
Alma Mater Studiorum — Università di Bologna
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Abstract

The large-scale distribution of matter in the Universe plays a crucial role in shedding light on
the fundamental properties of dark matter, dark energy, and gravity on cosmic scales. Over
recent decades, numerous multi-band surveys have been conducted to assemble representative
samples of cosmic tracers. To achieve an accurate and precise understanding of the Universe
on its largest scales, a combination of diverse methods and observations is employed. Among
the primary cosmic tracers that can provide answers to the most profound questions in cos-
mology and fundamental physics, galaxy clusters assume a pivotal role. Reaching up to 1015

solar masses and radii up to 5 Mpc, galaxy clusters trace the deepest virialized potential wells
of dark matter in the present Universe, lying in correspondence of the nodes of the cosmic
web.

Since galaxy clusters mark the transition between linear and nonlinear gravitational per-
turbations, their formation and evolution can be theoretically described with high accuracy.
Due to the dominant role of dark matter within galaxy clusters, it is sufficiently accurate,
considering existing observational uncertainties, to model the formation and evolution of
clusters through N -body dark-matter-only simulations. These simulations serve to calibrate
both the mass function, namely the abundance as a function of mass and redshift, and mass
profiles of galaxy cluster haloes. Having a theoretically calibrated halo mass function allows
for the modelling of observed galaxy cluster counts, which, in turn, provide valuable con-
straints on fundamental cosmological parameters. Indeed, cluster counts are among the most
effective cosmological probes, providing precise constraints on parameters like the matter
density parameter, Ωm, the square root of the mass variance at redshift z = 0 for scales of 8
h−1Mpc, σ8, and the parameters of the dark energy equation of state. Additionally, robust
constraints on these cosmological parameters can be derived from measurements of cluster
correlation functions and power spectra, commonly referred to as cluster clustering.

In this Thesis, we present a series of works that encompass the fundamental steps of
cosmological analyses based on galaxy clusters, spanning from mass calibration to deriving
cosmological constraints through counts and clustering. Throughout all these investigations,
we assumed a standard Λ-cold dark matter (ΛCDM) cosmological model. Firstly, we fo-
cus on the work by Lesci et al. (2023) on the 3D two-point correlation function (2PCF) of
the galaxy cluster sample by Planck Collaboration XXVII (2016), built up using observa-
tions of the Sunyaev-Zeldovich (SZ) effect. The masses of these clusters are expected to
be underestimated, as they are derived from a scaling relation calibrated through X-ray
observations. Recent studies, including Planck Collaboration XXIV (2016) and Planck Col-
laboration VI (2020), have demonstrated the need for very high values of the Planck mass
bias, referred to as bSZ, to avoid discrepancies between the σ8 constraints obtained from
Planck cluster counts and CMB observations. Specifically, simulations and weak-lensing ob-
servations suggest (1 − bSZ) ∼ 0.8, while reconciling cluster counts with CMB cosmological
results requires (1− bSZ) = 0.62±0.03. In our recent work, Lesci et al. (2023), we determined
(1 − bSZ) = 0.62 ± 0.12 using the Planck cluster 2PCF and assuming priors on cosmolo-
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gical parameters consistent with Planck CMB results. This constraint agrees with the one
obtained from the combination of CMB and cluster count observations, with this highlight-
ing the need for very low (1 − bSZ) values to reconcile cluster statistics with CMB results.
Lastly, by applying the same bSZ priors as Planck Collaboration XXIV (2016), which are
based on weak-lensing measurements, we obtained constraints on Ωm from the 2PCF. These
constraints are not only consistent but also competitive, in terms of uncertainties, with those
derived from cluster counts. Notably, our analysis revealed a reduction of approximately 30%
in the uncertainty of Ωm when combining cluster counts and 2PCF. However, it is important
to note that σ8 remains unconstrained in our analysis.

Furthermore, in this Thesis we detail the works by Lesci et al. (2022a) and Lesci et al.
(2022b), where we analysed the cluster counts and 2PCF, respectively, of the galaxy clusters
detected by Maturi et al. (2019) in the third data release of the Kilo Degree Survey (KiDS-
DR3, de Jong et al. 2017). Specifically, the cluster detection was carried out with the Ad-
aptive Matched Identifier of Clustered Objects (AMICO, Bellagamba et al. 2018) algorithm.
The sample covers an effective area of 377 deg2, for a total of 7988 galaxy clusters. We
assessed the incompleteness and the impurities of the cluster sample by exploiting a mock
catalogue developed by Maturi et al. (2019), and we corrected our data accordingly. Both
cluster counts and 2PCF analyses are based on the weak-lensing measurements by Bellagamba
et al. (2019), which were fundamental for deriving the scaling relation between cluster mass
and richness. In Lesci et al. (2022a), we considered a subsample containing 3652 galaxy
clusters having an intrinsic richness of λ∗ ≥ 20 and redshift z ∈ [0.1, 0.6]. From the joint
analysis of cluster counts and weak lensing, we found Ωm = 0.24+0.03

−0.04, σ8 = 0.86+0.07
−0.07, and

S8 ≡ σ8(Ωm/0.3)0.5 = 0.78+0.04
−0.04, which are competitive constraints with the results from re-

cent cosmic shear (Troxel et al. 2018; Hikage et al. 2019; Asgari et al. 2021), cluster counts
(Bocquet et al. 2019; Costanzi et al. 2019), and CMB (Hinshaw et al. 2013; Planck Collab-
oration VI 2020) analyses. We also showed that the inclusion of cluster counts significantly
improves the constraints on the mass-richness scaling relation derived from weak lensing only.
In the work by Lesci et al. (2022b) on the 2PCF of the AMICO KiDS-DR3 clusters, we ad-
opted the same redshift selection used for the counts’ analysis, namely z ∈ [0.1, 0.6]. On the
other hand, we chose a less restrictive threshold in richness, that is λ∗ > 15, which guarantees
a sample purity close to 100%, since our clustering model does not rely on sample complete-
ness estimates. This results in 4934 galaxy clusters. Assuming the scaling relation constraints
derived by Lesci et al. (2022a) as priors, we derived Ωm = 0.28+0.05

−0.04, σ8 = 0.82+0.14
−0.12, and

S8 = 0.80+0.08
−0.08, which are consistent within 1σ with the results obtained from CMB exper-

iments and from the most recent analyses of the late Universe. In addition, by fixing the
cosmological parameters to the values derived by Planck Collaboration VI (2020, Table 2,
TT, TE, and EE+lowE), we derived a robust constraint on the normalisation of the mass-
richness relation. This confirms the key role of clustering in constraining cluster masses.

The fourth work presented in this Thesis is the one by Euclid Collaboration: Lesci et al.
(2023). In this analysis, we introduce a novel approach to establish galaxy colour-redshift
relations for the purpose of cluster weak-lensing analyses, regardless of the specific photomet-
ric bands in use. This method optimises selection completeness while maintaining a defined
purity threshold. A notable aspect of our work is the presentation of colour-redshift relations
as a continuous function of the lens redshift, denoted as zl. This is particularly valuable
in cluster weak-lensing analyses, where accurate background selections are paramount, given
that foreground and cluster member contamination can significantly affect the measured lens-
ing signal. Based on the galaxy sample by Bisigello et al. (2020), we calibrated two colour
selections, one relying on the ground-based griz bands (referred to as griz selection), and
the other including the griz and Euclid YEJEHE bands (referred to as grizYEJEHE selection).
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These selections show a purity exceeding 97%. The griz selection achieves a completeness of
up to 84% within the lens redshift range zl ∈ [0.2, 0.8]. With the grizYEJEHE selection, the
completeness improves by as much as 25 percentage points, enabling a zl range that extends
up to zl = 1.5. Notably, these calibrated colour selections prove their robustness against
variations in sample limiting magnitudes and redshift ranges. The griz selection delivers
compelling results when applied to real external datasets, even across different photometric
aperture definitions sourced from various ground-based telescopes. The griz selection also
exhibits larger purity at high redshifts and increased completeness at low redshifts compared
to colour selections found in literature. Additionally, we demonstrated the consistency of our
calibrated colour selections through an analysis of a simulated Euclid galaxy catalogue. Our
work also shows that the calibrated colour selections produce reliable results even when data
from a single band is missing from the ground-based dataset. Importantly, these selections
do not introduce biases beyond the 1σ uncertainty in the multiplicative shear bias.

In addition, we present the preliminary work by Lesci et al. (in prep. b) on the weak-
lensing mass calibration of the AMICO clusters detected by Maturi et al. (in prep.) in the
fourth data release of KiDS (KiDS-1000, Kuijken et al. 2019). The cluster sample covers an
effective area of 840 deg2, for a total of 24 396 clusters with signal-to-noise S/N > 3.5 and
within the redshift range z ∈ [0.1, 0.8]. We jointly modelled the stacked cluster weak-lensing
signal obtained in bins of redshift and richness, deriving constraints on the mass-richness and
concentration-mass scaling relations. We accounted for the main biases affecting weak-lensing
analyses, such as halo miscentring, galaxy photo-z errors, impurities due to the background
selection, halo orientation, and projection effects. This mass calibration will enable the cos-
mological analyses based on cluster counts and clustering, from which we expect remarkable
improvements in the results compared to those derived by Lesci et al. (2022a) and Lesci et al.
(2022b) in KiDS-DR3. Indeed, the AMICO KiDS-1000 cluster sample contains three times
the objects in the DR3 sample, and the maximum sample redshift increased from z = 0.6 to
z = 0.8.

The statistical analyses presented in this Thesis are based on CosmoBolognaLib (CBL,
Marulli et al. 2016), a large set of free software C++/Python libraries, that provide an effi-
cient numerical environment for cosmological investigations of the large-scale structure of the
Universe. A relevant fraction of the numerical tools used in this work have been implemented
in CBL by the author of this Thesis. Among the most relevant ones, we have the Poisso-
nian likelihood including the contribution of the super-sample covariance, the modelling of
cluster counts and clustering as a function of the mass proxy, and the measure, stacking, and
modelling of galaxy cluster weak-lensing profiles.
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Introduction

In accordance with the predictions of the standard cosmological model, known as Λ-cold dark
matter (ΛCDM), we inhabit an expanding Universe characterized by two principal constitu-
ents: dark energy, described through the cosmological constant Λ, causing the accelerated
expansion of the Universe and making up about 68% of the total energy and matter content of
the cosmos, and cold dark matter, constituting approximately 27%. In contrast, only around
5% of the Universe consists of ordinary matter, which, despite its relatively small proportion,
plays a significant role in astronomical and cosmological research as it forms the luminous
side of the Universe.

Based on the ΛCDM model, we interpret the large-scale structure of the Universe as a
consequence of the growth of primordial anisotropies in the matter density field, taking place
within an expanding space. Such anisotropies originated from quantum fluctuations created
at the end of the inflationary era, representing an exponential expansion of the Universe.
The inflationary era is at the foundations of the so-called hot Big Bang model, depicting
the evolution of the Universe as a thermal history. In this framework, the Universe cools
down over cosmic time, and this temperature decrease allows the gravitational growth of
the primordial fluctuations. Among the most compelling pieces of evidence supporting the
Big Bang theory, we have the cosmic microwave background (CMB). Notably, the CMB is
the black-body radiation that began to freely propagate following the first recombination of
free ions into neutral hydrogen, and it provides a picture of the matter density field 379 000
years after the Big Bang. As such, CMB observations also provide robust information on the
matter-energy content of the Universe.

Observations of the late Universe complement those based on CMB, also serving as a test
of the evolutionary models based on the ΛCDM framework. To this aim, large samples of
tracers of the large-scale structure of the Universe are needed. Among cosmic tracers, galaxy
clusters play a critical role. Reaching masses up to 1015 M� and radii up to 5 Mpc, galaxy
clusters are the largest gravitationally bound structures existing in the Universe, marking
the most pronounced peaks in the matter density field. The steady advancement of cos-
mological experiments has paved the way for the detection of large galaxy cluster samples
across various wavelengths. Specifically, observations in X-rays, optical, near-infrared, and
microwave bands, along with gravitational lensing studies, have allowed the investigation of
the statistical properties of galaxy clusters.

Since the dark matter component is dominant in galaxy clusters, modelling the cluster
formation and evolution through N -body dark-matter-only simulations is accurate enough,
given the current observational uncertainties. Such simulations allow us to calibrate the
mass function and mass density profiles of galaxy cluster haloes. With a calibrated halo mass
function at hand, it is possible to model the observed counts of galaxy clusters to derive con-
straints on fundamental cosmological parameters. Indeed, cluster counts are among the most
powerful cosmological probes, providing excellent constraints on the matter density para-
meter, Ωm, on the square root of the mass variance on scales of 8 h−1Mpc at redshift z = 0,
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σ8, and on the parameters entering the dark energy equation of state. Robust constraints on
such cosmological parameters can be derived also from cluster correlation function and power
spectrum measurements, which are commonly referred to as cluster clustering. Furthermore,
to constrain the cosmological parameters from observations of galaxy cluster statistics, the
theoretical models must be convolved with instrumental effects, such as measurement errors
and selection biases. In addition, due to the degeneracy between cluster masses and cosmo-
logical parameters, it is necessary to accurately model the cluster matter profiles in order to
derive mass estimates. This is possible, for example, through X-ray or weak-lensing observa-
tions.

In this Thesis, after introducing the ΛCDM model and the main statistical properties of
the Universe, we delve into the methodologies employed for the calibration of galaxy cluster
masses and mass function, also comparing the clustering properties of galaxies and galaxy
clusters. Then we present a series of works based on real observations of galaxy cluster
statistics, developed over the past three years. More specifically, this Thesis is organised as
follows:

• In Chapter 1, we provide the foundational knowledge required for the mathematical
description of modern cosmological models. After presenting the fundamentals of the
General Theory of Relativity and the derivation of the Friedmann Equations, we high-
light the key components of the concordance ΛCDM cosmological model.

• In Chapter 2, we delve into the description of the matter power spectrum and correlation
functions. We detail how these quantities depend on cosmological parameters, also
introducing the basics of weak gravitational lensing.

• In Chapter 3, we provide an overview on the methodologies employed for galaxy cluster
detection. We detail the alternative observational techniques used for measuring cluster
masses, and how such mass estimates are exploited in cosmological analyses based on
cluster counts and clustering.

• In Chapter 4, we detail the analysis by Lesci et al. (2023) on the 3D clustering of
the galaxy cluster sample provided by Planck Collaboration XXVII (2016), based on
observations of the Sunyaev-Zeldovich (SZ) effect. In this work, we derived constraints
on the Planck mass bias, bSZ, and on Ωm.

• In Chapter 5, we present the works by Lesci et al. (2022a) and Lesci et al. (2022b) on
counts and clustering of the galaxy cluster sample developed by Maturi et al. (2019),
based on the third data release of the Kilo Degree Survey (KiDS-DR3, de Jong et al.
2017). Through these cosmological analyses, we derived robust constraints on Ωm, σ8,
and on the scaling relation linking cluster masses and mass proxies.

• In Chapter 6, the analysis carried out by Euclid Collaboration: Lesci et al. (2023) is
presented. In this work, we developed a method for calibrating galaxy colour-redshift
relations, which are fundamental for cluster weak-lensing analyses.

• In Chapter 7, we present the weak-lensing mass calibration, carried out by Lesci et al.
(in prep. b), of the galaxy cluster sample provided by Maturi et al. (in prep.). This
sample is based on the fourth data release of KiDS (KiDS-1000, Kuijken et al. 2019).

• Lastly, in Chapter 8 we summarise the results presented in this Thesis, preparing the
way for future projects.
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Chapter 1

Cosmological framework

In this Chapter, we present the theoretical framework at the foundation of the standard
cosmological model. After the description of the spacetime metric, based on the cosmological
principle and General Relativity, we introduce the main observational achievements of the last
century and their theoretical interpretation. In addition, we detail the evolution of matter
perturbations leading to the formation of cosmic structures, such as galaxies and galaxy
clusters.

1.1 The cosmological principle

Cosmology investigates the formation and evolution of the Universe, describing its statistical
properties through the assumption of the cosmological principle. Such principle states that
the Universe is homogeneous and isotropic, and these are the two properties at the foundations
of the Friedmann-Lemâıtre-Robertson-Walker metric, described in Sect. 1.3. The isotropy
of the Universe is empirically supported within the observable Universe from the observed
isotropy in the cosmic microwave background (CMB) and on scales greater than 100 Mpc, that
is on scales larger than those of superclusters and voids. Notably, the cosmological principle
entails the fair sample principle, stating that analysing sufficiently large and independent
volumes of Universe is equivalent to considering many realisations of Universe. Thus, the fair
sample principle tackles the non-reproducibility of the Universe, allowing for the statistical
description of the Universe matter-energy content.

1.2 The central role of General Relativity

The theoretical description of the Universe in the standard cosmological model is based on
General Relativity (GR; Einstein 1915). In GR, the content of energy and matter acts on the
geometry of the spacetime, which is a four-dimensional differentiable manifold characterised
by the metric tensor gαβ. Specifically, spacetime points are called events and are described
by one time-like and three space-like coordinates. The interval between two infinitesimally
close events is expressed as

ds2 = gαβ dxαdxβ (α, β = 0, 1, 2, 3), (1.1)

where repeated indexes imply summation. In particular, the three space coordinates x1, x2,
x3 are generally labeled with the indexes i, j, while the time coordinate is x0 = ct, where c
is the speed of light and t is the time. Due to the spacetime curvature, defined by gαβ, free
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particles move along non-straight lines, called geodesics, locally defining the shortest path
between two events. In particular, the integral along the path of a particle is such that

δ

∫
path

ds = 0 . (1.2)

Particle paths can be derived from the geodesic equation, expressed as

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0 , (1.3)

where Γ are the Christoffel symbols, depending on the metric tensor, and λ is an affine para-
meter. In addition, the metric tensor is related to the content of energy and matter, defined
by the energy-momentum tensor Tαβ, through the fundamental Einstein’s field equations,
expressed as

Rαβ −
1

2
gαβR =

8πG

c4
Tαβ , (1.4)

where Rαβ and R ≡ gαβRαβ are the Ricci tensor the Ricci scalar, respectively, both depending
on Γ, while G is Newton’s gravitational constant. By describing the content of the Universe
as a perfect fluid with pressure p and energy density ρc2, the energy-momentum tensor takes
the following form

Tαβ = (p+ ρc2)uαuβ − pgαβ , (1.5)

where uα = gαβu
β is the four-velocity of the fluid.

1.3 Friedmann-Lemâıtre-Robertson-Walker metric

As discussed in the previous section, the theoretical description of the Universe in the stand-
ard model is based on GR. Thus, a cosmological theory must be rooted in a properly defined
spacetime metric. This is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, based
on the cosmological principle. For a homogeneous and isotropic Universe, the mixed com-
ponents of the metric tensor in comoving coordinates are zero. Thus, from Eq. (1.1), the
following expression is obtained,

ds2 = g00dt2 − gijdxidxj = c2dt2 − dl2 , (1.6)

where the first and the second terms are time and space terms, respectively. At any instant
defined by t, which in this case coincides with the proper time, or cosmic time, the spatial
metric dl2 is identical in all the places and directions. The cosmic time monotonically varies,
and it is zero where all the geodesics of the spacetime intersect.

To find a suitable functional form for the three-dimensional spatial metric, we consider
the two-dimensional case first. The spaces satisfying the cosmological principle are the flat
Euclidean space, the sphere and the hyperboloid. In the case of the flat Euclidean space we
have

dl2 = dx2 + dy2, (1.7)

which in polar coordinates 0 ≤ ψ <∞, 0 ≤ φ < 2π, is expressed as

dl2 = dψ2 + ψ2dφ2. (1.8)

We define ψ ≡ ar, where a has the dimension of a length while r has no dimension, and
0 ≤ r <∞. Then the final relation is

dl2 = a2(dr2 + r2dφ2). (1.9)
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In the case of a spherical surface, we have

dl2 = a2(sin2 θ dφ2 + dθ2), (1.10)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Imposing sin θ = r, the previous equation has the form

dl2 = a2

[
r2dφ2 +

dr2

1− r2

]
. (1.11)

Similar to the spherical case, for a hyperbolic surface the following equation

dl2 = a2(sinh2 θ dφ2 + dθ2) (1.12)

becomes

dl2 = a2

[
r2dφ2 +

dr2

1 + r2

]
. (1.13)

The general expression for dl2 in two dimensions is then

dl2 = a2

[
dr2

1− kr2
+ r2dφ2

]
, (1.14)

where k is the so-called curvature parameter, being k = 0 for the flat space, k = 1 for the
sphere and k = −1 for the hyperboloid. The curvature parameter is related to the amount
of energy and matter densities and defines the sign of the Gaussian curvature CG:

CG =
k

a2
. (1.15)

In three dimensions, the inclusion of the solid angle, dΩ, expressed as

dΩ = dθ2 + sin2 θ dφ2 , (1.16)

leads to the following expressions:

dl2 = a2
[
dr2 + r2dΩ2

]
(flat space), (1.17)

dl2 = a2

[
dr2

1− r2
+ r2dΩ2

]
(hypersphere), (1.18)

dl2 = a2

[
dr2

1 + r2
+ r2dΩ2

]
(hyperboloid). (1.19)

By generalizing these equations through the introduction of the k parameter, the FLRW
metric can be derived from Eq. (1.6):

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (1.20)

In this framework a(t) is called the cosmic scale factor, having the dimension of a length, t
is the proper time, and r, θ, φ are the comoving coordinates, where r is dimensionless. As
mentioned above, k can be either 0, 1 or -1, and in particular the space is flat (k = 0), closed
(k = 1) or open (k = −1) if the density parameter Ω(t), defined as

Ω(t) =
ρ

ρc
, (1.21)
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is, respectively, equal to, greater or less than unity. In Eq. (1.21), ρ is a density, and ρc is
the critical density of the Universe, defined as the density for which the Universe is flat:

ρc =
3

8πG

(
ȧ

a

)2

, (1.22)

where ȧ is the first time derivative of a(t). At the current cosmic time, t0, the value of the
critical density, ρ0,c, is

ρ0,c = 1.9 · 10−29 h2 g cm−3, (1.23)

where

h =
ȧ(t0)

100 a(t0)
. (1.24)

In addition, based on the FLRW metric, we can derive two fundamental quantities in cosmo-
logy, namely the proper distance and the comoving distance. The proper distance, dp, of a
point P from the origin of a set of polar coordinates (r, θ, φ), is defined as the geodesic passing
through such points, obtained by imposing dt = dθ = dφ = 0 in Eq. (1.20). Specifically, dp

has the following functional form

dp = a(t)

∫ r

0

dr′

(1− kr′2)1/2
= a(t)f(r), (1.25)

where f(r) has a different form for each value of k, namely

f(r) = sin−1 r (k = 1), (1.26)

f(r) = r (k = 0), (1.27)

f(r) = sinh−1 r (k = −1). (1.28)

Since dp is defined for dt = 0, it does not account for the limits on the propagation speed of
information and then it can not be directly measured. However, dp has a crucial role in the
understanding of the expansion of the Universe, as we will see in the next section. At t0, the
proper distance coincides with the comoving distance, dc, being defined as follows

dc = a0f(r) = f(r), (1.29)

where a0 = a(t0) = 1. Therefore, the proper and comoving distances are related by the
following equation

dc =
1

a
dp. (1.30)

1.4 Hubble-Lemâıtre law

Based on the cosmological principle and thus on the FLRW metric, the Hubble-Lemâıtre law
(Lemâıtre 1927; Hubble 1929) describes the expansion of our Universe. In fact, from the
definition of the proper distance in Eq. (1.25), the radial velocity of a source at a point P
with respect to the origin of a set of polar coordinates (r, θ, φ) can be expressed as follows

vr = ȧf(r) =
ȧ

a
dp . (1.31)

This is the Hubble-Lemâıtre law, and H(t) ≡ ȧ/a is often referred to as the Hubble parameter,
which is constant at a given proper time. For the present cosmic time, we refer to H(t0) = H0

as the Hubble constant. The ESA Planck mission measured H0 = 67.4± 0.5 km s−1 Mpc−1
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(Planck Collaboration VI 2020) from the angular power spectrum of the cosmic microwave
radiation (CMB), assuming a standard Λ-cold dark matter (ΛCDM) cosmological model
(described in Sect. 1.7). However, this value of the Hubble constant is not in agreement with
that obtained through other independent late-time cosmological probes, such as observations
of type Ia supernovae (Dhawan et al. 2018) or Cepheids in nearby galaxies (Riess et al.
2019). These tensions in H0 are subject of current debates and might imply the development
of alternative cosmological models (for an extensive review, see Di Valentino et al. 2021),
which will be tested through upcoming experiments such as Euclid (Laureijs et al. 2011) and
the Vera C. Rubin Observatory (Rubin/LSST; Ivezic et al. 2008).

1.5 Cosmological redshift and distances

As the Universe expands following the Hubble-Lemâıtre Law, the light from extragalactic
sources shifts towards longer wavelengths, namely redshifts. This cosmological redshift, z, is
observable and it is defined as

z =
λ0 − λe
λe

. (1.32)

The quantity λe is the source rest-frame wavelength, emitted at time te and at a comoving
coordinate r. On the other hand, λ0 is the wavelength observed at time t0 at the origin
of the coordinate system. As light travels along null geodesics, we have ds2 = 0, and for
dθ = dφ = 0 the Eq. (1.20) becomes∫ t0

te

c dt

a(t)
=

∫ r

0

dr√
1− kr2

= f(r). (1.33)

We remark that f(r), expressed in Eqs. (1.26) – (1.28), does not vary with time, because both
the source and the observer follow the cosmological expansion and therefore r is constant.
Consequently, by considering the light emitted from the source at t′ = te + δte and received
by the observer at t′0 = t0 + δt0, we can write∫ t′0

t′

cdt

a(t)
= f(r). (1.34)

If the time intervals δte and δt0 are small, from Eqs. (1.33) and (1.34) we derive that

δt0
a0

=
δte
a(te)

. (1.35)

Since the frequencies of emitted and observed light can be expressed as νe = 1/δte and
ν0 = 1/δt0, respectively, from Eq. (1.32) we obtain

1 + z =
λ0

λe
=

a0

a(te)
=

1

a(te)
. (1.36)

This equation summarises the fact that in an expanding Universe, where a(t) increases with
time, the observed light of galaxies is redshifted. In addition, Eq. (1.36) allows to infer the
distance of extragalactic sources from redshift measurements, achieved through photometry
and spectroscopy. To this aim, proper motions due to gravitational effects must be taken
into account, as they may significantly affect redshift estimates.

Specifically, Eq. (1.36) allows for luminosity distance, dL, and angular diameter distance,
dA, measurements. These distance definitions are alternative to the proper distance in Eq.
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(1.25), which is not directly related to the redshift. The luminosity distance is defined in
order to preserve the the inverse-square law, and it is expressed as

dL =

(
L

4πl

)1/2

, (1.37)

where L is the luminosity of a source at comoving distance r, emitted at time t, while l is
the flux measured at time t0 by the observer, which is expressed as

l =
L

4πa2
0r

2

(
a

a0

)2

, (1.38)

where 4πa2
0r

2 is the surface area of a sphere having its centre on the source and passing
through the position of the observer. The factor (a/a0)2 accounts for cosmological redshift
and time interval dilation. In fact, Eq. (1.36) implies that photons are redshifted by a factor
a/a0, and from Eq. (1.35) we know that the photons emitted in a time interval δte arrive to
the observer in an interval δt0 = (a0/a)δte. Thus, by combining Eqs. (1.37) and (1.38), we
obtain

dL = a2
0

r

a
= a0r(1 + z). (1.39)

In addition, the angular diameter distance is defined in order to preserve the variation of
angular size with the distance, thus it is expressed as

dA =
l

∆θ
, (1.40)

where l is the physical size of a source with comoving coordinate r and emitting light at time
t, while ∆θ is the angle subtended by l. As l = ar∆θ, we obtain

dA = ar =
a0r

1 + z
. (1.41)

By assuming a spacetime metric, luminosity and angular diameter distances can be derived
for any extragalactic source having an associated redshift measure. Standard candles, that is
objects with known luminosity, can be exploited to test the FLRW metric through Eq. (1.39),
if the source redshift measurement is available. Similarly, objects with known physical size,
namely standard rulers, provide tests for the assumed spacetime metric through Eq. (1.41).
An additional test is provided by the following relation,

dL

dA
= (1 + z)2 , (1.42)

derived from Eqs. (1.39) and (1.41). Eq. (1.42) is referred to as the duality relation and, by
observing a source which is both a standard candle and a standard ruler, it can be exploited
to quantify the deviations from the FLRW metric and in turn from homogeneity and isotropy.
The duality relation provides a more robust test of the metric, compared to those relying
either on luminosity or angular diameter distances. In fact, dL and dA depend on cosmological
parameters (see Sect. 1.7), while Eq. (1.42) does not. However it is difficult to find objects
that are both standard candles and standard rulers. To date, the most robust duality relation
probes are strong gravitational lensing and compact radio sources (see, e.g., Qin et al. 2021;
Tang et al. 2023; Li 2023).

1.6 Friedmann models

In this section we introduce the Friedmann models, which play a key role in cosmology. In-
deed, based on the FLRW metric, the Friedmann models describe the matter-density content
of the Universe in terms of the density, ρ, and the pressure, p, of a perfect fluid.
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1.6.1 Friedmann equations

The relationship between the geometry of spacetime and the matter content in a Universe
governed by General Relativity is established through the Einstein equations, Eq. (1.4).
By employing these equations, we can derive the Friedmann equations, which rely on two
fundamental assumptions: the FLRW metric and the representation of the Universe content
as a perfect fluid. This implies that the energy-momentum tensor takes the form outlined in
Eq. (1.5). Through these assumptions, the Einstein equations can be reduced to the following
equation,

ä = −4π

3
G
(
ρ+ 3

p

c2

)
a , (1.43)

for the time-time component, and

aä+ 2ȧ2 + 2kc2 = 4πG
(
ρ− p

c2

)
a2 , (1.44)

for the space-space components, namely with α, β = 1, α, β = 2, α, β = 3 in Eq. (1.4). Under
the assumption of the cosmological principle, the spacetime components yield the identity
0 = 0. From Eq. (1.43), the Eq. (1.44) takes the following form

ȧ2 + kc2 =
8

3
πGρa2. (1.45)

Equations (1.43) and (1.45) are the Friedmann equations (Friedmann 1922). Under the
assumption of an adiabatic expansion of the Universe, such equations are related by the
adiabaticity relation, expressed as follows:

d(ρ c2a3) = −p da3. (1.46)

1.6.2 The cosmological constant

Before the discovery of its expansion, the Universe was assumed to be a static and not
evolving object. However, according to Eq. (1.43) the Universe can not be static, unless
either the pressure, p, or the energy density, ρc2, are negative. This contradicts the physical
definitions of p and ρc2, rendering such a scenario impossible. To try to address this issue,
in 1917 Einstein introduced a cosmological constant, Λ, in his equations, thereby modifying
the nature of gravity itself:

Rαβ −
1

2
gαβR− Λgαβ =

8πG

c4
Tαβ. (1.47)

By selecting a sufficiently small value for Λ, one can achieve a static, though unstable, cosmo-
logical model without invalidating the description of planetary motions. After the discovery
of the Hubble-Lemâıtre law in the 1920s, described in Sect. 1.4, the cosmological constant
was not necessary anymore. Nevertheless, from the observed flux of distant Ia supernovae,
Riess et al. (1998) showed that the expansion of the Universe is accelerated, contradicting
the prediction of decelerated expansion derived from Eq. (1.43). As a result, the cosmolo-
gical constant Λ has been reintroduced and it plays a role in the current cosmological model.
An alternative, though fully equivalent approach, is to include Λ into the energy-momentum
tensor, thus modifying the energy and matter content of the universe. Indeed, this can be
interpreted as introducing a new energy density of an unknown dark energy component.
Specifically, the modified energy-momentum tensor, T̃αβ, takes the following form:

T̃αβ = Tαβ +
Λc4

8πG
gαβ = −p̃gαβ + (p̃+ ρ̃c2)uαuβ, (1.48)
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where p̃ and ρ̃ are the effective pressure and the effective density, respectively. In the case of
a perfect fluid, such quantities are expressed as

p̃ = p− Λc4

8πG
, ρ̃ = ρ+

Λc2

8πG
. (1.49)

Therefore, the Einstein field equations can be written as

Rαβ −
1

2
gαβR =

8πG

c4
T̃αβ, (1.50)

and the Friedmann equations become

ä = −4π

3
G

(
ρ̃+ 3

p̃

c2

)
a, (1.51)

ȧ2 + kc2 =
8

3
πGρ̃a2. (1.52)

We remark that the introduction of the cosmological constant is physically well motivated in
GR, as its presence naturally descends from the general expression of the gravitational field
second order action (Bianchi & Rovelli 2010).

1.6.3 Perfect fluid models

Given the equation of state of the perfect fluid describing the matter-energy content in the
Universe, the Friedmann equations and the adiabaticity relation in Eq. (1.46) allow for the
derivation of a(t), ρ(t), and p(t), as a function of the cosmic time, t. As the Friedmann
models are based on the cosmological principle, the pressure is isotropic. Furthermore, iso-
tropic pressure is a necessary requirement for a perfect fluid. At rest, perfect fluids are fully
characterised by their energy density ρc2 and pressure p, allowing for the following definition
of the fluid equation of state:

p = wρc2, (1.53)

where w is assumed to be constant with time, and it is defined in the range

0 ≤ w ≤ 1, (1.54)

called the Zel’dovich interval. This range is derived from the definition of the adiabatic sound
speed of the fluid, vs, defined as

v2
s =

∂p

∂ρ

∣∣∣
S=const

, (1.55)

where S denotes the entropy. From Eq. (1.53), the sound speed would exceed the speed of
light for w > 1, while for w < 0 the sound speed would be an imaginary variable. It is
possible to show that in case of non-relativistic matter, also referred to as dust, w = 0 is a
good approximation. This implies p = 0, which is expected for non-relativistic fluids. Indeed,
the typical particle thermal energy, namely kBT , where kB is the Boltzmann constant and
T is the fluid temperature, is much lower than the particle rest mass, mpc

2, where mp is
the particle mass. Furthermore, for a non-degenerate radiative fluid composed of photons or
ultrarelativistic particles in thermal equilibrium, w = 1/3 is obtained.

By combining the adiabaticity relation, Eq. (1.46), and the general equation of state, Eq.
(1.53), it is possible to derive the following relation:

ρw = ρ0,w

(
a

a0

)−3(1+w)

, (1.56)
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where ρ0,w is the density at the present time of a fluid with parameter of the equation of
state w. In case of a dust-only (i.e. matter-only) universe, Eq. (1.56) becomes

ρm = ρ0,m

(
a

a0

)−3

= ρ0,m (1 + z)3 , (1.57)

while for a radiative universe we obtain

ρr = ρ0,r

(
a

a0

)−4

= ρ0,r (1 + z)4 , (1.58)

where ρm and ρr are the matter and radiation densities, respectively. Eq. (1.57) is expected
from the expansion of the Universe, for which the dust particle density decreases as the cube
of the scale factor a. The same is true for radiative fluids, which also undergo an increase in
wavelength by a factor a. This explains the differences in the time evolution of ρm and ρr.

As discussed in Sect. 1.6.2, the fluid energy-momentum tensor includes the contribution
of the cosmological constant, Λ, implying the accelerated expansion of the Universe. In an
empty universe, from Eq. (1.49) we can derive the pressure and density associated to the
cosmological constant as follows:

pΛ = − Λc4

8πG
, ρΛ =

Λc2

8πG
. (1.59)

Consequently, from Eq. (1.53), w = −1 holds for the perfect fluid equivalent of a cosmological
constant. Consistent with this theoretical approximation, Planck Collaboration VI (2020)
derived w = −1.028± 0.032 from the combination of CMB, supernovae, and baryon acoustic
oscillations observations, assuming that w does not change over cosmic time. In addition,
by assuming w = −1, from Eq. (1.56) we can see that the energy density associated to the
cosmological constant does not vary as the Universe expands.

1.6.4 Evolution of Hubble and density parameters

Based on the perfect fluid description of the matter-energy content of the Universe, we can
theoretically derive the evolution of the scale parameter, a(t), and, in turn, of the Hubble
parameter, H(t). Considering Eq. (1.45) at the present time, t0, and dividing by a2

0, we
obtain

H0(1− Ω0,w) = −kc
2

a2
0

, (1.60)

where Ω0,w is the density parameter at t0 for a fluid component with equation of state
parameter w, expressed as

Ω0,w =
ρ0,w

ρ0,cr
. (1.61)

Thus, by considering Eq. (1.45) at a generic time t and dividing by a2
0, we obtain

ȧ2

a2
0

= H2
0

[
1− Ω0,w + Ω0,w

(a0

a

)1+3w
]
. (1.62)

We can express this relation in terms of the Hubble parameter as

H2(t) = H2
0

(a0

a

)2
[
1− Ω0,w + Ω0,w

(a0

a

)1+3w
]
, (1.63)
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which can be generalised for universes with more than one fluid component as follows:

H2(t) = H2
0

(a0

a

)2
[

1−
∑
i

Ω0,wi +
∑
i

Ω0,wi

(a0

a

)1+3wi

]
. (1.64)

Since observations show that the Universe expands, we have ȧ(t) > 0, and Eq. (1.43) implies
that ä(t) < 0 for any t if (ρ + 3p/c2) > 0 or, equivalently, if (1 + 3w) > 0. Consequently,
a(t) is a concave function and it must be zero at a finite time in the past. Thus, at such
time, the density and the Hubble parameter diverge. We conclude that models based on the
cosmological principle and described by perfect fluids with −1/3 < w < 1 show a singularity
at the time t = 0, which is commonly referred to as the Big Bang singularity. Such singularity
can be avoided, for example, in universes with a non-zero cosmological constant or in models
that do not follow the cosmological principle.

In general, the density parameter of a fluid component depends on time, or redshift, and
it can be expressed as follows:

Ωw(z) =
ρw(z)

3H2(z)/(8πG)
. (1.65)

Considering Eq. (1.56) for ρw(z) and Eq. (1.63) for H(z), we obtain

Ωw(z) =
Ω0,w(1 + z)1+3w

(1− Ω0,w) + Ω0,w(1 + z)1+3w
, (1.66)

so that:

Ω−1
w (z)− 1 =

Ω−1
0,w − 1

(1 + z)1+3w
. (1.67)

This relation implies that Ω−1
w (z)−1 can not change its sign over time, and that flat universes,

for which the total density parameter is equal to 1, preserve their flatness. In other words,
the expansion can not change the value of the curvature parameter.

1.6.5 Cosmological horizon

By knowing the evolution of the scale factor, a(t), it is possible to derive the cosmological
horizon, RH(t). This quantity defines a sphere centred on a particle, containing the volume of
the Universe which is in causal connection with that particle. In particular, RH(t) is defined
as follows:

RH(t) = a(t)

∫ t

0

cdt′

a(t′)
. (1.68)

We note that RH(t) is a proper distance and in turn it accounts for the expansion of the
Universe. In fact, Eq. (1.68) is derived from the definition of proper distance, Eq. (1.25),
given the f(r) expression for a photon in Eq. (1.34). If the integral does not diverge, RH(t)
defines the so-called particle horizon. From Eq. (1.62), it is possible to show that a(t) ∝ tβ,
with β > 0, for a generic Friedmann model. Therefore, from Eq. (1.68), we obtain

RH(t) ∝ tβ
∫ t

0
t′−βdt′ . (1.69)

Consequently, RH exists only if β < 1. Additionally, from Eq. (1.43) we have

ä = −4π

3
Ga

(
ρ+

3p

c2

)
∝ β(β − 1)tβ−2, (1.70)
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from which

β(β − 1) ∝ −4π

3
Gt2

(
ρ+

3p

c2

)
. (1.71)

From this equation, we note that the condition for a Big Bang singularity, namely ä < 0,
implies β(β − 1) < 0, that is 0 < β < 1. In turn, the presence of a Big Bang guarantees the
finiteness of RH(t). Lastly, for a flat Friedmann model it is possible to show that

RH(t) ' 3
1 + w

1 + 3w
ct , (1.72)

which, in the case of dust and radiation flat universes, becomes RH ' 3ct and RH ' 2ct,
respectively.

1.7 The standard cosmological model

The fundamental concept underlying the description of the observed Universe is the hot Big
Bang model, which relies on the cosmological principle and the Friedmann equations. Within
this framework, the evolution of the Universe is depicted as a thermal history, hence the term
“hot”. Indeed, as we trace back closer to the moment of the Big Bang, the Universe pro-
gressively becomes hotter. Notably, the present-day temperature of the Universe is measured
to be T = 2.7255 ± 0.0009 K (Fixsen et al. 1996). This is the temperature of the CMB,
corresponding to the black-body radiation that began to freely propagate following the first
recombination of free electrons, happened at redshift z ' 1100. As such, the CMB serves as
one of the most compelling pieces of evidence supporting the Big Bang theory. In addition,
CMB observations provide empirical support to the isotropy assumption enclosed in the cos-
mological principle. In fact, the CMB temperature shows very small fluctuations, of around
10−5 K, in any direction on the sky. On the other hand, we remark that these measurements
do not prove the homogeneity of the spacetime, as this would require observations from dif-
ferent locations in the Universe.

As the same CMB temperature is measured in all directions, all regions of the Universe
seem to be in causal connection at z ' 1100. However, given the expected cosmological hori-
zon size at that time, causal connection should not hold at scales larger than about 2◦ on sky.
This issue could be solved through cosmic inflation, first proposed by Guth (1981), implying
an accelerated expansion with an exponential growth of the cosmic scale factor, a(t), at early
time. Most of the modern inflationary models, based on the work by Linde (1983), consider
a scalar field with large initial potential energy, called inflaton, as the responsible of the
inflationary era. In these models, the inflaton finally decays into particles through quantum
fluctuations, at the end of the exponential expansion of the Universe. Consequently, inflation
creates the initial conditions for the growth of the perturbations in the Universe, leading to
the formation of the observed cosmic structures. In addition, cosmic inflation explains the
flatness of the Universe spacetime geometry, observed via CMB experiments (de Bernardis
et al. 2000).

The standard cosmological model, known as ΛCDM, is based on hot Big Bang and cos-
mic inflation models. Here, Λ represents the contribution of dark energy in the form of the
cosmological constant, while CDM refers to cold dark matter, which is a dust-like typology
of dark matter. In addition to CDM, a smaller contribution to the total matter content is
given by baryonic matter. The estimation of this baryonic matter component can be obtained
through various means, such as from the CMB, the mass-luminosity ratio of observable struc-
tures in the Universe, or studying primordial nucleosynthesis (Thuan & Izotov 2000). The
mass-luminosity ratio can be determined through dynamical investigations of galaxies, galaxy
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groups, and clusters, serving as a fundamental piece of evidence supporting the existence of
dark matter.

Cold dark matter is included in the standard cosmological model as it attains a non-
relativistic state earlier than hot dark matter. In fact, as the Universe is described in terms
of its thermal history, cosmic time is intrinsically linked to temperature. As a result, we can
estimate the time at which a fluid ceases to be relativistic using the relationship kBT ' mxc

2,
where kB denotes the Boltzmann constant and mx represents the characteristic mass of the
fluid particles. Given that cold dark matter particles possess greater mass compared to
hot dark matter ones, they undergo the transition to a non-relativistic state prior to their
hot counterparts. Additionally, cold dark matter holds another notable advantage over hot
dark matter, as it is already non-relativistic at the moment of decoupling from the radiation
component (see Sect. 1.8). This facilitates the prompt emergence of CDM gravitational per-
turbations, which serves as a fundamental aspect of the widely accepted hierarchical model
for the development of cosmic structure. This model entails the initial formation of small
structures within the Universe, which subsequently experience mergers, resulting in the form-
ation of larger gravitationally bound objects.

As we mentioned, another crucial element of the standard cosmological model is the in-
clusion of dark energy, represented by Λ. This energy component is essential to explain the
accelerated expansion of the Universe, observed for the first time by Riess et al. (1998) and
Perlmutter et al. (1999). In fact, by combining the first Friedmann equation, Eq. (1.43), and
the general perfect fluid equation of state, Eq. (1.53), we obtain the following expression:

ä = −4π

3
Ga

(
ρ+

3p

c2

)
= −4π

3
Gaρ(1 + 3w) , (1.73)

from which a decelerated expansion is expected, if the density ρ is positive and w ranges
within the Zel’dovich interval, namely Eq. (1.54). As discussed in Sect. 1.6.3, a positive Λ
is required to explain the accelerated expansion of the Universe, which implies a positive
density and a negative pressure (see Eq. 1.59). Thus, wΛ = −1 holds for the perfect fluid
associated to Λ. As detailed in Sect. 1.6.4, models based on the cosmological principle and
described by perfect fluids with −1/3 < w < 1 show a Big Bang singularity. As wΛ = −1 for
dark energy, the Big Bang may be eluded, in contrast with CMB observations. Nevertheless,
the measured energy density associated to Λ is too low, as it corresponds to

ρ0,Λ = ρΛ = const ' 10−29 g cm−3, (1.74)

and it is the dominant energy contribution in the Universe only since z ' 0.67. Therefore,
the dark energy density is not sufficiently high to avoid the Big Bang.

Alternatives to the cosmological constant, such as quintessence models (Tsujikawa 2013),
predict a variation of w with time. Stage IV cosmological surveys, like the Euclid mission
(Laureijs et al. 2011), will allow investigating the evolution of wΛ. The most widely used wΛ

parameterisation is that proposed by Chevallier & Polarski (2001) and Linder (2003) (CPL),
for which wΛ depends on redshift through the following expression:

wΛ(z) = w0 + wa
z

1 + z
. (1.75)

Models with varying wΛ are commonly referred to as wCDM. On the other hand, the ΛCDM
cosmological model is based on the assumption of wΛ = −1. In addition, considering a
negligible radiation density and a flat geometry, the ΛCDM model is fully characterised by
six parameters, namely:
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• Ωm: total matter density parameter;

• Ωb: baryonic matter density parameter;

• H0: Hubble constant;

• As: normalisation of the primordial power spectrum;

• ns: spectral index of the primordial power spectrum;

• τ : reionization optical depth.

The matter power spectrum, depending on As and ns, will be detailed in Chapt. 2. The
parameters Ωm and Ωb refer to their present-day values. Indeed, in this thesis we will drop the
subscript “0” for simplicity. In addition, in flat universes, the dark energy density parameter
is expressed as ΩΛ = 1− Ωm.

The most robust constraints on all the ΛCDM parameters can be obtained through CMB
observations. From the combination of CMB temperature fluctuations and lensing, Planck
Collaboration VI (2020) derived the following constraints: Ωmh

2 = 0.1430± 0.0011, Ωbh
2 =

0.02237± 0.00015, H0 = 67.36± 0.54 km s−1 Mpc−1, 109As = 2.100± 0.030, ns = 0.9649±
0.0042, τ = 0.0544± 0.0073. Here, h is the reduced Hubble constant, defined as h = H0/100
km s−1 Mpc−1. From these results, we can see that Ωm is dominated by the contribution of
the cold dark matter density parameter, Ωc, since Ωc = Ωm − Ωb.

1.8 Structure formation

In the standard model of large-scale structure formation, the presence of observed gravitation-
ally bound systems is attributed to the growth of small initial perturbations. As discussed in
Sect. 1.7, these perturbations originate from quantum fluctuations created at the end of the
inflationary era. The effects of these resulting perturbations can be observed in the temperat-
ure fluctuations of the CMB. Through the investigation of the growth rate of perturbations,
referred to as the growth factor, it is possible to estimate the expansion rate of the Universe.
The more the intensity of expansion increases, the more gravitational collapse is hampered.
Hence, by inference, from the evolution of the perturbations it is possible to deduce the
cosmic expansion rate. Consequently, observations at various redshifts allow estimating the
Hubble parameter, H(z), which serves as a parameterization of the Universe expansion rate.

In this section, we will focus on the growth of the density contrast of the fluctuations, δ,
expressed as follows:

δ =
ρ− ρ
ρ

=
δρ

ρ
, (1.76)

where ρ is the fluctuation density, and ρ is the mean density of the Universe. We will
provide an overview on the analytical description of the growth of perturbations in linear
regime, which is a reliable approximation for describing a remarkable part of the evolution of
cosmic structures. Subsequently, we will explore the nonlinear regime and the methodologies
employed to describe it.

1.8.1 Jeans linear theory

The Jeans theory describes the gravitational collapse of material within a homogeneous and
isotropic fluid. Essentially, it postulates that density perturbations surpassing a critical scale
within this fluid could initiate a gravitational collapse, leading to the growth of these per-
turbations. As these fluctuations become denser, they will accrete more material, ultimately
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culminating in an instability that can lead to the formation of a self-gravitating structure.
Nevertheless, the formation of gravitationally bound structures is a complex process in-

volving hydrodynamical and dynamical effects, such as gas heating and angular momentum
increment, which hinder the collapse. These effects cannot be adequately described in a linear
mathematical regime and severely impact the formation of galaxies. Nevertheless, interac-
tions on large scales are primarily driven by gravity alone. In addition, as we discussed in
Sect. 1.7, the matter content in the Universe is dominated by dark matter, which is weakly
interactive and, in turn, does not undergo the same physical processes as baryonic matter.
Hence, large scales and dark matter constitute two crucial components for a linear regime,
which is the main framework that we will primarily focus on in the subsequent discussion.
In addition, we will adopt the Newtonian formalism to describe the effects of gravity, as this
is a good approximation on large scales.

To elucidate the basic concept of Jeans theory, let us consider a spherical perturbation
with radius R, mass M , and density ρ, in a background fluid having mean density ρ. Spe-
cifically, we assume ρ > ρ, namely a positive density fluctuation δρ:

δρ = ρ− ρ > 0. (1.77)

To achieve a collapse, the absolute value of the gravitational potential energy, Ep, expressed
as

Ep = −GM
2

R
= −GM

R
ρR3 , (1.78)

must exceed, the thermal kinetic energy, Ek, expressed as

Ek =
1

2
Mv2 , (1.79)

where v is the mean fluid velocity, derived from the Maxwell-Boltzmann distribution. Thus,
the condition for the collapse, |Ep| > Ek, translates into the following expression:

GρR2 >
v2

2
. (1.80)

By defining the Jeans scale, RJ, as follows,

RJ = v
1√
2Gρ

, (1.81)

from Eq. (1.80) we have R > RJ. Now that we have familiarized ourselves with the principles
of gravitational collapse in a fluid, we can delve into a more in-depth discussion of the
evolution of perturbations.

1.8.2 Jeans instability

Jeans (1902) originally studied the collapse of a cloud of interstellar molecular gas and dust,
wherein the local self-gravitation makes the impact of the Universe expansion negligible.
Nevertheless, to describe the growth of density perturbations on large scales, we must ac-
count for the expansion of the Universe and, in turn, for the evolution of the cosmological
horizon, RH(t). As discussed in Sect. 1.6.5, RH(t) denotes the extension of the regions in
the Universe which are in causal connection at the time t. Consequently, on scales smaller
than RH(t), hydrodynamical and dynamical processes become dominant. In this case, Jeans
theory provides a reliable description of the collapse in linear regime. On the other hand, on
scales larger than RH(t) the dominant interaction is gravity, and the collapse is not hindered
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by microphysics.
Before delving into the formalism of Jeans instability, let us focus on the evolution of

perturbations on scales larger than RH(t). Let us consider a density fluctuation, treated as a
small closed universe, evolving in a background flat universe. We can consider the background
flat universe as composed by only one component. In fact, gravity couples the evolution of
all fluid components, with the minor ones following the time evolution of the density contrast
of the dominant component. From Friedmann equations, we obtain

H2
b =

8π

3
Gρb , (1.82)

H2
p =

8π

3
Gρp −

c2

a2
, (1.83)

where the subscripts “b” and “p” refer to background and perturbed universes, respectively,
and H is the Hubble parameter. Initially, we impose that the Hubble parameters of the two
universes are the same, thus the perturbation density contrast is expressed as follows:

δ =
ρp − ρb

ρb
=

3c2

8πG

1

ρba2
∝ ρ−1

b a−2 . (1.84)

At the beginning of the thermal history of the Universe, a radiative gas composed of photons
and relativistic particles dominated the matter-energy content. We refer to zeq as the equi-
valence redshift, at which the density of matter and radiation fluids became equal. Thus, for
z > zeq radiation dominates, and ρb ∝ a−4, as discussed in Sect. 1.6.3. Conversely, matter
dominates for z < zeq, implying ρb ∝ a−3. As the background universe is flat and contains
only one dominant component, from Eq. (1.62) we obtain

ȧ2

a2
0

= H2
0

(a0

a

)1+3w
, (1.85)

which can be integrated, yielding

a(t) = a0

(
t

t0

) 2
3 (1+w)

. (1.86)

Recalling that w = 1/3 for radiation and w = 0 for dust-like matter, from Eq. (1.86) we
obtain the following expression for the perturbation density contrast:

δ ∝

{
a2 ∝ t if z > zeq

a ∝ t2/3 if z < zeq

. (1.87)

Consequently, perturbations on scales larger than RH always grow with time.
Now we focus on perturbations on scales smaller than RH, following the Jeans grav-

itational instability formalism. Let us consider a universe composed of a homogeneous and
isotropic perfect fluid with density ρb(x, t), where x is the fluid position vector. In Newtonian
approximation, the generic fluid equations of motion are expressed as follows:

∂ρ

∂t
+∇ · ρv = 0 , (1.88)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇φ , (1.89)

∇2φ = 4πGρ , (1.90)

p = p(S, ρ) = p(ρ) , (1.91)

dS

dt
= 0 , (1.92)
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where Eq. (1.88) is the continuity equation, Eq. (1.89) is the Euler equation, Eq. (1.90) is
the Poisson equation, Eq. (1.91) is the fluid equation of state, and Eq. (1.92) is the adiabatic
condition. The latter is observationally motivated, as CMB experiments showed that prim-
ordial fluctuations are consistent with being adiabatic. Specifically, adiabatic perturbations
affect all the particle species such that the relative ratios in the number densities remain
unperturbed. In addition, in Eqs. (1.88) – (1.92), v is the flow velocity, φ is the gravitational
potential, p is the pressure, and S is the entropy. Consequently, p can be expressed in terms
of ρ only, thus we can consider only three variables, namely ρ, v, and φ. In turn, only Eqs.
(1.88) – (1.90) are necessary to study the fluid motion.

Now we introduce small perturbations, namely δρ� 1, δv � 1, and δφ� 1, so that the
linear regime is valid. Consequently, we have the following perturbed quantities:

ρ = ρb + δρ , (1.93)

φ = φb + δφ , (1.94)

v = vb + δv = Hx+ vpec , (1.95)

where “b” refers to background quantities, and H is the Hubble parameter. Notably, the
velocity perturbation in Eq. (1.95), δv, corresponds to the peculiar velocity, vpec. We remark
that Eq. (1.95) reduces to the Hubble-Lemâıtre Law for an unperturbed fluid, for which
vpec = 0. Then we substitute Eqs. (1.93) – (1.95) into Eqs. (1.88) – (1.90), neglecting the
terms including (δρ)2, (δφ)2, (δv)2, and the other mixed terms, as we are considering small
perturbations. To simplify the computation, solutions are found in terms of Fourier modes,
for which the generic form is expressed as follows:

f(r, t) = fk(t) e
ikr , (1.96)

where the general expression f(r, t) stands for δρ, δφ, or δv, while r is the comoving spatial
coordinate, the wavenumber k = |k| is the absolute value of the wavevector k, and fk(t) is
the amplitude of the Fourier mode accounting for the expansion of the universe. As we shall
discuss, the solving relation for Eqs. (1.88) – (1.90) is a differential equation referred to as
the dispersion relation, which can be expressed in terms of the density contrast δ, defined in
Eq. (1.76).

Perturbations in matter dominated universes

For matter dominated universes, namely for z < zeq and thus ρb ∝ a−3, the dispersion
relation has the following form:

δ̈k + 2
ȧ

a
δ̇k + δk

(
k2v2

s − 4πGρb

)
= 0 , (1.97)

where δk is the amplitude of the Fourier transform of δ(x, t) and vs =
√
∂p/∂ρ is the sound

speed. Furthermore, in Eq. (1.97), the second term represents a tidal contribution resulting
from the expansion of the universe, which counteracts gravity. The second term within
the brackets corresponds to the average gravitational effect, while the term δkk

2c2
s takes

into account the characteristic velocity field of the fluid. Notably, this term hampers the
gravitational collapse in terms of pressure, which is contained within the definition of the
sound speed. We remark that the wavenumber, k, corresponds to a wavelength, λ, through
the relation k = 2π/λ.

In a flat universe, for which the a(t) expression in Eq. (1.86) holds, the background density
expressed in Eq. (1.56) takes the following functional form:

ρb =
1

(1 + w)2 6πGt2
. (1.98)
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Thus, from Eqs. (1.86) and (1.98), for a matter dominated universe having w = 0 we have

ρb =
1

6πGt2
, (1.99)

a = a0

(
t

t0

)2/3

, (1.100)

ȧ

a
=

2

3t
. (1.101)

Substituting these equations into Eq. (1.97), the following dispersion relation is obtained:

δ̈k +
4

3t
δ̇k −

2

3t2
δk

(
1− k2v2

s

4πGρb

)
= 0 . (1.102)

Solutions to Eq. (1.102) are expressed as δk ∝ tα, and thus δ ∝ eikr tα. Specifically, we have

δk = t−{1±5[1−(6v2
s k

2)/(25πGρb)]1/2}/6 = t−[1±5(1−λ2
J/λ

2)1/2]/6 , (1.103)

where we defined the Jeans length as follows:

λJ =

√
24

5
vs

(
π

Gρb

)1/2

. (1.104)

For perturbations with λ < λJ, solutions are propagating as waves. For RH > λ > λJ,
instead, we have a growing and a decaying solution. We also note that for RH > λ� λJ, the
growing solution, δ+, is expressed as

δ+ ∝ t2/3 ∝ a , (1.105)

while the decaying solution, δ−, has the form

δ− ∝ t−1 ∝ a−3/2 . (1.106)

For a generic universe with cosmological constant, it is possible to derive an approximate
form for the variation of the growing solution, namely the growth factor, f , expressed as

f ≡ d ln δ+

d ln a
' Ω0.55

m (z) +
ΩΛ(z)

70

(
1 +

Ωm(z)

2

)
. (1.107)

This expression is extremely important because the exponent 0.55 descends from General
Relativity, and therefore the measure of f provides a test for the gravity theory. In addition,
f mainly depends on Ωm, and this is reasonable as matter interacts gravitationally. The
dependency on the cosmological constant, Λ, which participates to the expansion of the
universe, is weaker. Moreover, it has to be noted that f = 1 in a matter only flat universe,
while the value of f deviates from unity in a ΛCDM universe.

Perturbations in radiation dominated universes

For radiation dominated universes, that is z > zeq and ρb ∝ a−4, the dispersion relation is
expressed as follows:

δ̈k + 2
ȧ

a
δ̇k + δk

(
k2v2

s −
32

3
πGρb

)
= 0 . (1.108)
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Thus, from Eqs. (1.86) and (1.98), for a radiation dominated universe having w = 1/3 we
obtain

ρb =
3

32πGt2
, (1.109)

a = a0

(
t

t0

)1/2

, (1.110)

ȧ

a
=

1

2t
. (1.111)

Consequently, Eq. (1.108) becomes

δ̈k +
δ̇k
t
− δk
t2

(
1− 3k2v2

s

32πGρb

)
= 0 . (1.112)

Looking for power-law solutions, the Jeans scale is derived as

λJ = vs

(
3π

8Gρb

)1/2

. (1.113)

From Eq. (1.109), and recalling that vs = c/
√

3 for a radiative fluid, the Jeans scale takes
the following form:

λJ =
2πc√

3
t . (1.114)

As we discussed in Sect. 1.6.5, by considering RH for a flat universe dominated by radiation
(see Eq. 1.72), we have RH ' 2ct. Therefore, the Jeans scale is larger than RH at t < teq,
and in turn radiative gravitational instabilities can not arise inside the horizon.

Dark and baryonic matter perturbations

So far, we focused on universe models including only one component. However, studying the
perturbation growth for different components is key to understand the formation of galaxies.
At t < teq, dark matter instabilities can take place after the decoupling, despite this is not
possible for radiation perturbations. For a dark matter perturbation with RH > λ � λJ, it
is possible to show that the perturbation amplitude, δDM

k , at t < teq is expressed as

δDM
k = 1 +

3

2

a

aeq
, (1.115)

where aeq is the cosmic scale factor at teq. Thus, δDM
k (teq)/δDM

k (tH) < 5/2, where tH is the
time at which a perturbation enters RH. Consequently, for t < teq, dark matter perturbations
within RH can grow at most by a factor 5/2. Therefore, dark matter gravitational instabilities
take place before equivalence and are not erased, but their growth is severely hindered inside
the horizon. This stagnation of the dark matter perturbations is commonly referred to as the
Meszaros effect (Meszaros 1974).

For t > teq, the evolution of dark matter gravitational instabilities is described by Eq.
(1.105). On the other hand, baryonic matter perturbations arise after the decoupling between
baryons and radiation, namely at t > tdec, where tdec > teq. In this case, the baryonic
perturbation amplitude, δB

k , at t > tdec is expressed as

δB
k = δDM

k

(
1− adec

a

)
, (1.116)
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where adec is the cosmic scale factor at tdec. From Eq. (1.116), we can see that baryonic
perturbations rapidly grow after decoupling, with δB

k → δDM
k for t → t0. This effect is called

baryon catch up, and it takes place thanks to the presence of dark matter perturbations at
tdec. Indeed, baryonic matter falls into such dark matter haloes, and baryonic and dark mat-
ter density contrasts tend to become equal.

In addition, the decoupling between dark matter and radiation happens before the equi-
valence, as the dark matter-radiation collisional time scale becomes larger than the universe
expansion time scale before teq (Coles & Lucchin 2002). In addition, cold dark matter be-
comes not relativistic before its decoupling from radiation, allowing for the prompt formation
of virialised haloes. This does not hold for hot dark matter, which is still relativistic after
its decoupling. Therefore, cold dark matter is the suitable candidate for the hierarchical
formation of cosmic structures.

1.8.3 Spherical collapse

The formation and evolution of cosmic structures, such as galaxies and galaxy clusters, can
not be accurately described through linear theory. A spherical perturbation at constant dens-
ity represents the only case in which the evolution of a virialised structure can be analytically
computed. This is the basis of the spherical collapse model, which is a good approximation
for galaxy clusters and leads to the Press-Schechter formalism for the mass function (see Sect.
3.3.1).

In particular, this model is based on the assumption of a small perturbation, so that it can
be considered as spherical. The perturbation is characterised in terms of a closed universe,
and at the initial time, ti, the density contrast, δi, is small, namely 0 < δi � 1. As the
perturbation expands with the background universe, the initial peculiar velocity at its edge
is null, with a Fourier mode vk,i = 0. In addition, the background universe is assumed to be
flat and composed of matter only.

As discussed in Sect. 1.8.2, the density contrast evolution is characterised by the combin-
ation of growing, δ+, and decaying, δ−, modes. In a flat universe containing only matter, the
initial density contrast, δi, is expressed as follows (see Eqs. 1.105 and 1.106):

δi = δ+(ti)

(
t

ti

)2/3

+ δ−(ti)

(
t

ti

)−1

. (1.117)

Assuming null velocities at ti provides the following relation (Coles & Lucchin 2002)

δ+(ti) =
3

5
δi , (1.118)

thus the remaining 2/5 of δi decays with time, and tends to become negligible. As the collapse
is described in terms of a closed universe, the perturbation density parameter, Ωp, is larger
than 1. In particular, we have

Ωp(ti) =
ρp(ti)

ρc(ti)
=
ρb(ti)(1 + δi)

ρc(ti)
= Ωb(ti)(1 + δi) > 1 , (1.119)

where ρp is the perturbation density, ρc is the critical density, and ρb is the background
density. Consequently, we have (1 + δi) > 1/Ωb(ti), and from the relation describing the
evolution of the density parameter, Eq. (1.66), we obtain

δ+(ti) =
3

5
δi >

3

5

1− Ω0,b

Ω0,b(1 + z)
, (1.120)

25



where Ω0,b is the background density parameter at the current cosmic time, t0. From Eq.
(1.120), we note that in closed background universes, having Ω0,b > 1, any positive dens-
ity contrast leads to gravitational collapse. Conversely, in open background universes, with
Ω0,b < 1, the expansion inhibits the collapse if δi is not sufficiently greater than zero.

From Friedmann equations, one can demonstrate that the perturbation expands follow-
ing the expansion of the background universe until it reaches a maximum physical scale,
Rmax, at the time tmax. Subsequently, the perturbation experiences a turn-around, and the
gravitational collapse begins. The growing mode at tmax is expressed as follows:

δ+(tmax) ' ρp(tmax)

ρb(tmax)
− 1 ' 4.6 . (1.121)

Thus, as the linear regime holds for δ � 1, we can see that a nonlinear perturbation has
formed at tmax. On the other hand, by extrapolating the linear evolution of δ+, one would
obtain δ+(tmax) ' 1.07. For t > tmax, the scale of the perturbation decreases until tcoll '
2tmax, when the collapse is arrested by internal thermal motions. Numerical simulations show
that the virialisation is reached at the time tvir ' 3tmax. From the scalar form of the virial
theorem, the total energy of the perturbation, Etot, is expressed as follows

Etot(tvir) = −1

2

3

5

GM2

Rvir
, (1.122)

where Rvir is the virial radius. Assuming that there are no mass and energy losses since the
time tmax, namely Etot(tmax) = Etot(tvir), we obtain the following relation:

− 1

2

3

5

GM2

Rvir
= −3

5

GM2

Rmax
, (1.123)

because at t = tmax only the potential energy contributes to Etot. Thus, Rvir = Rmax/2, and
the perturbation density at t = tvir is ρp(tvir) = 8ρp(tmax). Then we obtain the following
relations:

δ+(tcoll) '
8ρp(tmax)

ρb(tmax)

(
tcoll

tmax

)2

' 180, (1.124)

δ+(tvir) '
8ρp(tmax)

ρb(tmax)

(
tvir

tmax

)2

' 400. (1.125)

We stress that these results depend on the background cosmology, which in this case is a
matter-only flat universe. By contrast, the extrapolation of the linear growth, for which
δ+ ∝ t2/3, provides the following results:

δ+(tcoll) '
3

5

(
3π

4

)2/3( tcoll

tmax

)2/3

' 1.68, (1.126)

δ+(tvir) '
3

5

(
3π

4

)2/3( tvir

tmax

)2/3

' 2.2 . (1.127)

1.8.4 N-body simulations

Due to the intricate and nonlinear nature of the processes involved in the formation of virial-
ised structures, the analytical study of the generic evolution of perturbations in the nonlinear
regime is not possible. As we discussed in Sect. 1.8.3, the spherical collapse model provides a
fair approximation for the formation of dark matter haloes hosting galaxy clusters. Neverthe-
less, the spherical collapse formalism relies on simplistic assumptions, such as a background
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flat universe containing only matter and a null initial peculiar velocity at the edge of the
perturbation. Thus, numerical simulations are needed to make detailed predictions of the
large-scale structure of the Universe, to be tested against observations.

N -body simulations containing only dark matter are excellent tools to accurately repro-
duce galaxy cluster observations (see, e.g., Angulo & Hahn 2022, and references therein).
Indeed, as we discussed in Sect. 1.7, dark matter is the dominant matter component in the
Universe. In addition, due to the collisionless nature of dark matter, N -body simulations ex-
clusively consider the gravitational interactions between particles. This greatly streamlines
the creation of large simulated volumes of universe, as hydrodynamical effects, which demand
extensive computational resources, are neglected.

The initial conditions for the matter density field are established based on inflation the-
ories. Subsequently, within the framework of the Newtonian approximation, the following set
of equations needs to be solved: 

F i = GMi

∑
i 6=j

Mj

r2
ij

r̂ij

ẍi =
d2xi
dt2

=
dvi
dt

=
F i

Mi

ẋi =
dxi
dt

= vi

(1.128)

where M is the particle mass, F i is the gravitational force acting on the ith particle, xi and
vi are the comoving coordinates and the velocity of the ith particle, respectively, rij is the
comoving distance between ith and jth particles, and r̂ij is the related versor. In addition,
base particles have the same mass in simulations. At a given time t, the force F i is computed
for each particle. Subsequently, after a time step δt, the new velocities and positions, vi(t+δt)
and xi(t + δt), are calculated by solving the system (1.128). The force is recalculated for
these updated positions, and this iterative procedure is repeated at every time step. This
methodology constitutes the foundation of the particle-particle (PP) method, which stands
as the most basic technique utilised in N -body simulations. Although PP is very accurate,
its application implies several issues. In a first instance, as the gravitational force diverges
at null distances, the definition of a softening length, ε, is required. In particular, ε defines
the minimum particle size, and it is a free parameter. In addition, the PP method incurs
high computational costs, as it necessitates calculating the distances between all particle
pairs, which amounts to N(N − 1)/2 computations for each time step. This results in a
computational complexity scaling as O(N2).

An alternative to PP is the particle-mesh (PM) method. In this case, the gravitational
potential is calculated on a regular grid under periodic boundary conditions, enabling the
use of Fast Fourier Transform (FFT) techniques. The process involves interpolating particle
positions to compute a grid-based density field, from which the density FFT is determined.
By leveraging the Poisson equation, the gravitational potential and force in Fourier space are
derived across the grid. Performing an inverse FFT provides the force in real space on the
grid, followed by particle-specific force calculation through interpolation. Since a significant
portion of the computations occurs in Fourier space, the operational complexity scales as
O(N logN), outperforming the PP approach. However, the spatial resolution is degraded.

Another technique adopted in N -body simulations is the so-called hierarchical tree (HT).
It consists in partitioning the simulated universe volume into cells, with their sizes organized
hierarchically according to particle spatial distribution. Initially, the volume is divided into
large cells, and then each cell can be further subdivided if it contains more than one particle.
This subdivision process continues until cells host one particle or are empty. For a given

27



particle, named P , the gravitational interaction is computed with individual particles that are
in close proximity to P . On the other hand, when dealing with distant clusters of particles, it
is sufficient to compute the force generated by a cell containing the cluster, whose barycentre
is considered as the distance between the cluster and particle P . With this method, the
number of involved operations scales as O(N logN).

As we shall detail in Chapter 3, N -body simulations provide accurate predictions on
the formation and evolution of galaxy clusters. Indeed, the structure of these objects is
dominated by dark matter, and hydrodynamical effects caused by baryonic matter imply
second-order effects on their counts and clustering. Nevertheless, a realistic description of
galaxy evolution can be attained only by accounting for hydrodynamical effects, such as
gas cooling, shocks, turbulence, and magnetic fields. To this aim, several hydrodynamical
simulations have been developed over the past years (see, e.g., Le Brun et al. 2014; Crain
et al. 2015; McCarthy et al. 2017; Springel et al. 2018; Davé et al. 2019). However, such
simulations are computationally expensive, thus they can be performed for relatively small
volumes of universe. In addition, due to the uncertainties on galaxy formation, many specific
choices on galaxy initial properties have to be made, and the modelling of physical processes is
fine-tuned according to the simulation resolution. Consequently, the theoretical uncertainties
on galaxy formation and evolution are still large. In the context of cosmological analyses
based on galaxy statistics, such uncertainties can be encapsulated in a free bias parameter
entering the matter power spectrum, as we shall discuss in Sect. 2.1.
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Chapter 2

Statistical properties of the
Universe

In this Chapter, we delve into the statistical properties of the large-scale structure of the
Universe, which play a crucial role in observational cosmology. Specifically, we discuss the
evolution of the matter power spectrum and correlation function, providing a description of
the distortions showing up in these statistical functions due to galaxy proper motions and
cosmological assumptions. In addition, we present the basic theory of gravitational lensing, as
the correlation functions involving galaxy image distortions are among the most important
probes in contemporary cosmology. Furthermore, gravitational lensing plays a key role in
estimating the mass of galaxy clusters, which is a fundamental step for the cosmological
investigations presented in this thesis.

2.1 Correlation function and power spectrum

The distribution of matter in the large-scale structure of the Universe is not random. In-
stead, galaxy positions are correlated, and this behaviour is named clustering. To describe
this spatial correlation, let us consider the probability to find an object in an infinitesimal
comoving volume dV1, namely

dP1 = n̄ dV1 , (2.1)

where n̄ is the mean number density of objects, which is independent of position. The joint
probability to find an object in two small volumes, namely dV1 and dV2, separated by a
comoving distance r, is expressed as follows

dP12 = n̄2 dV1dV2 [1 + ξ(r)] , (2.2)

where r ∈ R, since we assumed homogeneity and isotropy. In Eq. (2.2), ξ(r) is the two-point
correlation function (2PCF), and we have ξ(r) = 0 if the distribution is random, ξ(r) > 0 if
positions are correlated, and −1 ≤ ξ(r) < 0 if positions are anticorrelated. In addition, we
remark that ξ(r) is dimensionless. N -point correlation functions with N > 2 can be defined
in a similar way (Peebles 1980).

Now we study the case of a continuous density of objects with mass m, namely ρ(x) =
n(x)m, having mean equal to ρ̄ = n̄m. In this case, we have:

dP12(r) = 〈n(x+ r)n(x)〉dV1dV2 = n̄2 〈ρ(x+ r)ρ(x)〉
ρ̄2

dV1dV2 , (2.3)
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where 1 and 2 refer now to two different positions. Consequently, from Eq. (2.2), we have

1 + ξ(r) =
〈ρ(x+ r)ρ(x)〉

ρ̄2
. (2.4)

To estimate ξ from observations, let us consider an observed catalogue containing ND objects
and a random sample containing NR objects having uncorrelated positions. The so-called
natural estimator of ξ, namely ξN , is expressed as follows (Peebles & Hauser 1974):

ξN (r) =
NRR

NDD

DD(r)

RR(r)
− 1 , (2.5)

where DD(r) and RR(r) are the number of data-data and random-random pairs with sep-
aration r ± ∆r, respectively, while NDD and NRR are the total number of data-data and
random-random pairs, respectively. Due to the discreteness of the sample, the estimator in
Eq. (2.5) is affected by low accuracy at large scales. In general, more precise estimators that
take into account the cross terms between the data and random catalogues are used. One
of such estimators is that proposed by Landy & Szalay (1993, LS), namely ξLS , having the
following expression:

ξLS(r) =
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
+ 1 , (2.6)

where DR(r) is the number of data-random pairs with separation r ± ∆r, and NDR is the
total number of data-random pairs. In particular, ξLS has a nearly Poissonian variance and
provides an unbiased estimate of the 2PCF for NR →∞, with minimum variance.

From the definition of density contrast, δ, in Eq. (1.76), the 2PCF in Eq. (2.4) can be
expressed as

ξ(r) = 〈δ(x+ r)δ(x)〉 . (2.7)

We remark that ξ(r) is an auto-correlation, as it describes the correlation of the same class of
cosmic structure tracers, and it is defined in three space dimensions. Cross-correlation func-
tions between different tracers can be also defined (Peebles 1980), and correlation functions in
two space dimensions, obtained by integrating over redshift, are widely used in cosmological
surveys when accurate measurements of redshift are not available, like in photometric surveys
(Laureijs et al. 2011).

The general expression of the configuration-space density contrast, δ(x) ≡ δρ(x)/ρ, in
terms of its Fourier counterpart is

δ(x) =
1

(2π)3

∫ +∞

−∞
δ(k)eik·x d3k . (2.8)

Specifically, as discussed in Sect. 1.8.2, δ(x) is the Fourier antitransform of δ(k). The quantity
δ(x) has no dimension, while δ(k) has the dimension of a volume. In addition, δ(x) is assumed
to be a continuum and stochastic field, originated from the primordial fluctuations produced
at the end of the inflationary era (see Sect. 1.7). Our focus is not on the precise value of δ(x)
at point x, but rather on examining the average properties of this field. As we mentioned in
Sect. 1.1, the cosmological principle entails the assumption of the ergodic principle, or fair
sample principle, stating that the mean of a quantity from many realisations of the Universe
is equivalent to the mean obtained by considering separate, and sufficiently large, volumes
in the Universe. Their size is determined by the cosmic time and the degree of nonlinearity
of the perturbations, which increases over time. We note that inflation produces random
fluctuations in δ(k), which is an imaginary quantity. In turn, δ(k) phases are stochastically
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distributed, and imaginary numbers with random phases follow a Gaussian distribution.
Therefore, δ(x) is Gaussian.

From Eqs. (2.7) and (2.8), ξ can be expressed as follows:

ξ(r) =
1

(2π)6

∫
d3k

∫
d3k′〈δ(k) δ(k′)〉eik·(x+r)eik

′·r , (2.9)

and from the Wiener-Khinchin theorem, which states that the 2PCF is the inverse Fourier
transform of the power spectrum, we define

〈δ(k) δ(k′)〉 := (2π)3P (k) δ
(3)
D (k + k′) , (2.10)

where P (k) is the power spectrum and δ
(3)
D (k + k′) is the three-dimensional Dirac delta.

Specifically, we have

ξ(r) =
1

(2π)3

∫
d3kP (k)eik·r . (2.11)

In general the power spectrum is P (k) ∝ 〈|δ(k)|2〉, because

〈δ(k) δ∗(k)〉 ≡ 〈|δ(k)|2〉 := (2π)3P (k) δ
(3)
D (k − k) , (2.12)

where δ∗(k) in the complex conjugate of δ(k), and δ∗(k) = δ(−k). Similarly to ξ(r), P (k)
depends only on the modulus of k, namely k, for the isotropy assumption.

As δ(x) is normally distributed, it is fully described by its mean and variance. It is
possible to show that the variance, σ2, has the following functional form:

σ2 := 〈δ2(x)〉 =
1

(2π)3

∫
d3kP (k) =

1

2π2

∫
dk k2P (k) . (2.13)

From the operational point of view, to derive σ2 we must account for the fact that the density
field is not continuous, and that we observe distributions of objects, such as galaxies or galaxy
clusters, that trace the underlying total matter distribution. Thus, we define the mass density
contrast, δM , as follows:

δM (x) := δ(x) ∗W (x, R) , (2.14)

which is a convolution of δ(x) and the window function W (x, R), depending on the physical
radius R = (3M/4πρm)1/3, where M is the mass. W (x, R) is usually assumed to be a top-hat
or Gaussian function. Therefore, the mass variance, σ2

M , has the following functional form:

σ2
M =

1

2π2

∫
dk k2P (k)Ŵ 2(k,R) , (2.15)

where Ŵ (k, R) is the Fourier transform of the window function. For high values of R, or
analogously for high values of M , large scales are filtered and the mass variance σ2

M tends to
zero. Conversely, for small values of R we have σ2

M → σ2. In addition, galaxies and galaxy
clusters are biased tracers of the underlying matter distribution, thus the density contrast of
the tracer, δtrc, can be approximated as follows

δtrc = b(M, z)δM , (2.16)

where b(M, z) is the tracer bias, depending on the mass and redshift of the tracers. In
addition, b(M, z) depends on cosmological parameters, and it grows with increasing mass
and redshift. Functional forms for b(M, z) can be obtained analytically and then calibrated
through N -body simulations (Mo & White 1996; Sheth et al. 2001; Tinker et al. 2010),
holding for dark matter haloes. Such analytic bias functions are good approximations for
galaxy clusters, as the structure of these objects is dominated by dark matter and their
evolution can be accurately described through dark matter-only N -body simulations. In
cosmological analyses based on galaxy statistics, instead, b(M, z) is a free parameter due to
the large theoretical uncertainties on galaxy formation and evolution (see Sect. 1.8.4).
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2.2 Linear evolution of the power spectrum

In Sect. 1.8.2 we showed that, in linear regime, matter perturbations grow with time without
any dependence on the scale k. In addition, inflation does not create perturbations on
privileged scales, thus we can assume that the initial power spectrum, Pin, is expressed as a
power-law:

Pin(k) = Ask
ns , (2.17)

where As is the normalisation of the primordial power spectrum, and ns is the spectral index.
As we discussed in Sect. 1.7, both As and ns are fundamental parameters of the ΛCDM
cosmological model. Inflationary models predict ns ' 1, which in terms of gravitational
potential translates into perturbations with the same quadratic amplitude on all scales. In
agreement with this theoretical prediction, Planck Collaboration VI (2020) derived ns ' 0.96.
CMB observations also allow for constraining the slow-roll parameters ε and η defined in
inflationary models (Linde 2007), where the spectral index is expressed as ns = 1 + 2ε− 6η.

As P (k) ∝ 〈|δ(k)|2〉, in linear regime the power spectrum is expressed as a constant shift
of the initial power spectrum:

P (k, t) = δ2
+(t)Pin(k) , (2.18)

where δ+(t) is the growing mode, and its time evolution can be derived through the ap-
proximated expression of the growth factor, f , in Eq. (1.107). As discussed in Sect. 1.8.2,
matter perturbations that enter the horizon before the matter-radiation density equivalence
experience the Meszaros effect, which nearly inhibits their growth. Thus, before equivalence,
perturbations that enter the horizon can no longer undergo significant growth. On the other
hand, perturbations on scales larger than the horizon continue to grow at the same rate,
resulting in a constant shift of the primordial power spectrum. Consequently, the power
spectrum at the equivalence epoch exhibits a peak in correspondence of keq, namely the scale
of the cosmological horizon at the equivalence, and this effect is characterised by the transfer
function, T (k). Specifically, the power spectrum is expressed as follows:

P (k, t) = δ2
+(t)PinT

2(k) = Ask
nsδ2

+(t)T 2(k), (2.19)

where, for cold dark matter, T 2(k) ∝ k0 for k < keq, and T 2(k) ∝ k−4 for k > keq. In Fig.
2.1, left panel, we show the shape of P (k) and its evolution with redshift.

Additionally, nonlinearities become relevant on small physical scales first, or equivalently
at large wavenumbers k. This descends from the fact that σ2

M increases with decreasing
physical scale, and we can assume that nonlinearities hold for σ2

M & 1. Indeed, as discussed
in Sect. 1.8.2, the linear regime holds for δ � 1, and σM ∝ δ as outlined in Eq. (2.13). As σ2

M

increases, the probability distribution of the density contrast tends to deviate from a Gaussian
shape. The original Gaussian distribution, centred around zero, can not extend to density
contrasts lower than -1, resulting in a positive skewness in the distribution. This skewness
tends to favour the formation of underdensities, and this explains the existence of the cosmic
web. Furthermore, we remark that nonlinearities affect the power spectrum at high values of
k. As a result, P (k) in the linear regime is reflected in observable structure statistics mainly
at high redshifts, or in the late Universe on large scales. Notably, in the local Universe,
nonlinearities are attained on scales of approximately 8 h−1Mpc. Consequently, cosmological
analyses based on galaxy and galaxy cluster statistics constrain the parameter σ2

8, which is
the mass variance computed on scales of 8 h−1Mpc at redshift z = 0. In particular, σ2

8 is
often assumed as the normalisation of the linear power spectrum, replacing As in Eq. (2.19).
Operationally, the normalised linear power spectrum, Pnorm, is expressed as follows:

Pnorm(k, z) =
σ2

8

σ2
8(z)

P (k, z|As = 1) , (2.20)
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Figure 2.1: Linear matter power spectrum (left panel) and 2PCF (right panel), computed with
CAMB (Lewis & Challinor 2011), at z = 0 (solid black lines), z = 1 (solid red lines), and z = 2
(dashed blue lines). The peak of P (k) is in correspondence of keq. As discussed in Sect. 2.3, the P (k)
wiggles at k > keq and the ξ(r) bump at r ' 100 h−1Mpc are caused by the BAO.

where σ2
8(z) is computed at redshift z.

2.3 Baryon acoustic oscillations

In the ’90s, observations of galaxy and quasar distributions showed an excess of clustering at
scales around 100 h−1Mpc (Broadhurst et al. 1990; Deng et al. 1994). This feature is described
by the baryon acoustic oscillations (BAO) theory (Eisenstein & Hu 1998). Specifically, prior
to recombination and decoupling, the Universe was composed of a high-temperature plasma
of photons and baryons that were strongly coupled through Thomson scattering. The com-
petition between radiation pressure and gravity induced oscillations within this fluid. In
addition, in the baryon-photon plasma, density fluctuations propagated outwards as acoustic
waves, with velocity equal to the sound speed, cs. At recombination the Universe became
neutral, leading to the removal of radiative pressure on the baryons. As a result, photons
started to freely propagate, giving rise to the CMB that we observe today, while the baryon
waves stalled. The characteristic radius of the spherical shell formed during recombination,
namely s ∼ 100 h−1Mpc, is imprinted on the baryon distribution as a density excess. In
particular, s is similar to the sound horizon at the time of recombination. As baryons and
dark matter interact gravitationally, dark matter also tends to clump preferentially on this
scale. Consequently, galaxies tend to form in correspondence of such density excess. Notably,
since BAO take place within the cosmological horizon, their footprint in the matter P (k) is
observed at k > keq. The BAO feature in both P (k) and ξ(r) is shown in Fig. 2.1.

Similar to the highest peak of the CMB angular power spectrum, whose observations
showed that the Universe geometry is consistent with being flat (de Bernardis et al. 2000;
Roos & Harun-or-Rashid 2000), the BAO scale present in galaxy clustering is a statistical
standard ruler (Bassett & Hlozek 2010; Cuceu et al. 2019). In turn, BAO allow us to constrain
the Hubble constant, as well as the matter and dark energy density parameters. Indeed, we
recall that the angular diameter distance is expressed as follows

dA(z) :=
s

∆θ
∝
∫ z

0

dz′

H(z′)
, (2.21)
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Figure 2.2: Left panel : Matter perturbations in real-space are shown on the left, while on the
right the effects of redshift measurements are shown. On top, we represent the apparent squashing
of a perturbation due to the Kaiser effect on large scales. On the bottom, we show the fingers-of-
God effect caused by incoherent motions on small scales and redshift statistical errors. Image from
Hamilton (1998). Right panel : Iso-correlation contours of ξ(s⊥, s‖) derived from mock dark matter
halo catalogues. On top, redshift errors, quantified by the parameter δz, are null and only the Kaiser
effect squashing is present. In the bottom panel, δz = 0.3% and the fingers-of-God feature is evident.
Image from Marulli et al. (2012).

where ∆θ is the angle subtended by s. From Eq. (1.64), we know that the Hubble parameter,
H(z), depends on H0 and on the density parameters.

2.4 Redshift-space distortions

When studying the large-scale structure of the Universe, it is necessary to account for the
peculiar velocities of cosmic tracers, causing distortions in the observed clustering (Kaiser
1987; Hamilton 1998). Indeed, measured redshifts include the contributions of both cosmic
expansion and peculiar velocities. The latter induce distortions in the measured comoving
distances, s, also referred to as redshift-space coordinates. This effect is commonly referred
to as redshift-space distortions (RSD), and can be marginalised over by measuring the clus-
tering as a function of angular separation only. However, as we shall discuss in the following,
RSD provide robust cosmological information.

To characterise the impact of RSD, s can be decomposed into two components per-
pendicular and parallel to the line-of-sight, namely s = (s⊥, s‖). Without the presence of
peculiar velocities, the mapping between real-space coordinates, r, and s is an identity, and
the iso-correlation contours of ξ(s⊥, s‖) are circles. On the other hand, RSD squash such
iso-correlation contours along s‖, as we show in Fig. 2.2, due to coherent bulk flows from
underdense regions to high density regions. This is the so-called Kaiser effect (Kaiser 1987),

34



which can be approximated as a linear effect enhancing the clustering on all scales. Specific-
ally, the power spectrum accounting for RSD caused by the Kaiser effect has the following
expression (Kaiser 1987; Hamilton 1992; Fisher et al. 1994):

PRSD(k, µ) = P (k)
(
b+ fµ2

)2
, (2.22)

where k =
√
k2
⊥ + k2

‖, with k‖ and k⊥ being the wave-vector components parallel and perpen-

dicular to the line of sight, respectively, µ := k‖/k, f is the growth rate of matter perturba-
tions, and b is the tracer bias. Consequently, RSD provide robust cosmological information,
as they trace the growth of matter perturbations (see, e.g., Peacock et al. 2001; da Ângela
et al. 2005; Marulli et al. 2012; Tonegawa et al. 2020). Improvements of Eq. (2.22) can be
derived from simulations (see, e.g., Scoccimarro 2004; Taruya et al. 2010), accounting for the
nonlinear coupling between the density and velocity fields.

Additional effects distorting ξ(s⊥, s‖) take place on small scales, where incoherent motions
within virialized structures, such as galaxy clusters, have a remarkable impact on redshift
measurements. Such motions cause nonlinear effects in the observed clustering, elongating
ξ(s⊥, s‖) along s‖ and generating the so-called fingers-of-God effect (Jackson 1972), as we
show in Fig. 2.2. Besides peculiar velocities, also random errors affecting redshift measure-
ments, namely σz, contribute to the fingers-of-God effect. Specifically, the observed redshift,
zob, can be expressed as follows:

zob = z +
v‖

c
(1 + z)± σz , (2.23)

where z is the cosmological redshift, c is the speed of light, and v‖ is the component of the
peculiar velocity along the line of sight. To account for both peculiar velocities and redshift
statistical uncertainties, Eq. (2.22) can be rewritten as follows:

PRSD(k, µ) = P (k)
(
b+ fµ2

)2
DFoG(k, µ, f, σv,tot) . (2.24)

Eq. (2.24) is the dispersion model (Peebles 1980; Davis & Peebles 1983; Peacock & Dodds
1996), accounting for both linear and nonlinear dynamics. DFoG is a damping function de-
scribing the fingers-of-God effect, which is usually expressed as a Gaussian damping,

DFoG(k, µ, f, σv,tot) = e−k
2µ2f2σ2

v,tot , (2.25)

or as a Lorentzian damping,

DFoG(k, µ, f, σv,tot) =
1

1 + k2µ2f2σ2
v,tot

. (2.26)

Notably, DFoG implies a damping of ξ(s) at low s (see, e.g., Marulli et al. 2012). We remark
that Eq. (2.24) holds in case of Gaussian redshift statistical errors. Moreover, in Eq. (2.24),
σv,tot is expressed as follows:

σv,tot =
√
σv + σv, z , (2.27)

where σv is the pairwise velocity dispersion induced by the matter density field, which can
be either assumed as a free parameter in cosmological analyses, or analytically derived from
linear theory (see, e.g., Taruya et al. 2010). In Eq. (2.27), σv, z is the apparent velocity
dispersion caused by redshift errors, having the following functional form:

σv, z ≡
c σz(1 + z̄)

H(z̄)
, (2.28)

where z̄ is the mean redshift of the sample, c is the speed of light, H(z) is the Hubble function,
and σz is the typical redshift statistical uncertainty of the sample. As we shall discuss in
Chapt. 4, σv,z can be derived directly from the clustering shape when redshift error estimates
are not available.
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Figure 2.3: Impact of geometric distortions on simulated data. The blue solid curves represent the
measured redshift-space iso-correlation contours, derived by assuming different values of the matter
density parameter. The red solid lines show the best-fit dispersion model of the 2PCF, while the
green dotted lines show the geometrically undistorted 2PCF, measured at the true value of the matter
density parameter, namely Ωtrue

m = 0.25. Image by Marulli et al. (2012).

2.5 Geometric distortions

To measure the 3D clustering of a sample as a function of physical separation, a fiducial
cosmological model must be assumed. In general, such fiducial model does not coincide
with the true one, and this mismatch causes the so-called geometric distortions. In turn,
by knowing the impact of RSD, one can infer the true cosmological model by leveraging
on geometric distortions. This procedure is referred to as the Alcock & Paczynski (1979,
AP) test. One possible method to apply the AP test is through the 2PCF in Cartesian
coordinates, ξ(s⊥, s‖). Specifically, the components of the physical separation derived by
assuming a test cosmology, namely stest

‖ and stest
⊥ , can be expressed as a function of those

obtained by assuming the fiducial cosmology, namely sfid
‖ and sfid

⊥ , as follows:

stest
⊥ =

Dtest
A (z)

Dfid
A (z)

sfid
⊥ ,

stest
‖ =

Hfid(z)

Htest(z)
sfid
‖ , (2.29)

where DA(z) and H(z) are the angular diameter distance and the Hubble parameter, respect-
ively. The correct values of the cosmological parameters provide ξ(sfid

⊥ , s
fid
‖ ) = ξ(stest

⊥ , stest
‖ ), as

we show in Fig. 2.3 (right panel). However, we remark that the effect of geometric distortions
can be subdominant compared to the impact of redshift errors (Marulli et al. 2012).

2.6 Weak gravitational lensing

From General Relativity, we know that the trajectory of light rays traveling from a source to
an observer is influenced by both the gravitational field of local structures and the geometry
of the Universe (Schneider et al. 1992). Consequently, images of background sources bear the
signature of gravitational lensing caused by the presence of cosmic structures. This allows
for investigating the mass distribution of cosmic objects (Blandford & Narayan 1992). In
turn, lensing is key for estimating the mass of galaxy clusters (Umetsu 2020), as we shall
see in Chapt. 3. In addition, tomographic studies of observed lensing signal, performed on
large survey areas and in bins of redshift, probe the redshift evolution of the large scale
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Figure 2.4: Figure by Umetsu (2020), representing the lens system described in Sect. 2.6.1.

structure of the Universe and yield strong constraints on the cosmological parameters. In
fact, such tomographic studies, also referred to as cosmic shear analyses, are among the
primary cosmological probes in current (see, e.g., Giblin et al. 2021; Amon et al. 2022) and
future (Ivezic et al. 2008; Laureijs et al. 2011) surveys.

In this section, we present the basic concepts of gravitational lensing, focusing on the
so-called weak lensing. Compared to its strong counterpart, which is observable in case of
an alignment of lens and lensed source along the line of sight, weak lensing is much more
widespread and thus it is best suited for statistical studies.

2.6.1 Lens equation

To introduce the lens equation, describing the bending of light ray paths due to intervening
matter along the line of sight, let us consider the system shown in Fig. 2.4. We adopt the thin
lens approximation, for which the lens matter distribution is fully described by its surface
density. This is a good approximation, as the physical size of the lens is generally much
smaller than the distances between observer, lens and source.

We define the optical axis as the line passing through the observer and the lens locations.
The optical axis is perpendicular to the observer, the lens, and the source planes, referred to
as O, L, and S, respectively. Specifically, we consider a distant source behind the lens at a
position η = βDs on S, where β is the angle subtended by η and Ds is the observer–source
angular diameter distance. The lens deflects the path of a light ray emitted by the source
by a bending angle α̂, so that the observer measures an angle θ between the optical axis and
the source position on L, namely ξ = θDl, where Dl is the observer-lens angular diameter
distance.

If β, θ, and α̂ are small, we obtain the following expression relating the source observed
position, I, and its true position:

θDs = βDs + α̂Dls , (2.30)
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where Dls is the lens-source angular diameter distance. Defining the reduced deflection angle,
α = α̂Dls/Ds, we obtain the lens equation, expressed as follows:

β = θ + α(θ) . (2.31)

We remark that, for a source position β, the lens equation may have multiple solutions θ
(Hattori et al. 1999; Kneib & Natarajan 2011).

2.6.2 Convergence and shear

To relate the light ray path deflection described by the lens equation, Eq. (2.31), to gravity,
let us consider a lens in terms of an extended distribution of matter. We express the lens
effective gravitational potential, Ψ̂, by projecting the three-dimensional Newtonian potential,
Φ, on the lens plane, and by conveniently rescaling it:

Ψ̂(θ) :=
Dls

DlDs

2

c2

∫
Φ(θDl, z) dz , (2.32)

where c is the speed of light and z is the redshift. Eq. (2.32) implies that the gradient of Ψ̂
equals the reduced deflection angle, namely

∇Ψ̂(θ) = α(θ) , (2.33)

and that the Laplacian of Ψ̂ is equal to twice the convergence, κ,

∇2Ψ̂(θ) = 2κ(θ) , (2.34)

where κ is expressed as follows:

κ(θ) =
Σ(θ)

Σcr
. (2.35)

In Eq. (2.35), Σ is the surface mass density, while Σcr is the critical surface mass density,
having the following definition:

Σcr :=
c2

4πG

Ds

DlDls
. (2.36)

If the source redshift is much larger than the lens redshift, Σcr weakly depends on the source
redshift (Umetsu 2020), making the precise definition of the source redshift distribution less
crucial (Okabe et al. 2010a).

From Eq. (2.31), we obtain the following Jacobian matrix, A, mapping the β points on
the source plane onto θ points on the lens plane:

A =
∂β

∂θ
=

(
δij −

∂αi(θ)

∂θj

)
= (δij −Ψij) , (2.37)

where δij is the Kronecker delta, while θi and θj are the ith and jth components of θ,
respectively, and Ψ is defined as follows:

Ψij :=
∂2Ψ̂(θ)

∂θi∂θj
. (2.38)

Now we focus on the antisymmetric part of A, derived as follows:(
A− 1

2
trA · I

)
ij

=

(
−1

2(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2(Ψ11 −Ψ22)

)
, (2.39)
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where trA is the trace of A and I is the identity matrix. Eq. (2.39) is an antisymmetric
and trace-free matrix, referred to as the shear matrix. It provides a measurement of the
gravitational tidal field projection, that is the gradient of the gravitational force, which
accounts for the distortions observed in background sources. Specifically, the shape distortion
of extended sources occurs due to the differential deflection of light bundles. We can define
the shear pseudovector γ = (γ1, γ2) on the lens plane, where the γ1 and γ2 components are
expressed as follows:

γ1 =
1

2
(Ψ11 −Ψ22) , (2.40)

γ2 = Ψ12 = Ψ21 . (2.41)

Since the eigenvalues of the shear matrix are ±
√
γ2

1 + γ2
2 = ±γ, it is possible to find a

coordinate rotation by an angle φ such that the following expression holds:(
γ1 γ2

γ2 −γ1

)
= γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (2.42)

The remaining part of A has the following form:

1

2
trA · I = (1− κ)δij . (2.43)

Consequently, contrary to the shear, the convergence induces isotropic transformations of the
source shape, rescaling images by a constant factor in all directions. From Eqs. (2.39) and
(2.43), the Jacobian matrix is expressed as follows:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (2.44)

The eigenvalues are λ± = 1 − κ ± γ, with λ+ ≥ λ−. From Eq. (2.44), we note that in the
regime in which |κ| � 1 and |γ| � 1 the image distortions are small. We refer to this limiting
case as the weak-lensing regime.

In addition, as a consequence of Liouville’s theorem, lensing conserves the surface bright-
ness of background sources. Thus, lensed images undergo magnification, whose effect is
quantified by the magnification factor, µ, expressed as follows:

µ =
δΩI

δΩS
=

1

detA
=

1

(1− κ)2 − γ2
, (2.45)

where δΩI and δΩS are the lensed and unlensed image solid angles, respectively, and detA is
the determinant of A.

2.6.3 Weak-lensing signal from observed ellipticity

As discussed above, weak lensing is more common than its strong counterpart. This is due
to a mere statistical reason, as strong lensing requires a good alignment of source and lens
along the line of sight (Hattori et al. 1999). In turn, weak lensing is widely exploited in
cosmology as it maps the large scale structure of the Universe (Kilbinger 2015). In addition,
weak lensing is key for estimating galaxy cluster masses (Umetsu 2020), which is a crucial
step for performing cosmological analyses based on the statistical properties of these objects
(Allen et al. 2011).

Nevertheless, measuring the small image distortions produced by weak lensing is not
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trivial, due to the shape measurement noise, the isotropic smearing component of the point
spread function (PSF), and the impact of instrumental PSF anisotropy. Kaiser et al. (1995)
first proposed a method to precisely extract the lensing signal from noisy images of source
galaxies, which was extended and improved during the last decades (see, e.g., Kuijken 1999;
Bridle et al. 2002; Heymans et al. 2006; Refregier et al. 2012; Mandelbaum et al. 2018a). This
method is based on the quadrupole moments, Qij with i, j = 1, 2, of the source brightness
distribution, I(θ), which are expressed as follows (Kaiser et al. 1995):

Qij =

∫
d2θ qI [I(θ)]∆θi∆θj∫

d2θ qI [I(θ)]
, (2.46)

where qI [I(θ)] is a weight depending on the brightness (Bartelmann & Schneider 2001), and
∆θi = θi − θi is the offset from the image centroid. We can express the complex ellipticity,
e = e1 + ie2, as follows:

e =
Q11 −Q22 + 2iQ12

Q11 +Q22
, (2.47)

from which we can derive the intrinsic source ellipticity, es, as

es =
e− 2g + e∗g2

1 + |g|2 − 2<(e∗g)
, (2.48)

where g = γ/(1 − κ) is the reduced shear, and e∗ is the complex conjugate of e. Since e is
invariant under π rotations, the es expectation value, E(es), is null. Under this condition,
Eq. (2.48) becomes (Schneider & Seitz 1995)

0 =
∑
n

wn
en − δg

1−<(e∗nδg)
, (2.49)

where en and wn are the image ellipticity and the statistical weight of the nth object, re-
spectively, and δg is the complex distortion, which is expressed as follows:

δg =
2g

1 + |g|2
. (2.50)

In the weak-lensing regime, that is |κ|, |γ| � 1, Eq. (2.48) reduces to es ' e− 2g. Therefore,
assuming randomly oriented sources, the observed reduced shear in the weak-lensing regime
can be expressed as

〈g〉 ' 〈e〉
2
, (2.51)

where 〈e〉 is the average of observed ellipticities of a source ensemble. The statistical uncer-
tainty on 〈g〉 decreases as ∝ σ/

√
N , where N is the number of sources and σ is the source

ellipticity dispersion, dominated by the intrinsic shape noise. To account for biases caused
by observational and instrumental effects, the observed reduced shear, gob, is usually ex-
pressed as a function of the true reduced shear, gtr (Heymans et al. 2006; Massey et al. 2007;
Mandelbaum et al. 2014):

gob
i = (1 +mi) g

tr
i + ci (i = 1, 2) , (2.52)

where mi and ci estimates are based on observed and simulated galaxy samples.
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2.6.4 Tangential and cross shear

From Eq. (2.51), we know that in the weak-lensing regime the shear can be estimated from
observed ellipticities. The shear components γ1 and γ2, introduced in Sect. 2.6.2, depend on
the chosen coordinate frame. To define shear components that are coordinate independent
with respect to a given reference point, we define the polar coordinate frame (ϑ, ϕ) centred
on θc, such that θ = (ϑ cosϕ, ϑ sinϕ) +θc. The convergence averaged within a circle centred
on θc and with radius ϑ, namely κ(ϑ), is expressed as:

κ(ϑ) =
2

ϑ2

∫ ϑ

0
dϑ′ ϑ′κ(ϑ′) =

Σ(ϑ)

Σcr
, (2.53)

κ(ϑ) =

∮
dϕ

2π
κ(ϑ, ϕ) =

Σ(ϑ)

Σcr
, (2.54)

where Σ(ϑ) is the surface mass density averaged along a circle with radius ϑ, Σ(ϑ) is the
average surface mass density within a circle with radius ϑ, and Σcr is the surface critical
density, defined in Eq. (2.36).

Then, we introduce the tangential shear, γ+, and the cross shear component given by a
45◦ rotation, γ×, having the following expressions:

γ+(θ) = −γ1(θ) cos(2ϕ)− γ2(θ) sin(2ϕ) , (2.55)

γ×(θ) = +γ1(θ) sin(2ϕ)− γ2(θ) cos(2ϕ) . (2.56)

From these equations, we find (Kaiser 1995):

γ+(ϑ) =

∮
dϕ

2π
γ+(ϑ, ϕ) = κ(ϑ)− κ(ϑ) =

∆Σ(ϑ)

Σcr
, (2.57)

γ×(ϑ) =

∮
dϕ

2π
γ×(ϑ, ϕ) = 0 , (2.58)

where the excess surface mass density, ∆Σ(ϑ), is expressed as follows (Miralda-Escude 1991):

∆Σ(ϑ) = Σ(ϑ)− Σ(ϑ) . (2.59)

From Eq. (2.58), we note that γ× provides a useful null test for weak-lensing measurements,
as it is expected to be consistent with zero. We can derive the reduced tangential shear
averaged over a circle with radius ϑ and centre θc, g+(ϑ), as follows:

g+(ϑ) =

∮
dϕ

2π
g+(ϑ, ϕ) =

∮
dϕ

2π

γ+(ϑ, ϕ)

1− κ(ϑ, ϕ)
. (2.60)

If the projected mass distribution has an approximately circular symmetry, then the reduced
tangential shear can be expressed as follows:

g+(ϑ) ' γ+(ϑ)

1− κ(ϑ)
. (2.61)

As we shall discuss in Chapt. 3, this formalism is key to describe the weak-lensing signal
produced by galaxy clusters, for which θc is assumed to be the cluster centre.

41



42



Chapter 3

Galaxy cluster cosmology

According to the standard ΛCDM cosmological model, described in Sect. 1.7, galaxy clusters
are the largest gravitationally bound systems in the present Universe, formed through a hier-
archical assembly of smaller structures. Lying in correspondence of the nodes of the cosmic
web (Kaiser 1984), galaxy clusters trace the deepest virialised potential wells of the matter
distribution in the Universe, reaching masses of 1015 M� and radii of 5 Mpc. The critical
role of galaxy clusters in both astrophysics and cosmology dates back to the work by Zwicky
(1933), based on observations of the Coma Cluster. Indeed, the Coma Cluster mass derived
from the velocity dispersion of member galaxies was observed to exceed the combined mass
of all member galaxies by factors of approximately 200 to 400. This discrepancy necessit-
ated the proposition of the existence of a substantial amount of dark matter. Additional
support for the existence of dark matter came from the observation of an extended hot in-
tracluster medium (ICM) emitting X-rays through thermal bremsstrahlung (Giacconi et al.
1974). Measurements of the gas temperature further indicated that the depth of potential
wells in clusters necessitates the presence of a significant dark matter component. As such,
galaxy clusters allow for the investigation of dark matter interaction models (Peter et al.
2013; Robertson et al. 2017; Eckert et al. 2022) and gas astrophysics (Vazza et al. 2017;
CHEX-MATE Collaboration 2021; Zhu et al. 2021).

In addition, galaxy clusters play a crucial role in cosmology because they mark the trans-
ition between the linear and the nonlinear regime of the gravitational perturbations, so that
their formation and evolution can be theoretically described with excellent accuracy (Bor-
gani 2008). Since the dark matter component is dominant in galaxy clusters, it is accurate
enough, given the current observational uncertainties, to model the cluster formation and
evolution through N -body dark matter simulations (Borgani & Kravtsov 2011; Angulo et al.
2012; Giocoli et al. 2012). Such simulations allow us to calibrate the mass function of galaxy
cluster haloes (e.g. Sheth & Tormen 1999; Tinker et al. 2008; Despali et al. 2016), as well as
finding a functional form describing the halo bias (e.g. Sheth et al. 2001; Tinker et al. 2010)
and the cluster dark matter profiles (Navarro et al. 1997; Baltz et al. 2009). Many attempts
have also been made to investigate the impact of the baryonic physical processes on cluster
statistics (e.g. Cui et al. 2012; Velliscig et al. 2014; Bocquet et al. 2016; Castro et al. 2021).
Through calibrated cluster halo mass function and bias, it is possible to model the observed
cluster counts and clustering in order to derive groundbreaking constraints on fundamental
cosmological parameters (Sereno et al. 2015; Veropalumbo et al. 2016; Costanzi et al. 2019;
Marulli et al. 2021; Moresco et al. 2021; To et al. 2021a; Euclid Collaboration: Fumagalli
et al. 2022; Lesci et al. 2022a,b, 2023; Fumagalli et al. 2023). In turn, it is necessary to derive
the cluster masses in order to perform such cosmological analyses (Allen et al. 2011), as we
shall discuss in Sect. 3.2. Furthermore, promising techniques to constrain the cosmological
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parameters concern the study of the weak-lensing peak counts in cosmic shear maps (e.g.
Maturi et al. 2011; Reischke et al. 2016; Shan et al. 2018; Martinet et al. 2018; Giocoli et al.
2018) and galaxy cluster sparsity (e.g. Balmès et al. 2014; Corasaniti et al. 2021).

In this Chapter, we detail the detection techniques leading to the collection of large
samples of galaxy clusters, which allow for carrying out cosmological analyses. In addition,
we describe the mass calibration processes exploited in current cosmological surveys, which
yield scaling relations between cluster masses and observable mass proxies. As we shall detail,
based on such mass scaling relations, it is possible to extract cosmological information from
summary statistics of cluster distributions, such as cluster counts and clustering.

3.1 Cluster detection and mass proxies

Large samples of galaxy clusters can be built by exploiting different techniques thanks to
their multi-wavelength emission. In particular, galaxy clusters can be detected through the
bremsstrahlung emission of the intracluster medium in the X-ray band (e.g. Böhringer et al.
2004; Clerc et al. 2014; Pierre et al. 2016), through the detection of the Sunyaev-Zeldovich
effect in the CMB (e.g. Hilton et al. 2018), or through their gravitational lensing effect on the
background galaxies (e.g. Maturi et al. 2005; Miyazaki et al. 2018b). Furthermore, galaxy
clusters can be detected in the optical band by looking for overdensities and peculiar features
characterising cluster members in galaxy surveys (e.g. Rykoff et al. 2014; Bellagamba et al.
2018).

Ongoing and forthcoming wide extragalactic surveys, from the lowest to the highest fre-
quencies, will provide complete and pure galaxy cluster samples up to high redshifts and
down to low masses. These surveys include the Kilo Degree Survey1 (KiDS, de Jong et al.
2017; Kuijken et al. 2019), the Dark Energy Survey2 (The Dark Energy Survey Collaboration
2005; Abbott et al. 2021), the Vera C. Rubin Observatory LSST3 (LSST Dark Energy Science
Collaboration 2012, 2021), and Euclid4 (Amendola et al. 2018; Euclid Collaboration et al.
2019, 2020; Euclid Collaboration: Scaramella et al. 2022) in the optical and near-infrared,
the South Pole Telescope5 (Bayliss et al. 2016; Chown et al. 2018), the Atacama Cosmology
Telescope6 (Naess et al. 2020; Orlowski-Scherer et al. 2021), and the Simons Observatory7

(Ade et al. 2019; Xu et al. 2021) surveys at high-radio frequencies, and eROSITA8 (Brunner
et al. 2022; Liu et al. 2022) in X-rays.

In this section, we detail the most commonly employed cluster detection techniques,
providing the description of the mass proxies that are usually related to cluster masses. In
fact, deriving the relation between observable mass proxies and cluster masses is key for
cosmology, as masses, along with redshifts, are fundamental cosmological variables on which
theoretical models are based (Pratt et al. 2019; Clerc & Finoguenov 2023). In the following,
we also provide a comparison between cluster detection methods, outlining the differences in
the cluster sample selections.

1http://kids.strw.leidenuniv.nl/
2https://www.darkenergysurvey.org
3https://www.lsst.org/
4http://sci.esa.int/euclid/
5https://pole.uchicago.edu/
6https://act.princeton.edu/
7https://simonsobservcatory.org/
8http://www.mpe.mpg.de/eROSITA
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3.1.1 Optical and near-infrared

Historically, galaxy clusters were identified as galaxy overdensities in optical images, and
Abell (1958) provided the first catalogue based on this method. This technique, however,
can be affected by projection effects, for which field galaxies along the line of sight could
be mistakenly identified as cluster members. One way to address this issue is to leverage
the photometric characteristics exhibited by galaxies within a cluster. Galaxy clusters con-
tain a well-defined, highly regular population of elliptical and lenticular galaxies, which are
observed in optical and near-infrared (NIR) bands. In a colour-magnitude diagram, these
member galaxies form a distinct sequence known as the red-sequence (Bower et al. 1992).
Notably, the red-sequence shows a tight linear relationship between colour and magnitude,
indicating that redder galaxies are brighter. Consequently, the red-sequence plays a signi-
ficant role in identifying galaxy clusters. An example of an algorithm utilizing this feature
is the red-sequence Matched-filter Probabilistic Percolation (redMaPPer; Rykoff et al. 2014,
2016) algorithm, which has been widely employed for constructing cluster catalogues from
the Sloan Digital Sky Survey (SDSS; Gunn et al. 1998) and DES.

As forthcoming optical and NIR surveys will provide deeper observations of the sky, cluster
detection based on the red-sequence may become not optimal. Indeed, this feature could not
be prominent enough for high redshift clusters. Among the detection algorithms which do
not rely on the red-sequence, the Adaptive Matched Identifier of Clustered Objects (AMICO;
Bellagamba et al. 2018) algorithm is one of the most employed in current surveys, such as
KiDS and Euclid. AMICO is based on the optimal matched-filtering technique (Maturi et al.
2005), based on the assumption of a model for the density and luminosity profiles of galaxy
clusters. Then, AMICO identifies clusters as galaxy overdensities by matching them with
the defined model, estimating membership probabilities which strongly depend on galaxy
photometric redshifts. The AMICO algorithm also provides reliable estimates of the cluster
sample selection function, based on mock galaxy catalogues (Maturi et al. 2019). As we shall
discuss in Chapts. 5 and 7, the application of AMICO to KiDS data provided highly pure
and complete cluster samples down to low masses and high redshift.

As cluster detection in optical and NIR surveys relies on the observed galaxy distribu-
tion, one of the main detection observables is the richness. It quantifies the number of cluster
member galaxies which satisfy conditions on, for example, magnitude or distance from the
detection centre (Rykoff et al. 2016; Maturi et al. 2019). In fact, cluster richness is key for
cosmology, as it has observationally proven to correlate with mass (Bellagamba et al. 2019;
Costanzi et al. 2019; Abbott et al. 2020). As we shall discuss in Sect. 3.2, this allows for
building up scaling relations between richness and mass. Furthermore, matched-filter detec-
tion algorithms such as AMICO provide an additional mass proxy, commonly referred to as
signal amplitude (Bellagamba et al. 2018).

3.1.2 X-rays

X-ray observations have a critical role in the construction of large galaxy cluster samples
(Arnaud 2005; Ettori & Molendi 2011) and, in turn, in cosmological studies (Marulli et al.
2018; Pierre 2022; Clerc & Finoguenov 2023). Indeed, galaxy clusters appear as extended
X-ray sources in the sky, as the deep potential well of the dark matter halo leads to virial
temperatures of approximately 107 − 108 K for the diffuse ICM. As hydrogen is the most
abundant element in the Universe, the ICM is mostly composed of free electrons and protons,
emitting X-rays through free-free interactions, referred to as bremsstrahlung. The other
primary X-ray emission processes are electron recombination and line emissions. In each of
these cases, the emissivity is directly proportional to the square of the electron density, which
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ranges from approximately 10−1 cm−3 in the inner regions of bright cool core clusters to
approximately 10−5 cm−3 in the outskirts. This implies an optically thin regime, and thus a
non-auto-absorbed emission.

As the ICM properties depend on the halo potential well depth, the cluster total mass is
expected to strongly correlate with X-ray observable mass proxies, such as gas temperature,
gas mass, and X-ray luminosity. The temperature can be estimated from spectroscopic data,
which provide information on light emission of heavy elements, or from the cut-off of the
continuum ICM emission. The luminosity is proportional to the normalisation of the observed
profile, while the gas mass can be derived through the emission measure, corresponding to
the integral of the electron density along the line of sight (Arnaud 2005). As these mass
proxies trace the ICM virialisation, they characterise the inner regions of galaxy clusters.
Specifically, the X-ray mass proxies are usually measured within R500c, namely the radius
within which the mean mass density is 500 times the critical density of the Universe at the
cluster redshift. As shown by Eckert et al. (2020), X-ray emission is a low-scatter mass proxy
at ∼ 0.5R500c.

Similarly to some optical and NIR detection algorithms, X-ray detection can rely on a
model describing the expected cluster profiles (Käfer et al. 2019; Xu et al. 2022). Among the
simplest models adopted in literature there is the isothermal β model (Cavaliere & Fusco-
Femiano 1976), based on the assumption of hydrostatic equilibrium and spherical symmetry
(Voit 2005), having the following functional form:

ρgas(r) ∝ [1 + (r/rc)
2]−3β/2, (3.1)

where ρgas(r) is the gas density at a distance r from the centre, rc is a core radius, and
β ' 2/3 (Jones & Forman 1984). From Eq. (3.1), it is possible to derive an analytic surface
brightness profile (Gorenstein et al. 1978), and X-ray cluster candidates are expected to fol-
low such theoretical profile. In addition, Eq. (3.1) can be exploited to estimate the cluster
gas mass from observations, as an alternative to the emission measure (Arnaud 2005).

Despite massive clusters can be easily identified as X-ray sources, optical and NIR ob-
servations allow for building up samples down to lower masses, including groups of galaxies
(see, e.g., Maturi et al. 2019; Bellagamba et al. 2019). In addition, X-ray cluster surveys
need complementary observations in optical and NIR to measure the redshifts (Klein et al.
2018), if resolved emission lines are not available in X-ray spectra (Yu et al. 2011; Borm et al.
2014). On the other hand, X-ray observations are less affected by projection effects, which
may significantly bias the mass proxy and, in turn, the cluster mass estimates (Myles et al.
2021; Wu et al. 2022; Shi et al. 2023b). Furthermore, the cluster sample completeness can
be analytically derived for flux-limited X-ray surveys (Tozzi 2007; Borgani 2008), as the ICM
emission is continuous and stable. Conversely, estimating the completeness of optical and
NIR selected cluster samples requires simulations (Maturi et al. 2019), as the cluster flux
depends on the adopted photometric filters, the number and the concentration of member
galaxies.

3.1.3 Thermal Sunyaev-Zeldovich effect

When CMB photons pass through the hot ICM of a galaxy cluster, they experience a fre-
quency shift due to inverse Compton scattering with free electrons, commonly known as the
Sunyaev-Zeldovich effect (SZ; Sunyaev & Zeldovich 1972). When the interaction is due to
the non-relativistic thermal motion of the electrons, this effect is called thermal SZ (tSZ,
referred to as SZ hereafter for simplicity). As a result of the SZ effect, low-frequency photons
gain energy, leading to a distortion in the black body spectrum of the CMB. This distortion
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causes a decrease in the number of photons with frequencies below ν0 ' 217 GHz and a
corresponding increase in the number with frequencies above ν0 ' 217 GHz. Notably, ν0

serves as a characteristic frequency at which the spectrum remains undistorted.
The SZ effect is purely a spectral distortion which does not depend on redshift. The amp-

litude of this distortion is quantified by the Compton parameter, YSZ, expressed as follows:

YSZ =
σT
mec2

∫
Pe dl , (3.2)

where σT represents the Thomson cross-section, me denotes the electron mass, c stands for
the speed of light, and Pe represents the thermal pressure of free electrons integrated over
the distance traveled by photons in the ICM. In the low-frequency approximation, the SZ
effect causes variations in the intensity of the signal, I, corresponding to

δI

I
=
δT

T
= −2YSZ . (3.3)

The typical variation in the signal is δI/I ∼ 10−4, indicating that this effect is not negligible
since the CMB itself exhibits variations on the order of ∼ 10−5. As shown in Eq. 3.3, un-
like X-ray and optical measurements, the SZ signal of a cluster does not experience surface
brightness dimming. Consequently, SZ surveys are well suited for detecting massive clusters
at high redshifts.

Matched filter detection algorithms are commonly adopted for cluster identification through
SZ, relying on pressure profile models, such as the isothermal β-model, to describe the SZ
signal (Melin et al. 2006). Such algorithms aim at maximising the SZ signal-to-noise (S/N)
by filtering the CMB map, and provide an estimate of YSZ. We remark that YSZ quantifies the
amplitude of the signal, and in turn it is a robust cluster mass proxy. As we shall discuss in
Sect. 3.2, SZ and X-ray observations can be combined to derive robust constraints on cluster
masses, based on mass proxies.

Similar to X-ray observations, the cluster SZ emission depends on ICM properties, and
the mass range of detected clusters is compatible with that derived from X-ray surveys.
Among the similarities with X-rays, we also mention that the SZ signal is poorly affected
by projection effects, and that the sample completeness can be analytically derived (Planck
Collaboration XX 2014). In addition, SZ selected clusters need complementary optical and
NIR observations for measuring redshifts.

Throughout this section, we referred to the thermal SZ effect simply as SZ. This must be
distinguished from the kinetic SZ effect (kSZ; Carlstrom et al. 2002), caused by the Doppler
effect of clusters having a non-zero peculiar velocity along the line of sight, implying a proper
motion with respect to the Hubble flow. Unlike its thermal counterpart, kSZ does not produce
distortions in the shape of the spectrum, but the bulk temperature of the CMB spectrum
does change. As a result, kSZ serves as a reliable tracer of the peculiar velocity field, despite
inducing temperature variations of |∂T/T | ∼ 10−5, which is an order of magnitude lower
than those produced by SZ.

3.2 Mass measurements in cosmological surveys

Galaxy cluster formation and evolution can be theoretically modelled with high accuracy,
this allowing the derivation of reliable cluster mass estimates from observations. This is not
feasible for galaxies, due to the large uncertainties in galaxy formation and evolution models.
Consequently, compared to cosmological analyses based on galaxies, cluster mass estimates
compensate the lower abundance of large scale structure tracers.
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In this section, our focus is on two highly precise methods for measuring cluster masses in
cosmology, specifically those based on weak-lensing and X-ray hydrostatic equilibrium meas-
urements. Other methods, based on strong lensing (Monna et al. 2017; Remolina González
et al. 2021; Fox et al. 2022) and on the dynamics of member galaxies (Kodi Ramanah et al.
2020; Ho et al. 2022; Biviano & Mamon 2023), require long exposure time and spectroscopy,
which are hard to achieve in large galaxy cluster surveys.

3.2.1 Weak lensing

As detailed in Sect. 2.6, observed galaxy ellipticities can be related to the reduced shear,
g = γ/(1− κ), in the weak-lensing regime. In turn, it is possible to reconstruct the gravita-
tional potential of the lens from observations. Optical and NIR observations are suitable for
achieving this task, as photometry yields accurate estimates of galaxy shapes (Ivezic et al.
2008; Laureijs et al. 2011; Giblin et al. 2021; Amon et al. 2022).

In Sect. 2.6.4, we showed that the excess surface mass density averaged over a circle,
∆Σ+, is related to the tangential component of the shear, γ+, as

∆Σ+(R) = Σ(< R)− Σ(R) = Σcrγ+(R) , (3.4)

where Σcr is the surface critical density, expressed in Eq. (2.36), Σ(R) is the mass surface
density, and Σ(< R) is its mean within the radius R, expressed as follows

Σ(< R) =
2

R2

∫ R

0
dr rΣ(r) . (3.5)

In turn, galaxy ellipticities are proxies of ∆Σ+, as g+ ' γ+ in the weak-lensing limit (see Eq.
2.61). Following the formalism adopted in Sect. 2.6.4, we can derive the tangential and cross
ellipticity components, namely e+ and e×, respectively, as follows (Viola et al. 2015):(

e+

e×

)
=

(
− cos(2ϕ) − sin(2ϕ)
sin(2ϕ) − cos(2ϕ)

)(
e1

e2

)
, (3.6)

where ϕ is the position angle of the source with respect to the lens centre, while e1 and e2

are the ellipticity components introduced in Sect. 2.6.3. Therefore, the ∆Σ+ estimator has
the following expression (Sheldon et al. 2004; Viola et al. 2015; Bellagamba et al. 2019):

∆Σ+(Rj) =

(∑
i∈j (wi Σ−2

cr,i) e+,i Σcr,i∑
i∈j (wi Σ−2

cr,i)

)
1

1 +K(Rj)
, (3.7)

where j is the radial annulus index, with mean radius Rj , and wi is the statistical weight
assigned to the source ellipticity measure of the ith galaxy (Sheldon et al. 2004). An optimal
choice for the statistical weight is w = 1/σ2

g , where σg is the statistical uncertainty on the
reduced shear. In addition, K(Rj) is the average correction due to the multiplicative noise
bias in the shear estimate and is computed as follows

K(Rj) =

∑
i∈j (wi Σ−2

cr,i)mi∑
i∈j (wi Σ−2

cr,i)
, (3.8)

where mi is the multiplicative shear bias for the ith galaxy (see Eq. 2.52).
In large photometric surveys, the weak-lensing signal of individual clusters is too low to

precisely measure the density profiles. For this reason, ∆Σ+ is usually derived for ensembles
of clusters, selected according to their mass proxies and their redshifts. This is possible by
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stacking the lensing signal of galaxy clusters through a weighted sum. Specifically, the excess
surface density profile for the Kth cluster bin is expressed as follows

∆Σ+,K(Rj) =

∑
k∈KWk,j ∆Σ+,k(Rj)∑

k∈KWk,j
, (3.9)

where k runs over the clusters in the bin, and Wk,j is the total weight for the jth radial bin
of the kth cluster, estimated as

Wk,j =
∑
i

wi Σ−2
cr,i, (3.10)

where i runs over the background galaxies in the jth radial bin. We remark that Eq. (3.7)
is valid for approximately spherical lenses. In case of merging and interacting systems, the
lens mass distribution is complex and measurements of the two-dimensional shear field are
needed (Umetsu 2020). Nevertheless, for large ensembles of galaxy clusters, the average mass
distribution around their centres tends to be spherically symmetric. This is strictly true if
selection biases towards the matter distribution are negligible. In addition, we stress that
∆Σ+(R) measurements require the assumption of a cosmological model for the computation
of Σcr and radial distances from cluster centres. For cosmological analyses, the cluster masses
derived by modelling ∆Σ+(R) can be appropriately rescaled as a function of cosmological
parameters (Sereno 2015). Alternatively, reduced shear estimates as a function of the angular
distance from the cluster centre do not depend on cosmology (Umetsu 2020).

Having an estimator for ∆Σ+, cluster masses can be derived by assuming a theoretical
density profile model. As the dark matter component is dominant in galaxy clusters, N -body
simulations provide an excellent theoretical description of the matter distribution of such
objects. The Navarro-Frenk-White (NFW; Navarro et al. 1997) density profile is extensively
adopted in literature, and it is expressed as follows:

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)2
, (3.11)

where ρNFW(r) is a 3D density, r is the radius, rs is the scale radius, and ρs is the characteristic
density. The scale radius is expressed as rs = r∆/c∆, where r∆ is the radius enclosing a mass
such that the corresponding mean density is ∆ times the critical density of the Universe,
and c∆ is the concentration. Specifically, assuming spherical symmetry, r∆ is expressed as
follows:

r∆ =

(
3M∆

4π∆ρc

)1/3

, (3.12)

where ρc is the critical density of the Universe, and M∆ is the cluster mass. Similarly to rs,
also ρs depends on c∆ and M∆ (see, e.g., Aguena et al. 2021).

Oguri & Hamana (2011) showed that the Baltz-Marshall-Oguri model (BMO; Baltz et al.
2009) better describes cluster profiles outside the viral radius in simulations, compared to
the original NFW profile. In particular, the BMO is a truncated version of the NFW profile,
and it is expressed as follows:

ρBMO(r) =
ρs

(r/rs) (1 + r/rs)2

(
r2

t

r2 + r2
t

)2

, (3.13)

where rt = Ftr∆ is the truncation radius, with Ft ' 3 (Oguri & Hamana 2011; Sereno
et al. 2017). Another popular truncated density profile is the one proposed by Diemer &
Kravtsov (DK14; 2014). This is a composite model, based on the Einasto (1965) profile
describing the inner region of the dark matter halo, and a parametric infall term representing
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the external accreting matter. In turn, the DK14 profile is extensively used to estimate the
splashback radius from data (see Rana et al. 2023, and references therein), that is the radius
where accreted particles reach the apocenter of their first orbit. Nevertheless, NFW and
BMO profiles are commonly used for mass calibration, mainly for the lower number of model
parameters compared to DK14. In addition, to constrain the DK14 infall term parameters,
weak-lensing measuments up to large radii are required. However, cluster mass calibration is
usually performed within a few Mpc from cluster centres, as the weak-lensing signal at large
radii does not improve mass constraints. In addition, such signal may be significantly biased
for photometrically selected clusters (Sunayama et al. 2020; Park et al. 2023).

To model ∆Σ+ measurements, the 3D dark matter density, ρ, must be appropriately
projected into two dimensions. The mass surface density in Eq. (3.4) can be written as
follows

Σ(R) =

∫ ∞
−∞

dχ∆ρ(
√
R2 + χ2) , (3.14)

where ∆ρ is the excess matter density, expressed as

∆ρ(r) = ρ(r)− ρm, (3.15)

where ρm = Ωmρcr(1 + z)3. An additional contribution to the surface density, due to the
correlated matter nearby the galaxy cluster halo, can be described by the 2-halo term, having
the following expression

Σ2h(θ,M, z) =
ρm(z) bh(M, z)

(1 + z)3D2
l (z)

∫
dl l

2π
J0(lθ)P (kl, z) , (3.16)

where θ is the angular radius, J0 is the 0th order Bessel function, kl = l/(1 + z)/Dl(z), Dl is
the lens angular diameter distance, bh is the halo bias, and P (kl, z) is the matter linear power
spectrum. Eq. (3.16) is an alternative to the DK14 infall term, through which cosmological
parameters and halo bias can be constrained (Giocoli et al. 2021; Ingoglia et al. 2022).

Since the weak-lensing measurements are based on the choice of cluster centres, estimating
the offcentring scale is crucial. In fact, cluster finders may provide biased centre estimates
due to partially masked detections or large photometric noise. In addition, the member
galaxy distribution centre may not coincide with the dark matter halo centre, especially in
not relaxed clusters. A possible way to address this problem is to associate the cluster centre
to the position of the brightest central galaxy (BCG, Dalal et al. 2021; Herbonnet et al. 2022;
Shi et al. 2023a). Moreover, the offset between baryonic distribution and dark matter halo
centres can be estimated by studying the cluster SZ and X-ray signal in simulations (Saro
et al. 2015; Seppi et al. 2023; Sommer et al. 2023). To this aim, the offcentring is statistically
estimated for ensembles of clusters, and the excess surface density is expressed as follows

∆Σ+(R) = (1− foff) ∆Σ+,cen(R) + foff ∆Σ+,off(R), (3.17)

where ∆Σ+,cen is the centred excess surface density, ∆Σ+,off is its offcentred counterpart,
and foff is the fraction of offcentred clusters. In particular, the probability of a lens being
at distance Rs from the assumed centre, namely P (Rs), is usually described by a Rayleigh
distribution (Johnston et al. 2007; Viola et al. 2015; Bellagamba et al. 2019)

P (Rs) =
Rs

σ2
off

exp

[
− 1

2

(
Rs

σoff

)2]
, (3.18)

where σoff is the root mean square deviation (rms) of the halo misplacement distribution on
the plane of the sky. The azimuthally averaged profile of a population of haloes misplaced
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by a distance Rs is given by (Yang et al. 2006)

Σ(R|Rs) =
1

2π

∫ 2π

0
Σcen

(√
R2 +R2

s + 2RRs cos θ

)
dθ, (3.19)

thus the surface mass density distribution derived from an off-centred population of haloes
has the following expression

Σoff(R) =

∫
P (Rs) Σ(R|Rs) dRs. (3.20)

From Eqs. (3.4), (3.5), and (3.20), ∆Σ+,off in Eq. (3.17) can be derived.
We remark that weak lensing traces both dark and baryonic matter components. The

baryonic impact on galaxy cluster profiles can be encapsulated within the halo concentration,
c∆, (Shirasaki et al. 2018). Constraining c∆ from data is ideal, as the assumption of theoretical
c∆-M∆ relations may lead to biases in M∆ (Henson et al. 2017; Lee et al. 2018). In Chapt. 7,
we will show that c∆-M∆ and richness-M∆ relations can be simultaneously constrained from
KiDS weak-lensing data.

Another cluster mass measurement technique relying on weak lensing is the so-called
CMB lensing (Zaldarriaga & Seljak 1999; Lewis & Challinor 2006), caused by the intervening
matter distribution of clusters. Despite its lower S/N, CMB lensing has become a robust
alternative to galaxy weak lensing in SZ cluster statistics analyses (Planck Collaboration
XXIV 2016).

3.2.2 Hydrostatic equilibrium

As we mentioned in Sect. 3.1.2, mass measurements can be directly carried out from X-ray
observations, through the assumption of the ICM hydrostatic equilibrium (for an extens-
ive review, see Ettori et al. 2013). Specifically, a spherical ICM is assumed, satisfying the
following condition:

dPgas

dr
= −ρgas

dφ

dr
= −ρgas

GM(r)

r2
, (3.21)

where Pgas and ρgas are the ICM pressure and density, respectively, while φ and M are the
total gravitational potential and the total mass of the cluster, respectively. Therefore, by
describing the ICM as an ideal gas, the total mass contained within the radius r, M(r), can
be expressed as

M(r) = − r
G

kT

µmp

(
d ln ρgas

d ln r
+

d lnT

d ln r

)
, (3.22)

where µ is the mean molecular weight (µ ' 0.59 for primordial composition9), and mp is the
mass of the proton. To describe the ICM density profile, a β-model is usually assumed, as
detailed in Section 3.1.2. In addition, as we mentioned above, temperature measurements can
be achieved through X-ray emission lines and continuum cut-off. When detailed temperature
profiles from X-ray observations are not available, the ICM can be described as isothermal
or polytropic (Borgani 2008). In addition, X-ray temperature and luminosity measurements
can be related to masses through the assumption of a self-similar growth of galaxy clusters.
This assumption is motivated by the fact that gravity does not act on preferred scales, and
thus clusters of different sizes are expected to be the scaled version of each other. Specifically,
the self-similarity assumption leads to the following scaling relations:

TX ∝M2/3(1 + z), (3.23)

LX ∝ T 2
X(1 + z)3/2, (3.24)

9Note that the ICM has not a primordial composition, due to supernova and AGN feedback.
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where TX and LX are the X-ray temperature and luminosity, respectively, and M is the
cluster mass. Nevertheless, observations showed that the ICM self-similarity does not hold
(see, e.g., Xue & Wu 2000), leading to LX ∝ Tα, with α ' 2.5− 3 (for a review, see Borgani
2008).

Compared to richness estimates provided by optical and NIR detections, the link between
cluster masses and the X-ray mass proxies is theoretically better understood. Indeed, as we
discussed in this section, X-ray observables can be related to masses through the assumption
of hydrostatic equilibrium. The link between cluster richness and mass, instead, is harder to
model, due to strong uncertainties on galaxy formation and halo occupation distribution (Qin
et al. 2022; Korytov et al. 2023; Contreras & Zehavi 2023). Nevertheless, simulations show
that X-ray masses are typically 10–15% underestimated due to the assumption of hydrostatic
equilibrium, for which bulk motions and turbulence in the ICM are neglected (Nagai et al.
2007; Meneghetti et al. 2010; Rasia et al. 2012; Le Brun et al. 2014). Therefore, weak-lensing
observations are needed to properly assess this bias. In Chapt. 4 we will extensively discuss
this effect, commonly referred to as the hydrostatic bias, by analysing the clustering signal of
the SZ galaxy cluster catalogue derived by Planck Collaboration XXVII (2016). In fact, as we
discussed in Sect. 3.1, SZ provides a reliable estimate of the thermal pressure by free electrons
and, in combination with temperature measurements from X-ray observations, it allows for
estimating cluster masses (Grego et al. 2001). Specifically, YSZ is a robust cluster mass proxy
as it quantifies the amplitude of the signal, and Kravtsov et al. (2006) proposed the X-ray
equivalent of YSZ, namely the YX parameter, defined as the product of the gas mass and the
cluster temperature. Consequently, based on YSZ measurements, scaling relations between
YX and X-ray masses can be adopted to estimate the mass of SZ selected clusters (Planck
Collaboration XX 2014).

3.2.3 Cluster statistics

A natural degeneracy between cluster masses and cosmological parameters exists, as both
affect the power spectrum of matter perturbations. This makes mass calibration a key step of
cosmological pipelines based on cluster statistics. Similarly, cluster abundance and clustering
are suitable probes for mass calibration if a cosmological model is assumed (Murata et al.
2019; Chiu et al. 2020; Lesci et al. 2022b, 2023). In Chapts. 4 and 5 we will present mass
calibration analyses based on the clustering of Planck and KiDS galaxy clusters, showing
that this summary statistics provides robust constraints on the normalisation of the scaling
relation between cluster masses and mass proxies. In addition, in Chapt. 5 we will discuss the
constraints on such scaling relation from the combination of cluster weak lensing and counts.
Notably, cluster counts improve the constraints on the mass-richness scaling relation slope,
and on its dependence on redshift.

3.3 Cluster counts

The abundance of galaxy clusters, commonly referred to as cluster counts, is the primary
cosmological probe based on this class of objects. Indeed, dark matter halo abundance can
be accurately calibrated through N -body simulations (see Sect. 1.8.4). As we discussed in
this Chapter, the galaxy cluster composition is dominated by dark matter, thus N -body
simulations provide a good approximation also for the abundance of these objects. In fact,
cluster counts provide groundbreaking constraints on fundamental cosmological parameters,
such as σ8 and Ωm (Costanzi et al. 2019; Bocquet et al. 2019; Lesci et al. 2022a), which are
competitive with the results from cosmic shear analyses (Troxel et al. 2018; Hikage et al.
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2019; Asgari et al. 2021).
In this section, we provide an overview on literature theoretical mass functions. After the

description of the analytical mass function provided by Press & Schechter (1974), we discuss
the theoretical models adopted in current cosmological analyses and their dependence on
cosmological parameters. Lastly, we detail the models adopted to link the theoretical mass
function to mass proxies, accounting for observational uncertainties on cluster observable
properties.

3.3.1 Press-Schechter mass function

Based on the spherical collapse model described in Sect. 1.8.3, Press & Schechter (1974)
provided an analytical form for the halo mass function. In the Press-Schechter (PS) formal-
ism, the probability distribution of the filtered density contrast δM , defined in Sect. 2.1, is
assumed to be Gaussian. Thus, such probability is expressed as follows:

P (δM ) =
1√

2πσ2
M

exp

(
−
δ2
M

2σ2
M

)
, (3.25)

where σ2
M is the mass variance, defined in Eq. (2.15). As we detailed in Sect. 2.2, P (δM )

is Gaussian only in the linear regime of perturbations. Consistent with this assumption
on P (δM ), the selected threshold for the filtered density contrast that characterises collapsed
structures is approximately δc ' 1.68. This value is derived in Eq. (1.126) by extrapolating the
linear theory within the framework of the spherical collapse approximation. The probability
of δM to exceed δc is then

P>δc(M) =

∫ ∞
δc

P (δM ) dδM , (3.26)

which depends on both mass and redshift as σM varies with time. Only isolated collapsed
structures are considered, having the following probability distribution:

P>δc(M)− P>δc(M + dM) . (3.27)

However, this approach completely disregards the so-called cloud-in-cloud problem, which
considers the possibility that a specific overdensity, initially isolated, might end up being
encompassed within a larger object on a higher mass scale at a later time. This analysis
exclusively focuses on recently collapsed objects, namely those that have just attained the
threshold δc. Then, the PS mass function, n(M), is expressed as follows:

n(M)MdM = 2ρm [P>δc(M)− P>δc(M + dM)] = 2ρm

∣∣∣∣dP>δcdσM

∣∣∣∣ ∣∣∣∣dσMdM

∣∣∣∣dM, (3.28)

where ρm is the mean cosmic background density, and the factor 2 accounts for mass accretion
from underdense regions onto the dense ones. Indeed, in Eq. (3.27), underdense regions are
neglected, thus half of the mass is excluded due to the symmetry of the Gaussian distribution.
Bond et al. (1991) demonstrated that, within the framework of random walk theory, the factor
of 2 stems from overcounting due to the cloud-in-cloud effects. From Eq. (3.28), we obtain
the following general expression for the PS mass function:

n(M)dM =

√
2

π

ρm

M2

δc
σM

∣∣∣∣d lnσM
d lnM

∣∣∣∣ exp

(
− δ2

c

2σ2
M

)
dM . (3.29)

Therefore, the PS mass function is a power-law with an exponential cut-off at high masses.
This shape is reproduced also by the halo mass functions derived from N -body simulations,
as described in the next section.
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3.3.2 Mass functions from N-body simulations

The primary concern with the PS mass function, detailed in Sect. 3.3.1, lies in the assumption
of spherical collapse. To address this issue, Sheth et al. (2001) introduced a more generalized
description involving ellipsoidal collapse, and calibrated the free parameters of the mass
function using numerical simulations. In particular, the generic functional form of the mass
function adopted in literature has the following expression

dn(M, z)

dM
= f(σM , z)

ρm

M

d lnσ−1
M

dM
, (3.30)

where dn(M, z) is the differential volume density, and f(σM , z) is the multiplicity function.
The latter has a different functional form depending on modelling assumptions, and it is
characterised by an exponential cut-off depending on σM . By comparison, the multiplicity
function in the PS formalism, fPS(σM , z), is expressed as follows

fPS(σM , z) =

√
2

π

δc

σM
exp

(
− δ2

c

2σ2
M

)
. (3.31)

Several mass function calibrations from N -body simulations have been proposed over the past
decades (see, e.g., Tinker et al. 2008; Crocce et al. 2010; Bhattacharya et al. 2011; Watson
et al. 2013; Despali et al. 2016), spanning the mass and redshift ranges covered by current
surveys. Haloes are identified by either using spherical overdensity (SO) or friend-of-friends
(FoF) halo definitions. SO is based on finding spherical regions enclosing a given overdensity
∆ (Lacey & Cole 1994). Therefore, SO mass functions are consistent with mass estimates
obtained from observations, for which the spherical symmetry of galaxy clusters is assumed
(see Sect. 3.2). FoF finders, instead, identify haloes by connecting pairs of particles whose
distance is smaller than l times the average inter-particle distance (Davis et al. 1985), with
l ' 0.2 (Frenk et al. 1988). FoF haloes are known to be biased toward higher masses for
haloes with a low number of particles (Warren et al. 2006). In addition, FoF finders tend
to link close and different objects to each other (see, e.g., Tinker et al. 2008; Watson et al.
2013, and references therein). On the other hand, SO finders do not properly characterise
non-spherical haloes.

One of the most frequently adopted mass function models in literature is the one by
Tinker et al. (2008), based on a SO halo finder. This model is also used in the cosmological
analyses presented in Chapts. 4 and 5. To et al. (2021b) showed that the Tinker et al. (2008)
model predictions are in excellent agreement with halo mass function emulators. The same
holds for the halo bias by Tinker et al. (2010). In addition, several parameterisations of the
Tinker et al. (2008) mass function have been proposed, in order to account for its systematic
uncertainty as a function of mass (see, e.g., Costanzi et al. 2019; To et al. 2021a).

We stress that the N -body simulations used to calibrate the aforementioned halo mass
functions include only dark matter particles. However, models derived from hydrodynamical
simulations would be ideal, as the impact of baryon physics may be not negligible for galaxy
clusters (Henson et al. 2017; Lee et al. 2018; Giri & Schneider 2021). In fact, the impact of
baryons on the halo mass function has been extensively investigated in literature (see, e.g.,
Cui et al. 2012; Velliscig et al. 2014; Bocquet et al. 2016; Castro et al. 2021). Nevertheless,
due to the incomplete understanding of hydrodynamical processes like AGN feedback and
gas cooling, the outcomes from various simulations remain unsettled.

3.3.3 Dependency on redshift and cosmological parameters

Since the halo mass function models are based on the assumption of the hierarchical structure
formation, the mass function normalisation decreases as the redshift increases, as shown in
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Figure 3.1: Mass function by Tinker et al. (2008), given the cosmological parameters by Planck
Collaboration VI (2020, Table 2, TT,TE,EE+lowE+lensing), computed at z = 0 (black line), z = 0.5
(red line), z = 1 (blue line), and z = 1.5 (green line), as a function of M200c.

Fig. 3.1. In addition, the general expression of the mass function, presented in Eq. (3.30),
shows a clear dependency on fundamental cosmological parameters and redshift. In partic-
ular, the presence of ρm implies a direct reliance on the density parameter Ωm, which, as
discussed in Sect. 1.7, is one of the six fundamental parameters of the ΛCDM model. In
addition, the growth factor f , expressed in Eq. (1.107), mainly depends on Ωm. Specifically,
f enters the mass function through σM , which is an integral of the power spectrum. In Fig.
3.2, we show that a decrease in Ωm results in a lower normalisation of the mass function. In
addition, thanks to the presence of σM , the mass function directly depends on σ8, which is the
mass standard deviation on scales of 8 h−1Mpc. As detailed in Sect. 2.2, σ8 is related to the
amplitude of the primordial power spectrum, As, which is another fundamental parameter
of the ΛCDM model. In Fig. 3.2, we can see that σ8 variations mostly impact on the mass
function exponential cut-off. Moreover, σ8 has an impact on the mass function normalisation
which is similar to that induced by Ωm. In turn, σ8 and Ωm are slightly degenerate, and
S8 := σ8(Ωm/0.3)α is commonly used as a summary parameter, with α = 0.5. Specifically,
S8 captures the direction perpendicular to the σ8-Ωm degeneracy. A fit of α based on the
data may yield tighten constraints on S8 (Kilbinger et al. 2013; Asgari et al. 2021), as this
parameter depends on the physical scales involved in the analysis.

Besides σ8 and Ωm, due to the presence of σM , the mass function depends on the spectral
index, ns, on the other density parameters, and on the dark energy equation of state para-
meter, wΛ. However, the dependency on such parameters is weaker compared to σ8 and Ωm,
as they appear within an integral in the expression of σM . Additionally, we recall that the
dark energy density, ρΛ, is expressed as follows:

ρΛ = ρ0,Λ(1 + z)3(1+wΛ) . (3.32)

Consequently, an increase of wΛ may imply an increase of ΩΛ, causing a delay of the structure
growth in a flat universe, as shown in Eq. (1.107). Nonetheless, the increase of ΩΛ is not
guaranteed as it also depends on the critical density, Eq. (1.22), which, in turn, depends
the Hubble parameter, H(z). From the expression of H(z), in Eq. (1.64), we can see that
if wΛ increases, also H(z) and the critical density increase. This would counteract the rise
in ρΛ, and affect the final value of ΩΛ. Furthermore, increases in H(z) lead to a reduction
in cosmic distances, subsequently altering the count of galaxy clusters at a specific redshift.
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Figure 3.2: Mass function by Tinker et al. (2008) at z = 0, as a function of M200c. The black solid
lines represent the mass function with cosmological parameters by Planck Collaboration VI (2020,
Table 2, TT,TE,EE+lowE+lensing). In the left and right panels, different values of Ωm and σ8,
respectively, are assumed.

This implies a degeneracy between Ωm and wΛ, especially considering that the radiation
density parametry is currently negligible. Another degeneracy involving wΛ and Ωm becomes
apparent in flat universes due to the direct dependency of the mass function on ρm, which
diminishes as the ΩΛ value rises. Finally, cosmological analyses based on the mass function
can provide constraints on the growth factor exponent (see Eq. 1.107), which is yielded by
the assumption of General Relativity. In turn, the mass function provides a test for the
gravitation theory. Based on forecasts of Euclid surveys (Laureijs et al. 2011), Sartoris et al.
(2016) showed that the most robust constraints derived from cluster abundance concern σ8

and Ωm, with a precision of about 10−3. In addition, Sartoris et al. (2016) derived competitive
constraints on the massive neutrino density parameter, Ων , the primordial non-Gaussianity,
and the time evolution of the dark energy equation of state, assuming a CPL parameterisation
for wΛ (see Sect. 1.7).

3.3.4 Modelling of observed counts

Given a theoretical model for the mass function, constraints on cosmological parameters can
be derived from galaxy cluster observations. As we previously discussed, cluster mass meas-
urements play a crucial role in cosmological analyses, since parameters like σ8 and Ωm exhibit
degeneracies with masses. As we detailed in Sect. 3.2, achieving precise mass measurements
is not possible for every cluster observed in large surveys, because the weak-lensing or X-ray
signal might be not sufficiently good. Consequently, scaling relations between observed mass
proxies and masses are necessary, obtained by either stacking the observed signal or consid-
ering a representative subsample of galaxy clusters.

We remark that the mass function is defined as a volume density. Thus, cluster counts are
usually modelled, as their measurement does not require the assumption of a cosmological
model. The expectation value of the counts in a given bin of observed mass proxy, ∆Oob,i,
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and of observed redshift, ∆zob,j , can be expressed as follows:

〈N(∆Oob,i,∆zob,j)〉 = w(∆Oob,i,∆zob,j) Ω

∞∫
0

dztr
dV

dztrdΩ
×

×
∞∫

0

dMtr
dn(Mtr, ztr)

dMtr

∞∫
0

dOtr P (Otr|Mtr, ztr)×

×
∫

∆zob,j

dzob P (zob|ztr)

∫
∆Oob,i

dOob P (Oob|Otr) , (3.33)

where V is the comoving volume, Ω is the survey effective area, while ztr, Mtr, and Otr are the
true redshift, true mass, and true mass proxy, respectively. The quantities zob and Oob are the
observed redshift and mass proxy, respectively. In addition, in Eq. (3.33), dn(Mtr, ztr)/dMtr

is the mass function, while w(∆Oob,i,∆zob,j) is a weight factor accounting for the purity
and completeness of the sample, derived from mock catalogues in the case of photometrically
selected clusters (see, e.g., Lesci et al. 2022a). Analytical alternatives to w(∆Oob,i,∆zob,j)
can be adopted for X-ray and SZ cluster samples, as we discussed in Sect. 3.2. The probability
distributions P (zob|ztr) and P (Oob|Otr) account for the uncertainties on cluster redshifts and
mass proxies, respectively, and can be assessed by running the cluster finding algorithm on
mock galaxy catalogues. While P (zob|ztr) is usually well described by a Gaussian, P (Oob|Otr)
may show departures from Gaussianity in photometric cluster samples, due to percolation and
projection effects which may cause biases in richness (Costanzi et al. 2019). Furthermore, in
Eq. (3.33), P (Otr|Mtr, ztr) is the probability distribution describing the relation between mass
proxy and mass. It is commonly considered to follow a log-normal distribution, whose mean
is given by the scaling relation between mass proxy and mass, while its standard deviation
corresponds to the intrinsic scatter, σintr. The scaling relation between mass proxy and mass
usually accounts for redshift evolution and can be written as follows

log
O
Opiv

= α+ β log
Mtr

Mpiv
+ γ log

E(ztr)

E(zpiv)
(3.34)

where the parameters α, β, and γ are constrained through weak-lensing or X-ray observations,
E(z) ≡ H(z)/H0, while Opiv, Mpiv, and zpiv are pivot quantities, chosen to minimise the
correlation between the scaling relation parameters. The last term in Eq. (3.34) accounts for
deviations in the redshift evolution from what is predicted in the self-similar growth scenario
(Sereno & Ettori 2015). Also the intrinsic scatter, σintr, is derived from observations, and
it is expected to depend on both mass proxy and redshift. In addition, measured masses,
Mob, and mass proxies, Oob, can be considered as scattered proxies of the latent variable Mtr

(see Sereno et al. 2020, and references therein). The corresponding intrinsic scatters, namely
between Mob and Mtr, and between Oob and Mtr, are derived from simulations.

3.4 Cluster clustering

As discussed in Chapt. 2, the clustering of observed tracers of the matter density field provides
robust cosmological information. Among the candidates which are suitable for such cosmolo-
gical investigations, we find galaxy clusters. Large galaxy cluster samples have been exploited
to provide strong cosmological constraints from both second-order and third-order statistics
(see, e.g., Estrada et al. 2009; Veropalumbo et al. 2014, 2016; Marulli et al. 2018, 2021; Mor-
esco et al. 2021; Lindholm et al. 2021, and references therein). These constraints are even
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Figure 3.3: Comparison between the measured redshift-space 3D 2PCF of spectroscopic (black dots)
and photometric (magenta triangles) SDSS galaxy cluster samples. The lines show the corresponding
best-fit models. Image by Veropalumbo et al. (2014).

more robust when cluster clustering is combined with cluster number counts (see, e.g., Mana
et al. 2013; Sartoris et al. 2016).

Galaxy clusters are more clustered than galaxies, with a clustering signal that is progress-
ively stronger for richer systems (see, e.g., Moscardini et al. 2001, and references therein).
Furthermore, clusters are relatively unaffected by nonlinear dynamics at small scales, and the
redshift-space distortions on large comoving scales have a minor impact on the cluster clus-
tering compared to galaxies because the tracer bias is larger (see, e.g., Kaiser 1987; Hamilton
1992). Having smaller theoretical uncertainties over the description of nonlinear dynamics
and redshift-space distortions, the modelling of the cluster clustering signal is potentially less
affected by systematics than in the galaxy clustering case. Therefore, galaxy clusters are ex-
cellent tracers of the BAO peak, especially when cluster spectroscopic redshifts are available.
In Fig. 3.3, we show the 3D 2PCF signal derived from a spectroscopic cluster catalogue, where
the BAO peak is evident. On the other hand, as also shown in Fig. 3.3, photometric redshift
(photo-z) errors erase the BAO signal. In addition, photo-z errors imply a damping of ξ(s)
at low scales, as discussed in Sect. 2.4. Nevertheless, the effect of cluster photo-z errors can
be modelled with high accuracy, allowing for the derivation of robust constraints on σ8 and
Ωm from the 3D 2PCF, as we shall discuss in Chapt. 5. This is not feasible for galaxies, as
the large galaxy photo-z uncertainties erase too strongly the clustering signal along the line
of sight. Cluster photo-zs, instead, have smaller uncertainties compared to galaxies, being
derived for example by averaging the photo-zs of cluster members.

Another important advantage of cluster clustering lies in the theoretical calibration of
the tracer bias, namely b(M, z), depending on the mass and redshift of the tracers. As we
detailed in Sect. 2.1, the calibration of b is currently not possible for galaxies, due to the
large theoretical uncertainties in the modelling of baryonic physics. Since b can be predicted
from theory for galaxy clusters, redshift-space distortions in the cluster clustering signal are
excellent probes of the growth rate of perturbations. Indeed, we remark that the redshift-
space distortion terms in the power spectrum depend on b and f , as we detailed in Sect.
2.4. Since clustering measurements rely on tracers with different masses and redshifts, the
so-called effective bias, beff , is considered in power spectrum models. As we shall detail in
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Chapts. 4 and 5, beff for an ensamble of galaxy clusters can be written as follows

beff =
1

N

N∑
j=1

∫ ∞
0

dztr

∫ ∞
0

dOtr

∫ ∞
0

dMtr b(Mtr, ztr)P (Mtr|Otr, ztr) ×

× P (zob,j |ztr)P (Oob,j |Otr), (3.35)

where the subscripts “tr” and “ob” refer to true and observed quantities, respectively, O is
a mass proxy, N is the total number of galaxy clusters in the sample, j is the cluster index,
while P (zob,j |ztr) and P (Oob,j |Otr) are described in Sect. 3.3.4. The probability distribution
P (Mtr|Otr, ztr) is analogous to P (Otr|Mtr, ztr) described in Sect. 3.3.4 (see Chapt. 5). We
remark that Eq. (3.35) is an arithmetic average of the expected values of b derived for each
cluster in the sample. As an alternative, beff can be expressed as an average of b weighted
by the halo mass function (see, e.g., To et al. 2021b). In the latter case, however, reliable
estimates of the sample completeness must be included in the model, similarly to the cluster
counts models. Thus, as we shall see in the following, using Eq. (3.35) allows for including low-
mass and high-redshift cluster samples in clustering analyses, for which reliable completeness
estimates are not available.
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Chapter 4

Planck clusters: clustering

Since cosmological parameters are inferred with high precision in current cluster statistical
analyses, accurate cluster mass calibrations are of critical importance. Indeed, an incomplete
assessment of systematic uncertainties affecting the derived masses may lead to significant
biases in the cosmological constraints (Planck Collaboration XXIV 2016; Abbott et al. 2020).
As we discussed in Sect. 3.2, simulations show that X-ray masses are typically 10-15% un-
derestimated due to the assumption of hydrostatic equilibrium, for which bulk motions and
turbulence in the intra-cluster medium are neglected (Nagai et al. 2007; Meneghetti et al.
2010; Rasia et al. 2012; Le Brun et al. 2014). Weak-lensing mass estimates can also be biased
by the inaccuracy of density profile models (Oguri & Hamana 2011), baryonic effects influ-
encing the halo concentration (Henson et al. 2017; Shirasaki et al. 2018; Beltz-Mohrmann
& Berlind 2021), halo orientation (Becker & Kravtsov 2011; Dietrich et al. 2014; Zhang
et al. 2023), and projections (Simet et al. 2017; Melchior et al. 2017). As the biases in the
weak-lensing mass estimates are theoretically better understood, weak-lensing observations
are exploited for calibrating the main bias affecting X-ray masses, called hydrostatic bias, bh
(von der Linden et al. 2014; Hoekstra et al. 2015; Planck Collaboration XXIV 2016; Smith
et al. 2016; Sereno et al. 2017). In particular, the relation between the X-ray mass, MX , and
the true mass, Mtr, is usually expressed as follows:

MX = (1− bh)Mtr . (4.1)

In this Chapter, based on the work by Lesci et al. (2023), we present the analysis of the mass
bias of the SZ selected Planck clusters (Planck Collaboration XXIV 2016; Planck Collabora-
tion XXVII 2016), which is referred to as the Planck mass bias, bSZ. Planck cluster masses are
expected to be biased low as they are derived from a scaling relation based on X-ray observa-
tions of 20 relaxed clusters at z < 0.2 (Arnaud et al. 2010; Planck Collaboration XX 2014).
Indeed, as we detailed in Sect. 3.2.2, X-ray and SZ mass proxies are closely related, and this
allows for building up SZ mass scaling relations based on X-ray observations. Specifically,
we obtained an estimate of bSZ that is independent of lensing observations by exploiting the
monopole of the 3D 2PCF of the galaxy clusters in the sample provided by Planck Collabor-
ation XXVII (2016). We assumed a standard ΛCDM cosmological model, adopting the CMB
constraints on cosmological parameters from Planck Collaboration VI (2020) as priors. In
addition, we adopted the same priors on (1 − bSZ) as were used in the Planck cluster count
analysis carried out by Planck Collaboration XXIV (2016) in order to constrain the matter
density parameter, Ωm, and the amplitude of the matter power spectrum, σ8.

The statistical analyses presented in this Chapter were performed with the Cosmo-
BolognaLib1 (CBL; Marulli et al. 2016), a set of free software C++/Python numerical librar-

1https://gitlab.com/federicomarulli/CosmoBolognaLib/
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Figure 4.1: Redshift distribution n(z) of the galaxy clusters considered in the analysis. The blue
histogram shows the observed binned n(z), and the black curve represents n(z) smoothed with a
Gaussian kernel (with an rms equal to 0.02) that was used to build up the random catalogue.

ies for cosmological calculations. Specifically, the measurements and the statistical Bayesian
analyses were both performed with the CBL v6.1.

This Chapter is organised as follows. In Section 4.1 we describe the data set and the
methods we used to estimate the 2PCF of the sample. In Section 4.2 we describe the 2PCF
model, focusing on the dependence of the effective bias on the mass-observable scaling re-
lation. In Section 4.3 we show our constraints on bSZ and detail the cosmological analysis,
while in Sect. 4.4 we draw our conclusions.

4.1 Data set and 2PCF measurement

4.1.1 The Planck cluster sample

Following Planck Collaboration XXIV (2016), we based our analysis on the cosmological
sample consisting of detections by the matched multi-filters 3 (MMF3) detection algorithm
(Melin et al. 2006, 2012) derived from the general Planck full-mission Sunyaev–Zeldovich
catalogue (PSZ2; Planck Collaboration XXVII 2016). We considered clusters with a con-
firmed counterpart in external data sets and an assigned redshift estimate (see Table 9 in
Planck Collaboration XXVII 2016), with a redshift limit z ≤ 0.8, for a total of 920 clusters.
We applied this redshift cut to exclude 5 clusters that are isolated with respect to the bulk
of the redshift distribution because they hindered the derivation of a reliable smoothed red-
shift distribution, which is necessary for the construction of the random sample (see Section
4.1.2). In addition, differently from Planck Collaboration XXIV (2016), we did not apply
any cut in the S/N. This does not imply any potential problems due to the reliability of the
selection function at low S/N because our model does not rely on assumptions on the sample
completeness (see Section 4.2.2).

4.1.2 Random catalogue

The random catalogue used for the 2PCF measurement is 100 times larger than the Planck
cluster sample. We smoothed the observed redshift distribution, n(z), with a Gaussian kernel
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Figure 4.2: Redshift-space 2PCF monopole (black dots) of the Planck clusters in the spatial range
s ∈ [10, 150] h−1Mpc for z < 0.2 (left plot), and s ∈ [15, 150] h−1Mpc for z ∈ [0.2, 0.8] (right plot). The
blue bands represent the model 68% confidence level derived from the posterior of the free parameters
considered in the analysis described in Section 4.3.1.

with an rms equal to 0.02 (see Fig. 4.1). Then we extracted random redshifts from this
distribution. Random R.A.-Dec pairs were extracted by following the sample angular selection
function. It consists of the combination of the MMF3 survey mask2, namely Ms, the hole
mask excluding contaminated regions (e.g. by stars or large galaxies), Mh, and the error
function completeness. Both Ms and Mh are equal to 0 if the region is masked, otherwise,
they are equal to 1. The error function completeness is defined as (Planck Collaboration
XXIX 2014)

P (d|Y500, σY i(θ500), q) =
1

2

[
1 + erf

(
Y500 − qσY i(θ500)√

2σY i(θ500)

)]
, (4.2)

where d is the Boolean detection state, erf(x) is the Gauss error function, and Y500 and
θ500 are the observed SZ signal and the detection angular scale within a critical radius R500,
respectively. The latter is defined as the distance from the cluster centre inside which the
mean density is 500 times the critical density of the Universe at the given redshift, z. M500

is defined as the mass enclosed within R500. In Eq. (4.2), σY i is the standard deviation
of pixels for a given patch i, computed by following Melin et al. (2006), and q is the S/N
threshold. As we did not apply any S/N cut to the sample, q corresponds to the minimum
threshold adopted by Planck Collaboration XXVII (2016) in the detection process, namely
q = 4.5. In Eq. (4.2), we assumed the sample mean values of Y500 and θ500. We verified that
using the median values of these quantities does not introduce significant variations in the
final results. Then we extracted random angular positions, for each of which we sampled a
number in the range [0, 1]. When this number was higher than the product of Ms, Mh and
P (d|Y500, σY i, q), the random angular position was rejected. As an alternative to the error
function completeness in Eq. (4.2), we weighted the pairs in the 2PCF estimator (described in
Section 4.1.3) by 1/σnorm

Y i , where σnorm
Y i is equal to σY i divided by its minimum value, namely

σnorm
Y i = σY i/min(σY i). We verified that this approach provides results that fully agreed with

what was derived from the application of the error function completeness.

2https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/HFI_Products.html
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4.1.3 Clustering measurement

We estimated the redshift-space 2PCF monopole using the Landy & Szalay (1993, LS) es-
timator, detailed in Sect. 2.1. We recall that the LS estimator has the following expression:

ξ(s) =
NRR

NDD

DD(s)

RR(s)
− 2

NRR

NDR

DR(s)

RR(s)
+ 1 , (4.3)

where DD(s), RR(s), and DR(s) are the number of data-data, random-random, and data-
random pairs with separation s ± ∆s, respectively, while NDD, NRR , and NDR are the
total number of data-data, random-random, and data-random pairs, respectively. To convert
the observed coordinates into the comoving ones, we assumed the cosmological parameters
by Planck Collaboration VI (2020), TT, TE, EE+lowE+lensing (referred to as Planck18
hereafter). The LS estimator is extensively used in clustering analyses as it is unbiased with
minimum variance for an infinitely large random sample and when |ξ| � 1 (Hamilton 1992;
Kerscher et al. 2000; Labatie et al. 2010; Keihänen et al. 2019).

Specifically, we measured the 2PCF considering two redshift bins, namely z < 0.2 and
z ∈ [0.2, 0.8], containing 407 and 513 galaxy clusters, respectively. We considered the cluster-
centric radial range s ∈ [10, 150] h−1Mpc, excluding from the analysis the 2PCF measure
at s < 15 h−1Mpc in the second redshift bin due to the lack of data-data pairs. Moreover,
we integrated the 2PCF measurements over larger s bins in z ∈ [0.2, 0.8], compared to
those adopted for the lower redshift bin. In this way, we compensated for the reduction of
cluster pairs with small s distances, caused by the lower cluster density at high redshifts. We
estimated the covariance matrix, including the cross-covariance between radial and redshift
bins, through a bootstrap procedure. In particular, we considered 200 angular regions and two
redshift regions, corresponding to the redshift bins, and resampled the observed and random
catalogues 2000 times. We corrected the inverted covariance matrix following Hartlap et al.
(2007). In Fig. 4.2 we show the measured 2PCF monopole, ξ0. We did not include the other
multipoles in the analysis, as we verified that their contribution is negligible.

4.2 Modelling

We modelled the 2PCF of Planck clusters by accounting for geometric and redshift-space
distortions. In addition, different to what was done in the cluster count analysis by Planck
Collaboration XXIV (2016), our model does not rely on assumptions on the sample complete-
ness. We show in Section 4.3 that this approach leads to constraints on bSZ and cosmological
parameters that fully agree with those derived by Planck Collaboration XXIV (2016) and
Planck Collaboration VI (2020).

4.2.1 Two-point correlation function model

The lth order 2PCF multipole, ξl(s), can be expressed as follows:

ξl(s) = il
∫ ∞
−∞

dk

2π2
k2Pl(k)jl(ks), (4.4)

where jl is the spherical Bessel function of order l, and Pl is the redshift-space matter power
spectrum multipole of order l,

Pl(k) =
2l + 1

2α2
⊥α‖

∫ 1

−1
dµP (k′, µ′)Ll(µ). (4.5)
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In Eq. (4.5), Ll is the Legendre polynomial of order l, and µ is the line of sight cosine.
Moreover, in Eq. (4.5), we accounted for the Alcock & Paczynski (1979, AP) geometric
distortions (described in Section 2.5) caused by the assumption of a fiducial cosmology used
to convert the cluster observed coordinates into comoving ones in Eq. (4.3). Specifically, k′

and µ′ have the following functional forms (Beutler et al. 2014):

k′ =
k

α⊥

[
1 + µ2

(
α2
⊥
α2
‖
− 1

)]1/2

, (4.6)

µ′ = µ
α⊥
α‖

[
1 + µ2

(
α2
⊥
α2
‖
− 1

)]−1/2

, (4.7)

where α⊥ and α‖ are expressed as

α‖ =
Hfid(z)rfid

s (zd)

H(z)rs(zd)
, (4.8)

α⊥ =
DA(z)rfid

s (zd)

Dfid
A (z)rs(zd)

. (4.9)

Here, Hfid(z) and Dfid
A (z) are the fiducial values for the Hubble constant and angular diameter

distance, respectively, and rfid
s (zd) is the fiducial sound horizon at the drag redshift, zd. We

stress that the AP correction takes place only in the cosmological analysis described in Section
4.3.3. To derive bSZ, as detailed in Section 4.3.1, we fixed the cosmological parameters to
the fiducial ones. In Eq. (4.5), P (k′, µ′) is the redshift-space dark matter power spectrum
expressed as (Taruya et al. 2010):

P (k′, µ′) = DFoG(k′, µ′, f, σv)

[
b2effPδδ(k

′) + 2fbeffµ
′2Pδθ(k

′)+

+ f2µ′4Pθθ(k
′) + b3effA(k′, µ′, f) + b4effB(k′, µ′, f)

]
, (4.10)

where Pδδ, Pθθ, and Pδθ are the real-space auto power spectra of the density and velocity
divergence and their cross power spectrum, respectively. These spectra are estimated in the
standard perturbation theory (SPT), consisting of expanding the statistics as a sum of infinite
terms, corresponding to the n-loop corrections (see e.g. Gil-Maŕın et al. 2012). Considering
corrections up to the first-loop order, the power spectrum can be modelled as follows:

P SPT(k) = PL(k) + P (1)(k) = PL(k) + 2P13(k) + P22(k), (4.11)

where the leading-order term, PL(k), is the linear matter power spectrum, computed with
CAMB3 (Lewis & Challinor 2011), while the one-loop correction terms are computed with the
CPT Library4 (Taruya & Hiramatsu 2008). In Eq. (4.10), DFoG(k′, µ′, f, σv) is a Gaussian
damping function representing the fingers-of-God effect, having the following functional form:

DFoG(k′, µ′, f, σv) = e−k
′2µ′2f2σ2

v , (4.12)

where f is the linear growth rate, and σ2
v is the linear velocity dispersion, computed as

(Taruya et al. 2010):

σ2
v =

1

3

∫
d3k

(2π)3

PL(k)

k2
. (4.13)

3https://camb.info/
4http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html
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In Eqs. (4.10) and (4.13), PL(k) is computed at the mean redshift of the cluster sub-sample
in the given redshift bin. In addition, in Eq. (4.10), beff is the effective bias, defined in Section
4.2.2, and the functions A(k′, µ′, f) and B(k′, µ′, f) are correction terms derived from SPT
(Taruya et al. 2010; de la Torre & Guzzo 2012; Garćıa-Farieta et al. 2020).

4.2.2 Effective bias

The effective bias, beff , has the following functional form:

beff =
1

Ncl

N∑
j=1

b(Y ob
500,j , z

ob
j ), (4.14)

where Ncl is the number of clusters in the sample, Y ob
500,j and zob

j are the observed SZ signal

and redshift, respectively, of the jth cluster, and b(Y ob
500,j , z

ob
j ) is expressed as

b(Y ob
500,j , z

ob
j ) =

1

n(Y ob
500,j , z

ob
j )

×
∫ ∞

0
dM500

dn(M500, z
ob
j )

dM500
b(M500, z

ob
j )

×
∫ ∞

0
dY500 P (Y500|M500, z

ob
j )P (Y500|Y ob

500,j) , (4.15)

where b(M500, z) is the halo bias, for which the model by Tinker et al. (2010) was assumed, and
P (Y500|Y ob

500,j) is a Gaussian whose mean is Y ob
500,j and its rms is given by the error on Y ob

500,j . In
addition, P (Y500|M500, z) is a log-normal whose mean is given by the mass-observable scaling
relation, and its rms is given by the intrinsic scatter, σlnY ,

P (lnY500|M500, z) =
1√

2πσlnY

e− ln2(Y500/Ȳ500)/(2σ2
lnY ) . (4.16)

Specifically, following Planck Collaboration XXIV (2016), we assumed σlnY to be independent
of Y500 and redshift, and the expected value of SZ signal, Ȳ500, can be expressed as

E−β(z)

[
D2

A(z)Ȳ500

10−4 Mpc2

]
= Y∗

[
h

0.7

]−2+α [(1− bSZ)M500

6× 1014 M�

]α
, (4.17)

where E(z) ≡ H(z)/H0, with H(z) being the Hubble function and H0 the Hubble constant,
DA(z) is the angular diameter distance, h ≡ H0/100, bSZ is the Planck mass bias, and Y∗, α,
and β are the scaling relation parameters. In addition, n(Y ob

500,j , z
ob
j ) in Eq. (4.15) is expressed

as

n(Y ob
500,j , z

ob
j ) =

∫ ∞
0

dM500

dn(M500, z
ob
j )

dM500

×
∫ ∞

0
dY500 P (Y500|M500, z

ob
j )P (Y500|Y ob

500,j) , (4.18)

where dn(M500, z)/dM500 is the halo mass function, for which the model by Tinker et al.
(2008) was assumed.
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Table 4.1: Free parameters considered in the analysis detailed in Section 4.3.1.

Parameter Description Prior Posterior

bSZ Planck mass bias [-2, 0.9] 0.38+0.14
−0.11

log Y∗ Normalisation of the mass-observable relation N (−0.19, 0.02) —

α Slope of the mass-observable relation N (1.79, 0.08) —

β Redshift evolution of the mass-observable relation N (0.66, 0.50) —

σlnY Intrinsic scatter of the mass-observable relation N (0.173, 0.023) —

Notes. In the third column, the priors on the parameters are listed. In particular, a range between
square brackets represents a uniform prior, and N (µ, σ) stands for a Gaussian prior with mean µ
and standard deviation σ. In the fourth column, we show the median values of the 1D marginalised
posteriors, along with the 16th and 84th percentiles. The posterior distributions of log Y∗, α, β, and
σlnY are not shown since these parameters are not constrained in our analysis.

4.2.3 Likelihood

For the Bayesian analysis performed in this work, a standard Gaussian likelihood was con-
sidered,

L ∝ exp(−χ2/2) , (4.19)

with

χ2 =

N∑
i=1

N∑
j=1

(
ξdi − ξmi

)
C−1
i, j

(
ξdj − ξmj

)
, (4.20)

where N is the number of comoving separation bins in which the 2PCF is computed, d and
m indicate data and model, respectively, and C−1

i, j is the inverse of the covariance matrix. As
detailed in Section 4.1.3, Ci, j was derived through a bootstrap resampling.

4.3 Results

Based on the methods outlined in Sections 4.1 and 4.2, we carried out an analysis of the
redshift-space 2PCF monopole of the Planck cluster sample (Planck Collaboration XXVII
2016). Specifically, we detail in Section 4.3.1 the derivation of the (1 − bSZ) constraint,
performed by assuming the Planck18 cosmological results as priors. In Section 4.3.3 we
present the constraints on cosmological parameters, obtained by assuming priors on bSZ from
external data sets.

4.3.1 Constraint on bSZ

In order to derive a constraint on the Planck mass bias, bSZ, we fixed the cosmological para-
meters to the Planck18 median values. We also assumed the priors on the mass-observable
scaling relation parameters in Eq. (4.17), namely Y∗, α, β, and σlnY , adopted by Planck
Collaboration XXIV (2016). In particular, this scaling relation was derived from X-ray ob-
servations of 20 relaxed clusters at z < 0.2 (Arnaud et al. 2010; Planck Collaboration XX
2014). Finally, we assumed a large flat prior on bSZ. In Table 4.1 we summarise the priors
used for this analysis, along with the result on the mass bias, namely (1 − bSZ) = 0.62+0.14

−0.11.

The corresponding effective bias estimates are beff = 4.61+0.39
−0.36 and beff = 6.46+0.35

−0.37 for z < 0.2
and z ∈ [0.2, 0.8], respectively. The obtained value of (1 − bSZ) is lower than what was pre-
dicted by numerical simulations (Nagai et al. 2007; Piffaretti & Valdarnini 2008; Meneghetti

67



0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25
1 bSZ

Weak lensing

Cluster counts

Other probes

Planck18

WtG

CCCP

CMB lensing

LoCuSS

LC2

CLASH

HSC

MENeaCS+CCCP

Z&C19

Salvati+19

Salvati+22

Makiya+18

Wicker+22

Ibitoye+22

Ferragamo+21

AB22

Clusters 0
(This work)

Figure 4.3: Comparison of the results on (1− bSZ) with the literature. The median, 16th and 84th
percentiles are shown. The black dot shows the constraint derived in this work. Then, in order from
top to bottom, the following results are shown: Planck Collaboration VI (2020) (orange), von der
Linden et al. (2014) (blue) Hoekstra et al. (2015) (red), Planck Collaboration XXIV (2016) (dark
green), Smith et al. (2016) (grey), Sereno et al. (2017) (magenta), Penna-Lima et al. (2017) (brown),
Medezinski et al. (2018a) (cyan), Herbonnet et al. (2020) (pink), Zubeldia & Challinor (2019) (purple),
Salvati et al. (2019) (turquoise), Salvati et al. (2022) (green), Makiya et al. (2018) (dark blue), Wicker
et al. (2022) (violet), Ibitoye et al. (2022) (indigo), Ferragamo et al. (2021) (orange), and Aguado-
Barahona et al. (2022) (dark brown).

et al. 2010; Rasia et al. 2012; Le Brun et al. 2017; Henson et al. 2017; Gianfagna et al. 2023),
but in line with what was found by Planck Collaboration VI (2020). We remark that even
though the constraints on beff derived from the two redshift bins have similar associated un-
certainties, our result on (1− bSZ) is dominated by the 2PCF signal measured at low redshift.
We obtained (1− bSZ) = 0.67+0.22

−0.13 for z < 0.2 and (1− bSZ) = 0.58+0.55
−0.31 for z ∈ [0.2, 0.8]. This

is expected because beff is directly derived from the mass-observable relation, and the number
of clusters is comparable in the considered redshift bins. On the other hand, the constraints
on (1− bSZ) depend on the 2PCF measurements, for which we obtained larger uncertainties
in the high-redshift bin. In both redshift bins, we found χ2

red ∼ 0.9, where χ2
red is the reduced

χ2. Specifically, we considered three effective free model parameters because the change in
the model within the assumed priors on β and σlnY is not statistically significant.
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In Fig. 4.3 we show a comparison between our constraint on (1 − bSZ) and the results
obtained from the literature. In presence of systematic uncertainties, we added them in
quadrature to the statistical ones. By combining primary CMB likelihood and cluster counts,
Planck Collaboration VI (2020) derived (1−bSZ) = 0.62±0.03 (orange dot in Fig. 4.3), which
fully agrees with our result. Regarding the Planck mass estimates derived from galaxy weak
lensing, we found a 1σ agreement with Weighting the Giants (WtG; von der Linden et al.
2014), the Canadian Cluster Comparison Project (CCCP; Hoekstra et al. 2015), the Liter-
ature Catalogs of weak-lensing Clusters of galaxies (LC2; Sereno et al. 2017), the Cluster
Lensing And Supernova survey with Hubble (CLASH; Penna-Lima et al. 2017), and the
Subaru Hyper Suprime-Cam (HSC; Medezinski et al. 2018a). We found an agreement of only
2σ with the results from the Local Cluster Substructure Survey (LoCuSS; Smith et al. 2016),
the Multi Epoch Nearby Cluster Survey (MENeaCS) combined with updated mass weak-
lensing estimates in CCCP (MENeaCS+CCCP; Herbonnet et al. 2020), and with the result
obtained from CMB lensing by Planck Collaboration XXIV (2016). When comparing our
results to other analyses based on cluster counts, we found an agreement of 1σ with Zubeldia
& Challinor (2019), Salvati et al. (2019), and Salvati et al. (2022). Concerning the results de-
rived from the power spectra of the Planck thermal Sunyaev–Zeldovich effect, our constraint
agrees within 1σ with Makiya et al. (2018) and Ibitoye et al. (2022). We also found a good
agreement with the constraint by Wicker et al. (2022) based on measurements of the cluster
gas mass fraction. The hydrostatic bias estimates from dynamical masses by Ferragamo et al.
(2021) and Aguado-Barahona et al. (2022) agree to within 1σ with our result. In Section
4.3.2 we discuss the impact of the adopted modelling choices on our result, finding that the
derived constraint on bSZ is robust with respect to the investigated systematic uncertainties.

As many observational studies claimed a redshift dependence of the hydrostatic bias
(Smith et al. 2016; Sereno et al. 2017; Salvati et al. 2019, 2022; Wicker et al. 2022), we
investigated this possibility by expressing bSZ as follows:

bSZ = η

(
1 + z

1 + zpiv

)ζ
, (4.21)

where zpiv = 0.25 is the mean redshift of the sample, η is the normalisation, and ζ parametrises
the redshift dependence of the mass bias. Our analysis does not constrain ζ, implying that
it is not necessary to explain our data. We stress that the redshift dependence of bSZ was
derived from cluster statistics only in the case of a strong prior on the total value of bSZ, with
a significant dependence on the sample (Salvati et al. 2019, 2022; Wicker et al. 2022).

4.3.2 Assessment of systematics on bSZ

To assess the robustness of the constraint on bSZ derived in Section 4.3.1, we included the
power spectrum damping due to redshift uncertainties in the analysis. No redshift errors are
quoted in Planck data products, and therefore, we expressed this damping by means of a free
parameter. Specifically, we replaced Eq. (4.13) by the following expression:

σv,tot =
√
σ2

v + σ2
v, z , (4.22)

where σv is defined in Eq. (4.13), while σv, z is the velocity dispersion caused by redshift
errors, having the following functional form:

σv, z ≡
c σz(1 + z̄)

H(z̄)
. (4.23)
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In this equation, z̄ is the mean redshift of the sub-sample in a given redshift bin, c is the speed
of light, H(z) is the Hubble function, and σz is the typical redshift uncertainty of the sample.
By assuming a flat prior on σz, namely σz ∈ [0, 0.1], we derived σz = 0.003+0.002

−0.002, which is in

line with the fact that most of the cluster redshifts are spectroscopic, and (1−bSZ) = 0.65+0.15
−0.12,

which fully agrees with our previous result.
In addition, we analysed the 2PCF monopole of the Planck union catalogue, containing the

clusters detected with the three detection algorithms adopted by Planck Collaboration XXVII
(2016). By assuming the same sample selections and bins of redshift and radius described
in Section 4.1, we found (1 − bSZ) = 0.59+0.12

−0.09, which is in line with the constraint derived
in Section 4.3.1. This implies that our result is independent of the adopted cluster detection
algorithm. We also performed the analysis by considering the clusters in the MMF3 sample
with S/N > 6, and for which the COSMO entry in the union catalogue is set to ’T’, meaning
that these clusters are part of the cosmological sample, following Planck Collaboration XXIV
(2016). Because the statistics are poorer in this case, we analysed the 2PCF in a single
redshift bin including clusters with z ≤ 0.8 for a total of 430 objects. As the modelling
provides reduced χ2 estimates that are not close to 1, we conclude that in this case, the
2PCF signal does not allow a reliable constraint on bSZ.

In order to further assess the robustness of our results on (1 − bSZ), we computed the
2PCF model at the sample median redshifts for each redshift bin, instead of adopting the
mean redshift, as discussed in Section 4.2. In this way, we derived a shift of the median
(1 − bSZ) of 0.006σ. In addition, the reduction of the 2PCF radial range to s ∈ [15, 150]
h−1Mpc or to s ∈ [10, 90] h−1Mpc implies comparable results, namely shifts of the median
(1 − bSZ) lower than 0.6σ, and variations in the 1σ interval extension lower than 50%. We
also checked the impact of a change in the definition of the effective bias, beff , assuming the
median of the halo bias distribution instead of considering its mean, as done in Eq. (4.14).
In this case, we obtained a shift of the median (1 − bSZ) corresponding to 0.5σ. As the
tests described above showed shifts in the median bSZ that are within 1σ of the constraint
presented in Section 4.3.1, we can conclude that our results are robust with respect to the
investigated modelling choices. Lastly, Salvati et al. (2020) showed that the impact of the
halo mass function calibration has a subdominant impact on current cluster count analyses.
It will become a relevant source of systematic errors in upcoming surveys, for instance those
from Euclid (Laureijs et al. 2011) and the Large Synoptic Survey Telescope (LSST Science
Collaboration et al. 2009), because of the larger cluster statistics they will provide. As cluster
clustering has a lower constraining power compared to counts, we expect the mass function
calibration to provide a negligible impact on the bSZ constraints derived in this work. The
same is expected for the halo bias calibration.

4.3.3 Constraints on cosmological parameters

To further investigate the consistency of our modelling choices with those adopted by Planck
Collaboration XXIV (2016), we performed a cosmological analysis aiming at constraining σ8

and Ωm simultaneously by assuming the same Gaussian priors on bSZ as were considered by
Planck Collaboration XXIV (2016). Specifically, we assumed large flat priors for σ8 and Ωm,
while for the other cosmological parameters, we assumed the same values from Planck18 that
were used in the previous section. We also assumed the same Gaussian priors as adopted in
Section 4.3.1 on the scaling relation parameters, namely Y∗, α, β, and σlnY . We found that
σ8 is not constrained through this analysis, while we found Ωm = 0.28+0.05

−0.04 with the WtG bSZ

prior, Ωm = 0.28+0.04
−0.03 with the CCCP prior, and Ωm = 0.27+0.04

−0.03 with the CMB lensing prior
(see Fig. 4.4). These results are fully consistent and competitive, in terms of uncertainties,
with those derived by Planck Collaboration XXIV (2016). Similar uncertainties on Ωm were
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Figure 4.4: Comparison of the results on Ωm obtained by assuming flat priors on Ωm and σ8, along
with external priors on bSZ, namely WtG (blue; von der Linden et al. 2014), CCCP (red; Hoekstra
et al. 2015) and CMB lensing (green; Planck Collaboration XXIV 2016). For each bSZ prior, the
result at the top was derived from the cluster clustering measurements presented in this Chapter,
the middle result refers to the cluster counts analysis by Planck Collaboration XXIV (2016), and the
bottom result represents the combination of Planck cluster clustering and counts. The constraint from
Planck18 is shown in orange.

obtained by Marulli et al. (2018) and Lindholm et al. (2021), who modelled the 2PCF of
182 and 1892 X-ray selected galaxy clusters, respectively. In addition, Marulli et al. (2018)
found that σ8 could not be accurately constrained, in agreement with our results. In general,
recent analyses of cluster clustering showed that the constraints on Ωm are significantly more
robust than those derived on σ8 (Lindholm et al. 2021; Lesci et al. 2022b). In addition, we
note that significant changes in the value of bSZ do not imply significant variations in the Ωm

posteriors, similar to what was found by Planck Collaboration XXIV (2016).
We also derived an estimate of Ωm from the combination of cluster clustering and counts

by assuming them to be statistically independent. Hurier & Lacasa (2017) showed that
cluster counts and thermal SZ power spectrum are not significantly correlated. The thermal
SZ power spectrum mainly depends on massive haloes, while for the number counts, the
main contribution comes from lower-mass haloes. The differences between the two galaxy
cluster populations imply a weak correlation of these probes. As the clustering of SZ selected
clusters encloses the same information contained in the SZ power spectrum, we expect a
similar behaviour for its correlation with counts. With respect to the analysis based on counts
only, we found that the uncertainty on Ωm is reduced by a factor of ∼ 25%-30% if clustering
is included in the likelihood. This confirms the importance of including cluster clustering in
cosmological analyses (see also Sartoris et al. 2016; Euclid Collaboration: Fumagalli et al.
2022; Garrel et al. 2022) in order to fully exploit the cluster statistics information.

4.4 Summary

In the work by Lesci et al. (2023), presented in this Chapter, we analysed the 3D 2PCF
monopole of the galaxy clusters detected by Planck Collaboration XXVII (2016), focusing on
the estimate of the Planck mass bias, bSZ. Following Planck Collaboration XXIV (2016), we
based our analysis on the cosmological sample consisting of detections by the MMF3 matched
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filter (Melin et al. 2006, 2012), considering clusters with a confirmed counterpart in external
data sets and having an assigned redshift estimate, with a redshift limit z ≤ 0.8, for a total
of 920 clusters. Differently from Planck Collaboration XXIV (2016), we did not apply any
cut in S/N to the sample. This does not imply any potential problems due to the reliability
of the selection function at low S/N because our model does not rely on assumptions on the
sample completeness.

By analysing the 2PCF in the redshift bins z < 0.2 and z ∈ [0.2, 0.8] within the cluster-
centric radial range r ∈ [10, 150] h−1Mpc, we derived (1 − bSZ) = 0.62+0.14

−0.11. This result
fully agrees with what was found by Planck Collaboration VI (2020) by combining primary
CMB likelihood and Planck cluster counts. Thus, we confirmed that Planck cluster statistics
provides values of bSZ that are lower than what was predicted by numerical simulations (Nagai
et al. 2007; Piffaretti & Valdarnini 2008; Meneghetti et al. 2010; Rasia et al. 2012; Le Brun
et al. 2017; Henson et al. 2017; Gianfagna et al. 2023). As redshift errors are not quoted
in Planck data products, we also included the power spectrum damping due to redshift un-
certainties by means of a free parameter representing the typical redshift error, namely σz.
Thus, we simultaneously calibrated σz and bSZ, finding no significant changes in bSZ and
σz = 0.003+0.002

−0.002, which is in line with the fact that most of the cluster redshifts are spectro-
scopic. In addition, from the analysis of the Planck union catalogue of clusters, we showed
that our result does not depend on the adopted cluster detection algorithm. We also found
that a redshift evolution of bSZ is not necessary to describe our clustering measurements.

By adopting priors on bSZ from external data sets, we found results on Ωm that fully
agree and are competitive, in terms of uncertainties, with those derived from cluster counts
by Planck Collaboration XXIV (2016), while σ8 is not constrained. By assuming cluster clus-
tering and counts to be statistically independent, we found that their combination provides
a reduction of up to ∼ 30% in the Ωm uncertainty derived from counts. Future stage IV
CMB experiments (Abazajian et al. 2016) will detect about 105 galaxy clusters through the
SZ effect, which will significantly enhance the cluster statistical analyses. This will improve
the calibration of the hydrostatic mass bias from cluster clustering, and might shed light on
the degeneracy between σ8 and mass bias. In fact, this degeneracy cannot be investigated
with current clustering data because σ8 is not constrained, as we detailed in Section 4.3.3.
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Chapter 5

AMICO clusters in KiDS-DR3:
counts and clustering

As discussed in Chapt. 3, cluster counts provide the primary cosmological probe among
the ones given by the statistics of these tracers. The constraints from cluster counts can
be improved by at least 20% when cluster clustering is included in the analysis (see, e.g.,
Mana et al. 2013; Sartoris et al. 2016; Fumagalli et al. 2023), as we showed also in Chapt. 4.
Although it is possible to predict with great accuracy the abundance of dark matter haloes as
a function of mass for a given cosmological model, the cluster masses cannot be easily derived
from observational data. Currently, the most reliable mass measurements are provided by
weak gravitational lensing (see, e.g., Bardeau et al. 2007; Okabe et al. 2010b; Hoekstra et al.
2012; Melchior et al. 2015; Schrabback et al. 2018; Stern et al. 2019), which accounts for both
the dark and baryonic matter components. As opposed to the other methods to estimate
cluster masses based on the properties of the gas and member galaxies, such as the ones
exploiting X-ray emission, galaxy velocity dispersion, or the Sunyaev-Zeldovich effect on
the CMB, the gravitational lensing method does not rely on any assumption pertaining to
the dynamical state of the cluster. However, weak-lensing mass measurements of individual
galaxy clusters are only feasible if the S/N of the shear profiles is sufficiently high: this
requires either a massive structure or deep observations. Thus, in cosmological studies of
cluster statistics, it is often necessary to stack the weak-lensing signal produced by a set of
objects with similar properties, from which a mean value of their mass is estimated. These
mean mass values can be linked to a direct observable or mass proxy, which can be used to
define a mass-observable scaling relation.

In addition to the mass scaling relation, it is crucial to properly account for the purity and
completeness of the cluster catalogue. As we detailed in Chapts. 3 and 4, cluster clustering
theoretical models can be conveniently expressed as independent of the sample completeness
estimates. This makes cluster clustering a purity-limited probe. On the other hand, cluster
counts strongly depend on the sample completeness, whose effect must be included in the
model predictions, as we shall discuss in the following.

In this Chapter, we present the work by Lesci et al. (2022a) on cluster counts and by
Lesci et al. (2022b) on cluster clustering, both based on the Data Release 3 of the Kilo
Degree Survey (KiDS-DR3; de Jong et al. 2017), which is a photometric survey of galaxies.
The cluster sample, built up through the use of the Adaptive Matched Identifier of Clustered
Objects (AMICO; Bellagamba et al. 2018), was presented in Maturi et al. (2019). In addition,
both cluster counts and clustering analyses are based on the weak-lensing measurements
provided by Bellagamba et al. (2019). Assuming a flat ΛCDM framework, we constrain the
cosmological parameters σ8, Ωm, and S8 ≡ σ8(Ωm/0.3)0.5 from cluster counts and clustering
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Figure 5.1: Distribution of the AMICO KiDS-DR3 clusters as a function of redshift. Objects with
z > 0.6, not considered in the cluster counts and clustering analyses, are covered by the shaded grey
area.

measurements, as well as the mass-richness scaling relation parameters, including its intrinsic
scatter, σintr. The cosmological analyses presented in this Chapter are based on the CBL
numerical libraries (Marulli et al. 2016) v5.4.

This Chapter is organised as follows. In Sect. 5.1 we present the galaxy cluster catalogue
based on KiDS-DR3 data, along with the weak-lensing cluster mass measurements. The
sample selections and the results of the cosmological analyses of counts and clustering are
detailed in Sects. 5.2 and 5.3, respectively.

5.1 Data set

5.1.1 AMICO KiDS-DR3 cluster catalogue

The catalogue of galaxy clusters the works by Lesci et al. (2022a) and Lesci et al. (2022b)
are based on, named AMICO KiDS-DR3 (Maturi et al. 2019), is derived from the third
data release of KiDS (de Jong et al. 2017). Such observations were carried out with the
OmegaCAM wide-field imager (Kuijken 2011) mounted at the VLT Survey Telescope, which
is a 2.6 m telescope situated at the Paranal Observatory. The 2 arcsec aperture photometry
in u, g, r, and i bands is provided, as well as the photometric redshifts for all galaxies down
to the 5σ limiting magnitudes of 24.3, 25.1, 24.9, and 23.8 for the aforementioned four bands,
respectively. To construct the galaxy cluster catalogue, Maturi et al. (2019) considered only
the galaxies with a magnitude r < 24, for a total of about 32 million galaxies. For the weak-
lensing analysis, instead, no limits in magnitude have been imposed for the lensed sources in
order to exploit the whole data set available. Such data set provides the shear measurements
for about 15 million galaxies (Hildebrandt et al. 2017).

Galaxy clusters have been detected thanks to the application of the AMICO algorithm
(Bellagamba et al. 2018), which identifies galaxy overdensities by exploiting a linear matched
optimal filter. In particular, the detection process adopted for this study solely relies on
the angular coordinates, magnitudes, and photometric redshifts (photo-zs from now on) of
galaxies. Unlike other algorithms used in literature for cluster identification, AMICO does
not use any direct information coming from colours, as for example the so-called red sequence.
For this reason, AMICO is also expected to be accurate at higher redshifts, where the red
sequence may not be prominent yet. The excellent performances of AMICO have been
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recently confirmed by the analysis made in Euclid Collaboration et al. (2019), where the purity
and completeness of the cluster catalogues extracted by applying six different algorithms
on realistic mock catalogues reproducing the expected characteristics of the future Euclid
photometric surveys (Laureijs et al. 2011; Euclid Collaboration: Scaramella et al. 2022) have
been compared. As the result of this challenge, AMICO is one of the two algorithms for
cluster identification that has been officially adopted by the Euclid mission.

The KiDS-DR3 sample covers a total area of 438 deg2, but all the galaxies located in the
regions affected by image artefacts, or falling in the secondary and tertiary halo masks used
for the weak-lensing analysis have been rejected (de Jong et al. 2015). This yields a final
effective area of 377 deg2, containing all the cluster detections with S/N> 3.5 and within the
redshift range z ∈ [0.1, 0.8], for a total of 7988 objects. Due to the low S/N of the shear
profiles for z > 0.6, which is not sufficient to perform a stacked weak-lensing analysis, we
decided to exclude the redshift bin z ∈ [0.6, 0.8] from the analysis. In Fig. 5.1 we show the
redshift distribution of the AMICO KiDS-DR3 cluster sample.

5.1.2 Mass proxy

As we shall detail in the following, we exploit the cluster shear signal through a stacked
weak-lensing analysis to estimate the mean cluster masses in bins of intrinsic richness and
redshift. The intrinsic richness, λ∗, is defined as follows (Maturi et al. 2019):

λ∗j :=

Ngal∑
i=1

Pi(j) with

{
mi < m∗(zj) + 1.5

Ri(j) < Rmax(zj)
, (5.1)

where Pi(j) is the probability assigned by AMICO to the i-th galaxy of being a member
of a given detection j. The intrinsic richness thus represents the sum of the membership
probabilities, that is the weighted number of visible galaxies belonging to a detection, under
the conditions given by Eq. (5.1). The sum of the membership probabilities is an excellent
estimator of the true number of member galaxies, as shown in Bellagamba et al. (2018) by
running the AMICO algorithm on mock catalogues (see Fig. 8 in the reference). In Eq. (5.1),
zj is the redshift of the j-th detected cluster, mi is the magnitude of the i-th galaxy, and Ri
corresponds to the distance of the i-th galaxy from the centre of the cluster. The parameter
Rmax(zj) represents the radius enclosing a mass M200 = 1014M�/h, such that the corres-
ponding mean density is 200 times the critical density of the Universe at the given redshift
zj . In the following analysis, indeed, we consider the masses evaluated as M200. Lastly, m∗ is
the typical magnitude of the Schechter function in the cluster model assumed in the AMICO
algorithm. We use the term intrinsic richness as opposed to apparent richness, defined in
Maturi et al. (2019). In particular, since the threshold in absolute magnitude is always lower
than the survey limit, thanks to its redshift dependence, λ∗ does not depend on the survey
limit. Conversely, the apparent richness is a quantity that includes all visible galaxies and is
therefore related to how a cluster is observed given a certain apparent magnitude limit.

5.1.3 Weak-lensing masses

To estimate the mean masses of the observed galaxy clusters, we followed the same stacked
weak-lensing procedure described in Bellagamba et al. (2019), based on KiDS-DR3 data. The
clusters selected for the weak-lensing analysis lie in the redshift range z ∈ [0.1, 0.6], over an
effective area of 360.3 deg2. This area is slightly smaller compared to that considered for the
counts’ analysis since it was derived from the masking described in Hildebrandt et al. (2017).
Despite the availability of galaxy clusters up to z = 0.8 in the AMICO KiDS-DR3 catalogue,
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Table 5.1: Cluster binning used for the weak-lensing analysis.

z range zeff λ∗ range λ∗eff log M̄200 Ncl zs,eff

[0.10, 0.30] 0.189± 0.001 [0, 15] 10.20± 0.09 -0.73± 0.07 1246 0.849± 0.002

[0.10, 0.30] 0.212± 0.002 [15, 25] 18.88± 0.12 -0.38± 0.07 684 0.867± 0.002

[0.10, 0.30] 0.222± 0.004 [25, 35] 29.02± 0.21 0.05± 0.07 209 0.879± 0.002

[0.10, 0.30] 0.228± 0.007 [35, 45] 39.75± 0.32 0.32± 0.06 82 0.877± 0.005

[0.10, 0.30] 0.222± 0.008 [45, 150] 56.59± 2.20 0.54± 0.06 44 0.890± 0.013

[0.30, 0.45] 0.374± 0.001 [0, 20] 15.10± 0.11 -0.41± 0.08 1113 0.948± 0.003

[0.30, 0.45] 0.387± 0.002 [20, 30] 24.08± 0.11 -0.07± 0.07 767 0.944± 0.004

[0.30, 0.45] 0.389± 0.002 [30, 45] 35.91± 0.27 0.21± 0.06 320 0.941± 0.005

[0.30, 0.45] 0.390± 0.005 [45, 60] 50.88± 0.50 0.41± 0.08 87 0.950± 0.015

[0.30, 0.45] 0.379± 0.006 [60, 150] 73.60± 2.09 0.68± 0.07 45 0.946± 0.012

[0.45, 0.60] 0.498± 0.001 [0, 25] 19.71± 0.11 -0.33± 0.09 1108 0.958± 0.001

[0.45, 0.60] 0.514± 0.002 [25, 35] 29.23± 0.12 -0.07± 0.07 761 0.961± 0.004

[0.45, 0.60] 0.523± 0.003 [35, 45] 39.25± 0.18 0.21± 0.07 299 0.961± 0.006

[0.45, 0.60] 0.513± 0.004 [45, 150] 55.12± 0.76 0.36± 0.07 197 0.960± 0.004

Notes. The computation of zeff and λ∗eff and their uncertainties are described in Bellagamba et al.
(2019). For the logarithm of the measured mean masses, log M̄200, expressed in units of (1014 h−1M�),
we quote the mean and the standard deviation of the posterior probability distribution. We note that
Ncl is the number of clusters in the bin. In the last column, zs,eff is the effective redshift of the lensed
sources, obtained by following the procedure described in Giocoli et al. (2021). Quoted masses refer
to a flat ΛCDM model with Ωm = 0.3 and h = 0.7.

the S/N of the stacked shear profiles is too low to perform the stacking for z > 0.6. Therefore
we base our analysis on the redshift bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], and z ∈ [0.45, 0.6],
deriving the estimated mean masses in a flat ΛCDM cosmology with Ωm = 0.3 and h = 0.7.

With a Markov chain Monte Carlo (MCMC) analysis, we sampled the posterior distri-
butions of the base 10 logarithm of the estimated mean cluster masses, log M̄200, in 14 bins
of intrinsic richness and redshift, considering λ∗ ≥ 0 for a total of 6962 objects (see Table
5.1). To test the reliability of this cut in λ∗, we also performed the cosmological analysis by
imposing λ∗ ≥ 20 for the weak-lensing masses, deriving results fully in agreement with those
obtained by assuming λ∗ ≥ 0, as detailed in Section 5.2.3. As we discuss in Section 5.2.2,
we account for the systematic errors affecting the weak lensing mass estimates by relying
on the results found in Bellagamba et al. (2019). Specifically, we consider the systemat-
ics due to background selection, photo-zs, and shear measurements, affecting the measured
stacked cluster profiles. Such errors are then propagated into the mass estimates. The sum
in quadrature of such contributions to systematic errors, along with those produced by the
halo model, orientation, and projections, is equal to 7.6%. The description of the modelling,
including a more extensive discussion on the statistical and systematic uncertainties, is de-
tailed in Bellagamba et al. (2019).

The log M̄200 posteriors are marginalised over the other parameters entering the modelling,
that is the concentration parameter, c200, the fraction of haloes belonging to the miscentred
population, foff , and the rms of the distribution of the halo misplacement on the plane of the
sky, σoff . In particular, we derived the posteriors for c200, foff , and σoff in each bin, assuming
the following flat priors: c200 ∈ [1, 20], foff ∈ [0, 0.5], and σoff ∈ [0 Mpch−1, 0.5 Mpch−1].
Such parameters are not constrained by the data, that is their posteriors are statistically
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Figure 5.2: Logarithm of the masses in units of (1014 h−1M�), log M̄200, from the AMICO KiDS-
DR3 cluster catalogue as a function of the intrinsic richness λ∗, in the redshift bins z ∈ [0.10, 0.30],
z ∈ [0.30, 0.45], and z ∈ [0.45, 0.60], from top to bottom. The black triangles represent the mean
values of log M̄200, given by the mean of the marginalised posterior obtained in the weak-lensing
analysis, while the error bars are given by 1σ of the posterior distribution. The orange lines represent
the median scaling relation obtained by modelling only log M̄200, following the procedure described
in Bellagamba et al. (2019). The grey bands represent the 68% confidence level derived from the
multivariate posterior of all the free parameters considered in the cosmological analysis described in
Section 5.2.2.

consistent with the priors. For what concerns the miscentring parameters, they are related to
the possible difference between the centre defined by the AMICO algorithm using the galaxy
overdensities and the mass centre related to the weak-lensing signal. In fact, the uncertainty
due to the use of a grid in AMICO indeed only impacts small scales not used in this analysis
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Figure 5.3: Completeness (left panel) and purity (right panel) of the AMICO KiDS-DR3 cluster
catalogue as a function of the redshift, z, and of the intrinsic richness, λ∗. The completeness is
a function of the true λ∗, i.e. λ∗tr, while the purity is defined as a function of the observed intrinsic
richness, λ∗ob. The shaded area in the right panel highlights the bins excluded from the number counts’
analysis, namely for λ∗ob < 20.

and thus they can be neglected.
The logarithm of the estimated mean mass values for different bins of intrinsic richness

and redshift are listed in Table 5.1. In Fig. 5.2 we show the median value of the mass-intrinsic
richness scaling relation, described in Section 5.2.2, obtained by only performing the model-
ling of the weak lensing masses as in Bellagamba et al. (2019), along with the 68% confidence
level obtained from the analysis of cluster counts and weak lensing masses, detailed in Section
5.2.2. It turns out that the logM200− log λ∗ relation is reasonably linear and with an intrinsic
scatter of 0.1, as we discuss in Section 5.2.3, indicating the reliability of λ∗ as a mass proxy.

5.1.4 Selection function

In order to estimate the selection function of the AMICO KiDS-DR3 cluster catalogue, we
make use of the mock catalogue described in Maturi et al. (2019). The construction of the
mock clusters is based on the original galaxy data set, thus all the properties of the survey
are properly taken into account, such as masks, photo-z uncertainties, and the clustering of
galaxies. In this way the assumptions necessary to build up the mock catalogue are minimised.
In particular, regarding the photo-z uncertainties, the galaxies are drawn from the survey
sample and selected from bins of richness and redshift, using a Monte Carlo sampling based on
the cluster membership probability. The probability that each galaxy is included in a given
redshift bin is driven by its own photo-z probability distribution function, which includes
the contribution of the photometric noise. In this way, the selection of the simulated cluster
member galaxies mimics the real uncertainties of the photometric redshifts in the photometric
catalogue. Then, to derive the selection function, the AMICO code was run on the mock
catalogue, consisting of 9018 clusters distributed over a total area of 189 deg2. Only the
detections with an S/N> 3.5 are considered, with this being the threshold applied to the real
dataset.

In Fig. 5.3 we show the purity and completeness of the dataset, which define the selection
function. The completeness is defined as the number of detections correctly identified as
clusters over the total number of mock clusters as a function of redshift and intrinsic richness.
Thus it provides a measure of how many objects are lost in the detection procedure. On the

78



other hand, the purity is a measure of the contamination level of the cluster sample. It is
defined as the fraction of detections matching the clusters in the mock catalogue, over the
total number of detections, in a given bin of redshift and intrinsic richness. As shown in Fig.
5.3, it turns out that the catalogue is highly pure, with a purity approaching 100% over the
whole redshift range for λ∗ ≥ 20.

In order to account for the selection function in the modelling of cluster counts, we built a
new dataset by applying the purity and the completeness to the real cluster catalogue. This
dataset will be used to derive the multiplicative weights that will be considered in the cluster
counts’ model, as we detail in the following. Since we define the purity as a function of the
observed intrinsic richness, λ∗ob, we assigned each object in the real catalogue to a bin of
observed intrinsic richness, in which we computed the purity. Subsequently, we extracted a
uniform random number between 0 and 1, and if it is lower than the purity corresponding to
the bin, the object is considered in the aforementioned new dataset. Otherwise, it is rejected.
In this way, the final sample will statistically take the effects of impurities into account. On
the other hand, since the completeness is defined in bins of true intrinsic richness, λ∗tr, it is
required to implement a method that assigns a value of completeness to an observed value
of intrinsic richness. For this purpose, we derived several probability distributions from the
mock catalogue describing the probability to obtain a true value of λ∗, given a range of
observed intrinsic richness defined by λ∗ low

ob and λ∗ up
ob , namely P (λ∗tr|λ∗ low

ob , λ∗ up
ob ). We find

that these distributions are reasonably Gaussian. Then, given a galaxy cluster in our dataset
with a value of λ∗ob in a given range, we performed a Gaussian Monte Carlo extraction from
P (λ∗tr|λ∗ low

ob , λ∗up
ob ) through which we obtain a value of λ∗tr. Given the extracted true value

of intrinsic richness, we assigned a completeness value to the considered object. Having
this new catalogue corrected for the purity and the completeness, we constructed a weight
factor defined as the ratio between the uncorrected counts and the corrected ones for bins in
intrinsic richness (denoted by ∆λ∗ob,i) and redshift (labelled as ∆zob,j). These weight factors,
w(∆λ∗ob,i,∆zob,j), will be used to weigh the cluster count model as described in Section 5.2.2.
The value of w(∆λ∗ob,i,∆zob,j) in the first bins of intrinsic richness amounts to 0.87, 0.76, and
0.64 in the redshift bins z ∈ [0.10, 0.30], z ∈ [0.30, 0.45], and z ∈ [0.45, 0.60], respectively,
while we derived no correction for the other bins (i.e. in these bins the weights are equal to
1).

5.2 AMICO KiDS-DR3 cluster counts

In this section, we detail the analysis of AMICO KiDS-DR3 galaxy cluster counts presented
in Lesci et al. (2022a), based on the data set discussed in Sect. 5.1. In Sect. 5.2.1 we detail
the sample selection and the measurements of cluster counts. In Sect. 5.2.2 we detail the
theoretical expected values of cluster weak-lensing masses and counts, along with the likeli-
hood function adopted for the Bayesian analysis. In Sect. 5.2.3 we present our constraints
on cosmological parameters and on the mass-richness scaling relation, while in Sect. 5.2.4 we
discuss our results.

5.2.1 Sample selection and measurements

We set λ∗ = 20 as the threshold for the cluster count analysis in order to exclude the bins
affected by detection impurities and severe incompleteness. Thus the final sample of galaxy
clusters considered for the analysis contains 3652 objects, with λ∗ ≥ 20, and in the redshift
bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], and z ∈ [0.45, 0.6]. With regard to the binning in intrinsic
richness, we adopt four logarithmically spaced bins in the range λ∗ ∈ [20, 137] for each redshift

79



10020 30 40 60
*

10

100

1000

N
(

* )

z [0.10, 0.30]
Planck18
WMAP9
68% confidence
AMICO KiDS-DR3
Cluster Counts

10020 30 40 60
*

z [0.30, 0.45]

10020 30 40 60
*

z [0.45, 0.60]

Figure 5.4: Number counts from the AMICO KiDS-DR3 cluster catalogue as a function of the
intrinsic richness λ∗, in the redshift bins z ∈ [0.10, 0.30], z ∈ [0.30, 0.45], and z ∈ [0.45, 0.60], from
left to right. The black dots represent the counts directly retrieved from the catalogue, where the
error bars are given by the Poissonian noise. The solid blue lines represent the model computed
by assuming the cosmological parameters obtained by Planck Collaboration VI (2020, Table 2, TT,
TE, and EE+lowE), while the red dashed lines show the results based on the WMAP cosmological
parameters (Hinshaw et al. 2013, Table 3, WMAP-only Nine-year). Both in the Planck and WMAP
cases, the scaling relation parameters and the intrinsic scatter have been fixed to the median values
listed in Table 5.2, retrieved from the modelling. The grey bands represent the 68% confidence
level derived from the multivariate posterior of all the free parameters considered in the cosmological
analysis.

bin. To test the robustness of our results with respect to this binning choice, we repeated
the analysis assuming different numbers of λ∗ bins and obtained negligible differences in the
final results, that is far below the 1σ of the posterior distributions, with values of reduced χ2

always consistent with 1. The measured counts of the AMICO KiDS-DR3 clusters are shown
in Fig. 5.4, along with the 68% confidence level derived in Section 5.2.3.

5.2.2 Modelling

Model for the weak-lensing masses

We modelled the scaling relation between the estimated cluster mean masses and the intrinsic
richnesses using the following functional form:

log
M200

1014M�/h
= α+ β

∫ ∞
0

dλ∗ P (λ∗|λ∗eff) log
λ∗

λ∗piv

+

+ γ

∫ ∞
0

dz P (z|zeff) log
E(z)

E(zpiv)
, (5.2)

where E(z) ≡ H(z)/H0, while zeff and λ∗eff are the lensing-weighted effective redshift and
richness, respectively, whose computation is described in Bellagamba et al. (2019). The
probability distributions P (λ∗|λ∗eff) and P (z|zeff) are assumed to be Gaussian, with a mean
equal to the values of λ∗eff and zeff listed in Table 5.1, and an rms given by the uncertainties
on λ∗eff and zeff , respectively. The last term in Eq. (5.2) accounts for deviations in the redshift
evolution from what is predicted in the self-similar growth scenario (Sereno & Ettori 2015).
Following Bellagamba et al. (2019), we set λ∗piv = 30 and zpiv = 0.35. In Eq. (5.2) the

observables are the estimated mean mass values, log M̄200, shown in Table 5.1, along with the
effective values of redshift, zeff, and of intrinsic richness, λeff, in the given bin. Furthermore,
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since log M̄200 depends on cosmological parameters, we adopted the rescaling described in
Sereno (2015), that is

M̄200, new = M̄200, ref

[
D
− 3δγ

2−δγ
d

(
Dds
Ds

)− 3
2−δγ

H(z)
− 1+δγ

1−δγ/2

]
new[

D
− 3δγ

2−δγ
d

(
Dds
Ds

)− 3
2−δγ

H(z)
− 1+δγ

1−δγ/2

]
ref

, (5.3)

where ref indicates the assumed reference cosmology, that is Ωm = 0.3 and h = 0.7, while
the subscript new refers to that of the test. We set the slope to δγ = 0, corresponding to
the case of a singular isothermal profile, with this being a good approximation in general (as
discussed in Sereno 2015). For example, assuming M200 ' 1015 M� and c200 ' 3, δγ ' −0.1
is obtained. Thus we varied δγ in the reasonable range [−0.2, 0.2] and verified that this
does not have an impact on the final results. The terms Ds, Dd, and Dds are the source’s,
the lens’, and the lens-source’s angular diameter distances, respectively. In Dd, Dds, and in
the Hubble parameter, H(z), we assumed the effective redshift values, zeff, listed in Table
5.1. With regard to the redshifts of the sources, we considered the lensed source effective
redshifts, zs,eff, listed in Table 5.1, obtained by following the procedure described in Giocoli
et al. (2021). In particular, we obtained zs,eff by weighting the redshift of each source by the
corresponding source density for each derived radial bin for each cluster. We then considered
the mean value of source redshift in bins of cluster richness per redshift. We verified that
we can neglect the uncertainty on zs,eff in our analysis. In such mass rescaling, the relative
uncertainty on log M̄200, new is constant, corresponding to the relative errors on log M̄200, ref .

Model for the cluster counts

The specific characteristics of the data set must be included in the model and in the covariance
matrix of the likelihood function. We describe the expectation value of the counts in a given
bin of intrinsic richness, ∆λ∗ob,i, and of observed redshift, ∆zob,j , as

〈N(∆λ∗ob,i,∆zob,j)〉 = w(∆λ∗ob,i,∆zob,j) Ω

∞∫
0

dztr
dV

dztrdΩ
×

×
∞∫

0

dMtr
dn(Mtr, ztr)

dMtr

∞∫
0

dλ∗tr P (λ∗tr|Mtr, ztr)×

×
∫

∆zob,j

dzob P (zob|ztr, corr)

∫
∆λ∗ob,i

dλ∗ob P (λ∗ob|λ∗tr) , (5.4)

where ztr is the true redshift, V is the co-moving volume, Ω is the survey effective area, Mtr

is the true mass, and dn(Mtr, ztr)/dMtr is the mass function, for which the model by Tinker
et al. (2008) is assumed. The term w(∆λ∗ob,i,∆zob,j) is the weight factor described in Section
5.1.4, accounting for the purity and completeness of the sample. The probability distribution
P (zob|ztr, corr), assessed through the mock catalogue described in Section 5.1.4, is a Gaussian
accounting for the uncertainties on the redshifts. The mean of such distribution, ztr, corr, is
the true redshift corrected by the redshift bias, and it is expressed as

ztr, corr = ztr + ∆zbias (1 + ztr) , (5.5)

where ∆zbias (1+ztr) is the redshift bias term discussed in Maturi et al. (2019), with ∆zbias =
0.02. In particular, this bias corresponds to what was found in de Jong et al. (2017) by
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comparing the KiDS photo-zs to the GAMA spectroscopic redshifts (see their Table 8). In
order to assess the impact of its uncertainty, we included ∆zbias as a free parameter in the
model, assuming a Gaussian prior with a mean equal to 0.02 and an rms equal to 0.02, which
is similar to the rms of the sample and much larger than the rms of the mean (see Fig. 7 in
Maturi et al. 2019). As we verified, such uncertainty on ∆zbias does not significantly impact
our final results. Conversely, AMICO provides unbiased estimates of redshift (see Maturi
et al. 2019), thus we modelled P (zob|ztr) by keeping the mean of such distributions fixed to
the central value of ∆ztr. In particular, in the mock catalogue, we measured P (zob|ztr) in
several bins of ztr, namely ∆ztr, and we performed the statistical MCMC analysis assuming
a common flat prior on the rms in all the ∆ztr bins. The resulting rms of P (zob|ztr) is equal
to 0.025. AMICO also provides unbiased estimates for λ∗, thus following the same procedure
adopted for P (zob|ztr), we derived an uncertainty of 17% on λ∗ob, defining the rms of the
Gaussian distribution P (λ∗ob|λ∗tr), whose mean is equal to λ∗tr. We neglected the uncertainties
on the rms of P (zob|ztr) and P (λ∗ob|λ∗tr), amounting to 1%, since we verified their negligible
effect on the final results.

Furthermore, P (λ∗tr|Mtr, ztr) is a probability distribution that weights the expected counts
according to the shape of the mass-richness scaling relation, and it is expressed as follows:

P (λ∗tr|Mtr, ztr) =
P (Mtr|λ∗tr, ztr)P (λ∗tr|ztr)

P (Mtr|ztr)
, (5.6)

where the distribution P (Mtr|λ∗tr, ztr) is a log-normal one whose mean is given by the mass-
richness scaling relation and the standard deviation is given by the intrinsic scatter, σintr, set
as a free parameter of the model:

P (logMtr|λ∗tr, ztr) =
1√

2πσintr

exp

(
−x

2(Mtr, λ
∗
tr, ztr)

2σ2
intr

)
, (5.7)

where

x(Mtr, λ
∗
tr, ztr) = log

Mtr

1014M�/h
−

(
α+ β log

λ∗tr
λ∗piv

+ γ log
E(ztr)

E(zpiv)

)
(5.8)

and

σintr = σintr,0 + σintr,λ∗ log
λ∗tr
λ∗piv

. (5.9)

The P (Mtr|λ∗tr, ztr) distribution indeed accounts for the intrinsic uncertainty that affects a
scaling relation between the intrinsic richness and the mass: given an infinitely accurate
scaling relation, represented by the mean, the cluster mass provided by a value of intrinsic
richness is scattered from the true value. Furthermore, P (λ∗tr|∆ztr) in Eq. (5.6) is a power
law with an exponential cut-off, derived from the mock catalogue by considering the objects
with λ∗tr & 20. Specifically, similar to other literature analyses (see, e.g., Murata et al.
2019; Costanzi et al. 2019; Abbott et al. 2020), P (λ∗tr|Mtr, ztr) is assumed to be cosmology-
independent. Thus we assume that the ratio P (λ∗tr|ztr)/P (Mtr|ztr) is cosmology-independent,
where P (Mtr|ztr) acts as a normalisation of P (λ∗tr|Mtr, ztr):

P (Mtr|ztr) =

∞∫
0

dλ∗tr P (Mtr|λ∗tr, ztr)P (λ∗tr|ztr) . (5.10)

Halo mass function systematic uncertainties

As mentioned in Section 5.2.2, we assume the Tinker et al. (2008) halo mass function to
model the observed cluster counts. Following Costanzi et al. (2019), in order to characterise
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the systematic uncertainty in the halo mass function in dark matter only simulations, we
related the Tinker et al. (2008) mass function to the true mass function via

n(M, z) = n(M, z)Tinker(s log(M/M∗) + q), (5.11)

where logM∗ = 13.8 h−1M� is the pivot mass, while q and s are free parameters of the model
with a Gaussian prior having the following covariance matrix:

C(s̄, q̄) =

(
0.00019 0.00024
0.00024 0.00038

)
, (5.12)

and with s̄ = 0.037 and q̄ = 1.008 as the mean values. Diagonalising the matrix (5.12),
we obtained the following 1D Gaussian priors: N (s̄, σs) = N (0.037, 0.014), and N (q̄, σq) =
N (1.008, 0.019), where N (µ, σ) stands for a Gaussian distribution with mean µ and standard
deviation σ.

Likelihood

Our likelihood function encapsulates the description of cluster counts and weak lensing
masses. We base the likelihood term describing the counts, Lcounts, on the functional form
given by Lacasa & Grain (2019), that is to say a convolution of a Poissonian likelihood de-
scribing the counts, and a Gaussian distribution accounting for the super-sample covariance
(SSC):

Lcounts =

∫
dδnz

b

∏
i,j

Poiss

(
Ni,j |N̄i,j +

∂Ni,j

∂δb,j
δb,j

) N (δb|0, S) . (5.13)

In the equation above, N (δb|0, S) is the Gaussian function describing the SSC effects on
cluster count measurements, which is a function of the matter density contrast fluctuation,
δb, and has a covariance matrix S.1 In particular, nz is the number of redshift bins considered
in the modelling procedure, and it defines the dimension of the integration variable, δb =
{δb,1, ..., δb,nz}, and of the S matrix, whose dimension is nz × nz. Thus each δb,j represents
the fluctuation of the measured matter density contrast, with respect to the expected one,
in a given bin of redshift. The indices i and j are the labels of the bins of intrinsic richness
and redshift, while Ni,j ≡ N(∆λ∗ob,i,∆zob,j) is the observed cluster number counts in a bin of

intrinsic richness and redshift, and N̄i,j is the model defined in Eq. (5.4). The term ∂Ni,j/∂δb,j

is the response of the counts, that is the measure of how the counts vary with changes of the
background density, and it is expressed as follows:

∂Ni,j

∂δb,j
= w(∆λ∗ob,i,∆zob,j) Ω

∞∫
0

dztr
dV

dztrdΩ
×

×
∞∫

0

dMtr
dn(Mtr, ztr)

dMtr
b(Mtr, ztr)

∞∫
0

dλ∗tr P (λ∗tr|Mtr, ztr)×

×
∫

∆zob,j

dzob P (zob|ztr, corr)

∫
∆λ∗ob,i

dλ∗ob P (λ∗ob|λ∗tr) , (5.14)

1For the computation of the S matrix, we implemented a code similar to the one at https://github.com/
fabienlacasa/PySSC developed by Lacasa & Grain (2019).
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Table 5.2: Parameters considered in the joint analysis of cluster counts and stacked weak-lensing
data.

Parameter Description Prior Posterior

Ωm Total matter density parameter [0.09, 1] 0.24+0.03
−0.04

σ8 Amplitude of the matter power spectrum [0.4, 1.5] 0.86+0.07
−0.07

S8 Cluster normalisation parameter — 0.78+0.04
−0.04

α Normalisation of the mass-richness relation [-2, 2] 0.04+0.04
−0.03

β Slope of the mass-richness relation [0, 5] 1.72+0.08
−0.08

γ Redshift evolution of the mass-richness relation [-4, 4] −2.37+0.37
−0.56

σintr,0 Normalisation of σintr [0.05, 1] 0.18+0.08
−0.10

σintr,λ∗ λ∗ evolution of σintr [-5, 5] 0.11+0.19
−0.22

Ωb Baryon density parameter N (0.0486, 0.0017) —

τ Thomson scattering optical depth at re-ionisation N (0.0544, 0.0365) —

ns Primordial power spectrum spectral index N (0.9649, 0.0210) —

h Normalised Hubble constant N (0.7, 0.1) —

s Slope correction to the halo mass function N (0.037, 0.014) —

q Amplitude correction to the halo mass function N (1.008, 0.019) —

δb Fluctuation of the mean matter density Gaussian —

Notes. In the third column, the priors on the parameters are listed, and in particular a range repres-
ents a uniform prior, while N (µ, σ) stands for a Gaussian prior with mean µ and standard deviation
σ. The Gaussian prior on δb is cosmology-dependent: both the mean and the standard deviation
change at each MCMC step. In the fourth column, we show the median values of the 1D marginalised
posteriors, along with the 16th and 84th percentiles. The posterior distributions of Ωb, τ , ns, h, s, q,
and δb are not shown since these nuisance parameters are not constrained in our analysis.

in other words, the response is similar to the model described in Eq. (5.4), in which we also
include the contribution of the linear bias b(M, z).

For computational purposes, we consider in the analysis an alternative form of the likeli-
hood, L′counts, that is the integrand in Eq. (5.13), of which we computed the natural logarithm:

lnL′counts = ln

∏
i,j

Poiss

(
Ni,j |N̄i,j +

∂Ni,j

∂δb,j
δb,j

)
· N (δb|0, S)

 . (5.15)

Here, we set δb = {δb,1, ..., δb,nz} as free parameters of the model, with a multivariate Gaus-
sian prior having S as the covariance matrix. Due to the dependence on cosmological para-
meters of the S matrix, the values of its elements change at every step of the MCMC. In
turn, a variation of S implies the change of the prior on δb. At the end of the MCMC, we
marginalised over δb to derive the posteriors of our parameters of interest.

With regard to the likelihood describing the weak lensing masses, Llens, we assumed a
log-normal functional form and then we considered its natural logarithm:

lnLlens ∝
Nbin∑
k=1

Nbin∑
l=1

[log M̄k
ob − log M̄k

mod]C−1
M,kl [log M̄ l

ob − log M̄ l
mod] , (5.16)

where Nbin corresponds to the number of bins in which the mean mass M̄200, that is M̄ob,
was measured, through the weak-lensing analysis described in Section 5.1.3. Furthermore,
M̄mod represents the mass obtained from the scaling relation model described in Eq. (5.2),
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Figure 5.5: Constraints on Ωm, σ8, α, β, γ, σintr,0, and σintr,λ∗ , derived in a flat ΛCDM universe by
combining the redshift bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], and z ∈ [0.45, 0.6] and assuming a minimum
intrinsic richness λ∗ob,min = 20 for cluster counts. The shown posteriors were also marginalised over
Ωb, τ , ns, h, s, q, and δb. The blue contours represent the results obtained from the joint analysis of
cluster counts and weak lensing masses, while the orange contours show the posteriors on α, β, and γ,
derived from the analysis including only the weak lensing masses as in Bellagamba et al. (2019). The
confidence ellipses correspond to 68% and 95%, while the bands over the 1D marginalised posteriors
represent the 68% of confidence.

where we assumed the effective redshift and intrinsic richness values zeff and λ∗eff listed in
Table 5.1. The covariance matrix CM in Eq. (5.16) has the following form:

CM,kl = δklE
2
k + [σsys/ ln(10)]2 + δkl(σintr/

√
Ncl)

2 , (5.17)

where Ek represents the statistical error on log M̄ob derived from the posterior distribution
of log M̄ob, where we stress that the relative uncertainties are constants after the rescaling
described in Section 5.1.3. The term σsys = 0.076 is the sum in quadrature of the uncertainties
on the background selection, photo-zs, shear measurements, halo model, orientation, and
projections, obtained in Bellagamba et al. (2019), and Ncl is the number of clusters in the
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Figure 5.6: Comparison with WMAP and Planck results. In the left panel, we show the Ωm-
σ8 parameter space, along with the 1D marginalised posteriors with the relative intervals between
the 16th and 84th percentiles, in the case of the cluster counts’ analysis in the AMICO KiDS-DR3
catalogue (solid grey lines). In the same panel, we also display the results from WMAP (Hinshaw et al.
2013) (Table 3, WMAP-only Nine-year; red dash-dotted lines) and Planck (Planck Collaboration VI
2020) (Table 2, TT, TE, and EE+lowE; blue dashed lines). In the right panel, we show the posteriors
for the parameter S8, where the bands show the intervals between 16th and 84th percentiles. The
symbols are the same as in the left panel.

bin of intrinsic richness and redshift in which the mean mass has been derived. By dividing
σintr by

√
Ncl, we neglected the cluster clustering contribution to the last term of Eq. (5.17).

Thus, the logarithm of the joint likelihood, lnL, is given by

lnL = lnL′counts + lnLlens . (5.18)

5.2.3 Results

We performed a cosmological analysis of cluster number counts and stacked weak lensing
based on the assumption of a flat ΛCDM model. The aim is to constrain the matter density
parameter, Ωm, and the square root of the mass variance computed on a scale of 8 Mpc/h,
namely σ8, with both being provided at z = 0, along with the parameters defining the scaling
relation between masses and intrinsic richnesses, α, β, and γ in Eq. (5.2), and the intrinsic
scatter, σintr. Therefore we set Ωm, σ8, α, β, γ, and σintr as free parameters of the model, Eq.
(5.4), as well as the baryon density, Ωb, the optical depth at re-ionisation, τ , the primordial
spectral index, ns, the normalised Hubble constant, h, the Tinker mass function correction
parameters, q and s, described in Section 5.2.2, and the fluctuation of the mean density of
matter due to super-survey modes, δb. We assumed flat priors for Ωm, σ8, α, β, γ, and σintr,
while we set Gaussian priors on the other parameters (see Table 5.2). In particular, for the
Gaussian prior distributions of Ωb, τ , ns, and h, we considered the values obtained by the
Planck Collaboration VI (2020) (Table 2, TT, TE, and EE+lowE+lensing), assuming the
same mean values and imposing a standard deviation equal to 5σ for all the aforementioned
parameters, but h, for which we assumed a standard deviation equal to 0.1. In this baseline
cosmological model, we also assumed three neutrino species, approximated as two massless
states and a single massive neutrino of mass mν = 0.06 eV, following Planck Collaboration
VI (2020). Finally, we assumed a multivariate Gaussian prior for δb, as described in Section
5.2.2.

In our analysis, we constrained the value of the cluster normalisation parameter, S8 ≡
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Figure 5.7: Comparison of the constraints on S8 ≡ σ8(Ωm/0.3)0.5 obtained, from top to bottom,
from the joint analysis of cluster counts and weak lensing in the AMICO KiDS-DR3 catalogue (black
dot), from the results obtained by Planck Collaboration VI (2020) (blue dots), Hinshaw et al. (2013)
(red dots), Costanzi et al. (2019) (green dot), Bocquet et al. (2019) (brown dot), Troxel et al. (2018)
(magenta dot), Hikage et al. (2019) (orange dot), and Asgari et al. (2021) (cyan dot). The median,
as well as the 16th and 84th percentiles are shown.

σ8(Ωm/0.3)0.5. The significance of this parameter is rooted in the degeneracy between σ8

and Ωm, being defined along the σ8 − Ωm confidence regions. Since the number of massive
clusters increases with both σ8 and Ωm, in order to hold the cluster abundance fixed at its
observed value, any increase in σ8 must be compensated for by a decrease in Ωm, implying
that S8 is held fixed.

From this modelling, we obtain Ωm = 0.24+0.03
−0.04, σ8 = 0.86+0.07

−0.07, and S8 = 0.78+0.04
−0.04, where

we quote the median, 16th and 84th percentiles, as shown in Fig. 5.5 and Table 5.2. In Fig.
5.5 we also show that the results on the mass-richness scaling relation retrieved from this ana-
lysis, that is for α, β, and γ, are in agreement within 1σ with those obtained by performing
the modelling of the weak lensing data only, as carried out by Bellagamba et al. (2019). In
particular, the inclusion of the cluster counts in the analysis provides tighter constraints on
the slope β, also governing the slope of the cluster model at low values of λ∗. Additionally,
the cluster count redshift evolution provides a more accurate estimate of γ. Lastly, we find a
tight constraint on the intrinsic scatter, deriving σintr,0 = 0.18+0.08

−0.10 and σintr,λ∗ = 0.11+0.19
−0.22,

which confirms the reliability of λ∗ as a mass proxy. This result on σintr is consistent within
1σ with that derived in Sereno et al. (2020) from a weak lensing analysis of the sample of
AMICO clusters in KiDS-DR3.

As shown in Fig. 5.6, the constraints obtained for S8 and σ8 are in agreement within 1σ
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with WMAP results (Hinshaw et al. 2013) (Table 3, WMAP-only Nine-year), and with Planck
results (Planck Collaboration VI 2020) (Table 2, TT, TE, and EE+lowE). With regard to
Ωm, we find an agreement within 1σ with WMAP and a 2σ tension with Planck. Further-
more, in Fig. 5.7 we show the comparison with the S8 constraints obtained from additional
external data sets. In particular, we find an agreement within 1σ with the results obtained
from the cluster counts’ analyses performed by Costanzi et al. (2019), based on SDSS-DR8
data, and by Bocquet et al. (2019), based on the 2500 deg2 SPT-SZ survey data, as well as
with the results derived from the cosmic shear analyses performed by Troxel et al. (2018) on
DES-Y1 data, Hikage et al. (2019) on HSC-Y1 data, and Asgari et al. (2021) on KiDS-DR4
data. The constraint on S8 obtained from the cluster counts and weak lensing joint analysis
in DES (Abbott et al. 2020), S8 = 0.65+0.04

−0.04, not shown in Fig. 5.7, is not consistent with our
result.

Following a more conservative approach, we repeated the analysis also assuming the
threshold in intrinsic richness λ∗ ≥ 20 for the weak lensing data. This leads to Ωm = 0.27+0.04

−0.05,

σ8 = 0.83+0.06
−0.07, and S8 = 0.78+0.04

−0.04, which are consistent within 1σ with the constraints de-
rived from the analysis previously described. Also for the other free parameters of the model,
the consistency within 1σ still holds.

5.2.4 Summary

In this section, we presented the work by Lesci et al. (2022a) on the joint analysis of galaxy
cluster abundance and weak-lensing in the AMICO KiDS-DR3 catalogue (Maturi et al. 2019).
Lesci et al. (2022a) simultaneously constrained the cosmological parameters and the cluster
mass-richness scaling relation. In particular, we relied on the intrinsic richness, defined in
Eq. (5.1), as the observable linked to the cluster masses. The sample exploited for cluster
counts includes 3652 galaxy clusters having an intrinsic richness of λ∗ ≥ 20 and divided
in the redshift bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], and z ∈ [0.45, 0.6]. For the weak-lensing
analysis, we followed the procedure developed by Bellagamba et al. (2019), not assuming any
thresholds in λ∗. We assessed the incompleteness and the impurities of the cluster sample by
exploiting a mock catalogue developed by Maturi et al. (2019), and we corrected our data
accordingly.

We assumed a model for cluster counts, shown in Eq. (5.4), accounting for the redshift
uncertainties and for the mass-richness scaling relation. In particular, the mass-richness
scaling relation plays a crucial role in the P (λ∗tr|Mtr, ztr) term given by Eq. (5.6), which also
depends on the observed distribution of galaxy clusters as a function of the intrinsic richness.
Furthermore, this term includes the contribution of the intrinsic scatter of the scaling relation,
σintr, which is considered as an unknown parameter. Subsequently, we modelled the cluster
counts and the scaling relation by combining the relative likelihood functions.

Assuming a flat ΛCDM model with massive neutrinos, we found Ωm = 0.24+0.03
−0.04, σ8 =

0.86+0.07
−0.07, and S8 = 0.78+0.04

−0.04, which are competitive constraints, in terms of uncertainties,
with results from state-of-the-art cluster number counts’ analyses. In addition, the result on
S8 is in agreement within 1σ with the results from WMAP and Planck. We also derived results
for the scaling relation that are consistent within 1σ with those obtained by only modelling the
weak lensing signal as in Bellagamba et al. (2019), thus validating the reliability of our model.
With regard to the intrinsic scatter, we found σintr,0 = 0.18+0.08

−0.10 and σintr,λ∗ = 0.11+0.19
−0.22,

which is a very competitive result compared to the present-day estimates in the field of
galaxy clusters, outlining the goodness of the assumption of λ∗ as the mass proxy.
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Figure 5.8: Redshift and intrinsic richness distributions of the clusters in the sample analysed
by Lesci et al. (2022b). Top panel: Redshift distribution after the correction for the redshift bias,
including only objects with λ∗ > 15. The grey shaded areas represent the redshift ranges that were not
used in the analysis. Bottom panel: λ∗ distribution of the objects in the redshift ranges z ∈ [0.10, 0.30]
(black hatched histogram) and z ∈ [0.35, 0.60] (blue histogram).

5.3 AMICO KiDS-DR3 cluster clustering

In this section, we present the analysis of AMICO KiDS-DR3 galaxy cluster 3D 2PCF mono-
pole by Lesci et al. (2022b), based on the data set detailed in Sect. 5.1. In Sect. 5.3.1 we
discuss the sample selection and the measurements of the cluster 3D 2PCF, while in Sect.
5.3.2 we present the theoretical models describing the matter power spectrum and effective
bias. In Sect. 5.3.3 we discuss the results on cosmological parameters and on the mass-richness
scaling relation, while in Sect. 5.3.4 we draw our conclusions.

5.3.1 Sample selection and measurements

Before measuring the cluster 2PCF, we accounted for the bias described in Maturi et al. (2019)
that affects cluster redshifts, that is, we defined the corrected redshift as zcorr = z−0.02 (1+z).
This bias corresponds to what was found in de Jong et al. (2017) by comparing the KiDS
photo-zs to the GAMA spectroscopic redshifts. Furthermore, in a small redshift range around
z ∼ 0.32, the photo-z errors are higher and harder to model because of the shape of the g
and r filter transmissions. In the following cosmological analysis (Section 5.3.3), we also
considered the photo-z range z ∈ [0.10, 0.60] because we assumed priors on the mass-richness
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Figure 5.9: Redshift-space 2PCF monopole (black dots) of the AMICO KiDS-DR3 clusters in the
spatial range s ∈ [5, 80] h−1Mpc, and redshift ranges z ∈ [0.10, 0.30] (top panel) and z ∈ [0.35, 0.60]
(bottom panel). In both panels, the grey band represents the 68% confidence level derived from
the multivariate posterior of the free parameters considered in the cosmological analysis, described
in Section 5.3.3. The model computed by assuming the cosmological parameters derived by Planck
(Planck Collaboration VI 2020, Table 2, TT, TE, and EE+lowE; blue lines) and WMAP (Hinshaw
et al. 2013, Table 3, WMAP-only Nine-year; red lines) is represented by the solid blue lines and by
the dashed red lines, respectively. In both cases, the median values of the scaling relation parameters
derived by Lesci et al. (2022a) are assumed.

relation estimated from a weak-lensing analysis performed in this redshift range (Bellagamba
et al. 2019). Consequently, we decided to model the 2PCF in two separate redshift bins:
z ∈ [0.10, 0.30] and z ∈ [0.35, 0.60]. We considered only the clusters with λ∗ > 15, which
ensures a purity higher than 97% over the whole sample (Maturi et al. 2019). Consequently,
the sample consists of 1019 clusters for z ∈ [0.10, 0.30] and 3915 clusters for z ∈ [0.35, 0.60],
for a total of 4934 objects. Fig. 5.8 shows the redshift and richness distributions of the objects
considered in the analysis.

We estimated the redshift-space 2PCF monopole with the LS estimator (Landy & Szalay
1993), detailed in Sect. 2.1. In order to build up the random catalogue, we extracted random
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(R.A., Dec) cluster positions within the survey tiles by accounting for the same masks as
were used by Maturi et al. (2019) for the construction of the cluster catalogue. Regarding
the redshifts, we shuffled the observed photo-zs. Namely, to each object of the random sample,
we assigned the photo-z randomly extracted from the AMICO KiDS-DR3 catalogue. Hence,
the random sample has the same redshift distribution as the real sample by construction. We
verified that the observed cluster distribution does not depend on the sky position, which is
expected as Maturi et al. (2019) imposed the strict magnitude cut at r = 24, corresponding
to the depth of the shallowest tile. The generated random catalogue is 30 times larger than
the AMICO KiDS-DR3 cluster sample to limit shot noise effects. The observed coordinates
were then converted into comoving ones by assuming the ΛCDM model, with cosmological
parameters from Planck Collaboration VI (2020). In Fig. 5.9, we show the 2PCF monopole
measurements in the two redshift bins considered in the analysis, and in the spatial range
s ∈ [5, 80] h−1Mpc. At larger scales, the clustering signal starts to be weak and is dominated
by the errors, while at smaller scales, the signal is negligible as the cluster size sets the
minimum cluster separation.

5.3.2 Modelling

As we discussed in Sect. 2.4, the observed redshift, zob, can be expressed as

zob = zc +
v‖

c
(1 + zc)± σz , (5.19)

where zc is the cosmological redshift, σz is the error on the redshift measurements, and v‖
is the component of the peculiar velocity along the line of sight. Therefore, using zob to
estimate the comoving distance creates distortions in the measures of the 2PCF, not only
because of the error on the measurements (σz), but also because zob encodes information on
the peculiar motions along the line of sight (v‖). The peculiar motions cause the so-called
dynamical distortions, an effect commonly known also as redshift-space distortions (RSD).

Since our whole analysis is performed on a catalogue extracted from photometric data,
it is crucial to take the errors on the observed cluster redshifts into account. Following the
approach presented in Sereno et al. (2015), we modelled the redshift-space 2D power spectrum
as follows:

P (k, µ) = PDM(k)
(
beff + fµ2

)2
exp

(
−k2 µ2 σ2

)
, (5.20)

where PDM(k) is the dark matter power spectrum, k =
√
k2
⊥ + k2

‖, with k‖ and k⊥ being

the wave-vector components parallel and perpendicular to the line of sight, respectively,
µ ≡ k‖/k, beff represents the effective bias factor (detailed in the following), f is the growth
rate, and the fµ2 term parametrises the coherent motions of large-scale structure, enhancing
the clustering signal at all scales (Kaiser 1987). The exponential cut-off term describes the
random perturbations affecting redshift measurements, caused by both nonlinear stochastic
motions and redshift errors. This is a Gaussian damping term, which causes a scale-dependent
effect by removing the signal over a typical scale k ∼ 1/σ, where σ represents the displacement
along the line of sight due to random perturbations of cosmological redshifts, defined as

σ ≡ c σz
H(zm)

, (5.21)

where H(zm) is the Hubble function computed at the mean redshift of the cluster distribution
in the bin, zm, and σz is the typical cluster redshift error, expressed as

σz = σz,0(1 + zm), (5.22)
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where σz,0 is a free parameter in the analysis. We derived σz,0 from the mock catalogue
described in Maturi et al. (2019). In particular, we measured the conditional probability
P (zob|ztr), where zob and ztr are the observed and true redshifts, respectively, in several
bins of ztr, namely ∆ztr. We described the standard deviation of P (zob|ztr) through Eq.
(5.22), where zm is the mean value of ztr within ∆ztr. Given the input galaxy photo-zs,
AMICO provides unbiased estimates of redshift (Maturi et al. 2019). Then we performed
a statistical MCMC analysis assuming a common flat prior on σz,0 in all the ∆ztr bins,
obtaining σz,0 = 0.02 with an uncertainty of 2× 10−4, namely equal to 1%.

To derive the monopole of the correlation function, we integrated Eq. (5.20) over µ and
computed the inverse Fourier transform of the result. The solution can be written as a
function of beff as follows:

ξ(s) = b2eff ξ
′(s) + beffξ

′′(s) + ξ′′′(s) , (5.23)

where ξ′(s) is the inverse Fourier transform of the monopole P ′(k), that is,

P ′(k) = PDM(k)

√
π

2kσ
erf(kσ) , (5.24)

and ξ′′(s) and ξ′′′(s) are the inverse Fourier transform of P ′′(k) and P ′′′(k), respectively,

P ′′(k) =
f

(kσ)3PDM(k)

[√
π

2
erf(kσ)− kσ exp(−k2σ2)

]
,

P ′′′(k) =
f2

(kσ)5PDM(k)
3
√
π

8
erf(kσ)− kσ

4

[
2 (kσ)2 + 3

]
exp(−k2σ2) . (5.25)

We neglected geometric distortions, which appear when a fiducial cosmology is assumed
(in our case, Planck Collaboration VI 2020, Table 2, TT, TE, and EE+lowE) to convert
observed coordinates into physical ones, because their effect is negligible with respect to
dynamic distortions and photo-z errors (see Marulli et al. 2012).

Effective bias and mass-richness relation

The cosmological model of structure formation and evolution predicts that the dark matter
halo bias, b, primarily depends on halo mass and redshift. Specifically, at a fixed redshift, the
bias increases with the tracer mass, while for a given mass, the bias is an increasing function
of the redshift (see, e.g., Sheth & Tormen 1999). We derived the effective bias in the ith bin
of redshift, namely ∆zi, as

beff(∆zi) =
1

Ni

Ni∑
j=1

∫ ∞
0

dz

∫ ∞
0

dλ∗
∫ ∞

0
dM b(M, z)P (M |λ∗, z)P (z|zob,j)P (λ∗|λ∗ob,j),

(5.26)
where Ni is the number of clusters in the ith redshift bin, j is the cluster index, and b is the
halo bias, for which the model by Tinker et al. (2010) is assumed. As discussed in Section
5.3.3, the results do not significantly change when the halo bias model by Sheth et al. (2001)
is assumed. In addition, P (M |λ∗, z) is a log-normal distribution expressed in Eqs. (5.7) and
(5.8), where we set λ∗piv = 30 and zpiv = 0.35 following Bellagamba et al. (2019). The rms of
P (logM |λ∗, z) is the intrinsic scatter σintr, expressed as a function of the intrinsic richness
(see Eq. 5.9). In Eq. (5.26), P (z|zob,j) and P (λ∗|λ∗ob,j) are Gaussian distributions, whose
mean is the jth cluster’s observed redshift, zob,j , and richness, λ∗ob,j , respectively. The rms
of P (z|zob,j) is expressed as σz,0(1 + zob,j), where σz,0 was derived from the mock catalogue
developed by Maturi et al. (2019) as described above. Analogously, we derived an uncertainty
on λ∗ amounting to 17% from the mock catalogue.
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Table 5.3: Parameters considered in the cosmological analysis by Lesci et al. (2022b).

Parameter Description Prior Posterior

Ωm Total matter density parameter [0.09, 1] 0.28+0.05
−0.04

σ8 Amplitude of the matter power spectrum [0.4, 1.5] 0.82+0.14
−0.12

S8 Cluster normalisation parameter — 0.80+0.08
−0.08

α Normalisation of the mass-richness relation N (0.04, 0.04) —

β Slope of the mass-richness relation N (1.72, 0.08) —

γ Redshift evolution of the mass-richness relation N (−2.37, 0.40) —

σintr,0 Normalisation of σintr N (0.18, 0.09) —

σintr,λ∗ λ∗ evolution of σintr N (0.11, 0.20) —

σz,0 Factor entering the damping of the power spectrum N (0.02, 2× 10−4) —

Ωb Baryon density parameter N (0.0486, 0.0017) —

ns Primordial power spectrum spectral index N (0.9649, 0.0210) —

h Normalised Hubble constant N (0.7, 0.1) —

Notes. In the third column, the priors on the parameters are listed. In particular, a range represents
a uniform prior, while N (µ, σ) stands for a Gaussian prior with mean µ and standard deviation σ. In
the fourth column, we show the median values of the 1D marginalised posteriors, along with the 16th
and 84th percentiles. The posterior distributions of α, β, γ, σintr,0, σintr,λ∗ , σz,0, Ωb, ns, and h are
not shown since these parameters are not constrained in our analysis.

Likelihood

For the cosmological Bayesian analysis performed in this work, a standard Gaussian likelihood
was considered,

L ∝ exp(−χ2/2) , (5.27)

with

χ2 =
N∑
i=1

N∑
j=1

(
ξdi − ξmi

)
C−1
i, j

(
ξdj − ξmj

)
, (5.28)

where N is the number of comoving separation bins in which the 2PCF is computed, d and m
indicate data and model, respectively, and C−1

i, j is the inverse of the covariance matrix. The
covariance matrix measures the variance and the correlation between the different bins of the
2PCF. It is estimated from the data with the jackknife technique (Norberg et al. 2009),

Ci, j =
Nsub − 1

Nsub

N∑
k=1

(
ξki − ξ̄i

)(
ξkj − ξ̄j

)
, (5.29)

where ξki is the value of the correlation function at the i-th bin for the k-th subsample, ξ̄i
is the mean value of the subsample, and Nsub is the number of resamplings of our cluster
catalogue. In particular, the survey tiles are set as the subsample regions for the jackknife.

5.3.3 Results

Based on the methods outlined in the previous sections, we performed a cosmological analysis
of the redshift-space 2PCF of the AMICO KiDS-DR3 cluster sample. Our analysis was
based on two fully independent redshift bins, z ∈ [0.10, 0.30] and z ∈ [0.35, 0.60], and we
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Figure 5.10: Constraints obtained from the cosmological analysis, compared to WMAP and Planck
results. In the left panel, we show the 68% and 95% confidence levels in the Ωm-σ8 parameter space,
along with the 1D marginalised posteriors with the relative intervals between the 16th and 84th
percentiles, in the case of the cluster clustering analysis of the AMICO KiDS-DR3 catalogue (grey
lines). In the same panel, we also display the results from WMAP (Hinshaw et al. 2013, Table 3,
WMAP-only Nine-year; red lines) and Planck (Planck Collaboration VI 2020, Table 2, TT, TE, and
EE+lowE; blue lines). In the right panel, we show the posteriors for the parameter S8, where the
bands show the intervals between 16th and 84th percentiles. The colours are the same as in the left
panel.

considered galaxy clusters with λ∗ > 15. The 2PCF of this cluster sample was estimated in the
spatial range s ∈ [5, 80] h−1Mpc. The aim of this analysis is to constrain the matter density
parameter, Ωm, the square root of the mass variance computed on a scale of 8 h−1Mpc, σ8, and
the cluster normalisation parameter, S8 ≡ σ8(Ωm/0.3)0.5, by assuming Gaussian priors for
the parameters of the mass-richness relation. In addition, we investigated a method to infer
the normalisation of the cluster mass-richness relation from cluster clustering measurements.

Constraints on cosmological parameters

We exploited the methods described in Section 5.3.2 to constrain the main parameters of the
ΛCDM model. We assumed large flat priors for σ8 and Ωm, while for the parameters of the
mass-richness relation (Eqs. 5.8, 5.8), α, β, γ, σintr,0, and σintr,λ∗ , we considered Gaussian
priors with the mean and standard deviation given by the posteriors derived from the joint
analysis of cluster counts and weak lensing performed by Lesci et al. (2022a) (see Sect. 5.2).
We also assumed a Gaussian prior on σz,0, entering the damping factor of P (k) accounting
for the uncertainties on the photo-zs (Eqs. 5.21 - 5.22), with the mean equal to 0.02 and the
standard deviation equal to 2× 10−4 (see Section 5.3.2). Lastly, we assumed Gaussian priors
for the baryon density, Ωb, the primordial spectral index, ns, and the normalised Hubble
constant, h, assuming the same mean values derived by Planck Collaboration VI (2020,
Table 2, TT, TE, and EE+lowE). With regard to the standard deviation of such priors, for
Ωb and ns we imposed a standard deviation equal to five times the 1σ error derived by Planck,
while for h we assumed a standard deviation equal to 0.1. We verified that the results do
not significantly change if we instead use the 1σ errors derived from Planck as the standard
deviations for the priors on Ωb, ns, and h. In Table 5.3 we show the priors and the posteriors
of the free parameters of the model. In Fig. 5.9 we compare our 2PCF measurements in the
two selected redshift ranges to the best-fit model. The statistical analysis was performed by
assuming a standard Gaussian likelihood, defined in Eq. (5.27).
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Figure 5.11: Comparison of the constraints on S8 ≡ σ8(Ωm/0.3)0.5 obtained, from top to bottom,
from the cluster clustering analysis in the AMICO KiDS-DR3 catalogue (black dot), from the joint
analysis of cluster counts and weak lensing in KiDS-DR3 performed by Lesci et al. (2022a) (pink dot),
from the results obtained by Planck Collaboration VI (2020) (blue dots), Hinshaw et al. (2013) (red
dots), Costanzi et al. (2019) (green dot), Bocquet et al. (2019) (brown dot), Amon et al. (2022) and
Secco et al. (2022) (magenta dot), Hikage et al. (2019) (orange dot), and Asgari et al. (2021) (cyan
dot). The median and the 16th and 84th percentiles are shown.

We obtained Ωm = 0.28+0.05
−0.04, σ8 = 0.82+0.14

−0.12, and S8 = 0.80+0.08
−0.08, where we quote the

median and 16th and 84th percentiles, as shown in Fig. 5.10 and Table 5.3. These constraints
agree within 1σ with the WMAP (Hinshaw et al. 2013, Table 3, WMAP-only Nine-year) and
Planck results (Planck Collaboration VI 2020, Table 2, TT, TE, and EE+lowE). In addition,
Fig. 5.11 shows that our constraint on S8 agrees within 1σ with the results obtained from
the joint analysis of cluster counts and weak lensing performed in KiDS-DR3 by Lesci et al.
(2022a). The agreement within 1σ also holds for the cluster count analyses performed by
Costanzi et al. (2019), based on SDSS-DR8 data, and by Bocquet et al. (2019), based on
the 2500 deg2 SPT-SZ survey data, as well as for the results derived from the cosmic shear
analyses performed by Amon et al. (2022) and Secco et al. (2022) on DES-Y3 data, Hikage
et al. (2019) on HSC-Y1 data, and Asgari et al. (2021) on KiDS-DR4 data. In addition, our
result on S8 agrees with the constraint by Lindholm et al. (2021), namely S8 = 0.85+0.10

−0.08,
derived from the autocorrelation of X-ray selected CODEX clusters. We also performed the
analysis by assuming the halo bias model by Sheth et al. (2001), obtaining S8 = 0.79+0.08

−0.08.
This result agrees well with the result derived from the previously described analysis.
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Figure 5.12: Constraint on the normalisation of the mass-richness relation, α. The result obtained
from the cluster clustering analysis is shown in grey, and the constraint derived from the joint analysis
of counts and weak lensing (Lesci et al. 2022a) is shown in blue. The bands show the intervals between
the 16th and 84th percentiles.

Mass-richness scaling relation

Cluster clustering might provide robust constraints on the normalisation of the mass-richness
relation, α, if a cosmological model is assumed (see, e.g., Chiu et al. 2020). Based on the
2PCF measures used in the cosmological analysis detailed in the previous section, we also
performed the analysis by assuming a flat prior on α and Gaussian priors on β, γ, σintr,0, and
σintr,λ∗ , given by the posteriors derived by Lesci et al. (2022a), and the same prior on σz,0
assumed in Section 5.3.3. In addition, we fixed the cosmological parameters to the values
derived by Planck Collaboration VI (2020, Table 2, TT, TE, and EE+lowE). We obtained
α = 0.12+0.06

−0.06, which agrees within 1σ with the result obtained by Lesci et al. (2022a), as
shown in Fig. 5.12. It should be noted that the median value of α corresponds within 2σ to
the prior considered in Section 5.3.3. This is due to the adopted prior on S8, whose value is
higher than what was predicted by the clustering signal (see Fig. 5.11). A higher value of α
is required to compensate for a higher S8.

5.3.4 Summary

In this section, we presented the study by Lesci et al. (2022b) on the clustering properties of
the AMICO KiDS-DR3 galaxy cluster catalogue (Maturi et al. 2019). The sample consists of
4934 clusters in the redshift bins z ∈ [0.1, 0.3], z ∈ [0.35, 0.6], with intrinsic richness λ∗ > 15.
We measured the monopole of the 2PCF and performed a cosmological statistical analysis.
The clustering model considered includes a damping of the power spectrum to account for
the uncertainties on the photo-zs. In addition, we derived the effective bias in each redshift
bin (Eq. 5.26) from the mass-richness scaling relation (Eq. 5.8).

We performed a cosmological analysis by assuming flat priors on Ωm and σ8, and Gaussian
priors on the parameters of the mass-richness relation given by the constraints derived by
Lesci et al. (2022a), from the joint analysis of cluster counts and weak lensing in KiDS-
DR3. In addition, we marginalised our posteriors over the other cosmological parameters
and over the damping of the power spectrum caused by the uncertainties on photo-zs. From
this modelling, we derived Ωm = 0.28+0.05

−0.04, σ8 = 0.82+0.14
−0.12, and S8 = 0.80+0.08

−0.08, which are
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consistent within 1σ with the results obtained from CMB experiments and from the most
recent analyses of the late Universe. In addition, by fixing the cosmological parameters to
the values derived by Planck Collaboration VI (2020, Table 2, TT, TE, and EE+lowE) and
assuming Gaussian priors on the parameters β and γ of the mass-richness relation, we derived
a robust constraint on the normalisation, α. In particular, we obtained α = 0.12+0.06

−0.06, which
agrees within 1σ and is competitive, in terms of uncertainties, with the result obtained by
Lesci et al. (2022a). This confirms the key role of clustering in constraining cluster masses,
as we also detailed in Sect. 3.4 and in Chapt. 4.

For the next KiDS data release, namely KiDS-1000 (Kuijken et al. 2019), we will combine
counts, clustering, and weak lensing to improve the accuracy of our results further. KiDS-
1000 covers an area of 1000 square degrees, which is more than two-thirds of the final area,
and photometry extends to the near-infrared (ugriZY JHKs), joining the data from the
KiDS and VIKING (Edge et al. 2013a) surveys, thus allowing, for instance, one to improve
the photometric redshift estimates (Wright et al. 2019).
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Chapter 6

Galaxy colour selections with
Euclid and ground photometry

Methods for galaxy cluster weak-lensing analyses

As discussed in Chapt. 3, weak gravitational lensing is currently one of the most reliable
methods to accurately and precisely measure cluster masses (Okabe et al. 2010b; Hoekstra
et al. 2012; Melchior et al. 2015; Sereno et al. 2017; Stern et al. 2019; Schrabback et al. 2021;
Zohren et al. 2022). Consequently, weak-lensing cluster mass estimates are widely used in
current photometric galaxy surveys, such as KiDS, DES, and HSC.

An accurate selection of lensed background galaxies is crucial to derive a reliable cluster
weak-lensing signal. Including the contribution from foreground and cluster member galax-
ies may significantly dilute the weak-lensing signal (Broadhurst et al. 2005; Medezinski et al.
2007; Sifón et al. 2015; McClintock et al. 2019). For example, background selections with 90%
purity dilute the cluster reduced shear measurements by 10% (see, e.g., Dietrich et al. 2019),
in the absence of intrinsic alignments (Heymans & Heavens 2003). Highly pure background
selections are required to properly account for this effect in weak-lensing measurements, in
order to minimise the variance in the selection purity. Selection incompleteness, instead,
impacts the weak-lensing noise and, in turn, the S/N, which depends on the density of back-
ground sources along with the intrinsic ellipticity dispersion and measurement noise (see,
e.g., Schrabback et al. 2018; Umetsu 2020). The effect of low background densities can be
partially mitigated by increasing the size of the cluster-centric radial bins used in the analysis,
or through the stacking of the weak-lensing signal of cluster ensembles.

Background selections based on the galaxy photo-z posteriors are commonly used in the
literature (Gruen et al. 2014; Applegate et al. 2014; Melchior et al. 2017; Sereno et al. 2017;
Bellagamba et al. 2019), as well as galaxy colour selections (Medezinski et al. 2010; Oguri
et al. 2012; Medezinski et al. 2018b). These selections can also be combined to significantly
improve the background sample completeness and, in turn, the weak-lensing S/N. In fact,
colour selections have been demonstrated to help identify galaxies with poorly defined photo-
metric redshifts that would not have been classified as background sources through photo-z
selection alone (Covone et al. 2014; Sereno et al. 2017; Bellagamba et al. 2019).

In this Chapter, we present the paper developed by Euclid Collaboration: Lesci et al.
(2023). This work aims at deriving colour selections based on the galaxy catalogue developed
by Bisigello et al. (2020), hereafter referred to as B20, and extended by Euclid Collaboration:
Bisigello et al. (2023). The B20 catalogue includes simulated SDSS (Gunn et al. 1998) griz
magnitudes and simulated Euclid observations in the YEJEHE bands. In particular, in Euclid
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Collaboration: Lesci et al. (2023) we develop a method to obtain optimal colour selections,
having maximal completeness given a threshold on purity, given any set of photometric filters.
In addition, we provide for the first time colour selections expressed as a continuous function
of the lens limiting redshift. This allows for a finer background definition compared to col-
our selections found in the literature (Medezinski et al. 2010; Oguri et al. 2012; Medezinski
et al. 2018b), implying a significant improvement of the weak-lensing source statistics. In
addition, we test the efficiency of these colour selections on real public external data and on
simulations, combining them with photo-z selections.

The paper by Euclid Collaboration: Lesci et al. (2023) is part of a series presenting
and discussing mass measurements of galaxy clusters using the Euclid combined clusters
and weak-lensing pipeline COMB-CL. COMB-CL forms part of the global Euclid data processing
pipeline and is responsible for measuring weak-lensing shear profiles and masses for photo-
metrically detected clusters. A comprehensive description of the code structure and methods
employed by COMB-CL will be presented in a forthcoming paper, but a brief overview of the
pipeline can be found in the appendix of Euclid Collaboration: Sereno et al. (in prep.). The
galaxy colour selections presented in this Chapter are already implemented in COMB-CL.

This Chapter is organised as follows. In Sect. 6.1, we describe the data set used for
the calibration of galaxy colour selections, and in Sect. 6.2 we detail a general method to
derive optimal colour selections. In Sect. 6.3, we show the selections obtained for griz and
grizYEJEHE filter sets, validating them on external data sets. In Sect. 6.4 we compare the
griz selection calibrated in this work with selections from the literature. Finally, in Sect. 6.5,
we summarise the results and draw our conclusions.

6.1 Calibration sample

We base our analysis on the photometric catalogue developed by B20 and extended by Euclid
Collaboration: Bisigello et al. (2023). This catalogue contains simulated Euclid IEYEJEHE

aperture magnitudes1, covering the spectral range 5500–20 000 Å, along with the Canada-
France Imaging Survey (CFIS; Ibata et al. 2017) u band, for the galaxies contained in the
COSMOS catalogue by Laigle et al. (2016, COSMOS15). Specifically, such photometry is
based on 3′′ fixed-aperture magnitudes. Despite the u band is already present in COSMOS15,
B20 derived it using the same approach adopted for the other filters in order to avoid colour
biases. B20 verified that this provides results that are consistent with the observed fluxes.
Simulated SDSS griz magnitudes, spanning the wavelength range 4000–11 000 Å, are also
provided in the catalogue, since observations in similar filters, such as those in Vera C. Ru-
bin Observatory (Rubin/LSST; Ivezic et al. 2008) and DES, will be available to complement
Euclid observations (Euclid Collaboration: Pocino et al. 2021; Euclid Collaboration: Scara-
mella et al. 2022). Corrections for photometric offsets due to flux outside the fixed-aperture,
systematic offsets, and Galactic extinction, as suggested in Laigle et al. (2016), have been
applied. B20 derive simulated magnitudes through two alternative approaches. The first is
a linear interpolation of the 30 medium-band and broad-band filters available in the COS-
MOS15 catalogue, based on the effective wavelength of the filters. The second approach is
based on the best theoretical template that describes the spectral energy distribution (SED)
of each galaxy, assuming the COSMOS15 redshifts as the ground truth. The SED fitting is
performed based on COSMOS15 bands and the template resulting in the minimum χ2 is used
to predict the expected fluxes. We refer to B20 for the details of the SED templates used,

1IE band observations are supplied by the Euclid Visible Imager (VIS; Cropper et al. 2016), while YEJEHE

photometry is provided by the Near-Infrared Spectrometer and Photometer (NISP; Euclid Collaboration:
Schirmer et al. 2022).
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Figure 6.1: Example of an uncalibrated selection in the (r−z) - (g−i) colour-colour space. The grey
dots represent the selected galaxy colours. Galaxies within the octagonal hatched region are excluded
by applying Eq. (6.1). Specifically, (r− z) and (g− i) correspond to x and y in Eq. (6.1), respectively.

based on the model by Bruzual & Charlot (2003). The expected fluxes are then randomised
10 times considering a Gaussian distribution centred on the true flux and with standard de-
viation equal to the expected photometric uncertainities, scaled considering the depths listed
in Table 1 of Euclid Collaboration: Bisigello et al. (2023). In this process, the IEYEJEHE

magnitude errors expected for the Euclid Wide Survey are considered. Despite the fact that
the griz photometry is based on SDSS filter transmissions, the corresponding uncertainties
are based on depths that are consistent with those of DES and the Ultraviolet Near-Infrared
Optical Northern Survey (UNIONS).2 The ugriz photometry provided by LSST is expected
to go from 1 to 2.5 magnitudes deeper at the end of the Euclid mission, depending on the
photometric filter. Throughout this Chapter, we focus on the magnitudes derived from the
best theoretical SED templates, as these estimates better reproduce absorption and emission
lines that are not covered by COSMOS15 bands. We neglect u magnitudes since, due to the
low u-band throughput, a 5σ depth of 25.6 mag will only be reached after 10 years of LSST
observations3. In addition, the u band is not available in DES wide fields. We emphasise
that the B20 catalogue contains all the galaxies present in the COSMOS15 sample, which is
deeper than the shear samples derived from current surveys (see, e.g., Giblin et al. 2021; Gatti
et al. 2021) and expected from the Euclid Wide Survey (Euclid Collaboration: Scaramella
et al. 2022). As we shall discuss in the following, the colour selections calibrated in this study
yield robust results against alternative magnitude cuts, including those that reproduce the
selections adopted in current and Euclid cosmic shear analyses.

6.2 Method

In order to find a set of optimal galaxy colour-redshift relations that maximises the selection
completeness given a threshold on the foreground contamination, we consider the colours
given by any combination of photometric bands. This includes bands that are not adjacent in

2UNIONS is carried out with the Subaru Telescope (Iye et al. 2004), the Canada-France-Hawaii Telescope
(CFHT; Gwyn 2012), and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS;
Chambers et al. 2016). More information at https://www.skysurvey.cc/news/.

3https://www.lsst.org/scientists/keynumbers
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wavelength. Thus, for each colour-colour space, given a redshift lower limit, zl, corresponding
to the lens redshift, we consider the following set of conditions,

x > c1 ∨
x < c2 ∨
y > c3 ∨
y < c4 ∨
x > s1y + c5 ∨
x > s2y + c6 ∨
x < s3y + c7 ∨
x < s4y + c8, (6.1)

where ∨ is the logical “or” operator, x and y are two different colours, and ci and si are
colour selection parameters. Specifically, c1, . . . , c8 ∈ (−∞,+∞), s1 and s3 ∈ (0,+∞), while
s2 and s4 ∈ (−∞, 0). The edges of the aforementioned parameter ranges are excluded, and
Eq. (6.1) can potentially define an irregular octagon that contains the foreground galaxies,
as we show in Fig. 6.1. As we shall see, since we only select the colour conditions that satisfy
given requirements, not all the sides of the irregular octagon may be considered. In addition,
since we consider the conditions in Eq. (6.1) as independent, the c1, . . . , c8 and s1, . . . , s4

parameters are not related to each other. In particular, for each condition in Eq. (6.1), we
derive the completeness,

Cnfi (zl | ~p) :=
Nsel,i(zg > zl | ~p)
Ntot(zg > zl)

, (6.2)

and the purity,

Pnfi (zl | ~p) :=
Nsel,i(zg > zl | ~p)
Nsel,i(zg ≥ 0 | ~p)

, (6.3)

where zg is the galaxy redshift, ~p is the set of colour condition parameters, i is the ith colour
condition index, Nsel,i is the number of galaxies selected with the ith colour condition, Ntot

is the total number of galaxies in the calibration sample, while the nf superscript represents
quantities derived from colour conditions not fitted as a function of zl. As we shall see, we
do not adopt any superscripts for the quantities derived from fitted colour conditions. In
Eqs. (6.2) and (6.3), we have i = 1... Ncond, where Ncond is the number of all possible colour
conditions, given Eq. (6.1), expressed as

Ncond = 8
Ncol!

(Ncol − 2)! 2!
, (6.4)

where Ncol is the number of colours, given by

Ncol =
Nband!

(Nband − 2)! 2!
, (6.5)

where Nband is the number of photometric bands.

We set requirements on completeness and purity to be satisfied by each colour condition in
Eq. (6.1). Specifically, for a given zl, we select the colour conditions having at least one ~p set

providing Cnfi (zl | ~p) and Pnfi (zl | ~p) larger than their corresponding thresholds. We remark
that ~p does not explicitly depend on zl at this stage, and that zl values are arbitrarily sampled.
Setting a threshold on Cnfi (zl | ~p) is important for excluding colour conditions that do not
significantly contribute to the total completeness, and that may appear as optimal only due to
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zl points

Find ~p for which Cnfi (zl | ~p) and Pnfi (zl | ~p)
are above the corresponding thresholds
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Cnfi and Pnfi

Derive optimal colour condi-
tions, maximising Cnfi (zl | ~p) ∀i, zl

Combine the optimal conditions,
deriving Cnftot(zl), Pnftot(zl), Fnftot(zl)

Exclude the zl points for which
Cnftot(zl) = Fnftot(zl) = 100%

Subset of optimal conditions
minimising Snf in Eq. (6.7)

Fit ~p as a function of zl

Calibrated optimal colour selection

Figure 6.2: Flowchart summarising the calibration process described in Sect. 6.2. Round red rect-
angles represent the start and end points of the calibration process. Grey rectangles represent pro-
cessing steps, while blue trapezoids correspond to the inputs.

statistical fluctuations. Thus, the threshold on Cnfi (zl | ~p) is meant to be low compared to that

on Pnfi (zl | ~p). Indeed, as we shall detail in Sect. 6.3.6, impurities in the background selection
imply systematic uncertainties in galaxy cluster reduced shear measurements. Highly pure
selections are required to properly account for this effect, in order to minimise the scatter
in purity. We discuss the choice of the thresholds on Cnfi (zl | ~p) and Pnfi (zl | ~p) in greater
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Figure 6.3: Selection completeness (top panel), purity (middle panel), and foreground failure rate
(bottom panel), derived from subsets of optimal colour conditions not fitted as a function of zl, for the
case of griz photometry. The solid black lines represent the selection given by the full set of optimal
colour conditions, while the dashed lines show the selection at different steps of the iterative process
detailed in Sect. 6.2, given by subsets of optimal conditions.
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Figure 6.4: Values of s (left panel) and c (right panel) parameters, from Eq. (6.1), as a function of zl

for the colour condition quoted in the left panel legend. The black dots represent the optimal values
of s and c, while the blue curves represent the polynomial fits.

deatil in Sect. 6.3.1. For each colour condition in Eq. (6.1), with parameter values for which

the conditions on Cnfi (zl | ~p) and Pnfi (zl | ~p) are satisfied, we select the ~p set providing the
highest completeness at a given zl. In this way, we derive the set of optimal colour conditions
maximising the selection completeness, given the chosen threshold on purity.

We note that the maximum zl of the calibrated colour selections depends on the Cnfi (zl | ~p)
and Pnfi (zl | ~p) limits, while the minimum zl is derived by excluding the zl points for which

104



Table 6.1: Description of the completeness functions introduced in Sect. 6.2. Analogous descriptions
hold for purity and foreground failure rate.

Symbol Description

Cnfi
Completeness of the ith colour condition,

given a set of sampled parameters.

Cnftot
Completeness derived through the combination

of all the optimal colour conditions.

Cnf
Completeness given by the combination
of a subset of optimal colour conditions.

C
Completeness obtained from a subset of optimal

colour conditions fitted as a function of zl.

Notes. The nf superscript represents quantities derived from colour conditions not fitted as a function
of zl. Optimal colour conditions satisfy the thresholds on purity and completeness, and provide
maximal completeness.

Cnftot(zl) = Fnftot(zl) = 100%. Here, Cnftot and Fnftot are the completeness and the foreground
failure rate given by the full set of optimal colour conditions, respectively. For simplicity, we
drop the dependence on ~p in the text. The foreground failure rate is defined as follows:

Fnftot(zl) :=
Nsel(zg < zl)

Ntot(zg < zl)
=
Nsel(zg > zl)

Ntot(zg < zl)

1− Pnftot(zl)

Pnftot(zl)
, (6.6)

where Nsel is the number of galaxies selected with all the optimal colour conditions, given
a condition on zg, and Pnftot(zl) is the purity given by the full set of optimal conditions.
On the right-hand side of Eq. (6.6), derived from Eqs. (6.2) and (6.3), we can see that

Fnftot(zl) diminishes with increasing zl if high lower limits on purity are chosen. We stress that

Fnftot(zl) ≤ 1 by definition.
In the selection process described above, some colour conditions may be redundant. Thus,

we iteratively search for an optimal subset of colour conditions to find the minimum number
of conditions sufficient to approximately reproduce the required completeness. Specifically,
at each step of this iterative process, we compute the following quantity:

Snf =
N∑
j=1

Cnftot(zl,j)− Cnf (zl,j), (6.7)

where N is the number of zl points, Cnftot(zl,j) is the completeness given by all optimal condi-
tions, while Cnf (zl,j) is the completeness given by a subset of optimal conditions, computed
at the jth zl value. As the first step of this iterative process, we find the optimal colour con-
dition minimising Snf . Then, at each iteration, we add the colour condition that, combined
with the conditions selected in the previous steps, minimises Snf . We repeat this process
until Snf is lower than a given tolerance. We remark that the logical operator between colour
conditions is ∨.

Lastly, we apply a nonlinear least squares analysis to find the best fit to the ~p parameters
as a function of zl for the subset of optimal colour conditions. We choose the fitting formulae
which best reproduce the zl dependence, namely polynomials, while aiming at minimising
the number of free parameters in the fit.

In Fig. 6.2 we show a flowchart summarising the calibration process described in this
section. In Fig. 6.3 we show an example of the iterative process detailed above, while Fig.
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Figure 6.5: Summary of the results on the colour selection optimisation, based on the B20 galaxy
sample. Top panels: Selection completeness (left panel), purity (central panel), and foreground failure
rate (right panel), as a function of zl. The dashed lines represent the selections derived from the full
sets of optimal conditions not fitted as a function of zl, in the case of ground-only (red), Euclid -only
(green), and the combination of ground-based and Euclid bands (grey). The solid lines represent the
selections obtained from the subsets of optimal conditions, with parameters fitted as a function of zl,
in the case of ground-only (blue) and for the combination of ground-based and Euclid bands (black).
Bottom panels: In the left panel, S and Snf are shown as a function of the iteration number. For
the ground-based selection, using griz filters, S and Snf are represented by solid blue and dashed red
lines, respectively. For the selection derived from the combination of ground-based and Euclid filters,
namely grizYEJEHE, S and Snf are represented by solid black and dashed grey lines, respectively. In
the right panel, the difference between Cnftot and C is shown, for the griz (blue lines) and grizYEJEHE

(black lines) selections.

6.4 displays an example of parameter dependence on zl. Hereafter, we will refer to the com-
pleteness, purity, and foreground failure rate, derived from sets of fitted colour conditions,
as C(zl), P(zl), and F(zl), respectively. For better clarity, in Table 6.1 we summarise the
symbols referring to the completeness functions introduced in this section.

6.3 Results

6.3.1 Calibration of colour selections

By applying the methods detailed in Sect. 6.2 and adopting the B20 calibration sample de-
scribed in Sect. 6.1, we calibrate galaxy colour selections using ground-based and Euclid
photometry, namely SDSS griz and Euclid YEJEHE filters, respectively. These selections are
implemented in COMB-CL, and will be available for weak-lensing analyses of galaxy clusters.
We consider the following cases: ground-only, Euclid -only, and the combination of ground-
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based and Euclid photometry. For the cases including Euclid photometry, we adopt an
S/N threshold for Euclid near-infrared observations of (S/N)E > 3, which corresponds to
YE < 24.85, JE < 25.05, and HE < 24.95 (Euclid Collaboration: Scaramella et al. 2022). In
addition, we consider zl points in the range zl ∈ [0.1, 2.5], assuming a precision of δzl = 0.1 for

the sampling. To derive the full set of optimal colour conditions, we impose Cnfi (zl | ~p) > 10%
for the ith colour condition. For the ground-only and Euclid -only cases, we impose that the
purity of each colour condition is Pnfi (zl | ~p) > 99%. We adopt a more restrictive threshold
on purity for the combination of ground-based and Euclid photometry, corresponding to
Pnfi (zl | ~p) > 99.7%. This threshold is chosen as the larger number of colour combinations
leads to a higher summation of impurities. We obtain Pnf (zl) > 97% for any zl, when com-
bining all the optimal colour conditions, as shown in Fig. 6.5. As we shall discuss in Sect.
6.3.3, the purity derived from different real data sets is stable, showing sub-percent changes,
on average.

The Fnf (zl) decrease with increasing zl, shown in Fig. 6.5, is expected, as discussed in

Sect. 6.2. In addition, for any combination of photometric bands, we find Cnftot(zl) = Fnftot =
100% for zl = 0.1. Consequently, we set zl = 0.2 as the minimum lens redshift for the cal-
ibrated colour selections. As shown in Fig. 6.5, from griz photometry we derive a selection
within zl ∈ [0.2, 0.8], with 84% completeness at zl = 0.2, decreasing to 29% at zl = 0.8. In
the Euclid -only case, namely YEJEHE and IE bands, results are not competitive with those
derived from griz photometry. On the other hand, by combining ground-based and Euclid
photometry, the completeness significantly increases in the zl range covered by the griz se-
lection, by up to 25 percent points. Also the zl range of the selection is significantly extended
compared to the griz case, corresponding to zl ∈ [0.2, 1.5]. Specifically, in this case we ex-
clude the Euclid IE band, as it covers a large wavelength interval, namely ∼ 5000–10 000 Å,
corresponding to the wavelength range already covered by griz photometry. Furthermore,
the use of very broad photometric bands is not the most optimal choice for calibrating galaxy
colour selections, which share similarities with photo-z estimates.

We exclude any possible redundant colour condition, as detailed in Sect. 6.2. In Table
A.1 we show the subset of optimal colour conditions for the ground-only case, namely griz
photometry, along with the corresponding parameter fits. The first condition quoted in Table
A.1 corresponds to the one derived in the first step of the iterative process described in Sect.
6.2. This is analogous for the subsequent conditions. We remark that the quoted conditions
have different ranges of validity in zl. Analogous information is listed in Table A.2 for the
combination of ground-based and Euclid photometry, corresponding to grizYEJEHE filters.
We neglect the optimisation and parameter fitting for the Euclid -only case, as we have already
shown that it does not provide competitive completeness values.

In Fig. 6.5 we show the results for the selections obtained from the subsets of optimal
conditions, with parameters fitted as a function of zl. For both griz and grizYEJEHE photo-
metry, such fitted selections well reproduce those given by the full sets of optimal conditions.
To quantify the goodness of the colour condition parameter fits, we define a parameter ana-
logous to Snf in Eq. (6.7), namely S. This parameter quantifies the difference between Cnftot,
that is the completeness given by the full set of optimal conditions not fitted as a function of
zl, and C, which is the completeness given by the subset of optimal colour conditions fitted
as a function of zl. As shown in Fig. 6.5, S does not perfectly match Snf , for both griz
and grizYEJEHE selections. This is due to the fact that the c1, . . . , c8, s1, . . . , s4 parameters
in Eq. (6.1) do not always show a simple dependence on zl. Despite the fact that better
parameter fits could be achieved by adopting an arbitrarily high order polynomial as the
model, we set a 4th order polynomial as the highest-degree functional form for describing
these parameters (see Tables A.1 and A.2). As shown in Fig. 6.5, C is underestimated by at
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Figure 6.6: From left to right: completeness, purity, foreground failure rate, and background density
as a function of zl, from the fitted colour selections derived in Sect. 6.3.1. The assumed zl precision
is δzl = 10−3. Top panels: efficiency of the griz selection, detailed in Table A.1, applied to the B20
catalogue with (S/N)E > 3 and i ≤ imax (blue solid lines), to its subsample including galaxies with
i < 24.4 (red dotted lines), to the case with i < 23.4 (green dash-dotted lines), and to the sample
with zg < 1.5 (orange dashed lines). Bottom panels: efficiency of the grizYEJEHE selection, detailed
in Table A.2, applied to the B20 catalogue with (S/N)E > 3 and i ≤ imax (black solid lines), to its
subsample with i < 23.4 (green dash-dotted lines), and to the subsample with (S/N)E > 10 (magenta
dashed lines).

most 4 percent points. We verify that adding further conditions to these selections, that is,
lowering the S threshold down to 0, provides sub-percent level improvements in the selection
completeness, on average. We remark that, in order to derive colour selections not defined
in zl bins, the final selection completeness is slightly degraded compared to Cnftot for some
zl values. In realistic cluster weak-lensing analyses, however, we expect this to statistically
increase the galaxy background completeness. When colour selections are defined on finite
sets of zl points, the background galaxies are excluded based on the zl precision adopted in
the colour selection calibration.

6.3.2 Dependence on magnitude and redshift selections

To verify the robustness of the griz selection with respect to alternative magnitude cuts, we
apply the selection i < 24.4, corresponding to the peak value of the i magnitude distribution
in the B20 catalogue. We also investigate the selection for the subsample with i < 23.4,
which is a threshold similar to the DES i band limit (Sevilla-Noarbe et al. 2021). In both
cases, we derive higher P(zl) and lower F(zl), compared to what we find from the calibration
sample used in Sect. 6.3.1, namely the one with (S/N)E > 3 and i ≤ imax, where imax = 24.9
is the maximum i magnitude in the sample (see Fig. 6.6). In the case with i < 24.4, C(zl) is
close to that from the calibration sample, while for i < 23.4 we derive higher completeness,
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on average. In addition, as the bulk of the redshift distribution in the calibration sample,
described in Sect. 6.1, extends up to zg ∼ 4, we apply the griz selection to the galaxy
sample with redshift zg < 1.5, (S/N)E > 3, and i ≤ imax. In Fig. 6.6, we can see that this
redshift limit provides F(zl) values that are identical to those derived from the calibration
sample, which is expected since F(zl) does not depend on the maximum redshift of the
sample, while the completeness increases by up to 10 percent points and the purity is at
most 1 percent point lower. Note that the computation of C(zl) and F(zl) is made relative
to the sample under consideration. In other words, they refer to galaxy populations defined
by given magnitude and redshift limits. We measure the aforementioned colour selections
by assuming a zl precision of δzl = 10−3. This δzl value is one order of magnitude lower
(i.e. one order of magnitude higher precision) than the typical galaxy cluster photometric
redshift uncertainty in current surveys (see, e.g., Rykoff et al. 2016; Maturi et al. 2019) and
Euclid (Euclid Collaboration et al. 2019). Consequently, the δzl = 10−3 precision ensures the
reliability of the colour condition fits for galaxy cluster background selections. We remark
that we assumed δzl = 0.1 for the zl sampling in the calibration process.

In Fig. 6.6 we show the efficiency of the grizYEJEHE selection, computed by adopting
δzl = 10−3, applied to the B20 calibration sample, with (S/N)E > 3 and i ≤ imax. We find
analogous selections from the subsample with i < 23.4 and from the one with (S/N)E > 10.
Specifically, in both cases, we derive higher P(zl) and lower F(zl), in agreement with what
we find from the griz selection. In addition, the increase in the minimum Euclid S/N does
not significantly change the completeness, while the i < 23.4 limit decreases C(zl) by at most
18 percent points. As we obtain excellent P(zl) and F(zl) estimates from these tests, we
conclude that both griz and grizYEJEHE selections are stable and reliable with respect to
changes in the sample limiting magnitude and redshift. In addition, we note that brighter
galaxy samples provide lower foreground contamination. This is expected, as faint galaxies
have more scattered colour-redshift relations.

In Fig. 6.6 we show the density of background galaxies, nb(zl), defined as the number of
selected galaxies with zg > zl per square arcmin. For both griz and grizYEJEHE selections,
nb(zl) = 16 arcmin−2 at zl = 0.2 for i ≤ imax and (S/N)E > 3, decreasing with increasing zl.
In both colour selections, the i < 23.4 limit implies the largest decrease in nb(zl), providing
nb(zl) < 7 arcmin−2. In addition, for the griz selection, the i < 24.4 and zg < 1.5 limits
provide consistent results on nb(zl), showing a difference of at most 3 arcmin−2 compared
to that derived from the calibration sample. With regard to the grizYEJEHE selection, the
(S/N)E > 10 limit implies a decrease in nb(zl) of up to 5 arcmin−2 at low zl, while nb(zl)
becomes compatible with that derived from the calibration sample for zl > 1.

6.3.3 griz selection validation on real data

To further assess the reliability of the griz colour selection detailed in Sect. 6.3.1, we apply it
to external data sets obtained from real observations. In particular, we consider the VIMOS
Public Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014) Multi-Lambda Survey
(VMLS) photometric catalogue by Moutard et al. (2016), including Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS; Hudelot et al. 2012) griz Kron aperture magnitudes
(Kron 1980). This catalogue covers 22 deg2 and provides reliable photometric redshifts for
more than one million galaxies with a typical accuracy of σz ≤ 0.04, and a fraction of cata-
strophic failures lower than 2% down to i ∼ 23. These statistics are based on VIPERS data,
complemented with the most secure redshifts selected from other spectroscopic surveys. We
remind that in VIPERS a colour-colour pre-selection was employed to enhance the effective
sampling of the VIMOS spectrograph. Nevertheless, the VIPERS selection does not intro-
duce any significant colour bias above z ∼ 0.6 (Guzzo et al. 2014). In addition, as we shall see
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Figure 6.7: From left to right: completeness, purity, foreground failure rate, and background density
as a function of zl, from the fitted colour selection based on griz photometry, reported in Table A.1.
The assumed zl precision is δzl = 10−3. The griz selection is applied to the B20 catalogue with
magnitude limits corresponding to those used in the calibration process (blue solid lines), to the full
depth Moutard et al. (2016) catalogue (green solid lines), and to the Weaver et al. (2022) catalogue
with HSC Kron, 2′′ and 3′′ aperture magnitudes (solid red, dashed orange and dotted black lines,
respectively), for which we imposed i < 25.

in the following, the selection completeness and purity obtained from the VMLS data set do
not exhibit remarkable deviations from those obtained from other galaxy samples. In Fig. 6.7
we can see that, by applying the griz selection to the VMLS sample, we derive higher P(zl)
and lower F(zl) compared to what we find from the B20 catalogue, on average. This agrees
with what we found in Sect. 6.3.2, as the Moutard et al. (2016) catalogue is shallower than
the B20 sample. For the same reason, nb(zl) is 3 arcmin−2 lower, on average. In addition,
the completeness is up to 8 percent points higher for zl < 0.6, becoming lower for higher zl

values.
We also apply the griz selection to the COSMOS CLASSIC catalogue by Weaver et al.

(2022, COSMOS20), which reaches the same photometric redshift precision as COSMOS15,
namely σz/(1 + z) = 0.007, at almost one magnitude deeper. We consider griz Kron, 2′′

and 3′′ aperture magnitudes from HSC. In addition, we select galaxies with a photometric
redshift derived from at least 30 bands, and with i < 25, in order to consider a sample with
highly reliable redshift estimates. By adopting more complex selection criteria, which may
involve galaxies with photometric redshifts derived from a shared set of photometric bands,
we do not expect remarkable differences in the results. Similar results for the cases with
Kron, 2′′ and 3′′ aperture magnitudes are shown in Fig. 6.7. Compared to what we derive
from the B20 sample, the completeness is similar, with the largest differences at zl > 0.6. In
addition, F(zl) is lower and P(zl) is higher for any zl. For Kron and 3′′ aperture magnitudes,
nb(zl) is slightly higher compared to that obtained from the B20 sample, on average. Lower
nb(zl) values show up for the 2′′ aperture magnitudes, which is expected as we apply the
same magnitude limit for each photometric aperture definition. Indeed, for these tests we
did not include aperture correction terms. Lastly, comparing the purity derived from the
COSMOS20 and VMLS samples, we note that for zl > 0.3 the differences are below 1 percent
point, on average. Thus, we conclude that the griz selection provides robust and reliable
results on real data.

6.3.4 Validation on Flagship v2.1

We test the colour selections calibrated in Sect. 6.3.1 on the Euclid Flagship galaxy catalogue
v2.1.10 (Euclid Collaboration in prep.), which is currently the best simulated Euclid galaxy
catalogue available. This catalogue is based on an N -body simulation with around 4 tril-
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Figure 6.8: From left to right: completeness, purity, foreground failure rate, and background density
as a function of zl, from the fitted colour selections based on griz and grizYEJEHE bands, adopting
5σ magnitude limits. The assumed zl precision is δzl = 10−3. The solid blue and solid black lines
represent the griz and grizYEJEHE selections, respectively, applied to the B20 catalogue. The dashed
red and dashed green curves represent the griz and grizYEJEHE selections, respectively, applied to
the Flagship v2.1 catalogue (Euclid Collaboration in prep.).

lion particles with mass mp ∼ 109 h−1M�. A flat ΛCDM cosmological model was assumed,
with matter density parameter Ωm = 0.319, baryon density parameter Ωb = 0.049, dark
energy density parameter ΩΛ = 0.681, scalar spectral index ns = 0.96, Hubble parameter
h = H0/(100 km s−1 Mpc−1) = 0.67, and standard deviation of linear density fluctuations
on 8 h−1Mpc scales σ8 = 0.83. The haloes were identified using Rockstar (Behroozi et al.
2013), and then populated with a halo occupation distribution model which was calibrated
to reproduce observables such as clustering statistics as a function of galaxy luminosity. The
galaxy SED templates used are the COSMOS templates from Ilbert et al. (2009), based on the
models by Bruzual & Charlot (2003) and Polletta et al. (2007). In addition, galaxy photo-z
probability distribution functions, namely p(zg), are included in Flagship, derived through a
Nearest Neighbours Photometric Redshifts (NNPZ) pipeline (Euclid Collaboration: Desprez
et al. 2020).

From the Flagship catalogue, we extracted a lightcone within RA ∈ [158°, 160°] and
Dec ∈ [12°, 15°], considering the galaxies in the whole redshift range covered by the simula-
tion, namely zg ∈ [0, 3]. Specifically, zg is the galaxy true redshift, and we verified that the
contribution of peculiar velocities does not significantly change the results. We focused on
2′′ aperture LSST ugrizy and Euclid IEYEJEHE photometry, as the simulated fluxes estim-
ated for other ground-based surveys do not account for observational noise. Specifically, the
photometric noise takes into account the depth expected in the southern hemisphere at the
time of the third data release (DR3) for the Euclid Wide Survey. The LSST and Euclid 10σ
magnitude limits, which are proxies for extended sources, correspond to u < 24.4, g < 25.6,
r < 25.7, i < 25.0, z < 24.3, y < 23.1, IE < 25, YE < 23.5, JE < 23.5, and HE < 23.5.
The fluxes we considered are not reddened due to Milky Way extinction, consistent with the
analyses performed in the previous sections.

In Fig. 6.8, we show the application of griz and grizYEJEHE selections to Flagship. For
this test, we assumed 5σ magnitude cuts for LSST ugrizy and Euclid IEYEJEHE bands. In
addition, we show results from the B20 sample in Fig. 6.8, for which we assumed 5σ mag-
nitude cuts rescaled from the 10σ limits listed in Euclid Collaboration: Bisigello et al. (2023,
Table 1). We find that nb(zl) derived from Flagship agrees with that obtained from the B20
sample. The largest differences, of about 1 arcmin−2, arise when the grizYEJEHE selection is
applied. We note that nb(zl) ∼ 0 for zl ∼ 1.5, implying that lenses at these values of zl may
not exhibit significant weak-lensing signals. Nevertheless, we verified that nb(zl) is enhanced
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at any zl when the selection defined for Euclid weak-lensing analyses (Laureijs et al. 2011;
Euclid Collaboration: Scaramella et al. 2022) is assumed. This selection consists in a 10σ
cut in the IE band, corresponding to IE < 25 for a 2′′ aperture, yielding a galaxy density of
around 39 arcmin−2 when applied to the Flagship data set. In fact, in this case nb(zl) ranges
from 30 arcmin−2 at low zl to 3 arcmin−2 at zl = 1.5.

As shown in Fig. 6.8, on average we obtain higher P(zl) and lower F(zl) for zl < 1 from
Flagship, compared to what we derive from the B20 sample. For the griz selection case, C(zl)
agrees with that derived from the B20 sample, with the largest differences, of up to 16 percent
points, at zl ∼ 0.5. Larger differences in C(zl) are obtained from the grizYEJEHE selection.
From Flagship we obtain C(zl) up to 10 percent points larger for zl < 0.6, and up to 50
percent points larger for higher zl. We verified that this discrepancy in the completeness, in
the case of the grizYEJEHE selection, is not significantly attenuated through the assumption
of 3σ and 10σ magnitude limits on both B20 and Flagship catalogues. Analogous results were
obtained by assuming limits corresponding to the magnitude distribution peaks derived from
the B20 catalogue, namely g < 24.9, r < 24.6, i < 24.3, z < 24.1, YE < 23.8, JE < 23.6, and
HE < 23.5. Moreover, we verified that the grizYEJEHE selection completeness does not re-
markably vary by assuming the Euclid weak-lensing selection defined above, namely IE < 25.
Similar results are obtained by considering the photometric errors expected for the DR2 of
the Euclid Wide Survey, assuming the corresponding 3σ, 5σ, and 10σ magnitude cuts. For
each of the alternative magnitude cuts discussed in this section, we find that the grizYEJEHE

selection yields a purity up to 3 percent points higher at zl > 1.2 when it is applied to the
B20 catalogue, compared to what is derived from Flagship. At zl < 1.2, instead, the purity
obtained from B20 is 1 percent point lower, on average. Furthermore, the alternative mag-
nitude cuts do not remarkably impact the selection purity at any zl.

We additionally adopted SDSS fluxes, which do not include photometric noise, in place of
LSST fluxes in Flagship. In this case, the completeness is up to 35 percent points larger than
that derived from the B20 sample, and the purity approaches 100% for zl > 1, which is similar
to what we derive from the B20 sample (see Fig. 6.8). Thus, the selection based on SDSS
photometry is less complete and purer compared to that obtained from LSST magnitudes.

Differences in the completeness derived from the Flagship and B20 samples may originate
from distinct assumptions on the physical properties of the galaxies, such as dust extinction,
stellar age, nebular emission lines, or on the assumed intrinsic spectral energy distributions.
This could be indicated by a different fraction of star forming galaxies in the two samples.
Following B20, galaxies are classified as star forming if the following condition is satisfied,

log10(sSFR/yr−1) > −10.5, (6.8)

where sSFR is the specific star formation rate, derived from the best SED template in the
catalogue by B20. We verified that, for zg > 1, the fraction of star forming galaxies in Flagship
is consistent within 1 percent point with that derived from the catalogue by B20. Thus, we
conclude that the completeness differences between the Flagship and B20 samples are not
due to different star forming galaxy populations. We also verified that the log10(sSFR/yr−1)
distributions derived from the two data sets are compatible, having peaks at ∼ −8.13 and
∼ −8.35 in B20 and Flagship, respectively. The agreement of these peak values is well
within 1σ of the log10(sSFR/yr−1) distributions. We will be able to further investigate such
completeness differences through the analysis of the first data release of the Euclid Deep
Survey.
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Figure 6.9: From left to right: completeness, purity, foreground failure rate, and background density
as a function of zl, obtained from Flagship v2.1. The solid black lines represent the grizYEJEHE

selection. The dashed green lines show the combination, through the ∨ logical operator, of grizYEJEHE

and photo-z selection (Eq. 7.2). The dashed red lines represent the photo-z selection, while the dotted
black lines represent the selection based on the p(zg) mode.

6.3.5 Comparison with photo-z selections

To compare the colour selections derived in this work to selections based on the shape of the
galaxy p(zg), commonly referred to as photo-z selections, we analyse the Flagship sample
described in Sect. 6.3.4. We consider only the galaxies with a p(zg) estimate obtained with
the NNPZ pipeline (Euclid Collaboration: Desprez et al. 2020). The NNPZ photo-zs are
designed to work well for galaxies that are expected to be used in core Euclid weak-lensing
science, namely with 5σ limits on the IE band. Thus we impose IE < 25.75, along with 5σ
limits on the YEJEHE bands, namely YE < 24.25, JE < 24.25, HE < 24.25. Specifically, we
adopt the following photo-z selection,

zmin
g > zl , (6.9)

where zmin
g is the minimum of the interval containing 95% of the probability around the

first mode of p(zg), namely zg. We choose zmin
g in order to derive P(zl) values which are

compatible with those obtained from colour selections. We verified that adding a condition
on the width of p(zg) in Eq. (7.2) does not impact the results. Specifically, for the latter
test, we considered the additional condition A > Amin, where A is the integrated probability
around zg, computed within the redshift points, which are the closest to zg, having an
associated probability of 0.2p(zg). We verified that imposing Amin = 0 or Amin = 0.8 leads
to compatible purity values with sub-percent differences on average. However, Amin = 0.8
lowers the photo-z selection completeness by around 20 percent points at all zl. Consequently,
we assume Amin = 0.

To perform a fair comparison of colour and photo-z selections, we consider only the
grizYEJEHE colour selection in this section. This is because photo-zs in Flagship were derived
from the combination of ground-based and Euclid photometry. In Fig. 6.9, we show that the
grizYEJEHE selection provides, on average, a completeness 15 percent points lower than that
of the photo-z selection, with similar contamination. By combining grizYEJEHE and photo-z
selections, through the logical operator ∨, the completeness increases by up to 10 percent
points with respect to the case of photo-z selection alone, amounting to C(zl) ∼ 95% for
zl < 1.4. These preliminary tests confirm the importance of the combination of colour and
photo-z selections, as it leads to significantly more complete background galaxy samples.
We also remark that increasing the selection completeness is key to reduce biases in the
shear calibration parameters due to background selections, as we shall detail in Sect. 6.3.6.
The analysis of Euclid Deep Survey data will allow for a detailed investigation of the optimal
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photo-z selections for galaxy cluster weak-lensing analyses, outlining the synergies with colour
selections. For example, colour selections applied to Euclid data could provide more robust
background samples for massive or nearby galaxy clusters, as derived by Medezinski et al.
(2018b). Leveraging colour selections also serves as a valuable cross-validation method for
addressing the effect of unknown systematic uncertainties in photo-z estimates. Lastly, Fig.
6.9 shows the selection based only on the first mode of p(zg). Specifically, in this case we
select the galaxies with zg > zl. Despite C(zl) > 90% at all zl, the purity is up to 10 percent
points lower than that obtained from the grizYEJEHE selection.

6.3.6 Impact on shear measurements

In cluster weak-lensing analyses, the inclusion of foreground sources in the shear measure-
ments may significantly dilute the signal (Broadhurst et al. 2005; Medezinski et al. 2007; Sifón
et al. 2015; McClintock et al. 2019). As discussed in the previous sections, the calibrated
colour selections provide P(zl) < 1. To assess the impact of impurities on shear measure-
ments, we express the cluster reduced tangential shear unaffected by contamination as follows
(Dietrich et al. 2019):

gt,true(zl) =
gt(zl)

P(zl)
, (6.10)

where gt(zl) is the measured cluster reduced tangential shear at redshift zl. As the calibrated
colour selections yield P(zl) > 0.97, we expect at most a 3% bias on the reduced tangential
shear. In addition, as discussed in Sect. 6.3.3, P(zl) derived from different observed data
sets with only ground-based photometry shows a scatter below 1 percent point. This scatter
in P(zl) is lower than the systematic uncertainty on galaxy shape measurements for stage
III surveys, as we shall discuss in the following. We remark that P(zl) is derived from
reference fields, while galaxy clusters are overdense compared to the cosmic mean. Thus,
contamination from cluster galaxies must be properly accounted for in Eq. (6.10) (see, e.g.,
Gruen et al. 2014; Dietrich et al. 2019). Nevertheless, such contamination is consistent with
zero in the typical cluster-centric radial range adopted for mass calibration, namely at radii
larger than 300 h−1kpc (see, e.g., Medezinski et al. 2018b; Bellagamba et al. 2019).

Furthermore, galaxy shear calibration is usually statistically derived, based on observed
and simulated galaxy samples. Nevertheless, through galaxy cluster background selections,
some galaxy populations may be systematically excluded. This may invalidate the statistical
estimate of the shape multiplicative bias, namely m, depending on the shear measurement
technique and on the actual properties of the data (Heymans et al. 2012; Miller et al. 2013;
Hildebrandt et al. 2016).

The typical uncertainty on m found for stage III surveys ranges in the interval δm ∈
[1× 10−2, 3× 10−2] (see, e.g., Jarvis et al. 2016; Melchior et al. 2017; Giblin et al. 2021). To
assess the impact of colour selections on m, we consider the shape catalogues of Heymans
et al. (2012), based on CFHTLS, and of Mandelbaum et al. (2018b), based on the HSC Subaru
Strategic Program (HSC-SSP; Miyazaki et al. 2018a; Aihara et al. 2018). Throughout this
section, we adopt a lens redshift of zl = 0.5. By applying the griz selection calibrated in this
work, we derive a shift in the mean shear multiplicative bias of ∆m = 7× 10−3 in CFHTLS
and of ∆m = −2×10−3 in HSC-SSP. In addition, the Oguri et al. (2012) and Medezinski et al.
(2018b) colour selections provide ∆m = −3 × 10−3 and ∆m = −1 × 10−2 from CFHTLS,
respectively, while from HSC-SSP we obtained ∆m = −5 × 10−3 and ∆m = −7 × 10−3,
respectively. Thus, galaxy population differences due to colour cuts provide systematic effects
that are within the typical m uncertainty in stage III surveys. By combining colour and
photo-z selections, we expect ∆m to become closer to zero. In Euclid -like surveys, shear has
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Figure 6.10: Colour selection results, obtained from the B20 catalogue, in case of missing z (solid
red), i (solid green), r (dashed orange), and g (dashed grey) bands. The blue curves represent the
results from the griz and grizYEJEHE selections reported in Tables A.1 and A.2. Top panels, from
left to right: completeness, purity, foreground failure rate, and background density are shown, in the
case of ground-only photometry. Middle panels: colour selections from the combination of ground-
based and Euclid photometry. The plot structure is analogous to that of top panels. Bottom panels:
difference between Cnftot and C, for ground-only observations (left panel) and for the combination of
ground-based and Euclid photometry (right panel).

to be calibrated within an accuracy of 2 × 10−3 (Cropper et al. 2013). As we discussed in
Sect. 6.3.5, the combination of grizYEJEHE and photo-z selections leads to 90% background
completeness in the Euclid Wide Survey, on average; thus, we may expect the bias on m to
be subdominant with respect to the required shear accuracy. Indeed, let us assume that 90%
of galaxies, selected through the combination of grizYEJEHE and photo-z selections, have an
average m similar to that derived from stage III surveys, namely 〈m〉 = 0.01. We assume
that the remaining 10% of galaxies have a very biased m, namely 〈m〉 = 0.02, compared to
the selected population. This would imply a systematic error of ∆m = 10−3 in the average
m of the selected population. We will delve deeper into these variations in m by examining
the first data releases of the Euclid surveys.
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6.3.7 Selection efficiency with missing bands

In this work, we derived colour selections based on griz and grizYEJEHE photometry. In some
cases, however, the full ground-based griz photometry may be not available. For example,
the DES Year 3 galaxy shape catalogue was not based on g band (Gatti et al. 2021), due
to issues in the point spread function estimation (Jarvis et al. 2021). Thus, we investigated
the efficiency of griz and grizYEJEHE selections in the case of a missing band, based on the
B20 calibration sample described in Sect. 6.1. In performing this test, we excluded the colour
conditions in Tables A.1 and A.2 containing the chosen missing bands. In Fig. 6.10 we show
that, in the case of ground-only observations, the absence of the r band implies the largest
completeness decrease, providing C(zl) < 60%. In addition, the zl range is substantially
reduced, corresponding to zl ∈ [0.2, 0.6]. Also the absence of i and z bands implies a reduction
of the maximum zl for the ground-based selection, corresponding to zl = 0.7 and zl = 0.6,
respectively, and a completeness decrease of up to 10 and 20 percent points, respectively. On
average, a 20 percent point drop in completeness is found in absence of g band photometry.
Nevertheless, in the latter case the zl range is not reduced. We remark that the considered
samples differ from case to case, as they contain only galaxies with photometry available in
the required bands.

In Fig. 6.10 we show the effect of missing photometric bands on the combination of ground-
based and Euclid observations. In this case, the lack of r band does not imply changes in
C(zl) for zl > 1. In the absence of i band, C(zl) significantly decreases for zl & 0.7, being
below 30%, while the zl range is not reduced. A zl range reduction is obtained in the case
of missing z or g bands, as we derived zl ∈ [0.2, 1.1] and zl ∈ [0.2, 1.3], respectively. On
average, in the case of the combination of ground-based and Euclid observations, the largest
completeness decrease is caused by the lack of the g band.

In this section, we defined colour selections with missing g, r, i, or z band, as subsets
of the colour conditions defining the griz and grizYEJEHE selections. In order to assess the
difference between the selections defined by such subsets and those that would be derived
from the colour selection calibration described in Sect. 6.2, we compute Cnftot for each case.

In Fig. 6.10, we show the difference between Cnftot and C, the latter being derived by subsets
of the colour conditions defining griz and grizYEJEHE selections. In the ground-only case,
the lack of r band provides the largest C underestimation, as Cnftot−C ∼ 15 percent points for

zl ∈ [0.3, 0.5]. Nevertheless, in case of other missing bands, the average Cnftot − C is close to 0.
The same holds for the combination of ground-based and Euclid photometry. We conclude
that griz and grizYEJEHE selections provide robust results in the case of a missing band,
except for ground-only observations without the r band, for which a dedicated calibration
might be needed.

6.4 Comparison with literature ground-based selections

Based on the B20 sample considered in Sect. 6.3.1, we compare our griz colour selection to
those derived by Medezinski et al. (2010), Oguri et al. (2012), and Medezinski et al. (2018b),
which are also implemented in COMB-CL. As detailed below, for each of these selections, we
considered two versions. One includes all the colour conditions provided by the corresponding
authors, while the other comprises only a subsample of such conditions, providing lower
foreground contamination. COMB-CL includes both versions of each colour selection.

Medezinski et al. (2010) derived colour selections for three massive clusters, identified
through deep Subaru imaging, by maximising their weak-lensing signal. COMB-CL provides
the selection calibrated for the A1703 cluster at redshift zl ∼ 0.26, as this is the one based
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Figure 6.11: From left to right: completeness, purity, foreground failure rate, and background
density, derived from the B20 catalogue. The blue solid lines represent the griz selection derived in
this work. The red curves refer to the Medezinski et al. (2010) selection, where the solid lines are given
by Eqs. (6.11) – (6.12), while the dashed lines are given by Eq. (6.11). The green curves represent the
results from the Oguri et al. (2012) selection, where the solid lines are given by Eqs. (6.13) – (6.16),
while the dashed lines are given by Eqs. (6.13) – (6.15). The grey curves refer to the Medezinski et al.
(2018b) selection, where the solid lines are given by Eqs. (6.17) – (6.18), while the dashed lines are
given by Eq. (6.17).

on gri photometry. This selection is expressed as follows,[
(g − r) < 2.17 (r − i)− 0.37 ∧
(g − r) < −0.6 (r − i) + 1.85 ∧ (r − i) > 0.3

]
∨ (6.11)[

(g − r) < −0.4 (r − i) + 0.47 ∧ (r − i) < 0.3
]
∨

(r − i) < −0.06 , (6.12)

where ∧ is the logical “and” operator. Notably, Eq. (6.11) defines the red background sample,
namely the galaxies redder than cluster galaxies, while Eq. (6.12) defines the blue background
sample. In Fig. 6.11, we can see that this selection provides C(zl) = 60%, which is 20 percent
points lower than that provided by the griz selection calibrated in this work. In addition,
from the Medezinski et al. (2010) selection we derive P(zl) > 96%, which is slightly lower
than that obtained from the griz selection discussed in Sect. 6.3.1. Foreground contamination
can be attenuated by considering the red sample selection only, namely Eq. (6.11), as shown
in Fig. 6.11. In this case, however, the completeness is lowered by 20 percent points. In Fig.
6.12 (upper panel), we show a comparison between the selection by Medezinski et al. (2010),
namely Eqs. (6.11) and (6.12), and our griz selection in the (r − i) - (g − r) colour-colour
space, by assuming zl = 0.26. Within this colour-colour space, we obtain C(zl) = 55% and
P(zl) = 98% from the griz selection, while through the Medezinski et al. (2010) selection we
find C(zl) = 62% and P(zl) = 95%. We remark that the full set of colour conditions defining
the griz selection yields 80% completeness for zl = 0.26, and that a calibration based on
gri bands only would yield larger completeness values in the (r − i) - (g − r) space (see
Sect. 6.3.7). In addition, Fig. 6.12 shows that the griz selection extends the selected region
defined by Eq. (6.11), thus enhancing the red background sample compared to Medezinski
et al. (2010). On the other hand, the griz selection shows a more conservative definition of
the blue background sample, compared to Eq. (6.12).

Oguri et al. (2012) calibrated a selection based on gri photometry from the COSMOS
catalogue by Ilbert et al. (2009), providing reliable results for lenses at redshift zl . 0.7. This
selection is expressed as

(g − r) < 0.3 ∨ (6.13)
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Figure 6.12: Comparison of colour selections in the (r−i) - (g−r) colour-colour space. The solid grey
contours indicate the 68%, 95%, and 99% galaxy number density in the calibration sample, described
in Sect. 6.1. The blue shaded areas represent the regions excluded by applying the griz selection
calibrated in Sect. 6.3.1. Completeness and purity of the selections are reported in the legends. For
the griz selection, C and P are computed by considering the colour conditions in Tab. A.1 which are
defined in the (r − i) - (g − r) space. Top panel : the red hatched area shows the region excluded
through the Medezinski et al. (2010) selection, and zl = 0.26 is assumed. Bottom panel : the green
hatched area shows the region excluded through the Oguri et al. (2012) selection, and zl = 0.6 is
assumed.

(r − i) > 1.3 ∨ (6.14)

(r − i) > (g − r) ∨ (6.15)

(g − r) > 1 ∧ (r − i) < 0.4 (g − r)− 0.5. (6.16)

The inclusion of Eq. (6.16) does not provide significant improvement in the completeness,
causing a lower selection purity (Covone et al. 2014). In fact, Fig. 6.11 shows that the
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selection including Eqs. (6.13) – (6.16) provides sub-percent improvements in C(zl), com-
pared to the selection including Eqs. (6.13) – (6.15) only, while P(zl) and F(zl) are up to 1
percent point lower and higher, respectively. With respect to the griz selection calibrated
in this work, the Oguri et al. (2012) selection provides a purity which is up to 5 percent
points lower. This explains the higher completeness values for zl > 0.6. For lower zl, the
Oguri et al. (2012) selection provides a completeness up to 35 percent points lower, which
is expected as the selection by Oguri et al. (2012) was calibrated for clusters at zl ∼ 0.7.
Similarly to the comparison with the Medezinski et al. (2010) selection discussed above, in
Fig. 6.12 (lower panel) we compare the griz and Oguri et al. (2012) selections in the (r − i)
- (g − r) colour-colour space, assuming zl = 0.6. We obtain C(zl) = 27% and P(zl) = 98%
from the griz selection, while with the Oguri et al. (2012) selection we find C(zl) = 60% and
P(zl) = 94%. With respect to what we find by comparing griz and Medezinski et al. (2010)
selections at zl = 0.26, the decrease in completeness due to a purity enhancement is much
larger at zl = 0.6. This depends on the overlap of the foreground and background galaxy
distributions in the (r− i) - (g−r) space. In addition, we remark that the calibration process
presented in Sect. 6.2 excludes redundant colour conditions. This may partially explain the
27% completeness found in the case of the griz selection.

Medezinski et al. (2018b) calibrated a colour selection based on HSC observations, in-
cluding griz bands, following an approach similar to Medezinski et al. (2010). This colour
selection is expressed as[

(g − i) < 2.276 (r − z)− 0.152 + a(zl) ∧

(g − i) < 1

2.276
(r − z) + b(zl)

(
1 +

1

2.2762

)
− 0.152

2.2762
∧

(r − z) > 0.5 ∧

z > 21

]
∨ (6.17)

{
(r − z) < −0.0248 z + 1.604 + c(zl) ∨[

(g − i) < 1

2.276
(r − z) + d(zl)

(
1 +

1

2.2762

)
− 0.152

2.2762
∧

(g − i) < 4

]
∨

(r − z) < 0.5 ∨

z > 22

}
, (6.18)

where

a(zl) =

{
−0.7 if zl < 0.4

−0.8 if zl ≥ 0.4
, (6.19)

b(zl) =

{
4.0 if zl < 0.4

1.7 if zl ≥ 0.4
, (6.20)
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Figure 6.13: From left to right: number of selected galaxies as a function of zg assuming zl = 0.26,
zl = 0.6, and zl = 0.8. The zl values are represented by vertical black dashed lines. The blue
histograms represent the griz selection calibrated in this work. The galaxy redshift distributions
derived with the Medezinski et al. (2010), Oguri et al. (2012), and Medezinski et al. (2018b) selections
are represented by red, green, and grey hatched histograms, respectively.

c(zl) =

{
−0.8 if zl < 0.4

−0.9 if zl ≥ 0.4
, (6.21)

d(zl) =

{
0.5 if zl < 0.4

0.3 if zl ≥ 0.4
. (6.22)

Similarly to Medezinski et al. (2010), Eqs. (6.17) and (6.18) define the red and blue back-
ground samples, respectively. This selection provides a much larger amount of contamination
compared to that derived in this work, reaching P(zl) < 90% for zl > 0.7, as shown in Fig.
6.11. However, by considering the red sample selection only, the purity improves by up to
6 percent points. In the latter case, compared to the griz selection detailed in Table A.1,
C(zl) is up to 50 percent points lower for zl < 0.7. For higher zl, the lower purity from the
Medezinski et al. (2018b) selection allows for higher completeness values.

In Fig. 6.13 we show the redshift distributions of the galaxies selected through the griz,
Medezinski et al. (2010), Oguri et al. (2012), and Medezinski et al. (2018b) selections, assum-
ing different zl values. At zl = 0.26, the griz selection shows a larger number of galaxies, of
the order of 103, which are correctly identified as background objects with zg < 0.6, compared
to Medezinski et al. (2010). This results in the larger completeness of the griz selection shown
in Fig. 6.11. At zl = 0.6, where the griz and Oguri et al. (2012) selections have the same
completeness (see Fig. 6.11), the griz selection is less complete at zg > 1.5 and more complete
at lower redshifts, compared to Oguri et al. (2012). At zl = 0.8, where the griz selection
is remarkably purer than that by Medezinski et al. (2018b), a notable incompleteness of the
griz selection is evident at any zg, compared to Medezinski et al. (2018b). In fact, for the
case of the griz selection, Fig. 6.13 shows that the number of rejected galaxies at high redshift
increases with the number of excluded foreground galaxies. This reflects the overlapping of
foreground and background galaxy distributions in the considered colour-colour spaces.

6.5 Summary

We developed a method to derive optimal galaxy colour selections for cluster weak-lensing
analyses, given any set of photometric bands. To this aim, we considered all the available
colour-colour combinations. Based on the galaxy catalogue by B20, we calibrated selections
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based on ground-based griz and Euclid YEJEHE bands, with purity higher than 97%. Spe-
cifically, we showed that the griz selection provides a completeness between 30% and 84%, in
the lens limiting redshift range zl ∈ [0.2, 0.8]. The inclusion of Euclid YEJEHE bands, leading
to a grizYEJEHE selection, improves the completeness by up to 25 percent points in this zl

range, allowing for a galaxy selection up to zl = 1.5. In addition, for the first time in the
literature, we expressed such selections as a continuous function of zl. In the following, we
summarise the main results obtained from the tests presented in Sects. 6.3 and 6.4.

• The calibrated colour selections, described in Sect. 6.3.1, are stable with respect to
changes in the sample limiting magnitudes and redshift.

• By applying the griz selection to the VMLS catalogue by Moutard et al. (2016) and to
the COSMOS20 catalogue by Weaver et al. (2022), we derived completeness and purity
estimates that are consistent with those obtained from the calibration sample by B20.
Consequently, the calibrated selections provide stable results by assuming alternative
photometric aperture definitions, obtained from different ground-based telescopes.

• The application griz and grizYEJEHE selections to the simulated Euclid Flagship galaxy
catalogue v2.1.10 (Euclid Collaboration in prep.) provided a purity of around 99%, on
average, which is higher than that obtained from the B20 catalogue. The completeness
from the Flagship and B20 samples is compatible in the griz selection case, while
the grizYEJEHE selection provides up to 50 percent points higher completeness from
Flagship. We verified that this discrepancy does not depend on magnitude limits. In
addition, we found no significant differences in the star forming galaxy fraction from
the Flagship and B20 samples. A calibration of the grizYEJEHE selection based on the
Euclid Deep Survey will allow for a more thorough investigation of these completeness
differences.

• Based on the Flagship sample, we combined the calibrated colour selections with photo-
z selections based on the p(zg) shape. We showed that in this case the completeness is
up to 95%.

• We found no significant systematic effects on the multiplicative shear bias due to colour
selections for stage III surveys. The first Euclid data releases will provide further
insights into the influence of background selections on this bias.

• The calibrated colour selections provide robust results in the case of a missing band from
ground-based observations, except for those without the r band, for which a dedicated
calibration might be needed.

• Compared to the ground-based colour selections provided by Medezinski et al. (2010),
Oguri et al. (2012), and Medezinski et al. (2018b), the griz selection derived in this
work is purer at high redshift and more complete at low redshift.

One potential enhancement to the calibration presented in this work could entail the inclusion
of a magnitude dependence in the colour cuts. This might mitigate the impact of large photo-
metric scatter at faint magnitudes (see, e.g., Schrabback et al. 2021). In addition, enhancing
the set of photometric bands in the calibration sample, for example by including the LSST y
band, could remarkably improve the effectiveness of the colour selections. The performance
of colour selections could further improve through dedicated calibration samples. Ongoing
spectroscopic programs are specifically designed to calibrate the relationship between galaxy
colours and redshifts to match the depth of the Euclid survey (Euclid Collaboration: Saglia
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et al. 2022).
Furthermore, the colour selections presented in this work could improve the shear calib-

ration in cluster weak-lensing analyses. The lensing signal from galaxy clusters differs from
that of large scale structure in ways that affect both shear and photometric measurements.
The dense cluster environment causes increased blending among light sources, due to both
galaxy blends (Simet & Mandelbaum 2015; Everett et al. 2022) and the presence of diffuse
intra-cluster light (Gruen et al. 2019; Kluge et al. 2020; Sampaio-Santos et al. 2021). In
addition, cluster lines of sight exhibit characteristically stronger shear, especially at small
scales (McClintock et al. 2019; Ingoglia et al. 2022). These effects can lead to distinct bi-
ases in shear measurements compared to those obtained from calibrations primarily designed
for cosmic shear analyses. Through the combination of colour and photo-z selections, cluster
shear calibration and mass bias can be assessed based on dedicated, multi-band cluster image
simulations (see, e.g., Hernández-Mart́ın et al. 2020).
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Chapter 7

AMICO clusters in KiDS-1000:
weak-lensing mass calibration

In this Chapter, we introduce the preliminary work by Lesci et al. (in prep. b) on the mass
calibration of the AMICO galaxy cluster sample provided by Maturi et al. (in prep.), based
on the fourth data release of KiDS (KiDS-1000, Kuijken et al. 2019). Compared to the
KiDS-DR3 sample detailed in Chapt. 5, KiDS-1000 covers an area approximately 550 deg2

larger, namely of 1000 deg2, and additional five NIR bands from the VISTA Kilo degree
INfrared Galaxy survey (VIKING, Edge et al. 2013b; Sutherland et al. 2015) are included.
Hence, the number of detected clusters is remarkably larger and the redshift range used
for the cluster mass calibration can be extended compared to KiDS-DR3, as we shall see
in the following. Based on the methods detailed in Sect. 3.2, we measure and model the
stacked weak-lensing signal of AMICO clusters in bins of redshift and mass proxy, relying
on the background colour selection developed by Euclid Collaboration: Lesci et al. (2023)
and detailed in Chapt. 6. We derive constraints on the mass-richness and concentration-mass
scaling relations, marginalising such results over the main uncertainties affecting weak-lensing
measurements and cluster detection in optical bands.

This Chapter is organised as follows. In Sect. 7.1 we present the galaxy cluster and shear
samples. The measurement and stacking of the cluster weak-lensing profiles are detailed in
Sect. 7.2, while Sect. 7.3 introduces the theoretical models adopted in the analysis. In Sect.
7.4 we present the assessment of the systematic uncertainties affecting the measurements,
and in Sect. 7.5 we introduce the likelihood and priors assumed in the analysis. Lastly, in
Sect. 7.6 we present our results and in Sect. 7.7 we draw our conclusions.

Throughout this Chapter, we assume a concordance flat ΛCDM cosmological model with
H0 = 70 km s−1 Mpc−1 and Ωm = 0.3. The statistical analyses were performed using the
CBL numerical libraries (Marulli et al. 2016).

7.1 The KiDS-1000 data set

The work presented in this Chapter is based on KiDS-1000 (Kuijken et al. 2019), covering
1006 tiles of 1 deg2 each. The 2 arcsec aperture photometry in ugri bands is provided, with
5σ limiting magnitudes of 24.23, 25.12, 25.02 and 23.68 for the aforementioned four bands,
respectively. In addition, aperture-matched ZY JHKs near-infrared photometry from the
fully overlapping VIKING survey (Edge et al. 2013b; Sutherland et al. 2015) is included.
This is a remarkable enhancement compared to KiDS-DR3, where only ugri photometry was
available (de Jong et al. 2017). Based on these photometric bands, the KiDS-1000 galaxy
sample includes photo-z estimates for more than 100 million objects, with a typical scatter

123



0.2 0.4 0.6 0.8 1.0 1.2
zphot

0.2

0.1

0.0

0.1

0.2

0.3

(z
sp

ec
z p

ho
t)/

(1
+

z p
ho

t)

KiDS-1000 shear sample
68% confidence
Maturi et al. in prep.

Figure 7.1: Redshift bias of KiDS-1000 galaxies and galaxy clusters. The black dots represent the
measure of the galaxy redshift bias, based on the spectroscopic redshift catalogue developed by van
den Busch et al. (2022) and Wright et al. (in press), with error bars corresponding to the standard
deviations. The blue band represents the 68% confidence level derived from the multivariate posterior
of the free parameters considered in the fit (see Sect. 7.1.2). The dashed red line shows the bias of
AMICO cluster redshifts derived by Maturi et al. (in prep.).

of σz/(1 + z) = 0.072 (Kuijken et al. 2019).

7.1.1 Galaxy cluster sample

The cluster catalogue this work is based on, named AMICO KiDS-1000 (Maturi et al. in
prep.), was built up running the AMICO algorithm (Bellagamba et al. 2018) in KiDS-1000
(Kuijken et al. 2019). To perform the cluster detection, all the galaxies located in the regions
affected by image artefacts have been rejected. This yields a final effective area of 840 deg2,
containing cluster detections up to z = 1, for a total of 52 443 objects. We consider the
clusters having S/N > 3.5, resulting in a sample of 24 396 objects. We correct the cluster
redshifts for the bias derived by Maturi et al. (in prep.), shown in Fig. 7.1. As for the AMICO
KiDS-DR3 cluster sample (Maturi et al. 2019), the origin of this bias lies in the systematic
uncertainty associated with galaxy photo-zs. By including the correction for this bias, the
redshift statistical uncertainty of AMICO clusters is σz/(1+z) = 0.0175. In Fig. 7.2 we show
the distribution of the corrected cluster redshifts and of the intrinsic richnesses. As we can
see in Fig. 7.2, the number of clusters is three times larger compared to the KiDS-DR3 sample
derived by Maturi et al. (2019), and also the redshift range is enhanced. Due to remarkable
differences in the quality of galaxy photo-zs, thanks to the inclusion of VIKING photometry
in KiDS-1000, the λ∗ distribution of AMICO KiDS-DR3 clusters is not shown in Fig. 7.2 as
it is not comparable to that derived by Maturi et al. (in prep.).

7.1.2 Shear sample

To estimate the weak-lensing signal produced by the AMICO KiDS-1000 galaxy clusters, we
base our analysis on the KiDS-1000 gold shear catalogue (Wright et al. 2020; Hildebrandt
et al. 2021; Giblin et al. 2021). This sample comprises about 21 million galaxies, covering

an effective area of 777.4 deg2, with a weighted number density of ngold
eff = 6.17 arcmin−2.

Weak-lensing shear measurements from the deep KiDS r-band observations are provided,
being the ones with better seeing properties and yielding the highest source density. The
shear estimator used in this analysis is lensftit (Miller et al. 2007; Fenech Conti et al. 2017),
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a likelihood-based model-fitting method which has been successfully used in the analyses of
other datasets, such as the Canada France Hawaii Telescope Lensing Survey (CFHTLenS,
Miller et al. 2013) and the Red Cluster Survey (Hildebrandt et al. 2016). The photo-z calib-
ration, based on deep spectroscopic reference catalogues that are reweighted with the help of
a self-organising map (SOM; Wright et al. 2020), has been performed by Hildebrandt et al.
(2021) in the redshift range z ∈ [0.1, 1.2].

As in Kuijken et al. (2019), Maturi et al. (in prep.) used the Bayesian Photometric Red-
shift (BPZ, Beńıtez 2000) code to derive the galaxy photo-zs for cluster detection. However,
the prior redshift probability used in BPZ by Kuijken et al. (2019) appears to generate a
remarkable redshift bias for bright, low-redshift galaxies, despite it reduced uncertainties and
catastrophic failures for faint galaxies at higher redshifts. For this reason, Maturi et al. (in
prep.) chose the same prior adopted in the KiDS-DR3 analysis (de Jong et al. 2017). Con-
sistently with this choice, in the analysis presented in this Chapter, we adopt the galaxy
photo-zs derived by Maturi et al. (in prep.). We derive the galaxy redshift bias through
the compilation of public spectroscopic data, developed by van den Busch et al. (2022) and
extended by Wright et al. (in press), which includes 642 978 objects. To match the galax-
ies in the spectroscopic sample with those in the KiDS-1000 shear catalogue, we employ an
aperture radius of 0.5 arcsec, resulting in a total of 71 494 matches. Then, we measure and
fit the quantity (zspec − zphot) / (1 + zphot) as a function of zphot, where zspec and zphot are
the spectroscopic and photometric redshifts, respectively. Specifically, we perform a Bayesian
analysis via an MCMC, assuming a Gaussian likelihood and the following linear model

fmod(zphot) = a zphot + b . (7.1)
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z ∈ [0.3, 0.5] (middle panel), and z ∈ [0.5, 0.8] (bottom panel). The grey histograms show the galaxies
selected through the total selection criterion, defined in Eq. (7.4).

We obtain a = −0.05±0.13 and b = 0.04±0.09. In Fig. 7.1, we show that this galaxy redshift
bias agrees with that derived by Maturi et al. (in prep.) for AMICO clusters. The error on
the mean of the measured bias, of about 10−3, is negligible compared to the typical galaxy
redshift uncertainty.

7.2 Stacked weak-lensing profiles

7.2.1 Selection of background sources

If galaxies belonging to the clusters or in the foreground are mistakenly considered as back-
ground, the measured lensing signal can be significantly diluted (see, e.g., Broadhurst et al.
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2005; Medezinski et al. 2007; Dietrich et al. 2019). To prevent such contamination, we employ
stringent selections that consider both the galaxy photo-z probability distribution function,
denoted as p(zg), where zg represents the galaxy redshift, and galaxy colours. This approach
is in line with previous works such as Sereno et al. (2017) and Bellagamba et al. (2019).

Specifically, to exclude galaxies with a significant probability of being at a redshift equal
to or lower than that of the cluster, we adopt the following photo-z selection

zg,min > z + 0.05 , (7.2)

where zg,min is the minimum of the interval containing 95% of the probability around the first
mode of p(zg), namely zg, while z is the mean redshift of the cluster. In Eq. (7.2), the 0.05
buffer is larger than the uncertainty associated with cluster redshifts, that is σz/(1 + z) =
0.0175.

To improve the cluster weak-lensing signal, we recover part of the population excluded
through the photo-z selection by considering a colour selection (similarly to Oguri et al.
2012; Medezinski et al. 2018a; Dietrich et al. 2019; Bellagamba et al. 2019; Schrabback et al.
2021). In particular, we rely on the colour selection calibrated by Euclid Collaboration:
Lesci et al. (2023) (detailed in Chapt. 6), based on griz photometry. This selection provides
a background completeness ranging from 30% to 84% and a purity larger than 97% in the
lens redshift range z ∈ [0.2, 0.8]. In addition, candidate background galaxies can pass the
colour selection if

zg > z + 0.05 , (7.3)

where the 0.05 buffer is the same as in Eq. (7.2). The complete selection criterion is defined
as follows

(photo-z selection) ∨ (colour selection) , (7.4)

where ∨ is the “or” logical operator. To assess the performance of the two background
selections in Eq. (7.4), we derive the number of galaxies that meet such selection criteria. We
consider the same cluster redshift bins adopted for the weak-lensing measurements presented
in the following analysis, namely z ∈ [0.1, 0.3], z ∈ [0.3, 0.5], and z ∈ [0.5, 0.8]. Fig. 7.3 shows
that the colour selection provides the largest number of background sources at low zg. This
is expected, as the photo-z selection in Eq. (7.2) excludes a greater number of galaxies close
to the clusters. In the second and third cluster redshift bins, the colour selection outperforms
the photo-z selection in terms of the number of selected background galaxies at all zg. For
both z ∈ [0.3, 0.5] and z ∈ [0.5, 0.8], this results in about three to four million more selected
galaxies compared to the photo-z selection. In addition, for z ∈ [0.3, 0.5] and z ∈ [0.5, 0.8],
the photo-z selection does not significantly contribute to the total number of background
galaxies defined via Eq. (7.4). This is in contrast to what found by Euclid Collaboration:
Lesci et al. (2023) from the combination of colour and photo-z selections in Euclid Flagship
mock data (Euclid Collaboration in prep.). Despite the photo-z selection and the number
of photometric bands used for estimating photo-zs are similar to those considered in this
work, Euclid Collaboration: Lesci et al. (2023) found that the photo-z selection provides
larger completeness than the colour selection, with similar purity values (see Sect. 6.3.4). We
expect that upcoming Euclid real data will clarify the reason of such differences.

7.2.2 Measure of the stacked profiles

As we discussed in Sect. 3.2, the excess surface density, ∆Σ+, is linked to the tangential
component of the shear via Eq. (3.4). Since the weak-lensing approximation is accurate for
the physical scales examined in this study, we can determine ∆Σ+ from observed galaxy
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Figure 7.4: Stacked ∆Σ+(Reff) profiles of the AMICO KiDS-1000 galaxy clusters in bins of z and λ∗.
The black dots show the measure, with error bars derived via bootstrap resampling. The blue bands
represent the 68% confidence level derived from the multivariate posterior of all the free parameters
considered in the analysis.

ellipticities (see Sect. 2.6) through the estimator defined in Eq. (3.7). For the multiplicative
shear bias, m, in Eq. (3.7), we rely on the results by Giblin et al. (2021). Specifically, Giblin
et al. (2021) derived m estimates in five redshift bins, which are consistent with zero and
have standard deviation ranging from 10−2 to 2× 10−2. Since the galaxy photo-z calibration
considered in this work differs from that adopted by Giblin et al. (2021), we extract for each
galaxy a value of m from the uniform distribution [−0.05, 0.05], covering the 2σ intervals of
the m distributions derived by Giblin et al. (2021). We verified that extracting m values
from a Gaussian distribution with mean equal to 0 and a standard deviation of 0.04 does
not significantly change the results. In Eq. (3.7), for the computation of the critical density
of the ith galaxy, Σcr,i, we adopt the most probable redshift of the source, namely zg. We
investigate the impact of this choice in Sect. 7.4. We do not account for the uncertainty in
the lens redshift, whose impact on Σcr is negligible compared to the source one.

For the most part of the clusters in the sample, the weak-lensing signal is too low to
measure the density profiles, and thus to precisely constrain masses. For this reason, we
derive stacked ∆Σ+ estimates for ensembles of clusters, selected according to their intrinsic
richness and redshift, based on Eq. (3.9). For the Kth cluster stack, we derive the effective
λ∗, namely λ∗K,eff , as follows (Umetsu et al. 2014)

λ∗K,eff =

∑
k∈K Wkλ

∗
k∑

k∈K Wk
, (7.5)

128



where k runs over the clusters in the bins of z and λ∗, and Wk is derived via Eq. (3.10)
without considering any subdivisions in radial bins. For simplicity, we refer to λ∗K,eff as λ∗eff

hereafter. We analogously derive the effective redshift, zeff , and radius, Reff .
We consider λ∗ thresholds for which the purity of each stack is larger than 99% (Maturi

et al. in prep.), namely λ∗ > 15 in the cluster redshift bins z ∈ [0.1, 0.3] and z ∈ [0.3, 0.5],
while we assume λ∗ > 20 for z ∈ [0.5, 0.8]. In each of these redshift bins, we divide the clusters
into 4 bins of λ∗. In addition, we consider 10 radial bins in the cluster-centric radial range
R ∈ [0.4, 3.5] h−1Mpc. By excluding the 400 h−1kpc close to the centre, the contamination
due to cluster members is significantly reduced (see, e.g., Medezinski et al. 2018b; Bellagamba
et al. 2019). Moreover, the analysis of the shear signal in the immediate vicinity of the
cluster centre is responsive to the influence of the BCG on the matter distribution and to
deviations from the weak-lensing approximation. The exclusion of the scales larger than
3.5 h−1Mpc reduces the cosmological dependence of the results, primarily stemming from
the matter correlated with cluster haloes. Also the impact of possible anisotropic boosts,
affecting correlation functions on large scales due to projection effects (Sunayama et al. 2020;
Park et al. 2023; Sunayama 2023), is mitigated.

In Fig. 7.4 we show the stacked ∆Σ+(Reff) measurements in bins of redshift and mass
proxy. The covariance matrix for ∆Σ+(Reff) is estimated with a bootstrap procedure with
replacement, by performing 10 000 resamplings of the galaxy cluster sample. We do not
consider the covariance between radial bins in different redshift and mass proxy bins, as its
impact on the final results is negligible (Ingoglia et al. 2022). As we discussed in Sect. 2.6.4,
if the measured signal comes from gravitational lensing only, the stacked cross-component,
namely ∆Σ× = Σcrγ×, should be consistent with zero. Fig. 7.5 shows that ∆Σ× does not
exhibit substantial deviation from zero across the entire radial range examined in the analysis.
The associated reduced χ2, derived by assuming a null signal and 120 degrees of freedom,
corresponds to χ2

red = 0.7.

7.3 Model

In this section, we introduce a model that enables the constraints of the scaling relation
between cluster masses and mass proxies, marginalising the results over the halo miscentring
parameters and the concentration-mass relation. We do not correct our model to account for
the fact that the reduced shear is the weak-lensing observable. Introducing such correction
would result in negligible changes in the final results, especially for the physical scales within
the scope of our analysis (see, e.g., McClintock et al. 2019).

7.3.1 Lens model

In order to describe the 3D profiles of galaxy clusters, we adopt a BMO model (Eq. 3.13). As
we shall detail in Sect. 7.5, we set the truncation factor of the BMO profile, namely Ft, as a
free parameter in the analysis. In addition, we consider cluster masses within r200, that is the
radius enclosing a mass such that the corresponding mean density is 200 times the critical
density of the Universe at that redshift. The lens model is expressed as follows

∆Σ+(R) = (1− foff) ∆Σ+,cen(R) + foff ∆Σ+,off(R) , (7.6)

where foff is the fraction of haloes that belong to the miscentred population, while ∆Σ+,cen

and ∆Σ+,off are the excess surface density profiles of the centred and miscentred cluster
populations, respectively (see Sect. 3.2). Both ∆Σ+,cen and ∆Σ+,off include the contribution
from the 2-halo term (Eq. 3.16), which is added to the centred surface density, Σcen, defined
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Figure 7.5: Stacked Reff∆Σ×(Reff) profiles of the AMICO KiDS-1000 galaxy clusters in bins of z
and λ∗. The error bars are derived through bootstrap resampling.

in Eq. (3.14). To derive ∆Σ+,off , we assume that the probability of a lens being at a distance
Rs from the chosen centre, namely P (Rs), follows a Rayleigh distribution (Eq. 3.18). In Eq.
(3.18), the rms of P (Rs), namely σoff , is expressed in units of h−1Mpc and, along with foff ,
it is a free parameter in the analysis.

7.3.2 Mass-richness and concentration-mass relations

We simultaneously model the measured ∆Σ+ in all the redshift and mass proxy bins. The
expected value of the excess surface density is defined as

〈∆Σ+(Reff |λ∗eff , zeff)〉 =

∫ ∞
0

dM ∆Σ+(Reff |M, zeff)P (M |λ∗eff , zeff), (7.7)

where ∆Σ+(Reff |M, zeff) is given by Eq. (7.6), while P (M |λ∗eff , zeff), defined in Eq. (5.7),
is a log-normal distribution with mean corresponding to the mass-richness scaling relation
defined in Eq. (5.8). Specifically, in Eq. (5.8) we assume the following pivot values: λ∗piv = 50
and zpiv = 0.4. The rms of P (M |λ∗eff , zeff) corresponds to the intrinsic scatter, namely σintr,
defined as follows

σintr =
σintr,0 + σintr,λ∗ log(λ∗eff/λ

∗
piv)

√
Ncl

, (7.8)

where σintr,0 and σintr,λ∗ are free to vary in the analysis, while Ncl is the number of clusters
in the given redshift and mass proxy bin. By dividing σintr by

√
Ncl, we neglect the cluster
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clustering contribution. In addition, the concentration is defined as follows

log c200 = c0 + cM log

(
M

1014M�/h

)
+ cz log

(
1 + z

1 + zpiv

)
, (7.9)

where zpiv = 0.4, while c0, cM , and cz are free parameters in the analysis.

7.4 Systematic uncertainties

As discussed in Sect. 7.2.2, we correct the weak-lensing measurements for the multiplicative
shear bias, also accounting for its uncertainty. In Sect. 7.3 we detailed a number of terms
accounting for systematic uncertainties, such as the halo miscentring, enclosed in the model.
We expect that the biases due to the contribution of the baryonic matter (Henson et al. 2017;
Shirasaki et al. 2018; Lee et al. 2018; Beltz-Mohrmann & Berlind 2021) are absorbed by σintr

and c200, which are set as free parameters.
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In this section we present the assessment of other relevant systematic uncertainties affect-
ing the measured ∆Σ+(R), caused by photo-z probability distributions, background selection,
halo orientation, and projection effects. As we shall see in Sect. 7.5, we include such uncer-
tainties in the covariance matrix of the likelihood function.

7.4.1 Photo-z uncertainty

In Sect. 7.2.2, we use the galaxy most probable redshift, zg, to estimate Σcr, neglecting the
full shape of p(zg). In fact, inaccurate low probability tails of p(zg) may significantly bias
Σcr. To conservatively account for the impact of p(zg) shapes, we include the σphot term in
the ∆Σ+ covariance matrix (see Sect. 7.5), quantifying the relative difference between Σcr

derived from zg and that derived from the full p(zg). The latter can be estimated by inverting
the following equation

〈Σ−1
cr 〉 =

∫
dzg p(zg) Σ−1

cr (zg, z) . (7.10)

We derive the two estimates of Σcr in the cluster redshift bins used for the stacking procedure,
obtaining σphot = 0.040 (i.e. 4% difference) on average. This result agrees with that found
by Bellagamba et al. (2019) in KiDS-DR3, namely σphot = 0.042.

7.4.2 Background selection

Foreground and cluster galaxies dilute the weak-lensing signal, as their shapes are uncorrel-
ated with the matter distribution of galaxy clusters. To assess the fraction of such contam-
inants, we rely on the spectroscopic sample presented in Sect. 7.1.2. We consider three lens
redshifts, corresponding to the central values of the cluster redshift bins used in the analysis,
namely z = 0.2, z = 0.4, and z = 0.65. Then we apply the background selection, defined in
Eq. (7.4), to the KiDS-1000 galaxies which have a spectroscopic counterpart. The photomet-
ric and spectroscopic redshift distributions of the selected galaxies are displayed in Fig. 7.6.
Both distributions account for the lensing weights, w, discussed in Sect. 7.2.2. We find 0.5%,
1.9%, and 8.3% of contaminants for z = 0.2, z = 0.4, and z = 0.65, respectively. We expect
such contamination to be overestimated, as the spectroscopic sample is not representative of
the photometric one at high redshifts. Indeed, the r-band distribution peaks at r = 21 for
the spectroscopic sample and at r = 23.5 for the photometric one.

The source galaxy redshifts influence the lensing measurements through the critical dens-
ity, Σcr, which depends on the ratio Dls/Ds (see Eq. 2.36). We find that the median of the
Dls/Ds distribution based on photo-zs differs from the one based on spectroscopy by 0.4%,
-5.4%, and 9.1% for z = 0.2, z = 0.4, and z = 0.65, respectively. Thus, similarly to what done
in the previous section, we introduce the parameter σbkg accounting for the contamination
due to the background selection, amounting to σbkg = 0.004, σbkg = 0.054, and σbkg = 0.091
for z ∈ [0.1, 0.3], z ∈ [0.3, 0.5], and z ∈ [0.5, 0.8], respectively.

7.4.3 Orientation and projections

Optical cluster finders preferentially select haloes with the major axis aligned with the line
of sight, as these objects produce a larger density contrast with respect to the distribution of
the field galaxies. In stacked weak-lensing analyses, this leads to overestimated cluster masses
(Corless & King 2008; Dietrich et al. 2014; Osato et al. 2018; Zhang et al. 2023; Euclid Col-
laboration: Giocoli et al. 2023). An opposite mass bias comes from projections of secondary
haloes aligned with the detected clusters, which are in fact blended in a single detection.
This may cause an overestimation of the cluster optical mass proxies, and a consequent bias
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Table 7.1: Parameters considered in the joint analysis of the stacked weak-lensing galaxy cluster
profiles.

Parameter Description Prior Posterior

α Normalisation of the mass-richness relation [-2, 2] 0.18+0.04
−0.03

β Slope of the mass-richness relation [0, 5] 1.73+0.10
−0.09

γ Redshift evolution of the mass-richness relation [-5, 5] −0.91+0.49
−0.51

σintr,0 Normalisation of σintr [0.05, 1] —

σintr,λ∗ λ∗ evolution of σintr [-5, 5] —

c0 Normalisation of the concentration-mass relation [0, 1.3] 0.42+0.27
−0.15

cM Mass evolution of the concentration-mass relation [-1.5, 1.5] −0.11+0.18
−0.21

cz Redshift evolution of the concentration-mass relation [-5, 5] 0.29+1.46
−1.32

foff Fraction of miscentred clusters [0, 0.5] —

σoff Miscentring scale (in h−1Mpc) [0, 0.5] —

Ft Truncation factor of the BMO density profile N (3, 0.5) 2.74+0.45
−0.45

Notes. In the first and second columns we list the symbols and descriptions of the parameters,
respectively. The third column lists the priors on the parameters, and in particular a range represents
a uniform prior, while N (µ, σ) stands for a Gaussian prior with mean µ and standard deviation σ. In
the fourth column, we show the median values of the 1D marginalised posteriors, along with the 16th
and 84th percentiles.

in the mass-richness relation (Myles et al. 2021; Wu et al. 2022). For the AMICO clusters
in KiDS-DR3, Bellagamba et al. (2019) found that orientation effects counterbalance those
caused by projections, leading to a negligible bias on the derived masses with a residual un-
certainty of 3%. Also Simet et al. (2017) and Melchior et al. (2017), for redMaPPer clusters
detected in DES, found that the combination of these bias sources is consistent with zero,
deriving a mass corrective factor of 0.98 ± 0.03. Thus, we conservatively assume a residual
uncertainty on mass due to orientation and projections of 4%.

To relate this uncertainty on mass to that on the weak-lensing profiles, we express the
logarithmic dependence of ∆Σ+ on the mass M as follows (Melchior et al. 2017)

Γ =
d ln ∆Σ+(M)

d lnM
, (7.11)

with Γ ' 0.7 being a good approximation for a broad range of cluster masses, redshifts, and
cluster-centric distances (Melchior et al. 2017; Sereno et al. 2017; Bellagamba et al. 2019).
From Eq. (7.11), we obtain

δ∆Σ+

∆Σ+
= Γ

δM

M
. (7.12)

Based on Eq. (7.12), assuming a 4% uncertainty in mass due to orientation and projections
results in a σOP = 0.028 uncertainty in ∆Σ+.

7.5 Likelihood and priors

To derive constraints on the model parameters defined in Sect. 7.3, we perform a Bayesian
analysis by means of an MCMC algorithm. For each stacked weak-lensing profile, defined in
a bin of redshift and mass proxy, we assume a Gaussian likelihood function, defined as follows

L ∝ exp(−χ2/2) , (7.13)
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with

χ2 =

NR∑
i=1

NR∑
j=1

(
∆Σobs

+,i −∆Σmod
+,i

)
C−1
ij

(
∆Σobs

+,j −∆Σmod
+,j

)
, (7.14)

where ∆Σobs
+ represents the observed cluster profile, given by Eq. (3.9), ∆Σmod

+ is the model,
namely Eq. (7.7), while the indices i and j run over the number of radial bins, namely NR,
and C−1

ij is the inverse of the covariance matrix. In particular, Cij is defined as follows

Cij = CBS
ij + Csys

ij , (7.15)

where CBS
ij is estimated through a bootstrap resampling, as discussed in Sect. 7.2.2, while

Csys
ij accounts for the systematic uncertainties defined in Sect. 7.4, and it is written as follows

Csys
ij = (σ2

phot + σ2
bkg + σ2

OP) ∆Σobs
+,i∆Σobs

+,j . (7.16)

Systematic errors are considered as correlated since they impact all cluster bins in a similar
fashion. We jointly model the weak-lensing signal in all redshift and mass proxy bins, neg-
lecting the correlation between radial bins in different stacks as discussed in Sect. 7.2.2.

In Table 7.1 we list the parameter priors adopted in the analysis. We assume uniform
priors on the mass-richness scaling relation parameters in Eq. (5.7), namely α, β, and γ, and
on the intrinsic scatter parameters in Eq. (7.8), that is σintr,0 and σintr,λ∗ . Uniform priors are
also assumed for the concentration-mass relation parameters in Eq. (7.9), namely c0, cM , and
cz, as well as for the miscentring parameters foff and σoff , defined in Sect. 7.3. The priors on
foff and σoff , namely foff ∈ [0, 0.5] and σoff ∈ [0, 0.5] h−1Mpc, agree with the comparisons of
cluster centres derived from simulated (Yan et al. 2020; Sommer et al. 2023) and observed
(Saro et al. 2015; Zhang et al. 2019; Seppi et al. 2023) galaxy, ICM, and dark matter distri-
butions. For the truncation factor of the BMO profile, Ft, we assume a Gaussian prior with
mean equal to 3 and an rms of 0.5, in agreement with what derived by Oguri & Hamana
(2011).

7.6 Results

In the last column of Table 7.1 we list the constraints obtained for the free model parameters
considered in the analysis. Regarding the parameters of the mass-richness relation, we derive
α = 0.18+0.04

−0.03, β = 1.73+0.10
−0.09, γ = −0.91+0.49

−0.51. The statistical uncertainty on α is similar to
that derived by Bellagamba et al. (2019), while the one on γ shows a 20% improvement, and
the uncertainty on β is 20% larger. We remark that the analysis carried out in this work is not
fully comparable with that performed by Bellagamba et al. (2019). The modelling procedure
is different, as we derive the mass-richness relation directly from the stacked profiles. Also
the set of free parameters differs from that assumed by Bellagamba et al. (2019), since we
marginalise the mass-richness relation over σintr and consider a mass and redshift evolution of
c200. Furthermore, the galaxy weighted density in the KiDS-1000 shear sample, amounting to
6.17 arcmin−2 (Giblin et al. 2021), is lower than that associated with the KiDS-DR3 sample,
namely 8.53 arcmin−2 (Hildebrandt et al. 2017), as a consequence of redshift and SOM-gold
selections (Wright et al. 2020; Giblin et al. 2021).

The parameters σintr,0 and σintr,λ∗ , along with the miscentring parameters foff and σoff ,
are not constrained. We expect that the joint analysis of cluster weak-lensing and counts
will yield competitive results on σintr,0 and σintr,λ∗ (see, e.g., Murata et al. 2019; Lesci et al.
2022a). Regarding the concentration-mass relation in Eq. (7.9), we derive c0 = 0.42+0.27

−0.15,
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Figure 7.7: Concentration as a function of M200 assuming z = 0.2 (left panel) and z = 0.6 (right
panel). The results by Duffy et al. (2008) (solid brown), Dutton & Macciò (2014) (solid magenta),
Child et al. (2018) (solid green), Diemer & Joyce (2019) (solid orange), and Ishiyama et al. (2021)
(solid black), obtained assuming an NFW profile, are shown. The dashed lines display the results by
Meneghetti et al. (2014) assuming NFW (cyan), generalised NFW (gNFW, Zhao 1996) (blue), and
Einasto (Einasto 1965) (red) profiles. The blue band shows the 68% confidence level of the model in
Eq. (7.9). The covered mass range is based on the mass-richness relation constraints listed in Table
7.1.

cM = −0.11+0.18
−0.21, and cz = 0.29+1.46

−1.32. As we show in Fig. 7.7, these constraints agree within
1σ with the typical predictions obtained from simulations (Duffy et al. 2008; Dutton & Macciò
2014; Meneghetti et al. 2014; Child et al. 2018; Diemer & Joyce 2019; Ishiyama et al. 2021)
at high redshift, while we find a 2σ agreement at low redshift and high mass. The mass range
covered in Fig. 7.7 is based on the mass-richness relation constraints. In addition, we find
Ft = 2.74+0.45

−0.45, with the posterior median showing a 0.5σ shift with respect to the median of
the prior distribution. This agrees with the results by Oguri & Hamana (2011), who found
Ft = 3 by fixing the concentration parameter, and Ft = 2.6 when the concentration is fitted
to the data. Finally, in Fig. 7.8 we show the 1D and 2D posterior distributions of the main
parameters constrained in the analysis.

We verified that by replacing the BMO density profile (Eq. 3.13) with a simple NFW
model (Eq. 3.11), the median values of α, β, and γ are shifted within the 1σ interval of
the posteriors reported in Table 7.1. In addition, the intrinsic scatter parameters are not
constrained, in agreement with the results based on the BMO profile. On the other hand,
we find that by assuming an NFW profile the miscentring parameters are constrained. In
fact, we find foff = 0.43+0.05

−0.09 and σoff = 0.28+0.04
−0.04 h

−1Mpc. Despite the result on σoff is in
agreement with observations and simulations, foff is larger than expected (Yan et al. 2020;
Sommer et al. 2023; Saro et al. 2015; Zhang et al. 2019; Seppi et al. 2023). In addition, the
constraint on foff suggests that a wider prior is required for this parameter, covering larger
values of foff . As a result of this excess of miscentred clusters, the assumption of an NFW
profile yields a very steep concentration-mass relation with a large normalisation, namely
c0 = 1.09+0.15

−0.19, cM = −0.66+0.24
−0.24, and cz = 0.80+1.73

−1.67. Such relation disagrees with simulations
for M200 < 2× 1014 h−1M�.
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Figure 7.8: Constraints on c0, cM , cz, α, β, and γ. The shown results are marginalised over the
posteriors of the other parameters listed in Table 7.1. The confidence ellipses correspond to 68% and
95%, while the bands over the 1D marginalised posteriors represent the intervals between 16th and
84th percentiles.

7.7 Summary and perspectives

In this Chapter, we presented the work by Lesci et al. (in prep. b) on the weak-lensing mass
calibration of the AMICO galaxy cluster sample provided by Maturi et al. (in prep.), based
on KiDS-1000 Kuijken et al. (2019). This cluster sample extends over an effective area of
840 deg2, which is more than double the effective area obtained in KiDS-DR3 (Maturi et al.
2019). Also the redshift range covered by the KiDS-1000 cluster sample, reaching z = 1, is
much larger than that obtained by Maturi et al. (2019), reaching up to z = 0.8. As a result,
the number of clusters is three times larger than that derived in KiDS-DR3, corresponding
to 24 396 clusters with S/N > 3.5.

We carried out the analysis within the redshift range z ∈ [0.1, 0.8], considering richness
cuts ensuring a purity larger than 99% for each cluster bin. Compared to the weak-lensing
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analysis performed by Bellagamba et al. (2019) in KiDS-DR3, we extended the cluster red-
shift range and improved the modelling of the stacked cluster profiles. Indeed, we jointly
modelled all the stacked profiles in bins of redshift and richness. This allowed us to simul-
taneously constrain the mass-richness and concentration-mass relations, marginalising over
the miscentring parameters. Thus, the mass calibration presented in this work accounts for
the main biases affecting weak-lensing analyses, also including the treatment of systematic
uncertainties due to photo-z errors, background selection, halo orientation, and projection
effects.

Regarding the mass-richness scaling relation parameters, we found α = 0.18+0.04
−0.03, β =

1.73+0.10
−0.09, γ = −0.91+0.49

−0.51. The statistical uncertainty on α is similar to that derived by Bel-
lagamba et al. (2019), while the one on γ shows a 20% improvement, and the uncertainty on
β is 20% larger. Furthermore, we found c0 = 0.42+0.27

−0.15, cM = −0.11+0.18
−0.21, and cz = 0.29+1.46

−1.32,
implying that the concentration parameter c200, defined in Eq. (7.9), is in agreement with
simulations (Duffy et al. 2008; Dutton & Macciò 2014; Meneghetti et al. 2014; Child et al.
2018; Diemer & Joyce 2019; Ishiyama et al. 2021). We verified that BMO and NFW pro-
files provide statistically consistent results on the mass-richness relation. However, an excess
of miscentred clusters is required to fit an NFW profile to the data, with this yielding a
very steep concentration-mass relation which disagrees with simulations for M200 < 2× 1014

h−1M�. We will thoroughly investigate these results in the near future.
A series of additional tests shall be performed to further improve the analysis presented

in this Chapter. We list them in the following:

• The redshift distribution of the galaxy spectroscopic sample provided by van den Busch
et al. (2022) and Wright et al. (in press), introduced in Sect. 7.1, can be properly re-
weighted through a SOM algorithm (following Wright et al. 2020). This would improve
the assessment of contamination by foreground and cluster galaxies detailed in Sect.
7.4.2.

• Based on the reference spectroscopic sample detailed in Sect. 7.1, the contamination
can be estimated as a function of cluster-centric distances. Any excesses of contamin-
ants close to the cluster centres would be due to cluster galaxies. In addition, if the
contamination showed a trend with cluster radii, this should be accounted for in the
likelihood function.

• In Sect. 7.2.2, we showed that ∆Σ× is consistent with zero. This is expected if the meas-
ured signal comes from gravitational lensing only. Another null test involves measuring
∆Σ+ around random points. In the absence of residual systematic uncertainties, such
signal should be consistent with zero.

• In the model in Eq. (7.7) we neglected the impact of the uncertainties on the lensing-
weighted quantities, namely λ∗eff , zeff , and Reff . To account for such uncertainties,
amounting to 2% on average, the integrand in Eq. (7.7) must be convolved with the
probability to have a true lensing-weighted quantity given an observed one.

• The AMICO algorithm provides two cluster mass proxies, namely λ∗, considered in this
Chapter and in Chapt. 5, and the signal amplitude, A (Maturi et al. 2019, in prep.).
We will also carry out a stacked weak-lensing analysis based on A. This will allow the
assessment of the mass proxy impact on the cosmological analyses, based on counts and
clustering, performed by Lesci et al. (in prep. c).
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Chapter 8

Summary and conclusions

In this Thesis, we discussed the main achievements of modern cosmology, which led to the
definition of the concordance ΛCDM model. We detailed the central role of galaxy clusters
in cosmology, presenting a series of studies covering the main steps of state-of-the-art cos-
mological analyses based on these cosmic tracers, spanning from mass calibration to the
cosmological results based on their statistics. In the following, we summarise the main ori-
ginal results of these studies.

• In Chapter 4, we focused on the analysis carried out by Lesci et al. (2023) on the 3D
2PCF of the galaxy cluster sample presented in Planck Collaboration XXVII (2016),
based on observations of the SZ effect. It is known that the masses of these clusters
are likely underestimated, due to the use of a scaling relation calibrated through X-
ray observations. Recent studies, such as the ones by Planck Collaboration XXIV
(2016) and Planck Collaboration VI (2020), have highlighted the need for high values
of the Planck mass bias, denoted as bSZ, to reconcile the constraints on σ8 obtained
from Planck cluster counts and CMB observations. Simulations and weak-lensing ob-
servations suggest that (1 − bSZ) ∼ 0.8, whereas reconciling cluster counts with CMB
cosmological results would require a value of (1 − bSZ) = 0.62 ± 0.03. Through the
analysis of the Planck cluster 2PCF in the redshift bins z < 0.2 and z ∈ [0.2, 0.8],
and within the cluster-centric radial range r ∈ [10, 150] h−1Mpc, Lesci et al. (2023)
obtained (1 − bSZ) = 0.62 ± 0.12. This constraint agrees with the one obtained from
the combination of CMB and cluster count observations, emphasizing the necessity for
very low values of (1 − bSZ) to reconcile cluster statistics with CMB results. Finally,
by employing the same bSZ priors as Planck Collaboration XXIV (2016), which are de-
rived from weak-lensing measurements, we obtained constraints on Ωm from the 2PCF.
These constraints not only agree with those obtained from cluster counts, but are also
competitive in terms of uncertainty. Furthermore, we derived a reduction of approx-
imately 30% in the uncertainty of Ωm when cluster counts and 2PCF are combined.
However, we note that σ8 remains unconstrained in our analysis. Future stage IV CMB
experiments (Abazajian et al. 2016) are expected to detect about 105 galaxy clusters
based on the SZ effect. This will significantly improve the calibration of the hydrostatic
mass bias from cluster clustering, and might shed light on the degeneracy between σ8

and mass bias.

• In Chapter 5, we presented the analyses based on cluster counts and 2PCF performed
by Lesci et al. (2022a) and Lesci et al. (2022b), respectively. These studies are based
on the cluster catalogue provided by Maturi et al. (2019), built up running the AMICO
algorithm (Bellagamba et al. 2018) on KiDS-DR3 (de Jong et al. 2017). The sample
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contains 7988 galaxy clusters over an effective area of 377 deg2 and in the redshift
range z ∈ [0.1, 0.8]. In Lesci et al. (2022a), we considered a subsample containing 3652
galaxy clusters having an intrinsic richness of λ∗ ≥ 20 and redshift z ∈ [0.1, 0.6]. We also
corrected the models accounting for the incompleteness and the impurity of the sample.
From the joint analysis of cluster counts and the weak-lensing measurements provided
by Bellagamba et al. (2019), we found Ωm = 0.24+0.03

−0.04, σ8 = 0.86+0.07
−0.07, and S8 ≡

σ8(Ωm/0.3)0.5 = 0.78+0.04
−0.04. These results are competitive with those derived from recent

cosmic shear (Troxel et al. 2018; Hikage et al. 2019; Asgari et al. 2021), cluster counts
(Bocquet et al. 2019; Costanzi et al. 2019), and CMB (Hinshaw et al. 2013; Planck
Collaboration VI 2020) analyses. We also showed that the inclusion of cluster counts
significantly improves the constraints on the mass-richness scaling relation derived from
weak lensing only. In the 2PCF analysis performed by Lesci et al. (2022b), we adopted
the same redshift selection used for the counts’ analysis, namely z ∈ [0.1, 0.6]. Since
our clustering model does not rely on sample completeness estimates, we chose a less
restrictive richness threshold, namely λ∗ > 15, which ensures a sample purity close to
100%. This yields a subsample of 4934 galaxy clusters. Assuming the scaling relation
constraints derived by Lesci et al. (2022a) as priors, we obtained Ωm = 0.28+0.05

−0.04,

σ8 = 0.82+0.14
−0.12, and S8 = 0.80+0.08

−0.08, which are consistent within 1σ with the results
obtained from CMB experiments and from the most recent analyses of the late Universe.
Furthermore, by assuming the cosmological results derived by Planck Collaboration VI
(2020, Table 2, TT, TE, and EE+lowE) as priors, we derived a robust constraint on
the normalisation of the mass-richness relation. This reaffirms the key importance of
clustering in constraining cluster masses, as also shown in Chapter 4.

• In Chapter 6, we detailed the work by Euclid Collaboration: Lesci et al. (2023). In
this study, we developed a method to derive galaxy colour selections for cluster weak-
lensing analyses, given any set of photometric bands and considering all the available
colour-colour combinations. In fact, an accurate selection of lensed background galaxies
is crucial to derive a reliable cluster weak-lensing signal and, in turn, to obtain accurate
cluster mass measurements to be used in cosmological analyses. Colour selections are
among the most reliable tools to accomplish this task. Based on the galaxy catalogue by
Bisigello et al. (2020), we calibrated selections relying on ground-based griz and Euclid
YEJEHE bands, with purity larger than 97%. The griz selection provides completeness
values ranging between 30% and 84%, in the lens limiting redshift range zl ∈ [0.2, 0.8].
Including the Euclid YEJEHE bands, leading to the calibration of a grizYEJEHE selec-
tion, enhances the completeness by up to 25 percent points within this zl range, and
extends the galaxy selection up to zl = 1.5. In addition, for the first time in the literat-
ure, we expressed such selections as a continuous function of zl. We showed that both
griz and grizYEJEHE selections provide stable results when applied to external real
and simulated data, regardless the photometric aperture definition and the differences
in the transmission curves of the photometric filters. We demonstrated that the com-
bination of colour and photo-z selections leads to 95% completeness in Euclid galaxy
mock data, and that colour selections do not disrupt the calibration of cosmic shear
samples. In addition, we showed that the griz selection is purer at high redshift and
more complete at low redshift, compared to ground-based colour selections found in the
literature. One possible enhancement to the calibration method presented by Euclid
Collaboration: Lesci et al. (2023) is the inclusion of a magnitude dependence in the
colour cuts, which might mitigate the impact of the uncertainties affecting faint mag-
nitudes (Schrabback et al. 2021). Also the inclusion of additional ground-based bands
might remarkably improve the results. Furthermore, the colour selection calibrated by
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Euclid Collaboration: Lesci et al. (2023) could improve the shear calibration in cluster
weak-lensing analyses, based on dedicated multi-band cluster image simulations.

• In Chapter 7, we presented the galaxy cluster weak-lensing mass calibration carried out
by Lesci et al. (in prep. b). This analysis is based on the AMICO cluster catalogue
provided by Maturi et al. (in prep.), derived from KiDS-1000 (Kuijken et al. 2019).
The cluster sample contains 24 396 objects with S/N > 3.5, corresponding to three
times the number derived in KiDS-DR3 (Maturi et al. 2019), over an effective area
of 840 deg2 and up to redshift z = 1. We measured the stacked cluster weak-lensing
signal in bins of richness and redshift. Specifically, we considered the clusters in the
redshift range z ∈ [0.1, 0.8], assuming richness cuts that ensure a purity larger than
99% for each cluster bin. Through the joint modelling of all the stacked profiles, we
simultaneously constrained the mass-richness and concentration-mass relations, mar-
ginalising over the halo miscentring parameters and accounting for the main systematic
uncertainties affecting cluster weak-lensing measurements. The constraints on the mass-
richness relation have a precision which is compatible to that obtained by Bellagamba
et al. (2019) in KiDS-DR3. Indeed, despite the larger number of galaxy clusters, the
galaxy weighted density in the KiDS-1000 shear sample, amounting to 6.17 arcmin−2

(Giblin et al. 2021), is lower than that associated with the KiDS-DR3 sample, namely
8.53 arcmin−2 (Hildebrandt et al. 2017), as a consequence of redshift and SOM-gold
selections (Wright et al. 2020; Giblin et al. 2021). Regarding the parameters of the
concentration-mass relation in Eq. (7.9), we found c0 = 0.42+0.27

−0.15, cM = −0.11+0.18
−0.21,

and cz = 0.29+1.46
−1.32. These results agree with simulations (Duffy et al. 2008; Dutton &

Macciò 2014; Meneghetti et al. 2014; Child et al. 2018; Diemer & Joyce 2019; Ishiyama
et al. 2021). We verified that BMO and NFW profiles provide statistically consist-
ent results on the mass-richness relation. However, an excess of miscentred clusters is
required to fit an NFW profile to the data, and this implies a very steep concentration-
mass relation which disagrees with simulations for M200 < 2 × 1014 h−1M�. We plan
to conduct a comprehensive investigation into these findings in upcoming studies.

The methodologies presented in this thesis have been contributing to the enhancement of the
cosmological pipelines developed for the Euclid mission (Laureijs et al. 2011). Particularly,
the techniques outlined in Chapter 7, which pertain to the stacking of cluster weak-lensing
signals and the associated mass calibration process, are poised to become foundational com-
ponents of analogous pipelines within the Euclid framework. We remark that mass calibration
plays a pivotal role in cosmological analyses based on cluster statistics. Indeed, systematic
uncertainties affecting weak-lensing cluster masses can lead to significant biases in the cos-
mological parameters derived from current surveys (Abbott et al. 2020).

Notably, the systematic exploration of both statistical and local properties of galaxy
clusters is paving the way for novel inquiries on fundamental physics, which extend beyond
the primary aim of the Euclid mission, that is constraining the dark energy equation of state.
These methodologies are poised to deliver groundbreaking insights into diverse cosmological
paradigms, ranging from the investigation of modified gravity theories (Dima & Vernizzi
2018; Langlois 2019; Cardone et al. 2021; Vogt et al. 2024) and the impact of massive neut-
rinos (Costanzi et al. 2013; Hagstotz et al. 2019), to elucidating the dynamics of interacting
dark matter models (Peter et al. 2013; Robertson et al. 2017; Eckert et al. 2022) and non-
minimally coupled dark matter scenarios (Bertolami et al. 2022; Gandolfi et al. 2023; Zamani
et al. 2024). Thus, by leveraging the rich statistical and morphological information encoded
within galaxy clusters, ongoing and future cosmological surveys have the potential to deepen
our understanding of fundamental physical phenomena and unveil novel avenues for probing
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the underlying fabric of the Universe.
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Gaztañaga, E. 2010, MNRAS, 403, 1353

Cropper, M., Hoekstra, H., Kitching, T., et al.
2013, MNRAS, 431, 3103

Cropper, M., Pottinger, S., Niemi, S., et al.
2016, in Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, Vol.
9904, Space Telescopes and Instrumentation
2016: Optical, Infrared, and Millimeter Wave,
ed. H. A. MacEwen, G. G. Fazio, M. Lystrup,
N. Batalha, N. Siegler, & E. C. Tong, 99040Q

Cuceu, A., Farr, J., Lemos, P., & Font-Ribera, A.
2019, J. Cosm. Astro-Particle Phys., 2019, 044

Cui, W., Borgani, S., Dolag, K., Murante, G., &
Tornatore, L. 2012, MNRAS, 423, 2279
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Appendix A

Colour selection parameterisation

In Tables A.1 and A.2 we report the parameterisation of griz and grizYEJEHE colour selec-
tions, respectively, described in Sect. 6.3.1.

Table A.1: Calibrated colour selection based on griz photometry. The listed colour conditions are
combined through the ∨ logical operator.

Colour condition Parameters zl range

(g − r) < s (r − z) + c
s = 9.39 z3

l − 7.93 z2
l + 0.84 zl + 1.69

c = −31.8 z3
l + 35.71 z2

l − 12.78 zl + 1.04
[0.2, 0.7]

(g − r) < s (i− z) + c
s = 7.64 z2

l − 7.49 zl + 2.75
c = −2.53 z2

l + 1.75 zl − 0.32
[0.2, 0.8]

(r − i) > c c = 1.28 zl + 0.11 [0.2, 0.6]

(g − r) < s (r − i) + c
s = 2.07 z2

l − 1.75 zl + 1.99
c = −25.25 z3

l + 28.86 z2
l − 11.72 zl + 1.34

[0.2, 0.6]

(r − i) < s (r − z) + c
s = 8.05 z3

l − 14.37 z2
l + 6.87 zl + 0.73

c = −8.42 z3
l + 16.11 z2

l − 9.54 zl + 0.68
[0.2, 0.8]

(g − i) > s (i− z) + c
s = −9.17 zl + 3.24
c = 7.07 zl − 0.45

[0.2, 0.3]

(g − i) < s (r − z) + c
s = −47.54 z4

l + 84.36 z3
l − 53.03 z2

l + 13.64 zl + 0.48
c = 56.05 z4

l − 107.76 z3
l + 72.88 z2

l − 21.09 zl + 1.93
[0.2, 0.8]

(g − z) < s (r − z) + c
s = 1.70

c = −21.04 z4
l + 16.37 z3

l + 1.47 z2
l − 3.46 zl + 0.59

[0.2, 0.7]

(g − r) < s (g − z) + c
s = −8.94 z3

l + 13.28 z2
l − 6.55 zl + 1.73

c = −2.53 z2
l + 2.24 zl − 0.80

[0.2, 0.7]

(g − r) < c c = 1.46 z2
l − 1.43 zl + 0.40 [0.2, 0.5]

(r − i) > s (i− z) + c
s = 8.45 z2

l − 6.93 zl + 1.67
c = −2.53 z2

l + 3.48 zl − 0.35
[0.2, 0.5]

(i− z) > c c = −1.53 z2
l + 2.15 zl − 0.01 [0.2, 0.6]

(g − z) > s (r − z) + c
s = −0.58 zl − 1.42

c = −10.10 z2
l + 15.76 zl − 0.52

[0.2, 0.5]

(g − i) < s (r − i) + c
s = 0.24 zl + 1.53
c = −0.91 zl + 0.33

[0.2, 0.6]

Notes. In the first column, the colour conditions are listed. The parameters of such conditions are
shown in the second column, while in the last column the zl ranges are listed. From top to bottom,
the ith row corresponds to the ith iteration of the iterative process described in Sect. 6.2.
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