
Anno Accademico 2007-2008

Alma Mater Studiorum
Università degli Studi di Bologna

ARCES – ADVANCED RESEARCH CENTER FOR
ELECTRONIC SYSTEMS

Dottorato di Ricerca in Ingegneria Elettronica
Tecnologie dell’ Informazione

ING-INF/01

Ciclo XX

Memory Hierarchy and Data Communication
in Heterogeneous Reconfigurable SoCs

Tesi di Dottorato di:

ARSENIY VITKOVSKIY

Coordinatore Dottorato:

Prof. Ing. RICCARDO ROVATTI

Relatore:

Prof. Ing. ROBERTO GUERRIERI

Corelatore:

Dott. Ing. FABIO CAMPI

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 3 -

ABSTRACT

The miniaturization race in the hardware industry aiming at continuous

increasing of transistor density on a die does not bring respective application

performance improvements any more. One of the most promising alternatives is to

exploit a heterogeneous nature of common applications in hardware. Supported by

reconfigurable computation, which has already proved its efficiency in

accelerating data intensive applications, this concept promises a breakthrough in

contemporary technology development.

Memory organization in such heterogeneous reconfigurable architectures

becomes very critical. Two primary aspects introduce a sophisticated trade-off.

On the one hand, a memory subsystem should provide well organized distributed

data structure and guarantee the required data bandwidth. On the other hand, it

should hide the heterogeneous hardware structure from the end-user, in order to

support feasible high-level programmability of the system.

This thesis work explores the heterogeneous reconfigurable hardware

architectures and presents possible solutions to cope the problem of memory

organization and data structure. By the example of the MORPHEUS

heterogeneous platform, the discussion follows the complete design cycle, starting

from decision making and justification, until hardware realization. Particular

emphasis is made on the methods to support high system performance, meet

application requirements, and provide a user-friendly programmer interface.

As a result, the research introduces a complete heterogeneous platform

enhanced with a hierarchical memory organization, which copes with its task by

means of separating computation from communication, providing reconfigurable

engines with computation and configuration data, and unification of

heterogeneous computational devices using local storage buffers. It is

distinguished from the related solutions by distributed data-flow organization,

specifically engineered mechanisms to operate with data on local domains,

particular communication infrastructure based on Network-on-Chip, and thorough

methods to prevent computation and communication stalls. In addition, a novel

advanced technique to accelerate memory access was developed and

implemented.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 5 -

KEYWORDS

Reconfigurable architectures

Heterogeneous Systems-on-Chip

Memory organization

Data structure

Memory access pattern

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 7 -

ACKNOWLEDGEMENTS

This research was sponsored by the European Commission under the 6th

Framework program within the MORPHEUS project (IST FP6, project no.

027342). The PhD study was carried out within European Doctorate program in

Information Technology (EDITH) at the joint research laboratory of FTM/CCDS

STMicroelectronics and Advanced Research Centre for Electronic Systems

(ARCES) of the University of Bologna.

I would like to express thanks to my supervisors: Fabio Campi, whose

essential guidance and valuable practical advices helped me to increase the

scientific quality of my research, and Roberto Guerrieri, who provided me with

the continuous support along the whole period of my study. I would also like to

thank Georgi Kuzmanov and Georgi Gaydadjiev for the fruitful collaboration

during my practical research at CE/EEMCS Delft University of Technology.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 9 -

CONTENTS

LIST OF FIGURES ..13

LIST OF TABLES ..15

LIST OF TERMS AND ACRONYMS..17

CHAPTER 1 INTRODUCTION ..21

1.1 MOTIVATION...23

1.2 OBJECTIVES...25

1.3 STATEMENT OF ORIGINALITY ..26

1.4 OVERVIEW ..27

CHAPTER 2 MEMORY ORGANIZATION IN HETEROGENEOUS

RECONFIGURABLE ARCHITECTURES29

2.1 STATE-OF-THE-ART RECONFIGURABLE COMPUTING AND RECONFIGURABLE

ARCHITECTURES ..31

2.1.1 Host integration ..34

2.1.2 Granularity ...35

2.1.3 Heterogeneous architectures ..37

2.2 MEMORY AND COMMUNICATION SUBSYSTEMS IN RECONFIGURABLE

ARCHITECTURES ..38

2.2.1 The problem of memory sharing in embedded reconfigurable architectures

39

2.2.2 Streaming communication model and automated memory access41

2.2.3 Local repository and its implementation trade-offs43

2.2.4 Related research on data communication and memory subsystems..........44

2.3 SUMMARY ...50

CHAPTER 3 OVERVIEW OF THE MORPHEUS HETEROGENEOUS

RECONFIGURABLE PLATFORM ..51

3.1 MORPHEUS DESCRIPTION...53

3.1.1 Objectives..53

3.1.2 Target applications ...57

3.2 DESIGN CHALLENGES ..61

3.3 HARDWARE ARCHITECTURE ..65

3.4 COMMUNICATION INFRASTRUCTURE...68

3.5 DESCRIPTION OF THE IPS...71

3.5.1 PACT XPP ..71

3.5.2 M2000 embedded FPGA...76

- 10 -

3.5.3 PiCoGA ...89

3.6 SUMMARY ...108

CHAPTER 4 HIERARCHICAL MEMORY ORGANIZATION AND

DISTRIBUTED DATA STRUCTURE ...109

4.1 GENERIC BANDWIDTH REQUIREMENTS ..111

4.2 DATA STRUCTURE IN THE SYSTEM ...114

4.2.1 Computational data storage..115

4.2.2 Control data storage ...118

4.2.3 Configuration data storage ...119

4.3 MEMORY ARCHITECTURE DEVELOPMENT..123

4.3.1 Level 3: off-chip memory...124

4.3.2 Level 2: on-chip memory...127

4.3.3 Level 1: Data/configuration exchange buffers ..129

4.3.4 Exchange registers ..131

4.4 COMPUTATIONAL MODEL ..134

4.4.1 Mathematical representation ..136

4.4.2 Organization of data-flow in the system..137

4.4.3 Network-on-Chip as the data communication mean139

4.4.4 KPN modeling ...142

4.4.5 PN modeling..143

4.4.6 Local data synchronizations..145

4.5 HRE INTEGRATION BY THE EXAMPLE OF PICOGA ..151

4.5.1 Integration strategy ...151

4.5.2 Control unit ...154

4.5.3 Address generator ...156

4.5.4 Software tool-chain ...162

4.5.5 Results ...163

4.6 COMPARISON WITH THE RELATED WORK ...166

4.7 SUMMARY ...170

CHAPTER 5 TWO-DIMENSIONAL PARALLEL MEMORY ACCESS WITH

MULTIPLE PATTERN ...173

5.1 INTRODUCTION ..175

5.1.1 Research context and goal description..175

5.1.2 Related work..177

5.2 THEORETICAL BASIS ..178

5.3 PROPOSED MEMORY ACCESS SCHEME..185

5.3.1 Module assignment function..185

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 11 -

5.3.2 Row address function ..190

5.3.3 Memory access latencies...190

5.4 DESIGN IMPLEMENTATION AND COMPLEXITY EVALUATION191

5.4.1 Mode select ...192

5.4.2 Address generator ...193

5.4.3 Row address generator ...195

5.4.4 Module assignment unit ..195

5.4.5 Shuffle unit ..197

5.4.6 De-Shuffle unit ..197

5.5 RESULTS..199

5.5.1 ASIC synthesis...199

5.5.2 FPGA synthesis ...201

5.6 COMPARISON WITH THE RELATED WORK...202

5.7 SUMMARY ...205

CHAPTER 6 CONCLUSION ...207

6.1 SCIENTIFIC RESULTS..209

6.2 CONTRIBUTION STATEMENT..210

6.3 FUTURE WORK...211

APPENDIX A. EXAMPLES OF C-SOURCE CODES FOR THE MORPHEUS

PLATFORM ...215

APPENDIX B. VHDL SOURCES...221

BIBLIOGRAPHY ...235

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 13 -

LIST OF FIGURES

FIG. 1. SUBSYSTEM AND BANDWIDTH HIERARCHY OF IMAGINE PROCESSOR [28]..........................46

FIG. 2. BAZIL ARCHITECTURE BLOCK DIAGRAM [72]. ...46

FIG. 3. ZSP-CORE MEMORY SUBSYSTEM [72]...48

FIG. 4. EPLC-CORE MEMORY SUBSYSTEM [72]. ...48

FIG. 5. BAZIL DATAFLOW [72]..49

FIG. 6. MORPHEUS OBJECTIVES. ...54

FIG. 7. CONCEPTUAL VIEW OF THE MORPHEUS SOC...61

FIG. 8. MORPHEUS BLOCK DIAGRAM. ...66

FIG. 9. STNOC IMPLEMENTATION OF THE ISO-OSI PROTOCOL LAYERS. ...69

FIG. 10. SPIDERGON TOPOLOGY. ..70

FIG. 11. AN XPP ARRAY WITH 6X5 ALU-PAES...72

FIG. 12. FLOW-GRAPH OF A COMPLEX MULTIPLICATION AND SPATIAL MAPPING..............................73

FIG. 13. FNC-PAE BLOCK DIAGRAM. ..75

FIG. 14. FLEXEOS MACRO BLOCK DIAGRAM..77

FIG. 15. MFC SCHEMATIC. ...79

FIG. 16. EMBEDDED DPRAM SCHEMATIC. ..81

FIG. 17. MAC SCHEMATIC. ..82

FIG. 18. FULL CROSSBAR SWITCH...83

FIG. 19. FLEXEOS CORE ARCHITECTURE. ..83

FIG. 20. IPAD AND OPAD CELL WITH SCAN LOGIC..85

FIG. 21. FLEXEOS LOADER OVERVIEW..86

FIG. 22. FLEXEOS LOADER CONTROL INTERFACE WAVEFORM. ...86

FIG. 23. FLEXEOS SOFTWARE FLOW..89

FIG. 24. SIMPLIFIED PICOGA ACHITECTURE. ...91

FIG. 25. PIPELINED DFG IN PICOGA. ..92

FIG. 26. EXAMPLE OF GRIFFY-C CODE REPRESENTING A SAD (SUM OF ABSOLUTE DIFFERENCES). 94

FIG. 27. EXAMPLE OF PIPELINED DFG. ..94

FIG. 28. EXAMPLE OF PGAOP MAPPING ON PICOGA. ...95

FIG. 29. RECONFIGURABLE LOGIC CELL: SIMPLIFIED ARCHITECTURE..97

FIG. 30. PIPELINE MANAGEMENT USING RCUS. ...99

FIG. 31. BASIC OPERATIONS IN GRIFFY-C. ...100

FIG. 32. SCHEMATIC VIEW ON THE THEORETICAL BANDWIDTH CONSTRAINTS................................112

FIG. 33. SIMPLIFIED MORPHEUS ARCHITECTURE. ...115

FIG. 34. MORHEUS SOC ARCHITECTURE. ..117

FIG. 35. CONFIGURATION DATA HIERARCHY..120

FIG. 36. HRE CONFIGURATION...122

FIG. 37. MORPHEUS MEMORY HIERARCHY. ..123

- 14 -

FIG. 38. CLOCK DOMAIN DATA STORAGE ORGANIZATION...131

FIG. 39. GENERAL VIEW OF THE DATA-FLOW ON THE MORPHEUS PLATFORM.134

FIG. 40. EXAMPLE OF A POSSIBLE DATA FLOW ORGANIZATION ON THE MORPHEUS ARCHITECTURE.

...135

FIG. 41. NOC SPIDERGON TOPOLOGY. ..140

FIG. 42. INITIATOR AND TARGET HRE-NI. ...141

FIG. 43. REPRESENTATION OF THE PING-PONG BUFFERING. ..145

FIG. 44. SYNCHRONIZATION SCHEME. ..146

FIG. 45. ARM C-CODE REPRESENTING HW HANDSHAKE. ..147

FIG. 46. DREAM C-CODE REPRESENTING HW HANDSHAKE..148

FIG. 47. SW SUPPORT FOR THE CONFIGURATION LOAD PROCEDURE...150

FIG. 48. DREAM INTEGRATION. ..152

FIG. 49. EXAMPLE OF THE PROGRAMMING CODE FOR DREAM..155

FIG. 50. INTEGRATION OF THE AG IN DREAM ARCHITECTURE. ..157

FIG. 51. A CLASSIFICATION OF MEMORY ACCESS TYPES ENABLED BY AG......................................159

FIG. 52. AG BLOCK DIAGRAM. ...162

FIG. 53. THROUGHPUT VS. INTERLEAVING FACTOR. ...164

FIG. 54. SPEED-UP WRT. ARM9 PROCESSOR...165

FIG. 55. PROPOSED MEMORY ACCESS PATTERN. ...178

FIG. 56. PROBLEM PARTITIONING. ..185

FIG. 57. INTEGRATION OF PARALLEL MEMORY CONTROLLER. ..191

FIG. 58. PARALLEL MEMORY CONTROLLER BLOCK DIAGRAM...192

FIG. 59. MODE SELECT BLOCK DIAGRAM..193

FIG. 60. ADDRESS GENERATOR BLOCK DIAGRAM. ..195

FIG. 61. PARALLEL COUNTER BLOCK DIAGRAM..195

FIG. 62. MODULE ASSIGNMENT UNIT BLOCK DIAGRAM. ...196

FIG. 63. SHUFFLE UNIT BLOCK DIAGRAM..197

FIG. 64. DE-SHUFFLE UNIT BLOCK DIAGRAM. ..198

FIG. 65. SYNTHESIS RESULTS FOR ASIC 90 NM: DESIGN COMPLEXITY, FREQUENCY AND

THROUGHPUT..200

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 15 -

LIST OF TABLES

TABLE 1. EDRAM SIZE AND CONFIGURATION OPTIONS. ..81

TABLE 2. DPRAM INTERFACE SIGNALS...81

TABLE 3. FLEXEOS 4K-MFC FEATURES AND SIZE. ...87

TABLE 4. EXAMPLE OF DESIGN MAPPING RESULTS. ..87

TABLE 5. PARAMETER FORMAT FOR PGAOP POSITION SPECIFICATION (BITS).104

TABLE 6. NODES ANNOTATION. ...112

TABLE 7. INTER-NODE BANDWIDTH REQUIREMENTS..113

TABLE 8. MEMORY HIERARCHY LEVELS. ...116

TABLE 9. CONFIGURATION BITSTREAM REQUIREMENTS FOR THE MORPHEUS IPS.119

TABLE 10. AREA REQUIREMENTS FOR DUAL CLOCK CEBS. ...121

TABLE 11. AN EXTERNAL BANDWIDTH PROVIDED BY A GENERAL PURPOSE MEMORY CONTROLLER.

...126

TABLE 12. STANDARD MEMORY ACCESS..158

TABLE 13. MASKED MEMORY ACCESS. ..159

TABLE 14. AREA OCCUPATION AND ENERGY CONSUMPTION..163

TABLE 15. PERFORMANCE OF SEVERAL APPLICATION KERNELS...164

TABLE 16. MEMORY ACCESS PATTERN PARAMETERS...179

TABLE 17. CORRESPONDENCE TABLE. ...193

TABLE 18. MODULE ASSIGNMENT FUNCTION COMPLEXITY FOR DIFFERENT CASES.197

TABLE 19. SUMMARY OF THE TECHNOLOGY INDEPENDENT DESIGN COMPLEXITY EVALUATION. ...199

TABLE 20. SYNTHESIS RESULTS FOR ASIC 90 NM..200

TABLE 21. FPGA SYNTHESIS RESULTS...201

TABLE 22. COMPARISON TO THE SCHEMES WITH 8 MEMORY MODULES AND 8 BITS DATA WIDTH. .203

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 17 -

LIST OF TERMS AND ACRONYMS

AG Address Generator

AHB Advanced High-performance Bus

ALU Arithmetical Logic Unit

AMBA Advanced Microcontroller Bus Architecture [1]

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CEB Configuration Exchange Buffer

CLB Configurable Logic Block

CPMA Configurable Parallel Memory Architecture

DEB Data Exchange Buffer

DFG Data-Flow Graph

DMA Direct Memory Access

DNA Direct Network Access

DPM Dynamical Power Management

DRAM Dynamic RAM

DSP Digital Signal Processor

DSS Dynamic Storage Scheme

DVFS Dynamic Voltage and Frequency Scaling

eFPGA Embedded FPGA

FFT Fast Fourier Transform

FIFO First In, First Out

FPGA Field Programmable Gate Array

FSM Final State Machine

GCD Greatest Common Divisor

GOPS Giga Operations

- 18 -

GPP General Purpose Processor

Granularity Refers to the size of the computational data element (see

section 2.1.2)

HDL Hardware Description Language

HRE Heterogeneous Reconfigurable Engine

HW Hardware

I/O Input/Output

ILP Instruction Level Parallelism

IP Intellectual Property

ISA Instruction Set Architecture

KPN Khan Process Net

LCM Least Common Multiple

LUT Look-Up Table

MIMD Multiple Instructions, Multiple Data is a technique

employed to achieve parallelism.

MPSoC Multi-Processor SoC

MUX Multiplexer

NoC Network-on-Chip

PN Petri Net

QoS Quality of Service

RA Reconfigurable Architecture

RAM Random Access Memory

RC Reconfigurable Computing

RF Register File

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

RTOS Real-Time Operating System

RTR Run-Time Reconfiguration

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 19 -

SIMD Single Instruction, Multiple Data is a technique employed

to achieve data level parallelism.

SoC System-on-Chip

SPR Special-Purpose Register

SRAM Static RAM

SRF Stream RF

SW Software

TCM Tightly Coupled Memory

VLIW Very Long Instruction Word

XR eXchange Register

- 21 -

CHAPTER 1

INTRODUCTION

In this chapter, a formal definition of the research goal is presented. The

discussion follows the reasons that made the research area to arise and outlines its

significance in the modern technology development. In the end, a brief overview

of the following chapters is given.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 23 -

1.1 MOTIVATION

The primary force that pushes the hardware development sector, enabling

to appear new devices with faster speed and higher complexity, is better

application performance. For four decades, the Moore’s Law that predicts a

doubling of transistor density every 18 months has been providing the necessary

conditions to satisfy ever-increasing computation requirements. Unfortunately,

nowadays we are reaching the limit when constantly mounting transistor density

no longer delivers congruous improvements in application performance. The

reasons are known well enough, but a clear alternative solution is not yet

available. When increasing the amount of transistors, wire delays and speed-to-

memory issues acquire greater side-effects. Aggressive single-core designs

unavoidably lead to greater complexity and larger power consumption. On top of

it all, scalar processors suffer from a fundamental limitation: their design is based

on serial execution, which makes it almost impossible to extract more instruction-

level parallelism (ILP) from applications.

By now, there are outlined new strategies to supplement Moore's law and,

exploring innovative architectures and design concepts, to overcome the

limitations of conventional systems. These strategies include:

 Multicore systems that use a set of cores of the similar type on a die to

continue delivering steady performance gains.

 Special-purpose processors, including application specific and

reconfigurable architectures, that provide enhanced performance in areas

where conventional processors perform much poorly.

 Heterogeneous architectures, where computational engines of various

nature, complexity and programming approach work cooperatively.

Each of these strategies has potential to deliver substantial performance

improvements. However, on the long term, heterogeneous computing has

prodigious means for accelerating applications beyond what Moore's law can offer

[64], in the same time getting over many of the obstacles that limit conventional

architectures. Thus, it is expected for heterogeneous architectures to become

extremely important over the next several years.

CCHHAAPPTTEERR 11.. IINNTTRROODDUUCCTTIIOONN

- 24 -

Although heterogeneous systems have great potential to obtain significant

performance, they might be totally ignored by programmers unless they are able

to make use of heterogeneous specifics in applications relatively easy. This

requires not only dedicated software environment, but – what is even more

important – thoroughly implemented data structure in the system. Heterogeneous

architectures may incorporate data-flows of various natures inside the system,

such as computation data, configuration data, control data, different

synchronization signals, I/O communications and many others, depending on the

type and amount of devices integrated into the system. Managing all these flows

within a single organization may become a nightmare. The data structure is

primarily based on the interconnection strategy inside the system as well as data

storage allocation. Communication and memory subsystems are responsible for

the efficient traffic routing, fast and timely data access, and prevention of

computational stalls induced by bottle-neck(s) in communication interface(s).

Such interfaces are very design critical, being able to introduce great benefits, if

enhanced with specific mechanisms to provide the amount and kind of data

specifically required by the running application. Thus, intelligent distribution of

the data-flows in the system supported by communication and storage means can

provide clear programming model for the user. Because of the predefined and well

regulated interaction between computational engines, a number of application

mapping stages can be easily automated by the compiler or other software tools.

In the aggregate, all described above mechanisms enable not only stable system

functionality, but also lighten programmer’s effort of mapping complex

applications.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 25 -

1.2 OBJECTIVES

This research targets complex reconfigurable Systems-on-Chip with

heterogeneous organization. Such systems unify computational engines of various

natures, such as general-purpose, application specific, reconfigurable and other

devices, within a common architecture. In order to benefit from running complex

applications, the integrated engines feature different computational densities and

purposes. Application mapping for such systems becomes a very sophisticated

task, requiring much manpower and time resources.

The objective of this research is to develop a memory organization that

would hide the heterogeneous nature of the system from the programmer,

providing a user-friendly interface for application mapping. From the user point of

view, the system should represent as close as possible a conventional single-

processor architecture with distributed storage organization. Such systems exploit

the traditional programming model, thus having the advantage of a clear and well-

understood concept of application mapping.

Simultaneously, this approach should preserve the inherent advantages of

the reconfigurable architectures that are primarily designed for data intensive

computations. Therefore, it is important to provide the required data bandwidth to

these devices, supporting respective parallelization and run-time adjustability of

the memory access according to the target application needs. In this scope, it is

prerequisite to optimize the memory access in order to provide the required data-

flow for the most data-hungry computational engines.

CCHHAAPPTTEERR 11.. IINNTTRROODDUUCCTTIIOONN

- 26 -

1.3 STATEMENT OF ORIGINALITY

Correct organization of the memory subsystem as well as data structure is

the crucial task in heterogeneous reconfigurable architectures. However, this

context emerged quite recently and thus, generalized methodologies and solutions

are not yet state-of-the-art. This research aims at exploring novel approaches and

trade-offs to extend the huge opportunities of heterogeneous architectures to the

memory infrastructure.

In this scope, topical matter relates to a memory access optimization.

Automated addressing FSMs have been successfully used for a long time with

high-end Digital Signal Processors (DSPs). However, it is an open research field

for massively parallel systems based on GPPs and FPGAs of various natures [10].

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 27 -

1.4 OVERVIEW

The thesis structure is organized as follows. Chapter 2 presents a

retrospective of the reconfigurable computing and specifics of the heterogeneous

nature of hardware architectures. The main stress is put on the memory subsystem

and its significance in the context of the whole system performance. The basic

terms, concepts, notions and definitions are given.

Chapter 3 introduces the MORPHEUS target architecture, making

emphasis on the most relevant concepts of this research.

Chapter 4 describes the exploration on memory organization and its

detailed implementation in the context of the target system.

Chapter 5 discusses the further enhancements of the research topic,

presenting the advanced parallel memory access acceleration technique. Together

with the previous chapter, this one presents numerical results and comparison with

the related works.

Finally, Chapter 6 concludes the thesis by summarizing the developed

techniques and solutions, outlining the contribution of this work in the scope of

the total project, and showing questions arose by this research that can be

basement for the future work.

- 29 -

CHAPTER 2

MEMORY ORGANIZATION IN HETEROGENEOUS

RECONFIGURABLE ARCHITECTURES

This chapter presents backgrounds and related research in the area of

heterogeneous reconfigurable architectures. The special emphasis is done on the

role which memory subsystem plays in the target hardware architectures.

Simultaneously, a number of important definitions and general concepts are given

which will appear throughout the entire work. All along the discussion, the

references to the related work are provided in order to complete a picture of the

state-of-the-art research and development in the target area.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 31 -

2.1 STATE-OF-THE-ART RECONFIGURABLE COMPUTING AND

RECONFIGURABLE ARCHITECTURES

Because of its capability to significantly speed-up a large variety of

applications, reconfigurable computing has become a subject of a large amount of

research. Its most important feature is the ability to run computations in hardware

with high performance, while keeping a lot of the flexibility peculiar to software

solutions.

Traditionally in computing, there are two primary methods for the

execution of algorithms. The first method is to use purely hardware technology,

either an Application Specific Integrated Circuit (ASIC) or a group of individual

components (or Intellectual Properties, IPs) integrated in a complex system.

ASICs are designed targeting specific computational task. Therefore, they are

very efficient when executing the exact computation they were designed for.

However, after fabrication the device cannot be adjusted if any part of it requires

further improvement, and complete circuit is forced to be redesigned and

refabricated. This is an expensive process in terms of resources and time-to-

market, especially considering the difficulties imposed by replacing ASICs in a

big amount of deployed systems.

The second method is to use software-programmed microprocessors,

which is a much more flexible solution. In order to perform a computation,

processors operate on a specific Instruction Set Architecture (ISA), peculiar to the

processor architecture. Execution of different instructions from the ISA alters the

system functionality without changing its hardware. However, this method has its

own drawback, which consists in significant performance degradation because of

low clock speed and/or work rate, being far below that of an ASIC. The processor

reads every instruction from memory, decodes it, and only after that executes it.

This brings about a large execution overhead for each individual operation.

Pipelined organization of the instruction execution can reduce the latency

overhead by means of additional circuit complexity, and thus higher power

consumption, but is not capable to eliminate it completely. In addition, the ISA is

defined at the fabrication time of the processor. Any other operations that are to

be implemented must be built out of existing instructions.

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 32 -

Reconfigurable computing (RC) in its turn fills the gap between hardware

and software solutions, offering potentially much higher performance than

software-programmable architectures, while keeping a higher level of flexibility

than hardware technologies. Reconfigurable devices, organized in the form of

Field-Programmable Gate Arrays (FPGAs), consist on an array of computational

elements whose functionality is specified by multiple programmable configuration

bits, called configuration bitstream. These elements are interconnected by means

of a set of programmable routing resources. Thanks to such organization, custom

digital circuits, composed by a set of logic functions, can be mapped to the

reconfigurable hardware by computing the these functions within the

computational elements, and using the programmable routing resources to connect

the elements together in order to form the necessary circuit.

RC has been shown to accelerate a variety of applications. Taking as

example a set of software kernels for multimedia applications, DREAM

reconfigurable processor [21] shows average performance about 30 GOPS and 1.8

GOPS/mm2. For comparison, an ARM926EJ-S processor [9] in the same

technology node achieves the performance up to 0.5 GOPS and 0.32 GOPS/mm2.

Neglecting some minor overheads, it would thus be necessary to provide up to 60

ordinary processors to match the performance delivered by DREAM on

computation intensive kernels.

In order to achieve such performance supporting a wide range of

applications, reconfigurable systems are usually organized as a combination of

reconfigurable logic and a General-Purpose Processor (GPP). The processor

performs various data-dependent control operations that cannot be done

efficiently in the reconfigurable logic, while the computation intensive cores are

mapped to the reconfigurable hardware. This reconfigurable logic is usually

composed of either commercial FPGAs or custom configurable hardware.

Compilation environments for Reconfigurable Architecture (RA) range

from tools to assist a programmer in performing a hand mapping of an appropriate

functionality to the hardware, to automated systems that map circuit functionality,

described in a high-level language, to a reconfigurable system. The design process

involves a number of stages. First, a program is partitioned into blocks to be

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 33 -

implemented on hardware, and those which are to be implemented in software on

the host processor. The computations intend for the reconfigurable hardware are

synthesized into a gate level or register transfer level (RTL) circuit description.

This circuit is mapped onto the computational elements within the reconfigurable

hardware which are connected using the reconfigurable routing. After

compilation, the circuit is ready for configuration onto the hardware at run-time.

These steps, when performed using an automatic compilation environment,

require relatively small effort, whereas, performing these operations by hand can

result in a more optimized circuit for performance-critical applications.

However, the efficiency of the mapping depends not only on the carefully

developed manual task distribution or on the advance of automated tools, but also

it depends – to a certain extant, even more – on the exact architecture of the target

reconfigurable system, its data structure and memory access facilities. This

problem acquires even more significance when the matter concerns complex

systems unifying two or more reconfigurable devices. Intensive data traffic

between reconfigurable units, memory and main processor faces the prospects of

communication bottle-necks and computation stalls. In order to avoid such

problems, reconfigurable system should represent clearly organized architecture,

transparent for compilation tools and end-user.

Since FPGAs are forced to pay an area penalty because of their

reconfiguration capability, device capacity can sometimes be a concern. Systems

that are configured only at power-up are capable to elaborate only as much of

functionality as will fit within their programmable structures. In order to

accelerate additional program sections, the reconfigurable hardware should be

reused during program execution. This process is known as run-time (or

dynamical) reconfiguration (RTR). While this concept allows for the acceleration

of a greater portion of an application, it also introduces the configuration

overhead, which limits the amount of acceleration possible. Methods such as

configuration compression and the partial configuration can be used to reduce this

overhead.

Consideration must be given to a fact that reconfigurable computing is

very young and rapidly developing concept. Its classifications are still being

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 34 -

formed and refined as new architectures are developed. No unifying taxonomy has

been suggested to date. However, several inherent parameters can be used to

classify these systems.

2.1.1 HOST INTEGRATION

Host integration is often encountered in practice, when the reconfigurable

hardware is coupled with a GPP. The reason is that programmable logic tends to

be inefficient at implementing certain kinds of operations, such as variable-length

loop and branch control. In order to increase the efficiency, the program sections

that cannot be sufficiently mapped to the reconfigurable logic are executed on a

host processor. Whereas, the sections with a high computation density, that can

benefit from implementation in hardware, are mapped to the reconfigurable logic.

For the systems that use a GPP in combination with reconfigurable logic, there are

several methods to couple these two computation structures.

1. Reconfigurable hardware may be implemented solely to provide

reconfigurable capabilities within a host processor [61], [40]. This solution

provides a traditional programming environment with the addition of

custom instructions that may vary over time. The reconfigurable units

operate as functional units on the main processor data-path using registers

to hold the input and output operands.

2. A reconfigurable unit can be used as a coprocessor [80], [54], [63], [20],

[8]. In general, a coprocessor is larger and more independent than a

functional unit, being able to perform computations without the constant

supervision of the host processor. After initialization phase of the

reconfigurable hardware, the processor either sends the necessary data to

the logic, or provides an address in the memory where this data might be

found. The reconfigurable unit performs the necessary computations

independently, and returns the results after completion. Such integration

strategy allows the reconfigurable unit to operate for a large number of

cycles without interfering from the host processor, and potentially permits

the host processor and the reconfigurable logic to operate in parallel. This,

in its turn, decreases the overhead induced by the use of the reconfigurable

logic, compared to the first approach when the reconfigurable unit

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 35 -

communicates with the host processor each time a reconfigurable

instruction is used.

3. An integrated reconfigurable unit [78], [7], [39] behaves as if it is another

processor in a multiprocessor system or an additional computation device

accessed through external I/O. The data cache of the host processor is not

visible to the attached reconfigurable hardware. Therefore, there is longer

communication latency between the reconfigurable unit and the host

processor or main memory. This communication is performed though

specific primitives similar to multiprocessor systems. In spite of the

latency drawback, this type of RA allows for a great deal of computation

independence, by shifting large segments of a computation over to the

reconfigurable unit.

All of the described organizations target various communication and

computation models. The tighter the integration of the reconfigurable unit, the

more frequent is its computation/control data exchange with the host system due

to a lower communication overhead. However, tightly coupled hardware is unable

to operate with more or less significant segments of data without intervention

from a host processor, and the amount of available reconfigurable resources is

often quite limited. The more loosely coupled solutions allow for greater

execution parallelism, but suffer from higher communications overhead.

2.1.2 GRANULARITY

Reconfigurable hardware is assembled from a set of similar computation

elements that form a matrix. These basic elements, traditionally called

Configurable Logic Blocks (CLBs), features various complexity from a simple

block that can perform computation on a bit-level with few inputs (usually, up to

three), to a structure operating on a word-level, organized as a small Arithmetical

Logic Unit (ALU). The size and complexity of the basic CLBs is referred to as the

block’s (or RA’s) granularity.

An example of a fine-grained RA is the Xilinx6200 series of FPGAs [6].

Its functional unit can implement two- or three-input functions. Although such

architecture is efficient for bit manipulations, it can be too fine-grained to

rationally implement a number of circuits, such as multipliers. Similarly, finite

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 36 -

state machines (FSMs) frequently are too complex to be reasonably mapped on

fine-grained logic blocks.

Other RAs use a granularity of logic block that can be referred as medium-

grained [41], [42], [46]. For instance, Garp [41] was designed to perform a set of

operations on up to four 2-bit inputs. Another medium-grained structure is

embedded inside a general-purpose FPGA to implement multipliers of an adaptive

bit width [42]. The CLB used in this architecture is capable of mapping a 4 x 4

multiplication, or being cascaded into bigger structures. The CHESS architecture

[46] also operates on 4-bit inputs, with each of its CLBs acting as a 4-bit ALU. In

general, medium-grained architecture may be utilized to implement data-path

circuits of varying widths, which makes it more similar to the fine-grained

structures. However, having the possibility to perform more complex operations

of a greater number of values, medium-grained structure can be efficiently used

for a wider range of operations.

Coarse-grained architectures are mainly used for the implementation of

word-width data-path circuits. Since their CLBs are optimized for large

computations, they perform these operations much faster and consume fewer

resources than a set of smaller elements connected together to form similar

structure. However, because of their fixed internal architecture, it is impossible to

make optimizations in the size of operands. The RaPiD [35] and the Chameleon

[3] architectures are examples of this which are composed of word-sized adders,

multipliers, and registers. If, e.g., only three 1-bit values are required to process,

the efficiency of these architectures suffers from a redundant area and speed

overhead, since the computation is performed on all of the bits in the full word

size.

The granularity of the RA also implies a significant effect on the

reconfiguration time of the device. This is a noticeable issue for run-time

reconfiguration, when the length of the reconfiguration phase influences the

performance of the complete system, causing computation stalls and

communication traffic jams. A fine-grained array requires many configuration

points to perform very small computations, and thus requires longer bitstream

during configuration.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 37 -

Thus, the granularity parameter effects not only the internal RA

functionality, such as efficient computation mapping, execution speed, resource

occupation, and power consumption; but also it influences the host system

performance in terms of computational efficiency and data distribution. This

problem can be solved by having both coarse- and fine-grained arrays and on the

same chip.

2.1.3 HETEROGENEOUS ARCHITECTURES

In order to achieve greater performance and computation flexibility, the

RAs of mixed granularity can be integrated together within a common system.

Such systems are called heterogeneous because they unify hardware of various

complexity and computational capability.

The most relevant advantage of the heterogeneous approach is that it

potentially allows each integrated device to perform the tasks to which it is best

suited. This model can employ the dedicated RAs to accelerate some operations

up to 100 times faster than what conventional processors can achieve, and

consequently expanding the applicability of conventional processor architectures.

In the situation when applications include both code segments that could benefit

from acceleration and code segments that are better suited for conventional

processing, there is no single type of processor which would equally satisfy

computation strategies. Heterogeneous organization makes it possible to map each

operation of a given application on the right hardware type.

However, there are two primary obstacles hampering heterogeneous RA to

be widespread [64]: the programming complexity required for efficient

distribution of workloads across multiple computational engines, and the

additional effort, required to map a code segment on the appropriate

computational device, induced by a specificity of its hardware architectures.

These issues can impose significant difficulties, so that any possible advantage of

a heterogeneous approach should be compared with the costs to overcome them.

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 38 -

2.2 MEMORY AND COMMUNICATION SUBSYSTEMS IN

RECONFIGURABLE ARCHITECTURES

For a long time, the integration of RA in embedded systems has been

considered a very attractive alternative for the pure Application Specific

Integrated Circuits (ASICs). It allows obtaining software level programmability

having the performance of conventional ASICs. The increasing performance and

the usability of RA make them a feasible solution for computationally intensive

tasks, thus guaranteeing the required data bandwidth for the RA becomes the key

implementation issue.

Typically, the software programmable architectures have sequential

organization, i.e. a small set of data is computed at a time (usually two, a few

more for VLIW or superscalar processors). In these architectures, a HW

computational unit is strictly separated from a memory region, providing flexible

and programmable addressing mechanism based on single random access. Such

architectures also feature a local register file (RF) and a memory access pattern, so

that addressing of computation data is performed by specific instructions.

Compilers support this addressing mechanism, decomposing the data patterns in

terms of collections of single load/store operations, which are described by control

flow statements (e.g. for/while loops). The high sophistication degree of modern

compilation techniques and the appropriate skillfulness in high level programming

languages allow covering almost all kinds of regular data addressing patterns

required by applications.

Another feature of ASIC is its space-oriented computation where a

theoretically infinite number of computation operands may be required for any

given operation. Therefore, data transfer organization in an ASIC is not a trivial

task, and it is crucial for its performance. On the other hand, it is always possible

to implicitly remove programmability and to implement any data flow and

operand retrieving pattern as a part of the design itself. Temporary storage

resources, which are usually distributed between computational units and

dedicated data channels, are specifically designed where it is required.

In order to benefit from natural parallelism of RA, it is essential to provide

a data bandwidth comparable to that of ASICs. In addition, to justify their

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 39 -

integration in a given embedded system, RAs need to be capable of changing the

addressing pattern in order to match the reconfigurable computation. Therefore,

one of the most critical parts of the system architecture is to assure a suitable data

structure which would feed with data such computation dense core. Thus, the

bottleneck is passed on to the rapidly growing requirements of the respective

memory infrastructure. Thoroughly designed memory subsystem, organized in a

layered manner with multi-port local buffers, programmable DMA, efficiently

implemented main memory controller and intelligently distributed temporal

storage repository, become mandatory. Pure off-chip solutions, without essential

on-chip aids, lack the required bandwidth and are unacceptable regarding power

consumption and system costs. Memory architecture in reconfigurable SoCs poses

additional challenges to the digital designer, since target applications often require

flexible memory access patterns (e.g. various word sizes, parallel access or

different addressing modes).

2.2.1 THE PROBLEM OF MEMORY SHARING IN EMBEDDED RECONFIGURABLE

ARCHITECTURES

In the beginning of the era of reconfigurable architectures, the first designs

were oriented at extending the instruction set of standard RISC processors.

Machines like PRISM [15], PRISC [61], OneChip [80] in a way or another all

used reconfigurable hardware to extend the processor computation capabilities,

while still relying on the processor for handling memory accesses.

As the reconfigurable computing development leads to the design of more

and more dense extension blocks, these blocks also become more data hungry.

One issue that rose from this efforts is that the function unit paradigm, although

elegant and compiler friendly, hardly provides enough computation parallelism to

justify the reconfigurable hardware utilization. Following proposals in the area of

reconfigurable architectures showed a specific interest on the data feeding

mechanism. XiRisc [22], if similar in many aspects to the cited designs, provides

a three-way VLIW configuration to enhance memory access bandwidth. Garp [20]

presents a specific data addressing mechanism implemented in the reconfigurable

array. The Molen programming paradigm and HW architecture [74] distributes

data in the system in two ways:

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 40 -

 Small amounts of data are exchanged between the processor core and the

reconfigurable unit through specific Exchange Registers (XRs).

 Intensive data streams can be connected directly to the extension unit, but

in this case either the data flow is routed to the unit with a streaming

pattern, or the unit itself is provided with a HDL coding that specifies the

type of addressing required

In this case, the user is required to design the addressing pattern of the

extension instruction as part of the computation design, as it is the case for ASIC

implementation. This solution has the relevant advantage of minimizing

exchanges between the unit and the external memory hierarchy, as temporary

variables can be handled locally. On the other hand, the approach of mapping

memory addressing as part of the micro-coded extension segments could be costly

in terms of resources and will make any kind of co-compilation impossible

creating two different and separate compilation domains. Also, this solution can

only be valid for fine grained reconfigurable units such as embedded FPGAs,

while it is hardly applicable to coarse-grained logics. An example of embedded

reconfigurable processor where memory access patterns are implemented on the

eFPGA fabric is described in [18].

With respect to all architectures mentioned above, coarse grained

reconfigurable fabrics feature a significantly different computational grain of the

ISA extension segments. As a consequence of this shift, connection between

reconfigurable units and the system memory in order to provide enough data to

exploit the extension segment potential appears as even more severe. Most coarse-

grained data-paths such as Pact XPP [77] or PipeRench [39] do not actively

intervene on the data layout: they simply consume data streams, provided by

standard external sources or appropriately formatted by an external processor core

or by specific DMA logic. Morphosys [66] is only slightly more sophisticated,

featuring a dedicated frame buffer in order to overlap data computation and

transfers over orthogonal chunks of variable width.

Another interesting solution is the ADRES architecture [51]. ADRES

exploits a reconfigurable unit that is similar to that of Morphosys, based on

coarse-grain processing elements. In contrast to Morphosys, the ADRES

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 41 -

reconfigurable hardware is used as a functional unit in the frame of a VLIW

processor. Data exchange with external memory is realized through the default

path of the VLIW processor, and data exchanges take place on the main register

file, as it was the case for XiRisc. The programming model is thus simplified

because both processor and reconfigurable unit share the same memory access.

ADRES is completed by a compilation environment [50] that schedules

Instruction Set Architecture (ISA) extensions in order to exploit maximum

concurrency with the VLIW core and handles data addressing towards the VLIW

register file for both reconfigurable array and hardwired core. A relevant

additional value of the compiler, that made the RF-oriented micro-architecture, is

that extension instructions are generated by the same compilation flow that

produces code for the hardwired core. The provided data is thus randomly

accessed and it is not limited to data streaming. However, the VLIW register file

may remain a bottleneck for intensive data-flow. A different solution is provided

by Montium [67], a coarse-grain reconfigurable processor composed of a scalable

set of Tile Processors (TP). Each TP is equiped with RAM buffers, feeding each

ALU input. Buffers are driven by a configurable automated Address Generation

Unit (AGU). Montium is affected by the same bottleneck as most of architectures

overviewed above: in order to exploit its computational density, it needs to fetch

from a data repository several operands per clock, and possibly each of them

featuring an independent, if regular, addressing pattern.

2.2.2 STREAMING COMMUNICATION MODEL AND AUTOMATED MEMORY

ACCESS

In conventional multi-processor embedded systems with high level of

computational parallelism, data throughput becomes a significant issue on the

path to achieving the expected performance and exploiting the available

computational power. State-of-the-art DSP architectures, and massively parallel

FPGA devices have dealt extensively with such problems.

A general solution is to structure communication between data storage and

processing units in a streaming way. The memory subsystem is based on

configurable stream units that move data while computation is performed. Stream

units are specialized addressing and data communication blocks that are optimized

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 42 -

for contiguous data transfers. They are organized as a set of stream descriptors,

which define the memory access pattern, to pre-fetch and align data in the order

required by the computational block. By utilizing the stream units in the memory

subsystem, the architecture effectively decouples communication from

computation and allows dealing with their implementation and optimization

individually [14]. The stream units benefit from pre-fetching data before it is

needed and, consequently, the system performance becomes dependent on the

average bandwidth of the memory subsystem with less sensitivity to peak latency

to access a data element. Chai S.M. et al [25] outline the following main

properties of streaming computation model:

 Software computation kernels are independent and self contained. They

are localized in such a way that there are no data dependencies between

other kernels. The user annotates portions of a program that exhibit this

behavior for mapping onto a stream processor or accelerator.

 Computation kernels are relatively static. The processing of each

computation kernel is regular or repetitive, which often comes in the shape

of a loop structure. There are opportunities for compiler to optimization

the computation and the access patterns.

 Explicit definition of communication. Computation kernels produce an

output data stream from one or more input streams. This stream is

identified explicitly as a variable in a communication data-flow or a signal

between computation kernels.

 Data movement completely controlled by programmer. A programmer can

explicitly define data transfer from memory to other computation kernels.

Hardware mechanisms, such as a DMA or stream unit, provide this

capability without intercepting the main processor. The stream

communication model allows either minimization of data movement by

localizing the computation, or pipeline of computation with data

movement. If memory bottlenecks arise, the programmer can retune the

memory access.

Automated address generation based on regular patterns can be considered

a promising option for providing high performance reconfigurable hardware with

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 43 -

the required bandwidth. In fact, embedded applications, and especially those that

benefit most from mapping on reconfigurable architectures, typically feature

kernels based on regular addressing patterns, where addressing is more often is

generated and incremented with regularity as part of a loop. A convenient way to

retrieve data at high parallelism, commonly used in state of the art highly parallel

DSPs, is to utilize programmable stridden addressing generation FSMs.

This is achieved in Morpheus by making use of programmable Address

Generators (AG), that are appropriately set at the beginning of each computation

kernel, and will produce a new local address at each clock or, more precisely, at

each request from the data-path, depending on the issue delay of the required

computation. Automated addressing FSMs thus add a new level of configurability

to the system, providing an adaptive addressing mechanism for reconfigurable

units, thus greatly enhancing their potential exploitation of inherent parallelism.

As it is the case with reconfigurable computing in general, automated addressing

can be considered a viable alternative only if supported in the long term by solid

compilation tools that could spare the end user from manual programming. In fact,

it is possible to automatically extract from a high level specification of the

algorithm (typically C/C++) regular addressing patterns to be applied to

automated addressing FSM.

2.2.3 LOCAL REPOSITORY AND ITS IMPLEMENTATION TRADE-OFFS

On-chip static memories (SRAMs) tend to become slower when the

variability effect is present [79]. The bigger the design margins that have to be

added in the design with negative implications in meeting specific performance

constraints, the slower is the actual performance of the system. This effect

becomes more evident at higher frequencies, where not only more power is being

consumed, but also the slack between the required performance and the one

offered by the memories becomes tighter at every technology node. To address

this problem, it is necessary to relax operating frequency while still meeting the

application real time constraints. One of the advantages of reconfigurable

computing is that frequency requirements can be relaxed utilizing parallel

architectures for both the functional units and the local layer of the memory

hierarchy [53]. For this reason, it is useful to define a memory layer local to the

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 44 -

RA, which can be addressed as a single item by the system, but is organized in

small local banks that can be accessed concurrently by all ports of the

reconfigurable unit.

The physical structure of such banks can organized as a traditional

MUXed SRAM. Built around a standard, off-the-shelf memory manufactured in

high volume, a MUXed SRAM offers a very attractive cost structure in terms of

power, area and timing. However, this advantage might be misleading: although a

standard MUXed SRAM costs less than a specialized dual-port memory on a per-

bit basis, the total cost from a system perspective might be significantly higher.

Any architecture with shared memory access built around a standard RAM device

will require additional facilities in order to enable access to a common memory

block for two computational units. This will require additional design resources

and most likely will elongate the development cycle. Furthermore, after layout

stage, the additional logic may occupy a physical area comparable to that of

integrated dual-port memory while requiring additional place and route cost.

Considering the performance implications, it appears that a single port MUXed

SRAM suffers from a severe disadvantage relative to a multi-port alternative.

Since the single port has always to be switched from one device to another, each

device accessing the MUXed SRAM will be limited to less than half of the

maximum theoretical bandwidth. On the other hand, a multi-port memory capable

of supporting simultaneous access, often across different bus widths and

frequencies, imposing no delay on either port during a read or write operation.

Consequently, its maximum performance will exceed the traditional MUXed

SRAM by a factor of at least two [16]. While the technological density is

continuously increasing, it is important to move the performance closer to its

theoretical capability, narrowing the gap between HW density and practical

functionality.

2.2.4 RELATED RESEARCH ON DATA COMMUNICATION AND MEMORY

SUBSYSTEMS

There is a number of streaming processor architectures presented in

literature over recent years. We can mark out several examples: RAW [73],

IMAGINE [28], Merrimac [29], and the RSVP™ architecture [27], [48]. A set of

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 45 -

computational models supporting streaming concept, such as SCORE [24], ASC

[52], and Streams-C [38] was also developed.

The IMAGINE processor represents a programmable architecture that

achieves the performance of special purpose hardware on graphics and

image/signal processing. This is realized by exploiting stream-based computation

at the application, compiler, and architectural levels. IMAGINE supports 48

ALUs organized as 8 SIMD clusters. Each cluster contains 6 ALUs, several local

register files, and executes completely static VLIW instructions. The stream

register file (SRF) is the basement for data transfers on the processor. The

memory system, arithmetic clusters, host interface, microcontroller, and network

interface all interact by transferring streams to and from the SRF. IMAGINE is

programmed at two levels, kernel-level and stream-level. Kernels may access

local variables, read input streams, and write output streams, but may not make

arbitrary memory references, whereas at the stream-level supported by Stream-C

basic functions are provided for manipulating streams and for passing streams

between kernel functions. All memory references are deployed utilizing stream

load/store instructions that transfer entire streams between memory and SRF. This

stream load/store concept is similar to the scalar load/store RISC architecture; it

simplifies programming and optimizes the memory system for stream throughput,

rather than the throughput of individual accesses. The memory system provides

2.1GB/s of bandwidth to off-chip SDRAM storage via four independent 32-bit

wide SDRAM banks operating at 143MHz. The system can perform two

simultaneous stream memory transfers. To support these parallel transfers, four

streams (two index streams and two data streams) connect the memory system to

the SRF. IMAGINE addressing modes support sequential, constant stride, indexed

(scatter/gather), and bit-reversed accesses on a record-by-record basis (see Fig. 1).

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 46 -

Fig. 1. Subsystem and bandwidth hierarchy of IMAGINE processor [28].

Along with homogeneous stream multi-processor platforms there exists a

number of heterogeneous reconfigurable systems, whose memory organization

provides different trade-off solutions between computation power and flexibility:

examples are Chameleon [3], BAZIL [72], Pleiades [81], etc.

Fig. 2. BAZIL architecture block diagram [72].

The BAZIL architecture is based on the concept of intra-chip DSP and

programmable logic block co-processing. Key blocks in BAZIL are LSI Logic

ZSP400 (ZSP) and ePLC cores, which are integrated together with other

peripherals for external memory and data access. BAZIL's heterogeneous

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 47 -

architecture can be controlled by bus masters, which include the ZSP and DMA

controller, and AHB-bridge. These alternative methods of on-chip cores and

peripherals control allow robust solution for system programming. BAZIL

supports combined boolean and DSP processing through a flexible core

interconnect scheme. There are two types of inter-core communication supported

in BAZIL architecture:

 An AMBA High-speed Bus (AHB) provides an arbitrated mean for inter-

core communication.

 The DSP and ePLC blocks are additionally interconnected through a

higher bandwidth inter-core interface (DSU) that allows higher throughput

and data sharing between cores.

Since BAZIL interfaces are AMBA based, they represent straightforward

and convenient concept. The ZSP400 Core exploits in parallel two independent

interfaces for memory and peripherals (see Fig. 3): an Internal Port interface for

close coupled, single cycle program and data memory; and an External Port for

Instruction Unit (IU) and Data Unit (DU) alternative access to external memory

and peripherals. Both internal and external ports contain instruction and data

interfaces that support either single-port or dual-port memories. The ePLC sub-

systems (see Fig. 4) are intended as loosely coupled co-processors for algorithm

acceleration. Each ePLC is made up of:

 The Multi Scale Array (MSA), containing user programmable portions of

the ePLC and consisting of an array of configurable ALU (CALU) Cells.

 The Application Circuit Interface (ACI), providing the signal interface

between the MSA and the application circuitry.

 The PLC Adapter, loading the ePLC configuration data and interfaces to

test circuitry, clock and reset control through a Configuration Test

Interface. It allows the ePLC programming to be handled over the on chip

AHB from flash or other external memory.

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 48 -

Fig. 3. ZSP-core memory subsystem [72].

Fig. 4. ePLC-core memory subsystem [72].

In typical broadband processing (see Fig. 5), data is transmitted in a batch

or streaming mode through a high-bandwidth buffered interface (PCI port). The

data buffer simplifies the caching mechanism of the on-chip data bursts. ePLC

blocks are used to perform a range of pre-processing and data reduction

operations. Then data is passed to the ZSP, either through shared memory or

directly from the DSU for DSP operation. The DSP output data can be either

exported off chip or to the ePLC for further post processing via the shared ZSP

internal memory. While the DSU does not provide a communication channel

between the ePLC subsystems, the ePLC bocks can communicate via the shared

ZSP internal memory or FEB. It is also possible to move data between ePLC

systems via ZSP controlled AHB traffic. The amount of data available and used in

different processing steps (pre-DSP and post-processing) typically is reduced with

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 49 -

each step. As a result, interfaces required for export of processed data (Ethernet)

can have significantly lower bandwidth than those needed during import stages

(i.e. PCI).

Fig. 5. BAZIL dataflow [72].

CCHHAAPPTTEERR 22.. MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE AARRCCHHIITTEECCTTUURREESS

- 50 -

2.3 SUMMARY

To date, reconfigurable computation reached high level of development

and proved its feasibility in a great range of implemented devices. Target

applications become more and more complex, including dense computation for

multimedia kernels, data intensive flows for communication tasks and support for

Run-Time Operating Systems (RTOS). Heterogeneous architectures are meant to

deal with such applications.

One of the most tricky and critical tasks in heterogeneous hardware design

is to well organize the memory susbsystem. In contrast to homogeneous systems,

the memory storage of a heterogeneous architecture must deal with data traffic of

various nature, granularities and densities. Moreover, it is essential to delimit

computational engines from each other in order to fully exploit particular features

of each hardware component. In this scope, management of the local storages

acquires an additional importance.

There are various methods to provide computational engines with the

required data dandwidth. Streaming data-flow, parallel memory access, local data

buffering, programmable data pattern – all of them aim at a more efficient and

flexible data distribution. Comprehensive utilization of these techniques will

allow releasing the full potential of heterogeneous reconfigurable architectures.

- 51 -

CHAPTER 3

OVERVIEW OF THE MORPHEUS HETEROGENEOUS

RECONFIGURABLE PLATFORM

Most of the research was performed in the framework of the MORPHEUS

project, which includes an architecture design and hardware development of the

heterogeneous reconfigurable platform. Since the project is an integration of the

standard blocks, custom-design IPs and conceptual innovations from various

industrial and academic partners, it is essential to make a general overview of

these contributions and summarize the related to this research features.

Consequently, this chapter presents the most relevant features of the MORPHEUS

platform which are significant in the scope of the research area of this thesis.

Namely, the overview of the platform is detailed with the descriptions of the

reconfigurable engines provided by MORPHEUS partners. The presented

specifics will be used in the following chapters as a basis for the design concepts’

development and justification.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 53 -

3.1 MORPHEUS DESCRIPTION

The large-scale deployment of embedded systems, through cooperating

objects for example, is raising new demanding requirements in terms of

computing performance, cost-efficient development, low power, functional

flexibility and sustainability. This trend results in an increasing complexity of the

platforms and an enlarging design productivity gap: current solutions outlived

their potential while current development and programming tools do not support

the time-to-market needs.

MORPHEUS is a Multipurpose Dynamically Reconfigurable Platform for

Intensive and Heterogeneous Processing – a technology breakthrough for

embedded computing. It copes with the above introduced challenges by

developing a global solution based on a modular SoC platform providing the

disruptive technology of embedded dynamically reconfigurable computing

completed by a software (SW) oriented design flow. These “Soft Hardware”

architectures will enable huge computing density improvements (GOPS/Watt) by

a factor of 100x, reuse capabilities by 5x, flexibility by more than 100x and time-

to-market divided by 2, thanks to a convenient programming toolset.

Hence, MORPHEUS provides a new concept of flexible “domain focused

platforms”, positioned between general purpose flexible hardware and general

purpose processors. It delivers:

 A modular silicon demonstrator composed of complementary run-time

reconfigurable building blocks to address the different types of application

requirements

 The corresponding integrated design flow supporting the fast exploration

of HW and SW alternatives

3.1.1 OBJECTIVES

From a business perspective, embedded systems are facing tough cost-

effectiveness issues: the mitigation of increasing developments costs of silicon

platforms dedicated by markets (customer-centric development with stringent

time to market and short lifecycle constraints) is imperative: the customization

after fabrication by SW techniques promises to give the response provided that

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 54 -

challenges in architecture and design tools are overcome. The first objective of

this project is to provide best of class solutions in these domains and to support

these key markets.

Existing commercial products (mainly low architecture level FPGA from

United States vendors, completed by some Intellectual Property products) bring

limited benefits in combining flexibility (field programmability) and efficiency

(computing density, development time) due to the lack of hybrid architecture and

late binding capabilities. On the other hand, cutting edge research programmers in

Europe and R&D programmers in the US demonstrate decisive improvements

through dynamic reconfiguration on coarse grain architectures provided that

ambitious associated tools exist. Thus, MORPHEUS objective to provide a new

type solution summarized in Fig. 6.

MMOORRPPHHEEUUSS

GPP:
- low comp. density
- power inefficient

- low speed

SOC:
- high NRC

- low reconfigurability
- time-to-market

FPGA:
- design inefficient
- power inefficient
- area overhead

Computation
Intensive
Flexible

Embedded
Systems

Paradigm shifts :
Field adaptivity + performance

Specificity + Sustainability

Specific
architectures

Programming
efficiency

Heterogeneous
optimised
infrastructure

Hardware
flexibility

Generic
performing

architectures

Generic
flexible

architectures
Flexible domain-

focused platforms

Fig. 6. MORPHEUS objectives.

The figure shows the position of the MORPHEUS platform in the range of

computing solutions for embedded systems, between generic, programmable but

inefficient General Purpose Processors (GPP), optimized but inflexible ASIC and

flexible generic but inefficient FPGA. In summary, the MORPHEUS aims at

enabling flexible ”Domain Focused Platforms” providing breakthroughs in

performance and cost-effectiveness to embedded computing systems.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 55 -

As high intrinsic cost of FPGA dominated by wires routing is caused by

their general-purpose character, to solve this problem, MORPHEUS proposes the

concept of domain focused platform with specialization of reconfigurable logic.

According to this concept, the cost reduction can be achieved if reconfigurable

logic architecture is optimized towards requirements of processing kernels from a

target application domain instead of being made fully general-purpose. The

different applications domains are representative of data-path-oriented, random-

logic-oriented, or memory-oriented: it will thus provide an efficient validation of

the suitability of the proposed platform for a wide range of embedded systems.

Dynamical re-configurability [17] leads to multifunctional hardware at low

cost, low power consumption and high performance, making the platform

attractive and cost effective for a new breed of embedded applications. Finally, for

most identified functions, the main benefits of run-time reconfiguration in

embedded products should be real estate (i.e., reduction of the area) and power

consumption (i.e., reduction of the interconnection).

Reconfigurable devices with their regular structure are good candidates for

deeper sub-micron technologies (and even beyond CMOS). Speed and clock

distribution make a strong case against long distance interconnection, hence

favoring mesh-connected designs with fast communications between neighbors,

as well as the optimized distribution of memory and processing resources. Using

hierarchical architectures and wiring by abutment in that spirit could potentially

solve the current scalability problem of FPGAs. As an effect of limited routing

resources, the wiring congestion worsens with the size of the circuit.

Implementing a Network-on-Chip with capabilities for reconfiguration is another

way to increase scalability.

Coarse granularity facilitates time flexibility (whereas other solutions are

also possible to implement dynamic run-time re-configurability) and, associated to

well defined high level architecture and abstraction layers, also facilitates, in some

extent, design exploration and compilation. On the other hand, fine granularity

facilitates spatial flexibility and probably high level synthesis. Thus, a

heterogeneous mixed-grained programmable architecture constitutes the HW

platform target for MORPHEUS.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 56 -

In order to prioritize and quantify the objectives, an analysis by domains

has been made to take into account application dependant metrics. It results in the

following list of quantified and prioritized global objectives compared with

today’s state-of-the-art FPGAs:

 Faster time to market is the primary goal for all application test cases.

FPGAs typically require each of the multiple tasks of a complex

application to be broken down to RT-level. Higher abstraction, better

adaptation to memory and interconnect requirements and better support of

reuse shall decrease the design/implementation/validation/debug phase by

at least 50%. By the way this would result in cutting by half the number of

re-designs and the associated cost due to protocol/standard changes. In

term of overall cost-effectiveness it can also be mentioned that the unit

prices should be reduced by 5 to 10 compared to future (3 years) FPGA, as

a result of flexibility (best use of HW resources) and of an optimized

computing architecture.

 Second major goal is an increased flexibility. It is mandatory to map

multiple tasks and or applications to the same processing platform. This

needs to take place during runtime (e.g. to adapt to a new image format or

decoding scheme) – i.e. without reboot of the entire unit or any loss of

data. This objective can be achieved in combination with error correction

mechanism if the reconfiguration time is locally below 20μs (coarse grain

level) and globally 1ms. (Several seconds are typical for today’s larger

FPGAs).

 Processing power associated with high data rates (e.g. up to 40Gbit/s per

wavelength for telecommunications systems) are another concern for the

targeted applications. Today’s FPGAs already support 40 Giga

multiplication/accumulation operations per second and more. In absolute

numbers, this should be sufficient to implement most required algorithms.

The processing power needs to be high enough to process all incoming

data streams without any loss of data. It is required that such numbers can

be sustained for schemes more complex than FIR-filters though.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 57 -

 Power consumption is another goal. The efficiency of FPGAs should be

met. Increases in efficiency (in terms of GOPS/Watt) by at least a factor of

two are considered desirable and realistic.

3.1.2 TARGET APPLICATIONS

These techniques can be applied whenever systems adapt to changing

requirements, especially when there are severe constraints upon the

cost/size/power of the computer hardware. Examples of these applications include

communications, multimedia, instrumentation, and robotics. MORPHEUS

specifically addresses:

 Broadband Wireless Access Systems, where IEEE 802.11a and 802.16-

2004 implementation on same SoC is expected to lead to important silicon

area savings and design time improvement.

 Network routing systems, where RC-enhanced network processors designs

are poised to make an impact on future packet-processing systems in so-

called active networks.

 Professional video, where it is expected that typical image processing

operations can be mapped very efficiently on coarse grain reconfigurable

architectures.

 Homeland security, where improved detection and identification require

intelligent camera systems where algorithms require sustained

performance in the tens of GFLOPS while providing cost-effectiveness

and sustainability.

An example of a target application is presented hereafter in order to

examine the system requirements in more detail. The application is a general

purpose (multi applications) image processing system for vision applications.

Traditionally, the implementation of image processing consists in mapping a

hardwire RTL algorithm over FPGA. Such an approach is useful as far as only

very simple image processing algorithms are considered. The typical example is a

pre-processing algorithm for use in image display systems. However for more

sophisticated cases, the lack of low cost reconfiguration capability of such

approach leads to significant shortcomings for the following reasons:

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 58 -

 Only a very limited number of operating modes can be provided due to the

cost of implementing a new mode.

 Hardware resource is very poorly used since every new mode requires

extra hardware resources which are most often sleeping since only one

mode is active at a time.

Such systems can be viewed as a large collection of real time algorithms

which are activated (or not) by a function of non predictable events such as the

content of the image or an external information or a request from the user.

Consequently, the approach should be to design a single multi-application

reconfigurable platform architecture on the top of which a set of different image

processing applications can be implemented:

 A set of basic image processing operators is programmed onto the

MORPHEUS architecture

 Reconfiguration consists in reconfiguring the chip so as to implement one

of these operators

 Reconfiguration is decided by the Molen processor which in fact decides

the sequence of operators to be applied to an image

Such an implementation is convenient for a large class of image

processing algorithms, namely those algorithms which can be viewed as sequence

of operations on an image (or a window within an image).

The typical figures of complexity required by image processing

applications are:

 Pixel resolution:

o 16 bits for monochrome images;

o 3 x 8 bits for colour images.

 Image size:

o 768 x 576 for conventional digital TV;

o 1920 x 1080 for HDTV.

 Frame rate:

o 25 Hz, 30 Hz, 50 Hz or 60 Hz.

 Input data rate:

o 11 Mega pixels per second for conventional digital TV;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 59 -

o 52 Mega pixels per second for HDTV.

 Processing complexity:

o 10 to 100 operations per pixel for simple processing;

o 1000 to 10000 operations per pixel for complex processing.

 Processing power:

o From 0.1 GOPS to 500 GOPS.

 Throughput data rate

o depends both on the algorithm and the way it is implemented;

o twice the input data rate when all the operators can be applied

sequentially on each pixel or on each window of an image;

o 10 to 100 times the input data rate when the full image has to be

stored every time a new operator is run.

It is important to note that the upper bound of these figures is clearly

beyond the scope of present technology. In other words, the needs are far above

what is feasible at a reasonable price. As a consequence, today’s requirements

usually reflect the limitations of the technology, not the performances wished by

the customer. Hence, having the best technology at low price and low power

consumption is clearly a competitive advantage in this domain.

Reconfiguration requirements strongly depend on the implementation

strategy which itself depends on the performances of the architecture. In this

scope, two types of implementation can be proposed. A trade-off has to be made

in the sense of the reconfiguration rate, which can be reduced at the expense of the

increased computational data throughput and vice versa.

By the first implementation philosophy (referred as a throughput intensive

option), the full image is processed through a first operator and the result is stored

in an external memory (external due to the size of the image). Then, this result is

read from the external memory and processed through a second operator and so

on. In this case, for a typical algorithm where 20 successive operators have to be

applied:

 The reconfiguration rate is 20 x 25 Hz = 500 reconfigurations / second.

 The throughput is 20 x 2 x 11 Mega pixels / second = 440 Mega pixels /

second

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 60 -

By the second implementation philosophy (referred as a reconfiguration

intensive option), only a window of the image is processed through a first operator

and the result is stored in an internal memory. The size of the window is chosen

so that it can be stored inside the internal memory of the chip. Then, this result is

read from the internal memory and processed through a second operator and so

on. After the window is processed through all the operators, the result is stored in

an external memory. Then the next window is processed through all the operators

and so on. In this case, for a typical algorithm where 20 successive operators have

to be applied and for a chip having an internal memory leading to split the image

into 100 windows,

 The reconfiguration rate is 100 x 20 x 25 Hz = 50000 reconfigurations /

second.

 The throughput is 2 x 11 Mega pixels / second = 22 Mega pixels / second

It should be noted that for the reconfiguration intensive option, the

throughput is very often higher since the windows have to overlap in order to

avoid side effects.

For both philosophies, a design goal is to minimize the processing power

due to the combined impact of the reconfigurations and the throughput.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 61 -

3.2 DESIGN CHALLENGES

Unless in some specific and very simple situations, today’s reconfigurable

computing platforms cannot be used as the sole computing resources in a given

system. In general, reconfigurable resources are used in combination with

standard computing resources and other devices in a system that resembles the

sketch drawn on Fig. 7. The MORPHEUS architecture target, as far as it has to

comply with a broad range of applications, is intended to be a complete and

heterogeneous platform.

Typically such a platform consists of a hardware system architecture and

design tools including methodologies which allow application engineers to utilize

the hardware architecture. In order to develop a smart and flexible reconfigurable

computing hardware and to increase the efficiency of today’s reconfigurable

computing systems the following issues have to be considered.

Fig. 7. Conceptual view of the MORPHEUS SoC.

Control and (dynamic) reconfiguration concept. The requirements of

embedded computing solutions (cost, mobility, functionalities) are typically

translated by designers in area, energy and performances constraints and thus

often lead to the specification of dedicated chips. In the same time, the explosion

of the cost of development results in the need for flexible architectures taking

advantage of high-level programming tools. Static reconfiguration is used to adapt

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 62 -

the architecture to the application. Then, computing resources and

communications can be configured according to the application requirements.

However, performances, energy constraints and low cost demand a clear

breakthrough which can only be achieved through a stronger adaptation of the

architecture to the application. For this purpose, dynamic reconfiguration is

compulsory. It enables “on the fly” architecture optimization taking into account

the current pattern of calculation, to implement either loop kernels, pipeline stages

or taking advantage of data locality. Such kind of reconfiguration is only relevant

if and only if mechanisms are established to speed the reconfiguration process.

Modularity. Modularity is a key aspect of the MORPHEUS approach. The

heterogeneous nature of the architecture gives huge opportunities for scalability

and modularity. Another important aspect of modularity is the possibility to easily

integrate the scalable and modular block into one architecture. For this reason

generic interfaces have to be provided by the modules. It is denoted in Fig. 7 that

the definition of interfaces for logical and physical interconnection of the modules

integrated into the reconfigurable architecture is one of the main challenges. The

link of this modular HW platform with the toolset should be ensured by “tool-

interfaces” providing the important aspects and requirements like simulation,

debugging, verification, and monitoring.

Architectures for coarse- and fine-grain reconfigurable computing.

Coarse-grained reconfigurable architectures fill the gap between General Purpose

Processors (GPP), DSPs, fine-grained FPGAs, and specialized hardware (ASICs).

Reconfigurable architectures are flexible and provide a high degree of parallelism.

They are built from a large number (typically in the range between 10 and 100) of

processing elements with ALUs for signal processing algorithms. Applications are

mapped for a certain time to the array while data flows through the network of

operators (i.e. ALUs). After a certain number of data has been processed, the array

can be reconfigured, thus the functionality of the nodes and the interconnection

network is changed. This approach is well suited for streaming data with limited

control flow. The intention of MORPHEUS is to improve the application space

towards more control-flow oriented architectures. A more flexible coarse-grained

architecture needs to communicate very efficiently with the steering unit –

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 63 -

typically a GPP - and must be integrated with low latency into the memory

hierarchy (including dynamic reconfiguration). Coarse-grained architectures are

designed for algorithms operating on word-level (e.g. 16 bit). However several

algorithms (e.g. entropy encoder in video codecs) demand fine-grained

architecture such as FPGAs. MORPHEUS utilizes legacy eFPGAs in the SoC and

having efficient interfaces to the coarse-grained architectures. Thus, if the

algorithm was properly partitioned each of the architectures can operate in its

optimal application space. The benefit is a better ratio of area vs. performance for

the overall application without sacrificing flexibility.

Efficient interconnection infrastructure. While fine- as well as coarse-

grained IPs have progressed significantly during the last years, the resulting

requirements on interconnect in terms of bandwidth, flexibility and efficiency

have hardly been targeted by reconfigurable architecture research. Especially the

huge opportunities of run time reconfiguration of interconnect are only marginally

exploited so far. In order to do so, today’s dominant bus architectures need to be

extended by reconfigurable high bandwidth point-to-point connections as well as

suitable Network-on-Chip (NoC) approaches. The heterogeneous and mixed-grain

SoC architecture with its different possibilities to run tasks on the chip and also

the flexibility for tasks to be migrated from one architecture tile to another, forces

to integrate a high performing and adaptive interconnection infrastructure. For

this, a run-time adaptable network with the possibility of changing the topology

and protocol, e.g. exploiting also dynamically the trade-offs between packet and

circuit-switched communication parts/phases, is necessary. In addition, the

connection of the different cores with parallel memory modules has to be

considered. To provide a fast data-throughput it has to be enabled, that bottlenecks

for parallel memory access and inter-tile communication have to be avoided. To

exploit the parallel mixed-grained architecture efficiently it is necessary to

integrate more than one memory module connection resulting in determining a

suitable trade-off in central/decentral (e.g. global/local) memory access

interconnect topologies.

Memory topologies. Since reconfigurable SoCs offer the potential to

drastically increase processing power and efficiency especially in data oriented

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 64 -

processing schemes, the bottleneck is passed on to the simultaneously growing

requirements on the respective memory infrastructure. Intelligently organized on-

chip memories – configured as local memory with user controlled DMA access or

as transparent caches – become mandatory, because off-chip solution lack the

required bandwidth and are unacceptable regarding power consumption and

system costs. In addition, memories in reconfigurable SoCs pose particular

challenges to the digital designer, since typical applications often require certain

flexible access patterns (e.g. different word sizes, parallel access or different

addressing modes). Hence, on-chip memories are probably the most mission

critical components of today’s embedded signal processing systems. Generalized

solutions and methodologies are not yet state of the art. It is one of the goals of

MORPHEUS approach to develop such methodologies and to extend the huge

opportunities of (dynamic) reconfiguration to the memory infrastructure. This

issue will be described in the following sections in more detail.

System integration. The integration of a large number of different units

(coarse- and fine-grained reconfigurable units, GPPs, high bandwidth I/O and

peripherals) demands the efficient simulation capabilities. Therefore, the silicon-

proven IP are delivered with new extensions and test benches. During back-end

processing, tight cooperation ensures fast design iteration cycles in case of

problems to reach the objectives. Special focus is given to the interconnect

between the individual SoC modules (all arrows in Fig. 7) as well as on the

topology and respective SoC integration of memories.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 65 -

3.3 HARDWARE ARCHITECTURE

The MORPHEUS architecture is based on an ARM9 embedded RISC

processor, which is responsible for data, control and configuration transfers

between all resources in the system, memory, I/O peripherals, and a set of

Heterogeneous Reconfigurable Engines (HREs) each residing in its own clock

domain with a programmable clock frequency (see Fig. 8). Each HRE is

composed of a reconfigurable IP seen as a memory-mapped co-processor or

peripheral. The following three HREs are integrated in the system:

 The PACT XPP is a coarse-grain reconfigurable array primarily targeting

algorithms with huge computational demands but mostly deterministic

control- and dataflow. Further enhancements based on multiple,

instruction set programmable, VLIW controlled cores featuring multiple

asynchronously clustered ALUs also allow efficient inherently sequential

bitstream-processing.

 The PiCoGA core is a medium-grained reconfigurable array consisting of

4-bit oriented ALUs. Up to four configurations may be kept concurrently

in shadow registers. The architecture is mostly targeting instruction level

parallelism, which can be automatically extracted from a C-subset

language called Griffy-C.

 The M2000 is a lookup table based, fine grain reconfigurable device – also

known as embedded Field Programmable Gate Array (eFPGA). As any

FPGA, it is capable to map arbitrary logic up to a certain complexity

provided the register and memory resources are matching the specifics of

the implemented logic. The M2000 may be scaled over a wide range of

parameters. The internals of a reconfigurable logic block may be modified

to a certain degree according to the requirements. Flexibility demands may

favor the implementation of multiple smaller M2000 eFPGAs instead of a

single large IP.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 66 -

Fig. 8. MORPHEUS block diagram.

All control, synchronization and housekeeping is handled by an ARM9

processor. As dynamic reconfiguration imposes a significant performance demand

for the ARM processor, a dedicated reconfiguration control unit provides a

respective offload capability. All system modules are interconnected via

multilayer AMBA busses. Separate busses are implemented for reconfiguration

and data/control access. As the required bandwidth for high performance data

intensive processing is quite huge, a circuit switched Network-on-Chip (NoC) is

implemented which – with regards to the implementation – avoids the

disadvantages of wide conventional bus systems. As NoCs imply a significant

implementation risk, the AMBA busses serve as proven fallback solution.

As the HREs operate on differing clock domains, they are decoupled from

the system clock domain by Data Exchange Buffers (DEB) consisting of dual-port

dual-clock memories either configured as FIFOs or ping-pong buffers [5]. The

HREs have access to further on-chip SRAMs for buffering of local data. These

SRAMs may be either used as cache or scratchpad RAM. A state of the art multi-

channel SRAM/DRAM controller provides access to external system memories

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 67 -

(volatile or non-volatile). Standard DMAs are used in order to increase the

utilization of the bus architecture and further improve data transfer bandwidth

between on-chip resources. All data transfers between HREs, on- and off-chip

memories may be either HRE triggered or managed by a DMA control unit.

Furthermore, a set of standard I/O peripherals (UART, USB, timers, I2C etc.) is

provided. Configuration and task triggering between the ARM9 core and HREs is

performed according to the Molen paradigm [74], through specific eXchange

Registers (XRs).

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 68 -

3.4 COMMUNICATION INFRASTRUCTURE

Network-on-Chip (NoC) concept is used as communication means for the

MORPHEUS platform when aiming at the top performance. STNoC [70] is a

specific approach to implement a generic NoC technology. It contains three

different types of building blocks, appropriately interconnected to each other, and

a patented network topology that promises to deliver the best price/performance

trade-off for the future Multi-Processor System-on-Chip (MPSoC) applications.

STNoC technology comprises packet-based communications protocol and

delivers significant advantages to system designers, leveraging a powerful Quality

of Service (QoS) support, without having to evaluate different network topologies

for each application.

The key building blocks are:

 The network interface (NI), which connects individual IP blocks or

subsystems to the on-chip network;

 The Router, which is responsible for the data transfer across the network

and for the QoS offered by the network;

 The physical link, which is responsible for the actual propagation of the

signals across the network and to/from the external IPs and subsystems.

Fig. 9 represents how the three STNoC building-blocks are related to the

ISO-OSI protocol layers. At the lowest level, the STNoC physical link

implements the physical layer of the NoC protocol. It is responsible for the

connections between routers and between routers and NIs. There are several

possible ways of implementing physical links, including all permutations of

synchronous/asynchronous and serial/parallel links. Of course, the choice of an

appropriate physical link technology involves trade-offs between mutiple issues

such as clock distribution over a wide silicon area, amount of on-chip wiring and

the chip area required. In this respect, the decoupling of layers provided by the

NoC paradigm is a major advantage, as changes to the physical layer can be

subsequently made without affecting the packet transport and transaction layers

[71].

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 69 -

Fig. 9. STNoC implementation of the ISO-OSI protocol layers.

The NI is the access point to the NoC, converting the transactions

generated by the IP or the subsystem connected to it into packets that are

transported over the network. The NI hides network-dependent aspects, allowing

IP blocks to be reused without further modification no matter how the NoC

architecture subsequently evolves. This is a crucial benefit in terms of MPSoC

design time. The NI is also responsible for performing size conversion when the

IP or the subsystem have a different data bus size compared to the NoC, and

frequency conversion when the IP or the subsystem work at a different clock

frequency than the NoC.

The STNoC Router implements both the network and the data link layers

of the NoC protocol, offering “best effort” delivery (where responsibility for

recovering lost or corrupted packets lies with the intended receiver of the packet

rather than with the network) and also the possibility to provide QoS in terms of

latency and throughput. It is responsible for the transmission of the flits – the

elements into which packets are logically divided. The STNoC router is designed

to support ST’s proprietary Spidergon topology (Fig. 10, [70]), therefore it is

capable of routing packets via three different links: left, right and across.

However, depending on the application traffic requirements, links can be

removed, which gives STNoC the key benefit of being able to support with one

homogeneous component all the possible topologies from the simple ring to the

Spidergon.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 70 -

Fig. 10. Spidergon topology.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 71 -

3.5 DESCRIPTION OF THE IPS

3.5.1 PACT XPP

The XPP array is a coarse-grained reconfigurable tile, specialized on data

flow type of algorithms. Compared to fine-grained reconfigurable architectures,

the coarse-grained ones consume less power and need smaller configuration

stream, which allows more flexible dynamic reconfiguration. With respect to

instruction-set processors, coarse-grained reconfigurable architectures don’t

require a new instruction every clock cycle. Several coarse-grained reconfigurable

architectures have been developed in academia and industry. Two of them are

considered in MORPHEUS.

The XPP architecture provides parallel processing power combined with

fast reconfiguration. The new version which is named XPP-III is currently under

development and will be adapted to meet the MORPHEUS requirements. XPP-III

integrates the new Function PAEs (FNC-PAE) which extend the application space

of the XPP also towards high performance control flow oriented applications.

XPP is a coarse-grained scalable architecture designed not only to provide

maximum performance combined with low power consumption but also to

simplify algorithm design and programming tasks. The XPP can process both

basic categories of application software: data-flow oriented sections and control-

flow oriented sections. The sections are handled by two basic types of processing

resources:

1. The reconfigurable course grained XPP-array processes the data-flow

sections of the application:

a. Configurable Processing Array Elements (ALU-PAEs and RAM-

PAEs) are arranged in an array and communicate via point-to point

communication links

b. Programs are mapped as flow graphs to the array of ALUs and

RAMs

c. Communication is packet-oriented with auto-synchronization

d. Control of programs is handled by an independent event network

e. The array provides fast dynamic reconfiguration

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 72 -

f. I/O supports streaming and memory mapped I/O.

2. The FNC-PAEs process the Control-Flow sections of the application:

a. VLIW-type PAEs are tightly integrated into the XPP-array

b. Data exchange with the XPP-array is data-flow synchronized

c. The FNC-PAEs may steer the reconfiguration sequencing of the

XPP-array

d. FNC-PAEs I/O may use the XPP-array streaming I/O and shared

external memory.

Fig. 11 shows an array with 5 x 8 ALU-PAEs, 2x8 RAM-PAEs and 8

FNC-PAEs. The array-I/O is integrated in the RAM-PAEs at the four corners of

the array. In the following sections the fabric which is built from RAM-PAEs and

ALU-PAEs is named the "XPP-array". The size of the array is scalable in X and Y

direction.

Fig. 11. An XPP array with 6x5 ALU-PAEs.

Arithmetic and logical operations are executed in the ALU-PAEs; data can

be stored locally in the RAM-PAEs. Communication is done by transmission of

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 73 -

data packets1 through the configured communication network. A configuration

specifies the communication paths between the PAEs the function of the ALUs

and initial values of registers and RAMs. The configuration is not changed as long

as data flows through the network. Data I/O to the array is performed by means of

the ports at the corners of the array. The FNC-PAEs may access the outside world

via direct access to the external memory hierarchy or through the streaming ports.

The algorithm is defined by means of a flow graph, which is statically

mapped (spatial mapping) onto the array during one configuration.

Fig. 12. Flow-graph of a complex multiplication and spatial mapping.

Fig. 12 shows the flow-graph of a complex multiplication. With XPP, each

operator (MULT, ADD, SUB) is mapped onto an ALU-PAE and the connections

between the PAEs are statically wired. Data flows pipelined through this network,

which is not changed until a certain amount of data has been processed and -

optionally - has been buffered in the RAM. After execution, the PAEs are released

and can be used for the next configuration, which performs the next step of the

computation.

This strategy is efficient for algorithms, where a large number of data must

be processed in a relatively uniform way. Since the reconfiguration of the array

requires several hundred clock cycles and extra energy, a single configuration

should be active for a certain amount of processed data. Most multimedia and

wireless applications process data streams and require lots of processing power

exactly for this type of algorithms.

1 A data packet is a single 16-bit word

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 74 -

In XPP, a data stream is a sequence of single data packets traveling

through the flow-graph that defines the algorithm. A data packet is a single

machine word (e.g. 16 or 24 bit). Streams can, for example, originate from natural

streaming sources such as A/D converters. When data is located in a RAM, the

XPP may generate packets that address the RAM producing a data stream of the

addressed RAM-content. Similarly, calculated data can be sent to streaming

destinations, such as D/A converters or to integrated or external RAMs.

In addition to data packets, state information packets are transmitted via an

independent event network. Event packets contain one bit of information and are

used to control the execution of the processing nodes and may synchronize

external devices.

The XPP network enables automatic synchronization of packets. An object

(e.g. ALU) operates and produces an output-packet only when all input data and

event packets are available. The benefit of this auto-synchronizing network is that

only the number and order of packets traveling through a graph is important –

there is no need for the programmer or compiler to care about absolute timing of

the pipelines during operation. This hardware feature provides an important

abstraction layer allowing compilers to effectively map programs to the array.

XPP-arrays interface to external devices and the FNC-PAEs with:

 Data streaming channels with one processor word by means of a hardware

handshake protocol that maintains the stream-synchronization capabilities

also to the outside world (i.e. SoC Busses, AMBA, NoC and FNC-PAEs).

 The array I/O interface can alternatively be configured to provide

addresses and data for connection to external RAMs (not to FNC-PAEs)

 Event streaming ports transfer one-bit information similarly to the data

channels

 The Reconfiguration Port provides a streaming interface that allows

sequential loading of configuration into the array. Typically an external

DMA controller may performs this task.

The Function PAEs (FNC-PAE) which are tightly coupled to the

reconfigurable XPP-array are sequential 16-bit cores which are optimized for

algorithms requiring a large amount of conditions and branches. One FNC-PAE

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 75 -

comprises two columns of four small non-pipelined 16-bit ALUs1. This is on the

first view similar to VLIW DSPs. However there are substantial differences which

enhance the condition and branch performance. First of all, any ALU can access

results of the rows above and the register file within a single clock cycle. Based

on results, subsequent ALUs in a column can be disabled conditionally. This

allows conditional operations and branching to different targets to be evaluated

within the current clock cycle. In parallel, the Special Function Unit (SFU)

comprises a parallel multiplier and bit-field operations. Code is stored in a small

local associative Instruction Cache. Data is stored in a fast tightly coupled local

RAM and the large external System RAM2. Both are accessed through a 32-bit

address generator (AG) comprising stack and pointer arithmetic.

REGs RAM
(TCM)

Instr.
Cache

AG*

FNC-PAE

SFUI/O

Fig. 13. FNC-PAE block diagram.

The communication with the XPP-array (Fig. 13 left ports) is data flow

synchronized: a port suspends its operation until data can be transferred. Thus

programs running on the XPP array and the FNC-PAEs are implicitly data

synchronized. Furthermore, FNC-PAEs may exchange data through vertical data

flow busses. Synchronization on operating system level (e.g. loading a new XPP

configuration) can be achieved with XPP events and FNC-PAE interrupts.

Due to the fact that XPP array is not a standard sequential processor and

also not a fine-grained FPGA, specialized development tools are provided. A tool

1 ALU operations: boolean add/sub, barrel shift, branching etc.
2 The System RAM is SoC specific and shared by the Function PAEs.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 76 -

suite is available which allows describing the algorithm as flow graph. The tools

feature automatic place and route, clock accurate simulation and an API that

allows the integration into System-C based simulations. A vectorizing C-compiler

simplifies porting of sequential algorithms to the XPP array.

The FNC-PAEs can be programmed in assembler language and/or with

ANSI C. The tools provide co-simulation and debugging features for programs

utilizing both, the XPP-array and programs running on several Function PAEs.

The simulation is cycle accurate within the XPP-array. Access to the external

memory hierarchy which is required for the FNC-PAEs is performed by means of

a simplified memory model.

The FNC-local memories D-MEM and I-MEM provide the first level of

the memory hierarchy. Time critical sections of algorithms should be executed

using only those local resources. The I-MEM is organized as a 4-way set

associative cache (4 x 64 * 256 bit). The sets can be locked and prefetched under

program control. The D-MEM is organized as a linear 1024 x16 bits.

Since several FNC-PAEs will access the memory, an arbiter is required.

However, most inner loops will be executed from the local I-MEM, thus only

minimal external code access is expected. Local variables should be stored in the

local D-MEM.

3.5.2 M2000 EMBEDDED FPGA

FlexEOS macros are SRAM-based, re-programmable logic cores to be

integrated into SoC designs. The logic function of the core can be re-configured

simply by downloading a new bitstream file. FlexEOS is available in different

capacities and multiple macro instances can be implemented in one device to

achieve the required configurability while accommodating area and performance

constraints.

3.5.2.1 OVERVIEW

A FlexEOS macro is a FPGA to be embedded in a SoC design. The

FlexEOS package contains a hard macro of the FPGA core, plus the software

necessary to configure the FPGA core with the required functionality. Each

FlexEOS package contains the following items:

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 77 -

 A hard macro, the so-called macro core, which is the actual re-

configurable core to be included in a SoC design.

 A soft block which is the synthesizable RTL description of the ‘Loader’, a

controller which manages the interface between the macro core and rest of

the SoC. Multiple macro instances in one device require multiple Loaders,

one per macro. The main functions of the Loader are to:

o load the configuration bitstream, and verify its integrity at any time

o simplify the silicon test procedure

 A software tool suite to create

o files required during the integration of the macro into the SoC

design,

o a bitstream file to configure the hard macro for a particular

application.

Macro Core

Loader

User

Flexeos Macro

SoC

scan_in
scan_out
scan_load
scan_ck

Control

Interface

Interface

Fig. 14. FlexEOS macro block diagram.

Fig. 14 shows a block diagram of a FlexEOS macro when embedded in a

SoC, and its interfaces to the rest of the system. It has to be noted that each

FlexEOS macro contains a macro core and a Loader. Furthermore, the control

interface in Fig. 14 is only used for accessing the system functions of the

FlexEOS macro, i.e. for writing commands and configuration words to the Loader

and reading back status information from the macro core. The user interface

signals correspond to the macro core input and output signals, and are the only

ports which can be instantiated by a design mapped into the core during run-time.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 78 -

The FlexEOS macro is a LUT-based FPGA technology which needs to be

re-configured with a design each time the power is turned on, or each time the

application requires a change of its functionality. The Loader ensures the proper

loading of a configuration bitstream. Its design is optimized to simplify the

interactions between the rest of the SoC and the macro core, and to allow

predictable and reliable control of the core configuration and operation modes. It

verifies the integrity of the bitstream while it is being loaded by computing a CRC

signature which is checked against a reference CRC previously calculated by the

FlexEOS compilation software. The CRC signature of the loaded configuration is

also continuously computed when the application is running, so that if an error

occurs in the eFPGA configuration, the SoC controller can be interrupted to

reload the bitstream and re-initialize the related system functions. The time

required for a CRC signature computation is about 2 ms for a 4K-MFC macro,

depending on the Loader clock frequency.

A typical example for a bitstream corruption during application run-time is

a software error. Thereby, one or more configuration memory bit-cells may switch

to their respective opposite value due to surrounding noise. The functionality

mapped to the eFPGA is then modified and not predictable.

In addition to handling the configuration, the Loader includes specific

functions which speed up the silicon test time. The FlexEOS architecture is highly

parallel, so only a minimal set of configuration and test vectors are needed to test

each unique internal structure. The Loader uses this information to test any similar

structure by simultaneously replicating a basic set of configuration and test

vectors for the whole core. It then analyzes the result of all the tests in parallel and

stores the result in its own status register. The external controller, which in this

case should be the tester, can read this status register back at the end of each test

sequence to find out if it failed or passed.

The Loader is presented as a synthesizable VHDL design, which requires

between 10K and 20K ASIC gates, depending on the customer implementation

flow and target manufacturing technology. Its typical operating frequency is

100MHz and below.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 79 -

3.5.2.2 ARCHITECTURE

FlexEOS uses a highly scalable architecture which permits gate capacities

from a few thousands to multiple millions. The basic FlexEOS macro includes

4096 MFCs (Multi-Function logic Cells). Several macros can be unified in more

complex structure. Furthermore, it also includes the following:

 8 DPRAM blocks (either 4K bits or 8K bits)

 32 MACs

 128 x 8 bit adders

The basic FlexEOS building block is the MFC which is a programmable

structure with seven inputs and one output. It combines a four-input LUT (Look-

Up Table) and a D flip-flop (see Fig. 15).

LUTI[4:1]

SYS_INI
0

SYS_CEN
1

SYS_CLK

RST

CEN

D

Q

S

Fig. 15. MFC schematic.

The storage element has clock, clock enable, and reset input signals. The

clock signal always comes from the system clock tree, and can be inverted,

whereas the clock enable and reset signals can either come from the interconnect

network via a regular signal input or from the system interconnect network. The

FlexEOS compilation software selects the appropriate source according to the

nature of the design to be implemented.

The MFCs are organized in groups of 16 units and are all located at one

hierarchical level in the core architecture. A FlexEOS macro with 4K MFCs has

an equivalent ASIC gate capacity of up to 40,000 gates. The design configuration

file (bitstream) size is 36Kbytes, and the loading time is around the range of

600µs when the FlexEOS Loader operates at 100 MHz. The data bus interface is

32-bits wide.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 80 -

Most control designs and all signal processing designs use classic

arithmetic operators such as add, subtract, increment, decrement, equal to, inferior

to and superior to. By default, they can be mapped to classic structures such as

“carry propagate” or “carry look-ahead”. The first is more compact and uses fewer

MFCs, whereas the second shows better timing performance but poor MFC

mapping efficiency. In many cases, the carry chains are part of longer logic paths

(critical paths), which results in slower maximum operating frequency for the

whole design, especially if the chain is 8+ bits long.

The FlexEOS architecture can optionally include optimized 8-bit carry-

chain operators (one per group of MFCs). They provide:

 better timing performance (comparable to ASIC design),

 optimal mapping efficiency (requires one MFC per operator bit)

It has to be noted that a partial utilization of a carry-chain block is

possible. Thereby, the range from 1 to 8 bits can be used, while the others are

ignored and not connected to the interconnect network. Furthermore, carry-chain

blocks are automatically chained by the FlexEOS compilation software using

dedicated interconnect resources located between the blocks. As a consequence,

the timing delay remains minimal and optimal.

Third party FPGA synthesis software can automatically infer the carry

chains with the proper functionality from an RTL description. Nevertheless, the

designer can manually instantiate such operators if necessary.

Two sizes of synchronous true dual-port RAM block are available for

FlexEOS cores:

 4K-bit block,

 8K-bit block.

As shown in Fig. 16, each port has its own control signals (clock, enable,

write) so that it can be read or written independently from the other port at

anytime. This means that the ports operate asynchronously from each other. The

input and output data bus width must be the same for a given port, but can be

different from the other port (see Table 1 for the different options depending on

the memory block size).

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 81 -

Enable 0

Write 0

Addr 0

DataIn 0

Clock 0

Enable 1

Write 1

Addr 1

DataIn 1

Clock 1

DPRAM
4K

DataOut 0 DataOut 1

Fig. 16. Embedded DPRAM schematic.

Furthermore, Fig. 16 shows two other configuration options available to

the designer:

 Data output on positive or negative clock edge.

 Registered or non-registered data output.

There are two ways to select these options:

 by modifying the description of the input design, assuming the RTL

synthesis software can recognize it correctly

 by manually instantiating the proper memory block model in the RTL

code.

Each port can be independently clocked and independently controlled.

They can be configured as shown in Table 1. Table 2 lists the signals available for

each port.

Table 1. eDRAM size and configuration options.

4K 8K
256 words x 16 bits 512 words x 16 bits
512 words x 8 bits 1024 words x 8 bits
1024 words x 4 bits 2048 words x 4 bits

Table 2. DPRAM interface signals.

Control Signal Function
Input Data (DataIn) Data input bits
Output Data (DataOut) Data output bits
Clock Clock, active on the rising edge
Enable Block validation, active high
Address (Addr) Word selector
Write Write access, active high.

Each port features four configuration memory cells:

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 82 -

 two for SRAM depth and word width,

 one for clock polarity,

 one for output mode (pipelined or not).

The MAC block is a basic multiply/accumulate operator with the

following features:

 16x16-bit signed/unsigned multiplier with registered/non-registered inputs

 32-bit adder

 32-bit accumulation register

 32-bit registered/non-registered input to the adder if the accumulator

feedback loop is not used

 synchronous reset in accumulation mode.

CLOCK

OUTPUT

+

X

MULTIPLIER MULTIPLICAND ADDITION

CLOCKCLOCKCLOCK

2

16 16 32

32

RESET

Fig. 17. MAC schematic.

As shown in Fig. 17, the output accumulation register can be bypassed in

order to connect the adder output directly to the MAC output bus. It has to be

pointed out that only the accumulation register is connected to the reset signal.

FlexEOS eFPGA technology is based on a multi-level, hierarchical

interconnect network which is a key differentiation factor in terms of density and

performance when compared to other LUT-based FPGA technologies. The

interconnect resources are based on a full crossbar switch concept (see Fig. 18),

which provides equivalent routing properties to any element inside the macro and

gives more freedom for placing and routing a given design to the FlexEOS

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 83 -

compilation software. The interconnect network can only be configured statically,

meaning that the clock must be stopped.

I[1] I[2] I[3] I[n-2] I[n-1] I[n]

O[1]

O[2]

O[3]

O[m-2]

O[m-1]

O[m]

Statically
configured
connection

Fig. 18. Full crossbar switch.

Fig. 19 shows the organization of the macro with the different building

blocks. It also shows the symmetry of the architecture which provides more

flexibility for mapping and placing a design. Each computing element of the

macro can either be connected to its neighbor by using a local interconnect

resource, or to another element via several interconnect resources.

X

X Top-
Level

Cluster GroupMFC

XX

X

XX

Carry-Chain

MAC

DPRAM

OUTOUTOUT IN IN IN

User IOs

IPad cellsOPad cells

Fig. 19. FlexEOS core architecture.

In addition to the regular interconnect network, a low-skew low-insertion-

delay buffer tree network (system interconnect network) starts from 8 dedicated

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 84 -

user input ports (SYS_IN) and connects to all the synchronous cells. Its usage is

recommended for high fan-out signals such as reset signals, or high speed signals

such as clock signals. If parts of the system interconnect network is not used by

the design, the FlexEOS compilation software automatically uses portions of it to

improve the final design mapping and performance.

At any level of the hierarchy, the interconnect resources are unidirectional,

including the user I/O interface signals. The standard 4K-MFC macro block

includes 512 input ports and 512 output ports. Each of them is connected in the

same way to the interconnect network, which gives the following properties:

 Any input port can access a given computing resource inside the core

 Any input port can be used as a system signal such as clock or reset

 Any output port can be reached by a computing resource

These three points are meaningful when considering the integration of the

eFPGA macro into a SoC architecture and defining the physical implementation

constraints.

During the SoC design phase, several potential applications should be

mapped to the eFPGA to:

 Evaluate the system constraints of the IP

 Refine the different parameters of the IP (number of MFCs and I/Os, need

for carry chains, memory blocks, MACs)

 Evaluate its connectivity to the rest of the system. This is made easier by

the flexibility of the eFPGA interconnect network and its I/O port

properties: the FlexEOS macro does not add any routing constraints on

SoC signals connected to the user I/Os as they can reach any resource

inside the macro core.

The core I/O cells are connected together internally to form 2 boundary

scan chains:

 one for the input ports;

 one for the output ports.

They can be included in the SoC scan chains when implementing the chip

to test the random logic connected the macro core I/Os. The boundary scan chain

models are delivered as VHDL files and are compatible with standard Automatic

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 85 -

Test Pattern Generator (ATPG) tools. Fig. 20 shows an IPad cell and OPad cell,

with their respective scan logic and path. The usual scan interface signals are

available for a seamless scan insertion. When the scan test mode is enabled, the

macro core is completely isolated from the rest of the SoC.

a) IPad b) OPad

Fig. 20. IPad and OPad cell with scan logic.

The Control Interface bus is directly connected to the FlexEOS Loader

(see Fig. 14). It is used to access the internal Loader resources for test purposes

and bitstream loading. This interface behaves similarly to a synchronous SRAM

block. It comprises the following signals (see Fig. 21):

 Clock (100MHz and below)

 Reset (active high), needs to be activated at power-on to reset the Loader

and the core

 Data In (usually 32 bits, depending on the system bus width)

 Data Out (usually 32 bits, depending on the system bus width)

 Address (4 bits)

 Chip Select (active high)

 Write Enable (active high)

 Busy (active high)

 Done (active high)

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 86 -

Fig. 21. FlexEOS Loader overview.

A typical operation starts by writing a command and data to the

appropriate registers. The state machine then executes the command, and sets the

Busy signal to high. When the operation has completed, the Busy signal goes to

low, and a subsequent command can be executed. This is illustrated in the timing

diagram depicted in Fig. 22. The eFPGA macro, together with its Loader, can be

implemented multiple times on the chip, connecting to the system and/or

peripheral busses.

Fig. 22. FlexEOS Loader control interface waveform.

3.5.2.3 SIZE AND TECHNOLOGY

Table 3 shows the dimensions of a 4K FlexEOS macro in 90nm CMOS

technology with 7 metal layers.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 87 -

Table 3. FlexEOS 4K-MFC features and size.

Equivalent ASIC gates: 40,000 (estimated when considering MFCs only)

LUTs/DFFs (MFCs): 4096

I/Os: 504 x IN, 512 x OUT, 8 x SYS_IN

Silicon area for 4K MFCs only: 2.97 mm2 (CMOS 90nm)

Size of bitstream configuration file: 36 Kbytes (4K-MFC only block)

Silicon area for 4K MFCs + 8 x 8Kbytes RAM
+ 32 MACs + 128 x 8-bit carry-chains:

4.5mm2 (CMOS 90nm)

Size of bitstream configuration file: Apx. 60 KBytes (4K-MFC + features)

Table 4 shows several design examples mapped onto the FlexEOS eFPGA

macros. It also provides the correspondence between the ASIC gate count derived

from Synopsys Design Compiler and the MFC capacity required mapping the

same designs onto a FlexEOS macro.

Table 4. Example of design mapping results.

ASIC
Gates

Equivalent MFCs (LUT
+ FF)

FlexEOS eFPGA macro size
granularity

160 x 16 bit counters 29742 3982 4096 MFCs

UART 16550 8096 1459 1536 MFCs

Viterbi Decoder 10028 2245 3072 MFCs

Dynamic synchronous
cross-bar bus

5788 1431 1536 MFCs

Ethernet MAC 20587 3995 4096 MFCs

It should be highlighted that FlexEOS macros can be ported to any

standard CMOS process. Even multiple identical macros can be implemented in

one SoC.

3.5.2.4 FLEXEOS SOFTWARE TOOL SUITE

The FlexEOS proprietary software tool suite provides a design flow which

is complete, easy to use, and designed to interface with the main standard FPGA

synthesis software packages. It takes the following files as inputs:

 A design structural netlist (mapped to DFFs, LUTs and optional blocks

such as memory, MAC and carry-chains), generated by FPGA synthesis

software

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 88 -

 An I/O pin assignment file, i.e. assignment of specific input or output I/O

cells to each input and output port of the design

 The design constraints such as clock definition, input and output timing

delays, false path.

The FlexEOS compilation software provides implementation options such

as timing-driven place-and-route, automatic design constraint generation (very

useful the first time a design is mapped).

The output files are:

 The configuration bitstream to be loaded in the eFPGA core

 A configuration bitstream reference signature to be provided to the Loader

 A functional Verilog netlist for post-implementation simulation

 Timing annotation file (SDF: Standard Delay File) to perform further

timing analysis on a given mapped design with third party software, or to

run back-annotated simulation when used in combination with the

generated Verilog netlist

 Simple timing report for each clock domain critical path for a pre-selected

corner (Best, Typical or Worst case)

 Macro wrapper (Verilog file) which instantiates the mapped design and

connects its I/O ports to the physical core ports. This file is useful for in-

context (i.e. in the SoC environment) timing analysis or simulation of

applications

The FlexEOS software flow is illustrated in the following diagram. The

RTL front-end design tasks are executed using commercial tools such as Mentor

Graphics Precision RTL or Synplicity Synplify CLS (Custom LUT Synthesis).

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 89 -

Fig. 23. FlexEOS software flow.

3.5.3 PICOGA

The PiCoGA, Pipelined Configurable Gate Array, is a programmable gate

array especially designed to implement high-performance algorithms described in

C language. The focus of the PiCoGA is to exploit the Instruction Level

Parallelism (ILP) present in the innermost loops of a wide spectrum of

applications (e.g. multimedia, telecommunication and data encryption). From a

structural point of view, the PiCoGA is composed of 24 rows, each implementing

a possible stage of a customized pipeline. Each row is composed of 16

Reconfigurable Logic Cells (RLC) and a configurable horizontal interconnect

channel. Each RLC includes a 4-bit ALU, that allows to efficiently implement 4-

bitwise arithmetic/logic operations, and a 64-bit look-up table in order to handle

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 90 -

small hash-tables and irregular operations hardly describable in C and that

traditionally benefit from bit-level synthesis. Each RLC is capable of holding an

internal state (e.g. the result of an accumulation), and provides fast carry chain

propagation through a PiCoGA row. In order to improve the throughput, the

PiCoGA supports the direct implementation of Pipelined Data-Flow Graphs

(PDFGs), thus allowing to overlap the execution of successive instances of the

same PGAOP (where a PGAOP is a generic operation implemented on the

PiCoGA). Flexibility and performance requirements are accomplished handling

the pipeline evolution through a dynamic data-dependency check performed by a

dedicated Control Unit.

Summarizing, with respect to a traditional embedded FPGAs featuring

homogeneous island-style architecture, the PiCoGA is composed of three main

sub-parts, highlighted in Fig. 24:

 A homogeneous array of 16x24 RLCs with 4-bit granularity (capable of

performing operations e.g. between two 4-bitwise variables) and

connected through a switch-based 2-bitwise interconnect matrix

 A dedicated Control Unit which is responsible to enable the execution of

RLCs under a dataflow paradigm

 A PiCoGA Interface which handles the communication from and to the

system (e.g. data availability, stall generation, etc.)

In terms of I/O channels, the PiCoGA features twelve 32-bit inputs and

four 32-bit outputs, thus allowing for each operation (PGAOP) to read up to 384

bits and to write 128 bits.

The PiCoGA is a 4-context reconfigurable functional unit capable of

loading up to 4 PGAOPs for each configuration layer. PGAOPs loaded in the

same layer can be executed concurrently, but a stall occurs when a context switch

is performed.

If we exclude the interface block, the PiCoGA is a custom designed array,

thus scalability and modularity is limited and requires additional work. The

PiCoGA interface supports the propagation of the dataflow paradigm used inside

the PiCoGA at an instance level, thus obtaining a hierarchical pipeline.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 91 -

PiCoGA-Row
(Synchronous Element)

CC oo nn tt rr oo ll UU
nn ii tt

Interface

RLC

Fig. 24. Simplified PiCoGA achitecture.

3.5.3.1 PICOGA ARCHITECTURE

The main features of the PiCoGA architecture are:

1. A medium-grained configurable matrix of 16x24 RLCs

2. A reconfigurable Control Unit, based on 24 Row Control Units (RCUs)

that handle the matrix as a data path (see Fig. 24).

3. 12 primary 32-bit inputs and 4 primary 32-bit outputs

4. 4 configuration contexts are provided as a first-level configuration cache

a. only 2 clock cycles are required to change the active context

(context switch)

b. only one configuration context can be active at a time.

5. Up to 4 independent PiCoGA operations can be loaded in each context,

featuring partial run-time reconfiguration

Each RLC can compute algebraic and/or logic operations on 2 operands of

4 bits each, producing a carry-out/overflow signal and a 4-bit result. As a

consequence, each row can provide a 64-bit operation or two 32-bit operations (or

four 16-bit, eight 8-bit operations, and so on). The cells communicate through an

interconnection architecture with a granularity of 2 bits.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 92 -

Each task mapped on the PiCoGA is defined PGAOP. The granularity of a

PGAOP is typically equivalent to some tens of assembly operations. Each

PGAOP is composed by a set of elementary operators (logic or arithmetic

operations), that are mapped on the array cell.

Each PiCoGA cell also contains a storage element (FF) that samples each

operation output. This storage element cannot be bypassed cascading different

cells. Thus PiCoGA can be considered a pipelined structure where each

elementary operator composes a stage. Computation on the array is controlled by

a RCU which triggers the elementary operations composing the array. Each

elementary operation will occupy at most a clock cycle. A set of concurrent

(parallel) operations forms a pipeline stage. Fig. 25 shows an example of

pipelined DFG mapped onto PiCoGA.

Fig. 25. Pipelined DFG in PiCoGA.

The set of elementary operations composing a PGAOP and their data

dependencies are described by a DFG (Data Flow Graph). PiCoGA is

programmed using Griffy-C. As shown in the example in Fig. 26. Griffy-C is a

subset of the C language that is used to specify a set of operations that describe

the DFG. Automated tools (Griffy-C compiler) are used to:

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 93 -

1. Analyze all elementary operations described in the Griffy-C code

composing the DFG, determining the bit-width and their dependencies.

Elementary operations are also called DFG nodes.

2. Determine the intrinsic ILP (Instruction Level Parallelism) between

operations (nodes). Fig. 27 shows an example of Pipelined DFG

automatically extracted from a Griffy-C description. In this representation,

nodes are aligned for pipeline stage. A special class of nodes is routing-

only nodes. Routing-only nodes do not require computational logic to be

performed: they are implemented just exploiting interconnection resources

(e.g. shifts, comparisons with zero) or may be collapsed in the following

operation (logic operations by constants) and thus do not occupy a pipeline

stage. In Fig. 27, routing only operations are depicted with dotted nodes,

while pipeline stages are aligned by rows.

3. Map the logic operands on the hardware resources of the PiCoGA cells (a

cell is formed by a Lookup Table, an ALU, and some additional

multiplexing and computational logic). Each cell features a register that is

used to implement pipelined computation. Operations can not be cascaded

over two different rows. Fig. 28 shows a typical mapping on PiCoGA.

4. Route the required interconnections between RLCs using the PiCoGA

interconnection channels.

5. Provide the bitstream (in the form of a C vector) to be loaded in the

PiCoGA in order to configure both the array and the control unit (the

PiCoGA Interface does not require a specific configuration bitstream).

Configurations can be loaded in any configuration layer starting from any

available row.

#pragma pga SAD4 1 2 out p1 p2 {

 unsigned char p10, p11, p12, p13;

 unsigned char cond0, cond1, cond2, cond3;

 …

 #pragma attrib cond0, cond1, cond2, cond3, SIZE=1

 …

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 94 -

 sub0a = p10 – p20; sub0b = p20 – p10;

 cond0 = sub0a < 0;

 sub0 = cond0 ? sub0b : sub0a;

 …

 out = acc1 + acc2;

}

#pragma end

Fig. 26. Example of Griffy-C code representing a SAD (Sum of Absolute

Differences).

Fig. 27. Example of Pipelined DFG.

Fig. 28 represents a typical example of mapping onto PiCoGA. As

explained in previous sections, after a data-dependency analysis, the DFG is

arranged in a set of pipeline stages (thus obtaining the Pipelined DFG). Each of

pipeline stage is placed in a set of rows (typically they are contiguous rows, but

this is not mandatory).

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 95 -

In Fig. 28, different colors represent different pipeline stages. Depending

on the row-level granularity of the PiCoGA Control Unit, one row can be assigned

only to one single pipeline stage, and it cannot be shared among different pipeline

stages.

Fig. 28. Example of PGAOP mapping on PiCoGA.

The internal architecture of the Reconfigurable Logic Cell is depicted in

Fig. 29. Three different structures can be identified:

1. The input pre-processing logic, which is responsible to internally route

inputs to the ALU or the LUT and to mask them when a constant input is

needed

2. The elaboration block (ALU & LUT), which performs the real

computation based on the operation selected by the RLCop block

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 96 -

3. The output manager, which can select outputs from the ALU, the LUT,

and eventually from the Carry-Chain and synchronize them through Flip-

Flops. The output block samples when enabled by the Row Execution

Enable signal provided by the control unit. Therefore the control unit is

responsible for the overall data consistency as well as the pipeline

evolution.

Operations implemented in the “ALU&LUT” block are:

 4-bitwise arithmetic/logical operations eventually propagating a carry to

the adjacent RLC (e.g. add, sub)

 64-bit lookup tables organized as:

o 1-bit output and 4/5/6-bit inputs

o 2-bit outputs and 4/5-bit inputs

o 4-bit outputs and 4-bit inputs

o a couple of independent lookup tables featuring:

 1-bit output and 4-bit inputs

 2-bit outputs and 4-bit inputs

 Up to 256-bit configurable memory module. Each configuration context

provides 64-bit LUTs (see the previous point) and this special memory

module can be implemented flattening in a single-context configuration

the memory amount of all the LUTs. This special memory configuration

can be applied for every RLC in the array, and the addressing is internal,

and performed through other RLCs.

 4-bit Multiplier module; in more detail, it is a multiplier module with 10-

bit (in case of BA . 6 bit are for the operand A and 4 bit for the operand

B) of inputs and 5-bit output, including 12 Carry Select Adder and

specifically designed to efficiently implement small/medium multiplier on

PiCoGA resource.

 4-bit Galois Field Multiplier – GF(24)

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 97 -

Carry

RLCop

A F

4 2

Output Select & Synchro

ALU & LUT

Input
pre-processing

Row Execution
Enable

B

4

4
Output

Fig. 29. Reconfigurable Logic Cell: simplified architecture.

Furthermore, lookup tables can be used to implement operations that

require carry propagation, such as the comparison between two variables. LUTs

can be programmed to use the carry chain while the carry-out can be re-directed to

standards outputs. While standard RLC inputs (A, B in Fig. 29) are 4-bitwise

(compliant with the cell granularity), the F inputs are 2 additional bits, that are

used only when the multiplier module or some customized configuration is used.

The PiCoGA Control Unit handles the pipeline evolution, triggering the

execution of a pipeline stage (implemented as a set of rows) when:

 input data are available

 output data can be overwritten

 writeback channels are available,

A data-flow graph directly represents dependencies among computational

nodes through the data dependency graph, and it is possible to check both forward

and feedback arcs to handle an optimal pipelined execution.

A pipelined data-flow computation can be modeled using timed Petri Nets

associating an inverse data arc and a placeholder to each data arc (representing a

data dependency). Each node computation is “taken” when all input arcs have a

token in the placeholder and it produces a token for each output arc. The

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 98 -

activation of each node, or transition in terms of Petri Nets specific language,

depends on each preceding node’s completion and on each successive node’s

availability through a producer/consumer paradigm.

Under this pattern, the dedicated programmable control unit can be used to

handle the pipeline activity, to start new PGAOPs or to stall them when requested

resources are not available yet (e.g. when write back channels are already used by

another PGAOP).

To save area, the dedicated control unit works with a granularity of one

array row, thus 16 RLCs are the minimum number of active cells. More than one

PiCoGA row can be used to build a wider pipeline stage, but, in order to maintain

a fixed clock frequency cascaded RLCs are better mapped on different pipeline

stages.

When a pipeline stage computes, it produces a “token” which is sent to

preceding and successive nodes through a dedicated programmable

interconnection channel. Each RCU receives “tokens” from the preceding and

successive connected nodes which represent placeholders of the equivalent timed

Petri Net that manages the pipelined DFG computation. Under this pattern, we

schedule computational nodes to build pipeline stages, according with the earliest

firing rule, and then we map pipeline stages on a contiguous set of rows. Fig. 30

shows a possible pipelined data-flow graph and the corresponding simplified

control unit configuration.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 99 -

Fig. 30. Pipeline management using RCUs.

3.5.3.2 PICOGA PROGRAMMING APPROACH

The language used to configure the PiCoGA in order to efficiently

implement pipelined DFG is called Griffy-C. Griffy-C is based on a restricted

subset of ANSI C syntax enhanced with some extensions to handle variable

resizing and register allocation inside the PiCoGA: differences with other

approaches reside primarily in the fact that Griffy is aimed at the extraction of a

pipelined DFG from standard C to be mapped over a gate-array that is also

pipelined by explicit stage enable signals. The fundamental feature of Griffy-

based algorithm implementation is that Data Flow Control is not synthesized on

the array cells but it is handled separately by the hardwired control unit, thus

allowing much smaller resource utilization and easing the mapping phase. This

also greatly enhances the placing regularity.

Griffy-C is used as a friendly format in order to configure the PiCoGA

using hand-written behavioral descriptions of DFGs, but can also be used as an

intermediate representation (IR) automatically generated from high-level

compilers. It is thus possible to provide different entry points for the compiling

flow: high-level C descriptions, pre-processed by compiler front-end into Griffy-

C, behavioral descriptions (using hand-written Griffy-C) and gate level

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 100 -

descriptions, obtained by logical synthesis and again described at LUT level.

Restrictions essentially refer to supported operators (only operators that are

significant and can benefit from hardware implementation are supported) and

semantic rules introduced to simplify the mapping into the gate-array.

Three basic hypotheses are assumed:

 DFG-based description: no control flow statements (if, loops or function

calls) are supported, as data flow control is managed by the embedded

control unit. Conditional assignments are implemented on standard

multiplexers.

 Single assignment: each variable is assigned only once, avoiding hardware

connection ambiguity.

 Manual dismantling: only single operator expressions are allowed

(similarly to intermediate representation or assembly code).

Basic Griffy-C operators are summarized in Fig. 31, while special intrinsic

functions are provided in the Griffy-C environment in order to allow the user to

instance non-standard operations, such as for example the “multiplier module”.

Fig. 31. Basic operations in Griffy-C.

Native supported variable types are signed/unsigned int (32-bit), short int

(16-bit) and char (8-bit). Width of variables can be defined at bit level using

#pragma directives. Operator width is automatically derived from the operand

sizes. Variables defined as static are used to allocate static registers inside the

PiCoGA, which are registers whose value are maintained across successive

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 101 -

PGAOP calls (i.e. to implement accumulations). All other variables are

considered “local” to the operation and are not visible to successive PGAOP calls.

Once critical computation kernels are identified through a code profiling step in

the source code, they are rewritten using Griffy-C and can be included in the

original C sources as atomic PiCoGA operations. #pragma directives are used to

retarget the compiling flow from standard assembly code to the reconfigurable

device.

#pragma picoga name n_outs n_ins <outs> <ins>{

 [declaration of the variables]

 [PiCoGA-function body]

}

#pragma end

Starting from the Griffy-C description, DFGs are placed and routed into

the PiCoGA, while the array control unit is programmed in order to perform a

pipelined execution. Hardware configuration is obtained by direct mapping of

predefined Griffy-C library operators. Thanks to this library-based approach,

specific gate-array resources can be exploited for special calculations, such as a

fast carry chain, in order to efficiently implement arithmetic or comparison

operators. Logic synthesis is kept to a minimum, implementing only constant

folding (and propagation) and routing-only operand extraction such as constant

shifts: those operations are implemented collapsing constants into destination

cells, as library macros have soft-boundaries and can be manipulated during the

synthesis process.

The functional validation of a PGAOP is carried out in a standard C

environment. It allows the user to debug a PGAOP in order to verify the

correctness of the code. The PGAOP, described in Griffy-C, is compiled by

PiCoGA tools that provide an ANSI C emulation.

The emulation is functionally equivalent to Griffy-C, taking into account

both standard operations and instruction set extension, such as direct LUT

specification or multiplier modules. Furthermore, the emulation takes into account

the scheduling performed by the compiler when pipeline stages are built.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 102 -

Debugging is facilitated by a Graphical User Interface (GUI) that can be

associated to a standard debugging tool in order to provide an easy way to inspect

intermediate results in the Griffy-C part. While the standard C code can be

suspended through breakpoint, the execution on the PiCoGA is emulated as if it

was an atomic instruction (it is a functional model).

3.5.3.3 CONFIGURATION CONTROL

Since the PiCoGA was intended to be used in a processor-oriented

environment (as a configurable functional unit in the first release, as a

configurable co-processor in the MORPHEUS context), the language used is a

processor-oriented language. We call instructions all the operations performed to

control the PiCoGA (e.g. trigger a PGAOP or load a configuration) even if they

are implemented through read/write operation in the system memory or in a more

specific configuration register. The real integration of the PiCoGA in a system,

and thus the PiCoGA control, is an ongoing issue in MORPHEUS and several

considerations will be provided in the last section of the PiCoGA description.

Computation on the PiCoGA is explicitly triggered by a specific

instruction (PGAOP) from the main processor. Each PGAOP may feature up to 12

primary 32-bit inputs and 4 primary 32-bit outputs. The latency of each PGAOP is

the number of cycles between the PGAOP trigger (reading of the 12 inputs) and

the generation of the 4 outputs.

The issue delay of each PGAOP is the number of cycles that must divide

two different issues of the same PGAOP. It depends on data dependencies across

pipelines stages, and it represents the maximum “distance” between a producer

(the pipeline stage that provides/write a data) and a consumer (the pipeline stage

that consumes/read a data).

Both such parameters are determined by the Griffy-C compiler. The

latency could be higher than the predicted one due to hardware stalls; hardware

stalls could be caused by many different reasons, one of those being the need to

respect issue delay constraints. There is never any issue delay between different

PGAOPs, provided they reside on the same context layer.

PiCoGA is a multi-layer device: it features 4 layers, or contexts. This

means that each configuration memory device inside the array is multiplied by 4:

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 103 -

at any instant, 4 different configurations are available on the array. In turn, each

layer may contain up to 4 different PGAOPs (sharing the 24 available rows

between them).

A single row can not be shared between different PGAOPs. At any given

time the PiCoGA may hold up to 4x4=16 active PGAOPs, provided the sum of

rows occupied by the 4 PGAOPs in a layer is less or equal to 24. PGAOPs

residing in the same layer can be run concurrently (only one PGAOP can be

issued in a single cycle, but PGAOPs have latency more than one cycle) while

before changing layer (that is, running a PGAOP residing in a layer different from

the current) it is necessary to conclude all PGAOPs in the current layer. An

automatic hardware mechanism ensures this, at a price of inserting stalls in the

processor flow.

The PiCoGA is not configured one-shot as a whole, but each PGAOP can

be uploaded or erased to/from the array as a separate entity. For this reason, the

location on the array where a given PGAOP should be saved depends dynamically

on the PiCoGA state (that is, which PGAOPs were previously loaded and where).

The position of an active PGAOP on the PiCoGA is specified by the

following parameters:

1. Layer: The configuration layer where the PGAOP was located.

2. Region: Each layer allows a maximum of 4 PGAOPs, regardless their size.

For this reason, each PGAOP in a layer is identified by an integer range

[0..3] called region. Region is NOT topological (geographic) information

specifying a physical portion of the array, but only a logic identifier to

distinguish different PGAOPs sharing the same layer.

3. Starting Row: Each PGAOP is composed by a fixed number of rows. The

physical position of a PGAOP on a layer is determined by the

StartingRow. Obviously, 24__ SizePGAOPRowStarting .

These three parameters allow univocally referring to a given PGAOP on

the PiCoGA.

A configuration is a bitstream residing in the system memory and

containing a set of PGAOPs. There is no restriction on the number of PGAOPs

contained, and very often they are more than what can be contained in the

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 104 -

PiCoGA. The configuration is a potentially infinite (the only limit being the

available system memory) repository of PGAOPs, between whom the user can

select a maximum of 16 active PGAOPs and load them on the array. The

bitstream is produced in C format by the Griffy-C compiler.

In order to compute a PGAOP, it is necessary to load the relative bitstream

on the Gate-Array. As described above, PiCoGA is not configured one-shot as a

whole, but each PGAOP is uploaded/erased separately from the array. At any time

the loading of a PGAOP is required, it is necessary to determine if and where

there is a suitable space on the array, thus attributing a layer, region and starting

row to the PGAOP. At the moment of loading a PGAOP on the array, the PGAOP

receives the specification of rowstartingregionlayer _ that will be then used

to access the PGAOP.

Before the loading, the PGAOP is accessed through a pointer in the

processor addressing space, after the load by the above described information.

Following their definition, rowstartingregionlayer _ are packed in a specific

integer value, defined PGAOP Descriptor (PD), which is defined as follows:

Table 5. Parameter format for PGAOP position specification (bits).

15:14 13:12 11:10 9:5 4:0

Region Layer -- Size Starting_Row

The PD can be determined by two different means:

1. User Defined Load (Pga_Force). In this case the programmer has the

responsibility to determine an available location, and will specify Layer,

Region and StartingRow. If the specified location is illegal (Layer or

region > 3, StartRow > 23) or it refers in all or in part to a location already

occupied the PiCoGA will generate an exception. A specific C function

computed by the processor will update the PGAOP description struct in

the system memory and generate the PD. The function syntax is:

Int PD = Pga_Force(int Layer, int StartRow, int Region, int pgaop_name)

2. Automated Load (Pga_Allocate). In this case a C function will search an

internal database (located on the system memory) to determine the first

available space on the array and then update the PGAOP description struct

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 105 -

in the system memory and generate the PD. The function syntax is: Int PD

= Pga_Allocate(int pgaop_name)

In both cases, at the end of the C function a memory transfer will be

triggered, utilizing the PGAOP pointer as a base, to transfer the PGAOP bitstream

into the chosen location of the array. This process is triggered by the built-in

instruction:

Pga_Load(int* Pointer,int PD,int load_mode)

Pointer is a pointer to the PGAOP bitstream in the configuration cache,

and is retrieved in the PGAOP struct. PD is calculated according to the

rowstartingregionlayer _ parameters determined by pga_allocate or

specified by the user with pga_force.

The PiCoGA may run a pgaload (load a bitstream) on one layer, while a

PGAOP computation is running on a different layer. If a pgaload is issued on an

active layer (a layer computing one or more PGAOPs) the load will be stalled

until the end of all active PGAOPs. If a pgaload is already running, following

PGAOPs will be stored in a specific 8-slot load queue until the load is finished. If

a pgaload is issued and the queue is full a stall will occur. If a PGAOP is required

before being loaded, an exception will occur. On the contrary, the issue of a

PGAOP that is currently being load will cause a processor stall, again affecting

the system performance.

As described above, the bitstream size is NumberRows _3024 . As the

load operation can be performed while both the processor and a different layer of

the PiCoGA are computing, it is often possible to hide the pgaload latency while

performing different elaborations.

Following the above description, every PGAOP is composed by a self-

contained, pre-placed and pre-routed set of rows designed by the Griffy-C

compiler to compute a given DFG. The location of this set of rows on the array is

not determined at compilation time, but negotiated any time the PGAOP is

required on the array. For this reason, the location of the PGAOP will depend on

the previous history of the program. Any pgaload will have an influence on the

following. It should be observed that the order of pgaload issues (that is

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 106 -

independent from the issue order of the relative PGAOPs) have a strong influence

on the program performance.

As described above, a C function will look for the first available location

on the array in order to perform a pgaload. As a consequence, two PGAOPs that

are tightly coupled in the program code may be placed in the same layer or not

according to the overall pgaload order. The two will be able to run concurrently if

they share the same layer, whereas will run sequentially if they reside on different

layers. In order to achieve the maximum performance it might then be necessary

to carefully architect the location of the various PGAOPs on the available layers.

When the bitstream relative to a given PGAOP is no longer needed on the array, it

is necessary to explicitly erase it from the array in order to make space for future

loading. This is performed with the C function: pga_deallocate(int pganame). It

will erase the specified PGAOP from the internal database (used by pga_allocate)

and force the deletion of the bitstream from the array through the built-in function

pga_free(int pganame).

Once the bitstream relative to a given pgaop has been successfully loaded

on the array, the pgaop can be computed an indefinite number of times on

different inputs. A fundamental difference between PiCoGA and embedded

FPGAs is that PiCoGA is explicitly issued by an external command, and inputs

are explicitly selected for each issue.

PiCoGA features 384 input bits and 128 output bits, organized in 12/4

words. The PiCoGA computation is entirely synchronous. The issue of the C built

in function: PGAOP (int pga_name), causes the device to sample all inputs and

start the pipelined computation of the DFG on the array. If the PGAOP is

currently being loaded a HW stall mechanism will stop the processor computation

until the load is concluded, while if it has never been scheduled for loading an

exception will be issued.

Only one PGAOP can be triggered in each cycle if this is compatible with

the PiCoGA internal status which can raise a stall signal. Normally the 128 result

bits will be produced after the latency specified by the Griffy compiler. In case

different PGAOPs are active (currently computing on the array), there may be

congestion on the output channels, resolved by a priority mechanism (the oldest

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 107 -

PGAOP in the array gets higher priority) and latencies could be higher than the

expected ones. Each output can feature a specific latency, so that the 4 results of a

PGAOP can be produced in 4 different clock cycles, and can be stalled

independently due to congestion on the output channels.

CCHHAAPPTTEERR 33.. OOVVEERRVVIIEEWW OOFF TTHHEE MMOORRPPHHEEUUSS HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE PPLLAATTFFOORRMM

- 108 -

3.6 SUMMARY

The MORPHEUS platform represents a heterogeneous architecture which

includes three reconfigurable engines (HREs) of fine, medium and coarse

granularities, controlled by a general-purpose ARM processor.

PACT XPP is a coarse-grain reconfigurable engine targeting computation

intensive applications with high level of data parallelism. Once configured, it

operates well with video processing tasks on a pixel level, performing complex

arithmetical operations on a data flow in a SIMD manner.

PiCoGA is a medium-grain (4-bit width) reconfigurable engine. Unlike

XPP, it deals equally well with both data and reconfiguration intensive flows

(SIMD and MIMD) thanks to the four contexts that can be dynamically

reconfigured. Consequently, PiCoGA can be efficiently utilized for multimedia,

wireless, as well as cryptography applications, mostly benefiting from advanced

dynamical reconfiguration mechanism.

M2000 is a fine-grain reconfigurable engine, architecturally structured as

an embedded FPGA inheriting all its features. It meant less for computation

intensive applications, in contrast to XPP; or reconfiguration intensive

applications, in contrast to PiCoGA. However, M2000 benefits from the great

usage of LUTs and MUXs in, e.g., network routing applications and various

communication protocols.

Thus, by unifying three types of reconfigurable engines in one platform,

MORPHEUS covers a wide range of applications, providing the most efficient

hardware for each computational concept.

Each of the HREs requires handling of a set of data types (computation,

configuration, control, etc.) featuring various intensities. Thus, MORPHEUS is a

typical example of system targeted by this research. The development of memory

organization in the context of MORPHEUS can be accounted as an important case

study in order to verge towards creating a general methodology for heterogeneous

reconfigurable architectures design.

- 109 -

CHAPTER 4

HIERARCHICAL MEMORY ORGANIZATION AND

DISTRIBUTED DATA STRUCTURE

This chapter thoroughly discusses novel methods, techniques and solutions

for memory organization and data communication. The target architecture and its

basic features are presented in the previous chapter. The chapter starts with the

description of the generic bandwidth requirements followed by the developed data

structure and memory hierarchy descriptions. Being based on these architectural

concepts, a computational model is presented. In addition, an example of the

integration of one of the reconfigurable engines is given. The discussion marks

out the data exchange mechanisms with the host platform. Finally, the features

that distinguish this proposal from the related work are summarized.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 111 -

4.1 GENERIC BANDWIDTH REQUIREMENTS

In this section, the theoretical bandwidth which can be achieved by the IPs

will be recalled and analyzed. The estimation will not outline the bandwidth

needed by the applications, but the theoretical maximum. Fig. 32 shows a block

diagram of these theoretical bandwidth capabilities.

The theoretical maximum is calculated by adding the theoretically possible

bandwidths of all main data consuming and producing modules of the

MORPHEUS chip. These are literally the three different HREs as well as a

memory controller and on-chip memory. The total bandwidth results are roughly

obtained by multiplying the number of I/O ports, the bit width of I/O ports and the

frequency. However, the following annotation to the given calculation has to be

kept in mind.

This estimation does not take the impact of the HREs’ internal subsystems

into account. Depending on, e.g., the granularity of the task or communication

interfaces among different clock domains, it is uncertain that the sub-system

impacts the performance, introducing a specific overhead. This overhead is

supposed to be negligible in case of large tasks, i.e. mappings on the HREs,

because of the dominance of computation time over communication time. If, on

the contrary, small kernels are mapped on the HREs, probably a loss of peak

performance due to communication time can be observed, which includes e.g.

synchronization overhead or memory latencies. Although these local

considerations presumably do not impact the final performance of the system, an

impact of the subsystem with regard to the kernel size cannot be excluded.

Therefore, the given bandwidths are considered as a best-case estimation, which

nevertheless is a reasonable justification of the decisions, described in this

chapter. One should also note that most interfaces can either be used as input or

output. This is indicated by the “or” statements below the outgoing arrows on Fig.

32. An “and” statement on the other hand means that input and output ports are

separated and can therefore be used completely in parallel.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 112 -

Fig. 32. Schematic view on the theoretical bandwidth constraints.

Each computational node (Comp Node 1,2,3), as well as each storage

block (Storage Node 1,2) mirrors a major data generating or data consuming

physical module of the MORPHEUS platform. The allocation to the IPs is

illustrated in Table 6. However, this schematic view shows only the logical

channels seen by the applications, instead of the actual physical channels of each

module. It means that only the total bandwidth as a sum of all physical channels is

exposed. In such a way, it is taken into account that the accurate bandwidth of the

physical channels, which strongly depends on the applications, is not yet

predetermined at this point.

Table 6. Nodes annotation.

Node IP Name Frequency
in MHz

Comp 1 XPP 100
Comp 2 eFPGA 50-150
Comp 3 PiCoGA 200
Storage 1 On-Chip RAM 200
Storage 2 Memory

Controller
200

It is also important that the computational nodes will run each at its own

clock domain. Hence, there are different clock speeds assumed for each of the

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 113 -

computational nodes. Table 6 shows the different frequencies, which are taken to

calculate the bandwidths.

Fig. 32 presents only the theoretical bandwidth of the stand-alone nodes;

therefore it might be the case that the total input bandwidth is not equal to the total

output bandwidth. Of course, practically achievable bandwidth between the nodes

will be rather smaller and will significantly depend on the chosen hierarchical and

interfacing solutions. It is essential to discover the extreme cases (Pareto-points)

of dataflow distribution imposed by the target applications in order to specify the

system requirements.

A summary of inter-nodes communication bandwidth requirements is

presented in Table 7. These requirements will be specified more precisely together

with the detailed description of system architecture. Fig. 32 and Table 7 do not

take into account the ARM microcontroller, as well as the other peripherals, since

their communication capability can be neglected regarding data streaming and

data intensive applications. Table 4 presents a general idea about the traffic range:

low, high, very high; which would help to imagine better the general view of

system communication requirements.

Table 7. Inter-node bandwidth requirements.

Comp node 1 Comp node 2 Comp node 3 Int. mem. Ext. mem.
Comp node 1 x High Low High Very high
Comp node 2 High X High High High
Comp node 3 Low High x Very high Low
Int mem High High Very high x High
Ext mem Very high High Low High X

The legend for Table 7:

 “Low” equals about 1 Gbit/s

 “High” equals about 4 Gbit/s

 “Very High” equals about 10 Gbit/s

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 114 -

4.2 DATA STRUCTURE IN THE SYSTEM

The set of different communication flows and data storage levels that are

presented in the system can be summarized as follows:

1. Internal Computation Data Flow: On the data side, the architecture is

composed of the main processor, I/O peripherals, user programmed DMA,

as well as of two types of communication infrastructures – AMBA AHB

bus and NoC backbone, which connects HREs data ports. AMBA AHB

can be used efficiently when only one of the available HREs is used at full

bandwidth, and especially during the chip verification phase to address

each HRE and to verify independently its performance and functionality.

On the other hand, the NoC can be used to handle high-speed, large

bandwidth communication to achieve relevant peak performance with all

HREs computing concurrently.

2. I/O Interfaces: Access to external resources is performed through a

Memory Controller Device, which can be mapped on the main Data AHB

bus and interfaced on the NoC also. The memory controller allows

handling off-chip Flash, SRAM and SDRAM memory banks and can be

internally interfaced to up to 6 internal AHB bus (thus allowing to share

the resource between Data, Control and Configuration flows). Finally, I/O

data that feature small bandwidth but may benefit from some degrees of

pre-processing can be acquired through the eFPGA HRE that in this case

can act as configurable I/O engine.

3. Configuration data flow: In the overall system, the flow of data should be

strictly separated from the flow of HRE reconfiguration bit-streams, in

order to provide efficient memory management and avoid bottlenecks. The

configuration of HREs is independent from the data flow and is handled

by a specific Configuration Management unit (CM) that controls DMA

and HRE's configuration memories. Connectivity between configuration

resources is provided by a second, separate AMBA AHB bus. For

testability reasons, the processor core can have access to the configuration

bus through a bridge mapped on the main AMBA bus.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 115 -

4. Control Flow: The main task of the ARM processor in the MORPHEUS

architecture is to provide overall management and “coarse-grained” task

synchronization. Consequently, a third set of internal transfers, apart from

computation data and configuration bitstreams, will be related to the

control of all on-chip resources, i.e. HRE control words or synchronization

operations. During HRE computation, the ARM core monitors the state of

each HRE and produces the appropriate commands to load configuration,

start computation, route data chunks to the required destination, manage

DEB consistency and so on. Control transfers share the same bus with

computational data, and additionally utilize an interrupt subsystem which

includes Interrupt Controller directly connected to the ARM and HREs.

ARM9

AMBA AHB

NoC

Heterogeneous
Reconfigurable

Engine
(e.g. PiCoGA)

Heterogeneous
Reconfigurable

Engine
(e.g. M2000)

Heterogeneous
Reconfigurable

Engine
(e.g. PACT)

The ARM World

Programmable Data Exchange Buffer

Memory mapped
EnginesDMA

Fig. 33. Simplified MORPHEUS architecture.

4.2.1 COMPUTATIONAL DATA STORAGE

The MORPHEUS architecture supports two different basements for

computational data transfers:

1. A first option is to use the main AMBA AHB bus for direct data

communication between the ARM and HREs. This is a low-cost, low

performance option that can be utilized during the system verification

phase or for non-critical tasks. In case a higher performance is required, it

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 116 -

is possible to implement a multi-layer bus. However such option can be

considered as redundant.

2. A second option is provided by the NoC infrastructure, which can offer

high bandwidth inter-HREs communication. The NoC supports a high

throughput data transfer mechanism compliant with the streaming

computation model.

The interconnect architecture is used to connect the slow speed, high

density, possibly non-volatile off-chip memory banks with the small and fast

memories that are local to the ARM core and the HREs, defined Tightly Coupled

Memories (TCM) for the ARM core, and DEB in the case of the HREs. Local

memories (TCM or DEB) can be in the range of 1K to 64K bytes with access

times around 2 ns, while off-chip memories may offer storage capabilities of

several mega bytes but access time of tens of ns (see Table 8).

Table 8. Memory hierarchy levels.

Memory Level Bandwidth Size Notes

Level 1: Local Memory
(one channel)

6,4 Gb/s 1K :16K Embedded dual port, dual clock

Level 2: On-Chip Memory 4,0 Gb/s 64K:1M Embedded, single port, Multi-
cycle access

Level 3: Off-chip Flash 400 Mb/s 1M:256M Non volatile

Level 3: Off-chip SRAM 640 Mb/s 1M:256 M Static memory

Level 3: Off chip SDRAM 400:560Mb/s 64M:512M Dynamic memory

In case (1), in order to exploit the bus full performance, an intermediate

sized memory is needed on the AMBA AHB buffer to act as communication

repository, or software cache between the two hierarchy levels described above.

The size of such memory is in the range of 64K to 1M bytes.

The utilization of the NoC as an extension to the bus infrastructure, as

described by point (2), is due to its natural effectiveness in transporting large

amounts of data. The IPs included in the architecture can to process large

quantities of data with a relevant performance. Therefore, the streaming

information delivery is crucial. A relevant advantage of the NoC approach is due

to the fact that the routing blocks that compose the network feature local storage

capability. The NoC itself can than be considered a powerful temporary data

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 117 -

storage mean, distributed along the data transfer paths, thus relieving the necessity

to add large memories in the design. The point-to-point interconnection of the

NoC, with respect with the point-repository-point offered by a standard bus, may

also offer performance enhancements and power consumption minimization due

to the significantly smaller average length of interconnect wires.

The off-chip memory can be composed of Flash, SRAM, or SDRAM

banks according to the application benchmark requirements. Access to external

storage devices is ensured by a specific memory controller. State of the art

controller can provide several AMBA AHB slave ports, so that a controller may

be multiplexed between different AMBA instances (e.g. data bus and

configuration bus). Should the benchmark analysis prove the need to augment the

chip-to-memory I/O bandwidth it is possible to integrate more than one controller

to provide fully parallel access to separate off-chip banks, but it would be

necessary to pay a severe cost in terms of I/O pads required.

ARMARM

AMBA AHB MAIN BUS

AMBA AHB Configuration BUS

DI

ITCM DTCM

ON-CHIP
MEM

ON-CHIP
MEM

A
M

B
A

 A
P

B
 B

U
S

UARTUART

GPIOGPIO

TimerTimer

IEEE 1284IEEE 1284

Main DMAMain DMA

CONFIG
MEM

CONFIG
MEM

Configuration
Manager

Configuration
Manager Conf DMAConf DMA AHB2AHB

BRIDGE

AHB2AHB
BRIDGE

DREAMDREAM M2000M2000 XPPXPP

AHB2APB
BRIDGE

AHB2APB
BRIDGE

CMC DDRAM
Controller

CMC DDRAM
Controller

MPMC SRAM
Controller

MPMC SRAM
Controller

NoCNoC DomainDomain

DNA
Controller

AHB2NoC
Bridge

VIC Interrupt
Controller

VIC Interrupt
Controller

Fig. 34. MORHEUS SoC architecture.

In MORPHEUS system (Fig. 34), each HRE is seen by the ARM-centered

system as a memory-mapped bus slave. The Network-on-Chip paradigm, though,

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 118 -

requires that each HRE should be considered as both initiator and/or target of data

transfer according to the data flow determined between HREs by the application.

Memories are passive devices: in order to connect the HRE to the NoC as

initiator, each local memory should be connected to a DMA unit or a specific

FSM for addressing the system-port. In this way HREs can interface to the NoC

as transfer initiator. The DMA would be programmed by the user through the

ARM processor or a specific controller as part of the HRE control. Its

requirements are related to the NoC specifications and depend on the chosen NoC

topology, switching type and pattern granularity.

The ARM processor is Harvard architecture, providing concurrent access

to the data and instruction memories. The ARM9 core included in the

MORPHEUS architecture features data and instruction caches (16Kbytes each),

data and instruction TCMs of programmable width (typical TCM size is 32 to 64

Kbytes), and independent data and instructions AMBA AHB ports.

4.2.2 CONTROL DATA STORAGE

The critical task of the embedded ARM processor core in the

MORPHEUS architecture is to support the centralized control of the different

HREs. Control information includes the handling of the following resources:

 Issuing of configuration tasks and computation commands according to

the Molen paradigm (set, execute primitives);

 Synchronization of task dependencies, according to the Molen paradigm

(break primitive) ;

 Routing of data and transfers between architectural resources:

programming of AHB and NoC DMAs;

 Synchronization of exclusive access to DEBs;

 Programming of HRE address generators when utilizing HREs in “Slave”

addressing mode;

 Configuration control: CM task synchronization, configuration DMA(s)

programming.

Control information is provided to HREs through a set of registers shared

between the HRE and the system, defined as XRs. XRs are accessible both from

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 119 -

the system clock domain and the HRE clock domain. In order to preserve data

access consistency, it is necessary to provide an explicit synchronization protocol

for each access. The detailed description of XR synchronization functionality will

be determined in the following sections. It is also possible to use the ARM core

set of interrupts to provide real time events handling.

The control flow does not feature a significant traffic bandwidth, but it

might become critical in terms of transfer latency. According to the chosen

interconnect strategy, XRs can be connected to the configuration bus and

communicate with CM through the configuration AHB bus, or be connected to the

data bus. In this case, there is no necessity to include an additional bus and the

bridge in the control data path. In this case control information that is always

issued by the processor core should have priority with respect to data flows

handled by DMA. It should be observed that the main AMBA AHB bus, which is

connected to the ARM core data port, will be used as data exchange vehicle only

in the testing phase, while during peak computation data transfers will be

performed on the NoC architecture, leaving the processor data bus free for the

handling of control information. A further option is the definition of a third

AMBA AHB layer, specifically allocated to control flow.

4.2.3 CONFIGURATION DATA STORAGE

Table 9 describes bitstream requirements for each IP in the system. The

XPP core as well as the FlexEOS core does not support partial reconfigurations,

so that full bitstreams have to be downloaded into the HREs. The PiCoGA core

supports frequent partial reconfigurations that gain to be handled inside the HRE,

so that a large bitstream is provided into the local configuration memory at a

coarse granularity, and the PiCoGA behaves independently.

Table 9. Configuration bitstream requirements for the MORPHEUS IPs.

IP Bitstream Size Array size

M2000 eFPGA 60Kbytes 4Kgates

Pact Xpp 16Kbytes 8x8 Xpp Array

PiCoGA 72Kbytes 4layers x (24x16 RLC Array)

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 120 -

The configuration bus will have access to the off-chip banks through the

memory controller device (see Fig. 35); it is possible to use a dedicated memory

controller for the configuration bus to enhance bandwidth, but that would require

a heavy penalty in terms of I/O pads (70 per each controller).

Level 3: External Memory Device
SRAM/DRAM/FLASH

Level 3: External Memory DeviceLevel 3: External Memory Device
SRAM/DRAM/FLASHSRAM/DRAM/FLASH

SRAM/DRAM ControllerSRAM/DRAM Controller

AMBA AHB Configuration BUS

Level 2: Specific
Onchip
SRAM

Level 2: Specific
Onchip
SRAM

Level 1: HRE CCache
SRAM

Level 1: HRE CCache
SRAM

Level 0: HRE ConfBits
Distributed SRAM

Level 0: HRE ConfBits
Distributed SRAM

Configuration
DMA

Configuration
DMA

AHB
Slave

To
Master
Bridge

AHB
Slave

To
Master
Bridge

Main AMBA AHB BUS

ARM9
Core

ARM9ARM9
CoreCore

Onchip
SRAM

OnchipOnchip
SRAMSRAM CMCM

Fig. 35. Configuration data hierarchy.

As IP reconfiguration requires fast and low latency memory-to-IP

communication rather than large bandwidth point-to-point communication, the

use of the NoC as a mean to carry configuration is not considered reasonable. On

the contrary, the bus width can be determined, according to the AMBA protocol,

from 32 to 256 bits. In case the architecture simulation should underline a

bottleneck in configuration traffic, it is possible to build a multi-layer bus

structure.

The Configuration Bus (see Fig. 35) should be mastered by the specific

Configuration Manager (CM) that synchronizes task configuration according to

inputs and synchronization signals received by the ARM core. For testability

purposes, the processor can have access to the configuration bus as an alternative

master through an AHB-to-AHB bridge residing on the main processor bus. CM

(or the processor core) may take advantage of local DMA(s), one for each

eventual bus layer, to speed-up data transfers.

As it was the case with the data storage hierarchy, the configuration

storage hierarchy also has to deal with the handling of different clock domains.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 121 -

There are two solutions which could be proposed for a Configuration Interface

(CI) implementation across the system/HRE clock domains boundary (see Fig.

36).

1. The first option provides a fine-grain streaming approach. In this case the

CI is based on the clock domain crossing synchronization registers or

asynchronous FIFOs. The configuration data flows directly through these

registers. There is no local storage of configuration bits in the HRE

domain, thus decreasing area occupation, at the price of a very relevant

overhead in terms of performance since each synchronization will require

2 to 4 clocks for crossing the clock domain boundary.

2. The second option provides a coarse-grain solution for the configuration

streams transportation that is analogous to what is described for data in

section 4.2.1. A CEB is utilized in the same way as it was done with DEB,

crossing clock domains with a coarse-grained synchronization that is very

friendly for configuration data. Configurations are, in fact, typically

organized in large chunks corresponding to a set of functionalities to be

mapped on the IPs. The size of the CEB may depend on the IP

requirements and the number of configurations that the application needs

to have readily available. A reasonable choice is to replicate one (or a few)

full configurations, but that may lead to relevant area occupation as

described in Table 10.

It should be pointed out that PiCoGA and XPP provide embedded

addressing capabilities for the configuration bitstream.

Table 10. Area requirements for dual clock CEBs.

IP Configuration Memory Size Area Occupation vs IP Size
(ST CMOS090 Technology)

PiCoGA 4 layers 72Kb 1.6 mm2 vs 12 mm2

M2000 4K full configuration 60Kb 1.2 mm2 vs 4.5 mm2

4xPact Xpp 8x8 full configuration 64Kb 1.2 mm2 vs 11 mm2

Note: Single port memories feature comparable access time, while the area

is roughly 60% of the figures described above.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 122 -

The case of the embedded FPGA is different as the configuration

mechanism is not bound to the same frequency specifications as the computation.

The M2000 device is capable to perform computation on up to 16 different

concurrent clock domains (it should be observed that the entry language for

M2000 is VHDL/Verilog, so it is possible to program an application on the IP

making use of different clock domains). Consequently, M2000 CI will be

different from the others IP in a way that the M2000 configuration can be fed to

the HRE directly from the bus ports at system speed. Therefore, there is no

specific need to cross clock domain boundaries when transferring configuration

on to the M2000 IP. From the system control and synchronization point of view,

though, M2000 can feature the same API software interface for configuration as

the other HREs, thus providing to system programmers a homogeneous approach.

AMBA BUS (Configuration bus)

AMBA BUS (Master bus)

AMBA
Bridge

Conf.
OnChip
MemM

a
ste

r
S

la
v
e

Config.
Manager

M
a
ste

r

S
la

v
e

DMA

To External Memory
Controller / TIC

DEB XR

IP

HRE clock HRE clock
domaindomain

Master clock Master clock
domaindomain To Master bus

CEB
(local
cache)

DEBXR

IP

HRE clock HRE clock
domaindomain

Master clock Master clock
domaindomain

Internal

FSM

Fig. 36. HRE configuration.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 123 -

4.3 MEMORY ARCHITECTURE DEVELOPMENT

A hierarchical structure of the memory subsystem is ought to deal with the

issues posed by moving data from the external world to the computational engines

(see Fig. 37). There are three memory storage levels presented in the system:

 Level 3 is an off-chip memory. It provides a global shared storage of the

data, needed for the system.

 Level 2 is an on-chip memory. This memory is used as a temporal

repository of the frequently used data blocks between level 3 and level 1.

On this level, configuration data is strictly separated from the other data

types.

 Level 1 is a dedicated data/configuration exchange buffer (DEB/CEB). It

is tightly coupled with each HRE and has two main functions: 1) to store

the data which is currently processed in HRE, and 2) to separate HRE

clock domain from the system clock domain.

Fig. 37. MORPHEUS memory hierarchy.

The following sections give more detailed description of the memory

subsystem providing quantitative specifications.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 124 -

4.3.1 LEVEL 3: OFF-CHIP MEMORY

Off-chip memories serve to store large amount of data which does not fit

in on-chip memory. Today’s off-chip solutions support already up to few

gigabytes of the storage size, however their bandwidth is about one order of

magnitude smaller comparing to the memories implemented inside a SoC. Huge

sizes of the storage blocks make them also much more complex, therefore a

special memory controller is used to manage an access to the external data.

Memory controllers contain the logic necessary to read and write dynamic RAM,

and to "refresh" the DRAM by sending current through the entire device. Without

constant refreshes, DRAM will lose the data written to it as the capacitors leak

their current within a number of milliseconds (64 milliseconds according to

JEDEC standards). Reading and writing to DRAM is facilitated by use of

multiplexers and de-multiplexers, by selecting the correct row and column address

as the inputs to the multiplexer circuit, where the de-multiplexer on the DRAM

can select the correct memory location and return the data (once again passed

through a multiplexer to reduce the number of wires necessary to assemble the

system). Bus width is the measure of how many parallel lanes of traffic are

available to communicate with the memory cell. Memory controllers’ bus width

ranges from 8-bit in earlier systems, to 256-bit in more complicated systems and

video cards (typically implemented as four, 64-bit simultaneous memory

controllers operating in parallel, though some are designed to operate in "gang

mode" where two 64-bit memory controllers can be used to access a 128-bit

memory device).

In MORPHEUS, an ARM PrimeCell Multi-Port Memory Controller

(MPMC) PL175 is integrated. A choice of the given device rides on the following

main features of MPMC:

 AMBA AHB 32-bit compliancy.

 Dynamic memory interface supports DDR-SDRAM, SDRAM, and low-

power memories.

 Asynchronous static memory interface supports RAM, ROM, and Flash

with or without asynchronous page mode.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 125 -

 Designed to work with non-critical word first and critical word firs

processors, such as the ARM926EJ-S.

 Read and write buffers to reduce latency and to increase performance.

 6 AHB interfaces (+2 optional) for accessing external memory.

 16-bit and 32-bit wide data-bus SDRAM and SyncFlash memory support.

16-bit wide DDR-SDRAM memory data support.

 4 chip-selects for synchronous memory and 4 ship-selects for static

memory devices.

 Power saving modes dynamic control.

 A separate AHB interface for programming the MPMC registers.

 Support for all AHB burst types.

 Integrated Test Interface Controller (TIC), etc.

For more details of MPMC specification, refer to [2]. All these

characteristics make the memory controller to be a general purpose device with a

high level of parameterization which on the one hand, gives sufficiently easy way

to integrate it inside MORPHEUS SoC and on the other hand, leaves a possibility

to adjust it for the concrete tasks. A modular architecture enables disconnecting of

dormant interfaces and sub-blocks, thus reducing die area and saving power

consumption.

Though two or more memory controllers had provided higher bandwidth,

the joint integration in the SoC heavily influences not only on the chip area and

power consumption, but also on the number of I/O pads and, thus, a necessity of a

different package form-factor usage. Therefore, the decision is to implement only

one memory controller with the following features:

 Dynamic memory interface connected to 32-bit wide SDRAM memory on

200MHz.

 Asynchronous static memory interface is disabled.

 External memory bandwidth for different types of AHB bursts, see in

Table 11.

 AHB interfaces are connected to the main and configuration busses (plus 1

or 2 interfaces may be connected to the NoC). The other AHB interfaces

are disabled.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 126 -

 Programming and TIC AHB interfaces are connected to the main bus to be

easily accessed by the main processor.

 Area occupation 276636 μm2.

 Number of I/O pads for MORPHEUS integration: 72

Table 11. An external bandwidth provided by a general purpose memory

controller.

Access
type

Bandwidth
MB/s Burst-1

Bandwidth
MB/s Burst-4

Bandwidth
MB/s Burst-8

Bandwidth
MB/s Burst-16

Bandwidth
MB/s Burst-32

SDRAM

Page-Hit

Read
access

94 265 379 482 559

SDRAM

Page-
Miss

Read
access

66 204 312 424 518

SDRAM

Page-Hit

Write
access

664 664 664 664 664

SDRAM

Page-
Miss

Read
access

664 664 664 664 664

The bandwidth of memory controller is shared between its AHB ports. To

meet given bandwidth requirements, a TimeOut register must be programmed.

When a memory request is made to the port the value of the counter is loaded.

Every cycle where the port transaction is not serviced the TimeOut register counts

down. When the TimeOut counter reaches zero, the port is increased in priority.

This functionality enables each AHB port to be programmed with a deterministic

latency. This also enables the amount of bandwidth that a port consumes to be

indirectly defined.

Thus, the reuse of the state-of-art memory controller gives a proven,

highly parameterized solution, and saves the design time that might be spent on a

custom device developed from scratch.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 127 -

4.3.2 LEVEL 2: ON-CHIP MEMORY

In case of MORPHEUS, main system memory is dedicated to a second

hierarchical memory level. Typically, this kind of storage contains the programs

that are currently being run and the data the programs are operating on. In modern

computers, the main memory is the electronic solid-state random access memory.

It is directly connected to the CPU via a memory bus and a data bus. The

arithmetic and logic unit can transfer information very quickly between a

processor register and locations in main storage. The memory bus is also called an

address bus and both busses are high-speed digital "superhighways". Access

methods and speed are two of the fundamental technical differences between

memory and mass storage devices.

In MORPHEUS, main memory acquires even more significance, since

together with the data for the central processor it contains a temporal data

currently used by HREs. This data has bigger size and different structure

comparing to the ARM data. Moreover, the main system storage is physically

separated in two parts: computational/control data, and configuration data.

On-chip memory organization depends very much on target applications

and in many respects defines the performance of the whole system integrally. In

section 3.1.2, it is proposed to consider all applications running on reconfigurable

platform from two points of view: throughput intensive processing and

reconfiguration intensive processing. The decision to choose one approach or

another will be taken at the end of a design space exploration phase as a

consequence of the platform architecture compared to the characteristics of the

application. Thus, investigating two extreme sides of software functionality, it is

possible to determine memory specifications, targeting the most sufficient trade-

off.

In the throughput intensive scenario, the full image is processed by the

first operator and the result is stored in an external memory. The external memory

is considered since the size of the image from a typical MORPHEUS application

is large enough to be stored elsewhere but the external memory. Then, this result

is read from the external memory and processed by a second operator and so on.

In this scenario, a typical algorithm accumulates about 20 successive operators.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 128 -

In the reconfiguration intensive scenario, only a window of the image is

processed by a first operator and the result is stored in on-chip memory. The size

of the window is chosen so that a reasonable number of iterations will be needed

to process the whole image. Then, this result is read from the internal memory and

processed by a second operator and so on. After the window is processed through

all the operators, the result is stored in an external memory. Then the next window

is processed through all the operators and so on. In this scenario, a typical

algorithm where 20 successive operators have to be applied, one image may be

split into 100 windows.

Relying on these two approaches it is possible to evaluate lower borders of

on-chip data and configuration memories. Consider a typical MOPHEUS

application, such as film grain noise reduction for HDTV. The following

parameters are taken from 3.1.2:

 Pixel resolution:

o color channels for color images;

o 16 bits per color channel.

 Image size:

o 1920x1080 for HDTV.

 Frame rate:

o 24 fps

Thus, the minimum on-chip memory size, required for the chosen

application under the second scenario is described by the next equations:

ARMHREsdata DNWS min_ , (1)

100FW , depthch ChNsF Re ,

 2000___min_ 2 MconfPiCoGAconfPACTconfconf SSSS , (2)

where:

 min_dataS
- a minimum on-chip data memory size;

 W - a size of window;

 HREsN - a number of HREs in the system;

 ARMD - a size of program and data used by ARM;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 129 -

 F - a size of image;

 sRe - an image resolution for HDTV;

 chN - a number of color channels;

 depthCh
- a color channel depth;

 min_confS
- a minimum on-chip configuration memory size which is able to

store two configurations for each HRE;

 PACTconfS _ - PACT configuration size;

 PiCoGAconfS _ - PiCoGA configuration size;

 2000_ MconfS
- M2000 configuration size;

Consequently, on-chip memory size selection strategy is presented as

follows:

 On-chip data memory:

o Lower border: MBMbitsbitsF 129516310801920 ,

KBMBW 12010012 ,

ARMARMdata DKBDKBS 3603120min_ , refer to (1). ARMD

depends on the exact software and may vary from tens to hundreds

kilobytes. Area occupation around 8 mm2.

o Upper border: depends on the available area.

 On-chip configuration memory:

o Lower border:
 KBKBKBKBSconf 2566064722min_

,

refer to equation (2) and Table 10. Area occupation around 4 mm2.

o Upper border: depends on the available area.

4.3.3 LEVEL 1: DATA/CONFIGURATION EXCHANGE BUFFERS

Internally to each separate clock island, each reconfigurable IP has

visibility and access only to its own exchange registers (XRs) for control and local

memories (DEBs and CEBs) for data and configuration, as shown in both Fig. 37

and Fig. 38.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 130 -

Each HRE DEB consists of a dual-port, dual-clock memory device. The

“system-port” is connected to the ARM clock domain, and is accessed from the

AMBA bus (or the NoC Interface). This port is used by the ARM and/or DMA

unit(s) to store/retrieve data to/from the IP. The “IP-port” is connected to the HRE

clock domain. It is utilized by the IP to access data for the local computation.

Thus, each local memory provides a uniform mean for the system to feed inputs to

and load results from the computational blocks hiding the heterogeneity of each

HRE own frequency domain and internal architecture. Data consistency and

access synchronization on the DEB is handled by software and is based on a

programmable exclusive access policy (portions of the DEB are dynamically

reserved for external access and some others to internal access, and this allocation

is switched by explicit commands issued by the ARM9 processor).

In the HRE internal clock domain, DEBs are seen as an addressing space

where computation inputs and outputs and temporary variables reside. According

to the HRE features, two access models can be utilized (see Fig. 38).

 “Processor-oriented computation”: If the HRE is capable of acting as

MASTER, it independently will access the DEB “IP-Port” (on the regions

indicated as safe by the ARM core. These are the regions not currently

accessed by the “System Port”). When results are available, the IP will

notify the occurrence to ARM, and the portion of memory holding results

will be then accessed by core/DMA/NoC and become unavailable for the

IP. This configuration is more suitable for applications where the

addressing patterns depend on the processed data.

 “Stream-oriented computation”: If the addressing pattern for the input data

contained in the DEB is regular, it is possible to obtain higher performance

relieving the IP from the addressing burden, configuring the same IP to

perform computation as a data-crunching SLAVE without addressing

capabilities. For this reason, a set of programmable address generators can

be added on the “IP port” to each DEB bank in the HRE, thus ensuring a

higher data bandwidth through the IP. Each address generator can be

programmed independently by the ARM core and provides specific

vectorized addressing patterns.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 131 -

Heterogeneous
Reconfigurable

Engine…

Dual-port Dual-clock
Memory Buffer

Pattern Programmable
Address Generators

…
FSM

…
FSM

…
FSM

…
FSM

• Vectorized access
• Streaming
• Irregular patterns

ARM9

AMBA AHB

NoC

AMBA
Wrapper

NoC Wrapper
(with DMA/FSM)

Data Exchange
Buffer Detail

Interconnections
Multiplexers

Heterogeneous
Reconfigurable

Engine…

Dual-port Dual-clock
Memory Buffer

Pattern Programmable
Address Generators

…
FSMFSM

…
FSMFSM

…
FSMFSM

…
FSMFSM

• Vectorized access
• Streaming
• Irregular patterns

ARM9

AMBA AHB

NoC

AMBA
Wrapper

NoC Wrapper
(with DMA/FSM)

Data Exchange
Buffer Detail

Interconnections
Multiplexers

Fig. 38. Clock domain data storage organization.

4.3.4 EXCHANGE REGISTERS

All synchronizations with the host system are ensured by asynchronous

interrupts and a cross-domain eXchange Registers (XRs). Two types of the XRs

are implemented:

 Hardware oriented registers handle specific hardware signals such as

reset, interrupts, clock enable, and other control signals. HRE can issue

only interrupt signals to the host system, one part of which is related to the

predefined services and another is managed by the user. The host system

issues three types of signals to HRE via hardware oriented registers, they

are: 1) computation control; 2) clock control (clock enable, clock select,

and PLL control); 3) stream computation control.

 Software oriented registers, on the contrary, are managed by the user.

Their contents and meanings are completely programmable from both host

system side and HRE side.

Structurally, all HREs have similar XR organization. Namely, each XR is

a 32-bit word: the higher 16 bits are reserved for HRE-to-HOST communication,

so they can be read by both but can only be written from the HRE side; the lower

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 132 -

16 bits are reserved for HOST-to-HRE communication so they can be read by

both but can only be written from the host system side. The following tables

describe the functionality of the XRs:

4.3.4.1 HARDWARE ORIENTED REGISTERS

XRh0: COMPUTATION CONTROL REGISTER

Address Offset + 0x000 Physical control of the HRE

31:17 16 15:3 2 1 0

0 End of computation
(HRE Idle request)

0 HRE enable

‘0’: HRE Idle

‘1’: HRE Active

HRE resetn
2

HRE
resetn 1

XRh1: CLOCK CONTROL REGISTER (1)

Address Offset + 0x004 PLL Handling

31:17 16 15:4 2 1:0

0 PLL_LOCK:

‘0’ PLL powered
down or
unlocked

‘1’ PLL Locked,
clock can be
used for HRE

PLL Multiplication
Factor Definition

P VALUE

PLL PowerDown

‘1’: Switch on PLL

‘0’: Power Down PLL

Clock MODE (IN)

00 Stuck at gnd

01 Stuck at gnd

10 External clock

11 PLL Output

XRh2: CLOCK CONTROL REGISTER (2)

Address Offset + 0x008 PLL Handling

31:16 15:8 7:0

PLL Multiplication Factor Definition

M VALUE

PLL Multiplication Factor Definition

N VALUE

XRh3: DATA STREAMING CONTROL REGISTER

Address Offset + 0x00c 4-Way Streaming computation control and

synchronization

31
:28

27:24 23:20 19:16 15:12 11:8 7:4 3:0

HRE_LOC
K

ARM_LOCK_A
CK

HRE_LO
CK_ACK

ARM_LO
CK

XRh4: INTERRUPT REGISTER

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 133 -

Address Offset + 0x010 Interrupt Signals

31:17 16 15:0

0 HRE:

Printf Dump Request

0

XRh5: INTERRUPT ACKNOWLEDGE REGISTER

Address Offset + 0x014 Interrupt Acknowledge Signals

31:16 15:1 0

0 0 DREAM:

Printf Dump acknowledge

4.3.4.2 SOFTWARE ORIENTED REGISTERS

In this case the functionality is not specified in hardware but the

programmer is free to make any use of them via software.

XRsn : Address 0x20 + n*4 General Purpose XRs

31:16 15:0

User Defined (HRE2ARM) User Defined (ARM2HRE)

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 134 -

4.4 COMPUTATIONAL MODEL

MORPHEUS architecture was designed to process streaming data-flows

under given real time constraints. Fig. 39 depicts a general view of the data-flow

in the MORPHEUS platform. The computational demands of the target

application are manually partitioned over available computational units – HREs.

The aim of the mapping task aims at building a balanced pipeline flow in order to

induce as few stalls of HREs as possible in order to sustain the required run-time

specifications. It should be noted that the order and the direction of the traffic

between the HREs (and the I/O facilities) is completely flexible and can be easily

adapted to various applications. Also the bandwidth related to a given data stream

may change significantly throughout different stages of the same computation.

Fig. 39. General view of the data-flow on the MORPHEUS platform.

In such a way, there are the following requirements for the application

mapping:

 The computational kernels should be distributed as much as possible

among the three different HREs in a balanced way (the throughput of the

overall system will be that of the slowest HRE), depending on the mapped

application.

 Data traffic between HREs (and I/Os) should ideally not induce stalls and

thus should be hidden by the computation (of course this may depend a lot

Input Data Flow Output Data Flow

Input Data Flow Output Data Flow

ARM

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 135 -

on the time correlation imposed by the application between different data

elements in the stream).

The fundamental task for the MORPHEUS application designer is to

develop a balanced pipeline where data transfers and computation can interact

concurrently without inducing bottlenecks and/or stalls. Fig. 40 provides a generic

example of application mapping on MORPHEUS, utilizing only two HREs for

simplicity. The example makes it evident how the overall performance will be

driven by the slowest stage, where a stage can be induced by either computation

or data transfers.

Fig. 40. Example of a possible data flow organization on the MORPHEUS

architecture.

On the other hand, due to the intrinsic heterogeneity of the HREs, the

timing budget of each stage is extremely flexible, and can be determined by the

user, much depending on the application features. It is likely that the transfers will

be more flexible and it will be easily adaptable with respect to computation in the

design optimization phase.

The granularity of data-chunks is the size of either a single computation

event on the HRE or the specific transfer in the communication infrastructure.

From the hardware point of view, this is adaptability is maintained both in terms

Synchronization Stages

Loading data
Chunk 1 from IO
To XPP

Loading data
Chunk 2 from IO
To XPP

Loading data
Chunk 3 from IO
To XPP

Loading data
Chunk 4 from IO
To XPP

Processing data
Chunk 1 on XPP

Processing data
Chunk 2 on XPP

Processing data
Chunk 3 on XPP

Moving data
Chunk 1 from
XPP to DREAM

Moving data
Chunk 2 from
XPP to DREAM

Processing data
Chunk 4 on XPP

Moving data
Chunk 3 from
XPP to DREAM

Processing data
Chunk 1 on
DREAM

Moving data
Chunk 1 from
DREAM to IO

Processing data
Chunk 2 on
DREAM

time

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 136 -

of addressing details and size to allow the user the widest possible design space in

mapping the application.

4.4.1 MATHEMATICAL REPRESENTATION

In order to deploy the concept of the synchronization stage in the

streaming data-flow without applying strict constraint on the size and nature of

each application kernel mapped on the HREs, the overall computation flow can be

modeled according to two different design description formalisms:

 Petri Nets (PN) [37];

 Khan Process Nets (KPN) [45], [69].

In the first case, the synchronization is made explicit, as each computation

node in the network is triggered by a specific set of events. In the second case, the

synchronization is made implicit by the presence of FIFO buffers that decouple

the different stages of computation/data transfer.

In fact, KPN are mostly suited to “hardwired” implementation since the

dimensioning of FIFOs is very critical to avoid stalls, but it is entirely related to

the application. In such reconfigurable architecture as MORPHEUS, the

application of the KPN processing pattern may require some tuning of the kernels

granularity to match the granularity of FIFOs.

The choice of the most suitable design formalism for a specific application

depends on both the targeted application features and the nature of the targeted

HRE. Since it is possible to model a KPN through a PN (but not vice versa), from

the hardware point of view the PN model has been kept as a reference in the

design, although full support for KPN-oriented computation is maintained.

One important detail of the computation deployment is that the

MORPHEUS architecture is a completely programmable device. That is why each

HRE must be configured before starting the computation. The configuration stage

of a given HRE must be considered as a triggering event for computation in the

context of Petri Nets. Therefore, a pure KPN pattern can not be applied to

MORPHEUS, unless the case where the configuration is completely static (all

HREs and transfers are programmed only once in the application lifetime). In case

of dynamic reconfiguration (the number of nodes in the KPN/PN is higher than

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 137 -

the available HREs) KPN can be implemented as sub-nets, or second level nets of

a larger PN triggered by the configuration events. In this case, the application

nodes must be time-multiplexed and scheduled over available HRE. It is possible

to define this computational model as a controlled Petri net, and the configuration

must be considered as one of the triggering events for computation.

Looking more precisely on the HREs, the XPP array is suited for a KPN-

oriented flow because its inputs are organized with a streaming protocol. Unlike

the XPP array, DREAM is a computation intensive engine: typically, input data is

iteratively processed and written back in DEBs with the generation of a significant

share of temporal results. Thus, computation on DREAM can be more

appropriately described as a collection of iterations triggered by specific events,

rather than a purely streaming computation. Therefore, PNs are more suitable to

model its computation and its interaction with the rest of the system. Finally,

M2000 is an eFPGA device and, from the architectural point of view, any

computation running on it can be modeled according to either formalism.

In order to keep the balance between computation kernels and relative data

transfers to fit in the “extended heterogeneous pipeline” concept, each HRE is

provided with local proprietary input and output buffers – DEBs. The DEBs

provide the synchronization stage described on Fig. 40. According to the

information described above, XPP DEBs are modelled as FIFOs, while the DEBs

connected to DREAM and M2000 are run-time programmable and support both

FIFO mode and random memory access mode. In order to exploit the hardware

features of each HRE at their maximum performance, the MORPHEUS chip is

organized according to the Globally Asynchronous Locally Synchronous (GALS)

clock distribution model. Each HRE is provided with a local programmable PLL.

DEBs are implemented as dual-port, dual-clock memories (DPDC) in order to

implement the clock domain crossing (this concept is presented in more detail in

section 4.3.3).

4.4.2 ORGANIZATION OF DATA-FLOW IN THE SYSTEM

From the computational point of view MORPHEUS architecture provides

two types of I/O:

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 138 -

 Very high speed I/O channel is provided by the external memory

controller. The device was added to the design in order to sustain the peak

requirements of the most demanding applications (for the quantitative

specifications refer to section 4.3.1). In particular, the controller ports are

organized with input/output reordering buffers in order to enable the

controller utilization in the context of a KPN-oriented data-flow.

 On the other hand, the M2000 eFPGA fabric is supported with the direct

connection to I/O pads in order to guarantee the deployment of low-

bandwidth but configurable specific hardware protocols (e.g. various

external interfaces).

 Other standard I/O protocols (IEEE1254, UART, JTAG) are available as

part of the ARM processor environment but, their utilization is only

planned as control/debug facility and not as part of the MORPHEUS data-

flow.

Data-flow in MORPHEUS, can be represented as a set of synchronized

data transfers from I/O, through the DEBs, possibly through on-chip memory, and

finally to I/O again (see Fig. 39). As described in section 3.3, there are two

physical means for data transfer:

 A multi-layer AMBA bus, which is used for all control, synchronization

and configuration of the system components but can also be used for

transferring data at low bandwidth.

 A communication infrastructure based on a Network-on-Chip.

According to the PN/KPN concept each node in the computation network

must be provided with the means of forwarding its result to the following node,

possibly in a concurrent way in order to avoid bottlenecks and exploit parallelism.

For this reason every HRE Network Interface (HRE-NI) in the NoC is provided

with an embedded DMA-like data transfer engine. The user can organize data-

flow according to three different approaches:

1. The ARM processor acts as “full-time” traffic controller. The code

running on ARM monitors the status of each HRE through the exchange

registers (XRs) and triggers the required transfers over the HRE-NIs in

order to maintain the desired stream through the system. This is useful in

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 139 -

the first stages of application mapping in order to evaluate the cost of each

step in the computation, maintain full programmability, and find

bottlenecks.

2. The ARM processor acts as “batch” controller and enabler. After the

configuration phase, when ARM programs all HREs and relative transfers

on the HRE-NIs, it goes to the idle mode waiting for interrupts. By

handling XRs, ARM maintains the synchronization between the various

stages of the pipeline described in Fig. 40. This approach is useful in case

of controlled computation network (application that requires dynamic

reconfiguration to schedule different PN nodes over the same HRE) or in

any other case when the user prefers to utilize a PN, which is an event

driven network on contrast to KPN.

3. The modeled network is self-synchronized: the ARM processor only

provides the initial configuration phase, and after that the HRE-NI will

iterate over circular buffer addressing implementing a fixed data-flow

through the system. This case can be modeled for static applications or,

most likely, for a limited time-share of the application as a second level

KPN, included in a larger PN network.

A sample of the C control source code for the ARM processor, managing

computational data exchange with the DREAM and M2000 HREs, is presented in

Appendix A.

4.4.3 NETWORK-ON-CHIP AS THE DATA COMMUNICATION MEAN

The proposed NoC topology is presented in Fig. 41. It consists of eight

nodes, each of which is connected to a computational or a storage unit. Note that

PACT XPP HRE and CMC (Central Memory Controller) use in twos network

nodes due to their architectural specifics.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 140 -

ARM

CMC
PORT1

CMC
PORT2

M2KDREAM

ON CHIP
MEM

PACT IN

PACT OUT

ARM

CMC
PORT1

CMC
PORT2

M2KDREAM

ON CHIP
MEM

PACT IN

PACT OUT

Fig. 41. NoC Spidergon topology.

In order to provide ARM processor with the “full-time” control over data

traffic in the system, the generic NoC communication concept requires a slight

refinement. NoC is by definition a distributed communication infrastructure with

a set of initiator nodes (e.g. computational cores) issuing transfers, and a set of

target nodes providing information storage and responding to the transfer request

(e.g. memory units). Consequently, from the NoC point of view the nodes have

peculiar functionality simultaneously combining initiator and target behaviors.

This is implemented in the NoC by means of so called “distributed DMA” pattern:

in order to act as a traffic initiator, a Network Interface of each HRE node (HRE-

NI) in the NoC is enhanced with a local data transfer engine defined as a Local

DMA (see Fig. 42). Local DMAs also feature flexible addressing patterns that

include step/stride and circular buffer functionality. NIs are capable to load data

chunks from HREs and store them through the NoC into the target repository and

vice-versa. From the core/user point of view this concept enhances the NoC with

an enlarged and highly parallel DMA architecture. The user has possibility to

handle computation on HREs as C-level functions mapped on a specific

processing unit. Operands for this function are referenced by their DMA transfer

information, composed by base address and addressing pattern details.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 141 -

Fig. 42. Initiator and target HRE-NI.

Data Transfers are initiated by ARM through specific configuration

registers on the HRE network interface. The configuration process is performed

via a dedicated NI configuration channel reaching all HRE NIs, mapped as a slave

on the AMBA bus. The HRE NIs can support multi-channel transfers with

variable priority scheme, also programmed through the same configuration

channel. End-of-transfer notification for each channel in the HRE NI can be read

both as a status register or handled as interrupt by the core.

Programming of the distributed engines integrated in the NoC is handled

by means of C-based drivers. They support single transfers and multi-block

transfer for stream access, such as:

 Auto-reload Multi-Block transfer

 Auto-reload Multi-Block transfer with contiguous Source address

 Auto-reload Multi-Block transfer with contiguous Destination address

A channel is selected and programmed using two C structures called

respectively config and lli. For each one several parameters are defined. Refer to

Appendix A for the single- and multi-block transfer source code examples.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 142 -

As described in section 4.4.2, quasi-static data transfers are expected to be

by far the greatest volume of communication load on the network. This positively

affects the overall system control performed by ARM under the RTOS, since

block transfers can be handled using DMA methodology. In addition to data

transfer control, system synchronization activities may limit the application

performance. Since the MORPHEUS platform is a single master system, it may

suffer synchronization overload due to a tremendous amount of interrupt sources

(dependent on the granularity of the tasks, mapped on the HREs). A possible

solution is to offload ARM from a part of the RTOS services by mapping them on

a dedicated hardware. Such network controller, DNA (Data Network Access),

besides the setup mechanisms for data transfers, features a hardware handshaking

protocol to support synchronization between communication and computation. Its

programming model is very similar to a common DMA interface.

The DNA is programmed by ARM through AMBA AHB. Eight parallel

programmable channels are supported, each one able to control multi-block

transfers. The DNA programs NoC transferes by means of configuring HRE-NIs.

In spite of introducing an additional latency, this approach provides a twofold

benefit. On the one hand, the DNA can handle interrupt-based multi-block

transfers with block sizes of up to 128KBytes by monitoring channel states and

STNoC interrupts. One particular and most commonly used multi-block mode is

multi-block chaining. Thereby configuration items for channel setup can be stored

in a dedicated memory beforehand and will be pre-fetched and executed by the

DNA independently from further ARM interference. In addition, the auto-reload

mechanisms can be utilized to support the streaming communication approach.

On the other hand the hardware handshake mechanism acting between the

HREs and the DNA has been implemented can automatically handle the workload

due to consistency synchronization of transferred data.

4.4.4 KPN MODELING

An important requirement for building efficient KPN is that each node of

the net is implemented on independent channel and that each channel is implicitly

synchronized by FIFOs. If the target application corresponds to the KPN

formalism, it is relatively easy to map it over MORPHEUS platform. All HREs

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 143 -

and the memory controller feature hardware FIFOs are mapped on the chip

addressing space. The interconnect infrastructure was designed in order to provide

independent channels for each XPP port (four 16-bit inputs and four 16-bit output

FIFOs) towards the memory controller. Moreover, each channel is featured with

dedicated data transfer engine, which allows maintaining of full bandwidth at the

expense of a marginal control from the side of the ARM. This is not necessary for

M2000 as it was evaluated that the maximum computational bandwidth that the

device can provide both as computation and I/O engine can be served by a single

32-bit data transfer channel (see section 1.1).

As it was mentioned in section 4.4.2, ARM configures all HREs and all

data-transfers on each HRE-NI and can essentially remain idle during the

computation phase, while FIFOs will implicitly synchronize the data-flow. The

NoC was dimensioned in order to minimize congestion on critical nodes such as

the memory controller to XPP link. If the circular addressing is not possible on the

I/O lines it will be necessary to add a synchronization stage with an interrupt line

to ARM in order to refresh the HRE-NI transfers.

As for DREAM, a pure KPN approach is not applicable due to the HRE

internal structure. On the other hand, it is always possible to describe a KPN

through a PN. In such a way, it is possible to emulate a FIFO data exchange

model through the DREAM DEBs with a specific interaction between the

DREAM embedded processor and ARM, exploiting interrupts and XRs. This will

induce a little overhead in the data-flow and require an interaction with ARM but

from the theoretical point of view the KPN model will be maintained.

4.4.5 PN MODELING

As it was presented above, in some cases it is convenient to manage the

computation on different HREs as a set of iterative executions over a given set of

data. The data must be locked by the HRE for a given time before being released

for the successive computation stage. During the computation of an input stream,

this process will be repeated iteratively; therefore, it is necessary to abstract this

computational model by building a sort of “virtual streaming flow”. The data flow

is maintained consistent across the successive iterations with the “supervision” of

the controlling processor, implementing a PN.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 144 -

This concept is realized by means of utilizing the XRs and interaction

between the HRE and the main program running on ARM, to build a mechanism

defined as ping-pong buffering. Each computation is intended as a node of the PN,

and the data chunks required by the iteration (that in this case must be finite,

although they can be portion of an infinite stream) are associated to

preceding/successive tokens. The rules of a generic PN can be briefly described as

follows:

 A given node can be triggered when:

o All preceding nodes are available (have terminated computation);

o All successive nodes have read the results of the previous

computation.

In the context of MORPHEUS these rules can be rewritten as follows:

 A given computation can be triggered on a given HRE when:

o The bit-stream for the application was successfully loaded;

o All input data chunks have been successfully uploaded to the HRE

local DEB;

o All output data chunks that would be rewritten by the current

iteration have been successfully copied from the HRE local DEB to

their respective destination(s).

Hence, ARM programs the PN consistency and produce the

preceding/successive tokens triggering a given computation stage. Of course, if

data chunks are large enough, this event monitoring step will not be required very

often.

Each HRE computation event will be applied to a finite input data chunk,

and will create an output data chunk. In order to ensure maximum parallelism,

during the HRE computation event N, the HRE-NI should load input chunks N+1,

N+2, N+3 filling all available space in the DEB but ensuring not to cover

unprocessed chunks. Similarly, it should download output chunks N-3, N-2, N-1,

ensuring not to access to chunks not yet processed.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 145 -

4.4.6 LOCAL DATA SYNCHRONIZATIONS

4.4.6.1 COMPUTATIONAL DATA

The synchronization is based on signal handshakes from ARM to the HRE,

so that it can be performed by either a local FSM or by a software procedure

mapped on the ARM processor. The handshake signals are controlled by XRs

(refer to section 4.3.4). The mechanism (referred as ping-pong buffering) is based

on the concurrent switching of two virtual buffers (VBUF) mapped on the DEBs.

The VBUF can be a part of a DEB, a whole DEB or a set of DEBs. It is only

referred by the start and finish address over the DEB addressing space. The idea is

that while the first VBUF is being accessed by the host system (Write/Read from

ARM/AMBA or from the NoC infrastructure), the second VBUF is being

accessed by the HRE (see Fig. 43). The two processes should be concurrent.

When both accesses are finished, the two VBUFs should be switched. Altogether,

ARM, DREAM and XPP are software programmable machines (only M2K can be

considered as a hardware programmable device). Thus, any signal between the

two can be handled via a specific software handshake

VBUF0
(Part of the DEB

Addressing Space)

VBUF1
(Part of the DEB

Addressing Space)

MORPHEUS System (ARM/AMBA/NoC)

HRE (DREAM / XPP / M2K)

Fig. 43. Representation of the ping-pong buffering.

Fig. 44 shows the synchronization mechanism between the host system

and the HRE. Before accessing the virtual buffers, the host processor sends the

lock signal to the HRE and waits for acknowledge. When acknowledge is

received, the ARM processor can start load/store procedure from VBUF0, while

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 146 -

the HRE is elaborating the VBUF1. After finishing with VBUF0, ARM releases

the buffer issuing the UnLock signal. In its turn, the HRE sets the UnLock

acknowledge after finishing with VBUF1. Then, the whole synchronization

procedure is repeated with new data stored on the VBUFs.

Lock VBUF0

Lock VBUF0 ackWait for Lock acknowledge

Load/Receive data to/from VBUF0
Elaboration on VBUF1UnLock VBUF0

UnLock VBUF0 ack

Lock VBUF1

Lock VBUF1 ackWait for Lock acknowledge

Load/Receive data to/from VBUF1
Elaboration on VBUF0UnLock VBUF1

UnLock VBUF1 ack

Wait for UnLock acknowledge

Wait for UnLock acknowledge

Host system execution flow DREAM execution flow

Lock VBUF0

Lock VBUF0 ackWait for Lock acknowledge

Load/Receive data to/from VBUF0
Elaboration on VBUF1UnLock VBUF0

UnLock VBUF0 ack

Lock VBUF1

Lock VBUF1 ackWait for Lock acknowledge

Load/Receive data to/from VBUF1
Elaboration on VBUF0UnLock VBUF1

UnLock VBUF1 ack

Wait for UnLock acknowledge

Wait for UnLock acknowledge

Host system execution flow DREAM execution flow

Fig. 44. Synchronization scheme.

Fig. 45 and Fig. 46 show an example of the ARM C-code that implements

the handshake procedure, and the corresponding C-code running on DREAM.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 147 -

for(block=0;block<BLOCK_SIZE+2;block+=2) {

 // Load/retrieve VBUF0

 qprintf("Block %d \n",block,0,0,0);

 dream_XR->arm_lock0=1;while(dream_XR->arm_lock_ack0!=1);

 if(block<=BLOCK_SIZE-1) load_debs ((int*)dream_debs->pair01, DEB64, 0, FRAME_SIZE ,

(int)((int)frame+(block)*64));

 if(block>=2) retrieve_debs((int*)dream_debs->pair23, DEB32, 0, FRAME_SIZE/4,

(int)((int)result+(block-2)*16));

 dream_XR->arm_lock0=0; while(dream_XR->arm_lock_ack0!=0);

 // Load/retrieve VBUF1

 qprintf("Block %d \n",block+1,0,0,0);

 dream_XR->arm_lock1=1;while(dream_XR->arm_lock_ack1!=1);

 if(block<=BLOCK_SIZE-1) load_debs ((int*)dream_debs->pair45, DEB64, 0, FRAME_SIZE ,

(int)((int)frame+(block+1)*64));

 if(block>=2)retrieve_debs((int*)dream_debs->pair67, DEB32, 0, FRAME_SIZE/4, (int)((int)result

+(block-1)*16));

 dream_XR->arm_lock1=0;while(dream_XR->arm_lock_ack1!=0);

 }

Fig. 45. ARM C-code representing HW handshake.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 148 -

while(XR->arm_lock0!=0); XR->arm_lock_ack0=0;

while(1){

 // Process current VBUF0 while ARM is working on VBUF1

 while(XR->arm_lock1!=1);XR->arm_lock_ack1=1;

 process_frame(16,17,18,0);

 while(XR->arm_lock1!=0);XR->arm_lock_ack1=0;

 // Process current VBUF1 while ARM is working on VBUF0

 while(XR->arm_lock0!=1);XR->arm_lock_ack0=1;

 process_frame(20,21,22,0);

 while(XR->arm_lock0!=0); XR->arm_lock_ack0=0;

 }

Fig. 46. DREAM C-code representing HW handshake.

4.4.6.2 CONFIGURATION BITSTREAMS

The AMBA bus hierarchy features a sub-bus for handling configuration

bitstreams on the HREs (refer to section 4.2.3). Bitstreams are seen by the

programmer as predefined libraries, either provided by the IP vendors or

synthesized by the MORPHEUS toolset. The binary format - produced by the IP

toolset - is integrated into ASCII ANSI-C source code by means of the C #include

directive, where the bitstream is described as an integer vector, and is compiled in

the main program. In this way, the bitstream is handled as part of the main code.

During computation, the bitstream can be referenced by ARM through its address

and its size. ARM may load the bitstream word by word with load/store operation,

or more conveniently utilize DMA transfers. In order to avoid traffic congestion

on the main AMBA bus, that should be reserved for control operations (XRs

handling, NoC transfer requests), ARM may utilize the configuration DMA

residing on the configuration bus. The configuration DMA may access the

bitstream on the off-chip or on-chip configuration memories, and write on the

local HRE configuration buffers. XPP and DREAM feature self-configuration

capabilities to ensure high rates of dynamic run-time configurability, so they will

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 149 -

access the CEB according to their internal status, negotiating bitstream transfer

requests with ARM via the XRs. On the contrary, M2K does not feature any mean

for self-reconfiguration, hence it does not require any CEB, and configuration bits

are written directly on the M2000 bit-stream input port.

During the peak computation, it is expected that a dynamic monitoring of

the HRE status and the handling of their reconfiguration requests could be too

demanding for the ARM core, which may not be capable to handle such

occurrences in real-time conditions, thus inferring stalls on the reconfiguration

process. For this reason, hardware logic has been added as master of the

configuration bus, called “Predictive Configuration Manager (PCM)”. The PCM

can be considered as a coprocessor that will not only leverage the core processor

with low level bitstreams transfers and configuration memory hierarchy

management when the reconfiguration directives are issued, but will also offer

pre-fetch prediction services. Fig. 47 describes a short example where a bistream

is loaded over the DREAM HRE. Load_dream_bitstream is a library function that

handles DMA transfers over the configuration bus. Similar libraries are available

for all HREs.

File interpolate.dreambistream.h:

// DREAM Data Memory content

unsigned int dm_segment[] = {

0x00000200,0x00E00000,[…]

int dm_size = 41;

unsigned int pm_segment[] = {

0xE000021E,0xE000111E,[…]

int pm_size = 1838;

unsigned int cm_segment[] = {

0x00A50001,0x02A50221,[…]

int cm_size = 5612;

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 150 -

Main Program:

#include "interpolate.dreambitstream.h"

// Load bitstream on DREAM CEBs (Note DREAM Does not need to be active)

load_dream_bitstream(0, (unsigned int*)cm_segment,cm_size,

 (unsigned int*)dm_segment,dm_size,

 (unsigned int*)pm_segment,pm_size);

Fig. 47. SW support for the configuration load procedure.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 151 -

4.5 HRE INTEGRATION BY THE EXAMPLE OF PICOGA

This section presents the design strategy and implementation of the

embedded reconfigurable device (named DREAM) for heterogeneous SoCs. The

IP targets data intensive computation exploiting a medium grained multi-context

run-time reconfigurable unit PiCoGA (described in section 3.5.3) to build custom

pipelined function accelerators. DREAM IP block should be distinguished from

the PiCoGA unit, which is actually only a reconfigurable part of the DREAM.

The design is completed with a full software tool-chain providing the application

algorithmic analysis and design space exploration in an ANSI C environment

using cycle accurate simulation and profiling.

4.5.1 INTEGRATION STRATEGY

DREAM was designed in order to function as one of HREs in the

MORPHEUS platform. However, its generalized design strategy allows utilizing

DREAM as a stand-alone IP in other reconfigurable platforms controlled by

conventional RISC processor. The following design specifications aim at

supporting this feature:

 homogeneous integration approach;

 efficient communication with the host system by means of local storage

sub-system;

 local clock and power managements detached from the host system

domain;

 programming model, compliant with high-level languages.

The homogeneous integration was achieved by organizing DREAM as a

microprocessor, providing the uniform architectural approach and programming

model. Control and communication with the host system is handled by the

embedded RISC processor, which guarantees maximum flexibility and well

known usability. The computational data flow is exchanged with the main system

by means of communication buffers, accessed independently and concurrently by

the host system and the local data path (see Fig. 48). The data consistency in these

buffers is maintained in software in the manner presented by Molen paradigm

[74].

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 152 -

Fig. 48. DREAM integration.

Reconfigurable architectures allow hardware resources dynamically adapt

to the degree (data granularity) and nature (SIMD, MIMD) of parallelism given

by the application. The reconfigurable architectures (RAs) with bigger granularity

provide the required computational density to exploit such parallelism at

maximum performance. Therefore, it is important to provide a data

communication mechanism capable to support the available computation

bandwidth. In such a way, the IP should have enough capabilities to address local

buffers with the required parallelism and feed the reconfigurable data-path with

computational data, while maintaining flexibility such as of a standard processor.

This is even more significant since the chosen data-path features scarce storage

support, compensated by zero time overhead switch between multiple contexts

and a relatively small size. Many applications require multiple iterations of

different operations on the same set of data. This is realized in DREAM by a

flexible access to the local memory, i.e. directly reading and writing from data

buffers in a more efficient way with respect to a purely streaming pattern. Another

issue is that DREAM I/O buffers most probably will not contain ordered data.

Whereas embedded applications, and especially those who mostly benefit from

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 153 -

mapping on RAs, typically feature kernels based on regular addressing patterns. A

convenient way to retrieve data at high parallelism, commonly used in state-of-

the-art highly parallel DSPs is to utilize programmable vectorized and modulo

addressing generation FSMs. In DREAM, this is achieved by means of

programmable Address Generators (AGs) that are set at the beginning of each

computational kernel and produce a new local address at each request from the

data-path.

Moreover, the local buffers serve as a bridge between IP and host system

clock domains. The use of dual-clock dual-port memory modules assures stable

and convenient – from implementation point of view – boundary. The

synchronization mechanism provides data consistency in the buffers and controls

accesses to both ports. The most suitable synchronization mechanism for such

organization is ping-pong buffering (or double-buffering), when the buffer is

virtually separated in two parts. While data is being processed in one part, the next

set of data is read into another virtual part. The synchronization is performed on

the software level using dedicated eXchange Registers described in section 4.3.4.

The local buffers isolate the integrated IP from the host system enabling an

on-site dynamical power management (DPM), such as Dynamic Voltage and

Frequency Scaling (DVFS), and Sleep Mode. A clock control circuit allows

dynamical trading of energy consumption with computation speed, depending on

the required data processing bandwidth, without any impact on the working

frequency of the rest of the chip. In this context, voltage level shifters could be

used to create a mixed-voltage system enabling implementation of DPM schemes.

As it was outlined in section 3.5.3, computation on the reconfigurable

data-path is based on macro-instructions organized in a Data Flow Graph (DFG).

After an automated extraction of the Instruction Level Parallelism (ILP), each

DFG is mapped on reconfigurable hardware as a custom pipelined unit working at

the top processor frequency with variable latency and issue delay. Hardwired

pipeline control logic preserves data dependencies described by the DFG. It is

implemented as a Petri net [37]. Each configuration issue and/or execution of a

given macro instruction must be explicitly triggered by the user. The main

processor controls both data and configuration transfers. Zero reconfiguration

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 154 -

overhead of DREAM prevents long computation stalls. Moreover, the RISC core

handles the control services: reading/writing XRs, programming AGs and sending

interrupts.

4.5.2 CONTROL UNIT

Control tasks in DREAM are mapped on a 32-bit RISC processor – the

STMicroelectronics STxP70 internal core, which is responsible for instructions

fetch, program flow handling, and providing appropriate control signals to the

other blocks. These signals are generated by particular coprocessor operations.

The processor is relatively small, being composed of 20K gates of logic plus a

specific memory module acting as an embedded 32-slot register file (RF). It

features arithmetical-logical operations, 32-bit shifts and a small embedded

multiplier.

Synchronization and communication between the IP and main processor of

the host system is ensured by asynchronous interrupts on the local core, and a

cross-domain XRs. Program code and program data for STxP70, as well as the

configuration bitstream for PiCoGA, are considered as parts of the DREAM

programming pattern. The configuration bitstream is loaded by the host system on

the CEBs, implemented on dual-port, dual-clock memories of the total size

36KBytes. The program code and data are transmitted to STxP70 through the

Program Memory (PM) and the Data Memory (DM). PM and DM are also

implemented on dual-port, dual-clock memories of the size 16KBytes each. Input

data and computation results are exchanged through the DEBs using a coarse-

grained handshake mechanism (defined as ping-pong buffering).

There are two DPM techniques supported by the IP block: DVFS and

Sleep Mode. They are performed locally and do not affect the host system voltage

and frequency, provided that the set of voltage level shifters are implemented. The

decision about the voltage scaling or entering the Sleep Mode in the IP is made

either centrally, by RTOS relying on activity scanning results, or adaptively, by

the STxP70 itself relying on the idle time conditions. For this purpose, the

STxP70 supports up to four IDLE modes for fine clock domain control and more

than 80% gated clocks.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 155 -

The choice of utilizing a small processor allows the user to exploit a

sophisticated program control flow mechanism, writing commands in ANSI-C,

and utilizing a reliable compiler to optimize code and schedule task efficiently.

The processor function accelerators can also act as computation engines in some

cases, concurrently to the reconfigurable data-path. Computation kernels are re-

written as a library of macro-instructions, and mapped on the reconfigurable

engine as concurrent, pipelined function units. Computation is handled by the

STxP70 in a fashion similar to the Molen paradigm: the core explicitly triggers

the configuration of a given macro-instruction over a specific region of the data-

path, and when the loading of the configuration is complete, it may run any

desired issue of the same functionality in a pipelined pattern. Fig. 49 shows an

example of a function that configures the data-path, executes a loop and releases

the configuration. Up to four macro-instructions can be loaded on each of the four

available contexts. These contexts can not be computed concurrently but context

switch requires only two clock cycle. A sophisticated stall and control mechanism

ensures that only correctly configured operations can be computed on the array,

and manages context switches.

Fig. 49. Example of the programming code for DREAM.

In addition, STxP70 features a hardware loop mechanism. It allows zero

overhead execution of branches when looping over a predefined code segment. It

gives the benefit in terms of the latency needed for the branch execution, or in

terms of the costs for building the branch prediction tables. Up to two independent

and symmetric hardware loops are possible with independent loop counters and

my_function() {

 PD=Set_Configuration(picoga_op);

 IN=Set_Interconnect_Matrix_Channel(buffer,port);

 Program_AG(buffer,base,step,stride,count,mask,rw);

 for (i=0; i<N; i++)

 Execute(PD,IN);

 Wait_for_Pipeline_Empty();

 Unset_Configuration(PD);

}

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 156 -

programmable loop-entry and loop-exit addresses. The predefined loops may be

nested or not.

For the test purpose, on-chip emulation with standard low pin count JTAG

interface is implemented. It provides the in-line debugging capability similarly to

the standard on-chip emulator (OCE). In such a way, a programmer can use well-

known debugging tools and techniques for comfortable interaction with the IP.

4.5.3 ADDRESS GENERATOR

The solution is based on the stream memory architecture proposed to be

implemented in PiCoGA based reconfigurable device. A MUX-based, run-time

programmable interconnection matrix (IM) is used to connect DEBs with the

reconfigurable logic I/O ports. This matrix is programmed by the STxP70

processor.

As it was mentioned in section 4.3.3, DEBs may function in two modes:

random accessed memory (RAM) or a FIFO memory. The main difference is that

read operations are destructive on a FIFO while they are not on RAM. A FIFO

can only be accessed once and sequentially, while RAM allows repeated and

indexed access. On the other hand, a FIFO may be programmed to load a

potentially infinite stream, while RAM can only handle fixed-length streams.

Each DEB is also linked with the IM through the set of address generators.

For computational kernels of embedded applications, which are typically enclosed

in iterative cycles of fixed length, it is possible in most cases to predefine the

addressing pattern and relieve the controlling processor of the data transfer phase,

that is performed to the address generator.

The described system is controlled by a small subset of the processor’s

instruction set, implemented in the compiler through built-in functions. Dedicated

hardware implements their functionality. Triggering an operation on the

reconfigurable logic means feeding the logic through the appropriate input blocks

and preparing the output blocks to receive a write back. The latency of a given

operation on the reconfigurable logic may be unknown or downright

unpredictable, so a locking logic was designed to ensure the consistency of the

data flow. An operation can not be triggered if it reads from an empty FIFO, or if

the register is scheduled for a write from a preceding operation. In case a write

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 157 -

operation is required on a saturated FIFO, the whole system is frozen until the

FIFO becomes available. The proposed solution aims further development of

FIFO programming flexibility.

DEBs consist of 16 buffers, 32-bit wide by 1 Kword in depth, which are

represented (see Fig. 50). The storage blocks are connected with PiCoGA by

means of programmable interconnection network. PiCoGA supports up to 12

inputs and 4 outputs, each of which might be programmatically connected with

any of 16 DEBs. This flexibility makes possible to change PiCoGA inputs and

outputs at the runtime. Moreover, it allows feeding yet unused DEBs with the

future data, simultaneously with reading the current data from the other registers.

DEBs are fed with data from the on-chip memory through the host system

bus. The DMA unit of the host system is used to accelerate this process.

Furthermore, the DMA may be programmed in such a way that it prevents

repeated transfer of the same data through the system bus. A data block is read

from the memory into the DEB only once (even if it is needed to be used a

number of times in PiCoGA). Then, user programmable AG controls which data

word should be read from FIFO and when it should be deleted. Thus, the same

data word can be read several times from FIFO into PiCoGA.

Interconnection Matrix

Address Generator (x16)Address Generator (x16)

Internal

Register Files

16

to 16 DpDclk Memory Buffer

Item 16..31

from PiCoGA (4 Output)to PiCoGA (12 Input)

Fig. 50. Integration of the AG in DREAM architecture.

AGs provide standard step and stride capabilities to achieve non-

continuous vector addressing. A specific mask functionality allows also power-of-

two modulo addressing in order to realize variable size circular buffers with

programmable start point.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 158 -

In order to program the Address Generator, two different functions can be

used inside a .c/.cpp program file. First of them provides standard memory access.

Its syntax is represented in Table 12. Using these five parameters it is possible to

generate a set of access patterns, classified in two series with two subgroups each.

The simplest group of the access patterns is the so called solid data chunks access,

with or without overlapping (see Fig. 51: I, II). Fig. 51-I represents an example to

perform memory access starting from the address zero, with a block size of 3

elements, with the stride equal to 5: set_DF(Item, 0, 3, 5, 1, 0). The previous

example can be modified by setting the stride equal to 2, instead of 5, in order to

perform an overlapped access: set_DF(Item, 0, 3, 2, 1, 0). In this case, the last

element of each chunk is overlapped with the first element of the successive

chunk (see Fig. 51-II). Another group of memory accesses includes fragmented

data chunks access (see Fig. 51: III, IV), i.e. when the step is greater than 1, a

non-contiguous access is performed. While the stride is greater or equal to the

product of count and stride, two separated chunks are generated (Fig. 51-III):

set_DF(Item, 0, 2, 6, 2, 0). By decreasing the stride it is possible to overlap two

chunks (Fig. 51-IV): set_DF(Item, 0, 3, 1, 3, 0).

Table 12. Standard memory access.

set_DF(Item, Addr, Count, Stride, Step, rw);

//where:

// Item - is an index value (range 16..31) that points to the Identifier of the according address

generator;

// Addr - is the base address inside the memory (range 0...4095);

// Count - number of data words inside a chunk (range 0...4095);

// Stride - distance between data chunks (range -127..+128);

// Step – distance between two successive data words inside a chunk (range -127..+128);

// rw - read/write access.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 159 -

Fig. 51. A classification of memory access types enabled by AG.

With respect to the standard memory access, the memory access provided

by the function from Table 13 is enhanced by the mask parameter. The mask can

be used to implement modulo addressing (e.g. for the circular buffer

implementation) where the modulo function is obtained from the mask (this is not

a real modulo, but for the power-of-two the functionality is the same). From a

functional point of view, the addressed memory location is determined from the

following expressions:

Local_address = next_address;

Base_address = next_base_address;

address = (Base_address & ~mask) + (local_address & mask);

next_address = local_address + step;

next_base_address = (base_address + stride) if (Count == EndOfCount);

Table 13. Masked memory access.

set_DF(Item, Addr, Count, Mask, Stride, Step, rw);

//where:

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 160 -

// Item - is an index value (range 16..31) that points to the Identifier of the according address

generator;

// Addr - is the base address inside the memory (range 0...4095);

// Count - number of data words inside a chunk (range 0...4095);

// Mask - size of the circular buffer (range 2^0...2^16);

// Stride - distance between data chunks (range -127..+128);

// Step – distance between two successive data words inside a chunk (range -127..+128);

// rw - read/write access.

The following examples represent the behavior of the masked access:

Example 1:

 Base = 0x0; Step = 1; Stride = 0; count = 8; mask = 0x07;

 Generated address sequence:

 0x00 – 0x01 – 0x02 – 0x03 – 0x04 – 0x05 – 0x06 – 0x07 – 0x00 – …

Example 2:

 Base = 0x1; Step = 1; Stride = 4; count = 4; mask = 0x03;

 Generated address sequence:

 0x01 – 0x02 – 0x03 – 0x00 – 0x05 – 0x06 – 0x07 – 0x04 – 0x09 - …

Example 3:

 Base = 0x1; Step = 1; Stride = 5; count = 4; mask = 0x03;

 Generated address sequence:

 Address = 0x1

 Address = 0x2

 Address = 0x3

 Address = 0x0 // masking effect!!! (and EndOfCount sent)

 Address = 0x6 // stride sum

 Address = 0x7

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 161 -

 Address = 0x4 // masking effect!!!

 Address = 0x5 // EndOfCount sent

 …

When the mask is written in the form of 0b0..01..1 (i.e. with two series of

consecutive 0s and 1s representing the standard form), the addressed location is

the concatenation of bits in the base address (for the bits corresponding to 0 in the

mask), and of bits in the local address (for the bits corresponding to 1 in the

mask). Step and stride have the same functionality of the standard cases, while the

obtained result (addressed location) is affected by a quasi-modulo operation:

 the local_address is calculated using the step, but the result is masked;

 the stride is used to update the base address, but in fact can also be used to

determine/change the starting point of the circular buffer;

 the circular buffer is defined as:

o Bottom_address = Base_address & (~mask)

o Top_address = Bottom_address + mask

It should be noted, that when the mask is set to “all 1s” (0b1111..111), the

functionality is the same as was for the standard memory access. Step and stride

might be less then zero, which allows making a step in both directions from the

base address. However, stream length is always greater then zero.

The block diagram Fig. 52 outlines the AG implementation.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 162 -

& &

mask

Base

Next Base

+
Stride

Local Counter

Next
Counter

+
1

==

Count

End of
Count

0

Local Addr

Next
Address

+
Step

&

mask

+

Address
=Register

1

110 0

0

Full Address

& &

mask

Base

Next Base

+
Stride

Local Counter

Next
Counter

+
1

==

Count

End of
Count

0

Local Addr

Next
Address

+
Step

&

mask

+

Address
=Register

1

110 0

0

Full Address

Fig. 52. AG block diagram.

4.5.4 SOFTWARE TOOL-CHAIN

The DREAM architecture is programmed at two levels: PiCoGA level and

STxP70 level. PiCoGA-III is programmed using a simplified single-assignment

ANSI-C syntax, which is translated into configuration bitstreams by the specific

mapping tool [55]. Bitstreams are provided as C vectors that can be included in

the global application code for the embedded STxP70. The application code itself,

including references to configuration and computation of macro-instructions as

well as AG patterns, is compiled with a retargeted version of the Open64 compiler

[33] and proprietary tools [60]. Furthermore, cycle accurate simulation, debugging

and performance evaluation tools are available [60] under the STxP70

development environment, based on the Eclipse platform. The complete design

space exploration is thus performed by the user in a high-level software

environment, where performance speed-ups typical of hardware oriented

implementations can be obtained requiring no specific hardware expertise, which

is a significant advantage of the introduced architecture.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 163 -

An example of the C control source code for the host ARM processor,

which manages data exchange with the DREAM IP, is presented in Appendix A.

4.5.5 RESULTS

The proposed architecture was implemented in CMOS 90nm technology.

Technical results are outlined in Table 14. The total area is 16 mm2, taking into

account 100% density of the custom layout circuits and 70% density of the RTL

logic after the final layout. Top frequency in worst-case commercial conditions

(125C, 0.9V) is 200MHZ, while the device can deliver up to 250MHZ in typical

conditions (25C, 1V). The PiCoGA-III was designed with a mixed custom/semi-

custom design flow, while the control and memory addressing sections were

designed in HDL and mapped on standard cells libraries.

Table 14. Area occupation and energy consumption.

Unit Area Dynamic energy Leakage energy

STxP70 with 16KB+16KB memories 1.18 mm2 30 μW/MHz 0.4 mW

PiCoGA-III, interf. logic 10.31 mm2 340 μW/MHz 15.6 mW

DEBs (64KB), AGs, interconnect matrix,
RF

2.09 mm2 283 μW/MHz 6.7 mW

CEBs (36KB) 1.15 mm2 negligible 4.1 mW

Others (PLL, co-proc. interf., glue logic) 0.17 mm2 negligible Negligible

Total 16 mm2 652 μW/MHz 26.8 mW

Processor efficiency was measured on a set of computational kernels,

oriented towards multimedia and communication applications. In particular, four

highly-parallel kernels were selected from the open-source H.264 coding standard

[49], as well as an OFDM Constellation Encoder or Mapper [68] (implemented at

three levels of unfolding) and a well-known symmetric-key cipher AES with 128

key size [57], whose implementation is thoroughly described in [56].

Performances were evaluated at 200MHZ, and they are parameterized with

respect to the interleaving factor, intended as the number of data blocks

concurrently elaborated. Table 15 describes the performance of the selected

kernels. In fact, most multimedia and communication kernels feature thread-level

parallelism (i.e. image processing transforms show no correlation across macro-

blocks), and interleaving of the elaboration of more than one block allows deeper

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 164 -

level of pipelining in computation. The interleaving factor applicable depends also

on the available DEB memory budget. All the benchmarks reach a saturation

point, where further computation unfolding is made impossible by lack of storage

capacity on local memory.

Table 15. Performance of several application kernels.

Kernel GOPS GOPS/mm2 GOPS/mW

Add4x4idct 32.54 2.03 0.15

Sub4x4dct 48.23 3.01 0.22

Sad4x4 59.28 3.70 0.33

Satd4x4 44.06 2.75 0.22

Ofdm-Mapper1 4.10 0.25 0.04

Ofdm-Mapper4 16.10 1.00 0.10

Ofdm-Mapper8 31.50 1.96 0.15

AES-128 4.90 0.30 0.03

Fig. 53 describes performance statistics, in terms of processed bits per

second. Fig. 54 depicts the speed-up in terms of computation cycles with respect

to a standard embedded RISC core.

0,01

0,1

1

10

100

1 10 100 1000 10000

Interleaving factor

T
h

ro
ug

hp
ut

 (
G

B
it/

se
c)

Add4x4idct Sub4x4dct
Sad4x4 Satd4x4
Ofdm_Mapper-1 Ofdm_Mapper-4
Ofdm_Mapper-8 AES-128

Fig. 53. Throughput vs. interleaving factor.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 165 -

1

10

100

1000

1 10 100 1000 10000

Interleaving factor

S
p

ee
d

-u
p

 w
rt

 A
R

M
9

Add4x4idct Sub4x4dct
Sad4x4 Satd4x4
Ofdm_Mapper-1 Ofdm_Mapper-4
Ofdm_Mapper-8 AES-128

Fig. 54. Speed-up wrt. ARM9 processor.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 166 -

4.6 COMPARISON WITH THE RELATED WORK

The MORPHEUS memory organization inherited the advantages of the

addressing modes described in section 2.2.2, taking into account the specifics of

HREs and the kind of computation required:

 Dual clock asynchronous FIFOs based on Gray Code, fed by system-level

DMAs or the NoC DNA paradigm will be used to implement data

streaming to/from HREs across different clock domains.

 The HREs, where possible (i.e. in the case of the M2000 eFPGA) will be

used to generate run-time configurable addressing patterns on local

memories (DEBs) to feed their own computation.

 A set of programmable hardwired address generators are made available to

implement highly parallel, parametric high speed addressing on DEBs.

Their addressing pattern is based on the Base + Step + Stride pattern

presented, among others, by [27].

The local to each HRE memories (DEBs) on dual-port, dual-clock

memories, are available as off-the-shelf items in the targeted technology node. In

addition to the dual-port advantages described in section 2.2.3, the dual-clock

structure offers the significant advantage of isolation of each HRE clock domain,

that in some cases could be also run-time programmable and application-specific.

Thus, it enables each component of the MORPHEUS architecture running at its

ideal speed. From the system side, communication to the DEBs is performed both

through the NoC and the AMBA bus infrastructures, whereas from the HRE side

communication is performed making use of the mechanism described in section

4.3.3.

The streaming concept, presented in section 2.2.2, matches very well the

features of the MORPHEUS computing platform, thus making finite streams of

variable width (depending on the given application) the ideal units for data

transfers between ARM processor, HREs, off-chip memories and main on-chip

memories. Stream-oriented transfers can be driven by the processor core using a

collection of load/store operations or by embedded DMAs on the main data bus.

In this context, a relevant additional value could be given by the utilization of the

NoC. Apart from obvious advantages in enhancing data throughput via multiple

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 167 -

channels and shortening large data transfer latency due to its pipelined nature, the

NoC can add a stream-oriented connotation to the communication mechanism,

thanks to parametric FIFO memories that are resident in NoC routing nodes. Such

memories, which should be considered as a specific layer of the peculiar to the

MORPHEUS memory hierarchy, provide a powerful internal storage resource that

alleviates the stress on off-chip and on-chip memories. Moreover, they are used as

a mean to decrease the stalls induces by congestions in communication and

peaks/stalls in HRE computation. Thus, the NoC exploits the data streaming

approach not only to decouple computation from data transfers, but also to

decouple different steps in the computation providing a very flexible and

bottleneck free hierarchical transfer mechanism. Finally, a further added value of

the NoC approach deployed in MORPHEUS is that it appears very compiler

friendly because it presents the same Advanced Programming Interface (API) as

the one for handling standard DMAs. The only drawback – the non-predictable

latency sometimes introduced by the NoC communication – can be tackled with

worst case quality of service analysis, and reserving specific NoC channels for

critical communications. Interrupts and specific synchronization instructions

(according to the Molen paradigm) is used by the ARM processor to synchronize

computation and communication and maintain data flow consistency.

Comparing with the IMAGINE architecture (refer to section 2.2.4),

MORPHEUS shares the concept of utilizing streams as atomic units for transfers.

Moreover, it provides similar differentiation between stream-level and kernel-

level programming:

 At the ARM processor level, the application is described by abstractions:

operands are not scalar data but data chunks, or streams. Operators, in

turn, are HRE operations, or libraries of HRE operations stored in the

configuration memory and utilized as microcode, according to the Molen

paradigm. One should note that since MORPHEUS is stream-oriented

architecture, the standard Molen programming paradigm (set-execute) is

adapted to the stream behavior. The Molen set operation correlates with

MORPHEUS set configuration procedure, while the Molen execute

operation is implicitly integrated in the data transfers to/from HREs, as

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 168 -

starting with HRE initialization it automatically begins to process input

data and send the results to the output. Stream transfer details are

implemented via DMA/NoC and hidden to the programmer, and

NoC/Bus/DMA control instructions can be considered as microcode in the

Molen programming context. As a result, all computation (HREs) and

communication (Bus/NoC) means are seen in a totally homogeneous way

and handled by Molen-like microcode and software libraries.

 Dual clock DEBs are used to cross frequency domains and to transfer

operands (streams) from the communication engines to the HREs.

 At HRE level, the operator is described by the reconfigurable fabric

specific microcode (bitstream). The bitstream is produced according to the

HRE design flow and entry language. The HRE may then process the

stream providing scalar access to each one of its components. A significant

added value of the MORPHEUS memory hierarchy is that this access

offers a very relevant degree of flexibility. HRE may read sequentially the

stream as a FIFO, utilize programmable address generators for vector

addressing, or describe the access to stream elements as a part of the

reconfigurable operator itself. This choice enables the stream

communication, similar to the ones described in section 2.2.2, but offers a

much higher level of flexibility from the HRE side, allowing also the

usage of the DEBs as temporary computation repository.

Similar to the BAZIL system (refer to 2.2.4), MORPHEUS utilizes two

types of communication infrastructure. However, in contrast to BAZIL,

MORPHEUS includes NoC instead of the direct connection. This solution is more

flexible and allows parametric interconnection between an indefinite number of

reconfigurable cores, thus providing a modular architectural template that can be

refined and adapted beyond the specific demonstrator implementation.

Furthermore, the NoC itself represents intermediate data storage for HREs. The

local FIFOs in the routing nodes allow a streaming approach representing a way

to hide delays due to local congestions and to hide latency due to peaks in HRE

calculation. Also, MORPHEUS provides DMA controllers for the bus hierarchy

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 169 -

and DNA controller for the NoC, both based on the same API, which allows

distributing data inside the system more efficiently.

CCHHAAPPTTEERR 44.. HHIIEERRAARRCCHHIICCAALL MMEEMMOORRYY OORRGGAANNIIZZAATTIIOONN AANNDD DDIISSTTRRIIBBUUTTEEDD DDAATTAA SSTTRRUUCCTTUURREE

- 170 -

4.7 SUMMARY

The memory organization of the MORPHEUS platform features a

hierarchical structure, enabling distributed data-flow and providing transparent

homogeneous integration for the end user. More precisely, it supports the

following features:

 The external memory serves as main system storage for configuration data

and application specific data streams.

 The main on-chip memory connected to both NoC infrastructure and

multi-layer AMBA bus provides high density and low power, low latency

access to the smaller frames of the data stream.

 Local FIFOs on the NoC enable the streaming data transfer mechanism,

which minimizes congestions on communication channels and stalls of

local computation.

 Local dual-port, dual-clock DEBs represent the most innovative and

critical part of the overall memory organization, where the most

significant effort was aimed on tighter integration with the HREs.

According to the MORPHEUS specifications, DEBs provide a uniform

interface to the programmer, making the interconnect infrastructure more

homogeneous. Their flexible access interfaces to the HREs allow

integration of embedded devices with different nature and various

granularities.

The presented memory organization unifies the most promising features

from conventional architectures, putting the accent on finding optimal trade-offs

between: distributed data-flow and interconnect integration; stream memory

access and programming complexity; hierarchical data storage and die area

occupation. The following features distinguish MORPHEUS memory subsystem

from the state-of-the-art solutions:

 Four parallel internal and external data-flows: computational data,

configuration data, control data, and I/O data. A distributed organization

of these flows prevents them of interfering and creating communication

bottle-necks.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 171 -

 Hierarchical data storage organization separates computation from

communication, provides fast access to the currently processed data, and

relaxes off-chip traffic.

 Thoroughly engineered mechanisms operate with data frames of various

granularities on all levels of storage hierarchy and provide reconfigurable

resources with flexible memory access.

 Network-oriented interconnect infrastructure provides a powerful local

storage mechanism in addition to the state-of-the-art communication

capabilities.

That the most promising feature of the MORPHEUS memory architecture

resides in its dual level organization, i.e.:

1. At the system level, the programmer handles data transfers using the

stream approach. This provides a homogeneous and user friendly

utilization of the interconnect resources, similar to the approach offered by

the Molen programming paradigm.

2. At HRE level, the designer of the instruction set extension, that will

become a library for the ARM processor, must be very well acquainted

with the HRE architectural details. In this case, the designer will be able to

utilize in a very efficient manner different addressing methods on the local

streams at high parallelism, in order to exploit the computational

capabilities of the specific HRE at its maximum.

This dualism between high level homogeneous programmability and low

level hardware-specific exploitation of available performance is the key for the

success of the MORPHEUS approach.

- 173 -

CHAPTER 5

TWO-DIMENSIONAL PARALLEL MEMORY ACCESS

WITH MULTIPLE PATTERN

This chapter presents a novel multi-pattern parallel addressing scheme in

two-dimensional (2D) addressing space and the corresponding 2D interleaved

memory organization with run-time reconfiguration features. The proposed

architecture targets mainly multimedia and scientific applications with block

cyclic data organization running on computing systems with high memory

bandwidth demands, such as vector processors, multimedia accelerators, etc. The

prior research on 2D addressing schemes is substantially extended introducing

additional parameters, which define a large variety of 2D data patterns. The

proposed scheme guarantees minimum memory latency and efficient bandwidth

utilization for arbitrary configuration parameters of the data pattern. The presented

mathematical descriptions prove the correctness of the proposed addressing

schemes. The design and wire complexities, as well as the critical paths are

evaluated using technology independent methodology and confirm the scalability

of the memory organization. These theoretical results are confirmed by the

synthesis for both ASIC and FPGA technologies. Comparison with the related

works shows the advantages of reported addressing scheme. The RTL

implementation of the memory organization represents the complete platform-

independent IP and can be integrated in any architecture.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 175 -

5.1 INTRODUCTION

5.1.1 RESEARCH CONTEXT AND GOAL DESCRIPTION

With modern increase of technology development, the performance of

memory subsystems lags more and more behind the processing units. This trend

becomes increasingly evident for architectures with massively parallel data

processing, such as multimedia accelerators, vector processors, SIMD-based

machines, etc. There are several techniques developed to reduce the processor

versus memory performance gap, including various caching mechanisms,

memories advanced with extra wide data word or multiple ports. But most of all,

the parallelism phenomenon is utilized in parallel memory organizations, where

the storage subsystem consists of a set of memory modules working in parallel.

The main advantages of this organization are: relatively small overheads, low

latency, efficient interconnection usage and possibility of accessing specific data

patterns. The data patterns depend very much on the target application and might

have various shapes, sizes and strides (distances between the successive

elements).

The design challenge is to ensure conflict-free parallel data access to all (or

maximum possible number of) memory modules for a set of different data

patterns. This is obtained by means of a module assignment function. According

to the data pattern format (in other words template), various module assignments

can be implemented, such as linear functions [19], XOR-schemes [36],

rectangular addressable memories [44], periodic schemes [65] and others. Row

address function specifies physical address inside a memory module. Together,

module assignment and row address functions form the class of skewing schemes.

However, there is no single skewing scheme which would support

conflict-free access for all possible data patterns [11]. Two solutions that deal

with such limitation are: Configurable Parallel Memory Architecture (CPMA)

[43], [59] and Dynamic Storage Scheme (DSS) [11], [32], [30], [47]. CPMA

provides access to a number of data templates using a single relatively complex

hardware when the number of memory modules is arbitrary. A more dedicated

DSS unifies multiple storage schemes within one system. The appropriate scheme

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 176 -

is chosen dynamically according to the specific data pattern in use. DSS restricts

the amount of memory modules to the power of two and considers only

interleaved memory system [32], [30].

The goal of this research is to develop a memory hierarchy with

dynamically adjustable regular 2D access patterns, which would improve the data

throughput between the main memory and processing units. Our approach is to

split the problem into six trivial sub-problems, which would require hardware

implementation with rather low complexity and short critical path. We consider an

exhaustive set of pattern definition parameters and propose a performance

efficient, interleaved memory organization. More specifically, the main

contributions of the current proposal are as follows:

 Extended set of 2D pattern access parameters: base address; vertical and

horizontal strides, group lengths, and block sizes.

 Support for the complete set of the 2D data patterns described by the

above parameters.

 Run-time programmability of the memory access pattern by means of

Special-Purpose Registers (SPRs).

 Independency of the data pattern size from the number of the interleaved

memory modules;

 Minimal memory access latency for arbitrary strides and group lengths.

 Modular implementation, which can be easily simplified to a restricted

subset of 2D data patterns (if the target application does not require full

flexibility), thus reducing the design complexity and critical path.

 High design scalability confirmed by hardware synthesis results.

The proposed memory organization targets highly data-parallel

applications with 2D block cyclic data distribution [26]. The matter concerns

mainly scientific operations on matrices for e.g. synthetic aperture radar (SAR)

software [58] or applied aerodynamics (Actiflow), as well as multimedia

applications such as audio/video compression (ADPCM, G721, GSM, MPEG4,

JPEG).

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 177 -

5.1.2 RELATED WORK

A DSS for a strided vector access was presented in [32]. The stride value

is detected by the compiler and sent directly to the pipelined address

transformation hardware. In such a way, the scheme supports conflict-free

accesses for non-restricted vectors with constant arbitrary stride.

In [30] the authors extended their scheme with block, multistride and FFT

accesses. To decrease the latency of multistride vector access when conflict-free

access is not achieved, it was proposed to use dedicated buffers to smooth out

transient non-uniformities in module reference distribution. Block access

supported only restricted set of blocks sizes equal to power of two. Finally, in

order to improve a radix-2 FFT algorithm, authors proposed non-interleaved

storage scheme and a constant geometry algorithm for which they identified three

data patterns. For all three types of address transformations, the same hardware

was used.

CPMA from [43] supports generate, crumbled rectangle, chessboard,

vector, and free data patterns. Virtual address is used to read appropriate row

address and access function from the page table which are further transformed

into row and module addresses. The authors presented complexity, timing and

area evaluations for their architecture.

A buffer memory system for a fast and high-resolution graphical display

system was proposed in [59]. It provides parallel access to a block, horizontal,

vertical, forward-diagonal, and backward-diagonal data pattern in a two-

dimensional image array. All pattern sizes are limited to power of two. The

address differences of those patterns are specifically prearranged and saved in two

SRAMs so that later they can be added to the base address in order to obtain

memory module addresses.

Other researches explore memory scheduling of DRAM chips by

addressing locality characteristics within the 3D (bank, row, column) memory

structure [62]. The solution consists of reordering memory operations in such a

way that allows saving clock cycles on precharging banks and accessing

successive rows and columns.

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 178 -

5.2 THEORETICAL BASIS

In parallel memories data can be referenced using predetermined patterns

called memory access patterns or data patterns. The data distribution among the

parallel memory modules is called a module assignment function m which is also

known as a skewed scheme. The module assignment function determines data

patterns that can be accessed conflict-free. A data element with a linear address a

is assigned to a memory module according to)(am . A row address function

A determines the physical address of a data element inside a memory module.

Our task is to develop a memory hierarchy with dynamically

programmable data patterns to minimize the main memory access latency from

the vector processing units using interleaved memory modules organized in a two-

dimensional matrix with parallel access. Fig. 55 depicts an example of a data

pattern block including six groups of size VGL×HGL=2×4 and strides

(VS,HS)=(4,5). The parameters used to describe the data pattern are explained in

Table 16.

V
S

V
G

L V
B

L*
V

S

Fig. 55. Proposed memory access pattern.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 179 -

Table 16. Memory access pattern parameters.

Parameter Description

W ℕ1 - data word length in bytes;

Aw ℕ - row address width in bits;

),(hsvbb [0,ℕ] - base address of the accessed block;

HSVS, ℕ - vertical and horizontal strides;

HGLVGL, ℕ - vertical and horizontal group lengths – group size;

HBLVBL, ℕ - vertical and horizontal block lengths – block size;

NM ℕ - size of a data block stored in the memory;

HDVD ∈ℕ - size of the matrix of memory modules;

VBL
VGL

id
i V

0 ,

VGLVBLidV 0 , Vid ∈ℕ.

HBL
HGL

id
j H

0 ,

HGLHBLid H 0 , Hid ∈ℕ.

- vertical i and horizontal j group indices;

VGLVGLidk V mod0

HGLHGLidl H mod0

- vertical k and horizontal l element indices.

The first step is to translate the linear address of the main memory into a

two-dimensional one. The transformation equation (3) is used in order to translate

linear base address b into a two-dimensional one),(hbvb with the vertical and

horizontal constituents.

hbNvbb ,

 Nbvb / ,

Nbhb mod

(3)

Any data element with linear address a belonging to an accessed data

block has the following two-dimensional address),(hava :

1 Though the word length can have any natural value, on practice it usually has a value of

power of two.

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 180 -

haNvaa ,

kiakVSiVBva , ,

ljalHSjHBha , .

(4)

where indices]1,0[],1,0[VGLkVBLi , and

]1,0[],1,0[HGLlHBLj

As follows from (4), the two-dimensional address is completely separable,

i.e. its vertical and horizontal constituents are independent from each other.

Therefore, in the following discussion we consider the address constituent along

only one dimension.

The stride parameter as any other natural number might be represented in

the following expansion:

sS 2 ∈ℕ,
(5)

where 12 x , x ℕ and s∈[0,ℕ]. Consequently, stride S is odd

when 0s , and it is even when s∈ℕ.

Before proceeding to the description of our solution we would need to

consider the following theorems.

Theorem 1: No single skewing scheme can be found that allows conflict-

free access for all the constant strides and group lengths when the data pattern can

be unrestrictedly placed. The theorem is valid for arbitrary number of memory

modules, when at least two data elements are accessed concurrently1.

Proof: Let)(am be the module assignment function and lSjbaid

the first accessed data element. Then, the next accessed data element is

1,)1(

;1,11

1

1

GLliflSaSjba

GLlifalSjba

idid

idid ,

1 This theorem follows the theorem 1 from [11] but in our case it has wider application

since it considers the group length together with the stride.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 181 -

where GL is a group length, and S is a stride. The two elements can not

be accessed conflict-free if there are stride S and group length GL such that

)()(1 idid amam . □

Theorem 2: All the odd strides can be accessed conflict-free with the low-

order interleaved scheme if the number of memory modules equal to power of

two: dD 2 , d ∈ℕ.

Proof: The proof is presented by M. Valero et al. in [47]. □

Theorem 3: Let stride S , group length GL , and number of memory

modules D along one dimension equal to power of two, i.e. sS 2 , glGL 2 ,

and dD 2 , where dgls ,, ∈ℕ. Also let ds which means that the strides have

less than one access per row. Then the module assignment function defined by

 D
Da

GLaam
ds

mod
2

)(

 , (6)

allows conflict-free parallel accesses to D memory modules.

Proof: First we find a period P of function (6). If function)(am maps

address a to its module address for a stride S and group length GL , then

)()(SPamam , ∀ a . According to (6), this corresponds to

 D
DSPa

GLSPaD
Da

GLa
dsds

mod
2

)(
)(mod

2

 ;

 D
DSPDa

GLSPaD
Da

GLa
dsds

mod
2

mod
2

 ;

 D
PDa

GLSPaD
Da

GLa
ds

ds

ds
mod

2

2
mod

2

 ;

 DGLP
Da

GLSPaD
Da

GLa
dsds

mod
2

mod
2

 ;

 DGLSP
Da

GLaD
Da

GLa
dsds

mod)(
2

mod
2

 .

According to the properties of modulo operation, this equality holds when

0mod))((DGLSP . The last formula corresponds to the following set of

periods:

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 182 -

,

;

;)(

DzGLP

DySP

DxGLSP

⇒

,

;

;

GL

D
zP

S

D
yP

GLS

D
xP

where zyx ,, ∈ℕ and zyx ,, : P∈ℕ.

Now we will find the minimum period 1min P . This means to solve the

next set of minimization problems:

,min

;min

;min

min

min

min

GL

D
zP

S

D
yP

GLS

D
xP

where minP ∈ℕ.

.
),(

;
2

2

)2,2(

2

),(

;
),()2,2(),(

GLDGCD

GL
z

D

S

GCDSDGCD

S
y

GLDGCD

GLS

GLGCD

GLS

GLSDGCD

GLS
x

d

sds

sd

s

property
GCD

dssd

.
),(),(

;1

;
),(),(

min

min

min

GLDGCD

D

GL

D

GLDGCD

GL
P

S

D

D

S
P

GLDGCD

D

GLS

D

GLDGCD

GLS
P

Thus, the minimum period equal to
),(min GLDGCD

D
P .

Now we will find number of accesses performed to the distinct memory

modules. Harper and Jump showed in [31] that for a basic skewing storage

scheme the number of distinct modules referenced during a vector access is

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 183 -

),min(DPA . For our case with group length presented, the number of distinct

modules is),min(DGLPA and glGL 2 , gl∈ℕ.

 DDGLDLCMD
GLDGCD

GLD
DGLPA

),,(min,

),(
min),min(.

Thus, any vector of length D , having the form of Fig. 55 and (4), inside

the sequence of module addresses generated by)(am has exactly D distinct

addresses. This is the definition of conflict-free accesses. □

Theorem 4: Let stride S , group length GL , and number of memory

modules D along one dimension equal to power of two, i.e. sS 2 , glGL 2 ,

and dD 2 , where dgls ,, ∈ℕ. Also let ds which means that the strides have

at least one access per row. Then the module assignment function defined by

DS
D

a
GLaam mod)mod()(

 , (7)

allows conflict-free parallel accesses to D memory modules.

Proof: The proof mainly repeats the one of Theorem 3. First we find a

period P basing on the fact that)()(SPamam , ∀ a .

DS
D

SPa
GLSPaDS

D

a
GLa mod)mod(mod)mod(

 .

Using properties of modulo operation we derive the following combined

equations:

.mod)mod(mod)mod(

;0mod)(

DS
D

SP

D

a
GLaDS

D

a
GLa

DSP

The first equation gives us the set of periods equal to
S

D
xP

 , where

x∈ℕ: P∈ℕ. Now we substitute period P in the second equation with its value

derived from the first equation:

DS
D

S

S

D
x

D

a
GLaDS

D

a
GLa mod)mod(mod)mod(

 ;

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 184 -

DSxGL
D

a
GLaDS

D

a
GLa mod)mod(mod)mod(

 .

Using the same property of modulo operator we obtain the following

equation: 0mod)(SGLx ⇒
GL

S
yx

 , where y∈ℕ: x∈ℕ.

Substitute x in the equation which gives the set of periods P :

GL

D
y

S

D

GL

S
y

S

D
xP

 , y∈ℕ: P∈ℕ.

This set of periods exactly repeats the one from the proof of Theorem 3.

Therefore, the minimum period equal to
),(min GLDGCD

D
P and, as follows from

the same proof, the number of distinct accessed addresses equals to D . Thus,

module assignment function (1) is conflict-free. □

Theorem 5: If a vector is to be accessed with even stride sS 2 , where

12 x , x ℕ, s∈ℕ and 0s , and its elements are arranged in memory

according to the storage scheme appropriate for a stride sS 2 access the

accesses are conflict-free [32].

Proof: The proof repeats the one from [32] with only difference that in our

case we should examine the sequence of groups of module addresses instead of

the sequence of single addresses. □

Now we are ready to present the proposed solution.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 185 -

5.3 PROPOSED MEMORY ACCESS SCHEME

Since there is no any single scheme for all the strides and group lengths

according to Theorem 1, we propose to partition the problem in a number of cases,

thus reducing the problem to a set of trivial sub-problems, and examine each of

them independently.

We propose to partition the problem according to the stride oddness

criterion on two subtasks. The following partition is done according to the

theorems in section 5.2. According to Theorem 2 odd strides can be accessed

conflict-free using a basic skewing scheme [11], [44]. Further splitting on cases I

and II is made for the purpose of memory latency minimization. Cases V and VI

refer to Theorem 3 and Theorem 4 respectively. The remaining situations with

even stride refer to cases III and IV and the skewing scheme from [32] is used.

The problem partitioning is depicted on Fig. 56.

BL
D

GL
GL

D

BL

BL
D

GL
GL

D

BL

BL
D

GL
GL

D

BL

Fig. 56. Problem partitioning.

Now we need to build the module assignment and row address functions

for all the cases.

5.3.1 MODULE ASSIGNMENT FUNCTION

We partition the design problem, imposed by the multiplicity of access

patterns, into trivial subtasks. A module assignment function is devised for each

of six different cases with respect to particular initial conditions.

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 186 -

5.3.1.1 CASE I

Initial conditions:

}0;12|2{ sxS s ,

BL
D

GL
GL

D

BL

 .

(8)

An access to the data pattern is performed on a basis of sets of elements;

i.e. ab init, the set of the first elements of all groups is accessed followed by the

set of the second elements of all groups and so on. When DBL then more than

one access is required to reed/write a whole group of data. If 0)mod(DBL

then the remaining memory modules stay unused. The relation

BL
D

GL
GL

D

BL

 again guarantees that the number of accesses required to

access the whole pattern is minimal. This case represents a conventional

interleaved scheme with stride access which can be implemented conflict-free

according to Theorem 2.

The module assignment function has the same representation as for a

common interleaved scheme:

Daam mod)(. (9)

The indices iterate according to the following sequence:

(i,k) = ((0,0);(1,0);…;(VBL-1,0);

(0,1);(1,1);…;(VBL-1,1);

…;

(0,VGL-1);(1,VGL-1);…;(VBL-1,VGL-1)).

(10)

The number of the required accesses to read/write the whole data pattern in

this case is equal to:

GL
D

BL
t

 . (11)

5.3.1.2 CASE II

Initial conditions:

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 187 -

}0;12|2{ sxS s ;

}0;12|2{ sxS s & glGL 2 , gl ℕ;

BL
D

GL
GL

D

BL

 .

(12)

An access to the data pattern is performed group-wise, i.e. one group is

accessed at a time. When DGL then more than one access is required to

reed/write a whole group of data. If 0)mod(DGL then the remaining memory

modules stay unused. The relation BL
D

GL
GL

D

BL

 guarantees that the

number of accesses required to access the whole pattern is minimal. The fact that

any separate group inside the block can be accessed conflict-free is shown by G.

Kuzmanov et al in [44].

The module assignment function has the same representation as for the

case I (9):

Daam mod)(,

but the indices iterate according to the different sequence:

(i,k) = ((0,0);(0,1);…;(0,VGL-1);

(1,0);(1,1);…;(1,VGL-1);

…;

(VBL-1,0);(VBL-1,1);…;(VBL-1,VGL-1)).

(13)

The number of the required accesses to read/write the whole data pattern in

this case is equal to:

BL
D

GL
t

 . (14)

5.3.1.3 CASE III

Initial conditions:

gls GLsxS 2&}0;12|2{ , (15)

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 188 -

BL
D

GL
GL

D

BL

 ,

ds .

In this case, the indices iterate as in (10) but here we use module

assignment function from [32]:

 D
Da

aam
ds

mod
2

)(

 , (16)

In fact, all initial conditions for this case exactly repeat the ones presented

in [32].

The number of the required accesses to read/write the whole data pattern is

described by formula (14).

5.3.1.4 CASE IV

Initial conditions:

gls GLsxS 2&}0;12|2{ , gl ℕ;

BL
D

GL
GL

D

BL

 ;

ds .

(17)

Again, memory access repeats the sequence (10), and the module

assignment function from [32] is appropriate to the initial conditions:

DS
D

a
aam modmod)(

 . (18)

The number of the required accesses to read/write the whole data pattern is

described by formula (14).

5.3.1.5 CASE V

Initial conditions:

gls GLsxS 2&}0;12|2{ , gl ℕ;

ds .

(19)

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 189 -

An access to the data pattern is performed element-wise, that allows the

maximum utilization of the memory modules. Power of stride is not smaller than

power of the array size: ds .

The module assignment function has the following representation:

 D
Da

GLaam
ds

mod
2

)(

 , (20)

The sequence of indices (i, k) is not important in this case since all

memory modules are accessed conflict-free (refer to Theorem 3).

The number of the required accesses to read/write the whole data pattern in

this case is equal to:

D

BLGL
t . (21)

5.3.1.6 CASE VI

Initial conditions:

gls GLsxS 2&}0;12|2{ , gl ℕ;

ds .

(22)

An access to the data pattern is performed element-wise, as in case V.

Power of stride is smaller than power of the array size: ds .

The module assignment function has the following representation:

DS
D

a
GLaam mod)mod()(

 , (23)

The sequence of indices (i, k) is not important again since all memory

modules are accessed conflict-free (refer to Theorem 4).

Number of the required accesses to read/write the whole data pattern in

this case, as in case V, is equal to:

D

BLGL
t . (24)

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 190 -

5.3.2 ROW ADDRESS FUNCTION

The row address function determines the linear address inside a memory

module. An important characteristic of the proposed solution is that, in spite of

having four different representations of the module assignment function, there is

only one row address function which is valid for all cases described above. This

feature enables large hardware design simplification as well as reduces the design

time. The row address function is described by the following formula:

HD

ha

HD

N

VD

va
havaA),(. (25)

Equation (25) shows that the function is completely separable, which

means that we are still able to examine vertical and horizontal constituents

independently.

5.3.3 MEMORY ACCESS LATENCIES

Number of accesses that are needed to read/write the whole data pattern is

described by the following equations, representing the best and the worst cases:

HD

HBLHGL

VD

VBLVGL
t best

m , (26)

VD

VBLVGL
VBLVGLt worst

m

),max(
),min(

HD

HBLHGL
HBLHGL

),max(
),min(.

(27)

From the equations above we can derive an optimal choice for the matrix

size:

),max(|: BLGLDDDopt . (28)

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 191 -

5.4 DESIGN IMPLEMENTATION AND COMPLEXITY EVALUATION

In order to evaluate our scheme, we have verified it using a MatLab

model, implemented it in VHDL and performed technology independent

complexity evaluation in terms of wire complexity and logic complexity. The

parallel memory controller which exploits the proposed scheme is implemented

between the main memory and the processing unit (see Fig. 57). It aims at

shadowing the high-latency channel to the main memory by means of a wide bus

connection to the processing unit which performs parallel transmissions of data.

The concurrently accessed matrix of memory modules is placed inside the

memory controller. The pattern parameters are transmitted to the memory

controller via programmable Special Purpose Registers (SPRs).

Main memory

Special Purpose
Registers (SPR)

Memory
controller Processing

Unit (PU)
DW

VDxHDxDW

Fig. 57. Integration of parallel memory controller.

Structurally, the memory controller consists of an address generation part,

a data routing part and a matrix of memory modules (see Fig. 58). The address

generation part is split in vertical and horizontal sides that completely mirror each

other. It includes the following blocks: mode select, address generator, set of row

address generators, module assignment and address shuffle. The data routing part

consists of a number of input shuffles and output de-shuffles. Refer to Appendix

B for the VHDL source code of each sub-module of the design.

The critical path passes through the address generator, module assignment

unit and decoding part of the shuffle. Hereafter the memory controller blocks are

described in details.

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 192 -

2x4

Horizontal
Address

Generator

Vertical
Address

Generator

Horizontal
Mode
Select

Row
Address

Generator

Row
Address

Generator

Row
Address

Generator

Row
Address

Generator

Row
Address

Generator

Row
Address

Generator

Memory
Module

(0,0)

Memory
Module

(0,1)

Memory
Module

(0,2)

Memory
Module

(0,3)

Memory
Module

(1,0)

Memory
Module

(1,1)

Memory
Module

(1,2)

Memory
Module

(1,3)

Shuffle

Vertical
Module

Assignment

Horizontal
Module

Assignment

Shuffle Shuffle Shuffle Shuffle

Vertical
Mode
Select

Data IN

Shuffle

Ready/
Pause

De-shuffle

De-shuf De-shuf De-shuf De-shuf

Delay

Data OUT

Delay

Fig. 58. Parallel memory controller block diagram.

5.4.1 MODE SELECT

The mode select unit sets the address generation logic to a mode,

corresponding to the six cases of the problem partitioning (see Fig. 56). The

pattern parameters stride S , group length GL and block length BL are read from

the programmable SPRs.

The block implements stride oddness check and resolving of two

inequalities: BL
D

GL
GL

D

BL

 and ds (see Fig. 59). The Counter*

includes logic for power of two equality check, i.e. it counts number of logic ‘1’

in the input signal: if there is only one logic ‘1’, then the input is equal to power

of two and the output is set to logic ‘1’, otherwise the output is set to logic ‘0’.

The Coder block performs coding of four 1-bit signals according to the problem

partition diagram (Fig. 56) in order to create 3-bit Mode signal. The

correspondence between cases and Mode signal is outlined in Table 17.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 193 -

Fig. 59. Mode select block diagram.

The hardware complexity almost does not depend on the size of the matrix

of memory modules HDVD , nor on the data word length W since the width of

the input signal is constant and equals to 16 bits in our implementation. The wire

complexity is constant and does not depend on the quantity of memory modules,

data or address widths.

Table 17. Correspondence table.

Mode signalCase #

bit 2 bit 1 bit 0

Case I. 0 0 0

Case II. 0 0 1

Case III. 0 1 0

Case IV. 0 1 1

Case V. 1 0 0

Case VI. 1 0 1

Reserved 1 1 0

Reserved 1 1 1

5.4.2 ADDRESS GENERATOR

The address generator produces vertical/horizontal constituents of two-

dimensional addresses of the accessed data pattern according to formula (4). Data

pattern parameters are read from SPRs and an address mode is loaded from the

mode select block. The address generator consists of two double parallel counters

and one single parallel counter (see Fig. 60) that generate the sequence of pairs of

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 194 -

indices (i, k) or (j, l) (refer to Table 16, section 5.3.1 and equations (10),(13)). The

double counters generate group and element indices separately (for cases I-IV),

and the single counter generates group and element indices on the base of a

common index by implementing respectively division and modulo by group

length (for cases V-VI). Note that the group length is equal to power of two for

cases V-VI therefore division and modulo operations become possible. One side

of a parallel double counter is presented on Fig. 61.

The complexity of the address generator block is)(DwO A because of the

multiplier with input signal width depending on the size of the matrix of memory

modules.

The critical path passes from the register inside a double counter and goes

through the double counter, one multiplexer, one multiplier1 and one adder to the

address output. The critical path is equivalent to)(log DO .

The wire complexity is equal to)(DwO A since the address generator

produces D addresses of width Aw for each of the two dimensions.

1 In the actual VHDL implementation, this multiplier was unrolled in a set of adders and

pre-calculated in parallel with the counters. This allowed to reduce the critical path though its

length still equals to)(log DO .

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 195 -

Fig. 60. Address generator block diagram.

Fig. 61. Parallel counter block diagram.

5.4.3 ROW ADDRESS GENERATOR

The row address generator translates vertical/horizontal constituents of

two-dimensional addresses into the physical addresses inside memory modules

according to equation (25). Since formula (25) is completely separable, vertical

and horizontal row address generators are implemented in separable blocks (see

Fig. 58). Consequently, vertical blocks generate upper bits of the row address, and

horizontal blocks generate the lower bits. No additional logic is needed to

implement this block. The wire complexity is equivalent to the address width:

)(AwO .

5.4.4 MODULE ASSIGNMENT UNIT

The module assignment unit translates vertical/horizontal constituents of

two-dimensional addresses into memory module addresses inside the matrix of

memory modules according to equations (9), (16), (18), (20), and (23). Data

pattern parameters are read from SPRs and an address mode is loaded from the

mode select block. The equations are implemented in parallel and their outputs are

multiplexed according to the address mode (see Fig. 62).

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 196 -

Fig. 62. Module assignment unit block diagram.

Complexity of the module assignment function for all cases (refer to

equations (9), (16), (18), (20), and (23)) is presented in Table 18. The notation

lsmsx : represents the bit interval from the least significant bit ls to the most

significant bit ms . The complexity of the complete block is proportional to

)(log DO because of the adders with input signals of the maximum width equal to

Dlog .

The wire complexity is equal to)(DwO A since the module assignment

unit produces D results basing on the input address of width Aw .

The critical path passes through the mask unit, shifters, one adder and one

multiplexer. Its length is mostly influenced by the adder of width Dlog and is

equivalent to))(log(log DO .

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 197 -

Table 18. Module assignment function complexity for different cases.

Case # Complexity

Cases I-II.
0:1)(daam (29)

Case III. 0:1:10:1)(dsdsd aaam (30)

Case IV. 0:1:10:1)(dddsd aaam (31)

Case V. 0:1:10:1 2)(d
gl

sdsd aaam (32)

Case VI.
0:10:1:180:1 2)(

ds

gl
dWd aaam (33)

5.4.5 SHUFFLE UNIT

The shuffle unit is used to reorder row addresses, received from the row

address generators, according to the module assignment function. It consists of a

parallel set of de-multiplexers and output OR-gates (see Fig. 63).

Its complexity is)(DwO A . The biggest shuffle in the design is the Data

IN shuffle (see Fig. 58). Its wire complexity is equal to)(2 WDO since it has

2D inputs and the same amount of outputs of width W .

The critical path passes through a multiplexer via its select port and does

not depend on D .

Fig. 63. Shuffle unit block diagram.

5.4.6 DE-SHUFFLE UNIT

The de-shuffle unit is needed to reorder the data from memory modules

back to the initial sequence. It consists of a set of parallel multiplexers (see Fig.

64).

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 198 -

The complexity of the shuffle unit is)(DwO A . The widest de-shuffle is

situated at the Data OUT. Its wire complexity is similar to the shuffle’s one and

equals to)(2 WDO .

RData1

RData2

ModuleID1

ModuleID2

MUX

S1

S2

D

C

MUX

S1

S2

D

C

Rdata’1

Rdata’2

...

Fig. 64. De-Shuffle unit block diagram.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 199 -

5.5 RESULTS

The technology independent complexity estimations from Table 19

indicate that the critical path complexity is weakly sensitive to the size of the

memory matrix and thus the design is well scalable to any matrix size. In fact, the

throughput is directly proportional to the matrix size VD×HD, and inversely

proportional to the critical path, i.e. DDWthroughput log2 .

Table 19. Summary of the technology independent design complexity

evaluation.

Design unit Logic complexity Wire complexity Critical path

Mode select)(constO)(constO -

Address generator)(DwO A)(DwO A)(log DO

Row address generator 0)(AwO -

Module assignment unit)(log DO)(DwO A))(log(log DO

Shuffle)(DwO A)(2 WDO)(constO

De-shuffle)(DwO A)(2 WDO -

Total)(DwO A)(2 WDO)(log DO

5.5.1 ASIC SYNTHESIS

The synthesis was performed for an ASIC 90 nm CMOS technology. The

results for six different matrix sizes, word widths W of 32 and 64 bits, and 12-bit

addresses are presented in Table 20 and Fig. 65. In fact, data word width of

8 Bytes corresponds to utilization of two concurrently coupled 32-bit wide

memory modules. Generally speaking, the address width ranging from 8 till 16

bits is enough for the most of practical applications, which would give the

complexity range of 45.5-53.9 Kgates for 4×4 matrix with W = 32 bits.

Considering that the memory modules used in the design have 4096×32bits size

and occupy 43.8 Kgates, the logic complexity overheads vary from 14.5% for 2×2

32-bits matrix to 3.8% for 8×8 64-bits matrix with respect to the total hardware

complexity. The presented synthesis results confirm the linear increase of the

design complexity and the quadratic increase of the throughput, derived from our

theoretical estimations. As it was expected, the critical path is proportional to the

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 200 -

logarithm of the matrix size along one dimension and the design complexity

depends linearly on it.

Table 20. Synthesis results for ASIC 90 nm.

Complexity (KGates) Frequency (MHz) Throughput (Gbits/sec)Matrix size

W=4 W=8 W=4 W=8 W=4 W=8

2×2 25.34 26.73 377 371 44.94 88.45

2×4 33.81 39.11 341 336 81.30 160.21

2×8 58.48 70.19 314 321 149.72 306.12

4×4 46.60 53.27 336 333 160.21 317.57

4×8 88.07 101.57 321 314 306.12 598.90

8×8 176.83 211.06 313 310 597.00 1182.55

Fig. 65. Synthesis results for ASIC 90 nm: design complexity, frequency

and throughput.

Design complexity

0

100

200

300

Matrix of memory modules

C
o

m
p

le
xi

ty
 (

K
g

at
es

)

W=32b 25,34 33,81 58,48 46,6 88,07 176,83

W=64b 26,73 39,11 70,19 53,27 101,57 211,06

2×2 2×4 2×8 4×4 4×8 8×8

Operating frequency

0

100

200

300

400

Matrix of memory modules

F
re

q
u

en
cy

 (
M

H
z)

W=32b 377 341 314 336 321 313

W=64b 371 336 321 333 314 310

2×2 2×4 2×8 4×4 4×8 8×8

Throughput

0

500

1000

1500

Matrix of memory modules

T
h

ro
u

g
h

p
u

t
(G

b
it

s/
se

c)

W=32b 44,94 81,3 149,72 160,21 306,12 597

W=64b 88,45 160,21 306,12 317,57 598,9 1182,55

2×2 2×4 2×8 4×4 4×8 8×8

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 201 -

5.5.2 FPGA SYNTHESIS

The FPGA synthesis was performed with Xilinx ISE 8.2i toolset for

Virtex2P xc2vp30-7ff896 device with speed coefficient -7. The results are

presented in Table 21.

Table 21. FPGA synthesis results.

Matrix size IO ports utilization (%) Frequency (MHz) Throughput (Gbits/sec)

W=1 W=2 W=4 W=1 W=2 W=4 W=1 W=2 W=4

2×2 16 22 58 128.8 128.8 108.4 4.12 8.24 13.87

2×4 22 34 - 123.3 123.3 - 7.89 15.78 -

2×8 35 58 - 134.4 134.4 - 17.20 34.40 -

4×4 35 58 - 124.6 124.6 - 15.94 31.89 -

4×8 61 - - 133.2 - - 34.09 - -

In contrast to ASIC, design for FPGA is much more sensitive to the wire

complexity which is significant for the parallel systems. Therefore, FPGA

technology enables implementation of a restricted variety of configurations

outlined in Table 21. On the other hand, FPGA technology allows mapping the

design within a short timeframe and performing the experiments on real-

applications to prove the concept of parallel memory access with configurable 2D

data patterns.

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 202 -

5.6 COMPARISON WITH THE RELATED WORK

Studying the related research it is striking that, although a lot of work has

been carried on the subject of memory access acceleration and many mechanisms

have been proposed (refer to section 5.1.2), only few of them were implemented

in hardware, also having the results published. At least to our knowledge, the most

significant of them are presented in Table 22. The table shows the comparison

with the related schemes from [13] and [12]. The operating frequencies are

normalized to 90nm technology node according to [4].

Usually, the address calculation is a very design critical mechanism

because it performs complex arithmetical calculations, such as division and

multiplication. The problem becomes more complicated when a divisor or

multiplier factors are not equal to power of two. Therefore, it becomes extremely

important to optimize these calculations on both algorithmic and hardware levels.

The authors of [13] and [12] decided to divide the address computation on

pipelined stages, thus reducing the critical path of the computational block and

rising the total system frequency. The main drawback of this solution lies in the

fact that, in spite of the high frequency, the address calculation latency becomes

longer. For example, in [13] it takes 11 clock cycles (excluding 6 cycles of

DRAM access) to calculate the address in order to read data from memory. In

comparison, an imaginary mechanism with the operating frequency 10 times

slower than the one from [13] but having the address calculation latency equal to

one clock cycle will operate faster. This situation is very well illustrated by

comparing the technique from [12] and our mechanism. Although the total

operating frequency of the device proposed by [12] is higher, it takes

nsMHzclk 6.55393 to calculate the read address (see Table 22), while in our

case it will take only nsMHzclk 5.23931 , which is more than two times faster.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 203 -

Table 22. Comparison to the schemes with 8 memory modules and 8 bits

data width.

Design Supported data
patterns

Address
calculation
latency (r/w

cycles)

Frequency,
normalized to
90nm CMOS

(MHz)

Complexity scaling Area
(Kgates)

CPMA
[13]

Generate,
crumbled
rectangle, chess
board, vector,
free

11/8 pipelined ~32)(totalA NwO ~27.0

PMAS
[12]

Stridden vector 3/2 pipelined 539)(totalA NwO 5.5

This
proposal

Block cyclic 1/1 393),max(HDVDwO A
HDVDNtotal

26.9

We will define the memory access latency as the time (in clock cycles)

which is needed to move the complete data pattern to/from the memory. The

memory access latency unifies the address calculation latency and the amount of

transfers required to read/write the complete data pattern. For the proposed

memory organization, the memory access latency is calculated by formulas (26)

and (27). If the complete data pattern fits the matrix of memory modules (i.e. the

amount of the accessed data elements is equal to the number of available memory

modules), then the memory access latency is equal to one clock cycle in the best

case and four cycles in the worst case. If the data pattern does not fit in the matrix,

then the memory access latency will be as long as it is required to read/write all

data elements. The latest is also true for the other mechanisms from Table 22.

The situation with “area vs. complexity scaling” reminds of the one with

“frequency vs. address calculation latency” described above. The demolition

return of less optimized complexity scaling factor will significantly influence the

total design area, especially for the larger devices with very wide memory

channel. Table 22 presents area occupation for the designs with 8 memory

modules (in our case it corresponds to 2VD and 4HD), 10-bit address width

and 8-bit data width. In our architecture, the logic complexity scales equivalently

to the longest side of the matrix of memory modules (for the case examined it

Table 22, it is 4HD), while for the other designs, the logic complexity is

equivalent to the total number of memory modules. Note, that the address and

data widths have only minor influence on the total design complexity (compare

CCHHAAPPTTEERR 55.. TTWWOO--DDIIMMEENNSSIIOONNAALL PPAARRAALLLLEELL MMEEMMOORRYY AACCCCEESSSS WWIITTHH MMUULLTTIIPPLLEE PPAATTTTEERRNN

- 204 -

values for 4W and 8W from Table 20). For example, consider the proposed

architecture with HDVDD ; thus, the total number of memory modules is

2DHDVDNtotal , meaning that the length of any side of the matrix is

totalND . Now the difference of the complexity scaling factors is evident:

)(totalA NwO for the proposed architecture, and)(totalA NwO for the other

architectures.

One also should take into account that the die area occupation is not the

primary ASIC design objective nowadays. With the technology development, gate

density is constantly increasing, while the functionality does not keep pace with

such advance. In other words, contemporary chips provide great deal of hardware

resources that are not completely utilized. Consequently, it seems more reasonable

to expand device flexibility and reusability at the expense of additional gates

occupation, thus reducing the design cycle, than to press towards development of

the smallest device with the restricted application domain and to redesign

everything from scratch when the requirements are slightly changed.

Another important feature of the proposed memory organization is

modularity. At the design time, it is possible to limit the variety of supported data

patterns. This will reduce the logic complexity of the Mode select unite, which is

in charge with memory access mode, as well as Address generator and Module

assignment unit; plus this will shorten the critical path of the latest two blocks. In

addition, there is a possibility to adjust address width, data width, and the size of

the matrix of memory modules at the design time. Thus, the proposed memory

organization can be very well adapted to a specific application domain being at

the same time significantly optimized.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 205 -

5.7 SUMMARY

High throughput memory accesses with flexible data patterns are widely

used in many different areas such as multimedia, telecommunications, and

scientific applications. We presented a parallel memory organization that

accumulates the advantages of the previous solutions. In addition, it allows access

to a data pattern with more complex structure and relaxes the limitations of the

data pattern parameters. Runtime programmability by means of SPRs enables

flexible data management. Our theoretical conclusions were proved, and

additionally confirmed by mathematical modeling. The design implementation

and synthesis showed expected results according to our theoretical estimations. As

a result, our memory organization provides minimum latency between main

memory and processing unit for a given type of schemes.

- 207 -

CHAPTER 6

CONCLUSION

This chapter summarizes all achievements of the presented research. The

distinguished contributions of this work are listed in the respective section.

Finally, a possible direction of the future work is outlined and briefly discussed.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 209 -

6.1 SCIENTIFIC RESULTS

This thesis has examined memory organization and data structure in

heterogeneous reconfigurable Systems-on-Chip. The target framework lies within

the context of the MORPHEUS project.

As a result, data in the system was structured in four separated flows:

computational, configuration, control and I/O data. Such distributed organization

makes the computational model of the system very clear and supports the solution

for interconnects.

A hierarchically organized memory subsystem makes it possible to

separate communication tasks and computation tasks, allowing computation

accelerators to process data without interrupting on data routing tasks. Currently

processed data is placed into local storages and transferred between the

computation resources without interacting with slow and power consuming off-

chip memories.

Specially developed mechanisms allow operating with data chunks of

various granularity on all levels of memory hierarchy and supplying

computational engines with flexible memory access. In this scope, the Address

Generator integrated in DREAM architecture provides the reconfigurable data-

path with the access to a programmable data pattern for all its inputs and outputs

in parallel.

A more general mechanism for memory access was developed and

implemented: starting from theoretical basis until the synthesis and optimization

phases. This mechanism provides for a computational unit parallel two-

dimensional access to the memory with programmable data pattern. The technique

supports an advanced set programming parameters enabling greater variety of the

supported data patterns. The mechanism is implemented as a stand-alone IP being

compliant with wide range of complex hardware architectures requiring fast

parallel programmable access to the memory, including MORPHEUS platform.

CCHHAAPPTTEERR 66.. CCOONNCCLLUUSSIIOONN

- 210 -

6.2 CONTRIBUTION STATEMENT

Since the research was performed within the framework of a bigger

project, it is necessary to specify the contribution of this work. The following

main tasks were performed:

1. Definition of the data structure in the system and proposal of

communication means for the data-flows ([34]).

2. Proposal on the three-level hierarchical memory organization with

functional definition and architectural allocation of each layer ([34]).

3. Definition of the number and sizes of the memory units implemented in

the system on the basis of target applications analysis ([34]).

4. Implementation of the complete MORPHEUS platform on the RTL level,

including fine tuning of the integrated IP from the project partners and

simulation of the architecture ([34] and [23]).

5. Definition of data exchange on the local buffers and synchronization

means between reconfigurable engines ([23] and [21]).

6. Development and integration of the Address Generator for the DREAM

architecture ([23] and [21]).

7. Taking part into DREAM and M2000 integration into MORPHEUS

platform ([23] and [21]).

8. Development of two-dimensional memory architecture with multiple data

patterns. The work included all stages starting from proof of the theoretical

concepts, through the mathematical modeling in MatLab to the VHDL

implementation, simulation, verification, optimization and synthesis for

two target technologies: ASIC and FPGA ([75], [76], and another article is

currently under review for IEEE Transactions on Circuits and Systems II).

9. Application mapping the reconfigurable engines for the verification

purpose and architecture efficiency proof ([23] and [21]).

Thus, the work was performed on various stages of the design cycle and

levels of application, however, targeting the same objective of data storage

development and data structure organization.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 211 -

6.3 FUTURE WORK

As it always happens, one step forward in any scientific field opens more

questions than it actually answers. Reconfigurable architectures and

heterogeneous systems are an ever evolving research topic, therefore there are

many directions in which the work of this thesis can be extended upon. One of the

possibilities is presented below.

A hardware design should be followed by an application approval. There

are a number of tasks within MORPHEUS that would be interesting and useful to

test, such as application mapping. It might be of particular importance since it

proves system functionality and shows memory organization efficiency. The

feedback from this work may influence both the resource mapping decisions as

well as hardware improvements. As a consequence, the data flow optimization

and application mapping together with the system design implementation might

be beneficial as a proof of the overall system efficiency.

Among the applications offered by MORPHEUS partners, systems for

intelligent cameras seem to be the most suitable for this purpose. On the one hand,

it has a sufficient level of concurrency introducing the wide specter of mapping

varieties. This feature opens a large area for the research and decision

justifications. On the other hand, the application has reasonable complexity to

serve as a test application. The sources of the application kernels are open and can

be easily found from the open sources.

Application mapping workflow can be divided on several stages.

1. Application study. On the first stage, the application is defined and

organized for the following consideration. The kernels are thoroughly

examined for the purpose of data bandwidth requirements and logic

complexity. The result of this stage should be the table with the

characteristics of the kernels.

2. Kernels mapping. On the mapping stage, the dependencies between

separate kernels within the application are disclosed and outlined on the

dataflow graph. Moreover, the reconfiguration requirements should be

taken into account, i.e. static and/or dynamic reconfiguration overheads.

CCHHAAPPTTEERR 66.. CCOONNCCLLUUSSIIOONN

- 212 -

The conclusions should present available tradeoffs for kernels mapping

and one (or a number of) suggested mapping(s).

3. Tool set organization. The HRE models from all partners must be put

together and integrated in one simulation system (written on SystemC).

All models must be tuned in order to function as stand-alone models as

well as in a common simulation environment. This stage is particularly

important as it provides the tool set for the whole further research.

4. Source code porting. During the application porting stage, kernels’ source

codes are adapted to a particular hardware engine. Each kernel should be

maximally optimized for its engine in order to achieve the best

performance. This phase includes performing simulations on the stand-

alone simulators (PiCoGA, XPP, and M2000) and analyzing the results. In

case of dynamical reconfiguration, the particular emphasis must be placed

on configuration flow management. This work should be performed in

close cooperation with the mapping stage. As a result, an adopted

simulation ready code must be produced.

5. Experiment planning. The simulation strategy planning phase includes

experimental setup and metrics evaluation. The experimental setup will

define the initial conditions and hardware configuration for the following

simulation process. It is necessary to define metrics which will be used in

the simulation stage as well as a basis for the final results analysis and

overall efficiency evaluation. Also some theoretical estimation should be

made. Thus, the output of this stage will include the definition of

simulation flow and evaluation metrics.

6. Simulation. After the preparation work the set of the simulations should be

performed. The number of simulations and simulations parameters are

taken from experiment planning phase. The produced results should be

organized into visual forms and be prepared for the following analysis.

7. Results evaluation and design space exploration (DSE). Usually it is the

most time consuming part of a project. On this stage the simulation results

are analyzed in order to produce the feedback to the mapping and porting

stages. Essential corrections might be done in the source code as well as

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 213 -

kernels mapping. After this, the experiments are repeated. Such iterations

should be continued until the obtained results suit theoretical estimations.

The final results should give an evaluation of the overall hardware

architecture efficiency and application mapping complexity, as well as the

results of the particular mapping characteristics.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 215 -

APPENDIX A. EXAMPLES OF C-SOURCE CODES FOR

THE MORPHEUS PLATFORM

ARM control code

#include "morpheus.h"

#include "gpio.h"

#include "frames.h"

#include "mpmc.h"

#include "vic_pl190.h"

#include "interpolate.dreambitstream.h"

#include "exapp.m2kbitstream.h"

#include "string.h"

void C_Entry()

{

 int i;

 // INITIALIZATION PHASE

 sram_init(); // Initialize the SRAM controller

 intctlInit(); // Initialize the Interrupt Controller

 intctlIntEnable(0x0000FFFF); // Enable IRQs

 intctlIntRegister((1<<9), p_nIRQ_9, 1); // Vectored IRQ number 9 (dream printf Interrupt)

 // Set M2K Parameters ---

 qprintf("Launch M2K.. \n",0,0,0,0);

 m2k_XR->clock_mode = global_clock;

 m2k_XR->resetn1 = 1;

 m2k_upload_bitstream(m2k_exapp);

 // Program M2K DEBs in FIFO mode

 for(i=0;i<8;i++)

 (m2k_XR->deb[i]).dontusefifo = 0;

 // Setting direction for used FIFOs

 // Input FIFOs

 m2k_XR->deb[0].direction = 1;

 m2k_XR->deb[1].direction = 1;

AAPPPPEENNDDIIXX AA.. EEXXAAMMPPLLEESS OOFF CC--SSOOUURRCCEE CCOODDEESS FFOORR TTHHEE MMOORRPPHHEEUUSS PPLLAATTFFOORRMM

- 216 -

 m2k_XR->deb[2].direction = 1;

 // Output FIFOs

 m2k_XR->deb[3].direction = 0;

 // ---

 // Set DREAM Parameters --

 // Load bitstream on DREAM CEBs (Note DREAM Does not need to be active)

 load_dream_bitstream(0, (unsigned int*)cm_segment,cm_size,

 (unsigned int*)dm_segment,dm_size,

 (unsigned int*)pm_segment,pm_size);

 // Lauching Computation on Dream

 qprintf("Launch DREAM.. \n",0,0,0,0);

 dream_XR->ARM_GP0 = BLOCK_SIZE;

 dream_XR->clock_mode = global_clock;

 dream_XR->resetn1 = 1;

 dream_XR->enable = 1;

 // ---

{

 // This code implements the PN pattern exploiting Ping-pong buffering on the DREAM XR,

 // while M2K DEBs are programmed as FIFOs according to the KPN paradigm

 int block,frame;

 for(block=0;block<STREAM_SIZE/BLOCK_SIZE+2;block+=2)

 {

 // Loading M2K Input DEBS 01

 if(block<=STREAM_BLOCKS-1)

mem_to_debs((int)input_frames+block*BLOCK_SIZE*INPUT_FRAME_SIZE,

 2*BLOCK_SIZE*INPUT_FRAME_SIZE,

 (int)m2k_debs->pair01, DEB64, 0);

 // VBUF 0: Loading DREAM Input DEBS 01 ---------------------

 // Moving from DREAM DEB 2 to M2K DEB 2

 qprintf("Block %d \n",block,0,0,0);

 dream_XR->arm_lock0=1;while(dream_XR->arm_lock_ack0!=1);

 if(block<=STREAM_BLOCKS-1)

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 217 -

mem_to_debs((int)input_frames+block*BLOCK_SIZE*INPUT_FRAME_SIZE,

 BLOCK_SIZE*INPUT_FRAME_SIZE,

 (int)dream_debs->pair01, DEB64, 0);

 if(block>=2)

for(frame=0;frame<BLOCK_SIZE;frame++)

 debs_to_debs((int)dream_debs->pair23, frame*INPUT_FRAME_SIZE/8,

 (int)m2k_debs->pair23, 0,

 DEB32, AVG_FRAME_SIZE);

 dream_XR->arm_lock0=0; while(dream_XR->arm_lock_ack0!=0);

 // --

 // VBUF 1: Loading DREAM Input DEBS 45 ---------------------

 // Moving from DREAM DEB 6 to M2K DEB 2

 qprintf("Block %d \n",block+1,0,0,0);

 dream_XR->arm_lock1=1;while(dream_XR->arm_lock_ack1!=1);

 if(block<=STREAM_BLOCKS-1)

mem_to_debs((int)input_frames+(block+1)*BLOCK_SIZE*INPUT_FRAME_SIZE,

 BLOCK_SIZE*INPUT_FRAME_SIZE,

 (int)dream_debs->pair45, DEB64, 0);

 if(block>=2)

for(frame=0;frame<BLOCK_SIZE;frame++)

 debs_to_debs((int)dream_debs->pair67, frame*INPUT_FRAME_SIZE/8,

 (int)m2k_debs->pair23, 0,

 DEB32, AVG_FRAME_SIZE);

 dream_XR->arm_lock1=0;while(dream_XR->arm_lock_ack1!=0);

 // --

 // Retrieving M2K Output DEB 3

 if(block>=2)

debs_to_mem((int)m2k_debs->pair23+4,DEB8,0,

 (int)result_frames+(block-2)*BLOCK_SIZE*OUTPUT_FRAME_SIZE,

 2*BLOCK_SIZE*OUTPUT_FRAME_SIZE);

 }

 }

#endif

 // Switching off computation

 dream_XR -> clock_mode = grounded_clock;

 m2k_XR -> clock_mode = grounded_clock;

AAPPPPEENNDDIIXX AA.. EEXXAAMMPPLLEESS OOFF CC--SSOOUURRCCEE CCOODDEESS FFOORR TTHHEE MMOORRPPHHEEUUSS PPLLAATTFFOORRMM

- 218 -

 clk_stop();

}

NoC transfer code

//Initialization phase------------------------------------

struct config channel_cfg;

struct lli channel_lli;

channel_cfg.cfgl = 0;

channel_cfg.cfgh = 0;

channel_cfg.sstatar = 0;

channel_cfg.dstatar = 0;

channel_cfg.sgr = 0;

channel_cfg.dsr = 0;

channel_cfg.channel = #_channel;

channel_lli.sar = source_address;

channel_lli.dar = destination_address;

channel_lli.ctll = 0;

channel_lli.ctlh = 0;

channel_lli.sstat = 0;

channel_lli.dstat = 0;

//Configuration phase-------------------------------------

//Set the transfer size in Bytes

changeBits(&channel_lli.ctlh, BLOCK_TS, BLOCK_TS_S, 1024);

//Set the transaction burst lengths for source and destination ports

changeBits(&channel_lli.ctll, SRC_MSIZE, SRC_MSIZE_S, 2);

changeBits(&channel_lli.ctll, DST_MSIZE, DST_MSIZE_S, 2);

//Set the data width for src. and dest. ports

changeBits(&channel_lli.ctll, SRC_TR_WIDTH , SRC_TR_WIDTH_S, 2);

changeBits(&channel_lli.ctll, DST_TR_WIDTH , DST_TR_WIDTH_S, 2);

//Set the DMA master channels

//SMS – Source Master Select, is connected to the memory unit

changeBits(&channel_lli.ctll, SMS, SMS_S, 1);

//DMS – Destination Master Select, is connected to the NoC initiator port

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 219 -

changeBits(&channel_lli.ctll, DMS, DMS_S, 0);

//SB - Single block transfer-----------------------------------

while (e != OK)

 e = transfer(SB, &channel_cfg, &channel_lli);

//Complete the transfer and disable the channel-----------

setBits(&channel_lli.ctll, INT_EN); //Enable interrupts

maskInt(DMA_engine_ID, I_BLOCK, 0, TRUE); //Block-complete interrupt

maskInt(DMA_engine_ID, I_TFR, 0, TRUE); //Transfer-complete interrupt

==

//Initialization phase------------------------------------

…

//Configuration phase-------------------------------------

…

//AR_MB - Multi-block transfer

while (e != OK)

 e = transfer(AR_MB, &channel_cfg, &channel_lli);

//Upon completion of the transfer the configuration is automatically reloaded and a HW interrupt is

set. It then stalls until the block-complete interrupt is cleared by software. If the interrupts are

disabled or masked, the hardware does not stall until it detects a write to the block-complete

interrupt clear register; instead, it immediately starts the next block transfer. In this case,

software must clear the reload bits in the Configuration register.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 221 -

APPENDIX B. VHDL SOURCES

Mode select

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity mode_select is

 generic (

 logD : natural := 1); -- Logarithm to the base 2 of number of

 -- modules along one dimention

 port (

 logS : in std_logic_vector(logParam_width - 1 downto 0); -- Logarithm to

 -- the base 2 of

 -- S

 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length

 BL : in std_logic_vector(param_width - 1 downto 0); -- Block length

 mode : out std_logic_vector(2 downto 0) -- Case enable

);

end mode_select;

architecture Behavioral of mode_select is

 signal stride_oddness : std_logic; -- '1' = odd stride

 signal GL_norm, BL_norm : unsigned(2 * param_width - logD - 1 downto 0);

 signal pot : boolean;

begin -- Behavioral

 stride_oddness <= '1' when conv_integer(unsigned(logS)) = 0 else -- S(0);

 '0';

 GL_norm <= conv_unsigned(unsigned(BL(param_width - 1 downto logD)) * unsigned(GL), 2 * param_width

- logD) when

 conv_integer(unsigned(BL(logD - 1 downto 0))) = 0 else

 conv_unsigned((unsigned(BL(param_width - 1 downto logD)) + 1) * unsigned(GL), 2 *

param_width - logD);

 BL_norm <= conv_unsigned(unsigned(GL(param_width - 1 downto logD)) * unsigned(BL), 2 * param_width

- logD) when

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 222 -

 conv_integer(unsigned(GL(logD - 1 downto 0))) = 0 else

 conv_unsigned((unsigned(GL(param_width - 1 downto logD)) + 1) * unsigned(BL), 2 *

param_width - logD);

 mode <= "000" when (stride_oddness = '1') and (GL_norm < BL_norm) else -- Case I.

 "001" when ((stride_oddness = '1') and (GL_norm >= BL_norm)) or

 ((stride_oddness = '0') and (not po2(GL)) and (GL_norm >= BL_norm)) else -- Case II.

 "010" when (stride_oddness = '0') and (not po2(GL)) and

 (GL_norm < BL_norm) and (unsigned(logS) >= logD) else -- Case III.

 "011" when (stride_oddness = '0') and (not po2(GL)) and

 (GL_norm < BL_norm) and (unsigned(logS) < logD) else -- Case IV.

 "100" when (stride_oddness = '0') and po2(GL) and (unsigned(logS) >= logD) else -- Case

V.

 "101" when (stride_oddness = '0') and po2(GL) and (unsigned(logS) < logD) else -- Case

VI.

 "XXX";

end Behavioral;

Address generator

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity AddrGen is

 generic (

 D : natural; -- Number of memory modules along one dimension

 logD : natural

);

 port (

 clk : in std_logic;

 RESETn : in std_logic;

 ready : in std_logic; -- Enables addr generation process

 mode : in std_logic_vector(2 downto 0);

 B : in std_logic_vector(addr_width - 1 downto 0); -- Linear base address

 S : in std_logic_vector(param_width - 1 downto 0); -- Stride

 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length

 BL : in std_logic_vector(param_width - 1 downto 0); -- Block length

 output_valid : out std_logic_vector(D - 1 downto 0); -- Output velidness

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 223 -

 last_output : out std_logic; -- Signals the last output address

 a : out addr_bus(D - 1 downto 0)); -- Output addresses

end AddrGen;

architecture Behavioral of AddrGen is

 type index_type is array (natural range <>) of std_logic_vector(param_width - 1 downto 0); --

natural range 0 to 2**param_width - 1;

 signal i, k : index_type(D downto 0);

 signal ind : std_logic_vector(param_width - 1 downto 0); --natural

range 0 to 2**param_width - 1;

 signal carry_i, carry_k, carry_ind : std_logic_vector(param_width - 1 downto 0); --natural

range 0 to 2**param_width - 1;

 signal carry_last_output, last_output_i : std_logic;

 signal output_valid_i : std_logic_vector(D - 1 downto 0);

 signal ibyS, iS_prec : index_type(D downto 0);

 signal carry_ibyS : std_logic_vector(param_width - 1 downto 0);

begin -- Behavioral

 TPC_REGs: process (clk, RESETn)

 begin -- process

 if RESETn = '0' then -- asynchronous reset (active low)

 carry_i <= (others => '0');

 carry_k <= (others => '0');

 carry_ind <= (others => '0');

 carry_ibyS <= (others => '0');

 elsif clk'event and clk = '1' then -- rising clock edge

 -- Counter indices

 if ready = '1' then

 carry_i <= i(D); -- i + 1

 carry_k <= k(D); -- k + 1

 carry_ind <= ind; -- (i * k) + 1

 carry_ibyS <= ibyS(D); -- (i * S) + S

 end if;

 end if;

 end process TPC_REGs;

 -- Preculculation of the (i * S) product

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 224 -

 iS_prec(0) <= carry_ibyS;

 ibyS(0) <= carry_ibyS;

 MULT_PREC: for id in 1 to D generate

 iS_prec(id) <= iS_prec(id - 1) + S; -- precalculated value

 ibyS(id) <= iS_prec(id) when i(id) > i(id - 1) else

 ibyS(id - 1) when i(id) = i(id - 1) else

 (others => '0');

 end generate MULT_PREC;

 -- Tripple Parallel Counter

 TPC: process (mode, GL, BL, carry_k, carry_i, carry_ind)

 variable i_id, k_id, ind_id, temp_id : natural;

 variable save_i : natural;

 variable lst_output, output_valid_i_id : std_logic;

 variable temp : std_logic_vector(param_width - 1 downto 0);

 begin

 k(0) <= carry_k;

 i(0) <= carry_i;

 output_valid_i(0) <= '1';

 case mode is

 when "001" => -- Group-wise access

 -- Current indices

 for id in 1 to D - 1 loop

 if carry_k + id > GL - 1 then

 k(id) <= GL - 1;

 output_valid_i(id) <= '0';

 else

 k(id) <= carry_k + id;

 output_valid_i(id) <= '1';

 end if;

 i(id) <= carry_i;

 end loop; --id

 -- Next carry indices

 if carry_k + D > GL - 1 then

 k(D) <= (others => '0'); -- reset k syncronously

 if carry_i = BL - 1 then

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 225 -

 i(D) <= (others => '0'); -- reset i syncronously

 last_output_i <= '1';

 else

 i(D) <= carry_i + 1;

 last_output_i <= '0';

 end if;

 else

 k(D) <= carry_k + D;

 i(D) <= carry_i;

 last_output_i <= '0';

 end if;

 ind <= carry_ind;

 when "000" | "010" | "011" => -- Access based on the set of elements

 -- Current indices

 for id in 1 to D - 1 loop

 if carry_i + id > BL - 1 then

 i(id) <= BL - 1;

 output_valid_i(id) <= '0';

 else

 i(id) <= carry_i + id;

 output_valid_i(id) <= '1';

 end if;

 k(id) <= carry_k;

 end loop; --id

 -- Next carry indices

 if carry_i + D > BL - 1 then

 i(D) <= (others => '0');

 if carry_k = GL - 1 then

 k(D) <= (others => '0');

 last_output_i <= '1';

 else

 k(D) <= carry_k + 1;

 last_output_i <= '0';

 end if;

 else

 i(D) <= carry_i + D;

 k(D) <= carry_k;

 last_output_i <= '0';

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 226 -

 end if;

 ind <= carry_ind;

 when "100" | "101" => -- Element-wise access

 -- Current indices

 for id in 1 to D - 1 loop

 if (carry_k + id = GL - 1) and (carry_i + id = BL - 1) then

 k(id) <= GL - 1;

 i(id) <= BL - 1;

 output_valid_i(id) <= '0';

 else

 k(id) <= carry_k + id; -- mod2(carry_ind + id, GL);

 i(id) <= div2(carry_ind + id, GL);

 output_valid_i(id) <= '1';

 end if;

 end loop; -- id

 -- Next carry indices

 if (carry_k + D = GL - 1) and (carry_i + D = BL - 1) then

 ind <= (others => '0');

 k(D) <= (others => '0');

 i(D) <= (others => '0');

 last_output_i <= '1';

 else

 ind <= carry_ind + D;

 k(D) <= carry_k + D; -- mod2(carry_ind + D, GL);

 i(D) <= div2(carry_ind + D, GL);

 last_output_i <= '0';

 end if;

 when others =>

 k <= (others => (others => 'X'));

 i <= (others => (others => 'X'));

 ind <= (others => 'X');

 output_valid_i <= (others => 'X');

 last_output_i <= 'X';

 end case;

 end process TPC;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 227 -

 -- Outport connections

 ADDR_BUS : for m_id in 0 to D - 1 generate

 a(m_id) <= std_logic_vector(conv_unsigned(unsigned(B + ibyS(m_id) + k(m_id)), addr_width)); --

implicit multiplication and base address

 end generate ADDR_BUS;

 last_output <= last_output_i;

 output_valid <= output_valid_i;

end Behavioral;

Row address generator

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity RowGen is

 generic (

 logD : natural := 1); -- Logarithm to the base 2 of number of modules along one

dimention

 port (

 a : in std_logic_vector(addr_width - 1 downto 0); -- One dimention constituent of the

input address

 row : out std_logic_vector(addr_width - 1 downto 0)); -- One dimention constituent of the row

address

end RowGen;

architecture Behavioral of RowGen is

 signal row_un, a_un : unsigned(addr_width - 1 downto 0);

begin -- Behavioral

 -- Shifter is implemented afterwords as high and low memory module addresses (simplified)

 row(addr_width - logD - 1 downto 0) <= a(addr_width - 1 downto logD);

 row(addr_width - 1 downto addr_width - logD) <= low_vector(logD - 1 downto 0);

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 228 -

end Behavioral;

Module assignment unit

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity ModuleAssign is

 generic (

 logD : natural := 1);

 port (

 a : in std_logic_vector(addr_width - 1 downto 0); -- One dimention constituent of the

input address

 logS : in std_logic_vector(logParam_width - 1 downto 0); -- Logarithm to the base 2 of S

 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length

 mode : in std_logic_vector(2 downto 0); -- Case enable

 ModuleID : out std_logic_vector(logD - 1 downto 0)); -- Module select

end ModuleAssign;

architecture Behavioral of ModuleAssign is

 signal GL_un : unsigned(param_width - 1 downto 0);

 signal m1, m2, m3, m4, m5, m6 : unsigned(logD - 1 downto 0);

 signal prod5, prod6 : unsigned(addr_width - 1 downto 0);

 signal a_msk3, a_msk6, a_sh3 : std_logic_vector(addr_width - 1 downto 0);

 signal logS_nat : natural;

 signal ModuleID_tmp : std_logic_vector(logD - 1 downto 0);

begin -- Behavioral

 logS_nat <= conv_integer("0" & logS);

 -- CASE I.

 m1 <= unsigned(a(logD - 1 downto 0)); -- m1 = a[d - 1 : 0]

 -- CASE II.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 229 -

 m2 <= unsigned(a(logD - 1 downto 0)); -- m2 = a[d - 1 : 0]

 -- CASE III.

 masking3 : for i in 0 to addr_width - 1 generate

 a_msk3(i) <= a(i) when i < logS_nat + logD else -- a_msk3 = a[s + d - 1 : 0]

 '0';

 end generate masking3;

 a_sh3 <= to_stdLogicVector(to_bitVector(a_msk3) srl logS_nat); -- a_sh3 = a[s + d - 1 : s]

 m3 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_sh3), logD);

 -- m3 = (a[d - 1 : 0] + a[s + d - 1 : s])[d - 1 : 0]

 -- CASE IV.

 m4 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_msk3(addr_width - 1 downto logD)),

logD);

 -- m4 = (a[d - 1 : 0] + a[s + d - 1 : d])[d - 1 : 0]

-- CASE V.

 prod5 <= conv_unsigned(unsigned(to_stdLogicVector(to_bitVector(a_sh3) sll log2(GL))), addr_width);

 -- prod5 = a[s + d - 1 : s] * 2^gl

 m5 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + prod5, logD);

 -- m5 = (a[d - 1 : 0] + a[s + d - 1 : s] * 2^gl)[d - 1 : 0]

 -- CASE VI.

 prod6 <= conv_unsigned(unsigned(to_stdLogicVector(to_bitVector(a(addr_width - 1 downto

logD)) sll log2(GL))), addr_width);

 -- prod6 = a[addr_width - 1 : d] * 2^gl

 masking6 : for i in 0 to addr_width - 1 generate

 a_msk6(i) <= prod6(i) when i < logS_nat else -- a_msk6 = (a[addr_width - 1 : d] * 2^gl)[s - 1 :

0]

 '0';

 end generate masking6;

 m6 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_msk6), logD);

 -- m6 = (a[d - 1 : 0] + (a[addr_width - 1 : d] * 2^gl)[s - 1

: 0])[d - 1 : 0]

 -- Case multiplexing

 ModuleID_tmp <= std_logic_vector(m1) when mode = "000" else

 std_logic_vector(m2) when mode = "001" else

 std_logic_vector(m3) when mode = "010" else

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 230 -

 std_logic_vector(m4) when mode = "011" else

 std_logic_vector(m5) when mode = "100" else

 std_logic_vector(m6) when mode = "101" else

 (others => 'X');

 ModuleID <= ModuleID_tmp;

end Behavioral;

Shuffle

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity Shuffle is

 generic (

 sub_bus_num : natural := 2;

 log_sub_bus_num : natural := 1;

 sub_bus_width : natural := 1);

 port (

 I_bus : in std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0); -- Input busses

 S_bus : in std_logic_vector(sub_bus_num * log_sub_bus_num - 1 downto 0); -- Select signal

busses

 O_bus : out std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0)); -- Shuffled busses

end Shuffle;

architecture Behavioral of Shuffle is

 type inner_subtype is array (sub_bus_num - 1 downto 0) of std_logic_vector(sub_bus_width - 1

downto 0);

 type inner_type is array (sub_bus_num - 1 downto 0) of inner_subtype;

 type inner_nat_type is array (sub_bus_num - 1 downto 0) of natural;

 signal O_bus_tmp : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);

 signal inner_sig : inner_type;

 signal sel : inner_nat_type;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 231 -

begin -- Behavioral

 -- Set of deMUXs

 SET_OF_deMUXs : for demux_id in 0 to sub_bus_num - 1 generate

 -- Select signal decoder

 sel(demux_id) <= conv_integer(unsigned(S_bus((demux_id + 1) * log_sub_bus_num - 1 downto

demux_id * log_sub_bus_num)));

 -- DeMUX

 DeMUX : for output_id in 0 to sub_bus_num - 1 generate

 inner_sig(demux_id)(output_id)(sub_bus_width - 1 downto 0) <=

 I_bus((demux_id + 1) * sub_bus_width - 1 downto demux_id * sub_bus_width) when output_id =

sel(demux_id) else

 low_vector(sub_bus_width - 1 downto 0); --(others => '0');

 end generate DeMUX;

 end generate SET_OF_deMUXs;

 -- Set of OR-gates

 OUTPUT_OR_GATES: process (inner_sig)

 variable O_bus_var : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);

 begin -- process OUTPUT_OR_GATES

 for or_id in 0 to sub_bus_num - 1 loop

 -- OR-gate

 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) :=

 inner_sig(0)(or_id)(sub_bus_width - 1 downto 0);

 for input_id in 1 to sub_bus_num - 1 loop

 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) :=

 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) or

 inner_sig(input_id)(or_id)(sub_bus_width - 1 downto 0);

 end loop; -- input_id

 end loop; -- or_gate_id

 O_bus_tmp <= O_bus_var;

 end process OUTPUT_OR_GATES;

 O_bus <= O_bus_tmp;

end Behavioral;

AAPPPPEENNDDIIXX BB.. VVHHDDLL SSOOUURRCCEESS

- 232 -

De-shuffle

library ieee;

use ieee.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use work.gsma_package.all;

entity De_Shuffle is

 generic (

 sub_bus_num : natural := 2;

 log_sub_bus_num : natural := 1;

 sub_bus_width : natural := 1);

 port (

 I_bus : in std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0); -- Input busses

 S_bus : in std_logic_vector(sub_bus_num * log_sub_bus_num - 1 downto 0); -- Select signal

busses

 O_bus : out std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0)); -- Shuffled busses

end De_Shuffle;

architecture Behavioral of De_Shuffle is

 signal O_bus_tmp : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);

begin -- Behavioral

 MUXs : process (I_bus, S_bus)

 variable sel : natural; -- natural_vector(sub_bus_num - 1 downto 0);

 begin -- process MUXes

 O_bus_tmp <= (others => '0');

 for mux_id in 0 to sub_bus_num - 1 loop -- Block of MUXes

 sel := conv_integer(S_bus((mux_id + 1) * log_sub_bus_num - 1 downto mux_id *

log_sub_bus_num)); -- Select signal

 for input_id in 0 to sub_bus_num - 1 loop -- MUX inputs

 if input_id = sel then

 O_bus_tmp((mux_id + 1) * sub_bus_width - 1 downto mux_id * sub_bus_width) <=

 I_bus((input_id + 1) * sub_bus_width - 1 downto input_id * sub_bus_width);

 end if;

 end loop;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 233 -

 end loop;

 end process MUXs;

 O_bus <= O_bus_tmp;

end Behavioral;

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 235 -

BIBLIOGRAPHY

[1] AMBA specification, rev. 2.0 edition.

[2] ARM PrimeCell Multi-Port Memory Controller (PL175). Technical reference

manual.

[3] Chameleon CS2000. www.cmln.com.

[4] International technology roadmap for semiconductors. itrs.net.

[5] Wikipedia. the free encyclopedia. www.wikipedia.org.

[6] XC6200: Advance product specification. Technical report, Xilinx, Inc., San

Jose, CA, 1996.

[7] Wildfire reference manual. Technical report, Annapolis Microsystems, Inc,

Annapolis, MD., 1998.

[8] CS2000 advance product specification. Technical report, Chameleon

Systems, Inc., 2000.

[9] ARM9E-S Core Technical Reference Manual, revision: r2p1 edition, 2004.

[10] Processor Design. Springer Netherlands, 2007.

[11] Eero Aho, Jarno Vanne, and Timo D. Hämäläinen. Parallel memory

architecture for arbitrary stride accesses. IEEE Design and Diagnostics of

Electronic Circuits and Systems, pages 63–68, 2006.

[12] Eero Aho, Jarno Vanne, and Timo D. Hämäläinen. Parallel memory

implementation for arbitrary stride accesses. In IC-SAMOS'06:

Proceedings of the International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation, pages 1–6, Jul. 2006.

[13] Eero Aho, Jarno Vanne, Kimmo Kuusilinna, and Timo D. Hämäläinen.

Address computation in configurable parallel memory architecture. IEICE

Transactions on Information and Systems, E87-D(7):1674–1681, Jul.

2004.

[14] Saman Amarasinghe and Bill Thies. Architectures, languages, and

compilers for the streaming domain. In PACT '03: The 12th International

BBIIBBLLIIOOGGRRAAPPHHYY

- 236 -

Conference on Parallel Architectures and Compilation Techniques, Sep.-

Oct. 2003.

[15] Peter M. Athanas and Harvey F. Silverman. Processor reconfiguration

through instruction-set metamorphosis. IEEE Computer, 26(3):11–18,

1993.

[16] Bill Beane. Multi-port memories evolve to meet SoC demands. EE Times,

Apr. 2003.

[17] Jürgen Becker. Dagstuhl-seminar "dynamically and partially

reconfigurable architectures". IT - Information Technology, 46(4):218–

225, 2004.

[18] Michele Borgatti, Francesco Lertora, Benoit Forêt, and Lorenzo Calí. A

reconfigurable system featuring dynamically extensible embedded

microprocessor, fpga and customizable i/o. In IEEE Journal of Solid-State

Circuits, volume 38, pages 521–529, Mar. 2003.

[19] P. Budnik and D. J. Kuck. The organization and use of parallel memories.

IEEE Transactions on Computers, 20(12):1566–1569, Dec. 1971.

[20] Timothy J. Callahan, John R. Hauser, and John Wawrzynek. The garp

architecture and C compiler. IEEE Computer, 33(4):62–69, 2000.

[21] Fabio Campi, Antonio Deledda, Matteo Pizzotti, Luca Ciccarelli, Pierluigi

Rolandi, Claudio Mucci, Andrea Lodi, Arseni Vitkovski, and Luca Vanzolini.

A dynamically adaptive DSP for heterogeneous reconfigurable platforms.

In DATE '07: Proceedings of the International Conference on Design,

Automation and Test in Europe, pages 9–14, Apr. 2007.

[22] Fabio Campi, Mario Toma, Andrea Lodi, Andrea Cappelli, Roberto

Canegallo, and Roberto Guerrieri. A VLIW processor with reconfigurable

instruction set for embedded applications. In ISSCC '03: Digest of

Technical Papers of the IEEE International Conference on Solid-State

Circuits, volume 1, pages 250 – 491, 2003.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 237 -

[23] Fabio Campi, P. Zoffoli, Claudio Mucci, Massimo Bocchi, Antonio Deledda,

M. De Dominicis, and Arseni Vitkovski. A stream register file unit for

reconfigurable processors. In ISCAS '06: Proceedings of the 2006 IEEE

International Symposium on Circuits and Systems, May 2006.

[24] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek,

and André DeHon. Stream computations organized for reconfigurable

execution (score). In FPL '00: Proceedings of the The Roadmap to

Reconfigurable Computing, 10th International Workshop on Field-

Programmable Logic and Applications, pages 605–614, London, UK,

2000. Springer-Verlag.

[25] Sek M. Chai, Nikolaos Bellas, Malcolm Dwyer, and Dan Linzmeier. Stream

memory subsystem in reconfigurable platforms. In WARFP '06: 2nd

Workshop on Architecture Research using FPGA Platforms,, Feb. 2006.

[26] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear

algebra library for distributed memory computers - design issues and

performance. Technical report, Knoxville, TN 37996, USA, 1995.

[27] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,

and A. Saidi. The reconfigurable streaming vector processor. In MICRO-

36: Proceedings of the 36th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 141–150, 2003.

[28] William J. Dally. Imagine: A high-performance image and signal

processor.

[29] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-

Ho Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck,

Timothy J. Knight, and Ujval J. Kapasi. Merrimac: Supercomputing with

streams. In SC '03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, page 35, 15-21 Nov. 2003.

BBIIBBLLIIOOGGRRAAPPHHYY

- 238 -

[30] III David T. Harper. Block, multistride vector, and FFT accesses in parallel

memory systems. IEEE Transactions on Parallel and Distributed Systems,

2(1):43–51, 1991.

[31] III David T. Harper and J. R. Jump. Vector access performance in parallel

memories using a skewed storage scheme. IEEE Transactions on

Computers, 36(12):1440–1449, 1987.

[32] III David T. Harper and Darel A. Linebarger. Conflict-free vector access

using a dynamic storage scheme. IEEE Transactions on Computers,

40(3):276–283, 1991.

[33] Benoit Dupont de Dinechin. GCC for embedded VLIW processors: Why not?

In GREPS '07: International Workshop on GCC for Research in Embedded

and Parallel Systems. ST Microelectronics, Grenoble, France, Sep. 2007.

[34] A. Deledda, C. Mucci, A. Vitkovski, M. Kuehnle, F. Ries, M. Huebner,

J. Becker, P. Bonnot, A. Grasset, P. Millet, M. Coppola, L. Pieralisi,

R. Locatelli, G. Maruccia, F. Campi, and T. DeMarco. Design of a HW/SW

communication infrastructure for a heterogeneous reconfigurable

processor. In DATE '08: Proceedings of the International Conference on

Design, Automation and Test in Europe, 2008.

[35] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. RaPiD -

reconfigurable pipelined datapath. In FPL '96: Proceedings of the 6th

International Workshop on Field-Programmable Logic, Smart Applications,

New Paradigms and Compilers, pages 126–135, London, UK, 1996.

Springer-Verlag.

[36] Jean Marc Frailong, William Jalby, and Jacques Lenfant. XOR-schemes: A

flexible data organization in parallel memories. In ICPP '85: International

Conference on Parallel Processing, pages 276–283, 1985.

[37] Guang R. Gao, Yue-Bong Wong, and Qi Ning. A timed petri-net model for

fine-grain loop scheduling. In CASCON '91: Proceedings of the 1991

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 239 -

conference of the Centre for Advanced Studies on Collaborative research,

pages 395–415. IBM Press, 1991.

[38] Maya B. Gokhale, Janice M. Stone, Jeff Arnold, and Mirek Kalinowski.

Stream-oriented FPGA computing in the streams-C high level language.

In FCCM '00: Proceedings of the 2000 IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 49–56, 17-19 Apr.

2000.

[39] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt

Moe, and R. Reed Taylor. PipeRench: A reconfigurable architecture and

compiler. IEEE Computer, 33(4):70–77, 2000.

[40] Scott Hauck and Gaetano Borriello. Pin assignment for multi-FPGA

systems. In IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems, volume 16, pages 956–964, 1997.

[41] J. R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a

reconfigurable coprocessor. In FCCM '97: Proceedings of the 5th IEEE

Symposium on FPGA-Based Custom Computing Machines, page 12,

Washington, DC, USA, 1997. IEEE Computer Society.

[42] Simon D. Haynes and Peter Y. K. Cheung. A reconfigurable multiplier array

for video image processing tasks, suitable for embedding in an fpga

structure. In FCCM '98: Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, pages 226–234, 15-17 Apr. 1998.

[43] Kimmo Kuusilinna, Jarno Tanskanen, Timo Hämäläinen, and Jarkko

Niittylahti. Configurable parallel memory architecture for multimedia

computers. Journal of Systems Architecture, 47(14-15):1089–1115, 2002.

[44] Georgi Kuzmanov, Georgi Gaydadjiev, and Stamatis Vassiliadis.

Multimedia rectangularly addressable memory. IEEE Transactions on

Multimedia., 8:315–322, Apr. 2006.

[45] Edward A. Lee and Thomas M. Parks. Dataflow process networks. pages

773–799, May 1995.

BBIIBBLLIIOOGGRRAAPPHHYY

- 240 -

[46] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean Vuillemin, and Brad

Hutchings. A reconfigurable arithmetic array for multimedia applications.

In FPGA '99: Proceedings of the 1999 ACM/SIGDA 7th International

Symposium on Field Programmable Gate Arrays, pages 135–143, New

York, NY, USA, 1999. ACM.

[47] Montse Peiron Eduard Ayguadé Mateo Valero, Tomás Lang. Conflict-free

access for streams in multimodule memories. IEEE Transactions on

Computers, 44(5):634–646, 1995.

[48] Sek M.Chai, Silviu Chiricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat,

James M. Norris, Mike Schuette, and Abelardo López-Lagunas. Streaming

processors for next-generation mobile imaging applications. IEEE

Communications Magazine, 43(12):81–89, Dec. 2005.

[49] VLC media player. x264 - a free h264/avc encoder.

http://developers.videolan.org/x264.html.

[50] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy

Lauwereins. DRESC: A retargetable compiler for coarse-grained

reconfigurable architectures. In FPT '02: Proceedings of the IEEE

International Conference on Field-Programmable Technology, pages 166–

173, 16-18 Dec. 2002.

[51] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy

Lauwereins. ADRES: An architecture with tightly coupled VLIW processor

and coarse-grained reconfigurable matrix. In FPL'03: Proceedings of the

13th International Conference on Field-Programmable Logic and

Applications, volume 2778, pages 61–70. Springer, 2003.

[52] Oskar Mencer, David J. Pearce, Lee W. Howes, and Wayne Luk. Design

space exploration with a stream compiler. In FPT '03: Proceedings of the

IEEE International Conference on Field-Programmable Technology, pages

270–277, 15-17 Dec. 2003.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 241 -

[53] Miguel Miranda. System-level design methodologies for memory

organization and communication in technology-aware design. Scientific

report, IMEC, 2005.

[54] Takashi Miyamori and Kunle Olukotun. A quantitative analysis of

reconfigurable coprocessors for multimedia applications. In FCCM '98:

Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines, page 2, Washington, DC, USA, 1998. IEEE Computer Society.

[55] Claudio Mucci, Carlo Chiesa, Andrea Lodi, Mario Toma, and Fabio Campi.

A c-based algorithm development flow for a reconfigurable processor

architecture. In C. Chiesa, editor, SoC '03: Proceedings of the IEEE

International Symposium on System-on-Chip, pages 69–73, 2003.

[56] Claudio Mucci, Luca Vanzolini, Andrea Lodi, Antonio Deledda, Roberto

Guerrieri, Fabio Campi, and Mario Toma. Implementation of AES/Rijndael

on a dynamically reconfigurable architecture. In L. Vanzolini, editor, DATE

'07: Proceedings of the International Conference on Design, Automation

and Test in Europe, pages 1–6, 2007.

[57] NIST. Aes. FIPS PUBS 197.

[58] Coert Olmsted. Scientific SAR user's guide. Technical Report asf-sd-003,

Alaska Satellite Facility (ASF), July 1993.

[59] Jong Won Park. An efficient buffer memory system for subarray access.

IEEE Transactions on Parallel and Distributed Systems, 12(3):316–335,

2001.

[60] Pierre G. Paulin and Miguel Santana. FlexWare: A retargetable embedded-

software development environment. IEEE Design & Test of Computers,

19(4):59–69, 2002.

[61] Rahul Razdan and Michael D. Smith. A high-performance

microarchitecture with hardware-programmable functional units. In

MICRO 27: Proceedings of the 27th annual International Symposium on

Microarchitecture, pages 172–180, New York, NY, USA, 1994. ACM.

BBIIBBLLIIOOGGRRAAPPHHYY

- 242 -

[62] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.

Owens. Memory access scheduling. In ISCA '00: Proceedings of the 27th

International Symposium on Computer Architecture, pages 128–138,

2000.

[63] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold,

and M. Gokhale. The NAPA adaptive processing architecture. In FCCM '98:

Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines, page 28, Washington, DC, USA, 1998. IEEE Computer Society.

[64] Amar Shan. Heterogeneous processing: a strategy for augmenting

moore's law. Linux Journal, Jan. 2006.

[65] H.D. Shapiro. Theoretical limitations on the efficient use of parallel

memories. IEEE Transactions on Computers, 27(5):421–428, May 1978.

[66] Hartej Singh, Ming-Hau Lee, Guangming Lu, Nader Bagherzadeh, Fadi J.

Kurdahi, and Eliseu M. Chaves Filho. MorphoSys: An integrated

reconfigurable system for data-parallel and computation-intensive

applications. IEEE Transactions on Computers, 49(5):465–481, 2000.

[67] Gerard J.M. Smit, Paul M. Heysters, Michèl Rosien, and Bert Molenkamp.

Lessons learned from designing the MONTIUM - a coarse-grained

reconfigurable processing tile. In SoC '04: Proceedings of the IEEE

International Symposium on System-on-Chip, pages 29–32, 16-18 Nov.

2004.

[68] IEEE standard. Air interface for fixed broadband wireless access systems.

IEEE 802.16-2004.

[69] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette. System

design using Khan process networks: the Compaan/Laura approach. In

Design, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, volume 1, pages 340–345Vol.1, 16-20 Feb. 2004.

MMEEMMOORRYY HHIIEERRAARRCCHHYY AANNDD DDAATTAA CCOOMMMMUUNNIICCAATTIIOONN IINN HHEETTEERROOGGEENNEEOOUUSS RREECCOONNFFIIGGUURRAABBLLEE SSOOCCSS

- 243 -

[70] STMicroelectronics. Stmicroelectronics unveils innovative network-on-

chip technology for new system-on-chip interconnect paradigm.

www.st.com, December 15 2005.

[71] STMicroelectronics. Building a new system-on-chip paradigm. Ferret,

www.ferret.com.au, January 12 2007.

[72] N. Stollon and B. Sihlbom. BAZIL: A multi-core architecture for flexible

broadband processing. In Proceedings of the Embedded Processor

Conference, 2001.

[73] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian

Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James

Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank,

Saman Amarasinghe, and Anant Agarwal. Evaluation of the raw

microprocessor: An exposed-wire-delay architecture for ilp and streams.

ACM SIGARCH Computer Architecture News, 32(2):2, March 2004.

[74] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels,

Georgi Kuzmanov, and Elena Moscu Panainte. The MOLEN polymorphic

processor. IEEE Transactions on Computers, 53(11):1363–1375, 2004.

[75] Arseni Vitkovski, Georgi Kuzmanov, and Georgi Gaydadjiev. Two-

dimensional memory implementation with multiple data patterns. In

ProRISC: Anual workshop on Circuits, Systems and Signal Processing,

2007.

[76] Arseni Vitkovski, Georgi Kuzmanov, and Georgi Gaydadjiev. Memory

organization with multi-pattern parallel accesses. In DATE'08:

Proceedings of the Internation Conference of Design, Automation & Test

in Europe, 2008.

[77] Martin Vorbach and Jü rgen Becker. Reconfigurable processor architectures

for mobile phones. In IPDPS'03: Proceedings of the 17th International

Symposium on Parallel and Distributed Processing, page 6pp., 22-26

April 2003.

BBIIBBLLIIOOGGRRAAPPHHYY

- 244 -

[78] Jean E. Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Hervé H.

Touati, and Philippe Boucard. Programmable active memories:

reconfigurable systems come of age. IEEE Transactions on Very Large

Scale Integration Systems, 4(1):56–69, 1996.

[79] Hua Wang, Miguel Miranda, Wim Dehaene, Francky Catthoor, and Karen

Maex. Systematic analysis of energy and delay impact of very deep

submicron process variability effects in embedded sram modules. In DATE

'05: Proceedings of the International Conference on Design, Automation

and Test in Europe, pages 914–919, 2005.

[80] Ralph D. Wittig and Paul Chow. OneChip: An FPGA processor with

reconfigurable logic. In Kenneth L. Pocek and Jeffrey Arnold, editors,

FCCM '96: IEEE Symposium on FPGAs for Custom Computing Machines,

pages 126–135, Los Alamitos, CA, 1996. IEEE Computer Society Press.

[81] Hui Zhang, Vandana Prabhu, Varghese George, Marlene Wan, Martin

Benes, Arthur Abnous, and Jan M. Rabaey. A 1V heterogeneous

reconfigurable processor IC for baseband wireless applications. In ISSCC

'00: Digest of Technical Papers of the IEEE International Solid-State

Circuits Conference, pages 68–69,448, 7-9 Feb. 2000.

