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Abstract
Sea ice is a fundamental element of global climate system, with numerous impacts on

the polar environment. The ongoing drastic changes in the Earth’s sea ice cover highlight
the necessity of monitoring the polar regions and systematically evaluating the quality of
different numerical products. The main objective of this thesis is to improve our knowledge
of the representation of Arctic and Antarctic sea ice using comprehensive global ocean
reanalyses and coupled climate models. The dissertation will explore (i) the Antarctic
marginal ice zone (MIZ) and pack ice area in the ensemble mean of four global ocean
reanalyses called GREP; (ii) historical representation of the Arctic and Antarctic sea ice
state in HighResMIP models; (iii) the future evolution of Arctic sea ice in HighResMIP
models. Global ocean reanalyses and GREP are found to adequately capture interannual
and seasonal variability in both pack ice and MIZ areas at hemispheric and regional scales.
The advantage of the ensemble-mean approach is proved as GREP smooths the strengths
and weaknesses of single systems and provides the most consistent and reliable estimates.
This work is intended to encourage the use of GREP in a wide range of applications.
The analysis of sea ice representation in the coupled climate models shows no systematic
impact of the increased horizontal resolution. We argue that a few minor improvements in
sea ice representation with the enhanced horizontal resolution are presumably not worth
the major effort of costly computations. The thesis highlights the critical importance
to distinguish the MIZ from consolidated pack ice both for investigating changes in sea
ice distribution and evaluating the product’s performance. Considering that the MIZ is
predicted to dominate the Arctic sea ice cover, the model physics parameterizations and
sea ice rheology might require modifications. The results of the work can be useful for
modelling community.
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Chapter 1
Introduction

1.1 The role of sea ice in climate

Sea ice is frozen seawater floating on the top of the ocean. It grows and melts on
a seasonal basis both in the Arctic and the Antarctic regions. Even though it forms
mainly in the polar regions, its profound effects are not limited to the regional climate
but are spreading farther beyond. Changes in sea ice properties have implications on
ocean circulation, large-scale atmospheric dynamics, and weather patterns across the globe
(Jaiser et al., 2012).

Sea ice is a crucial component in the Earth’s climate system. Due to its insulating
and reflective properties, it regulates the exchanges between the ocean and the atmosphere
and considerably modifies the ocean/atmosphere interplay at seasonal and interannual
time scales. Along with playing the role of physical barrier to the air-sea exchanges, sea
ice acts as a natural sunscreen reflecting major of the incoming solar radiation. With its
much higher albedo compared to the dark ocean surface, sea ice and snow on it largely alter
the radiation budget in polar regions. Consistently interacting with ocean, atmosphere,
snow, and land ice, sea ice is involved in multiple feedbacks, which are responsible for
the amplification or damping of initial perturbation in the climate system. Thus, sea
ice significantly contributes to the high sensitivity of polar regions to climate forcing. A
subtle change in the sea ice can trigger complex feedbacks and bring dramatic shifts in
the Earth’s climate system (Goosse et al., 2018).

Sea ice plays a critical role in ocean dynamics by changing buoyancy and water
stratification. During its formation and growth in autumn, sea ice releases salt into
the underlying ocean increasing its density and promoting vertical convection, and deep
water formation (Cavalieri and Martin, 1994) and eventually affecting the global ocean
thermo-haline circulation (Dickson et al., 1988). Likewise, when the ice melts it releases
fresh water into the upper ocean which leads to the stabilization of the surface layer and
suppression of deep water convection (Haine et al., 2015).

Sea ice-covered regions represent a large unique ecosystem supporting biodiversity at
different scales ranging from bacteria and algae to birds and marine mammals. Individual
species rely on sea ice as a habitat for feeding, breeding, and hunting (Stern and Laidre,
2016; Watanabe et al., 2020). Sea ice supports relevant biological and chemical processes
such as primary marine production, and delivery of nutrients to the deep and trophic
interactions (Randelhoff et al., 2020; Gorman et al., 2021). Any variation in sea ice-
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CHAPTER 1. INTRODUCTION

dependent biota at the bottom of the food chain affects the organisms at higher trophic
levels (Massom and Stammerjohn, 2010).

The extent to which sea ice influences the global climate system depends on its
properties, e.g. area, thickness, and volume. At the same time, sea ice acts as a sensitive
indicator of ongoing climate change itself. All of this underscores the importance of
understanding and monitoring ongoing changes in the polar regions as well as evaluating
the realism of sea ice representation in the climate models which produce the projections
of the future evolution of the Earth’s climate system.

1.2 Polar regions

1.2.1 Geography

At first sight, going to the polar regions takes us to seemingly identical remote, cold,
hostile environments: both the ice caps surround the geographic North and the South
poles. Despite the two places being located in high-latitudes and receiving similar annual
insolation, there are fundamental differences in their sea ice characteristics and variability
attributed to the contrast in geography and leading physical processes (Fig. 1.1).

The Arctic Ocean is peculiar in terms of seafloor topography including both the
deep ocean basin reaching a depth of over 5000 m and vast shallow continental shelves
(Holmes et al., 2012). The land-locked ocean, the Arctic Ocean can be considered as
Atlantic’s estuary: despite the connection with the Pacific Ocean through the narrow
and shallow Bering Strait, the Arctic Ocean receives the major inflow of warm and saline
water from the North Atlantic, through the Barents Sea and Fram Strait, the only pathway
where deep water exchange takes place (yearly average Atlantic heat inflow is ∼ 73 TW;
Smedsrud et al., 2010). Because the Arctic is almost entirely encircled by land, the sea
ice expansion is constrained toward the lower latitudes where it can be easily melted:
the export of sea ice outside the region is relatively limited in movement which increases
the chance of ice floes to converge and pile up. This geographic feature allows the ice
to grow thicker (up to 4 m), together with strong ocean stratification acting as a barrier
for the heat transfer from the relatively warm Atlantic layer to the ice bottom (Carmack
et al., 2015). The Arctic sea ice can persist throughout the melting season and survive
for years. The large-scale atmospheric circulation dominated by the Beaufort High drives
the clockwise rotation of the Beaufort Gyre and the Transpolar Drift. The drift of sea ice
driven by the Beaufort Gyre affects the spatial distribution of the Arctic sea ice thickness
and favours the ice to remain during summer (Maksym et al., 2012). The Transpolar Drift
promotes the ice to move from the Siberian Shelf towards Fram Strait, the main gate for
sea ice export in the Arctic (Serreze and Meier, 2019). Freshwater transport through
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CHAPTER 1. INTRODUCTION

Figure 1.1: Average minimum and maximum sea ice during March and September 2020
for the Arctic and Antarctic as compared to the 1981 to 2010 average. Source: National
Snow and Ice Data Center.

the Fram Strait plays a crucial role in the deep water convection in the Labrador Sea
since the enhanced sea ice export decreases the density of upper ocean saline waters and
hence leads to disruption of water mass transformation (Koenigk et al., 2007). The major
atmospheric mode at the inter-annual and decadal scales over the Northern Pole is the
Arctic Oscillation (AO) which represents the variation in the atmospheric pressure and
wind pattern in middle and high northern latitudes (Thompson and Wallace, 1998). The
atmospheric circulation driven by changes in the AO strength affects the sea ice motion
and distribution of sea ice concentration and thickness (Rigor et al., 2002).

In the Southern Hemisphere, in contrast, the highest latitudes are occupied by the
Antarctic continent, surrounded by open ocean. The sea ice creates a fringe around the
continent’s coastline whose principal feature is the presence of a thick ice sheet that in-
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CHAPTER 1. INTRODUCTION

teracts with the local ocean-atmosphere-sea ice system. Driven by strong and persistent
winds, known as katabatic winds (gravity winds blowing down the slope; Parish and
Cassano, 2003), sea ice can freely move and expand northward not constrained by solid
barriers (Gordon, 1981). At its maximum extent, Antarctic sea ice reaches lower lati-
tudes at about 55∘S where it encounters the Antarctic Circumpolar Current (Eayrs et al.,
2019) which isolates the polar fresh and cold waters from the warmer mid-latitude waters
(Martinson, 2012). Despite the large sea ice cover and substantial advancement of ice
edge towards the equator in winter, the Antarctic ice is very thin - less than 1-meter
thick on average: the thicker ice forms only through ridging and rafting (Worby et al.,
2008). The Antarctic sea ice primarily consists of small pancake ice floes which form in
wave conditions, a great part of which constitutes the marginal ice zone (highly dynamic
transitional zone between the open sea and inner pack ice), which in certain months can
make up more than a half of the total ice extent (Stroeve et al., 2016). In the weakly
stratified ocean with strong heat exchange from warm deep waters to the surface, thin ice
can be easily melted away so only little amount of ice persists in summer. The sea ice edge
expansion and contraction are controlled by the large-scale atmospheric circulation dom-
inated by the Antarctic Circumpolar Trough, the low-pressure belt around the continent
(Enomoto and Ohmura, 1990). As a result, the waxing and waning of the Antarctic sea
ice represent the greatest seasonal ice area changes on Earth with a sixfold increase from
the annual minimum of nearly 3 ⋅ 106 𝑘𝑚2 to maximum of 18 ⋅ 106 𝑘𝑚2 (Eayrs et al.,
2019). Changes in the position of the westerly jet are governed by the Southern Annual
Mode - the dominant atmospheric mode in the Antarctic which refers to the difference
in the zonal mean sea level pressure between the mid-latitudes and the pole. The main
circumpolar flow is deviated by permanent low-pressure systems around Antarctica, the
deepest of which is the Amundsen Sea Low, the driver of sea ice variability in the South
Pacific (Raphael et al., 2016). The hallmark of the Antarctic sea ice is the strong asym-
metry of its seasonal variability with 7 months of expansion and 5 months of contraction
whilst the Arctic ice cover takes equal time for advance and retreat. Different length of
growth and melt periods in Antarctica is tied to wind-driven Ekman forcing (Enomoto
and Ohmura, 1990; Eayrs et al., 2019). Although, a recent study argued that the primary
reason driving the asymmetry of the sea ice extent is the distribution of the insolation at
the top of the atmosphere (Roach et al., 2022).

The contrasting nature of sea ice in two polar regions determines its different re-
sponse to climate change as well as its impact on other components of the climate system.

1.2.2 Arctic sea ice variability

sea ice extent is the most common variable to describe the past and recent sea ice
cover in the polar regions and it is generally defined as areal coverage with at least 15%
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CHAPTER 1. INTRODUCTION

Figure 1.2: Arctic (upper panel) and Antarctic (lower panel) sea ice extent rankings by
year, for each calendar month and the yearly average, over the 42-year period 1979-2020
(Parkinson et al., 2021)

ice coverage. sea ice area is a different way of estimating sea ice cover which refers to the
integral sum of the product of ice concentration and area of all grid cells with at least
15% ice concentration. From satellite-based passive microwave observations it is possible
to determine the sea ice extent and sea ice area for Arctic and Antarctic sea ice since
late 1970s. In the last 4 decades, trends of the sea ice extent and sea ice area have been
observed, which evolves differently in the northern and southern polar regions.

Since the beginning of the satellite era, the Arctic has shown an unprecedented
loss of sea ice extent (Onarheim et al., 2018) - glaring evidence of climate change. The
substantial recession is observable in all months: since 1986 the Arctic has not expe-
rienced monthly record highs in sea ice extent while 93 record lows have been reached
(Fig. 1.2; Parkinson and DiGirolamo, 2021). The most pronounced decline occurs at the
minimum extent in September whose linear trend is about -81200 𝑘𝑚2 (12.7%) per year
from 1979 to 2021 compared to -43800 𝑘𝑚2 (2.9%) per year at the annual maximum in
March (https://nsidc.org/). The summer decrease is not equal over the period of satellite
observations: the rate of sea ice loss doubled over 1993-2006 and slightly slowed over 2007-
2020 compared to 1979-1992 (Perovich et al., 2020). The severe reduction in September
sea ice extent is better illustrated by the absolute decrease of 3.49 ⋅ 106 𝑘𝑚2 since 1979
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Figure 1.3: Monthly September ice extent for 1979 to 2021. Source: National Snow and
Ice Data Center.

(Fig. 1.3). Because of the different intensity of monthly trends, the seasonal cycle of the
sea ice extent becomes more pronounced resembling that of the Antarctic (Serreze and
Meier, 2019). Despite the downward trends observed in all sub-regions, there is a large
regional variability (Fig. 1.4). Summer sea ice decline is dominated by the Eurasian Shelf
Seas with the greatest contribution of the East Siberian Sea (Watts et al., 2021), while
the winter hotspot is located in the Barents Sea (Árthun et al., 2021). Moreover, the
Barents Sea has experienced the most prominent lengthening of ice-free season (40 days
per decade) compared to the rest of the Arctic with 9 days per decade due to earlier ice
retreat and later advance (Notz and Stroeve, 2016).

Along with the reduction in its coverage, sea ice is changing its thickness and age.
The retrieval of an overall trend in sea ice thickness is difficult since detailed measure-
ments of sea ice thickness are still lacking compared to the well-documented change in
sea ice extent: the available satellite-based estimates cover short periods and in-situ mea-
surements are limited to the spatial and temporal coverage. Available measurements from
submarine sonars, satellite altimeters (ICESat and CryoSat-2), and satellite scatterome-
ters show that the Arctic-wide ice thickness decreased by 34% between 2000 and 2012,
which corresponds to a decline of about 0.58 ± 0.07 m per decade (Lindsay and Schweiger,
2015), with a winter decline of approximately 2 m since the 1980s (Kwok, 2018). As the
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Figure 1.4: Linear trends in sea ice concentration during 1979-2019 per decade for March
(left) and September (right). The dashed green line shows the position of the median ice
edge during 1981-2010. Source: Copernicus Climate Change Service (C3S)/ECMWF.

ice thins, it becomes more vulnerable to the external dynamic and thermodynamic forcing,
leading to increased importance of ice-albedo feedback, a strong positive feedback in the
climate system due to the albedo contrast between water and ice (Goosse et al., 2018).
The ice-albedo feedback promotes further hastening of the melt (Stroeve et al., 2012b).
Thinner ice is more mobile and thus more responsive to winds, ocean waves and currents.
The diminishing and thinning sea ice reduces the ice strength, which contributes to the
redistribution of sea ice and results in increased sea ice motion (Rampal et al., 2011; Kwok
et al., 2013) and higher sea ice export from the Arctic (Döscher et al., 2014). As a combi-
nation of sea ice area and thickness, sea ice volume is disappearing at more alarming rate
resulting in nearly 70% reduction in summer over 1979-2021 (https://psc.apl.uw.edu/)
driven mainly by the multi-year ice. The real sea ice shrinking might be even more dra-
matic since the estimates of the ice thickness are found to be overestimated according to
new observations of snow depth (Kacimi and Kwok, 2022). The multi-year ice which used
to be a key feature of the Arctic ice cover constituting for over 30%, now makes up nearly
4.4% of the winter ice pack (Fig. 1.5; Perovich et al., 2020). This marks a transition to
the first-year ice regime that moves toward a seasonally ice-free Arctic which is predicted
to happen by the middle of the century (Notz and Stroeve, 2016; Notz and Community,
2020).

Sea ice shrinking in the Northern Hemisphere is largely related to the Arctic Ampli-
fication (Previdi et al., 2021), an iconic feature of global warming, when the increase of the
surface air temperature in the Arctic is much more prominent (up to 4 times) relative to
the globe (Rantanen et al., 2022). The mechanisms driving the enhanced warming in high

16



CHAPTER 1. INTRODUCTION

Figure 1.5: The time series from 1985 through 2022 of percent cover of the Arctic Ocean
by different sea ice ages during the March 12 to 18 period. Source: NASA NSIDC.

latitudes, which is not observable in the Southern hemisphere, are complex, interrelated,
and not completely understood (Henderson et al., 2021) resulting in high uncertainty
in Arctic climate projections (Taylor et al., 2022). Among multiple physical processes
contributing to Arctic Amplification (e.g. Bintanja et al., 2018; Graversen and Burtu,
2016; Yoshimori et al., 2017), the ocean-atmosphere energy exchanges in autumn and
winter are considered to play a major role (Screen and Simmonds, 2010; Boeke and Tay-
lor, 2018; Chung et al., 2021). There are also numerous positive feedbacks which favour
further warming (Goosse et al., 2018), of which ice/snow-related have a considerable con-
tribution to Polar Amplification due to reflective properties (Previdi et al., 2021). Apart
from unprecedented warming in the atmosphere, there is also growing evidence of changes
occurring to the Arctic Ocean, known as Atlantification - the transition to a state resem-
bling the Atlantic Ocean (Polyakov et al., 2017). Atlantification is associated with the
strengthening and warming of Atlantic inflow (Ingvaldsen et al., 2021) and the weakening
of halocline (Ivanov et al., 2016) which favours heat transfer from relatively warm Atlantic
water layer to the surface waters and bottom of sea ice cover.

1.2.3 Antarctic sea ice variability

In sharp contrast to the Arctic, the Antarctic sea ice has not experienced a contin-
uous downward trend but rather has expanded on average since 1979 (Fig. 1.6). Satellite
records reveal a graduated long-term overall increase in sea ice cover at a rate of nearly
1.5% per decade for the period 1979-2015 (Simmonds, 2015; Stammerjohn and Maksym,
2017; Parkinson, 2019). The overall increase in the annual sea ice cover was uneven with
a fivefold faster expansion over 2000-2014 compared to 1979-1999 (Eayrs et al., 2021).
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Figure 1.6: Yearly average sea ice extents and their line of linear least squares fit (Parkin-
son, 2019)

The unexpected response of the Antarctic sea ice cover to global warming, known as the
Antarctic paradox (Simmonds, 2015), puzzled the scientific community and gave rise to
multiple attempted explanations attributed to large-scale atmospheric circulation (Stam-
merjohn et al., 2008; Turner et al., 2015; Meehl et al., 2016), regional wind patterns (Hol-
land and Kwok, 2012; Blanchard-Wrigglesworth et al., 2021), ice-ocean feedbacks (Goosse
and Zunz, 2014), massive loss of Antarctic ice sheets (Bintanja et al., 2013; Haid et al.,
2017), ozone depletion (Polvani et al., 2011), delayed response of the Southern Ocean
to the anthropogenic forcing (Armour et al., 2016). The annual-mean Antarctic sea ice
extent reached a record high of 12.8 ⋅ 106 𝑘𝑚2 in 2014, followed by an unexpected decline
that led to an unprecedented and abrupt drop in November of 2016 (Fig. 1.2; Parkinson,
2019), with the lowest annual mean value in 2017 (10.7 ⋅ 106 𝑘𝑚2). The area of reduced
ice cover around Antarctica between 2014 and 2017 is comparable to the total ice loss in
the Arctic over 20 years. The sudden sea ice retreat in late 2016 has been tied to wind
pattern in the precedent seasons (Stuecker et al., 2017; Wang et al., 2019), zonal wave
number three index associated with strong southward heat advection (Schlosser et al.,
2018), large-scale atmospheric circulation (Turner et al., 2017).

Since the variability of Antarctic sea ice cover is highly heterogeneous in space, it
is necessary to consider the evolution of sea ice extent and its seasonality on a regional
basis (e.g. Parkinson, 2019; Turner et al., 2015). The circumpolar positive trend in
Antarctic sea ice extent is composed of regionally opposing sea ice changes, particularly
in the (western) Ross Sea and the adjacent Bellingshausen and Amundsen Seas (Turner
et al., 2015) (Fig. 1.7). Thus, the sea ice extent increases, except for the sector of the
Bellingshausen and Amundsen Seas with a decrease of -2.5 ± 1.2% per decade in the
period 1979-2018 (Parkinson, 2019). In contrast, the strongest increase in sea ice extent
has been observed in the western pacific sector with a rate of 2.3 ± 1.2% per decade
in the same period (Parkinson, 2019). Trends in the remaining sectors are comparable
or slightly higher than the Antarctic-wide positive overall circumpolar trend. Thus, the
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Figure 1.7: Interannual trends in monthly total ice area (Holland, 2014)

overall increase in Antarctic sea ice extent is a slight imbalance between the positive
trend in East Antarctica and the contrasting trends in the western part. As a result of
sea ice-upper ocean feedbacks (Holland, 2014), changes in the timing of sea ice advance
and retreat impact the length of ice-free season. Similarly to the ice extent trends, there
is a regional pattern of trends in the duration of sea ice-free season with prolongation
in the Bellingshausen Sea and a decrease in the western Ross Sea (Hobbs et al., 2016).
The spatio-temporal variability of trends suggests that a combination of oceanic and
atmospheric processes amplified by complex feedbacks and interactions with ice shelves
contribute differently to various parts of the Southern Ocean.

However, the unified description of the mechanisms behind changes in sea ice cover
around Antarctica is still missing. Unlike sea ice cover, the knowledge of changes in
characteristics of Antarctic sea ice thickness and volume is limited due to the critical
scarcity of in-situ observations and large uncertainties in retrievals from radar altimeters.
The estimates using models reveal the thickening in the Ross and the Weddell Seas and
the thinning in the Bellingshausen Sea which corresponds to trends in wind-driven sea ice
motion (Holland, 2014).

1.3 Climate modelling

The alarming rate of warming highlights the importance of projecting future climate
in order to evaluate its response under different emission scenarios, assess implications
and possible risks, and mitigate its effects. Together with observations, climate modelling
provides a backbone of our understanding of the changing climate. The general circulation
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models (GCMs) are comprehensive tool to gain insights into the physical processes and
interactions in the Earth’s system in the past and present as well as project the future
evolution of various climate phenomena.

GCMs represent a system of differential equations of large-scale fluid motion and
thermodynamics. The equations are solved in discrete grid cells individually for elements
of the climate system at fixed-time intervals and integrated over time. At the beginning
of the climate model development, the models were designed only for one aspect of the
climate system (standalone atmospheric or ocean models). Since the Earth is inherently
coupled, the interactions among the components are crucial for reasonable simulation of
climate dynamics. In this regard, the approach allowing model components to interact
simultaneously, referred to as coupling, became a key element of comprehensive climate
models. The first coupled models linked the ocean and the atmosphere permitting the
exchange of heat and momentum fluxes at the boundary between components. From the
beginning of the 1990s, the coupled ocean-atmosphere models began to incorporate also
other physical components - the land surface, the cryosphere and lately biogeochemistry.

With an increasing number of institutions developing coupled GCMs starting from
the end of the last century, an issue arose concerning the comparability of the outputs
produced by those models. Since then, following the growing need to systematically
evaluate the performance of the coupled GCMs, the World Climate Research Programme’s
(WCRP) established the climate model intercomparison project (CMIP; Meehl et al.,
2000). Started over 25 years ago, CMIP gathered the collaborative efforts of modelling
groups around the world to systematically investigate the changing climate associated both
with natural variability and radiative forcing. To address this, a common protocol was
developed including standards in the model setup, design of experiments, output format,
and naming convention. This facilitated multi-model intercomparison and assessment of
the strengths and weaknesses of different models. Since 1995, CMIP went through 6
phases with sophistication at each stage allowing examination of the improvements across
the CMIP phases.

Significant efforts of modelling groups around the world contributed to considerable
advancement in computational efficiency, the complexity of the models, and increases in
the spatial resolution which together aim to improve the realism of the simulated features
in the climate system. For example, increased horizontal resolution in CMIP6 models
led to better representation of tropical and Arctic cyclones (Li et al., 2021; Song et al.,
2021), western boundary currents (Gupta et al., 2021), Atlantic Meridional Overturning
Circulation (Roberts et al., 2020), ocean heat content in the Northern Atlantic (Doc-
quier et al., 2019). However, there are still many errors in model simulations and large
uncertainties in projections of future climate, which are broadly attributed to model defi-
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ciencies (Tebaldi et al., 2021; Meehl et al., 2020). There is evidence of systematic biases
associated with the representation of mixed-phase clouds (Tan et al., 2016; Zelinka et al.,
2020), lack of coupled ice sheet interactions (Bronselaer et al., 2018), surface ocean warm
bias (Beadling et al., 2019) and equatorward shift of the westerly jet stream (Ceppi et al.,
2012). Moreover, fully coupled models are influenced by biases through coupling between
the components so the errors in the exchanged fields amplify with time. Even small er-
rors grow rapidly owing to the involvement of the chaotic dynamics of the atmosphere
(Alizadeh, 2022). Sea ice is highly sensitive to atmospheric and ocean forcing so biases in
temperature and salinity of the ocean, wind patterns, radiative fluxes, and ocean circula-
tion might translate into errors in sea ice in the model simulations. On the other hand,
not accurate sea ice representation in the models influences vice versa the aspects of the
atmosphere and the ocean.

The widely recognized way to improve the GCM’s ability and credibility to simulate
observed climate records and to reduce the model uncertainties is to increase the spatial
grid resolution. The limited resolution (typically 1∘) of current climate models is a critical
source of uncertainty in all applications of climate and Earth System modelling, including
to predictions, projections and risk assessments. However, the requirement for a multitude
of multi-centennial simulations, including poorly constrained Earth System processes and
feedbacks, has meant that model resolution within CMIP has progressed very slowly. The
benefits of higher resolution (∼ 25 km) in all model components have been abundantly
demonstrated (e.g. (Grist et al., 2018; Roberts et al., 2020; Meccia et al., 2021). The High-
Resolution Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) endorsed
by CMIP6, applies, for the first time, a multi-model approach to the systematic investi-
gation of the impact of horizontal resolution. HighResMIP has enabled standardization
of experimental design for high-resolution simulations (∼ 0.25∘), and has galvanized the
international community towards a more systematic exploration of the role of resolution.
HighResMIP exercise concentrates on delivering the best representation, at the highest
horizontal resolutions possible, of the processes that are important for the evolution of
climate on decadal timescales, with a specific focus on the period 1950-2050, with a major
emphasis on assessing the benefits of substantial increases in the atmosphere and ocean-
sea ice resolutions. On the other hand, high computational cost raises the debates on the
feasibility of enhanced resolution since the beneficial effect might be controversial (e.g.
Haarsma et al., 2020; Docquier et al., 2020; Koenigk et al., 2021). Another caveat is that
the horizontal resolution up to ∼ 0.25∘ is still not sufficient to resolve mesoscale eddies,
particularly in the high latitudes where the baroclinic Rossby radius is on the order of
kilometers (Khosravi et al., 2022). This leads to underrepresented local processes such
as air-sea fluxes, mixing, temperature, and salinity transport (Huot et al., 2022), which
eventually might affect the simulation of ocean dynamics and thermodynamics.
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In light of unsuccessful attempts of the modern models to describe the Antarctic
paradox and reproduce sea ice expansion trends (Roach et al., 2018; Holmes et al., 2019),
increased spatial resolution is found to improve the representation of the long-term vari-
ability in the Antarctic: model simulations using locally eddy-resolving configurations
are able to reproduce upward sea ice trends (Rackow et al., 2022). This finding marks a
promising stage on the way to reliable projections in this region. Another important source
of uncertainty is the amount of greenhouse emissions, which strongly depend on human
decisions. Insufficient understanding of the multiple feedbacks involved in the physical
processes in combination with unknown radiative forcing imposes additional challenges to
get plausible predictions of future climate.

1.3.1 Arctic sea ice in climate model simulations

Over the historic period, the CMIP climate models tend to reasonably simulate sea-
sonal variability of the Arctic sea ice extent, capturing maximum in March and minimum
in September. Following the progress from CMIP Phase 3 to Phase 5 (e. g. Stroeve et al.,
2012a; Shu et al., 2015), the models participating in CMIP6 exhibit some improvement
in the representation of sea ice area and volume revealing closer agreement between the
ensemble-mean and data-based estimates (Davy and Outten, 2020). However, CMIP6
models still produce a wide spread of mean Arctic sea ice area, capturing the observa-
tional record within the multi-model ensemble spread (Notz and Community, 2020). The
advancement in narrowing the inter-model uncertainty in sea ice extent since the last
phase does depend on the season: while in summer the inter-model spread among CMIP6
models is reduced, in winter the large ensemble spread remains (Shu et al., 2020). The
spatial distribution of sea ice is poorly reproduced in individual models in certain regions,
which is most likely attributed to ocean forcing. For example, the misrepresentation of
the currents in the North Atlantic leads to the inaccurate distribution of heat fluxes at
the Arctic gateway which affects the position of the ice edge (Watts et al., 2021). Another
source of the regional biases can be attributed to the complexity of the sea ice model: the
models with the Sea Ice Simulator have more sea ice in the Barents and East Greenland
Seas (Long et al., 2021). There is a higher model spread in the simulation of sea ice
volume (Davy and Outten, 2020) since sea ice thickness is the key source of uncertainty
in sea ice state simulation (Zygmuntowska et al., 2014). Only half of CMIP6 models
can adequately simulate March and September sea ice thickness (Watts et al., 2021).
While CMIP5 multi-model mean consistently overestimates sea ice volume in all months,
CMIP6 ensemble-mean has a small bias, yet it produces an overestimated seasonal cycle
(Davy and Outten, 2020). The proper representation of sea ice thickness distribution
still remains a fundamental problem for climate numerical modelling. Although clear
improvements since the previous generation of CMIP, the biases in the spatial distribu-
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tion and mean quantities of sea ice thickness persist in CMIP6 models. Despite many
models being able to locate the thickest ice north of Greenland and the Canadian Arctic
Archipelago as well as thin ice in the marginal seas, there are large compensation biases:
compared to reanalysis data (PIOMAS), the models tend to overestimate thick ice and
underestimate thin ice. Considering the long-term variability, the CMIP6 multi-model
mean has a closer agreement with the reanalysis estimates for sea ice area trends, than
their CMIP5 counterparts, yet the seasonal cycle of the trends is usually underrepresented
and the inter-model spread remains large. In contrast, for the monthly trends in sea ice
volume, no improvements are observable with the new phase of experiments (Davy and
Outten, 2020). However, the time series of September sea ice area and volume show a
better fit to reanalysis data in CMIP6 ensemble mean compared to that from CMIP5
(Davy and Outten, 2020). CMIP6 models better capture the sensitivity of Arctic sea ice
to changes in the forcing compared to CMIP3 and CMIP5 models, but there is still an
underestimation of the response of Arctic sea ice area to warming (Notz and Community,
2020). Although all global climate models agree on the further decline in sea ice extent,
they exhibit considerable inter-model spread generally underestimating the rate of ice
shrinking and thinning (Shen et al., 2021). The model simulations predict that the Arctic
becomes ”ice-free” (September sea ice extent below 1 ⋅ 106 𝑘𝑚2) before the middle of
the twenty-first century (Notz and Community, 2020), yet the timing of the event largely
depends on the combination of RCPs and SSPs (Davy and Outten, 2020). The reduction
of the uncertainties in the projected Arctic sea ice conditions remains challenging for the
modelling community. Apart from the model imperfections, the great obstacle to narrow-
ing the uncertainty is a critical paucity of observations, particularly thickness, that can
be used to constrain the model simulations (Massonnet et al., 2018).

1.3.2 Antarctic sea ice in climate model simulations

In the Antarctic, compared to the Arctic, climate models present lower confidence
in simulating historical variability of sea ice area which has been a consistent challenge
throughout CMIP generations. Poor representation of the historical mean state under-
mines the credibility of future projections of the Antarctic sea ice evolution as well as
future changes in the westerly jet stream, water mass transformation, heat, and carbon
storage. Furthermore, the improvements in the simulation of sea ice cover from previous
CMIP to CMIP6 are not sufficiently evident and consistent biases are still present. The
models are able to plausibly simulate the seasonal cycle of sea ice area, accurately cap-
turing the asymmetry with longer growth and shorter melt periods. However, the CMIP6
ensemble mean is consistently lower than observations in all months with the strongest
discrepancy in May (Roach et al., 2020). The inter-model spread in sea ice area clima-
tology remains high, particularly in summer (Shu et al., 2020), and exceeds twice that
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in the Arctic. Global climate models fail to realistically simulate the observed Antarctic
sea ice variability (Roach et al., 2020). While in the real world, the Antarctic sea ice
area experienced a long-term increase (Parkinson, 2019), the models produce decreasing
trends in response to the warming. Only 11% of CMIP6 models captured an expansion
increase in the Antarctic sea ice extent over 1979-2005 (Shu et al., 2020) compared to 15%
during the fifth phase of CMIP (Shu et al., 2015). Even though some models were able
to simulate a slight upward trend, none of them could capture the spatial pattern of sea
ice concentration trends (Shu et al., 2020). CMIP6 models also lose Antarctic sea ice at a
higher pace in comparison to their predecessors, which is owing to the higher sensitivity
of the sea ice area to increasing air temperature (Holmes et al., 2022).

1.4 Scope of the thesis

The purpose of this dissertation is to improve our knowledge of the temporal and
spatial variability of sea ice properties in the Arctic and Antarctic regions. To this end,
we analyze the ability of state-of-the-art global ocean reanalyses and last generation of
coupled climate models to reproduce observed sea ice records and simulate future sea ice
change and its link to climate change. First, we have studied the sea ice representation
in reanalyses systems where the ocean and sea ice components are combined with atmo-
spheric forcing and observations. Then we continued with more complex pictures where
the whole climate system is represented within the last generation of the coupled models
at high resolution.

The thesis presents the main features in the model treatment of sea ice at both
poles and highlights the systematic biases and shortcomings of the individual models by
comparing their estimates to satellite records and data-based products. I address the
following scientific questions in this dissertation:

• How robust are representations of sea ice state in the recent past?

• How trustworthy are projections of sea ice in the near future?

• Can we rely on current simulations and projections to understand the future of sea
ice?

Consistent assessment of the model performance in reproducing sea ice mean-state,
spatial heterogeneity, temporal variability, and trends is beneficial for identifying short-
comings due to missing/poor parameterizations in state-of-the-art models, improving
model descriptions of sea ice (thermos)dynamics properties and the key atmospheric-
sea ice-ocean physical processes, and obtaining more robust projections of future sea ice
evolution. The results of this dissertation aim to provide key knowledge on current short-
comings in representing polar processes at the atmosphere-ice-ocean inter-phase in existing
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models and suggest recommendations for required model improvements. This study also
aims to understand whether the focus on the net circumpolar changes in sea ice cover is
sufficient to investigate the changes in sea ice distribution or whether the knowledge of
sea ice distribution within different sea ice classes can enhance our understanding of how
the sea ice cover is changing and will change. Given the key role that the marginal ice
zone (MIZ) plays in the responses of Arctic and Antarctic ice covers to climate change,
while many studies focus on the total sea ice, we give particular attention to the seasonal
and interannual variability of the marginal ice against consolidated pack ice. To highlight
the importance of identifying different sea ice classes in order to assess the model skill in
simulating sea ice cover, this study addresses the following questions:

• How accurate is the representation of sea ice classes in ocean reanalysis and coupled
climate models?

• Can the marginal ice zone be a better indicator of climate change compared to total
sea ice and shed light on hemispheric and regional ice variability on seasonal and
interannual time scales?

• Can the proper simulation of the marginal ice zone improve climate projections?

Our results might draw the attention of the modelling community to the necessity to adapt
model physics to the current ice regimes and develop new metrics and reduce uncertainties.

1.5 Outline of the thesis

This thesis consists of 5 Chapters. The Introduction (Chapter 1) provides an
overview of the role of sea ice in the climate system, the past and present temporal and
spatial changes in the Arctic and Antarctic sea ice properties, and models performance in
simulating sea ice mean state and variability at both poles. Chapter 2 presents the model
systems and experimental design used in the thesis, the observational estimates used for
validations and the applied metrics. Chapter 3 collects two published manuscripts in
which the variability of the Antarctic sea ice area is analyzed in time/space using an en-
semble of global ocean/sea ice reanalyses (available through Copernicus Marine Service).
The focus is to investigate how ocean reanalysis can distinguish between marginal ice
zone and consolidated pack ice, and reproduce their observed seasonal and interannual
variability at hemispheric and regional scales against a set of observation-based products.
This analysis helps highlighting the different response of sea ice classes to external forcing
in the recent past and sheds light on the mechanisms behind the baffling behaviour of
Antarctic sea ice cover. The second important goal of the study is to investigate the
benefits of a multi-system ensemble approach which works to smooth the errors from
the individual ensemble members and to encourage the use of GREP in a wide range of
applications.
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The manuscripts have been published in 2022:

Iovino D∗, Selivanova J∗, Masina S and Cipollone A (2022) The Antarctic Marginal
Ice Zone and Pack Ice Area in CMEMS GREP Ensemble Reanalysis Product. Front.
Earth Sci. 10:745274. doi: 10.3389/feart.2022.745274.

∗ co-first authorship

Iovino D, Selivanova J, Lavergne T, Cipollone A, Masina S, and Garric G. Changes
in the Antarctic Marginal Ice Zone in von Schuckmann K et al. 2022 Copernicus marine
service ocean state report, Issue 6. J. Oper. Oceanogr. 13, S1-S220. doi:
https://doi.org/10.1080/1755876X.2022.2095169.

Chapter 4 continues to analyse the changes in the Antarctic sea ice. The focus is on
the historical period 1979-2014 as simulated in a set of European coupled climate models
in the framework of the HighResMIP. The aim of this study is to assess the accuracy
of coupled models to simulate seasonal and long-term variability of the Antarctic sea
ice area and volume and investigate the impact of mesh grid resolutions on the model
performances. The sea ice interplay with ocean and atmosphere is investigated to find
a link of systematic biases in the sea ice representation to the other components biases.
This chapter constitutes the basis of a manuscript to be submitted in the next months to
a peer-review journal.

In Chapter 5, I analyze the past and future of the Arctic sea ice using again the High-
ResMIP model outputs from the coupled historical (“hist-1950”) and future (“highres-
future”) runs. In this study, the realism of the models to reproduce mean state and
historical sea ice variability on hemispheric and regional scales is analysed. Assessed the
multi-model, multi-resolution representation of the Arctic ice and the systematic differ-
ences (if any), we evaluate the future projections of the Arctic sea ice state, and investigate
the impact of the ocean/atmosphere horizontal resolution in reproducing the first Arctic
ice-free summer and the ice concentration and volume loss in at regional scales.

Summary of the dissertation and a list of references for Chapters 1, 2, 4, and 5 can
be found at the end of the dissertation.
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Chapter 2
Methods

This Chapter presents a synthesis of the set of global ocean reanalyses and cou-
pled climate models considered in the dissertation. The Chapter provides an overview of
remote sensing instruments to monitor sea ice properties and gives a description of the
observation-based products used here for assessing the realism of numerical systems. We
present the metrics to evaluate amount of sea ice cover and its temporal/spatial variability.
We focus on the necessity to distinguish sea ice classes - the MIZ and consolidated pack
ice. The Chapter provides a comparison between two different methodologies to identify
the MIZ: the conventional approach defining the MIZ through SIC thresholds and the
statistical one based on day-to-day SIC variability. Using satellite estimates, ocean re-
analyses, and coupled climate models we examine seasonal and long-term variability and
spatial patterns of the MIZ extent in two approaches.

2.1 Tools

2.1.1 Global Ocean Reanalyses from CMEMS

Global ocean-sea ice reanalyses (ORAs) are an essential tool for assessing the vari-
ability and trends of ocean and sea ice properties in the recent past. In comparison
to coupled climate models, they integrate ocean and sea ice observations through data
assimilation schemes and indirectly integrate meteorological observations through fixed
atmospheric forcing generally from atmospheric reanalyses (Dee et al., 2014; Storto et al.,
2019). Compared with in-situ or satellite observations, ORAs are not only continuous in
time and space, but also show inherent ocean model physics (Storto et al., 2019). ORAs
represent a useful tool for in-depth investigation of the major climate phenomena, par-
ticularly those which are not directly observed. In this regard, the ORAs are of special
significance in studying and monitoring the ice and ocean conditions in polar regions. In
view of the above advantages, ORAs are widely used to study sea ice trends and sea ice
interactions with the atmosphere and ocean (e.g. Chevallier et al., 2017; Ponsoni et al.,
2019; Uotila et al., 2019; Spreen et al., 2011), or as initial and boundary conditions for
sea ice in seasonal forecasting systems (e.g. Day et al., 2014; Guemas et al., 2016).

Even though the reanalyses are able to provide robust estimates of the mean state
and variability of essential climate variables (Storto et al., 2019), they are not flawless: the
fidelity of the ORAs depends on the reliability of ocean and sea-ice models and assimilation
methods, and the accuracy of observational datasets. The model- and observations-related
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deficiencies both contribute to the systematic errors in the reanalyses. The average of the
values of individual reanalyses, i.e. the ensemble-mean reanalysis, can be considered as
one single system. A multi-model ensemble approach might offer the best possible quality
of the estimates of studied metrics since the ensemble operator smooths the strengths and
weaknesses of individual ORAs. Furthermore, it is practically difficult to deduce which
of the individual ORAs performs the best: the performance depends on the diagnostic
and season, which highlights the feasibility of the multi-model approach. In this disser-
tation, we use the monthly outputs from the ensemble-mean reanalysis GREP produced
by the Copernicus Marine Environment Monitoring Service (CMEMS) of the European
Union, covering the period 1993-2019 (product reference GLOBAL REANALYSIS PHY
001 031). The GREP product is made up of four comprehensive ORAs (C-GLORSv7,
Storto et al., 2016; FOAM-GloSea5, MacLachlan et al., 2015; GLORYS2v4, Lellouche
et al., 2013; ORAS5, Zuo et al., 2019). All ensemble members are based on NEMO ocean
model (Nucleus for European Modelling of the Ocean model, e.g. Madec et al., 2022).
NEMO is a hydrostatic, finite-difference, primitive-equation general circulation model. All
ensemble members are driven by common atmospheric forcing from the European Centre
for Medium Range Weather Forecasts (ECMWF) ERA-Interim (Dee et al., 2011) but
with different bulk formulas. The ORAs employ a tripolar mesh at the eddy-permitting
resolution, ORCA025 grid (0.25∘). This global configuration allows to explicitly represent
mesoscale dynamics at middle-latitude, not in subpolar and polar ocean sectors (poleward
of ∼ 50∘ in each hemisphere). Three out of four ORAs employ thermodynamic-dynamic
the Louvain-la-Neuve Sea-Ice Model (LIM2; Fichefet and Maqueda, 1997), among which
two use elasto-visco-plastic rheology and one (ORAS5) implements visco-plastic rheol-
ogy. The fourth reanalysis (FOAM) includes version 4.1 of the Los Alamos sea-ice model
(CICE; Hunke, 2010). CICE is dynamic-thermodynamic sea-ice model, which employs
five thickness categories and the elastic-viscous-plastic rheology and has more sophisti-
cated physical formulations compared to LIM2. ORAs assimilate different observational
products. SIC forcing is derived from OSISAF (Lavergne et al., 2019) in C- GLORSv7
and FOAM, Ifremer/CERSAT in GLORYS2v4 and OSTIA product (Good et al., 2020) in
ORAS5. All reanalyses are available on monthly scale but C-GLORSv7 also provides data
on a daily scale. Besides the aforementioned differences, there are many other differences
among the single ORAs including data assimilation schemes, bias correction schemes,
bulk formulations, and error definitions. All those differences among individual members
contribute to the ensemble spread.

2.1.2 CMIP simulations

The coupled model intercomparison project (CMIP) is one of the fundamental el-
ements of climate science at present and defines a collaborative framework designed to
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improve knowledge of the past, present, and future climate change arising from natural
and forced variability in a multi-model context. The CMIP collects and archives multi-
ple model outputs in a standardized format to facilitate each-other comparison and make
them freely available to a wide research community all over the world. The CMIP phase 6,
recently released, differs from the previous phases by the experimental design and organi-
zation with more than twenty individually-designed MIPs (Eyring et al., 2016) addressing
specific scientific topics as in Fig. 2.1. Following the efforts to improve the representation
of many aspects of sea ice during previous phases of CMIP, a specific diagnostic project
was launched in CMIP6, the Sea-Ice Model Intercomparison Project (SIMIP; Notz et al.,
2016) with the overall objective to analyse the role of sea ice for the changing climate us-
ing coupled climate systems. Specifically, SIMIP provided a better understanding of the
behavior of sea ice in the models, and of the degree to which models can reflect the real
world. To assess the realism of sea-ice simulations, a new protocol for the climate-model
output was designed with five groups of sea-ice related variables, each describing a key
aspect of sea-ice evolution: sea-ice state variables, tendencies of sea-ice mass, heat and
freshwater fluxes, sea-ice dynamics, and integrated quantities (Notz et al., 2016).

Figure 2.1: Schematic of the CMIP/CMIP6 experiment design; (Eyring et al., 2016)

29



CHAPTER 2. METHODS

CMIP6 climate models have been extensively assessed against their ability to cap-
ture a broad range of large-scale and regional climate processes (e.g. Robson et al.,
2020; Watterson et al., 2021; Zanowski et al., 2021). In some cases, they show signifi-
cant improvements compared to CMIP5 GCMs with reduced biases against observations.
However, not all GCMs are equally skillful in capturing the climate processes that drive
climate variability and change. Key biases and large uncertainties in climate projections
generally remain. Reducing model biases remains one of the priorities of modelling groups
worldwide. Robust projections of climate variability and change, particularly at regional
scales, rely on the driving processes being represented with fidelity in model simulations.
The role of enhanced spatial grid resolution is widely recognized as the way to better rep-
resent processes in all components of the climate system, tackle biases, and improve the
realism of the model simulations. Progresses in high-performance computing resources
and big data management have enabled climate models to simulate more processes in
detail and on smaller scales.

The High Resolution Model Intercomparison Project (HighResMIP; Haarsma et al.,
2016) is one of the CMIP6-endorsed projects, which applied a multi-model approach to
the systematic investigation of the impact of enhanced horizontal grid resolution in the
ocean and atmosphere on the representation of various climate phenomena. HighResMIP
thereby focuses on one of the CMIP6 broad questions, ”what are the origins and conse-
quences of systematic model biases?”. A coordinated set of experiments has been designed
into three tiers (Fig. 2.2; Haarsma et al., 2016):

• Tier 1 consisting of atmosphere-only runs using observed SST forcing for the period
1950-2014 (highresSST-present)

• Tier 2 consists of couple runs including simulations with fixed 1950-forcing (control-
1950), historical forcing until 2014 (hist-1950) and future projected forcing based
on CMIP6-SS5 until 2050 (highres-future)

• Tier 3 as an extension of Tier 1 starting from 2015 (highresSST-future). These
experiments use CMIP6 SSP5-8.5 scenario forcing.

In this thesis, the model outputs of coupled historical and future runs (hist-1950
and highres-future) are used. Six different GCMs are considered with a combination of
fourteen model configurations (based on resolution changes). A brief description of each
of the models is given below.

The first model is the ECMWF Integrated Forecast System (ECMWF-IFS) cycle
43r1 (Roberts et al., 2018). The ocean and sea ice components are based on version 3.4 of
the Nucleus for European Modelling of the Ocean (NEMO; Madec et al., 2022) and LIM2
with the viscous-plastic rheology. The atmospheric component is a hydrostatic, semi-
Lagrangian, semi-implicit dynamical-core model the Integrated Forecasting System (IFS).
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Figure 2.2: Short outline of HighResMIP design (Haarsma et al., 2016).

The land surface component is the Hydrology Tiled ECMWF Scheme of Surface Exchanges
over Land (H-TESSEL; Balsamo et al., 2009). There are three configurations with varying
ocean and atmosphere resolution. The low-resolution configuration (ECMWF-IFR-LR)
is based on the ORCA1 tripolar ocean grid (resolution of 1∘) and the Tco199 atmosphere
grid (nominal resolution of 50km). The high-resolution configuration (ECMWF-IFR-HR)
uses the ORCA025 eddy-permitting grid and Tco399 atmosphere grid (nominal resolution
of 25 km). The intermediate resolution configuration (ECMWF-IFR MR) shares the
atmospheric resolution with ECMWF-IFR-LR and the ocean resolution with ECMWF-
IFR-HR.

HadGEM3-GC3.1, hereafter referred to as HadGEM3, is the Global Coupled 3.1 con-
figuration of the Hadley Centre Global Environmental Model 3 (Williams et al., 2018).
The model is composed of NEMO3.6 for the ocean and CICE5.1 for sea ice. The at-
mosphere (the Unified Model; Cullen, 1993) and land (the Joint UK Land Environment
Simulator; Best et al., 2011). components run on the same grid. The model provides
three different configurations. The coarse configuration, HadGEM3-LL, runs with the
ORCA1 ocean grid and the N96 atmosphere grid (nominal resolution of 250 km). The
intermediate configuration, HadGEM3-MM, uses the ORCA025 ocean grid and the N216
atmosphere (nominal resolution of 100 km). The finest configuration, HadGEM3-HM,
uses the ORCA025 ocean grid and the N512 atmosphere grid (nominal resolution of 50
km).

The third model, EC-Earth3P, is a part of the EC-Earth3 family developed by the
EC-Earth Consortium (Haarsma et al., 2020). It comprises version 3.6 of the NEMO ocean
model and version 3 of the Louvain-la-Neuve sea-Ice Model (LIM3; Rousset et al., 2015),
which is a dynamic-thermodynamic sea-ice model using five ice thickness categories and
elastic viscous plastic rheology. The atmosphere and land use IFR model and H-TESSEL
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of the ECMWF, respectively. The two versions of the model participate in HighResMIP:
the first one is EC-Earth-LR with the TI255 atmosphere grid (nominal resolution of 100
km) and ORCA1 ocean grid; and the second one is EC-Earth3P-HR, which employs the
ORCA025 grid for the ocean and the TI511 grid for the atmosphere.

CNRM-CM6-1 is the result of collaboration between the Centre National de Recher-
ches Météorologiques (CNRM) and Cerfacs (Voldoire et al., 2019). The ocean component,
NEMO3.6, is coupled to version 6 of the sea ice model GELATO. Gelato includes five
thickness categories and uses elastic-viscous-plastic rheology. The CNRM-CM6 comprises
version 6.3 of the global atmospheric model ARPEGE-Climat coupled to the surface
component SURFEX (Masson et al., 2013), which simulates fluxes of heat, energy, and
momentum. There are two configurations. The low-resolution configuration, CNRM-LR,
is based on the eORCA1 ocean grid and the TI127 atmosphere grid (nominal resolution
of 250 km). The fine-resolution configuration, CNRM-HR, runs on the eORCA025 ocean
grid and the TI359 atmosphere grid (nominal resolution is of 100 km). The eORCA grid
is the extension of ORCA, which permits a more realistic representation of the ice shelves
edges in Antarctica ((Mathiot et al., 2017).

The fifth model, CMCC-CM2, is the contribution of Euro-Mediterranean Center on
Climate Change to HighResMIP (Cherchi et al., 2019). The ocean component based on
NEMO3.6 is coupled to CICE4.0 for sea ice. The atmosphere and land use version 4
of the Community Atmosphere Model (CAM, Neale et al., 2013 and version 4.5 of the
Community Land Model (CLM, Oleson et al., 2013), respectively. Two configurations are
distributed on the same ORCA025 grid. The only difference between the configurations
is the atmosphere resolution: the coarser configuration, CMCC-CM-HR, has a resolution
of 1∘ while the finer configuration, CMCC-CM2-VHR, runs with a resolution of 0.25∘.

The sixth model is version 1.2 of Max-Planck Institute Earth System Model (MPI-
ESM, Müller et al., 2018). It is made up of version 1.6.3 of the Max Planck Institute
Ocean model (MPIOM, Jungclaus et al., 2013) and version 6.3 of the European Cen-
tre/Hamburg atmospheric model (ECHAM6.3) which includes the land surface model
JSBACH (Stevens et al., 2013). MPIOM is a free-surface ocean-sea ice model using hy-
drostatic and Boussinesq approximations. The two model configurations use the same
tripolar ocean grid TP04 at 0.4∘ resolution but the atmosphere grids are different: the
first configuration, MPI-HR, runs on T127 with a nominal resolution of 100 km while the
second configuration, MPI-VHR, uses T255 grid (the nominal resolution of 50 km).

2.1.3 Observation-based products

Before the satellite era, remote polar environments made ground- or ship-based
research difficult, and sea ice was one of the least known features of the global climate
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system. The sea ice mean state and changes were inferred from a number of sources
of in-situ measurements such as buoys, submarines, aircraft, and ships (Smith et al.,
2019). However, in-situ measurements are sparse in time and space, particularly in the
Antarctic region. On October 1978, the Scanning Multichannel Microwave Radiometer
(SMMR) began its mission aboard the Nimbus-7 satellite, launching the modern sea ice
satellite record. SMMR used multiple microwave frequencies to accurately observe ice
concentration, or the percentage of sea ice covering a given area. In addition, SMMR
was capable of distinguishing younger, thinner ice from older, thicker, and more resilient
sea ice. Starting from 1979, the set of satellites has provided a continuous record of sea
ice coverage for both hemispheres, data archived and distributed by NSIDC (National
Snow and Ice Data Center, https://nsidc.org/). Passive microwave radiometers enable
sea ice monitoring by detecting microwaves naturally emitted by sea ice surface. Passive
microwave data are the keystone of the satellite sea ice record and marked an essential
step in observing seasonal and long-term variability of sea ice concentration. However,
information on sea ice thickness is also needed to monitor ice changes. Because sea
ice thickness is an essential parameter to quantify the real 3D structure of the sea ice
volume, a comprehensive picture of sea ice evolution has been absent until quite recently.
Satellite-based altimetry has increased our knowledge of spatial and temporal coverage of
sea ice thickness. The Environmental satellite (EnviSat) was launched in March 2002 by
the European Space Agency (ESA) and has operated until April 2012. EnviSat carried
onboard 10 instruments and monitored a wide range of environmental characteristics
including sea ice thickness at both poles (Tilling et al., 2019; Wang et al., 2022). In 2003,
the Ice, Cloud, and land Elevation Satellite (ICESat) mission was launched by NASA to
track sea ice thickness (SIT), as well as ice sheet heights, clouds, and land cover (Kwok and
Cunningham, 2008). Shortly before ICESat was decommissioned in 2009, Nasa operated
the IceBridge mission to fly similar instruments over the poles aboard aircraft to continue
the record until a follow-on mission, ICESat-2, could be launched in September 2018. In
the same decade, ESA launched the CryoSat-2 mission dedicated to measuring polar sea
ice thickness and monitoring changes in ice sheets (Laxon et al., 2013). SIT remote sensing
with radar altimetry is an indirect method that relies on retrievals of sea ice freeboard.
This method is based on certain assumptions and parametrizations that introduce several
uncertainty factors, some arise from the radar measurements themselves, and others are
induced during the ensuing processing. Uncertainties are related to the distortion of the
signal over different surface types and the lack of reliable estimates of snow thickness
covering the ice (Alexandrov et al., 2010; Tilling et al., 2015). In the Antarctic, the large
uncertainties are also attributed to the relatively small freeboard (Maksym and Markus,
2008).

Many algorithms have been developed to retrieve ice properties (mainly SIC) from
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satellite-based (e.g. Svendsen et al., 1987; Cavalieri et al., 1984; Tikhonov et al., 2016),
and hence many sea ice products. Among those, for this study four well-known and
validated records are considered: NOAA/NSIDC Climate Data Record (CDR) version 3
(Meier et al., 2017) and version 4 (Meier et al., 2021), EUMETSAT OSISAF Climate
Data Record and Interim Climate Data Record (release 2, products OSI-450 and OSI-
430-b, (Lavergne et al., 2019), and IFREMER/CERSAT (Ezraty et al., 2007). They
all cover the period from 1979 onward and are available at monthly and daily (since
1987) time resolution. CDR algorithm leverages two well-established sea ice concentration
algorithms: the NASA Team (NT) algorithm (Cavalieri et al., 1984) and the Bootstrap
(BT) algorithm (Comiso, 1986). The combination of the strengths of two algorithms has
a beneficial effect on the accuracy of the output (Meier et al., 2021) CDR uses gridded
brightness temperatures in low frequencies from the Nimbus-7 SMMR (18, 37 GHz) and
the DMSP series of SSM/I and SSMIS passive microwave radiometers (19.4, 22.2, 37
GHz). Different ratios of frequencies are used to filter weather effects. The output data is
distributed on a 25 km x 25 km polar stereographic grid. The CDR version 4, released in
June 2021, includes a number of updates including altered weather filter thresholds in the
Southern hemisphere and filled Arctic pole hole (Meier et al., 2021). The second passive
microwave data record comes from the EUMETSAT Ocean-Sea Ice Satellite Application
Facilities (OSISAF). OSI-450 is the second major version of the OSISAF Global Sea Ice
Concentration Climate Data Record covering the period from 1979 to 2015. The Interim
OSI-430-b complements OSI-450 starting from 2016 onwards. OSI-450 SIC is based on the
SMMR (1979-1987), SSM/I (1987-2008), SSMIS (2006-2015) instruments using 19.35 and
37 GHz frequency, and ERA Interim reanalysis data (?), gridded to a 25 km x 25 km grid.
OSI-430-b uses SSMIS data from NOAA CLASS, and operational analysis and forecast
from ECMWF. The third SIC dataset we present here is developed at IFREMER/Centre
d’Exploitation et de Recherche SATellitaire (CERSAT), using the Artist Sea Ice (ASI)
algorithm developed at the University of Bremen. The ASI algorithm blends the Svendsen
algorithm (Svendsen et al., 1987) and the NASA team algorithm (Cavalieri et al., 1999);
it is based on the 85.5 GHz channel brightness temperature data. The SIC field from
IFREMER/CERSAT product is distributed at 12.5 km. Although the higher frequency
channels have a higher spatial resolution, they are more sensitive to weather effects (water
vapor and clouds) that reduce the accuracy of SIC retrievals (Pang et al., 2018).

Understanding the large-scale characteristics of SIT is a tough challenge due to the
sparse distribution of in-situ observations (Worby et al., 2008). A set of different ap-
proaches are also available and applied to retrieve SIT from satellite measurements. It
is well known that satellite observations have wider spatiotemporal coverage than in-situ
observations. However, previous studies indicate that there is large uncertainty in SIT
data retrieval from satellite altimeters owing to the relatively small freeboard mainly in
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the Antarctic sea ice (Maksym and Markus, 2008) and the lack of knowledge about snow
depth, as well as sea-ice and snow density (Alexandrov et al., 2010). There are still large
differences among satellite-based SIT estimates; even though the SIT spatial distribution
can be similarly reproduced, uncertainties on thickness values are large and regionally
dependent. Since no observational data set of sea ice thickness is available until now that
spans a long time period and is spatially continuous, this thesis relies on reanalysis data
from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and
Rothrock, 2003) and the Global Ice-Ocean Modeling and Assimilation System (GIOMAS,
Zhang and Rothrock, 2003) to represent observed sea ice thickness. PIOMAS is a nu-
merical model with sea ice and ocean components, and the capabilities of assimilating
satellite sea ice concentration and sea surface temperature. The ice thickness is derived
from the internal sea ice (thermo)dynamics, creating a continuous time series. It has been
extensively evaluated against satellite, submarine, and in situ observations (e.g. Stroeve
et al., 2014; Wang et al., 2016; Labe et al., 2018; Lang et al., 2017; Laxon et al., 2013;
Wang et al., 2016). Despite some spatial bias in the ice thickness distribution, where the
reanalysis tends to overestimate (underestimate) thin (thick) ice thickness, the estimates
were found to agree well with observations. GIOMAS is the global configuration of the
model reanalysis and assimilates the same ice and ocean variables. It is extensively used
as reference in climate and model assessment studies in the Antarctic region (Uotila et al.,
2017; DuVivier et al., 2020; Liao et al., 2022; Shu et al., 2015) and predictions (Ordoñez
et al., 2018; Morioka et al., 2021). However, GIOMAS has been less widely evaluated in
part because there are far fewer observations of Antarctic SIT against which evaluation
is possible (DuVivier et al., 2020). Besides thickness and volume, the outputs provided
by GIOMAS include monthly mean sea ice concentration, sea ice velocity, snow depth,
sea ice growth and melt rate, for both Arctic and Antarctic regions, from 1970 to present.
The data comprises also some of the ocean variables, such as sea surface temperature and
salinity, and ocean velocities. Some technical aspects of the systems follow. PIOMAS
and GIOMAS are composed of global Parallel Ocean and sea Ice Model (POIM) coupled
to a data assimilation scheme. The models ingest SIC from the NSIDC near-real time
product (Brodzik and Stewart, 2016) and SST from NCEP/NCAR reanalysis (Kalnay
et al., 1996). POIM couples the Parallel Ocean Program (POP) with an eight-category
thickness and enthalpy distribution (TED) sea-ice model. The average horizontal spatial
resolution of the global mesh is 0.8∘ x 0.8∘ (about 60 km x 60 km). In the Northern
hemisphere, the model is distributed on a stretched GOCC grid with the northern grid
pole located in Greenland; the horizontal resolution in the Arctic is up to 22 km. In the
Southern hemisphere, the model grid is based on a spherical coordinate system.
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2.2 Methodologies

The area of the ocean covered by sea ice is usually described in terms of sea-ice
extent (SIE) and sea-ice area (SIA), which are highly correlated but have different value.
Both are computed from the percentage of each grid cell covered by ice (SIC). SIE is
defined as the integral sea-ice area of grid cells with a SIC higher than a certain threshold
value, conventionally 15%; this value stems from the uncertainty in the methodology to
retrieve SIC using passive microwave sensors. SIA is calculated as the sum of sea-ice areas
of all grid cells, i.e. ∑𝑁

𝑖=1 𝑆𝐼𝐶𝑖 x 𝐴𝑖, where 𝐴𝑖 is the area the given grid cell and index
i runs over the grid cell of the domain. Overall, SIA excludes open water areas between
the ice floes, while SIE marks all grid cells with at least 15% SIC as 100%. Because the
uncertainties from passive microwave retrievals have less effect on SIE, it is often used to
describe sea-ice coverage.

To calculate the inconsistency between reanalyses and satellite products we employ
the integrated ice area error (IIAE) approach (Roach et al., 2018, 2020) adapted from
the extent-based integrated ice-edge error metric (IIEE, Goessling et al., 2016). The IIAE
identifies the area on which ORAs and observations which are considered as a ”true state”
disagree. The IIAE represents a sum of overestimated (O) and underestimated (U) sea-ice
area.

𝐼𝐼𝐴𝐸 = 𝑂 + 𝑈
with

𝑂 = ∫𝐴 𝑚𝑎𝑥(𝑐𝑚 − 𝑐𝑜, 0)𝑑𝐴
and

𝑈 = ∫𝐴 𝑚𝑎𝑥(𝑐𝑜 − 𝑐𝑚, 0)𝑑𝐴,

where A is the area of interest, 𝑐𝑚 is the simulated sea ice concentration, and 𝑐𝑜 is the
observed sea ice concentration.

In our study, to examine the spatial and temporal variability of the sea ice in the
very sensitive marginal ice zone, particular interest is given to the representation of sea
ice classes in addition to the total sea ice area. We divide sea ice in marginal ice zone
(MIZ) and consolidated pack ice.

The MIZ is qualitatively defined as the area where sea ice properties are impacted
by open-ocean processes, especially ocean surface gravity waves (Wadhams, 1986). Con-
sidered as a transition region, the MIZ separates the open ocean conditions from the
consolidated pack ice. The plausible estimates of the MIZ and time/space variability
of its area/extent are essential for understanding atmosphere-ice-ocean interactions and
biological processes. However, it is challenging to accurately determine the boundaries
between the sea ice classes. In addition, the physical processes that identify the MIZ,
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cannot be obtained at high frequency and large scales. As viewed by remote sensors, the
MIZ is historically identified as the area capped by 15% and 80% SIC boundaries using
satellite passive microwave SIC (Strong and Rigor, 2013; Aksenov et al., 2017; Rolph
et al., 2020). Following the studies in the Arctic, where the threshold-based definition
adequately distinguishes the MIZ from the pack ice, the method was directly applied to
the Antarctic. Given that sea ice in the Antarctic is dominated by seasonal pancake
ice, the air-sea interactions might not strongly depend on sea-ice coverage and the fully
ice-covered ocean does not necessarily correspond to pack ice conditions (Alberello et al.,
2019; Vichi et al., 2019; Brouwer et al., 2021). An alternative statistical approach to detect
the MIZ conditions is proposed by Vichi (2022). The method is based on the temporal
and spatial variability of SIC and considers the highly dynamic nature of the MIZ. For
each grid cell, the daily SIC anomaly is computed as a difference between daily SIC and
yearly averaged SIC for the respective month. Then, the standard deviation of the daily
anomaly is calculated for each month:

𝜎𝑚
𝑆𝐼𝐶=√ 1

𝑁 ∑𝑁
𝑖=1(𝜎𝑚

𝑖 )2,

where (𝜎𝑚
𝑖 ) is the daily SIC anomaly, m is the month and N is the total number of days

in the month.

The climatological monthly standard deviation of the anomalies (𝜎𝑆𝐼𝐶), referred to
as the indicator, is calculated by merging all the daily anomalies from the same month in
different years:

𝜎𝑆𝐼𝐶=√ 1
𝑁 ∑𝑁∗𝑌

𝑗=1 (𝜎𝑖)2,

with Y being the number of years and the index j running over the number of days of
each month.

Hence, the open-ocean or pack ice conditions are more likely to experience small
perturbation relative to the long-term mean SIC. To differentiate the MIZ from more
consolidated ice, the threshold of 10% is chosen from the median distribution of 𝜎𝑆𝐼𝐶.
The grid cells with 𝜎𝑆𝐼𝐶 exceeding 10% are identified as MIZ. Apart from being physi-
cally explained, this method is perspective as it might overcome the disparity among the
algorithms that can provide contrasting estimates of total and marginal sea-ice extents
(Stroeve et al., 2016).

To compare two methods in detecting the MIZ we show climatological values of
𝜎𝑆𝐼𝐶 in different months together with the mean position of 15% and 80% sea ice edges
(Fig. 2.3). It is evident that Vichi’s approach suggests an extended area with MIZ-like
properties: despite high sea ice fractions, the region can still exhibit high day-to-day
variability which is characteristic of the MIZ.

The annual seasonal cycle of the MIZ extent over 1993-2019 period for C-GLORSv7
and CDR estimated using two approaches is shown in Fig. 2.4. The MIZ extent in CDR
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Figure 2.3: Climatological values of the indicator (𝜎𝑆𝐼𝐶) in the Antarctic in C-GLORSv7
for the years 1993-2019. Contours indicate the mean position of 15% (solid) and 80%
(dashed) ice concentration.

has the annual minimum in February and the maximum in December with both methods,
but 𝜎𝑆𝐼𝐶-based approach reproduces a larger MIZ. When comparing the two methods, it
is clear that the major difference is in the advance season for both datasets: the threshold-
based MIZ extent grows continuously from February to October, while 𝜎𝑆𝐼𝐶)-based ap-
proach indicates that the MIZ expands from February to May and then remains constant
until October. Using the conventional approach, the two products are consistent in the
shape of the mean seasonal cycle with slightly higher values in C-GLORSv7 in all months,
the alternative method exhibits stronger bias from May to October while in the rest of
the year there is close agreement between two datasets.

To assess the differences between the two approaches for the MIZ definition on a
long-term scale, we evaluate monthly trends (as a function of longitude and month) in the
MIZ extent calculated for CDR for the years 1993-2019 (Fig. 2.5). The spatial pattern
is reproduced in a similar way, however, there are a number of discrepancies, the most
pronounced of which occur in the Weddell Sea: the 𝜎𝑆𝐼𝐶-based approach reveals more
negative trends in different seasons. The differences might also be attributed to the fact
that the SIC-based definition is limited by the temporal resolution: the monthly fields
of SIC are not able to capture the highly dynamic nature of the MIZ. he examination of
seasonal and long-term variability of the MIZ extent using C-GLORSv7 and CDR reveal
that the choice of approach for the MIZ definition does not significantly modify the result.

The comparison between two MIZ definitions is also carried out for HighResMIP
model outputs (Figure 2.6). For both methods, the models simulate seasonal minimum
in February and maximum in December and generally underestimate the MIZ extent in
comparison to CDR. There is no significant difference between the two methods, however,
the 𝜎𝑆𝐼𝐶-approach suggests a slightly higher MIZ extent in the advance season from April
to September. Using a conventional approach, two models (HadGEM3 and CMCC-CM2)
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Figure 2.4: Seasonal cycle of the Antarctic MIZ extent estimated from concentration
criterion (15% < SIC < 80%) and 𝜎𝑆𝐼𝐶 criterion (𝜎𝑆𝐼𝐶 > 10%) for CGlORSv7 and
NSIDC CDRv3 for the years 1993-2019

Figure 2.5: Monthly trends (1993-2019) in MIZ extent, as a function of longitude estimated
from concentration criterion (15% < SIC < 80%; upper panel) and 𝜎𝑆𝐼𝐶 criterion (𝜎𝑆𝐼𝐶
> 10%; lower panel) for CDR. Only significance higher than 95% are shown.

largely overestimate the MIZ extent in December and January which reflects the rapid
spring sea ice retreat in these models while with the 𝜎𝑆𝐼𝐶-approach they simulate a higher
extent relative to satellite estimates only in January. Additionally, HadGEM3 and CMCC-
CM2 do not exhibit pronounced growth of the MIZ extent in the advance season which
is seen in the other models: the values are constant from March to October. EC-Earth3
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Figure 2.6: Seasonal cycle of the Antarctic MIZ extent estimated from concentration
criterion (15% < SIC < 80%; left) and 𝜎𝑆𝐼𝐶 criterion (𝜎𝑆𝐼𝐶 > 10%; right) for HighresMIP
models and NSIDC CDRv4 for the years 1993-2019.

and CNRM simulate a slight decrease of the MIZ extent from July to October when the
total sea-ice cover expands to its largest seasonal extent which results in a second MIZ
extent maximum in June. MPI-ESM produces distinct from the other models seasonal
cycle in the MIZ extent: with the threshold approach, the model shows similar to the total
sea-ice extent seasonality with considerable spring expansion and the maximum peak in
September while using the 𝜎𝑆𝐼𝐶-definition leads to sharp growth from February to May
followed by a decrease until September and a second maximum in November.

The climatological maps of the indicator for February and December, months of
the MIZ minimum and maximum extent, are shown in Figure 2.7. Apart from different
amount of sea ice, the models differ on the intensity of the MIZ conditions and the area of
high intensity. In February, the models generally underestimate the intensity compared
to CDR. Even the models with similar to CDR February MIZ extent (HadGEM3 and
CMCC-CM2) demonstrate the lower intensity of temporal SIC variability. In December,
during the rapid sea ice retreat, the region presenting the MIZ features expands. The
models exhibit high SIC variability and some of them are close to the estimates from
CDR.
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(a)

(b)

Figure 2.7: Climatological values of the indicator (𝜎𝑆𝐼𝐶) for HighresMIP models and
NSIDC CDRv4, computed as the standard deviation of the daily anomalies for February
(a) and December (b), averaged over 1993-2014.
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Chapter 3
Sea ice in Global Ocean reanalyses

Global ocean reanalyses represent an essential tool for investigating temporal and
spatial variability of the ocean and sea-ice properties in the recent past and present. The
current Chapter describes how sea ice is treated in the ensemble-mean of four global
ocean reanalyses GREP produced within the European Copernicus Programme. We start
to investigate sea-ice changes and examine the realism of sea-ice representation from the
Northern Hemisphere. (Figure 3.1). We find that GREP is in close agreement with

Figure 3.1: Time series of (upper panel) monthly averages and (lower panel) monthly
anomalies of Antarctic sea ice area in GREP (magenta) and CDR (black) from January
1993 to December 2019, for GREP (magenta), CDR (black solid) and OSISAF (black
dashed). Pink shading denotes the envelope of GREP members.

satellite estimates for SIA: GREP properly reproduces interannual variability, decreasing
trend, as well as record summer lows of 2007 and 2012. GREP and satellite products are
consistent for the yearly average SIA trend which is -0.07 million 𝑘𝑚2/year for GREP,
-0.07 million 𝑘𝑚2/year for CDR, and -0.06 million 𝑘𝑚2/year for OSISAF. The ensemble
spread is relatively narrow nearly until the end of the 2000s and slightly increases at the
end of the time series when the pace of sea-ice loss has accelerated. For the MIZ area,
CDR and OSISAF are not always consistent throughout the time series which reflects
uncertainties of the SIC retrievals due to varying surface properties within the MIZ re-
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gion. GREP generally agrees well with CDR and presents similar pattern of interannual
variability. The trends for the annual average MIZ are close to zero and not significant
for all datasets. The ensemble spread is larger compared to SIA and increases starting
from the 2010s.

Considering a poor understanding of sea-ice area changes in the Southern Hemi-
sphere, we dedicate a particular focus on the Antarctic region. The Chapter examines the
realism of global ocean reanalyses in the representation of the Antarctic sea-ice area from
1993 to 2019. The Chapter explores time/space changes in sea ice distribution within
the marginal ice zone and consolidated pack ice highlighting their different response to
climate change. The results of the analysis are contributed to two publications presented
below.
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Global ocean reanalyses provide consistent and comprehensive records of ocean and sea
ice variables and are therefore of pivotal significance for climate studies, particularly in data-
sparse regions such as Antarctica. Here, for the first time, we present the temporal and
spatial variability of sea ice area in the ensemble of global ocean reanalyses produced by
the Copernicus Marine Environment Monitoring Service (CMEMS) for the period
1993–2019. The reanalysis ensemble robustly reproduces observed interannual and
seasonal variability, linear trend, as well as record highs and lows. While no consensus
has been reached yet on the physical source of Antarctic-wide ice changes, our study also
emphasizes the importance of understanding the different responses of ice classes,
marginal ice zone (MIZ) and pack ice, to climate changes. Modifications of the distribution
of MIZ and pack ice have implications for the level of air/sea exchanges and for the marine
ecosystem. Analysis of the spatial and temporal variability of ice classes can provide further
insights on long-term trends and help to improve predictions of future changes in Antarctic
sea ice. We assess the ability of the reanalysis ensemble to adequately capture variability in
space and time of the MIZ and pack ice area, and conclude that it can provide consistent
estimates of recent changes in the Antarctic sea ice area. Our results show that the
Antarctic sea ice area agrees well with satellite estimates, and the hemispheric and regional
sea ice area variability are properly reproduced on seasonal and interannual time scales.
Although the ensemble reanalysis product tends to slightly overestimate MIZ in summer,
results show that it properly represents the variability of MIZ minima and maxima as well as
its interannual variability during the growing and melting seasons. Our results confirm that
Global Reanalysis Ensemble Product is able to reproduce the observed substantial
regional variability, in regions covered by marginal ice.

Keywords: Antarctic sea ice, marginal ice zone, pack ice, ocean reanalyses, GREP

INTRODUCTION

Antarctic sea ice plays a critical role in the polar and global climate and ecosystems, modulating the
exchanges of momentum, gases and heat between the ocean and the atmosphere. A deep knowledge
of sea ice variability is necessary for adequately simulating these fluxes and thus for climate
modelling. In stark contrast to the Arctic, where sea ice has declined significantly in all areas
and seasons (e.g., Parkinson and Cavalieri, 2012; Serreze and Stroeve 2015; Onarheim et al., 2018),
Antarctic sea ice has not experienced a drastic and continuous decline during recent decades. Satellite
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records show a slight increasing trend in total annual-mean
Antarctic sea ice extent (SIE) at a rate of ~1.5% per decade for
the 1979–2015 period, with modest increases in the maxima and
minima (Turner et al., 2015; Comiso et al., 2017), albeit individual
regions experienced much larger gains and losses that almost
offset each other overall (Parkinson, 2019). After record maxima
successively occurred in 2012, 2013, and 2014, Antarctic sea ice
decreased below the long-term average in 2015, with
unprecedented record low minima in 2016, 2017 and 2018
(Parkinson, 2019). However, the recent decrease does not
signify a change in the sign of the long-term trend, which
remains positive over the period 1979–2019, though with
lower magnitude compared to the 1979–2015 trend (Wachter
et al., 2021).

Understanding this quasi-stable situation in Antarctic sea ice
and its link to climate change is still a significant scientific
challenge (Kennicutt et al., 2015). Rather than by a single
mechanism, the long-term sea ice variability is driven by a
combination of processes, such as local changes in the
atmospheric dynamics and wind patterns (e.g., Holland and
Kwok, 2012; Meehl et al., 2016; Vichi et al., 2019; Blanchard-
Wrigglesworth et al., 2021), shifts in the dominant modes of
large-scale atmospheric circulation in the southern hemisphere
(Stammerjohn et al., 2008), changes in the vertical structure of the
near-surface water column (Goosse and Zunz, 2014; Venables
and Meredith, 2014), changes in ice albedo feedback (Riihelä
et al., 2021), ice-ocean feedbacks (Goosse and Zunz, 2014; Frew
et al., 2019), and variability of the ice sheet water discharge
(Bintanja et al., 2013; Haid et al., 2017; Pauling et al., 2017). These
processes combine in different ways at regional scales. Significant
regional contrasts and variability are nested within the Antarctic-
wide changes: while the Ross and Weddell Seas dominate the
overall upward trend, the Amundsen-Bellingshausen Seas have
undergone a considerable decrease (Massom and Stammerjohn,
2010; Parkinson, 2019). High-magnitude seasonal variability is
also disguised in long-term expansion of total sea ice cover: a
complex seasonal pattern of trends emerges across the regions,
with positive expansion trend in one season and negative in
another (Holland, 2014; Hobbs et al., 2016; Parkinson, 2019).
Considering the spatial and seasonal heterogeneity of trends, the
Antarctic-wide changes could not aid in the attribution of those
trends. The focus instead should be on the regional and seasonal
variability which may give a better understanding of the long-
term changes in Antarctic sea ice area.

While changes in total sea ice at different spatial/temporal
scales remain puzzling, it is likely that these changes also affect the
distribution and variability of ice classes in different ways (Stroeve
et al., 2016; Iovino et al., 2022). Here, we define ice classes to
distinguish between consolidated pack ice and the marginal ice
zone (MIZ). Understanding how the spatial patterns of different
ice classes change may help to elucidate the mechanisms
contributing to the expansion of Antarctic ice in some regions
and contraction in others (Maksym et al., 2012). In spite of the
large winter cover, sea ice around Antarctica forms a vast field of
small broken ice floes, with compact and consolidated ice
remaining all year around only in a few coastal regions (e.g.,
Holland et al., 2014). The MIZ is highly dynamic and its response

to climate variability differs from the inner pack ice: it undergoes
faster melting due to a larger lateral melt rate (Tsamados et al.,
2015), responds more easily to winds and current forcing
(Manucharyan and Thompson, 2017; Alberello et al., 2020),
and is highly vulnerable to waves and swell (Kohout et al.,
2014). The MIZ is fundamental for climate dynamics and
polar ecosystems, given its roles as a region of intense
atmosphere-sea ice interactions and as a physical buffer
between the consolidated pack ice zone and the effects of open
ocean dynamics (e.g., Squire 2007). Monitoring changes of the
MIZ environment can help us understand the associated changes
in the climate system. An accurate assessment of Antarctic MIZ
variability is still missing, as well as a deep insight into how ice
conditions correlate with atmospheric fields and surface oceanic
waves (Meylan et al., 2014, Sutherland and Balmforth 2019). The
MIZ can be operationally defined through sea ice concentration
(SIC) thresholds as the transitional region between open water
and consolidated pack ice, where the ocean is covered by SIC
between 15 and 80% (e.g., Pauling et al., 2017).

There is growing demand for comprehensive records of the
historical ocean state. Ocean Reanalyses (ORAs) represent an
essential tool to monitor long-term variability of various climate
indices, especially in areas with sparse data such as the Antarctic
Ocean. Observations alone can not reasonably reproduce
consistent and homogeneous time series of three-dimensional
gridded fields of ocean and ice parameters. Model simulations, on
other hand, can provide somewhat accurate information
regarding the ocean and ice mean states and variability,
despite being prone to errors related to model formulation,
initialization and forcing. A number of experiments with
global ocean-sea ice models were carried out in the framework
of the Coordinated Ocean-ice Reference Experiments (CORE-II)
and the Ocean Model Intercomparison Project (OMIP), albeit
with little focus on sea ice performance in polar regions (e.g.,
Downes et al., 2015; Farneti et al., 2015; Tsujino et al., 2020). Most
CORE-II models are found to underestimate Antarctic SIC in
summer and reproduce the sea ice edge further south compared
to observations (Downes et al., 2015). The OMIP simulations
reproduce a very wide range of models spread in sea ice
concentration and volume, with ratios of the maximum to the
minimum reaching a factor of two to three (Tsujino et al., 2020).
Inaccurate representation of sea ice and a large spread across
model output is due to the fact that these model systems are not
constrained by observations through data assimilation schemes.
The advantage of ORAs with respect to observation-only
products and ocean models, is the combination of ocean/sea
ice models and observational data sets driven by atmospheric
forcing. The errors from models and forcing datasets are reduced
through assimilation of observations. Ocean reanalyses are a
fundamental tool for climate investigation, as indicated by the
large number of studies that make use of them. Within the Ocean
Reanalyses Intercomparison Project (Balmaseda et al., 2015),
several exercises were undertaken to study the variability of
many well-constrained ocean fields, such as steric sea level
(Storto et al., 2017), air-sea heat fluxes (Valdivieso et al.,
2017), ocean heat content (Palmer et al., 2017). ORAs are also
a key tool for evaluating key climate diagnostics that are not

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 7452742

Iovino et al. Antarctic Sea Ice in GREP

CHAPTER 3. SEA ICE IN GLOBAL OCEAN REANALYSES

45



directly observed, such as deep ocean warming (Balmaseda et al.,
2013), the reconstruction of the overturning circulation (Jackson
et al., 2016). Few ORAs studies so far have focused on their
performance in polar regions. Chevallier et al. (2017) used 14
global ORAs to analyze the seasonal variability of the sea ice area
and sea ice edge position in the Arctic region. They showed that
the ensemble-mean SIC agrees quite well with the observations
but there is significant disagreement among systems in simulated
sea ice thickness (which is not directly assimilated in any of the
ORAs). However, they also revealed a large spread in the
representation of pack ice and the MIZ extent. Using a set of
10 ORAs, Uotila et al. (2019) found an overall agreement with
observations in the location of both Arctic and Antarctic sea ice
edges, and showed that ORAs are able to capture seasonal
variability of sea ice area (SIA). The large differences in the 10
reanalysis systems resulted in a poor representation of the
seasonal variability of the MIZ and pack ice area. Nevertheless,
Uotila et al. (2019) discussed the fidelity of ensemble mean
estimates and proved that the multi-system concept provides
the most robust results owing to the cancellation of the individual
errors.

In this study, we investigate the interannual and seasonal
changes of Antarctic SIA on hemispheric and regional scales with
the purpose of identifying the differences between MIZ and total/
consolidated pack ice. We use an ensemble-mean of four global
ocean-sea ice reanalyses (ORAs) together with long-term passive
microwave sea ice estimates. We examine the quality of the
Global ocean Reanalysis Ensemble Product (version 2,
hereafter called GREP) provided by the Copernicus Marine
Environment Monitoring Service (CMEMS) of the European
Union. GREP is an ensemble of four global ocean-sea ice
reanalyses produced at eddy-permitting resolution for the
period from 1993 to present. GREP has already been
successfully validated with respect to a range of ocean
variables (Masina et al., 2015; Storto et al., 2019) and have
been largely adopted for evaluating key climate diagnostics
that are not easily observed. In this study, we evaluate the
capability of GREP in reproducing the Antarctic sea ice area
in the marginal ice and pack ice regions, in the 1993–2019 period.
We analyse the interannual and seasonal variability in five sectors
of the Antarctic Ocean. The main objectives of this work are to
validate GREP Antarctic SIA against satellite estimates and to
investigate the benefits of a multi-system ensemble approach.
Since the multi-model mean can offset systematic errors of
individual systems, we expect GREP to perform generally
better than single reanalysis and provide the most consistent
estimates of sea ice state and variability. We also intend to
encourage the use of GREP in a wide range of applications.

DATA AND METHODS

The Global Reanalysis Ensemble Product (GREP version 2)
consists of four global ocean-sea ice reanalyses (C-GLORSv7,
Storto et al., 2016; FOAM-GloSea5, MacLachlan et al., 2015;
GLORYS2v4, Lellouche et al., 2013; ORAS5, Zuo et al., 2019), all
constrained by satellite and in-situ observations, and driven by

the ECMWF ERA-Interim atmospheric reanalysis (Dee et al.,
2011). Monthly means of ocean and sea ice variables, for
individual reanalysis as well as the ensemble mean and spread,
are produced and freely disseminated by CMEMS through the
CMEMS catalogue (product reference
GLOBAL_REANALYSIS_PHY_001_031).

The four reanalyses share the ocean components of the state-
of-the-art NEMO model, and are produced on the same tripolar
ORCA025 grid at an eddy-permitting resolution (approximately
¼ degree of horizontal resolution and 75 depth levels). Three
reanalyses use the LIM2 thermodynamic-dynamic sea-ice model,
while the other (FOAM-GloSea5) employs CICE4.1 which
includes more complex physics parameterizations compared to
LIM2. Although many physical and numerical schemes are
similar in the four reanalyses, there are a number of
significant changes including the ocean model version and
some parameterizations, thus introducing differences in the
four ocean model configurations. There are also differences in
the data assimilation methods used by the single products, in
terms of data assimilation scheme, code, frequency of analysis
and assimilation time-windows, input observational data-sets,
error definitions and bias correction schemes, which introduce a
large number of uncertainties as ensemble spread. The main
characteristics of the GREP members are summarized in Table 1
– a detailed description of model setup and data assimilation
methods is outside of the scope of this study. GREP and its
constituent reanalyses cover the altimetric period from 1993. Our
analysis extends to 2019.

We consider a set of sea ice satellite products in order to
evaluate the GREP performance. We use SIC fields from
NOAA/NSIDC Climate Data Record (version 3, Meier et al.,
2017, hereafter CDR), EUMETSAT OSISAF Climate Data
Record and Interim Climate Data Record (release 2,
products OSI-450 and OSI-430-b, Lavergne et al., 2019), and
IFREMER/CERSAT (Ezraty et al., 2007). Firstly, the CDR
algorithm output is a combination of SIC estimates from
two well-established algorithms: the NASA Team (NT)
algorithm (Cavalieri et al., 1984) and the Bootstrap (BT)
algorithm (Comiso 1986). CDR SIC is based on gridded
brightness temperatures (TBs) from the Nimbus-7 SMMR
and the DMSP series of SSM/I and SSMIS passive
microwave radiometers; the final product is provided at
daily and monthly frequency on a 25 km × 25 km grid.

Secondly, the EUMETSAT OSI-450 is a level 4 product that
covers the period from 1979 to 2015. The sea ice concentration is
computed from the SMMR (1979–1987), SSM/I (1987–2008),
and SSMIS (2006–2015) instruments, as well as ECMWF ERA-
Interim data. The Interim OSI-430-b extends OSI-450 from 2016
onwards; it is an off-line product based on the same algorithms as
OSI-450, and uses SSMIS data available through the NOAA
CLASS, as well as operational analysis and forecast from
ECMWF. The data processing introduced an open-water filter
aimed at removing weather-induced false ice over open water,
which unfortunately may remove some true low-concentration
ice in the MIZ (Lavergne et al., 2019). OSISAF products are
delivered at daily frequency on a 25 × 25 km grid. Lastly, the
IFREMER/CERSAT product used here is derived from high
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frequency channels of SSM/I that yield a spatial resolution of 12.5
× 12.5 km. SIC is provided at daily and monthly frequency.

It is worth mentioning that OSISAF and IFREMER/CERSAT
sea ice concentration are ingested by the data assimilation
systems employed in the ORAs constituting GREP, while CDR
is not assimilated in any ORA. The use of CDR is, hence,
considered an advantage for the robustness of the GREP
validation; OSISAF and IFREMER/CERSAT datasets are
anyway used in our analysis. It has been shown that NT
generally underestimates SIC (Andersen et al., 2007; Meier
et al., 2014), and overestimates MIZ and underestimates pack
ice by a factor of two compared to BT (Stroeve et al., 2016). On the
other hand, BT produces too low SIC under extremely cold
conditions (Comiso et al., 1997). The CDR algorithm blends
NT and BT output concentration by selecting, for each grid cell,
the higher concentration value, taking advantage of the strengths
of each algorithm to produce concentration fields more accurate
than those from either algorithm alone. Since passive microwave
instruments tend to underestimate SIC, the aforementioned
approach is considered to be more accurate (Meier et al.,
2014). Given that observational datasets and ORAs use
different horizontal grids, we interpolated the former onto the
ORCA025 grid for the grid-point diagnostics.

In this paper, sea ice variability is described in terms of sea ice
area (SIA) rather than sea ice extent (SIE). Sea ice extent is defined
as the integral sum of the areas of all grid cells with at least 15% ice
concentration, whereas sea ice area is the sum of the product of
each grid cell area with at least 15% ice concentration and the
respective ice concentration. Hence, sea ice area excludes open
water areas between ice floes. Although these two metrics are
highly correlated, uncertainties in SIC retrievals from passive
microwave sensors have a larger impact on SIA that results in a
weaker agreement across data records.

In addition to the total sea ice area, we consider two sea ice
classes defined through SIC thresholds. TheMIZ is here identified
as the region extending from the outer sea ice–open-ocean
boundary (defined by SIC equal to or higher than 15%) to the
boundary of the consolidated pack ice (defined by 80% SIC). This
definition has been previously used by Stroeve et al. (2016) to
assess observed MIZ changes in Antarctica. The consolidated
pack ice is then defined as the area with ice concentrations higher
than 80%.

The seasonal variability of SIA is analysed for total, pack and
MIZ sea ice on the hemispheric domain and in selected regions
where satellite records have highlighted large differences in the ice
response to climate. As in previous studies (e.g., Parkison and
Cavalieri, 2012), the Antarctic domain is divided in the following
five sectors (Figure 1): Weddell Sea (60° W–20° E, plus the small
ocean area between the east coast of the Antarctic Peninsula and
60° W), Indian Ocean (20–90° E), western Pacific Ocean (90–160°

E), Ross Sea (160° E–130° W), and the combined Amundsen-
Bellingshausen Seas (130–60° W).

RESULTS

We begin with the assessment of the interannual variability of
total SIA reproduced by GREP and derived from satellite data
sets. The GREP and observational products monthly-mean SIA is
presented for the Southern Ocean as a whole, from January 1993
to December 2019, in Figure 2A. GREP SIA ranges from the
summer minima occurring in February to winter maxima
occurring generally in September, with a huge amount of sea
ice growing and melting each year in very good agreement with
observations. While the reanalysis ensemble slightly
underestimates minima and maxima SIA, it correctly
reproduces the large interannual variability, and properly
depicts the record high in September 2014 (16.73 × 106 km2 in
GREP and 17.42 × 106 km2 in CDR) and the marked decreases in
the subsequent 3 years, with the record low in February 2017
(1.16 × 106 km2 in GREP and 1.57 × 106 km2 in CDR). GREP and
CDR monthly anomalies of SIA show similar patterns and trends
are basically consistent (Figure 2B), with an upward trend in
yearly average SIA of 0.32 × 106 km2/decade in GREP and 0.31 ×
106 km2/decade in CDR for 1993–2014, and trend close to zero
(−0.04 × 106 km2/decade in GREP and −0.036 × 106 km2/decade
in CDR) for the entire period 1993–2019. The good agreement
between the three observational products (gray shading) and the
four ORAs (pink shading) is notable; differences are greatest at
the winter maxima.

To quantify the inconsistency between GREP and satellite
estimates, we use the integrated ice area error (IIAE) approach of
Roach et al. (2018, 2020). The IIAE identifies the area of sea ice on
which ORAs and observations disagree; it is computed as the sum

TABLE 1 | The central characteristics of ocean reanalyses.

Name CGLORSv7 GLORYS2v4 (hereafter
GLORYS2)

ORAS5 FOAM-GLOSEA5v13

Institution CMCC Mercator Ocean ECMWF United Kingdom Met Office
Ocean-ice model NEMO3.6-LIM2 (EVP

rheology)
NEMO3.1-LIM2 (EVP rheology) NEMO3.4-LIM2 (VP rheology) NEMO3.2-CICE4.1 (EVP

rheology)
Time period 1986–2019 1993–2019 1979–2019 1993–2019
Sea ice data assimilation
method

Linear nudging Reduced order KF (SEEK) 3DVAR-FGAT 3DVAR

Ocean data assimilation
method

3DVAR (7 days) SAM2 (SEEK) (7 days) 3DVAR-FGAT (5 days) 3DVAR (1 day)

DA sea ice data OSI-SAF IFREMER/CERSAT OSTIA (reprocessed before 2008, analysis
from 2008)

OSI-SAF

Thickness categories 1 1 1 5
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of overestimated (O) and underestimated (U) sea ice area. These
two O and U components are calculated as the sum of the product
of the area and the SIC of each grid cell where GREP has a higher
or lower concentration compared to observations. We apply the

same metric also to pack ice and MIZ to determine how each sea
ice class contributes to the overall error. The location of sea ice
classes in CDR estimates is taken as the “true state”. The time
series of IIAE O and U components for total ice, pack ice and the
MIZ area computed relative to CDR are shown for the period
1993–2019 (Figure 3).

For every month, errors are very low relative to the mean SIA
values, even for February and September. In general, GREP tends
to underestimate total SIA area with the error ranging from 0.1 ×
106 km2 in March-April to 0.7 × 106 km2 in October-December.
Reanalyses generally tend to reproduce lower SIC than CDR,
within the pack ice region: while IIAE O component in pack ice is
relatively small (~0.05 × 106 km2 all year round) and similar
among the individual ORAs, IIAE U component grows up to 0.6
× 106 km in August-November and doubles for two reanalysis
products. TheMIZ also contributes to the total overestimated and
underestimated area, but the error does not generally exceed 0.2 ×
106 km2. There is one ORA outlier (GLORYS2) that generally
contributes to overestimating SIA, and one (CGLORS) to
underestimating it. The former (the latter) reproduces too
high (low) SIC in the MIZ. Overall, GREP performs well
owing to minimization of systematic errors in individual
products. Additionally, the error in the ensemble mean is
consistent throughout the years, which is not the case for
single ensemble members.

The accuracy of GREP and individual ORAs in reproducing
the spatial distribution of SIC is shown in Figure 4, where maps
of the SIC root mean square errors (RMSE) for GREP and
individual ORAs against CDR are presented for September

FIGURE 1 | Map of the five Antarctic sectors used in the regional
analysis.

FIGURE 2 | Time series of (A) monthly averages and (B) monthly anomalies of Antarctic sea ice area in GREP (magenta) and CDR (black) from January 1993 to
December 2019, for GREP (magenta) and CDR (black). Pink (gray) shading denotes the envelope of GREP members (CDR, OSISAF, Ifremer CERSAT satellite records).
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and February, which are typically the months of maximum and
minimum ice coverage respectively. The monthly climatologies
are computed over the years 1993–2019. The sign of the errors
has also been analyzed through the spatial distribution of the
average bias (not shown). In September, RMSEs are lower than
5% along the Antarctic coast for all ORAs and tend to grow
towards the ice edge, with the highest values generally smaller
than 15% except for one single product, GLORYS2, which
overestimates SIC by up to 20% in the Ross Sea and the
Bellingshausen and Amundsen Seas. In February, the largest
disagreement with CDR is located near the Antarctic coast, in
particular in the Indian Ocean and the Western Pacific Ocean
sectors, where three of the four ORAs underestimate the observed

concentration. This error may be primarily linked to the
reanalyses representation of sea ice drift and the Antarctic
coastal current in the eastern Antarctica (not shown). One
product (CGLORS) exhibits an unique behavior with the RMSE
for SIC exceeding 30% along the entire Antarctic coastline - this
indicates a lower concentration compared to CDR that may be
related to a large warm bias in sea surface temperature along the
coast, in particular in the Indian and the Western Pacific
Oceans (not shown). GREP compares well with satellite
estimates considering that the RMSEs are of the same order
as the uncertainties from SIC retrievals using passive
microwave radiometry (Ivanova et al., 2015). Time evolution
of the mean over area RMSE (not shown) indicates that the

FIGURE 3 | Time series of the GREP integrated ice area error components (in magenta) calculated with respect to CDR for total SIA (top panel), pack ice (middle
panel) and the MIZ (bottom panel). Area of sea ice where GREP simulates higher (lower) SIC is on the left (right) column. The y-axis scales for pack ice are different. Thin
lines represent the individual ORAs: CGLORS in light blue, FOAM-GloSea5 in violet, GLORYS2 in green, and ORAS5 in yellow–the same colors will be used in the
following figures for single ORAs.

FIGURE 4 |Mean root mean square error for SIC at every grid cell for the single ORAs and GREP against CDR in September (upper row) and February (lower row).
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RMSE for GREP concentration is up to ~10% in summer
months (January-February) and does not exceed 7% in other
months.

We also analyze the ensemble spread (ES) in order to assess the
overall consistency across ORAs (Figures 5A,B). The largest ES
in SIC (~35% in February) is found during the melting season

FIGURE 5 | Spatial distribution of (A,B) ensemble spread (ES) and (C,D) difference (in %) between GREP RMSE and ES for SIC in September and February.
Contours indicate the mean position of 15% (solid) and 80% (dashed) ice concentration over the period 1993–2019 from CDR. (E) Time series of the difference (in %)
between GREP RMSE and ES spread of SIC for total area (black), pack ice (red), the MIZ (blue).
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everywhere along the Antarctic coast, except in the Weddell and
the Ross Seas. Increased ES is consistent with uncertainties
coming from the assimilated satellite data - SIC retrievals
present larger uncertainties within the melting season due to
surface wetness and a broad variety of sea ice forms that affect sea
ice emissivity (Ivanova et al., 2015; Meier and Stewart, 2019). In
September, there is high consistency among ORAs due to the
larger portion of stable and compact pack ice. Larger ES is located
in the MIZ and does not exceed 10%. Finally, we compare RMSE
of GREP SIC calculated against CDR, with the SIC ES to evaluate
whether the ensemble is over-dispersive or under-dispersive. The
spatial distribution of the metric (GREP RMSE minus ES) is
shown for September and February in Figures 5C,D. GREP is
over-dispersive when RMSE < ES (blue/negative) and under-
dispersive when RMSE > ES (red/positive). In September, it
appears that ensemble dispersion depends on sea ice class:
GREP is over-dispersive in the MIZ (represented by the region
between contour lines), whereas GREP is under-dispersive within
the pack ice. This means that ORAs agree better on the
representation of high concentration in the region of stable
pack ice, where the ORAs performances are less challenging
compared to the MIZ. In February, there does not seem to be
a direct relationship between ensemble dispersion and sea ice
class. The pattern of the difference is heterogeneous, particularly
along the coast of the eastern Antarctic. In the Weddell and Ross
Seas, the GREP remains over-dispersive. Time series of the
difference between GREP RMSE and ES better presents the
opposite behavior of sea ice classes and the contribution to
total sea ice changes (Figure 5E). The compensation between
sea ice classes in all seasons, except in summer, translates into
close-to-zero values for the total ice concentration. From
December to February, GREP RMSE exceeds ES in both pack
ice and the MIZ, leading to an increased difference for the total
ice area.

Seasonal Variability
We proceed with an assessment of the consistency of the
seasonal sea ice variability between the reanalysis ensemble
and satellite estimates. The climatological mean seasonal
cycle of the circumpolar SIA as represented by GREP, single
ORAs and observational estimates, is shown for total sea ice,
pack ice, and MIZ, in Figure 6A. The seasonal cycle of Antarctic
sea ice is consistent among ORAs and in phase with
observations. All systems have a maximum in total SIA in
September, and a minimum in February; it takes about
7 months to expand sixfold from summer minimum of ~2.5
× 106 km2 to winter maximum of ~15 × 106 km2, and about
5 months to melt again. It is worth noting that the ensemble
spread of ORA SIA is limited throughout the year, and is
comparable to the estimated observational uncertainty. The
seasonal cycle of Antarctic-wide total SIA is dominated by
the variability of pack ice, whose area evolves at the same
rate as total ice. GREP slightly underestimates the area of
pack ice from August for the melting season (only one
reanalysis, GLORYS2, is larger than observational products),
but all ORAs align well with observations during refreezing in
autumn.

The seasonal changes in theMIZ are quite different from those
in total ice and pack ice. On average, the MIZ advance needs
about 10 months to progress from near the coast (in February) to
its most equatorward maximum (in November or December) and
about only 2 months to revert to a minimum. After summer, the
MIZ area grows simultaneously with pack ice, in part
transforming into it, and continues to expand in spring after
the total (and pack) SIA peaks. The further increase in the MIZ
area after the consolidated ice pack begins to melt implies that, as
it starts to retreat, the pack ice converts in part to MIZ over a
wider area. We note the Antarctic MIZ/pack-ice ratio is close to 1
from December to March. GREP is always in the observed
envelope; the ensemble spread of ORA SIA is generally
smaller or comparable to the estimated observational
uncertainty. Here, the larger spread among the observed MIZ
area (found also between NT and BT algorithms by Stroeve et al.,
2016) reflects the different ability of high and low frequency
channels used in the different data algorithms to retrieve low
fraction sea ice. However, GLORYS2 underestimates the MIZ
area from July to December, and this can be attributed to faster
sea ice consolidation in the growing season. This is consistent
with the IIAE analysis (Figure 3), which indicates that this system
simulates higher SIC in those grid cells that are considered to
belong to the MIZ in observations, and with the RMSE of SIC
(Figure 4) with larger errors in the outer ice region where MIZ is
located. CGLORS underestimates the MIZ area in summer from
December to February, causing a large impact on the minimum of
total SIA (as seen in Figures 3, 4).

For all sea ice classes, the highest consistency among datasets is
observed throughout autumn freezing, from March to June.
Overall, due to the realistic performance of all single members
and the cancellation of systematic errors, GREP reproduces
robust estimates of the seasonal cycle of Antarctic total ice
area and the two sea ice classes.

The different seasonality of sea ice classes is a notable result
that confirms a different interplay of ice classes with the ocean
and the atmosphere. Seasonal variability of Antarctic sea ice is
governed by the position of the circumpolar trough relative to the
ice edge and associated wind field and Ekman transport
(Enomoto and Ohmura, 1990; Eayrs et al., 2019). In spring,
when the circumpolar trough is north of the ice edge, hastened
conversion of pack ice to the MIZ is supported by divergence
which results in opening of pack ice. This consequently facilitates
solar absorption in the upper ocean and accelerates lateral
melting of ice floes (e.g., Perovich and Jones, 2014) which
contributes to the MIZ growth. From December to February,
the MIZ area rapidly retreats together with pack ice, driven by
southward Ekman forcing and sea ice convergence. However, the
MIZ represents a significant part of the overall ice cover from
December to March (the proportion between the MIZ and pack
ice area is in the range between 0.8 and 1.2).

Analysis in the Sub-regions
Since Antarctic sea ice variability and trends are spatially
heterogeneous (e.g., Parkinson and Cavalieri, 2012; Parkinson
2019), the analysis of the Antarctic circumpolar sea ice is rather
limited. In this section, we investigate the accuracy of GREP
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FIGURE 6 |Mean seasonal cycle (1993–2019) in the total SIA (solid), pack ice (dashed) (upper subplots), and the area covered by Marginal Ice Zone (MIZ) (lower
subplots) computed for GREP (in magenta) and the individual ORA (thin colored lines) in the Antarctic-wide region (A), for GREP in the five sub-sectors (B-F). Pink
shading denotes the envelope of GREP members. Gray shading denotes the envelope of observational estimates (CDR, OSISAF, Ifremer CERSAT). Please note the
different y-axis scales for the Southern Ocean and Weddell Sea.
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performance on regional scales by analysing the seasonal
variability of total ice, pack ice and MIZ area for each of the
five Antarctic sectors (shown in Figure 1), and by comparing
GREP output with the CDR product.

As expected, there are significant differences among the five
sectors in the amount of ice classes, the timing of maxima and
minima, the rate of sea ice expansion and the retreat phase
(Figures 6B–F). This contrast in the regional patterns of sea
ice growth and melt is associated with geographic differences and
interplay of leading climate processes (Maksym et al., 2012).

There is a very good agreement between GREP and CDR
variability in all regions (Figures 6B–F, Figure 7). It is worth
noting that the spread in observational products (and in the

reanalyses) varies not only among sea ice classes, but also among
regions. The spread of observational estimates of MIZ area is
generally larger than the spread of the reanalysis ensemble, in
particular in theWeddell Sea and Ross Sea in autumnmonths and
in the Amundsen-Bellingshausen (A-B) Seas from March to
December.

As in the Southern Ocean as a whole, all sectors exhibit a large
annual cycle of monthly total SIA (Figure 6), with asymmetric
growth and melt seasons. However, there are large differences in
the timing and magnitude of the sub-region seasonality, given
that the rate of waxing and waning of sea ice and the interplay
with air-sea components vary across the sectors. Minima of total
SIA always occur in February and maxima occur frequently in
September (Figure 6), although with much greater interannual
variability than in the Southern Ocean as a whole (not shown).
The pattern and ratio of pack and marginal ice widely varies
among the regions.

The regional variability as reproduced by the GREP ensemble-
mean is described for individual sectors. In the Weddell Sea
(Figure 6B), the SIA is much higher than other regions and has
the largest distribution of pack ice. Its seasonality is consistent
with the Southern Ocean as a whole. From the February minima
(~1 × 106 km2), total and pack ice areas begin to expand in March
and peak (at ~ 5.7 × 106 km2 and ~5 × 106 km2 respectively) on
average in September, but maximum timing varies frequently
from August to October (not shown). The Weddell Sea provides
the greatest contribution (~55%) to the summer sea ice area in the
Southern Ocean, due to the presence of consolidated pack ice all
year around. In agreement with CDR, the ensemble-mean shows
that the Weddell Sea holds the largest percentage (~75%) of
February pack ice. The MIZ area also starts to advance in March
and continues to increase until December (~1.45 × 106 km2), as
the pack ice quickly retreats. In this region, the sea ice cover
expands northwards until it reaches a region with strong air-sea
dynamics. North of the consolidated pack ice region, ice
continues to advance, thanks to further freezing or breaking
by the winds and currents.

The second largest contribution to the Antarctic-wide ice area
comes from the Ross Sea (Figure 6C). In this sector, the total ice
and pack ice areas present a large asymmetric seasonal cycle, with,
approximately, a 9-months growth period and a 3-months
melting period. With almost no pack ice, the total sea ice and
MIZ areas have a marked minimum always occurring in
February. There is a large variability in the timing of total and
consolidated pack ice maxima occurring generally fromAugust to
October and reaching ~3.5 × 106 km2 and ~3 × 106 km2

respectively. In February, the minimum SIA mainly consists of
MIZ that covers ~0.25 106 km2; the MIZ fraction is then nearly
constant throughout the expansion and retreat of the pack ice,
with a maximum in December (1.13 × 106 km2) as the pack ice
rapidly decays. The Ross Sea, like theWestern Pacific (Figure 6F),
exhibits a second peak in the MIZ area in March, in the freezing
season, when the area of MIZ and pack ice starts to expand and
the increasing sea ice consolidation is accompanied by MIZ-to-
pack ice transformation.

In the Indian Ocean, the total SIA maximum (3 × 106 km2) is
reached in October rather than September (Figure 6D), about

FIGURE 7 | Seasonal cycle of (GREP minus CDR, in %) monthly
climatology of (A) total ice (upper panel), (B) pack ice (middle) and (C)MIZ area
in the Southern Ocean and its five sectors. Differences are shown as a
percentage of CDR values computed for the years 1993–2019. Red
(blue) indicates that GREP reproduces higher (lower) SIA compared to CDR.
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1 month later the pack ice peak (2.4 × 106 km2) is reached. The
pack ice tends to disappear completely in summer and when MIZ
comprises the largest portion of the overall ice cover. The MIZ
advances from March until November when its area (~1.1 ×
106 km2) is comparable to that of pack ice.

At their largest, the A-B Seas and Western Pacific Ocean
together account for less than 20% of the Antarctic-wide SIA,
with the lowest winter maxima (1.83 and 1.5 × 106 km2,
respectively); they can weakly affect the Antarctic sea ice
seasonal cycle. In both sectors, the areas of consolidated pack
ice and MIZ are generally comparable in the winter months. The
A-B Seas are in major contrast with the rest of the Southern
Ocean (Parkinson, 2019), and are characterized by an overall
downward sea ice trend (not shown) related to the upper ocean
warming at the west of the Antarctic Peninsula (e.g., Ducklow
et al., 2012). Seasonality of ice expansion and retreat are almost
symmetric for total ice and pack ice areas (Figure 6D) that both
peak in August (the maximum timing varies from July to October
from year to year) and are minimum between February and
March. The MIZ area increases during most of the year, from
February to December. There is a large interannual variability in
the timing of the maximum that results in the double peaks in
September and November (approximately 0.42 × 106 km2). Here,
the MIZ area does not further increase when pack ice starts to
retreat, in contrast to other regions. The MIZ gives the largest
contribution to total area from January to April. In this sector the
spread of observational estimates of MIZ is very large compared
to the ORAs spread- GREP is always located within the observed
envelope. In the Western Pacific Ocean, the total SIA reaches the
highest value from August to October (Figure 6F), with the
maximum generally occurring in September (~1.5 × 106 km2).
While pack ice area exhibits very low values and stays nearly
constant throughout the summer period, MIZ area presents a
prominent minimum in February and then begins to quickly
expand until November when it exceeds pack ice area. The MIZ
area remains larger until autumn.

Figure 7 shows how GREP representation of the seasonal
variability of total ice, pack ice and theMIZ area differs fromCDR
estimates; due to the large regional contrasts in the amount of sea
ice, the differences are expressed as a percentage of the average of
CDR values. For total SIA, the difference between GREP and
CDR is almost everywhere within 15% from April to December
(Figure 7A). Thus, GREP seasonal variability is consistent in time
and space with the observed sea ice changes over the period
1993–2019. The largest differences are generally found in
summer, in particular in the Indian Ocean and the Western
Pacific where GREP area is about 25% lower than CDR. The
accuracy of GREP stands out in the Weddell Sea where total sea
ice area differs from CDR data by -7% at the most. The high
quality of total sea ice in the reanalysis ensemble results from the
contrasting behaviour of pack and MIZ area. Differences have a
similar pattern for pack ice areas, but with different magnitudes.
The highest values are found from December to March when
GREP tends to generally underestimate the area of consolidated
ice in all sectors. Due to the very low amount of pack ice area in
both GREP and CDR in spring and summer, this metric typically
detects small differences with respect to CDR. For example,

GREP pack ice area differs by ~70% from CDR in the Indian
Ocean in February, when pack ice area has almost disappeared in
the region, with values lower than 0.1 × 106 km2. As for the total
ice, it is in theWeddell Sea sector that GREP better reproduces the
seasonal variability of the pack sea ice area. Overall, the ensemble-
mean reproduces a larger area of the MIZ almost everywhere. As
for pack ice, GREP and CDR differences are the smallest in the
growing season when GREPMIZ extends 10%more than CDR at
most - differences stay small but reverse in the Western Pacific
Ocean during autumn-winter months. The GREP MIZ area is
20–30% larger than observed estimates generally in November-
December, when it approaches its maximum values. The largest
departures from CDR are found in the Western Pacific sector in
January and theWeddell Sea in November. It is worth noting that
the MIZ area reproduced by GREP has generally the largest
differences from the observational estimates when they present
large spread (Figure 6).

DISCUSSION

Understanding the mechanisms and rates of Antarctic sea ice
change is crucial from a climate-change perspective. Sea ice
concentration retrieved from satellite microwave radiometers
has been available on a daily basis since the late 1980s at a
horizontal resolution finer than 25 km. However, these
observational estimates are highly dependent on which passive
microwave methods and sea ice algorithms are used (Ivanova
et al., 2014; 2015). There are dozens of such algorithms available.
Although these products agree quite well on area trends, absolute
values of total SIC and SIA are not necessarily consistent with
each other. There are also large differences among observed
products in the regional ice distribution and trends, as well as
in the contribution of consolidated ice or MIZ in the total ice
cover (Stroeve et al., 2016). This is of particular importance for
accurate assessment of processes contributing to climate change
and assimilation of sea-ice in models. Reliable estimates of sea ice
concentration and relative parameters are necessary to constrain
also other ice parameters in modelling studies of past, present and
future variability.

Simulation of Antarctic sea ice remains a fundamental
challenge for state-of-the-art climate models (e.g., Holmes
et al., 2019; Roach et al., 2020). Despite advances in climate
modeling capabilities, the CMIP5 and CMIP6 intermodel spread
in Antarctic sea ice extent is large, especially in summer, and the
observed weak upward trend of the Antarctic ice extent is not
captured yet (Turner et al., 2013; Roach et al., 2020; Shu et al.,
2020; Shu et al., 2020). The poor accuracy of Antarctic sea ice
changes in the CMIP exercises limits our understanding on what
drives regional and seasonal Antarctic sea ice changes, including
feedback and competing processes.

Our analysis confirms that ocean reanalyses are a
fundamental tool for investigating climate variability and
for evaluating key climate diagnostics that are not directly
observed (e.g., Masina and Storto, 2017). Given the robustness
of its mean and the implicit quantification of uncertainty by
means of the spread, the multi-model ensemble provides a
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robust representation of the spatial and temporal variability of
Antarctic sea ice. Although sea ice concentration is the most
well-constrained sea ice parameter, the ensemble spread
mainly comes from differences in implemented data
assimilation schemes but also from other sources of
uncertainty such as differences in models, observational
datasets and air-sea flux formulations.

We found strong consistency between the reanalysis ensemble
and the satellite products, and GREP generally outperforms or at
least equals individual reanalyses in approaching observation-
based estimates of sea ice area. The advantage of the multi-model
approach is highlighted by the fact that it is practically impossible
to determine which one of four performs the best for all metrics
and seasons. GREP smooths the strengths and weaknesses of
single systems and provides the most consistent and reliable
estimates of the mean state and variability of sea ice area.
Nevertheless, advancement in model formulations and data
assimilation schemes in single members could reduce the
impact of ORAs shortcomings on the realism and accuracy of
the ensemble-mean solution.

Although the main objective of the study is the evaluation of
the GREP ability to reproduce the observed sea ice area on
interannual and seasonal scales, our results also confirm the
importance of regional variability and the distinction in sea ice
classes. They should be considered when assessing how Antarctic
sea ice varies in model simulations and when investigating the
different processes that are likely contributing to ice interannual
and seasonal.

We focus on how consolidated pack ice and the marginal ice
change in relation to their different characteristics and therefore
their different sensitivities to the external forcing. Differences in
the seasonality of ice classes suggest that their variability is driven
by changes in wind and ocean conditions in a different way.
While the description of processes controlling the distribution of
the MIZ and pack ice is out of scope of this study, we emphasize
that a better knowledge of temporal and spatial variability in the
MIZ and pack ice can provide a deeper insight of possible driving
mechanisms behind these changes. We show that both GREP
(and individual ORAs) and satellite products present
considerable differences in the climatological mean seasonal
cycle in the area of ice classes. The net circumpolar changes in
sea ice area is the result of the interplay of MIZ and pack ice, and
their different response to changing wind and ocean conditions.
The annual waxing and waning of sea ice cover implies
redistribution of ice floes between the MIZ and pack ice from
month to month as well as spatial expansion and contraction of
sea ice edge. When pack ice starts to melt and its area to retreat in
spring, the breaking of ice floes contributes to the MIZ expansion
that continues for 2–3 months. That results in a strong
asymmetry in the MIZ seasonal cycle in all Antarctic regions,
with approximately 9–10 months of advance and 2–3 months of
retreat. Contractions and expansions of pack ice and the MIZ do
not necessarily follow the changes in the location of the outer sea
ice edge: ice classes can contribute to changes in sea ice coverage
in different ways or even exhibit an opposite behavior (Stroeve
et al., 2016). GREP reproduces regional differences in the
proportion between pack and MIZ, the timing and duration of

freezing and melting seasons, in close agreement with
observation-based results (e.g., Stroeve et al., 2016; Parkinson,
2019; Wang et al., 2021).

The reanalysis ensemble agrees well with the CDR product on
the different contributions of MIZ and pack ice to changes in the
Antarctic-wide total ice. Monthly trends (computed as function
of longitude and month) in the total, pack and marginal ice area
(Figure 8) indicate a large degree of seasonal and regional
variability around Antarctica. In all sectors and for all months,
the spatial patterns and magnitude of statistically significant
positive and negative trends in total ice area are highly
consistent between GREP and CDR in all sectors. Results
highlight the necessity to distinguish between sea ice classes in
order to assess the quality of numerical systems. Although GREP
and CDR are similar in SIA trends, there are some inconsistencies
when looking at sea ice classes: GREP barely reproduces the
correct magnitude of trends in the Eastern Antarctic and does not
simulate the MIZ area expansion in December in the Ross Sea.
Generally, in both GREP and CDR, significant trends in the MIZ
are less pronounced but more heterogeneous in space, and they
tend to offset the significant trends in pack ice. This is for example
evident in the Ross Sea, where no trend is found in the observed
total sea ice area in December, due to compensation between the
opposite trends in the MIZ and pack ice. Positive trends in total
SIA are generally dominated by statistically significant positive
trends in the consolidated pack ice as in the western Weddell Sea
from January to March. Both ice classes contribute to the
statistically significant negative trends in the eastern Ross Sea
and eastern A-B Seas in summer. The regional variability of the
MIZ area trends during spring and autumn is consistent with a
complex pattern of changes in timing of sea ice advance, retreat
and duration (e.g., Eayrs et al., 2019).

Differences between GREP and CDR can be also explained by
some limitations in our analysis. The first caveat concerns the
methodology: we distinguish sea ice classes through sea ice
concentration thresholds. Although the SIC-based definition is
the one most often used (e.g., Strong and Rigor, 2013; Stroeve
et al., 2016; Rolph et al., 2020), Vichi (2021) showed that it is not
able to adequately capture the features of the Antarctic MIZ, in
which ice dynamics is determined by oceanic and atmospheric
processes. Indeed, this definition of the MIZ is not physically or
dynamically explained; the lower boundary is linked to
uncertainty from SIC retrievals (Comiso & Zwally, 1984) while
the upper boundary corresponds to theWMO definition of “close
ice” (WMO, 2009). In fact, the properties of Antarctic ice cover do
not directly depend on the degree of coverage. In-situ
measurements carried out in the Southern Ocean showed that
close pack ice with SIC up to 100% do have the dynamical
properties of the MIZ (Alberello et al., 2019; Vichi et al., 2019;
Brouwer et al., 2021), which discredits the reliability of threshold-
based definition. Vichi (2021) proposed an alternative MIZ
definition that is based on statistical properties of the SIC and
its spatial and temporal variability. The new method indicates the
measure of variability, which is a key feature of the marginal ice. It
also overcomes the disparity among the algorithms that could
considerably differ in their representations of sea ice
concentration, area and extent.
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Given the highly dynamic nature of theMIZ, another limitation
of this study is the temporal resolution of GREP and ORAs output
provided by CMEMS. Our analysis is constrained by monthly
means of SIC from reanalyses. The use of daily fieldsmight bemore
appropriate to investigate the MIZ variability and its linkage to
regional interactions with ocean and atmosphere.

CONCLUSION

We assessed the accuracy of the CMEMS Global Reanalysis
Ensemble Product (GREP) in reproducing the evolution in
time and space of Antarctic total sea ice and discriminating
the consolidated pack ice from the MIZ. Antarctic sea ice area
from GREP is compared to a set of sea ice satellite products.
GREP properly reproduces interannual and seasonal variability of
total sea ice area both on hemispheric and regional scales. GREP
is shown to properly represent the interannual and seasonal
variability of pack and MIZ areas during the growing and
melting seasons, as well as their minima and maxima. More
evident discrepancies between GREP and satellite products occur
during summer, when the spread among individual ORA
increases; one product tends to underestimate MIZ area and
another to overestimate pack ice area. Nonetheless, due to
minimization of the single errors, the ensemble mean provides
the most consistent and reliable estimates. The spatial

distribution of RMSE in SIC also indicates that GREP smooths
out strengths and weaknesses of individual systems.

For all ice classes, the ensemble spread is comparable to the
spread among the observational estimates. The quality of GREP is
generally comparable to that of satellite data sets and the
differences between GREP and CDR are comparable or even
smaller than differences between different algorithms (Stroeve
et al., 2016). The seasonal cycle of the total sea ice area is within
the observational uncertainty almost all year round, while the
pack ice area is generally underestimated and the MIZ area is in
the upper end of the observational range. This compensation
between sea ice classes partly reflects misplacement of sea ice
across the basin compared to the “true state”.

Dispersion of GREP in sea ice concentration also appears to
depend on sea ice classes. Due to the compensation between the
opposite behavior in pack ice (GREP is under-dispersive) and the
MIZ (GREP is over-dispersive), the difference between GREP
RMSE and GREP ES is close to zero for the total ice area.

On a regional scale, the Weddell Sea is the region where
GREP provides the most accurate representation of sea ice
area, while the largest and most persistent discrepancies occur
in the Indian and the Western Pacific sectors. This spatial
distinction in GREP performance is attributed to the
proportion of pack ice and the MIZ in the regions. Given
its highly dynamic nature, the MIZ is more challenging to
simulate compared to pack ice.

FIGURE 8 |Monthly trends (1993–2019) in regional areas of total ice (A,B), pack ice (C,D), andMIZ (E,F), as a function of longitude. Left (right) columns correspond
to GREP (CDR). Only significance higher than 95% are shown. Note that colorbar scales are different for ice classes.
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Considering that ocean reanalyses are widely used as
boundary and initial conditions in forecasting systems, sub-
optimal representation of the SIC distribution and variability
can affect the quality of the output. The results of the current
work proved the quality of the GREP product with regard to sea
ice concentration and associated metrics. GREP agrees well
with satellite products, and can be used to get a robust estimate
of current sea ice state and recent trends in sea ice area and
extent. However, improvement in data assimilation techniques,
space-time data coverage in the ice-covered Southern Ocean
regions, and availability of other ice properties (such as
thickness and drift) from satellite measurements will most
probably enhance the quality of ORAs and GREP in polar
regions.
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processes, such as air–sea gas exchange, and carbon
exchange at the air–sea interface, marine primary pro-
duction and delivery of nutrients to the euphotic zone
(Barber et al. 2015). Monitoring changes of the MIZ
environment can help us understand the associated
changes in the climate system. Due to the thin and
small broken ice floes, the MIZ region is highly dynamic
and responsive to external forcing, and its response to cli-
mate variability differs from the inner pack ice (Stroeve et
al. 2016). An accurate assessment of variability of
dynamics in the MIZ is still missing, as well as a deep
insight into how surface ocean/waves and atmospheric
fields correlate with ice conditions, such as ice thickness,
strength, and viscosity (Meylan et al. 2014; Sutherland
and Balmforth 2019).

There are few in-situ data available on the Antarctic
MIZ properties and still significant differences in esti-
mates from satellite data sets depending on the algorithm
employed (Stroeve et al. 2016). Numerous methods have
been developed to estimate SIC from passive microwave
instruments (including SMMR, SSMI, SSMIS, AMSR-E
and AMSR-2) flying on various satellite platforms. The
algorithms applied to the microwave brightness tempera-
tures employ different channel combinations, with differ-
ent corrections for weather, satellite drift, and other
factors (Ivanova et al. 2015; Tonboe et al. 2016). When
using estimates of sea ice properties, we should be con-
scious of the differences among algorithms and their
attributes (Wright and Polashenski 2018), and the
methods for combining different source data into long-
term records (Stroeve et al. 2016).

Therefore, ocean/sea ice reanalysis data are essential in
increasing our ability to comprehend total and marginal
ice variability and to monitor their current state and pre-
dict their future changes. In this contribution, we aim to
investigate how the Antarctic extent of MIZ is actually
changing, using sea ice concentration from an ensemble
of global eddy-permitting reanalyses (GREP), and to
determine how realistically this product can capture the
time/space variability of the Antarctic ice in the marginal
ice zone over the period 1993-onward.

2.4.2. Methodology

The Global Reanalysis Ensemble Product (GREP ver-
sion 2, product ref 2.4.1) is based on four global ocean
reanalyses ORAs (GLORYS2v4, Lellouche et al. 2013;
GloSea5, MacLachlan et al. 2015; C-GLORSv7, Storto
et al. 2016; ORAS5, Zuo et al. 2019), constrained by sat-
ellite and in-situ observations and driven by ERA-
Interim atmospheric reanalysis (Dee et al. 2011).

Each ORA uses the ocean component of the state-of-
the-art NEMO model at eddy-permitting resolution (1/

4° horizontal resolution), but the data assimilation tech-
niques and the sea ice models differ (three ORAs
employ the LIM2 sea ice model, one CICE4.1 that
includes more complex physics compared to LIM2).
Each of the reanalyses assimilates satellite sea surface
temperature (SST), sea level anomalies, sea-ice concen-
trations and in-situ temperature and salinity. Details of
each reanalysis product are in the above-mentioned
studies. Single products as well as the multi-model
ensemble are available from the beginning of the satel-
lite altimetric era, January 1993 up to December 2020
(only Near Real Time altimetry data are ingested by
the assimilation systems for the last six months).

The total ice is here split into three different zones.
Due to the lack of wave estimations in the region and
the availability of SIC observed-data, we use the concen-
tration-based definitions for the GREP (product ref 2.4.1)
output as well as the observational dataset (product ref
2.4.2), on their original grids. The consolidated pack ice
is then defined by a SIC from 0.80 to 1. TheMIZ is ident-
ified by SIC in the 0.15–0.80 range. Sparse sea ice covers
regions with SIC lower than 0.15; it is worth mentioning
that such low SIC can appear inside the pack ice region as
well, in areas of potential polynyas.

To map Antarctic MIZ from satellite data record, we
use the NOAA/NSIDC Climate Data Record (hereafter
CDR, Meier et al. 2017, product ref. 2.4.2) that provides
a combination of SIC estimates from two well-estab-
lished algorithms (NASA Team and Bootstrap), redu-
cing the overall low bias in a fully automated
procedure (Peng et al. 2013). We use the merged pro-
duct as each algorithm has different pros and cons.
Stroeve et al. (2016) analysed the Antarctic MIZ from
the NASA Team (NT) and Bootstrap (BT) data, and
showed that (1) the BT algorithm halves the MIZ and
doubles the consolidated pack ice area compared to
the NT algorithm; (2) trends are also different with
the BT indicating no statistically significant trends in
the MIZ, and NT statistically significant positive MIZ
trends in spring. The root mean square errors of SIC
between the ensemble mean and NOAA/NSIDC CDR
(product ref 2.4.2) is presented for September and Feb-
ruary climatology over the period 1993–2019 (Figure
2.4.1). A RMSE up to 10% is visible in winter time
over the Antarctic Circumpolar Current location,
while summer SIC differs from satellite estimates mainly
along the coastline of Eastern Antarctica where poly-
nyas and ice sheets are present. CMEMS distributes glo-
bal reprocessed SIC data from EUMETSAT OSISAF
CDR and Interim CDR. This data set is ingested by
some of the data assimilation systems employed in the
ORAs constituting GREP (product ref 2.4.1), and
hence not used for comparison in this study.
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For all products, we analyse monthly means of SIC
(the fractional coverage of an ocean grid-cell area cov-
ered with sea ice) to compute SIE as the total ocean
area of all grid-cells with SIC exceeding 0.15. Thus,
the MIZ extent represents the total area of ocean
where SIC is comprised between 0.15 and 0.80. SIE is
widely used as polar climate indicator minimising the
effects of uncertainties in passive microwave estimates
(e.g. Meier and Stewart 2019) compared to sea ice frac-
tion and area. Our results are presented as hemispheric
average, but we also show that sea ice variability and
trends can regionally differ from the circumpolar ones.

2.4.3. Results

The climatological mean seasonal cycle of Antarctic
MIZ does not follow total extent seasonality (Figure
2.4.2). While both reach minima in February, the MIZ

extent peaks after the annual total (and pack) sea-ice
maximum, generally occurring in September. On aver-
age, the MIZ advance needs about 10 months to pro-
gress from near the coast in February to its most
equatorward maximum and about only 2 months to
return to a minimum. The seasonal cycle of total SIE
is dominated by the pack ice variability, with a shorter
advance period (about 7 months) and longer retreat
(about 5 months).

Figure 2.4.3 compares GREP (product ref 2.4.1) and
CDR (product ref 2.4.2) time evolutions of MIZ and
total SIE in four specific months [February (summer
extent), May (growing season), September (winter
extent) and December (melting season)]. There is a gen-
eral good agreement between the observational esti-
mates and the ensemble mean. For each month, GREP
(product ref 2.4.1) is able to correctly reproduce the
amounts of marginal ice and their interannual variabil-
ity. GREP (product ref 2.4.1) SIE stays always within
observational uncertainties. From the melting period
to the summer minimum, GREP (product ref 2.4.1)
MIZ interannual variability is consistent with satellite
estimates, but overestimates MIZ extent indicating
overall lower pack ice extent compared to observed
data (product ref 2.4.2).

While total SIE (and pack ice extent) ranges from a
summer minimum in February (always well under 5 ×
106 km2) to a winter maximum in September (always
well over 18 × 106 km2) in both GREP (product ref
2.4.1) and CDR (product ref 2.4.2) (Figures 2.4.2 and
2.4.3), the MIZ presents a minimum in February

Figure 2.4.1. GREP SIC root mean square error for September
(left), and February (right) averaged over 1993–2020 as derived
from NOAA/NSIDC CDR (product ref. 2.4.2).

Figure 2.4.2. Mean seasonal cycle of total SIE (solid) and MIZ extent (dashed), from GREP (red, product ref. 2.4.1) and satellite esti-
mates (black, product ref. 2.4.2), with individual ORA products (thin lines), for the 1993–2020 period. The seasonal cycles of pack ice
(dash-dotted lines) and sparse ice (dotted lines) are also presented.
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(generally higher than the minimum pack ice extent), to
expand during the growing season when sea ice tends to
aggregate and get denser, rapidly increasing the pack ice
zone. In September, MIZ comprises about 25% of the
total maximum extent but it does not reach its widest
extent; it continues to expand toward the end of the
year, to exceed again the pack ice extent during
the melting season. The fraction of MIZ related to the
total SIE is slightly overestimated in December and Feb-
ruary by GREP (product ref 2.4.1), to follow more clo-
sely observed data in the growing season.

Time evolution of MIZ extent in each month has
experienced no or little significant trends for 1993–
2020 in both CDR (product ref 2.4.2) and GREP (pro-
duct ref 2.4.1) – monthly-mean trends are listed in
Table 2.4.1. The reduction in the minimum MIZ extent
after 2016 is clearly visible and properly reproduced in
GREP (product ref 2.4.1), as the extent increase in
2020. Trends in GREP (product ref 2.4.1) generally fol-
low CDR (product ref 2.4.2). The hemispheric-wide SIE

trends for February are negative in both products, dri-
ven by the MIZ decrease. During the ice expansion
phase (in May), the negative trends in total SIE result
from the reduction of the consolidated pack ice. In Sep-
tember, CDR (product ref 2.4.2) and GREP (product ref
2.4.1) exhibit opposing trends in the pack ice and MIZ,
they compensate each other to result in a lack of trend in
the total extent. During the melting period (in Decem-
ber), negative trends in the pack ice are comparable
between the two products, but GREP (product ref
2.4.1) reproduces no trend in the MIZ too, with a larger
decline in the total extent.

As a consequence of the similarities between CDR
(product ref 2.4.2) and GREP (product ref 2.4.1) in esti-
mating total and MIZ extent, the two products agree
also in terms of the average locations of the MIZ. We
illustrate the MIZ expansion and contraction, and assess
the consistency between reanalysis products and
observed estimates of MIZ locations, as shown in Figure
2.4.4. There is close agreement in the average latitude

Figure 2.4.3. Time-series of Antarctic SIE (solid) and MIZ extent (dashed) from GREP (red, product ref 2.4.1) and CDR (black, product
ref. 2.4.2) for February, May, September, and December. Thin lines represent the single ORAs. An error bar of 10% has been applied to
the observational output (product ref. 2.4.2).
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changes between the two products. The time evolution
of the monthly-averaged position of the MIZ shows
that the spatial pattern of the MIZ in GREP (product
ref 2.4.1) and CDR (product ref 2.4.2), and its seasonal
and interannual variability are again consistent, as well
as the timing of MIZ advance and retreat. The location
of the minimum MIZ extent slightly moves toward the
equator in the last decade, while May and December
show a contraction of the MIZ in the most recent
years, from 2016. In the growing season, this is mainly
due to the reduction of total SIE. The averaged latitude
of MIZ is relatively constant in September and persist-
ent at ∼62°S. Although the extent of marginal ice
increases until the end of November/December and
then its percentage stays nearly constant at this maxi-
mum extent, the December-average MIZ position and
the outer ice edge move poleward. This is explained
by the quick retreat of the inner pack ice starting in
the end of September.

Satellite observations show that the small changes
in total Antarctic sea ice over the last three decades
mask a dipole pattern of regional changes, with sub-
stantial regional trends of increasing ice extent, pri-
marily in the Ross and Weddell Seas, and decreasing
ice extent in the Bellingshausen and Amundsen Seas
(Parkinson 2019). There are complex spatial patterns

of change in advance, retreat and duration, forced
by wind-driven sea ice drift and ice-ocean heat
fluxes. The accuracy of GREP (product ref 2.4.1) per-
formances is investigated also on regional scales using
maps of seasonal trends in sea ice concentration
during 1993–2020 (Figure 2.4.5). The trends of simu-
lated Antarctic SIC have large spatial differences that
greatly agree with observed ice. They both show that
the largest trends are present in the regions covered
by marginal ice (see contour lines in Figure 2.4.5).
From a seasonal perspective, summer (DJF) and
autumn (MAM) have the largest and significant trends
in both products. GREP (product ref 2.4.1) SIC exhi-
bits negative trends in the Bellingshausen-Amundsen
Sea and in Ross Sea, areas showing rapid regional
warming. In summer and autumn, pronounced posi-
tive trends occur on the western Weddell Sea and
north of the Antarctic Peninsula – they are due to a
combination of processes, as changes in the atmos-
pheric dynamics and wind patterns (e.g. Holland
and Kwok 2012; Meehl et al. 2016; Vichi et al. 2019;
Blanchard-Wrigglesworth et al. 2021), changes in the
vertical structure of the near-surface water column
(Goosse and Zunz 2014; Venables and Meredith
2014), freezing of low-salinity surface water from the
ice sheet (Bintanja et al. 2013; Pauling et al. 2016;
Haid et al. 2017). In all regions, the trends start to
grow in spring (SON) resulting in the maximum sum-
mer trends. In winter (JJA), where the extent of the
consolidated pack ice dominates, the largest positive/
negative trends are located close to the ice edge
(where ice distribution is mostly constrained by
ocean dynamics). The spring Antarctic sea ice also
shows a zonal wave-number-two structure, with a
maximum in the Pacific sector and a minimum
close to Davis Station (located on the Ingrid Christen-
sen Coast in East Antarctica), similar to those in
spring, except for the difference in the value.

2.4.4. Discussion and conclusions

The region covered by marginal ice is highly sensitive to
atmospheric and oceanic forcing, changes in the MIZ
extent can affect the level of atmosphere-ocean heat
and gas exchanges the area of partially ice-covered
ocean and can have implications for the polar ecosys-
tems. Thus, investigation of changes of Antarctic MIZ
supports understanding the Antarctic sea ice variability
on different spatial and temporal scales.

We have analysed the evolution of the Antarctic MIZ
as represented in the Global Reanalysis Ensemble Pro-
duct (product ref 2.4.1) and compared it to a satellite-
derived dataset (product ref 2.4.2). A detailed

Table 2.4.1. Slopes of trend lines (computed as linear least-
squares regression) for the extent of marginal ice,
consolidated pack ice and total ice for February–December
(1993–2020) for both GREP (product ref 2.4.1) and CDR
(product ref. 2.4.2).
Month Ice classes CDR GREP

February MIZ extent −7.69 −18.65
Pack ice extent 4.32 5.97
Total extent −3.37 −12.68

May MIZ extent 5.36 1.58
Pack ice extent −18.79 −21.56
Total extent −13.42 −19.97

September MIZ extent 1.13 −11.35
Pack ice extent −0.39 14.12
Total extent −0.73 −2.77

December MIZ extent 14.65 −0.032
Pack ice extent −14.96 −17.13
Total extent −0.303 17.162

Notes: Values are listed in 103 km2 per year. Bold indicates a significant slope
with p < 0.05. The ensemble-mean MOC trend over 1993–2019 is also
shown. All volume transports are referenced to zero at the surface to
allow comparison with observations from Li et al. (2021). The ensemble-
mean is calculated over the OSNAP observational period and over the
full 1993–2019 ensemble period. The ensemble-mean uncertainty is
equal to two times the standard deviation of the time-mean transport
across the ensemble and its monthly-mean variability (and that of the
observations) is equal to two times the standard deviation of the
monthly-mean transports over the timeseries. ORAS5 is excluded from
the ensemble-mean and uncertainty across all sections (see text).
OSNAP observational estimates and uncertainties of the MOC (Li et al.
2021), and MHT and MFT (Lozier et al. 2017) are calculated using a
Monte Carlo simulation. Estimates using the observed monthly-mean
transports are in brackets. The OSNAP observational period is 2014–
2018 for the MOC, and 2014–2016 for the MHT and MFT.
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understanding of mechanisms driving Antarctic sea ice
classes is out of the scope of this contribution. Here, we
want to assess the reliability of the sea ice concentration
provided by the GREP ensemble mean (product ref
2.4.1) in discriminating the MIZ from the consolidated
pack ice, and in reproducing the space/time evolution of
the Antarctic MIZ from 1993 through 2020.

A challenge in the validation arises as to which long-
term sea ice concentration data record to use. There are
dozens of algorithms available, whose SICs are not
necessarily consistent with each other (e.g. Ivanova
et al. 2015; Stroeve et al. 2016). We derived monthly
SIC fields from NOAA and the National Snow and Ice
Data Center Climate Data Record (product ref 2.4.2),
a long-term, consistent, satellite-based passive micro-
wave record of sea ice concentration that leverages
two well-validated concentration algorithms. This data
set is not directly included in the data assimilation sys-
tems of the GREP (product ref 2.4.1) components.

GREP (product ref 2.4.1) is shown to properly rep-
resent the variability of minima and maxima in MIZ

extent as well as its interannual variability during the
growing and melting seasons. More evident discrepan-
cies between GREP (product ref 2.4.1) and CDR (pro-
duct ref 2.4.2) occur during summer, when the spread
among individual ORA increases: one product tends
to underestimate MIZ extent and another to overesti-
mate pack ice extent.

The accuracy of the GREP ensemble mean (product
ref 2.4.1) has already been assessed for a range of
ocean applications (Storto et al. 2019). Although the
four reanalyses included in GREP (product ref 2.4.1)
employ the same ocean model and atmospheric forcing
dataset, differences in ice models, data assimilation sys-
tems and observational datasets, air–sea flux formu-
lations, initialisation strategy, and model configuration
parameters, contribute to the ensemble dispersion.
The ensemble-mean GREP always beats individual
members in representing changes in the extent of total
and marginal ice, in the Southern Ocean. The quality
of GREP (product ref 2.4.1) is comparable to that of sat-
ellite data sets and the differences between GREP

Figure 2.4.4. Time series of monthly-averaged latitudes of MIZ for GREP (red, product ref. 2.4.1) and CDR (black, product ref. 2.4.2) in
February, May, September, and December.
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Figure 2.4.5. Map of seasonal trend in sea ice concentration (% yr−1) from CDR (product ref. 2.4.2) and GREP (product ref. 2.4.1) in (a)
winter (JJA), (b) spring (SON), (c) summer (DJF), and (d) autumn (MAM), for the 1993–2020 period. Contours indicate the SIC at 0.15
(green) and 0.8 (magenta). Dots show 95% significance. JJA: June-July-August; SON: September-October-November, DJF: December-
January-February; MAM: March-April-May.
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Chapter 4
Antarctic sea ice in HighResMIP climate models

Abstract

Coupled climate models present low confidence in the simulation of the Antarctic
sea ice state and historical evolution. Increasing horizontal resolution in the models can
improve the representation of complex processes at high latitudes. Here, we examine the
historical changes in the Antarctic sea ice cover in HighResMIP models over 1979-2014
with the objective to assess the realism of the main aspects of the Antarctic sea ice cover
in coupled climate models. All models can adequately reproduce asymmetric seasonal
cycle in sea ice area (SIA) but most of them delay the timing of the seasonal maximum in
sea ice volume (SIV). All but one model fails to simulate overall SIA and SIV expansion
over the satellite era and produces decreasing trends in response to global warming. Our
results show no considerable improvements in the representation of Antarctic sea ice in
coupled climate models with finer horizontal resolution (up to 0.25∘ in the ocean and 50
km in the atmosphere). Given the high computational cost of climate-scale simulations
at increased spatial resolution, we assume that greater emphasis should be placed on
improving the sea ice model description. The model skill to simulate the ocean and the
atmosphere characteristics also could not explain the relatively good representation of
the Antarctic sea ice mean state in a few models. We suggest that the realism of sea ice
simulations rather depends on the interplay of the ocean and the atmosphere components
in the coupled system.

4.1 Introduction

Sea ice is an iconic feature of the polar climate system which allows fluxes between
the atmosphere and the underlying ocean in the form of heat, moisture, gas, and mo-
mentum exchanges. Variations of ice-covered area affect surface albedo, thermo-haline
circulation, and biological productivity. The Southern Ocean witnesses the largest annual
extension of the sea ice area on Earth: each year nearly 15x106 𝑘𝑚2 grow and melt which
influences global climate dynamics (Abernathey et al., 2016; Pellichero et al., 2018), re-
gional climate (Bracegirdle et al., 2013) and local ecosystems (Cavanagh et al., 2017).
The long-term evolution of the Antarctic sea ice cover is quite distinct from its northern
counterpart: while the Arctic has experienced continuous and stable sea ice loss over the
recent decades (Onarheim et al., 2018), the Antarctic does not follow the trend, displaying
weakly positive sea ice expansion (Parkinson, 2019), yet with considerable inter-annual
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variability (Stammerjohn and Maksym, 2017). Moreover, the overall expansion masks
high-magnitude seasonal (Holland, 2014) and regional (Hobbs et al., 2016; Stroeve et al.,
2016) variability. The modest increase of sea ice area until 2014 has been interrupted
by sea ice decreases between 2014 and 2016 followed by dramatic sea ice loss at the end
of 2016, with the largest sea ice retreat in the Weddell and the Ross Seas. The puzzling
behaviour of the Antarctic sea ice cover produced several explanations of the phenomenon
with relation to large-scale atmospheric variability (Turner et al., 2015; Meehl et al., 2016),
wind forcing (Holland and Kwok, 2012; Blanchard-Wrigglesworth et al., 2021), ice-ocean
feedbacks (Goosse and Zunz, 2014), loss of Antarctic ice sheets (Bintanja et al., 2013;
Haid et al., 2017), suggesting that multiple oceanic and atmospheric processes amplified
by various climate feedbacks contribute differently to different sectors of the Southern
Ocean, creating complex pattern of sea ice change throughout the satellite era.

Global coupled models represent a useful tool to investigate sea ice evolution and
analyze the processes controlling its temporal and spatial variability. Providing a single
framework, the Coupled Model Intercomparison Project (CMIP) helps to evaluate the
realism of the simulations. It is generally viewed that in the Antarctic in comparison to
the Arctic, the models have less credibility in simulating the main aspects of sea ice and
the advancement across CMIP generations is much less noticeable (Roach et al., 2020; Shu
et al., 2020). CMIP6 models exhibit huge inter-model spread in the SIA seasonal cycle,
which in summer is twice as much as in the Arctic. Despite high uncertainties, the models
in general can properly capture the asymmetry of the seasonal cycle with a slow advance
and rapid retreat (Roach et al., 2020). The coupled climate models struggle to reproduce
positive trends in the sea ice area over the satellite era: only 11% of CMIP6 models are
able to capture observed expansion trends compared to 15% in CMIP5 (Shu et al., 2020).
CMIP6 models predict sea ice loss in future projections at a higher rate compared to
their predecessors from the fifth generation of CMIP (Holmes et al., 2022). A plausible
representation of sea ice is essential to simulate air-sea fluxes at the ocean-atmosphere
interface and to improve climate projections. However, sea ice is highly sensitive to
oceanic and atmospheric forcing so the errors in sea ice representation can be composed
of the errors in the simulation of the ocean (Docquier et al., 2019; Khosravi et al., 2022;
Schroeter and Sandery, 2022) and atmosphere features (Lecomte et al., 2016; Lin et al.,
2023). In fact, the coupled climate models suffer from systematic biases which affect other
aspects of the climate and lead to error growth due to exchanges in the coupled system.
Several systematic model biases have been identified in the Southern Ocean simulation
(Meijers, 2014). One of the well-known biases is driven by cloud forcing (Zelinka et al.,
2020): cloud effects introduce a great uncertainty and generate further biases such as
surface warm bias (Beadling et al., 2020) and equatorward shift of the jet stream (Ceppi
et al., 2012) which might translate into biases in sea ice area. The equatorward bias
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of the westerly jet position has persisted over model generations (Gupta et al., 2021;
Beadling et al., 2019) with improvement in the 6th phase of CMIP (Bracegirdle et al.,
2020). Another consistent bias in the Southern Ocean simulation is too warm upper-ocean
temperatures which affects air-sea heat fluxes, ocean circulation, water mass formation
and Antarctic sea ice cover (Beadling et al., 2019; Hyder et al., 2018). One of the widely
recognized ways to reduce the biases in the model simulations is to increase the horizontal
resolution of the ocean and the atmosphere. The added value of enhanced horizontal
resolution was demonstrated with regards to many aspects of Southern ocean climate, for
example, Southern Ocean circulation and sea ice trends (Rackow et al., 2022), Antarctic
Circumpolar Current (ACC) structure (Beadling et al., 2019), jet stream position (Curtis
et al., 2020).

To explore the impact of the enhanced horizontal resolution on the accuracy of model
simulations, The High Resolution Model Intercomparison Project (HighResMIP; Haarsma
et al., 2016) was designed within the EU Horizon 2020 PRIMAVERA project (PRocess-
based climate sIMulation: AdVances in high-resolution modelling and European climate
Risk Assessment, https://www.primavera-h2020.eu/). The main focus of the HighResMIP
ocean studies was the North Atlantic region and the Arctic (e.g. Docquier et al., 2019,
2020; Koenigk et al., 2021; Meccia et al., 2021). The only publication within HighResMIP
with a focus on the Southern hemisphere has been Moreno-Chamarro et al., 2022, who
investigated the warm Southern Ocean bias. They showed a mixed impact of increased
resolution on the biases in surface air temperature and almost no difference between
configurations for cloud radiative effect and precipitation.

In this paper, we explore the representation of Antarctic sea ice cover over the period
1979-2014 using the outputs of six coupled climate models participating in HighResMIP
with the objective to assess the realism of the main aspects of the Antarctic sea ice cover.
We investigate seasonal and long-term variability of sea ice area and volume in the model
simulations against satellite estimates and reanalyses. We also seek to find out whether
there is any impact of enhanced ocean/atmosphere horizontal resolution on the accuracy
of simulated sea ice cover in the Southern Ocean by comparing it against observations
and reanalyses.

4.2 Methods

In this study, we use the model outputs from the six coupled climate models partic-
ipating in the HighResMIP, which is one of the CMIP6-endorsed Model Intercomparison
Projects (MIPs). We focus on the historical runs (“hist-1950”, 1950-2014) and chose for
analysis period from 1979 to 2014 to compare the results with satellite observations and
reanalyses. Every model has at least two resolution configurations and few of them have
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Table 4.1: The model configurations used in the study.

Model configuration nominal
ocean res. (∘)

nominal
atm. res. (km)

model components
ocean-sea ice atmosphere

CMCC-CM2
(Cherchi et al., 2019)

HR 0.25 100 NEMO3.6
+CICE4.0 CAM4VHR 0.25 25

CNRM-CM6
(Voldoire et al., 2019)

LR 1 250 NEMO3.6
+GELATO6 ARPEGE6.3HR 0.25 100

ECMWF-IFS
(Roberts et al., 2018)

LR 1 50 NEMO3.4
+LIM2 IFS cycle43r1MR 0.25 50

HR 0.25 25
EC-Earth3P
(Haarsma et al., 2020)

LR 1 100 NEMO3.6
+LIM3 IFS cycle36r1HR 0.25 50

HadGEM3
(Williams et al., 2018)

LM 1 250 NEMO3.6
+CICE5.1 UMMM 0.25 100

HM 0.25 50
MPI-ESM
(Müller et al., 2018)

HR 0.4 100 MPIOM1.6.3 ECHAM6.3XR 0.4 50

intermediate resolution configurations: in four of the models (ECMWF-IFS; HadGEM3;
EC-Earth3P; CNRM-CM6) both ocean and atmosphere vary between the configurations
while in two of them (CMCC-CM2; MPI-ESM) only the atmosphere resolution varies.
Note that ECMWF-IFS and HadGEM3 have several ensemble members and in this study,
we use only the first ensemble member. The main characteristics of the models are given
in Table 5.1. A more detailed description of the model configurations can be found in the
respective documentations.

In this study, we compute sea ice area (SIA) using the variable “siconc”, i. e. the
integral area of ocean grid cells covered by sea ice with consideration of SIC in each of
them. We focus on sea ice area instead of sea ice extent (total area of grid cells with at
least 15% SIC; SIE) due to the large grid-dependency of the latter (Notz, 2014). The
fields of sea ice thickness (SIT) are derived using the equivalent sea ice thickness “sivol”,
which refers to the sea ice volume per grid-cell area. To obtain sea ice volume (SIV), we
multiply “sivol” with the individual grid-cell area, and then sum over the Antarctic region.
To derive integrative metrics, only the grid cells with at least 15% SIC are considered owing
to higher uncertainty in passive microwave retrievals in low sea ice conditions. Apart from
sea ice variables, we retrieve monthly mean SST (“tos”), SSS (“sos”), ocean components
of sea surface velocity (“uo”,“vo”), zonal component of wind at 925 hPa (“ua”). The mean
metrics of the above-mentioned variables we use as the area-averaged field south of 60∘S.
Jet stream strength is determined as the highest zonal wind at 925 hPa level between 35
and 75∘S where a cubic spline approximation is applied to the zonal-mean zonal wind and
the jet position is defined as the latitude of this maximum (Bracegirdle et al., 2013).

In order to evaluate model results we use set of satellite products and reanalyses.
For sea ice concentration, NOAA/NSIDC Climate Data Record (version 4, (Meier et al.,
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2021), hereafter CDR) and EUMETSAT OSISAF Climate Data Record and Interim Cli-
mate Data Record (release 2, products OSI-450 and OSI-430-b, Lavergne et al., 2019)
are used. In the present analysis, we use the reprocessed version of CDR which removes
spatial and temporal filtering following Vichi (2022). Given the scarcity of SIT observa-
tions, the monthly means of SIT and SIV are obtained from reanalysis products: Global
Ice-Ocean Modeling and Assimilation System (GIOMAS; Zhang and Rothrock, 2003) and
the CMEMS ensemble of global ocean reanalyses (GREP; (Storto et al., 2019)). GIOMAS
comprises a global Parallel Ocean and sea Ice Model (POIM) with data assimilation ca-
pabilities: the models are driven by SIC from the NSIDC near-real time product (Brodzik
and Stewart, 2016) and SST from NCEP/NCAR reanalysis (Kalnay et al., 1996). De-
spite GIOMAS having uncertainties we use this product as a reference in the present
analysis considering its persistence and spatial and temporal coverage. GREP is the
ensemble mean of four global ocean eddy-permitting reanalyses available from 1993 (C-
GLORSv7, Storto et al., 2016; FOAM-GloSea5, MacLachlan et al., 2015; GLORYS2v4,
Lellouche et al., 2013; ORAS5, Zuo et al., 2019), all are composed of NEMO ocean model
and forced by atmospheric reanalysis ECMWF Era Interim (?) on a 0.25∘ tripolar grid.
GREP performance has already been assessed with respect to a range of ocean variables
(Masina et al., 2015; Storto et al., 2019) as well as the Antarctic sea ice area (Iovino et al.,
2022). For SST, SSS, ocean components of sea surface velocity, we use GREP. All GREP
ensemble members assimilate SST and SSS observations (Storto et al., 2019) which per-
mits us to use this product as a reference for inter-model comparison. For zonal wind, we
use atmospheric reanalyses ERA5 (Hersbach et al., 2020) and JRA55 (Kobayashi et al.,
2015). The fifth generation in the European Centre for Medium-range Weather Forecasts
(ECMWF), ERA5 employs the operational ECMWF Integrated Forecasting System (IFS)
model (cycle 41r2). The Japanese 55-year Reanalysis (JRA-55) is the update of JRA-25
developed by the Japan Meteorological Agency (JMA). JRA-55 uses the JMA global
spectral model. Both reanalyses use a four-dimensional variational assimilation system.
The level-pressure data in ERA5 is available at 0.25∘ while JRA55 provides a resolution
of 1.25∘. These atmospheric reanalyses have been successfully validated in the Southern
Ocean with regard to surface air temperature (Huai et al., 2019; Zhu et al., 2021; King
et al., 2022) and low-level winds (Tetzner et al., 2019; Caton Harrison et al., 2022).

4.3 Results

4.3.1 Mean state

Figure 4.1 illustrates the climatology of the Antarctic SIA (a) and SIV (b) in High-
ResMIP models against satellite observations and reanalyses for the period 1979-2014.
The observed SIA has a distinct asymmetric seasonal cycle with slow autumn growth from
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its minimum in February (∼2.5x106 𝑘𝑚2) to its peak in September (16.2x106 𝑘𝑚2) and
rapid spring retreat. The models are generally in good agreement with CDR in capturing
the timing of the seasonal minima and maxima, however, the range of sea ice area varies
from ∼3x106 𝑘𝑚2 in summer to ∼6x106 𝑘𝑚2 in winter excluding low the two outliers
which simulate unrealistic seasonal cycle (HR and MR configurations of ECMWF-IFS).

(a) (b)

Figure 4.1: The 1979-2014 mean seasonal cycle in the Antarctic SIA (a) and SIV (b) from
the model outputs against NSIDC CDRv4 for SIA and GIOMAS and GREP for SIV.
GREP seasonal cycle is based on 1993-2014 data.

Few models miss the month of the observed annual maximum: both configurations
of MPI-ESM reach the peak in August while CNRM has the maximum in October. Most
products do not have enough sea ice in summer except two models which slightly over-
estimate SIA compared to observations. In winter, there is a substantial inter-model
spread reaching ∼12x106 𝑘𝑚2. Three out of six models are able to reproduce the am-
plitude of seasonal SIA variability (HadGEM3, EC-Earth3P, CMCC-CM2) whereas two
models overestimate the annual cycle (CNRM, MPI-ESM XR), and the last one heavily
underestimates it (ECMWF-IFS). Generally, with increased ocean resolution, there is a
decrease of SIA and a closer fit to observations in winter while in summer the difference
between configurations is very small. There is almost no effect of atmosphere resolution for
ECMWF-IFS and CMCC-CM2, while for MPI-ESM we note the huge expansion of win-
ter SIA with enhanced atmosphere resolution. Considering that SIT observations in the
Southern Ocean are limited and not validated, for SIV we rely on data from GIOMAS and
GREP reanalyses. The two reference products are in close agreement in summer (∼2x103

𝑘𝑚3 in February) but simulate different amount of sea ice in winter: GIOMAS SIV grows
up to ∼17.5x103 𝑘𝑚3 while GREP SIV reaches ∼12.5x103 𝑘𝑚3 in September. Compared
to SIA, the inter-model spread in SIV is relatively larger and persistent throughout the
year varying from ∼15x103 𝑘𝑚3 in February to 23x103 𝑘𝑚3 in September. Two models
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(a)
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(b)

Figure 4.2: The 1979-2014 climatological mean sea ice thickness from the model outputs
and GIOMAS in September (a) and February (b). White lines show 15% and 80% sea ice
edges from corresponding models (SIC from NSIDC CDR for GIOMAS).
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which are pretty good in reproducing SIA (HadGEM3, CMCC-CM2) largely overestimate
SIV all year round due to great proportion of thick ice. Other models are close to the
reanalyses in summer but underestimate SIV in other seasons relative to both reanaly-
ses or remain close to GREP. All models simulate longer SIV growth compared to the
reanalyses, with SIV maximum in October. Most models underrepresent the amplitude
of SIV annual cycle since they simulate thinner ice compared to reanalyses, particularly
in winter. CMCC-CM2 and HadGEM3 LL overestimate SIV in all seasons, however de-
spite these persistent positive bias they agree well with GIOMAS on the amplitude of
SIV seasonal cycle. In general, Antarctic SIV decreases with enhanced ocean resolution,
while using the finer atmosphere resolution has different effects on the simulated SIV for
different models: for HadGEM3 and CMCC-CM2 SIV decreases at higher atmospheric
resolution while ECMWF-IFS and MPI-ESM have higher SIV in the finer atmospheric
resolutions.

Next, we examine the spatial patterns of Antarctic SIC and SIT for the period 1979-
2014. The climatological mean distribution of SIT and the sea ice edges (15% and 80%
SIC) in September and February are shown in Figure 4.2. In September, the sea ice edge
position is similar across the models. However, ECMWF-IFS clearly lacks sea ice in the
Weddell Sea, while CNRM and MPI-ESM extend sea ice edge too far equatorward in
the Weddell Sea and the Indian Ocean sector. HadGEM3 LL also grows more sea ice by
September compared to GIOMAS, particularly in the eastern Indian Ocean. The location
of 80% SIC identifies the ability of the models to simulate the MIZ (usually identified as the
region between 15% and 80% SIC) and consolidated pack ice. Most models have a narrow
band of marginal ice encircling the inner pack ice, similar to GIOMAS. ECMWF-IFS LR
has a tail of pack ice in the Weddell Sea most probably as a result of underrepresented
Weddell Gyre. MPI-ESM is the only model with a higher fraction of the MIZ, which is
most prominently seen in the Atlantic and Indian Ocean sectors. In February, the major
part of the models clearly melt too much sea ice: all models but HadGEM3 and CMCC-
CM2 lack sea ice in the Ross, Amundsen and Bellinghausen Seas, some of them have not
enough sea ice in the Weddell Sea (EC-Earth HR, CNRM HR, MPI-ESM HR) or melt
down sea ice cover almost completely (ECMWF-IFS). The models also simulate different
proportion of the MIZ and consolidated pack ice. Generally, only marginal ice survives
in the models by February while pack ice is melted away. The models with thicker ice all
year round (HadGEM3 and CMCC-CM2) retain pack ice in the Weddell Sea in summer.

There is great variability across the models in the spatial distribution of SIT in
September: some of them simulate too thin ice everywhere in the domain (ECMWF-IFS,
CNRM, MPI-ESM), while others exhibit clear thickening of the ice in the Weddell and
the Ross Sea (HadGEM3 and CMCC-CM2). Different patterns of SIT in the models
can be attributed to the different sea ice models: HadGEM3 and CMCC-CM2 use differ-
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ent versions of CICE which includes five ice thickness categories in the parameterization
schemes. EC-Earth3P exhibits a very close agreement with GIOMAS on the spatial dis-
tribution of SIT with the caveat that there is no reliable reference for SIT in the Southern
Ocean. In February, most models remain only thin marginal ice, if any. In EC-Earth3P
LR, a tongue of thicker ice maintains along the Antarctic Peninsula while in HadGEM3
and CMCC-CM2 thick or very thick ice covers a large part of the Weddell Sea produced
by ridging. We do not observe any impact of the increased ocean resolution on the SIT
spatial pattern: most models demonstrate similar SIT distribution in their different con-
figurations. However, for EC-Earth3P and HadGEM3, enhanced ocean resolution leads
to slightly thinner ice near the Antarctic Peninsula in the Weddell Sea. The increase of
atmosphere resolution in CMCC-CM2 leads to thinner ice in the Weddell Sea reflecting
the atmospheric enhancement of the sea ice drift.

4.3.2 Interannual variability and trends

Next, we investigate the long-term variability of Antarctic sea ice cover. Figure
4.3 shows the monthly anomalies of SIA (upper panel) and SIV (lower panel) with a
comparison to CDR, OSISAF, and GREP for SIA and GIOMAS and GREP for SIV from
1979 to 2014 (1993-2014 for GREP).

Figure 4.3: Monthly anomalies of SIA (upper panel) and SIV (lower panel) over 1979-
2014 from HighResMIP model outputs and reference products. CDR and GIOMAS are
indicated by a black line and GREP is shown by a cyan line. The plots on the right show
linear trends in annual mean SIA (103 𝑘𝑚2/year) and SIV (𝑘𝑚3/year) over 1979-2014.
The standard deviation for CDR is indicated by the vertical gray line.
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Satellite products and GREP display modest growth of SIA with large inter-annual
variability. The standard deviations in detrended Antarctic SIA over 1979-2014 are 0.28
(0.25)x106 𝑘𝑚2 in February and 0.33 (0.35)x106 𝑘𝑚2 in September in CDR (OSISAF).
The models show a vast range of possible sea ice states and generally overestimate the
interannual variability in SIA. The models are not able to capture the positive trends in
SIA: the range of negative trends in SIA varies from -62.43 for MPI-ESM XR to -9.66x103

𝑘𝑚2/year for CMCC-CM2 HR. Only CMCC-CM2 XR simulates a positive trend at the
rate of 2x103 𝑘𝑚2/year, which is still below the rate from CDR and OSISAF (22.5 and
29.45x103 𝑘𝑚2/year, respectively). By comparing trends in the annual mean SIA over the
periods 1979-2014 and 1993-2014 (Table 5.1), we note that the models generally simulate
higher sea ice loss for the more recent period, while satellite products show a similar
rate of SIA expansion with slightly lower (OSISAF) or higher (CDR) trend for 1993-2014
period. Two models can capture SIA expansion over the years 1993-2014 (ECMWF-IFS
LR and CMCC-CM2 VHR) and their trends fit well with satellite observations.

GIOMAS and GREP simulate similar SIV evolution (Table 4.3, lower panel) and
both produce increasing trends but they are not in very close agreement for the inter-
annual variability. The models demonstrate inter-model spread and all but one lose sea
ice at the rate between -87.38 and -10.43 𝑘𝑚3/year. Only CMCC-CM2 VHR has a positive
trend in the annual mean SIV but it is very weak (0.39 𝑘𝑚3/year). For the 1993-2014
period, two models have positive trends in SIV (15.09 𝑘𝑚3/year in ECMWF-IFS LR and
9.37 𝑘𝑚3/year in CMCC-CM2 VHR). The enhanced horizontal resolution of the ocean
grid generally leads to less negative trends in SIA and SIV for the period 1979-2014 while
for the years 1993-2014 ECMWF-IFS and HadGEM3 models have more negative trends
with increased ocean resolution. The impact of the increased atmosphere resolution on
the trends is less clear: enhanced atmosphere resolution leads to more negative trends
in ECMWF-IFS and MPI-ESM and less negative or positive trends in HadGEM3 and
CMCC-CM2.

4.3.3 Surface ocean properties

This section and the following one explore what aspects of the coupled models con-
tribute to the biases in the representation of sea ice cover and why some models (CMCC-
CM2, EC-Earth3P, HadGEM3) simulate fairly plausible mean sea ice state. Here we
investigate the role of the ocean through the relationship between SIA, SST and SSS.
From the top row in Figure 4.4 it is evident that the relationship between SIA and SST
is strong: the models with higher SST have less SIA. In September, most models have
SST lying between -1.6∘ and -1.2∘ not too different from GREP which has SST of around
-1.5∘. Moreover, the models do not exhibit large inter-annual variability in SST and SIA
and stay in a relatively narrow range of values. There are two outliers in September:
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Table 4.2: Linear trend in SIA and SIV and their standard deviations for 1979-2014 and
1993-2014 periods.

Model 1979-2014 SIA trend
(103 𝑘𝑚2/yr)

1993-2014 SIA trend
(103 𝑘𝑚2/yr)

1979-2014 SIV trend
(𝑘𝑚3/yr)

1993-2014 SIV trend
(𝑘𝑚3/yr)

ECMWF-IFS LR -44.22 ± 16.8 27.85 ± 21.5 -42.08 ± 13.8 15.09 ± 18.5
ECMWF-IFS MR -9.58 ± 9.6 -20.09 ± 13.7 -10.43 ± 10.6 -24.04 ± 13.9
ECMWF-IFS HR -14.62 ± 10.6 -31.24 ± 18.4 -16.36 ± 11.1 -43.75 ± 19.2
EC-Earth3P -36.07 ± 15.8 -69.55 ± 37.7 -55.01 ± 32.3 -129.44 ± 65.91
EC-Earth3P-HR -26.71 ± 12.6 -65.36 ± 25.8 -42.72 ± 23.05 -111.47 ± 44.5
CNRM -43.57 ± 14 -31.82 ± 34.5 -37.27 ± 12.8 -15.93 ± 28.3
CNRM HR -30.2 ± 11.1 -16.64 ± 23.4 -27.78 ± 8.9 -23.63 ± 19.6
HadGEM3 GC31-LR -38.7 ± 11.3 -54.6 ± 27 -87.38 ± 21.8 -102.04 ± 46.1
HadGEM3 GC31-MM -35.71 ± 19.2 -68.24 ± 30 -74.79 ± 38 -116 ± 71.7
HadGEM3 GC31-HM -27.2 ± 13.6 -7.5 ± 20.4 -46.57 ± 27.9 -14.22 ± 52
CMCC-CM2 HR -9.66 ± 10.4 -39.67± 20.5 -46.31 ± 44.7 -198.55 ± 65.8
CMCC-CM2 VHR 2 ± 10.9 30.16 ± 16.9 0.39 ± 24.7 9.37 ± 65.77
MPI-ESM1-HR -25.16 ± 18.4 -62.67 ± 37.8 -28.5 ± 17.7 -82.99 ± 34
MPI-ESM1-XR -62.43 ± 23.6 -72.68 ± 44.4 -76.86 ± 25.4 -93.1 ± 43.4
CDR 22.5 ± 7.3 29.56 ± 17.5
OSISAF 29.45 ± 7.3 23.2 ± 16.6
GREP 32.14 ± 17 76.59 ± 29.6
GIOMAS 52.32 ± 16.2 67.15 ± 34.9

MPI-ESM HR and XR have cold SST close to or below -1.8∘ with a wide range of SIA
stretching from 13 to 18x106 𝑘𝑚2 in the HR configuration and 18 to 22.5x106 𝑘𝑚2 in
XR configuration. ECMWF-IFS MM and HR are warmer and with little ice, within the
range of 8 and 10.5x106 𝑘𝑚2 for SIA and with SST between -1.2∘ and -0.9∘. In February,
there are two clear clusters. The first one includes the HadGEM3 and CMCC-CM2 con-
figurations with high SIA up to 5x106 𝑘𝑚2 and low SST, which agrees well with GREP
(0∘-0.8∘). The second cluster consists of the models with too warm ocean (1.4∘ - 3.7∘) and
lower SIA compared to GREP.

The representation of SSS is largely diverse across the models and there is no clear
relationship between SIA and SSS in both seasons (Figure 4.4). In September, three
models simulate salinity of around 34.1-34.15 (HadGEM3 LL, EC-Earth3P, CMCC-CM2
HR), similar to GREP. CMCC-CM2 XR has slightly higher SSS compared to GREP while
three models simulate extremely high salinity (34.25 - 34.34 in two configurations of MPI-
ESM and up to 34.8 in EC-Earth3P HR). The rest of the models have too fresh surface
ocean up to 33.9 and below. In February, half of the models fall within the range of GREP
SSS, which varies from roughly 33.25 to 33.61. The rest of the models have higher salinity,
and all configurations of HadGEM3 and CMCC-CM2 have a narrow salinity range.

To examine the relationship between SIA and SST on a long-term scale we compare
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Figure 4.4: 1979-2014 average SST (a, b) and SSS (c, d) south of 60∘S against SIA in
September (left) and February (right) against estimates from GREP reanalysis for 1993-
2014 (cyan).

linear trends in SIA and SST (Figure 4.5). From the plot, it is evident that generally,
the models with stronger warming have more negative trends in SIA. However, there are
also models with a weak SST trend and strong negative SIA trend (all configurations of
HadGEM3) or, vice versa, a modest negative trend in SIA with a strong warming trend in
the surface ocean (EC-Earth3P). In contrast to other models, CMCC-CM2 VHR produces
a slightly positive trend in SIA together with weak cooling of the upper ocean.

4.3.4 Jet stream

Given the relationship between sea ice cover and the Southern Hemisphere jet stream
through SST (Purich et al., 2016), we focus on the skill of the models at reproducing the
westerly wind jet stream aiming to understand whether the large-scale atmosphere dy-
namics drives surface ocean temperature in the models. Figure 4.6a shows the climatology
of the westerly jet strength.

Compared with ERA5 and JRA55, the major part of the models is able to simulate
the annual cycle of the jet strength with two maximums in March and October reflecting
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Figure 4.5: 1979-2014 trends in annual mean SST against trends in annual mean SIA.

(a) (b)

Figure 4.6: The 1979-2014 mean seasonal cycle in the jet strength (maximum zonal wind
at 925 hPa level) (a). The annual mean zonal wind at 925 hPa level for the period 1979-
2014 as a function of latitude (b).

a half-yearly pattern in surface pressure and temperature gradient, which controls the
position of the ice edge (Eayrs et al., 2019). There is less agreement on the timing of the
annual minimum which is delayed in many models to July or August. Some models do
not have pronounced spring peak in the jet strength which might affect the timing of sea
ice retreat. For example, CNRM with a delayed peak in the jet strength starts to melt sea
ice later compared to other models (Figure 4.1a). In general, nearly half of the models
underestimate the jet strength and another half tend to simulate stronger westerly wind
compared to reanalyses. CMCC-CM2 model configurations have the highest bias in the
wind speed among other models reaching ∼3 m/s relative to the reanalyses. Figure 4.6b
illustrates the annual mean westerly wind at 925 hPa as a function of latitude. There is
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a clear equatorward shift of the jet stream position in most of the models of up to 2∘ - 4∘.
On contrary, CMCC-CM2 simulates ∼2∘ poleward bias and ∼2 m/s higher speed of the
jet stream with respect to the reanalyses.

(a) (b) (c)

Figure 4.7: The annual mean zonal wind at 925 hPa level for the period 1993-2014 as a
function of latitude for the Atlantic (a), Indian (b) and Pacific (c) sectors.

The model’s skill to reproduce characteristics of the westerly wind varies across
different regions. We analyze the position and strength of jet stream in different ocean
basins: the Atlantic (290∘ - 20∘), Indian (20∘ - 150∘) and Pacific (150∘ - 290∘) oceans are
illustrated in Figure 4.7. The most accurate simulation of the jet strength and position
is observed in the Atlantic sector. The models in general are in good agreement with the
reanalyses on the jet strength (∼10.5 m/s) and reasonably capture the jet position. The
jet stream position in CMCC-CM2 is shifted ∼4∘ poleward relative to reanalyses and its
strength is ∼2 m/s higher. From the plot, it is clear that the Atlantic sector contributes
the most to the error in the CMCC-CM2 representation of the mean jet stream position
(Figure 4.7a). The Indian Ocean has the largest amplitude of the zonal wind across the
ocean basins with stronger coastal easterlies along the Antarctic continent. Four out of
five models are biased northward for the jet stream and all of them tend to overestimate
the jet strength compared to the reanalyses. In the Indian Ocean sector, CMCC-CM2 is
the only one that properly captures the latitude of the jet, yet slightly overestimates its
strength. And finally, in the Pacific Ocean, we observe an increased inter-model spread
in the representation of the wind speed stretching from ∼ 6 to ∼ 12 m/s at its peak. The
models are also in better agreement on the latitude of the westerly jet and only CNRM
still has equatorward bias.

Next, we investigated the time evolution of the jet stream over 1979-2014. Figure
4.8 shows the relationship between the linear trend in the annual mean jet position and
its strength. Reanalyses show close to zero trend in the jet position and its strength.
There are models that are well agreed with reanalyses on jet position trend (ECMWF-
IFS HR, EC-Earth3P HR, CNRM-CM6) while the vast majority of the models exhibit
weak poleward trend. Two models simulate an equatorward trend (ECMWF-IFS LR and
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Figure 4.8: 1979-2014 trends in annual mean jet strength against linear trends in annual
mean jet stream position.

CMCC-CM2 VHR) and the other two models simulate too negative trend in westerly
jet position compared to reanalyses (ECMWF-IFS MM and MPI-ESM XR). The models
generally produce strengthening of the zonal wind throughout 1979-2014: with the higher
trend in zonal wind speed models show a stronger poleward shift of the jet stream which
is a response to increased warming. Two models produce slight weakening of the jet
stream and one model with the highest mean state (CMCC-CM2 VHR) simulates the
most negative trends in the westerly jet strength. To check if there is any response of
SST to jet stream on a long-term scale we examine the relationship between the linear
trend in the annual mean SST and jet strength (not shown). We do not find a strong link
between both variables which might be due to seasonal variability of trends disguised in
the annual mean trend.

To examine the ocean response to momentum transfer from the westerly winds we
analyze the zonally averaged zonal component of surface ocean currents (Figure 4.9). The
models compare well with GREP both in the total Antarctic and in the different ocean
basins. This is attributed to the fact that all models and GREP share the same ocean
model NEMO. On contrary, MPI-ESM has distinct from other models profile north of 58∘S
for the Antarctic-averaged zonal current while it has similar velocity close to the sea ice
edge and under sea ice. The models generally capture the position of ACC and simulate
slightly weaker easterly current and stronger coastal westerly current in comparison to
reanalysis. For the Antarctic-wide profile, the annual mean position of ACC is diverse
across the models, ranging between ∼42∘S for CNRM HR to ∼56∘S for CMCC-CM2. The
Atlantic sector has two peaks: the first is attributed to the northern flank of the Weddell
Gyre (∼56∘S) and the second is the ACC (∼48∘S). In the Indian sector, the maximum
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(a) (b)

(c) (d)

Figure 4.9: The annual mean zonal component of surface ocean currents for the period
1993-2014 as a function of latitude for the total Antarctic (a), Atlantic (b), Indian (c)
and Pacific (d) sectors.

of the ocean current is located at ∼48∘S while in the Pacific sector, the latitude of ACC
is ∼56∘S. There is a high inter-model spread on the westerly coastal currents along the
Antarctic continent. The strongest coastal currents are produced by ECMWF-IFS and
CNRM model configurations, particularly in the Atlantic basin. CMCC-CM2, on the
contrary, underestimates westerly current and simulates stronger easterlies in response to
strengthened zonal wind. Notably, the ACC strength in CMCC-CM2 configurations is
well represented in the Indian Ocean basin while in the rest of the sectors, the model has
a higher zonal current speed at its maximum.

To illustrate the spatial pattern of the zonal current component we show the cli-
matology of the zonal surface current in the Atlantic sector in February (Figure 4.10).
All models regardless of the horizontal resolutions are able to capture the general pattern
of the zonal current with strong easterly ACC and coastal westerlies. Nevertheless, the
use of 0.25∘ ocean resolution indeed allows to generate the eddies and provides a more
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Figure 4.10: Climatological mean zonal component of surface currents in the Atlantic
sector in February, averaged over 1993-2014. Sea ice edge position (15% SIC) is shown by
black line.

realistic surface currents representation. From the plot, it is clear that for some models
strengthened coastal current pushes sea ice towards the Antarctic Peninsula which results
in too low SIA in the eastern Weddell Sea (ECMWF-IFS MM and HM, CNRM HR). In
the case of HadGEM3, which on average grows thick ice, the sea ice edge does not respond
to the ocean forcing as much as in the other models with thin ice since the thick ice is
not so easily moved by currents. CMCC-CM2 configurations and HadGEM3 LL have
slower coastal currents, which together with strengthened westerly zonal wind prevent
the ice edge to move towards the Antarctic Peninsula. The thick mean state of sea ice
in CMCC-CM2 also enhances multi-year ice persistence in the Weddell Sea during the
melting season.

4.3.5 Discussion

The Antarctic is a region of interest due to the baffling behaviour of sea ice cover in
recent years (e.g. Hobbs et al., 2016; Eayrs et al., 2019; Turner et al., 2022). The historical
representation of the Antarctic sea ice cover in the coupled climate models is important for
the plausible simulation of fluxes at the interface between the ocean and the atmosphere,
which influences climate dynamics. The reasonable simulation of Antarctic sea ice is also
critical for the model’s response to radiative forcing and accurate predictions of future
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conditions in the Southern Ocean which plays a major role in storing anthropogenic heat
and carbon (Tjiputra et al., 2010). Thus, it is important to systematically evaluate
simulated Antarctic sea ice in order to better understand mean state bias with respect to
historical observations. The simulation of the mean state and time evolution of sea ice
in coupled climate models is particularly challenging due to the complex nature of the
Southern Ocean. The realism of simulated sea ice cover is highly sensitive to biases in
individual model components. Errors in sea ice representation can be attributed to errors
in thermohaline structure, surface winds, water mass properties, and radiative forcing.
On the other hand, the atmosphere and ocean features are largely impacted by sea ice
representation. To demonstrate the effects of sea ice on the upper ocean we show Figure
4.11 which represents how the models are different on salinity anomalies originating from
sea ice in the eastern part of the Weddell Sea. It is clear that many models overestimate
the northward propagation of salinity anomalies which has an effect on the upper ocean
structure of the mid-latitudes. The errors in freshwater input and in brine release during
sea ice melt and sea ice formation translate into biases in the upper ocean conditions and
water mass formation in the model simulations.

In this study, we find that three models appear to be performing best in the mean
state representation of sea ice characteristics (EC-Earth3P, HadGEM3 MM and HM, both
configurations of CMCC-CM2). Given that the large-scale circulation controls dynamic
and thermodynamic processes in the Antarctic (Purich et al., 2016), we first investigated
the model performance in the jet stream representation. All models but one exhibit
equatorward bias in the jet stream position. The CMCC-CM2 configurations show a
strengthened westerly jet with poleward bias. This distinctive representation of zonal

Figure 4.11: Zonally averaged (from 20∘W to 20∘E) surface salinity anomalies plotted as
a function of time for all models and GREP, averaged over 1979-2014. The green line
defines the location of the ice edge.
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wind in CMCC-CM2 model might contribute to plausible SIA simulation: strong zonal
wind drives strengthened Ekman transport and upwelled at high latitudes cold waters
propagate equatorward which results in higher SIA in summer when almost all models lack
sea ice. In addition, from the ocean side, weak coastal currents in CMCC-CM2 promote
sea ice to sustain in summer over the great part of the Weddell Sea by not pushing the ice
floes towards the Antarctic Peninsula. Coupled ocean-atmosphere dynamics contributes
to the increased summer sea ice cover in CMCC-CM2 model. In winter, the strong zonal
wind might also be beneficial for SIA simulation since intensified Antarctic Circumpolar
Current driven by jet stream hamper sea ice expansion. However, other models with a
fairly good mean sea ice state have similar jet stream characteristics as the models with
poor sea ice representation. This suggests that the reasonable sea ice mean state in model
simulations can be a result of compensating biases (Holmes et al., 2019).

We find that only one model configuration is able to capture a positive SIA trend
over the satellite era (CMCC-CM2 VHR) while other models simulate a decline in sea
ice cover. We also find that the models with stronger upper-ocean warming have more
negative trends in SIA while CMCC-CM2 VHR has close to zero SST trend. We test a
hypothesis that changes in the jet stream drive SST trend and thus affect the realism of
SIA trends in the model simulations. We show that a major part of the models produces a
strengthening of the jet stream over the years 1979-2014. On the long-term scale, stronger
zonal wind leads to increased upwelling of Circumpolar Deep Water and consequently to
sea ice loss (Newsom et al., 2016). Our results do not provide evidence of SST response
to changes in the jet stream characteristics. However, for some models, the strengthened
jet might affect SST and contribute to the inability of the models to produce positive
trends in SIA over the historical period. On the other hand, the equatorward shift in the
jet stream, vice versa, might be caused by sea ice loss (Screen et al., 2022). We suggest
that other reasons can be responsible for disagreement on historical trends in SIA between
observations and models, including high climate sensitivity (Zelinka et al., 2020), internal
climate variability (Polvani and Smith, 2013), and model biases (Schroeter et al., 2017;
Schroeter and Sandery, 2022; Roach et al., 2018, 2020; Sun and Eisenman, 2021).

This study investigates the added value of increased model horizontal resolution in
the representation of Antarctic sea ice using historical simulations of six coupled climate
models participating in HighResMIP. Our results do not show the systematic effect of the
increased ocean/atmosphere resolution on the realism of simulated Antarctic sea ice cover
over the satellite era. The representation of the mean state and long-term variability of
Antarctic SIA and SIV is rather model-dependent. However, there is evidence of a weak
positive effect of increased ocean resolution from 1∘ to 0.25∘ such as reduced bias in winter
SIA and less negative trends in annual mean SIA and SIV. This reflects a major role
of ocean resolution affecting simulated sea ice, which is also confirmed by other studies
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focused on the Arctic sea ice (e.g. Grist et al., 2018; Roberts et al., 2018; Docquier et al.,
2019). A great constraint for high-resolution global simulations is the requirement of
large computer resources. Our study suggests that a few minor improvements in sea ice
representation with enhanced horizontal resolution are not worth the major effort of costly
computations. We assume that the focus of the modelling community should evolve firstly
towards the improvement of the sea ice model physics and parameterizations. However,
it can be the case that eddy-permitting configurations (0.25∘) might be still not sufficient
for the improvement of the Southern Ocean dynamics since the baroclinic Rossby radius
in the high latitudes is on the order of kilometers. Rackow et al., 2022 showed that model
simulation with a nested eddy-rich grid over ACC improves the representation of the
Southern Ocean circulation and leads to more realistic historical sea ice trends. It is likely
that performing simulations with variable horizontal resolution might offer a trade-off
solution between computation cost and better representation of the ocean.

4.3.6 Summary and conclusions

In this study, we evaluate Antarctic sea ice simulated by coupled climate models
that follow the protocol of the High Resolution Model Intercomparison Project (High-
ResMIP). We compare the historical simulations of six different coupled climate models
(ECMWF-IFS, EC-Earth3P, CNRM, HadGEM3, CMCC-CM2, MPI-ESM) with satel-
lite observations and reanalyses over 1979-2014. All models can adequately reproduce
asymmetric seasonal cycle in SIA with slow sea ice growth and rapid sea ice retreat and
properly capture the annual minimum of February and maximum of September. However,
the models produce a wide inter-model spread in SIA, particularly in winter. Most mod-
els underestimate SIA in February as a result of the too warm ocean except HadGEM3
and CMCC-CM2 which instead overestimate summer SIA. The climatology of SIV in the
model simulations shows less agreement with reference products compared to SIA: most
of the models delay the timing of the seasonal maximum and generally have less SIV than
reanalyses. The models which include sea ice model CICE (HadGEM3 and CMCC-CM2)
grow too thick ice in the Weddell and the Ross Seas and retain more sea ice in the melt-
ing season which leads to high bias in SIV. All but one model cannot simulate overall
SIA and SIV expansion over the satellite era and produce decreasing trends in response
to the warming. We show a strong relationship between SIA and SST and with larger
warming of the surface ocean the models have a stronger sea ice loss. Only CMCC-CM2
VHR simulates a weak positive trend throughout 1979-2014 which is also consistent with
a little negative trend in SST. We also find the equatorward bias of the jet stream po-
sition in the mean state of most of the models with poleward shift and increases in its
strength over the satellite era. Only CMCC-CM2 model configurations are in agreement
with atmospheric reanalyses and exhibit poleward bias of the jet stream with close to zero
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changes in its position and strength from 1979 to 2014. The model skill in the westerly
jet stream representation varies with the ocean basins with the most accurate perfor-
mance over the Atlantic sector and the largest equatorward shift in the Indian Ocean.
We conclude that increased horizontal resolution does not improve the representation of
Antarctic sea ice for most of the models: it rather depends on the model and examined
variable. Our results do not provide evidence that the large-scale atmospheric circulation
could explain the relatively good representation of the Antarctic sea ice mean state in a
few models. We suggest that the realism of sea ice simulation rather depends on the inter-
play of ocean and atmosphere components in the coupled system. The detailed evaluation
of ocean-atmosphere coupling in HighResMIP models we leave for further analysis.

89



Chapter 5
The past and future of the Arctic sea ice in HighResMIP
climate models

Abstract

We examine the past and projected changes in Arctic sea ice properties in 6 cli-
mate models participating in the High Resolution Model Intercomparison Project (High-
ResMIP) in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Within High-
ResMIP each of the experiments is run using a reference resolution configuration (consis-
tent with typical CMIP6 runs) and higher resolution configurations. The role of horizon-
tal grid resolution in both the atmosphere and ocean model components in reproducing
past and future changes in the Arctic sea ice cover is analysed. Model outputs from
the coupled historical (hist-1950) and future (highres-future) runs are used to describe
the multi-model, multi-resolution representation of the Arctic sea ice and to evaluate the
systematic differences (if any) that resolution enhancement causes. Our results indicate
that there is not a strong relationship between the representation of sea ice cover and the
ocean/atmosphere grid: the impact of horizontal resolution depends rather on the exam-
ined sea ice characteristic and the model used. However, the refinement of the ocean grid
has a more prominent effect compared to the atmosphere: eddy-permitting ocean config-
urations provide more realistic representations of sea ice area and sea ice edge. All models
project substantial sea ice shrinking: the Arctic loses nearly 95% of sea ice volume from
1950 to 2050. The model selection based on historical performance potentially improves
the accuracy of the model projections and predicts the Arctic to turn ice-free as early as
in 2047. Along with the overall sea ice loss, changes in the spatial structure of the total
sea ice and its partition in ice classes are noticed: the marginal ice zone (MIZ) dominates
the ice cover by 2050 suggesting a shift to a new sea ice regime much closer to the current
Antarctic sea ice conditions. The MIZ-dominated Arctic might drive developments and
modifications of model physics and parameterizations in the new generation of GCMs.

5.1 Introduction

Sea ice is the key feature of high-latitude climate through its role in the surface
energy budget, ocean and atmosphere dynamics, and marine ecosystems. Over the recent
decades, the Arctic has witnessed unprecedented sea ice loss, which is a key indicator
of global climate change (e.g. Onarheim et al., 2018; Serreze and Meier, 2019), driven
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both by anthropogenic activities and internal climate variability (e.g. Notz and Stroeve,
2016). Arctic sea ice has declined in every month of the year with the strongest trends in
September, a sea ice extent (SIE) reduction of 79000 km2yr−1 in the period 1979-2022, and
in March, with -39200 km2yr−1 over 1979-2022 (http://nsidc.org/arcticseaicenews/2022/).
The overall decrease in SIE reveals large seasonal and regional variability. Although winter
sea ice loss is dominated by the reduction in the Barents Sea (Árthun et al., 2021), the
most pronounced summer sea ice decrease occurs in the East Siberian Sea (that explains
more than 20% of the September trend, (Watts et al., 2021) and in the Beaufort, Chukchi,
Laptev and Kara seas (Onarheim et al., 2018). Along with a severe reduction in sea ice
coverage, Arctic sea ice has also thinned, with a ∼70% reduction in summer sea ice
volume (SIV) over 1979-2021 (https://nsidc.org/). As a consequence, the Arctic ice is
getting younger: the portion of the multi-year ice, which previously was the iconic feature
of the Arctic, has decreased from ∼30% in 1985 (beginning of the satellite era) to ∼4.4%
in 2020 in winter months (Perovich et al., 2020). The Arctic transition toward a first-
year ice regime might substantially alter the interactions in the ocean-atmosphere-ice
system (Aksenov et al., 2017). The changes in total SIE and sea ice thickness (SIT)
cause redistribution of the sea ice classes, in particular the marginal ice zone (MIZ) is
strongly affected (Rolph et al., 2020). The Arctic MIZ has held interest as the fundamental
region supporting many physical, biological and biogeochemical processes (Tápias et al.,
2021). The MIZ is traditionally defined as the region where polar air, ice, and water
masses interact with the ocean temperature and subpolar climate system (Wadhams and
Deacon, 1981). It corresponds to the portion of the ice-covered ocean often characterised
by highly variable ice conditions, where surface gravity waves significantly impact the
dynamics of sea ice (e.g. Dumont et al., 2011). Due to the large uncertainties in observed
and forecasted waves within sea ice, the MIZ is still operationally defined through a
sea ice concentration (SIC) thresholds, as the transition zone between open water and
consolidated pack ice, where the total area of ocean is covered by 15-80% of sea ice (e.g.
Strong et al., 2017; Paul et al., 2021; Rolph et al., 2020). While there are no significant
changes in the area of the Arctic MIZ during the satellite era (Rolph et al., 2020), the
marginal ice zone fraction (MIZF) defined as the percentage of total sea ice area (SIA)
covered by MIZ (Horvat, 2021) increases by more than 50% in August and September
as the total SIA drastically decreases (Rolph et al., 2020; Horvat, 2021). Since the MIZ
differs from the pack ice in higher sensitivity to the dynamic and thermodynamic forces,
the growing MIZF changes the Arctic response to warming, which may worsen the pace
of sea ice melt and pose repercussions for local and global climate.

Assuming that the Arctic Ocean will continue to lose sea ice, a relevant question is
how fast the Arctic will turn ice-free in summer. Coupled climate models can be used in
the prediction and projection of the climate system, including the sea ice conditions. In
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the majority of simulations from CMIP6 (Eyring et al., 2016), the Arctic Ocean becomes
practically sea ice free (SIA < 1 million 𝑘𝑚2) in September for the first time before 2050 in
all scenarios (Notz and Community, 2020) or even by 2035 when selecting only the models
that best represent the present Arctic sea ice state and northward ocean heat transport
(Docquier and Koenigk, 2021). Besides, the accurate simulation of past and present Arctic
sea ice is still challenging. Although the CMIP6 multi-model ensemble mean is closer to
the observed sensitivity of Arctic sea ice to global warming (Notz and Community, 2020;
Shu et al., 2020), there is little difference in overall model performance among CMIP3,
CMIP5 and CMIP6. CMIP6 models still simulate a wide spread of mean sea ice area and
volume in March and September (Davy and Outten, 2020; Notz and Community, 2020;
Watts et al., 2021). Among the model developments and improvements needed to produce
more accurate future projections, the increase in horizontal spatial resolution is recognized
to be a key step to enhance the representation of the complex processes at high latitudes
and to obtain trustworthy projections of ice variability. In order to address the impact
of the model grid resolution on the simulated oceanic and atmospheric phenomena, the
High Resolution Model Intercomparison Project (HighResMIP; Haarsma et al., 2016) was
designed within the EU Horizon 2020 PRIMAVERA project (PRocess-based climate sIM-
ulation: AdVances in high-resolution modelling and European climate Risk Assessment,
https://www.primavera-h2020.eu/). HighResMIP is one of the CMIP6-endorsed model
intercomparison projects, which provides a useful framework to investigate the role of the
enhanced horizontal resolution in representing the features of the climate system. A num-
ber of climate modelling groups contributed to the project providing the same simulations
in at least two different configurations. The impact of the increased resolution within the
HighResMIP is examined in many studies with regard to atmosphere, sea ice, and ocean
components of the climate systems Fuentes-Franco and Koenigk, 2019; Docquier et al.,
2019; Bador et al., 2020; Roberts et al., 2020; Jackson et al., 2020; Lohmann et al., 2021;
Meccia et al., 2021). Despite the fact that high-resolution models can resolve specific
dynamical features, the role of the enhanced horizontal resolution is not uniform across
ocean regions and models. Grist et al. (2018) demonstrated that refining the ocean grid to
eddy-permitting resolution raises the Atlantic meridional heat transport and improves the
agreement with observational estimates - they also show the significantly smaller impact
of atmosphere resolution on the strength of the heat transport. Docquier et al. (2019)
confirmed this finding and showed that a better representation of Atlantic surface charac-
teristics, velocity fields, and sea surface temperature (in addition to transports toward the
Arctic) improves the representation of the Arctic SIA and SIV. Nevertheless, the role of
ocean resolution in the representation of ocean heat transport (OHT) and SIA is less clear
when considering the regional effect on specific Arctic sectors, as shown for the Barents
Sea in Docquier et al. (2020). Here, we focus on the impact of horizontal resolution on
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the Arctic sea ice properties in the past and future at hemispheric and regional scales
using the model outputs from coupled historical (hist-1950) and future (highres-future)
runs from HighResMIP. We assess seasonal and interannual variability and trends in the
SIA and SIV, and examine when the Arctic will see its first ice-free summer. We aim to
explore the role of enhanced ocean/atmosphere horizontal resolution in the representation
of past and current sea ice and to provide some insight into whether the grid refinement
improves the model performance in predicting future Arctic sea ice conditions.

5.2 Data

In this study, we analyse the outputs from the six coupled climate models par-
ticipating in the HighResMIP. We use coupled runs with historical forcing (hist-1950)
covering the period 1950-2014 and future projections (highres-future) from 2015 to 2050
based on the Fossil-fueled development SSP5 scenario. For the past sea ice properties,
we mainly focus on the time period from 1979 to compare model results with available
satellite records. For the ocean, five models use the Nucleus for European Modelling
of the Ocean framework (NEMO, Madec et al., 2016), yet different versions, whereas
MPI-ESM is based on the Max Planck Institute Ocean Model (MPIOM, Jungclaus et al.,
2013). The basic characteristics of the models are given in Table 5.1. Because each of
the models uses at least two different resolutions, we evaluate 14 configurations in total.
CMCC-CM2 and MPI-ESM use one ocean (eddy-permitting) resolution with two different
atmospheric grids. ECMWF-IFS and EC-Earth3P run two of three configurations with
an eddy-permitting ocean and different atmosphere resolutions. In other models, ocean
and atmosphere resolutions vary in concert among configurations. Note that ECMWF-
IFS and HadGEM3 provide several ensemble members, however we use only the first
ensemble member in this study; ECMWF-IFS is not considered in the analysis of future
projections since it does not provide the outputs from highres-future experiments.

The simulated SIA is validated against satellite observations. We use monthly SIC
from two satellite-based products: the NOAA/NSIDC Climate Data Record (version 4,
Meier et al., 2021, hereafter CDR) and EUMETSAT OSISAF Climate Data Record and
Interim Climate Data Record (release 2, products OSI-450 and OSI-430-b, Lavergne et al.,
2019) both for the period 1979-2021. CDR uses gridded brightness temperatures in low
frequencies from the Nimbus-7 SMMR (18, 37 GHz) and the DMSP series of SSM/I and
SSMIS passive microwave radiometers (19.4, 22.2, 37 GHz). Different ratios of frequencies
are used to filter weather effects. The output data are distributed on a 25 km x 25 km polar
stereographic grid. CDR algorithm blends the NASA Team (NT; Cavalieri et al., 1984)
and the Bootstrap (BT; Comiso, 1986) by selecting the higher concentration value for each
grid cell, so taking advantage of the strengths of each algorithm to produce concentration
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Table 5.1: The model configurations used in the study.

Model configuration nominal
ocean res. (∘)

nominal
atm. res. (km)

model components
ocean-sea ice atmosphere

CMCC-CM2
(Cherchi et al., 2019)

HR 0.25 100 NEMO3.6
+CICE4.0 CAM4VHR 0.25 25

CNRM-CM6-1
(Voldoire et al., 2019)

LR 1 250 NEMO3.6
+GELATO6 ARPEGE6.3HR 0.25 100

ECMWF-IFS
(Roberts et al., 2018)

LR 1 50 NEMO3.4
+LIM2 IFS cycle43r1MR 0.25 50

HR 0.25 25
EC-Earth3P
(Haarsma et al., 2020)

LR 1 100 NEMO3.6
+LIM3 IFS cycle36r1HR 0.25 50

HadGEM3
(Williams et al., 2018)

LM 1 250 NEMO3.6
+CICE5.1 UMMM 0.25 100

HM 0.25 50
MPI-ESM
(Müller et al., 2018)

HR 0.4 100 MPIOM1.6.3 ECHAM6.3XR 0.4 50

fields that are more accurate than those from either algorithm alone (Meier et al., 2014).
OSISAF comprises two SIC products based on passive microwave sensors: OSI-450 (from
1979 to 2015) and OSI-430-b, extension from 2016 onwards. OSI-450 uses data from the
SMMR 1979-1987), SSM/I (1987-2008), SSMIS (2006-2015) instruments (19.35 and 37
GHz frequencies) together with Era Interim reanalysis (?), while OSI-430-b is based on
SSMIS and operational analysis and forecast from ECMWF. We use estimates of SIT
and SIV from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS;
Zhang and Rothrock, 2003) that comprises the global Parallel Ocean and sea Ice Model
(POIM) coupled to eight-category thickness and enthalpy distribution sea ice model and
a data assimilation of SST (from NCEP/NCAR reanalysis, Kalnay et al., 1996) and SIC
(from the NSIDC near-real time product; Brodzik and Stewart, 2016). PIOMAS proved
its credibility against in-situ measurements (Stroeve et al., 2014; Wang et al., 2016) and
therefore it is widely used in numerous intercomparison studies as the observational proxy
(e.g. Labe et al., 2018). Note that PIOMAS tends to underestimate the thick ice North
to Greenland and the Canadian Arctic Archipelago and underestimate SIT in the areas
of thin ice (Stroeve et al., 2014; Wang et al., 2016). Monthly fields of SIC and effective
SIT from 1979 to 2021 are used in this work. We describe sea ice coverage in terms of SIA
(the integral sum of the product of ocean grid-cell areas and the corresponding sea ice
concentration), instead of SIE (the integral sum of the areas of all grid cells with at least
15% of SIC). To compute SIV, the equivalent SIT (the sea ice volume per grid-cell area)
is multiplied by the individual grid-cell area, and then summed over the Arctic region. To
derive integrative metrics, only the grid cells with at least 15% SIC are considered owing
to the high uncertainty in passive microwave retrievals in low sea ice conditions. Apart
from model evaluation at the hemispheric scale, we provide a regional analysis of sea ice
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variability in six subregions of the Arctic Ocean as defined in Figure 5.1.

Figure 5.1: Map of sub-regions used in the regional analysis: Central Arctic Basin (CA),
Barents and Kara Seas (B-K), Laptev Sea (LV), East Siberian Sea (ESS), Beaufort and
Chukchi Seas (B-C), Canadian Arctic Archipelago and Greenland coast (GD).

5.3 Results

5.3.1 Mean state

First, we assess the spatial patterns of simulated ice properties against observational-
based estimates over the historical period restricted from 1979 to 2014. Figure 5.2 shows
the climatological mean distribution of SIT in March and September for model outputs
and PIOMAS. The mean position of 15% and 80% SIC edges is also shown from each
model and CDR (over PIOMAS). In general, most models struggle to reasonably simu-
late the spatial pattern of SIT and produce either thicker (ECMWF-IFS, EC-Earth3P,
CMCC-CM2 VHR4) or thinner (CNRM-CM6, MPI-ESM) ice over a vast area compared
to PIOMAS. Some models are able to correctly locate the thickest ice north of Green-
land and the Canadian Arctic Archipelago and the thinner ice in the Siberian Shelf Seas
(HadGEM3, CMCC-CM2 HR4), but the simulated ice can thicken up to 7 m. EC-
Earth3P HR and ECMWF-IFS MR, despite capturing the overall SIT pattern, simulate
high thickness also in the East Siberian and Chukchi Seas, which is clearly visible in
March. This might be related to unrealistic sea ice drift. As in PIOMAS, most models
reproduce changes in the SIT between March and September with a more pronounced
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seasonal retreat in the Siberian sector. There is no direct effect of horizontal resolution
on the spatial distribution of SIT. Increasing ocean resolution, the mean SIT decreases
for ECMWF-IFS, does not change significantly for HadGEM3 and CNRM-CM6, and in-
creases for EC-Earth3P. The role of atmosphere resolution also depends on the model: for
example, the finer atmosphere resolution MPI-ESM reproduces on average slightly thinner
ice compared to LR configuration, while the finer CMCC-CM2 simulates thicker ice over
a larger area. Biases in the representation of SIT pattern can be related to poor represen-
tation in surface pressure and large-scale atmospheric patterns (Kwok and Untersteiner,
2011; Stroeve et al., 2014), sea ice motion and ocean forcing (Watts et al., 2021).

Most models tend to realistically simulate the position of the sea ice edge both in
March and September. Configurations with finer ocean resolution have a better fit to
CDR in the location of the 15% SIC ice edges. The LR configurations of ECMWF-IFS
and HadGEM3 tend to overestimate the sea ice cover far south in the North Atlantic
and the North Pacific Oceans compared to CDR. The bias can be explained by the poor
representation of the ocean advection. In fact, Docquier et al. (2019) showed that the
northward OHT is improved when ocean resolution increases from 1∘ to 0.25∘, both across
the Bering Strait (83 km wide) and through the Nordic Seas establishing the Atlantic
warm inflow into the Arctic Ocean. Similarly as for SIT, the effect of the atmospheric
grid resolution on the sea ice extent is model dependent. When it is enhanced, there are no
notable changes in the location of the March ice edge in the ECMWF-IFS and HadGEM3
models, while it is largely overestimated in CMCC-CM2 and MPI-ESM, particularly in the
Nordic Seas. Specifically, CMCC-CM2 HR4 underestimates March sea ice coverage in the
northern Barents Sea, the Bering Sea, and the Sea of Okhotsk, whereas the VHR4 version
(with finer atmospheric grid) reproduces a reasonable amount of winter ice in marginal
seas. In September, higher atmosphere resolution leads to a larger SIA in ECMWF-
IFS and CMCC-CM2, conversely, it has an opposite effect in HadGEM3 and MPI-ESM
models. In Addition, MPI-ESM XR does significantly melt sea ice in the Siberian seas
which are almost ice-free in summer. The width of the MIZ (marked in Figure 5.2 by the
area capped between 15% and 80% SIC contours) also varies among different models. In
many of them, March MIZ similarly surrounds the inner ice pack, comparing well with
CDR. In September, most models fairly simulate an extension of MIZ comparable to the
observed one. Exceptions are MPI-ESM runs that lose all consolidated pack ice in summer
and ECMWF LR that tends to overestimate the total and pack ice, with a small portion
covered by marginal ice in the Barents Sea and Nordic Seas.

5.3.2 Seasonal variability

Figure 5.3 shows the mean seasonal cycle of the total Arctic SIA and SIV, computed
over the 1979-2014 period. Satellite estimates from both OSISAF and CDR are included
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Figure 5.2: The 1979-2014 climatological mean sea-ice thickness from the model outputs
and PIOMAS in March (a) and September (b). White contours show the edges of 15%
(solid) and 80% (dashed) sea-ice concentration from each model. SIC from NSIDC CDR
is used for PIOMAS.
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to validate the models’ outputs. The CDR Arctic ice area expands to its maximum in
March, with coverage of nearly 14x106 km2, and returns to its minimum in September at
around 6x106 km2. Similar seasonality is displayed by the OSISAF dataset, which has
just a slightly smaller SIA in all months. As in CMIP5 and CMIP6 low-resolution models
(Shu et al., 2020; Notz and Community, 2020), most HighResMIP models adequately
reproduce the mean seasonal cycle of SIA with the melt season starting in March, and
lasting until September where a minimum is reached (Figure 5.3a).

(a) (b)

Figure 5.3: The 1979-2014 seasonal cycle in SIA (a) and SIV (b) from HighResMIP hist-
1950 model outputs.

There is a considerable spread among models, it is relatively larger in winter than in
summer. March SIA ranges from 12 to 20x106 km2, while September values in all but one
model lie in the range between 3 and 7.5x106 km2. The ECMWF-ISF LR overestimates
the Arctic SIA all year round, but it can properly represent the amplitude of SIA sea-
sonal variability and hence correctly reproduces the ice advance and retreat phases. The
comparison between the model configurations indicates that finer resolution generally re-
sults in simulated SIA closer to satellite products. The effect of the changing atmosphere
resolution varies among models, though. For instance, the CMCC-CM2 HR constantly
stays in the lower bound of the model ensemble and reproduces a weaker amplitude of
the seasonal cycle compared to observations; applying the atmospheric grid refinement
(CMCC-CM2 VHR4 configuration) favourably increases sea ice coverage and does not
significantly change the seasonal cycle amplitude. A different impact is for the MPI-ESM
model, for which the finer atmospheric grid improves the winter SIA but increases the
spring/summer melting and underestimates the September minimum by ∼50% compared
to observations. In general, in other HighResMIP runs, the atmosphere grid refinement
gives smaller changes to Arctic sea ice coverage compared to the ocean resolution enhance-
ment. In the ECMWF-IFS, the LR shows a constant SIA overestimation, that is largely
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resolved in the model configuration with an eddy-permitting ocean (HR) whose Arctic SIA
is in good agreement with observations, particularly in summer. As for the CMCC-CM2
model, a further refinement in the atmosphere resolution increases the SIA in the whole
year with the best agreement with observations from October to July. The HadGEM3
runs are relatively close to observations in summer but they tend to overestimate the sea
ice growth - the impact of increased ocean and atmosphere resolution is evident for this
model with a strong reduction of winter sea ice of ∼25% from LL to HM and a smaller but
still remarkable contraction in summer. Here, the increase in the atmosphere resolution
further reduces SIA in contrast to previous models. Finally, EC-Earth3P and CNRM-
CM6 models show negligible differences between model configurations, despite ocean and
atmosphere grid resolution.

In our reference PIOMAS product, the Arctic SIV ranges from ∼25x103 km3 at
its peak in April, to ∼10x103 km3 at its minimum in August/September (Figure 3b).
All models capture the timing of the SIV maximum in April/May and the minimum in
August/September with a realistic seasonal cycle amplitude that ranges between 15 and
20x103 km3. However, there is a large spread among different models, with most models
overestimating PIOMAS - ECMWF-ISF LR is a clear “outlier” exceeding 70x103 km3 in
April and 50x103 km3 in September. Although in some models the bias in SIA is seasonally
dependent with larger errors in winter, bias in simulated SIV is consistent throughout the
year in all models. In general, the large SIV is mainly due to poorly simulated SIT
rather than incorrect sea ice cover (Figure 5.2, 5.3a). Only in ECMWF-IFS LR, the
combination of large ice expansion and extremely thick ice leads to unrealistically high
SIV. The SIV overestimation in the CMCC-CM2 and EC-Earth3P models is caused by
too thick sea ice, even though their SIA is well compared well with observations. Only
one model (both configurations of CNRM-CM6) has thin ice and hence low bias in SIV
compared to PIOMAS, all year round. The changes in resolution have no visible impact
in the CNRM-CM6 runs. The increase of only ocean resolution largely improves the
representation of SIV (as for SIA) in ECMWF-IFS with a large volume reduction, but
does not affect the volume seasonality in HadGEM3. Finer atmosphere resolution or
the combined resolution increase in both model components tends to increase the ice
volume except in HadGEM3 and MPI-ESM. MPI-ESM has a good fit to PIOMAS for
SIV although this model underestimates SIA and cannot simulate consolidated pack ice
(SIC > 80%, Figure 5.2).

In addition to the total SIA, we show the seasonal variability of the area covered by
marginal ice, over the same 1979-2014 period (Figure 5.4a). First, it is worth noting the
evaluation of the simulated MIZ area is highly dependent on the reference product used.
The difference between CDR and OSISAF in the estimates of MIZ area. This can be
mainly ascribed to the treatment of the wet surface (e.g. melt ponds, snow wetness) that
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poses difficulty to retrieve the SIC using passive microwave radiometers (Ivanova et al.,
2015). OSISAF has a small portion of MIZ in winter, while it overestimates CDR from
May to November. The maximum difference between the two products is up to nearly
1.1x6 km2 in July. The observed MIZ seasonal variability contrasts with the one shown by
total ice area: the MIZ expands in spring, when the consolidated pack ice starts to melt,
which leads to the MIZ area peak occurring in summer. After reaching its maximum in
July, the marginal ice starts to melt and its area decreases until September, simultaneously
with the total and consolidated pack ice cover. Before the next year’s melt season, the
MIZ stays relatively stable but with a secondary peak in October. Models are overall
able to simulate the seasonal cycle, reasonably capturing the phases of the MIZ expansion
and retreat. However, they tend to overestimate the MIZ in winter, but most of them
are within the observational uncertainty lying between the OSISAF and CDR summer
estimates. However, models struggle to properly simulate the timing and magnitude of
the MIZ maximum ECMWF-IFS LR is higher than observations from November to May
due to a large overestimation of the total ice area, but it lies between CDR and OSISAF
in the rest of the year. The ECMWF-IFS finer resolution configurations are in much
better agreement with observed values. In the HadGEM3 LL, the marginal ice expansion
starts earlier, with a large bias of the MIZ area from March to June. The resolution has no
visible impact for the rest of the year. The impact of changes in the ocean and atmosphere
resolution is small for other models. Both MPI-ESM configurations fail to reproduce the
MIZ seasonal cycle, from June to November. This is confirmed in Figure 5.2, which reflects
SIC underestimation within the consolidated pack ice, resulting in the MIZ predominance
in the MPI-ESM runs.

(a) (b)

Figure 5.4: The 1979-2014 seasonal cycle in the MIZ area (a) and MIZF (b) from High-
ResMIP hist-1950 model outputs.
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We also show the seasonal cycle of the MIZ area fraction (MIZF) from 1979 to
2014, calculated from the model and satellite products outputs (Figure 5.4b). The MIZF
is defined as the percentage of the ice cover that is MIZ (Horvat, 2021), and it reflects
the relative changes of the MIZ, which are more obvious since the total ice experiences
substantial seasonal variability. The observed MIZF ranges from 5-10% in winter to
20-40% at its maximum between June/July. The simulated MIZF maxima are delayed
compared to satellite estimates and to the MIZ area by about one month, when the
total ice area approaches the September minimum but the MIZ area is still large. It
is notable that the HighResMIP models are in better agreement when considering the
MIZF rather than the MIZ area since the MIZ area in model simulations depends on the
representation of total ice area. Excluding the MPI-ESM configurations, all models are in
general agreement from November to May; the model spread enlarges in spring/summer
but the models lie anyway within the observation envelope. The use of the MIZF metric
highlights the peculiar representation of Arctic sea ice in the MPI-ESM: up to 95% of sea
ice in the model consists of marginal ice.

5.3.3 Seasonal variability in the sub-regions

Since sea ice changes in the Arctic region are not uniform in space and time as a
result of local climate effects (e.g. Parkinson et al., 1999; Meier et al., 2007; Peng and
Meier, 2017), it is important to monitor the sea ice change also on regional scales to better
understand the Arctic vulnerability. We analyse the seasonal variability of SIA and SIV
in six sub-regions and compare them to the reference products (Figure 5.5).

Satellite estimates of SIA are not shown in the Central Arctic sector (CA) due to
the observation gap near the North Pole. In this region, all models simulate a pronounced
seasonal cycle in SIA with a wide area between December and April, and a minimum
in August. While most models agree in winter when the region is fully covered by sea
ice, the inter-model spread increases in summer. HadGEM3 and CMCC-CM2 simulate
similar seasonal cycle in all configurations with slightly lower values in HadGEM3 HM.
The ECMWF-IFS LR is an outlier also in this region, with a large SIA all year round and
a minimum in August that is as large as the autumn/winter values in other models. Also
EC-Earth3P LR has large SIA from November to May comparable to ECMWF-IFS LR,
but it overestimates the melting and growing phases with an August minimum comparable
to other models. The CNRM-CM6 model produces the smallest seasonal cycle amplitude
in both resolutions, with a decrease between the winter values and the minimum of ∼10%.
On the contrary, both MPI-ESM configurations present the strongest seasonal cycle, with
the largest area in winter and the smaller in summer. These differences among models
do not clearly depend on the resolution changes. For SIV, PIOMAS shows an increase
of ∼30% between the minimum in August/September and the maximum in May. The
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Figure 5.5: The 1979-2014 seasonal cycle in a) SIA and b) SIV from HighResMIP hist-
1950 model outputs in the Arctic sub-regions.

seasonal cycle magnitude is captured by most models but with a large spread among
them mainly driven by differences in the simulated thickness (Figure 5.2). The models
generally perform similarly in simulating the SIV seasonal cycle in the sub-regions as at
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the hemispheric scale (Figure 5.3b). To avoid repetitions, only the specific features of the
SIV representation at the regional scale will be indicated below.

The Barents-Kara Seas (B-K) is the only sub-region where satellite products present
a pronounced maximum peak that occurs in April (one month later the hemispheric SIA
maximum). Except for CMCC-CM2, the models generally overestimate SIA in winter
and reveal a large spread that is reduced in summer when models are in closer agreement
with satellite estimates. The strong underestimation of SIA in CMCC-CM2 model could
be attributed to the increased poleward Atlantic OHT simulated by this model Docquier
et al. (2020). The warmer ocean temperatures not only promote sea ice melting in winter
but also hinder its growth in autumn. The ocean and atmosphere resolution have generally
the opposite effects on simulated SIA. Increasing only the ocean resolution in ECMWF-
IFS (from LR to MR) and HadGEM3 (from LL to MM) results in lower SIA and a better
fit to the observations. increasing the atmosphere resolution generally leads to larger SIA,
except for a decrease in SIA for HadGEM3. The combined effect of enhanced resolution
in both ocean and atmosphere in CNRM-CM6 and EC-Earth3P models increases the
winter SIA, worsening the comparison with the observations. For SIV, nearly half of
the model ensemble is very close to PIOMAS from January to June which is not the
case for other sectors. The Barents-Kara Seas is the only region where CMCC-CM2 HR
underestimates SIV as a result of too low SIA. In addition, both configurations of CMCC-
CM2 underrepresent seasonal variation of SIV. At the same time, CNRM-CM6 has a
better fit to PIOMAS in the Barents-Kara Sea sector compared to the rest parts of the
Arctic Ocean, owing to improved representation of SIA. Notably, CNRM-CM6 has small
regional differences in the amount of sea ice. The increased ocean resolution has a clear
positive effect on SIV representation for ECMWF-IFS model while other models present
similar values in their different configurations. The enhanced atmosphere resolution leads
to higher SIV for ECMWF-IFS and CMCC-CM2, lower SIV for HadGEM3 and does not
affect SIV in MPI-ESM.

In the Laptev (LV), East Siberian (ESS), and Beaufort-Chukchi Seas (B-C), there
is no notable peak in the observed seasonal variability of SIA but instead, the annual
maximum is extended between December and May since the winter sea ice expansion
is constrained by land. In spring, the downward shortwave radiation increases, causing
the rapid sea ice melt, which ends at the annual minimum in September. Notably, the
disagreement between satellite estimates in summer SIA is higher in all three regions
probably due to melt ponds, which complicate the SIC retrievals from passive microwave
radiometers (Ivanova et al., 2015). In all three regions the models exhibit better agreement
in winter while in summer, the spread across the models is large. This can be associated
with the model differences in simulating the river discharge (Park et al., 2020) as well
as the transport of Pacific waters through the Bering Strait (Watts et al., 2021), which
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modify the thermo-haline structure of the upper-ocean and affect sea ice growth and
melt. In all three regions, ECMWF-IFS LR is well compared with satellite estimates in
winter, which is not the case for other sectors with a greater role of the Atlantic OHT
where the model is biased high. HadGEM3 overestimates SIA, particularly in its lower-
resolution configuration. This behavior is common also for other parts of the Arctic
Ocean which points out that bias in HadGEM3 is similarly distributed across the regions.
MPI-ESM underestimates SIA particularly in summer since the model is struggling to
simulate consolidated pack ice (Figure 5.2). CNRM-CM6, CMCC-CM2 and HR of EC-
Earth3P show a fairly good agreement with satellite estimates in all three regions. Lower
resolution of EC-Earth3P presents an earlier and faster sea ice retreat in the Laptev and
East Siberian Seas resulting in the second-lowest SIA among models while in the Beaufort-
Chukchi Seas the model compares well with OSISAF estimates. Increased ocean resolution
leads to lower SIA for all models except for EC-Earth3P which has higher values in its
HR configuration. The effect of the ocean resolution is stronger in summer however for
HadGEM3 the impact is seen all year round. Enhancement of the atmosphere resolution
does not significantly affect ECMWF-IFS but leads to higher summer SIA in CMCC-CM2,
as in the other regions. For MPI-ESM, the increase in atmosphere resolution has a larger
impact on summer SIA in the Laptev, East Siberian, and Beaufort-Chukchi Seas compared
to other sectors: MPI-ESM XR simulates SIA almost twice lower than other models in
August and September. In the Laptev, East Siberian, and Beaufort-Chukchi Seas, SIV
reaches the maximum in May (April-May in B-C) while the annual minimum occurs in
September. Most models overestimate SIV with the highest bias in the East Siberian
and Beaufort-Chukchi Seas. CMCC-CM2 HR and MPI-ESM HR have a very good fit to
PIOMAS, even though the latter fails to reasonably simulate the SIC (Figure 5.2). The
effect of the ocean resolution on SIV is clearly seen for ECMWF-IFS and EC-Earth3P in
all three regions and for HadGEM3 in the Laptev Sea - the only regions where LL and MM
configurations of HadGEM3 differ. Other models do not have considerable differences in
SIV with changing ocean resolution. Increased atmosphere resolution results in higher
SIV for ECMWF-IFS, EC-Earth3P and CMCC-CM2 and lower SIV for HadGEM3 and
MPI-ESM.

The Greenland region (GD) holds the largest area of sea ice both in winter and
summer (3 and 1.5x106 km2 respectively according to the satellite estimates). Most models
tend to overestimate SIA all year round with the highest bias in winter in ECMWF-IFS LR
and HadGEM3. This is confirmed by the mean March location of the ice edges extended
far south (Figure 5.2). The models are generally capable of melting away the excess of
sea ice by September, so there is more consistency among most models in summer. MPI-
ESM again tends to underestimate SIA and has the strongest low bias in summer. An
increase in the ocean resolution from 1∘ to 0.25∘ improves the representation of SIA in
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ECMWF-IFS and does not give notable changes in HadGEM3 and EC-Earth3P. The effect
of atmosphere resolution again depends on the model. ECMWF-IFS and CMCC-CM2
produce slightly higher SIA in their finer atmosphere configurations, particularly in winter.
Conversely, HadGEM3 has lower SIA in its HM configuration in winter, which fits better to
the observations. For MPI-ESM, there are no differences between different configurations,
as in the Barents-Kara Seas region. For SIV, both configurations of CMCC-CM2 have
a large error in the Greenland region owing to high bias in SIT (Figure 5.2) whilst, in
other sectors, at least one configuration of the model is in good agreement with PIOMAS.
Enhanced ocean resolution leads to lower SIV for ECMWF-IFS and higher SIV for EC-
Earth3P. At the same time, for HadGEM3 and CNRM-CM6, there are no significant
differences between configurations with changing ocean resolution. An increase in the
atmosphere resolution has no effect on SIV in HadGEM3 and MPI-ESM but leads to
higher SIV in CMCC-CM2.

The regional analysis of the seasonal variability reveals that the model performance
and the accuracy of simulated SIA largely depend on the region and season. While
Barents-Kara Seas and Greenland regions contribute mainly to the winter inter-model
spread, the largest summer differences among models are seen in the Laptev, East Siberian
and Beaufort-Chukchi Seas. At the same time there are no considerable differences in the
model’s ability to simulate SIV at regional scale: the biases are generally uniform across
the regions and seasons. We find no strong dependence of sea ice realism in the models at
the regional scale from the horizontal resolution. The impact of the ocean resolution on
the representation of SIA is most pronounced in the Barents-Kara Seas and Greenland sea
ice regions that are strongly influenced by the Atlantic OHT. The effect of the atmosphere
resolution is less clear but there is evidence that the atmosphere resolution has a stronger
impact on SIV rather than on SIA and particularly in the regions of thicker ice.

5.3.4 Interannual variability

Next, we evaluate the long-term variability of the Arctic SIA and SIV from the
hist-1950 simulations from 1979 to 2014. Figure 5.6a illustrates monthly anomalies of
SIA (with respect to 1979-2014 climatologies) simulated by the models and derived from
satellite data sets.

The inter-model spread is relatively similar throughout the period but it slightly
increases from the mid-2000s when the ice reduction has accelerated. The interannual
variability of the simulated SIA is weakly correlated with the CDR estimates (correlation
is lower than 0.2). All models are able to reproduce sea ice shrinking but with varying
intensity: ECMWF-IFS LR, HadGEM3 LL, MPI-ESM HR show larger negative trends
compared to observations (-44x103 km2yr−1 in CDR and -46x103 km2yr−1 in OSISAF)

106



CHAPTER 5. THE PAST AND FUTURE OF THE ARCTIC SEA ICE IN HIGHRESMIP CLIMATE
MODELS

Figure 5.6: Monthly anomalies of SIA (a) and SIV (b) over 1979-2014 from HighResMIP
model outputs and reference products.

while the MR and HR versions of ECMWF-IFS, both configurations of CNRM-CM6, EC-
Earth3P, HadGEM3 HM, CMCC-CM2 HR present weaker negative trends. None of the
models can capture the record lows of 2007 and 2012. An increase in the ocean resolution
generally results in smaller negative trends except for EC-Earth3P which shows a similar
rate of decline in both configurations. The effect of finer atmosphere resolution is different
among models: the SIA decrease is stronger in ECMWF-IFS and CMCC-CM2 and weaker
in HadGEM3 and MPI-ESM.

Figure 5.6b shows monthly anomalies of SIV (with the seasonal cycle removed)
over 1979-2014 in HighResMIP models and PIOMAS. There is a substantial inter-model
spread for SIV compared to SIA, particularly at the beginning and the end of the ob-
served period. The biases from few models are not consistent throughout the years vary-
ing significantly from positive to negative (EC Earth-3P HR, ECMWF MR, HadGEM3
LL). Models are generally in agreement with PIOMAS interannual variability of SIV (the
correlation coefficient for most models is higher than 0.75). The weakest agreement is
found for ECMWF-IFS MR (R=0.28) and CNRM-CM6 (R=0.51 in LR and R=0.61 in
HR). Increasing atmosphere resolution results in a weaker correlation with PIOMAS (for
HadGEM3, the correlation ranges from 0.91 (MM) to 0.82 (HM); for CMCC-CM2, 0.93
(HR) and 0.87 (VHR); for MPI-ESM, 0.9 (HR) and 0.54 (XR)).

PIOMAS simulates sea ice shrinking at the rate of -291 km3yr−1 while the models
disagree on the intensity of SIV decrease. There is no straightforward impact of chang-
ing resolution in ocean and atmosphere on the linear trends in SIV since the impact of
horizontal resolution on SIA and SIT is different and depends on the model. We find
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(b)

Figure 5.7: The 1979-2014 monthly trends in SIA (a) and SIV (b) in the Arctic sub-
regions. Dots indicate non-significant trends.

that configurations with coarse ocean resolution tend to simulate more negative trends
(-424 km3yr−1 in ECMWF LR compared to -105 and -157 km3yr−1 in its finer configu-
rations; for HadGEM3, the trend ranges from -355 km3yr−1 in lower resolution to -257
and -174 km3yr−1 in finer resolution configurations). Here, the exception is EC-Earth3P
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in which the eddy-permitting configuration has a larger negative trend in SIV (-322 and
-460 km3yr−1). In CNRM-CM6, the SIV decrease is very weak for both configurations
(-62 and -36 km3yr−1 for LR and HR, respectively), which might reflect the negative ice
growth-ice thickness feedback: thin ice allows sea ice to grow more rapidly, mitigating
the ice loss. The finer atmosphere resolution has a different impact on the pace of sea ice
retreat in different models: CMCC-CM2 VHR4 and ECMWF-IFS HR simulate slightly
stronger trend compared to their coarser counterparts (-384 and -411 km3yr−1 in CMCC-
CM2; -105 and -158 km3yr−1 in ECMWF-IFS). On the other hand, in MPI-ESM and
HadGEM3, the finer configuration has less negative trend compared to the coarser one
(337 km3yr−1 and -144 km3yr−1 in MPI-ESM; -174 and -257 km3yr−1 in HadGEM3).

We also examine how the models simulate sea ice response to the external forcing on
a seasonal scale. The monthly trends in the Arctic-wide SIA reveal that the models tend
to underestimate the rate of sea ice loss in the melting season and in summer (not shown).
Many models cannot reproduce the pronounced seasonal cycle of the trends but instead
simulate a similar rate of decline in different months of the year. Most models reproduce
more negative trends from November to May and underestimate the magnitude of trends
in other seasons. MPI-ESM HR trends are found to have a closer fit to the observed trends
for the total Arctic although the model is wrong in simulating SIC and sea ice classes.
For SIV, the models vary greatly in the representation of trends. Despite all models are
able to simulate SIV decline in all months, they cannot capture the observed magnitude
of sea ice loss and have values ranging from almost 0 to -450 km3yr−1. They also struggle
to reproduce the seasonal cycle in the trend which in PIOMAS has a slightly stronger
signal in June and a weaker signal in winter months (-320 km3yr−1and -260 km3yr−1

respectively).

Since there is a substantial difference in the models’ performance in reproducing
the seasonal variability on a regional scale, we analyse monthly trends in SIA and SIV in
each sea ice zone over 1979-2014 (Figure 5.7). The magnitude and timing of sea ice loss
strongly depend on season and region. According to observations, the winter decrease
in SIA is most dramatic in the Barents-Kara Seas (nearly -17x103 km2yr−1) while the
summer trends are dominated by the Eastern Siberian Sea and Beaufort, and Chukchi
Seas (almost -25x103 km2yr−1). The Barents-Kara Seas and the Greenland region show a
pattern of SIA trends that differs from the total Arctic and the rest of the regions which
have one pronounced negative peak in September and close to zero trends in winter.
Instead, in the Atlantic sector, sea ice loss is observed all year round with slighly stronger
decreases in July. In the Central Arctic, the models simulate a weak SIA reduction with
the strongest signal in August-September, which is not significant in most models (5%
level). Generally, the models tend to underestimate the pace of sea ice loss indicated by
satellite estimates. The exception is the Barents-Kara Seas and Greenland where some
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models produce more negative trends compared to the observations. In the Laptev, East
Siberian, Beaufort, and Chukchi Seas some of the models do not simulate a reduction
in summer SIA and even have weak positive trends, yet insignificant. Given that these
regions all hold a large MIZF in summer (Figure 5.4), the inability to capture trends
points to inaccurate sensitivity of sea ice to the external forcing, particularly within the
MIZ.

The strongest negative trends in SIV are observed in the areas of thick ice: in the
Beaufort and Chukchi Seas (up to -90 km3yr−1 in September), in the Greenland sector
(-80 km3yr−1 in July), and the East Siberian Sea (-70 km3yr−1 in summer months). The
Barents-Kara Sea contrasts in the seasonality of SIV trends with other sectors where the
highest rate of sea ice decline is observed in September. Notably, in the Laptev, East
Siberian and Beaufort, and Chukchi Seas, SIV experiences a substantial decrease in the
winter months while SIA stays nearly stable reflecting considerable ice thinning which
points to the primary role of the basal melt. In the East Siberian Sea and Beaufort-
Chukchi Seas, almost all models tend to underestimate trends in SIV while in the rest of
the ice zones, PIOMAS is nearly in the middle of inter-model uncertainty. Both CNRM-
CM6 configurations and two finer configurations of ECMWF-IFS deviate from the other
models in the sense that they have close to zero changes in SIA and SIV, which in general
are insignificant. CNRM-CM6 simulates very thin ice so the lack of trend is consistent
with the concept of negative ice thickness-ice growth feedback. ECMWF-IFS MR and HR,
conversely, underestimate sea ice reduction everywhere despite simulating very thick ice.
HadGEM3 performs differently at a regional scale but at least one configuration has a very
good fit to the PIOMAS estimates. Both configurations of CMCC-CM2 present the large
SIV decrease in all sectors except for the Barents-Kara Sea and the rate of decline is similar
between two resolutions despite a significant difference in the mean SIV. HR configuration
of MPI-ESM is in fairly good agreement with PIOMAS in all regions except the Central
Arctic and the Laptev Sea where it tends to produce more negative trends. MPI-ESM XR
underestimates negative SIV trends in all parts of the Arctic Ocean except the Greenland
zone where it is close to its HR configuration. There is no strong link between the strength
of sea ice retreat and the ocean/atmosphere resolution. The relationship rather depends on
the region and the model used. Given that the models generally underestimate SIA trends
and produce less negative trends in their finer ocean configurations, we can conclude that
enhanced ocean resolution does not improve representation of the SIA trends, particularly
in the Laptev, East Siberian and Beaufort and Chukchi Seas in summer. Benefecial
effect of increased ocean resolution for SIA trends is especially evident for ECMWF-
IFS in the Barents-Kara Seas and the Greenland area, where LR configuration tends to
overestimate negative trends. Other models in these regions do not considerably differ
between their configurations and both low and high-resolution configurations show closer
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fit to the observations in different months of the year. The increased atmosphere resolution
also does not improve representation of SIA trends. For HadGEM3, CMCC-CM2 and
MPI-ESM, the finer atmosphere resolution leads to less negative SIA trends compared
to their counterparts at coarse resolution. The relationship between ocean/atmosphere
resolution and SIV trends is less clear and depends on the region and the model.

5.3.5 Future projections

In this section, we assess the performance of HighResMIP models in simulating the
Arctic sea ice future changes using highres-future model outputs from 2015 up to 2050.
All models produce sea ice loss in future runs with generally stronger negative trends com-
pared to historical runs. The model simulations can elucidate when the Arctic will reach
its first ice-free summer, the conditions typically defined as the timing when September
sea ice drops below 106 km2. Reaching ice-free conditions symbolizes the unprecedented
change in the Arctic environment and the tipping-point in the Earth’s climate system.
Considering large inter-model spread in simulating observed mean sea ice state and trends
we assume that the selection of the models which better agree with observations can nar-
row down the spread and decrease uncertainty in the model projections. We select models
based on their historical performance by comparing simulated September SIA and SIV
mean state and trends with those from CDR and PIOMAS, respectively (Figure 5.8). To
exclude the outliers we define the 75th percentile threshold and pick out the models whose
values do not exceed the threshold for both variables. The resulting subset includes four
models: low configuration of EC-Earth3P, HadGEM3 MM and HM, and CMCC-CM2
HR. These models are used in the further analysis of the future sea ice evolution.

Figure 5.9 illustrates the September SIV time series from 1950 to 2050 computed
for the total Arctic and sub-regions. The vertical lines mark first ice-free September in
the multi-model mean with and without model selection (yellow and green, respectively)
and in CDR (black) if it has already happened before 2021 in the given region. Since we
examine the Arctic sea ice changes also at the regional scale, the timing of the ice-free
conditions in the sub-regions refers to the threshold of 25% of the CDR SIA averaged over
the 1980-2010 period in the given region. It is evident that huge sea ice reduction takes
place in all sea ice zones but the pace of sea ice loss varies across the regions owing to
differences in the initial state and dominant processes driving the change. We can note
that applying model selection results in earlier timing of the ice-free conditions in the
sub-regions (Barents-Kara, Laptev, East Siberian, Beaufort-Chukchi Seas). The model
selection also results in reaching ice-free conditions in the total Arctic and all sub-regions
while multi-model mean without model selection does not predict the event everywhere
before 2050. The comparison between the model configurations in simulating the timing
of ice-free conditions shows that there is no clear link between the model resolution and
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Figure 5.8: Normalized difference in mean September SIA against September SIA trend
over 1979-2014 (a). Same for SIV (b). The difference is computed with reference to CDR
(for SIA) and PIOMAS (for SIV). Vertical lines indicate the 75th percentile for a set of
the model outputs excluding ECMWF-IFS.

the pace of sea ice loss (not shown).

The September Arctic-wide sea ice from the multi-model mean (with model selec-
tion) shrinks by 95% from 1950 to 2050. The inter-model spread decreases throughout the
century from 14x103 in 1950 to 1.64x103 km3 in 2050. The Arctic does not reach ice-free
conditions within 2050 in the multi-model mean without model selection, although ap-
plying selection criteria advances the timing of the event up to 2047. The Central Arctic
September sea ice loses 96% of its volume by 2050 in the multi-model ensemble, which
is in good agreement with PIOMAS in the overlapping period. The inter-model spread
again narrows substantially from nearly 2.58x103 km3 in 1950 to 0.23x103 km3 in 2050.
The Arctic ice-free conditions in the Central Arctic are not reached before 2050 in the
multi-model mean when considering all models. However, excluding the outliers results in
approaching the threshold in 2042. In the Barents-Kara Seas, the spread among models
is relatively small compared to the rest of the sectors due to the thin ice, decreasing from
1.46x103 km3 in 1950 to almost 0 in 2050.

The Barents-Kara Seas experience the most dramatic sea ice loss accounting for
almost 100% of SIV from 1950 to 2050 in the ensemble of the models. First ice-free
September in the Barents-Kara Seas is accurately simulated by the multi-model mean with
model selection: the event occurs in 2012. The multi-model mean without model selection
postpones the event by 19 years. The multi-model mean SIV in the Laptev Sea shrinks by
99% during 100 years. The inter-model spread is also relatively small in this region and it
narrows from nearly 0.9x103 km3 at the beginning of the run to 0.05x103 km3 in the end.
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Figure 5.9: Time series of September SIV from 1950 to 2050 using HighResMIP historical
and future runs and PIOMAS for the full Arctic and sub-regions. The multi-model mean
SIV with model selection is shown by dashed line. The vertical line indicates the timing
of ice-free conditions: in the multi-model mean without model selection (green), in the
multi-model mean with model selection (yellow), and in CDR (black). Free-ice conditions
refer to first September SIA to fall below 106 km2 for the total Arctic (25% of the CDR
SIA averaged over 1980-2010 for the sub-regions).
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The timing of first ice-free summer is similar to that in the Barents-Kara Seas: SIA drops
below the threshold in 2012 for CDR and in 2032 for the multi-model mean without model
selection. When applying selection criteria, the timing of the ice-free conditions advances
to 2023. In the East Siberian Sea, September ensemble-mean SIV is reduced by 99%
by the middle of this century. The inter-model spread ranges between 4.76x103 km3 in
1950 and 0.1x103 km3 in 2050. The East Siberian Sea reaches the threshold in SIA earlier
compared to the other regions. CDR produces the event in 2007 when the Arctic broke the
first record low while the multi-model mean with model selection simulates first ice-free
conditions in 2033 (2034 without model selection). The Beaufort-Chukchi Seas lose nearly
96% of SIV in 100 years in the ensemble-mean. The inter-model spread decreases from
3.44x103 km3 at the beginning to 0.37x103 km3 at the end of the run. The multi-model
mean reaches first ice-free September in 2046. When adopting the model selection, the
Beaufort-Chukchi Seas will be ice-free in 2039. The Greenland region is undergoing the
least prominent sea ice loss accounting for 88% throughout the period from 1950 to 2050.
However, there is a great narrowing of the inter-model spread from 6.12x103 km3 in the
middle of the last century to 1.15x103 km3 100 years after. The multi-model mean with
and without model selection projects that Greenland SIA might turn ice-free in 2048.
Considering that the models generally postpone first ice-free September when comparing
to CDR in the sub-regions, we assume that the total Arctic will probably meet its first
ice-free summer earlier than predicted by the multi-model mean.

Along with overall sea ice loss, there are substantial changes in the structure of sea
ice cover. Figure 5.9 displays the time series of September SIA and the MIZF from 1950
to 2050. For SIA, the models are in fairly good agreement with the observations, yet have
systematic biases and underestimate the negative trend. In addition, the inter-model
spread is large but relatively similar throughout the years (�4x106 km2). For the MIZF,
the spread among models increases considerably with time from �10% in 1950 to �75% in
2050. Most models simulate the MIZF growth, which reflects the transition of the sea ice
state to the marginal ice-dominated. The MIZ in the 2040s is projected to account for up
to 80% of the total ice area in September, although the interannual variability at the end
of the run is large in most models. CNRM-CM6 and MPI-ESM are two outliers in the
sense that CNRM-CM6 has a nearly constant MIZ fraction during the whole period while
MPI-ESM has the MIZF with close to 100% values from the beginning of the run, which
however drops to 0 in certain years in the end of the run. This highlights the importance to
examine the variability of the MIZ together with the total SIA: the accurate representation
of the total SIA does not guarantee the same for sea ice classes.
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Figure 5.10: Time series of September SIA (a) and MIZF (b) from 1950 to 2050 using
HighResMIP historical and future runs and satellite products (CDR and OSISAF).

5.4 Discussion

Although the latest generation of the models does a fairly reasonable job in simu-
lating the mean state and long-term variability of sea ice cover (Notz and Community,
2020), the models still suffer from biases, which decrease the model’s trustworthiness
in projecting the future sea ice state in the Arctic. The enhancement in the horizontal
resolution in model components is used in the CMIP6 HighResMIP as one of the fac-
tors capable of improving the realism of the model simulations and reducing biases also
in polar regions. In this study, we investigate the ability of HighResMIP in simulating
Arctic sea ice variability and the impact of the ocean and atmosphere horizontal reso-
lution on the representation of sea ice properties in the recent past and future climate.
We do not find a strong link between ocean/atmosphere resolution and the representa-
tion of sea ice properties and the realism of model performance rather depends on the
model used. However, there is evidence that enhanced ocean resolution leads to improved
representation of winter SIA in some models. This is associated with a more accurate
meridional heat transport (Docquier et al., 2019) which is a key process that can regulate
the location of the ice edge and SIA (Li et al., 2017; Muilwijk et al., 2019) in the models.
The Atlantic Ocean is the main heat source entering the Arctic, accounting for 73 TW
on average per year (Smedsrud et al., 2010), therefore the adequate simulation of the
boundary currents is particularly important in the Atlantic sector of the Arctic Ocean
which is confirmed by the regional analysis in our study. Another process that might be
sensitive to horizontal ocean resolution is the Arctic river discharge, which contributes
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both to seasonal variations of sea ice cover and long-term sea ice variability. The fresh-
water input stabilizes the upper ocean stratification and isolates the warm Atlantic layer
from the bottom of sea ice cover (Carmack et al., 2015), resulting in higher ice growth
in winter. On the other hand, the heat input from the rivers accelerates sea ice melt
and increases the ocean temperature, which has possible implications for the next year’s
growing season (Park et al., 2020). The representation of river discharge in HighResMIP
models needs additional investigation. Our results do not show the systematic impact of
atmosphere resolution on the representation of the Arctic sea ice. This is confirmed by
other studies reporting the minor role of atmosphere resolution compared to the ocean
(Roberts et al., 2020; Koenigk et al., 2021; Meccia et al., 2021). Increasing atmosphere
resolution might permit a more realistic representation of precipitation, which can lead
to increased snowfall (Strandberg and Lind, 2021) and consequently invoke cooling and
sea ice expansion (Bintanja et al., 2018). SIT is less responsive to changes in the ocean
grid resolution compared to SIA and its representation largely depends on sea ice model.
Moreover, our results show that in some cases large biases in SIT reduce the beneficial
effect of increased horizontal resolution with regard to SIA. Poor representation of SIT is
a great obstacle to the robustness of sea ice projections. The high uncertainty cannot be
overcome without constraining the model simulations with a sufficient number of in-situ
measurements of the Arctic SIT, which are still sparse and unreliable (Massonnet et al.,
2018). Apart from the horizontal resolution, there are other important factors affecting
the model performance. The possible reasons for sea ice errors might be related to inac-
curate representation in the models of the mixed layer depth (Watts et al., 2021), surface
air temperature (Papalexiou et al., 2020), surface pressure and geostrophic winds (Kwok
and Untersteiner, 2011; Stroeve et al., 2014), sea ice sensitivity to the global warming
(Zhang, 2010). Another possible source of inaccurate simulation of the sea ice state is
the physics and complexity of sea ice models itself including the thermodynamics schemes
and parametrizations (Keen et al., 2021), sea ice dynamics components (Hunke, 2010)
and coupling between the ocean and atmosphere components (Hunke et al., 2020). Given
few improvements with increased horizontal resolution we argue that running the models
at higher resolution might not be worth the major effort of costly computations. Our
results suggest that the efforts of the modelling groups should be aimed rather at the
improvement of the sea ice model physics and parameterizations.

In this study, with the means of HighResMIP outputs we try to understand when
the Arctic will see its first ice-free summer. Models produce a wide range of possible
timing of first ice-free conditions in the Arctic. To reduce the inter-model spread in sea ice
projections we apply a widely used approach based on selection of the models according to
their historical performance (Wang and Overland, 2012; Senftleben et al., 2020). Although
close agreement with observations does not guarantee the realism of the models, we believe
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that excluding the models that cannot reproduce present-day SIA and SIV mean state
and trends might improve the accuracy of future sea ice projections. Different criteria to
select best-performing models exist and almost always lead to earlier near-disappearance
of sea ice compared to no selection (Docquier and Koenigk, 2021). The timing of first
ice-free Arctic in our model selection compares well with similar criteria applied to CMIP6
models which predict the event between 2047 and 2052 while the process-based criteria
advances the timing of first ice-free summer up to 2035 (Docquier and Koenigk, 2021).
The investigation of model selection criteria is out of scope of this study. Our goal is to
give an insight into when the Arctic might turn ice-free.

(a) (b)

Figure 5.11: JJAS MIZF against September SIA with one year lag over 2015-2050 (a);
The timing of the ice-free Arctic against JJAS MIZF in 2015 (b).

Our results also highlight the increasing role of the MIZ in the response of Arctic
sea ice cover to climate change. We show that the MIZ will be the dominant sea ice class
in the Arctic by 2050 which implies the shift to the new sea ice conditions, similar to the
Antarctic. The chaotic interannual variability of the summer MIZF in the last years of the
simulation points out that the current model physics might not be adapted to changing sea
ice conditions (Figure 10). In order to realistically simulate (thermo)dynamical processes,
the new sea ice regime requires modifications in the model physics and sea ice rheology
which is formulated for thick pack ice (Aksenov et al., 2017). Additionally, the growing
fraction of the MIZ requires changes in the parameterization of the lateral and basal
melt (Smith et al., 2022). The proper simulation of the MIZ is essential for reasonable
projections of future sea ice conditions because small and thin ice floes within the MIZ are
more vulnerable compared to consolidated pack ice to external forces both dynamic and
thermodynamic. The currents become stronger when the ice edge moves northward and
the open ocean area expands which eventually promotes further sea ice retreat (Aksenov

117



CHAPTER 5. THE PAST AND FUTURE OF THE ARCTIC SEA ICE IN HIGHRESMIP CLIMATE
MODELS

et al., 2017). In addition, the water patches between the ice floes permit the absorption
of solar radiation in the upper ocean, increasing the role of the ice-albedo effect which
causes anticipation of the ice-advance onset and acceleration of the overall sea ice loss. To
demonstrate positive feedback between summer MIZ and minimum SIA for the following
year we plot JJAS MIZF against September SIA with a 1-year lag computed for the years
2015-2050 (Figure 5.11a). All models except one simulate negative regression ranging
from ∼-0.13%/106 km2 to -0.06%/106 km2 which means that the larger summer MIZF
leads to lower September SIA the following year. We suggest that the MIZ might act
as a predictor of future sea ice conditions in the model simulations. Figure 5.11b shows
JJAS MIZF in 2015 (start of highres-future run) against the first September when the
Arctic becomes ice-free. Note that not all models simulate the event before 2050. Our
analysis indicates that with the higher initial MIZF, the September sea ice disappears
earlier. This points out that the reasonable representation of the MIZ at the beginning
of the run might impact the pace of sea ice loss and potentially improve the accuracy
of model projections. We assume that the MIZF might represent a robust criterion to
examine the model performance. The impact of the MIZ on the accuracy of the model
simulations needs further investigation.

5.5 Conclusions

In this study, we evaluate the historical and future variability of the Arctic sea
ice area and volume using six coupled atmosphere-ocean general models participating in
the HighResMIP experiments of the sixth phase of the Coupled Model Intercomparison
Project (CMIP6). For the period 1979-2014, we find that all models can properly simu-
late maximum and minimum in SIA at hemispheric and regional scales. However, some
models cannot correctly capture the magnitude of the mean annual cycle of SIA, failing
to realistically reproduce the ice growth and retreat phases with systematic over- or un-
derestimation of the seasonal variability. We find that the models generally are able to
reproduce the seasonal cycle of the Arctic-wide MIZ area, although not all of them can
capture the timing of the annual maximum. The models simulate different area of the
MIZ, especially in summer, however, there is stronger agreement among models for MIZF,
which suggests that the MIZ in the simulations is closely linked to the amount of the total
SIA. We find different regional contributions to the inter-model spread at seasonal max-
imum and minimum: while the winter inter-model spread in SIA is associated with the
Atlantic sector (Barents-Kara Seas and the Greenland ice zones), the summer differences
are tied to the the Laptev, East Siberian, and Beaufort-Chukchi Seas. Models broadly
vary on the spatial distribution of the mean SIT as well as its average values. Only a few
models reveal a similar to PIOMAS pattern with thicker ice off the coast of Greenland and

118



CHAPTER 5. THE PAST AND FUTURE OF THE ARCTIC SEA ICE IN HIGHRESMIP CLIMATE
MODELS

the Canadian Archipelago. Most models simulate too thick ice which in turn affects the
representation of sea ice volume: excluding one outlier, all but two models overestimate
ice volume all year round up to 1.5 times in April and 3.5 times in August. However,
regardless of large systematic biases, most models simulate a realistic seasonal cycle of
SIV with a maximum in April and a minimum in August. All models capture declines in
SIA and SIV over the historical period but they disagree on the pace of sea ice loss. The
response to the external forcing does change with season and region: the winter trends
are dominated by the Barents-Kara Seas and the Greenland ice zone, while the summer
trends are driven by the East Siberian and Beaufort-Chukchi Seas. Most models underes-
timate ice loss in all regions particularly in summer while in the Greenland zone, they tend
to simulate more negative trends which results in an overestimation of the Arctic-wide
SIA trend in a few configurations. In this study, we find that there is no strong relation-
ship between ocean/atmosphere resolution and sea ice cover representation: the impact
of horizontal resolution rather depends on the examined characteristic and the model
used. However, the ocean has a stronger effect than the atmosphere, and the increase in
the ocean resolution from ∼1∘ to ∼0.25∘ has favourable impact on the representation of
SIA and sea ice edges which is especially evident for ECMWF-IFS and HadGEM3. At
the same time, the simulation of SIT does not directly rely on the grid spacing affecting
simulated SIV, the variable which represents the real amount of sea ice. A finer ocean
resolution leads to lower SIV for ECMWF-IFS and almost no differences for HadGEM3.
Increasing resolution both in the ocean and atmosphere results in little difference between
configurations in CNRM and higher SIV for EC-Earth3P. On the other hand, enhanced
atmosphere resolution leads to higher SIV for ECMWF-IFS and CMCC-CM2 and lower
SIV for HadGEM3 and MPI-ESM. We also find that the difference between the config-
urations varies from one region to another which highlights the importance to examine
the model performance at the regional scale. For example, CMCC-CM2 HR4 has too
low SIA and SIV in the Barents Sea, which is caused by increased OHT at the Barents
Sea Opening (Docquier et al., 2020) while in the rest of the sectors the model performs
well relative to the observations. On the other hand, MPI-ESM has similar SIA in two
configurations in the Barents-Kara Seas and the Greenland ice zone, while in the rest
of the regions, the finer atmosphere configuration produces less ice in summer. For the
period 2015-2050, all models simulate a long-term decrease in SIA and SIV with a gen-
erally stronger rate of ice loss compared to the historical period. The Arctic loses nearly
95% of SIV from 1950 to 2050 in the model simulations. There is again no systematic
impact of horizontal resolution on the timing of first ice-free conditions. The multi-model
mean of all the models does not project the Arctic to become ice-free before 2050. How-
ever, applying the model selection based on historical performance advances the timing
of the event up to 2047. Considering that the model selection leads to closer agreement
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with CDR on the year of ice-free summer in the regions where it already happened based
on our criteria (the East Siberian, Barents and Kara, and the Laptev Sea),s.we assume
that applying model selection may potentially improve the accuracy of model projections
of future Arctic sea ice evolution. Together with the overall ice shrinking, we find the
changes in the structure of sea ice cover: by 2050 the MIZ constitutes up to 60-80% of
the September SIA. This suggests a shift to a new sea ice regime similar to that in the
Antarctic. Given that the MIZ will play a major role in the response of the Arctic sea ice
to external forcing, modifications in the model physics and parametrizations are needed
in new generations of coupled climate models.
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Summary

The overall objective of this dissertation is to improve our knowledge of the temporal
and spatial variability of sea-ice properties in the Arctic and Antarctic regions. The
thesis examines the performance of state-of-the-art global ocean reanalyses and the last
generation of coupled climate models to reproduce observed sea ice records and to project
future sea ice evolution. The consistent evaluation of the model’s ability in reproducing
the sea-ice state and its temporal/spatial variability is needed to enhance the model
representation of sea-ice properties and increase the trustworthiness of future projections.
This dissertation identifies the shortcomings of numerical systems which can be useful for
modelling community and can have implications for improving the model performance.

• The results of the thesis highlight the necessity to distinguish between sea ice classes
both in order to investigate sea-ice changes and to assess the quality of numerical
systems. The focus on sea-ice classes instead of total sea-ice cover improves our
understanding of sea-ice changes and might shed the light on the mechanisms driving
sea-ice variability.

• Global ocean reanalyses are able to reasonably simulate observed Antarctic sea-ice
area variability in time and space within consolidated pack ice and marginal ice
zone. The reanalysis performance varies with a sub-region which is attributed to
the proportion of sea ice classes in the regions.

• The fidelity of the ensemble-mean approach is proved as it allows to minimize er-
rors from individual ensemble members providing the most robust and consistent
estimates of recent changes in Antarctica. The quality of GREP is generally compa-
rable to that of satellite data sets with regard to sea ice concentration and associated
metrics therefore GREP can be used in a wide range of applications.

• Coupled climate models can adequately reproduce historical seasonal variability in
the sea-ice area and sea-ice volume capturing generally the winter maximum and
summer minimum, although they exhibit a large inter-model spread, particularly in
the Antarctic.

• There is no unambiguous relationship between ocean/atmosphere grid resolutions
and sea ice representation: the impact of horizontal resolution rather depends on
the examined ice characteristic and the model used. However, the refinement of the
ocean mesh has a more prominent effect compared to the atmosphere. The evident
impact of increased ocean resolution is observed in the Arctic for winter sea-ice area
with more realistic values in high-resolution model configurations.
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• All models are able to simulate sea-ice loss in recent years in the Arctic while
they generally fail to reproduce the overall expansion trend in the Antarctic. The
increased horizontal resolution does not improve the realism of the sea ice long-term
variability in both hemispheres.

• A reasonable simulation of sea-ice thickness is still challenging in both hemispheres.
Inaccurate sea-ice thickness is an obstacle to a realistic representation of sea-ice
properties and reliable predictions of future sea-ice evolution.

• The proper simulation of the marginal ice zone is fundamental for robust predictions
of sea ice conditions. Given that the marginal ice zone will dominate the Arctic sea
ice cover in the near future, the model physics might require adaptation to a new
sea-ice regime.
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