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INTRODUCTION 

 

 

In recent years, we have assisted to an ever-increasing capability of electronic 

systems to detect extremely small signals in noisy environments. Following this 

trend, the capacity to electronically detect single molecular binding events could 

bring to a new, high performance class of biosensors. This represent a very 

interesting perspective: chemical and biological assays constitute, for example, 

one of the major area of interest in the diagnostic field, where it has been 

pointed out how, for several diseases, precocious diagnosis can be obtained 

only being able to reveal the presence of small concentrations of specific 

molecules in complex fluid mixtures like the blood.  

In biological world, life of cells is guaranteed by their ability to sense and to 

respond to a large variety of internal and external stimuli: this is allowed by the 

action of many different molecular sensors located in the cytoplasm or 

embedded across the cell membranes. In particular, excitable cells, like muscle 

or nerve cells, produce quick depolarizations in response to electrical, 

mechanical or chemical stimuli: this means that they can change their internal 

potential through a quick exchange of ions between cytoplasm and the external 

environment. Since the membrane structure of the cells is basically formed by a 

bimolecular layer of phospholipids (lipid bilayer), essentially impermeable to 

polar molecules, ions can flow across cell membrane thanks to the presence of 

ion channels, proteins that span the lipid bilayer and act like switches, allowing 

ionic current to flow opening and shutting in a stochastic way. For a particular 

class of ion channels, ligand-gated ion channels, the stochastic properties of the 

gating processes are strongly influenced by binding between receptive sites 

located on the channel surface and specific target molecules. These channels, 

inserted in biomimetic membranes and in presence of a proper electronic 

system for acquiring and elaborating the electrical signal, could give us the 

possibility of detecting and quantifying concentrations of specific molecules in 
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complex mixtures from ionic currents across the membrane. In my research 

work, I investigated this possibility, as I will describe in this thesis. In particular, 

after a first, introductory chapter about the characteristics of the cell membranes 

and the ion channels, I will show the experiments I carried out in the ARCES 

section of the Laboratory of Cellular and Molecular Engineering of the University 

of Bologna-Campus of Cesena, focused on the creation and the 

characterization of artificial lipid membranes, the reconstitution of ion channels 

and the analysis of their electrical and statistical properties. Moreover, after a 

chapter about the basis of the modelling of the kinetic behaviour of ligand gated 

ion channels, I will propose a possible approach for the estimation of the target 

molecule concentration, based on a statistical analysis of the ion channel open 

probability. In the fifth chapter, it will be discussed the characterisation of the 

homomeric α2 isoform of the glycine receptor, a ligand gated ion channel 

belonging to the Central Nervous System cells. Both experimental acquisitions 

and signal analysis, conducted in the Colquhoun lab of the Pharmacology 

Department of the University College of London, will be described. The six 

chapter represents the conclusions of this thesis, with some remark on the 

effective performance that may be achieved using ligand gated ion channels, 

such the ones analysed in chapter five, as sensing elements. 
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1 ION CHANNELS AND THEIR ENVIRONMENT 

 

 

1.1 Cell membrane 

 

The life of the living systems depends on the coordinated activity of several 

interconnected structures on different levels. The fundamental structural unit of 

this hierarchy is the cell. It’s basically formed by the cytoplasm, a fluid matrix 

containing the nucleus and where all the organelles are suspended. The border 

of the cell, instead, is called cell membrane. 

Cell membrane is not only a wall separating the cytoplasm from the external 

environment, but is also an active structure of the cell, which carries out several 

functions essential for the life. First of all, it is the gate between the cell and the 

external world, so it must represent a selective filter for all the chemical 

exchanges between the inner and the outer compartments, and a 

communication surface, which allows the transmission of the information with 

the neighbouring cells and the external world. It means that it picks and sends a 

large variety of stimuli (electrical, mechanical, of temperature, of light…) and 

mediates the interaction with the extracellular structures, performing also 

catalytic activities.  

 

 

1.1.1 Phospholipids 

 

All the chemical processes concerning with the cell life take place usually in 

liquid solution and the larger part of the structures of the cytoplasm are formed 

by soluble molecules, as well as the environment surrounding the cell. It means 

that the membrane, in order to preserve the integrity of the cell, must be 

basically constituted by an hydrophobic layer (a wall that can’t be easily crossed 

by water and soluble molecules) made by phospholipids. They are long 
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molecules having a hamphipathic character, namely both hydrophobic and 

hydrophilic portions: they contain long lipid chains, but have polar (and, 

sometimes, electrical charged) head groups, which are therefore water soluble. 

In the membrane, the polar groups of the phospholipids are aligned towards the 

external parts, facing the inner and outer compartments; the apolar (not soluble) 

chains, instead, constitute the core of the membrane. This conformation is 

called “double layer” or, concisely , “bilayer”, due to the bimolecular thickness of 

the layer. This kind of conformation is essentially due to a self assembling of the 

phospholipids, that orient them in an ordered structure to minimize the free 

energy, where the hydrophilic parts turn towards the water-based environment 

allowing the hydrophobic tales to avoid the contact with it. Obviously, the double 

layer must fold in a close shape (i.e. spherical), because otherwise it should 

have borders in which the apolar core is in touch with the water, becoming 

instable. Similar kinds of phospholipidic structures surround also the nucleus of 

the cell and a large part of the cell organelles. The bilayer self-assembling is 

mainly caused by hydrophobic interactions. Basically, molecules that doesn’t 

contain ions or an asymmetrical distribution of the charge, aren’t soluble in 

water, since they haven’t a “bipolar momentum”, and are defined hydrophobic. 

Covalent bonds between carbon atoms and hydrogen atoms are the most 

diffuse polar bond in the biological world. The force determining that the 

hydrophobic molecules (or, as in the case of the phospholipids, the hydrophobic 

parts of complex molecules) join together instead of dissolving into water, is 

called hydrophobic force. Actually, it’s not a real binding force but it’s instead 

determined by the energy that the system should need in order to put an 

hydrophobic molecule into water: an apolar molecule can’t form hydrogen 

bonds with the water, and thus distorts the structure of the water molecules, 

which dispose them forming a “rigid cage” (supported by hydrogen bonds) 

around it. The presence of this rigid cages limits the free movements of the 

water molecules, originating a most ordered condition which, decreasing the 

system entropy, is energetically unfavourable. To join together the hydrophobic 
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molecules, creating a phase distinguished from the water phase, is the way for 

minimizing the limitation in the water free movements. Apolar molecules can 

also join, although weekly , thanks to van der Waals interactions.  

When a suspension of phospholipids is spread in a water solution, it can form 

manly two different structures: liposomes (also said vesicles) and micelles. The 

difference between these two structures, is that in the first case a double layer 

includes a water compartment (like the cytoplasm in the cell), while in the 

second one the hydrophobic chains fill the centre excluding water molecules. 

The type of structure that tend to form depends mainly on the length of the 

phospholipid hydrophobic chains, their saturation degree, the temperature, the 

ionic composition of the water solution.  

 

 

 
 

Figure 1.1 Different structures from phospholipids self-assembly 

 

 

Hence, in liposomes, as well as in the cell, the lipid bilayer has an hydrophobic 

core about 3 nm thick, made by the aggregation of the carbon fatty acids 

composing the hydrophobic tales, stabilized by several van der Waals 

interactions and by the ionic and hydrogen bonds between the hydrophilic head 
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groups and the molecules of the water solution. In natural composed cell 

membranes, as well as in artificial bilayers made with a simpler mixture of 

phospholipids, each molecule can shift its position remaining in the layer, like in 

a two-dimensional fluid surface. It means that, for example, phospholipids can 

diffuse in their molecule sheet, keeping their polar heads facing the water 

solution and their hydrophobic tales inside the core of the bilayer. It can be 

effectively observed, using tagged phospholipids, that at a temperature of 37°C, 

each molecule diffuses with a velocity in the order of several micrometers per 

second, due to the thermal motion. Also the other molecules, like the great part 

of the proteins embedded in the cell membrane, can move laterally in the 

bilayer. This property of the lipid bilayers was described for the first time in 1972 

by Singer and Nicolson; they proposed the model under the name of fluid 

mosaic.  

 

 

1.1.2 Other membrane lipid components 

 

In terms of lipid composition, phospholipids are the most abundant element in 

the cell membrane, but other classes of amphipathic lipids are present: 

glycolipids and steroids. The first are basically phospholipids in which the polar 

groups are associated with carbohydrate chains; they extend from the 

phospholipid bilayer into the aqueous environment outside the cell where act as 

recognition sites for specific chemicals as well as helping to maintain the 

stability of the membrane and attaching cells to one another to form tissues. 

Steroids carry out several function in the cells and in the membranes, in 

particular, their effect is to stabilize the structure and to modulate the fluidity of 

the fluid mosaic. In particular, in animal cell membranes the principal steroid is 

the cholesterol, while in fungal cells is the ergosterol.  
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1.2 Membrane proteins 

 

Because of the oily core, the bilayer is ermeable to small hydrophobic solutes 

(such as chloroform or ethanol), but has a very low permeability to polar 

inorganic compounds and ionic molecules. For a cell, this means that even 

small molecules, such as sugars and salts, couldn’t pass through the 

membrane, if it was composed only by lipids. Instead, lipids constitute only the 

scaffold of the cell membrane, where many other structures, especially protein-

made, are embedded. Specific proteins embedded in the cell membrane can 

act as molecular signals that allow cells to communicate with each other. 

Protein receptors are found ubiquitously and receive signals from both the 

environment and other cells. These signals are transduced into a form that the 

cell can use to directly effect a response. Other proteins on the surface of the 

cell membrane serve as markers that identify a cell to other cells. The 

interaction of these markers with their respective receptors forms, for example, 

the basis of cell-cell interaction in the immune system. The capability of 

controlling the concentration of each ionic species is fundamental for the cell 

life, for several reasons. First of all, many physiological processes concerning 

with the maintenance and the homeostasis are strictly dependent on the 

concentrations of the various ions in the cytoplasm, and on the concentration 

differences between the extracellular and the intracellular medium. Moreover, 

animal cells must be protected from excessive osmotic forces by tight control of 

the osmolarity of the extracellular and intracellular media, which is first and 

foremost due to the ionic concentrations. Finally excitable cells, such as muscle 

or nerve cells, must produce quick depolarizations in response to electrical, 

mechanical or chemical stimuli: this means that they must change their internal 

potential through a quick flux of ions between cytoplasm and the external 

environment. For all these reasons, it’s fundamental that the cell membranes 

enable ions to flow in an effective and selective way. Since the lipid bilayers are 
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basically impermeable to polar molecules, the flow of ions across the 

membrane is facilitated by specialised proteins, and in particular: 

 

ion channels: proteins which span the lipid bilayer allowing ions to diffuse by 

forming an aqueous pore. Their characteristics will be pointed out in the section 

1.3; 

 

transporters: membrane proteins which aid movement of molecules across the 

membrane without forming pores. Between them, pumps transport molecules 

against their electrochemical gradient, exploiting energy provided by the 

breackdown of ATP to ADP on the cytosolic side of the membrane; co-

transporters and exchangers transport, at the same time, ions against the 

gradient and other (of different species) following the gradient, so that they don’t 

need external energy for their activity. 

 

 

1.3 Ion channels 

 

Ion channels are protein structures, present in the cell membrane but also in 

several organelles (for example, the endoplasmatic reticulum) which span the 

membrane bilayer, forming an aqueous path between its two sides. Their 

function is to pass, in a passive but selective manner, a large number of ions, in 

a short time. This capability is exploited by excitable cells to quickly change the 

transmembrane voltage, allowing for example the travelling action potential and 

the postsynaptic electrical response to chemical neurotransmission in nerve 

cells. Other cells and organelles exploit the capability of charge transport for ion 

homeostasis and osmolarity control. With the exception of the porins, ion 

channels must not to be intended as simple tunnels through the lipid bilayer: 

they act instead like switches, allowing ionic current to flow opening and 

shutting in a stochastic way. The conformational change between closed and 



9  

open state is called gating, and it is thought that it doesn’t exist any stable or 

metastable conformation between these two conditions. It means that, even if 

the ion channel pores are basically formed by more subunits, all these parts 

change their conformation together and in a coordinated way (Monod et al., 

1965). It’s instead possible, for an ion channel, to have stable conformations 

leading to open conditions with different conductances. Channel gating is 

fundamentally a stochastic process whose behaviour is controlled by external 

factors. Ion channels can be classified according to which chemical or physical 

modulator controls their gating activity. Thus we have different groups of 

channels as summarized below: 

 

• ligand gated channels (sensitive to chemical stimuli); 

• voltage gated channels (sensitive to transmembrane potential); 

• mechanosensitive channels (influenced by membrane strain); 

• gap junctions (porins not gated and, usually, not selective for specific 

ions); 

 

In many cases, anyway, ion channels show dependence on different stimuli; in 

particular, many ligand gated channels are also influenced by transmembrane 

voltage, and some voltage-gated channels can bind ionic molecules modifying 

their electrical behaviour (see, for example, Ion Channels of Excitable 

Membranes by B. Hille) . Moreover, all the ion channels are sensitive to other 

physical and chemical variables, like temperature and pH. 



10  

 

 

Figure 1.2 Examples of ion channel gating mechanisms: green channel gating is 

voltage dependent; blue channels are regulated by extra-cellular (left) or intra-cellular 

(right) ligand molecules; red channel is mechanosensitive.    

 

 

1.3.1 Ligand gated ion channels 

 

The capability to interact with the external world, as well as to propagate and 

process a large amount of information deriving from chemical stimuli, plays a 

leading role in the life, especially of the complex organisms. In multi-cellular 

organisms, in fact, cell-cell communication is essential for a large part of 

activities, in transmitter communication from pre- to post-synaptic cells, in the 

endocrine system, in development, in wound healing, in the immune response 

to foreign objects, etc. These functions are carried out by a series of highly 

specific molecular sensor systems, often based on the chemical binding of 

receptive sites with specific target molecules, usually defined agonists. Ligand 

gated ion channels (LGICs) constitute an important class of these systems; 
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since the receptor, which binds the activating molecule (the ligand) and the ion 

channel are part of the same nanomolecular protein complex, the transduction 

of the signal is fast, compared with other kinds of transducing mechanisms 

(enzymatic systems, G-protein coupled channels…). The LGICs are small 

highly specialized nanomolecular protein complexes, about 12 nm long and 8 

nm in diameter, which span the 3-nm or so lipid bilayer membranes of the nerve 

or muscle cells. When the appropriate chemical neurotransmitter, the ligand, 

binds to the LGIC, which incorporates both the receptor and the ion channel, 

the ligand binding event can then cause the channel to open. The open channel 

selectively allows certain species of ions to pass from one side of the cell 

membrane to the other, through the channel. The resulting current (in both 

magnitude and sign) depends on the signs of the permeating ions and their 

electrochemical potential energy gradient across the membrane. For these 

properties, ligand gated ion channels play a critical role in the fast chemical 

transmission of electrical signals at the junction between nerve cells (a 

synapse) and between nerve cells and muscle cells. The arrival of an electrical 

signal at the synaptic terminal of a nerve causes the release of a chemical 

signal—a neurotransmitter molecule (the ligand, also referred to as agonist). 

The neurotransmitter rapidly diffuses across the very narrow 20–40-nm synaptic 

gap between the cells and binds to the LGIC in the membrane of the target 

(postsynaptic) cell and generates a new electrical signal in that cell. How this 

chemical signal is converted into an electrical one depends on the fundamental 

properties of LGICs.  
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2 EXPERIMENTS ON PLANAR ARTIFICIAL BILAYERS 

 

 

2.1 Planar lipid bilayers 

 

As it was described in Chapter 1, phospholipids forming the cell membrane tend 

spontaneously to create closed structures (liposomes, micelles) when inserted 

in an acqueous environment; alternatively, if spread on a water solution surface, 

they aligned their hydrophilic head groups towards the meniscus, leaving the 

hydrophobic tales in air. Another possible configuration, diffusely used in 

electrophysiological experiments (namely, for studying the electrical properties 

of the lipid membranes and the ion channels) is given by the planar lipid 

bilayers. 

Planar lipid bilayers, also called black lipid membranes (BLMs), can be 

assembled across the hole in a septum made with a lipophilic, dielectric 

material, such as teflon (PTFE, FEP), delrin or polysulphone. The creation of 

planar bilayers is possible thanks to the characteristics of the septum material: 

the fatty acids, corresponding to the hydrophobic tales of the phospholipids, can 

easily link the borders of the aperture, fastening the bilayer suspended across 

the hole. The bilayer is then formed across an aperture which links two fluid 

filled chambers. Several techniques are reported in literature to create BLMs: 

most of them are suitable for laboratory experiments and need the presence of 

an experimenter, because of the poor reliability, also in controlled conditions. At 

present, no commercial systems are available for realising BLMs automatically, 

although new approaches developed in the last years are promising and will 

probably bring to it in the next future (see, for example, Trojanowics, 2003). The 

fundamental problem in obtaining BLMs in an easy way and with a satisfactory 

rate of success is that, in any case, bilayers must be created for self 

assembling, and the structure that lipids should form is highly organized and 
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very unstable: a layer 3 nm thick, over holes having diameters in the order of 

hundreds of micrometers. 

The three main techniques for realizing BLMs[1] are the Montal-Mueller 

technique, the BLM on patch pipette technique and the painted lipid technique.  

 

The Montal-Mueller technique ( Montal and Mueller, 1972) is based on the 

apposition of two lipid monolayers, each formed on the meniscus of a water 

solution. The set up is formed by two chambers, each connected to a pomp, 

separated by a drilled septum. Firstly the desired experimental solution is added 

to both chambers to a level below the hole in the septum, and a phospholipid 

monolayer is formed at the solution-air interface; the bilayer is then formed by 

increasing the level of the solution, first in one and then in the other chamber so 

that each monolayer is raised to cover the hole and the two monolayer 

hydrophobic tales link together forming the BLM. 

 

The BLM on patch pipette technique was introduced by Wilmsen and 

colleagues (Wilmsen et al. 1983; Hanke et al. 1984). Bilayers are formed at the 

end of conventional patch-clamp pipettes (like the ones used in patch clamp 

experiments, see Chapter 5) with tip diameters in the range 0.5-5 µm. The tip of 

the pipette is immersed in the experimental solution in a compartment and a 

phospholipid monolayer is formed at the air-water interface . 

 

 

 

 

 

[1] These techniques refer only to suspended BLMs, namely, planar lipid 

membranes created between two aqueous compartments. BLMs can be also 

realised on solid or gel-like polymer supports, as it will be breafly described in 

section 2.5. 
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A portion of the monolayer is transferred to the pipette tip by raising the pipette 

into the air. The polar head groups of the phospholipids orientate so that they 

interact with the aqueous pipette-filling solution and the glass wall of the pipette. 

The hydrophobic chains of the molecules face the air. A bilayer is constructed 

by re-immersion of the pipette in the bath solution. In fact, as the tip of the 

pipette crosses the monolayer at the air solution interface, a second region of 

monolayer interacts with the monolayer in the pipette to form a bilayer. This 

technique has an yield lower than the other two described methods, but allows 

to create very stable bilayers, characterized by a low value of noise, thanks to 

the limited dimension of the membrane. 

 

The painted BLM technique was first described by Mueller and colleagues 

(Mueller et al. 1962; Mueller and Rudin, 1969). Bilayers are formed from a 

dispersion of either one or a mixture of purified phospholipids in a non-polar 

solvent such as n-decane. Prior to bilayer formation, the hole on which the 

bilayer is to be formed is “primed”, namely coated with a small quantity of the 

phospholipid dispersion. After the pre-coating, chambers are filled with the 

desired experimental solution, and then other phospholipid dispersion is spread 

across the hole using a stick (for example, in we used a borosilicate rod). As 

described by White (1986), at the outset, the film spread across the hole is 

several micrometers thick and in equilibrium with an annulus (Plateau-Gibbs 

border) formed as the lipid dispersion “wets” the septum. The film then thins 

spontaneously: phospholipids tend to self assemble in a bilayer structure while 

the solvent spreads in the solution. As the film thins, van der Waals attraction 

between the aqueous phases on either side of the film contributes an additional 

driving force. This technique is very commonly used, mainly because it 

represents the easiest way for creating a bilayer, whose formation can be easily 

observed through the thinning of the membrane (see section 2.4). The main 

drawbacks are that this technique needs a large septum hole (larger than 100 

um), and only the central part of the aperture is covered by a bilayer, while on 
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the border part there is a thick and not organised structure of lipids and solvent. 

These things determine a bilayer inclined to mechanical oscillations and then 

quite noisy. Another possible drawback is that the painted bilayers are not 

volatile-free, namely, molecules of solvent are entrapped between their 

hydrophobic tales, changing the bilayer thickness and structure and, therefore, 

potentially changing the functionality of the inserted ion channels. Anyway, 

bilayer solvent does not appear to have significant adverse effects (Labarca et 

al. 1980; Latorre, 1986; Moczydlowski et al. 1984). 

 

 

2.2 Set-up for bilayer experiments 

 

The experimental set up used for the  bilayer creations and the ion channel 

insertions   is mainly formed by the Bilayer Workstation, produced by Warner 

Instruments (Hamden, USA). It includes: 

 

• an anti-vibration plane, to minimise mechanical interferences which could 

break the membranes and introduce noise to the signal; 

• a grounded Faraday cage to minimise noise from electrical interference; 

• an apparatus for the creation of the membranes (with painted BLM 

technique); 

• a stirplate system; 

• a two-syringes based perfusion system. 
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Moreover: 

 

• a patch-clamp amplifier (mod. Axopatch 200B, Axon Instruments, USA); 

• a Personal Computer; 

• an analog to digital converter, connected to the PC (DIGIDATA 1322, 

Axon Instruments, USA); 

• a signal generator( HP 33120A, Hewlett-Packard , USA); 

• an oscilloscope (TDS 3034B, Tektronix, USA). 

 

 

2.2.1 Apparatus for the formation of painted bilayers 

 

Planar lipid bilayers are formed, using painting technique, inside the apparatus 

illustrated in figure 2.1. It consists of a black delrin block (A) into which is cut a 

circular chamber (the trans chamber) connected to a second circular chamber  

which holds the bilayer cup (B), made with delrin or polysulphone. The cup 

contains a well (volume 1.2 ml - the cis chamber). The face of the cup adjacent 

to the well is machined to form a thin (approximately 250 um) septum through 

which is drilled a hole that, once the cup is located in the block, connects the 

two chambers. The painted bilayer is formed across this hole. Beside the two 

main chambers, other two small compartments are dug in the black block. They 

can be filled by the same solution of the two main compartments and used to 

contain the Ag/AgCl electrodes, once connected to the trans and cis chambers 

with agar bridges. Agar bridges are borosilicate tubes, with an internal diameter 

of 1.5 mm, heated with a flame, bent and filled with a boiling, highly conductive 

saline solution (we used 3 M KCl ) including also a 4% volume of Agar (Sigma-

Aldrich, USA). This solution, at room temperature, becomes a gel, due to the 

agar presence. Agar bridges usefulness is to avoid the presence of Ag+ ions in 
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contact with the membrane, coming from the electrodes, which could generate 

contamination. There are three available sizes for the cup holes: diameters of 

150 um, 200 um, 250 um. As said before, using holes with smaller dimension 

(under 100 um), the rate of success in self assembling of bilayers could be very 

low. On the other hand, bigger is the hole, bigger are the mechanical noise and 

the fragility of the membrane. In any case, not all the hole surface is covered by 

a bilayer, but the real bilayer is encircled by a lipidic, not ordered, structure. The 

amplitude of the bimolecular sheet can be estimated using a microscope or, in a 

rougher but more practical manner, from the capacitance of the membrane, as it 

will be shown in section 2.4.  

 

 

 

 

 

Figure 2.1 Left. Apparatus for the creation of painted BLMs. In particular, it is 

possible to note: (A) the black delrin block; (B) the bilayer cup; (C) the agar solution-

filled bridges; (D) the cis chamber; (E) the trans chamber. Right. A drawing of the 

bilayer cup, reporting its measures. 
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The perfusion system is formed by two syringes mounted on a support, set 

inside the Faraday cage and magnetically fixed on the anti-vibration plane. The 

two syringes are connected to tubes, both inserted in the trans chamber at 

different depths, thanks to a prop: one is full of the new solution to insert while 

the second one is used to extract the old solution. It was changed, during a 

perfusion, a volume equal to, at least, five time the volume of the chamber. All 

metallic objects inside the cage were hearted to a single point that was 

connected to the amplifier hearth, to eliminate loops. 

 

 

2.2.2 Headstage and amplifier 

 

Axopatch 200B is an analog amplifying system designed for cellular 

electrophysiology and, in particular, for ultra-low noise patch-clamp 

measurements, suitable for single-channel and whole-cell voltage or current 

clamping. It includes a 4-pole Bessel filter with an adjustable bandwidth from 1 

kHz to 100 kHz. The first stage of the amplifier is called headstage (model CV-

203BU, Axon Instruments) and is a cooled probe containing a current-to-voltage 

converter. The feedback element of the first stage can be set in order to have a 

resistor feedback or a capacitive feedback. Figure 2.2 shows the resistive 

headstage diagram, whose overall transfer function is the one reported in 

equation (2.1). 

 

 f
Out P

R
V = V .

Z
 (2.1) 
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It is possible to switch between two feedback resistors obtaining two different 

transresistance values (0.05 mV/pA and 0.5 mV/pA). Because of the virtual 

short circuit at the input of the op-amp, the voltage applied to the DUT (in our 

case the BLM) is the desired voltage Vp (the pipette voltage, which is the 

command voltage Vcmd after series resistance and pipette (probe) offset 

compensations have been applied). Then, a subtractor removes Vp from the 

output of the converter. In figure 2.2 is also visible a parasitic stray capacitance 

(on the order of 0.1 pF) in parallel of the feedback resistors. This capacitance 

has a big influence on the bandwidth of the system; in fact, it causes the 

introduction of an undesired pole (at f = 1/2πRfCRf ≈ 30 kHz for Rf = 50 MΩ and 

f ≈ 3 kHz for Rf = 500 MΩ). This pole must have to be compensated, and this is 

the reason for the introduction of the High Frequency Boost, which operates a 

zero-pole cancellation and then extend the bandwidth. 

 

 

C  ≅  0.1pFRf

R = 50 MΩf

R = 500 MΩf

+

-

Resistive Headstage

High
Frequency

Boost

To DUT Vout

Vp

 

 

Figure 2.2 Headstage circuit in resistive-feedback configuration. 
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When the headstage is configured for use a capacitor as feedback element 

(figure 2.3), it becomes an integrator. Therefore, a differentiator following the  

this integrating stage is needed (and also a differential amplifier, like in the 

resistive headstage ,to subtract Vp) to retrieve a voltage output proportional to 

the current input. With the capacitive headstage scheme, the overall transfer 

function is the one reported in equation (2.2). 

 

 d d
Out P

f

C R
V ( )V .

C Z
=  (2.2) 

 

The most important advantages of the capacitive headstage are the improved 

bandwidth and the reduced noise respect to the resistive headstage scheme. 

On the other hand, there is a major disadvantage: when the current input has 

an average value different to zero, or in presence of a spike, the integrator can 

saturate. For this reason, the capacitive headstage is combined with a reset 

circuit: when the output of the integrator goes out of the range –10V ÷ + 10V, Cf 

is discharged by switching on a MOS transistor placed in parallel to the 

capacitor. During this operation, the output value is held by a Sample and Hold. 

The total time needed for the reset is about 50 us and during this time a “data 

not valid” signal goes high, for signalling bad samples in the output data. The 

capacitive headstage can be then used only in single channel recording, where 

the measured current is in the range of the pA. For greater current values, 

saturation should occur very frequently, so the resistive configuration should be 

preferred. 
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Figure 2.3 Headstage circuit in capacitive-feedback configuration. 

 

 

 

2.3 Lipid mixture creation 

 

For the creation of the BLMs with painting technique, several lipid composition 

were tested, in order to achieve large and stable bilayers. The one which 

guaranteed the best performance, being then used for all the following 

experiments concerning ion channels introduction, is composed by a mixture of 

Phosphatidylcholine (PC) and Phosphatidylethanolamine (PE) with a weight 

ratio 7:3, in a solution of n-decane (15-20 mg/ml). Phospholipids were 

purchased by Sigma-Aldrich, in chloroform stock solutions (10 mg/ml). Stocks 

were warmed to room temperature before opening, to reduce fluid condensation 

on the cold fluid surface. Phospholipids were then dried under a stream of 

nitrogen in glass tubes and resuspended in n-decane (Fluka, USA). The 

substitution of the apolar solvent, from the chloroform of the initial stocks to the 

n-decane of the mixture used in painted bilayers creation, is due to their 

different volatility. Chloroform is poorly volatile, and then suitable for preserving 
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lipids; instead, for the same reason, it shouldn’t be used in bilayer self-

assembly. In fact, it doesn’t allow an efficacious thinning of the membranes (see 

section 2.4), because it tends to remain bound with the hydrophobic tales of the 

phospholipids. The highly volatile solvent n-decane is then preferred. 

 

 

2.4 Capacitance test 

 

Using painted BLM technique, the self assembling of the bilayer occurs 

progressively, after the deposition, upon the cup hole, of a thick film of lipids in 

an apolar solvent. This process, called thinning of the membrane, can last a 

time variable from few seconds to several minutes, depending on the of the 

used lipid mixture (types and quality), on the used solvent, on the 

characteristics of the cup (material, hole size and thickness of the border), on 

the temperature. The thinning process, and the area of the effective bilayer, can 

be monitored both in an optical and an electrical way. The optical way is based 

on the observation of the lipid structure through a low-power microscope (10 to 

40x) in reflected white light conditions. The thinning of the membrane is 

evidenced by changing in the interference colours which finally reaches to black 

where the thickness of the membrane is close to 3 nm (the bilayer thickness); 

the area of the bilayer can be thus estimated from the surface of the “black 

zone” (this is the reason why planar lipid bilayers are also called black lipid 

membranes; see, for example, Tien 1974, cap. IV).  

The electrical way, instead, is based on the properties of the BLMs, which 

behave as capacitors, due to their apolar core. In a working range of 

frequencies (1-10000 Hz), the system between the electrodes, before the lipid 

addition, can be represented as in figure 2.4.A (the part inside the frame), 

where 2 x Re includes the resistance of the solution and the resistances due to 
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the interfaces between the solution and the electrodes, Cs is the capacitance of 

the dielectric septum, Rh is the resistance due to the septum aperture. When a 

lipid film occludes the hole, the capacitance Cb appears in series with Rh, as 

shown in figure 2.4.B (inside the frame). During the thinning of the membrane, 

the value of the capacitance Cb increases (it’s basically a plane capacitor in 

which the dielectric layer is getting thinner). The final value of Cb is practically 

the one of the bilayer, which will be largely greater than the one of the Plateau-

Gibbs border. In order to observe the formation of the bilayer and to estimate its 

area, a capacitance test was made before starting every further experiment. It 

consists in applying a triangular wave (1-10 kHz, 1-10 mV), generated by the 

signal generator and then brought to the headstage and imposed as an input 

signal. Before the lipid painting, since the low frequency values of the triangular 

wave, there is a pure resistive path between the two electrodes. The output 

signal is then simply a scaled version of the input. After the painting, in 

presence of a lipid mixture occluding the hole, the system behaves practically 

as a capacitor, given by the parallel between Cs and Cb.  

The output signal, in this case, is a square wave, whose amplitude increases 

during the thinning process, being proportional to the capacitance value. In fact, 

the capacitance value can be estimated, from the output current value, simply 

using the I-V relation for a plane capacitor: 

 

V t
I C C I

t V

∆ ∆
⇒

∆ ∆
� �   (2.3) 

 

where ∆V is the amplitude of the input signal, ∆t is half period of the triangular 

wave. 
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Figure 2.4 System response to a triangular voltage input. (A)The electrode 

resistance (2Re) is in parallel with the apparatus, which, in absence of lipids covering 

the hole, can be schematised by the parallel between the hole resistance Rh and the 

septum capacitance Cs. (B) In presence of a membrane, the lipid structure covering the 

hole introduces the capacitance Cb. 

 

 

The specific capacitance of a natural bilayer, which doesn’t include solvent, is 

about 0.8 uF/cm2 (White, 1986; Montal et al. 1986). This value is so large 

mainly because of the extreme membrane thinness. In the case of painted 

bilayers, it is reduced by the presence of solvent, and is in the region of 0.4 

uF/cm2 (Alvarez, 1986), depending on the used lipid mixture and solvent. This 

means that, for a cup hole diameter of 200 um, if the effective bilayer covers 

half of the hole surface, the expected capacitance value is 63b bc A pF× = , 

where cb is the specific capacitance (0.4 uF/cm2) and Ab is the bilayer area 
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( 2 4 2
100 2 0 5 10bA ( m) / . cmπ µ π −= = × × ). A good membrane should be, at least, 

half of the hole size; for lower values, the insertion of complex channels through 

vesicle fusion becomes difficult (see section 2.6). As said before, when viewed 

optically, a thick torus of amorphous lipid surrounds the bilayer formed in the 

centre. For a 'good' membrane, this torus is much smaller than in a 'bad', poorly 

formed membrane. In any case, the capacitance values of the torus and the 

septum, which should be added to the bilayer one, are negligible. 

 

 

2.5 Other kinds of artificial lipid bilayers 

 

Since the BLMs are intrinsically fragile, being suspended between two liquid 

compartments, other techniques were studied for increasing their stability. The 

basic idea is to create bilayers laid on scaffolds, in order to reduce the 

mechanical oscillations which cause their breaking down. The two main 

categories are the following: 

 

Supported BLMs (s-BLMs): are BLMs covering an electrode patterned on a 

substrate (Tien et al., 1989; Martynski and Tien, 1991). The advantage, as said 

before, is that they can last for a long time before rupturing. The major 

drawback of this method is that only a thin water layer (in the nm order) 

separates the membrane and the substrate. In these conditions no complex ion 

channels (like the LGICs) can be properly embedded, because there is no 

space enough for their transmembrane domains. Furthermore, it is only 

possible to control the solution on the side of the membrane that is not in 

contact with the electrode. A further development was the creation of spacers 

molecules, namely phospholipids having molecular chains connecting their 

polar heads with the electrode, allowing greater distances between the bilayer 
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and the substrate (see, for example Lang et al., 1992; Koper, 2007). In any 

case, at present, this approach seems to be incompatible with the insertion of 

functional complex ion channels, and only porins have been successfully used 

in combination with this technique (Gritsch et al., 1998; Steinem et al., 1997; 

Bailay and Cremer, 2001). 

 

Polymer-cushioned BLMs: this technique is a combination of the suspended-

BLM and the supported-BLM approaches. Electrodes are patterned over a 

surface and a polymer (typically a cellulose hydrogel or a gel of agarose) is 

coated on top of the electrodes. This polymer stabilises the membrane and acts 

as a spacer from the solid substrate complex. Also in this case, the possibility of 

having ligand gated channels properly inserted and working has been not 

demonstrated yet.  

 

 

2.6 Channels insertion 

 

Reconstitution of ion channels into planar lipid bilayers is a powerful technique 

to study their properties (i.e. ion selectivity, conductance, kinetics, voltage 

dependence) in a controlled and easy to handle system, but getting the 

channels into the bilayer is often a big challenge. Some channels insert 

spontaneously into the bilayer when they are added into the solution 

surrounding it. Channels that insert spontaneously, for example, gramicidin and 

alamethicin, are easier to study and have been well characterised (see, for 

example, Andersen et al., 2005). However, many ion channels are not soluble 

in solution and do not insert spontaneously into bilayers. All the most complex 

channels, including all the ligand gated ion channels, fall within this category. 

One method to place these channels into bilayers is to isolate them in 
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liposomes and induce the liposomes to fuse with a bilayer. Usually, it means 

fracturing the cell membrane into small pieces, which spontaneously form 

liposomes, and then delivering the liposomes near the bilayer with the right 

fusion conditions. Sometimes, to assure the fusion with the BLM, it’s enough to 

have liposomes with a controlled size (about 100 um of diameter) and an 

osmotic gradient between the two compartments of the bilayer apparatus. In 

other cases it’s not enough, because not all channels induce fusion. At present, 

it’s not clear what are the properties which an ion channel must have for 

producing the fusion of the liposomes ; as a consequence, it’s not generally 

possible to know if a particular channel-containing liposome is also capable of 

fusing. In the early ninetieth, Dixon Woodbury developed the 

Nystatin/Ergosterol method for reconstituting ion channels into BLMs: the great 

achievement of this method is that allows the insertion of all kinds of channels 

into bilayers, making fusigenic the liposomes. In the following sections, 

experiments will be described, concerning all these possible approaches for 

inserting ion channels in planar lipid membranes. 

 

 

2.7 Gramicidin channel 

 

The first ion channel we inserted in BLMs is the gramicidin A channel, an 

antibiotic product by Bacillus Brevis, formed by just 15 amino acids. In 

membranes, gramicidin A forms channels that are specific for monovalent 

cations (Hladky and Haydon, 1972). Actually, in normal conditions, it is not a 

common ion channel, which spans entirely the membrane, but is a dimeric 

channel. This means that gramicidin conducting channels are formed by two 

nonconducting subunits, each embedded in one of the two molecular sheets 

forming the bilayer. Every subunit is entirely composed by hydrophobic 
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residues, and tend to insert itself between the fatty acids chains, locally bending 

the monolayer around it. Following the fluid mosaic model, gramicidin subunits 

can freely spread in their monolayer because of Brownian forces; when two 

subunits belonging to different monolayers are near enough, they align 

themselves, thanks to hydrogen bonds, forming a conductive pore having a 

diameter of 4 Å and a length of about 25 Å (Finkelstein and Andersen, 1980). 

This open pore lasts till the breaking of the bonds: the channel lifetime is then 

dependent on temperature, pH, compositions of the solution and of the bilayer 

(in particular, it depends on the membrane thickness). Every subunit can place 

itself spontaneously in the BLM, getting in the monolayer facing the aqueous 

compartment where it’s inserted. In order to obtain the formation of the 

gramicidin channels, solution containing monomers was added in both cis and 

trans chambers of the apparatus, after the BLM creation. 

 

 

2.7.1 Experimental set-up 

 

For the gramicidin experiments, we used mainly the following solution 

(mimicking the extracellular fluid composition) containing (mM): 150 NaCl, 8 

HEPES, 50 EGTA. Solution pH was adjusted to 7.2 with NaOH. During the first 

experiments, we used also a simple KCl 500 mM solution, without adjusting the 

pH. We didn’t characterize conductance and kinetics of the dimeric channels in 

this case but, qualitatively, the bilayer stability and the capacity of the pores to 

open were preserved. All chemical reagents were purchased from Sigma-

Aldrich, USA. Milli-Q ultrapure water was used. 

Purified gramicidin A, purchased in a powder stock by Sigma-Aldrich, was 

dissolved in ethanol with a 1ng/ml concentration. After the creation of the 

bilayer, a volume of gramicidin solution of 2-10 ul was added in each chamber. 
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It’s highly improbable, for a gramicin monomer, to cross a lipid monolayer: in 

fact, no channel formations have been seen inserting gramicidin solution in only 

one of the two compartments. Current signal was recorded, with a clamped 

potential, starting at least five minutes after gramicidin addition (in order to 

achieve equilibrium conditions). Signal was acquired analogically filtering at 1 

kHz. Data were directly digitized, recorded and monitored using the specific 

software tool pCLAMP 9 (Axon Instruments, USA) , with a sapling rate of 500 

kHz. Examples of recorded channel activities are reported in figure 2.5. 

 

 

 

Figure 2.5 Signal recording from gramicidin dimeric channels inserted in BLM. 200 

mV applied, 1 kHz filtered. 

 

 

2.7.2 Conductance analysis 

 

Data records were used for an estimation of the single channel conductance 

and its lifetime distribution. For the channel conductance analysis, data records 
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were firstly idealised through a threshold-based Matlab routine. This routine 

compares the difference between two consecutive data points and a threshold 

value. When this threshold is exceeded, the current amplitude jump is 

estimated, through the difference between the average of the data points 

preceding and the ones following the jump. These current values are inserted in 

a vector, and their average value represents the channel current amplitude in 

correspondence of the imposed voltage. In figure 2.6 is then reported the 

gramicidin I-V characteristic, for applied potential between -140 mV and +140 

mV. Mean values and standard deviation were calculated using, at least, one 

hundred values for each point. As expected, it’s well fitted by a line which 

virtually cross the axes origin (the exact intersection is in correspondence of I=-

0.0462 pA), in agreement with the symmetry of the channel-bilayer complex. 

The estimated conductance value is 22 pS, in agreement with literature data 

(Rostovtseva et alii, 1998). 

 

 

 

Figure 2.6 I-V curve of gramicidin ion channels. 
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2.7.3 Channel lifetime estimation 

 

As described before, gramicidin channel is formed by the coaxial bond between 

two subunits. The chemical relation describing the pore formation is then: 

 

2

D

R

K

K
A A A→+ ←  

 

where A is the single monomer molecule, A2 is the dimeric structure. KD, the 

direct transition rate, practically expresses how easily the monomers meet and 

bind. It doesn’t depend on the strength of their bond but only on how they move 

in the fluid mosaic. In any case, it’s impossible to estimate this rate without 

knowing the monomers concentration in the monolayers, which could only be 

achieved from an analysis of the equilibrium between the molecules in solution 

and the molecules embedded in the membrane. The reverse transition rate KR, 

instead, depends on the binding force between the monomers (and also on 

temperature, pH, applied voltage, membrane composition…); it can be 

estimated through the distributions of the gramicidin open channel lifetime. In 

order to do it, acquisition were made, inserting a small volume of gramicidin 

solution in the chambers (0.5 ul), so that the probability of observing multiple 

openings (more than one channel open at the same time) was minor (and, in 

these case, multiple channels weren’t considered for the lifetime evaluation). 

Data elaboration was made using Clampfit software (Axon Instruments, USA), 

analysing 250 openings from four records, all made with an applied voltage of 

100 mV . The histogram below reports these open lifetimes. In accord with the 

theory (see Chapter 3), histogram is well fitted by a single exponential. The 

probability density function of the open lifetime is expressed by (2.4). 
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 DK t
Df ( t ) K e= . (2.4) 

 

Normalising the histogram (imposing a unit subtended area), we obtained KD=8 

transition/second, corresponding to a mean channel open lifetime of 125 ms. 

 

 

 

Figure 2.7 Histogram of the gramicidin open lifetimes (red) fitted by a single 
exponential curve (blue). 

 

 

2.8 Insertion of fusigenic liposomes 

 

Only few channels, usually characterised by a simple structure, can be 

effectively incorporated in an artificial bilayer directly inserting them in the 
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solution chambers. In particular, this is not the case of ligand gated ion 

channels, with few rare exceptions, like the ryanodine receptor-channel proteins 

(Imagawa et al. 1987; Lai et al. 1988). This is basically due to their complex 

structure: LGICs are formed by several subunits, and each of them crosses the 

bilayer several times, not only in its pore-forming portion. As a consequence, 

each subunit is made by several hydrophobic residues, to anchor the bilayer’s 

core, alternated with hydrophilic residues, to face the extremities of the BLM 

and the aqueous compartments. It is then energetically unlikely the 

spontaneous insertion of the channel subunits, because it should involve the 

passage of the hydrophobic residues through the apolar core of the membrane. 

Therefore, the standard method for the incorporation of both native and purified 

channel proteins into pre-formed planar lipid bilayers involves the fusion of a 

channel-containing membrane vesicle with the bilayer, a procedure first 

described by Chris Miller in his studies of the sarcoplasmic reticulum K+-

selective channel (Miller and Racker, 1976; Miller, 1978). Several experimental 

studies were conducted, leading to empirical protocols and rules for optimizing 

the vesicle fusion processes. For example, if either the planar bilayer or 

membrane vesicle contain a proportion of negatively charged phospholipids, the 

occurrence of the pre-fusion binding can be encouraged by the inclusion of 

millimolar concentrations of divalent or trivalent cations in the experimental 

solutions (Cohen, 1986; Hanke, 1986). Moreover, vesicles only fuse when they 

are induced to swell (Finkelstein et al. 1986). Vesicle swelling is most commonly 

induced by forming an osmotic gradient across the bilayer, so that the osmotic 

pressure of the solution in the chamber to which the membrane vesicles are 

added (cis), is greater than the one on the other side of the bilayer (trans). In 

this case, osmotic gradients created with salt solutions will be particularly 

effective if the liposomes contain ion channels permeable to one or both of the 

ions composing the used salt (Cohen, 1986). The efficiency of vesicle-bilayer 

fusion can also be influenced by other factors. Greater is the area of the bilayer, 

more likely the membrane vesicles will come into pre-fusion contact and hence 
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greater will be the likelihood of fusion. For this reason, in the case of a painted 

BLM, the dimension of the effective bilayer is crucial: a small bilayer, 

surrounded by a thick, large Plateau-Gibbs border, will be reached by 

liposomes with difficulty. Another factor which can help the vesicle fusion is the 

stirring, thanks to the presence in the chambers of rotating magnets which 

agitate the solutions. As said before, vesicles will fuse with planar bilayers in 

presence of an osmotic gradient if vesicles contain a permeability pathway for 

the solute: in fact, vesicles containing channels fuse more readily than channel-

free vesicles (Woodbury and Hall, 1988; Cohen et al. 1989) and not all the ion 

channels help equally the fusion process. Woodbury and Miller (1990) have 

described a method for maximising vesicle fusion with planar bilayers, where 

nystatin is incorporated into membrane vesicles in presence of ergosterol. Also 

this last method will be briefly discussed, in the last part of this chapter. 

 

 

2.9 Example of spontaneously fusigenic vesicles: crude membranes 

from N1E115 cells 

 

For testing the insertion methods of ion channels embedded in fusigenic 

vesicles, we used the immortalised cell line N1E-115 (ATCC number: CRL-

2263). This line was established in 1971 by T. Amano, E. Richelson, and M. 

Nirenberg by cloning the C-1300 spontaneous mouse neuroblastoma tumor, C-

1300. Cells were cultured and maintained in Dulbecco’s modified Eagle medium 

containing 10% (v/v) foetal bovine serum, 1% (v/v) penicillin streptomycin 

solution (100000 units/ml penicillin and 10 mg/ml streptomycin (from Sigma-

Aldrich) and 1% (v/v) L-glutamine (from Cambrex Corporation, USA) at 37oC in 

a 95% air 5% CO2 incubator, and passaged every 2-3 days.  
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2.9.1 Experimental set-up. 

 

Vesicle formed by N1E115 cells were realised, extracting cell membranes 

patches through a gradient sucrose method. In particular, our experimental 

protocol followed the one described by Benos et alii (2003), adapted for our cell 

line and instrumentation. It was composed by the following steps: 

 

1. Rinse cells (from 3-4 petri dishes) with 300 ul of high-K+ buffer 

containing 400 mM KCl, 5 mM PIPES, 300 mM sucrose, supplemented 

with a protease inhibitor cocktail (phenylmethylsulfonilfluoride, 100 uM; 

pepstatin, 1 uM; aprotinin, 1 ug/ml; leupeptin 1ug/ml; DNAse I, 1 ug/ml). 

pH 6.8. 

 

2. Homogenize cells for 5 min through sonication. 

 

3. Gently layer the homogenate on a discontinuous sucrose gradient (50% 

on bottom 20% on the top in high K+ buffer plus protease inhibitors). For 

this purpose, 1.5 ml test tubes were used. 

 

4. Centrifugate at 23,500 g for 30 min. 

 

5. Eliminate the top layer, and collect the interface (white cloudy layer) 

which contains vesicles from membrane patches. 

 

6. Dilute threefold with high K+ buffer. 

 

7. Centrifugate at 23,500 g for 30 min. 
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8. Collect the pellet, and resuspend it in a final volume of 100 µl of buffer 

including (mM): 300 sucrose, 100 KCl, 5 MOPS, pH 6.8.  

 

Vesicles were than aliquoted and stored at -80oC. They were always used 

within 10 days after creation. 

Since vesicles were formed by patches of N1E115 cells, they contained a large 

number of different membrane proteins and ion channels, although with a 

particular abundance of potassium channels. During bilayer experiments, the 

basic solution we used in both cis and trans chambers was composed only by 

KCl, 100 mM ,and HEPES, 10 mM; pH was adjusted to 7.2 with KOH. As a 

consequence of this choice, all the currents from channels specific for ions 

other than K+ and Cl- were avoided. 

Bilayers were realised following the procedure described before (sections 2.2, 

2.3, 2.4); an osmotic gradient was created, replacing 300 ml of solution, in the 

cis chamber, with 300 ml of a 3 M KCl solution. In this way, the final salt 

concentration in the cis chamber was increased to about 650 mM. After the 

creation of the osmotic gradient, 3 ul of liposome solution were added in the cis 

chamber, and magnetic stirring was activated. After applying a constant 

transmembrane potential (40 mV), a vesicle-fusion event could be revealed by a 

sudden increasing of the current output (due to the activation of the channels 

belonging to the vesicle). Stirring was then suspended and the solution in the 

cis chamber was changed with the basic solution, in order to re-establish 

symmetry conditions at the two sides of the bilayer. A volume not less than five 

times the one of the cis chamber was substituted during perfusion in every 

case. During acquisitions, signal was directly stored in Axon binary files using 

pClamp tool (Axon Instruments, USA); a sampling frequency of 100 kHz was 

used; signals were filtered at 2 kHz using the 4-pole Bessel filter of the 

Axopatch amplifier. An example of single channel signal is reported in figure 

2.8, corresponding to a clamped potential of 60 mV.  
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When a single channel activity was seen, an input voltage protocol was 

imposed by the software. The imposed waveform was a sequence of steps 

ranging from -60 mV to + 60 mV. Each step was 20 seconds long, and had 20 

mV of amplitude. 

 

 

 

Figure 2.8 Single cannel activity. 

 

 

In some cases, at the end of the experiments, 50 ul of a solution containing KCl 

(100 mM) and TEA (2 mM, purchased by Sigma-Aldrich), were added both in 

cis and trans chambers, for testing the specificity of the observed channels for 

K+ ions. In fact, as described before, the solution used for creating the vesicles 

and for filling the bilayer apparatus chambers contained only KCl salt: as a 

consequence, registered channel activities could derive only from potassium 

channels or chloride channels. Tetraethylammonium (TEA) ion is a potassium-

selective ion channel blocker, commonly used in neurophysiology experiments 
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to block the voltage activated potassium channels. The fact that, in every case, 

ion channel activity ceased after adding TEA bolus, demonstrated the specificity 

of the observed channels for potassium ions. This selectivity for potassium ions 

was also suggested by the big conductance values observed, as it will show 

hereafter (chloride channels are usually less conductive). 

 

 

2.9.2 Channel conductance characterization 

 

In order to determine the conductance of the ion channel populations which 

made fusigenic the vesicles and  were therefore incorporated in the planar lipid 

bilayer, for every value of voltage applied in the acquisitions, and for every 

acquisition, an amplitude histogram was made, showing the number of samples 

having an amplitude that falls between the limits specified on the abscissa. An 

example is reported in figure 2.9. As it clear from this example, histograms are 

well fitted by the composition of two Gaussian bells: one has its peak in 

correspondence with zero (or close to zero), and collects the shut-channel 

samples; the other tallies with the open channel condition and its centre is the 

mean value of the open state current. The standard deviations of the two bells 

are similar: for the shut-channel corresponding bell is, in this case, 0.48 pA, 

while for the open-channel corresponding bell is 0.50 pA. It means that the 

noise not dependent on channel activity, due to instrumentation, thermal 

motion, mechanical fluctuations of the BLM, not perfect seal between the BLM 

and the septum, preponderates on the one due to channel activity. 

The signals of twenty single channels were recorded, but just in three cases all 

the protocol was entirely applied, without observing channel rundown 

(deactivation of the channel) and BLM breaking. In other nine cases, data are 

available for only two voltage values (+40 mV and +60 mV). In the last eight 
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cases, data refer only to one potential value. Basically the system can be 

represented by the electrical model shown in figure 2.10. 

 

 

 

 

 

 

 

Figure 2.9 Amplitude histogram of the samples recorded during a single channel 

acquisition. 
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Figure 2.10 Electrical model of a single ion channel inserted in a BLM. 

 

 

In the scheme, Vi is the applied input potential, Voff is an offset potential, mainly 

due to electrochemical effects at the interfaces of the electrodes, Cγ  is the ion 

channel conductance (obviously, this term is different from zero only when the 

channel is open), pγ  is the conductance of the membrane leakage (namely, due 

to the not perfect seal between membrane and septum); Vm is the ddp 

effectively applied to the membrane. In the hypothesis of having a constant 

offset potential and an ohmic behaviour of the leakage, the currents, in 

correspondence of a clamped voltage Vi are, in open (O) and close (C) channel 

conditions, the ones reported in equations (2.5). 

 

 
Oi c p i off

Ci p i off

I ( )(V V )

I (V V )

γ γ

γ

= + +

= +

 (2.5) 

 

It follows, from 2.5 

 

 i Oi Ci c i offI I I (V V )γ∆ = − = +  (2.6) 
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not dependent on the leakage. The values of the currents IOi, ICi are obtained 

from the peak values of the respective Gaussian bells in the amplitude 

histogram. If we consider two consecutive step values of the applied potential 

(for example, Vi = 60 mV and Vj = 40 mV), and the channel conductance 

doesn’t vary a lot between these input values, we can estimate it as: 

 

 
i j

c ,ij

i j

I I
.

V V
γ

∆ − ∆
=

−
 (2.7) 

 

Offset potentials resulted, in any case, smaller than 4 mV in modulus. The 

whole VI curves, between -60 mV and +60 mV, were drawn for three of the 

analysed channels. These are reported in figure 2.11, were the offset potentials 

were neglected. 

 

 

Figure 2.11 I-V curves derived from three single ion channel acquisitions. 



42  

Observing these curves, it is directly possible to bring out two different 

behaviours: the channels relating to acquisitions 1 and 5 have more or less the 

same conductance, smaller than the one of the number 13. However, in all 

cases the qualitative trend is the same: channel characteristics are strongly 

asymmetrical. Channels are active only in presence of positive potential 

applied, and there they have a nearly ohmic behaviour. Conductance values are 

reported in the table 2.1. 

 

 

Acquisition number Conductance 20-40 mV Conductance 40-60 mV 

1 132 pS 138 pS 

5 129 pS 136 pS 

13 185 pS 195 pS 

 

Table 2.1 Conductance values from the I-V curves reported in figure 2.11. 

 

 

For other nine acquisitions, where data were available for the two voltage 

values +40 mV and +60 mV, conductance 40-60 mV was calculated, obtaining 

that the channels can be shared in two populations, on the basis of their 

conductance, as reported in table 2.2. 

 

 

Group mean±±±±std (pS) min-max (pS) 
Number of 

channels 

Less conductive 137.21±2.00 135-140.5 7 

More conductive 189.30±6.97 177.5-195 5 

 

Table 2.2 Conductance values. 
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2.10    Nystatin/Ergosterol method 

 

In the previous section, it was described the method for inserting complex ion 

channels in planar lipid bilayers, through the fusion of liposomes incorporating 

the membrane proteins, under particular fusion conditions (osmotic gradient, 

stirring…). It was also said that liposomes are made fusigenic exactly by the ion 

channels embedded in them, and that not all ion channels assure this property. 

Hence, it could be important to have a versatile technique, able to guarantee 

the insertion of all ion channel species in the BLM. This is important also 

because it can avoid misleading. In fact, the only way for getting ion channels is 

to obtain them from cells, eventually overexpressing them in heterologous 

systems, namely in cells which naturally haven’t a big channels density on their 

surface. If we make liposomes from this transfected cells, we will obtain a large 

amount of liposomes basically including only the transfected channel species, 

but also few (in comparison) vesicles containing endogenous, contaminating 

channels. If these endogenous-containing vesicles are more fusigenic than the 

other, they will fuse easier. The risk is than to insert channels different from the 

ones we want to study or to use. The nystatin/ergosterol technique, developed 

by Woodbury and Miller (1990), avoid this problem, making all the vesicles 

equally fusigenic. 

For nystatin/ergosterol-induced fusion, nystatin (an antibiotic) and ergosterol (a 

sterol present specially in moulds and yeasts membranes) are added to the 

vesicle membrane. These components combine to form ion channels that 

induce fusion in presence of a salt gradient. Channels are formed of about 10 

nystatin monomers in a barrel-state arrangement with ergosterol apparently 

required as a glue to hold the monomers together (Marty and Finkelstein, 1975). 

When the glue is removed, the channels fall apart. Thus, if ergosterol-rich 

vesicles fuse into an ergosterol-free bilayer, nystatin channels will turn off after 

ergosterol dissociates from the channel complex and diffuses away into the 

huge excess of bilayer lipid. Therefore, if vesicles contain, besides 
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nystatin/ergosterol complexes, other ion channels, after the fusion and the 

subsequent nystatin barrels dissociations, these channels will remain the only 

ones active in the bilayer. 

Another interesting property of the nystatin/ergosterol-containing vesicle is that 

its fusion can be easily revealed, because it causes a current spike if a voltage 

is applied across the planar lipid bilayer. It is then possible to monitor the 

number of fusions, stopping the process simply by switching off the stirring 

system. The reason of the current spikes is that, immediately after the fusion, 

nystatin/ergosterol pores are open, producing a sudden current; after that, 

ergosterol spreads in the BLM breaking the channels, so the current decreases 

progressively up to zero. 

 

 

 

Figure 2.12 Schematic representation of the N/E technique. (1) Vesicles contain the 

channel proteins and several N/E complexes; (2) N/E complexes allow the fusion of the 

vesicles; (3) A current spike is observed, due to N/E channels: current signal 

progressively decreases, because of the N/E complexes breaking; (4) after the 

breaking of all the N/E complexes, it is possible to study the channel protein (green) 

without interferences.  
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In our experiments, we set up the technique for creating nystatin/ergosterol-

containing vesicle, following the Woodbury protocol (Woodbury, 1998). Lipid 

composition of the vesicles which assured the best fusing performance was: 

20% ergosterol, 20% Phosphatidylserine (PS), 20% Phosphatidylcholine (PC), 

40% Phosphatidylethanolamine (PE). Percentages refer to molar 

concentrations; all products were purchased from Sigma-Aldrich. 10 mg/ml 

stocks of lipids (with the right ratios) in chloroform were created and used within 

7 days. Compared to the BLM composition, which is the one described before 

(section 2.3), vesicles included also ergosterol and PS. In particular, PS was 

used since the presence of charged phospholipids can help their fusion, as 

exposed in section 2.8. Lyophilized nystatin (Sigma-Aldrich) were dissolved in 

methanol creating 2.5 mg/ml stocks. In order to create the vesicles for one day 

of experiments, 150-200 ul from lipid stock and 5 ml from nystatine stock were 

dried together in a glass test tube under a stream of nitrogen, rotating the tube 

for avoiding lipid accumulation on the bottom. The dried mixture was then 

resuspended in 250 ul of a solution containing (mM): NaCl, 150; HEPES, 8 

(pH:7.2). Mixture was then vortexed for 10 minutes, becoming cloudy. At this 

point, lipids were assembled in the water solution in mono or multi-lamellar 

liposomes: they were then dimensioned using an extruder (Avanti Polar Lipids, 

Alabaster, USA), an instrument that forces the passage of the lipid solution 

through a polycarbonate filter (with 100 nm diameter pores). The other 

experimental conditions (creation of the bilayer, osmotic gradient, stirring) are 

the same used in N1E115-deriving vesicles experiments. No other channels 

than nystatin/ergosterol complexes were included in the vesicles. An example of 

trace, containing multiple current spikes due to liposomes fusion, is reported in 

figure 2.13. 
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Figure 2.13 Multiple fusion of vesicles containing N/E channels. 
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3 ION CHANNEL MODELS 

 

 

3.1 Basic concepts in ion channel modelling 

 

The law of mass action states that the rate of any reaction is directly 

proportional to the product of reactant concentration. It implies that the lifetime 

of each chemical species present a memoryless random variable that does not 

depend on the age of the species. Therefore, future states of the system 

depend only on the present state, and not on how that state was reached. 

Supposing that the concentration of all the molecular species that could interact 

with an ion channel remain constant and also the other influence factors (as 

temperature, pH, transmembrane voltage) don’t change, the system can be 

treated as a homogeneous Markov process with discrete states (a finite number 

of channel stable and metastable conformations) in continuous time. The 

probabilities of transition between one state and another can be considered 

constant (not time dependent). 

 

 
Figure 3.1 Two connected states in a Markov chain 

 

 

Given two different states i, j in a Markov chain, we can define , ( )i jp t∆  as: 

 

 ( ) Prob( | ).ijp t state j at timet t state i at timet∆ = + ∆  (3.1) 
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Transition rate constant qi,j is then given by: 

 

 [ ]
0

lim ( ) / .ij ij
t

q p t t
∆ →

= ∆ ∆  (3.2) 

 

The simplest possible representation for an ion channel is given by a two-state 

Markov chain: it’s formed by a shut state S (corresponding to the condition of 

zero current through the channel), and an open state O (corresponding to a 

channel protein conformation which allows ions to flow through).  

 

 S O
β

α

→←  (3.3) 

 

where α and β are, respectively, the shutting and the opening rates of the 

process. In this case, the probability of having a shutting during ∆t is: 

 

Prob(channel shuts between t and | ) ( )t t was open at time t t tα+ ∆ = ∆ + ∆�  (3.4) 

 

where ( )t∆�  is a quantity which tend to zero for small ∆t and describes the 

possibility of having several transitions occurring during ∆t. We are interested in 

the length of time in which the system stays in a particular state, i.e. in the open 

state O. The lifetime of a channel, that is the interval in which the channel is 

open between two consecutive shuttings, is a continuous random variable, so 

its behaviour can be described through its probability density function f(t). It can 

be found by differentiating the cumulative distribution function F(t), which 

express the probability that the lifetime is equal or less than t: 

 

 ( )
0

( ) lim Prob / .
t

f t lifetimebetween t and t t t
∆ →

 = + ∆ ∆   (3.5) 
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In order to obtain the expression of the probability density function f(t), we can 

start considering R(t), the probability of having a lifetime equal or longer than t 

(clearly R(t)=1-F(t)): 

 

 ( ) Prob( 0 ).R t channel open between and t=  (3.6) 

 

The expression of the cumulative probability function R, at the time t+∆t is given 

by: 

 

( )

( )

( )

Prob

Prob

Prob

R(t + t) channel open between t and t + t

open between 0 and t

open between t and t + t | open between 0 and t

∆ = ∆ =

= ×

× ∆

 (3.7) 

 

where the decomposition of the time course in two intervals (between 0 and t 

and between t and t+∆t) and the product between the two probabilities are due 

to the fact that the lifetime in a state is a memoryless variable, so the two 

probabilities refer to independent events. Another consequence of the 

memoryless nature of the lifetime variable is that: 

 

 
( )

( )

Prob | 0

Prob | .

open throughout t,t + t open throughout ,t

open throughout t,t + t openat t 1 - t - ( t)α

∆ =

= ∆ = ∆ ∆�
 (3.8) 

 

Thus: 

 

 [ ]{ }
0 0t t

dR(t) R(t t) R(t)
lim lim R(t ) ( t ) R(t)

dt t
α α

∆ → ∆ →

+ ∆ −
= = − − ∆ = −

∆
� . (3.9) 
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As long as α is constant, the solution of equation (3.9) is: 

 

 tR(t) = e α−  (3.10) 

 

being R(0)=1 (the channel can’t move from the open state in zero time). 

The cumulative distribution function F(t) is given by 1-R(t): 

 

 Prob 1 1 tF(t) = (open lifetime t ) R(t ) e .α−≤ = − = −  (3.11) 

 

The probability density function f(t) can be now drawn from differentiating F(t): 

 

 0t
dF(t)

f(t) = e , t .
dt

αα −= ≥  (3.12) 

 

Hence, open lifetime distribution is exponential, and its mean is 1/α. In fact: 

 

 
0 0

t
1

E t f ( t )dt t e dt .αα
α

+∞ +∞

−= = =∫ ∫  (3.13) 

 

Clearly, using an analogous argumentations, it can be shown that also the shut 

time distribution is exponential with mean 1/β. The case just considered is the 

simplest one, having only two states. In this case, we found that both open and 

shut states have lifetime exponentially distributed and the mean values of their 

distribution are the inverses of the transition rates from the states. In general, 

for more complex mechanisms, counts the following rule. 
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Lifetime in every single state is exponentially distributed with mean 

=1/(sum of transition rates that lead away from the state). 

 

We aspect besides (and it will be demonstrated in section 3.4.6) that all the 

distributions of quantities such as open and shut times, and in general all the 

lifetimes in subsets of the Markov chain, will be mixtures of exponentials. The 

general form of their p.d.f (probability density function) is then: 

 

 
1

i

n

t
i i

i

f ( t ) a e λλ −

=

=∑  (3.14) 

where 
1

1
n

i

i

a .
=

=∑  

 

 

3.2 Agonist binding 

 

Let’s consider now a generic ligand-gated ion channel Ch whose behavior is 

influenced by the interaction with a specific ligand molecule L. The Markov 

Chain representing the behavior of Ch is characterized by the presence of at 

least one couple of states like the one reported in figure 3.2, where (Ch) is the 

state representing the not bound channel, (ChL) the state representing the 

channel bound to a molecule L. 

 

 

 

Figure 3.2 Two connected states in a Markov chain with a molecule binding. 
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Cutting off this couple of states from the rest of the chain pinpointing channel’s 

behaviour, we obtain the following reversible chemical reaction: 

 

 
D

I

k

k
L Ch ChL→+ ←  (3.15) 

 

where kD is the velocity constant of the direct reaction, kI of the inverse reaction. 

At the equilibrium, the system can be described by this relation: 

 

 
[ ]

[ ][ ]
[ ] [ ][ ]D

EQ EQ

I

ChLk
K ChL K Ch L

k Ch L
= = ⇒ =  (3.16) 

 

where KEQ, the equilibrium constant of the reaction, is the ratio between the 

molar concentration of the complex ChL and the product of the concentrations 

of the free (not bound) reagents Ch and L. 

In the case of ion channels embedded in a membrane, if we consider negligible 

the rundown of channels (the possibility of having inserted channels 

deactivating during the acquisition), the total number of channels N is constant. 

Since V, the volume of solution surrounding the membrane in which molecules 

L are inserted and bind the channels, is constant, we can write equation (3.16) 

in terms of number of molecules taking part in the reaction: 

 

 L
EQ

nn N n
K

V A V A V A

−
=

× × ×
 (3.17) 

 

where n is the mean number of bound channels, nL is the number of target 

molecules, A is Avogadro’s number. Note that equation (3.17) doesn’t 

distinguish between total number of target molecules and number of not bound 
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target molecules: this approximation is possible because the total number of 

target molecules is strongly larger than N. Starting from equation (3.17): 

 

 [ ]
[ ]
[ ]1

EQL
EQ EQ

EQ

N K Ln
n K (N n) K (N n ) L .

V A K L

× ×
= − = − =

× + ×
 (3.18) 

 

Since KEQ is constant (for the Le Châtelier’s principle), the mean number of 

bound channels depends on ligand molecule concentration following a not 

decreasing relation like the one represented in figure 3.3. In particular, this is 

the relation between the number of bound channels and the ligand molecule 

concentration, when a specific receptorial site is considered. 

 

 

 

 

 

Figure 3.3 number of bound channels as a function of ligand concentration 
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3.3 Del Castillo-Katz model 

 

 

An important step in single ion channel modelling was the del Castillo-Katz 

model (1957), in which a possible mechanism of a ligand gated ion channel was 

described by a three-state chain, like the one reported in (3.19). In this case, the 

opening of a channel follows the interaction between the receptor and a single 

ligand molecule. Using this model, let’s consider the case of a channel activated 

by the agonist and in which the binding and the dissociation steps are fast 

enough compared with the subsequent conformation change: the vacant state 

R and the occupied state AR (where “A” indicates the ligand molecule bound) 

can be considered close to equilibrium at all times. Therefore, vacant and 

occupied states would behave as a single (shut) state. 

 

 
D

I

k

k

shut " state"

R AR AR
β

α

∗→ →← ←  (3.19) 

 

where the superscript “*” symbolize the open channel condition. From the 

equilibrium between the vacant and the occupied shut states, the following 

relation can be drawn: 

 

 R D AR IP k [ A] P k× × = ×  (3.20) 

where 

 

PR  is the probability of being in the dissociated (vacant) state; 

PAR  is the probability of being in the bound shut state; 

[A]  is the ligand molecule concentration. 
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In this case, the system behaves basically like the simpler two-states model 

described by relation (3.3), while the two shut states on the left in (3.19) 

collapse in a single one. This does not affect the way we look at the shutting 

reaction, with rate constant α; instead, the transition rate from shut to open can 

no longer be taken as β, because the “shut state” spends part of its time without 

ligand bound and, while the receptor is not occupied, opening is impossible. 

The total shut channel probability is PS = PR + PAR. Introducing the dissociation 

constant DISS I DK k / k= , we have: 

 

 

DISS
R AR

DISS
S R AR AR

AR S

DISS DISS

K
P P

[ A]

[ A] K
P P P P

[ A]

[ A] [ A]
P P .

[ A] K [ A] K
β β

=

+
= + =

′⇒ = ⇒ =
+ +

 (3.21) 

 

Using β’ in place of β, the three-state mechanism becomes then formally 

identical to the two-state mechanism before considered. 

 

 

3.4 General theory 

 

The general theory for the modelling of the single channel kinetic behaviour was 

firstly proposed by David Colquhoun and Alan G. Hawkes during the seventies, 

before the introduction of the patch clamp technique (Neher and Sackmann 

1981), which led to the recording of single channel current signals. The 

complete theory was basically formalised in the first eighties (see, in particular, 

Colquhoun and Hawkes, 1982). The work of these two scientists strong 
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influenced the electrophysiology in the last thirty years, giving a general 

method, applicable to any mechanism, for deriving the distribution of the length 

of time spent in any specified subset of states. 

Given any n-state Markov chain representing a channel mechanism, its mass 

action transition rate constants can be conveniently specified in a n × n Matrix, 

denoted Q. The entry in the ith row, jth column, denoted qij, represent the 

transition rate from state i to stat j (whenever i≠j), namely 

 

( )
0

ij
t

q lim Prob instate j at timet + t | instate i at timet / t , i j
∆ →

 = ∆ ∆ ≠  . (3.22) 

 

The element qij is obviously set to zero if there is no link from i to j. Diagonal 

elements (i=j) of the matrix, instead, are chosen so that the sum of the elements 

of every row of Q is zero: 

 

 
1

1
n

ii ij

j
j i

q q , i ,...,n.
=
≠

= − =∑  (3.23) 

 

 

3.4.1 Definition of burst 

 

The states composing the Markov chain can be conveniently divided into 

subsets, as follows: 

 

1. Subset A  comprises the open states (k
A

 in number); 

2. Subset B  comprises the short-lived shut states (k
B

 in number); 

3. Subset C  comprises the long-lived shut states ( k
C

 in number). 
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Obviously, the distinction between states belonging to subsets B  and C  is 

basically due to the values of their lifetimes, exponentially distributed around a 

mean which is, for every state, inversely proportional to the sum of transition 

rates that lead away from the state. The choice of the limit value for the mean 

open lifetime is arbitrary, but in practice follows from the qualitative analysis of 

the single-channel record. Let’s consider the signal from a single channel in 

steady state conditions: all the macroscopic variables which can change its 

electrical response, such as ligand molecule concentration, transmembrane 

voltage, pH…are fixed, so that the channel kinetic rates don’t change during the 

acquisition. If the channel is ligand-gated and, in particular, agonist-activated 

(that is, it can’t open if it’s not bound with, at least, a ligand molecule) and the 

ligand concentration is far from saturating , usually openings appear in bursts. A 

burst is therefore a sequence of openings which appears grouped in the trace, 

intercalated between shuttings which are greatly shorter than the inter-burst 

shuttings. The simplest case in which it’s possible to observe bursts is the del 

Castillo-Kats model (3.19), where the binding constant rate is Dk [ A]× , and [A] 

is the ligand concentration. When [A] is very low, the lifetime of the unbound 

state R is very long, having mean given by 1 D/(k [ A])× . It can be considered 

belonging to C . Bursts of openings will be then possible, if kI is not to high 

compared to β: they will be formed by the transitions between states AR, 

belonging to B , and AR*; belonging to A . It is also possible to note from this 

example, that the division of states into the subsets defined before is not only, 

for ligand-dependent ion channels, a characteristic of the reaction mechanism: it 

depends on the particular values of the rate constants and drug concentrations 

that are specified. 

It can be useful to order the rate constants in a Q matrix so that the lowest 

k
A

indexes correspond to the states of A , while the highest k
C

 indexes 

correspond to the elements of C . In this case, according to the subset just 



58  

defined, Q matrix can be intended as composed by nine submatrixes as shown 

in (3.24): 

 

 

Q Q Q

Q Q Q Q .

Q Q Q

 
 =  
  

AA AB AC

BA BB BC

CA CB CC

 (3.24) 

 

In fact, for ligand-gated channels, there is at list a couple of states like the ones 

drawn in figure 3.2, where, in presence of a binding between ligand molecule 

and channel receptive site, the direct reaction constant rate is proportional to 

the ligand concentration. If the binding is a necessary condition for the channel 

to open, for low agonist concentrations long shut periods will be observed. 

It’s possible to define the n×n matrix P(t), with elements given by the transition 

probabilities between the states of the chain: 

 

 ijp (t) = Prob(state j at timet | state i at time zero).  (3.25) 

 

So, every element of the Q matrix is given by 

 

 
0

ij

ij
t

p ( t )
q lim .

t∆ →

∆
=

∆
 (3.26) 

 

If a system is in any state i, the probability that the next transition will be to state 

j, regardless of when the transition occurs, can be denoted ijπ  and is given by: 

 

 
ij

ij

ii

q

q
π = −  (3.27) 



59  

where the denominator iiq−  is the sum of all the transition rates that lead away 

from the state i. 

 

 

3.4.2 Probability of staying within a subset 

 

We want now to draw the expressions of the probabilities analogous with pij(t), 

but such that the system remains within a specified subset of states, for 

example A . This approach is useful, because usually receptors are 

characterised by models containing several open states, all having the same 

conductance value. In the same way, all the shut states have, obviously, zero 

conductance. If we observe an opening or a shutting in a record, it’s then 

generally impossible to know if the system sojourned in only one state, or more. 

It’s then important to realise a statistical analysis of the groups of 

indistinguishable states. First of all it can be defined ijp (t)A  as 

 

ijp (t) Prob(systemremainswithin throughout (0,t )

and is instate j at timet | instate i at time0), i , j .

=

∈

A
A

A
 (3.28) 

 

The same probability, evaluated at time t+∆t, can be expressed as the 

probability that the system has to stay in A  in whole the interval (0,t+∆t), being 

in j at time t+∆t, if it is in i at time zero. Obviously, at time t the system can be in 

any state k ∈A . 

 

{

}

ij
k

p (t t) Prob [ system remainswithin throughout (0,t )

and is instatek at timet | in state i at time0 ]

Prob(state j at t+ t | in statek at t ) , i , j .

∈

+ ∆ =

×

× ∆ ∈

∑A

A

A

A

 (3.29) 
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So, it’s possible to write out ijp (t t)+ ∆A  as a sum of terms, each formed by two 

factors. The first factor is, according to (3.28), ikp (t)A . When k j≠ , the second 

one is (similarly to (3.4)), kjq t+ ( t)∆ ∆� ; instead, for k j= , it results 1-Prob(leave 

k), that is 1 k kq t+ ( t)+ ∆ ∆� , since qkk is the opposite of the sum of the rates that 

lead away from k. Thus, in matrix notation we have 

 

 P (t+ t) P (t)[I+ Q t+ ( t)].∆ = ∆ ∆�
AA AA AA

 (3.30) 

 

In fact, the sums ik kjp ( t )q t, i ,k, j∆ ∈∑ A form the matrix product 

P (t)Q t∆
AA AA

, and a unity is added to the elements of the diagonal by the 

identity matrix. Therefore 

 

 
0t

dP (t) P (t t ) P (t)
lim P (t) Q .

dt t∆ →

+ ∆ −
= =

∆
AA AA AA

AA AA
 (3.31) 

 

As 0P ( ) I=
AA

 (no transitions are possible in zero time), the solution of (3.31) is 

 

 P (t) exp(Q t ).=
AA AA

 (3.32) 

 

These results were drawn for the subset A  but, clearly, analogous relations 

apply to all the other subsets, and also for the whole system. 

The Laplace transform of P (t )
AA

, that will be used afterwards, is 

 

 { } 1P (s ) P (t) (sI- Q ) .∗ −= =
AA AA AA

L  (3.33) 
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We aim now to obtain a practical way for calculating the transition probabilities 

matrixes, like the one defined in (3.32). This can be done by using the spectral 

expansion of Q
AA

 (see appendix A): this rate constant matrix can be expressed 

by 

 

 
1

k

i i

i

Q A ρ
=

=∑
A

AA
 (3.34) 

 

where the scalars iρ  are the eigenvalues of Q
AA

 (and they are usually, for ion 

channel models, all distinct and not positive) and the matrices Ai can be 

obtained from the eigenvectors of Q
AA

. Calling iλ  the eigenvalues of Q−
AA

 

(therefore, 1i i , i ,...,kλ ρ= − =
A

), we have 

 

 
1

m

k
t

i
i

P (t) A e λ−

=

=∑
A

AA
 (3.35) 

 

which demonstrates that all the transition probabilities are formed by a mixture 

of exponential terms. 

 

 

3.4.3 Equilibrium state occupancies 

 

An important thing to know, for the following analysis, is the fraction of 

molecules in each state at equilibrium: in order to do it, we shall denote the 

occupancy of state i at time t as pi(t), and p(t) the 1 n×  vector including the 

occupancies for each of the n states. The corresponding vector of derivatives is 

given by (3.36). 
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 1 2 ndp (t) dp (t) dp (t)dp(t)
... .

dt dt dt dt

 
=   

 (3.36) 

 

The kinetic equations that describe the system state occupancies can be written 

as  

 

 
dp(t)

= p(t)Q
dt

 (3.37) 

 

in fact, equation (3.37) states that each element of the derivative vector is given 

by 

 

 1
n

i
j ji

j=1

dp (t)
= p (t)q , i ,...,n

dt
=∑  (3.38) 

 

namely, the sum of the probabilities of being, at time t, in each state of the 

system, multiplied for the frequencies of the transitions to i state, as follows from 

the law of mass action. When i=j, the addend is negative, and its modulus is the 

probability of being in i state, multiplied for the sum of the rates leading away 

from i. Since in steady state the derivative terms must be zero, the equilibrium 

values must satisfy the system (3.39). 

 

 

1

0

1
n

i

i

p( )Q

p
=

∞ =


 =

∑

 (3.39) 
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where the last equation is due to the fact that the probability of being in one of 

the states of the system must clearly be 1. The system, therefore, has n+1 

equations and only n unknowns (in fact, the determinant of the Q matrix is 

zero). Several “tricks” for obtaining the p( )∞  vector for any mechanism in a 

straightforward way are available: for example, it can be directly calculated by 

adding a unit column (with all values set to 1) on the right end of the Q matrix. 

Calling S this 1n (n )× +  matrix, vector p( )∞  can be calculated as 

 

 1T

np( ) = u (SS )−∞ . (3.40) 

 

where un is a row vector with n elements. 

 

 

3.4.4 Transition from a subset to another 

 

It should be interesting to obtain the expression of the density that describes the 

probability of staying within the subset of states A  for the time t and then 

leaving it for a state outside (for example, in subset B ). We start then defining 

it: 

 

0
ij

t
g (t) = lim [Prob(stay in throughout (0,t),and moveto j

between t and t+ t | in state i at time0) / t ], i , j .

∆ →

∆ ∆ ∈ ∈

A

A B
 (3.41) 

 

It means to consider all the possible paths between i and j which go out from 

the subset A  through each possible state r ∈A  

 

 ij ir rj

r

g (t) = p (t)q , i , j
∈

∈ ∈∑ A

A

A B  (3.42) 
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that is, in matrix notation (and remembering (3.32)) 

 

 G (t) = P (t)Q exp(Q t )Q .=
AB AA AB AA AB

 (3.43) 

 

The elements gij(t) can’t be properly considered probability density functions, 

because they haven’t a unitary subtended area: thus, in order to obtain the 

p.d.fs, they must be shared by a normalizing term, namely their area, given by  

 

 
ij

0

*

ij

g (t)dt = Prob(exits to j | st a rts in i), i , j

= g (0)

∞

∈ ∈∫ A B
 (3.44) 

 

where *

ijg (0)  is the Laplace transform of gij(t) for s=0. It can be easily calculated 

from the Q matrix: in fact, the transform of G (t)
AB

 (as expressed in 3.43) 

results, remembering 3.33 

 

 1G (s ) = P (t)Q (sI Q ) Q .∗ ∗ −= −
AB AA AB AA AB

 (3.45) 

 

It can be useful to define the constant matrix G
AB

, as 

 

 1G G (0) Q Q .∗ −≡ = −
AB AB AA AB

 (3.46) 

 

Its elements will be denoted *

ij ijg g (0)≡ . Note that, if the subset A  is 

composed by just one state i, ijg  corresponds to the previous defined ijπ  

(expression (3.27)), because there aren’t possible transitions inside A , so the 

first transition from i is the one leading to j. We can now define a probability 
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density function for the lifetime of sojourn in A , given the starting and the exit 

states, as 

 

 
ij

ij *

ij

g (t)
f (t) = .

g
 (3.47) 

 

The corresponding distribution function is then 

 

t

ij ij
0

F (t) = f (t)dt = Prob(life in t | exits to j and starts in i), i , j .≤ ∈ ∈∫ A A B  (3.48) 

 

Since now we described the way in which a sojourn in A  ends, specifying the 

state in B  where the system moves going out from the subset A . Obviously, 

if the subset A  is composed by more than one state, this kind of distribution 

can’t completely define the system. It will be then defined an alternative 

distribution, by specifying the state in A  from which exit from the subset 

occurs, without caring about the state of B  in which the system enters the new 

subset. First of all, it can b defined hij(t) as 

 

0
ij

t
h (t) = lim [Prob(stay in fromtime0 to timet,and leave from

state j between t and t+ t | in state i at time0) / t], i , j .

∆ →

∆ ∆ ∈

A A

A
 (3.49) 

 

with Laplace transform, for s=0, given by 

 

 
0

*

ij ijh (0) = h (t )dt Prob(exits from j | starts in i), i , j .
∞

= ∈∫ A  (3.50) 
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So, every element hij(t) is given by all the possible routes such that the system 

remains in A  throughout (0,t), starting from i ∈A , and then go out from the 

subset from i ∈A  to any state r ∈B : 

 

 ij ij jr
r B

h (t) = p (t) q , i , j
∈

∈∑A
A  (3.51) 

that is, in a matrix form 

 

 H (t) = P (t)D
AA AA A

 (3.52) 

 

where D
A

 is a diagonal matrix with elements jrq∑ . It is possible to define now, 

in analogous to (3.47), the probability density function 

 

 *

ij ij ijf (t) = h (t)/h (0) i, j .′ ∈A  (3.53) 

 

But factor jj r jrd q∈= ∑
B

 is present both in the numerator and in the 

denominator; therefore, it cancels (as long as it’s not zero) and the expression 

becomes 

 

 ij ij ijf (t) = p (t)/p (0) i, j∗′ ∈A A
A  (3.54) 

 

which corresponds to the distribution function 

 

t

ij
0
f (t) dt = Prob(life in t | exits from j and starts in i), i, j .′ ≤ ∈∫ A A  (3.55) 
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3.4.5 Burst analysis 

 

Let’s consider a sort of problem in which we are interested only in the 

probability of having a particular sequence of transitions, and not in the time 

spent in each state. For example, it could be interesting to know the probability 

of having a burst including a certain number of openings. In the simplest 

possible case, namely k
A

= k
B

=1, the probability of starting from the state 

1∈A , going to 2 ∈B  and coming back is 
12 21

π π  or, equally, 
12 21

g g . Instead, if 

A  is composed by two states (1 and 2) and also B  is formed by two states (3 

and 4), we need to know, in order to calculate the probability of going from A  

to B  and coming back, the probabilities of starting from state 1 and from state 

2. Calling 
1 2b [ ]φ φΦ =  the k

A
 column vector, where 

1
φ  is the probability of 

starting from state 1, 
2

φ  the one of starting from state 2 (with 
1 2

1φ φ+ = ), we find 

that the probability of an → →A B A  transition that ends in state 1 is 

 

 
1 13 31 14 41 2 23 31 24 41
(g g g g ) (g g g g )φ φ+ + +  (3.56) 

 

which is the first element of the ( 1k ×
A

)vector  

 

 b G GΦ
AB BA

 (3.57) 

 

whose second element is the probability of a → →A B A  transition starting 

in state 1 and ending in state 2. The result expressed in (3.57) is valid for every 

value of k
A

 and k
B

. The overall probability of the → →A B A  transition is 

the sum of the elements of the vector (3.57), given by (3.58). 
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 b G G uΦ
AB BA A

 (3.58) 

 

where u
A

 is simply a unit 1k ×
A

 vector. So ,if A  includes more than one 

state, the characterization of bursts implies the knowledge of the initial state 

probabilities vector bΦ . The period before the beginning of a burst is 

characterized by at least one sojourn in C ; so, we can take as a starting point 

the fraction of channels that is in each state of C  at equilibrium, forming the k
C

 

column vector ( )p ∞
C

 (it can be obtained from (3.40)). A burst starts when the 

system reaches the subset A  from subset C : it can happen with a direct 

transition →C A  or through B . The frequency of transitions directly from 

i ∈C  to j ∈A  is given by i ijp ( )q∞ ; instead, the number of transitions 

→ →C B A  per unit time is 

 

 i ik kj

k

p ( ) q g , i , j .
∈

∞ ∈ ∈∑
B

C A  (3.59) 

 

The result, in matrix notation, is that the vector bΦ  of the initial state 

probabilities is 

 

 b

p ( )(Q G Q )

p ( )(Q G Q )u

∞ +
Φ =

∞ +
A

C CB BA CA

C CB BA CA

 (3.60) 

 

where the denominator is simply a scalar term for normalising bΦ  (since the 

sum of its elements must be one). The end of a burst, instead, is when there is 

a transition, directly or through B , from A  to C . It’ is possible to define a 
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1k ×
A

 vector, eb (the subscript stands for “burst”), whose elements are the 

probabilities of ending a burst having the elements of A  as the last open state: 

 

 be (G G G )u .= +
AC AB BC C

 (3.61) 

 

The postmultiplication by the unit vector u
C

 sums the probabilities over all C  

states, because arrival in any long-shut state ensures the end of the burst. It 

can also be demonstrated, starting from (3.61), that  

 

 be (I G G )u .= −
AB BA A

 (3.62) 

 

This result is intuitive: in fact, (3.61) expresses the overall probabilities of 

moving from each state of A  to the subset C , that are the probabilities of 

finishing a burst. To exit from the burst is obviously the complementary event of 

not to exit from it, therefore the sum of the two complementary events must be 

one and is represented by the identity matrix. 

 

 

3.4.6 Distribution of the open time 

 

It is now possible to define the time distribution of the latency in a subset of 

states, for example, the open state subset A . Calling F  the subset including 

all the shut states ( = ∪F B C ), the matrix GAF  describe the time from the 

start of an opening, through any number of transitions within open states 

(subset A ), until eventually exit to any of the shut states (subset F ). The 

distribution function of the open length can be then written, using an expression 

of GAF  analogous to the one in (3.43), in the form (3.63). 
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0 0 0f (t) = G u = exp(Q t)Q u = exp(Q t)(-Q )uΦ Φ ΦA AF F AA AF F AA AA A  (3.63) 

 

where 0Φ  is the 1 k× A  initial vector giving the probability of each opening 

starting in a specified open state. It is clearly given by: 

 

 0

p ( )Q
=

p ( )Q u

∞
Φ

∞
A

F FA

F FA

 (3.64) 

 

where, similarly to (3.60), the denominator is simply a normalisation term, while 

the numerator expresses the probability of being in each state of F , multiplied 

for the probability of transition to an open state. The matrix relationship 

 

 Q u + Q u = 0AA A AF F  (3.65) 

 

follows from the fact that the rows of the overall transition matrix Q must add to 

zero. The matrix exponential can be practically computed using the spectral 

expansion (see appendix A). Note that expression (3.63) shows that the 

permanency in each subset of states of the Markov chain as a distribution given 

by a mixture of exponential terms. 

 

 

3.4.7 Number of openings per burst 

 

The probability of starting a burst from each of the states of A  is bΦ  (3.60), 

while the probability of ending a burst having each of the states of A  as the 

last open state is eb (3.62). Inside the burst, every opening is due to a double 
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passage → →A B A , having probabilities G G
AB BA

. Therefore, the 

probability of a burst with r openings ( 1r ,...,= ∞ )is 

 

1 1r r

b b bP( r ) (G G ) e (G G ) (I G G )u− −= Φ = Φ −
AB BA AB BA AB BA A

 (3.66) 

 

and the probability of a burst containing, at least, r openings, is 

 

 1i

bP( r i ) (G G ) u−≥ = Φ
AB BA A

 (3.67) 

 

where, compared to (3.66), the factor ( I G G )−
AB BA

, forcing the shutting, has 

disappeared. The mean number of openings per burst is 

 

 1

1

r

b r
E r (G G ) (I G G )u

∞ −

=
 = Φ −
 ∑ AB BA AB BA A

 (3.68) 

 

Since  it can be demonstrated that 1 2

1

r

r
r H (I H )

∞ − −

=
= −∑  we have 

 

 1

bE (I G G ) u .−= Φ −
AB BA A

 (3.69) 

 

The distribution P(r), defined in (3.66), can be written as a sum of exponential 

terms: in fact, the k
A

 square matrix G G
AB BA

 can be written in the form of its 

spectral expansion: 

 

 
1

k

i i
i

G G A ρ
=

=∑
A

AB BA
 (3.70) 
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where it can be demonstrated that the eigenvalues of the matrix G G
AB BA

, iρ , 

are all between zero and one. The matrixes Ai can be found from the 

eigenvector of the same matrix (see appendix A). The distribution P(r) can be 

then written in the form 

 

 ( )
k k

r-1 r-1

b i i b i i

i=1 i=1

P(r) = A e = wΦ ∑ ∑
A A

ρ ρ  (3.71) 

 

where the terms wi, weight of a k
A

 geometric distribution, are given by 

 

 i b i bw A e .= Φ  (3.72) 

 

 

3.4.8 Burst length 

 

In the last section, the probabilities regarding the number of openings per burst 

were drawn, without considering the length of time spent in the burst. In order to 

extract the probability density function of the burst time length, the expression 

describing all the possible routes through the Markov chain, inside a burst, must 

be considered. It can be carried out from equation (3.66), which states the 

probability of having a certain number r of openings. A burst can cover every 

possible number of openings ( 1 2r , ,...,= ∞ ): therefore, all these probabilities 

must be added. Equation (3.66) was calculated considering the Laplace 

transforms of the G matrices, setting s=0 ; in this case, instead, we are looking 

for a time distribution: s is not set to zero for the periods spent in the burst. The 

Laplace transform of the required p.d.f. is, considering that 1 1

1

r

r
H (I H )

∞ − −

=
= −∑  
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1

r-1

* * * * *
b

r=1

* * * *
b

f (s) = G (s)G (s) G (s)G + G (s) u

= I G (s)G (s) G (s)G + G (s) u

∞

−

   Φ    

   Φ −   

∑ AB BA AB BC AC C

AB BA AB BC AC C

 (3.73) 

 

where the end of burst vector eb is expressed in the form shown in eq. (3.61) 

and matrix GBC  is kept with s=0 because it describes the final transition 

→B C , not included in the burst. This transform can be inverted, leading to 

the p.d.f. expression: 

 

[ ] [ ]b b bf(t) = exp(Q t) (-Q )e = exp(Q t) (Q G +Q )uΦ ΦEE AA EE AB BC AC C
AA AA

 (3.74) 

 

where subset E is defined as = ∪E A B  (namely, it includes the open and the 

short-lived shut states). The expression [ ]exp(Q (t))EE
AA

 indicates the submatrix 

obtained from exp(Q (t))EE  considering only the rows and columns 

corresponding to the states in A . 

 

 

3.4.9 Total open time per burst 

 

This case is similar to the total burst length case, but now we are interested only 

in the time spent in states belonging to A . Laplace transform is the same as in 

(3.73), but now in the term *G (s)BA , s is set to zero because the time spent in 

B  mustn’t be considered:  

 

 
1

* * * *
open bf (s) = I G (s)G G (s)G +G (s) u

−
   Φ −   AB BA AB BC AC C  (3.75) 
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The inverse transform of (0.75) is: 

 

 open bf (t) = exp(V t)(Q G + Q )uΦ AA AB BC AC C  (3.76) 

 

where V = Q +Q GAA AA AB BA . 

 

 

3.4.10   Practical definition of burst 

 

From the empirical point of view, we can approximate a burst as any series of 

openings separated by gaps shorter than some specified duration, say tcrit . It’s 

than clear that is important (and not always so easy) to define a correct value 

for tcrit, such that the number of bursts picked out from an experimental record is 

insensitive to the exact number chosen. If we suppose that the distribution of all 

shut periods in the record can be described by a probability density function that 

is the sum of several exponential terms (see (3.35)) 

 

 i t

if ( t ) w e λ−=∑  (3.77) 

 

then the number of burst will be, the number of interburst shut times minus one; 

the number of interburst shut times coincide with the number of shut times 

lasting more than tcrit. Calling N+1 the number of openings in a record (while N 

is the number of gaps), the number of interburst gaps will be NI given by: 

 

 
( )

crit

i crit

I crit
t

- t

i i

N = N Prob(shut period t ) = N f t dt

= N (w / )e λλ

∞

≥ ∫

∑
 (3.78) 
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The equation above shows that NI is a monotonically decreasing function of tcrit 

(since all the eigenvalues iλ  are non negative); an adequate separation into 

bursts will be then possible only if the time constant of the exponentials in (3.78) 

are well separated, so that, once the faster components have died away, the 

components remaining are so slow that, on the relevant time scale, the function 

derivative is close to zero. 

 

 

3.4.11    Definition of cluster 

 

As it was described defining the burst, long lived shut states belonging to C  are 

usually states describing the binding of target molecules. In particular, if a 

channel has more than one receptive site, and it can open only when at least n 

of these sites are occupied, all the states corresponding to a number of bound 

ligand molecules m<n belong to C , for low values of agonist concentration. 

Bursts can be observed, and the inter-burst shuttings occur when not enough 

agonist molecules are bound with the channel. Intuitively, if the agonist 

concentration is increased, the inter-burst period will become progressively 

shorter, because the binding probability of each channel receptive site will 

increase. In saturating conditions, in practice, all the receptive sites are always 

bound: therefore, we shouldn’t observe long shuttings but only a continuous, 

fast flipping of the channel current level. Instead, records usually continue to 

show long shut periods, even longer than the inter-bursts shuttings. This have 

been modelled inserting in the Markov chains very long-lived shut states, often 

connected to the open ones: they were called desensitized states. In the 

example reported in figure 5.13, which refers to the homomeric α2 glycine 

receptor model characterised in this thesis, D1 and D2 are desensitized states: 

they can be reached only from the open states, but these passages are 

infrequent, because the rates leading to D1 and D2 are greatly smaller than the 
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rates α3. The long sojourns in D1 and D2 states delimited periods of intense 

channel activities, called clusters. All the clusters analysis is similar to the burst 

one, eventually introducing a fourth subset of states, including the desensitized 

states. For intermediate values of the agonist concentration, things become 

more complicated, because both bursts and clusters appear, as it was firstly 

observed by Sakmann et al. (1980). In model used for single channel analysis, 

desensitized states usually aren’t considered, because it’s impossible to 

characterize their connecting rates, as it will be discussed in Chapter 5. 
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4 SINGLE CHANNEL OPEN PROBABILITY ESTIMATION 

 

 

4.1 Introduction 

 

In this chapter, it will be shown a possible approach for estimating the single 

channel open state probability directly from signal records. In particular, this 

approach refers to the signal derived from a BLM in which is inserted a limited 

number of active ligand gated ion channels (up to 20, say). The number of 

inserted channels is a random variable, since the methods for inserting the 

channels into a BLM don’t allow to fix it (see section 2.6). The open state 

probability was chosen, as a parameter to relate to the ligand molecule 

concentration, because the curve representing the relationship between ligand 

concentration and open state probability is usually monotonically increasing in a 

wide range (see for example the case of the heteromeric glycinergic receptor, 

reported in figure 6.4). 

 

 

4.2 Signal analysis 

 

A single ion channel can be modelled by a continuous time Markov chain in 

which any state represent a possible conformations of the protein: some of 

these are “open” states (allowing current to flow), the other ones are “shut” 

states, as discussed in Chapter 3. In many cases, all open states are 

characterized by the same conductance: the electrical signal deriving from a 

single ion channel is then similar to a random telegraph signal, that is a purely 

random signal which may assume two distinct values: “0”, corresponding to the 

shut channel condition, and “1”, the open channel condition. Their levels can be 

represented, at a given time, as a Bernoulli random variable with open 

probability p and shut probability 1-p. For N ion channels of the same type 
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inserted in a biomimetic membrane, behaving independently from one another, 

the number of open channels can be represented, at a given time, as a binomial 

random variable NOPEN, with N and p as parameters. The instantaneous current 

I1 from a single open channel, instead, can be intended as a Gaussian random 

variable, characterized by a mean value <I>1 and a variance σ2 due to both 

instrumentation error (σ2
instr) and intrinsic channel current variance (σ2

ch). The 

probability density function (p.d.f.) for the current intensity provided by N 

channels of the same type embedded in a membrane is then (in absence of 

leakage currents): 

 

 
( )

2
N

j

j
2

jj=0 j

I - < I >1
f(I) = w exp -

22 p σσ

  
 
  

∑  (4.1) 

 

where: 

 

2 2 2
j instr ch= + jσ σ σ  is the overall variance of the jth Gaussian bell; 

1jI j I< > = < >  is the mean current amplitude in correspondence of j open 

channes; 

 ( )1
N j

j
j

N
w p p

j

− 
= − 
 

is the weight of the jth Gaussian bell. 

 

In practice, it’s a sum of N + 1 Gaussian variables, each relating to the condition 

of having a certain number NOPEN of open channels (between 0 and N); wi is the 

probability of having NOPEN=j , given by the expression of the binomial random 

variable  

The histogram reporting the number of signal samples for given discrete-

amplitude current bins can be described by a succession of couples: Cm=(Im, 
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hm), where m=1,2,…NBIN (NBIN is the number of bin used for discretise the 

current axis), Im is the nominal current value for the mth bin and hm is the 

number of samples in the bin. 

 

 

 

 

 

Figure 4.1  Time varying signal and statistical distribution of four ion channels. Left, 

ionic current versus time with added Gaussian noise having 10 1σ = ×< >instr . I  and 

10 03ch . Iσ = ×< > . Right, statistical distribution used for PDF fitting. Current values were 

normalized sharing them for <I>1. 

 

The succession of values, normalized in order to have a unitary subtended 

area, becomes: m m mc (I ,h )= �� , where  

 

 

1

1 2
BIN

m
m BINN

m

h
h , m , ,...,N

I hm
=

= ∀ =

∆ ∑
�  (4.2) 

 

where ∆I is the bin width. 
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The normalized values of simulated ion current mc� , are well-fitted by the current 

probability density function f(I). 

On the hypothesis that the number N of active channels correctly implanted in 

the membrane does not change during data recording (namely, there is no 

rundown during the acquisition), and assuming that the standard deviation of 

the superimposed instrument-related Gaussian noise σinstr is known from a 

previous calibration and that σch is known from the knowledge of the channel’s 

behaviour, it’s possible to estimate p and N by fitting the distribution of 

normalized experimental data with the probability density function f(I), according 

to equation (4.1). The fitting is achieved by a numerical procedure through a 

minimization of the square error function Θ(p,N) where: 

 

 

2

1

BINN

m

m

( p,N ) f ( I ) h
=

 Θ = − ∑ �  (4.3) 

 

The algorithm estimates the single channel open state probability for each value 

of the number of inserted channels not greater than a maximum considered 

number of channels (NMAX) and stores such probability values in a vector with 

dimension NMAX. The value of the vector corresponding to the minimum square 

error is actually the correct value of p (and its position corresponds to the 

correct number of channels). For ligand-gated ion channels, a sigmoidal 

relationship occurs between open probability and ligand concentration, at least 

until deep saturation conditions are not achieved. Thus, in a wide range, single 

channel open probability depends on ligand concentration by a monotonic 

function. Therefore, by using a known relationship it is possible to determine the 

concentration value from the knowledge of the model of the ion channel’s 

behaviour and the estimated value of p. 
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4.3 Simulation results 

 

In order to test the algorithm, a Monte Carlo simulator was realized: it simulates 

the signal produced by a limited number (not greater than 20) of ion channels of 

the same type. Each of these channels was modelled by a Del Castillo Katz 

model, with a dissociation constant of 6 1 1
1 7 10. M s− − −×  and an efficacy 

1 2E / .β α= = . In particular, these data refer to a muscarinic acetylcholine 

receptor (Noma, Osterrieder, 1980), whose opening, actually, is mediated by a 

G protein coupling. Used simulator added a noise due to instrumentation as 

large as the single channel mean current ( instr 1= 0.5 ×< I >σ ) and intrinsic 

channel current variability ( 10 05ch . Iσ = ×< > ).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Time varying signal and statistical distribution of four ion channels, in 

correspondence of an added noise equal to the one used for simulations 

( instr 1= 0.5 ×< I >σ ). 
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A comparison between the a priori known open state probability value and the 

estimated one was realized, as described by the scheme in figure 4.3. 

 

 

Figure 4.3 Block diagram. A Monte Carlo simulator produce a signal mimicking the 

stochastic electrical behaviour of an unknown (but limited) number of ion channels 

embedded in the same BLM, in correspondence of a given agonist molecule 

concentration. The single channel open state probability (and the number of inserted 

channels) are then estimated.  

 

Open State Probability Mean Percentage Error 

0.001 21.20% 
0.005 2.93% 
0.01 3.02% 
0.05 0.86% 
0.1 0.58% 
0.5 0.15% 

 
 
Table 4.1  Results of the estimation of p. 20 simulations per group were 
performed, each with a number of inserted channels between 1 and 12.  
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Results obtained from simulated records (lasting 2 hours, 20 records for each 

concentration value, each containing a number of channels between 1 and 12) 

are reported in the table 1. In particular, mean percentage error were calculated 

as: 

 

100
expected value estimated value

mean percentage error
expected value

 −
= × 
 
 

 (4.4) 

 

Considering an array approach, in which a large number of spots, each 

containing a planar artificial membrane with a limited number of ligand-gated 

embedded ion channels and an electronic interface for collecting the data, 

algorithm performance could significantly improve: simple averaging among 

values of p derived from single spots analysis produces an error reduction as 

high as the square root of the number of spots. Moreover, interpolating data 

could allow to produce a right estimation also of very low values of p. In fact, for 

example, when the number of channels N of a single spot is overestimated (it 

happens in correspondence of low values of p), p is underestimated and vice 

versa; usually, when a spot contains only one channel, estimation of N is 

correct. Having a great number of spots and setting the channels inserting 

procedures in order to have a low mean number of channels per spot (also if it 

means to have some empty spots), could virtually assure to have some spots 

containing only one channel. These spots will be recognize because they will 

register the lower probability p between the spots with an estimated N equal to 

one, and they will report the correct value of p. 
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5 SINGLE CHANNEL CHARACTERIZATION 

 

 

5.1 Introduction 

 

Ligand gated ion channels are natural transducers, giving an appreciable 

current response (in the order of the pA) related to the binding of specific target 

molecules (called ligand molecules, or agonist, when they increase the channel 

electrical activity). If we want to exploit their properties and use them to create 

chemical sensors, the knowledge of their behaviour is essential. In particular, 

it’s mandatory to understand what is the relationship between the agonist 

concentration and their electrical response. It was said, in Chapter 1, that the 

gating of ligand gated ion channels is a stochastic process, and the interaction 

with the ligand molecules affects the channel kinetics, not the conductance. In 

this chapter, it will be discussed the characterisation of the homomeric α2 

isoform of the glycine receptor, a ligand gated ion channel belonging to the 

Central Nervous System cells. Both experimental acquisitions and signal 

analysis will be described. 

 

 

5.2 Glycine receptors 

 

Glycine receptors (GlyR) are membrane proteins that belong to an important 

class of synaptic ion channels, the nicotinic superfamily, which comprises also 

ACh muscle and neuronal nicotinic, GABA (A and C) and 5-HT3 receptors. 

GlyR channels mediate fast synaptic transmission in the Central Nervous 

System, in which they have an inhibitory function, and periphery; in particular, 

they are predominantly expressed in the spinal cord and brain stem. Like the 

other members of the nicotinic superfamily, glycine receptors are pentameric. 

They are formed of some combination of α1- α4 and β subunits, arranged 
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quasi-symmetrically in a circular order around the channel pore. The channel 

pore of glycine receptor is selective for chloride ion flow. In mammalian, the 

adult form of the GlyR is the heteromeric α1β receptor, and is believed to have a 

stoichiometry (proportion) of three α1 subunits and two β subunits (Kuhse et al., 

1993; Burzomato et al., 2003). Immature nerve cells are known, instead, at 

least in the spinal cord, to express α2 homomeric GlyRs, progressively replaced 

by the adult α1β form during the two first postnatal weeks in rodents (Akagi and 

Miledi, 1988; Malosio et al., 1991). Structural information on nicotinic receptors 

comes basically from two sources: the advanced cryo-electron microscopy of 

Torpedo muscle-type nicotinic receptors (closed and, at lower resolution, open) 

(Unwin, 2003; Miyazawa et al., 1999) and the atomic resolution crystal 

structures of Lymnea acetylcholine binding protein (Brejc, 2001; Celie, 2004), 

which is supposed to be homologous to the extracellular domain of the 

receptors (see, for example, Cascio 2004). Despite these recent advances, the 

information in these structures has several limitations: first of all there is no 

direct evidence about the structure of glycine receptors, so structural inferences 

are based solely on analogy with nicotinic receptors, and the dynamic of the 

process of activation remains somewhat uncertain and is subject of intense 

study. Binding of the ligand in the extracellular domain produces a wave of 

conformational change that spreads to the transmembrane domains that form 

the channel and causes it to open. The other source of information for ion 

channels is functional, through single-channel kinetics, which aims at 

establishing a mechanism that accurately models the activation of the channel. 

 

 

5.2.1 Heteromeric α1β form 

 

The α1β form is the most intensively studied one between glycine receptors, 

because it is the dominant form in adult mammalian central nervous system. It 

appears to have a structure that alternates α and β type subunits, with three 
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agonist binding sites located in the interface between neighbouring subunits 

(two between α1 and β subunits, one between two α1 subunits) (Kulhse et al., 

1993). The receptor can be activated by a range of simple amino acids 

including glycine, β-alanine and taurine, and can be selectively blocked by the 

high-affinity competitive antagonist strychnine. The kinetics of the heteromeric 

α1β form has been modelled, in the last years, principally through two different 

schemes: one derived from GABA receptor model (Jones & Westbrook ,1995), 

the other proposed by Burzomato et al. (2004): they are represented, 

respectively, in figures 5.1.A and 5.1.B. In particular, Burzomato et al. (2004) 

have demonstrated that the mechanism can be equally well fitted by the two 

schemes, but the second one includes a lower number of free parameters (14 

instead of 18) and doesn’t need to postulate the presence of cooperativity (an 

increase of the affinity for binding to the shut states when other binding sites 

have already been occupied by glycine). In fact, in this case, the increase of the 

open efficacy is explained through the presence of “flip states” (AF, A2F and 

A3F), conformational protein changes preceding the openings. 

 

 

 

Figure 5.1 Kinetic schemes used for modelling the heteromeric α1β glycine 

receptor. (A) Model with cooperativity; (B) Flip model (no cooperativity between binding 

sites). In both cases (and in all the other Markov chains drawn in this chapter), the 

prefix ‘AX’ indicates that x agonist molecules are bound; the superscript ‘*’ marks the 

open states. 
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5.2.2 Homomeric α2 form 

 

The only homomeric ion channel to have been analyzed in detail by single-

channel methods is the glycine α1 receptor (Beato et al., 2002; Beato et al., 

2004; Legendre et al., 2002). It seems likely that this homomeric pentamer 

would be symmetrical, and therefore that the five binding sites would be 

identical in the resting state, although crystallographic evidence is thin because 

of the paucity of protein structures with no ligand bound. Equally good fits have 

been obtained by Beato et al. (2004) by postulating either three or five binding 

sites, and these two cases could not be distinguished. It follows that, if there are 

indeed five binding sites, it must be supposed that the gating reaction 

“saturates” after three agonist molecules are bound. The apparent interactions 

have been then explained by a pre-opening conformation change of the sort 

postulated for the heteromeric receptor (Figure 5.1.B), as reported in Burzomato 

et al. (2004). No single channel steady-state characterization has been done, 

instead, on homomeric α2 form. Mangin et al. (2003) have proposed a Markov 

model (Figure 5.2), estimating the rates constant from whole cell recording and 

fast glycine applications on outside out patches. This model postulates a couple 

of binding states (but the authors admit that the question is controversial) and 

only one open state, related to the fully bound condition. In a further paper by 

the same group (Shi-Wang et al., 2007) the number of binding states has been 

raised to three. 

 

 

 

Figure 5.2 Two ligand-sites Markov chains used for modelling the homomeric α2 

glycine receptor.  
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5.3 Patch Clamp Technique 

 

In chapter one were described that excitable cells, such as muscle or nerve 

cells, produce quick depolarizations in response to electrical, mechanical or 

chemical stimuli, changing their internal potential through a quick flux of ions 

between cytoplasm and the external environment. This is, in fact, the most 

widespread and important method used by cells for transmitting and elaborating 

information. The coordinated electrical behaviour of the specific excitable cells 

forming a tissue are the basis, for example, for every motor and brain activity. 

Electrophysiology is basically the branch of physiology that studies the 

relationship between electric phenomena and bodily processes. It involves 

measurements of voltage change or electrical current flow on a wide variety of 

scales from single ion channel proteins to whole tissues like the heart. 

The capability of recording the electrical activity of a single cell membrane date 

back to the half of the XX century (Graham and Gerard, 1946; Cole, 1949; 

Hodgkin and Huxley, 1952). In these first studies, a sharp electrode was 

inserted in the cell whilst the ground electrodes was put in the fluid surrounding 

the cell. Electrical activity of excitable membranes was usually recorded using 

two main techniques: voltage clamp and current clamp. In voltage clamp 

technique, the voltage is externally clamped and the deriving current through 

the cell membrane is recorded; contrariwise, in current clamp, the current 

between the electrodes is set by the experimenter and the transmembrane 

potential is the output.  

The patch-clamp technique (Neher and Sackmann 1981) is a further 

development of the previously described ones (for details see Single Channel 

Recording, 2nd ed. Eds: Sakmann, B., Neher, E. Plenum Press, New York), 

which allows to record currents from single ion channels. The innovation is that, 

while conventional intracellular recording involves impaling a cell with a fine 

electrode; patch-clamp recording uses an electrode composed by a glass 

micropipette with a relatively large tip hole diameter (in the order of the um), 
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containing an Ag/AgCl wire and sealed onto a patch of the cell surface. The 

interior of the pipette is filled with a saline solution so that the metal electrode, in 

contact with this solution, conducts the electrical changes to a voltage clamp 

amplifier. The patch clamp pipette is pressed against a cell membrane and 

suction is applied to the inside to pull the cell's membrane inside the tip of the 

electrode. The suction causes the cell to form a tight seal with the pipette, with a 

resistance between 1-100 GΩ. This high seal resistance allows to resolve 

membrane currents in the pA range. This means that is possible to record small 

currents across the membrane of small cells and even the current through a 

single open channel pore. The high seal resistance is achieved by direct 

interaction between the surface of the glass pipette and the cell membrane on 

atomic dimensions. Most likely interactions are salt bridges between negative 

charges on the glass and the membrane surface mediated by divalent cations 

and hydrogen bonds between O-Groups on the glass surface and O- or N- 

Groups of the phospholipids forming the membrane as well as van der Waals 

interactions. Depending on pipette size, cell type, and channel density, the 

electrically isolated membrane patch can contain one or several channels 

proteins. Opening and closing of the channels results in sudden current 

changes that can be recorded under voltage clamp. Once realised the gigaseal, 

four different configurations can be achieved: whole cell, inside-out, cell 

attached and outside-out. Between them, the last two configurations are mainly 

useful for the analysis of the kinetics of single ligand gated ion channels and will 

be briefly described below. 

 

Cell-attached configuration: The electrode remains sealed to the patch of 

membrane (Figure 5.3). This allows the recording of currents through single 

ion channels in that patch of membrane under relatively natural condition, 

with the integrity of the cell maintained. For ligand-gated channels or 

channels that can be activated or blocked through the action of drug 
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molecules, the drug of choice is usually included in the pipette solution. 

Thus, it is not possible to change the drug concentration during the 

acquisition, because the pipette solution can’t be prefunded: the technique is 

limited to one point in a dose response curve per patch. Moreover, there is 

no access to both the fluid compartments at the opposite hands of the 

membrane, since the parch is attached to the cell, in contact with the 

cytoplasm. Another limitation is that this configuration doesn’t allow to set 

the effective transmembrane potential: in fact, since the membrane patch 

under investigation is not excided from the cell, the transmembrane potential 

is given by the sum of the clamped potential between the electrodes, and the 

potential of the inner side of the cell. Since cell potential is usually, in resting 

conditions, electronegative compared to the external fluid (during the 

experiments, a bathing solution is used, whose composition mimic the 

cellular external environment), the total transmembrane potential is greater 

than the one externally imposed. 

 

"Outside-out" patch: In this configuration, the patch is pulled out from the 

cell with a particular procedure (briefly described in section 5.10; for more 

details see, for example, Molleman 2003). The final result is that the patch 

reforms as a ball of membrane on the end of the pipette, where the outside 

of the membrane corresponds to the external surface of the ball, and the 

internal part of the membrane is in touch with the intrapipette solution 

(Figure 5.4). Huge advantage of this configuration is that the experimenter 

can perfuse the same patch with different solutions since the binding sites of 

the ligand-gated channels are mainly located on the extracellular side of the 

proteins. Outside-out patching doesn’t give the experimenter the opportunity 

to examine the properties of an ion channel in contact with its usual 
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environment. Since the membrane patch is detached from the cell, the 

composition of the intracellular side is lost. In particular, there is a washout 

of the cytosolic factors (substituted by the intra-pipette solution) and the 

distruption of the cytoskeletal structure. Several studies in the last years, 

pointed out that this “not physiological conditions” alter the electrical 

behaviour of the ion channels, both in terms of conductance and kinetics. 

However, this configuration is largely used whenever a chemical stimulus 

(i.e. a change in drug concentration) must be applied. The composition of 

the intra-pipette solution should be as similar as possible to the fluid 

composing the intra-cellular environment. Using pipettes of the same 

dimension, the surface of the patch of membrane under investigation, in the 

outside-out configuration, is greater then the one of the cell-attached 

configuration (approximately ten times). 

 

 

 

 

Figure 5.3 Cell-attached configuration. 
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Figure 5.4 Outside-out configuration. 

 

 

 

 

5.4 Patch Clamp experiments 

 

Basically, patch clamping involves the placement of a glass micropipette, filled 

with saline solution and an Ag/AgCl electrode wire, onto a cell forming a tight 

seal. Therefore, the set up of the experiments needs first of all the culture of the 

cells, eventually their transfection, the creation of the patch pipettes, the 

preparation of the solutions used to fill the pipettes and to bath the cells. In the 

experiments described in the following part of this chapter, homomeric α2 

glycine receptors were transfected in an heterologous system, namely cells 

belonging to not excitable tissues. In such a way, it was possible to study the 

target channels limiting the interferences due to the presence of other kinds of 

channels (endogenous channels). 
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5.5 Cell culture and transfection 

 

Glycine receptors were heterologously expressed in Human embryonic kidney 

(HEK293), an immortalised cell line obtained from the American Type Culture 

Collection (ATCC). These cells contains only a low density of endogenous ion 

channels, usually characterised by a very low conductance (less then 5 pS), not 

comparable to the glycine receptors one (over 50 pS); furthermore, they are 

very easy to grow and transfect very readily. For these reasons, they are widely 

use in cell biology and, in particular, they are good candidates for constituting 

an heterologous system for electrophysiological studies. 

Cells were cultured and maintained in Dulbecco’s modified Eagle medium 

containing 10% (v/v) foetal bovine serum and 1% (v/v) penicillin streptomycin 

solution (100000 units/ml penicillin and 10 mg/ml streptomycin; all from Gibco, 

UK) at 37oC in a 95% air 5% CO2 incubator, and passaged every 2-3 days, up 

to 40 times. Before experiments, cells were plated onto polylysine-coated 

coverslips and transfected using a calcium phosphate co-precipitation method 

(Groot-Kormelink et al., 2002). For the amplification and cloning pcDNA3.1 

plasmids were used (Invitrogen, The Netherlands), containing inserts encoding 

the rat glycine receptor subunits α2 (GenBank accession number X61159), 

enhanced green fluorescent protein (eGFP, Clontech, UK) and non-coding 

plasmid pcDNA3.1. Several different mixtures of DNA were used for the cell 

transfection, including a percentage of glycine subunit receptor encoding DNA 

between 3% and 20%; the percentage of eGFP encoding DNA was 18%. EGFP 

is a protein, originally isolated from the Aequorea jellyfish, that fluoresces green 

when exposed to blue light. Once expressed in a cell, the intensity of its green 

response-light depends basically on its concentration in the cytoplasm. Since it 

is transfected in the heterologous system together with the glycine receptor 

subunit, their density in the cells are strongly correlated; thus, the presence of 

eGFP in the HEK239 cells, enables the experimenter to detect, first of all, if the 

transfection was successfully and, secondly, what are the cells in the plate 
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which probably have the higher concentration of ion channels on their surface. 

Coverslips were washed using fresh cell culture medium 5-16 hours after 

trasfection. Patch clamp recordings were made 12-48 hours after transfection. 

 

 

5.6 Preparation of the pipettes 

 

Patch pipettes for cell attached single channel recording and for outside-out 

recording were pulled from thick-walled borosilicate glass capillary tubes 

(GC150F; Harvard Apparatus, Edenbridge, UK). They were realized using a 

puller (P-97 Flaming/Brown Micropipette Puller Sutter instruments), a 

programmable electromechanical device which heats the capillary tubes and 

pulls, following a preset sequence of steps, producing tips with a precise and 

reliable shape (and, following, a controlled size of the hole and a controlled 

pipette-resistance). 

Patch pipettes were then coated with a bubble of Sylgard (Silicone Elastomer, 

Dow Corning, Coventry, UK), about 100 um far from the tip. It allowed to 

decrease significantly the parasitic pipette-capacitance (namely, the 

capacitance between the intra-pipette saline solution and the extracellular 

solution bathing the cells). Finally, pipettes were fire-polished (MF-83 

Microforge, Narishige, Tokyo, Japan) in order to smooth the borders of the 

pipette holes. 

 

 

5.7 Solutions for patch clamp recordings 

 

In the cell-attached single channel patch experiments, the extracellular solution 

(the solution used for bathing the cells) and the intrapipette solution had the 

same composition, but the last one contained also the glycine, being the 

solution surrounding the side of the cell membranes where the agonist binding 
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sites were located. The basic solution contained (mM): 102.7 NaCl, 20 Na 

gluconate, 4.7 KCl, 2 CaCl, 1.2 MgCl2, 10 HEPES, 15 sucrose, 14 glucose, 20 

TEACl (all products from Sigma-Aldrich). Solution pH was adjusted to 7.4 with 

NaOH; it’s osmolarity was 320 mOsm. Milli-Q ultrapure water was used, and the 

solution was filtered before use. 

 

 

5.8 Patch clamp experimental set-up  

 

The basic elements of the set-up for cell-attached patch clamp experiments are: 

 

• a platform with minimal mechanical interference. It’s realized by an anti-

vibration table(TMC Vibration Isolation Table, TMC, Peabody, MA, USA) 

• a Faraday cage (home made) 

• a microscope for visualization of the preparation and of the cell-patching 

procedure (Olympus IX70, Olympus Optical, Tokyo, Japan) 

• a digital camera connected to the microscope 

• a fluorescence system (X-Cite 120, Richardson, TX, USA) 

• a micromanipulator to position the pipette (Burleigh PZ-301, Burleigh 

Instruments, New York, NY, USA) 

• a patch-clamp amplifier (Axopatch 200B, Axon Instruments, USA) 

• a monitor 

• an oscilloscope (TDS 3034B, Tektronix, USA) 

• a tape recorder (Biologic DTR1204, Biologic Instruments, Claix, France) 

• an A/D converter (CED1401Power, Cambridge Electronic Design, UK) 

• a PC (DELL). 

• A perfusion system (see section 5.10 for details). 
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The inverted microscope and other experimental equipment associated directly 

with the electrophysiological recording process were mounted on an isolation 

table to eliminate vibration.  

The hearted Faraday cage enclosed the set-up, to minimize noise from 

electrical interference. The front of the cage was open for access but could be 

closed, during recording, by a metallic mesh. All metallic objects inside the cage 

were also hearted to a single point that was connected to the amplifier hearth, 

to eliminate loops. 

The inverted microscope was equipped with a 10x and a 40x objectives and 

connected to the digital camera. The fluorescence system was mounted on the 

microscope and could be switched into the optical path. This provided a broad 

spectrum of UV light used to excite green fluorescence protein expressed in the 

cytosol of the transfected cells. The emission spectrum of eGFP peaks in the 

visible range, at 510 nm. When using the UV source, a green bandpass filter 

was included in the objective path to exclude harmful UV light. 

The amplifier was an Axopatch 200b, the same previously described (see 

section 2.2), equipped with an headstage Model CV-201 AU ( Axon 

Instruments, USA), used in the capacitive-feedback configuration. The 

micropipette was mounted onto the headstage amplifier and filled, to minimise 

noise pickup during recording, with only enough intracellular solution to cover 

the dark silver chloride portion of the electrode wire The electrode holder 

included a side port for suction. Positive or negative pressure was applied from 

a 1 ml disposable syringe that was connected to the port with PTFE tubing. The 

headstage amplifier was firmly screwed onto a piezo-electric remote-controlled 

micromanipulator that was mounted on a coarse mechanical manipulator.  

The output of the patch clamp amplifier was connected to an 8-pole Bessel filter 

(set to 3 kHz) and then to an oscilloscope for monitoring, during the 

experiments, cell-sealing and channel activities. At the same time, the output 

was connected to the input of the digitiser interface and then to the tape 
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recorder or directly to the personal computer, without any filtering stage after 

the one included in the Axopatch amplifier (a 4-pole Bessel filter), set to 10 kHz. 

 

 

 

 

 

Figure 5.5 Patch clamp set up. 

 

 

 

5.9 Cell attached experiments 

 

One way to investigate the kinetics of the channel, and to estimate its rate 

constants for a postulated mechanism is to obtain steady state single channel 

records at a constant voltage applied and a constant glycine concentration. In 

order to understand how the channel electrical response depends on the 

agonist concentration, the steady state records should be obtained at several 

agonist concentrations. These experiments were conducted in cell-attached 

configuration, because it guaranteed a) the maximum seal stability, b) the most 

physiological conditions for the ion channels embedded in the membrane patch, 
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and c) lowest electric noise levels required for good kinetic rate constant 

estimation. In the first part of the experiments, the electrode tip was brought 

carefully onto the cell surface using initially coarse and then fine manipulation, 

while a 5 mV, 50 Hz square wave was applied, so that the contact between the 

tip and the cell and the following formation of the gigaseal were revealed by 

progressive reductions of the current output signal, monitored by the 

experimenter through the oscilloscope. Then a constant -100 mV command 

potential was kept in the pipette. As described before (section 5.3), this is the 

voltage applied between the electrodes, which differs from the real 

transmembrane potential, namely the potential between the two sides (intra and 

extra-cellular domains) of the ion channels. The overall transmembrane 

potential is given by Vm = Vcell – Vcommand where Vcommand is pipette potential, Vcell 

is resting membrane potential and Vm the effective transmembrane potential. 

Since the HEK293 have, in normal conditions, a ddp between -30 mV and -80 

mV (from the inner to the outer side), the transmembrane potential in here 

described experiments was between –130 mV and –180 mV. The exact value 

couldn’t be measured and differed from one patch to another. This causes a 

variability, in the values of single channel measured currents, largely greater 

than in case of excide patches (like outside-out configuration) and experiments 

conduct on artificial planar bilayers. In presence of channel activities, data were 

recorded on tape, filtered at 10 kHz (-3 dB) by the Axopatch Bessel filter. 

Selected recordings were replayed, digitised at 100 kHz and stored on 

computer hard disk using a continuous sampling program CONSAM (see 

www.ucl.ac.uk/Pharmacology/dcpr95.html). They were also digitally post-filtered 

(by an 8 pole Bessel filter, achieving a final cutoff frequency of 5 kHz) and 

decimated (final sampling frequency: 50 kHz). In figure 5.6 is reported an 

example of signal from single homomeric α2 glycine receptor activity, 5 kHz 

filtered. In total, six values of glycine concentrations were used in patch 

experiments: 10 uM, 20 uM, 50 uM, 100 uM, 1 mM and 10 mM. No response 

was obtained using the lowest value (10 uM), although several attempts were 
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made (more than 60). Also in case of 20 uM, channel activity was registered 

just twice (but the recorded traces contained too few events to be used in 

statistical analysis).  

 

 

 

 
 

Figure 5.6 Example of single channel trace from homomeric α2 glycine receptor 

 

 

 

For everyone of the 20 selected records, amplitude histogram and stability plot 

were realised, in order to check the possible presence of unexpected events 

during recording, such as sudden voltage jumps, current leakages, anomalous 

conductive sublevels in channel activities. Amplitude histograms show the 

number of openings of the channel which has an amplitude that falls between 

the limits specified on the abscissa In our case, all present a single peak and 

are well approximated by a Gaussian-bell shape, confirming the presence of a 
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single conductance level in the channel activity[1]. Examples of these histograms 

and plots are reported below (figure 5.7). The mean value of the registered 

amplitude currents is I = 5.80 pA, with a standard deviation of σ = 0.73 pA, 

leading to a coefficient of variation (I/σ)% = 12.6%. These differences in single 

channel current amplitudes are mainly due, as described in section 5.3, to the 

uncertainty on the transmembrane voltage, typical of the cell-attached 

configuration. 

 

 

 
Figure 5.7 Examples of channel amplitude stability plot (left) and histogram (right). 

 

 

 

 

 

 

[1] Indeed, in some cases, there were sequences of openings with a smaller 

conductance inside bursts and clusters. In any case, they represented less than 

the 5% of the total amount of the openings. Moreover, they must be probably 

attributed to partial occlusions of the ion channel pores by some molecules in 

solution, since they were always characterised by a significant noise increase. 
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5.9.1 The measurement of durations 

 

In order to characterise the kinetics of the channel, namely a plausible Markov 

model and the relative rate constants, it’s indispensable to analyse the 

information contained in the durations of its opening and shutting events. It is 

common opinion that the conformational changes determining ion channel 

electrical switching occur in a time scale largely below the microsecond; thus, 

single ion channel current signal should look, in absence of noise and filter 

distortion, like a perfect rectangular wave. In practise, there are two main 

problems to be solved: firstly, transitions from one current level to another must 

be detected, then the duration of time between one transition and the next must 

be measured. The process leading from the experimental record to a sequence 

of the openings and shuttings with their durations is called idealization of the 

record, and obviously it aims to resemble, as close as possible, what would 

have been seen if the experiment had been free of noise and artefacts 

introduced by the filtering. With this purpose, several algorithms were 

developed (see, for example, Dempster, 1993), basically belonging to two 

different approaches: threshold crossing and time course fitting. In threshold 

crossing methods, a threshold value is fixed (usually is the 50% of the full 

amplitude of the channel signal), and the duration of an event is measured as 

the length of time for which the current stays above (or below) this threshold. 

Sometime, specially when the signal to noise ratio S/N is large, two thresholds 

are set (usually they are the 25% and the 75% of the full amplitude level). With 

two threshold set, an opening event is recognised when the current goes above 

the lower threshold, whilst a shutting event is indicated by the crossing of the 

higher threshold. Since the waveform is distorted by the filters, the time at which 

transitions occurs should be estimated by taking the data point on either side of 

the crossing of the threshold line (or threshold lines), and interpolating between 

them (on the basis of the filter step-response) to estimate the time at which a 

threshold is crossed. In general, threshold crossing methods are considerably 
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faster respect to time course fitting, and are totally automatic (no visual 

inspection of the data is needed, although it could bring to errors in some 

cases). It can be demonstrated that the duration of events needs to be above 

roughly 1.3 tr ( where tr is the 10-90% risetime of the filter) before errors become 

negligible (Colquhoun and Sigworth, 1983).  

In time course fitting, the theoretical time course of the current is computed on 

the basis of the step response of the recording system and fitted to the actual 

record. In practice, a calculated response, made from the convolution of the 

step responses corresponding to potential channel openings and shuttings, is 

superimposed on the observed current, and the time intervals and amplitudes 

are adjusted (by eyes or by a least square minimization) until a good fit is 

obtained. There are two major advantages in this method: it’s particularly 

suitable for dealing with records that contain multiple conductances or 

subconductance states and allows better time resolutions than the ones 

obtained using threshold based methods. In fact, when a threshold method is 

incapable to fit events too brief to reach the threshold, a time course fitting 

approach could be able to detect them. For these reasons, this method is 

commonly used in many pharmacology and physiology research groups, where 

the first aim is to obtain the maximum available time resolution ( in order to see 

also very fast components of the kinetics). In the case of time course, fittings of 

the shortest durations are basically decided subjectively by the experimenter, 

and are unlikely to be constant throughout an experiments, since the noise level 

could change. It is therefore highly desirable that a fixed resolution should be 

imposed on the data after analysis. In practice, it means that the experimenter 

should scroll all the record, checking the matching of the data with the 

superimposed convolution of the step responses (realised by a least square 

minimization method); at the end, he should decide the final time resolution, 

discarding all the shorter events. It is therefore understandable that this second 

approach of idealising the experimental data has a major drawback: it is not 

automatic (at least, no totally automatic programs were developed 
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successfully). It follows that a) this kind of analysis requires a great amount of 

time (and the presence of an operator); b) since the elaboration is not 

performed merely by a calculator, but an human operator takes the decisions 

about the fitting, inevitably he can introduce an arbitrariness in the process. 

 

 

5.9.2 Apparent dwell time distributions 

 

For the idealization of the records, a time fitting program SCAN was used (see 

www.ucl.ac.uk/Pharmacology/dcpr95.html). Two records of α2 glycine receptor 

activations by 50 uM or 10 mM glycine were analysed and then used for 

estimating the rate constants. 

 

 
Figure 5.8 Single channel dwell time distributions, in correspondence of two 

different glycine concentrations (50 uM and 10 mM). Left: shut time distributions; right: 

open time distributions. 
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In both cases, data were filtered at 5 kHz, obtaining an signal to noise ratio 

greater than 19. In particular, 50 uM record was characterised by 30419 

transitions, an average full amplitude of - 5.23 pA, a RMS of 240 fA; in the case 

of the 10 mM record, transitions were 26963, the average full amplitude was – 

5.04 pA, the RMS 270 fA. In both cases, the final time resolution was imposed 

at 15 us. Figure 5.8 shows the open and shut time histograms of the two 

records[1]. The experimental histograms were fitted by mixtures of exponentials, 

using the EKDIST program (see www.ucl.ac.uk/Pharmacology/dcpr95.html). 

 

 

 

 

 

[1] Reported histograms are displayed in the way suggested by McManus et al. 

(1987): the time axis is in log scale, to cover a wide range. It’s not simply a log 

transformation of the conventional display, because this would have bins of 

variable width on the log scale, whereas the distribution of log(t) is shown by 

bins of constant width on the log scale. The distribution has the following form. If  

the length of an interval is denoted t, and we define x log( t )= , then we can find 

the p.d.f. of x, xf ( x ) , as 

 

       1 1 x
x i i i

dP dP dt dP
f (x) t f ( t ) a exp( x e )

dx d log(t ) d log( t ) dt
τ τ− −= = = × = × = −∑  

  

where P is the cumulative probability distribution and the probability density 

function f ( t )  is a multi-exponential function. In addition, a square root 

transformation of the frequency density was used, to keep the errors 

approximately constant throughout the plot. The function xf (x)  is shaped as a 

composition of bell-shaped curves, whose peaks coincide with the time 

constants iτ . 
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This is only an empirical fit of the distributions with no kinetic models taken into 

account. The estimation of the kinetic constant rates were then realised by 

HJCfit program (see www.ucl.ac.uk/Pharmacology/dcpr95.html), as it will be 

discussed later. Moreover, the histograms in figure 5.8 actually refer to the 

distributions of apparent open and shut times, namely the ones as appears from 

idealised data but without any compensation for the lost brief events. However, 

visual inspection of such histograms and their fits could provide preliminary 

information useful for understanding concentration dependent behaviour of the 

channel opening and for mechanism postulations. 

The two files correspond to very different concentration values: the first one (50 

uM) is close to the lower value of glycine concentration, able to evoke a 

receptor activity, whilst the second one (10 mM) is a saturating concentration. 

From the channel modelling theory discussed in Chapter 3, it follows that the 

channel activity in the lower concentration record (50 uM glycine) should be 

formed by bursts, namely the long shut periods should be caused by the 

unbindings of ligand molecules, which are not immediately followed by re-

bindings because of the low glycine concentration in the solution surrounding 

the receptive sites of the channel. Moreover, it is usually supposed, for glycine 

receptors, the presence of more than one open state in the channel Markov 

model, where each open state corresponds to a different number of ligand 

molecules bound. In this case, for such a low concentration, conceivably the 

large part of the bursts should correspond to openings in not fully-bound 

conditions, that is the channel activates when not all its binding sites are 

occupied. A 10 mM glycine concentration, instead, is a saturating concentration, 

as results both from literature (Mangin et alii, 2003) and from our jump 

experiments (response evoked by a 10 mM concentration is basically the same 

evoked by a 1 mM concentration). In this case, we can assume that the 

channels receptive sites are basically always bound, in the sense that every 

unbinding is immediately followed by a re-binding, so that channels are in fully-

bound conditions except for very short periods. Channel activity is then formed 
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by clusters, and the long shut intercluster periods are due to channel 

desensitizations. In the table below, time constant of the apparent open and 

shut times are reported, both for 50 uM and 10 mM glycine concentrations. 

 

 

50 uM 10 mM 
 

tau (ms) area (%) tau (ms) area (%) 

0.0033 99.7% 0.0029 99.8% 
Shut time components 

0.018 0.3% 0.0178 0.2% 

2.65 17.8% - - 
Open time components 

7.10 82.2% 6.68 100% 

 

Table 5.1 Dwell time components from EKDIST empirical fitting. 

 

 

Shut time histograms are basically identical in the two cases, and it is a 

surprising behaviour, compared to the ones of other glycine receptors 

(Burzomato et al., 2004; Beato et al., 2004) and, in general, of receptors 

belonging to the nicotinic superfamily (R. Lape, L. Sivilotti and D. Colquhoun, 

data not published). In all the other cases, in fact, even when the time constants 

don’t change, their relative areas are strongly dependent on agonist 

concentration. In particular, for low concentrations, slower components are 

relevant. In the case of the α1β glycine receptor, for example, in 

correspondence of the lowest concentration applied (10 uM), the sum of the 

areas belonging to slow components ( 0.1msτ > ) is greater than 35 %. This 

area progressively decreases when glycine concentration raises, becoming the 

5.5 % in saturating conditions. In case of α2 GlyR, this concentration-dependent 

component is not evident. The only difference between the two records is in the 

apparent open time distributions, even if it’s less definite than for other 
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receptors. There is a shift towards longer openings at the higher concentration: 

the area of the faster component, in fact, represent the 17.8% for the 50uM 

record, while can no longer be resolved in saturating conditions. In the case of 

the α1β glycine receptor, fast component area is the 60% of the total for the 

lowest concentration, and disappears in saturating conditions. Overall, the 

dependence of this receptor from the ligand concentration appears to be less 

evident than in all the other in the nicotinic superfamily. This impression is also 

confirmed by the intraburst (intracluster) open probability, which is high (over 

the 98%) for all the concentrations tested between 20 uM and 10 mM. 

 

 

5.9.3 Rate constants estimation 

 

The estimation of the kinetic rate constant from data obtained in steady state 

conditions was realised using HJCfit software. This estimator basically 

maximises the likelihood of an entire sequence of apparent open and shut 

times, with the rate constant in a specified reaction mechanism as free 

parameters; it also corrects data with the exact method for missed brief events 

(Hawkes et al., 1990). Utilizing the transition matrices described in Chapter 3, 

the expression of the likelihood l, of a whole sequence of observed open and 

shut times, is 

 

                       1 1 2 2o s o sl G (t )G ( t )G (t )G (t )...u= ΦA AF FA AF FA F  (5.1) 

 

In this expression, to1, to2… are the first, second apparent open times, ts1, 

ts2…the first, second apparent shut times; ΦA  is the vector (1 k× A ) giving the 

probabilities that the first opening starts in each of the open states; Fu  is an 

unitary 1k ×F  vector. Subset A  includes the open states, F  the shut states. 

Each transition matrix G is corrected for brief events, namely for keeping in 
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count the effects of the limited temporal resolution. It is interesting to observe 

that the equation product gives, at each stage, the joint density of the time 

intervals recorded thus far multiplied by a vector that specifies probabilities for 

which state the next interval starts with, conditional on the durations of those 

intervals. As a consequence, this likelihood expression takes into account not 

only the single intervals durations, but also all the information about correlations 

between intervals. Since it’s impossible to know how many channels are 

present in the patch, nor if there was rundown during acquisition (namely, if 

there were channel deactivations), not all the shut periods can be included in 

the process. In particular, using the likelihood expression just defined, it’s 

important to be sure that a sequence of consecutive openings derives from the 

just one channel. Since in bursts and clusters openings occur between short 

shut intervals, it is possible to analyse only intra-burst and intra-cluster periods, 

being quite sure that they belong to the activity of the same channel. In 

addiction, all the traces with signals from more channels open at the same time 

must be discarded. Practically, both for cluster and burst analysis, critical shut 

time lengths (tcrit) must be given as inputs, so that every burst (cluster) is 

contained between shut periods longer than tcrit. The overall (logarithmic) 

likelihhod is calculated as the sum of all the individual burst (or cluster) log-

likelihoods, each defined as L=log(l). HJCfit algorithm produces the likelihood 

maximisation following a heuristic procedure (a modified simplex algorithm), 

starting from a set of initial conditions given as inputs.  

For fitting data with HJCfit, Markov chain reported in figure 5.9 was given as 

input: it was chosen in analogy with the one used for modelling the heteromeric 

α1β glycine receptor (Burzomato et al., 2004). Respect to the Burzomato model, 

anyway, the branch corresponding to the monoliganded-opening condition (the 

path in the Markov chain leading to openings when only one receptive site is 

bound) was neglected, due to preliminary considerations about homomeric α2 

receptor’s behaviour. In particular, the fact that channel activity was recorded 

only for relatively high concentrations (≥20 uM), and the differences between 
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the dwell time histograms for different agonist concentrations were failrly slight, 

suggested a negligible contribute of the mono-liganded path to the channel 

kinetics. Also the di-liganded branch, which was considered in the fitting, 

revealed to have a very low occupancy probability, as will be discussed later. 

 

 

 
 

Figure 5.9 Markov model chain used for fitting data 

 

 

Input files were the two ones used for EKDIST analysis, with the same 

resolution. Critical shut time values for bursts and clusters were fixed, 

respectively, at 0.5 ms and 0.8 ms, according to subsection 3.4.10. Fit was 

repeated using several different initial guesses, coming to the same results and 

showing that, presumably, the likelihood surface had a well defined maximum, 

every time reached, even if not all the rate constants were well estimated. The 

three binding sites were assumed equal and independent, by applying the 

following constraints to the values of the binding rate constants during the 

fitting: k+1 = k+2 = k+3. In addition, δ2 was constrained by microscopic 

reversibility[1]. Standard deviation of each parameter (each free rate constant) 
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was calculated starting from the likelihood covariance matrix (Colquhoun et al., 

2003). Results from HJCfit are reported in the table 5.2. 

 

 

Rate constant Unit Estimated value CV% 

3α  s-1 7874.99 4.86176 

3β  s-1 265683 1.20675 

3δ  s-1 6912.11 14.2798 

3γ  s-1 151.300 13.1415 

2α  s-1 751278 Not def 

2β  s-1 118.283 Not def 

2γ  s-1 3615.29 170.258 

2δ  s-1 88.8864 constrained 

3Fk +  M-1s-1 0.108807E+09 73.2908 

33 Fk −  M-1s-1 74.3893 45.0865 

3 2 1k ( k k )+ + += =  M-1s-1 0.136561E+07 118.70 

1 2 3k ( k k )− − −= =  M-1s-1 578.277 140.66 

 

Table 5.2 Estimated values and coefficient of variations of the rate constant fitted 

by HJCfit. 

 

 

 

[1] The principle of Microscopic reversibility states that in a reversible reaction the 

mechanism in one direction is exactly the reverse of the mechanism in the other 

direction. It follows that, in any cycle of a Markov chain, the product of the rate 

constants going one way around the cycle is the same as the product going the 

other way around. 
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As it can be seen from the coefficient of variation, not all the rates were well 

estimated by HJCfit. Firstly, the algorithm wasn’t able to estimate accurately the 

binding and the un-binding rates 3 2 1k ( k k )+ + += =  and 1 2 3k ( k k )− − −= = . This is 

due to the fact that these rates are mainly involved in the interburst shut times, 

and these intervals weren’t considered, as discussed before. Also the rates 

involving the di-liganded branch (connected to the two states A2F and A2F*) 

weren’t estimated in a satisfying way: 2γ , 3Fk + , 33 Fk −  had coefficient of 

variations close to the 50% or greater, while for 2α  and 2β  errors weren’t 

estimated at all (it means that not enough intervals fell in A2F* to realises a 

statistic). The reason of these unfitness to estimate can be understood from the 

equilibrium occupancies of the states, namely from the probabilities of staying in 

each state of the model. These are reported in the table below. 

 

 

 

State 
Equilibrium occupancy 

(50 uM) 

Equilibrium occupancy 

(10 mM) 

3A F ∗  0.187489E-01 0.970518 

3A F  0.632544 0.287667E-01 

2A F ∗  0.403628E-07 0.309645E-09 

2A F  0.256365E-03 0.196672E-05 

R  0.249303 0.478135E-07 

AR  0.883097E-01 0.338736E-05 

2A R  0.104272E-01 0.799927E-04 

3A R  0.410399E-03 0.629678E-03 

 

Table 5.3 Equilibrium state occupancies. 
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It is clear, from these occupancies, that the states A2F and A2F* have a very low 

probability to be occupied, even for low values of agonist concentration. The 

system, for a glycine concentration of 50 uM, remains in one of the two states 

composing the di-liganded branch one-three thousandth of the time spent in the 

fully-liganded branch. Even if these occupancies can’t be absolutely right (since 

there isn’t a correct information about the binding and the un-binding rates), this 

ratio suggests that the di-liganded opening condition is absent or, in every case, 

negligible. The model can be then simplified removing the states A2F and A2F*, 

becoming the one drawn in figure 5.10. 

 

 

 

 

Figure 5.10 Markov model chain without mono- and di-liganded openings 

 

 

Actually, in this model desensitisation states aren’t present. The sojourns in the 

desensitised states generate the long shut intercluster periods when the 

channel is bound. They can’t be etimated from steady-state experiments, since 

intercluster periods can’t be included in the HJCfit analysis. In order to achieve 

information about these rates, jump experiments were conducted, as it will be 
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discussed in the following section. From the same experimental protocols, it 

was possible also obtain a better estimation of the binding rate. 

 

 

5.10 Jump experiments 

 

Analysis of single channel behaviour in steady state conditions can’t give all the 

model rate constants, basically because it’s not possible to gather the 

information relating the long inter-cluster and inter-burst shut periods from it. It 

is linked to the fact that the experimenter has no means to estimate the number 

of channels present in a patch. Only the minimal number could be deducted 

from the presence of double or triple openings. For example, the length of long 

desensitization periods which determine the inter-cluster channel inactivity can 

be underestimated in patches with more than one channel present. If clusters 

occur rarely no overlapping of them could happen but they would chop the 

desensitisation intervals and measured intervals would be apparently shorter 

than real ones. Ambiguity of information contained in measured desensitisation 

intervals does not allow reliable estimation of rate constants of desensitised 

states, thus, desensitised states are not represented in the kinetic schemes 

used for HJCfit fitting. Similar reasoning is valid for inter-burst intervals at low 

(bursting) concentrations. Steady state analysis of single channel activations at 

low concentrations can’t usually estimate binding rates in an efficient way, 

because this could be done only taking into account the inter-burst shuttings. 

However, shut intervals between burst inside clusters contain information about 

binding/unbinding, thus, records at clustering concentrations can be used to 

estimate ligand association/dissociation rate constants. A difficulty in case of α2 

GlyR is that there is no clear distinction between bursting and clustering 

information. The choice of tcrit becomes very subjective and especially could 

lead to under/over estimation of association rate constant. Luckily, an 
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independent measure of association rate constant can be done using 

concentration jump experiments. In such experiments short pulses of known 

agonist concentration (concentration jumps) must be applied to the solution 

wetting the extracellular domains of the ion channels, where receptive sites are 

placed. These experiments can’t be conducted in cell-attached configuration, 

since it doesn’t allow to change the drug concentration. The best choice is then 

to use an outside-out configuration, where the extracellular domains of the 

channel are placed on the side of the membrane patch in touch with the bathing 

solution, whose composition can be controlled through a perfusion system. The 

outside-out configuration is suitable for these experiments also because it 

entails membrane patches greater then the ones of the cell-attached 

configuration: it is then possible to get tens (or hundreds) of channels in the 

patches, without modifying substantially the procedures used for transfecting 

the cells and creating the pipettes, holding the ones seen in cell-attached single 

channel experiments. The drawback is that, as described in section 5.3, the 

kinetics of the ion channels could be influenced by the different configuration. 

The greatest challenge in jump experiments is to apply the short pulses of 

known agonist concentration to the membrane patches. Ideally, pulses of 

agonist should resemble a square-wave shape, with sharply defined, rapid on 

and off phases. This ensures that all the receptors are equally exposed to the 

agonist, to a first approximation. Moreover, it is important that the solution 

switch should remain quantitatively and qualitatively constant throughout a 

recording: that is, the waveform describing the temporal course of the ligand 

concentration of the flow wetting the membrane should be periodic, to assure 

reproducibility of the measurements. In order to obtain such a solution switch, a 

rapid agonist perfusion system was used; it represented the only new element 

respect to the set up already used for single channel steady state experiments. 

It was formed by a rapid agonist application system (embedding a theta tube), a 

set of syringes, each connected to a PTFE tube through a Teflon valve, a 4 

input - 1 output joint. The theta tube is a glass pipette, with an hole having a 
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diameter of about 250 um, internally shared in two lumens by a septum. Two 

PTFE fine tubes were inserted in the pipette (one for each lumen) and fixed by 

a two-component epoxidic glue. The aim of the theta tube is to orient two 

laminar flows of different solutions, obtaining a straight, well defined interface 

between them, which can be directly observed when the salt concentrations of 

the two solutions are different. During the recording, the two flows corresponded 

instead to extracellular solutions having basically the same composition (having 

the composition described in 5.7), but just one of them including glycine. Theta 

tube was hold by the rapid agonist application system (LSS-3200; Burleigh, 

USA), a piezoelectric actuator that enabled rapid translation of the tube. It was 

assembled on a coarse manipulator and heavily damped to stop mechanical 

vibration being transmitted to other components. Sharp-profiled solution 

switches could be then obtained in this way: the pipette tip with the excided 

membrane patch was put under the stream of the solution without glycine, close 

to the theta tube end; the theta tube was then rapidly translated, so that the 

patch pipette tip entered in the flow of the glycine-containing solution. Similarly, 

the off phase was given by a fast re-positioning of the theta tube. One of the 

lumens of the theta tube was always connected to the solution without glycine, 

while the other was connected to the joint. The joint could receive solution from 

four syringes, three containing solutions with different glycine concentrations 

(100 uM, 500 uM, 10 mM), the forth filled with a normal extracellular solution, 

ten times diluted. All the syringes were hold in a vertical position, mounted on 

supports at the same height. The fluxes were then produced simply by the 

gravity, and syringe pistons were only used to fill the tubes avoiding air bubbles, 

during set up preparation, and to clean at the end of the experiments, inserting 

ethanol in all the tube network. The output solution of the joint could be 

manually switched by a knob. 
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An experimental acquisition was mainly composed by these steps: 

 

1) Transfected cells on a coverslip are placed in the tub, under the 

microscope objective; a perfusion system composed by two 

magnetically-anchored tubes, placed in correspondence of opposite 

sites of the tub, fix a constant level of extracellular solution (bathing 

solution). 

2) The theta tube is positioned with the tip inside the bathing solution 

and connected, by the joint, with syringe filled with the diluted 

solution. Since the other lumen is always filled with normal 

extracellular solution, it is possible to observe the interface between 

the two streams. A constant 60 mV ddp is imposed by the Axopatch 

amplifier. 

3) The patch clamp pipette is positioned, inserting its tip in the not 

diluted solution flow. The piezoelectric actuator, driven by a specific 

software, winWCP (developed by Dr. John Dempster, of the 

University of Strathclyde in Glasgow, U.K.), switches the theta tube 

between two positions: in this way, the patch pipette tip is wet 

alternatively by the two solutions. 

4)  The relative position between the patch pipette and the theta tube is 

adjusted (and, eventually, also the amplitude of the piezoelectric 

oscillation), until the electrical response, caused by the different 

conductivity of the two solutions of the theta tube flows, assumes a 

square-wave shape. 

5) The piezoelectric actuator is turned off (in the starting position). 

6) The patch pipette is moved to the cells and an outside-out patch is 

realised. Basically, after sealed the cell surface like in cell-attached 

configuration, a strong positive intra-pipette pressure is created, 
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breaking the membrane patch under the tip. The patch pipette is then 

quickly raised, so that the attached membrane pieces fold back on 

themselves onto a patch covering the pipette. 

7) The patch pipette is exposed to the theta tube flow, in the position 

previously chosen. 

8) The first glycine concentration (10 mM) is set through the joint. 

9) A protocol is applied to the actuator, imposing pulses 1.3 s long, 

repeated every 20 seconds. 

10) Possible channel rundown is monitored, observing the peaks of the 

channel responses to the high concentration pulses in subsequent 

cycles. 

11) Since the electrical response became roughly constant in amplitude, 

at least 10 cycles are recorded. 

12) Step (11) is repeated for the other glycine concentrations (100 uM 

and 500 uM). 

13) Another series of cycles with 10 mM glycine are realised, in order to 

check that the peak response is not decreased meanwhile. 

14) The membrane patch is broken through an intra-pipette pressures, 

and the diluted solution is imposed through the theta tube. 

15) The electrical wave shape is recorded. In fact, it corresponds to the 

glycine concentration pulse shape and is then used as input signal for 

analysing data. 

 

In figure 5.11 examples of these recorded waveforms are shown. Macroscopic 

currents shown are averages of 6- 10 single sweeps. 
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Figure 5.11 recorded waveforms from application of 1,2 s long concentration jumps. 

Three glycine concentrations were used: 100 uM, 500 uM, 10 mM. 

 

 

 

5.10.1 Concentration jump current analysis 

 

In the time course of the channel responses to the glycine pulses, three 

different phases can be observed. In the first phase, just after the application of 

the stimulus, there is a raising, due to the agonist bindings and the following 

openings, which lead to a peak. Larger is the glycine concentration applied, 

greater is the value of this peak and faster is the rise time. During the second 

phase, which starts after the peak, current declines until it reaches steady state. 

This decline of current happens despite the glycine is present in the solution.  

This phase is evident only for high glycine concentrations and it this is due to 

the desensitisation of the channels after the agonist binding. In particular, if we 

observe the saturation condition (10 mM) and assume that the activation 
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kinetics is extremely faster than the desensitization one, the peak corresponds 

to the all open channels condition, while the plateau represents the equilibrium: 

this means that the ratio between the plateau and the peak amplitudes is close 

to the overall open state probability of the receptors in equilibrium conditions. 

The third phase, after the end of the agonist pulse application, is a slow 

decaying due to the channel deactivation. Measurements of time course of all 

these phases are reported in the table 5.4. Concentration jump experiments 

were done on eight different patches. In four cases, the protocol just described 

was followed till its end, while in three cases, only the 10 mM and 500 uM 

concentration jumps were applied. In the last case, only the saturating 

concentration was applied before the patch was lost. Average values and 

coefficients of variation are reported, with regard to the peak amplitude, the 10-

90% rise time, and the desensitisation and the deactivation constant times 

(these last two phases were fitted by a single exponential). 

 

10 mM glycine concentration 

 
10-90% 

rise time (ms) 

Desens. time 

Constant (ms) 

Deact. time 

Constant (ms) 

Amplitude 

(pA) 

Mean value 1.43 8.68 362 448 

CV% 15 31 21 21 

500 uM glycine concentration 

 
10-90% 

rise time (ms) 

Desens. time 

Constant (ms) 

Deact. time 

Constant (ms) 

Amplitude 

(pA) 

Mean value 29 1575 393 276 

CV% 24 37 26 28 
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100 uM glycine concentration 

 
10-90% 

rise time (ms) 

Desens. time 

Constant (ms) 

Deact. time 

Constant (ms) 

Amplitude 

(pA) 

Mean value 2315 -- 251 74 

CV% 86 -- 20 29 

 

Table 5.4 Rise time and desensitisation and deactivation time constants from 

concentration jump experiments.  

 

Hill equation was then fitted using the amplitude peak values, obtaining an EC50 

of 355 uM (EC50 is the agonist concentration corresponding to a channel open 

probability of 0.5), and a Hill slope nH=1.29. Hill curve is depicted in figure 5.12. 

 

 

Figure 5.12 Hill equation fitted from amplitude peaks values in jumps experiments.. 
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In agonist saturating concentration, if we assume that the binding process is 

largely faster than the deactivation one, we can achieve information concerning 

two different kinetics: agonist binding (from the first rising of the signal) and 

desensitisation (from the second part, till the plateau value). Instead, it is not 

straightforward to obtain useful information from the last part (the response after 

the end of the agonist application), because its kinetics is complex and depends 

on several rates, not only the dissociation one.  

 

 

5.10.2   Rate constants estimation 

 

The macroscopic currents obtained from concentration jumps were fitted using 

the software tool Channelab (Synaptosft Inc., Decatur, USA). Desensitisation 

and association rate constants were determined by least squares minimization 

fitting. Compared to the model used for single channel analysis, represented in 

figure 5.10, the one used in macroscopic current fittings included two 

desensitisation states D1 and D2, connected to the state A3F*. The number and 

the position of the desensitisation states were chosen in analogy with the 

heteromeric α1β receptor (Beato et al., 2007). This model, shown in figure 5.13, 

was given as input to Channelab software. All the rate constants were fixed 

except the four rates relating to D1 and D2 or the binding rate 1 2 3k ( k k )+ + += = . 

All the fixed rates had the same values taken from single channel-steady state 

fitting by HJCfit. Fitting by Channelab was then conduced in two stages. Firstly, 

the saturating concentration trace was fitted, from the onset of the application 

up to the time when desensitisation reached the plateau (500 ms later). In this 

way, the rates for entry and exit into the desensitization states together with the 

association rate constant were estimated. Actually, since all the data points had 

the same weight in the fitting, and the initial rise time is greatly shorter than the 
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subsequent decay, this fit provided a good estimation only of the desensitization 

rates. Another fitting was then performed with k+1 the only free parameter. In 

this case, the traces of all the concentrations (10 mM, 500 uM and 100 uM) 

where fitted simultaneously  and only the initial rise time was considered. 

Standard deviation of these rates are not available because just one acquisition 

set was used for fitting and the used software tool doesn’t provide the an 

internal std estimation. The overall model, including the rates finally achieved, is 

reported in figure 5.13.  

 

 
 

Figure 5.13 Overall model, including desensitizing states, with the estimated 

rate constants 
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6 Limits of using ligand gated ion channels as sensing elements 

 

 

Let’s start our final considerations from the Del Castillo-Katz model, which is 

a simple but significant example of ligand gated ion channel representation. 

It highlights that the activation of a ligand gated ion channel passes 

inevitably through two different stages: the binding between the receptor and 

one (or more) specific target molecules, and the opening of the selective 

pore, allowing ions to flow through. Observing the model, the presence of 

these two stages is reflected in the fact that the current-response of the 

receptor is influenced by two different ratios: the gating efficacy E and the 

dissociation rate constant Kdiss. Channel efficacy is given by the ratio 

between opening and shutting constants (E /β α= ), and its value mainly 

depends on the energy barriers that the channel must exceed in the 

conformational changes leading from the shut to the open state and vice 

versa. It can be influenced by several factors: first of all voltage, but also 

temperature, pH, composition of the bilayer in which the channel is 

embedded. Dissociation constant Kdiss, instead, is the ratio between the rate 

constants of the inverse and the direct binding reactions ( diss I DK K / K= ). It 

depends, basically, on the strength of the chemical bond between the 

receptive site of the ligand gated ion channel and the agonist molecule, and 

it is then influenced by several variables (above all temperature and pH). 

 

 

Figure 6.1 Del Castillo-Katz model. 
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In order to understand how E and Kdiss influence the signal channel gating 

mechanism, the relation between agonist concentration [A] and open state 

probability, corresponding to the probability of being, in steady-state conditions, 

in the state AR*, must be considered. It can be drawn using the method 

described in section 3.4.3 or, in this simple case, solving the system 

 

AR AR*

I AR D R

R AR AR*

P - P = 0

K P - [ A] K P = 0

P + P + P =1

β α







 (6.1) 

 

In the system above, the first two equations are the differential equations 

describing the kinetics of the states R and AR*, where the derivatives were set 

to zero, since we are in equilibrium conditions. The third equations, instead, 

indicates that the probability of being in one of the states of the system must 

clearly be 1. From system 6.1 it follows that the probability of being in the 

unique open state of the system is 

 

open AR*

diss

[A] E
P = P =

K + [A] (1+ E)
. (6.2) 

 

In ligand saturating conditions, namely when [A] tends to infinity, the asymptotic 

value of the open state probability is set by 1E /(E ) /( )β β α+ = + . This is a 

logical consequence, considering that, in saturating conditions, the receptive 

site of the ion channel is basically always bound: the state R has an occupancy 

probability close to zero and the three-states Del Castillo Katz model becomes 

a two-state model, formed by AR and AR*. Other information could be gotten 

from the slope of the function open openP P ([ A])= , which is expressed by (6.3). 
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{ }
open diss

2

diss

dP E K
=

d[A] K + [A] (1+ E)
 (6.3) 

 

It is immediate to observe that, for very small concentrations, when [A] tends to 

zero, the slope of the curve tends to the value E/Kdiss. It means that the two rate 

constants ratios have the same weight in influencing the relationship between 

open state probability and ligand concentration. A big efficacy E increases the 

slope, because give to the channel an high probability to move and remain in 

the open state whenever it reaches the bound condition. A small value of Kdiss 

corresponds to a “sticky” chemical binding between ligand and receptor 

molecules. It means that, every time that the channel binds, it holds the agonist 

molecule for long time, making the channel opening easy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Example of the dependence of Popen([A]) on the dissociation constant. 

The other rates refer to an application of a Del Castillo-Katz model to a muscarinic 

receptor (Osterrieder, 1980) coupled with a G protein. 
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Finally, it can be observed that the function open openP P ([ A])=  is monotonically 

increasing, since it’s derivative is always positive (because E and Kdiss are, 

clearly, always positive); the slope, instead, is a monotonically decreasing 

function of the concentration, because [A] occurs only at the denominator. It 

could be than useful to understand how the parameters E and Kdiss influence the 

passage from an high slope to a low slope condition. In particular, we can 

obtain an idea of it by extrapolating the concentration value [A]1, corresponding 

to an unitary slope: 

 

diss diss1 E K - K
[A] =

1+ E
 (6.4) 

 

Since, in every case, the dissociation constant is several orders of magnitude 

lower than the efficacy (E>>Kdiss), the expression above can be approximated: 

 

diss1 E K
[A]

1+ E
�  (6.5) 

 

So, for low values of Kdiss, namely in case of “sticky” chemical bindings, the 

concentration value [A]1 is low, increasing as the square root of the dissociation 

constant. When E increases (for values of E greater than 1), the concentration 

value [A]1 moves left.  

In order to use these kind of receptors for building chemical sensors, and, in 

particular, extracting the ligand concentration values from an estimation of the 

channel open probability, some considerations can be done. The first thing it 

could be important to achieve is a good lower limit of quantification (LLOQ). It is 

the lower value of concentration which could be measured with an acceptable 

relative error: in particular, it can be considered as the smaller concentration 

value whose measurement is characterized by a coefficient of variation lower 
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than 20% (FDA Guidance for Industry, 2001). Obviously, an high initial slope of 

the openP ([ A])  curve could assure better LLOQ values. Best performance, in this 

sense, could be obtained with channels having large values of efficacy and 

small dissociation constants. On the other side, we could be interested in 

having a large assay range, defined as the difference between the upper limit of 

quantification (ULOQ) and LLOQ. The upper limit of quantification can be 

defined as the greater concentration value which can be estimated with a 

coefficient of variation lower than 15%: it depends, clearly, on the slope of the 

curve in proximity of the channel saturating conditions. In fact, since the slope of 

openP ([ A])  steadily decreases when [A] increases, small variations in the 

probability estimations produce steadily increasing errors in the ligand 

concentration readout.  

 

 

 
Figure 6.3 Concentration-response curve of a generic ligand gated ion channel. 

 

 



128  

From the analysis of the dependence of [A]1 from the two parameters E and 

Kdiss, it is possible to understand that a trade-off exists between the capability of 

obtaining a good LLOQ and a good ULOQ value. In particular, a value of E 

close to 1 represent an optimum for the ULOQ. Nevertheless E fixes also the 

asymptotic value which the open state probability can achieve: for these reason, 

and for its importance in guaranteeing a small LLOQ, it could be preferable to 

have a big efficacy value, able to allow Popen to reach values close to one for 

high agonist concentration values. The same trade-off problem affects the 

binding step: a “sticky” bound allows better values for the LLOQ, but leads 

openP ([ A])  to quick saturation. 

If we want to estimate the ligand concentration from the channel open state 

probability, following an approach like the one described in Chapter 4, another 

question to keep in consideration is the “quantity of information” that can be 

obtained from a record having a given temporal length. In fact, in this case, 

each sample of the record is basically considered as the value assumed by a 

binomial random variable having the open state probability as a parameter. The 

value of Popen  is then determined on the basis of several observations, 

represented by the samples. It is then intuitive that, if we have a certain number 

of samples NS , the overall information that they can give to the estimator 

depends on what’s their level of correlation. If, for example, the kinetics of the 

channel presents a very long shut lifetime, and the NS samples are taken, close 

together, all during the same shut period, they will bring no information. In order 

to bring the most information, they should have a temporal distance able to 

guarantee the independence of the observations. Therefore, if a channel has a 

complex kinetics, or has states with a very long mean lifetime, the acquisitions 

should become very long, in order to allow a satisfactory estimation. We could 

observe this limit in the Del Castillo-Katz model, when E or Kdiss become too 

high: in particular, this means that the channel is too “sticky”, so the number of 

binding events in a limited amount of time is inevitably too low for allowing a 
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statistical analysis. This is also, for example, the case of the homomeric α2 

glycine receptors described in Chapter 5, characterised by long inter-burst and 

inter-cluster periods. Another limit for this class of receptors is the relatively high 

ligand concentration that they need to become active. In fact, in the chapter 

dedicated to the single channel analysis, it was pointed out that homomeric α2 

glycine receptors can’t be active for agonist concentrations smaller than tens of 

micromoles. Also in the case of the more functional heteromeric α1β form, the 

overall open state probability gets to values close to the 1% only when the 

glycine concentration is larger than 10 uM. Similar (or even worst) lower limits of 

detection characterise all the receptors belonging to the nicotinic superfamily 

and, in general, are typical of the ligand gated ion channels regulated by extra-

cellular agonist molecules. The reason of this behaviour can be understood 

thinking about their role in the cell membranes. In fact, these receptors are 

mainly located in the nerve cells, where turn neurotransmitter chemicals coming 

from the neighbouring cells in depolarizing electrical signals, allowing in this 

way the information transition between neurons. Neurotransmitter molecules 

are not homogeneously distributed in the extracellular fluid, because in this 

conditions, obviously, they could damage the correct propagation of the 

information stimuli, creating a cross-talking between cells. Chemical receptors, 

instead, thicken in correspondence of the synapses, specialized junctions 

where neurons are close together and parted by a gap, which is about 20 nm 

wide (synaptic cleft). Here, the presynaptic neurons secrete the agonist 

(neurotransmitter), inside specific vesicles: in this way, a relatively high 

concentration of target molecules can quickly spreads around the receptors 

facing into the synapse. The possible range of a sensor involving, as sensing 

element, such channels, goes basically from the tens of micromoles to, at the 

most, the millimolar concentration. An example of concentration response 

curve, referring to the α1β heteromeric form of the glycine receptor, was drawn, 

using a Matlab routine, from the rate constants reported in two papers of the 

same group: Burzomato et al., 2004; Beato et al., 2007. From this last paper, in 
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particular, the rates referring to two desensitising states were considered, both 

connected with the tri-liganded opening; no information were inserted about 

other possible desensitizing states connected with mono- or di-liganded open 

states. The curve was drawn on the basis of the states occupancies of the three 

open states (the overall open probability is the sum of these three contributes) 

in function of the glycine concentration. 

 

 

 
Figure 6.4 Concentration-response curve of the α1β glycine receptor. 

 

 

Basically, in this case, a measurable channel activity can be observed from a 10 

uM concentration, and the saturation is reached around 200 uM. For very high 

glycine concentrations, it’s possible to observe a slight reduction of the open 

probability, due to the desensitizing states. 
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The modelling of such a channel wase realised by an HJCfit fitting, following the 

procedures described in Chapter 5. HJCfit estimator is able to consider, for its 

fitting, a large amount of information concerning the lifetime of the sojourns in 

the states. A similar procedure could be used also for the readout of the ligand 

concentration, having, in this case, [A] as the unique parameter. However, this 

procedure could be very hard to realise in an automatic way. Firstly, it could be 

necessary to consider very complex models, characterised by several time 

constants, with very fast kinetic components. A great temporal resolution could 

be needed, and this is not reachable, at present, in BLMs obtained in an 

automatic way, because of the relatively large dimensions of the membranes, 

necessary for inserting complex ion channels through vesicles fusion (see 

section 2.8). Moreover, the idealisation of the record in an automatic way is a 

greatly challenging and unsafe process (as observed by D. Colquhoun, 1995). 

Probably, the way described in Chapter 4, even if it doesn’t use all the possible 

information, could be more suitable, eventually tailoring it to the characteristics 

of the used ligand gated ion channels. In the case of channels of the nicotinic 

superfamily, for example, it could be useful to consider only the parts of the 

records corresponding to single channel bursts, extracting their open probability 

simply from the amplitude histograms. In particular, this could be realised 

extracting the parts of record containing bursts and clusters of a single ion 

channel by a threshold-based procedure. The open probability during the single 

burst and cluster could be then easily extracted from the subtended area of the 

signal, if the used filter approximates the Gaussian one. 
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Conclusions 

 

 

In this thesis, several aspects were described and analysed, concerning the use 

of ligand gated ion channels as constitutive elements of chemical sensors. The 

attempt to use such natural nanomachines is a consequence of several 

considerations. Firstly, the increasing interest for chemical and biological 

assays, especially in the diagnostic field. Here the most widespread used 

ELISA assays show, in most applications, heavy limits in terms of performance, 

costs, reliability, time and ease to use. Moreover, the current developments, 

both in nanotechnologies and in genetic engineering, could allow the use of 

“tailored” ion channels, embedded in artificial systems and potentially able to 

detect single molecule bindings: consequently, they could bring to a strong 

reduction of the lower limits of detection, respect to the state of art sensors. 

Actually, in my experiments I tested the behaviour of natural ion channels, not 

engineerized for the proposed applications; anyway, my impression is that the 

use of LGICs as sensing elements has, at present, several practical limits, as 

discussed in Chapter 6. The kinetic behaviour of the principle neural ligand 

gated ion channels, for example, doesn’t allow to quantify concentrations under 

the micromolar range. Moreover, in touch with complex mixtures, their current 

response show alterations, even if the receptive sites have a great affinity for 

the target molecules, probably due to partial occlusion of the conductive pores. 

Also from the point of view of the artificial bilayer creations and the insertion of 

channels, many practical problems must be overcome. In particular, there is a 

clash between two different requirements: stability of the artificial membranes 

and capability to insert the receptors. In order to have resistant membranes, 

more stable than the suspended bilayers usually adopted in the biological 

laboratories, it appears to be mandatory to decrease the dimensions of the 

substrate’s pores, or to support the bilayer as mentioned in section 2.5. On the 

other side, these contrivances don’t permit the efficacious insertion of complex 
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channels like the LGICs. An “hybrid” strategy, studied by several research 

groups and consisting in the creation of supported bilayers on nanoporous 

substrates, could be promising; however, the investigations made so far require 

time to be fully proven. In conclusion, it seems difficult that LGIC-based 

sensors, could compete with state-of-the-art techniques commercially available 

in the near future.  

However, new perspectives are very recently coming worldwide into the scene 

due to the availability of artificial pores in the nanometer size. These pores are 

competing natural ion channels from both the stability and the functionality point 

of view avoiding the high complexity in handling artificial lipid bilayers. 

Therefore, in this scenario, the work done in this thesis regarding single 

molecule stochastic analysis will be extremely fruitful to understand the 

perspectives of these novel technologies.  
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Appendix A 

 

EIGENVALUES AND EIGENVECTORS OF A MATRIX 

 

Given an n n×  matrix M, a nonzero 1n ×  column vector x is said to be an 

eigenvctor of M if there is a scalar λ such that 

 

 Mx = x .λ  (A.1) 

 

In this case, λ is the eigenvalue corresponding to x . Such an eigenvector is not 

unique: it can be multiplied by any nonzero scalar; equation remains satisfied. 

The above equation can be equally written as 

 

 (M- I )x = 0λ  (A.2) 

 

where I is the n n×  identity matrix. Any square matrix, when is multiplied by a 

nonzero vector, can be yield a zero result only if it is singular, namely, its 

determinant is zero. Thus the eigenvectors of M can be found solving the 

equation 

 

 | M- I |= 0λ  (A.3) 

 

The set of equations iMx = Iλ , i =1,2,...,n  can be written in a single matrix 

equation 

 

 MX = X Λ  (A.4) 
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where X is a matrix having the eigenvalues of M as columns, Λ is an n n×  

diagonal matrix whose diagonal elements are the eigenvalues of M.  

In case of reversible Markov processes (like the ones used for modelling ion 

channels), the eigenvalues are all real and distinct and X is also real and 

invertible; Postmultiplying the elements of (A.4) for X-1 we obtain 

 

 1 1X X MXX MI M− −Λ = = =  (A.5) 

 

So, M matrix can be expressed starting from its eigenvectors and eigenvalues. 

This property can be useful, for example, to calculate the powers of the matrix. 

In fact 

 

 

2 1 1 1 2 1

3 1 1 1 3 1

1r r

M X X X X X X X X
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...
M X X

− − − −

− − − −

−
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= Λ Λ Λ = Λ

= Λ

 (A.6) 

 

where Λr is simply another diagonal matrix having the powers of the 

eigenvalues ( 1 2
r
i , i , ,...,nλ = ) as diagonal elements.  

It is also possible to express Mr, and, in general, every function of M, using its 

spectral matrices. In fact, considering X-1 as a set of n columns 1 2iy , i , ,...,n= , 

the product 1rX X −Λ  can be written as 
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where the elements xi yi are n n×  matrices, called spectral matrices of the 

matrix M: 

 

 1 2i i iA x y , i , ,...,n= =  (A.8) 

 

Equation A can be than written as a composition of the eigenvalues and the 

spectral matrices of M: 

 

 
1

n
r r

i i

i

M A λ
=

=∑  (A.9) 

 

But this important result can be extended. Spectral matrices can be used for 

calculating any function of the matrix M, as: 

 

 
1

n

i i

i

f(M) = f ( )Aλ
=

∑  (A.10) 

 

This result, due to J. J. Sylvester, give us a practical way to calculate exp(Qt ) , 

allowing the p.d.fs of the time distributions of the ion channels to be expressed 

as a mixture of scalar exponential components: 

 

 
1

n

i i

i

exp(Qt ) exp( t )Aλ
=

=∑  (A.11) 
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Appendix B 

 

 

IMPEDIMETRIC ANALYSIS OF THE WARNER INSTRUMENTS PLANAR 

LIPID BILAYER WORKSTATION. 

 

 

INTRODUCTION 

 

The subject of this appendix is an impedimetric analysis of the system for the 

creation of artificial lipid bilayers realized by Warner Instruments. In particular, 

the device under analysis is the cup and chamber system included in the Planar 

Lipid Bilayer Workstation. 

The study involves: 

 

• the definition of an electrical model of the system;  

• the estimation of the main model’s parameters; 

• the comparison of the estimated values with the values resulting from 

experimental data. 

 

Experimental data were produced using an LCR Meter (Agilent 4284A 

Precision LCR Meter, USA), acquiring the real and the imaginary part of the 

system impedance simultaneously at various frequency in the range between 

20 Hz and 1 MHz. Starting from these data values, fitting, plotting and 

parameter’s calculation were realized using the software tool LEVM (Solartron 

Analytical, UK).  
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ELECTRICAL MODEL 

 

The Warner system is formed by a chamber in black delrin in which a 

cylindrical delrin cup is inserted. On the surface of the cup, whose wall is 1 mm 

thick, there is a concavity: in its thinnest part, where the wall is only 250 um 

thick, there is the hole which the bilayers are realized across.  

 

 

 

 

 

 

 

 

 

 

 

Figure B1 

(Left) Warner apparatus.  

(Right) Measures of the cup. 

 

 

The impedance acquisitions are made by the LCR Meter, using four-terminal 

configuration and auto-balancing bridge method. The electrical connections are 

obtained linking the BNC cables on a metal board with two Ag/AgCl cylindrical 

electrodes. The two compartments of the Warner system are filled by 

electrolytic solution and communicate through the hole (in absence of formed 

membranes). The Ag/AgCl electrodes are immersed in solution, one for 

compartment. 
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The DUT, between the electrodes, can be modelled using this scheme (for low 

frequencies): 

 

 

  Cs: septum capacitance 

 

  Re: electrode resistance 

 

  Rh: hole resistance 

 

     

Figure B2 

system electrical model 

 

This scheme, composed by a resistance (2Re) with in series the parallel 

between a resistance and a capacitance (Rh and Cs) can be plotted on a 

Nyquist diagram, where the the x-axis is the real part of the total impedance 

and the y-axis is the imaginary part changed in sign. The qualitative graph is 

the following one, where the arrow indicates the direction of the increasing 

frequencies. 

 

 

 

Figure B3 Expected shape of the Nyquist diagram of the system 
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The two resistance values can be easily obtained from the graph, by the points 

where the plot crosses the x-axis. The value of the septum capacitance can be 

obtained noting that the trajectory described by the system is a 

semicircumference. The overall impedance of the system, Z, is given by: 

 

h
e

s h

R
Z = 2 R +

1+ j C Rω
  (B.1) 

 

so, at the characteristic angular frequency C

s h

1
=

C R
ω , we have: 

 

( )

{ } { }

h
C e

h h
C e C

R
Z = 2 R +

1+ j

R R
Re Z( ) = 2 R + , - Im Z( ) = .

2 2

ω

ω ω

 (B.2) 

 

The characteristic angular frequency corresponds to the maximum, in the y-

axis, of the lobe; the value of Cs can be obtained from: s C hC =1 / Rω . 

 

 

CALCULATION OF THE MODEL PARAMETERS 

 

 

Septum Capacitance (Cs) 

 

As previously shown, the system for bilayer creation is formed by two 

compartments solution-filled divided by a septum. In the Warner system, a 

delrin cup is embedded in a chamber, in a specially shaped hole. The cup is 

not hermetically sealed in the chamber, so a thin solution layer envelops it. 
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When the frequencies are not too high (as in our case, where they are lower 

than 1 MHz), the electrolytic solution behaves like a metal, while the cylindrical 

delrin cup is a dielectric, being the conductivity of the delrin quite low (εr=3.7). 

Therefore, the cuvette filled and surrounded by electrolytic solution behaves 

like a cylindrical capacitor.  In our case, neglecting the presence of the 

concavity and of the hole, the value of the capacitance can be obtained by: 

 
-12 -3

o r
s -3

ext

-3
int

2 h 2 * 8.85 * 10 * 3.7 * 15 * 10
C = = =18.5 pF

d 13 * 10
ln( ) ln( )

d 11* 10

πε ε π
 (B.3) 

 

where h=15 mm is the cuvette’s height, dext=13 mm and dint= 11 mm are its 

external and internal diameters. Further simulations made using FemLab 

showed that the presence of the concavity introduces a contribution of 5 pF. 

Consequently, the overall septum capacitance becomes: 

sC =18.5 + 5 = 23.5 pF  

 

 

Hole Resistance (Rh) 

 

As shown in figure B1, Warner produces cup having holes with three different 

sizes. In proximity of the hole, the wells are in every case 250 um thick. Calling 

σ the conductivity of the solution, A the hole’s area, l the hole thickness, Rh is 

given by: 

 

h

1 l
R =

Aσ
. (B.4) 

 

In the experiments afterwards presented, the cup had a 150 um-diameter hole 

and the solution, the same for both the compartments, was 0.1M of KCl in 
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distilled water. For this solution and this salt concentration, the conductivity is 

σKCl=1.264 Ω-1m-1, at a temperature of 24oC[1]. Then, the estimate hole 

resistance is: 

 

-6

h -6
KCl 2

1 l 1 250 * 10
R = = =11.2 KW

150 * 10s A 1.264
* ( )

2
π

 (B.5) 

 

 

[1]  The conductivity value was gotten from tables.  

 

 

Electrode Resistance (Re) 

 

This term depicts, at frequencies upper then some tens of Hz, the behaviour of 

the interface between the electrode and the electrolytic solution, where the ion 

charge accumulates and redox occurs. At lower frequencies, the electrode-

solution interface couldn’t be represented only by an omhic resistance, 

becoming the impedance expression given by the parallel of  a capacitance 

(double layer capacitance) and the charge transfer resistance. 

In every case it’s hard to estimate the electrode resistance Re, because it’s 

expression e 0R = RT/nFi  shows that it depends on the exchange current i0. The 

exchange current is the current that flows from electrode to solution (or from 

solution to electrode) at the equilibrium (without ddp applied) and in most cases 

is unknown. However, the impossibility in calculating Re is not a big matter, 

because the electrode resistance actually moves the lobe in the x-axis but 

doesn’t modify its shape. 
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PARAMETERS VALUES FROM EXPERIMENTAL DATA 

 

The following results refer to three impedimetric acquisitions made on the 

Warner system by the LCR Meter. The values of the real and the imaginary 

parts of the impedance were measured in correspondence of about fifty 

frequency values between 20 Hz and 1 MHz. 

In all the experiments, the same setup was used: 

 

• the cup had a 150 um diameter hole 

• the solution was 0.1M of KCl 

• the Ag/AgCl electrodes were prepared inserting the silver electrodes in 

bleach for about fifteen minutes 

• the applied voltage, during the acquisitions, was 100 mV 

• final Z(f) values were obtained averaging thirty measurements 

• during the acquisition, DUT was placed in a Faraday cage. 

 

The first experimental acquisition was done on the 12th of January 2005, 

without measuring the effective conductance of the KCl solution (the 

conductivity value was got from tables). The others two acquisitions were 

performed on 4th of November 2005, using two different cup-chamber 

systems: the first one is a system used for several months for bilayer 

experiments, the second is new. 

Nyquist diagrams of the three experiments were made using Matlab and the 

parameters values were calculate using LEVM, fitting the data with a 

complex nonlinear square method. 
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Figure B4 Nyquist diagram of the experimental acquisitions 

 

 

The following table shows the calculated parameters Rh, Cs, 2Re, resulting 

from the LEVM fitting. 

 

 

 Rh [kOhm] Cs [pF] 2Re [kOhm] 

27th Jan 16.65 33.52 4.15 

4th Nov (old system) 15.72 29.85 3.90 

4th Nov (new system) 14.85 34.11 3.81 

 

Table B1 Calculated values 
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COMPARISON BETWEEN VALUED AND FITTED VALUES 

 

In order to understand how the proposed model can predict the behaviour 

of the system, the percentage errors in the valuation of Rh and Cs is 

presented for all the experiments: 

 

 

 ∆Rh% ∆Cs% 

27th Jan 48.7 42.6 

4th Nov (old system) 40.3 27.0 

4th Nov (new system) 32.6 45.1 

 

Table B2 Mean percentage errors 

 

 

Instead the percentage displacements between the values calculated in 

different experiments, referred to the smallest values, are: 

 

h,MAX h,MIN

h,MIN

s,MAX s,MIN

s,MIN

R - R 16.65 -14.85
* 100 = * 100 =12.12%

R 14.85

C - C 34.11 - 29.85
* 100 = * 100 =14.27%

C 29.85

 (B.6) 
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