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About This Thesis

Antimicrobial stewardship programs are gaining more and more relevance in opti-
mizing anti-infective treatment and in preventing the emergence of antimicrobial
resistance. Personalization of antimicrobial treatment based on real-time thera-
peutic drug morning (TDM) and dosing adaptation may represent an important
tool in antimicrobial stewardship programs.

In this Ph.D project, we aim to focus on differences in pharmacokinetics (PK)
for meropenem and piperacillin/tazobactam and host response biomarkers (e.g.,
C-reactive protein) in severe Gram-negative related infections occurring in on-
cohematologic patients. We are interested in identifying optimized model-based
individualized dosing strategies for these antibiotics focusing on biomarkers-guided
prediction of PK and pharmacodynamic (PD) parameters using population PK/PD
modelling. We expect to identify optimal model-based dosing targets for these an-
tibiotics for special populations for implementation in TDM routines, and mathe-
matical models characterizing the relationship between biomarkers and outcomes
in these populations.
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1.1 General Introduction

The cure of oncohematologic patients poses multifaceted challenges besides the
malignancy itself, chief among them being the heightened susceptibility to post-
treatment infections due to compromised immune systems[1]–[3]. Antibiotics have
emerged as indispensable agents in this context, playing a pivotal role in safe-
guarding oncohematologic patients’ well-being[4]. However, good anti-infection
management remains tricky in this population. This thesis addresses the use of
biomarkers and pharmacometric techniques for precision medicine in oncohema-
tologic patients. We characterized the relationship between antibiotic exposure
and its therapeutic outcomes via biomarkers and provided new insights into dose
optimization in this special population.

1.1.1 Hematologic Malignancy and Anti-infection Management

Hematologic malignancies are defined as a highly heterogeneous set of blood
and/or bone marrow diseases with noteworthy mortality. Approximately 1.2 mil-
lion new cases, including but not limited to leukemia, lymphoma, and multiple
myeloma, are reported each year worldwide. Over the past 40 years, therapies
for hematologic malignancies have shown increased development. Combination
chemotherapy was first established successfully at the beginning of the 1980s, fol-
lowed by molecular targeted therapy 20 years later, and then with immunotherapy,
e.g., Chimeric Antigen Receptor T Cell (CAR-T) therapy, currently[5]–[9]. Thanks
to the development of therapeutic methods, the 5-year survival rates of some
hematologic malignancies have increased to 80%[10]–[12]. These life-threatening
diseases are no longer incurable.

Besides treatment approach, the survival rate of oncohematologic patients can
be influenced by a variety of factors. One issue that deserves special attention
is infection[13]–[17]. The hematologic malignancy itself, combined with treat-
ment, alters the total number and/or composition of healthy immune cells and
then impairs/disrupts the immune system[2]. These patients, with compromised
immune systems, are particularly susceptible to acquiring healthcare-associated
infections and experiencing infection transmission within hospital settings. In-
fectious complications contribute greatly to poor prognosis in oncohematologic
patients by leading to persistent hyperthermia, sepsis/septic shock, multi-organ
failure, and diffuse coagulation, especially those undergoing intensive chemother-
apy or hematopoietic stem-cell transplantation[14], [15], [18]. Hence, good anti-
infection management is crucial for targeting prevention and documented infection
control.

Treatment of infection involves several key steps to ensure efficacy while avoiding
adverse effects and antimicrobial resistance. Generally, there are rules/guidelines
to follow. The first step is to identify pathogens by blood culture and sensi-
tivity test, then appropriate antibiotics can be selected based on this fact and
multiple patient-specific factors, for example, site/severity of infection, allergies,
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organ function, age, weight or so[19]–[21]. The next consideration is to define the
optimal treatment target. Probability of Target Attainment (PTA) is a crucial
concept in antibiotic management to assess whether the antibiotic concentration
is sufficient to effectively combat the pathogen. PTA considers both the pharma-
cokinetics/pharmacodynamics (PK/PD) properties of antibiotics, namely, how the
patient handles antibiotics and how the antibiotic affects pathogens[22]. There are
two different ways antibiotics exert their effects on pathogens: time-dependently
and concentration-dependently. Time-dependent antibiotics, e.g., meropenem and
piperacillin/tazobactam, work by continuously exposing the pathogen to a concen-
tration that inhibits its growth for a period. The efficacy of this type of antibiotic
can be predicted well by the fraction of time that antibiotic concentration main-
tains above the minimum inhibitory concentration (MIC) to a specific pathogen
(%ft>MIC). As for concentration-dependent antibiotics, they work by killing the
pathogen at a high concentration shortly after administration. The max concen-
tration (Cmax) or area under the curve (AUC) of the antibiotics are commonly used
PK/PD indices, i.e., Cmax/MIC and AUC/MIC. The specific PTA value is tailored
to the unique circumstances of each clinical scenario. Generally, PTA>50-60% is
considered sufficient to inhibit bacterial growth, while to achieve a bactericidal
effect a higher PTA (e.g., >90%) is typically desired[22]–[24]. Joint use of the
PK/PD indices mentioned above and therapeutic drug monitoring (TDM), es-
pecially for antibiotics with a narrow therapeutic window, allows real-time dose
adjustment to maintain optimal therapeutic levels.

In some cases, empirical antibiotics can and should be started before identifying
pathogens. For example, in patients with risk of life-threatening infections, or
specific clinical scenarios like oncohematologic patients. Signs and symptoms of
infection/inflammation are typically attenuated in oncohematologic patients. In a
large number of cases, fever may be the only indication[25]. The Infection Disease
Society of America, European Conference on Infections in Leukemia, and German
Society of Hematology and Medical Oncology recommended therapy with a broad-
spectrum anti-pseudomonal beta-lactam agent, e.g., piperacillin/tazobactam or
meropenem as an escalation treatment, for high infection-risk patients as early as
possible[4], [25], [26]. Other agents against Gram-positive pathogens, fungi, and
viruses may be added if antimicrobial resistance is suspected or proven.

Unlike general populations, prescribing antibiotics in oncohematologic patients
presents several challenges due to their unique characteristics. The rules we men-
tioned above cannot be applied here. Due to the urgency of treating/preventing in-
fections, empirical therapy is often initiated before identifying a specific pathogen.
Choosing the appropriate type of antibiotic while avoiding overdose/resistance is
therefore a tough job due to the unavailability of MIC and pathogen features. Long
treatment duration is another issue that deserves attention. It can increase the
risk of adverse effects and contribute to resistance development when the dosing
strategy is not adjusted in time.

Beyond the direct impact of hematologic malignancies on the hematopoietic sys-
tem, these malignancies exert far-reaching effects on diverse aspects of patient
physiology, for instance, PK features of drugs[27], [28]. The hypermetabolic state
is a hematologic malignancy-induced phenomenon, it refers to an abnormal in-
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crease in the body’s metabolic rate. Disease-induced energy consumption eleva-
tion, cellular signal alteration, cachexia state, weight loss, etc. can change the
metabolic procedure and disrupt organ function[29]. Meanwhile, these changes
collectively influence antibiotics’ absorption, distribution, metabolism, and excre-
tion. For example, chronic inflammation, changes in plasma protein levels, and al-
terations in blood flow patterns significantly impact the distribution of antibiotics
and then change the volume of distribution; renal impairment/augment can also
lead to altered antibiotic clearance (CL). Recognizing/understanding the intricate
interplay between hematologic malignancies and antibiotic PK is paramount for
precision dosing and ultimately improving the survival rate.

1.1.2 The Role of Biomarkers in Oncohematologic Patients

Biomarkers play a crucial role in infection management by providing objective
evidence of the body’s response to antibiotic treatment. They can be detected
before clinical symptoms become apparent and quantitatively reflect the body’s
inflammatory state. Elevated biomarker levels can support the decision of early
antibiotic therapy initiation and antibiotic regimen adjustment. It can also assist
in tailoring precision antibiotic therapy to a specific patient[30]. Appropriate
antibiotic class, dose regimen, and length of treatment can be decided based on
biomarkers, especially when clinical information is unavailable or good antibiotic
exposure-response relationships cannot be guaranteed[30]–[33].

C-reactive protein (C-RP) is a commonly used biomarker in oncohematologic pa-
tients. It is synthesized by liver during the acute phase of inflammation, meaning
its level increases rapidly in response to inflammatory conditions within a few
hours therefore making it an early indicator of the inflammation process[34]–[36].
C-RP can be elevated in various conditions of inflammation, including bacterial
infection-, surgery-, tissue injury-, and certain cancer-induced inflammation[35],
[37]. Despite the less specificity to infection, C-RP is broadly used as an infection
biomarker in clinical practice due to its rapid response advantage. As we have
mentioned in the previous section, oncohematologic patients have a high suscepti-
bility to infection whereas their infection symptoms/signs are typically attenuated,
which challenges early diagnosis and good anti-infection management. In this cir-
cumstance C-RP is still sensitive to suggesting the presence of potential infectious
processes, which is particularly important in this population.

In patients undergoing anti-infection treatment, C-RP can be monitored to sup-
port decision-making, e.g., post-surgery levels of C-RP have demonstrated the
ability to forecast the risk of developing sepsis within a short time period in order
to initiate antibiotics in time[38]. Meanwhile, it is also a good tool to assess the
response to therapy. Decreasing C-RP level may indicate a positive response to
treatment, while persistently elevated levels may raise concern for treatment fail-
ure or the presence of an ongoing infection. Both the absolute value and dynamic
of C-RP can support clinical decision-making of antibiotic treatment[30]. For ex-
ample, a study done in patients undergoing non-emergency abdominal surgery re-
ported that those having C-RP>250mg/mL had less probability of success in anti-
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infection treatment at 10 days compared with those having C-RP<250mg/mL[39].
Another study presented that the C-RP decline rate during the 5 days in the In-
tensive Care Unit is markedly associated with Community-Acquired Sepsis prog-
nosis[40].

A noteworthy fact is that while C-RP is a valuable diagnosis tool in oncohema-
tologic patients, the use of it remains controversial. Some studies reported that
C-RP performs not superior to other biomarkers in reflecting infection[41], [42].
Besides, interpreting the C-RP level in oncohematologic patients is also an un-
clear task. Normal baseline C-RP levels in healthy individuals are quite scarce,
however, it can vary depending on age, sex or so. A slightly elevated C-RP can be
observed in oncohematologic patients due to disease-induced inflammation. Inter-
pretation of C-RP levels should therefore be done case by case prudently. After
initiating antibiotic treatment for a suspected infection, monitoring C-RP levels
can help assess the patient’s response. Currently, relying solely on C-RP maybe
not be sufficient, a comprehensive assessment of patients is still recommended for
accurate diagnosis. In this study, we aim to figure out how to use C-RP to warrant
good anti-infective management in oncohematologic patients.

1.1.3 Individualized Dosing Strategy: Model-Informed Precision Dos-
ing

Model-informed precision dosing (MIPD) represents a cutting-edge approach to
therapeutic drug management. Rooted in pharmacometrics/mathematical mod-
els, MIPD combines PK/PD principles with patients-specific features, e.g., real-
time monitored drug concentrations/biomarkers and demographics, to guide dos-
ing regimens optimization[43], [44]. Over the past decade, the MIPD approach
has been broadly adopted at the point of care to complement traditional TDM by
providing model-based predictions of drug concentrations at various time points
and populations. This enhances the TDM and enables pharmacists/clinicians to
anticipate future dosing needs and then make proactive adjustments.

In the previous section, we discussed the significant antibiotic PK/PD variability
in oncohematologic patients[27], [28]. Hematologic malignancy type, concomi-
tant medications, organ dysfunction, and genetic polymorphisms cause difficulties
in antibiotic management. MIPD acknowledges this heterogeneity and provides
a framework for individualized dosing regimens accordingly. Complexity in em-
pirical antibiotic prescription is another critical consideration of using MIPD in
oncohematologic patients. Due to the frequent absence of detailed pathogen infor-
mation, empirical antibiotic treatment is common in this population. MIPD over-
comes this limitation by utilizing pharmacometrics and/or mathematical models
that integrate patient-specific data to guide decision-making.

The application of MIPD in supporting antibiotic use in oncohematologic patients
represents a pivotal advancement in therapeutic drug management[45], [46]. By
counting patient-specific, drug-specific, and treatment-related factors, MIPD of-
fers a refined approach to optimize anti-infection treatment strategies. This not
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only enhances the antibiotic efficacy but also safeguards against potential adverse
effects, ultimately improving the overall quality of anti-infection care for oncohe-
matologic patients.

1.1.4 Machine Learning Techniques in Supporting Precision Dosing

In the previous sections, we have discussed the role of biomarkers and pharma-
cometrics models in improving precision medicine from a population perspective.
However, tailoring antibiotic treatment to individual patients can still be a com-
plex task. The emergence of machine learning (ML) offers a promising avenue
to revolutionize this situation, providing a data-driven approach to tailor dosing
regimens to individual patients.

ML is a subset of artificial intelligence that focuses on enabling computer systems
to learn from large datasets and then make predictions without being explicitly
programmed for each task. The mathematical algorithm enables the machine
to identify dataset patterns and/or relationships[47], [48]. In the training stage,
the machine is exposed to labeled data, meaning that ideal answers have been
provided. Then a trained model is outputted from the training data. This model
generalizes the pattern from the training data to make accurate predictions on new
instances. The predictions themselves can be used as feedback to refine the model
further. In the aspect of anti-infection management, ML can be integrated into
TDM software to improve personalized dosage plans[49]–[52]. It helps select the
most appropriate PK models of antibiotics used for prediction and provides real-
time assessment of antibiotic concentrations and/or biomarkers. In other words,
the learning algorithms can be trained by a vast dataset encompassing patient
features, e.g., demographics, PK, laboratory measurements, TDM concentration,
and infected pathogens, and then generate personalized dosing strategies with
reference to those individual-specific features.

While ML holds great promise in enhancing precision dosing, it is important to
acknowledge its limitations. First and foremost, ML models heavily rely on the
size and quality of the training dataset. Whereas real-world clinical data is usu-
ally biased with unexpected noise, which can lead to an inaccurate model[53], [54].
Second, ML models are built in a highly data-driven pattern. It cannot handle
sophisticated physiological interactions that may impact antibiotic response[55].
Over or under fitting is also a consideration. It usually occurs when the data size
and model complexity do not match, especially in the early stages of model build-
ing. Besides, ML models can struggle to accurately capture/predict rare events,
for example, outlier drug concentrations and rare adverse events. Understanding
these limitations is crucial for implementing/improving ML models.

Despite the immaturity of this approach, ML still represents a significant advance-
ment in the field of individualized precision medicine. By combining the power of
ML with TDM software and clinical expertise, pharmacists/clinicians can optimize
antibiotic dose regimens for individual patients, leading to an optimal outcome.
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1.2 Research Scope

This multifaceted research encompasses a comprehensive approach to precision
antibiotic dosing in oncohematologic patients. The study unfolds in three distinct
but interconnected parts, each designed to address specific challenges encountered
in antibiotic therapy within this patient population (Figure 1.1). Part I (chap-
ter 2) provides crucial insights into the impact of CAR-T therapy on absolute
biomarkers levels and antibiotics CL, facilitating refined anti-infection manage-
ment strategies for this population. Part II (chapter 3) establishes a quantitative
framework through (A) pharmacometrics and (B) mathematical modeling, unrav-
eling the intricate interplay between meropenem exposure, C-RP dynamics, and
therapeutic outcomes. Lastly, part III (chapter 4) introduces an innovative ap-
proach utilizing ML to recommend precise vancomycin dose regimens, particularly
in scenarios where conventional PK models encounter challenges.

Figure 1.1: Overview of research scope.
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1.2.1 Chapter 2: Does CAR-T Cell Treatment Have an Impact on The
Pharmacokinetics of Meropenem and Piperacillin/Tazobactam
in Oncohematologic Patients? Findings From an Observational
Case-Control Study

In this chapter, our exploration seeks to discern whether adjustments in beta-
lactam dosing strategies are warranted for patients undergoing CAR-T therapy
by patient- and drug-specific biomarkers/features.

CAR-T immunotherapy is a novel targeted therapy for hematologic malignancies.
Treatment-related cytokine storms may significantly alter the PK of beta-lactams
which are the mainstay of treatment in febrile neutropenic CAR-T patients. This
study embarks on a comparative analysis, meticulously examining the biomarker
profiles and beta-lactam CL between patients receiving CAR-T therapy and their
counterparts with general treatment conditions. Our aim was to explore the PK
changes of beta-lactams in relation to cytokine burden trends in CAR-T patients.

1.2.2 Chapter 3: The Role of Pharmacometrics/Mathematical Models
in Precision Dosing

This chapter focuses on unraveling the “exposure-PK/PD-response” relationships
of meropenem via C-RP as a biomarker, in order to forecast/enhance therapeu-
tic outcomes of anti-infection treatment. Overall, this research offers a crucial
framework for optimizing antibiotic therapy in the context of microbiological data
absence.

In the absence of microbiological data, which is commonplace in empirical an-
tibiotic treatment for oncohematologic patients, establishing a direct antibiotic
exposure-response relationship can be a formidable challenge. This study com-
prehensively characterizes the relationship between meropenem and its clinical
outcomes via biomarkers. In the first part, we clarified the efficacy of meropenem
on the C-RP trend quantitively by means of a population PK/PD model. In
the second part, C-RP and other possible biomarkers/features were implemented
into a Cox proportional hazard model for predicting the therapeutic outcomes of
meropenem and piperacillin/tazobactam.

1.2.2.1 Part A - Population Pharmacokinetics/Pharmacodynamics of
Meropenem and C-Reactive Protein in Oncohematologic Pa-
tients

Oncohematologic patients with febrile neutropenia (FN) are at high risk of de-
veloping severe infections due to multidrug-resistant Gram-negative pathogens.
Meropenem is a beta-lactam commonly used as a second-line antimicrobial for
patients not responding to piperacillin/tazobactam. Although the use of 24h-
continuous infusion (CI) administration coupled with TDM may optimize the ex-
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posure of meropenem, patient’s response to therapy is still difficult to predict, and
the identification of clinical biomarkers of response may be highly beneficial. The
aim of this study is to assess the PK/PD relationship between 24h-CI meropenem
and C-RP in a cohort of oncohematologic patients with FN.

1.2.2.2 Part B - C-Reactive Protein as Predictor for Outcomes Of
Beta-Lactam Therapies in Oncohematologic Patients

Oncohematologic patients are recognized for the high risk of developing the life-
threatening infections. However, the difficulty in establishing good “exposure-
response” relationships of beta-lactam due to undetectable pathogens remains a
big challenge to good infection management in this population. This study ex-
plored the role of biomarkers, e.g., C-RP dynamic, in predicting antibiotic thera-
peutic outcomes in oncohematologic patients.

1.2.3 Chapter 4: Data-Driven Model Selection for Model-Informed
Precision Dosing: A Machine Learning Case Study Of Van-
comycin

This chapter endeavors to harness the power of ML to suggest tailored vancomycin
dose regimens, particularly in instances where conventional PK models may face
limitations.

A validated and reliable PK model serves as a cornerstone in TDM software for
guiding antibiotic dosing decisions. However, instances arise where conventional
models prove inadequate/inappropriate to a specific population/person. By em-
ploying an ML model trained on vancomycin TDM data from us hospitals that use
TDM software (Insight Rx®, San Francisco, California, US) for dosing optimiza-
tion, this section aims to figure out the appropriate PK model or, alternatively,
perform model averaging for individual optimal dose recommendations.
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Abstract

Chimeric Antigen Receptor T (CAR-T) cell therapy is a promising approach for
some relapse/refractory hematologic B-cell malignancies; however, in most pa-
tients, cytokine release syndrome (CRS) may occur. CRS is associated with
acute kidney injury (AKI) that may affect the pharmacokinetics of some beta-
lactams. The aim of this study was to assess whether the pharmacokinetics
of meropenem and piperacillin may be affected by CAR-T cell treatment. The
study included CAR-T cell treated patients (cases) and oncohematologic patients
(controls), who were administered 24h continuous infusion (CI) meropenem or
piperacillin/tazobactam, optimized by therapeutic drug monitoring, over a 2-year
period. Patients’ data were retrospectively retrieved and matched on a 1:2 ra-
tio. Beta-lactam clearance (CL) was calculated as CL=DailyDose/InfusionRate.
A total of 38 cases (of whom 14 and 24 were treated with meropenem and
piperacillin/tazobactam, respectively) was matched with 76 controls. CRS oc-
curred in 85.7% (12/14) and 95.8% (23/24) of patients treated with meropenem
and piperacillin/tazobactam, respectively. CRS-induced AKI was observed in only
1 patient. CL did not differ between cases and controls for both meropenem (11.1
vs. 11.7 L/h, p=0.835) and piperacillin (14.0 vs. 10.4 L/h, p=0.074). Our findings
suggest that 24h-CI meropenem and piperacillin dosages should not be reduced a
priori in CAR-T cell patients experiencing CRS.

Keywords: CAR-T cell therapy; meropenem; piperacillin/tazobactam; cytokine
release syndrome; therapeutic drug monitoring.

2.1 Introduction

Chimeric Antigen Receptor T (CAR-T) cell therapies have remarkably changed the
treatment of some relapsed or refractory hematologic B-cell malignancies [1]. This
complex immunotherapy consists of infusing the patient’s own T-cells after previ-
ously genetically modifying these to express CAR for targeting tumor cells. Ap-
proved indications include relapse/refractory acute lymphoblastic leukemia, some
B-cell lymphomas (diffuse large B cell, primary mediastinal, high-grade, follicular,
or mantle cell lymphoma) and, ultimately, multiple myeloma [2–4].

CAR-T cell treatment may be associated with cytokine release syndrome (CRS),
an adverse effect that may occur in approximately 80% of patients [5]. CRS is
characterized by high fever, hypotension, hypoxia, and ongoing injury that mimics
sepsis. It usually appears within 14–21 days from CAR-T cell infusion [5,6]. Other
complications occurring in the post-infusion period may be immune effector cell-
associated neurologic syndrome (ICANS) and acute kidney injury (AKI) following
vasodilatory shock [5,7].

CAR-T cell patients are at high risk of infection due to cytokine-mediated cy-
topenias, myelosuppression related to chemotherapy, and CRS treatment with
high-dose corticosteroids and/or IL-6 inhibitors, such as tocilizumab [8]. The
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prevalence of infection in CAR-T cell patients may be 27–36%, with bacteremia,
pneumonia, and skin and soft tissue infections being the most prevalent [8].

In general, all patients with hematologic malignancies with febrile neutropenia
(FN), including CAR-T cell patients, are at high risk of bacterial infection com-
plications. Bloodstream infections caused by Gram-negative pathogens have a
prevalence rate of 11–38% in these populations [9]. Among the most common
Gram-negative pathogens are Klebsiella pneumoniae, Escherichia coli, Enterobac-
ter cloacae, and Pseudomonas aeruginosa. The management of infections caused
by these pathogens is challenged by the reduced antimicrobial susceptibility to
beta-lactams in these patients. In particular, in oncohematologic patients, the
susceptibility rate of piperacillin/tazobactam and meropenem has been reported
to be 79.1% and 63.1%, respectively [10].

Current guidelines recommend an antipseudomonal beta-lactam, e.g., piperacillin/
tazobactam, cefepime, or ceftazidime as the first-line choice for the empirical treat-
ment of FN in patients with hematologic malignancies. These beta-lactams are
preferred in clinically stable febrile neutropenic patients who have not had previ-
ous infections and/or colonization caused by multi-drug resistant (MDR) Gram-
negative bacteria. In the absence of a positive clinical response within 2–3 days,
escalation to meropenem is suggested [11,12].

Beta-lactams have a time-dependent pharmacodynamic activity, whose efficacy is
related to the percentage of time that free plasma concentrations are maintained
above the minimum inhibitory concentration (MIC) of the bacterial pathogen
(% fT>MIC) during the dosing interval. Pre-clinical data indicate that the re-
quired threshold to achieve bactericidal activity with beta-lactams is 40–70%
fT>MIC [13]. However, clinical evidence suggests that more aggressive phar-
macokinetic/pharmacodynamic (PK/PD) targets, namely, 100% fT>4-6 foldsMIC,
should be adopted to ensure better outcomes in clinical contexts characterized by
high inter-individual variability, such as critically ill patients [14,15].

Administration of beta-lactams by 24h continuous infusion (CI) maximizes the
attainment of such a high PK/PD threshold during the entire dosing interval.
Moreover, optimizing beta-lactam exposure by means of real-time therapeutic drug
monitoring (TDM) has been proven effective in improving treatment outcomes
with beta-lactams [13,14].

For the treatment of severe infections, high-dosing regimens of meropenem ad-
ministered by 24h-CI has been advocated in different clinical settings [16,17].
Specifically, in order to maximize empirical treatment of Enterobacterales and
Pseudomonas aeruginosa in FN patients with hematologic malignancies, Monte
Carlo simulations suggest the use of meropenem dosages ranging from 3 to 5 g
daily by 24h-CI in relation to patient renal function.

Considering that up to 30% of CAR-T cell patients may develop AKI [7] and that
beta-lactams are eliminated mainly by the renal route, it might be expected that
the PK of these agents may be altered in oncohematologic patients undergoing
CAR-T compared with those who are not.

Student ID: 0900069629 20 Chapter2



Alma Mater Studiorum - Università di Bologna

The aim of this case-control study was to assess whether the pharmacokinetics of
meropenem and/or piperacillin/tazobactam administered by continuous infusion
were changed in oncohematologic patients who received anti-CD19 CAR-T cell
therapy compared with those who did not.

2.2 Materials and Methods

2.2.1 Study Design

This evaluation retrospectively included CAR-T cell patients (case group) and
oncohematologic patients (control group) who underwent TDM-guided adaptive
dosage of continuous infusion meropenem and/or piperpacillin/tazobactam for the
empirical treatment of FN. The evaluation was conducted at the IRCCS Azienda
Ospedaliero-Universitaria di Bologna from January 2020 to January 2023. The
ratio of the case group vs. the control group was set at 1:2 for statistical empow-
erment.

All patients were treated with beta-lactam monotherapy at a standard initial dose
(meropenem: 2g loading over 1h followed by 1g q6h over 6h [namely, 4g/daily by
CI]; piperacillin/tazobactam: 8/1g loading over 1h followed by 16/2g over 24h by
CI).

TDM was performed after at least 48h from starting therapy, by assessing the
meropenem or piperacillin plasma steady-state concentration (Css). At our cen-
tre, all oncohematologic patients who received an antipseudomonal agent under-
went a program of dosing optimization that included the assessment of drug con-
centration, along with a clinical pharmacological interpretation of the results.
This program is conducted from Monday to Friday, as described elsewhere[18].
Briefly, in the pre-analytical phase, clinicians fill in an electronic form with pa-
tient demographics (age, weight, and height), patient clinical data (diagnosis and
co-medications), and drug-related information (date of starting therapy, current
dosing regimen, and time of the last dose). Blood samples are collected shortly
before drug administration to assess trough concentration or at any time during
infusion for drugs administered by 24h-CI. After collection, the blood samples are
immediately sent to the lab where they are analyzed within 1-3 h from sample
delivery. The TDM results are then published on the hospital intranet early in
the afternoon. The post-analytical phase starts once the TDM results are made
available. Each patient request is managed by a clinical pharmacologist. Written
expert clinical pharmacological advice for dose adjustments is then published on
the hospital intranet before 5 p.m.

Dosing adaptation seeks to obtain maximal effectiveness of the empirical treatment
of FN. Therefore, a desired PK target of 100% fT>4-8 foldsMIC[19,20] was set for
all susceptible pathogens. This was achieved by considering as the MIC value the
EUCAST clinical breakpoint of meropenem and piperacillin/tazobactam against
Pseudomonas aeruginosa (namely, 2 and 8 mg/L, respectively) [21]. Consequently,
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meropenem Css was targeted at 8-16 mg/L and piperacillin Css at 32-64 mg/L.

2.2.2 Drug Analysis

Meropenem and piperacillin were both measured using the validated high perfor-
mance liquid chromatography tandem mass spectrometry (LC-MS/MS) method,
as described below.

2.2.2.1 Sample Pre-Treatment

Blood samples were centrifuged for 10min at 9000×g. An aliquot of 50 µL of
patient plasma was added, together with a 1.25 µL solution of internal standard
(final concentration 5 µg/mL). Liquid-liquid extraction was carried out using the
MassTox®TDM Series A basic kit from Chromsystems Instruments & Chemicals
GmbH, Munich, Germany. According to the manufacturer’s recommendation,
an extraction buffer (25 µL) and a precipitation buffer (250 µL) were added to
each sample. This solution was centrifuged for 10 min at 15,000×g, and an equal
volume of the dilution buffer was added to the supernatant. Plasma samples
used for the calibration curve and quality controls underwent the same procedure.
Subsequently, using an autosampler vial in which 5 µL of the supernatant was
transferred, a volume of 3 µL was injected into the LC-MS/MS system.

2.2.2.2 Conditions of Liquid Chromatography and Mass Spectrometry

Chromatographic separation was conducted at 25◦C on a C18 column provided by
the MassTox®TDM Series A basic kit from Chromsystems Instruments & Chem-
icals GmbH, Munich, Germany. The column was eluted with a gradient elution
set at 0.5 mL/min using mobile phase A (0.1% formic acid in water) and mobile
phase B (0.1% formic acid in methanol).

The Shimadzu UPLC system was coupled with the Sciex API 5500 Qtrap mass
spectrometer with an electrospray ionization source set in positive ionization mode.
Optimization of ionization conditions were performed by directly injecting drug
solutions dissolved in a 50:50 volume mixture of mobile phases A and B. Mass
spectrometer parameters were set as follows: medium for collision gas, 30 units
for curtain gas, 5500 V for ionspray voltage, 500◦C for probe temperature, and
50 ms for dwell time. A multiple reaction monitoring-based quantitation method
technique was used. Specifically, analytes were monitored at two different transi-
tions, namely, the quantifier ions for identification and the qualifier ions for confir-
mation. The Analyst 1.6 and Multiquant software Version 2.0, both provided by
the spectrometer manufacturer, were used for chromatographic data acquisition,
peak integration, and quantification.
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2.2.2.3 Calibration Curve and Quality Controls

The meropenem and piperacillin/tazobactam stock solution was prepared in MilliQ
water at a concentration of 10 mg/mL. The calibration standards for meropenem
were prepared at 0, 3, 25, and 85 mg/L, while those for piperacillin/tazobactam
were prepared at 0, 8, 50, and 195 mg/L. The calibration ranges were based on
plasma concentration usually observed using approved drug dosages in clinical
practice, namely, 0–100 mg/L for meropenem and 0–200 mg/L for piperacillin.
The quality controls were prepared at two concentrations, namely, the low con-
centration (13 and 20 mg/L for meropenem and piperacillin/tazobactam, re-
spectively) and the high concentration (43 and 97 mg/L for meropenem and
piperacillin/tazobactam, respectively).

2.2.2.4 Chemical and Reagents

Meropenem, piperacillin/tazobactam sodium salt, and their isotopically labeled
counterparts, 2H6-Meropenem and 2H5-Piperacillin/tazobactam, were purchased
from Alsachim (Illkirch, France). Formic acid and methanol for LC-MS/MS mo-
bile phases were purchased from CHROMASOLV (Thermofisher Scientific, Milan,
Italy). A Milli-Q Direct system (Millipore Merck-Darmstadt, Germany) was used
for LC-MS/MS grade water. Blank plasma was supplied for control purposes by
the IRCCS Azienda Ospedaliero-Universitaria di Bologna (Bologna, Italy). Pri-
mary stock solutions for analytes and internal standards, obtained by dissolving
the powder in water or dimethyl sulfoxide, were prepared to a final concentration
of 10.0 and 1.0 mg/mL, respectively. All chemicals were stored at -80◦C.

2.2.2.5 Accuracy, Precision and Limit of Quantification

The intra-day and inter-day precision and accuracy, expressed as the coefficient
of variation (CV%) for the low- and high-quality controls, were <10% for both
meropenem and piperacillin/tazobactam. The limits of quantification (LOQ) were
0.3 and 1.0 mg/L for meropenem and piperacillin/tazobactam, respectively.

2.2.3 Patient Clinical Data and Pharmacokinetic Analysis

Demographic, pharmacologic, and laboratory data were retrieved for each pa-
tient. Serum creatinine, serum albumin, C-reactive protein (C-RP), procalcitonin,
interleukin-6 (IL-6), and interleukin-8 (IL-8) were collected on the days of each
TDM assessment. The estimated glomerular filtration rate (eGFR) was calcu-
lated using the CKD-EPI formula[22]. Meropenem and piperacillin clearances
(CL) were calculated using the following formula:

CL (L/h) = Dose (mg)
Css (mg/L)×24 (h)
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where Css is the meropenem or piperacillin steady state concentration.

Descriptive statistics were reported as the median and interquartile range (IQR)
for continuous data and numbers with percentages for categorical data. The inter-
individual variability of meropenem or piperacillin/tazobactam CL was assessed
by calculating the CV% of all the CL values obtained at each TDM assessment in
each patient.

The relationship between meropenem or piperacillin/tazobactam CL and eGFR
was expressed using the Spearman rank correlation coefficient (ρ). Categorical
variables were compared using the χ2 test or Fisher’s exact test, while continu-
ous variables were compared using the Student t-test or the Mann–Whitney test.
A p-value of <0.05 was required to achieve statistical significance. All statisti-
cal analysis and plotting was performed using R version 3.4.4 (R Foundation for
Statistical Computing, Vienna, Austria).

2.3 Results

The patient inclusion criteria in the study are reported in Figure 2.1. First,
patients with hematologic malignancies who underwent CAR-T cell during the
study period (n=80) were retrospectively identified. Of these, only those who
were administered 24h-CI meropenem or piperacillin/tazobactam and whose ther-
apy was optimized by TDM were included (n=38). This group consisted of 14
patients treated with 24h-CI meropenem and 24 patients treated with 24h-CI
piperacillin/tazobactam. These two groups were then matched at a 1:2 ratio
to general oncohematologic patients treated with 24h-CI meropenem (n=28) or
piperacillin/tazobactam (n=48) for FN but who did not receive CAR-T cell treat-
ment. At the end, a total of 38 CAR-T cell patients was matched to 76 oncohe-
matologic patients.

The CAR-T cell population included patients with relapse/refractory lymphomas
(3 median lines of previous therapy) who were histologically grouped as follows:
diffuse large B-cell lymphoma (n=21), mantle cell lymphoma (n=7), primary me-
diastinal B-cell lymphoma (n=5), follicular lymphoma (n=4), and high grade B-
cell lymphoma (n=1). The patients were admitted for the infusion of anti-CD19
CAR-T after lymphodepleting chemotherapy. The comparator cohort included pa-
tients with different oncohematologic diagnoses: acute myeloid leukemia (n=31),
lymphoma (n=29), acute lymphoblastic leukemia (n=6), myeloproliferative neo-
plasm (n=4), myelodysplastic syndrome (n=4), and plasma-cell dyscrasia (n=2).
All these patients had undergone chemotherapy respective to the diagnosis and
phase.

Table 2.1 reports the demographic and clinical characteristics of the case and the
control patients treated with 24h-CI meropenem (n=14 and n=28, respectively).
The CAR-T cell patients had a significantly lower eGFR compared with the control
group (median eGFR of 63.5 vs. 94.5 mL/min/1.73m2, p=0.005).
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CRS occurred in 85.7% (12/14) of CAR-T cell patients, after a median (IQR)
number of days from cell infusion of 4.0 (2.5–4.5). Meropenem was started af-
ter a median (IQR) number of days from cell infusion of 4.0 (1.25–4.75). Dur-
ing meropenem treatment, the median (IQR) range of IL-6 and IL-8 was 237.3
(49.2–2201.2) pg/mL and 46.0 (32.0–79.0) pg/mL, respectively. No patient devel-
oped AKI during treatment. The median meropenem CL in CAR-T cell patients
was similar to that observed in oncohematologic patients (11.1 vs. 11.7 L/h, re-
spectively, p=0.835), even if the inter-individual variability was quite high (CV%
of 5% and 69.7%, respectively).

At the first TDM assessment, the distribution of Css was similar among CAR-T
cell and non-CAR-T cell treated patients (median Css of 13.5 vs. 10.85 mg/L,
respectively, p=0.858, Figure 2.2). A similar proportion of patients with Css out-
side the desired range [28.6% (4/14) vs. 21.4% (6/28), respectively, p=0.707] was
observed.

Table 2.2 reports the demographic and clinical characteristics of the case and
control patients treated with 24h-CI piperacillin/tazobactam (n=24 and n=48,
respectively). No statistically significant difference was observed in any of the
parameters between the CAR-T cell and the non-CAR-T cell patients.

CRS was observed in 95.8% (23/24) of CAR-T cell patients, after a median (IQR)
number of days from cell infusion of 3.0 (2.0–4.0). Piperacillin/tazobactam was
started after a median (IQR) number of days from cell infusion of 2.0 (0.0–4.00).
During piperacillin/tazobactam treatment, the median (IQR) range of IL-6 and
IL-8 was 69.4 (29.4–561.8) pg/mL and 56.0 (29.0–110.0) pg/mL, respectively. AKI
occurred only in one CAR-T cell patient between day 3 and day 6 (median crea-
tinine clearance value of 27 mL/min/1.73m2), and renal function gradually recov-
ered from day seven onward. In this patient, IL-6 levels and piperacillin CL were
4899 pg/mL and 3.78 L/h, respectively, during the AKI phase. Then, piperacillin
CL increased up to 16.21 L/h when creatinine clearance returned to normal values
(102 mL/min/1.73m2). Median piperacillin CL was similar between the CAR-T
cell and oncohematologic patients (CL of 14.0 vs. 10.4 L/h, respectively, p=0.074),
but with very high inter-individual variability (CV% of 92.6% and 112.4%, respec-
tively).

At the first TDM assessment, the distribution of piperacillin Css was similar be-
tween CAR-T cell and non-CAR-T cell treated patients (median Css of 42.8 vs.
57.3 mg/L, respectively, p=0.153, Figure 2.3). A similar proportion of patients
with piperacillin Css out of the desired range (25.0% [6/24] vs. 16.7% [8/48],
respectively, p=0.529) was observed.

2.4 Discussion

This investigation first reported the comparative PK of 24h-CI meropenem and
piperacillin/tazobactam in CAR-T cell vs. non-CAR-T cell patients. Our findings
suggest that the CL of both these beta-lactams should not be affected by CAR-T
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cell treatment.

Indeed, almost all of the CAR-T cell patients experienced CRS, as evidenced by
the high levels of both IL-6 and IL-8, and according to previously reported data
[23–25]. CRS is an excessive and dysregulated immune response with increased
secretion of proinflammatory cytokines, such as IL-2, IL-6, IL-10, and TNF-α [5].
This response is commonly associated with CAR-T cell therapy [5,26]. Among
these cytokines, IL-6 appears to be a key driver of CRS. IL-6 is a pleiotropic cy-
tokine that has been described as having both pro- and anti-inflammatory prop-
erties. IL-6 is produced directly by CAR-T cells after infusion, but it is also
released by endothelial cells in response to pro-inflammatory signals, including
TNF-α and hypoxia, and in response to tissue injury and organ failure. On tar-
get cells, IL-6 acts by binding to its receptor. This triggers gp130 and activates
the Jak/STAT signaling pathway, which, in turn, activates STAT3 [27]. CRS
was already associated with a downregulation of the CYP3A4-mediated drug bio-
transformation [28,29]. Additionally, CRS is closely associated with both AKI and
chronic kidney disease [7,30,31]. It is likely that IL-6 plays a major role in kidney
injury by causing acute tubular injury [32,33]. Pre-clinical models show that in
nephrotoxin-induced AKI, IL-6 expression is enhanced more than a hundred-fold
in the kidneys, mainly in the renal tubular epithelial cells; it is also strongly cor-
related with kidney damage [32]. However, mice with IL-6 deficiency and with
reduced migration of neutrophil cells did not suffer from the consequences of kid-
ney insult. This reinforces the role of IL-6-mediated neutrophil activation as one
of the main mechanisms involved in AKI. Moreover, it has also been shown that
IL-6 reduces endothelial nitric oxide production and adiponectin expression, thus
suggesting the role of IL-6 also in patients with chronic kidney disease by induc-
ing chronic vascular disease. Interestingly, a retrospective study conducted on 646
critically ill Japanese patients whose IL-6 levels were measured at ICU admission,
showed that patients with higher levels of IL-6 (1189–2,346,310 pg/mL) had sig-
nificantly higher in-hospital 90-day mortality, lower urine output, and increased
probability of persistent anuria for 12 h compared with patients with lower IL-6
levels (1.5–150.2 pg/mL) [34].

On these bases, it could be expected that the elimination of meropenem and
piperacillin/ tazobactam would be affected after CAR-T cell treatment of onco-
hematologic patients. However, this was not the case as the CAR-T cell patients
had both meropenem and piperacillin CL similar to the control group, with values
even higher than observed in other patient populations. Population PK studies of
CI meropenem carried out in critically ill and oncohematologic patients showed
meropenem CL ranging from 5.3 to 13.04 L/h [16,35–39]. For piperacillin, four
population PK studies and one observational PK study showed drug CL ranging
from 5.6 to 13.8 L/h [17,40–42]. Overall, these observations may be explained
considering that most of our patients (83/114, 72.8%) had median eGFR>60
mL/min/1.73m2 and the occurrence of transient AKI was observed in only one
patient. It should be noted that this patient showed high values of IL-6 and a
low value of piperacillin CL, suggesting that CRS-induced AKI may reduce the
CL of drugs eliminated by the kidneys. We are aware that the low incidence of
AKI in our population may be due to the lower levels of IL-6 that we observed in
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our CAR-T cell patients compared with the values reported by [30]. Moreover, we
also cannot exclude that the prompt administration of tocilizumab, a recombinant
humanized anti-IL-6 receptor monoclonal antibody, to most of our patients may
have attenuated the rise of IL-6.

With regard to achieving the desired efficacy targets, no difference was observed
between the CAR-T cell and non-CAR-T cell treated patients. However, it is
worth noting that up to 28.6% and 25% of patients treated with CI meropenem
and piperacillin/tazobactam, respectively, did not attain the desired Css at the
first TDM assessment.

Surprisingly, the relationship between beta-lactam CL and eGFR was only mild
for meropenem in the CAR-T cell patients, and absent for piperacillin in the
CAR-T cell patients and for both meropenem and piperacillin in the oncohema-
tologic patients. This finding is in contrast to expectations based on previous
data, which shows that eGFR is a significant covariate on both meropenem and
piperacillin/tazobactam CL in different patient populations, including oncohema-
tologic patients [16,17]. However, eGFR was recently reported to account for no
more than 54% of the variability of meropenem elimination in critically ill patients
[43], as this antibiotic is also eliminated by tubular secretion [44]. With regard
to piperacillin CL, several studies show saturative elimination occurs at therapeu-
tic dosages, which makes drug exposure unpredictable and uncorrelated to eGFR
[17]. In any case, it has already been documented how the PK of antibiotics pre-
dominantly cleared by the renal route may be greatly modified in patients with
oncohematologic malignancies [45,46]. Given that up to 25–30% of treated pa-
tients do not attain the desired target concentration at the first TDM assessment,
and given the unreliability of eGFR in guiding dose adjustments both in CAR-T
cell patients and in oncohematologic patients, TDM may be beneficial for dosage
adjustments in both CAR-T cell treated patients and oncohematologic patients,
similarly to what has been observed in critically ill patients [47].

Moreover, beta-lactam optimization by means of TDM may acquire special rele-
vance for patients with augmented renal function, a condition that often occurs in
oncohematologic patients [48]. In this patient population, dose adjustments should
be based on measured rather than estimated renal function, as eGFR has been
reported to either underestimate or overestimate measured creatinine clearance in
different studies [49,50].

We recognize that our study has some limitations. The limited sample size and
the estimation rather than measurement of creatinine CL must be acknowledged.
Moreover, as only one patient experienced CRS-induced AKI in our cohort, it is
difficult to draw definitive conclusions about the effect of CAR-T cell treatment on
beta-lactam disposition. However, we believe that this study may be of interest
to clinicians since our findings suggest that the treatment of FN with 24h-CI
piperacillin/tazobactam or meropenem in CAR-T cell patients should be based
on the same dosing regimens used for non-CAR-T cell patients.

In conclusion, our preliminary findings suggest the fact that 24h-CI meropenem
and piperacillin dosages should not be reduced a priori in CAR-T cell treated
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patients experiencing CRS, as CRS-induced AKI occurs rarely in CAR-T cell
treated patients. However, clinicians should carefully monitor renal function in
these patients, as drug accumulation may occur as soon as AKI develops. Large
prospective studies are warranted to confirm these findings.
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Table 2.1: Demographic and clinical characteristics of CAR-T cell patients and
oncohematologic patients receiving 24h-CI meropenem (n=42).

Variable CAR-T Cell Treated Patients Oncohematologic Patients p-Value

Number of patients (n) 14 28 -

Age (year) 61.5 (49–65) 62.5 (55–69.5) 0.371

Gender (male/female) 9/5 21/7 0.491

Weight (kg) 88.8 (71.0–97.0) 73.4 (63.0–80.0) 0.016

Height (m) 1.75 (1.64–1.80) 1.70 (1.64–1.75) 0.926

Creatinine (mg/dL) 1.08 (0.85–1.31) 0.69 (0.49–0.94) ¡0.001

eGFR (mL/min/1.73m2) 63.5 (54.0–90.5) 94.5 (78.8–117.3) 0.005

Reasons for meropenem

FN (n, %) 11 (78.7) 21 (75.0) 1.000

BSI (n, %) 1 (7.1) 5 (17.9) 0.645

HAP(n,%) 1 (7.1) 2 (7.1) 1.000

UTI (n, %) 1 (7.1) 0 (0) 0.333

Meropenem treatment

Drug daily dose (g) 4.0 (4.0–4.0) 4.0 (4.0–4.0) 0.476

Treatment duration (day) 9.0 (7.0–11.8) 13.0 (8.0–17.0) 0.101

Css (mg/L) 11.0 (7.0–15.1) 12.0 (6.7–17.5) 0.852

CL (L/h) 11.1 (7.9–21.2) 11.7 (8.2–20.1) 0.835

Abbreviations: eGFR, estimated glomerular filtration rate; FN, febrile neutropenia; BSI,
bloodstream infection; HAP, hospital-acquired pneumonia; UTI, urinary tract infection;
Css, steady-state concentration; CL, clearance.

Data are presented as median (IQR) for continuous variables and as a number (%) for
categorical variables.
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Table 2.2: Demographic and clinical characteristics of CAR-T cell patients and
oncohematologic patients receiving 24h-CI piperacillin/tazobactam (n=72).

Variable CAR-T Cell Treated Patients Oncohematologic Patients p-Value

Number of patients (n) 24 48 -

Age (year) 61 (52–64) 64.5 (47–74) 0.187

Gender (male/female) 14/10 29/19 1.000

Weight (kg) 70 (61.5–82.3) 70.0 (60–80) 0.236

Height (m) 1.70 (1.63–1.76) 1.70 (1.64–1.76) 0.556

Creatinine (mg/dL) 0.99 (0.81–1.18) 0.81 (0.69–1.13) 0.153

eGFR (mL/min/1.73m2) 76.5 (60.0–96.2) 95.5 (59.8–105.3) 0.186

Reasons for piperacillin/tazobactam

FN (n, %) 20 (83.3) 35 (72.9) 0.390

BSI (n, %) 2 (8.3) 10 (20.8) 0.314

HAP(n,%) 1 (4.2) 2 (4.2) 1.000

UTI (n, %) 1 (4.2) 1 (2.1) 1.000

Piperacillin/tazobactam treatment

Drug daily dose (g) 18.0 (13.5–18.0) 18.0 (13.5–18.0) 0.522

Treatment duration (day) 6.0 (5.0–14.0) 9.0 (7.0–12.0) 0.394

Css (mg/L) 43.7 (34.6–65.3) 58.4 (34.8–90.1) 0.058

CL (L/h) 14.0 (9.0–19.3) 10.40 (6.38–17.2) 0.074

Abbreviations: eGFR, estimated glomerular filtration rate; FN, febrile neutropenia; BSI,
bloodstream infection; HAP, hospital-acquired pneumonia; UTI, urinary tract infection;
Css, steady-state concentration; CL, clearance.

Data are presented as median (IQR) for continuous variables and as a number (%) for
categorical variables.
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Figure 2.1: Flowchart of patient inclusion criteria in the study.
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Figure 2.2: Beeswarm plot of distribution of Css of 24h-CI meropenem (n=42)
in CAR-T cell treated patients and in oncohematologic patients at first TDM
assessment. The gray shaded area represents the desired therapeutic range (Css of
8–16 mg/L). The dashed line is the median. The dotted lines represent the 25th

and 75th percentiles.
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Figure 2.3: Beeswarm plot of distribution of Css of 24h-CI piperacillin/tazobactam
(n=72) in CAR-T cell treated patients and in oncohematologic patients at first
TDM assessment. The gray shaded area represents the desired therapeutic range
(Css of 32–64 mg/L). The dashed line is the median. The dotted lines represent
the 25th and 75th percentiles.
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Abstract

Background: Oncohematologic patients with febrile neutropenia (FN) are at high risk
of developing severe infections due to multidrug-resistant Gram-negative pathogens.
Meropenem is a beta-lactam commonly used as a second-line antimicrobial in those
patients. Although the use of 24h continuous infusion (CI) administration coupled
with therapeutic drug monitoring may optimize meropenem exposure, patient response
to therapy is still difficult to predict, and the identification of clinical biomarkers of
response may be highly beneficial. The aim of this study was to assess the pharma-
cokinetic/pharmacodynamic (PK/PD) relationship between 24h-CI meropenem and C-
reactive protein (C-RP) in a cohort of oncohematologic patients with FN.

Methods: All patients included were administered 24h-CI meropenem for the treat-
ment of FN. Meropenem steady-state concentrations (Css) and C-RP measurements
were collected during therapy, along with demographics and clinical data. A joint pop-
ulation PK/PD model was adopted to fit meropenem Css and C-RP values by means
of Monolix® software. PK/PD analysis evaluated diverse indirect PK/PD models link-
ing C-RP and meropenem concentrations. Monte Carlo simulations were generated to
obtain C-RP concentrations-vs-time profiles according to different meropenem dosages
optimized for renal function. The probability of target attainment (PTA) was defined
as the proportion of patients having a 25%, 50%, and 75% reduction of C-RP levels
from baseline in each simulated scenario at days 3, 5, and 7 from starting therapy.

Results: Totally, 141 oncohematologic patients (59.57% males, 84/141), who provided
283 meropenem Css and 1373 C-RP concentrations, were enrolled. Among those pa-
tients, 82 (58.2%, 82/141) received meropenem plus an anti-Gram-positive agent plus
an antifungal agent, and 52 (36.9, 52/141) received meropenem plus an antifungal agent.
A one-compartment model that included estimated glomerular filtration rate as a co-
variate on meropenem clearance was built based on all the patients (n=141). The
population estimate of meropenem CL was 13.3 L/h. The PD model was based on data
coming from patients receiving both meropenem and antifungal agents (n=134). C-RP
profiles were best described by a turnover full inhibition of the production model. No
significant covariates were identified on any PD parameters. The IC50 was 41.5 mg/L.
Monte Carlo simulations showed that PTA of 50% C-RP reduction from baseline as-
sessed at days 3, 5, and 7 and associated with the dose of 1 g q8h by CI were 23.9%,
42.1%, and 56.3%, respectively; those associated with the dose of 1g q6h by CI were of
24.1%, 41.6%, and 55.6%, respectively; and those associated with the dose of 1.25g q6h
by CI were of 22.5%, 39.9%, and 54.4%, respectively.

Conclusion: The decrease of C-RP in oncohematologic patients treated with meropenem
for FN is slow during the first two weeks of therapy. C-RP does not represent a reliable
biomarker of quick response to meropenem therapy.

Keywords: population PK/PD, C-Reactive Protein, Meropenem, Oncohematologic
patients
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3.1 Introduction

Oncohematologic patients undergoing induction chemotherapy or conditioning regi-
mens for stem cell transplantation are vulnerable to developing infectious complications.
Bloodstream infection caused by Gram-negative pathogens is the most common infection
in this population, with a prevalence rate of 11-38%[1]. Antimicrobial agents that are
conventionally used in onchohematologic patients should target Enterobacterales, such
as Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and non-fermenting
pathogens such as Pseudomonas aeruginosa[2].

International guidelines recommend antipseudomonal beta-lactams, e.g., ceftazidime,
piperacillin/tazobactam, or cefepime as first-line agents for the treatment of febrile neu-
tropenia (FN) in oncohematologic patients[3], [4]. Escalation to meropenem is suggested
in case of no response within the next 48-72h.

The pharmacodynamic (PK) activity of meropenem is maximized when its plasma con-
centration is maintained 4-6 folds higher than pathogen minimum inhibitory concen-
tration (MIC) for 100% of the dosing interval (100% fT>4-6 foldsMIC)[5], [6]. Adminis-
tration of meropenem by 24h continuous infusion (CI) and therapeutic drug monitor-
ing (TDM) may be highly beneficial for attaining this optimal PK/pharmacodynamic
(PK/PD) target of efficacy[7], [8].

In this population, measurement of correct antibiotic exposure, clinical judgment of
the evolution of signs and/or symptoms of infection, and measurement of inflammatory
biomarkers such as C-reactive protein (C-RP) are used to assess the response to ther-
apy[9], [10]. C-RP is an acute-phase protein that is extensively used in diagnosing and
managing bacterial infectious diseases[11], [12]. However, few studies have investigated
the relationship between antimicrobial exposure and C-RP dynamics.

The aim of this study was to develop a population PK/PD model to describe the C-RP
dynamics in relation to meropenem exposure over time in a cohort of oncohematologic
patients treated for FN and to simulate the attainment of both C-RP halving from
baseline and C-RP negativization.

3.2 Materials and Methods

3.2.1 Study Design

This was a retrospective single-center clinical study that included all consecutive adult
oncohematologic patients who were admitted to the Division of Hematology of the IR-
CCS Azienda Ospedaliero-Universitaria di Bologna, Italy, between January 2021 and
August 2023 and who were treated with 24h-CI meropenem as a second-line single-
agent therapy for FN. This study was approved by the ethics committee of the study
hospital (No. 308/2021/Oss/AOUBo). Written informed consent was waived due to the
retrospective nature of this investigation.

Meropenem dose was initiated in all the patients with a loading dose of 1g over 30min
followed by a maintenance dose of 1g q8h CI over 8h if the estimated glomerular filtra-
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tion rate (eGFR)<90 mL/min/1.73m2 or 1g q6h CI over 6h if eGFR between 90-130
mL/min/1.73m2 or 1.25g q6h CI over 6h if eGFR>130 mL/min/1.73m2. Stability of
24h-CI meropenem was granted by reconstituting each solution every 6-8 h with infusions
of 6-8h. Real-time TDM-based clinical pharmacological advice was applied for guiding
meropenem dosages, with the intent of targeting meropenem steady-state concentration
(Css) over MIC ratio (Css/MIC) between 4-8 folds of the EUCAST clinical breakpoint
of 2 mg/L against Enterobacterales and Pseudomonas aeruginosa, finalized at achiev-
ing meropenem Css at 8-16 mg/L. TDM was first assessed after at least 48 hours from
starting therapy and then reassessed every 48-72h until the end of treatment. At each
TDM assessment, 3 mL of peripheral blood samples were collected and meropenem con-
centrations were analyzed by means of a validated liquid chromatography-tandem mass
spectrometry (LC-MS/MS) commercially available method (Chromsystems Instruments
& Chemicals GmbH, Munich, Germany). The lower limit of detection was 0.3 mg/L.

Meropenem Css and C-RP concentrations were collected during therapy, along with the
following demographics and clinical data from each patient’s medical record: age, gender,
weight, height, serum creatinine, eGFR, type and site of infection, and microbiological
isolates with meropenem MIC. The Chronic Kidney Disease Epidemiology (CKD-EPI)
formula was used for eGFR calculation[13].

To adequately assess the relationship between meropenem exposure and C-RP dynamics,
the patients were divided into the following groups: (a) patients receiving meropenem,
anti-fungal agents, and anti-Gram-positive agents; (b) patients receiving meropenem
and anti-fungal agents; (c) patients receive meropenem and anti-Gram-positive agents;
(d) patients receive meropenem alone.

3.2.2 Population Pharmacokinetic/Pharmacodynamic Analysis

A PK/PD model based on the stochastic approximation of the standard expectation
maximization (SAEM) algorithm was implemented in Monolix® (version 2023R1, Lixoft,
Antony, France). To overcome initial model instability and biases when simultaneously
fitting sparse clinical PK and PD data, an intermediate PK/PD approach was used for
model building. This approach consisted in building at first a PK model. Then, the me-
dian Bayesian posterior estimates of the PK parameters were fixed and integrated into
a PK model which was built to fit the individual C-RP concentration over time. Differ-
ent PD models were tested on C-RP production and degradation. Diverse covariates,
i.e., eGFR, weight, height, age, and gender, were tested on each PK/PD parameter.
Exponential random effects were assumed to describe between-subject variability. Cor-
relations between random effects were tested in the variance-covariance matrix and im-
plemented into the structural model accordingly. Constant, proportional, or combined
error models were tested to describe the residual variability.

Since all meropenem concentrations were collected during 24h-CI administration, mod-
eling was built according to the one-compartment pharmacokinetic model develop in
oncohematologic patients by Cojutti et al.[8], which included only eGFR as a covariate
of meropenem total clearance. As the adoption of the one-compartment model and the
24-CI administration did not allow to adequately estimate the distribution volume (V),
it was fixed to 28.5 L as reported[14]. The structural PD model was an indirect turnover
model with inhibition of C-RP generation, as described below:
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dR/dt = kin × (1− Cc
Cc+IC50 × e−k×t − kout ×R)

where R represents the response (i.e., C-RP concentration in plasma); dR/dt repre-
sents the changing rate of C-RP in plasma relative to time; Cc is meropenem plasma
concentration; kin and kout represent the production and degradation rate constant,
respectively, of C-RP; IC50 represents the meropenem concentration causing the half-
maximal rate of C-RP reduction; k is a time-dependent constant introduced to discrim-
inate C-RP trends.

3.2.3 Model Evaluation

Evaluation of the PK/PD model was based on the following goodness-of-fit plots: in-
dividual prediction (IPRED) vs. observation, individual weighted residuals (IWRES)
vs. IPRED. A prediction-corrected visual predictive checks (pcVPC) showing the time
course of the 10th, 50th, and 90th percentiles of the observation and the correspond-
ing 90% prediction intervals were calculated from 10,000 Monte Carlo samples. A PK
or PD model is considered adequate if the 10th, 50th, and 90th percentiles of observed
data are inside the simulated prediction intervals. Model appropriateness was assessed
by comparing the objective function values (OFV) and the Akaike information criteria
(AIC) among tested models. A reduction of at least 3.84 points of the OFV along with
a reduction of the AIC were used for model selection. Standard errors (SE) and percent-
age of relative standard errors (%RSE) of parameters were calculated from the Fisher
information matrix. One thousand nonparametric bootstrap iterations with resampling
of each population parameter were simulated with the “Rsmlx” package of R.

3.2.4 Monte Carlo Simulation and Probability of Target Attainment

Monte Carlo simulations based on the final PK/PD model were performed in Simulix®

(version 2021R1, Lixoft, Antony, France). A total of 3 simulated clinical scenarios
were created in order to obtain C-RP concentration-vs-time profiles after the admin-
istration of the meropenem dosages recommended for empirical treatment of FN in
onco-hematological patients, namely 1g q8h by CI, 1g q6h by CI, and 1.25g q6h by CI
in patients with eGFR classes of 50-89 mL/min/1.73m2, 90-129 mL/min/1.73m2, and
>130 mL/min/1.73m2 [8]. The probability of target attainment (PTA) was defined as
proportion of patients having 25%, 50%, and 75% reduction of C-RP levels from baseline
in each simulated scenario at days 3, 5, and 7. Optimal PTA was considered>90%.

3.3 Results

3.3.1 Demographics and Clinical Data

A total of 141 patients (59.57% males, 84/141) were included in this PK/PD analysis, of
which 82 were concomitant with anti-fungal and anti-Gram positive antibiotics and 52
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were concomitant with antifungal (Figure 3.1). Median (min-max range) age, weight,
and eGFR were 59 (19-81) years, 70 (42-118) kg, and 97 (17-195.6) mL/min/1.73m2,
respectively (Table 3.1). Acute myeloid leukemia was the most frequent hematologic ma-
lignancy in the population (91/141, 64.54% of patients). Microbiological isolates were
identified in 46/141 patients. The medium (min-max range) duration of meropenem
treatment was 10 (2-32) days. The median (min-max range) number of meropenem
concentration and C-RP measurements per patient were 2 (1-7) and 12 (1-32), respec-
tively. The median (min-max range) of Css and of C-RP at baseline were 11.4 (3.0-39.5)
mg/L and 9.83 (4.99 to 17.35) mg/dL.

3.3.2 Population Pharmacokinetic/Pharmacodynamic Modeling

A total of 283 meropenem plasma Css and 1373 plasma C-RP measurements were in-
cluded in the PK/PD models. A one-compartment model with zero-order administration
and first-order elimination from the central compartment was developed and eGFR was
included as a covariate on clearance in the final population PK model. The coefficient of
determination (R2) of the observed versus individual-predicted concentrations was 0.85
(Figure 3.2A). The population estimate of CL was 13.34 L/h with an inter-individual
variability of 45%. No trends were observed in the distribution of the IWRES vs. IPRED
(Figure 3.2C). The pcVPC showed good predictive performance of the population PK
model as most of the concentrations were within the prediction intervals (Figure 3.3A).

The PK values of the population estimates and of the standard deviation of the random
effects were included as fixed values in an indirect turnover PD model. The fit of the
PK/PD model to C-RP data yielded an R2 of 0.83 for the observed versus individual-
predicted concentrations (Figure 3.2B). The pcVPC of the PK/PD model confirmed the
adequacy of model predictions (Figure 3.3B). The parameter estimates of the PK/PD
model are summarized in Table 3.2. Model parameters were estimated with good pre-
cision as RSE% was less than 30% for most of them.

3.3.3 Monte Carlo Simulation

The PTAs of C-RP reduction by 25%, 50%, and 75 over the first two weeks of treat-
ment are shown in Figure 3.4. The doses of 1g q8h for the eGFR class of 50-89
mL/min/1.73m2, 1q q6h for the eGFR class of 90-130 mL/min/1.73m2 and of 1.25g
q6h for the eGFR class of >130 mL/min/1.73m2 started reducing C-RP after 47, 43
and 52 hours from starting therapy, respectively.

PTAs of C-RP reduction by 25% at day 3, 5 and 7 were of 37.94%, 53.34%, and 65.59%,
respectively, for the regimens of 1g q8h, of 37.40%, 52.64%, and 64.87%, respectively,
for the regimen of 1g q6 h and of 35.92%, 51.10%, and 63.64%, respectively, for the
regimen of 1.25g q6h by CI (Figure 3.4A).

PTAs of C-RP reduction by 50% at day 3, 5 and 7 were of 23.93%, 42.04%, and 56.29%,
respectively, for the regimens of 1g q8h, of 24.04%, 41.61%, and 55.57%, respectively, for
the regimen of 1g q6h and of 22.45%, 39.90%, and 54.40%, respectively, for the regimen
of 1.25g q6h by CI (Figure 3.4B).
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PTAs of C-RP reduction by 75% at day 3, 5 and 7 were of 4.07%, 23.23%, and 39.97%,
respectively, for the regimens of 1g q8h, of 3.97%, 23.28%, and 39.47%, respectively, for
the regimen of 1g q6h and of 3.63%, 22.20%, and 37.54%, respectively, for the regimen
of 1.25g q6h by CI (Figure 3.4C).

3.4 Discussion

In this study, the relationship between meropenem and C-RP in febrile neutropenic onco-
hematological patients was assessed by a population PK-PD approach. The model-based
simulation demonstrated the C-RP profile over 14 days further clarified the possibility of
using C-RP as a response biomarker to meropenem treatment. To our knowledge, this
is the first quantitative study that described the exposure-response relationship between
meropenem and C-RP in onco-hematological patients and presents intriguing insights
into the complexities of antibiotic therapy within this specific clinical context.

The PK model of meropenem was described by a one-compartment model since all
meropenem concentrations were collected during 24h-CI administration. The influence
of age, gender, weight, height, serum creatinine, eGFR, and type/site of infection on
meropenem PK were evaluated. Considering meropenem is predominantly eliminated
by the kidneys, eGFR was included as a covariate of meropenem total clearance as that
in the previous study[8]. From a pathophysiological point of view, chronic inflammation
induced intracellular fluid leakage and/or organ dysfunction in oncohematologic patients
might alter the PK of meropenem, especially affecting antibiotic distribution. Mean-
while, most of our study patients provided only one steady-state measurement, which
further challenges estimating of V mathematically. In our study, the V was therefore
fixed (28.5 L) to stabilize the model fitting[14].

The population PK of meropenem has been broadly investigated by multiple studies,
including three conducted among patients with hematological malignancies during in-
termittent infusion (n=2) and continuous infusion (n=1). Contejean et al. found that
among 88 onco-hematological patients (median CLCr was 120 mL/min/1.73m2) who
received a meropenem dose of 1g to 2g by 30min to 1h infusion every 8h, the estimated
CL and V were 12.3 L/h and 28.5 L, respectively[14]. Lee et al. reported that among 57
Korean onco-hematological patients (median CLCr was 121 mL/min) who were treated
with 0.5g every 8h meropenem by intermittent infusion, the CL and V were 9.7 L/h and
14.6 L, respectively[15]. In another study conducted in 61 febrile neutropenic patients
with hematologic malignancies (median CLCr was 107.3 mL/min/1.73m2) who were
administered with 2g to 4g 24-CI meropenem, the final estimates were 13.04 L/h for CL
and 21.88 L for V[8]. Overall, our model showed a similar meropenem CL (13.34 L/h)
with that reported in previous studies.

A turnover, full inhibition model was employed to describe C-RP response to meropenem
therapy, indicating the generation of C-RP was inhibited by meropenem treatment.
There is considerable C-RP variability in our study population. To capture variations
of real-world data, we introduced a versatile parameter k to characterize the time-varying
generation rate of C-RP. This parameter improved individual C-RP fitting significantly,
despite the IIV being large (IIV=1.51). This model gave a typical IC50 estimate of
41.5 mg/L, making it difficult for physicians to determine the optimal meropenem dos-
ing regimen. With referent to this value, the meropenem concentration that exerts
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90% inhibitive C-RP generation effect would be extremely higher than the EUCAST
suggested exposure (8-16 mg/L) calculated by a frequently used clinical breakpoint (2
mg/L) against Enterobacterales and Pseudomonas aeruginosa. Despite that meropenem
exhibits a wide therapeutic window and benefits of using meropenem typically outweigh
the potential risks when it is prescribed appropriately, dose increasement can still lead
to risk of adverse effect or promote resistance development[16], [17]. This indicates that
the IC50 estimated by the PK/PD model might be unplausible and unreliable in clinical
practice.

Model-based Monte Carlo simulations and PTA analysis presented the target attain-
ment over time among patients undergoing 3 frequently used dose regimens (Figure
3.4). Based on the estimated IC50 value, none of the simulated scenarios achieved the
predefined optimal PTA within the first week. Findings were similar at the timepoint
of 2 weeks, indicating that under this assumption none of these dose regimens were of
sufficient magnitude to be considered clinically optimal and warrant a desirable treat-
ment outcome. Considering the unplausible high IC50 of meropenem and slow response
of C-RP, C-RP seems not to be a good biomarker to meropenem treatment in onco-
hematologic patients.

Possible explanations, in our opinion, include first, the stimulation of C-RP production
in our study population was not unique. The level of C-RP can be elevated in various
conditions of inflammation, not only limited to bacterial infections-, but also includ-
ing surgery-, tissue injury-, and certain cancer-induced inflammation[18]–[20]. Baseline
C-RP levels are also vary depending on age, sex or so. Besides infections, in oncohema-
tologic patients, disease-related and/or treatment-induced inflammation are potential
explanations of C-RP elevation. For example, hematologic malignancy induced parane-
oplastic syndromes and bone marrow dysfunction can cause systematic chronic inflam-
mation[21]. A certain type of hematologic malignancy, e.g., leukemia cells, can infiltrate
organs and tissues[22], [23], leading to inflammation and elevated C-RP levels as well.

Second, meropenem is mostly prescribed empirical and it is not the only anti-infection
agent used. Treatment of FN is almost always empiric in oncohematologic patients,
prescribing the appropriate type and dose of anti-infection agent with microbiological
evidence was unfeasible in most cases[24]. In our study population, 2/3 (89/134) were
undergoing empiric meropenem treatment, meaning that we did not know prior if the
pathogen was susceptible to meropenem or was the meropenem adequately exposed.
Moreover, fungal and Gram-positive pathogen infection related C-RP elevation is a
considerable confounding of precision meropenem therapy. In this population the con-
comitant use of antifungal and anti-Gram-positive prophylaxis was very common[24],
namely meropenem is not the only agents that acting on C-RP.

Third, immune system state is another aspect affecting C-RP generation/degredation.
As we all know, host defense is a crucial manifestation of the immune system’s function
in body homeostasis maintenance[25], [26]. An infection-induced inflammatory envi-
ronment, e.g., reflected by the elevated C-RP, could alert/activate the healthy immune
system, which is a prerequisite to the adaptive immune response against pathogens[25],
[27], [28]. However, oncohematologic therapy destroys the immune system, consequently
leading to an immunocompromised state in onco-hematological patients. With a weak-
ened immune system, signs, symptoms, and response of infection are typically attenu-
ated. The time and ability of recovering from immunocompromised state diverse patient
by patient, which indicates that the robustness of the immune system is inconsistent
among patients and difficult to assess in our study population. In recent years, antibi-
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otics have been reported to possibly interact/interfere with the host’s immune system.
Different authors showed that antibiotics might harm the immune-modulating effect by
damaging the gut environment[29]. On the other hand, antibiotics and the immune
system reinforce each other in maintaining body homeostasis. The sophisticated in-
teraction between the immune system and meropenem in onco-hematological patients
remains unclear, which might be a causative of IC50 variability/unplausibility. We tried
to check the immune system status by counting white blood cells, then tested the associ-
ation between IC50 and white blood cell count. However, no significant correlation was
found from those data. To figure this issue out, a physiologically based pharmacokinetic
or quantitative systems pharmacology might help in future studies.

To date, absolute level of C-RP alone is not conclusive evidence of patient’s response to
antibiotic therapy in oncohematologic patients. Fever is a common hematologic presen-
tation. The value of body temperature in combination with other inflammatory markers
has been explored in several studies. Consideration of body temperature and inflamma-
tory markers significantly increased the diagnosis accuracy. Yet unfortunately we could
not retrospectively retrieve real-time body temperature. Procalcitonin is another sensi-
tive biomarker of bacterial infection, however, its value in oncohematologic patients was
limited due to the low absolute levels (<0.2 ng/mL). Instead of checking the absolute
value of C-RP, monitoring biomarker dynamics to predict the treatment outcome has
been preferred in recent years. Povoa et al. presented the possibility of using C-RP
kinetics to identify patients’ (n=935) outcomes after community-acquired bloodstream
infection[30], suggesting that the C-RP dynamic may provide earlier warning of inter-
vention. This approach may be worthwhile in our subsequent studies.

Some limitations can be raised in this study. First, estimated instead of measured renal
function would perhaps lead to unexplained variability in PK modeling. Second, this
retrospective study may be biased by patient selection and group settings, e.g., the num-
ber of meropenem or C-RP assessments per patient, length of treatment duration, the
number of patients within each renal function class, and the C-RP trend, were imbal-
anced among patients and simulated scenarios, respectively. Whereas, from another side
of view the complex instances reflecting a real-world population is a valuable strength
of this study. Last but not least, lack of data relating to immune system hindered our
understanding in how the immune system interacts with pathogens by generating C-RP.

In conclusion, the present study investigated the utility of C-RP as a biomarker re-
sponse to meropenem treatment in onco-hematological patients. The model-based sim-
ulation revealed that the decrease of C-RP in onco-hematological patients treated with
meropenem for FN is slow during the first two weeks of therapy. C-RP does not represent
a reliable biomarker of quick response to meropenem therapy. Possible factors affecting
C-RP may include the type and state of the underlying hematological disease. Further
studies are needed to assess the role of C-RP in relation to the type of hematological
malignancy for guiding antimicrobial therapy.
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Table 3.1: Population demographics and clinical information.

Number of subjects (n) 141

Gender (n (%), [Female/Male],) 57/84 (40.43%/59.57%)

Age (year, median (IQR)) 59 (52-64)

Weight (kg, median (IQR)) 70 (62-80)

Height (m, median (IQR)) 1.70 (1.65-1.79)

CLCr* (mL/min/1.73m2, median (IQR)) 97 (80-109)

Underlying Disease (n, %)

AML 91 (64.54%)

NHL 23 (16.31%)

ALL 9 (6.38%)

MM 6 (4.26%)

CML 3 (2.13%)

CLL 2 (1.42%)

Other# 7 (4.96%)

Dosage regimens start from 2g loading dose+ 4g daily dose

Treatment duration (day, median (IQR)) 10 (7-13)

Css (mg/L, median (IQR)) 11.4 (8.05-16.45)

* CLCr was calculated through the CDK-EPI formula.
# Other: pancytopenia; myelodysplastic syndrome; vexas syndrome.
Abbreviation: AML, acute myeloid leukemia; NHL, non-Hodgkin lymphoma; ALL,
acute lymphoid leukemia; MM, Multiple Myeloma; CML, Chronic myeloid leukemia;
CLL, Chronic lymphoid leukemia.
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Table 3.2: Final estimates of the population PK/PD model.

Parameters
Final PK-PD model Bootstrap*

Estimates RSE (%) median 5th – 95th percentiles

Fixed effects

V (L) 28.5 - - -

CL (L/h) 4.99 15.4 4.86 3.95 - 7.23

β CL-CLCr 0.009 17.7 0.0093 0.0054 - 0.0115

R0 (mg/dL) 5.82 13.2 7.08 3.85 - 9.28

kout (h
-1) 0.02 4.86 0.02 0.02 – 0.02

IC50 (mg/L) 41.5 23.6 79 23.72 – 405.58

kin (mg/dL*h-1) 0.49 6.09 0.42 0.30 – 0.56

k (h-1) 0.0037 15.7 0.0035 0.0019 – 0.0050

Random effects

ω for V 1.64 12.7 1.61 1.27 - 1.92

ω for CL 0.45 7.34 0.45 0.38 – 0.49

ω for R0 1.25 8.35 1.14 0.92 – 1.39

ω for kout 0.21 22.4 0.20 0.13 – 0.36

ω for IC50 1.68 11.2 2.05 1.42 – 3.13

ω for kin 0.47 10.2 0.48 0.36 – 0.65

ω for k 1.51 7.59 1.56 1.26 – 2.08

Residual variability

b1 0.27 5.99 0.26 0.24 – 0.29

a2 (mg/dL) 0.11 24.6 0.10 0.02 – 0.22

b2 0.31 2.88 0.31 0.28 – 0.34

* Bootstrap results were based on 1000 simulations.
Abbreviations: RSE(%), relative standard error of the estimate; CL, clearance; V, the
volume of distribution; R0, baseline C-RP level; kout, the degradation rate constant of
C-RP; IC50, half maximal inhibitory concentration of meropenem; kin, the generation
rate constant of C-RP; k, a constant related to C-RP production rate; IIV, interindi-
vidual variability; b1: proportional residual error for PK model; a2, constant residual
error for PD model; b2, proportional residual error for PD model.
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Total Patients
(n=174)

Eligible for the PK analysis
? n=141?

Excluded (n=33)
- non 24h-CI (n=10)
- unreliable concentration (n=11)
- receiving CAR-T therapy (n=12)

Concomitant with 
anti- fungal agents

(n=134)

Not concomitant with 
antifungal agents

(n=7)

Concomitant with 
anti-Gram-positive agents

(n=82)

Not concomitant with 
anti-Gram-positive agents

(n=52)

Figure 3.1: Flowchat of patients inclusion criteria in the study.

Student ID: 0900069629 54 Chapter3



Alma Mater Studiorum - Università di Bologna

Figure 3.2: Diagnosis plot of the population PK/PD model. (A) Individual pre-
dictions of meropenem concentration (IPRED) vs. observed meropenem concen-
trations, the solid black line is the reference line of x=y while the dashed blue
line is the linear regression between IPRED and meropenem observations; (B)
Individual predictions of C-RP concentration (IPRED) vs. observed C-RP con-
centrations, the solid black line is the reference line of x=y while the dashed blue
line is the linear regression between IPRED and C-RP observations; (C) Idividual
weighted residuals (IWRES) vs. Individual predictions of meropenem concentra-
tion (IPRED), the solid black line is the reference line of y=0; (D) Individual
weighted residuals (IWRES) vs. Individual predictions of C-RP concentration
(IPRED), the solid black line is the reference line of y=0.
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Figure 3.3: Prediction-corrected visual predictive checks (pcVPC) of the PK/PD
model. Plot based on 10,000 Monte Carlo simulations. The solid blue lines rep-
resent the 10th, 50th, and 90th percentiles of the observed data. The blue and
pink shadows are simulation-based 90th confidence intervals around the 10th, 50th,
and 90th percentiles of the observed data. The blue dots are the observed (A)
meropenem concentrations and (B) C-RP concentrations.
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Figure 3.4: Monte Carlo simulations. Probability of attaining (A) 25%, (B) 50%,
and (C) 75% C-RP reduction from baseline over time associated with the dosing
regimen of 1g q8h, 1g q6h, and 1.25g q6h by CI for the eGFR classes of 50-89,
90-129 and >130 mL/min/1.73m2, respectively.
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Figure S3.1: Individual predictions and observations of meropenem concentration.
The blue dots are the observed individual meropenem concentrations; the solid
purple lines are the individual predictions.
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Figure S3.2: Individual predictions and observations of C-RP concentration. The
blue dots are the observed individual C-RP concentrations; the solid purple lines
are the individual predictions.
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Abstract

Background: Oncohematologic patients are recognized for a high risk of developing life-
threatening infections. However, good infection management in this population remains
a big challenge due to difficulties in obtaining microbiological data. This study aimed
to explore the role of C-reactive protein (C-RP) in predicting beta-lactam therapeutic
outcomes in oncohematologic patients.

Methods: This retrospective study included adult oncohematologic patients who re-
ceived 24h-continuous infusion piperacillin/tazobactam or meropenem for treatment
and/or prevention of infection. We employed the Cox proportional hazard (Cox PH)
model to conduct a survival analysis, in which the treatment failure was defined as the
endpoint. Clinical outcomes of antibiotic therapy were assessed at the end of treatment.
Demographic information and clinical measurements were collected from medical his-
tory and examined as independent clinical outcome predictors. Model-based simulation
was performed to demonstrate the clinical cure rate of beta-lactams.

Results: Among 142 patients, steady-state concentrations of both antibiotics were not
able to discriminate clinical outcomes. Besides, high antibiotic exposure did not lead
to a faster/larger C-RP reduction. Survival analysis showed that the Cox PH model
comprised relative change of C-RP at day 5 after treatment versus baseline, age, and
baseline C-RP level could compute the clinical outcomes roughly, despite the model
uncertainty being high (85%). With a median age and baseline C-RP level of our study
population, model-based simulation suggested that a 12.5-fold increase in C-RP at day
5 versus baseline indicated an approximate 50% clinical cure rate. Moreover, an increase
in age and/or baseline C-RP levels also indicated a high hazard of undesirable outcomes.

Conclusion: Our study suggested that C-RP did not show good predictive ability
within the first week of treatment due to high uncertainty. Physical examination and/or
other biomarkers might be required to consolidate this model.

Keywords: C-reactive protein, Beta-lactam, Clinical Outcome, Cox PH model, Hema-
tologic Malignancy.

3.5 Introduction

Infectious complications after chemo- and/or immuno-treatment increase the mortality
of oncohematologic patients due to treatment-induced immunocompromise[1]. Nearly
50% of the infection-related deaths are attributed to Gram-negative bacteria, for in-
stance, Escherichia coli, Klebsiella spp, and Pseudomonas aeruginosa[2]–[4]. Early initi-
ation of appropriate antibiotics with the guidance of minimum inhibitory concentrations
(MIC) of specific pathogens mentioned above can prevent life-threatening infections very
well. However, in most oncohematologic patients, pathogen type and corresponding MIC
are not always available in time. It means that physicians are forced to blindly or em-
pirically prescribe antibiotics without clear evidence-based guidelines within the first
several days, even weeks. This issue remains a tough clinical challenge of good infection
management in oncohematologic patients.

One way to overcome this issue is to promptly and adequately adopt broad-spectrum
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antibiotics, e.g., beta-lactams such as piperacillin/tazobactam or meropenem as escala-
tion therapy[5]. Despite the broad-spectrum activity and good clinical performance of
beta-lactams, physicians should remain prudent in clinical practice. Antibiotic abuse
and/or long-term use could result in antimicrobial resistance worldwide. Besides, dosing
strategy individualization is also difficult in empirical treatment because evaluating an-
tibiotic efficacy may take weeks. There is a compelling need for biomarkers/techniques
that can support early clinical decision-making in infection management.

C-reactive protein (C-RP) is considered a biomarker of infection. It is synthesized by
hepatocytes during the acute phase of host defense to inflammation, thus promptly
reflecting the host response[6]. Physicians frequently use it to assess the infection pro-
cess/severity and guide antibiotic treatment[7]–[9]. Many studies have reported C-RP’s
predictive ability of complications or treatment outcomes in diverse populations[10]–[15].
Aulin et al systematically summarized biomarker-guided dosing strategies in clinical
practice[16]. According to this study, the absolute C-RP level at admission does not
show a robust link with clinical treatment outcome, while the C-RP dynamic somewhat
reflects the host response to antibiotic therapy[9], [17]–[19]. This phenomenon has not
been validated in oncohematologic patients yet, despite, in principle, the host response
biomarker being a promising tool to predict antibiotic efficacy quantitatively. To achieve
optimal efficacy and avoid toxicity/resistance, the intermediary role of C-RP deserves to
be fully studied for characterizing the indirect interaction between antibiotic exposure
and clinical treatment outcome in oncohematologic patients.

This study aimed to clarify the relationship between antibiotic exposure, biomarker dy-
namics, and antibiotic treatment outcomes in patients with hematological malignancies.
We set out to (1) check the discriminate ability of antibiotic exposure to clinical out-
comes, (2) describe the effect of antibiotics on the C-RP dynamic, and (3) characterize
the association between C-RP and antibiotic treatment outcomes.

3.6 Materials and Methods

3.6.1 Study Design

This retrospective study was conducted among adult oncohematologic patients who were
admitted to the Division of Hematology of IRCCS Azienda Ospedaliero Universitaria
di Bologna, Italy during January 2021 and March 2022 as approved by the hospital
ethical committee (No. 308/2021/Oss/AOUBo). Eligible patients were administered
with 24h continuous infusion (CI) either piperacillin/tazobactam or meropenem as a
second-line single-agent therapy for the treatment of febrile neutropenia (FN) or sus-
pected infection. Both piperacillin/tazobactam and meropenem were treated upon ref-
erence to hospital treatment guidelines. They were initiated with a 2h quick loading
dose (8g/1g for piperacillin/tazobactam, 2g for meropenem, respectively) followed by a
24h-CI maintenance dose (16g/2g for piperacillin/tazobactam, 4g for meropenem, re-
spectively). After achievinahe steady state, each patient underwent therapeutic drug
monitoring (TDM) guided dose adjustment. The targeted steady-state concentration
(Css) of piperacillin/tazobactam and meropenem were 32-64 mg/L and 8-16 mg/L, re-
spectively, which corresponded to 4-8 folds higher than pathogen MIC for 100% of the
dosing interval (100% fT>4-8 foldsMIC) of the European Society of Clinical Microbiol-
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ogy and Infectious Diseases (EUCAST) clinical breakpoints of 8 mg/L and 2 mg/L,
respectively.

The demographic and clinical data including age, weight, height, gender, creatine clear-
ance (CLCr), C-RP, albumin, procalcitonin (PCT), Css, type of hematologic disease,
and treatment duration were retrieved from medical history. Seven days after antibiotic
initiation, patients underwent a physical examination to check the state of FN, which
was defined as a single temperature higher than 38.3℃ or of no less than 38.0℃ lasting
for 1h and corresponding with an absolute neutrophil count of lower than 500 cells/mm3

of lower than 1000 cells/mm3 with a predictive trend to below 500 cells/mm3. Com-
plete relief of febrile neutropenic symptoms along with negative microbiological culture
after treatment was considered an optimal clinical outcome. At the end of treatment,
two independent clinicians crossly assessed the clinical outcomes (failure/success) of
antibiotic treatment. Patients with missing demographic information, missing clinical
measurements for ≥3 consecutive days, and unplausible Css data were excluded from
this study.

3.6.2 Data Analysis

We prepared the dataset and performed the analysis with software R (version 4.1.3,
R-project.org). Continuous and categorical variables were presented as medians (25th -
75th, IQR) and numbers (%). The Cox proportional hazard (Cox PH) model was em-
ployed to conduct survival analysis, in which undesirable antibiotic treatment outcome
was set as the primary endpoint. The following methods were described to explore the
relationship between antibiotic exposure, biomarkers, and clinical outcomes.

(1) Antibiotic exposure ∼ Clinical outcomes: The association between antibiotic expo-
sure to clinical outcomes was checked by a robust boxplot and a Cox PH model. Only
the last Css measurement of each patient remained in the boxplot to avoid unexpected
exposure bias. Uni- and multivariable Cox PH analysis were utilized to determine the
effects of antibiotic exposure alone and along with age on clinical outcomes.

(2) Antibiotic exposure ∼ Biomarkers: The effect of antibiotic exposure on C-RP dy-
namic, i.e., relative/absolute change of C-RP versus baseline and area under the curve
(AUC) of C-RP, was assessed in our study. To accurately reflect the antibiotic exposure,
we calculated the temporal average antibiotic concentration from baseline to a given day
i by equation 1. The relative/absolute change of C-RP and AUC of C-RP at a certain
day i versus baseline were calculated by the equations of 2-4, respectively. Pearson cor-
relations between C-RP dynamic and mean Css of the same day i were calculated and
then shown by a heatmap.

Equation 1: mean Cssi =
∑day=i

day=1 Cssi
i (mg/L)

Equation 2: relative change of C-RPi =
C-RPi−C-RPbaseline

C-RPbaseline
(fold)

Equation 3: absolute change of C-RPi = C-RPi − C-RPbaseline (mg/dL)

Equation 4: daily AUC of C-RPi =
AUC1→i of C-RP

i (mg
dL × day)
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(3) Biomarker ∼ Clinical outcomes: Uni-variate Cox PH models were established to
select potential predictive factors, after which multivariable models were developed by
including those selected factors. The Cox PH model with a lower Akaike Information
Criterion (AIC) and higher R-square between observation/prediction was preferred. R-
square represented proportion variance explained by the predictive factors. The close
the er R-square was to 1, the closer the predicted values were to the observed value.
The predicted mortality rate with confidence interval over biomarker distribution was
calculated by the following equation, in which the x was the selected covariate.

Equation 5: h(t, x) = h0× exp(β × x)

3.7 Results

3.7.1 Demographic and Clinical Data

A total of 142 adult patients were included, comprising 76 (57.89% male, 44/76) and 66
(68.18% male, 45/66) patients in piperacillin/tazobactam and meropenem cohorts, re-
spectively. Their median age, weight, height, and treatment duration were summarized
in Table 3.3 and Figure S3.3. Acute myeloid leukemia was the most frequent hemato-
logical malignancy in the population. Microbiological isolates were identified in 10/142
patients. The median (IQR) Css of piperacillin/tazobactam and meropenem were 47.25
(33.3-67.8) mg/L and 10.7 (7.18-16.7) mg/L, respectively. Median (IQR) C-RP level at
baseline was 9.65 (5.66-15.18) mg/dL. The individual C-RP profiles were presented in
Figure S3.4, in which we did not find a unified trend pattern by visual perspective.

3.7.2 Antibiotic Exposure Could Not Discriminate Clinical Outcomes

Among these two cohorts, there were 77.88% of piperacillin/tazobactam and 68.75% of
meropenem measurements above their corresponding clinical susceptible breakpoints.
Statistical test of antibiotic exposures and clinical therapeutic outcomes was examined,
indicating that Css did not show adequate ability (p=0.15 in piperacillin/tazobactam
group, p=0.11 in the meropenem group) to discriminate those patients who had an
optimistic outcome from those who did not (Figure 3.5). The uni- and multivariable
Cox PH model showed similar results (Table 3.4). The coefficient of Css, without/with
age as a covariate, to the clinical outcome in the piperacillin group were both 0.024;
this value was 0.097 and 0.096 in the meropenem group. The R-square of those Cox PH
model was all no bigger than 0.0234.

3.7.3 Higher Antibiotic Exposure Does Not Lead to A Faster/Larger
C-RP Reduction

The distribution of relative and absolute change of C-RP under antibiotic treatment were
similar in both piperacillin/tazobactam and meropenem groups (Figure S3.5). Most
patients’ relative change of C-RP located between -5 to 5 folds and absolute change of
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C-RP between ± 20 mg/dL. Weak positive correlations between antibiotic concentration
and C-RP changes were observed, the strongest correlation was 0.27 in the piperacillin
group between absolute C-RP change and mean Css at day 7 (Figure 3.6, panel A).
Antibiotic concentration increase did not persistently inhibit the daily AUC for any
comparison, and no consistent changes in AUC were seen across groups (Figure 3.6,
panel B).

3.7.4 Relative Change of C-RP at Day 5, 6, and 7 Predicted Outcomes
Better Than Other Assessed Factors

Multivariable Cox PH models comprise age, baseline C-RP level, and one more factor,
i.e., daily measured C-RP or absolute/relative change of C-RP, were tested. Those mod-
els demonstrated that daily measured C-RP was the most significant factor to predict
clinical outcomes among the data we tested (Table S3.1, p-value=1.59E-09). Considering
that data on longitudinal C-RP change at a certain day i versus baseline might be more
pragmatic to guide clinical decision-making, we summarized the fitting performances (%
R-square) of diverse Cox PH models in chronological order and then compared the pre-
dictive ability of those daily C-RP derived factors with daily C-RP. Relative change of
C-RP from day 5 to day 7 better predicted antibiotic clinical outcome than the absolute
change of C-RP and that of earlier days, despite that all R-square were low and none of
those models developed by relative or absolute change of C-RP were comparable with
daily C-RP model (Figure 3.7). Table S3.1 presented similar results. Cox PH models
using relative change of C-RP at day 5, 6, and 7 versus baseline in combination with
age and C-RP level at admission predicted antibiotic therapeutic outcome with lower
AIC and significant p-value (<0.01).

3.7.5 Model-based Simulation for Typical Populations

Balancing the time of starting infection management and model performance (Figure
3.7, Table S3.1), the model established by the relative change of C-RP at day 5 versus
baseline, age, and baseline C-RP level was selected as the final model. We then generated
a hypothetical dataset with the median values of our study population and enlarged
relative change of C-RP at day 5 versus baseline for clinical cure rate prediction. The
real population-based prediction was also done to assess the new dataset and model
performance. Figure 3.8 showed that the majority relative change of C-RP at day 5
versus baseline located between -2 and 5. Within this range, the regenerated dataset
represented the real population well. Meanwhile, an increase in relative change of C-RP
at day 5 forecasting a plausible low clinical cure rate, 12.5 of the relative change of C-RP
at day 5 corresponding to approximately 50% probability of clinical cure. Besides, a
huge variability was observed when a relative change of C-RP at day 5 versus baseline
was higher than 5 (Figure 3.8).

Age and baseline C-RP level were two other predictive factors in our model. Figure 3.9
demonstrated the predicted clinical cure rate stratified by baseline C-RP level and age.
Higher baseline C-RP levels and older age were risk factors for low clinical cure rates.
According to our prediction, for patients of the same age and relative C-RP change,
high-level baseline C-RP harmed the clinical cure rate. This difference was not large
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when the relative change of C-RP at day 5 versus baseline was less than 5 or greater
than 17.5. But within 5 to 17.5, different baseline C-RP values, e.g., 5 mg/dL and
15 mg/dL, may cause a difference of more than 10% in the predicted mortality rate.
Another significant risk factor was age. Similar to the baseline C-RP level, a growth
of 30 years (e.g., from 45 to 75 years) was associated with an approximate 25% clinical
cure rate decrease when assuming other predictors kept the same.

3.8 Discussion

This study evaluated C-RP in predicting antibiotic therapeutic outcomes in a retrospec-
tive cohort of oncohaematologic patients who received 24h-CI piperacillin/tazobactam
or meropenem. A Cox PH model was established with relative change of C-RP at 5 days
versus baseline, age, and baseline level of C-RP, indicating that in our study population
a 12.5-fold increase in C-RP at day 5 corresponded with a 50% clinical cure rate. This
model gave an overview of the clinical cure rate over C-RP relative change, while it did
not accurately predict antibiotic therapeutic outcomes due to the high uncertainty. To
our knowledge, this is the first study to quantitatively characterize the predictive ability
of C-RP in patients with hematologic malignancies. Despite the imperfect performance
of C-RP, this research provided new insight/framework into good infection management.

Among 142 patients, microbiological isolates and corresponding MICs were detected
before starting antibiotic therapy in 10 patients. Except for 2 dead patients, the rest
8 all benefited from antibiotic therapy. In patients whose microbiological isolates were
temporally undetectable, the treatment failure rate was around 26% (34/132). Although
the antibiotic treatment in these 132 patients was guided by TDM based on EUCAST
clinical breakpoint, the clinical cure rate was still lower than MIC guided treatment.
This phenomenon suggested that a unified clinical breakpoint cannot always cater to
individual requirements well. Considering the diversity of MICs, some patients might
still be under dosed or not being treated with the appropriate type of antibiotic.

We subsequently checked the antibiotic exposure in patients who showed a good re-
sponse to antibiotic treatment and who did not. The results, both shown in an intuitive
boxplot (Figure 3.5) and the Cox pH model (Table 3.4), did not suggest any statistical
differences in antibiotic exposure between patients who had a desirable outcome and
who did not. A small positive correlation (0.0243 in piperacillin/tazobactam cohort,
and 0.0967 in meropenem cohort) was observed between Css and clinical outcome. This
result might surprisingly challenge our experience in antibiotic management because
it indicated literally that higher risk of treatment failure is associated with higher an-
tibiotic exposure. However, we found that the median estimated glomerular filtration
rate (eGFR) was 96 mL/min/1.73m2 and 105 mL/min/1.73m2 in patients who had an
undesirable and desirable outcome, respectively. In clinical practice, meropenem and
piperacillin/tazobactam were initiated in all patients with a loading dose followed by
a low maintenance dose if eGFR <60 mL/min/1.73m2 or a high maintenance dose if
eGFR ≥60 mL/min/1.73m2. It is therefore not a surprise that patients with small eGFR
exhibit higher antibiotic exposure when receiving the same dose.

Besides antibiotic exposure, age has been reported to be associated with an increased
risk of antibiotic escalation and antibiotic treatment failure due to comorbidities or
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poor functional status[20], [21]. Generally, elder patients are more likely to have serious
underlying disease and their physical state is more difficult to recover from infections,
which might bias the ability of antibiotic exposure to predict clinical outcomes. To
exclude the confounding of age, a Cox PH model comprising age and Css was built next.
Including age into Cox PH model did not improve the predictive ability of antibiotic
exposure to clinical outcomes (Table 3.4). Therefore, we could confirm that adjust
dosing strategy empirically with EUCAST breakpoint is not efficient enough in our
study patients.

There are several studies explored the predictive ability of C-RP[10], [11], [22]–[24]. Yet
the role of C-RP remains controversial. Kenny RA et al. first reported in 1985 that the
elevation of absolute serum C-RP might be a biomarker of acute infection[25]. However,
a single measurement of C-RP at the infection initiation or a certain day might lead
to a wrong diagnosis of disease severity, subsequently delaying appropriate antibiotic
treatment. In our studied population, the C-RP level at admission could reflect infection
severity but not well predict antibiotic treatment outcomes alone. In recent years, an
increasing number of studies have confirmed that the velocity of C-RP is a possible
biomarker of infection diagnosis[26]–[28]. Povoa et al. demonstrated the possibility of
using C-RP kinetics to identify patients’ (n=935) outcomes after community-acquired
bloodstream infection[29]. This study reported that both markedly greater relative and
absolute changes of C-RP were observed in patients still alive on day 4 after the first
treatment, which corresponded to our results on day 5. The plasma albumin on day 1
was also assessed by Povoa to show its ability to predict short- to long-term mortality.
However, considering that neither the albumin was outside the normal level in our
population, nor it was a significant predictive factor in the Cox PH model (p=0.71),
plasma albumin was not included in our final model.

To make our study more clinically informative, instead of using daily measured C-RP
itself, we explored the ability of daily changes in C-RP after initiating antibiotic therapy
to predict clinical outcomes by the Cox PH model. Balancing the model performance
and timeliness, model comprising age, baseline C-RP, and the relative change of C-RP
at day 5 versus baseline was selected as the final model (AIC=371.44, p-value<0.01).
The predicted clinical cure rate was relatively accurate when a relative change of C-RP
at day 5 ranged between -2 to 5. This good prediction can be attributed to abundant
data. However, with an increase in relative change of C-RP at day 5, sparse data lead
to less-accurate predictions (75% confidence interval>0.85). Besides the uneven C-RP
relative change distribution, the non-specificity of C-RP to bacterial infection might also
be a possible reason for inaccurate prediction. Inflammation, all-cause infection, and
tissue damage could stimulate prompt C-RP synthesis as well[30], [31]. Given that these
causes are often insidious and difficult to quantify by simple physical examination, they
may interfere with the predicted outcome, reducing the accuracy.

Thus far, we assessed the role of C-RP as a biomarker in predicting antibiotic treatment
outcomes. Besides biomarkers, physical exam is another powerful tool in infection man-
agement. Relief of febrile neutropenic symptoms is one signal of infection recovery in our
study population because trends of temperature and absolute neutrophil count normal-
ization heralding immune function normalization. To balance the medical cost-effective,
this physical examination was conducted on the 7th day after antibiotic treatment for
the first time to assess the febrile neutropenic symptoms severity/state. Same workflow
and methodology was applied to this new predictors. This work revealed that tenden-
cies of febrile neutropenic symptoms resolution (yes/no) had a significant impact in

Student ID: 0900069629 68 Chapter3



Alma Mater Studiorum - Università di Bologna

predicting antibiotic treatment outcomes (p-value<0.01), and was integrated into the
Cox PH model. Model-based prediction suggested that once a tendency of neutropenic
symptoms resolution was caught, this patient has a probability greater than 90% of re-
covering from infections (Figure S3.6, panel B) since the relative change of C-RP higher
than 20 was rarely observed. One major drawback of this model is time. Current anti-
infection guidelines usually recommend an assessment around 4 days after antibiotic
administration to support further decision-making, whereas neutrophil recovery usually
takes longer, which limits the clinical application of this predictor.

This study has several limitations. First, the small number of patients who had undesir-
able clinical outcome (25.35%, 36/142) limits the conclusion of this study. Second, we
could not perfect discriminate patients’ death reason. For example, infection or hemato-
logical malignancies could both result in patients’ death. Although physicians assessed
the status of infection at the time of death, the possibility of confounding the cause of
death still exists. Third, we were unable to include body temperature in the study due
to missing data, although it is a vital indicator of immune system recovery.

In conclusion, our results suggested that although a relative change of C-RP over time
may be somewhat predictive of antibiotic treatment outcomes in patients with hema-
tological malignancies, we should remain prudent and doubt the accuracy of using this
less robust biomarker in our study population. In any case, despite the imperfect per-
formance of our current Cox PH model, we believe that future point-of-care biomarkers
tests should still be recommended and might benefit empirical antibiotic treatment to
some extent when traditional PK/PD targets are not available. The combination use
of biomarkers and/or physical examination would also be a promising strategy in the
future.
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Table 3.3: Demographic data and hematological characteristics.

Piperacillin/
Tazobactam

Meropenem

Number of subjects (n) 76 66

Sex (n (%), [Female/Male],) 32/44
(42.11%/57.89%)

21/45
(31.82%/68.18%)

Age (year, median (IQR)) 58 (44.50-66.25) 61 (48.75-69)

Weight (kg, median (IQR)) 70.5 (60.525-83.75) 71.8 (64-80)

Height (m, median (IQR)) 1.7 (1.63-1.79) 1.7 (1.65-1.78)

CLCr* (mL/min/1.73m2, median
(IQR))

102 (77-116) 95.5 (73.25-109)

Underlying Disease (n, %)

AML 30 (39.47%) 43 (65.15%)

ALL 11 (14.47%) 6 (9.09%)

NHL 17 (22.37%) 13 (19.70%)

HL 6 (7.89%) 0 (0.00%)

MM 6 (7.89%) 0 (0.00%)

Other# 6 (7.89%) 4 (6.06%)

Dose regimens start from 9g/1g loading dose,
18g/2g maintenance
dose

2g loading dose, 4g
maintenance dose

Treatment duration (day, median
(IQR))

8.5 (7-12) 13 (9-17)

Css (mg/L, median (IQR)) 47.25 (33.30-67.8) 10.70 (7.18-16.7)

* CLCr was calculated through the CDK-EPI formula.
# Other: Chronic myeloid leukemia (CML) and Chronic lymphoid leukemia (CLL).
Abbreviation: AML, acute myeloid leukemia; ALL, acute lymphoid leukemia; NHL,
non-Hodgkin lymphoma; HL, Hodgkin lymphoma; MM, multiple myeloma.
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Table 3.4: Regression coefficients of exposure without/with age to clinical out-
come, derived from Cox PH model.

Piperacillin/Tazobactam Meropenem

coefficient p-
value

R2 coefficient p-
value

R2

Css ˜ Outcome Css 0.0243 0.2016 0.0150 0.0967 0.0716 0.0234

Css+Age ˜ Out-
come

Css 0.0240 0.2082
0.0154

0.0962 0.0887
0.0234

Age -0.0066 0.8520 0.0012 0.9764
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Table S3.1: Regression outcomes of C-RP and C-RP dynamics to outcome

Predictive Factor AIC p-value

Relative Change of C-RP at day2 454.79 8.92E-01

Relative Change of C-RP at day3 440.13 7.15E-01

Relative Change of C-RP at day4 439.78 4.61E-01

Relative Change of C-RP at day5 371.44 5.22E-06

Relative Change of C-RP at day6 343.02 5.72E-07

Relative Change of C-RP at day7 313.16 1.10E-06

Absolute Change of C-RP at day2 451.08 3.77E-02

Absolute Change of C-RP at day3 440.27 9.37E-01

Absolute Change of C-RP at day4 440.10 6.74E-01

Absolute Change of C-RP at day5 378.61 3.36E-02

Absolute Change of C-RP at day6 351.58 2.85E-02

Absolute Change of C-RP at day7 318.60 4.06E-04

Daily C-RP 427.99 1.59E-09
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Figure 3.5: Antibiotic exposures of (A) piperacillin/tazobactam and (B)
meropenem in patients who succeed or failed the treatment. Red dashed lines
are the 4-fold of EUCAST breakpoints against Enterobacterales and Pseudomonas
aeruginosa of piperacillin/tazobactam (4×8mg/L) and meropenem (4×2mg/L),
respectively. The dots are the observed piperacillin or meropenem concentrations.
Clinical outcomes were assessed by physical examination at the end of treatment.

Student ID: 0900069629 73 Chapter3



Alma Mater Studiorum - Università di Bologna
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Figure 3.6: The effect of antibiotic exposure on C-RP dynamic. (A) The correla-
tion between mean steady-state concentration (Css) and relative change of C-RP
over time; (B) The association between mean Css and daily area under the curve
(AUC) of C-RP. In panel A, the mean Css at a certain time point was calculated
by all reliable observations before that time point. In panel B, the dots are the
observed meropenem Css; the blue dashed line represents the smooth regression
between meropenem Css and daily normalized AUC of C-RP; the grey shadow is
the 90Cth confidence interval around the smooth regression.
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Figure 3.7: Comparison of R-square (%) for Cox PH models established by diverse
relative or absolute changes of C-RP. The Black dashed line is the R-square (%) of
the most informative model which was built by sequential daily monitored C-RP.
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Figure 3.8: Predicted clinical cure rate over C-RP increase at day 5. The blue
line is the survival rate predicted by using the enlarged typical dataset (median
age and baseline C-RP values); the grey shadow is the 75th confidence interval
of the survival rate based on the enlarged typical dataset; the black dots are the
individual survival rate predicted by using the observed patients.
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Figure 3.9: Predicted clinical cure rate over C-RP increase at day 5, stratified
by age and baseline C-RP levels. For each predicted scenario, the age and
baseline C-RP level are both fixed. The lines (solid/long-dashed/short-dashed)
are the predicted mortality with the hypothetical datasets, which comprised of
low/medium/high age and baseline C-RP, respectively; the grey shadow is the
75th confidence interval of the survival rate based on the typical datasets.
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Figure S3.3: Demographic and treatment duration distribution.
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Figure S3.4: Individual C-RP profiles.
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Figure S3.5: The distributions of (A) relative change of C-RP and (B) absolute
change of C-RP.
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Figure S3.6: Predicted clinical cure rate over relative C-RP increase at day 7 versus
baseline, stratified by age, baseline C-RP levels and symptoms resolution at day
7. The lines (solid/long-dashed/short-dashed) are the survival rate predicted by
using the hypothetical dataset with low/medium/high age and baseline C-RP; the
grey shadow is the 75th confidence interval of the survival rate based on the typical
datasets.

Student ID: 0900069629 83 Chapter3



Alma Mater Studiorum - Università di Bologna
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cotherapy for community-acquired pneumonia in the elderly,” Expert Opin-
ion on Pharmacotherapy, vol. 18, no. 10, pp. 957–964, Jul. 2017, doi:
10.1080/14656566.2017.1340940.

[21] T. Avni et al., “Participation of Elderly Adults in Randomized Controlled Trials
Addressing Antibiotic Treatment of Pneumonia,” Journal of the American Geri-
atrics Society, vol. 63, no. 2, pp. 233–243, 2015, doi: 10.1111/jgs.13250.
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4.1 Background

In the context of therapeutic drug monitoring (TDM)-guided dose optimization, select-
ing an appropriate pharmacokinetic (PK) model is pivotal, particularly for antibiotics
that have narrow therapeutic windows like vancomycin[1]. Accurate PK modeling en-
ables precise dosing regimens, ensuring therapeutic efficacy while minimizing the risk of
adverse effects. However, the diversity in patient demographics, underlying conditions,
and concomitant medications necessitates a rigorous evaluation of PK models to identify
the most robust and clinically applicable option.

Vancomycin is a vital antibiotic for treating infections caused by gram-positive bacteria.
It has complex pharmacokinetic properties and can be toxic due to its concentration-
dependent bactericidal activity. To ensure effective treatment while minimizing the
risks of over-dosing, optimizing its dosages is essential. A model-informed and TDM-
guided approach is crucial for achieving this goal, especially in cases where patient
demographics and disease states vary. Machine learning (ML) techniques can be useful
in this context[2].

In this study, we employ an ML approach to systematically evaluate and compare dif-
ferent published vancomycin PK models[3]–[5] which are built into a TDM software
Insight Rx®. By leveraging advanced computational techniques, we aim to develop an
ML model to predict optimal population PK model selection based on patient char-
acteristics available before the first TDM sample. This research hopefully addresses a
critical gap in optimizing vancomycin dosing strategies, ultimately enhancing patient
outcomes and mitigating the emergence of antibiotic resistance.

4.2 Material and Methods

The flowchart of data cleaning and model building is shown in Figure 4.1.

4.2.1 Data Preparation

Vancomycin data were collected from a range of US hospitals that use Insight Rx®

software for TDM-guided dose optimization. This dataset included demographic in-
formation (i.e., age, gender, height, and weight), clinical characteristics (i.e., observed
vancomycin concentrations, creatinine, comorbidities, and concomitant therapy), out-
comes (i.e., predicted vancomycin concentrations based on 3 selected models[3]–[5], re-
spectively), and other tag information (i.e., dosing time, sampling time, vancomycin
dose, length of infusion, hospital ID, and patient ID).

Raw dataset was cleaned first following the rules: (1) only kept the first TDM observa-
tion for each patient, (2) filtered out unrealistic TDM observations (i.e., >100 mg/L), (3)
filtered out the patients with missing covariates value, (4) filtered out the patients with
unrealistic covariates value (i.e., age<18years or >105years, height<30cm or >220cm,
weight<30kg or >400kg, creatine<0mg/dL or >20mg/dL, vancomycin dose<100mg or
>6000mg, length of infusion>1440min).
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Engineered features were then added to the cleaned dataset to compile the final dataset.
Those features including (1) Estimated Glomerular Filtration Rate (eGFR) calculated
by CKD-EPI and CG formula, respectively; (2) Body Surface Area (BSA); (3) Body
Mass Index (BMI); (4) Individual z-scores of age, height, weight, creatine, eGFR, BSA,
and BMI to our own study population and the 3 selected models population. Z-score
was calculated via the equation of

Equation 1: z score =
CovariateIndividual−CovariatePopulationMean

CovariatePopulationSD
;

(5) Binary tags of age, height, weight, creatine, eGFR, and BMI (i.e., “young” for age
<35 years and “old” for >70 years; “short” for height <135 cm and “tall” for >200
cm; “wt underweight” for weight <40 kg and “wt overweight” for >100 kg; “cr low”
for creatine <0.5 mg/dL and “cr high” for >4 mg/dL; “eGFR low” for eGFR <20
mL/min/1.73m2 and “eGFR high” for >150 mL/min/1.73m2; “bmi underweight” for
BMI <18 kg/m2 and “bmi overweight” for >30 kg/m2); (6) Best model (i.e., the model
predicted a lowest |observation-individual prediction| value was defined as the best
model).

4.2.2 Model Building

This cleaned final dataset with engineered features was randomly partitioned into 3
subsets: training (70%), validation (15%), and testing (15%) for exploration. Models
were trained on the training subset and evaluated on the validation subset using a range
of performance metrics, including R-squared, mean absolute error (MAE), and mean
squared error (MSE). The testing subset will be used only once for testing the final
model. Considering that the huge amount of calculation will slow down the running
speed, 10,000 observations were enrolled for initial model development and exploratory
analysis in this case study.

The classification ML model and regression ML model were both tried with the goal of
(1) predicting which model will be the best for a given patient and (2) predicting the
lowest value of |observation-individual prediction| for a given patient, respectively. R
package “xgboost” was employed in our study.

4.3 Results

4.3.1 Classification Model

The classification ML model demonstrated an overall predictive accuracy of 46%, indi-
cating that, given the three candidate PK models, the classification ML model correctly
predicted the optimal one in 46% of cases. Figure 4.2 illustrates the predictive profile
of the 3 candidate PK models considered in this study. The graph depicts the accuracy
of the machine learning model in correctly identifying the optimal PK model when it
is indeed the correct choice. As depicted in Figure 4.2, when the true PK model was
selected, the machine learning model demonstrated varying levels of accuracy in pre-
diction. For Model buelga 2005, the machine learning algorithm correctly identified it
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as the optimal choice with a frequency of 37.4%. Similarly, for Model goti 2018, the
algorithm exhibited a correct prediction rate of 50%. Model thomson 2009, on the other
hand, was identified correctly by the machine learning model in 36.4% of cases. Figure
4.3 presents the importance of patient features to PK model prediction. Age, BMI,
eGFR calculated by the CG formula, and creatine were the 4 most important factors
with an importance of approximately 10%.

4.3.2 Regression Model

The regression ML model gave an overview of the observed |observation - individual
prediction| vs. predicted |observation-individual prediction| profile of the 3 PK models.
This regression ML model performed similarly in the training subset (Figure 4.4, up-
per panels) and validation subset (Figure 4.4, lower panels) among the 3 PK models.
The accuracy of prediction was less optimal when the observed |observation-individual
prediction| values were above 10 mg/L, which usually manifests itself as an underestima-
tion of the value. Similar to the classification ML model, BMI, eGFR calculated by the
CG formula, creatine, and age were the 4 most important factors with an importance
of about 10% (Figure 4.5).

4.4 Discussion

This study used the ML approach to determine the appropriate vancomycin population
PK models for TDM-based dose optimization based on patient-specific features prior to
the first blood sample collection.

A classification ML model was developed first to fit our data. This approach can provide
a clear and categorical output, making it suitable for scenarios where distinct classes or
categories are essential[6]. The final output of this approach is one most appropriate
PK model for a given patient, making the results easier and more understandable,
especially for physicians who do not have much prior knowledge about PK modeling.
The prediction accuracy of this model was around 46%, a bit higher than random
selecting 1 from the 3 PK models (≈33%), whereas still less than expected. Meanwhile,
this approach was prone to predict goti 2018 as the most appropriate model no matter
if it was indeed the best model or not (Figure 4.1).

One possible explanation of this phenomenon could be that the good performance of
the classification model partially relies on the sample size balance among classes. In
our training dataset, the proportion of model goti 2018 as the observed best model was
70.8%, which might bias the model training process. Meanwhile, this approach could not
take the |observation-individual prediction| values into consideration, some information
like outliers is therefore ignored.

The main stone of TDM-guided dose optimization is Bayesian updating, to which both
the prior population model knowledge and individual observations contribute. What to
do when existing population models are not good enough are (1) model averaging, i.e.,
weight predictions from various models[7], [8], or (2) flatten priors, i.e., listen more to
the individual observations than the population models[9]. Regression ML model could
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be useful for model averaging because this approach allows to rank the population PK
models. Unlike the classification ML model, the regression ML model is more sensitive
to outliers, that may improve the data fitting. We therefore tried to fit our data via a
regression ML model in the next step.

Overall, the performance of regression ML models were similar and not bad among the
3 population PK models when the |observation-individual prediction| values were be-
tween 0-10 mg/L. The similarity may be due to the similar distributions of |observation-
individual prediction| values among these 3 PK models. However, this regression ML
model underestimated the |observation-individual prediction| values when they were
above 10 mg/L. There are many possible explanations for the underestimation, among
which insufficient training data and insufficient fitting may be the most plausible causative.
Limited by the number of observations (n=10,000) included in this study, there were
only 7000 TDM samples in the total training subset. Using a low complex model can
lead to insufficient fitting. However, considering the similar performance between train-
ing and validation subsets, it might suggest that the final dataset might not have been
handled appropriately. Refining the dataset quality by imputing raw/new values, fea-
ture scaling, or encoding categorical variables to reduce bias may be necessary works
for next step.

Using a more complex model is another possibility to improve the fitting. Selecting
the right R package and model for ML, whether for classification or regression tasks,
depends on various factors including the specific algorithms you want to use, ease of
use, data support, and the requirements of the specific task[10]. Simple regression ML
models are usually well known for their speed and efficiency in handling large data with
diverse features. However, those regression models cannot handle non-linear relation-
ships and high-dimensional feature data very well, hurdling them to learn and represent
highly intricate patterns. The deep neural network regression model may overcome
those limitations and will be tried in the following study.

The integration of advanced ML techniques allowed us to harness the full potential of
available data, resulting in more accurate dosage recommendations and facilitating per-
sonalized dosing strategies. In conclusion, our study provides valuable insights into the
selection of the appropriate vancomycin PK models for integration into TDM software.
This research contributes to the ongoing efforts to enhance antibiotic stewardship and
ultimately improve patient care in the era of precision medicine. Future studies may
focus on validating these findings in larger patient populations, exploring diverse ML
approaches, including/updating more vancomycin population PK models, ranking those
PK models, and exploring real-world clinical applications.
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Figure 4.1: Work flow of data cleaning and machine learning model building

Student ID: 0900069629 95 Chapter4



Alma Mater Studiorum - Università di Bologna
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Figure 4.2: The performance of classification ML model. 0-buelga 2005; 1-
goti 2018; 2-thomson 2009.
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Figure 4.3: The importance of patients features
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Figure 4.4: The performance of regression ML model

Student ID: 0900069629 98 Chapter4



Alma Mater Studiorum - Università di Bologna

Figure 4.5: The importance of patients features
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This multifaceted research initiative encompasses a comprehensive approach to preci-
sion antibiotic dosing in patients with hematologic malignancies, with a particular focus
on beta-lactam antibiotics and the utilization of C-RP as a pivotal biomarker. The
study unfolds in three distinct but interconnected parts, each designed to address spe-
cific challenges encountered in antibiotic therapy within this population. Chapter two
provides crucial insights into the impact of CAR-T therapy on biomarker and antibiotic
PK levels, facilitating refined infection management strategies for this specific patient
population. Chapter three establishes a quantitative framework through PK-PD mod-
eling, unraveling the intricate interplay between meropenem exposure, CRP dynamics,
and clinical outcomes. Lastly, chapter four introduces an innovative approach utiliz-
ing machine learning to recommend precise vancomycin dose regimens, particularly in
scenarios where conventional PK models encounter challenges.

The findings of this thesis underscore the critical importance of a personalized approach
to antibiotic management in patients with hematological malignancies. By leveraging
biomarkers and innovative computational techniques, clinicians can make more informed
decisions, ensuring that patients receive the most effective and tailored treatment reg-
imens. This research represents a significant step forward in the pursuit of precision
medicine in the context of hematological malignancies and lays the foundation for fur-
ther advancements in this critical area of healthcare.

Moving forward, future research endeavors could explore the integration of all three
chapters’ findings into a unified decision support system. Additionally, expanding the
scope to incorporate a broader range of antibiotics and biomarkers, as well as validating
the models in larger patient cohorts, could further enhance the applicability and impact
of this research in clinical practice. Furthermore, considerations for regulatory approval
and practical implementation should be addressed to facilitate the translation of these
findings into routine patient care. This research paves the way for a more precise and
effective approach to antibiotic therapy, ultimately benefiting patients with hematologic
malignancies.
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Abbreviations

Short Form Full Name

AIC Akaike information criteria

AKI Acute Kidney Injury

ALL Acute Lymphoid Leukemia

AML Acute Myeloid Leukemia

AUC Area Under the Curve

BSI Bloodstream Infection

CAR-T Chimeric Antigen Receptor T Cell

CI Continues Infusion

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration

CL Clearance

CLCr Creatine Clearance

CLL Chronic Lymphoid Leukemia

Cmax Peak Concentration

Cmin Trough Concentration

CML Chronic Myeloid Leukemia

Cox PH Cox Proportional Hazard

C-RP C-reactive Protein

CRS Cytokine Release Syndrome

Css Steady-state Concentration

CV Coefficient of Variation

eGFR estimated Glomerular Filtration Rate

EUCAST European Committee on Antimicrobial Susceptibility Testing

FN Febrile Neutropenia

HAP Hospital-Acquired Pneumonia

IC50 Half-maximal Inhibitory Concentration

ICANS Immune Effector Cell-Associated Neurologic Syndrome

IDSA Infection Disease Society of America

IL-6 Interleukin-6

IL-8 Interleukin-8

IPRED Individual predictions

IWRES Individual Weighted Residuals

kin Generation Constant

kout Degradation Constant

LC-MS/MS Liquid Chromatography Tandem Mass Spectrometry

LOQ Limits of Quantification

MDR Multi-drug Resistant

MIC Minimum Inhibitory Concentration

MIPD Model-informed precision dosing
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Short Form Full Name

ML Machine Learning

MM Multiple Myeloma

NHL non-Hodgkin Lymphoma

OFV Objective Function Valuess

pcVPC prediction corrected Visual Predictive Checks

PD Pharmacodynamics

PK Pharmacokinetics

PTA Probability of Target Attainment

RSE Relative Standard Errors

SE Standard Errors

TDM Therapeutic Drug Monitoring

UTI Urinary Tract Infection

V Volume of Distribution
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