connected, their communication lag, and the type of synapse),
and how the strengths of the synaptic weights changed over time (Fig. 2.1). We
simulated a spiking network of N = 100 neurons in which the dynamics of each
neuron was described using the Izhikevich neuron model [135]. In this model, the
voltage v of each neuron is described by two coupled differential equations:

v′ = 0.04v2 + 5v + 140− u+ Isyn,

u′ = a(bv − u),

if v(t) = 30mV then v ← c and u← u+ d

(2.1)

where u is a recovery variable, prime symbols (′) denote time derivatives, Isyn is
the total synaptic input to the neuron and (a, b, c, d) is a set of parameters controlling
the firing behavior. Depending on the set of parameters, the Izhikevich model can
reproduce several firing patterns observed in cortical neurons. As in the original
Izhikevich cortical network model [118], we set (a, b, c, d) = (0.02, 0.2,−65, 8) to
simulate excitatory regular spiking neurons, and (a, b, c, d) = (0.1, 0.2,−65, 2) for
inhibitory fast spiking neurons. The term Isyn is a sum of the voltages generated
by the firing of the presynaptic neurons plus an external input term. The external
input term consisted of a voltage of 20 mV added to a randomly selected neuron in
each simulation time step, as in Ref. [118]. The synaptic voltages were set to an
initial value of 6 mV for excitatory synapses and -5 mV for inhibitory synapses, as
in Ref. [118].

The structure of the network was set by Izhikevich [118] to mimic the connec-
tivity of a real population of cortical neurons (Fig. 2.1A). 80% of neurons in the
network were excitatory and 20% were inhibitory. Excitatory neurons were ran-
domly connected to 10 neurons which could be either excitatory or inhibitory (800
excitatory synapses in total). Each excitatory synapse had a random communica-
tion delay (δ) whose value was uniformly distributed between 1 and 20ms and was
constant over time. Inhibitory neurons were randomly connected to 10 excitatory
neurons (200 inhibitory synapses), therefore no inhibitory-to-inhibitory (I-I) connec-
tions were present in the network. The lack of I-I synapses caused the average firing
rate of excitatory neurons (5.11 ± 0.03 Hz) to be lower than the one of inhibitory
neurons (8.23 ± 0.04 Hz). Inhibitory connections had a communication delay of
1ms. The simulation ran with 1ms temporal precision for a duration decided by
the user. During the simulation, the strength of excitatory synapses - which were
all initialized to the same, positive, value - changed dynamically due to an STDP



12
CHAPTER 2. INFERRING THE TEMPORAL EVOLUTION OF SYNAPTIC

WEIGHTS FROM DYNAMIC FUNCTIONAL CONNECTIVITY

rule: when a presynaptic neuron i fired before a postsynaptic neuron j the strength
of the synapse from i to j (wij) was strengthened, on the other hand when j fired
before i wij got weaker (Fig. 2.1B). The decay time of the STDP rule was τ = 20ms
and synaptic weights were updated every 1s with a memory factor which made the
weights change, on average, over the timescale of 1-2 minutes (obtained measuring
the synaptic weights autocorrelation, not shown).

We used different measures to compute the static and dynamic functional con-
nectivity of the network from the spiking activity (Fig. 2.1C). Such measures were
all directional and allowed the computation of the strength of communication for
different delays (δ). When computing static functional connectivity, we used data
from the whole simulated recording to compute a single connectivity value for each
pair of neurons (i, j). We computed all connectivity measures with δ ranging from
1 to 50ms then, for each pair, we determined the static functional connectivity
(wij) as the maximum connectivity value across delays. We selected the commu-
nication delay (δij) as the lag that maximized the functional connectivity. We did
not compute FC measures at delay values equal to zero, since spike propagation and
synaptic transmission requires time to occur. Even if zero-lag correlations between
real neurons have been reported [136], such forms of FC are most likely due to the
presence of coordinated activity driven by other areas, and not due to the presence
of synapses between neuron pairs. Calling fij(δ) the generic measure of functional
connectivity, then wij = maxδ(fij(δ)) and δij = argmaxδ(fij(δ)). By taking the top
percentile of connectivity values for each measure we obtained sparse static networks
(Fig. 2.1D). If the measure f was signed we could also infer whether a synapse was
excitatory or inhibitory. Then, we used a sliding window approach to compute, for
each measure, the DFC of all the synapses that were inferred as present (Fig. 2.1E).
We exploited the static measures of communication delay between pairs to compute
delay-consistent DFC and then evaluated the performance of the different measures
in recovering the ground-truth dynamics of synaptic weights.

2.3 Inferring the presence of synapses

We tested the performance of different measures of functional connectivity in es-
timating the presence of synapses from spiking activity. Two of these measures
were based on Pearson correlation, which is commonly used to estimate the connec-
tivity between pairs of neurons [128, 133, 137]. The first method was normalized
cross-correlation (XCorr):

XCorrij(δ) =
E[it−δjt]

σiσj

(2.2)

Where it and jt′ are the binary values of the spike trains from neurons i and j
at times t and t′, and the expected value was computed across time. σi and σj are
standard deviations of the spike trains of neurons i and j, respectively.
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Figure 2.1: Graphical depiction of the inference pipeline. A) Structural connectiv-
ity of the simulated network for N=10 neurons. Synaptic weights could be either excitatory
(green) or inhibitory (purple). Excitatory connections had randomly distributed commu-
nication delays. B) The strength of the synaptic weights changed over time due to STDP.
C) Structural and biophysical properties of the network determined the spiking activity
of the neural population. D) Static functional connectivity was measured from spiking
activity. E) Dynamic functional connectivity was measured from activity, also leveraging
on the inferred static connectivity of the network.

The second method was the normalized cross-covariance (XCov), which is in-
sensitive to correlations in the average firing rate due to subtraction of the average
activity value from the spike trains before computing the correlation:

XCovij(δ) =
E[(it−δ − i)(jt − j)]

σiσj

(2.3)

Here i and j are the average firing rates of neurons i and j, respectively.

Additionally, we computed the functional connectivity using two variants of the
information-theoretic measure of information transfer known as transfer entropy
[138, 139], a measure that has been successfully used to characterize time-dependent
changes in recurrent connectivity between mass signals [31]. Transfer entropy has the
theoretical advantage - with respect to correlation measures - of being assumption-
free in terms of the joint probability distribution of the lagged activity of neuron i
and j. This also means that transfer entropy does not assume that the interactions
between neurons are linear. Additionally, this measure respects the Wiener-Granger
causality principle of causal communication by conditioning the information between
the past of the emitter and the present of the receiver neuron on the past activity of
the receiver neuron. Our first implementation of transfer entropy uses single time-
points statistics to build the probability distribution of lagged neural activity. We
refer to this implementation as TE :
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TEij(δ) = I(it−δ; jt|jt−1) =
∑

p(it−δ, jt, jt−1) log2
p(jt|it−δ, jt−1)

p(jt|jt−1)
(2.4)

Where p(it−δ, jt, jt−1) is the joint probability distribution of the present state of
the receiver neuron jt, its past lagged by one time step jt−1 and the past state of the
emitter neuron lagged by δ time steps it−δ. The sum occurs over all the (it−δ, jt, jt−1)
triplets of events in the probability space. The probability distribution is sampled
across time. The lag of the receiver past is set to −1 since it has been proven to be
theoretically optimal for determining real communication delays [140].

The second implementation of transfer entropy uses multidimensional pasts of
the emitter and the receiver to consider the possible relevance of time windows
longer than 1ms when transmitting information. According to [133] we refer to this
measure as Higher Order Transfer Entropy (HOTE ):

HOTEij(δ) = I(i
(k)
t−δ; jt|j

(l)
t−1) =

∑
p(i

(k)
t−δ, jt, j

(l)
t−1) log2

p(jt|i(k)t−δ, j
(l)
t−1)

p(jt|j(l)t−1)
(2.5)

Where k and l are the dimensions of the past activity of the emitter and the
receiver neuron i and j, respectively. For the analysis reported in this paper we set
k = l = 5ms.

We computed these four functional connectivity measures between all pairs of
neurons in the network and estimated the communication strength and delay for each
pair as described in the previous section. We then evaluated the performance of the
different metrics in determining the presence or absence of synapses between pairs
of neurons, varying the threshold probability of connectivity strength incrementally
from 0 to 1 in steps of 0.01. Since the two classes of present and absent synapses were
unbalanced (only 10% of all the possible synapses were present in the network) we
used precision-recall (PR) curves to study the performance in this classification task
[141] (Fig. 2.2A). Calling TP , FP and FN the number of true positive, false positive
and false negative inferred synapses, respectively, we have that precision = TP

TP+FP

and recall = TP
TP+FN

. Therefore, if for a given measure the two distributions of
present and absent links were perfectly separable, we would get that for recall = 1
also precision = 1. On the other hand, a random classifier would always have a
precision equal to the ratio of synapses present in the model (10%, dashed line in
Fig. 2.2A) for each recall value.

After 90 minutes of simulation, XCov, TE and HOTE all performed well in the
classification task, having a PR curve whose shape approached the optimal one.
Among these three measures, XCov showed the best PR curve and TE the worst
one. XCorr, on the other hand, performed poorly, with a PR curve far from optimal.
The area under the precision-recall curve (AUPR) is a useful metric to summarize
the goodness of a PR curve; a perfect classifier has an AUPR equal to one. We
computed how AUPR scales with simulation length for different measures. This
analysis confirmed that XCov and HOTE were the best metrics in evaluating which
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links were present for long recordings, while HOTE worked better than XCov and
TE for recording shorter than 10 minutes (Fig. 2.2B). We measured how the preci-
sion of the different measures scaled with the simulation time for the top 10th and
top 5th percentile of inferred synapses. For the top 10th percentile (i.e. 1000 inferred
synapses, which equals the ground truth number of connections) we found that the
maximum precision in the classification was obtained with XCov, which topped at
92% for 90 minutes of simulated recording (Fig. 2.2C top). With a more conser-
vative threshold of the top 5th percentile of connections (i.e. half of the true total
number), we captured the top 500 real connections after 30 minutes of simulation
(Fig. 2.2C bottom) for all measures but XCorr. To investigate why XCorr perfor-
mance was so poor when compared to the other measures, we computed the fraction
of links inferred by each measure in the four subgroups of excitatory-to-excitatory
(E-E), excitatory-to-inhibitory (E-I), inhibitory-to-excitatory (I-E) and inhibitory-
to-inhibitory (I-I) synapses (Fig. 2.2D). XCov performed best in determining the
correct fraction of synapses belonging to each group, while XCorr overestimated the
number of I-I connections and underestimated the number of E-E connections. This
behavior of XCorr is observed due to the differences in average firing rate between
inhibitory and excitatory neurons, with a higher firing rate for inhibitory neurons,
as XCorr is sensitive to the correlation between average firing rates. Given the poor
performance of XCorr in estimating the presence of synapses, we discarded it in the
following analyses.
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Figure 2.2: Performance of functional connectivity measures in estimating
structural connectivity. A) Precision-recall (PR) curves computed from 90 minutes of
simulated activity for TE, HOTE, XCov and XCorr. Each point is one percentile of the
distribution of functional connectivity values across pairs. B) AUPR trend with simulation
length (length ranges from 5 to 90 minutes). C) Comparison of precision in identifying
connected pairs with simulation lengths, for top 10th (1000 pairs) and top 5th (500 pairs)
percentiles of each measure’s distribution. D) Fraction of pairs belonging to each group
of synapses, from 90 minute simulation and using the top 10th percentile of connections.
GT = ground truth.

2.4 Inferring synapse type and communication

delay

We studied how, for each ground truth synapse, different functional connectivity
measures performed in inferring whether the synapse was excitatory or inhibitory,
and the value of the communication delay of that pair of neurons.

We could not use information-theoretic measures to infer whether synapses were
excitatory or inhibitory as these measures are only positively defined. Therefore,
we only examined the performance on this excitatory/inhibitory classification for
XCov. We classified a connection as excitatory and inhibitory based on XCov value,
with positive correlation values assigned as excitatory connections and negative cor-
relation values as inhibitory connections. After 90 minutes of recording XCov could
reliably separate excitatory and inhibitory synapses (Fig. 2.3A). We found that the
performance of the classifier increased with recording time for both the excitatory
and the inhibitory class (Fig. 2.3B).

We also compared how functional connectivity measures performed in inferring
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Figure 2.3: Performance of the measures in estimating connection type and
delays. A) Distributions of functional connectivity values measured using XCov for exci-
tatory (green) and inhibitory (purple) cells. B) Performance of a classifier in identifying
excitatory and inhibitory synapses, the decision boundary of the classifier was set to
XCov = 0. C) Scatter plots of real and estimated delays across cell pairs using XCov
(top) and HOTE (bottom). The size of the markers is proportional to the number of pairs
having that specific combination of ground truth and estimated delay. The dashed line
is the identity line x = y. Black dots far from the identity line correspond to pairs of
measured and real delays that occurred only once. D) Correlation between ground truth
and estimated delays with simulation length. E) Average error in delay estimation with
simulation length.

ground truth communication delays. After 90 minutes of simulation, all measures
estimated delays with a correlation across synapses that was above 0.85 (see Fig.
2.3C for the relationship between the ground truth delays and those estimated using
XCov - on the top - and using HOTE - on the bottom). The trend of the correlation
between ground truth and estimated delays with simulation lengths was approxi-
mately linear in the explored range (Fig. 2.3D). Nonetheless, HOTE estimated the
delays more precisely than XCov and TE. After 90 minutes of simulation HOTE
had an average delay error below 1ms, while XCov and TE showed a systematic
error in the delay estimation of approximately 2ms (see Fig. 2.3E and Fig. 2.3C).
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2.5 Relationship between dynamic functional

connectivity and the temporal evolution of

synaptic weights

Lastly, we investigated how the ground truth evolution of the synaptic weights,
that is the DSC, related to the measured DFC. We computed DFC using a sliding
window approach. We first selected a size for the sliding window T and then shifted
it through the simulated recording in steps of length T . We computed DFC only
for pairs of neurons that were putatively connected, which we selected as the top
5th percentile of links for each measure after 90 minutes of simulation (Fig. 2.1C),
and only at the communication delay that we measured for each pair (Fig. 2.3C).
Moreover, we computed DFC only for excitatory synapses since the inhibitory ones
had a constant synaptic weight in the simulated network. We calculated the across-
time correlation between DFC and DSC for all synapses to quantify the performance
of each functional connectivity measure in estimating the DSC. To do this, we
averaged the DSC over windows of width T , so that the number of DSC and DFC
samples over time were matched.

In Fig. 2.4A we show the DSC (top left), the DFC computed using TE (top
right), HOTE (bottom left) and XCov (bottom right) for three example synapses and
T = 10min. It is visible that, while all measures work reasonably well in tracking
how the strength of the gray and the green synapses change over time, TE and
HOTE fail in quantifying the temporal evolution of the brown synapse. We found
that, on average, DFC computed via XCov correlates with DSC better than the DFC
computed via TE or HOTE (Fig. 2.4B). In particular, while DFC computed via TE
and HOTE had a high temporal correlation with DSC (above 0.7) for the majority
of synapses, their distributions showed a large tail of synapses whose correlation
between DSC and DFC was distributed around zero (such as the brown one in
Fig. 2.4A). For XCov, the number of synapses whose DSC was poorly estimated
decreased rapidly with the correlation strength, and the average correlation was 0.82
(Fig. 2.4B, right). Therefore, the DFC computed using XCov outperformed the one
obtained from TE and HOTE in inferring the simulated changes of the synaptic
weights over time.

Finally, we studied how the across-time correlation between DSC and DFC de-
pends on the width of the sliding window T . The correlation between DFC and
DSC increased with the window size, reaching a plateau around T = 5min (Fig.
2.4C, left). Below T = 5min the correlation dropped due to the limited sample
size used to compute DFC, manifesting a tradeoff between the temporal precision
of the DFC measures (T ) and their performance in estimating DSC. We repeated
the same analysis without keeping the delay consistent when computing DFC but
simply taking the maximum connectivity value across delays (between 1 and 50ms)
for each window (Fig. 2.4C, middle). When not keeping the delay consistent with
the previously measured one, the correlation between DSC and DFC dropped sub-
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Figure 2.4: Relationship between dynamic structural and functional connec-
tivity. A) Dynamic connectivity for 3 example synapses, T = 10 minutes. Top left:
ground truth dynamics of synaptic weights (DSC). Top right: Transfer entropy DFC.
Bottom left: HOTE DFC. Bottom right: Cross-covariance DFC. B) Distribution of the
across-time correlation coefficients between DSC and DFC, T = 10 minutes. Left: Transfer
entropy. Middle: HOTE. Right: Cross-covariance. Colored dots show where the synapses
in panel A are in the correlation distributions. C) Average correlation between DSC and
DFC over time for different sizes of the moving window. Shaded areas are SEM across
synapses. Left: DFC keeping delay consistency (i.e. measures computed only at previously
estimated delay); Middle: DFC without delay consistency; Right: Boost in correlation be-
tween DFC and DSC when keeping delay consistency (difference between left and middle
panels).

stantially. For sizes of the sliding window lower than T = 5 minutes, the advantage
of keeping a consistent delay was particularly evident, with a boost in the correlation
between DSC and DFC larger than 0.2 (Fig. 2.4C, right). This showed a clear ben-
efit in leveraging estimates of delay derived from entire simulated recordings when
inferring DSC from DFC.

2.6 Discussion

We studied how different measures of static and dynamic functional connectivity
measured from simulated spiking activity of a recurrent neural network can be used
to infer the fixed and time-varying properties of synapses within the network. This
question is relevant as in vivo experiments typically rely on recording spiking activity
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or other functional measures (such as field potentials) to examine network structure
using FC. To infer how changes in FC relate to changes in the underlying synaptic
structure of the network requires an understanding of the relationship between the
static and dynamic FC measures and the fixed and dynamic synaptic properties
of the network. We addressed the problem of inferring synaptic weights and their
temporal evolution at the level of simulated recordings with single-neuron cellular
resolution. As such, our approach differs from and complements other studies of
DFC at the level of mass neural activity [37, 142], which lack the ability to resolve
interactions between pairs of individual neurons.

We found that among the considered static FC measures, XCov and HOTE
outperformed other measures in inferring the presence of synapses. Using cross-
covariance as a static FC measure could also reliably classify excitatory and in-
hibitory synapses, while HOTE was the best measure to estimate ground-truth
communication delay between neurons. Cross-covariance performed best in infer-
ring DSC, with an across-time correlation above 0.8 between DFC and DSC for
sliding window sizes larger than 10 min.

We also found that, when computing DFC, keeping the communication delay
consistent with the one obtained from the static network analysis increased the
correspondence between DFC and DSC, especially for sliding windows shorter than
10 min. This benefit is likely to arise from the fact that, in situations like those
simulated here in which the communication delay is a fixed structural property of
the neuron pair over the considered time scales, estimating the delay from long time
windows increases the precision of its detection without missing out on capturing
possible changes of this parameter. This specifically holds under the assumption
that communication delays are constant in the recording period as is the case of our
spiking network.

Reliable methods to infer structural properties of neural networks are relevant
to several open questions in system neuroscience, ranging from investigating the
relationship between structural connectivity and computational properties of neural
populations to understanding the physiological mechanisms that control the up- and
down-scaling of FC, e.g., how the dynamics of synaptic weights relate to changes in
functional connectivity during sleep. Another relevant potential application of such
methods concerns the inference of STDP rules from recordings of spiking activity.
Many studies support the idea that several STDP rules might coexist in different
cells or brain areas [143, 144]. Nonetheless, such theories are complicated to test in
vivo due to lack of statistical methodologies to estimate how synaptic weights evolve
after STPD-triggering events. The methods presented in this work could potentially
be used to infer STDP rules governing network plasticity from in vivo recordings,
by estimating how synaptic weights change after the occur- rence of pre- and post-
synaptic spikes with precise temporal relationships. Moreover, previous works used
recurrent neural networks with short term synaptic plasticity to investigate the
role of plasticity in working memory [145, 146], showing that short term plasticity
facilitates robust memory maintenance. By leveraging the methodologies developed
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in the present study to infer the ongoing evolution of synaptic weights from real
neural populations recorded during tasks involving working memory, it would be
possible to provide further empirical validation of these theoretical models.

The present study has limitations that we plan to address in future works. First
of all, it will be important to validate DFC measures on more biologically realistic
simulated neural networks with global oscillations, correlated inputs to neurons or
global network covariations (which induce FC not related to direct synaptic connec-
tions between the neurons [55, 147]), and more heterogeneity in the firing rates and
in the average synaptic weights over time. Such effects could act as confounders
of the relationship between DFC and DSC or could require refined null hypotheses
based on permutation tests to assess the presence of synapses. Furthermore, DFC
does not depend solely on temporal changes in structural connectivity. Factors in-
fluencing the dynamics of FC, potentially on different timescales, range from the
endogenous state of the network to changes in environment [148, 149]. In this work,
we started investigating the relationship between the dynamics of FC and the evo-
lution of synaptic weight in a simple recurrent neural network where such factors
are absent. Future work involving more complex simulations will be required to
disentangle the concurrent contributions of changes in synaptic weights and changes
in network or environmental states on DFC. In the model we also assumed that
communication delays between neurons are fixed and no synapses are formed or
eliminated over time. The former assumes that the main parameters determining
the conductance velocity of action potentials (e.g., axons diameters and myelination)
are approximately constant over time scales of a few hours. Experimental finding
suggest that this assumption is reasonable, especially in adult mice where the for-
mation of new myelin occurs in the range of weeks [150]. The latter assumption
is more delicate since in mice it has been shown that, especially during sleep, den-
dritic spines can be formed and eliminated within hours [127]. It will be important
to investigate how much we can relax these hypotheses while still exploiting the
knowledge obtained from static FC measures. Moreover, we plan to test the per-
formance of other bivariate (e.g., Granger Causality) and multivariate measures for
estimating DSC. These measures include using Granger Causality estimates based
on Generalized Linear Models [83, 96, 151] and maximum entropy models [54, 152].
Such multivariate measures could be useful to alleviate the effect of confounders
such as common inputs. Another open question that is relevant for the application
of methods developed in this work to real neural data, is how to best select the
threshold to infer synaptic presence from static FC measures, when no ground truth
is known. While an empirical approach would be leveraging physiological knowledge
about the average connectivity degree in the recorded area, this method would be
limited by the high heterogeneity of connectivity properties across real neurons and
subpopulations [153].

Lastly, it will be crucial to apply such methods to data collected from real neural
populations and validate, in the first place, the performance of inferring fixed struc-
tural connectivity properties from static FC (Figs. 2.2,2.3). A first way to validate
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the method proposed here is to verify if the static connectivity networks obtained
from two long (e.g., ¿90 min) independent recordings of the same population con-
verge to the same inferred synapses and delays. A second possible validation of
the static part of our methodology would be to apply the FC measures to a long
recording of a population whose fixed structural properties were reconstructed post-
mortem using, e.g., electron microscopy [121, 154]. Such methods typically identify
the synapses of neurons whose functional activity was recorded with two-photon cal-
cium imaging rather than with electrophysiology. Given the lower signal-to- noise
ratio and temporal resolution of calcium imaging recordings [62], it would be impor-
tant to first extend and then validate in simulations our proposed methodology to
simulated two-photon imaging recordings, rather than simulated electrophysiological
recordings as done here.

In conclusion, here we laid down foundations for relating dynamic functional con-
nectivity to the temporal evolution of synaptic weights in spiking neural networks.
The results obtained here provide a benchmark for further improving methodologies
that infer DSC from DFC.



Chapter 3

An information-theoretic
quantification of the content of
communication between brain
regions

The content of this Chapter was accepted for publication at the 37th Advances in
Neural Information Processing Systems (NeurIPS) conference, and is currently in
press [50].

3.1 Introduction

Cognitive functions, such as perception and action, emerge from the processing and
routing of information across brain regions [17, 55, 155–157]. Methods to study
within-brain communication [93, 158, 159] are often based on the Wiener-Granger
causality principle, which identifies propagation of information between simultane-
ously recorded brain regions as the ability to predict the current activity of a putative
receiving region from the past activity of a putative sending region, discounting the
self-prediction from the past activity of the receiving region [91, 92]. While early
measures implementing this principle, such as Granger causality [159], capture only
linear interactions, successive information theoretic measures (the closely-related Di-
rected Information [160] and Transfer Entropy [138]) are capable of capturing both
linear and nonlinear time-lagged interactions between brain regions [31, 84, 161].
While using such measures has advanced our understanding of brain communica-
tion [30, 31, 158, 162–166], they are designed to capture only the overall information
propagated across regions, and are insensitive to the content of information flow.
Assessing the content of information flow, not only its presence, would be invaluable
to understand how complex brain functions, involving distributed processing and
flow of different types of information, arise.

23
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Here, we leverage recent progress in Partial Information Decomposition (PID;
[100, 110]) to develop a new non-negative measure (Feature-specific Information
Transfer; FIT) that quantifies the directed flow of information about a specific
feature of interest between neural populations (Fig. 3.1A). The PID decomposes
the total information that a set of source variables encodes about a specific tar-
get variable into components representing shared (redundant) encoding between the
variables, unique encoding by some of the variables, or synergistic encoding in the
combination of different variables. FIT isolates features-specific information flow-
ing from one region to another by identifying the part of the feature information
encoded in the current activity of the receiving region that is shared (redundant)
with information present in the past activity of the sending region (because a piece
of transmitted information is first found in the sender and then in the receiver) and
that is new and unique with respect to the information encoded in the past activity
of the receiver (because information already encoded would not have come from the
sender).

We first mathematically derive a definition of FIT based on PID. We then use
it to demonstrate, on simulated data, that it is specifically sensitive to the flow of
information about specific features, correctly discarding feature-unrelated transmis-
sion. We then demonstrate that FIT is able to track the feature-specific content and
direction of information flow using three different types of simultaneous multi-region
brain recordings (electroencephalography - EEG, magnetoencephalography - MEG,
and spiking activity). We also address how introducing appropriate null hypotheses
and defining conditioned versions of FIT can deal with potential confounding fac-
tors, such as the time-lagged encoding of information in two regions without actual
communication between them.

3.2 Defining and Computing Feature-specific

Information Transfer (FIT)

We consider two time-series of neural activityX and Y simultaneously recorded from
two brain regions over several experimental trials. X and Ymight carry information
about a feature S varying from trial to trial, e.g. a feature of a sensory stimulus or a
certain action. The activity measured in each region, X and Y , may be any type of
brain signal, e.g. the spiking activity of single or multiple neurons, or the aggregate
activity of neural populations, such as EEG or MEG. We call Ypres the activity of
Y at the present time point t , and Xpast and Ypast the past activity of X and Y
respectively (Fig. 3.1). Established information theoretic measures such as TE [138]
use the Wiener-Granger principle to quantify the overall information propagated
from a putative sender X to a putative receiver Y as the mutual information I
between the receiver’s present neural activity Ypres and the sender’s past activity
Xpast, conditioned on the receiver’s past activity Ypast (Fig. 3.1):

TE(X → Y ) = I(Xpast;Ypres|Ypast) (3.1)
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(see Section 3.8.1.1 for how TE depends on probabilities of past and present activity).
TE captures the overall information propagated activity across regions but lacks the
ability to isolate information flow about specific external variables. To overcome this
limitation, here we define FIT, which quantifies the flow of information specifically
about a feature S from a putative sending area X to a putative receiving area
Y (Fig. 3.1A). We define FIT using the PID [100]. PID decomposes the joint
mutual information I(S;X), that a set of N source variables X = (X1, X2, ..., XN)
carries about a target variable S, into non-negative components called information
atoms (see SM1.2). For N = 2, PID breaks down the joint mutual information
I(S;X1, X2) into four atoms: the Shared (or redundant) Information SI(S : X1, X2)
that both X1 and X2 encode about S; the two pieces of Unique Information about S,
UI(S : X1\X2) and UI(S : X2\X1), provided by one source variable but not by the
other ; and the Complementary (synergistic) information about S ,CI(S : X1, X2),
encoded in the combination of X1 and X2 . Several measures have been proposed
to quantify information atoms [100, 103, 111, 112]. Here we use the measure Imin

originally defined in [100], which guarantees non-negative values for information
atoms for any N (see Section 3.8.1.2).

Using Imin, the Shared Information that X1 and X2 carry about S is defined as
follows:

SI(S : X1, X2) =
∑
s∈S

p(s) min
Xi∈{X1,X2}

I(S = s;Xi) (3.2)

where I(S = s;Xi) is the specific information that source Xi carries about a specific
outcome of the target variable s ∈ S, and is defined as:

I(S = s;Xi) =
∑
xi∈Xi

p(xi|s)
[
log

p(s|xi)

p(s)

]
(3.3)

Intuitively, the shared information computed as in eq. 3.2 quantifies redundancy as
the similarity between X1 and X2 in discriminating individual values of the feature
S. In the general case of N source variables, information atoms are hierarchically
ordered in a lattice structure, and Imin can be used to quantify any atom in the
decomposition (including the Unique and Complementary information atoms intro-
duced above for the case N = 2; see Section 3.8.1.2).

We wanted FIT to measure the directed flow of information about S between
X and Y , rather than the overall propagation of information measured by TE
(Fig. 3.1A). We thus isolated the information about a feature S in the past of
the sender X that Y receives at time t. Because of the Wiener-Granger causality
principle, such information should not have been present in the past activity of the
receiver Y . Therefore, we performed the PID in the space of four variables S, Xpast,
Ypast, and Ypres to compute information atoms that combine Shared, Unique and
Complementary Information carried by three sources about one target [100]. One
natural candidate atom to measure FIT is the information about S that Xpast shares
with Ypres and is unique with respect to Ypast: SUI(S : Xpast, Ypres\Ypast) (Fig. 3.1B;
Fig. 3.S1B). This atom is defined as the difference between the shared information
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Figure 3.1: Sketch of FIT and TE. (A) TE is the established information-theoretic mea-
sure to quantify the overall information propagated between two simultaneously recorded
brain regions X (sender) and Y (receiver). FIT measures the information flowing from
X to Y about the stimulus feature S. B) TE and FIT incorporate content-unspecific and
content-specific versions of the Wiener-Granger causality principle. TE is the mutual in-
formation between the past activity of X and the present activity of Y conditioned on
the past of Y . FIT is the feature information in the present of Y shared with the past
information of X and unique with respect to the past information of Y .

that the two source variables Xpast and Ypres carry about S, and the shared informa-
tion that the three source variablesXpast, Ypres and Ypast carry about S. Redundancy
can only decrease when adding more sources. Hence by removing the information
that is also redundant with Ypast, SUI(S : Xpast, Ypres \ Ypast) quantifies a non-
negative component of shared information between Xpast and Ypres about S that is
unique with respect to Ypast. Importantly, using unique information to remove the
feature information in Ypast is more conservative than conditioning on Ypast as in TE
(Fig. 3.1B) [167] . SUI(S : Xpast, Ypres \ Ypast) intuitively captures what we are in-
terested in, and satisfies two desirable mathematical properties: it is upper bounded
by the feature information encoded in the past of X (I(S;Xpast)) and in the present
of Y (I(S;Ypres)). This is because the PID defines redundancy between source vari-
ables as sub-components of the joint information carried by each of the sources (see
Section 3.8.1.3). However, the information atom SUI(S : Xpast, Ypres \ Ypast) has
two undesirable properties. The first is that its value can exceed the total amount
of information propagated from X to Y (TE). This can happen since the unique
information in the PID decomposition is a component of the conditional mutual
information about the target. However, the target in SUI(S : Xpast, Ypres \ Ypast) is
the feature S, which means that this atom is not constrained to be smaller than the
TE, which is independent of S (see eq. 3.1 and SM1.3.4). This property is unde-
sirable because the overall propagation of activity (Fig. 3.1A, bottom) must be an
upper bound to the information transmitted about a specific feature. The second is
that by construction (see Section 3.8.1.3) this atom depends on Xpast, Ypres, S only
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through the pairwise marginal distributions P (Xpast, S) and P (Ypres, S), but not
through the marginal distribution P (Xpast, Ypres), which implies that this atom by
itself cannot identify confounding scenarios where both sender and receiver encode
feature information at different times with no transmission taking place (see Section
3.8.1.3).

To address these limitations, following [113] we considered the alternative PID
taking S, Ypast, andXpast as source variables and Ypres as a target. In this second PID
(Fig. 3.S1B), the atom that intuitively relates to FIT is SUI(Ypres : Xpast, S \Ypast),
the information about Ypres that Xpast shares with S that is unique with respect to
Ypast. While being intuitively similar to SUI(S : Xpast, Ypres \ Ypast), SUI(Ypres :
Xpast, S \ Ypast) has Ypres as target variable and hence is upper bounded by TE (but
not by I(S;Xpast)) and depends on the pairwise marginal distribution P (Xpast, Ypres)
(see Section 3.8.1.3). Thus, this second atom has useful properties that complement
those of the first atom. Importantly, Shannon information quantities impose con-
straints that relate PID atoms across decompositions with different targets. We
[113] demonstrated that, for PID with N = 2 sources, these constraints reveal the
existence of finer information components shared between similar atoms of different
decompositions. Here, we extended this approach (see Section 3.8.1.3) to N = 3
sources and demonstrated that the second atom is the only one in the second PID
that has a pairwise algebraic relationship with the first atom, indicating that these
atoms share a common, finer information component. Therefore we defined FIT by
selecting this finer common component by taking the minimum between these two
atoms:

FIT = min[SUI(S : Xpast, Ypres \ Ypast), SUI(Ypres : Xpast, S \ Ypast)] (3.4)

With this definition, FIT is upper bounded by I(S;Xpast), by I(S;Ypres) and by
TE(X → Y ). That FIT satisfies such bounds is essential to interpret it as trans-
mitted information. If FIT could be larger than the feature information encoded by
sender X or receiver Y , or than the total information transmitted (TE(X → Y )),
then FIT could not be interpreted as feature information transmitted from X to
Y . Additionally, FIT depends on the joint distribution P (S,Xpast, Ypres) through all
the pairwise marginals P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres), implying that
it can rule out, using appropriate permutation tests, false-communication scenarios
in which X and Y encode the stimulus independently with a temporal lag, without
any within-trial transmission (see Section 3.8.1.3).

Note that the definition of FIT holds when defining present and/or past activity
as multidimensional variables, potentially spanning several time points. However,
use of multidimensional neural responses requires significantly more data for ac-
curate computation of information. For this reason, following [31, 168, 169], in
all computations of TE and FIT we computed the present of Y at a single time
point t and the past of X and of Y at individual time points lagged by a delay δ:
Xpast = Xt−δ and Ypast = Yt−δ. Note also that in all calculations of FIT and TE, we
estimated probabilities from empirical occurrences after discretizing both features
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and neural activities. SM1.5 reports details of the procedure and Table S1 the num-
ber of bins used for each analysis. Simulations of accuracy of these estimates as
function of the data size are reported in Section 3.8.2.5 and Fig. 3.S6.

3.3 Validation of FIT on simulated data

To test the ability of FIT to measure feature-specific information flow between
brain regions, we performed simulations in scenarios of feature-specific and feature-
unrelated information transfer.

We performed (Fig. 3.2A-B) a simulation (details in SM2.1) in which the encoded
and transmitted stimulus feature S was a stimulus-intensity integer value (1 to 4)
. The activity of the sender X was a two-dimensional variable with one stimulus-
feature-informative Xstim and one stimulus-uninformative component Xnoise. The
stimulus-feature-informative dimension had temporally-localized stimulus-dependent
activity from 200 to 250ms and had multiplicative Gaussian noise (similar results
were found with additive noise, see Section 3.8.2.1 and Fig. 3.S3). The stimulus-
unrelated component was, at any time point, a zero-mean Gaussian noise. The
activity of the receiver Y was the weighted sum of Xstim and Xnoise with a de-
lay δ, plus Gaussian noise . The delay δ was chosen randomly in each simulation
repetition in the range 40-60ms. Here and in all further simulations, we averaged
information values across simulation repetitions we determined their significance
via non-parametric permutation tests. For TE, we permuted X across all trials to
test for the presence of significant within-trial transmission between X and Y [31,
170]. For FIT, we conducted two different permutation tests: one for the pres-
ence of stimulus information in X and Y (shuffling S across trials), and another for
the contribution of within-trial correlations between X and Y to the transmission
of S (shuffling X across trials at fixed stimulus). We set the threshold for FIT
significance as the 99th percentile of the element-wise maximum between the two
permuted distributions (see Section 3.8.1.7).

We investigated how FIT and TE from X to Y depended on the amount of
stimulus-feature-related transmission (increased by increasing wstim) and of -unrelated
transmission (increased by increasing wnoise). We report values at the first time point
in which information in Y was received fromX, but similar results hold for later time
points. Both FIT and TE increased when increasing wstim (Fig. 3.2A). However,
TE increased with wnoise (Fig. 3.2A), as expected from a measure that captures
the overall information propagation. In contrast, FIT decreased when increasing
wnoise, indicating that FIT specifically captures the flow of information about the
considered feature.

We then investigated how well TE and FIT temporally localize the stimulus-
feature-related information transmitted from X to Y (Fig. 3.2B). We simulated a
case in which stimulus-feature-related information was transmitted from X to Y
only in a specific window ([240, 310]ms) and computed FIT and TE at each time
point (see Section 3.8.2.1 for details) . FIT was significant only in the time window in
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Figure 3.2: Testing FIT on simulated data. A) FIT and TE as function of stimulus-
feature-related (wstim) and -unrelated (wnoise) transmission strength. * indicate significant
values (p < 0.01, permutation test) for the considered parameter set. B) Dynamics of FIT
and TE in a simulation with time-localized stimulus-feature-information transmission. Red
area shows the window of stimulus-feature-related information transfer. Results plot mean
(lines) and SEM (shaded area) across 50 simulations (2000 trials each). C) Different neural
encoding functions used for the simulations in panels D,E. D) Sketch of simultaneous
stimulus feature information profiles. Different types of information content are color-
coded. E) FIT in the X → Y (cyan) and Y → X (grey) directions as a function of SNR
(plot in log scale). Results plot mean (lines) and SEM (shaded area) across 100 simulations
(2000 trials each). Yellow dots in panels B and E show points with significant FIT (p ¡
0.01, permutation test).

which Y received the stimulus information from X. In contrast, TE was significant
at any time point, reflecting that noise was transmitted from X to Y throughout
the whole simulation time.

Importantly, FIT can detect feature-specific information flow even when infor-
mation is encoded in the sender and receiver with an overlapping timecourse. To
illustrate this, we simulated the activity of two regions X and Y encoding an inte-
ger stimulus feature S with the same amount of information at each instant of time
(Fig. 3.2D), but with feature specific transmission taking place only from X to Y .
Because FIT could correctly detect that the format of information representation of
S in the present of Y was equal to that of the past of X but different to that of the
past of Y (Fig. 3.2D), it could correctly detect that feature information flows from
X to Y (Fig. 3.2E).

We also performed simulations to investigate whether the non-parametric permu-
tation test described above can correctly rule out as non-significant feature-specific
transmission the scenario in which X and Y independently encode S without actual
communication occurring between them. We simulated a scenario in which feature
information was encoded with a temporal lag in X and Y , with no transmission
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from X to Y . We found that the resulting values were always non-significant (see
Section 3.8.2.6 and Fig. 3.S7C) when tested against a surrogate null-hypothesis
distribution (pairing X and Y in randomly permuted trials with the same feature)
that destroy the within-trial communication between X and Y without changing the
feature information encoding in X and Y (see Section 3.8.1.7). Importantly, this
null hypothesis also ruled out false communication scenarios where the measured
FIT and TE were only due to the presence of instantaneous mixing of sources (see
Section 3.8.2.7).

Finally, we addressed how to remove the confounding effect of transmission of
feature information to Y not from X but from a third region Z. In Granger causality
or TE analyses, this is addressed conditioning the measures on Z [94, 171]. In
an analogous way, we developed a conditioned version of FIT, called cFIT (see
see Section 3.8.1.4), which measures the feature information transmitted from X
to Y that is unique with respect to the past activity of a third region Z. We
tested its performance in simulations in which both X and Z transmitted feature
information to Y and found that cFIT reliably estimated the unique contribution
of X in transmitting feature information to Y , beyond what was transmitted by Z
(see Section 3.8.2.6 and Fig. 3.S7D).

3.4 Analysis of real neural data

We assessed how well FIT detects direction and specificity of information transfer
in real neural data.

3.4.1 Flow of stimulus and choice information across the
human visual system

We analyzed a previously published dataset ([11], see also SM3.1 for details) of
source-level MEG data recorded while human participants performed a visual decision-
making task. At the beginning of each trial, a reference stimulus was presented
(contrast 50%), followed by a test stimulus that consisted of a sequence of 10 visual
samples with variable contrasts (Fig. 3.3A). After the test stimulus sequence, par-
ticipants reported their choice of whether the average contrast of the samples was
greater or smaller than the reference contrast. The previous study on these data
([11]) analysed the encoding of stimulus and choice signals in individual areas but did
not study information transfer. We focused on gamma-band activity (defined as the
instantaneous power of the 40-75Hz frequency band), because it is the most promi-
nent band for visual information encoding [172–174] and information propagation
[31, 59] in the visual system. Previous work has demonstrated that gamma-band
transmission is stronger in the feedforward (from lower to higher in the visual cor-
tical hierarchy) than in the feedback (from higher to lower in the visual cortical
hierarchy) direction [59, 164, 175], suggesting that gamma is a privileged frequency
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channel for transmitting feedforward information. However, these previous studies
did not determine the content of the information being transmitted.

To address this question, we quantified FIT in a network of three visual cortical
areas (Fig. 3.3B) that we selected because they encoded high amounts of stimulus
information and because they were sufficiently far apart (≥ 2.8cm) to minimize
leakage in source reconstruction (see Fig. 3.S9) [11, 176]. The areas, listed in
order of position, from lower to higher, in the cortical hierarchy were: primary
visual cortex (V1), area V3A (carrying maximal stimulus information in the dorsal
stream visual cortex), and area LO3 (carrying high stimulus information in the
MT+ complex). Because participants made errors (behavioral performance was
75% correct), in each trial the stimulus presented could differ from the participant’s
choice. We thus assessed the content of the information flow by computing FIT
about either the sensory stimulus (FITS; using as feature the mean contrast across
all 10 visual samples) or the reported choice (FITC), in each instant of time in the
[−100, 500]ms peri-stimulus time window (because stimulus information was higher
in the first 500ms post-stimulus, see Section 3.8.3.1 and Fig. 3.S9) and across a
range of putative inter-area delays δ. In Fig. 3.3C we show the resulting FITS time-
delay information maps for the example pair of regions V1 and V3A. A cluster-
permutation analysis [177, 178] revealed significant feedforward stimulus-specific
information transmission from V1 to V3A (but no significant feedback from V3A to
V1) localized 200-400ms after the stimulus onset, with an inter-area communication
delay between 65 and 250ms (see Section 3.8.3.1 and Fig. 3.S9).

We compared properties of overall information propagation (computed with TE)
and feature-specific information flow (computed with FIT) across all pairs of areas
within the considered visual cortical network. To determine the prevalent content
of information flow in the network, we compared the amount of FITS and FITC

transmitted in the feedforward and in the feedback directions (Fig. 3.3D). Gamma-
band transmitted more information about the stimulus than about choice (i.e. FITS

¿ FITC) in both the feedforward (p < 10−3 two-tailed paired t-test) and in the
feedback (p < 0.01 two-tailed paired t-test) direction, with a larger difference for the
feedforward direction. This result is supported by simulations where we show that,
in presence of multiple simultaneously transmitted features, FIT ranks correctly the
features about which most information is transmitted (see Section 3.8.2.3 and Fig.
3.S4). Thus, we focused on stimulus-specific information flow in the following FIT
analyses. We then studied the leading direction of information flow. Both the total
amount of information propagation (TE) and the stimulus-specific information flow
(FITS) were larger in the feedforward than in the feedback direction (Fig. 3.3E),
but with a larger effect for FITS (p < 10−6 two-tailed paired t-test) compared to
TE (p < 0.05 two-tailed paired t-test). Together, these results show that gamma-
band activity in the visual system carries principally information about the stimulus
(rather than choice) and propagates it more feedforward than feedback.

We next assessed the behavioral relevance of the feedforward stimulus informa-
tion transmitted by the gamma band. A previous study showed that the over-
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Figure 3.3: Information flow across the human visual hierarchy with MEG. A) Sketch
of task B) Cortical surface map of the location of the four considered visual regions.
C) Temporal profiles of stimulus information and time-delay stimulus FIT maps for an
example regions pair (V1, V3A). Top to bottom: stimulus information in V1; time-delay
FIT map in the feedforward (V1 → V3A) direction; time-delay FIT map in the feedback
(V3A → V1) direction; stimulus information in V3A. D) Comparison between FIT about
stimulus (FITS) and FIT about choice (FITC) in the visual network in the feedforward
(left) and feedback (right) directions. E) Comparison between feedforward and feedback
transmission in the network for TE (left) and stimulus FIT (right). F) Same as F but for
feedforward transmission on correct vs error trials. In all panels, lines and image plots
show averages and errorbars SEM across participants, experimental sessions and regions
pairs (in case of FIT and TE) or regions (in case of mutual information). *: p<0.05, **:
p<0.01, ***: p<0.001. Information-theoretic quantities were computed from the gamma
band ([40-75]Hz) power of source-level MEG, first computed separately for the left and
right hemisphere and then averaged.

all (feature-unspecific) strength of feedforward gamma band information propaga-
tion negatively correlates with reaction times, indicating that stronger feedforward
gamma actvity propagation favours faster decisions [95]. However, no study has
addressed whether stimulus information transmitted forward in the gamma band
helps accuracy of decision making. We addressed this question by comparing how
FITS varied between trials when participants made a correct or incorrect choice
(Fig. 3.3F). We matched the number of correct and error trials to avoid data size
confounds [179]. FITS in the feedforward direction was significantly lower in error
than in correct trials (Fig. 3.3F, right; p < 0.001 two-tailed paired t-test), while TE
did not vary between correct and error trials (Fig. 3.3F, left; p = 0.24 two-tailed
paired t-test). Feedback information transmission (both in terms of overall trans-
mission, TE, and stimulus specific information flow, FITS), did not vary between
correct and incorrect trials. This indicates that the feedforward flow of stimulus
information, rather than the overall information propagation, is key for forming
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correct choices based on sensory evidence.

These results provide the new discovery that the gamma band transmits feed-
foward stimulus information of behavioral relevance, and highlight the power of FIT
in revealing the content and direction of information flow between brain areas.

3.4.2 Eye-specific interhemispheric information flow
during face detection

We next tested the ability of FIT to detect feature-specific information flow be-
tween brain hemispheres. We analyzed a published EEG dataset recorded from
human participants detecting the presence of either a face or a random texture from
an image covered by a bubble mask randomly generated in each trial ([180]; see
Section SM3.2.1 for details). Previous analysis of these data [181] showed that eye
visibility in the image (defined as the proportion of image pixels in the eye region
visible through the mask) is the most relevant image feature for successful face dis-
crimination. It then showed that eye-specific information appears first at ∼120ms
post-image presentation in the Occipito-Temporal (OT) region of the hemisphere
contralateral with respect to the position of the eye, and then appears ∼20-40ms
later in the ipsilateral OT region (Fig. 3.4A). However, this study did not determine
if the eye information in the ipsilater hemisphere is received from the contralateral
hemisphere. To address this issue, we computed FIT transmission of eye-specific
information between the Left OT (LOT) and Right OT (ROT) regions (using the
electrodes within these regions that had most information as in [181], see Section
3.8.3.2). Left Eye (LE) FIT from the contra- to the ipsi-lateral OT (ROT to LOT;
Fig. 3.4C) peaked between 150 to 190ms after image onset with transfer delays of
20-80ms (Fig. 3.4B). Right eye (RE) FIT the contra- to the ipsi-lateral OT (LOT to
ROT) peaked with similar times and delays. Both contra-to-ipsilateral LE and RE
had statistically significant FIT peaks in the time-delay maps (cluster-permutation
analysis, p ¡ 0.01; see Section 3.8.3.2 and Fig. 3.S10). Thus, FIT determined the
communication window for contralateral flow of eye-specific information with high
precision.

To gain further insight about the directionality and feature-specificity of the in-
formation flow across hemispheres, we compared FIT and TE across transfer direc-
tions and/or eye-specific visibility conditions (Fig. 3.4D, middle and right). Right-to-
left LE FIT was significantly larger than left-to-right LE FIT (p < 0.001 two-tailed
paired t-test) or right-to-left RE FIT (p < 0.01 two-tailed paired t-test). Left-to-
right RE FIT was significantly larger than right-to-left RE FIT (p < 0.05 two-tailed
paired t-test) or left-to-right LE FIT (p < 0.05 two-tailed paired t-test). In contrast,
we found no significant difference between directions for the overall propagated infor-
mation (TE), Fig. 3.4D, left). Thus, the use of FIT revealed a temporally localized
flow of eye information across hemispheres that was feature-selective (i.e. about
mainly the contralateral eye) and direction-specific (contra-to-ipsilateral), without
direction specificity in the overall information propagation (TE) across hemispheres.
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Figure 3.4: Inter-hemispheric eye-specific information flow during face detection using
human EEG. (A) Schematic of the putative information flow. LOT (ROT) denote Left
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Finally, to more tightly localize the origin of eye-specific contralateral informa-
tion flow, we asked whether the contralateral OT electrodes selected in our analyses
were the sole senders of inter-hemispheric eye-specific information. We used the con-
ditioned version of FIT, cFIT, to compute the amount of transfer of eye information
from the contra- to the ipsi-lateral OT after removing the effect of eye-specific infor-
mation possibly routed through alternative sending locations (see Section 3.8.1.4).
We found (Fig. 3.S12A) that the effect we measured with FIT was robust even when
conservatively removing with cFIT the information that could have been routed
through other locations.

3.4.3 Stimulus-specific information flow in a
thalamocortical network

We finally used FIT to measure the feature- and direction-specificity of informa-
tion flow in the thalamocortical somatosensory and visual pathways. We analysed a
published dataset in which multi-unit spiking activity was simultaneously recorded
in anaesthetized rats from the primary visual and somatosensory cortices, and from
first-order visual and somatosensory thalamic nuclei ([23], see Section 3.8.3.3 for de-
tails), during either unimodal visual, unimodal tactile, or bimodal (visual and tac-
tile) stimulation. This analysis tests FIT on another major type of brain recordings
(spiking activity). Moreover, due to the wealth of knowledge about the thalamocor-
tical network [22, 182], we can validate FIT against the highly-credible predictions
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that information about basic sensory features flows from thalamus to cortex, and
that somatosensory and visual pathways primarily transmit tactile and visual in-
formation, respectively. Using FIT, we found (see 3.8.3.3 and Fig. 3.S11) that
sensory information flowed primarily from thalamus to cortex, rather than from
cortex to thalamus. We also found that the feedforward somatosensory pathway
transmits more information about tactile- than about visually-discriminative fea-
tures, and that the feedforward visual pathway transmits more information about
visually- than tactile-discriminative features. Importantly, TE was similarly strong
in both directions, and when considering tactile- or visually-discriminative features.
This confirms the power of FIT for uncovering stimulus-specific information trans-
fer, and indicates a partial dissociation between overall information propagation and
neural transfer of specific information.

3.5 Comparison with previously published

measures

We finally examine how FIT differs from alternative methods for identifying compo-
nents of the flow of information about specific features. We focus on measures that
implement the Wiener-Granger discounting of the information present in the past
activity of the sender. Other methods, that do not implement this (and thus just
correlate past information of the sender with present information of the receiver),
erroneously identify information already encoded in the past activity of the receiver
as information transmitted from a sender (see Section 3.8.4.3).

A possible simple proxy for identifying feature-specific information flow is quan-
tifying how the total amount of transmitted information (TE) is modulated by the
feature [31]. For the case of two feature values, this amounts to the difference of
TE computed for each individual value. We show in Section 3.8.4.1, using simula-
tions, that this measure can fail in capturing feature-related information flow even in
simple scenarios of feature information transmission. Additionally, when tested on
MEG data, it could not assess the directionality of information transmission within
brain networks (see Section 3.8.4.1).

A previous study [183] defined a measure, Directed Feature Information (DFI),
which computes feature-specific information redundant between the present activity
of the receiver and the past activity of the sender, conditioned on the past activity
of the receiver. However, DFI used a measure of redundancy that conflated the
effects of redundancy and synergy (see See 3.8.1.5). Because of this, DFI is, both on
real and on simulated data, often negative and thus not interpretable as measure of
information flow (see Section 3.8.4.2). In contrast, FIT is non-negative and uses PID
to consider only redundant information between sender and receiver, as appropriate
to identify transmission of information. Moreover, because DFI discounts only past
activity of the sender rather than its feature-specific information, it was less precise
and less conservative or sensitive in localizing direction and timing of feature-specific
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information flow (as shown in Section 3.8.4.2 and Fig. 3.S15 with simulated and
real data).

Finally, a study defined feature-specific information using PID in the space of
four variables S, Xpast, Ypast, and Ypres [108]. However, this measure was not upper
bounded by either feature information encoded in the past of the sending region or
the total information flowing between regions.

3.6 Discussion

We developed and validated FIT, an information theoretic measure of the feature-
specific information transfer between a senderX and a receiver Y . FIT combines the
PID concepts of redundancy and uniqueness of information [100] with the Wiener-
Granger causality principle [93] to isolate, within the overall transmitted information
(TE), the flow of information specifically related to a feature S.

The strengths and limitations of FIT as a neural data analysis tool stem from
those of information theory for studying neural information processing. Information
theory has led to major advances to neural coding because of its ability to capture
linear and non-linear interactions at all orders making little assumptions [86, 184].
This is important because deviations from linearity and order of interactions vary in
often unknown ways between brain areas, stimulus types and recording modalities
[14, 185, 186]. Using such a general formalism avoids potentially biasing results with
wrong assumptions. However, the price to pay for the fact that information theory
includes full probability distributions is that it is data hungry. While our definitions
of FIT and cFIT are straightforwardly valid for multivariate analyses including
conditioning on the information of multiple regions [171] (as in cFIT) or obtaining
more conservative estimates of information transmission on which information in the
receiver Y is requested to be unique with respect to the information of the sender
and receiver at multiple past time points [84], for data sampling reasons in practice
in real data these analyses are confined to conditioning to one region or a single past
time points[31, 168, 169]. In future work, we aim to make FIT applicable to analyses
of multiple regions or time points coupling it with advanced non-parametric [187]
methods to robustly estimate its multivariate probability distributions.

The generality of our approach lends itself to further developments. Importantly,
we defined FIT directly at the level of PID atoms. This means that, although
here we implemented FIT using the original definition of redundancy in PID [100]
because it has the advantage of being non-negative for all information atoms, FIT
can be easily implemented also using other PID redundancy measures [103, 111, 112,
188, 189] with complementary advantages and disadvantages (see Section 3.8.1.2).
Additionally, and even though the surrogate permutation test we developed to assess
FIT significance provided reasonable results on real data and worked work well
also with artefacts due to instantaneous mixing of sources (see See 3.8.2.7), further
research is needed to generate more refined surrogate data generation techniques to
rule out more conservatively false feature-specific communication scenarios [190].



3.7. ACKNOWLEDGEMENTS 37

To demonstrate the properties of FIT, we performed numerical simulations in
different communication scenarios and compared FIT against TE (Fig. 3.2). These
simulations confirmed that TE effectively detected the overall propagation of in-
formation, but it did not detect the flow of feature-specific information. FIT, in
contrast, reliably detected feature- and direction-specific information flow with high
temporal sensitivity. We confirmed the utility of FIT in applications to neural data.
In three brain datasets spanning the range of electrophysiological recordings (spiking
activity, MEG and EEG), FIT credibly determined the directionality and feature
specificity of information flow. Importantly, in most of these datasets this hap-
pened in the absence of variations in the overall flow of activity between the same
brain regions (measured with TE). The partial dissociation between overall activity
flow and feature-specific flow found consistently in simulations and data has im-
portant implications. First, it highlights the need of introducing a specific measure
of feature information transfer such as FIT, as it resolves question unaddressed by
content-unspecific measures. Second, it establishes that measuring feature-specific
components of information flow between brain regions is critical to go beyond the
measurement of overall neural activity propagation and uncover aspects of cross-area
communication relevant for ongoing behavior. Much effort in neuroscience has been
devoted to the identification of feature specific information pathways in the brain,
such as the diverging processing of different visual features by the ventral and the
dorsal visual streams [191, 192]. FIT is well-suited to further test, in vivo, current
theories about information processing hierarchies in the brain, as well as uncover
new fundamental principles in how brain regions communicate at several spatial and
temporal scales.
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3.8 Supplementary Material

3.8.1 Definitions, derivations, and properties of the
information theoretic quantities

In this section, we first define the basic information theoretic quantities that we use
in the paper. We next introduce basic concepts of the PID theory needed for our
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derivations. We then use these concepts to derive a mathematical definition of FIT
and then prove some of its key mathematical properties.

3.8.1.1 Definition of the Shannon information quantities used in this
study

In the following we describe and provide analytical expression for the quantities of
Shannon’s information theory that we used in this paper. These are the mutual
information between the stimulus and the neural activity, and the Transfer Entropy
(TE), which are estimated in terms of the probabilities of activities of neural signals
X and Y and of stimulus features S.

The mutual information I(S;Xpres) between the stimulus feature S and the
neural activity Xpres of X at the present time is a non-parametric measure that
quantifies the full single-trial statistical relationship between S and Xpres. It cap-
tures the effect of all linear and nonlinear interactions between these variables. It is
defined as follows:

I(S;Xpres) =
∑

s,xpres

p(s, xpres) log
p(s, xpres)

p(s)p(xpres)
(3.S5)

where p(s, xpres) is the joint probability, sampled across experimental trials, of ob-
serving in a given trial the joint occurrence of stimulus feature value s ∈ S, and ac-
tivity xpres ∈ Xpres. The sum spans all possible events. I(S;Xpres) is non-negative,
and it is zero if and only if S and Xpres are independent. Similar expressions and
properties hold for the information I(S;Xpast) , I(S;Ypast) between the stimulus and
the past activity Xpast, Ypast of X and Y , respectively.

TE [138] is an information theoretic measure that utilizes the Wiener-Granger
principle to quantify the overall propagation of information by neural activity from
a putative sender X to a putative receiver Y as the mutual information between the
present neural activity of the receiver Ypres and the past activity of the sender Xpast,
conditioned upon the past activity of the receiver Ypast. The expression of TE as a
function of the joint probability distribution P (Xpast, Ypres, Ypast) is as follows:

TE(X → Y ) = I(Xpast;Ypres|Ypast) =

=
∑

xpast,ypres,ypast

p(xpast, ypres, ypast) log
p(xpast, ypres|ypast)

p(xpast|ypast)p(ypres|ypast)
(3.S6)

where p(xpast, ypres, ypast) is the joint probability, sampled across experimental trials,
of observing the joint occurrence of xpast ∈ Xpast, ypres ∈ Ypres, and ypast ∈ Ypast,
and the sum spans all possible events. Importantly, TE does not depend on the
stimulus feature S and thus cannot tell how much of the overall information being
transmitted from X to Y is about S or about other factors unrelated to S.
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3.8.1.2 Elements of PID theory

PID was introduced first in Ref [100] and is a very active field of research [110]. To
make our paper self-standing, here we briefly summarize the basic concepts of PID
that are most needed for our reasoning and derivations.

In the general case of N source variables X = (X1, . . . , XN), PID dissects the
joint mutual information that the source variables jointly carry about a target vari-
able T , I(X;T ), into non-overlapping pieces of redundant, unique, and synergistic
information. Let A1, . . . , AM be all the non-empty and potentially overlapping sub-
sets of X, that we call sources in the following. PID considers the collections of
sources α ∈ P1(P1(X)), where P1(X) denotes the set of all non-empty subsets of
X. That is, a collection α corresponds to a non-empty subset of sources, namely to
a non-empty subset of non-empty subsets of source variables. In the following, for
brevity, we will call collections the collections of sources. Collections α are indicated
using a bracketed notation (e.g., α = {X1X2}{X1X3} represents the collection of
the two overlapping sources {X1X2} and {X1X3}). Importantly, pieces of unique
and synergistic information can be defined and computed algorithmically once the
redundant information is identified and computed. Thus, in what follows we fo-
cus principally on defining and computing redundancies. For each α, PID defines
the amount of information about T that is redundant between all sources in the
collection: I∩(T ;α). Conceptually, the redundancy of any collection α for which a
source Ai ∈ α is a subset of another source Aj ∈ α (i ̸= j) should be equal to the
redundancy of the same collection after removing the superset Aj [100]. Therefore,
the collections of interest to compute I∩(T ;α) are only those for which no source is
a superset of any other, and hence removing any source Ai ∈ α could potentially
reduce the redundancy. These collections form a domain called A(X):

A(X) = {α ∈ P1(P1(X)) : ∀Ai, Aj ∈ α,Ai ⊈ Aj} (3.S7)

It is possible to define a partial order over the collections of A(X). A collection
α precedes another collection β if for each source B in β it exists a source A in α
that is a subset of B, formally:

∀α, β ∈ A(X)(α ⪯ β ⇔ ∀B ∈ β ∃A ∈ α |A ⊆ B) (3.S8)

Applying the order relationship in eq. 3.S8 to the elements of A(X) produces
redundancy lattices, in which a collection that succeeds α provides at least as much
redundant information about T as α [100] (see Fig. 3.S1A,B for the lattices forN = 2
and N = 3 source variables). PID allows quantifying the amount of redundant
information I∂(T ;α) that a specific collection α contributes to the joint mutual
information about T, and that is not already redundant in any collections preceding
α (in the following, we will call I∂(T ;α) the information atom provided by collection
α). I∂(T ;α) is implicitly defined by the following relationship [100]:

I∩(T ;α) =
∑
β⪯α

I∂(T ; β) (3.S9)
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Due to the so-called self-redundancy axiom of the PID theory [100], if an indi-
vidual source Ai appears in collection α, the redundancy computed on collection α
is equal to the mutual information between all source variables in Ai and the target
variable T :

I∩(T ;α) = I∩(T ; {Ai}) = I(T ;Ai) (3.S10)

By combining eqs. 3.S9 and 3.S10 we can write Shannon information theoretic
quantities as the sum of partial information atoms:

I(T ;Ai) =
∑
β⪯Ai

I∂(T ; β) (3.S11)

Eq. 3.S11 will be fundamental to provide upper bounds for FIT in terms of Shannon
information quantities. When applied to the trivariate system (S,X1, X2), taking S
as target and (X1, X2) as source variables, eq. 3.S11 provides the decomposition of
the joint mutual information I(S;X, Y ) that we discussed in the main text:

I(S;X1, X2) = I∂(S; {X1}{X2}) + I∂(S; {X1}) + I∂(S; {X2}) + I∂(S; {X1X2})
(3.S12)

where in the main text we called I∂(S; {X1}{X2}) = SI(S : X1, X2), I∂(S; {X1}) =
UI(S : X1 \X2), I∂(S; {X2}) = UI(S : X2 \X1), I∂(S; {X1X2}) = CI(S : X1, X2)
to improve clarity for readers not familiar with PID. SI is shorthand for Shared
(that is, redundant) Information; UI is short-hand for Unique information; CI is
shorthand for Complementary (that is, synergistic) information.

Thus far we covered elements of PID theory that hold for a generic redundancy
measure I∩, but did not discuss how to compute I∩(T ;α) for a specific collection α.
Several measures of redundant information have been proposed [103, 111, 112, 193],
in this work we use the original measure Imin from Williams and Beer, as it has
the fundamental property of being non-negative for any information atoms for any
number N of source variables (not only for N = 2) (for a proof, see Appendix D of
Ref [100]). The redundant information Imin for a collection α is defined as follows:

Imin(T ;α) =
∑
(t∈T )

(p(t) min
Ai∈α

I(T = t;Ai) (3.S13)

where I(T = t;Ai) is the specific information that source Ai carries about a specific
outcome of the target variable t ∈ T , and is defined as:

I(T = t;A) =
∑
a

p(a|t)
[
log

p(t|a)
p(t)

]
(3.S14)

Intuitively, Imin quantifies redundancy as the as the overlap in the distributions of
specific information across individual values of target variable. This corresponds to
quantifying the degree to which all sources in collection α are similarly discrimina-
tive about individual values of the target. We decided to use Imin because of its
advantages in terms of being defined for an arbitrary number of source variables N
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(something that is needed because FIT is defined in terms of N = 3 source variables
and cFIT in terms of N = 4 source variables) and being non-negative for all atoms
(which is important to guarantee that FIT is interpretable as a measure of informa-
tion transmission). Importantly, similarly to other redundancy measures [112], Imin

satisfies the pairwise marginals property, meaning that Imin(T ;α) only depends on
the pairwise marginals distributions p(T,Ai) between the target T and each source
Ai ∈ α.

Alternative redundancy measures proposed so far are either not straightfor-
ward to generalize beyond N = 2 source variables [103, 193] or can provide neg-
ative information atoms [111]. However, these alternative measures have comple-
mentary advantages with respect to Imin, such as satisfying the identity property
I∩(X, Y ; (X, Y )) = I(X;Y ) which guarantees that, in a system made of two inde-
pendent variables, the two variables cannot carry redundant information about the
whole system. Despite not satisfying this property, the Imin measure has been ap-
plied to study information processing in simulated neural networks [108], providing
insightful and interpretable results.

3.8.1.3 Derivation of FIT

In this subsection, we derive the definition of FIT. In the main text, we used the
notation SUI(S : Xpast, Ypres\Ypast) to denote the atom of information that is shared
by variables Xpast and Ypres about target S but is unique with respect to a third
variable Ypast. Using the bracketed notation introduced in Section 3.8.1.2 to denote
information atoms, SUI(S : Xpast, Ypres\Ypast) corresponds to I∂(S; {Xpast}{Ypres}).
From eq. 3.S9, this atom is the difference between the information that Xpast and
Ypres share about S minus the information that Xpast, Ypast and Ypres share about
S (see also eq. 3.S18). In the PID literature, information redundant in set of
sources about a target that is not redundant with information from another set, has
been termed shared unique information [194, 195]. Therefore, using the bracketed
notation to denote the two atoms of shared unique information SUI(S : Xpast, Ypres\
Ypast) and SUI(Ypres : Xpast, S \ Ypast), we can write the definition of FIT as:

FIT = min[I∂(S; {Xpast}{Ypres}), I∂(Ypres; {Xpast}{S})] (3.S15)

We first discuss the mathematical properties of I∂(S; {Xpast}{Ypres}), the first atom
appearing in FIT definition. We then discuss the complementary mathematical
properties met by (I∂(Ypres; {Xpast}{S})), the second atom appearing in FIT defi-
nition. To keep our reasoning as general as possible, we discuss properties of the
atoms that are valid when the atom is computed using any of the redundancy mea-
sures that satisfy the pairwise marginal property (which include the Imin redundancy
measure that we implemented here). We then demonstrate that a specific pairwise
algebraic relationship exists between these two atoms. This relationship is derived
from the Shannon information theoretic quantities that relate atoms in the two de-
compositions. Importantly, this relationship uncovers the presence of a more refined
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Figure 3.S1: Schematic of the concepts of PID. A) The information I(S;X,Y ) that two
source variables X,Y carry about a target variable S can be decomposed into four PID
atoms. Left: a set-theoretic diagram of the decomposition. Shared information {X}{Y },
darkest shade of blue; unique information {X} and {Y }, lighter shade of blue; synergistic
information {X,Y }, lightest blue. Right: the same decomposition plotted as lattice. A
link between two regions symbolizes the ordering relationship of eq. 3.S8. B) FIT is
defined on two PID lattices with three sources and one target. Left: The PID lattice with
S as target and (Xpast, Ypast, Ypres) as sources. Right: the PID with Ypres as target and
(S,Xpast, Ypast) as sources. FIT is the minimum between the two atoms highlighted in
red. Classical Shannon information theoretic quantities are mapped on the two lattices
with different colors (i.e. the sum of all the atoms bounded by a given color is equal to
a classical information-theoretic quantity). I(S;Ypres) is mapped using blue, I(S;Xpast)
using purple, TE(X → Y ) using yellow, and I(Xpast;Ypres) using green. The p and t
subscript in the Figure is a shorthand for past and pres respectively.
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information component that is shared between the two atoms. Finally, we discuss
how taking the minimum between these two atoms ensures that FIT fulfill simul-
taneously a series of fundamental properties, including being upper bounded at the
same time by the feature information encoded in the past activity of the sender X,
I(S;Xpast), and in the present activity of the receiver Y , I(S;Ypres), and by the
total information flowing from X to Y , namely TE(X → Y ).

Properties of the first atom in the FIT definition Our intuitive definition is
that FIT should be the information shared between the past activity of a sender re-
gion Xpast and the present activity of a receiver region Ypres about S that is unique
with respect to the past activity of the receiver Ypast. Thus, within PID of the
(S,Xpast, Ypres, Ypast) system the most natural candidate is the first atom in eq. 4.S5
(I∂(S; {Xpast}{Ypres})) coming from the decompisition taking (Xpast, Ypast, Ypres) as
source variable and S as target variable. Using eq. 3.S11, we show that the two
Shannon information quantities I(S;Xpast) and I(S;Ypres) (i.e., the feature informa-
tion encoded in the past values of the sender X and of the receiver Y , respectively)
set an upper bound on I∂(S; {Xpast}{Ypres}). Indeed, I(S;Xpast) and I(S;Ypres) can
be written as the sum of information atoms appearing on the lattice having S as
target:

I(S;Xpast) = I∂(S; {Xpast}{Ypres}{Ypast}) + I∂(S; {Xpast}{Ypast})
+I∂(S; {Xpast}{Ypres}) + I∂(S; {Xpast}{YpastYpres})

+I∂(S; {Xpast}) ≥ I∂(S; {Xpast}{Ypres})
(3.S16)

I(S;Ypres) = I∂(S; {Xpast}{Ypres}{Ypast}) + I∂(S; {Ypres}{Ypast})
+I∂(S; {Xpast}{Ypres}) + I∂(S; {Ypres}{YpastXpast})

+I∂(S; {Ypres}) ≥ I∂(S; {Xpast}{Ypres})
(3.S17)

which proves that I∂(S; {Xpast}{Ypres}) is upper bounded by both quantities (see
Fig. 3.S1B for a graphical depiction of I(S;Ypres), in blue, and I(S;Xpast), in purple,
upper bound the first atom). However, eq. 3.S11 does not establish any relationship
between I∂(S; {Xpast}{Ypres}) and Shannon information between the source variables
of the decomposition, including TE(X → Y ). Therefore, the value of the first atom
can exceed the total amount of information transmitted from X to Y TE(X → Y ).

Next we prove that, when computed using a redundancy measure that satisfies
the pairwise marginals property (see Section 3.8.1.2), I∂(S; {Xpast}{Ypres}) only de-
pends on the probability distribution
P (S,Xpast, Ypres) through the pairwise marginal distributions P (S,Xpast) and P (S, Ypres),
and does not depend explicitly on P (Xpast, Ypres). Indeed, using eq. 3.S9 we can ex-
press I∂(S; {Xpast}{Ypres}) as the difference between the redundancy about S com-
puted on collection {Xpast}{Ypres} minus the redundancy computed on collection
{Xpast}{Ypres}{Ypast}:

I∂(S; {Xpast}{Ypres}) = I∩(S; {Xpast}{Ypres})− I∩(S; {Xpast}{Ypres}{Ypast})
(3.S18)
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If I∩ satisfies the pairwise marginals property, then the right-hand side of eq. 3.S18
only depends on the full probability distribution P (S,Xpast, Ypast, Ypres) through the
pairwise marginal distributions between the target S and the individual sources
P (S,Xpast), P (S, Ypast), and P (S, Ypres), but not through the pairwise marginals
between the sources, including P (Ypres, Xpast). This implies that if we partially
disrupt the dependency structure of our data to create surrogate data, where the in-
dividual dependencies of X and of Y on S are preserved (i.e., the pairwise marginals
P (S,Xpast) and P (S, Ypres) do not change) and the within-trial correlations at a fixed
stimulus are disrupted (i.e., the conditional distribution P (Xpres, Ypast|S) changes),
this atom will retain the same value it had in the original data. Therefore, this atom
alone cannot rule out confounding scenarios where X and Y encode S independently
with a temporal lag, with no information transfer at fixed stimulus value.

Properties of the second atom in the FIT definition Atoms satisfying math-
ematical properties that are complementary to the ones of I∂(S; {Xpast}{Ypres}) exist
on the decomposition with Yt as target. On this decomposition one atom that in-
tuitively captures feature-specific information flow is I∂(Ypres; {Xpast}{S}), i.e. the
information that the past activity of the sender X and the feature S share about
the present activity of the receiver Y that is unique with respect to the past activity
of the receiver Y . We first prove that this atom is upper bounded by the value of
TE(X → Y ), and then that this atom depends on P (Ypres, Xpast).

To prove that the value of TE(X → Y ) sets an upper bound to I∂(Ypres; {Xpast}{S}),
we first use the information-theoretic chain rule [73], to write the conditioned mu-
tual information in eq. 3.S6 as the difference between the joint mutual information
that Xpast and Ypast carry about Ypres minus the mutual information between Ypres

and Ypast. Then, we use eq. 3.S11 to write the two information quantities as the
sum of non-negative information atoms, including I∂(Ypres; {Xpast}{S}):

TE(X → Y ) = I(Ypres;Xpast, Ypast)− I(Ypres;Ypast) =

= I∂(Ypres; {S}{Xpast}) + I∂(Ypres; {Xpast}{SYpast})
+I∂(Ypres; {S}{XpastYpast}) + I∂(Ypres; {Xpast})

+I∂(Ypres; {XpastS}{YpastS}{XpastYpast})
+I∂(Ypres; {XpastS}{XpastYpast}) + I∂(Ypres; {YpastS}{XpastYpast})

+I∂(Ypres; {XpastYpast}) ≥ I∂(Ypres; {S}{Xpast})

(3.S19)

which proves that I∂(Ypres; {Xpast}{S}) is upper bounded by TE(X → Y ) (see
Fig. 3.S1B for a graphical depiction of the mapping of TE(X → Y ), in yellow, on
the lattice to which this second atom belongs).

Similarly to the first atom, this second atom is also upper bounded by I(S;Ypres)
(not proven, but see the blue quantity in Fig. 3.S1B for a graphical depiction of this
property), however it is not upper bounded by Shannon information quantities be-
tween the source variables of the decomposition with Ypres as target, and in particular



3.8. SUPPLEMENTARY MATERIAL 45

by I(S;Xpast). This is important because it proves that neither the second atom
alone satisfies all the properties that we require for a measure of feature-specific
information transfer.

We then prove that the second atom depends on P (Ypres, Xpast), a property which
makes it suited to rule out confounding scenarios where X and Y independently
encode the S but no communication occurs between the two. To do so, we use eq.
3.S9 to write the second atom as the difference between two redundancy terms:

I∂(Ypres; {Xpast}{S}) = I∩(Ypres; {Xpast}{S})− I∩(Ypres; {Xpast}{S}{Ypast})
(3.S20)

If I∩ satisfies the pairwise marginals property, then the right-hand side. of eq.
3.S18 depends on the full probability distribution P (S,Xpast, Ypast, Ypres) through the
marginal distributions between the target Ypres and the individual sources P (Ypres, Xpast),
P (Ypres, S), and P (Ypres, Ypast). This implies that if we partially disrupt the depen-
dency structure of our data and create surrogate data where the individual depen-
dencies of X and of Y on S are preserved (i.e., the pairwise marginals P (S,Xpast)
and P (S, Ypres) do not change) and the within-trial correlations at a fixed stimulus
are disrupted (i.e., the conditional distribution P (Xpres, Ypast|S) changes), the value
of the referenced atom may differ from its original value. This change occurs because
this operation generally disrupts P (Xpres, Ypast). Therefore, this atom can rule out
confounding scenarios where X and Y encode S independently with a temporal lag,
with no information transfer at fixed stimulus value.

The two atoms in the FIT definition are related by Shannon Information
theoretic quantities This Section is structured as follows. First, we present
some basic findings from Ref. [113] where, the authors showed that atoms from
different decompositions are algebraically constrained by Shannon’s information-
theoretic quantities and used these constraints to identify, specifically for a trivariate
system, a reduced set of finer information components which could describe all atoms
across different decompositions. Next, we express the algebraic constraints between
two decompositions as a homogeneous linear system of equations. We demonstrate
that the reduced set of information components derived for two decompositions in
Ref. [113] can be obtained as solutions to this homogeneous system. Finally, we
derive the analogous homogeneous system in the case of four variables. One solution
to this system relates specifically the two atoms appearing in the FIT definition.

Ref [113] showed that atoms belonging to different decompositions are alge-
braically constrained by information-theoretic quantities. These constraints derive
from fundamental axioms of PID theory, specifically the fact that in the system
(X1, . . . , XN), we can use eq. 3.S11 to express the mutual information between
two variables Xi and Xj (conditioned on up to N − 2 other variables) as the sum
of information atoms from both the decomposition with Xi and the decomposition
with Xj as target variable. For the trivariate system (S,X, Y ), Shannon information
quantities impose two linear constraints between the 4 atoms of information hav-
ing S as target and the 4 atoms of information having Y as target (all atoms are:
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I∂(S; {X}{Y }), I∂(S; {Y }), I∂(S; {X}), I∂(S; {XY }), I∂(Y ; {X}{S}), I∂(Y ; {S}),
I∂(Y ; {X}), I∂(Y ; {XS})):

I(S;Y ) = I∂(S; {X}{Y }) + I∂(S; {Y }) = I∂(Y ; {X}{S}) + I∂(Y ; {S})
I(S;Y |X) = I∂(S; {XY }) + I∂(S; {Y }) = I∂(Y ; {XS}) + I∂(Y ; {S}) (3.S21)

Combining the two equations in the system of eqs. 3.S21 reveals an equality
among the differences in the amount of information carried by pairs of similar
atoms (the two redundancies I∂(S; {X}{Y }) and I∂(Y ; {X}{S}), the two syner-
gies I∂(S; {XY }) and I∂(Y ; {XS}), and the two unique information I∂(Y ; {S}) and
I∂(S; {Y })):

I∂(S; {X}{Y })− I∂(Y ; {X}{S})
= I∂(Y ; {S})− I∂(S; {Y }) = I∂(S; {XY })− I∂(Y ; {XS})

(3.S22)

Therefore, 6 atoms of the 8 atoms belonging to the two decompositions (those ap-
pearing in eq 3.S21) are not independent, while I∂(S; {X}) and I∂(Y ; {X}) are
independent from all other atoms. In Ref. [113] the authors showed that, due to
the two constraints of eq. 3.S21, the 8 atoms can be described by 6 finer inde-
pendent information components (that they called information subatoms). In Ref.
[113] they quantify these 6 subatoms as follows: three subatoms are the minimum
between pairs of similar atoms belonging to the two decomposition (i.e., the two
redundancies I∂(S; {X}{Y }) and I∂(Y ; {X}{S}), the two synergies I∂(S; {XY })
and I∂(Y ; {XS}) and the two unique information I∂(S; {Y }) and I∂(Y ; {S})); one
subatom is equal to the difference between the maximum and the minimum in each
of the above pairs (which is equal for the three pairs, see eq. 3.S22); two subatoms
are equal to the unconstrained atoms not appearing in eq. 3.S21 (I∂(S; {X}) and
I∂(Y ; {X})).

A novel perspective on the relationships between the amounts of information
carried by specific sets of atoms from different decompositions is to conceptualize
the eight atoms as forming an eight-dimensional vector space, V . We can represent
a generic column vector in V as v and the 2 × 8 matrix of constraints imposed by
Shannon information quantities relating the atoms of the two decompositions as B.
With these definitions, we can express the system of eqs. 3.S21 as a homogeneous
linear system:

Bv = 0 (3.S23)

Specifically, the coefficients of B are obtained by taking the difference between the
middle- and the right-term in the two eqs. 3.S21. Ordering the dimensions of V as
(I∂(S; {X}{Y }), I∂(S; {Y }), I∂(S; {X}), I∂(S; {XY }), I∂(Y ; {X}{S}), I∂(Y ; {S}),
I∂(Y ; {X}), I∂(Y ; {XS})), B has the following form:

B =

[
1 1 0 0 −1 −1 0 0
0 1 0 1 0 −1 0 −1

]
(3.S24)
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It can easily be verified that, for instance, I∂(S; {X}{Y }) = I∂(Y ; {X}{S}), is
a solution of the homogeneous system in eq. 3.S23 for the matrix B defined
as in eq. 3.S24. Consider a matrix multiplication between B and the vector
vSI , whose only non-zero components are I∂(S; {X}{Y }) and I∂(Y ; {X}{S}) (i.e.,
vSI = (I∂(S; {X}{Y }), 0, 0, 0, I∂(Y ; {X}{S}), 0, 0, 0)). This matrix multiplication is
equivalent to multiplying the coefficients in columns 1 and 5 of B by the two atoms,
respectively, and doing the element-wise sum of the two resulting vectors. This sum
is zero if and only if I∂(S; {X}{Y }) = I∂(Y ; {X}{S}). Put simply, columns of B
with element-wise opposite coefficients correspond to pairs (or triplets) of atoms
that form a solution of eq. 3.S23 when they have equal value. As a result, the
following are all nontrivial solutions of the homogeneous system in eq. 3.S23, or
equivalently, they belong to the null space of B: I∂(S; {X}{Y }) = I∂(Y ; {X}{S}),
I∂(S; {Y }) = I∂(Y ; {S}), I∂(S; {XY }) = I∂(Y ; {XS}), I∂(S; {X}), I∂(Y ; {X}),
and I∂(S; {X}{Y }) = I∂(S; {XY }) = I∂(Y ; {S}). These solutions uncover spe-
cific relationships between pairs or triplets of atoms across different decompositions.
Importantly, considering that the eight atoms are not independent and can be repre-
sented by six finer, independent quantities, these solutions lend support to the notion
that these finer components of information are shared among the atoms linked by a
single solution. Remarkably, the atoms identified as related by a solution precisely
correspond to the six subatoms previously defined in Ref [113].

Similar to the case of N = 2 source variables, for N = 3 source variables, there
are 36 information atoms (18 per lattice) that belong to two decompositions with
different targets. Shannon information quantities impose constraints relating these
36 atoms, implying the existence of finer information components (or subatoms) that
can describe the two decompositions even when there are N = 3 source variables.
Our goal here is not to uncover the complete set of components that describe all
atoms belonging to the two decompositions. Rather, we aim to demonstrate that a
specific algebraic relationship, similar to the ones discussed above, exists between the
two atoms present in the FIT definition. To do this, we generalize the homogeneous
linear system in eq. 3.S23 to the four-variable case (S,Xpast, Ypast, Ypres). In this
scenario, the two decompositions that have S and Ypres as their respective targets
(represented by the two lattices in Fig. 3.S1B) are constrained by the following four
Shannon information quantities:

I(S;Ypres)

I(S;Ypres|Xpast)

I(S;Ypres|Ypast)

I(S;Ypres|Ypast, Xpast)

(3.S25)

Similarly to eq. 3.S21, we can use eq. 3.S11 to express the 4 quantities in eq.
3.S25 as sums of atoms either belonging to the decomposition with S as target, or
the one with Ypres as target. As an example, in Fig. 3.S1B, we demonstrate that
I(S;Ypres) is the sum of atoms belonging to both decompositions, which together
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consist of 36 atoms (18 per decomposition). In general, each quantity in eq. 3.S25
imposes constraints between two sets of many atoms from the two decompositions.

To study numerically the solutions of 3.S23 for these 36 atoms, we wrote a
MATLAB script named FIT nullB.m. This script computes the four quantities in
eq. 3.S25 as the sum of atoms from either the decomposition with S or Ypres as
target. It then constructs the 4 × 36 matrix B (Fig. 3.S2) in a similar way to how
we derived the 2× 8 matrix in eq. 3.S24 from the eqs. in 3.S21. From Fig. 3.S2, it
is clear that in this four-variable case, some atoms, such as I∂(Ypres; {Xpast}{Ypast}),
are not constrained by B and can vary independently (analogously to how for N = 2
the two terms I∂(S; {X}) and I∂(Y ; {X})) were unconstrained). However, there are
also pairs of atoms that are not independent when considered individually, but that
are specifically related by eq. 3.S23 (i.e. the equality between the two atoms in the
pair is a solution of eq. 3.S23). A notable example of these pairwise solutions is
made by the pair of atoms appearing in the FIT definition: I∂(S; {Xpast}{Ypres}) =
I∂(Ypres; {Xpast}{S}). This relationship can be easily verified from Fig. 3.S2, where
the first and the second atom are highlighted in red and white, respectively. Indeed,
drawing from the intuition developed in the N = 2 source variables case, these two
atoms belong to columns of B with element-wise opposite coefficients. This solution
(Fig. 3.S2) reveals a specific pairwise relationship between the two atoms appearing
in the FIT definition and supports the existence of a finer component of information
shared by these two atoms. It is actually apparent from the plot in Fig. 3.S2 that
this is the only pairwise relationship involving any of the two atoms. We quantify
this finer component of information by taking the minimum between the two related
atoms.

Proofs and summary of the main mathematical properties of FIT Here
we prove that FIT defined as in eq. 4.S5 satisfies the two following properties:

1. FIT is simultaneously upper bounded by I(S;Xpast), I(S;Ypres), and TE(X →
Y ).

2. FIT depends on P (S,Xpast, Ypres) through all the pairwise marginal distribu-
tions P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres). Thus, FIT can rule out
confounding scenarios where X and Y independently encode S with a tem-
poral lag in absence of within-trial correlations between X and Y at fixed
stimulus.

To prove that FIT is simultaneously upper bounded by I(S;Xpast), I(S;Ypres),
and TE(X → Y ), it is sufficient to note that FIT is simultaneously upper bounded
by all quantities that set an upper bound to the two atoms appearing in its definition.
This can be seen from eqs. 3.S16, 3.S17, and 3.S19, which show:

FIT ≤ I∂(S; {Xpast}{Ypres}) ≤ I(S;Xpast)

FIT ≤ I∂(S; {Xpast}{Ypres}) ≤ I(S;Ypres)

FIT ≤ I∂(Ypres; {Xpast}{S}) ≤ TE(X → Y )

(3.S26)
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Matrix of constraints between the two decompositions having S and Yt as targets
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Shannon information constraints
Figure 3.S2: Matrix of constraints imposed by Shannon information-theoretic quantities
relating the PID having (Ypres, Xpast, Ypast) as source variables and S as target variable
to the PID having (S,Xpast, Ypast) as source variables and Ypres as target variable. For
brevity, we used the notation Yt = Ypres, Xp = Xpast, Yp = Ypast and denoted each atom
(y axis) directly with the collection it is computed on, with a subscript indicating the
target variable of the decomposition (e.g. {Xp}{Yt}S = I∂(S; {Xpast}{Ypres})). For better
visibility, we plotted the transpose of the 4 × 36 matrix appearing in eq. 3.S23. The red
dashed line highlights the first atom appearing in FIT definition I∂(S; {Xpast}{Ypres}), the
white line highlights the second atom in FIT definition I∂(Ypres; {Xpast}{S}). Importantly,
only atom highlighted in red has coefficients that are opposite to the ones of the atom
highlighted in white.

A particularly important consequence of the upper bound set by TE(X → Y ) is
that if X and Y are independent, then FIT = 0. Indeed, if X is independent of Y ,
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then Xpast is independent of (Ypast, Ypres), and therefore I(Xpast;Ypast, Ypres) = 0. By
applying the information theoretic chain rule [73] to I(Xpast;Ypast, Ypres), we obtain:

I(Xpast;Ypast, Ypres) = I(Xpast;Ypres|Ypast) + I(Xpast;Ypast)

≥ I(Xpast;Ypres|Ypast) ≥ FIT
(3.S27)

Proving that, if X and Y are independent, then FIT = 0. Another important
point is that none of the 36 atoms belonging to either decomposition with S or
decomposition with Ypres as target satisfies the first property. Indeed eq. 3.S11 does
not establish any relationship between atoms of the decomposition with S as tar-
get and Shannon information between the sources of the decomposition, including
TE(X → Y ) (see Fig. 3.S1B, left), nor between atoms of the decomposition with
Ypres as target and Shannon information between the sources of the decomposition,
including I(S;Xpast) (see Fig. 3.S1B, right). Therefore it is necessary to simulta-
neously consider atoms belonging to different decompositions to obtain a quantity
that satisfies the first property.

To prove that FIT depends on P (S,Xpast, Ypres) through all the pairwise marginal
distributions P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres) we also leveraged on the si-
multaneous dependence of FIT on I∂(S; {Xpast}{Ypres}) and on I∂(Ypres; {Xpast}{S}).
I∂(S; {Xpast}{Ypres}) and I∂(Ypres; {Xpast}{S}) depend of P (S,Xpres, Ypast) through
the marginals P (S,Xpres) and P (S, Ypast), and P (Ypres, Xpres) and P (S, Ypast), re-
spectively. Therefore:

FIT = f(P (S,Xpres, Ypast)) = f(P (S,Xpast), P (S, Ypres), P (Xpast, Ypres)) (3.S28)

This implies that if we partially disrupt the dependency structure of our data and
create surrogate data where the individual dependencies of X and of Y on S are
preserved (i.e., the pairwise marginals P (S,Xpast) and P (S, Ypres) do not change)
and the within-trial correlations at a fixed stimulus are disrupted (i.e., the condi-
tional distribution P (Xpres, Ypast|S) changes), the value of the FIT can differ from
its original value. This change occurs because this operation generally disrupts
P (Xpres, Ypast). Therefore, FIT can rule out confounding scenarios where X and Y
encode S independently with a temporal lag, with no information transfer at fixed
stimulus value.

3.8.1.4 The conditional feature specific information cFIT

Here we discuss the definition and the properties of the conditioned version of FIT,
termed cFIT.

Definition and derivation of cFIT We defined a conditioned version of FIT, to
remove from the feature information transmitted from X to Y (that in this Section
we term FITX) the information potentially routed through the past activity of
a third region Z (Z can, in principle, also be the multivariate activity of a set
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of regions). To do so, we identified subcomponents of the two atoms in the FIT
definition that quantified pieces of information that were also shared with the past
of Z, and removed them from FIT.

In this subsection, we will be working with atoms computed on collections be-
longing to decompositions with N = 3 and N = 4 source variables. To avoid any
confusion, we will explicitly denote the number of source variables of each collection
in the following discussion. For example, we will use the notation {Xpast}{Ypres}(3)
to indicate the collection on which the first atom in the FIT definition is computed.
This collection refers to the PID with N = 3 source variables (Xpast, Ypres, Ypast) and
target variable S.

Previous studies showed that, using eq. 3.S11 , atoms on the PID with target
T and N source variables XN = (X1, . . . , XN) can be written as the sum of finer
atoms belonging to the PID with same target and an additional source variable
XN+1 = (X1, . . . , XN , XN+1)[196]. Importantly, collections α present in the PID
with N source variables, denoted as α(N), also exist in the PID with N + 1 source
variables, denoted as α(N+1), since XN ⊂ XN+1. However, the opposite does not
necessarily hold.

The atom I∂(T ;α(N)) is the sum of atoms I∂(T ; β(N+1)), where β(N+1) simulta-
neously precedes α(N+1) in the PID with N +1 source variables (as per the ordering
relationship of eq. 3.S8, in which precedence includes equality), but does not precede
any collections γ(N+1) such that γ(N) precedes α(N) [196]. For example, the collection
{Xpast}{Ypres}(3), present in the PID with N = 3 source variables (Xpast, Ypast, Ypres)
and target S, is preceded only by the collection {Xpast}{Ypres}{Ypast}(3) (i.e., the
information that all source variables (Xpast, Ypast, Ypres) share about S) and by it-
self (see Fig.3.S1B, left). When adding Zpast to the set of source variables, the
collection {Xpast}{Ypres}(4) is preceded by four collections (additionally to itself):
{Xpast}{Ypres}{Ypast}(4), {Xpast}{Ypres}{Ypast}{Zpast}(4), {Xpast}{Ypres}{Zpast}(4), and
{Xpast}{Ypres}{ZpastYpast}(4) (see Fig.3.S7A, right). Collection {Xpast}{Ypres}{Ypast}(4)),
which was not preceded by any collection apart from itself in the PID with N = 3
variables, is preceded also by {Xpast}{Ypres}{Ypast}{Zpast}(4)). Therefore:

I∂(S; {Xpast}{Ypres}{Ypast}(3))
= I∂(S; {Xpast}{Ypres}{Ypast}(4)) + I∂(S; {Xpast}{Ypres}{Ypast}{Zpast}(4))

(3.S29)

which intuitively means that, when considering also the past of a third region Z, the
information that (Xpast, Ypast, Ypres) share about S breaks down into a component
that is also shared with Zpast and a component that is unique with respect to Zpast.

The other two collections {Xpast}{Ypres}{Zpast}(4)) and {Xpast}{Ypres}{ZpastYpast}(4))
precede
{Xpast}{Ypres}(4)) but do not precede {Xpast}{Ypres}{Ypast}}(4)) (Fig.3.S7A). There-
fore:

I∂(S; {Xpast}{Ypres}(3)) = I∂(S; {Xpast}{Ypres}(4))
+I∂(S; {Xpast}{Ypres}{YpastZpast}(4)) + I∂(S; {Xpast}{Ypres}{Zpast}(4))

(3.S30)



52
CHAPTER 3. AN INFORMATION-THEORETIC QUANTIFICATION OF THE

CONTENT OF COMMUNICATION BETWEEN BRAIN REGIONS

which shows how the first atom in FIT definition (eq. 4.S5) breaks down into
three components in the PID with (Xpast, Ypres, Ypast, Zpast) as source variables and
S as target variable (one component that is unique with respect to Ypast but shared
with Zpast, one that is unique with respect to both Ypast and Zpast but shared with
{YpastZpast}, and one that is also unique with respect to {YpastZpast}). One of these
atoms is the information that Xpast, Ypres, and Zpast share about S, i.e. the compo-
nent of the first FIT atom that is also shared with Zpast: I∂(S; {Xpast}{Ypres}{Zpast}(4)).

Similarly, the second atom appearing in the FIT definition, is the sum of finer
atoms belonging to the PID with (Xpast, S, Ypast, Zpast) as source variables and Ypres

as target variable:

I∂(Ypres; {Xpast}{S}(3)) = I∂(Ypres; {Xpast}{S}(4))+
+I∂(Ypres; {Xpast}{S}{YpastZpast}(4)) + I∂(Ypres; {Xpast}{S}{Zpast}(4))

(3.S31)

One of these atoms is the information that Xpast, S, and Zpast share about Ypres, i.e.
the component of the second FIT atom that is also shared with Zpast: I∂(Ypres; {Xpast}{S}{Zpast}(4)).

To remove from FIT the information that is also shared with Zpast we defined
the conditioned FIT (cFIT) from X to Y conditioned to Z as:

cFITX|Z = min[I∂(S; {Xpast}{Ypres}(3)), I∂(Ypres; {Xpast}{S}(3))]+
−min[I∂(S; {Xpast}{Ypres}{Zpast}(4)), I∂(Ypres; {Xpast}{S}{Zpast}(4))]

(3.S32)

Therefore cFITX|Z is equal to FIT from X to Y (cf. eq. 4.S5) minus a term that is
the minimum between two similar information atoms (both quantifying intuitively
the feature information about S that both the past of X and the past of Z share
with the present of Y , but is unique with respect to the past of Y ) on the two PID
having S and having Ypres as target variables, respectively.

Properties of cFIT In this Section we prove two properties of cFIT, under the
assumption that we compute PID atoms using a redundancy measure (such as Imin)
that is non-negative for each atom. The first property we prove (i) is that cFITX|Z
is upper bounded by FITX and is lower bounded by the maximum between 0 and
FITX −FITZ (where we denote as FITX the feature information transmitted from
X to Y and FITZ the one transmitted from Z to Y ). The second property that we
prove (ii) is that if S → Zpast → Ypres is a Markov chain (i.e. P (S;Ypres|Zpast) =
P (S|Zpast)P (Ypres|Zpast)) then cFITX|Z = 0. This second property is important
because it means that if the present of Y received all its feature information from
the past of a recorded region Z, then there is no residual FIT through X once any
contribution from Z is eliminated.

We start by proving property (i). From eq. 3.S32, since we subtract from
FIT the minimum between two non-negative quantities, it immediately follows that
cFITX|Z ≤ FITX . This proves that cFITX|Z is upper bounded by FITX . Then,
since from eqs. 3.S30 and 3.S31 we have that

I∂(S; {Xpast}{Ypres}(3)) ≥ I∂(S; {Xpast}{Zpast}{S}(4))
I∂(Ypres; {Xpast}{Ypres}(3)) ≥ I∂(Ypres; {Xpast}{Zpast}{S}(4))

(3.S33)
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from which it follows that:

min[I∂(S; {Xpast}{Zpast}{Ypres}(4)), I∂(Ypres; {Xpast}{Zpast}{S}(4))]
≤ min[I∂(S; {Xpast}{Ypres}(3)), I∂(Ypres; {Xpast}{S}(3))]

(3.S34)

Eq. 3.S34 shows that the term that we subtract from the right-hand side in eq.
3.S32 is lower or equal to the first one, proving that cFITX|Z ≥ 0.

Finally, we prove that cFITX|Z ≥ FITX − FITZ . We do so by proving that
the term we subtract from FITX in the definition of cFITX|Z (eq. 3.S32) is smaller
than FITZ . FITZ is defined on the two decompositions having (Ypres, Ypast, Zpast)
as sources and S as target variable, and the one having (S, Ypast, Zpast) as sources
and Ypres as target variable:

FITZ = min[I∂(S; {Zpast}{Ypres}(3)), I∂(Ypres; {Zpast}{S}(3))] (3.S35)

Similarly to eqs. 3.S30 and 3.S31, the two atoms in 3.S35 break down into the sum
of finer information atoms - when adding variable Xpast to the respective sets of
source variables (in Fig.3.S7A we show a graphical depiction of the decomposition
of the first atom in FITZ definition, depicted in light blue):

I∂(S; {Zpast}{Ypres}(3)) = I∂(S; {Zpast}{Ypres}(4))
+I∂(S; {Zpast}{Ypres}{YpastXpast}(4)) + I∂(S; {Zpast}{Ypres}{Xpast}(4))

(3.S36)

I∂(Ypres; {Xpast}{S}(3)) = I∂(Ypres; {Xpast}{S}(4))
+I∂(Ypres; {Xpast}{S}{YpastZpast}(4)) + I∂(Ypres; {Xpast}{S}{Zpast}(4))

(3.S37)

From eqs. 3.S36 and 3.S37 it follows that I∂(S; {Zpast}{Ypres}(3)) ≥ I∂(S; {Zpast}{Xpast}{Ypres}(4))
(i.e. the information the the past of Z and the present of Y share about S is larger
than the information that they both share also with the past of X about S) and
I∂(Ypres; {Zpast}{S}}(3)) ≥ I∂(Ypres; {Zpast}{Xpast}{S}}(4)). Thus:

FITZ ≥ min[I∂(S; {Zpast}{Ypres}{Xpast}(4)), I∂(Ypres; {Xpast}{S}{Zpast}(4))]
(3.S38)

The above proves that cFITX|Z ≥ FITX − FITZ . This is important because it
assures that the component that we subtract from FITX when removing from it
any contribution potentially due to Zpast cannot exceed the feature information
transmitted from Z to Y (it we only remove the FITZ that is shared with FITX).
To summarize, we proved that cFITX|Z ≤ FITX , that cFITX|Z ≥ 0 and that
cFITX|Z ≥ FITX − FITZ , meaning that cFITX|Z is upper bounded by FITX and
is lower bounded by max[0, F ITX − FITZ ].

We now prove property (ii): if S → Zpast → Ypres is a Markov chain (i.e.
I(S;Ypres|Zpast) = 0) then cFITX|Z = 0). If S → Zpast → Ypres is a Markov
chain, that is P (S;Ypres|Zpast) = P (S|Zpast)P (Ypres|Zpast), then I(S;Ypres|Zpast) = 0
[73]. Using the information-theoretic chain rule [73] we can write:

I(S;Ypres|Zpast) = I(S;Ypres, Zpast)− I(S;Zpast)

= I(Ypres;S,Zpast)− I(Ypres;Zpast)
(3.S39)



54
CHAPTER 3. AN INFORMATION-THEORETIC QUANTIFICATION OF THE

CONTENT OF COMMUNICATION BETWEEN BRAIN REGIONS

Therefore I(S;Ypres|Zpast) = 0 implies I(S;Ypres, Zpast) = I(S;Zpast) (meaning that
all PID atoms that are a subpart of I(S;Ypres, Zpast), but not of I(S;Zpast), are
zero) and also I(Ypres;S,Zpast) = I(Ypres;Zpast) (meaning that all PID atoms that
are a subpart of I(Ypres;S,Zpast), but not of I(Ypres;Zpast), are zero). In particular,
in eqs. 3.S30 all atoms are computed on collections preceding (according to eq.
3.S8) collection {YpresZpast}, meaning that, due to eq. 3.S11, they are all a sub-
component of I(S;Ypres, Zpast). However, among these atoms, only the collection
in I∂(S; {Xpast}{Ypres}{Zpast}(4)) precedes collection {Zpast} on this decomposition
and, therefore, is a subcomponent of I(S;Zpast). Since in our case I(S;Ypres, Zpast) =
I(S;Zpast), the other two atoms on the right-hand side of 3.S30 are zero. Thus, if
S → Zpast → Ypres is a Markov chain, the following identity holds for the first atom
in FIT definition I∂(S; {Xpast}{Ypres}(3)) = I∂(S; {Xpast}{Ypres}{Zpast}(4)). Sim-
ilarly, in eqs. 3.S31 all atoms are computed on collections preceding collection
{SZpast} (meaning that, they are a subcomponent of I(Ypres;S,Zpast)). However,
among these atoms, only I∂(Ypres; {Xpast}{S}{Zpast}(4)) precedes collection {Zpast}
on this decomposition and, therefore, is a subcomponent of I(Ypres;Zpast). Since
in our case I(Ypres;S,Zpast) = I(Ypres;Zpast), the other two atoms on the r.h.s.
of 3.S30 are zero. Thus, if S → Zpast → Ypres is a Markov chain, the follow-
ing identity holds for the second atom in FIT definition I∂(Ypres; {Xpast}{S}(3)) =
I∂(Ypres; {Xpast}{S}{Zpast}(4)). Altogether, we found that, if S → Zpast → Ypres is
a Markov chain, the two atoms appearing in FIT definition (eq. 4.S5) are exactly
equal to the two atoms between which we minimize to remove the effect of Z from
FITX in eq. 3.S32, proving that in this scenario cFITX|Z = 0.

3.8.1.5 PID decomposition of DFI

We next use PID to examine a previously introduced measure of the information
about a specific stimulus feature S flowing from X to Y , called Directed Feature
Information (DFI) [183].

This measure was defined by reasoning to first consider TE between X and Y as
a measure of the overall information transmitted from X to Y and the to subtract
out from it the information that is not due to changes in the value of the stimulus
feature. The latter was estimated as TE(X → Y |S), the value of TE conditioned
on the stimulus feature, that is the expected value of the TE when it is conditioned
on the value of a particular stimulus feature. The reasoning of [183] is that the
conditioning removes information not related to variations of the stimulus feature,
and that thus TE(X → Y |S) quantifies the amount of information transferred from
X to Y that is not related to the variations in the stimulus feature. With this
reasoning, the authors of [183] defined the DFI to measure stimulus-feature specific
information transfer by subtracting out from the total information their estimate of
the one that is not related to variations in stimulus features [183]:

DFI(X → Y ) = TE(X → Y )− TE(X → Y |S) (3.S40)
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The authors of Ref [183] showed that DFI is equivalent to the difference be-
tween the sum of the information about S that each of Xpast and Ypres individually
carry, minus the information about S jointly carried by Xpast and Ypres, with all the
information quantities conditioned on Ypast:

DFI(X → Y ) = I(S;Xpast|Ypast)+I(S;Ypres|Ypast)−I(S;Xpast, Ypres|Ypast) (3.S41)

The difference between information individually carried and information jointly car-
ried is often referred to as co-information [100, 103]. This measure of co-information
has been used in the literature as a measure of the net effect of redundancy and
synergy and it indicates prevalent redundancy when positive and prevalent synergy
when negative [87, 89]. In this rewriting, DFI has some similarities with FIT, in
that it uses a measure of redundancy (although conflating synergy and redundancy)
between stimulus information in the past of X and in the present of Y , as well as a
discounting, by conditioning, of the past activity of Y .

Previous work on PID has shown that co-information can be expressed as the
difference between two non-negative pieces of information which properly quantify
synergy and redundancy [100, 103]. Therefore a simple difference between DFI and
FIT is that DFI possibly also includes terms of synergy between Xpast and Ypres than
should not be included in a definition of transmission of feature information from X
to Y . Moreover, given that DFI conditions on the past activity of Y rather requiring
uniqueness with respect to the past feature information of Y (as in FIT), it does not
isolate information in the present activity of Y that has not been present before in
Y . To understand better the consequences of these facts in terms of the difference
between DFI and FIT, we reformulated DFI as a sum of the partial information
terms from the PID, as follows:

DFIX→Y = I(S;Xpast|Ypast) + I(S;Ypres|Ypast)

−I(S;Ypres, Ypast, Xpast) + I(S;Ypast)

= I∂(S; {Xpast, Ypast}{Ypres, Ypast})
+I∂(S; {Xpast, Ypast}{Ypres, Ypast}{Xpast, Ypres})+

+I∂(S; {Xpast}{Ypres, Ypast}) + I∂(S; {Ypres}{Xpast, Ypast})
+I∂(S; {Xpast}{Ypres})− I∂(S; {Xpast, Ypres})− I∂(S; {Xpast, Ypast, Ypres})

(3.S42)

Note that in the above expression all terms involving pieces of redundant infor-
mation are positive and those only involving synergistic information are negative.
Thus this decomposition of DFI demonstrates that it is the linear combination of
(mostly) redundant information terms appearing with a positive sign and synergistic
information terms appearing with a negative sign. This explains why, as a result
of not separating redundancy from synergy, DFI can be negative and difficult to
interpret as information about a stimulus feature transmitted from X to Y .

The fact that DFI can become negative also shows that using TE(X → Y |S)
to remove from the total transmitted information the one not about the stimulus
feature S (as done in DFI, see [183]) is incorrect. This is because TE(X → Y |S)
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does not really quantify the information from X to Y which is not about S, as
conceptualized in Ref [183]. It actually quantifies the information transmitted on
average within each feature condition. This can overestimate the information from
X to Y which is not about S. In simple terms, when using data from the same
feature conditions, some information sent from X to Y in this subset of data could
be about the specific value of the feature in the considered set of trials. When the
strength of communication about S between X and Y varies from one feature value
to another, this overestimation may become even more severe, because in this case
additional information about S is encoded synergistically within the network of X
ad Y by their feature-dependent relationship [89].

3.8.1.6 Numerical computation of FIT and other information
quantities

FIT and all other information theoretic quantities were computed from both sim-
ulated and real data by plugging into the corresponding equations the numerical
evaluation of the response probabilities from the data. We computed by the re-
sponse probabilities discretizing neural activity into a number R of equipopulated
bins [170] and then computing empirically the frequency of occurrence of each binned
response across all available trials.

In Table 3.S1 we summarize the number of bins we used to discretize neural
activity for each figure in the paper. In Section 3.8.2.5 we study the accuracy of
the FIT and TE estimates with the number of available trials and we show that
the estimates of FIT and TE are accurate and unbiased for the number of bins and
number of trials used for all analyses. However, in the code we provide to compute
FIT and TE, we also implemented limited-sampling bias correction routines that can
be used to obtain more accurate estimates when data are more scarce (see Section
3.8.2.5).

Number of bins 2 3 4

Figures

Fig.3
Fig.S8
Fig.S9
Fig.S11
Fig.S12B
Fig.S13B

Fig.S14D-E

Fig.2A,B,E
Fig.S3
Fig.S4
Fig.S5
Fig.S7

Fig.S13A
Fig.S14A-B

Fig.2C
Fig.4

Fig.S10
Fig.S12A

Table 3.S1: Number of bins used to discretize neural activity for information-theoretic
analyses of simulated and real data, for each main text and SM figure
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3.8.1.7 Permutation-based non-parametric null hypotheses for FIT and
TE

To test for significance of the information theoretic quantities, we used non-parametric
permutation tests, described below.

To test for the significance of mutual information values about the feature of
interest, we used established non-paramametric procedures [83, 101, 178]. We con-
structed surrogate datasets in which we destroyed any feature information by ran-
domly permuting across trials the values of S, and then we recomputed information
on the surrogate data to obtain a null-hypothesis distribution of null information
values.

To test for the significance of FIT, we developed a permutation test in which
we created surrogate data in which we preserve the feature information in the past
of X and the present of Y while destroying the communication of this information
between X and Y . We shuffled X within trials with the same value of the feature
S, destroying any within-trial statistical relationship between the activity of X and
the activity of Y at fixed values of S, and recomputed FIT on the surrogate data.
This data shuffling preserves the marginal distributions between the feature and the
past activity of X and between the stimulus and the present activity of Y , thereby
preserving the information about the stimulus that each carries. However, it de-
stroys the within-trial statistical relationship at fixed stimulus between X and Y
that would be present if X sends stimulus information to Y . Because FIT depends
on P (Xpast, Ypres) (see mathematical proof in Section 3.8.1.3), the values of FIT on
the permuted data will be smaller than the ones on the original data whenever there
is direct within-trial communication of stimulus information between X and Y , but
will be similar to the value of the original data when there is no such direct within-
trial communication. As shown by numerical simulations (see Section 3.8.2.6) the so
generated null hypothesis distribution of FIT values when X and Y encode but do
not communicate stimulus feature information is more conservative (see Fig. 3.S7C)
than the simpler one that would be obtained by a permutation test destroying all
information about S in X and Y by randomly permuting S across all trials, as for
the mutual information quantities above. (This permutation test would implement
the idea that is no stimulus-feature information is present, it cannot be transmitted).
However, in limiting cases in which the stimulus information in the neural data is
absent, we found it numerically better to perform this second random permutation
of the label of S across trials (because more possible independent data permutation
are available in this second permutation, which therefore may have some advantages
in the case of zero or negligible stimulus information, see Fig. 3.S7E). To reduce the
probability of false positives in such cases of no information present in the network,
we computed and then intersected the two above describe possible permuted dis-
tributions by taking the element-wise maximum between the two distributions, and
obtained a null distribution for FIT. (In practice, in real data and simulations with
stimulus information present, the maximum of the two permuted values coincided
in all simulations with the maximum of the first permutation. This is exemplified
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in Fig. 3.S7C, in which for higher value of the parameter WZY some information
about the stimulus is created in both X and Y in absence of communication be-
tween X and Y , the null hypothesis for FIT taking the maximum between the first
and second permutation has values not only larger than the FIT value measures in
the simulation, but also much larger values then the ones based on only shuffling S.
In simulations with null information, the maximum value of the permuted data in
each simulation could instead belong to either permutation.)

An identical procedure was applied to test for the significance of DFI. For TE,
since by design the measure captures the total amount of information flowing from
X to Y , we permuted the neural activity of the sender X across all trials.

Since in all simulations and real data analyses we wanted to test for the signif-
icance of the information values averaged either across simulations or participants,
we computed the average over simulations and participants of the information values
in each realization of the random permutation and we used this distribution of null
hypothesis of averaged values for testing the significance of the averaged informa-
tion value. (To compute the null-hypothesis distribution, we generated 500 different
realizations of the permuted average information for each test we conducted.)

In some analyses (e.g. Fig. 3C and 4B,C) we had to identify the cluster of
post-stimulus times and transmission delays for which FIT or TE were significantly
different from zero (shown, e.g., in Figs. 3.S9G, 3.S10A,B). We individuated these
clusters of points in the time-delay space using a cluster-based permutation test
[177, 178] using as null hypothesis values those obtained from the permutation test
described above. We computed the cluster forming threshold as the 99th percentile
of information values in the surrogate data. We created information clusters in the
original and shuffled datasets by summing together all adjacent information values
above the cluster forming threshold. We then determined a null distribution for
information clusters using the maximum cluster value from each shuffled dataset.
Finally, we assigned significance to clusters in the original dataset if their value was
larger than the 99th percentile of the clusters null distribution (p ¡ 0.01).

3.8.2 Details of simulations and and additional analyses of
simulated data

3.8.2.1 Simulations of FIT and TE as a function of signal and noise
transmission

This section pertains to the description of Fig. 2A-B of the main text.

The goal of the first simulation (whose results are reported in Fig. 2A) was to
evaluate the dependence of FIT and TE on stimulus-feature-related and -unrelated
transmission. The goal of the the second simulation (whose results are reported Fig.
2B) was to test the ability of FIT and TE to localize in time the stimulus-feature-
related information transmission. The setting of both simulations was identical and
is described in the following.
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We simulated 500ms of activity of activity ofX and Y , in time steps of 10ms. The
sending region X encoded a stimulus S over time and transmitted stimulus-feature-
related and -unrelated activity to the receiver Y with a given temporal lag δ. The
stimulus feature S being encoded byX and transmitted to Y was an integer (between
1 and 4) drawn independently and uniformly in each trial (500 trials per stimulus
for each of the 50 simulations). The activity of the sender was a two-dimensional
variable with one feature-informative Xstim and one feature-uninformative compo-
nent Xnoise. The stimulus-feature-informative dimension had a temporally-localized
feature-dependent bump in the activity (from 200 to 250ms) and multiplicative
Gaussian noise

X(t)stim = S(t)(1 +N (0, σstim)) (3.S43)

where S(t) was a function equal to the value of the the stimulus s ∈ [1, 4] during
the time window [200, 250]ms and was zero outside of this window. The presence of
noise in X(t)stim was needed to test for the impact of within-trial encoding of S in
X on the within-trial encoding of S in Y , at fixed values of S (i.e., when X encodes
S incorrectly, also Y encodes S in a similar way). If X(t)stim encoded the stimulus
perfectly (no noise in X(t)stim, therefore X(t)stim = S for t ∈ [200, 250]ms), it would
be impossible to determine whether Y is receiving stimulus information from X or
directly from S. We choose the noise in the stimulus-feature-informative dimension
to be multiplicative because it made it a more challenging scenario for FIT. In fact
using multiplicative noise X developed a stimulus-dependent noise in the encoding
of S. The stimulus-dependent noise in the encoding of S leads to stimulus-dependent
within-trial correlations between X and Y , which potentially induces synergies in
the encoding of S in X and Y [89]. Since FIT computes information transmission
by identifying a component of redundant information between the past of X and
the present of Y , using simulations that have both redundancy between X and Y
induced by information transmission and synergy between X and Y induced by
stimulus-dependent amount of noise encoded and transmitted (using this kind of
multiplicative noise), makes it potentially harder for a measure of feature-specific
information transmission to separate out the redundant information that was trans-
mitted. In fact, we will see that measures that do not separate well redundancy
and synergy, such as DFI, will suffer under such conditions (leading to negative
values of transmitted information (Fig. 3.S15A), whereas FIT seems to work well
even under this condition because it uses PID to only include redundant time-lagged
information about S in X and Y , discarding synergy. (However, we found similar
results for TE and FIT by replacing the multiplicative noise with an additive noise
in Eq. 3.S43 (Fig. 3.S3)). The stimulus-feature-unrelated component was, at any
time point, a zero-mean Gaussian noise X(t)noise = N (0, σ). The activity of the
receiver Y was the weighted sum of Xstim and Xnoise with a delay δ, plus a Gaussian
noise: Y (t) = WstimXstim(t − δ) + WnoiseXnoise(t − δ) + N (0, σ). The delay δ was
chosen randomly in each repetition from a uniform distribution in the range between
40ms and 60ms, in steps of 10ms. Therefore, across repetitions of the simulation,
Y received information from X only in the time window [240, 310]ms. In all simu-
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lations we set a standard deviation σ = 2 for the additive Gaussian noise in Xnoise

and Y , and a standard deviation σstim = σ
5
= 0.4 for the multiplicative Gaussian

noise in Xstim.

In the first simulation, we computed FIT and TE at the first time instant in
which Y received information from X (t = 200ms + δ), and at the ground truth
delay δ, for all combinations of Wstim and Wnoise in the range between 0 and 1,
in steps of 0.1. In the second simulation we set Wstim = 0.5 and Wnoise = 1 and
computed FIT and TE at all time points, in a rage of communication delays between
0 and 100ms, and averaged their values over delays to obtain temporal profiles of
transmitted information.
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Figure 3.S3: Further tests of FIT on simulated data with additive noise in X. This figure
is similar to Fig. 2 of the main text except that the results are now obtained with additive
(rather than multiplicative) noise in X A) FIT and TE as function of stimulus-feature-
related (Wstim) and -unrelated (Wnoise) transmission strength. * indicate significant values
(p ¡ 0.01, permutation test) for the considered parameter set. B) Dynamics of FIT and
TE in a simulation with time-localized stimulus-feature-information transmission. The
red area shows the window of stimulus-feature-related information transfer. Yellow dots
show time points with significant information (p ¡ 0.01, permutation test). Results plot
mean (lines) and SEM (shaded area) across 50 simulations (2000 trials each).

3.8.2.2 FIT can detect feature specific information flow even with
overlapping time courses of stimulus information

This section pertains to the description of Fig. 2C-E of the main text.

One often used method to infer hierarchical flow of information across ares is to
consider the timing of neural activation or of stimulus selectivity of activity across
brain regions [197]. However, this method is neither necessary nor sufficient to
determine real communication. On the one hand time lagged information selectivity
between two regions may arise in absence of communication for example if the
two regions received a partly shared input signal with a different delay. On the
other hand, as we will exemplify in this section, real features-specific communication
between two brain regions could take place even without detectable differences in
timing of information across the considered regions. The purpose of this subsection
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is to illustrate that this can happen and also to show that in such case FIT has
power to discriminate between cases in which feature-specific information flow does
or does not take place. We will show that this is because FIT can assess that in
cases of real communication the format of information encoding is the same in the
past activity of the sender and in the present activity of the receiver.

We simulated a scenario where a sending regions X encodes and transmits to a
receiving region Y information about an integer stimulus-feature S (ranging between
1 and 4). Importantly, the past of Y and the present of X carry the same amount of
feature information of the past ofX and the present of Y , but encode the information
with different formats.

The feature encoding format of each region is determined by the encoding func-
tion f(S) controlling the average response of each region to individual stimulus
values. We simulated responses with three different encoding functions:

f1(S) = 1 + δ[0, 1, 2, 3]

f2(S) = 1 + δ[1, 0, 2, 3]

f3(S) = 1 + δ[0, 1, 3, 2]

(3.S44)

where δ is a parameter controlling the separation of the average responses to
different stimuli, and therefore the amount of feature information carried by each
region at a specific time point. We set δ = 1 in all simulations. The three en-
coding functions f1(S), f2(S), f3(S) are depicted in Fig.2C in blue, green and red,
respectively. The encoding function determined the feature values that each region
preferentially encodes at each specific time point. Specifically, due to the presence
of additive Gaussian noise, regions were most informative (according to Eq. 3.S14)
about stimulus values for which the response was either minimum (i.e. equal to 1
in eq. 3.S44) or maximum (i.e. equal to 1 + 3δ in eq. 3.S44). Indeed, activity
distributions in response to these stimulus values were less overlapped with activity
in response to other stimuli. For example, regions encoding the stimulus as f1(S)
would carry high specific information about stimulus values 1 and 4, and low specific
information about stimulus values 2 and 3. On the other hand, regions encoding
the stimulus as f2(S) would carry high specific information about stimulus values
2 and 4, and low specific information about stimulus values 1 and 3. Therefore,
since the Imin measure quantifies redundancy as the overlap in the distributions
of specific information across individual values of target variable, the responses of
two regions X and Y would be maximally redundant if they encoded the feature
with the same encoding format (e.g., fX(S) = fY (S) == f1(S)), partially redun-
dant if they both carried high specific information about one stimulus value (e.g.,
fX(S) == f1(S) and fY (S) == f2(S)) or minimally redundant if they carried high
specific information about different pairs of stimulus values (e.g., fX(S) == f2(S)
and fY (S) == f3(S)).

In our simulation, X and Y activity at different time points was described by
the following set of equations:
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Xpast = f1(S) + E1

Ypres = Xpast

Ypast = f2(S) + E2

Xpres = f3(S) + E3

(3.S45)

where E1, E2, and E3 are additive Gaussian noise with standard deviation equal
to σ. Importantly, real feature transfer only occurs in the X → Y direction, causing
the past of the sender and the present of the receiver to encode the feature with
the same format. Since σ was equal for all noise terms in eq. 3.S45, both X and
Y carried the same amount of stimulus-feature information in the past and in the
present, removing any contribution to FIT due to time-lagged information levels
in the sender and the receiver region. We measured FIT in the two directions
(X → Y and Y → X) for different levels of noise σ. By changing σ we controlled
the SNR = δ

σ
in both past and preset activity of X and Y by changing σ. We

repeated the simulation 100 times for each SNR value ranging between 0.05 and
1 with a precision of 0.05. We measured the FIT significance in the two direction
using the permutation test described in section 3.8.1.7.

We found that, because FIT could correctly detect that the format of information
representation of S in the present of Y was equal to that of the past ofX but different
to that of the past of Y (Fig. 3.2D), and that feature information flowed from X to
Y (Fig. 3.2E).

3.8.2.3 Simultaneous transfer of information about more than one
feature

We performed a simulated study of how FIT performs when studying neural system
that encode and transmit more than one feature (Fig. 3.S4).

We simulated two independent features (e.g. of a sensory stimulus) S1,S2 simul-
taneously encoded in a brain region X and transmitted to a brain region Y . In the
simulation, S1 is more strongly and encoded and transmitted than S2. The equation
for simulating the data are as follows:

X = S1 +DS2 + Ex (3.S46)

where S1, S2 are independent binary variables (values equal to ±1), Ex is Gaus-
sian noise with standard deviation equal to 1, and Y equals X with a time lag, plus
independent Gaussian noise with standard deviation equal to 1.

We simulated the system with different values of D (the strength of encoding
and transmission of S2 relative to S1). We found (Fig. 3.S4) that FIT identifies
correctly that both features are transmitted, and ranks correctly the features about
which most information is transmitted. FIT also identified correctly the limiting case
(D = 1) in which both features are encoded and transmitted with equal strength.
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Figure 3.S4: Simulation of a system that encodes independently two features S1 and
S2 in the activity of a brain region X and transmits them to another brain region Y .
We compute FIT about each of the two stimulus features S1, S2 or their combination
S = (S1, S2) as a function of the parameter D describing the strength of encoding and
transmission of S2 with respect to S1. We plot mean ± SEM over 50 simulations

3.8.2.4 Simulations of bidirectional transmission between X and Y

Here we describe the simulations whose results are presented in Fig. 3.S5.

To further investigate the ability of FIT to determine the direction of stimulus-
feature information flow, we simulated a scenario with bidirectional (back and forth)
communication between X and Y with stimulus-feature-related transfer from X and
stimulus-feature-unrelated transfer from Y to X (Fig. 3.S5A).

In brief, both X and Y received information directly from a feature-information-
sending region S. The region X received stimulus information from S early on
(between 50 and 90 ms) and Y received stimulus information from S at a later time
(between 110 and 150 ms). X sent its entire activity to Y (therefore communicating
its stimulus information when it became available). Y instead only sent to Y a part
of its activity that did not carry stimulus information. The details of how this was
achieved are reported below.

We simulated 180ms of activity of X and Y , in steps of 1ms. The stimulus
feature S being encoded and transmitted from a stimulus region S to X and Y was
an integer (between 0 and 3) drawn independently and uniformly in each trial. The
activity of X was one-dimensional. The activity of Y was two-dimensional. Both
dimensions of Y (Y+ and Y−) were generated with a Poisson process whose mean
was modulated over time by a Gaussian bump (whose amplitude was equal to the
stimulus-feature value S) in the time window [110, 150]ms, plus an additive Gaussian
noise and time-lagged readout of X activity (with a X to Y transmission delay δxy =
10ms). Importantly, Y+ encoded the stimulus as a positive Gaussian bump and Y−
encoded the stimulus as a negative Gaussian bump. Therefore, the entire activity of
Y , i.e. the sum of the two components, Ynoise = Y++Y− carried no information about
the stimulus, and the difference of the two components Ystim = Y+ − Y− carried all
the stimulus information in Y . X was a Poisson process whose mean was positively
modulated over time by a Gaussian bump - whose amplitude was modulated by
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the stimulus - in the time window [50, 90]ms, plus an additive Gaussian noise and
time-lagged readout of the entire activity of Y Ynoise (with a Y to X transmission
delay δyx = 15ms).

We measured FIT at each time step of the simulation over a range of commu-
nication delays and averaged the resulting information values over delays to obtain
temporal profiles of information transmission. We found that FIT correctly captured
the flow of information about S between X and Y that we put by design into these
simulated data. FIT revealed that there was a significant stimulus-feature-related
information transmission from X to Y , that was temporally localized in the actual
“ground-truth” [60, 100]ms window in which Y received stimulus information, and
no significant stimulus-feature-information transmitted from Y to X (Fig. 3.S5B).

We also used these simulations to test the performance of the Directed Feature
Information, DFI [183], using the same analysis pipeline described here for FIT.
Results are discussed in Section 3.8.4.2.
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Figure 3.S5: Simulations of performance of FIT and other measures in a case of transfer
of stimulus-feature-related and stimulus-unrelated information in different directions. A)
Schematic of the simulation. A stimulus node S provides partly complementary informa-
tion about a stimulus feature to X (in the 50-90ms interval) and to Y (in the 110-150ms
interval). X transmits stimulus information to Y . Y instead has different components of
activity and it projects to X only the component of its activity that is stimulus-unrelated.
In other words, we have stimulus-feature-information transfer from X to Y and noise
transfer from Y to X). B) Results of the analyses of this simulated activity using FIT
(left panels) and DFI (right panels). Gray lines plot the value of these quantities Yellow
dots plot time points in which the measure was significantly different from null (permuta-
tion test of Section 3.8.1.7; p<0.01)

.
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3.8.2.5 Limited-sampling bias of FIT and TE

Information-theoretic quantities are know to suffer from a systematic error (called
limited sampling bias) when the probabilities used to compute them are estimated
from a limited number of experimental trials [179]. While the limited bias of Shannon
information quantities such as TE have been studied well and has been shown to be
inversely proportional to the number of available trials and directly proportional to
the number of bins used to discretize the data [179, 198], those of FIT remain to be
investigated.

Therefore here we simulated a simple scenario to study how FIT and TE scale
with the number of trials available in the dataset and the number of bins of the
discretized activity. In these simulations X encoded a binary feature S with additive
Gaussian noise. Y was equal to X with a time lag of 1 plus independent Gaussian
noise (standard deviation of noise = 0.5).

We found (Fig. 3.S6) that FIT behaved much better than TE with the data size
and number of bins. The correct value of FIT, which can be estimated from large
numbers of trials, was achieved already with smaller number of trials than for TE.
We found that accurate calculations of FIT are possible with the number of trials
available in empirical datasets (Fig. 3.S6); for comparison FIT calculations with
real and simulated data in this paper were done with 2-4 discretization bins, see
Table 3.S1). Our understanding is that the better scaling and sampling properties
of FIT with respect to Shannon Information quantities arise because FIT considers
a PID part of the total information which has lesser bias compared to other parts of
the total information. Given that the PID atoms of FIT do not contain synergistic
terms, this is in line with previous work [199] showing that synergistic components of
information have much larger limited sampling bias, and that information quantities
that do not include synergistic components have much better sampling properties
than full multivariate Shannon information quantities. Thus, FIT can be computed
from the datasets in which Shannon information measures typically applied to neural
data. We applied a widely used bias correction technique, called the Quadratic
Extrapolation [81, 179]. This method is based on subtracting the bias estimated
from a second-order polynomial fitting of the dependence of the estimated quantity
on sub-samples of the available data. We found (Fig. 3.S6) that this bias subtraction
technique was helpful in further improving the estimate of information (reducing the
limited sampling bias) in cases of very low numbers of trials available. This bias
correction technique is made available in the software we provide for both FIT and
TE.

3.8.2.6 Simulation tests of the significance of FIT and cFIT

In this Section we describe the simulations and results presented in Fig. 3.S7.

In this set of simulations, we first evaluated the effectiveness of the permutation-
based non-parametric tests for FIT in a difficult scenario in which X and Y inde-
pendently encode stimulus-feature information with a temporal lag, but no actual
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.

communication occurs between them. We then evaluated the performance of cFIT
in measuring the unique contribution of X in sending feature information to Y in
presence of an alternative information route through a third node Z sending infor-
mation to Y .

We addressed both questions using a the following simulation setup. We per-
formed a simulation in which two senders (X and Z) both transmitted stimulus-
feature information to Y (Fig. 3.S7B). X encoded the stimulus-feature linearly and
Z non-linearly so that they carried partially different information about S. This is
important because a good measure quantifying the unique contribution of X (but
not Z) in the transmission of information to Y should capture that, even if the
total amount of feature information transmitted from Z to Y is stronger than the
one transmitted from X to Y , there can still be a different component of infor-
mation that is uniquely transmitted by X and not by Z. We simulated 500ms
of activity, in time steps of 10ms. The encoded and transmitted stimulus feature
S was a stimulus-intensity integer value (0 to 3) drawn independently and uni-
formly in each trial (500 trials per stimulus). The activity of X had a temporally-
localized square bump between 200 to 250ms whose amplitude depended linearly
on S, with multiplicative Gaussian noise. Activity of Z had a temporally-localized
square bump (from 200 to 250ms) encoded with a different format with respect to
X, and multiplicative Gaussian noise. Specifically, X encoded the stimulus feature
S = (0, 1, 2, 3) with the encoding function while Z encoded S with the encoding
function S = (1, 0, 3, 2). In this way, X carries more specific information than Z
(see eq 3.S14) about S = 0, 3 and Z carries more specific information than X about
S = 1, 2, therefore both X and Z carry some unique information about S. Activity
of Y was the weighted sum of X and Z with a temporal lag, plus additive Gaussian
noise: Y (t) = WxyX(t−δ)+WzyZ(t−δ)+N (0, σ). The delay δ in the transmission



3.8. SUPPLEMENTARY MATERIAL 67

of information fromX to Y was chosen in each repetition of the simulation randomly
from a uniform distribution in the range between 40ms and 60ms . We computed
FIT and cFIT at the first time instant in which information in Y was received from
X and Z (t = 200ms + δ) using to define past activity the ground-truth delay δ
actually used in that simulation. We set a standard deviation σ = 2 for the additive
Gaussian noise in Y , and a standard deviation σstim = σ

5
= 0.4 for the multiplicative

Gaussian noise in X and Z.

Tests of significance of FIT accounting for the possible existence of en-
coded feature information in the absence of transfer of it across regions
We first addressed the first question, that is how to deal with confounding scenarios
where X and Y independently encode feature information with a temporal lag, but
no actual communication occurs between them.

We studied how the FIT from X to Y depended on the strength of feature-
related transmission from Z to Y Wzy when no stimulus-feature-information was
transmitted from X to Y (Wxy = 0). We found that FIT from X to Y increased
with Wzy, since X and Y carried redundant information about S with a temporal
lag. However, FIT was always non-significant (Fig. 3.S7C) using the permutation
test described in Section 3.8.1.7, since there were no within-trial correlations between
the encoding of S in X and the time-lagged encoding of S in Y . This proves that,
even if Z was not measured, the permutation test we provided for FIT can correctly
rule out confounding scenarios where X and Y encode S with a temporal lag but
with no actual communication occurring between X and Y (see Section 3.8.1.7 and
3.8.2.6).

Simulations testing cFIT in the presence of information transfer through
an alternative route involving a third region Z We next addressed the second
question, that is how to evaluate the unique contribution of X in sending feature
information to Y in presence of an alternative information route through a third
node Z sending information to Y . We studied how FIT from X to Y and cFIT from
X to Y conditioned on the feature information in Z depended on the simultaneous
transmission of feature information from X to Y and from Z to Y . To do this, we
computed FIT and cFIT for all combinations of Wxy and Wzy in the range between
0 and 1, in steps of 0.1. We found that FIT grew both as a function of Wxy and
of Wzy and was significant as soon as some information was transmitted from X to
Y (Wxy > 0; Fig. 3.S7D, left). On the contrary, cFIT increased only as a function
of Wxy and decreased with Wzy, correctly removing from the FIT from X to Y the
feature information that was routed to Y through Z (Fig. 3.S7D, right). Crucially,
cFIT did not simply subtract from FIT through X the FIT through Z, but it only
removed the amount of feature information that was redundantly transmitted by
X and by Z to Y . Indeed, since X and Z transmitted partially different feature
information to Y , we have that cFIT was still significant for many combinations of
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parameters where Wzy > Wxy (Fig. 3.S7D, right) and, therefore, FIT through X
was larger than FIT through Z (not shown).

3.8.2.7 Simulation studies of how FIT and TE are affected by the
mixing of sources

In real electrophysiological recordings, it is possible that that separation and re-
construction of the underlying neural sources is imperfect, due to issues such as
for example field spread or common referencing. As a result, electrophysiological
recordings from different brain regions may contain, with different weights, a mix-
ture of sources. It has been proposed that such source mixing may affect measures
of communication between brain areas [200]. Here, we examine the effect of this
source mixing in FIT and TE measures.

We simulated source mixing in different proportions in the sender X and the
receiver Y . In our simulations we assumed that (as it is expected to be the case in
real brain data) the mixing is instantaneous (i.e. sources are mixed with zero lag)
and with a proportion of source sharing in X,Y that is stable across time.

We first simulated a source Z (informative about a stimulus feature S) shared
between X and Y with a different proportion A:

X = Z(s) + Ex

Y = AZ(s) + Ey

(3.S47)

with Ex, Ey independent Gaussian noise. We controlled the SNR of X and Y
by changing A (which sets the relative level of stimulus-feature signal in X,Y ) and
fixing noise standard deviation to 1. On this model FIT and TE had spurious posi-
tive values (Fig. 3.S8B). We used the permutation test introduced in Section 3.8.1.7,
testing for spurious values induced by X,Y covariations due to feature-signal shar-
ing. We found that this test correctly ruled out as non-significant FIT and TE
values generated only by source sharing with no real transmission (Fig. 3.S8B). Im-
portantly, analysis of this model also showed that with instantaneous source mixing
(and notably under the assumption that recording noise is constant over the time
of the trial) the ratio between stimulus-feature info in X and Y is constant in time
(Fig. 3.S8A). This gives a useful heuristic: while the finding that the feature infor-
mation time courses of two individual regions that overlap in time cannot be used
to rule in or out communication of information about the feature between the two
areas (see 3.8.2.2 and Fig 2D-E), different timecourses of stimulus-feature info in
X vs Y cannot be easily explained by instantaneous source mixing. We measured
all real-data FIT in cases with a delay in stimulus-feature info latencies between
X and Y (X to Y info latencies: MEG: 17-35ms between V1 and higher areas,
Fig. 3.S9B. EEG: 25ms across hemispheres (Fig 4B). Spike data: 20ms from thala-
mus to cortex, Fig. 3.S11). Overall, these findings speaks against dominant mixing
of a feature-informative source in our analyses.
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Figure 3.S7: Simulation tests of the significance of FIT and cFIT. A) Schematic of the
cFIT definition. Left: intuitive definition with set-theoretic diagrams. Right: breakdown
of FITX (in red) and FITZ (in light blue) into finer information atoms considered in the
definition of cFITX|Z (atom that can be part of cFITX|Z are indicated in yellow). Only
atoms of FITX , FITZ and cFITX|Z belonging to the PID having S as target variable
are shown. FITX is the feature information transmitted from X to Y , FITZ is the one
transmitted from Z to Y , cFITX|Z is the cFIT from X to Y conditioned on the stimulus-
feature information of Z. B) Schematic of the scenario implemented in the simulations:
both X and Z transmit feature information to Y . C) FIT dependence on the amount
of stimulus-feature information transmitted from Z to Y (WZY ) even when simulating a
case (WXY = 0) in which there was no within-trial transmission from X to Y . FIT grows
with WZY , but its value is always non significant using the permutation null hypothesis
described in Section 3.8.1.7. The dashed green line shows the 99th percentile of the FIT
null hypothesis distribution described in Section 3.8.1.7. For comparison, the dashed gray
line shows the 99th percentile of the null-hypothesis distribution that would have been
obtained simply shuffling S across all trials. The fact that the latter remains so low
across all values of Wzy highlights the need of using a shuffling procedure that preserves
the stimulus-feature information in the individual nodes, as we did in this paper and
described in Section 3.8.1.7 D) FIT and cFIT as function of feature-related transmission
from X to Y (WXY ) and from Z to Y (WZY ). * indicate significant values (p < 0.01,
permutation test) for the considered parameter set. In Panels C,D, results plot mean
across 50 simulations (2000 trials each). E) Example of shuffled distributions in a case in
which there is not stimulus-feature information in Y . While the null hypothesis values of
permuting X at fixed S give much more conservative and effective null hypothesis values
when the analysed network has stimulus-feature information across the nodes (see panel
C), in specific cases of no feature information in parts of the network it may be safer to
consider also the permutation of S across all trials, as this has more available independent
permutations form the data and thus gives wider distributions. The example is with the
simulations performed in Fig. 2A, for the set of parameters (Wstim = 0,Wnoise = 0.6).
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Finally, we simulated the case with real FIT between two “pure” signals Z1 and
Z2 that are unevenly mixed in the measured X,Y :

X = Z1 + AZ2 + Ex

Y = Z2 +BZ1 + Ey

(3.S48)

Since adding a new feature-informative channel (Z1 to Y and Z2 to X) increases
the stimulus-feature information in X,Y , we set the standard deviation of inde-
pendent Gaussian noise Ex,Ey to equalize SNR of X and Y across the simulated
parameters space. We found (Fig. 3.S8C) that mixing (A,B > 0) reduced FIT and
TE compared to the pure case (A = B = 0). However, the correct direction of
information transfer was always detected for all mixtures. Thus, FIT is reasonably
conservative and robust to this mixing.
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Figure 3.S8: Simulated tests of FIT and TE in the presence of source mixing. A-B:
results of the null model with unequal sharing of one feature-informative source Z. A)
Proportion of stimulus-feature info with only the null model (blue line, described in SM
3.8.2.7 and eq. 3.S47) and with real transmission of feature information X → Y added to
it (red line). B) FIT and TE of null model (see 3.S47) fall below the permutation’s test
99th perc significance for any proportion of sharing A. C) FIT and TE computed from a
model with two stimulus-feature informative sources Z1, Z2 communicating Z1 → Z2 and
mixed into X and Y , vs mixing proportions A,B in X and Y (see 3.8.2.7 and eq. 3.S48).
All panels plot results averaged over 50 simulations.

.

3.8.3 Details and further analyses of experimental data

3.8.3.1 MEG data

Behavioral task and MEG recordings We analyzed a publicly available MEG
dataset [11], with source-reconstructed data available at
[https://doi.org/ 10.6084/m9.figshare.12770366]. Full details (including details of
approvals from Ethical Committees) are reported in the original publication and are
briefly summarized here. The MEG data were recorded from the brain of partici-
pants while they performed a visual decision-making task. N=15 participants took
part in the experiments, performing 4 experimental sessions each with on average
429 trials per session. At the beginning of each trial, a reference sample was shown

https://doi.org/10.6084/m9.figshare.12770366
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with a contrast of 50%. Each sample lasted 100ms and its contrast was drawn from
a Gaussian distribution whose mean was randomly selected in each trial . At the end
of each trial, participants reported whether the average contrast of the 10 sample
gratings was higher or lower than the reference contrast. A staircase procedure was
used to adjust the mean of the Gaussian distribution setting the average contrast of
the 10 samples in each trial, by making trials harder (mean of the Gaussian closer
to 50%) or easier (mean of the Gaussian further from 50%) depending on the behav-
ioral performance of the participant until that moment in the experimental session.
The staircase was set to obtain a behavioral performance of approximately 75% on
each session. The Regions Of Interest (ROIs) in MEG source space used to identify
signal from the considered brain areas were defined based on the atlas from Glasser
and colleagues [201]. All ROIs were co-registered to individual structural Mag-
netic Resonance Imaging data. Source reconstruction was performed using LCMV
beamformers based on leadfield matrices from 3-layer boundary element head-model
(conductivity 0.3, 0.3, 0.006 S/m for scalp, brain, skull respectively) based on indi-
vidual MRIs, using the covariance matrix (CM) of broadband data (275x275 sensors)
and a regularization of 5% of CM. The source space was constrained to the cortical
sheet with 4096 vertices per hemisphere, and source orientations chosen to maximize
power at each vertex. To illustrate the spatial resolution of source reconstruction, in
Fig. 3.S9A we plotted the correlation between LCMV spatial filters of neighboring
sources vs distance, finding a very small correlation (< 0.02) at distances larger
than 2.5cm (as expected from theoretical considerations [176]). To compute FIT
and TE, the time-frequency representation of sensor data was projected into source
space and averaged over vertices within the ROI (80,20,10 vertices for V1, V3A,
LO3, respectively).

Parameters and details of the Information theoretic analyses For the anal-
ysis FIT and TE we used gamma-band instantaneous power obtained by computing
the time-frequency representations of single-trial data via the multi-taper method
and then averaging the obtained powers in the [40−75] Hz band, exactly as described
in the original publication [11]. To estimate the joint probability distributions of
the neural activity and the stimulus (or the choice) used to compute the informa-
tion theoretic quantities, we binned the MEG gamma power from each ROI into 2
equally populated bins and then computed empirically the frequency of occurrence
of each response bin across all available trials. The stimulus features used for the
information analyses was the average contrast of the 10 samples presented on each
trial, discretized into two values. (We coded 0 the choice to report that the aver-
age contrast of the 10 sample gratings was below the reference contrast and 1 the
choice to report that it was above the reference contrast). The choice feature used
for the information analyses was the binary choice (average contrast of the sequence
higher or lower than the reference contrast) reported by the participant in each trial.
We computed the information quantities for both the feedforward and the feedback
direction for the left and the right hemisphere separately and then averaged the two.
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Unless otherwise stated, we computed information quantities using all available
trials (correct and error trials). For the specific set of information analyses compar-
ing correct and error trials (Fig. 3G,H), we randomly subsampled correct trials so
that the number of correct and error trials used to compute the information quanti-
ties was the same for each session. In this way, the information values for correct and
error trials can be compared fairly because their difference cannot reflect possible
differences in limited-sampling biases due to different data numerosity [179].

Statistical analyses We established significance of the information measures in
the time-delay space using a cluster-based nonparametric statistical test described
in Section 3.8.1.7, see [177, 178].

To provide a quantification values of TE and FIT across participants, sessions
and network links (Fig. 3D,F,H), we selected a rectangular region in the time-delay
domain to select the TE and FIT values for the across sessions statistics, centered
around the FIT significant cluster (FIT-specific region). We computed the average
over delays and then picked the maximum over time within this region. This gave
us one single TE and one single FIT value for each hemisphere in each session. The
comparisons of values across participants, subjects and links was performed using
two-tailed paired t-tests.

Additional results Here we list the results of a number of additional analyses
that could not be inserted in the main text due to lack of space but that are helpful
to better understand and support the conclusions presented in the main text.

The first set of results regards the encoding of information in individual regions
of the visual network, rather than the transmission across regions of information
about the stimulus. We reported temporal profiles of stimulus information in the
three selected ROIs in Fig. 3.S9B. Instantaneous information profiles showed a clear
lag in the onset of stimulus information that could not be explained by instantaneous
source mixing (see Section 3.8.2.7). The amount of mutual information about the
stimulus carried by the power of the gamma band in the visual cortical network is
larger in the first half of the presentation of the stimulus ([0-500]ms peri-stimulus,
shortened to ’early’) than in second half of the presentation of the stimulus ([500-
1000]ms peri-stimulus,denoted as ’late’) within the trial (Fig. 3.S9C, left). This
is why we concentrated the FIT analyses in the first part of the trial (the early
window). In the early part of the trial, the gamma band activity in the visual
cortical network carries more stimulus than choice information (Fig. 3.S9C, middle)
and this information is higher in correct compared to error trials (Fig. 3.S9C, right)
. These results are useful to confirm that stimulus information coding is of more
prominent importance in the visual network and that the presence of this information
is key to perform accurate perceptual discriminations.

The second set of results regards additional findings about the the transmis-
sion across regions of information about the stimulus. We produced network rep-
resentation showing the relative strength of individual TE and stimulus FIT links
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contributing to the observed differences in directionality (Fig. 3.S9D, compare with
Fig.3D) and feedforward behavioral relevance (Fig. 3.S9E, compare with Fig.3E) of
information transmission. We found no difference of FIT stimulus nor TE in the
feedback direction between correct and error trials (Fig. 3.S9F). For the example
pair V1-V3A we identified a significant cluster of stimulus FIT feedforward (V1 to
V3A) but not feedback (V3A to V1) in the time-delay domain (Fig. 3.S9G; cluster
statistics, p<0.01). These results suggest that feedforward propagation of stimulus
information, but not feedback propagation, is specifically key for correct behavior.

In the main text we indicated that the time delay region in which FIT about
the stimulus was significant was in the region 200 to 400ms after the stimulus onset,
with an inter-area communication delay between 65 and 250ms. This statement is
supported by the plot in Fig. 3.S9G of the time-delay map points that are significant
according to the cluster permutation test.

Finally, we performed a control analysis to quantify TE in a time-delay region
around which TE was maximal. This is of interested because in the main text
analyses (Figure3E-H) we compared FIT and TE using a time-delay region around
the peak of FIT. The TE panel (Fig. 3.S9H) shows that TE peaks in a different
time-delay region with respect to stimulus FIT (Fig. 3C). Taking a DI-specific box
centered around the TE peak in time-delay to select information values we could
not assess the direction nor the behavioral relevance of information transmission
(Fig. 3.S9I).

3.8.3.2 EEG data

Behavioral task and EEG recordings We next analyzed a publicly available
EEG dataset [180]. Data are available at
[https://datadryad.org/stash/dataset/doi:10.5061/dryad.8m2g3]. Full details (in-
cluding details of approvals from Ethical Committees) are reported in the original
publication. Here we summarize them briefly. The EEG data were recorded while
participants (N=16) performed a face detection task. Participants were presented
with an image hidden behind a bubble mask that was randomly generated in each
trial. The presented image was a image of a face in half of the trials and a ran-
dom texture in the other half of the trials. Participants were instructed to report
whether a face was present or not. In our analyses, we only considered correct trials
where the face was correctly detected by the participants (approximately 1000 trials
per subject). Following the recommendations of the original publications analysing
these data [180, 181], we excluded one participant from the analysis due to a poor
EEG signal that did not contain significant eye visibility information in any of the
electrodes. All analyses in our paper are based on the N=15 selected participants.
EEGs were recorded by fitting participants with a Biosemi head cap comprising
128 EEG electrodes. EEG data were re-referenced offline to an average reference,
band-pass filtered between 1 Hz and 30 Hz using a fourth order Butterworth filter,
down-sampled to 500 Hz sampling rate and baseline corrected using the average ac-
tivity between 300ms pre-stimulus and stimulus presentation. ICA was performed to

https://datadryad.org/stash/dataset/doi:10.5061/dryad.8m2g3
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Figure 3.S9: Additional analyses of the MEG dataset. (A) Correlation between LCMV
spatial filters of neighboring sources as a function of their distance. (B) Time course of
stimulus information in each ROI. (C) Properties of mutual information between stimulus
and MEG activity. Left: Peak values of stimulus information in the first (early time
window, from 0 to 500ms post-stimulus onset) and second half (late time window, 500
to 1000ms after stimulus onset) of the stimulus window. Middle: Peak of stimulus and
choice information in the early window. Right: Peak of stimulus information in the
early window in correct and incorrect trials, respectively. D) Graphs representing the
strength of feedforward (yellow) and feedback (orange) information transmission in the
network for TE (top) and stimulus FIT (bottom). Links are weighted proportionally
to the communication strength between each pair. The arrows on the bottom points
toward the dominant direction of overall transmission, and are weighted proportionally
to the difference between feedforward and feedback transmission. (E) Same as D but for
feedforward transmission in correct (green) vs error (gray) trials. (F) Values of TE (left)
and of FIT about the stimulus (right) computed in the feedback direction separately in
correct and in error trials. (G) Plot of the points with significant values of the stimulus FIT
between V1 and V3A (top) and V3A and V1 (bottom) according to a cluster permutation
test. Only points that are significant are colored. Color scale is the same as the Fig.
3C. (H) TE time-delay map in the V1 to V3A direction. (I) Values of TE using a time-
delay box centered around the TE peak in the time-delay map. In all panels, lines and
image plots show averages and errorbars SEM across participants, experimental sessions
and regions pairs (in case of FIT and TE) or regions (in case of mutual information).
*: p<0.05, **: p<0.01, ***: p<0.001. All information-theoretic quantities were first
computed separately for left and right hemisphere and then averaged.
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reduce blink and eye- movement artifacts, as implemented in the infomax algorithm
from EEGLAB [202]. Components representing blinks and eye movements were
identified by visual inspection of their topographies, time courses, and amplitude
spectra.
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Figure 3.S10: A) Plot of the points with significant values of the left-eye (LE) visibility
FIT between the EEG of Right Occipito-Temporal (ROT) and Left Occipito-Temporal
(LOT) electrodes, according to a cluster permutation test. Only points that are significant
are colored. B) Same as A but for the Left-Eye (LE) visibility FIT between the EEG
of Left Occipito-Temporal (LOT) and Right Occipito-Temporal (ROT) electrodes. The
color scale of panel A and B is the same as the corresponding plots in Figure 3B and C,
respectively.

Details of the information theoretic analyses and additional results For
the analyses of TE and FIT, we selected the EEG electrodes in the left and the
right Occipito-Temporal regions that had the highest mutual information about the
visibility of the contralateral eye, exactly as done in previous papers [181]. (Specif-
ically, in Ref. [181], the authors used the following criteria to select one electrode
in LOT and one in ROT for each participant, see Fig. 3.S13A. For LOT they se-
lected the electrode with maximum right eye MI from electrodes on the radial axes
of P07, P7, and TP7, excluding midline Oz and neighboring O1 radial axes. On the
right hemisphere, for ROT the author selected the EEG electrode with maximum
left eye information from sensors on the radial axes of PO8, P8, TP8, excluding
midline Oz and neighboring O2 radial axes). We computed the first derivatives of
the EEG signal for both Occipito-Temporal sensors and used both its absolute val-
ues and first derivatives to compute the information quantities, for consistency with
the information-encoding analyses performed in a previous study [181].As stimulus
feature for the computation of mutual information and FIT, we used the visibility of
an eye (defined as the fraction of pixels within the eye region that were not hidden
by the bubble mask). This feature was discretized using 2 equipopulated bins. We
computed the information quantities for all combinations of directionality of flow
across hemispheres (left to right, right to left) and eye identity (left or right eye). We
computed significance of FIT in the time-delay using the cluster-based permutation
test described in Section 3.8.1.7. This analysis revealed a significant cluster of FIT
about the left eye in the right-to-left direction (Fig. 3.S10A) and a about the right
eye in the left-to-right direction (Fig. 3.S10B). To provide a quantification values
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of TE and FIT across participants (Fig. 4D), we selected a rectangular region in
the time-delay domain to select the TE and FIT values for the across participants
statistics, centered around the contralateral FIT significant cluster (same for both
eyes, as they were significant in very similar time-delay regions). We computed the
average over delays and then picked the maximum over time within this region. This
gave us one single TE and one single FIT value for each subject. The comparisons
of values across participants was performed using two-tailed paired t-tests.

3.8.3.3 Analysis of spiking activity in a thalamocortical network

Electrophsyiological experiments We analysed previously published [23] record-
ings of multi-unit spiking activity simultaneously obtained from electrodes placed in
the primary visual cortex (V1), primary somatosensory cortex (S1), first-order visual
thalamus (the lateral geniculate nucleus, LGN), and the first-order somatosensory
thalamus (the ventral posteromedial nucleus, VPM) of anaesthetized rats (Fig. 3A).
Data are made available with this NeurIPS submission as Supplemental Material.
Full details (including details of approvals from Ethical Committees and Local Au-
thorities) are reported in the original publication. Here we summarize them briefly.

These data were recorded from N=6 rats (using one-shank Silicon Michigan
probes, Neuronexus Technologies; 100-µm intersite spacing) in three stimulation
conditions: visual stimulation, whiskers tactile stimulation and bimodal stimulation
(simultaneous visual and tactile). All experiments were conducted under urethane
anesthesia. The visual stimuli consisted of a light flash (50-ms-long LED light flashes
at 300 lux). The unimodal somatosensory stimulus consisted of a whisker deflection.
For bimodal stimulation, whisker deflection and light flashes were applied in the
same hemifield. Stimuli were randomly presented across trials. In our analysis, we
considered only stimulation contralateral to the recorded brain areas. Each type
of stimulus was presented 100 times. The non-stimulated eye was covered with
an aluminum foil patch. Neural activity was recorded at a sampling rate of 32
kHz, bandpass filtered (0.1 Hz and 5 kHz) then down-sampled to 8 kHz. In the
current work, we used the recordings from infragranular layers of S1 and V1 and
from VPM and LGN. Multi-unit spike times were first detected from the band-
passed (400–3,000 Hz, fourth-order IIR Butterworth Filter) extracellular potential
in each electrode by threshold crossing (>3 SD). A spikes train was obtained for
all channels using a temporal binning of 0.125 ms (1/8kHz). For each brain region,
spiking activity was then pooled together using all recorded spikes form all electrodes
related to that region.

Parameters and details of the information analyses To compute mutual
information and FIT, we defined two different stimulus set of interest. To mea-
sure information related to tactile discrimination, we used a “tactile-discriminative
set” made of the unimodal visual and the bimodal visual-tactile stimulus (the two
stimuli in the set are discriminated by the presence or absence of a tactile stimu-
lus). Similarly, to measure information related to visual discrimination, we used a
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“visual-discriminative set” made of unimodal tactile and the bimodal visual-tactile
stimulus (the two stimuli in the set are discriminated by the presence or absence of
a visual stimulus).

As stimulus feature for the computation of mutual information and FIT for
the tactile (visual) discriminative set, we used a binary value indicating either the
delivery of a visual (tactile) unimodal or a bimodal stimulation. We computed the
information quantities for all combinations of directionality of flow across the visual
(LGN to V1 and V1 to LGN) and somatosensory (VPM to S1 and S1 to VPM)
thalamo-cortical pathways and stimulus-discriminative sets (visual or tactile). To
provide a quantification values of TE and FIT across animals (Fig. 3.S11E,F,H,I),
we selected a rectangular region in the time-delay domain to select the TE and FIT
values for the across animals statistics, centered around the FIT peaks about the
tactile stimulus in the VPM to S1 direction (for the somatosensory pathway) and
about the visual stimulus in the LGN to V1 direction (for the visual pathway). We
computed the average over delays and then picked the maximum over time within
this region. This gave us one single TE and one single FIT value for each animal.
The comparisons of values across animals was performed using two-tailed paired
t-tests.

Further details about the information-theoretic results We first focused
on the somatosensory pathway (VPM and S1). We found that, on this pathway,
the tactile FIT in the VPM to S1 direction was visibly higher than the visual FIT
in the same direction and both tactile and visual FIT in the S1 to VPM direction
(Fig. 3.S11B)We found that the timing of tactile FIT from VPM to S1 was consistent
with the one of tactile information in neural activity, that was present in the 5-30ms
and 15-30ms post-stimulus intervals in VPM and S1, respectively (Fig. 3.S11D left,
top and bottom lines). We found that FIT revealed the directionality of tactile
information flow, which was significantly larger in the feedforward (VPM to S1)
compared to the feedback (S1 to VPM) direction (Fig. 3.S11E right, p = 0.0065).
On the contrary, TE computed for the tactile set was not significantly different in
the two directions (Fig. 3.S11E left, p = 0.13). FIT also revealed the content of
communication from VPM to S1, being significantly larger for the tactile set than
for the visual set (Fig. 3.S11F, right; p = 0.0084), while TE from VPM to S1 was
not significantly different in the two directions (Fig. 3.S11F, left; p = 0.12).

Complementary results were found in the visual pathway (LGN and V1). On
this pathway, the visual FIT in the LGN to V1 direction was visibly higher than
the tactile FIT in the same direction and both tactile and visual FIT in the V1 to
LGN direction (Fig. 3.S11C). FIT for the visual-discriminative set in the LGN to V1
direction peaked in a time interval of approximately 45 to 65ms after stimulus-onset
and with a transfer delay of approximately 10-25ms Fig. 3.S11G). The visual FIT
values were larger in the feedforward than in the feedback direction (Fig. 3.S11H,
right; p = 0.033), while TE was not sensitive to the directionality of visual infor-
mation (Fig. 3.S11H, left; p = 0.15). Moreover, visual FIT values were significantly
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Figure 3.S11: Sensory related info transfer carried by multi unit actity (MUA). A)
Schematic of the experimental setup. MUA was recorded in rats from the Ventral Pos-
teromedial nucleus (VPM) of the thalamus, the Lateral Geniculate Nucleus (LGN) of the
thalamus, the primary somatosensory (S1) and visual (V1) cortex simultaneously. During
the recording either a unimodal tactile, a unimodal visual, or a bimodal (visual and tac-
tile) stimulus was presented. B) FIT values averaged across delays for all combinations
of transfer direction and stimulation type on the somatosensory pathway (VPM-S1). C)
Same as B but for the visual pathway. D) FIT from VPM to S1 (mean across subjects)
for each value of delay and post-stimulus time. Line plots above and below show Mutual
Information (MI) between the presented stimulus and the recorded MUA in the VPM and
S1, respectively. Shaded error bars show the SEM of the measure across subjects. The
left panel reports values of information and FIT for the tactile-discriminative set, whereas
the right panels report values of information and FIT about the visual stimulus set. (E)
Directional sensitivity for TE (left) and FIT (right) between VPM and S1, for the Tactile
stimulus-set. F) Comparisons between tactile- and visual-discriminative set, for the TE
(left) and the FIT (right) from VPM to S1. G) Same as panel D but from LGN to V1.
H) Same as panel E but between LGN and V1, for the Visual stimulus-set.

larger than the tactile ones from LGN to V1 (Fig. 3.S11I, right; p = 0.013), while
TE did not capture these sensory modality-specific differences (Fig. 3.S11I, left; p
= 0.4). Taken together, these results highlight the power of the FIT in revealing
feature- and direction- specific transfers of information with high temporal preci-
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sion, beyond what is achievable using methods that measure the total propagation
of neural activity such as DI.

3.8.3.4 Applications of cFIT to real neural data

We tested the effectiveness of the conditioned FIT (cFIT) in the analysis of neu-
rophysiological data by applying it to perform further analyses on the EEG and
the MUA datasets (Fig. 3.S12). For simplicity, when computing cFIT from X to
Y conditioned on the stimulus information of Z, we always considered the same
communication delay (that is, the time difference between the present and past ac-
tivity used to compute the information theoretic measures) for the past activity of
the sender X and the past activity of the third region Z. However the definition of
conditional FIT holds for an arbitrary representation of Zpast, potentially including
multiple time points or a communication delay that is different from the one ofXpast.

We first applied cFIT to the EEG dataset. We investigated whether the con-
tralateral Occipito-Temporal electrodes used to compute TE and FIT in Figure 4
where the sole senders of eye-specific information across hemispheres. We selected
two different sets of putative alternative senders of eye-specific information and used
cFIT to remove the contribution of the putative alternative senders from the con-
tralateral FIT that we measured. Namely, we selected the third location to be
conditioned upon from either a set of weak or a set of strong alternative senders for
both the left and for the right eye (Fig. 3.S13). For each participant, we defined
the two weak alternative sender locations (one for the left an one for the right eye)
as those electrodes carrying the lowest amount of stimulus information about the
left or the right eye, respectively, in the frontal lobe of the brain. The expectation
was that removing the contribution of these electrodes using cFIT would not change
appreciably the results obtained with the contralateral unconditioned FIT reported
in Figure 4.

For each participant, we defined the strong alternative senders locations (one
for the left an one for the right eye) as those electrodes carrying the second-largest
amount of information about the left eye in ROT or about the right eye in LOT
(ROT and LOT defined as in Ref [181]). We found that FIT conditioned on the
contralateral-eye information of one of the weak alternative senders (the orange
lines in Fig. 3.S12A) did not reduce FIT, as the cFIT was virtually equal to the
unconditioned FIT (the blue trends in Fig. 3.S12A). However, FIT conditioned on
the contralateral-eye information of one of the strong alternative senders (the green
trends in Fig. 3.S12A) was lower than unconditioned FIT. However, both cFIT given
the weak and the strong alternative senders were significant (cluster statistics over
time, p<0.01). The fact that cFIT was lower than FIT when conditioning on infor-
mative electrodes but not when conditioning on weakly informative electrodes sug-
gests that cFIT is effective at removing influences related to similar feature-specific
(but not un-specific) information present already in the past activity of other regions.
The fact that the inter-hemisperic Occipito-Temporal controlateral-eye-specific cFIT
is still highly significant and is only marginally smaller than the original uncondi-
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tioned FIT suggests that most eye-specific information flows across hemispheres
through the contralateral Occipito-Temporal electrodes selected in [181].

Next, we analysed the spiking activity dataset. We examined tactile-discriminative
information flowing through the somatosensory pathway, and the visual-discriminative
information flowing though the visual pathway.

We first used cFIT to test whether the tactile-discriminative FIT from the so-
matosensory thalamus VPM to the somatosensory cortex S1 could have actually
been relayed through the visual thalamus LGN. The neurophysiological expectation
is that all tactile-discriminative information flows within the somatosensory path-
way, without contributions from visual stations. Consistent with this expectation,
we found that the tactile-discriminative cFIT from VPM to S1 conditioned on the
visaul thalamus LGN was equal to the unconditional tactile-discrminative FIT from
VPM to S1.

We then used cFIT to test whether the visually-discriminative FIT from the vi-
sual thalamus LGN to the visual cortex V1 could have actually been relayed through
the somatosensory thalamus. The neurophysiological expectation is that all visual-
discriminative information flows within the visual pathway, without contributions
from somatosensory stations. Consistent with this expectation, we found that the
visually-discriminative cFIT from LGN to V1 conditioned on the somatosensory
thalamus VPM was equal to unconditional visually-discriminative FIT from LGN
to V1.

Together, these results suggest that cFIT is useful to remove contributions from
alternative pathways specifically with regard to the transmission of feature-specific
information.

3.8.4 Comparison with other possible or previously
published measures

We examine how FIT differs with respect to other possible or previously published
algorithms that were designed to identify the information flow across regions about
behavioral or stimulus features of interest. We first consider two measures that
implement the Wiener-Granger discounting of the information present in the past
activity of the sender. We then consider two other methods, that did not implement
this principle.

3.8.4.1 Comparison with variations in transfer entropy ∆TE

As mentioned in the main text, one simple-minded proxy for identifying feature-
specific information flow could be quantifying how the total amount of transmitted
information (TE) is modulated by the stimulus-feature [31]. For the case of two
stimuli, this amounts to the difference of TE computed for each stimulus-feature
value.

We now show, using simulations, that this measure can fail in capturing feature-
related information flow. We performed simulations in a scenario having variable
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Figure 3.S12: Application of cFIT to experimental data. A) cFIT application to the
EEG data. We conditioned the contralateral FIT about the left and the right eye (see Fig.
4) to the activity of two either weak or strong alternative eye-visibility information senders.
Temporal profiles of unconditioned FIT (in blue) for about the left eye from ROT to LOT
(left) and about the right eye from LOT to ROT (right). cFIT temporal profiles when
conditioning on weak alternative senders (in orange) and on strong alternative senders
(in green). The points where the measures were significant are indicated with a circular
marker (p<0.01, cluster statistics). B) cFIT applied to MUA data. We conditioned tactile-
(visual-) discriminative FIT through the somatosensory (visual) pathway (first row) to the
activity of the visual (somatosensory) thalamus. The amount of unconditioned FIT that
was shared with the FIT through the alternative sender (second row) was subtracted from
the original FIT to obtain cFIT (third row). The left column shows results for the tactile-
discriminative set, the right column for the visual-discriminative set.
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Figure 3.S13: Sets of electrodes used in the EEG data analysis. A) Electrodes used to
measure FIT and TE and for all the analyses in Fig.4, same electrodes used in [181] B) Set
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3.8. SUPPLEMENTARY MATERIAL 83

degrees of both feature-specific and feature-unrelated information transfer. The
encoded and transmitted stimulus feature S was a stimulus-intensity integer value (1
or 2). The activity of the senderX was a two-dimensional variable with one stimulus-
feature-informative Xstim and one stimulus-uninformative component Xnoise. The
feature-informative dimension had a temporally-localized stimulus-dependent bump
in the activity (from 200 to 250ms) and additive Gaussian noise The stimulus-
unrelated component was, at any time point, a zero-mean Gaussian noise. The
activity of the receiver Y was the weighted sum of Xstim and Xnoise with a delay δ,
plus Gaussian noise. The delay δ was chosen randomly in each simulation repetition
(N=50) in the range 40-60ms. We tested whether ∆TE across simulation repetitions
was significantly different from zero using a two-tailed t-test.

As we did in Figs. 2 and 3.S3 for FIT and TE, we studied the behavior of ∆TE
as a function of the simulation parameters Wstim (which increases the amount of
information transferred about the stimulus feature) and Wnoise (which increases the
amount of feature-unspecific information that is transferred from X to Y). We found
(Fig. 3.S14A) that ∆TE had almost no relationship with the values of Wstim and
Wnoise, unlike FIT which individuated stimulus-feature-specific transfer correctly
because it increased with Wstim but not with Wnoise (Fig. 3.S3A).

Note that we performed also simulations (that were exactly like those of Fig. 2,
except that we had 2 rather than 4 stimulus intensity values) in which the noise in
X was multiplicative rather than additive. In this case (results not shown) ∆TE
increased with both Wstim and Wnoise. Thus, ∆TE had limited capabilities of iden-
tifying some stimulus-feature-specific information transfer in some specific case, but
it dot reflect it in general.

The reason that ∆TE cannot capture feature-specific information flow is, in our
view, that ∆TE is a measure of variation of information strength across stimulus-
feature conditions rather than a measure of stimulus-feature-specific information
transfer.

Additionally, we tested ∆TE on MEG data. We first binarized the stimulus
feature into two classes (average contrast either greater, S=1, or lower, S=0, than
the reference contrast). We computed TE for all pairs of visual regions in the visual
cortical network separately in trials with the same value of the binary stimulus we
and computed the difference ∆TE between these values. Fig. 3.S14B shows that
∆TE in the visual cortical network had the same strength in the feedforward and
feedback direction, unlike FIT that showed a clear directionality of communication
of stimulus information (stronger in the feedforward than in the feedback direction).
Finally, when computing TE on the spiking activity data of the rat thalamocortical
network, we found that TE from thalamus to cortex did not vary between the
tactile-discriminative and visually-discriminative stimuli set (see Fig. 3.S11E-I). In
contrast, on the same data FIT could distinguish tactile-discriminative from visually-
discriminative information flow from thalamus to cortex (see Fig. 3.S11E-I).
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Figure 3.S14: Performance of the Transfer Entropy Difference across stimuli (∆TE)
on simulated and real MEG data. A) Simulated data. Values (mean ± SEM across 50
simulations) of ∆TE from X to Y computed on the same simulated data used in Fig 2X as
a function of the simulation parameters Wstim (which increases the amount of information
transferred about the stimulus feature) and Wnoise (which increases the amount of feature-
unspecific information that is transferred from X to Y ). We found that ∆TE had almost
no relationship with the values of Wstim and Wnoise, unlike FIT which increases only with
Wstim. B) Real MEG data. Average across participants, sessions and pairs of regions
of the values of ∆TE (reported values were obtained taking the average over delays and
then the maximum over time in the same time-delay region used for the results in Fig.
3D,F,H).

3.8.4.2 Comparisons with Directed Feature Information (DFI)

A previous study [183] defined a measure, Directed Feature Information (DFI), which
computes feature-specific information redundant between the present activity of the
receiver and the past activity of the sender, conditioned on the past activity of the
receiver. However, DFI used a measure of redundancy that actually conflated the
effects of redundancy and synergy (see Section 3.8.1.5 where we consider in detail its
definition and its PID decomposition). Because of this, DFI can be negative and thus
not interpretable as measure of information flow. Moreover, because DFI discounts
only past activity of the sender rather than its feature-specific information, it is less
precise and less conservative in localizing direction and timing of feature-specific
information flow.

The above properties are expected from theoretical considerations but were also
demonstrated by us in the following numerical simulations. We computed DFI in
the two simulations described in Section 3.8.2.1 (Fig. 3.S15). We found that, in
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general, DFI had a trend similar to FIT, increasing with the amount of stimulus-
feature-related transfer from X to Y (Wstim) and decreasing with the amount of
stimulus-unrelated transfer (Wnoise). However, DFI had several false positives (cases
when there was no transmission in the ground truth of the simulated data but it
was detected as significant by the algorithm) and also had several false negatives
(cases when there was transmission in the ground truth of the simulated data but
it resulted as non significant by the algorithm). In comparison, FIT under the same
conditions and same simulations had none, see Fig. 2A). More importantly, as a
consequence of its inability to include only redundancy and discard synergy, DFI
values were very often negative, and could be negative over time both at baseline
and during stimulus-feature-related transmission (Fig. 3.S15B).

The limitations of DFI for individuating directed well time-resolved flow of in-
formation about specific stimulus features were further tested with the bidirectional
information transfer simulations described in detail in Section 3.8.2.4. We remind
briefly that in these simulations we simulated a scenario with bidirectional com-
munication between X and Y with stimulus-feature-related transfer from X and
stimulus-unrelated transfer from Y to X (Fig. 3.S5A). In brief, both X and Y re-
ceived information directly from a feature-information-sending node S. X received
feature information from S early on (between 50 and 90 ms) and Y received fea-
ture information from S at a later time (between 110 and 150 ms). X sent its
entire activity to Y (therefore communicating its feature information when it be-
came available). Y instead only sent to Y a part of its activity that did not carry
feature information. We found that while DFI had a significant positive bump from
X to Y in the [60, 100]ms time window, it also had a significant negative bump from
Y to X in the time window in which X encoded the feature [50, 90]ms. Crucially,
the presence of significant DFI from Y to X preceding in time the DFI from X to Y
would be interpreted that there is a bidirectional flow of stimulus-feature informa-
tion, occurring first from Y to X and then from X to Y . Therefore, DFI could not
capture correctly neither the directionality nor the timing of the stimulus-feature
information flow that we put in the simulations.

For FIT, which is a non-negative measure, we always used one-tailed tests to
determine whether the measured values were significantly larger than the 99th per-
centile of the null hypothesis distribution obtained as described in Section 3.8.1.7.

For DFI, which is an unsigned measure, we implemented a two-tailed test. Anal-
ogous to our method for FIT, we computed two null hypothesis distributions: one
by shuffling S across all trials, and one by shuffling X for fixed values of S. We then
tested whether DFI was either above the 99.5th percentile of the element-wise max-
imum or below the 0.5th percentile of the element-wise minimum of these two null
hypothesis distributions. If one of these conditions was met, we assigned significance
to DFI.

Lastly, we computed DFI on the three real datasets (MEG, EEG and spiking ac-
tivity) presented in the main text. We found (Fig. 3.S5C-E) that the problems with
DFI predicted by mathematics (see Section 3.8.1.5) and encountered simulations are
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also found in the neural datasets. On real data, DFI was very often negative and it
did not detect directionality or feature specificity in cases in which we would expect
from previous literature that specificity or directionality should exist.

In the MEG dataset (Fig. 3.S5D), DFI was negative values and thus not inter-
pretable as measure of information transfer. Unlike FIT, DFI could not detect that
(as predicted by previous studies) stimulus information is stronger in the feedfor-
ward than in the feedback direction, and DFI could not detect that feedforward
stimulus information is stronger in correct than error trials (an important result
found by FIT).

In the EEG dataset (Fig. 3.S5C), DFI was negative and thus not interpretable
as measure of information transfer. The comparison of the DFI results between eye
visibility features and directionally of cross-hemispheric transfer could not support
the conclusion (predicted by findings in previous literature and confirmed by the FIT
analysis) that across-hemisphere information transfer is directional from contra- to
-ipsilateral (DFI does not detected a leading direction of RE information transfer)
and is feature specific (DFI does not detected a difference between LE and RE
information in the R to L hemisphere communication).

In the thalamocortical spikes data (Fig. 3.S5E), DFI has mostly positive val-
ues which are thus interpretable in terms of information transmitted. DFI confirms
(though with lower statistical power) the FIT results than in both the somatosensory
and visual corticothalamic pathway more information is transmitted feedforward
about the corresponding sensory modality (more visual than somatosensory infor-
mation transmitted from visual thalamus to visual cortex, and more somatosensory
than visual information transmitted from somatosensory thalamus to somatosensory
cortex). However, DFI failed to demonstrate that, as expected from well-established
neurophysiological findings, more information about such simple stimulus features
is transmitted from thalamus to cortex than from cortex to thalamus.

In sum, our results lead us to conclude that the definition of redundancy used
in DFI that, unlike the more refined one arising from PID, conflates synergistic
and redundant effects, leads to major problems predicted by theory and confirmed
by simulation and in real data. Our results suggest that DFI is not robust or
refined enough to be applied generally and systematically to brain data, and that the
advances provided by FIT with respect to DFI are important not only conceptually
but also for the analysis of empirical datasets.

3.8.4.3 Comparison with measures not discounting past information in
the receiver as in the Wiener-Granger Causality principle

We finally consider the suitability for identifying flow of information about specific
features of possible alternative measures that, although have relevance to feature
information coding across areas, do not implement the Wiener-Granger discounting
of the information present in the past activity of the sender. In brief, methods that
do not implement this (and thus just correlate past information of the sender with
present information of the receiver), erroneously identify information already en-



3.8. SUPPLEMENTARY MATERIAL 87

0 0.5 1
0

0.5

1

A

bi
ts

B

DFI

100 200 300 400
time [ms]

DFI

-0.06

-0.04

bi
ts

Temporal localization of stimulus-related transmission

S X Y

-0.04

-0.02

0

0.02

0.04

0.06

W
   

  
st

im

W     noise

Wstim

Wnoise

Sig. time points
Ground truth time
of stim. transfer 

*

* * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *

LE R->L

LE L->R
RE R->L

0

-0.03

EEG MEG Spikes

**
0.55

0.89**

RE L->R

0

-2
-2

0
DFIS directionContent fwd Corr vs err fwd

D
FI

 [b
its

]

DFIS DFIC fwd fbk

0.18*
0.58

Corr Err

Tactile Set

*

VPM→S1 
S1→VPM

 

VPM→S1

Tactile Visual

0    

0.015x 10-3 0

-8

x 10-3 x 10-3

LGN→V1 
V1→LGN

 

Visual Set LGN→V1

Tactile
Visual

D
FI

 [b
its

]

D
FI

 [b
its

]
*

*
0.26

C D E
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sion strength. * indicate significant values (p < 0.01, permutation test) for the considered
parameter set. B) Dynamics of DFI in a simulation with time-localized feature-information
transmission. Red area shows the window of feature-related information transfer. Yellow
dots show time points with significant information (p ¡ 0.01, permutation test). Results
plot mean (lines) and SEM (shaded area) across 50 simulations (2000 trials each). C) EEG
DFI between L, R hemisphere about L and R eye visibility (cf with FIT in Fig4D of main
paper) D) MEG DFI about stimulus or choice feedback or feedforward and in correct vs
error trials (cf with FIT in Fig. 3D-F) C) Spikes DFI for the thalamocortical pathway and
tactile- or visual-discriminative stimulus set (cf with FIT in FigS8E-I). P-values: 2-tailed
paired t-test. *: p<0.05, **: p<0.01.

coded in the past activity of the receiver as information transmitted from a sender.
This general concern would apply in general to all measures that compute time-
lagged cross-correlations of activity across areas [203]. In the following, we consider
briefly some possible methods that have been used to infer feature-specific informa-
tion transfer but that do not consider the Wiener-Granger Causality principle.

One possibility would be to measure the presence and timing of feature informa-
tion (using mutual information between the feature feature and the activity of the
individual area at each instant of time, as in Eq. 3.S5) and then inferring transfer
of feature information from X to Y if information about S arises first in X and
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Y . Inferring processing hierarchies on the basis of response selectivity latencies is
a long-established practice in neuroscience [11, 197, 204]. However, the presence of
time-lagged information in two areas does not mean that the information in the sec-
ond area comes from the first area. Indeed, in the simulations to test FIT we created
several such simulated scenarios of information present in each area with a different
timing but without actual communication between the areas (Fig. 3.S7C, Section
3.8.2.6), and we created non-parametric tests to rule out this possibility based on
FIT measures (Section 3.8.1.7). Thus, differential response latencies can be used
to hypothesize the presence of processing hierarchies but not to prove transfer of
information between specific nodes of the putative information processing network.

Another possibility would be to use PID to measure the presence of shared (or
redundant) feature information encoded in both X and Y at different temporal
lags. PID can specifically isolate only the information about a feature that is the
same, e.g., redundantly encoded, in X and Y . Thus, measuring time-lagged shared
information goes beyond computing a simple time-lagged correlation between the
amount of reach-to-grasp information inX and Y , which would not consider whether
the time-lagged information content is the same. However, this measure would not
discount the presence of the same information in the past activity of Y , and it would
thus be prone to detecting false communications in case the information was already
present in the past of Y and thus could not have come from X. (In other words, it
would erroneously identify information already encoded in the past activity of the
receiver as information transmitted from a sender.) These types of problems of not
discounting the past have been illustrated and discussed extensively in the Granger
Causality literature. These considerations apply to a previous study [205] which
used PID to attempt to define feature-specific information transmission using the
so-called Intersection Information [104], computing information shared between the
past activity of the sender and present activity of the receiver (not considering the
information already present in the past activity of the receiver).

3.8.4.4 Computational resources

Each of the simulations in Figures 3.2, 3.S3, 3.S7, 3.S8, 3.S15, 3.S14, 3.S6, 3.S4
ran in approximately 30 minutes on a personal computer equipped with an Intel
i7-10510U processor (4x 1.80GHz CPUs) and 16Gb of RAM, running Windows 10,
using MATLAB R2021a. Simulations in Fig. 3.S5 took approximately 3 hours on
the same machine.

Real neural dataset analyses ran on a server with an AMD Ryzen Threadripper
3970X processor (32x 3.7GHz CPUs) and 256Gb of RAM, running Ubuntu 18.04,
using MATLAB R2019b. The EEG and MEG analyses ran in parallel (using the
Parallel Computing Toolbox) over participants or links in the visual cortical network,
respectively. Each analysis of the full real datasets (across all participants and
experimental sessions) took 12-28 hours depending on the usage of the server.

Our MATLAB codes to compute Feature-specific Information Transfer are pro-
vided with this submission and are released under the MIT license.



Chapter 4

Information flow between motor
cortex and striatum reverses
during skill learning

The content of this Chapter was submitted for publication, and is currently under
submission and being revised [51]. The analyses presented here correspond to those
presented in the first submitted version of the paper prior to being revised.

4.1 Introduction

Skill learning is the process in which movements are selected and produced more
consistently [206, 207] and automatically [208] with training. Skill learning is typi-
cally associated with the stabilization of neural activity patterns during execution of
the learned skill [209–212], and the increased coordination of such activity patterns
across the cerebral cortex, basal ganglia, and cerebellum [213–217]. In particular, the
primary motor cortex (M1) and the dorsolateral striatum (DLS) – a region within
the basal ganglia that is directly innervated by M1 – are thought to be central to
skill learning [35, 128, 214, 218, 219].

Current evidence supports two opposing models of how M1 input to the DLS
contributes to skill learning. The first model proposes that the importance of M1
input to the DLS increases during learning, playing a central role in shaping DLS
activity patterns that control skilled movements. Supporting evidence includes the
potentiation of synapses specifically from M1 neurons active during movement pro-
duction onto DLS neurons during learning14, the emerging coordination of M1 and
DLS movement-related activity during learning [214, 219], and demonstrations that
learning requires plasticity at glutamatergic synapses in the DLS, which originate
from either cortex or thalamus [35, 128, 219–221].

The second model proposes that the importance of M1 input to the DLS di-
minishes during learning, resulting in DLS activity patterns that control skilled
movements without reliance on M1 input. Supporting evidence includes demonstra-
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tions that after learning a skill, M1 lesion or inactivation has little impact on skill
production [20, 222]. Additionally, once a skill is learned, DLS activity can encode
skilled movement kinematics after silencing DLS-projecting M1 neurons [223]. In
this model, M1 input to the DLS during initial learning provides instructive signals
that drive plasticity within the DLS, resulting in M1-independent control of skilled
movements in the DLS [224].

To test these models, we measured how M1 and DLS encode and transfer infor-
mation during learning of a reach-to-grasp skill in rats. The reach-to-grasp skill is
an ethologically-relevant, evolutionarily-conserved behavior [225, 226] that requires
both M1 and DLS activity to produce [214, 227–229] – making it particularly well-
suited to examine the evolution of M1 and DLS interactions during learning. We
developed and utilized an information theory framework to isolate the components
of neural activity across M1 and DLS that encode and transmit information about
the reach-to-grasp movement. We find that M1 input to the DLS does not strictly in-
crease or decrease during skill learning, but rather the content of such input evolves.
Our results support a hybrid model that reconciles previous studies by demonstrat-
ing that a bidirectional increase in overall information propagation between M1 and
DLS during skill learning can cooccur with a reversal in the direction of behaviorally
relevant information flow, from M1-to-DLS during naive movements to DLS-to-M1
during skilled movements.

4.2 Results

Neural signals, including local field potentials (LFP) and spiking activity, were mon-
itored simultaneously in M1 and DLS in eight adult rats undergoing multi-day train-
ing of a reach-to-grasp skill (Figure 4.11a; data from six animals was included in
previous work [128] ). The reach-to-grasp skill has been used extensively in rodents
to study how the brain controls movement [214, 215, 218, 227, 230–232]. On each
day of training, rats performed 50-150 trials in a custom-built behavioral box [233].
The reach-to-grasp skill requires rats to reach through a small window in the be-
havioral box to grasp and retrieve a food pellet. With training, rats became more
successful in retrieving the pellet and a range of kinematic features evolved (Figure
4.1b-d; Figure 4.S1; Table 4.S1). To find the kinematic features most relevant to
success, we fit a generalized linear model to predict single-trial success during naive
or skilled days from each of ten different reach features. We found that maximum
reaching velocity and total reaching trajectory length were the best predictors of suc-
cess (Figure 4.1e) and predicted success better for skilled movements compared to
naive movements, indicating that these features captured learning- related changes
in the reach-to-grasp movement related to improvements in success (Figure 4.1e).
In this work, we computed information carried by M1 and DLS neural signals about
these selected kinematic features. Importantly, maximum reaching velocity and
reaching trajectory length both characterize the outward reaching component of the
reaching and grasping action, which has been specifically associated with emerging
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M1 and DLS coordinated activity. We will refer to information about these features
as reach-to-grasp information.

4.2.1 Neural signal amplitude and encoding of
reach-to-grasp information are dissociable.

We first sought to understand how M1 and DLS neural signals encoded reach-to-
grasp information. To measure reach-to-grasp information we computed Shannon
information encoded by single-trial neural signals about the selected kinematic fea-
tures. Shannon information is a non-parametric measure that captures both the
linear and non-linear encoding of information [75, 86] . Information was computed
at individual time points throughout the reaching movement, aligned across trials to
“pellet touch”, i.e., the time in which the rat touches the reaching target, a food pel-
let, on each trial (Figure 4.1f). Trials were better aligned around the time of pellet
touch, compared to other time points such as movement onset, with lower and more
time-localized variance in hand position and velocity (Fig. 4.S2), indicating that
trial alignment to pellet touch was better suited for studying the temporal profiles
of information. Both LFP signals and spiking activity in M1 and DLS contained
significant information about both naive and skilled movements with greater infor-
mation for skilled, compared to naive, movements, suggesting a tighter relationship
between neural activity and movement for skilled movements, consistent with pre-
vious work [230] (Figure 4.S3). The rationale for analyzing both spiking activity
and LFP is that spiking activity represents a more direct measure of local neuron
activity, while the advantage of analyzing LFP signals is that LFPs are more stable
than spiking activity [234]. Reach-to-grasp information in LFP signals was localized
to low (¡5Hz) frequencies, a frequency range previously associated with movement
generation [57, 235] (Figure 4.S4).

Whether a single neuron or a neural population (e.g., measured by LFP) is
involved in controlling movement is typically assessed by looking for a consistent
change in the amplitude of the spiking rate or LFP signal during movement. We
therefore first examined whether the amount of reach-to-grasp information encoded
by a neural signal corresponded to the amplitude of that signal during movement
– defined as the magnitude of deviation in a neural signal, either positive or nega-
tive, from baseline. Surprisingly, we found a dissociation between the encoding of
reach-to-grasp information and neural signal amplitude, with peak reach-to-grasp
information often encoded 50-500ms before maximum signal amplitude (Figure
1g&i). The intuitive interpretation of this timing difference is that the amplitude
of a neural signal 50 to 500ms prior to the maximum signal amplitude covaried
with trial-to-trial variations in movement kinematics while the maximum signal am-
plitude was invariant across trials (Figure 4.1h). This is consistent with previous
work demonstrating that the largest amplitude component of M1 activity does not
encode information about movement kinematics and instead simply reflects when a
movement is occuring [236]. A similar dissociation has also been reported in sensory
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Figure 4.1: Neural signal amplitude and encoding of reach-to-grasp information are
dissociable. (a) Depiction of reach-to-grasp task with neural recordings in M1 and DLS.(b)
Example reach trajectories from naive and skilled days in example animal (individual trials
in gray overlaid with mean in color).(c) Example velocity profiles from naive and skilled
days in example animal (width of lines represents mean ± SEM).(d) Comparison of mean
success rate and reach features from naive and skilled days across animals (success rate:
naive: 41.4 ± 0.1%, skilled: 59.4 ± 0.1%, t(7)=-2.9, P=0.02; maximum velocity: naive:
15.6 ± 1.7cm/s, skilled: 18.7 ± 1.3cm/s, t(7)=-3.4, P=0.01; trajectory length: naive: 3.8
± 0.3cm, skilled: 3.2 ± 0.3cm, t(7)=2.9, P=0.02; paired-sample t-test, n = 8 animals,
individual animals in color and mean ± SEM in black).
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(e) Comparison of t-statistics for models fit to predict single-trial success on naive or skilled
days from different reach features. Top: model fit across animals. Bottom: model fit within
individual animals (* denotes p<0.05). Gray shading denotes reach features selected for
further analysis. (f) Schematic of Shannon information computation. (g) Comparison of
trial-averaged spiking activity or single trial LFP signals (top) and corresponding encoded
reach-to-grasp information about maximum reaching velocity (bottom) across example
neurons and LFP channels in M1 and DLS. Yellow shaded area represents time bins around
peak of reach-to-grasp information encoding and gray shaded area represents time bins
around maximum neural signal amplitude. (h) Comparison of mean firing rate for example
neurons and mean neural activity for example LFP channels during yellow shaded time
bins, representing the time of peak of reach-to-grasp information encoding about maximum
reaching velocity, and gray shaded time bins, representing the time of maximum neural
signal amplitude. Each set of time bins is further separated according to the maximum
reaching velocity of each trial (i.e., bottom 3 rd represents the third of trials with the
lowest maximum velocity, middle 3rd represents the third of trials with the middle values
of maximum velocity, and top 3rd represents the third of trials with the highest maximum
velocity). (i) Distributions of timing differences between the time of peak reach-to-grasp
information encoding and maximum trial-averaged neural signal amplitude, across all M1
or DLS neurons and all M1 or DLS LFP channels. Each distribution combines both naive
and skilled days and both information about maximum reaching velocity and trajectory
length. Real distribution is in red outline and shuffled distribution is in gray. P values
denote comparison between real and shuffled distributions (M1 spiking: P=2 × 10−8 ,
M1 LFP: P=5 × 10−10, DLS spiking: P=2 × 10−12, DLS LFP: P=1 × 10−8; two-sample
Kolmogorov-Smirnov test).

systems, in which the peak information that a neuron encodes about a stimulus does
not always correspond to values of that stimulus that result in maximum fing-rate
responses [237].

4.2.2 Timing of reach-to-grasp information encoded in M1
and DLS with skill learning.

We next sought to identify learning-related changes in how M1 and DLS neural
signals encode reach-to- grasp information. Given that during the production of a
reach-to-grasp movement the encoding of reach- to-grasp information is dissociable
from neural signal amplitude, we compared how both neural signal amplitude and
reach-to-grasp information encoding evolved during learning. We first consider the
simplest characterization of the relationship between the information encoding in
M1 and DLS, that is the timing of information encoding. Although some earlier
studies have considered the differences in information or response latencies across
areas as an indication of the hierarchy of information processing [197], timing of
information encoding cannot be taken per se as an indication of the direction of
communication between areas (see Chapter 3 for examples of when timing does
not reveal information processing hiearchies). However, studying how the timing
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of information encoding differs between ares and across stages of learning is a first
useful characterization of the dynamics of information processing between areas and
how it changes with learning.

We found that the timing, relative to pellet touch, in which neural signal am-
plitude deviated from baseline did not consistently change from naive to skilled
movements in either M1 or DLS (Figure 4.2a; Figure 4.S5a). In contrast, the tim-
ing in which M1 and DLS neural signals first encoded reach-to-grasp information
shifted in opposite directions – with encoding in M1 shifting later and encoding
in DLS shifting earlier, even if the shift in M1 was stronger (Figure 4.2b, Figure
4.S5b). These changes in the timing of reach-to-grasp information encoding were
also captured by simpler linear regression models (Figure 4.S6). These results were
consistent with a dissociation between the amplitude of a neural signal and the
amount of behaviorally relevant information encoded by that signal and indicated
that directly measuring how neural signals encode reach-to-grasp information was
necessary to observe learning-related changes in M1 and DLS neural activity.

4.2.3 Cross-area timing relationship of shared
reach-to-grasp information reverses during skill
learning.

We next sought to characterize whether the same reach-to-grasp information was
encoded at different times in M1 and DLS neural activity, or whether distinct reach-
to-grasp information was encoded by each area. If the information was distinct, this
would suggest that M1 and DLS may have separate, parallel learning-related mecha-
nisms. Alternatively, if the same reach-to-grasp information was encoded in M1 and
DLS neural activity at different times, this would suggest that reach-to-grasp infor-
mation may flow between M1 and DLS. We used Partial Information Decomposition
[100, 103, 110] (PID) to measure the presence of shared (or redundant) reach-to-
grasp information encoded in both M1 and DLS neural signals at different temporal
lags (Figure 4.3a). Unlike simpler measures of redundancy [87, 89], PID can specifi-
cally isolate the information about a reach feature that is the same, i.e., redundantly
encoded, in distinct neural signals. Thus, measuring time-lagged shared informa-
tion goes beyond computing a simple time-lagged correlation between the amount of
reach-to-grasp information in M1 and DLS, which would not consider whether the
information content is the same (Figure 4.S7). Given the low probability of record-
ing from directly coupled pairs of neurons across areas, for the remaining cross-area
analysis we focus on LFP signals. The relative stability of LFP signals, compared
to spiking activity [234], allowed us to combine trials across naive or skilled days to
perform more robust computations of cross- area information. To address challenges
in interpreting LFP signals from non-laminar structures such as the striatum [28,
238] , we both utilized a previously established local referencing scheme to minimize
the risk of volume conducted signals [128, 214] , as well as replicated our results
with limited pairs of coupled M1 and DLS neurons recorded on individual naive and
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Figure 4.2: Timing of reach-to-grasp information encoding in M1 and DLS changes dur-
ing skill learning. (a) Top: trial-averaged spiking activity and LFP signals, separated by
neurons or channels encoding or not encoding reach-to-grasp information about maximum
reaching velocity during naive or skilled movements, sorted by timing of maximum spiking
activity or LFP signal. Middle: time courses of average absolute value of spiking activity
or LFP signals during naive or skilled movements, across neurons or channels encoding
information about maximum reaching velocity (mean ± SEM). Bottom: box plot repre-
senting the timing of when LFP signals or spiking activity initially deviate from baseline
during naive or skilled movements, across channels or neurons encoding information about
maximum reaching velocity (M1 spiking: P=0.14, M1 LFP: P=2 × 10−3 , DLS Spiking:
P=0.67, DLS LFP: P=0.99; two-sided Wilcoxon rank sum test). (b) Top: reach-to-grasp
information encoded by spiking activity or LFP signals about maximum reaching velocity
during naive or skilled movements, neurons or channels sorted by timing of peak infor-
mation. Middle: time course of information about maximum reaching velocity encoded
by spiking activity or LFP signals during naive or skilled movements (mean ± SEM).
Bottom: box plot representing the timing of when neural signals first encode information
about maximum reaching velocity during naive or skilled movements (M1 spiking: P=0.01,
M1 LFP: P=2 × 10−4 , DLS Spiking: P=0.02, DLS LFP: P=0.03; two-sided Wilcoxon
rank sum test).
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skilled days.

We found that, during naive movements, shared reach-to-grasp information was
originally encoded in M1 neural signals and then emerged, on average, 50-100ms
later in DLS – consistent with M1-to-DLS information flow. During skilled move-
ments this temporal relationship reversed, with shared reach-to- grasp information
originally encoded in DLS neural signals and then emerging 50-100ms later in M1 –
consistent with DLS-to-M1 information flow (Figure 4.3b,e; Figure 4.S8b,e). Across
pairs of M1 and DLS LFP channels, the temporal delays corresponding to maximum
shared reach-to-grasp information encoded across areas shifted from a distribution
centered on M1-to-DLS delays during naive movements to centered on DLS-to-M1
delays during skilled movements (4.3c; Figure 4.S8c). This reversal was robust across
animals when comparing the change in percentage of channel pairs with maximum
shared information encoded with either M1-to-DLS or DLS-to-M1 temporal delays
from naive to skilled movements (Figure 4.3d; Supplemental 4.S8d). Consistent
with the reversal observed in LFP signals, we found that shared reach-to-grasp in-
formation encoded between M1 and DLS neuron pairs peaked predominantly with
M1-to-DLS temporal delays during naive movements and DLS-to-M1 delays during
skilled movements (Figure 4.S9).

We next sought to determine whether it was necessary to isolate the behaviorally
informative component of neural activity to observe a reversal in the flow of activity
between M1 and DLS during skill learning. Alternatively, was there also a reversal
in the ability to predict the overall neural activity of one brain area from the other
brain area, without isolating the behaviorally relevant components of activity? To
determine this, we computed time-lagged Shannon information between overall M1
and DLS neural activity (Figure 4.S10a). In contrast to the reversal in the cross-
area timing relationship of shared reach-to-grasp information encoding, we observed
an increase in time-lagged Shannon information between overall M1 and DLS neu-
ral activity in both the M1-to-DLS and DLS-to-M1 direction during skill learning,
without evidence of a reversal (Figure 4.S10b-e). This suggested that breaking down
overall neural activity into the behaviorally informative components was necessary
to capture distinct learning-related changes in M1 and DLS neural activity.

4.2.4 The flow of reach-to-grasp information reverses
during skill learning.

Given the mounting evidence that changes in reach-to-grasp information processing
during learning were not captured by standard methods to measure learning-related
changes in overall neural activity – including changes in the amplitude of neural
signals or the overall coordination of neural signals across areas – we next sought to
directly measure and compare the flow of reach-to-grasp informative neural activity
and the general propagation of overall neural activity between areas. To equitably
compare the cross-area flow of reach-to-grasp informative neural activity – which we
will refer to as reach-to-grasp information flow – and the cross-area propagation of
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overall neural activity – which we will refer to as neural activity propagation – we
utilized two analogous measures based on the Wiener-Granger causality principle
[91, 239]. The Wiener-Granger causality principle states that the directed flow from
signal X to signal Y can be measured as the ability to predict the current signal Y
from the past of signal X, after discounting the self-prediction from the past of signal
Y. Therefore, to compute neural activity propagation we measured the ability to pre-
dict neural activity values of a putative receiving area from the past neural activity
of a putative sending area, discounted by the ability to self-predict the activity from
the past of itself (Figure 4.4a). This method, termed transfer entropy (TE) [138],
has been used extensively to study cross-area brain activity [31, 85, 166, 169] and
extends the measure of time-lagged Shannon information (Figure 4.S10) by incor-
porating the Wiener-Granger causality principle. Correspondingly, to characterize
reach-to-grasp information flow, we measured the reach-to-grasp information shared
between the present activity of a putative receiving area and the past activity of a
putative sending area, that is also unique with respect to the information encoded
in the past activity of the receiving area (Figure 4b). We developed this method to
extend the shared information results computed with PID (Figure 4.3; Figure 4.S8)
by including the Wiener-Granger causality principle. We term this new measure
Feature-specific Information Transfer (FIT; derivation in methods). In model simu-
lations, we demonstrate that the established measure of neural activity propagation
(TE) is insensitive to the content of neural activity transmitted between areas while
our measure of reach-to-grasp information flow (FIT) is specifically sensitive to the
transfer of neural activity encoding reach-to-grasp information (Figure 4.S11).

We compared reach-to-grasp information flow to both neural activity propaga-
tion and a common measure of overall non-directed functional connectivity, LFP
coherence. We labeled M1 and DLS as either the receiving or sending area based on
the direction of maximum neural activity propagation or reach-to- grasp informa-
tion flow. We found that reach-to-grasp information flow reversed, flowing primarily
from M1-to-DLS during naive movements and from DLS-to-M1 during skilled move-
ments (Figure 4.4c&d; Figure 4.S12c&d). This was consistent with the reversal in
the cross-area timing relationship of shared reach-to-grasp information (Figure 4.3;
Figure 4.S8). In contrast, neural activity propagation in both directions, as well
as LFP coherence, increased from naive to skilled movements (Figure 4.4e-h; Fig-
ure 4.S12e-h). This was consistent with the bidirectional increase in time- lagged
Shannon information between overall M1 and DLS neural activity (Figure 4.S10).
These results demonstrated that isolating the component of M1 and DLS communi-
cation specifically relevant to the reach-to-grasp movement was required to identify
a reversal in behaviorally relevant information flow. Interestingly, neural activity
propagation also increased prior to movement during skill learning, suggesting that
learning-related increases in coupling between M1 and DLS can be captured even
during non-movement periods, consistent with prior work showing that increases in
LFP coherence between M1 and DLS during sleep track skill learning [128] . In sum,
by specifically isolating the components of neural activity across M1 and DLS that
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Figure 4.4: The flow of reach-to-grasp information reverses during skill learning. (a)
Schematic of neural activity propagation computation. (b) Schematic of reach-to-grasp
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delays (top) and DLS-to-M1 temporal delays (bottom). Right: cumulative density func-
tions comparing distributions of peak reach-to-grasp information flow about maximum
reaching velocity between M1 and DLS LFP signals during naive and skilled movements,
across M1-to-DLS temporal delays (top; P=2× 10−9 , two-sided Wilcoxon rank sum test)
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test). (e) Mean LFP coherence between M1 and DLS LFP signals, across frequencies
during naive and skilled movements, computed over same LFP channel pairs as (c).
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(f) Left: time course of mean 3-15Hz LFP coherence between M1 and DLS LFP sig-
nals during naive and skilled movements. Right: cumulative density functions comparing
distributions of peak 3- 15Hz LFP coherence between M1 and DLS LFP signals during
naive and skilled movements (P=3× 10−3 , two-sided Wilcoxon rank sum test). (g) Mean
neural activity propagation between M1 and DLS LFP signals during naive and skilled
movements, computed over same LFP channel pairs as (c). Top: M1-to-DLS temporal de-
lays. Bottom: DLS-to-M1 temporal delays. (h) Left: time course of mean neural activity
propagation between M1 and DLS LFP signals during naive and skilled movements, across
M1-to-DLS temporal delays (top) and DLS-to-M1 temporal delays (bottom). Right: cu-
mulative density functions comparing distributions of peak neural activity propagation
between M1 and DLS LFP signals during naive and skilled movements, across M1-to-DLS
temporal delays (top; P=1× 10−14 , two-sided Wilcoxon rank sum test) and DLS- to-M1
temporal delays (bottom; P=8× 10−14 ; two-sided Wilcoxon rank sum test).

encoded and transmitted information relevant to the reach-to- grasp movement, we
uncovered an unexpected reversal in the flow of behaviorally relevant information
from M1-to-DLS during naive movements to DLS-to-M1 during skilled movements.

4.3 Discussion

Our findings help reconcile paradoxical evidence suggesting that the importance of
M1 inputs to the DLS can both increase and decrease during skill learning. We
find that skill learning is not accompanied by either a simple increase or decrease in
M1 input to the DLS. Instead, the nature of M1 input to the DLS evolves in how
it contributes to information flow. We show that a bidirectional increase in overall
information propagation between M1 and DLS during skill learning – consistent
with both the potentiation of M1 inputs onto DLS neurons [218] and the emerging
cross-area coordination of movement-related activity during learning [214, 219] –
can cooccur with a reversal in the direction of behaviorally relevant information
flow – consistent with a decreased reliance on M1 input to encode details of the
skilled movements in the DLS during learning [223]. We propose a hybrid model in
which, as learning progresses, the role of M1 input in conveying specific movement
information to the DLS diminishes, while an overall excitatory M1 input to the
DLS is maintained. In parallel, a new role emerges for DLS input that transfers
information relevant to the skilled movement to M1.

4.3.1 The role of information flow during learning

What are the potential roles of reach-to-grasp information flow that could help ex-
plain a reversal between M1 and DLS during skill learning? One potential role
of reach-to-grasp information flow is to instruct the adjustment of future behavior
based on reward, both for naive movements during initial learning and for skilled
movements if task parameters change. During naive movements, a role for M1-to-
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DLS reach-to-grasp information flow could be to instruct plasticity at glutamatergic
inputs to the DLS. This would be consistent with evidence that glutamatergic in-
puts to the DLS – including those originating from motor cortex – are potentiated
during learning [222, 240–242], that disrupting NMDA receptor function in the DLS
can disrupt learning [35, 214, 219], and that silencing DLS projecting M1 neurons
disrupts learning [224]. During skilled movements, DLS-to-M1 information flow
could play a role in guiding plasticity that is required to adjust skilled movements
if task parameters change. This would be in line with evidence that adjustments to
a skilled reaching and grasping action in rats produced in response to a change in
food pellet location are reflected in coordinated changes across M1 and DLS neural
signals [243]. An analogous role for basal ganglia input to cortex in guiding the ad-
justment of skilled movements exists in adult zebra finches, where input from area
X in the basal ganglia to LMAN, a cortical analog region, promotes exploratory mo-
tor variability is required for reinforcement-driven adjustments to song production
[244].

Another potential role of behaviorally relevant information flow between M1 and
DLS is to combine sub-components of the reach-to-grasp action that may be con-
trolled separately by M1 or DLS. M1 is strongly associated with the control of fine
dexterous movements, such as grasping. Damage to M1 chronically disrupts such
fine movements [214, 228]. In contrast, the DLS has been linked to the control of
learned, non-dexterous, skilled movements, even after removal of M1 [223]. There-
fore, one possibility is that DLS-to-M1 information flow emerges during learning
to properly combine a DLS-controlled outward reach with an M1-controlled grasp.
A prediction for this model would be that M1 inactivation specifically disrupts the
grasping component of the skilled reaching and grasping action. However, acute
M1 inactivation has been shown to completely block the production of a reach-to-
grasp skill, even when applied after learning [227]. A potential explanation is that,
although behaviorally relevant information flow from M1-to-DLS decreases during
skill learning, an overall permissive excitatory input from M1 to DLS may still be re-
quired, for example to provide a generic excitatory drive that may initiate movement
encoding in the DLS, rather than to carry specific reach to grasp information.

4.3.2 Beyond the Motor Cortex and Striatum

As M1 and DLS are part of a highly interconnected motor network in the brain,
it is likely that inputs to M1 and DLS from other brain areas contribute to the
observed information dynamics. A decrease in behaviorally relevant input to M1
during learning, coupled with an increase to the DLS, could explain the shift in ori-
gin of reach-to-grasp information flow from M1 to DLS. A potential explanation for
this type of M1 to DLS shift in input is that, during reach-to-grasp skill learning,
movements transition from goal-directed and sensory-driven to stimulus-response
and automatic. Goal directed movements rely on the cortical integration of sen-
sory evidence to guide movement [16, 245, 246], suggesting that inputs carrying
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sensory information to M1 may be critical to initiate and plan naive movements.
As learning proceeds, the requirement for rich sensory information may decrease,
thus diminishing the role of inputs to M1. Instead, inputs to the basal ganglia and
DLS, areas which are classically associated with control of stimulus-response and
automatic movements [19, 247, 248] may increase. Potential inputs to the DLS
include non-M1 cortical regions, consistent with evidence linking anterior cortical
regions (e.g., M2) to the control of learned actions [241], or thalamic regions, consis-
tent with work showing that silencing DLS-projecting thalamic neurons can disrupt
learned actions [224]. This shift in the neural control of a behavior occurring within
cortico-basal ganglia loops during learning is consistent with classic models of motor
sequence learning [249]. Moreover, it is important to note that there are no direct
connections from DLS to M1. Thus, it is possible that the observed increase in
the flow of information from DLS to M1 is due to a strengthening of polysynaptic
striatal projections to the cortex through the thalamus [128, 250]. Consequently,
skill learning could be associated with the modulation of different pathways in the
cortico-striatal-thalamo-cortical loop.

4.3.3 Isolating behaviorally relevant neural communication

Established analytical methods to study multi-area interactions – from simpler mea-
sures based on correlations or synchrony to more complex measures using dimension-
ality reduction [217, 251] or based on the Wiener-Granger causality principle [138,
160] – typically do not consider ongoing behavior (but see Ref. [252]). To overcome
this limitation, we developed an analytical framework based on information theory
that isolates the components of neural activity across brain areas that encode and
transmit information relevant to a specific ongoing behavior. We demonstrate the
utility of this approach by uncovering a reversal in behaviorally relevant information
flow during skill learning that is unobservable using standard analytical methods.
These results challenge the assumption that measuring the overall propagation of
neural activity between brain areas is sufficient to understand the dynamics of neu-
ral communication relevant to ongoing behavior. Our results suggest that isolating
behaviorally relevant components of neural activity across brain areas is a valuable
approach for understanding the function of distributed brain networks [249].

4.4 Supplementary Material

4.4.1 Methods

4.4.1.1 Animal care and surgery

This study was performed in strict accordance with guidelines from the USDA An-
imal Welfare Act and United States Public Health Science Policy. Procedures were
in accordance with protocols approved by the Institutional Animal Care and Use
Committee at the San Francisco Veterans Affairs Medical Center. Experiments were
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conducted with 8 male Long-Evans rats (approximately 12–16 weeks old) housed un-
der controlled temperature and a 12 hr light/12 hr dark cycle with lights on at 6:00
a.m. All behavioral experiments were performed during the light period. Data from
six of the animals in this study was included in a previous work [128]. Surgical
procedures were performed using sterile techniques under 2-4% isoflurane. Animals
were implanted with either microwire electrodes (n=7 animals; 32 or 64 channel 33
µm diameter Tungsten microwire arrays with ZIF-clip adapter; Tucker-Davis Tech-
nology) or high-density silicon probes (n=1 animal; custom-built silicon probe [253])
targeted to the forelimb area of M1 (centered at 3.5 mm lateral and 0.5 mm anterior
to bregma and implanted in layer V at a depth of 1.5 mm) and the DLS (centered
at 4 mm lateral and 0.5 mm anterior to bregma and implanted at a depth of 4
mm). Surgery involved exposure and cleaning of the skull, preparation of the skull
surface (using cyanoacrylate), and implantation of skull screws for overall headstage
stability. A reference screw was implanted posterior to lambda, contralateral to the
neural recordings and a ground screw was implanted posterior to lambda, ipsilateral
to the neural recordings. Craniotomy and durectomy were then performed, followed
by implantation of neural probes and securing of the implant with Kwik-Sil (World
Precision Instruments), C and B Metabond (Parkell, Product #S380), and Duralay
dental acrylic (Darby, Product 8830630). Final location of electrodes was confirmed
by electrolytic lesions. The postoperative recovery regimen included administration
of buprenorphine at 0.02 mg/kg, meloxicam at 0.2 mg/kg, dexamethasone at 0.5
mg/kg, and trimethoprim/sulfadiazine at 15 mg/kg, administered postoperatively
for 5 days. All animals recovered for at least 1 week before the start of behavioral
training.

4.4.1.2 Reach-to-grasp task

Rats naive to any motor training were first tested for forelimb preference. This in-
volved presenting approximately 10 food pellets to the animal and observing which
forelimb was most often used to reach for the pellet. Rats then underwent neural
probe implantation surgery in the hemisphere contralateral to the preferred hand.
Following the recovery period, rats were trained on the reach-to-grasp task using
an automated reach-box, controlled by custom MATLAB scripts and an Arduino
microcontroller. This setup requires minimal user intervention, as described previ-
ously [233] . Each trial consisted of a pellet dispensed on the pellet tray followed
by an alerting beep indicating that the trial was beginning, then the door would
open. Animals had 15s to reach, grasp, and retrieve the pellet or the trial would
automatically end, and the door would close. A real-time ‘pellet detector’ using
an infrared sensor centered over the pellet would determine when the pellet was
moved, indicating the trial was over and, after 2s, the door would close. Trials
were separated by a 10s inter-trial interval. All trials were captured by a camera
placed on the side of the behavioral box (n=3 animals monitored with a Microsoft
LifeCam at 30 frames/s; n=5 animals monitored with a Basler ace acA640-750uc
at 75 frames/s). Each animal underwent 5-14 days of training ( 100–150 trials per



104
CHAPTER 4. INFORMATION FLOW BETWEEN MOTOR CORTEX AND

STRIATUM REVERSES DURING SKILL LEARNING

day). Reach trajectories were captured from video using DeepLabCut [254] to track
the center of the rat’s hand as well as the food pellet. Trials were aligned to “pellet
touch”, which was classified as the frame in which the hand was closest to the pellet,
before the pellet was displaced off the pellet holder. Only trials in which the pellet
was displaced off the pellet holder were considered. Success was achieved if the rat
retrieved the pellet from the pellet holder into the behavioral box.

4.4.1.3 In vivo electrophysiology

Throughout reach-to-grasp training, neural signals, including spiking activity and
local field potential (LFP) signals were recorded using an RZ2 system (Tucker-Davis
Technologies). For neural activity recorded with microwire electrode arrays, spik-
ing data was sampled at 24,414 Hz and LFP/EMG data was sampled at 1017 Hz.
LFP signals in M1 and DLS were locally referenced using common-mode referenc-
ing: at every time-point, the median signal across all electrodes in an area was
calculated and subtracted from every electrode in that area to decrease common
noise and minimize volume conduction. To detect spikes in microwire-implanted
animals, an online threshold was set using a standard deviation of 4.5 (calculated
over a 5 min baseline period). Waveforms and timestamps were stored for any event
that crossed below that threshold. Spike sorting was performed separately on each
day using Offline Sorter v.4.3.0 (Plexon) with a PCA-based clustering method fol-
lowed by manual inspection. Single-neuron units were accepted based on waveform
shape, clear cluster boundaries in PC space, and 99.5% of detected events with
an ISI> 2ms. Neural activity recorded with silicon probes was recorded at 24,414
Hz. Spike times and waveforms were detected from the broadband signal using
Offline Sorter v.4.3.0 (Plexon). Spike waveforms were then sorted using Kilosort2
(https://github.com/MouseLand/Kilosort2). We accepted units based on manual
inspection using Phy (https://github.com/cortex-lab/phy) and 99.5% of detected
events with an ISI¿2ms.

4.4.1.4 Selection of reach features

To calculate information-theoretic quantities that neural signals contain about the
reaching action, we first selected features of the reaching action relevant for success
on the reach-to-grasp task. We considered ten features that have a single output
on each trial: maximum x-dimension position (i.e., maximum reach amplitude in x-
dimension), maximum y-dimension position, maximum x-dimension velocity, maxi-
mum y- dimension velocity, mean maximum x- and y-dimension velocity, maximum
x-dimension acceleration, maximum y-dimension acceleration, mean maximum x-
and y-dimension acceleration, trajectory length (i.e., total distance that the hand
travels from movement onset to pellet touch), and movement duration (i.e., time it
takes from movement onset to pellet touch). Movement onset was defined as the
first time bin in which velocity in the x-dimension was greater than 0 during the
1s preceding pellet touch. If velocity in the x-dimension was already greater than

https://github.com/MouseLand/Kilosort2
https://github.com/cortex-lab/phy
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0 before this time period, movement onset was not defined, leading to fewer trials
considered for movement duration and trajectory length (Table 4.S1).

We compared the relevance of different reach features to success by comparing
the fit of models used to predict success from each reach feature. We also compared
how each reach feature predicted success for skilled and naive movements. Therefore,
we fit separate models on the first 3-4 days of training (which we refer to as “naive”
days) and the last 2-4 days of training (which we refer to as “skilled” days). The
number of days pooled for naive and skilled days was limited by the total number of
available recording days in each animal (Table 4.S1). Data was pooled across naive
and skilled days to increase computational power of information-theoretic analyses.
Two models were fit for both naive and skilled movements, separately, for each
feature. The first was a generalized linear mixed-effects model using MATLAB
function fitglme to predict success during naive or skilled trials across animals, with
the reach feature as a fixed effect, rat ID as a random intercept, and a binomial
distribution of the response variable. The second model was also fit with MATLAB
function fitglme, but only included naive or skilled trials within each animal, with the
reach feature as a fixed effect and a binomial distribution of the response variable.

4.4.1.5 Identification of learning-related changes in neural signal
amplitude

To find the timing, relative to pellet touch, in which neural signal amplitude deviated
from baseline during movement, we first aligned spiking activity and LFP signals
across trials to the time of pellet touch and then binned signals in 10ms bins. Neural
signals from 1s prior to pellet touch to .5s after pellet touch were averaged across
trials and then z-scored. We then found the first time bin between .5s prior to pellet
touch to .5s after pellet touch in which the normalized neural signals was greater
than two standard deviations away from the mean.

4.4.2 Information theoretic tools

All analysis code used to compute information quantities (Shannon information,
PID shared information, FIT, TE) from unprocessed neural signals is available at:
https://gitlab.com/rmaffulli/lemkecelottoetal codes rep.

Computation of reach-to-grasp information with Shannon information
We computed Shannon Information [75, 86] (I) to quantify the amount of infor-
mation that neural signals (R) carry about specific reach-to-grasp features (F ).
Shannon information is a non-parametric measure that quantifies the full single-
trial statistical relationship between two stochastic variables and captures the effect
of all linear and nonlinear interactions. Shannon information is defined as follows:

I(R(t);F ) =
∑
r,f

p(r, f) log
p(r, f)

p(r)p(f)
(4.S1)

https://gitlab.com/rmaffulli/lemkecelottoetal_codes_rep
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where R(t) denotes the neural signal of a single LFP channel or a single neuron
at time t, p(r, f) is the joint probability of observing the neural response r and
movement feature f , and p(r) and p(f) are the marginal probabilities of r and f ,
respectively.

For LFP signals, which are relatively more stable across days compared to spik-
ing activity [234] , Shannon information was computed by combining trials (both
successful and unsuccessful) across naive days and across skilled days, separately.
In this way, we could enhance the statistical power of Shannon information and re-
duce sampling bias [179]. For spiking activity, combining trials across days was not
possible as we did not track single neurons across days and Shannon information
was computed separately on each day. Both LFP signals and spiking activity were
aligned to the time of pellet touch and binned in 10ms bins. We then discretized the
magnitude of the LFP signals on each trial into 5 discrete values using an equipopu-
lated binning strategy [170]. We also discretized each movement feature across trials
into 3 equipopulated bins. For spiking activity, any bin with more than 0 spikes was
set to 1.

Computation of shared reach-to-grasp information with partial informa-
tion decomposition We used partial information decomposition [100] (PID) to
measure the shared (or redundant) information that M1 and DLS neural signals
encode about a reach feature. In its general formulation, PID breaks down the joint
mutual information that two or more source variables carry about one target vari-
able into pieces (or atoms) of shared, unique and synergistic information. In the
case of two source variables:

MI(F ;X, Y ) = SI(F : X, Y )+UI(F : X Y )+UI(F : Y X)+CI(F : X, Y ) (4.S2)

Where MI(F ;X, Y ) is the joint mutual information that X and Y encode about
F , SI(F : X, Y ) is the shared (or redundant) information about F that both X and
Y individually encode, UI(F : X Y ) and UI(F : Y X) are the unique pieces of infor-
mation about F that are encoded only by X and Y , respectively, and CI(F : X, Y )
is the synergistic information about F that can be accessed only by considering both
X and Y simultaneously. Simpler measures of redundancy only quantify the total
effect of redundant versus synergistic information [87, 89]. Previous applications
have demonstrated the benefit of using PID over these simpler measures to separate
these information components [41, 83, 85]. To measure time-lagged shared reach-
to-grasp information, we only made use of the shared information extracted from
the PID, which quantifies the amount of redundant information that both source
variables (in our case, the neural signals recorded from DLS and M1) separately
carry about a target variable (in our case, the reaching feature). Both the unique
and shared information terms of PID are used to compute the FIT measure outlined
in the next subsection. We computed shared information using the “BROJA” def-
inition [103]. This definition has theoretical advantages over alternative definitions
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in the case of two source variables and one target, has been adopted in neuroscien-
tific work [83], and has computationally efficient algorithms to compute it [255]. We
computed shared information across a range of temporal delays between M1 and
DLS neural signals (up to 250ms delay between each area) to determine whether
the same reach-to-grasp information was present in M1 at time t and in DLS at time
t+ δ. δ could be positive or negative, allowing either M1 or DLS to carry the shared
information “first”. To plot temporal profiles of M1-to-DLS or DLS-to-M1 shared
information we averaged over 0-250ms M1 prior to DLS (M1-to-DLS) and 0-250ms
DLS prior to M1 (DLS- to-M1). Shared information was computed specifically for
pairs of M1 and DLS LFP signals which contained significant reach-to-grasp infor-
mation that peaked during the 300ms preceding pellet touch (during the time bins
which contained most of the reach-to-grasp information in LFP signals) and pairs
of M1 and DLS neurons which contained significant reach-to-grasp information that
peaked in the 1s preceding pellet touch (during the time bins that contained most
of the reach-to-grasp information in spiking activity).

Computation of LFP coherence We computed LFP coherence between M1
and DLS LFP channels using the Chronux toolbox function cohgramc in MATLAB
(http://chronux.org/). LFP was computed in 0.5s sliding windows, with shifts of
0.05s. LFP coherence was computed for the same LFP channels in which PID was
computed, as described above.

Computation of neural activity propagation with transfer entropy To
measure the propagation of neural activity between two simultaneously recorded
neural signals X and Y we used transfer entropy [138] (TE). TE is an information
theoretic measure of causal communication between signals based on the Wiener-
Granger causality principle [91, 239]. The Weiner-Granger causality principle states
that a putative sender X causally influences a receiver Y if the past state of X
(Xpast) predicts the present state of Y at time t (Yt) beyond what can be predicted
by the past state of Y (Ypast). TE is therefore an information-theoretic measure that
is defined, according to the Wiener-Granger causality principle, as the conditional
mutual information between Xpast and Yt conditioned to Ypast:

TE(X → Y ) = MI(Xpast;Yt|Ypast) (4.S3)

In accordance with previous work, we used a single time-point implementation
of Eq. 4.S3 where the past of the sender and the present of the receiver have the
same temporal lag [161, 169, 256, 257]:

TE(Xt−δ → Yt) = MI(Xt−δ;Yt|Yt−δ) (4.S4)

TE was computed between M1 and DLS neural signals across a range of temporal
delays, as outlined for PID. TE was also computed for the same LFP channels in
which PID was computed, as described above.

http://chronux.org/


108
CHAPTER 4. INFORMATION FLOW BETWEEN MOTOR CORTEX AND

STRIATUM REVERSES DURING SKILL LEARNING

Computation of reach-to-grasp information flow with feature-specific in-
formation transfer To measure the directed flow of reach-to-grasp information
we developed a new measure called feature- specific information transfer [50] (FIT,
see also Chapter three). This measure extends time-lagged shared information by
incorporating into it the Wiener-Granger causality principle, which discounts the
information present in the past of the putative sender. To define FIT, we extended
time-lagged shared information (see subsection above) by adding to the PID an addi-
tional variable, the past activity of the putative receiver Y . We then used PID with
three source variables and one target variable to compute SUI(F : Xpast, Yt Ypast),
the information about F that is Shared between the past of X and the present of
Y , that is Unique with respect to (i.e., not encoded in) the past of Y . This measure
captures the directed flow of information about F from X to Y and has the desir-
able properties of being upper-bounded by the amount of reach-to-grasp information
encoded in the past of the sender MI(F ;Xpast) and the reach-to-grasp information
encoded in the present of the receiver MI(F ;Yt) [50].

However, this measure is vulnerable to a mathematical problem called mecha-
nistic redundancy [113, 193]. This term is used to indicate the problematic case in
which shared information about a target variable may be measured from two inde-
pendent source variables with no information transfer between them. In previous
work on PID, we have developed an approach to remove the presence of mechanistic
redundancies [113]. This approach is to take the minimum between PID information
atoms with different targets of the decomposition and allows us to set the transfer
entropy from X to Y as an upper bound on FIT. This ensures that if X and Y are
independent, no FIT is measured [50]. Therefore, our definition of FIT is:

FIT (X → Y → F ) = min[SUI(F : Xpast, Yt Ypast);SUI(Xpast : F, Yt Ypast)] (4.S5)

where SUI(F : Xpast, Yt Ypast) is the information that is Shared between Xpast

and Yt about F and is Unique with respect to Ypast, and SUI(Xpast : F, Yt Ypast) is
the information shared by F and Yt about Xpast that is unique with respect to Ypast.

As for TE (see Eq. 4.S4), we used a single time-point implementation of FIT
where the past of the sender and the present of the receiver have the same temporal
lag. Additionally, we computed FIT using the Imin definition of shared information
[100] as it provides nonnegative results for PID with three source variables and one
target.

We validated the ability of FIT in disentangling the flow of neural activity en-
coding reach-to-grasp information and non-informative neural activity in a simple
simulated scenario (Supplemental Figure 11). We simulated the transmission of
neural activity from a sender of information X to a receiver of information Y and
parametrically controlled the degree to which such flow contained information about
a reach variable F . On each trial, the value of X was drawn from a Gaussian dis-
tribution with mean equal to 0 and variance equal to 1. Activity of Y was the sum
of a motor dimension Yreach and a non-motor dimension Yno−reach, both dimensions
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were the sum of a Gaussian variable with mean 0 and variance 0.5 plus an input
from X. We denote wreach and wno−reach the weights of the links between X and
Yreach or Yno−reach, respectively. F was computed on each trial by taking the sign
of Yreach. The past value of Yreach and of Yno−reach was drawn, independently, from
a Gaussian distribution with mean equal to 0. The activity of X was discretized
into 4 equipopulated bins while Yreach and Yno−reach were discretized in 2 bins, so
that the joint variable Y = (Yreach, Yno−reach) had 4 possible outcomes. Similarly,
the past of Yreach and Yno−reach were separately discretized in 2 bins and then pooled
in a joint variable. We ran the simulation varying the wreach and wreach parameters
independently between 0 and 1 in steps of 0.1, with 10000 trials per combination
of parameters. We show the values of FIT (X → Y → F ) and TE(X → Y ) on
the grid made of all combinations of wreach and wreach in Figure 4.S11b&c. TE is
equally sensitive to the increment of wreach and wreach, while FIT is only sensitive
to the increment of wreach, but not to wno−reach, as expected from a measure of
feature-specific information transmission.

We computed FIT for the same M1 and DLS LFP channels in which we cal-
culated PID and TE, as described above. FIT was also computed between M1
and DLS neural signals across a range of temporal delays, as outlined for PID. We
used the direct method to sample the four-dimensional joint probability distribution
p(Xpast, Ypast, Yt, F ).

Statistical significance of information theoretic measures To determine
the statistical significance of information theoretic measures (Shannon information,
shared information, FIT, and TE) we used an approach described in Ref. [178]. In
brief, we used a non-parametric cluster permutation technique [177]. We permuted
the reach feature values across trials 100 times and recomputed information values
to generate a shuffled distribution of each measure. We assigned significance to the
largest information “clusters” within the non-permuted data based on a threshold
determined by the information values in the shuffled distributions. We determined
the 95th percentile value from all shuffled dataset information values. We created
information clusters in the original and shuffled datasets by summing together all
adjacent information values above the 95th percentile threshold. We then deter-
mined a null distribution for information clusters using the maximum cluster value
from each shuffled dataset. Finally, we assigned significance to clusters in the orig-
inal dataset if their value was larger than the 95th percentile of the clusters null
distribution.

Significance for Shannon information was determined separately for each LFP
channel and neuron. Significance for shared information, FIT, and TE was deter-
mined separately for each M1 and DLS LFP channel pair or each pair of M1 and
DLS neurons. We subtracted the average shuffled information from all information-
theoretic measures in the original dataset. This step conservatively removed infor-
mation in the original dataset that was due to limited sampling bias [67, 198]. To
further ensure that limited sampling bias did not impact our results, we matched
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the number of trials between naive and skilled days for all the information-theoretic
analyses.

Rat ID
Electrodes
Implanted

Training days
# of trials

naive/skilled

# of trials
naive/skilled for

mov. duration and
traj. length

Rat 1
Microwire array:

16 M1 electrodes &
16 DLS electrodes

8 training days

146 naive trials
from days 1-4

146 skilled trials
from days 6-8

117 naive trials
from days 1-4

117 skilled trials
from days 6-8

Rat 2
Microwire array:

16 M1 electrodes &
16 DLS electrodes

5 training days

89 naive trials
from days 1-3
89 skilled trials
from days 4-5

82 naive trials
from days 1-3
82 skilled trials
from days 4-5

Rat 3
Microwire array:

16 M1 electrodes &
16 DLS electrodes

5 training days

87 naive trials
from days 1-3
87 skilled trials
from days 4-5

69 naive trials
from days 1-3
69 skilled trials
from days 4-5

Rat 4
Microwire array:

16 M1 electrodes &
16 DLS electrodes

9 training days

232 naive trials
from days 1-3

232 skilled trials
from days 8-9

222 naive trials
from days 1-3

222 skilled trials
from days 8-9

Rat 5
Microwire array:

32 M1 electrodes &
16 DLS electrodes

14 training days

500 naive trials
from days 1-4

500 skilled trials
from days 11-14

432 naive trials
from days 1-4

432 skilled trials
from days 11-14

Rat 6
Microwire array:

32 M1 electrodes &
32 DLS electrode

12 training days

282 naive trials
from days 1-3

282 skilled trials
from days 10-12

269 naive trials
from days 1-3

269 skilled trials
from days 10-12

Rat 7
Microwire array:

32 M1 electrodes &
32 DLS electrode

10 training days

336 naive trials
from days 1-4

336 skilled trials
from days 7-10

332 naive trials
from days 1-4

332 skilled trials
from days 7-10

Rat 8

Custom-built silicon
probe: 37 M1

electrodes & 38 DLS
electrodes

6 training days

438 naive trials
from days 1-3

438 skilled trials
from days 4-6

404 naive trials
from days 1-3

404 skilled trials
from days 4-6

Table 4.S1: Supplemental Table 1: Experimental animal information
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Figure 4.S1: Time course of reach features during skill learning in individual animals.
(a) Success rate: naive: 41.4 ± 0.1%, skilled: 59.4 ± 0.1%, t(7)=-2.9, P=0.02, paired-
sample t-test. (b) Maximum reaching velocity: naive: 15.6 ± 1.7cm/s, skilled: 18.7 ±
1.3cm/s, t(7)=-3.4, P=0.01, paired-sample t-test. (c) Reaching trajectory length: naive:
3.8 ± 0.3cm, skilled: 3.2 ± 0.3cm, t(7)=2.9, P=0.02, paired- sample t-test. (d) Maximum
acceleration: naive: 0.38 ± 0.04cm/s2, skilled: 0.49 ± 0.04cm/s2 , t(7)=-5.2, P=1× 10−3

, paired-sample t-test. (e) Movement duration: naive: 287.9 ± 33ms, skilled: 211.3 ±
21ms, t(7)=3.6, P=8× 10−3 , paired- sample t-test.
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Figure 4.S2: Comparison of variance in hand position and velocity across trials aligned
to pellet touch or movement onset. Figure 4.S2: Comparison of variance in hand position
and velocity across trials aligned to pellet touch or movement onset. (a) Comparison of
across-trial variance of hand position and velocity between trials aligned to pellet touch
(gray) and movement onset (red). The width of each line represents mean ± SEM of
variance values computed for each animal, in the x and y dimension separately, on naive
and skilled days separately (n = 32 variance values from 8 animals with 2 dimensions each
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Figure 4.S3: Reach-to-grasp information encoded by M1 and DLS neural signals in-
creases from naive to skilled movements. (a) Cumulative density functions of peak reach-
to-grasp information encoded by M1 or DLS LFP signals or spiking activity about maxi-
mum reaching velocity (top; M1 LFP: P=7× 10−3 ; DLS LFP: P=8× 10−7 ; M1 Spiking:
P=3×10−3 ; DLS Spiking: P=8×10−5 ; Wilcoxon signed rank test) or reaching trajectory
length (M1 LFP: P=1×10−4 ; DLS LFP: P=1×10−5 ; M1 Spiking: P=0.33; DLS Spiking:
P=9× 10−3 ; Wilcoxon signed rank test).
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Figure 4.S5: Timing of reaching trajectory length information encoding in M1 and DLS
neural signals changes during skill learning. (a) Top: trial-averaged spiking activity and
LFP signals, separated by neurons or channels encoding or not encoding reach-to-grasp
information about reaching trajectory length during naive or skilled movements, sorted
by timing of maximum spiking activity or LFP signal. Middle: time courses of aver-
age absolute value of spiking activity or LFP signals during naive or skilled movements,
across neurons or channels encoding information about reaching trajectory length (mean
± SEM). Bottom: box plot representing the timing of when LFP signals or spiking ac-
tivity initially deviate from baseline during naive or skilled movements, across channels
or neurons encoding information about reaching trajectory length (M1 spiking: P=0.60,
M1 LFP: P=7 × 10−4 , DLS Spiking: P=0.41, DLS LFP: P=0.22; two-sided Wilcoxon
rank sum test). (b) Top: reach-to-grasp information encoded by spiking activity or LFP
signals about reaching trajectory length during naive or skilled movements, neurons or
channels sorted by timing of peak information. Middle: time course of information about
reaching trajectory length encoded by spiking activity or LFP signals during naive or
skilled movements (mean ± SEM). Bottom: box plot representing the timing of when
neural signals first encode information about reaching trajectory length during naive or
skilled movements (M1 spiking: P=0.03, M1 LFP: P=3 × 10−3 , DLS Spiking: P=0.06,
DLS LFP: P=0.29; two-sided Wilcoxon rank sum test)
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velocity, comparison between naive and skilled days (M1: P=1× 10−3 and DLS: P=0.85,
two-sided Wilcoxon rank sum test). Right: same as Left for reaching trajectory length
(M1: P=3× 10−3 and DLS: P=0.04, two-sided Wilcoxon rank sum test).
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Figure 4.S7: Examples of M1 and DLS LFP pairs encoding shared reach-to-grasp in-
formation during naive or skilled movement. (a) Top: shared reach-to-grasp information
about maximum reaching velocity between an example pair of M1 and DLS LFP signals
during naive movement. Middle: Shannon information about maximum reaching velocity
in corresponding individual M1 and DLS LFP signals. Bottom: LFP signal magnitude
during time bins in which M1 encoded high reach-to-grasp information (yellow) or during
time bins in which DLS encoded high reach-to-grasp information (blue). Each set of time
bins is further separated according to the maximum reaching velocity of each trial (i.e.,
bottom 3 rd represents the third of trials with the lowest maximum velocity, middle 3 rd
represents the third of trials with the middle values of maximum velocity, and top 3 rd
represents the third of trials with the highest maximum velocity). (b) Same as (a) for
example M1 and DLS LFP pair during skilled movement
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Figure 4.S8: Cross-area timing relationship of shared reach-to-grasp information about
reaching trajectory length reverses during skill learning. (a) Schematic of partial infor-
mation decomposition computation. (b) Top: mean time-lagged shared information in
M1 and DLS LFP signals about trajectory reaching length across temporal delays during
naive movements, skilled movements, and the difference. Bottom: shared information av-
eraged over positive (M1-to-DLS) and negative (DLS-to-M1) temporal delays during naive
movements, skilled movements, and the difference. (c) Left: distribution of temporal de-
lays corresponding to peak shared information about trajectory reaching length across
M1 and DLS LFP channel pairs for naive (gray) and skilled (blue) movements. Right:
difference between naive and skilled distributions. (d) Change in percentage of M1 and
DLS LFP channel pairs with peak shared information about trajectory reaching length
with a positive (M1-to-DLS) or negative (DLS-to-M1) temporal delay from naive to skilled
movements, in each animal (t(6)=-4.7, P=3× 10−3 , two-sample t-test, n = 7 animals, 1
animal without significant information measured on either naive or skilled days). (e) Cu-
mulative density functions comparing peak shared information about trajectory reaching
length across M1 and DLS LFP channel pairs, combined over positive (M1-to-DLS) or
negative (DLS-to-M1) temporal delays. Top: naive movements (P=2× 10−15 , Wilcoxon
signed rank test). Bottom: skilled movements (P=3× 10−79 , Wilcoxon signed rank test).
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Figure 4.S9: Temporal delays corresponding to peak shared reach-to-grasp informa-
tion between M1 and DLS neurons reverses from primarily M1-to-DLS delays during
naive movements to DLS-to-M1 delays during skilled movements. (a) Time-lagged shared
reach-to-grasp information about maximum reaching velocity between example M1 and
DLS neuron pairs across temporal delays, during naive movements. (b) Same as (a) for
example M1 and DLS neuron pairs during skilled movements (c) Ratio of M1 and DLS neu-
ron pairs encoding significant shared reach-to-grasp information about maximum reaching
velocity, out of total possible M1 and DLS neuron pairs that both individually encoded
significant Shannon Information about maximum reaching velocity. (d) Distribution of
temporal delays corresponding to peak shared reach-to-grasp information about maxi-
mum reaching velocity across M1 and DLS neuron pairs during naive (gray) and skilled
(blue) movements (P=5×10−6 , two-sample Kolmogorov-Smirnov test). (e) Percentage of
M1 and DLS neuron pairs with positive (M1-to-DLS) or negative (DLS-to-M1) temporal
delays corresponding to peak shared reach-to-grasp information about maximum reaching
velocity during naive (gray) and skilled (blue) movements.
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information flow) over a range of reach info. and non-reach info. weights, demonstrating
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info. weights, demonstrating that TE is insensitive information content and captures both
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Figure 4.S12: The flow of reach-to-grasp information about reaching trajectory length
reverses during skill learning. (a) Schematic of neural activity propagation computation.
(b) Schematic of reach-to-grasp information flow computation. (c) Mean reach-to-grasp
information flow about reaching trajectory length between M1 and DLS LFP signals during
naive and skilled movements. Top: M1-to-DLS temporal delays. Bottom: DLS-to- M1
temporal delays. (d) Left: time course of mean reach-to-grasp information flow about
reaching trajectory length between M1 and DLS LFP signals during naive and skilled
movements, across M1-to-DLS temporal delays (top) and DLS-to-M1 temporal delays
(bottom). Right: cumulative density functions comparing distributions of peak reach-to-
grasp information flow about reaching trajectory length between M1 and DLS LFP signals
during naive and skilled movements, across M1-to-DLS temporal delays (top; P=7×10−23 ,
two-sided Wilcoxon rank sum test) and DLS-to-M1 temporal delays (bottom; P=6×10−35

; two-sided Wilcoxon rank sum test), during naive and skilled movements. (e) Mean LFP
coherence between M1 and DLS LFP signals, across frequencies during naive and skilled
movements, computed over same LFP channel pairs as (c).
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(f) Left: time course of mean 3-15Hz LFP coherence between M1 and DLS LFP signals
during naive and skilled movements. Right: cumulative density functions comparing dis-
tributions of peak 3- 15Hz LFP coherence between M1 and DLS LFP signals during naive
and skilled movements (P=9 × 10 − 10 , two-sided Wilcoxon rank sum test). (g) Mean
neural activity propagation between M1 and DLS LFP signals during naive and skilled
movements, computed over same LFP channel pairs as (c). Top: M1-to-DLS temporal de-
lays. Bottom: DLS-to-M1 temporal delays. (h) Left: time course of mean neural activity
propagation between M1 and DLS LFP signals during naive and skilled movements, across
M1-to-DLS temporal delays (top) and DLS-to-M1 temporal delays (bottom). Right: cu-
mulative density functions comparing distributions of peak neural activity propagation
between M1 and DLS LFP signals during naive and skilled movements, across M1-to-DLS
temporal delays (top; P=5× 10−33 , two-sided Wilcoxon rank sum test) and DLS- to-M1
temporal delays (bottom; P=6× 10−68 ; two-sided Wilcoxon rank sum test).
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Figure 4.S13: Comparison of “pooled” and “individual points” method for computing
Shannon information and shared information. (a) Top: schematic of “pooled” method.
Middle: mean Shannon information about maximum reaching velocity and reaching tra-
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(b) Same as (a) for “individual points” method.



Chapter 5

Conclusions

5.1 Activity and information

Previous literature already studied in detail the relationship between activity and
information levels, showing how high activity amplitude in response to a sensory
stimulus or concurrent to motor execution [236, 237, 258] does not imply carrying
high information about such stimuli or specific kinematic variables. In this work,
we delved deeper into the dissociation between neural activity and information,
particularly in the context of communication between brain areas.

In Chapters three and four, we proved, on simulated and real data, that looking
at the overall information propagated by neural activity can hide some important
characteristics of feature-specific neural information processing. The advancement
provided by FIT over previous methodologies are due to several, concurrent effects.
One first factor limiting traditional measures of causal communication (such as TE)
is the inability, by construction, to disambiguate which among several features are
transmitted over a neural pathway, and rank them by amount of feature informa-
tion flow. This first limitation is exemplified in Fig. 3.4, in which the same amount
of overall information is propagated across hemispheres in the two directions. FIT
can be used to identify the specificity of information transmitted in the two direc-
tions, with information about specific eyes being transmitted along contra-lateral
pathways, while TE cannot, by construction, discern the specificity of transmitted
information.

A second limiting factor is that traditional measures have lower effects size in
measuring directed communication. This is possibly because they are less conser-
vative in discarding information already present in the past of the receiver (see e.g.
Fig. 3.S8) by capturing components of synergistic information transfer [167]. An-
other factor adding noise to overall information propagation measures is the larger
susceptibility, compared to FIT, to general confounding effects occurring in the to-
tal activity space, such as co-fluctuations in feature-unrelated components of the
activity (e.g. due to global network co-variations, transmission related to ongoing
regulatory operations or to other task-related variables independent from the feature
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of interest ). This second limitation is exemplified in Fig. 3.3 where TE has lower
effect size compared to stimulus FIT in determining that information transmitted
feedforward in the visual network is stronger than information transmitted feedback.

Since TE captures the superposition of all task-related and unrelated components
of communication, the dynamics of TE could be completely dissociated from the one
of FIT. This scenario is best exemplified in the dramatic differences we observed in
the evolution of TE dynamics compared to reach-to-grasp FIT during motor learning
(see Fig 4.4). Indeed, TE increased bidirectionally, while FIT showed a clear reversal
in the area originating and transmitting reaching information in the cortico-striatal
network with learning.

Importantly, we are not claiming that TE has any conceptual flaw. We are rather
saying that, by design, this measure answers to different questions with respect
to FIT. Overall, the development and application of FIT contributed clarifying
which are the conceptual advancements of measuring content-specific information
flow compared to just the overall propagated information. To get an exhaustive
understanding of communication between brain regions, it will be important to
combine the complementary perspective provided by TE and FIT.

5.2 What do we mean by shared information?

Similarly to how Shannon information theory gave a quantitative definition of the
intuitive yet elusive concept of information [75], PID tries to quantify what we mean
by carrying the ”same” information, i.e. quantifying redundancy in the encoding. In
practice, this problem has proven to be more complicated than what was originally
thought. Several PID redundancy measures have been proposed in the literature
[100, 103, 112, 259], each satisfying different mathematical properties, such as non-
negativity or additivity for independent sources [260]. However, still no consensus
exists about which measures have the best theoretical properties and which work
best when applied to real neuroscientific data. For example, the redundancy mea-
sure we used to compute FIT, Imin, is the original one defined when introducing
PID [100] and quantifies redundancy as the similarity between the source variables
in discriminating individual values of the target [50]. The measure we used to quan-
tify time-lagged shared information in Chapter four [103], which is also commonly
used in neuroscience [85, 101], quantifies redundancy by maximizing a Shannon
Information quantity measuring the difference in S-related shared and synergistic
dependencies between X1 and X2. This is done in the probability space of all dis-
tributions Q(X1, X2, S) that preserves shared dependencies about S by keeping the
marginals P (X1, S) and P (X2, S) fixed to the original ones.

Despite the conceptual and mathematical differences between these measures,
some studies have started establishing analogies between these metrics, e.g. showing
their equivalence when applied to multivariate Gaussian systems [261].

Since many aspects of PID are still not fully understood, its application to real
data poses significant challenges to the community of theoretical and computational
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neuroscientists, which will need to collaborate closely to ensure that theoretical
progress aligns with the requirements of real-world neuroscientific questions that PID
could address [76, 106, 108]. In this work, we contributed proving that even if further
refinements of the theory are required, PID is already a valid tool that can be used
to drive advancements in the study of neural information processing [41, 85, 101].
For the PID metrics to be widely applied in neuroscience, it will be fundamental to
refine their conceptual interpretation in terms of the properties of neural activity.
This includes further investigating the relationship between PID shared information
and similarity of tuning curves (see e.g. Fig. 3.2C-E) or correlations between pairs
of neurons [89].

In future studies, it will also be interesting to build upon the work presented
in Chapter two and use PID-based metrics of functional connectivity to estimate
pairwise structural connectivity. For instance, one could analyze all possible triplets
of cells that include a specific pair of interest. Within each triplet, one computes
the unique information between the activity of the two main cells, in the context of
the third neuron’s activity. The average unique information between pairs of genes,
across triplets, has indeed proven to be a beneficial metric in estimating pairwise
interactions in gene networks [107].

5.3 The role of noise in inferring content-specific

communication

One key conceptual point that emerged during the development of FIT is that, to
infer significant content information transfer, it is necessary to have time-lagged
single-trial correlations between the sender and the receiver that are not induced
by the feature itself (also known as noise correlations [89]). Although it might
sound paradoxical, time-lagged correlations in the feature-unrelated noise between
feature-encoding dimensions of neural activity is the only way to identify real feature-
specific communication. Indeed, if real feature-specific communication occurs, when
the sender fails in encoding the feature, the receiver should similarly fail [9]. This
concept is at the basis of the permutation null hypothesis we developed for FIT, in
which we destroy single-trial correlations between the sender and the receiver while
preserving the overall amount of feature information individually encoded by the two
regions (which could, in principle, be explained as time-lagged independent encoding
of the feature, see e.g. Fig. 3.S7D). Future refinements in methodologies designed
to capture feature-specific information flow will benefit from capturing these types
of time-lagged noise correlations.
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5.4 Parametric versions of FIT to study

population-level information flow

One of the greatest advantages of using information theory to study neural informa-
tion processing is that it is nearly assumption-free (it does not make any assumption
on noise distributions, nor on the type of interaction between variables under analy-
sis). While on one hand this model-free approach has clear benefits, on the other it
comes with intrinsic limitations that parametric, model-based approaches can help
overcome.

A first limitation of information theory is that it is data hungry [86], since it
relies on estimating the full multivariate probability distributions from real data.
Directly sampling the frequency of each combination of events (i.e., neural responses
and features of interest) across trials works well when dealing with low-dimensional
neural signals [179]. However, applying this approach to the high-dimensional neural
population data collected in modern experiments [45, 46] becomes challenging due
to the curse of dimensionality [86]. For this reason, methods based on the joint
application of model-based decoders and information theory have been developed
to quantify feature encoding at a neural population level [67, 86]. Additionally,
estimation of multivariate probability distributions is an active field of research
[187].

A second limitation of information theory is that, given its model-free nature, it
does not provide models. While it can be used to rule out candidate neural codes —
because if a neural response carries zero information about a feature, the accuracy
of any model trained to decode that feature would be at chance [86, 104] — and
to put constraints on models [256], it cannot be used to directly decode features or
estimate information transfer in individual trials.

To ease the application of FIT to population-recordings it will be important to
understand how to best combine FIT and data-dimensionality reduction techniques,
or develop new model-based versions of FIT which could also provide insights about
the single-trial efficacy of feature information transfer. Such techniques would allow
capturing elements of feature-information transfer emerging at the population-level
[55] when estimating communication between neural populations [203, 251, 262] or
populations of different cell types, such as neurons and astrocytes [67]. However,
we predict that, outside the information-theoretic framework, it will be challenging
to establish precise relationships between measures of feature information flow and
either single-region encoding or overall propagated information.

Lastly, it is important to stress that brain areas are highly interconnected, with
activity being simultaneous propagated in different directions over large brain net-
works [30, 85]. It is therefore necessary to develop tools that can deal with the
presence of confounding variables, such as ruling out the role of other simultane-
ously recorded brain areas in sending information to the putative sender and receiver
with a temporal lag [94]. In causality analyses, this is typically done by conditioning
out the effect of other areas when inferring causal links, but the practical implemen-
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tation of these methods is challenging due to limited amount of data [86] and it is
an active topic of research [263]. While we provided a definition of the conditional
FIT [50], further computational and theoretical developments, including the defini-
tion of parametric measures of feature-information flow, will ease the computation
of multivariate cFIT, allowing to condition the FIT between two brain regions over
the past activity of multiple other recorded regions.
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