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Introduction to the Thesis

(Abstract)

Since Charles Babbage devised and designed his Analytical Engine[5] human-

ity has put great e�orts in devising methods to harness natural phenomena to

perform computation. During the XX century, the Von Neumann�Zuse Archi-

tecture [6], and hence the Turing paradigm [7] a�rmed as the most pro�cient

and useful approach to computing. Since then and up to now, most of the

computing processes worldwide have been brought on using processors based

on that same architecture, despite almost any natural process is in principle as

complex as a Turing machine [8]. This all-in strategy allowed the computing

power density of the processors to increase exponentially during the second half

of the XX century, following the so-called Moore's law [9], [10]. During the

last two decades, several positive trends into integrated processors have slowed

down from the forecast exponential speed [11], mainly due to the energy dissi-

pation during the switch events and the physical inferior limit on the size of the

transistor [12]. Today, computing machines based on the Von Neumann�Zuse

architecture continue improving, mainly thanks to the parallelization of com-

putational processes via GPUs [13], but the scienti�c community has realized

the inherent limits of this approach to computation. The "classical" computing

paradigm will never be able to e�ciently solve some relevant modern industrial

challenges, mainly those that comprise NP-hard problems1.

The computational limits of the "classical" approach can be overcome by

developing new computational paradigms based on di�erent natural phenom-

ena. In 1980, in the Soviet Union, Yuri Manin published a book suggesting

the idea of a computer based on quantum mechanics, capable of simulating

complex quantum mechanical systems [14]. In the same year, in the USA, Paul

Benio� published an article describing a quantum mechanical model of the Tur-

ing machine [15]. The proposed approach exploited quantum gates to perform

calculations, a reversible analogue of the logical gates used in classical compu-

tation. Being reversible, there is no need for a thermal dissipation following
1NP-hard problems are problems at least as hard as the hardest decision problems whose

solution can be veri�ed in polynomial time.
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a logical gate, as it is the case for classical computing. Despite this interest-

ing feature, the idea of a QC (quantum computer) didn't gain popularity yet.

Things changed after the seminal works of Deutsch and Jozsa [16], Grover [17]

and Shor [18]. They showed that QCs could have an exponential speed up

over classical computers in decision problems on Boolean functions, in inverting

Boolean functions, and in factoring semiprimes. Since then, other works have

found speedups for mathematical procedures implemented on QCs, such as the

fast quantum fourier transform [19]. The promise of a new powerful approach

to computing sparked a great interest that pushed companies to take the �rst

steps into the realization of the blueprints for prototypical quantum comput-

ing hardware. In a seminal work, Deutsch [20] introduced the concept of the

universal quantum gate, forecasting that QCs would have been realized in the

future as networks of instances of such gate (quantum computational networks).

Although the prophecy realized in the form of gate-based QCs, nowadays there

are many di�erent physical implementations of the quantum computing con-

cept. These devices can vary widely, both in terms of the hardware technology

employed and the computational logic they utilize.

One of the most mature hardware realizations of the QC concept is the Adia-

batic Quantum Computer (AQC). The hardware of an AQC comprises thousand

of small superconducting loops where quantum bits of information (qubits) can

be encoded by carefully tuning the superconducting currents. This ensamble

of qubits is then exposed to a time-dependent Hamiltonian that drives the sys-

tem towards the minimum of a binary quadratic cost function by exploiting the

adiabatic theorem. Thus, AQCs constitute a new quantum approach to solve

hard optimization problems. AQCs cannot currently implement all quantum

algorithms, which implies they are not considered universal QCs. Despite this

shortcoming, AQCs are able to tackle large problems comprising thousand of

variables, since they are made up of up to �ve thousand qubits [21], as opposed

to the universal gate-based competitors that can reach up to few hundreds

qubits [22].

During the last four PhD years, we analyzed the capabilities of modern

AQCs in solving hard optimization problems stemming from industrially rele-

vant challenges. In particular, we devised some useful practical recipes to tune

the internal parameters of the AQC and enhance its performances. By using

such techniques we were able to reduce the computational time required to �nd

the global optimum of a problem by up to 78 times. We also tested the possi-

ble use of AQCs to produce thermal samples faster than classical approaches.

Despite this latter application is less explored in literature, we were able to
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demonstrate that current AQCs can already outperform classical algorithms

implemented on GPUs in speci�c sampling tasks that have an application in

Machine Learning.

In this Thesis I aim to achieve three main objectives. The �rst is to present

and comment the experimental results obtained during my PhD [1]�[4], [23],

[24], which show that performances of modern AQCs are steadily improving

thanks to both hardware and software advancements, and are getting close to

practical utility.

The second objective is to provide the reader with an extensive literature

review regarding the design, the use, the capabilities, and the possible appli-

cations of AQCs. Indeed, there is currently no document or book on AQCs

that contains the comprehensive amount of commented and ordered references

presented in this Thesis. Thus, I hope this work can serve as an introductory

compendium to a good portion of the modern knowledge regarding this topic.

The third objective is to provide the reader with a collection of the most

popular and e�ective ways to manipulate an AQC at the software (middelware)

level in order to enhance its performances.

We tried to achieve these three objectives in the four main Chapters of

this Thesis, which are named, respectively, Experimental results (�rst aim),

Theory and Practical applications (second aim), and Performance optimization

techniques (third aim).

In the Theory Chapter (1), we introduce the concept of Quantum Comput-

ing and present the current alternative approaches to realize a physical QC. We

then introduce the adiabatic paradigm to quantum computation from both a

mathematical and a hardware perspective. Next, in the Practical Applications of

Adiabatic Quantum Computers and other unconventional computing paradigms

Chapter 2 we discuss the practical applications of AQCs, chie�y solving com-

plex optimization problems and quickly generating con�gurations sampled from

a thermal distribution. Then we describe other unconventional computing plat-

forms that can be considered competitors of the AQC, with particular attention

given to the Memcomputing machine, which we experimentally compared to an

AQC in [2]. The last Section of this Chapter present a brief literature review of

experimental results that benchmark AQCs' performance to other classical or

exotic computational paradigms.

In the Performance optimization techniques Chapter (3) we introduce sev-

eral software-level techniques that aim to enhance the performances of hardware

AQCs. Hybrid quantum-classical approaches and potential future hardware im-

provements are also discussed.



viii

In the Results Chapter (4), we present the experimental results obtained

in the four main research works I conducted during my PhD. The �rst two

experiments focus on solving industrially-relevant optimization problems, while

the other two focus on a sampling application, namely the use of AQCs to train

an unsupervised learning model known as the Boltzmann Machine. Each work

is described in its design and experimental outcome.

I want to summarize here few highlights originated from my PhD work:

� Despite being publicized as optimization problem solvers, AQCs can al-

ready show a computational advantage with respect to classical algorithms

in sampling applications. The parallel quantum annealing approach is

fundamental to achieve such advantage.

� A proper tuning of the internal parameters of an AQC can result in a con-

siderable performance boost, reducing the computational time required to

reach the global optimum of an optimization problem by up to 78 times.

� Literature presents several proposals to improve the hardware architecture

of AQCs. Theoretical arguments show that AQCs could evolve in the

future to host fully-connected problems of any size and to achieve the

state of universal quantum computers.
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Chapter 1

Theory

1.1 Introduction to Quantum Computing

What all existing QCs have in common is the concept of the quantum bit,

which was famously named the "qubit" by B. Schumacher in 1995 [25]. The

qubit serves as the fundamental unit of logic in these computers, and its state

exists as a quantum superposition of two classical states. Unlike a classical bit,

which can only take on a value of 0 or 1, a qubit typically exists in a quantum

state represented by the equation:

|ϕ⟩ = α |0⟩+ β |1⟩ , (1.1)

where α and β are complex coe�cients that satisfy the condition |α|2 + |β|2 =
1. Di�erent quantum computing devices di�erentiate in both the hardware

architecture1 and the way they perform calculations2.

In 2018, the most powerful classical simulations could emulate a universal a

50 qubits QC. John Preskill then coined the term NISQ (Noisy Intermediate-

Scale Quantum) era to identify the future moment in which QC comprising

hundreds of qubits will be available, achieving the �rst computational processes

beyond classical capabilities [26]. Depite the one-hundred qubits threshold has

been surpassed few years ago in universal QCs [27], the e�ciency of simulations

of QCs on classical hardware has improved as well. It still debated when QCs

will achieve super-classical capabilities on a speci�c task (quantum supremacy).

In [28] the Google team claimed to have reached Quantum Supremacy with their

Sycamore QPU, while in [29] the IBM team contended such claim. Later, [30]

and [31] showed how a modern supercomputer can match the aforementioned

"quantum supremacy" performances.
1See Section 1.1.2.
2See Section 1.1.1.
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The NISQ era is yet to come mainly because modern implementations vi-

olate all of the necessary conditions to build a functioning quantum computer

introduced in 2000 by the theoretical physicist David P. DiVincenzo [32]:

� A scalable physical system with well-characterized qubit

� The ability to initialize the state of the qubits to a simple �ducial state

� Long relevant decoherence times

� A universal set of quantum gates

� A qubit-speci�c measurement capability

It should be noted that some QC companies, such as D-Wave, have purposely

avoided to respect the rule regarding the universal set of quantum gates. This

choice was made to realize a non-universal quantum-based device capable of

surpassing classical performances on speci�c optimization tasks [33].

In the next sections, the current e�orts in building a quantum computer

are described, focusing on both the computational paradigms and hardware

architectures.

1.1.1 Computational paradigms

The �rst distinction we can make among modern quantum computers is based

on the computational paradigm, namely the particular manner in which quan-

tum phenomena within the device are harnessed for computational purposes.

Gate-based quantum computers

� Numerous existing physical devices aim to implement the QC concept intro-

duced by Deutsch [20], which is envisioned as a machine capable of performing

calculations by manipulating the quantum state of individual qubits through the

application of quantum gates [34]. These gates function as unitary operators,

acting on single-qubit or multi-qubit states [35]. Certain quantum gates gener-

ate entangled states among input qubits, enabling the execution of algorithms

that exhibit exponential speedup compared to their classical counterparts. For

instance, Shor's algorithm [18] utilizes quantum gates to e�ciently factorize

integers in polynomial time (with respect to the input length). Quantum com-

puters employing quantum gates are commonly referred to as circuital quantum

computers or alternatively, gate-model quantum computers.
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One of the most notable advantages of this computational paradigm is its

ability to realize any conceivable unitary operation on qubits. This implies

that virtually every quantum algorithm can be executed on such devices, mak-

ing most gate-based quantum computers universal in nature. To qualify as a

universal quantum computer, a quantum device must incorporate a su�cient

repertoire of quantum gates to approximate any desired unitary operation.

Prominent companies such as IBM [36], [37], Google [28], Rigetti [38], and

Intel [39] are presently engaged in quantum hardware development, exploring

the capabilities of gate-model quantum computers.

Measurement-based Quantum Computing

Measurement-based quantum computation [40] is achieved by performing a se-

quence of measurements on the qubits of a properly initialized entangled state.

The measurement results are then used to determine subsequent measurement

operations, e�ectively guiding the computation through a feedback loop of mea-

surements (adaptive measurements). The �nal measurements produce the re-

sult, which encodes the output of the computation.

The two most prominent examples of measurement-based quantum com-

putation are the teleportation-based approach [41] and the so called "one-way

quantum computer" [42].

The main di�erence between this two approaches comes from the require-

ment of teleportation-based approach to use joint measurements, measurement

operations that simultaneously evaluate multiple observables exploiting the en-

tanglement between qubits. On the other hand, in a one-way quantum computer

universal computation can be achieved with single-qubit measurements alone.

A one-way computer performs calculations starting from a highly entangled

state, known as a cluster state [43]. The cluster state is created by entangling

multiple qubits in a speci�c pattern, usually on a two-dimensional lattice. The

entire resource for the computation is provided by the entangled cluster state

in which the system is initialized. Consequently, the challenge of realizing a

quantum computer is reduced to preparing a speci�c multi-particle state and

implement single-qubit measurements, which may o�er advantages in suitable

physical set-ups.

A few years ago, Xanadu, the current world-leading company in photonic

quantum computing hardware, presented a blueprint for the realization of a

scalable photonic fault-tolerant quantum computer [44].
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Adiabatic Quantum Computing

By exploiting the adiabatic theorem, Adiabatic Quantum Computing (AQC)

employs a time-dependent Hamiltonian to drive a system of entangled qubits

towards a con�guration that represents a superposition of the global minima of

a given classical optimization problem.

Contrary to the other computational paradigms, AQC does not enable uni-

versal quantum computation. In fact, AQC does not even prescribe to execute

operations at speci�c time steps.

This computational paradigm constitutes the central focus of this thesis.

Section 1.2 provides a historical introduction to the AQC concept and a detailed

exploration from a mathematical perspective.

1.1.2 Hardware architectures

It took approximately 20 years to go from the original concept of a quantum

computer by Benio� in 1980 to the �rst implementation of a quantum algo-

rithm. In 1998, Chuang et al. [45] were among the �rst to build an empirical

system with physical qubits to compute an instance of the Deutsch�Jozsa (D-

J) quantum algorithm [16]. The algorithm determines whether an unknown

Boolean function is constant (same image for every input) or balanced (half

of the possible input have image 1, the others have image 0). The D-J algo-

rithm was applied in its simplest possible form, using only one input bit (two

balanced functions and two constant functions can be de�ned on a single input

bit). The prototypal QC was composed by two atoms, whose nuclear spins were

used as qubits. The atoms were immersed in a strong, static external magnetic

�eld, and the quantum gates on the qubits were realized via pulsed radiofre-

quency electromagnetic �elds, e�ectively exploiting nuclear magnetic resonance

(NMR).

Another relevant milestone was the 1999 article by Nakamura et al. [46], who

suggested that a superconducting circuit could serve as a stable quantum bit,

and that the state of such qubit can be controlled by applying a short voltage

pulse. Few months later, Friedman et al. [47] demonstrated in a superconduct-

ing circuit the presence of a quantum superposition of macroscopically distinct

states, namely the �ow of a current clockwise or counter-clockwise. This was

one of the �rst examples of a macroscopic object exhibiting quantum properties.

Since then, many di�erent technologies have been developed to realize a

quantum computer. The following Sections present a high-level overview on

various approaches to physically encode and manipulate quantum information.
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Superconducting qubits

The �rst qubits realized in history constituted a groundbreaking discovery that

ignited the advent of quantum computing technologies. They were initially

implemented using loops of superconducting materials called SQUIDs (Super-

conducting Quantum Interference Devices) [48]. Many gate-based quantum

computers and the majority of Adiabatic Quantum Computers (AQCs) per-

form operations on SQUID-based qubits. For a more detailed exploration of

superconducting qubits from a hardware perspective, please refer to Section

1.3.2.

Integrated quantum photonics

In photonic quantum computers, information is encoded in photonic quantum

states and manipulated using optical elements. In this context, qubits states

are typically de�ned based on the polarization of photons. Photonic quantum

computers exhibit good coherence times, thanks to the tendency of photons

to interact weakly among themselves. For this same reason, performing en-

tangling operations can be challenging. The concept of a quantum computer

based on photons originated from the in�uential work of Knill, La�amme, and

Milburn in 2001 [49]. They demonstrated that e�cient quantum computation

can be achieved using beam splitters, phase shifters, single photon sources, and

photodetectors. The feasibility of this groundbreaking idea was subsequently

validated through laboratory experiments [50], [51]. Currently, several promi-

nent companies, including Xanadu [44], PsiQuantum [52], Quandela [53], Quix

Quantum [54], and ORCA Computing [55], are actively involved in the devel-

opment of integrated quantum photonics for quantum computing.

Neutral atoms

As anticipated, nuclear degrees of freedom were among the �rst quantum vari-

ables to be used as qubits. Despite the current popularity of superconducting

circuits and integrated photonics as hardware realizations of QCs, atoms are

still considered a viable alternative by many researchers. Atomic set ups for

QC can be roughly divided into using neutral atoms or ions. This section intro-

duces neutral atoms devices, while the next one will explain how to build QCs

based on trapped ions.

A possible approach to realize QCs based on ultracold atoms is to use Ryd-

berg atoms [56], which are named after the Rydberg states, high-energy orbitals
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much farther away from the nucleus than the ground state. In fact, the highest-

energy electrons in atoms such as Rubidium and Caesium can be excited to

Rydberg states, making them sensitive to electric and magnetic �elds conveyed

via lasers. The computational basis ofthe qubits can then be encoded in hy-

per�ne excited states close to each other. The huge polarizability and dipole

moment of Rydberg atoms allow them to strongly interact with each other over

a distance of a few micrometres. If the atoms are too close to each other, the

Rydberg blockade e�ect prevents the two atoms to both occupy Rydberg states

[57]. This behaviour is an ideal mechanism for conditional logic, as the state of

a �rst atom dictates the excitation of a second atom.

Among the advantages of using neutral atoms we can �nd long decoherence

times and accurate state manipulation, as well as a promising scalability. In-

deed, neutral atoms can be arranged in a large one-, two- or three-dimensional

array, and be addressed individually by laser beams for qubit operations with

little crosstalk to quantum states of nearby atoms. This also means that the

connectivity between the physical qubits can be programmed before every com-

putation, reducing the impact of the limited connectivity. Besides, the neutral

atom devices can o�er the possibiltiy to implement the Lechner-Hauke-Zoller

(LHZ) encoding procedure to reduce any fully connected problem to many pla-

quettes of 4-local interactions [58].

Rydberg atoms can be used to realize both gate-based [59], [60] and adiabatic

[61], [62] quantum computers.

The most prominent companies that are currently exploring the neutral

atoms QCs are ParityQC, whose revenues mainly come from licensing the parity

LHZ encoding developed by the CEOs of the company [58]; QuEra [63], [64];

and Pasqal [62]. For a review on the problems where neutral atoms devices have

been applied, see [65].

Trapped Ions

In this approach, individual ions are trapped using electromagnetic �elds, and

their internal energy levels serve as the quantum states or qubits. Quantum

computers based on trapped ions typically adopt a gate-based computation

paradigm, where gates are implemented using laser beams to induce coherent

transitions between the energy levels of the ions. In most trapped ion devices,

users have the capability to physically arrange ions on a 2D wafer, creating a

suitable topology that facilitate speci�c calculations. A proposal by Cirac and

Zoller in 1995 introduced the �rst implementation scheme for a controlled-NOT
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quantum gate on trapped ions [66]. Trapped ions systems have since demon-

strated remarkable coherence times, extending up to several minutes [67], along

with high-�delity quantum operations. These achievements position trapped

ions as a promising candidate for scalable quantum computing. Notable com-

panies actively involved in the development of trapped ion quantum computers

include Quantinuum [68], IonQ [69], [70], and Alpine Quantum Technologies

[71], which was founded by Zoller himself.

Topological Quantum Computing

Topological quantum computing is a methodology that focuses on the physical

manipulation of qubits to enable fault-tolerant computation. It is not necessar-

ily bounded to a speci�c hardware technology. Topological quantum comput-

ing harnesses the unique characteristics of anyons, exotic particles that exhibit

fractional quantum statistics, deviating from the familiar fermionic or bosonic

statistics. Within the realm of topological quantum computing, quantum in-

formation is encoded by leveraging the non-local properties intrinsic to anyons,

including their topological charge and braiding behavior. These properties allow

for the manipulation and storage of quantum information. Notably, topolog-

ical quantum computing holds the potential for achieving fault tolerance, as

the topological nature of anyons renders them less susceptible to certain types

of errors commonly encountered in quantum systems, such as local �uctua-

tions and noise. This inherent resilience against errors positions topological

quantum computing as a promising avenue for the development of scalable and

fault-tolerant quantum computers. The concept of using non-Abelian anyons as

potential qubits was �rst proposed by Alexei Kitaev in 2003 [72]. Despite the

e�orts of the quantum team at Microsoft, a world-leading research team in the

�eld [73], the development of topological qubits is still in its infancy. However,

a recent breakthrough came from the Quantinuum team, who have achieved

the creation of a quantum system based on trapped ions capable of simulating

a topological quantum state [74].

1.2 Fundamentals of Adiabatic Quantum Com-

puting

This Section provides an introduction to the fundamental concepts necessary

for comprehending the mathematical principles underlying Adiabatic Quantum



8 Chapter 1. Theory

Computing (AQC). Following a historical overview, the Ising model for ferro-

magnetic spin systems is presented in both its classical and quantum forms.

Subsequently, the Simulated Annealing process is introduced, along with its

quantum counterpart known as Quantum Annealing, which serves as the foun-

dation for the functionality of AQC. The conditions under which Simulated and

Quantum Annealing converge to the optimal solution of an optimization prob-

lem are discussed. Lastly, a suggestive mapping between classical and quantum

mechanical systems is presented, establishing a connection between the two

approaches.

If you are looking for an additional resource to introduce you to the world

of Adiabatic Quantum Computation, you can refer to [75].

1.2.1 History and motivations for Adiabatic Quantum Com-

puting

In 1989, Apolloni, Carvalho, and de Falco introduced a combinatorial optimiza-

tion procedure based on the physical idea of using the quantum tunnel e�ect

to allow the search of global minima of a function of many Boolean variables

[76]. The optimization problem was mapped to the Schröedinger Hamiltonian

of a quantum spin 1/2 system, while the exploration of the local minima was

enforced by a general kinetic term of the form 1
2
v2 d2

d2x
. They showed from a

mathematical point of view that following the state of the system with a low ki-

netic energy was an e�cient method to look for the solution of the optimization

problem. In a subsequent companion paper [77], they provided a more e�cient

numerical implementation and coined the term "Quantum Annealing" to refer

to the new approach. In 1994, Finnila et al. introduce the term Quantum

Annealing (QA) for the �rst time [78]. In their paper, which somewhat lacks

a convincing mathematical structure, they simulate the same approach that

Apolloni, Varvalho and de Falco had previously introduced, namely a quantum

system where the kinetic term is slowly decreased to �nd the global minimum.

Few years later, it was the turn of Kadowaki and Nishimori to study a modi-

�cation to classical simulated annealing (SA) where quantum �uctuations are

introduced [79]. In this seminal paper, they tested the approach on an Ising

spin system [80], where a transverse �eld was controlled in an analogous way

to the temperature schedule in SA. They also called this procedure Quantum

Annealing (QA), and they showed that QA had a higher probability to �nd the

ground state when compared to SA on spin-glass systems. The advantage was

supported by previous results showing that spin-glass models in a transverse
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�eld can tunnel through high energy barriers (if they are narrow enough) [81],

contrary to classical techniques. Shortly after, some research groups began to

empirically observe the predicted QA behaviour in real LiHo0.44Y0.56F4 Ising

ferromagnets [82], [83].

In 1999, the company D-Wave Systems was founded in Canada. The �rst

white paper published by the company was written by one of its founders,

Zagoskin [84], and made no reference to QA. In fact, it aimed at representing

qubits with a particular type of superconducting circuits based on Josephson

junctions3, called d-wave superconductors. Meanwhile, Farhi et al. published

the seminal paper [85], where the authors �rst discussed the possibility of solv-

ing combinatorial problems by "adiabatic quantum evolution", exploiting the

adiabatic algorithm4. The technique presented in the aforementioned paper will

later be named Adiabatic Quantum Computing (AQC). It prescribes to start in

the ground state of a Hamiltonian HB to then gradually mix it with the problem

Hamiltonian HP , that encodes the solution of a combinatorial problem in its

ground state. While slowly reducing the value of HB and increasing HP , the

system will keep its state close to the ground state of the istantaneous mixed

Hamiltonian, thanks to the adiabatic theorem. At the end of the process, the

system is expected to be in the ground state of HP , and a measure operation

can thus output the solution of the combinatorial problem. In 2001, Childs,

Fahri and Preskill explained why an AQC protocol can be more robust than

other QCs to thermal noises [86]. They showed with numerical simulations that

AQC is resilient to thermal noises when the gap between the ground state and

the �rst excited state is wide. Whenever this is not the case, AQCs can be

run faster to avoid the asymptotic thermalization of the quantum system. In

this case the hypothesis of slow evolution at the basis of the adiabatic theorem

could be violated, but the thermal decoherence can counterintuitively improve

the performance of the procedure, since the primary e�ect of decoherence at

low temperature is to drive transitions towards the ground state.

Then, in 2004, Kaminsky et al. presented a scalable architecture for AQC

[87]. Similarly to what Kadowaki and Nishimori had done in their prototypal

QA approach, Kaminsky et al. applied the AQC concept to an Ising model.

This was a clever choice, because calculating the ground state of an antifer-

romagnetically coupled Ising model in a uniform magnetic �eld is isomorphic

to solving the graph theory problem Maximum Independent Set, which is the

problem of �nding for a graph G = (V,E) the largest subset S of the vertices

3See Section 1.3.1.
4See Section 1.2.6
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V such that no two members of S are joined by an edge from E [88]. This

popular graph problem is known to be NP-complete, which means that the

architecture proposed by Kaminsky et al. could tackle any NP problem. The

Ising model was cleverly mapped by the authors on a lattice of qubits realized

via Superconducting Interference Devices5 (SQUIDs), where the user is allowed

to tune both the external magnetic �eld and the coupling between the qubits.

The paper also introduces the fundamental concept of embedding, namely the

idea to couple two or more qubits with a strong ferromagnetic coupling so that

they behave as a single logical qubit, enhancing the connectivity of the device6.

Inspired by such revolutionary results, D-Wave Systems �nanced a research

project that in 2005 resulted in the publication of the paper Possible implemen-

tation of adiabatic quantum algorithm with superconducting �ux qubits [89]. In

this work the authors discuss a possible implementation of adiabatic quantum

annealing on superconducting �ux qubits, and they show how to solve small

instances of MAXCUT using three of such qubits. In that same paper, the

authors state that "The idea of quantum computation by adiabatic evolution is

very simple but, surprisingly, was discovered only recently", referencing to the

two previously mentioned seminal papers by Farhi et al. [85] and Kaminsky et

al. [87].

In 2011, D-Wave Systems secured the �rst historical agreement to sell a

quantum computer [90] to global security �rm Lockheed Martin. The QC was

an AQC device that allowed users to solve Quadratic Unconstrained Binary

Optimization7 (QUBO) problems comprising up to 128 variables. Few months

earlier than this announcement D-Wave Systems had published a long-awaited

paper that for the �rst time demonstrated the actual presence of quantum ef-

fects inside their devices [91]. The paper partially mitigated the controversy

arised after a demonstration held in February 2007 at Silicon Valley's Com-

puter History Museum [92], where D-Wave utilized a 16-qubit AQC to solve

a simple sudoku problem. At the time, the scienti�c community concluded

that the solution was obtained mainly thanks to classical thermal e�ects, such

as in SA. Several articles from this period posed the question whether AQCs

were actually able to close the gap from the global optimum in hard optimiza-

tion problems [93]�[95]. Anyway, the 2011 paper proving the D-Wave machines

"quantumness" was later backed up by several experiments [96]�[98]. In addi-

tion to this, other experiments observed multi-qubit tunnelling events [99], [100]

and phase transitions [101] in D-Wave devices.

5See Section 1.3.2.
6See Section 1.2.10.
7See Section 2.1.1.
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The D-Wave machine sold to Lockheed Martin was fundamentally di�er-

ent from the (few) competing quantum computing devices. First, it had a

much higher number of qubits. IBM had published the �rst results regarding

a prototype of gate-based QC comprising 7 qubits as early as 2001 [102], but

this �rst version was implemented using nuclear magnetic resonance (NMR),

while the company later shifted to superconducting qubits. In 2017, IBM un-

veiled on of its �rst functioning gate-based QCs, which contained 17 qubits.

D-Wave Systems managed to stay far ahead in the qubit count race thanks to

its AQC approach. Another important di�erence is that AQC is not universal,

because many quantum algorithms have no mapping on AQC devices. In 2004,

Aharonov et al. provided a computational procedure to simulate a gate-based

QC using an Adiabatic Quantum Computation [103]. This demonstrated a fun-

damental equivalence between AQC and universal QC, despite the theorems

proved in the paper do not map to the D-Wave Systems architecture8. D-Wave

researchers have stated that their strategic decision is "to focus on increas-

ing qubit counts and developing a strong user base, rather than implementing

the fully general computational model" [33]. In fact, the D-Wave choice par-

tially avoids some of the main shortcomings of gate-based quantum computing,

namely the precision required in preparing the initial state and in manipulating

the quantum states [104].

Today, D-Wave Systems leads the industry as a prominent company in the

production of AQC technology. They provide remote access to their devices,

enabling programmers and researchers to develop early-stage quantum applica-

tions. Modern AQC prototypes have demonstrated the ability to tackle opti-

mization problems involving thousands of variables, which often pose signi�cant

challenges for classical solvers. Besides solving industrial problems, AQC de-

vices have been exploited to study interesting physical phenomena, since they

constitute a laboratory-grade implementation of a quantum spin glass model.

As an example, in [105] an example of the Kosterlitz-Thouless phase transition

was simulated in a D-Wave AQC whose qubits where arranged in a frustrated

lattice. On the other hand, despite encouraging results suggesting that recent

D-Wave devices exhibit quantum behaviour [106], [107], a solid methodology to

prove it is still subject to debate [108].

The following Sections introduce the modern concept of AQC from a math-

ematical point of view. To understand how AQC can be applied to solve indus-

trially and mathematically relevant problems, jump to Section 2.1.
8See Section 1.2.8 to learn under which circumstances AQC can be considered equivalent

to gate-based QC
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1.2.2 Spin-glass Hamiltonian for AQC

This Section introduces the classical and quantum formulation of an Ising spin-

glass model, which stands at the basis of AQC's functioning.

Consider a d-dimensional lattice Λ, where each site i is occupied by a spin

variable si. The term spin variable refers to a two-state system. The Ising model

is a statistical system whose behavior depends on the following Hamiltonian:

H = J
∑
⟨ij⟩

sisj + h
∑
i

si , (1.2)

where si is a random spin variable that assumes values ±1 on the N sites of the

lattice, and the �rst summation runs on sites i and j such that the two sites are

nearest neighbours. The Ising model was named after Ernst Ising, which was

the �rst to study and characterize it in 1925 [80].

The Ising model can represent several di�erent physical systems. For in-

stance, consider a system of magnetic dipoles aligned along the same axis, with

only two allowed orientations. In this case, the �rst term in Eq. 1.2 is a two-

sites interaction which can produce an ordered ferromagnetic state (if J < 0).

The second term represents the paramagnetic e�ect of a uniform external �eld.

We may also consider a binary alloy of type AB. In this case, the spin variables

indicate whether a certain site on the crystalline lattice is occupied by an atom

of either type A or type B. Neighbors of the same type will contribute to the

total energy with a term +J due to reciprocal repulsion, while neighbors of

di�erent types will contribute with −J . Lastly, one could use the spin values to

represent the presence (+1) or absence (−1) of a molecule in a certain cell of a

lattice gas (a useful model for modelling the critical behavior of a �uid system).

The Ising model can be generalized by allowing each spin-pair appearing in

the �rst summation of Eq. 1.2 to interact with di�erent values of Jij. In the

magnetic analogy, it means abandoning the hypothesis that spins are equally

distributed across the lattice. Thus, certain couples will be more closely packed,

interacting with higher values of the coupling Jij. The model obtained is known

as spin-glass.

We may also remove the �nite range of the interaction, allowing distant spins

to interact with each other. It means that the summation over the nearest

neighbors appearing in Eq. 1.2 is now performed over any spin pair. If the

quadratic couplings are distributed according to a Gaussian probability density,

the system we have obtained is then called the Sherrington and Kirkpatrick

model of spin glasses [109].
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We can push the generalization further by considering a scenario where the

external magnetic �eld is not uniform and can vary from site to site. This leads

to the following Hamiltonian:

H =
∑
i,j,i̸=j

Jijsisj +
∑
i

hisi , (1.3)

where J and h now depend on the lattice site considered, and the summation

is performed over any pair (i,j) such that i ̸= j.

We can now abandon the idea that the spin-glass model is de�ned over a

lattice. Since interactions have in�nite range, there is no need to think of spin

variables as bounded in a certain spatial location. It is far more useful to think

of the model as a graph, where each spin variable possesses connections with

many (potentially all) other spin variables. A coupling Jij = 0 corresponds to

a missing link in the graph. Nonetheless, the expression site will still be used

in the present work, meaning a particular position in the graph.

We will call spin con�guration any function

S : Λ→ {±1} (1.4)

which assigns spin up (+1) or down (-1) to each site in Λ. Let Ω be the set of

all possible spin con�gurations. The cardinality of the set is |Ω| = 2N .

1.2.3 Spin-glass model in the canonical ensemble

We will now study how the spin-glass model described by the Hamiltonian in

Eq. 1.3 behave in the canonical ensemble. This means that the system is

immersed in a heat bath at a �xed temperature T . Suppose each spin variable

is randomly �xed to an up or down con�guration, and we refer to this collection

of �xed spin variables as S∗. Only the spin variable in site j is let free to change

orientation. It follows from statistical mechanics that

Pβ(sj = 1) =
e−βH({S∗,sj=1})

e−βH({S∗,sj=1}) + e−βH({S∗,sj=−1}) , (1.5)

where β = (kBT )
−1 is called inverse temperature, de�ned as the reciprocal of

the product of the Boltzmann constant kB and the temperature T . It follows

that

Pβ(sj = 1) = σ(−β∆jH) , (1.6)

where ∆jH = [H({S∗, sj = 1})−H({S∗, sj = −1})], and σ(x) = (1+ e−x)−1 is

the sigmoid function.
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If we let every spin variable free to change, we obtain an ensemble of spin

con�gurations S described by the following Boltzmann distribution:

Pβ(S) =
e−βH(S)

Z(β)
, (1.7)

where Z(β) is the partition function of the system at inverse temperature β:

Z(β) =
∑
S∈Ω

e−βH(S) (1.8)

The partition function Z ensures that the expression in Eq. 1.7 is a properly

normalized probability distribution.

As can be seen in Eq. 1.7, the lower the energy of a spin con�guration,

the higher its probability. Let S1, S2 be two distinct spin con�gurations with

di�erent energies. The ratio of their probabilities is:

Pβ(S
1)

Pβ(S2)
= e−β(H(S1)−H(S2)) . (1.9)

The above ratio depends on the temperature and the energy di�erence between

con�gurations. At high temperatures, this dependence on the energy di�erence

becomes less relevant. For T →∞ (β → 0), the Boltzmann distribution in Eq.

1.7 becomes a uniform distribution over Ω, and the ratio in Eq. 1.9 equals 1

for any pair of con�gurations. This is not surprising in the magnetic analogy,

since thermal �uctuations tend to disrupt the e�ects of the magnetic interaction

between spins. On the other hand, low temperatures make lower energy states

exponentially more likely. Let us call E0 the energy of the ground state. For

T → 0 (β →∞), the Boltzmann distribution becomes:

P∞(S) = 1 if H(S) = E0

P∞(S) = 0 if H(S) > E0 ,
(1.10)

which means only the ground state is accessible for the system.

1.2.4 Quantum spin-glass model

A quantum analog of the spin-glass model can be de�ned by mapping each spin

variable si to a two-state quantum system qi:

si = +1→ |ψ⟩i = |+1⟩i
si = −1→ |ψ⟩i = |−1⟩i

(1.11)
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The system Hamiltonian can be rede�ned as follows:

H =
∑
i ̸=j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i , (1.12)

where σz
i are Pauli-z matrices such that.

σz
i |ψ⟩j ̸=i = 0

σz
i |+1⟩i = |+1⟩i
σz
i |−1⟩i = − |−1⟩i .

(1.13)

In the Hamiltonian in Eq. 1.12, all the interaction terms act along the z-

axis. For this reason, the eigenstates of the Hamiltonian correspond to the set

Ω of the classical states of the classical spin-glass model. This means that if

the system is initialized with a con�guration in Ω, it does not evolve as time

passes, i.e. there is no chance for the spins to �ip. If we want to build a true

analog of the classical spin-glass model, we should allow the con�gurations in Ω

to relax and become a superposition of multiple classical states. In the classical

spin-glass model spin-�ip events are possible thanks to thermal e�ects. In the

quantum system, one may introduce a new interaction term that acts along a

di�erent direction, like a transverse magnetic �eld that acts along the x-axis:

H =
∑
i,j,i̸=j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i + g

∑
i

σx
i , (1.14)

with g ∈ R. The last term in the above expression allows the mixing of the

eigenstates of the Hamiltonian in Eq. 1.12. In a suggestive classical analogy,

the quantum superposition of di�erent con�gurations may corresponds to the

statistical ensemble, while the transverse magnetic �eld emulates the presence

of a non-zero temperature.

The e�ect of the transverse �eld depends on the magnitude of g. If g →
0, the e�ect vanishes and the eigenstates become increasingly similar to the

classical states. If g → ∞, the e�ect ampli�es and the total Hamiltonian

H in Eq. 1.14 becomes H ∼ g
∑

i σ
x
i . In this case, the eigenstates of the

Hamiltonian correspond to the eigenstates of σx, which means each spin has an

equal probability to be in the +1 or −1 state.

1.2.5 Simulated annealing

Simulated Annealing (SA) is an algorithmic technique that can be used to �nd

the global minima of a cost function. The cost function to be minimized is
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identi�ed with the energy of a statistical-mechanical system. The system is

then given a control parameter T , called temperature, which is initially set to

a high value, then it is slowly decreased. As T → 0, the system is driven

to the state corresponding to the lowest energy, which is the solution of the

optimization problem. SA is named after the annealing technique in metallurgy,

which involves slowly cooling a metal to increase its hardness.

This Section introduces the concept of Simulated Annealing, stating the

hypotheses that are at the basis of its mechanism. Then, arguments concerning

the speed of convergence of the method are presented. The main reference for

this Section is Ref. [110].

The basic elements of SA are the following:

1. A �nite set of possible con�gurations S.

2. A real-valued cost function F de�ned on S. Let S∗ be the set of global

minima of the function F .

3. For each i ∈ S, a set S(i) ⊂ S − i, called the set of neighbors of i.

4. For every i ∈ S, a collection of positive coe�cients qij, j ∈ S, such that∑
j∈S(i) = 1. It is assumed that j ∈ S(i) if and only if i ∈ S(j).

5. A nonincreasing function T : N → (0, inf), called te cooling schedule.

Here N is the set of positive integers, and T (t) is called the temperature

at time t

6. An initial state x(0) ∈ S

Given the above elements, the SA algorithm consists of a discrete-time Markov

chain x(t) which evolves as follows:

� Choose a neighbour j of the state i at random, where i is the current state

x(t). The probability that any particular j is selected is equal to qij.

� The state x(t+ 1) is chosen equal to j with a probability

P = min
[
1, e−(F (j)−F (i))/T (t)

]
. Otherwise, x(t+ 1) = i.

� Repeat the procedure for any following time step t′.

From the above procedure it follows that

P [x(t+ 1) = j | x(t) = i] = qije
− 1

T (t)
max{0,F (j)−F (i)} , (1.15)

if j ̸= i, j ∈ S(i).
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SA algorithm is best understood by considering a homogeneous Markov

chain (the transition probability P in Eq. 1.15 does not depend on time) in

which the temperature T (t) is held at constant value T . Let us assume that

such Markov chain xT (t) is irreducible (each state is accessible from any other

state9), aperiodic (it is false that the probability for the chain to return in a

state i is non-zero only for steps that are multiple of an integer k) and that

qij = qji for all i, j. Then xT (t) is a reversible Markov chain, and its invariant

probability is given by

πT (i) =
1

ZT

e−
F (i)
T , i ∈ S , (1.16)

where ZT is a normalizing constant.

From Eq. 1.16 it follows that, as T → 0 the probability is concentrated on

the set S∗ of global minima of F .

The probability distribution in Eq. 1.16 is the canonical (Boltzmann) dis-

tribution. Its important role in statistical mechanics makes it relevant to devise

methods to generate sample elements of S drawn according to πT . A strategy

to produce such samples consists in simulating the Markov chain xT (t) until

it reaches equilibrium, and this method is known as the Metropolis algorithm

[111].

In the optimization contest, low energy elements of S can be produced with

high probability if we produce random samples according to πT (t) with T small.

Unfortunately, when T is very small the Markov process requires a great time to

reach equilibrium. For this reason, the SA algorithm exploits an inhomogeneous

Markov process which shortens the time needed to reach optimal samples by

slowly decreasing temperature.

Convergence conditions for Simulated Annealing

It is interesting to know under which conditions SA converges to the global

minima. We say SA achieves convergence when:

lim
t→inf

P [x(t) ∈ S∗] = 1 . (1.17)

Note that the method converges in probability, which means that for any time

tf there is a non-zero probability for the chain to produce a state which is not a

global minimum. In 1988, Hajek described a su�cient and necessary condition
9A state j is said to be accessible from a state i if there is a number of steps n > 0 such

that a chain started in state i has a non-zero probability to reach j after n steps.
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on the cooling schedule for SA to converge in probability to the set of global

minima of the cost function [112].

Theorem 1.2.1 (Hajek, 1988). We say that state i communicates with S∗ at

height h if there exist a path in S (where each element is a neighbour of the

previous one) that starts at i and ends at some element of S∗, and such that the

target value of F along the path is F (i)+h. Let d∗ be the smallest number such

that every i ∈ S communicates with S∗ at height d∗. Then, the SA algorithm

converges if and only if limt→inf T (t) = 0 and

inf∑
t=1

e−d∗/T (t) = inf . (1.18)

The constant d∗ is a measure of the di�culty for the Markov chain to escape

from a local minimum and go from a nonoptimal state to S∗. We can suppose

that d∗ > 0 always, since d∗ = 0 holds only if the problem does not have sub-

optimal local minima (in which case the solution could be found by applying a

naive gradient descent method). If the Markov chain falls into a local minimum,

the SA algorithm makes an in�nite number of trials to escape from it, and the

probability of success at each trial is of the order of e−d∗/T (t). Then condition

in Eq. 1.18 amounts to saying that an in�nite number of these trials will be

successful.

Following the result of Theorem 1.2.1, many popular cooling schedules are

of the form

T (t) =
d

log(αt+ 1)
, (1.19)

where d and α are positive constants. It is easy to see that such a cooling

schedule respects the conditions of the theorem if and only if d ≥ d∗. In 1984

Geman and Geman [113] proved for the �rst time that SA converges with this

schedule.

Respecting the conditions for the convergence of SA it is not su�cient to

make SA useful. We also need to know the speed of convergence. As stated in

[110], it can be shown that for any schedule T (t) = d/ log(αt+ 1), and for all t,

max
x(0)

P [x(t) /∈ S∗ | x(0)] ≤ A/ta , (1.20)

where A and a are positive constants depending on the function F and the

neighborhood structure. If we wish x(t) to be outside S∗ with probability less

than ε, we need t ≥ (A/ε)1/a.
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In many real scenarios the selected schedule for SA is too fast to ensure

statistical guarantee of �nding an optimal solution, due to the need to �nd a

solution while respecting wall time limitations. Sometimes the term Simulated

Quenching is used to de�ne an abrupt acceleration of SA towards the end of

the annealing schedule [114].

1.2.6 Quantum Annealing

This Section presents and describes Quantum Annealing (QA), a di�erent ap-

proach to solve combinatorial optimization problems that extend simulated an-

nealing to quantum systems. After an introduction to the concept, some math-

ematical foundations of QA are presented.

If you are interested in further information regarding Quantum Annealing,

beyond what is presented in this Thesis, you can consult [115].

A notation disclaimer: QA vs AQC

As anticipated in Section 1.2.1, the terms Quantum Annealing (QA) and Adi-

abatic Quantum Computing (AQC) have a di�erent historical origin but their

meanings can overlap. QA was introduced by Kadowaki and Nishomori 1998 as

an approach to solve optimization problems via quantum tunnelling, by tuning

the time-dependent transverse �eld of an Ising model in the same way as the

temperature is tuned in SA [79]. AQC was introduced by Fahri et al. in 2000

[85] as an optimization technique that explicitly exploited the adiabatic theo-

rem. Based on these seminal papers, AQC can be seen as a generalization of

the QA concept, since Fahri et al. did not limit the discussion on the sole Ising

model.

The present Section is thus named after QA since the main result is a conver-

gence condition that applies to the Ising model Hamiltonian (the mathematical

derivation is inspired by the 2008 paper by Morita and Nishimori [116]).

Introduction to Quantum Annealing

Optimization problems consist in �nding the global minima of a certain cost

function, which can also been seen as an energy functional. In SA, we make

use of thermal �uctuations to let the system overcome energy barriers standing

between the actual state and the ground state for the energy functional. Tem-

perature is then slowly lowered so that the system eventually converges to the

set of global minima.
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It is interesting to wonder if such a paradigm can be extended to a quantum

mechanical system. Quantum �uctuations can be considered as the tendency of

the quantum system to explore the phase space of the classical con�gurations.

Setting a high amplitude for such quantum �uctuations makes it easier for the

system to explore the phase space. Then this tendency could be suppressed to

force the system to the ground state. In this way, we are mimicking the e�ects

of temperature in SA.

An algorithm that controls a quantum system by implementing a schedule

where quantum �uctuations amplitude is gradually reduced is called a Quantum

Annealing (QA) algorithm. The physical idea underlying such a procedure is

to keep the system close to the instantaneous ground state of the quantum

system, analogously to the quasi-equilibrium state to be kept during the time

evolution of SA. In QA, quantum tunneling between di�erent states replaces

thermal hopping in SA.

Similarly to SA, QA is a generic algorithm applicable, in principle, to any

combinatorial optimization problem and is used as a method to reach an ap-

proximate solution within a given �nite amount of time. Although SA is usually

considered a useful and e�ective method for solving such problems, some ex-

perimental evidence suggests that QA can outperform SA in certain cases. The

performances of SA vs QA are discussed thoroughly in Section 2.1.

One major drawback of QA is that a full practical implementation should

rely on a quantum computer since time-dependent Schrödinger equations with

a very large scale have to be solved. Quantum computers are still at an early

stage of development, and only small-size problems can be e�ectively solved.

Nonetheless, QA theory suggests that future quantum devices could tackle prob-

lems considered di�cult for SA methods.

In recent years, adiabatic quantum computers have undergone a fast devel-

opment. Such devices, presented in detail in Section 1.3, are a physical real-

ization of the QA concept and constitute one prominent paradigm of quantum

computation.

Adiabatic theorem and convergence conditions of Quantum Anneal-

ing

In this Section, the principles of QA are introduced in mathematical terms.

The main references for this Section are [116] and [117]. First, the proof of the

adiabatic theorem is reviewed. Then, the spin-glass model with a transverse �eld

is introduced as an example of QA implementation. Finally, the convergence

condition for QA is presented.
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Adiabatic theorem � Let us consider a general Hamiltonian which de-

pends on time t only through the dimensionless time s = t/τ , where τ is a

characteristic time scale of the system:.

H(t) = H̃

(
t

τ

)
≡ H̃(s) . (1.21)

The parameter τ is introduced to control the rate of change in the Hamiltonian.

By varying the dimensionless time s, we can analyze how the system evolves

and responds to the changes in the Hamiltonian in a more manageable way.

In quantum systems the state vector |ϕ(t)⟩ follows the real-time Schrödinger

equation,

i
d

dt
|ϕ(t)⟩ = H(t) |ϕ(t)⟩ , (1.22)

where we set ℏ = 1. In terms of the dimensionless time we get:

i
d

ds

∣∣∣ϕ̃(s)〉 = τH̃(s)
∣∣∣ϕ̃(s)〉 . (1.23)

We assume that the initial state of the system at s = 0 is chosen to be the

ground state of the initial Hamiltonian H̃(0) = H(0) and that the ground state

of H̃(s) is not degenerate for s ≥ 0.

We are interested in obtaining a su�cient condition that allows to evolve the

H̃(s) in time in such a way that, at any s, the state of the system corresponds

to the istantaneous eigenstate |0(s)⟩ corresponding to the lowest eigenvalue at

that time. This is usually called adiabatic evolution. We will now present the

adiabatic theorem (allegedly formulated for the �rst time by Born and Fock

in 1928 [118]) which provides a su�cient condition to adiabatically evolve the

system. To keep track of the distance between the state vector and the ground

state, it is natural to expand the state vector by the instantaneous eigenstates

of H̃(s).

First, we derive useful formulas for the eigenstates. The kth instantaneous

eigenstate of H̃(s) is denoted as |k(s)⟩:

H̃(s) |k(s)⟩ = εk(s) |k(s)⟩ , (1.24)

where εk(s) is the eigenvalue of the state |k(s)⟩ with respect to the Hamiltonian

H̃(s). We assume that |0(s)⟩ is the ground state of H̃(s) and that the eigenstates

are orthonormal, which means that ⟨j(s)|k(s)⟩ = δjk. Let us di�erentiate Eq.

1.24 with respect to s, and then project the obtained expression onto the state
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|j(s)⟩. We obtain〈
j(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
=

−1
εj(s)− εk(s)

〈
j(s)

∣∣∣∣∣dH̃(s)

ds

∣∣∣∣∣k(s)
〉
, (1.25)

if j ̸= k. In the case j = k we can impose the following condition:〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
= 0 . (1.26)

Note that, if j = k, the calculation that brings from Eq. 1.24 to Eq. 1.25 does

not produce any condition on the term appearing in Eq. 1.26. Nonetheless,

we can demonstrate that the condition in Eq. 1.26 is always achievable by a

time-dependent phase shift. Indeed, if we de�ne
∣∣∣k̃(s)〉 = eiθ(s) |k(s)⟩, we �nd

〈
k̃(s)

∣∣∣∣∣ dds
∣∣∣∣∣k̃(s)

〉
= i

dθ

ds
+

〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
. (1.27)

The second term on the right hand side is purely imaginary, because〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉∗

+

〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
=

d

ds
⟨k(s)|k(s)⟩ = 0 . (1.28)

Then, a proper tuning of the phase factor θ(s) su�ces at making the sum of the

right-handed terms of Eq. 1.27 equal to zero. Thus, condition Eq. 1.26 holds

for the phase-tuned eigenstate
∣∣∣k̃(s)〉 even if the original eigenstate |k(s)⟩ does

not satisfy it.

The following theorem holds [116]:

Theorem 1.2.2. If the instantaneous ground state of the Hamiltonian H̃(s) is

not degenerate for s ≥ 0 and the initial state is the ground state at s = 0, i.e.∣∣∣ψ̃(0)〉 = |0(0)⟩, the state vector
∣∣∣ψ̃(s)〉 has the asymptotic form in the limit of

large τ as ∣∣∣ψ̃(s)〉 =
∑
j

cj(s)e
−iτϕj(s) |j(s)⟩ , (1.29)

where

c0(s) ≈ 1 +O(τ−2) , (1.30)

and

cj ̸=0(s) ≈
i

τ

[
Aj(0)− eiτ

[
ϕj(s)−ϕ0(s)

]
Aj(s)

]
+O(τ−2) , (1.31)
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where ϕj(s) ≡
∫ s

0
ds′εj(s

′), ∆j(s) ≡ εj(s)− ε0(s) , and

Aj(s) ≡
1

∆j(s)2

〈
j(s)

∣∣∣∣∣dH̃(s)

ds

∣∣∣∣∣0(s)
〉

(1.32)

We can conclude that the system evolves adiabatically if the right-hand side

of 1.31 is much smaller than unity. In such case, at any time s, the system has

a low probability to occupy states di�erent from the istantaneous ground state

|0(s)⟩. This condition can be rewritten as

τ ≫ |Aj(s)| . (1.33)

Expression 1.33 implies that

Adiabatic evolution is possible when τ is large, which means

H̃(s) changes slowly in time.

Using the original time variable t, the adiabaticity condition is further rewrit-

ten as
1

∆j(t)2

∣∣∣∣∣
〈
j(t)

∣∣∣∣∣dH(t)

dt

∣∣∣∣∣0(t)
〉∣∣∣∣∣ = δ ≪ 1 , (1.34)

which must hold for all times. This is the usual expression of the su�cient

condition for adiabatic evolution.

Convergence conditions of quantum annealing � We now derive a

condition which guarantees the convergence of QA. The problem consists of

�nding an anneal schedule (i.e. the time dependence of the control parameters)

such that the adiabaticity condition (Eq. 1.34) is satis�ed. We consider the

transverse-�eld spin-glass model introduced in Section 1.2.4 since modern QA

devices implement this Hamiltonian.

Suppose we want to solve an optimization problem that can be represented

as the ground-state search of a spin-glass model of the general form

Hglass ≡ −
N∑
i=1

Jiσ
z
i −

∑
ij

Jijσ
z
i σ

z
j −

∑
ijk

Jijkσ
z
i σ

z
jσ

z
k − ... , (1.35)

where the σz
i are the Pauli matrices that act along the z-direction. Many combi-

natorial optimization problems can be written in this form, by mapping binary

variables to spin variables.
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An important assumption is that Hamiltonian 1.35 is extensive, i.e. propor-

tional to the number of spins N for large N . To realize QA, a �ctitious kinetic

energy is typically introduced by the time-dependent transverse �eld

HT ≡ −
N∑
i=1

σx
i . (1.36)

As anticipated in Section 1.2.4, each term σx
i enables spin �ips, quantum �uc-

tuations, or quantum tunnelling between the states that possess eigenvalues +1

and -1 with respect to σz
i . Such e�ects allow a quantum search of the phase

space. The total Hamiltonian takes the expression

H(t) = −F (t)

(∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

)
−G(t)

∑
i

σx
i

≡ F (t)HP +G(t)HT ,

(1.37)

where t is the physical time, F (t) and G(t) are positive real numbers, HP is the

Hamiltonian whose ground state correspond to the solution of the optimization

problem, and H(t) is the transverse �eld Hamiltonian. The problem Hamilto-

nian HP in Eq. 1.37 is a simpli�ed version of the more general Hglass. The

reason for this restriction comes from the fact that modern quantum anneal-

ers can only implement Hamiltonians with interaction terms that are at most

quadratic. Nonetheless, the following deductions about convergence for QA

algorithms hold for a generic Hglass.

Each eigenstate of H(τ) is a set of N binary values S = {s1, s2...sN}, where
N is the total number of spin degrees of freedom of the system. Each spin

variable si can assume two di�erent states, +1 and −1. There are 2N di�erent

eigenstates of HP , one for each possible combination of the N spin variables. A

generic state of the system can be expressed as:

|ϕ⟩ =
∑

{s1,...,sN}∈Ω

α
(
{s1, ..., sN}

)
|s1, ..., sN⟩ ,

with
∑

{s1,...,sN}∈Ω

|α
(
{s1, ..., sN}

)
|2 = 1

(1.38)

where the sums are over each possible con�guration of the N spins.

Suppose we are interested in �nding which of the eigenstates corresponds

to the minimum energy of HP . By choosing a correct annealing schedule for

F (t) and G(t) (i.e. choosing their dependence on time), we can encourage the

system to converge to the global minimum. At t = 0 we set G(0)≫ F (0). This
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way, the initial ground state will be an eigenstate of Hamiltonian HT , which

means an equally probable superposition of all the classical states in the phase

space Ω. As t grows, the system must be gradually forced into states that

are a mixture of low-energy con�gurations with respect to Hamiltonian HP ,

so we must raise F (t) and lower G(t). If the annealing schedule is su�ciently

slow, the adiabatic theorem assures that the system will remain close to the

lowest energy eigenstate of the instantaneous Hamiltonian H(t). For t → ∞,

we impose G(t) ≪ F (t), so that the system �nds itself in a superposition

dominated by the state corresponding to the spin con�guration that minimizes

HP .

An important issue is how slowly we should modify F (t) and G(t) to keep

the state vector arbitrarily close to the instantaneous ground state of total

Hamiltonian 1.37. For simplicity, we suppose to �x F (t) to a positive constant

k for every time t. Expression 1.37 can then be rewritten as

H ′(t) = HP + Γ(t)HT (1.39)

where H ′ = H/k and Γ(t) = G(t)/k. Note that modern quantum computers

allows to control the time dependency of both F and G terms. Nonetheless,

the evolution of the ratio G(t)/F (t) is the driving force of quantum annealing.

For this reason, what can be learned for F (t) �xed is instructive and can then

be extended to more general contexts.

The following theorem provides a su�cient condition for convergence.

Theorem 1.2.3. Imposing the adiabaticity condition in Eq. 1.34 on the trans-

verse �eld spin-glass model in Eq. 1.39 yields the following su�cient condition

of convergence for QA:

Γ(t) = a(tδ + c)−1/(2N−1) (1.40)

for t > 0. Here a and c are constants of order O(N0) and δ is a parameter

su�ciently small such that the adiabaticity condition in Eq. 1.34 holds.

A proof for this theorem can be found in reference [116].

Computational complexity � The power-law dependence on t in Eq. 1.40,

su�cient to ensure convergence for QA, is much faster than the log-inverse law

typical of SA, T (t) = pN/ log(αt+ 1) (from Eq. 1.19). However, we can not

conclude that QA provides an algorithm to solve NP problems in polynomial

time. Indeed, suppose we want Γ(t) to reach a certain small value ε so that the

system is close to the ground state of HP . The time required to satisfy such
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condition is estimated from Eq. 1.40 as

tf ≈
1

δ

(
1

ε

)2N−1

. (1.41)

This relation shows that the QA algorithm requires a time exponential in N to

converge. In general, ensuring convergence is di�cult for those cases where the

gap from the global minimum is vanishingly small [93].

Quantum phase transitions in quantum annealing

The adiabaticity condition expressed in Eq. 1.34 can be also written as [119]:

max
[
⟨1(t)| dH(t)

dt
|g(t)⟩

]
min [∆(t)]2

≪ 1 , (1.42)

where ⟨g(t)| and ⟨1(t)| are the instantaneous ground and �rst-excited states at

time t, respectively, and ∆(t) denotes the instantaneous minimum energy gap

from the ground state. In the previous Section, we interpreted this results as a

prescription for the annealing process to be performed slowly. That being said,

the condition in Eq. 1.42 also implies that QA works better when ∆(t) is large

[120]. Unfortunately, min [∆(t)] tends to decrease when the size of the system

increases. In particular, min [∆(t)] vanishes in correspondence of a quantum

phase transition (QPT). At the beginning of the quantum annealing process of

an Ising system with longitudinal and transverse �elds (look at the Hamilto-

nian de�ned in Eq. 1.37) the system is in the ground state of the transverse

�eld, which implies an expected magnetization ⟨σz|σz⟩ = 0 for each spin. This

means the system is in a disordered state. On the other hand, at the end of the

annealing, each spin has a �xed magnetization +1 or −1 in the ground state,

therefore the state exhibits order. This implies the system encounters a QPT

during QA, where the gap from the ground state is expected to be null in the

thermodinamic limit, which implies a degenerate ground state. At �nite sizes,

the scaling of the minimum energy gap at the critical point follows a polynomial

law ∆c ∼ L−z, where L denotes the linear size of the system and the critical ex-

ponent z characterizes the associated quantum critical point [121]. Therefore, in

order to respect the adiabaticity condition, the time required for the QA process

scales polynomially with the system size. Unfortunately, what we just discussed

holds only in the case of a continuous transition. In general, we must expect

the spin-glass Ising system to undergo a discontinuous QPT which corresponds
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to the change of the ground state from one state to another, without their ener-

gies ever become degenerate. In an approximate picture, we can estimate that

the minimum gap is attained at two times the tunnelling energy between the

two lowest-lying states, which in general decays exponentially as the system

size increases [122]. This means that a discontinuous QPT is expected to hin-

der QA. Consequently, several ways to avoid the discontinuous QPT have been

proposed. To learn more on the topic, read the great introduction to Quantum

Annealing written by Rajak et al. [122].

1.2.7 Convergence condition of SA and quantum adia-

baticity

We now study the convergence condition of SA to be compared with QA. An

approach to this problem has been presented in Section 1.2.5 which made use of

the inhomogeneous Markov chains as in Ref. [113]. Following such an approach

we already presented a cooling schedule that ensures convergence in the limit

t→∞:

T (t) =
pN

log(αt+ 1)
(1.43)

It may be surprising to note that it exists a classical-quantum mapping that

allows obtaining the same cooling schedule as a consequence of the quantum

adiabaticity condition. There is indeed a strong relationship between the quasi-

equilibrium condition for SA in a classical system and the adiabaticity condition

in the corresponding quantum system.

The description of the classical-quantum mapping and the following conclu-

sions follow Refs. [123] and [116] respectively.

Classical-quantum mapping

Mappings between quantum and classical systems often recur to the introduc-

tion of an extra imaginary temporal dimension (sometimes called Trotter dimen-

sion) to the quantum system. The mapping discussed in the present Section

makes use of a di�erent approach, which allows expressing the thermal expec-

tation value of a classical system in terms of the ground-state expectation value

of a corresponding quantum system without extra dimensions.

Suppose that we want to minimize the value of a classical Hamiltonian H

that can be written as a spin system as in Eq. 1.35. Consider a classical physical

quantity Q that depends on the set of values {si} = {s1, s2, ..., sN} for the N
spin degrees of freedom of the system. The thermal expectation value of such
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quantity Q({si}) is

⟨Q⟩T =
1

Z(T )

∑
{si}

e−βHQ({si}) , (1.44)

where the sum runs over all con�gurations of spins, i.e., over the combinations

of eigenvalues si = ±1 of the Pauli matrices σz
i .

To proceed further the following theorem is an important element.

Theorem 1.2.4. Thermal expectation value 1.44 is equal to the expectation

value of Q with respect to the quantum wave function

|ϕ(T )⟩ = e−βH/2
∑
{s}

|{σi}⟩ , (1.45)

where |{si}⟩ is the basis of the system composed of states that are simultaneous

eigenstates of all σz
i . The sum runs over all such possible assignments.

Assume T > 0. Wave function 1.45 is the ground state of the quantum

Hamiltonian

Hq(T ) = −χ
∑
j

Hj
q (T ) ≡ −χ

∑
j

(σj
x − eβHj) , (1.46)

where Hj is the sum of the terms of the longitudinal �eld Ising Hamiltonian in

Eq. 1.35 involving site j:

Hj = −Jjσz
j −

∑
k

Jjkσ
z
jσ

z
k −

∑
kl

Jjklσ
z
jσ

z
kσ

z
l − ... (1.47)

and the coe�cient χ in 1.46 is de�ned by χ = e−βp with p = maxj|Hj|.

The �rst half of the theorem is trivial, since

⟨ψ(T )|Q |ψ(T )⟩
⟨ψ(T )|ψ(T )⟩

=
1

Z(T )

∑
{si}

e−βH ⟨{si}|Q |{si}⟩ = ⟨Q⟩T . (1.48)

To show the second half, �rst note that

σj
x

∑
{si}

|si⟩ =
∑
{si}

|si⟩ , (1.49)

since in the states summation above each possible spin orientation is considered,

and (|sj = +1⟩ + |sj = −1⟩) is an (un-normalized) eigenstate for operator σj
x
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with unitary eigenvalue. It is also easy to see that

σj
xe

−βH/2eβHje−βH/2σj
x , (1.50)

because

σj
xe

−βH/2σj
x = e−β(H−Hj)/2σj

xe
−βHj/2σj

x = e−β(H−Hj)/2eβHj/2 = eβHje−βH/2 ,

(1.51)

as both H and Hj are diagonal in the present representation and H −Hj does

not include σz
j , so [H −Hj, σ

x
j ] = 0. Instead, {Hj, σ

z
x} = 0, since each term in

Hj contains σz
j one time. We therefore have

Hj
q (T ) |ψ(T )⟩ = (σj

x − eβHj)e−βH/2
∑
{si}

|{si}⟩ = 0 . (1.52)

Thus |ψ(T )⟩ is an eigenstate of Hq(T ) with eigenvalue 0. In the present repre-

sentation, the nonvanishing o�-diagonal elements of Hq(T ) are all negative and

the coe�cients of |ψ(T )⟩ are all positive. Then |ψ(T )⟩ is the unique ground

state of Hq(T ), according to the Perron-Frobenius theorem [124]. This proves

the second and last part of theorem 1.2.4.

An important observation is that, in the high-temperature limit, the quan-

tum Hamiltonian that appears in the theorem is composed just of the transverse

term, since the longitudinal term appears multiplied by the inverse temperature

β (Eq. 1.46):

lim
T→∞

Hq(T ) = −
∑
j

(σj
x − 1) . (1.53)

It follows that in this limit the ground-state wave function |ψ(T )⟩ corresponds
to a summation where each state of the basis appears with equal weight.

The low-temperature limit has, in contrast, the purely classical Hamiltonian

lim
T→∞

Hq(T ) = χ
∑
j

eβHj . (1.54)

In this limit the ground state of Hq corresponds to the ground state of the

Hamiltonian of the classical system H.

From the two limits, we see that thermal �uctuations in the original clas-

sical systems are mapped to the quantum �uctuations. A decrease in thermal

�uctuations in SA is mapped to the decrease in quantum �uctuations for the

quantum system.
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Convergence condition of SA from adiabaticity

The correspondence found is used to analyze the condition for quasi-equilibrium

in classical SA using the adiabaticity condition for the quantum system.

Theorem 1.2.5. The adiabaticity conditon for the quantum system of Hq(T )

yileds the time dependence of T (t) as

T (t) =
pN

log(αt+ 1)
(1.55)

in the limit of large N . The coe�cient α is exponentially small in N .

The above theorem can be proved by making use of the following three

lemmas. The �rst one is not demonstrated here, but the proof can be found in

Ref. [116].

Lemma 1.2.6. The energy gap ∆(T ) of Hq(T ) between the ground state and

the �rst excited state is bounded below as

∆(T ) ≥ a
√
Ne−(βp+c)N , (1.56)

where a and c are N-independent positive constants in the asymptotic limit of

large N .

Lemma 1.2.7. The matrix element of the derivative of Hq(T ) satis�es

⟨ψ1(T )| ∂THq(T ) |ψ(T )⟩ = −
∆(T ) ⟨ψ1(T )|H |ψ(T )⟩

2kBT 2
(1.57)

where ψ1(T ) is the normalized �rst excited state of Hq(T ).

Proof. By di�erentiating the identity

Hq(T ) |ψ(T )⟩ = 0 , (1.58)

we �nd(
∂

∂T
Hq(T )

)
|ψ(T )⟩ = −Hq(T )

∂

∂T
|ψ(T )⟩ = Hq(T )

(
− 1

2kBT 2
H

)
|ψ(T )⟩

(1.59)

The lemma is easily proved if we note that, since the ground state of Hq(T ) is

zero, we can write Hq(T ) |ψ1(T )⟩ = ∆(T ) |ψ1(T )⟩.

Lemma 1.2.8. The matrix element of H satis�es

|⟨ψ1(T )|H |ψ(T )⟩ ≤ pN
√
Z(T ) (1.60)
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Proof. There are N terms in H =
∑

j Hj, each of which is of norm of at most

p. The factor
√
Z(T ) appears from normalization of |ψ(T )⟩.

We can now prove Theorem 1.2.5. The condition of adiabaticity (Eq. 1.34)

for the quantum system Hq(T ) reads

1

∆(T )2
√

(Z)

∣∣∣∣∣ ⟨ψ1(T )| ∂THq(T ) |ψ(T )⟩
dT

dt

∣∣∣∣∣ = δ , (1.61)

with su�ciently small δ. If we rewrite the matrix element by Lemma 1.2.7, the

left-hand side is
|⟨ψ1(T )|H |ψ(T )⟩|
2kBT 2∆(T )

√
Z(T )

∣∣∣∣dTdt
∣∣∣∣ . (1.62)

By replacing the numerator by its bound (Lemma 1.2.8), we have

pN

2kBT 2∆(T )

∣∣∣∣dTdt
∣∣∣∣ = δ̃ ≪ 1 (1.63)

as a su�cient condition fo adiabaticity. The statement of Theorem 1.2.5 can

now be proved using the bound of Lemma 1.2.6 and integrating the di�erential

equation 1.63 for T (t) (noticing that dT/dt < 0).

1.2.8 Computational equivalence between Adiabatic Quan-

tum Computing and Gate-Based Quantum Com-

puting

To narrate how the discussion about how the universality of AQCs evolved in

time, we need to introduce the probabilistic analogue of the NP class in the

quantum setting, which is the QMA (Quantum Arthur-Merlin games) class.

The QMA class was introduced by Watrous in [125], and the name was inspired

by the classical class MA, which is the randomized analogue of NP [126]. QMA

it is the class of all languages that can be probabilistically veri�ed by a quantum

veri�er in polynomial time. Proving that a computational padaradigm can solve

e�ciently a QMA complete problem is equivalent to prove it can solve e�ciently

any problem in QMA.

Kitaev de�ned the quantum analogue of the classical SAT problem, which

he called the k-LOCAL HAMILTONIAN problem [127]. A k-local Hamiltonian

contains a set of constraints involving at most k qubits. In the k-LOCAL

HAMILTONIAN problem we are asked to determine whether the ground state

energy of a given k-local Hamiltonian is below one given threshold or above

another. AQC is precisely the framework in which we can tackle and solve
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the k-LOCAL HAMILTONIAN problem in a native way, by QA. Therefore, if

a particular instance of the k-LOCAL HAMILTONIAN is QMA-complete, it

means that a system capable of implementing QA of a k-local Hamiltonian can

solve any problem in QMA. Kitaev proved that the 5-LOCAL HAMILTONIAN

problem is QMA complete [127]. Later, Kempe and Regev showed that even

3-LOCAL HAMILTONIAN is QMA complete [128].

As anticipated in Section 1.2.1, the �rst (rather complex) proof of equiva-

lence between AQC and universal QC was presented by Aharonov et al. in a

2004 paper that can now be found published in its most recent 2008 version

[103]. The showed how to simulate a gate-based quantum algorithm by imple-

menting Hamiltonian terms that served as "clocks" for counting time during

the adiabatic process. The total Hamiltonian required nearest neighbour two-

body interactions between quantum particles possessing six distinct accessible

states. Proving the universality of a paradigm is a stronger result than proving

it can solve QMA-complete problems. It is therefore correct to say that an

AQC system based on Aharonov's Hamiltonian can also solve QMA-complete

problems.

Further results followed regarding QMA completeness. It can indeed be

proved that MAX-k-SAT10 is a special case of the k-LOCAL HAMILTONIAN

problem. One can represent the n binary variables involved in the MAX-k-SAT

as n qubits, and represent each clause with a diagonal Hamiltonian contain-

ing a k-qubits interaction that assign a higher energy to the combination of

values forbidden by the MAX-SAT clause. Therefore, the lowest eigenvalue of

the sum of the Hamiltonians corresponds to the maximum number of clauses

that can be satis�ed simultaneously. Since MAX-2-SAT is known to be NP-

complete, we can conclude that the 2-LOCAL HAMILTONIAN problem is at

least as hard as any problem in NP, which means it is NP-hard. This does

not imply any conclusion regarding QMA completeness, but in 2004 Kempe et

al. proved that the 2-LOCAL HAMILTONIAN problem is indeed also QMA-

complete [129]. In the same paper, they showed that adiabatic computation

with 2-local Hamiltonians is equivalent to quantum computation in the circuit

model. This result is interesting because modern AQC devices are limited to

2-local Hamiltonians. Anyway, the result by Kempe et al. requires in general

all-to-all connectivity. Nonetheless, a year later, Oliveira and Terhal generalized

the result about QMA completeness, showing that the 2-LOCAL HAMILTO-

NIAN problem remains QMA-complete even if the Hamiltonians are restricted
10MAX-k-SAT is a reduction of the well-known MAX-SAT problem where each clause has

exactly k variables. For a brief introduction to SAT and MAX-SAT problems, see Section
2.2.1.
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to nearest neighbor interactions between qubits on a two-dimensional grid [130].

Leaving universality aside for a moment, this result imply that AQCs can solve

any problem in QMA using a spin glass system equipped with local, sparse,

two-terms interactions. Unfortunately, there is still an operative di�erence from

real-world AQCs. Indeed, D-Wave Systems devices implement only a particu-

lar type of 2-local interaction, which is σzσz. The results by Kempe and then

Oliveira and Terhal are not specialized for this single type of interaction. In

2007, Biamonte and Love [131] showed that AQCs based on spin glasses could

be made universal by inserting a new two-local interaction of the form σxσx or

σxσz, besides the σzσz usual term. D-Wave tested this possibility in 2019 [132]

but no commercially available solver with such 2-local interactions have been

unveiled up to now (2024).

1.2.9 Simulated Quantum Annealing

Earlier than the �rst physical implementations, researchers implemented simu-

lations of the QA algorithm. Simulations have been useful and remain useful

today to understand QA at a theoretical and numerical level. In addition to

that, we will see how Simulated Quantum Annealing (SQA) has proved more

e�cient than SA in several cases, thus constituting a viable classical approach

to solve optimization problems (see also Section 2.6.2 for empirical results).

The usual approach to simulate QA is a Quantum Monte Carlo approach

[133]. There are two main options, mainly using a (low) �nite temperature

approach or a zero-temperature method. The zero-temperature transfer-matrix

Monte Carlo [134] and the Green's function Monte Carlo [135] belong to the

zero-temperature methods, but they su�er severely from di�erent drawbacks,

which renders them much slower than �nite-temperature algorithms in prac-

tice. The �nite temperature approach is usually implemented via the Path

Integral Monte Carlo (PIMC). This method maps the partition function of a

d-dimensional quantum Hamiltonian H onto that of an e�ective classical Hamil-

tonian in d + 1 dimensions. Then, the classical Hamiltonian is simulated at a

�xed low temperature so that thermal �uctuations are present but limited.

Quantum �uctuations are gradually reduced during the "annealing" process in

d+1 dimensions by reducing the kinetic term of the classical Hamiltonian [135].

PIMC is thus used to simulate the equilibrium behaviour of a system at �nite

temperature T. This is a limitation, since in the quantum annealing context

we would like to follow the low-lying states (ideally, the ground state) of the

time-dependent Hamiltonian of the system [134]. It is also clear that this evolu-

tion is not the correct integration of the Schrödinger equation, most obviously
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because the system is not able to explore the whole con�guration space as a

quantum wave function could do. Nonetheless, this is a really useful approxi-

mation, since an integration of the time-dependent Schrödinger equation, that

would give the exact time evolution of the system, is almost always infeasible,

except for extremely small systems. As an example, in 1998, Kadowaki and

Nishimori [79] solved the time-dependent Schrödinger equation for a small spin

glass system of N = 8 spins, showing that QA converged to the global minimum

with much higher probability than SA in all cases where the same schedule was

used for the temperature in SA and the transverse �eld in QA. In particular,

they found that QA approached the ground state with high accuracy for any

schedule slower than ∝ 1/
√
t.

The PIMC method was used by Martonak et al. in [136] to simulate QA

on a two-dimensional random Ising. They provided data supporting previous

�ndings from the same author [137], stating that for both classical and quantum

annealing the residual energy after annealing is inversely proportional to a power

of the logarithm of the annealing time, but the quantum case has a larger power

that makes it faster. They also forecast a freezing e�ect, namely the tendency

of the system to converge to a low-temperature excited state at the end of

the annealing if the schedule was too fast11. Such �ndings are supported by

[138], where SQA achieved better performances and scaling with respect to

SA on an instance of the travelling salesman problem implemented as an Ising

model. On the other hand, [139] proved that SQA performs worse than SA on

k-satis�ability problems. The result shows that, despite the shortcomings of

SA, SQA is not straightforwardly better than SA in every application.

The aforementioned research works made use of the spin glass model as a

benchmark to test SQA. Anyway, SQA is not limited by a physical hardware,

which means it can be used to explore adiabatic quantum evolution in systems

di�erent from the spin glass model [140]�[142]. In this case, for the reason pre-

sented in Section 1.2.6, the term QA should be substituted by AQC. PIMC has

been applied to perform simulations of boson systems in [140], obtaining good

agreement between simulations and experimental measurements on super�uid
4He for various physical quantities. In [141], a similar approach is used to the

minimization (folding) of a simpli�ed protein model that is know to exhibit

frustrated behaviour. In this case the authors chose to perform a simulation

with a non-negligible temperature to better exploit both quantum and thermal

e�ects. In [142], simulated AQC is used to obtain the ground-state structure

of classical Lennard�Jones clusters, namely the geometrical structure in which
11See Section 1.3.6 for more information on the freezing point.
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atoms dispose themselves when bonded by Lennard-Jones interactions. In this

case the simulated quantum system unexpectedly exhibited ergodicity break-

ing, not being able to e�ciently explore the con�gurations, which is the main

shortcoming expected from SA.

SQA can also be compared to the exact QA algorithm to gain insights of

what can we actually expect from a system that is able to exploit quantum tun-

neling. In [143] the authors tested SQA on a simple optimization problem with

a single tall thin energy barrier. They showed that SQA takes polynomial time

to solve the problem, while SA takes an exponential time. This is considered

by the authors evidence against the prospect of exponential quantum speedup

using tunneling, at least in this case, since in [144] it was demonstrated for the

same problem that QA was exponentially faster than SA. The results in [143]

thus suggest that the bene�ts of tunneling through energy barriers with adia-

batic evolution should not be thought of as an exclusively quantum advantage,

since it can also be achieved by a general-purpose classical optimization algo-

rithm. Nonetheless, we can also �nd situations where SQA takes exponentially

longer than the quantum evolution being simulated [145], [146]. In particular,

results from [147] suggests that QA has an advantage over PIMC when there are

multiple homotopy-inequivalent paths for tunneling. The authors demonstrated

that frustration can generate an exponential number of tunneling paths, which

under certain conditions can lead to an exponential advantage for incoherent

tunneling over classical PIMC escape.

SQA performances can also serve to inspect what physical AQC could achieve.

Indeed, one could expect that hardware AQC devices will be much faster in

implementing a time-evolution that is so di�cult to simulate. An important

question arises whether physical QA can beat its simulated analogue. In [107],

the authors study the correlation between the probability of success of SQA,

SA, and a D-Wave device in �nding the ground state of various spin glass in-

stances. Their �ndings show that D-Wave correlates much better with SQA,

which suggests QA is a more accurate model to forecast success probabilities for

AQC than SA. Anyway, in [148] the authors show a signi�cantly better scaling

for SQA compared to both D-Wave and SA when applied to an optimization

problem whose energy landscape had been designed to favor solvers exploiting

tunneling e�ects. This suggest that physical implementations of QA could be

limited by non-ideal e�ects12.
12See Section 1.3.6 to learn more regarding all the e�ects that make hardware AQC devices

di�er from the theoretical QA process.
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1.2.10 Embedding techniques

In this section we introduce the concept of embedding, a fundamental procedure

that allows to solve on AQCs problems that do not possess a direct map to the

AQC topology. After a brief introduction, we de�ne the embedding problem and

describe the most suitable topologies to realize hardware devices that can embed

most of the problem graphs. We then present the detrimental consequences of

poor embeddings and the most popular computational methods to perform the

embedding. We will also discuss the relevant literature on the topic, while we

relegate to Section 3.1.4 the outline of the various techniques that have the

scope of enhancing or speed up the computation of a suitable embedding.

Among the various bottlenecks that impede an e�cient physical implemen-

tation of a QA protocol the main ones are the noise sources inside and outside

the device (see Sec. 1.3.6), and the limited number of connections among qubits.

At the time of writing (2024) the most highly connected AQC device publicly

available is the Advantage2_prototype1.1, which comprises 563 working qubits,

each connected at most with 20 other qubits. According to the D-Wave Leap

website [149] the chip implements 4790 connections, which implies that, on av-

erage, every qubit is connected to 2 × 4790/563 ∼ 17 other qubits. A fully

connected network of 563 qubits would require 563× (563−1)/2 = 158203 con-

nections, which means that only roughly 1/33 of the required connections are

actually implemented. A poor connectivity implies that most QUBO13 prob-

lems cannot be mapped directly on the QPU. To make an example, in [150]

Dumoulin, Goodfellow, Courville, and Bengio tested the Chimera14 topology

(the graph of qubits connections in the D-Wave 2000Q models) to train a Re-

stricted Boltzmann Machine (RBM), an unsupervised learning model which

constitutes the most important machine learning application for AQC15. They

state that the RBM can cope with a reasonable amount of missing connections

bewtween its visible and hidden layer, but they also estimate that an RBM

with 784 visible units and 784 hidden units would require to set to zero 99%

of its weights to be cast on a Chimera graph without resorting to embedding,

resulting in dreadful performances. The authors conclude the analysis suggest-

ing that designers of new physical AQC devices should focus their e�orts on

overcoming the limitations imposed by the topology restrictions.
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Figure 1.1: Depiction of the embedding process of a problem on a K4,4

(Chimera) bipartite graph. On the left, the optimization problem we want to
solve is represented as a graph where each units stands for a binary variable.
Each pair of units is connected by an edge only if the cost function contains
a quadratic term where the two units appear multiplied. There is no way
to directly map the variables of this sample problem on the qubits in the
lattice on the right, since some edge is bound to be missing (you can try
and see by yourself). The mapping can instead be performed by recurring
to embedding techniques: it is su�cient to represent some of the variables
as a chain of qubits, instead of considering single qubits. Qubits in a chain
are forced to stay parallel via a strong ferromagnetic coupling, so they can
be seen as a single, two-state quantum system (also called a virtual qubit).
This way we have arti�cially enhanced the lattice topology, allowing for all

couplings among variables to be faithfully represented.
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The minor-embedding

Luckly, there are purely software techniques that allow to enhance the con-

nectivity of AQC. It is su�cient to add redundancy in the QUBO problem

formulation by inserting ancilla qubits that have the sole objective of extending

the reach of the connections of physical qubits. Suppose we have at our dis-

posal an AQC device where qubits are connected one to the other according to

a square lattice topology. We want to use this device to minimize the following

simple QUBO formula:

C(q1, q2, q3) = q1q2 − q2q3 + q3q1 (1.64)

This problem can be represented by a triangular graph where each node repre-

sents a Boolean variable. Unfortunately, there is no place in the device topology

where three qubits are connected all-to-all. We can modify the formula in Eq.

1.64 by substituting one of the variables with two variables:

C(q1, q2, q
1
3, q

2
3) = q1q2 − q2q13 + q23q1 + Jchainq

1
3q

2
3 (1.65)

where Jchain < 0 is a real parameter. The formula expressed in Eq. 1.65 can

be mapped directly on the QPU topology, since variables are now connected in

a square fashion. Additionally, every con�guration of the variables in Eq. 1.65

where q13 and q23 are equal correspond to a con�guration of Eq. 1.64. If we are

able to ensure that q13 = q23 always, then we can think of them as two clones

of a single Boolean variable. This can be done thanks to the term −Jchainq13q23.
If Jchain ≫ 1, the two qubits corresponding to q13 and q23 will tend to stay

parallel (same value). In particular, if Jchain ≫ than other coe�cients in the

QUBO formula, then con�gurations respecting the constraint q13 = q23 will have

a wide energy gap from their analogue where the constraint is not realized.

The strategy we just adopted to enhance the connectivity of the device is an

embedding technique. From a physical point of view it consists in coupling qubits

with strong ferromagnetic coupling to make them behave as a single two-states

quantum system. Whenever two or more qubits are linked together with this

purpose, it is customary to refer to them as a qubits chain. Figure 1.1 can help

understand how this process work on a K4,4 (Chimera) bipartite graph. The

notation Kc,c will be used throughout the text to identify bipartite c× c graphs
(namely, a graph where each one of c nodes is connected to each one of another

13See Section 2.1.1.
14The Chimera topology is introduced in Section 1.2.10.
15See Section 2.4.
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group of c nodes). Kc will instead represent a fully-connected graph comprising

c nodes.

Our examples involved coupling two qubits to make them behave as a single

one. Nonetheless, this same strategy can be in principle applied to an arbitrary

number of qubits. We now formally introduce the general concept of minor-

embedding as presented in [151].

De�nition 1. Let U be a �xed hardware graph. Given a graph G, the minor-

embedding of G is de�ned by

ϕ : G→ U (1.66)

such that

- each vertex in V (G) (the set of vertices in G) is mapped to a connected

subtree Ti of U ;

- there exists a map τ : V (G) × V (G) → V (U) such that, for each i, j ∈
E(G) (the set of edges in G), there are corresponding iτ(i,j) ∈ V (Ti) and

jτ(j,i) ∈ V (Tj) with iτ(i,j)jτ(j,i) ∈ E(U). In other words, for each edge in

G connecting vertices i and j, there are two vertices, one in the subtree

corresponding to i and one in the subtree corresponding to j, which are

connected by an edge in U . This edge in the hardware graph will represent

the edge in G between vertices i and j.

Given G, if ϕ exists, we say G is embeddable in U .

The mapping is named minor embedding since, in graph theory, G is a

minor of U . In few words, a G is a minor of a graph U if G can be formed

by U by deleting vertices, edges, and contracting edges (deleting an edge by

identifying its two vertices as a single vertex). There are two special cases of

minor-embedding

� Subgraph-embedding : Each Ti consists of a single vertex in U . In other

words, G is isomorphic to a subgraph of U , and the minor-embedding is

trivial.

� Topological-minor-embedding : Each Ti is a chain of vertices in U . In

other words, for any Ti, vertices in V (Ti) can be ordered and each of such

vertices is connected by an edge only to the previous one and the next

one.
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The minor-embedding function implemented in the Ocean Software Devel-

opment Kit [152] (the D-Wave coding package) looks precisely for topological-

minor-embedding16. Any set V (Ti) where qubits are coupled together according

to a topological-minor-embedding is called a qubit chain.

We just learned how the embedding process works from a topological per-

spective. But how do the weights and biases transform after the embeddings?

The more adopted and sensible approach is called uniform spreading [153], and

it prescribes to divide the total value of the bias of any variable equally among

the qubits composing the corresponding chain. In the same fashion, a coupling

between two logical variables can be divided by the number of couplings existing

between the two qubits chains representing such variables. This ensures there

is a one-to-one mapping between the states where all chains are aligned and

target problem states of the same energy. In fact, this is only true up to a con-

stant o�set coming from the ferromagnetic chain couplings, which can always

be ignored. The uniform spreading approach has the immediate advantage of

reducing the absolute values of both biases and weights. While this is not rel-

evant for optimization purposes, since we can always rescale the values of such

parameters, it can have a huge advantage for sampling tasks17. When sampling,

we usually want the sample distribution to be characterized by a speci�c e�ec-

tive temperature, so we need to rescale the values of weights and biases in order

to achieve the correct temperature. Reducing such parameters raises the tem-

perature arbitrarily, while increasing them reduces the temperature, but only

to a �nite value. Dealing with smaller weights and biases means we can scale

them up by a larger factor, being thus able to simulate lower temperatures.

It is important to underline that the problem of connecting multiple comput-

ing units together is a well-known problem in all types of hardware computing

technology. In particular, most quantum computing machinery available today

has a much sparser connectivity with respect to D-Wave devices. In recent

years, competing quantum technologies have focused mainly on increasing the

number of qubits, with remarkable results such as the 433-qubits Osprey gate-

based quantum computer [22]. This number of qubits is now comparable with

D-Wave devices, and it is debatable when, but not if, the topology problem will

become the biggest obstacle also for gate-based quantum computation. We are

probably getting very close to that turning point.

The next Section will introduce the topologies realized inside D-Wave AQC

devices, together with the shortcomings of a poor embedding and the modern
16See Section 1.2.10.
17See Section 2.3 to learn about this relevant application of AQCs.
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approach to �nd a good embedding. Section 3.1.4 in the next Chapter will in-

stead present the most recent ideas to circumvent and overcome the connectivity

limitations of modern AQC devices.

Suitable topologies for Adiabatic Quantum Computing

When building a physical AQC device, the problem of devising an e�cient topol-

ogy to connect the qubits is not trivial. First, the hardware graph must respect

some physical constraints [154]. In particular, there is a degree-constraint in

that each qubit can have at most a constant number of couplers (edges). This

restriction come from the (trivial) observation that any physical connection

must take up some space and thus there is a �nite limit on the number of real-

izable connections among qubits. Additionally, the coupler length must be �nite

(that is, all neighbor qubits are within a bounded distance). In other words, an

adiabatic quantum hardware graph is a bounded-degree, edge-length bounded

geometric graph. Notice that crossing is allowed (it can be a non-planar graph).

While respecting such constraints, researchers aim to realize an e�cient

adiabatic quantum hardware topology. A validation technique consists in asking

if a proposed topology can implement complete Kn graphs. The notation Kn

here represents a graph composed by n nodes and characterized by an all-to-all

connectivity, which means each node is connected by an edge to each other

node. If the topology of an AQC device can minor-embed any Kn graph, then

the device can tackle any problem comprising n (or less) Boolean variables, since

any of those problems will be a subgraph of Kn. For example, a square grid

satis�es the physical constraints, but it does not admit Kn minor-embedding

for n ≥ 5 because of the Kuratowski's theorem (see for example [155]). Stated

more simply, the square grid poses strict limitations to the ability of subtrees

Ti to overlap and connect to each other.

Instead of de�ning topologies and then asking if they can embed Kn graphs,

it is more e�ective to build ab initio a topology suitable to embed those graphs.

This is what D-Wave systems did in 2008 when they devised the optimal hard-

ware graph presented in patent [156], which was popularized as TRIAD by Choi

[154]. TRIAD is constructed in such a way that one can easily decompose it

into a bounded degree graph that satis�es the physical constraints.

Construction of TRIAD � TRIAD maps each vertex of Kn to n−1 nodes
in the hardware graph, arranged in a triangular shape. The procedure to dispose

the chains is somewhat complex to describe by words and it's probably easier to

look at Figure 1.2b. The chain corresponding to the �rst node is diagonal going

from lower-left to upper-right. Then, each one of the n−1 qubits composing the
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Figure 1.2: (a): Graph Kn for n = 8. (b): TRIAD construction of an
embedding for Kn with n = 8. Each chain is composed by n− 1 qubits and
is connected with a single connections with every other chain. Black chains
represent connections between di�erent embedded variables. Image adapted

from [154].

chain of the �rst node is connected on the right to a qubit, each one being the

�rst qubit of the chain of a di�erent one of the n−1 remaining nodes to embed.

For each "starting qubit", the chain is built by moving towards lower-right until

the height of the lower node in the �rst chain is reached, then a step to the right,

and then steps towards the upper-right until n − 1 qubits compose the chain.

The resulting shape is triangular, every node is represented by a chain of n− 1

qubits, and any qubit is connected at most to 3 other qubits. The embedding

in Figure 1.2b e�ectively represent the K8 graph in Figure 1.2a.

Decomposition of TRIAD � We now aim to reduce the number of qubits

used in the embedding to simplify it and reduce the chain length18. Suppose

the available degree (the number of allowed couplers) of a physical qubit is

d > 3. Then, we can reduce the length of chains in the TRIAD embedding

by exploiting the higher connectivity. The new embedding will require at least

Nmin qubits for each chain, where:

Nmin = minimumx s.t.x · (d− 2) + 2 > n− 1 ,→

→Nmin = ⌈
n− 3

d− 2
⌉

(1.67)

because for each qubit we have d − 2 couplers available, since two are used to

connect it to the chain. Terminal qubits have an extra connection available, so

a +2 is added. The sum of all the available connections with other qubits must

exceed n− 1 to ensure we can implement all the needed connections.
18See Section 1.2.10 to understand why shorter chains work better.
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Figure 1.3: (a): the black square selects a part of the TRIAD construction
that corresponds to the embedding of a K4,4 graph, which is also represented
without embeddings on the upper right. The two little triangles on the sides
of the TRIAD embedding areK4 fully-connected graphs. You can verify these
statements by checking the black lines connecting the units. (b): The decom-
position can be extended recursively by composing Kc,c bipartite graphs in
a square lattice. This means that, by arranging qubits in a square grid of
bipartite graphs as the one showed in the �gure, we ensure that fully con-
nected graphs can be embedded e�ciently in the hardware. Image adapted

from [154].

An example of the described reduction can be appreciated in Figure 1.3a.

Any graph Kn (suppose n divisible by 2) can be seen as a complete bipartite

graph Kn
2
,n
2
where the two sets of n

2
nodes are then equipped with an all-to-all

connections. We can make good use of this apparently trivial observation by

noting that if the number of available couplers for each qubit is d, we can then

embed K2d using a TRIAD decomposition where each variable is represented

by two physical qubits, each with d − 1 connections to other qubits. Indeed,

imagine 2d qubits disposed in a complete bipartite graph Kd,d. Every qubit in

the graph represent a di�erent variable in the K2d graph to be embedded. Then,

for each qubit, connect it to a second qubit to form a two-qubits chain. Now

the chains are complete, but the logical qubits are still connected in a bipartite

fashion. We can now connect the newly added qubits among themselves into

two Kd graphs, saturating the missing connections.

If n is greater or d is smaller, we have to apply this "bipartite" approach

in a more extended fashion, as shown in Figure 1.3b. As an example, we can

decompose a complete graph Kn (assume n = 2ck with k positive integer) using

only Kc,c ad Kc graphs. Since Kc graphs can be realized using Kc,c bipartite

graphs19, we can conclude that an adiabatic quantum hardware implementing
19A trivial way to embed Kc on Kc,c is to form c two-qubits chains, each comprising a qubit

from the �rst subset and a qubit from the second subset.
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a topology where Kc,c graphs are connected as in a square grid can embed a Kn

complete graph where n = 2ck, and k is bounded by the size of the hardware.

Being able to embed Kn, it follows that any Kc with c < n can be embedded

on the same hardware.

Dwave topologies � Chimera20 is the name given by D-Wave to the topol-

ogy implemented in its �rst commercial AQC devices up to D-Wave 2000Q[157].

In the Chimera topology qubits are arranged in K4,4 cells disposed in a square

lattice. Each cell thus comprises a bipartite graph of 8 physical qubits, which

are also connected to the four nearby cells, resulting in 8 couplers per qubit

(4 inside the cell and 4 to connect to other cells) [158]. In 2020, D-Wave Sys-

tems released the Advantage series of ACQ devices, the �rst to implement the

Pegasus topology [159]. Pegasus features qubits of degree (number of couplers

per qubit) 15 and native K6,6 subgraphs. While in Chimera K3 graphs required

an embedding, in Pegasus complete graphs up to K4 are implemented without

resorting to embedding. Thus, contrary to the Chimera case, for the Pega-

sus topology there are speci�c embedding techniques that allow to �nd better

embeddings by using a non-topological embedding, where each logical qubit is

represented by a K4 graph of physical qubits [160]. Pegasus is the topology

currently used in most of the available AQC devices. A new topology, named

Zephyr, is recently being tested on a prototype composed by approximately 500

qubits[161]. The Zephyr topology has degree 20.

D-Wave systems have been proposing new topologies with the aim to in-

crease the degree of the available couplings and thus shorten the embedding or

to avoid them at all. This can be useful to improve the quality of the solutions

but also to reduce the overhead time required for the embedding procedure,

which can be demanding[162]. Despite this often improves the QPUs perfor-

mances, there are cases in which new topologies lose to older ones, namely in

those cases where the problem graph to be embedded is so sparse that the new

connections in the improved topologies are not useful[163].

Detrimental consequences of a poor embedding

Whenever an AQC program is implemented using an embedding, there are three

main threats that can impede a successful computation:

� Entropy � The phase space grows after the embedding, which means the

solution must now be found among a larger number of available con�g-

urations, leading to a lower probability of success. Failures due to the
20See the upper little graph in Figure 1.3 for a depiction of the Chimera topology, and the

right side of Figure 4.16 for the same graph presented with a di�erent layout.
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embedding manifest themselves as chain breaking events, when one or

more qubits in a chain are measured in a di�erent state from the rest of

the chain. In the Ocean SDK this scenario is usually managed by major-

ity voting, which means the value of the logical qubit represented by the

chain is considered equal to the value assumed by most of the qubits in the

chain. Longer chains are expected to perform worse [164] and experience

chain breaking with a higher probability. See Section 3.1.3 to learn how

to mitigate chain breaking.

� Slower exploration of the phase space � To avoid chain breaking, one can

increase Jchain. If the parameter becomes much higher than the problem

weights the exploration of the phase space can slow down due to the

reduced probability of spin �ip events. Indeed, switching the value of

a single qubit in a linear chain requires a shift in the overall energy by

2Jchain. The introduction of many energy barriers to perform a single spin

�ip can have detrimental e�ects on the performance of QA.

� Change in the distribution temperature � We will learn in Section 1.3.6

that the sample outputs obtained by querying a physical AQC are dis-

tributed according to a Boltzmann distribution at a given temperature.

This is a consequence of the thermal noise inside the device and impedes

optimization tasks, but such e�ect becomes useful in machine learning and

sampling applications21. The �nal temperature of the samples is relevant

both when solving optimization problems or performing sampling tasks.

Indeed, when sampling we need a �xes nonzero temperature, while in op-

timization we want to reduce the �nal temperature as much as possible.

In both cases, the embedding procedure can cause problems, since longer

chains cause the production of hotter samples22.

During the years, several authors have underlined that these threats com-

ing from the sparse connectivity of AQC devices constitutes some of the most

important obstacles to achieving e�cient Adiabatic Quantum Computation. In

[165], the authors compared AQC performances on a Max-Cut problem (see Sec.

2.2.2) to those of a coherent Ising machine (CIM), which possesses all-to-all con-

nectivity since it is implemented as a software. D-Wave devices outperformed

the tested CIM on smaller problems, while highly connected problems caused

the AQC device to lose to the CIM for several orders of magnitude. Turning
21See Section 2.3.
22See Section 1.3.6.
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to sampling application, an interesting paper from Marshall, Giochino, and Ri-

e�el [166] shows how, as the embedding size grows, the probability to sample

from the desired portion of the phase space can be exponentially suppressed.

Using combinatorial arguments they prove that the probability P0 of obtaining

a sample with zero broken chains can be written as

P0 = (1 + e2βJchain)−(K−1)N , (1.68)

where β is the inverse of the e�ective temperature at which samples are ex-

tracted by the AQC, K is the length of each chain (chains are supposed to be

equally-long here), and N is the number of chains in the embedding. We can

immediately appreciate that the probability P0 decays exponentially in problem

size and chain size. Employing shorter chains can thus bring huge bene�ts. At

the same time, the subspace is sampled with higher probability if βJchain < 0

increases in absolute value, which means we whould aim to reducing the temper-

ature or increasing the ferromagnetic coupling Jchain. Increasing Jchain is indeed

the �rst strategy one can apply to increase the probability to sample from the

correct space. This conclusions apply also to optimization problems, since it is

as important in that case to avoid broken chains.

D-Wave Systems itself has published few guidelines suggesting which embed-

dings to prefer when facing a choice between multiple possible embeddings out-

put by an heuristic [167]. The manual state that embeddings comprising short,

uniform-length chains are to be preferred, and that the chain strength has to

be properly balanced with respect to the problem range. In [168] D-Wave Sys-

tems' researchers present compelling evidence proving that chain length plays

an important role in performance. They compare the performances of two AQC

devices based on Chimera and Pegasus topologies on the problem of minimizing

the energy of three-dimensional spin glasses. They observed improved scaling

of solution time and improved consistency over multiple graph embeddings, due

to the shorter chain length required to embed the same problem instances on

the Pegasus topology.

Heuristic methods to �nd an embedding

In Section 1.2.10 we de�ned what is a minor-embedding. In Section 1.2.10 we

described how to devise e�cient AQC topologies that allow simple embeddings.

Now we hypothesize to have at our disposal a good quantum adiabatic hardware

topology U , and we need a way to �nd the best embedding possibile of a given

problem graph G on U .
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Unfortunately, we have to start this discussion by noting that �nding a

minor-embedding can be NP-hard [169]�[171]. In [170], Eppstein proved that,

given a positive integer h and a graphG, determining ifG containsKh as a minor

is NP-complete. If G is �xed, which is usually the case for adiabatic quantum

hardware, we can �nd all minors of G, but then we should still check if a given

graph P we want to embed is a subgraph of any of them. This procedure is still

NP-complete for arbitrary inputs. With respect to the required qubit resources,

in [172] the authors remind that a quadratic scaling of the embedding resources

for the spin glass model is expected for any hardware graph with �xed degree. As

a particular case, they show that for a Chimera graph a clique of N variables is

embedded using N2/4+N physical qubits. For problems where three-body and

higher-order interaction terms have to be included in the Hamiltonian (which

is the case in many quantum chemistry problems) the scaling is much worse,

typically exponential in the number of variables [173], [174].

The problem of deciding whether a graph H is a minor of G has been know

for decades as the H-MINOR CONTAIMENT problem. It was studied exten-

sively and successfully by Robertson and Seymour [175], which were the �rst

to provide exact algorithmic procedures for �nding graph minors. Elaborating

their �ndings, Hicks [176] devised an algorithm that decides if a graph G with

m edges and branchwidth23 k contains a �xed graph H on h vertices as a minor

in time O
(
3k

2 · (h+k−1)! ·m
)
. Then Adler et al. [178] found a way to improve

the dependency on k obtaining a time O
(
3(2k+1)·log k · h2k · 22h2 ·m

)
with their

algorithm.

As a consequence of the hardness of H-MINOR CONTAIMENT, in 2014 D-

Wave Systems researches changed approach and focused on heuristic approaches

to �nd a feasible embedding in a reasonable amount of time [171]. They de�ned

an embedding algorithm that is e�cient if both the hardware topology and

the problem graph are sparse. Such algorithm is currently implemented in

the primary utility function find_embedding() in the minorminer package of

the D-Wave Ocean SDK[179]. The minorminer package is currently the most

popular tool to look for minor embeddings of a problem of interest on D-Wave

devices.

The "heuristic approach" gained popularity as it allowed to e�ectively em-

bed problems on the D-Wave topology, that was already commercially available

at that time. In [158], the authors introduced an e�cient approach to generate

large clique minors in subgraphs of a hardware graph (even if they did not study

23Branchwidth quanti�es how closely a graph can be represented as a collection of disjoint
trees. It was introduced for the �rst time in [177].
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the computational complexity of the method). They exploited an iterative tree

decomposition technique to realize one of the �rst embedding heuristics resilient

to missing qubits in the hardware. Then, Boothby et al. [180] exploited the

TRIAD origin of the Chimera topology to de�ne triangle embeddings, native

TRIAD reductions on Chimera that have the characteristics of being uniform

(each chain has the same number of qubits) and near optimal (chains contain

at most on qubit more than the minimum achievable). Using triangle embed-

ding the authors introduced a dynamic programming technique that, given a

subgraph of the Chimera topology with missing qubits, �nds a maximum-sized

native clique embedding in polynomial time. Their approach results in em-

beddings of uniform chain length, which induce a more predictable dynamics

throughout the anneal [172] (see also Section 1.3.6). Zariba�yan et al. [181]

suggest that the path to better or faster embedding algorithms lies in restrict-

ing the graph minor embedding problem to speci�c cases. They indeed support

the TRIAD-reductions approach of Boothby et al., but they also underline its

limitations, since sparse problems will usually require more qubits if embed-

ded using a strategy based on clique minors. Thus, Zariba�yan et al. tried

to identify a common structure across many problems that could be exploited

advantageously. They realized that the graph formulations of many NP-hard

optimization problem correspond to the Cartesian product of two graphs (as an

example see [172], [182], [183]). In [181] they propose a deterministic and scal-

able embedding algorithm for embedding the Cartesian product of two complete

graphs into D-Wave Systems' Chimera hardware graph. Such algorithm proved

faster than existing alternatives at the time and tends to produce equal-length

chains. Later, Lobe et al. [184] introduced a mapping from the embedding

problem to an integer linear problem to better investigate the embedding of

complete graphs on Chimera topologies with missing qubits. Their approach

is particularly interesting since they devised an exact embedding method for

complete graphs that can beat some of the available heuristic methods, but

they also describe an heuristic extension of the algorithm that can tackle larger

instances that the exact one.

Pinilla et al. [185] introduced the concept of layout awareness : exploiting

structural information of the problem graph to enhance the embedding search.

They developed the Layout-Aware MinorMiner (LAMM) method, which di�uses

the nodes of the QUBO problem to be embedded on the hardware topology

layout to achieve even spreading of the candidate chains across the cells of

the topology. It then runs minorminer from this supposedly advantageous

position. Zbinden et al. [186] tested LAMM and minorminer against their new
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algorithms Spring-Based MinorMiner (SPMM) and Clique-Based MinorMiner

(CLMM). They showed that CLMM outperform minorminer for dense graphs

to be embedded on Pegasus, while SPMM outperforms minorminer for Chimera

embeddings and for sparse embeddings on Pegasus. Additionally, they found out

that, while minorminer achieves overall good performance on Chimera graphs,

on Pegasus it fails to embed even medium-density graphs on 175�180 nodes

which are known to have clique embeddings. They thus suggest D-Wave to

extend their minorminer implementation with SPMM and CLMM, which are

both actually based on the original minorminer.

See Section 3.1.4 to �nd further information on how to improve embeddings.

1.3 Hardware implementation of Adiabatic Quan-

tum Computers

The D-Wave QPU is built with a network of radio-frequency superconducting

quantum�interference device (rf-SQUID) qubits. A SQUID is a device based on

one or more Josephson junctions embedded in a superconducting closed loop.

The seminal idea for this approach arised in early 2000s, mainly thanks to [87]

and [89]. The �rst empirical evidence of quantum annealing in such a setup was

obtained in 2010 on a system of eight superconducting qubits [157]. The result

was followed in 2011 by a seminal paper by Johnson et al. [91] that studied

the same eight-qubit system, this time coupling qubits together and providing

empirical hints of quantum e�ects. The same setup has since then evolved up

to the modern AQC devices comprising thousands of qubits.

Each qubit and coupler in an AQC device has several controls that are

manipulated by individual on-QPU digital-to-analog converters (DACs). Along

with the DACs, a small number of analog control lines provide the time-dependent

control required by the quantum Hamiltonian:

Hglass = F (s)

(∑
i

hiσ
z
i +

∑
ij∈ρ

Jijσ
z
i σ

z
j

)
−G(s)

(∑
i

σx
i

)
(1.69)

where ρ is the set of available couplers in the QPU graph. To implement quan-

tum annealing, F (s) and G(s) values are slowly modi�ed, following the prin-

ciples introduced in Section 1.2.6. Typical values for such quantities during

anneal are represented in Fig. 1.4.

This Section describes the physical realization of a speci�c QPU that per-

forms quantum annealing according to Eq. 1.37. First, the Josephson junction
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Figure 1.4: Annealing functions F (s), G(s). Data shown are representative
of D-Wave 2X Systems. Image from Ref. [187].
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and the rf-SQUID are presented as the fundamental building blocks of the super-

conducting qubtis for quantum annealing. Then, we explain how to implement

the full annealing Hamiltonian exploiting the presented technology. Next, we

describe the undesirable behaviours that arise in hardware implementations of

AQC devices, such as integrated control errors, thermal noise, and decoher-

ence. The same Section also details how the output samples distribute after the

annealing cycle. The last Section presents alternative hardware approaches to

implement AQC which are not based on superconducting qubits.

If you desire to acquire more information than that presented in this Thesis

regarding the hardware realization of Adiabatic Quantum Computers, you can

start by consulting [188] and [189].

1.3.1 The Josephson junction

When two superconducting metals are put in contact with a thin insulating layer

separating them, a zero-voltage superconducting current may arise. This can

happen if there is a phase di�erence between the superconducting wave functions

on the two sides of the insulator. The resulting supercurrent �ows continuously

without the need to apply any voltage. Such interesting e�ect is an example of

a macroscopic quantum phenomenon that can happen at macroscopic scales. It

is named Josephson e�ect after Brian D. Josephson, who predicted this e�ect in

1962 [190], and was later awarded with the Nobel prize for this same discovery

in 1973 (read his Nobel lecture at [191]). The Josephson junction (J junction)

is a piece of hardware designed to physically realize the Josephson e�ect. It is

built from two pieces of superconducting metal, separated by a weak link, a thin

layer of normal metal or some type of insulator. We will now brie�y outline the

main results of Josephson's research.

When a superconductor is cooled under the critical temperature T = TC , the

electrons in the superconductor form pairs, called Cooper pairs. Each Cooper

pair is to be considered a boson, and thus all electrons can condense in the

ground energy level. It follows that all the electrons can be described by a

collective wave-function having a single quantum phase:

Ψ(r⃗, t) = |Ψ(r⃗, t)|eiφ(r⃗,t) . (1.70)

Since such macroscopic wave function must be single-valued in going once

around a superconducting loop, �ux quantization arises. It means that the �ux

contained in a closed superconducting loop takes values that are multiples of the
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quantum �ux Φ0 = h/2e ≈ 2.07× 10−15 Wb. Here h is the Planck's constant

and e is the electronic charge.

Josephson predicted the tunneling of Cooper pairs through an insulating

barrier separating two superconductors (weakly coupled superconductors). He

showed that the current I �owing through such a junction is given by

I = I0 sin δ (1.71)

where δ = ϕ1 − ϕ2 is the di�erence between the phases ϕ1 and ϕ2 of the con-

densates in the two superconducting electrodes and I0 is the critical current of

the superconductor. The presence of such current is usually referred to as dc

Josephson e�ect.

Josephson also described a dynamic property of the junction, known as the

ac Josephson e�ect. In the presence of a voltage V between the electrodes, δ

evolves with time t according to

dδ
dt

=
2eV

ℏ
=

2πV

Φ0

. (1.72)

As the current through a junction is increased from zero, the �ow of Cooper

pairs constitutes a supercurrent and the voltage across the junction remains

zero until the current exceeds the critical current. At higher currents, the

phase di�erence evolves according to Eq. 1.72, and there is a voltage across the

junction.

1.3.2 The rf-SQUID

In 1963, only one year after the Josephson e�ect was theorized, John Rowell

and Philip Anderson at Bell Labs realized the �rst experimental setup that

was able to sense the zero-voltage supercurrent in a Josephson junction (J-

junction) [192]. On more year later, in 1964, Robert Jaklevic, John J. Lambe,

James Mercereau, and Arnold Silver of Ford Research Labs invented the dc-

SQUID (direct current Superconducting Quantum Interference Device) [193].

The dc-SQUID implements two J-junctions in parallel, and two terminals to

connect the loop to an external circuit. The critical current of a circuit with

two J-junctions is a periodic function of the magnetic �ux threading the loop,

with a period equal to the �ux quantum Φ0. The SQUID can be biased to a

critical regime by applying to the loop a proper current. The voltage across the

SQUID then varies with increasing external �ux with a sensibility of the order

of Φ0 [194]. If coupled with a device capable of amplifying the di�erences in
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the critical current of the loop, the dc-SQUID becomes an extremely sensible

instrument to measure many di�erent physical quantities, such as temperature,

currents, and magnetic �elds, reaching a precision of up to 3 × 10−34 J/Hz

∼ 0.5h [195].

In 1965, at the same Ford Research Labs where the DC-SQUID was born,

Robert Jaklevic, John J. Lambe, Arnold Silver, and James Edward Zimmerman

tested a simpler SQUID architecture, the RF-SQUID (radio-frequency SQUID)

[48], shown in Figure 1.5. It is constituted by a single J-junction interrupting a

superconducting loop, and as the same suggest it is biased by a radio frequency

signal. It possesses similar capabilities as the DC-SQUID, since it can be used

as a measurement device in simlar ways, but its sensitivity is worse by few or-

ders of magnitude [194]. Nonetheless, the RF-SQUID arised great interest in

2000 after the seminal paper by Friedman et al. [47], in which they empiri-

cally demonstrated a quantum superposition of macroscopic quantum states in

a compound Josephson junction24, which is based on both RF and DC SQUIDs.

The experiment constituted one of the �rst examples of a quantum superpo-

sition of macroscopic states. Indeed, thesuperconducting circuit used in their

experiment had a dimension of few micrometers, several orders of magnitude

larger than the atomic scales where this e�ect are customary. In the following

discussion, we will explain how this interesting experimental result regarding

RF-SQUIDs can be exploited to manufacture superconducting qubits.

In Figure 1.5 and from now on, the resistive-capacitive shunted junction

(RCSJ) model of the J junction is assumed. In this model, the behavior of

the J junction is modeled by substituting the junction with a capacity C, a

resistance R and a Josephson element having a current according to Eq. 1.71.

The superconducting loop has inductance L, which is coupled to the inductor

LT of a tank circuit via a mutual inductance M = k(LLT )
1/2. The tank circuit

has a resonant frequency f0 = ω/2π and has a quality factor25 Q0 = ω0LT/RT

in absence of the SQUID. A radio-frequency (rf) current generator supplies the

tank circuit with a current Irf cos(ωrf t) so that the resulting rf magnetic �ux

applied to the SQUID loop is

Φa,rf =
Φ0

2π
vT cos(ωrft+ ρ) , (1.73)

where (Φ0/2π)vT is the amplitude of the external rf �ux, ρ is its phase and t is

the time.
24See Section 1.3.4.
25The quality factor is a dimensionless parameter that compares the frequency at which a

system oscillates to the rate at which it dissipates its energy [196].
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Figure 1.5: Schematic representation of the rf SQUID, with tank circuit
and preampli�er. The cross symbol corresponds to the J junction. Image

adapted from Ref. [48].
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The voltage that provides the output signal of the rf-SQUID is picked up

from the ampli�er A whose input is connected to the tank circuit. The input

signal magnetic �ux to be measured Φa is applied to the SQUID loop. This �ux

can be thought of as quasistatic since the pumping frequency ωrf is usually far

larger than the highest frequency of Φa.

We call ΦT the total �ux in the loop. Flux quantization imposes the con-

straint:

δ + 2πΦT/Φ0 = 2πn , (1.74)

where n is an integer. The supercurrent J �owing in the loop is determined by

the phase di�erence δ across the junction (Eq. 1.71):

J = −I0 sin
(
2πΦT

Φ0

)
(1.75)

We then obtain the following relation:

δ =
2π

Φ0

(
Φa,rf + Φa + LJ

)
, (1.76)

since the term in brackets is the sum of any �ux in the loop, i.e. ΦT . We

call Φa,T = Φa,rf + Φa the total applied �ux, which di�ers from ΦT by the

supercurrent-�ux term.

On the basis of Eq. 1.71 and Eq. 1.76 we can write the SQUID potential

[48]. It has two components, the Josephson coupling energy and the inductive

energy that is due to the screening current �owing into the SQUID loop:

USQUID(δ)

Uq

=

(
δ − φa,T

)2
2β

− cos δ (1.77)

where φa,T = 2πΦa,T/Φ0, and β = 2πLI0/Φ0 is the so called SQUID hysteresis

parameter (or screening parameter). Here, two di�erent scenarios arise for

di�erent values of β. If β < 1, the potential has one minimum, while for β > 1

there can be several metastable states. Such behaviour is shown in Fig. 1.6.

1.3.3 The single-qubit potential

If we de�ne V (δ) = βUSQUID, we can write

V (δ) = Uq

{
(δ − φa,T )

2

2
− β cos(δ)

}
. (1.78)



56 Chapter 1. Theory

Figure 1.6: rf SQUID normalized potential uSQUID = USQUID/Uq as a
function of the Josephson phase di�erence δ (from Eq. 1.77). Image from

Ref. [48]
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Consider a device designed such that β > 1. If the �ux is biased such that

φa,T ≈ π, then the potential energy V (δ) will be bistable (two distinct potential

wells at the same energy). If β is increased, the potential energy barrier between

such two local minima of V (δ) becomes higher. The two lowest-lying states of

the rf SQUID may couple via quantum tunneling through the barrier. These

two states are separated from all other rf-SQUID states by an energy of the

order of the rf-SQUID plasma energy ℏωp ≡ ℏ/
√
LC.

Figure 1.7 shows the potential energy and the two lowest-energy states of

an rf SQUID at degeneracy (φa,T ≈ π, i.e. Φa,T = Φ0/2). In the Figure, |g⟩ and
|e⟩ are the ground and �rst excited states respectively.

We can consider a low energy approximation of the potential V (δ) in Eq.

1.78, where we suppose that only the two lowest energy states |g⟩ and |e⟩ are
accessible.

In this approximation, we can introduce another possible basis of the system:

|↓⟩ = (|g⟩d + |e⟩d)/
√
2

|↑⟩ = (|g⟩d − |e⟩d)/
√
2 ,

(1.79)

where |g⟩d and |e⟩d are respectively the ground and �rst excited state at de-

generacy. When φa,T changes, the relation than links the basis {|↑⟩ , |↓⟩} to

the new energy eigenstates changes as well. The states |↑⟩ and |↓⟩ are roughly
Gaussian-shaped wave functions that are centered about each of the wells shown

in Fig. 1.7.

In the low energy approximation, the two-state system is described by the

following Hamiltonian (Ref. [197]):

Hq =
1

2
εσz − 1

2
ℏ∆0σ

x , (1.80)

where σx and σz are Pauli matrices. The states |g⟩ and |e⟩ are now the only

two eigenstates of Hamiltonian Hq. If ε0 = 0, |g⟩ and |e⟩ are also eigenstates

of σx, and ∆0 is the di�erence between their energy eigenvalues. We make

this state correspond to the degenerate case depicted in 1.6 (i.e. φa,T = π),

so that |g⟩d and |e⟩d are eigenstates of σx. It follows that {|↑⟩ , |↓⟩} is the

basis of the eigenstates of σz. If ∆0 = 0, |↑⟩ and |↓⟩ are degenerate, and the

di�erence between their energy is ε. For any nonzero value of ∆0, the system

can experience quantum tunnelling between the two states.

The properties just described, together with the expression of Hq 1.80, sug-

gest that such a system can be used to implement quantum annealing on a

single qubit.
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Figure 1.7: The two lowest-lying states of an rf SQUID at degeneracy
(ε = 0). The expression on the x-axis corresponds to the intensity of the
supercurrent �owing in the SQUID, which is linearly related to the phase δ.

Image from Ref. [198].
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We have two possible pairs of vectors that can be used as a basis for single-

qubit states. The energy eigenbasis {|e⟩ , |g⟩} can be useful as it provides a

low-frequency �ux noise resistance [199]. Nonetheless, the most common choice

is to map the logical basis of the qubit onto the localized-states-basis: |0⟩ → |↓⟩
and |1⟩ → |↑⟩. In this way, it is easier to implement interactions between �ux-

qubits via inductive coupling. A very important property that arises from such

choice is that, if ε = 0, the ground state corresponds to |g⟩ = (|0⟩ + |1⟩)/
√
2,

an equally probable superposition of the two logical states. For non-zero values

of ε, the relative amplitudes of |↑⟩ and |↓⟩ in the ground state wavefunction |g⟩
change. Their value is the result of a competition between ε and ∆0. Being

able to control such parameters allows to perform annealing, starting from {ε =
0,∆0 > 0} and ending at {ε > 0,∆0 = 0}. During the whole process, the

system should always be in the instantaneous lowest energy eigenstate of Hq.

The computation ends operating a measurement with respect to the logical

basis, which is also known as computational basis. The measurement extracts

from a binary distribution whose probabilities depend on the amplitudes that

the logical states |0⟩ , |1⟩ have with respect to the �nal ground state |g⟩.
Note that, for a single qubit, the computational basis at the end of the

annealing process (∆0 = 0) corresponds to the eigenstates of σz. For a system

composed of N qubits, the computational basis is the tensor product of the N

single-qubit computational basis. It means that the computational basis for the

N -qubits system is the collection of the eigenstates of the Hamiltonian

HN =
N∑
i=1

σz
i , (1.81)

where each σz
i acts on the i-th qubit.

In [200], D-Wave Systems' researchers evaluated a scenario where qudits

(qubits with more than two states) could be exploited to perform AQC, but

this idea hasn't been followed by other relevant experiments up to now.

1.3.4 Implementation of the full quantum spin-glass Hamil-

tonian

A big step towards the employment of rf-SQUIDs as qubits was the realization

of the so-called Compound Josephson-junction (CJJ) (image (b) in Fig. 1.8).

This device became one of the �rst examples of a macroscopic object that be-

have quantum-mechanically. Indeed, some measurements managed to reveal the

presence of quantum superposition of macroscopic states [47]. In this SQUID
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Figure 1.8: (a) A single-junction rf-SQUID qubit. (b) CJJ rf-SQUID qubit.
(c) CCJJ rf-SQUID qubit. Image from Ref. [198].
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architecture the single junction of Fig. 1.8 (a) has been replaced by a �ux bi-

ased DC SQUID. The so obtained CJJ RF SQUID facilitates the in situ tuning

of the tunneling energy. This possibility makes the CJJ RF SQUID far more

useful than the simple RF SQUID. Nonetheless, such SQUID poses few relevant

limitations that reduce the possibility for its application in scalable AQC [198].

As an example, it is di�cult to compensate for fabrication variability among

distinct qubits. Thus, one can not obtain the required homogeneity of the �ux

qubit parameters between the many SQUIDs that would compose an AQC.

A better topology has later been developed, which goes under the name

of Compound-compound Josephson junction SQUID (CCJJ rf SQUID), repre-

sented in Fig. 1.8 (c). Such architecture consists of an rf-SQUID interrupted

by a loop of two DC SQUIDs. The CCJJ RF SQUID overcomes the main

limitation of the CJJ RF SQUID, by being more robust to variations in the

fabrication of the J-junctions. Such robustness comes from the possibility to

correct the shape of the potential energy separately for each qubit, by tuning

the external �uxes applied to the dc-SQUIDs. The CCJJ rf SQUID can thus

be used in the realization of large-scale AQCs.

The methods outlined in the previous sections suggest that CCJJ rf-SQUIDs

can be used to build superconducting �ux qubits. The implementation of an

arti�cial spin-glass system that makes use of SQUIDs is also possible, but a

necessary additional step is the realization of couplers that provide tunable

spin-spin coupling energy. A reference outlining the principles of couplers im-

plementation is Ref. [201]. One can then achieve a system whose behavior can

be described with a spin-glass model Hamiltonian:

H(t) = G(t)
N∑
i=1

∆iσ
x
i + F (t)

(
N∑
i=1

hiσ
z
i +

N∑
i,j=1

Jijσ
z
i σ

z
j

)
≡ G(t)HT + F (t)HP

(1.82)

where the eigenvectors of the Pauli matrices σz are |↑⟩ and |↓⟩. The imple-

mentation based on CCJJ rf SQUIDs allows each Jij and hi to be programmed

independently.

1.3.5 Operation and timing of AQCs

Understanding how a problem is submitted to the QPU is relevant during any

estimation of the computational time requirements of a problem on AQCs.

Which time intervals should we consider when evaluating the computational

cost, and which time interval is billed to the �nal user? In this Section we
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detail the distinct practical, operative phases that realize the annealing process

in hardware, with a focus on their timings. Reference [202] points to the web-

accessible D-Wave Systems manual that served as the source for the information

presented in this Section.

The full pipeline from the job submission on the local Ocean SDK to getting

back the collection of samples is divided into several steps. There is an initial

latency time due to the communication travelling through the internet. Then,

the job is queued with other jobs submitted by other users in the worker queue.

After the worker queue is cleared, the job is prepared to be submitted to the

QPU, and it is queued again with other ready-to-be-executed jobs in the QPU

queue. After this second queue is cleared, the actual QPU access time starts,

where the AQC is programmed to host the annealing process corresponding

to the job, the annealing cycles are performed, and the obtained samples are

postprocessed. Finally, a last internet-dependent latency elapses before the user

can get back the collection of samples.

The QPU access time is the time interval where the AQC is exclusively

reserved to the user, and thus is the amount of time that the D-Wave Systems

company bills to the user. It is divided into parts: qpu_programming_time (TP )

and qpu_sampling_time (TS). The programming time TP can vary slightly

depending on the problem size, but it is invariant on the number of requested

samples. On the other hand, the sampling time TS increases linearly with

the number of samples, since each sample is obtained sequentially. For each

annealing cycle, TS is further divided into anneal time, readout time, and delay

time, which is the time that the QPU waits before executing a new annealing

cycle in order to reduce correlations due to magnetic �elds induced by the

previous annealing cycle.

To make a concrete example, in [1] we embed on the QPU a fully-connected

problem comprising 50 binary variables, which requires 297 qubits on the Advan-

tage 4.1 AQC.We submit several jobs associated to this QUBO problem request-

ing 2000 samples with a total duration of the annealing process tann = 25µs.

While the total annealing time for all samples is 25.0µs×2000 = 50ms, the total

QPU access time is ∼301ms, which is approximately six times the annealing

time. The total sum is impacted primarily by readout time, which accounts

for 95µs per sample, for a total of 97.1µs × 2000 = 194.2ms, which is more

than half the total billed time of 301ms. The delay time per sample is 20.54µs,

for a total of 20.54µs× 2000 = 41.1ms. The initial programming time required

15.8ms. Summing the initial programming time, the annealing time per sample,

the readout time per sample, and the delay time per sample we correctly obtain
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the total QPU access time. From this example we learn that the annealing time

is relatively short with respect to the total access time. This means increasing

the annealing time has a relatively small impact on the cost of the computation.

Additionally, we can conclude that producing few samples (such as 100 or less)

is usually not recommended, since the initial programming time would go from

the ∼ 5% in our example to more than 50%.

1.3.6 Undesirable behaviours in physical AQC devices

Ideal AQC

In the previous Sections we introduced the mathematical concept of adiabatic

quantum evolution, a quantum process that is expected to converge to the

classical con�guration corresponding to the solution of a target optimization

problem. This expectation derives from �ve main hypotheses:

1. The initial state of the system corresponds exactly to the ground state of

the initial Hamiltonian HT (see Eq. 1.37).

2. The annealing is performed slowly enough to respect the adiabaticity con-

dition expressed by Eq. 1.34.

3. The system is completely decoupled from the environment, but for the

interaction terms in the annealing Hamiltonian HP and HT .

4. The device operating the annealing schedule can implement exactly the

desired problem Hamiltonian HP , without errors on the coupling and bias

values.

5. The �nal quantum con�guration produced by the annealing cycle can be

measured without readout errors.

The �rst, second and third hypotheses enforce conditions necessary for the

adiabatic theorem to hold. Thus, the system will evolve keeping itself in the

ground state of the instantaneous Hamiltonian. The fourth hypothesis enforces

that, at the end of the annealing, the system interacts with a Hamiltonian which

is exactly HP . Since the solution state corresponds to the ground state of HP ,

it follows that a measurement of the quantum system will produce with high

probability the desired con�guration. The �fth hypothesis must be true for the

measurement to return the actual state of the qubits without errors.

An ideal AQC device should respect all the above conditions to work as

expected. Unfortunately, when realizing physical AQC devices, several techno-

logical limitations may arise in manufacturing and calibration, causing defects
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in some qubits and couplers. In such a case, the worst scenario is the inability

to program and utilize those qubits and couplers. The percentage of qubits

and couplers that remain functional once the AQC device is fully exposed to

users is referred to as the hardware yield. For D-Wave QPUs, the qubit yield is

typically around 97% for current processors [203]. Even when a qubit or a cou-

pler is programmable, Integrated Control Errors can a�ect the value of biases

and weights, preventing the device from implementing the correct instantaneous

Hamiltonian (negation of hypothesis 4). Section 1.3.6 explains how this errors

can arise and what is their impact.

Nonetheless, the biggest obstacle is to ensure the validity of the hypothesis 3,

because physical devices experience interaction with the outer world, making the

process diabatic. The thermal noise a�ecting the device is described in Section

1.3.6, while Section 1.3.6 explains an interesting behaviour of the adiabatic

QPU due to thermal noise, and 1.3.6 details the probability distribution of the

samples obtained via quantum annealing in AQC devices.

A consequence of violating hypothesis 3 is that longer annealing process

exposes the spin-glass system to noise sources for a longer time. This choice

directly a�ects the validity of the second hypothesis, since to obtain fairly good

results we are forced to operate shorter annealing cycles26. While AQC de-

vices are believed to be fundamentally more resistant to noise than competitors

such as gate-based QC [33], [86], decoherence and thermal noise still play a

paramount detrimental role in the AQC dynamic.

Understanding the sources of errors inside the QPU allow us to design better

experiments and perform successful calculations exploiting AQC. See Chapter

3 to learn how the use of proper optimization techniques can enhance the per-

formances of AQC devices despite the presence of the undesirable behaviours

presented in the following Sections.

Integrated control errors (ICEs)

Although the control parameters h and J in the annealing Hamiltonian are

speci�ed as double-precision �oats, some loss of �delity occurs in implementing

these values in the D-Wave QPU. This �delity loss may a�ect performance for

some types of problems. Speci�cally, instead of �nding low-energy states to an

optimization problem de�ned by h and J as in Eq. 1.37, the QPU solves a

slightly altered problem that can be modeled as:
26Decoherence e�ects are discussed in Section 1.3.6.
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Eδ
glass(s) =

N∑
i=1

(hi + δhi)si +
N∑
i=1

N∑
j=i+1

(Jij + δJij)sisj , (1.83)

where δhi and δJij characterize the errors in the parameters hi and Jij, respec-

tively.

Error δhi depends on hi, on all incident couplings Jij and on neighbour

biases hj. At higher orders, δhi also depends on second neighbors and their

incident couplings, and so on. In the same way, δJij depends mainly on spin

and coupling in the local neighborhood of Jij, and to a lower extent on further

elements. For this reason, forecasting the entity of the errors can be very dif-

�cult, since a modi�cation on the value of a single bias or coupling propagates

and in�uences also neighboring control parameters. D-Wave Systems declares

that the probability distribution of δhi and δJij is approximately Gaussian,

with mean µh
i , µ

J
ij, respectively, and standard deviation σh

i , σ
J
ij, respectively.

Such values depend on the annealing fraction s. The Gaussian distribution is

thus interpreted as the sum of two errors, a systematic contribution µ and a

random component with standard deviation σ. For the biases, typical values

for the systematic and random errors are |µh| ∼ 0.02, |σh| ∼ 0.015, while for

the weights |µJ | ∼ 0.01, and |σJ | ∼ 0.012 (values representative of D-Wave 2X

systems [204]). The term Integrated Control Errors (ICEs) refers collectively to

e�ects that limit the dynamic ranges of bias and couplings, such as the one just

described. ICEs are sources of in�delity in problem representation. Results in

[205] shows that, even under the assumption that a given AQC device can be

considered ideal in any other aspect besides ICEs, the success probability still

decays exponentially with system size for any �xed nonzero noise level. The

wild in�uence that control errors have on the probability of obtaining the opti-

mal solution has been dubbed J−chaos [206]. Subject to J−chaos, an otherwise
perfectly functioning AQC device will typically �nd the correct answer to the

wrong problem. �.

Even if ICEs are present also in QCs based on quantum logic gates, in such

case one can apply fault-tolerant error correction to compensate the ICEs e�ect

[207]. This observation could be used as an argument against the adoption of

AQC, but in fact a multitude of software techniques to compensate for AQC

ICEs exist (see Chapter 3). As an example, Pearson et al. [208] demonstrated

that an AQC device subject to J−chaos that achieved sub-classical scaling on

an optimization problem managed to reach scaling performances superior to a

classical solver after quantum annealing correction (QAC) was applied27.

27See Section 3.2 to learn about quantum annealing correction.
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Besides reducing the probability to �nd the global minimum in optimization

problems, control errors can also distort the distribution of the con�gurations

produced by AQC [209], whose shape is relevant for sampling applications28.

An interesting empirical result regarding ICEs arised in [210], when Chan-

cellor et al. applied the quantum annealing protocol to a frustrated chain of

qubits, in order to estimate the e�ective "quantumness" of a D-Wave device.

The experiment was designed so that the quantum device was expected to pro-

duce samples whose bits changed value approximately at the middle point of

the chain. To compensate for ICEs, they evaluated the sistematic errors on

the longitudinal �elds when couplings and biases were set to zero. They then

used biases and coupling biased to compensate such errors. The results of the

experiment suggested that a quantum behaviour was indeed present, but the

switching point for the chain was a�ected by a random noise that the researchers

attributed to random longitudinal �elds inside the device. This result support

the above picture of a Gaussian distributed random noise on the biases and cou-

plings. The experiment designed in [210] can be used to determine the strength

of the e�ective random �elds (noise) characterizing the annealer.

ICEs are usually divided into �ve classes [204]

� Background Susceptibility (ICE1) � The supercurrents �owing in the

on-QPU junctions that allow to implement both biases and couplings can

interfere with nearby coupling and biases. This leads to induced next-

nearest-neighbor J interactions and a leakage of applied h biases from a

qubit to its neighbors. This error source is likely the reason why in [163]

the success probability on a Chimera graph was higher than the Pegasus

case when addressing sparsely connected problems. The unused couplers

in the Pegasus topology are indeed expected to introduce noise through

ghost couplings [203].

� Flux Noise of the Qubits (ICE2) � Each bias hi is subject to an inde-

pendent (but time-dependent) error term that manifest itself as a periodic

low-frequency �uctuation of the bias current. There are �uctuations in

the �ux noise that have lower frequency than the typical inverse annealing

time, so problems solved in quick succession have correlated contributions

from �ux noise. By default, �ux drift is automatically corrected every hour

by the D-Wave system so that it is bounded and approximately Gaussian

when averaged across all times.
28See Section 2.3.
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Figure 1.9: Typical quantization step for the DAC controlling the h param-
eter (left) and J parameter (right). Image from: D-Wave user manual [204].

� DAC Quantization (ICE3) � The on-QPU DACs that provide the spec-

i�ed h and J values have a �nite quantization step size. This result in a

random error approximately described by a uniform distribution centered

at 0. Typical errors for h and J are shown in Fig. 1.9.

� I/O System E�ects (ICE4) � Several time-dependent analog signals

are applied to the QPU during the annealing process. Because the in-

put/output (I/O) system that delivers these signals has �nite bandwidth,

the waveforms must be tuned for each anneal to minimize any potential

distortion of the signals throughout the annealing process. As a result,

the ratio h/J may vary slightly with tf and with scaled anneal fraction s.

� Distribution of h Scale Across Qubits (ICE5) � It is impossible for

manufactured qubits to be exactly identical one to the other, and ICEs

can arise from small variations in the physical size of each qubit. When

users de�ne an huser value, the actual hreal value realized in the hardware

is di�erent not only for a shift δh, but also for the value of the slope

(hreal−δh)/huser, that should ideally be 1. The measured slopes, however,

are di�erent for each spin, and are Gaussian-distributed with a standard

deviation of approximately 1%.

Decoherence

Suppose that the quantum system of a single qubit is well de�ned by a certain

Hamiltonian H, which has two eigenstates. If we keep H �xed in time, we can
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surely conclude that both eigenstates of H are stationary states of the system,

i.e. do not change in time. If the system is in a quantum superposition, there

will be a certain phase and amplitude di�erence between the occupation of the

two states. Our system can be said to be coherent if such phase and amplitude

di�erences evolve in time only according to the system dynamic. In other words,

coherence is present whenever it is true that our system is correctly described

by H.

Physical implementations of the qubit concept, (e.g. with a CCJJ rf-SQUID

technology) are inevitably coupled to the outer environment. The presence of

interactions that are not included in H means that our system will behave

such that eigenstates amplitudes can decay, and phase di�erences can vary. In

such cases, the system is said to experience decoherence. The phase of the

ground state has no e�ect on the e�cacy of QA, and therefore dephasing in

the energy eigenstate basis is presumably harmless. On the other hand, the

interactions with the environment that induce transitions between eigenstates

of the Hamiltonian might cause trouble. Therefore, any physical realization

of a quantum computer is built posing great attention to prolong as much

as possible decoherence time. This term refers to the time it takes for the

qubit to experience su�cient decoherence to make its quantum state useless for

computing.

For �ux qubits (based on the SQUID) decoherence times are usually mea-

sured to be around dozens [211] or hundreds of nanoseconds [198]. It is impor-

tant to note that such times are much lower than the fastest annealing time

available on a state-of-the-art AQC (0.5 µs on D-Wave Systems Advantage).

Indeed, in general decoherence in AQC devices limits the fraction of Hilbert

space that may be accessed, and so the extent to which the exponential scaling

of Hilbert space can be taken advantage of in computation [212]. Nonetheless,

some authors reported that AQCs appear to be surprisingly resistant to noise

and imperfections and that they can show evidence of quantum behavior for

annealing times of the order of microseconds [91], [106], [213]. In 2001, Childs,

Fahri, and Preskill were among the �rst to study the resilience of AQC against

decoherence [86]. They showed with numerical simulations that QA is robust

against thermal noise and certain kinds of random unitary perturbations. In

[214], authors experimentally demonstrated that, for those instances where the

gap between the ground and �rst excited state becomes small during the an-

nealing process, the probabilities of performing a successful computation are

similar to those expected for a fully coherent system even with annealing times

eight orders of magnitude longer than the predicted single-qubit decoherence



1.3. Hardware implementation of Adiabatic Quantum Computers 69

time. In [215] performances of QA were enhanced by decoherence in a scenario

where the gap from the ground state was chosen to be much lower than the

thermal noise. Nonetheless, in this case the enhanced capabilities didn't came

from thermal noise but was a consequence of the number of thermally accessible

states from the instantaneous ground state at the quantum critical point[216].

The next Section provides further details regarding temperature, the number

one cause of decoherence.

Temperature

Inside the physical device, the qubits system may interact with outer subsys-

tems, namely the other components inside the chamber of the refrigerator. We

will call environment the collection of such subsystems. When the external

control signals have been carefully �ltered and the processor has been cooled

down, the environment seen by the quantum processor may be a thermal bath

at a �xed temperature.

The magnitude of temperature indicates the quantity of energy that the re-

frigerator can not remove from the QPU. The presence of thermal energy results

in a diabatic evolution, which breaks the third condition for the ideal AQC. This

condition is fundamental both for the validity of the adiabatic theorem and for

the functioning of every other QC. Nonetheless, AQC as an hardware approach

to QC appears to be much more resilient to thermal noise than competitors. In

some cases, QA is even expected to be enhanced by a proper amount of thermal

noise [141], [214].

In reference [214], Dickson et al. notice that, in the limit of slow evolution,

the ground state will always have the dominant probability. This is true only if

we suppose that the excited states are occupied approximately with equilibrium

Boltzmann probabilities29. It should be noted that a slow evolution exposes the

system to additional error sources. Indeed, the computation should be executed

in a time short enough to consider it robust against the environment. Robustness

against environmental noise can be de�ned as the ability of an open quantum

annealing system to yield the correct solution with acceptable probability within

a time comparable to the closed system adiabatic timescale.

Reference [214] presents a truly interesting scenario in which thermal noise

can help the annealing process, raising the probability to reach the ground

state. During the annealing process, the energy gap g(s) between the ground

state and the �rst excited state varies as the parameter s goes from 0 to 1.

We call gmin = g(s∗) the minimum value for g(s), which is reached at some

29See Section 1.3.6.
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point s = s∗. Consider a system where g(s∗) is small: s∗ is then known as

an avoided crossing point, or anticrossing point [217] (illustrated in Fig. 1.10).

The e�ect is a manifestation of the Wigner-von Neumann non-crossing rule,

which states that the curves that describe the dependence of two eigenenergies

do not cross on the energy-time plane [93]. Indeed, imagine a 2×2 Hamiltonian

that describes the two (close to each other) lowest energy states of the system,

and neglects the rest of the spectrum. Let E1 and E2 be the diagonal matrix

elements of the Hamiltonian, and V12 = V ∗
21 be its o�-diagonal matrix elements.

We then �nd the energy gap to be:

∆ = EES − EGS =
√

(E1 − E2)2 + |V12|2. (1.84)

Where EES is the energy of the �rst excited state and EGS that of the ground

state. Now suppose E1(s) = E2(s) at a speci�c s = s∗. Even in such case, ∆ > 0

due to the o�-diagonal elements. An actual crossing takes place only if the two

lowest instantaneous eigenstates have exactly the same eigenvalue, which can

only happen in the presence of particular simmetries (in the example, a diagonal

Hamiltonian). Despite the avoided crossing in the energies, the ground state

is e�ectively changed from s < s∗ to s > s∗. Passing through the anticrossing

very quickly can in fact swap the probabilities of the ground and �rst excited

states [214]. If we call |a⟩ the initial ground state, and |b⟩ the initial �rst excited
state, then, for a system starting in state |a⟩, the probability Pb of ending in

the ground state would be small. However, with an environment at T > 0,

thermal transitions can excite the system beforehand and relax it afterward.

The direct e�ect is to increase Pb. From quantum annealing schedule, we know

that spin-�ip amplitudes are larger in the early phases of the annealing, and

tend to vanish as the σx component of the Hamiltonian is gradually reduced.

For this reason, excitation before the anticrossing point will be more frequent

than relaxation afterward. This e�ect raises the probability for the system to

be driven into the �rst excited state before the anticrossing point, which means

Pb is also raised. A temperature T > δEk/kB would lead to the occupation of

higher energy excited states, which would reduce Pb. A peak in Pb is expected

at T ∼ Tpeak = δEk/kB.

This thermal annealing enhancement holds only if the gap gmin is small and

the two lowest-energy states are separated from other energy level by a gap

δE ≫ gmin.

In general though, thermal excitation can reduce the instantaneous proba-

bility of the ground state by populating the excited states and that the �nal
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Figure 1.10: An avoided crossing (anticrossing) of two lowest-energy
eigenstates,|a⟩ and |b⟩ , with a small minimum energy gap, gmin, separated
from other eigenstates by energy δE. "Passing through the anticrossing very
quickly swaps the probabilities of the ground and �rst excited states (blue
and green dotted arrows), leaving the probabilities of |a⟩ and |b⟩ unchanged.
Thus, for a closed-system starting in |a⟩, the �nal ground-state probability,
Pb, would be vanishingly small. However, with an environment at T > 0,
thermal transitions can excite the system beforehand and relax it afterward
(red arrows), the net e�ect of which is to increase Pb (green arrow). Single-
qubit tunnelling amplitudes are signi�cantly larger before the anticrossing,
making thermal excitations earlier in the annealing process much more likely
than relaxation later. If T ≳ δE/kB, higher excited states would also be
occupied, reducing Pb; so a peak in Pb is expected at T = Tpeak ∼ δE/kB.



72 Chapter 1. Theory

measurement may produce a con�guration that has a non-zero Hamming dis-

tance from the ground state. Such distance is related to the amount of energy

deposited on the QPU. For such reason, the QPU must be kept to the lowest

temperature achievable. The most recent D-Wave Systems processor, D-Wave

2000Q Systems, has an operating temperature of ∼ 14 mK.

Freezing point

We previously stated that QA makes use of quantum �uctuations to explore the

phase space, as opposed to SA that exploits thermal �uctuations. Nonetheless,

thermal �uctuations are unavoidably present in the physical realization of an

AQC. During the annealing process, the energy barrier δU between the two

minima represented in Fig.1.7 is gradually raised. If thermal �uctuations dom-

inate the qubit dynamics, the qubit state can move from one well to the other

with a rate proportional to e−δU/kBT , where T is the temperature of the system.

The qubit motion is then expected to approximately stop when δU ≈ kBT . The

freezing happens at t ≈ tTfreeze, so that δU(tTfreeze) ≈ kBT .

Otherwise, if quantum mechanical �uctuations dominate the dynamics of

the system, the qubit may tunnel across the barrier. When δU is increased,

quantum tunneling becomes less and less likely to happen. Then we expect the

quantum e�ects to vanish at a certain time tQfreeze, which is expected to be nearly

independent of T. This freezing e�ect was forecast by a numerical simulation

based on PIMC performed by Martovnak et al. in 2002 [136].

A study of the T -dependence of the freezing time tfreeze can show which is

the dominant e�ect driving the system dynamics. Experiments conducted on

chains of superconducting �ux qubits show that tfreeze saturates at low T . This

observation suggests that, for low temperatures, the dynamics of the system

is dominated by quantum mechanical e�ects. Fig. 1.11 shows the results of

an experiment conducted on an eight-qubit chain [91]. At higher temperatures,

the freezing time tfreeze follows an approximately linear dependence on T . When

T <∼ 50mK, such dependence disappears, and tfreeze assumes a �xed value.

When thermal �uctuations dominate, the linear dependence of tfreeze with

respect to T is to be expected, since δU is increased linearly with time, and

δU(tTfreeze) ≈ kBT .

In general, the freezing time tfreeze depends on the device temperature and

the potential energy landscape (which also means it depends on its time evo-

lution, i.e. the annealing schedule). Its value comes from the combined e�ect

of quantum and thermal �uctuations, thus it can be di�cult to predict. Fur-

thermore, the dependence of the e�ect on δU implies that the freezing point is
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Figure 1.11: Measured tfreeze versus T (red dots). Simulated plots of tfreeze
have been estimated from two-level (dashed blu) and four level (solid blue)
quantum machanical models. The dashed black line shows the value for tfreeze
simulated with a classical model of the qubits. Error bars 1σ. Image from

Ref. [91]
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expected earlier when employing long chains in the embedding, since the en-

ergy gap between the upward and downward con�guration for the chain qubits

increases. A consequence of this is that embeddings using chains of di�erent

lengths could experience the freeze-out phenomenon at di�erent times for each

chain, potentially warping the expected Boltzmann distribution in sampling

applications30.

The freeze-out e�ect is not limited to AQC device, but extends to other

quantum systems such as a crystals of the Ising magnet LiHoxY1−xF4. In [218],

a cubic-centimeter�sized crystal of such insulating magnetic salt was coupled

to a heat bath. The authors showed that, when the material is more strongly

connected to the heat bath, the local magnetic clusters behave more classically

and freeze simultaneously into a glassy state. Tuning the coupling with the heat

bath allows to set the tendency of the system to exploit quantum mechanical

modes of relaxation. Such results support previous �ndings obtained in a similar

experimental setup [83].

The next Section extends the discussion above by describing the expression

of the distribution of states that results at the end of the annealing schedule.

Such expression is strongly correlated with the position of the freeze-out point

during annealing.

States distribution at the freezing point

QA theory suggests choosing long annealing times so that the adiabatic theorem

requirements are satis�ed. More speci�cally, the time dependence of the system

should be very slow compared to its relaxation time, so that the system can reach

equilibrium at all times. In thermodynamics, such a system is called quasistatic.

We already pointed out that in physical implementations of QA the system

follows the equilibrium distribution only up to a certain point sfreeze = tfreeze/tf.

After this point, system dynamics appears to stop, so that the �nal distribution

after the anneal closely resembles the equilibrium distribution at sfreeze.

We are now interested in studying the distribution of the states that are

obtained after an annealing cycle. Reference [219] provides a numerical ap-

proach to the problem. A 16-qubit problem is considered, with hi selected from

±1/3 and Jij from ±1/3 or −1 uniform randomly. Fig. 1.13(a) shows the 12

lowest energy eigenvalues of the problem considered. Their time evolution is

obtained by the shapes of F (s) and G(s) plotted in Fig. 1.12, which are real-

istic shapes obtainable in a D-Wave device. The dashed black lines represent

the corresponding classical energies, i.e., eigenvalues of F (s)HP . Occupation

30See Section 2.3 to learn how AQCs can accelerate sampling tasks.
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Figure 1.12: Typical shapes for F (s) and G(s) obtainable in a D-Wave
processor. Image from Ref. [219]

probabilities are then calculated by using the open quantum (Red�eld) master

equation, assuming an Ohmic environment at equilibrium temperature T = 40

mK (See ref. [100]). Circles in Fig. 1.13(b) represent the occupation proba-

bilities of the lowest 12 eigenstates during the evolution. Fig. 1.13 (b) shows

by solid lines the equilibrium probability calculated by using the Boltzmann

distribution:

Pn(s) =
e−En(s)/kBT

Z
, (1.85)

where En is an instantaneous eigenvalue of the full anneal Hamiltonian H(s),

and Z is the partition function. In Fig. 1.13(a) the probabilities closely follow

Pn(s) up to almost 2/3 of the evolution (green region). As s→ 1, G(s) becomes

smaller, making thermal relaxation slower. When relaxation becomes too slow,

probabilities deviates from Boltzmann distribution. The system enters a freez-

ing region (yellow), where the probabilities saturate and stop changing. If this

area is narrow, �nal probabilities will follow the Boltzmann distribution at a

single freeze-out point s = s∗, marked by the red dotted line. This behaviour

has been demonstrated experimentally [220] (see also Section 2.3).
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Figure 1.13: (a) The lowest 12 energy levels of a randomly generated 16-
qubit problem. Dashed black lines are classical energies. Notice that the
quantum energy eigenvalues are close to the classical ones at s∗. (b) Oc-
cupation probabilities during the annealing calculated by using the Red�eld
formalism (circles) and the Boltzmann distribution (solid lines). All prob-
abilities follow the Boltzmann distribution in the quasistatic region (green)
until they start freezing in the freezing region (yellow) and stay constant in
the frozen region (blue). All �nal probabilities are close to the Boltzmann
probabilities at the freeze-out point s∗, marked by the vertical (red) dashed

line. Images from Ref. [219]

We can then approximate the �nal quantum state |ϕ⟩ of the system as:

|ϕ(τ > τfreeze)⟩ =
1

Z1/2

2N∑
j=1

eiθje
−

Ej
2Te� |Sj⟩ , (1.86)

where the sum over j is the sum over each state Sj of the eigenstates basis

(computational basis), Z is such that the quantum superposition is correctly

normalized and Ej is the energy eigenvalue of state |Sj⟩ with respect to HP .

Equation 1.86 is such that each con�guration Sj is measured with a probability

equal to e−Ej/Te�/Z. Measuring this system after the freeze-out point can be

seen as sampling an istantaneous con�guration from a classical spin-glass model

at the e�ective temperature T = Te�.

It is fundamental to observe that the hypothesis expressed by Eq. 1.86

allows us to think of a quantum annealing device as a generator of samples

that follows the Boltzmann distribution of the classical cost function encoded

in HP . Even if this behavior is undesirable when we are solving an optimization

problem, it is exactly what we need to generate the correct samples needed for

RBM training31.

The parameter Te� can vary between di�erent annealing cycles and its evolu-

tion is considered extremely di�cult to predict. It can be viewed as an empirical
31See Section 2.4.
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parameter that depends on the operating temperature of the hardware and other

sources of error that a�ect the device.

The intuition behind this freeze-out phenomenon is that the dominant cou-

pling of the qubits to the environment or bath degrees of freedom works via the

σx operator [221]. Since at the freezing point we have F (τfreeze)≫ G(τfreeze), and

the interaction with the bath lacks a strong σx component capable of causing

relaxation between the states of the computational basis (i.e., eigenstates of σz),

the system cannot relax its population anymore; in other words, its population

dynamics freezes.

A technique to estimate the inverse temperature βe� that de�nes the dis-

tribution at the end of the annealing was devised in [221] based on the obser-

vations outlined in this Section. The probability for QA to produce a sample

with energy E is Pβ)(E) = g(E)exp(−βE)/Z(β), where we renamed βe� = β

for simplicity, g(E) is the degeneracy of the energy level E, and Z(β) is the

partition function needed to normalize the probability. Then, for two distinct

energies E1, E2 the log-ratio of the probabilities becomes:

ℓ(β) ≡ ln
Pβ(E1)

Pβ(E2)
= ln

g(E1)

g(E2)
− β∆E , (1.87)

where ∆E ≡ E1 − E2. The ingenious procedure prescribes to rescale all coef-

�cients of the Hamiltonian by a factor x ∈ (0, 1). Letting β′ = xβe�, we can

evaluate ∆ℓ ≡ ℓ(β)− ℓ(β′) obtaining:

∆ℓ = ln
Pβ(E1)P

′
β(E2)

Pβ(E2)P ′
β(E1)

= ∆β∆E , (1.88)

where ∆β = β′ − β = (x − 1)βe�. In this way, by generating a second set of

samples at a suitable value of x and then taking the di�erences of all pairs of

populated levels, we can plot ∆ℓ against ∆E. According to Eq. 1.88 this is

expected to be a straight line with slope given by (x − 1)βe�. This is then a

viable strategy to estimate Te�. See Ref. [221] and [222] for rules-of-thumb to

chose x.

As stated in Section 1.3.6, if the dynamic is dominated by thermal �uctu-

ations, the motion of the system is expected to freeze-out when δU ≈ kBT ,

where δU is the approximate gap between the occupied states and the closer

excited states. We then expect the dynamic to stop at sfreeze s.t. B(s∗) ∼ 1/βe�.

Knowing βe� thus gives an estimate of the freezing time.

In a recent article, Pelofske et al. [222] introduce a slicing method to infer

the istantaneous state of the quantum annealer at various points during the
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annealing. They are able to take a snapshot of the adiabatic evolution by

quenching32 the system, which consists in quickly ending the annealing process

speeding up the anneal schedule as much as allowed by the hardware. Since the

quenching phase will take at least 0.5µs on modern AQC devices, and a usual full

annealing takes around 20µs, the quenching is not instantaneous, and thus the

results obtained via this method can be a�icted by errors. They observe that

the rule-of-thumb that estimates s∗ based on the thermal �uctuations argument

seems to underestimate s∗, since the slicing method, which is not expected to

overestimate s∗, consistently forecast a later freezing point.

It is important to underline that empirical evidence and additional theoreti-

cal arguments suggest that an output Boltzmann distribution is to be expected

only when the dynamic is in a negligible quantum �uctuations regime [223]. It

should be noted that in the majority of cases the negligible quantum �uctua-

tions hypothesis does not hold, which means more often than not there is no

reason to believe that the output should follow a classical Boltzmann distribu-

tion. The resultant distribution will generally not correspond to an equilibration

at any given point, but it may instead result from di�erent parts of the system

equilibrating at di�erent temperatures and times [219]. Nonetheless, in many

scenarios the Boltzmann distribution hypothesis has been exploited with suc-

cess. As an example, see Section 2.3, where multiple empirical applications of

AQC on sampling problems are presented.

1.3.7 An alternative hardware approach to AQC: atomic

lattices

The concept of adiabatic quantum evolution presented in Section 1.2.1 is not

bounded to a speci�c physical system or hardware. While QA is usually as-

sociated with the adiabatic evolution of an Ising system, the concept of AQC

is more general, as it hypothesizes simply a system composed by two tunable

Hamiltonians (one implementing the problem as its ground state and the other

allowing the quantum degrees of freedom to switch between di�erent states of

the computational basis). The most successful approach up to date is the D-

Wave Systems SQUID-based AQC technology, which is the main topic of this

Section 1.3. Nonetheless, several AQC schemes based on atomic lattices have

been explored in the past and continue to arise interest as the most promising

alternatives to superconducting AQC devices [224].

In [225], Hauke et al. proposed a system of cold trapped ions33 that uses two
32See Section 3.1.2.
33See Section 1.1.2.
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electronic hyper�ne sublevels of each ion as qubits. The Hamiltonians required

for AQC can be realized by coupling the ions via lasers or microwave radiation

and qubits are then measured by appropriate single-qubit rotations followed by

stimulated �uorescence measurements. The approach has been further studied

and detailed in [226]. In [227], Graÿ et al. empirically tested this approach using

a system of six 40Ca+ ions to solve via AQC the number partitioning problem

[228].

In 2017, Glaetzle et al. proposed an AQC scheme based on neutral Rydberg

atoms [61]. Qubits are encoded in two long-lived hyper�ne ground states of
87Rb and 133Cs. Qubits are then coupled using Rydberg dressing [229]. A

potential advantage of such approach is that the atoms can be arranged in

almost arbitrary 2D geometries using optical tweezers (as done in [230] as an

example).
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Chapter 2

Practical Applications of Adiabatic

Quantum Computers and other

unconventional computing

paradigms

2.1 Introduction to the practical applications of

Adiabatic Quantum Computing

This Section presents the computational �elds where AQCs are expected to

have a bene�cial impact in the near future. First, the class of problems natively

accepted by AQC devices (QUBO) is introduced, along with basic techniques

to approximate non-QUBO problems as QUBO problems. Then, the most

relevant optimization and sampling problems that can be tackled with AQC

are explained from a mathematical perspective, explaining in particular how to

map them to QUBO form.

2.1.1 QUBO problems

As anticipated in Section 1.2, quantum annealing has a preferred application

as technique to solve combinatorial optimization problems called QUBO prob-

lems. The acronym stands for Quadratic Unconstrained Binary Optimization

problems. These keywords are reordered and explained in the following list:

� Optimization: the problem consists in �nding the combination of values

for the problem variables that minimize a given cost function;

� Binary: the variables of the cost function are binary, and in general they

must assume values ∈ {0; 1};
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� Quadratic: the cost function is a polynomial of the variables comprising

only linear or quadratic terms;

� Unconstrained: the optimization problem has no constraints, meaning the

variables can in principle assume any combination of values.

In other words, every QUBO problem consists in �nding a combination of

values for the binary variables q1, ..., qN ∈ {0; 1}N such that the cost function

F (q1, ..., qN) ≡
∑
i

hiqi +
∑
i,j

Jijqiqj (2.1)

is minimized, where hi and Jij are real parameters de�ned by the problem

statement. When q1, ..., qN ∈ {−1;+1}N , the problem is sometimes called Ising

problem. This convention will be used throughout the text.

It follows that a user of AQC is required to translate the problem she wants

to solve into a minimization problem, and then submit it to the QPU. Then,

contrary to gate based QC, there is no algorithmic procedure to be devised in

order to obtain a solution. This is why the programming paradigm for AQCs

is sometimes de�ned declarative rather than imperative [33]. Nonetheless, ef-

�ciently mapping some optimization problems to QUBO form can still pose

some di�culties. The reader can learn more about the topic reading [231],

where relevant NP-hard problems, including Karp's 21 NP-complete problems,

are translated into QUBO form, and [232], where strategies are presented to

make the mapping hardware-aware. Additionally, several specialized middle-

ware software tools are available to lighten the burden of the generation of

medium-sized QUBO problems [233], [234].

2.1.2 Introduction of constraints as penalty terms

By de�nition, QUBO problem are Unconstrained, which means no constraint

can be implemented exactly. Nonetheless, optimization problems of industrial

relevance often require the presence of constraints, usually represented by equal-

ities. The most widely adopted technique to impose equality constraint in

QUBO form is to write the equality such that the right-hand side is zero, and

then square the left hand side, obtaining a positive expression that attains the

minimum value at zero, when the equality constraint is respected [235]. A

typical equality constraint can take the form

n∑
i=1

xi = k , (2.2)
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which means that exactly k of the QUBO variables xi must be set equal to 1.

We can implement this constraint by adding to the problem cost function the

term:

P (x) =M

(
n∑

i=1

xi − k

)2

, (2.3)

where M is a real positive value parametrizing the strength of the constraint.

The constraint in Eq. 2.3 attains zero value only for those xi that respect the

equality condition in Eq. 2.2. In all other cases, the constraint is unsatis�ed

and P (x) > 0 [236].

This penalty based method presents some relevant shortcomings. First, the

squared expression can end up containing higher-than-quadratic terms, result-

ing in a non-QUBO expression1. Additionally, contrary to what happens in

classical methods, the phase space is actually not restricted by the imposed

constraints, since the penalty term is merely suggesting the system to avoid the

phase space where the constraint is unsatis�ed. Since the phase space portion

that corresponds to feasible solutions can be exponentially small, the presence of

noise can strongly reduce the probability to �nd a solution [237]. Furthermore,

the squaring of the constraints normally results in a pattern of interactions that

pairwise couple all the input variables. This is known to potentially introduce

additional complexities2.

Implementing an inequality constraint is harder, since the squaring strategy

does not apply. A general inequality could take the form:

n∑
i=1

xi ≤ k . (2.4)

The easiest way to implement this inequality is to introduce a slack variable z

such that (
∑n

i=1 xi) + z = k [238]. Since an arbitrary k can assume non-binary

values, z will require potentially many Boolean variables to be correctly repre-

sented3. More elaborated techniques to e�ciently implement constraints have

been recently developed [239], [240] using the Hubbard-Stratonovich transfor-

mation in an approach that resembles the Lagrangian relaxation in traditional

combinatorial optimization.
1See Section 2.1.4 to learn how to manage this situation.
2See Section 1.2.10.
3See Section 2.1.3 to learn how to represent integer or continuous variables in QUBO form.
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2.1.3 Non-binary discrete variables encoding

One of the �rst questions that could arise when facing the QUBO formulation is:

what about problems whose variables are not binary? Do we have to give up the

idea of solving such problems with AQC? Luckily, there are various techniques

to map quadratic optimization problems with integer or continuous variables to

QUBO form. Nonetheless, sometimes the overhead of the conversion can result

in poor performances of AQC devices.

We can face problems where variables are continuous or non-binary integers.

Since there is no way to represent continuous variables with binary variables, in

the case of continuous variables we will simply require the continuous numbers

to be cut-o� at a speci�c decimal (as it is customary in classical computation).

We can then rescale the whole problem by a su�ciently large power of ten

to obtain a discrete approximation of the continuous problem. We are then

interested only in mapping integers to binary variables.

The most naive way to map a quadratic integer optimization problem to

QUBO form is to perform the following substitution for each variable:

Vi = c
n∑

j=0

bjaj (2.5)

where Vi < bn+1 is the i−th integer variable of the original formulation, while

aj is the j−th binary variable in the QUBO formulation, b is the logarithmic

resolution of the mapping, and c ∈ R is a scale factor de�ning the range of

the original variable. Note that to perform the mapping the integer variables

have to be both upper and lower bounded. If the variable can be negative,

it can be properly shifted to be always positive and respect Eq. 2.5. Usually,

b = 2 to be able to represent every possible integer between the upper and lower

bound. Basically each integer variable is decomposed in basis 2 and expressed

by ⌈logb Vi⌉ binary variables.

Practically, this mapping can result problematic for two main reasons. First,

introducing many binary variables can lead to increased complexity of the en-

ergy landscape reducing the probability to �nd the global minimum. This is

to be put in perspective considering that classical solvers require no additional

overhead in managing Integer Linear or Quadratic Programming [241], which

means the expectancy of quantum advantage diminishes in such cases. Sec-

ondly, representing a large integer variable could require the use of many binary

variables with corresponding weights 2j ranging from 1 to 2n. If n ≫ 1, the
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smallest weights could be heavily a�ected by ICEs4, causing the implementation

of a warped problem Hamiltonian.

Very few cases exist in literature where researchers tackled quadratic opti-

mization problems with continuous variables using AQC, and they all use the

binary encoding just presented [242]�[244]. In such cases, the precision require-

ments are the most detrimental factor in AQC performance.

Besides binary encoding, two other approaches exist to map e higher-than-

binary discrete variables to Boolean variables: one hot encoding and domain

wall encoding [245]. They are unary encoding where the number of Boolean

variables needed to encode the integer variable grows linearly with the integer

variable range.

In one hot encoding, each Boolean variable simply represents a possible

value of an integer variable. The mapped problem is then de�ned on two index

variables, xi,α such that:

xi,α = δ(i, α) (2.6)

where δ(i, α) = 1 if variable i equals α, and δ(i, α) = 0 otherwise. We also have

to introduce a constraint to impose that xi,α = 0 for every value of α but one.

This constraint can be realized as:

Hone-hot = k

(∑
α

xi,α − 1

)2

, (2.7)

where the sum is performed over any value for α, and k parametrizes the

strength of the constraint. A general DQM5 (discrete quadratic model) can

then be expressed as [246]:

HDQM =
∑
i,j

∑
α,β

D(i,j,α,β)xi,αxj,β , (2.8)

where D(i,j,α,β) are the pairwise interactions which determine the overall energy

of a con�guration.

In domain wall encoding, each integer variable i ∈ [0,m] is encoded in a

frustrated chain of m Boolean variables σj with j ∈ [0,m − 1]. Boundary

conditions are enforced setting σ−1 = −1 and σm = 1. The Hamiltonian is

4See Section 1.3.6 to learn about Integrated Control Errors.
5Discrete quadratic models are optimization problems expressed on discrete variables with

arbitrary pairwise interactions. They can be seen as a generalization of QUBO problems
where variables are allowed to assume (non-binary) integer values.
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de�ned as

Hdomain-wall = −k
m−1∑
α=−1

σασα+1 (2.9)

Problems can then be de�ned as in one hot encoding by noting that

xi,α =
1

2
(σi,α − σi,α−1) . (2.10)

Basically, the integer variable is encoded as the point where the spins in the

frustrated chain change value. Since xi,α in Eq. 2.10 is expressed by a linear

term, the domain-wall encoding of a DQM is always quadratic in the underlying

binary variables.

In terms of number of binary variables used to encode a discrete variable

(ignoring embedding overhead), the most e�cient method to encode a DQM

is to use binary encoding. If a unary encoding is preferred, domain wall en-

coding was shown to lead to preferable dynamics during the annealing process

if compared to simple one-hot encoding, which in turn leads to an increased

probability of �nding feasible solutions [245]�[247]. From empirical results, do-

main wall seems to outperform one-hot encoding on any reasonable metric, even

when the experiment setup compares on the same problem one-hot on Pegasus

and domain wall on Chimera topology [248].

While other encodings from DQM to QUBO exist in literature [249], those

presented above are used in the vast majority of the existing literature.

2.1.4 HUBO problems

The previous Section showed how to extend the boundaries of QUBO problem

to comprise also constrained instances. In this Section we will show how to

implement cost functions with a degree higher than two. Binary optimization

problems with terms of a degree higher than two are called HUBO (or HOBO)

problems (Higher-order QUBO problems) [35].

We saw in Section 1.2.10 that a problem that does not respect the topol-

ogy of an AQC device can be nonetheless submitted using proper embedding

techniques. In a similar way, HUBO problems can be tackled by AQC if we

map them to QUBO problems having equivalent solutions. Whenever a HUBO

problem contains a cubic term, e.g. 5q1q2q3, we can introduce a new binary

variable q1,2 = q1q2, q1,2 ∈ {0, 1}. The new expression 5q1,2q3 is of degree two,

so it is a QUBO problem. To guarantee the problem is equivalent to its previ-

ous formulation, we have to enforce the condition q1,2 = q1q2. This is done by
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adding a penalty term to the cost function. Consider the following expression:

C(q1,2, q1, q2) = 3q1,2 + q1q2 − 2q1q1,2 − 2q2q1,2 (2.11)

The above expression for C(q1,2, q1, q2) has the interesting property of being

equal to zero in each and only those cases where q1,2 = q1q2. In the remaining

cases, C(q1,2, q1, q2) > 0 (in particular, it is equal to 1 or 3). This means that,

by adding this penalty term, any con�guration that does not respect q1,2 = q1q2

cannot be a global minima, which also means the equality is respected by any

global minima. From a di�erent point of view, Eq. 2.11 can be seen as enforcing

an AND gate: q1,2 = q1 ∧ q2. In general, the penalty term C(q1,2, q1, q2) will be

added to the QUBO cost function with a multiplicative factor λ, that can be

reduced or increased. A value too high for a penalty term can interfere with

the quantum solver's ability to respect the cost function. On the other hand, a

λ value too small lowers the probability for the constraint to be respected.

We underline that expression in Eq. 2.11 is a particular example for the

coe�cients of the constraint cost C(q1,2, q1, q2). Other valid expressions ad-

dressing the same objective exist. The form presented in 2.11 is the same

originally appearing in the quadratization technique of [250], which was �rst

exploited in the context of quantum annealing by [251] and since then has been

used in several applications [252]�[254]. A more complete discussion regarding

quadratization techniques (the general approach to reducing the degree of an

optimization problem) can be found in [255], who wrote the book having in

mind the application to quantum annealing.

As a last remark, we underline that the computational time required to

reduce HUBO problems to QUBO problems can be negligible with respect to

the time required by the solver to �nd the solution. Indeed, the reduction from

k-local to 2-local interactions is known to scale in polynomial time [256]. Such

scaling can be negligible for large problem sizes that require an exponentially

scaling cost to be solved. On the other hand, one should be aware that the

reduction to QUBO can create problems that are much harder to solve than

their original HUBO version [174].

2.2 Optimization problems

In research and industry, hard combinatorial optimization problems are ubiqui-

tous. Any advancement in the performances of modern solvers for such problems

has an impact on practically any �eld where heavy computation is involved.
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Many hard optimization problems can be cast in QUBO form [257], so AQC is

a potential candidate for revolutionizing many industrially relevant �elds, such

as pharmaceutics and logistics. In this Section, we make few examples of hard

optimization problems that can be tackled by AQCs.

2.2.1 Boolean satis�ability problems

Boolean satis�ability problem (often abbreviated as SAT) is the problem of de-

termining if there exists a combination of values for the input variables of a

given Boolean formula that makes the formula true. If at least one of those

combinations exists, the formula is said to be satis�able. SAT was the �rst

problem that was proven to be NP-complete [258]. Due to its simple expres-

sion, numerous proofs of NP-completeness for other problems makes use of a

reduction from SAT to the problem of interest. Therefore, it would not be crazy

to state that SAT is the most important hard problem in the NP class (from a

computational complexity point of view).

A particular reduction of SAT is MAX-SAT. MAX stands for maximum,

which means this time we are not asking if the statement is satis�able, but we

are asking which is the maximum number of clauses in the formula that can

be satis�ed. For this purpose, the Boolean formula is required to be written in

conjunctive normal form6.

We will restrict the MAX-SAT problem to those Boolean formulas contain-

ing clauses composed by an OR of only two variables. This restriction of the

MAX-SAT domain is named MAX 2-SAT problem. The decision version of

MAX 2-SAT has been proved NP-complete by a reduction from 3-SAT [259], in

contrast with the 2-SAT problem, which can be solved in polynomial time by a

deterministic Turing machine.

We will now show that MAX 2-SAT can be mapped in a natural way to

QUBO form using a number of binary variables equal to the number of variables

appearing in the Boolean formula.

For MAX 2-SAT, each clause is satis�ed if either or both variables in the

clause are true. Thus, there are three possible types of clauses for this problem:

the case in which no variable is negated, the case with one negation, and the

case where both variables are negated. These clauses can be represented by the
6A Boolean formula is written in conjunctive normal form if it is expressed as an AND of

clauses containing only ORs. For example, (A ∨ B) ∧ (¬A ∨ C) ∧ (A ∨ B ∨ ¬D) is correctly
written in this form.
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following QUBO expressions:

(A ∨B)→ 1− qA − qB + qAqB

(A ∨ ¬B)→ qB − qAqB
(¬A ∨ ¬B)→ qAqB

(2.12)

where qA, qB are the QUBO variables corresponding to the Boolean variables

A,B.

Note that whenever one of the clauses in Eq. 2.12 is true, the value of the

corresponding expression on the right is 0, while unsatis�ed clauses correspond

to expressions of value 1.

2.2.2 Max Cut

Given an undirected graph G(V,E) with a vertex set V and an edge set E, the

Max Cut problem seeks to partition V into two sets such that the number of

edges between the two sets, is a large as possible. In other words, we are aiming

to draw a line that divides the vertices in two sets while crossing the highest

possible number of edges. Max Cut is an NP-hard problem. In particular, the

decision problem related to Max Cut, which is asking if there exist a partition

where at least C edges are cut, is NP-complete. This can be shown, for example,

by a reduction from maximum 2-satis�ability [259].

Max-cut is a relevant problem from the mathematical point of view. It is

one of the 21 fundamental NP-complete problems listed by Karp in [260]. It

also possess real-world applications in very-large-scale-integrated (VLSI) circuit

design and in printed circuit board design [261], as well as in studying balance

in social networks [262].

To map Max-Cut to a QUBO problem we use a Boolean variable for each

node, to represent the set the node belongs to. Then we introduce the following

cost function:

C(q1, .., qN) =
∑

(i,j)∈E

−qi − qj + 2qiqj (2.13)

where the summation runs on E, the set of all edges present in the problem

graph. The expression for a single edge equals 0 if the two nodes belong to

the same set, while it equals -1 if the two nodes belong to di�erent sets. Thus,

minimizing C(q1, .., qN) is equivalent to looking for the arrangement of the nodes

in the two sets that maximizes the number of edges connecting nodes that belong

to di�erent sets, which is exactly the solution of the Max-Cut problem.
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2.2.3 Semiprime Factorization

The problem of factoring an integer number into its prime factors is of paramount

interest in mathematics, in particular in cryptography, since the notorious hard-

ness of such problem [263] is at the basis of many cryptographic protocols on

which the modern exchange of information over internet heavily relies, in par-

ticular the RSA algorithm [264], [265]. Given N , the number to be factored,

one must �nd the prime factors p and q. The best-known classical algorithm

for solving FP is the General Number Field Sieve whose complexity is not poly-

nomial [266]:

O
(
e

3
√

64
9
(logN)1/3(log logN)2/3

)
(2.14)

A considerable amount of the attention received by the quantum computing

�eld in the early twenties is probably due to the seminal paper by Shor, where

he introduced an e�cient algorithm to factorize semiprimes (numbers that are

obtained as the product of two primes) on universal quantum computers [18].

Due to the prototypical state of current universal quantum computers, the

RSA protocol seems to have a long way to go before retiring. Researchers

have thus tried to tackle factorization using AQC [267]. A seminal work on

the topic has been published in 2008 by Peng et al. [268]. They hypothesized

a general Hamiltonian to implement adiabatic quantum evolution of a custom

system whose �nal state encodes the two factors. Nonetheless, their Hamilto-

nian is equivalent to that of an Ising system with local transverse �elds and up

to 4-local longitudinal interactions, which means their protocol is in principle

equivalent to a HUBO problem of degree four. They provided empirical evi-

dence of the proposed approach by factoring the number 21 on a three-qubits

NMR quantum processor. Then, Xu et al. [269] used the same approach to fac-

tor 143 on a similar quantum processor. Then, Schaller et al. [270] developed

a new approach to factorize using AQC based on tables for binary multiplica-

tion. Dridi et al. [271] elaborated the same idea, achieving a reduction in the

number of ancillary variables needed, and were able to factorize the number

200099. Approximately 990 qubits (n.d.r. visually estimated by the author

from a �gure in the article) were required to embed the 75 binary variables of

the corresponding QUBO problem on the Chimera topology of D-Wave 2X. At

that time, 200099 constituted the biggest semiprime factorized on any quantum

processor. Shortly after, Li et al. [272] applied both theoretical reductions and

Hamiltonian transformations to successfully factor 291311.

Recently, Saida et al. [273] proposed an hardware setup composed by super-

conducting �ux qubits capable of performing AQC on a Hamiltonian natively
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implementing binary multiplication. They used the novel quantum annealer

to perform an experimental 2-bit factorization. In perspective, ad-hoc quan-

tum annealing hardware could constitute a game changer to achieve quantum

advantage on speci�c applications.

In [2], we tested the capabilities of an AQC and a Virtual Memcomputing

Machine on a semiprime factorization problem (FP). We will now explain how

to formulate FP in ILP and QUBO form, to then be able to solve it via AQC

and Memcomputing machines. This introduction is functional for the discussion

in Section 4.1.2 of the results we obtained in [2].

FP can be expressed as follows: let M be the number to be factored, one

wants to �nd the prime factors p and q such that

M = p× q (2.15)

This problem can be solved as a binary optimization problem. For this, one

needs the bit representation of the numbers:

M :=

LM−1∑
i=0

2imi, p :=

Lp−1∑
i=0

2ipi, q :=

Lq−1∑
i=0

2iqi (2.16)

in which mi, pi, qi ∈ {0, 1}.
The bit sizes Lp and Lq are unknowns, but one can arbitrarily consider p ≥ q,

from which it follows that Lq ≤ ⌈LM

2
⌉. To reduce the problem's variables, it is

useful to consider that, since p and q are prime numbers, then p0 = q0 = m0 = 1.

Moreover, since the problem's complexity is not changed by a priori knowledge

of the lengths Lp and Lq, then the most signi�cant bit of p and q can be �xed to

1 if one intends to evaluate the problem's scaling, as in this case. Since VMM

solves optimization problems in the ILP formulation, the SAT problem (derived

from the equations 2.15 and the equation 2.16) must be converted to a linear

version. An ILP formulation of a semiprime factorization problem is derived

from the Column-Based Procedure [271]. The Column-Based Procedure, or

Multiplication Table Method [274], involves splitting the equation 2.15, written

in the binary form, into at most Lp+Lq+1 equations. The factors of equations

2.15, rewritten according to the de�nitions in equation 2.16, can be grouped by

collecting those terms with the same powers of 2 as coe�cients. Therefore the

�nal system comprises up to LM + 1 equations:

Lq−1∑
j=0

qjpi−j +
i∑

j=1

ci,j −mi −
Li∑
j=1

2j−ici,i+j = 0 , 0 ≤ i ≤ LM (2.17)
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where i is column index of the corresponding multiplication table p × q or, in

other words, the power of 2 that unites these terms of the i-th equation. The

number Li = ⌈log2 (Lq + i−mi)⌉ is the number of carry variables introduced

in the i-th equation.

The carry variables ci,j were added and subtracted from equation 2.15 to set to

0 the sum of the terms with the same power of 2 and thus obtain the system

in equation 2.17. The system of equations is not linear due to the presence

of terms like piqj. These terms correspond to the logical AND operation whose

equation zij ≡ piqj is equivalent to the following two linear inequalities:pi + qj ≤ zi,j + 1

pi + qj ≥ 2zi,j
(2.18)

From equation 2.17 and 2.18, an ILP problem PF can be de�ned as follows:
∑Lq−1

j=0 zi−j,j +
∑i

j=1 ci,j −mi −
∑Li

j=1 2
j−ici,i+j = 0 , 0 ≤ i ≤ LM

pi + qj ≤ zi,j + 1 , 1 ≤ i ≤ Lp − 2 , 1 ≤ j ≤ Lq − 2

pi + qj ≥ 2zi,j , 1 ≤ i ≤ Lp − 2 , 1 ≤ j ≤ Lq − 2

(2.19)

The optimization problem PF is an ILP problem that does not bear a cost

function, therefore a feasible solution is also the problem's solution.

To reduce the number of carry variables and the number of equality constraints,

the problem's equations PF can be rearranged in order to consider blocks of

columns of the multiplication table. This method, called Blocks Multiplication

Table Method [275], follows the same procedure of the previously cited Mul-

tiplication Table Method. But instead of the system in equation 2.17 (where

each equation corresponds to one power of 2), the new equations correspond

to a group of power of 2. For the implementations on the VMM, Gurobi, and

D-Wave, we used the Blocks Multiplication Table Method with a block size of

2 columns. Therefore the total number of equations in the ILP problem is up

to ⌈LM

2
⌉.

The ILP formulation was used for VMM and Gurobi, but cannot be imple-

mented on D-Wave devices. For D-Wave, the ILP problem PF was converted

into the corresponding QUBO (Quadratic Unconstrained Binary Optimization)

formulation, which includes a penalty component that takes into account the

constraints. The QUBO cost function for D-Wave is then:

PQUBO
F (p, q, z, c) =

∑
i

H2
i (p, q, z, c) + λ

∑
i,j

R(pi, qj, zi,j) (2.20)
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where H2
i are the square of the equalities in equations 2.19 but grouped by

blocks of 2 to support the Blocks Multiplication Table Method. The penalty

terms R(pi, qj, zi,j) are QUBO terms corresponding to the inequalities:

R(pi, qj, zi,j) = piqj − 2pizi,j − 2qjzi,j + 3zi,j . (2.21)

2.2.4 Logistic

Logistic problems deal with the e�cient �ow of goods or information (routing or

travel problems), as well as scheduling the ideal time-sequence for a collection of

tasks (scheduling problems). Most of the di�cult problems to solve in logistic

are combinatorial problems that belong to the NP-hard class. Any improvement

in the computational time required to solve this problems has a wide impact

on numerous industrial and research �elds. Many quantum computing experts

have identi�ed in D-Wave processors the ideal QC candidate to solve logistic

problems in the near future, since such problems usually involve a large number

of variables. One main limitation is the necessity to map a logistic problem to

QUBO form. This is usually doable, since combinatorial problems are often ex-

pressible as an optimization problem, but the mapping to QUBO can introduce

an overhead that potentially hinders the utility of the QC solution.

One of the �rst examples we can �nd in literature dates back to 2004, before

the actual realization of hardware AQCs. Marto¬ák et al. [138] proposed a

path-integral Monte Carlo quantum annealing scheme implemented on an ising

model to solve the symmetric Travelling Salesman Problem (TSP) (Warren

[276] will later show how to map TSP speci�cally to a QUBO model). TSP

is an ubiquitous hard optimization problem de�ned on a graph that requires

to �nd the shortest path across multiple nodes so that all nodes in the graph

are visited at least one. In [138] the simulated quantum annealing algorithm

achieved performances superior to the classical SA.

More recently, after the advent of prototypical AQCs, literature became

abundant of actual experiments on the QPU. As an example, in 2017 Neukart

et al. [277] explained how to map a tra�c �ow optimization problem on D-

Wave processors. The objective of this problem is to minimize the time for a

given set of cars to travel between their sources and their destinations. The

authors were forced to utilize a hybrid framework, due to the limited topology

of the D-Wave AQCs at the time. Later, the same group (Yarkoni et al. [278])

extended [277] and managed to navigate a small bus �eet in real time for the

duration of the Web Summit 2019 conference in Lisbon. This was the �rst

historical real-world, real-time application of a QC. Anyway, the largest QUBO



94
Chapter 2. Practical Applications of Adiabatic Quantum Computers and

other unconventional computing paradigms

that was solved was quite limited in size (12 variables, with �ve buses being

navigated simultaneously). Neukart et al. [277] inspired also Clark et al. [279],

who applied the methdology to a real time routing problem where multiple

robots are moving on a grid. The authors introduced an additional constraint

to avoid collisions and tested the algorithm on D-Wave 2000Q, reaching 200

robots moving simultaneously on the grid.

Scheduling and planning problems have received special attention from quan-

tum computing researchers. Rie�el et al. [182] were among the �rst to apply

AQCs to a practical, industrially relevant problem. They focused on planning

problems (both travelling and scheduling). Their work is one of the �rst to

underline the importance of an e�cient mapping to QUBO and an e�cient

embedding on the device. If such steps are performed poorly, the AQC will

have a hard time in solving the original problem. Recently (2021), Volkswagen

partnered with two European universities to optimize the shipment of goods

on road via trucks [243]. The goal of the optimization was to minimize the

total distance travelled for all trucks transporting shipments. They tested both

simple minimization objectives (truck kilometers), and hard constraints (limita-

tions on the truck load). The researchers underlined that �nding a valid QUBO

representations for the considered problem required considerable e�orts.

Another popular benchmark scheduling problem for AQCs is the Job Shop

Scheduling Problem (JSSP). JSSP is NP-hard, and it is considered one of the

most di�cult combinatorial optimization problems. It is described by a set of

jobs that must be scheduled on a set of machines. Each job is composed by a

sequence of operations to be executed in a prede�ned order. Each operation

takes a particular time and necessitates of a particular machine. To map JSSP

on AQCs, the researchers have resorted to decompose the problem in smaller

subproblems [280], since JSSP can involve a large number of variables. Denkena

at al. [281] extended previous works implementing the more general Flexible

JSSP, where each operation is allowed to be executed on various machines.

They obtained encouraging results when compared to the classic literature.

Recently (2022) Carugno et al. [282] extended previous works by describing each

step required from the problem formulation to the �ne-tuning of the quantum

annealer. This evolved approach is a consequence of the scienti�c community

realizing that tuning the internal parameters of the AQC allows to sensibly

enhance the performances, as we discuss in Chapter 3. Another interesting

approach to a scheduling problem can be found in Ikeda et al. [283], who applied

AQC to the nurse scheduling problem. They were able to increase the quality

of the solutions by using a modi�cation of the annealing schedule known as
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reverse annealing7.

2.3 Introduction to Sampling problems

In Section 1.3.6 we underlined that the annealing dynamics usually "freezes"

at a certain time tfreeze < tann, after which the quantum e�ects stop, and the

system is mainly a�ected by thermal jumps. Section 1.3.6 explained how such

e�ect is expected to cause readout samples to be distributed according to the

Boltzmann distribution (Eq. 1.86). As discussed in Section 1.2.1, AQCs have

been conceived and designed to solve optimization problems cast in QUBO form,

but the freeze-out phenomenon is one of the main obstacles that hinder AQCS'

performance. Nonetheless, at least since 2011 [284] researchers have tried to ex-

ploit this otherwise annoying behaviour for sampling purposes.Indeed, drawing

samples distributed according to the Boltzmann distribution is a hard compu-

tational task [285], and existing approaches are mainly approximate heuristic

samplers based on Markov chain Monte Carlo (MCMC) procedures [286]�[288].

The Boltzmann distribution is relevant in many areas of science, and sampling

from such distribution can become a signi�cant bottleneck in many applications.

Examples of such hard tasks are simulating dynamical systems [289], training

probabilistic unsupervised models such as the Boltzmann Machine [290], and,

more generally, approximate counting and inference of marginal probabilities,

which are often NP-hard tasks [291], [292].

From an historical point of view, Denil et al. [284] and then Vinci et al.

[293] were among the �rsts to perform an experiment on an AQC while be-

ing interested in the samples distribution, rather than focusing solely on the

probability of achieving the ground state. Later, literature began populating

with several new works that tested the actual capabilites of AQCs when used

as Boltzmann samplers [220], [294], [295]. In particular, [220] performed one

of the �rst experimental demonstrations that AQCs sample from the Boltz-

mann distribution. During time, certain limitations have also been underlined,

such as the detrimental consequences of the embedding process on the shape

of the sampled distribution [166], or the di�culty in estimating and tuning the

sampling temperature (see next Section 2.3 and Section 3.1.6).

In the next Section we explain how to tune the temperature at which the

AQC samples from the Boltzmann distribution. Such technique is useful in

both the main sampling applications for AQCs, which are statistical mechanics
7See Section 3.1.2.
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systems and the Boltzmann Machine, respectively. You can �nd a brief litera-

ture review on how to estimate the sampling temperature of AQCs in Section

3.1.6 in the next Chapter.

Tuning the sampling temperature

Starting from the expected distribution of quantum states at the freezing point

in Equation 1.86 we can conclude that the expected probability to sample a

state s after the measurement operation is

P (s, Te�) =
e

−E(s)
Te�

Z(Te�)
, (2.22)

where s is a speci�c classical con�guration of the qubits, the adimensional func-

tional E(s) is the energy of the state divided by the typical energy scale of the

magnetic couplers, Te� is an adimensional e�ective temperature obtained by

dividing kBT for the same typical energy scale, and Z(Te�) =
∑

s∈S e
−E(s)/Te�

normalizes the probability distribution, and it can be interpreted as the par-

tition function of the �nal distribution of the states over the set of possible

con�gurations S. By using a dimensionless scale for both the energy E(s) and

the e�ective temperature Te� we are following a popular convention that stems

from the simplicity of identifying E(s) as the energy of the Ising or QUBO

problem8 we want to solve using the AQC. As an example, in [221] the authors

estimated that, for the DW2X AQC, an adimensional coupling J = 1.0 in an

Ising problem corresponded to 7.9GHz when realized in the hardware. In this

example, the typical energy scale of the annealing process was 7.9GHz. This

constant can vary depending on the considered hardware. They estimated that

the physical temperature of the DW2X AQC TDW2X = 12.5mK corresponds to

TDW2X = 0.033 in the same adimensional scale. Actually, the e�ective sampling

temperature Te� is challenging to estimate9, but it is far more di�cult to forecast

it before the sampling, since it can simultaneously depend on the speci�c prob-

lem instance, on the noise on the programmable parameters, on the physical

temperature of the device, and on the speci�c annealing schedule employed. For

this reasons, estimating Te� a priori has been dubbed "a daunting task" [221].

Typical values found experimentally tend to be around an order of magnitude
8QUBO problems (whose variables assume values in {0, 1}) can be cast into equivalent

Ising problems (with variables in {−1,+1}) by means of a simple mapping that preserves
the energy of every con�guration, apart from a constant shift. This shift is irrelevant in
sampling applications, since it get simply reabsorbed from all probabilities and normalized
by the partition function.

9See Section 3.1.6 for a literature review about the available methodologies.
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higher than the estimate TDW2X = 0.033 for the DW2X QPU. In [221] authors

registered e�ective temperatures around 0.1, which was later con�rmed by [4] in

a similar implementation on the more recent D-Wave 2000Q AQC. When using

embedding comprising longer chains, the e�ective temperature is observed to

raise, probably as a consequence of the increased height of the energy barrier,

consequently causing an earlier freeze out event [219], [296]. As an example, in

[4] we observed an e�ective temperature increase from 0.11 to 0.32 when going

from 1-qubit to 4-qubits chains.

When passing a problem to the QPU we can thus expect to measure samples

distributed according to the Boltzmann distribution at an e�ective temperature

Te� that is di�cult to estimate. Nonetheless, we have a certain degree of con-

trol over such temperature. Indeed, suppose we submit to the AQC a slightly

modi�ed version of our Ising problem where each weight and bias is rescaled by

a constant α, such that we have a new problem Hamiltonian

H ′
P =

∑
i,j

J ′
ijσ

z
i σ

z
j +

∑
i

h′iσ
z
i ,

where J ′
ij = αJij and h′i = αhi .

(2.23)

It is obvious that the parameter α can be factored out so that HP = αH ′
P .

As a consequence, at the end of the annealing we will have a new, di�erent

probability of sampling each state s:

P ′(s, Te�) =
e

−αE(s)
Te�

Z ′(Te�)
=

=
e

−E(s)

T ′
e�

Z(T ′
e�)

,

(2.24)

where T ′
e� = Te�/α. By rescaling the weights and biases we are thus able

to simulate the extraction of the samples at a di�erent e�ective temperature,

which will be reduced as we increase α. For classical solvers, the possibility of

tuning the sampling temperature by rescaling the problem weights implies that

the temperature can be always set to 1 without loss of generality. For AQCs

this is not the case. Indeed, all AQCs have both lower and upper limitations

on the possible absolute values for the couplings and the biases. From above,

such parameters are bounded by the maximum values realizable in the hard-

ware. From below, the limitation comes from the quantization step of on-QPU

digital-analog converters (DACs), that randomly bias the actual values of such
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parameters [297]. As an example, the most recent D-Wave prototype Advan-

tage2_1.1 can implement couplings in [−1, 1] and biases in [−4, 4], while the

typical DAC errors are of the order of ∼0.001 on both the couplings and the

biases [297]. While sampling from an AQC we are usually concerned with the

upper limit, because it limits the maximum value for α we can choose, which

in turns limits the lowest Te� we can sample at. An additional limitation can

come from the use of strong ferromagnetic couplings in the embedding, which

are supposed to be higher than the typical problem coupling, but still need to

be lower than the maximum allowed coupling value, further restricting the ac-

cessible values for the problem couplings. For instance, in [4] we set α = 0.32 to

sample at Te� = 1 from a bipartite graph of 16 by 16 units that was embedded

using four qubits for each unit. We were thus able to sample at Te� = 1 by

simply reducing our model weights and biases roughly by a third, keeping well

above the DAC quantization errors.

2.4 Boltzmann Machines

Boltzmann Machines (BMs) are a prominent example of unsupervised learning

algorithm [298], [299], introduced in 1985 by Ackley, Hinton and Sejnowski [300].

It has been proved that a trained BM can be used as a universal approximator of

probability distributions on binary variables [301], [302]. Such property makes

BMs particularly suitable if used as a generative model [303], [304] to reconstruct

partially missing data. Despite the theoretical representative power, one of the

steps of the training algorithm makes it computationally expensive to train

large BMs [305]. More speci�cally, such a step requires to extract samples from

the instantaneous distribution approximated by the BM. The cost to produce

each sample grows rapidly as the problem size increases [285]. Thus, BMs are

usually not applicable in useful�sized problems. Being able to train large BMs

on an AQC would enable to tackle and solve relevant problems in many �elds

ranging from recommendation systems [306], to anomaly detection [307],[308],

to quantum tomography [309].

During the years, BMs have found application mostly in a simpli�ed form,

called Restricted Boltzmann Machine (RBM) [310], [305], where the model net-

work is characterized by a bipartite graph, as opposed to the fully-connected

graph of general BMs. RBMs have lower representative power than BMs, but

they are easier to train and use, despite remaining an expensive algorithm [285].

Due to their popularity in the classical version, RBMs are usually chosen as a
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benchmark to evaluate the potential advantages of the quantum learning algo-

rithms [221].

Since 2011, researchers explored the possibility to use an AQC to approx-

imate the probability distribution needed during the training of a RBM [284],

[150]. Experimental results suggest that an AQC can be operated to extract

samples from the distribution associated with a RBM, at the computational cost

of a single quantum operation [219], [100], [296]. Thus, sampling from AQCs

seems to have a cost that does not depend on the size or the complexity of

the RBM. In 2015, Adachi and Henderson [311] performed computations on an

actual AQC to train a Deep Belief Network, a directed graph version of RBM

(and tested it on MNIST [312]). In 2016, Benedetti et al. [221] introduced

an e�cient technique for estimating the e�ective temperature of the distribu-

tion produced by the AQC. Several papers have also approached the problem

of training a fully connected BM [296], [313]�[315], usually limiting the model

to having only visible units, limiting the potential representative power of the

model. Recently, a general, fully-connected BM comprising hidden variables

has been successfully trained by our team [23], [24] and another team [316].

Quantum-trained BMs have been tested on a variety of applications, ranging

from cybersecurity [317], [318], to cancer detection [319], classi�cation of neu-

trino detection data [320], and training Generative Adversarial Networks [321],

[322]10.

A quantum computational advantage is believed to be close for RBMs trained

on AQCs [324], and experimental data obtained by our team suggest a limited

quantum advantage is already achievable for both RBMs and general BMs [23],

[24], [318]. Recently, the legacy hypothesis that AQCs produce samples dis-

tributed as those obtainable by classical techniques has been challenged. Quan-

tum annealing seems to explore the local minima in the energy landscape of

the RBM energy functional in a better way, if compared to MCMC approaches

[325], lowering the classi�cation error when used in the exploitation phase of

a trained RBM. Finally, we consider worth noticing that other non-quantum

approaches such as the implemention of RBMs on FPGA has also shown an

asymptotic advantage similar to that promised by quantum computers [326].

In this Section we will �rst introduce the Boltzmann Machine model and

explain how it can be trained using classical computers. Then, we will explain

how to train both restricted and fully-connected Boltzmann Machines using an

AQC.
10We recommend reading [323] for further examples of possible applications.
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2.4.1 Theory of the classical Boltzmann Machine

Before diving deep in the following detailed sections, we start with a brief in-

troductory overview of the BM functioning. Every concept presented in this

introduction will be explained in detail later.

The Boltzmann machine (BM) is a kind of unsupervised learning algorithm

that is particularly powerful if used as a generative method. It is a network

composed of two layers of neurons: one receives inputs and produces outputs

(visible units), and the other enhances the representational power of the model

(hidden units) (Fig. 2.1). Each visible unit corresponds to a speci�c bit of

information in the input data, such as a pixel in a black and white image. A

BM learns to mimic the conditional probability distributions that connect the

various bits of information in input data, which means it can infer the values

of missing bits in a new, partially corrupted input. The training phase requires

loading a sample from the dataset into the visible units, and then update all

units (both visible and hidden) iteratively, to achieve thermalization of the

system. Indeed, an energy functional associates each possible con�guration

of the units to an energy value, and the thermalization is conducted so to

produce �nal con�gurations of the units distributed according to the Boltzmann

distribution. This makes the BM a probabilistic model, since the �nal "answer"

of the machine corresponds to the value appearing on the visible units after

several thermalization steps. During training, this answer is confronted with

the input, and then weights and biases are updated with the aim to reduce the

energy of those con�gurations whose visible units correspond to the training

data. This is done to make such con�gurations more likely to be produced

by the BM, since a lower energy corresponds to a higher probability of being

extracted from the associated Boltzmann distribution. Thus, a trained BM is

de�ned by speci�c values for weights and biases that correspond to an internal

abstract representation of the training data. After being trained, a BM is

likely to produce con�gurations where the value of the visible units is sampled

according to the abstract conditional probability distribution that the BM has

inferred from the training data. When exploiting a trained BM, known input

information is loaded into the corresponding visible units, which will be �xed

during the thermalization phase, while visible units corresponding to unknown

information will be randomly initialized and left free to thermalize. The BM

will thus reconstruct the most probable values for the free units, based on the

value of the �xed ones.

In this Section, we present the structure, functioning, and training of the

BM.
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Figure 2.1: An example of a fully-connected BM. Each unit belongs to
the set h (internal or hidden units) or v (external or visible units). Lines
represent the edges, which can be inter-layer (red, purple) or connecting the

two di�erent layers (green).

Structure of the Network

The BM is composed of primitive computing elements called units that are

connected by undirected links [300]. Each link has an associated a real-valued

weight, and each unit had an associated real-valued bias. A unit is always in one

of two states, 1 or 0. The value adopted is a probabilistic function of the value of

the neighboring units, which also depends on the weights of the corresponding

links and on the bias of the considered unit. The weight on a link represents the

tendency of two connected units to behave in a similar or opposite fashion. The

bias on a unit represents the tendency of the unit to prefer 0 or 1 values. The

units are arranged into two layers, named visible and hidden layers. Units in the

same layer can be connected, as it happens in a general BM, or not connected. In

this latter case, the network is e�ectively represented by a bipartite graph with

only inter-layer connections, and the model is called a Restricted Boltzmann

Machine (RBM). AS we will, see, an increased connectivity corresponds to an
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increase in the computational cost required to train and exploit the model.

Energy-based model

Each global state of the units in the network can be assigned a single number

called the energy of that state. Under the appropriate assumptions, the individ-

ual units can be made to act to minimize the global energy. If some of the units

are externally forced or clamped into particular states to represent a particular

input, the system will then �nd a low energy con�guration that is compatible

with that input. The lower the energy of a con�guration, the higher the prob-

ability that the BM will produce that con�guration as an output. Therefore,

reducing the energy of a con�guration corresponds to the BM memorizing that

con�guration.

We de�ne the energy of the system E as:

E
(
{v}, {h}

)
=−

nv∑
i=1

nh∑
j=1

wijvihj −
nv∑
i=1

nv∑
j=1

wv
ijvivj −

nh∑
i=1

nh∑
j=1

wh
ijhihj

−
nv∑
i=1

aivi −
nh∑
j=1

bjhj ,

(2.25)

where wij is the weight of the connection between the visible unit i and the

hidden unit j, wv
ij and wh

ij are the weights of the visible-visible and hidden-

hidden connections, respectively, vi and hj represent the value of the i-th visible

unit and the j-th hidden unit, respectively, nv is the total number of visible

units, and nh is the total number of hidden units. Finally, ai and bj are the

units biases, which appear in the energy expression multiplying visible and

hidden units, respectively.

In the special case of a RBM, any weight wv
ij and w

h
ij must be set to zero.

A representation of such a graph is depicted in Fig. 2.2.

The visible units will be the ones fed with the dataset we want to train

the network with, and the hidden units will represent the latent factors that

the network uses to interpret the input. Visible units have a double role since

they also constitute the output of the model. Indeed, the BM is applied for

instance when we have an element that is partially corrupted. The available

information about the element (input) is loaded on some of the visible units,

while the missing information (output) is produced by the values assumed by

the remaining visible units.

For a RBM the energy expression becomes:
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Figure 2.2: An example of RBM. Green lines represent the edges. Each
unit belongs to the set h or v, and there are no edges connecting two units

from the same set.

E
(
{v}, {h}

)
= −

nv∑
i=1

nh∑
j=1

wijvihj −
nv∑
i=1

aivi −
nh∑
j=1

bjhj . (2.26)

Minimizing Energy

A simple algorithm for �nding a combination of unit values that is a local min-

imum consists of switching each unit into whichever of its two states yields the

lower total energy, given the current states of the other units. If hardware units

make their decisions asynchronously, and if transmission times are negligible,

then the system always settles into a local energy minimum. If a Boltzmann

machine network is equipped with such an update rule, it should be called a

Hop�eld network [327]. Hop�eld networks are simple models where the energy

is minimized via local updates which always move toward lower energies. Thus,

getting stuck in local minima is the intended scope of Hop�eld networks, be-

cause the local energy minima of this network are used to store training data11.

Being able to reconstruct an image seen in the past can be useful, but it is far

more interesting to create an algorithm that can reconstruct images it has never

seen before.

Finding a way to implement generalization is not obvious at all. Ackley,

Hinton, and Sejnowski [300] managed to do so by allowing the algorithm to

11A Hop�eld network can be used to recover from a distorted input to the trained state
that is most similar to that input. The network is then said to have associative memory,
because it recovers memories on the basis of similarity.
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occasionally make updates that do not lower the energy of the model. They

chose an update rule that sets a (visible or hidden) unit sk equal to 1 with

probability:

P (sk = 1) =
e−E({si}i̸=k,sk=1)/T

e−E({si}i ̸=k,sk=1)/T + e−E({si}i ̸=k,sk=0)/T

=
1

1 + e∆Ek/T
,

(2.27)

where

∆Ek = E({si}i ̸=k, sk = 1)− E({si}i ̸=k, sk = 0) , (2.28)

while T > 0 is a parameter that we will call temperature (Fig. 2.3 shows its

e�ect). This rule implies that sometimes the jump will not happen even if

∆Ek < 0 (which means the jump would have lowered the energy), and some-

times the jump will happen even if this means raising the energy of the system.

We have thus added thermal noise to the system, allowing it to eventually reach

thermal equilibrium. Indeed, the update probability expressed by Eq. 2.27 is

exactly the probability that sk = 1 if the system is thought of as a statistical

system with energy E from Eq. 2.25 and with temperature T . The probability

for a con�guration ({v}, {h}) to be generated by such an update rule follows

the Boltzmann distribution:

P ({v}, {h}) = 1

Z(T )
e−E({v},{h})/T , (2.29)

where the partition function Z(T ) is given by summing over all possible pairs

of visible and hidden vectors:

Z(T ) =
∑

{v},{h}

e−E({v},{h})/T (2.30)

BMs are trained and exploited at a �nite temperature di�erent from zero. It

can be seen from Eq. 2.27 that a rescaling in T can be reabsorbed by rescaling

weights and biases in the expression of the energy E (Eq. 2.26). Since weights

and biases values can be freely modi�ed during training, the absolute value of

the temperature chosen has no meaning, and it is usually set T = 1. From now

on, we will follow this convention.
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Figure 2.3: P (sk = 1) (Eq. 2.27) at T = 1.0 (solid), T = 4.0 (dashed), and
T = 0.25 (dotted). Image from Ref. [300]

A learning algorithm

Consider a training set composed of binary vectors of length l. We build an

RBM with nv = l visible units. We can make the visible units correspond one-

to-one to the elements of any given training vector. In this context, learning

means modifying the weights of the network to maximize the likelihood of the

Boltzmann machine reproducing the given training vectors on the visible units,

where the likelihood is de�ned as

Lav =
1

ND

∑
v∈D

log

∑
{h}

P (v,h)

 , (2.31)

where P (v,h) can be evaluated numerically as it appears in Equation 2.29, with

the hypothesis that T = 1.

According to the Boltzmann distribution (Eq. 2.29), the network assigns

to a visible vector v a probability given by summing over all possible hidden

vectors.

p(v) =
1

Z

∑
{h}

e−E(v,{h}) , (2.32)

where the sum is to be performed over any combination of the values for the

hidden units. The probability that the network assigns to a training vector r

can be raised by adjusting the weights and biases to lower the energy of that

vector and to raise the energy of other vectors, especially those that have low

energies and therefore make a big contribution to the partition function. The

derivative of the log probability of a training vector with respect to a weight is
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fairly simple

∂ log p(r)

∂wij

=

∑
{h} rihje

−E({h},r)∑
{h} e

−E({h},r) −
∑

{v},{h} vihje
−E({v},{h})∑

{v},{h} e
−E({v},{h})

≡ ⟨vihj⟩data − ⟨vihj⟩model

(2.33)

where the angle brackets are used to denote expectations under the distribution

speci�ed by the subscript that follows. The term ⟨vihj⟩data is sometimes called

positive statistics. It represents the expectation value of the product vihj when

the visible units are set equal to the elements of vector r. The summation is

performed over any possible combination of the hidden units (i.e. 2nh elements,

where nh is the number of hidden units), while each vi is set equal to the i-th

elements of the vector of the dataset r.

On the other hand, ⟨vihj⟩model is called negative statistics, and represents

the expectation value of vihj when both visible and hidden units are sampled

by the model. It means that the summation is performed over any combination

of visible and hidden units. It sums up to 2(nv+nh) = 2N elements, where N is

the total number of units.

In order to train the BM, we need to be able to increase p(v) for those vectors

corresponding to training data. The learning rule for performing stochastic

steepest ascent in the log probability of the training data is:

∆wij ≡ η(⟨vihj⟩data − ⟨vihj⟩model) , (2.34)

where η > 0 is a parameter called learning rate. Such a parameter regulates how

much the weights are modi�ed in each update. η is usually big at the beginning

of the learning process (i.e. weights change more during such �rst phase), while

it is lowered in the �nal stages (i.e. when the algorithm must �nely re�ne its

ability to interpret input).

For what concern biases, they are updated as follows:

∆ai ≡
∂ log p(r)

∂ai
=

∑
{h} rie

E({h},r)∑
{h} e

E({h},r) −
∑

{v},{h} vie
−E({v},{h})∑

{v},{h} e
−E({v},{h})

≡ri − ⟨vi⟩model

(2.35)
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and

∆bj ≡
∂ log p(r)

∂bj
=

∑
{h} hje

E({h},r)∑
{h} e

E({h},r) −
∑

{v},{h} hje
−E({v},{h})∑

{v},{h} e
−E({v},{h})

≡⟨hj⟩data − ⟨hj⟩model .
(2.36)

Estimating the expectation values in the previous Equations requires aver-

aging samples obtained after the system has been conducted to thermal equilib-

rium. This can be done fairly easily in the case of a RBM. Indeed, as explained

in Appendix D, estimating the positive statistics for a RBM is straightforward,

while estimating the negative statistics is harder and requires several iterations

of Gibbs sampling, a method inspired by the Metropolis algorithm [111] used to

generate samples according to the Boltzmann distribution. The iterative Gibbs

sampling approach is made easier thanks to the bipartite nature of the RBM

network, but remains a hard step [285]. See Appendix D for the full estimation

procedure for the RBM. In the general, fully-connected BM case, things get

worse, and almost no trick can be used to simplify the computation. Ther-

malizing the fully-connected network requires a synchronous or asynchronous

update of each individual unit according to Eq. 2.27, namely the conditional

probability distribution inherited from the target Boltzmann distribution. This

had to be done for all units at least hundreds of times also for small cases of

few dozens units [24].

Exploiting a BM

A trained BM is exploited by asking it to reconstruct an incomplete element

of the dataset. The values of nk
v visible units are known, while the machine

should output a value for each of the remaining nu
v unknown visible units, where

nk
v + nu

v = nv, the total number of visible units. The input is an array z with

nk
v elements. The answer of the RBM is an array r with nu

v elements, extracted

from a conditional Boltzmann distribution such that

P (r) =

∑
{h} e

−E(r,z,{h})∑
{h},{v∈U} e

−E({v∈U},z,{h}) (2.37)

where U is the set of unknown visible units.

Calculating the exact probability of each possible answer is still exponen-

tially hard in the number of hidden and unknown units. We can approximately

sample from the distribution in Eq. 2.37 after an iterative thermalization. More

steps result in a more precise sampling. Fig. 2.4 shows the sketch of how a
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Figure 2.4: Sketch of the exploitation of a trained RBM. At the �rst step,
a partially corrupted image is shown to the RBM. Hidden units are updated
according to Eq. D.1. At the second step, the visible units corresponding to

missing pixels are updated, according to Eq. D.2.

(trained) RBM is exploited. In the �rst step, an incomplete image is shown to

the RBM. Each visible unit corresponds to a pixel in the image. Each known

pixel sets the value of the corresponding visible unit (1 for a white pixel, 0 for

black one). Next, the hidden units are updated according to Eq. D.1 from Ap-

pendix D.1. In the second step, the visible units corresponding to missing pixels

are updated, according to Eq. D.2. Usually, many steps of such procedure are

performed, before considering the visible units adequately approximating the

�nal output. Note that visible units corresponding to known pixels are held

�xed, and are not involved during the update.

Limits of the classical method

The training method for BMs outlined in this Section is only roughly approx-

imating the gradient of the log probability of the training data. The learning

rule is much more closely approximating the gradient of another objective func-

tion called the Contrastive Divergence [305] which is the di�erence between two

Kullback-Leibler divergences12, but it ignores one term in this objective func-

tion so it is not following that gradient. Indeed, Sutskever and Tieleman have

shown that it is not following the gradient of any function [328]. Nevertheless,

it works well enough to achieve success in many signi�cant applications. We
12Kullback-Leibler divergence is an asymmetric measurement of how two probability dis-

tributions, P and Q, are di�erent. The Kullback-Leibler divergence of Q from P is de�ned

as DKL(P || Q) =
∑

i P (i) log2

(
P (i)
Q(i)

)
. It can be seen as the amount of information that is

lost when we approximate P as Q.
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will refer to this learning method for estimating ∂ log p(v)/∂wij as contrastive

divergence.

Apart from the approximation described above, the training procedure of

BMs requires a computational cost that is still expensive also in the restricted

case. When scaling a RBM to a high number of units, we have to perform a

high number of Gibbs sampling iterations, slowing down the learning process.

The increase in the number of steps comes from the fact that a larger network

requires more time to reach a thermalized state. This is especially true if one

wants to train a fully connected BM. In such a case, the cost to produce cor-

rectly distributed samples grows exponentially with the number of units. As

a consequence, BMs have not found any useful application in real life-sized

problems.

As opposed to this, RBMs have been applied with success, e.g. in the case of

the Net�ix Prize [329]. Nonetheless, the approximations made during learning

and the high computational cost makes it di�cult for RBMs to become a useful

model in large problems.

The next Section explains how to use AQCs to relieve the computational

burden of estimating the required statistics. This promising approach could

realize a breakthrough in training methods for BMs in general, allowing us to

realize quantum-trained BMs that overcome the classical limitations.

2.4.2 Boltzmann Machine training on an AQC

Section 2.3 explained that AQCs tend to produce samples distributed according

to the Boltzmann distribution. Section 2.4.1 presented the Boltzmann Machine

(BM) model and underlined that the main computational bottleneck of the

training procedure consist of producing an ensamble of con�gurations that are

distributed according to the Boltzmann distribution. It is intuitive how these

two results can be combined to gain a computational advantage. Producing a

correctly distributed sample on the AQC requires a single annealing cycle with

a �xed duration that does not depend on the model size. On the other hand,

classical methods to thermalize the model require an exponential time in the

number of units.

The procedure to train a BM using an AQC is simple, relative to the classical

approach. Both positive and negative statistics can be estimated by sampling

from the model, after embedding it on the QPU. In the case of the negative

statistics, where all units are free to evolve, the whole fully-connected graph with

N units must be embedded. In the positive case only the hidden units are free to

evolve. For RBMs, this means we can simply calculate their expectation values
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as in the classical case (see Appendix D). For general BMs, it means we have

to embed a fully-connected graph with nh units. After collecting the samples,

we can use them to estimate the expectation values in the two statistics, as we

would do in the classical case. Contrary to implementations on universal gate-

based quantum computers [330], BM training on AQCs appears intuitive and

natural, promising exciting advantages [331]. One important caveat regards the

sampling temperature. As discussed in Section 2.3, the e�ective temperature

can be tuned by properly rescaling the problem weights and biases. In general

it is possible to rescale them such as the adimensional e�ective temperature

becomes equal to 1, as has been done, for instance, in [221] and in our works

[3], [4], [23], [24].

Looking at the computational cost of producing a single sample, the AQC

achieves a O(1) cost, since the time required is the chosen annealing time plus

constant factors such as the readout and delay times13. In the classical case,

the computational cost is similar to O(eN), where N is the total number of

units. Then, we could expect to achieve an exponential advantage when using

AQCs to train BMs. Unfortunately, an often overlooked di�erence between the

two methods can reduce this advantage. Indeed, the measure operation per-

formed in AQCs at the end of the adiabatic evolution is bounded to produce

digital values for the units. On the other hand, classical computers can itera-

tively update units while retaining information regarding their current state in

a continuous variable. As explained by Hinton [332], while a binary sampling

could be considered closer to the mathematical model of an RBM, using the

continuous probability value for hidden variables is usually preferable at a clas-

sical level because it reduces sampling noise, thus allowing faster learning. A

huge di�erence comes from the �nal sample, which can also be expressed with

an array of continuous values representing the expectation values for each unit.

This means that each classical sample retain more information than a quantum

sample. As an example, in [24] we managed to obtain a successful learning for

a fully connected classically-trained BM using 256 samples per epoch. To suc-

cessfully train the same BM using an AQC we were forced to use 4018 samples

per epoch.

Besides this di�erence, we can still expect to get an advantage from using

AQCs to train BMs. An advantage has indeed been achieved at least two times

recently, in two articles from our team, namely [24], [318] (See Chapter 4 for

further details).

13See Section 1.3.5.
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2.5 Other unconventional computing paradigms

As discussed in Section 1.1, the 21-th century is characterized by a global e�ort

of the scienti�c community to overcome the emerging limitations of the classical

Von Neumann-Zuse paradigm of computation by �nding alternative methods

to process information and solve hard computational problems. This Section

introduces the most promising competitors of Adiabatic Quantum Computers

that are based on (or inspired by) non-classical computational paradigms. The

�rst Section 2.5.1 introduces the concept of Ising machines and presents the

main examples, namely the NTT Coherent Ising Machine, the Fujitsu Digital

Annealer, and the Toshiba Simulated Bifurcation Machine. Then, the Mem-

computing Machine is introduced in Section 2.5.2, together with its simulated

version. The simulated Memcomputing Machine has been used to produce part

of the experimental results presented in Chapter 4.

2.5.1 Ising machines

One of the most thoroughly studied physical systems in history is the Ising

model, introduced in Sections 1.2.2 and 1.2.4 in its classical and quantum ver-

sions, respectively. We learned in Section 1.2.10 how to map QUBO problems on

a quantum Ising system subject to a transverse �eld, to then obtain the solution

via an adiabatic evolution of the system. Lastly, 2.1 presented several exam-

ples of industrially or mathematically relevant problems that can be mapped

to QUBO form. This pipeline has been presented to justify the adoption of

AQCs as solvers for optimization problems, but the same rationale encourages

experimenting on di�erent ways to minimize the energy functional of an Ising

model, which is known as the Ising problem. Optimization problems solvers

designed to solve Ising problems are collectively called Ising machines [333].

Such solvers are of great interest to the computational community, since, as ex-

tensively discussed in Section 1.2.1, Ising problems fall in the NP-hard category

in computational complexity [88].

This Section presents the most mature Ising machines available at the present

moment, namely the Coherent Ising Machine developed by NTT, the Digital

Annealer developed by Fujitsu, and the Simulated Bifurcation Machine devel-

oped by Toshiba.

The Coherent Ising Machine

While searching for suitable systems to represent and solve Ising problems

with, a team of researchers at the National Institute of Informatics in Tokyo,
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Japan, became particularly interested in optical interference circuits realized

with lasers. In 2011, S. Utsunomiya, K. Takata, and Y. Yamamoto [334] pro-

posed a mapping protocol to implement Ising models on such a system whith

one master laser and several mutually injection-locked slave lasers, using right or

left circular polarization of the slave lasers to represent a spin degree of freedom

at each site. Indeed, each laser in the network is polarization degenerate and

attains spin +1 in the case where right circularly polarized photons outnumber

left circularly polarized photons, and spin −1 in the opposite case. In 2013, the

work was extended by a team of Stanford researchers (California) still led by

Y. Yamamoto, who improved the approach studying the collective behaviors of

a degenerate optical parametric oscillator network [335]. The Ising problem is

represented by coherently injecting the output �elds of the degenerate oscillator

to the other oscillators (with the amplitudes and phases governed by the cou-

pling coe�cients in the given problem). For such reason, this particular Ising

machine has since then been known as the Coherent Ising Machine (CIM). One

main di�erence with respect to the previous blueprint is that, contrary to lasers,

degenerate optical parametric oscillators are phase sensitive, which eventually

resulted in improved performances of the Ising machine (see [335]).

Another relevant step was accomplished in 2016, when an extended team

comprising researchers from the Japanese National Institute of Informatics,

Stanford, and NTT Basic Research Laboratories presented a working experi-

mental realization of a fully programmable 100-spin CIM [336]. The system

was realized on an optical processor with electronic feedback, which was pre-

sented as easily scalable and requiring only room-temperature technology. In

2021 a joint e�ort of NTT and the Japanese National Institute of Informatics

resulted in the realization of a 100,000-spin CIM [337], which also came with

the claim that such system was in fact 1000 times faster than a digital computer

in solving MAX-CUT instances. Thanks to the optical approach, there is no a

priori routing limitation to the number of realizable connections, which means

the CIM can represent problems characterized by all-to-all connectivity. See

[338] for a practical and complete introduction to the CIM concept.

The Digital Annealer

In 2017, a team of researchers working for Fujitsu, Japan, introduced an a fully-

connected 1024-variables Ising machine implemented in an FPGA [339] ([340]

is an additional closely related paper by the same team). The implementa-

tions made use of multiple engines, performing each a Markov-Chain Monte
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Carlo stochastic search to minimize the Ising energy. Later, in 2019, the Fu-

jitsu team collaborated with 1QB and Microsoft, published a paper [341] that

helped understanding the underlying structure of this new approach. The pa-

per clari�es that the new optimization algorithm implemented in [339] is an

improved version of the legacy simulated annealing, specialized for solving Ising

problems. On the software level, the new algorithm uses smarter choices for the

initialization and for the acceptance procedure for new samples, while on the

hardware level the use of application-speci�c CMOS hardware in FPGAs al-

lows for massive parallelization and speed. This Ising machine has been named

Digital Annealer by its creators due to its similarity to simulated annealing.

Lately, the Digital Annealer has been de�ned by Fujitsu as a physics-inspired

[341] and quantum-inspired [342] solver.

The Simulated Bifurcation Machine

In 2016, H. Goto (Toshiba corporation) [343] detailed a network of Kerr-nonlinear

parametric oscillators capable of implementing an Ising machine. Such system

is related to that presented in [335], one of the seminal papers for the Coher-

ent Ising Machine , which also comprises parametric oscillators. Nonetheless,

while the NTT machine is an inherently dissipative system, the novel system

introduced by Goto implements coupling between two oscillators via photon

exchange, where the energy of the network is conserved, ultimately thanks to

the Kerr e�ect. This novel type of Ising machine can thus be operated with-

out dissipation. Additionally, the authors showed that the solutions of an Ising

problem can be achieved in their system exploiting bifurcation-based adiabatic

quantum computation. The term bifurcation comes from the fact that, during

the prescribed adiabatic evolution, nonlinear terms are slowly raised, causing

the position variable of the oscillators to bifurcate between two (potentially

degenerate) stable states. Thanks to quantum phenomena, the system can si-

multaneously follow both paths, as it happens in AQCs. This Ising machine

introduced by Goto will be later named Bifurcation Machine. Later, in 2018,

Goto et al. [344] performed a numerical study proving that the �nal distribu-

tion of samples to be expected from the Bifurcation Machine in presence of

dissipation is the Boltzmann distribution, similarly to what happens in AQCs.

In 2019, H. Goto et al [345] introduced a classical Hamiltonian exhibiting

bifurcation phenomena inspired by the quantum Hamiltonian of the original

Bifurcation Machine. The authors simulated the new system using FPGAs

to tackle 2000-nodes instances of MAX-CUT. The simulated system is named

Simulated Bifurcation Machine, and it's currently commercially available.
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2.5.2 The Memcomputing machine

Memcomputing is the name given to an emerging computational paradigm that

exploits the evolution of a circuit based on memristors to perform computa-

tions. It should not be confused with the in-memory or near-memory comput-

ing paradigm which was conceived to avoid most of the costs of moving data by

processing directly within the memory subsystem [346]. In fact, Memcomputing

is a non-Turing paradigm that does not exploit the Von Neumann architecture.

It does not have a dedicated memory component but rather exploits the evo-

lution of a physical system. The dynamical evolution of this system, therefore,

plays the role of a �ctitious memory. Memcomputing devices perform compu-

tations harnessing the nonlinear dynamics of a physical system. Such concept

was pioneered by Chua [347]. The Chua's approach allows to solve nonlinear

optimization problems through possibly such nonlinear dynamics. One of the

key di�erences between the Chua's approach and Memcomputing is that, while

the former is a fully analogical method, the latter exploits logical gates, hence

the dynamical evolution is used to support a fully bit-based solver. The follow-

ing Sections will introduce the concept of Self-Organizing Logical Gates, which

are the basic building blocks of Memcomputing Machines, and explain how they

can be realized in hardware.

Self-Organizing Logical Gates

Consider an AND gate. This gate has only four logically consistent states,

according to the truth values assigned to the in-terminals:

0 ∧ 0 = 0; 0 ∧ 1 = 0; 1 ∧ 0 = 0 ; 1 ∧ 1 = 1 (2.38)

Now suppose we can build a physical system having only these four states as its

equilibrium points, and no other attractor (namely, no periodic orbits or chaos).

Such a physical system will tend dynamically self-organize (SO) into any one of

these four states, according to the initial conditions. Such a gate is called self-

Organizing Logic Gate (SOLG), in which only the �nal states are important, not

how such states are reached during dynamics [348]. The variables of the original

Boolean gate will be mapped into voltages of an actual electronic circuit that

implements the dynamic system underlying the SOLGs. However, the three

terminals of this new SO-AND gate are not necessarily digital, because the

voltages follow a trajectory x⃗(t) in the phase space X ⊂ R3. It is necessary to

relax the digital condition at the terminals of the gate and allow them to adapt

to any bounded value they may support during dynamics.
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Figure 2.5: The phase space of a self-organizing AND (SO-AND) gate with
only four equilibria, each one corresponding to a logically consistent state of
an AND gate. In the absence of any other attractor, the phase space of this
gate clusters into four basins of attraction (grey areas). Image from [349].

Therefore, when the system is at equilibrium (in one of the four logically

consistent states), no dynamics should occur. On the other hand, away from the

logically consistent states, the system will change its state, always attempting to

converge to one of the equilibrium points (Figure 2.5). In fact, at any given time

during dynamics (after the initial condition has been set, but before the output

is reached), the state of the system could be in any non-linear combination of

`input' and `output' states. When the system is in a non-linear combination of

states then the system is in an unstable con�guration as shown in Figure 2.6.

This behavior can be realized if we introduce extra degrees of freedom,

namely, the dimension of our (phase) space of dynamical variables is not three

(or whatever is the number of gate terminals), but larger. The extra (memory)

degrees of freedom are represented by ˜⃗x. They could be due to any physical

mechanism that induces time non-locality (memory) in the system [350]. To

summarize the concept of the SOLG two steps have to be speci�ed: �rst, pro-

vide dynamics to the voltages vi = vi(t) at the terminals, where i is the index

associated with the gate terminal; second, add as many extra dynamical (mem-

ory) degrees of freedom x̃k(t) as necessary to let the system evolve to the only

logically consistent equilibrium states of the gate. Let's consider �rst the step:

by providing dynamics to the literals of the terminals of the original gate, one



116
Chapter 2. Practical Applications of Adiabatic Quantum Computers and

other unconventional computing paradigms

Figure 2.6: The SO-AND gate is in an unstable con�guration if its logical
relations are unsatis�ed. It is in a stable con�guration if one of its logical

relations is satis�ed. Image from [349].

goes from a set of discrete states (the logically consistent solutions of the gate)

to a dynamical system of the voltage variables only. The resulting system may

have several types of critical points, in addition to the equilibrium points which

correspond to the correct logical proposition of the gate. In particular, this

(reduced) phase space of the voltages may contain local minima that could trap

the system dynamics. This is where the second step of the procedure comes

in handy. If memory variables are appropriately introduced, they expand the

reduced phase space of the voltages, transforming any possible local minimum

into saddle points. This leaves the equilibrium points representing the logically

consistent solutions as the only equilibrium points. Active elements are needed

to obtain appropriate extra degrees of freedom. The reason is that the dynam-

ical system has to be able to always end up in the correct equilibrium points,

which represent the logical states of the gate. In other words, the terminal

voltages have to be guided toward the solution. To accomplish this, the system

needs feedback so that if it strays away from the correct path in the phase space,

it will immediately correct it.
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Physical realization of SOLGs

Although the speci�c gate realization may be di�erent, the general idea is the

same for all types of Boolean gates. The �rst step to describe the physical

realization is to choose reference voltage vc to associate the logical 0 to vc (for

example vc = 1V ) and 1 to −vc. Consider, again, an AND gate with initial

con�guration 01 as input and 1 as output. It means that the SOLG is in

an initially unstable con�guration, and will attempt to dynamically change its

state to reach one of the four possible equilibrium states compatible with an

AND gate. A set of active devices called dynamic correction modules (DCMs)

[351], attached to each terminal reads the voltages of the other terminals as

well and they provide the necessary feedback to the system. DCMs are made

of resistive memories, with a minimum Ron and a maximum Roff , and voltage-

controlled voltage generators (VCVGs), which are active devices. In Figure 2.7

an illustration of the circuit that implements a DCM is shown. The VCVGs are

linear voltage generators piloted by the voltages v1, v2, and v3 at the terminals

of the SOLG. The output voltage of the VCVG is given by

vV CV G = a1v1 + a2v2 + a3v3 + dc (2.39)

The parameters a1, a2, a3 and dc are determined to satisfy a set of constraints

characteristic of the gate, which will induce the physical system to always satisfy

the gate logic. Therefore, these parameters are di�erent for an AND, OR, XOR,

or any other gate. Since 5 voltages are involved in DCMs, 20 parameters have

to be de�ned. If the gate is connected to a network and the gate con�guration

is correct, no current �ows from any terminal: the gate is in stable equilibrium

(steady state). Note that one could choose a di�erent set of parameters (or even

a di�erent design altogether for SOLGs) that satis�es the same conditions, or

simply the general principles of operation of SOLGs. However, �nding a suitable

set of parameters to guide the system toward the equilibrium point is the main

problem concerning the memcomputing paradigm. In Section 4.1.2 we discuss

the parameter tuning approach we adopted in [2] to boost the performances of

a Virtual Memcomputing Machine.
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Figure 2.7: Self-organizing (SO) AND gate, left panel, formed by dynamic
correction modules (DCMs), right panel. M indicates the resistive memories,
while The linear functions L drive the voltage-controlled voltage generators

(VCVG). Image from [349].

Integer linear programming with memcomputing

Integer Linear Programming (ILP) is a class of combinatorial optimization prob-

lem that can be formalized as follows:

min
x

∑
i

fixi

Aeqx = beq

Aineqx ≤ bineq

(2.40)

where x ∈ Nn, fi ∈ R ∀i ∈ {1, 2, · · · , n}, Aeq ∈ Nmeq×n, Aineq ∈ Nmineq×n,

beq ∈ Nmeq , bineq ∈ Nmineq and meq and mineq are the number of equalities and

inequalities constraints respectively.

The memcomputing approach to ILP problems is based on the concept of Self-

Organizing Algebraic Gates (SOAGs) [352]. These gates are similar to the

SOLGs in their mode of operation. However, instead of satisfying a Boolean

relation, they satisfy an algebraic relation, e.g., an inequality relation between

variables. They can also use any terminal simultaneously as `input' or `out-

put' to satisfy an algebraic relation. Using SOAGs, one can assemble a Self-

Organizing Algebraic Circuit (SOAC). The SOAC collectively self-organizes in
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Figure 2.8: A Self-Organizing Algebraic Circuit (SOAC) represents an ILP
problem. Each Self-Organizing Algebraic Gate (SOAG) is a linear condition
that has to be satis�ed when solving the ILP. The output of the SOAGs is
imposed in order to obtain feasible solutions. The cost function is mapped
into an additional SOAG whose inequality value is progressively reduced. The
SOAGs at the circuital level are composed by dynamic correction modules
(DCMs); the circuit components of a DCM are illustrated in the �gure below

on the right. Image from [349].
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order to satisfy the constraints of an ILP problem 2.8. Indeed the linear equali-

ties and inequalities of a given ILP problem can be directly mapped on a SOAC

(see Figure 2.8). Instead, the cost function can be easily reformulated as an ex-

tra linear inequality with an extra bounding parameter. Iteratively, this bound

is reduced forcing the SOAC to self-organize and �nd a new feasible solution,

each time closer to the global optimum as described for MAX-SAT problem

mapped on SOLC. The interested reader can consult [352] for the application

of SOAGs to ILP.

Currently, no physical implementation of such concept exists, but Mem-

computing Inc. has realized software able to simulate the circuital dynamic of

Memcomputing machines on classical computers. The simulation software ex-

ploits GPUs to increase the overall performance, and has already been applied

to solve some problems faster and with a better cost scaling than classical state-

of-the-art rivals [2]. Nonetheless, the realization of a hardware Memcomputing

Machine remains the long-term objective of the company, since a physical sys-

tem could implement the same dynamic in a fraction of the simulation time.

On the other hand, a simulated Memcomputing Machine is a classical solver,

and we should remember that according to the extended Church-Turing thesis,

all classical computers are equivalent up to polynomial factors [353].

2.6 Comparison of AQCs' performance to other

computational paradigms

The search for a quantum advantage is still open across all currently available

quantum devices, and probably several more years are needed before a quantum

computer will surpass the performance of a classical supercomputer in solving

most instances of a speci�c problem. It is indeed still debated when the current

quantum gold rush [354] will generate practical utility [28]�[31]. Nonetheless, the

great economic interest of an quantum computational advantage has induced a

non-negligible amount of hype both in the scienti�c community and in those who

support the research through funding, resulting in a trigger-happy approach to-

wards supremacy claims. A notorious example is a 2019 paper where the Google

team claimed to have reached Quantum Supremacy with their Sycamore QPU,

surpassing what could be done with a classical supercomputer [28]. The IBM

team, though, contended such claim [29], and [30] and [31] later showed how a

modern supercomputer can match the aforementioned "quantum supremacy"

performances.
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In this context, it is fundamental to possess a toolbox of interpretable and

clear metrics to correctly benchmark the current capabilities of new computa-

tional paradigms.

Section 2.6.1 introduces useful metrics to compare optimization solvers.

Such metrics will be useful to compare AQCs' performance to those of state

of the art classical solvers. Section 2.6.2 reports a literature review of the most

signi�cant works on AQCs' performance benchmarking.

2.6.1 Metrics to benchmark solvers on optimization prob-

lems

This Section introduces the most popular metrics to evaluate and compare per-

formances of optimization problems solvers (Time to Solution, Gap to optimal

solution) and a novel proposal that better estimates the average expected ex-

pense to �nd a solution (MFST). Lastly, problems with planted solutions are

presented as a way to compare solvers performances also on the hardest in-

stances.

Time To Solution (TTS)

The Time To Solution (TTS) is de�ned as:

TTTS =
E{t}
p

(2.41)

where E{t} is the expected solution time and p is the solution probability. E{t}
can be easily estimated via the usual sample mean estimator:

t̄s =
1

|Is|
∑
j∈Is

tj (2.42)

where Is is the set of solved instances, |Is| its cardinality, and tj is the time

required to solve instance j. Thus, the solution probability p can be estimated

as p̄ = |Is|/|I|, hence the estimator:

T TTS =
t̄s
p̄

(2.43)

Mean First Solution Time (MFST)

It is customary, when running algorithms, to de�ne a maximal execution time,

after which the computation is stopped and a new parameter (e.g. seed) is used
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to run the computation. This requires proper metrics to evaluate the overall

expected execution time. In particular, the estimation should include the time

spent in failures and not just the average time of successes. The estimated

execution time then correlates with the allocated computing time and hence

with the monetary budget for the computation. In [2], we introduced a new

metric which takes fully into account the time spent in failed runs. We called

this metric the Mean First Solution Time (MFST) (as it is inspired by the Mean

First Passage Time concept in physics [355]).

Given a problem instance, the MFST is de�ned as:

TMFST = E{k}Tmax + E{t} (2.44)

where E{k} is the expected number of failures before the �rst solution is found,

Tmax is the maximal allowed execution time (e.g. for one seed) and is not a

random variable, and E{t} is the expected solution time (see Eq. 2.42).

The variable k is a random variable which follows the negative hypergeo-

metric distribution NHG(|I|, |I| − |Is|, 1)

k ∼ NHG(|I|, |I| − |Is|, 1) =

( |I|−k−1
|I|−|Is|−k

)( |I|
|I|−|Is|

) (2.45)

where |I| is the cardinality of the run set. Therefore the expected value of the

number of failures k before a success is:

|I| − |Is|
|Is|+ 1

(2.46)

Hence, we estimate the MFST via the formula:

TMFST =
|I| − |Is|
|Is|+ 1

Tmax +
1

|Is|
∑
j∈Is

tj (2.47)

Clearly, if all instances are solved, the mean solution time is obtained.

It is easy to show that there is a simple relation between T TTS and TMFST :

TMFST =
|I| − |Is|
|Is|+ 1

Tmax +
|Is|
|I|

T TTS (2.48)

This relation shows that, if all problems are solved (|Is|=|I|), the two metrics

are the same. However when not all instances are solved, the presence of Tmax

creates a discrepancy. If Tmax is much higher than the TTS, the TTS can

signi�cantly underestimate the real execution time.
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MFST and TTS variance

Together with the estimators of the MFST and TTS, we can obtain the vari-

ances. The variance of TMFST is computed following the error propagation

formula:

σ2
TMFST

=

(
∂TMFST

∂|Is|

)2

σ2
|Is| +

(
∂TMFST

∂t̄s

)2

σ2
t̄s

= T 2
max

(|I|+ 1)2|Is|2

(|Is|+ 1)4
1

|I|
1− p̄
p̄

+ σ2
t̄s

(2.49)

where:

σ2
t̄s
=
σ2
ts

|Is|
(2.50)

and σ2
ts is the variance of the solution time.

For the time to solution, we can estimate the variance by observing that |Is|
is distributed as a binomial distribution. That leads to:

σ2
p̄ =

p̄(1− p̄)
|I|

(2.51)

Using the error propagation formula, it follows that:

σ2
TTTS

= T
2

TTS

(
1

|I|
1− p̄
p̄

+
σ2
t̄s

t̄2s

)
(2.52)

All the presented formulas are meaningful if at least one instance has been

solved, that is |Is| > 0 or equivalently p ∈ (0, 1].

Gap to solution

Evaluating the gap from the solution is useful to estimate the quality of a speci�c

answer of a solver, or to estimate the ability of a solver to reach values for the

cost function that are close to the global minimum. The gap is de�ned as:

g =
Csolver − Cobj

Csolver
, (2.53)

where Csolver is the best value of the cost function achieved by the solver, while

Cobj is the global minimum of the cost function. It follows from Eq. 2.53 that

g ∈ [0%, 100%]. A low gap means the solvers has been able to approximate

the correct solution in the allowed wall time, while a high gap could mean the

tested solver is not suitable for the task at hand.
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The gap to solution, or its average, can be used to evaluate the performance

of an optimization problem solver or to tune it by comparing performances

attained at di�erent parameters sets. See Section 4.1.2 and 4.1.1 to learn how

we used such approach to perform parameter tuning in [2] and [1], respectively.

In those cases where the global optimum cannot be obtained, and the gap

cannot thus be calculated, one can simply resort to the absolute value of the

cost function. Indeed, we can argue that readouts with lower energies suggest

a better performance of the AQC. A slight improvement for this metric is de-

scribed in [356], where authors introduce the elite mean of a collection of nreads
readouts. The elite mean is simply de�ned as the average cost of a percentage ϵ

of the readouts, namely those ϵ · nreads readouts that attained the lowest values

for the cost function. If ϵ = 100% the elite mean becomes the simple mean,

while if ϵ/100 = 1/nreads only the best readout is considered. Usually the ex-

perimenter will want to chose ϵ ∼ 1 to cut out most of the readouts while still

averaging over the best readouts.

Optimization problems with planted solutions

What TTS, MFST and also the gap to solution have in common is that com-

puting their values requires knowing the solution or Cobj, which means these

metrics cannot be used to evaluate performances for hard instances that cannot

be solved by available solvers. To compare solvers on such hard instances, it

is useful to test them on problems with a planted solution. It means starting

from a given combination of the variables and de�ning the instance so that the

chosen con�guration is the solution of the instance. As an example, T. Albash

and D. A. Lidar [148] compared QA and SA on Ising problems with planted

solutions, demonstrating a scaling advantage for QA14. They built the planted

solutions problems by de�ning a set of frustrated15 loop Hamiltonians Hl, then

composing them in a problem Hamiltonian HP =
∑

lHL such that the ground

state of HP is the simultaneous ground state of each Hl. See the original paper

[148] to also learn how to customize the loops Hl for a speci�c topology.

The concept of planted solutions has been extended by Hen, who formally in-

troduced the concept of equation planting in the context of Ising problems [357].

Using equation planting means considering a simple mathematical problem that,

when cast to an optimization problem, becomes a hard problem for heuristic
14See Section 2.6.2 for an explanation of the �ndings.
15In the optimization context, a frustrated (signed) graph is a graph whose constraints

cannot be all satis�ed at the same time. In the speci�c context of Ising problems, it means
that at the global optimum some linear or quadratic coupling is actually increasing the energy
of the con�guration.
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solvers. Such approach enables the researcher to comprehend in depth the

structure of the problem, comprising global and suboptimal solutions, while

also challenging the solver on a "hard" problem.

2.6.2 Literature Review: Comparative Analysis of Adia-

batic Quantum Computers and Other Solvers

This section provides an overview on the most relevant papers that estimate

AQCs capabilities by comparing its performances to those of other unconven-

tional or classical solvers. In literature, QA performances have often been com-

pared to those of SA both on the theoretical and experimental level, due to

their analogies and similarities16. While benchmarking QA performances with

SA, one has to keep in mind that SA is not a competitive algorithm for solving

any optimization problem. Nonetheless, for this reason, SA performances have

sometimes served as a pretext to assert the achievement of a quantum advan-

tage (you will soon learn about this in Section 2.6.2). Unfortunately, when we

compare AQCs to state-of-the-art classical solvers, no advantage have ever been

found in the context of optimization problems. We will instead show in Section

4.2.2 that an advantage can already be achieved for sampling problems. Since

this is a novel results without close analogues in the existing literature, we will

describe it only in the Results Chapter.

Attention must be given also to the chosen benchmark problems. Several of

the papers presented in this Section tested QA on a spin-glass system, which

is conveniently the same system physically implemented by AQC devices. The

use of the spin-glass system as a benchmark problem for QA has been debated,

since it is not representative of several applicative problems. Indeed, authors

in [358] show that industrially relevant problems are much harder in general

than solving spin-glass models. On the other hand, in [359] the authors suggest

than spin-glass problems could lead to understating the performances achievable

by AQCs, and the study in [360] discusses how spin-glass benchmarks could

advantage Simulated Annealing approaches with respect to AQCs.

In the following Section we will present articles comparing QA to SA. Then,

we will show how QA performances compare to those of other unconventional

solvers and state-of-the-art classical solvers.
16See Section 1.2.6.
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Quantum Annealing vs. Simulated Annealing

To �nd literature references comparing Quantum Annealing to Simulated Quan-

tum Annealing, see Section 1.2.9. For an introduction to Simulated Annealing,

visit Section 1.2.5.

Simulated annealing (SA) has consistently served as the primary bench-

mark for assessing the capabilities of quantum annealing (QA) since the �rst

experiments on the Ising ferromagnet LiHo0.44Y0.56F4 revealed that hardware

implementations of QA protocols were possible [82], [83]. Before commercial

AQCs became available in 2011 [90], early works by Santoro et al. (2002) [137]

and Farhi et al. (also 2002) [144] provided support to a future adoption of QA

by numerical simulating real world QA processes and comparing their speed

and accuracy to those of SA implemented on CPUs. In particular, Farhi et

al. [144] show that there exist problems for which QA running time is poly-

nomial in n and SA running time grows more than polynomially in n. These

works underscore the signi�cance of this comparison by noting that QA is al-

most equivalent to SA, albeit with the unique capability of surmounting energy

barriers in the landscape via quantum tunneling e�ects without an associated

increase in energy. Comparing the performance of QA and SA enables us to

evaluate whether quantum e�ects does facilitate or impede the search for global

optima.

The theoretical advantage of QA over SA has since been proven in sev-

eral works [138], [361]�[363]. In [138], the authors implement a simple Monte

Carlo approach to simulate QA and compare it to SA on a Travelling Salesman

Problem instance comprising 1002 cities. Their results show that the annealing

process converges faster in QA as opposed to SA. In [361], the authors describe

the similarities between the theoretical frameworks of QA an SA (similarly to

what has been done in Section 1.2.7). They show that, when mapping SA to

QA, the Markovian dynamics of a short-range classical Ising model is mapped

to a short-range quantum system, but when going from QA to SA a short-range

quantum system is mapped to a classical one comprising long-range interactions.

They thus conclude that SA can be e�ciently simulated by QA, but the con-

verse is not necessarily true, which suggests that QA is more �exible than SA on

a mathematical basis. In [362] authors make use of theoretical arguments and

calculations to show that QA is expected to exhibit a faster convergence to the

global minimum if compared to SA. The deduction is valid only on the bench-

mark problem they considered, which is a random spin-glass model shaped as

a single chain. It is interesting to note that the authors suggested a "quantum

inspired" simulated system where the QA evolves in an imaginary time. Their
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calculations suggest that such system could converge even faster than QA on

such problems, which means that in this context "quantum inspired could be

better than quantum". In [363], the authors study the behaviour of QA and SA

on a glued-trees problem, which requires �nding nodes with speci�c properties

in a given graph. The authors perform theoretical calculations to obtain an an-

nealing schedule that grants QA an exponential speed up over SA. One recent

study utilizing numerical methods is [364], where authors present a theoretical

advantage of SQA over SA in an optimization problem characterized by a large

amount of local minima that slow down SA.

Such �ndings on QA shed light on the possibility for AQCs to overcome

their close classical counterpart, but noise sources and hardware constraints

can invalidate theoretical arguments in real-world experiments, as we exten-

sively discussed in Section 1.3.6. Nonetheless, several experiments have empir-

ically demonstrated an advantage of AQCs over classical SA [148], [172], [294],

[365]�[368]. In [172], authors showed that a (now outdated) D-Wave Two AQC

device was able to achieve performances similar, and in some case superior, to

those of optimized SA. The methods were tested on a random spin-glass prob-

lem. The good performance was achieved thanks to the tuning of the strength

of the ferromagnetic coupling of the qubits chains in the embedding17. In [294],

Denchev et al. designed a set of optimization problems characterized by tall

and narrow energy barriers that separate local minima, with the intent of fa-

voring QA. The hardware AQC resulted 108 times faster than both SA and a

Monte Carlo method on instances comprising 945 variables. Both the classical

approaches were implemented on single-thread CPU. These encouraging results

constituted one of the �rst experimental proofs of a limited quantum advantage

[369] (see also [370] for additional remarks on [294]). Results from [294] were

con�rmed by King et al. [371], who modi�ed the problem to make it more

similar to real world scenarios while also implementing SA on GPUs. The D-

WAve AQC mantained a great advantage, resulting 2600 times faster than SA

on GPU. A di�erent approach was used in [148], where authors compared QA to

SA on Ising problems with planted solutions. No advantage was found for QA

in terms of wall time required to �nd a solution at any problem size. Nonethe-

less, QA exhibited a better scaling than SA. Such result is really interesting in

perspective. Indeed, it suggests a potential advantage of QA over SA on large-

sized problems, which is exactly where an advantage could be useful. Since the

Ising problems were created to respect the topology of the QPU, it is important
17See Section 1.2.10 for an overview of this parameter, and Section 3.1.3 to learn how to

tune it for optimal performances.
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to underline that the �ndings are limited to those cases where no embedding is

required. In [366], authors operated an AQC to optimize the tra�c lights in a

large-scale tra�c management problem. Using a �xed wall time, the AQC out-

put solutions with a lower cost with respect to those obtained via SA. In [367], a

parallel quantum computing approach allowed authors to outperform SA using

an outdated D-Wave 2000Q AQC on a matrix factorization task. The AQC

required considerably less computation time in comparison to the classical SA,

while returning comparable error rates. Recently, in [368], the D-Wave team

itself showed experimental evidence that QA achieves an advantage in terms of

wall time with respect to SA on a spin-glass optimization benchmark.

When examining the extensive literature comparing QA vs. SA, one can

realize that there is indeed an elephant in the room that few researchers seem to

consider, namely the way SA is implemented and executed in classical hardware.

SA performances can be boosted modifying the annealing schedule [372], and

there are speci�c prescription to optimize SA for Ising problems [369], [373].

On the other hand, recent papers often makes use of the classical SA routine

implemented in Ocean SDK, developed by D-Wave itself, that should not be

expected to be optimal.

A few papers have underlined the shortcomings of QA, while shedding light

on potential improvements. Of particular interest is the work by Heim et al.

[374], where authors explain that the advantage found for QA over SA on 2D

Ising spin glass problems in reference [294] is a byproduct of choosing large

imaginary time steps in the path integral and choosing the lowest energy over

all time slices. Indeed, such advantage disappears in the continuous limit. These

�ndings are consistent with [359], where authors suggest that no speed up is

expected for QA on 2D spin glasses. In [375], SQA underperform SA on complex

instances, but results also suggest that fast, nonadiabatic, annealing schedules

can improve the performance of simulated quantum annealing for very hard

instances by many orders of magnitude. More recently, Zardini et al. [376]

showed that QA underperforms SA on Bayesian network structure learning

problems. They underline that a proper parameter tuning procedure could

have improved the performance of QA.

Adiabatic Quantum Computers vs. other quantum computing de-

vices

Comparing the performance of various quantum hardware platforms can pose

challenges because of the diverse computational methodologies they implement.

AQCs are inherently designed for solving optimization problems expressed in the
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QUBO form, whereas gate-based QCs execute quantum algorithms through a

series of quantum logic gates. It's worth noting that, while universal gate-based

QCs have the capability to implement Quantum Annealing (QA), this process

is generally not straightforward, and the reverse mapping is not always possi-

ble. Consequently, meaningful comparisons between AQCs and gate-based QCs

are only feasible for problems that can be formulated both as QUBO instances

and as quantum circuits. One notable example is the Quantum Approximate

Optimization Algorithm (QAOA), a variational method designed for solving

combinatorial optimization problems on a gate-based quantum computer [377].

Notably, QAOA can also be seen as a form of quantum annealing whith dis-

cretized time steps. In the limit where such time steps are in�nitesimal, the

arguments deriving from the adiabatic theorem that we introduced in Section

1.2.6 can be extended to QAOA, which can then be interpreted as an algorithm

for performing adiabatic quantum computation on a gate-based QC. QAOA is

recently gaining popularity, partly because it is expected to perform well also

on current noisy hardware [26], and someone forecast it will be one of the �rst

algorithms to show quantum supremacy on near-term devices [378].

QAOA is an interesting problem to benchmark AQCs vs. gate-based QCs,

since it is the most e�cient way currently known to use the latter to simulate

the former. AQCs should be expected to have a better performance, since they

are specialized hardware to perform precisely QA. On the other hand, if gate-

based QCs can e�ciently implement QAOA and outperform AQCs, it could be

useless to put e�orts in developing the AQC technology. Willsch et al. [379]

were among the �rst to benchmark QAOA on these two competing paradigms.

Their �ndings con�rm the superiority of AQCs over gate-based QCs in solving

combinatorial problems, but they also show that a simulated gate-based QC

outperforms quantum annealing implemented on a real device. The latter result

underlines once more the signi�cance of noise e�ects in present-day quantum

devices.

Adiabatic Quantum Computers vs. other solvers

AQCs empirical achievements with respect to SA are promising, but SA is

no longer considered a competitive method to solve optimization problems.

AQCs should also be compared to high-performances classical solvers and other

novel computational approaches to solve optimization problems. This Section

presents a literature review of signi�cant papers that compare the performances

of AQCs to the hardware and software solvers presented in Section 2.5 and to

state-of-the-art classical solvers [380], [381].
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Proving an absolute advantage of AQCs over competitive classical solvers

on a speci�c application remain an elusive goal, and, as far as we know, there

are no results in literature where AQCs outperform commercial solvers (e.g.

Gurobi). An encouraging result come from Santra et al. [380], who compared

a (now outdated) AQC device to the exact classical solver akmaxsat on MAX

2-SAT. They stated that within the ensemble of hard random MAX 2-SAT

problems there are likely to be found problems for which QA has an advantage

over exact classical solvers, and vice versa. At the same time, they found hints

that simulations of QA on classical devices can achieve a scaling which is even

better than QA for this particular problem. Despite the current shortcomings

of AQCs on optimization tasks, few researchers have recently produced results

that suggest a limited quantum advantage can be achieved employing AQCs in

sampling tasks [23], [318]. In [318], authors provide evidence that AQCs can

compute the negative phase for a Restricted Boltzmann Machine faster than

Gibbs sampling on classical processors. Such result is con�rmed by [23], where

a fully-connected Boltzmann Machine with 32 units is trained on an AQC 8.6

times faster than using a classical approach parallelized on GPU. The result has

been obtained exploiting parallel quantum annealing to accelerate the sampling

process18. Authors show that a hypothetical AQC capable of extracting all

samples in a single annealing cycle could complete the sampling task 822 times

faster than the classical algorithm. When employing AQCs to perform sampling

tasks onw exploits noise sources inside the quantum processing unit to achieve

the desired computational results, which implies a milder detrimental e�ect of

noise on the performances, if compared to optimization tasks.

AQCs performance has also been compared to that of new unconventional

solvers. We start our literature review by commenting a great recent paper by

Mohseni et al. [333], who tested various Ising machines on a set of benchmark

problems. Authors underline how most of the Ising machines tested tend to

have similar scalings in terms of the error probability and the time-to-solution

metrics as a function of the number of spins, despite the extremely di�erent ap-

proaches and technologies used to realize them. AQCs obtain the worst scaling

and absolute results in almost all benchmark problems, while classical digital

methods still appear to be the best approaches. Authors also comment on the

inability of AQCs to sample uniformly all low-lying states, as opposed to other

solvers (such as those based on SA) which tends to provide a set of more di-

verse solutions if initialized in di�erent ways. In another recent work [381], a

D-Wave Advantage AQC (DWA), a Virtual Memcomputing Machine (VMM),

18See Section 3.1.1.
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the Fujitsu Digital Annealer (DA), and the Toshiba Simulated Bifurcation Ma-

chine (SBM) are compared on a satis�ability problem with planted solutions.

The classical benchmark is constituted by the SATonGPU algorithm [382], that

makes use of highly-parallelized computation. DWA exhibits the worst scaling

of all tested solvers, being also the only analog device tested, and the only solver

implemented on a custom hardware. Among the testes solvers, the DA was the

unconventional method that obtained the best performances with respect to

the scaling and the absolute time to solution. In a previous work [165] an AQC

is compared to a Coherent Ising Machine (CIM). The AQC outperforms the

CIMs on MAX-CUT on cubic graphs. On denser problems, however, the AQC

exhibits a worse scaling than CIM, which in the end enables CIM to solve hard

instances with more than 50 vertices an order of magnitude faster than the

competitor.

Our team also performed benchmarking of AQC, VMM, and Gurobi on three

problems of mathematical and industrial interest. The outcomes are thoroughly

discussed in Section 4.1.2.
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Performance optimization

techniques

Many papers regarding new computational approaches (in particular quantum

computing ones) refer in their �nal remarks to the expectation that the speci�c

tested hardware will undergo great improvements in the near future. Indeed, en-

gineering limitations at the hardware level are often the main bottleneck to the

performance achievable by the computing device. Nonetheless, a new buzzword

has recently emerged in the quantum computing community: middleware. In

the �eld of classical computing the middleware "is software that enables one

or more kinds of communication or connectivity between applications or ap-

plication components in a distributed network"1. In the quantum computing

community, the term middleware often refers to software solutions that run on

classical hardware aimed at optimizing in some way the quantum computing

resources or enhancing the quality of the results produced by the quantum de-

vice. Companies such as Multiverse [384], Qbrain [385], and Q-ctrl [386] can be

considered quantum middleware companies, even if they work to solve di�erent

problems in that layer. Solutions working at the middelware layer are gaining

increased scienti�c and commercial interest, because they can deliver empiri-

cally veri�able computational advantages that can sometimes reach unexpected

e�cacy. As an example, novel results presented in this Thesis con�rm that

performances of AQCs can be signi�cantly enhanced by simply tuning internal

parameters governing the strength of the embedding chains and the duration

of the adiabatic evolution. Thank to parameter tuning, we empirically demon-

strated a 78x reduction in the computational time required for an AQC to reach

the global minimum of an optimization problem [2].

The amount of middleware techniques currently undergoing scrutiny from

the scienti�c community is surprisingly vast, especially in the �eld of Adiabatic
1As de�ned by IBM at [383]



134 Chapter 3. Performance optimization techniques

Quantum Computation. The next (main) Section of this Chapter will summa-

rize what can be found in literature regarding programming techniques that

enhance the performance of AQCs, mainly at the middleware level. First, the

concept of parallel computing is introduced. Then, we explain how to mod-

ify the annealing schedule and how to tune the chain strength to increase the

probability to reach a solution faster. Afterwards, we describe how to make

the embedding process more e�cient and successful. We then explain how to

modify the mathematical structure of the problem to increase the probability

of �nding a solution via adiabatic quantum computing. At last, we present

postprocessing techniques to enhance the results and we brie�y introduce the

concept of hybrid classical-quantum computation. The second and last Section

of this Chapter presents a literature review of proposals for future hardware

improvements that could boost the computational capabilities of future AQCs.

This is a mixed theory-and-results chapter, meaning it introduces theoreti-

cal concepts supported by a literature review and also by experimental results

obtained by the authors.

3.1 Software techniques to improve the perfor-

mances of AQCs

3.1.1 Parallel quantum annealing

In recent years, the computing power of HPC centers has grown mainly thanks

to specialized and highly parallel accelerators, chie�y graphics processing units

(GPUs). A similar approach can be extended to quantum computation, which

is usually prone to parallelization. Indeed, most of the quantum computing

paradigms force the user to collect a lot of samples to overcome the detrimental

e�ect of noise, and in particular gate-based QCs requires numerous runs since

the resulting probability density function is often the actual desired output

of the quantum circuit. Such sampling process can usually be parallelized on

simultaneously running clones of the QPU, since each run is independent from

the other. To parallelize computation on an AQC it is su�cient to embed the

given QUBO problem in multiple locations of the QPU. Each anneling cycle

will result in a number of samples equal to the number of embedded clones.

This approach has been dubbed parallel quantum annealing by Pelofske et al.

in 2022 [387]. Anyway, parallel quantum computing had already been explicitly

used in previous experiments, as in Rocutto et al. [4] (2019), where we cloned in

eight locations on the QPU the necessary functional to sample from the negative
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statistics of a RBM. Notably, parallel quantum annealing was the sole software

optimization technique used in our work where we achieved an experimental

limited quantum advantage in training a Boltzmann Machine [23]. In that case

both the negative and positive statistics samplings were mapped on the AQC.

The former was cloned 26 times, while the latter 112 times.

3.1.2 Modi�cations to the annealing schedule

In Section 1.2.6 we discussed the adiabatic condition for QA that ensures the

global minimum is attained with high probability at the end of the evolution.

The evolution must be slow, but it also has to be decoupled from the environ-

ment. Then, in Section 1.3.6, we learned that the available AQCs let the user

set a time for the adiabatic evolution (tann) that is necessarily much longer than

the expected coherence times. We also underlined how this force the system to

be subject to noise sources that are nonetheless suspected to sometimes raise

the probability of success of the computation. But tann is not the only way in

which we as user can control the annealing schedule. Ocean SDK allows user

to set up to 12 annealing schedule points (on D-Wave Advantage 6.2 [388]),

which means the user can de�ne the intensity of the transverse an longitudinal

�elds at 12 distinct point in time. In the following Sections we present the most

popular ways to modify the annealing schedule to improve performance.

A di�erent approach consists of starting the anneal with A = 1. It means

that at the beginning of the anneal (S = 0) F (s) is maximum and G(s) is zero

(the same scenario that we usually �nd at the end of the annealing). Then,

annealing is performed in reverse, lowering the σz component in the annealing

Hamiltonian and raising the σx component. Qubits are then allowed to slightly

relax. When A reaches a user-set value, e.g. A = 0.5, the anneal proceeds as

customary, raising A again. Such a procedure is known as reverse annealing,

and its application is explored more deeply in Section 3.1.2.

At the beginning of the process, the Hamiltonian does not possess a σx

term, so the system is locked to a classical spin state. The user can specify

such a state, and the annealing will involve neighboring states of the speci�ed

state. Indeed note that since F (s) never reaches zero, the collective quantum

state of the qubits is never in a superposition of all the classical spin states.

For this reason, reverse annealing is considered a local search algorithm. It

can enhance the suboptimal solutions of an optimization problem by looking

for better solutions among the neighboring con�gurations. A sketch of this

concept is drawn in Fig. 3.1
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Figure 3.1: Visual representation of the process according to both quantum forward and reverse annealing
schedule. Each bin of the gray 2�D histograms represents a possible con�guration produced by the AQC.
The height of a bin represents the probability that the corresponding con�guration is the output of a single
annealing process. The colored surface is a representation of the problem Hamiltonian HP . Each con�guration
corresponds to a di�erent value of HP . For clarity, the problem is reduced to only two dimensions, and
neighboring con�gurations di�er by a single bit. A further graphical simpli�cation consists of smoothing the
surface making it continuous. a: During the forward annealing, the σz component of the annealing Hamiltonian
increases from 0 to its maximum value. The behavior is represented by the increase in the weight of HP . The
con�gurations histogram, initially almost �at, becomes more and more peaked around the con�gurations that
minimize HP . b: During the reverse annealing, the σz component of the annealing Hamiltonian H(t) (Equation
1.37) is initially set at its maximum value and the σx component is null. It is then possible to initialize the
system such that a single con�guration has probability almost equal to 1 (apart from noise e�ects). The
annealing is then performed in reverse, lowering σz components and raising σx components in the annealing
Hamiltonian H(t). The system partially relaxes, and con�gurations close to the initial one become populated
according to the corresponding value for HP , thanks to quantum tunneling and thermal e�ects. The �nal step

consists of standard forward annealing.
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Tuning the annealing time

A basic tool that is present in any ACQ is the possibility to control the annealing

time tann, slowing or speeding up the annealing schedule. As an example, D-

Wave Advantage 4.1 System allows the user to chose a total annealing time

from 0.5 to 2000 µs [388]. Choosing the proper value for tann can have a huge

impact on the probability to �nd a solution, while in other cases we can �nd a

milder dependence. In [2], we performed a simple tuning of the annealing time

that consisted evaluating the average time required to �nd the global minimum

(Time to Solution, TTS) at di�erent tann. In our case, longer annealing times

resulted in a lower TTS2. It means that we expect to �nd solutions to new

instances in a shorter time when using the tuned tann, at least for the problem

size at which the tuning was performed. If the tuned parameter can be used at

other problem sizes with success means they exhibit good transferability.

Evaluating the expected TTS can be impossible when facing a di�cult prob-

lem where the global minimum is hard to obtain. In such a case, it is still useful

to evaluate the average gap from the global solution3. In [1], we performed a

simultaneous tuning of tann and the chain strength4. When comparing param-

eters with respect to the expected gap, it is fundamental that we set a �xed

runtime that must be respected by every tested parameter set. Indeed, while

TTS estimates the time required to reach the solution, and therefore tends to

the "true" value at in�nite computational time, the gap provides a meaningful

comparison only at a �nite, �xed time. So, in this case, we need to appropriately

reduce the number of annealing cycles (and, thus, readouts) while we increase

tann. We evaluated the gap by averaging over the best gap obtained on a set of

distinct runs, each one with a �xed runtime. When estimating the TTS, we only

consider the number of times the readout corresponds to the global optimum,

while for the gap we are considering a set of suboptimal samples that may or

may not contain enough information to learn about the TTS. Both hypothesis

require further scrutiny, but the gap mantains a useful function whenever the

global minumum is not reached by the tested solver. It has been suggested to

improve the gap by averaging over a �xed percentage of the best gap values ob-

tained in the whole available wall time, an approach that has been dubbed elite

mean5 [356]. In Chapter 4 you can �nd several experimental results regarding

the tuning of the annealing time, in particular in Sections 4.1.1 and 4.1.2.
2See Section 4.1.2.
3See Section 2.6.1.
4See Section 3.1.3.
5See Section 2.6.1.
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Quenching and Pausing

D-Wave Advantage System allows the user to modify the annealing schedule by

setting 12 anneal schedule points [388], which consist in couples of values (s, A),

s ∈ [0, 1], A ∈ [0, 1]. The variable s indicates the fraction of time elapsed from

the start of the annealing process and A indicates the fraction of the annealing

schedule that has to be performed up to that point. Such a tool can be exploited,

as an example, by performing quenching or pausing. Quenching consists in an

extremely rapid acceleration in the annealing process (steep dependence of s on

t) located at a particular sq. On the other hand, pausing consists of setting the

anneal points such that the annealing Hamiltonian does not change for a certain

time, keeping F (s) and G(s) �xed (s is constant for a certain time interval).

Researchers have been interested for a long time in learning how modi�-

cations in the Hamiltonian of a spin-glass system can a�ect the order of the

system (see as an example the pioneering work by Barouch et al. [389] (1971)

on the Ising-XY model). Additionally, as we saw in Section 1.2.6, during QA

the Ising system is expected to undergo a Quantum Phase Transition (QPT)

where an exponential long annealing time can be required to respect the adi-

abaticity condition. So an interesting question emerges: how does quenching

and pausing in�uence the behaviour of the system near the critical point?

Sengupta et al. [390] studied the change in state of the Ising system upon a

sudden change in the transverse �eld, using a numerical approach. They under-

stood that the sudden quenching is expected to generate long range correlations

if the �nal value of the transverse �eld after the quenching corresponds to a crit-

ical value for the Ising system at hand. It is important to note that during the

experiment the authors held the Hamiltonian �xed after the quenching. So we

can interpret their result as suggesting that quenching the Hamiltonian up to

a critical point and then pausing could result in long-range order and, conse-

quently, a higher success probability for the QA process. In [391], Calabrese et

al. performed several numeric tests to evaluate the behaviour of a linear Ising

model after a fast modi�cation of the external magnetic �eld from an arbitrary

value to the critical value for the system. Also in this case the authors did not

perform a QA process, but simply observed how the system would evolve in time

after a quenching point in which the magnetic �eld was increased to a speci�c

value. They showed that a quench of the system from a noncritical to a critical

point causes a linear increase in time of the entropy, until its value saturates.

The authors conclude that an arbitrary large entanglement entropy is to be

expected in the asymptotic state. This behaviour di�ers from the ground-state

case where the entropy diverges only at critical point. This picture applies in
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the more general context of dynamical correlation functions after a quench as

discussed by [392] (see also [393] for a comprehensive overview of interesting

e�ects on the entanglement in many-body systems). The aformentioned results

were con�rmed and extended by Das et al. [394], who calculated the exact

dynamics of an in�nite-range Ising model in a transverse �eld after a sudden

quench. Their theoretical arguments support the thesis that, after quenching

the transverse �eld, the system �nds itself in a nonstationary state that has a

large overlap with the new ground state. In fact, this is only true if the quench-

ing did not cross a critical point in the transverse �eld. If that happens, there is

a very limited overlap between the istantaneous ground states before and after

the quenching. Finally, it the value of the transverse �eld after the quenching is

close to the critical value, the old ground state is expected to have a signi�cant

overlap with many of the new eigenstates, and the magnetization of the system

will undergo great �uctuations6.

Few papers are instead focused exclusively on pausing. In a seminal paper

[399] (2019), Marshall et al. showed that pausing midway through the anneal

can cause a dramatic change in the output distribution. In particular, the

authors show evidence that a strong peak in the success probability is achieved

when a pause is inserted into the regular annealing schedule within a narrow

band of values for s. Thus, it appears there is a speci�c time at which one should

pause to actually boost performances. In the instances tested by Marshall et al.,

the pause has a negligible e�ect if it is shorter than 10µs. After that threshold,

the success probability has a linear dependence on the pause duration, with the

longest lasting pause corresponding to the highest success probability. The next

year, Pelofske et al. [222] con�rmed that the quantum state keeps evolving even

during a pause in the annealing process, even if, in fact, their results show only

a mild variation of the system energy during the pause.

Reverse annealing

In the previous Section we learned how the annealing process can be accelerated

or paused to improve the probability of �nding the solution to an Ising problem,

and we brie�y introduced the concept of reverse annealing. In this Section we

explore more deeply this concept and its possible applications.
6When the �nal state of the system does not conform to the ground state of its �nal

Hamiltonian, defects are produced [395]. The presence of such defects can be seen as a
manifestation of the broader Kibble-Zurek theory of topological defects [396], [397] (see also
[398] for an application of the Kibble Zurek theory on a simple two-states quantum system).
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Reverse annealing prescribes to start the annealing process by initializing

the system in a speci�c classical con�guration and setting the annealing Hamil-

tonian at its �nal value H(s = 1). Thus, the system will initially be in an

eigenstate of the initial Hamiltonian, which only contains longitudinal terms

σz. Anyway, the eigenstate is usually not the global minimum of the energy, or

otherwise we wouldn't need the annealing process at all. During the �rst an-

nealing phase s is gradually reduced, so the Hamiltonian evolves as if we were

performing the usual annealing process backward in time. This initial phase

usually stops around s ∼ 0.5, then, after a pause, the usual annealing schedule

takes place, and we raise s from ∼ 0.5 to 1 again, completing the process with a

measurement. See Figure 3.1 for a visual representation of the annealing sched-

ule. To refer to the regular annealing process and distinguish it from reverse

annealing, usually the term forward annealing is used in literature.

The idea behind reverse annealing is to initialize the annealing process start-

ing from a known con�guration, thus in�uencing the exploration of the quantum

phase space so that the �nal readout is somewhat close to the initial con�gu-

ration. One of the �rst cases in which reverse annealing was supposed to have

a bene�cial impact on minimizing the energy functional was in Battaglia et

al. [139] (2005). The authors were working on a random satis�ability problem

were QA was clearly worse than classical SA. They decided to test an annealing

schedule where the time evolution of the annealing Hamiltonian was repeatedly

advanced and reversed, which improved the performance of QA so much that

it surpassed SA. Six years later (in 2011), Perdomo et al. [400] basically intro-

duced the concept of reverse annealing as we know it today, but without naming

it. They declare that this new strategy allows "introducing educated guesses

as initial states" and "allows for the possibility of restarting a failed adiabatic

process from the measured excited state". As cleverly pointed out in the text

[400], the reverse annealing approach provides also a new perspective on hybrid

techniques, where a classical solver could be used to �nd a good intermediate

solution to be then optimized via QA7.

Reverse annealing gained experimental prominence after D-Wave Systems

published its whitepaper on reverse annealing [401] in 20178. Since then, several

teams tried to gain a better insight in the actual e�ectiveness of the technique.

We will comment about a restricted selection [4], [242], [282], [283], [365], [403]�

7Nonetheless, it is more likely that QA will be used to �nd intermediate solutions to then
be optimized via classical solvers, as suggested in [1] (see also the relative Section 4.1.1).

8A patent regarding various approaches to solve optimization problems using QA (com-
prising reverse annealing) was also registered in 2017 by members of the D-Wave team [402]
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[405]. In [242] Ottaviani et al. demonstrate the e�ectiveness of reverse anneal-

ing on a matrix factorization problem. The use of reverse annealing enabled

the authors to �nd the global optimum for most of the instances, while forward

annealing failed on each instance. They also show that reverse annealing can

be improved by controlling the reversal distance, namely the average di�erence

in Hamming distance among a set of readouts. The reversal distance can be

in�uenced by changing the time duration for the annealing process and the min-

imum s value reached during the reverse annealing. The result by Ottaviani

et al. were supported three years later by Golden et al. [405], who applied

the same technique in a similar setting, obtaining compatible results. In [365],

King et al. o�cially introduced the concept of reverse annealing with the �rst

peer-reviewed paper written by D-Wave Systems' researchers in collaboration

with the Google team. The paper introduces a quantum-assisted genetic algo-

rithm where reverse annealing is used as a mutation operator. The results of

reverse annealing were promising, since it surpassed the competing classical al-

gorithms. In [404], the authors present a numerical study of the closed-system

quantum dynamics of both reverse annealing and iterated reverse annealing,

which simply prescribes to feed the �nal con�guration found during the pre-

vious annealing to the next reverse annealing cycle, in the hope of �nding a

better solution. The authors forecast that reverse annealing could provide an

exponential speed up over QA if its use can help avoid the �rst order quantum

phase transition that QA usually crosses (see also Section 1.2.6). On the other

hand, they obtained poor results for the iterated reverse annealing. Venturelli

et al. [403], Ikeda et al.[283] and Carugno et al. [282] obtained promising re-

sults when applying reverse annealing to a porto�io optimization problem, a

nurse scheduling problem, and a job shop scheduling problem, respectively. In

particular, reverse annealing was 100 times faster than forward annealing on

the portfolio optimization problem. Rocutto et al. [4] tested reverse annealing

to train a Restricted Boltzmann Machine, but obtained results which were sta-

tistically compatible with the forward annealing ones. Authors also show how

the di�erent technique impacts the temperature of the samples distribution and

the log likelihood of single elements from the dataset.

Annealing o�set

In addition to control the annealing schedule, D-Wave users can also set the

annealing o�set for each qubit, namely the time after which ithe qubit will un-

dergo the annealing process [406]. D-Wave Systems advises to use the annealing
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o�set to compensate for the di�erent times at which qubit chains freeze9. In

fact, longer chains might freeze out sooner than shorter ones, so that during the

intermediate phase of the annealing process certain variables can become �xed

while others remain uncertain. If, instead, the user advances the annealing of

qubits in the shorter chains, they will freeze out earlier than they would under

normal circumstances. A proper tuning of the annealing o�set is mandatory to

obtain a performance improvement. Indeed, �ndings from Yarkoni et al. [407]

suggest that, by tuning the annealing o�sets, QA can improve by an order of

magnitude in ground state probability on instances of the maximum indepen-

dent set problem. To achieve this result, authors used the covariance matrix

adaptation evolutionary strategy [408] to heuristically optimize the annealing

o�set of the qubit chains. Similarly, Adame and McMahon [409] investigated

classes of problems that remain challenging for D-Wave QPUs, and they showed

that by using annealing o�set tailored on the local connectivity of each qubit,

the Time to Solution can be reduced by two orders of magnitude. Pushing even

further the claimed advantage, D-Wave Systems declared that on an integer

factorization problem the use of the annealing o�set can result in a 1000-fold

reduction in the computational time [410]. A possible explanation for the im-

proved performance could come from [411], where authors underline how the

annealing o�set can be used to enlarge the minimal spectral gap for those prob-

lems (such as the 2-SAT instances they considered) where the �rst excited state

is highly degenerate. In fact, annealing o�sets have been shown to mitigate

�rst-order phase transitions, exponentially increasing performance compared to

SA [412].

3.1.3 Tuning the chain strength

As introduced in Section 1.2.10, the chain strength Jchain is the intensity of

the ferromagnetic coupling set by the user to force the chains of qubits to

behave e�ectively as two-state systems (virtual qubits). The coupling must be

su�ciently strong to keep the chain together. Anyway, setting a value too big for

Jchain will have two distinct detrimental e�ects. First, the energy gap between

the up and down state for virtual qubits represented by a long chain could

become too wide, impeding the possibility of a spin �ip. Second, the actual cost

function to be minimized could become negligible with respect to Jchain, thus

experiencing increased in�uence of Integrated Control Errors10, which would

result in a misrepresentation of the problem couplings and biases. Choosing a
9See Section 1.3.6.

10See Section 1.3.6.
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proper value for Jchain is therefore mandatory to perform quantum annealing

successfully.

In Rocutto et al. [2], we managed to reduce the Time to Solution by 78

times by optimizing Jchain, the annealing time and the the weight parameter

multiplying the contraints in the cost function. In that situation, we optimized

c = Jchain/Qmax, namely the ratio between the intensity of the chains coupling

and Qmax = maxi,j{ai, bi,j}, where ai and bi,j are the biases and the couplings,

respectively, of the QUBO problem Q submitted to the D-Wave device. The

tuning procedure was successful. The chain strength was the parameter with

the most impact, resulting in a ∼ 10× net increase in the probability of �nding

the global minimum. The tuned value exhibited good transferability, sensibly

improving the performances at any tested problem size. Anyway, tuning the

ratio c does only take into account the highest coupling or bias, which could

potentially be expected to lead to suboptimal values. For this reason, Ocean

SDK sets Jchain based on the values of the problem couplings as follows:

Jchain = Ichain
2NJ

Nvars

√∑
{i,j},i ̸=j J

2
ij

NJ

, (3.1)

where Ichain is a tunable real parameter, NJ is the total number of quadratic con-

nections in the original (not embedded) QUBO problem, andNvars is the number

of logical variables in the original QUBO problem (which implies 2 NJ

Nvars
is the

average number of connections per logical variable). Note that in Ocean SDK

Ichain = 1.414 by default, as can be learned by the function uniform_torque_compensation [413].

Choosing Jchain based on the above formula with Ichain = 1.414 can be a good

educated guess, but one can in principle optimize either the formula or Ichain
for the problem at hand to maximize performances.

One of the �rst contribution on the topic of optimizing Jchain came from

Choi (D-Wave Systems) in 2008 [151]. There, the author derived an upper

bound for the ferromagnetic coupler strengths in the presence of a constraint

implemented as a penalty term in the optimization problem11, later extended

by [414]. Next, Venturelli et al. [172] investigated the optimal value for Jchain on

fully-connected problems with random +1 and −1 couplings. They underline

that, after the longitudinal �eld reaches the intensity of the transverse �eld, the

dynamic of the qubits slows down (we described this watershed moment as the

freezing point in Section 1.3.6). Thus, authors suggest that the chain strength

must have a proper value that allows correlation of the chains when the original

unembedded problem enters the spin glass phase, prior to the freezing point.
11See Section 2.1.2 to learn how to introduce constraints as penalty terms.
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Thanks to numerical tests, they discovered the optimal value for Jchain scales as√
N as the number N of logical variables in the unembedded problem increases.

Their argument is supported by the scaling of the critical transverse �eld in

the Sherrington-Kirkpatrick model, which is indeed proportional to
√
N . Note

that embedding the problem required ∼ N2 physical qubits, thus (in this case)

the optimal chain strength in the experiment scales linearly with the number of

physical qubits involved. Yarkoni et al. [415] experimentally tested a di�erent

scaling of Jchain. While tackling a scheduling problem, they decided to optimize

the constant s = Jchain/Lchain, where Lchain was the length of the longest chain

required in the embedding. The chain length scales linearly with the problem

size for a fully connected problem12, which means Yarkoni et al. adopted a

method that would result in linear scaling for Jchain for fully-connected instances,

contrary to the prescription from [172]. Further testing is required to compare

and evaluate these di�erent (and inevitably problem-dependent) approaches.

The chain strength ought to be optimized also for sampling purposes. Mar-

shall et al. [166] introduced a methodology to map erroneous samples back

to the desired logical space, and they equipped such approach with a proper

scaling of Jchain to minimize the number of broken chains that has a logarith-

mic dependence on the problem size. Nonetheless, the resulting scaling would

require an upgrade of current AQC hardware to implement the necessary chain

strength.

3.1.4 Techniques to enhance embedding

As we learned in Section 1.2.10, the embedding process is mandatory to map

a QUBO problem de�ned on logical variables to its version de�ned on physical

qubits. The proper embedding is usually found via heuristic techniques that

can be computationally demanding, but whose cost is hardly ever considered

when benchmarking AQCs with classical solutions. Nonetheless, the time spent

in �nding an embedding can end up requiring a relevant amount of the total

wall time in speci�c applications [279]. Consequently, researchers have tried

optimizing the embedding heuristics presented in Section 1.2.10. While in Sec-

tion 1.2.10 we introduced few heuristics that are currently used to look for a

good embedding, we will now focus on new emerging techniques or strategies

that can be implemented by researchers in their own experiments to optimize

performances.
12See Section 1.2.10 and Table 4.1, where the chain length for di�erent fully-connected

problem sizes appears to be linearly dependent on the problem size.
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Due to the speci�c design of Chimera, Pegasus, and Zephyr topology, it is

particularly easy to embed complete clique graphs, namely those graphs present-

ing all-to-all connection13. Thus, some authors [158] have suggested to always

embed the problem using a clique embedding with the same number of variables,

since each problem with the same or less variables is a subgraph of the clique

embedding. An obvious drawback is that the resulting embedding will often

be suboptimal, comprising longer chains than required. This way, we lose the

inherent advantage of sparse problems, that can be usually embedded e�ciently

and achieve better performances [416]. On the other hand, a great advantage is

that the biggest cliques embeddable on current hardware are still smaller than

a hundred variables, which means optimal embeddings could be computed for a

speci�c hardware for each possible clique size, building a library of embeddings

that would not need to be updated until a new device hit the market. After

such e�ort, it would be possible to immediately embed any QUBO problem

with a number of variables equal or inferior to the greatest clique embeddable,

without ever computing an embedding again. Such approach is pushed further

in [417], where Hamilton and Humble, inspired by Klymko et al. [158], describe

the concept of minor set cover (MSC) of a graph G. The MSC is a subset of

graph minors which contain any remaining minor of the graph G as a subgraph.

As a consequence, any graph that can be embedded into G will be embeddable

into a member of the MSC. In other words, the MSC is the set of minors for a

given graph G such that any subgraph or minor of G will either be a member

of the MSC or is a subgraph contained in one of the members. Thus, the MSC

of a particular hardware is a �nite set of embeddable graph minors which can

be precomputed without reference to the input problem, and can then act as a

lookup table. The discussion has been extended by Boothby et al. [180], who

introduced a polynomial-time algorithm that �nds a maximum native clique

minor in a given subgraph of a Chimera graph.

Another approach exploiting the speci�c topology of AQC devices was in-

troduced by Pelofske [160]. Indeed, the Pegasus graph natively contains a lot

of 4-cliques (four fully-connected qubits). Pelofske devised a method to embed

a general QUBO problem by composing connected paths of 4-cliques (4-clique

chains). Despite requiring more qubits, this method allows more ferromag-

netic couplers per chain, which can lead to more stable chains and a reduced

occurrence of chain breaking events.

In [232] several novel techniques are devised for e�ciently embed NP-hard

13See Section 1.2.10 to learn why.
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optimization problems including knapsack and partitioning problems. One tech-

nique is based on embedding fractal-like graphs on the QPU, while another

embeds the problem variables in a two-dimensional square graph before minor

embedding it on the QPU. The obtained embeddings are e�cient and can be

found quickly.

As opposed to the above mentioned heuristic approaches, Zariba�yan et al.

[181] propose a systematic and deterministic approach to speci�cally embed

cartesian products of graphs. As the authors point out, a a systematic embed-

ding approach must rely on the regularity of the target AQC topology. Their

methodology proves more e�cient and reliable than the standard minor embed-

ding strategy implemented in the Ocean SDK function find_embedding().

Logical J-Compensation

In Section 1.2.10, we enunciated the concept of uniform spreading, which pre-

scribes to divide the value of both biases and couplings during embedding, in

order to distribute the reduced values to all qubits in each chain and to all

available edges connecting chains. Despite this seems like the most reasonable

way to map weights and biases on the embedded graph, in [153] Raymond et al.

propose a di�erent approach called Logical J-Compensation. Indeed, while the

energy of any state without broken chains is correctly represented by uniform

spreading, the actual ground state wave function during the annealing dynamic

can be dominated by con�gurations comprising broken chains (which usually

outnumber the correct ones by orders of magnitude). If this happens close to

the freeze-out point [219], the �nal distribution can be irremediably a�ected,

preventing optima from being found. The technique proposed by Raymond et

al. aims at compensating inter-chain couplings so that e�ective couplings are

balanced earlier in the anneal at the expense of inbalance later in the anneal

(hopefully after the dynamics freezes out). The idea is thus to prevent defects

to appear early during the anneal, where the dynamics is more interesting and

spatially global, while possible defects after the freeze out point are expected

to exert local in�uences that can be more easily post-processed. This is accom-

plished by changing the way a weight is divided among physical couplers in the

embedding. The weight is no longer divided in equal parts, but each embedded

coupling corresponding to that same weight will have a value that is inversely

proportional to the pairwise-logical susceptibility, a measure of how much weaker

the coupling is between chains relative to what would be expected for a pair

of directly coupled physical qubits [153]. The couplings are then normalized so

that their sum still gives the original weight.
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Reuse of static embeddings

In [1] we tackled a problem14 where various instances had the same (fully-

connected) graph structure. In similar cases, it can makes sense to put e�orts

in obtaining a good embedding, since it can then be re-used for any instance

of the same size. In [418], Bass et al. point out that in particular quantum

applications the embedding procedure is instead called several times, which

can become the major bottleneck for the overall process. This is particularly

true when the user is applying partitioning heuristics (see next Section 3.3) that

produce graphs that are not guaranteed to be embeddable, since the embedding

heuristic will consume relevant time resources before halting. One potential

strategy to overcome this issue is to pre-calculate the embedding for the largest

fully connected problem graph that can be embedded onto the chosen quantum

device (a static embedding). Then, such embedding can be used for any problem

comprising a smaller or equal number of variables, whichever the structure of

the couplings could be. One shortcoming of this strategy is that potentially

embeddable problems with larger number of variables than the maximum clique

on the AQC topology will be unnecessarily partitioned in smaller subgraphs.

3.1.5 Problem transformations

While optimizing all the di�erent internal parameters of the device, it is equally

important to focus on how to e�ectively express the mathematical problem we

want to solve so that the probability of �nding its solution is increased. In

the following subsections we will talk about expressing and tuning constraints,

how to improve performances via the introduction of useful additional penalty

terms, gauge transformations, and parity compiling.

Tuning constraints

As we discussed in Section 2.1.2, implementing constraints in QUBO formula-

tion requires the introduction of an additional cost function that makes unac-

ceptable con�guration energetically unfavorable. This approach, despite being

the only one possible, has many shortcomings, chie�y the possibility for the

system to explore and converge to those unacceptable con�gurations. In other

words, there is no guarantee that solutions produced by solving the QUBO via

QA satisfy all the constraints of the original optimization problem. This prob-

lem can be mitigated by raising the multiplicative constant that weights the
14See Section 4.1.1 for the results.
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constraint in the global cost function, which can in turn hinder performances

due to the high energy barriers that appear as a result in the energy landscape.

It is therefore usually desirable to perform an optimization procedure for

the constraints weights, where various values for the weights are evaluated with

respect to a performance metric15. In [2] we performed such tuning by evaluating

the probability of reaching the global optimum in a �xed number of samples.

Similarly, in [419], Wang et al. try to make the quantum annealing process

more resilient to errors by tuning weights and biases of the QUBO problem

in order to expand the �nal energy gap, namely the energy gap between the

eigenvalues of the Ising form at the end of the adiabatic evolution. In other

words, they tuned the weight of the constraints to make unfeasible con�guration

energetically unlikely.

One additional useful approach to respect constraints is sample persistence[420].

Originally introduced for simulated annealing [421], it identi�es variables whose

value is persistent throughout repeated independent cycles of annealing. Such

variables are candidate to be �xed to their persistent value. The remaining ones

are said to form a core of di�cult variables, which then becomes the subject

of search intensi�cation. A recent paper by Ceselli and Premoli [416] makes

use of sample persistence, testing it on four di�erent QUBO formulations of the

cardinality constrained quadratic knapsack problem (CQKP).

Ceselli and Premoli identify as the best formulation for CQKP the one in

which the inequality constraint regulating the maximum weight of the chosen

items is relaxed linearly. Authors consider this to be in contrast with the best

practice, which advises to transform it in a quadratic fashion. The main advan-

tage of the linear relaxation is that it avoids the explicit addition of the slack

variable of the constraint, which in turns would require to be encoded as a set

of binary variables. The QUBO resulting from linear penalties is thus more

sparse, and its embedding requires less qubits. The curious reader can found in

literature recent works providing theoretical background on how to transform

fully connected interactions of quadratic terms into linear terms [239], [422].

Gauges

Gauges are modi�cations of the expression of an Ising problem that do not a�ect

the energy of any con�guration. To make an example, we can always choose

a gauge factor ai = ±1 for each qubit, and then modify weights and biases as

hi → hiai, Ji,j → Ji,jaiaj. The new Ising problem obtained is equivalent to the

original expression if we �ip each qubit k in the solution that has a gauge factor
15See Section 2.6.1.
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ak = −1. In principle, the performance of an AQC should not be in�uenced by

gauge transformations. In fact, several works have proved that modern AQCs'

performance is sensible to this mapping [107], [356], [423]. In particular, Boixo

et al. [107] show that di�erent gauges can result in wildly di�erent performances,

due to calibration errors in the device. The authors mitigate the calibration

errors by averaging over di�erent gauges. Such approach is recommended in

almost any application, to avoid situations where the problem results hard to

solve due to an unfortunate calibration error that, as an example, promotes

orientation of one or more qubits in an opposite direction than that required

for achieving the global optimum.

Spin reversal tranforms

A spin reversal transform is a simple transformation that exploits a symmetry

in the annealing Hamiltonian [203]. It consists in choosing a random array

η ∈ {±1}N , where N is the number of qubits. Then, the parameters Ji,j and

hi in the annealing Hamiltonian are transformed as h′i ← hiηi, J ′
i,j ← Ji,jηiηj.

The new Hamiltonian has exactly the same energy spectrum as the original

one, while the states have been changed by a local inversion of some variables,

according to η. The internal dynamic of AQCs should be invariant to this

transformation, but the symmetry is in fact weakly violated due to noise sources

[106]. Averaging the results obtained by annealing an Hamiltonian under various

spin reversal transforms e�ectively reduces the impact of systematic errors inside

the QPU [424].

Spin reversal transforms should be used carefully, since they require submit-

ting a new problem to the AQC, incurring in non-negligible additional overheads

in the computational time that should be taken into account. Indeed, for each

transform, the problem must be submitted from scratch to the QPU, multiply-

ing the impact of the initial programming time on the total wall time of the

computation16. Furthermore, it has been shown that increasing the number of

transforms has diminishing returns for a �xed number of samples [424].

Ocean SDK allows users to set the desired number of spin reversal transforms

via the num_spin_reversal_transforms parameter, declaring that "applying

a spin-reversal transform can improve results by reducing the impact of analog

errors that may exist on the QPU" [425]. Due to the expected increase in

computational time, the default value for num_spin_reversal_transforms is

zero.
16See Section 1.3.5.
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3.1.6 E�ective temperature estimation for sampling ap-

plications

Sampling from the Boltzmann distribution is a promising application for AQCs17.

The temperature of the sampling distribution can be partially controlled by

properly rescaling weights and biases in the QUBO formulation18.

In order to evaluate the sampling temperature Te� one must resort to temper-

ature estimation techniques. We can divide possible approaches to this problem

into two classes: dependent estimations and independent estimations. In the

former case, we need to be able to approximate the Boltzmann distribution

at the desired temperature with another heuristic, and then compare it with

the quantum sampler. In the latter case, the temperature is estimated based

exclusively on the results produced by the quantum annealer.

Dependent estimators

The dependent estimators are more reliable, but could fail for larger instances,

since producing the samples with a di�erent heuristic could become expensive

[285]. Among this class we �nd the Likelihood approach and the Mean Square

Error (MSE) approach [424]. In the former case, we want to maximize the

likelihood that samples produced by the AQC are distributed as in the tar-

get Boltzmann distribution at a �xed temperature. In order to do that, we

can minimize the Kullback-Leibler divergence DKL between the sampled dis-

tribution PA and the corresponding Boltzmann distribution Bβ at the inverse

temperature β = 1/Te�:

DKL[PA, Bβ] =
∑
x

PA(x) log

(
PA(x)

Bβ(x)

)
. (3.2)

Since PA does not depend on β, the minimum of this functional with respect

to β is attained when the energy matching criterion EM(β) = 0 is met in the

following expression:

EM(β) =
∑
x

PA(x)H(x)−
∑
x

Bβ(x)H(x) (3.3)

Minimizing EM(β) works as a maximum likelihood estimator for β, evaluating

the likelihood that the annealed samples were drawn from a Boltzmann distribu-

tion. Since the Boltzmann distribution is an exponential model, it is natural to
17See Section 2.3.
18See Section 2.3.
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de�ne the estimator in terms of expected energy, which is the su�cient statistic

associated to the parameter β [426]. This proposed method is expensive, since

estimating Bβ(x) for various values of β can be demanding.

An alternative objective is the Mean Square Error (MSE) on correlations:

MSE[PA, Pβ] =
1

M

∑
i,j:Jij ̸=0

(∑
x

[PA(x)− Pβ(x)]xixj

)2

, (3.4)

where M is the number of non-zero couplings. The expression inside the round

brackets estimate the di�erence between the expectation values of the two dis-

tributions for each possible product of variables. This is then summed (squared)

for each possible combination of variables. The above expression can be derived

by β to obtain a complex expression that yields a criterion for local optimality

[424].

Independent estimators

Independent estimators are promising approaches because, since they do not

require estimating the Boltzmann distribution with other heuristics, they could

be use in perspective when AQCs will become the fastest samplers available.

On the other hand, current independent estimators are not reliable and often

output wrong estimates. A prominent example for this class of estimators was

introduced by Benedetti et al. [221]. Their procedure begins with noticing that

at a generic inverse temperature β, the probability of observing a sample of

energy E is given by Pβ(E) = g(E)e−βE/Z(β), where g(E) is the degeneracy of

states at the energy level E, and Z(β) is the partition function. Then, consider

the logarithmic ratio of the probabilities associated with two di�erent energy

levels, E1 and E2:

L(β) ≡ log
Pβ(E1)

Pβ(E2)
= log

g(E1)

g(E2)
− β∆E , (3.5)

where ∆E = E1 − E2. We can perform sampling at the unknown current tem-

perature β, but we can also rescale weights and biases in the energy functional

by a parameter x, in order to sample from a second e�ective inverse tempera-

ture β′ = xβ and esimate L(β′). Taking the di�erence ∆L = L(β) − L(β′) we

obtain

∆L = log
Pβ(E1)Pβ′(E2)

Pβ(E2)Pβ′(E1)
= ∆β∆E , (3.6)

where ∆β = xβ − β = (x − 1)β. By sampling at the two distinct e�ective

temperatures we can evaluate ∆L for many di�erent pairs of energy levels E1
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and E2. We can thus plot ∆L versus ∆E, and a linear interpolation will yield

the slope (x− 1)β.

3.1.7 Postprocessing Techniques

Whether we are using AQCs to solve an optimization problem or to sample from

a Boltzmann distribution, postprocessing techniques can come result useful to

enhance the output samples.

The most necessary and well-known postprocessing techniques in the AQC

�eld are those used to unembed a sampleset. Indeed, after the annealing process,

ebedded samples can contain broken chains that still need to be mapped into

digital-valued problem variables. The default approach used by Ocean SDK in

the dwave.embedding.chain_breaks function is called majority voting [427].

It simply consists in counting the number of qubits in the chain that attained +1

or −1 values, and then setting the output value of the corresponding variable to

the most represented case (ties are decided randomly). Other approaches listed

in the Ocean SDK manual comprise choosing the variable value at random (with

a weighted extraction) or choosing the value that minimizes the local term in

the global energy functional.

After unembedding a sampleset, other postprocessing techniques can be ap-

plied to enhance the quality of the samples. When solving an optimization

problem, we can apply a greedy postprocessing. It manipulates output samples

�ipping those bits that cause a constraint to be unsatis�ed. Such approach can

be useful to force each sample to become a feasible solution, as was done, for

instance, in [418], but it works only for those samples having a short Hamming

distance from the closest feasible solution.

Each cited technique to repair chain breaks has the collateral e�ect of warp-

ing the energy distribution of the samples. This jeopardizes the possibility of

using AQCs as Boltzmann samplers. In our works on the Boltzmann Machine

[4], [23] we applied majority voting to enable the use of all the broken samples,

and we were able to obtain good learning scores. Nonetheless, postprocess-

ing techniques to �x the broken samples are recommended [424]. Marshall et

al. [166] proposed a strategy to �x broken chains while respecting the origi-

nal distribution, named restricted resampling (RRS). It prescribes to perform a

Monte Carlo simulation over the variable subset corresponding to broken chains.

The simulation is performed over the logical subspace, namely the subspace of

con�gurations of the logical variables (as opposed to the physical qubits), and

it is performed at an inverse temperature β that is chosen based on the ex-

pected e�ective sampling temperature of the AQC. The results presented in
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[166] demonstrate that RRS outperforms majority voting in sampling applica-

tions. Despite performing better, RSS still has open problems to solve, chie�y

the fact that it requires to know the e�ective temperature of the AQC, which,

as we saw in the previous Section 3.1.6, can be challenging to estimate.

3.2 Quantum annealing correction

In the gate-based quantum computing community, error correction techniques

are strategies that, by adding redundant ancillary qubits in the circuit to be

executed, enable the user to correct errors in the output samples [428]. Error

correction is not usually associated to quantum annealing, since AQCs cannot

implement the protocols designed for gate-based devices. Nonetheless, in 2014

Pudenz et al. [429] introduced the concept of Quantum Annealing Correction

(QAC). Their protocol simply prescribes to encode the problem Hamiltonian

operating the following substitutions:

σz
i ←

n∑
l=1

σz
il

σz
i σ

z
j ←

n∑
l=1

σz
il
σz
jl
,

(3.7)

e�ectively substituting each qubit with a collection of n qubits. Supposing the

initial number of logical qubits was N , we are now considering a Hamiltonian

comprising N = N · n qubits. Since we use the same weights and biases in

the original and in the error-corrected Hamiltonian, the energy scale of the

problem is thus increased by a factor of n, which, according to the authors,

is expected to suppress thermal excitations. In addition to this, the added

redundancy enables to correct some errors during postprocessing via majority

voting, similarly to what it is usually done with embedded problems19. Authors

also add an additional penalty term with the aim of penalizing incomplete �ips

of the chains:

Hpenalty = −
N∑
i=1

(
σz
i1
+ ...+ σz

in

)
σz
ip (3.8)

where σz
ip are N additional qubits. Thanks to this additional term, all the qubits

corresponding to the same encoded logical qubit will tend to stay parallel to

σz
ip , and, as a consequence, parallel one to the other.

19See Section 3.1.7.
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Figure 3.2: Depiction of the di�erence between embedding and QAC in a
frustrated scenario. A virtual qubit (above) is characterized in this exam-
ple by four ferromagnetic interactions (black) with neighbouring qubits. The
upward and downward states are degenerate due to the orientation of neigh-
bouring spins. When embedding the virtual qubit on two physical qubits
(lower left) using a ferromagnetic coupling (red), the frustration induces the
two qubits to become antiparallel, favoring chain breaking. In QAC (lower
right) this does not apply, since each qubit in the chain is subject to the
same interactions experienced by the original qubit that the chain represents.

Image adapted from [430].



3.3. Hybrid classical-quantum approach 155

The proposed approach could seem very similar to a minor embedding pro-

cedure. Anyway, the dynamics of the system is expected to be fairly di�erent

in the two cases, as depicted in Figure 3.2 [430]. Consider the case (depicted in

the image) of a frustrated qubit whose possible states have became degenerate

due to the orientation of neighbour spins. If the qubit has been encoded via

minor embedding with two physical qubits, then the frustration will elicit a

chain breaking event. Conversely, the QAC protocol clones the qubit in two

location, which means both qubits perceive the same energy landscape (ex-

cept for a potential di�erence in the number of ferromagnetic couplings linking

them to other clones). We can thus conclude that frustration does not induce

chain breaking in QAC. As a consequence, while minor embedding typically

reduces performance relative to a direct implementation of a given optimiza-

tion problem, QAC is known to be e�ective in improving the performance when

compared to a direct embedding [429], [431]. It is then natural to consider a

concatenation of this two maps. Applying QAC after minor embedding can

generate a graph that is not directly embeddable on the QPU, rendering the

procedure ill-de�ned. Vinci et al. [430] present a potential (not always applica-

ble) solution, called square code, which essentially exploits the particular shape

of the Chimera topology to clone the qubits in a minor embedded problem in

a procedural and safe way. According to the results in [430], the combined use

of minor embedding and QAC achieved higher probability success than using

only minor embedding. Testing with a directly embeddable problem they man-

aged to estimate that QAC is able to retrieve the performace loss due to the

minor embedding of the problem. In a particular case, forcefully expanding

the directly emeddable problem with a composite minor embedding and QAC

mapping achieved better results than the directly embedded instance [430].

3.3 Hybrid classical-quantum approach

In a future perspective, when AQCs or other quantum computing approaches

will consistently outperform classical solvers on speci�c computational tasks,

we can expect such new technologies to be used in a hybrid architecture. Ac-

cording to Callison and Chancellor [432], hybrid quantum-classical algorithm

is "an algorithm that requires non-trivial amounts of both quantum and clas-

sical computational resources to run, and which cannot be sensibly described,

even abstractly, without reference to the classical computation". Indeed, classi-

cal computers are expected to remain for a long time the best approach to solve

many simple tasks that do not require quantum computational power, which
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means we can forecast that a lot of applications harnessing quantum resources

in the future could actually use a hybrid quantum-classical methodology. A fa-

mous example of a hybrid algorithm in gate-based quantum computing is Shor's

algorithm [18], where most of the steps are entirely classical.

In AQCs the concept of hybrid classical-quantum applications can be confus-

ing. AQCs are designed to be quantum accelerators for optimization problems,

and are not expected to manage by themselves a whole computational pipeline.

This means that, in a sense, AQCs are inherently created to be operated in a

hybrid framework. Nonetheless, the "hybrid" keyword is recently seeing a broad

use in the AQC community, probably in�uenced by the ubiquitous hybrid ap-

proaches in the gate-based �eld. Hybrid techniques for AQCs are basically

divided into two main classes. Some approaches aim to overcome the resource

limitation arising from the fact that practical problems typically require more

qubits than are available on existing devices (often as a result of the expan-

sion required to cast the problem in QUBO form). Such methods operate a

decomposition of large optimization problems into smaller, more manageable

instances that can be tackled by AQCs. The second class of hybrid methods

aim to combine quantum annealing with classical annealing and optimisation

techniques, in particular by using quantum annealing to perform local optimi-

sations and classical techniques to guide the global search direction. In such

cases, the objective is to exploit the best of both worlds, namely the ability of

AQCs to perform quantum tunnelling and the ability of classical computers to

read and copy intermediate states. Few other "hybrid" techniques have been

proposed outside these two classes. As an example, a technique that manages

to map multiple instances of a problem on the AQC with the same embedding,

reducing the time required to embed each instance [433].

We will now present a brief literature review regarding these two classes of

quantum-classical hybrid algorithms for AQCs.

Hybrid methods exploiting classical optimization

One of the �rst methodologies legitimately belonging to this class has been

devised by Chancellor [434], who tried to answer the question of whether QA can

be used to gain advantages over modern classical algorithms by exploiting both

classical and quantum search techniques sequentially. He basically suggested to

use AQCs only to perform local search, enhancing a global optimization that is

simultaneously brought forth by a classical routine. A promising way to follow

such advice is to exploit QA to obtain good feasible intermediate solutions, and
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then enhance them via classical postprocessing techniques20, how was done for

instance in [435] and [436]. Conversely, classical devices can be used to pre-

process or re-elaborate the original problem, to then feed it into the AQC. This

has been done for instance in [279], where classical computation was used to

generate candidate paths to move a robots �eet on a grid in real time. The

optimal combination of paths was later found among the candidate paths via

QA.

Another interesting proposal came from Pastorello et al. [437], who intro-

duced the Adiabatic Quantum Computing Learning Search (AQCLS). AQCLS

exploits classical computation to �nd the solution of a given optimization prob-

lem that outputs the problem Hamiltonian and the annealing schedule for a

computation with an adiabatic quantum machine. In other words, classical

computation is used to formulate the best possible Hamiltonian to solve the

original problem via QA. Contrary to previously cited methods, the classical

part is not working only prior to the quantum annealing process. In fact, AQ-

CLS is based on a classical iterative structure with repeated runs of an adiabatic

quantum machine and a mechanism to induce modi�cations of the problem

Hamiltonian towards a better encoding. The authors demonstrated that the

hybrid quantum-classical algorithm converges to the solution of the optimiza-

tion problem and provides a corresponding problem Hamiltonian. AQCLS is

an extension of the previously introduced Quantum Annealing Learning Search

(QALS) [438]. The main di�erence between the two algorithms comes from

the di�erent nature of the considered quantum architectures. Indeed, QALS

is specialized for AQCs, while AQCLS is formulated so to be executable on

a general device implementing adiabatic evolution, which can potentially also

be a universal machine [103], [439]. In fact, the optimization problems tackled

by AQCLS are not limited to Quadratic Unconstrained Binary Optimization

(QUBO) problems. Analogously, Liu et al. [440] used a parallel algorithm that

harnesses results coming simultaneously from QA and DESS (Double Elite Spi-

ral Search) to adress a mixed-integer optimal control problem. The combined

QA-DESS algorithm exploits QA to solve integer optimization with high e�-

ciency due to the unique quantum-tunnelling-based annealing mechanism, while

the classical DESS algorithm is used to optimize continuous decisions.

Hybrid techniques to decompose large problems

The combined limitations coming from the topology and the number of qubits

in the AQC hardware pose a threshold on the maximum allowed complexity
20See Section 3.1.7 to learn about postprocessing techniques.
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for an optimization problem embeddable in a given adiabatic quantum device.

Researchers have been studying several ways to overcome this limitations, one

being decomposing a hard problem in subproblems that can then be separately

solved via quantum annealing. Among the functions belonging to the hybrid

codes in Ocean SDK the most used is qbsolv [441], [442], which decomposes

larger problems into subproblems to then solve them separately using D-Wave

devices or a Tabu search[443]. Okada et al. [444] have pointed out that qbsolv

embeds the subproblems by using an embedding of a complete graph even for

sparse problem graphs. The authors have thus proposed an evolved approach

that circumvents this problem by reducing the number of qubits used while

embedding the subproblems. Other authors have also extended the qbsolv ap-

proach to only use the AQC on subproblems possessing a direct embedding on

the QPU (in such cases the embedding process does not make use of chains)

[278].

A di�erent viable approach to tackle this decomposition task is called Core

Halo (CH) partitioning. The CH partitioning consists in a min-max problem

where we look for a suitable partitioning of the original graph that minimizes

the maximum sum of nodes and �rst neighbors in each subpartition. Originally

introduced in [445], it was used in [446] to decompose the QUBO formulation of

a Maximum Clique problem (�nding the largest fully connected set of nodes in a

graph). The approach is extended by Bass et al. in [418], where they introduce

an iterative version of CH partitioning. The iterative process �xes the value of

some QUBO variables according to the solution obtained via quantum annealing

for a chosen subproblem. At each iteration, the �xed variables are removed

from the original QUBO problem modifying the biases of nearby qubits, which

e�ectively reduces the topological complexity of the problem. This partitioning

technique can in principle be applied to reduce the size of any QUBO problem.

Iterative CH is designed such that an embedding is guaranteed to exist for

any sub-problem to be solved, which means no time is wasted waiting for an

embedding heuristic to fail, as it is the case for unembeddable graphs.

The same paper by Bass et al. [418] also describes the freeze and anneal

technique, previously introduced by the same authors in [447]. The approach

is similar to CH, but this time a genetic algorithm [448] is applied to the "pop-

ulation" of possible solutions to a given QUBO problem. Each solution is rep-

resented by a bit string. After several generations, bits that often assumes the

same value are �xed, based on the hypothesis that their optimal value is the

predicted one. Repeating this process e�ectively eliminates the "most obvious"

variables, reducing the dimension and complexity of the QUBO problem, until
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it is possible to map it on the quantum device.

Bass et al. [418] also explain how the Principal component decomposition

(PCD) can be applied to decompose QUBO problems. The PCD algorithm

makes a series of cuts along the problem graph, where each cut removes edges

that intersect the cut. This process is repeated until each of the resulting dis-

connected graph components, representing subproblems of the original QUBO,

is directly embeddable on an available quantum annealing device. To deter-

mine where to cut the problem graph, �rst the nodes are laid out in a 2D plane

according to the spring layout algorithm of NetworkX [449], where nodes con-

nected by an edge are attracted to each other with a force proportional to the

edge weight. Then, Principla Component Analysis is applied to the 2D coordi-

nates of all the nodes in the graph, �nding the primary axis of the graph, which

can then be sliced. If a subgraph cannot be embedded due to size or connec-

tivity issues, it is continually sliced along the primary axis until an embedding

of each of its components is found. The resulting embeddable QUBO problems

can be solved via QA, and their solutions must then be recomposed. This can

be accomplished using a greedy recomposition that simply concatenates all sub-

problems solutions and then �ips one random qubit in each pair of qubits that

breaks a problem constraint [418].

Other notable approaches to decomposition of QUBO problems can be found

in [450] and [376]. In [450], Okada et al. introduce a particular decomposition

technique called binary encoding, which is speci�cally designed for problems

using one-hot encoding. In [376], Zardini et al. propose a divide et impera

approach where the original problem gets decomposed in smaller instances with

partial overlaps. The solution of the original problem is obtained starting from

the overlapping sub-solutions, which are recomposed by selecting the option in

the overlapping regions that reduces the cost.

3.4 Potential hardware improvements

The previous Sections have described many techniques we can adopt to enhance

the performance of AQCs. Such techniques can be de�ned "software-level"

because they act by manipulating the problem formulation, the way the problem

is embedded in the hardware, the parameters determining the duration and the

schedule of the annealing process, or the obtained results. In this Section,

we present those improvements that need to act at the hardware level to be

implemented. In the future, manufacturers could realize devices that host or

enable such approaches, but the end-user cannot implement them today. The
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two most promising way to evolve AQC hardware in the future are probably

the concept of parity compiling, which is introduced in the next Section, and

the implementation of σx
i σ

x
j couplings that would enable universal quantum

computation21, which is presented next.

3.4.1 Parity compiling

As we discussed in Section 1.2.8 and 2.1.4, AQCs have a hard time in tackling

optimization problems with higher-than-quadratic interactions (HUBO prob-

lems). The usual way to represent HUBO problems on an AQC is to introduce

ancillary qubits that are then imposed equal to the multiplication of two other

qubits via the insertion of additional penalty terms in the global cost function22.

Additionally, all-to-all connected problems require large embedding comprising

long, prone-to-breaking chains. Both these problems could be overcame by the

parity transformation mapping [451], recently presented (and patented) by Par-

ity Quantum Computing [452]. The parity transformation protocol allows to

represent problems with all-to-all interactions of any order k on an AQC, re-

quiring only a square lattice as hardware topology. The parity transformation

is the generalization of the LHZ mapping, named after Lechner, Hauke, and

Zoller, who introduced it in 2015 [58].

This Section presents LHZ and parity mappings as a future possible way to

implement more complex optimization problems on quantum annealing hard-

ware. Despite their great advantages, both mappings require four-local inter-

actions in their general case, which means current AQCs cannot implement

this protocols without adding several ancilla qubits, hindering their potential

e�ectiveness. Future adiabatic quantum computers could be natively realized

to host such mappings, as it is the case for NEC corporation (Japan), which

recently announced their use of parametron qubits to build a unit cell for a

quantum annealer using LHZ encoding [453].

LHZ mapping

To represent all-to-all interactions between N qubits, the LHZ scheme requires

N(N−1)/2 qubits arranged in a 2D square lattice with 4-local interactions. The

mapping σz
i σ

z
j → σ̃z

ij goes from the variables in the fully-connected problem to

new binary variables that represent the product of the two logical qubits i and

j. This means that a new qubit is introduced for each one of the N(N − 1)/2

21See Section 1.2.8 to learn about the requirements for universal computation in AQCs.
22See Section 2.1.4.
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possible quadratic terms. Staying in the ising picture (so variables assuming

−1 and +1 values) we can conclude that the new qubit σ̃z
ij will be equal to +1

if σz
i and σz

j are parallel, and −1 otherwise. Thus, quadratic coe�cients are

translated into local �elds that act on physical qubits, and the cost function

does not contain any quadratic coe�cient. Nonetheless, the last fundamental

requirement to perform a faithful mapping is that the new qubits σ̃z
ij assume

the desired value σz
i σ

z
j . Let's consider the four-cycle of the product variables

σ̃z
1,2, σ̃

z
2,3, σ̃

z
3,4, σ̃

z
4,1. Any one of the 16 possible orientations of the four qubits

σz
1, σ

z
2, σ

z
3, σ

z
4 imply

σ̃z
1,2σ̃

z
2,3σ̃

z
3,4σ̃

z
4,1 = 1 , (3.9)

since each variable appears exactly two times. Conversely, each con�guration

respecting Eq. 3.9 correspond to a di�erent pair of (opposite) con�gurations of

the four original qubits. To ensure that σ̃z
ij = σz

i σ
z
j the LHZ scheme prescribes

to introduce N(N − 1)/2−N constraints of the form in Eq. 3.9 [58], which can

be imposed by adding

−λσ̃z
1,2σ̃

z
2,3σ̃

z
3,4σ̃

z
4,1 (3.10)

to the cost function. This requires a four-local interaction in the device, which

cannot be realized on current AQC hardware without resorting to the addition

of several ancilla qubits. In the presented scheme, linear terms can be added by

inserting a single ancillary qubit k set to +1. Indeed, the original Ising problem

can be rewritten as follows:∑
i,j,i̸=j

Jijsisj +
∑
i

hisi →
∑
i,j,i̸=j

Jijsisj +
∑
i

hisisk, with sk ≡ 1, (3.11)

e�ectively expressing the whole optimization problem without explicitly making

use of linear terms. The added qubit must be connected to all other qubits, but

this is not a shortcoming, since the LHZ scheme speci�cally enables all-to-all

couplings. Indeed, this additional spin can be included in the programmable

system by the addition of another row of physical qubits [58].

The LHZ mapping can be extended to problems described by k-local all-to-

all connections, which are mapped by the scheme to a k-dimensional hyper-cubic

lattice [58] (although this is impractical for realistic devices).

Parity transformation

The parity transformation has been recently introduced in [451] as a generaliza-

tion of the LHZ mapping. The parity transformation enable the representation
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of an arbitrary binary optimization problems (with mixed k-body terms of var-

ious k) on a 2D square lattice. This extends the LHZ mapping since here the

mapping happens without resorting to higher-dimensional structures. The par-

ity transformation composes two mappings, named embedding map and layout

map. The embedding mapping maps every k-fold product of logical qubits to a

single parity qubit. The layout map then places the parity qubits on the physi-

cal device. Let's suppose our optimization problem comprises N qubits and M

interaction terms. This means the embedding mapping will produce a problem

with M < 2N parity qubits, each one representing a k-fold product of logical

qubits. As in the LHZ mapping, we are then required to impose some constraints

to ensure the parity qubits faithfully represent the possible combinations of the

original logical qubits. Also in this case this is achieved by imposing conditions

similar to 3.9 for cyclic products of the logical qubits. We remand reader to

reference [451] to learn more regarding the parity transformation. The par-

ity transformation also promises to simplify the implementation of constraints.

This is usually done in AQCs by adding a penalty term in the cost functional,

raising the energy of those con�guration that do not satisfy constraints. In-

stead, in the parity approach constraints on sums, products of arbitrary k-body

terms and sums over such products can be implemented without penalty terms

[454].

3.4.2 Nonstoquastic Hamiltonian

Almost all existing hardware realizations of the adiabatic quantum computing

concept makes use of stoquastic Hamiltonians [75]. This means the implemented

Hamiltonians have non-negative o�-diagonal matrix elements. In other words,

the interactions between di�erent quantum states do not introduce sign changes

in the matrix elements. Stoquastic Hamiltonians are relatively well-behaved and

can be simulated more e�ciently on classical computers. The term �stoquas-

tic� was introduced due to the similarity to stochastic matrices, such as arise

in the theory of classical Markov chains. As opposed to this, non-stoquastic

Hamiltonians introduce changes in sign between quantum states in the matrix

elements, making it more challenging to simulate classically [455]. Adiabatic

quantum computation with non-stoquastic Hamiltonians is as powerful as the

circuit model of quantum computation [103]. In other words, non-stoquastic

AQC and all other models for universal quantum computation can simulate one

another with at most polynomial resource overhead.
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In 2019, a team of researchers from D-Wave Systems has been able to im-

plement and measure two superconducting �ux qubits coupled via two canoni-

cally conjugate degrees of freedom (charge and �ux) to achieve a nonstoquastic

Hamiltonian [132]. The resulting coupling manifested itself as a σyσy interaction

in the computational basis.

Until now (2024) there has been no announcement from D-Wave Systems

or other companies regarding the future commercialization or availability of an

adiabatic quantum computer implementing non-stoquastic Hamiltonians.
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Chapter 4

Experimental results

In this Chapter I present the main results obtained during my doctoral studies.

The Chapter is divided into two main sections.

The �rst section presents results obtained in two main experiments where the

AQC was tested in optimization tasks. In the �rst experiment we benchmarked

di�erent D-Wave System AQCs on a feature extraction task with applications in

Machine Learning (the respective article is currently submitted for publication

[1]). In the second experiment we benchmarked a D-Wave Systems AQC, a

Virtual Memcomputing Machine, and the Gurobi solver on three relevant hard

problems (the respective article has been published in [2]). Both experiments

were conducted in collaboration with the Italian Institute of Technology (IIT).

In particular, the �rst experiment was conducted within the IIT-Leonardo joint-

lab.

The second section presents results obtained in two main experiments where

the AQC was tested in sampling tasks. In the �rst experiment, which extended

the work I conducted during my Master's Thesis, we trained a Restricted Boltz-

mann Machine (RBM) on a D-Wave Systems AQC, and we tested reverse an-

nealing to enhance performance (the respective article has been published as

a full paper [4] and as a conference proceeding [3]). In the second experiment

we trained a fully-connected Boltzmann Machine on a D-Wave Systems AQC,

showing an experimental limited quantum advantage with respect to our clas-

sical implementation on GPUs (the respective article is currently submitted for

publication [24] and a further proceeding will be published later [23]). Both arti-

cles were conducted in collaboration with the Italian National Research Council

(CNR).

4.1 AQCs as optimizers

As discussed in the introduction of Section 2.6.2, most articles comparing AQCs

to other solvers on optimization problems follow two popular tendencies. The
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�rst is comparing AQCs performances to simulated annealing algorithms, which

cannot be considered a competitive classical approach in most cases. The sec-

ond is choosing a spin glass problem as a benchmark, which can make it di�cult

to objectively evaluate AQCs capabilities in real-world scenarios. In both the

research works presented in this Section, we decided to test AQCs on real,

industrially-relevant problems, and we compared their performance to a state-

of-the-art classical solver, Gurobi, which is often considered the best commer-

cially available optimization problem solver.

4.1.1 Benchmarking di�erent generations of AQCs on a

feature extraction task

Introduction

In this Section we discuss results obtained while testing various generations of

AQCs on the problem of Feature Extraction [456] (FE), an important branch

of computer vision that provides methods to automatically capture meaningful

patterns or features associated with images, or image datasets. If properly se-

lected, such features can be used for dimensionality reduction, acting as a basis

set for a more compact latent space representation of the original data, which

typically turns out bene�cial to generate Machine Learning (ML) models with

improved classi�cation, recognition, and detection capabilities [457]. Among

the most used classical techniques to tackle FE, one can �nd Principal Compo-

nent Analysis (PCA) [458]�[461] and Independent Component Analysis (ICA)

[462], [463]. Deep learning-based methods like Convolutional Neural Networks

(CNNs) [464], [465] and Recurrent Neural Networks (RNNs) [466] also make

use of FE techniques. Such approaches can be computationally demanding and

may require substantial processing power depending on the size of the dataset

involved or the level of sophistication of the selected algorithm.

AQCs o�er practical means to explore quantum approaches to FE because

of their ability to handle a high number of variables [467], [468], which is en-

abled by the availability of thousands of physical qubits and connectivity that

characterize such devices [21]. O'Malley et al. [405], [469] were among the �rst

to test AQCs to perform FE tasks. In [469], they introduced a work�ow to

perform Non-negative Binary Matrix Factorization (NBMF), which allows to

exploit AQCs to factorize a collection of images as the product of two matrices,

one of which must be binary-valued. The continuous matrix is interpreted as

the collection of basis "feature" images, while the binary one is the "weights"

matrix that lists which feature images must be summed up to recompose the
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original images (see the Methods for an extensive explanation). Such an ap-

proach is widely based on the method to factorize matrix-vector multiplication

on AQCs previously introduced by Li et al. [470]. In [405], they managed to

boost the performances of the quantum FE algorithm by modifying the shape

of the annealing schedule, similar to what was done for a similar problem in

Ref. [242].

In our experiment, we explored opportunities, challenges, and current limi-

tations of di�erent generations of D-Wave quantum annealers when utilized to

address FE tasks using NBMF methods. We compare the legacy lower noise

D-Wave 2000Q (now dismissed) with 2038 qubits arranged in a Chimera topol-

ogy [471] (2kQ), the D-Wave Advantage 4.1 [21] with 5627 qubits arranged in a

Pegasus topology [159] (Adv1), and the most recent D-Wave Advantage2 pro-

totype 1.1 [472] with 563 qubits arranged in Zephyr topology (Adv2). Such

devices represent three important steps in the history of AQCs, namely an in-

crease in topology complexity, going from Chimera (8 couplers per qubit) to

Pegasus (15 couplers per qubit) to Zephyr (20 couplers per qubit).

The comparison between di�erent quantum annealing hardware allows us to

assess the evolution in the computational capabilities of AQCs and provides us

indications about the most relevant working conditions for which this technology

is expected to challenge classical digital approaches. Our study was inspired in

particular by O'Malley et al. [469], where the NBMF methodology was applied

to extract salient features from gray-scale images of human faces. We con-

sidered instead an extended, more complex, dataset comprising low-resolution

RGB satellite images of airplanes, using the Adv1 processor to also double the

maximum number of features extracted with the NBMF methodology in [469]

(70 vs. 35). Additionally, we applied a tuning procedure to choose the opti-

mal values for both the problem parameters and the internal parameters of the

AQCs, which allowed us to get better results in the computational time at our

disposal.

Appendix C presents the theory of NBMF, explains how to solve it via an

iterative procedure that makes use of an optimization step, and explains how the

optimization step can be cast in QUBO form. The next Sections will instead

focus on presenting the dataset, the necessary embedding, and the obtained

results.

Description of the dataset

We consider a dataset of satellite images that is publicly available under the

CC-BY-SA license at https://www.kaggle.com/rhammell/planesnet. The

https://www.kaggle.com/rhammell/planesnet
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Figure 4.1: A selection of images of the aircraft class.

Figure 4.2: A selection of images of the not-aircraft class.

dataset is actually composed of two sub-datasets containing respectively 8000

and 24000 image �les in .png format. These two sub-datasets contain images

that were previously classi�ed as either aircraft or not-aircraft, examples of

which are reported in Figs. 4.1, 4.2. The images display a squared aspect ratio

and are composed of 20 × 20 RGB pixels which can be considered represen-

tative of the low-resolution images typically provided by low-cost constellation

satellites. For the purpose of this work, we only consider aircraft images, which

are transformed into a grey scale. Each of such images depicts a single near-

centered aircraft at various zoom levels, in-plane orientations, and atmospheric

and light conditions. Wings, tails, and tips of the aircraft are fully contained

in the perimeter of the images in most cases. The number of details embodied

in this dataset yields an overall complexity that we expect to capture only by

using a relatively large number of features.

Embedding the problem

Any QUBO problem can in principle be submitted to an AQC [35]. The only

limitations regard the total number of variables and the topology of the prob-

lem, namely the amount and structure of non-zero quadratic coe�cients in Eq.

C.5 in the Appendix. Given a problem with an acceptable number of variables,

a proper embedding procedure is required whenever the mathematical structure

of the problem cannot be mapped directly on the AQC topology [171]. Such

a procedure involves connecting multiple physical qubits together via a strong

ferromagnetic coupling Jchain, which makes them behave like a single two-level

quantum system, i.e. a logical qubit. The embedding approach augments the

e�ective connectivity for each logical qubit and eventually allows for the map-

ping onto the AQC of problems with up to all-to-all connectivity. Obtaining a
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suitable embedding is generally non-trivial, and it is typically addressed through

a procedure known as minor embedding. [151].

The mathematical structure of the NBMF problems considered in this work

implies the presence of k binary variables connected in an all-to-all fashion by

the quadratic coe�cients bij appearing in Eq. C.6 in the Appendix. In principle,

any of these coe�cients could become equal to zero, but this condition can

change at each iteration, and in general, most of the coe�cients assume nonzero

values. For this reason, it is practical to assume the problem is represented by a

fully connected topology of k binary variables. A favorable consequence of this

hypothesis is that the embedding procedure has to be performed only once for

each tested k value. For the sake of completeness, we report the details of the

minor embedding at various problem sizes in Table 4.1. The embeddings have

been obtained using the minorminer.find_embedding function from Ocean

SDK [179].

2kQ Adv1 Adv2
k q lchain q lchain q lchain
10 34 3.40 16 1.60 16 1.60
20 121 6.05 52 2.60 47 2.35
30 273 9.10 115 3.83 93 3.10
40 505 12.62 199 4.97 161 4.02
50 791 15.82 297 5.94 252 5.04
60 - - 422 7.03 - -
70 - - 555 7.93 - -

Table 4.1: Number of qubits (q) and average chain length
(lchain) associated with the embeddings at di�erent problem sizes
k. Results are obtained running the minorminer software multi-
ple times until there was no improvement in the required number
of qubits for ten consecutive trials. Missing values in the table
correspond to those cases where minorminer did not return any

embedding after ten consecutive trials.

Optimization of the NBMF hyperparameters

The NBMF-based FE algorithm relies on some hyperparameters, namely the

number of epochs of the iterative process, the initialization of the H matrix,

and the regularization parameter α. The associated values are chosen within

a preselected range in order to minimize the reconstruction error ||V −WH||F
at the end of the iterative NBMF process. In practice, this is achieved by

conducting preliminary runs on a dataset of 625 images with k = 50, which

are typical values for problem sizes relevant to this work. For this analysis, we
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Figure 4.3: Hyperparameters selection: Reconstruction error as a function
of H�ll at di�erent α values. Results are obtained using the classical Gurobi
solver for a dataset of 625 images with k = 50. Each datapoint is the mean

of three independent runs using three di�erent random seeds.

exclusively use the Gurobi solver. In this work, Gurobi version 9.5.0 was used,

and calculations were performed on a laptop CPU Intel i5-11400H.

Preliminary experimental results showed that the reconstruction error be-

tween successive NBMF iterations decreases rapidly within the �rst 5 steps.

For this reason, from now on, we set nepochs = 5 as a meaningful number of

iterations for the process. As for the initialization of H, we opt for a random

uniform �lling with a de�ned density H�ll, which represents the percentage of

ones in it. Figure 4.3 shows the reconstruction error ||V −WH||F as a function

of H�ll at di�erent α values. The error varies slightly for di�erent values of

such hyperparameters, accounting to few percentage points across all the tested

combinations for α and H�ll. The optimal combination resulting in the lowest

reconstruction error was α = 0.1 and H�ll = 5%.

Figure 4.4 shows the dependence of the sparsity of the �nal H after 5 iter-

ations as a function of α and H�ll.
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Figure 4.4: Final (percent) sparsity of H matrix as a function of H�ll at
di�erent α values. Results are obtained using the classical Gurobi solver for
a dataset of 625 images with k = 50. Each data point is the mean of three

independent runs using three di�erent random seeds.
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Tuning of the AQC parameters

Ocean SDK enables users to adjust multiple parameters that in�uence the dy-

namics of the physical device. It has been demonstrated that the performance

of AQCs can be signi�cantly boosted upon tuning these parameters, resulting

in improvements of up to two orders of magnitude in the average time to solu-

tion [2], as showed in the previous experiment (Section 4.1.2). The parameters

with the most substantial impact on performance are two:

� tann: the annealing time, namely the time duration of a single quantum

annealing cycle.

� Ichain: parameter controlling the intensity of the chain coupling Jchain in-

side the AQC according to the following equation:

Jchain = Ichain
2NJ

Nvars

√∑
{i,j},i ̸=j J

2
ij

NJ

, (4.1)

where NJ is the total number of quadratic connections in the original (not

embedded) QUBO problem, and Nvars is the number of logical variables in

the original QUBO problem (which implies 2 NJ

Nvars
is the average number of

connections per logical variable). Note that in Ocean SDK Ichain = 1.414

by default, as prescribed in the function uniform_torque_compensation [413].

Determining the optimal values for these parameters is a non-trivial task in

practical terms. With regard to the annealing time, one could rely on the adia-

batic theorem that prescribes maximizing tann to obtain high-quality solutions

[116], [117]. However, as described in Section 4.1.2, it is known that due to

the coupling of the quantum state to the environment, longer annealing times

can trigger quantum decoherence that deteriorates the overall device perfor-

mance. As a result, only a direct tuning of this parameter can provide reliable

indications of the optimal values to be used for tackling the problem of interest.

We therefore tested various combinations of tann and Ichain, and we selected

the one that resulted in the lowest average gap from the global optimum for

find_H instances. The gap for each problem instance is de�ned as follows:

gap =
(Cbest − Coptimal)

Cbest
· 100 , (4.2)

with Cbest being the cost of the best solution found with the quantum device, and

Coptimal being the global optimum of each problem instance found by Gurobi.

Note that by de�nition this gap is bounded 0% ≤ gap ≤ 100%.
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We performed the test on 100 single-column problems, where a single column

of the H matrix is optimized (see Eq. C.4 in the Appendix). Such test set was

created by initializing V with 500 random images from the dataset, and H

with random binary digits with H�ll = 5%. The initialization was repeated

for 5 di�erent seeds, then executing for each case find_W using Gurobi, and

then selecting the �rst 20 column problems of find_H for each seed, for a

total of 100 problems. Since we aim to use the optimal parameters to enhance

the computation at di�erent problem sizes, we decided to perform the tuning

procedure at k = 50 for Adv1, while we chose k = 30 for Adv2 and 2kQ. This

way the optimal parameters are obtained at a problem size that is not trivial and

at the same time is not close to the maximum achievable size on the hardware

(see Table 4.1).

To conduct a fair comparison, we �xed the overall QPU time tQPU available

for each combination of parameters. This is achieved by varying the number

of annealing samples to compensate for the variable annealing time used in the

analysis. Speci�cally, we decided to set tQPU = 0.200s for each single-column

problem, which we found su�cient to allow for relatively good solutions for the

problems at hand while staying within the overall time budget at our disposal.

In detail, this value allows for a number of samples per problem ranging from

919 for tann = 100µs to 1644 for tann = 4µs (the longest and shortest annealing

times tested, respectively). The reason why the number of samples changes so

little with respect to tann is due to the impact of the delay and readout times

per sample, which contribute to tQPU especially when tann is low1. Note that

tQPU does not include the time required to communicate with the QPU over the

Internet, which has a �xed duration.

The left image in �gure 4.5 shows the average gap obtained at k = 50 for

Adv1, while the right image in the same �gure shows the percentage of broken

samples. A sample is considered broken if at least one of the chains in the

embedding contains antiparallel qubits.

Figure 4.5 shows that the average gap appears to be independent of the

annealing time. This is in contrast with the heatmap on the right, which shows

that, on average, samples obtained using a shorter annealing time contain more

broken samples. Apparently, the higher number of samples collected for shorter

annealing times compensates for the lower average quality of the collected sam-

ples. Additionally, the �uctuations induced by the outer noise could be boosting

the ability of the system to reach the global minimum, as suggested in [473]. On

the other hand, the chain strength heavily in�uences the quality of the samples.
1See Section 1.3.5.
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Figure 4.5: Average gap and average number of broken samples for ev-
ery combination of annealing time tann and chain strength Ichain in the case
k = 50 for Advantage 4.1. Optimal setting is tann = 25 and Ichain = 2.4,

corresponding to gap 26.8%.

If a su�ciently strong Ichain is imposed, the annealing process should produce

samples whose chains are composed of parallel qubits. Such expectation is con-

�rmed by the right heatmap in �gure 4.5, which shows how higher Ichain values

correspond to a lower average number of broken samples. Nonetheless, reducing

Ichain lowers the energy gap between di�erent con�gurations, raising the proba-

bility of both quantum tunneling and thermal �uctuations. The optimal value

for Ichain must balance these e�ects. The combination tann = 25 and Ichain = 2.4

resulted in the optimal gap of 26.8% and 48.1% broken samples, with only

1.43% of the chains broken. The low average number of single broken chains

could explain the limited impact of a high number of broken samples. The

optimal setting is to be compared with the D-Wave base setting Ichain = 1.414,

which resulted in gap values ranging from 49.4% (at tann = 25) to 58.19% (at

tann = 6), a percentage of broken samples > 99.97%, and a percentage of broken

chains ∈ [19.25%, 22.11%] (varying the annealing time). The parameter tuning

procedure e�ectively halved the number of samples containing broken chains,

and reduced the number of broken chains by more than an order of magnitude,

drastically improving the expected average gap from 49.4% to 26.8%.

We conducted an identical analysis in the case k = 30 for D-Wave 2kQ,

Adv1, and Adv2. Figure 4.6 shows the obtained results. We can observe that

Adv1 seems to be the most resilient to chain breaking, with a resulting lowest

gap score. As evident also in Figure 4.5, for each solver we have a "critical"

value for Ichain below which the number of samples containing broken chains

rapidly increases from almost zero to almost 100%. In all cases, the Ichain value

closest one to this transition point also corresponded to the lowest gap. Figure

4.6 also con�rms the weak dependency of the lowest gap on the annealing time,
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as was already noted for Figure 4.5.

Gap dependency on problem dimension and wall time

After tuning the NBMF hyperparameters and the quantum devices parameters,

we can now compare the performance of quantum devices provided by D-Wave

(hybrid work�ow) and the classical solver Gurobi (purely classical work�ow) on

single-column problems. Our goal is to understand if there are indications of

quantum advantage or conditions in which such quantum advantage could be

reached earlier, for the set of problems considered in this work. The analysis is

conducted at varying problem sizes, varying the value of k from 10 to 70, using

the average gap de�ned in Eq.4.2 as an evaluation metric. For each problem

size k, we establish a maximum allowed wall time for the AQCs, which depends

on the average time required by Gurobi to solve problems of the same size.

The computational time needed by the classical solver serves as an indicator

of problem complexity at each size. This speci�c methodology enables us to

employ the average gap obtained by AQCs as a metric to evaluate the quantum

solver's ability to match classical capabilities.

We compared the solvers on a total of 250 single-column problems coming

from 5 di�erent initializations of matrix V and H (50 problems per initializa-

tion). We used the optimal hyperparameters and per-solver optimal Ichain and

tann found previously. On average, Gurobi required 0.09±0.02 to solve problems

at k = 10, and 0.23± 0.12 to solve those at k = 70.

Figures 4.7a-c show the results obtained for the di�erent solvers and di�erent

maximum wall times. For each size, when mult= n it means that the quantum

solver had a runtime n times longer the average time required by the classical

solver to �nd the optimal solution at that problem size. Figures 4.7d-f present

the same data but grouped with respect to the mult value so that it is easier to

compare the performances of the solvers. Violin plots in Figs.4.7g-h show the

distribution of the gaps obtained by sampling at di�erent k values using the

three D-Wave devices.

Figures 4.7a-f highlight a monotonic increase. Given that we already cor-

rected the runtime according to the problem complexity, this means that the

quantum solvers performance is degrading as k increases, if compared to the

classical solver.

A performance boost is to be expected at the speci�c k value where the

tuning procedure has taken place. We performed the optimal parameter search

at k = 50 for Adv1, while 2kQ and Adv2 have been tuned at k = 30. 2kQ and

Adv1 at mult= 0.1 do indeed show a swift decrease in the average gap at k = 30
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Figure 4.6: Heatmaps showing the average gap and average number of bro-
ken samples for every combination of annealing time tann and chain strength
Ichain. From top to bottom: 2kQ, Adv1, Adv2. All devices were tested at
k = 30. The number of broken samples exhibit a transition-like behaviour

around the optimal value of Ichain for the lowest gap.
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and k = 50, respectively, but the change is not evident at any other multiplier,

nor in the Adv2 case. This behavior suggests that the parameter tuning pro-

cedure is boosting performances also at di�erent problem sizes, suggesting that

the optimal parameters found possess good transferability.

In addition to the previous evaluations based on the average optimal gap

obtained on multiple problems, the violin plots in Figs.4.7g-h allow us to com-

pare the di�erent solvers with respect to the distribution of all samples. In

Figure 4.7g we can appreciate how, for k ≥ 40, 2kQ tends to produce samples

with a much higher gap if compared to Adv1. The impact of this behavior is

con�rmed by Figs.4.7d-f, where the average gap attained by 2kQ rapidly grows

for k ≥ 45, while Adv1 and Adv2 are less a�ected. This detrimental e�ect is

probably due to the di�erent chain lengths required to embed problems on the

three solvers (see Table 4.1). At k = 40 the average length of the chains of

the 2kQ embedding rises above 12 qubits, to reach almost 16 qubits at k = 50.

On the other hand, Adv1 and Adv2 are much closer to each other, reaching

5.94 and 5.04 average length, respectively, at k = 50, which results in similar

distributions in �gure 4.7h.

Reconstruction error after the iterative process

After having analyzed the quantum hardware performance in solving single-

column QUBO problems, we focused on analyzing the performances in solving

the full interactive process that constitutes the FE NBMF-based algorithm.

To this end, we compared the fully classical and hybrid quantum-classical FE

work�ows to extract k = 50 features from a dataset with m = 500 images. For

the hybrid work�ow, we used Adv1 with 2000 samples per each single-column

find_H problem, setting the optimal parameters Ichain = 2.4, tann = 25.

We performed runs with nepochs = 5 iterations for both D-Wave and Gurobi,

which led to a decrease in the reconstruction error ||V −WH||F , as shown in

Figure 4.8 d. The Figure also shows that the findH step in the hybrid work�ow

increases the reconstruction error achieved in the same epoch during the findW

step. This means that, given theW matrix found at a certain iteration, D-Wave

is �nding an updated H matrix that is worse than the previous one. This is

compensated at each new epoch by the findW step (Eq.C.1 in the Appendix),

yielding a reduction of the reconstruction error during the overall process. In

absolute values the purely classical work�ow is observed to outperform the

hybrid one.
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Figure 4.7: Performance analysis of the Advantage 4.1 (Adv1), the Ad-
vantage2_1.1 prototype (Adv2), and the 2000Q (2kQ) quantum computers.
Plots a → f display the average gap from the exact solution as a function of
the problem size k. Each data point is estimated by averaging the best gap
obtained by the selected D-Wave QPU on 250 distinct single-column prob-
lems. The shaded area represents the standard deviation. The runs were
executed using the tuned optimal parameters for each solver. The maximum
wall time allowed for each D-Wave run is a multiple of the average time that
Gurobi required to solve the same instance of the problem. Plots g and h

compare the distribution of samples produced by the three D-Wave solvers.
For every k, 10,000 samples were uniformly extracted from the whole col-
lection of samples obtained from the previous runs on the 250 single-column
problems. The samples produced by 2kQ display a distribution peaked to-
wards higher gaps for k ≥ 40, while samples produced by Adv1 and Adv2

display broader distributions.
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Figure 4.8: NBMF algorithm Work�ow on AQC (D-Wave) and Gurobi. a
In the lower-left panel are reported some samples of the

√
n ×
√
n satellite

images of aircrafts. The m images are �attened and stacked to form the
n ×m matrix V . b The optimization strategy is based on an iterative up-
dating of the continuous values matrix W (always on Gurobi) and the binary
matrix H (on D-Wave or Gurobi). c The optimization step to update H is
embedded on the Pegasus, Chimera, and Zephyr graphs of the Adv1, 2kQ,
Adv2 devices, respectively. d The reconstruction error ||V −WH||F , in log-
arithmic scale, after find_W and after find_H is shown at each epoch for the
quantum-classical work�ow and the full-classical one. e-f Reconstruction of
a sampled image at the epoch 1, 3, and 5 respect the original image (series
of images above), the images on the left side are the reconstruction with the
quantum-classical work�ow and in the right side the reconstruction obtained
by the fully-classical work�ow. The series of images below, instead, contains
a sampled basis image, which is a column of W , at the epochs 1, 3, and 5.

Figures 4.8e-f show an example of dominant feature images (basis images

from matrix W ) obtained by running the quantum and classical NBMF work-

�ows. The corresponding basis images, shown at di�erent epochs, resemble
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some sort of spherical harmonics. As expected from the reconstruction score,

we can visually verify that from epoch 3 to 5 the feature images are modi�ed

only slightly. The same �gures also display examples of image reconstructions

across the iteration process. As expected from the reconstruction score, at visual

inspection the fully classical work�ow provides a slightly sharper reconstructed

image.

The hybrid work�ow tends to combine more feature images to reconstruct

images in V . Indeed, 34.6% of the elements in the �nal matrix H are equal to 1,

as opposed to only 14.6% in the classical work�ow. Thus, the hybrid work�ow

produced a potentially more informative decomposition of the images from the

dataset into base features.

Summary of the obtained results

We analyzed the capabilities of AQCs on a task with applications in machine

learning, namely performing feature extraction (FE) from a dataset of low-

resolution satellite images of airplanes, exploiting an approach based on Non-

negative Binary Matrix Factorization (NBMF). The NBMF is implemented

through a hybrid iterative algorithm where the portion of the work�ow cor-

responding to the optimization of the binary latent H matrix is o�oaded to

AQCs. This methodology can be used to perform FE on large datasets thanks

to the possibility of decomposing the original latent H matrix optimization

problem into a set of independent problems corresponding to single columns of

the H matrix.

We considered three generations of AQCs provided by the D-Wave company,

namely the legacy device 2000Q, Advantage 4.1, and the most recent prototype

Advantage2_1.1. First, we devoted consistent e�orts to �ne-tuning the algo-

rithm hyperparameters and the AQCs parameters. We noted an interesting

behaviour, namely an abrupt increase in the number of samples containing bro-

ken chains below a speci�c value of Ichain. This transition-like e�ect happens in

the correspondence of the optimal value for Ichain, which means the value that

correspond to the lowest gap.

Using the optimal AQC parameters, we were able to reduce the average

number of broken chains by one order of magnitude while halving the expected

average gap from the optimal solution (results obtained on Advantage 4.1).

Hence, we compared the performance of three hybrid quantum-classical work-

�ows based on the three AQCs against that of a purely classical work�ow based
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on the state-of-the-art Gurobi classical solver running on classical digital hard-

ware. As an evaluation metric, we used the solution gap from the global op-

timum obtained at �xed runtimes and averaged over a selection of problem

instances.

We observed all quantum solvers to provide a similar qualitative behavior in

terms of gap performances as a function of the problem size, i.e. k. In partic-

ular, we observed the average gap to the exact solution to increase along with

k. We can nonetheless appreciate a slight but statistically signi�cant quanti-

tative di�erence in the performance of the three AQCs, with Adv2 achieving

the lowest gap values, Adv1 following close, and 2kQ falling short, particularly

on larger problem sizes. This e�ect is more evident at shorter runtimes. The

fast degrading of the performance of 2kQ for k > 40 is probably correlated

with the excessive chain length required to embed such problems on the sparse

Chimera topology, which also notably a�ects the distribution of samples with

respect to the attained gap. These observations suggest an incremental overall

performance with the more recent solver generations, which seems to correlate

mainly to the average chain length found by the embedding procedure. Such

conclusion supports the idea, common in literature, that the topology of the

available hardware currently represents the main bottleneck for adiabatic quan-

tum computation [150], [279], [376].

During the iterative process, the optimization of H at �xed W made with

D-Wave at a relatively large k increases the reconstruction error rather than

reducing it as in the case of utilization of a classical solver. For small k, however,

the average gap on single instances of the optimization problem remains close

to zero for all quantum solvers. In particular, we observed that both Adv1 and

Adv2 are capable of solving all the submitted instances at k = 10 with 0% gap

(i.e. exactly) within the average time required by the Gurobi solver (mult=

1). This result suggests that recent generations of AQCs have �nally reached

competitive performances for industrially-relevant, small-sized problems.

At least for the set of problems considered here, the classical solvers provide

in general still the reference tools. There are conditions, however, where the

AQCs start to provide alternative solutions with comparable performances. In

this perspective, the �rst applications where AQCs are expected to become com-

petitive with classical counterparts are those where limited and short running

times are required (e.g. real-time or near-real-time applications).
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Figure 4.9: From the problem to the computing hardware. Three prob-
lems are formulated in ILP and QUBO forms and solved with three di�erent
solvers: i) the Gurobi optimization software based on branch and bound
and other heuristics; ii) a Virtual Memcomputing Machine exploiting self-
organizing logic; and iii) a Quantum Annealer. These solvers are physically
implemented on hardware based on the Von-Neumann architecture or on an
adiabatic quantum computer based on superconducting qubits. Memcom-
puting machines could be implemented on self-organizing memristor-based

circuits.

4.1.2 Benchmarking AQC, Memcomputing Machines, and

Gurobi solver on hard optimization problems

In this experiment we assess a D-Wave System Advantage 4.1 AQC (DWA from

now on) and a Virtual Memcomputing Machine (VMM) and compare them to a

classical solver (see Figure 4.9). DWA and VMM can solve equivalent problems

and they represent a quantum (not gate-based) and classical (not quantum)

approach, respectively. As we know, DWA solves Quadratic Unconstrained

Binary Optimization problems (QUBO). Instead, VMM solves Integer Linear

Programming problems (ILP) by mapping them to a physical circuit, with the

physical circuit evolution emulated via a software2. The two approaches can
2See Section 2.5.2.
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be directly compared with an established baseline, namely the Gurobi suite of

optimization methods [474].

We benchmark these approaches on three di�cult and well-known combi-

natorial problems of broad interest that can be expressed in ILP and QUBO for-

mat: the Semiprime Factorization problem (FP), the Hard-Assignment Gromov-

Wasserstein problem (GWP), and the Capacitated Helicopter Routing Problem

(CHRP). The security of large part of the public key cryptography (RSA[264])

is based upon the assumed intractability of FP. GWP is a particularly hard

example of the optimal transport theory [475], [476] and is an instance of the

well-known Quadratic Assignment Problem [477], a fundamental combinatorial

problem. CHRP is an industrial optimization problem concerning the route

scheduling of helicopters.

We also compare the baseline performance of VMM and DWA to their per-

formance with enhanced parameters. The baseline imply using the two solvers

with default setting and parameters, as proposed by the respective vendors. The

enhanced parameters are instead obtained after a parameter tuning procedure

conducted at a speci�c size of each tested problem, with the aim of reducing

MFST as much as possible. The enhanced parameters for each problem are

then used at each problem size for that solver. We show how the scalability of

the problem changes after such procedure on both solvers.

For an accurate comparison, we introduce the concept of Mean First Solution

Time (MFST)3 which is the expected waiting time to obtain a �rst solution

of the problem; we also give a �nite sample estimator of this quantity. It is

thus directly proportional to the expected total amount of monetary budget

required to solve the problem. We also show that the performances of the

solvers strongly depend on the selected set of internal parameters. This is the

�rst time AQCs and Memcomputing machines are compared to each other on

such a comprehensive set of industrially and mathematically relevant problems,

and it's one of the �rst times that the dependence of their performances on

internal parameters is analyzed in detail.

In the following sections, results regarding scalability and parameter depen-

dency of both unconventional solvers are presented for each one of the three

problems.
3See Section 2.6.1.
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Scalability assessment for the baseline solvers

We now discuss the scalability of the analyzed platforms while using their de-

fault parameters (baseline) in terms of Mean First Solution Time (MFST)4 for

further details). This metric allows one to precisely capture the expected wait-

ing time to obtain the �rst solution, or in other words the expected required

computing time in an operative scenario. This is achieved by taking into ac-

count explicitly failed runs (no solutions found in the maximum allowed wall

time). The timeout for D-Wave and VMM were set based on the available

computing budget for each machine. D-Wave was run for dozens of seconds for

each problem instance coherently with the granted computational time. The

VMM was executed for a few hours while running the GPU backend, and for

several days when utilizing the CPU backend (see each problem section for pre-

cise timeout values). Gurobi was granted a timeout of 72 hours (maximum wall

time of the IIT HPC infrastructure). For every problem, Gurobi was run on a

cluster node with 32 cores (2 physical sockets).

To evaluate the scalability and remove possible biases, we de�ne n instances

of a problem given a prescribed problem size N . We estimate the MFST of each

instance and report the average MFSTs between all the instances at the same

problem size, for each tested problem size.

Semiprime factorization

We de�ned n = 5 di�erent problem instances (�ve di�erent p, q pairs). To

run the benchmark on Gurobi, we randomized 5 times the seed for each problem

instance, for a total of 25 runs per problem size. In Figure 4.10a, a plot with

the average MFSTs of the performed runs is shown. Each point is the average

MFST of the problem instances belonging to the same bit size N .

The average MFST for VMM was estimated based on the same 5 instances

and 120 di�erent seeds for each instance. This setting was required to better

estimate the solution probability. We used the standard CPU backend of the

Memcomputing Software As a Service platform (Saas). For each run, VMM

simulated 2 replicas of the circuit corresponding to FP, with a maximum timeout

of 10 hours. To solve the problem, VMM usually runs a Monte Carlo algorithm

to explore the space of the circuit parameters before simulating it. For this

speci�c problem, no parameter space exploration was performed and the number

of Markov chains was set to 120 to perform the calculation of the 120 di�erent

seeds in parallel on 60 cores. Hence, all the runs correspond to the same single

circuit topology and parameter set.
4See Section 2.6.1.
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We analyzed the scaling with respect to the increasing problem size, namely

the bit size in the interval [14, 64]. Gurobi was very e�ective in relative terms

(see MFST in Figure 4.10), since it performed a quick presolve of about half

of the instances under consideration. Gurobi's ability to reduce the number of

variables and constraints of the optimization problem depends on the instance

and thus on the semiprime to be factorized. For N = 64, Gurobi performed a

presolve calculation e�ectively enough to reduce solution time by four orders of

magnitude compared to the problems where this simpli�cation was not possible.

At N = 68, the problems that Gurobi could not simplify exceeded the wall time

of 72 hours of computation. For this reason, problems with a bit size greater

than 64 were not considered. In the range N = 37 to N = 64, the MFST for

Gurobi scales with a slope of 16.91± 0.92 (see Figure 4.10b).

All instances between N = 15 and N = 42 were solved at least once by

VMM. The linear �t of the MFSTs in the range between 37 and 42 bits resulted

in a scaling with a slope of 14.64 ± 0.62. Therefore, VMM obtained a slightly

better slope with respect to Gurobi, but the overall execution time was still

superior, and VMM could not solve all instances for larger bit sizes.

We also used D-Wave devices to solve FP in the interval between 14 and

17 bits. The number of device queries (which can be considered as the number

of di�erent seeds in a quantum device) was 104 up to N = 14 and then was

gradually increased up to 8 × 104 at N = 17 (∼ 12 seconds of computational

time). The number of runs was doubled each time that N increased by a unit.

We found no signi�cant di�erences in the slope between D-Wave Advantage

and the D-Wave 2000Q, but D-Wave Advantage proved slightly faster, probably

because its greater connectivity allows for shorter physical qubit chains [35].

Overall, we found that D-Wave devices could only tackle small instances of

the problems, whereas VMM and Gurobi could deal with signi�cantly higher

bit sizes. Gurobi was the fastest approach overall.

Hard-assignment Gromov-Wasserstein problem

GWP's size and complexity depends on the variable N i.e. the number of

points to match between the two sets5. To run our benchmark, we de�ned 5

problem instances for each problem size. For each instance, multiple runs were

performed with di�erent random seeds for the solvers. Results are reported

in Figure 4.10b. For Gurobi, each instance was solved 5 times with di�erent

random seeds, for a total of 25 runs for each problem size. For VMM, each

instance was solved 5 times with di�erent random seeds for the solver, for a total

of 25 runs for each problem size, as for Gurobi. Contrary to FP and CHRP,
5See Section A.



186 Chapter 4. Experimental results

Figure 4.10: MFST plots for all the tested computing platforms, in log-log
scale. Every problem size corresponds to 5 di�erent problem instances using
di�erent seeds. Whenever a problem size on a given machine includes un-
solved instances, a smaller dot is used and the number of solved instances is
shown. The error bars represent the standard deviation (see Methods). We
report both baseline and parameter-optimized scaling results. In the scaling
section, we discuss these results. a: FP MFST with respect to the num-
ber of bits of the semiprime. b: GWP MFST with respect to the number
of points. The red plus mark is the point N = 17 for Gurobi, which was
obtained by solving each instance only once, due to time constraints. c:
CHRP MFST with respect to the number of workers. d: Zoom of the GWP
plot showing the slopes for Gurobi and VMM solvers for the biggest prob-
lems. The VMM with enhanced settings achieved the best performances. The
highlighted rounded slope values have the following values and standard de-
viations: Gurobi 16.89±0.83; VMM 5.89±0.50; VMM baseline 10.93±0.98.
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we found an advantage in using the GPU backend of the Memcomputing Saas

solver. We thus used GPUs to solve GWP on VMM, setting the timeout for

each instance to Tmax = 1900 seconds. For D-Wave Advantage, every instance

was sampled with thousands of annealing cycles, going from 50, 000 samples for

N = 3, 4, 5 up to 390, 000 samples when N = 7, 8. We report that 390, 000

samples resulted in ∼ 60 seconds of access time for D-Wave Advantage.

Gurobi solved all the runs for each instance of each problem size up to

N = 16 points. At N = 17, the most computationally intensive instances

required a wall time exceeding 72 hours, so we solved every instance only once

(a single seed). The corresponding point is indicated with a ′+′ marker on the

plot. The slope for Gurobi was 16.89± 0.83.

Figure 4.10b shows that the VMM achieves a better overall scaling than

Gurobi. The slope of the �t in log-log scale is 5.89± 0.50, which is signi�cantly

better than the competitors. At N = 12 and N = 13, Gurobi and VMM require

a similar time to solve the problem, but the wall times quickly diverge for bigger

problem sizes. At N = 16, the VMM requires an average MFST of 409± 107s

(∼ 7 minutes) compared to the 9560 ± 3730s required by Gurobi, i.e. VMM

is ∼ 23 times faster than Gurobi. VMM was able to tackle problems almost

up to the same size as Gurobi, but did not solve every instance of the hardest

problem size, N = 17.

D-Wave could only tackle small instances (N ≤ 8), thus it is hard to make a

sound comparison with other technologies. AtN = 8, D-Wave Advantage solved

only one of the �ve instances, �nding the correct solution for this instance only

once over 390, 000 trials. The resulting point (the rightmost in the D-Wave

plot) is thus of limited statistical signi�cance. Deeper insights will be achieved

when the D-Wave hardware is advanced enough to tackle bigger instances of

this problem.

Overall, VMM was slightly less reliable than Gurobi in the biggest problem

sizes, but showed the best scaling behaviour.

Capacitated Helicopter Routing Problem

We �xed the number of rigs to 25 and varied the number of workers (w)

and the pick-up and drop-o� locations generated at random (see Appendix B).

When converted into QUBO and embedded into chimera topology, the problem

becomes too large to �t in D-Wave, even for a few passengers, thus the device

was not included in the comparison plot.

Summary results are presented in Figure 4.10c. We considered �ve instances

for each problem size, and every instance was submitted to Gurobi and VMM

with 5 di�erent seeds, for a total of 25 submitted problems for every worker size.
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We used the GPU backend of the Memcomputing Saas, setting the timeout for

each instance to 5 hours. The slopes of the two solvers in log-log scale were very

similar for the problem sizes considered (5.2 for Gurobi versus 5.1 for VMM).

In contrast to GWP, the CHRP did not show an advantage for VMM in scaling

terms. Additionally, while Gurobi solved all instances, VMM was slightly less

reliable beacause it could not solve all instances of the biggest size (w = 24).

Overall, the results of the three benchmark problems show that D-Wave's

current hardware can solve only very small instances. VMM managed the

biggest problems well in most cases. VMM's scaling was similar to Gurobi,

but was superior for one problem.

We note that, for GWP, VMM used GPU hardware to achieve signi�cant

speed-ups. In contrast, Gurobi, and the branch-and-bound [478] method in gen-

eral, is not particularly amenable to a GPU implementation. This is important

because the ability to exploit GPU architectures may be critical to improving

the overall computing time.

Parameter tuning procedure

Here, we provide details of the parameter tuning procedures for each platform.

Parameter tuning procedure for VMM � The VMM User Interface

(UI) provides access to two main classes of tunable parameters. The �rst class

sets the physical features of the circuit. The second class sets the simulation

settings. The parameters that set the physical features, and hence the internal

dynamics of the VMM, are 19. They represent electronic element characteristics

like resistances, capacitances, and transistor model parameters. On the other

hand, the simulation is performed according to several simulation parameters

used to set the control unit of the VMM [479]. Examples are the total timeout

for a job, the amount of virtual time to simulate, and limits for the wall time.

The VMM UI includes a parallel tempering (replica exchange Markov Chain

Monte Carlo) to test and optimize multiple circuit physical parameters. This

is called the Dynamic Parameter Search (DPS) mode for the VMM. It runs

multiple circuit realizations using di�erent physical parameters. Each of these

realizations are a Markov chain for the parallel tempering. Each Markov chain

changes the physical parameters, simulates the circuit, returns a score based on

the VMM performance for that parameter set, and accepts or rejects the change

following the Metropolis�Hastings algorithms with adaptive temperatures. The

user can set the number of Markov chains, the number of iterations, the standard

deviation, and the number of parallel processes. This latter hyper-parameter

allows one to run multiple Markov chains in parallel. The hardware used were
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virtual machines running on Google Cloud (Intel Xeon 60 virtual core processor

for the CPU VMs and NVIDIA 8 V100 GPUs for the GPU VMs). The number

of parallel processes were therefore always set to equal or double the virtual

machine cores or number of physical GPUs, depending on the type of virtual

machine used. During the tests, it was clear that the physical parameter tuning

would heavily impact the VMM performance.

In our tests, six distinct rounds of DPS with 1000 iterations each were per-

formed for the benchmark problems. Based on the problem-solving perfor-

mance, the best physical parameter sets from each DPS round were selected

and used to initialize the chains for the next round. In each round, we checked

if the boundaries for the physical parameters needed to be enlarged or shrank

based on the score distribution. The �nal result was a collection of sets of

physical parameters. Multiple sets can be useful because the user can then

run multiple realizations of VMM, increasing the convergence and so obtaining

better results.

Once good samples of physical parameters were found for one problem in-

stance, we used these parameters to run the other problems of the same type but

di�erent sizes and instances. We did this using the Dynamic Solution Search

(DSS) mode. However, once we had found the physical parameters, a few extra

parameters for the VMM control unit were tuned. To describe these parame-

ters, it is useful to brie�y detail how the VMM control unit works. The control

unit sets up the VMM, assembling and connecting the self-organizing gates to

embed the problem. It sets the virtual time, checks the limit of wall time, and

initializes the circuit components (e.g. capacitors, transitors). This initializa-

tion is set at random by default, but the user can feed a custom initialization

(warm start) or use the rounding of the solution of the ILP relaxation. For our

tests, we used random initialization. Moreover, the control unit can also restart

the circuit, using a perturbation of the best solution found in the previous sim-

ulation. Therefore the user can set up the number of iterations where a restart

will be operated, how to perturb the best assignment to use as an initial condi-

tion for the restart (the "switch fraction" parameter), the virtual time of each

iteration, the limit to the wall time, and the total time out. Other advanced

parameters for the control unit can be set, e.g. a target for objective function

and the number or replicas of the circuit. Each circuit actually comprises sev-

eral coupled interconnected replicas of itself to enhance the convergence. In our

tests, we used 2 replicas.

Parameter tuning procedure for DWA We tuned the following param-

eters for the D-Wave devices:
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� tann: the annealing time, namely the time duration of a single annealing

cycle.

� λ: the regularization term that accounts for the penalty on the constraints.

For the factorization problem, this parameter was obtained from previous

literature [275].

� c = Jchain/Qmax: the ratio between the intensity of the chains coupling,

Jchain, and Qmax = maxi,j{ai, bi,j}, where ai and bi,j are the biases and the

couplings, respectively, of the QUBO problem Q submitted to the D-Wave

device.

Note that in the experiment described in Section 4.1.1 we optimized the chain

strength by tuning a di�erent parameter that multiplies a quadratic average of

the problem weights (Eq. 4.1), which is also the default approach implemented

in Ocean SDK. Here, we optimize the simple ratio between the chain strength

and the maximum among weights and biases of the problem. This particular

approach can be expected to be less reliable, since the considered ratio retains

less information regarding the problem structure, if compared to an average

of the problem weights. Nonetheless, as we will show, in this experiment we

obtained great improvements in the MFST for DWA, which are not matched

by the improvements seen in the experiment presented in Section 4.1.1.

The parameter tuning procedure involves running 10, 000 annealing cycles

for several combinations of the parameters and choosing the best one in terms

of TTS (Time To Solution). For both the problems where D-Wave devices were

used (semiprime factorization and hard�assignment Gromov�Wasserstein), we

ran the parameter tuning on the biggest problem size.

For FP, the tuning procedure involved c and tann, at the point N = 14.

The penalty factor λ was �xed to 2, as in [274], [275]. We tested a total of 32

di�erent combinations for c and tann, which can be found in table (4.2).

Parameter Values tested

c 0.330, 0.402, 0.490, 0.598,
0.729, 0.888, 1.083, 1.320

tann 1,2,4,8

Table 4.2: Set of tested values for D-Wave and semiprime fac-
torization

This strategy was used for both the available devices D-Wave 2000Q and D-

Wave Advantage. The best value found was c = 0.598 for D-Wave 2000Q and
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c = 0.490 for D-Wave Advantage. Finally, the best annealing times found were

tann = 8 for D-Wave Advantage and tann = 1 for D-Wave 2000Q (additional

annealing times, namely tann = 16, 32, 64, were tested, keeping the c value �xed,

but without any visible improvement).

For GWP, we used the N = 6 point to tune parameters. We tested a total

of 64 di�erent combinations for c and λ, whose values are reported in table

(4.3). Here, we additionally tuned λ to limit the total needed computing time

to stratify the parameter selection. That is, �rst we selected c and λ and then

we optimized the annealing time. Results are shown in �gure 4.11, where the

Parameter Values tested

c 0.330, 0.402, 0.490, 0.598,
0.729, 0.888, 1.083, 1.320

λ 4,6.5,10,16,25.5,40,64,101

Table 4.3: Set of tested values for D-Wave and Gromov-
Wasserstein

color scale encodes the percentage probability that the solver found the global

optimum. Figure 4.12 correspondingly shows the percentage of samples in which

the constraints are satis�ed (i.e. the solution corresponds to a correct permu-

tation matrix). We observe that a high probability of satisfying the constraints

does not always correspond to a high probability of �nding the global optimum,

although the two quantities are partially correlated. Indeed, according to �g-

ure 4.12, one should choose λ = 25.5 or λ = 40, while in �gure 4.11 λ = 16

seems a much more robust choice. Since the aim is to fully solve the problem,

we chose λ = 16. The value of c was easier to pick since c = 0.598 produces

consistently better results in both �gures 4.11 and 4.12. Keeping λ = 16 and

c = 0.598 �xed, we performed 10, 000 annealing cycles for �ve di�erent problems

with N = 6, using seven di�erent annealing times. Figure 4.13 represents the

TTS versus tann. Increasing tann steadily reduces the TTS, in contrast to the

semiprime factorization case. This dependence of TTS vs tann is in accordance

with the adiabatic theorem, which predicts that increasing the annealing time

will produce a better solution [116], [117]. Nonetheless, lower annealing times

are useful for decoupling the quantum state from the outer environment. Indeed,

for �ux qubits (the technology used in D-Wave), decoherence times are usually

measured in dozens [211] or hundreds of nanoseconds [198]. Such times are

much lower than the fastest annealing time available on state-of-the-art Adia-

batic Quantum Computers (AQC) (0.5 µs on D-Wave Advantage). Nonetheless,
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Figure 4.11: Test performed on the D-Wave machine for N = 6 for GWP.
The color of each box encodes the percentage probability that the global

optimum is found.

some authors have reported that AQCs appear to be surprisingly resilient to

noise and imperfections and that they can show evidence of quantum behavior

for annealing times in the order of microseconds [91], [106], [213]. Here, the

annealing process seemed to bene�t from longer annealing times, which could

mean that the noise had a limited impact, or that the �uctuations induced by

the outer noise boosted the system's ability to reach the global minimum [473].

On the other hand, in the semiprime factorization case, longer annealing times

did not improve performances.

Parameters dependency

D-Wave and VMM allow users to tune several parameters that directly a�ect

the dynamic of the physical and simulated device, respectively. As discussed in

Chapter 3, tuning such parameters can result in a sharp performance increase.

For each machine, we identi�ed a single problem size on which to execute a tun-

ing protocol. Those optimal parameters were then used for all the other problem

sizes, improving performances. Below, we systematically compare the scaling

results using the default (baseline) parameters against their tuned version.
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Figure 4.12: Test performed on the D-Wave machine for N = 6 for GWP.
The color of each box encodes the percentage probability that the matrix

used in GWP is a valid permutation matrix.

Semiprime factorization � For VMM, we consideredN = 29 as the tuning

point. In Figure 4.10a, a comparison between the results before and after the

parameter tuning is shown. Instances N ∈ [30, 42] were not solved using default

parameters. After the parameter tuning, all the instances up to N = 42 were

solved in less than ∼ 4 × 103s. For D-Wave, the size N = 14 was used as

the tuning point. The tuned parameters didn't result in an improved solution

probability.

Hard-assignment Gromov-Wasserstein problem � In the GWP, VMM

without any parameter tuning solved only one of the �ve instances for N = 15,

with no instances solved for N = 16 and N = 17 (see Figure 4.10b). The

parameter tuning was performed on one instance at N = 16, enabling VMM

to solve all other instances for N = 16 and all but one instance for N = 17.

The tuning process also sensibly reduced the computing time for all N < 16

cases. This means that for GWP the parameter tuning of VMM shows good

transferability: spending computational time to get the right parameters is

an e�ort that systematically boosts the solver's ability to tackle new GWP

instances, even at di�erent problem sizes. The most remarkable e�ect was at

N = 12, where the MFST of VMM was reduced by a factor of 16. The e�ect for
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Figure 4.13: Test performed on the D-Wave machine for N = 6, c = 0.598,
λ = 16 for GWP. For each annealing time (x-axis), we considered 5 di�erent
problems of that size and we performed 10.000 annealing cycles for each. The

values on the y-axis represent the average TTS.

D-Wave Advantage was even more remarkable: the tuning procedure at N = 6

reduced the MFST by more than one order of magnitude at all problem sizes.

The highest speed-up (∼ 78 times faster) was found at N = 3.

Capacitated Helicopter Routing Problem � Parameter tuning allowed

VMM to reduce all its MFSTs, peaking to a tenfold reduction for p = 10 (see

Figure 4.10c). While the baseline VMM solved all instances up to p = 10,

VMM with tuned parameters solved all instances up to p = 22. The tuned

VMM could tackle problems with ∼ 3.5 times the number of nonzero elements

in the ILP problem matrix, compared to the baseline. The e�cacy of the solver

was therefore greatly increased, showing good transferability of the optimal

parameters.

Overall, we conclude that the tested parameter tuning procedures are funda-

mental for VMM and D-Wave solvers. For some instances of GWP and CHRP,

using optimal parameters reduced by more than one order of magnitude the

required time to �nd the global minimum. The ability to obtain an advan-

tage using new computational approaches such as VMM and D-Wave heavily

depends on the development of better and automated parameter tuning proce-

dures.
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4.2 AQCs as samplers

In this Section we present two research works where AQCs are exploited for

their ability to e�ciently sample from a Boltzmann distribution de�ned over

binary variables6. In particular, both works focus on using the samples obtained

via Quantum Annealing to train a Boltzmann Machine7 (BM). The �rst work

introduces a reverse annealing approach to train a Restricted BM, and has

resulted in two publications, one as a full article [4] and one as a proceeding

[3]. The second work implements a fully-connected, AQC-trained BM, and

shows that a limited quantum advantage can already be achieved even against

a classical rival implemented on GPU. The relative article is currently under

review [24], and a second contribution is going to be published as a proceeding

of the IEEE QCE2023 conference [23].

4.2.1 Comparing forward and reverse annealing in RBM

training

This Section presents the results and design of the experiment we published in

[4] and [3]. We studied in detail how a RBM is implemented using AQCs, com-

paring performance obtained using the Forward Quantum Annealing (FQA)

schedule, which is the usual annealing schedule, to those obtained using our

novel approach based on Reverse Quantum Annealing (RQA). We also ana-

lyzed the di�erences between the distributions produced by FQA, RQA, and by

the classical approach, detailing the shape of the �nal probability distributions

produced by each method.

Introduction

To assess the performance of the training process we trained a RBM with 16

visible units and 16 hidden units to reconstruct the Bars and Stripes dataset.

We applied embedding techniques to prepare a graph of virtual qubits arranged

to implement all the weights present in a classical RBM. The performance is

evaluated in terms of the percentage of reconstructed pixels and the average

Log�Likelihood of the dataset. All the quantum computations have been per-

formed on a D�Wave 2000Q System processor.

The choice of 16 visible units is somewhat limited if compared to recent

implementations that made use of up to 64 visible units [325], [480]. Nonethe-

less the chosen structure allows to test embedding techniques with chains of
6See Section 2.3.
7See Section 2.4.
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moderate length (four bond qubits), and it allows direct comparison with the

previous relevant work from Benedetti et al. [221], where a network charac-

terized by sparse connections between the visible and the hidden layers was

implemented.

The results we are presenting in this Section show that embedded topologies

do not sensibly interfere with the capacity of the AQC to produce correctly dis-

tributed samples. The use of embedding techniques thus allows faster learning

if compared to the sparse case.

According to our results, the samples produced by the AQC while using

a reverse annealing schedule are closer to the con�gurations belonging to the

training dataset than that produced by the more conventional forward anneal-

ing. As a consequence, the learning process exhibits a novel semantic behavior

that brings pros and cons. In our case, the RBM trained with the use of re-

verse annealing achieves an overall reconstruction score that is comparable to

the usual quantum algorithm for AQCs, which means we don't detect a statisti-

cally signi�cant improvement in performances when using the reverse schedule.

Nonetheless, the reverse-annealing-trained RBM reproduces elements from the

training set with a probability that is double that of the forward annealing

approach, and also higher than that of the classical method.

Dataset and parameters of the learning process

The training involves a dataset of images composed of M ×M pixels, known

as Bars and Stripes dataset (BAS), de�ned in Ref.[481]. The images consist

of either black or white stripes or columns. Figure 4.18 c shows some sample

images taken from the 4 × 4 version of such dataset. Each training image can

be mapped to aM2�dimensional binary vector r, where each term in the vector

corresponds to a visible unit of the RBM.

Figure 4.14 b shows the structure of the chosen RBM.

We trained �ve times the RBM for 1100 epochs using quantum forward an-

nealing. Each instance was initialized with random weights and biases extracted

from the same probability distribution. The weight initialization spread σ is the

value of the standard deviation of the Gaussian used for randomly generate the

weights and the biases. The weight initialization range IW de�nes the sym-

metric range centered in zero truncating the Gaussian from which the weights

and the biases are sampled. The amplitude of the interval IW is bound below

by the signal to noise ratio, due to both the uncertainty in the values of the

currents and the random �uctuations of the chip. It is also bound above by the

maximum values of the current. Among the amplitudes tested, IW = [−3, 3]
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Figure 4.14: a: Schematic overview of the methods to train a Restricted
Boltzmann Machine. The green and yellow boxes show which part of the
gradient is estimated by each step of the algorithm. Steps that require only
classical computations are circled in orange. During the data states phase,
the elements of the dataset are loaded in the visible units (red), and the hid-
den units (green) are updated accordingly. The result allows the estimation
of the positive statistics. Next, one step among Gibbs, forward annealing,
and reverse annealing sampling is chosen to estimate the negative statistics.
Forward annealing is the only one that does not depend on states loaded from
the dataset. b: Structure of the Restricted Boltzmann Machine used in this
work, with 16 visible units fully connected to 16 hidden units. See Section

2.4.1 to learn more regarding RBM training.
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was su�ciently large to overcome weights and su�ciently small to not reach

the maximum values allowed for the currents. Figure 4.19 presents the learning

curve for a RBM initialized with smaller weights. The result shows that, if the

aforementioned boundaries are respected, the initial distribution of the weights

could have a reduced impact on the learning speed.

For each run we set α = 0.32. Figure 4.18 b shows the results obtained

by averaging over the �ve runs, in terms of the average Log�Likelihood of the

dataset Lav, de�ned as in Section 2.4.1. The most expensive step in computing

Lav is obtaining the explicit expression of the partition function Z(Te�). The

number of units in the RBM (32 total) is su�ciently low so that we could

calculate Lav without resorting to approximations. We therefore used a classic

algorithm to scan through each possible con�guration of the units, performing

the summation required in the exact form of Lav.

We also trained �ve times the RBM for 1100 epochs using the classical

algorithm. The instances were initialized with the weights already used in the

forward annealing case. It means that for each quantum instance, there is a

classical instance that used the same weight initialization.

Weights and biases of the RBM were initialized by extracting random values

from a Gaussian distribution with µ = 0, σ = 2, truncated in [−3, 3]. The

learning rate was set to η = 0.15. In the forward annealing case, an annealing

time of 2µs was chosen. For the reverse annealing case, we set a reverse step

of 1µs, followed by 18µs of pause and �nally a last 1µs of forward annealing.

During the pause s(t) = 0.2.

For the classical case, training was performed with ng = 200. For the quan-

tum case, we performed 150 annealing cycles in each training epoch, both for the

forward and reverse annealing. Considering that each annealing cycle outputs

8 con�gurations, it sums up to 1200 con�gurations.

The chain strength was set to Jchain = 1, the maximum value allowed by

the device. Figure 4.15 shows a comparison between two values for Jchain we

tested. Varying the chain strength slightly a�ects the sampling temperature,

but it does not seem to dramatically impact the learning curve.

Experimental results for the forward annealing training

As one might expect, thanks to the full connectivity based on the embedding on

virtual qubits, our forward annealing approach obtains Log�Likelihood scores

sensibly better than sparse implementations [150], [221]. Contrary from Ref.

[221], where a 16×16 RBM is implemented with 80 connections between visible

and hidden units, our implementation realizes all 256 connections. Figure 4.16
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Figure 4.15: Comparison between two forward annealing learning processes
at di�erent coupling JC . The RBM considered is the complete one. Here
IW = [−2, 2]. The two-colored line corresponds to JC = −1 and α = 0.33.
Such value for α has been chosen among �ve tested so to maximize Lav at
epoch epoch 700. Five runs have been trained and averaged (violet) up to
epoch 700, then the second-best run (green) has been trained up to epoch
1500. The light blue line is obtained with JC = −0.5. The di�erent choice for
JC slightly a�ects the e�ective temperature of the distribution, so the best
value for the rescaling parameter was found to be α = 0.30. The learning of

a classical RBM (orange) is reported as reference.

shows the embedding we used to implement all connections, which required four

physical qubits for each unit. At epoch 1000, our forward annealing method

obtains a score of −5.00±0.08 which is better than the best forward-annealing-

based result [221], optimized step-by-step by a temperature estimation tool,

which reaches a score of −5.3 at iteration 5000. Even without using any Te�
estimation technique, the higher number of connections was su�cient to gain a

great advantage over the sparse implementation. For the sake of completeness,

the same sparse embedding of Ref. [221] has been tested at a �xed temper-

ature. The results are presented in Figure 4.17, where we can appreciate the

evident di�erence in performances between the sparse and complete network.

As pointed out in Ref. [150], the complexity of the topology of the AQC seems

to be a major bottleneck for the implementation of RBMs.
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Figure 4.16: Embedding of a complete RBM with 16 visible units and 16
hidden units on the graph of a D-Wave 2000Q System processor. Each circle
corresponds to a physical qubit. The lines represent active couplers between
qubits. Each gray coupler implements a weight of the RBM. Green and red
couplers are set to a strong negative value for the coupling, and they force
physical qubits to stay parallel to each other. Such couplings make groups of
four physical qubits act as a single, virtual qubit. Red qubits compose the
visible units of the RBM, while green qubits compose the hidden units.

Motivations for the reverse annealing approach

In [3], to introduce a semantic search emulating the initialization of the Gibbs

sampling of the classical case on a quantum adiabatic computer, we adopted

a novel approach based on a reverse annealing schedule (introduced in Section

3.1.2). The customary quantum annealing method allows a unique system ini-

tialization, corresponding to the equally�probable quantum superposition of all

the classical states. On the contrary, reverse annealing allows us to perform a

quantum search in the neighborhood of the con�guration set by the user as the

initial state. It then constitutes a possible way to emulate the initialization of

the Gibbs sampling in the classical case.

We thus modi�ed the usual quantum algorithm for the estimation of ⟨vihj⟩model,

which exploited forward annealing, to exploit a sampling procedure based on
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Figure 4.17: Comparison between sparse (violet) and complete (blue)
topology of the RBM for a forward annealing-based training. For the sparse
case, we adopted the same embedding of Ref. [221]. Initial weights and biases
are extracted from a normal distribution with σ = 2, IW = [−3, 3]. In the
sparse case, the best Lav was found for α = 0.13. For the complete case we
instead selected α = 0.32 (the embedding is reported in Figure 4.16). The
classical training of the complete (orange) and of the sparse (light orange)

models are shown for reference.

reverse annealing. The complete procedure is detailed in Appendix E.

Experimental results for the reverse annealing training

We trained twice the RBM for 1000 epochs using reverse annealing. The in-

stances were initialized with two weights set randomly chosen from the �ve

already used in the classical and forward annealing case. We chose α = 0.32 as

in the forward annealing case.

Figure 4.18 b shows the results in terms of the average Log�Likelihood of

the dataset, compared with the results obtained in the forward annealing case.

The value α = 0.32 was chosen for the forward annealing case because it

achieves the better Log�Likelihood score at epoch 1000, among a range of tested

values. We kept the poor man's choice of α = 0.32 also in the reverse annealing

case, and we set the reverse annealing schedule without further exploration.

Despite such lack of �ne optimization, the reverse annealing performs even
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better than the forward annealing up to epoch 900, therefore proving capable

to speed up the learning in the initial phase, and comparable at the epoch 1000.

We now turn our attention to the di�erences among the energy distributions

produced by the two approaches during learning. Both the forward and reverse

annealing approaches initially produce a distribution corresponding to T <

1 (Figure 4.20 b and 4.20 c). We know this because the quantum�sampled

distributions are visibly cooler than the theoretical distribution calculated at

T = 1. Such behavior is a consequence of the choice to keep α �xed. The value

of α has been chosen to maximize the score at iteration 1000 for the forward

annealing case, so the same value is not necessarily the best during the �rst

iterations.

At epoch 1000, the lowest energy con�gurations for the forward case are at

energy ∼ (−38), while in the reverse case the lowest achieved energy at the

same epoch is ∼ (−50), where the values are dimensionless, as obtained by

the de�nition of E(s) (Equation 2.26). Thus, despite the two cases share the

same learning rate η, the training based on reverse annealing modi�es the RBM

weights so that some con�gurations correspond to considerably lower energies.

We will now explore the consequences of such behavior.

Let's consider only those con�gurations whose visible units match exactly

one among the elements in the dataset. We de�ne ∆ the set composed of such

con�gurations. Thus, a well-trained RBM will have a high probability of sam-

pling elements from ∆. Figure 4.20 a shows the probability that, if we sample

at T=1 from the Boltzmann distribution de�ned by the weights of the RBM,

we get a con�guration in ∆. We can appreciate how such probability evolves as

a function of the training epochs, for the forward, reverse, and classical cases.

The Figure also shows the evolution of the probability associated with each

element of the dataset, dividing the plot in 30 distinct bands.

In the classical learning case, the probabilities appear more homogeneous

than in the quantum cases. The training with forward�annealing runs at a

slower pace but all the probabilities are growing steadily. Regarding the train-

ing with reverse�annealing, it is manifest that it resulted in an increased overall

probability for con�gurations belonging to the set∆. In particular, the probabil-

ity to extract a con�guration in∆ from the RBM trained with reverse�annealing

is approximately double with respect to the probability in the forward-trained

case. Nonetheless, the average log-likelihood is similar in the two cases. The

reason resides in the low probability associated with some con�gurations by the

RBM trained with reverse-annealing. The black line in Figure 4.20 a represents

the summation of the probabilities of the 15 less probable images. Since the
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4× 4 BAS dataset is composed of 30 images, the black line divides the dataset

into two equal parts, which are not guaranteed to be equally represented. The

RBM trained with reverse�annealing is the best of the three cases if we look

at the total probability of the dataset, at the cost of a lower probability of the

lesser represented images. Such behavior could be connected to the fact that

reverse annealing has a higher probability to produce con�gurations that are

similar to those appearing in the dataset.

The di�erent sampling distribution brings two competing consequences. At

the beginning of the learning, the gradient estimation is in�uenced more by the

con�gurations belonging to the dataset, which results in lowering their energy

faster. This e�ect is exactly what the reverse annealing was intended for (Figure

4.20 a). Later during learning, some con�gurations belonging to ∆ are driven

at low energies by the weights update and their probability is heavily under-

estimated. The training algorithm does not capture the relevance that such

con�gurations have in the partition function, and thus allows them to lower

energy at each step.

The sampling described above may be a�ected by the extraction being too

bounded to the dataset elements (which could be overcome by optimizing the

annealing schedule) or to a high sampling temperature, which in turn could be

overcome by optimizing α.

As a last consideration, we suggest evaluating an alternative and comple-

mentary �gure of merit together with the average Log�Likelihood to score a

model. A potential issue connected to Log�Likelihood manifests if some images

have low probability. Indeed, they carry a lower Log�Likelihood score, but it

could not be informative about the capability to reconstruct data. Indeed, dur-

ing reconstruction part of the visible units are clamped, thus many of the other

con�gurations will have zero probability to be produced by the RBM. A better

scoring method should only consider the ability of the �nal RBM to reconstruct

each element of the training set. In our case, the RBMs have been trained on

the whole dataset, so the training set and the test set coincide.

Figure 4.18 a presents the reconstruction score as the probability for a RBM

to reconstruct one of the four central pixels of a BAS image, averaged over the

four pixels and each image in the set. The reconstruction is performed by

keeping the outer pixels set to the correct values. The number of steps for

Gibbs sampling is ng = 500. Note that the choice for the clamped units reduces

dramatically the probability for con�gurations corresponding to di�erent images

in the dataset to take part in the reconstruction process since for each choice

of the outer pixels there is a single dataset image compatible. Each colored
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band represents the probability that the corresponding image of the dataset

is sampled from the Boltzmann distribution associated with the RBM. The

reconstruction score con�rms the quality of the learning already evaluated by

the average Log�Likelihood. As expected, the low�probability images in the

training with reverse�annealing have a reduced impact on the score. At epoch

1000, the reconstruction score of the reverse and forward method are statistically

close, but reverse annealing exhibits better performances in previous epochs

(Figure 4.18 a).

In general, the reverse annealing schedule introduces a meaningful search

method during the learning process of a RBM on a quantum computer. De-

spite its slower learning rate if compared to a classical machine in terms of

epochs, one should remember that the total computational time is accounted

for by the product of the number of epochs with the computational time per

epoch. Therefore, the advantage of the adiabatic quantum computer to manage

RMBs and more generally BMs resides on its ability to be employed once the

conventional hardware fails as soon as the number of qubits of the quantum

processor can handle the size of the problem.

Summary of the obtained results

Boltzmann Machines can be trained with an algorithm that exploits AQCs with

the spirit of achieving a computational advantage over the classical method. We

showed that the use of embedding techniques does preserve the quality of pro-

duced con�gurations, and thus it results in signi�cantly better scores thanks

to the increased connectivity. As opposed to the usual algorithm based on for-

ward annealing schedule, we implemented a semantic quantum search based on

reverse annealing schedule. We showed that such an algorithm quickly raises

the sampling probability of a subset of the con�gurations set corresponding to

elements of the dataset and can achieve good reconstruction scores in slightly

less training epochs than forward annealing. Our results suggest that reverse

annealing captures the bene�t of starting the algorithm by exploiting the full

information provided by the elements of the dataset. It leads to a sampling

probability of elements of the dataset which is double that of the forward an-

nealing and higher than that of the classical method.

Our results, combined with hyperparameter optimization of the annealing

schedule and temperature estimation techniques, pave the way towards the

exploitation of both restricted and unrestricted Boltzmann machines as soon as

new generations of hardware with increased connectivity will be available.
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4.2.2 Fast training of a fully-connected BM

In [23] and [24], we described for the �rst time the procedure for training a

general BM model (without any simpli�cations) using an AQC. We consider a

fully connected network comprising both visible and hidden nodes, extending

previous works that focused on quantum-trained fully connected BMs with only

visible units [313]�[315] and recent works that focused on using AQCs to train

Restricted BMs [4], [482], [483].

The primary advantage of the AQC-based approach over the classical method

is that it eliminates the iterative nature of the Metropolis algorithm, thereby

eliminating the need for a thermalization phase8. Exploiting this theoretical

advantage, we have been able to empirically demonstrate that our training

algorithm based on the complete BM is 8.6 times faster than the maximally

parallelized classical algorithm. Here, by maximally parallelized we mean that

the problem can not be parallelized further, and all parallel processes have been

executed simultaneously using GPUs. We also provide a detailed analysis of

the sampling times for both the quantum and classical approaches.

Experimental procedure

We conducted our experiments using D-Wave's Advantage 4.1 AQC, which is

composed by 5627 working qubits connected by 40279 couplers. This particular

AQC implements the Pegasus topology [159], which prescribes 15 connections

per qubit (at most). We thus limited ourselves to study the training algorithms

on a 16× 16 Boltzmann machine, because larger graphs force the employment

of long chains that can quickly become unstable and degrade the learning pro-

cess. Additionally, this allow us to compare the obtained results to our previous

work [4] that has been presented in the previous Section 4.2.1. Furthermore,

using a relatively small BM model allows to investigate parallel quantum an-

nealing for improved performances9. This last observation is of paramount im-

portance, since the parallel approach single-handedly allowed us to outperform

the maximally-parallelized approach on GPU by almost an order of magnitude,

with respect to the wall time.

The dataset used in this work is the 4x4 Bars and stripes (BAS) dataset

de�ned in Ref.[481]. Each element is a picture composed by 4 rows and 4

columns, for a total of 16 pixels. Pictures can either be composed by black and

white rows, or by black and white columns. The totally black and totally white

pictures have not be considered part of the dataset, so the dataset contains 28
8See Section 2.4.2 to learn how AQCs are used to train BMs.
9See Section 3.1.1.
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elements. Figure 4.18 in the previous Section shows some sample elements taken

from such dataset. The dataset has been chosen as it is simple yet non-trivial

for this type of task [484].

During the estimation of the negative statistics, every unit in the BM con-

tributes to the calculation of the expectation value. As a result, when mapping

the BM onto the AQC, a fully connected graph is required, with a number of

logical units corresponding to the total number of nodes in the BM. In contrast,

the computation of positive statistics necessitates the clamping of the visible

nodes, which involves �xing speci�c logical units within the AQC to match

the clamped data. Such task can be challenging to accomplish. However, it is

possible to mimic the clamping by mapping a problem on the AQC that only

comprises hidden units. In fact, the mapping is faithful only after applying the

following shift to the biases bi of the hidden units:

bt
′

i =
∑
j∈V

wijr
t
j + bi , (4.3)

where the summation is performed over the set V of the visible nodes, and rtj
are the binary values composing the given array rt belonging to the training

set. In Eq.4.3 the bias of the ith hidden node is modi�ed by its interactions

with the clamped visible nodes, and the clamped nodes are thus eliminated

by the energy functional. The result is a graph comprising only hidden nodes.

Di�erent con�gurations of the visible nodes give rise to di�erent graphs. It is

thus necessary to submit a di�erent QUBO problem for each element in the

training set.

Multiple instances of the BM model can be concurrently embedded on the

Quantum Processing Unit (QPU), o�ering a means to mitigate the computa-

tional cost associated with the training process. The computation of the neg-

ative statistics can be readily parallelized by embedding multiple copies of the

same graph on the QPU. In our study, we successfully embedded 26 copies of

a a 16x16 BM at the same time on the QPU (See Figure 4.21). Consequently,

each QPU call generated 26 distinct samples, e�ectively reducing the sampling

time by the same factor.

However, the computation of positive statistics necessitates a more careful

approach. Due to the presence of multiple smaller graphs, each corresponding

to a di�erent element of the training set (as shown in Eq. 4.3), special attention

is required. In our speci�c scenario, we managed to simultaneously embed four

copies of each of the 28 graphs derived from Eq. 4.3 on the QPU (See Figure

4.21).
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Esperimental results

To assess the e�ectiveness of the training, we employed the loglikelihood test

and the root mean square of the reconstruction error as estimators. To compute

this latter quantity, we challenged the trained BM to infer the value of the

four central pixel of an image taken from the dataset, based on the value of

the remaining pixels. The four central pixels have been blurred with random

noise , while the outer pixels are unmodi�ed. The random noise is created by

extracting from a uniform distribution in the interval [0,0.5). At �xed intervals

the Boltzmann machine is consulted to reconstruct the blurred pixels. If we

call si the pixel proposed by the BM and di the correct pixel missing, the RMS

reconstruction error σRMS is obtained as

σRMS =
1

R

√√√√ R∑
j

N∑
i

(di − si)2j . (4.4)

R = 10 di�erent reconstructions are performed each time the BM is called.

For the negative statistics, we set the parameter α to 0.56, while for the

positive statistics we used a value of 0.4. These optimal values of α were de-

termined by selecting those resulted in the closest overlap between the sampled

distribution and the exact Boltzmann distribution at unit temperature.

The chain strength has been set to the maximum value allowed by the de-

vice [21] and the annealing time has been set to 2µs. The number of Metropolis

iterations for the classical algorithm has been set to 2800, as lower numbers led

to failed training, probably due to incomplete thermalization. The classical al-

gorithm was executed on a NVidia A5000 GPU. The quantum training involved

multiple calls to the AQC in order to extract the required number of samples,

which was set to 2000 for both the positive and negative statistics after pre-

liminary testing. The positive part of the computation has been embedded 112

times on the QPU, requiring 18 calls to complete the sampling process (for a

total of 2016 samples). The negative part has been embedded 26 times, requir-

ing 77 QPU calls (for a total of 2002 samples). In total, the training required

the QPU to perform 95 quantum annealing processes to produce 4018 samples.

Details on the multiple embeddings utilized for the 16× 16 case and achievable

at di�erent sizes are reported in Table 4.4. See also Figure 4.21 for a visual

representation of the embedding of the problems corresponding to the positive

and negative statistics.

It is noteworthy that the samples obtained from the quantum computer

are binary vectors, whereas the classical samples consist of continuous numbers



208 Chapter 4. Experimental results

Total nodes Positive multiembedding Negative multiembedding
18 108 83
32 112 26
50 43 10
72 21 5

Table 4.4: Number of times the model has been embedded on
the QPU. The total nodes number comprises both visible and
hidden nodes, supposing the number of visible nodes equals the
hidden nodes. The two columns positive multiembedding and
negative multiembedding report the number of samples that can
be obtained during the same annealing process for the positive

and negative statistics, respectively.

ranging from 0 to 1. As a result, the classical samples contain signi�cantly

more information, which means a larger number of samples are required for

the quantum training. Contrary to the 2000 samples required by the quantum

algorithm for both statistics, only 256 samples were su�cient in the classical

case to reach a nearly optimal learning curve. The optimal number of samples

was obtained through a study on the impact of the training batch size on the

quality of the training. Such preliminary testing revealed that, as the batch size

grows above 256, the asymptotic results for the reconstruction error degrade.

For completeness, we report in Table 4.5 the wall time required for a single

epoch of training at each di�erent batch size tested.

tbs time(s) σ(s)
32 2.713276 0.055844
64 2.742950 0.017200
128 2.691335 0.065300
256 2.757422 0.031071
512 2.750695 0.024460

Table 4.5: The Table presents the time required for a single
epoch of training for di�erent batch sizes.

The article presenting the results discussed in this Section is currently undwer

review and it will soon be published [24]. For this reason, we decided to omit

from this Thesis the main plot of the work, which depicts the comparison be-

tween the average log-likelihood and the reconstruction score for both the quan-

tum and classical training. We can nonetheless describe the obtained results

numerically. The BM trained with the classical procedure achieves better results

in terms of both likelihood and reconstruction error if we compare the method-

ologies based on the number of epochs. However, in many real-world scenarios

it is more relevant to compare the performances of the algorithms at equal wall
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time. In the 16 × 16 case, the average wall time required to train the BM for

a single epoch in the parallelized classical case is 2.75s (512 samples) while the

full quantum algorithm required 0.0572s (4000 samples). With respect to the

wall time, the quantum algorithm shows far superior performances, reaching a

likelihood of -3.655 in 28.6s, while it takes 247.5s for the classical algorithm to

reach the same results, which is 8.6 times longer. In addition, we pictured the

hypothetical scenario of an AQC that supports fully parallelized computation

of both positive and negative statistics. Here, the assumption is that such hy-

pothetical AQC would be a�ected by the same errors of the Advantage 4.1, but

would contain a number of qubits su�ciently large to generate all the required

samples in a single annealing cycle. We estimate that such fully parallelized

quantum algorithm would be 95 times faster than the current quantum results

(the number of individual calls to the QPU required for training was indeed 95).

Thus, the training would become 817 times faster than its classic counterpart

running on a Nvidia A5000 GPU. The superior performances achieved in terms

of wall time imply that the quantum algorithm could soon become a competi-

tive approach to train BMs. It is worth noting that for this speci�c application,

the challenges of sampling from an embedded model described in Ref. [166] did

not pose a signi�cant obstacle to learning. The model appears to be stable even

when embedding the negative statistics using 131.8 ± 3.76 qubits arranged in

32 con�gurations.

A last remark regarding the computational time: the average sampling time

required by the D-Wave device to output an individual sample is approximately

600µs, as measured in our experiments. In contrast, the annealing time, which

represents the physical duration of the annealing process, was set to 2µs. It

means that the time of the sampling process on the AQC is dominated by

setup, reading and postprocessing times, rather than the actual duration of

the adiabatic evolution of the system. Potential future improvements in this

pipeline could lead to a reduction in the sampling time, bringing it closer to the

annealing time and further enhancing the advantages of the quantum algorithm.

Moreover, the capabilities of AQCs would also bene�t from the implementation

of more connections among qubits, enabling the training of larger and more

complex models.

Future works could focus on training the model using di�erent, more complex

datasets, to better test its reconstruction and generation capabilities. Moreover,

the quality of the training would bene�t from a detailed quantitative analysis

of the e�ective temperature of the AQC. Investigating the relationship between

the e�ective temperature, chain strength Jchain, and annealing time τ would
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provide valuable insights into optimizing the training procedure and achieving

better performance.
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Figure 4.18: a: Reconstruction score vs training epochs for the classi-
cal, forward annealing, and reverse annealing case. The learning curves are
obtained with a rescaling parameter α = 0.32 and the weights initialization
parameters µ = 0, σ = 2 and IW = [−3, 3]. b: Average Log�Likelihood vs
training epochs for the classical, forward annealing, and reverse annealing
case. c: Sample images used during training, taken from the 4x4 Bars and
Stripes dataset, together with the reconstruction obtained with ng = 500
steps of Gibbs sampling at di�erent epochs. The gray-scaled color of the pix-
els represents the expected value for that pixel according to the chosen RBM.
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Figure 4.19: Comparison between the learning curves obtained using two
di�erent IW for the forward annealing schedule. The embedding of the RBM
is complete. The blue line corresponds to IW = [−3, 3], µ = 0 and σ = 1.5, at
α = 0.32. The double-coloured line has initial weights and biases extracted
from a gaussian with µ = 0, σ = 1.5, distributed in IW = [−2, 2], rescaled
with α = 0.33. Such value for α has been chosen among �ve tested so to
maximize Lav at epoch 700. Five runs at α = 0.33 have been trained and
averaged up to epoch 700 (violet line), then the best run (green line) has
been trained up to epoch 1500. Error bars are hidden by the points in the
plot. The performance of the classical algorithm (orange line) is reported for

reference.
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Figure 4.20: The distributions presented are reconstructed from the
weights obtained during the training processes presented in Figure 4.18. a,
Each colored band represents the probability that the corresponding image
of the dataset is sampled from the Boltzmann distribution de�ned by the
RBM at that epoch. Thus, each plot contains 30 bands. The green line rep-
resents the probability that any of the images is sampled at epoch 1000. The
black line represents the probability that any of the 15 less probable images
is sampled at epoch 1000. b and c represent the distributions produced by
the D�Wave machine using forward annealing (b, in blue) and reverse an-
nealing (c, in light blue) each 100 epochs, from epoch 100 to epoch 1000,
starting from the same weight initialization used in a. In both b and c, the
Boltzmann distribution at T = 1 corresponding to the instantaneous value
of the RBM weights is represented in orange. The qualitative shape of the

annealing schedule s(t) is also shown as a reference.
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Figure 4.21: Comparing positive and negative statistics and their embed-
dings on the QPU. The left side of the Figure illustrates the multi-embedding
of positive statistics. Each numbered square represents a di�erent con�gu-
ration of hidden nodes, adjusted according to Eq 4.3. The white and black
visible nodes have been �xed to 0 and 1, respectively. The numbers high-
light the di�erences between the graphs. The multi-embedding of negative
statistics is illustrated on the right side of the Figure. In this scenario, each

embedding maps the same graph in a di�erent location on the QPU.
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Appendix A

Hard-assignment

Gromov-Wasserstein problem

This Section presents the Hard-assignment Gromov-Wasserstein problem (GWP),

and explains how to formulate GWP in ILP and QUBO form, to then be able to

solve it via AQC and Memcomputing machines. This introduction is functional

for the discussion in Section 4.1.2 of the results we obtained in [2], where we

challenged Virtual Memcomputing machines and AQCs on GWP.

Optimal transport theory deals with the problem of moving mass from one

place to another with minimal e�ort. This e�ort is accounted by a cost function;

the integral of these mass moves has to be minimized[485]. The main constraint

here is represented by mass conservation; this leads naturally to approach op-

timal transport as a mapping problem between probability distributions. The

original problem has two main formulations: the hard formulation from Monge

and the relaxed formulation from Kantorovich [485]. In both, one assumes that

the two metric spaces involved are the same. The Gromov�Wasserstein dis-

tance was introduced by Mémoli [475] and it is an instance of optimal transport

between metric spaces having di�erent dimensions (nonregistered) [486]. The

GWP �nds application in generative machine learning [487], [488] and com-

puter graphics [475], [476], among others. Finding this distance is equivalent to

�nding a permutation matrix that allows this mapping between distributions.

In literature one can �nd several regularized, approximate or simpli�ed forms

of the Gromov-Wasserstein problem (GWP): Authors in [489] introduce the en-

tropic regularization approach and uses it in combination with the Sinkhorn's

matrix scaling algorithm for solving GWP; another paper [490] considers a

variant of the optimal transport problem that restricts the set of admissible

couplings to those having a low-rank factorization, achieving a linear time ap-

proximation for GWP. We will instead consider the problem's hard�assignment

version, where the desired mapping between points is bijective and the prob-

ability distributions in the two spaces assign equal weight to all points. In
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this form, the cost function is an instance of a Quadratic Assignment Problem

(QAP) [477], which makes it an NP-hard problem in general [491].

To de�ne the hard�assignment Gromov�Wasserstein problem, one begins by

considering two sets of N points, S1 = {x1, ..., xN} and S2 = {y1, ..., yN}, be-
longing to two distinct vector spaces each endowed of a distance, aij = d1(xi, xj)

and bhk = d2(yh, yk), respectively. One can de�ne a distance between two pairs

of points. In [2], we used the squared euclidean metric d(aij, bhk) = (aij − bhk)2.
To solve the hard�assignment Gromov�Wasserstein problem, one must �nd a

permutation matrix γ ,such that the following expression is minimized:

PGW(γ) =
∑
ij

∑
hk

d(aij, bhk)γihγjk . (A.1)

Starting from the initial formulation PGW, one can convert the problem into a

Integer Linear Programming problem to support VMM and Gurobi. One can

indeed create a linear form by introducing n4 binary variables such that:

zihjk = γihγjk (A.2)

This strategy is typically used to linearize a Quadratic Assignment Problem

[492]. The expression to minimize is now:

P ILP
GW({zihjk}) =

∑
ij

∑
hk

d(aij, bhk)zihjk (A.3)

subject to

γih + γjk ≤ zihjk + 1 ∀i, h, j, k (A.4)

to enforce expression A.2.

Inequalities in A.4 ensure that the condition zihjk = 0 implies γijγjk = 0,

while γijγjk = 1 can be realized only if zihjk = 1. In addition, since d(aij, bhk) ≥
0 for every combination of indices, minimizing A.3 automatically ensures that, if

γijγjk = 0, then zihjk = 0. Thus the addition of the constraint in expression A.4

is su�cient to impose γijγjk = zihjk. One can reduce the number of variables

in the problem by noting that, if i = j or h = k, then the product on the right

hand of expression A.2 equals zero. Indeed, in this case, the two elements of the

gamma matrix would belong to the same row or column, which means that at

least one of them must equal zero. Furthermore, zihjk = zjkih holds true. Thus,

in the cost function, one should consider only the terms zihjk, such that i < j:
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P ILP
GW (γ) =

∑
i>j

∑
hk

d(aij, bhk)zihjk +
∑
i<j

∑
hk

d(aij, bhk)zihjk =

=
∑
i<j

∑
hk

(d(aij, bhk) + d(aji, bkh)) zihjk =

= 2
∑
i<j

∑
hk

d(aij, bhk)zihjk ,

(A.5)

since the distance matrices are symmetric. Note that the case i = j has already

been ruled out by the previous observation. The above approach reduces the

number of z�variables from n4 to 1
2
n2 ·(n−1)2, that is, the number of z variables

is halved asymptotically.

As we already observed, the matrix γ must be a permutation matrix. The sum

of each row must equal one, so one gets n equations with n coe�cients, resulting

in n2 nonzero coe�cients in the constraint equations. Since the same is true for

columns, the total number of nonzero coe�cients is 2n2. Since VMM is able to

implement inequalities only, equations of the form a = b are automatically and

internally mapped by VMM into two inequalities a ≤ b and a ≥ b. This this

leads to 4n2 nonzero coe�cients in the constraint expressions. This is an internal

remapping of VMM. Both Gurobi and VMM receive the same speci�cation with

the equalities as input �le.

To implement inequalities, one should consider the condition on γij and zihjk

appearing in eq. A.4. The constraint matrix thus contains 3n2 · (n2 − 1)/2

nonzero elements. The total number of nonzero coe�cients in the constraint

expressions is 1
2
n2 · (3n2 + 1), which become 1

2
n2 · (3n2 + 5) when implemented

on VMM. Asymptotically, the number of constraints goes as 3
2
n4, while the

number of binary variables goes as 1
2
n4, so that the number of constraints is

3 times the number of variables asymptotically. Similarly to the factorization

case for D-Wave, we reformulate the constraints as penalty terms. This leads

to following cost:

PQUBO
GW ({γij}) = PGW({γij}) + λR({γij}) (A.6)

where the �rst term is the original Gromov-Wasserstein cost and the penalty

regularizer R({γij}) is ruled by the λ > 0 coe�cient, which enforces the cor-

rectness of the γ matrix:

R({γij}) = −4
∑
i,j

γi,j +
∑
h,k,j

γh,jγk,j +
∑
i,h,k

γi,hγi,k (A.7)
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R({γij}) correctly attains a minimum if and only if all the following constraints

are satis�ed: ∑
i

γi,j − 1 = 0 ∀j∑
j

γi,j − 1 = 0 ∀i
(A.8)

Indeed, starting from A.8, we can square the left�hand size of both constraints,

obtaining two expressions that attain the sole global minimum only when the

constraints in A.8 are satis�ed (i.e. when γ is a permutation matrix). Summing

those two expressions gives back exactly A.7.

The proper value for λ in A.7 must be found by careful testing. This is be-

cause a higher or lower value can lead to only the satisfaction of the constraints

or only to the minimization of the cost, respectively, while both are desired.

The cost function in equation A.6 contains every possible quadratic term of

the variables. The graph representing the problem is therefore fully connected,

while D-Wave Advantage is topologically characterized by a very sparse graph

of qubits. The solution to this hardware limitation is to use embedding tech-

niques to link together nearby qubits with a strong ferromagnetic coupling, so

that they behave as a single two-state system. With this approach, one can

implement highly connected graphs.
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Appendix B

Capacitated Helicopter Routing

Problem

The Capacitated Helicopter Routing Problem (CHRP) is a helicopter �ight

scheduling problem, in which one aims to minimize the overall �ight time. This

Section explains how to formulate CHRP in ILP and QUBO form, to then be

able to solve it via AQC and Memcomputing machines. This introduction is

functional for the discussion in Section 4.1.2 of the results we obtained in [2],

where we challenged Virtual Memcomputing machines and AQCs on CHRP.

CHRP was introduced in [493], based on the formulation of the Dial-a-ride

problem (DARP) [494]. Each �ight can have multiple legs to connect o�shore oil

rigs. The �ights are scheduled to transport workers from heliport to rigs, from

rig to rig, and from rig to heliport. The problem has limiting constraints, such

as the maximum range for each helicopter type and maximum capacities for

the weight of the workers and luggage. As a hard constraint, CHRP requires

all workers to be transported. CHRP is then a multi-agent routing problem

where agents (helicopters) interact through the temporal worker assignment

constraints. These characteristics make CHRP very hard, even for small in-

stances, and therefore intractable for real world scenarios. Indeed, CHRP and

similar problems such as the DARP are NP-hard in the strong sense [495] since

they generalize the Travelling Salesman problem with time windows, which is

proven to be NP-complete [496].

Because of its hardness and commercial relevance, multiple heuristics have

been developed to provide approximate solutions, using clustering search [497],

genetic algorithms [498], and a League Championship Algorithm [499]. CHRP

can be cast to an integer linear programming problem with all variables being

binary. The problem is then automatically in QUBO form with a null quadratic

term and thus usable on D-Wave. The problem size can scale with the number

of rigs (locations) and the number of workers, while the maximum number of

�ights is usually set according to the number of workers. In the Integer Linear
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Programming format, all binary variables are decision variables. The formula-

tion has two blocks of constraints. One block de�nes the helicopter routes as

cyclic paths in a dynamic graph. The other block de�nes the assignment of

workers to �ights.

Let us now detail better the mathematical formulation. Consider a directed

graph G = (V,E), where V is the set of vertices and E the set of edges. The

vertex with label 0 maps the heliport, and the remaining vertices map the oil

rigs. The graph is fully connected since we have legs connecting all rigs and

heliport. We de�ne binary variables vr,t,f being 1 if the �ight f stops at the

location (rig or heliport) r at time t and binary variable el,t,f being 1 if the

�ight f includes the leg l departing at time t. The time t is an integer index

that only de�nes the order of the events and not the actual time. Hence, t has

a range that goes from 0 to T , with T being the maximum number of legs for

a given �ight (T can either be set by the user or evaluated as the maximum

number of legs a �ight can include given the helicopter range). The index

r ∈ E is 0 for the heliport and ranges from 1 to R for the rigs. The index

l ∈ E spans all possible 2R(R + 1) directed edges. Finally, the f is the �ight

index, which ranges form 1 to F , with F either set by the user or estimated

from the number of passengers. To de�ne the equations, it is also useful to

introduce maps δ : E → V and α : E → V , which return the departing and

arrival vertices of an edge, respectively. We can also de�ne the formal inverse

maps δ−1 : V → E and α−1 : V → E, which return all outgoing edges from and
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all incoming edges to a vertex, respectively. Using these de�nitions, we have∑
l∈δ−1(r)

el,t,f ≤ vr,t,f t ∈ {0, .., T − 1},∀r, f (B.1)

∑
l∈α−1(r)

el,t,f = vr,t+1,f t ∈ {0, .., T − 1},∀r, f (B.2)

∑
r

vr,t,f ≤ 1 ∀t, f (B.3)∑
r

vr,t+1,f ≤
∑
r

vr,t,f t = {0, ..., T − 1},∀f (B.4)

vr=0,t,f ≤ 1 t ∈ {0, T}, ∀f (B.5)

vr,t,f = 0 t ∈ {0, T}, r ∈ {1, ..., R},∀f (B.6)
R∑

r=1

vr,t+1,f + vr=0,t,f ≤ 1 t = {0, ..., T − 1},∀f (B.7)

el,t,f = 0 l ∈ δ−1(r = 0), t ∈ {1, ..., T}, ∀f (B.8)
T∑
t=1

vr=0,t,f ≥ vr=0,t=0,f ∀f (B.9)

el,t,f = 0 l ∈ δ−1(r) ∩ α−1(r), t ∈ {0, ..., T − 1},∀f (B.10)

vr,t,f + vr,t+1,f ≤ 1 t ∈ {0, ..., T − 1},∀r, f (B.11)∑
l,t

dlel,t,f ≤ range(f) ∀f. (B.12)

This set of linear relations fully de�nes each �ight. Equation (B.1) requires

that, if a �ight includes a location at a given time, then that �ight can have

one leg departing from that location at that time. Equation (B.2) requires that,

if a �ight includes a location at a give time, then that �ight must have a leg

arriving to that location at that time. Equation (B.3) requires that the �ight

includes at most one location at time. Equation (B.4) requires that, if at a

given time the �ight does not include any location, then it does not include

locations at the subsequent times either. Equation (B.5) and (B.6) require

that, at time t = 0 and t = T , if the �ight includes locations, they must be

the heliport. Equation (B.7) and (B.8) require that, at any time except t = 0,

a �ight cannot have departing legs from the heliport. This means that, if the

heliport is visited at a time other than 0, then it must be the last stop. These

two constraints are redundant. One would be enough. However, including both

help the convergence of solvers like Gurobi since it includes more cutting planes.

Equation (B.9) requires that, if a �ight has legs, it must stop at the heliport

twice. Equations (B.10) and (B.11) require that a helicopter cannot remain two
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consecutive times at the same location. Again, these constraints are redundant

but they help the convergence of solvers. Finally, equation (B.12) requires that

a �ight cannot exceed the range associated with the corresponding helicopter.

We note that these constraints do not require that a �ight has any legs, so we

can have empty �ights. Moreover, this formulation allows �ights to include the

same rig visited multiple nonconsecutive times.

This �rst set of equations de�nes closed routes for helicopters in terms of closed

paths in a graph. However, they are actually independent routes since we have

not yet included the worker assignments. To this end, we de�ne the binary

variables pkp,t,f being 1 if the helicopter operating the �ight f picks up the

passenger p at time t and dfp,t,f being 1 if the helicopter operating the �ight f

drops o� the passenger p at time t; the passenger index p ranges from 1 to P .

We also de�ne maps ρ : {1, ..., P} → V and γ : {1, ..., P} → V , which return

the pick up and drop o� locations for each worker, respectively. Conversely, we

de�ne the inverse maps ρ−1 : V → {1, ..., P} and V → γ : {1, ..., P}, which
return all the workers that need to be picked up and dropped o� at a given

location, respectively. Using these variables with the previous variables, the

assignment problem can be formalized as:

∑
t,f

pkp,t,f = 1 ∀p (B.13)∑
t

pkp,t,f =
∑
t

dfp,t,f ∀p, f (B.14)∑
t

pkp,t,f t ≤
∑
t

dfp,t,f t ∀p, f (B.15)∑
p∈ρ−1(r)

pkp,t,f +
∑

p∈γ−1(r)

dfp,t,f ≥ vr,t,f ∀r, t, f (B.16)

∑
p∈ρ−1(r)

pkp,t,f +
∑

p∈γ−1(r)

dfp,t,f ≤ (|ρ−1(r)|+ |γ−1(r)|)vr,t,f ∀r, t, f (B.17)

t∑
t′=0

∑
p

pkp,t′,f −
t∑

t′=0

∑
p

dfp,t′,f ≤ capacity(f) ∀t, f (B.18)

t∑
t′=0

∑
p

wppkp,t′,f −
t∑

t′=0

∑
p

wpdfp,t′,f ≤ maxweight(f) ∀t, f (B.19)

t∑
t′=0

∑
p

wlppkp,t′,f −
t∑

t′=0

∑
p

wlpdfp,t′,f ≤ maxluggage(f) ∀t, f (B.20)

This second set of equations assigns passengers to �ights. Equation (B.13)

enforces that all workers are picked up and none are excluded. Equation (B.14)
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requires that, if the helicopter operating the �ight f picks up the worker p at

any time, then it must drop o� the same passenger at some time. Equation

(B.15) enforces that the drop o� happens after the pick up. Equations (B.16)

and (B.17) enforce that a �ight has a leg to the location r if and only if (i.e. the

vice versa is enforced too) the helicopter operating that �ight either picks up

or drops o� a worker at that location. In equation (B.17), |ρ−1(r)| and |γ−1(r)|
are the number of elements returned by the inverse maps. Equation (B.18)

requires that the number of passengers on the helicopter operating the �ight f

does not exceed its maximum capacity at any time. Equation (B.19) requires

that the total passenger weight on the helicopter operating the �ight f does not

exceed its maximum weight capacity at each instant of time. Equation (B.20)

requires that the total luggage weight on the helicopter operating the �ight f

does not exceed its maximum luggage weight capacity at each instant of time.

The model is �nally completed by the cost function:

min
e

∑
l,t,f

dlel,t,f . (B.21)
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Appendix C

Non-Negative Binary Matrix

Factorization

This Section presents the Non-Negative Binary Matric Factorization problem

(NBMF), and explains how to formulate it in QUBO form, to then be able

to solve it via AQC. This introduction is solely functional to the discussion

in Section 4.1.1 of the results we obtained in [1], where we challenged various

generations of AQCs and the classical solver Gurobi on NBMF. Further insights

regarding the relevance of NBMF and previous literature on the topic can be

found in the introduction of Section 4.1.1.

C.1 Problem de�nition

Given a dataset of m images composed by
√
n ×
√
n pixels, we seek to �nd

the best possible representation of each image through a linear combination of

k << m basis images weighted with binary values, i.e. 0 or 1. In other words,

we look for a set of k basis images to optimally span via linear combination

the data-space of reference when only binary coe�cients are made available.

Such a problem can be formally cast in a matrix factorization problem. Given

a matrix V of size n × m, with its columns encoding the m �attened gray-

scale images of the original dataset, the goal is to determine the non-negative

matricesW (real) and H (binary) of size n×k and k×m respectively, for which

||V −WH||F is minimum, where the norm is the Frobenius norm (square root

of the summation of the square of every element in the matrix). The complexity

of the task comes from the fact that both matricesW and H must be optimized

to achieve the best possible approximation for V . We call W the basis-image

matrix, and H the reconstruction, or latent matrix. The columns of the matrix

W encode the �attened basis images used to reconstruct the original images

of the database. The columns of the H matrix, instead, encode the binary

weights associated with the basis images. These are to be interpreted as the
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values of the features of the original images in a binary latent space over which

to perform classi�cation. A lower number of basis images will generally imply

a poorer capability to reconstruct the original images in the dataset. On the

other hand, setting a higher number of features will diminish the advantages

of FE, and each value in the binary latent space decomposition will carry less

information.

C.2 Computational procedure

As discussed in Refs. [469], [470], the original problem of factorizing the matrix

V into the matrix product WH via NBMF can be recast into an iterative

optimization problem where either W and H are optimized one at a time,

alternatively. The full problem can hence be decomposed into two consecutive

optimization steps as follows:

find_W : = arg min
X∈Rn×k

||V −XH||F + α||X||F , (C.1)

find_H : = arg min
X∈{0,1}k×m

||V −WX||F , (C.2)

where || · ||F represents the Frobenius norm, a measure of the distance between

two matrices, and α ∈ R+ a free parameter to be tweaked beforehand. The sec-

ond term in eq.C.1 is used as a regularization component to penalize solutions

with large ||X||F . Such a term forces the candidate H matrix to be sparse, so

that images in V will be reconstructed by combining only some of the basis

images in W . The two optimization problems are then solved iteratively until

the condition ||V −WH||F < ϵ is matched, with ϵ being the desired threshold

error in the reconstruction of V .

Finding W� the �rst problem is solved by �nding the X matrix that min-

imizes the quadratic cost function

C = ||V −XH||2F + α||X||2F , (C.3)

with H initialized as discussed in Sec. 4.1.1.

This quadratic form is minimized via the Gurobi [474] mathematical pro-

gramming solver. Gurobi implements a wide array of heuristics that make it a

reference tool for the minimization of quadratic cost functions. It is a licensed

software with a free license for academic utilization.
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Finding H� as in Ref.[469], the original problem of �nding the H matrix

that best reproduces V given W can be reduced to a set of independent op-

timization sub-problems to be solved for each image in the dataset. We can

indeed solve:

Hz = arg min
q∈{0,1}k

||Vz −Wq||2, (C.4)

where z = 1, 2, ...,m, and q is an array of k binary variables. The L2 norm is

used here in place of the Frobenius norm to account for dealing with vectors

rather than matrices.

Such a problem can be solved by minimizing the correspondent Quadratic

Unconstrained Binary Optimization (QUBO) cost function, obtained by squar-

ing the norm in Eq. C.4:

Q(q) =
∑
i

aiqi +
∑
i<j

bijqiqj, (C.5)

with

ai =
∑
l

Wli(Wli − 2Vlz),

bij = 2
∑
l

WliWlj.
(C.6)

Such a cost function is then minimized with respect to the binary variables

qi ∈ {0, 1}.
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Appendix D

Estimation of the positive and

negative statistics for a RBM

D.1 Estimation of RBM statistics using classical

methods

Because there are no direct connections between hidden units in an RBM, it is

very easy to get an unbiased sample of ⟨vihj⟩data. Given a randomly selected

training vector r, the binary state hj of each hidden unit j is set to 1 with

probability

p(hj = 1 | r)

= σ(−E({si}i ̸=j, sj = 1) + E({si}i ̸=j, sj = −1))

= σ(−2bj − 2
∑
i

riwij)

= (1 + ⟨hj⟩data)/2

(D.1)

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid function, and the last

step has been added since it is useful for the hidden bias gradient estimation

(Eq. 2.36).

Because there are no direct connections between visible units in an RBM, it

is also very easy to get an unbiased sample of the state of a visible unit, given

a hidden vector.

p(vi = 1 | h) = σ(−2ai − 2
∑
j

hjwij)

= (1 + ⟨vi⟩data)/2 .
(D.2)
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The last step is needed for the gradient estimation of the visible biases (Eq.

2.35).

Getting an unbiased sample of ⟨vihj⟩model is much more di�cult. An exact

computation would involve a summation over all possible combinations of values

for hidden and visible units, which means summing over 2N elements. Each

unit would then double the computational cost of this procedure, leading to a

computation time that is exponential in the number of units. In many practical

situations, an exact computation of the negative gradient is unfeasible. Note

that the same e�ort is needed to compute ⟨hj⟩. Nonetheless, an estimation

technique that allows computing ⟨vihj⟩model collaterally produces an estimation

for ⟨hj⟩, so we will focus on estimating the negative statistics.

The negative statistics is usually approximated in the following way. First,

the values of the visible units are set equal to those of a training vector. Then

the binary states of the hidden units are all computed in parallel using Eq. D.1.

Once binary states have been chosen for the hidden units, a reconstruction is

produced by setting each vi to 1 with a probability given by Eq. D.2 [332]. This

process is called Gibbs sampling and generates real values for each unit of the

Boltzmann machine, which can be used to estimate ⟨vihj⟩model.

CDn will be used to denote learning using n full steps of alternating Gibbs

sampling. Indeed, RBMs typically learn better if more steps of alternating

Gibbs sampling are used before collecting vectors for the negative statistics. It

happens because a greater number of steps grants a better convergence to the

distribution encoded in the weights of the RBM. It is important to note that

Gibbs sampling is not required to start by initializing visible units with a vector

taken from the training set. Nonetheless, it has been observed that this choice

enhances the training quality.

Gibbs sampling method corresponds to putting the system in contact with

a thermal reservoir. Indeed, ⟨vihj⟩ should be estimated by averaging over a

collection of con�gurations extracted from the Boltzmann distribution

P ({vi}, {hj}) =
e−E({vi},{hj})

Z
, (D.3)

where Z is the partition function

Z =
∑

{vi},{hj}

e−E({vi},{hj}) (D.4)

where the summation is to be performed over each combination of hidden and

visible units.
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Gibbs sampling consists of updating the hidden units and then updating

the visible units. While updating the hidden units, it is very important to

make the hidden states binary rather than using the probabilities themselves.

If the probabilities are used, each hidden unit can communicate a real-value to

the visible units during the reconstruction. This seriously violates the informa-

tion bottleneck created by the fact that a hidden unit can convey at most one

bit of information (on average). This information bottleneck acts as a strong

regularizer [332].

For the last update of the hidden units, it is silly to use stochastic binary

states because nothing depends on which state is chosen. So it is customary

to use the probability itself to avoid unnecessary sampling noise. When using

CDn, only the �nal update of the hidden units should use the probability.

For the visible units, it is common to use the probability itself instead of

sampling a binary value. This is not nearly as problematic as using probabilities

for the data-driven hidden states and it reduces sampling noise thus allowing

faster learning.

It is possible to update the weights after estimating the gradient on a single

training case, but it is often more e�cient to divide the training set into small

mini-batches of 10 to 100 cases.

It is a serious mistake to make the mini-batches too large when using stochas-

tic gradient descent. Increasing the mini-batch size by a factor of N leads to

a more reliable gradient estimate but it does not increase the maximum stable

learning rate by a factor of N , so the net e�ect is that the weight updates are

smaller per gradient evaluation.

D.2 Estimation of RBM statistics using an AQC

The annealing Hamiltonian HP appearing in Eq. 1.37 can be rewritten as

HR
P =

∑
ij∈ρ

Jijσ
z
i σ

z
j +

∑
i∈ν

Aiσ
z
i +

∑
j∈λ

Bjσ
z
j (D.5)

were the superscript R refers to restricted. Ai are the biases corresponding

to the visible units, while Bj are those of hidden units. Bias summations are

to be performed over the two distinct sets ν and λ, which collect each qubit

corresponding to either a visible or hidden unit, respectively. Wij are the weights

of the RBM, and the summation of such terms is to be performed on the set ρ

of non-zero couplers. The introduction of set ρ is useful also to remember that

the physical realizations of QA do not allow us to implement all RBMs. Indeed,
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the low connectivity of physical devices often forces the user to use a simpli�ed

version of an RBM.

D.2.1 Model states generation (negative statistics)

This Section and the following one explain how an AQC can be used to estimate

the positive and negative part of the weights update rule for RBMs presented

in Eq. 2.34.

First, consider the negative statistics de�ned in Eq. 2.33:

⟨vihj⟩model =

∑
{v},{h} vihje

−E({v},{h})∑
{v},{h} e

−E({v},{h}) , (D.6)

where the sum over {v}, {h}) must be taken over each possible con�guration of

the visible and hidden units.

For the moment we assume that the e�ective temperature Te� can vary but

it is known for each quantum annealing instance. Then the expectation value

in D.6 can be estimated thanks to the following algorithm.
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Algorithm 1: Quantum algorithm for the negative statistics estima-

tion with known e�ective temperature
Input: Number of visible units nv, number of hidden units nh, desired

number of iterations Niter, initial weights wij, initial biases ai
and bi, waiting time t. We suppose T (j)

e� is known for each step

j.

Output: Matrix anspq of dimensions (nv, nh) that will contain the

estimate for ⟨vphq⟩model.

Functions: eval(Te�, wij, ai, bi) returns values for Jij, Ai and Bj

correctly rescaled to account for the e�ective temperature;

anneal(Jij, Ai, Bj) uses quantum annealing with

HR
P (Jij, Ai, Bj) as �nal Hamiltonian (Eq. D.5);

measure(xi) operates a measure operation over unit xi.

1 anspq ← 0 ∀p < nv ∀q < nh

2 for j = 0 to Niter do

3 [Jij, Ai, Bj]← eval(T (j)
e� , wij, ai, bi)

4 anneal(Jij, Ai, Bj)

5 vp ← measure(vp) ∀p < nv

6 hq ← measure(hq) ∀q < nh

7 anspq ← anspq + vphq ∀p < nv ∀q < nh

8 anspq ← anspq
Niter

∀p < nv ∀q < nh

This algorithm outputs an estimate for ⟨vihj⟩model by averaging over Niter

samples. The anneal() step is the only quantum computation on the input

data required to obtain the samples. If we do not consider the computational

cost of initializing the system, the quantum algorithm needs O
(
1) (quantum)

operations to obtain a single sample. As opposed to this, contrastive divergence

algorithm needs O
(
ng · (nh+nv)

)
operations, where ng is the number of rounds

for the Gibbs sampling.

In addition to this, the classical algorithm is an inexact approach, since the

contrastive divergence method does not approximate the correct model distribu-

tion P (v, h). On the other hand, the proposed quantum algorithm is supposed

to sample from a Hamiltonian that is similar to the desired Hamiltonian, thus

obtaining unit values distributed according to the desired Gibbs distribution.

Note that this proposition is true only if Te� is known exactly.

A fundamental remark to make is that a sample produced using Gibbs sam-

pling possesses information content that is higher than that of a sample pro-

duced through quantum annealing. In general contrastive divergence samples
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continuum values for hidden units, while Algorithm 1 samples binary values, as

obtained from a measurement operation. As explained by Hinton [332], while

a binary sampling could be considered closer to the mathematical model of an

RBM, using the continuous probability value for hidden variables is usually

preferable at a classical level because it reduces sampling noise, thus allowing

faster learning. Algorithm 1 in this form could then be a�ected by a slower

learning speed. It follows that to yield the same information content, the quan-

tum algorithm has to produce more samples.

Suppose that Algorithm 1 needs Nqsamp samples for each epoch to generate

a "good" average sample. To sum up, the computational cost to generate the

estimate positive statistics (for a single epoch) is:

� Classic : O
(
Nbatch · ng · (nh + nv)

)
� Quantum : O

(
Nqsamp

)
whereNqsamp > Nbatch since the number of quantum samples must be greater

than the number of classical samples, as mentioned. In Section 4.2.1, a 16x16

RBM is trained using this algorithm for the estimation of the negative statistics.

In such case, a good learning process required Nqsamp ≈ 800, while Nbatch ≈ 30

in the same case.

It is interesting to observe how the computational cost can be reduced by

parallelizing the computation on both hardware. The parallelization of classical

computations is nowadays extremely developed, with an increasing interest in

exploiting Graphics Processing Units (GPUs) to execute thousand of di�erent

operations at the same time.

In AQCs classical parallelization capabilities appear as a natural property of

the quantum hardware. Indeed, any problem that uses a subset of the processor

graph can be cloned multiple times on di�erent locations of the processor. The

number of copies depends on the ratio of the processor size to the number of

qubits required by the problem. Since each copy has no active connections with

the other copies, multiple results are collected during a single annealing cycle,

without causing correlations among them.

We now suppose to push to the extreme the parallelization capabilities of the

two hardware, supposing we have at our disposal an in�nite number of classical

processors and an AQC with an in�nite number of qubits. For the classical

algorithm, it means that we can parallelize the computation for each element

of the batch and the update of each unit. For the quantum algorithm described

in this Section, having an in�nite number of qubits means that we can clone



D.2. Estimation of RBM statistics using an AQC 235

the problem in Nqsamp locations. As a consequence, the computational cost of

estimating the negative statistics changes as follows:

� Classic (Parallelized) : O(ng)

� Quantum (Parallelized) : O(1)

In the classical case, Gibbs sampling proceeds by processing information created

in the previous step, so it is not parallelizable. On the other hand, Algorithm

1 does not possess any iterative step, then it is parallelizable.

A remark must be made regarding computational cost. Nowadays, quantum

computing can not o�er an advantage for algorithms that requires a number of

elementary operations equal to the classical case. Indeed, a single operation

on a modern quantum annealer requires several microseconds, while a classical

processor executes elementary operations in nanoseconds. Nonetheless, when

talking about computational cost, it makes sense to not take into consideration

the time required for a single operation. The annealing schedule usually does

not vary much as the system size grows, so that the annealing time can be

considered a constant. Besides that, larger problem sizes can require more

cycles (in the present case, Nqsamp incorporates such tendency).

D.2.2 Data states generation (positive statistics)

Consider the positive statistics introduced in Eq. 2.33:

⟨vihj⟩data =
1

Nbatch

∑
{v∈batch}

∑
{h} vihje

−E({h},v)∑
{h} e

−E({h},v) , (D.7)

where we have supposed to make use of batches of size Nbatch.

This expectation value can be estimated in a way similar to Algorithm 1,

but in this case, we have to execute annealing with visible units clamped to

the dataset values. This can be done easily by considering the visible units as

biases that in�uence the hidden units state. The Hamiltonian HR
P (Eq. D.5)

can then be rewritten as:

HRC
P =

∑
j∈λR

BC
j σ

z
j ,

BC
j = Bj +

∑
i s.t.(i,j)∈ρR

Jijvi ,
(D.8)

where vi are the values assumed by the visible units. Such values are di�erent

for each element of the dataset. The superscript C stays for 'clamped'.
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Algorithm 2:Quantum algorithm for the positive statistics estimation

with known e�ective temperature
Input: Number of visible units nv, number of hidden units nh, dataset

containing Ndata vectors xj of length nv, initial weights wij,

initial biases bi, desired number of iterations Niter for each

element of the dataset. We suppose T (k)
e� is known for each step

k.

Output: Matrix anspq of dimensions (nv, nh) that will contain the

estimate for ⟨vphq⟩data
Functions: eval(Te�, wij, bj) updates values for Jij and BC

j correctly

rescaled to account for the e�ective temperature and

modi�ed according to D.8; anneal(Jij, BC
j ) uses quantum

annealing with HRC
P (Jij, B

C
j ) as the �nal Hamiltonian (Eq.

D.8); measure(xi) operates a measure operation over unit

xi.

1 anspq ← 0 ∀p < nv ∀q < nh

2 for k = 0 to Ndata do

3 for m = 0 to Niter do

4 vp ← xkp ∀p < nv

5 [Jij, B
C
j ]← eval(T (j)

e� , wij, bi)

6 anneal(Jij, BC
j )

7 hq ← measure(hq) ∀q < nh

8 ans← ans+ vphq ∀p < nv ∀q < nh

9 anspq ← anspq
NdataNiter

∀p < nv ∀q < nh

Algorithm 2 requires O(Ndata · Niter) operations to compute the estimate.

Niter can depend on the problem and the quality of the hardware. It is the

number of iterations the user thinks is su�cient to produce a representative

sample. A reasonable value for the product O(Ndata · Niter) is of the order

of Nqsample used in the previous Section. Nonetheless, references in literature

about empirical values for Niter are almost inexistent, since the estimation of

the positive statistics is hardly ever performed using quantum hardware. The

reason for that is the following. The classical algorithm requires O(Ndata · nh)

operations, which comes from updating the state of each hidden unit once for

each element of the dataset. By using multiple processors, such computational

cost can be reduced to O(1), since the update of hidden units does not require

information other than the dataset and the actual weights of the RBM. On an

AQC, the update of a single hidden unit can be executed on a single qubit. If
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the hardware possesses more than Ndata · Niter qubits, the cost of Algorithm 2

is O(1), since all the samples can be produced in a single annealing cycle.

It can be concluded that for the positive statistics case the quantum al-

gorithm does not speed up the process in terms of the number of elementary

operations. Indeed, the physical time for a single quantum operation is orders of

magnitude greater than a classical one. This means that an optimized quantum

algorithm for training RBMs on AQCs estimates the negative statistics using

Algorithm 1, and the positive statistics using the classical update of hidden

units (Eq. D.1).





239



240 Appendix E. Training a RBM using reverse annealing

Appendix E

Training a RBM using reverse

annealing

Algorithm 3: Quantum algorithm for the negative statistics estima-

tion using reverse annealing

Input: Number of visible units nv, number of hidden units nh, desired

number of iterations Niter, initial weights wij, initial biases ai
and bi, annealing schedule s(t) such that

s(0) = s(1) = 1, 0 < s(t) < 1 ∀t ̸= 0, 1, training dataset D
composed by ND elements. We suppose T (j)

e� is known for each

step j.

Output: Matrix anspq of dimensions (nv, nh) that contains the

estimates for ⟨vphq⟩model ∀p, ∀q.
Functions: eval(Te�, wij, ai, bj) returns values for Jij, Ai and Bj to be

loaded to the QPU, rescaled by the parameter α that

estimates the e�ective temperaturea;

initialize_qubits(D, k) initialize each visible units of the

RBM with the corresponding pixel in the k-th element of

D, while hidden units are updated at T = 1 with a single

step of Gibbs sampling, then qubits of the AQC are

initialized with the corresponding values mapped in

{−1,+1}; anneal(Jij, Ai, Bj, s(t)) uses quantum annealing

with HP (Jij, Ai, Bj) as �nal Hamiltonian and s(t) as

annealing schedule; measure(xi) retrieves the binary value

of xi after the annealing process ends.

1 anspq ← 0 ∀p, ∀q
2 for m = 0 to ND do

3 for k = 0 to Niter/ND do

4 initialize_qubits(D,m)

5 [Jij, Ai, Bj]← eval(T (j)
e� , wij, ai, bi)

6 anneal(Jij, Ai, Bj)

7 vp ← measure(vp) ∀p
8 hq ← measure(hq) ∀q
9 anspq ← anspq + vphq ∀p, ∀q

10 anspq ← anspq
Niter

∀p, ∀q

aSee Section 2.3.
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In [3], we were the �rst to modify the usual quantum algorithm for the esti-

mation of ⟨vihj⟩model, which exploited forward annealing, to exploit a sampling

procedure based on reverse annealing.

If compared to the usual procedure, the Niter annealing cycles are performed

separated in ND groups. For each group, qubits corresponding to visible units

are initialized with an element from the dataset. Qubits corresponding to hidden

units are initialized with binary values classically computed with a single step

of Gibbs sampling. After all elements of the dataset have been used to initialize

the annealing process, the output con�gurations are used to estimate ⟨vihj⟩model.
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