

DOTTORATO DI RICERCA IN

Automotive per una mobilità intelligente

Ciclo XXXVI

Settore Concorsuale: 09/F2 Telecomunicazioni

Settore Scientifico Disciplinare: ING-INF/03 Telecomunicazioni

6G enabled IoV Scenarios with Distributed Intelligence Mechanisms

Presentata da: Swapnil Sadashiv Shinde

Coordinatore Dottorato Supervisore

Prof. Nicolò Cavina Prof. Daniele Tarchi

Esame finale anno 2024

6G ENABLED IOV SCENARIOS WITH

DISTRIBUTED INTELLIGENCE

MECHANISMS

Swapnil Sadashiv Shinde

Department of Electrical, Electronic, and Information
Engineering ”Guglielmo Marconi” - DEI

University of Bologna

MONTH 2024

6G enabled IoV Scenarios with Distributed

Intelligence Mechanisms

by

Swapnil Sadashiv Shinde

Department of Electrical, Electronic, and Information

Engineering ”Guglielmo Marconi” - DEI

Submitted

in partial fulfillment of the requirements of the degree of Doctor of Philosophy

to the

University of Bologna

MONTH 2024

This thesis is dedicated . . .

. . .To my entire family . . .

for their love and support

. . .To my respected Supervisor Daniele . . .

for his continuous support and motivation

. . .To my colleagues and friends . . .
who were my companions throughout

————————————————————-

Certificate

This is to certify that the thesis entitled “6G enabled IoV Scenarios with Dis-

tributed Intelligence Mechanisms”, submitted by Mr. Swapnil Sadashiv

Shinde to the University of Bologna, for the award of the degree of Doctor of

Philosophy in Automotive for Intelligent Mobility, is a record of the original, bona

fide research work carried out by him under our supervision and guidance. The the-

sis has reached the standards fulfilling the requirements of the regulations related to

the award of the degree.

The results contained in this thesis have not been submitted in part or in full to any

other University or Institute for the award of any degree or diploma to the best of

our knowledge.

Prof. Nicolò Cavina

(Coordinator of the PhD program of

Automotive for Intelligent Mobility)

Department of Industrial Engineering,

University of Bologna.

Prof. Daniele Tarchi

(Thesis Supervisor)

Department of Electrical, Electronic,

and Information Engineering

”Guglielmo Marconi”,

University of Bologna.

Acknowledgements

This dissertation includes the research activities conducted over the past three years

as part of my PhD studies. During this period, I had the opportunity to enhance

my knowledge, critical thinking abilities, and decision-making skills, especially in

challenging situations. I am deeply grateful for the support and assistance I received

from various individuals, whom I would like to acknowledge.

First and foremost, I would like to express my heartfelt gratitude to my supervisor,

Prof. Daniele Tarchi, for his unwavering support, guidance, and motivation through-

out this period. Without his assistance, I would not have been able to achieve this

significant milestone in my life. He not only actively participated in all of these

endeavors but also provided me with invaluable insights that have shaped me into

an enthusiastic researcher. I firmly believe that the wisdom he has shared with me

has not only been instrumental during this period but will also continue to guide

me in the years ahead, helping me become a successful individual. I am also deeply

grateful to Prof. Alessandro Vanelli Coralli and Prof. Giovanni Emanuele Corazza

for granting me the opportunity to work within the Digicomm research group. My

sincere thanks also go to Prof. Nicolò Cavina, the coordinator of the PhD program

in Automotive for Intelligent Mobility, for his unwavering support. Your assistance

has been invaluable, and it has significantly eased my journey throughout these

years. Thank you for your contributions to my success. In addition, I would like to

thank the reviewers of this thesis, for taking the time to read this dissertation and

providing valuable comments.

During my time working in the Digicomm research group, I had the privilege of meet-

ing several individuals who have become wonderful friends over time. My heartfelt

thanks go out to my friend Bilal for his continuous support. I also want to express

my gratitude to my friends Rabih, David, and all other group members for making

this journey smooth and enjoyable. Special thanks to all my friends with whom I

had planned this journey a long time ago, particularly Salil, Pradumna, Atul, and

Ishtiyaq.

Finally, these achievements wouldn’t have been possible without the unwavering

support of my entire family. I extend my gratitude to my siblings and parents for

their constant support. Thank you all for always being there when I needed it.

Abstract

The Internet of Vehicles (IoV) paradigm has emerged in recent times, where with

the support of technologies like the Internet of Things and V2X (Vehicle to Every-

thing), Vehicular Users (VUs) can access different services through internet connec-

tivity. With the support of 6G technology, the IoV paradigm will evolve further

and converge into a fully connected and intelligent vehicular system. However, this

brings new challenges over dynamic and resource-constrained vehicular systems, and

advanced solutions are demanded. This dissertation analyzes the future 6G enabled

IoV systems demands, corresponding challenges, and provides various solutions to

address them.

The vehicular services and application requests often come with stringent require-

ments and processing demands which are expected to intensify in future IoV systems.

Therefore, proper data processing solutions with the support of distributed comput-

ing environments such as Vehicular Edge Computing (VEC) are required. While

analyzing the performance of VEC systems it is important to take into account the

limited resources, coverage, and vehicular mobility into account. These issues can

be a bottleneck of VEC systems applicability for processing the VUs data effec-

tively and advanced solutions can be demanded. Recently, Non-terrestrial Networks

(NTN) have gained huge popularity for boosting the coverage and capacity of ter-

restrial wireless networks. Integrating such NTN facilities into the terrestrial VEC

system can address the above-mentioned challenges. Additionally, such integrated

Terrestrial and Non-terrestrial networks (T-NTN) can also be considered to provide

advanced intelligent solutions with the support of the edge intelligence paradigm.

In this dissertation, we proposed an edge computing-enabled joint T-NTN-based

vehicular system architecture to serve VUs. Next, we analyze the terrestrial VEC

systems performance for VUs data processing problems and propose solutions to

improve the performance in terms of latency and energy costs. Next, we extend

the scenario toward the joint T-NTN system and address the problem of distributed

data processing through ML-based solutions. We also proposed advanced distributed

learning frameworks with the support of a joint T-NTN framework with edge com-

puting facilities. In the end, proper conclusive remarks and several future directions

are provided for the proposed solutions.

Contents

Certificate

Acknowledgements

Abstract

Contents

List of Figures

List of Tables

List of Publications

Abbreviations

1 Introduction 1

1.1 Introduction . 1

1.2 Key Challenges . 4

1.2.1 Heterogeneous Nodes with Resource Limitations 4

1.2.2 Advanced Service Demand . 5

1.2.3 Advanced ML Solutions . 5

1.3 Motivation . 5

1.4 Contributions . 8

1.5 Organization . 9

2 Internet of Vehicles 11

2.1 Introduction . 11

2.2 Scenario Background . 15

2.3 Enabling Technologies and Challenges for Futuristic Vehicular Networks 18

Contents

2.3.1 6G . 18

2.3.2 Network Softwarization . 19

2.3.3 Vehicular Edge Computing . 22

2.3.4 Machine Learning . 25

2.3.5 Non-terrestrial Networks . 33

2.4 Multiple Edge Computing Platforms Enabled Joint Terrestrial and
Non-terrestrial Network Architecture for Vehicular Scenarios 34

3 Future IoV Network, Key Challanges and Possible Solutions 41

3.1 Introduction . 41

3.2 Distributed Data Processing for Vehicular Users 42

3.3 Distributed Intelligence for Vehicular Users 43

3.4 Considered Problems and Outcomes 44

3.4.1 Vehicular Data Processing Problem 45

3.4.2 Distributed Edge Intelligence for Vehicular Users 47

4 Distributed Data Processing for IoV -Terrestrial Case 49

4.1 Introduction . 49

4.2 Joint Network Selection and Offloading over VN: Single-Service Case 51

4.2.1 System Model and Problem Formulation 53

4.2.1.1 VU Mobility and Sojourn Time 55

4.2.1.2 VU-EN Assignment, Offloading Process and Resource
Allocation . 56

4.2.1.3 Problem Formulation 64

4.2.2 MDP Formation . 65

4.2.2.1 VU Scenarios Defintion 66

4.2.2.2 MDP Elements . 69

4.2.3 MDP-Based Joint Network Selection and Computation Of-
floading . 77

4.2.4 Benchmark Approaches . 81

4.2.5 Numerical Results . 83

4.2.6 Conclusion . 90

4.3 Joint Network Selection and Offloading: Multi-service Case 92

4.3.1 System Model and Problem Formulation 93

4.3.1.1 RSU Selection . 95

4.3.1.2 Task Processing . 97

4.3.1.3 Vehicle Mobility and Sojourn Time 99

4.3.1.4 Problem Formulation 100

4.3.2 Q-Learning Based Joint Network Selection and Computation
Offloading . 101

4.3.2.1 Collaborative Q-Learning Solutions for Joint Net-
work Selection and Offloading 106

Contents

4.3.2.2 Deep Learning Based Solutions 110

4.3.3 Limited Search-space based Heuristic Approach 112

4.3.4 Numerical Results . 114

4.3.5 Conclusion . 125

5 Distributed Data Processing for IoV -Joint-Terrestrial and Non-
Terrestrial Case 129

5.1 Introduction . 130

5.2 Joint Network Selection and Offloading with joint T-NTN Vehicular
Scenario - Metaheuristic Solution . 131

5.2.1 System Model and Problem Formulation 133

5.2.1.1 VUs Mobility and Distance Measures 135

5.2.1.2 LEO Satellite Mobility and Distance Measures 136

5.2.1.3 Network Selection and Task Offloading Process . . . 137

5.2.1.4 Problem Formulation 141

5.2.2 Proposed Solutions . 142

5.2.2.1 Adaptive GA Process (A-GA) 145

5.2.2.2 Benchmark Solutions 147

5.2.3 Numerical Results . 148

5.2.4 Conclusions . 155

5.3 Network Selection and Offloading with joint T-NTN Vehicular Scenario-
HRL Solution . 155

5.3.1 System Model and problem Formulation 157

5.3.1.1 VUs Mobility and Distance Measures 159

5.3.1.2 LEO Satellite Mobility and Distance Measures 160

5.3.1.3 Network Selection and Task Offloading Process . . . 161

5.3.1.4 Task Offloading Process 164

5.3.1.5 Problem Formulation 166

5.3.2 Hierarchical Reinforcement Learning Solution 167

5.3.2.1 MDP Models . 168

5.3.2.2 Deep Q Network based solution 171

5.3.2.3 Benchmark Solutions 176

5.3.3 Numerical Results . 177

5.3.4 Conclusions . 184

5.4 Joint Service Placement, Network Selection and Offloading: Multi-
time Scale Approach . 185

5.4.1 System Model and Problem Formulation 187

5.4.1.1 VU Mobility Model 189

5.4.1.2 Multi-time Scale Approach 190

5.4.1.3 Problem Formulation 195

5.4.2 Multi-time Scale Optimization 197

5.4.2.1 Service Placement MDP 198

Contents

5.4.2.2 Network Selection MDP 199

5.4.2.3 Computation Offloading MDP 201

5.4.2.4 Reward Function . 202

5.4.3 Deep Q-Learning for Service Placement, Network Selection,
and Computation Offloading 203

5.4.4 Numerical Results . 211

5.4.5 Conclusion . 217

6 Distributed Intelligence for IoV 219

6.1 Introduction . 219

6.2 FL-based Computation Offloading in IoV 220

6.2.1 System Model and Problem Formulation 222

6.2.1.1 Vehicular Mobility Model 224

6.2.1.2 Partial Offloading Model 225

6.2.1.3 Task Offloading Process 226

6.2.1.4 Local VU Computation Process 228

6.2.1.5 Partial Offloading Problem 229

6.2.1.6 Federated Learning Model 231

6.2.1.7 FL Computation Model 234

6.2.1.8 FL Communication Model 234

6.2.1.9 Joint Offloading and Federated Learning Model . . . 236

6.2.1.10 Problem Formulation 238

6.2.1.11 Federated Offloading parameter estimation 239

6.2.2 Proposed Solutions . 243

6.2.2.1 Clustered Approach 244

6.2.2.2 Distributed Approach 246

6.2.2.3 Genetic Algorithm 247

6.2.2.4 Limited Search-based Heuristic Approach (LS-HuA) 251

6.2.2.5 Optimal Offloading Parameter 252

6.2.3 Numerical Results . 254

6.2.4 Conclusion . 262

6.3 Distributed FL over Joint Air-ground Networks for Vehicular Appli-
cations . 264

6.3.1 System Model and Problem Formulation 265

6.3.1.1 VU Mobility Model 267

6.3.1.2 Distributed FL Platform for Vehicular Applications . 269

6.3.1.3 Network Selection Parameters 271

6.3.1.4 FL Process Cost Analysis 274

6.3.1.5 Number of FL Iterations Performed 280

6.3.1.6 Problem Formulation 283

6.3.2 MDP Based SOlution Approach 285

Contents

6.3.2.1 Local Environment based Multi-dimensional MDP
Model . 285

6.3.2.2 MDP-Based FL Network Selection Strategy 292

6.3.3 Benchmark Methods . 296

6.3.3.1 Conventional Centralized FL Process (C-FL) 296

6.3.3.2 Minimum Distance Based FL Process (MD-FL) . . . 296

6.3.3.3 Random Assignment Based FL Process (RA-FL) . . 297

6.3.3.4 FedCPF inspired RSU-based benchmark solution for
the considered scenario (FedR-FL) 297

6.3.4 Performance Evaluation . 298

6.3.4.1 Numerical Results 299

6.3.5 Conclusion . 307

7 Conclusion 309

Scope for Future Work 312

Bibliography 313

List of Figures

1.1 Novel Technologies, Main Issues, and Research Challenges. 7

2.1 Vehicular edge computing framework. 24

2.2 Centralized machine learning. 29

2.3 Distributed machine learning. 30

2.4 Federated learning. 31

2.5 Multiple EC enabled VN. 35

2.6 The Multi-EC framework for the vehicular scenario. 37

3.1 Considered Problems and Outcomes. 45

4.1 System Architecture . 54

4.2 Proposed MDP Model. 66

4.3 Cost Function . 85

4.4 Percentage of VUs with Handover Requirements 87

4.5 Percentage of VUs with service time constraint violation. 88

4.6 Avg. Latency Cost . 89

4.7 Avg. VU Energy Cost . 90

4.8 Avg. EN Energy Cost . 91

4.9 Avg. Number of Active ENs . 92

4.10 The multi-service IoV system architecture. 96

4.11 DQN Architecture. 112

4.12 Average Joint Latency and Energy Cost for variable number of VNs. 119

4.13 Average Number of RSUs Handover Requests for variable number of
VNs. 121

4.14 Average number of Service Time Failures for variable number of VNs. 122

4.15 Average Task Completion Latency for variable number of VNs. 123

4.16 Average Energy Consumption for Task Completion for variable num-
ber of VNs. 124

4.17 Q-Learning Training Performance in Terms of a Service Time Failures
for a variable number of iterations. 126

5.1 System Model . 133

5.2 Multi Service VN with Non-terrestrial EC Layers 135

List of Figures

5.3 Chromosome Example . 144

5.4 Joint Latency and Energy Cost. 150

5.5 Latency Cost. 151

5.6 Energy Cost. 152

5.7 Service Latency Failures. 153

5.8 Sojourn Time Failures. 154

5.9 VU-EN Assignment for A-GA Method. 154

5.10 NTN Edge Computing System Model 158

5.11 Multi Service VN with Non-terrestrial EC Layers 159

5.12 Functional scheme for the proposed HRL solution. 174

5.13 Joint Latency and Energy Cost. 179

5.14 Total Task Processing Latency. 180

5.15 Energy Requirements. 181

5.16 Service Time Failures. 182

5.17 Sojourn Time Failures. 183

5.18 Service Handover Requirements. 184

5.19 The T/NT Integrated Scenario. 189

5.20 Multi-scale MDPModel for the Service Placement, Network Selection,
and Offloading Problem. 198

5.21 Proposed Deep Q-Learning Solution 207

5.22 Performance results in terms of overall cost function with variable
number of active vehicles. 213

5.23 Percentage of VUs with Handover Requirements. 214

5.24 Percentage of VUs with service time constraint violation. 215

5.25 Avg. No. of EN Selected for Offloading. 217

6.1 System Architecture . 223

6.2 VU Mobility Scenarios and Corresponding Distance Matrices 225

6.3 Proposed scheme for the joint FL and task-offloading processes opti-
mization. 232

6.4 Truncated Normal Distribution of 𝛼𝑚 as a function of the FL iterations.241

6.5 FL process impact over the offloading parameter value 241

6.6 FL and Task processing time sharing. 242

6.7 Cost Function . 258

6.8 Percentage of VUs with sojourn time constraint violation 259

6.9 Percentage of VUs with service time constraint violation 260

6.10 Percentage of VUs violating the Energy Constraint in (6.33) 261

6.11 Avg. Offloading Error . 262

6.12 GA Performance Vs Iterations . 263

6.13 The T/NT Integrated Scenario. 268

6.14 Distributed FL Platform. 269

6.15 Distributed FL Process . 271

List of Figures

6.16 Distributed FL Process Latency Analysis. 279

6.17 Performance results in terms of overall cost function with variable
number of active vehicles. 302

6.18 FL latency with variable number of active vehicles. 303

6.19 Performance results in terms of energy consumption for the FL pro-
cess with variable number of active vehicles. 305

6.20 Performance results in terms of FL Penalty value with variable num-
ber of active vehicles. 306

6.21 Performance results in terms of average number of FL iterations with
variable number of active vehicles. 308

List of Tables

2.1 Advantages and disadvantages of different EC platforms for VN ser-
vices and applications. 26

2.2 Characteristics of the ML Models over VNs. 33

2.3 EC platforms’ characteristics. 40

4.1 Simulation parameters . 84

4.2 Simulation parameters . 115

4.3 Complexity Analysis . 117

4.4 Average Percentage of Data Offloading. 125

5.1 Simulation parameters . 149

5.2 Simulation parameters . 178

5.3 Simulation parameters . 212

5.4 Average Percentage of Data Offloading. 216

6.1 Simulation Parameters . 255

6.2 Simulation parameters . 299

List of Publications

Journals

1. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” A Multi-level Sequential

Decision Making Process for Non-Terrestrial Vehicular Edge Computing En-

vironments.” Submitted to IEEE Transactions on Machine Learning in Com-

munications and Networking (2023).

2. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Multi-Time Scale Markov

Decision Process for Joint Service Placement, Network Selection, and Compu-

tation Offloading in Aerial IoV Scenarios.” Submitted to IEEE Transactions

on Network Science and Engineering (2023) (Under Major Revision).

3. Lorenzo Ridolfi, David Naseh, Shinde, Swapnil Sadashiv, and Daniele Tarchi.

” Implementation and Evaluation of a Federated Learning Framework on Rasp-

berry PI Platforms for IoT 6G applications.” Future Internet 15, no. 11 (2023):

358.

4. Girelli Consolaro, Niccolò, Swapnil Sadashiv Shinde, David Naseh, and Daniele

Tarchi. ”Analysis and Performance Evaluation of Transfer Learning Algo-

rithms for 6G Wireless Networks.” Electronics 12, no. 15 (2023): 3327.

5. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Joint Air-Ground Distributed

Federated Learning for Intelligent Transportation Systems.” IEEE Transac-

tions on Intelligent Transportation Systems (2023).

6. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”A Markov Decision Process

Solution for Energy-Saving Network Selection and Computation Offloading in

Vehicular Networks.” IEEE Transactions on Vehicular Technology (2023).

List of Publications

7. Adelantado, Ferran, Majsa Ammouriova, Erika Herrera, Angel A. Juan, Swap-

nil Sadashiv Shinde, and Daniele Tarchi. ”Internet of Vehicles and Real-Time

Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities.”

Vehicles 4, no. 4 (2022): 1223-1245.

8. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Collaborative Reinforcement

Learning for Multi-Service Internet of Vehicles.” IEEE Internet of Things Jour-

nal 10, no. 3 (2022): 2589-2602.

9. Muscinelli, Eugenio, Swapnil Sadashiv Shinde, and Daniele Tarchi. ”Overview

of distributed machine learning techniques for 6G networks.” Algorithms 15,

no. 6 (2022): 210.

10. Shinde, Swapnil Sadashiv, Dania Marabissi, and Daniele Tarchi. ”A network

operator-biased approach for multi-service network function placement in a 5G

network slicing architecture.” Computer Networks 201 (2021): 108598.

11. Shinde, Swapnil Sadashiv, Arash Bozorgchenani, Daniele Tarchi, and Qiang

Ni. ”On the design of federated learning in latency and energy constrained

computation offloading operations in vehicular edge computing systems.” IEEE

Transactions on Vehicular Technology 71, no. 2 (2021): 2041-2057.

12. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Towards a novel air–ground

intelligent platform for vehicular networks: Technologies, scenarios, and chal-

lenges.” Smart Cities 4, no. 4 (2021): 1469-1495.

Presentations and proceedings in International/National Conferences

1. Shinde, Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Time Continuous

Federated Learning for Latency Critical Vehicular Applications.” Accepted for

Presentation in IEEE Wireless Communications and Networking Conference

(WCNC) (2024).

2. Shinde, Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Joint Aerial-Ground

Offloading for Dependency-Aware IoV Multi-Task Services.” Submitted to Eu-

CNC & 6G Summit (2024).

List of Publications

3. David Naseh, Shinde, Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Multi-

Layer Distributed Learning for Intelligent Transportation Systems in 6G NTN.”

Submitted to EuCNC & 6G Summit (2024).

4. Shinde, Swapnil Sadashiv, David Naseh, and Daniele Tarchi. ” In-Space Com-

putation Offloading for Multi-layer LEO Constellations.”European Wireless

(2023).

5. David Naseh, Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Enabling Intel-

ligent Vehicular Networks Through Distributed Learning in the Non-Terrestrial

Networks 6G Vision.” European Wireless (2023).

6. Abdullah Abbasi, Swapnil Sadashiv Shinde, and Daniele Tarchi.” Networked

Federated Learning-based Intelligent Vehicular Traffic Management in IoV Sce-

narios.” Globecom (2023)

7. Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Network Selection and Com-

putation Offloading in Non-Terrestrial Network Edge Computing Environ-

ments for Vehicular Applications.” In 2022 11th Advanced Satellite Multimedia

Systems Conference and the 17th Signal Processing for Space Communications

Workshop (ASMS/SPSC), pp. 1-8. IEEE, 2022.

Abbreviations

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

BS Base Station

CDNs Content Delivery Networks

COTS Commercial Off-the-Shelf

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

EC Edge Computing

FedAvg Federated Averaging

FL Federated Learning

HAP High Altitude Platforms

IoV Internet of Vehicles

IoT Internet of Things

ITS Intelligent Transportation System

KPIs key Performance Indicators

LAP Low Altitude Platforms

LEO Low Earth Orbit

LOS Line of Sight

MDP Markov Decision Processes

MEC Multiaccess Edge Computing

ML Machine Learning

NFs Network Function

NFV Network Function Virtualization

NR New Radio

NTN Non-Terrestrial Networks

OBUs Onboard Units

Abbreviations

QoS Quality of Service

RSUs Road-Side Units

SDN Software-Defined Networking

TNs Terrestrial Networks

T-NTN Terrestrial and Non-Terrestrial Networks

UAVs Unmanned Aerial Vehicles

V2I Vehicle-to-Infrastructure

V2P Vehicle-to-Person

V2R Vehicle-to-Road Side Units

V2S Vehicle-to-Sensors

V2V Vehicle-to-Vehicle

VANETs Vehicular Ad-hoc Networks

VEC Vehicular Edge Computing

VMs Virtual Machines

VNFs Virtual Network Functions

VUs Vehicular Users

XR eXtended Reality

Chapter 1

Introduction

1.1 Introduction

The next generation of mobile networks is expected to be developed under the um-

brella term 6G to enable a fully connected, digitized, and intelligent society [1]. The

6G vision is set to serve the evaluated version of current 5G applications and some

novel scenarios such as holographic communication, Immersive Extended Reality

(XR), etc [2]. Among others, 6G technology is also expected to revolutionize the

traditional transportation system into an Intelligent Transportation System (ITS)

through the support of the Internet of Things (IoT), Artificial Intelligence (AI),

Machine Learning (ML), edge computing, and advanced modes of communication

i.e., V2X. With this, the concept of the Internet of Vehicles (IoV) has emerged

popularizing new data-intensive and latency-critical applications and services in the

highly dynamic vehicular environment [3]. IoV paradigm integrates novel technolo-

gies (i.e., vehicle-to-everything (V2X), IoV), to allow Vehicular Users (VUs) to con-

nect through the internet and have access to the different services. However, novel

services bring a massive amount of communication and computation demands with

1

Chapter I. Introduction 2

stringent requirements. Even though new vehicles have more performant communi-

cation and computation-integrated devices, they are not able to satisfy the demand

for the new services. Hence, the concept of Vehicular Edge Computing (VEC), a

natural extension of Multiaccess Edge Computing (MEC) from wireless networks

into vehicular cases has emerged in the last decade [4]. For the case of vehicular

scenario, such VEC facilities can be integrated through the deployments of a se-

ries of Road-Side Units (RSUs) and corresponding edge servers alongside the road

infrastructures. Such RSU-based edge computing facilities effectively solve the ma-

jor challenges of traditional cloud computing paradigms including long transmission

delays, security constraints, and backhaul congestion. VUs can offload some task

portion towards these edge servers in the proximity for enabling latency-critical and

data-intensive applications and services with demanded Quality of Service. Addi-

tionally, with the support of VEC facilities, IoT devices, and novel ML frameworks,

proper intelligent solutions can be enabled in the proximity of VUs. However, the

limited computation and communication resources of VEC servers along with the

restricted coverage ranges of RSU nodes can create new challenges in vehicular sce-

narios, especially with the growing demands of new services and applications.

With the advance of various new platforms, Non-Terrestrial Networks (NTN) have

recently acquired a central place in the 6G research [5]. Both aerial and orbital plat-

forms including Low Altitude Platforms (LAPs), High Altitude Platforms (HAPs),

and different satellite constellations can play an important role in creating sustain-

able and intelligent vehicular systems through their added coverage and capacity

boosts [6]. In particular, NTN platforms can enable edge computing facilities in

space through the integration of computation and communication resources onboard.

Chapter I. Introduction 3

Integrating such edge computing facilities in the traditional VEC systems can effec-

tively boost performance. It can tackle several challenges of VEC systems includ-

ing resource limitations, vulnerability to natural disasters, coverage limitations, etc.

Various NTN platforms located at different altitudes in space with differing mobility

patterns can serve ground-based VUs effectively.

With the rapid deployments of 5G systems, initial 5G readings are available. With

this, the beyond 5G specifications being a stepping stone into the 6G world are

being defined. The 6G vision aims to enable an intelligent society through several

new intelligent services and applications. Vehicular Networks (VNs) in particular

are expected to go through rapid change and converge into intelligent systems. With

these VUs are expected to request a large number of heterogeneous services with

stringent requirements. This can put a huge burden on network computation and

communication resources. In addition to this, with the presence of a large number

of services, providing all possible services at the network edge can be challenging,

mainly due to insufficient storage resources. Therefore, optimal service placements

over resource-constrained edge nodes become important. Thus, it is important to

analyze the performance of distributed computing environments enabled through

the integrated Terrestrial and Non-Terrestrial Networks (T-NTN) offering single/-

multiple services to vehicular nodes.

The growing demand for intelligent services from VUs is another concern that re-

quires attention. It is important to take into account the resource limitations, mo-

bility, stringent service demands, and heterogeneous nature of networking platforms

while providing intelligent solutions for VUs. The edge intelligence paradigm can

integrate novel ML techniques with edge computing facilities for providing ML so-

lutions in the proximity of end users. For vehicular cases, it is important to analyze

such solutions with special attention to resource and service-related constraints.

Chapter I. Introduction 4

1.2 Key Challenges

The next generation of VN, with the support of 6G technology, is expected to rev-

olutionize the road experience with the added intelligent services. In addition to

this IoT, NTN, edge computing and ML frameworks will support to enable the fully

connected and intelligent VN system. The possible integration of these technologies

in the VN can have several benefits in terms of novel services, added intelligence,

reduced costs, etc. However, several new challenges can also arise in VN that de-

mand further consideration. It includes novel service demands, dynamic networks,

resource limitations, intelligent solution demands, data management, privacy and se-

curity concerns, reliability and resilience, scalability, spectrum management, weather

and environment challenges, infrastructure maintenance, etc. This dissertation, in

particular, focuses on the following key challenges.

1.2.1 Heterogeneous Nodes with Resource Limitations

The next generation of VN is expected to be supported by novel edge computing

technology for processing the VU’s data. The ground-based VEC facilities can be

complemented by additional NTN layers of LAP, HAP, and satellite networks. Each

of these platforms can have a different amount of resources, mobility characteristics,

distance parameters, node density, coverage, etc. On the other hand, VU’s mobility

and service demands can add additional constraints. While processing the VUs

data at the edge with multiple edge computing facilities it is important to take

into account the heterogeneous nature of EC nodes and their characteristics to have

proper benefits and cost reductions.

Chapter I. Introduction 5

1.2.2 Advanced Service Demand

The next generation of VNs is expected to demand several high-quality services with

a heterogeneous nature. Each service can have specific demands in terms of resource

requirements. With this, it is impossible to enable the complete sets of services at

the EC nodes due to their limited storage resources. Users can have specific demands

while accessing the services from edge networks. Thus it is important to take into

account the multi-service vehicular scenarios with user and service-centric demands

while researching the next-generation VN.

1.2.3 Advanced ML Solutions

With the recent advancement in ML domains and hardware technologies, several

new ML solutions are being explored for solving the wireless communication chal-

lenges. Enabling effective intelligent solutions in VN with the support of distributed

networks is of utmost importance for next-generation VN. The edge intelligence

paradigm can merge ML technologies with edge computing frameworks to enable

intelligent solutions in the proximity of end users. For vehicular cases, various dis-

tributed learning solutions can be analyzed and further optimized with the support

of edge networks, advanced communication modes in VN, and distributed IoT data.

1.3 Motivation

The next generation of VN is expected to be a fully connected, digitized, and intel-

ligent system serving users with several new applications and services. Distributed

computing facilities enabled through edge networks can have several potential ben-

efits in terms of vehicular data processing and edge intelligence solutions for VN

Chapter I. Introduction 6

[7]. The forthcoming intelligent IoV wonderland will generate tons of computation

data, and VEC can be a viable solution for providing computation services to the

resource-constrained vehicular nodes [8]. However, for having the benefits of VEC

resources over multi-user IoV networks, selecting a proper edge server and offloading

amount is an important problem. In the past, several authors have tried to solve the

computation offloading problem by either finding a proper edge node or the amount

to be offloaded. In [9], authors have proposed the adaptive task offloading strategy

in the MEC-based vehicular networks environment with a pre-allocation algorithm

for vehicle tasks. In [10], the authors focus on an energy-efficient approach for com-

putation offloading in VEC networks. Two heuristic approaches are proposed for

solving the problem under different configurations. In [11], authors have studied

a reliable computation offloading and task allocation problem over integrated fixed

and mobile edge computing enabled vehicular users through the adaptation of soft-

ware to define networking technology. In [12], the authors proposed a multi-armed

bandit approach for optimally selecting the network to be used for computation of-

floading. In this case, both online and offline approaches are considered. In [13] the

authors propose an energy-constrained approach for managing in-vehicle device of-

floading operations. The problem is solved through a consensus-based approach. It

is important to analyze the performance of VEC systems enabled through terrestrial

networks that serve VUs with heterogeneous services. In particular, the resource-

limited terrestrial VEC facilities can only serve a reduced number of users, proper

user-server assignments, offloading, and service placements are required. Addition-

ally with the growing interest in intelligent solutions proper distributed learning so-

lutions enabled through the integration of novel ML approaches and VEC facilities

are demanded. Additionally, with the growing interest in NTN systems, integrated

T-NTN-based VNs with integrated edge computing facilities should be analyzed for

Chapter I. Introduction 7

serving VUs. However, it is important to take into account the heterogeneous na-

ture of EC networks, service demands, user requirements, mobility characteristics,

etc while considering such multi-layered network architectures. Growing demands of

heterogeneous vehicular service should be taken into account while providing edge

computing-related solutions for VUs. VUs demands for intelligent solutions should

also considered while investigating the vehicular systems. In particular, enabling

efficient ML solutions with the integration of IoT subsystems, novel communica-

tion techniques, distributed computing environments and novel distributed learning

techniques is one of the major requirements.

With this motivation in mind, I have performed several activities during my Ph.D.

studies to analyze the performance of edge computing-enabled VN with a single/multi-

service nature. In particular, this dissertation proposes several novel solutions for

enabling distributed data processing and edge intelligence solutions in VNs. Figure

1.1 details the main technologies, corresponding issues, and major research chal-

lenges considered in this thesis.

Figure 1.1: Novel Technologies, Main Issues, and Research Challenges.

Chapter I. Introduction 8

1.4 Contributions

The main contribution of this thesis work includes,

• We proposed novel multiple edge computing platforms enabled T-NTN archi-

tecture for vehicular scenarios. We analyze the benefits of integrating terres-

trial and non-terrestrial edge computing facilities to serve VUs with distributed

computing environments.

• Next, we investigated the vehicular scenario with single and multiple services

provided by terrestrial VEC systems. The studies are performed to enable the

efficient processing of VUs data with stringent latency demands. Novel ML-

based solutions are proposed to minimize the latency and energy costs through

a partial offloading process.

• We extend the considered terrestrial VEC scenarios towards the case of joint T-

NTN-based edge computing networks. We analyze the distributed computing

environment for efficient processing of vehicular data with added capacity and

coverage. The problem of proper network selection, offloading, and service

placement is taken into account to minimize the overall costs in terms of latency

and energy. We have proposed several solutions based on metaheuristic and

ML techniques.

• Next, we have also investigated the joint T-NTN-based VNs for enabling dis-

tributed learning solutions. In particular, we propose cost-efficient FL solu-

tions for resource-limited vehicular systems. We have developed an FL solution

for enabling the efficient data offloading process in VEC with joint optimiza-

tion of FL and offloading processes. We have also proposed a novel distributed

FL framework to enable a cost-efficient FL solution for VUs. In a proposed

Chapter I. Introduction 9

framework, the FL process is distributed over the air-ground edge computing

facilities to reduce the FL latency and energy costs.

1.5 Organization

The following chapters of the dissertation are organized as:

• Chapter 2: In Chapter 2, we have proposed a multiple edge computing

facility-enabled joint T-NTN-based VN architecture. We have introduced the

importance of the integration of NTN-based edge computing facilities into

traditional VEC systems.

• Chapter 3: In Chapter 3, we have highlighted several key challenges from a

future 6G enabled IoV systems perspective. We also provide a brief overview of

the considered problems and the outcome of this dissertation while addressing

them.

• Chapter 4: In Chapter 4, we provide the results for a terrestrial VEC-based

distributed data processing problem. In particular, we analyze the terrestrial

VEC system for solving the joint network selection and offloading problem to

minimize the latency and energy costs.

• Chapter 5: In Chapter 5, we include the results for the activities performed

over a joint T-NTN-based vehicular system. We analyze the importance of

network selection and offloading problems over a multi-layered edge computing

framework and provide metaheuristic and ML-based solutions.

• Chapter 6: In Chapter 6, we include the proposed solutions for enabling

distributed intelligence solutions in vehicular systems.

Chapter I. Introduction 10

• Chapter 7: In Chapter 7, we provide conclusive remarks and several future

directions for the work done in this dissertation.

Chapter 2

Internet of Vehicles

Some content of this chapter is based on the following article [6];

“Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Towards a novel air–ground in-

telligent platform for vehicular networks: Technologies, scenarios, and challenges.”

Smart Cities 4, no. 4 (2021): 1469-1495.”.

2.1 Introduction

The traditional transportation system is rapidly converging into an Intelligent Trans-

portation System (ITS) mainly through the integration of innovative technologies,

e.g., Internet of Things (IoT), and wireless technologies (e.g., 5G, 6G) [14]. With new

connected vehicles, having different communication and computing technologies, Ve-

hicular Networks (VNs) are radically moving toward the Internet of Vehicles (IoVs)

paradigm, where new applications and services are growing. With the integration

of modernized technologies such as IoT and various new communication modes,

11

CHAPTER II Internet of Vehicles 12

including Vehicle-to-Vehicle (V2V), Vehicle-to-Road Side Units (V2R), Vehicle-to-

Infrastructure of Cellular Networks (V2I), Vehicle-to-Sensors(V2S), and Vehicle-to-

Person (V2P), IoV can expand the traditional Vehicular Ad hoc Networks (VANETs)

capability by adding several new services and applications. IoV is able to support

various functions, including intelligent traffic management, traffic safety enhance-

ments, dynamic information services, intelligent vehicle control for improving the

overall road experience of users [15, 16, 17, 18]. However, vehicle onboard computa-

tion capacity is falling short when new latency-critical and data-intensive applica-

tions are considered; hence, new challenges are arising in VNs. The Cloud computing

facilities are able to reduce the computation burden of new services; therefore, Vehic-

ular Users (VUs) can transmit the portion/complete task to the cloud servers having

enormous computation and communication power. In general, the cloud facilities

are located far from the users, in the core network, and introduce some drawbacks,

e.g., huge transmission costs, backhaul link congestions, data security threats due

to long-distance communications. Such issues can be addressed by integrating the

Edge Computing (EC) facilities into VNs, bringing cloud computing resources in

the proximity of end-users [19, 20].

In the case of VNs, EC facilities can be integrated through the deployment of sev-

eral EC servers alongside the road network co-located with Roadside Units (RSUs).

Such an approach is known as Vehicular Edge Computing (VEC) and has achieved

lots of success by enabling new latency-critical services into VNs [21]. However,

the limited capacity and coverage of EC servers/RSUs is the main bottleneck while

exploiting VEC advantages. VEC-based VN can also be complemented by adding

additional EC servers located on the terrestrial cellular base stations (i.e., 5G-gNB).

Such ground-based multi EC platforms can compliment VUs by providing additional

services and reducing the overall burden of the VEC servers.

CHAPTER II Internet of Vehicles 13

However, in recent times, Terrestrial Networks (TNs) are becoming more and more

used, with many new users requesting services with specific demands. Limited cov-

erage into rural and remote areas, unreliable service during natural disasters like

tsunamis and earthquakes, new security challenges, poor link budget with additional

interferences are some of the main challenges that need to be considered while utiliz-

ing TN-based EC platforms into VNs. In addition, VUs are not the only user group

requesting services from the TN-based EC platforms. With the presence of differ-

ent users, the dynamically changing resources of EC servers with vehicular mobility

adds additional challenges while integrating the TN-based EC services into VNs.

With this limitation, integrating TN-based EC platforms into VN alone can not be

a sufficient solution for the new futuristic vehicular services and applications, which

will have more stringent requirements in terms of latency and computation resources.

Encouraged by the new technological developments and the additional interest shown

by several tech giants (i.e., Facebook, Google, etc.), the Non-Terrestrial Networks

(NTN), including space and air networks are growing these days mainly for providing

global connectivity [22]. Several new platforms such as new satellite constellations,

Unmanned Aerial Vehicles (UAVs) swarms, small fueled aircraft, balloons have been

deployed at different heights from the ground users to achieve the global connectivity

challenge [23]. Better connectivity, scalability, reliability are some of the advantages

of NTN based communication platforms. With the addition of modern commu-

nication technologies, such as multi-beam antennas, the NTN platforms can also

provide EC-based services with an onboard computing server [24, 25, 26]. Such

NTN-based EC platforms can complement the VNs for solving several problems,

including RSUs’ limited capacity and coverage. Compared with space networks,

Low Earth Orbit (LEO) Satellites and new aerial platforms such as Low Altitude

and High Altitude Platforms (LAPs and HAPs) have a considerable advantage with

CHAPTER II Internet of Vehicles 14

reduced transmission distances, low deployment time and costs, and reduced commu-

nication channel losses. Therefore LEO Satellites, LAPs and HAPs can be excellent

solutions for complimenting the VN for providing new innovative and intelligent

services to the end-users.

Every connected vehicle in a VN is equipped with several sensors, able to generate

tones of data (i.e., big data) in real-time. These data can be analyzed and exploited

for improving the quality of VNs services and applications [27]. Recently machine

learning (ML) techniques are used for solving challenging problems over wireless

networks [28, 29]. With new hardware technologies and the availability of a large

amount of data through IoT devices, ML research is grown fast. Several new ML

tools and techniques have been developed and utilized for solving real-world prob-

lems on a daily basis. The use of new innovative ML-based solutions for analyzing

the vehicular data for improving the vehicular environment can be beneficial [30].

However, proper infrastructures with communication and computing resources are

required, for embedding the ML-based solutions into VNs, failure of which can in-

troduce higher process costs (i.e., cost induced by ML model training, inference,

etc). With limited resources and dynamic movements in VNs, it is challenging to

implement ML techniques. The EC resources can be exploited for integrating the

ML-based solution techniques into VNs.

Traditional ML approaches such as centralized ML require VUs to transmit their

data to the centralized, more powerful servers [31]. However, such an approach can

introduce higher costs in terms of communication latencies and energy requirements.

With resource limitations and critical service requirements performing centralized

ML over VN can be challenging. On the other hand, new learning approaches such

as Federated Learning (FL), VUs are able to perform the training operations by

themselves [32]. In each FL round, VUs perform the training operations to learn

CHAPTER II Internet of Vehicles 15

local ML model parameters, to be then sent towards the centralized server. After re-

ceiving all VUs parameters from its coverage area, the server is able to perform an

averaging operation for creating a global model to be broadcast back to the VUs.

Thus, the VUs can reduce the data communication cost by performing local training

operations and also exploit the presence of other VUs, by learning experiences/data

through the averaging. For these reasons, recently, FL-based solutions are preferred

for VN application when solving challenging problems [32, 33, 34]. For benefiting

from the collaborative learning into FL, a server platform with better coverage char-

acteristics and channel conditions is required. NTN platforms, such as HAPs, can

assist VN in implementing an efficient FL process with their better coverage char-

acteristics, moderate transmission distances, and better channel conditions.

Therefore, there is clear scope for integrating NTN layers, with ground-based EC

resources, into VNs. Such an approach can solve the limited capacity and cov-

erage problem of conventional ground-based EC platforms and can provide more

intelligent services and applications with stringent requirements. Therefore, here

we provide a novel multiple EC platforms-enabled VN architecture by integrating

ground and NTN-based EC resources. Different enabling technologies, correspond-

ing challenges, and opportunities are discussed in detail. We further analyze several

vehicular scenarios and the benefits of using the proposed VN architecture for solving

the challenges associated with them.

2.2 Scenario Background

Developing a proper ITS is a key to creating a connected society. Different tech-

nologies are merging with the goal of forming sustainable, safe, and intelligent VNs

for serving VUs. In [35], the authors surveyed several ML-based solutions employed

CHAPTER II Internet of Vehicles 16

in VNs communication and networking parts. Differently, the importance of net-

work softwerization technology in the VN and corresponding challenges is surveyed

in [36]. In [37], the authors have proposed a software-defined collaborative EC plat-

form for the vehicular scenario. They have mainly focused on ground-based EC

technologies, including Mobile Edge Computing (MEC), fog computing, cloudlet,

etc. However, limited capacity and coverage issues of ground-based EC platforms

limit the performance of traditional VNs.

Recently, the importance of NTN platforms in wireless communication has been

highlighted in different projects and research works. Several ongoing projects in-

cluding EdgeSAT [38], SATis5 [39], Expanse [40] are aimed at integration (with

terrestrial networks (TNs)), softwarization, and expansion of EC facilities over NTN

platforms. Several study items such as IoT over NTN, New Radio (NR) over NTN,

satellite components in 5G architecture, and unmanned aerial systems are part of

3rd Generation Partnership Project (3GPPs) Release 17 studies, which was finalized

at the end of the first quarter of 2022 [41]. It is also expected that 3GPP will re-

consider many of these items in an upcoming release (i.e., Release 18) [42]. Special

attention has been provided in 3GPPs release 17 toward different NTN technologies

to enable a strong foundation for direct communication between mobile users and

satellites. 3GPP has worked on adapting the 5G-NR, narrowband IoT, and LTE

for machine-type communications to provide satellite connectivity. These studies

are spaned over two 3GPP tracks called 3GPPs NR NTN and IoT NTN studies. In

Release 17, the main focus of 3GPP NTN studies was to provide communication-

related services to consumers through satellite networks. Two different architectures

are considered in 3GPP NTN studies to realize the satellite communication systems.

In general, feeder links are considered to connect the satellite radio payload to the

core network through NTN gateways. Communication services can be provided by

CHAPTER II Internet of Vehicles 17

satellite networks to user equipment through service links. Though 3GPP release

17 has specified the transparent NTN architecture, the studies can be enhanced to

support the regenerative architecture. The spot beam approach where a service area

is divided and covered by individual beams is considered in modern satellite com-

munication. However, this can induce frequent handover between cells adding more

challenges, especially for LEO satellites with high mobility. To counter this a beam

steering mechanism can be adapted satellite beams are steared on a fixed surface

of earth for longer durations. 3GPP release 17 supports both of these approaches.

3GPP solutions also include solutions for critical challenges such as large round trip

time and Doppler shifts. User equipment equipped with a Global Navigation Satel-

lite System (GNSS) module is expected to compensate for the delay and Doppler

shifts by accessing the position and velocity information of satellites and using it

to determine their position before accessing the network. Other studies include the

support for downlink transmission polarization signaling, extension or offset start

of various timers, enhancements for cell selection, etc. Another 3GPP trach called

IoT NTN is considered for adaptation of narrowband IoT and LTE machine type

communication for enabling them to support NTN. In general, the idea is to study

the 3GPPs NR- NTN findings and adapt them to IoT NTN. Both NR NTN and

IoT NTN work is going to expand in Release 18. New NR-NTN studies include cov-

erage enhancements, advanced mobility procedures, and methods for the network

to independently verify the reported user equipment location. Also, for IoT NTN,

studies include methods to disable HARQ feedback, mobility enhancements, and

improvements for discontinuous covergae-related studies.

In [5], the authors presented the new opportunities and challenges ahead for integrat-

ing the NTN technologies into upcoming 6G networks. The work in [43] analyzes the

importance and challenges of integrating NTN networks into VN. A space-air-ground

CHAPTER II Internet of Vehicles 18

integrated VN architecture for supporting different vehicular services in diverse sce-

narios is proposed. Furthermore, in [44], the authors have presented a space-air

ground integrated VN architecture highlighting the key features of each platform

layer. It is possible to enable several EC services over different NTN layers by de-

ploying proper computing resources. In [25], authors proposed EC-enabled UAV

platforms for improving computation performance and reducing the execution la-

tency of MEC systems. Recently in [45], authors studied the energy performance

of an offloading strategy designed over EC-enabled satellites and HAP networks for

ground-based users. In [46], the importance of the UAV-assisted VEC system and

corresponding implementation issues are highlighted.

2.3 Enabling Technologies and Challenges for Fu-

turistic Vehicular Networks

A suitable VN architecture able to serve users with new innovative services and

applications has to exploit together several key technologies. However, with limited

EC capacities and coverage restrictions, it is challenging to integrate these high-

level technologies into the vehicular environment. Here, we introduce the main

technologies for designing futuristic VNs and corresponding challenges.

2.3.1 6G

The 6G networks are expected to evolve the traditional 5G application scenarios

towards new dimensions. Additionally, new scenarios that were beyond the capa-

bilities of 5G systems are also integrated into the 6G vision. With extended KPIs,

support towards novel application scenarios, inherent intelligence, global coverage,

CHAPTER II Internet of Vehicles 19

and sustainable networking, 6G technology is expected to be a main driving force

for enabling intelligent VNs. The extreme demands of IoV use cases in terms of

ultra-low end-to-end latencies, ultra-high reliability, connectivity, data rates, and

advanced positioning are expected to be satisfied through new 6G capabilities. The

6G technology is expected to support novel application scenarios such as tactile in-

ternet, digital twin, wireless brane machine interface, holographic communication,

emergence rescue communication, and Immersive XR. Several of these scenarios can

be integrated into the IoV systems to satisfy the end users’ demands. The 6G is

expected to have native intelligence support with the help of edge networks. This

can be utilized to satisfy the demands of intelligent solutions in the IoV case. With

the integrated terrestrial and non-terrestrial networks in 6G technology, the coverage

and capacity of traditional ground-based networks can be improved. With several

of these novel features, 6G technology can be extremely important to enable fully

connected, digitized, and intelligent vehicular systems.

2.3.2 Network Softwarization

Network softwarization is a key trend that uses Software-Defined Networking (SDN),

Network Function Virtualization (NFV), and network slicing techniques for pro-

viding additional programmability, flexibility, and modularity in different parts of

the wireless communication networks [47]. Network softwarization allows a flexi-

ble deployment and control of different vehicular services once adapted into VNs.

Here, we introduce the main technologies that allows to create a flexible and pro-

grammable VN.

CHAPTER II Internet of Vehicles 20

Network Function Virtualization (NFV)

NFV is a key technological trend to tackle the flexibility and scalability problems

associated with traditional hardware-based Network Functions (NFs). In the past,

different NFs such as firewalls, Content Delivery Networks (CDNs), Network Ad-

dress Translation (NAT) were installed as dedicated hardware-based appliances.

With this, the implementation of new services and applications were restricted by

the deployment of specific hardware-based elements. NFV decouples this network

functions from proprietary hardware appliances and runs them as software instances

in Virtual Machines (VMs)/containers as Virtual Network Functions (VNFs) [48].

Through NFV, standard network resources such as compute, storage, and network

functions can be virtualized and kept on Commercial Off-the-Shelf (COTS) hard-

ware like x86 servers. In addition, multiple VMs/containers, through the proper

assignments of virtualized resources, can run on a single server for improving server

resource utilization. With the NFV technology, different network functions can

be placed in different locations of the networks elements such as data centers, EC

servers, etc.

In the case of a Multiple EC (Multi-EC) platforms-enabled-VN architecture, NFV

can potentially bring several benefits, including reduced network cost, less time-to-

market for new services, higher resource efficiency, and better scalability. However,

each VNF demands specific computation resources based upon the service types.

Furthermore, since VNFs can be deployed at multiple locations, it is important to

find proper function placement strategies for implementing many hybrid vehicular

services over a resource-constrained VN.

CHAPTER II Internet of Vehicles 21

Software-Defined Networking

With the unprecedented increase in demand for heterogeneous services in VN, there

is a need for a platform that can dynamically adapt the network and service ac-

cording to the demand request. SDN technology can create a more flexible and

programmable VN for supporting the critical requirements of the services and appli-

cations [49, 50]. The SDN forms a fully programmable wireless network by logically

separating the data and control plane, where all control operations are performed

through the centralized controller unit. The controller can have a global view of

network topology, traffic load, network states, and link failures. In the case of an

EC-enabled VN, having different EC layers of heterogeneous hardware having a

proper centralized controller assisted by the individual layers local controller can

be useful for providing flexible VN services. In the past several studies have shown

the importance of SDN-based VNs, where SDN technology is integrated into VN

to manage different parts with improved performance in terms of network flexibil-

ity, throughput, and flexible deployments of new services and applications. How-

ever, various issues need to be handled carefully during the integration of SDN

into VN including, possible security attacks over the data plane, the vulnerabil-

ity of a centralized controller in terms of single-point failures, issues related to the

heterogeneous hardware of different EC platforms, various access network technolo-

gies, etc. Over the years, researchers have provided numerous solutions for these

issues [37, 50, 51, 52, 53]. As an example, in [51], a 5G software-defined vehicu-

lar network having integrated SDN technology is proposed with clear separation of

data, control, and application planes. In another study [37], the authors proposed a

collaborative EC-based software-defined VN with multiple EC platforms. Further-

more, in [50], the authors have experimented with the different SDN controllers over

a complete software-defined vehicular networking on hardware. Recently in [52],

CHAPTER II Internet of Vehicles 22

the authors have proposed a novel IoV automation and orchestration system using

SDN for connected autonomous vehicles. In [53], the authors study different VN

architectures and propose a localized intelligence augmented highly reconfigurable

software-defined heterogeneous vehicular networking architecture for avoiding single-

point failures.

Network Slicing

The network slicing technique takes advantage of NFV and SDN for creating mul-

tiple logical networks or network slices over a common physical infrastructure of

VN [54, 55]. Multiple network slices can be configured over the same physical infras-

tructure to provide different services with diverse requirements. It provides dynamic

resource management by enabling efficient resource sharing by considering various

key Performance Indicators (KPIs) for each slice and can be an efficient technology

over the VN with limited resources. Inherently, the network slice contains a chain

of physical and virtual network functions that can be placed at different locations

based upon the service requirements. In the case of an EC-enabled VN with users

requesting services with different KPIs, each slice function needs to place carefully

for satisfying the user demands.

2.3.3 Vehicular Edge Computing

With the development of IoT and new wireless communication technologies, many

new services and applications have been enabled into the VN. Users are demanding

services with tighter requirements in terms of latency, bandwidth, computational

capability; with limited onboard resources VUs alone are not capable of providing a

CHAPTER II Internet of Vehicles 23

satisfying Quality of Service (QoS). One way to solve this issue is to use cloud com-

puting, where each VU can transmit their workloads towards the computationally

rich cloud servers located deep inside networks. Thus, cloud servers perform the

computation operations on behalf of the VUs and send back the results. With high

computation resources, the cloud server can serve many VUs with negligible compu-

tation latency. However, with a long transmission distance between VU and cloud

platforms, this approach introduces large communication delays. Furthermore, user

data can be exposed over a large transitional distance can be prone to the secu-

rity challenges such as third-party attacks. With limited backhaul resources, issues

like network connections are likely to happen when many VUs from a giver service

area request cloud computing services. Thus, providing a satisfying QoS can be

challenging over the cloud computing platform.

For solving cloud computing problems, the MEC approach was introduced [56].

MEC brings cloud computing services closer to the end-users by deploying sev-

eral edge servers in proximity. Thus, users can transmit their workload to these

servers without incurring large delays, security issues, or network congestion prob-

lems. MEC has gained lots of attention in the recent past and enabled several new

latency-critical applications and services over wireless networks [57, 58]. In the vehic-

ular scenario, the MEC framework is configured as the deployment of several RSUs

along with the road networks and equipping them with the edge servers deployed

in the proximity [21]. This approach is called vehicular edge computing (VEC) and

has a huge potential for enabling latency-critical and data-intensive VN services [59].

Figure 2.1, shows the main elements of a reference VEC system which includes dis-

tributed VUs, several RSUs along with the road network, and EC servers located

nearby RSU nodes. VUs can access VEC services provided by EC servers through

RSU nodes with V2I communication links, while they can communicate among them

CHAPTER II Internet of Vehicles 24

through V2V communication links [60]. RSUs can also act as a gateway for upload-

ing vehicular data to the BS and Cloud facilities.

Figure 2.1: Vehicular edge computing framework.

The limited available resources and RSU coverage are the main bottlenecks for re-

ducing the performance of a VEC system. The resource limitation often increases

the VEC system cost in terms of computation latency when multiple VUs request

services from the same EC server. The RSU coverage limitations, along with VUs

mobility, can add an extra cost in terms of handover latencies. In some works,

authors have considered hybrid system models in which both VEC and Cloud com-

puting facilities are considered together for solving the capacity and coverage issues

in VEC systems [19, 61]. However, such approaches can have some serious draw-

backs, such as long transmission distances for accessing cloud facilities. A VN with

multiple EC layers of different air and ground networks in proximity (e.g., base sta-

tion, LAPs, HAPs) can be a better approach compared with a hybrid VEC-cloud

CHAPTER II Internet of Vehicles 25

system. It can reduce the transmission latencies or network congestion caused by

multiple VUs requesting cloud resources and solve the coverage and capacity prob-

lems of VEC systems alone.

Within Multi-EC multi-service VN, selection of proper EC platforms and the amount

to be offloaded can improve VNs performance. The offloading operations of the

surrounding VUs can be useful for other vehicles for a proper offloading decision,

such as selection of EC platform, and amount to be offloaded. Table 2.1 lists the

advantages and disadvantages of different EC platforms in vehicular services.

2.3.4 Machine Learning

The traditional approaches used for solving VNs problems include convex optimiza-

tion, game-theoretic approaches, and several other metaheuristics. These techniques

mainly suffer from the heavy computational burden with exponentially increasing

search space in large-scale scenarios; this is even more enforced when the considered

VN system employs multiple EC nodes, and network softwarization solutions, en-

abling more flexible implementations. Heuristic approaches used for solving the VN

problems with their NP-hardness are not able to adapt to the increasing complexity

of the new applications.

CHAPTER II Internet of Vehicles 26

Table 2.1: Advantages and disadvantages of different EC platforms for VN
services and applications.

EC Platform Advantages Disadvantages

VEC Reduced Transmission Distance

with Line of Sight (LOS) Commu-

nication

Limited Resources, Coverage

Range, Frequent Handovers

TN-EC (i.e., BS) Higher Computation and Commu-

nication Resources, Better Cover-

age Range

High Transmission Delay with De-

graded Channel Quality (NLOS

Communication)

Cloud Unlimited Resources and No Cov-

erage Issues

Huge Transmission Delay, Back-

haul Network Congestion, Security

Issued Due to Long Distance Com-

munication Channels

LAP-EC Reduced Transmission Distances

with LOS communication, Re-

duced Deployment and Mainte-

nance Time and Costs

Limited Resources, Low Flight

Time

HAP-EC Moderate Transmission Distances

with LOS communication, Can

Have High Resources, Solar En-

ergy Source

High Deployment and Mainte-

nance Time and Costs Compare

with LAP, Communication can be

Affected by Rain Fading

Satellite-EC High Computation and Communi-

cation Resources

Large Transmission Distances (not

suitable for latency critical VN),

Large Deployment and Mainte-

nance Cost

With the addition of IoT techniques, enabling what is usually referred to as IoV [18, 60, 62, 63],

vehicles become an excellent element for training data that can be utilized for solving

vehicular problems (i.e., ML-based solutions). Several complex vehicular problems

CHAPTER II Internet of Vehicles 27

such as dynamic resource allocation, traffic predictions, cooperative congestion con-

trol, content caching, computation offloading, intrusion detection, anomaly detection

can be solved by using popular ML methods such as supervised learning, unsuper-

vised learning, reinforcement learning, etc. [35]. Among other ML techniques, Deep

Reinforcement Learning (DRL) is a potential solution for many complex vehicular

scenarios, which allows exploiting Deep Neural Networks (DNN) for analyzing VNs

data without requiring any prior knowledge of the VN environment, which is hard

to capture [64], e.g., correct state transmission matrix over VN states for Markov

Decision Processes (MDP) based solutions. ML solutions outperform the heuristic

and one-shot-based optimization techniques with better long-term performance.

Different approaches are available for the integration of ML-based solutions into ve-

hicular environments. In each of these approaches, various communication, and com-

putation strategies can be involved during the training process of an ML model.

For example, a centralized ML model training approach requires each VN to send

its data towards a centralized, more powerful server. In another case, a central-

ized ML server can further split the training data and corresponding operations

with nearby servers to reduce the required computation time. A new collaborative

learning-based approach such as FL can allow participating VUs to train ML models

locally. The powerful central server can be employed for collecting and averaging

the local training ML models parameters to combine the VUs learning experience.

These technologies can have certain advantages, disadvantages and can face several

new challenges in vehicular environments. In the following, we describe each of these

approaches in detail.

CHAPTER II Internet of Vehicles 28

Centralized ML

Even though VUs are capable of training fairly complex ML algorithms by them-

selves, it is yet not recommended due to several reasons. First, with their limited

resources, training complex ML algorithms over Vehicles Onboard Units (OBUs)

will be computationally expansive and can introduce large latency and energy costs.

Complex ML techniques such as DNN require a large amount of data during training,

which individual VUs are not capable of providing. Furthermore, dynamic environ-

ments like VNs are continuously changing, and the surrounding environments can

affect the VUs performance while performing ML model training.

In the centralized learning approach, several randomly distributed VUs transmit

their raw data towards a powerful centralized server (ML-server) with rich commu-

nication and computation resources. With this approach, fairly complex ML tech-

niques like DNN can be adapted to solve VNs problems with better performance.

With these advantages, some challenges need to be considered while implement-

ing centralized ML-based solutions over vehicular environments. Though central-

ized computation servers are rich with computational resources, ML model training

costs can grow exponentially with the increasing complexity of ML techniques (DNN

with a high number of layers), which ensures large computation delays at servers.

Furthermore, the transmission of the whole dataset towards centralized servers can

be challenging with VUs limited communication resources and dynamic channel

environments. In the case of VNs, with changing environment dynamics and cor-

responding renewed datasets, it is important to update the trained ML models for

a short duration of time to avoid issues like model drift. Thus, the centralized

ML model training approach can have several issues when considering it for solving

VNs problems.

CHAPTER II Internet of Vehicles 29

Figure 2.2 shows an example of a centralized ML model training over VN where

a centralized ML server collects training data from individual VUs for performing

training operations.

Figure 2.2: Centralized machine learning.

Distributed ML

For reducing the model training cost at a centralized ML server, the workload distri-

bution methods can be adapted, in which the main server can select a set of powerful

computing servers around it and allocate the model training tasks. This approach

is known as a distributed learning approach in which multiple powerful servers col-

laboratively perform the training process. This allows to limit the model training

latency at the centralized server and allows to train fairly complex ML models with

acceptable latency. However, this approach does not solve the communication over-

head problem faced by the individual VUs and thus can have limited performance

over VNs.

Figure 2.3 shows the distributed ML model training over VN. In the case of dis-

tributed learning, the centralized server employs the nearby idle server resources for

reducing the overall training latency.

CHAPTER II Internet of Vehicles 30

Figure 2.3: Distributed machine learning.

Federated ML

For overcoming the problems of the centralized and distributed approaches, the FL

technique is proposed, where individual devices can perform model training by them-

selves exploiting local data and transmit only the ML model updates towards a

centralized server In some articles, authors do not distinguish between Distributed

Learning and Federated Learning. However, here we have considered these two as

separate ML model training techniques with different features [65]. The main dif-

ferences between FL and distributed learning approaches are listed in Table 2.2.

Once receiving updates from all vehicles in the coverage area, a centralized server

performs an averaging operation (i.e., Federated Averaging (FedAvg)) for creating

a centralized global model, whose parameters are then transmitted back to the ve-

hicles. The averaging process allows individual vehicles to take advantage of other

vehicles’ data and learning experiences for improving their ML models while the

local device training process improves the time and energy efficiency of the model

training process. Thus, a single FL process communication round includes several

steps, such as individual VUs performing the local training operations, the trans-

mission of the local model parameters towards the centralized server, after receiving

CHAPTER II Internet of Vehicles 31

parameters from an individual VUs, the averaging operation performed at central-

ized server for creating a global model that allows VUs to take advantage of other

VUs training experiences and retransmission of model parameters back to VU. Such

communication rounds can be performed for creating a suitable ML model with

lesser estimation errors. The complete FL process over VN is shown in Figure 2.4.

Figure 2.4: Federated learning.

Algorithm 1 lists the possible steps involved during the FL process. FL process

requires several input parameters, including the number of FL devices participating

(𝑀), their datasets ({𝐷𝑚}), and the maximum number of FL communication rounds

𝜌. It should be noted that the FL communication rounds limit can also be replaced

by any other stopping criteria such as model convergence parameter, loss function

value, etc. The initialization step begins the FL process by defining the initial value

of a global FL model parameter and FL communication round to zero (Line 1).

At the beginning of each round, local model parameters are updated by the previous

rounds’ global parameter values (Line 3). Next, FL devices perform the ML model

training for generating local ML model 𝑤𝑖𝑡𝑚 at 𝑖𝑡𝑡ℎ iteration in parallel (Lines 4–5),

where 𝜂 is a learning rate. After completing the local training process, each device

forwards its parameters to the FL server (Line 6), where it performs the FedAvg

CHAPTER II Internet of Vehicles 32

operation to create a new global model (Line 8) which is then used by VUs in next

round of communication. FL process continues over 𝜌 communication rounds.

Algorithm 1 Federated Learning.

Input: 𝑀, 𝜌, {𝐷𝑚}
Output: 𝑤

𝜌

𝐺

1: Initialize 𝑤0
𝐺
∧ 𝑖𝑡 = 0

2: for each 𝑖𝑡 = 1, · · · 𝜌 do
3: initialize 𝑤𝑖𝑡𝑚 = 𝑤𝑖𝑡−1

𝐺

4: for each 𝑚 = 𝑖, · · ·𝑀 do in parallel
5: Update 𝑤𝑖𝑡𝑚 based upon the 𝜂 and the local device learning process.
6: send 𝑤𝑖𝑡𝑚 to FL Server
7: end for
8: FL server collects all the 𝑤𝑖𝑡𝑚 and performs averaging

9: 𝑤𝑖𝑡
𝐺
=

1

𝑀

∑𝑀
𝑚=1 𝑤

𝑖𝑡
𝑚

10: end for
11: return 𝑤

𝜌

𝐺

In general FL FL-based solutions can have many benefits in VN environments, in-

cluding reduced communication overheads compared with centralized/distributed

learning models. However, in the case of a Multi-EC enabled VN, selecting a proper

FL server, FL devices, and the proper number of FL communication rounds can be

beneficial in terms of training costs.

CHAPTER II Internet of Vehicles 33

Table 2.2: Characteristics of the ML Models over VNs.

Characteristics Centralized Learn-

ing

Distributed

Learning

Federated Learn-

ing

Learning En-

tity

Centralized Server Distributed Central-

ized Servers

On Device (VUs)

Communication

Cost/Latency

High High Limited

Computation

Cost/Latency

High Limited Limited

VUs Sensitive

Data Privacy

Less Less High

Useful for Training Fairly Com-

plex ML models (i.e.,

DNN with limited

number of layers)

Training Complex

ML Models

Training Mod-

els with Limited

Complexity

2.3.5 Non-terrestrial Networks

Non-terrestrial networks have added advantages in terms of global coverage, re-

silience towards natural disasters, flexible and cost-efficient deployments, and re-

duced energy costs compared to terrestrial networks. The next generation of wireless

technologies is expected to utilize the different NTN layers for providing capacity

and coverage boosts for terrestrial networks. The joint T-NTN has been considered

an important enabling technology in the 6G vision. The VNs can benefit from NTN

platforms to satisfy the end users’ demands. The different NTN platforms such as

LAP, HAP, and LEO satellites can be considered to enable latency critical services

in VNs.

CHAPTER II Internet of Vehicles 34

2.4 Multiple Edge Computing Platforms Enabled

Joint Terrestrial and Non-terrestrial Network

Architecture for Vehicular Scenarios

In this section, we propose a VN architecture with multiple EC layers to serve VUs

with diverse service requests. We characterize different EC platform layers in detail

and highlight their importance for serving VUs.

TN-based infrastructures are playing an important role in creating a fully functional

intelligent VN for futuristic transportation systems. However, they alone are not

capable of providing adequate services to dynamic VUs, which often request services

with extremely low latency and high reliability. TN is vulnerable to ground-based

security attacks due to its fixed positions. Furthermore, in the case of natural

disasters such as tsunamis, and earthquakes users often fail to connect to the services

of TN. Low accessibility into remote areas mainly because of the unwillingness of

mobile operators to provide services in low revenue parts needs to be considered while

integrating TN into VNs. NTN has a considerable advantage over TN in terms of

availability, reliability, scalability, and low deployment costs. With these advantages,

they can play an important role in complimenting TN for providing better quality

services to VUs. Both TN and NTN platforms can enable EC-based services through

the placement of edge computing servers along with their distributed infrastructures.

Therefore, a Multilayered joint T-NTN constituted by different EC platforms over

TN and NTN can be utilized for providing heterogeneous services requested by VUs

with demanded quality.

In Figure 2.5, we propose a joint T-NTN architecture having multiple EC platform

layers and jointly exploiting TN and NTN for serving VUs.

CHAPTER II Internet of Vehicles 35

Figure 2.5: Multiple EC enabled VN.

Several VUs are randomly distributed in the considered service area and demand

many latency-critical and data-intensive services. The proposed network architec-

ture is constituted by several elements as shown in Figure 2.5: a set of VUs, RSU,

BS elements, LAPs, HAPs, and LEO satellites. For avoiding redundancies, in the

following, we omit the legend from the figures. A set of RSUs is deployed alongside

roads having limited capacity EC servers for providing computation services to the

VU. Each RSU can serve a limited set of VUs in its coverage range. VUs are also

supported by the BS elements equipped with EC services. BS elements can sever

VUs over larger coverage areas compared with RSUs and can have powerful EC

servers. However, the required roundtrip time for sending and receiving back the

VUs task can be much higher. Thus, RSUs and BC servers jointly form a multilay-

ered TN-based EC service platform for supporting VUs. VUs are also complemented

by a swarm of LAPs (i.e., UAVs) deployed on top of them. UAVs can enable limited

EC services with a pre-installed EC server. UAVs can have limited coverage and

flight time which often limits their service range. VUs are also covered by multiple

CHAPTER II Internet of Vehicles 36

decentralized HAPs having better coverage and computing capacity compared with

UAVs. Additionally, an LEO satellite constellation is also considered for serving

VUs with better coverage. Thus, Jointly, UAVs, HAPs, and LEO satellites form a

multilayered NTN-based EC platform for supporting VUs with better quality ser-

vices and intelligent applications. Jointly both TN and NTN-based EC platforms

serve VUs with their available computation and communication resources.

As shown in Figure 2.6, the considered network infrastructure can be split into

several layers of ground-based and areal networking infrastructures. The TN is

constituted by several connected VUs in Layer 1 which can form a small vehicular

cloud, RSUs equipped with the EC servers in Layer 2, and multiple BS with EC

facilities in Layer 3. The NTN has two layers of LAPs and HAPs belonging to

the areal networks. LAP nodes are located at a relatively low distance from the

ground compared with the HAPs and have limited computation and communication

resources. Though HAPs are at a long distance from the VUs layer they can serve

large coverage areas. The space-based LEO satellites can further the coverage and

capacity of the network. Below we, describe each of these networking layers in detail.

CHAPTER II Internet of Vehicles 37

Figure 2.6: The Multi-EC framework for the vehicular scenario.

Layer 1 Connected VUs layer Several connected VUs having communication

and computation capabilities are grouped into Layer 1. Each VU can communicate

with its neighboring VUs for possible information sharing through V2V communi-

cation technologies and use V2I links for interacting with other EC layers. VUs can

communicate over a limited distance to share important information for enabling

several safety-related, traffic flow management services that make drivers’ lives easy

on the road. Through V2I communication, VUs can share their workloads with EC

servers in proximity to enable latency-critical and data-intensive applications. VUs

often generate different task requests with specific requirements for computation,

communication, and storage resources. These task requests often come with addi-

tional requirements (i.e., critical latency requirements), for which VUs often need

assistance from the EC platforms in the proximity.

CHAPTER II Internet of Vehicles 38

Layer 2 RSU-Edge Computing (RSU-EC) Layer For enabling the EC fa-

cilities into VNs, several RSUs have been deployed alongside road infrastructures.

RSUs can have communication technologies installed for communicating with VUs

and other higher-lever networking layers (i.e., cellular BSs, cloud infrastructures,

etc.). EC servers having limited computation and storage resources can be deployed

alongside RSUs to integrate the EC services into VNs. Thus, RSUs equipped with

EC servers and communication technologies constitute an EC layer in the proximity

of VUs for providing low-latency services. However, with their limited resources and

coverage, RSUs can serve a limited number of VUs. Furthermore, VUs mobility

often restricts them from accessing RSU services for longer periods of time.

Layer 3 5G Base Station (BS) Layer 5G base stations (5G-gNB) have inte-

grated modern communication and computation technologies that can be exploited

as an EC platform. With larger coverage areas, they can serve a higher number of

VUs. However, the BS-EC platform can have additional transmission delays due to

longer communication distance compared with RSUs.

Layer 4 Low Altitude Platform (LAP) Layer LAP platforms such as UAVs

equipped with EC servers can add several benefits in terms of a reduced transmission

time (less than 1 msec), reduced deployment and maintenance time, line of sight

communications with better channel quality, etc. They can also act as a relay node

for allowing VUs to transmit their information towards higher air networking layers

such as HAP with reduced latency and energy costs. With the limited size and

reduced flight times, UAVs can only have limited communication and computation

resources.

CHAPTER II Internet of Vehicles 39

Layer 5 High Altitude Platform (HAP) Layer A HAP network constituted

by several nodes able to communicate amongst themselves and other infrastructures

is forming another EC layer in the air network. Each HAP node can have a powerful

EC server and the communication resources for serving VUs under its coverage.

Better coverage, additional renewable energy sources, and better stability are some of

the HAPs main advantages over LAPs. However, HAP performance can be reduced

by longer communication distances, additional channel loss in terms of rain fading

high deployments, and maintenance time and costs. The HAPs coverage area can

depend upon its altitude. In general HAP platform can provide coverage between a

few 10s of Kms to up to several 100s of Km [66, 67].

Layer 6 Low Earth Orbit (LEO) Satellite Layer A set of LEO satellites can

enable the space-based distributed communication and computation facilities for

serving VUs with better coverage can capacity. The distance from the VUs can be

much higher compared to the other air networking platforms.

Communication, Computation and Storage Characteristics

Each EC platform layer of the proposed network architecture can adapt differ-

ent computation and communication strategies. Several virtualization techniques

(i.e.,VMs, containers) can be used for the efficient utilization of EC resources. Fur-

thermore, an SDN-based centralized control approach can be applied for manag-

ing the computation and storage resources of individual EC platforms. Multiple

operators based communication technologies can be adapted for enabling the com-

munication between EC nodes of the same and distinct layers. Table 2.3 lists the

most important characteristics of individual EC layers considered in the proposed

network architecture.

CHAPTER II Internet of Vehicles 40

Table 2.3: EC platforms’ characteristics.

EC Platform VU Cloud RSU EC LAP EC 5G-BS EC HAP EC LEO EC

Computation Resources Low Limited Limited High High High

Communication Low Limited Limited High High High

Storage Low Limited Low High Limited Limited

Coverage few 10s 𝑚2 few 100 𝑚2 few 𝑘𝑚2 few 𝑘𝑚2 up to 200 𝑘𝑚2 100s of 𝑘𝑚2

Energy Source Electric/Fuel Cells Electric Grid Fuel Cells Electric Grid Fuel Cells/Solar Fuel Cells/Solar

In this dissertation, we aim to explore the proposed network architecture for en-

abling distributed data processing and machine learning solutions for VUs. In the

beginning, we explore the possibility of considering terrestrial edge computing net-

works for vehicular data processing with a single and multi-service approach. The

scenarios are then explored towards non-terrestrial networks and joint T-NTN cases.

In the different vehicular scenarios considered throughout the thesis work.

Chapter 3

Future IoV Network, Key

Challanges and Possible Solutions

3.1 Introduction

IoV technology can integrate IoT scenarios with advanced communication modes

such as V2X, cellular communication, etc, for providing connectivity and data com-

munication services to vehicular users. With the support of 6G technology, the

concept of IoV is expected to evolve and converge into a more advanced fully con-

nected, and intelligent system. However, some key challenges are required to be

addressed to create a reliable vehicular network with inherent intelligence and ad-

vanced services. With the support of IoV technology vehicular users are expected to

demand various high-quality services with extreme requirements in terms of latency,

energy, processing, and intelligence. This induces the challenge of processing the

vehicular data effectively in edge-based distributed computing environments. Addi-

tionally, with the ever-growing demands of intelligence in vehicular networks, proper

41

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 42

distributed learning frameworks with the support of vehicular IoT data and edge

networks are required.

3.2 Distributed Data Processing for Vehicular Users

The novel vehicular services demand much stronger KPIs in terms of latency, relia-

bility, data rates, etc. Additionally, each vehicular service request comes with a large

data processing demand. Traditional cloud computing frameworks were considered

to process the vehicular user’s data. In general cloud facilities are often located far

away from the end users and the overall transmission distances can be large. This

can induce additional challenges in terms of longer transmission delays, backhaul

congestions, privacy issues, etc. To overcome this challenge in the last decade the

concept of mobile edge computing (MEC) was proposed. MEC technology brings

the cloud computing facilities in the proximity of end users with the deployment of

computation and communication resources alongside access networks. This car ad-

dresses the major concerns of cloud-based systems by allowing end users to process

their data efficiently. In the case of vehicular networks, edge computing facilities

can be enabled through the integration of edge resources along with roadside units

(RSUs) and cellular base stations. This integration of MEC facilities in the ve-

hicular case is known as Vehicular Edge Computing (VEC) and is considered as a

promising technology to enable futuristic vehicular services. VEC technology can

enable latency-critical services in vehicular networks by allowing vehicular users’

data to be processed at the edge. Such distributed computing frameworks can be

extremely important for different IoV scenarios. However, to have proper benefits

from the resource-limited VEC facilities several challenges should be addressed. In

particular, the RSU often has a limited coverage range, and with vehicular users’

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 43

mobility, the handover can be a big challenge. With the limited coverage range,

only a few users can be served by each RSU terminal. Additionally with limited

storage resources the number of services provided by VEC facilities can be limited.

The limited computation resources can restrict the amount of data processed by

each VEC server before latency costs become unbearable. Therefore, for the case

of multi-user vehicular scenarios, it is important to select a proper edge node for

processing the vehicular user’s data. This can be defined as a network selection

problem for multi-user edge computing scenarios. With advanced vehicular nodes,

some amount of data can be processed by vehicular terminals. With this, partial

computation offloading becomes essential where a parallelization can be added by

splitting the vehicular data into two or more parts for joint processing at the edge

and vehicular sides. However, it is important to optimize the amount of data to be

processed at the edge for proper benefits. This can be defined as a partial offloading

problem in edge environments. For the case of multi-service scenarios, the number

of services provided by each edge node can be limited given the restricted storage

resources. Therefore proper service placement over edge networks can be important

for providing the requested services. This can be defined as a service placement

problem in edge environments.

3.3 Distributed Intelligence for Vehicular Users

To enable intelligent solutions in vehicular networks and to achieve the goal of fully

connected and intelligent vehicular networks proper machine learning frameworks

are required. In the case of latency-critical vehicular scenarios considering the tradi-

tional centralized ML solutions can be difficult and costly. On the other hand with

the expansion of IoT technology, a large amount of distributed vehicular data is

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 44

present at the device level in vehicular systems. This data can be effectively used to

enable large-scale intelligence into vehicular networks. To this scope novel learning

paradigms such as distributed learning can be extremely important. In the case of

different distributed learning frameworks, the data can be processed and analyzed in

distributed manners subtracting the need for collecting it at the centralized servers

which is a central demand of traditional learning frameworks. Such distributed

learning frameworks can be implemented in vehicular networks with the support of

distributed vehicular nodes and edge computing facilities. The learning frameworks

such as federated learning, collaborative learning, and multi-agent solutions can be

adapted to enable efficient intelligent solutions in vehicular networks. Even though

such distributed learning frameworks can have added advantages compared to the

traditional case of centralized learning, further optimization can be helpful to sat-

isfy future vehicular networks. Different technologies can be used to optimize the

learning solutions such as federated learning over vehicular networks. This includes

the V2X frameworks, multi-layered edge networking scenarios, advanced resource-

sharing solutions, etc. This thesis work includes several of such solutions with the

support of terrestrial and non-terrestrial edge computing platforms.

3.4 Considered Problems and Outcomes

As shown in figure 3.1, this thesis work explores the different IoV scenarios for

enabling efficient data processing and intelligent solutions at the edge. The different

vehicular scenarios, corresponding problems, and outcomes are highlighted in the

figure.

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 45

Figure 3.1: Considered Problems and Outcomes.

3.4.1 Vehicular Data Processing Problem

• Terrestrial Case : In the beginning, the vehicular data processing problem

is explored for terrestrial VEC cases where edge computing facilities are en-

abled through the ground-based RSU and base station units. In particular,

a joint network selection and offloading problem is considered for minimizing

the latency and energy costs. The cost analysis includes both edge node side

and vehicular side costs. A Markov decision process-based solution is proposed

with the support of V2X technology. Next, we expand the considered scenario

for multi-service cases where users can demand diverse service types. The

considered offloading problem is solved through the innovative collaborative

reinforcement learning-based approach. In particular, two collaborative deep

reinforcement learning-based solutions based on V2V and V2I technologies are

proposed.

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 46

• Non-terrestrial Case : The non-terrestrial networks are expected to play a

key role in enabling the next generation of intelligent vehicular systems. To

this sense, we have explored the case of non-terrestrial network-based edge

computing systems for serving remote users with different edge computing-

based services. Multiple LEO satellite constellations along with the cloud

facilities are considered for serving users with a diverse set of services. next, we

proposed a hierarchical reinforcement learning-based solution for solving the

network selection problem over multi-layered non-terrestrial edge computing

facilities.

• Joint terrestrial and Non-terrestrial Case : The non-terrestrial networks

can support the terrestrial edge computing facilities with capacity and cover-

age boosts. Such multi-layered edge computing-enabled network architectures

can serve vehicular users with multiple services. Therefore we have proposed

several novel solutions for enabling efficient data processing over such multi-

layered joint terrestrial and non-terrestrial networks for vehicular user cases.

The problem of network selection and computation offloading over a multi-

layered ground-air and space network with multiple services is solved through

an adaptive genetic algorithm for minimizing the latency and energy costs.

Next, a multi-level sequential decision-making process is also adapted to solve

the offloading problem over challenging multi-service, multi-layered edge com-

puting frameworks. We have also explored the multi-time scale approach for

solving the service placement, network selection, and offloading problem with

different time scales. An innovative, Multi-time scale Markov decision process-

based framework with time-dependent state transition probabilities is proposed

to minimize the latency and energy costs.

Chapter III. Future IoV Network, Key Challanges and Possible Solutions 47

3.4.2 Distributed Edge Intelligence for Vehicular Users

Novel machine learning solutions based upon vehicular IoT data and edge comput-

ing facilities are required to enable large-scale distributed intelligence in vehicular

networks. One of the key requirements of 6G-enabled IoT systems. The edge in-

telligence framework can merge machine learning technologies with edge computing

facilities to create proper learning solutions in the proximity of end users. Adapting

such frameworks over vehicular systems with distributed computing resources can

be of extreme importance. In particular novel distributed learning frameworks that

can adapt according to vehicular users’ demands, network resource availability and

the dynamicity of the systems can be considered for building the future intelligent

vehicular systems. Among others, federated learning is one of the highly explored

distributed learning frameworks that can serve the end users effectively. In this the-

sis work, we have proposed a federated learning framework over a resource-limited

vehicular system that can jointly optimize the federated learning and offloading

process costs. Next, we have explored the joint air-ground network to enable the ef-

fective distributed learning framework for serving vehicular networks. In this sense,

we have proposed a distributed federated learning solution that effectively considers

the multi-layered distributed computing environment of air-ground networks.

In the following chapters, we describe each of these scenarios, the considered prob-

lem, and the proposed solutions with performance analysis in detail.

Chapter 4

Distributed Data Processing for

IoV -Terrestrial Case

Some content of this chapter is based on the following articles [68, 69];

1) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”A Markov Decision Process

Solution for Energy-Saving Network Selection and Computation Offloading in Ve-

hicular Networks.” IEEE Transactions on Vehicular Technology (2023).”.

2) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Collaborative Reinforcement

Learning for Multi-Service Internet of Vehicles.” IEEE Internet of Things Journal

10, no. 3 (2022): 2589-2602.”.

4.1 Introduction

New vehicular terminals are capable of providing novel services and applications

to vehicular users (VUs) aiming at increasing road safety, avoiding traffic conges-

tion, reducing pollution levels, providing new infotainment services, etc. However,

49

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 50

modern applications and services come with stringent requirements in terms of high

data processing and critical latency bounds. With limited onboard resources, ve-

hicles alone cannot cope with such requirements and need support from additional

platforms, e.g., cloud and edge computing [19]. Though cloud computing facilities

have enormous computing resources, since they are located deep inside the core net-

works, high transmission delays often limit their uses for latency-critical VNs. Edge

Computing (EC) technology can address the cloud computing problems by bringing

the cloud resources in the proximity of end-users. EC has achieved great success in

wireless networks when serving users with new innovative services [70]. In VNs, EC

facilities can be enabled through the deployment of Road Side Units (RSUs) along

the road facilitating several EC servers [71]. This approach, known as vehicular

edge computing (VEC), has the potential to serve VUs with reduced transmission

delays and energy requirements. The importance of VEC in the VN scenarios is

highlighted by several works in the recent past, mainly for enabling latency-critical

applications [72, 73].

VEC technology provides a computation environment to VUs for processing their

tasks. VUs can transmit a portion of their computation load to the nearby VEC

servers while performing the remaining computation locally. VEC servers perform

the processing operations on behalf of the VUs and return the results. This approach

is known as partial computation offloading, which allows VUs to complete a task

processing operation in collaboration with VEC servers to reduce the overall latency

and energy requirements during processing [71]. However, when coping with a large

number of VUs demanding computation offloading services from VEC servers having

limited computation/communication resources, energy limitations, storage capabil-

ities, and coverage range, several new challenges arise in VEC-enabled VNs. Due

to the dynamic nature of Vehicular Networks (VNs), offloading a large amount of

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 51

data to the RSUs without considering vehicular mobility could seriously degrade the

QoS. Indeed, with high mobility, each vehicle has a limited amount of time available

for data offloading and collecting the results from the RSUs. If the vehicle passes

through the RSU coverage without completing the offloading operation, it might

end up paying higher latency costs due to, e.g., handover and service migration [13].

Moreover, each VEC server can offer a limited number of services to the nearby VUs,

hence, selecting the proper edge server for offloading can avoid network congestion.

These challenges are mainly characterized by a proper selection of when, where, and

how much data needs to be offloaded to the VEC servers for adequate performance.

This problem is also known as joint network selection and computation offloading,

which aims to find a proper VEC server and the amount of data to be offloaded over

dynamic vehicular environments [71].

In the following, we first attempt to solve the joint network selection and computa-

tion offloading problem for the case of a generic single-service VN. Next, we extend

the idea for the multi-service case.

4.2 Joint Network Selection and Offloading over

VN: Single-Service Case

In this work, we have proposed a joint network selection and computation offloading

strategy over a mobile VN for overall latency and energy minimization of both vehic-

ular and infrastructure nodes with additional energy-saving mechanisms at the edge

infrastructure. An original MDP-based RL framework with time-dependent state

transition probabilities is proposed, where local vehicular environment parameters

are used effectively. The main contributions of this work are:

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 52

• Joint Network Selection and Computation Offloading Problem For-

mulation: We define a joint network selection and computation offloading

problem for minimizing the overall latency and energy consumption over VN

as a constrained optimization problem, where ENs can be in different energy-

saving states, i.e., standby or active, for a more efficient energy-saving behav-

ior.

• MDP Model with Time-dependent State Transition Probabilities:

The problem is modeled as a sequential decision-making problem and incor-

porated into an MDP-based model. Various elements of the MDP process

including state space, action-space, reward function, and environment dynam-

ics with time-dependent state-transition probabilities are considered.

• V2X-based on-road scenarios: Exploiting V2X communication technolo-

gies and a proper mobility model, various on-road VUs scenarios are defined for

solving the burden of the higher dimensional MDP process without hindering

its performance.

• Value Iteration Method for MDP Policy: A value iteration-based ap-

proach is used for finding the optimal policy for the MDP process. In addition,

a set of benchmark methods are considered to analyze the performance of the

proposed scheme.

In the following parts, we discuss the considered system model, problem formulation,

and the proposed solutions.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 53

4.2.1 System Model and Problem Formulation

In this work, an urban Internet of Vehicles (IoV) scenario for intelligent trans-

portation systems with connected and intelligent VUs is considered, where a set

of randomly distributed VUs over the road network can communicate with the edge

computing servers enclosed by RSUs and a Macro Base Station (MBS). In recent

times, such urban IoV scenarios have gained a lot of attention from the vehicular

research community [74, 75]. We refer to V = {𝑉𝑈1, . . . , 𝑉𝑈𝑚, . . . , 𝑉𝑈𝑀} as the set

of 𝑀 VUs, and R = {𝑅𝑆𝑈1, . . . , 𝑅𝑆𝑈𝑛, . . . , 𝑅𝑆𝑈𝑁 } as the set of 𝑁 RSUs in the area.

The system is modeled in a time-discrete manner, and the network parameters are

supposed to be constant over each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time

interval, i.e., 𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1) 𝜏]} [76]. By focusing on the 𝑖th time interval,

the 𝑚th VU is located in the position {𝑥𝑚 (𝜏𝑖), 𝑦𝑚 (𝜏𝑖)}, while it moves at a speed

®𝑣𝑚 (𝜏𝑖) along the multi-lane road-path in either direction and equipped with a pro-

cessing capability equal to 𝑐𝑚 Floating Point Operations per Second (FLOPS) per

CPU cycle, while its CPU frequency is 𝑓𝑚. We have assumed resource-limited edge

computing nodes equipped with muli-core computing hardware with restricted ca-

pacities and limited bandwidth resources [77, 78, 79]. Each RSU can be identified

through a set of parameters where the 𝑛th RSU is located at the fixed position

{𝑥𝑅𝑛 , 𝑦𝑅𝑛 } having height ℎ𝑅𝑛 , able to provide communication with a maximum band-

width 𝐵𝑅𝑛 , and having a multi-core CPU processor with L𝑛 cores with 𝑐𝑅𝑛 FLOPS

per CPU cycle, while its CPU frequency is 𝑓 𝑅𝑛 . Similarly, the MBS can be identified

through its position {𝑥𝑀̄ , 𝑦𝑀̄}, its height ℎ𝑀̄ , maximum bandwidth 𝐵𝑀̄ , supposed to

be equipped with a multi-core processor, where each core has a processing capability

equal to 𝑐𝑀̄ FLOPS per CPU cycle, while its CPU frequency is 𝑓 𝑀̄ . Here, we do

not put any limitation over the MBS CPU cores and assume that each VU can have

access to only one CPU core.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 54

Figure 4.1: System Architecture

The 𝑛th RSU has a limited coverage range 𝑑𝑛, whose value depends on the communi-

cation technology and radio-propagation environment, and it is supposed to provide

VEC services to the vehicles within the coverage area. Similarly, for the MBS, the

coverage range 𝑑𝑀 stands. Thus, VUs can offload data up to 𝑁 + 1 ENs, i.e., 𝑁

RSUs (i.e., 𝐸𝑁1, . . . , 𝐸𝑁𝑁) and one MBS (i.e., 𝐸𝑁0). Each 𝑉𝑈𝑚 ∈ V is supposed

to be active in each time interval with a probability 𝑝𝑎 within which it generates a

computation task request 𝜌𝑚 (𝜏𝑖) identified through the tuple ⟨𝐷𝜌𝑚 , 𝐷
𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚⟩

corresponding to a task with size 𝐷𝜌𝑚 Byte, expected to give in output a result with

size 𝐷𝑟𝜌𝑚 Byte, requesting Ω𝜌𝑚 CPU execution cycles and a maximum execution

latency 𝑇𝜌𝑚 .

In Fig. 4.1, a possible IoV scenario is depicted, where randomly distributed VUs are

able to offload their computation tasks to the nearby ENs. Also, each VU is covered

by multiple RSUs along with one MBS. VUs can communicate with ENs over V2R

links and with each other through V2V links for information sharing.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 55

4.2.1.1 VU Mobility and Sojourn Time

Due to the VUs mobility, each offloading operation should be completed by the VU

sojourn time, corresponding to the amount of time it remains under the coverage of

the selected EN [80], for avoiding additional latency due to, e.g., vehicle handover,

service migration, additional signaling for managing vehicles and service mobility.

RSU handover process involves transferring the management of active communica-

tion from one RSU to another [13]. Such handover situations can occur if VU fails

to get back the offloaded task results before it passes through the RSU coverage.

The handovers can degrade the network-wide performance in terms of latency.

Individual VUs mobility parameters often depend upon the nearby VUs decisions.

One of the most often considered mobility models for vehicular scenarios is based on

the preceding car dynamics [81]. Here, we adopt a similar model for analyzing the

VUs mobility. If ®𝑣𝑣𝑚 (𝜏𝑖) and 𝑎𝑣𝑚 (𝜏𝑖) represent the speed and acceleration parameters

at the 𝑖th interval for the 𝑚th VU, the model consider that the 𝑚th VU mobility

parameters depend on the motion and dynamics of the preceding VUs, i.e.,

𝑎𝑣𝑚 (𝜏𝑖) = 𝑎𝑚𝑎𝑥

[
1 −

(®𝑣𝑣𝑚 (𝜏𝑖)
®𝑣𝑚𝑎𝑥

)𝛿
−

(
𝑠∗(®𝑣𝑣𝑚 ,Δ®𝑣𝑣𝑚)

𝑠𝑣𝑚

)2]
∀𝑚

where 𝑎𝑚𝑎𝑥 is the maximum acceleration value, ®𝑣𝑚𝑎𝑥 is the desired velocity required

for the steady traffic flow, Δ®𝑣𝑣𝑚 = ®𝑣𝑣𝑚 − ®𝑣𝑣,𝑚−1 and 𝑠𝑣𝑚 = 𝑥𝑣,𝑚−1 − 𝑥𝑣𝑚 − 𝑙𝑜 are the

relative velocity and inter-vehicular distance between 𝑚 and 𝑚 − 1 with 𝑙𝑜 being the

VUs length. 𝛿 ∈ {1, 5} is the sensitivity of driver, and 𝑠∗ is the desired space given

as:

𝑠∗(®𝑣𝑣𝑚 ,Δ®𝑣𝑣𝑚) = 𝑠𝑚𝑖𝑛 + 𝑡𝑟 ®𝑣𝑣𝑚 +
®𝑣𝑣𝑚Δ®𝑣𝑣𝑚

2
√
𝑎𝑚𝑎𝑥𝑏𝑚𝑎𝑥

∀𝑚

Here, 𝑠𝑚𝑖𝑛 is the desired safe space between consecutive VUs, 𝑡𝑟 is the minimum

reaction time headway based upon the safe distance, and 𝑏𝑚𝑎𝑥 > 0 is the comfortable

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 56

braking deceleration. In this work, the safety distance between VUs is considered as

a design parameter similar to the [81]. However, the safety distance between VUs can

be based upon several parameters and tradeoffs i.e., traffic flow characteristics, VUs

safety demands, communication capabilities, V2V delays, etc. Interested readers

can follow [82, 83] for more information. Therefore, at the 𝑖th interval, the 𝑚th VU

speed and position are:

®𝑣𝑣𝑚 (𝜏𝑖) = ®𝑣𝑣𝑚 (𝜏𝑖−1) + 𝑎𝑣𝑚 (𝜏𝑖−1)𝜏 (4.1)

𝑥𝑣𝑚 (𝜏𝑖) = 𝑥𝑣𝑚 (𝜏𝑖−1) + ®𝑣𝑣𝑚 (𝜏𝑖−1)𝜏 + 𝑎𝑣𝑚 (𝜏𝑖−1)𝜏2 (4.2)

The distance in which the 𝑚th VU remains under the coverage of 𝑛th EN is 𝐷𝑚,𝑛 (𝜏𝑖)

and is given by:

𝐷𝑚,𝑛 (𝜏𝑖) =
√︃
𝑑2𝑛 −

(
𝑦𝐸𝑁𝑛 − 𝑦𝑚 (𝜏𝑖)

)2 ± (
𝑥𝐸𝑁𝑛 − 𝑥𝑚 (𝜏𝑖)

)
(4.3)

where
(
𝑥𝐸𝑁 , 𝑦𝐸𝑁

)
is the location of 𝑛th EN, i.e., either an RSU or the MBS. The

available sojourn time for the 𝑚th VU can be written as:

𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) =

𝐷𝑚,𝑛 (𝜏𝑖)
|®𝑣𝑚 (𝜏𝑖) |

∀𝑖, 𝑛 = 0, 1, . . . , 𝑁 (4.4)

4.2.1.2 VU-EN Assignment, Offloading Process and Resource Alloca-

tion

We define a binary VU-EN assignment matrix A(𝜏𝑖) =
(
𝑎𝑚,𝑛 (𝜏𝑖)

)
∈ {0, 1} with size

𝑀 × (𝑁 + 1). If 𝑚th VU is assigned to 𝑛th EN in the interval 𝜏𝑖 then 𝑎𝑚,𝑛 (𝜏𝑖) = 1,

and
∑𝑁
𝑛=0

∑𝑀
𝑚=1 𝑎𝑚,𝑛 (𝜏𝑖) = 𝑀, where it is supposed that each VU is able to offload

data to only one EN. It should be noted that the first column (𝑛 = 0) represents

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 57

the assignments towards MBS, while the remaining columns, from 𝑛 equal to 1

to 𝑁, are considered for RSUs. The number of VUs requesting services from the

𝑛th EN is given by 𝐾𝑛 (𝜏𝑖) =
∑𝑀
𝑚=1 𝑎𝑚,𝑛 (𝜏𝑖). With their limited resources, RSUs

can provide services to the VUs before task communication and computation costs

become unbearable. We consider that 𝐾𝑚𝑎𝑥 is the maximum number of VUs that

can access to the services of each RSU node. However, with rich resource sets, MBS

can provide services to several VUs without such limits.

We assume to perform partial offloading, where tasks can be split and processed

remotely while the remaining portion is processed locally [77, 78, 80]; the offloaded

portion by the 𝑚th VU at 𝜏𝑖 is identified as 𝛼𝜌𝑚 (𝜏𝑖) ∈ {0, 1}. With multiple VUs

requesting services from the same EN, during the offloading process, the following

constraints need to be taken into account ∀𝑖, 𝑛 = 1, . . . , 𝑁:



𝐾𝑛 (𝜏𝑖) ≤ 𝐾𝑚𝑎𝑥 (4.5a)
𝐾𝑛 (𝜏𝑖)∑︁
𝑚=1

𝑐
𝜌𝑚
𝑛 (𝜏𝑖) · 𝑓 𝜌𝑚𝑛 (𝜏𝑖) ≤ (L𝑛 · 𝑐𝑅𝑛 · 𝑓 𝑅𝑛) (4.5b)

𝐾𝑛 (𝜏𝑖)∑︁
𝑚=1

𝑏
𝜌𝑚
𝑛 (𝜏𝑖) ≤ 𝐵𝑅𝑛 (4.5c)

where 𝑐
𝜌𝑚
𝑛 (𝜏𝑖) · 𝑓 𝜌𝑚𝑛 (𝜏𝑖) is the processing capacity of 𝑛th EN assigned to the 𝑚th VUs

task, 𝑏
𝜌𝑚
𝑛 (𝜏𝑖) is the communication resources assigned to the VU for communicating

with the 𝑛th EN. Eqs. (4.5) model an upper bound on the number of users connected,

processing capacity, and the communication resources of the RSUs. The constraint

(4.5a) refers to a system constraint for limiting the complexity of the system model.

The edge infrastructure manager can define a strategy for the scenarios where the

number of VUs requesting the services from the same RSU node becomes higher

than 𝐾𝑚𝑎𝑥. In the considered vehicular scenarios, VUs are forced to perform the

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 58

local computation of their whole tasks in case the limit is violated1. It is worth

to be noticed that the capacity of each link depends on the specific communication

technology and it is out of the scope of this work. Also, we consider that MBS has

abundant resources and is able to serve a large number of VUs without limitations.

With limited EN communication and computation resources, proper scheduling is

required when multiple users access. Here, we use the following model for assigning

EN resources to the VUs for computation offloading:

𝑐
𝜌𝑚
𝑛 (𝜏𝑖) · 𝑓 𝜌𝑚𝑛 (𝜏𝑖) =


𝑐𝑅𝑛 · 𝑓 𝑅𝑛 if 𝐾𝑛 (𝜏𝑖) ≤ L𝑛

𝑐𝑅𝑛 · 𝑓 𝑅𝑛⌈
𝐾𝑛 (𝜏𝑖)
L𝑛

⌉ if L𝑛 ≤ 𝐾𝑛 (𝜏𝑖) ≤ 𝐾𝑚𝑎𝑥
(4.6)

𝑏
𝜌𝑚
𝑛 (𝜏𝑖) =

𝐵𝑅𝑛

𝐾𝑛 (𝜏𝑖)
(4.7)

Eqs. (4.6) and (4.7) show the EN resource allocation in terms of computation

capacity and bandwidth to the VUs’ tasks. According to (4.6), if the number of

VUs requesting services from the 𝑛th EN are less than L𝑛, each can have access to

the single CPU core with capacity (𝑐𝑅𝑛 · 𝑓 𝑅𝑛). In case the number of users becomes

higher than L𝑛, multiple VUs share CPU core resources. Here
⌈
𝑥
⌉
is the ceiling

function applied over 𝑥 for rounding it to the nearest integer value higher than or

equal to 𝑥. According to (4.7), bandwidth resources will be equally shared among

all requesting VUs.

If the 𝑚th VU is assigned to the MBS, i.e., 𝑛 = 0, it can have access to the single

CPU core, and equally shares bandwidth resources with the other connected VUs.

Thus:

𝑐
𝜌𝑚
𝑛 (𝜏𝑖) · 𝑓 𝜌𝑚𝑛 (𝜏𝑖) = 𝑐𝑀̄ · 𝑓 𝑀̄ , 𝑏

𝜌𝑚
𝑛 (𝜏𝑖) =

𝐵𝑀̄

𝐾𝑛 (𝜏𝑖)
(4.8)

1Note that this is just one possible approach that can be adapted by the RSU nodes. Though
it is beyond the scope of this work, these decisions can further be optimized based on specific
load-balancing techniques.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 59

In the following, we model the delay and energy requirements of various operations

involved during the partial computation offloading enabled vehicular task processing.

Task Computation Model

The generic expression for the time and energy spent for the 𝜌𝑚th task computation

on any device is given by [84]:

𝑇
𝜌𝑚
𝑐,𝑙

=
Ω𝜌𝑚

𝑐𝑙 𝑓𝑙
, 𝐸

𝜌𝑚
𝑐,𝑙

= 𝑇
𝜌𝑚
𝑐,𝑙
𝑃𝑐,𝑙 (4.9)

where 𝑐𝑙 and 𝑓𝑙 are the number of FLOPS per CPU cycle and CPU frequency,

respectively, whether 𝑙 identifies a VU (𝑚), an RSU (𝑛) or the MBS (𝑀̄). In (4.9),

𝑃𝑐,𝑙 is the computation power used by the generic 𝑙th device.

Task Communication Model

Since we assume to perform a partial computation offloading, each VU transmits a

portion of its task to the assigned EN and receive back the result. Similarly, ENs

receive tasks from VUs and send back the results. In general, the transmission time

and energy between a generic node 𝑘 and a generic node 𝑙 for task 𝜌𝑘 is given by2:

𝑇
𝜌𝑘
𝑡𝑥,𝑘𝑙
(𝜏𝑖) =

𝐷𝜌𝑘

𝑟𝑘𝑙 (𝜏𝑖)
, 𝐸

𝜌𝑘
𝑡𝑥,𝑘𝑙
(𝜏𝑖) = 𝑇 𝜌𝑘𝑡𝑥,𝑘𝑙 (𝜏𝑖)𝑃𝑡𝑘 (4.10)

where 𝑟𝑘𝑙 (𝜏𝑖) is the data-rate of the link between the two nodes, while 𝑃𝑡𝑘 is the

transmission power of 𝑘th node. Similarly, the reception time and energy to receive

2In the following we identify with 𝑙 and 𝑘 the indexes of any generic node. Hence, 𝑙 and 𝑘 can
have any index among 𝑚, 𝑛, and 𝑀̄.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 60

the task of size 𝐷𝑟𝜌𝑘 from 𝑙th EN by the 𝑘th node are:

𝑇
𝜌𝑘
𝑟𝑥,𝑙𝑘
(𝜏𝑖) =

𝐷𝑟𝜌𝑘

𝑟𝑘𝑙 (𝜏𝑖)
, 𝐸

𝜌𝑘
𝑟𝑥,𝑙𝑘
(𝜏𝑖) = 𝑇 𝜌𝑘𝑟𝑥,𝑙𝑘 (𝜏𝑖)𝑃𝑟𝑘 (4.11)

where 𝑃𝑟𝑘 is the power spent for receiving data.

The channel transmission rate between a generic node 𝑘 and 𝑙 at the 𝑖th interval

can be modeled as [85, 86]:

𝑟𝑘𝑙 (𝜏𝑖) = 𝑏𝜌𝑘𝑙 (𝜏𝑖) log2
(
1 + 𝑃𝑡𝑘 · ℎ𝑘,𝑙 (𝜏𝑖)

𝜎2 + 𝐼𝑘𝑙 (𝜏𝑖)

)
∀𝑘, 𝑙

where 𝑃𝑡𝑘 is the transmission power of node 𝑘, 𝑏
𝜌𝑘
𝑙
(𝜏𝑖) is the communication band-

width, 𝜎2 is the noise power, and 𝐼𝑘𝑙 (𝜏𝑖) is the interference due to any transmitting

node, except 𝑘, towards node 𝑙, where the total interference during the uplink com-

munication (i.e., VU to RSU) can be calculated as

𝐼𝑘𝑙 (𝜏𝑖) =
∑︁

∀𝑘 ′∈𝐾𝑙 (𝜏𝑖)\{𝑘}
(𝑃𝑡𝑘 ′ · ℎ𝑘 ′,𝑙 (𝜏𝑖)).

For the downlink, instead, we assume to neglect the interference by assuming an

orthogonal frequency assignment among RSUs, as well orthogonal RSU to VU trans-

missions.

EN Operating Modes

For improving the overall energy efficiency, we assume that ENs can be either in a

stand-by or an active state. ENs in a standby state will not be able to serve any VU

and effectively will reduce the overall energy consumption. A switching process is

assumed for switching ENs from standby to active state with additional switching

time and energy. The amount of energy consumed for switching the 𝑛th EN from

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 61

standby to active state is [87]:

𝐸𝑠𝑤,𝑛 = 𝑃𝑠𝑤,𝑛 · 𝑇𝑠𝑤,𝑛 (4.12)

where, 𝑃𝑠𝑤,𝑛 is the consumed switching power and 𝑇𝑠𝑤,𝑛 is the switching time. The

amount of time consumed by 𝑛th EN for providing offloading services for VU 𝑚 is

given by3:

𝑇
𝜌𝑚
𝑒𝑛,𝑛 (𝜏𝑖) =

𝑇𝑠𝑤,𝑛

𝛼𝜌𝑚 (𝜏𝑖)
+

(
𝑇
𝜌𝑚
𝑐,𝑛 + 𝑇 𝜌𝑚𝑡𝑥,𝑛𝑚 (𝜏𝑖) + 𝑇

𝜌𝑚
𝑟𝑥,𝑚𝑛 (𝜏𝑖)

)
(4.13)

where 𝑇
𝜌𝑚
𝑐,𝑛 , 𝑇

𝜌𝑚
𝑡𝑥,𝑛𝑚 (𝜏𝑖) and 𝑇

𝜌𝑚
𝑟𝑥,𝑚𝑛 (𝜏𝑖) are the time required for the task computation,

transmission and reception between 𝑛th EN and 𝑚th VU, respectively.

The amount of energy consumed will be based on the operating modes. The 𝑛th

EN will go into standby mode if no service request from any VU in its coverage

area is mapped to it, i.e., 𝑎(𝑚, 𝑛) = 0,∀𝑚. The total energy consumption of all ENs

operating in the standby mode is given by:

𝐸 𝑠𝑡𝑒𝑛 (𝜏𝑖) =
𝑁𝑠𝑡 (𝜏𝑖)∑︁
𝑛=1

𝐸𝑒𝑛,𝑛 (𝜏𝑖) with 𝐸 𝑠𝑡𝑒𝑛,𝑛 (𝜏𝑖) = 𝜏𝑖 · 𝑃𝑠𝑑,𝑛 (4.14)

where 𝑁 𝑠𝑡 (𝜏𝑖) = {𝑛 | 𝐾𝑛 (𝜏𝑖) = 0,∀𝑛} gives the total number of ENs operating in the

standby mode. Also, 𝐸 𝑠𝑡𝑒𝑛,𝑛 (𝜏𝑖) is the amount of energy consumed by the 𝑛th EN,

where 𝑃𝑠𝑑,𝑛 is the power consumed during standby mode that depends upon the

computation hardware on the 𝑛th EN. Similarly, the amount of energy consumed

by the 𝑛th EN while serving the 𝑚th VU is given by4:

𝐸
𝜌𝑚
𝑒𝑛,𝑛 (𝜏𝑖) =

3Division by 𝛼𝜌𝑚 (𝜏𝑖) is merely for equation balancing purposes whose effect will be nullified
later in (4.17a).

4Division by 𝛼𝜌𝑚 (𝜏𝑖) is merely for equation balancing purposes whose effect will be nullified
later in (4.17b).

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 62

𝜏𝑖 · 𝑃0,𝑛 + 𝐸𝑠𝑤,𝑛
𝐾𝑛 (𝜏𝑖)

𝛼𝜌𝑚 (𝜏𝑖)
+ 𝐸 𝜌𝑚𝑐,𝑛 + 𝐸 𝜌𝑚𝑡𝑥,𝑛𝑚 (𝜏𝑖) + 𝐸

𝜌𝑚
𝑟𝑥,𝑚𝑛 (𝜏𝑖) (4.15)

where 𝑃0,𝑛 is the power consumed for the basic circuit operations, and 𝐸𝑠𝑤,𝑛 is

the switching energy required. It should be noted that, as the switching operation

occurs only once, if the number of VUs requesting services (i.e., 𝐾𝑛 (𝜏𝑖)) from a

particular EN increases, the switching energy per VU scales down. 𝐸
𝜌𝑚
𝑐,𝑛 , 𝐸

𝜌𝑚
𝑡𝑥,𝑛𝑚 (𝜏𝑖)

and 𝐸
𝜌𝑚
𝑟𝑥,𝑚𝑛 (𝜏𝑖) are the energy required during task computation, transmission, and

reception of data between 𝑛th EN and 𝑚th VU, respectively.

Task Offloading Process

If 𝑚th VU is assigned to 𝑛th EN, then the time and energy required to offload the

portion of the task with offloading parameter 𝛼𝜌𝑚 to the selected EN and to get

back the result in the 𝑖th interval is (from (4.10) and (4.11)),

𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝑇
𝜌𝑚
𝑡𝑥,𝑚𝑛 (𝜏𝑖) + 𝑇

𝜌𝑚
𝑟𝑥,𝑛𝑚 (𝜏𝑖)

)
(4.16a)

𝐸
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝐸
𝜌𝑚
𝑡𝑥,𝑚𝑛 (𝜏𝑖) + 𝐸

𝜌𝑚
𝑟𝑥,𝑛𝑚 (𝜏𝑖)

)
(4.16b)

Also, the amount of time and energy consumed on the 𝑛th EN for providing services

to the 𝑚th VU is given by (from (4.13) and (4.15)):

𝑇
𝑜 𝑓 𝑓
𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝑇
𝜌𝑚
𝑒𝑛,𝑛 (𝜏𝑖)

)
(4.17a)

𝐸
𝑜 𝑓 𝑓
𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝐸
𝜌𝑚
𝑒𝑛,𝑛 (𝜏𝑖)

)
(4.17b)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 63

Thus, the total time and energy cost required for the offloading process is given by:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝑇

𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) + 𝑇

𝑜 𝑓 𝑓
𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) (4.18a)

𝐸
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) =

𝑤1𝐸
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) + (1 − 𝑤1)𝐸𝑜 𝑓 𝑓𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) (4.18b)

where (4.18b) is constituted by two parts (i.e., EN and VUs energy) that can be

based upon different energy sources and can have different utility costs. Therefore,

for having a properly balanced energy cost over the offloading process, we introduce

𝑤1 as a weighting coefficient in the range between 0 and 1.

Local Computation

From (4.9), the amount of time and energy required for the local computation of

the remaining task in the 𝑖th interval is:

𝑇 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) =
(
1 − 𝛼𝜌𝑚 (𝜏𝑖)

)
𝑇
𝜌𝑚
𝑐,𝑚 (4.19a)

𝐸 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝑤1
(
1 − 𝛼𝜌𝑚 (𝜏𝑖)

)
𝐸
𝜌𝑚
𝑐,𝑚 (4.19b)

Partial offloading Computation

From (4.18)-(4.19), the delay and the energy consumed during the task processing

phases when partial offloading is performed (in the 𝑖th interval) can be written as:

𝑇
𝜌𝑚
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = max

{
𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)), 𝑇 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖))

}
(4.20a)

𝐸
𝜌𝑚
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝐸

𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) + 𝐸 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) (4.20b)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 64

where the local and offloading processing are supposed to be performed in parallel.

Each vehicle should finish the offloading process and receive the result back within

the sojourn time, hence:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) ≤ 𝑇

𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) ∀𝑖 (4.21)

4.2.1.3 Problem Formulation

The main aim of this work is to optimize the network-wide performance of the VEC-

enabled VN. We aim to optimize the performance in terms of overall latency and

energy consumed during the offloading process towards edge servers by selecting

proper ENs and offloading amounts. The latency and energy requirements of both

sides (i.e., VUs and RSU-based edge servers) are considered during the offloading

process. The joint latency and energy minimization problem is defined as:

P1 : min
A,A

{
𝑁∑︁
𝑛=0

𝑀∑︁
𝑚=1

[
𝛾1𝑇

𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏𝑖)

)
+ 𝛾2𝐸 𝜌𝑚𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖))

]
+ 𝛾2(1 − 𝑤1)𝐸 𝑠𝑡𝑒𝑛 (𝜏𝑖)

}
∀𝑖 (4.22)

s.t.

C1 :
𝑁∑︁
𝑛=1

𝑎𝑚,𝑛 (𝜏𝑖) = 1, ∀𝑚 ∈ 𝑀 (4.23)

C2 : Eqs. (4.5a), (4.5b) and (4.5c) (4.24)

C3 : 𝑇
𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏𝑖)

)
≤ 𝑇𝜌𝑚 ∀V,∀𝑖 (4.25)

C4 : Eq. (4.21) (4.26)

C5 : 𝐸
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) < 𝑤1𝐸

𝜌𝑚
𝑐,𝑚 (4.27)

C6 : 0 ≤ 𝛾1, 𝛾2, 𝑤1 ≤ 1; 𝛾1 + 𝛾2 = 1 (4.28)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 65

whereA = {𝛼𝜌𝑚}𝑀 is the computation offloading matrix, A is the VU-EN assignment

matrix defined previously, and 𝛾1, and 𝛾2 are weighting coefficients for balancing

latency and energy consumption. The objective function in P1 includes the overall

latency, VU, and the RSU side energy costs including both active and standby modes

costs. C1 stands that each VU can select at most one RSU for the computation

offloading. C2 provides the limits over the number of user requests, processing

capacity, and bandwidth resource blocks requested by VUs towards ENs, while C3

puts a limit on the maximum processing time as one of the task requirements.

According to C4, for avoiding handover phenomena and related latency, each VU

should complete the offloading process before it passes through the selected RSUs

coverage. In order to have a valid offloading process, according to C5, the weighted

energy consumed on VU for processing a complete task should be lower than the

total weighted energy required to compute a complete task locally. C6 stands that

the two weighting coefficients (𝛾1, 𝛾2) should be between 0 and 1 with a sum equal

to 1. Additionally, the energy coefficient 𝑤1 can take a value between 0 and 1.

4.2.2 MDP Formation

When solving the problem in (4.22), we aim to minimize the overall latency and

energy consumed by finding the combination of proper EN and the amount of data

to be offloaded by each VU in the MBS service area. In this work, we consider

the MDP-based RL approach to solve the problem at hand. The basic elements of

the MDP model include the state-space, action-space, reward function, and envi-

ronment dynamics. However, modeling environment dynamics (i.e., state transition

probabilities of MDP states) over a highly uncertain vehicular environment can be

a challenging task. Figure 4.2, provides an overview of different elements discussed

in the following parts. In the following, we first model several possible vehicular

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 66

Figure 4.2: Proposed MDP Model.

scenarios in which a reference VU can find itself over its course. This scenario set

can be used to form a proper MDP model aimed at reducing uncertainty over the

environment. For avoiding any possible mistakes during the network selection and

computation offloading process, each VU scenario needs to be treated separately.

After that, we present the main MDP elements (i.e., state-space, action-space, re-

ward function, and environment dynamics) for the considered problem. After a

detailed analysis of the state transition probability matrix, we propose generic time-

dependent expressions for finding the state transition probability values in different

scenarios based on the VUs state and the action performed.

4.2.2.1 VU Scenarios Defintion

Different VU scenarios are formed, based upon VUs physical locations, number of

ENs available for offloading, and the number of nearby competing VUs, aiming at

creating a more reliable MDP model with reduced uncertainty. VUs can use V2X

communication technologies for acquiring useful information about the number of

nearby competing VUs and available EN servers. As shown in Fig. 4.1, we have

used a grid-based approach for limiting the number of possible scenarios that depend

upon the actual VUs position. In the considered grid-based approach, a section of

the road is divided into 𝐺 segments of length 𝑙𝑔, within which each VU is placed,

considering its location parameters. Thus, each VU can have associated a specific

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 67

section number given by 𝑔𝑖𝑑𝑚 (𝜏𝑖) = {1, 2, . . . , 𝐺}. Each VU can exploit a different

number of ENs for offloading, where E𝑚 (𝜏𝑖) =
{
𝐸𝑁𝑛 |𝐷𝑚,𝑛 (𝜏𝑖) > 0,∀𝑛

}
is the set of

available ENs for the 𝑚th VU to perform the offloading operation in the interval

𝜏𝑖. Also, we define 𝑉𝑚 (𝜏𝑖) =
∑E𝑚 (𝜏𝑖)
𝑛=1 𝐾𝑛 (𝜏𝑖) as the number of nearby competing VUs,

ranging between 0 to NV𝑚𝑎𝑥, requesting offloading services from the ENs in the set

E𝑚 (𝜏𝑖).

In the considered multi-user VN, moving VUs can impact each other’s network

selection and offloading strategies. Each VU should analyze the surrounding envi-

ronment by finding the competing VUs and their offloading decisions, selected ENs,

etc. Since all VUs are supposed simultaneously generate the task requests (i.e., at

each 𝑖th interval), it is impossible to have such information in advance. In that

case, VUs can make offloading decisions by assuming that no other VU is requesting

a service leading to a selfish approach. However, this may lead to incorrect node

selection and offloading decisions. Another way to tackle this problem is by defining

an MDP process that provides a joint solution for all the participating VUs. The

presence of a large number of VUs can quickly lead to unbearable complexity and

computation requirement. Thus both of these utmost approaches are not suitable

for solving the given problem and some sort of assumption is needed for modeling

the VUs surrounding environment for avoiding the incorrect offloading strategy/ad-

ditional complexity. In the following, we consider four strategies supposed by VUs

regarding the surrounding environment.

• Minimum Distance-based VU-EN Assignment: In this case, the 𝑚th

VU considers that all the 𝑉𝑚 (𝜏𝑖) VUs are offloading their data to the nearest

ENs based upon their physical locations. Thus, ∀𝑉𝑈𝑚′ ∈ 𝑉𝑚 (𝜏𝑖):

𝑎𝑚′,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmin
𝐸𝑁𝑛′∈E𝑚 (𝜏𝑖)

{𝑑𝑚′,𝑛′ (𝜏𝑖)} (4.29)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 68

• Maximum Sojourn Time-based VU-EN Assignment: In this case, the

𝑚th VU considers that all 𝑉𝑚 (𝜏𝑖) VUs are offloading their data to the ENs

with maximum available sojourn time. Thus, ∀𝑉𝑈𝑚′ ∈ 𝑉𝑚 (𝜏𝑖):

𝑎𝑚′,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmax
𝐸𝑁𝑛′∈E𝑚 (𝜏𝑖)

{𝑇 𝑠𝑜 𝑗
𝑚′,𝑛′ (𝜏𝑖)} (4.30)

It should be noted that this approach only considers the assignment towards

RSU nodes (since MBS always have high sojourn time). If VUs are not able

to find any nearby RSU nodes, they will be assigned to the MBS.

• Probabilistic VU-EN assignments: In this approach ∀𝑉𝑈𝑚′ ∈ 𝑉𝑚 (𝜏𝑖) we

select the 𝐸𝑁𝑛′ ∈ E𝑚 (𝜏𝑖) randomly. The probability of 𝑚′th VU selecting 𝑛′th

EN is given by:

𝑃𝑟{𝑎𝑚′,𝑛 (𝜏𝑖) = 1} = 1

E𝑚 (𝜏𝑖)
(4.31)

• Position-based VU-EN Assignments: In this case, each nearby competing

VU is allocated to the ENs based on the available distance before it passes

through the ENs coverage range and the distance between VU and EN. Thus

∀𝑉𝑈𝑚′ ∈ 𝑉𝑚 (𝜏𝑖):

𝑎𝑚′ ,𝑛 (𝜏𝑖) = 1⇔ 𝐷𝑚′,𝑛 (𝜏𝑖)
𝑑𝑚′,𝑛 (𝜏𝑖)

= max
𝐸𝑁𝑛′∈E𝑚 (𝜏𝑖)

{
𝐷𝑚′,𝑛′ (𝜏𝑖)
𝑑𝑚′,𝑛′ (𝜏𝑖)

}
. (4.32)

Based upon the above discussion for the 𝑚th VU, a vector 𝑉𝑚 (𝜏𝑖) corresponding to

the number of nearby VUs assigned to each 𝐸𝑁𝑛 ∈ E𝑚 (𝜏𝑖) is formed as:

𝑉𝑚 (𝜏𝑖) =
{
𝑉𝑛𝑚 (𝜏𝑖)

}
1×E𝑚 (𝜏𝑖) ,

with 𝑉𝑛𝑚 (𝜏𝑖) =
𝑉𝑚 (𝜏𝑖)∑︁
𝑚′=1

𝑎𝑚′,𝑛 (𝜏𝑖), ∀𝑛 ∈ E𝑚 (𝜏𝑖) (4.33)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 69

where, VU-EN assignment (i.e., 𝑎𝑚′,𝑛 (𝜏𝑖)) is based upon any of the four methods

presented above.

In the end, for the 𝑚th VU, a scenario vector can be defined asV𝑚 (𝜏𝑖) =
{
𝑔𝑖𝑑𝑚 (𝜏𝑖), E𝑚 (𝜏𝑖), 𝑉𝑚 (𝜏𝑖)

}
.

The number of possible scenarios is limited by the parameters 𝐺, E𝑚𝑎𝑥, and NV𝑚𝑎𝑥.

Each scenario needs to be treated separately for finding proper EN and offloading

amounts. Every vehicular scenario may have an independent optimal policy that

needs to be determined through proper analysis. In the end, 𝑁 is the set of all

possible VU scenarios.

In the next part, we define the State Space, Action Space, Environment Dynamics or

State Transition Probabilities, and Reward Function, as basic elements of an MDP

approach for the problem at hand.

4.2.2.2 MDP Elements

The MDP is a stochastic process that evolves over time and is characterized by

the state space (ST), action space (AS), reward function (𝑅), and environment

dynamics (P). The MDP model can be defined as a tuple ⟨ST ,AS, 𝑅,P⟩.

State-Space (ST) In a multi-user vehicular environment, the available resources

for the computation offloading process change continuously over time and are a func-

tion of the offloading and network selection decisions taken by individual vehicles.

Therefore, we define a discrete state-space set function of resources available for

computation offloading. For each scenario 𝜈, the related state-space is a function

of the sojourn time, the required latency, VU resources, and the resources of the

available RSUs; thus, each state 𝑠𝜈 at time 𝜏𝑖 is defined as:

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 70

𝑠𝜈 (𝜏𝑖) = 𝑓 (𝛼𝜌𝑚 (𝜏𝑖), 𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖), 𝐵𝑛, 𝑐𝑅𝑛 ,

𝑓 𝑅𝑛 ,L𝑛, 𝐷𝜌𝑚 , 𝐷
𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚). (4.34)

We suppose to limit the multi-dimensional state space to 𝑁 scenarios, hence, 𝜈 =

1, . . . , 𝑁. Moreover, we assume that the environment states observed by each VU

during the joint network selection and computation offloading process can be mod-

eled through proper binary functions. If the 𝑚th VU is assigned to the 𝑛th EN and

performs offloading operation with offloading parameter 𝛼𝜌𝑚 , the environment can

be modeled through three proper binary functions, as:

𝐹1
𝜌𝑚,𝑛
(𝜏𝑖) =


0 𝑇

𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) ≤ 𝑇

𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖)

1 else

(4.35)

𝐹2
𝜌𝑚,𝑛
(𝜏𝑖) =


0 𝑇

𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏𝑖)

)
≤ 𝑇𝜌𝑚

1 else

(4.36)

𝐹3
𝜌𝑚,𝑛
(𝜏𝑖) =


0 𝐸

𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) < 𝑤1𝐸

𝜌𝑚
𝑐,𝑚

1 else

(4.37)

where 𝐹1
𝜌𝑚,𝑛
(𝜏𝑖), 𝐹2

𝜌𝑚,𝑛
(𝜏𝑖) and 𝐹3

𝜌𝑚,𝑛
(𝜏𝑖) are the binary functions depending upon

the sojourn time constraint (4.21), application latency requirement (4.25) and the

energy constraint (4.27), respectively, and 𝐹3
𝜌𝑚,𝑛
(𝜏𝑖) includes both active and standby

mode energy costs of RSU nodes. Thus, at 𝜏𝑖, the state of 𝑚th VU in scenario 𝜈 is

given by,

𝑠𝑚,𝑛𝜈 (𝜏𝑖) =
{
𝐹1
𝜌𝑚,𝑛
(𝜏𝑖), 𝐹2

𝜌𝑚,𝑛
(𝜏𝑖), 𝐹3

𝜌𝑚,𝑛
(𝜏𝑖)

}
∈ 𝑆𝜈

where, 𝑆𝜈 = Z
3
2 is the complete state space for the scenario 𝜈 containing all possible

binary combinations of 𝐹1
𝜌𝑚,𝑛
(𝜏𝑖), 𝐹2

𝜌𝑚,𝑛
(𝜏𝑖) and 𝐹3

𝜌𝑚,𝑛
(𝜏𝑖).

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 71

Action-Space (AS) The action space defines all the possible actions available

during the learning process. If 𝑚th VU belongs to the scenario 𝜈, it can explore the

available ENs (E𝑚 (𝜏𝑖)), by properly setting a binary vector EN𝜈 (𝜏𝑖) = {0, 1}E𝑚 (𝜏𝑖)

mapping the RSUs selection among the E𝑚 (𝜏𝑖) available in the given scenario. At

the same time, the offloaded amount can be selected from a discrete set of values

given by 𝛼𝜌𝑚 (𝜏𝑖) ∈ {0,Λ, 2Λ, . . . , 1} where 0 < Λ < 1 is a step change of offloading

amount.

The generic action 𝑎𝜈 for the 𝜈th scenario at time 𝜏𝑖 can be defined as 𝑎𝜈 (𝜏𝑖) ={
EN𝜈 (𝜏𝑖), 𝛼𝜌𝑚 (𝜏𝑖)

}
where EN𝜈 (𝜏𝑖) is a binary vector with length 𝜈, where 1 in the

𝑛th position corresponds to the selected EN. The complete action space for scenario

𝜈 is given by 𝐴𝜈 = {𝑎𝜈 (𝜏𝑖)}.

Once selected, action 𝑎𝜈 (𝜏𝑖) can change the state of function 𝐹1(𝜏𝑖), 𝐹2(𝜏𝑖) and 𝐹3(𝜏𝑖)

with certain probability5. Such probabilistic transitions can be defined through:

𝑃𝐹
1

(𝑖̄, 𝑗̄) (𝑎𝜈 (𝜏𝑖)) = 𝑃𝑟
{
𝐹1(𝜏𝑖+𝛿) = 𝑗̄ | 𝐹1(𝜏𝑖) = 𝑖̄, 𝑎𝜈 (𝜏𝑖)

}
𝑖̄, 𝑗̄ ∈ {0, 1} (4.38)

where 𝑃𝐹
1

(𝑖̄, 𝑗̄) (𝑎𝜈 (𝜏𝑖)) is the transition probability of 𝐹1(·) from state 𝑖̄ to state 𝑗̄ at 𝜏𝑖

through the action 𝑎𝜈 (𝜏𝑖). Here, 𝛿 is the time step of the MDP process. Similarly

for 𝐹2(·) and 𝐹3(·) the transition probability expressions are given by:

𝑃𝐹
2

(𝑖̄, 𝑗̄) (𝑎𝜈 (𝜏𝑖)) = 𝑃𝑟
{
𝐹2(𝜏𝑖+𝛿) = 𝑗̄ | 𝐹2(𝜏𝑖) = 𝑖̄, 𝑎𝜈 (𝜏𝑖)

}
𝑃𝐹

3

(𝑖̄, 𝑗̄) (𝑎𝜈 (𝜏𝑖)) = 𝑃𝑟
{
𝐹3(𝜏𝑖+𝛿) = 𝑗̄ | 𝐹3(𝜏𝑖) = 𝑖̄, 𝑎𝜈 (𝜏𝑖)

}
5For the simplicity of notations hereafter we omit, (𝜌𝑚/𝑚, 𝑛) from 𝑠

𝑚,𝑛
𝜈 (𝜏𝑖), 𝐹1

𝜌𝑚 ,𝑛
(𝜏𝑖), 𝐹2

𝜌𝑚 ,𝑛
(𝜏𝑖),

and 𝐹3
𝜌𝑚 ,𝑛
(𝜏𝑖).

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 72

In general, 𝐹1(·), 𝐹2(·) and 𝐹3(·) can have different probabilistic transitions for any

given action 𝑎𝜈 (𝜏𝑖). Here, we introduce three transition matrices by considering all

the possible transitions of 𝐹1(·), 𝐹2(·), and 𝐹3(·). For 𝐹1(·), the transition matrix

𝑃𝐹
1 (𝑎𝜈 (𝜏𝑖)) is given by,

𝑃𝐹
1 (𝑎𝜈 (𝜏𝑖)) =


𝑃𝐹

1

(0,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
1

(0,1) (𝑎𝜈 (𝜏𝑖))

𝑃𝐹
1

(1,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
1

(1,1) (𝑎𝜈 (𝜏𝑖))

 ,∀𝑎𝜈 (𝜏𝑖) (4.39)

with, 𝑃𝐹
1

(0,0) (𝑎𝜈 (𝜏𝑖))+𝑃
𝐹1

(0,1) (𝑎𝜈 (𝜏𝑖)) = 1 and 𝑃𝐹
1

(1,0) (𝑎𝜈 (𝜏𝑖))+𝑃
𝐹1

(1,1) (𝑎𝜈 (𝜏𝑖)) = 1. Similarly,

for 𝐹2, the transition matrix 𝑃𝐹
2 (𝑎𝜈 (𝜏𝑖)) is given by,

𝑃𝐹
2 (𝑎𝜈 (𝜏𝑖)) =


𝑃𝐹

2

(0,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
2

(0,1) (𝑎𝜈 (𝜏𝑖))

𝑃𝐹
2

(1,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
2

(1,1) (𝑎𝜈 (𝜏𝑖))

 ,∀𝑎𝜈 (𝜏𝑖) (4.40)

with, 𝑃𝐹
2

(0,0) (𝑎𝜈 (𝜏𝑖)) + 𝑃
𝐹2

(0,1) (𝑎𝜈 (𝜏𝑖)) = 1 and 𝑃𝐹
2

(1,0) (𝑎𝜈 (𝜏𝑖)) + 𝑃
𝐹2

(1,1) (𝑎𝜈 (𝜏𝑖)) = 1. Also,

for the case of 𝐹3(·), the transition matrix 𝑃𝐹
3 (𝑎𝜈 (𝜏𝑖)) is given by,

𝑃𝐹
3 (𝑎𝜈 (𝜏𝑖)) =


𝑃𝐹

3

(0,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
3

(0,1) (𝑎𝜈 (𝜏𝑖))

𝑃𝐹
3

(1,0) (𝑎𝜈 (𝜏𝑖)) 𝑃𝐹
3

(1,1) (𝑎𝜈 (𝜏𝑖))

 ,∀𝑎𝜈 (𝜏𝑖) (4.41)

with 𝑃𝐹
3

(0,0) (𝑎𝜈 (𝜏𝑖)) + 𝑃
𝐹3

(0,1) (𝑎𝜈 (𝜏𝑖)) = 1 and 𝑃𝐹
3

(1,0) (𝑎𝜈 (𝜏𝑖)) + 𝑃
𝐹3

(1,1) (𝑎𝜈 (𝜏𝑖)) = 1.

Reward Function (𝑅(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) The reward function (𝑅(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) is de-

fined as the joint objective function of time and energy consumed for complete task

processing (4.22). At the 𝑖th interval, if the 𝑚th VU is in state 𝑠𝜈 (𝜏𝑖), and decides to

take an action 𝑎𝜈 (𝜏𝑖) by selecting the 𝑛th RSU and 𝛼𝜌𝑚 (𝜏𝑖) as an offloading amount,

the instant reward received by it is given by,

𝑅(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) =
[
𝛾1𝑇

𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏𝑖)

)
+ 𝛾2𝐸 𝜌𝑚𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖))

]
(4.42)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 73

State Transition Matrix (P) For the MDP process, the state transition matrix

characterizes the environment dynamics through the probabilistic transitions be-

tween the present states to the next state. Thus, for scenario 𝜈, the state transition

probability at 𝜏𝑖 is given by

𝑃𝑟 {𝑠𝜈 (𝜏𝑖+𝛿) |𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)} =

𝑃𝑟

{ {
𝐹1(𝜏𝑖+𝛿), 𝐹2(𝜏𝑖+𝛿), 𝐹3(𝜏𝑖+𝛿)

}
|({

𝐹1(𝜏𝑖), 𝐹2(𝜏𝑖), 𝐹3(𝜏𝑖)
}
, 𝑎𝜈 (𝜏𝑖)

) }
(4.43)

where
{
𝐹1(𝜏𝑖), 𝐹2(𝜏𝑖), 𝐹3(𝜏𝑖)

}
is the current state of VU at 𝜏𝑖 that takes action 𝑎𝜈 (𝜏𝑖).

We assume that the state transition probability expression based on 𝐹1(𝜏𝑖), 𝐹2(𝜏𝑖),

and 𝐹3(𝜏𝑖) can be considered as independent events, hence (4.43) can be rewritten

as:

𝑃𝑟{𝑠𝜈 (𝜏𝑖+𝛿) | 𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)} =

𝑃𝑟
{
𝐹1(𝜏𝑖+𝛿) | 𝐹1(𝜏𝑖), 𝑎𝜈 (𝜏𝑖)

}
· 𝑃𝑟

{
𝐹2(𝜏𝑖+𝛿) | 𝐹2(𝜏𝑖), 𝑎𝜈 (𝜏𝑖)

}
· 𝑃𝑟

{
𝐹3(𝜏𝑖+𝛿) | 𝐹3(𝜏𝑖), 𝑎𝜈 (𝜏𝑖)

}
(4.44)

where each term is based upon (4.39)-(4.41). For example if 𝐹1(𝜏𝑖) = 0 and

𝐹1(𝜏𝑖+𝛿) = 1, then 𝑃𝑟
{
𝐹1(𝜏𝑖+𝛿) | 𝐹1(𝜏𝑖), 𝑎𝜈 (𝜏𝑖)

}
= 𝑃𝐹

1

(0,1) (𝑎𝜈 (𝜏𝑖)). Detailed analysis of

this probability values is given below.

In (4.39) the four probabilistic transitions for the binary-valued function 𝐹1(·) are

set. As shown in (4.35), 𝐹1(·) becomes 1, if the computation offloading process fails

to follow the sojourn time constraint; on the other hand, it becomes 0, if the pro-

cess follows the constraint. Two probability values 𝑃𝐹
1

(0,1) (𝑎𝜈 (𝜏𝑖)) and 𝑃
𝐹1

(1,0) (𝑎𝜈 (𝜏𝑖))

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 74

model the behavior of 𝐹1(·) based upon the action taken. These transitions can

depend upon several factors, including the number of VUs assigned to the selected

ENs, the available sojourn time value, which differs for different ENs, the offloading

amount, etc. Modeling the exact nature of these transitions can be hard; we resort

to exponential distribution functions for modeling the behavior of 𝐹1(·).

In case the 𝑚th VU in scenario 𝜈 selects the 𝑛th EN, through the action 𝑎𝜈 (𝜏𝑖) we

define:

𝑃𝐹
1

(0,1) (𝑎𝜈 (𝜏𝑖)) =


0 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

1 − exp(−𝜆1(𝜏𝑖)) else

(4.45)

where 𝜆1(𝜏𝑖) = 𝐾11 · 𝛼𝜌𝑚 (𝜏𝑖) +𝐾12 ·𝑉𝑛𝑚 (𝜏𝑖) +𝐾13/𝑇 𝑠𝑜 𝑗𝑚,𝑛 (𝜏𝑖) is a parameter modeling the

slope of the exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖). According

to (4.45), if the selected action is characterized by 𝛼𝜌𝑚 (𝜏𝑖) = 0, the possibility of

the failure of offloading constraint becomes zero. The value of 𝜆1(𝜏𝑖) depends upon

several factors. In particular, if the action performed by the 𝑚th VU is characterized

by high 𝛼𝜌𝑚 (𝜏𝑖), if VU selects the EN having a higher number of VUs requesting

services (i.e., large 𝑉𝑛𝑚 (𝜏𝑖)), or VU-EN pair is characterized by the low sojourn time,

the value of 𝜆1(𝜏𝑖) can increase. As a result, the probability that 𝐹1(·) changes its

state from 0 to 1 (i.e., failure of offloading constraint) becomes high, which can be

emphasized in (4.45). 𝐾11, 𝐾12 and 𝐾13 are weighting coefficients assigning proper

weights to each of these parameters.

𝑃𝐹
1

(1,0) (𝑎𝜈 (𝜏𝑖)) models the case where, with the selected action 𝑎𝜈 (𝜏𝑖), the VU is able

to satisfy the offloading time constraint where:

𝑃𝐹
1

(1,0) (𝑎𝜈 (𝜏𝑖)) =


1 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

exp(−𝜆2(𝜏𝑖)) else

(4.46)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 75

where 𝜆2(𝜏𝑖) = 𝐾21 · 𝛼𝜌𝑚 (𝜏𝑖) + 𝐾22 · 𝑉𝑛𝑚 (𝜏𝑖) + 𝐾23/𝑇 𝑠𝑜 𝑗𝑚,𝑛 (𝜏𝑖) is a parameter modeling

the slope of the exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖).

This corresponds to say that, if the selected action is characterized by 𝛼𝜌𝑚 (𝜏𝑖) = 0,

VUs offloading time becomes zero and, as a result, it will satisfy the sojourn time

constraint. Also from the expression of 𝜆2(𝜏𝑖) and (4.46), it can be seen that, when

increasing 𝛼𝜌𝑚 (𝜏𝑖) and 𝑉𝑛𝑚 (𝜏𝑖), the probability that the 𝑚th VU respects the sojourn

time constraint is reduced. The reduced value of 𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) between the VU-EN pair

can also reduce the chances that VU respects the sojourn time constraint. Here,

𝐾21, 𝐾22 and 𝐾23 are weighting coefficients.

The second function 𝐹2(·) models the VUs behavior with respect to the task latency

constraint, where each VU needs to perform the task processing within the task

latency requirements. In this case, 𝑃𝐹
2

(0,1) (𝑎𝜈 (𝜏𝑖)) defines the probability that VU

fails to satisfy the task latency constraint for a selected action 𝑎𝜈 (𝜏𝑖) and is given

by:

𝑃𝐹
2

(0,1) (𝑎𝜈 (𝜏𝑖)) =


1 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

exp(−𝜆3(𝜏𝑖)) else

(4.47)

where 𝜆3(𝜏𝑖) = 𝐾31 · 𝑇𝜌𝑚 + 1
𝐾32+𝛼𝜌𝑚 (𝜏𝑖) (1−𝛼𝜌𝑚 (𝜏𝑖))

+ 𝐾33
𝑉𝑛𝑚 (𝜏𝑖) is a parameter modeling the

slope of the exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖). This cor-

responds to say that, with its limited resources, if a VU performs the task processing

by itself without offloading any data towards ENs, it always fails to satisfy the task

latency requirements. In addition, if we have a strict task latency requirement (𝑇𝜌𝑚),

and the selected EN has already a large number of VUs (𝑉𝑛𝑚 (𝜏𝑖)) requesting services,

this results in increasing the failure probability of the task latency constraint.

If any VU offloads a very small percentage of data towards an EN, the local com-

putation time required for processing the remaining task can be high. On the other

hand, if any VU offloads a larger amount of data toward an EN, it is possible to have

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 76

a higher offloading time mainly because of unreliable channel conditions, limited EN

resources, and other competing VUs. The behavior of 𝑃𝐹
2

(0,1) (𝑎𝜈 (𝜏𝑖)) concerning the

offloading parameter 𝛼𝜌𝑚 (𝜏𝑖) is modeled as a square function for accommodating

these facts. In the end, 𝐾31 and 𝐾33 define the weights assigned to latency and

competing vehicles parameters, while 𝐾32 avoid having infinite in the second term.

𝑃𝐹
2

(1,0) (𝑎𝜈 (𝜏𝑖)) models the VUs’ chances of satisfying the task latency requirements

and is defined as,

𝑃𝐹
2

(1,0) (𝑎𝜈 (𝜏𝑖)) =


0 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

1 − exp(−𝜆4(𝜏𝑖)) else

(4.48)

where 𝜆4(𝜏𝑖) = 𝐾41 · 𝑇𝜌𝑚 + 1
𝐾42+𝛼𝜌𝑚 (𝜏𝑖) (1−𝛼𝜌𝑚 (𝜏𝑖))

+ 𝐾43
𝑉𝑛𝑚 (𝜏𝑖) is a parameter modeling the

slope of the exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖). In case

VU does not offload any data, it is not able to satisfy the task latency requirements.

On the other hand, the behavior of 𝑃𝐹
2

(1,0) (𝑎𝜈 (𝜏𝑖)) will be based upon the offloading

parameter, number of competing VUs, and the task latency requirements. 𝐾41 and

𝐾43 are weighting coefficients, while 𝐾42 avoid to have infinite in the second term.

The third function, 𝐹3(·), models the VU behavior in terms of energy constraint.

If the overall offloading process energy becomes higher than the energy required

to compute the complete task locally, the offloading process becomes inefficient.

𝑃𝐹
3

(0,1) (𝑎𝜈 (𝜏𝑖)) gives the probability that the VU fails to satisfy the energy constraint

for a selected action 𝑎𝜈 (𝜏𝑖) and is defined as,

𝑃𝐹
3

(0,1) (𝑎𝜈 (𝜏𝑖)) =


0 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

1 − exp(−𝜆5(𝜏𝑖)) else

(4.49)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 77

where, 𝜆5(𝜏𝑖) = 𝐾51 · 𝛼𝜌𝑚 (𝜏𝑖) + 𝐾52𝑉
𝑛
𝑚 (𝜏𝑖) is a parameter modeling the slope of the

exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖). If the 𝑚th VU offloads

a large amount of data towards the EN with more 𝑉𝑛𝑚 (𝜏𝑖), with selected action 𝑎𝜈 (𝜏𝑖),

there is a high chance that the offloading process energy becomes higher than the

local computation energy. However, if VU does not offload any data towards EN, it

always follows the energy constraint. Here, 𝐾51 and 𝐾52 are weighting coefficients.

𝑃𝐹
3

(1,0) (𝑎𝜈 (𝜏𝑖)) models the chances that VU is satisfying the energy constraint based

upon the selected action 𝑎𝜈 (𝜏𝑖):

𝑃𝐹
3

(1,0) (𝑎𝜈 (𝜏𝑖)) =


1 if 𝛼𝜌𝑚 (𝜏𝑖) = 0

exp(−𝜆6(𝜏𝑖)) else

(4.50)

where 𝜆6(𝜏𝑖) = 𝐾61 · 𝛼𝜌𝑚 (𝜏𝑖) + 𝐾62𝑉
𝑛
𝑚 (𝜏𝑖) is a parameter modeling the slope of the

exponential function and is determined from the action 𝑎𝜈 (𝜏𝑖). The chances that

VU satisfies the energy constraint reduce with the increasing of 𝛼𝜌𝑚 (𝜏𝑖) and 𝑉𝑛𝑚 (𝜏𝑖).

𝐾61 and 𝐾62 are weighting coefficients.

By using (4.45)-(4.50), the transition probability matrices for 𝐹1(·), 𝐹2(·), and 𝐹3(·)

can be determined. In the following Section, we define a value iteration algorithm

for solving the MDP.

4.2.3 MDP-Based Joint Network Selection and Computa-

tion Offloading

In the previous section, the elements of the MDP model are presented. By solving

the proposed MDP model, VUs can find a proper EN and the offloading amount

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 78

able to minimize the overall latency and the energy consumed during the task pro-

cessing operations. The solutions set can be defined as a policy function 𝜋𝜈 =

{𝜋𝜈 (𝑠𝜈 (𝜏𝑖 + 𝛿)),∀𝛿} that maps every state 𝑠𝜈 ∈ ST to action 𝑎𝜈 ∈ AS. Selecting

different actions can result in different policy functions, where the aim is to find

an optimal policy that corresponds to the minimum delay and energy cost during

vehicular task processing. For every policy 𝜋𝜈, a value function 𝑉𝜋𝜈 (𝑠𝜈 (𝜏𝑖)), corre-

sponding to a state 𝑠𝜈 (𝜏𝑖) can be defined for analyzing its performance. In general,

𝑉𝜋𝜈 (𝑠𝜈 (𝜏𝑖)) corresponds to an expected value of a discounted sum of total reward

received by following the policy 𝜋𝜈 from state 𝑠𝜈 (𝜏𝑖), and can be defined as:

𝑉𝜋𝜈 (𝑠𝜈 (𝜏𝑖)) = E
{

Δ∑︁
𝛿=0

𝛾𝛿𝑅 (𝑠𝜈 (𝜏𝑖 + 𝛿) , 𝜋𝜈 (𝑠𝜈 (𝜏𝑖 + 𝛿)))
}

where 𝛾 ∈ [0, 1] is the discount factor, 𝑅 (𝑠𝜈 (𝜏𝑖 + 𝛿) , 𝜋𝜈 (𝑠𝜈 (𝜏𝑖 + 𝛿))) is the immediate

reward received for following the policy 𝜋𝜈 at time 𝜏𝑖 + 𝛿 from the state 𝑠𝜈 (𝜏𝑖 + 𝛿),

Δ is the maximum number of steps considered during the MDP evaluation, i.e.,

episode length, and E{·} corresponds to the expected value. Thus, the value function

analyzes the particular policy function by assigning a numeric value to each state,

and can be utilized to compare the performance of the different policies. In the end,

the following optimization problem can be formulated in order to be able to find the

best possible policy function associated with state 𝑠𝜈 (𝜏𝑖):

𝑉 (𝑠𝜈 (𝜏𝑖)) = min
𝜋𝜈∈Π𝜈

𝑉𝜋𝜈 (𝑠𝜈 (𝜏𝑖)) (4.51)

where, Π𝜈 corresponds to the set of policy functions that can be explored.

As shown by many works (e.g., [88, 89]), the problem defined in (4.51), can converge

into a Bellman optimality equation given by:

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 79

𝑉 (𝑠𝜈 (𝜏𝑖)) = min
𝑎𝜈 (𝜏𝑖)∈𝐴𝜈 (𝜏𝑖)

{
𝑅(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖))+

𝛾
∑︁

𝑠𝜈 (𝜏𝑖+𝛿)∈ST
𝑃𝑟 {𝑠𝜈 (𝜏𝑖 + 𝛿) | 𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)}𝑉 (𝑠𝜈 (𝜏𝑖 + 𝛿))

}
(4.52)

Different approaches can be used to solve the problem in (4.52); however, the value

iteration approach is widely known for its fast convergence and easy implementation

[90]. Therefore, below we present a value iteration approach aimed at solving the

MDP designed in the previous section for finding an optimal policy that corresponds

to the minimization of a task processing time and energy during offloading process

over VNs.

The value iteration method allows finding an optimal policy and value function for

the MDP models. The Algorithm 2 describes the steps involved during the value

iteration process. For every scenario 𝜈, the process begins by initializing the values

of each state to ∞ and iteration count (𝑖𝑡) to 0 (Line 2). For each state-action pair,

the state value is determined by using (4.53) (Line 5). In the end state value and a

corresponding optimal policy (𝜋∗𝜈 (𝑠𝜈 (𝜏𝑖))) associated with state 𝑠𝜈 is determined by

using (4.54) and (4.55) (Lines 7-8). The iterative process continues till the change

in all states values becomes less than the predefined convergence parameter 𝜖 (Lines

10-14). In the end, the algorithm returns the set of optimal policy functions
{
𝜋∗𝜈

}
associated with all possible scenarios in which VUs can find themselves over the road

(Line 16).

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 80

Algorithm 2 MDP Value Iteration

Input: 𝜖, 𝛾, 𝑁, 𝑆𝜈, 𝐴𝜈, 𝑃𝑟

Output:
{
𝜋∗𝜈

}
1: for 𝜈 ∈ 𝑁 do

2: Initialize 𝑖𝑡 = 0, 𝑉0(𝑠𝜈 (𝜏𝑖)) = ∞,∀𝑠𝜈 (𝜏𝑖)

3: for 𝑠𝜈 (𝜏𝑖) ∈ 𝑆𝜈 do

4: for 𝑎𝜈 (𝜏𝑖) ∈ 𝐴𝜈 do

5:

𝑉 𝑖𝑡+1(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) ← 𝑅(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖))+

𝛾
∑︁

𝑠𝜈 (𝜏𝑖+𝛿)∈𝑆𝜈

𝑃𝑟 (𝑠𝜈 (𝜏𝑖 + 𝛿) | 𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖))𝑣𝑖𝑡 (𝑠𝜈 (𝜏𝑖 + 𝛿)) (4.53)

6: end for

7:

𝑉 𝑖𝑡+1(𝑠𝜈 (𝜏𝑖)) = min
𝑎𝜈 (𝜏𝑖)

𝑉 𝑖𝑡+1(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) (4.54)

8:

𝜋∗𝜈 (𝑠𝜈 (𝜏𝑖)) = argmin
𝑎𝜈 (𝜏𝑖)

𝑉 𝑖𝑡+1(𝑠𝜈 (𝜏𝑖), 𝑎𝜈 (𝜏𝑖)) (4.55)

9: end for

10: if any |𝑣𝑖𝑡+1(𝑠𝜈 (𝜏𝑖) − 𝑣𝑖𝑡 (𝑠𝜈 (𝜏𝑖) | > 𝜖 then

11: 𝑖𝑡 = 𝑖𝑡 + 1

12: else

13: return 𝜋∗𝜈 =
{
𝜋∗𝜈 (𝑠𝜈 (𝜏𝑖))

}
14: end if

15: end for

16: return
{
𝜋∗𝜈

}

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 81

The time complexity of the traditional value iteration process can be estimated to

be equal to O(Δ|ST | · |AS|) with Δ being the maximum number of time steps

considered, |ST | state space dimension, and |AS| representing the action space.

With the involvement of 𝑁 scenarios, the time complexity expression becomes O(𝑁 ·

Δ|ST | · |AS|). The considered scenario-based modeling can reduce the state and

action space dimensions significantly by limiting the number of VUs per scenario

compared to the one-shot approaches where all VUs are considered altogether. Es-

pecially for the case of VNs, such an approach can be beneficial given the importance

of VUs’ local environments in the decision-making process (i.e., nearby VUs can in-

fluence the VUs’ decision-making compared with the other VUs that are located

far away from it). Additionally, time-dependent state transition probabilities can

reduce the overall uncertainty in the MDP process. It should be noticed that 𝑁, i.e.,

the considered number of VUs scenarios, can impact the performance of the MDP

process. On one side, a smaller 𝑁, corresponding to a limited set of parameters, can

impact the MDP model performance due to additional uncertainties. On the other

side, with a bigger 𝑁, the computational complexity can be higher with improved

performance.

4.2.4 Benchmark Approaches

For comparing the proposed MDP model performance, the following benchmark

methods are considered:

• Minimum Distance VU-EN Assignment Based Approach (MDA): In

this approach, VUs are always assigned to the EN, which is at a minimum

distance from them. Also, VUs prefer to offload a complete task towards

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 82

selected EN. Thus, ∀𝑚,

𝑎𝑚,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmin
𝑛∈𝑁

{𝑑𝑚,𝑛 (𝜏𝑖)} (4.56)

Though this approach can potentially reduce the overall task communication

delay and energy, high handovers requirements and questionable energy per-

formance can reduce the offloading performance.

• Maximum Sojourn Time Based VU-RSU Assignment Approach (MSA):

In this method, VUs prefer to offload their task towards RSUs having the high-

est sojourn time, hence:

𝑎𝑚,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmax
𝑛∈𝑁

{𝐷𝑚,𝑛 (𝜏𝑖)} (4.57)

This approach can reduce the number of handover requirements however, the

computation/communication delay and energy performance might not be op-

timal.

• MDP-based Network Selection with Static Offloading Policy (MDP-

NS): To show the impact of a joint network selection and offloading optimiza-

tion, here we consider an MDP-based network selection decision optimization

with static offloading process. In particular, the MDP process (i.e., action

space) is adapted to the network selection only while considering a static of-

floading policy with 𝛼𝜌𝑚 (𝜏𝑖) = 0.5,∀𝑖, 𝑚.

• MDP-based Offloading with Static Network Selection Policy (MDP-

Off): In this case, the offloading decisions are optimized, while a static network

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 83

selection is considered. In particular, VUs are considered to select the near-

est EN while offloading with an optimal policy generated through the MDP

process of Algorithm 2.

In the following, MDP-MD, MDP-PA, MDP-SA, and MDP-PsA stand for the MDP

with minimum distance assignments, probabilistic assignments, sojourn time based

assignments and the position-based assignments of nearby VUs, respectively.

4.2.5 Numerical Results

The proposed MDP model and corresponding value iteration algorithm is evaluated

over a Python-based simulator, using ML-related libraries such as NumPy, Pandas,

and Matplotlib. The main simulation parameters are listed in Table 4.1. In this

work, we have considered that 80 RSUs with ℎ𝑅𝑛=3m are located alongside the road

network in the MBS coverage area. The number of VUs is between 200 to 1800 with

𝑝𝑎=0.2. Each VU travels with a variable speed based upon the intelligent mobil-

ity model, with parameters ®𝑣𝑚𝑎𝑥=15m/s, 𝑠𝑚𝑖𝑛=2m, 𝑎𝑚𝑎𝑥=0.7m/s2, 𝑏𝑚𝑎𝑥=1.5m/s2,

𝑡𝑟=2 s. The background noise power 𝜎= −110 dBm is considered.

Also, each RSU can serve up to 𝐾max=12 VUs. Additionally, the communication

channel parameters are 𝛽0=−25 dB, and 𝜃=2.5. The RSU switching parameters in-

clude switching time 𝑇𝑠𝑤,𝑛=25ms, and switching power 𝑃𝑠𝑤,𝑛=0.2W. Also, when

the 𝑛th EN is operating in the standby mode, the standby power is 𝑃𝑠𝑑,𝑛=0.42W.

The power consumed for the basic circuit operations is 𝑃0,𝑛=0.5W. The VUs sce-

narios are based upon 𝑙𝑔=3.3m, E𝑚𝑎𝑥=4, and NV𝑚𝑎𝑥=36. Other MDP parame-

ters include the set of weighing coefficients given by, [𝐾11, 𝐾12, 𝐾13, 𝐾21, 𝐾22, 𝐾23] =

[0.5, 0.07, 0.4, 0.5, 0.07, 0.4], [𝐾31, 𝐾32, 𝐾33, 𝐾41, 𝐾42, 𝐾43] = [0.08, 0.6, 0.5, 0.08, 0.6, 0.5],

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 84

Table 4.1: Simulation parameters

MBS Coverage (𝑑𝑀) 500m
RSU Coverage (𝑑𝑛) 25m
Task Size (𝐷𝜌𝑚) 5MB
Task Results (𝐷𝑟𝜌𝑚) (𝐷𝜌𝑚/5) MB

Required Task Latency
(𝑇𝜌𝑚)

2 s

VU Computation Cap. (𝑐𝑚 ·
𝑓𝑚)

18 GFLOPS

RSU Computation Cap.
(𝑐𝑅𝑛 · 𝑓 𝑅𝑛)

45 GFLOPS

MBS Computation Cap.
(𝑐𝑀̄ · 𝑓 𝑀̄)

150 GFLOPS

RSU Height (ℎ𝑅𝑛) 4m

MBS Height (ℎ𝑀̄) 10m
CPU Cores (L𝑛) 4
Task Proc. Requirements
Ω𝜌𝑚

8 GFLOPS
per MB

RSU Bandwidth (𝐵𝑅𝑛) 80MHz

BS Bandwidth (𝐵𝑀̄) 1GHz
VU Energy (𝑃𝑐,𝑚, 𝑃𝑡𝑚, 𝑃𝑟𝑚) (0.9, 1.3, 1.1)

W
RSU Energy (𝑃𝑐,𝑛, 𝑃𝑡𝑛, 𝑃𝑟𝑛) (1.2, 1.3, 1.1)

W
Weighting Coefficients
(𝑤1, 𝛾1, 𝛾2)

(0.6, 0.5, 0.5)

and [𝐾51, 𝐾52, 𝐾61, 𝐾62] = [0.5, 0.07, 0.5, 0.07]. During the value iteration process

𝛾=0.9, 𝜖=0.01, Λ=0.1 and episode length Δ=100 are used.

Avg. Latency and Energy Cost with Varying VUs

In Fig. 4.3, we present the average cost value in terms of the total latency and

energy requirements of VUs task processing. By varying the number of VUs, we

obtain the performance of different MDP schemes defined before and analyze their

performance by comparing the results with the benchmark methods. It can be

seen that proposed MDP schemes perform better compared with the benchmark

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 85

Figure 4.3: Cost Function

approaches. By analyzing the surrounding environment, different MDP schemes

are able to find proper EN and the amount to be offloaded. In particular, with

a high number of VUs, the MDP-PsA approach having a better knowledge of the

surrounding environments in terms of various distance measures (i.e., the distance

between VU and ENs and the distance before it passes through the EN coverage

range), performs better than the other schemes. The superiority of the MDP-PsA

approach can be visualized through the zoomed version of the plot. The two bench-

mark MDP methods (MDP-Off and MDP-NS) have worse performance compared

to the joint optimization-based approaches, mainly due to the static policies. This

highlights the importance of simultaneously selecting the proper ENs and offloading

the proper amount.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 86

Number of RSU handover required during computation offloading

If VU fails to perform the offloading operation (which includes the transmission of

VUs data towards selected EN, EN processing, and receiving back the results from

EN), before going out from the coverage of the selected EN, an additional han-

dover process/cost is required. In Fig. 4.4, we present such handover requirements

posed by a different set of VUs in terms of the average number of VUs which fail

to complete the offloading operation within time limits. It can be verified from

this figure that the proposed MDP schemes (in particular MDP-PsA) are perform-

ing better compared to the other benchmark methods in terms of a reduction in

the overall handover requirements. Thus by avoiding the number of handover re-

quirements, MDP schemes can reduce the service provisioning costs over vehicular

environments. The benchmark MDP methods, in particular MDP-Off, suffer from

higher handover requests due to the imperfect offloading decisions compared to the

other MDP methods.

Number of service time constraint failures

In general, VUs application latency requirements need to be respected during task

processing operations, failure of which can reduce the overall QoS. In Fig. 4.5, we

provide the percentage of VUs that fails to satisfy the application latency require-

ment constraint in (4.25). The proposed MDP approaches are able to reduce such

failures effectively and can be vital for enabling latency-critical services over VN.

Similar to the previous cases, the MDP-PsA approach outperforms the other MDP

schemes and can be seen through the zoomed version of the plot. The MDP-NS and

MDP-Off methods induce higher latency costs, and their performance suffers with

more service latency failures than the other MDP approaches.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 87

Figure 4.4: Percentage of VUs with Handover Requirements

Task Completion Latency

To have a better understanding of overall latency requirements, in Fig. 4.6, we

present the performance of different schemes in terms of average latency requirements

during the task processing operations. This figure shows the overall reduction of

latency cost for VUs task processing operations. Through a proper understanding of

the nearby environment parameters (e.g., competing VUs, available RSUs, mobility

characteristics), the MDP schemes, in particular MDP-PsA approach, can determine

the proper EN and the offloading amount for having better performance. Optimizing

only the network selection or offloading decisions through the MDP-NS and MDP-

Off methods cannot guarantee optimal performances and suffers from higher latency

requirements.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 88

Figure 4.5: Percentage of VUs with service time constraint violation.

Average Energy Consumption

In the following Figs. 4.7 and 4.8, we present the performance of different schemes

in terms of average energy requirements. Fig. 4.7 presents the average amount

of energy cost over VUs, which includes the local computation, data transmission,

and reception costs. The benchmark approaches do not perform any local compu-

tation, due to which they have slightly better performance in terms of VUs energy

consumption. However, as shown in Fig. 4.8, both benchmark methods add large

energy costs over ENs. On the other hand, with proper EN selection, and proper

offloading decisions, all MDP schemes are having better energy performances over

EN. Also, as shown in Fig. 4.3, the overall performance of the MDP process in terms

of joint latency and energy cost is better compared with the benchmark approaches.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 89

Figure 4.6: Avg. Latency Cost

The joint energy performance of the MDP-Off and MDP-NS methods suffers from

imperfect decision makings and impacts the overall costs shown in Fig. 4.3.

Average Number of Active ENs

In Fig. 4.9, we have presented the average number of active ENs for varying numbers

of VUs. In the beginning with a limited number of VU density, only a limited number

of ENs are active. With most of the ENs being inactive, the overall energy cost can

be reduced compared with the traditional approaches with all ENs being active. As

VU density increases, the active ENs increase for satisfying all VUs service requests.

This allows reducing the total number of service failures. With this and previous

results, it can be validated that the proposed methods are able to adapt the ENs

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 90

Figure 4.7: Avg. VU Energy Cost

energy resources according to the VUs demands limiting the EN energy costs along

with the potential service failures.

4.2.6 Conclusion

In this work, we considered the joint optimization of network selection and task

offloading through a proper minimization of delay and energy for a VEC offload-

ing system. For solving such a complex problem over a highly uncertain vehicular

environment, we have proposed a MDP approach by analyzing different vehicular

scenarios. The proposed MDP model considers the changing vehicular environment

while making the decisions of EN selection and offloading portion. A value iteration-

based method is used for solving the proposed MDP model by finding the optimal

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 91

Figure 4.8: Avg. EN Energy Cost

policy to be followed by each VU in the different scenarios. The simulation results

show the superiority of the proposed scheme over various benchmark methods. One

of the most prominent contributions is that of having considered the joint network

selection and computation offloading problem while jointly minimizing latency and

energy costs with additional energy-saving mechanisms at the edge infrastructure.

Such studies were not present in the current literature and thus can motivate future

readers to investigate it further. However, with additional granularities and joint

decision-making processes, the problem becomes extremely complex to be solved

through the traditional approaches. For this, we have proposed a novel MDP model

with time-dependent state transition probabilities reducing the overall instability.

However, since the MDP approach could become very complex in the case of a large

parameter set, in this work, we have exploited the local vehicular communication

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 92

Figure 4.9: Avg. Number of Active ENs

modes in the MDP process to improve the overall performance. This can motivate

future readers to investigate the proposed solution methods in these directions.

4.3 Joint Network Selection and Offloading: Multi-

service Case

Differently from other works, we aim at jointly optimizing the network selection and

the computation offloading to minimize network-wide latency and energy consump-

tion with multiple services. To this end, the problem is modeled as a cost function

and solved through an RL approach. Differently from other RL-based solutions

in VEC scenarios [91], we propose here a new collaborative approach. By gaining

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 93

from different vehicular communication paradigms, i.e., V2V and V2I, allowing in-

formation exchange among nodes [62], we aim at a better understanding of the local

environment to be used for the development of two RL solutions.

In the first approach, a V2I collaborative Q-learning method is considered, in which

VNs participate in the training process of centralized Q-agents. In the second ap-

proach, each VN is made aware of the nearby environment, and the potential offload-

ing neighbors through the V2V links, leading to better decisions. A more advanced

deep learning-based approach is also considered to estimate the action value func-

tions for both the Q learning approaches allowing the possible extension towards high

dimensional scenarios. During the learning phase, several scenarios are considered

based on the VNs local environment. In the end, the numerical results show that

the proposed solutions provide better latency and energy performance for end-users

with respect to other benchmark methods.

In the following parts, we describe the system model, problem formulation, proposed

solutions, and numerical results in detail.

4.3.1 System Model and Problem Formulation

The IoV scenario under consideration is composed of a setV = {𝑉𝑁1, . . . , 𝑉𝑁𝑚, . . . , 𝑉𝑁𝑀}

of 𝑀 VNs, and a set R = {𝑅𝑆𝑈1, . . . , 𝑅𝑆𝑈𝑛, . . . , 𝑅𝑆𝑈𝑁 } of 𝑁 RSUs, creating the

urban vehicular service. In addition, one MBS able to cover the whole area is

supposed. Both RSUs and MBS act as edge nodes providing EC services to the

VNs, enabling computation-intensive applications and services at the edge. The

IoV system is modeled in a time-discrete manner, and the network parameters are

constant over each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time interval, i.e.,

𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏]}.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 94

Each VN is equipped with communication, computing, and storage elements, where

it is supposed that it can communicate with a maximum bandwidth 𝑏𝑚 and can

process with a maximum computational capability 𝜂𝑚. In addition, by focusing on

the 𝑖th time interval, it is supposed to have a battery capacity 𝐸𝑐𝑚 and a battery

level 𝐸𝑚 (𝜏𝑖). The 𝑚th VN is supposed to be located in the position {𝑥𝑚 (𝜏𝑖), 𝑦𝑚 (𝜏𝑖)},

while it moves at a speed ®𝑣𝑚 (𝜏𝑖) along the road paths, where:

®𝑣𝑚 (𝜏𝑖) =
(𝑥𝑚 (𝜏𝑖), 𝑦𝑚 (𝜏𝑖)) − (𝑥𝑚 (𝜏𝑖−1), 𝑦𝑚 (𝜏𝑖−1))

𝜏
, 𝑖 ≥ 1.

Each RSU can be identified through a set of parameters, where the 𝑛th RSU, located

at the position {𝑥𝑅𝑛 , 𝑦𝑅𝑛 }, can provide communication with a maximum bandwidth

𝐵𝑛, and can process with a maximum computational capability 𝐻𝑛. Similarly, the

MBS can be identified through its position {𝑥𝑀 , 𝑦𝑀}, maximum bandwidth 𝐵𝑀 , and

maximum computational capability 𝐻𝑀 .

We consider that RSUs and MBS compose a multi-service network able to provide

multiple services to the IoV environment. By assuming that S = {𝑆1, . . . , 𝑆𝑠, . . . , 𝑆𝑆}

is the set of all the possible services that can be provided, due to the limited available

resources, each RSU can provide only a subset of services. Thus, for the 𝑅𝑆𝑈𝑛 we

can identify S𝑛 ⊆ S as the set of services provided by it. Since the MBS has

more resources, it is supposed to offer the whole service set S. Finally, the 𝑛th

RSU is supposed to have a limited coverage range 𝑑𝑛, whose value depends on the

communication technology and radio-propagation environment, and it is supposed

to provide VEC services to the vehicles within the coverage area. Similarly, for the

MBS, the coverage range 𝑑𝑀 stands. Each 𝑉𝑁𝑚 ∈ V is supposed to be active in

each time interval with a probability 𝑝𝑎 within which it generates a computation task

request 𝜌𝑚 (𝜏𝑖) identified through the tuple ⟨𝐷𝜌𝑚 , 𝐷
𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚 , 𝑆𝜌𝑚⟩ corresponding

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 95

to a task with size 𝐷𝜌𝑚 Byte, expected to give in output a result with size 𝐷𝑟𝜌𝑚 Byte,

requesting Ω𝜌𝑚 CPU execution cycles, with a maximum execution latency 𝑇𝜌𝑚 and

requesting service 𝑆𝜌𝑚 .

4.3.1.1 RSU Selection

We define a binary VN-RSU assignment matrix A(𝜏𝑖) =
{
𝑎𝑚,𝑛 (𝜏𝑖)

}
𝑀×𝑁 ∈ {0, 1} with

size 𝑀 × 𝑁, where 𝑎𝑚,𝑛 (𝜏𝑖) = 1 if 𝑉𝑁𝑚 is assigned to 𝑅𝑆𝑈𝑛 in the interval 𝜏𝑖, and∑𝑁
𝑛=1

∑𝑀
𝑚=1 𝑎𝑚,𝑛 (𝜏𝑖) = 𝑀, imposing that each VN is able to offload data to only one

RSU6. Moreover, 𝑎𝑚,𝑛 (𝜏𝑖) = 1 ⇐⇒ 𝑆𝜌𝑚 ∈ S𝑛 that is to say the assignment can

occur only if the requested service has been deployed on the 𝑛th RSU.

We assume to perform partial offloading, that is to say, each task generated by the

VNs can be split, and a portion remotely processed while the remaining is processed

locally [80]; the portion offloaded by 𝑉𝑁𝑚 at 𝜏𝑖 is identified as 𝛼𝜌𝑚 (𝜏𝑖) ∈ [0, 1].

Here, 𝛼𝜌𝑚 (𝜏𝑖) = 0 corresponds to the complete local processing of the task, while

𝛼𝜌𝑚 (𝜏𝑖) = 1 to the complete offloading of the task to the selected VEC node. During

the partial offloading process, the task processing operations, performed locally by

VNs and remotely at the RSU-based edge servers, are supposed to be executed in

parallel to reduce the overall processing time [92]. Each RSU is supposed to have

a limited amount of computation and communication resources; hence, it can only

serve a limited number of users. Therefore:



𝑀𝑛 (𝜏𝑖)∑︁
𝑚=1

𝛼𝜌𝑚(𝜏𝑖) · Ω𝜌𝑚 ≤ 𝐻𝑅
𝑛 · 𝜏 ∀𝑖 (4.58a)

𝑀𝑛 (𝜏𝑖)∑︁
𝑚=1

𝑏𝑚 (𝛼𝜌𝑚 (𝜏𝑖), 𝐷𝜌𝑚) ≤ 𝐵𝑅𝑛 ∀𝑅𝑆𝑈𝑛 ∈ R, 𝑖 (4.58b)

6Given the complex nature of the considered problem, especially over a dynamically chang-
ing vehicular environment, we have assumed that each vehicle can select only one edge node for
offloading its data.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 96

Figure 4.10: The multi-service IoV system architecture.

where, 𝑀𝑛 (𝜏𝑖) =
∑𝑀
𝑚=1 𝑎𝑚,𝑛 (𝜏𝑖) is the number of vehicles assigned to the RSU 𝑛 in

the 𝑖th interval. While (4.58a) models an upper bound on the processing capacity

of the RSU, (4.58b) introduces a transmission capacity upper bound for the VNs

connected to any RSU. Here, 𝑏𝑚 (𝛼𝜌𝑚 (𝜏𝑖), 𝐷𝜌𝑚) corresponds to the communication

resources available for the transmission of vehicular tasks depending upon its task

size and the offloading parameter. It is worth to be noticed that the capacity of each

link depends on the specific communication technology and it is out of the scope of

this work.

In Fig. 4.10, a possible IoV scenario is depicted, where different VNs request different

services, and are covered by RSUs hosting different service types. In addition, VNs

are supposed to be in the coverage area of the MBS.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 97

4.3.1.2 Task Processing

The processing time and energy needed for computing a task depend on the offload-

ing policy and the selected node processing characteristics. The generic expression

for the time and energy spent for the 𝜌𝑚th task computation on any device is given

by [84]:

𝑇
𝜌𝑚
𝑐𝑙 =

Ω𝜌𝑚

𝑜𝑙 𝑓𝑙
(4.59a)

𝐸
𝜌𝑚
𝑐𝑙 = 𝑘 𝑙

Ω𝜌𝑚

𝑜𝑙
𝑓 2𝑙 (4.59b)

where 𝑜𝑙 and 𝑓𝑙 are the number of Floating-point Operation Per Second (FLOPS) per

CPU-cycle and CPU-frequency, respectively, whether 𝑙 is a generic index identifying

one of the possible processing nodes among VNs (𝑚), RSUs (𝑛) and MBS. In (4.59b),

𝑘 𝑙 is a constant coefficient representing the chip architecture of the generic 𝑙th device.

Since we assume to perform a partial computation offloading, each VN transmits a

portion of its task to the assigned RSU and receives back the result. In general, the

transmission time and energy between 𝑉𝑁𝑚 and 𝑅𝑆𝑈𝑛 for task 𝜌𝑚 is given by:

𝑇
𝜌𝑚
𝑡𝑥,𝑚𝑛 =

𝐷𝜌𝑚

𝑟𝑚𝑛
(4.60a)

𝐸
𝜌𝑚
𝑡𝑥,𝑚𝑛 = 𝑇

𝜌𝑚
𝑡𝑥,𝑚𝑛𝑃𝑡𝑚 (4.60b)

where 𝑟𝑚𝑛 is data-rate of the link between the two nodes, while 𝑃𝑡𝑥,𝑚 is the trans-

mission power of 𝑉𝑁𝑚. Similarly, the reception time and energy to receive back the

processing result having size 𝐷𝑟𝜌𝑚 from 𝑅𝑆𝑈𝑛 by 𝑉𝑁𝑚 are, respectively:

𝑇
𝜌𝑚
𝑟𝑥,𝑛𝑚 =

𝐷𝑟𝜌𝑚

𝑟𝑚𝑛
(4.61a)

𝐸
𝜌𝑚
𝑟𝑥,𝑛𝑚 = 𝑇

𝜌𝑚
𝑟𝑥,𝑛𝑚𝑃𝑟𝑥,𝑚 (4.61b)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 98

where 𝑃𝑟𝑥,𝑚 is the power spent for receiving at the 𝑅𝑆𝑈𝑚 side. A symmetric channel

is considered between 𝑉𝑁𝑚 and 𝑅𝑆𝑈𝑛. The expression for the channel transmission

rate is based on the Shannon capacity formula and can be written as:

𝑟𝑚𝑛 = 𝑏𝑚 log2

(
1 + 𝑃𝑡𝑚

𝐿 (𝑑𝑚𝑛)𝑁0

)
where 𝑃𝑡𝑥,𝑚 is the transmission power of a device 𝑚, 𝐿 (𝑑𝑚𝑛) is the path loss at a

distance 𝑑𝑚𝑛, and 𝑁0 = 𝑁𝑇𝑏𝑚 is the thermal noise power.

Task Offloading Process If 𝑉𝑁𝑚 is assigned to 𝑅𝑆𝑈𝑛, then the time and energy

required to offload the task to the selected RSU and to get back the result in the

𝑖th interval is:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝑇
𝜌𝑚
𝑡𝑥,𝑚𝑛 + 𝑇

𝜌𝑚
𝑐𝑛 + 𝑇

𝜌𝑚
𝑟𝑥,𝑛𝑚

)
(4.62a)

𝐸
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝛼𝜌𝑚 (𝜏𝑖)

(
𝐸
𝜌𝑚
𝑡𝑥,𝑚𝑛 + 𝐸

𝜌𝑚
𝑟𝑥,𝑛𝑚

)
(4.62b)

where 𝑇
𝜌𝑚
𝑡𝑥,𝑚𝑛, 𝑇

𝜌𝑚
𝑐𝑛 , and 𝑇

𝜌𝑚
𝑟𝑥,𝑚𝑛 are, respectively, the transmission time, computation

time on 𝑛th RSU, and the receiving time for the task 𝜌𝑚 generated by 𝑉𝑁𝑚 during

offloading phase, and 𝐸
𝜌𝑚
𝑡𝑥,𝑚𝑛 and 𝐸

𝜌𝑚
𝑟𝑥,𝑚𝑛 are, respectively, the energy consumed during

the task transmission and result collection phases on device. Since RSU nodes are

supposed to be connected to the electrical grid, we do not consider their energy

consumption in the energy analysis.

Local Computation The amount of time and energy required for the local com-

putation in the 𝑖th interval is:

𝑇 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) =
(
1 − 𝛼𝜌𝑚 (𝜏𝑖)

)
𝑇
𝜌𝑚
𝑐𝑚 (4.63a)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 99

𝐸 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) =
(
1 − 𝛼𝜌𝑚 (𝜏𝑖)

)
𝐸
𝜌𝑚
𝑐𝑚 (4.63b)

where 𝑇
𝜌𝑚
𝑐𝑚 and 𝐸

𝜌𝑚
𝑐𝑚 are the time and energy spent for the whole task 𝜌𝑚 local

processing, while 𝛼𝜌𝑚 (𝜏𝑖) is the portion of the task locally processed at the time

interval 𝜏𝑖.

Partial Offloading Computation The delay and the energy consumed during

the task processing phases, when partial offloading is performed in the 𝑖th interval,

can be written as:

𝑇
𝜌𝑚
𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) = max

{
𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)), 𝑇 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖))

}
𝐸
𝜌𝑚
𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) = 𝐸

𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) + 𝐸 𝑙𝑜𝑐𝑚 (𝛼𝜌𝑚 (𝜏𝑖)).

Since the local computation and offloading processes are executed in parallel, the

total task processing latency is the maximum of the two.

4.3.1.3 Vehicle Mobility and Sojourn Time

The VN mobility poses some constraints to the computation offloading decisions.

Due to the VNs mobility, each offloading operation should be completed by the VN

sojourn time, corresponding to the amount of time it remains under the coverage of

the selected RSU [80], otherwise the system may be affected by additional latency

due to, e.g., vehicle handover, service migration, additional signaling for managing

vehicles and services mobility [13]. The remaining distance in which the 𝑚th VN

remains in the coverage of 𝑛th RSU is:

𝐷𝑚,𝑛 (𝜏𝑖) =
√︃
𝑑2𝑛 − (𝑦𝑛 − 𝑦𝑚 (𝜏𝑖))2 ± (𝑥𝑛 − 𝑥𝑚 (𝜏𝑖)) (4.64)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 100

where {𝑥𝑚 (𝜏𝑖), 𝑦𝑚 (𝜏𝑖)} and {𝑥𝑛, 𝑦𝑛} are, respectively, the position of the 𝑚th VN and

the 𝑛th RSU at time interval 𝜏𝑖 and 𝑅𝑛 is the coverage radius of the 𝑛th RSU. Hence,

the sojourn time for the 𝑚th VN can be written as:

𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) =

𝐷𝑚,𝑛 (𝜏𝑖)
|®𝑣𝑚 (𝜏𝑖) |

∀𝑖 (4.65)

Each vehicle should finish the offloading process and receive the results back within

the sojourn time, hence:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) ≤ 𝑇

𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) ∀𝑖 (4.66)

4.3.1.4 Problem Formulation

The main aim of this work is to optimize the network-wide performance of the

VEC-enabled IoV network. We aim to optimize the performance in terms of overall

latency and energy consumed during the offloading process towards edge servers by

selecting proper RSU nodes and offloading amounts. For this, we formulate the joint

latency and energy minimization problem as:

P1 :

min
A,A

{
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

[
𝛾1𝑇

𝜌𝑚
𝑚

(
𝛼𝜌𝑚 (𝜏𝑖)

)
+ 𝛾2𝐸 𝜌𝑚𝑚

(
𝛼𝜌𝑚 (𝜏𝑖)

)]}
∀𝑖 (4.67)

s.t.

C1 :
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑎𝑚,𝑛 (𝜏𝑖) = 𝑀 (4.68)

C2 : 𝑎𝑚,𝑛 (𝜏𝑖) = 1 ⇐⇒ 𝑆𝜌𝑚 ∈ S𝑛 ∀𝑖 (4.69)

C3 : Eqs. (4.58a) and (4.58b) (4.70)

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 101

C4 : 𝑇
𝜌𝑚
𝑚

(
𝛼𝜌𝑚 (𝜏𝑖)

)
≤ 𝑇𝜌𝑚 ∀𝑉𝑁𝑚 ∈ V, ∀𝑖 (4.71)

C5 : Eq. (4.66) (4.72)

C6 : 𝐸
𝜌𝑚
𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) ≤ 𝐸

𝜌𝑚
𝑐𝑚 (4.73)

C7 : 0 ≤ 𝛾1, 𝛾2 ≤ 1; 𝛾1 + 𝛾2 = 1 (4.74)

where A = {𝛼𝜌𝑚}𝑀 is the computation offloading matrix, and 𝛾1, 𝛾2 are two weight-

ing coefficients for balancing latency and energy consumption. C1 stands that each

VN can select at most one RSU for the computation offloading. According to C2,

the selected edge node must be able to provide the service requested by the VNs.

C3 sets the bounds in terms of processing capacity and resource blocks requested by

VNs towards edge nodes, while C4 puts a limit on the maximum processing time as

one of the task requirements. According to C5, for avoiding handover phenomena

and related latency, each VN should complete the offloading process before it passes

through the selected RSUs coverage. According to C6, the total energy required

for the task processing during the partial computation offloading process should be

bounded by the energy needed to process the complete task locally. C7 stands that

the two weighting coefficients (𝛾1, 𝛾2) should be between 0 and 1 with their sum

equal to 1.

4.3.2 Q-Learning Based Joint Network Selection and Com-

putation Offloading

The decision on the EN to be selected for computation offloading and the amount

of data to be offloaded can depend upon several factors, such as VNs position and

speed, nearby VNs, the available number of RSUs for offloading, availability of the

requested service, etc. If a VN is under the coverage of multiple ENs, the proper EN

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 102

can be selected by sequentially testing ENs one after another. Also, VNs can make

sequential decisions for finding a proper amount of data to be offloaded towards the

EN. Every decision taken by VNs can alter the surrounding environment’s state, and

can be mapped with a reward (i.e, an increase or decrease in the task processing

time and energy). Therefore, finding the proper EN and the corresponding data to

be offloaded in the dynamic vehicular environment can be considered a sequential

decision-making problem that can effectively be solved through the RL approach.

RL and multi-agent RL (MARL)-based methods have found applications in vehicu-

lar scenarios. For avoiding the unbearable training costs and for adequate training

performance, various RL/MARL training architectures are considered in the past.

A centralized MARL training process having an exponentially scalable set of actions

and observation spaces, is often neglected in highly complicated vehicular environ-

ments. In the case of a fully decentralized approach, an independent set of agents

tries to optimize a common reward function over its local environment. Issues like

spurious rewards, mainly due to partial observability, prevent their use in the con-

sidered problem. Due to the involvement of high-speed VNs and a dynamically

changing environment, a large set of training agents are required for solving highly

complex problems such as the one considered here. This scales up the issues of

exponential scalability and spurious rewards in these two traditional approaches.

In recent times, some other MARL architectures have been proposed, mainly for

solving the previous challenges. One such example is [93], where the authors have

proposed a value-decomposition network-based cooperative MARL architecture. A

deep neural network-based back-propagation approach is used to decompose a com-

mon value function into a set of agent-based value functions. However, the complex-

ity of the considered decomposition network, the limited use of state information

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 103

during training, and applicability towards a reduced class of centralized value func-

tions are bottlenecks. Also in [94], another value function-based approach is consid-

ered by estimating a joint action-value function from a set of local observation-based

action individual agents values through neural networks. The issues of complexity,

scalability, etc., prevent the use of this MARL-based method for solving the given

problem.

With the availability of novel communication technologies such as V2V, V2I, etc,

VNs can share important environmental parameters. Such information can be in-

tegrated into the training process of a collaborative RL strategy to solve the given

vehicular problem effectively and with a reduced complexity with respect to a MARL

approach. Therefore, below, we have proposed efficient vehicular communication-

based cooperative RL strategies for solving the problem at hand. In RL, at any given

time 𝜏, an intelligent agent in a particular state 𝑆𝑡 (𝜏) interacts with the dynamic

environment 𝐸𝑛, through the selected action 𝑎𝑘 (𝜏), and, in return, receives observa-

tions in terms of a state change 𝑆𝑡∗(𝜏) and rewards 𝑅. The agent tries to maximize

the future reward value over consecutive discrete time steps by taking the actions

from the current state in the environment based on the received observations [95].

Therefore, state-space, action-space, and the reward function are the main elements

of the RL process.

In the considered RL-based framework, multiple agents collaboratively perform the

training operations for finding the optimal policy aimed at minimizing the joint la-

tency and energy cost with reliable network selection and computation offloading

operations. We have considered a centralized training architecture assisted by ve-

hicular communication data for improving the training performance. MBS, as a

centralized entity, can perform the training process for individual training scenar-

ios (i.e., RL agents) for finding the optimal policies. It collects the information

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 104

from VNs and uses it during the learning process of the RL agents by implementing

a collaborative learning process. More description about the learning scenarios is

provided below in subsections 4.3.2.1 and 4.3.2.1.

The State-space, Action-space, and Reward function can be identified as follows.

State-Space (ST) In a multi-service multi-user vehicular environment the avail-

able resources for the computation offloading process are changing continuously over

time and are function of the offloading and network selection decisions taken by ve-

hicles. Therefore, we have defined a state-space composed of a discrete set of states

as a function of resources available for computation offloading. The state-space is a

discrete set of states identifying the RSUs to be selected and their resources avail-

able for the computation offloading. Since each 𝑉𝑁𝑚 can exploit a different number

of RSUs for offloading, we define R𝑚 =
{
𝑅𝑆𝑈𝑛 |𝐷𝑚,𝑛 (𝜏𝑖) > 0 ∧ 𝑆𝜌𝑚 ∈ S𝑛,∀R

}
as the

set of RSUs available for the 𝑚th VN for the offloading operation; we consider a

multi-dimensional state-space representation where the 𝜈th state-space corresponds

to the scenario with 𝜈 available RSUs. For each scenario the related state-space is

function of sojourn time, required latency, VN resources, resources of the available

RSUs; thus, each state 𝑆𝑡𝜈 at time 𝜏𝑖 is defined as:

𝑆𝑡𝜈 (𝜏𝑖) = 𝑓 (𝛼𝜌𝑚 (𝜏𝑖), 𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖), 𝐵𝑛, 𝐻𝑛, 𝐷𝜌𝑚 , 𝐷

𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚 , 𝑆𝜌𝑚). (4.75)

We suppose to limit the multi-dimensional state space to 𝑁 scenarios, hence, 𝜈 =

1, . . . , 𝑁.

Action-Space (AS) The action space defines all the possible actions available

during the learning process of an RL-agent. We consider to have 𝑁 agents collecting

information for each possible scenario, composed by a different number of available

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 105

RSUs. At each iteration, each agent explores the available RSUs, by properly setting

a binary vector R𝜈 (𝜏𝑖) = {0, 1}𝜈 mapping the RSUs selection among the 𝜈 available

in the given scenario. At the same time, the offloaded amount is selected, by either

increasing, decreasing, or keeping the same amount as the previous iteration. Thus,

for the 𝜏𝑖th instance, we have 𝛼𝜌𝑚 (𝜏𝑖) ∈
{
𝛼𝜌𝑚(𝜏𝑖 − 1), 𝛼𝜌𝑚 (𝜏𝑖 − 1) ± Λ

}
where Λ is a

step increase or decrease of the offloading amount. The generic action 𝑎𝑘𝜈 for the

𝜈th scenario at time 𝜏𝑖 can be defined as 𝑎𝑘𝜈 (𝜏𝑖) =
{
R𝜈 (𝜏𝑖), 𝛼𝜌𝑚 (𝜏𝑖)

}
where R(𝜏𝑖) is a

binary vector with length 𝜈, where 1 in the 𝑛th position corresponds to the selected

RSU.

Reward Function (𝑅) The reward function (𝑅) is defined as the joint objective

function of time and energy consumed for the complete task processing (4.67). In

addition, three penalty terms are also considered modeling when the agent fails to

satisfy the latency and energy constraints, as defined in (4.71), (4.66) and (4.73).

Thus, the expression for the reward function is given by:

𝑅(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖)) = 𝛾1𝑇 𝜌𝑚𝑚
(
𝛼𝜌𝑚 (𝜏𝑖)

)
+𝛾2𝐸 𝜌𝑚𝑚

(
𝛼𝜌𝑚 (𝜏𝑖)

)
+Υ1·max(0, 𝐶1(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖)))

+ Υ2 ·max(0, 𝐶2(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖))) + Υ3 ·max(0, 𝐶3(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖))) (4.76)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the penalty values, and:

𝐶1(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖)) = 𝑇 𝜌𝑚𝑚
(
𝛼𝜌𝑚 (𝜏𝑖)

)
− 𝑇𝜌𝑚 (4.77a)

𝐶2(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖)) = 𝑇𝑜 𝑓 𝑓𝑚,𝑛 (𝛼𝜌𝑚 (𝜏𝑖)) − 𝑇
𝑠𝑜 𝑗
𝑚,𝑛 (𝜏𝑖) (4.77b)

𝐶3(𝑆𝑡𝜈 (𝜏𝑖), 𝑎𝑘𝜈 (𝜏𝑖)) = 𝐸 𝜌𝑚𝑚 (𝛼𝜌𝑚 (𝜏𝑖)) − 𝐸
𝜌𝑚
𝑐𝑚 . (4.77c)

(4.77a) is the additional penalty value when VN fails to perform the task processing

operation within the maximum execution latency bound, (4.77b) is the additional

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 106

penalty when VNs fails to satisfy the sojourn time bounds during the offloading pro-

cess, and (4.77c) is the additional cost when VN fails to follow the energy constraint

in (4.73).

4.3.2.1 Collaborative Q-Learning Solutions for Joint Network Selection

and Offloading

Q-learning is one of the most-known techniques used to solve RL-based problems [96].

In Q-learning, each state-action pair (𝑆𝑡, 𝑎𝑘) has a 𝑄 value, defined as 𝑄(𝑆𝑡, 𝑎𝑘),

which provides the expected future reward for an agent from state 𝑆𝑡 if he decides

to take action 𝑎. Each agent receives the input values as set of environment state

(ST) including the possible terminal state 𝑆𝑡𝑜𝑝𝑡 , reward function 𝑅 and action set

(AS). Other input parameter includes the learning rate 𝛾𝑙𝑟 ∈ {0, 1}, discount

factor Δ ∈ {0, 1}, and a number of learning episodes 𝐸 . In every episode, the agent

selects the initial state 𝑆𝑡𝑖𝑛, then it takes a random action 𝑎𝑘 over the environment,

receives a reward related to that action and a new state value. The widely known

Epsilon-Greedy algorithm (EGA) is used for selecting the future action [95]. In EGA,

each Q-agent picks the action based upon the Exploration vs Exploitation dilemma,

with the exploration probability 𝑒. For every iteration, the Q-values (𝑄(𝑆𝑡𝑡 , 𝑎𝑘𝑡))

for the state-action pair (𝑆𝑡𝑡 , 𝑎𝑘𝑡) are updated based upon the temporal difference

expression defined as:

𝑄𝑛𝑒𝑤 (𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈) ← 𝑄(𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈) + 𝛾𝑙𝑟
(
𝑅𝑆𝑡𝑡𝜈 ,𝑎𝑘 𝑡𝜈+

Δ
(
max𝐴

{
𝑄(𝑆𝑡𝑡+1𝜈 , 𝑎𝑘 𝑡+1𝜈)

}
−𝑄(𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈)

))
(4.78)

Two novel Q-learning based solutions for the joint selection of network and computa-

tion offloading problem are considered here. In the first method, a V2I collaborative

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 107

Q-learning-based solution is considered, in which several randomly distributed VNs

participate in the training process of a Q-agent. In the beginning, a centralized

server collects data from VNs by exploiting the V2I communication links. Next,

vehicles are classified based upon the local environment scenarios. In the end, every

group trains the Q-agent based on its local environment. In the other approach,

each VN explores the V2V communication links for collecting information about the

nearby VNs. This allows to make a better decisions in terms of network selection

and computation offloading.

V2I Assisted Collaborative Q-Learning (V2I-AC) In the V2I collaborative

approach, multiple randomly located VNs participates to the training process to-

wards a centralized set of agents through the V2I links. Since the cardinality of

R𝑚 depends on 𝑉𝑁𝑚 and RSUs positions as well the deployed services, we define

multiple training scenarios, each one characterized by the number of available RSUs,

i.e., |R𝑚 |. The scenario vector SV𝑟𝑠𝑢 includes all possible available RSUs for com-

putation offloading, i.e., SV𝑟𝑠𝑢 = {2, · · · , 𝑅𝑆𝑈𝑣𝑚𝑎𝑥}. Here, 𝑅𝑆𝑈𝑣𝑚𝑎𝑥 is the maximum

number of RSU nodes available for computation offloading. In the Q-learning pro-

cess, we generate 𝑁 Q-tables where, 𝑄𝜈 (ST ,AS) is the table of the 𝜈th scenario.

By referring to the pseudocode in Algorithm 3, in the V2I collaborative Q-learning

approach, the VNs are first classified based on their scenario (lines 1-3). For each

𝑉𝑁𝑚, the cardinality of available RSUs are evaluated, i.e., |R𝑚 |. In order to limit

the number of possible scenarios to 𝑁, the 𝑚th VN is managed by the 𝜈th agent,

where 𝜈 = min{|R𝑚 |, 𝑁}. Through this, we can classify all VNs into different groups,

with 𝜈th scenario having 𝑚̄𝜈 VNs for the collaborative training process, with 𝑚̄𝜈 =

{|𝑉𝑁𝑚 | : |R𝑚 | = min(𝜈, 𝑁),∀V}. After the VNs classification, the training process

for each scenario is performed (lines 4-16). The number of training episodes for each

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 108

Algorithm 3 V2I Assisted Collaborative Q-Learning (V2I-AC)

Input: Set of VNs V, 𝑁, 𝑒, 𝛾𝑙𝑟 ,Δ,ST ,AS, 𝑅,I
Output: {𝑄(ST ,AS)}
1: for all 𝑉𝑀𝑚 ∈ V do
2: Find R𝑚 and set 𝜈 = min{|R𝑚 |, 𝑁}, 𝑚̄𝜈 ← 𝑚̄𝜈 + 1
3: end for
4: for all 𝜈 = 1, . . . , 𝑁 do
5: for all 𝑉𝑁𝑚 such that |R𝑚 | = min(𝜈, 𝑁) do
6: Select a random initial state 𝑆𝑡0𝜈 ∈ ST ∧ 𝑆𝑡0𝜈 ≠ 𝑆𝑡𝜈
7: 𝑆𝑡𝜈 ← 𝑆𝑡0𝜈 , 𝑖𝑡 = 0
8: while 𝑆𝑡𝑡𝜈 ≠ 𝑆𝑡𝜈 | |𝑖𝑡 = I do
9: 𝑖𝑡 = 𝑖𝑡 + 1
10: Select action 𝑎𝑘𝜈 ∈ AS with probability 𝑒
11: Determine next state (𝑆𝑡𝑡+1𝜈) and reward received
12: Use Eq. (4.78) to find the TD and update 𝑄 table.
13: 𝑆𝑡𝜈 ← 𝑆𝑡𝑡+1𝜈
14: end while
15: end for
16: return 𝑄𝜈 (ST ,AS)
17: end for

scenario is equal to the number of VNs in that particular scenario group, i.e., 𝑚̄𝜈. In

each episode, the agent selects a non-optimal random initial state 𝑆𝑡0𝜈 , then it takes

a random action 𝑎𝑘𝜈 over the environment, receives a reward and a new state value.

For every iteration, the Q-values (𝑄(𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈)) for the state-action pair (𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈)

are updated following the the Temporal Difference (TD) expression (4.78). Once

the final state 𝑆𝑡𝜈 or 𝑖𝑡 = I has been reached, with I being a maximum number of

iterations, the agent starts the new episode of learning. This process is repeated till

a predefined optimal state is reached. In the end, we receive a Q-table associated

with that particular scenario (𝑄𝑆𝑉𝑟𝑠𝑢).

In the V2I collaborative Q-learning method, we aim to find the joint solution for the

network selection and computation offloading problem. The solution is composed

of a network selection vector R𝜈, depending on the scenario in which any given VN

are classified, and the offloading amount 𝛼𝜌𝑚 . In case none of the surrounding RSUs

have the service requested by 𝑉𝑁𝑚, i.e., R𝑚 = ∅, 𝑉𝑁𝑚 can offload the data towards

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 109

the MBS, which contains all the services requested by VNs.

V2V Assisted Collaborative Q-Learning (V2V-AC) In this approach, we

suppose that the VNs exploit V2V communication links for acquiring knowledge of

the potential competing VNs around them before offloading for the training phase.

Since the VNs offloading strategy is unknown by each VN we assume that a prede-

fined VN-RSU selection method where each competing VN selects the nearest RSU

node for complete task offloading is assumed for resource allocation purposes. Both

communication and computation resources of RSU nodes are equally shared among

the assigned VNs. Similarly to the V2I approach, we consider different agents acting

on different scenarios, where, in this case, we extend also to the number of nearby

VNs. Different learning scenarios are considered based upon the number of available

RSUs for offloading and the nearby VNs. Therefore, while the number of available

RSUs is determined in the same way, we extend the considered scenarios up to 𝑁 · 𝑀̄

where 𝑀̄ is the maximum number of nearby VNs to be considered.

By defining V𝑚 =
{
𝑅𝑆𝑈𝑚′ |𝑑𝑚,𝑚′ (𝜏𝑖) ≤ 𝑑𝑉2𝑉 ,∀R

}
as the set of VNs within a certain

𝑑𝑉2𝑉 coverage distance, we can set as 𝜇 = min{|V𝑚 |, 𝑀̄} as the scenario identifying

all the vehicles with 𝜇 surrounding VNs to be exploited. Given this, the (𝜈, 𝜇)th

agent will exploit as training nodes all the VNs having 𝜈 available RSUs and 𝜇

competing VNs.

The number of available RSUs could be in the range of 2 to 𝑅𝑆𝑈𝑣𝑚𝑎𝑥. Similarly,

the number of VNs around each test VN is ranged between 0 to 𝑉𝑁𝑣𝑚𝑎𝑥. Thus, the

two scenario vectors are SV𝑟𝑠𝑢 = [2, · · · , 𝑅𝑆𝑈𝑣𝑚𝑎𝑥] and SV𝑣𝑛 = [0, · · · , 𝑉𝑁𝑣𝑚𝑎𝑥].

Therefore, each 𝑆𝑉 (𝑖, 𝑗) = {SV𝑟𝑠𝑢 (𝑖),SV𝑣𝑛 (𝑗)} represents the training scenario

considered.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 110

Algorithm 4 V2V Assisted Collaborative Q-Learning (V2V-AC)

Input: Set of VNs V, 𝑀̄, 𝑁, 𝑒, 𝛾𝑙𝑟 ,Δ,ST .AS, 𝑅,I
Output: {𝑄(ST ,AS)}
1: for all 𝑉𝑁𝑚 ∈ V do
2: Find R𝑚 and V𝑚
3: Set 𝜈 = min{|R𝑚 |, 𝑁} and 𝜇 = min{|V𝑚 |, 𝑀̄}
4: 𝑚̄ (𝜈,𝜇) ← 𝑚̄ (𝜈,𝜇) + 1
5: end for
6: for all 𝜈 = 1, . . . , 𝑁 do
7: for all 𝜇 = 1, . . . , 𝑀̄ do
8: Follow steps from 5 to 14 of Algorithm 3
9: return 𝑄 (𝜈,𝜇) (ST ,AS)
10: end for
11: end for

The Algorithm 4 describes the steps used during the training phase of each scenario.

In lines 1-5, each VN scenario is determined, by estimating the number of available

RSUs for data offloading R𝑚 and the number of VNs around it (V𝑚). Based on their

training scenario, each VN will be classified into different groups. At the end of the

training sessions, each scenario will have a separate Q-table. Similar to the previous

approach, the solution is composed of network selection vector R𝜈 and the offloading

amount 𝛼𝜌𝑚 . In case any of the surrounding RSUs have the requested service by the

𝑉𝑁𝑚, i.e., R𝑚 = ∅, 𝑉𝑁𝑚 can offload the data towards the MBS, which contains all

the services requested by VNs.

4.3.2.2 Deep Learning Based Solutions

The proposed collaborative learning-based methods use Q-learning with Q-table

as a baseline solution method. Such techniques are widely used for solving RL

problems with simple settings, however, they are not targeted with problems with

the curse of high dimensionality, i.e., larger state or action spaces. In such scenarios,

more advanced techniques are suitable. For the case of VNs, this is often the case.

Therefore a deep learning-based approach is also discussed, where a Deep Q Network

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 111

(DQN) is used for approximating the Q-function, i.e., the action value function. In

this case, the DQN can replace the Q-learning process (lines 5-14 in Algorithm 3)

for both V2I-AC and V2V-AC methods when estimating the Q-values.

As shown in Fig. 4.11, the considered DQN is based on the presence of both primary

and target networks both with 𝐿𝑑 layers with 𝑛𝑙 (𝑙 ∈ 𝐿𝑑) neurons for estimating the

Q-values. Considering an approach similar to [97], the primary network is used for

estimating the real/primary Q-value while the target Q-values are estimated through

the target network. The learning agent utilizes the backpropagation and gradient

descent processes with Mean Square Error (MSE) based loss function for reducing

the gap between the primary and the target Q-values. For the scenario 𝜈, the loss

function is defined as,

𝐿 (𝑤, 𝜈) = 𝑅𝑆𝑡𝑡𝜈 ,𝑎𝑘 𝑡𝜈 + Δmax𝐴
{
𝑄(𝑆𝑡𝑡+1𝜈 , 𝑎𝑘 𝑡+1𝜈 ;𝑤

′
𝜈)

}
−𝑄(𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈;𝑤𝜈) (4.79)

The primary Q-value, given as 𝑄(𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈;𝑤𝜈), is a result of primary network with

parameters 𝑤𝜈, while the target Q-value 𝑅𝑆𝑡𝑡𝜈 ,𝑎𝑘 𝑡𝜈 + Δmax𝐴
{
𝑄(𝑆𝑡𝑡+1𝜈 , 𝑎𝑘 𝑡+1𝜈 ;𝑤

′
𝜈)

}
is

based upon the results of the target network with parameters 𝑤
′
𝜈. After collecting

the Q-values, the EGA is used for selecting the future action. The agent’s learning

experiences are stored in the forms of tuple (𝑆𝑡𝑡𝜈, 𝑎𝑘 𝑡𝜈, 𝑅𝑆𝑡𝑡𝜈 ,𝑎𝑘 𝑡𝜈 , 𝑆𝑡
𝑡+1
𝜈) constituted by

current state, action, reward received and the next state in the replay memory of size

𝑟𝑏 and used during the training process. Randomly sampled experiences forming a

batches of size 𝑏 helps to improve the training performance. The V2I-AC and V2V-

AC techniques built by using the DQN-based approaches are named V2I-DAC and

V2V-DAC in the following parts.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 112

Figure 4.11: DQN Architecture.

4.3.3 Limited Search-space based Heuristic Approach

With the involvement of a huge number of VUs, the problem in (4.67) is highly

complex to be solve through the traditional heuristic approaches mainly due to large

solution space SP. For comparison purposes, a two-step limited search space-based

heuristic is also considered, able to reduce the computation complexity through de-

sign parameters bounding the size of the overall search space. Algorithm 5, provides

the step-by-step process to be implemented. In the first step (lines 1-13), all VUs

are assigned to the available edge nodes based on the requested services and the

distance measures. The ratio between the sojourn time distance and the distance

between VU and edge node, i.e.,
𝐷𝑚,𝑛 (𝜏𝑖)
𝑑𝑚,𝑛 (𝜏𝑖) , allows selecting the edge node with the

smallest communication cost and highest sojourn time (line 11). Thus, each VU

greedily selects the edge node best suited for their operations without considering

the presence of other competing users.

Next, a solution space SP𝑛
(
𝐴
′′ (𝑛),Λℎ𝑢

)
is formed at the 𝑛th RSU node based upon

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 113

the set of VUs requesting the services (𝐴′′ (𝑛)) and step parameter Λℎ𝑢. Each solution

point contains a vector of offloading parameters given as,

Â(𝑛)(1×𝐴′′ (𝑛)) =
{
𝛼𝜌1 (𝜏𝑖), · · · , 𝛼𝜌𝐴′′ (𝑛) (𝜏𝑖)

}
The step value taken by the offloading parameter (i.e., Λℎ𝑢) is considered as a design

parameter limiting the size of search space. Thus, the overall solution space of the

𝑛th RSU node is based upon the total number of VUs requesting the services and

the design parameter Λℎ𝑢. Next for each solution point, the objective function in

(4.67) is analyzed along with the constraint set for finding the best possible solution

(lines 17-25).

Algorithm 5 Limited Search-space based Heuristic Approach (LS-HA)
Input: Set of VNs V, 𝑅, {R𝑚},Λℎ𝑢

Output: {A,A}
1: function Find(𝐴

′
, 𝐴
′′ })

2: for all 𝑅𝑆𝑈𝑛 = 1, . . . , 𝑅 do
3: for all 𝑉𝑀𝑚 ∈ V do
4: 𝐴

′ (𝑚, 𝑛) = 1 ⇐⇒ 𝑅𝑆𝑈𝑛 ∈ R𝑚
5: end for
6: 𝐴

′′ (𝑛) = ∑𝑀
𝑚=1 (𝐴

′ (𝑚, 𝑛))
7: end for
8: end function
9: function Assign(A = {𝑎 (𝑚, 𝑛) } })
10: for all 𝑉𝑀𝑚 ∈ V do

11: 𝑎𝑚,𝑛 (𝜏𝑖) = 1 ⇐⇒ 𝐷𝑚,𝑛 (𝜏𝑖)
𝑑𝑚,𝑛 (𝜏𝑖) = max𝑛′∈R𝑚

{
𝐷𝑚,𝑛′ (𝜏𝑖)
𝑑𝑚,𝑛′ (𝜏𝑖)

}
12: end for
13: end function

14: function offload(A = {𝛼𝜌𝑚 }𝐴
′′ (𝑛) , ∀𝑛)

15: for all 𝑅𝑆𝑈𝑛 = 1, . . . , 𝑅 do
16: Create SP𝑛 (𝐴

′′ (𝑛) ,Λℎ𝑢) = { Â (𝑛) (1×𝐴′′ (𝑛)) } with all possible solution points to be searched in the

reduced-size solution space.
17: 𝐶ℎ = ∞
18: for all Â (𝑛) ∈ SP do
19: Use (4.67) to evaluate cost 𝐶 (Â (𝑛) ,A).
20: Determine all constraint functions values.
21: if (𝐶 (Â (𝑛) ,A) ≤ 𝐶ℎ and all constraints are satisfied) then

22: 𝐶ℎ = 𝐶 (Â (𝑛) ,A) and {𝛼𝜌𝑚 }𝐴
′′ (𝑛) = Â (𝑛)

23: end if
24: end for
25: end for
26: end function
27: return {A,A}

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 114

4.3.4 Numerical Results

The performance evaluation of the proposed solutions has been carried out through

a Python-based simulator, using ML-related libraries such as NumPy, Pandas, Mat-

plotlib. The scenario contains a multi-service VN composed of one MBS, and several

randomly distributed RSUs and VNs. The main parameters used in computer sim-

ulations are in Table 4.2. We have considered a maximum of 350 RSUs, distributed

in the coverage area, and a variable number of VNs from 100 to 1800. Each RSU

provides a random number of services |S| between 1 and 6. We consider that VNs

are not always active, while, at each time instant, they request a random service

with a probability equal to 0.1, while with probability 0.9 they are inactive. The

two weighting coefficients (𝛾1, 𝛾2) in (4.67) have been set to 0.5.

In the Q-learning simulation, we have generated different scenarios, based on the

available number of RSUs and the nearby competing VNs during offloading cases.

In the training phase of each Q-agent, we have used 500 randomly distributed VNs

in the MBS coverage area, considered our operational area. The maximum number

of RSUs that can be exploited by each VN is 𝑁 = 4, while the maximum number of

nearby VNs that can be exploited for the V2V approach is 𝑀̄ = 15. In the reward

function, Υ1 = 1.5, Υ2 = 0.8, and Υ3 = 0.8 are used. The weighting coefficients

determine the influence of the constraint failure penalty terms compared with the

other parts (i.e., joint latency and energy costs) in the reward signal. Their values are

set for generating a uniform reward signal without any bias toward cost or penalty

terms. Failure of service time latency constraint can be catastrophic, resulting in

service failure. However, the failure of the other two constraints (i.e., sojourn time

and energy constraints) can lead to additional costs without ensuring the service

failure. Given that different constraints can have different influences, the values are

set accordingly. For example, given the importance of service time constraint, Υ1

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 115

Table 4.2: Simulation parameters

BS Coverage (𝑑𝑀𝑛) 500m
RSU Coverage (𝑑𝑛) 10m-40m
Task Size (𝐷𝜌𝑚) 3MB
Task Results (𝐷𝑟

𝜌𝑚
) (𝐷𝜌𝑚/5) MB

Required Task Latency
(𝑇𝜌)

2 s

VN Computation Cap.
(𝜂𝑚)

14 GFLOPS

RSU Computation Cap.
(𝐻𝑛)

25 GFLOPS

Task Proc. Requirements
Ω𝜌𝑚

1250 FLOPS per bit

RSU Bandwidth (𝐵𝑛) 35MHz
VN Speed (®𝑣𝑚 (𝜏𝑖)) 6m/s-18m/s
No. of Services (S) 6
VN power (𝑃𝑡𝑚, 𝑃𝑟𝑚) (1.6W, 1.4W)

has a higher value than the other two coefficients (i.e., Υ2 and Υ3). These values

are set empirically and can be optimized for having more precise results in the

future. The learning rate (𝛾𝑙𝑟), discount factor (Δ), and the epsilon value (𝑒) for

the epsilon greedy algorithm part of the Q learning simulation are 0.99, 0.7, and

0.5, respectively, while Λ is equal to 0.01 and I = 104 is used. The primary and

target neural networks have 𝐿𝑑 = 5 fully connected layers with ReLU and linear

activation functions (i.e., discrete actions). Other learning parameters include batch

size 𝑏 = 32 samples, and, a replay buffer of 𝑟𝑏 = 50000 samples. For the heuristic

approach 𝜆ℎ𝑢 = 0.2 is considered.

In the following, the performance of the proposed approaches has been compared

with a complete offloading procedure and with a local processing approach. Since

utility minimization/maximization-based node selection strategies are often consid-

ered for computation offloading purposes [92, 98], in the following two benchmark

methods are also considered, based on the communication distance between edge

nodes and vehicles, and the available sojourn time. In addition a Single Agent

approach has been considered for comparison.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 116

• Minimum Distance Based Offloading (MDBO) In this method, each VN

offloads its task to the nearest RSU [98], hence:

𝑎𝑚,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmin
𝑛′∈R𝑚

{𝑑𝑚,𝑛′ (𝜏𝑖)}, ∀𝑚

Though MDBO reduces the communication latency of the offloading process,

it cannot guarantee optimal performance in terms of overall latency and energy

consumption.

• Maximum Sojourn Time Based Offloading (MSTBO) We have con-

sidered a utility maximization-based benchmark with the sojourn time as the

utility function while selecting the edge node [92]. In this method, VN selects

the RSU node with maximum sojourn time for offloading it’s data, hence:

𝑎𝑚,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmax
𝑛′∈R𝑚

{𝑇 𝑠𝑜 𝑗
𝑚,𝑛′ (𝜏𝑖)} ∀𝑚

In this method, VNs can reduce the overall handover requirements; however,

RSU selection process does not consider the nearby VNs and corresponding

RSU resource demands, and, as a result, optimal performance cannot be guar-

anteed.

• Single Agent Based Q Learning Approaches (Q-SA and Q-DSA) To

compare the performance of the proposed Q-learning based methods, we have

also considered a single agent-based Q-learning approach. Both traditional

tabular Q-learning (Q-SA) and DQN-learning (Q-DSA) based methods are

considered. In this case, a single RL agent without considering the surrounding

environment parameters attempts to find the optimal policy for the network

selection and computation offloading operations jointly. Since the agent is un-

aware of the total number of edge nodes able to provide the requested service,

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 117

Table 4.3: Complexity Analysis

Solution Ap-
proach

Computational Complexity

Q-SA O(ST · AS · I) [99]
V2I-AC O(𝑁̄ · ST · AS · I)
V2V-AC O(𝑁̄ · 𝑀̄ · ST · AS · I)
Q-DSA O(I · 𝑏 · (𝑛0𝑛𝑙 +

∑𝐿𝑑−1
𝑙=1

𝑛𝑙𝑛𝑙+1)/Ī)
V2I-DAC O(𝑁̄ · I · 𝑏 · (𝑛0𝑛𝑙 +

∑𝐿𝑑−1
𝑙=1

𝑛𝑙𝑛𝑙+1)/Ī)
V2V-DAC O(𝑁̄ · 𝑀̄ · I · 𝑏 · (𝑛0𝑛𝑙 +

∑𝐿𝑑−1
𝑙=1

𝑛𝑙𝑛𝑙+1)/Ī)

it uses the static network selection policy by selecting the nearest edge node.

Also, the offloading process is performed without knowing the surrounding

competing VNs.

Table 4.3 shows the computation complexity of the considered Q-learning based

solutions. By following the analysis considered in [99], where the computational

complexity for some basic Q-learning based algorithms is given, we extended the

analysis to the proposed methods, where the computational complexity of proposed

V2V and V2I-based approaches can be based on the total number of vehicular sce-

narios considered. For the V2I-AC approach, the complexity evaluation include the

minimum number of edge node scenarios considered, i.e., 𝑁, in addition to the state

space ST , action space AS and the maximum number of iterations during each

learning round I. In addition to this, in the V2V-AC approach, the complexity

also depends upon the nearby VN scenarios, i.e., 𝑀̄, and thus requires a higher

number of computations compared with the V2I-AC approach. For the DQN-based

approaches, the computation complexity is function of the number of layers (𝐿𝑑),

the number of neurons 𝑛𝑙 , with 𝑙 ∈ 𝐿𝑑, computation requirements for parameter

updates, batch size, number of training episodes I, total number of steps consid-

ered while updating the target DQN model weights Ī [100, 101]. For the Q-DSA,

V2I-DAC and V2V-DAC approaches, the computation complexity expressions are

given in Table 4.3, where 𝑛0 = |ST | represents the state space dimension.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 118

Joint Latency and Energy Cost for task processing In Fig. 4.12, we present

the average cost in terms of latency and energy requirements for VNs task processing.

It is possible to notice that the proposed Q-learning-based approaches have reduced

costs compared with the other benchmark methods including LS-HU. Both MDBO

and MSTBO approaches perform the computation offloading operation without con-

sidering the surrounding environment parameters and the resource limitations of the

edge servers. By selecting the nearest RSU, MDBO can reduce communication la-

tency and energy costs. Though the MDBO approach can keep overall cost under

control mainly due to the selection of the nearest edge node (i.e., reduced commu-

nication cost), as shown in Figs. 4.13 and 4.14, it suffers from a large number of

failures due to the improper node selection and offloading. Additionally, with a

growing number of VNs, MDBO performance weakens compared to the Q-learning

based approaches. On the other hand, though the MSTBO approach selects the

edge node with the highest sojourn time, the overall cost is higher mainly due to

the reduced flexibility of the overall partial offloading process. Single agent-based

Q-learning approaches (i.e., Q-SA and Q-DSA) without a proper knowledge of the

VNs local environment also have a limited performance with growing VN density.

With better knowledge of the surrounding environment, Q-learning based approaches

can jointly select the proper edge node and the amount to be offloaded. Though

the V2I-AC approach is able to adapt the Q-learning policies (and perform better

compared with benchmark methods) according to the varying number of edge nodes,

without having the proper knowledge of the surrounding competing VUs, its per-

formance is slightly worse compared with the V2V-AC approach. By considering

both the number of edge nodes and the surrounding competing VNs information,

the V2V-AC approach is able to perform the computation offloading operation with

superior performance. In particular, for the case of 1400 VNs, a 30.3% performance

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 119

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 L
at

en
cy

 a
nd

 E
ne

rg
y

Co
st

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO
Local Proc.

Figure 4.12: Average Joint Latency and Energy Cost for variable number of
VNs.

gain in terms of reduced cost can be observed for the V2V-AC approach compared

with the MSTBO method. The DQN approaches, especially V2V-DAC, allows to

achieve a performance gain and is able to handle more complex scenarios. Therefore,

in the considered multi-service based vehicular scenario, the proposed schemes can

serve VNs with innovative services having better latency and energy performance;

it is in particular important to stress that the collaborative approach by itself is

able to increase the performance, even when implemented with a tabular Q-learning

approach.

RSU handover required during computation offloading In a VEC environ-

ment, each VN should perform the offloading process before it crosses through the

coverage range of the RSU node. The offloading process is composed by the compu-

tation data offloading towards the RSU server and the reception back of the results.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 120

In case a VN is not able to finish the offloading process before going out the cover-

age of the selected RSU an additional cost in terms of handover latency should be

considered.

In Fig. 4.13, the amount of handover requests is considered, mapping the amount

of times each VN is not able to complete an offloading request by the sojourn time.

It is possible to notice that they increase with the increased number of VNs in the

service area, and that the performance with respect to the benchmark is better.

Though both MDBO and MSTBO approaches select the edge nodes to maximize

the particular utility (performance in terms of communication latency/available so-

journ time), they fail to adapt according to the varying VNs demands. Without

properly distributing the VNs requests and improper offloading amounts they fail

to adapt the sojourn time bounds of RSU nodes resulting in higher failures. The

LS-HU approach with a more flexible node selection and the offloading process can

have a better performance compared to the other benchmark approaches. On the

other hand, by properly utilizing the parameters of the surrounding environment

through V2I and V2V, proposed Q learning-based approaches are able to reduce the

overall number of failures. It is also possible to see that the Q-SA approach has

a higher number of failures compared with both V2I-AC and V2V-AC approaches

highlighting the importance of the proposed vehicular communication-based learn-

ing framework. Moreover, it is clear the advantage of the V2V approaches with

respect to the V2I information sharing, while the DQN solutions allows to slightly

increase the performance with respect to the tabular Q-learning approaches.

Number of VNs failing to satisfy the service time constraint Each VN

should complete the task processing operation within a requested service latency

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 121

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0

10

20

30

40

50

60

So
jo

ur
n

Ti
m

e
Fa

ilu
re

s (
Av

g)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO

Figure 4.13: Average Number of RSUs Handover Requests for variable number
of VNs.

bound failure which can reduce the QoS. In Fig. 4.14, we present the average num-

ber of VNs failing to satisfy the service latency bound. Both MDBO and MSTBO

approaches are failing to perform the task processing within the service time re-

quirement. This shows that performing computation offloading operation without

considering the surrounding environment results in higher failures. On the other

hand, the proposed Q-learning-based approaches, especially the V2V-AC method,

exploiting various environmental parameters, are able to select the proper edge node

and amount to be offloaded jointly, resulting in superior performance compared with

the other benchmark schemes. The DQN approaches allows to slightly increase the

performance with respect to the tabular Q-learning approaches. Additionally, the

proposed VNs scenario-based Q-learning approaches outperform the traditional sin-

gle agent based approaches i.e., Q-SA and Q-DSA, in terms of a number of failures.

Thus, the proposed Q-learning and DQN approaches can be useful for enabling

latency-critical services over VNs.

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 122

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0

20

40

60

80

100

Se
rv

ice
 T

im
e

Fa
ilu

re
s (

Av
g)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO

Figure 4.14: Average number of Service Time Failures for variable number of
VNs.

Task Completion Latency Total task completion latency is a function of com-

putation offloading and the local device computation times. Here, we compare the

average task completion latency of different schemes when changing the vehicles

density in the service area. Fig. Fig:LC provides the average task computation

latency required by each solution method. In a given service area, the total latency

required for processing the tasks with Q-learning approaches is much smaller than

the benchmarks. Both Q-learning and DQN approaches are able to select proper

edge nodes and the amount of data to be offloaded towards them that results in a

better performance in terms of overall latency requirements. By analyzing the vehic-

ular environment data through the V2V and V2I technologies, the Q-learning and

DQN approaches are able to reduce the overall task processing latency. The tradi-

tional single agent-based approaches, i.e., Q-SA and Q-DSA, require higher latency

costs, mainly due to the improper node selections and offloading process. On the

other hand, the latency performance of the benchmark methods increases rapidly,

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 123

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Av

g.
 L

at
en

cy
 C

os
t (

Se
c)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-SA
Q-DSA
HU
MDBO
MSTBO
Local Proc.
Req. Latency

Figure 4.15: Average Task Completion Latency for variable number of VNs.

which can be disastrous for latency-critical services. Though the MDBO approach

is using the nearest edge node for offloading its data, without properly assessing the

resource availability, the number of edge nodes, and the competing VNs, it fails to

adapt to the increasing VNs demands. Similarly, the MSTBO approach also fails

to adapt its network selection and computation offloading policies according to the

VUs’ demands resulting in higher latency costs. The LS-HU approach can reduce

the latency cost by selecting the nodes with proper distance measures and offloading

adequate data compare to the other benchmark methods. This result shows the high

potential of proposed schemes for enabling latency-critical applications and services.

Average Energy Consumption Fig. 4.16 shows the average amount of energy

consumed by VNs for the complete task processing. The total energy consumed

includes the energy required for the local device computation, transmission, and

reception of tasks towards and from RSUs. It has to be noticed that the total

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 124

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 E
ne

rg
y

Co
st

 (J
)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO
Local Proc.

Figure 4.16: Average Energy Consumption for Task Completion for variable
number of VNs.

energy required for locally processing the vehicular tasks is relatively higher than

the offloading process energy. Therefore, with a complete offloading process, the

benchmark methods have relatively better energy performance compared with the

proposed Q-learning and DQN approaches. On the other hand, Q-learning methods

require higher energy mainly because of the local processing energy part, where

the DQN approaches consume slightly more than the tabular Q-learning approach.

However, the overall performance in terms of joint latency and energy requirements

(as shown in Fig. 4.12), considering also the handover and latency failures is much

better than the benchmarks.

Average Computation Offloading We analyze then the impact of nearby VNs

on the computation offloading amount. In Table 4.4, the average percentage of data

offloaded by VNs towards RSUs is shown. Since the available resources at each

RSU are limited, if the number of vehicles increases, the V2V assisted collaborative

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 125

Table 4.4: Average Percentage of Data Offloading.

VNs 100 200 400 600 800 1000 1200 1400 1600 1800

V2I-AC .79 .80 .82 .64 .65 .57 .58 .59 .60 .60
V2V-AC .80 .78 .77 .60 .59 .50 .48 .47 .45 .45
V2I-DAC .79 .80 .80 .62 .66 .58 .59 .57 .56 .56
V2V-DAC .82 .75 .75 .58 .54 .50 .49 .45 .43 .42

Q-learning approach offloads the lowest amount of data towards RSU servers for

avoiding handovers. On the other hand, the V2I approach does not take into account

the other VNs, and, as a result, a higher offloading percentage and more handover

requests are set.

Training Iterations in Terms of Service Failures For analyzing the training

performance of the proposed Q learning-based solutions in Fig. 4.17, we show the

number of VNs failing to perform the task processing in a limited time. For a

given set of VNs with reduced training iterations, Q-learning approaches have a

higher number of failures, however, with increasing training iterations Q-learning

approaches, especially the V2V-AC approach outperforms the other solutions. It has

to be clarified that DQN-based training iterations can last for longer time compared

to the tabular approach, despite a reduced number of overall iterations is generally

needed. Hence, a comparison with the tabular method is not fair, preventing their

representation in figure.

4.3.5 Conclusion

In this work, we have considered a joint RSU selection and computation offloading

problem in a multi-service multi-user VN. We have modeled it as a RL-based prob-

lem and solved it by using Q-learning methods. Two collaborative learning-based

approaches where the Q-agents learn the optimal policy exploiting the V2I and

V2V communication paradigms are considered. Along with the traditional tabular

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 126

60 80 100 120 140 160 180 200
Q Iterations

30

40

50

60

70

80

90

Se
rv

ice
 T

im
e

Fa
ilu

re
s [

Av
g]

V2V-AC
Q-SA
V2I-AC
MDBO
MSTBO

Figure 4.17: Q-Learning Training Performance in Terms of a Service Time
Failures for a variable number of iterations.

method, a DQN approach is also considered for estimating the Q values, allowing to

handle more complex learning scenarios. Compared with other benchmark methods,

the proposed schemes provide better network-wide performance in terms of latency

and consumed energy. Thus, proposed schemes can have a great potential for en-

abling latency-critical applications and services over VNs. This work highlights the

importance of enabling collaborative RL strategies, exploiting vehicular communi-

cation modes, for solving the joint network selection and the offloading problem over

a multi-service VN; this is also strengthen by the fact that the collaboration among

vehicular nodes has an impact on the performance higher than the implementation

of DQN with respect to the tabular Q-learning.

As a future direction, the offloading process costs can further be reduced by allowing

VNs to select more than one edge node for computation offloading. However, such

an approach can add extra dimensions of complexity, and more rigorous solution

Chapter IV. Distributed Data Processing for IoV -Terrestrial Case 127

methods. It can also be interesting to use a multi-task learning-based approach (i.e.

multi task RL/FL) with additional vehicular service parameters. By considering the

distributed nature of the VNs and corresponding data, other decentralized learning

methods such as FL can also be a potential solution method.

Chapter 5

Distributed Data Processing for

IoV -Joint-Terrestrial and

Non-Terrestrial Case

Some content of this chapter is based on the following articles [78];

1) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Network Selection and Com-

putation Offloading in Non-Terrestrial Network Edge Computing Environments for

Vehicular Applications.” In 2022 11th Advanced Satellite Multimedia Systems Con-

ference and the 17th Signal Processing for Space Communications Workshop (ASM-

S/SPSC), pp. 1-8. IEEE, 2022.”.

2) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” Multi-Time Scale Markov

Decision Process for Joint Service Placement, Network Selection, and Computation

Offloading in Aerial IoV Scenarios.” Submitted to IEEE Transactions on Network

Science and Engineering (2023).”.

129

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 130

3) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ” A Multi-level Sequential Deci-

sion Making Process for Non-Terrestrial Vehicular Edge Computing Environments.”

Submitted to IEEE Transactions on Communications (2023).”.

5.1 Introduction

Non-terrestrial Networks (NTNs) are considered a key enabler for the upcoming 6G

technology, and are expected to play an important role in boosting the capacity and

coverage of traditional terrestrial networks [102]. Therefore, in recent times, many

new networking platforms are populating the space. Based on their distance from

the Earth’s surface, these platforms can be classified into aerial and space-based

networking technologies. Aerial platforms include Low Altitude Platforms (LAPs),

such as unmanned aerial vehicles (UAVs), air taxis, and helicopters, and High Al-

titude Platforms (HAPs), including airships, balloons, aircraft, etc. On the other

side, various satellite constellations can compose the space network, such as Low

Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO)

satellites. Aerial and space onboard computation and communication technologies

can be exploited for potential EC services, creating a multi-layer EC environment.

Additionally, NTN platforms can also act as relay nodes, to route the VUs compu-

tation load toward ground cloud facilities to serve the users having limited or zero

connectivity towards terrestrial networks. Therefore, integration of NTN platforms

into the current VEC system may be useful to serve Vehicular Users (VUs) and their

growing needs for new services [6, 103].

In the case of multi-service vehicular environments, VUs can request different ser-

vices from EC nodes and offload a portion of their tasks to the selected nodes

through partial offloading processes. The above-mentioned EC facilities can have

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 131

different characteristics in terms of mobility, node density, size, distance from VUs,

etc. Therefore selecting a proper EC layer is important. Moreover, the size and

energy restrictions often limit the ability of the EC nodes placed on different net-

working layers. Due to these limitations, each node can provide only a limited set

of services that can be exploited by VUs. Therefore, selecting a particular EC node

for offloading VUs service data is an important problem to be solved. Further-

more, due to the limited computing capabilities of each node, offloading a proper

amount towards the selected Edge Node (EN) can improve performance and service

quality [104]. These problems can be defined as a joint network selection and com-

putation offloading problem and solving such complex problems over a multi-EC,

multi-service Vehicular Network (VN) can be extremely challenging.

5.2 Joint Network Selection and Offloading with

joint T-NTN Vehicular Scenario - Metaheuris-

tic Solution

The traditional terrestrial network-based EC facilities, usually referred to as Ve-

hicular Edge Computing (VEC), enabled through the Road Roadside Units (RSU)

deployments, have limited resources, higher deployment costs, limited coverage, and

can rapidly become a bottleneck for the VNs performance. On the other hand, var-

ious Non-terrestrial Networking (NTN) platforms from air and space networks have

gained a lot of attention in 5G and beyond studies and are expected to play a key role

in the upcoming days. Integration of NTN-based EC facilities into the current VEC

system can be useful for serving VUs with different service types. Therefore, we de-

sign a multi-EC-enabled vehicular networking platform for serving VUs (VUs) with

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 132

a heterogeneous set of services. We model the various latency and energy require-

ments for processing the VU task requests through partial computation offloading

operations. We further aim to minimize the overall latency and energy requirements

for processing the VUs data by selecting the proper ENs and the offloading amounts

over a multi-EC-enabled VN. We have modeled the problem into the framework of

an evolutionary Genetic Algorithm (GA) able to find the proper EN selections and

the offloading amounts. The results are compared with some benchmark solutions

to show the effectiveness of the proposed approach.

The main contributions of this work are:

• We propose a multi-EC facility-enabled T-NT network for promoting VUs with

various services. Ground-based VUs can request different services offered by

the RSUs, LAP, HAP, and LEO satellites through the EC facilities onboard.

• A proper mathematical model is done by including the latency and energy

requirements of the different steps involved during the VUs task processing

operation. In the end, an optimization problem is developed for minimizing

the overall latency and energy consumption by selecting a proper EC facility

and the amount to be offloaded.

• The joint network selection and computation offloading problem is solved by

using the adaptive genetic algorithm (A-GA) that takes into account the avail-

able EN resources while selecting the offloading process parameters.

• In addition, a set of benchmark methods are used for analyzing the results,

which show the improved latency and the energy performance of a proposed

scheme.

• Section 5.2.4 concludes the work with proper remarks.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 133

Figure 5.1: System Model

5.2.1 System Model and Problem Formulation

We consider an integrated T-NT network composed of a LEO satellite constella-

tion S = {𝑠1, . . . , 𝑠𝑘 , . . . , 𝑠𝐾} with 𝐾 satellites, a set H = {ℎ1, . . . , ℎ𝑝, . . . , ℎ𝑃} of 𝑃

HAPs, a set L = {𝑙1, . . . , 𝑙𝑢, . . . , 𝑙𝑈} of 𝑈 LAPs, a set R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 } of 𝑁

RSUs, and a set of V = {𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑀} of 𝑀 VUs, located randomly in the

area, supposed to be modeled as a multi-layered EC enabled vehicular networking

scenario. LEO satellites, HAPs, UAVs and RSUs are equipped with EC facilities

that can be exploited by the VUs for different applications and services. The VN

is modeled as a time-discrete system where the network parameters are supposed

to be constant in each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time interval, i.e.,

𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏]}. In the following we consider to focus on a simplified sce-

nario where at each time instant only one LEO satellite is under visibility, while

the whole constellation can be reached through proper Inter-satellite links. Fig.

5.1 shows the various elements of the considered VN scenario composed by the one

reference LEO satellite, HAPs, LAPs, RSUs and VUs.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 134

The generic 𝑚th VU is characterized by a processing capability equal to 𝑐𝑣,𝑚 Floating

Point Operations per Second (FLOPS) per CPU cycle, while its CPU frequency is

𝑓𝑣,𝑚. Each VU is supposed to be able to communicate using a bandwidth 𝐵e𝑣,𝑚 with

a reference EN 𝑒 ∈ {S ∪ H ∪ L ∪ R}. At each interval, the 𝑚th VU is supposed to

generate a task request 𝑥𝑚 to be processed, where the task 𝑥𝑚 is identified through the

tuple ⟨𝐷𝑥𝑚 ,Ω𝑥𝑚 , 𝑇𝑥𝑚 , Ξ̄𝑥𝑚⟩ where 𝐷𝑥𝑚 is the task size in Byte, Ω𝑥𝑚 are the requested

CPU execution cycles, 𝑇𝑥𝑚 is the maximum latency of the requested service and Ξ̄𝑥𝑚

is the service type requested by the VU.

The 𝑒th EN (i.e., one node among any RSU, LAP, HAP, or LEO)1 is characterized by

a processing capability equal to 𝑐𝑒 FLOPS per CPU cycle, with CPU frequency 𝑓𝑒,

and communication capabilities, supposed to be identified through a communication

technology able to work on a bandwidth 𝐵𝑒 and covering an area with radius 𝑅𝑒. The

LAP, HAP and satellite nodes are located at height ℎ𝑙 , ℎℎ and ℎ𝑠 from the ground

level, respectively. Each EN provides computation offloading services to the VUs

within its coverage area. VUs tasks are characterized by the service type, supposing

the system able to provide different services, where Ξ = {𝜉1, . . . , 𝜉𝑧, . . . , 𝜉𝑍 } is the set

of possible services and 𝑍 the maximum number of services. With limited storage

capabilities, RSUs, LAPs and HAPs can provide a limited number of services. We

consider that the 𝑒th EN can provide Ξ𝑒 = {𝜉1, · · · 𝜉𝑧, · · · , 𝜉𝑚𝑎𝑥𝑒 }. Additionally, the

LEO constellation is able to provide all the possible services requested by VUs. Fig.

5.2 shows the multi-service vehicular scenario where RSUs, LAPs and HAPs are

providing a subset of services (i.e., 2 and 3, respectively) while the LEO node is able

to provide all possible services (i.e., 6) requested by the VUs.

1In the following, 𝑒 = {𝑟, 𝑛}, 𝑒 = {𝑙, 𝑢}, 𝑒 = {ℎ, 𝑝}, and 𝑒 = {𝑠, 𝑘} stands for the 𝑟th RSU, 𝑢th
LAP, 𝑝th HAP and 𝑘th LEO satellite.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 135

Figure 5.2: Multi Service VN with Non-terrestrial EC Layers

5.2.1.1 VUs Mobility and Distance Measures

In this work, we consider that the VUs are moving with a variable speed ®𝑣𝑚 (𝜏𝑖),

whose value is bounded within ®𝑣min and ®𝑣max [105], while the the 𝑚th VUs instan-

taneous speed is modeled through a truncated normal distribution density function:

𝑓 (®𝑣𝑚 (𝜏𝑖)) =



2𝑒
−(®𝑣𝑚 (𝜏𝑖)−𝜇)2

2𝜎2

𝜎
√
2𝜋

(
erf

(
®𝑣max−𝜇
𝜎
√
2

)
− erf

(
®𝑣min−𝜇
𝜎
√
2

)) ,
®𝑣min ≤ ®𝑣𝑚 (𝜏𝑖) ≤ ®𝑣max

0, else

(5.1)

where 𝜇 and 𝜎 are the mean and standard deviation of the vehicles speed, and

erf (𝑥) is the Gauss error function over 𝑥. The path length within which the 𝑚th VU

remains under the coverage of any terrestrial and aerial 𝑒th node (i.e., RSU, UAV,

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 136

HAP) is 𝐷𝑣𝑚,𝑒 (𝜏𝑖) and can be given by:

𝐷𝑣𝑚,𝑒 (𝜏𝑖) =
√︃
𝑑2𝑒 −

(
𝑦𝑒 − 𝑦𝑣𝑚 (𝜏𝑖)

)2 ± (
𝑥𝑒 − 𝑥𝑣𝑚 (𝜏𝑖)

)
(5.2)

where,
(
𝑥𝑣𝑚 (𝜏𝑖), 𝑦𝑣𝑚 (𝜏𝑖)

)
is the location of the 𝑚th VU at 𝜏𝑖 and (𝑥𝑒, 𝑦𝑒) is the

projection over the ground of a generic 𝑒th EC node, which can be RSU, UAV,

HAP. The available sojourn time for the 𝑚th VU with respect to a generic 𝑒th node

(RSU, LAP or HAP) can be written as:

𝑇
𝑠𝑜 𝑗
𝑣𝑚,𝑒 (𝜏𝑖) =

𝐷𝑣𝑚,𝑒 (𝜏𝑖)
|®𝑣𝑚 (𝜏𝑖) |

∀𝑖, 𝑣𝑚 (5.3)

5.2.1.2 LEO Satellite Mobility and Distance Measures

In general, VUs can communicate with satellite nodes for a particular time inter-

val, which depends on the locations and the mobility patterns of LEO satellites.

LEO satellites can move at a very high speed (a few Kms per second) compared

with the VUs, which move at a few meters per second. Here we consider a well-

known coverage model for finding the arc length over which ground-based VUs can

communicate.

Let us consider a LEO satellite located at height ℎ𝑠 with respect to the ground,

moving with a constant speed 𝑣𝑠 km/s. Les us consider that at a certain instant

𝜏𝑖 its elevation angle with respect to the 𝑚th VU is 𝜃𝑚 (𝜏𝑖), corresponding to a

geocentric angle for the 𝑚th VU as [106],

𝛿𝑠,𝑚 (𝜏𝑖) = arccos

(
𝑅𝑒

𝑅𝑒 + ℎ𝑠
· cos (𝜃𝑚 (𝜏𝑖))

)
− 𝜃𝑚 (𝜏𝑖)

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 137

where, 𝑅𝑒 is the Earth radius. The total arc length over which VU can communicate

with the considered LEO satellite is defined as,

𝐿𝑠,𝑚 (𝜏𝑖) = 2(𝑅𝑒 + ℎ𝑠) · 𝛿𝑠,𝑚 (𝜏𝑖)

With this the total time for which the 𝑚th VU can be in the coverage range of the

LEO is given as,

𝑇
𝑠𝑜 𝑗
𝑣𝑚,𝑠 (𝜏𝑖) =

𝐿𝑠,𝑚 (𝜏𝑖)
𝑣𝑠

(5.4)

The 𝑚th VU should complete the offloading process towards the LEO satellite during

the limited coverage time, for avoiding the additional costs in terms of LEO satellite

handovers. Since the satellite nodes have much higher speed than the VUs, the VUs

mobility is neglected while defining the satellite coverage space. Eq. (5.3) and (5.4)

defines the mobility constraint for the considered multi-EC vehicular networking

system.

5.2.1.3 Network Selection and Task Offloading Process

For each 𝑖th interval, the 𝑚th VU task is supposed to be managed through a partial

computation offloading process allowing a portion of the task to be offloaded towards

the selected EN while the rest can be locally processed, hence, allowing to reduce

the overall processing time and energy cost [76]. Here, we consider 0 ≤ 𝛼𝑥𝑚 (𝜏𝑖) ≤ 1

as an offloading index associated with the 𝑚th VU representing the portion of the

task offloaded towards the selected EN, where 𝛼𝑥𝑚 (𝜏𝑖) = 1 corresponds to a complete

offloading, while 𝛼𝑥𝑚 (𝜏𝑖) = 0 corresponds to perform only local processing. To avoid

additional complexity, we assume that each VU can offload only towards one EN.

We define a network selection variable, 𝑎 (𝑚,𝑒) (𝜏𝑖), indicating that the 𝑚th VU has

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 138

selected at 𝜏𝑖 the 𝑒th EN for the task offloading, where

∑︁
𝑒
𝑎 (𝑚,𝑒) (𝜏𝑖) ≤ 1, ∀𝑖 (5.5)

corresponding to say that the 𝑚th VU can select at most one of the possible EN

under visibility. The vehicular task processing operation with partial computation

offloading involves several steps such as the transmission of a selected task portion

towards a selected EN, task computation operation at EN, reception of task back

at VU, local computation of remaining task, etc. Here we present the generic task

computation and communication models in the vehicular scenario, which are later

used to model the overall task computation latency and energy.

Computation Model

The time and energy required for task computation on any 𝑙th device for a generic

task 𝑥𝑚 can be written as:

𝑇
𝑥𝑚
𝑐,𝑙

=
Ω𝑥𝑚

𝑐
𝑥𝑚
𝑙
𝑓
𝑥𝑚
𝑙

, 𝐸
𝑥𝑚
𝑐,𝑙

= 𝑇
𝑥𝑚
𝑐,𝑙
𝑃𝑐,𝑙 (5.6)

where 𝑐𝑥𝑚
𝑙

and 𝑓
𝑥𝑚
𝑙

are the number of FLOPS per CPU-cycle and CPU-frequency

allocated to the task 𝑥𝑚, respectively, whether 𝑙 identifies a VU (𝑣𝑚), a RSU (𝑟𝑛), a

LAP (𝑙𝑢), a HAP (ℎ𝑝) or a LEO satellite (𝑠𝑘). We have considered that the nodes

capacity will be equally shared by all the tasks allocated to it. Also, in (5.6), 𝑃𝑐,𝑙 is

the computation power used by the generic 𝑙th device.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 139

Communication Model

The partial computation offloading process consider the possibility to split the tasks

into sub-portions and offload only part of the task, while the rest is locally processed

at the originating device; this means that both transmission of the VUs data portion

towards the selected EN and the reception back of the results from EN should be

considered. The total time and energy consumed during the transmission of data

from a generic node 𝑘 to another node 𝑙 for task 𝑥𝑘 are given by2:

𝑇
𝜌𝑘
𝑡𝑥,𝑘𝑙
(𝜏𝑖) =

𝐷𝑥𝑘

𝑟𝑘𝑙 (𝜏𝑖)
, 𝐸

𝑥𝑘
𝑡𝑥,𝑘𝑙
(𝜏𝑖) = 𝑇𝑥𝑘𝑡𝑥,𝑘𝑙 (𝜏𝑖)𝑃𝑡𝑘 (5.7)

where 𝑟𝑘𝑙 (𝜏𝑖) is data-rate of the link between the two nodes3, and 𝑃𝑡𝑘 is the trans-

mission power of 𝑘th node. Similarly, the time and energy required to receive the

task of size 𝐷𝑟𝑥𝑘 from 𝑙th EN to 𝑘 are:

𝑇
𝑥𝑘
𝑟𝑥,𝑙𝑘
(𝜏𝑖) =

𝐷𝑟𝑥𝑘

𝑟𝑘𝑙 (𝜏𝑖)
, 𝐸

𝑥𝑘
𝑟𝑥,𝑙𝑘
(𝜏𝑖) = 𝑇𝑥𝑘𝑟𝑥,𝑙𝑘 (𝜏𝑖)𝑃𝑟𝑘 (5.8)

where 𝑃𝑟𝑘 is the power consumed for receiving data. Additionally, a symmetric

channel model is assumed between 𝑘 and 𝑙.

Task Offloading Process During the partial computation offloading process, if

the 𝑚th VU is assigned to the 𝑒th EN, the time and energy required to offload the

task to 𝑒 and to get back the result at 𝑣𝑚 in the 𝑖th interval are:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)) = 𝛼𝑥𝑚 (𝜏𝑖)

(
𝑇
𝑥𝑚
𝑡𝑥,𝑚𝑒 + 𝑇𝑥𝑚𝑐,𝑒 + 𝑇𝑥𝑚𝑟𝑥,𝑒𝑚

)
(5.9a)

2Here 𝑙 and 𝑘 are the indexes of any generic node among 𝑣𝑚, 𝑟𝑛, 𝑙𝑢, ℎ𝑝, and 𝑠𝑘 .
3The expression for the channel transmission rate is based on the the Shannon capacity formula,

properly adapted to the different channel models (i.e., vehicular, LAP, HAP, and LEO channel
models). We avoid to report them here due to space constraints. The interested reader could refer
to [76, 106]

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 140

𝐸
𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)) = 𝛼𝑥𝑚 (𝜏𝑖)

(
𝐸
𝑥𝑚
𝑡𝑥,𝑚𝑒 + 𝐸𝑥𝑚𝑟𝑥,𝑒𝑚

)
(5.9b)

where 𝑇𝑥𝑚𝑡𝑥,𝑚𝑒, 𝑇
𝑥𝑚
𝑐,𝑒 , and 𝑇

𝑥𝑚
𝑟𝑥,𝑒𝑚 are the transmission time, computation time on 𝑒th

EN and the receiving time for the task 𝑥𝑚 generated by 𝑣𝑚 during offloading phase,

and 𝐸
𝑥𝑚
𝑡𝑥,𝑚𝑒 and 𝐸

𝑥𝑚
𝑟𝑥,𝑒𝑚 are the energy consumed during the task transmission and

result collection phases on device. For limiting the complexity, we have neglected

the energy consumed by the EN for task processing.

Local Computation The amount of time and energy required for computing the

task locally in the 𝑖th interval is:

𝑇 𝑙𝑜𝑐𝑚 (𝛼𝑥𝑚 (𝜏𝑖)) =
(
1 − 𝛼𝑥𝑚 (𝜏𝑖)

)
𝑇𝑥𝑚𝑐,𝑚 (5.10a)

𝐸 𝑙𝑜𝑐𝑚 (𝛼𝑥𝑚 (𝜏𝑖)) =
(
1 − 𝛼𝑥𝑚 (𝜏𝑖)

)
𝐸𝑥𝑚𝑐,𝑚 (5.10b)

where 𝑇𝑥𝑚𝑐,𝑚 and 𝐸
𝑥𝑚
𝑐,𝑚 are the time and energy spent for the whole task 𝑥𝑚 local

processing, while 𝛼𝑥𝑚 (𝜏𝑖) is the portion of the task locally processed at the time

interval 𝜏𝑖.

Partial offloading Computation The delay and the energy consumed during

the task processing phases, when partial offloading is performed in the 𝑖th interval,

can be written as:

𝑇𝑥𝑚𝑚 (𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)) = max
{
𝑇
𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)), 𝑇 𝑙𝑜𝑐𝑚 (𝛼𝑥𝑚 (𝜏𝑖))

}
𝐸𝑥𝑚𝑚 (𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)) = 𝐸

𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)) + 𝐸 𝑙𝑜𝑐𝑚 (𝛼𝑥𝑚 (𝜏𝑖)).

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 141

In addition, each vehicle should finish the offloading process and receive the results

back within the sojourn time, hence:

𝑇
𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)) ≤ 𝑇

𝑠𝑜 𝑗
𝑣𝑚,𝑒 (𝜏𝑖) ∀𝑖 (5.11)

5.2.1.4 Problem Formulation

The main aim of this work is to optimize the network-wide performance of the multi-

EC enabled VN. We aim to optimize the performance in terms of overall latency

and energy consumed during the offloading process towards edge servers by selecting

proper EN and offloading amounts. For this, we formulate the joint latency and

energy minimization problem as:

P1 : min
A,A

{
1

𝑀

𝑀∑︁
𝑚=1

[
𝛾1𝑇

𝑥𝑚
𝑚

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
+𝛾2𝐸𝑥𝑚𝑚

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)]}
∀𝑖 (5.12)

s.t.

C1 : Eq. (5.5) (5.13)

C2 : 𝑎𝑚,𝑒 (𝜏𝑖) = 1 ⇐⇒ Ξ𝑥𝑚 ∈ Ξ𝑒 ∀𝑖 (5.14)

C3 : 𝑇𝑥𝑚𝑚
(
𝛼𝑥𝑚 (𝜏𝑖)

)
≤ 𝑇𝑥𝑚 ∀𝑣𝑚 ∈ V, ∀𝑖 (5.15)

C4 : Eq. (5.11) (5.16)

C5 : 𝐸𝑥𝑚𝑚 (𝛼𝑥𝑚 (𝜏𝑖)) ≤ 𝐸𝑥𝑚𝑐,𝑚 (5.17)

C6 : 0 ≤ 𝛾1, 𝛾2 ≤ 1; 𝛾1 + 𝛾2 = 1 (5.18)

whereA = {𝛼𝑥𝑚}𝑀 is the computation offloading matrix, and 𝛾1, 𝛾2 are two weighting

coefficients for balancing latency and energy consumption. C1 stands that each

VU can select at most one EN for the computation offloading. According to C2,

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 142

the selected EN must be able to provide the service requested by the VUs. C3

puts a limit on the maximum processing time as one of the task requirements.

According to C4, for avoiding handover phenomena and related latency, each VN

should complete the offloading process before it passes through the selected EN

coverage. According to C5, the total energy required for the task processing during

the partial computation offloading process should be bounded by the energy needed

to process the complete task locally. C6 stands that the two weighting coefficients

(𝛾1, 𝛾2) should be between 0 and 1 with their sum equal to 1.

5.2.2 Proposed Solutions

We aim to minimize the VUs latency and energy cost during the vehicular task

processing operation over the multi-service multi-EC enabled VN. We aim to find

the proper EN selection and offload the correct amount of data toward the selected

EN to optimize the performance. Given the complex nature of the problem, we have

considered an evolutionary search-based metaheuristic approach for solving it. In

particular, we propose to use a genetic algorithm (GA) for selecting the ENs and

the offloading amount for the VUs tasks. We first introduce the GA by highlighting

the main steps involved during the search process. After that, we define the main

GA elements for the considered problem.

The GA process is an adaptive search-based optimization technique that is inspired

by the theory of natural selection and genetics. It can effectively solve both con-

strained and non-constrained optimization problems in a complex domain such as

VNs. GA process begins with the initial definition of population space (PS) con-

taining a set of possible solutions (i.e., individuals) defined as a chromosome (C).

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 143

GA process is an iterative process where at each iteration new PS having better in-

dividuals is formed. Each iteration involves the analysis of the current PS through a

fitness function (FF), the selection of a parent C through a selection function (𝑆 𝑓),

then the formation of new individuals by using mutation and crossover as a funda-

mental GA operators. The mutation process involves the creation of new C from a

selected solution form (PS), by altering a set of genes. On the other hand, through

the crossover process, two chromosome sets with good fitness function constitute a

C for the next generation by combining their genes. Each evaluation creates a better

solution set and finally ends by providing a solution point with a higher fitness value.

More comprehensive information on GA and evolutionary algorithms can be found

in [107], while here we focus on the main elements for the sake of brevity.

Chromosome

For the considered joint network selection and offloading problem, the chromosome

C is constituted by a set of ENs available for the selection and the offloading amount.

A binary sequence of 𝑏 bits is adapted for defining the offloading amounts allowing

a binary chromosome C. For example, with 𝑏 = 3, a set of three bits defines the

offloading amount selected. In such a case, [0, 0, 0] indicates the 0% offloading while

[1, 1, 1] indicate the possibility of 100% offloading, where 1/(2𝑏) provides the step

change for the offloading parameter. Fig. 5.3 shows the example chromosome vector

with 𝑇 ENs and 𝑏 bits representing the offloading parameter.

Fitness Function The FF is defined by resorting to the objective function and

the constraint failure penalties and is given by,

FF
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
=

[
𝛾1𝑇

𝑥𝑚
𝑚

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
+ 𝛾2𝐸𝑥𝑚𝑚

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)]

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 144

Figure 5.3: Chromosome Example

+ Υ1 ·max
(
0, 𝐶1

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

))
+ Υ2 ·max

(
0, 𝐶2

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

))
+

Υ3 ·max
(
0, 𝐶3

(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

))
(5.19)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the penalty values, and:

𝐶1
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
= 𝑇𝑥𝑚𝑚

(
𝛼𝑥𝑚 (𝜏𝑖)

)
− 𝑇𝑥𝑚

𝐶2
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
= 𝐸𝑥𝑚𝑚 (𝛼𝑥𝑚 (𝜏𝑖)) − 𝐸𝑥𝑚𝑐,𝑚

𝐶3
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
= 𝑇

𝑜 𝑓 𝑓
𝑚,𝑒 (𝛼𝑥𝑚 (𝜏𝑖)) − 𝑇

𝑠𝑜 𝑗
𝑣𝑚,𝑒 (𝜏𝑖)

𝐶1
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
is the additional fitness penalty for VUs not performing task

processing within the service latency requirement, 𝐶2
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
is the penalty

for not respecting the energy constraint defined in (5.17), and 𝐶3
(
𝛼𝑥𝑚 (𝜏𝑖), 𝑎 (𝑚,𝑒) (𝜏𝑖)

)
is the supplementary penalty for VUs not performing the offloading process before

moving out of T-NT coverage.

Selection The selection function 𝑆 𝑓 selects the parent solutions and is imple-

mented through the roulette wheel selection technique with the selection probability

depending upon the individual solutions fitness score. For a given minimization

problem, the parent with the lowest fitness are selected at each round for the repro-

duction stage.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 145

Crossover

In the crossover operator, new chromosomes (Cnew1 , Cnew2) are generated by alternat-

ing genes of the parents (Cold1 , Cold2) from a crossover point. Thus, child chromosomes

can be written as

Cnew1 = ΦCold1 + (1 −Φ)Cold2

Cnew2 = ΦCold2 + (1 −Φ)Cold1

where Φ is the crossover point uniformly distributed in [Λ, (1 + Λ)], i.e., Φ ∼

U(−Λ, 1 + Λ)

Mutation The mutation operator is based upon a Gaussian function where se-

lected genes (𝛽𝑚) from a child C can be altered by adding a random value from

a Gaussian distribution, i.e., 𝛽𝑚 → 𝛽𝑚 + 𝜈, where, 𝜈 is a random variable with a

Gaussian distribution, i.e., 𝜈 ∼ N(𝜇, 𝜎̄2).

5.2.2.1 Adaptive GA Process (A-GA)

Given the dynamic nature of the VN, the number of resources available at each EN

can impact the GA results. In the conventional GA process, each 𝑣𝑚 ∈ V can per-

form the GA process till some stopping criteria (i.e., maximum GA iterations). With

the involvement of many VUs with inherent dynamicity and randomness, finding the

exact information about the available EN resources can be challenging. This can im-

pact the GA results since both the EN selection and the offloading parameter values

can depend upon the available EN resources. Such improper resource information

can lead to the incorrect EN selection and the offloading process, which in result

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 146

can degrade the performance. An adaptive GA process, lasting for several global

iterations, is proposed. In particular, for every global iteration, all VUs perform the

local GA operations, and the results is used to update the EN resource allocation.

Once updated, the available resource information is then used in the next iteration

for refining the GA performance.

Algorithm 6 shows the steps used during the implementation of GA for solving

the joint network selection and computation offloading problem. The GA process

begins with the random allocation of all VUs to the available ENs (Line 1). After

that, an iterative GA process for 𝐼𝑚𝑎𝑥 global iterations, is implemented wherein each

iteration the VU assignment towards EN is updated and used for the next iteration.

In particular, the updated VU-EN assignment information is used for allocating

the EN resources (Line 3) by calling the resource allocation procedure detailed in

Algorithm 7. After the resource allocation phase, every 𝑣𝑚 performs the GA process.

The primary GA steps contain the evaluation of PS (Lines 7-9), selection of better

fit individuals as parent Cs (Lines 10-12), and generation of new possibly better fit

Cs for the next generation (Lines 13-16). For each VU, the GA process terminates

after a maximum number of local iterations 𝐺max are reached.

Algorithm 7 describes the resource allocation procedure. For each VU, based upon

the VU-EN assignment matrix A, the number of EN available for the connection

E𝑚 (𝜏𝑖) is determined (Line 3). Additionally, the number VUs associated with each

EN (𝑈𝑒 (𝜏𝑖),∀𝑒 ∈ E𝑚 (𝜏𝑖)) is also determined (Line 4). This information is then used

to perform the uniform resource allocation for all the UVs associated with different

ENs. In the case of the adaptive GA process, the resource allocation process is

adapting the results generated by the GA in every global iteration. This allows

more accurate allocation of scarce computation and communication resources of EN

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 147

Algorithm 6 The proposed Adaptive GA-based Approach
Input: FF, 𝐺max,Φ, , S, H, L, R,V , 𝐷𝑚,𝑒 , Ξ𝑒 , 𝑐𝑒 , 𝑓𝑒 , 𝐵𝑒 , ∀𝑒
Output: A,A

1: Assign all 𝑣𝑚 ∈ V randomly to the available ENs and find A
2: while 𝑗 ≤ 𝐼max do
3: {𝑏𝑥𝑚𝑒 (𝜏𝑖) }, {𝑐𝑥𝑚𝑒 (𝜏𝑖) · 𝑓 𝑥𝑚𝑒 (𝜏𝑖) } =

Resource Allocation(V , S, H, L, R, A, 𝐷𝑚,𝑒 , Ξ𝑒 , 𝑐𝑒 , 𝑓𝑒 , 𝐵𝑒 , ∀𝑒)
4: for 𝑣𝑚 ∈ V do
5: Generate the initial population space
6: while 𝑖 ≤ 𝐺max do
7: function Evaluate(PS)
8: Find FF(C) , ∀C ∈ PS.
9: end function
10: function Search(PS)
11: Select better fit individuals using 𝑆 𝑓

12: end function
13: function Create(PS)
14: Generate new Cs through Crossover and Mutation (using Φ, 𝜈).
15: Integrate Cs with current PS; sort them using fitness scores FF (C)
16: end function
17: Replace current PS with new best set of Cs.
18: 𝑖 = 𝑖 + 1
19: end while
20: return 𝑎𝑚,𝑒 , 𝛼𝑥𝑚
21: end for
22: Find the number of VUs per EN based upon GA results
23: end while
24: return A,A

Algorithm 7 Resource Allocation Function
Input: V , S, H, L, R, A, 𝐷𝑚,𝑒 , Ξ𝑒 , 𝑐𝑒 , 𝑓𝑒 , 𝐵𝑒 , ∀𝑒
Output: {𝑏𝑥𝑚𝑒 (𝜏𝑖) }, {𝑐𝑥𝑚𝑒 (𝜏𝑖) · 𝑓 𝑥𝑚𝑒 (𝜏𝑖) }

1: function Resource Allocation(V , S, H, L, R, A, 𝐷𝑚,𝑒 , Ξ𝑒 , 𝑐𝑒 , 𝑓𝑒 , 𝐵𝑒 , ∀𝑒)
2: for 𝑣𝑚 ∈ V do
3: E𝑚 (𝜏𝑖) =

{
𝑒 |𝐷𝑚,𝑒 (𝜏𝑖) > 0, Ξ̄𝑥𝑚 ∈ Ξ𝑒 , ∀𝑒

}
4: 𝑈𝑒 (𝜏𝑖) =

∑
𝑚

∑
𝑒 (𝑎(𝑚, 𝑒) (𝜏𝑖))

5: for 𝑒 ∈ E𝑚 (𝜏𝑖) do
6: 𝐵e

𝑣,𝑚 (𝜏𝑖) =
𝐵𝑒

𝑈𝑒 (𝜏𝑖) , 𝑐
𝑥𝑚
𝑒 (𝜏𝑖) · 𝑓 𝑥𝑚𝑒 (𝜏𝑖) = 𝑐𝑒 · 𝑓𝑒

𝑈𝑒 (𝜏𝑖)
7: end for
8: end for
9: end function
10: return {𝑏𝑥𝑚𝑒 (𝜏𝑖) }, {𝑐𝑥𝑚𝑒 (𝜏𝑖) · 𝑓 𝑥𝑚𝑒 (𝜏𝑖) }

to VU and as result increases the performance (as shown later in the simulation

results section)

5.2.2.2 Benchmark Solutions

Three different benchmark solutions are considered for comparison purposes.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 148

Probabilistic VU-EN assignment In this approach ∀𝑣𝑚 ∈ V we select the node

𝑒 randomly. The probability of 𝑣𝑚 selecting EN 𝑒 is given by:

𝑃𝑟{𝑎𝑚,𝑒 (𝜏𝑖) = 1} = 1

E𝑚 (𝜏𝑖)
(5.20)

Position-based VU-EN Assignments In this case, each nearby competing VU

is allocated to the ENs based on the available distance before it passes through the

ENs coverage range and the distance between VU and EN. Thus, ∀𝑣𝑚 ∈ V:

𝑎𝑚,𝑒 (𝜏𝑖) = 1⇔ 𝐷𝑚,𝑒 (𝜏𝑖)
𝑑𝑚,𝑒 (𝜏𝑖)

= max
𝑒∈E𝑚 (𝜏𝑖)

{
𝐷𝑚,𝑒 (𝜏𝑖)
𝑑𝑚,𝑒 (𝜏𝑖)

}
(5.21)

Local Computation In this case, VUs are performing the task computation by

themselves without employing any EN.

5.2.3 Numerical Results

The proposed adaptive GA approach and the other benchmark methods are simu-

lated on a Matlab-based simulator for analyzing the performance. In Table 5.1, the

main simulation parameters are provided for the network architecture used during

the simulation. We have considered the variable number of VUs from 200 up to

2000 that are randomly distributed over the two-lane road network of length 10

Km. VUs are under the coverage area of a Satellite node, 𝑃 = 10 HAPs, 𝑈 = 40

LAPs, and 𝑁 = 100 RSUs. Each VU is traveling with a variable speed based upon

the truncated normal distribution with mean (𝜇=10 m/s) and standard deviation

𝜎=1. The probability of VU being active (i.e., having a task to offload) is 0.1 at

any time instant. The service set Ξ includes the six services with RSU, LAP, and

HAP providing a maximum of 2, 2, and 4 services respectively. As stated before, a

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 149

Table 5.1: Simulation parameters

Coverage (𝑅𝑟,𝑛, 𝑅𝑙,𝑢, 𝑅ℎ,𝑝) (50, 200, 1000) m
VU Computation Cap. (𝑐𝑣,𝑚 · 𝑓𝑣,𝑚) 8 GFLOPS
RSU Computation Cap. (𝑐𝑟,𝑛 · 𝑓𝑟,𝑛) 30 GFLOPS
LAP Computation Cap. (𝑐𝑙,𝑢 · 𝑓𝑙,𝑢) 30 GFLOPS
HAP Computation Cap. (𝑐ℎ,𝑝 · 𝑓ℎ,𝑝) 50 GFLOPS
LEO Computation Cap. (𝑐𝑠,1 · 𝑓𝑠,1) 80 GFLOPS
Altitude (ℎ𝑙 , ℎℎ, ℎ𝑠) (1, 100, 2000) Km
Bandwidth (𝐵𝑟,𝑛, 𝐵𝑙,𝑢, 𝐵ℎ,𝑝, 𝐵𝑠,1) (20, 20, 50, 100) MHz
VU Speed Range (®𝑣min, ®𝑣max). (8 m/s, 14 m/s)
VU Power (𝑃𝑐,𝑣𝑚 , 𝑃𝑡𝑣𝑚 , 𝑃𝑟𝑣𝑚) (1.1, 1.5, 1.3) W
Task Size (𝐷𝑥𝑚) 3 MB
Task Latency Req. (𝑇𝑥𝑚) 2 Sec
Task Computation Req. (Ω𝑥𝑚) (103 · 𝐷𝑥𝑚) Flops
Elevation angle (𝜃𝑚) U(200, (𝜋/2 + 20)𝑜)
Weighting Coefficients (𝜂1, 𝜂2) (0.5, 0.5)

satellite node can provide a complete set of services. The GA simulation parameters

includes the Υ1,Υ3 = 10, Υ2 = 1, Λ = 0.1, 𝜇 = 0.02, and 𝜎̄ = 0.1. Additionally initial

population is constituted by 50 chromosomes with 𝐺max=50 and 𝐼𝑚𝑎𝑥=10.

As shown in (5.12), the main objective of this work is to minimize the joint cost

of latency and energy during the computation offloading operation over the multi-

EC enabled VN. In particular, in Fig. 5.4, we present the average joint latency and

energy cost requirements of the solution methods proposed in the previous section for

different VU densities. With limited search flexibility and improper EN selections,

the benchmark methods are unable to keep the latency and energy costs under

control. It can be seen that the proposed A-GA method is able to reduce the cost

significantly and outperform the other benchmark methods. By selecting the proper

ENs and offloading the correct amount of data, A-GA can use the limited resources

of different EC layers effectively. Given the high demand for the different vehicular

services in resource-constrained vehicular environments, the proposed scheme can

be effectively used to serve VUs with new services at affordable costs.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 150

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A
v
g

.
C

o
s
t

GA-A

RA

LA

DA

Figure 5.4: Joint Latency and Energy Cost.

Given the latency-critical natures of various vehicular services, it is important to

show the latency performance of different methods. In Fig. 5.5, we present the

latency requirements for various solution methods considered for solving the joint

network selection and computation offloading problem over the multi-EC enabled

VN. The A-GA scheme has a much better performance compared to the other meth-

ods through the proper offloading process. Given the presence of different EC layers

located at varying distances, the A-GA method can select the proper EN resulting in

reduced communication latency. It can also limit the computation cost by selecting

the proper offloading parameters. Therefore A-GA method can be useful to serve

the VUs with latency-critical service.

Day by day, VUs energy requirements are also becoming the critical bottleneck in

VN, mainly due to a huge demand for high-quality vehicular services. Therefore it

is important to analyze the energy performance during the computation offloading

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 151

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0.5

1

1.5

2

2.5

3

3.5

A
v
g

.
L

a
te

n
c
y
 C

o
s
t

[S
e

c
]

GA-A

RA

LA

DA

Req. Latency

Figure 5.5: Latency Cost.

process. In Fig. 5.6, we show the energy requirements of different solution methods.

It can be seen that the A-GA method is able to keep the energy cost under con-

trol with a proper offloading process and outperforms the LA methods. With the

complete offloading process, even the other two benchmark methods, i.e., RA and

DA, have better energy performance however, they suffer from huge latency cost as

shown in Fig. 5.5.

To have a robust system, decreasing the latency and energy costs can not be suffi-

cient, and is important to measure the number of times the system is not able to

respect the different constraints. Here, in Fig. 5.7 we present the average number

of VUs that are unable to follow the service latency requirements during the task

processing operations with varying VUs. The benchmark methods with improper

EN selections and the offloading process are having a large number of failures. On

the other hand, the proposed A-GA method with adequate search flexibility offloads

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 152

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
v
g

.
E

n
e

rg
y
 C

o
s
t

[J
]

GA-A

RA

LA

DA

Figure 5.6: Energy Cost.

the proper amount of data to the selected EN and as result limits the number of

failures. Thus, for critical systems such as VN, the introduced A-GA method can

help to provide new services with higher reliability.

For dynamic VNs, the mobility constraint is important to follow to avoid the ad-

ditional handover costs. Therefore each VU needs to complete the task offloading

process that includes the task data transmission, EN-based computation, and re-

ceiving back the results in a limited sojourn time i.e., the time available before VU

passes through the EN coverage. It can be seen that the proposed A-GA method

has less number of failures mainly due to the proper offloading process that includes

both EN selection and offloading. On the other hand, the benchmark methods are

not able to adopt the proper offloading strategies and fail to perform the offloading

process in limited sojourn times, resulting in higher failures. This shows that the

proposed A-GA method can be useful over VN having high-speed VUs requesting

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 153

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0

20

40

60

80

100

120

140

160

180

200

S
e
rv

ic
e
 L

a
te

n
c
y
 F

a
ilu

re
s
 [
A

v
g
]

GA-A

RA

LA

DA

Figure 5.7: Service Latency Failures.

various services.

Finally, in Fig. 5.9 we show the impact in terms of node selection at each layer

performed by the VUs. For this reason we focus on the proposed A-GA approach,

by showing how the different VUs select nodes belonging to the different layers in

percentage. It is possible to notice that when the number of VUs is reduced, VUs

prefer to explore the EC resources from the upper layers, mainly due to coverage rea-

sons. However, as the VU density increases, more VUs are selecting the nearby RSU

nodes despite their limited communication distance. This shows that the proposed

system considering multiple layers allows to exploit different layer characteristics.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 154

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0

5

10

15

20

25

30

35

40

45

50

S
o
jo

u
rn

 T
im

e
 F

a
ilu

re
s
 [
A

v
g
]

GA-A

RA

DA

Figure 5.8: Sojourn Time Failures.

200 400 600 800 1000 1200 1400 1600 1800 2000

Total VUs

0

10

20

30

40

50

60

V
U

-E
N

 A
s
s
ig

n
 [
%

]

RSU

LAP

HAP

LEO

Figure 5.9: VU-EN Assignment for A-GA Method.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 155

5.2.4 Conclusions

In this work, we have considered a joint latency and energy minimization for the

Multi-EC enabled VN with T-NT layers of edge resources. A partial computation

offloading process is considered, where VUs can request different services from edge-

based servers with limited capabilities. Additionally, proper mobility models are

considered to analyze the mobility of ground-based VUs and the satellite elements

in the LEO. The problem is modeled as a constrained optimization problem, and

a GA-based evolutionary search algorithm is proposed to solve it. The proposed

adaptive GA technique uses multiple GA iterations for finding the proper solution

by taking into account the limited resources. The simulation results with varying

VUs density shows the effectiveness of the proposed method, over the benchmark

approaches in terms of overall performance.

In the future, we plan to explore the impact when heterogeneous service requirements

are considered as well as distributed machine learning approaches for solving more

complex scenarios (e.g., multi-hop offloading)

5.3 Network Selection and Offloading with joint

T-NTN Vehicular Scenario- HRL Solution

With the presence of heterogeneous edge computing facilities and multiple services,

solving the network selection and offloading problem can be challenging. The heuris-

tic and meta-heuristic approaches can be applied to some simplified scenarios. How-

ever, considering the complex nature of the problems and various decision variables,

it is important to consider intelligent ML-based solution approaches. RL has shown

great promise to solve such complex problems effectively in the case of terrestrial

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 156

systems [69], and is a candidate to solve the considered problem. Recently, RL has

been further specialized in different methods, e.g., Multi-agent RL [108], hierarchi-

cal RL (HRL) [109], and distributed RL [110]. As discussed before, the considered

network selection and offloading problem can effectively be solved through a multi-

level sequential decision-making process in terms of network layer selection, EC node

selection, and offloading portion. Such multi-level hierarchical processes where a de-

cision made at different levels can impact each other’s performance can be solved

through HRL methods.

The main contributions of this work are:

• Multi-EC, Multi-service Joint T-NT Network: We propose a multi-

EC facility-enabled T-NT network for promoting VUs with various services.

Ground-based VUs can request different services offered by the RSUs, LAPs,

HAPs, and LEO satellites through the EC facilities onboard (Section 5.3.1).

• Joint Latency and Energy Minimization Problem: A proper mathe-

matical model is proposed by including latency and energy requirements of

the different steps involved during the VUs task processing operation. Both

VU and EN side latency/energy cost is considered while modeling the offload-

ing process. In the end, an optimization problem is developed for minimizing

the overall latency and energy consumption by selecting a proper EC facility

and the amount to be offloaded (Section 5.3.1).

• Multi-level Sequential Decision-Making Process: The joint network se-

lection and computation offloading problem is modeled as a multi-level sequen-

tial decision-making process through MDPs and an advanced DQN approach

is considered for finding optimal policies (Section 5.3.2).

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 157

• Performance Analysis: In addition, a set of benchmark methods are used

to analyze the results, showing the improved latency and energy performance

of a proposed scheme (Section 5.3.3).

5.3.1 System Model and problem Formulation

The system model includes a multi-tiered EC facility for serving VUs with a set of

services. We consider an integrated T-NT network composed of a LEO satellite con-

stellation S = {𝑠1, . . . , 𝑠𝑞, . . . , 𝑠𝑄} with 𝑄 satellites, a set H = {ℎ1, . . . , ℎ𝑝, . . . , ℎ𝑃}

of 𝑃 HAPs, a set L = {𝑙1, . . . , 𝑙𝑢, . . . , 𝑙𝑈} of 𝑈 LAPs, a set R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 }

of 𝑁 RSUs, and a set of V = {𝑣1, . . . , 𝑣𝑘 , . . . , 𝑣𝐾} of 𝐾 VUs, located randomly in

the area, which is supposed to be modeled as a multilayered EC-enabled vehicular

scenario. Additionally, one cloud facility C is considered. VUs can explore the EC

facilities provided by different layers for enabling various applications and services.

The VN is modeled as a time-discrete system where the network parameters are

supposed to be constant in each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time

interval, i.e., 𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏]}. For avoiding the additional complexity we

have considered that in each time instance, VUs can access to services on the LEO

satellite under visibility, while the whole constellation can be reached through proper

inter-satellite links. Also, each EC layer can have access to cloud facility through

backhaul links. Fig. 5.10 shows the various elements of the considered VN scenario

composed by one reference LEO satellite, HAPs, LAPs, RSUs, cloud computing

facility, and VUs.

The generic 𝑘th VU is characterized by a processing capability equal to 𝑐𝑣,𝑘 Floating

Point Operations per Second (FLOPS) per CPU cycle, while its CPU frequency is

𝑓𝑣,𝑘 . Each VU is supposed to be able to communicate using a bandwidth 𝐵e
𝑣,𝑘

with

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 158

Figure 5.10: NTN Edge Computing System Model

a reference EN 𝑒 ∈ {S ∪ H ∪ L ∪ R∪}. At each interval, the 𝑘th VU is supposed

to generate a task request 𝑥𝑘 to be processed, where task 𝑥𝑘 is identified through

the tuple ⟨𝐷𝑥𝑘 ,Ω𝑥𝑘 , 𝑇𝑥𝑘 , Ξ̄𝑥𝑘 ⟩ where 𝐷𝑥𝑘 is the task size in Byte, Ω𝑥𝑘 are the CPU

execution cycles requested, 𝑇𝑥𝑘 is the maximum latency of the requested service, and

Ξ̄𝑥𝑘 is the type of service requested by the VU.

The 𝑒th EN (i.e., one node among any RSU, LAP, HAP, LEO or Cloud)4 is char-

acterized by a processing capability equal to 𝑐𝑒 FLOPS per CPU cycle, with CPU

frequency 𝑓𝑒, and communication capabilities, supposed to be identified through a

communication technology able to work on a bandwidth 𝐵𝑒 and covering an area

with radius 𝑅𝑒. The LAP, HAP and satellite nodes are located at height ℎ𝑙 , ℎℎ

and ℎ𝑠 from the ground level, respectively. Each EN provides computation offload-

ing services to the VUs within its coverage area. VUs tasks are characterized by

the service type, supposing the system able to provide different services, where

Ξ = {𝜉1, . . . , 𝜉𝑧, . . . , 𝜉𝑍 } is the set of possible services and 𝑍 the maximum number

4In the following, 𝑒 = {𝑟𝑛}, 𝑒 = {𝑙𝑢}, 𝑒 = {ℎ𝑝}, 𝑒 = {𝑠𝑞} and 𝑒 = C stands for the 𝑟th RSU, 𝑢th
LAP, 𝑝th HAP, 𝑞th LEO satellite and a cloud facility.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 159

Figure 5.11: Multi Service VN with Non-terrestrial EC Layers

of services. With limited storage capabilities, RSUs, LAPs, HAPs and LEO satel-

lites can provide a limited number of services. We consider that the 𝑒th EN can

provide the service set Ξ𝑒 = {𝜉1, · · · 𝜉𝑧, · · · , 𝜉𝑚𝑎𝑥𝑒 }. Additionally, the cloud facility C

is able to provide all the possible services requested by VUs. Fig. 5.11 shows the

multi-service vehicular scenario where RSUs, LAPs HAPs, and LEO satellites are

providing a subset of services (i.e., 2, 2, 3, 4, respectively) while the cloud facility is

able to provide all possible services (i.e., 6) requested by the VUs.

5.3.1.1 VUs Mobility and Distance Measures

In this work, we consider that VUs are moving with a variable speed ®𝑣𝑣,𝑘 (𝜏𝑖), whose

value is bounded within ®𝑣min and ®𝑣max [105], while the 𝑘th VU instantaneous speed

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 160

is modeled through a truncated normal distribution density function:

𝑓
(
®𝑣𝑣,𝑘 (𝜏𝑖)

)
=



2𝑒
−(®𝑣𝑣,𝑘 (𝜏𝑖)−𝜇)2

2𝜎2

𝜎
√
2𝜋

(
erf

(
®𝑣max−𝜇
𝜎
√
2

)
− erf

(
®𝑣min−𝜇
𝜎
√
2

)) ,
®𝑣min ≤ ®𝑣𝑣,𝑘 (𝜏𝑖) ≤ ®𝑣max

0, else

(5.22)

where 𝜇 and 𝜎 are the mean and standard deviation of the vehicles speed, and

erf (𝑥) is the Gauss error function over 𝑥. The path length within which the 𝑘th VU

remains under the coverage of any terrestrial and aerial 𝑒th node (i.e., RSU, UAV,

HAP) is 𝐷𝑣𝑘 ,𝑒 (𝜏𝑖) and can be given by:

𝐷𝑣𝑘 ,𝑒 (𝜏𝑖) =
√︃
𝑑2𝑒 −

(
𝑦𝑒 − 𝑦𝑣𝑘 (𝜏𝑖)

)2 ± (
𝑥𝑒 − 𝑥𝑣𝑘 (𝜏𝑖)

)
(5.23)

where,
(
𝑥𝑣𝑘 (𝜏𝑖), 𝑦𝑣𝑘 (𝜏𝑖)

)
is the location of the 𝑘th VU at 𝜏𝑖 and (𝑥𝑒, 𝑦𝑒) is the pro-

jection over the ground of a generic 𝑒th EC node, which can be RSU, UAV, HAP.

The available sojourn time for the 𝑘th VU with respect to a generic 𝑒th node (RSU,

LAP or HAP) can be written as:

𝑇
soj
𝑣𝑘 ,𝑒 (𝜏𝑖) =

𝐷𝑣𝑘 ,𝑒 (𝜏𝑖)
|®𝑣𝑣,𝑘 (𝜏𝑖) |

∀𝑖, 𝑣𝑘 (5.24)

5.3.1.2 LEO Satellite Mobility and Distance Measures

In general, VUs can communicate with satellite nodes within a specific time inter-

val, which depends on the locations and the mobility patterns of LEO satellites.

LEO satellites can move at a very high speed (i.e., a few km per second) compared

with the VUs, which move at a few meters per second. Here we consider a well-

known coverage model for finding the arc length over which ground-based VUs can

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 161

communicate [106].

Let us consider a LEO satellite 𝑠𝑞 located at height ℎ𝑞 with respect to the ground,

moving with a constant speed ®𝑣𝑠,𝑞 km/s. Let us consider that at a certain instant 𝜏𝑖

its elevation angle with respect to the 𝑘th VU is 𝜃𝑘 (𝜏𝑖), corresponding to a geocentric

angle for the 𝑘th VU as,

𝛿𝑞,𝑘 (𝜏𝑖) = arccos

(
𝑅𝑒

𝑅𝑒 + ℎ𝑞
· cos (𝜃𝑘 (𝜏𝑖))

)
− 𝜃𝑘 (𝜏𝑖)

where 𝑅𝑒 is the Earth radius. The total arc length over which VU can communicate

with the considered LEO satellite is defined as,

𝐿𝑞,𝑘 (𝜏𝑖) = 2(𝑅𝑒 + ℎ𝑞) · 𝛿𝑞,𝑘 (𝜏𝑖)

With this, the total time within which the 𝑘th VU can be in the coverage range of

the LEO is given as,

𝑇
soj
𝑣𝑘 ,𝑞 (𝜏𝑖) =

𝐿𝑞,𝑘 (𝜏𝑖)
®𝑣𝑠,𝑞

(5.25)

The 𝑘th VU should complete the offloading process towards the LEO satellite during

the limited coverage time, for avoiding additional costs in terms of LEO satellite

handovers. Since the satellite nodes have much higher speed than the VUs, the VUs

mobility is neglected while defining the satellite coverage space.

Eqs. (5.24) and (5.25) defines the mobility constraint for the considered multi-EC

vehicular networking system.

5.3.1.3 Network Selection and Task Offloading Process

For each 𝑖th interval, the 𝑘th VU task is supposed to be managed through a partial

computation offloading process allowing a portion of the task to be offloaded towards

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 162

the selected EN while the rest can be locally processed, hence, allowing to reduce

the overall processing time and energy cost [76]. Here, we consider 0 ≤ 𝛼𝑥𝑘 (𝜏𝑖) ≤ 1

as an offloading index associated with the 𝑘th VU representing the portion of the

task offloaded towards the selected EN, where 𝛼𝑥𝑘 (𝜏𝑖) = 1 corresponds to a complete

offloading, while 𝛼𝑥𝑘 (𝜏𝑖) = 0 corresponds to perform only local processing. To avoid

additional complexity, we assume that each VU can offload only towards one EN.

We define a network selection variable, 𝑎 (𝑘,𝑒) (𝜏𝑖), indicating that the 𝑘th VU has

selected the 𝑒th EN at 𝜏𝑖 for the task offloading, where

∑︁
𝑒
𝑎 (𝑘,𝑒) (𝜏𝑖) ≤ 1, ∀𝑖 (5.26)

corresponding to say that the 𝑘th VU can select at most one of the possible EN

under visibility. The vehicular task processing operation with partial computation

offloading involves several steps such as the transmission of a selected task portion

towards a selected EN, task computation operation at EN, reception of task back

at VU, local computation of remaining task, etc. Here we present the generic task

computation and communication models in the vehicular scenario, which are later

used to model the overall task computation latency and energy.

Task Computation Model

The time and energy required for task computation on any 𝑙th device for a generic

task 𝑥
𝑘
can be written as:

𝑇
𝑥
𝑘

𝑐,𝑙̂
=

Ω𝑥
𝑘

𝑐
𝑥
𝑘

𝑙̂
𝑓
𝑥
𝑘

𝑙̂

, 𝐸
𝑥
𝑘

𝑐,𝑙̂
= 𝑇

𝑥
𝑘

𝑐,𝑙̂
𝑃
𝑐,𝑙̂

(5.27)

where 𝑐
𝑥
𝑘

𝑙̂
and 𝑓

𝑥
𝑘

𝑙̂
are the number of FLOPS per CPU-cycle and CPU-frequency

allocated to the task 𝑥
𝑘
, respectively, whether 𝑙 identifies a VU (𝑣𝑘), a RSU (𝑟𝑛), a

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 163

LAP (𝑙𝑢), a HAP (ℎ𝑝) or a LEO satellite (𝑠𝑞). We have considered that the nodes

capacity will be equally shared by all the tasks allocated to it. Also, in (5.27), 𝑃
𝑐,𝑙̂

is the power used by the generic 𝑙th device for the task computation phase.

Task Communication Model

The partial computation offloading process considers the possibility to split the tasks

into sub-portions and offload only part of the task, while the rest is locally processed

at the originating device; this means that both transmission of the VUs data portion

towards the selected EN and the reception back of the results from EN should be

considered. The total time and energy consumed during the transmission of data

from a generic node 𝑘 to another node 𝑙 for task 𝑥
𝑘
are given by5:

𝑇
𝑥
𝑘

𝑡𝑥,𝑘 𝑙̂
(𝜏𝑖) =

𝐷𝑥
𝑘

𝑟
𝑘𝑙̂
(𝜏𝑖)

, 𝐸
𝑥
𝑘

𝑡𝑥,𝑘 𝑙̂
(𝜏𝑖) = 𝑇

𝑥
𝑘

𝑡𝑥,𝑘 𝑙̂
(𝜏𝑖)𝑃𝑡𝑘 (5.28)

where 𝑟
𝑘𝑙̂
(𝜏𝑖) is data-rate of the link between the two nodes Similarly, the time and

energy required to receive the task of size 𝐷𝑟𝑥
𝑘
from 𝑙th EN to 𝑘 are:

𝑇
𝑥
𝑘

𝑟𝑥,𝑙̂𝑘
(𝜏𝑖) =

𝐷𝑟𝑥
𝑘

𝑟
𝑘𝑙̂
(𝜏𝑖)

, 𝐸
𝑥
𝑘

𝑟𝑥,𝑙̂ 𝑘
(𝜏𝑖) = 𝑇

𝑥
𝑘

𝑟𝑥,𝑙̂𝑘
(𝜏𝑖)𝑃𝑟𝑘 (5.29)

where 𝑃𝑟
𝑘
is the power consumed for receiving data. Additionally, a symmetric

channel model is assumed between 𝑘 and 𝑙. The channel between 𝑘 and 𝑙 at 𝑖th

interval is characterized by the link gain, modeled as [111]:

ℎ
𝑘,𝑙̂
(𝜏𝑖) = 𝛽0 · 𝑑𝜃

𝑘,𝑙̂
(𝜏𝑖)

5Here 𝑙̂ and 𝑘 are the indexes of any generic node among 𝑣𝑘 , 𝑟𝑛, 𝑙𝑢, ℎ𝑝, and 𝑠𝑞.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 164

where, 𝑑
𝑘,𝑙̂
(𝜏𝑖) is the distance between node 𝑘 and 𝑙 at 𝑖th interval, 𝛽0 is the channel

power gain at 1 m reference distance, while 𝜃 is the path loss coefficient over different

communication links. The expression for the channel transmission rate is based on

the Shannon capacity formula and can be written as:

𝑟
𝑘𝑙̂
(𝜏𝑖) = 𝑏

𝑥
𝑘

𝑙̂
(𝜏𝑖) log2

(
1 +

𝑃𝑡
𝑘
· ℎ

𝑘,𝑙̂
(𝜏𝑖)

𝑁0

)
∀𝑘, 𝑙

where 𝑃𝑡
𝑘
is the transmission power of a node 𝑘, 𝑏

𝑥
𝑘

𝑙̂
(𝜏𝑖) is the communication

bandwidth, and 𝑁0 = 𝑁𝑇𝑏
𝑥
𝑘

𝑙̂
(𝜏𝑖) is the thermal noise power with noise power spectral

density 𝑁𝑇 .

Next, we model the total time and energy required for the task offloading and the

local computation process.

5.3.1.4 Task Offloading Process

Offloading Process During the partial computation offloading process, if the 𝑘th

VU selects the 𝑒th EN, the time and energy required to offload the task to 𝑒 and to

get back the result at 𝑣𝑘 in the 𝑖th interval are:

𝑇off
𝑘,𝑒 (𝛼𝑥𝑘 (𝜏𝑖)) = 𝛼𝑥𝑘 (𝜏𝑖)

(
𝑇
𝑥𝑘
𝑡𝑥,𝑘𝑒
+ 𝑇𝑥𝑘𝑤,𝑒 + (1 − 𝑏𝑒Ξ̄𝑥𝑘)𝑇

𝑥𝑘
𝑐,𝑒 + 𝑇

𝑥𝑘
𝑟𝑥,𝑒𝑘
+ 𝑏𝑒

Ξ̄𝑥𝑘

(
𝑇
𝑥𝑘
𝑡𝑥,𝑒C + 𝑇

𝑥𝑘
𝑤,C + 𝑇

𝑥𝑘
𝑐,C + 𝑇

𝑥𝑘
𝑟𝑥,C𝑘

))
(5.30a)

𝐸off
𝑘 (𝛼𝑥𝑘 (𝜏𝑖)) = 𝛼𝑥𝑘 (𝜏𝑖)

(
𝐸
𝑥𝑘
𝑡𝑥,𝑘𝑒
+ 𝐸𝑥𝑘

𝑟𝑥,𝑒𝑘

)
(5.30b)

𝐸off
𝑒 (𝛼𝑥𝑘 (𝜏𝑖)) = 𝛼𝑥𝑘 (𝜏𝑖)

(
𝐸𝑥𝑘𝑤,𝑒 + (1 − 𝑏𝑒Ξ̄𝑥𝑘)𝐸

𝑥𝑘
𝑐,𝑒 + 𝑏𝑒Ξ̄𝑥𝑘

(
𝐸
𝑥𝑘
𝑡𝑥,𝑒C + 𝐸

𝑥𝑘
𝑟𝑥,C𝑒

))
(5.30c)

where 𝑇𝑥𝑘
𝑡𝑥,𝑘𝑒

, 𝑇𝑥𝑘𝑤,𝑒 𝑇
𝑥𝑘
𝑐,𝑒, and 𝑇

𝑥𝑘
𝑟𝑥,𝑒𝑘

are the transmission time, waiting time at 𝑒 for

receiving the task data, computation time at 𝑒, and the receiving time for the task

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 165

𝑥𝑘 generated by 𝑣𝑘 during the offloading phase, and 𝐸
𝑥𝑘
𝑡𝑥,𝑘𝑒

, and 𝐸
𝑥𝑘
𝑟𝑥,𝑒𝑘

are the en-

ergy consumed by VU during the task transmission, and result collection phases

on the device, while 𝐸𝑥𝑘𝑐,𝑒 and 𝐸
𝑥𝑘
𝑤,𝑒 are the energy consumed by the EN 𝑒 during

task computation and waiting phases, respectively. A binary variable 𝑏𝑒
Ξ̄𝑥𝑘

is also

considered, having value 1 if EN 𝑒 is unable to provide a requested service Ξ̄𝑥𝑘 , else

0. In such case, EN 𝑒 relays the user data towards the cloud facility C for further

computation. Therefore, additional latency and energy components are considered

accordingly. From a latency perspective, the time required to transmit the data to

cloud facilities, waiting time at C, computation time, and the additional time re-

quired to receive back the computation results at 𝑒 are considered. While energy cost

is limited to the EN side costs only assuming that the cloud facilities have a stable

energy supply from the electric grid. The energy required to transmit and receive

back the data from the cloud facility is considered for cloud-based computations.

Local Computation The amount of time and energy required for computing the

task locally in the 𝑖th interval are:

𝑇 loc
𝑘 (𝛼𝑥𝑘 (𝜏𝑖)) =

(
1 − 𝛼𝑥𝑘 (𝜏𝑖)

)
𝑇
𝑥𝑘
𝑐,𝑘

(5.31a)

𝐸 loc
𝑘 (𝛼𝑥𝑘 (𝜏𝑖)) =

(
1 − 𝛼𝑥𝑘 (𝜏𝑖)

)
𝐸
𝑥𝑘
𝑐,𝑘

(5.31b)

where 𝑇𝑥𝑘
𝑐,𝑘

and 𝐸𝑥𝑘
𝑐,𝑘

are the time and energy spent for the whole task 𝑥𝑘 local pro-

cessing, while 𝛼𝑥𝑘 (𝜏𝑖) is the portion of the task locally processed at the time interval

𝜏𝑖.

Partial offloading Computation The delay and the energy consumed during

the task processing phases, when partial offloading is performed in the 𝑖th interval,

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 166

can be written as:

𝑇𝑥𝑘 (𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)) = max
{
𝑇off
𝑘,𝑒 (𝛼𝑥𝑘 (𝜏𝑖)), 𝑇

loc
𝑘 (𝛼𝑥𝑘 (𝜏𝑖))

}
𝐸𝑥𝑘 (𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)) = 𝑤𝑘

(
𝐸off
𝑘 (𝛼𝑥𝑘 (𝜏𝑖)) + 𝐸

loc
𝑘 (𝛼𝑥𝑘 (𝜏𝑖))

)
+ 𝑤𝑒𝐸off

𝑒 (𝛼𝑥𝑘 (𝜏𝑖))

where 𝑤𝑘 and 𝑤𝑒 are the weighting coefficients associated with the energy costs of

VUs and ENs, respectively. In addition, each vehicle should finish the offloading

process and receive the results back within the sojourn time, hence:

𝑇off
𝑘,𝑒 (𝛼𝑥𝑘 (𝜏𝑖)) ≤ 𝑇

soj
𝑣𝑘 ,𝑒 (𝜏𝑖) ∀𝑖 (5.32)

5.3.1.5 Problem Formulation

Main aim of this work is to optimize the network-wide performance of the multi-EC

enabled VN. We aim to optimize the performance in terms of overall latency and

energy consumed during the offloading process towards edge servers by selecting

proper EN and offloading amounts. For this, we formulate the joint latency and

energy minimization problem as:

P1 : min
A,A

{
1

𝐾

𝐾∑︁
𝑘=1

[
𝛾1𝑇

𝑥𝑘
(
𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)

)
+ 𝛾2𝐸𝑥𝑘

(
𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)

)]}
∀𝑖 (5.33)

s.t.

C1 : Eq. (5.26) (5.34a)

C2 : 𝑇𝑥𝑘
(
𝛼𝑥𝑘 (𝜏𝑖)

)
≤ 𝑇𝑥𝑘 ∀𝑣𝑘 ∈ V, ∀𝑖 (5.34b)

C3 : Eq. (5.32) (5.34c)

C4 : 𝐸𝑥𝑘 (𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)) ≤ 𝑤𝑘𝐸
𝑥𝑘
𝑐,𝑘

(5.34d)

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 167

C5 : 0 ≤ 𝛾1, 𝛾2 ≤ 1; 𝛾1 + 𝛾2 = 1 (5.34e)

where A = {𝛼𝑥𝑘 }𝑀 is the computation offloading matrix, and 𝛾1, 𝛾2 are two weighting

coefficients for balancing latency and energy consumption. C1 stands that each VU

can select at most one EN for the computation offloading. C2 puts a limit on the

maximum processing time as one of the task requirements. According to C3, for

avoiding handover phenomena and related latency, each VN should complete the

offloading process before it passes through the selected EN coverage. According to

C4, the total energy cost for the task processing during the partial computation

offloading process should be bounded by the cost of the energy needed to process

the complete task locally. C5 stands that the two weighting coefficients (𝛾1, 𝛾2)

should be between 0 and 1 with their sum equal to 1.

5.3.2 Hierarchical Reinforcement Learning Solution

In this work, by finding the proper ENs and offloading portions we aim to minimize

the overall latency and energy cost during the vehicular task processing operation

over the multi-service multi-EC enabled VN. Given the complex nature of the consid-

ered problem, traditional heuristic and meta-heuristic approaches can have limited

impacts, and more advanced solutions are required. The formulated problem can

be modeled as a sequential decision-making process through a proper MDP model,

and RL-based solution methods can be adapted to solve it. With the presence of

multiple heterogeneous EC platforms with different properties, i.e., speed, location,

services, resources, a traditional single agent-based RL solution can be computation-

ally expensive and might not even be feasible. In recent times, several new advanced

RL methods have been introduced, especially for solving challenging problems over

dynamic scenarios.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 168

The considered problem can effectively be decomposed into multiple sub-problems

impacting each other’s performance and enabling a multi-level decision-making pro-

cess with reduced complexity. The HRL method can be adapted for such multi-level

decision-making processes. Therefore, we have considered an HRL-based solution

method for solving the network selection and offloading problem over multi-service,

multi-layer EC facilities.

P1 can be decomposed into three hierarchical learning processes, i.e., {P1,P2,P3}.

In the first process, P1, RL agent aims to select a proper EC layer 𝑗 for performing

the task computation. Based upon the selected layer 𝑗 ∈ 𝐽, with 𝐽 being a maximum

number of edge layers available for offloading, P2 aims to select a proper EC node 𝑒

belonging to the 𝑗th layer for processing the 𝑘th VUs data. Next, through P3, VU

aims to select the proper amount of data 𝛼𝑥𝑘 to be offloaded towards 𝑒 for minimizing

the overall cost.

5.3.2.1 MDP Models

In general, the MDP for any problem 𝑝 can be defined as a tuple ⟨S𝑝,A𝑝,R 𝑝, P̂ 𝑝, 𝛾𝑝⟩,

with state space S𝑝, action space A𝑝, reward R 𝑝, state-transition probabilities P̂ 𝑝

and discount factor 𝛾𝑝. By solving P1, we aim to find a proper EC layer for com-

puting the users’ task. We define S1 = {𝑠11, · · · , 𝑠
ℎ
1, · · · , 𝑠

𝐻
1 } as a discrete state space

associated with P1 with 𝐻 states. Here, 𝑠ℎ1 is the ℎth state function of the 𝑘th VU

and 𝑗th EC layer properties. The ℎth state of P1, based on VU 𝑘 and layer 𝑗 ∈ 𝐽

at time instance 𝑖 is defined as,

𝑠ℎ1 (𝜏𝑖) = {ℎ̄𝑘 𝑗 (𝜏𝑖), 𝑁 𝑗 (𝜏𝑖), 𝑠̄ 𝑗 (𝜏𝑖), 𝑃𝑟
Ξ̄𝑥𝑘
𝑗
(𝜏𝑖)}

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 169

where ℎ̄𝑘 𝑗 (𝜏𝑖) is the distance measure modeling the relative distance between layer 𝑗

and VU 𝑘, 𝑁 𝑗 (𝜏𝑖) is the average number of VUs selecting the layer 𝑗 for processing

their data, 𝑠̄ 𝑗 (𝜏𝑖) is the mobility state of ENs defined as the average speed of all ENs

belonging to particular 𝑗 . Also, 𝑃𝑟
Ξ̄𝑥𝑘
𝑗
(𝜏𝑖) measures the probability a service Ξ̄𝑥𝑘 is

present on the selected 𝑗th layer. Then, A1 = {𝑎11, · · · , 𝑎
ℎ̂
1, · · · , 𝑎

𝐻
1 } is the discrete

action space for P1 with 𝐻 actions, where the ℎ̂th action is defined as,

𝑎 ℎ̂1 = {0, 1}1×𝐽 with,
∑︁

𝑎 ℎ̂1 ≤ 1

where 𝑎 ℎ̂1 is a binary vector modeling the VUs layer selection decision. The perfor-

mance of P1 can be impacted by the node selection and offloading policies of P2 and

P3. Therefore the reward received will be based on the policies adopted by these

MDPs.

Sub-problem P2 receives the information from the higher level P1 in terms of selected

layer 𝑗 and other state parameters. It aims to select a proper EN from layer 𝑗 for

serving the VU. The node selection operation can be based on several parameters

such as VUs location, service demand, speed, layer properties, etc. Here we introduce

S2 = {𝑠12, · · · , 𝑠
𝑚
2 , · · · , 𝑠

𝑀
2 } as a discrete state space associated with P2 with 𝑀 states,

where 𝑠𝑚2 is the 𝑚th state based on the 𝑘th VU data and the properties of 𝑗th EC

layer selected in P1. The 𝑚th state associated with VU 𝑘 and 𝑗th layer node 𝑒 at

𝜏𝑖 is defined as,

𝑠𝑚2 (𝜏𝑖) = {𝑁𝑒, 𝑠̂𝑘 𝑗𝑒 , 𝑇
𝑠𝑜 𝑗

𝑘 𝑗𝑒
}

where 𝑁𝑒 is the resource state of 𝑒th node modeled as an average number of VUs

requesting services from 𝑒, 𝑠̂𝑘 𝑗𝑒 is a binary service state that takes the value 1

if the service requested by 𝑘th VU is available at 𝑒, else 0. Then, 𝑇
𝑠𝑜 𝑗

𝑘 𝑗𝑒
is the

sojourn time state, modeled as a binary variable that becomes 1 if the 𝑒th EN is

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 170

able to cover the VU 𝑘 with more than 𝜁 of its coverage space, else 0. In addition,

A2 = {𝑎12, · · · , 𝑎
𝑚̂
2 , · · · , 𝑎

𝑀̂
2 } is the discrete action space for P2 with 𝑀̂ actions, where

the 𝑚̂th action is defined as,

𝑎𝑚̂2 = {0, 1}1×𝐸 𝑗 with
∑︁

𝑎𝑚̂2 ≤ 1,

where 𝐸 𝑗 is the maximum number of egde nodes from layer 𝑗 that can cover any

VU. The performance of P2 can be impacted by the offloading policies of P3.

Sub-problem P3 receives information from higher levels about selected layers 𝑗 , node

𝑒, and other state parameters. It aims to select a proper offloading parameter 𝛼𝑥𝑘

for the offloading 𝑘th VUs data. Here we introduce S3 = {𝑠13, · · · , 𝑠
𝑙
3, · · · , 𝑠

𝐿
3 } as a

discrete state space associated with P3 with 𝐿 states, where 𝑠𝑙3 is the 𝑙th state based

upon the VUs data and the properties of selected node 𝑒 from 𝑗th EC layer. The

𝑙th state at time instance 𝜏𝑖 is defined as

𝑠𝑙3 =
{
𝐹1
𝑘,𝑒 (𝜏𝑖), 𝐹

2
𝑘,𝑒 (𝜏𝑖), 𝐹

3
𝑘,𝑒 (𝜏𝑖)

}
where, 𝐹1

𝑘,𝑒
(𝜏𝑖),𝐹2

𝑘,𝑒
(𝜏𝑖), and 𝐹3

𝑘,𝑒
(𝜏𝑖) are three binary functions, defined as:

𝐹1
𝑘,𝑒 (𝜏𝑖) =


0 𝑇

𝑜 𝑓 𝑓

𝑘,𝑒
(𝛼𝑥𝑘 (𝜏𝑖)) ≤ 𝑇

𝑠𝑜 𝑗
𝑣𝑘 ,𝑒 (𝜏𝑖)

1 else

(5.35)

𝐹2
𝑘,𝑒 (𝜏𝑖) =


0 𝑇𝑥𝑘

(
𝛼𝑥𝑘 (𝜏𝑖)

)
≤ 𝑇𝑥𝑘

1 else

(5.36)

𝐹3
𝑘,𝑒 (𝜏𝑖) =


0 𝐸𝑥𝑘 (𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)) ≤ 𝑤𝑘𝐸

𝑥𝑘
𝑐,𝑘

1 else

(5.37)

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 171

In addition, A3 = {𝑎13, · · · , 𝑎
𝑙̂
3, · · · , 𝑎

𝐿̂
3 } is the discrete action space for P3 with 𝐿̂

actions, where the 𝑙th action, 𝑎 𝑙̂2 ∈ {𝛼𝑥𝑘 (𝜏𝑖), 𝛼𝑥𝑘 (𝜏𝑖) ± Λ} where 0 < Λ < 1, is a step

change of offloading amount.

We define a reward R3 for measuring the overall performance of network selection

and offloading decisions given by:

R3(𝑠ℎ1, 𝑎
ℎ̂
1, 𝑠

𝑚
2 , 𝑎

𝑚̂
2 , 𝑠

𝑙
3, 𝑎

𝑙̂
3) = 𝛾1𝑇

𝑥𝑘
(
𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)

)
+ 𝛾2𝐸𝑥𝑘

(
𝛼𝑥𝑘 (𝜏𝑖), 𝑎 (𝑘,𝑒) (𝜏𝑖)

)
+ 𝑤1𝐹

1
𝑘,𝑒 (𝜏𝑖)

+ 𝑤2𝐹
2
𝑘,𝑒 (𝜏𝑖) + 𝑤3𝐹

3
𝑘,𝑒 (𝜏𝑖) (5.38)

where the first two measures the latency and energy performance. The next three

elements are measuring performance in terms of service time, sojourn time, and en-

ergy constraints. If the node selection policies violate the constraints, an additional

weighted penalty value is added with positive weights 𝑤1, 𝑤2, and 𝑤3.

5.3.2.2 Deep Q Network based solution

Given the complex and dynamic nature of the considered scenario, we consider Q

learning as a model-free RL for finding optimal policies. It is one of the highly

explored model-free strategies for determining the optimal policy in unknown envi-

ronments. In this case, policy 𝜋𝑝 for problem 𝑝 maps every state 𝑠 ∈ S𝑝 to action

𝑎 ∈ A𝑝. The Q-learning strategy is based on a state-action function, i.e., Q-function,

defined as,

𝑄𝜋𝑝 (𝑠′, 𝑎′) = 𝑅𝑝 (𝑠′, 𝑎′) + 𝛾
∑︁
𝑠̂∈S𝑝
P̂ 𝑝
𝑠′ 𝑠̂
(𝑎′)𝑉𝜋𝑝 (𝑠̂)

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 172

representing a discounted cumulative reward from state 𝑠′ when action 𝑎′ is taken

before following the policy 𝜋𝑝. The optimal Q value can be represented as

𝑄𝜋∗𝑝 (𝑠′, 𝑎′) = 𝑅𝑝 (𝑠′, 𝑎′) + 𝛾
∑︁
𝑠̂∈S𝑝
P̂ 𝑝
𝑠′ 𝑠̂
(𝑎′)𝑉𝜋∗𝑝 (𝑠̂)

where 𝑉𝜋
∗
𝑝 (𝑠̂) = min𝑎∈A 𝑝 𝑄𝜋∗𝑝 (𝑠′, 𝑎) with optimal policy 𝜋∗𝑝. The Q values can be

estimated through a recursive approach where,

𝑄𝑡+1(𝑠′, 𝑎′) = 𝑄𝑡 (𝑠′, 𝑎′) + 𝜖 ·
(
𝑟 + 𝛾max

𝑎
𝑄𝑡 (𝑠′, 𝑎) −𝑄𝑡 (𝑠′, 𝑎′)

)
where 𝜖 is a learning rate. The Q-function can be estimated through various

traditional methods such as the temporal difference approach, tabular methods,

etc. In the case of complex RL problems, with high dimensional state/action

spaces, the use of novel methods, such as function approximation, can be bene-

ficial in terms of overall training complexity and generalization. The Q-function

can be estimated through a neural network-based function approximation technique

with 𝑄(𝑠′, 𝑎′; 𝜃) ≈ 𝑄(𝑠′, 𝑎′), where 𝜃 represents the weights of the neural network.

Through the training process, the values of 𝜃 can be adjusted to reduce the mean

square error values.

Among several neural network-based deep learning solutions, Deep Q Network (DQN)

is one of the highly explored methods to estimate the policy of the RL agents in

an unstable environment, mainly due to their simplicity. The considered DQN so-

lution involves two networks (i.e., primary and target Q networks) for each level

for estimating the Q function values effectively. The primary network estimates the

real/primary Q-value while the target Q-values are estimated through the target

network. The RL agent uses the backpropagation and gradient descent processes

with mean square error (MSE)-based loss function for reducing the gap between the

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 173

primary and the target Q-values where the loss function is defined as:

𝐿 (𝜃) = E
[(
𝑟 + 𝛾max

𝑎
𝑄𝑡 (𝑠′, 𝑎, 𝜃

′) −𝑄(𝑠, 𝑎, 𝜃)
)2]

(5.39)

where the primary values 𝑄(𝑠, 𝑎, 𝜃) are based upon primary network parameters

𝜃, and 𝑟 + 𝛾max𝑎 𝑄𝑡 (𝑠′, 𝑎, 𝜃
′) is the target Q value based upon the target network

parameters 𝜃
′
.

In the considered HRL framework three RL agents exploiting DQN are considered

to find a proper coverage node selection policy for P1, P2 and P3 to determine the

EC layer, EC node, and offloading amounts. The agent associated with P1 senses

the environment state by processing the data associated with users’ demands, layers

properties, etc., and selects the proper EC layer. This information is then received

by the agent associated with P2 agent along with the current state information. The

P2 agent then uses this information to select a proper EN for data processing. The

intrinsic reward R2 based upon the feedback signal is used to update the EN selection

policies, while the global reward R1 is considered while updating the P1 policies.

The next agent for P3 receives the information from P2 regarding the selected EN

and its properties, used while defining the offloading amount. The intrinsic reward

R3 is used to update the policy of P3 agent. Figure 5.12, details the interaction

between different elements of a proposed HRL framework for a network selection

and offloading process.

Algorithm 8 details the DQN-based HRL process for the formulated network se-

lection and offloading problem. The process begins with the initialization of the

primary/target neural networks (𝑤𝑃
𝐻
, 𝑤𝑇

𝐻
), (𝑤𝑃

𝑀
, 𝑤𝑇

𝑀
), (𝑤𝑃

𝐿
, 𝑤𝑇

𝐿
) associated with P1,

P2 and P3 (lines 1-2). The neural networks associated with P1, P2 and P3 have,

respectively, 𝐿̄1, 𝐿̄2 and 𝐿̄3 fully connected layers with 𝑛𝑙 ,∀𝑙 ∈ 𝐿̄1/𝐿̄2/𝐿̄3, neurons.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 174

Figure 5.12: Functional scheme for the proposed HRL solution.

The training process lasts for 𝑁 episodes with maximum I epochs per episode. Each

training episode begins with the random initial state 𝑠0 (lines 4-5). In each iteration

𝑖𝑡, DQNs are trained through the batch gradient descent approach described in Al-

gorithm 9. The iteration begins by selecting a higher-level action 𝑎1
ℎ̂
through Epsilon

Greedy Policy (EGP) with parameter 𝑒1 (line 8). The information related to the

selected edge layer and its properties is then passed to the next-level DQN i.e., node

selection. Based on the selected layer and the state 𝑠2𝑚 action 𝑎2
𝑚̂
is selected through

EGP with parameter 𝑒2 (lines 10-11). The information associated with the selected

EN is then communicated with the lower level DQN corresponding to the P3 for

defining the offloading policy. Next, from state 𝑠3
𝑙
, action 𝑎3

𝑙̂
is selected through

EGP with parameter 𝑒3 and corresponding intrinsic reward R3 is determined (lines

12-15). The tuple ⟨𝑠3
𝑙
, 𝑎3

𝑙̂
,R3, 𝑠3

𝑙,new⟩ is then saved into replay memory D3 (line 16).

Next, the DQN function is called for updating the parameters of 𝑤𝑃
𝐿
, 𝑤𝑇

𝐿
(line 17),

which is then used to determine the intrinsic reward R2 (line 18). After that, the

DQN for P2 is updated through a gradient descent approach (lines 19-20). Next,

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 175

a global reward R1 is defined (line 21). After that, the DQN for P1 is updated

through a gradient descent approach (lines 22-23). The DQN function defined in

Algorithm 9 takes input as replay memory D1/D2/D3, the batch size 𝑘1/𝑘2/𝑘3,

learning rate 𝜖1/𝜖2/𝜖3 and discount factors 𝛾1/𝛾2/𝛾3. The steps include the random

batch selection (lines 1-2), loss value generation (line 3), primary network parameter

update through gradient descent step (line 4), and target network parameter update

step (line 6).

Algorithm 8 HRL for Network Selection and Offloading

Input: S1,A1,S2,A2,S3,A3,I, 𝑁, 𝑒1, 𝑒2, 𝑒3, |D1 |, |D2 |, |D3 |, 𝜖1, 𝜖2, 𝜖3, 𝛾1, 𝛾2, 𝛾3, 𝑖𝑡
Output: 𝑤𝑃

𝐻
, 𝑤𝑃

𝑀
, 𝑤𝑃

𝐿

1: Initialize 𝑤𝑃
𝐻
, 𝑤𝑃

𝑀
, 𝑤𝑃

𝐿

2: Duplicate policy networks to Target Networks,
i.e., 𝑤𝑇

𝐻
= 𝑤𝑃

𝐻
, 𝑤𝑇

𝑀
= 𝑤𝑃

𝑀
, 𝑤𝑇

𝐿
= 𝑤𝑃

𝐿

3: for all 𝑒𝑝 = 1, . . . , 𝑁 do
4: Select Random 𝑠0
5: 𝑠1

ℎ
← 𝑠0, 𝑖𝑡 = 0

6: while 𝑖𝑡 ≠ I do
7: 𝑖𝑡 = 𝑖𝑡 + 1
8: Select action 𝑎1

ℎ̂
∈ A1 with probability 𝑒1

9: Determine next state (𝑠1
ℎ,new

)

10: Select 𝑠2𝑚 based upon selected EC layer and local properties.
11: Select action 𝑎2

𝑚̂
∈ A2 with probability 𝑒2

12: Determine next state (𝑠2𝑚,new)
13: Select 𝑠3

𝑙
based upon selected coverage node.

14: Select action 𝑎3
𝑙̂
∈ A3 with probability 𝑒3

15: Find next state 𝑠3
𝑙,new

and reward 𝑅3

16: Store D3 ← ⟨𝑠3
𝑙
, 𝑎3
𝑙̂
, 𝑅3, 𝑠3

𝑙,new
⟩

17: 𝑤𝑃
𝐿
, 𝑤𝑇

𝐿
=DQN(D3, 𝑘3, 𝑤𝑃

𝐿
, 𝑤𝑇

𝐿
, 𝑖𝑡, 𝑖𝑡, 𝜖3, 𝛾3)

18: Find Intrinsic Reward R2

19: Store D2 ← (𝑠2𝑚, 𝑎2𝑚̂, 𝑅
2, 𝑠2𝑚,new)

20: 𝑤𝑃
𝑀
, 𝑤𝑇

𝑀
=DQN(D2, 𝑘2, 𝑤𝑃

𝑀
, 𝑤𝑇

𝑀
, 𝑖𝑡, 𝑖𝑡, 𝜖2, 𝛾2)

21: Find Global Reward R1

22: Store D1 ← (𝑠1
ℎ
, 𝑎1
ℎ̂
, 𝑅1, 𝑠1

ℎ,new
)

23: 𝑤𝑃
𝐻
, 𝑤𝑇

𝐻
=DQN(D1, 𝑘1, 𝑤𝑃

𝐻
, 𝑤𝑇

𝐻
, 𝑖𝑡, 𝑖𝑡, 𝜖1, 𝛾1)

24: end while
25: end for
26: return 𝑤𝑃

𝐻
, 𝑤𝑃

𝑀
, 𝑤𝑃

𝐿

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 176

Algorithm 9 DQN Function

Input: D, 𝑘, 𝑤𝑝, 𝑤𝑇 , 𝑖, 𝑖̄, 𝜖 , 𝛾
Output: {𝑤𝑝, 𝑤𝑇 }
1: function DQN(D, 𝑘, 𝑤𝑝, 𝑤𝑇 , 𝑖, 𝑖̄, 𝜖 , 𝛾)
2: Select Random batch of of 𝑘 samples from D
3: Preprocess and pass the batch to 𝑤𝑝

4: Find Loss between primary and Target Q values using (5.39)
5: With gradient descent step update 𝑤𝑝

6: Update 𝑤𝑇 if 𝑟𝑒𝑚(𝑖, 𝑖̄) = 0
7: end function
8: return {𝑤𝑝, 𝑤𝑇 }

5.3.2.3 Benchmark Solutions

Three different benchmark solutions are considered for comparison purposes.

Probabilistic VU-EN assignment In this Random Method (RM) ∀𝑣𝑘 ∈ V we

select the node 𝑒 randomly. The probability of 𝑣𝑘 selecting EN 𝑒 is given by:

𝑃𝑟{𝑎𝑘,𝑒 (𝜏𝑖) = 1} = 1

E𝑘 (𝜏𝑖)
(5.40)

Such random EN selection policies can have a limited impact in terms of task pro-

cessing latency due to improper offloading policies. Such random solutions can be

implemented easily, without guaranteeing optimal load distribution and utilization

of edge resources.

Position-based VU-EN Assignments In this Distance-based Method (DM),

each nearby competing VU is allocated to the ENs based on the available distance

before it passes through the ENs coverage range and the distance between VU and

EN. Thus, ∀𝑣𝑘 ∈ V:

𝑎𝑘,𝑒 (𝜏𝑖) = 1⇔ 𝐷𝑘,𝑒 (𝜏𝑖)
𝑑𝑘,𝑒 (𝜏𝑖)

= max
𝑒∈E𝑘 (𝜏𝑖)

{
𝐷𝑘,𝑒 (𝜏𝑖)
𝑑𝑘,𝑒 (𝜏𝑖)

}
(5.41)

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 177

Such a static approach can reduce the computation complexity of an offloading

process with simplified approaches. However, with these fixed policies, the utilization

of distributed edge resources can be limited, and possibly several VUs can select the

same edge facilities without taking into account the local environment parameters.

This can result in high computation and communication costs during the offloading

process, especially with the presence of a large number of VUs.

Local Computation (LC) In this case, VUs perform the task computation by

themselves without employing any EN. Such an approach can reduce the latency

requirements in terms of data transmission toward ENs. However, without the

parallel computation process between the EC nodes and resource-limited VUs, the

computation latency can grow significantly, unable to satisfy the service latency

demands.

5.3.3 Numerical Results

The proposed HRL-based solution and benchmark approaches are simulated over the

Python environment with ML-related libraries, including NumPy, Pandas, Math,

and Matplotlib. A service area 2 km road network is considered with randomly

located VUs. A set of users between 200 and 2000 are considered with a probability

of being active 𝑃𝑎 = 0.1. Users can reply on six possible different services. Cloud

facility is able to provide all six services. On the other hand, LEO satellites are able

to host 4 services. HAP nodes are equipped with 3 services while RSU and UAVs

can provide 2 services each. The services are installed randomly and in advance.

For the DQN simulation, primary and target networks with layers (𝐿̄1, 𝐿̄2, 𝐿̄3) = 4

are considered with the learning parameters (𝑒1, 𝑒2, 𝑒3) = 0.7, (D1,D2,D3) = 4000,

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 178

Table 5.2: Simulation parameters

Coverage (𝑅𝑟𝑛 , 𝑅𝑙𝑢 , 𝑅ℎ𝑝) (50, 200, 1000) m
VU Computation Cap. (𝑐𝑣,𝑘 · 𝑓𝑣,𝑘) 8 GFLOPS
RSU Computation Cap. (𝑐𝑟𝑛 · 𝑓𝑟𝑛) 20 GFLOPS
LAP Computation Cap. (𝑐𝑙𝑢 · 𝑓𝑙𝑢) 20 GFLOPS
HAP Computation Cap. (𝑐ℎ𝑝 · 𝑓ℎ𝑝) 40 GFLOPS
LEO Computation Cap. (𝑐𝑠1 · 𝑓𝑠1) 60 GFLOPS
Altitude (ℎ𝑙 , ℎℎ, ℎ𝑠) (1, 100, 2000) Km
Bandwidth (𝐵𝑟𝑛 , 𝐵𝑙𝑢 , 𝐵ℎ𝑝 , 𝐵𝑠1) (20, 20, 50, 100) MHz
VU Speed Range (®𝑣min, ®𝑣max). (8 m/s, 14 m/s)
VU Power (𝑃𝑐,𝑣𝑘 , 𝑃𝑡𝑣𝑘 , 𝑃𝑟𝑣𝑘) (1.3, 1.5, 1.3) W
Task Size (𝐷𝑥𝑘) 5 MB
Task Latency Req. (𝑇𝑥𝑘) 4 Sec
Task Computation Req. (Ω𝑥𝑘) (103 · 𝐷𝑥𝑘) Flops
Elevation angle (𝜃𝑚) U(200, (𝜋/2 + 20)𝑜)
Weighting Coefficients (𝜂1, 𝜂2, 𝑤𝑘) (0.5, 0.5, 0.5)

(𝜖1, 𝜖2, 𝜖3) = 0.05, (𝛾1, 𝛾2) = 0.98. Also, the learning process includes 𝑁 = 50 with

I = 103 and 𝑖𝑡 = 50. Main simulation parameters are provided in Table 5.2.

Joint Latency and Energy Cost In this work, we aim to minimize the overall

latency and energy cost associated with vehicular task processing operations over EC

facilities. Fig. 5.13 presents the average cost required for different methods. The

cost values can be impacted by the layer/node selection and offloading decisions.

Regarding the considered benchmark methods, RM randomly selects the layer/node

for processing the VUs’ complete task. With such a suboptimal approach, RM

requires a much higher amount of latency and energy costs for processing the VUs

data. The distance-based benchmark solution, DM, selects the EN according to the

distance measures. However, such a static approach can limit the overall flexibility of

offloading portion in terms of exploration of edge resources. In addition to this, with

the presence of multiple VUs, services, and edge facilities, VUs offloading policies

should be adapted accordingly. With these issues, the DM approach also requires

higher processing costs. The local computation case has a static cost, since it is

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 179

Figure 5.13: Joint Latency and Energy Cost.

unable to take advantage of distributed computing environments, resulting in much

higher latency costs. The proposed HRL method is able to reduce the overall cost

through proper layer/node selections and offloading process. With the help of local

environment data, HRL policies can be adapted to unable efficient edge processing

operations.

Average Latency Cost Given the latency-constraint nature of vehicular scenar-

ios, it is important to analyze the performance of the proposed HRL approach in

terms of latency requirements. In Fig. 5.14, we present the latency performance for

different solution methods highlighting the performance gain for the proposed HRL

case. It can be seen that with suboptimal node/layer selection policies, RM and

DM methods require higher latency costs. With the growing number of VUs, both

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 180

Figure 5.14: Total Task Processing Latency.

DM and RM performance decreases and even becomes worse than the LC approach.

With the LC method, VUs are unable to satisfy the service latency requirements.

The proposed HRL approach can reduce the latency cost significantly through a

proper offloading process.

Average Energy Cost. With the presence of dynamic VUs and different non-

terrestrial platforms, analyzing the energy cost becomes important. In Fig. 5.15,

we have presented the energy requirements for different methods as a weighted av-

erage of both VU side and energy side energy elements. For the LC approach, the

overall energy requirements can be reduced due to the local computation process.

However, as presented before, it suffers from unfeasible computation latency due

to reduced computation resources. With long-distance transmissions and improper

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 181

Figure 5.15: Energy Requirements.

offloading parameters, RM and DM approaches suffer from higher energy require-

ments, especially with the growing number of users. The HRL approach requires

higher energy costs compared to the LC method with the additional data transmis-

sion/reception, and waiting steps. However, it can gain an advantage in terms of

latency and handover requirements.

Average Number of Service Time Failures

Apart from the latency and energy costs associated with the offloading process,

it is also important to analyze the performance of the proposed solution in terms

of service latency requirements. In Fig. 5.16 we have presented the performance

of different methods in terms of satisfaction of service latency constraint defined

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 182

Figure 5.16: Service Time Failures.

in (5.34b). With the complete local process, the LC approach is unable to satisfy

the service latency requirements. Similarly, the other two benchmark solutions (RM,

DM) with static offloading processes, have a large number of service latency failures.

The proposed HRL solution can enable efficient task processing based on VUs local

environments and task requirements, thus reducing the number of service latency

failures. This shows the significance of the proposed HRL solution to enable latency-

critical vehicular services.

Average Number of Sojourn Time Failures. With the presence of dynamic

VUs and non-terrestrial nodes, it is important to analyze the performance of the

proposed solution in terms of a mobility constraint defined in (5.32). With the

mobility constraint, the offloading process should be completed before VUs passes

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 183

Figure 5.17: Sojourn Time Failures.

through the coverage area of a selected EN. Thus the performance can be impacted

by the selected layer/node and the offloading portions. As shown in Fig. 5.17, with

the random node selection approach, the RM method suffers from many mobility

constraint failures. With a distance-based static approach, DM method can have a

reduced number of failures, however, performance can be suboptimal. The proposed

HRL solution can reduce the mobility constraint failures significantly with the proper

offloading decisions in terms of offloading node and amount selections.

Average Number of Service Handovers Required. For the case of considered

multi-service vehicular scenario, it is important to analyze the performance in terms

of a number of service handover requirements. If the selected EN is unable to provide

the requested service, it needs to take additional measures for satisfying the user

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 184

Figure 5.18: Service Handover Requirements.

demands. In a considered simulation, ENs that are unable to provide the demanded

service, relay the user data to the cloud facility, which is having all the services

preinstalled. In Fig. 5.18, we present the performance in terms of such service

handover requirements, for different methods. The proposed HRL method can have

superior performance compared to the other solutions with static or random node

selection strategies.

5.3.4 Conclusions

In this work, we have considered a joint network selection and computation offload-

ing problem over a joint T-NT network for processing vehicular data. A multi-service

vehicular scenario is considered allowing VUs to request different services through

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 185

multiple EC environments. A constrained optimization problem for minimizing the

overall latency and energy costs through proper network selection and offloading

decisions is formed. The considered problem is modeled as a multi-level sequen-

tial decision process and the HRL approach is used to solve it. In particular deep

learning-based strategies are applied to find optimal network selection and offloading

policies. The performance of a proposed method is analyzed through Python-based

solutions and compared with several other benchmark solutions. The considered

approach can further be extended in the future for jointly solving the service place-

ments, network selection, and offloading problems effectively.

5.4 Joint Service Placement, Network Selection

and Offloading: Multi-time Scale Approach

In joint T-NTN-based VEC networks, composed of multiple layers, each VU has

the option to select EC nodes from various layers. Additionally, each node of these

platforms, with its storage resources, can hold a set of services. With this in mind, in

such multi-user vehicular scenarios, with multiple T/NT layers, service placement,

network selection, and computation offloading decisions can be optimized jointly. It

is interesting to notice that the service placement, network selection, and offload-

ing decisions can be performed over different time scales, based on specific demands,

network topologies, and user requirements. For example, the service placement oper-

ation needs a larger time interval and can only be performed/updated at longer time

scales mainly due to centralized controller operations and longer service activation

time [112]. On the other hand, the network selection operation, based on the VUs’

dynamicity and nearby environments, may require a moderate amount of time for

establishing a proper connection between VUs and nearby reliable edge servers [68].

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 186

Finally, task offloading operations will be based upon the VUs task requirements,

and can be performed at shorter time scales, especially in the case of latency-critical

applications [86]. With these issues in mind, in the past, researchers have mainly

focused on either of these three problems and proposed solutions by making some

assumptions about the other two [80]. On the other hand, in some cases, joint opti-

mization of either of these problems has been considered, while assuming the same

time scales [69]. However, such solutions cannot be considered optimal since this

process may require decisions made at different time scales, impacting each other’s

performance.

With these issues in mind, in this work, we aim to solve the joint service placement,

network selection, and offloading problem over the VN environment aimed at min-

imizing the latency and energy costs by considering proper time scales. For this,

we first model the latency and energy elements involved in this process and map

them on a constrained optimization problem over a dynamic VN. Next, we exploit

an RL approach to solve the problem, in particular by modeling it as a Markov De-

cision Process (MDP). With the involvements of multiple time scales, we consider a

multi-time scale MDP approach by modeling three different MDPs impacting each

other’s decisions for the considered problem. This allows us to solve the problem at

different time scales effectively.

The main contributions of this work can be summarized in the following points:

• Multi-time Scale Approach: A system model is defined with a multi-time

scale approach for the service placement, network selection, and computation

offloading process with dynamic VUs. Further, a constrained optimization

problem is formed to minimize a proper cost function, including also latency

and energy terms by performing a dynamic service placement, network selec-

tion, and offloading process.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 187

• MDP Solutions: The service placement, network selection, and offloading

problems are modeled as a sequential decision-making process through proper

multi-dimensional MDP models. A multi-time scale MDP process is adapted

for enabling decision-making at different time scales and optimal policy is

determined through the deep Q-learning approach.

• Performance Evaluation: The simulation results of the proposed meth-

ods are compared with a set of benchmark methods and their effectiveness is

evaluated. In the end, proper conclusions are drawn based on the findings.

5.4.1 System Model and Problem Formulation

We focus on an IoV scenario with multiple EC layers and randomly distributed

VUs on the road scenario. We consider a multi-layered (𝑙 = 0, . . . , 𝐿 with 𝐿 = 3)

joint air-ground network, composed of HAPs (𝑙 = 3), UAVs (i.e., LAP nodes) (𝑙 =

2), RSUs (𝑙 = 1), deployed along the road paths, and randomly distributed VUs

(𝑙 = 0) traveling on a road in either directions, where V = {𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑀},

R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 }, U = {𝑢1, . . . , 𝑢𝑝, . . . , 𝑢𝑃}, correspond to the sets denoting

𝑀 VUs, 𝑁 RSUs and 𝑃 UAVs, respectively. Additionally, one HAP node is denoted

as 𝐻ℎ. In the considered vehicular scenario, VUs can request services characterized

by different requirements. By assuming that S = {𝑆1, . . . , 𝑆𝑠, . . . , 𝑆𝑆} is the set of all

the possible services that can be provided, due to the limited available resources, the

generic 𝑗th EN from 𝑙th layer can provide only a subset of services equal to Ŝ𝑙
𝑗
⊂ S.

The system is modeled in a time-discrete manner, and the network parameters

are supposed to be constant over each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th

time interval, i.e., 𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1) 𝜏]}. The generic 𝑚th VU, is character-

ized by a processing capacity equal to 𝑐𝑣,𝑚 Floating Point Operations per Second

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 188

(FLOPS) per CPU cycle, while its CPU frequency is 𝑓𝑣,𝑚. Each VU is supposed

to be able to communicate on a bandwidth 𝐵rsu𝑣,𝑚 (𝜏𝑖) with each RSU, with a band-

width 𝐵LAP
𝑣,𝑚 (𝜏𝑖) with each UAV and with a bandwidth 𝐵HAP

𝑣,𝑚 (𝜏𝑖) with the HAP. Each

𝑣𝑚 ∈ V is supposed to be active in each time interval with a probability 𝑝𝑎 within

which it generates a computation task request 𝜌𝑚 (𝜏𝑖) identified through the tuple〈
𝐷𝜌𝑚 , 𝐷

𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚 , 𝑆𝜌𝑚

〉
corresponding to a task with size 𝐷𝜌𝑚 Byte, expected to

give in output a result with size 𝐷𝑟𝜌𝑚 Byte, requesting Ω𝜌𝑚 CPU execution cycles and

a maximum execution latency 𝑇𝜌𝑚 . Here, 𝑆𝜌𝑚 ∈ S corresponds to a specific service

requested by VU 𝑣𝑚 that belongs to a set of services S provided by the network

service provider. In addition, the average request rate for the 𝑠th service is modeled

through the Zipf distribution function given by 𝜆𝑠 (𝜏𝑖) = 1/𝜅𝑠𝛽 where, 𝜅 =
∑
𝑠 1/𝑠𝛽

with 𝛽 ∈ [0, 1] being the popularity skew index [113].

The 𝑛th RSU, supposed to be in a fixed position with a coverage radius 𝑅𝑟,𝑛, is

characterized by a processing capability equal to 𝑐𝑟,𝑛 FLOPS per CPU cycle, with

CPU frequency 𝑓𝑟,𝑛, CPU cores L𝑟,𝑛, and communication capabilities, supposed to

be identified through a communication technology able to cover the VUs on ground

with an overall bandwidth 𝐵𝑟,𝑛. Each RSU can provide EC services to the VUs in its

coverage space. As mentioned before, with its limited resources, 𝑟𝑛 can store only a

subset of services Ŝ1
𝑟𝑛
⊂ S. In addition, the area is supposed to be under the coverage

of multiple UAVs with 𝑝th UAV at altitude ℎ̄𝑢,𝑝 and coverage radius 𝑅𝑢,𝑝. The 𝑝th

UAV is supposed to move with a relatively slow speed compared with VUs and is

characterized by a processing capability equal to 𝑐𝑢,𝑝 FLOPS per CPU cycle, with

CPU frequency 𝑓𝑢,𝑝 and L𝑢,𝑝 CPU cores. In addition, its communication capabilities

are supposed to be identified through a communication technology able to work on

a bandwidth 𝐵𝑢,𝑝. Each UAV can serve a set of VUs and RSUs in its coverage space.

Here, the 𝑝th UAV, with its limited resources, can provide up to Ŝ2
𝑢𝑝
⊂ S services to

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 189

Figure 5.19: The T/NT Integrated Scenario.

the VUs. Being a centralized node with powerful computation and communication

resources, we assume that the HAP node can provide the whole service set S to

the VUs in its coverage range of 𝑅ℎ meters, with computation capacity equal to

𝑐ℎ FLOPS per CPU cycle, with CPU frequency 𝑓ℎ and Lℎ CPU cores and having

bandwidth 𝐵ℎ. Also, the HAP node is located at altitude ℎ̄ℎ. Fig. 5.19 shows the

basic system elements and various communication links between them.

5.4.1.1 VU Mobility Model

Compared with the highly dynamic VUs, the aerial network platforms move more

slowly and often have negligible impacts over VUs overall mobility parameters, i.e.,

relative distance speed locations, etc. Also, these platforms can follow predefined

mobility patterns based on operators’ settings. Therefore, in this work, we consider

that the air networking nodes (i.e., UAVs and HAP) are located at a fixed position

in a given interval of time, while VUs move with a variable speed ®𝑣𝑚 (𝜏𝑖). We

suppose that the VUs’ speed is bounded within ®𝑣min and ®𝑣max while the the 𝑚th

VU instantaneous speed is modeled through a truncated normal distribution density

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 190

function [114]:

𝑓 (®𝑣𝑚 (𝜏𝑖)) =



2𝑒
−(®𝑣𝑚 (𝜏𝑖)−𝜇)2

2𝜎2

𝜎
√
2𝜋

(
erf

(
®𝑣max−𝜇
𝜎
√
2

)
− erf

(
®𝑣min−𝜇
𝜎
√
2

)) ,
®𝑣min ≤ ®𝑣𝑚 (𝜏𝑖) ≤ ®𝑣max

0, else

(5.42)

where 𝜇 and 𝜎 are the mean and standard deviation of the vehicles speed, and

erf (𝑥) is the Gauss error function over 𝑥. The path length, within which the 𝑚th

VU remains under the coverage of the 𝑗th node (i.e., RSU, UAV or HAP), is given

by 𝐷𝑣𝑚, 𝑗 (𝜏𝑖) =
√︃
𝑅2
𝑗
−

(
𝑦 𝑗 − 𝑦𝑣𝑚 (𝜏𝑖)

)2 ± (
𝑥 𝑗 − 𝑥𝑣𝑚 (𝜏𝑖)

)
where,

(
𝑥𝑣𝑚 (𝜏𝑖), 𝑦𝑣𝑚 (𝜏𝑖)

)
is the

location of the 𝑚th VU at 𝜏𝑖 and
(
𝑥 𝑗 , 𝑦 𝑗

)
is the projection over the ground of a

generic 𝑗th node, which can be RSU, UAV or HAP. The available sojourn time for

the 𝑚th VU with respect to a generic 𝑗th node is 𝑇 soj
𝑣𝑚, 𝑗
(𝜏𝑖) =

𝐷𝑣𝑚, 𝑗 (𝜏𝑖)
|®𝑣𝑚 (𝜏𝑖) | .

5.4.1.2 Multi-time Scale Approach

The service placement operations often require larger time intervals for updating

over different EN mainly due to the virtual service activation latency, longer back-

haul delays, etc. [115]. Here, the service placement operations are performed at

discrete time intervals lasting Δsp, where 𝜏sp
𝑖

identifies the 𝑖th time interval, i.e.,

𝜏
sp
𝑖

= {∀𝑡 |𝑡 ∈ [𝑖Δsp, (𝑖 + 1) Δsp]}. The network selection decisions can be made at

a moderate time scale compared with the service placement problem. The time

scale is modeled in a time-discrete manner, with time interval Δns, where 𝜏ns
𝑖

identi-

fies the 𝑖th time interval, i.e., 𝜏ns
𝑖

= {∀𝑡 |𝑡 ∈ [𝑖Δns, (𝑖 + 1) Δns, 0 < (𝑖 + 1) Δns ≤ Δsp]}.

Note that the maximum number of time steps is a function of Δsp, correspond-

ing to the time step of the service placement problem. With the high dynam-

icity and the frequent task requests, the computation offloading decisions should

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 191

be performed on a shorter time scale. The time scale for the offloading process

is time-discrete with time interval Δoff, where 𝜏off
𝑖

identifies the 𝑖th time interval,

i.e., 𝜏off
𝑖

=
{
∀𝑡 |𝑡 ∈

[
𝑖Δoff, (𝑖 + 1) Δoff, 0 < (𝑖 + 1) Δoff ≤ Δns

]}
. Note that the maximum

number of offloading time steps is based upon the Δns value, corresponding to the

time step of the network selection problem.

Over time, vehicular service placement needs to be updated for serving the end-users

based on their demands as well as for the proper resource utilization over the EC

facilities. We define a binary service placement parameter 𝑏(𝑆𝑠, 𝑗 , 𝑙, 𝜏sp𝑖) as,

𝑏(𝑆𝑠, 𝑗 , 𝑙, 𝜏sp𝑖) =


1 𝑆𝑠 ∈ Ŝ𝑙𝑗

0 else

with,
𝑆∑︁
𝑠=1

𝑏(𝑆𝑠, 𝑗 , 𝑙, 𝜏sp𝑖) ≤ |Ŝ
𝑙
𝑗 |, ∀ 𝑗 (5.43)

where 𝑏(𝑆𝑠, 𝑗 , 𝑙, 𝜏𝑖) = 1 models the network operators decision of placing the service

𝑆𝑠 on the 𝑗th node at 𝜏sp
𝑖
. Notice that the service placement remains the same over

the Δsp time interval, in which multiple network selection and offloading steps are

performed.

Based on their limited coverage ranges, each VU can be covered by several RSUs,

UAVs, and one HAP node. Here, we define a decision matrix A(𝑀, 𝐽 (𝑙), 𝑙, 𝜏ns
𝑖
) ={

𝑎 (𝑣𝑚, 𝑗 ,𝑙) (𝜏ns𝑖) ∈ {0, 1}
}
with dimension 𝑀 × 𝐽 (𝑙), where 𝐽 (𝑙) is the amount of ENs

in the 𝑙th layer. Here, 𝑎 (𝑣𝑚, 𝑗 ,𝑙) is equal to 1 if the 𝑚th VU selects the 𝑗th EN from

layer 𝑙 for offloading its task, otherwise it takes value 0. VUs can either select RSU

(𝑙 = 1), UAV (𝑙 = 2), or HAP (𝑙 = 3) for offloading their data. Also, to avoid

additional complexity we consider that each VU can be assigned to only one EN

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 192

which can be RSU, UAV, or HAP during the offloading process. Thus,

𝐿∑︁
𝑙=1

𝐽 (𝑙)∑︁
𝑗=1

𝑎 (𝑣𝑚, 𝑗 ,𝑙) (𝜏ns𝑖) = 1, ∀𝑣𝑚 (5.44)

The number of VUs requesting services from the 𝑗th EN is given by 𝐾 𝑗 ,𝑙 (𝜏ns𝑖) =∑𝑀
𝑚=1 𝑎 (𝑣𝑚, 𝑗 ,𝑙) (𝜏ns𝑖). With their limited resources, ENs can provide services to the

VUs before task communication and computation costs become unbearable. We

consider that 𝐾max
𝑗 ,𝑙

is the maximum number of VUs that can access to the services

of the 𝑗th node.

We assume to perform partial offloading, where tasks can be split and processed re-

motely while the remaining portion is processed locally [80]; the offloaded portion by

the 𝑚th VU at 𝜏off
𝑖

is identified as 𝛼𝜌𝑚 (𝜏off𝑖) ∈ [0, 1]. With multiple VUs requesting

services, during the offloading process, the following constraints need to be taken

into account:



𝐾 𝑗 ,𝑙 (𝜏ns𝑖) ≤ 𝐾max
𝑗 ,𝑙 (5.45a)

𝐾 𝑗 ,𝑙 (𝜏ns𝑖)∑︁
𝑚=1

𝑐
𝜌𝑚
𝑗 ,𝑙
(𝜏ns𝑖) · 𝑓

𝜌𝑚
𝑗 ,𝑙
(𝜏ns𝑖) ≤ (L 𝑗 ,𝑙 · 𝑐 𝑗 ,𝑙 · 𝑓 𝑗 ,𝑙) (5.45b)

𝐾 𝑗 ,𝑙 (𝜏ns𝑖)∑︁
𝑚=1

𝑏
𝜌𝑚
𝑗 ,𝑙
(𝜏ns𝑖) ≤ 𝐵 𝑗 ,𝑙 (5.45c)

∀𝑖; 𝑗 = 1, . . . , 𝐽 (𝑙); 𝑙 = 1, . . . , 𝐿

where 𝑐
𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖
) · 𝑓 𝜌𝑚

𝑗 ,𝑙
(𝜏ns
𝑖
) is the processing capacity of the 𝑗th EN from layer 𝑙

assigned to the 𝑚th VUs task, 𝑏
𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖
) is the communication resource assigned to

the VU for communicating with the 𝑗th EN. We consider that the EN resources are

shared equally among the requesting VUs. Eq. (5.45) models an upper bound on the

number of users connected, processing capacity and the communication resources of

the ENs.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 193

Task Computation Model The generic expression for the time and energy spent

for the 𝜌𝑚th task computation on a 𝑗th device is given by [69]:

𝑇
𝜌𝑚
𝑐, 𝑗

=
Ω𝜌𝑚

𝑐
𝜌𝑚
𝑗
𝑓
𝜌𝑚
𝑗

, 𝐸
𝜌𝑚
𝑐, 𝑗

= 𝑇
𝜌𝑚
𝑐, 𝑗
𝑃𝑐, 𝑗 (5.46)

where 𝑐
𝜌𝑚
𝑗
, 𝑓

𝜌𝑚
𝑗

and 𝑃𝑐, 𝑗 are the number of FLOPS, CPU-frequency per CPU-cycle

assigned to the 𝑚th user, and computation power, respectively, whether 𝑗 identifies

a VU (𝑣𝑚), a RSU (𝑟𝑛), UAV (𝑢𝑝) or a HAP (𝐻ℎ).

Task Communication Model For the case of a partial computation offloading,

the transmission time and energy between a generic node 𝑗 and a generic node

𝑘 for task 𝜌 𝑗 is given by6 𝑇
𝜌 𝑗

𝑡𝑥, 𝑗 𝑘
(𝜏𝑖) =

𝐷𝜌 𝑗
𝑟 𝑗𝑘 (𝜏𝑖) and 𝐸

𝜌 𝑗

𝑡𝑥, 𝑗 𝑘
(𝜏𝑖) = 𝑇

𝜌 𝑗

𝑡𝑥, 𝑗 𝑘
(𝜏𝑖)𝑃𝑡 𝑗 , respec-

tively, where 𝑟 𝑗 𝑘 (𝜏𝑖) is data-rate of the link between the two nodes, while 𝑃𝑡 𝑗 is the

transmission power of 𝑗th node. Similarly, the reception time and energy at the

𝑗th node to receive the task of size 𝐷𝑟𝜌 𝑗 from 𝑘th EN are 𝑇
𝜌 𝑗

𝑟𝑥,𝑘 𝑗
(𝜏𝑖) =

𝐷𝑟𝜌 𝑗
𝑟𝑘 𝑗 (𝜏𝑖) and

𝐸
𝜌 𝑗

𝑟𝑥,𝑘 𝑗
(𝜏𝑖) = 𝑇

𝜌 𝑗

𝑟𝑥,𝑘 𝑗
(𝜏𝑖)𝑃𝑟 𝑗 , respectively, where 𝑃𝑟 𝑗 is the power spent for receiving

data. A symmetric channel is considered between 𝑗 and 𝑘.

In this work, for modeling the characteristics of a channel between the 𝑗th and the

𝑘th node at 𝑖th interval [111], we consider that the link gain can be modeled as

ℎ 𝑗 ,𝑘 (𝜏𝑖) = 𝛽0 · 𝑑𝜃
𝑘

𝑗 ,𝑘
(𝜏𝑖), where 𝑑 𝑗 ,𝑘 (𝜏𝑖) is the distance between node 𝑗 and 𝑘 at 𝑖th

interval, 𝛽0 is the channel power gain at 1m reference distance, while 𝜃𝑘 is the path

loss coefficient for the the communication link between node 𝑗 and 𝑘. The expression

for the channel transmission rate is based on the Shannon capacity formula and can

be written as:

𝑟 𝑗 𝑘 (𝜏𝑖) = 𝑏
𝜌 𝑗

𝑙
(𝜏𝑖) log2

(
1 +

𝑃𝑡 𝑗 · ℎ 𝑗 ,𝑘 (𝜏𝑖)
𝑁0

)
∀ 𝑗 , 𝑘

6In the following we identify with 𝑗 and 𝑘 the indexes of any generic node. Hence, 𝑗 and 𝑘 can
have any index among 𝑣𝑚, 𝑟𝑛, 𝑢𝑝 and 𝐻ℎ.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 194

where 𝑃𝑡 𝑗 is the transmission power of a node 𝑗 , 𝑏
𝜌 𝑗

𝑘
(𝜏𝑖) is the communication

bandwidth, and 𝑁0 = 𝑁𝑇𝑏
𝜌 𝑗

𝑘
(𝜏𝑖) is the thermal noise power with noise power spectral

density 𝑁𝑇 .

Task Offloading Process

If 𝑚th VU is assigned to 𝑗th EN, then the time and energy required to offload the

portion of task with offloading parameter 𝛼𝜌𝑚 to the selected EN and to get back

the result in the 𝑖th interval is given by:

𝑇off
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) = 𝛼𝜌𝑚 (𝜏off𝑖)

(
𝑇
𝜌𝑚
𝑡𝑥,𝑣𝑚 𝑗

(𝜏off𝑖) + 𝑇
𝜌𝑚
𝑐, 𝑗
(𝜏off𝑖) + 𝑇

𝜌𝑚
𝑟𝑥, 𝑗𝑣𝑚

(𝜏off𝑖)
)

(5.47a)

𝐸off
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) = 𝛼𝜌𝑚 (𝜏off𝑖)

(
𝐸
𝜌𝑚
𝑡𝑥,𝑣𝑚 𝑗

(𝜏off𝑖) + 𝐸
𝜌𝑚
𝑟𝑥, 𝑗𝑣𝑚

(𝜏off𝑖)
)

(5.47b)

where, similarly to other approaches, e.g., [78, 116], the analysis has been simplified

by limiting to the user-side energy consumption.

Local Computation The amount of time and energy required for the local com-

putation of the remaining task in the 𝑖th interval is (from (5.46)),

𝑇 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off𝑖)) =

(
1 − 𝛼𝜌𝑚 (𝜏off𝑖)

)
𝑇
𝜌𝑚
𝑐,𝑣𝑚 (5.48a)

𝐸 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off𝑖)) =

(
1 − 𝛼𝜌𝑚 (𝜏off𝑖)

)
𝐸
𝜌𝑚
𝑐,𝑣𝑚 (5.48b)

Partial Computation Offloading From (5.47) and (5.48), the delay and the

energy consumed during the task processing phases when partial offloading is per-

formed (in the 𝑖th offloading interval) can be written as:

𝑇
𝜌𝑚
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) = max

{
𝑇off
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)), 𝑇 loc

𝑣𝑚
(𝛼𝜌𝑚 (𝜏off𝑖))

}

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 195

𝐸
𝜌𝑚
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) = 𝐸off

𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) + 𝐸 loc

𝑣𝑚
(𝛼𝜌𝑚 (𝜏off𝑖))

where the local and offloaded computing are supposed to be performed in parallel.

Each VU should finish the offloading process and receive the results back within the

sojourn time, hence:

𝑇off
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) ≤ 𝑇

soj
𝑣𝑚, 𝑗
(𝜏off𝑖) ∀𝑖 (5.49)

Service Placement Penalty In a multi-service VN, if a selected EN is unable to

provide a requested service, VUs need to pay additional costs in terms of handover

costs. Various mechanisms can be adapted in such situations. For example, the

selected EN can transfer the VUs data to the nearby EN able to provide a requested

service. In another case, the selected EN can request a centralized orchestrator for

providing the requested service. Such operations can lead to additional penalties

in the overall offloading process. Therefore, here we introduce a generic service

placement penalty during the offloading process defined as

𝑐(𝜏off𝑖) =


𝜁 if 𝑏(𝑆𝜌𝑚 , 𝑗 , 𝑙, 𝜏

sp
𝑖
) ≠ 1 ∧ 𝑎 (𝑣𝑚, 𝑗 ,𝑙) (𝜏ns𝑖) = 1

0 otherwise

where 𝜁 is the constant penalty when selected EN is not able to provide a requested

service.

5.4.1.3 Problem Formulation

The main aim of this work is to optimize the network-wide performance of the EC-

enabled multiservice VN. We aim to optimize the performance in terms of overall

latency, energy, and service placement during the offloading process. Our main

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 196

P1 : min
A,A,B


1

𝑇 · 𝑀

𝑇−1∑︁
𝜏
sp
𝑖̄

=0

𝜏
sp
𝑖̄
+Δsp−Δns∑︁
𝜏ns
𝑖̂

=𝜏
sp
𝑖̄

𝜏ns
𝑖̂
+Δns−Δoff∑︁
𝜏off
𝑖

=𝜏ns
𝑖̂

(
𝐿∑︁
𝑙=1

𝐽 (𝑙)∑︁
𝑗=1

𝑀∑︁
𝑚=1

[
𝛾1𝑇

𝜌𝑚
𝑣𝑚, 𝑗

(
𝛼𝜌𝑚 (𝜏off𝑖)

)
+

𝛾2𝐸
𝜌𝑚
𝑣𝑚, 𝑗

(
𝛼𝜌𝑚 (𝜏off𝑖)

)
+ 𝑐(𝜏off𝑖)

])}
(5.9)

objective is to optimize the overall networking cost through the proper selection of

ENs for service placement and computation offloading operations simultaneously.

Additionally, offloading the optimal amount of data toward them further reduces

the overall latency and energy cost. For this, we formulate the joint latency, energy,

and service placement cost minimization problem as in (5.9), subject to:

C1 : Eq. (5.43) (5.51)

C2 : Eq. (5.44) (5.52)

C3 : Eqs. (5.45a), (5.45b) and (5.45c) (5.53)

C4 : Eq. (5.49) (5.54)

C5 : 𝑇
𝜌𝑚
𝑣𝑚, 𝑗

(
𝛼𝜌𝑚 (𝜏off𝑖)

)
≤ 𝑇𝜌𝑚 ∀V,∀𝑖, 𝑗 (5.55)

C6 : 𝐸off
𝑣𝑚, 𝑗
(𝛼𝜌𝑚 (𝜏off𝑖)) < 𝐸 loc

𝑣𝑚
(𝛼𝜌𝑚) (5.56)

C7 : 0 ≤ 𝛾1, 𝛾2 ≤ 1; 𝛾1 + 𝛾2 = 1 (5.57)

whereA = {𝛼𝜌𝑚 (𝜏off𝑖)}𝑀 is the computation offloading matrix, A = {A(𝑀, 𝐽 (𝑙), 𝑙, (𝜏ns
𝑖̂
))}

is the set of VU-EN assignment matrix, B = {𝑏(𝑆𝑠, 𝑗 , (𝜏sp𝑖̄))} is the service placement

matrix, 𝛾1 and 𝛾2 are weight coefficients for balancing latency and energy consump-

tion, and 𝑇 is the whole time interval considered. C1 puts a limit on the maximum

number of services placed on each EN 𝑗 . C2 stands that each VU can select at most

one EN for the computation offloading. C3 provides the limits over the number

of user requests, processing capacity and bandwidth resource blocks requested by

VUs towards ENs. According to C4, for avoiding handover phenomena and related

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 197

latency, each VU should complete the offloading process before it passes through

the selected ENs coverage. C5 puts a limit on the maximum processing time as one

of the task requirements. In order to have a valid offloading process, according to

C6, the weighted energy consumed on VU for processing a complete task should be

lower than the total weighted energy require to compute a complete task locally. C7

stands that the two weighting coefficients (𝛾1, 𝛾2) should be between 0 and 1 with

a sum equal to 1.

5.4.2 Multi-time Scale Optimization

In the considered scenario, the service placement decisions taken by the centralized

operator can impact the users’ network selection possibilities and corresponding

outcomes in terms of accessing the services with reduced costs. On the other hand,

the network selection decisions made by the VUs can further impact the offloading

decision and, thus, corresponding task processing costs. Thus, these processes and

corresponding decisions can form a hierarchy of decisions impacting each other’s per-

formances. In addition to this, these decisions should be made at different time scales

(i.e., Δsp,Δns,Δoff). This leads to a multi-time scale optimization process involving

multiple layers of decisions impacting each other. The considered multi-time scale

optimization problem can be solved effectively through sequential decision-making

processes, e.g., MDP, where a multi-time scale MDP model [117] can be considered

to solve the problem of joint service placements, network selection, and computation

offloading effectively. In the following, we define a Multi-Time scale MDP (MDP-

MT) as represented in Fig. 5.20 through several basic elements discussed in the

following.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 198

Figure 5.20: Multi-scale MDP Model for the Service Placement, Network Se-
lection, and Offloading Problem.

5.4.2.1 Service Placement MDP

The service placement MDP corresponds to the MDP model for solving the network

service placement problem over resource-constrained EN for satisfying the VUs’

demands. The service placement decisions can be taken over a longer time scale

Δsp.

The discrete state space for the service placement MDP is defined as Ssp = {𝑠sp1 , · · · , 𝑠
sp
𝑢 , · · · , 𝑠sp𝑈 }

with maximum 𝑈 states. Ssp is modeled as a function of the number of EN available

and the service placement updates over time. Thus, 𝑠sp𝑢 (𝜏sp𝑖)={𝑁 (𝜏
sp
𝑖
), 𝑃(Δsp

𝑖
), 𝐻 (𝜏sp

𝑖
), 𝑃𝑅

(𝜏sp
𝑖
), 𝑃𝑈 (𝜏sp𝑖), 𝑃𝐻 (𝜏

sp
𝑖
)}, where 𝑃𝑅 (𝜏sp𝑖)𝑁 (𝜏sp𝑖)×𝑆, 𝑃𝑈 (𝜏

sp
𝑖
)𝑃(𝜏sp

𝑖
)×𝑆, and 𝑃𝐻 (𝜏

sp
𝑖
)𝐻 (𝜏sp

𝑖
)×𝑆

are the binary matrices modeling the change in the service placement over different

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 199

edge layers at 𝜏sp
𝑖
. For example, if the selected action places the 𝑠th service over 𝑛th

RSU then 𝑃𝑅 (𝜏sp𝑖) (𝑖, 𝑗) = 1, else it takes value zero.

A discrete set of actions are defined through Asp = {𝑎sp1 , · · · , 𝑎
sp
𝑢 , · · · , 𝑠

sp

𝑈
} with

maximum 𝑈 actions. Asp includes all the feasible service placement options that

can be employed by an orchestrator. For limiting the complexity of the MDP we

have assumed that all the ENs from the same edge layer have the same subset of

services placed on them.

The performance of service placement MDP is measured through the feedback signal

generated as a sum of the total reward received during the offloading and network

selection process as shown in Fig. 5.21, i.e., the hierarchical feedback process.

5.4.2.2 Network Selection MDP

The network selection MDP model corresponds to the network selection problem

where decisions are made at a moderate time scale Δns compared with the service

placement problem. The network selection problem aims to find a proper EN that is

able to provide the requested service. If the requested service is not available at the

selected EN then the additional costs may be included in terms of service handovers.

Thus, the decisions made by the network selection MDP will also be based upon the

current state-action pairs of the service placement MDP model. In addition to this,

several local environment parameters such as other competing VUs, available ENs,

and their states, the requested service type, etc., can impact the network selection

decision. Providing a one-fit-all model in such dynamic situations can reduce overall

performance. With this in mind, here, we induce local environment parameters

collected through the V2X technology into the MDP process by modeling it through

different scenarios. In particular, vehicular scenarios set Ω = {𝑘1, · · · , 𝑘𝑔, · · · , 𝑘𝐺}

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 200

based upon local vehicular density D, the number of RSUs 𝑅𝑚, UAVs 𝑈𝑚 and HAP

nodes 𝐻ℎ covering the VU and the requested service type. Here 𝐺 is the maximum

number of considered scenarios. Thus the generic 𝑔th scenario, 𝑘𝑔, is defined as a

tuple 𝑘𝑔 = ⟨D, 𝑅𝑚,𝑈𝑚, 𝑅𝑚, 𝑆𝜌𝑚⟩ with,

D =



0 if 1 ≤ 𝑀 < 𝑀1

1 if 𝑀1 ≤ 𝑀 < 𝑀2

2 if 𝑀2 ≤ 𝑀

where 𝑀1 and 𝑀2 are parameters introduced for classifying the VUs traffic scenarios

into low, medium, and high density.

Next, we define the state-space for the network selection MDP as Sns = {𝑠ns𝑚 (𝜏ns𝑖)}

with 𝑠ns𝑚 (𝜏ns𝑖) ∈ {(𝑠ns𝑣𝑚 , 𝑠
ns
𝑒)}. The individual state 𝑠ns𝑚 (𝜏ns𝑖) is based upon the VU side

state (𝑠ns𝑣𝑚), and the selected ENs state 𝑠ns𝑒 where 𝑒 can be a RSU, UAV or HAP

node. The VUs state 𝑠ns𝑚 (𝜏ns𝑖) is modeled through the requested service 𝑆𝜌𝑚 , 𝑑𝑚,𝑒,

the distance between VU and the EN, and 𝐷𝑣𝑚,𝑒, the distance before VU passes

through the coverage area of 𝑒.

The action space for VUs in scenario 𝑔 is defined as Asp
𝜅𝑔 = {𝑎ns

𝑚̄, 𝑗
(𝜏ns
𝑖
)} for the

network selection MDP corresponds to all possible sets of actions with individual

actions, 𝑎ns𝑚̄,𝑔 (𝜏ns𝑖) = [{0, 1}1×𝑅𝑚 , {0, 1}1×𝑈𝑚 , {0, 1}1×𝐻𝑚],with
∑
𝑎ns𝑚̄,𝑔 (𝜏ns𝑖) = 1

The performance of network selection MDP is measured through the feedback signal

generated as a sum of rewards received during the offloading process, as shown in

Fig. 5.21.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 201

5.4.2.3 Computation Offloading MDP

The computation offloading problem aims to find a proper amount of data to be

offloaded toward a selected EN. With the high dynamicity and the frequent task

requests, such decisions should be performed over a fast time scale Δoff. The compu-

tation offloading process should be concluded before VU passes through the coverage

range of a selected EN. In addition, the complete task processing operation should

be performed within a given task latency requirement, and a proper amount of data

should be offloaded for minimizing the energy costs of VUs’ local data computa-

tion and data transmission operations. The performance of offloading MDP can

be impacted by the decisions of network selection and service placement MDPs.

The incorrect EN selection during the network selection process or the imperfect

alignments of services over different ENs can lead to limited performance during the

offloading phases.

By taking into account the various performance requirements of MDP, here we in-

troduce a discrete state space for the offloading MDP problem that is based upon

following three binary functions that model the behavior of offloading MDP over

time. If the 𝑚th VU is assigned to the 𝑛th EN and performs offloading opera-

tion with offloading parameter 𝛼𝜌𝑚 , the environment can be modeled through three

proper binary functions, as:

𝐹1
𝜌𝑚,𝑛
(𝜏off𝑖) =


0 𝑇off

𝑚,𝑛 (𝛼𝜌𝑚 (𝜏off𝑖)) ≤ 𝑇
soj
𝑚,𝑛 (𝜏off𝑖)

1 else

𝐹2
𝜌𝑚,𝑛
(𝜏off𝑖) =


0 𝑇

𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏off𝑖)

)
≤ 𝑇𝜌𝑚

1 else

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 202

𝐹3
𝜌𝑚,𝑛
(𝜏off𝑖) =


0 𝐸off

𝑚,𝑛 (𝛼𝜌𝑚 (𝜏off𝑖)) < 𝑤1𝐸
𝜌𝑚
𝑐,𝑚

1 else

where 𝐹1
𝜌𝑚,𝑛
(𝜏off
𝑖
), 𝐹2

𝜌𝑚,𝑛
(𝜏off
𝑖
) and 𝐹3

𝜌𝑚,𝑛
(𝜏off
𝑖
) are the binary functions depending upon

the sojourn time constraint (5.49), application latency requirement (5.55) and the

energy constraint (5.56), respectively.

The discrete state space for the computation offloading MDP is defined as Soff ={
𝑠off1 , · · · , 𝑠

off
𝑙
, · · · , 𝑠off

𝐿

}
with maximum 𝐿 states with the individual state defined as

𝑠off
𝑙
(𝜏off
𝑖
) =

{
𝐹2
𝜌𝑚,𝑛
(𝜏off
𝑖
), 𝐹2

𝜌𝑚,𝑛
(𝜏off
𝑖
), 𝐹3

𝜌𝑚,𝑛
(𝜏off
𝑖
)
}
. The action space Aoff = {𝑎off

𝑙̄
} for

the computation offloading MDP is defined as Aoff = [0,Λ, 2Λ, · · · , 1], where Λ is

the step change in the value of offloading parameter 𝛼𝜌𝑚 .

5.4.2.4 Reward Function

The performance of the MDP can be described through a joint reward function

defined as,

𝑟off(𝑠off𝑙) = 𝛾1𝑇
𝜌𝑚
𝑣𝑚, 𝑗

(
𝛼𝜌𝑚 (𝜏off𝑖)

)
+ 𝛾2𝐸 𝜌𝑚𝑣𝑚, 𝑗 (𝛼𝜌𝑚 (𝜏

off
𝑖))

+ 𝑐(𝜏off𝑖) + 𝐹1
𝜌𝑚,𝑛
(𝜏off𝑖) + 𝐹2

𝜌𝑚,𝑛
(𝜏off𝑖) + 𝐹3

𝜌𝑚,𝑛
(𝜏off𝑖) (5.58)

The total reward received is the sum of latency, energy costs, service placement, and

additional constraint failure penalties.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 203

𝑅sp(𝑠sp𝑢 (Δsp
𝑘
), 𝑎sp𝑢 (Δ

sp
𝑘
), 𝑠ns𝑚 , 𝜋ns𝑚 , 𝑠off𝑙 , 𝜋

off
𝑙) =

E
𝑠ns0 ,𝑠

off
0

𝑠
sp
𝑢 ,𝑎

sp
𝑢

{ (𝜏sp
𝑘
+Δsp−Δns)∑︁
𝜏ns
𝑖

=𝜏
sp
𝑘

𝛼
𝜎1 (𝜏ns𝑖)
1

(𝜏ns
𝑖
+Δns−Δoff)∑︁
𝜏off
𝑗

=𝜏ns
𝑖

𝛼
𝜎2 (𝜏off𝑗)
2

𝑅off

(
𝑠ns𝑚

(
𝜏ns𝑖

)
, 𝜋ns

(
𝑠ns𝑚 (𝜏ns𝑖), 𝑠

sp
𝑢 (𝜏sp𝑘), 𝑎

sp
𝑢 (𝜏

sp
𝑘
)
)
, 𝑠off𝑙 (𝜏

off
𝑗),

𝜋off
(
𝑠off𝑙 (𝜏

off
𝑗), 𝑠ns𝑚

(
𝜏ns𝑖

)
, 𝜋ns

(
𝑠ns𝑚

(
𝜏ns𝑖

)
, 𝑠

sp
𝑢 (𝜏sp𝑘), 𝑎

sp
𝑢 (𝜏

sp
𝑘
)
)
, 𝑠

sp
𝑢 (𝜏sp𝑘), 𝑎

sp
𝑢 (𝜏

sp
𝑘
)
))}
(5.18)

5.4.3 Deep Q-Learning for Service Placement, Network Se-

lection, and Computation Offloading

In the previous section, the different elements of the MDP models were presented.

By solving the proposed MDP models, VUs can find a proper service placement,

node selection, and offloading amount able to minimize the overall latency, energy,

and service placement costs.

For any time instant 𝜏𝑖 the state space ST is equal to {𝑠(𝜏𝑖)}, where 𝑠(𝜏𝑖) =

(𝑠off
𝑙
, 𝑠ns𝑚 , 𝑠

sp
𝑢) is the instantaneous state of a multi-time scale MDP, i.e., a combina-

tion of all three MDPs states. For the large time interval Δsp, 𝑠sp𝑢 remains unchanged

while multiple transactions can occur for 𝑠off
𝑙

and 𝑠ns𝑚 . The solutions can be defined

as a policy function 𝜋 ∈ Π:

𝜋 =

{
𝜋off(𝑠off𝑙 (𝜏𝑖 + 𝛿)), 𝜋

ns(𝑠ns𝑚 (𝜏𝑖 + 𝛿)), 𝜋sp(𝑠
sp
𝑢 (𝜏𝑖 + 𝛿))

}
that maps every state 𝑠 ∈ ST to action 𝑎 = {(𝑎off

𝑙̄
, 𝑎ns𝑚̄ , 𝑎

sp
𝑢)} ∈ AS. Given the of-

floading policy 𝜋off, network selection policy 𝜋ns, and the lower level reward 𝑅off, over

a large time scale Δsp, we define a Δsp/Δoff-horizon total expected reward as (5.18),

where

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 204

𝑉 (𝑠off𝑙 , 𝑠
ns
𝑚 , 𝑠

sp
𝑢)𝜋

∗
= min
𝑎
sp
𝑢 ∈Asp

{
min

𝜋ns𝑚 ∈Πns

{
min

𝜋off
𝑙
∈Πoff

{
𝑅sp

(
𝑠
sp
𝑢 , 𝑎

sp
𝑢 , 𝑠

ns
𝑚 , 𝜋

ns
𝑚 , 𝑠

off
𝑙 , 𝜋

off
𝑙

)
+ 𝛾

∑︁
∀𝑠off
𝑙̂

∑︁
∀𝑠ns
𝑚̂

∑︁
∀𝑠sp
𝑢

𝑃off
(𝑠off
𝑙
,𝑠off
𝑙̂
) (𝜋

off
𝑙 (𝑠

off
𝑙))𝑃

ns
(𝑠ns𝑚 ,𝑠ns𝑚̂)

(𝜋ns𝑚)𝑃
sp

(𝑠sp𝑢 ,𝑠sp𝑢)
(𝑎sp𝑢)𝑉∗(𝑠off𝑙̂ , 𝑠

ns
𝑚̂
, 𝑠

sp
𝑢
)
}}}
(5.19)

𝜎1(𝑛Δsp/Δns + 𝑟) = 𝑟, ∀𝑛 > 0, 𝑟 = 0, · · · ,Δsp/Δns,

𝜎2(𝑛Δns/Δoff + 𝑟) = 𝑟, ∀𝑛 > 0, 𝑟 = 0, · · · ,Δns/Δoff,

0 < 𝛼1, 𝛼2 ≤ 1,

and 𝑠ns0 and 𝑠off0 are the initial state values for Δsp
𝑘

and Δns
𝑖
, respectively. Here, the

total expected reward achieved by the offloading and network selection level MDPs

will act as a single-step reward for a service placement MDP.

Selecting different actions can result in different policy functions, where the aim is

to find an optimal policy that corresponds to the minimum delay and energy cost

during vehicular task processing. For every policy 𝜋, a value function 𝑉𝜋 (𝑠(𝜏𝑖)),

corresponding to a state 𝑠(𝜏𝑖) can be defined for analyzing its performance. In

general, 𝑉𝜋 (𝑠(𝜏𝑖)) corresponds to an expected value of a discounted sum of total

reward received by following the policy 𝜋 from state 𝑠(𝜏𝑖), and can be defined as

(5.18). The optimal policy 𝜋∗ corresponding to the value function 𝑉 is defined

through Bellman equation as in (5.19).

Here, 𝑃off
(𝑠off
𝑙
,𝑠off
𝑙̂
)
(𝜋off
𝑙
(𝑠off
𝑙
)), 𝑃ns

(𝑠ns𝑚 ,𝑠ns𝑚̂)
(𝜋ns𝑚 (𝑠ns𝑚)), and 𝑃

sp

(𝑠sp𝑢 ,𝑠sp𝑢)
(𝑎sp𝑢) model the environ-

ment dynamics based upon the state transition probabilities. Also, 𝑅off is the mean

value of the immediate reward 𝑟off defined in (5.58).

Given the complex and dynamic nature of the considered vehicular scenario it is

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 205

hard to define the environmental dynamics. With this in mind, we consider a model-

free RL for solving the proposed multi-time scale MDP model to find the optimal

policies. Among others, Q learning is one of the highly explored model-free strategies

for determining the optimal 𝜋∗ in unknown environments. The Q-learning strategy

is based upon a state-action function, i.e., Q-function, defined as,

𝑄𝜋 (𝑠′, 𝑎′) = 𝑅(𝑠′, 𝑎′) + 𝛾
∑︁
𝑠̂∈𝑆

𝑃𝑠′ 𝑠̂ (𝑎′)𝑉𝜋 (𝑠̂)

representing a discounted cumulative reward from state 𝑠′ when action 𝑎′ is taken

before following the policy 𝜋. The optimal Q value can be represented as

𝑄𝜋∗ (𝑠′, 𝑎′) = 𝑅(𝑠′, 𝑎′) + 𝛾
∑︁
𝑠̂∈𝑆

𝑃𝑠′ 𝑠̂ (𝑎′)𝑉𝜋
∗ (𝑠̂)

where 𝑉𝜋
∗ (𝑠̂) = min𝑎∈𝐴𝑄

𝜋∗ (𝑠′, 𝑎). The Q values can be estimated through a recursive

approach where,

𝑄𝑡+1(𝑠′, 𝑎′) = 𝑄𝑡 (𝑠′, 𝑎′) + 𝜖 ·
(
𝑟 + 𝛾max

𝑎
𝑄𝑡 (𝑠′, 𝑎) −𝑄𝑡 (𝑠′, 𝑎′)

)
where 𝜖 is a learning rate. The Q-function can be estimated through a neural

network-based function approximation technique with 𝑄(𝑠′, 𝑎′; 𝜃) ≈ 𝑄(𝑠′, 𝑎′), where

𝜃 represents the weights of the neural network. Through the training process, the

values of 𝜃 can be adjusted to reduce the mean square error values.

In the Deep Q Network (DQN) based approach two networks (i.e., primary and

target Q networks) are considered for a reliable estimation of Q functions over dif-

ferent time scales. The primary network estimates the real/primary Q-value while

the target Q-values are estimated through the target network. The RL agent uses

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 206

the backpropagation and gradient descent processes with mean square error (MSE)-

based loss function for reducing the gap between the primary and the target Q-values

where the loss function is defined as:

𝐿 (𝜃) = E
[(
𝑟 + 𝛾max

𝑎
𝑄𝑡 (𝑠′, 𝑎, 𝜃

′) −𝑄(𝑥, 𝑎, 𝜃)
)2]

(5.61)

where the primary values 𝑄(𝑥, 𝑎, 𝜃) are based upon primary network parameters

𝜃, and 𝑟 + 𝛾max𝑎 𝑄𝑡 (𝑠′, 𝑎, 𝜃
′) is the target Q value based upon the target network

parameters 𝜃
′
.

Fig. 5.21 describes the proposed Deep Q-learning method for solving the multi-time

scale MDP model to find the optimal service placements, network selection, and

offloading policies. Three DQN architectures are considered for solving the problem

over different time scales. For the service placement case, DQN architectures are

composed of a primary network and a target network with 𝐾sp layers, each with

𝑛
sp

𝑘
neurons, where 𝑘 = 1, . . . , 𝐾sp. Similarly, for each scenario 𝑘𝑔, network selection

and computation offloading DQN with 𝐾ns
𝑔 and 𝐾off

𝑔 layers are considered, with

neurons 𝑛ns
𝑔,𝑘

and 𝑛off
𝑔,𝑘

, where 𝑘 = 1, . . . , 𝐾ns
𝑔 and 𝑘 = 1, . . . , 𝐾off

𝑔 . Moreover, reply

memories having size Dsp, Dns
𝑔 , and Doff

𝑔 are considered for storing the agents’ past

experiences.

In the beginning, the primary network associated with the service placement prob-

lem senses the vehicular environment for processing the current state. Service place-

ment decisions are updated over a large time scale 𝜏sp
𝑖

through a proper action based

upon the Epsilon Greedy Policy (EGP) with parameter 𝑒sp. The state action pair

(𝑠sp𝑢 (𝜏sp𝑖), 𝑎
sp
𝑢 (𝜏

sp
𝑖
)) is then forwarded to the other two DQNs. The primary net-

work of a second DQN senses the current state of the environment and updates

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 207

Figure 5.21: Proposed Deep Q-Learning Solution

the network selection decisions through EGP with parameter 𝑒ns𝑔 over each Δns in-

terval. These state action pairs (𝑠ns𝑢 (𝜏ns𝑖), 𝑎ns𝑢 (𝜏ns𝑖)) are then forwarded towards the

offloading DQN. The offloading decisions are based upon the current environment

dynamics impacted by 𝑎sp𝑢 (𝜏
sp
𝑖
), 𝑎ns𝑢 (𝜏ns𝑖) and the EGP strategies with parameter

𝑒off,𝑔 over Δoff intervals. It also receives the instantaneous reward which along with

the other entities, i.e, current state, action, and next state are stored in the reply

buffer. With multiple offloading decisions, the cumulative reward of the offloading

process is backpropagated to the network selection and service placement DQNs.

Algorithm 10 details the DQN process for the multi-time scale service placement,

network selection, and computation offloading problem. The process begins with the

definition and the initialization of primary and target networks for considered tasks

(Line 1-2). After that training process iterates over 𝑁 training iterations where in

each iteration DQN models are updated (Line 3-33). In each training iteration, an

initially random set of states are selected (Line 5). Then over multiple epochs, i.e.,

up to 𝐼𝑆𝑃 the model is trained through a gradient descent approach by moving the

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 208

weight values appropriated to minimize the loss function value as a function of target

and primary Q values. In each training epoch action 𝑎ns is selected through EGP

with probability 𝑒 and applied over the service placement network for generating the

next state (Line 13-14). Since the reward is based upon the performance of moderate

and small time scale MDPs, next the network selection and offloading process MDP

models correspond to the different scenarios are training in a similar, manner over

𝐼ns and 𝐼off epoch respectively.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 209

Algorithm 10 Multi-time Scale Deep Q-Learning

Input: Δsp,Δns,Δoff,Ssp,Sns,Soff,Asp,Ans,Aoff,S,V,R,U, ℎ, 𝑁,

Isp,Ins,Ioff, 𝑖̄, 𝐺, 𝑒sp, 𝑒ns𝑔 , 𝑒off𝑔 ,Dsp,Dns
𝑔 ,Doff

𝑔 ,

𝜖sp, 𝜖ns𝑔 , 𝜖
off
𝑔 , 𝜖sp, 𝛾ns𝑔 , 𝜖

off
𝑔

Output: 𝑤𝑝,sp, {𝑤𝑝,ns𝑔 , 𝑤
𝑝,off
𝑔 ,∀𝑔 ∈ 𝐾}

1: Initialize 𝑤𝑝,sp, {𝑤𝑝,ns𝑔 ,∀𝑔 ∈ 𝐾}, {𝑤𝑝,off𝑔 ,∀𝑔 ∈ 𝐾}

2: Duplicate policy networks to Target Networks,

i.e., 𝑤𝑇,sp = 𝑤𝑝,sp, {𝑤𝑇,ns𝑔 = 𝑤𝑝,ns}, {𝑤𝑇,off𝑔 = 𝑤𝑝,off}

3: for all 𝑒𝑝 = 1, . . . , 𝑁 do

4: Select Random 𝑠
sp
0 , {𝑠ns0,𝑔}, {𝑠off0,𝑔}

5: 𝑠sp ← 𝑠
sp
0 , {𝑠ns𝑔 ← 𝑠ns0,𝑔, 𝑠off𝑔 ← 𝑠off0,𝑔,∀𝑔}, 𝑖𝑡 = 0

6: while 𝑖sp ≠ Isp do

7: 𝑖sp = 𝑖sp + 1

8: Select action 𝑎sp ∈ Asp with probability 𝑒sp

9: Determine next state (𝑠spnew)

10: for all 𝑔 = 1, . . . , 𝐺 do

11: while 𝑖ns ≠ 𝐼ns do

12: 𝑖ns = 𝑖ns + 1

13: Select action 𝑎ns ∈ Ans with probability 𝑒ns𝑔

14: Determine next state (𝑠nsnew)

15: while 𝑖off ≠ 𝐼off do

16: Select 𝑎off ∈ Aoff with probability 𝑒off𝑔

17: Find next state 𝑠offnew and reward 𝑅off

18: Store Doff
𝑔 ← (𝑠off, 𝑎off, 𝑅off, 𝑠offnew)

19: 𝑤
𝑝,off
𝑔 , 𝑤

𝑇,off
𝑔 =

DQN(Doff
𝑔 , 𝑘, 𝑤

𝑝,off
𝑔 , 𝑤

𝑇,off
𝑔 , 𝑖off, 𝑖̄, 𝜖

off
𝑔 , 𝛾off𝑔)

20: 𝑠off ← 𝑠off,new

21: end while

22: Use 𝑤𝑝,off𝑔 to generate feedback,

i.e, Reward Signal 𝑅ns =
∑𝜏ns

𝑖
+Δns−Δoff

𝜏off
𝑗

=𝜏ns
𝑖

𝑅off (𝜏off
𝑗
)

23: Store Dns
𝑔 ← (𝑠ns, 𝑎ns, 𝑅ns, 𝑠nsnew)

24: 𝑤
𝑝,ns
𝑔 , 𝑤

𝑇,ns
𝑔 =

DQN(Dns
𝑔 , 𝑘, 𝑤

𝑝,ns
𝑔 , 𝑤

𝑇,ns
𝑔 , 𝑖ns, 𝑖̄, 𝜖

ns
𝑔 , 𝛾

ns
𝑔)

25: 𝑠ns ← 𝑠ns,new

26: end while

27: end for

28: Use 𝑤𝑝,ns𝑔 to generate feedback,

i.e, Reward Signal 𝑅sp = 1
𝐺

∑𝐺
𝑔=1

∑𝜏
sp
𝑖
+Δsp−Δns

𝜏ns
𝑗
=𝜏

sp
𝑖

𝑅ns (𝜏ns
𝑗
)

29: Store Dsp ← (𝑠sp, 𝑎sp, 𝑅sp, 𝑠
sp
new)

30: 𝑤𝑝,sp, 𝑤𝑇,sp =

DQN(Dsp, 𝑘, 𝑤𝑝,sp, 𝑤𝑇,sp, 𝑖sp, 𝑖̄, 𝜖
sp, 𝛾sp)

31: 𝑠sp ← 𝑠sp,new

32: end while

33: end for

34: return 𝑤𝑝,sp, {𝑤𝑝,ns𝑔 , 𝑤
𝑝,off
𝑔 ,∀𝑔 ∈ 𝐾}

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 210

DQN Function defined in Algorithm 11 embodies the core training process adapted

by the DQN networks. The process involves the selection of a random batch of 𝑘

samples from the memory buffer D (Line 2), defining the loss function value based

upon the performance of the network (Line 3-4) with discount factors (𝛾sp, 𝛾ns𝑔 , 𝛾
off
𝑔),

learning rates (𝜖sp, 𝜖ns𝑔 , 𝜖
off
𝑔), and the gradient descent updates (Line 5) and target

network update state if the appropriate number of epochs, i.e., 𝑖̄, are performed.

Algorithm 11 DQN Function

Input: D, 𝑘, 𝑤𝑝 , 𝑤𝑇 , 𝑖, 𝑖̄, 𝜖 , 𝛾
Output: {𝑤𝑝 , 𝑤𝑇 }

1: function DQN(D, 𝑘, 𝑤𝑝 , 𝑤𝑇 , 𝑖, 𝑖̄, 𝜖 , 𝛾)
2: Select Random batch of of 𝑘 samples from D
3: Preprocess and pass the batch to 𝑤𝑝

4: Find Loss between primary and Target Q values using (5.61)
5: With gradient descent step update 𝑤𝑝

6: Update 𝑤𝑇 if 𝑟𝑒𝑚(𝑖, 𝑖̄) = 0
7: end function
8: return {𝑤𝑝 , 𝑤𝑇 }

The computation complexity for the basic DQN architecture can be defined as

O(S · A · I) with S, A, being dimensions of state and action spaces and I be-

ing training epoch performed per iteration [69]. Therefore, for a considered multi-

time scale approach, the computation complexity is given by O(S𝑔 · A𝑔 · I𝑔) with

S𝑔 = Ssp ⋃Sns
𝑔

⋃Soff
𝑔 as a union of state spaces for the particular 𝑔th scenario. Sim-

ilarly, A𝑔 = Asp ⋃Ans
𝑔

⋃Aoff
𝑔 is the dimension of action space and I𝑔 = 𝐼sp+ 𝐼ns+ 𝐼off.

It should be noted that with the definition of multiple vehicular scenarios, the over-

all state space for the network selection and offloading processes can be reduced

significantly, and with that, through the paralization approach the complexity can

be limited.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 211

5.4.4 Numerical Results

The proposed DQN-based multi-time scale MDP methods are simulated over a

Python-based simulator for analyzing the performance. The following benchmark

solutions are also considered for comparison purposes:

a) Static Approach (SA): In this case, the services are randomly placed and

their placement is fixed over time. The network selection operation is based

on a minimum distance approach, where VUs select the nearest EN to offload

their complete task.

b) MDP (Network Selection and Offloading) with Static Service Place-

ments (MDP-SSP): In this approach, the service placement is performed

randomly and fixed over time. On the other hand, the network selection and

offloading decisions are made through MDP with different time scales. This

approach allows us to measure the impact of dynamic service placements over

time.

c) MDP (Service Placement and Offloading) with Random Network

Selection (MDP-RS): In this approach, each VU randomly selects the ENs

while service placement and offloading decisions are made through the MDP

approach with multiple time scales. This allows us to evaluate the performance

of network selection operations performed by VUs over time.

d) MDP (Service Placement and Network Selection) with Full Offload-

ing (MDP-FO): In this approach, service placement and network selection

operations are performed through the MDP model with different time scales.

Each VU performs the full offloading towards the selected EN.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 212

Table 5.3: Simulation parameters

HAP Coverage (𝑅ℎ) 2 km
UAV Coverage (𝑅𝑢,𝑝) 100m
RSU Coverage ((𝑅𝑟,𝑛)) 50m
VU Computation Cap. (𝑐𝑣,𝑚 · 𝑓𝑣,𝑚) 2 GFLOPS
RSU Computation Cap. (L𝑟,𝑛 · 𝑐𝑟,𝑛 · 𝑓𝑟,𝑛) 10 GFLOPS
UAV Computation Cap. (L𝑢,𝑝 · 𝑐𝑢,𝑝 · 𝑓𝑢,𝑝) 10 GFLOPS
HAP Computation Cap. (Lℎ · 𝑐ℎ · 𝑓ℎ) 30 GFLOPS
HAP Altitude (ℎ̄ℎ) 10 km
UAV Altitude (ℎ̄𝑢,𝑝) 1 km
HAP Bandwidth (𝐵ℎ) 250MHz
UAV Bandwidth (𝐵𝑢,𝑝) 75MHz
RSU Bandwidth (𝐵𝑟,𝑛) 25MHz
VU Speed Range (®𝑣min, ®𝑣max). (8m/s, 14m/s)
VU Power (𝑃𝑐,𝑣𝑚 , 𝑃𝑡𝑣𝑚 , 𝑃𝑟𝑣𝑚) (1.1, 1.5, 1.3) W

Simulation is performed considering an IoV scenario with varying numbers of VUs

between 200 and 2000 and three edge layers (i.e., RSUs, UAVs, and HAP) are

considered. We have considered 𝑁 = 50 RSUs, 𝑃 = 30 UAVs, and one HAP node for

serving VUs with 𝑆 = 5 different services. Also, Ŝ1
𝑛 = 3,∀𝑛, Ŝ2

𝑝 = 2,∀𝑝, and Ŝ3
ℎ
= 5

stand for the bound on the number of services accommodated by different edge

facilities. The generic 𝑚th VU generates a task request 𝜌𝑚 with probability 𝑝𝑎 = 0.1,

having parameters 𝐷𝜌𝑚 = 5MB, 𝐷𝑟𝜌𝑚 = 1MB, Ω𝜌𝑚 = 103 · 𝐷𝜌𝑚 , and 𝑇𝜌𝑚 = 2 s. The

service demand is based upon the Zipf distribution with parameter 𝛽 = 0.8. Also,

VUs speed is defined as in (5.42), where 𝜇 = 10 and 𝜎 = 3. Also, 𝜁 = 0.1, 𝛾1 = 0.5,

and 𝛾2 = 0.5 is considered during the problem formulation. The vehicular density

parameters, 𝑀1 = 500 and 𝑀2 = 1200, are considered in the scenario definition. For

DQN simulation primary and target networks with layers 𝐾sp = 5, 𝐾ns
𝑔 = 𝐾off

𝑔 = 3,

are considered with learning parameters 𝑒sp = 0.7, 𝑒ns𝑔 = 𝑒off𝑔 = 0.65, Dsp = 4000,

Dns
𝑔 = Doff

𝑔 = 2000, 𝜖sp = 𝜖ns𝑔 = 𝜖off𝑔 = 0.05, 𝛾sp = 𝛾ns𝑔 = 𝜖off𝑔 = 0.98. Also the learning

process includes 𝑁 = 50 with 𝐼sp = 𝐼ns = 𝐼off = 103 and 𝑖̄ = 50. The other important

system model parameters are provided in Table 5.3.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 213

Figure 5.22: Performance results in terms of overall cost function with variable
number of active vehicles.

1) Joint Cost Analysis with Varying Vehicular Density In this work, we

aim to minimize the joint cost function of latency, energy, and the additional service

placement penalty values. In Fig. 5.22, we present the average cost values for dif-

ferent solution approaches with varying numbers of VUs. The overall cost required

for the SA approach is significantly high compared to the other approaches since

all three decisions are performed through a heuristic approach. On the other hand,

the other three MDP approaches (MDP-FO/RS/SSP) are optimizing the decisions

for two MDPs while using the static approach for the remaining one. Such methods

can reduce the overall cost requirements, however, resulting in suboptimal solutions.

This highlights the importance of performing multi-time scale optimization for ser-

vice placements, network selection, and offloading processes together. Indeed, the

cost required for the proposed MDP-MT approach improves the overall performance.

2) Number of Handover Required Apart from the overall cost reduction, the

reliability of the solutions can be an important criterion to analyze the performance.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 214

Figure 5.23: Percentage of VUs with Handover Requirements.

With this, in Fig. 5.23, we present the overall handover requirements in terms of

sojourn time constraint failure during the offloading process. The SA approach with

static service placement, minimum distance-based network selection, and complete

offloading requires a large number of handovers. Though the MDP-FO approach

performs the dynamic service placement and network selection operations, with full

offloading it suffers with higher number of failures. Similarly, the MDP-RS approach

suffers due to imperfect node selection through random allocations. The MDP-

SSP approach can reduce the number of failures with proper network selection and

offloading, however, due to static service placement the process still suffers with

handover demands. The proposed MDP-MT approach can have the potential to

provide a reliable solution with joint optimization and can be a useful solution for

vehicular scenarios with higher reliability requirements.

3) Number of Failures in terms of Service Latency Another way to mea-

sure the reliability of the proposed solutions is through the fulfillment service latency

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 215

Figure 5.24: Percentage of VUs with service time constraint violation.

demand. In Fig. 5.24, we present the amount of service latency constraint failures for

different solutions. Similarly to the previous solutions, the SA approach with static

decisions suffers from several failures. On the other hand, the proposed MDP-MT

solutions can reduce service latency failures through dynamic service placements,

proper network selections, and offloading decisions. The other MDP solutions can

reduce the overall number of failures compared to the SA method, however, their

performance is suboptimal. With reduced flexibility in the offloading process (i.e.,

full offloading in MDP-FO or random network selection in MDP-RA) both of these

methods suffer with more failures compared to the MDP-MT solutions. Also, the

MDP-SSP approach with static service placements has a higher number of failures.

This highlights the importance of dynamic service placement in dynamic vehicular

scenarios.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 216

Table 5.4: Average Percentage of Data Offloading.

VNs 200 400 600 800 1000 1200 1400 1600 1800 2000

MDP-MT .76 .74 .73 .68 .66 .63 .59 .55 .48 .47
MDP-SSP .78 .79 .78 .73 .72 .67 .65 .62 .58 .56
MDP-RS .65 .59 .62 .56 .51 .44 .39 .35 .32 .35
MDP-FO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4) Performance in terms of Offloading Percentage Table 5.4 presents the

average percentage amount of data offloaded by VUs towards EC facilities. Differ-

ent MDPs can have different performances based on their decision-making strategies.

MDP-FO adapts the full offloading strategy resulting in 100% offloading with re-

duced flexibility. While MDP-RS uses the random node selection strategy, resulting

in suboptimal offloading decisions. Indeed the overall percentage of offloading is

reduced significantly for the MDP-RS process, adding an additional burden on the

local computing resources. Similarly, the MDP-SSP approach characterized by static

service placement can suffer from suboptimal offloading decisions with reduced flex-

ibility in terms of node selection and offloading. The proposed MDP-MT, with a

hierarchical decision-making process, can adapt according to the changing vehicular

densities through dynamic service placement, proper node, and adequate offloading

parameter selections.

5) Performance in terms of EN Selection With the presence of multiple EC

layers with heterogeneous nodes, it is important to analyze the performance in terms

of edge resource utilization over differing vehicular densities. For this, in Fig. 5.25,

we present the simulation results in terms of percentage number of VUs selecting

different edge layers with varying numbers of VUs. In the beginning, with a lower

number of VUs on the road, RSUs and UAV resources are exploited by VUs for

offloading their tasks. With increasing vehicular density, the overall percentage of

VUs selecting RSUs reduces while the number of VUs exploiting the HAP resources

increases. It should be noted that these results can be strongly influenced by the

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 217

Figure 5.25: Avg. No. of EN Selected for Offloading.

underneath system elements. For example, since we have considered a single HAP

node the overall percentage of VUs exploiting the HAP resources is always low, while

RSUs with dense deployments can serve a large portion of VUs. Such trends can be

explained further with other deployment options.

5.4.5 Conclusion

In this work, we have proposed a multi-time scale MDP approach for solving the joint

service placement, network selection, and computation offloading problem over mul-

tiple EC platforms-enabled dynamic vehicular scenarios. The proposed approach can

model the decision-making process over different time scales based on the network

and user requirements. The optimization problem is formed for jointly minimizing

the latency, energy, and service placement costs over different vehicular scenarios.

Chapter V. Distributed Data Processing for IoV -Joint-Terrestrial and
Non-Terrestrial Case 218

Advanced DQN-based solutions are considered for solving the complex MDP in find-

ing the optimal policies reducing the overall cost with improved reliability. The nu-

merical results acquired through a Python-based simulator show several advantages

over the traditional benchmark solutions. With the complex nature of a consid-

ered joint optimization process and the proposed multi-time scale MDP, to avoid

excessive discussions, in this work, we have resorted to the basic DQN approach.

In recent years several new advanced forms of DRL algorithms are proposed with

additional benefits. In the future, we aim to extend the proposed framework for

accommodating such advanced DRL solutions with improved efficiency and reduced

training costs.

Chapter 6

Distributed Intelligence for IoV

Some content of this chapter is based on the following articles [76, 114];

1) “ Shinde, Swapnil Sadashiv, Arash Bozorgchenani, Daniele Tarchi, and Qiang Ni.

”On the design of federated learning in latency and energy constrained computation

offloading operations in vehicular edge computing systems.” IEEE Transactions on

Vehicular Technology 71, no. 2 (2021): 2041-2057.”.

2) “ Shinde, Swapnil Sadashiv, and Daniele Tarchi. ”Joint Air-Ground Distributed

Federated Learning for Intelligent Transportation Systems.” IEEE Transactions on

Intelligent Transportation Systems (2023).”.

6.1 Introduction

Distributed intelligence is one of the key demands of IoV users. To enable the next-

generation intelligent vehicular system, novel Machine Learning (ML) solutions are

required. In the case of vehicular scenarios, with the presence of IoT subsystems, a

219

Chapter VI. Distributed Intelligence for IoV 220

large amount of distributed data is available at the user level. To enable the tradi-

tional ML solutions, this data is required to be transmitted to the centralized servers

inducing large amounts of communication overheads and corresponding costs. On

the other hand with the innovative IoT solutions, the quality of data samples gen-

erated by the vehicular nodes is much improved. The size of data generated by

the users can be huge, making it infeasible to transmit such huge data to the cen-

tralized servers. On the other hand, with the innovations in hardware technologies,

new vehicles are having improved computation and storage facilities. This can al-

low vehicular terminals to train the fairly complex ML models locally. The novel

ML trends such as distributed learning can be explored with such local ML model

training capabilities of vehicular terminals. Additionally, it is important to explore

the possibility of exploring the distributed computation communication resources

of edge nodes for enabling efficient distributed learning solutions in vehicular sys-

tems. We have proposed novel distributed intelligence solutions with the support

of local vehicular data and the edge computing facilities of joint Terrestrial and

Non-terrestrial Networks (T-NTN). In particular, we propose novel FL solutions for

integrating advanced intelligent solutions in vehicular scenarios with the support of

edge computing facilities.

6.2 FL-based Computation Offloading in IoV

While developing edge intelligence solutions for IoV use cases, it is important to take

into account the service demands, resource limitations, VUs mobility, etc. FL is one

of the promising approaches that can be considered to solve challenging vehicular

problems. However, the number of resources required to achieve the FL convergence

can be higher, and implementing the complete FL process over resource-limited

Chapter VI. Distributed Intelligence for IoV 221

Vehicular Networks (VNs) can be challenging. Therefore it is important to optimize

the FL process by considering the tradeoff between the resource requirements and the

achieved performance. In this work, we have developed a joint air-ground network-

based FL framework for solving the computation offloading problem for the case of

IoV. Next, we aim to optimize the FL and offloading process jointly to minimize the

latency and energy costs.

The main contributions of this work can be summarized in:

• We define an air-ground integrated FL-inspired distributed learning platform

for enabling a run-time evaluation of the computation offloading parameters.

We consider the HAPs as FL servers and VUs as distributed FL devices/clients,

while the RSUs act as processing devices accepting computation offloaded by

the VUs acting as sources.

• Wemodel the joint learning and offloading process through its delay and energy

consumption, and then we define the joint delay and energy minimization

problem as a constrained non-linear optimization problem. The main aim is

to select the optimal number of FL process iterations for each VU given a target

delay requirement while keeping the energy consumption under a certain level.

• Three RSU-based clustering approaches are introduced for solving the problem

(i.e., full clustering, probabilistic clustering, distance-based clustering) along

with a VU-based distributed approach.

• A GA evolutionary computing method is proposed for solving clustered and

distributed approaches. Two other benchmark methods and one simple Heuris-

tic approach based on a reduced size solution space are also considered for

performance comparison.

Chapter VI. Distributed Intelligence for IoV 222

• Performance evaluation is carried out under different VEC environments where

the effectiveness of the proposed scheme is shown.

6.2.1 System Model and Problem Formulation

We consider an integrated air-ground network composed of one HAP, a set V =

{𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑀} of 𝑀 VUs, and a set R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 } of 𝑁 RSUs, placed

in the area, supposed to be modeled as a two-lane road scenario.

The generic 𝑚th VU, supposed to move in either of the two directions, is character-

ized by a processing capability equal to 𝑐𝑣,𝑚 Floating Point Operations per Second

(FLOPS) per CPU cycle, while its CPU frequency is 𝑓𝑣,𝑚. Each VU is supposed to

be able to communicate on a bandwidth 𝐵rsu𝑣,𝑚 during terrestrial communication. On

the other hand, while communicating with the HAP in the non-terrestrial communi-

cation network, it is supposed to communicate with a bandwidth 𝐵HAP
𝑣,𝑚 . Many new

vehicular applications and services, including autonomous driving, online gaming,

multimedia content streaming infotainment services, etc., come with strict applica-

tion latency requirements. Such latency constraints need to be taken into account

while solving VN problems [118, 119]. Therefore, in this work, the 𝑚th VU is sup-

posed to generate tasks to be processed, where the task 𝑥𝑚 is identified through the

tuple ⟨𝐷𝑥𝑚 ,Ω𝑥𝑚 , 𝑇𝑥𝑚⟩ where 𝐷𝑥𝑚 is the task size in Byte, Ω𝑥𝑚 are the requested CPU

execution cycles and 𝑇𝑥𝑚 is the maximum latency of the requested service.

The 𝑛th RSU, supposed to be in a fixed position, is characterized by a processing

capability equal to 𝑐𝑟,𝑛 FLOPS per CPU cycle, with CPU frequency 𝑓𝑟,𝑛, and commu-

nication capabilities, supposed to be identified through a communication technology

able to work on a bandwidth 𝐵𝑟,𝑛 and covering an area with radius 𝑅𝑟,𝑛. Each RSU

provides computation offloading services to the VUs within its coverage area. In

Chapter VI. Distributed Intelligence for IoV 223

Figure 6.1: System Architecture

addition, the area is supposed to be under the coverage of one HAP equipped with

an edge computing server with much superior computation capabilities compared

with the RSU/VUs [120]. Moreover, we consider multi-beam antenna forming tech-

niques, placed at an altitude of ℎHAP above the ground, where each antenna beam is

supposed to cover a geographical area of radius 𝑅HAP and having a communication

bandwidth 𝐵HAP. In the following we will refer to a single beam as the coverage

of the HAP. It should be noted that though HAP coverage is reduced to a single

beam for notation simplicity, our approach can easily be scaled for the overall HAP

coverage with multiple beams.

Fig. 6.1 highlights the main system elements of considered network architecture. It is

worth to be noted that we have considered only one centralized HAP in the following.

In a realistic scenario, for having a better fault tolerance, it can be complemented

by ground-based 5G base stations (5G-gNB) or replaced by a decentralized HAP

network, composed by multiple HAPs.

Chapter VI. Distributed Intelligence for IoV 224

6.2.1.1 Vehicular Mobility Model

The generic 𝑚th VU is supposed to be located at position {𝑥𝑣,𝑚 (𝑡), 𝑦𝑣,𝑚 (𝑡)} at time

𝑡. Each vehicle is supposed to move along the x-axis, defining the directions of the

two-lane road, with a speed 𝑣𝑚, supposed to be constant. The 𝑛th RSU is considered

to be in a fixed position {𝑥𝑟,𝑛, 𝑦𝑟,𝑛}. Hence, it is possible to define the remaining

distance within which the 𝑚th VU remains under the coverage of the 𝑛th RSU as,

Π𝑚,𝑛 =

√︃
𝑅2
𝑟,𝑛 −

(
𝑦𝑟,𝑛 − 𝑦𝑣,𝑚

)2 ±
(
𝑥𝑟,𝑛 − 𝑥𝑣,𝑚

)
(6.1)

where 𝑅𝑟,𝑛 is the coverage radius of the 𝑛th RSU and ± identifies the two possible

directions taken by the 𝑚th VU. It is worth to be noticed that the dependency

on 𝑡 in (6.1) has been omitted for a better clarity; moreover, we assume that it is

calculated at a time instant 𝑡 when the 𝑚th VU requests an offloading service. In

addition, it is worth to be noticed that (6.1) is valid only if the 𝑚th VU is within

the 𝑛th RSU coverage area.

The time available by the 𝑚th VU before leaving the 𝑛th RSU coverage, i.e., sojourn

time, is defined as:

𝑇
soj
𝑚,𝑛 =

Π𝑚,𝑛

𝑣𝑚
(6.2)

Similarly, supposing that the center beam of the HAP coverage on the ground is in

a fixed position {𝑥HAP, 𝑦HAP}, it is possible to define the remaining distance within

which the 𝑚th VU remains under the HAP beam coverage as:

Π𝑚,HAP =

√︃
𝑅2
HAP
−

(
𝑦HAP − 𝑦𝑣,𝑚

)2 ±
(
𝑥HAP − 𝑥𝑣,𝑚

)
(6.3)

Chapter VI. Distributed Intelligence for IoV 225

Figure 6.2: VU Mobility Scenarios and Corresponding Distance Matrices

which is valid only if the 𝑚th VU is within the HAP coverage area as well. Hence,

the HAP sojourn time can be defined as:

𝑇
soj
𝑚,HAP

=
Π𝑚,HAP

𝑣𝑚
. (6.4)

In Fig. 6.2, the working scenario is depicted, where we suppose, as an example,

the presence of two VUs (i.e., VU1 and VU2) moving in opposite directions, where

VU1 is traveling towards right and VU2 moving towards left. The available distance

for each of the VUs before passing through the coverage area of RSU is determined

by using (6.1). A similar analysis can be performed for determining the distances

concerning the HAP.

6.2.1.2 Partial Offloading Model

The VUs are supposed to be able to offload their tasks to the RSUs within their

connecting area. In order to minimize the time spent for the offloading process

we assume that the 𝑚th VU is able to split its task in two portions and offload

Chapter VI. Distributed Intelligence for IoV 226

a portion 𝛼𝑚 ∈ [0, 1] to any of the RSUs within its connecting area1, while the

remaining (1 − 𝛼𝑚) can be locally computed [121].

6.2.1.3 Task Offloading Process

When 𝑚th VU selects the 𝑛th RSU for offloading its task, the process is composed

of the data transmission toward the selected RSU, task processing at the RSU, and

the reception of computed data back at the VU. Each of these steps consume some

amount of time and energy, as detailed in the following. In the following, we resort

to the Shannon capacity formula for evaluating the data rate between any node 𝑖

and 𝑗 as a function of the distance between them, defined as:

𝑟𝑖, 𝑗 (𝐵𝑖, 𝑑𝑖, 𝑗) = 𝐵𝑖 log2

(
1 +

𝑃tx
𝑖
· ℎ(𝑑𝑖, 𝑗)
𝑁0

)
(6.5)

where 𝑃tx
𝑖

is the transmission power of the generic device 𝑖, ℎ(𝑑𝑖, 𝑗) is the channel

gain at a distance 𝑑𝑖, 𝑗 between the device 𝑖 and the device 𝑗 , and 𝑁0 = 𝑁𝑇𝐵𝑖 is the

noise power, where 𝑁𝑇 and 𝐵𝑖 are the noise power spectral density and bandwidth

associated to the 𝑖th device during communication.

VU-RSU Communication The total time and energy required for full offloading

of task 𝑥𝑚 from the 𝑚th VU towards the 𝑛th RSU is given by,

𝑇𝑥𝑚,tx𝑚,𝑛 =
𝐷𝑥𝑚

𝑟𝑚,𝑛 (𝐵rsu𝑣,𝑚, 𝑑𝑚,𝑛)
, 𝐸𝑥𝑚,tx𝑚,𝑛 = 𝑃tx

𝑚 · 𝑇𝑥𝑚,tx𝑚,𝑛 , (6.6)

where, 𝑟𝑚,𝑛 (𝐵rsu𝑣,𝑚, 𝑑𝑚,𝑛) is the data rate between 𝑚th VU and 𝑛th RSU, that depends

on the available radio resources i.e., 𝐵rsu𝑣,𝑚, and the distance between two devices,

1More specifically to be managed by the co-located server.

Chapter VI. Distributed Intelligence for IoV 227

i.e., 𝑑𝑚,𝑛. Also, 𝑃tx
𝑚 is the transmission power of 𝑚-th VU while transmitting data

towards the RSU.

RSU Computation The task computation at the RSU side depends on the CPU

execution cycles requested by the task, i.e., Ω𝑥𝑚 and available RSU processing re-

sources, i.e., 𝑐𝑟,𝑛 and 𝑓𝑟,𝑛; hence, the processing time can be modeled as:

𝑇𝑥𝑚,c𝑛 =
Ω𝑥𝑚

𝑐𝑟,𝑛 𝑓𝑟,𝑛
. (6.7)

Here, we assume that the RSUs are connected to the electrical grid, hence their

energy cost is negligible, while the VUs are in idle state, whose energy consumption

can be neglected as it can be considered an unavoidable basic energy consumption.

RSU-VU Communication The completion of the task offloading process is per-

formed by sending back the result to the VU. The time and energy required by the

𝑚th VU for receiving the result from 𝑛th RSU is given by,

𝑇𝑥𝑚,rx𝑚,𝑛 =
𝐷𝑥𝑚,rx

𝑟𝑛,𝑚 (𝐵𝑟,𝑛, 𝑑𝑛,𝑚)
, 𝐸𝑥𝑚,rx𝑚,𝑛 = 𝑃rx

𝑚 · 𝑇𝑥𝑚,rx𝑚,𝑛 , (6.8)

where, 𝐷𝑥𝑚,rx is the task size processing result at the RSU side, and 𝑟𝑛,𝑚 (𝐵𝑟,𝑛, 𝑑𝑛,𝑚)

is the downlink data rate between the 𝑛th RSU and the 𝑚th VU. 𝑃rx
𝑚 is the reception

power of 𝑚-th VU while receiving data from the RSU.

In general, RSUs are located in the proximity of VUs, resulting in negligible task

propagation time during uplink and downlink communication. Therefore, in this

work, we do not consider the propagation time when modeling the delay of the task

offloading process. Thus, the total time and energy required for the complete task

Chapter VI. Distributed Intelligence for IoV 228

offloading process is,

𝑇off
𝑚,𝑛 = 𝑇

𝑥𝑚,tx
𝑚,𝑛 + 𝑇𝑥𝑚,c𝑛 + 𝑇𝑥𝑚,rx𝑚,𝑛 (6.9)

𝐸off
𝑚,𝑛 = 𝐸

𝑥𝑚,tx
𝑚,𝑛 + 𝐸𝑥𝑚,rx𝑚,𝑛 (6.10)

Since we assume that the 𝑚th VU offloads a portion 𝛼𝑚 of the task 𝑥𝑚 towards the

𝑛th RSU, the overall time required to perform the offloading process is:

𝑇off
𝑚,𝑛 (𝛼𝑚) = 𝛼𝑚 · 𝑇off

𝑚,𝑛 (6.11)

where we suppose that both communication and processing latency terms scale lin-

early. Similarly, the overall energy consumed by the 𝑚th VU for performing the

offloading process is:

𝐸off
𝑚,𝑛 (𝛼𝑚) = 𝛼𝑚 · 𝐸off

𝑚,𝑛 (6.12)

6.2.1.4 Local VU Computation Process

Each VU is able to locally compute its task and the amount of time and energy

required is based on its processing resources, i.e., 𝑐𝑚 and 𝑓𝑚. Hence, the local

processing time and energy consumption is:

𝑇𝑥𝑚,c𝑚 =
Ω𝑥𝑚

𝑐𝑣,𝑚 𝑓𝑣,𝑚
, 𝐸𝑥𝑚,c𝑚 = 𝑃c

𝑚 · 𝑇𝑥𝑚,c𝑚 , (6.15)

where, 𝑃c
𝑚 is the computational power used during local task computation at the

𝑚th VU. Due to the partial offloading, the amount of time and energy required for

the local computation at the 𝑚th VU is:

𝑇 loc
𝑚 (𝛼𝑚) = (1 − 𝛼𝑚)𝑇𝑥𝑚,c𝑚 (6.16)

Chapter VI. Distributed Intelligence for IoV 229

𝐸 loc
𝑚 (𝛼𝑚) = (1 − 𝛼𝑚)𝐸𝑥𝑚,c𝑚 (6.17)

where 𝛼𝑚 is the portion of the task to be offloaded by the 𝑚th VU; hence, the overall

processing time for the task 𝑥𝑚 results:

𝑇𝑥𝑚𝑚 (𝛼𝑚) = max
{
𝑇off
𝑚,𝑛 (𝛼𝑚), 𝑇 loc

𝑚 (𝛼𝑚)
}

(6.18)

where 𝑇off
𝑚,𝑛 (𝛼𝑚) is the time needed for offloading the portion of a task 𝛼𝑚 · 𝑥𝑚 to

the 𝑛th RSU, while 𝑇 loc
𝑚 (𝛼𝑚) is the time for locally processing the remaining task

(1−𝛼𝑚) · 𝑥𝑚 by the 𝑚th VU. We suppose that offloading and local computation can

be performed in parallel. Similarly, the overall processing energy for the task 𝑥𝑚

results:

𝐸𝑥𝑚𝑚 (𝛼𝑚) = 𝐸off
𝑚,𝑛 (𝛼𝑚) + 𝐸 loc

𝑚 (𝛼𝑚) (6.19)

where 𝐸off
𝑚,𝑛 (𝛼𝑚) is the energy consumed offloading the portion of a task 𝛼𝑚 · 𝑥𝑚 to

the 𝑛th RSU, while 𝐸 loc
𝑚 (𝛼𝑚) is the energy consumed during locally processing the

remaining task (1 − 𝛼𝑚) · 𝑥𝑚 on 𝑚th VU.

6.2.1.5 Partial Offloading Problem

The partial computation offloading problem corresponds to set the offloading param-

eters 𝛼𝑚 in an optimal way such that service latency (𝑇𝑥𝑚), sojourn time (𝑇 soj
𝑚,𝑛) and

the overall energy consumption constraints are respected. To this aim, we assume

that in an energy efficient partial offloading operation, the energy spent for the task

𝑥𝑚 (𝐸𝑥𝑚𝑚 (𝛼𝑚)) with offloading parameter 𝛼𝑚, is less than the amount of energy re-

quired to completely compute it locally (i.e., 𝐸𝑥𝑚,c𝑚), since otherwise offloading would

not be beneficial. Therefore, the joint latency and energy constrained optimization

problem corresponds to find the optimal A = {𝛼1, . . . , 𝛼𝑚, . . . , 𝛼𝑀} parameters such

Chapter VI. Distributed Intelligence for IoV 230

that:

P1 : A∗ = argmin
A

{
1

𝑀

𝑀∑︁
𝑚=1

(
𝜂1𝑇

𝑥𝑚
𝑚 (𝛼𝑚) + 𝜂2𝐸𝑥𝑚𝑚 (𝛼𝑚)

)}
(6.20)

subject to the following constraints,

𝑇𝑥𝑚𝑚 (𝛼𝑚) ≤ 𝑇𝑥𝑚 , ∀𝑚 (6.21a)

𝑇off
𝑚,𝑛 (𝛼𝑚) ≤ 𝑇

soj
𝑚,𝑛, ∀𝑚,∀𝑛 (6.21b)

𝐸𝑥𝑚𝑚 (𝛼𝑚) ≤ 𝐸𝑥𝑚,c𝑚 , ∀𝑚 (6.21c)

𝑁∑︁
𝑛=1

𝑎(𝑚, 𝑛) ≤ 1, ∀𝑚 ∈ 𝑀 (6.21d)

𝑀∑︁
𝑚=1

𝑎(𝑚, 𝑛) · 𝐵rsu𝑣,𝑚 ≤ 𝐵𝑟,𝑛, ∀𝑛 ∈ 𝑁 (6.21e)

0 ≤ 𝛼𝑚 ≤ 1, ∀𝑚 ∈ 𝑀 (6.21f)

0 ≤ 𝜂1, 𝜂2 ≤ 1, (6.21g)

where (6.21a) shows that the total task processing time for each VU should be

limited by the task latency requirement and (6.21b) represents that each VU should

complete the computation offloading process while it is in the RSU coverage for

avoiding additional latency costs. From (6.21c), the overall processing energy of

task should be upper bounded by the amount of energy required to compute it

locally. A binary assignment variable 𝑎(𝑚, 𝑛) is considered equal to 1 if 𝑚th VU is

assigned to the 𝑛th RSU, and 0 otherwise. According to (6.21d), each VU can offload

tasks to no more than one RSU, while (6.21e) shows that the bandwidth resources

available for all active VUs2 in a particular RSU coverage is upper bounded by its

bandwidth. Eq. (6.21f) limits the offloading parameter value between 0 and 1.

Moreover, in (6.21g), 𝜂1 and 𝜂2 are two weight coefficients between 0 and 1, for

2We assume that only a subset of the VUs, named active, have data to process, and potentially
to be offloaded to an RSU.

Chapter VI. Distributed Intelligence for IoV 231

balancing latency and energy consumption.

In a real scenario the amount of data to be offloaded from each VU towards an RSU

while respecting the system constraints is hard to be estimated; several factors,

including VUs position, velocity, directions, RSU resources, task requirements, sur-

rounding environmental conditions, make the problem hard to be solved. Many of

these parameters are hard to be accessed given their stochastic behaviors. Therefore,

finding a set of optimal offloading parameters (A∗) in a highly dynamic environment

like VN is a challenging problem to be solved, and advanced optimization methods

are needed. Belonging to the class of the ML approaches, FL has been recently

introduced as an effective way for performing data augmentation and significantly

reducing the communication overhead in comparison with direct data-sample ex-

changes, allowing also to enhance VUs privacy issues. In order to properly address

the latency and energy constrained offloading problem defined in (6.20), we pro-

pose to exploit a FL framework for estimating the set A, composing the offloading

portions of all VUs, based on the VU side parameters.

In Fig. 6.3 we provide a more detailed step-by-step view of the considered joint

FL and task offloading process optimization problem and the proposed solution

methodologies; it is possible to notice that the VUs parameters act as input for the

FL-inspired distributed process (Step 1), whose goal is to properly set the number

of iterations to be performed (Step 2) in order to have a proper solution for setting

the offloading parameters (Step 3) to be later used by each VU (Step 4).

6.2.1.6 Federated Learning Model

FL is based on the idea that the same ML algorithm is present at both FL server

and FL clients’ sides, where a centrally located FL server assists distributed clients

Chapter VI. Distributed Intelligence for IoV 232

Figure 6.3: Proposed scheme for the joint FL and task-offloading processes
optimization.

during the learning process. Instead of only executing the ML algorithm in a cen-

tralized server node, it is executed in a federated way among all the involved nodes

through the exchange of a set of parameters defining the weights of the implemented

ML algorithm. To do this, the FL process is composed of several steps: information

exchange between FL-server and devices for initializing the learning model over de-

vices, local device training, parameters exchange over wireless links between devices

and the FL-server, parameter collection and aggregation on the server. In the FL

process, we assume that the HAP acts as FL server, assisting the VUs acting as FL

clients for making the offloading decision. For each offloading request, the VUs per-

form numerous FL iterations with the HAP aiming at properly setting the offloading

portion toward the selected RSU. It has to be noticed that the HAP computation

infrastructure can be implemented by resorting to the function virtualization ap-

proach through different virtualization technologies, e.g., virtual machines, contain-

ers, and hypervisors, for performing the FL process. Moreover, the interaction with

FL clients can happen through predefined interfaces (e.g., implementing the REST

API technology) allowing a smarter interaction. However, such considerations are

Chapter VI. Distributed Intelligence for IoV 233

beyond the scope of this work, that instead mainly focuses on the optimization of

the joint FL-offloading framework.

Even though FL allows to reach a global optimum in distributed environments,

the dynamicity of VN scenarios introduces an additional challenge. Indeed, FL

process cannot be considered as a granted process, as it consumes resources by itself.

Hence, FL is executed at the cost of a reduction of resources that can be given to

the offloading process. It is however, clear from past studies that the number of

FL iterations required for reaching a predefined convergence value can be upper

bounded [122, 123, 124, 125] depending on several factors, including the ML model,

number of users participating in the training process, number of local iteration on

the device, type of radio environment, quality of data, etc. Therefore, without loss of

generality, we consider that after 𝜌opt FL iterations each VU will be able to estimate

the optimal offloading parameter 𝛼opt𝑚 , where 𝜌opt = K
𝑀̄
; K can be considered as a

numerical constant setting the overall number of FL iterations required to achieve

the convergence, while 𝑀̄ is the number of VUs participating in the FL training

process, so higher the participating VUs, lower the required iterations, respecting

the FL process behavior.

In this work, we assume the learning process converges after 𝜌opt FL iterations, when

each VU is able to estimate the offloading parameters3. For the purpose of this work,

we consider that, in case we stop the FL process in advance, some estimation error

should be considered, as later explained. Since each FL iteration requires a certain

amount of communication and computational resources, performing 𝜌opt iterations

over all VUs can be challenging and sometimes might not be feasible given the limited

VUs resources and the latency constraints imposed by both service requirements

and sojourn time. The additional energy cost of each FL iteration can also limit

3In the case of a practical system, the convergence can be bounded by some stopping criteria,
e.g., loss function value.

Chapter VI. Distributed Intelligence for IoV 234

the number of FL iterations performed by VUs. Therefore, in this work we consider

that the generic 𝑚-th VU is able to perform up to 𝜌𝑚 FL iterations with 𝜌𝑚 ≤ 𝜌opt.

The set I = {𝜌1, · · · , 𝜌𝑚, · · · 𝜌𝑀} contains the number of FL iterations performed by

each VU.

In order to understand the impact of the FL process we can now introduce the FL

iterations latency, the corresponding energy consumption and the joint optimization

model.

6.2.1.7 FL Computation Model

The FL computation corresponds to the local training of the ML model based on

the on-device dataset. In local device training, the 𝑚th VU has to compute the local

parameter set 𝑤𝑖𝑡𝑣,𝑚 through the dataset having size 𝐾𝑚 data samples; if we assume

that, for every iteration, the total number of FLOPs required for each data sample

𝑑 is 𝜓𝑑, the time and energy consumed during FL process at the 𝑚th device is given

by [84]:

𝑇FL,c
𝑚 =

∑𝐾𝑚
𝑑=1 𝜓𝑑

𝑐𝑣,𝑚 𝑓𝑣,𝑚
, 𝐸FL,c

𝑚 = 𝑃c
𝑚 · 𝑇FL,c

𝑚 . (6.22)

We suppose for simplicity that the on-device FL processing time and energy is

the same for every iteration. Conversely, the FL server is limited to the model

aggregation, whose time and energy is considered as negligible given the abundant

available resources at HAP.

6.2.1.8 FL Communication Model

In FL, the devices communicate the local model updates towards the HAP in uplink

and receive back the updated global model parameters in downlink. Both uplink

Chapter VI. Distributed Intelligence for IoV 235

and downlink communication processes are characterized by transmission and prop-

agation delays, due to the high distance between VUs and HAP. The propagation

time required for each FL iteration is given by,

𝑇
FL,prop
𝑚,𝑖𝑡

= 2 ·
𝑑𝑚,HAP

𝜎
, ∀𝑚 (6.23)

where 𝜎 is the propagation speed in the considered transmission medium, 𝑑𝑚,HAP is

the distance between the 𝑚th VU and the HAP, which can be calculated by using

HAP altitude (ℎHAP) and the 𝑚th VU location through simple algebraic passages,

and the multiplication by 2 is due to the two-way propagation delay. During the

FL processing, at each iteration 𝑖𝑡 the 𝑚th VU sends the parameters set 𝑤𝑖𝑡𝑣,𝑚 to the

HAP. Supposing that |𝑤𝑖𝑡𝑚 | represents the data size of the parameters set expressed

in bits [126], the uplink transmission time and energy for the FL parameters in the

𝑖𝑡th iteration is:

𝑇
FL,tx
𝑚,𝑖𝑡

=
|𝑤𝑖𝑡𝑣,𝑚 |

𝑟𝑖𝑡
𝑚,HAP

(𝐵HAP
𝑣,𝑚 , 𝑑𝑚,HAP)

, 𝐸
FL,tx
𝑚,𝑖𝑡

= 𝑃tx
𝑚 · 𝑇

FL,tx
𝑚,𝑖𝑡

, (6.26)

where, 𝑟𝑖𝑡
𝑚,HAP

is the uplink transmission rate between 𝑚th VU and the HAP during

the 𝑖𝑡th iteration, which is a function of the VUs bandwidth (𝐵HAP
𝑣,𝑚), and the distance

(𝑑𝑚,HAP) between the 𝑚th VU and the HAP, modeled through the Shannon capacity

formula under Rice fading conditions [127]. Since the HAP is accessed by multiple

VUs, we assume for simplicity that the HAP bandwidth is equally shared among

the connected VUs. Also, 𝑃tx
𝑚 is the VUs, transmission power while communicating

with HAP.

In general, HAP needs to wait for all training VUs to transmit their model parame-

ters before performing the averaging operation. Therefore, the FL transmission time

Chapter VI. Distributed Intelligence for IoV 236

for the 𝑖𝑡th iteration is given by,

𝑇
FL,tx
𝑖𝑡

= max
𝑚

{
𝑇
FL,tx
𝑚,𝑖𝑡

}
, ∀𝑚 (6.27)

The HAP performs the aggregation of the received model parameters (e.g., FedAvg

[122]) to create a global parameter vector 𝑤𝑖𝑡
𝐺
for the next iteration and transmits it

back towards VUs over the downlink communication links. Therefore, in downlink,

the global parameters transmission time and energy are given by,

𝑇
FL,rx
𝑚,𝑖𝑡

=
|𝑤𝑖𝑡
𝐺
|

𝑟𝑖𝑡
HAP,𝑚

(𝐵HAP, 𝑑HAP,𝑚)
, 𝐸

FL,rx
𝑚,𝑖𝑡

= 𝑃rx
𝑚 · 𝑇

FL,rx
𝑚,𝑖𝑡

(6.28)

where 𝑟𝑖𝑡
HAP,𝑚

is the downlink transmission rate between the HAP and the 𝑚th VU

during the 𝑖𝑡th iteration when the global parameter set is broadcast. 𝑃rx
𝑚 is the

power consumed while receiving data from HAP. Hence, the total time and energy

required for a single FL iteration can be detailed as:

𝑇FL
𝑚,𝑖𝑡 = 𝑇

FL,c
𝑚 + 𝑇FL,prop

𝑚,𝑖𝑡
+ 𝑇FL,tx

𝑖𝑡
+ 𝑇FL,rx

𝑚,𝑖𝑡
(6.29)

𝐸FL
𝑚,𝑖𝑡 = 𝐸

FL,c
𝑚 + 𝐸FL,tx

𝑚,𝑖𝑡
+ 𝐸FL,rx

𝑚,𝑖𝑡
(6.30)

6.2.1.9 Joint Offloading and Federated Learning Model

Since the FL process is based on multiple iterations for exchanging the ML model

parameters, it is possible to write the total time and energy for the FL process when

focusing on the 𝑚th VU as,

𝑇FL
𝑚 (𝜌𝑚) =

𝜌𝑚∑︁
𝑖𝑡=1

𝑇FL
𝑚,𝑖𝑡 , 𝐸FL

𝑚 (𝜌𝑚) =
𝜌𝑚∑︁
𝑖𝑡=1

𝐸FL
𝑚,𝑖𝑡 (6.31)

Chapter VI. Distributed Intelligence for IoV 237

where 𝜌𝑚 is the number of FL iterations performed by 𝑚th VU, 𝑇FL
𝑚,𝑖𝑡

is the amount of

time spent, and 𝐸FL
𝑚,𝑖𝑡

is the amount of energy consumed for the 𝑖𝑡th iteration of the

FL process depending on both FL communication and computation performance.

The time needed for completing both FL iterations and task processing has to be

constrained by the maximum service latency requirement, given by:

𝑇𝑚 (𝜌𝑚, 𝛼𝑚) = 𝑇FL
𝑚 (𝜌𝑚) + 𝑇𝑥𝑚𝑚 (𝛼𝑚) ≤ 𝑇𝑥𝑚 (6.32)

Also the energy consumed for completing both FL iterations and task processing

has to be constrained by the energy required to compute a complete task locally,

given by:

𝐸𝑚 (𝜌𝑚, 𝛼𝑚) = 𝐸FL
𝑚 (𝜌𝑚) + 𝐸𝑥𝑚𝑚 (𝛼𝑚) ≤ 𝐸𝑥𝑚,c𝑚 (6.33)

Due to the dynamicity of the vehicular environment, computation offloading and FL

process latencies should also be bounded by the VUs sojourn times under RSU and

HAP beam coverage. Since the HAP is acting as an FL server, the whole FL phase

should be completed by the HAP sojourn time, hence:

𝑇FL
𝑚 (𝜌𝑚) ≤ 𝑇

soj
𝑚,HAP

(6.34)

In addition, each VU should finish the offloading process within the RSU sojourn

time. Thus,

𝑇FL
𝑚 (𝜌𝑚) + 𝑇off

𝑚,𝑛 (𝛼𝑚) ≤ 𝑇
soj
𝑚,𝑛 (6.35)

It is worth to be noticed that the sojourn time does not affect the overall processing

time, while only the offloading time, since the local computation can be performed

also out of the RSU coverage.

Chapter VI. Distributed Intelligence for IoV 238

6.2.1.10 Problem Formulation

Following (6.11), (6.16), (6.18), (6.29), (6.31), and (6.32) the total time 𝑇𝑚 (𝜌𝑚, 𝛼𝑚)

required for both phases (i.e., FL and task processing) can be determined. Similarly,

from (6.12), (6.17), (6.19), (6.30), (6.31), and (6.33) the total energy 𝐸𝑚 (𝜌𝑚, 𝛼𝑚)

required for both phases can be calculated. The proposed optimization model aims

at minimizing the total time and energy by properly setting the offloading parameters

and the FL iterations used for determining the offloading parameters itself. Hence,

the problem in (6.20) can be rewritten as:

P2 : (I∗,A∗) = argmin
I,A

{
1

𝑀

𝑀∑︁
𝑚=1

(𝜂1 · 𝑇𝑚 (𝜌𝑚, 𝛼𝑚) + 𝜂2 · 𝐸𝑚 (𝜌𝑚, 𝛼𝑚))
}

(6.36)

subject to the constraints (6.21d)-(6.21g), (6.32)-(6.35), and,

𝑀∑︁
𝑚=1

𝐵HAP
𝑣,𝑚 ≤ 𝐵HAP (6.37a)

0 ≤ 𝜌𝑚 ≤ 𝜌opt ∀𝑣𝑚 ∈ V (6.37b)

where (6.32) is the service latency requirement reformulating (6.21a) including the

FL processing time. Also, (6.33) is the reformulated energy constraint defined in

(6.21c) with FL process energy. Eq. (6.34) provides an upper bound for the FL

process depending on the HAP sojourn time and (6.35) is the reformulated version

of (6.21b), defining the upper bound of both task offloading and FL process as the

RSU sojourn time: each vehicle should offload the computation data to the RSU

and receive results before it leaves its coverage area. According to (6.37a), the sum

of bandwidth resources available for all VUs in non-terrestrial communication links

should be upper bounded by the HAP bandwidth resources. Eq. (6.37b) upper

bounds the number of iterations performed by each VU to 𝜌𝑜𝑝𝑡 .

Chapter VI. Distributed Intelligence for IoV 239

6.2.1.11 Federated Offloading parameter estimation

Solving the problem defined in (6.36) requires finding two sets of optimization vari-

ables (I,A) and thus is hard to be solved. However, (I,A) are not two separate

sets of variable. As more iterations are performed, higher is the reliability with which

the offloading parameter is estimated through the FL process. Hence, the offloading

parameter 𝛼𝑚 can be modeled as function of the number of FL iterations performed

with the aim of estimating the optimal 𝛼opt𝑚 , i.e., 𝛼𝑚 = 𝛼𝑚 (𝜌𝑚). Without loss of

generality, we assume in the following that in case the 𝑚-th VU cannot participate

in the FL process, the offloading parameter is 𝛼0𝑚 = 𝛼𝑚 (𝜌𝑚 = 0), while in case it can

perform 𝜌opt iterations, the estimated offloading parameter is 𝛼opt𝑚 = 𝛼𝑚 (𝜌opt). In

any other case, the estimated value 𝛼𝑚 is a function of 𝜌𝑚 FL iterations that are

performed by the 𝑚th VU. The exact relationship between 𝛼𝑚 and 𝜌𝑚 is hard to

be set since it depends on several factors such as FL environment, number of VUs

participating in the FL process, the communication medium between FL clients and

server, etc. To the best of our knowledge there is no model in the literature aiming

at setting the aforementioned relationship. Therefore, without loss of generality, we

consider here that the estimated 𝛼𝑚 can be modeled as a stochastic value whose

distribution follows a truncated normal distribution with mean 𝜇 and variance 𝜎2,

where 0 ≤ 𝛼𝑚 ≤ 1, since 𝛼𝑚 is bounded between 0 and 1 by definition. Therefore, it

is possible to define the probability density function 𝑓𝛼𝑚 (·) of 𝛼𝑚 as,

𝑓𝛼𝑚 (𝛼𝑚; 𝜇, 𝜎)=


1
𝜎

𝜉(𝛼𝑚−𝜇𝜎)
Δ

(
1−𝜇
𝜎

)
−Δ(−𝜇𝜎)

if 0≤𝛼𝑚 ≤1

0 otherwise

(6.38)

Chapter VI. Distributed Intelligence for IoV 240

where, 𝜉 (·) and Δ(·) are, respectively, the probability density function of the related

standard normal distribution and its cumulative distribution function, i.e.,

𝜉 (𝜔) = 1
√
2𝜋
𝑒

(
− 𝜔22

)
, Δ(𝜅) = 1

2

(
1 + erf

(
𝜅
√
2

))
.

In this work we assume that the mean value of the distribution of 𝛼𝑚, i.e., 𝜇, and

its variance, 𝜎2, are equal to

𝜇 = 𝛼
opt
𝑚 (𝜌𝑚), 𝜎2 =

(
𝛾 · 𝜌

opt − 𝜌𝑚
𝜌opt

)2
(6.39)

where 𝛾 is a numerical constant, used for controlling the variance of the model. It

is worth to be noticed that the variance is defined in a way that higher 𝜌𝑚, lower

is the variance. This corresponds to say that increasing the number of iterations

reflects in a more reliable estimation of 𝛼𝑚 provided that 𝜌𝑚 ≤ 𝜌opt. Moreover, the

higher the iterations to be performed, the higher is the time spent in the FL phase,

so the lower is the time left for the offloading phase. This is the reason why 𝜇 is

also function of the iterations. This is consistent with the FL process where more

FL iterations turn out in a better estimation of the offloading parameter. During

simulations, 𝑓𝛼𝑚 (𝛼𝑚; 𝜇, 𝜎) is used for estimating the 𝛼𝑚 for every 𝑚th VU, whose

quality will depend upon the number of FL iterations performed compared with

𝜌opt. A qualitative representation is reported in Fig. 6.4 with 𝜌opt = 25, where as

the number of iterations increases, both the distribution variance and the average

optimal offloading parameter become smaller, leaving less time for the offloading

operation.

According to (6.35) both FL and task offloading processes should be completed

within available sojourn time. Fig. 6.5 shows the impact of the constraint (6.35)

on the considered vehicular environment. In particular, we can notice that at the

Chapter VI. Distributed Intelligence for IoV 241

0 0.2 0.4 0.6 0.8 1

Figure 6.4: Truncated Normal Distribution of 𝛼𝑚 as a function of the FL iter-
ations.

Figure 6.5: FL process impact over the offloading parameter value

beginning, the joint FL and offloading process is bounded by the sojourn time. As

the VU moves, despite some iterations that are performed, the remaining time for

completing the FL process and starting the offloading is reduced, due to the lower

remaining sojourn time.

From the previous description, it is clear that given a certain amount of time, we

have to trade-off between offloading and FL processes. Let us introduce now a new

parameter, named 𝛽𝑚 ∈ [0, 1], modeling the portion of time allocated for the FL

process of the 𝑚th VU. If 𝛽𝑚 = 0, the whole time is allocated for the task processing

Chapter VI. Distributed Intelligence for IoV 242

Figure 6.6: FL and Task processing time sharing.

phase, while if 𝛽𝑚 = 1 the 𝑚th VU uses the whole available time for the FL phase.

Considering the target latency of the tasks generated by each VU as a reference time

interval, it is possible to set the maximum number of possible iterations for the FL

process:

𝜌𝑚 (𝛽𝑚) s.t. 𝑇FL
𝑚 (𝛽𝑚) =

𝜌𝑚 (𝛽𝑚)∑︁
𝑖𝑡=1

𝑇FL
𝑚,𝑖𝑡 ≤ 𝛽𝑚 · 𝑇𝑥𝑚 (6.40)

where B = {𝛽1, . . . , 𝛽𝑚, . . . , 𝛽𝑀}. Each VU performs numerous FL iterations aiming

at finding the optimal offloading amount to be transferred towards RSU, where

any additional FL iteration reduce the variance in (6.38), i.e., its reliability, while

reducing its average value.

Fig. 6.6 shows the available resources for both phases as a function of 𝛽𝑚. As 𝛽𝑚

increases VU spends more time on the FL process through additional iterations,

which reduces the available time for the processing phase since both phases should

be completed within the requested service latency.

Chapter VI. Distributed Intelligence for IoV 243

In the end, the optimization problem defined in (6.36) can be rewritten as,

P3 : B∗ = argmin
B

{
1

𝑀

𝑀∑︁
𝑚=1

(𝜂1𝑇𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)) + 𝜂2𝐸𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)))
}

(6.41)

subject to the constraints (6.21d)-(6.21g), (6.32)-(6.35), (6.37), (6.40) and,

0 ≤ 𝛽𝑚 ≤ 1 ∀𝑣𝑚 ∈ V (6.42)

where (6.40) limits the maximum number of FL iterations performed by each VU

based on the available FL process time and, according to (6.42), 𝛽𝑚 can take any

value between 0 and 1.

6.2.2 Proposed Solutions

The solution space dimension for the problem P3 can be estimated as SP = Θ(𝑀),

where Θ is the number of possible values taken by 𝛽𝑚, i.e., the smaller step size

for 𝛽𝑚 discretization, the bigger is the solution space. In a certain service area,

the number of VUs requesting services can also be huge. Therefore, despite being

simplified with respect to P2, solving P3 for the whole set V, even for a discrete

solution space, is computationally expensive and requires exploring a huge solution

space SP; thus sub-optimal approaches operating on a subspace of SP are required.

In order to address the problem, first, we propose an RSU-based clustering approach

where each RSU performs the optimization for the VUs under its coverage. As a

second scheme, we consider a distributed approach, where each VU performs the

optimization by itself without considering the surrounding VUs. In both cases, a

GA is proposed as the solution methodology.

Chapter VI. Distributed Intelligence for IoV 244

In order to simplify the problem we assume that each VU will be assigned to the

nearest RSU for computation offloading, hence:

𝑎(𝑚, 𝑛) = 1⇐⇒ 𝑛 = argmin
𝑛′
{𝑑𝑚,𝑛′} ∀𝑚, 𝑛′ (6.43)

where 𝑑𝑚,𝑛′ is the distance between the 𝑚th VU and the 𝑛′th RSU. Each VU starts by

downloading the FL model from the HAP and infers the initial offloading parameter

𝛼0𝑚, supposed to be a random value between 0 and 1.

6.2.2.1 Clustered Approach

In the cluster-based sub-optimal approach we assume that it is possible to find 𝛽𝑚 by

considering the active VUs (i.e., VUs requesting offloading services) under each RSU

coverage, where 𝑀𝑛 corresponds to the VUs managed by the 𝑛th RSU. The RSU

communication and computing resources are supposed to be equally shared among

all active VUs in its coverage area. The solution vector B𝑛 = {𝛽1, 𝛽2, · · · , 𝛽𝑀𝑛}

is composed by the 𝑀𝑛 values for all the VUs connected to 𝑛th RSU. We aim to

determine B∗𝑛, the optimal parameter set for the 𝑛th RSU. The overall optimal B∗

can be determined by merging the solutions from all RSUs, i.e., B∗ = ∪𝑛B∗𝑛. The

problem originally formulated in (6.41) is thus modified as

B∗𝑛 = argmin
B𝑛

{
1

𝑀𝑛

𝑀𝑛∑︁
𝑚=1

[𝜂1 · 𝑇𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)) + 𝜂2 · 𝐸𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚))]
}

(6.44)

In Algorithm 12 the steps used for the RSU based clustered optimization are pre-

sented. At the beginning, VUs are assigned to the RSUs based on the minimum

distance criterion in (6.43), from which the number of VUs requesting services from

Chapter VI. Distributed Intelligence for IoV 245

each RSU is determined (Line 1-2). After this, the optimal set of B𝑛 values for all

the VUs associated with a given RSU is determined by using (6.44) (Line 3-6). In

the end, the algorithm returns the solution set of all RSUs (Line 7).

Algorithm 12 Clustered Approach

Input: 𝑁, 𝑀, {𝑑𝑚,𝑛}

Output: B∗

1: 𝑎(𝑚, 𝑛) = 1⇐⇒ 𝑛 = argmin𝑛′ {𝑑𝑚,𝑛′ } ∀𝑚.

2: Find 𝑀𝑛 =
∑𝑀
𝑚=1 𝑎(𝑚, 𝑛),∀𝑛

3: for all 𝑛 = 1, · · · 𝑁 do

4: ∀𝑚 ∈ 𝑀𝑛

5: Find B∗𝑛 by solving (6.44)

6: end for

7: return B∗ = {B∗1, · · · ,B∗𝑛, · · · B∗𝑁 }

Clustering Policies In order to better understand the impact of the clustered

approach we have considered three different clustering policies.

• Full Clustering Policy (FC) - In this policy, all the active 𝑀𝑛 VUs of 𝑛th

RSU cluster participate to the FL process before performing offloading, hence,

𝑀𝑛 =

𝑀∑︁
𝑚=1

𝑎(𝑚, 𝑛) ∀𝑛

• Probabilistic Clustering Policy (PC) - In this approach, we randomly

classify the 𝑀𝑛 VUs of 𝑛th RSU cluster into two subgroups 𝑀̂1
𝑛 and 𝑀̂2

𝑛 . VUs

belonging to 𝑀̂1
𝑛 perform FL process with optimal 𝛽∗𝑚 determined through (6.44)

while VUs in 𝑀̂2
𝑛 performs offloading with initially estimated offloading param-

eter 𝛼0𝑚, i.e., 𝛽𝑚 = 0. By this policy we would like to understand the impact

Chapter VI. Distributed Intelligence for IoV 246

of the VUs when participating to the FL process. The classification of VUs

into two subgroups is based on a Bernoulli distribution where the probability

of the 𝑚-th VU being in 𝑀̂1
𝑛 is 𝑝, i.e., 𝑃(𝑚 ∈ 𝑀̂1

𝑛) = 𝑝 and the probability

being in 𝑀̂2
𝑛 is (1 − 𝑝), i.e., 𝑃(𝑚 ∈ 𝑀̂2

𝑛) = (1 − 𝑝).

• Distance-Based Clustering Policy (DBC) - In this approach the selection

of the VUs is based on the available distance before they move out of the

RSU coverage. In this policy we would like to give more importance to those

VUs staying longer within the same RSU coverage; hence, we select them for

performing FL. Therefore for the 𝑛th RSU we have:

𝑀̂1
𝑛 =

{
𝑚 |Π𝑚,𝑛 ≥ Π̂, 𝑚 ∈ 𝑀𝑛

}
where 𝑀̂1

𝑛 are VUs that perform FL iterations before the computation offload-

ing process with optimal 𝛽𝑚 determined through (6.44). Π̂ is the distance

bound used for partitioning VUs into two groups. The remaining VUs, will

not participate into the FL training process, i.e., 𝛽𝑚 = 0 and given by,

𝑀̂2
𝑛 =

{
𝑚 |𝑚 ∉ 𝑀̂1

𝑛 , 𝑚 ∈ 𝑀𝑛

}
such that 𝑀𝑛 = 𝑀̂

1
𝑛 ∪ 𝑀̂2

𝑛

6.2.2.2 Distributed Approach

Due to its dynamic nature, predicting the exact VUs number and their characteristics

even if within the same RSU is a difficult task. Some of the main reasons include VUs

unpredictable velocity, directions, drivers’ behaviors, different types of vehicles, etc.

Moreover, in many situations, privacy-protective VUs are reluctant to share their

Chapter VI. Distributed Intelligence for IoV 247

information with surrounding nodes, limiting the VUs capability for understanding

the surrounding environment. In this situation, each VU has to offload computation

data towards RSU without knowing how many other VUs have already requested

the services from that particular RSU with certain assumptions over available RSU

resources. In such situations, VUs can act selfishly and assume that no other VUs

have requested services from a selected RSU and its complete resource pool can be

used. Here, we propose a VU-based distributed approach where VU makes similar

assumptions while offloading data towards RSU nodes. Thus, in the VU-based

distributed approach, we consider that VUs are not aware of nearby competing VUs

and perform the optimization without considering them. The problem originally

formulated in (6.41), is modified as

𝛽∗𝑚 = argmin
𝛽𝑚

{𝜂1 · 𝑇𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)) + 𝜂2 · 𝐸𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚))} ∀𝑚 (6.45)

It is possible to notice that in this case we suppose no mutual influence among

different VUs.

6.2.2.3 Genetic Algorithm

We propose a GA-based solution for solving both cluster-based and distributed ap-

proaches. GAs are evolutionary search methods inspired by the theory of natural

selection and genetics. GA process begins with an initial population space (PS)

that constitutes the set of possible solutions (i.e., individuals), each having a chro-

mosome (C). Through an iterative process, involving the creation of a new PS

with possibly better individuals at each step, the sub-optimal solution is obtained.

The evaluation process includes the analysis of each C of the current PS through a

fitness function (FF), the selection of a parent C is based on a selection function

Chapter VI. Distributed Intelligence for IoV 248

(𝑆 𝑓), then the formation of new individuals by using mutation and crossover GA

operators. In the mutation process, a new C is formed by altering some of the genes

in the selected solution from (PS), while, in the crossover process, two chromosome

sets with good fitness function constitute a C for the next generation by combining

their genes. Each evaluation creates a better solution set and finally ends by pro-

viding a solution point with a higher fitness value. More comprehensive information

on GA and evolutionary algorithms can be found in [107], while here we focus on

the main elements for the sake of brevity.

Chromosome In this work, we have considered C constituted by set of 𝛽𝑚 ∈ B𝑛

values for the 𝑛th RSU. Thus, each 𝛽𝑚 ∈ [0, 1] acts as a gene for C.

Fitness Function The FF allows to model the problem to be minimized con-

sidering also the constraints; hence, it is defined by using the objective function in

(6.44), later written as 𝑓 (B𝑛) for the 𝑛th RSU, plus three additional penalty func-

tions related to the constraints in (6.32), (6.33) and (6.35). The fitness function

FF (B𝑛) is:

FF (B𝑛) = 𝑓 (B𝑛)+Υ1 ·max(0, 𝐶1(B𝑛))+Υ2 ·max(0, 𝐶2(B𝑛))+Υ3 ·max(0, 𝐶3(B𝑛))

(6.46)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the penalty values, and:

𝐶1(B𝑛) =
∑︁
𝑀𝑛

(
𝑇𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)) − 𝑇𝑥𝑚

)
𝐶2(B𝑛) =

∑︁
𝑀𝑛

(
𝐸𝑚 (𝜌𝑚 (𝛽𝑚), 𝛼𝑚 (𝛽𝑚)) − 𝐸𝑥𝑚,c𝑚

)
𝐶3(B𝑛) =

∑︁
𝑀𝑛

(
𝑇FL
𝑚 (𝜌𝑚 (𝛽𝑚)) + 𝑇off

𝑚,𝑛 (𝛼𝑚 (𝛽𝑚)) − 𝑇
soj
𝑚,𝑛

)

Chapter VI. Distributed Intelligence for IoV 249

where 𝐶1(B𝑛) is the additional fitness penalty for VUs not performing FL and of-

floading process within the service latency requirement, 𝐶2(B𝑛) is the penalty for

not respecting the energy constraint defined in (6.33) and 𝐶3(B𝑛) is the supplemen-

tary penalty for VUs not performing the offloading process before moving out of

RSU coverage.

Selection The selection function 𝑆 𝑓 used for the parent selection is based on the

roulette wheel selection technique, where the selection probability for an individual

to be selected depends upon its fitness score. It should be noted that since our

problem is latency and energy minimization, parents with the lowest fitness are

selected at each round for reproduction stage.

Crossover In the crossover operator, new chromosomes (Cnew1 , Cnew2) are gener-

ated by alternating genes of the parents (Cold1 , Cold2) from a crossover point. Thus,

child chromosomes can be written as

Cnew1 = ΦCold1 + (1 −Φ)Cold2 , Cnew2 = ΦCold2 + (1 −Φ)Cold1

where Φ is the crossover point uniformly distributed in [Λ, (1 + Λ)], i.e., Φ ∼

U(−Λ, 1 + Λ)

Mutation We have used a Gaussian mutation technique where selected genes (𝛽𝑚)

from a child C can be altered by adding a random value from a Gaussian distribution,

i.e., 𝛽𝑚 → 𝛽𝑚 + 𝜈, where, 𝜈 is a random variable with a Gaussian distribution, i.e.,

𝜈 ∼ N(𝜇, 𝜎2).

Chapter VI. Distributed Intelligence for IoV 250

Algorithm 13 The proposed GA-based Approach
Input: FF, 𝐺max, 𝑀𝑛 ,Φ, 𝜈

Output: B∗𝑛

1: Generate the initial population space PS with each 𝛽𝑚 ∈ [0, 1]

2: while 𝑖 ≤ 𝐺max do

3: function Evaluate(PS)

4: Find FF(C) , ∀C ∈ PS.

5: end function

6: function Search(PS)

7: Select better fit individuals using 𝑆 𝑓

8: end function

9: function Create(PS)

10: Generate new Cs through Crossover and Mutation (using Φ, 𝜈).

11: Integrate Cs with current PS and sort them using fitness scores i.e., FF (C)

12: end function

13: Replace current PS with new best set of Cs.

14: 𝑖 = 𝑖 + 1

15: end while

16: return B∗𝑛

Algorithm 13 shows the steps used during the implementation of GA for the clustered

approach. The main GA steps include the evaluation of PS (Line 3-5), selection of

better fit individuals as parent Cs (Line 6-8), generation of new possibly better fit

Cs for the next generation (Line 9-12). The algorithm terminates after a maximum

number of iterations 𝐺max are reached. A similar process can be used for the dis-

tributed case by considering the individual VUs, where GA performs optimization

for each 𝑚 ∈ 𝑀𝑛 separately. It is worth to be noticed that, when GA is applied to

the clustered approaches a set of VUs participates in the GA process. GA process

can produce, for some of these VUs, a solution with 𝛽𝑚 = 0, corresponding to ex-

clude such VUs from the FL process. Thus, inherently, GA process is also able to

optimize the clusters’ size by including/excluding VUs from the FL process, if there

is an advantage in terms of cost.

Chapter VI. Distributed Intelligence for IoV 251

6.2.2.4 Limited Search-based Heuristic Approach (LS-HuA)

In order to compare the results with a simpler while sub-optimal solution, we propose

also an intuitive heuristic approach where we consider a reduced-size solution space

ŜP through a user-defined parameter 𝜃ℎ𝑢 representing the number of possible values

taken by the parameter 𝛽𝑚. In this way we are going to optimize the problem while

considering only a subset of possible solutions. For example, in case of 𝜃ℎ𝑢 = 5, 𝛽𝑚 ∈

{0, 0.2, 0.4, 0.6, 0.8}. We do not consider the case with 𝛽𝑚 = 1, since it corresponds

to completely assign the time interval to the FL process, resulting in an always

infeasible solution for active VUs having tasks to be offload. The smaller values of

𝜃ℎ𝑢 reduces the simulation time, while limiting the accuracy of a solution provided.

On the other hand, larger values of 𝜃ℎ𝑢 allow the user to search over the larger SP

for finding an optimal solution (i.e., exhaustive search). Also in this case 𝛽𝑚 = 0

corresponds to exclude the 𝑚th VU from the FL process.

Algorithm 14 lists the steps followed during the search process. It includes the

creation of a reduced search space (Line 1), initializing the cost function value (𝑓ℎ𝑢)

that stores the optimal cost for each iteration (Line 2), and iterating over all possible

solution points (B𝑛) from ŜP for finding the best possible solution (Line 3-12). In

the end, the algorithm returns the best possible solution point Bℎ𝑢𝑛 found through

iterations. In case there is no feasible solution available, VU decides to offload

without performing any FL iteration.

Chapter VI. Distributed Intelligence for IoV 252

Algorithm 14 Limited Search-based Heuristic Approach
Input: 𝑀𝑛 , 𝜃ℎ𝑢

Output: Bℎ𝑢
𝑛

1: Create ŜP = {𝛽𝑛 } of size 𝜃 (𝑀𝑛)
ℎ𝑢

with all possible solution points to be searched in the reduced-size solution

space

2: Initialize 𝑓ℎ𝑢 = ∞,

3: for all B𝑛 ∈ ŜP do

4: Use (6.44) for finding total cost 𝑓 (B𝑛)

5: Determine all constraint functions values

6: if 𝑓 (B𝑛) ≤ 𝑓ℎ𝑢 and all constraints are satisfied then

7: 𝑓ℎ𝑢 = 𝑓 (B𝑛) and Bℎ𝑢
𝑛 = B𝑛

8: end if

9: end for

10: if 𝑓ℎ𝑢 = ∞ (i.e., no feasible solution found) then

11: Bℎ𝑢
𝑛 = {0}1×𝑀𝑛

12: end if

13: return Bℎ𝑢
𝑛

6.2.2.5 Optimal Offloading Parameter

Here we aim at finding a closed form expression for the optimal offloading parameter

𝛼
opt
𝑚 (𝛽𝑚) having set 𝛽𝑚. It should be noticed that this particular analysis is carried

out by considering that all system parameters are known in advance, which is not

the case in reality given the uncertainty of the environment. Thus the results are

used for comparison.

In case we fix 𝛽𝑚 it is possible to obtain the optimal offloading parameter 𝛼opt𝑚 (𝛽𝑚)

by resorting to the equality conditions in (6.18), (6.33) and (6.35). Resorting to

(6.18), the optimal offloading parameter (𝛼T1
𝑚) implies that:

𝑇off
𝑚,𝑛 (𝛼T1

𝑚) = 𝑇 loc
𝑚 (𝛼T1

𝑚) (6.47)

Chapter VI. Distributed Intelligence for IoV 253

Exploiting (6.11) and (6.16), we have the following:

𝑇off
𝑚,𝑛 (𝛼T1

𝑚) = 𝛼T1
𝑚 · 𝑇off

𝑚,𝑛, 𝑇 loc
𝑚 (𝛼T1

𝑚) = (1 − 𝛼T1
𝑚) · 𝑇𝑥𝑚,c𝑚

Hence, exploiting (6.47) we have,

𝛼T1
𝑚 =

𝑇
𝑥𝑚,c
𝑚

𝑇
𝑥𝑚,c
𝑚 + 𝑇off

𝑚,𝑛

(6.48)

In addition, the equality condition in (6.35) allows to achieve an optimal offloading

parameter 𝛼T2
𝑚 (𝛽𝑚) so that,

𝑇FL
𝑚 (𝜌𝑚 (𝛽𝑚)) + 𝑇off

𝑚,𝑛 (𝛼T2
𝑚 (𝛽𝑚)) = 𝑇

soj
𝑚,𝑛

where,

𝑇off
𝑚,𝑛 (𝛼T2

𝑚 (𝛽𝑚)) = 𝛼T2
𝑚 (𝛽𝑚) · 𝑇off

𝑚,𝑛

which returns,

𝛼T2
𝑚 (𝛽𝑚) =

𝑇
soj
𝑚,𝑛 − 𝑇FL

𝑚 (𝜌𝑚 (𝛽𝑚))
𝑇off
𝑚,𝑛

(6.49)

In case the 𝑚th VU performs the FL process for a longer time and goes out of the

coverage of RSU, i.e., 𝑇 soj
𝑚,𝑛 < 𝑇

FL
𝑚 (𝜌𝑚 (𝛽𝑚)), it will not be able to offload any data

towards the RSU, i.e., 𝛼T2
𝑚 (𝛽𝑚) = 0. Hence, (6.49) can be rewritten as,

𝛼T2
𝑚 (𝛽𝑚) = max

{
0,
𝑇
soj
𝑚,𝑛 − 𝑇FL

𝑚 (𝜌𝑚 (𝛽𝑚))
𝑇off
𝑚,𝑛

}
(6.50)

Following the energy constraint defined in (6.33) equality holds for a particular

optimal offloading parameter 𝛼E1
𝑚 (𝛽𝑚) and can be written as,

𝐸FL
𝑚 (𝜌𝑚 (𝛽𝑚)) + 𝐸𝑥𝑚𝑚 (𝛼E1

𝑚 (𝛽𝑚)) = 𝐸𝑥𝑚,c𝑚

Chapter VI. Distributed Intelligence for IoV 254

Exploiting (6.12) and (6.19), we have the following:

𝐸𝑥𝑚𝑚 (𝛼E1
𝑚 (𝛽𝑚)) = 𝛼E1

𝑚 (𝛽𝑚) · 𝐸off
𝑚,𝑛 + (1 − 𝛼E1

𝑚 (𝛽𝑚)) · 𝐸𝑥𝑚,c𝑚

that returns,

𝛼E1
𝑚 (𝛽𝑚) =

−𝐸FL
𝑚 (𝜌𝑚 (𝛽𝑚))
𝐸off
𝑚,𝑛 − 𝐸𝑥𝑚,c𝑚

(6.51)

In such cases where 𝐸off
𝑚,𝑛 > 𝐸

𝑥𝑚,c
𝑚 , performing computation offloading is not an option

since it requires additional energy and that results into 𝛼E1
𝑚 (𝛽𝑚) = 0. Therefore,

(6.51) can be modified to,

𝛼E1
𝑚 (𝛽𝑚) = max

{
0,
−𝐸FL

𝑚 (𝛽𝑚)
𝐸off
𝑚,𝑛 − 𝐸𝑥𝑚,c𝑚

}
(6.52)

In the end, (6.48), (6.50), and (6.52) are considered for finding 𝛼opt𝑚 (𝛽𝑚) as:

𝛼
opt
𝑚 (𝛽𝑚) = min

{
𝛼T1
𝑚 , 𝛼T2

𝑚 (𝛽𝑚), 𝛼E1
𝑚 (𝛽𝑚)

}
(6.53)

This procedure is used as a reference value in the following for testing the effective-

ness of the estimated offloading parameters that depends on the FL and, in turns,

on its iterations.

6.2.3 Numerical Results

Numerical results are obtained through computer simulations with Matlab. A vari-

able number of VUs between 100 and 1000 are considered, assuming that each one

is generating tasks with a probability equal to 0.2, while the remaining have no task

to be offloaded. VUs are uniformly distributed in a two-lane road and travel in

Chapter VI. Distributed Intelligence for IoV 255

Table 6.1: Simulation Parameters

Simulation parameters
HAP Beam Coverage
(𝑅HAP)

2 Km

RSU Coverage (𝑅𝑟,𝑛) 25 m
Task Size (𝐷𝑥𝑚) 2.5 MB
Task Computation
(Ω𝑥𝑚)

103 × 𝐷𝑥𝑚

FLOPS
Task Results (𝐷𝑥𝑚,rx) 0.5 MB
VU Flops (𝑐𝑣,𝑛 · 𝑓𝑣,𝑛) 8 GFLOPS
VU Tx. Energy (𝑃tx

𝑚) 1.3 W [121]
VU Rx. Energy (𝑃rx

𝑚) 1.1 W [121]
VU Comp. Energy
(𝑃c

𝑚)
0.9 W [121]

RSU Flops (𝑐𝑟,𝑛 · 𝑓𝑟,𝑛) 80 GFLOPS
HAP Beam Band-
width (𝐵HAP)

100 MHz

RSU Bandwidth
(𝐵𝑟,𝑛),∀𝑛

10 MHz

HAP Altitude (ℎHAP) 20 Km [128]

either directions with a velocity 𝑣𝑚 equal to 10 m/s. Moreover, 80 RSUs are ran-

domly placed on either sides of the lanes. The task latency requirement (𝑇𝑥𝑚) has

been set to 2 s; this value is consistent with other works in the literature [118, 119]

considering similar scenarios and applications. The other parameters considered in

simulation are listed in Table 6.1.

The GA weight coefficients are Υ1,Υ3 = 10, Υ2 = 1, while the crossover function

parameter is Λ = 0.1, and the mutation function parameters are 𝜇 = 0.02, 𝜎 = 0.1.

Moreover, we set an initial population of 30 chromosomes and 𝐺max=50, 𝛼0𝑚 is

uniformly distributed between 0 and 1, while K is 2000, and both |𝑤𝑖𝑚 | and |𝑤𝐺 | have

size 1000 bits. The parameter 𝛾 is set to 0.4 while estimating offloading parameters.

In DBC policy Π̂ is equal to 𝑅𝑟,𝑛/2, while 𝑝 = 0.5 is used in PC. Also, the numerical

value used for both 𝜂1 and 𝜂2 is 0.5. Finally, we have considered 𝜃ℎ𝑢 = 6 when

evaluating the results for the LS-HuA.

Chapter VI. Distributed Intelligence for IoV 256

In the following, we present the results by comparing the proposed GA approach

with LS-HuA and two static benchmarks:

• Computation Offloading without Performing any FL Iterations (Without FL):

In this approach, each VU decides to offload data without performing any FL

iteration. Therefore, the offloading operation is performed with 𝛼0𝑚 without

adding any FL cost. Since the initial value of offloading parameter may or

may not be optimal, this approach cannot guaranty the optimal performance.

Though this approach can have a reduced cost, VU performs the offloading

operation without taking into account the available time and energy resources

which may diminish performance in terms of constraint failures.

• Computation Offloading by Performing Complete FL Iterations (Complete FL):

In this particular method, each VU performs the 𝜌opt FL iterations before of-

floading data towards RSU. Thus the offloading operation is performed with

𝛼
opt
𝑚 , as defined in (6.53), when 𝛽𝑚 is such that 𝜌𝑚 = 𝜌opt. Though VUs can

perform offloading with optimal offloading parameters, it is not always feasi-

ble to perform 𝜌opt FL iterations with limited service time, sojourn time, and

energy of VU, which limits the performance of this approach.

These two benchmarks do not consider the available resources of VUs while making

computation offloading decisions and may have a sub-optimal performance over long-

term simulations. In the following figures, GA-FC, GA-DBC, GA-PC, and GA-D

are the acronyms used for the Genetic Algorithm technique with FC, DBC, PC, and

Distributed Clustering approaches, respectively.

Chapter VI. Distributed Intelligence for IoV 257

Avg. Latency and Energy Cost with Varying VUs

In Fig. 6.7, the average cost in terms of joint latency and energy consumed for

both FL and task processing phases using a variable number of VUs is shown. The

results show that GA and LS-HuA techniques have a considerable advantage over

the Complete FL approach with reduced cost values. Even though the Without

FL approach has the minimum cost among all the proposed methods, it cannot

guarantee a reliable performance in terms of service latency, sojourn time, and energy

constraints, as shown and discussed later in Figs. 6.8-6.10. The proposed Clustered

GA approaches (i.e., GA-FC, GA-DBC, GA-PC), thanks to a better knowledge

of the surrounding environment, performs FL and task processing with a lower

cost along with better reliability, which can benefit several latency-critical services

demanded by VUs having limited energy resources. Since the required FL iterations

to achieve model convergence reduces with the participation of more VUs, the cost

of the Complete FL process decreases with increasing VUs, but still it fails to achieve

the overall performance of proposed GA methods.

Performance in Terms of Sojourn Time Failures

Fig. 6.8 shows the percentage of number of VUs failing to perform the offloading

operation before leaving the RSU coverage. According to constraint (6.35), each VU

should complete both FL and task offloading processes within available sojourn time.

The two benchmark methods lack suitable flexibility while performing the offloading

operations as both methods do not utilize the available latency resources properly

while performing the offloading operations. That results in higher failures since they

are not able to perform both FL and task offloading operations in a limited sojourn

time. It should be noted that the complete FL approach has a falling curve, which

Chapter VI. Distributed Intelligence for IoV 258

100 200 300 400 500 600 700 800 900 1000

Total VUs

1

1.5

2

2.5

3

3.5

4
A

v
g
.
C

o
s
t

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Figure 6.7: Cost Function

is due to the fact that by the increase in the number of VUs in a service area, a

shorter time will be required to achieve FL convergence. On the other hand, both

GA schemes and LS-HuA approach perform an adequate number of FL iterations,

before performing the offloading operations, and, as a result, have very few failures

with reduced cost. The performance of the Without FL worsens with an increasing

number of VUs, and at a certain point, it has even higher failures than the Complete

FL approach.

Performance in Terms of Service Time Outage

Fig. 6.9 shows the percentage of VUs failing to perform both FL and the task

processing operation within a demanded service latency. The significant performance

improvement in terms of a reduced number of failures can be observed in the GA and

LS-HuA results, comparing with the benchmark methods. This is mainly because of

the improper allocation of VUs available resources towards FL and task processing

Chapter VI. Distributed Intelligence for IoV 259

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

S
o

jo
u

rn
 T

im
e

 F
a

ilu
re

s
(%

)

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Figure 6.8: Percentage of VUs with sojourn time constraint violation

phases in the benchmark methods. These results also highlight the importance of

proper allocation of VU resources for the FL and task processing phases (estimation

of B), for improving the overall VNs performance.

Performance in Terms of Energy

Fig. 6.10 shows the percentage of VUs violating the energy constraint in (6.33).

Since each FL iteration costs energy, performing 𝜌opt iterations for each VU before

offloading during the Complete FL approach decreases its reliability in terms of

respecting VUs energy constraint and can be seen from these results. On the other

hand, GA and LS-HuA approaches have better performance since they allocate a

proper number of FL iterations before offloading. Thus these results highlight the

importance of performing an adequate number of FL by taking into account the

Chapter VI. Distributed Intelligence for IoV 260

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

70

80

90

100
S

e
rv

ic
e

 T
im

e
 F

a
ilu

re
s
(%

)
Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Figure 6.9: Percentage of VUs with service time constraint violation

VUs available resources to achieve a reliable performance with FL in dynamic VNs.

Offloading Performance

Fig. 6.11 shows the average error when estimating the offloading parameters. For

a given set 𝑀 of VUs, the error in the estimation process is measured by using the

Root Mean Square Error (RMSE) as,

E(𝑀,B∗) =

√√√
1

𝑀

𝑀∑︁
𝑖=1

����(𝛼opt𝑚 (𝛽∗𝑚)
)2
− (𝛼𝑚 (𝛽∗𝑚))2

����
where 𝛼opt𝑚 (𝛽∗𝑚) is the offloading parameter estimated in (6.53), while 𝛼𝑚 (𝛽∗𝑚) is de-

rived through (6.38). The value E decreases for the GA-FC approach with higher

Chapter VI. Distributed Intelligence for IoV 261

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

70

80

90

100

E
n

e
rg

y
 F

a
ilu

re
s
(%

)

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Figure 6.10: Percentage of VUs violating the Energy Constraint in (6.33)

values of 𝑀, as the number of surrounding VUs increases. Other clustered ap-

proaches have reduced offloading performance since only a lower number of VUs

participate in the optimization process before performing offloading. Also, with lim-

ited available information, the distributed approach fails to adapt itself properly.

Impact of GA Iterations

In the case of GA, the performance can be improved by increasing the number of

iterations of the GA. In Fig. 6.12, we compare the performance in terms of average

latency and energy cost by considering a different number of GA iterations in the GA-

FC policy. It can be seen that as the number of iterations increases, GA performance

improves. However, after a certain number of iterations (i.e., 50), performance of

the GA process becomes stable, thus, performing a higher number of iterations can

Chapter VI. Distributed Intelligence for IoV 262

100 200 300 400 500 600 700 800 900 1000

Total VUs

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

GA-FC

GA-DBC

GA-PC

GA-D

Figure 6.11: Avg. Offloading Error

only increase the time complexity of the GA process by several folds, without major

gains in terms of offloading solution.

6.2.4 Conclusion

In this work, we performed the optimization for a joint FL and task processing prob-

lem over the integrated air-ground network of HAP-assisted VN. For this, we first

modeled the computation offloading problem in the vehicular scenario in which each

VU can offload a portion of their tasks to the surrounding RSUs. Next, an inte-

grated air-ground network-based FL platform was introduced, where powerful HAPs

act as an FL server to assist several VUs (i.e., FL clients) in estimating the better

offloading parameters. A joint computation offloading and FL process optimization

problem aiming at minimization of overall latency and energy cost was formulated.

Chapter VI. Distributed Intelligence for IoV 263

100 200 300 400 500 600 700 800 900 1000

Total VUs

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

A
v
g
.
C

o
s
t

Figure 6.12: GA Performance Vs Iterations

The proposed solution methods include the RSU cluster-based approach with sev-

eral clustering policies and distributed approaches. An evolutionary search-based

GA was proposed to find both allocated time for the two phases and estimating

the offloaded portions for the VUs. Simulation results demonstrate that our pro-

posed GA-based approaches, when compared with other benchmark solutions, show

a network-wide performance improvement.

As future directions of this work, we point out the extension to autonomous driving

scenarios, where VUs data can be analyzed for solving vehicular problems through

the proposed FL platform. Some other challenges to be faced include (i) a proper

RSU selection for offloading, (ii) the possibility of considering a network of multiple

decentralized HAPs for a higher fault-tolerance, (iii) the optimization of the number

of VUs participating in the FL process considering their available resources, (iv)

the extension to intermediate FL layers (e.g., LAPs, UAVs, RSUs) for reducing the

communication/computation costs during FL data processing and communication

Chapter VI. Distributed Intelligence for IoV 264

(i.e., Hierarchical FL).

6.3 Distributed FL over Joint Air-ground Net-

works for Vehicular Applications

In this work, we propose a distributed FL process for vehicular applications. We

consider a joint T-NTN composed of VUs, RSUs, UAVs/LAPs, and HAPs. A dis-

tributed FL platform allowing a distributed and flexible FedAvg process is proposed

exploiting different layers, where RSUs, UAVs, and HAPs are capable of collect-

ing the FL model updates from VUs in each FL iteration for generating the global

update vectors/models for the next iterations.

With the possibility of exploiting multiple layers, a proper selection of the nodes

where the FL process should be performed is required, aiming at enhancing latency,

energy, and FL process performance. However, solving such a network selection

problem over a multi-layered dynamic VN can be enormously complex, and tradi-

tional optimization techniques are inefficient. In the recent past, various works have

highlighted the importance of RL-based approaches for solving the network selection

problem over VNs [129]. In this work, we resort to the RL method for solving the

FL network selection problem. As a first step, we model the problem as a sequen-

tial decision-making process through a Markov Decision Process (MDP) framework

which requires a proper design of a state space, action space, reward function, and

environment dynamics [130]. The environment dynamics are modeled through a

set of time-dependent state transition probability expressions, considering the VUs

local environment for designing the MDP with better performance.

The main contributions of this work can be summarized in the following points:

Chapter VI. Distributed Intelligence for IoV 265

• We design a communication-efficient distributed FL model over a joint air-

ground network aiming at reducing FL process latency and energy costs.

• A constrained optimization problem is formulated for minimizing the overall

cost (in terms of joint latency, energy and the FL training performance) of the

process by a proper assignment of VUs and FL servers.

• A MDP framework is considered for modeling the problem as a sequential

decision-making process, and a value iteration technique is used to solve it.

The MDP environment is modeled through time-dependent state transition

probabilities that take into account the local vehicular environment.

• The performance of the proposed scheme is analyzed by comparing it with

different heuristic techniques and conclusions are drawn.

6.3.1 System Model and Problem Formulation

In the following, an urban Internet of Vehicles (IoV) scenario for Intelligent Trans-

portation Systems with connected and intelligent VUs is considered, allowing to re-

quest several intelligent services from the nearby edge computing facilities. In recent

times, such urban IoV scenarios have gained a lot of attention from the vehicular re-

search community [74, 78]. In particular, we consider a multi-layered joint air-ground

network composed of HAPs, UAVs (i.e., LAP nodes), RSUs, deployed along the road

paths, and randomly distributed VUs traveling on a road in either directions, where

V = {𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑀}, R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 }, U = {𝑢1, . . . , 𝑢𝑙 , . . . , 𝑢𝐿}, corre-

spond to the sets denoting 𝑀 VUs, 𝑁 RSUs and 𝐿 UAVs, respectively. Each HAP

node is denoted through the index ℎ.

Chapter VI. Distributed Intelligence for IoV 266

The system is modeled in a time-discrete manner, and the network parameters

are constant in each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time interval, i.e.,

𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1) 𝜏]}. The generic 𝑚th VU is characterized by a processing

capacity equal to 𝑐𝑣,𝑚 Floating Point Operations per Second (FLOPS) per CPU

cycle, while its CPU frequency is 𝑓𝑣,𝑚 [76, 84]. VUs are supposed to be able to

communicate on a bandwidth 𝐵rsu𝑣,𝑚 with the RSUs, in a bandwidth 𝐵LAP
𝑣,𝑚 with UAVs

and on a bandwidth 𝐵HAP
𝑣,𝑚 with the HAPs. In addition, the 𝑚th VU is supposed to

hold a set D𝑣𝑚 with |D𝑣𝑚 | = K𝑣𝑚 data samples produced during its operation as a

result of the embedded Advanced Driver-Assistance System (ADAS), and later used

during the FL training process. FL is here exploited for assisting during vehicle

operations, e.g., computation offloading, path planning, object detection.

The 𝑛th RSU, supposed to be in a fixed position with a coverage radius 𝑅𝑟,𝑛, is char-

acterized by a processing capacity equal to 𝑐𝑟,𝑛 FLOPS per CPU cycle, with CPU

frequency 𝑓𝑟,𝑛, and communication capabilities, supposed to be identified through a

communication technology, able to cover the VUs on ground with an overall band-

width 𝐵𝑟→𝑣𝑟,𝑛 . The RSUs are also able to connect with UAVs and the HAPs with a

bandwidth 𝐵UAV
𝑟,𝑛 and 𝐵HAP

𝑟,𝑛 , respectively. The RSUs are connected to the electrical

grid for the energy supply. Each RSU can provide edge computing services to the

VUs in its coverage space.

In addition, the area is supposed to be under the coverage of multiple UAVs with 𝑙th

UAV at altitude ℎ̄𝑢,𝑙 and coverage radius 𝑅𝑢,𝑙 . We assume that UAVs are charged

by exploiting available charging points in the service area. Based on VUs requests,

UAVs can move in different directions with optimal path planning, whose manage-

ment is beyond the scope of this work. While serving VUs, the 𝑙th UAV, supposed to

move with a relatively slow speed compared with highly mobile VUs, is characterized

by a processing capability equal to 𝑐𝑢,𝑙 FLOPS per CPU cycle, with CPU frequency

Chapter VI. Distributed Intelligence for IoV 267

𝑓𝑢,𝑙 . In addition, it is supposed to be able to communicate on a bandwidth 𝐵𝑙→(𝑣,𝑟)
𝑢,𝑙

and cover an area with radius 𝑅𝑢,𝑙 , while the 𝑙th UAV has a bandwidth 𝐵HAP
𝑢,𝑙

when

communicating with the HAP. Each UAV can serve a set of VUs and RSUs in its

coverage space.

The generic ℎth HAP node is placed at an altitude ℎ̄ℎ above the ground, and charac-

terized by a processing capability 𝑐ℎ FLOPS per CPU cycle, with CPU frequency 𝑓ℎ.

Moreover, we consider multi-beam antenna forming techniques, where each antenna

beam is supposed to cover a geographical area of radius 𝑅ℎ and has a communication

bandwidth 𝐵ℎ→(𝑣,𝑟,𝑙)
ℎ

. In the following, we will refer to a single beam as the coverage

of the HAP. It should be noted that though HAP coverage is reduced to a single

beam for notation simplicity, our approach can easily be scaled for the overall HAP

coverage with multiple beams. Each RSU, UAV, and HAP provides edge computing

services to the VUs, RSUs and UAVs within its coverage area. Fig. 6.13 shows the

basic system elements and various communication links between them4.

6.3.1.1 VU Mobility Model

We suppose that the 𝑚th VU moves in a freeway-like mobility scenario with a speed

®𝑣𝑚 (𝜏𝑖) bounded by ®𝑣min and ®𝑣max [105], where the instantaneous speed is modeled

through a truncated normal distribution density function:

𝑓 (®𝑣𝑚 (𝜏𝑖)) =



2 · exp
(
−(®𝑣𝑚 (𝜏𝑖)−𝜇)2

2𝜎2

)
𝜎
√
2𝜋

(
erf

(
®𝑣max−𝜇
𝜎
√
2

)
− erf

(
®𝑣min−𝜇
𝜎
√
2

)) ,
®𝑣min ≤ ®𝑣𝑚 (𝜏𝑖) ≤ ®𝑣max

0, else

(6.54)

4Despite the system model and the analysis is carried out considering the general case of multiple
HAPs, the performance will be later evaluated for the simple case with only one HAP. The generic
case can be seen as a simple extension of the one HAP scenario.

Chapter VI. Distributed Intelligence for IoV 268

Figure 6.13: The T/NT Integrated Scenario.

and 𝜇 and 𝜎 are the mean and standard deviation of the vehicle’s speed, and erf (𝑥) is

the Gauss error function over 𝑥. The path length within which the 𝑚th VU remains

under the coverage of 𝑗th node (i.e., any of RSUs, UAVs or HAPs) is 𝐷𝑣𝑚, 𝑗 (𝜏𝑖) and

can be given by:

𝐷𝑣𝑚, 𝑗 (𝜏𝑖) =
√︃
𝑑2
𝑗
−

(
𝑦 𝑗 − 𝑦𝑣𝑚 (𝜏𝑖)

)2 ± (
𝑥 𝑗 − 𝑥𝑣𝑚 (𝜏𝑖)

)
(6.55)

where,
(
𝑥𝑣𝑚 (𝜏𝑖), 𝑦𝑣𝑚 (𝜏𝑖)

)
is the location of the 𝑚th VU at 𝜏𝑖 and

(
𝑥 𝑗 , 𝑦 𝑗

)
is the

projection over the ground of a generic 𝑗th edge computing node, which can be

a RSU, UAV or HAP. The available sojourn time for the 𝑚th VU with respect to a

generic 𝑗th node can be written as:

𝑇
𝑠𝑜 𝑗

𝑣𝑚, 𝑗
(𝜏𝑖) =

𝐷𝑣𝑚, 𝑗 (𝜏𝑖)
|®𝑣𝑚 (𝜏𝑖) |

∀ 𝑗 (6.56)

Chapter VI. Distributed Intelligence for IoV 269

Figure 6.14: Distributed FL Platform.

6.3.1.2 Distributed FL Platform for Vehicular Applications

In order to solve the VN management through the proposed air-ground network

architecture, we propose a VUs service-based distributed FL platform (Fig. 6.14).

The federated training operation depends on the service request 𝜈, where 𝜈 can be

any vehicular service requested by VUs, such as computation offloading towards

edge servers, path planning, streaming-related services, etc. Each service 𝜈 requires

a unique FL model F𝜈. In the considered FL platform, VUs (i.e., FL client devices)

with local datasets D𝑣𝑚 can perform the local training for the FL model based upon

the requested service 𝜈. Since different VUs can request different services over time,

a group of VUs randomly located in the coverage space of the HAP requesting the

same service 𝜈 will participate collaboratively to train the FL model corresponding

to the service 𝜈. The number of VUs participating in the training process of the 𝜈th

Chapter VI. Distributed Intelligence for IoV 270

FL model is given by:

𝑀FL
𝜈 = {𝑣𝑚 |𝑣𝑚 ⇔ 𝜈, 𝑣𝑚 ∈ 𝑀} with 𝑀FL

𝜈 ⊆ 𝑀 (6.57)

In each 𝑖𝑡th FL iteration, after the local training operation, we assume that a data

vector 𝑤𝑖𝑡,𝜈𝑣,𝑚 (𝜏𝑖) (i.e., model updates embedded into IP packet) is generated where an

information header is added indicating the VUs service (𝜒𝜈 ⇔ 𝜈). Here, 𝜒𝜈 can be

a unique sequence of bits indicating the 𝜈th service5. Such processed data will be

sent towards an upper layer edge computing node based upon the network selection

strategy embraced by the VUs, as will be discussed in the following.

After receiving the data from the lower layer entities, each Edge Node (EN) will

perform the FedAvg process creating the new set of updates 𝑤𝑖𝑡,𝜈𝑟,𝑛 /𝑤𝑖𝑡,𝜈𝑢,𝑙 /𝑤
𝑖𝑡,𝜈

ℎ
, where

𝑤
𝑖𝑡,𝜈
𝑟,𝑛 is the aggregated FL model updates associated with the 𝜈th service generated

by the intermediate RSU node 𝑛, and 𝑤
𝑖𝑡,𝜈

𝑢,𝑙
and 𝑤

𝑖𝑡,𝜈

ℎ
are the FL model updates

after the averaging process (i.e., FedAvg) performed at 𝑙th UAV node and ℎth HAP,

respectively. With post-processing operation, the header information 𝜒𝜈 is again

inserted into the aggregated data (𝑤𝑖𝑡,𝜈𝑟,𝑛 /𝑤𝑖𝑡,𝜈𝑢,𝑙 /𝑤
𝑖𝑡,𝜈

ℎ
) for the next layer processing. In

the end, data vector corresponding to the 𝑤𝑖𝑡,𝜈𝑟,𝑛 /𝑤𝑖𝑡,𝜈𝑢,𝑙 /𝑤
𝑖𝑡,𝜈

ℎ
is transmitted towards

the next platform or VUs based upon the network selection strategy. Though it

is beyond the scope of this work, insertion/processing of the header information

associated with the specific service request allows the proposed FL platform to train

multiple service-based FL models simultaneously.

After receiving data from the ENs, VUs use them in the next iteration of the FL

process. The process continues for several FL iterations until a certain confidence

5Though it is beyond the scope of this work, 𝜒𝜈 can easily be modeled into a more sophisticated
vector that can further enhance the security of the FL platform to tackle the various security/pri-
vacy related challenges discussed in the related works section.

Chapter VI. Distributed Intelligence for IoV 271

Figure 6.15: Distributed FL Process

interval is reached. Fig. 6.15 shows the steps of each single iteration of the proposed

distributed FL process.

6.3.1.3 Network Selection Parameters

FL performance is a function of the number of participating VUs to the FL process,

the number of FL iterations performed by VUs, the communication and computing

latency, and the energy cost of each FL iteration. The FL process cost depends also

on the network selection strategy adopted by different networking layers given their

limited computing and communication resources.

To better clarify this point, if a VU selects the HAP node direct link for the FL data

transmission, it can potentially save the processing latency and the cost required

to perform the FedAvg process at the intermediate layers; however, it can increase

the VUs data transmission cost in terms of transmission latency and energy, mainly

due to the limited resources of VUs and the long-distance communication links

Chapter VI. Distributed Intelligence for IoV 272

between VU and HAP. Also, due to long-distance communication links, the link

failure probability can be higher, resulting in a possibly high number of dropouts

(i.e., VUs not participating in the FL training process). On the other hand, if

VU decides to select RSU or UAV nodes for distributed FL data communication,

it can potentially save communication time and energy. However, an additional

burden of processing latency over these intermediate layers needs to be considered.

Similar analysis can be applied to the RSU and UAV nodes when selecting the

possible higher networking layers for the data communication. Therefore, there is a

clear tradeoff between the different network selection strategies adapted by the VUs

and the intermediate layers. A proper network selection strategy guaranteeing the

optimal training latency and energy performance is required.

Based on their limited coverage ranges, each VU can be covered by set of RSUs,

UAVs, and one HAP node. Focusing on the 𝑚th VU, 1 ≤ 𝑁𝑅
𝑣,𝑚 ≤ 𝑅𝑚𝑎𝑥, 1 ≤ 𝑁𝑈𝑣,𝑚 ≤

𝑈𝑚𝑎𝑥, and 1 ≤ 𝑁𝐻𝑣,𝑚 ≤ 𝐻𝑚𝑎𝑥 represent the number of RSUs, UAVs and HAP nodes

available for selection, respectively. Without loss of generality, we assume that 𝑁𝑅
𝑣,𝑚,

𝑁𝑈𝑣,𝑚, and 𝑁
𝐻
𝑣,𝑚 are lower bounded by 1 (i.e., every VU can be covered by at least one

RSU, UAV and HAP), while 𝑅𝑚𝑎𝑥, 𝑈𝑚𝑎𝑥, and 𝐻𝑚𝑎𝑥 are the upper bounds on RSUs,

UAVs, and HAP nodes covering it. Here, we define the following three decision

variables modeling the network selection behavior of VUs, RSUs, and UAVs.

VUs Network Selection Decision

For the case of 𝑚th VU, we define

a𝑣,𝑚 (𝜏𝑖) =
[
(0, 1)(1×𝑁𝑅𝑣,𝑚) , (0, 1)(1×𝑁𝑈𝑣,𝑚) , (0, 1)(1×𝑁𝐻𝑣,𝑚)

]

Chapter VI. Distributed Intelligence for IoV 273

with dimension 1×(𝑁𝑅
𝑣,𝑚+𝑁𝑈𝑣,𝑚+𝑁𝐻𝑣,𝑚) modeling the available nodes for selection. VU

can either select RSU, UAV, or HAP for communicating the FL model parameter

updates. If a𝑣,𝑚 (𝜏𝑖) = {0}(1×(𝑁𝑅𝑣,𝑚+𝑁𝑈𝑣,𝑚+𝑁𝐻𝑣,𝑚)), the 𝑚th VU does not participate in the

FL process. Also, for avoiding the additional complexity, we consider that each VU

can be assigned to only one EN which can be RSU, UAV, or HAP during the FL

process. Thus, ∑︁
a𝑣,𝑚 (𝜏𝑖) ≤ 1 (6.58)

RSUs Network Selection Decision For the case of 𝑛th RSU, we define

b𝑟,𝑛 (𝜏𝑖) =
[
(0, 1)(1×𝑁𝑈𝑟,𝑛) , (0, 1)(1×𝑁𝐻𝑟,𝑛)

]
with dimension 1 × (𝑁𝑈𝑟,𝑛 + 𝑁𝐻𝑟,𝑛) modeling the available nodes for selection. RSU

node can either select UAV, or HAP for communicating the FL model parameter

updates. If b𝑟,𝑛 (𝜏𝑖) = {0}(1×(𝑁𝑈𝑟,𝑛+𝑁𝐻𝑟,𝑛)), the 𝑛th RSU node does not communicate with

higher layers and broadcasts back the model parameters towards VU. For avoiding

the additional complexity we consider that each RSU can be assigned to only one

EN which can be UAV, or HAP during the FL process. Thus,

∑︁
b𝑟,𝑛 (𝜏𝑖) ≤ 1 (6.59)

UAVs network selection decision For the case of 𝑙th UAV, we define

c𝑢,𝑙 (𝜏𝑖) =
[
(0, 1) (

1×𝑁𝐻
𝑢,𝑙

)]
with dimension 1 × 𝑁𝐻

𝑢,𝑙
modeling the available nodes for selection. UAV can select

HAP for communicating the FL model parameter updates or broadcast back the

Chapter VI. Distributed Intelligence for IoV 274

results towards VUs. If c𝑢,𝑙 (𝜏𝑖) = {0}(1×𝑁𝐻
𝑢,𝑙
), the 𝑙th UAV broadcast back the model

parameters towards VU. For avoiding the additional complexity we consider that

each UAV can be assigned to only one EN during the FL process. Thus,

∑︁
c𝑢,𝑙 (𝜏𝑖) ≤ 1 (6.60)

6.3.1.4 FL Process Cost Analysis

In general, FL is an iterative learning process where each FL iteration includes

several steps adding latency and energy costs. Local on-device ML model training,

data communication between VUs and FL servers, pre- and post-processing of FL

model data, FedAvg process performed at FL servers are the main steps involved

during FL iteration. In the following, we analyze the latency and energy cost of

each of these operations.

FL Local training Model The FL computation corresponds to the local training

of the ML model based on the on-device dataset. In local device training, the 𝑚th

VU with service request 𝜈 has to compute the local parameter set 𝑤𝑖𝑡,𝜈𝑣,𝑚 through the

dataset having size K𝑣𝑚 data samples; if we assume that, for every iteration, the

total number of FLOPs required for each data sample 𝑑 is 𝜓𝑑, the time and energy

consumed during the FL training process by the 𝑚th device is [84]:

𝑇FL,c
𝑣𝑚

=

∑K𝑣𝑚
𝑑=1 𝜓𝑑

𝑐𝑣,𝑚 𝑓𝑣,𝑚
, 𝐸FL,c

𝑣𝑚
= 𝑃c

𝑣,𝑚 · 𝑇FL,c
𝑣𝑚

.

where 𝑃c
𝑣,𝑚 is the power consumed by the 𝑚th VU for the data processing. We

suppose for simplicity that the on-device FL processing time and energy is the same

for every iteration

Chapter VI. Distributed Intelligence for IoV 275

FL Data Pre-/Post-processing For each FL iteration, pre- and post-processing

operations are performed for detecting and adding the header information 𝜒𝜈 associ-

ated with the service (𝜈) requested by the vehicular nodes. The latency and energy

of these operations are:

𝑇
FL,hp
𝑖

= 𝑇
FL,pre
𝑖

+ 𝑇FL,post
𝑖

, 𝐸
FL,hp
𝑖

= 𝑃c
𝑖 · 𝑇

FL,hp
𝑖

.

where, 𝑇FL,pre
𝑖

=
𝑁𝑖 ·𝜓𝑝𝑟𝑒
𝑐𝑖 · 𝑓𝑖 is the time required to detect and remove the header in-

formation from FL data at the 𝑖th node, function of its computation resources, the

number of FLOPs required to process the FL data (i.e., model parameters embed-

ded in the IP packets) from node 𝑖 given as 𝜓𝑝𝑟𝑒 and a number of VUs/servers

sending the updates towards the server 𝑖 given by 𝑁𝑖. Also, 𝑇FL,post
𝑖

=
·𝜓𝑝𝑜𝑠𝑡
𝑐𝑖 · 𝑓𝑖 is the

post-processing operation time required to insert the header information on model

update vectors with 𝜓𝑝𝑜𝑠𝑡 being a number of FLOPs required to process the updated

model data after FedAvg.

FL FedAvg Process In the proposed FL infrastructure, intermediate FL server

(i.e., RSUs, UAVs, HAP) perform the FedAvg process on the data received from

any of the lower layers. The latency and the energy required to perform the FedAvg

process is given by:

𝑇
FL,FA
𝑖

=
𝑁𝑖 · 𝜓𝐹𝐴
𝑐𝑖 · 𝑓𝑖

, 𝐸
FL,FA
𝑖

= 𝑃c
𝑖 · 𝑇

FL,FA
𝑖

where 𝜓𝐹𝐴 is the number of FLOPs required to process the individual nodes param-

eter vectors over 𝑖th server

Chapter VI. Distributed Intelligence for IoV 276

FL Data Communication Model The data rate between 𝑖th and 𝑗th node is a

function of the mutual distance, hence:

𝑟 it𝑖, 𝑗 (𝐵𝑖, 𝑑𝑖, 𝑗) = 𝐵𝑖 log2

(
1 +

𝑃tx
𝑖
· ℎ(𝑑𝑖, 𝑗)
𝑁0

)
(6.61)

where 𝑃tx
𝑖

is the transmission power of the generic 𝑖th device, ℎ(𝑑𝑖, 𝑗) is the channel

gain at a distance 𝑑𝑖, 𝑗 between the 𝑖th device and the 𝑗th device, and 𝑁0 = 𝑁𝑇𝐵𝑖 is

the noise power, where 𝑁𝑇 and 𝐵𝑖 are the noise power spectral density and bandwidth

associated to the 𝑖th device during communication.

During the FL processing, at each iteration 𝑖𝑡, the 𝑖th FL-device sends the parameters

set 𝑤𝑖𝑡
𝑖
to the higher layers. Supposing that |𝑤𝑖𝑡

𝑖
| represents the data size of the

parameters set expressed in bits [126], the uplink transmission time and energy for

the FL parameters in the 𝑖𝑡th iteration is:

𝑇
FL,tx
𝑖 𝑗 ,𝑖𝑡

=
|𝑤𝑖𝑡
𝑖
|

𝑟𝑖𝑡
𝑖, 𝑗
(𝐵 𝑗

𝑖
, 𝑑𝑖, 𝑗)

, 𝐸
FL,tx
𝑖 𝑗 ,𝑖𝑡

= 𝑃tx
𝑖 · 𝑇

FL,tx
𝑖 𝑗 ,𝑖𝑡

,

where, 𝑟𝑖𝑡
𝑖, 𝑗

is the uplink transmission rate between 𝑖th and the 𝑗th FL node, during

the 𝑖𝑡th iteration, which is a function of the bandwidth (𝐵
𝑗

𝑖,𝑚
), and the distance (𝑑𝑖, 𝑗)

between the two nodes, modeled through the Shannon capacity formula in (6.61).

Since FL-servers are accessed by multiple VUs/lower layer nodes, we assume for

simplicity that the 𝑗th node bandwidth is equally shared among the connected VUs

and lower layer nodes, i.e., if 𝑢 𝑗 = 𝑢𝑙 ∈ U, the bandwidth resources of 𝑢𝑙 , 𝐵
𝑙→(𝑣,𝑟)
𝑢,𝑙

is shared among all VUs and RSUs connected to it. Also, 𝑃tx
𝑖

is the 𝑖th device

transmission power. Similarly, the reception time required to receive data from the

𝑗th node by the 𝑖th node is given by,

𝑇
FL,rx
𝑖 𝑗 ,𝑖𝑡

=
|𝑤𝑖𝑡

𝑗
|

𝑟𝑖𝑡
𝑖, 𝑗
(𝐵 𝑗

𝑖
, 𝑑𝑖, 𝑗)

, 𝐸
FL,rx
𝑖 𝑗 ,𝑖𝑡

= 𝑃rx
𝑖 · 𝑇

FL,rx
𝑖 𝑗 ,𝑖𝑡

,

Chapter VI. Distributed Intelligence for IoV 277

Each FL server needs to wait for receiving the data from all the connected VUs and

lower layer nodes before performing the FedAvg process. The data reception latency

and energy at the 𝑗th FL server are given by:

𝑇
FL,rx
𝑗 ,𝑖𝑡

= max
𝑖

{
𝑇
FL,tx
𝑖,𝑖𝑡

}
, 𝐸

FL,rx
𝑗 ,𝑖𝑡

=
∑︁
𝑖

𝑃rx
𝑗 · 𝑇

FL,rx
𝑗𝑖,𝑖𝑡

,

With these basic latency and energy elements in hand, we can now define the FL

iteration cost in terms of total latency and energy requirements.

FL Iteration Cost

The 𝑚th VU FL process cost includes the local computation cost, header processing

operation cost at VU and the additional cost depending on the network selection

strategy. Thus, for the 𝑚th VU, the total FL process cost (in terms of latency and

energy consumed) for a single iteration is:

𝑇FL
𝑣,𝑚,𝑖𝑡 (a𝑣,𝑚 (𝜏𝑖), b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖)) = 𝑇FL,c

𝑣𝑚
+ 𝑇FL,hp

𝑣𝑚 +

a𝑣,𝑚 (𝜏𝑖)×



[
𝑇
FL,tx
𝑣𝑚,𝑟𝑛,𝑖𝑡

+ 𝑇FL
𝑟,𝑛,𝑖𝑡
(b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑅𝑣,𝑚×1)[

𝑇
FL,tx
𝑣𝑚,𝑢𝑙 ,𝑖𝑡

+ 𝑇FL
𝑢,𝑙,𝑖𝑡
(c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑈𝑣,𝑚×1)[

𝑇
FL,tx
𝑣𝑚,ℎ,𝑖𝑡

+ 𝑇FL
ℎ,𝑖𝑡

]
(𝑁𝐻𝑣,𝑚×1)


𝐸FL
𝑣,𝑚,𝑖𝑡 (a𝑣,𝑚 (𝜏𝑖), b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖)) = 𝐸FL,c

𝑣𝑚
+ 𝐸FL,hp

𝑣𝑚 +

a𝑣,𝑚 (𝜏𝑖)×



[
𝐸
FL,tx
𝑣𝑚,𝑟𝑛,𝑖𝑡

+ 𝐸FL
𝑟,𝑛,𝑖𝑡
(b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑅𝑣,𝑚×1)[

𝐸
FL,tx
𝑣𝑚,𝑢𝑙 ,𝑖𝑡

+ 𝐸FL
𝑢,𝑙,𝑖𝑡
(c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑈𝑣,𝑚×1)[

𝐸
FL,tx
𝑣𝑚,ℎ,𝑖𝑡

+ 𝐸FL
ℎ,𝑖𝑡

]
(𝑁𝐻𝑣,𝑚×1)


where, for the 𝑛-th RSU, the FL process cost for a single iteration is a function of

the time/energy required to receive model updates from VUs, the header processing

Chapter VI. Distributed Intelligence for IoV 278

cost, the FedAvg process cost, and the additional cost based upon the network

selection strategy adopted by it. Thus, for the case of 𝑛th RSU,

𝑇FL
𝑟,𝑛,𝑖𝑡 (b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖)) =𝑇

FL,rx
𝑟𝑛,𝑖𝑡

+ 𝑇FL,hp
𝑟𝑛 + 𝑇FL,FA

𝑟𝑛

+ b𝑟,𝑛 (𝜏𝑖) ×

[
𝑇
FL,tx
𝑟𝑛,𝑢𝑙 ,𝑖𝑡

+ 𝑇FL
𝑢,𝑙,𝑖𝑡
(c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑈𝑟,𝑛×1)[

𝑇
FL,tx
𝑟𝑛,ℎ,𝑖𝑡

+ 𝑇FL
ℎ,𝑖𝑡

]
(𝑁𝐻𝑟,𝑛×1)


+

(
1 −

∑︁
b𝑟,𝑛 (𝜏𝑖)

)
𝑇
FL,tx
𝑟,𝑣,𝑖𝑡

𝐸FL
𝑟,𝑛,𝑖𝑡 (b𝑟,𝑛 (𝜏𝑖), c𝑢,𝑙 (𝜏𝑖)) =𝐸

FL,rx
𝑟𝑛,𝑖𝑡

+ 𝐸FL,hp
𝑟𝑛 + 𝐸FL,FA

𝑟𝑛

+ b𝑟,𝑛 (𝜏𝑖) ×

[
𝐸
FL,tx
𝑟𝑛,𝑢𝑙 ,𝑖𝑡

+ 𝐸FL
𝑢,𝑙,𝑖𝑡
(c𝑢,𝑙 (𝜏𝑖))

]
(𝑁𝑈𝑟,𝑛×1)[

𝐸
FL,tx
𝑟𝑛,ℎ,𝑖𝑡

+ 𝐸FL
ℎ,𝑖𝑡

]
(𝑁𝐻𝑟,𝑛×1)


+

(
1 −

∑︁
b𝑟,𝑛 (𝜏𝑖)

)
𝐸
FL,tx
𝑟,𝑣,𝑖𝑡

Similarly, for the 𝑙-th UAV, the FL process cost is based upon data reception, header

processing, FedAvg process, and the additional cost due to the network selection

strategy. Thus, for the case of 𝑙th UAV, a single iteration cost is,

𝑇FL
𝑢,𝑙,𝑖𝑡 (c𝑢,𝑙 (𝜏𝑖)) =𝑇

FL,rx
𝑢𝑙 ,𝑖𝑡

+ 𝑇FL,hp
𝑢𝑙 + 𝑇FL,FA

𝑢𝑙

+ c𝑢,𝑙 (𝜏𝑖) ×
[(
𝑇
FL,tx
𝑢𝑙 ,ℎ,𝑖𝑡

+ 𝑇FL
ℎ,𝑖𝑡

)
(𝑁𝐻
𝑢,𝑙
×1)

]
+

(
1 −

∑︁
c𝑢,𝑙 (𝜏𝑖)

)
· 𝑇FL,tx
𝑙,𝑣,𝑖𝑡

𝐸FL
𝑢,𝑙,𝑖𝑡 (c𝑢,𝑙 (𝜏𝑖)) =𝐸

FL,rx
𝑢𝑙 ,𝑖𝑡

+ 𝐸FL,hp
𝑢𝑙 + 𝐸FL,FA

𝑢𝑙

+ c𝑢,𝑙 (𝜏𝑖) ·
[(
𝐸
FL,tx
𝑢𝑙 ,ℎ,𝑖𝑡

+ 𝐸FL
ℎ,𝑖𝑡

)
(𝑁𝐻
𝑢,𝑙
×1)

]
+

(
1 −

∑︁
c𝑢,𝑙 (𝜏𝑖)

)
· 𝐸FL,tx

𝑙,𝑣,𝑖𝑡
.

Chapter VI. Distributed Intelligence for IoV 279

Figure 6.16: Distributed FL Process Latency Analysis.

Finally, for the HAP node, the FL process cost for a single iteration is:

𝑇FL
ℎ,𝑖𝑡 = 𝑇

FL,rx
ℎ,𝑖𝑡

+ 𝑇FL,hp
ℎ

+ 𝑇FL,FA
ℎ

+ 𝑇FL,tx
ℎ,𝑣𝑚,𝑖𝑡

𝐸FL
ℎ,𝑖𝑡 = 𝐸

FL,rx
ℎ,𝑖𝑡

+ 𝐸FL,hp
ℎ

+ 𝐸FL,FA
ℎ

+ 𝐸FL,tx
ℎ,𝑣𝑚,𝑖𝑡

.

Fig. 6.16, presents the different latency components considered during the model-

ing of the FL latency over different nodes. We have avoided including the energy

elements for simplicity.

Chapter VI. Distributed Intelligence for IoV 280

In the end, for each FL iteration the required latency and energy cost for the 𝑚th

VU is given by6:

𝑇FL
𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) = max

𝑚

{
𝑇FL
𝑣,𝑚,𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

}
𝐸FL
𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) = 𝐸FL

𝑣,𝑚,𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

6.3.1.5 Number of FL Iterations Performed

Each FL iteration adds cost in terms of required latency and energy consumed over

different platforms. However, it is important to perform a sufficient number of FL

iterations for generating the FL model with sufficient accuracy over the real world

data. The number of FL iterations performed by VUs depends on the adopted

network selection strategy and the sojourn time within each EN coverage area. It

is supposed that each VU can participate in the FL process till it belongs to the

considered ENs coverage area. Thus,

𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) ≤
𝑇
𝑠𝑜 𝑗

𝑣𝑚, 𝑗
(𝜏𝑖)

𝑇FL
𝑖𝑡
(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

(6.62)

where, 𝜌(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) is the number of FL iterations performed by the 𝑚th VU

whose value is upper bounded by the ratio between the 𝑗th ENs sojourn time,

𝑇
𝑠𝑜 𝑗
𝑣𝑚,𝑟𝑛 (𝜏𝑖), and the FL iteration time. Here, the 𝑗th node corresponds to any RSU,

UAV or HAP based upon the network selection strategy adapted by the 𝑚th VU. It

should be noted that the 𝑗th node corresponds to the FL server node that transmit

back the global model parameters towards the VU.

6For notational simplicity hereafter, we use 𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖) as a decision vector notation indi-
cating the three decision vectors a𝑣,𝑚 (𝜏𝑖), b𝑟 ,𝑛 (𝜏𝑖),and c𝑢,𝑙 (𝜏𝑖) together

Chapter VI. Distributed Intelligence for IoV 281

In general the FL process can be stopped if it achieves some predefined stopping

criteria, such as the number of FL iterations performed, predefined loss function

value, etc. [76, 122]. Therefore, without loss of generality, we introduce 𝜖𝜈 as a

convergence parameter in terms of FL global model loss function value, for the FL

model corresponding to the service 𝜈. In the past, it has been shown that, in certain

environments, it is possible to limit the number of FL iterations required to be

performed to achieve the predefined loss function value [76, 124, 125]. However,

the maximum number of FL iterations required to be performed can depend upon

several parameters such as local environment scenarios, number of VUs participating

in the training process, quality of VUs data, etc. Here, we assume that the number

of FL iterations required to achieve the FL performance is

𝜌max
𝜈 =

C√︁
𝑀𝐹𝐿
𝜈

(6.63)

function of the number of VUs participating in the training process of the FL model

of the 𝜈th service, where the square-root models the reduced impact when a higher

number of VUs participate to the FL training process. Here, C is a constant rep-

resenting the maximum number of iterations required for a single VU to achieve

the FL model convergence. If VUs have participated to a reduced number of FL

iterations when using the FL model for their applications, the performance can be

sub-optimal. In such cases VUs might need to pay additional penalty in terms of

performance degradation or reduced quality of service.

Here, we introduce a stochastic penalty function PFL
𝜈 (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))) for mea-

suring the impact of the number of FL iterations performed over an FL model

performance. This analysis is motivated by the work done in [76], for the joint

computation offloading and the FL process optimization over VN. If the 𝑚th VU

requesting the service 𝜈 is using the FL process to estimate the parameter 𝑥𝜈 with

Chapter VI. Distributed Intelligence for IoV 282

𝑥𝑚𝑖𝑛,𝜈 ≤ 𝑥𝜈 ≤ 𝑥𝑚𝑎𝑥,𝜈, and the estimated value is given by 𝑥𝜈 (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))), the

FL penalty is:

PFL
𝜈 (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))) =

√︃
(𝑥𝜈 − 𝑥𝜈 (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))))2 (6.64)

where 𝑥𝜈 is estimated by using a stochastic function with truncated normal distri-

bution with probability density function 𝑓𝑥𝜈 (·) of 𝑥𝜈 as,

𝑓𝑥𝜈 (𝑥𝜈; 𝜇, 𝜎̄) =



1

𝜎̄

𝜉

(
𝑥𝜈−𝜇
𝜎̄

)
Δ̄

(
𝑥𝑚𝑎𝑥,𝜈−𝜇

𝜎̄

)
− Δ̄

(
𝑥𝑚𝑖𝑛,𝜈−𝜇

𝜎̄

)
if 𝑥𝑚𝑖𝑛,𝜈 ≤ 𝑥𝜈 ≤ 𝑥𝑚𝑎𝑥,𝜈

0 otherwise

and 𝜉 (·) and Δ̄(·) are, respectively, the probability density function of the related

standard normal distribution and its cumulative distribution function, i.e.,

𝜉 (𝜔) = 1
√
2𝜋
𝑒

(
− 𝜔22

)
, Δ̄(𝜅) = 1

2

[
1 + erf

(
𝜅
√
2

)]
.

In this work we assume that the mean value of the distribution of 𝑥, i.e., 𝜇, and its

variance, 𝜎̄2, are equal to

𝜇 = 𝑥𝜈, 𝜎̄2 =

[
𝛾 ·

𝜌max
𝜈 − 𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

𝜌max
𝜈

]2
where 𝛾 is a numerical constant, used for controlling the variance of the model. The

interested reader can have a look to [76] where the same authors considered the

above model for estimating the FL iterations vs performance for the computation

offloading application over VN.

Chapter VI. Distributed Intelligence for IoV 283

In the end the total FL latency and energy cost is:

𝑇FL(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) = 𝜌𝑇FL
𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

𝐸FL(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) = 𝜌𝐸FL
𝑖𝑡 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

6.3.1.6 Problem Formulation

In this work, we aim to perform a communication-efficient FL process over a joint

air-ground network. By adopting a proper network selection strategy over different

platforms (A = {𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)},∀𝑚, 𝑛, 𝑙), the aim is to maximize the FL process

performance. Thus the main aim is to minimize the joint cost of latency, energy,

and the penalty function value measuring the FL process performance:

P1 : A∗ = argmin
A

{
1

𝑀𝐹𝐿
𝜈

𝑀𝐹𝐿
𝜈∑︁

𝑚=1

(
𝜂1𝑇

FL (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))

+ 𝜂2𝐸FL (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) + 𝑤1PFL
𝜈 (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)))

)}
(6.65)

subject to the following constraints,

C1 : Eq. (6.58), (6.59), (6.60) (6.66a)

C2 : Eq. (6.62) (6.66b)

C3 : Eq.
∑︁

𝐵
𝑗

𝑖
≤ 𝐵 𝑗 ∀ 𝑗 ∈ R,U, ℎ (6.66c)

C4 : 0 ≤ 𝜂1, 𝜂2 ≤ 1; 𝜂1 + 𝜂2 = 1, 𝑤1 ≥ 0 (6.66d)

where A = {𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)} is the combined set of network selection decisions of

all nodes involved during the FL process, 𝜂1 and 𝜂2 are weighting coefficients for

balancing latency and energy consumption, and 𝑤1 is a weighting coefficient for the

Chapter VI. Distributed Intelligence for IoV 284

penalty function. According to (6.66a), each VU, RSU and UAV can communicate

with only one EN from the upper layers. Eq. (6.66b) limits the number of iterations

performed by each VU depending on the available sojourn time considering the

limited HAP coverage. Eq. (6.66c) shows the upper limit on the bandwidth resources

of any 𝑗th EN, among any RSU, UAV or HAP. The total bandwidth available for

the VUs and other nodes connected to any 𝑗th EN will be upper bounded by the

bandwidth of the 𝑗th node, i.e., 𝐵 𝑗 . According to (6.66d), weighting coefficients 𝜂1

and 𝜂2 can have any value between zero and one with their sum equal to one. Also

𝑤1 can have any positive value.

Proposed Solutions

For solving (6.65), we aim at finding a proper EN selection strategy for creating a

highly reliable FL model with reduced latency and energy costs. With multiple edge

computing layers and a large number of VUs along the road, the considered problem

can be hard to solve. Here, we propose a MDP-based RL approach for finding

proper assignment strategies for different nodes. The basic elements of the MDP

model include the state space (S), the action space (A), the reward function (R),

the discount factor (𝛾), and the proper environment dynamics, or state transition,

probability model (P). Thus, the MDP process can be defined as a tuple given

by {S,A,R,P, 𝛾}. In order to analyze the performance of the proposed MDP

model, we present two multi-dimensional MDP approaches based on the VUs’ local

environment, as well three benchmark methods for comparison purposes.

Chapter VI. Distributed Intelligence for IoV 285

6.3.2 MDP Based SOlution Approach

6.3.2.1 Local Environment based Multi-dimensional MDP Model

In the considered network architecture, each VU can be covered by one or more

RSUs, UAVs, and one HAP. Thus, different VUs/ENs can have different number of

nodes available for communicating the FL updates. In order to properly select the

EN for performing the FL, and setting up the MDP parameters, we assume that each

VU is able to acquire the local environment parameters through V2X communication

links, allowing more personalized MDP models with better accuracy. In particular,

we classify the VUs into different groups, based on their local environments, where

each group can have a separate state space and action space.

For the 𝑚th VU, the main parameters include the number of RSUs (𝑁𝑅
𝑣,𝑚), UAVs

(𝑁𝑈𝑣,𝑚), and HAP (𝑁𝐻𝑣,𝑚) nodes available for the FL process. In addition, we define

three vectors𝑉𝑅𝑣𝑚 =

{
𝑉𝑅𝑣𝑚,𝑟1 , · · · , 𝑉

𝑅
𝑣𝑚,𝑟(𝑁𝑅𝑣,𝑚)

}
with𝑉𝑅𝑣𝑚,𝑟𝑛 ≤ 𝑉

𝑅
𝑚𝑎𝑥, 𝑉

𝑈
𝑣𝑚

=

{
𝑉𝑈
𝑣𝑚,𝑙1

, · · · , 𝑉𝑈
𝑣𝑚,𝑙(𝑁𝑈𝑣,𝑚)

}
with 𝑉𝑈𝑣𝑚,𝑢𝑙 ≤ 𝑉𝑈𝑚𝑎𝑥, and 𝑉

𝐻
𝑣𝑚

=

{
𝑉𝐻
𝑣𝑚,ℎ1

, · · · , 𝑉𝐻
𝑣𝑚,ℎ(𝑁𝐻𝑣,𝑚)

}
with 𝑉𝐻

𝑣𝑚,ℎ
≤ 𝑉𝐻𝑚𝑎𝑥, corre-

sponding to the number of nodes (i.e., VUs, RSUs, and UAVs) already connected to

the each RSU, UAV and HAP node, respectively, covering the 𝑚th VU. Here, 𝑉𝑅𝑚𝑎𝑥,

𝑉𝑈𝑚𝑎𝑥 and 𝑉
𝐻
𝑚𝑎𝑥 stand for the maximum number of devices that can be served by each

RSU, UAV and HAP nodes. Thus, a tuple 𝜅 = {𝑁𝑅
𝑣,𝑚, 𝑁

𝑈
𝑣,𝑚, 𝑁

𝐻
𝑣,𝑚, 𝑉

𝑅
𝑣𝑚
, 𝑉𝑈𝑣𝑚 , 𝑉

𝐻
𝑣𝑚
} can

represent the 𝑚th VU local environment. The number of possible 𝜅 values, i.e., 𝐾,

can depend upon 𝑉𝑅𝑚𝑎𝑥, 𝑉
𝑈
𝑚𝑎𝑥 and 𝑉

𝐻
𝑚𝑎𝑥. Through V2X communication links, VUs can

determine the number of nodes around them. However, since all VUs participate in

the FL process simultaneously, their assignment parameters in advance is unknown.

Therefore, some assumptions are required. Here, we consider the following two ap-

proaches for generating 𝑉𝑅𝑣𝑚 , 𝑉
𝑈
𝑣𝑚
, and 𝑉𝐻𝑣𝑚 vectors that can be used to improve the

MDP models accuracy.

Chapter VI. Distributed Intelligence for IoV 286

Minimum Distance Based Assignment Approach In the case of a minimum

distance-based approach, each node is assigned to the upper layer node with the

minimum possible distance. For example, 𝑚th VU is assigned to the nearest RSU,

𝑛th RSU is assigned to the nearest UAV, and 𝑙th UAV is assigned to the nearest

HAP. Thus in general,

𝑎𝑣,𝑚 (𝜏𝑖) = 1⇐⇒ 𝑛 = argmin
𝑛∈𝑁𝑅𝑣,𝑚

{𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖)} (6.67a)

𝑏𝑟,𝑛 (𝜏𝑖) = 1⇐⇒ 𝑙 = argmin
𝑙∈𝑁𝑈𝑣,𝑚

{𝑑𝑟𝑛,𝑢𝑙 (𝜏𝑖)} (6.67b)

𝑐𝑢,𝑙 (𝜏𝑖) = 1⇐⇒ ℎ = argmin
ℎ∈𝑁𝐻𝑣,𝑚

{𝑑𝑢𝑙 ,ℎ (𝜏𝑖)} (6.67c)

Random Assignment Approach In this approach, each node is assigned to any

of the higher layer nodes with a probabilistic rule. We have considered the uniform

assignment approach where the probability of assigning the 𝑖th node towards the

𝑗th upper layer node is given by

𝑝(𝑖 → 𝑗) = 1

𝑈𝑚𝑎𝑥
𝑖

(6.68)

where 𝑈𝑚𝑎𝑥
𝑖

indicate the total number of upper layer nodes covering the 𝑖th node

which can be VU, RSU or UAV.

With these two approaches in hand, different sets of 𝑉𝑅𝑣𝑚 , 𝑉
𝑈
𝑣𝑚
, and 𝑉𝐻𝑣𝑚 can be gen-

erated, helping to select proper ENs. The two different MDP approaches resulting

from these methods are denoted as MDP with minimum distance based assignment

approach (MDP-MD), and MDP with random assignment approach (MDP-RA).

Later, the performance of these two schemes is compared in the simulation results

section.

Chapter VI. Distributed Intelligence for IoV 287

State Space (S) In general, MDP state space is constituted by all possible states

in which MDP agents can find themselves during the exploration of the environment.

Finding an appropriate network of ENs, i.e., vehicle to HAP (𝑣𝑚 → ℎ), vehicle to

𝑛th RSU to HAP (𝑣𝑚 → 𝑟𝑛 → ℎ), vehicle to 𝑙th UAV to HAP (𝑣𝑚 → 𝑢𝑙 → ℎ),

vehicle to 𝑛th RSU to 𝑙th UAV to HAP (𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙 → ℎ) can potentially save

the FL iteration latency and energy cost and allow VUs to participate to a large

number of FL iterations resulting into a better FL model generation. In this work, S

is constituted by multiple number of binary variables corresponding to all 𝑛 ∈ 𝑁𝑅
𝑣,𝑚,

𝑙 ∈ 𝑁𝑈𝑣,𝑚 and ℎ. In particular, we define

𝑆
𝑟𝑛
𝑅
(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) =



1 if 𝑣𝑚 → 𝑟𝑛

and 𝜌(𝑑 (𝑣𝑚,𝑟𝑛,𝑢𝑙 ,𝜏𝑖))
𝜌max
𝜈

> 𝜁𝑅𝜌

0 otherwise

as a binary variable related to 𝑟𝑛 ∈ 𝑁𝑅
𝑚, which takes value 1 if the 𝑚th VU is

assigned to the 𝑛th RSU and able to perform a sufficient number of FL iterations,

where 0 < 𝜁𝑅𝜌 ≤ 1 is a parameter indicating the FL accuracy level that can be based

on the service type requested by the users. For example, in case of a critical safety-

related service, the FL model accuracy should be high for avoiding possible fatal car

crashes due to the failure of the FL models. In this case, 𝜁𝑅𝜌 should be closer to 1

or even 1. On the other hand, if it is not a high priority/safety-related service, a

moderate FL accuracy can be sufficient to serve the user. In such cases 𝜁𝑅𝜌 can be

smaller. Similarly,

𝑆
𝑢𝑙
𝑈
(𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) =



1 if (𝑣𝑚 → 𝑢𝑙 or 𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙)

and 𝜌(𝑑 (𝑣𝑚,𝑟𝑛,𝑢𝑙 ,𝜏𝑖))
𝜌max
𝜈

> 𝜁𝑈𝜌

0 otherwise

Chapter VI. Distributed Intelligence for IoV 288

is a binary variable related to 𝑢𝑙 ∈ 𝑁𝑈𝑚 , which takes 1 if the 𝑚th VU is assigned to the

𝑙th UAV and able to perform a sufficient number of FL iterations. Here, 0 < 𝜁𝑈𝜌 ≤ 1

is the parameter indicating the FL accuracy level as a function of the service type

requested by the users. Finally,

𝑆ℎ𝐻 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖)) =



1 if (𝑣𝑚 → ℎ or 𝑣𝑚 → 𝑟𝑛 → ℎ or 𝑣𝑚 → 𝑢𝑙 → ℎ,

or 𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙 → ℎ) and 𝜌(𝑑 (𝑣𝑚,𝑟𝑛,𝑢𝑙 ,𝜏𝑖))
𝜌max
𝜈

> 𝜁𝐻𝜌

0 otherwise

is a binary variable related to ℎ, which takes value 1 if the 𝑚th VU is assigned to the

HAP ℎ and able to perform a sufficient number of FL iterations. Here, 0 < 𝜁𝐻𝜌 ≤ 1 is

the parameter indicating the FL accuracy level based upon the service type requested

by the users.

In the end, if the 𝑚th VUs local environment is modeled through the tuple 𝜅, the

complete state vector is given as,

𝑆𝜅 =

{
𝑆1𝑅, · · · , 𝑆

𝑁𝑅𝑣,𝑚
𝑅

, 𝑆1𝑈 , · · · , 𝑆
𝑁𝑈𝑚
𝑈
, 𝑆ℎ𝐻

}

Action Space (A) If the 𝑚th VU local environment is modeled through the

tuple 𝜅, the action space (A𝜅 = {𝑎𝜅 (𝜏𝑖)}) includes all possible actions 𝑎𝜅 that can

be taken by the MDP agent corresponding to the 𝜅. In the considered FL network

selection problem, agents can select ENs belonging to the different networking layers.

Therefore, the generic action space is defined as,

A𝜅 =
{
(𝑣𝑚 → 𝑟𝑛), (𝑣𝑚 → 𝑢𝑙), (𝑣𝑚 → ℎ), (𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙), (𝑣𝑚 → 𝑢𝑙 → ℎ),

(𝑣𝑚 → 𝑟𝑛 → ℎ,), (𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙 → ℎ)
}
∀𝑚, 𝑙 (6.69)

Chapter VI. Distributed Intelligence for IoV 289

Reward Function (R) MDP agents can receive a positive or negative reward

based upon the current state and the action taken. Here, we consider the weighted

sum of latency, energy and penalty functions cost required to complete a single FL

iteration as a reward received by the agent based upon its state and action. Thus,

R𝑣,𝜅 (𝑠, 𝑎) = 𝜂1𝑇FL(𝑠𝜅, 𝑎𝜅) + 𝜂2𝐸FL(𝑠𝜅, 𝑎𝜅) + 𝑤1PFL
𝜈 (𝜌 (𝑠𝜅, 𝑎𝜅))

MDP Environment Dynamics (P) MDP environment dynamics model the

behavior of the MDP environment in terms of state transition probabilities based

upon the agents’ current state and the actions performed. The probability of MDP

agent finding itself into state 𝑠′ when it performs the action 𝑎 from state 𝑠 is given

as 𝑃(𝑠′|𝑠, 𝑎). Modeling such state transition probability over dynamic vehicular

environments can be challenging. We propose a time-dependent state transition

probability equation based upon the MDP agent’s local environment. In general,

for scenario 𝜅, the state transition probability at 𝜏𝑖 is given by

𝑃 (𝑠𝜅 (𝜏 + 𝛿) |𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)) = 𝑃
({
𝑆
𝑟𝑛
𝑅
(𝜏 + 𝛿), 𝑆𝑢𝑙

𝑈
(𝜏 + 𝛿), 𝑆ℎ𝐻 (𝜏 + 𝛿)

}
|
{
𝑆
𝑟𝑛
𝑅
(𝜏), 𝑆𝑢𝑙

𝑈
(𝜏), 𝑆ℎ𝐻 (𝜏)

}
, 𝑎𝜅 (𝜏)

)
which represents the state transition probability for state 𝑠𝜅 (𝜏 + 𝛿) for the MDP

agent from current state 𝑠𝜅 (𝜏) taking action 𝑎𝜅 (𝜏). Here, 𝛿 is the MDP time step.

Since VU can connect to only one node in a given time interval, the events 𝑆𝑟𝑛
𝑅
, 𝑆𝑢𝑙

𝑈

and 𝑆ℎ
𝐻
can be considered as an independent events, which results into,

𝑃(𝑠𝜅 (𝜏 + 𝛿) |𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)) = 𝑃
(
𝑆
𝑟𝑛
𝑅
(𝜏 + 𝛿) |

{
𝑆
𝑟𝑛
𝑅
(𝜏), 𝑆𝑢𝑙

𝑈
(𝜏), 𝑆ℎ𝐻 (𝜏)

}
, 𝑎𝜅 (𝜏)

)
· 𝑃

(
𝑆
𝑢𝑙
𝑈
(𝜏 + 𝛿) |

{
𝑆
𝑟𝑛
𝑅
(𝜏), 𝑆𝑢𝑙

𝑈
(𝜏), 𝑆ℎ𝐻 (𝜏)

}
, 𝑎𝜅 (𝜏)

)

Chapter VI. Distributed Intelligence for IoV 290

· 𝑃
(
𝑆ℎ𝐻 (𝜏 + 𝛿)}|

{
𝑆
𝑟𝑛
𝑅
(𝜏), 𝑆𝑢𝑙

𝑈
(𝜏), 𝑆ℎ𝐻 (𝜏)

}
, 𝑎𝜅 (𝜏)

)
(6.70)

In particular, with various communication links, e.g., V2V, V2R, V2I, vehicular-

based MDP agents can acquire useful information about the surrounding environ-

ment (i.e., tuple 𝜅), which can be used to model the state transition probabilities.

The transition probability expressions are modeled as exponential functions based

upon various local environment parameters. The state transition probability expres-

sions for 𝑆𝑟𝑛
𝑅

for the 𝜅th MDP agent with current state 𝑠𝜅 (𝜏) and performing action

𝑎𝜅 (𝜏) is defined as,

𝑃
({
𝑆
𝑟𝑛
𝑅
(𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
=


exp(−𝜆𝑅𝑛 (𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑟𝑛

0 else

(6.71)

𝑃
({
𝑆
𝑟𝑛
𝑅
(𝜏 + 𝛿) = 0

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
= 1 − 𝑃

({
𝑆
𝑟𝑛
𝑅
(𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
(6.72)

corresponding, respectively, to the probability that the MDP agent will be in state

with 𝑆𝑟𝑛
𝑅
(𝜏+𝛿) = 1 and 𝑆𝑟𝑛

𝑅
(𝜏+𝛿) = 0 by taking action 𝑎𝜅 (𝜏) from current state 𝑠𝜅 (𝜏).

Also, 𝜆𝑛 (𝜏𝑖) = 𝛿𝑅1 ·𝑉
𝑅
𝑣𝑚,𝑟𝑛
(𝜏𝑖) + 𝛿𝑅2 · 𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖) + 𝛿

𝑅
3 /𝑇

𝑠𝑜 𝑗
𝑣𝑚,𝑟𝑛 (𝜏𝑖) models the impact of VUs

local environment over the state transition probability values. According to 𝜆𝑛 (𝜏𝑖),

if the 𝑚th VU through action 𝑎𝜅 (𝜏) selects the RSU 𝑛 with high 𝑉𝑅𝑣𝑚,𝑟𝑛 and 𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖),

the VUs might not be able to perform the required number of FL iterations. Also

if VU selects the RSU with a high sojourn time value, it can perform a sufficient

number of FL iterations, resulting in a higher probability that occurs 𝑆𝑟𝑛
𝑅
(𝜏 + 𝛿) = 1;

𝛿𝑅1 , 𝛿
𝑅
2 and 𝛿𝑅3 are the weighing coefficients used to associate proper weights towards

Chapter VI. Distributed Intelligence for IoV 291

each parameters. Next, for 𝑆𝑢𝑙
𝑈
,

𝑃
({
𝑆
𝑢𝑙
𝑈
(𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
=



exp(−𝜆𝑈
𝑙,1(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑢𝑙

exp(−𝜆𝑈
𝑙,2(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙

0 else

𝑃
({
𝑆
𝑢𝑙
𝑈
(𝜏 + 𝛿) = 0

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
= 1 − 𝑃

({
𝑆
𝑢𝑙
𝑈
(𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
)

corresponding to the probabilities that MDP agent in state 𝑠𝜅 (𝜏) by taking action

𝑎𝜅 (𝜏) will find itself in state with 𝑆𝑢𝑙
𝑈
(𝜏 + 𝛿) = 1 and 𝑆𝑢𝑙

𝑈
(𝜏 + 𝛿) = 0, respectively.

Since VU can be connected to the UAV directly, or through RSU as a interme-

diate node, two separated cases are provided for increasing the accuracy of the

MDP framework. Here, 𝜆𝑈
𝑙,1(𝜏𝑖) = 𝛿𝑈1𝑉

𝑈
𝑣𝑚,𝑢𝑙
(𝜏𝑖) + 𝛿𝑈2 𝑑𝑣𝑚,𝑢𝑙 (𝜏𝑖) + 𝛿

𝑈
3 /𝑇

𝑠𝑜 𝑗
𝑣𝑚,𝑢𝑙 (𝜏𝑖) and

𝜆𝑈
𝑙,2(𝜏𝑖) = 𝛿

𝑈
4𝑉

𝑅
𝑣𝑚,𝑟𝑛
(𝜏𝑖) + 𝛿𝑈1𝑉

𝑈
𝑣𝑚,𝑢𝑙
(𝜏𝑖) + 𝛿𝑈5 (𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖) + 𝑑𝑟𝑛,𝑢𝑙 (𝜏𝑖)) + 𝛿3/𝑇

𝑠𝑜 𝑗
𝑣𝑚,𝑢𝑙 (𝜏𝑖) are the

two parameters measuring the impact of surrounding environment over the tran-

sition probabilities, while 𝛿𝑈1 , · · · , 𝛿
𝑈
5 correspond to the weighting coefficients for

properly balancing the impact of various environment parameters. In the end, for

𝑆ℎ
𝐻
:

𝑃

({
𝑆ℎ𝐻 (𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
=



exp(−𝜆𝐻
ℎ,1(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → ℎ

exp(−𝜆𝐻
ℎ,2(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑟𝑛 → ℎ

exp(−𝜆𝐻
ℎ,3(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑢𝑙 → ℎ

exp(−𝜆𝐻
ℎ,4(𝜏𝑖)) if 𝑎𝜅 (𝜏) ∈ 𝑣𝑚 → 𝑟𝑛 → 𝑢𝑙 → ℎ

0 else

(6.73)

𝑃

({
𝑆ℎ𝐻 (𝜏 + 𝛿) = 0

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
= 1 − 𝑃

({
𝑆ℎ𝐻 (𝜏 + 𝛿) = 1

}
|𝑠𝜅 (𝜏), 𝑎𝜅 (𝜏)

)
(6.74)

Chapter VI. Distributed Intelligence for IoV 292

are the state transition probabilities corresponding to 𝑆ℎ
𝐻
(𝜏+𝛿) = 1 and 𝑆ℎ

𝐻
(𝜏+𝛿) = 0,

respectively. Since VUs can communicate with the HAP node through various links,

different cases are presented based upon the action taken. In (6.73),

𝜆𝐻ℎ,1(𝜏𝑖) =𝛿
𝐻
1 𝑉

𝐻
𝑣𝑚,ℎ
(𝜏𝑖) + 𝛿𝐻2 𝑑𝑣𝑚,ℎ (𝜏𝑖) + 𝛿

𝐻
3 /𝑇

𝑠𝑜 𝑗

𝑣𝑚,ℎ
(𝜏𝑖)

𝜆𝐻ℎ,2(𝜏𝑖) =𝛿
𝐻
4 𝑉

𝑅
𝑣𝑚,𝑟𝑛
(𝜏𝑖) + 𝛿𝐻1 𝑉

𝐻
𝑣𝑚,ℎ
(𝜏𝑖) + 𝛿𝐻5 (𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖) + 𝑑𝑟𝑛,ℎ (𝜏𝑖)) + 𝛿

𝐻
3 /𝑇

𝑠𝑜 𝑗

𝑣𝑚,ℎ
(𝜏𝑖)

𝜆𝐻ℎ,3(𝜏𝑖) =𝛿
𝐻
6 𝑉

𝑈
𝑣𝑚,𝑢𝑙
(𝜏𝑖) + 𝛿𝐻1 𝑉

𝐻
𝑣𝑚,ℎ
(𝜏𝑖) + 𝛿𝐻7 (𝑑𝑣𝑚,𝑢𝑙 (𝜏𝑖) + 𝑑𝑢𝑙 ,ℎ (𝜏𝑖)) + 𝛿

𝐻
3 /𝑇

𝑠𝑜 𝑗

𝑣𝑚,ℎ
(𝜏𝑖)

𝜆𝐻ℎ,4(𝜏𝑖) =𝛿
𝐻
4 𝑉

𝑅
𝑣𝑚,𝑟𝑛
(𝜏𝑖) + 𝛿𝐻6 𝑉

𝑈
𝑣𝑚,𝑢𝑙
(𝜏𝑖) + 𝛿𝐻1 𝑉

𝐻
𝑣𝑚,ℎ
(𝜏𝑖) + 𝛿𝐻8 (𝑑𝑣𝑚,𝑟𝑛 (𝜏𝑖) + 𝑑𝑟𝑛,𝑢𝑙 (𝜏𝑖)

+ 𝑑𝑢𝑙 ,ℎ (𝜏𝑖)) + 𝛿𝐻3 /𝑇
𝑠𝑜 𝑗

𝑣𝑚,ℎ
(𝜏𝑖)

are the parameters modeling the surrounding environments impact over the state

transitions. In the end, by using (6.70), (6.74) can be used to find the state transition

probability in any interval 𝜏.

6.3.2.2 MDP-Based FL Network Selection Strategy

For the MDP model corresponding to the 𝜅th agent, the solutions’ set can be defined

as a policy function 𝜋𝜅 = {𝜋𝜅 (𝑠𝜅 (𝜏𝑖 + 𝛿)),∀𝛿} that maps every state 𝑠𝜅 ∈ S to action

𝑎𝜅 ∈ A. Selecting different actions can result in different policy functions, where

the aim is to find an optimal policy that corresponds to the minimum cost in terms

of delay, energy and FL process penalty value. For every policy 𝜋𝜅, a value function

𝑉𝜋𝜅 (𝑠𝜅 (𝜏𝑖)), corresponding to a state 𝑠𝜅 (𝜏𝑖) can be defined for analyzing its perfor-

mance. In general, 𝑉𝜋𝜅 (𝑠𝜅 (𝜏𝑖)) corresponds to an expected value of a discounted sum

of total reward received by following the policy 𝜋𝜅 from state 𝑠𝜅 (𝜏𝑖), and can be

defined as:

𝑉𝜋𝜅 (𝑠𝜅 (𝜏𝑖)) = E
{

Δ∑︁
𝛿=0

𝛾𝛿𝑅 (𝑠𝜅 (𝜏𝑖 + 𝛿), 𝜋𝜅 (𝑠𝜅 (𝜏𝑖 + 𝛿)))
}

Chapter VI. Distributed Intelligence for IoV 293

where 𝛾 ∈ [0, 1] is the discount factor, 𝑅(𝑠𝜅 (𝜏𝑖 + 𝛿), 𝜋𝜅 (𝑠𝜅 (𝜏𝑖 + 𝛿))) is the immediate

reward received for following a policy 𝜋𝜅 at time 𝜏𝑖 + 𝛿 from the state 𝑠𝜅 (𝜏𝑖 + 𝛿), Δ is

the maximum number of steps considered during the MDP evaluation, i.e., episode

length, and E(·) corresponds to the expected value. Thus, the value function analyzes

the particular policy function by assigning a numeric value to each state and can be

utilized to compare the performance of different policies. In the end, the following

optimization problem can be formulated in order to be able to find the best possible

policy function associated with state 𝑠𝜅 (𝜏𝑖):

𝑉 (𝑠𝜅 (𝜏𝑖)) = min
𝜋𝜅∈Π𝜅

𝑉𝜋𝜅 (𝑠𝜅 (𝜏𝑖)) (6.75)

where Π𝜅 corresponds to the set of policy functions that can be explored.

As shown by many works (e.g., [88, 89]), the problem defined in (6.75), can converge

into a Bellman optimality equation given by:

𝑉 (𝑠𝜅 (𝜏𝑖)) = min
𝑎𝜅 (𝜏𝑖)∈𝐴𝜅 (𝜏𝑖)

{
𝑅(𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖))+

𝛾
∑︁

𝑠𝜅 (𝜏𝑖+𝛿)∈ST
𝑃𝑟 {𝑠𝜅 (𝜏𝑖 + 𝛿) | 𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖)}𝑉 (𝑠𝜅 (𝜏𝑖 + 𝛿))

}
(6.76)

Different approaches can be used to solve the problem in (6.76); however, the value

iteration approach is widely known for its fast convergence and easy implementation.

Therefore, below we present a value iteration approach aimed at solving the MDP

designed in the previous section for finding an optimal policy that corresponds to

the minimization of a FL process time and energy over VN.

The value iteration method allows finding an optimal policy and value function for

the MDP models. The Algorithm 15 describes the steps involved during the value

iteration process. For every agent 𝜅, the process begins by initializing the values

Chapter VI. Distributed Intelligence for IoV 294

of each state to ∞ and iteration count (𝑖𝑡) to 0 (Line 2). For each state-action

pair, the state value is determined by using (6.77) (Line 5). The state value and a

corresponding optimal policy (𝜋∗𝜅 (𝑠𝜅 (𝜏𝑖))) associated with state 𝑠𝜅 is determined by

using (6.78) and (6.79) (Lines 7-8). The iterative process continues till the change

in the all states values becomes less than the predefined convergence parameter 𝜖

(Lines 10-13). In the end, the algorithm returns the set of optimal policy functions{
𝜋∗𝜅

}
associated with all possible scenarios in which VUs can find themselves over

the road (Line 15).

Chapter VI. Distributed Intelligence for IoV 295

Algorithm 15 MDP Value Iteration

Input: 𝜖, 𝛾, 𝑆𝜅, 𝐴𝜅, 𝑃𝑟, 𝐾,Δ

Output:
{
𝜋∗𝜅

}
1: for 𝜅 ∈ 𝐾 do

2: Initialize 𝑖𝑡 = 0, 𝑉0(𝑠𝜅 (𝜏𝑖)) = ∞,∀𝑠𝜅 (𝜏𝑖)

3: for 𝑠𝜅 (𝜏𝑖) ∈ 𝑆𝜅 do

4: for 𝑎𝜅 (𝜏𝑖) ∈ 𝐴𝜅 do

5:

𝑉 𝑖𝑡+1(𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖)) ← 𝑅(𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖))+

𝛾
∑︁

𝑠𝜅 (𝜏𝑖+𝛿)∈𝑠𝜅

𝑃𝑟 (𝑠𝜅 (𝜏𝑖 + 𝛿) | 𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖))𝑣𝑖𝑡 (𝑠𝜅 (𝜏𝑖 + 𝛿)) (6.77)

6: end for

7:

𝑉 𝑖𝑡+1(𝑠𝜅 (𝜏𝑖)) = min
𝑎𝜅 (𝜏𝑖)

𝑉 𝑖𝑡+1(𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖)) (6.78)

8:

𝜋∗𝜅 (𝑠𝜅 (𝜏𝑖)) = argmin
𝑎𝜅 (𝜏𝑖)

𝑉 𝑖𝑡+1(𝑠𝜅 (𝜏𝑖), 𝑎𝜅 (𝜏𝑖)) (6.79)

9: end for

10: if any |𝑣𝑖𝑡+1(𝑠𝜅 (𝜏𝑖)) − 𝑣𝑖𝑡 (𝑠𝜅 (𝜏𝑖)) | > 𝜖 then

11: 𝑖𝑡 = 𝑖𝑡 + 1

12: else

13: 𝜋∗𝜅 =
{
𝜋∗𝜅 (𝑠𝜅 (𝜏𝑖))

}
14: end if

15: end for

16: return
{
𝜋∗𝜅

}

Chapter VI. Distributed Intelligence for IoV 296

The time complexity of the traditional value iteration process can be analyzed as

O(Δ|S| · |A|) with Δ being the maximum number of time steps considered, |S|

state space dimension, and |A| representing the action space. With the involve-

ment of 𝐾 scenarios, the time complexity expression becomes O(𝐾Δ|S| · |A|). The

scenario-based modeling can reduce the state and action space dimensions signifi-

cantly. Additionally, time-dependent state transition probabilities can reduce the

overall uncertainty in the MDP process.

6.3.3 Benchmark Methods

For analyzing the performance of the proposed MDP model, we have considered the

following benchmark methods.

6.3.3.1 Conventional Centralized FL Process (C-FL)

In the case of a conventional centralized FL process, each VU transmits its model

updates to the centralized HAP server. Thus, 𝑣𝑚 → ℎ, ∀𝑣 ∈ V. This approach

can reduce the overall processing costs in terms of intermediate layer processing

and averaging operations performed over RSUs and UAVs. However, possible long-

distance communication links between VUs and HAP can limit the performance

in terms of link failures, high energy costs, limited users participating in the FL

process, etc.

6.3.3.2 Minimum Distance Based FL Process (MD-FL)

In this case, the FL process assumes that each node communicates with the nearest

nodes from the upper layer. Thus, each participating VU can select the shortest

Chapter VI. Distributed Intelligence for IoV 297

distance RSU node for transmitting its update, which then process and transmit

the aggregated update vectors towards the nearest UAV for further processing. In

the end, HAP collects data from all the participating UAV terminals for generating

the global model, which it then broadcasts back towards VUs. Eqs. (6.67a)-(6.67c)

can be used to determine the minimum distance assignment vectors for different

nodes.

6.3.3.3 Random Assignment Based FL Process (RA-FL)

In this approach, nodes involved in the FL process (i.e., VUs, RSUs, UAVs, and

HAP) follow the random assignment strategy in (6.68). Thus, each VU selects the

one EN from a set of RSUs, UAVs, and HAP covering it. Similarly, RSUs can either

be connected to the UAV/HAP or can also communicate back the results to VUs.

UAVs also followed the same strategy, where they can either send their data to HAP

or return it to the VUs for the next round of the FL process.

6.3.3.4 FedCPF inspired RSU-based benchmark solution for the consid-

ered scenario (FedR-FL)

In [131], authors have proposed a FedCPF approach based upon a customized local

training strategy, partial client participation, and flexible aggregation strategies.

Here we considered a FedCPF-inspired, RSU-based benchmark approach where VUs

are performing the local training process and transmitting the model parameters

to the nearest RSU node. The client selection strategy of the FedCPF approach

is considered where participation of each VU in the FL process is based upon a

probability 𝑃𝑠𝑒𝑙 (i.e., 𝑃𝑠𝑒𝑙 is the probability of the client being a part of FL training,

while (1− 𝑃𝑠𝑒𝑙) is the probability that the client will opt out from the LF training).

Chapter VI. Distributed Intelligence for IoV 298

The other two strategies of customized local training strategy and the deadline-

based server aggregation strategy are based upon the RSU sojourn time constraint.

In particular, VUs’ participation in the FL process is limited by its dynamicity and

the RSU coverage range.

6.3.4 Performance Evaluation

The value iteration algorithm for solving the MDP model and the benchmark meth-

ods previously described are simulated over a Python-based simulator, using ML-

related libraries such as NumPy, Pandas, Matplotlib. In Table 6.2, the main sim-

ulation parameters are shown for the considered network architecture. The service

area is under the coverage of one HAP, 20 UAVs and 40 RSUs. A variable number

of VUs between 200 and 700 are considered, assuming that each one is requesting

service 𝜈 with a probability equal to 0.2. Each VU is traveling with a variable speed

as modeled in (6.54) with 𝜇=10 m/s and 𝜎=1. The maximum number of FL itera-

tions required to achieve the proper performance, as defined in (6.63), consider that

C = 1000. Also 𝑃𝑠𝑒𝑙 = 0.7 is used for the FedCPF-inspired RSU-based benchmark

solution approach. Each VU has a FL dataset of size |D𝑣𝑚 | = 5, 000 samples. Dur-

ing the FL training process, 𝜓𝑑 = 1500 and 𝑇FA
𝑖,𝜈

= 1 ms. The maximum number of

nodes covering any VU is given by 𝑅𝑚𝑎𝑥 = 3, 𝑈𝑚𝑎𝑥 = 2 and 𝐻𝑚𝑎𝑥 = 1. Additionally a

maximum number of nodes served by each RSU 𝑣𝑅𝑚𝑎𝑥 = 8, each UAV 𝑣𝑈𝑚𝑎𝑥 = 16, and

HAP 𝑣𝐻𝑚𝑎𝑥 = 32 are considered. With the multi-core processing hardware of ENs,

these users can be grouped into different levels based on the number of cores.

The weighting coefficients used for modeling the transition probabilities are de-

fined as, [𝛿𝑅1 , 𝛿
𝑅
2 , 𝛿

𝑅
3] = [0.025, 0.004, 0.5], [𝛿

𝑈
1 , 𝛿

𝑈
2 , 𝛿

𝑈
3 , 𝛿

𝑈
4 , 𝛿

𝑈
5] = [0.2, 0.0125, 0.1, 0.2,

0.005], [𝛿𝐻1 , 𝛿
𝐻
2 , 𝛿

𝐻
3 , 𝛿

𝐻
4 , 𝛿

𝐻
5 , 𝛿

𝐻
6 , 𝛿

𝐻
7 , 𝛿

𝐻
8] = [100, 0.4, 100, 200, 1.25, 100, 0.4, 1.25] ·10

−3.

Chapter VI. Distributed Intelligence for IoV 299

Table 6.2: Simulation parameters

HAP Coverage (𝑅ℎ) 1.2 km
UAV Coverage (𝑅𝑢,𝑙) 100m
RSU Coverage ((𝑅𝑟,𝑛)) 50m
VU Computation Cap. (𝑐𝑣,𝑚 · 𝑓𝑣,𝑚) 10 GFLOPS
RSU Computation Cap. (𝑐𝑟,𝑛 · 𝑓𝑟,𝑛) 20 GFLOPS
UAV Computation Cap. (𝑐𝑢,𝑙 · 𝑓𝑢,𝑙) 20 GFLOPS
HAP Computation Cap. (𝑐ℎ · 𝑓ℎ) 40 GFLOPS
HAP Altitude (ℎ̄ℎ) 10 km
UAV Altitude (ℎ̄𝑢,𝑙) 1 km

HAP Bandwidth (𝐵ℎ→(𝑣,𝑟,𝑙)
ℎ

) 250MHz

UAV Bandwidth (𝐵𝑙→(𝑣,𝑟)
𝑢,𝑙

) 75MHz

RSU Bandwidth (𝐵𝑟→𝑣𝑟,𝑛) 25MHz
VU Speed Range (®𝑣min, ®𝑣max). (8m/s m/s, 14m/s)
HAP Power (𝑃𝑡ℎ, 𝑃𝑟ℎ) (1.1, 0.9) W

UAV Power (𝑃𝑡𝑙𝑐,𝑢, 𝑃𝑟 𝑙𝑐,𝑢) (1.2, 1) W
RSU Power (𝑃𝑡𝑛𝑐,𝑟 , 𝑃𝑟𝑛𝑐,𝑟) (1.3, 1.2) W
VU Power (𝑃𝑚𝑐,𝑣 , 𝑃𝑡𝑚𝑐,𝑣, 𝑃𝑟𝑚𝑐,𝑣) (1.1, 1.5, 1.3) W
Noise Power (𝑁𝑇) −110 dbm [132]
FLOPs Required (𝜓𝑝𝑟𝑒, 𝜓𝑝𝑜𝑠𝑡 , 𝜓𝐹𝐴) 104, 104, 105 FLOPs
Weighting Coefficients (𝜂1, 𝜂2, 𝑤1) (0.5, 0.5, 1)

The weighting coefficients have been defined so that different local environment pa-

rameters, defined in the transition probability equations (6.72)-(6.74), have a value

range consistent among them during the MDP state evaluation. For the case of FL

penalty function 𝑥 = 0.5 with 0 ≤ 𝑥 ≤ 1 is used along with 𝜆 = 0.3. Additionally, 𝜁𝑅𝜌 ,

𝜁𝑈𝜌 , and 𝜁
𝐻
𝜌 are set to 0.7. During value iteration process 𝛾 = 0.9, 𝜖 = 0.01, Λ = 0.1

and episode length Δ = 200 are used.

6.3.4.1 Numerical Results

In the following, we present the main performance results including the FL cost,

latency, energy, FL penalty, and the average number of FL iterations performed by

VUs for different methods.

Chapter VI. Distributed Intelligence for IoV 300

FL Process Cost The main objective of this work is to jointly reduce the overall

latency, energy, and FL penalty. Fig. 6.17 shows the performance in terms of FL

overall cost for the MDP schemes and the benchmark methods previously presented.

It can be observed that both MDP methods outperform the benchmark approaches

as the number of VUs increases.

With a reduced number of VUs, with a fully distributed FL process, the MD-FL

approach requires higher cost mainly due to several processing operations performed

at different layers. On the other hand, a fully centralized C-FL method has reduced

costs due to the presence of a limited number of VUs requesting the resources from

the centralized HAP node. However, if the number of VUs is higher, the overall cost

of the C-FL approach grows fast mainly due to the higher communication distances

and the limited resources of a HAP node. With this, the C-FL cost becomes higher

than the other benchmark methods with the increasing density of VUs. Similar

effects can be seen later in the latency and energy plots shown in Figs. 6.18 and

6.19. The other two benchmark approaches (RA-FL and FedCPF-inspired method)

have a slightly better performance mainly due to the reduced communication dis-

tances and reduced processing operations compared to the fully distributed MD-FL

and a fully centralized C-FL approaches. However, the imperfect/static edge node

selection without considering the local environment parameters and the available

resources, the performance of the benchmark approaches compared to the proposed

MDP solutions.

On the other hand, the proposed MDP solutions, with network selection based upon

the VUs local environments and the available resources of ENs, are able to keep the

FL process cost under the limit. In particular, the MDP-RA method outperforms

all other approaches. For the case of the MDP-MD, the VUs local environment

is modeled through the assignments of the FL devices to the nearest nodes with

Chapter VI. Distributed Intelligence for IoV 301

less flexibility, i.e., VUs can be assigned to the RSUs, RSUs can be assigned to the

UAVs, and UAVs are assigned to the HAP node. On the other hand, the MDP-

RA approach is more flexible, where each node can select any higher layer entities,

i.e., VUs can be assigned to the RSU, UAVs, or HAP. Therefore, MDP-RA method

outperforms the MDP-MD in terms of overall cost, as well FL latency, and energy,

as later shown in Figs. 6.18 and 6.19.

With the upcoming latency-constrained vehicular applications and services demand-

ing ML models with high accuracy, it is important to perform the distributed learn-

ing process, such as FL, in a limited time and with reduced energy consumption.

Thus, the proposed distributed learning framework with efficient network selection

strategies allows a large number of VUs to participate in the training process with

reduced cost and a huge advantage over the traditional methods.

FL Latency Performance For each FL iteration, the FL process is impacted by

communication, training, and processing latency. In Fig. 6.18, we present the aver-

age FL iteration latency for various MDP and benchmark methods. In particular,

MDP-MD and MDP-RA methods, with proper node selections can perform the FL

process with reduced latency compared with other methods. As for the previous

case, with fewer nodes requesting resources, the C-FL method performs better com-

pared to the MD-FL and RA-FL methods. However, when VUs are more, C-FL

performance in terms of latency requirements degrades drastically. On the other

hand with a distributed FL process, the MD-FL approach induces higher latency

with lower VUs. However, with higher VUs its performance is better than the C-

FL method mainly due to the distribution of the FL process over the multiple edge

nodes. The fedCPF-inspired approach selects the RSU nodes for the averaging oper-

ation limiting the latency costs in the beginning. However, with the limited sojourn

Chapter VI. Distributed Intelligence for IoV 302

Figure 6.17: Performance results in terms of overall cost function with variable
number of active vehicles.

time, VUs are unable to perform a sufficient number of iterations resulting in the

higher FL penalty as shown later in Fig. 6.20. With a higher number of VUs, the

performance of the FedCPF-inspired approach degrees mainly due to the limited

RSU resources and the imperfect node selection.

The MDP approaches, especially the MDP-RA method, jointly reduce both commu-

nication and processing latency by distributing the FedAvg process over a sufficient

number of edge nodes. Therefore, the proposed methods can efficiently train the FL

model over the distributed multi-layered VN environments.

FL Energy Performance It is important to reduce the FL process energy cost

given the involvement of different T/NT networking platforms (i.e., VUs, UAVs)

Chapter VI. Distributed Intelligence for IoV 303

Figure 6.18: FL latency with variable number of active vehicles.

with scarce energy resources. The FL process consumes energy for the local training

operations, data communication, and FL data processing over servers. In Fig. 6.19,

we present the performance in terms of energy spent by the different methods.

Similar to the latency performance, the C-FL process energy performance is better

for a reduced number of VUs, due to the involvement of a limited number of VUs

and reduced FedAvg process cost. However, when VUs are more, the VUs energy

requirements become high mainly due to long-distance communication over limited

bandwidth resources. Compared with the C-FL method, MD-FL has an advantage

in terms of reduced communication distances/costs. However, with the repetition of

the FedAvg process over each layer, the energy cost increases. On the other hand, the

proposed MDP methods can reduce both communication and computation process

energy requirements simultaneously by properly distributing the FL process over

Chapter VI. Distributed Intelligence for IoV 304

multi-layered VN. By utilizing the local environment knowledge, MDP methods can

select proper ENs with sufficient resources and, as a result, are able to perform the

FL process with reduced energy requirements.

It should also be noted that the energy performance of the C-FL method degrades

quickly compared to its latency performance. This is mainly because every VUs

involved in the FL process of the C-FL approach requires communication with the

centralized HAP node. Due to this, the energy cost induced by the individual

VUs can be higher compared to the other benchmark methods. This trend can

also be seen in the overall cost performance in Fig. 6.17. The results from Figs.

6.18 and 6.19 can also highlight the issues of the well-known straggler effect in the

FL framework with the traditional benchmark methods and the necessity to counter

such effects with the new solutions. The proposed MDP-based methods can mitigate

such effects as highlighted by the performance in Figs. 6.17-6.19.

FL Penalty Performance With the adopted network selection strategy, if VUs

fail to perform a sufficient number of FL iterations, the FL model performance may

not be adequate. We have modeled the impact of the number of FL iterations

performed by VUs in terms of a stochastic penalty function presented in (6.64). In

Fig. 6.20, we show the average FL penalty value for different sets of VUs for the

proposed methods. The benchmarks, with inadequate FL process, fail to perform the

required number of FL iterations resulting in the higher FL penalties. The FedCPF-

inspired approach selects the nearby RSU node for limiting the FL communication

cost, which as result limits the number of FL iterations performed by VUs, inducing

the heavy FL penalty. The other two benchmark methods, MD-FL and RA-FL also

suffer from a large penalty due to the reduced number of FL iterations performed

mainly due to the high latency per FL iteration with constrained sojourn times.

Chapter VI. Distributed Intelligence for IoV 305

Figure 6.19: Performance results in terms of energy consumption for the FL
process with variable number of active vehicles.

Although the C-FL method gains from a higher coverage range of the HAP node

and with reduced FL latency, for a reduced number of VUs it is able to perform a

large number of FL iterations with a reduced penalty, while, as the number of VUs

increases, its performance decreases. For a reduced number of VUs, the penalty

value for the MDP-RA process is high, mainly because of the low number of VUs

participating in the FL process and its decisions to select the nearby edge nodes

for reducing the overall FL cost. However, with a growing number of VUs, its

performance increases with proper network selection strategies and an adequate

number of VUs participating in the FL process. On the other hand, the MDP-MD

method which suffers slightly in terms of latency and energy costs in the beginning

can perform a high number of FL iterations reducing the LF penalty. Notice that

these behaviors of MDP methods can also be impacted by the assumptions made over

Chapter VI. Distributed Intelligence for IoV 306

Figure 6.20: Performance results in terms of FL Penalty value with variable
number of active vehicles.

the competing VUs decisions and can have different impacts in terms of individual

costs. However, both the MDP methods are able to reduce the joint costs of latency,

energy and penalties significantly compare to the traditional benchmark methods.

Therefore, the proposed FL process with proper network selections can create reliable

FL models with better performance.

Average Number of FL Iterations For having adequate performance FL nodes,

VUs should be able to perform a sufficient number of FL iterations (𝜌 (𝑑 (𝑣𝑚, 𝑟𝑛, 𝑢𝑙 , 𝜏𝑖))).

The number of FL iterations performed by each VU is based upon the network selec-

tion strategy and the available sojourn time of the selected ENs, as given in (6.62).

Chapter VI. Distributed Intelligence for IoV 307

A proper network selection strategy can reduce the FL iteration time. Also se-

lecting proper ENs with a higher number of communication/computation resources

allows VUs to participate in a larger number of iterations. To shade more light on

the results presented in the previous figures, here we present the average number

of FL iterations performed by different methods (Fig. 6.21). It can be seen that

with a lower number of VUs, C-FL is able to perform a higher number of FL it-

erations, however, its performance reduces as more and more VUs participate in

the process mainly due to the longer FL iteration time. It should also be noticed

that though in the beginning, the C-FL approach can outperform one of the MDP

solutions (MDP-RA), its joint performance is still not optimized due to the static

FL process (Fig. 6.17). On the other hand, as described before in Fig. 6.20 the

node selection strategies for the MDP-RA and MDP-MD methods are based upon

a joint cost optimization and can be influenced by the competing VUs decisions.

With FedCPF-inspired RSU-based benchmark solution, VUs can only perform a

limited number of iterations only, mainly due to the limited coverage range of the

RSU nodes. This also highlights the importance of considering the distributed NTN

layers of networking platforms for supporting the FL process. With imperfect edge

node selection strategies, the other two benchmark solutions (MD-FL and RA-FL),

also suffer from limited FL iterations resulting in imperfect FL models with higher

performance penalties (i.e., Fig. 6.20).

6.3.5 Conclusion

In this work, we have presented the communication-efficient, distributed FL plat-

form over a joint T/NT-based VN. The proposed approach can be useful for creating

cost-efficient, sustainable, and more reliable FL models for serving VUs applica-

tions. With proper analysis of the FL process cost, we formed the constrained

Chapter VI. Distributed Intelligence for IoV 308

Figure 6.21: Performance results in terms of average number of FL iterations
with variable number of active vehicles.

optimization problem for finding the optimal FL network selection strategy over

multi-layered VNs. We further modeled the FL network selection problem as a

sequential decision-making RL problem by adapting the MDP framework. A time-

dependent environment dynamic model is created by utilizing the VUs environment

parameters acquired through the V2X technology. In the end, the value iteration

approach is used to solve the MDP model for finding suitable policies. The numer-

ical results acquired over the Python-based simulation show the major advantages

of the proposed FL approach over several other benchmark methods including the

conventional centralized FL process. In the future, we expect to extend this work

by analyzing the performance of proposed methods on realistic vehicular systems

for enabling intelligent solutions at the edge.

Chapter 7

Conclusion

This dissertation highlights the importance of a future 6G enabled IoV technology

and addresses two of the most challenging problems faced by vehicular users. It

includes novel solutions for distributed data processing with the support of edge

computing facilities enabled through joint T-NTN architecture. Next, we highlight

the importance of an edge intelligence paradigm for vehicular cases and propose novel

solutions for implementing distributed learning with the support of edge computing

facilities in vehicular scenarios.

Several NTN layers are expected to play a key role in shaping the future wireless

technology world including vehicular networks. Therefore, in this dissertation, we

highlight the importance of different NTN layers and propose a novel framework for

joint T-NTN-based vehicular systems with integrated edge computing facilities. This

proposed architecture is then investigated to enable efficient solutions for distributed

data processing and edge intelligence cases.

First, we analyze the case of terrestrial VEC systems enabled through eh RSUs and

base stations. We address the problem of vehicular data processing with partial

309

Chapter VII. Conclusion 310

offloading case. We proposed novel RL-based solutions for the case of single-service

and multi-service vehicular scenarios. In the first case of a single-service scenario, a

joint network selection and offloading problem is formed to minimize the latency and

energy costs from both the user and edge node sides. The problem is solved through

the novel MDP framework with time-dependent state transition probabilities. A

model-based value iteration algorithm is used to find the optimal policies. Next,

we consider the case of a multi-service scenario and propose collaborative RL-based

solutions.

The considered scenarios are then extended toward the case of a joint T-NTN frame-

work with integrated edge computing facilities. Given the complexity of the con-

sidered scenario with heterogeneous edge computing facilities, we first propose an

adaptive genetic algorithm-based meta-heuristic algorithm to address the data pro-

cessing problem. Next, we evolved the considered problem to minimize the latency

and energy costs and proposed HRL-based intelligent solutions. Next, we also ad-

dress the problem of joint service placement, network selection, and offloading with

multi-time scale decisions. In this case, we proposed multi-time scale optimization

through MDP-based solutions.

Next for the case of distributed intelligence, we propose novel distributed learning

frameworks with the support of joint T-NTN and edge computing facilities. We pro-

pose an FL-based solution for solving the data offloading problem in VEC systems.

In this case, we take into account the limited vehicular resources and propose an

optimized framework for FL and offloading processes. In particular, we proposed

a joint optimization strategy for the efficient implementation of FL and offload-

ing processes with limited vehicular resources through proper resource allocations.

Next, with the support of a joint air-ground network, we proposed a distributed FL

solution for enabling the intelligent vehicular system. In this work, we aimed to

Chapter VII. Conclusion 311

utilize the diverse nature of edge computing resources from different edge layers to

enable an efficient FL solution for vehicular problems. In particular, we distribute

the FL process over different edge layers according to the vehicular user’s demands.

Next, we formed an optimization problem for minimizing the FL process cost in

terms of latency, energy, and performance penalty and solved it through a proper

user-server allocation. We proposed MDP-based solutions for determining efficient

server-selection policies based on the vehicular user’s local environments.

To conclude, this dissertation highlights the key challenges faced by future IoV

users in terms of distributed data processing with single/multi-service demands and

edge intelligence. Several novel solutions with the support of joint T-NTN, edge

computing, and distributed ML technologies are proposed, for different vehicular

scenarios.

—————————————————

Chapter VII. Conclusion 312

Scope for Future Work

The considered vehicular scenarios, corresponding network architecture, considered

problems and proposed solutions can be evolved further in the future. For the

case of distributed data processing with single/multi-service vehicular scenarios,

the solutions can be evolved towards scenarios with different task dependencies.

In a considered scenario, the vehicular users have a single processing task. This

approach can evolve towards vehicular application demands with several processing

tasks having interdependencies. In the future, it will be interesting to analyze such

complex offloading cases with ML-related solutions. A multi-level data offloading

scenario where user data can be processed with multiple high-level partitions can

also be another future direction for a considered vehicular data processing problem.

For the case of distributed edge intelligence solutions in vehicular settings, the con-

sidered scenarios can be further evolved towards advanced distributed learning solu-

tions with novel solutions. In recent times different learning tools such as split learn-

ing, transfer learning, etc have gained popularity. Integrating such tools with dis-

tributed learning solutions such as FL over resource-constrained vehicular networks

can be an interesting future direction to be considered. Next, network socialization is

another key trend that has evolved through the development of 5G systems. How to

evolve the distributed learning solutions with the support of network softwarization

techniques such as network slicing, software-defined networks, Network function vir-

tualization, etc is still an open problem. The proposed distributed learning solutions

can be evolved with the support of such network softwarization-related solutions to

address the growing demand for intelligent solutions in vehicular networks.

References

[1] Walid Saad, Mehdi Bennis, and Mingzhe Chen. A vision of 6g wireless systems:

Applications, trends, technologies, and open research problems. IEEE network,

34(3):134–142, 2019.

[2] Cheng-Xiang Wang, Xiaohu You, Xiqi Gao, Xiuming Zhu, Zixin Li, Chuan

Zhang, Haiming Wang, Yongming Huang, Yunfei Chen, Harald Haas, et al.

On the road to 6g: Visions, requirements, key technologies and testbeds. IEEE

Communications Surveys & Tutorials, 2023.

[3] Haibo Zhou, Wenchao Xu, Jiacheng Chen, and Wei Wang. Evolutionary v2x

technologies toward the internet of vehicles: Challenges and opportunities.

Proceedings of the IEEE, 108(2):308–323, 2020.

[4] Ahmad Hammoud, Hani Sami, Azzam Mourad, Hadi Otrok, Rabeb Mizouni,

and Jamal Bentahar. Ai, blockchain, and vehicular edge computing for smart

and secure iov: Challenges and directions. IEEE Internet of Things Magazine,

3(2):68–73, 2020.

[5] Marco Giordani and Michele Zorzi. Non-terrestrial networks in the 6g era:

Challenges and opportunities. IEEE Network, 35(2):244–251, 2020.

313

References 314

[6] Swapnil Sadashiv Shinde and Daniele Tarchi. Towards a novel air–ground

intelligent platform for vehicular networks: Technologies, scenarios, and chal-

lenges. Smart Cities, 4(4):1469–1495, 2021.

[7] Ke Zhang, Yuming Mao, Supeng Leng, Yejun He, and Yan Zhang. Mobile-

edge computing for vehicular networks: A promising network paradigm with

predictive off-loading. 12(2):36–44, June 2017.

[8] Jun Zhang and Khaled B. Letaief. Mobile edge intelligence and computing

for the Internet of Vehicles. 108(2):246–261, February 2020. doi: 10.1109/

JPROC.2019.2947490.

[9] Lujie Tang, Bing Tang, Li Zhang, Feiyan Guo, and Haiwu He. Joint optimiza-

tion of network selection and task offloading for vehicular edge computing.

Journal of Cloud Computing, 10, 2021. Art. no. 23.

[10] Chao Yang, Yi Liu, Xin Chen, Weifeng Zhong, and Shengli Xie. Efficient

mobility-aware task offloading for vehicular edge computing networks. IEEE

Access, 7:26652–26664, 2019.

[11] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,

Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading for

edge-computing-enabled software-defined iov. 7(8):7097–7111, 2020. doi: 10.

1109/JIOT.2020.2982292.

[12] Arash Bozorgchenani, Setareh Maghsudi, Daniele Tarchi, and Ekram Hossain.

Computation offloading in heterogeneous vehicular edge networks: On-line

and off-policy bandit solutions. arXiv preprint arXiv:2008.06302, 2020.

References 315

[13] Zhenyu Zhou, Pengju Liu, Zheng Chang, Chen Xu, and Yan Zhang. Energy-

efficient workload offloading and power control in vehicular edge comput-

ing. In 2018 IEEE Wireless Communications and Networking Conference

Workshops (WCNCW), pages 191–196, Barcelona, Spain, April 2018. doi:

10.1109/WCNCW.2018.8368975.

[14] Syed Adeel Ali Shah, Ejaz Ahmed, Muhammad Imran, and Sherali Zeadally.

5g for vehicular communications. IEEE Communications Magazine, 56(1):

111–117, 2018. doi: 10.1109/MCOM.2018.1700467.

[15] Juan Contreras-Castillo, Sherali Zeadally, and Juan Antonio Guerrero-Ibañez.

Internet of vehicles: Architecture, protocols, and security. IEEE Internet of

Things Journal, 5(5):3701–3709, 2018. doi: 10.1109/JIOT.2017.2690902.

[16] Surbhi Sharma and Baijnath Kaushik. A survey on internet of vehicles:

Applications, security issues & solutions. Vehicular Communications, 20:

100182:1–100182:46, 2019. ISSN 2214-2096. doi: 10.1016/j.vehcom.2019.

100182. URL https://www.sciencedirect.com/science/article/pii/

S2214209619302293.

[17] Sarah Ali Siddiqui, Adnan Mahmood, Quan Z. Sheng, Hajime Suzuki, and Wei

Ni. A survey of trust management in the internet of vehicles. Electronics, 10

(18):2223:1–2223:27, 2021. ISSN 2079-9292. doi: 10.3390/electronics10182223.

URL https://www.mdpi.com/2079-9292/10/18/2223.

[18] Luca Cesarano, Andrea Croce, Leandro do C. Martins, Daniele Tarchi, and

Angel A. Juan. A real-time energy-saving mechanism in internet of vehicles

systems. IEEE Access, 2021. doi: 10.1109/ACCESS.2021.3130125. Early

Access.

https://www.sciencedirect.com/science/article/pii/S2214209619302293
https://www.sciencedirect.com/science/article/pii/S2214209619302293
https://www.mdpi.com/2079-9292/10/18/2223

References 316

[19] Junhui Zhao, Qiuping Li, Yi Gong, and Ke Zhang. Computation offloading

and resource allocation for cloud assisted mobile edge computing in vehicular

networks. IEEE Transactions on Vehicular Technology, 68(8):7944–7956, 2019.

doi: 10.1109/TVT.2019.2917890.

[20] Jun Wang, Daquan Feng, Shengli Zhang, Jianhua Tang, and Tony Q. S.

Quek. Computation offloading for mobile edge computing enabled vehicu-

lar networks. IEEE Access, 7:62624–62632, 2019. doi: 10.1109/ACCESS.2019.

2915959.

[21] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Vehicular

edge computing and networking: A survey. Mobile Networks and Applications,

26(3):1145–1168, 2021. doi: 10.1007/s11036-020-01624-1.

[22] Junfei Qiu, David Grace, Guoru Ding, Muhammad D Zakaria, and Qihui Wu.

Air-ground heterogeneous networks for 5G and beyond via integrating high

and low altitude platforms. 26(6):140–148, December 2019.

[23] Federica Rinaldi, Helka-Liina Maattanen, Johan Torsner, Sara Pizzi, Sergey

Andreev, Antonio Iera, Yevgeni Koucheryavy, and Giuseppe Araniti. Non-

terrestrial networks in 5g & beyond: A survey. IEEE Access, 8:165178–165200,

2020. doi: 10.1109/ACCESS.2020.3022981.

[24] Renchao Xie, Qinqin Tang, Qiuning Wang, Xu Liu, F. Richard Yu, and Tao

Huang. Satellite-terrestrial integrated edge computing networks: Architecture,

challenges, and open issues. IEEE Network, 34(3):224–231, 2020. doi: 10.1109/

MNET.011.1900369.

[25] Fuhui Zhou, Rose Qingyang Hu, Zan Li, and Yuhao Wang. Mobile edge com-

puting in unmanned aerial vehicle networks. IEEE Wireless Communications,

27(1):140–146, 2020. doi: 10.1109/MWC.001.1800594.

References 317

[26] Zhenyu Zhou, Junhao Feng, Lu Tan, Yejun He, and Jie Gong. An air-ground

integration approach for mobile edge computing in iot. IEEE Communications

Magazine, 56(8):40–47, 2018. doi: 10.1109/MCOM.2018.1701111.

[27] Hasan Ali Khattak, Haleem Farman, Bilal Jan, and Ikram Ud Din. Toward

integrating vehicular clouds with iot for smart city services. IEEE Network,

33(2):65–71, 2019. doi: 10.1109/MNET.2019.1800236.

[28] Samad Ali, Walid Saad, Nandana Rajatheva, Kapseok Chang, Daniel Stein-

bach, Benjamin Sliwa, Christian Wietfeld, Kai Mei, Hamid Shiri, Hans-Jürgen

Zepernick, Thi My Chinh Chu, Ijaz Ahmad, Jyrki Huusko, Jaakko Suutala,

Shubhangi Bhadauria, Vimal Bhatia, Rangeet Mitra, Saidhiraj Amuru, Robert

Abbas, Baohua Shao, Michele Capobianco, Guanghui Yu, Maelick Claes,

Teemu Karvonen, Mingzhe Chen, Maksym Girnyk, and Hassan Malik. 6g

white paper on machine learning in wireless communication networks, 2020.

[29] Yaohua Sun, Mugen Peng, Yangcheng Zhou, Yuzhe Huang, and Shiwen Mao.

Application of machine learning in wireless networks: Key techniques and

open issues. IEEE Communications Surveys & Tutorials, 21(4):3072–3108,

2019. doi: 10.1109/COMST.2019.2924243.

[30] Fengxiao Tang, Yuichi Kawamoto, Nei Kato, and Jiajia Liu. Future intelli-

gent and secure vehicular network toward 6g: Machine-learning approaches.

Proceedings of the IEEE, 108(2):292–307, 2020. doi: 10.1109/JPROC.2019.

2954595.

[31] Nei Kato, Bomin Mao, Fengxiao Tang, Yuichi Kawamoto, and Jiajia Liu. Ten

challenges in advancing machine learning technologies toward 6g. IEEE Wire-

less Communications, 27(3):96–103, 2020. doi: 10.1109/MWC.001.1900476.

References 318

[32] Zhaoyang Du, Celimuge Wu, Tsutomu Yoshinaga, Kok-Lim Alvin Yau,

Yusheng Ji, and Jie Li. Federated learning for vehicular internet of things:

Recent advances and open issues. IEEE Open J. Comp. Soc., 1:45–61, 2020.

[33] Dongdong Ye, Rong Yu, Miao Pan, and Zhu Han. Federated learning in

vehicular edge computing: A selective model aggregation approach. 8:23920–

23935, 2020.

[34] Ahmet M Elbir, Burak Soner, and Sinem Coleri. Federated learning in vehic-

ular networks. arXiv:2006.01412, 2020.

[35] Fengxiao Tang, Bomin Mao, Nei Kato, and Guan Gui. Comprehensive survey

on machine learning in vehicular network: Technology, applications and chal-

lenges. IEEE Communications Surveys & Tutorials, 23(3):2027–2057, 2021.

doi: 10.1109/COMST.2021.3089688.

[36] Nelson Cardona, Estefańıa Coronado, Steven Latré, Roberto Riggio, and Jo-

hann M. Marquez-Barja. Software-defined vehicular networking: Opportu-

nities and challenges. IEEE Access, 8:219971–219995, 2020. doi: 10.1109/

ACCESS.2020.3042717.

[37] Kai Wang, Hao Yin, Wei Quan, and Geyong Min. Enabling collaborative

edge computing for software defined vehicular networks. IEEE Network, 32

(5):112–117, 2018. doi: 10.1109/MNET.2018.1700364.

[38] Edgesat - edge network computing capabilities for satellite remote terminals.

URL https://artes.esa.int/projects/edgesat.

[39] Satis5 - demonstrator for satellite-terrestrial integration in the 5g context.

URL https://artes.esa.int/projects/satis5-0.

https://artes.esa.int/projects/edgesat
https://artes.esa.int/projects/satis5-0

References 319

[40] Expanse - leveraging big data concepts in future satcom networks. URL https:

//artes.esa.int/projects/expanse.

[41] 3gpp - release 17. URL https://www.3gpp.org/release-17.

[42] Rahman Imadur, Razavi Sara, Modarres, Liberg Olof, Hoymann Christian,

Wiemann Henning, Tidestav Claes, Schliwa-Bertling Paul, Persson Patrik,

and Gerstenberger Dirk. 5g evolution toward 5g advanced: An overview of

3gpp releases 17 and 18. Ericsson Technology Review, 2021. https://www.

ericsson.com/en/reports-and-papers/ericsson-technology-review/

articles/5g-evolution-toward-5g-advanced.

[43] Ning Zhang, Shan Zhang, Peng Yang, Omar Alhussein, Weihua Zhuang, and

Xuemin Sherman Shen. Software defined space-air-ground integrated vehicular

networks: Challenges and solutions. IEEE Communications Magazine, 55(7):

101–109, 2017. doi: 10.1109/MCOM.2017.1601156.

[44] Zhisheng Niu, Xuemin S. Shen, Qinyu Zhang, and Yuliang Tang. Space-air-

ground integrated vehicular network for connected and automated vehicles:

Challenges and solutions. Intelligent and Converged Networks, 1(2):142–169,

2020. doi: 10.23919/ICN.2020.0009.

[45] Changfeng Ding, Jun-Bo Wang, Hua Zhang, Min Lin, and Geoffrey Ye Li.

Joint optimization of transmission and computation resources for satellite and

high altitude platform assisted edge computing. IEEE Transactions on Wire-

less Communications, 2021. doi: 10.1109/TWC.2021.3103764. Early Access.

[46] Jinna Hu, Chen Chen, Lin Cai, Mohammad R. Khosravi, Qingqi Pei, and

Shaohua Wan. UAV-assisted vehicular edge computing for the 6G internet

of vehicles: Architecture, intelligence, and challenges. IEEE Comm. Stand.

Mag., 5(2):12–18, 2021. doi: 10.1109/MCOMSTD.001.2000017.

https://artes.esa.int/projects/expanse
https://artes.esa.int/projects/expanse
https://www.3gpp.org/release-17
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-evolution-toward-5g-advanced
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-evolution-toward-5g-advanced
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-evolution-toward-5g-advanced

References 320

[47] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and

Hannu Flinck. Network slicing and softwarization: A survey on principles,

enabling technologies, and solutions. IEEE Communications Surveys & Tuto-

rials, 20(3):2429–2453, 2018. doi: 10.1109/COMST.2018.2815638.

[48] Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, and Min Huang. A comprehen-

sive survey of network function virtualization. Computer Networks, 133:212–

262, 2018. ISSN 1389-1286. doi: 10.1016/j.comnet.2018.01.021. URL https:

//www.sciencedirect.com/science/article/pii/S1389128618300306.

[49] Othman S. Al-Heety, Zahriladha Zakaria, Mahamod Ismail, Mohammed Mud-

hafar Shakir, Sameer Alani, and Hussein Alsariera. A comprehensive sur-

vey: Benefits, services, recent works, challenges, security, and use cases for

sdn-vanet. IEEE Access, 8:91028–91047, 2020. doi: 10.1109/ACCESS.2020.

2992580.

[50] Ousmane Sadio, Ibrahima Ngom, and Claude Lishou. Design and prototyping

of a software defined vehicular networking. IEEE Transactions on Vehicular

Technology, 69(1):842–850, 2020. doi: 10.1109/TVT.2019.2950426.

[51] Xiaohu Ge, Zipeng Li, and Shikuan Li. 5g software defined vehicular networks.

IEEE Communications Magazine, 55(7):87–93, 2017. doi: 10.1109/MCOM.

2017.1601144.

[52] Shiva Raj Pokhrel. Software defined internet of vehicles for automation and

orchestration. IEEE Transactions on Intelligent Transportation Systems, 22

(6):3890–3899, 2021. doi: 10.1109/TITS.2021.3077363.

https://www.sciencedirect.com/science/article/pii/S1389128618300306
https://www.sciencedirect.com/science/article/pii/S1389128618300306

References 321

[53] Adnan Mahmood, Wei Emma Zhang, and Quan Z. Sheng. Software-defined

heterogeneous vehicular networking: The architectural design and open chal-

lenges. Future Internet, 11(3):70:1–70:17, 2019. ISSN 1999-5903. doi:

10.3390/fi11030070. URL https://www.mdpi.com/1999-5903/11/3/70.

[54] Claudia Campolo, Antonella Molinaro, Antonio Iera, and Francesco

Menichella. 5g network slicing for vehicle-to-everything services. IEEE Wire-

less Communications, 24(6):38–45, 2017. doi: 10.1109/MWC.2017.1600408.

[55] Jie Mei, Xianbin Wang, and Kan Zheng. Intelligent network slicing for v2x

services toward 5g. IEEE Network, 33(6):196–204, 2019. doi: 10.1109/MNET.

001.1800528.

[56] Arash Bozorgchenani, Farshad Mashhadi, Daniele Tarchi, and Sergio A. Sali-

nas Monroy. Multi-objective computation sharing in energy and delay con-

strained mobile edge computing environments. IEEE Transactions on Mobile

Computing, 20(10):2992–3005, 2021. doi: 10.1109/TMC.2020.2994232.

[57] Jiao Zhang, Xiping Hu, Zhaolong Ning, Edith C.-H. Ngai, Li Zhou, Jibo Wei,

Jun Cheng, Bin Hu, and Victor C. M. Leung. Joint resource allocation for

latency-sensitive services over mobile edge computing networks with caching.

IEEE Internet of Things Journal, 6(3):4283–4294, 2019. doi: 10.1109/JIOT.

2018.2875917.

[58] Ivana Kovacevic, Erkki Harjula, Savo Glisic, Beatriz Lorenzo, and Mika Yliant-

tila. Cloud and edge computation offloading for latency limited services. IEEE

Access, 9:55764–55776, 2021. doi: 10.1109/ACCESS.2021.3071848.

[59] Arash Bozorgchenani, Setareh Maghsudi, Daniele Tarchi, and Ekram Hossain.

Computation offloading in heterogeneous vehicular edge networks: On-line

https://www.mdpi.com/1999-5903/11/3/70

References 322

and off-policy bandit solutions. 2021. doi: 10.1109/TMC.2021.3082927. Early

Access.

[60] Baofeng Ji, Xueru Zhang, Shahid Mumtaz, Congzheng Han, Chunguo Li, Hong

Wen, and Dan Wang. Survey on the Internet of Vehicles: Network architec-

tures and applications. IEEE Comm. Stand. Mag., 4(1):34–41, March 2020.

doi: 10.1109/MCOMSTD.001.1900053.

[61] Mashael Khayyat, Ibrahim A. Elgendy, Ammar Muthanna, Abdullah S. Al-

shahrani, Soltan Alharbi, and Andrey Koucheryavy. Advanced deep learning-

based computational offloading for multilevel vehicular edge-cloud computing

networks. IEEE Access, 8:137052–137062, 2020. doi: 10.1109/ACCESS.2020.

3011705.

[62] H. Zhou, W. Xu, J. Chen, and W. Wang. Evolutionary V2X technologies

toward the internet of vehicles: Challenges and opportunities. Proceedings of

the IEEE, 108(2):308–323, 2020. doi: 10.1109/JPROC.2019.2961937.

[63] Leandro do C. Martins, Daniele Tarchi, Angel A. Juan, and Alessandro

Fusco. Agile optimization for a real-time facility location problem in inter-

net of vehicles networks. Networks, 2021. doi: 10.1002/net.22067. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22067. Early

View.

[64] Chia-Hung Lin, Yu-Chien Lin, Yen-Jung Wu, Wei-Ho Chung, and Ta-Sung

Lee. A survey on deep learning-based vehicular communication applications.

Journal of Signal Processing Systems, 93(4):369–388, 2021. doi: 10.1007/

s11265-020-01587-2.

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22067

References 323

[65] Jason Posner, Lewis Tseng, Moayad Aloqaily, and Yaser Jararweh. Federated

learning in vehicular networks: Opportunities and solutions. IEEE Network,

35(2):152–159, 2021. doi: 10.1109/MNET.011.2000430.

[66] Steve Chukwuebuka Arum, David Grace, and Paul Daniel Mitchell. A review

of wireless communication using high-altitude platforms for extended coverage

and capacity. Computer Communications, 157:232–256, 2020. ISSN 0140-3664.

doi: 10.1016/j.comcom.2020.04.020. URL https://www.sciencedirect.

com/science/article/pii/S0140366419313143.

[67] ITU-R. Methodology for determining the power level for high altitude platform

stations ground terminals to facilitate sharing with space station receivers in

the bands 47.2-47.5 ghz and 47.9-48.2 ghz. Recommendation SF.1843, ITU-R,

2007.

[68] Swapnil Sadashiv Shinde and Daniele Tarchi. A markov decision process solu-

tion for energy-saving network selection and computation offloading in vehic-

ular networks. 2023. Early access, doi:10.1109/TVT.2023.3264504.

[69] Swapnil Sadashiv Shinde and Daniele Tarchi. Collaborative reinforcement

learning for multi-service Internet of Vehicles. 10(3):2589–2602, February 2023.

doi: 10.1109/JIOT.2022.3213993.

[70] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie

Young. Mobile edge computing—a key technology towards 5G. White Pa-

per 11, ETSI, September 2015. URL https://www.etsi.org/images/files/

etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf.

[71] Alisson Barbosa De Souza, Paulo A. L. Rego, Tiago Carneiro, Jardel Das C.

Rodrigues, Pedro Pedrosa Rebouças Filho, José Neuman De Souza, Vinay

https://www.sciencedirect.com/science/article/pii/S0140366419313143
https://www.sciencedirect.com/science/article/pii/S0140366419313143
https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf

References 324

Chamola, Victor Hugo C. De Albuquerque, and Biplab Sikdar. Computa-

tion offloading for vehicular environments: A survey. IEEE Access, 8:198214–

198243, 2020. doi: 10.1109/ACCESS.2020.3033828.

[72] Mushu Li, Jie Gao, Lian Zhao, and Xuemin Shen. Deep reinforcement learn-

ing for collaborative edge computing in vehicular networks. 6(4):1122–1135,

December 2020. doi: 10.1109/TCCN.2020.3003036.

[73] Shupeng Wang, Jun Li, Guangjun Wu, Handi Chen, and Shihui Sun. Joint

optimization of task offloading and resource allocation based on differential

privacy in vehicular edge computing. 9(1):109–119, February 2022. doi: 10.

1109/TCSS.2021.3074949.

[74] Huizi Xiao, Jun Zhao, Qingqi Pei, Jie Feng, Lei Liu, and Weisong Shi. Ve-

hicle selection and resource optimization for federated learning in vehicular

edge computing. 23(8):11073–11087, August 2022. doi: 10.1109/TITS.2021.

3099597.

[75] Rahul Yadav, Weizhe Zhang, Omprakash Kaiwartya, Houbing Song, and Shui

Yu. Energy-latency tradeoff for dynamic computation offloading in vehicular

fog computing. 69(12):14198–14211, December 2020. doi: 10.1109/TVT.2020.

3040596.

[76] Swapnil Sadashiv Shinde, Arash Bozorgchenani, Daniele Tarchi, and Qiang

Ni. On the design of federated learning in latency and energy constrained

computation offloading operations in vehicular edge computing systems. 71

(2):2041–2057, February 2022.

[77] Swapnil Sadashiv Shinde and Daniele Tarchi. Collaborative reinforcement

learning for multi-service internet of vehicles. 10(3):2589–2602, February 2023.

doi: 10.1109/JIOT.2022.3213993.

References 325

[78] Swapnil Sadashiv Shinde and Daniele Tarchi. Network selection and compu-

tation offloading in non-terrestrial network edge computing environments for

vehicular applications. In 2022 11th Advanced Satellite Multimedia Systems

Conference and the 17th Signal Processing for Space Communications Work-

shop (ASMS/SPSC), Graz, Austria, September 2022. doi: 10.1109/ASMS/

SPSC55670.2022.9914757.

[79] Yujiong Liu, Shangguang Wang, Qinglin Zhao, Shiyu Du, Ao Zhou, Xiao Ma,

and Fangchun Yang. Dependency-aware task scheduling in vehicular edge

computing. 7(6):4961–4971, June 2020. doi: 10.1109/JIOT.2020.2972041.

[80] Arash Bozorgchenani, Daniele Tarchi, and Giovanni Emanuele Corazza. Mo-

bile edge computing partial offloading techniques for mobile urban scenarios. In

2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,

UAE, December 2018. doi: 10.1109/GLOCOM.2018.8647240.

[81] Yang Liu, Jianshan Zhou, Daxin Tian, Zhengguo Sheng, Xuting Duan, Guix-

ian Qu, and Victor C. M. Leung. Joint communication and computation

resource scheduling of a UAV-assisted mobile edge computing system for

platooning vehicles. 23(7):8435–8450, July 2022. doi: 10.1109/TITS.2021.

3082539.

[82] Mohammad Nekoui and Hossein Pishro-nik. Fundamental tradeoffs in ve-

hicular ad hoc networks. In Proceedings of the Seventh ACM International

Workshop on VehiculAr InterNETworking, page 91–96, Chicago, Illinois, USA,

September 2010. ISBN 9781450301459.

[83] Kai Xiong, Supeng Leng, Xiaosha Chen, Chongwen Huang, Chau Yuen, and

Yong Liang Guan. Communication and computing resource optimization for

References 326

connected autonomous driving. 69(11):12652–12663, 2020. doi: 10.1109/TVT.

2020.3029109.

[84] Xiaopeng Mo and Jie Xu. Energy-efficient federated edge learning with joint

communication and computation design. Journal of Communications and In-

formation Networks, 6(2):110, June 2021. doi: j.issn.2096-1081.2021.02.02.

[85] Jie Zhang, Hongzhi Guo, Jiajia Liu, and Yanning Zhang. Task offloading in

vehicular edge computing networks: A load-balancing solution. 69(2):2092–

2104, February 2020. doi: 10.1109/TVT.2019.2959410.

[86] Arash Bozorgchenani, Setareh Maghsudi, Daniele Tarchi, and Ekram Hossain.

Computation offloading in heterogeneous vehicular edge networks: On-line

and off-policy bandit solutions. 21(12):4233–4248, December 2022. doi: 10.

1109/TMC.2021.3082927.

[87] Luca Cesarano, Andrea Croce, Leandro Do Carmo Martins, Daniele Tarchi,

and Angel A. Juan. A real-time energy-saving mechanism in Internet of Vehi-

cles systems. 9:157842–157858, 2021. doi: 10.1109/ACCESS.2021.3130125.

[88] Guisong Yang, Ling Hou, Xingyu He, Daojing He, Sammy Chan, and Mohsen

Guizani. Offloading time optimization via markov decision process in mobile-

edge computing. 8(4):2483–2493, February 2021. doi: 10.1109/JIOT.2020.

3033285.

[89] Xuefei Zhang, Jian Zhang, Zhitong Liu, Qimei Cui, Xiaofeng Tao, and Shuo

Wang. MDP-based task offloading for vehicular edge computing under certain

and uncertain transition probabilities. 69(3):3296–3309, March 2020. doi:

10.1109/TVT.2020.2965159.

References 327

[90] Nikhil Balaji, Stefan Kiefer, Petr Novotnỳ, Guillermo A Pérez, and Mahsa

Shirmohammadi. On the complexity of value iteration. arXiv:1807.04920,

2018. doi:10.48550/arXiv.1807.04920.

[91] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Joel JPC Rodrigues, and Feng

Xia. Deep reinforcement learning for vehicular edge computing: An intelligent

offloading system. ACM Transactions on Intelligent Systems and Technology

(TIST), 10(6):1–24, November 2019. Art. no. 60.

[92] Yueyue Dai, Du Xu, Sabita Maharjan, and Yan Zhang. Joint load balancing

and offloading in vehicular edge computing and networks. IEEE Internet of

Things Journal, 6(3):4377–4387, 2018.

[93] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,

Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z

Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-

agent learning. arXiv:1706.05296, 2017. doi:10.48550/arXiv.1706.05296.

[94] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory

Farquhar, Jakob N Foerster, and Shimon Whiteson. Monotonic value function

factorisation for deep multi-agent reinforcement learning. Journal of Machine

Learning Research, 21:1–51, 2020. Art. no. 178.

[95] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

[96] Yi Liu, Huimin Yu, Shengli Xie, and Yan Zhang. Deep reinforcement learning

for offloading and resource allocation in vehicle edge computing and networks.

68(11):11158–11168, November 2019.

References 328

[97] Hongzhi Guo, Jiajia Liu, Ju Ren, and Yanning Zhang. Intelligent task offload-

ing in vehicular edge computing networks. IEEE Wireless Communications,

27(4):126–132, 2020. doi: 10.1109/MWC.001.1900489.

[98] Xuefei Zhang, Jian Zhang, Zhitong Liu, Qimei Cui, Xiaofeng Tao, and Shuo

Wang. MDP-based task offloading for vehicular edge computing under cer-

tain and uncertain transition probabilities. IEEE Transactions on Vehicular

Technology, 69(3):3296–3309, 2020. doi: 10.1109/TVT.2020.2965159.

[99] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-

learning provably efficient? Advances in neural information processing sys-

tems, 31, 2018.

[100] Helin Yang, Zehui Xiong, Jun Zhao, Dusit Niyato, Liang Xiao, and Qingqing

Wu. Deep reinforcement learning-based intelligent reflecting surface for secure

wireless communications. IEEE Transactions on Wireless Communications,

20(1):375–388, 2021. doi: 10.1109/TWC.2020.3024860.

[101] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Lei Guo, Joel J. P. C. Rodrigues,

Xiangjie Kong, Jun Huang, and Ricky Y. K. Kwok. Deep reinforcement learn-

ing for intelligent internet of vehicles: An energy-efficient computational of-

floading scheme. IEEE Transactions on Cognitive Communications and Net-

working, 5(4):1060–1072, 2019. doi: 10.1109/TCCN.2019.2930521.

[102] Marco Giordani and Michele Zorzi. Non-terrestrial networks in the 6G era:

Challenges and opportunities. 35(2):244–251, 2021. doi: 10.1109/MNET.011.

2000493.

[103] Alessandro Traspadini, Marco Giordani, and Michele Zorzi. UAV/HAP-

assisted vehicular edge computing in 6G: Where and what to offload? In 2022

References 329

Joint European Conference on Networks and Communications & 6G Sum-

mit (EuCNC/6G Summit), pages 178–183, Grenoble, France, June 2022. doi:

10.1109/EuCNC/6GSummit54941.2022.9815734.

[104] Jianan Sun, Qing Gu, Tao Zheng, Ping Dong, Alvin Valera, and Yajuan Qin.

Joint optimization of computation offloading and task scheduling in vehicular

edge computing networks. 8:10466–10477, 2020. doi: 10.1109/ACCESS.2020.

2965620.

[105] Huizi Xiao, Jun Zhao, Qingqi Pei, Jie Feng, Lei Liu, and Weisong Shi. Ve-

hicle selection and resource optimization for federated learning in vehicular

edge computing. 2021. doi: 10.1109/TITS.2021.3099597. early access. doi:

10.1109/TITS.2021.3099597.

[106] Qingqing Tang, Zesong Fei, Bin Li, and Zhu Han. Computation offloading in

LEO satellite networks with hybrid cloud and edge computing. 8(11):9164–

9176, 2021. doi: 10.1109/JIOT.2021.3056569.

[107] Agoston E Eiben and James E Smith. Introduction to evolutionary computing.

Springer, Berlin, Heidelberg, 2 edition, 2015.

[108] Sangwon Hwang, Hanjin Kim, Hoon Lee, and Inkyu Lee. Multi-agent

deep reinforcement learning for distributed resource management in wire-

lessly powered communication networks. 69(11):14055–14060, 2020. doi:

10.1109/TVT.2020.3029609.

[109] Tao Ren, Jianwei Niu, Bin Dai, Xuefeng Liu, Zheyuan Hu, Mingliang Xu, and

Mohsen Guizani. Enabling efficient scheduling in large-scale UAV-assisted

mobile-edge computing via hierarchical reinforcement learning. 9(10):7095–

7109, 2022. doi: 10.1109/JIOT.2021.3071531.

References 330

[110] Shengheng Liu, Chong Zheng, Yongming Huang, and Tony Q. S. Quek. Dis-

tributed reinforcement learning for privacy-preserving dynamic edge caching.

40(3):749–760, 2022. doi: 10.1109/JSAC.2022.3142348.

[111] Xiaohui Gu and Guoan Zhang. Energy-efficient computation offloading for

vehicular edge computing networks. Computer Communications, 166:244–253,

2021.

[112] Arash Bozorgchenani, Daniele Tarchi, and Walter Cerroni. On-demand service

deployment strategies for Fog-as-a-Service scenarios. 25(5):1500–1504, May

2021. doi: 10.1109/LCOMM.2021.3055535.

[113] Le Thanh Tan and Rose Qingyang Hu. Mobility-aware edge caching and

computing in vehicle networks: A deep reinforcement learning. 67(11):10190–

10203, November 2018. doi: 10.1109/TVT.2018.2867191.

[114] Swapnil Sadashiv Shinde and Daniele Tarchi. Joint air-ground distributed

federated learning for intelligent transportation systems. 2023. Early access,

doi:10.1109/TITS.2023.3265416.

[115] Tao Ouyang, Zhi Zhou, and Xu Chen. Follow me at the edge: Mobility-

aware dynamic service placement for mobile edge computing. 36(10):2333–

2345, October 2018. doi: 10.1109/JSAC.2018.2869954.

[116] Sun Mao, Shunfan He, and Jinsong Wu. Joint UAV position optimization and

resource scheduling in space-air-ground integrated networks with mixed cloud-

edge computing. 15(3):3992–4002, September 2021. doi: 10.1109/JSYST.2020.

3041706.

References 331

[117] Hyeong Soo Chang, P.J. Fard, S.I. Marcus, and M. Shayman. Multitime scale

markov decision processes. 48(6):976–987, June 2003. doi: 10.1109/TAC.2003.

812782.

[118] Zhenyu Zhou, Junhao Feng, Zheng Chang, and Xuemin Shen. Energy-efficient

edge computing service provisioning for vehicular networks: A consensus

ADMM approach. 68(5):5087–5099, May 2019.

[119] Shichao Li, Siyu Lin, Lin Cai, Wenjie Li, and Gang Zhu. Joint resource

allocation and computation offloading with time-varying fading channel in

vehicular edge computing. 69(3):3384–3398, March 2020.

[120] Qiqi Ren, Omid Abbasi, Gunes Karabulut Kurt, Halim Yanikomeroglu,

and Jian Chen. Caching and computation offloading in high altitude

platform station (HAPS) assisted intelligent transportation systems, 2021.

arXiv:2106.14928.

[121] Arash Bozorgchenani, Farshad Mashhadi, Daniele Tarchi, and Sergio Salinas.

Multi-objective computation sharing in energy and delay constrained mobile

edge computing environments. 20(10):2992–3005, October 2021. doi: 10.1109/

TMC.2020.2994232.

[122] Mingzhe Chen, Deniz Gündüz, Kaibin Huang, Walid Saad, Mehdi Bennis,

Aneta Vulgarakis Feljan, and H. Vincent Poor. Distributed learning in wireless

networks: Recent progress and future challenges. arXiv:2104.02151, 2021.

[123] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Moham-

mad Shikh-Bahaei. Energy efficient federated learning over wireless commu-

nication networks. 20(3):1935–1949, March 2021. doi: 10.1109/TWC.2020.

3037554.

References 332

[124] Canh T. Dinh, Nguyen H. Tran, Minh N. H. Nguyen, Choong Seon Hong,

Wei Bao, Albert Y. Zomaya, and Vincent Gramoli. Federated learning over

wireless networks: Convergence analysis and resource allocation. 29(1):398–

409, February 2021. doi: 10.1109/TNET.2020.3035770.

[125] Hongda Wu and Ping Wang. Fast-convergent federated learning with adaptive

weighting. 2021. doi: 10.1109/TCCN.2021.3084406. Early Access.

[126] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H. Vincent Poor,

and Shuguang Cui. A joint learning and communications framework for fed-

erated learning over wireless networks. 20(1):269–283, January 2021. doi:

10.1109/TWC.2020.3024629.

[127] N.C. Sagias, G.S. Tombras, and G.K. Karagiannidis. New results for the

shannon channel capacity in generalized fading channels. 9(2):97–99, February

2005. doi: 10.1109/LCOMM.2005.02031.

[128] Gunes Karabulut Kurt, Mohammad G Khoshkholgh, Safwan Alfat-

tani, Ahmed Ibrahim, Tasneem SJ Darwish, Md Sahabul Alam, Halim

Yanikomeroglu, and Abbas Yongacoglu. A vision and framework for the high

altitude platform station (HAPS) networks of the future. 23(2):729–779, 2021.

[129] Wenhan Zhan, Chunbo Luo, Jin Wang, Chao Wang, Geyong Min, Han-

cong Duan, and Qingxin Zhu. Deep-reinforcement-learning-based offloading

scheduling for vehicular edge computing. 7(6):5449–5465, June 2020. doi:

10.1109/JIOT.2020.2978830.

[130] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Hoboken, NJ, USA, 2005.

References 333

[131] Su Liu, Jiong Yu, Xiaoheng Deng, and Shaohua Wan. FedCPF: An efficient-

communication federated learning approach for vehicular edge computing in

6G communication networks. 23(2):1616–1629, February 2022. doi: 10.1109/

TITS.2021.3099368.

[132] Mashael Khayyat, Ibrahim A. Elgendy, Ammar Muthanna, Abdullah S. Al-

shahrani, Soltan Alharbi, and Andrey Koucheryavy. Advanced deep learning-

based computational offloading for multilevel vehicular edge-cloud computing

networks. IEEE Access, 8:137052–137062, 2020. doi: 10.1109/ACCESS.2020.

3011705.

[133] Nancy Lyons and George Lăzăroiu. Addressing the COVID-19 crisis by har-

nessing internet of things sensors and machine learning algorithms in data-

driven smart sustainable cities. Geopolitics, History, and International Rela-

tions, 12(2):65–71, 2020. ISSN 19489145, 23744383.

[134] Agachai Sumalee and Hung Wai Ho. Smarter and more connected: Future

intelligent transportation system. IATSS Research, 42(2):67–71, 2018.

[135] Farshad Mashhadi, Sergio A Salinas Monroy, Arash Bozorgchenani, and

Daniele Tarchi. Optimal auction for delay and energy constrained task of-

floading in mobile edge computing. Computer Networks, 183, 2020. Art. no.

107527.

[136] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping

Wang, Ying-Chang Liang, and Dong In Kim. Applications of deep reinforce-

ment learning in communications and networking: A survey. 21(4):3133–3174,

Fourth quarter 2019.

References 334

[137] Deniz Gündüz, Paul de Kerret, Nicholas D Sidiropoulos, David Gesbert, Chan-

dra R Murthy, and Mihaela van der Schaar. Machine learning in the air. 37

(10):2184–2199, October 2019.

[138] He Fang, Xianbin Wang, and Stefano Tomasin. Machine learning for intelligent

authentication in 5G and beyond wireless networks. 26(5):55–61, October

2019.

[139] Manuel Eugenio Morocho-Cayamcela, Haeyoung Lee, and Wansu Lim. Ma-

chine learning for 5G/B5G mobile and wireless communications: Potential,

limitations, and future directions. 7:137184–137206, 2019.

[140] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies

for improving communication efficiency. In NIPS Workshop on Private Multi-

Party Machine Learning, 2016.

[141] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik.

Federated optimization: Distributed machine learning for on-device intelli-

gence. arXiv preprint arXiv:1610.02527, 2016.

[142] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies

for improving communication efficiency. In NIPS Workshop on Private Multi-

Party Machine Learning, 2016. URL https://arxiv.org/abs/1610.05492.

[143] Xianbin Cao, Peng Yang, Mohamed Alzenad, Xing Xi, Dapeng Wu, and Halim

Yanikomeroglu. Airborne communication networks: A survey. 36(9):1907–

1926, September 2018.

https://arxiv.org/abs/1610.05492

References 335

[144] Yohei Shibata, Noboru Kanazawa, Mitsukuni Konishi, Kenji Hoshino,

Yoshichika Ohta, and Atsushi Nagate. System design of gigabit HAPS mobile

communications. IEEE Access, 8:157995–158007, 2020.

[145] Salman Raza, Wei Liu, Manzoor Ahmed, Muhammad Rizwan Anwar, Muham-

mad Ayzed Mirza, Qibo Sun, and Shangguang Wang. An efficient task offload-

ing scheme in vehicular edge computing. Journal of Cloud Computing, 9:1–14,

2020.

[146] Sihua Wang, Mingzhe Chen, Changchuan Yin, Walid Saad, Choong Seon

Hong, Shuguang Cui, and H. Vincent Poor. Federated learning for task and

resource allocation in wireless high altitude balloon networks. 2021. doi:

10.1109/JIOT.2021.3080078. Early Access.

[147] Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R. Kulkarni, and

H. V. Poor. Update aware device scheduling for federated learning at the

wireless edge. In 2020 IEEE International Symposium on Information Theory

(ISIT), pages 2598–2603, Los Angeles, CA, USA, June 2020. doi: 10.1109/

ISIT44484.2020.9173960.

[148] A. Bozorgchenani, D. Tarchi, and G. E. Corazza. Centralized and distributed

architectures for energy and delay efficient fog network-based edge computing

services. IEEE Transactions on Green Communications and Networking, 3(1):

250–263, 2019. doi: 10.1109/TGCN.2018.2885443.

[149] Hao Ye, Le Liang, Geoffrey Ye Li, JoonBeom Kim, Lu Lu, and May Wu.

Machine learning for vehicular networks: Recent advances and application

examples. 13(2):94–101, June 2018.

[150] Pengju Liu, Junluo Li, and Zhongwei Sun. Matching-based task offloading for

vehicular edge computing. IEEE Access, 7:27628–27640, 2019.

References 336

[151] Kai Xiong, Supeng Leng, Chongwen Huang, Chau Yuen, and Yong Liang

Guan. Intelligent task offloading for heterogeneous v2x communications. IEEE

Transactions on Intelligent Transportation Systems, 22(4):2226–2238, 2020.

[152] Ali Shakarami, Mostafa Ghobaei-Arani, and Ali Shahidinejad. A survey on

the computation offloading approaches in mobile edge computing: A machine

learning-based perspective. Computer Networks, page 107496, 2020.

[153] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis,

and Seong-Lyun Kim. Communication-efficient on-device machine learning:

Federated distillation and augmentation under non-iid private data. CoRR,

abs/1811.11479, 2018. URL http://arxiv.org/abs/1811.11479.

[154] Wugedele Bao, Celimuge Wu, Siri Guleng, Jiefang Zhang, Kok-Lim Alvin Yau,

and Yusheng Ji. Edge computing-based joint client selection and networking

scheme for federated learning in vehicular IoT. China Communications, 18(6):

39–52, June 2021.

[155] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Vehicular

edge computing and networking: A survey. Mobile Networks and Applications,

26:1145–1168, 2021.

[156] Rudzidatul Akmam Dziyauddin, Dusit Niyato, Nguyen Cong Luong, Ahmad

Ariff Aizuddin Mohd Atan, Mohd Azri Mohd Izhar, Marwan Hadri Azmi,

and Salwani Mohd Daud. Computation offloading and content caching and

delivery in vehicular edge network: A survey. Art. no. 108228, 2021.

[157] Zhengxin Yu, Jia Hu, Geyong Min, Zhiwei Zhao, Wang Miao, and M Shamim

Hossain. Mobility-aware proactive edge caching for connected vehicles using

federated learning. 22(8):5341–5351, August 2021. doi: 10.1109/TITS.2020.

3017474.

http://arxiv.org/abs/1811.11479

References 337

[158] Xin Li, Yifan Dang, Mohammad Aazam, Xia Peng, Tefang Chen, and Chun-

yang Chen. Energy-efficient computation offloading in vehicular edge cloud

computing. 8:37632–37644, 2020.

[159] Rahul Yadav, Weizhe Zhang, Omprakash Kaiwartya, Houbing Song, and Shui

Yu. Energy-latency tradeoff for dynamic computation offloading in vehicular

fog computing. 69(12):14198–14211, December 2020.

[160] Shuai Yu, Xiaowen Gong, Qian Shi, Xiaofei Wang, and Xu Chen. EC-SAGINs:

Edge computing-enhanced space-air-ground integrated networks for internet of

vehicles. 2021. doi: 10.1109/JIOT.2021.3052542. Early access.

[161] Chao Sun, Wei Ni, and Xin Wang. Joint computation offloading and trajectory

planning for UAV-assisted edge computing. 20(8):5343–5358, August 2021.

doi: 10.1109/TWC.2021.3067163.

[162] Martin Isaksson and Karl Norrman. Secure federated learning in 5G mobile

networks. In GLOBECOM 2020 - 2020 IEEE Global Communications Confer-

ence, Taipei, Taiwan, December 2020. doi: 10.1109/GLOBECOM42002.2020.

9322479.

[163] Weifeng Gao, Zhiwei Zhao, Geyong Min, Qiang Ni, and Yuhong Jiang. Re-

source allocation for latency-aware federated learning in industrial internet of

things. 17(12):8505–8513, December 2021. doi: 10.1109/TII.2021.3073642.

[164] Zhenjiang Zhang, Wenyu Zhang, and Fan-Hsun Tseng. Satellite mobile edge

computing: Improving qos of high-speed satellite-terrestrial networks using

edge computing techniques. IEEE network, 33(1):70–76, 2019.

[165] Swapnil Sadashiv Shinde, Dania Marabissi, and Daniele Tarchi. A net-

work operator-biased approach for multi-service network function placement

References 338

in a 5g network slicing architecture. Computer Networks, 201(108598):

108598:1–108598:14, 2021. ISSN 1389-1286. doi: 10.1016/j.comnet.2021.

108598. URL https://www.sciencedirect.com/science/article/pii/

S1389128621004989.

[166] Technical Specification Group Services and System Aspects. Study on en-

hancement of support for edge computing in 5g core network (5gc). Technical

Report 23.748 v17.0.0, 3GPP, 2020.

[167] Zaib Ullah, Fadi Al-Turjman, Leonardo Mostarda, and Roberto Gagliardi. Ap-

plications of artificial intelligence and machine learning in smart cities. Com-

puter Communications, 154:313–323, 2020. ISSN 0140-3664. doi: 10.1016/

j.comcom.2020.02.069. URL https://www.sciencedirect.com/science/

article/pii/S0140366419320821.

[168] Latif U. Khan, Ibrar Yaqoob, Nguyen H. Tran, S. M. Ahsan Kazmi, Tri Nguyen

Dang, and Choong Seon Hong. Edge-computing-enabled smart cities: A com-

prehensive survey. IEEE Internet of Things Journal, 7(10):10200–10232, 2020.

doi: 10.1109/JIOT.2020.2987070.

[169] Leonardo Guevara and Fernando Auat Cheein. The role of 5g technologies:

Challenges in smart cities and intelligent transportation systems. Sustainabil-

ity, 12(16):6469, 2020.

[170] Hamid Menouar, Ismail Guvenc, Kemal Akkaya, A Selcuk Uluagac, Abdullah

Kadri, and Adem Tuncer. Uav-enabled intelligent transportation systems for

the smart city: Applications and challenges. IEEE Communications Magazine,

55(3):22–28, 2017.

https://www.sciencedirect.com/science/article/pii/S1389128621004989
https://www.sciencedirect.com/science/article/pii/S1389128621004989
https://www.sciencedirect.com/science/article/pii/S0140366419320821
https://www.sciencedirect.com/science/article/pii/S0140366419320821

References 339

[171] Jingjing Wang, Chunxiao Jiang, Kai Zhang, Tony QS Quek, Yong Ren, and

Lajos Hanzo. Vehicular sensing networks in a smart city: Principles, tech-

nologies and applications. IEEE Wireless Communications, 25(1):122–132,

2017.

[172] Kai Wang, Hao Yin, Wei Quan, and Geyong Min. Enabling collaborative

edge computing for software defined vehicular networks. IEEE Network, 32

(5):112–117, 2018. doi: 10.1109/MNET.2018.1700364.

[173] Ousmane Sadio, Ibrahima Ngom, and Claude Lishou. Design and prototyping

of a software defined vehicular networking. IEEE Transactions on Vehicular

Technology, 69(1):842–850, 2020. doi: 10.1109/TVT.2019.2950426.

[174] Bo Yang, Xuelin Cao, Joshua Bassey, Xiangfang Li, and Lijun Qian. Com-

putation offloading in multi-access edge computing: A multi-task learning ap-

proach. 20(9):2745–2762, September 2021. doi: 10.1109/TMC.2020.2990630.

[175] Bo Yang, Xuelin Cao, Kai Xiong, Chau Yuen, Yong Liang Guan, Supeng

Leng, Lijun Qian, and Zhu Han. Edge intelligence for autonomous driving in

6G wireless system: Design challenges and solutions. 28(2):40–47, April 2021.

doi: 10.1109/MWC.001.2000292.

[176] Jianan Sun, Qing Gu, Tao Zheng, Ping Dong, Alvin Valera, and Yajuan Qin.

Joint optimization of computation offloading and task scheduling in vehicular

edge computing networks. IEEE Access, 8:10466–10477, 2020. doi: 10.1109/

ACCESS.2020.2965620.

[177] Peng Qin, Yang Fu, Guoming Tang, Xiongwen Zhao, and Suiyan Geng. Learn-

ing based energy efficient task offloading for vehicular collaborative edge com-

puting. 71(8):8398–8413, August 2022. doi: 10.1109/TVT.2022.3171344.

References 340

[178] Wenhao Fan, Jie Liu, Mingyu Hua, Fan Wu, and Yuan’an Liu. Joint task

offloading and resource allocation for multi-access edge computing assisted by

parked and moving vehicles. 71(5):5314–5330, May 2022. doi: 10.1109/TVT.

2022.3149937.

[179] M. Nadeem Ahangar, Qasim Z. Ahmed, Fahd A. Khan, and Maryam Hafeez.

A survey of autonomous vehicles: Enabling communication technologies and

challenges. Sensors, 21(3), 2021. ISSN 1424-8220. doi: 10.3390/s21030706.

[180] Adel A Ahmed and Ahmad A Alzahrani. A comprehensive survey on han-

dover management for vehicular ad hoc network based on 5g mobile networks

technology. Transactions on Emerging Telecommunications Technologies, 30

(3):e3546, 2019.

[181] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Xiping Hu, Jiangchuan Liu, Lei

Guo, Bin Hu, Ricky Kwok, and Victor C. M. Leung. Partial computation

offloading and adaptive task scheduling for 5G-enabled vehicular networks. 21

(4):1319–1333, April 2022. doi: 10.1109/TMC.2020.3025116.

[182] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne, Jun

Li, Dusit Niyato, Octavia Dobre, and H. Vincent Poor. 6G Internet of Things:

A comprehensive survey. 9(1):359–383, January 2022. doi: 10.1109/JIOT.

2021.3103320.

[183] Yueyue Dai, Du Xu, Sabita Maharjan, and Yan Zhang. Joint load balancing

and offloading in vehicular edge computing and networks. 6(3):4377–4387,

June 2019. doi: 10.1109/JIOT.2018.2876298.

[184] Yuxuan Sun, Xueying Guo, Jinhui Song, Sheng Zhou, Zhiyuan Jiang, Xin Liu,

and Zhisheng Niu. Adaptive learning-based task offloading for vehicular edge

References 341

computing systems. 68(4):3061–3074, April 2019. doi: 10.1109/TVT.2019.

2895593.

[185] Zhenyu Zhou, Junhao Feng, Zheng Chang, and Xuemin Shen. Energy-

efficient edge computing service provisioning for vehicular networks: A con-

sensus admm approach. 68(5):5087–5099, May 2019. doi: 10.1109/TVT.2019.

2905432.

[186] Xiaojie Wang, Zhaolong Ning, Song Guo, and Lei Wang. Imitation learning

enabled task scheduling for online vehicular edge computing. 21(2):598–611,

February 2022. doi: 10.1109/TMC.2020.3012509.

[187] Yang Liu, Jianshan Zhou, Daxin Tian, Zhengguo Sheng, Xuting Duan, Guix-

ian Qu, and Victor C. M. Leung. Joint communication and computation

resource scheduling of a uav-assisted mobile edge computing system for pla-

tooning vehicles. IEEE Transactions on Intelligent Transportation Systems,

23(7):8435–8450, 2022. doi: 10.1109/TITS.2021.3082539.

[188] Junhui Zhao, Qiuping Li, Yi Gong, and Ke Zhang. Computation offloading

and resource allocation for cloud assisted mobile edge computing in vehicular

networks. IEEE Transactions on Vehicular Technology, 68(8):7944–7956, 2019.

doi: 10.1109/TVT.2019.2917890.

[189] Quyuan Luo, Changle Li, Tom Luan, and Weisong Shi. Minimizing the de-

lay and cost of computation offloading for vehicular edge computing. IEEE

Transactions on Services Computing, pages 1–1, 2021. doi: 10.1109/TSC.2021.

3064579.

[190] Qiang Ye, Weisen Shi, Kaige Qu, Hongli He, Weihua Zhuang, and Xuemin

Shen. Joint RAN slicing and computation offloading for autonomous vehicular

References 342

networks: A learning-assisted hierarchical approach. IEEE Open Journal of

Vehicular Technology, 2:272–288, 2021. doi: 10.1109/OJVT.2021.3089083.

[191] Zhaolong Ning, Kaiyuan Zhang, Xiaojie Wang, Lei Guo, Xiping Hu, Jun

Huang, Bin Hu, and Ricky Y. K. Kwok. Intelligent edge computing in in-

ternet of vehicles: A joint computation offloading and caching solution. 22(4):

2212–2225, April 2021. doi: 10.1109/TITS.2020.2997832.

[192] Shichao Li, Siyu Lin, Lin Cai, Wenjie Li, and Gang Zhu. Joint resource

allocation and computation offloading with time-varying fading channel in

vehicular edge computing. 69(3):3384–3398, March 2020. doi: 10.1109/TVT.

2020.2967882.

[193] Yueyue Dai, Du Xu, Sabita Maharjan, and Yan Zhang. Joint load balancing

and offloading in vehicular edge computing and networks. 6(3):4377–4387,

June 2019. doi: 10.1109/JIOT.2018.2876298.

[194] Yueyue Dai, Du Xu, Sabita Maharjan, and Yan Zhang. Joint computation

offloading and user association in multi-task mobile edge computing. 67(12):

12313–12325, December 2018. doi: 10.1109/TVT.2018.2876804.

[195] Weiyang Feng, Siyu Lin, Ning Zhang, GongpuWang, Bo Ai, and Lin Cai. Joint

C-V2X based offloading and resource allocation in multi-tier vehicular edge

computing system. 41(2):432–445, 2023. doi: 10.1109/JSAC.2022.3227081.

[196] Ying He, Yuhang Wang, Qiuzhen Lin, and Jianqiang Li. Meta-hierarchical re-

inforcement learning (MHRL)-based dynamic resource allocation for dynamic

vehicular networks. 71(4):3495–3506, April 2022. doi: 10.1109/TVT.2022.

3146439.

References 343

[197] Jinming Shi, Jun Du, Jian Wang, and Jian Yuan. Deep reinforcement learning-

based V2V partial computation offloading in vehicular fog computing. In

2021 IEEE Wireless Communications and Networking Conference (WCNC),

Nanjing, China, March-April 2021. doi: 10.1109/WCNC49053.2021.9417450.

[198] Xuan-Qui Pham, Thien Huynh-The, Eui-Nam Huh, and Dong-Seong Kim.

Partial computation offloading in parked vehicle-assisted multi-access edge

computing: A game-theoretic approach. 71(9):10220–10225, September 2022.

doi: 10.1109/TVT.2022.3182378.

[199] Xiaoyu Zhu, Yueyi Luo, Anfeng Liu, Md Zakirul Alam Bhuiyan, and Shaobo

Zhang. Multiagent deep reinforcement learning for vehicular computation of-

floading in IoT. 8(12):9763–9773, June 2021. doi: 10.1109/JIOT.2020.3040768.

[200] Lei Liu, Ming Zhao, Miao Yu, Mian Ahmad Jan, Dapeng Lan, and Amirhosein

Taherkordi. Mobility-aware multi-hop task offloading for autonomous driving

in vehicular edge computing and networks. 24(2):2169–2182, February 2023.

doi: 10.1109/TITS.2022.3142566.

[201] Fengxiao Tang, Bomin Mao, Nei Kato, and Guan Gui. Comprehensive sur-

vey on machine learning in vehicular network: Technology, applications and

challenges. 23(3):2027–2057, Third Quarter 2021. doi: 10.1109/COMST.2021.

3089688.

[202] Dairu Han, Qiang Ye, Haixia Peng, Wen Wu, Huaqing Wu, Wenhe Liao, and

Xuemin Shen. Two-timescale learning-based task offloading for remote IoT in

integrated satellite-terrestrial networks. 10(12):10131–10145, June 2023. doi:

10.1109/JIOT.2023.3237209.

[203] Fengxiao Tang, Bomin Mao, Nei Kato, and Guan Gui. Comprehensive sur-

vey on machine learning in vehicular network: Technology, applications and

References 344

challenges. 23(3):2027–2057, Third Quarter 2021. doi: 10.1109/COMST.2021.

3089688.

[204] Fuhui Zhou, Rose Qingyang Hu, Zan Li, and Yuhao Wang. Mobile edge com-

puting in unmanned aerial vehicle networks. 27(1):140–146, February 2020.

doi: 10.1109/MWC.001.1800594.

	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Publications
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Key Challenges
	1.2.1 Heterogeneous Nodes with Resource Limitations
	1.2.2 Advanced Service Demand
	1.2.3 Advanced ML Solutions

	1.3 Motivation
	1.4 Contributions
	1.5 Organization

	2 Internet of Vehicles
	2.1 Introduction
	2.2 Scenario Background
	2.3 Enabling Technologies and Challenges for Futuristic Vehicular Networks
	2.3.1 6G
	2.3.2 Network Softwarization
	2.3.3 Vehicular Edge Computing
	2.3.4 Machine Learning
	2.3.5 Non-terrestrial Networks

	2.4 Multiple Edge Computing Platforms Enabled Joint Terrestrial and Non-terrestrial Network Architecture for Vehicular Scenarios

	3 Future IoV Network, Key Challanges and Possible Solutions
	3.1 Introduction
	3.2 Distributed Data Processing for Vehicular Users
	3.3 Distributed Intelligence for Vehicular Users
	3.4 Considered Problems and Outcomes
	3.4.1 Vehicular Data Processing Problem
	3.4.2 Distributed Edge Intelligence for Vehicular Users

	4 Distributed Data Processing for IoV -Terrestrial Case
	4.1 Introduction
	4.2 Joint Network Selection and Offloading over VN: Single-Service Case
	4.2.1 System Model and Problem Formulation
	4.2.1.1 VU Mobility and Sojourn Time
	4.2.1.2 VU-EN Assignment, Offloading Process and Resource Allocation
	4.2.1.3 Problem Formulation

	4.2.2 MDP Formation
	4.2.2.1 VU Scenarios Defintion
	4.2.2.2 MDP Elements

	4.2.3 MDP-Based Joint Network Selection and Computation Offloading
	4.2.4 Benchmark Approaches
	4.2.5 Numerical Results
	4.2.6 Conclusion

	4.3 Joint Network Selection and Offloading: Multi-service Case
	4.3.1 System Model and Problem Formulation
	4.3.1.1 RSU Selection
	4.3.1.2 Task Processing
	4.3.1.3 Vehicle Mobility and Sojourn Time
	4.3.1.4 Problem Formulation

	4.3.2 Q-Learning Based Joint Network Selection and Computation Offloading
	4.3.2.1 Collaborative Q-Learning Solutions for Joint Network Selection and Offloading
	4.3.2.2 Deep Learning Based Solutions

	4.3.3 Limited Search-space based Heuristic Approach
	4.3.4 Numerical Results
	4.3.5 Conclusion

	5 Distributed Data Processing for IoV -Joint-Terrestrial and Non-Terrestrial Case
	5.1 Introduction
	5.2 Joint Network Selection and Offloading with joint T-NTN Vehicular Scenario - Metaheuristic Solution
	5.2.1 System Model and Problem Formulation
	5.2.1.1 VUs Mobility and Distance Measures
	5.2.1.2 LEO Satellite Mobility and Distance Measures
	5.2.1.3 Network Selection and Task Offloading Process
	5.2.1.4 Problem Formulation

	5.2.2 Proposed Solutions
	5.2.2.1 Adaptive GA Process (A-GA)
	5.2.2.2 Benchmark Solutions

	5.2.3 Numerical Results
	5.2.4 Conclusions

	5.3 Network Selection and Offloading with joint T-NTN Vehicular Scenario- HRL Solution
	5.3.1 System Model and problem Formulation
	5.3.1.1 VUs Mobility and Distance Measures
	5.3.1.2 LEO Satellite Mobility and Distance Measures
	5.3.1.3 Network Selection and Task Offloading Process
	5.3.1.4 Task Offloading Process
	5.3.1.5 Problem Formulation

	5.3.2 Hierarchical Reinforcement Learning Solution
	5.3.2.1 MDP Models
	5.3.2.2 Deep Q Network based solution
	5.3.2.3 Benchmark Solutions

	5.3.3 Numerical Results
	5.3.4 Conclusions

	5.4 Joint Service Placement, Network Selection and Offloading: Multi-time Scale Approach
	5.4.1 System Model and Problem Formulation
	5.4.1.1 VU Mobility Model
	5.4.1.2 Multi-time Scale Approach
	5.4.1.3 Problem Formulation

	5.4.2 Multi-time Scale Optimization
	5.4.2.1 Service Placement MDP
	5.4.2.2 Network Selection MDP
	5.4.2.3 Computation Offloading MDP
	5.4.2.4 Reward Function

	5.4.3 Deep Q-Learning for Service Placement, Network Selection, and Computation Offloading
	5.4.4 Numerical Results
	5.4.5 Conclusion

	6 Distributed Intelligence for IoV
	6.1 Introduction
	6.2 FL-based Computation Offloading in IoV
	6.2.1 System Model and Problem Formulation
	6.2.1.1 Vehicular Mobility Model
	6.2.1.2 Partial Offloading Model
	6.2.1.3 Task Offloading Process
	6.2.1.4 Local VU Computation Process
	6.2.1.5 Partial Offloading Problem
	6.2.1.6 Federated Learning Model
	6.2.1.7 FL Computation Model
	6.2.1.8 FL Communication Model
	6.2.1.9 Joint Offloading and Federated Learning Model
	6.2.1.10 Problem Formulation
	6.2.1.11 Federated Offloading parameter estimation

	6.2.2 Proposed Solutions
	6.2.2.1 Clustered Approach
	6.2.2.2 Distributed Approach
	6.2.2.3 Genetic Algorithm
	6.2.2.4 Limited Search-based Heuristic Approach (LS-HuA)
	6.2.2.5 Optimal Offloading Parameter

	6.2.3 Numerical Results
	6.2.4 Conclusion

	6.3 Distributed FL over Joint Air-ground Networks for Vehicular Applications
	6.3.1 System Model and Problem Formulation
	6.3.1.1 VU Mobility Model
	6.3.1.2 Distributed FL Platform for Vehicular Applications
	6.3.1.3 Network Selection Parameters
	6.3.1.4 FL Process Cost Analysis
	6.3.1.5 Number of FL Iterations Performed
	6.3.1.6 Problem Formulation

	6.3.2 MDP Based SOlution Approach
	6.3.2.1 Local Environment based Multi-dimensional MDP Model
	6.3.2.2 MDP-Based FL Network Selection Strategy

	6.3.3 Benchmark Methods
	6.3.3.1 Conventional Centralized FL Process (C-FL)
	6.3.3.2 Minimum Distance Based FL Process (MD-FL)
	6.3.3.3 Random Assignment Based FL Process (RA-FL)
	6.3.3.4 FedCPF inspired RSU-based benchmark solution for the considered scenario (FedR-FL)

	6.3.4 Performance Evaluation
	6.3.4.1 Numerical Results

	6.3.5 Conclusion

	7 Conclusion
	Scope for Future Work
	Bibliography

