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ABSTRACT 

Pain is one of the most physiologically complex phenomena a human being experiences 

in life, involving an intricate network of neural systems whose contribution and effect on 

other physiological mechanisms are not yet fully understood. Given its inherent 

complexity, pain is often challenging to describe comprehensively, with several factors 

playing a role in its under- or over-estimation. Standard pain assessment methods, based 

on explicit verbal communication, often fail to provide reliable and accurate information 

about the pain experience. This poses a critical challenge in the clinical context, where 

clinicians are called upon to treat pain promptly, efficiently, and personally. In the era of 

ubiquitous and inexpensive physiological monitoring, coupled with the advancement of 

artificial intelligence, these new tools appear as the natural candidates to be tested to 

address such a challenge. 

This thesis aims to conduct experimental research to develop digital biomarkers to 

support the pain assessment process. The thesis is organized in the following five sections. 

Section I presents state of the art regarding pain neurophysiology and assessment methods 

currently used in clinical settings. 

Section II collects methods for appropriately conditioning physiological signals and 

analyses to evaluate the impact of possible confounding factors and how to control them. 

The last three sections review three different pain conditions. 

Section III is devoted to pain assessment in cancer patients. It includes a systematic 

review regarding the physiological reaction to pain in this population, and a method to 

automatically assess pain using physiological signals recorded in real-world contexts 

from cancer patients enrolled in a home palliative care program. 

Section IV illustrates a study involving healthy subjects and chronic low back pain 

patients stimulated with noxious stimuli. Reactions to different experimental conditions 

in the two populations are presented, along with automatic classifiers that distinguish 

between healthy subjects and chronic low back pain patients. 

Section V relies on pain in neurorehabilitation settings. The protocol of a clinical study 

involving multiple sclerosis patients undergoing neurorehabilitation treatment and a pilot 

study with preliminary results are presented. 
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In conclusion, implementing methods to support pain assessment using physiological 

signals and artificial intelligence algorithms has proven feasible. However, further studies 

on larger populations are needed to consolidate better the results presented here. A 

preliminary signal quality check is essential prior to any model development, along with 

including personal and health information in the models themselves, whenever possible, 

to limit their confounding effects on the physiological signals. A multimodal approach 

involving several physiological signals should be preferred for better performance, 

although also unimodal analysis revealed interesting aspects of the pain experience. 

Different pain sources can lead to different physiological reactions. Thus, specific models 

using different physiological parameters are needed in order to develop robust pain 

assessment. 

Such an approach can enrich the routine clinical pain assessment procedure by giving the 

possibility of monitoring pain when and where it is actually experienced and without the 

involvement of explicit communication. This, in turn, would enable better 

characterization of the pain experience, improve antalgic therapy personalization, and 

bring timely relief, with the ultimate goal of ameliorating the quality of life of patients 

suffering from pain.  
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INTRODUCTION 

Pain is one of the most complex experiences a human being can feel, as is a mixture of 

sensory, cognitive, and emotional information. It works as an alarm bell to potential 

bodily threats, but it sometimes can arise because of a malfunctioning in the nerovus 

system, worsening the quality of life.  

Pain is usually clinically assessed through subjective evaluations by asking the patient 

about the intensity and quality of the perceived pain. These pieces of information are then 

used to relieve pain by selecting the most appropriate antalgic therapy and during 

treatment to evaluate its effectiveness. Pain assessment is also often used as a diagnostic 

or prognostic factor for several pathologies. It follows that a reliable method to assess 

pain is paramount to solving the condition underlying pain itself.  

Especially in the last years, the reliability of the current pain assessment tools has been 

questioned: they can indeed be used only when the patient is sufficiently wakeful and 

cooperative; such methods can be used only occasionally, not allowing continuous 

monitoring of the pain level; lastly, since they imply a verbal communication, they are 

highly dependent on the patient’s willingness and way to represent his or her experienced 

pain. 

Although some physiological processes contributing to the whole pain experience are not 

fully understood yet, it is well known that it alters several physiological functions as a 

reaction of mainly autonomic and somatic nervous systems, which are not voluntarily 

controlled. Thus theoretically, if the influenced physiological signals were properly 
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monitored (e.g., thanks to standard biomedical sensors) and analyzed, they could hint at 

the perceived pain. A depiction of this rationale is given in Figure 1. 

 

EEG: electroencephalography. fMRI: functional Magnetic Resonance Imaging; ET: Eye Tracking. EDA: 

Electrodermal Activity. ECG: Electrocardiography. PPG: Photoplethysmography. Resp: Respiration. SKT: 

Skin Temperature. EMG: Electromyography. 

Figure I Rationale of the PhD project 

Such an approach could lead to several advantages when compared to the current pain 

assessment tools: it would not require the cooperation of the subject, having the dual 

effect of not being subject to the willingness to communicate pain, and being able to be 

used even in the extreme case of unresponsive patients, such as those with disorders of 

consciousness or coma; if the physiological signals are recorded through wearable 

devices, pain then could be continuously monitored, having the possibility of analyzing 

pain reaction when it is actually experienced.  

It is worth specifying that such an approach is not that straightforward to be applied: 

physiological signals should be properly conditioned before being exploited to extract 

relevant features to pain assessment; several other factors besides pain can influence the 

same physiological signals, so the possible confounding factors should be properly 

controlled; the association between features extracted from the physiological signals and 

pain is not a direct one, rather a combination of changes in the physiological parameters 

can lead to an appropriate pain assessment.  

This PhD project aims to develop automatic methods to assess pain by using physiological 

signals. To pursue this aim, the following were set as practical objectives:  
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• To select and/or develop preprocessing methods to appropriate condition 

physiological signals and control confounding factors 

• To define an ideal pipeline for objective pain assessment 

• To apply the designed pipeline to different health conditions. 

The thesis is organized as follows, as also shown in Figure 2.  

 

Figure II PhD project overview 

Section I provides an overview of what is known about pain, describing the known 

neurophysiological mechanisms and its pathological conditions (Chapter 1), along with 

the current and innovative methods used for pain assessment (Chapter 2). 

Section II is devoted to methods for appropriately preprocessing physiological signals 

before being used for pain assessment. A method will be presented to automatically check 

the quality of Photoplethysmography (PPG) signal, widely used in wearable devices to 

monitor the cardiovascular system (Chapter 3). PPG signal has also been assessed in its 

changes due to some sources of variability on it (Chapter 4). Lastly, the impact of several 
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confounding factors on different physiological signals’ circadian rhythm is also provided 

(Chapter 5). 

Section III shows the work related to assessing pain on externally induced noxious 

stimuli in healthy subjects and chronic low back pain patients. Here a study to assess the 

physiological reaction to different noxious stimuli and appreciate possible differences 

between the two populations will be presented (Chapter 6), together with a machine 

learning approach to automatically classify healthy subjects and chronic low back pain 

patients based on physiological signals (Chapter 7).  

Section IV relies on pain assessment in a cancer population. It consists of a systematic 

review aiming to assess the association between physiological signals and cancer pain 

(Chapter 8) and the design of an automatic pain assessment method that can distinguish 

between the absence and presence of pain based on physiological signals recorded in a 

real-world context (Chapter 9). 

Section V investigates pain in patients undergoing neurorehabilitation. A study protocol 

to assess pain in this population through wearable sensors is presented (Chapter 10), 

together with a pilot study whose aiming to draft a practical pipeline to optimize the data 

collection process (Chapter 11). 
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1. PAIN 

1.1 Definition of pain 

The International Association for the Study of Pain (IASP) enacted the definition of pain 

for the first time in 1979, describing it as “an unpleasant sensory and emotional 

experience associated with actual or potential tissue damage, or described in terms of 

such damage” [1].  

The definition has been intended to provide a common understanding of pain, 

highlighting the main aspects of this complex experience:  

• Subjectivity, as it relies on the personal experience rather than on the 

physiological processes; 

• Multidimensionality, by expressing pain as both a sensory and emotional 

experience; 

• Presence of actual or potential tissue damage as an inescapable condition for the 

pain to manifest itself [2]. 

Over the next four decades, several discoveries were made on pain and its related 

mechanisms, leading to criticism against the first definition of pain. Firstly, after the 

introduction of the biopsychosocial pain model by Loeser [3], it was clear that the 

definition lacked two components: cognition and psychosocial factors. Secondly, the 

definition emphasizes the verbal communication of pain, leaving apart cognitively 

impaired or non-verbal individuals who cannot express pain with their voice [4]. 
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Several attempts have been made to propose a new definition of pain [5]–[7]. However, 

only in 2020 the IASP Presidential Task Force released the new definition of pain after a 

2-year period of consultation. The new definition is “an unpleasant sensory and 

emotional experience associated with, or resembling that associated with, actual or 

potential tissue damage” [8]. A comparison between the two definitions and the related 

notes is given in Table 1.1. 

Table 1.1 Definition of pain, 1979 vs 2020. Adapted from [8] 

IASP definition of pain (1979) Revised IASP definition of pain (2020) 

An unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, 

or described in terms of such damage 

Notes 

Pain is always subjective. Each individual learns 

the application of the word through experiences 

related to injury in early life. Biologists recognize 

that those stimuli which cause pain are liable to 

damage tissue. Accordingly, pain is that experience 

which we associate with actual or potential tissue 

damage. It is unquestionably a sensation in a part 

or parts of the body, but it is also always unpleasant 

and therefore also an emotional experience. 

Experiences which resemble pain, e.g., pricking, 

but are not unpleasant, should not be called pain. 

Unpleasant abnormal experiences (dysaesthesiae) 

may also be pain but are not necessarily so because, 

subjectively, they may not have the usual sensory 

qualities of pain. Many people report pain in the 

absence of tissue damage or any likely 

pathophysiological cause; usually this happens for 

psychological reasons. 

There is no way to distinguish their experience 

from that due to tissue damage if we take the 

subjective report. If they regard their experience as 

pain and if they report it in the same ways as pain 

caused by tissue damage, it should be accepted as 

pain. This definition avoids tying pain to the 

stimulus. Activity induced in the nociceptor and 

nociceptive pathways by a noxious stimulus is not 

An unpleasant sensory and emotional experience 

associated with, or 

resembling that associated with, actual or potential 

tissue damage. 

Notes 

Pain is always a personal experience that is 

influenced to varying degrees by biological, 

psychological, and social factors. 

Pain and nociception are different phenomena. 

Pain cannot be inferred solely from activity in 

sensory neurons. 

Through their life experiences, individuals learn 

the concept of pain. 

A person’s report of an experience as pain should 

be respected 

Although pain usually serves an adaptive role, it 

may have adverse effects on function and social 

and psychological well-being. 

Verbal description is only one of several behaviors 

to express pain; inability to communicate does not 

negate the possibility that a human or a nonhuman 

animal experiences pain. 

Etymology 

Middle English, from Anglo-French peine (pain, 

suffering), from Latin poena (penalty, 

punishment), in turn from Greek  (payment, 

penalty, recompense). 

*The Declaration of Montreal, a document 

developed during the First International Pain 

Summit on September 3, 2010, states that “Access 
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pain, which is always a psychological state, even 

though we may well appreciate that pain most often 

has a proximate physical cause. 

to pain management is a fundamental human 

right.” 

1.2 Classification of pain 

Although the definition of pain may provide a common framework, to achieve effective 

treatment of pain, it is necessary to gain other pieces of information about it. The 

guidelines to properly describe pain give a systematic approach to do that for pain 

classification, disseminated by the IASP Task Force of Taxonomy and also adopted by 

the World Health Organization (WHO) [9], [10]. 

Pain can be classified according to four different characteristics: 

• Pathophysiological mechanism 

Nociceptive pain: it arises from the activation of nociceptors, sensory receptors 

deputed to detect damaged or potentially damaged tissue. This type of pain is 

further divided into somatic pain, arising from superficial tissues, and visceral 

pain, coming from internal organs and blood vessels 

Neuropathic pain: it is caused by structural damage and/or dysfunction in nerve 

cells in both the central and peripheral systems 

Mixed pain: in some cases, neuropathic pain may coexist with nociceptive pain. 

The different pathophysiological mechanisms involved in the two types of pain 

may work together to produce mixed pain 

Nociplastic pain: pain that arises from altered nociception despite no clear 

evidence of actual or threatened tissue damage causing the activation of peripheral 

nociceptors or evidence for disease or lesion of the somatosensory system causing 

the pain [11] 

• Duration 

Acute: it is characterized by a sudden onset, it is felt immediately after injury and 

can be of severe intensity, but is usually of short duration. It is often linked to a 

injury or trauma, representing the alarm bell to the body to take action 

Chronic: it is continuous or recurrent pain that persists beyond the normal 

expected healing time, lasting for more than 3 months [12] 
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Breakthrough: it is characterized by a temporary increase in pain severity above 

the pre-existing baseline level. It is of sudden onset, severe and short duration, 

and may occur independently of any stimulus 

Episodic: it occurs intermittently over a long period of time; episodes can vary in 

intensity, quality and frequency over time, being consequently unpredictable 

End of dose: it occurs when drugs cannot reach the correct therapeutic level 

• Etiology 

Malignant: it is a pain linked to cancer and related treatment 

Non-malignant: a pain not derividing from cancer or related treatment 

• Anatomical district [13] 

It is worth mentioning that there still exist some forms of pain that cannot be easily 

classified based on the aforementioned factors, such as fibromyalgia and primary 

headaches [12]. 

1.3 Pain Theories 

Over the centuries there have been several theories about the mechanisms underlying 

pain, representative of the thinking and culture of the time [14]. Although more recent 

theories have replaced the older ones, each has helped to add a piece of knowledge to a 

phenomenon that is still not fully understood today. In this paragraph the main pain 

theories are presented. 

1.3.1 Intensity Theory 

The first attempt at describing pain perception is attributed to Plato, who, in his oeuvre 

Timaeus, in the fourth century B.C., described the pain as a more emotional rather than 

sensorial experience occurring when a stimulus is presented as more intense and lasting 

longer than usual [15]. More than a thousand years later, in 1874, Wilhelm Erb 

reintroduced the same notion, suggesting that pain arises when any strong sensory 

stimulus is imposed. The intensity theory has been further developed by Arthur 

Goldscheider, who carried out an experiment in which he demonstrated that the rapid and 

repeated presentation of a subthreshold tactile stimulus leads to experiencing what was 

called by the subject of the experiment “unbearable pain”. Goldscheider concluded that 

either repeated subthreshold stimulation by some form of summation or suprathreshold 

stimulation could cause pain [16]. Although this theory has been abandoned in favour of 
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the specificity theory, it contributed to the development of more recent theories that are 

still valid today. 

1.3.2 Specificity Theory 

René Descartes originally introduced Specificity Theory in Treatise of Man published in 

1664, which basically relies on the assumption that different types of sensations belong 

to different pathways. A fundamental part in the development of this theory by Descartes 

is given by his description of nerves, called fibrils in his work, described as hollow tubules 

transmitting both sensory and motor information. Probably one of the most historically 

famous pictures related to pain is the illustration drawn by Louis La Forge based on 

Descartes’ description of the pain pathway in Treatise of Man, presented in Figure 1.1: 

when the stimulus (A), in the form of fire in this specific case, reaches the body (B), 

particles from the stimulus move towards the skin and tug on the fibril, which makes open 

the pores of the other end of the fibril in the brain (d, e), allowing the particles to reach 

the fibril cavity (F). As a response, the “animal spirits” flow from the cavity into the fibril, 

making the subject look at the fire, move the foot away from the stimulus, and in general 

to act protective mechanisms [16].  

Almost two centuries later, Charles Bell contributed to expanding the Specificity Theory, 

indicating a more complex organization of the brain with respect to the one given by 

Descartes and corroborating the principle for which there is a specific pathway for pain 

information [15], [16].  

Specificity theory received several contributions in the following years. After substantial 

advancements in neurophysiology, Schiff and Woroschiloff between 1854 and 1859 

established the location of a pain pathway in the spinal cord, separated from that of touch 

[16]. Later on, in 1894, Maximillian von Frey demonstrated that the somatosensory 

system is composed of specific receptor for tactile, hot, cold, and pain receptors, each 

with a specific transmission method [17], perfectly aligned with the Specificity theory.  

Specificity theory has been the main paradigm to explain pain for the whole 19th and 

much of the 20th century. One of the main drawbacks of Specificity theory is that it has 

always focused on sensory functioning, without considering all the other factors that are 

now well-established to play a key role in the complete perception of pain, which will be 

formalized in later theories.  
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Figure 1.1 Drawing of pain pathway by Louis La Forge based on Descartes' theory 

1.3.3 Pattern Theory 

The Pattern theory is mainly ascribed to the psychologist John Nafe, who rejected the 

presence of specialized somatosensory pathways as an explanation for different types of 

perception. In the 1930s, he proposed that different somatosensory sensations come from 

different signal patterns in the brain that can be modulated in frequency and timing [16]. 

This theory helped explain complex pathological pain conditions, such as allodynia, 

despite its refusal the presence of different sensory pathways, which are now consolidated 

by several experiments [17].  

1.3.4 Gate Control Theory 

The Gate Control theory allowed bringing together the Specificity and Pattern theories, 

revolutionizing the field of pain research. It was theorized by Ronald Melzack and Patrick 

Wall in 1965, and it stated the presence of a “gate” within the dorsal horn, which is 

responsible for inhibiting or facilitating pain impulses [18]. Besides this kind of control, 

the two scientists also stated that another control mechanism is given by the cortical areas 

of the brain, thus introducing for the first time the psychological and cognitive aspects of 

pain [17].  

1.3.5 Pain neuromatrix 

Originally introduced by Melzack in the 1960s, the pain neuromatrix theory's publication 

enshrines the multidimensional characteristics of pain once and for all. Melzack owes this 
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insight to his work with amputees and their phantom limb pain: without any real sensorial 

stimulus, patients with amputated limbs still suffered from pain [19]. So pain is not only 

due to a mere somatic stimulus. Rather, it is the result of the interactions of different 

systems that modulate the final perception of pain, both at the peripheral and central level 

[17]. This brand new perspective on pain allows us to apply new strategies for pain relief, 

healing not only the physical aspect of pain, but also the cognitive and emotional aspects 

of it. 

1.4 Neurophysiological mechanisms of pain 

Pain perception involves the synergistic work of both Peripheral Nervous System and 

Central Nervous System (CNS). While the former comprises nerves and ganglia that 

gather the nociceptive signalling to be conveyed at the central level, the latter integrates 

the information into a complex net of cerebral and cortical regions. The main events 

occurring in pain experience are transduction, transmission, perception, and modulation 

[20].  

1.4.1 Transduction 

Several body districts, from the skin to subcutaneous structures, have specialized sensory 

receptors that are activated in response to nociceptive stimuli, called nociceptors. Most 

nociceptors are free nerve endings of primary sensory neurons. There are four main 

classes of nociceptors:  

• Thermal nociceptors: activated by extreme temperatures (< 5°C or >45°C); they 

are peripheral endings of small diameter myelinated Aδ axons; 

• Mechanical nociceptors: activated by pressure on the skin, they are peripheral 

endings of myelinated Aδ axons as well; 

• Polymodal nociceptors: activated by mechanical, chemical or thermal stimuli, this 

class of nociceptors is found at the terminations of unmyelinated C axons of small 

diameter 

• Silent nociceptors: they can be found in the viscera; several chemical agents lower 

their their firing threshold. 

The transduction from nociceptive stimulus to nociceptor depolarization occurs by axon 

membrane receptors, including transient receptor potential (TRP) ion channels, 

tetrodotoxin-resistant Na+ channels, and ionotropic purinergic receptors (PTX3). 
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Depolarization activated by the receptor then causes an action potential to be triggered 

that propagates to central areas of the nervous system [21]. 

The different classes of nociceptors are widely distributed throughout the body and often 

act in a coordinated manner: when a nociceptive stimulus elicits the body, there is an 

initial fast, sharp pain (called “first pain”) transmitted by the fast myelinated Aδ axons, 

with a diameter of 2-5 μm and a conduction velocity of 5-15 m/s, and then a slow pain 

appears (called “second pain”), transmitted by the C fibers with a diameter smaller than 

2 μm and a conduction velocity of 0.5 – 2 m/s [21], [22]. A representation of the action 

potential speeds of different axons is presented in Figure 1.2.  

 

Figure 1.2 Axons' action potential speed. Adapted from [21] 

1.4.2 Transmission 

1.4.2.1 Peripheral Transmission 

The nociceptive signal travels through axons to the central body of nociceptors, which 

are located in the dorsal root ganglia or trigeminal ganglia. The central branches of such 

neurons then terminate in the spinal cord, most precisely in the dorsal horn (DH). DH is 

divided into six layers, called laminae, which are the sites where the primary afferent 

fibers synapse with second-order neurons, which can be of three types: 

• Nociception-specific (NS): respond selectively to high threshold nociceptive 

stimuli conveyed by Aδ and C fibers located in laminae I, II, and III 

• Wide dynamic range (WDR): respond to a variety of sensory stimuli, receiving 

information from somatic and visceral nociceptors, found in laminae V and VI 
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• Low-threshold (LR): respond only to innocuous stimuli, and produce complex 

responses since the incoming signal is given by passing through several 

intermediate synapses located in laminae VII and VIII [23] 

There is a close link between the anatomical organization of DH laminae and their 

functions in sensory processing [21]. For example, in lamina V nociceptive information 

from both somatic and visceral nociceptors is conveyed, which leads to the “referred 

pain” phenomenon, that is, the perception of a visceral pain rising on the surface of the 

body [24]. 

Activation of neurons located in the DH occurs mainly through the release of glutamate 

and neuropeptides, which perform coordinated actions to regulate the action potential 

[21].  

1.4.2.2 Central Transmission 

A subset of projection neurons in the DH transmits the nociceptive information to central 

nervous districts mainly via five ascending pathways:  

• Spinothalamic tract: this is the main ascending pathway in which nociceptive 

information from lamina I, V, VI, and VII neurons travels, located in the white 

matter of the spinal cord. It is composed of two parts: the lateral spinothalamic 

tract, which transmits pain and temperature sensation, the anterior spinothalamic 

tract, which transmits information about touch and pressure [20]. 

• Spino-reticular tract contains axons from neurons in lamina VII and VIII, which 

projects to thalamus and hypothalamus via nuclei of brainstem reticular formation 

[22]. 

• Spino-mesencephalic (or spino-parabrachial) tract: it contains axons from 

lamina I and V. Information transmitted along this tract is thought to be 

responsible for the affective component of pain, as the axons project the 

information in part to the parabrachial nucleus, which in turn projects to the 

amygdala, the key nucleus of the limbic system that regulates emotional state. 

• Cervicothalamic tract: it contains axons from neurons in the lateral cervical 

nucleus, which in turn receives input from neurons in lamina III and IV of the 

dorsal horn. Most axons in this tract terminate in the midbrain nuclei and the 

lateral ventroposterior and posteromedial nuclei of the thalamus. 
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• Spinohypothalamic tract: it contains the axons of neurons present in lamina I, 

V, and VIII. These axons project information to hypothalamic nuclei that act as 

autonomic control centers involved in the regulation of neuroendocrine and 

cardiovascular responses that accompany pain perception [21]. 

1.4.3 Perception 

Conscious perception of pain is the result of processes occurring at the level of the brain, 

with the active involvement of several brain regions, representing the “Pain Neuromatrix” 

[25], whose teory has been presented earlier in this chapter. Several cortical and 

subcortical networks are involved in pain perception, activating sensory, limbic, and 

associative areas [26].   

1.4.3.1 Thalamic projections 

At the thalamic level, the different tracts have mainly two termination sites: ventrocaudal 

and medial. Neurons in the ventrocaudal thalamus project information directly to the 

primary and secondary somato-sensory cortex (S1 and S2). The medial thalamus receives, 

in addition to some indirect input, significant input from the brainstem, subsequently 

projecting the information to S1 and S2. Information received by the ventrocaudal 

thalamus is thought to be mainly responsible for acute, well-localized pain arising on the 

body surface, while information coming to the medial thalamus responds more to stimuli 

from deep somatic and visceral structures [27]. 

1.4.3.2 Thalamus-Encephalon connections 

Third-order neurons, with cell bodies in the ventral posterior lateral nucleus of the 

thalamus, project the signal to S1 and S2, specifically to Broadman’s areas 1-3, involved 

in sensory discrimination of pain (intensity, localization, and quality) and integration of 

pain information with visual, auditory, and gustatory inputs, respectively [27]. The signal 

is also projected to cortical limbic areas, such as the anterior cingulate cortex (ACCor) 

and insular cortex, involved in mediating affective/emotional components [28]. 

Simultaneously, nuclei adjacent to the thalamus receive projections from the 

spinothalamic tract and mediate some behaviours in response to pain, such as arousal 

level and emotion [27]. In particular, activation of the ACCor and insular cortex is 

associated with the subjective experience of pain [29]. 
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The nociceptive signal is also transmitted through the spino-reticular and spino-

mesencephalic tracts to brain areas involved in the emotional and affective aspects of 

pain, such as the amygdala, basal ganglia, hypothalamus, periaqueductal gray matter 

(PAG), nucelus accumbens, and rostral ventral medulla (RVM) [30]. 

1.4.3.3 Psychological factors 

Attention 

The emblematic example of the influence of attention on pain perception is the wounded 

soldiers who do not feel pain at all as long as they are on the battlefield [31]. The influence 

of attention and mind on pain has been well recognized in Eastern culture for millennia. 

In contrast, only recently in Western culture such an aspect has been considered a means 

of pain relief and control [26].  

Attention modulation of pain experience correlates with changes in the activation of the 

Pain Neuromatrix. Concurrently, low attention corresponds to strong activation of the 

prefrontal cortex, and PAG, suggesting a significant interaction among brain systems 

involved in pain modulation. In contrast, hyper-vigilance amplifies pain intensity and is 

associated with interpreting harmless sensations as painfully unpleasant [29]. 

Cognition 

Pain perception is based on a process of cognitive evaluation. The subject, consciously or 

unconsciously, assesses the meaning of sensory signals from the body to determine the 

extent to which they indicate the presence of actual or potential harm. Such assessment is 

purely subjective. The inherent variability in the cognitive assessment of pain may result 

from neurobiological dissociations between sensory and affective aspects of the pain 

experience [29].  

Furthermore, is it well known that a bidirectional relationship then links cognition and 

pain, although the underlying physiological mechanisms are still not fully understood 

[32]. 

Changes in the intensity of pain result in altered activation of the cerebral cortex, while 

changes in the unpleasantness of pain result in altered activation of the anterior cingulate 

cortex. Perceived pain intensity is reduced when pain is perceived as controllable. The 

activation of the prefrontal cortex, also involved in emotion regulation, is negatively 

correlated with perceived pain intensity [29]. 
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Emotion 

The very nature of pain elicits a powerful emotional response, which is fuelled by 

modulating the perception of pain. Pain often provokes feelings of anger, sadness, and 

fear, depending on how it is cognitively evaluated. Notably, it has also been demonstrated 

the high incidence of affective disorders in chronic pain patients [30]. Negative emotions 

are associated with increased activation of the amygdala, anterior cingulate cortex, and 

anterior insular cortex. Fear of pain is also associated with hyper-vigilant states toward 

stimuli related to painful sensations. Negative emotions also affect the attention given to 

pain, which inevitably increases its unpleasantness. In addition, negative emotions and 

stress alter the functions of the prefrontal cortex, which then may reduce its effectiveness 

in regulating pain by using cognitive strategies such as reappraisal or seeing pain as 

controllable. Therefore, anger, sadness, and fear may result from pain, but they enter the 

feedback of biobehavioural processes that influence pain perception, exacerbating 

distress and suffering [29]. 

1.4.4 Modulation 

Through the whole pain pathways, nociceptive or pain information is subjected to 

modulation events by up- or down-regulation [33]. Modulation can be distinguished into 

two major contributions: modulation during the ascending and descending pathways. 

1.4.4.1 Modulation in the ascending pathway 

The main contribution to modulation within the ascending pathway is based on the 

principles postulated by the “gate control theory”, presented earlier in this chapter. 

Although such theory extremely simplifies what happens during the transmission phase 

(based on a research conducted on 1965) [34], it provides a good point of view to 

appreciate how the nociceptive information is modulated before arriving in the brain. 

By updating the original theory, it is now well accepted that A fibers non-nociceptive 

activity can lower the inflow of nociceptive information coming from C fibers by 

“shutting” the gate, thus partially inhibiting the nociceptive information arriving at the 

brain. This discovery had a significant clinical implication since several pain relief 

methodologies have been developed based on that, such as transcutaneous nerve 

stimulation or spinal cord stimulation [34], [35]. 
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Figure 1.3 Afferent pain pathways and the mechanisms of activation underlying attention (in blue) 

and emotions (in green) [26] 

1.4.4.2 Modulation in the descending pathway 

Based on studies conducted by analyzing both the functional and morphological aspects 

of the central nervous system, it has been demonstrated that one of the main contributors 

to descending pain modulation arises by the activity of the brain stem, which receives 

input from higher level brain areas and can either down- or up-regulate the pain signal to 

be sent to the spinal cord. Precisely, the brain stem is linked with frontal brain areas, the 

amygdala, and the hypothalamus, which are associated with the cognitive and emotional 

dimensions of the human being [36].  

The output from the PAG-RVM network gives another element involved in the 

modulation throughout the descending pathway. Specifically, RVM receives the 

information already processed by the PAG, and transmits the signal down the spinal cord, 

activating the endogenous opioid system that inhibits pain [37].  

1.5 Pathological pain conditions 

1.5.1 Chronic pain 

Chronic pain moves from being a symptom to becoming a disease entity on its own, as 

also recognized by the International Classification of Diseases, 11th revision (ICD-11), 

when pain persists or recurs for more than 3 months [38]. Chronic pain conditions have 
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been rated as among the top leading causes of years lost to disability [39], and its 

prevalence has been estimated between 17% and 27% [40]. 

It has recently been demonstrated that chronic pain leads to significant functional and 

anatomical reorganizations of brain activities. For example, the mesocorticolimbic 

system, one of the principal dopaminergic pathways responsible for encoding motivation 

and rewards and not implicated in the acute pain pathways, has been shown to have a role 

in the development and persistence of chronic pain [40] 

1.5.2 Neuropathic pain 

Neuropathic pain arises because of lesions or diseases involving the somatosensory 

nervous system [41]. It basically represents a “maladaptive response of the nervous 

system to damage” [42]. While it is not that straightforward quantifying the incidence of 

neuropathic pain because of the lack of precise diagnostic criteria, from some analysis, it 

emerged that between 7 and 10% of the general population is affected by neuropathic 

pain [43]. 

Different mechanisms can be responsible for the generation of neuropathic pain 

symptoms, sometimes acting in combination:  

• Peripheral mechanisms: the damage to sensory neurons can lead to different 

complications, such as spontaneous ectopic discharge of Aδ and C fibers or 

alterations of gene expression, which in turn cause a modification in the 

neurotransmitters released; 

• Central mechanisms: the main part of the CNS involved in neuropathic pain has 

been proven to be the DH, where phenomena such as wind-up (i.e., the altered 

response of dorsal horn neurons to repeated stimuli from C fibers), central 

sensitization or disinhibition may happen [44]. 

A depiction of the main changes induced by neuropathic pain in the physiological pain 

pathways is given in Figure 1.4. 
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Figure 1.4 Modifications induced by neuropathic pain in pain pathways [44] 

The main symptoms of neuropathic pain are essentially allodynia, which consists of 

feeling pain from an innocuous stimulus, and hyperalgesia, which consists of an excessive 

painful reaction to a painful stimulus [45]. 

1.6 Physiological consequences of pain 

The presence of pain leads to several modifications throughout the body as a reaction to 

pain itself. The main elements impacted by pain are neuroplasticity and the autonomic 

nervous system activity. 

1.6.1 Neuroplasticity 

Neuroplasticity is the ability of the nervous system to reorganize its functions, structures, 

or connections based on repeated and/or intense stimuli the person is subjected to [46].  

Several studies demonstrated significant changes in the CNS happening due to pain. Such 

permanent modifications are thought to be the main cause of the development of chronic 

pain, although the transition between acute and chronic pain is not yet fully known [47].  

Neuroplastic changes can occur both in the spinal cord and in the brain:  

• The DH can be subjected to neuroplastic changes due to, for example, damage 

occurring at the peripheral level that alters the somatosensory system. In this case, 

such modifications cause pain even in the presence of non-nociceptive stimuli 



18 

 

(i.e., allodynia) [48]. This manifestation can arise because of sensitization, wind-

up, or altered reactions of neurons in the spinal cord [49]. 

• Different brain areas can be subjected to neuroplastic modifications after being 

repeatedly subjected to nociceptive stimuli. For example, it has been shown that 

there is a shift in neural circuits activation transitioning from acute to chronic pain, 

with a more pronounced activity of affective-emotional circuitry for chronic pain 

rather than a more sensory activation of the acute pain [50]  

1.6.2 Autonomic Nervous System 

The processes that are activated and contribute to the perception of pain are, in turn, 

intimately connected to the Autonomic Nervous System (ANS), which in turn consists of 

the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous System (PNS). 

The body’s response to pain is defined by changes in the ANS, although to date, it is still 

not completely clear how pain-ANS interactions may be reflected by functional 

connections in the brain [51]. On the other hand, alterations in the ANS may, in turn, 

influence the pain experience [52]. One possible mechanism underlying the pain-ANS 

interaction is baroreflex, the negative feedback that allows blood pressure to remain 

stable. Indeed, this mechanism has been associated with a reduction in pain perception 

both during spontaneous episodes of high blood pressure (i.e., when baroreceptors are 

activated) and during mechanical stimulation of baroreceptors [52]. 

The ANS is structurally and functionally positioned to interface between the internal and 

external environment, coordinating body functions to endure homeostasis and adaptive 

responses to stress. Central control of SNS and PNS activities, called Central Autonomic 

Network (CAN) involves several interconnected areas distributed throughout the 

neuroaxis. CAN plays a key role in the ongoing control of visceral function, homeostasis, 

and adaptation to internal or external conditions [51]. 

ANS, in turn, affects several physiological processes besides the volition of the subject, 

such as some functions of the cardiovascular system, respiration [53], and sweating [54]. 
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2. PAIN ASSESSMENT 

2.1 State-of-the-art pain assessment tools 

Pain assessment is of paramount importance in providing appropriate and effective pain 

treatment. Representing the first step in the pain management procedure, it is essential 

not only to alleviate the pain itself, but also to be included in the patient's more complete 

clinical picture to get a sense of the progress of the disease and whether a treatment is 

effective.  

Besides unstructured and structured interviews used at the beginning of the pain 

management path [55], pain assessment tools used in normal clinical practice are 

essentially scales and questionnaires. In special cases, instrumented tests are also used. 

All three tools are explored in more detail in the following paragraphs. 

2.1.1 Scales 

Scales provide a one-dimensional measure of pain, gathering information only about the 

intensity [56]. The three main scales used are the Numerical Rating Scale (NRS), the 

Visual Analogue Scale (VAS), and the Verbal Rating Scale (VRS). 

The NRS consists of a 11-, 21-, or 101-point scale, where one end represents the absence 

of pain and the other the worst pain imaginable [57]. The 11-point NRS is the most used 

one, and its scoring is often interpreted as:  

• 0 = no pain 

• 1-3 = mild pain 
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• 4-6 = moderate pain 

• 7-10 = severe pain [56] 

A graphical depiction is given in Figure 2.1. Information provided by the NRS can be 

easily documented, are well understandable with minimal cultures and language barriers 

[56], and can be collected via face-to-face communication, in telephone interviews, and 

saved in pain diaries [58]. NRS has been proven to be a reliable scale, although its 

psychometric properties can depend on the body area where the pain is experienced [59]. 

Changes of 20% in the NRS can be considered clinically significant [58]. 

 

Figure 2.1 Numerical Rating Scale (NRS) and its intervals [60] 

The VAS is represented by a straight line, with a length comprised between 5 cm and 20 

cm (usually 10 cm), delimited by the two extremities representing “no pain” and “worst 

possible pain” [58]. The subject is asked to rate his or her pain by marking it on the line. 

The distance between “no pain” and the mark represents the subject’s pain level.  A 

representation is given in Figure 2.2. 

Unlike NRS, VAS scoring is more time-consuming (it implies the measurement between 

the end and the mark), and it is more difficult to be understood, thus being more prone to 

misinterpretation [58], and it cannot be used in an emergency situation [56]. On the other 

hand, it has a high test-retest reliability, a strong correlation with other pain assessment 

tools, and a minimum clinically significant difference of 1.37 cm on a 10-cm line [61].  

 

Figure 2.2 Visual Analogue Scale (VAS) [56] 

The VRS is composed of a list of adjectives ordered in ascending order of magnitude 

describing different levels of pain. The subject is asked to choose the word that best 

describes his or her pain intensity. Usually, four descriptors are used: none, mild, 

moderate, and severe, but there are also VRS comprising six or fifteen descriptors [56], 

[58]. When a 4-descriptors VRS is used, the small number of options requires a large 
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change in the experienced pain before it can show up on the scale [57]. Furthermore, VRS 

is more likely to be misinterpreted by patients, and often pain intensity is interpolated 

from other pain dimensions [62].  

2.1.2 Questionnaires 

Questionnaires can help obtain a more comprehensive picture of the complex experience 

of pain. These tools are based on a multidimensional approach to tracking pain, going 

beyond the only pain intensity described by scales.  

A preliminary distinction can be made by classifying questionnaires as multipurpose 

questionnaires that can be used in several pain conditions and in questionnaires 

specifically developed to assess neuropathic pain.  

In the first group, the most used questionnaires are the McGill Pain Questionnaire and the 

Brief Pain Inventory.  

The McGill Pain Questionnaire (MPQ) is so far the most widely used pain assessment 

tool [63]. First published in 1975 [64], the MPQ consists of three parts, each one 

measuring a different pain dimension: the first part is designed to mark the anatomical 

part where the pain is located; the second part consists of a VRS to rate the intensity of 

pain; the third part provides a list of 20 sets of 72 pain descriptors the subject can choose 

among to describe the sensory (10 sets), affective (5 sets), evaluative (1 set) and 

miscellaneous (4 sets) dimensions of pain [63], [65]. A few years after it was first 

published, the short-form MPQ was developed to have a more efficient tool in terms of 

compiling time. It comprises 15 descriptors for sensory and affective dimensions [66]. 

MPQ has been extensively used in clinical practice and has proven to be a reliable and 

valid tool to quantify the pain experience [65]. 

The Brief Pain Inventory (BPI) [67] was originally developed for cancer pain assessment, 

and it is currently used for many different pain conditions. The most used version consists 

of 9 items (the long version has 17 items), consisting in a single item related to the pain 

experienced on the day, a diagram where the subject marks the anatomical part where the 

pain is located, questions about the pain intensity, pain relief and pain interference with 

activities of daily living. BPI offers good reliability in pain intensity and interference and 

moderate correlation with other pain questionnaires [68].  

Regarding questionnaires to assess neuropathic pain, they can be further divided into two 

categories: screening questionnaires, used to identify the presence of neuropathic pain, 
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and assessment questionnaires, developed to keep track of neuropathic pain symptoms 

[69].  

Screening questionnaires are mainly based on verbal pain descriptors to discriminate 

between nociceptive and neuropathic pain. The most commonly used in clinical practice, 

which have the higher sensitivity and specificity in detecting neuropathic pain [69], are 

the following: 

• Leeds assessment of neuropathic symptoms and signs (LANSS) Pain Scale, 

consisting in a patient-completed questionnaire and a short clinical assessment 

[70]; 

• painDETECT (PD-Q), comprising seven neuropathic pain descriptors, two items 

describing the timing of pain, and one item describing how pain radiates 

throughout the body [71]; 

• Doleur Neuropathic – 4 questions (DN4) questionnaire, which is composed of 

four questions with several yes/no items within each one of them [72]. 

Assessment questionnaires comprise questions about the sensorial description of 

neuropathic pain [69]. Questionnaires specifically developed to assess neuropathic pain 

are: 

• Neuropathic Pain Scale, consisting of 10 questions to be rated on a 0-10 numerical 

rating scale and a question representing the time quality of pain [73] 

• Neuropathic Pain Symptom Inventory (NPSI), comprising 5 scales, each one 

related to a specific characteristic of neuropathic pain (burning, pressing, 

paroxysmal, evoked, and paresthesia/dysesthesia); it is particularly useful for pain 

assessment in several patients who had brain trauma [74] and spinal cord injury 

[75]. 

2.1.3 Instrumented tests 

In addition to scales and questionnaires, pain assessment in clinical practice can also be 

based on other methods that can be defined as “objective”. They make use of 

instrumentations aiming at defining the pain experience from a physiological point of 

view and providing more information to complete the clinical picture of the patient. 

2.1.3.1 Quantitative Sensory Testing 

Quantitative Sensory Testing (QTS) is a method used in clinical practice to standardly 

evaluate sensory function. It consists of applying several mechanical and thermal stimuli 
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to activate both large (Aβ) and small (Aδ and C) fibers. QST is used to assess whether 

there is an increase or decrease in nerve fiber activation. It is used especially in patients 

experiencing neuropathic pain [74]. 

2.1.3.2 Central metabolic activity 

Although used only in selected cases, functional magnetic resonance imaging (fMRI) is 

one of the most widely used imaging techniques for pain assessment. The fMRI indirectly 

measures brain metabolic activity by detecting related changes in blood flow oxygenation 

[76]. 

fMRI can provide extremely useful information in acute pain or experimental pain when 

they are of short duration. Only recently has it proven effective in the study of chronic 

pain [77]. 

2.1.3.3 Evoked potential 

Evoked potentials (EPs) test is usually implemented in clinical practice to evaluate the 

brain response to sensory stimuli [74].  

EPs are recorded using electroencephalography (EEG), placing electrodes on the scalp. 

From the recorded signals, specific characteristics (i.e., amplitude, latency) are analyzed 

in order to obtain information about afferent sensory pathways based on which kind of 

stimuli has been applied [78].  

The laser evoked potentials (LEPs) are mainly used to assess neuropathic pain. LEPs 

specifically activate Aδ and C fibers, inducing a first acute response mediated by Aδ 

fibers and a second diffuse response mediated by C fibers [79]. 

2.1.4 Limits of current tools 

Scales and questionnaires suffer from several limitations:  

• They require the patient to be able to communicate his/her pain, thus excluding 

clinical conditions such as coma or disorders of consciousness [80] 

• In some cases, patients tend to underestimate their pain because it is assumed to 

be directly related to worsening disease [81] 

• Healthcare professionals could neglect pain assessment to dedicate more time to 

diagnosis and treatment [82] 

• Assessment is conducted occasionally and usually in clinical settings.  
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Regarding the instrumented tests, the negative aspects are mainly related to their elevated 

costs to be implemented and the complex setup they require. Also in this case, such tests 

can be carried out only in clinical settings.  

2.2 Innovative methods 

As highlighted in Section 1.6.2, the ANS is activated after the conscious perception of 

pain. The ANS, in turn, influences several physiological mechanisms whose activity can 

be monitored by recording Measurable Physiological Signals (MPS). The following are 

some of the MPS that resulted in being sensitive to pain.  

2.2.1 Physiological signals 

2.2.1.1 Photoplethysmography 

Photoplethysmographic (PPG) signal represents the changes occurring in the blood 

volume at each heartbeat. It is a quasi-periodic signal, presenting the same elementary 

wave, called PPG pulse, in sync with the heart rate [83]. An example of PPG signal is 

given in Figure 2.3. 

 

Figure 2.3 PPG signal 

Its waveform is influenced by both SNS and PNS [84]. Information about the influence 

of ANS can be obtained either by estimating the Heart Rate (HR) and then by conducting 

a Heart Rate Variability (HRV) analysis, as a surrogate analysis usually conducted with 

the Electrocardiogram (ECG) [85] or by conducting a morphological analysis [86].  

Several research studies demonstrated the possibility of extracting useful biomarkers for 

pain assessment by PPG, both by using HRV parameters [87], [88] and parameters 

derived from PPG morphology [89], [90].  
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2.2.1.2 Electrodermal Activity 

Electrodermal Activity (EDA) measures the change in skin conductance occurring 

because of the activation of eccrine sweat glands. Sweat secretion alters the electrical 

properties of the skin, increasing electrical conductance until the sweat is absorbed or 

evaporates [91]. EDA signal consists of two components: the tonic, or slow-varying, 

component, referring to the smooth EDA changes that can also occur in the absence of 

any stimuli, and the phasic, or fast-varying component, which represents the rapid 

variations in EDA usually occurring as a response to a stimulus [92]. Figure 2.4 shows 

the EDA signal, together with its two components. 

 

Figure 2.4 Example of EDA signal, together with its tonic and phasic components  

Since sweat glands are exclusively innervated by the SNS [93], the increase in SNS 

activity associated with pain causes sweat to be discharged into pores on the skin surface. 

The association between EDA and pain has been studied for decades [94], with more 

recent studies proving its sensitivity to different pain conditions [95]–[98].  

2.2.1.3 Electromyography 

Electromyography (EMG) signals represent the electrical current generated by the 

contraction of skeletal muscles. The most used technique is the superficial EMG, 

recording muscle activity through electrodes placed on the skin, collecting the activity of 

several motor units [99]. Figure 2.5 shows an example of an EMG signal. 

EMG signal was one of the first MPS to be evaluated for pain assessment. It is still used 

mainly to detect facial expressions related to pain, placing the electrodes on facial muscles 

well known to be activated in case of painful sensations, such as the corrugator muscles 

or the zygomaticus muscle [100], [101]. Surface EMG has also been widely used to 
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evaluate low back pain, recording the electrical activity of muscles around the spine [102], 

[103]. 

 

Figure 2.5 Example of EMG signal 

2.2.1.4 Respiration 

The respiratory signal is a quasi-periodic signal representing the fluctuations given by the 

inspiration and expiration phases. It is mainly exploited to estimate the breathing rate 

[104]. Figure 2.6 depicts a stream of a few seconds of a respiratory signal.  

 

Figure 2.6 Example of a respiratory signal 

The respiratory system is greatly affected by pain sensation, still through the ANS 

activity, resulting in increased respiration flow, frequency, and volume [105]. Respiration 

can be monitored either by using ad-hoc sensors placed on the chest or by extracting slow 

ECG or PPG modulations [106]. In both cases, it has already been assessed to be 

associated with pain intensity [107], [108].   

2.2.1.5 Physical activity 

Physical activity has been called a “vital sign” after its close link to health and wellness 

has been defined [109]. However, until a few years ago, assessment of physical activity 
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was aimed only at evaluation for clinical purposes, mainly conducted through 

questionnaires. Nowadays, with the consistent spread of accelerometer sensors, the 

objective evaluation of physical activity is within reach of all. An example of a tri-axial 

accelerometer signal is depicted in Figure 2.7. 

 

Figure 2.7 Triaxial accelerometer signal  

Physical activity has been evaluated mainly as related to chronic pain since it is very 

likely that such a condition may impact how one can move [110]. The main applications 

of physical activity measures in relation to pain are related to musculoskeletal pain [111], 

[112], such as low back pain [113], [114]. 

2.2.2 Automatic pain assessment methods 

Although the discoveries highlighted in the previous paragraphs concerning the 

sensitivity of certain physiological signals to the pain experience, the association between 

pain and physiological changes is not always so straightforward. Furthermore, the 

complexity of pain experience leads to a pattern of physiological modifications that can 

be difficult to fully grasp by using the standard statistical approach. 

While standard statistical methods allow us to appreciate differences, for example, 

between two or more populations, or to build knowledge-driven models to estimate pain 

based on physiological signals, in the last years, Artificial Intelligence (AI) has been 

gaining momentum, allowing to build data-driven models, much more convenient than 

the statistical models when the underlying functioning principle is partially or completely 

unknown.  

In particular, there has been a growing interest in the field of “emotion recognition”, the 

discipline encompassing all studies aiming at detecting emotions using technology, and 

automatic pain assessment through physiological signals falls within this category. 
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Such methods allow to develop three types of tools:  

• Classifiers: given a number of classes, the AI methods allow the patient to be 

categorized in one of the classes if, for example, a particular event has occurred 

or represents the belonging to a particular pathological condition (e.g., a patient 

suffering from chronic pain) 

• Regressors: a tool that establishes the functional relationship between the 

dependent variable (e.g., the intensity of the experienced pain) and one or more 

independent variables (e.g., parameters extracted from physiological signals) 

• Clustering: it allows grouping homogeneous elements in the dataset provided 

based on the similarity between the elements. 

To date, there are several studies investigating the possibility of assessing pain by using 

physiological signals [115], [116], some of which by recording them through wearable 

devices [117], [118]. 

2.2.3 Advantages of automatic pain assessment methods 

Compared to state-of-the-art pain assessment tools, methods to automatically assess pain 

by using physiological signals and AI algorithms can overcome several limitations:  

• Such an approach can be potentially used also in those cases in which patients 

cannot verbally communicate their pain 

• When even the monitored subject could verbally rate his or her pain, such methods 

would prevent the voluntary part from playing a role by underestimating or 

overestimating the experienced pain, giving a more objective evaluation 

• Compared to the instrumented tests used in clinical practice, they would provide 

a more economical solution, both in terms of money and time, given the simple 

setup that can be used to record the physiological signals 

• Some of the signals mentioned above have the extremely valuable aspect that they 

could be recorded using wearable sensors, thus allowing continuous and pervasive 

monitoring, having the possibility to record the physiological response exactly 

when and where the pain is experienced 

• Measures obtained with such this approach could be used to observe and evaluate 

the efficacy of a treatment more reliably and systematically compared to the 

outcomes produced by scales and questionnaires 
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3. WRIST PHOTOPLETHYSMOGRAPHY 

SIGNAL QUALITY ASSESSMENT FOR 

RELIABLE HEART RATE ESTIMATE 

AND MORPHOLOGICAL ANALYSIS 

From the manuscript: Moscato S., Lo Giudice S., Massaro G., Chiari L.: “Wrist 

photoplethysmography signal quality assessment for reliable heart rate estimate and 

morphological analysis”, Sensors, 2022 

3.1 Abstract 

Photoplethysmographic (PPG) signals are mainly employed for heart rate estimation but 

are also fascinating candidates in the search for cardiovascular biomarkers. However, 

their high susceptibility to motion artifacts can lower their morphological quality and, 

hence, affect the reliability of the extracted information. Low reliability is particularly 

relevant when signals are recorded in a real-world context, during daily life activities. We 

aim to develop two classifiers to identify PPG pulses suitable for heart rate estimation 

(Basic-quality classifier) and morphological analysis (High-quality classifier). We 

collected wrist PPG data over a 24h period from 31 participants. We defined four activity 

ranges based on accelerometer data and randomly selected an equal number of PPG pulses 

from each range to train and test the classifiers. Independent raters labelled the pulses into 

three quality levels. Nineteen features, including nine novel features, were extracted from 
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PPG pulses and accelerometer signals. We conducted ten-fold cross-validation on the 

training set (70%) to optimize hyperparameters of five machine learning algorithms and 

a neural network, and the remaining 30% was used to test the algorithms. Performances 

were evaluated using the full features and a reduced set, obtained downstream of feature 

selection methods. Best performances for both Basic- and High-quality classifiers were 

achieved using a Support Vector Machine (Acc: 0.96 and 0.97, respectively). Both 

classifiers outperformed comparable state-of-the-art classifiers. Implementing automatic 

signal quality assessment methods is essential to improve the reliability of PPG 

parameters and broaden their applicability in a real-world context. 

3.2 Introduction 

Wearable devices (WDs) are among the most widespread technologies introduced in 

recent years [119], potentially revolutionizing healthcare. With the aging population and 

the higher incidence of chronic diseases[120], [121], there is a growing need to provide 

healthcare services capable of reaching people who require frequent medical check-ups, 

especially those with low mobility and who live in remote areas. With their compact 

dimensions, high portability, and low manufacturing cost, WDs can efficiently perform 

long-term recordings outside healthcare facilities, allowing the remote, continuous 

monitoring of a user's health and, in turn, the early detection of anomalies [122], [123]. 

Commonly embedded in commercial smartwatches and fitness trackers worn at the wrist, 

one of the most used WD technologies is photoplethysmography (PPG), an optical 

technique that detects blood volume changes using a light source and a matched 

photodetector. The former illuminates a portion of the body surface, penetrating the skin 

and blood vessels. The latter detects the changes (using reflected or transmitted light, 

based on the PPG sensor design [124]) modulated by the pulsatile blood flow, which 

mainly depends on the heartbeat, vessel stiffness, and respiratory rate [125].  

The PPG signal presents a quasi-periodic stereotyped waveform, commonly called PPG 

pulse, which occurs with each heartbeat [83]. Each PPG pulse can be divided into two 

phases: the anacrotic phase, which relates to the systolic heart contraction, and the 

catacrotic phase, which depends both on the diastolic heart phase and on the pulse wave 

reflected from the peripheral artery [126]. Within each PPG pulse, in ideal conditions, 

four fiducial points can be identified, as highlighted in Figure 3.1:  

• Systolic foot: the beginning of the systolic phase and the minimum of the pulse; 
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• Systolic peak: the most prominent maximum; 

• Dicrotic notch: most visible in healthy young subjects, it is supposed to represent 

the closure of the aortic valve [127]; 

• Diastolic peak: the second prominent maximum of the pulse. 

 

Figure 3.1 The shape of a typical PPG pulse 

The PPG signal is strictly related to heart dynamics. Indeed, it is extensively used in 

commercial devices for heart rate (HR) estimation [121], [128] and subsequent HR varia-

bility (HRV) analysis [129], [130]. For example, HR can be estimated simply by detecting 

the systolic feet or peaks, calculating the time difference between two consecutive oc-

currences, and then calculating the ratio between 60 and the calculated time difference, 

expressing it in beats/min [131], [132].  

Besides the HR estimation, it has long been recognized that the PPG signal carries 

valuable information in its morphology [133]. Recent research has corroborated this 

finding in emotion recognition [86], [115], [134] and cardiovascular measurements [135], 

[136].  

In real-world applications, the preferred ground for PPG technology, obtaining reliable 

estimates both for HR and morphological features, is hampered by its high susceptibility 

to external noise and motion artifacts [137], [138]. Consequently, the information above 

cannot be used in clinical practice for diagnostic purposes. Before further processing, a 

signal quality analysis is essential to promote this signal's clinical use.  

Based on the definitions provided by the recent literature [120], [139], the quality of a 

PPG pulse exploitable for further analysis can be expressed as:  

• Basic-quality: systolic peaks are clearly identifiable; 



34 

 

• High-quality: the pulse waveform is clean and well-defined, with systolic and 

diastolic waves visible. 

While HR and some morphological features related to detecting the systolic peak can be 

estimated from Basic-quality pulses, more sophisticated morphological features require 

the detection of both systolic and diastolic peaks [140]–[142], so only High-quality pulses 

are suitable. 

Several researchers have already developed automatic methods for PPG signal quality 

assessment. Table I shows a selection of their works [139], [143]–[152]. 

Table 3.1 State of the art for the PPG signal quality algorithms 

Ref 

PPG 

sensor 

position 

Settings # subjects 

Pulse-

wise or 

segment-

wise 

Ground truth Method 

# 

quality 

levels 

[143] 

Finger 

and 

Wrist 

Clinical 

13 stroke 

patients + 500 

patients 

retrospectively 

selected 

30 s 

segments 

Labels from 5 

raters 

Support 

Vector 

Machine with 

42 features 

2 + "not 

sure" 

[145] Wrist 
Real-

World 

10 elderly 

subjects + 16 

young subjects 

10 s 

segments 

Labels from 17 

raters 

Random forest 

with 9 features 
5 

[146] Wrist 
Real-

World 

50 healthy 

subjects 

Pulse-

wise 

Labels from 1 

rater 

Signal 

similarity 

between 

adjacent 

pulses 

3 

[147] Wrist 
Real-

World 

17 epilepsy 

patients 

7 s 

segments 

Correspondence 

with RR from 

ECG 

Support 

Vector 

Machine with 

PPG and 

accelerometer 

features 

2 

[148] Finger 

Clinical 

(public 

DB) 

69 subjects 

from 3 public 

databases 

Pulse-

wise 

Labels from 2 

raters 

Rules-based 

algorithm with 

13 quality 

checks 

2 
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[149] Finger 

Clinical 

(public 

DB) 

44 patients 

from 2 public 

databases 

Pulse-

wise 

Labels from 1 

rater 

Correlation 

with a 

template 

2 

[139] Finger Clinical 
40 healthy 

subjects 

60 s 

segments 

Labels from 2 

raters 

Support 

Vector 

Machine with 

1 feature 

3 

[150] Finger 

Clinical 

(public 

DB) 

No info 
10 s 

segments 

Labels from 3 

raters 

Rules-based 

algorithm on 

HR estimate + 

correlation 

with a 

template 

2 

[151] Finger 

Clinical 

(public 

DB) 

120 subjects 
Pulse-

wise 

Labels from 1 

rater 

Non-linear 

scaling 

function based 

on adjacent 

pulses 

correlation 

2 

[152] Finger 

Clinical 

(public 

DB) 

No info 
6 s 

segments 
No info 

Deep learning 

algorithm with 

4 features 

(based on the 

comparison 

with a 

template) 

2 

[144] Finger Lab 
13 healthy 

subjects 

60 s 

segments 

Labels from 2 

raters 

Two-steps 

rules-based 

algorithm 

2 

Such studies significantly advanced the development of PPG signal quality algo-rithms, 

providing methods that can be used in real-time [148]–[150], trained on specific 

populations [143], [145]–[147], and validated by making use of publicly available 

datasets [148], [151], [152]. 

However, most previous studies only aim to detect PPG pulses for HR estimate, without 

rating their suitability for a more in-depth morphological analysis  [144], [147]–[152]. 

Moreover, some base the quality estimation on a time window that includes several pulses 

[139], [143]–[145], [147], [150], [152] rather than pulse-wise, losing relevant information 
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that individual PPG pulses can convey as a result. Such a segment-wise analysis might 

also discard pulses suitable for analysis.  

Although the publicly available datasets represent a considerable resource for training 

and testing automatic classifiers, they do not allow a proper quality characterization for 

real-world purposes. To the best of our knowledge, most of the currently available 

datasets are based on recordings of finger PPG signals in a clinical context, imposing 

several limitations. Since it is well-known that the morphology strongly depends on the 

measurement site [127], [153], the translation of a method based on signals recorded at 

the finger to signals recorded at the wrist (the preferred measurement site for real-world 

applications) is not feasible. Furthermore, the available datasets do not provide any 

ground truth information about the different quality of the signals (i.e., Basic and High), 

but only dichotomous labels (e.g., usable vs. non-usable). Finally, these datasets rely on 

hospital recordings, a context in which motion artifacts are far less frequent and less 

impactful than in the real world during daily life activities.  

Recent works used PPG signals recorded by wrist-worn WDs in a real-world context and 

collected PPG pulses prone to lifelike motion artifacts [145]–[147] to overcome these 

limitations. Unfortunately, in these studies, no information is provided about the motion 

of the sensors, so it is unclear to what degree the related method is robust to daily-life 

motion artifacts.  

This work aimed to develop two motion-aware classifiers:  

• Basic-quality classifier: it detects all pulses with valid information content, 

exploitable for HR estimation and the extraction of basic morphological features; 

• High-quality classifier: it detects all pulses with distinct systolic and diastolic 

waves, exploitable for the extraction of more in-depth morphological features. 

We collected wrist PPG data for about 24 hours to design and test our classifiers in a real-

world context. First, we defined different activity ranges to categorize the level of motor 

activity, which translates into motion artifacts in the PPG signals. Activity ranges were 

identified based on data from the accelerometer embedded in the same wrist-worn WD 

used to record the PPG signal. Then, for each range from each subject, we randomly 

selected PPG pulses to be classified. In this way, the classifiers could be trained using 

data subjected to different levels of motion artifacts, usually experienced in real-world 

contexts.  



37 

 

Such an approach could help in improving the reliability of the valuable biomarkers 

obtained by wrist PPG signals, minimizing the loss of information by conducting a pulse-

wise analysis and selecting pulses suited for a specific analysis (i.e., HRV and 

fundamental morphological analysis or a more in-depth morphological analysis). 

3.3 Materials and Methods 

3.3.1 Wearable device 

An Empatica E4 wristband was used to record the signals. Technical specifications are 

given at Appendix A.1. 

3.3.2 Participants 

A total of 31 recordings by as many participants were used. All the subjects were 

instructed to wear the Empatica E4 for 24 hours while carrying on with their normal daily 

activities. The participants were asked to provide their age and gender; other personal 

information was not collected. 

3.3.3 PPG processing and pulse detection 

The processing and pulse detection methods are reported in Appendix A.2. 

3.3.4 Activity index and definition of activity ranges 

In order to categorize pulses according to different amounts of movement, the activity 

index (𝐴𝑖𝑛𝑑) presented in [41] was calculated for each pulse. The complete processing 

pipeline is reported at Appendix A.3. 

Once we estimated the 𝐴𝑖𝑛𝑑for each recording, we defined four activity ranges (AR) 

based on the quartiles of all the 𝐴𝑖𝑛𝑑 values to label an equal number of pulses in each 

activity range. 

3.3.5 Labelling procedure 

Within each recording, we randomly selected a subset of 100 PPG pulses from each 

activity range, thus obtaining 400 pulses for each recording (12400 labelled pulses in 

total). Three independent raters (S.M., S.L., G.M.) then assigned a quality level to each 

pulse, selecting from one of the three levels defined below [154]: 
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• Bad (B): systolic and diastolic peaks cannot be easily distinguished from noise 

→The pulse is not suitable for further analysis. 

• Fair (F): the systolic peak is clearly detectable; the diastolic peak is not → It is 

possible to estimate the HR and some basic morphological features 

• Excellent (E): systolic and diastolic peaks are both clearly detectable → It is 

possi-ble to estimate the HR, basic morphological features, and perform in-depth 

morphological analysis 

An example of the three quality levels is illustrated in Figure 3.2. A Matlab graphic user 

interface was developed to help the raters annotate the quality of the selected pulses, 

shown in Figure 3.3. The Matlab findpeaks function was applied to highlight the local 

maxima of the selected pulse and help detect the systolic and diastolic peaks. 

Inter-rater agreement was assessed by calculating the overall Fleiss Kappa Score [155]. 

A majority voting approach was applied to determine the level if only two raters agreed. 

If there was no agreement among raters (i.e., each rater chose a different quality level), 

the pulse was automatically labelled as B. 

3.3.6 Signal quality indices 

We estimated nineteen signal quality indices (SQIs), listed in Table 3.2, corresponding to 

the selected and labelled pulses recorded in a real-world context. Specifically, we 

estimated: 

• 2 SQIs from accelerometer data 

• 17 SQIs from PPG pulses 

Labelled PPG pulses were divided into training and test sets, with a proportion of 70% 

for the training set (22 subjects; 8800 pulses) and 30% for the test set (9 subjects; 3600 

pulses). 

SQIs from the training and test set pulses were then separately subjected to a Box-Cox 

transformation [156] and z-scored. 
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Figure 3.2 Examples of Bad, Fair, and Excellent quality pulses. Asterisks represent the local 

maxima for each pulse found by the Matlab findpeaks function 

 

Figure 3.3 Matlab graphic user interface for PPG pulses annotation 

3.3.7 SQIs selection 

In order to limit the use of redundant SQIs, we applied a Neighborhood Component 

Analysis (NCA) separately for the two classifiers. NCA is a non-parametric method for 

selecting features to maximize a classifier’s accuracy [157]. As output, NCA provides a 

weight for each feature: the higher the weight, the more influential the feature is for 
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solving the classification problem. We first tuned the NCA regularization parameter λ 

using ten-fold cross-validation on the training set to find the value that minimizes the 

classification loss. We then labelled those features with a weight greater than 20% of the 

maximum weight. In order to reach higher robustness of the selected features set, we ran 

the NCA ten times and then selected those features that were labelled at least 80% of the 

time. 

Table 3.2 Signal quality indices (SQIs) for quality classification 

 

  

SQI Description Source Ref 

Peak2peakACC Peak to peak acceleration vector magnitude ACC This paper 

MeanACC Mean acceleration vector magnitude ACC This paper 

SigSim Correlation between consecutive PPG pulses  PPG [146] 

Entropy Entropy PPG [139] 

Kurtosis 

Heavy tail and peakedness or a light tail and 

flatness distribution relative to the normal 

distribution 

PPG [139] 

SNR Signal-to-noise ratio PPG [139] 

RelPower 

Ratio of the power spectral density in the 1-2.25 

Hz band compared to the overall power spectral 

density 

PPG [139] 

Skewness 
Measure of the symmetry of a probability 

distribution 
PPG [139] 

ZR Zero-crossing rate PPG [139] 

Amplitude Systolic peak amplitude PPG [144] 

Width Pulse width  PPG [144] 

TroughDepth 
Systolic feet amplitude difference between 

consecutive systolic feet 
PPG [144] 

MedianPulse Median value of the z-scored PPG pulse  PPG This paper 

MedianPulse_noZ Median value of the original PPG pulse  PPG This paper 

MeanPulse_noZ Mean value of the original PPG pulse PPG This paper 

StdPulse_noZ Standard deviation of the original PPG pulse PPG This paper 

SNR_Moody Signal-to-noise ratio by Moody’s algorithm PPG This paper 

Npeaks Number of detected local maxima PPG This paper 

ZDR First derivative zero-crossing rate PPG This paper 
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3.3.8 Basic and High quality classifiers 

We designed the following classifiers: 

• Basic-quality (BQ) classifier: it detects those pulses that can be used to esti-mate 

heart rate and for basic morphological analysis (i.e., the union of F and E pulses);  

• High-quality (HQ) classifier: it detects those pulses that can be used for an in-

depth morphological analysis (i.e., E pulses). 

To develop the HQ classifier, we investigated two alternative strategies:  

1. discern the union of B and F pulses against E pulses through a single-stage 

approach; 

2. discern between F and E pulses downstream of a BQ classifier through a multi-

stage approach. 

A scheme illustrating the two strategies and the related classifiers is shown in Figure 3.4. 

In summary:  

• the BQ classifier is trained to detect the F&E classes against the B class; 

• the Type 1 HQ classifier (HQ1) is independent of BQ and is trained to de-tect the 

E class against the B&F class (Figure 3.4, panel A);  

• the Type 2 HQ classifier (HQ2) is trained to detect the E class against the F class, 

having as an input the pulses selected by the BQ classifier (Figure 3.4, panel B). 

 

Figure 3.4 Schematic representation of the classification strategies. (A) Two independent classifiers: 

the Basic-quality classifier aiming at detecting Fair and Excellent pulses against Bad pulses, and the 

Type 1 High-quality classifier, aiming to detect Excellent 
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We first split the dataset into training (70%) and test (30%) sets both for BQ and HQ 

classifiers. We then conducted a ten-fold cross-validation on the training set with five 

machine learning (ML) algorithms (Tree, Naïve Bayes, Support Vector Machine, K-

nearest neighborhood, Ensemble) and a neural network (NN) for hyperparameters 

optimization by using Bayesian optimization with 30 iterations. Finally, we trained and 

tested the classifiers with the full features set, and the SQIs selected features only. 

We computed the following performance metrics on unseen data coming from the test set 

relative to the detection of eligible pulses (F&E pulses for the BQ classifier, E for HQ 

classifiers): area under the ROC curve (AUC), accuracy, sensitivity, specificity, 

precision, Matthew’s correlation coefficient (MCC), F1 score, and Cohen’s kappa (κ). 

All the methods were implemented in Matlab 2021b [158]. The whole signal processing 

and classification pipeline is illustrated in Figure 3.5. 

 

Figure 3.5 Signal processing and classification pipeline 

3.3.9 State-of-the-art classifiers 

We selected and adapted two classifiers from the literature to establish a benchmark for 

the performance of our classifiers. 

i) Jang et al. [146] proposed two classifiers based on the signal similarity between 

adjacent PPG pulses, a parameter also used in our work (SigSim). Their study identified 

three quality levels (i.e., good, moderate, and low) based on detecting the PPG pulse 

second derivative’s fiducial points [83]. Then, two dichotomous classifiers, conservative 

and non-conservative, were developed. The former compares the good-quality level 

pulses against the merge of moderate- and low-quality level pulses, while the latter 

compares the good- and moderate-quality level pulses against low-quality level pulses. 

Each classifier is based on a fixed threshold, determined using the equal training 

sensitivity and specificity criterion [159], meaning that the optimal threshold is obtained 

by minimizing the difference between sensitivity and specificity. Jang et al.’s non-

conservative classifier is analogous to our BQ classifier, while their conservative 

classifier is analogous to both our HQ1 and HQ2 classifiers. 
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ii) The classifier proposed by Elgendi [139] is built on a Support Vector Machine that 

classifies 60-second PPG segments as belonging to one of three quality levels (i.e., 

excellent, acceptable, or unfit for diagnosis) based on the skewness property of the 

segment. We adapted this method to perform a pulse-wise analysis. Furthermore, since 

no information regarding the hyperparameters was reported, we applied the same 

approach described in Section 3.3.8 to find the best hyperparameters combination. 

3.4 Results 

3.4.1 Experimental data 

We obtained real-world recordings of physiological signals from 31 subjects (15 males, 

16 females), with a mean age of 37 years (±14) and an average recording length of 26:50 

hours (±05:51). All subjects were Caucasian, except for one African subject.  

3.2. Activity ranges 

From the 𝐴𝑖𝑛𝑑 values estimated from the accelerometer signal, we obtained the following 

AR built on the quartile values of the 𝐴𝑖𝑛𝑑 distribution: 

• AR0: [0 – 0.0407] 

• AR1: (0.0407 – 0.4125] 

• AR2: (0.4125 – 1.3254]   

• AR3: (1.3254 to 6.7474] 

According to the classification proposed by Lin et al. [160], the activity ranges 0–3 

correspond to rest/sleep, rest/sleep/sedentary, light, and light/moderate activity, 

respectively. This means that the distribution of 𝐴𝑖𝑛𝑑 is skewed towards lower activity 

levels in our population. 

3.4.2 Labelling results 

A total of 12400 pulses were labelled by three independent raters, who agreed on 86% of 

the labels. Only 57 pulses (0.004%) were labelled differently by each rater and hence 

relegated to the B category. Overall, the inter-rater agreement was high, with a Fleiss 

Kappa Score of 0.84, representing perfect agreement according to Landis and Koch [161]. 

Using a majority voting approach, we set the final labels to train and test the classifiers: 

5962 B pulses (48.08%), 4612 F pulses (37.19%), and 1826 E pulses (14.73%). The 

overall distribution of the three quality levels among the four activity ranges is shown in 
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Figure 3.6. As expected, as the 𝐴𝑖𝑛𝑑 (the amount of movement) increases, the percentage 

of B pulses gets higher, and the percentage of F and E pulses gets lower. 

 

Figure 3.6 Distribution of the three quality classes among different activity ranges (AR). B = Bad, F 

= Fair, E = Excellent 

3.4.3 SQIs selection 

Said N the pulse length, the computational complexity to calculate the 19 features is 

approximately 37*N FLOPs. The computational complexity for each feature is reported 

in Appendix B, Table B.1. 

We conducted SQIs selection separately for the BQ, HQ1, and HQ2 classifiers. In Table 

3.3, the best λ values and their respective minimum classification loss values are reported 

for the three classifiers. 

Table 3.3 Final best λ values for neighborhood component analysis and the related minimum 

classification loss 

  BQ HQ1 HQ2 

Min classification loss 0.0498 0.0395 0.0575 

Best λ 0.0017 0.0011 0.016 

                   BQ = Basic Quality; HQ1 = High Quality 1; HQ2 = High Quality 2 

The selection phase identified eight SQIs for the BQ classifier (Peak2PeakACC, SigSim, 

TroughDepth, MedianPulse, StdPulse_noZ, SNR_Moody, Npeaks, and ZDR), nine SQIs 

for the HQ1 classifier (Peak2PeakACC, SigSim, Kurtosis, RelPower, Skewness, Medi-

anPulse, StdPulse_noZ, Npeaks, and ZDR), and nine SQIs for the HQ2 classifier 

(Entropy, Kurtosis, RelPower, Skewness, MedianPulse, StdPulse_noZ, SNR Moody, 

Npeaks, and ZDR). Results from each iteration of the NCA are reported in the Appendix 

B, Table B.2, Table B.3, and Table B.4 for the BQ, HQ1, and HQ2 classifiers, 

respectively. 
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3.4.4 Basic quality classifiers 

A total of 5962 pulses belong to the B class (4260 used in the training set and 1702 in the 

test set), while 6438 pulses belong to the F&E class (4540 used in the training set and 

1898 in the test set). 

Table 3.4 presents the performances of the BQ classifiers on the test set. The best method 

using the full features set is the SVM with a Quadratic kernel, reaching an accuracy of 

0.9606 and a well-balanced sensitivity (0.9603) and specificity (0.9547). On the other 

hand, the GentleBoost Ensemble reached the best performance among the methods 

trained and tested with the selected SQIs, with slightly lower values for accuracy (0.9536) 

and sensitivity (0.9384) but specificity (0.9706) higher than the best method using the full 

features set. Final hyperparameters are reported in Appendix B, Table B.5.  

Concerning the state-of-the-art classifiers, the threshold based on the equal train-ing 

sensitivity and specificity criterion (identified in the work of Jang et al. [146]) is 0.922. 

Concerning the classifier proposed by Elgendi [139], the SVM with the Gaussian kernel 

function provided the best performance in terms of sensitivity (0.8398) and specificity 

(0.5764) with an accuracy of 0.7153. Our classifier outperformed both state-of-the-art 

classifiers for the selected performance measures. Results obtained with state-of-the-art 

classifiers are shown in the lower panel of Table 3.4. 

3.4.5 High-quality classifiers 

For the Type 1 High-quality classifiers, a total of 10574 pulses belong to the B&F class 

(7754 used in the training set and 1702 in the test set), while 1826 pulses belong to the E 

class (1046 used in the training set and 780 in the test set). 

Table 3.5 presents the performances of the HQ1 classifiers on the test set. The best method 

for balancing sensitivity and specificity is the SVM, using all the features (Sens = 0.9244, 

Spec = 0.9784) or the subset of selected SQIs (Sens = 0.9192, Spec = 0.9702). In both 

cases, the SVM has a Quadratic kernel. Final hyperparameters are reported in Appendix 

B, Table B.6. 

For the Type 2 High-quality classifiers, 4612 pulses belong to the F class (3494 used in 

the training set and 1118 used in the test set), while the distribution of pulses belonging 

to the E class is the same used to train and test the HQ1 classifiers  

Table 3.6 presents the performances of the HQ2 classifiers on the test set. The kNN 

method using the subset of features selected by the NCA provided the best results 
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regarding sensitivity-specificity balance (Sens = 0.9321, Spec = 0.9195). Final 

hyperparameters are reported in Appendix B, Table B.7. 

By comparing the best HQ1 and HQ2 classifiers, HQ1 achieved better performances in 

terms of accuracy and specificity (Acc = 0.9667, Spec = 0.9784) with respect to HQ2 

(Acc = 0.9247, Spec = 0.9195), but slightly lower sensitivity (HQ1 Sens = 0.9244 vs. 

HQ2 Sens = 0.9321).  

Concerning the state-of-the-art classifiers, the threshold identified for the HQ1 classifier 

with Jang’s method [146] was 0.991. The linear SVM obtained the best performance in 

reproducing the classifier proposed by Elgendi [139]. However, both state-of-the-art 

classifiers performed worse than our classifier: the accuracy was 0.7090 for Jang’s and 

0.8406 for Elgendi’s. Notably, the former reached moderate sensitivity (0.6301) and 

specificity (0.7245), while the latter showed a sensitivity closer to zero (0.0167).  

The threshold for the HQ2 classifier with Jang’s method [146] was 0.993. In reproducing 

the Elgendi’s classifier [139], the quadratic SVM obtained the best performance. Also in 

this case, both state-of-the-art classifiers performed worse than our best HQ2 classifier, 

similar to what we observed for the HQ1 classifier. 

3.5 Discussion 

In this work, we developed automatic classifiers to detect PPG pulses suitable for further 

processing based on their peculiar morphological characteristics. First, using 

accelerometer data, we estimated the activity level of the subjects. We then detected four 

activity ranges based on the quartile values of aggregated Aind from all the recordings. 

From each recording, we randomly selected 100 pulses for each activity range. Of the 19 

SQIs estimated from each labelled pulse, eight and nine SQIs were selected to train and 

test the algorithms to develop the Basic- and the two High-quality classifiers, 

respectively. The best algorithms were then chosen, and the classifiers’ performances 

were compared against two state-of-the-art classifiers.  

Categorizing pulses by activity level allowed us to train the algorithms with pulses 

containing distinct amounts of motion artifacts. In this way, the ability of classifiers to 

detect PPG pulses suitable for heart rate estimate or for morphological analysis under 

various movement intensities could be achieved. However, it appears evident from Figure 

5 that only a tiny portion of pulses in the highest activity range reached F or E quality 

levels, even if the highest activity range in our dataset corresponded to light/moderate 
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activity in the staging proposed by Lin et al. [160]. Several methods have been proposed 

to suppress the effect of motion artifacts on the PPG signals, either via software [162], 

[163] or hardware [164], [165] approaches. Our results suggest that future studies should 

combine algorithms for motion artifact suppression with a layer dedicated to signal 

quality analysis. This approach would be more conservative, allowing to obtain reliable 

parameters from a larger proportion of recorded pulses, even during intense physical 

activity.  

The three independent raters reached a perfect agreement in the labelling procedure, 

probably thanks to the strict definitions given for each quality level. The high level of the 

inter-rater agreement also ensures the reliability of the resulting classifiers. 

For each PPG pulse, we estimated 19 SQIs, calculated from two sources (i.e., PPG and 

ACC signals). Nine SQIs were novel and proposed for the first time in this study. The 

SQIs feature selection phase revealed that eight and nine SQIs were sufficient to solve 

the classification problem optimally for the BQ and for both types of HQ classifiers, 

respectively. It is worth noting that most of the selected SQIs are novel features. In 

particular, two of the newly introduced statistical parameters (MedianPulse, 

StdPulse_noZ) and two parameters related to the PPG pulse morphology (Npeaks, ZDR) 

were selected for all classifiers here presented, adding important information which 

helped better solve the classification problem.  

Although the extraction of multiple features inevitably increases the computational 

complexity compared with the extraction of a single feature, the cost of the features 

presented in this work remains low and grows linearly with N. Moreover, it is interesting 

to note that the NCA selected features with increasing computational complexity for the 

BQ (5*N FLOPs), HQ1 (19*N FLOPs), and HQ2 (25*N FLOPs) classifiers, in line with 

the increasing complexity of the classification problem. 

It is also worth noting that the Peak2PeakACC feature from the accelerometer data has 

been selected only for BQ and HQ1 classifiers, and not for the HQ2 classifier. This can 

be ascribed to the fact that B pulses (involved in both BQ and HQ1 classifiers) are 

generated because of motion artifacts, while the F and E pulses are largely independent 

of the movement. 

All the implemented algorithms performed well to achieve BQ and HQ1 classifiers. 

Except for the Neural Network fed with the full features set, all the methods showed an 

accuracy higher than 0.90. However, the two classifiers differed in sensitivity and 
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specificity: BQ classifiers showed a balanced sensitivity and specificity, while the HQ 

classifiers had specificity higher than sensitivity (on average, 0.9728 compared to 

0.9729). This difference can be ascribed to the imbalance in the number of pulses in the 

two classes (only 1826 pulses belonging to the E class compared to 10574 belonging to 

B&F classes), meaning that the algorithms are better trained in detecting pulses be-

longing to B&F class than to the E class.  

Still regarding performance, some algorithms used to develop the HQ2 classifiers 

performed relatively poorly, except for the Ensemble and Tree algorithms. Again, the 

imbalance between F and E pulses (4612 F pulses against 1826 E pulses) may have played 

a role. However, as also pointed out by Elgendi [139], it was reasonable to expect that a 

classifier aiming at detecting E pulses against pulses belonging to a single quality level 

achieved worse performance than a classifier trained to detect E pulses against different  

quality pulses. In addition, it is necessary to consider the inevitable error propagation that 

a system of two cascaded classifiers entails. 

 



 

 

 

Table 3.4 Performances for Basic-quality classifiers 

Method AUC   Acc   Sens   Spec   Prec   MCC   F1   κ 

 
All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 

Tree 0.9389 0.9413  0.9386 0.9406  0.9331 0.9283  0.9448 0.9542  0.9496 0.9576  0.8771 0.8814  0.9413 0.9428  0.877 0.881 

NB 0.9242 0.9227  0.9219 0.92  0.883 0.8725  0.9653 0.973  0.966 0.973  0.8477 0.8455  0.9227 0.92  0.8442 0.8405 

SVM 0.9606 0.9519  0.9603 0.9514  0.9547 0.9431  0.9665 0.9606  0.9695 0.9639  0.9205 0.9028  0.962 0.9534  0.9204 0.9026 

KNN 0.9497 0.9455  0.9489 0.9453  0.9341 0.942  0.9653 0.9489  0.9678 0.9536  0.8983 0.8904  0.9507 0.9478  0.8977 0.8903 

Ensemble 0.9546 0.9545  0.9539 0.9536  0.942 0.9384  0.9671 0.9706  0.9696 0.9727  0.9081 0.9078  0.9556 0.9552  0.9077 0.9071 

NN 0.9513 0.9511   0.9508 0.9508   0.942 0.9457   0.9606 0.9565   0.9639 0.9604   0.9018 0.9016   0.9528 0.953   0.9015 0.9015 

Jang et al. 2018 0.9265  0.9253  0.9025  0.9506  0.9532  0.8519  0.9272  0.8506 

Elgendi 2016 0.7081   0.7153   0.8398   0.5764   0.6886   0.4337   0.7567   0.4215 

Table 3.5 Performances for Type 1 High-quality classifiers (HQ1) 

Method AUC   Acc   Sens   Spec   Prec   MCC   F1   κ 

 
All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 

Tree 0,9144 0.9217  0.9494 0.9464  0.8526 0.8782  0.9762 0.9652  0.9085 0.8748  0.8484 0.8423  0.8796 0.8765  0.8477 0.8423 

NB 0.8838 0.8838  0.9247 0.9283  0.8115 0.8051  0.956 0.9624  0.8362 0.8556  0.776 0.7848  0.8237 0.8296  0.7758 0.7843 

SVM 0.9517 0.9447  0.9667 0.9592  0.9244 0.9192  0.9784 0.9702  0.922 0.8951  0.9019 0.881  0.9232 0.907  0.9019 0.8809 

KNN 0.8996 0.9234  0.9386 0.9497  0.8308 0.8769  0.9684 0.9699  0.8792 0.8895  0.816 0.8512  0.8543 0.8832  0.8155 0.8511 

Ensemble 0.9243 0.9107  0.9614 0.9539  0.859 0.8346  0.9897 0.9869  0.9585 0.9462  0.8839 0.8608  0.906 0.8869  0.8818 0.8581 

NN 0.7556 0.9078   0.8881 0.9383   0.5218 0.8538   0.9894 0.9617   0.9314 0.8605   0.6448 0.8178   0.6689 0.8571   0.6078 0.8178 

Jang et al. 2018 0.7135  0.7292  0.6859  0.7411  0.4230  0.3685  0.5232  0.3486 

Elgendi 2016 0.5   0.7831   0   0.9906   0   0.0088   NaN   0.00005 
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Table 3.6 Performances for Type 2 High-quality classifiers (HQ2) 

Method AUC   Acc   Sens   Spec   Prec   MCC   F1   κ 

 
All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 
 

All 

SQIs 

Sel. 

SQIs 

Tree 0.9223 0.8933  0.9278 0.9052  0.891 0.8269  0.9535 0.9597  0.9304 0.9348  0.8505 0.8046  0.9103 0.8776  0.8499 0.8006 

NB 0.5 0.5  0.5885 0.5885  0 0  0.9991 0.9991  0 0  0.0192 0.0192  NaN NaN  0.0011 0.0011 

SVM 0.7313 0.9393  0.7713 0.9331  0.5064 0.9744  0.9562 0.9043  0.8896 0.8766  0.5376 0.8679  0.6454 0.9229  0.4948 0.8641 

KNN 0.7889 0.9258  0.8145 0.9247  0.6449 0.9321  0.9329 0.9195  0.8702 0.8898  0.6177 0.8462  0.7408 0.9105  0.6013 0.8455 

Ensemble 0.9358 0.9191  0.943 0.9273  0.8949 0.8731  0.9767 0.9651  0.9641 0.9458  0.8829 0.8499  0.9282 0.908  0.8812 0.8481 

NN 0.5331 0.5258   0.6122 0.6096   0.0885 0.0551   0.9776 0.9964   0.734 0.9149   0.1499 0.1632   0.1579 0.104   0.0762 0.0601 

Jang et al. 2018 0.5055  0.5042  0.4397  0.5492  0.405  0.0109  0.4216  0.0108 

Elgendi 2016 0.5   0.5885   0   0.9991   0   0.0192   NaN   0.9204 
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There may be some B pulses wrongly classified within the F&E pulses by the first stage 

BQ classifier, so performances might be even worse than the ones reported in this study 

since the HQ2 classifier has been trained and tested only with real F and E pulses. 

Our best classifiers outperformed the two state-of-the-art classifiers. Notably, the 

identified thresholds set for the Jang et al. [146] classifiers were higher than the values 

reported in the original work: 0.922 versus 0.673 for the BQ classifier, 0.991 (0.993) 

versus 0.796 for the HQ1 (HQ2) classifier. These discrepancies could be due to the higher 

quality levels of the F and E pulses identified in this work. However, the Jang et al. [30] 

BQ classifier attained good performance, with an accuracy of 0.9253, considering that a 

single SQI was used. On the other hand, the classifier proposed by Elgendi [24] 

demonstrated moderate performance for the BQ classifier (Sens = 0.8398, Spec = 0.5764) 

and poor performance for both HQ classifiers (Sens = 0.0167, Spec = 0.8406 for type 1; 

Sens = 0, Spec = 0.9991 for type 2). 

The proposed classifiers can help extend the use of PPG signals recorded by wearable 

devices in the real world. On the one hand, the BQ classifier showed promising results, 

both in terms of sensitivity and specificity. Baek et al. [138] highlighted the detrimental 

effect on HRV analysis of missing inter-beat intervals. For this reason, a highly sensitive 

classifier is essential for detecting all pulses that can be used for HR estimation without 

losing discriminatory power by eliminating too many pulses because of their low quality. 

On the other hand, SVM selected as the best HQ classifier has high specificity with 

(relatively) low sensitivity. However, compared to other methods, it shows the best 

performance in terms of MCC, F1, and Cohen’s κ. The importance of a HQ classifier is 

obvious, given the number of significant applications that have been proposed in the last 

few years. Features extracted from PPG morphology could be used, for example, for 

stress detection purposes [141], [166], [167] or blood pressure estimation [168]–[170], 

thus allowing continuous monitoring with a simple wrist-band. A large part of the 

population at risk of developing, e.g., burnout syndromes or cardiovascular disease would 

benefit from this achievement. 

As a side result of this work, we built an annotated dataset that can be further exploited 

for future studies. As an ongoing activity, we are working on the preparation of the dataset 

to be publicly available.  

This study has some limitations, most of which are related to the sample population used 

to train and test the algorithms. First, more robust classifiers could be obtained by 
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increasing the sample size: more subjects and labelled pulses would indeed be beneficial, 

preferably including subjects with arrhythmias or other cardiac pathologies. As this study 

was conceived, the classifiers we developed cannot discern arrhythmias from noise, thus 

potentially discarding arrhythmic beats that could also be useful for diagnostic purposes. 

Moreover, the algorithms’ training phase could be re-fined considering subjects’ age. As 

pointed out in [125], the dicrotic notch is more pronounced in healthy young than in older 

adults; and PPG morphology changes with age [140]. Therefore, a future study could 

collect and balance pulses belonging to different age groups both in the training and 

testing set. In addition, a further advancement of the method here proposed can be 

achieved by using recordings from different devices to train the signal quality algorithm. 

In fact, the method here proposed could be device-dependent, thus limiting its use on 

recordings conducted with different devices. 

The classifiers developed in this study have not been tested in real-time. This is a crucial 

aspect to be assessed to understand whether the signal quality assessment can be smoothly 

embedded in the processing pipeline of wearable devices to provide reliable information 

with an acceptable delay [121]. Providing reliable health information in real-time would 

indeed facilitate the delivery of personalized treatments to the patient if and when needed 

[171]. 

3.6 Conclusions 

This work aimed to develop two pulse-wise classifiers to detect reliable wrist PPG pulses 

that can be used in a real-world context for heart rate estimation and morphological 

analysis. We trained and tested several algorithms with a combination of features derived 

from different sources, including several novel features, and by selecting PPG pulses 

subjected to different levels of motion artifacts. The best performances were obtained by 

using subsets of features for both Basic- and High-quality classifiers. For both classifiers, 

the SVM with a Quadratic kernel achieved the best performance. Our results could help 

in improving the reliability and generalizability of the valuable biomarkers obtained by 

wrist PPG signals. Furthermore, the pulse-wise approach minimizes the loss of 

information by selecting all pulses suitable for either heart rate variability or 

morphological analysis. Future work can optimize the classifiers by increasing the sample 

size (both in terms of subjects and various cardiac health conditions) used to train the 

algorithms and explore the feasibility of embedding these methods in wearable devices 

for real-time application. 
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4. QUALITY ASSESSMENT AND 

MORPHOLOGICAL ANALYSIS OF 

PHOTOPLETHYSMOGRAPHY IN 

DAILY LIFE 

From the manuscript: Moscato S., Palmerini L., Palumbo P., Chiari L., “Quality 

assessment and morphological analysis of photoplethysmography in daily life”, Frontiers 

in Digital Health, 2022, 4, 912353 

 

4.1 Abstract 

The photoplethysmographic (PPG) signal has been applied in various research fields, with 

promising results for its future clinical application. However, there are several sources of 

variability that, if not adequately controlled, can hamper its application in pervasive 

monitoring contexts. This study assessed and characterized the impact of several sources 

of variability, such as physical activity, age, sex, and health state on PPG signal quality 

and PPG waveform parameters (Rise Time, Pulse Amplitude, Pulse Time, Reflection 

Index, Delta T, and DiastolicAmplitude). We analyzed 31 24h recordings by as many 

participants (19 healthy subjects and 12 oncological patients) with a wristband wearable 

device, selecting a set of PPG pulses labeled with three different quality levels. We 
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implemented a Multinomial Logistic Regression (MLR) model to evaluate the impact of 

the aforementioned factors on PPG signal quality. We then extracted six parameters only 

on higher-quality PPG pulses and evaluated the influence of physical activity, age, sex, 

and health state on these parameters with Generalized Linear Mixed Effects Models 

(GLMM). We found that physical activity has a detrimental effect on PPG signal quality 

quality (94% of pulses with good quality when the subject is at rest vs 9% during intense 

activity), and that health state affects the percentage of available PPG pulses of the best 

quality (at rest, 44% for healthy subjects vs 13% for oncological patients). Most of the 

extracted parameters are influenced by physical activity and health state, while age 

significantly impacts two parameters related to arterial stiffness. These results can help 

expand the awareness that accurate, reliable information extracted from PPG signals can 

be reached by tackling and modeling different sources of inaccuracy. 

4.2 Introduction 

The digital healthcare revolution promises to switch from a hospital-centered model to a 

personal-centered model [172], offering the possibility to remotely and continuously 

monitor patients’ health state, thus reducing the use of bulky instruments and complicated 

procedures [173]. One of the key elements of this revolution is represented by wearable 

devices, which are small electronic systems that can be worn during daily life [174]. 

However, such devices are not used as diagnostic tools yet for several reasons, including 

ethical aspects, limitations in the infrastructure, and concerns related to data protection 

[175]. Nonetheless, wearable sensors have been used in several applications for research 

purposes, ranging from rehabilitation [175] and sport [176] to cardiovascular monitoring 

[177] and emotion recognition [178]. 

In this context, PPG sensors are one of the most widespread technologies within wearable 

devices [179]. PPG signals consists of a repetition of a stereotyped waveform, as already 

pointed out in Chapter 3.1. An example of PPG signal with the highlighted fiducial points 

is depicted in Figure 4.1. 

For various reasons, the fiducial points are not always traceable in the PPG pulses. Based 

on the fiducial points that can be detected, the quality of each PPG pulse can be expressed 

as [154]:  

• Basic quality: systolic peaks are identifiable, so reliable heart rate, heart rate 

variability parameters, and some basic morphological features can be derived; 
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• High quality: systolic and diastolic peaks are visible, so a more in-depth 

morphological analysis can be conducted. 

 

 

Figure 4.1 PPG fiducial points 

Currently, PPG sensors are mainly used for heart rate estimation in a real-world context: 

the heart rate can be estimated by simply calculating the time distance between two 

consecutive systolic feet or peaks [83]. Still, the PPG waveform morphology also carries 

relevant information that can be exploited, e.g., for arterial stiffness [168], [180] and 

blood pressure [181] indirect estimation, or early detection of adverse cardiac events 

[182] or mental disorders signs [183].  

Although the PPG signal has proven its potential as a helpful tool in different health 

domains, its clinical application is still hampered by its poor robustness to several sources 

of inaccuracy [184], which can be detrimental to the PPG signal quality or misleading for 

the interpretation of the extracted parameters [131]. This limitation is particularly 

emphasized in the real world, where the monitored subjects conduct their daily-life 

activities and are no longer in a controlled environment like in laboratory experiments. 

The recent article of Fine et al. [184] offers a detailed review of the main factors that 

influence the PPG signal and its extracted features. If not adequately controlled, these 

factors may preclude the development of reliable PPG-based applications. Specifically, 

Fine et al. grouped the sources of inaccuracy in three categories: external perturbations, 

variations within and across individuals, and physiology. As an external perturbation, 

physical movement is the primary source of inaccuracy in the PPG signal; on the one 

hand, it is well recognized that physical movement leads to signal quality deterioration 
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[131]; on the other hand, it also influences the cardiovascular system, and in turn, the PPG 

morphology, inducing temporary changes, as the cardiovascular system must adapt to the 

physical stress [167]. Another external source of inaccuracy is given by the contact 

pressure between the PPG sensor and the skin, significantly influencing the quality and 

the morphology of the recorded signal [185], [186]. Individual subject variations can also 

play a role in modifying PPG signal quality and morphology. For example, it is well 

known that the dicrotic notch is less visible as age increases [125], making systolic and 

diastolic waves less pronounced. This factor can lower the probability of finding High 

quality pulses in older subjects, limiting the possibility of conducting an in-depth 

morphological analysis. Also, it is well known that sex can affect the cardiovascular 

system, thus, in turn, the PPG morphology [187]. Finally, the health state can also have 

an impact on PPG, even in those cases in which the pathology is not closely related to the 

cardiovascular system. For example, some recent studies demonstrated the link between 

cancer and cardiovascular alterations, which can origin both from the pathology itself or 

from cancer treatment [188].  Several studies have already investigated the association 

between cancer and heart rate variability, pointing out significant parameters’ alterations 

in the oncological population [189], [190], also by using PPG [191]. In addition, some 

studies also revealed the impact of cancer [192] and related therapies [193] on PPG signal 

waveform.   From this evidence, it is clear that a PPG-based system that is agnostic to the 

health state of the subject may lead to misinterpretation of the extracted parameters, 

failing its primary goal of providing continuous accurate monitoring [184]. 

Whatever the final application, all these factors, if not adequately controlled, can have a 

dual negative effect: from one point of view, they can have a different impact on PPG 

signal quality, hindering the extraction of meaningful PPG features (e.g., a small amount 

of High pulses prevents a reliable, in-depth morphological analysis), and, from another 

point of view, they can act as confounding factors, invalidating the interpretation and the 

reliability of the parameters extracted from the PPG morphology. Therefore, to obtain a 

“true health monitoring” [184] PPG-based application, a proper characterization of these 

factors is crucial. 

This work aims to characterize the impact of these factors, namely physical activity, 

health state, age, and sex, both on PPG signal quality and PPG waveform parameters. We 

used a convenience sample of 31 participants, 19 healthy subjects and 12 oncological 

patients, monitored in a real-world scenario. For each subject, we selected an equal 
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number of PPG pulses for four different physical activity ranges (estimated by the 

accelerometer data) and labelled them with a quality level. Firstly, we evaluated the 

quality levels distribution based on the factors above. We then extracted six 

morphological parameters and appraised their behavior in relation to physical activity, 

health state, age, and sex. 

4.3 Materials and Methods 

4.3.1 Dataset 

Thirty-one subjects (19 healthy subjects and 12 oncological patients) were monitored for 

24 hours with the Empatica E4 wristband, whose technical specifications are provided in 

Appendix A.1. 

Subjects were instructed to conduct their daily routine activities and remove the E4 

wristband while showering. They were also asked to provide their age and sex. 

The study was conducted according to the declaration of Helsinki, and each subject signed 

informed consent before participating in the study. The two datasets (healthy subjects and 

oncological patients) belong to two different studies: 1) healthy subjects’ recordings were 

obtained from an internal data collection campaign involving researchers and students at 

the Personal Health Systems Lab of the University of Bologna; 2) oncological patients’ 

recordings come from an interventional study approved by the Local Ethical Committee 

(Area Vasta Emilia Centro, Bologna, Italy; approval n° 542-2019-OSS-AUSLBO) (31). 

4.3.2 Signal processing 

PPG signals were processed by following the procedure reported in Appendix A.2, 

obtaining the segmentation in PPG pulses.  

ACC signals’ components were preprocessed by following the procedure reported in 

Appendix A.3, obtaining the 𝐴𝑖𝑛𝑑.  

Each PPG pulse was then associated with an 𝐴𝑖𝑛𝑑 value as a final signal processing step. 

4.3.3 PPG pulse classification 

We randomly selected a subset of 100 PPG pulses for each AR within each subject’s 

recording, thus obtaining 400 pulses for each subject (12400 PPG pulses in total). We 

chose 400 pulses per subject as a good trade-off between the need to have a representative 

sample of all pulses and the clinical effort needed to evaluate and label them. It is also in 
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line with previous studies [140], [153]. Three independent raters (a cardiologist and two 

biomedical engineers, all three experts in cardiovascular signals) assigned to each pulse 

one of three quality levels: Bad (B), Fair (F), or Excellent (E), as reported in section 3.3.5 

An example of the three different quality levels is presented in Figure 4.2. 

 

Figure 4.2 PPG pulses with three different quality levels (from left to right): bad, fair, and excellent 

We adopted a majority voting approach to determine the level if only two raters agreed. 

If there was no agreement among raters, the pulse was automatically labelled as B. 

Based on these quality levels, Basic PPG pulses were obtained as the union between F 

and E pulses, while the High quality PPG pulses coincide with the only E pulses [150]. 

4.3.4 PPG waveform parameters estimation 

We estimated six PPG parameters only on those PPG pulses suitable for analysis (i.e., 

Basic and High quality pulses), thus discarding the B quality pulses. For both Basic and 

High quality pulses, the systolic peak is the highest value found using the Matlab findpeak 

function within each PPG pulse. For High quality pulses, the same Matlab findpeak 

function is applied, and the diastolic peak is found as the second-highest value. 

From Basic quality pulses, we estimated:  

• Rise Time (RT) [s]: time between the systolic foot and the subsequent systolic 

peak [194]; 

• Pulse Time (PT) [s]: time between two consecutive systolic feet [83], [140] 

• Pulse Amplitude (PA) [a.u.]: height of the systolic peak, with the previous systolic 

foot as the reference [153]. 

From High quality pulses, we estimated:  

• Reflection index (RI) [%]: ratio between diastolic and systolic amplitude [83], 

[140]; 
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• Delta T (ΔT) [s]: time lag between systolic peak and the subsequent diastolic peak 

[195]; 

• Diastolic Amplitude (DA) [a.u.]: height of the diastolic peak, with the previous 

systolic foot as the reference [83]. 

A graphical representation of the PPG above parameters is proposed in Figure 4.3. 

 

Figure 4.3 PPG morphology parameters 

4.3.5 Statistical analysis 

To qualitatively assess the impact of physical activity and health state on PPG signal 

quality, we evaluated the distribution of quality levels among the four AR and throughout 

the twenty-four hours separately for healthy and oncological subjects. To statistically 

assess the impact of physical activity, health state, age, and sex on PPG signal quality, we 

implemented a multinomial logistic regression (MLR) model. MLR is used to predict the 

relative probability of being in one category compared to being in a reference category, 

obtained with a linear combination of predictor variables that can be continuous or 

categorical. The logit function is usually employed as a link function for MLR models. 

Setting the K-th category as a reference, the MLR can be written as [196]: 

𝜋𝑗 = 𝑃𝑟(𝑦 = 𝑗|𝒙) =  
𝑒𝑥𝑝(𝜷𝒋

𝑻𝒙)

1 + ∑ 𝑒𝑥𝑝(𝜷𝒌
𝑻𝒙)𝐾−1

𝑘=1

 (4.1) 

where 𝜋𝑗 is the j-th category membership probability against the reference category K, 𝜷𝒋 

is the regression coefficients vector, and 𝒙 is the regressors vector. We set Aind 

(continuous variable), health state (dichotomous variable, 0 = healthy subject, 1 = 
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oncological subject), age (continuous variable), and sex (dichotomous variable, 0 = male, 

1 = female) as regressors vector. 

To evaluate the influence of physical activity, health state, age, and sex on PPG waveform 

parameters, we fitted each PPG parameter with a Generalized Linear Mixed-Effects 

Model (GLMM). GLMMs extend the generalized linear models, allowing to model both 

fixed and random effects. A simple Linear Mixed-Effects model can be written as [197]: 

𝐸(𝑦|𝑿, 𝒁) = 𝑿𝜷 + 𝒁𝒖 (4.2) 

where X is the matrix of the fixed effects, β is the vector of fixed effects regression 

coefficients, Z is the matrix of the random effects, u is the vector of random effects 

coefficients, and E(y|X,Z) is the expected outcome variable conditional on X and Z. In a 

“Generalized” Linear Mixed-Effects Model, the outcome variable can have a non-normal 

distribution so that a GLMM can be expressed as: 

𝑔(𝐸(𝑦|𝑿, 𝒁)) = 𝑿𝜷 + 𝒁𝒖 (4.3) 

where g(∙) is the link function for the outcome variable. The link function maps the 

relationship between the conditional, expected outcome and the linear combination of the 

predictors. There is an associated canonical link function for each distribution of the 

outcome variable. 

GLMMs are particularly useful when data samples are non-independent, such as, e.g., in 

a hierarchical structure (i.e., different instances coming from a single subject) [198]. We 

fitted one GLMMs for each of the six PPG parameters, using the Basic pulses to 

determine RT, PT, and PA, and the High quality pulses to determine RI, ΔT, and DA. We 

set the PPG parameter as the outcome variable, the four factors as the fixed effects, while 

the “subject” variable was set as the random effect to consider the inter-subject variability. 

We tested three different distributions for the GLMMs (and the respective link functions): 

normal (identity), gamma (negative inverse), and inverse Gaussian (inverse squared), the 

last two suitable to model non-negative outcome variables. Table 4.1 presents the three 

distributions and the respective link functions. We then chose the best model based on 

the Akaike Information Criterion (AIC) [199] and evaluated the results, both for fixed 

and random effects [200]. We performed a marginal F-test to determine the significance 

of single fixed-effects coefficients. To test the significance of the random effects, we 

evaluated the 95% standard deviation’s confidence interval as the estimated covariance 

parameter for the random effects (i.e., “subject”): if the interval does not contain 0, the 
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random effects are significant at the 5% significance level. The analyses were carried out 

on Matlab 2021b [158]. 

Table 4.1 Distribution of the outcome variable and respective link function 

Distribution Link function 

Normal 𝑔(𝜇) = 𝜇 

Gamma 𝑔(𝜇) = −𝜇−1 

Inverse Gaussian 𝑔(𝜇) = 𝜇−2 

4.4 Results 

4.4.1 Descriptive statistics 

We analysed PPG recordings from 31 subjects, 19 healthy subjects and 12 oncological 

patients (1 bone and soft tissue, 4 gastrointestinal, 2 genital tract, 1 endocrine, 1 

haematological, 2 breast, 1 urinary). The demographics of the sample are reported in 

Table 4.2. The average recording length was 26:50 (± 05:51) hours. 

Table 4.2 Dataset descriptive statistics 

  All Healthy Oncological 

Sample Size 31 19 12 

Age 37 ± 13.8 29.2 ± 7.1 49.5 ± 12.8 

Gender 16 M, 15 F 10 M, 9 F 2 M, 10 F 

Quartile values of the 𝐴𝑖𝑛𝑑 distributions were Q1 = 0.04, Q2 = 0.41, Q3 = 1.32, with a 

maximum value of 6.75. According to the classification made by Lin et al. (37), the four 

ARs correspond respectively to rest/sleep, rest/sleep/sedentary, light activity, and 

moderate activity.  

For the 12400 randomly selected pulses, the three independent raters agreed on 86% of 

the labels. By applying a majority voting approach, we obtained the following labels 

distributions: 5962 (48.1%) B pulses, 4612 (37.2%) F pulses, and 1826 (14.7%) E pulses. 

Table 4.3 reports the distribution of quality levels for each subject.. 

4.4.2 Impact on PPG pulses quality 

We evaluated the distribution of the three quality levels among the four ARs. As can be 

seen in Figure 4.5, panel a, the percentage of B pulses rises as the physical activity 

increases (ranging from 7% in AR0 to 92% in AR3), while the percentage of F and E 
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pulses decreases (from 62% in AR0 to 7% in AR3 for F pulses; from 32% in AR0 to 2% 

in AR3 for E pulses).  

Table 4.3 Distribution of quality levels among healthy subjects and oncological 

  Subject B F E 

Healthy 

Subjects 

1 251 81 68 

2 157 203 40 

3 133 255 12 

4 227 45 128 

5 214 57 129 

6 239 85 76 

7 136 164 100 

8 144 192 64 

9 207 155 38 

10 208 84 108 

11 276 60 64 

12 170 128 102 

13 139 197 64 

14 231 113 56 

15 103 185 112 

16 124 239 37 

17 217 106 77 

18 316 31 53 

19 126 59 215 

Oncological 

patients 

1 203 197 0 

2 147 242 11 

3 160 239 1 

4 229 168 3 

5 222 171 7 

6 206 147 47 

7 205 123 72 

8 194 183 23 

9 127 248 25 

10 217 173 10 

11 189 162 49 

12 245 120 35 

       B = Bad; F = Fair; E = Excellent 
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Figure 4.4 Distribution of the three quality levels among different activity ranges. a) All subjects b) 

Healthy subjects c) Oncological patients. 

By analyzing separately healthy and oncological subjects, the different distribution of the 

three quality levels appears evident (see Figure 4.5, panels b and c): oncological patients 

present a lower percentage of E pulses in all the ARs and a higher percentage of F pulses 

in the lowest ARs (84% and 67% for oncological patients against 48% and 45% for 

healthy subjects in AR0 and AR1, respectively). 

A graphical representation of the quality levels throughout the twenty-four hours is 

provided in Figure 4.6, together with the 𝐴𝑖𝑛𝑑 values. The figure shows the percentage of 

the different quality levels during each hour. A higher percentage of F and E pulses can 

be found during the night when the 𝐴𝑖𝑛𝑑 values are lower both evaluating the whole 

dataset (panel a) and dividing it into healthy (panel b) and oncological subjects (panel c). 

During the night, oncological patients present a lower number of B pulses (around 10%) 

compared to healthy subjects (around 20%).  
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Figure 4. 5 Distribution of the three quality levels and related activity index profile over the 24 

hours. a) All subjects. b) Healthy subjects. c) Oncological patients. 

From the MLR model, we obtained the results reported in Table 4.4, setting the B quality 

level as the reference category. We present here the β coefficients for each regressor (i.e., 

𝐴𝑖𝑛𝑑, health state, age, and sex), whose interpretation is the following: positive β 
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coefficients represent a direct association between the regressor and the probability of 

belonging to that category compared to the reference one; higher values mean a stronger  

Table 4.4 Multinomial Logistic Regression coefficients 

 
Fair* Excellent* 

  Estimate p-value Estimate p-value 

Intercept -0.4253 0.0001 0.7872 0 

AI -2.3154 0 -3.0329 0 

HealthState 0.1555 0.042 -0.8738 0 

Age 0.0327 0 -0.0088 0.0233 

Gender 0.8385 0 0.4781 0 

  * against Bad quality level (set as reference category) 

relationship between the regressor and the probability of belonging to that category 

compared to the reference one. 𝐴𝑖𝑛𝑑 has a significant impact on the relative probabilities 

(with respect to the B quality level) for both F and E quality levels: as 𝐴𝑖𝑛𝑑 increases, the 

relative probability of belonging to F and E quality levels decreases. Health state 

significantly influences the relative probability of having F and E quality pulses: 

oncological patients have an increased relative probability of having F pulses, while there 

is a lower relative probability for the same population of having E pulses. Finally, age 

significantly influences the relative probabilities of F and E quality levels: the coefficient 

has a positive value (0.03) for F quality level and a negative value (-0.0088) for E quality 

level. This means a higher relative probability of having F pulses and a lower relative 

probability of having E pulses as the age increases. Regarding sex, female subjects have 

an increased relative probability of having F (0.84) and E (0.48) pulses compared to 

males. 

4.4.3 PPG waveform parameters 

After grouping pulses into Basic (F+E) and High quality (E) pulses, we obtained the 

following proportions: 

• 6438 Basic quality pulses, 3944 from healthy subjects (61.3%), and 2494 from 

oncological subjects (38.7%) 

• 1826 High quality pulses, 1540 from healthy subjects (84.3%), and 286 from 

oncological subjects (15.7%) 

We fitted six different GLMMs, one for each PPG parameter, using the Basic pulses to 

determine RT, PT, and PA, and the High quality pulses to determine RI, ΔT, and DA. 
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Table 4.5 shows the AIC values for all the six models using normal, gamma, and inverse 

Gaussian distributions. Four out of six models were best fitted with a normal distribution 

(RT, PT, RI, and ΔT), while two (PA and DA) were best fitted with an inverse gaussian 

distribution. The interpretation of β coefficients for the two distributions (and the related 

link functions) is the following: for the normal distribution (and identity link function), 

positive coefficients indicate that the outcome variable increases if the predictor 

increases; for the inverse Gaussian distribution (and inverse squared link function), 

positive coefficients indicate that the outcome variable increases if the predictor 

decreases.  

Table 4.5 Akaike Information Criterion (AIC) for different models 

AIC Normal Gamma Inverse Gaussian 

RiseTime -18186 15611 41620 

PulseTime -10034 -7991.6 2326.1 

PulseAmpl -1337.1 -30577 -36263 

RI  -2863.2 -729.06 2926.7 

deltaT -6182.6 4067.1 11774 

DiaAmpl 1490.7 -4818.8 -5389.5 

In Table 4.6 results from the GLMMs are shown. All PPG parameters, except RT, are 

significantly influenced by physical activity (𝐴𝑖𝑛𝑑). Specifically, all the parameters 

coefficients tend to have lower values as the 𝐴𝑖𝑛𝑑 increases. The health state significantly 

influences PT, PA, RI, and DA: these parameters assume lower coefficient values for 

oncological patients than healthy subjects. Age significantly influences ΔT and DA: ΔT 

is shorter as age increases, while DA increases with age progression. Sex does not have 

any significant effect on the analyzed parameters. Since the 95% random-effects 

confidence intervals for all the PPG parameters do not contain the 0 value, inter-subject 

variability is significant for all the tested PPG parameters. This means that part of the 

dataset variability is introduced on a subject-basis (i.e., the values of each parameter are 

not constant across different subjects), so the values of the PPG parameters are best 

modelled with a subject-specific intercept. Figure 4.7 shows the graphical representation 

of both Basic and High quality PPG pulses, as the mean of the analyzed pulses, for 

different ARs and health states. 
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Table 4.6 Generalized Linear Mixed Effects Models 

 
Fixed Effects Random Effects σ(subject) 

    Estimate Lower Upper F-Test Estimate Lower Upper 

RT§ 

𝑨𝒊𝒏𝒅  -0.00 -0.0055 0.001 0.21 

0.03 0.03 0.04 

HealthState (Oncological)  -0.01 -0.03 0.005 0.14 

Age 0.0005 -0.0008 0.002 0.47 

Sex (Female)  -0.004 -0.02 0.01 0.61 

Intercept [s] 0.24 0.19 0.30 0 

PT§ 

𝑨𝒊𝒏𝒅  -0.12 -0.13 -0.12 0 

0.12 0.09 0.15 

HealthState (Oncological)  -0.12 -0.18 -0.05 0.0002 

Age  -0.0005 -0.005 0.004 0.85 

Sex (Female)  -0.03 -0.08 0.02 0.25 

Intercept [s] 0.94 0.76 1.11 0 

PA* 

𝑨𝒊𝒏𝒅  0.005 0.004 0.006 0 

0.005 0.004 0.006 

HealthState (Oncological) 0.003 0.0005 0.006 0.02 

Age  0.0001 -0.0001 0.0003 0.39 

Sex (Female)  0.0004 -0.002 0.002 0.71 

Intercept [a.u.] 0.10 0.09 0.11 0 

RI§ 

𝑨𝒊𝒏𝒅 -0.02 -0.04 -0.01 0.0003 

0.09 0.07 0.01 

HealthState (Oncological) -0.06 -0.11 -0.02 0.008 

Age 0.003 -0.0007 0.006 0.12 

Sex (Female)   0.02 -0.01 0.06 0.25 

Intercept [ ] 0.67 0.53 0.80 0 

ΔT§ 

𝑨𝒊𝒏𝒅 -0.01 -0.02 -0.01 0 

0.03 0.03 0.04 

HealthState (Oncological)  0.005 -0.01 0.02 0.58 

Age -0.001 -0.003 -0.0002 0.03 

Sex (Female) -0.001 -0.02 0.01 0.84 

Intercept [s] 0.30 0.24 0.35 0 

DA* 

𝑨𝒊𝒏𝒅 0.01 0.01 0.02 0.0001 

0.04 0.03 0.06 

HealthState (Oncological) 0.04 0.02 0.05 0.0004 

Age -0.002 -0.004 -0.0004 0.016 

Sex (Female) -0.01 -0.03 0.004 0.11 

Intercept [a.u.] 0.26 0.19 0.33 0 
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Figure 4.6 Basic and High quality pulses in different activity ranges (ARi, i=0,…,3), in healthy and 

oncological subjects. The represented pulses were obtained as the mean of all collected pulses for 

each AR and dividing them for healthy and oncological subjects. 

4.5 Discussion 

This study assessed the impact of several sources of inaccuracy on PPG signal quality 

and PPG waveform parameters by using 31 24h real-world recordings, 19 from healthy 

subjects and 12 from oncological patients. We randomly selected 400 pulses for each 

recording, 100 for each physical activity quartile and labelled them into three quality 

levels. We compared the quality levels distribution among different physical activity 

ranges throughout the 24 hours. We then used a Multinomial Logistic Regression model 

to quantitatively evaluate the impact of physical activity, health state, age, and sex on 

PPG signal quality. We finally estimated six PPG parameters only on higher-quality 

pulses (i.e., Basic and High quality) and fitted each of them into a Generalized Linear 

Mixed Effects model to evaluate their sensitivity to physical activity, health state, age, 

and sex.  
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Physical activity is well recognized as the main cause hindering the clinical application 

of PPG signals in daily life [201].  This study could demonstrate its detrimental effect by 

comparing the quality levels distribution among different physical activity ranges. As 

expected, as the physical activity got more intense, the percentage of higher quality pulses 

(i.e., F and E) got lower. Similar results were also obtained from the MLR model’s fitting, 

confirming a lower relative probability of having F and E pulses against B pulses as the 

physical activity increased. Reliable information can thus be gathered in case of low 

physical activity, for example, when the subject is at rest or in sedentary conditions, 

corresponding to AR0 and AR1, in agreement with previous literature [202]. As also 

Pradhan et al. [145] highlighted, the best data quality could be obtained during the night 

when the subjects were likely to be asleep. However, a prodromic signal quality analysis 

appears necessary to obtain reliable data from PPG signal processing. 

Another interesting aspect is the different quality distribution obtained by analyzing 

pulses of healthy and oncological subjects separately. The latter group showed a lower 

percentage of E pulses than the former in the lowest ARs, and concurrently a higher 

percentage of F pulses. In addition, cancer subjects were shown to have fewer negative 

pulses than healthy subjects. This could mean that the pathological condition (cancer in 

this case) does not affect the quality of PPG signal to such an extent that it completely 

loses its information content (i.e., B pulses) but rather negatively affects the morphology 

of PPG pulses by losing definition (i.e., F pulses). The MLR model confirms that for 

oncological patients and as the age increases, i) the relative probability of having F pulses 

(compared to B pulses) increases, and ii) the relative probability of having E pluses 

(compared to B pulses) decreases (positive coefficients). The lower probability of finding 

E pulses can be ascribed either to a deterioration of the cardiovascular health state because 

of the pathology itself and the related therapy [203] or to the higher age of the oncological 

patients compared to the healthy subjects [195], as can be seen in Table 4.1.       

Sex had a significant impact on PPG pulses quality. The relative probability of having F 

and E pulses against B pulses was considerably higher for female subjects than males. 

Previous studies reported significant sex-based differences in the pulse transit time, that 

is, the time between the R peak recorded through the electrocardiogram and the 

consecutive PPG cycle [187], and it is well-known that the cardiovascular system differs 

between women and men, both in physiological and in pathological conditions [204].  A 

previous study has already found that commercial smartwatches are less accurate, for 
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heart rate measurement only, for men than for women [205]. This difference could be due 

to the different skin thickness, higher for males than females [206]: PPG sensor light has 

to pass through a larger thickness in male subjects, which could then lead to a 

deterioration in the PPG signal quality.  

From the analysis of PPG waveform parameters, we found that all parameters, except RT, 

were significantly influenced by physical activity, lowering their values. This result is 

twofold: rise time RT can be used as a parameter independent of physical activity; 

conversely, other parameters must be interpreted in light of current physical activity 

levels. Furthermore, pathological states should also be considered when interpreting PT, 

PA, RI, and DA, negatively affecting their values. Finally, age had a significant impact 

only on ΔT and DA: as the age increases, the former assumes lower values while the latter 

increases. These findings agree with previous literature. Specifically, other authors have 

found that aging causes a reduction in the time between systolic and diastolic peaks (ΔT) 

[83], [207] and an increase in the diastolic amplitude (DA) [83], [140], mainly due to an 

increased arterial stiffness [208]. Since the diastolic peak depends on the reflection of the 

pressure wave on artery walls, a loss of elasticity (i.e., increased arterial stiffness) brings 

to a quicker and more intense wave reflection [209]. 

The PPG signal quality analysis results recommend using features extracted from a basic 

morphological analysis (i.e., using Basic quality pulses) rather than from an in-depth 

morphological analysis (i.e., using High quality pulses) in the real-world. This is 

remarkably advisable if the PPG-based application should be used by subjects at risk of 

cardiovascular system impairment or deterioration. Unfortunately, several experimental 

PPG-based applications use features that can be extracted only on High quality pulses 

[141], [170], [210], [211], thereby risking malfunctioning in this population, especially 

in real-world conditions, where the availability of High quality pulses is further lowered 

because of the presence of motion artifacts. 

In addition, our results related to the PPG waveform parameters confirmed, as already 

pointed out by Fine et al. [184], that future PPG-based applications should accurately 

consider several personal and health-related factors, as these can act as sources of 

inaccuracy and limit the interpretability and generalizability of the results. PPG sensors 

undoubtedly have excellent qualities, as they can be easily embedded in wearable devices, 

are inexpensive, and can collect a variety of vital information. A proper characterization 
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of the various sources of inaccuracy influencing the PPG signal may expand its use in the 

clinical field, obtaining a powerful tool allowing pervasive and continuous recordings. 

Besides the several sources of inaccuracy the PPG can be subjected to, it is worth 

remembering that  different physiological activities can also influence PPG waveform 

parameters: in particular, for the time parameters (RT, PT, ΔT), changes in cardiac 

activity have a significant impact on the timing of the events reflected in the PPG 

waveform [212]; respiration can induce variations affecting both the pulsatile and non-

pulsatile components of the PPG signal [213]; lastly, PPG is strongly affected by the 

autonomic nervous system, leading to significant changes especially in the time domain 

[214].   

This study presents some limitations, primarily related to the sample size. As previously 

pointed out, age significantly differed between healthy and oncological subjects (mean 

age 29.2 vs 49.5 years), thus partly overlapping the effects due to age and health state.  

The range of physical activities gives another limitation: our dataset lacks vigorous 

activities, based on the classification of Lin et al. [160], although, based on our results, 

we can speculate that a tiny proportion of pulses in that category could be used for further 

processing (i.e., labelled as F or E).  

We used a convenience sample, investigating the impact of cancer as a pathological state. 

We intended to raise the attention, by providing quantitative results, on how a pathology 

that apparently should have no impact on the PPG signal can lead to misinterpretations if 

not adequately considered. This study can help expand the knowledge about the impact 

of cancer on PPG, with the double objective of i) controlling the “health state” variable 

for a general purpose application, and ii) using PPG with a diagnostic and/or prognostic 

value for the oncological population. The transferability of these results to other 

pathologies should be investigated further. However, this work can pave the way to future 

studies aiming at evaluating the influence of different pathologies on PPG. 

From a technical point of view, the low PPG sampling frequency (64 Hz) may limit the 

accuracy of those time-domain parameters with an order of magnitude comparable to the 

sampling period (0.0156 s), such as RT and ΔT (mean values equal to 0.26 s and 0.25 s 

respectively). In the present study, we obtained 34 different values for RT and 27 for ΔT, 

providing sufficient resolution for a valid analysis. Higher resolution may be used, with 

each parameter requiring higher temporal sensitivity at the cost of higher data and battery 

usage, which is a subject of a separate study.  
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Future studies can be conducted on larger datasets, with a more heterogeneous sampling 

by age and physical activity and deepening the effects of other personal and health factors, 

such as weight and height, or other pathological states. 

4.6 Conclusions 

This study aimed to evaluate the impact of different sources of inaccuracy both on PPG 

signal quality and on parameters extracted from the PPG morphology. We used a 

convenience sample of healthy subjects and oncological patients to assess the impact of 

physical activity, age, sex, and health state. As expected, we found that a higher 

percentage of good quality PPG pulses can be found during the night and when the subject 

is in sedentary conditions.  Age, pathological state, and male sex are three factors that 

lower the probability of finding High quality pulses. Regarding the impact of these factors 

on PPG morphology parameters, physical activity and health state must be considered 

when interpreting parameter values, while age acts more on those PPG parameters closely 

related to arterial stiffness. Therefore, it is advisable to conduct further studies on this 

topic on larger datasets, investigating the effects of different pathological conditions on 

the PPG signal. Such an approach can help expand the use of PPG-based application, 

offering a greater robustness and, thus, a more reliable tool for continuous and pervasive 

monitoring. 
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5. IMPACT OF CONFOUNDING 

FACTORS ON PHYSIOLOGICAL 

SIGNALS THROUGH A COSINOR 

ANALYSIS 

Adapted from the conference proceeding: Moscato S., Palumbo P., Sichi V., Giannelli 

A., Ostan R., Varani S., Chiari L. Impact of pain on physiological signals in home cancer 

patients, a cosinor analysis. IEEE EMBS in Biomedical and Health Informatics, 2021 

5.1 Introduction 

Monitoring physiological signals in a real-world context and using them to develop a 

method to assess pain automatically poses several challenges intrinsic to the uncontrolled 

environment the system is supposed to work in.  

For instance, physiological signals can change throughout the day due to normal circadian 

fluctuations [215]. Therefore, analysing physiological signals at different times of the day 

and treating the extracted features regardless of the time of the day can be misleading. 

Moreover, the signals that could be exploited for pain estimation can be influenced by 

other factors, confounding the results of the final application. Such confounding factors, 

thoroughly studied especially in the last decade, can originate from:  
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• Psychological state: it is well-known that physiological signals can be influenced 

by depression and anxiety [216], indeed the same signals exploited for pain 

assessment have been used for automatic depression [217] and anxiety [218]  

assessment as well.  

• Pharmacological treatment: the use of opioids, and its withdrawal, significantly 

alter the normal physiological behaviour, being visible through the analysis of, for 

example, heart rate, electrodermal activity, and physical activity [219], [220]. 

• Health-related information: health conditions can significantly alter the behavior 

of physiological signals, also for those signals not strictly related to the pathology 

itself. An example of that is given in the previous Chapter of this thesis, where 

several cardiovascular parameters were shown to be impacted by the health 

condition of the subject (cancer in that case). 

• Personal factors: gender may greatly impact the range values of several 

physiological parameters [221], [222]. 

If these confounding factors are not properly controlled, together with the information 

about the circadian rhythm, they can hinder the development of a reliable pain assessment 

method. 

A depiction of the rationale of this approach, represented with conventional 

representation of Structural Equation Models, is given at Figure 5.1. 

 

Figure 5.1 Impact of confounding factors on physiological signals 
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The aim of this study is to analyse the impact of pain and confounding factors on 

physiological signals on a 24-hour basis. 

5.2 Materials and Methods 

5.2.1 Study design 

This study has been conducted on cancer patients involved in the Look of Life project 

[223]. An overview of the study, with related socio-demographic data, clinical data, and 

questionnaires, is given at Appendix C. For each patient the following information has 

been retrieved and further exploited:  

• Pain: Absence vs Presence  

• Anxiety: Normal vs Borderline/Abnormal  

• Depression: Normal vs Borderline/Abnormal  

• Use of opiods: Yes vs No  

• Pathology extension: Localized vs Metastatic  

• Gender: Male vs Female  

5.2.2 Physiological signals 

Patients were monitored with the Empatica E4 wristband, whose technical specifications 

are reported in Appendix A.1. 

For the purpose of this study, we used the Heart Rate (HR) automatically estimated by 

Empatica algorithm, the Electrodermal Activity (EDA), the accelerometer (ACC) data, 

and the skin temperature (SKT). 

As preprocessing phases, the following were the procedure used for the aforementioned 

signals:  

• EDA has been subjected to the processing pipeline described in Appendix A.3 

• ACC has been subjected to the preprocessing pipeline described in Appendix A.4 

and then used to estimate the the Activity Index (𝐴𝑖𝑛𝑑) [160] 

• SKT has not been subjected to any preprocessing procedure. 

Non-wear segments were visually detected and excluded from further analysis. 

The mean of each signal was determined on a 1-hour time window. If a 1-hour time 

window consisted for more than 50% of  non-wear segments, it was discarded from 

further analysis. 
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5.2.3 Statistical analysis 

A cosinor analysis was conducted to assess the impact of pain and other confounding 

factors on the physiological signals, considering the time of the day. The model can be 

written as [224]: 

𝑥(𝑡) = 𝑀 + 𝑀𝑝𝛿 + (𝐴 + 𝐴𝑝𝛿) 𝑐𝑜𝑠 (𝜔𝑡 − (𝜑 + 𝜑𝑝𝛿)) + 𝑒(𝑡) (5.1) 

where  

• M = MESOR 

• A = amplitude 

• ω = 2π/T, T = 24 hours 

• 𝜑 = acrophase 

• e(t) = error term 

• δ is a dichotomous variable indicating pain presence (NRS > 0) or absence (NRS 

= 0) 

• subscript p indicates parameters for the pain covariate on MESOR, amplitude, and 

acrophase.  

We assessed the possible statistical differences based on the aforementioned binary 

factors by applying a Wald test. 

5.3 Results 

 We enrolled 27 patients (11 M – 16 F, age 50 ± 12). A total of 1361 hours were available 

after non-wear periods removal. Table 5.1 shows the number of hours divided for each 

analysed binary factor. 

 Table 5. 1 Number of available hours divided for each binary factor 

Anx: Anxiety. Dep: Depression. Loc: Localized. Met: Metastatic. 

Results from the cosinor analysis for all binary factors are shown in Table 5.2, while in 

Figure 5.2 the cosine models for the four physiological signals, divided for absence and 

presence of pain, are shown.  

The circadian rhythm of all signals but the EDA resulted to be well modelled through a 

cosine wave. 

 
No 

pain 
Pain 

No 

Anx 
Anx 

No 

Dep 
Dep Female Male 

No 

Opioids 
Opioids Loc Met 

# Hours 599 762 902 459 1179 182 803 558 630 731 608 753 
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Patients with pain had higher EDA and HR values and delayed HR acrophase.  

Anxiety had a significant impact on HR, SKT, and 𝐴𝑖𝑛𝑑 values, also influencing the 

amplitude of SKT and 𝐴𝑖𝑛𝑑 circadian waves.  

Depressed patients showed higher EDA both in the Mesor and amplitude, lower HR for 

Mesor but greater oscillations and lower values of SKT in terms of both Mesor and 

amplitude. 

Figure 5. 2 Cosinor analysis depicting presence and absence of pain in four physiological signals 

Gender only impacted SKT and AI, showing higher SKT Mesor for females and lower 

amplitudes, and higher Mesor and amplitude in 𝐴𝑖𝑛𝑑 for females.  

Opioid intake significantly changed the behavior of all four physiological signals.  

Finally, also the pathology extension played a role, increasing the Mesor values for EDA 

and decreasing the Mesor values for HR in metastatic cancer cases. 

5.4 Discussion 

We conducted a study to assess the possible impact of several binary factors on the 

circadian rhythmicity of four physiological signals, namely HR, EDA, 𝐴𝑖𝑛𝑑, and SKT 

recorded in real-world contexts on oncological patients. 

Circadian rhythmicity of all signals but EDA can be well represented through a cosine 

wave. Previous evidences showed a strong circadian rhythmicity for the EDA signal 

[225]. More complex models are needed to better represent EDA’s circadian rhythm. 

Physiological signals were different for patients according to the presence of pain. This 

is in line with previous literature, which has shown bidirectional interactions between 

pain and circadian rhythm [226]. Furthermore, significant changes in Mesor’s EDA and 
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HR well represent the higher sympathetic activation expected from subjected 

experiencing pain [227]. 

Table 5.2 Cosinor analysis to assess the impact of pain and confounding factors on physiological 

signals’ circadian rhythm 

 EDA HR SKT Aind 

 
M 

[μS] 

A 

[μS] 

Φ 

[hh:mm] 

M 

[bpm] 

A 

[bpm] 

Φ 

[hh:mm] 

M 

[°C] 

A 

[°C] 

Φ 

[hh:mm] 

M 

[g] 

A 

[g] 

Φ  

[hh:mm] 
 

No Pain 1.19 0.38 05:28 78.83 7.06 14:45 33.44 1.19 02:35 0.81 0.56 14:37  

Pain 2.09 * 0.31 04:49 81.00 * 6.46 15:58 * 33.47 1.02 04:36 * 0.77 0.55 14:54  

No Anx 1.64 0.21 04:28 80.69 6.64 15:05 33.35 1.20 03:17 0.75 0.53 14:40  

Anx 1.90 0.38 05:27 78.84 * 6.60 15:58 33.65 * 0.82 ⁺ 04:35 ⁺ 0.14 * 0.61 ⁺ 15:03  

No Dep 1.14 0.64 04:35 80.07 6.10 15:23 33.35 1.19 03:28 0.79 0.54 14:38  

Dep 5.57 * 2.17 * 05:13 79.87 * 9.84 ⁺ 15:35 34.07 * 0.36 * 5:25 * 0.83 0.62 15:35 ⁺  

No Opioids 1.02 0.66 15:37 78.20 6.48 15:42 33.18 1.33 04:07 0.74 0.51 15:14  

Opioids 1.36 * 0.20 17:50 ⁺ 81.62 * 7.01 15:19 33.72 * 0.80 * 3:01 ⁺ 0.84 * 0.60 * 14:28 *  

Loc 2.41 0.24 02:42 77.87 7.20 15:05 33.57 0.94 02:56 0.79 0.51 15:28  

Met 1.18 * 0.40 05:07 81.77 * 6.47 15:37 33.36 1.20 4:02 ⁺ 0.80 0.60 ⁺ 14:19 *  

Female 1.57 0.58 15:37 80.50 6.60 15:21 33.63 0.94 02:45 0.92 0.67 14:35  

Male 1.96 0.31 00:02 79.40 6.66 15:33 33.23 * 1.28 ⁺ 4:35 * 0.61 * 0.41 * 15:23 *  

⁺ p < 0.05, * p < 0.01 

Regarding anxiety and depression, also in this case the bidirectional interactions between 

mental health and circadian rhythm have been studied for decades [228]. In this context, 

we found results inconsistend with previous literature. Specifically, anxiety is supposed 

to accelerate HR [229], although a study revealed that the real HR proved to be unrelated 

to anxiety, while the perceived HR resulted to be significantly linked to anxiety [230]. 

Regarding physical activity, the lower activity level in patients with anxiety is in line with 

previous literature [231]. Results on depression also disagree with previous literature, 

stating a hypoactivity of EDA in depressed patients [232]. Further studies are needed to 

consolidate the behavior of physiological signals regarding mental health conditions.  

In recent years, the study of physiological reseponses to opioids has grown consistently 

due to the increasing abuse of the substance itself [233], [234]. In this study, patients 

using opioids showed higher Mesor values for all the analysed physiological signals. In 

particular, increase in EDA and SKT are consistent with previous literature, while HR 

should be decreased with opioids intake [233]. 
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Also cancer stage had an impact on the analysed physiological signals. The study by Wu 

et al. [235] investigated the autonomic activity linked to cancer stage through HR and 

heart rate variability (HRV) analysis on a breast cancer population. They found no 

significant changes in HR, but they highlighted an increasing trend going from bening to 

advanced stage cancer, consistent with our results. 

Sex showed to significantly impact only SKT and 𝐴𝑖𝑛𝑑. Previous studies highlighted 

consistent differences in autonomic activity on a gender basis [236], but these did not 

emerge in this study. 

Some limitations of this study need to be highlighted. The small dataset, together with a 

simple cosine model can hinder in finding all the significant differences there can be in 

the analysed binary factors. 

Despite the limitations, results obtained from this study can help in expanding the 

knowledge about the factors that can have an impact on physiological signals. Moreover, 

having obtained these results on signals recorded in an ecological environment has a 

translational value and represents a step forward towards the development of real-world 

tools for automatic pain assessment.  
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6. AUTONOMIC SIGNALS COMPARISON 

BETWEEN HEALTHY SUBJECTS AND 

CHRONIC LOW BACK PAIN PATIENTS 

AT REST AND DURING NOCICEPTIVE 

STIMULATION 

Adapated from the conference proceeding accepted for GNB Congress: Moscato S., Zhu 

W., Guo Y., Kamarthi S., Colebaugh C. A., Schreiber K. L., Edwards R. R., Urman R. 

D., Xiao Y., Chiari L., and Lin Y. Comparison of autonomic signals between healthy 

subjects and chronic low back pain patients at rest and during noxious stimulation. 

6.1 Abstract 

Chronic pain is a major cause of disability worldwide. While acute pain may serve as a 

protective function, chronic pain and the associated neural processing changes negatively 

impact function and quality of life. This neural plasticity may include changes to the 

autonomic nervous system (ANS) potentially detectable as changes in various 

physiological signals. We aim to evaluate differences in the physiological signals 

reflecting ANS changes, by comparing healthy subjects and patients with chronic low 
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back pain during standardized pain stimuli. We extracted several features from 

photoplethysmography (PPG), electrodermal activity (EDA), and respiration, at rest and 

during a repeated pinprick test. We found sgnificant group differences in some PPG 

parameters at rest and in response to the two different noxious stimulations. In addition, 

chronic pain patients had consistently higher basal sympathetic activity, and a blunted 

autonomic response when subjected to nociceptive stimuli.  

6.2 Introduction 

Pain is an “unpleasant sensory and emotional experience associated with, or resembling 

that is associated with, actual or potential tissue damage” [8].  

Different types of pain can be experienced. One of the main distinctions is between acute 

and chronic pain.  

Acute pain arises from the activation of nociceptors when a thermal, mechanical, or 

chemical nociceptive stimulus affects the body.Noxious stimuli activate neural 

transduction at the peripheral, spinal, and brain levels, collectively falling under the “pain 

neuromatrix” concept. Acute pain has a protective function on the body, acting as an 

alarm bell for a potential threat [237].  

On the other hand, chronic pain is defined as persistent or recurrent pain lasting for more 

than three months [238]. It is now well known that chronic pain leads to a significant 

neural plasticity [239], with substantial functional and anatomical changes to reach a new 

equilibrium different from that of healthy subjects [40]. Chronic pain does not serve a 

protective function, being maintained despite the absence of the inciting stimulus, and is 

associated with physiologic and psychosocial changes [240].  

Manifestations of physiologic changes may include an Autonomic System (ANS) 

activity. Pain and ANS are anatomically and functionally linked, as pain influences the 

activity of ANS and vice versa [52]. In the case of chronic pain, previous studies have 

observed decreased ANS reactivity, potentially leading to a reduced ability of the body 

to respond promptly to internal and external stimuli [241]. 

ANS activity can be evaluated by monitoring some physiological signals, commonly 

called “autonomic” signals precisely because the ANS regulates them. Examples of these 

signals are Photoplethysmography (PPG), representing the blood volume changes 

occurring at each heartbeat, Electrodermal Activity (EDA), referring to variations of the 

electrical properties of the skin due to sweat secretion, and Respiration (Resp). 
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Autonomic signals have been extensively used in “emotion recognition” studies, 

representing a new way to analyse emotions, and  increasingly bridging the gap in human-

computer interaction [242]. Gaining greater facility with measurement of fluctuations and 

variability of autonomic signals under the condition of pain transduction in twofold: from 

a clinical point of view, this may allow insight into the impact of nociceptive activation 

on physiology, both in the acute and chronic phase; from a more technical point of view, 

it would allow tailoring algorithms better to detect a variety of painful stimuli in different 

individuals more sensitively, and to distinguish the extent of neural remodeling inherent 

in an individual with cchronic disease. 

This study aims to explore differences in autonomic signals by comparing healthy control 

(HC) subjects and chronic Low Back Pain (cLBP) patients i) under rest conditions and ii) 

when stimulated with a noxious stimulus. This is a further work based on exploration 

work of the Intelligent Human Machine Systems laboratory, Northeastern University 

[243], [244]. 

6.3 Materials and Methods 

6.3.1 Participants 

The study involves the enrolment of both HCsubjects and cLBP patients. The inclusion 

criteria in common for the two samples are the following:  

• 18 years or older 

• No evidence of neurological and/or cognitive impairment 

• No history of myocardial infarction or other serious cardiovascular condition in 

the prior 12 months 

• Ability to speak English to complete the questionnair measures 

In addition, HC subjects had to be free of any history or diagnosis of chronic pain. cLBP 

patients were required to have a history of cLBP for at least 3 months, with an average 

pain intensity higher than 3/10. 

6.3.2 Experimental procedure 

The study protocol, called the Novel Computation Methods for Continuous Objective 

Multimodal Pain Assessment Sensing System (COMPASS), was approved by the 

Institutional Review Board of Brigham and Women’s Hospital, Boston, MA, USA 
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(protocol code 2019P002781, 18/11/2019). The whole experimental protocol revolves 

around administering of the Quantitative Sensory Testing (QST). This procedure tests 

both large and small sensory nerve fibers by providing nociceptive stimuli in a clinical 

lab setting [245]. A more in-depth discussion is given in Chapter 2. 

A graphical representation of the study protocol is presented in Figure 6.1. 

 

 

Figure 6.1 COMPASS protocol 

The main stages of the study protocol are the following:  

• Baseline – start of the experiment: the participant is asked to be at rest for one 

minute 

• Pressure pain: the participants are stimulated with a pressure stimulus through a 

pressure algometer in three anatomical locations: right and left trapezius and right 

and left forearm. Mechanical pressure is increased at a steady rate of 30 kPA/s. 

The participant is asked to manifest when the pain threshold and pain tolerance 

are reached. Pressure stimulus is removed once the pain tolerance has been 

reached 

• Pinpricks – 3 different probes:  the participant is stimulated with standardized 

weighted pinprick applicators with three different forces (128 mN, 256 mN, and 

512 mN). The three probes are applied consecutively one after the other in 

ascending order, and for each of them the participant is asked to rate his or her 

pain on a 0-10 NRS. The stimuli are applied on the index finger of both hands, 

between the first and second interphalangeal joint 
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• Repeated pinpricks:  the probe that induced some pain in the previous step is 

chosen for repeated testing. A train of 10 stimuli has been applied with a rate of 1 

stimulation/second. The participant is asked to rate his or her pain on a 0-10 NRS 

after the first, the fifth, and the tenth stimulus.  The stimuli are applied in the same 

anatomical location as for the previous test 

• Inflated cuff – calibration: a blood pressure cuff is placed around the left 

gastrocnemius muscle and inflated with a rapid cuff inflator until the participant 

manifests that the pain threshold has been reached 

• Inflated cuff – three repetitions: the blood pressure cuff around the left 

gastrocnemius muscle is inflated three times in a row until the participant 

manifests that a 5/10 on a 0-10 NRS is reached 

• Inflated cuff – prolonged pressure:   the blood pressure cuff is inflated and left for 

2 minutes 

• Conditioned pain modulation:  the participant is asked to immerse the right hand 

in a circulating water bath maintained at a temperature of 4-8 °C and 

simultaneously stimulated with the pressure algometer on the left trapezius. The 

participant is asked to manifest when pain threshold and pain tolerance are 

reached 

• Baseline – end of the experiment:   the participant is asked to be at rest for one 

minute 

During the entire duration of the experimental procedure, the following biomedical 

devices are used to record physiological signals:  

• FlexComp, an FDA-cleared system that allows to record with a fixed sampling 

frequency of 256 Hz:  

o Electrodermal Activity (EDA), whose electrodes are placed on the left 

hand’s ring and index finger  

o Photoplethysmography (PPG), with a sensor placed on the left hand’s 

middle finger 

o Electromyography (EMG), with two electrodes placed on the left forearm 

o Skin Temperature (ST), whose sensor is placed on the back of the hand 

o Respiratory Rate (RR), with a band around the trunk above the stomach 

• Enobio, an FDA-cleared portable electrophysiology system for the recording of 

electroencephalogram (EEG) with a sampling frequency of 1000 Hz 
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• Tobii: an FDA-cleared vision system intended for eye movement recording 

6.3.3 Physiological signal processing 

In this study, only the physiological signals recorded with the FlexComp system during 

the following three conditions have been evaluated:  

• Baseline – start of the experiment 

• Repeated pinpricks on the right hand 

• Inflated cuff – prolonged pressure 

All the signals recorded with the system mentioned above have been subjected to the 

following procedure:  

• Signal preprocessing 

• Signal segmentation 

• Feature extraction 

6.3.3.1 EDA 

EDA signal has been subjected to a 5th-order Butterworth low-pass filter with a cut-off 

frequency of 1 Hz. EDA signal has also been normalized with a z-score procedure.  The 

normalized signals were then subjected to the cvxEDA algorithm [246] to decompose the 

whole signal into the tonic and phasic components.  

6.3.3.2 PPG 

PPG signal has been subjected to the preprocessing pipeline depicted in Appendix A.2. 

Since PPG signals in this dataset are clean enough (with respect to more noisy data for 

those signals recorded in real-world context), a simple minimum finding approach has 

been implemented to detect the systolic feet and divide the signals into PPG pulses based 

on those systolic feet, with the restriction of finding minimum values if distant for more 

than 0.5 s.  

6.3.3.3 Respiration 

The respiration signal has been subjected to a 4th-order high-pass Butterworth filter, with 

a cut-off frequency of 0.1 Hz. This filter has been applied to remove the slow fluctuations, 

which are useless for this study. The Advanced Counting method [247] has been applied 

to the filtered signal to detect the respiration cycles and estimate the respiration rate.  
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6.3.4 Autonomic parameters extraction 

For the baseline recording, features have been extracted by the whole recording (i.e., 1 

minute). 

For the repeated pinpricks test, the recording has been segmented into four phases:  

• Pre-test: 5 seconds before the beginning of the test 

• 1st-5th rep: Between 1st and 5th repetition (5 seconds) 

• 5th-10th rep: Between 5th and 10th repetition (5 seconds) 

• Post-test: 5 seconds after the end of the test 

For the inflated cuff – prolonged pressure, the recording has been segmented into six 

phases: 

• Pre test: 30 seconds before the beginning of the test 

• 30 sec: 0-30 seconds 

• 60 sec: 30-60 seconds 

• 90 sec: 60-90 seconds 

• 120 sec: 90-120 seconds 

• Post-test: 30 seconds after the end of the test 

Twelve parameters have been extracted from the analysis of PPG pulses: 

• Heart Rate Variability (HRV) analysis - we estimated the Interbeat Intervals 

(IBIs) as time differences between two consecutive systolic feet. The obtained 

IBIs time series has been filtered using the approach described in [248]. Extracted 

HRV parameters are the mean value of IBIs (meanIBI), standard deviation of 

normal heartbeats (SDNN), root mean squared of successive differences 

(RMSSD), Poincaré plot standard deviation perpendicular (SD1), and along (SD2) 

the line of identity. 

• Morphological analysis - by analysing the morphology of each PPG pulse, we 

estimated PPG pulse amplitude (PulseAmpl), area under the curve between 

systolic foot and successive systolic peak (A1), area under the curve between the 

systolic peak and the successive systolic foot (A2), area under the PPG pulse (A), 

time between systolic foot and the successive systolic peak (T1), time between 

systolic peak and the successive systolic foot (T2) [86].  

For the EDA, we estimated a total of 8 parameters: 
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• Whole EDA signal: mean (meanEDA) and standard deviation (stdEDA), and the 

symbolic information entropy (SIE) [249] 

• Tonic component: mean (meantonic) and standard deviation (stdtonic) 

• Phasic component: relevant peaks have been retrieved as those peaks with a slope 

(by analysing the first derivative) higher than 0.01. From the relevant peaks, the 

mean (meanampEDR) and standard deviation (stdampEDR), together with the 

frequency (freqEDR) expressed as the number of peaks per minute have been 

retrieved. 

For the Resp signal, we retrieved the mean respiration rate (meanRR). Since we used an 

automatic method to detect the respiration cycle, we discarded those estimates exceeding 

30 breaths/min. 

6.3.1 Statistical analysis 

We used a Mann-Whitney U test to compare parameters between HC subjects and cLBP 

patients during the rest condition. We used a Wilcoxon signed-rank test for paired data to 

assess any statistical differences in different phases during the two tests,. 

6.4 Results 

6.4.1 Dataset 

Twenty-four subjects have been enrolled in this study, 15 HC subjects (age 27.20 ± 11.58, 

4 M, 11 F) and 9 cLBP patients (age 43.67 ± 14.97, 4 M, 5 F). Recordings failed for one 

cLBP patient, who was therefore discarded. Some participants have been subjected to the 

same protocol once, but for the purpose of this study only the first trial for each participant 

has been analysed.  

6.4.2 Baseline recording 

Results of the comparison between HC subjects and cLBP patients are presented in Table 

6.1. 

By analysing the baseline recordings, meanIBI, A2, A, and T2 were significantly different 

between HC subjects and cLBP patients. All these parameters are significantly lower for 

cLBP patients than for HC subjects.  
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Table 6. 1 Baseline recordings' results. HC = Healthy Controls, P = patients 

  HC cLBP 
p-value 

  mean (std) mean (std) 

meanIBI [ms] 865.51 (93.80) 720.20 (133.36) 0.048 

SDNN [ms] 58.68 (12.99) 26.14 (27.99) 0.067 

RMSSD [ms] 66.76 (29.69) 38.16 (34.16) 0.057 

SD1 [ms] 47.19 (21.00) 26.96 (24.13) 0.057 

SD2 [ms] 65.30 (12.20) 41.55 (31.94) 0.078 

PulseAmpl [a.u.] 3.27 (0.15) 3.28 (0.26) 0.944 

A1 [a.u.*sample] 69.01 (20.25) 61.93 (20.25) 0.159 

A2 [a.u.*sample] 269.55 (42.91) 211.62 (62.26) 0.014 

A [a.u.*sample] 338.56 (53.13 2743.55 (64.91) 0.034 

T1 [ms] 156.78 (30.17) 146.72 (44.24) 0.290 

T2 [ms] 710.48 (104.42) 575.70 (110.74) 0.024 

meanEDA [n.u.]  -1.32 (0.55)  -0.91 (0.97) 0.438 

stdEDA [n.u.] 0.11 (0.11) 0.16 (0.25) 0.944 

SIE [ ] 0.78 (0.29) 0.74 (0.25) 0.833 

meantonic [n.u.]  -1.33 (0.55)  -0.91 (0.97) 0.438 

stdtonic [n.u.] 0.10 (0.10) 0.16 (0.25) 0.888 

meanampEDR [n.u.] 0.04 (0.06) 0.01 (0.02) 0.488 

stdampEDR [n.u.] 0.04 (0.08) 0.01 (0.02) 0.384 

freqEDR [peaks/min] 3.14 (3.04) 1.80 (1.42) 0.438 

meanRR [breaths/min] 16.17 (2.58) 17.40 (5.03) 0.672 

6.4.3 Repeated pinpricks test 

We separately compared the four different phases of the repeated pinpricks test for HC 

subjects and cLBP patients.  

By analysing the reaction of both HC subjects and cLBP patients, we found significant 

changes in: 

• meanIBI, for HC subejcts: significantly higher values were detected in the 5th-10th 

rep phase, compared to pre- and post-test, and a significant decrease from 1st-5th 

rep to post-test 

• SDNN, RMSSD, and SD1 for cLBP patients: significantly lower value from the 

pre-test to post-test 

• A for cLBP patients, significant decrease from the pre-test to 1st-5th rep and 5th-

10th rep 
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• T2 for HC subjects: significant increase by comparing 1st-5th rep with 5th-10th rep 

and post-test 

• meanEDA and meantonic for HC subjects: significantly lower values in the pre-

test compared to all the other phases 

• stdEDA and stdtonic for HC subjects: significant decrease from 1st-5th rep to post-

test 

• SIE for cLBP patients: significant decrease from1 st-5th rep to post-test  

• stdampEDR for HC subjects: significant decrease from 5th-10th rep to the “after 

phase” 

• freqEDR for cLBP patients: significant decrease from pre-tets to 1st-5th rep and 

5th-10th rep, and a significant increase by comparing 1st-5th rep and 5th-10th rep 

with post-test 

• meanRR for HC subjects: significant decrease by comparing pre-test with post-

test. For cLBP patients: significant increase from 1st-5th rep to post-test 

Significant changes are reported in Figure 6.2, while numerical values are reported in 

Appendix D, Table D.1 and Table D.2 for HC subjects and cLBP patients, respectively. 

 

Figure 6.2 Significant changes during Repeated pinpricks test 

6.4.4 Inflated Cuff – prolonged pressure test 

We separately compared the four different phases of the inflated cuff-prolonged pressure 

test for HC subjects and cLBP patients.  

By analysing the reaction of both HC subjects and cLBP patients, we found significant 

changes in: 
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• meanIBI for HC subjects: significant decrease by comparing 120 sec with post-

test 

• SDNN for cLBP patients: constant decrease by comparing pre-test, 60 sec, and 90 

sec to 120 sec 

• SD2 for HC subjects: significant decrease from 30 sec to 120 sec and from 90 sec 

to 120 sec. For cLBP patients: significant decrease from 30 sec to 120 sec and 

from 60 sec to 120 sec 

• PulseAmpl for HC subjects: significant decrease by comparing pre-test and 30 sec 

with post-test and pre-test with 90 sec, and a significant increase by comparing 60 

sec, 90 sec, and 120 sec to the “after” phase. For cLPB patients: significant 

decrease from pre-test to 30 sec, and from pre-test, 30 sec and 60 sec to post-test 

• A1 for HC subjects: significant decrease from pre-test to 30 sec, significant 

increase from pre-test and 60 sec, and a significant increase by comparing 30 sec 

to 60 sec, 90 sec, 120 sec, and post-test 

• A2 for HC subjects: significant decrease from 30 sec to 60 sec, 90 sec, 120 sec, 

post-test. For cLBP patients: significant increase from 30 sec to 90 sec 

• A for HC subjects: significant decrease by comparing pre-test and 60 sec with 

post-test. For cLBP patients: significant decrease from 60 sec to 120 sec 

• T1 for HC subjects: significant increase from pre-test to post-test, and a significant 

decrease from 90 sec and 120 sec to post-test 

• T2 for HC subjects: significant increase from pre-test to 30 sec, a significant 

decrease from 30 sec to 60 sec and post-test, and a significant increase from 30 

sec to 90 sec and 120 sec 

• meanEDA for HC subjects: significant decrease from 120 sec to post-test 

• stdEDA for HC subjects: significant increase from pre-test to 30 sec, a significant 

decrease from 30 sec to all the following phases, a significant increase from 60 

sec to 90 sec and a significant decrease from 60 sec to 120 sec and post-test, a 

significant decrease from 90 to all the following phases and from 120 sec to post-

test.For cLBP patients: significant decrease from 30 sec to 60 sec, from 90 sec to 

all the following phases, and from 120 sec to post-test 
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Figure 6.3 Significant changes in PPG parameters from the Inflated cuff - pressure pain test 

• SIE for HC subjects: we found a significant increase from pre-test to 30 sec, a 

significant decrease from 30 sec to all the following phases, from 60 sec to 120 

sec and post-test, and a significant increase from 90 sec to post-test. For cLPB 

patients: decrease from 30 sec to 60 sec, a significant increase from 30 sec to post-

test, and a significant increase from 60 sec and 90 sec to post-test 

• meantonic for HC subjects: significant increase from pre-test to 30 sec and 60 sec, 

a significant decrease from 30 sec to all the following phases, a significant 

increase from 60 sec to 90 sec and a significant decrease from 60 sec to 120 sec 

and post-test, a significant decrease from 90 to all the following phases and from 

120 sec to psot-test. For cLBP patients: decrease from 60 sec and 90 sec and from 

120 sec and post-test  

• stdtonic for HC subjects: there was a significant increase from pre-test to 30 sec 

and 60 sec, a significant decrease from 30 sec to all the following phases, and a 

significant decrease from 60 sec to 120 sec and post-test. For cLBP patients: 

significant decrease from 30 sec to 60 sec and from 120 sec to post-test 

• meanampEDR for HC subjects: significant increase from pre-test to 30 sec and 60 

sec, a significant decrease from 30 sec to all the following phases and from 60 sec 

to 120 sec. For cLPB patients: significant decrease from the “before” phase to 30 

sec and 60 sec and post-test, and a significant increase from 60 sec to post-test 

• stdampEDR for HC subjects: significant increase from the “before” phase to 30 

sec, and a constant decrease from 30 sec to the following phases 
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• freqEDR: only for HC subjects there was a significant constant decrease from pre-

test to all the following phases, from 30 sec to 60 sec, 90 sec, and 120 sec, and a 

significant increase from 120 sec to post-test. 

Significant changes are depicted in Figure 6.3 and 6.4 respectively for features extracted 

from PPG and EDA. Numerical values are reported in Appendix D, Table D.3 and D.4 

for HC subjects and cLPB patients respectively. 

 

Figure 6.4 Significant changes in EDA parameters from the Inflated cuff -  pressure pain test 

6.5 Discussion 

We conducted a study to assess the different autonomic activity by comparing healthy 

control subjects and chronic low back patients in rest condition and when subjected to 

noxious stimulation.  

Under the rest condition, only specific parameters extracted from the PPG were 

statistically different between HC subjects and cLBP patients. In particular, meanIBI was 

significantly lower in cLBP patients. This is in line with previous study findings on 

chronic pain patients [250]. Greater basal sympathetic nervous system outflow could 

potentially lead to a higher basal heart rate (corresponding to a lower meanIBI) [251].  

Some PPG morphological parameters, namely A2, A, and T2, were significantly lower in 

cLBP patients than HC subjects. Both A2 and A are related to T2, which is the time 

difference between the systolic peak and the successive systolic foot. This can also be the 

basis for lowering the meanIBI: chronic pain induces a change in the second part of the 



 

96 

 

cardiac cycle, during the diastolic phase. In addition, morphological parameters have been 

studied in relation to stress, finding similar results as the ones reported in this study [252]. 

Regarding the analysis of physiological parameters during the repeated pinpricks test, HC 

subjects and cLBP patients showed a different autonomic reaction. Overall, cLBP patients 

appeared to exhibit a blunted degree of change, in agreement with some previous studies 

[253].  

The cuff pressure test induces more significant changes rather than the repeated pinprick 

test. This could be due either to a more consistent autonomic reactivity to nociceptive 

stimuli or to the longer time window for which the nociceptive stimulus has been 

imposed. In particular, there were more significant changes in EDA parameters in this 

experimental condition, at least for HC subjects, and the trend was very similar in this 

case for the two different populations. 

It is interesting to note the behaviour of autonomic parameters extracted from the EDA: 

while HC subjects showed a dynamic in several parameters, cLBP patients showed a 

significant change only for the SIE parameter, related to the complexity of the signal, and 

the frequency of EDA peaks (freqEDR). Specifically for freqEDR, since EDA is 

influenced only by the sympathetic branch of the autonomic nervous system, it is 

supposed that a nociceptive stimulus should increase the number of EDA peaks [95]. 

Conversely, for cLBP patients the frequency of EDA peaks diminishes when stimulated 

with a nociceptive stimulus. This is proof that a functional neural rearrangement occurred 

in cLBP patients. 

The study presents some limitations that can hamper the generalizability of the results. 

Firstly, our dataset consisted of an unbalanced number of subjects for the two populations 

(15 HC subjects vs 8 cLBP patients). Some changes may not have been detected because 

of the small number of patients with cLBP. More subjects for both populations should be 

involved in this study.  

Still regarding the sample population, HC subjects and cLBP patients presented a 

different age distribution, with the former group being significantly younger than the 

latter. Age-related differences in PPG parameters are well recognized in previous 

literature [254], [255]. Therefore, a strategy could be to control such parameter in future 

works, or to enroll HC subjects and cLBP patients from the same age group.  
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Another limitation are the short phases related to the nociceptive stimuli test. A strategy 

to gain more robust results could be repeating the same nociceptive stimulus or making 

them last longer.  

In future studies, we plan to compare reactions in the two populations to different noxious 

stimuli and to develop automatic methods to assess pain. 

6.6 Conclusion 

We carried out a study to explore differences in the autonomic activity measured by a set 

of physiologic measures, between HC subjects and cLBP patients at rest and during 

noxious stimulations Our findings suggest a higher basal sympathetic activation at rest 

for cLBP patients, but a less dynamic response when subjected to a noxious stimulus. 
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7. AUTOMATIC CLASSIFICATION OF 

HEALTHY CONTROLS AND CHRONIC 

LOW BACK PAIN PATIENTS 

7.1 Introduction 

As the previous chapter shows, healthy control (HC) subjects and chronic Low Back Pain 

(cLBP) patients consistently differences in several physiological parameters. In order to 

obtain robust and reliable methods for objective pain assessment, a first step could be to 

correctly discern between these two populations, following the rationale depicted in 

Figure 7.1. 

This chapter presents the development of a binary classification to distinguish between 

HC subjects and cLBP patients as a prodromic phase for pain assessment based on 

physiological signals. Different strategies for window segmentation and the number of 

selected features are shown using five different machine learning (ML) approaches.  
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Figure 7.1 Rationale to develop a robust and reliable automatic pain assessment method involving 

healthy control subjects and chronic low back pain patients 

7.2 Materials and Methods 

7.2.1 Dataset 

Specifications about the population involved in this study are given at 6.3.1. Some 

participants have been subjected to the experimental protocol twice. In this case, we 

retained all the trials. 

For the HC subjects / cLBP patients classification purpose, baseline sessions, recorded at 

the beginning and at the end of the experimental protocol (see Figure 6.1), have been 

used. We checked through linear mixed effects models that there are no statistically 

significant differences in the features extracted in these two-time recordings of the 

experimental protocol. 

7.2.2 Physiological signals processing 

Since there is no standardized time window to extract the features from, we segmented 

the two baseline sessions into time windows with different length, namely 3, 5, and 10 

seconds. For each window, 61 features have been extracted.  
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7.2.2.1 EDA 

The preprocessing pipeline applied to the EDA signal is the same as reported in 6.3.2. 

A total of 15 features have been extracted from the EDA: 

• Whole EDA signal: Fmax [256], Symbolic Information Entropy (SIE) [249] 

• Tonic component: mean, and standard deviation 

• Statistical features: mean (meanEDA), standard deviation (stdEDA), median 

(medianEDA), interquartile range (iqrEDA), maximum value (maxEDA), 

minimum value (minEDA), range (rangeEDA), kurtosis (ktsEDA), skewness 

(skewEDA) 

7.2.2.2 PPG 

The preprocessing pipeline applied to the EDA signal is the same as reported in 6.3.2. 

A total of 18 features have been extracted from the PPG:  

• Heart Rate Variability (HRV) analysis: after having estimated the inter-beat 

intervals (IBIs) at the time difference between consecutive systolic feet, and 

checking for outliers applying the suggestion of Banhalmi et al. 2018 [248], the 

following HRV parameters have been extracted: meanHR, SDNN, RMSSD 

• Basic morphological analysis: PulseAmpl, A1, A2, A, T1, T2 

• Statistical features: mean (meanPPG), and standard deviation (stdPPG), median 

(medianPPG), interquartile range (iqrPPG), maximum value (maxPPG), 

minimum value (minPPG), range (rangePPG), kurtosis (ktsPPG), skewness 

(skewPPG) 

7.2.2.3 EMG 

EMG signal has been subjected to a 5th-order Butterworth high-pass filter, with 0.5 Hz as 

the cut-off frequency. Nineteen features have been extracted from the EMG [257]: 

• EMG-specific features: Integrated EMG (IntEMG), Mean Absolute Value (MAV), 

Simple Square Integrated (SS_Int_EMG), Root Mean Square (RMS), Variance 

(Var), Waveform length (Waveform_length), Different Mean Absolute Value 

(Diff_MAV), Second-order moment (SecondOrd_mom), Difference Variance 

Version (Diff_Var), Difference Absolute Standard Deviation (Diff_Abs_SD) 

• Statistical features: mean (meanEMG), standard deviation (stdEMG), median 

(medianEMG), interquartile range (iqrEMG), maximum value (maxEMG), 
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minimum value (minEMG), range (rangeEMG), kurtosis (ktsEMG), skewness 

(skewEMG) 

7.2.2.4 Respiration 

The respiration signal was subjected to a 4th-order high-pass filter, with a cut-off 

frequency of 0.1 Hz. Nine features have been exctracted:  

• Statistical features: mean (meanResp), standard deviation (stdResp), median 

(medianResp), interquartile range (iqrResp), maximum value (maxResp), 

minimum value (minResp), range (rangeResp), kurtosis (ktsResp), skewness 

(skewResp) 

7.2.3 Feature selection 

We applied the Maximum Relevance – Minimum Redundancy (MRMR) feature selection 

algorithm [258] to select a subset of features to optimize the classification process. We 

tested the performance of different classifiers by using the first 10, 20, and 30 features 

selected from the MRMR method. 

7.2.4 Machine learning algorithms 

The dataset has been divided into training (70%) and test (30%) sets. The division has 

been carried out on a subject basis via a pseudorandomization, to have a balanced number 

of HC subjects and cLPB patients in both training and test sets.  

We trained and tested five different ML algorithms, whose hyperparameters are the 

following: 

• Support Vector Machine (SVM) (Kernel, C, Gamma) 

• Decision Tree (DT) (Criterion, Max depth) 

• K- nearest neighborhood (k-NN) (Algorithm, Leaf size, # neighbors) 

• Stochastic Gradient Descent (SGD) (Alpha, L1 ratio, Loss, Penalty) 

• AdaBoost (Max depth, Min ample leaf, # estimators, Learning rate) 

The training set has been used for hyperparameters optimization of the aforementioned 

ML algorithms using the GridSearch method with a 5-fold cross-validation, using the 

accuracy as a performance metric to be maximised. 

Once the hyperparameters have been optimized for all time-window lengths and all the 

feature sets (10, 20, and 30 features), the ML algorithms have been tested on the test set. 
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As performance metrics, we used accuracy, sensitivity, and specificity. In Figure 7.2 the 

pipeline of the approach is shown. 

The preprocessing, feature extraction and application of the feature selection algorithm 

have been carried out on Matlab 2022b [259], while ML algorithms training and testing 

have been carried out by using the Python scikit-learn package [260]. 

 

Figure 7.2 Approach to develop the binary classifier to distinguish between HC subjects and cLBP 

patients 

7.3 Results 

7.3.1 Sample data 

A total of 38 recordings have been used, 25 coming from HC subjects and 13 from cLBP 

patients. In order to have the same proportion of recordings from HC subjects and cLBP 

patients in the training and test sets, we used recordings from 11 HC subjects and 6 cLBP 

patients as the training set, and 5 HC and 2 cLBP patients as the test set. 

By dividing the baseline sessions into 3, 5, and 10 seconds window length, the number of 

instances obtained is reported in Table 7.1. 

Table 7.1 Number of instances by dividing baseline sessions into 3, 5, and 10 seconds 

  

Total dataset Training set (70%) Test set (30%) 

Tot  HC cLBP Tot  HC LBP Tot  HC cLBP 

3 sec 1230 819 411 898 577 321 332 242 90 

5 sec 732 486 246 535 343 192 197 143 54 

10 sec 359 238 121 264 169 95 95 69 26 

7.3.2 Feature selection 

By applying the MRMR feature selection method to the three datasets based on different 

window lengths and selecting the first 10, 20, and 30 features, we obtained the selected 

features reported in Table 7.2.  
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7.3.3 Classification  

The optimized hyperparameters, obtained as output from the 5-fold cross-validation using 

the GridSearch method, are depicted in Table 7.3. 

Figure 7.3 presents the values of validation accuracy, together with test accuracy, 

sensitivity, and specificity for the three different sets of features extracted by windows of 

A) 3 seconds, B) 5 seconds, and C) 10 seconds. 

Table 7.2 Selected features extracted from different time window lengths 

    EDA PPG EMG Resp 

3 sec 

10 features minEDA, Fmax 
A2, PulseAmpl, A1, 

RMSSD,T2 
skewEMG 

maxResp, 

skewResp 

20 features 

minEDA, Fmax, 

slopeEDA, maxEDA, 

meantonic, 

meanEDA, 

rangeEDA, 

medianEDA 

A2, PulseAmpl, A1, 

RMSSD,T2, meanHR, 

A, maxPPG 

skewEMG 

maxResp, 

skewResp, 

iqrResp 

30 features 

minEDA, Fmax, 

slopeEDA, maxEDA, 

meantonic, 

meanEDA, 

rangeEDA, 

medianEDA, 

stdtonic, iqrEDA, 

stdEDA 

A2, PulseAmpl, A1, 

RMSSD,T2, meanHR, 

A, maxPPG, iqrPPG, 

minPPG 

skewEMG, 

iqrEMG, 

ktsEMG, 

minEMG 

maxResp, 

skewResp, 

iqrResp, 

rangeResp, 

medianResp 

5 sec 

10 features meanEDA, slopetonic 
meanHR, SDNN, 

minPPG, A1 
ktsEMG 

maxResp, 

ktsResp 

20 features 

meanEDA, 

slopetonic, 

meantonic, maxEDA, 

minEDA, 

medianEDA 

meanHR, SDNN, 

minPPG, A1, RMSSD, 

T2, maxPPG, A 

ktsEMG 

maxResp, 

ktsResp, 

skewResp, 

rangeResp 

30 features 

meanEDA, 

slopetonic, 

meantonic, maxEDA, 

minEDA, 

medianEDA, 

meanHR, SDNN, 

minPPG, A1, RMSSD, 

T2, maxPPG, A, 

rangePPG 

ktsEMG, 

skewEMG, 

minEMG, 

Diff MAV, 

meanEMG 

maxResp, 

ktsResp, 

skewResp, 

rangeResp, 

medianResp, 

stdResp 
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rangeEDA, iqrEDA, 

skewEDA 

10 sec 

10 features meanEDA 
SDNN, stdPPG, A1, A2, 

meanHR 

iqrEMG, 

skewEMG 

maxResp, 

skewResp 

20 features 

meanEDA, 

rangeEDA, minEDA, 

maxEDA, meantonic 

SDNN, stdPPG, A1, A2, 

meanHR, RMSSD, 

minPPG, A, T2 

iqrEMG, 

skewEMG 

maxResp, 

skewResp, 

medianResp, 

ktsResp 

30 features 

meanEDA, 

rangeEDA, minEDA, 

maxEDA, meantonic, 

medianEDA, 

iqrEDA, skewEDA, 

stdtonic 

SDNN, stdPPG, A1, A2, 

meanHR, RMSSD, 

minPPG, A, T2, iqrPPG, 

maxPPG, meanPPG 

iqrEMG, 

skewEMG, 

ktsEMG 

maxResp, 

skewResp, 

medianResp, 

ktsResp, 

rangeResp, 

stdResp 

The best performance in terms of test accuracy has been achieved by the k-NN algorithm 

fed with 10 features extracted by segmenting the recordings into 10 seconds time 

windows (Accuracy = 77.89%, Sensitivity = 92.31%, Specificity = 72.46%). 



 

 

 

Table 7.3 Optimized hyperparameters for the 5 ML algorithms, for different features set and extracted on 3, 5, and 10 seconds time windows 

SVM 

 Kernel C Gamma    

 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec    

10f sigmoid poly rbf 1000 10 100 0.01 0.1 0.1    

20f rbf poly rbf 10 1 10 0.1 0.1 0.1    

30f rbf rbf rbf 10 10 1 0.1 0.1 0.1    

DT 

 Criterion Max Depth       

 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec       

10f Gini Entropy Entropy 150 150 6       

20f Entropy Entropy Entropy 8 150 8       

30f Entropy Entropy Entropy 5 12 11       

KNN 

 Algorithm Leaf size N neighbors    

 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec    

10f Ball tree Ball tree Ball tree 1 1 1 4 2 2    

20f Ball tree Ball tree Ball tree 1 1 1 2 2 2    

30f Ball tree Ball tree Ball tree 1 1 1 2 8 2    

SGD 

 Alpha L1 ratio Loss Penalty 

 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 

10f 10-3 10-4 10-1 0.15 0.07 0.1 Perceptron log Squared error L2 L2 Elasticnet 

20f 10-3 10-3 10-4 0.15 0.14 0.06 Perceptron Hinge Perceptron L1 L1 Elasticnet 

30f 10-2 10-2 10-2 0.05 0.15 0.06 Perceptron Perceptron Modified Huber Elasticnet Elasticnet L1 

AdaBoost 
 Max Depth Min samples leaf N estimators Learning rate 

 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 3 sec 5 sec 10 sec 

1
0
6
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SVM = Support Vector Machine. DT = Decision Tree. KNN = k-Nearest Neighbors. SGD = Stochastic Gradient Descent.

10f 10 8 4 5 5 10 100 10 50 0.5 1 0.5 

20f 4 4 4 10 5 10 1000 1000 100 0.5 1 0.5 

30f 6 4 8 5 5 10 1000 250 50 0.1 1 1 

1
0
7
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Figure 7.3 Classification performance for different features set extracted on 3, 5, and 10 

seconds time windows 

 

A 

B 
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7.4 Discussion 

This work used several ML algorithms as classifiers to discriminate between healthy 

control subjects and chronic low back pain patients using physiological signals recorded 

under resting conditions. Different configurations have been assessed in terms of the time 

window length to segment the physiological signals from which to extract parameter and 

in terms of the number of features to train and test the ML algorithm. We obtained the 

best performance to discriminate between the two populations by using a k-NN fed with 

10 features extracted by segmenting the physiological signals into 10-second time 

windows. 

We tried different time window lengths for two main reasons: on the one hand, in the 

literature, there is no standard for the time window in which to extract parameters; on the 

other hand, as the time window length gets shorter, a higher number of instances can be 

obtained, so the ML algorithms can likely be better trained. Based on the results we 

obtained, the best performance was achieved by using the 10-second time windows, that 

is also the length which provides the fewest instances. This can be interpreted as features 

extracted on a longer time window being more meaningful for this kind of classification 

than features extracted on shorter time windows.  

Evaluating the performance of all classifiers, a common trend can be appreciated: higher 

sensitivity rather than specificity. Having more HC instances available than cLBP, we 

expected the opposite behavior. By performing a principal component analysis on the 

training set consisting of 10 features extracted over 10-second time windows (i.e., the 

best-performing dataset) and plotting the first two components, as shown in Figure 7.4, it 

can be seen that HC subjects have a wider distribution than cLBP patients. Therefore, the 

higher sensitivity than specificity can be attributed to the more homogeneous behavior of 

cLBP patients than HC subjects. 

This work presents the same limitations reported in the previous chapter. The small 

sample size and the different age distributions in the two populations can hinder the 

generalizability of the results. Furthermore, the unbalance between HC subjects and cLBP 

patients in the dataset represents another weakness of this study. 
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Figure 7.4 First and Second Principal Component Scores, divided for Healthy Controls (HC) and 

chronic Low Back Pain (cLBP) patients 
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8. PHYSIOLOGICAL RESPONSE TO 

PAIN IN CANCER PATIENTS 

 

From the manuscript: Moscato S., Cortelli P., Chiari L., “Physiological responses to pain 

in cancer patients: a systematic review”, Computer Methods and Programs in 

Biomedicine, 2022 

 

 

8.1 Abstract 

Pain is one of the most debilitating symptoms in persons with cancer. Still, its assessment 

is often neglected both by patients and healthcare professionals. There is increasing 

interest in conducting pain assessment and monitoring via physiological signals that 

promise to overcome the limitations of state-of-the-art pain assessment tools. This 

systematic review aims to evaluate existing experimental studies to identify the most 

promising methods and results for objectively quantifying cancer patients’ pain 

experience.  

Four electronic databases (Pubmed, Compendex, Scopus, Web of Science) were 

systematically searched for articles published up to October 2020.  

Fourteen studies (528 participants) were included in the review. The selected studies 

analyzed seven physiological signals. Blood pressure and ECG were the most used 
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signals. Sixteen physiological parameters showed significant changes in association with 

pain. The studies were fairly consistent in stating that heart rate, the low-frequency to 

high-frequency component ratio (LF/HF) , and systolic blood pressure positively 

correlate with the pain.  

Current evidence supports the hypothesis that physiological signals can help objectively 

quantify, at least in part, cancer patients’ pain experience. While there is much more to 

be done to obtain a reliable pain assessment method, this review takes an essential first 

step by highlighting issues that should be taken into account in future research: use of a 

wearable device for pervasive recording in a real-world context, implementation of a big-

data approach possibly supported by AI, including multiple stratification factors (e.g., 

cancer site and stage, source of pain, demographic and psychosocial data), and better-

defined recording procedures. Improved methods and algorithms could then become 

valuable add-ons in taking charge of cancer patients. 

8.2 Introduction 

Cancer pain is an umbrella term that comprises many heterogeneous pain conditions with 

different physiological characteristics [261]. Pain can be due to the presence of the tumor 

itself, oncological treatments (e.g., chemotherapy, surgery, or immunotherapy) [81], or 

tissue damage [262].  

The International Association for the Study of Pain (IASP) defined pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage” [263]. IASP also disclosed general guidelines for 

pain classification [264] that can be used for cancer pain evaluation. They are based on 

four significant features:  

• pathophysiological mechanism: cancer pain can arise both as  

• nociceptive pain that can be either  

• somatic, the most frequent type of pain in the cancer population [82], or  

• visceral, usually manifested after abdominal or thoracic surgery [265]; 

• neuropathic pain, with a prevalence of 20% in the cancer population [261]; 

• mixed pain, a combination of the two;  

• duration: cancer patients usually suffer from chronic pain, which persists or recurs 

for more than three months [238], or breakthrough pain [266];  

• etiology; 
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• anatomic location.  

Regardless of its cause, pain is one of the most debilitating symptoms experienced by 

persons with cancer. On average, one-half of all cancer patients suffer from pain [267], 

and this percentage tends to become higher with the progression of the disease [268]. 

Furthermore, pain is detrimental to the psychological well-being of the subject. The 

reduced quality of life, in turn, reduces the adherence to therapy, which inevitably leads 

to adverse outcomes [269]. In addition to the personal and social impact, cancer pain also 

represents an economic burden [266]: the healthcare costs for oncological pain relief are 

almost five times higher than in the healthy population [270]. It should be added that, in 

this estimation, indirect costs related to patients’ and caregivers’ lower productivity are 

not taken into account [266] [271].  

According to the American Pain Society and the European Task Force on Cancer Pain, 

an appropriate pain treatment starts with an appropriate pain assessment [272] [273]. 

Nowadays, in routine clinical practice, pain is assessed using scales and questionnaires to 

overview the pain experience. Scales are unidimensional ratings of pain intensity, while 

questionnaires give a more comprehensive evaluation as they keep track of different 

aspects of the pain experience, like the anatomical location and the time the pain is 

experienced [274]; some questionnaires are developed specifically for a particular type 

of cancer pain, as for the cancer-related neuropathic pain [262].  

Although scales and questionnaires are state-of-the-art pain assessment tools (PAT), they 

suffer from several limitations. Since pain sensation is inherently subjective [275], the 

patient must be cooperative and non-cognitively impaired to communicate it [276]. 

Moreover, the memory of pain tends to be inaccurate and is often influenced by several 

context factors [277]. Specifically for cancer pain, patients tend to underrate their pain 

because it is supposed to be directly related to the worsening of the pathology [81]. 

Paradoxically, this could deteriorate the subject’s health since pain acts as an alarm bell 

that alerts the body to take action to protect itself [278]. It can also happen that healthcare 

professionals leave out the pain assessment from their routine because they are more 

concerned about cancer diagnosis and treatment [82], so the evaluation is only carried out 

occasionally, usually in clinical settings. 

Pain is a phenomenon of the utmost complexity that involves different physiological 

mechanisms at both the central and peripheral levels [279]. The conscious perception of 

pain is a result of higher brain center processes, collectively called the “Pain 
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Neuromatrix” [25], which modulate the pain sensation based on the subject’s attention, 

affective dimension, and cognitive appraisal [51]. These processes, in turn, disrupt the 

ordinary functioning of some physiological mechanisms.  

The physiological systems mainly affected by the pain experience are the Central Nervous 

System (CNS) and the Autonomic Nervous System (ANS). The CNS can be monitored 

using non-invasive electrophysiological or brain-imaging techniques to detect activated 

brain areas and the connection patterns established following the pain experience [280]. 

As a result, the brain’s processes in response to a stimulus can be reconstructed [281]. On 

the other hand, the effects of ANS activation in response to pain can be monitored 

indirectly by measuring several physiological functions [282], collectively called 

autonomic signals. The ANS, composed of the sympathetic and parasympathetic systems, 

represents the bridge between the central nervous system and the internal organs. The 

ANS actions follow the “fight or flight” principle [283]: they occur involuntarily to 

preserve the integrity of the subject. Autonomic signals are often exploited in the research 

field of “Emotion recognition” [84], and objective pain assessment is one of its branches.  

One of the main advantages of exploiting autonomic signals is collecting them through 

wearable devices. With their relatively low-cost technology and progressive 

miniaturization [123], wearable sensors have become a valuable source of information 

about the health status both for healthy and diseased subjects, allowing continuous and 

unobtrusive monitoring even in real-world conditions [122]. In the last few decades, 

several research groups have focused on the link between pain and measurable 

physiological signals reflecting the disrupted mechanisms. Monitoring these signals could 

indeed provide additional tools for cancer pain assessment. Unlike scales and 

questionnaires, they would not require the subject’s cooperation. Because physiological 

mechanisms are not affected by the subject’s psychology, they also represent the pain 

status more objectively. Moreover, by using wearable devices, pain assessment could be 

carried out also outside the clinical context, when and where the pain is actually 

experienced. As an added benefit, healthcare professionals could dedicate the time of the 

visit to diagnosing and treating cancer instead of assessing pain. 

On the other hand, such an approach imposes several challenges from a technical point 

of view. Physiological signals, especially those recorded by wearable devices, can be 

subjected to external noise and motion artifacts [121]. Thus, to overcome this issue, they 

must be subjected to a proper preprocessing step, in which signals are cleaned, and the 
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effects of possible artifacts are mitigated. Another critical step is represented by the 

feature extraction [284]: once the signals are ready to be processed, it is crucial to extract 

those features that can capture the phenomenon of interest (pain in this case). Added to 

this is the feature selection step, in which only the features that best describe the 

phenomenon are selected and then used [285]. Lastly, complex algorithms needed to 

understand the underlying relationship between features and pain since it is likely not to 

be simply linear [286]. In this case, it is possible to use either classical statistical methods 

or artificial intelligence (AI) algorithms. The former can be applied to appreciate 

differences in different painful conditions, and, consequently, they can be used to develop 

models that link a given painful condition to a precise physiological response. The latter 

use machine learning and deep learning algorithms [287] that automatically learn 

physiological responses patterns linked to a given painful condition.  

Pain monitoring and assessment through physiological signals are still in an exploratory 

phase. To date, several studies have investigated aspects of the relationship between pain 

and physiological systems, nicely recapped by three recent reviews. The latest review by 

Chen et al. [118] summarizes the most common pain and stress assessment methods, 

followed by a synopsis of the main physiological signals that could be recorded through 

wearable devices. Next, the paper by Naranjo-Hernandez et al. [116] offers an overview 

of sensors that can potentially be used for chronic pain assessment, offering fascinating 

insights on the signals to be exploited and the relevant algorithms for their processing. 

Finally, the survey by Werner et al. [115] is more technical, including details about AI 

algorithms developed for automatic pain recognition through physiological signals. 

However, these reviews did not address the association between pain and changes in 

physiological signals specific to the cancer population and the feasibility of conducting 

these assessments in real-world settings.  

For these reasons, we aim to conduct a systematic review of studies investigating the 

effect of pain on cancer patients' physiological signals. Our specific objectives are:  

• To assess which physiological signals have been investigated in relation to cancer 

pain; 

• To understand which statistical methods have been used to assess the association 

between cancer pain and physiological signals; 

• To compare (whenever possible) the results of different studies; 
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• To evaluate the diffusion of instrumental pain assessment also in real-world 

settings  

All the studies on this topic will be collected, and the link between physiological signals 

and cancer pain experience will be critically appraised.  

8.3 Materials and Methods 

8.3.1 Search strategy 

We adopted the Preferred Reporting Items for Systematic Review and Meta-Analysis 

(PRISMA) guidelines for the review protocol. PRISMA is “an evidence-based minimum 

set of items for reporting in systematic reviews” [288], [289].  

The primary research question of the current review is: “What are the physiological 

responses to pain in cancer patients?”.  

The secondary questions are:  

• Which physiological signals are currently monitored in this patient group?  

• Which methods are used to investigate the association between subjective pain 

experience and physiological responses?  

• Do different studies provide consistent evidence about the role of physiological 

signals in relation to pain? 

• In real-world settings, what is the diffusion of studies investigating the 

physiological effect on cancer pain? 

The following eligibility criteria have been defined using the SPIDER search tool [290]:  

• Sample: Cancer patients 

• Phenomenon of Interest: Pain experience 

• Design: Pain assessment  

• Evaluation: Recording of physiological signals  

• Research type: Quantitative Research 

A systematic literature search of PubMed, Compendex, Web Of Science, and Scopus 

databases was conducted to October 2020. We limited searches to 1990 onwards and 

included only studies published in English and Italian.  

Based on the eligibility criteria, the search string was: ((Pain* OR Nocicept*) [Title] 

AND (Automat* OR Predict* OR Measur* OR Evaluat* OR Recognition OR Estimat* 

OR Classif* OR Assess* OR Examin* OR Detect* OR Effect) [Title + Abstract] AND 
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((Physiologic* OR Peripheral OR Autonom*) [Title + Abstract] AND (Signal OR Signals 

OR Parameter* OR Variable* OR Measure* OR Result OR Results OR Nervous 

System)) [Title + Abstract] AND (Cancer OR Oncolog*) [Title + Abstract]. 

8.3.2 Study selection 

We used the following inclusion criteria:  

• Cancer patients (including comparisons with a control group) 

• Measure of physiological signals  

• Pain assessment through scales/questionnaires, or information regarding the 

intensity of a nociceptive stimulus, or expected change due to an intervention 

(painful or therapeutic) 

The following are the exclusion criteria:  

• Animal experiments 

• Scales or questionnaires only 

• Case reports 

• Assessment using biomolecules. 

Duplicate publications were removed using Mendeley software [291]. In the first phase, 

two review authors (SM and LC) independently screened retrieved titles and abstracts 

and excluded irrelevant studies using Rayyan [292]. Disagreements were resolved by 

consensus. In the second phase, a reviewer (SM) searched the reference lists of the 

selected studies and other systematic reviews on similar topics to find additional papers.  

8.3.3 Data extraction and quality assessment 

The following information was extracted from each study: 

• Year of publication 

• Study objective 

• Settings (clinical or real-world) 

• Number of subjects and demographic data (age, gender)  

• Cancer diagnosis  

• Pain information and type of external pain stimulus (if any) 

• Study type 

• Pain ratings through scales or questionnaires, or intensity of the nociceptive 

stimulus, or pre-post intervention assessment  
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• Recorded physiological signals  

• Recording procedure (e.g., duration, sampling frequency)  

• Statistical methods (e.g., correlation, intergroup differences, before-after 

intervention) used to study the association between pain and physiological 

response 

Based on the study design, included studies were divided into two categories:  

• Concurrent validity studies, comparing state-of-the-art PAT and physiological 

signals; 

• Sensitivity to change studies, evaluating physiological signals before and after an 

intervention (painful or antalgic). 

 Articles using the same physiological measures were clustered to investigate consistency 

across studies within these two categories.  

To assess the quality of the studies, we selected two different tools for the two categories: 

• Concurrent validity studies: Quality Assessment of Diagnostic Accuracy Studies 

2 (QUADAS-2) tool [293]. The physiological outcome resulting from the pain 

sensation is the new diagnostic tool to be assessed in terms of accuracy and 

reliability. At the same time, state-of-the-art PAT (i.e., scales, questionnaires) or 

the intensity of the nociceptive stimuli represent the ground truth: the term of 

comparison of the instrumental measurements. QUADAS-2 consists of thirteen 

questions related to four key domains:  

o patient selection: describe methods of patient selection and the included 

patients; 

o index test: describe the index test and how it was conducted and 

interpreted; 

o reference standard: describe the reference standard and how it was 

conducted and interpreted; 

o flow and timing: describe any patients who did not receive the index tests 

or reference standard; describe the interval and any interventions between 

index tests and the reference standard.  

• Sensitivity to change studies: NIH Quality Assessment Tool (NIH-QAT) for 

before-after (pre-post) studies with no control group [294] . This tool consists of 

twelve signaling questions. We removed the Q12 (related to group interventions) 

since it is out of this systematic review scope. 
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 For both tools, the risk of bias is assessed based on the answer to each signaling question 

(yes/no/info not available). We assigned an overall dichotomous risk of bias indicator 

based on the majority of answers, yes (low risk of bias) or no/not available (high risk of 

bias). 

8.4 Results 

8.4.1 Study selection 

Searching the databases produced 1,181 records. Once duplicates were removed, 1,155 

records were screened based on title and abstract, and 1,102 were excluded because they 

were not within the scope of this review. We assessed the full text of 53 studies and 

retained 13 of them that met the inclusion criteria [295]–[307]. One additional article 

(Buvanendran et al., 2010; [308]) was identified during the final manual search among 

the references of [304]. In total, 14 journal articles were included (see Figure 9.1). 

 

 

Figure 8.1 PRISMA flow diagram 

8.4.2 Study characteristics 

Descriptive characteristics of the fourteen studies are presented in Table 9.1. The included 

papers were published between 1993 and 2018. Three studies were based in the USA 

[299], [307], [308], two in Italy [297], [305], and one each in France [295], Turkey [296], 

Japan [300], South Korea [301], Austria [302], Poland [303], UK [304], Israel [306], and 

Lebanon [298]. Five hundred twenty-eight subjects were enrolled in the selected studies 

(172 males and 356 females, 516 oncological patients and 12 healthy volunteers), with an 

average of 38 subjects per study (range: 9-100) and a mean age of 53 years (range: 4-75 
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years). Three studies are focused exclusively on breast cancer (hence the high number of 

women), while eleven include different cancer sites (Figure 9.2). 

 

With regard to the pain type, four studies enrolled patients suffering from neuropathic 

pain [295], [296], [304], [306], mostly due to chemotherapy treatment (3/16); five studies 

involved patients subjected to a nociceptive stimulus (surgery [300], [303], dental 

stimulation [297], and invasive procedures [298], [301]). Two studies looked at cancer 

pain in general [299], [305], and one each at breakthrough pain episodes [302], chronic 

pain [308], and metastatic bone pain [307].  

Concerning the experimental settings, twelve studies were carried out in clinical settings 

and only two in real-world conditions.  Furthermore, only five studies reported 

information about the duration of the recordings, while none of the studies included 

information about the sampling frequency of the physiological signals. 

Physiological signals under investigation in the selected studies and the relative extracted 

physiological parameters are the following:  

• blood pressure (BP) in seven studies [297]–[299], [301], [303], [305], [307] 

o systolic blood pressure (sysBP): maximum blood pressure during 

ventricles contraction 

o diastolic blood pressure (diaBP): minimum blood pressure before the next 

contraction 

• electrocardiogram (ECG) in four studies [296], [300], [302], [306] 
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o parameters from Heart Rate Variability (HRV) analysis: they are related 

to the time variations between consecutive heartbeats 

• photoplethysmography (PPG) in two studies [298], [307] 

o parameters from HRV analysis 

o oxygen saturation (SpO2): the amount of oxygen carried by the 

hemoglobin in the blood  

 

 

ECG: Electrocardiogram, BP: Blood Pressure, BOLD fMRI: Blood-Oxygenated-Level-

Dependent functional Magnetic Resonance Imaging, ESC: Electrochemical Skin 

Conductance, PET: Positron Emission Tomography 

Figure 8.2 Graphical representation of the salient features of selected studies: * concurrent validity 

studies; § sensitivity to change studies 

• respiration (Resp) in one study [299]  

o respiration rate: the pace at which breathing occurs 

• electrochemical skin conductance (ESC) in one study [295] 

• positron emission tomography (PET) imaging in one study [308] 

• blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD-

fMRI) in one study [304]. 

A brief description of the physiological parameters computed in the selected studies is 

presented in Appendix B, Table B.1. 
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8.4.3 Concurrent validity studies 

Only two [296], [302] concurrent validity studies were carried out in a real-world context. 

In four studies [295], [296], [304], [308], patients were divided into two or more groups 

based on their pain experience. The most-used tools (five studies [298], [302], [303], 

[306], [308]) were scales such as the Numerical Rating Scale (NRS) (3/9), Visual 

Analogue Scale (VAS) (1/9), and FACES scale (1/9). For neuropathic pain evaluation, 

ad-hoc questionnaires were used (3/9) [295], [296], [304], as the Leeds Assessment of 

Neuropathic Symptoms and Signs and the Neuropathic Pain Symptom Inventory. A 

graphical depiction about the main features of the concurrent validity studies is given in 

Appendix B, Figure B.1. 

In combination with scales and questionnaires, six physiological signals were exploited, 

four of which are autonomic signals: ECG (3/9), BP (3/9), PPG (2/9), ESC (1/9), BOLD-

fMRI (1/9), and PET (1/9). 

In eight out of nine studies, the features extracted from physiological signals were 

compared to pain assessment tools through correlation analysis, using Pearson’s 

correlation coefficient [298], [302], [303], [306], Spearman’s correlation coefficient 

[295], [297], both based on the distribution of the parameter [296] or a linear regression 

analysis [304], while five studies assessed the differences between two or more groups, 

using Wilcoxon test [295], [306], the Mann-Whitney U test [304], [308], or t-test and chi-

square test for numerical and categorical variables respectively [296]. Only in one article 

did researchers investigate whether it is possible to use the extrapolated physiological 

parameters to classify patients by whether they had pain or not by analyzing the Receiver 

Operating Characteristic (ROC) curve [295]. 

A total of 19 different physiological parameters were assessed in association with pain; 

14 were significantly related to pain in at least one study. The most-used physiological 

parameters are those extrapolated by HRV analysis and BP. 

We further divided the concurrent validity studies by physiological signal type: 

monodimensional signal (i.e., time-series) and neuroimaging techniques. The main 

findings of the selected studies about physiological parameters are presented in Table 8.2. 

8.4.3.1 Monodimensional signal 

Four monodimensional signals were used, from which 17 physiological parameters were 

derived. Twelve of the parameters were statistically significantly associated with state-

of-the-art PAT, both in terms of correlation and intergroup differences.  
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Four of the physiological parameters were used in more than one study: heart rate, LF/HF 

ratio, total power, systolic blood pressure. Specifically, heart rate showed to be higher in 

patients with neuropathic pain [296] and correlated with a state-of-the-art PAT [298], but 

in the other two studies, it was not significantly associated with pain scales [302], [303]. 

The LF/HF ratio, obtained as an output from HRV Analysis, was exploited in three 

different studies, resulting significantly higher in neuropathic patients and positively 



 

 

Table 8.1 Descriptive characteristics of the included studies 

Ref.  Study objective Sett. 
No 

subjects 

Age  

mean 

(std) 

Gender 

Cancer diagnosis 

(no.) 

Informatio

n on pain 

Study 

type 

Pain 

assessment 

Physiol. 

signals(

s) 

Rec 

duratio

n 

Stat. 

analyses 

Delmotte et 

al. 2018 

(France) 

[295] 

To investigate 

how 

Electrochemical 

Skin 

Conductance 

(ESC) could be 

helpful in 

Oxaliplatin-

Induced 

Peripheral 

Neuropathy 

(OIPN) 

diagnosis 

Clinical 36 
64 (11) –  

18 F 

Colon (12), 

Stomach (6), Liver 

(1), Pancreas (9), 

Rectum (7), 

Peritoneum (1). 

All with 

Oxaliplatin-

Induced Peripheral 

Neuropathy 

Neuropathi

c pain 

Concurre

nt 

validity 

Neuropathi

c Pain 

Symptom 

Inventory 

(NPIS)  

ESC - 

Correlation

, Inter-

group 

differences

, 

Classificati

on 

Yesil et al. 

2018 

(Turkey) 

[296] 

To investigate 

whether 

neuropathic pain 

is associated 

with changes in 

cardiac 

sympathovagal 

activity in 

patients with 

breast cancer 

(BC) 

Real 

World 
70 

48.2 

(7.04) - 

70 F 

Breast cancer with 

chemotherapy-

induced 

neuropathy 

Neuropathi

c pain 

Concurre

nt 

validity 

Leeds 

Assessmen

t of 

Neuropathi

c 

Symptoms 

and Signs 

(LANSS) 

ECG  
24 

hours 

Correlation

, Inter-

group 

differences 

Uchida et 

al. 2017 

To examine the 

effects of low-

dose 

remifentanil on 

Clinical 20 

59 (7) 

exp. 

group, 60 

(11) 

Patients 

undergoing breast 

cancer surgery 

with pain (13), 

Nociceptiv

e pain 

(breast 

Sensitivit

y to 

change 

Before and 

after the 

surgery, 

ECG  - 
Pre-Post 

interventio

n, Inter-

1
2
6
 

 



 

 

 

(Japan) 

[300] 

post-operative 

pain relief and 

heart rate 

variability after 

surgery 

control 

group - 

20 F 

and without pain 

(7 age-matched) 

cancer 

surgery) 

group 

comparison 

group 

differences  

Yu et al. 

2017 

(South 

Korea) 

[301] 

To test the effect 

of inhalation of 

lavender oil or 

linalyl acetate on 

pain relief 

Clinical 66 
60.9 - 29 

F 

Colorectal cancer 

(66) 

Nociceptiv

e pain 

(colorectal 

cancer 

surgery) 

Sensitivit

y to 

change 

Before and 

after 

antalgic 

therapy 

BP 

1 

minute 

before 

and 

after 

therapy 

Pre-Post 

interventio

n 

Masel et al. 

2016 

(Austria) 

[302] 

To study the 

changes in the 

ANS by 

measuring HRV 

during opioid 

therapy for 

cancer 

breakthrough 

pain  (CBTP) in 

palliative-care 

patients with 

cancer and 

compare these 

changes with 

patient-reported 

pain levels on a 

NRS 

Real 

World 
10 

62 (5.2) - 

4 F 

Advanced cancer 

(10) 

Breakthrou

gh pain 

Concurre

nt 

validity 

NRS ECG  

6 

variable

-length 

time 

window

s before 

and 

after 

therapy 

Correlation 

Wegorows

ki et al. 

2016 

(Poland) 

[303]  

To assess the 

possibilities of 

modifying the 

intensity of post-

operative pain 

evaluated with 

VAS after 

Clinical 100 

58.58 

(12.01) - 

100 F 

Breast cancer 

(100) 

Nociceptiv

e pain 

(breast 

cancer 

surgery) 

Concurre

nt 

validity 

VAS BP  - Correlation 

1
2
7
 

 



 

 

 

surgical 

2treatment for 

breast neoplasm 

offered by pre-

emptive 

analgesia 

Boland et 

al. 2014 

(UK) [304] 

To compare 

areas associated 

with central pain 

processing in 

patients with 

multiple 

myeloma who 

had 

chemotherapy-

induced 

peripheral 

neuropathy with 

those from 

healthy 

volunteers 

Clinical 24 

58 

(IQR:35-

67) - 10 F 

Cancer patients 

with Multiple 

myeloma 

chemotherapy-

induced peripheral 

neuropathy (MM-

CIPN) (12) –

healthy controls 

(12) 

Neuropathi

c pain + 

Nociceptiv

e pain (heat 

pain 

stimulation

) 

Concurre

nt 

validity 

Total 

Neuropath

y Score 

reduced 

version 

(TNS-

reduced) - 

MM-CIPN 

vs healthy 

volunteers 

BOLD 

fMRI 
- 

Correlation

, Inter-

group 

differences 

Burrai et 

al. 2014 

(Italy) 

[305]  

To test the 

differences in 

physiological 

parameters, 

pain-level, and 

mood-level 

between an 

experimental 

group subjected 

to live sax music 

and a control 

group who 

experienced only 

standard care 

Clinical 52 

64.3 

(12.9) 

exp. 

group - 

25 F, 

64.6 

(12.8) 

control 

group - 

18 F 

Metastatic cancer 

(45), non-

metastatic cancer 

(7) 

Cancer 

pain 

Sensitivit

y to 

change 

Before and 

after 

antalgic 

therapy 

BP - 

Pre-Post 

interventio

n, Inter-

group 

differences 

1
2
9
 

1
2
8
 

 



 

 

 

Nahman-

Averbuch 

et al. 2014 

(Israel) 

[306] 

To evaluate the 

relationships 

between 

autonomic 

parasympathetic 

function and the 

perception of (i) 

spontaneous 

pain, (ii) 

experimental 

non-painful 

sensations, (iii) 

painful 

experimental 

sensations in 

chemotherapy-

induced 

neuropathy 

patients 

Clinical 27 
56.5 (7.9) 

- 20 F 

Breast (11) , 

Lungs (2), Breast 

and Lungs (1), 

Ovary (2), 

Myeloma (2), 

Stomach (1), 

Oesophagus (1), 

Colon (3), 

Leukaemia (2), 

Hodgkin's 

Lymphoma (1), 

Sarcoma (1). All 

with peripheral 

neuropathy 

Neuropathi

c pain + 

Nociceptiv

e pain (heat 

pain 

stimulation

) 

Concurre

nt 

validity 

NRS ECG  

5 

minutes 

at rest, 

1 

minute 

for 

deep 

breathi

ng test, 

15 

seconds 

for 

Valsalv

a 

manoeu

vre 

Correlation

, Inter-

group 

differences 

Buvanendr

an et al. 

2010 

(USA) 

[308] 

To determine the 

difference in 

brain activity in 

cancer patients 

with moderate to 

severe chronic 

pain versus no 

pain 

Clinical 20 

50.15 

(19.79) - 

17 F 

Lymphoma (11), 

Breast (2), Lung 

(5), Pancreas (1), 

Esophageal (1) 

Chronic 

pain 

Concurre

nt 

validity 

NRS  PET 

17 

minutes 

scan 

Intergroup 

differences 

Jane et al. 

2009 

(USA) 

[307] 

 

To examine the 

effects of 

massage therapy 

Clinical 30 

51.7 

(11.6) - 

19 F 

Lung cancer (11), 

breast cancer (11), 

head and neck (2), 

gastrointestinal 

(4), genitourinary 

(2) 

Metastatic 

bone pain 

Sensitivit

y to 

change 

Before and 

after 

antalgic 

therapy 

PPG, 

BP 
- 

Pre-Post 

therapy 

1
2
9
 

 



 

 

 

Guasti et 

al. 2007 

(Italy) 

[297] 

To test the pain 

sensitivity in 

athyreotic 

patients 

followed for 

differentiated 

thyroid 

carcinomas 

during profound, 

short-term 

hypothyroidism 

induced for 

clinical reasons 

and during LT4-

replacement 

treatment, 

focusing on the 

potential 

interferences of 

blood pressure-

mediated 

changes in pain 

perception that 

may occur in the 

two clinical 

conditions. 

Clinical 19 
49 (15) - 

14 F 

Thyroid 

carcinoma (19) 

Nociceptiv

e pain 

(electrical 

stimulation

) 

Concurre

nt 

validity 

Dental pain 

sensitivity  
BP - Correlation 

Badr et al. 

2006 

(Lebanon) 

[298]  

To study the 

relationship 

between 

different 

indicators of 

pain, including 

self-reports, 

behavioral 

observations, 

and 

physiological 

Clinical 45 

4-10 

(range) - 

17 F 

Leukemia (23), 

Solid Tumors (22) 

Nociceptiv

e pain 

(access of a 

subcutaneo

us central 

venous 

port) 

Concurre

nt 

validity 

FACES 

rating 

scale, 

DOLLS 

rating scale 

PPG, 

BP 
- Correlation 

1
3
0
 

 



 

 

 

1
3
1
 

 

measures, in 

children with 

cancer 

undergoing 

invasive 

procedures 

Ferrell-

Torry et al. 

1993 

(USA) 

[299] 

To assess the 

effect of 

massage therapy 

on anxiety, 

relaxation, and 

the perception of 

pain in 

hospitalized 

cancer patients 

Clinical 9 

56.6 

(range:23

-77) - 0 F 

Esophageal (2), 

rectum (1), 

prostate (1), 

stomach (1), lung 

(1), lymphocytic 

leukemia (1), 

mixed nodular 

lymphoma (1), 

poorly 

differentiated 

cancer with an 

unknown primary 

site (1) 

Cancer 

pain 

Sensitivit

y to 

change 

Before and 

after 

antalgic 

therapy 

BP, 

Respira

tion 

- 
Pre-Post 

therapy 
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related to neuropathic scale only in one study [296]. In comparison, the results gathered 

by the other two studies were not statistically relevant [302], [306]. Two studies assessed 

the behavior of total power, another parameter obtained by the HRV Analysis, which 

showed to be significantly lower in patients with neuropathic pain [296] and not 

significantly correlated with pain scale [302]. Finally, the systolic blood pressure was 

assessed in three studies, showing a significant positive correlation with two different 

pain scales [298], [303]. 

8.4.3.2 Neuroimaging techniques 

Two studies employed brain imaging techniques (BOLD fMRI and PET imaging) to 

assess pain. The information regarding the association between measured activity in 

specific brain areas and pain (i.e., positive correlation with pain, or higher in patients’ 

group with pain) is presented in Table 8.2. 
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Table 8.2 Main findings of the selected studies 

Concurrent validity studies 

Monodimensional signals 

Ref.  
Pain 

assessment 

Physiolog

ical 

signal(s) 

Physiological 

parameter(s) 
Main results Correlation with pain 

Intergroup differences 
Significan

ce level Pain No pain 

Delmotte et al. 

2018 [295] 

Neuropathic 

Pain 

Symptom 

Inventory 

(NPIS)  

ESC 

Hands ESC 

Significantly lower in the presence of painful 

neuropathy 
  55.4 (19.7) μS 77.6 (7.9) μS p = 0.0003 

Significantly correlated with NPSI score R = -0.69      p < 0.0001 

Feet ESC 

Significantly lower in the presence of painful 

neuropathy 
  55 (15) μS 78.1 (6.6) μS p < 0.0001 

Significantly correlated with NPSI score R = -0.79     p < 0.0001 

Yesil et al. 2018 

[296] 

Leeds 

Assessment 

of 

Neuropathic 

Symptoms 

and Signs 

(LANSS) 

ECG  

SDNN 
Significantly higher in NP patients   

116.44 (26.44) 

ms 

141.21 (26.02) 

ms 
p = 0.001 

Negatively related to LANSS score R = -0.391     p < 0.01 

SDAAN 
Significantly lower in NP patients   

109.78 (26.04) 

ms 

132.12 (26.89) 

ms 
p = 0.003 

Negatively related to LANSS score R = -0.36     p < 0.01 

SDNNindex 
Significantly lower in NP patients   41.5 (9.51) 49.33 (10.41) p = 0.007 

Negatively related to LANSS score R = -0.278     p < 0.05 

Total power 
Significantly lower in NP patients   

1764 (795.61) 

ms2 

2455.25 

(991.02) ms2 
p = 0.009 

Not related to LANSS score Data not shown       

LF/HF 
Significantly higher in NP patients   4.68 (1.82) 3.1 (1.34) p < 0.001 

Positively related to LANSS score 0.256     p < 0.05 

1
3
3
 

 



 

 

 

HR Significantly higher in NP patients   
86.83 (9.28) 

bpm 

80.63 (7.61) 

bpm 
 p < 0.05 

Masel et al. 2016 

[302] 
NRS ECG  

Log LF/HF  Non-significant reduction after treatment  Data not shown       

  

Decreased in all patients who had a reduction in 

pain of > 2 points, but remained unchanged in 

patients who had reductions of up to 2 points 

Data not shown       

HF  
Remained unchanged No significant correlation 

with NRS 
Data not shown 

Data not 

shown 
Data not shown   

LF/HF 
Remained unchanged. No significant correlation 

with NRS 
Data not shown 

Data not 

shown 
Data not shown   

Total power 
Remained unchanged. No significant correlation 

with NRS 
Data not shown 

Data not 

shown 
Data not shown   

pNN50 
Remained unchanged. No significant correlation 

with NRS 
Data not shown 

Data not 

shown 
Data not shown   

HR 
Remained unchanged. No significant correlation 

with NRS 
Data not shown 

Data not 

shown 
Data not shown   

Wegorowski et 

al. 2016 [303] 
VAS PPG, BP  

HR No significant correlation with pain intensity R = 0.143     p = 0.157 

SysBP Positive correlation with pain intensity R = 0.386     p < 0.001 

DiaBP Positive correlation with pain intensity R = 0.446     p < 0.001 

Nahman-

Averbuch et al. 

2014 [306] 

NRS ECG  rMSSD 

No difference between painful and non-painful-

PNP groups 
  

17.9 (range 

3.3-24.8) ms 

7.7 (range 4.5-

26.6) ms 
p = 0.237 

In non-painful-PNP group, lower rMSSD 

correlated with lower heat pain threshold. Not 

significant in painful-PNP group, significant 

correlation considering all the patients (with and 

without pain)  

R = 0.433     p = 0.05 

1
3
4
 



 

 

 

LF/HF 
No difference between painful and non-painful-

PNP groups 
3.2 (range 0.9-9.1) 

4.4 (range 0.4-

10.8) 
  p = 0.878 

Deep 

breathing 

ratio 

No difference between painful and non-painful-

PNP groups 
  

1.12 (range 

1.02-1.41) 

1.14 (range 

1.05-1.43) 
p = 0.951 

Valsalva 

ratio 

No difference between painful and non-painful-

PNP groups 
  

1.39 

(range1.04-

1.97) 

1.42 (range 

1.17-1.74) 
p = 0.972 

Lower Valsalva ratio correlated with a lower 

level of pain change value 
R = -0.495     p = 0.023 

Negative correlation with average pain ratings to 

the "test stand-alone" stimulus 
R = -0.559     p = 0.008 

Guasti et al. 2007 

[297] 

Dental pain 

sensitivity  
BP SysBP 

No association between blood pressure changes 

and pain sensitivity variations 
Data not shown       

Badr et al. 2006 

[298] 

FACES 

rating scale, 

DOLLS 

rating scale 

PPG, BP 

HR 

Significant correlations with 3 time points for 

FACES 
R = 0.82, 0.71, 0.85     p < 0.01 

Significant correlations with 3 time points for 

DOLLS 
R = 0.78, 0.97, 0.76     p < 0.001 

SysBP 

Significant correlations with 3 time points for 

FACES 
R = 0.59, 0.78, 0.91     p < 0.001 

Significant correlations with 3 time points for 

DOLLS 
R = 0.75, 0.81, 0.79     p < 0.001 

SpO2 
Not correlated to either the FACES or DOLLS 

scores 
Data not shown       

Neuroimaging techniques 

Ref.  Main results Correlation with pain Intergroup differences 

1
3
5
 



 

 

 

Pain 

assessment 

Physiolog

ical 

signal(s) 

Physiological 

parameter(s) 
Pain No pain 

Significan

ce level 

Boland et al. 

2014 [304] 

Total 

Neuropathy 

Score 

reduced 

version 

(TNS-

reduced) - 

Patients vs 

healthy 

subjects 

BOLD 

fMRI 

BOLD 

response 

Heat-pain stimulation evoked a BOLD response 

in healthy volunteers and patients 
  = p < 0.001 

Patients demonstrated significantly less 

activation in R superior frontal gyrus 
  - + p = 0.03 

Patients demonstrated significantly greater 

activation in L precuneus 
  + - p = 0.01 

Significant correlation of BOLD response with 

TNS-reduced version in the left operculo-insular 

cortex 

+     p = 0.03 

Buvanendran et 

al. 2010 [308] 
NRS  PET 

Brain 

activation 

Patients with moderate-to-severe pain had 

increased regional glucose metabolism bilaterally 

in the prefrontal cortex 

  + - 
z-score > 

3 

Unilateral activation was found in the right 

parietal precuneus cortex. 
  + - 

z-score > 

3 

No areas of the brain showed decreased activity 

due to moderate-to-severe pain.  
=     

- 

Sensitivity to change studies 

Ref.  Intervention 

Physiolog

ical 

signal(s) 

Physiological 

parameter(s) 
Main results 

Longitudinal differences 
Intergroup 

differences 
  

Significan

ce level Before 

intervention 

After 

intervention 

Experimental 

Group 

Control 

Group 

Uchida et al. 

2017 [300] 

Antalgic 

therapy 
ECG HF 

Significant increase before and after antalgic 

therapy for the experimental group 

35.6 (14.3) 

ms2 
49.4 (3.0) ms2     p = 0.01  

1
3
6

 

 



 

 

 

No statistical differences between groups     
36.1 (9.0) 

ms2 

35.6 (14.3) 

ms2 
p = 0.933 

LF/HF 

No statistical differences before and after antalgic 

therapy for the experimental group 
2.3 (1.4) 1.6 (1.4)     p = 0.104 

No statistical differences between groups     1.9 (0.8) 2.3 (1.4) p = 0.476 

Yu et al. 2017 

[301] 

Antalgic 

therapy 
BP 

SysBP 
Reduction after the antalgic therapy, not 

significant 

Data not 

shown 

Data not 

shown 
      

DiaBP 
Reduction after the antalgic therapy, not 

significant 

Data not 

shown 

Data not 

shown 
      

HR 
Reduction after the antalgic therapy, not 

significant 

Data not 

shown 

Data not 

shown 
      

Burrai et al. 2014 

[305]  

Relaxation 

therapy 
BP, PPG 

SysBP 

No statistical differences before and after therapy 

for the experimental group 

100 (80-

160) mmHg 

110 (80-130) 

mmHg 
    p = 0.644 

No statistical differences before and after therapy 

for the control group 

100 (70-

130) mmHg 

100 (80-130) 

mmHg 
    p = 0.139 

No statistical differences between groups     
110 (80-130) 

mmHg 

100 (80-

130) 

mmHg 

p = 0.253 

DiaBP 

No statistical differences before and after therapy 

for the experimental group 

70 (50-110) 

mmHg 

70 (60-90) 

mmHg 
    p = 0.868 

No statistical differences before and after therapy 

for the control group 

70 (50-80) 

mmHg 

70 (60-80) 

mmHg 
    p = 0.120 

No statistical differences between groups     
70 (60-90) 

mmHg 

70 (60-80) 

mmHg 
p = 0.223 

HR 
No statistical differences before and after therapy 

for the experimental group 

74 (56-84) 

bpm 

74.5 (50-104) 

bpm 
    p = 0.672 

1
3
7

 



 

 

 

Significant differences before and after therapy 

for the control group 

74.5 (50-

104) bpm 

74 (55-98) 

bpm 
    p = 0.018 

No statistical differences between groups     
74.5 (50-104) 

bpm 

74 (55-98) 

bpm 
p = 0.486 

SpO2 

No statistical differences before and after therapy 

for the experimental group 

98 (94-100) 

% 
99 (94-100) %     p = 0.192 

Significant differences before and after therapy 

for the control group 

97 (94-100) 

% 
97 (91-100) %     p = 0.319 

Significant differences between groups     
99 (94-100) 

% 

97 (91-100) 

% 
p = 0.003 

Jane et al. 2009 

[307] Relaxation 

therapy 
PPG, BP 

HR No statistical differences before and after therapy 
83.7 (17.2) 

bpm 

82.9 (15.1) 

bpm 
    p = 0.35 

MAP No statistical differences before and after therapy 
88.8 (14.2) 

mmHg 

90.1 (14.5) 

mmHg 
    p = 0.26 

Ferrell-Torry et 

al. 1993 [299]  

Relaxation 

therapy 

BP, 

Respirati

on  

HR 

No significant differences before and after 

therapy 

80.4 (16.5) 

bpm 

77.2 (17.3) 

bpm 
    p > 0.05 

Significant decrease before and 10-minutes after 

therapy 

80.4 (16.5) 

bpm 

75.9 (16.3) 

bpm 
    p < 0.05 

RR 

Significant decrease before and after therapy 
22.6 (2.2) 

breaths/min 

19.7 (2.5) 

breaths/min 
    p < 0.05 

Significant decrease before and 10-minutes after 

therapy 

22.6 (2.2) 

breaths/min 

19.8 (2.3) 

breaths/min 
    p < 0.05 

SysBP 

Significant decrease before and after therapy 
120.9 (14.7) 

mmHg 

114.7 (16.8) 

mmHg 
    p < 0.05 

No significant decrease before and 10-minutes 

after therapy 

120.9 (14.7) 

mmHg 

115.1 (15.1) 

mmHg 
    p > 0.05 

1
3
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DiaBP 

Significant decrease before and after therapy 
74.9 (8.6) 

mmHg 

69.1 (7.0) 

mmHg 
    p < 0.05 

No significant decrease before and 10-minutes 

after therapy 

74.9 (8.6) 

mmHg 

73.1 (7.2) 

mmHg 
    p > 0.05 

MAP 

Significant decrease before and after therapy 
90.2 (7.0) 

mmHg 

84.3 (6.7) 

mmHg 
    p < 0.05 

No significant decrease before and 10-minutes 

after therapy 

90.2 (7.0) 

mmHg 

87.1 (5.1) 

mmHg 
    p > 0.05 

NRS = numerical rating scale, VAS = visual analogue scale, ESC = electrochemical skin conductance, ECG = electrocardiography, HR = heart rate, SDNN = standard 

deviation of NN intervals, SDAAN = standard deviation of the mean of NN intervals, rMSSD = root mean square of successive differences, pNN50 = percentage of 

successive NN intervals that differ from one another by > 50 milliseconds, LF = low frequency, HF = high frequency, LF/HF = low frequency/high frequency ratio, 

SpO2 = oxygen saturation, BP = blood pressure, SysBP = systolic blood pressure, DiaBP = diastolic blood pressure, MAP = mean arterial pressure, RR = respiration 

rate, BOLD fMRI = blood-oxygen level dependent functional magnetic resonance imaging, PET = positron emission tomography 

1
3
9
 



 

140 

 

8.4.3.3 Study quality 

The risk of bias is reported in Table 9.3. Seven out of nine studies in this category present 

an overall low risk of bias [296], [297], [302]–[304], [306], [308]. Both studies with an 

overall high risk of bias [295], [298] lack information concerning the patients' selection 

procedures, the index test [295], and the reference standard [298]. Due to lack of 

information, the risk of bias about index test and flow and timing remains unclear for 

most studies. 

8.4.4 Sensitivity to change studies 

All five studies in the sensitivity-to-change group were carried out in a clinical setting. 

Four of them assessed the behavior of the physiological parameters before and after a 

therapy [299], [301], [305], [307]. One of them evaluated differences before and after a 

painful intervention (i.e., surgery) [309]. BP was used in four out of five works, ranking 

first among physiological signals, followed by PPG (2/5), ECG (1/5), and Resp (1/5). In 

two studies, participants were divided into an experimental and a control group. Thus the 

intergroup differences could be assessed, besides the differences before and after the 

intervention. Pre-post differences were assessed by using t-test [300], [307], analysis of 

variance (ANOVA) [299], [301], or Wilcoxon test [305], while inter-group differences 

were assessed by using t-test [300] or Mann-Whitney U test [305]. The main findings of 

the selected sensitivity-to-change studies are reported in Table 2. A graphical depiction 

about the main features of the sensitivity to change studies is given in Appendix B, Figure 

B.2. 

All the sensitivity-to-change studies exploited monodimensional signals. A total of 8 

different physiological parameters were assessed: six of them were found to differ 

significantly before and after the intervention in at least one study. The most used 

parameters were heart rate and blood pressure-related properties (systolic, diastolic, or 

mean arterial pressure), both exploited in four studies.  

Four physiological parameters were used in more than one study: heart rate, systolic blood 

pressure, diastolic blood pressure, and mean arterial pressure. Specifically, heart rate was 

used in four studies, showing a common trend to decrease after an antalgic therapy in two 

of them [299], [305] and no statistically significant change in the other two studies [301], 

[307]. Parameters from blood pressure were extensively used in different studies. Results 

on systolic blood pressure show a reduction of different intensities after an antalgic  
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Table 8.3 Risk of bias assessment 

 QUADAS-2 – Concurrent validity studies 

 

Patients selection Index test Ref. Standard Flow and Timing  

Risk 

of 

bias 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 

Delmotte et al. 

2018 [295] 
NA N NA Y N NA Y Y Y Y NA Y NA High 

Yesil et al. 2018 

[296] 
NA N Y Y N NA Y Y Y Y NA Y Y Low 

Masel et al. 2016 

[302] 
Y Y Y Y NA Y Y Y Y Y Y Y NA Low 

Wegorowski et al. 

2016 [303] 
Y Y Y Y NA Y Y Y Y Y Y Y NA Low 

Nahman-

Averbuch et al. 

2014 [306] 

NA N Y Y Y NA Y Y Y Y NA Y NA Low 

Boland et al. 2014 

[304] 
N N Y Y N NA Y Y Y Y Y Y Y Low 

Buvanendran et al. 

2010 [308] 
Y Y Y Y N NA Y Y Y Y NA Y Y Low 

Guasti et al. 2007 

[297] 
Y Y Y Y N NA Y Y Y Y Y Y Y Low 

Badr et al. 2006 

[288] 
NA N NA Y Y NA Y NA NA NA NA Y N High 

 
NIH QAT – Sensitivity to change studies 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Risk of bias 

Uchida et al. 2017 

[300] 
Y N Y N Y Y Y NA Y Y N Low 

Yu et al. 2017 

[301] 
Y N Y Y Y Y Y NA Y Y N Low 

Burrai et al. 2014 

[305] 
Y Y Y N Y Y Y NA Y Y Y Low 

Jane et al. 2009 

[307] 
Y Y NA N NA N Y NA Y Y Y High 

Ferrell-Torry et al. 

1993 [299] 
Y N N Y N Y Y NA Y Y Y Low 
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therapy in two studies [299], [305], and no significant results in another one [301]. 

Diastolic blood pressure was found to decrease after antalgic therapy in only one [52] out 

of three studies [54], [58] significantly. Mean arterial pressure was used in two studies, 

decreasing significantly after an antalgic therapy in one study [299], while it did not 

significantly change in the other study [307].   

8.4.4.1 Study quality 

The risk of bias is reported in Table 3. Four out of five studies [299]–[301], [305] present 

a low risk of bias. The overall high risk of bias for [307] is mainly due to patients' selection 

criteria (Q3, Q4, Q5).  For all the studies, no information regarding the blindness of the 

examiner (Q8) was reported. All studies clearly defined the objective (Q1) and the 

outcome measures (Q7), had a loss of follow-up less than 20% (Q9), and the statistical 

methods were applied correctly to assess differences before and after the intervention, 

providing the related p-values (Q10).  

8.5 Discussion 

The primary purpose of this systematic review is to clarify the effects of pain on cancer 

patients’ physiological signals. To do so, we investigated which signals are currently 

used, their concurrent validity with routine pain assessment tools, their sensitivity to 

change in pain levels, and the diffusion of instrumental pain assessment in real-world 

settings.  

A majority of selected studies assessed the concurrent validity of physiological 

parameters against scales and/or questionnaires, while other studies evaluated the 

sensitivity-to-change of the physiological parameters to an intervention. The two 

categories of studies present consistent primary objectives: concurrent validity studies 

mainly aimed to assess the behavior of the physiological signals in relation to the patients’ 

painful state, either via comparisons with state-of-the-art PAT or clustering subjects based 

on the different levels of pain. Sensitivity to change studies all focused on finding 

evidence through physiological signals of the efficacy of antalgic therapies. 

8.5.1 Monodimensional signals 

Most of the included studies use monodimensional signals to quantify some aspects of 

ANS activation. In concurrent validity studies, only four physiological parameters are 

present in more than one selected study. Despite the small sample size, both in terms of 
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the number of studies and participants, and the lack of methodological information, it was 

still possible to find consistent results among these studies. When limiting to statistically 

significant results, heart rate, LF/HF ratio, and systolic blood pressure values consistently 

correlated with pain positively: the higher the self-reported pain, the higher the 

parameter's value. The same association was also found in sensitivity to change studies,  

which showed a decrease in heart rate and systolic and diastolic blood pressure after an 

antalgic therapy or an experimental relaxation procedure. Higher values of these 

parameters are attributable to a more active sympathetic than parasympathetic branch of 

the ANS [85], which is in line with what is expected during a pain experience. However, 

one should keep in mind that more complex interactions may play a role [286]: pain 

sensation triggers a complex net of neurological paths, which are not always activated 

linearly (if the relationship were linear, the higher the pain perception, the greater the 

activation of the monitored physiological function would be). It follows that a correlation 

analysis can only partially explain the relationship between pain and physiological 

signals. The assessment of non-linear relationships and more complex models involving 

different physiological signals might help address this problem. Indeed, an increasing 

number of studies in the emotion recognition field use artificial intelligence algorithms 

[310]–[312] because they are capable of extrapolating complex relationships between 

several inputs (physiological parameters) and a single output (pain perception).   

Within the monodimensional signals set, a noticeable application is represented by the 

Electrochemical Skin Conductance, exploited only in one study [295], aiming to classify 

cancer patients with painful neuropathy. The Electrodermal Activity is a quantitative 

measure of the sympathetic nervous system [91], and it is widely used in the emotion 

recognition field, particularly in automatic pain recognition algorithms [313]–[315]. 

Future studies could involve using such signal, which proved to be well suited and can 

also be recorded by means of wearable devices. 

8.5.2 Heart Rate and Heart Rate Variability 

Heart rate is the most-used physiological parameter linked to pain assessment. The 

reference gold standard is the ECG signal, although recent research has focused more on 

heart rate estimated from the PPG signal. Its better convenience and pervasiveness justify 

this choice. Heart rate and the derived HRV parameters [85] extrapolated by the PPG are 

currently used in stress detection algorithms [166], [316]. However, there are some 
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concerns regarding the reliability of the PPG signals, which can be easily corrupted by 

external noise and motion artifacts leading to inaccurate HRV estimates [138]. 

HRV analysis is well-suited for real-world applications: Holter ECG is a long-established 

technique in routine clinical practice, while PPG can be easily embedded into a wearable 

device (e.g., a smartwatch or ring). Indeed, the only two studies run in a free-living 

context are based on HRV analysis using a 24-hours Holter ECG device. Notably, the 

work of Masel et al. [302] showed the possibility of detecting pain episodes without active 

cooperation from patients. This result clearly highlights the possible disruptive role of 

automatic pain assessment in real-world settings: a tool to detect pain timely, even in 

unconscious patients, and, in turn, provide antalgic therapy at pain onset. 

8.5.3 Neuroimaging techniques 

Relevant information can also be deduced by neuroimaging techniques, giving the 

possibility to explore brain areas involved in pain perception. Such methods are valuable 

for research purposes since pain-activated CNS processes are still not fully understood. 

On the other hand, they cannot represent an alternative cancer pain assessment solution 

because of their bulky instrumentations and expensive procedures.  

9.5.4 Study quality 

The study quality assessment revealed a low risk of bias for eleven out of fourteen studies. 

We considered it appropriate to select two study quality tools, QADAS-2 and NIH-QAT, 

to assess the different sources of risk of bias for the two different study designs. QADAS-

2 proved to be well suited for highlighting the primary sources of bias for the concurrent 

validity studies: it is worth noting the significant lack of information, especially for index 

test (i.e., physiological parameter) and flow and timing sections, for which the risk of bias 

remains unclear. For sensitivity to change studies, we chose NIH-QAT, conceived as a 

tool for before-after (pre-post) studies with no control group. Although some studies in 

this category were presented as randomized control trials, we were solely interested in 

physiological signals changes before and after an intervention. As a result, sensitivity to 

change studies proved to be less prone to bias than concurrent validity studies, except that 

there is no information available for any study on the blindness of the examiners (Q8). 
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8.5.5 Limitations 

The studies included in this review displayed a marked heterogeneity in the type of cancer 

and pain source to be evaluated. Such heterogeneity is a direct consequence of the broad 

range of painful conditions grouped under the umbrella term “cancer pain” that includes 

all the painful conditions related to cancer, regardless of the primary cancer sites and the 

painful stimulus. More so, concurrent validity studies highlight the wide range of the 

currently available state-of-the-art PAT (e.g., NRS, VAS, neuropathy-specific 

questionnaires). Altogether, fragmentation and lack of accepted guidelines in pain 

assessment represent another hint that there is the need to promote and standardize this 

very delicate aspect of cancer patient management, as also highlighted in [317].  

Available literature also shows a considerable lack of methodological information 

regarding the experimental procedures and measurement setups that partly prevent the 

replicability of studies. Even if physiological parameters are clearly time-dependent and 

often non-stationary, only five studies out of fourteen report the recording duration, and 

no one specifies the sampling frequency of the collected physiological signals. This 

underreporting represents a significant limitation and prevents accurate comparisons or 

meta-analyses for those studies based on time-dependent variables (e.g., parameters from 

HRV analysis) since the same parameter can assume a different meaning in different time 

frames [59]. 

A limitation in using physiological signals to assess pain is that physiological mechanisms 

can be also affected by personal factors, like gender [318], age [319], and health status 

(which is particularly true in cancer). In some cases, cancer pathology itself can lead to a 

change in physiological mechanisms, which can be misinterpreted and related to the pain 

experience [320]. This limitation should be overcome, in the future, by analyzing larger 

patient cohorts. 

8.5.6 Future directions 

Cancer pain is a remarkably complex and multidimensional phenomenon that impacts the 

patients' psychological, social, and spiritual well-being [321]. As highlighted in the 

European Society for Medical Oncology position paper [322], a patient-centered 

approach is needed for cancer treatment, and this approach should also be translated to 

pain assessment. To reach this goal, implementing a biopsychosocial model [320] for pain 

assessment could overcome the limitations imposed by the current tools, providing a 
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complete picture of the pain state that considers all the different aspects that converge in 

the pain experience.  

The challenge of assessing cancer patients’ pain in a free-living context is relevant but 

still largely unaddressed. Several smartphone apps have been developed to date that can 

provide pain management for cancer patients. Most are based on self-rated pain 

assessments [323], [324] , but a brand-new app— whose feasibility and acceptability are 

being assessed in a pilot study—exploits the smartphone hardware to record some 

physiological parameters like heart rate and activity level [325]. 

In this scenario, wearable and mobile technologies can represent a game-changer, offering 

a valuable source of novel information. Pervasive monitoring systems allow the collection 

of long-term multimodal physiological recordings in a real-world context, giving the 

possibility to extrapolate information that could not be otherwise obtained in clinical 

settings. Such an approach is perfectly suitable for those clinical trials that involve 

interventions in free-living scenarios, in which participants can freely conduct their daily 

activities while their physiological functions are being monitored. Moreover, such an 

approach allows recording the natural physiological response to pain, unlike those studies 

that analyze the acute reaction when an external nociceptive stimulus is applied. 

In order to efficiently elaborate the information gathered by wearable sensors, a proper 

approach should be applied, and AI algorithms could offer a viable solution. AI 

algorithms can indeed help identify complex patterns in long-term multimodal 

physiological recordings [287]. These are the prominent aspects that should be considered 

before these methods can be translated into a tool to tailor and personalize the antalgic 

interventions:  

• Big data approach: AI algorithms reach good performances if they are trained on 

large datasets. Thus, when setting a study protocol, it is necessary to collect a 

reasonable number of instances that will be used to train the algorithms to avoid 

the curse of dimensionality [326]. 

• The individual variability of the physiological response: we have a limited 

mechanistic understanding of interindividual differences in pain and analgesia 

response. This issue can be considered, for example, by conducting a leave one 

subject out cross-validation to train the AI algorithms in order to correctly manage 

the inter-subject variability [327].  
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• Confounding factors: physiological signals can be affected by several other 

factors in addition to pain. These factors can be accounted for by enriching the AI 

algorithms with information related, for example, to personal (i.e., age, gender, 

weight, height) or health data (i.e., pathology, depression, and anxiety levels). 

Based on the specific type of pain being investigated, researchers should then 

collect other information besides pain, including patient-reported outcomes, that 

can help in better understanding the physiological response linked to the 

experienced pain [328]. 

We are currently working on the design of innovative clinical trials, carried out in 

residential facilities by monitoring patients in their free-living, and thus collecting the 

pain response when and where it is experienced. 

8.6 Conclusions 

This systematic review collected and pooled the knowledge regarding the behavior of 

physiological parameters in response to cancer patients’ pain. Although the included 

studies were characterized by considerable heterogeneity, it was still possible to identify 

promising results relevant to develop new pain assessment tools for cancer patients based 

on physiological signals and, possibly, wearable sensors, paving the way to real-world 

scenarios. 
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9. AUTOMATIC PAIN ASSESSMENT ON 

CANCER PATIENTS 

From the conference proceeding: Moscato S., Orlandi S., Giannelli A., Ostan R., Chiari 

L., “Automatic pain assessment on cancer patients”, IEEE Engineering in Medicine and 

Biology Conference, 2022 

9.1 Abstract 

 Pain assessment represents the first fundamental stage for proper pain management, but 

currently, methods applied in clinical practice often lack in providing a satisfying 

characterization of the pain experience. Automatic methods based on the analysis of 

physiological signals (e.g., photoplethysmography, electrodermal activity) promise to 

overcome these limitations, also providing the possibility to record these signals through 

wearable devices, thus capturing the physiological response in everyday life. After 

applying pre-processing, feature extraction and feature selection methods, we tested 

several machine learning algorithms to develop an automatic classifier fed with 

physiological signals recorded in real-world contexts and pain ratings from 21 cancer 

patients. The best algorithm achieved up to 72% accuracy. Although performance can be 

improved by enlarging the dataset, preliminary results proved the feasibility of assessing 

pain by using physiological signals recorded in real-world contexts. 
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9.2 Introduction 

Pain is an extremely complex phenomenon that involves both the sensory and emotional 

systems in association with actual or potential tissue damage [263]. Pain is a subjective 

experience and it is affected by cognition, attention, and affective dimension [51]. 

Therefore, current pain assessment methods used in clinical practice (i.e., scales and 

questionnaires [279]) often fail to provide a complete picture of the pain experienced by 

the patient, hence being detrimental for pain treatment. 

Recently, there has been growing attention in the research of “emotion recognition”, the 

discipline that gathers all the studies aiming at detecting emotions from humans via 

automatic technological approaches [329]. The rationale behind this field of application 

is that pain and emotion elicit a response in the autonomic nervous system, disrupting the 

ordinary functioning of some physiological mechanisms [282]. Therefore, monitoring the 

behavior of these physiological mechanisms, by recording and processing signals (e.g., 

photoplethysmography, electrodermal activity) when pain is experienced could represent 

a valuable source of information for improving pain assessment. In this scenario, 

wearable devices appear to be the natural tools to be used, since they allow monitoring 

physiological signals in a continuous and pervasive manner and recording the 

physiological reaction to pain when and where it is actually experienced [123]. 

Two studies aimed at developing automatic methods for pain assessment based on 

physiological signals recorded through wearable devices [330], [331]. The work by 

Johnson et al. [330] showed the feasibility of collecting physiological signals with 

wearable devices in patients with sickle cell diseases in a hospital setting and exploiting 

them to automatically predict pain intensity, based on pain scores given by patients. 

Badura and colleagues [331] demonstrated that the same approach can be applied also in 

physiotherapy settings, monitoring patients and asking them to rate their pain during a 

session of fascial therapy. Although these studies used wearable devices, physiological 

signals were recorded in controlled environments, in which the patient was not free to 

perform his/her daily life actions. 

The aim of our study is to develop an automatic pain assessment method bansed on 

physiological signals recorded in a real-world context by means of wearable devices. 
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9.3 Materials and Methods 

Look of Life is a project whose aim is to evaluate the effects of virtual reality (VR) as a 

non-pharmacological intervention to improve cancer-related symptomatology [223]. The 

experimental protocol is given at Appendix C. The study was approved by the Ethical 

Committee of Area Vasta Emilia Centro (Bologna, Italy; approval n° 542-2019-OSS-

AUSLBO). Participants were provided with a VR headset to be freely used at home for 

four days. Before and after each VR session, each participant had to fill the Edmonton 

Symptoms Assessment Scales (ESAS) [332], a multi-item instrument that rates nine 

common symptoms (including pain) experienced by cancer patients on a 0-10 numerical 

rating scale (NRS). The ESAS was digitally inserted into the VR headset. Participants 

were also asked to wear the Empatica E4 wristband, whose technical specifications are 

given at Appendix A.1. 

9.3.1 Pre-processing and data aggregation 

We used the pain ratings obtained before each VR session. Based on the pain ratings, two 

classes were identified: no pain (NRS = 0) and pain (NRS ≥ 1). We matched the start of 

the VR session (i.e., timestamp saved in the VR headset) with the Empatica E4 

recordings. For each physiological signal, we selected a 2-min time window before the 

beginning of each VR session. Afterwards, we detected the “available instances”, namely 

those time windows of physiological signals with concurrent Empatica E4 recording and 

VR headset usage. If a patient performed two consecutive VR sessions, the 2-min time 

window of physiological signals recorded before the second VR session was not analyzed 

if included in the previous VR session. 

9.3.2 Signal processing 

PPG signals were processed following the procedure described in Appendix A.2. The 

quality of each pulse was assessed by using the automatic algorithm presented at Section 

3. For this study, only basic pulses were further exploited. To conduct the HRV analysis, 

basic pulses were used by firstly estimating the inter-beat intervals (IBIs) as the difference 

between two consecutive systolic feet. 

The accelerometer data was processed following the procedure described at Appendix 

A.3. 

EDA signals were processed with the procedure described at Appendix A.4..  
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9.3.3 Feature extraction 

A total of 39 features were extracted from each available instance. Specifically, we 

estimated:  

• 12 features from the HRV analysis: mean heart rate (meanHR), standard deviation 

of IBI (SDNN), root mean squared difference of successive IBI (RMSSD), 

percentage of successive IBIs that differ from the previous one for more than 50 

ms (pNN50), Poincaré plot standard deviation perpendicular and along the line of 

identity (SD1, SD2), and its ratio (SD1/SD2), low-frequency power (LF), high-

frequency power (HF), total power (TP), and ratio between LF and HF (LF/HF), 

and the approximate entropy (ApEn). 

• 5 features from the PPG morphological analysis: area between the systolic foot 

and the successive systolic peak (A1), area between the systolic peak and the 

successive systolic foot (A2), total area under the PPG pulse (A), time between 

systolic foot and the successive systolic peak (T1), time between systolic peak and 

the successive systolic foot (T2) [86]. 

• 17 features from the EDA: 5 features from the whole EDA signal, which are mean 

(meanEDA), standard deviation (stdEDA), slope (slopeEDA), maximum 

frequency (Fmax) [333], and symbolic information entropy (SIE) [249]; the 

cvxEDA algorithm [246] was applied to divide the EDA signal into tonic (also 

known as electrodermal level, EDL) and phasic (also known as electrodermal 

response, EDR) components. Three features were estimated from the EDL: mean 

(meanEDL), standard deviation (stdEDL), and slope (slopeEDL). Nine features 

were estimated from the EDR: mean (meanampEDR), standard deviation 

(stdampEDR), maximum (maxampEDR) and minimum (minampEDR) amplitude, 

frequency of EDR (freqEDR), dynamic range (DR EDR), integral (INSC), 

normalized average power (APSC), and normalized root mean square (RMSC) 

[334]. 

• 3 features from the TEMP: mean (meanTEMP), standard deviation (stdTEMP), 

and slope (slopeTEMP). 

• 2 features from the AI: mean (meanAI) and standard deviation (stdAI). 
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9.3.4 Feature selection 

Features selection methods were applied only on the “valid instances”, representing those 

instances in which all the features had a finite value. This depends on the availability of 

PPG pulses suitable for HRV and for morphological analysis: if any PPG pulse was not 

detected, derived features cannot be estimated.  

The feature set was normalized through the Box-Cox transformation [156] and 

standardized with the z-score procedure.  

In order to evaluate the linear dependency among the features, we carried out a correlation 

analysis. The correlation between pairs of features was calculated as the Pearson 

correlation coefficient. We removed one of the two features with a correlation coefficient 

higher than 0.9.  

 We then applied four different feature selection methods using algorithms implemented 

in Waikato Environment for Knowledge Analysis (WEKA) [335]. We applied the 

correlation-redundancy feature set analysis (Cfs), correlation (Corr), gain ratio 

(GainRatio), and reliefF. The first algorithm used a greedy approach, while the latter three 

a ranked approach. A 10-fold cross-validation was applied. We selected a number of 

features equal to 10% of the total valid instances. 

9.3.5 Classification 

Classification was performed using WEKA. We used five different classifiers: Support 

Vector Machine (SVM), Random Forest (RF), Multilayer Perceptron (MP), Logistic 

(Log), and Adaptive Boosting Algorithm (AdaBoost). A 10-fold cross-validation 

repeated 10 times on a newly selected random set was applied. The following metrics 

were used to evaluate the classifier performance: accuracy (Acc), sensitivity (Sens), and 

specificity (Spec), and area under the ROC curve (AUC). 

9.4 Results 

9.4.1 Descriptive statistics 

Thirty-five patients were enrolled in the study (14 M, 21 F, age 49.7 ± 12.8), collecting a 

total of 196 VR sessions. The available instances (i.e., sessions with concurrent recorded 

physiological signals and not within previous VR sessions) consisted of 92 sessions (47% 

of the total sessions) from 29 patients. Valid instances (i.e., sessions with concurrent 

recorded physiological signals in which all the features have a finite value) consisted in 
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44 sessions (22% of the total sessions) only from 21 patients (9 M, 12 F, age 49.4 ± 13.8), 

with 20 instances corresponding to the “no pain” class and 24 to the “pain” class. 

9.4.2  Feature selection 

From the correlation analysis, we removed 14 features, using the following measures for 

further analysis: meanHR, SDNN, pNN50, SD1/SD2, LF, HF, LF/HF, ApEn, A1, T1, T2, 

meanTEMP, stdTEMP, slopeTEMP, meanAI, stdAI, Fmax, SIE, meanEDA, stdEDA, 

slopeEDA, slopeEDL, meanampEDR, stdampEDR, and minampEDR. The correlation 

matrix is graphically represented in Figure 10.1. 

We then applied four different feature selection methods to the features selected from the 

correlation analysis:  

• Cfs: meanHR, T1, slopeTEMP, meanAI 

• Corr: meanHR, LF/HF, stdTEMP, meanAI 

• GainRatio: ApEn, A1, meanTEMP, minampEDR 

• ReliefF: pNN50, SD1/SD2, meanAI, minampEDR 

 

Figure 9.1 Correlation matrix 

9.4.3  Classification 

We applied four different classification algorithms fed with the features set selected by 

the four different feature selection methods. Results are reported in Table 10.1. 

For three classification algorithms out of four, the features selected by the Corr method 

provided the best performances in terms of Acc and AUC. Despite the SVM (Corr) 



 

155 

 

achieved the highest accuracy rate (up to 73%), overall, the best performance in terms of 

Acc, Sens, and Spec was achieved with the MP algorithm using the GainRatio as feature 

selection method (Acc: 72%; Sens: 77%; Spec: 68%). 

Table 9.1 Classification results 

Classifier FS method 
Acc 

mean (std) 

Sens 

Mean (std) 

Spec 

mean (std) 

AUC 

mean (std) 

SVM 

Cfs 0.64 (0.02)  0.93 (0.03) 0.29 (0.06) 0.61 (0.02) 

Corr 0.73 (0.01) 0.90 (0.03) 0.52 (0.03) 0.71 (0.01) 

GainRatio 0.67 (0.04) 0.85 (0.02) 0.45 (0.07) 0.65 (0.04) 

ReliefF 0.66 (0.02) 0.85 (0.03) 0.43 (0.06) 0.64 (0.03) 

RF 

Cfs 0.59 (0.05)  0.66 (0.06) 0.51 (0.07) 0.61 (0.04) 

Corr 0.64 (0.03)  0.72 (0.06) 0.54 (0.06) 0.65 (0.04) 

GainRatio 0.57 (0.04)  0.58 (0.05) 0.56 (0.07) 0.62 (0.04) 

ReliefF 0.63 (0.03)  0.67 (0.05) 0.59 (0.03) 0.63 (0.04) 

MP 

Cfs 0.58 (0.06)  0.69 (0.07) 0.46 (0.09) 0.58 (0.06) 

Corr 0.61 (0.03)  0.68 (0.02) 0.52 (0.07) 0.59 (0.03) 

GainRatio 0.72 (0.02)  0.77 (0.03) 0.68 (0.06) 0.72 (0.05) 

ReliefF 0.58 (0.05)  0.80 (0.06) 0.43 (0.05) 0.56 (0.06) 

Log 

Cfs 0.62 (0.02)  0.73 (0.04) 0.49 (0.02) 0.61 (0.01) 

Corr 0.65 (0.02)  0.73 (0.05) 0.56 (0.03) 0.66 (0.02) 

GainRatio 0.63 (0.03)  0.76 (0.04) 0.48 (0.07) 0.58 (0.03) 

ReliefF 0.67 (0.03)  0.78 (0.04) 0.55 (0.03) 0.60 (0.02) 

AdaBoost 

Cfs 0.66 (0.05) 0.80 (0.08) 0.50 (0.04) 0.67 (0.05) 

Corr 0.52 (0.06) 0.63 (0.09) 0.40 (0.42) 0.51 (0.08) 

GainRatio 0.52 (0.07) 0.60 (0.08) 0.42 (0.11) 0.53 (0.06) 

ReliefF 0.59 (0.05) 0.72 (0.08) 0.43 (0.05) 0.56 (0.05) 

9.5 Discussion 

This study shows the feasibility of developing methods for automatic pain assessment. 

To the best of our knowledge, this is the first study that used recordings conducted in a 

real-world context to develop an automatic pain assessment classifier. 

We used a multimodal approach by exploiting features from different physiological 

signals. The importance of including several sources of information is enforced by the 

results obtained from the feature selection step, in which all the algorithms selected 

features from different physiological signals. Given the complexity of the phenomenon, 

the multimodal approach allows looking at pain from different perspectives. 



 

156 

 

Comparing the results obtained from the study by Badura et al. [331], our best classifier 

reached lower values in terms of all performance indicators. Moreover, we obtained 

opposite results with respect to the classification algorithms: while Badura et al. showed 

better performance with the AdaBoost algorithm compared to the SVM, in our case 

AdaBoost algorithm provided worse performance than the SVM one. One important 

distinction between our work and Badura et al. [331] ’s one relies on the fact that our 

signals, recorded in a real-world context, are affected to a greater extent by external noise 

and motion artifacts. Moreover, in our study the classification problem is based on no 

pain vs pain, while the work by Badura et al. [331] relates to the binary classification 

between three different levels of pain (i.e., no pain, moderate pain, and severe pain): 

results comparing two extreme levels of pain attained excellent performance, while our 

classifier is based on differences between two adjacent levels (NRS=0 vs NRS≥1). 

As already mentioned, this study presents some limitations: the small datasets, the 

possibility to use a small set of features (given in turn by the small dataset), the use of 10-

fold CV, instead of a more appropriate “leave-one-subject-out” validation, in order to take 

into account the inter-subject variability, poor quality of recorded physiological signals, 

which in turn limited the use of all the available instances because of the lack of good 

quality PPG signal segments.  

Future automatic methods for pain assessment can be improved by using larger datasets 

and more valid instances for each participant. An interesting strategy is to test the 

performance of the classifiers fed with features extracted from longer time windows: this 

strategy can also be used to retrieve more valid instances since the probability of finding, 

for example, good quality PPG signal segments increases. Another approach can be to 

change the way to represent pain classes. For instance, it can be interesting to apply 

different thresholds to define no pain vs. pain, to test classification performance on a 

multiclass problem, and to also use regression algorithms. 

9.6 Conclusion 

Automatic pain assessment in real-world scenarios can represent a decisive means to 

improve and optimize pain management. Moreover, we showed that it is possible to 

achieve good classification performance using machine learning algorithms trained with 

data collected in real-world contexts. These preliminary results show the feasibility, 
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although on a small dataset, of such an approach, that could be included in the clinical 

decision making to improve the pain management path. 
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10. STUDY PROTOCOL FOR AN 

EXPLORATORY INTERVENTIONAL 

STUDY INVESTIGATING PAIN IN 

NEUROREHABILITATION THROUGH 

WEARABLE SENSORS (PAINLESS) 

From the paper being sent to BMJ Open: Moscato S., Orlandi S., Di Gregorio F., Lullini 

G., Pozzi S., Sabattini L., Chiari L., La Porta F., Study protocol for an exploratory 

interventional study investigating PAIN in neurorehabilitation through wearable SensorS 

(PAINLESS) 

10.1 Abstract 

Millions of people survive injuries to the central or peripheral nervous system for which 

neurorehabilitation is required. Unfortunately, in addition to the physical and cognitive 

impairments associated with neurological deficits, many neurorehabilitation patients 

experience pain, often not widely recognized and inadequately treated. This is particularly 

true for Multiple Sclerosis (MS) patients, for whom pain is one of the most common 
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symptoms. In clinical practice, pain assessment is usually conducted based on a subjective 

estimate of the patient’s pain experience, mainly using self-administered questionnaires 

or scales. However, these tools can lead to evaluations that are not always accurate due 

to the influence of numerous factors, including emotional or cognitive aspects.  

To date, no objective and simple-to-use clinical methods allow objective quantification 

of the subjective pain experience and a diagnostic differentiation between the two main 

types of pain (nociceptive vs. neuropathic pain). Wearable technologies are increasingly 

being applied in various clinical settings for monitoring patients’ health parameters, 

allowing the real-time collection and processing of health data. As such, we aim to 

develop a novel automatic tool fueled by artificial intelligence (AI) to assess the presence 

of pain and its characteristics during neurorehabilitation treatments by evaluating the 

feasibility of using physiological signals collected by wearable sensors.  

We aim to recruit 15 participants suffering from MS who will undergo physiotherapy 

treatments. During the study, participants will wear a wearable sensor (i.e., a wristband) 

for three consecutive days and be monitored before and after their physiotherapy sessions. 

Measurements of traditionally used pain assessment questionnaires and scales (i.e., 

painDETECT, DN4 questionnaire, EuroQol 5-dimension 3-level) and physiological 

signals (photoplethysmography, electrodermal activity, skin temperature, accelerometer 

data) will be collected. The parameters of interest from the physiological signals will be 

identified, and automatic classification methods will be developed using AI algorithms. 

10.2 Introduction 

According to the definition of the "International Association for the Study of Pain" 

(IASP), pain is "an unpleasant sensory and emotional experience associated with, or 

resembling that associated with, actual or potential tissue damage" [1]. When pain arises 

from actual tissue damage, it is called nociceptive, and it has a clear protective function 

as it alerts the nervous system of potential threats to which it has to react adequately [4]. 

However, another type of pain (i.e., neuropathic pain) occurs without actual tissue 

damage as it is secondary to central or peripheral nervous system lesions. In this respect, 

neuropathic pain, which usually manifests as electric shocks, unpleasant perception of 

intense cold, and feelings of pressure or constriction, can occur at almost any site; it is 

generally chronic and, as such, can be extremely disabling [2]. 
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Pain is one of the most common complaints of Persons with Multiple Sclerosis (PwMS) 

[3], an autoimmune disease characterized by inflammation, selective demyelination, and 

gliosis of central nervous system white matter. In particular, PwMS patients describe their 

pain as often widespread, chronic, and debilitating, and, as such, it may be associated with 

psychological distress and decreased daily functioning [4]. Since MS affects 

approximately 2.1 million people worldwide [5], and the prevalence of pain in this 

condition is between 30% and 85% [6], it can be estimated that from 630,000 to 1,800,000 

PwMS around the world are likely to suffer from disabling pain. Furthermore, nociceptive 

and neuropathic pain may coexist in PwMS, thus posing a diagnostic and therapeutic 

challenge as nociceptive pain, mainly due to spasticity or other musculoskeletal 

impairments, may limit the effectiveness of physical therapies [2]. To make things even 

more complicated, the subjective experience of pain in PwMS often requires a 

biopsychosocial approach for assessment and treatment, where the goal is to treat the 

manifestations of pain at the sensory level as well as its related psychological and social 

aspects [7]. Hence, for appropriate and successful pain treatment in PwMS, the 

availability of a tool that could assess pain in its intensity and nature as objectively as 

possible would be highly beneficial. 

In clinical practice, pain assessment is often based on subjective estimates obtained by 

interviewing patients, mainly using self-administered questionnaires [8]. Several self-

report scales are available for the overall evaluation of pain intensity. The Numerical 

Rating Scale (NRS) is the most used, given its reported excellent reliability and validity. 

It consists of a 0-10 scale, where 0 is “absence of pain” and 10 is “the worst pain possible” 

[9]. Other scales are the Pain Severity Subscale of the Multidimensional Pain Inventory 

(MPI), consisting of three items on pain severity and the suffering related to pain, and the 

Neuropathic Pain Scale Inventory, which includes questions about the intensity and the 

quality of pain [8]. In addition, other questionnaires were specifically devised to assess 

symptom severity arising from neuropathic pain. Examples are the Neuropathic Pain 

Symptoms Inventory (NPSI), used for pain assessment in several populations of 

neurotrauma patients [8], the painDETECT (PD-Q), developed to measure pain’s 

neuropathic components [10], and Neuropathic Pain–4 questions (Douleur 

Neuropathique, DN4) [11]. There are also more general questionnaires aimed at assessing 

the health-related quality of life in which one of the subdimension is dedicated to 

assessing pain, such as the EuroQoL 5-dimension 3-level (EQ-5D-3L) [12]. Finally, in 
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addition to scales and questionnaires, pain can be assessed through “objective” 

instrumented methods. Some of these methods are the Quantitative Sensory Testing 

(QST), a battery of tests aiming at identifying pain threshold and changes in sensory 

function [8], the analysis of electromyographic (EMG) signals to record facial emotional 

expressions, voice analysis [13], functional magnetic resonance imaging (fMRI) and 

functional near-infrared spectroscopy (fNIRS) to monitor the main metabolic activity 

[13,14], or the analysis of evoked potentials recorded by the electroencephalography 

(EEG) [8].  

Despite the availability of different tools for assessing pain, several limitations should be 

highlighted. First, scales and questionnaires, although undoubtedly helpful for capturing 

the subjective dimension of the experience of pain, can lead to inaccurate assessments 

due to the influence of numerous factors, not least those related to emotional or cognitive 

aspects. Furthermore, they can be administered reliably only to patients who are 

cooperative enough and not suffering from severe mental and/or communication 

impairments [15]. Furthermore, beyond the lack of objectivity, existing pain 

measurement methods may be inaccurate in discriminating between nociceptive and 

neuropathic pain [16]. Instrumented methods currently available could partially overcome 

this limitation [17,18]. Still, they can hardly be used on large populations because of the 

expensive costs in terms of money, time, and complex setup. Given the limitations and 

barriers of the existing methods, there is a need to develop new and efficient strategies 

for objective pain assessment. These new tools can be considered complementary to state-

of-the-art pain assessment methods or new methodologies to be applied in cases where 

scales and questionnaires fail, such as in non-communicative patients. 

Some insights potentially helpful in developing novel tools to measure pain objectively 

may be gleaned from the current knowledge of the neurophysiological mechanisms of 

pain. Indeed, pain perception involves the activation of neural mechanisms, including the 

Autonomic Nervous System (ANS) [19]. The ANS represents the interface between the 

human body’s internal and external environment, acting to maintain homeostasis and 

respond to stress stimuli [20]. In turn, its activity influences the normal functions of 

several physiological mechanisms, such as skin conductance [21], heart rate, and the 

cardiovascular system in general [22,23]. Thus, monitoring these physiological 

mechanisms may provide a novel method for objective pain assessment since it would 

eliminate the influence of subjectivity and the impossibility of verbally communicating 
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it. In this context, a new opportunity may be given by combining two currently 

widespread technologies already available in clinical and research fields: wearable 

sensors and artificial intelligence (AI) algorithms. The former allows us to continuously 

and passively record physiological signals in pervasive contexts, while the latter would 

enable the development of data-driven models to detect particular conditions 

automatically. 

Several studies examined the relationship between pain and physiological signals [13,24]. 

Specifically, Johnson et al. [25] showed the feasibility of developing novel methods to 

assess pain by collecting physiological signals with wearable devices on 27 patients with 

sickle cell disease in a hospital setting using machine learning classifiers and regressors. 

In another work, Badura et al. [26] applied the same approach in a physiotherapy setting, 

monitoring 35 patients who rated their pain during a session of fascial therapy. In 

addition, our group developed an automatic dichotomous classifier for pain assessment 

in oncological patients in a previous study [27]. Together with pain evaluations, real-

world recordings from 31 patients were used to feed the classifier for detecting “pain” 

and “no pain” conditions. Best classification performances were obtained using four 

features extracted from photoplethysmography and electrodermal activity with the 

AdaBoost algorithm, reaching an accuracy equal to 72% [27]. However, despite these 

encouraging initial studies, the literature on the diagnostic accuracy of pain measurements 

involving wearable sensors is still scarce [28,29]. Furthermore, none of the previous 

studies explicitly focused on PwMS. 

Thus, based on this preliminary evidence, the present feasibility study aims to investigate 

the use of physiological signals recorded by wearable sensors to achieve the following 

specific objectives: 1) to evaluate the feasibility of developing a differential diagnosis 

method to assess the absence or presence of pain; 2) to evaluate the feasibility of 

developing a regression model to assess pain intensity; 3) to evaluate the feasibility of 

developing a differential diagnosis method to discern the type of pain (nociceptive vs. 

neuropathic pain). 
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10.3 Materials and Methods 

10.3.1 Design 

The project “PAIN in neurorehabilitation through wearabLE SensorS (PAINLESS)” is a 

feasibility, single cohort,  interventional study. 

10.3.2 Participants 

We aim to recruit 15 participants aged between 18 and 75, undergoing neurorehabilitation 

motor treatments in the Neurorehabilitation Unit of IRCSS Istituto delle Scienze 

Neurologiche di Bologna (ISNB). Inclusion and exclusion criteria are detailed in Table 

10.1. Before enrollment in the study, the principal investigator (PI) will check the 

eligibility criteria. In particular, after verifying the eligibility criteria, the PI (or a delegate) 

will provide the potentially eligible person with all the information and details relative to 

the study in simple language during an interview that will preferably take place in the 

presence of a caregiver. The participant is then asked to give his or her informed consent 

to participate in the study. 

10.3.3 Intervention 

For all enrolled participants, the intervention is represented by objective monitoring of 

physiological parameters, continuously recorded for 48 hours with the wearable medical 

device Empatica E4 [30], and concurrent subjective monitoring via specific 

questionnaires digitally administered via Microsoft FormsTM. In particular, the 

intervention will be articulated across four main stages: 

• t0-t1a: baseline monitoring (24h) 

• t1a-t1b: device recharging and data downloading (1h max) 

• t1b-t2: monitoring during a physiotherapy treatment session (1h) 

• t2-t3: post- physiotherapy treatment monitoring (23 hours) 

At t0, t1b, t2, and t3, participants will fill in subjective pain questionnaires (described in 

detail in the next section) to carry out a stratification and to keep monitoring it throughout 

the intervention in one of the following three categories: 1) absence of pain; 2) 

nociceptive pain; 3) neuropathic pain. A graphical depiction of the protocol is shown in 

Figure 10.1. 

 

 



 

167 

 

Table 10.1 Inclusion and exclusion criteria 

Inclusion criteria  

• Age between 18 and 75 years 

• Diagnosis of certainty of Multiple Sclerosis for at least three months 

• Prescription of a physiotherapy-based motor rehabilitation program 

• Signature of the informed consent to participate in the study 

Exclusion criteria 

• Heart rhythm modifying disease and/or factors such as arrhythmogenic heart disease (e.g., atrial 

fibrillation), presence of pacemakers and/or use of drugs capable of affecting heart rhythms, 

such as beta blockers (C07) or other antiarrhythmic drugs (C01) 

• Cognitive impairments that preclude the possibility of providing valid informed consent, such 

as a disorder of consciousness or confusional state, the latter defined by temporal and/or spatial 

disorientation detected during ordinary conversation. In case of doubt, a simple confusional 

state assessment test (4AT) will be administered before enrollment 

• Language comprehension skills lower than 75% in an ordinary conversation due to aphasic 

disorder of severe deafness despite the use of a hearing aid. In case of doubt, a simple language 

comprehension test (token test) will be administered before enrollment 

• Linguistic expression less than 75%. In case of doubt, a simple verbal fluency test (verbal 

fluency by phonemic category) will be administered before enrollment 

• Severe psychiatric comorbidity that may interfere with adherence to the study protocol (e.g., 

severe personality disorders, severe psychomotor agitation) 

• History or current use of narcotic drugs (including marijuana) 

• Modification in the two weeks prior to enrollment or foreseeable modification during 

enrollment of any chronic pain management program, both pharmacological (cortisone for 

systemic use, H02; antirheumatics, M01; analgesics, N02; antiepileptics, N03; antidepressants 

tricyclics, N06AA; atypical antidepressants such as duloxetine or venlafaxine, N06AX) and 

non-pharmacological (e.g., acupuncture or other manual therapies, physical therapies, such as 

tecar therapy) 
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Figure 10.1 Study protocol 

10.3.3.1 Reference measurements 

The reference measurements, which will be taken for each participant, will be included 

in the following Case Report Form (CRF): 

1. a Recruitment CRF, which will contain the demographic information, the 

Expanded Disability Scale [31] information about the disease and drugs;  

2. a Sleep-wake questionnaire CRF, which the PI will administer to set reminders 

for each participant to fill in the monitoring questionnaire CRF.  

3. a Stratification questionnaire CRF will allow the classification of patients into 

the three previously mentioned categories (absence of pain, nociceptive pain, or 

neuropathic pain) following the procedure described in Figure 2. In particular, 

this CRF will include the following tools: a) two screening questions (Pain 

Screen1 and Pain Screen2) to respectively assess the presence of current pain or 

in the past four weeks; b) the painDETECT questionnaire [10]; c) the Doleur 

Neuropathique 4 Questions (DN4) [11]; d) the Euro Quality of Life 5-dimension 

3-level (EQ-5D-3L) [12] to evaluate the health-related quality of life. 

4. a Monitoring questionnaire CRF, which each participant will fill in through the 

smartphoneparticipant during the 48h-monitoring, including information about 

any experienced pain. 
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5. a Monitoring-treatment questionnaire CRF will be administered by the PI (or his 

delegate) through the smartphoneproject to each participant during the motor 

neurorehabilitation treatment. It is a reduced version of the Monitoring 

questionnaire CRF. 

10.3.3.2 Wearable devices and physiological signals 

Each participant will be asked to wear the Empatica E4 wristband, a medical wearable 

device that records the following physiological signals:  

• Photoplethysmography (PPG): it records variations in blood volume flow that 

occur with each heartbeat, affected by both the sympathetic and the 

parasympathetic nervous systems. PPG signal can be exploited to estimate the 

heart rate, thus allowing the heart rate variability (HRV) analysis and, moreover, 

interesting features can be extracted by conducting a more in-depth morphological 

analysis [83]; 

• Electrodermal Activity (EDA): it represents the activation of the eccrine sweat 

glands, innervated by the sympathetic nervous system, representing an arousal 

index. Features related to pain sensations can be extracted either from the whole 

signal or from the two principal components, the tonic (slow changes) and the 

phasic (fast changes) components [91]; 

• Skin temperature (SKT): it is an index of sympathetic activation, mainly 

depending on the amount of superficial blood flow;  

• Accelerometer data (ACC): it records physical activity and movement. 

10.3.3.3 Experimental pipeline 

• t0: The CRF Stratification questionnaire is administered through a smartphone by 

the PI (or his delegate). The participant is then asked to wear the Empatica E4 

wearable medical device and the smartphoneparticipant will be provided, which 

will be used to fulfill the CRF Monitoring questionnaire. Reminders will be set to 

fulfill the questionnaire based on the CRF Sleep-Wake questionnaire, administered 

in this phase. 

• t0-t1a: The participant wears the Empatica E4 wearable device and fulfills the CRF 

Monitoring questionnaire. Reminders are set hourly during wakeness. 

• t1a-t1b: The participant comes back to the clinic 24 hours after t0 and drops off the 

Empatica E4 and the smartphoneparticipant for data downloading and device 
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recharging. After about an hour, the participant is asked again to wear the Empatica 

E4. Then, the CRF Stratification questionnaire is administered, and the motor 

neurorehabilitation treatment starts. 

• t1b-t2: The participant undergoes the motor neurorehabilitation treatment, 

and every 10 minutes the PI (or his delegate) administers the CRF 

Monitoring-treatment questionnaire, a reduced version of the CRF 

Monitoring questionnaire, through the smartphoneproject,. 

• t2: The CRF Stratification questionnaire is administered, and the participant 

receives the smartphoneparticipant.  

• t2-t3: The participant wears the Empatica E4 wearable device and fulfills 

the CRF Monitoring questionnaire. Reminders are set hourly during 

wakeness. 

• t3: The participant comes back to the clinic 24 hours after t2 and drops off 

the Empatica E4 and the smartphone. 

 

Figure 10.2 Stratification algorithm 
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10.3.2 Signal and data analysis pipeline 

Physiological signals recorded through the Empatica E4 wristband will be analyzed in 

four successive phases: 1) Preprocessing (artifact mitigation, filtering); 2) Segmentation 

(time-windows detection of physiological signals linked to the assessments); 3) Signal 

processing and feature extraction; 4) Feature selection. Following this pipeline, we will 

implement AI algorithms to develop the classifiers and regressors methods indicated in 

Table 10.2. Classifiers and regressors will be trained and tested based on the outcomes 

from the Stratification questionnaire CRF, Monitoring questionnaire CRF, and 

Monitoring-treatment questionnaire CRF. Validation will be conducted by testing the 

Leave-One-Subject-Out cross-validation and 10-fold cross-validation.  We will also 

consider adding covariates, either from the Monitoring questionnaire CRF or personal 

data (e.g., age, information about the pathology, and use of drugs). This will allow 

verifying, both on a quantitative and qualitative basis, whether there are differences in 

physiological parameters related to these specific covariates. 

The performance of the classifiers will be assessed using the following indicators: 

accuracy, sensitivity, specificity, and area under the Receiving Operating Characteristic 

(ROC) curve (or precision and recall when a multi-class classification is applied). Instead, 

the regression models' performance will be assessed using the following indicators: root 

mean squared error, absolute error, relative error, and correlation.  

Table 10. 2 Classifiers and regressors methods for pain assessment 

Pain class 

Absence vs Presence of pain 

Nociceptive vs Neuropathic pain 

Absence of pain vs Nociceptive pain vs Neuropathic pain 

Pain intensity 
Multi-class classifier, based on literature guidelines 

Regression model 

10.3.3 Objectives and related endpoints 

1. Feasibility of developing a differential diagnosis method based on physiological 

signals recorded using wearable sensors to assess the absence or presence of pain. 

The related primary endpoint will be evaluated based on the number of available 

instances to be processed for determining the absence/presence of pain, which 

means the number of concurrent physiological signals registrations and pain 

assessments. If this endpoint is met, a predictive test will be developed based on AI 

techniques and physiological parameters. The diagnostic performance of this test 
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will be evaluated against the gold standard (questionnaires) by evaluating standard 

performance indicators (i.e., sensitivity, specificity, predictive values). The 

endpoint will be considered achieved if at least 80% of the instances are available. 

The diagnostic accuracy will be calculated using the CRF Stratification and CRF 

Monitoring questionnaires as a reference. The threshold for the diagnostic accuracy 

to define the endpoint achieved is set at 75%. 

2. Feasibility of developing a regression model based on physiological signals 

recorded using wearable sensors to assess pain intensity (secondary endpoint). The 

related secondary endpoint will be evaluated based on the number of available 

instances to be processed to assess pain intensity, i.e., the number of concurrent 

physiological signals registrations and pain assessments. If this endpoint is met, a 

regression model will be developed based on AI techniques and physiological 

parameters. The diagnostic performance of this test will be evaluated against the 

gold standard (questionnaires) by evaluating standard performance indicators (i.e., 

accuracy, mean squared error). The endpoint will be achieved if at least 80% of the 

instances are available. The coefficient of determination of the regression model 

will be calculated using the CRF Stratification questionnaire and CRF Monitoring 

questionnaire as a reference. The threshold for the coefficient of determination to 

define the endpoint achieved is set at 0.5. 

3. Feasibility of developing a differential diagnosis method based on physiological 

signals recorded using wearable sensors to discern between nociceptive and 

neuropathic pain (secondary endpoint). The related secondary endpoint will be 

assessed based on the number of available instances to be processed to distinguish 

between nociceptive and neuropathic pain, i.e., the number of concurrent 

physiological signals registrations and pain assessments. If this endpoint is met, a 

predictive test will be developed based on AI techniques and physiological 

parameters. The diagnostic performance of this test will be evaluated against the 

gold standard (questionnaires) by evaluating standard performance indicators (i.e., 

sensitivity, specificity, predictive values). The endpoint will be considered achieved 

if at least 80% of the instances are available. The diagnostic accuracy will be 

calculated using the CRF Stratification and CRF Monitoring questionnaires as a 

reference. The threshold to define the endpoint achieved is set at 75%. 
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10.3.5 Sample size 

Given the study’s exploratory nature, the effect size is unknown; thus, it is not possible 

to calculate the sample size accurately. 

10.3.4  Ethics and dissemination 

The study will be conducted according to the ethical principles established in the 

Declaration of Helsinki and has been subjected to approval by the local Ethical 

Committee (285-2022-SPER-AUSLBO). Any changes to the protocol will be proposed 

to the local Ethical Committee as a request for amendment. Although it is not foreseen 

that there will be a direct short-term benefit to participants, the research protocol presents 

minimal risks for the participants and no burden, as required by Article 28 of the 

Declaration of Helsinki.  

Personal data will be retained in agreement with the GDPR guidance for ten years. 

Specifically, the PI and co-PIs will be responsible for archiving and preserving the 

essential study documents before, during, and after the completion of the study, according 

to the timeframe required by the current regulations and good clinical practice. 

Researchers involved in the study will disseminate the results in a timely and complete 

manner, participating in conferences and writing scientific articles for submission to 

international journals. In addition, the findings from the study will form part of a doctoral 

dissertation for one of the authors (SM). The researchers will scrupulously, objectively, 

and impartially provide as much evidence and information as possible on aspects such as 

the state-of-the-art literature before the study, the original purpose, and methods defined 

before conducting the research, any changes in objectives and methods since the study 

were commenced, the significant results achieved, including negative or null results and, 

finally, the possible interpretations, applicability, and limitations of the findings. 

10.4 Discussion 

In regular clinical practice, pain assessment is usually carried out by administering 

subjective scales and questionnaires. Although their usefulness for the subjective 

quantification of pain, these tools can lead to inaccurate assessments due to the influence 

of many factors, such as emotional and cognitive factors. In addition, they cannot be 

administered to those patients unable to communicate verbally. Therefore, identifying 

optimal physiological parameters recorded through wearable devices and using artificial 
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intelligence algorithms would allow the development of automatic methods capable of 

determining the absence or presence of pain in MS patients, its intensity, and 

distinguishing pain as nociceptive or neuropathic.  

Such continuous and objective pain monitoring in everyday life activities and during 

treatments would overcome the limitations imposed by the tools currently used in clinical 

practice. In particular, continuous and objective monitoring would bring about several 

advantages. First, this pain assessment disregards the patients’ ability or willingness to 

communicate their pain verbally. Second, this approach is supposed to provide a 

completely automatic method that would not require spending time ad hoc to administer 

scales and questionnaires, as it could be used in hospital or daily life contexts while 

patients are involved in other activities. Lastly, having a more reliable method to 

discriminate between nociceptive and neuropathic pain would allow a better 

personalization of the antalgic therapy. 

The long-term goal is to integrate such an innovative method into regular clinical practice 

as a tool for clinical decision-making for the antalgic therapy to be chosen. Implementing 

this method would allow PwMS to be monitored both during neurorehabilitation 

treatment and in a pervasive context. This would allow for a timelier assessment of the 

patient’s pain, ultimately aiming to ameliorate their quality of life. Prospectively, if 

properly calibrated, such a method could allow quantification and monitoring of pain in 

patients unable to express it verbally, such as patients with severe brain injury, in a 

minimally conscious state, or with aphasia. 

An innovative aspect of this study relies on the possibility of overcoming the “etiological” 

boundaries of pain at the measurement level. This would be extremely useful, considering 

that, in many pathologies, different types of pain may coexist. For example, in brain 

injury, there may be a mix of nociceptive and neuropathic pain, both of central and 

peripheral origin. This study could bring initial insights into how pain can be measured 

by recording a minimum set of physiological parameters based on physiological 

indicators invariant to the pathology. In other words, we will be able to assess whether 

the parameters to be measured are independent of the underlying pathology, precisely as 

is the case for different physiological parameters such as body temperature or heart rate. 

For the latter, differences of quantitative nature (e.g., fever) give rise to specific diagnostic 

profiles only in combination with other data (e.g., body temperature changes and other 

diagnostic indicators), being the measurement of the temperature parameter independent 
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of the pathology that modifies it. Similarly, from the combination of physiological 

parameters of pain, diagnostic combinations ("profiles") could be identified for specific 

pathologies. 

The proposed study is also relevant for health systems because it aims to improve the pain 

assessment phase, which is necessary to choose the most appropriate antalgic therapy for 

the patient. In addition, such a system would allow the prescription of more personalized 

pain treatment plans, make efficient use of resources, and minimize the waste resulting 

from the incorrect choice of ineffective strategies to improve the patient’s pain status. In 

addition, the proposed protocol is also relevant in terms of research, as the availability of 

an objective system of pain quantification, together with the already available subjective 

assessment tools, would make the quantification of treatment effects in the context of 

RCTs and other studies undoubtedly more accurate and less prone to interpretive bias. 

The methodology presented here may suffer from several limitations. First, being 

designed as an exploratory feasibility study, the limited sample size may hinder the 

development of robust and reliable methods for objectively assessing pain and, 

consequently, achieving reliable results and good performance. Furthermore, additional 

specific personal, contextual, or health-related factors (e.g., age, sex, physical activity 

level, type of disability) can significantly impact the physiological parameters used to 

develop automatic pain assessment methods. Thus, our models may not be robust enough 

to properly assess pain should these factors not be adequately controlled. 

10.5 Conclusion 

In this paper, we presented a protocol to evaluate the feasibility of developing automatic 

methods for pain assessment in Persons with Multiple Sclerosis based on physiological 

signals and AI algorithms. In addition, we illustrated the intervention by highlighting the 

state-of-the-art and innovative tools to obtain reliable and robust methods for automatic 

pain assessment. Such an approach, if proven feasible, can lead to significant progress in 

the field of pain management by providing a better characterization of pain and, therefore, 

more timely and efficient interventions to control it. 

  



 

176 

 

 

 

 



 

177 

 

11. PILOT STUDY ON PAINLESS 

PROTOCOL 

11.1 Introduction 

The PAINLESS protocol presented in the previous chapter has been approved by 

Comitato Etico Area Vasta Emilia Centro (285-2022-SPER-AUSLBO). Data collection 

officially started in January 2023 and it is still ongoing. Data from the first three 

participants were collected and analyzed to conduct a pilot study and assess protocol 

feasibility. Preliminary results will be reported in this chapter along with the information 

related to these three case-studies. Our preliminary results were used to implement a 

practical pipeline to optimize the data collection phase. 

11.2 Materials and Methods 

11.2.1 Participants 

Participants are Multiple Sclerosis (MS) patients enrolled in a rehabilitation program at 

Ospedale Bellaria (Bologna). In the following, the main characteristics of the three 

participants are presented. 

Participant A 

Participant A is a 60 years old woman, diagnosed with MS 10 years ago, with an 

Expanded Disaibility Status Scale (EDSS) score of 4. The type of MS is relapsing-
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remitting. At pathology onset, participant A presented neuropathic pain episodes, 

recurrent headache, pathologic fatigue and muscle exhaustion, along with cognitive 

fatigue on long-term visuo-spatial memory and concentration deficit. At the last visit, the 

pathologic fatigue persisted, but she performed well in coordination tests, although 

presenting gait with widened base, stiffness and uncertainty in changes of direction and 

the impossibility of performing tandem march. She also presents some associated 

pathology: extrinsic asthma, autoimmune thyroiditis, and disc herniation in the lumbar 

region. 

Participant B 

Participant B is a 53 years old woman, diagnosed with MS 5 years ago, with an EDSS 

score of 6.5. The type of MS is secondary progressive. At pathology onset, participant B 

presented undifferentiated connectivitis because of diffuse polyarticular pain associated 

with fatigue. During the last visit, participant B walked with a 4-wheel walker, presented 

trigger points at the right scapulohumeral, sacro iliac and knees, and gait was performed 

with widened base. 

Participant C 

Participant C is a 60 years old woman, diagnosed with MS 31 years ago, with an EDSS 

score between 1 and 3.5. The type of MS is relapsing-remitting. At pathology onset, and 

8 years ago presented right lower limb stiffness and occasionally right upper limb 

stiffness. At the last visit, participant C presented widespread pain, especially joint pain, 

and complained of fatigue and insomnia. After the COVID-19 infection, participant C 

began to have an intense headache and musculoskeletal pain, along with right sciatica 

with worsening gait. 

11.2.2 Experimental procedure 

We applied the pipeline described at 10.3.2 – Experimental pipeline for each participant.  

On admission, after having completed the CRF 1 – Recruitment questionnaire, CRF 2 – 

Sleep-wake questionnaire, and CRF 3 – Stratification questionnaire (administered with 

the smartphoneproject), participant were provided with the Empatica E4 wristband, to be 

worn on the non-dominant arm, and a smartphone (smartphoneparticipant), through which 

fulfill the CRF 4 – Monitoring questionnaire during the following 24 hours. Reminders 
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to fulfill the questionnaire were set based on the answers obtained from CRF 2 – Sleep-

wake questionnaire.  

After 24 hours, each participant returned to the hospital one hour before the scheduled 

neurorehabilitation session. Physiological signals recordings were downloaded from the 

E4 wristband. Both the E4 wristband and smartphone were put on charge.  

Just before the beginning of the neurorehabilitation session, each participant was 

administered the CRF 3 – Stratification questionnaire and was asked to wear again the E4 

wristband. During the neurorehabilitation session, the participant had to answer three 

questions composing the CRF 5 – Monitoring-treatment questionnaire (through 

smartphoneproject) about the experienced pain every 10 minutes. At the end of the 

neurorehabilitation session, the participant fulfilled again the CRF 3 – Stratification 

questionnaire and was given the smartphone before leaving the hospital. After 24 hours, 

the participant returned to the hospital, fulfilling the CRF 3 -. Stratification questionnaire 

for the last time and returns the devices. 

11.2.3 Signal and data analysis 

For the purpose of this pilot study, we proceeded with the analyses whose pipeline is 

shown in Figure 11.1. 

From the E4 wristband, the following procedures were applied:  

• Photoplethysmograhy (PPG): after being subjeted to the preprocessing pipeline 

presented in Appendix A.2, the basic and high-quality classifiers shown in 

Chapter 3 was applied to obtain basic and high-quality pulses, to be further 

exploited to obtain heart rate variability (HRV) features, basic and higher 

morphological features. At least 10 good quality PPG pulses are needed to extract 

HRV features 

• Electrodermal Activity (EDA): after being subjected to the preprocessing pipeline 

presented in Appendix A.4, the quality check of Taylor et al. [355] was applied. 

Then features from the full EDA and the tonic and phasic componentswere 

extracted by applying the algorithm by Greco et al. [246]. 

• Skin Temperature (SKT): this signal was not subjected to any preprocessing 

phase, it was used to extract statistical features directly 
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• Accelerometer (ACC): it was subjected to the procedure described in Appendix 

A.3 to obtain the Activity Index (AI), which was then further exploit to extract 

statistical features 

A list of the features is given in Appendix F, Table F.1. 

 

 

Figure 11.1 Signal and data analysis pipeline 

All the questionnaires (CRF 1, CRF 3 and CRF 5 fulfilled through smartphoneproject and 

CRF 4 fullfiled through smartphoneparticipant) were downloaded and subjected to a three-

step data preprocessing: visual inspection, errors correction, and information extraction. 

Information extracted in this pilot study was: 

• CRF 3 Stratification outcome 

• CRF 5 completion time and pain intensity 

• CRF 4 completion time and pain intensity 

CRF 3 Stratification outcomes were used to qualitatively compare different groups (i.e., 

absence of pain, nociceptive pain, neuropathic pain) in a representative time series for 

each physiological signals (meanHR for the PPG, EDA, SKT, and AI themselves for the 

remaining signals) throughout the two monitoring days. 
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Information from both CRF 4 and CRF 5 werere used to extract features in time windows 

synchronized with completion time. Time window length used in this pilot study is 5 

minutes, with the end corresponding to CRF4 and CRF 5 completion time. Other time 

window lengths will be assessed when more patients are enrolled. Features were then 

qualitatively analysed in relation to pain intensity. As an example, in this work the 

following features were used along with pain intensity ratings given through CRF4 and 

CRF5: 

• PPG: meanHR, standard deviation of normal heartbeats (SDNN), and pulse 

amplitude (PulseAmpl) 

• EDA: meanEDA, mean amplitude of phasic component’s peaks (meanampEDR), 

and mean of EDA’s tonic component (meanEDL), 

• SKT: mean skin temperature (meanTEMP) 

• ACC: mean AI (meanAI) 

11.3 Results 

11.3.1 Participants 

Information about participants regarding the monitoring time with E4 wristband, CRF3 

Stratification outcome, number of instances collected through CRF 4 – Monitoring 

questionnaire and CRF 5 – Monitoring-treatment questionnaire are reported in Table 

11.1. Figure 11.2 and 11.3 show the histogram of the pain intensity ratings given 

respectively through CRF 4 – Monitoring questionnaires and CRF 5 – Monitoring-

treatment questionnaies. 

Each participant was monitored for at least 22 hours, and fulfilled the CRF 4 questionnaire 

at least 19 times throughout the whole experimental procedure. Neurorehabilitation 

treatment lasted about 1 hour per participant, obtaining 4 CRF 5 instances for each 

participant from this period.  

Participant A showed contrasting results from the CRF 3, while participants B and C had 

the same results (neuropathic and nociceptive respectively) for all four times the CRF 3 

was administered. 
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Table 11. 1 Descriptive statistics on the information obtained by participants 

  
Monitoring Time 

(hh:mm) 
CRF 3 Stratification 

outome 

CRF 4 # instances CRF 5 

# instances 
 Day 1 Day 2 Day 1 Day 2 

Participant A 22:49 24:07 
2 neuropathic, 2 

nociceptive 
7 13 4 

Participant B 23:17 23:57 4 neuropathic 6 14 4 

Participant C 22:51 23:59 4 nociceptive 10 14 4 

 

 

Figure 11.2 Histogram of pain intensity ratings from CRF 4 - Monitoring questionnaires 

 

Figure 11.3 Histogram of pain intensity ratings from CRF 5 – Monitoring-treatment questionnaires 

11.3.2 Signals and data analysis 

11.3.2.1 CRF3 Stratification outcome 

Since participant A showed inconsistent results as CRF 3 Stratification outcome, we did 

not consider these data in this qualitative analysis.  
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Figure 11.3 shows the behavior of meanHR, EDA, SKT, and AI throughout the whole 

monitoring period. All the physiological signals are in the same values range. Notably, a 

remarkable meanEDA peak for participant C (who experienced nociceptive pain)can be 

seen during Day 1. Another noteworthy detail is given by the SKT, with a negative peak 

around the 10th hour of Day 1: this is probably due to the removal of the E4 wristband 

from the wrist. 

From this qualitative analysis, any consideration can be drawn based on the CRF3 

Stratification outcome since only two participants are involved and the differences in the 

physiological signals cannot be ascribed solely to the type of experienced pain. 

 

 

Figure 11.4 Physiological signals throughout the monitoring period 

11.3.2.2 CRF 4 Pain intensity 

Figure 11.5, 11.6, and 11.7 show examples of features extracted respectively from PPG, 

EDA, SKT and ACC along with the pain intensity ratings given when fulifilling the CRF 

4 – Monitoring questionnaire. In  particular for PPG features, since the signal is subjected 

to a signal quality check, it might be possible that there is any good quality PPG pulse for 

a certain time window, so features cannot be estimated. 

11.3.2.3 CRF 5 Pain intensity 

All three participants underwent a neurorehabilitation session. Physiological recordings 

of participant C are compromised because the investigator left in place the USB dock 

used to charge the device, preventing the proper recordings of PPG and SKT signals (the 

USB dock covers these sensors) and a misplace of the device on the wrist. For this reason, 
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signals from participant C during the neurorehabilitation sessions are not presented. 

Figure 11.8, 11.9, and 11.10 show examples of features extracted respectively from PPG, 

EDA, SKT and ACC during the neurorehabilitation session, along with the pain intensity 

ratings given when administered with the CRF 5 – Monitoring – treatment questionnaire. 

It is worth noting that Participant B does not show any meanHR or SDNN value because 

of the lack of at least 10 good-quality PPG pulse.  
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Figure 11.5 PPG features trend during the monitoring period 
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Figure 11.6 EDA features trend during the monitoring period 
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Figure 11.7 TEMP and ACC features trend during the monitoring period 
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Figure 11.8 PPG features trend during neurorehabilitation session 

 

 

 

 

 

 

Figure 11.9 EDA features trend during neurorehabilitation session 
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11.3 Discussion 

In this pilot study, we investigated the feasibility of the PAINLESS clnical study protocol 

in order to implement a practical pipeline to opimize the data collection phase.  

We retrieved information from the questionnaires, administered to participants or self-

administered by participants themselves, to highlight possible errors encountered during 

the practical application of the protocol. Questionnaires’ outcomes were also used to link 

some of them to physiological parameters extracted from the E4 wristband recordings to 

assess their behavior qualitatively. In this case, we were also interested in exploring the 

availability of finite physiological parameter values coupled with pain intensity ratings, 

fundamental elements for developing classifiers and regressors to estimate pain intensity 

automatically. 

From the CRF 3 – Stratification questionnaire, administered four times during the whole 

experimental procedure, two participants (B and C) were consistently classified as 

experiencing neuropathic and nociceptive pain respectively. In comparison, participant A 

was classified as experiencing neuropathic pain for the first two times, and neuropathic 

 

 

 

Figure 11.10 SKT and ACC features trend during neurorehabilitation session 
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pain for the last times the questionnaire was administsered. The CRF 3 questionnaire was 

conceived as the union between two neuropathic pain screening questionnaires, 

painDETECT and DN4, with the aim of reducing the possibility of inconsistent results. 

This aspect should be deepened to avoid excessive data removal, with the risk of not 

having enough data to train and test the classifiers to discern between nociceptive and 

neuropathic pain.  

By analysing the physiological signals recorded throughout the two days of the 

experiment, we noticed that Participant B removed the E4 wristband thanks to a drop in 

the skin temperature. When processing signals, a prodromic phase must be devoted to a 

visual inspection to remove possible “non-wear” periods. 

From the CRF 4 – Monitoring questionnaire we obtained between 19 and 24 instances, 

in line with the numerosity we expected. Participants were all able to self-administered 

the questionnaire through the smartphone. Regarding the coupling between pain intensity 

ratings from CRF 4 and physiological signals, it can be appreciated from Figures 11.5 

that PPG parameters are not present for every pain intensity ratings. This is due to a lack 

of good-quality signals from which physiological parameters can be reliably extracted. A 

strategy to improve the possibility of finding good quality signal segments is to enlarge 

the time window from which the physiological parameters can be extracted. The trade-

off between the availability of good-quality PPG pulses and the accuracy of pain 

estimation (it may happen that a wider time window is not representative of the pain 

rating) will be explored. 

From the CRF 5 – Monitoring-treatment questionnaire, we collected 4 instances per 

participant, in line with the duration of the neurorehabilitation session (about 1 hour). We 

had a technical error by leaving the USB dock for participant C in place, thus loosing 

physiological recordings. Regarding Figure 11.8, we observed a lack of finite HRV 

parameters values. We will deal with this aspect by applying a similar strategy described 

for CRF 4 – Monitoring questionnaire, although in this case we are limited in the time 

window length to 10 minutes (since CRF 5 is administered every 10 minutes in this case).  

Overall, the protocol was demonstrated to be feasible. This pilot study also allowed to 

promptly identify critical issues that will be better controlled in the continuation of the 

data collection phase. As an output of this preliminary study, we drafted a practical 

pipeline presented in Appendix F, Table F.2.  



 

191 

 

CONCLUSION 

The genereal aim of this PhD thesis was the development of automatic methods to asssess 

pain by using physiological signals and artificial intelligence algorithms. This aim was 

set to meet the clinical demand of implementing tools that provide a timely, personalized, 

and reliable characterization of the pain experience. 

To pursue this aim, three practical objectives were set.  

The first objective was to select and/or develop preprocessing methods to condition 

physiological signals and control confounding factors appropriately. I developed a signal 

quality check method to detect basic and high-quality photoplethysmography pulses 

based on characteristics extracted from the photoplethysmographic signal itself and from 

accelerometer data and machine learning algorithms. Such an approach has reached very 

high accuracy levels, above 90%, together with well-balanced sensitivity and specificity 

values. This means that the detection of good-quality pulses exploitable for further 

analysis is well-optimized. Still related to the preprocessing phase, I conducted two 

studies to characterize the impact of several confounding factors on some 

photoplethysmography parameters and different physiological signals recorded in a real-

world context. For the first study, I found that several personal, contextual, and health 

factors play a role in modifying both the percentage of available basic and high-quality 

photoplethysmography pulses and the values of the extracted physiological parameters. 

For the second study, involving oncological patients only, it turned out that the circadian 

rhythms of heart rate, electrodermal activity, skin temperature, and physical activity 
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strongly depend on pain, but also on other factors that can hinder the possibility of reliably 

assessing pain, such as anxiety, depression, use of opiods, and sex.  

These studies revealed the need to apply rigorous methods for signal preprocessing, the 

basis on which the method of pain assessment rests, and to employ proper methods to 

control possible confounding factors. 

The second objective was to define an ideal pipeline for objective pain assessment. By 

combining the information gathered about the signals in Section I, their related processing 

algorithms, and artificial intelligence techniques, along with the findings reported in 

Section II, it was possible to implement a general strategy to implement pain assessment 

methods. A depiction is given in Figure III. 

 

Figure III Ideal pipeline for automatic pain assessment 

Such strategy is meant to be then modified on the specific case, taking into account the 

type of pain to be investigated and some practical considerations, such as the number of 

available instances. The higher the numerosity of the sample, the more features and 

confounding factors can be included to tailor the model even better.  

The third objective was to apply the ideal pipeline in different health domains. In this 

thesis, three different pain conditions have been explored.  

I investigated the physiological reaction to different noxious stimulations on healthy 

subjects and patients suffering from chronic low back pain. This study made it possible 

to appreciate significant differences in the basal physiological activity and in response to 
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different external noxious stimuli in the two populations. This study corroborated the 

finding that chronic pain causes substantial changes in the autonomic nervous system, 

presenting a higher basal sympathetic activity and a blunted autonomic response when 

subjected to nociceptive stimuli. Thus, based on these results, I trained and tested several 

machine learning algorithms to automatically classify healthy subjects and chronic low 

back pain patients. I tested the inclusion of a different number of features extracted from 

different time window lengths from recordings under rest conditions. This approach was 

feasible, although performance can be increased by increasing the number of subjects 

involved in the study. 

Delving into cancer pain, I conducted a systematic review to gather studies on the 

physiological reaction to cancer pain. Despite the marked heterogeneity of the included 

studies, it was still possible to conclude that some parameters related to the cardiovascular 

system, such as the heart rate and systolic blood pressure, positively correlates with pain. 

However, the most important conclusion drawn from this study was the need to 

implement more rigorous and big-data-based methods to assess pain in the oncological 

population. Using these findings as a basis, I conducted a study involving cancer patients 

whose physiological signals were monitored in a real-world context with a wearable 

device. Such physiological recordings were used along with pain intensity ratings given 

by the patients to train and test machine learning algorithms to detect the absence and 

presence of pain. Such an approach was demonstrated to be feasible, but also in this case 

more instances would be needed to reach better performance. 

Lastly, I presented the protocol for a clinical trial based on pain assessment in patients 

undergoing neurorehabilitation by using wearable devices. For this exploratory study, the 

research team chose to include only multiple sclerosis patients among the whole cohort 

of neurorehabilitation patients to reduce the variability possibly introduced by the 

pathology itself. A pilot study on three patients has been carried out to define a practical 

pipeline to optimize the data collection process. Aside from a few technical problems, 

these preliminary results were promising and in line with what we theoretically expected 

regarding the number of instances to be collected.  

In conclusion, all the presented studies showed encouraging outcomes in applying such 

an approach to assess pain through physiological signals and artificial intelligence 

algorithms. Further studies on larger populations are needed to consolidate better the 

results presented here. Nevertheless, such methodology can enrich the routine clinical 
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pain assessment procedure, by making it possible to monitor pain when and where it is 

actually experienced by using wearable devices, and in general without the involvement 

of explicit communication. This, in turn, would enable better characterization of the pain 

experience, improve antalgic therapy personalization, and bring timely relief, with the 

ultimate goal of ameliorating the quality of life of patients suffering from pain.  
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APPENDIX A 

A.1 Empatica E4 wristband 

The Empatica E4 wristband [356], presented in Figure A.1, is a CE medical-grade device 

that allows the continuous, simultaneous recording of several physiological signals. It has 

the following technical specifications: 

• Photoplethysmography (PPG) sensor is equipped with four light sources (two 

green, two red) and two photodetectors, and with a sampling frequency of 64 Hz. 

• Electrodermal activity (EDA) is recorded by two dry electrodes placed on the 

ventral part of the wrist, with a sampling frequency of 4 Hz. 

• Skin temperature (TEMP) is recorded through a thermopile with a sampling 

frequency of 4 Hz. 

• Accelerometer data is recorded through a tri-axial accelerometer with a sampling 

frequency of 32 Hz. 

 

Figure A.1 Empatica E4 wristband 
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A.2 PPG processing 

A fifth-order Butterworth band-pass filter with cut-off frequencies of 0.5 and 12 Hz is 

applied for each PPG recording [147]. The algorithm by Elgendi et al. [357], originally 

developed to detect second derivative PPG fiducial points, was adapted to detect the 

systolic peak and systolic foot of each pulse in order to segment the signal into single 

pulses. Each pulse was then normalized with the z-score procedure: 

pulsenorm =
pulse − mean(pulse)

std(pulse)
 (A.1) 

A.3 ACC processing 

Each accelerometer (ACC) component (x, y, z) is resampled at 𝑓𝑠𝐴𝐶𝐶−𝑅𝐸𝑆=64 Hz with 

linear interpolation (to match the PPG sampling frequency) and converted to g units. 

Next, a fourth-order band-pass filter was applied, with cut-off frequencies of 0.025 and 

10 Hz [358], [359]. The ACC vector magnitude was then calculated for each sample j as: 

𝐴𝑗 = √𝐴𝐶𝐶𝑥𝑗

2 + 𝐴𝐶𝐶𝑦𝑗

2 + 𝐴𝐶𝐶𝑧𝑗

2 (A.2) 

The 𝐴𝑖𝑛𝑑 was estimated using the algorithm of Lin et al. [41]: 

• Standard deviation of  𝐴𝑗 for 5-second epochs: 

𝜎 = √
1

𝑁
∑ (𝐴𝑗  −  𝜇)2

𝑁

𝑗= 1
 (A.3) 

Where 

𝜇 =
1

𝑁
(𝐴1 + 𝐴2 + ⋯ + 𝐴𝑁)  

N = 5 s ∗ fsACC−RES 

• Minute-wise 𝐴𝑖𝑛𝑑:  

𝐴𝑖𝑛𝑑 = ∑ 𝜎𝑘

𝑀

𝑘=1
   (A.4) 

where M is set to 12 to obtain a minute-wise 𝐴𝑖𝑛𝑑by summing 12 5-second epochs. 

A.4 EDA processing 

EDA is filtered with a 4th order Butterworth low-pass filter, with a cut-off frequency of 

1 Hz and then subjected to a quality check analysis with the automatic algorithm by 

Taylor et al. [355]. Bad quality segments were replaced by a linear interpolation between 

the last and the following good quality segment. 
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APPENDIX B 

Table B.1 Computational complexity for each feature. N = pulse’s length 

Feature Computational complexity 

Peak2peakACC 1 

MeanACC N 

SigSim N 

Entropy 7*N 

Kurtosis 4*N 

SNR 8*N 

RelPower 2*N 

Skewness 6*N 

ZR 3 

Amplitude 1 

Width 1 

TroughDepth 1 

MedianPulse N 

MedianPulsenoZ N 

MeanPulse_noZ N 

StdPulse_noZ 4*N 

SNR_Moody 8 

Npeaks 1 

ZDR N 
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Table B.2 Results from neighborhood component analysis for the Basic-quality classifier (BQ) 

applied ten times 

Repetition 1 2 3 4 5 6 7 8 9 10   

Peak2peakACC  x x x x x x x x x x 100% 

MeanACC  
          

0% 

SigSim x x x x x x x x x x 100% 

Entropy  
          

0% 

Kurtosis  
     

x x 
   

20% 

SNR  
 

x 
   

x x 
   

30% 

RelPower  
      

x 
   

10% 

Skewness  
      

x 
   

10% 

ZR 
      

x 
   

10% 

Amplitude  
          

0% 

Width  
     

x x 
   

20% 

TroughDepth  x x x x x x x x x x 100% 

MedianPulse  
 

x x x x x x 
 

x x 80% 

MedianPulsenoZ  
          

0% 

MeanPulse_noZ  
          

0% 

StdPulse_noZ  x 
 

x x x x x x x x 90% 

SNR_Moody  x x x x 
 

x x x x x 90% 

Npeaks  x x x x x x x x x x 100% 

ZDR x x x x x x x x x x 100% 

                        

Table B.3 Results from neighborhood component analysis for the Type 1 High-quality classifier 

(HQ1) applied ten times 

Repetition 1 2 3 4 5 6 7 8 9 10   

Peak2peakACC  x 
 

x x x x x x x x 90% 

MeanACC  
          

0% 

SigSim x x x x x x x x x x 100% 

Entropy  
          

0% 

Kurtosis  x 
 

x x x x x x x x 90% 

SNR  x 
 

x x x 
 

x 
 

x 
 

60% 

RelPower  x x x x x x x x x x 100% 

Skewness  x x x x x x x x x x 100% 

ZR 
          

0% 

Amplitude  
          

0% 

Width  
          

0% 

TroughDepth  x 
 

x x x 
     

40% 
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MedianPulse  x 
 

x x x x x x x x 90% 

MedianPulsenoZ  
          

0% 

MeanPulse_noZ  
          

0% 

StdPulse_noZ  x x x x x x x x x x 100% 

SNR_Moody  
  

x x x x x 
 

x x 70% 

Npeaks  x x x x x x x x x x 100% 

ZDR x x x x x x x x x x 100% 

                        

 

 

Table B.4 Results from neighborhood component analysis for the Type 2 High-quality classifier 

(HQ2) applied ten times 

Repetition 1 2 3 4 5 6 7 8 9 10   

Peak2peakACC   x     x    20% 

MeanACC   x x   x x  x  50% 

SigSim  x    x x  x  40% 

Entropy  x x x x x x x x x x 100% 

Kurtosis  x x x x x x x x x  90% 

SNR   x     x  x  30% 

RelPower  x x x x x x x x x x 100% 

Skewness  x x x x x x x x x x 100% 

ZR  x     x    20% 

Amplitude   x     x  x  30% 

Width   x     x  x  30% 

TroughDepth            0% 

MedianPulse  x x x x x x x x x  90% 

MedianPulsenoZ   x     x  x  30% 

MeanPulse_noZ   x         10% 

StdPulse_noZ  x x x x x x x x x x 100% 

SNR_Moody  x x x x x x x x x x 100% 

Npeaks  x x x x x x x x x x 100% 

ZDR x x x x x x x x x x 100% 

    
  

 
 

    

  

 

 

 

 
 

            



 

202 

 

Table B.5 Hyperparameters for the Basic-quality classifiers 

Algorithms Hyperparameters All features SQIs selection 

Tree 

Maximum number of splits 39 38 

Split criterion 
Gini's diversity 

index 

Gini's diversity index 

Naïve Bayes (NB) 
Distribution names Kernel Kernel 

Kernel type Gaussian Gaussian 

Support Vector Machine (SVM) 

Kernel function Quadratic Gaussian 

Kernel scale 1 27.494 

Box constraints 0.025078 119.112 

Standardize data True False 

K-nearest neighborhood (KNN) 

Number of neighbors 10 5 

Distance metrics Correlation Chebyshev 

Distance weight Inverse Squared iinverse 

Standardize data True False 

Ensemble 

Ensemble method GentleBoost Bag 

Maximum number of splits 21 1025 

Number of learners 400 285 

 Learning rate 0.0093026 - 

Neural Network 

Number of fully connected 

layers 2 1 

Activation function Sigmoid Tanh 

Regularization strength 1.18E-06 5.45E-05 

Standardize data No No 

1st layer size 5 3 

2nd layer size 204 - 

3rd layer size - - 

Elgendi 2016 (SVM) 

Kernel function Gaussian 

Kernel scale 0.48469 

Box constraints 0.015755 

Standardize data True 
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Table B.6 Hyperparameters for the Type 1 High-quality classifiers 

Algorithms Hyperparameters All features SQIs selection 

Tree 

Maximum number of splits 39 38 

Split criterion 
Gini’s diversity 

index 

Gini’s diversity 

index 

Naïve Bayes (NB) 
Distribution names Kernel Kernel 

Kernel type Gaussian Gaussian 

Support Vector Machine 

(SVM) 

Kernel function Quadratic Gaussian 

Kernel scale 1 27.494 

Box constraints 0.025078 119.112 

Standardize data True False 

K-nearest neighborhood 

(KNN) 

Number of neighbors 10 5 

Distance metrics Correlation Chebyshev 

Distance weight Inverse Squared iinverse 

Standardize data True False 

Ensemble 

Ensemble method GentleBoost Bag 

Maximum number of splits 21 1025 

Number of learners 400 285 

 Learning rate 0.0093026 - 

Neural Network 

Number of fully connected 

layers 2 1 

Activation function Sigmoid Tanh 

Regularization strength 1.18E-06 5.45E-05 

Standardize data No No 

1st layer size 5 3 

2nd layer size 204 - 

3rd layer size - - 

Elgendi 2016 (SVM) 

Kernel function Gaussian 

Kernel scale 0.48469 

Box constraints 0.015755 

Standardize data True 
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Table B.7 Hyperparameters for the Type 2 High-quality classifiers 

Algorithms Hyperparameters All features SQIs selection 

Tree 

Maximum number of splits 69 53 

Split criterion 
Gini's diversity 

index 

Gini's diversity index 

Naïve Bayes (NB) 
Distribution names Gaussian Gaussian 

Kernel type Epanechnikov Triangle 

Support Vector Machine 

(SVM) 

Kernel function Linear Quadratic 

Kernel scale 1 1 

Box constraints 0.8367 55.859 

Standardize data False False 

K-nearest neighborhood 

(KNN) 

Number of neighbors 3 39 

Distance metrics City block Chebyshev 

Distance weight Squared inverse Squared inverse 

Standardize data False False 

Ensemble 

Ensemble method GentleBoost Bag 

Maximum number of splits 494 223 

Number of learners 116 480 

 Learning rate 0.44184 - 

Neural Network 

Number of fully connected 

layers 3 1 

Activation function Tanh Sigmoid 

Regularization strength 4.02E-06 2.81E-09 

Standardize data False False 

1st layer size 2 4 

2nd layer size 1 - 

3rd layer size 175 - 

Elgendi 2016 (SVM) 

Kernel function Quadratic 

Kernel scale 1 

Box constraints 0.0017795 

Standardize data False 

 

  

 



 

205 

 

APPENDIX C 

C.1 Look of Life project 

Look of Life is a project designed by Fondazione ANT and whose aim is to evaluate the 

effects of Virtual Reality (VR) as a non-pharmacological intervention to improve cancer-

related symptomatology (e.g., pain, anxiety, depression). 

C.2 Experimental protocol 

Cancer patients assisted by Fondazione ANT who accepted to participate in this study are 

provided with a VR headset to be freely used at home for four days. Questionnaires and 

scales are administered to patients to evaluate the effects of VR:  

• At the beginning (T0) and at the end (T1) of the observational period, the Hospital 

Anxiety and Depression Scale (HADS) and the Brief Pain Inventory (BPI) have 

been administered 

• Before and after each VR session, the patient has to fill the Edmonton Symptoms 

Assessment Scale (ESAS), digitally inserted within the VR headset 

Patients are also asked to wear the Empatica E4 wristband to collect physiological signals 

that can be used to evaluate the effects of the VR. 

Figure B.1 gives a visual representation of the experimental protocol.  
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Figure C.1 Look of Life experimental protocol 

C.3 Socio-demographic, clinical data, and questionnaires,  

The gathered socio-demographic and clinical data are the following:  

• Sex 

• Civil status 

• Cohabitation 

• Occupation 

• Education 

• Confidence with technology 

• Cancer diagnosis 

• Karnofsky Performance Score 

• Extension of pathology 

• Therapies 

In the following a detailed description of the questionnaires used in this study: 

• Hospital Anxiety and Depression Scale (HADS): it is a simple and brief scale 

consisting of 14 items exploring both anxiety and depression symptoms. The main 

characteristic of the scale is that it excludes the somatic symptomatology from the 

evaluation. HADS allows to detect three different levels of anxiety and 

depression, separately: normal, borderline, abnormal. 

• Brief Pain Inventory (BPI): it is an easy-to-use questionnaire assessing the 

intensity of pain, the interference of pain with the patient’s life, pain relief, pain 

quality, and patient perception of the cause of pain. 
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•  Edmonton Symptom Assessment Scale: it is a reliable multi-item instrument 

developed to rate the intensity of nine common symptoms experienced by cancer 

patients (pain, tiredness, nausea, depression, anxiety, drowsiness, appetite, well-

being, and shortness of breath. 
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APPENDIX D  

Table D.1 Results from Repeated pinpricks test - Healthy controls 

  
Pre-tets 

1st-5th 

rep 

5th-

10th rep 

Post-

test 
p-value 

  

mean 

(std) 

mean 

(std) 

mean 

(std) 

mean 

(std) 

Pre-

test - 

1st-

5th 

rep 

Pre-

test - 

5th-

10th 

rep 

Pre-test 

– Post-

test 

1st-5th rep - 

5th-10th 

rep 

1st-5th 

rep – 

Post-test 

5th-10th 

rep – Post-

test 

meanIBI [ms] 
807.89 

(125.40) 

841.93 

(122.36) 

883.35 

(117.97) 

826.21 

(132.24) 
0.208 0.018 0.934 0.303 0.008 0.001 

SDNN [ms] 
39.85 

(18.27) 

38.40 

(17.89) 

45.83 

(17.53) 

53.34 

(30.96) 
0.890 0.599 0.135 0.151 0.135 0.639 

RMSSD [ms] 
50.68 

(29.20) 

48.30 

(27.68) 

58.30 

(26.97) 

63.61 

(40.55) 
0.934 0.277 0.389 0.169 0.083 0.720 

SD1 [ms] 
32.41 

(20.05) 

33.01 

(19.82) 

40.07 

(19.19) 

39.56 

(27.85) 
0.639 0.229 0.524 0.169 0.303 0.934 

SD2 [ms] 
30.39 

(16.00) 

33.88 

(18.40) 

40.09 

(18.40) 

40.61 

(26.79) 
0.720 0.135 0.151 0.252 0.489 0.847 

PulseAmpl 

[a.u.] 

3.10 

 (0.30) 

3.12 

(0.35) 

3.21 

(0.32) 

3.20 

(0.38) 
0.762 0.489 0.208 0.524 0.252 0.847 

A1 [a.u.*s] 
71.75 

(30.40) 

67.70 

(23.72) 

64.56 

(17.49) 

81.98 

(68.27) 
0.229 0.679 1.000 0.978 0.720 0.720 

A2 [a.u.*s] 
256.08 

(39.74) 

261.83 

(39.21) 

270.90 

(37.33) 

259.31 

(55.60) 
0.421 0.252 0.303 0.121 0.599 0.389 

A [a.u.*s] 
327.82 

(60.93) 

329.52 

(41.91) 

225.45 

(41.20) 

341.29 

(55.08) 
0.561 0.489 0.489 0.639 0.599 0.599 

T1 [ms] 
158.31 

(46.45) 

151.87 

(48.27) 

145.04 

(27.80) 

168.57 

(95.40) 
0.498 0.296 0.715 0.498 1.000 0.679 

T2 [ms] 
667.04 

(104.71) 

686.57 

(106.65) 

706.39 

(101.79) 

646.90 

(146.47) 
0.720 0.135 0.815 0.421 0.035 0.003 

meanEDA 

[n.u.] 

0.79  

(0.58) 

1.19 

(0.59) 

1.34 

(0.52) 

1.39 

(0.62) 
0.001 0.008 0.010 0.303 0.489 0.599 

stdEDA [n.u.] 
0.15  

(0.15) 

0.16 

(0.11) 

0.11 

(0.06) 

0.10 

(0.08) 
0.762 0.679 0.277 0.135 0.015 0.389 
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SIE [ ] 
0.70  

(0.39) 

0.69 

(0.44) 

0.75 

(0.30) 

0.74 

(0.35) 
0.804 0.934 0.847 0.761 0.847 0.978 

meantonic 

[n.u.] 

0.68  

(0.63) 

1.05 

(0.57) 

1.19 

(0.52) 

1.30 

(0.66) 
0.002 0.005 0.010 0.421 0.303 0.252 

stdtonic [n.u.] 
0.13  

(0.14) 

0.16 

(0.11) 

0.10 

(0.07) 

0.08 

(0.07) 
0.489 0.804 0.454 0.095 0.003 0.073 

meanampEDR 

[n.u.] 

0.12  

(0.25) 

0.18 

(0.23) 

0.17 

(0.29) 

0.08 

(0.14) 
0.080 0.330 0.735 1.000 0.110 0.268 

stdampEDR 

[n.u.] 

0.02  

(0.05) 

0.03 

(0.06) 

0.06 

(0.10) 

0.01 

(0.02) 
0.492 0.123 0.461 0.232 0.160 0.014 

freqEDR 

[#peaks/min] 

16.80 

(6.09) 

14.18 

(6.45) 

14.81 

(5.98) 

16.80 

(7.59) 
0.352 0.421 1.000 0.761 0.454 0.551 

meanRR 
23.04 

(4.25) 

18.98 

(4.13) 

19.14 

(3.80) 

18.86 

(2.77) 
0.054 0.193 0.008 0.787 1.000 1.000 

 

Table D.2 Results from Repeated pinpricks test - cLBP patients 

  

Pre-

tets 

1st-5th 

rep 

5th-10th 

rep 

Post-

test 
p-value 

  

mean 

(std) 

mean 

(std) 

mean 

(std) 

mean 

(std) 

Pre-test 

- 1st-5th 

rep 

Pre-

test - 

5th-

10th 

rep 

Pre-

test – 

Post-

test 

1st-5th rep 

- 5th-10th 

rep 

1st-5th 

rep – 

Post-test 

5th-10th 

rep – Post-

test 

meanIBI 

[ms] 

736.68 

(114.50) 

696.85 

(105.38) 

695.07 

(116.07) 

705.71 

(139.08) 
0.469 0.297 0.688 0.578 0.688 0.813 

SDNN [ms] 

44.14 

(25.50) 

33.84 

(34.19) 

33.94 

(33.18) 

22.70 

(20.03) 
0.375 0.375 0.031 0.578 0.375 0.375 

RMSSD 

[ms] 

59.21 

(31.07) 

41.00 

(38.36) 

35.06 

(23.40) 

26.69 

(18.04) 
0.375 0.109 0.031 0.688 0.219 0.297 

SD1 [ms] 

32.18 

(24.82) 

28.69 

(26.85) 

22.91 

(14.67) 

17.22 

(11.41) 
1.000 0.219 0.047 0.688 0.219 0.297 

SD2 [ms] 

29.52 

(27.68) 

33.89 

(38.79) 

35.02 

(40.05) 

18.05 

(22.20) 
0.938 0.813 0.156 0.578 0.219 0.219 

PulseAmpl 

[a.u.] 

3.32 

(0.20) 

3.21 

(0.33) 

3.24  

(0.29) 

3.25 

(0.26) 
0.297 0.297 0.375 1.000 0.578 0.469 

A1 [a.u.*s] 

70.63 

(25.96) 

55.90 

(9.53) 

55.85 

(5.61) 

67.06 

(23.94) 
0.109 0.469 0.688 0.938 0.297 0.578 

A2 [a.u.*s] 

206.00 

(63.57) 

181.81 

(41.17) 

180.24 

(43.95) 

176.80 

(61.10) 
0.109 0.078 0.219 1.000 0.375 0.297 

A [a.u.*s] 

276.64 

(65.19) 

237.71 

(42.30) 

236.09 

(46.28) 

243.86 

(60.79) 
0.047 0.031 0.219 1.000 0.813 0.813 

T1 [ms] 

180.40 

(73.95) 

137.99 

(20.50) 

149.14 

(28.34) 

171.05 

(61.56) 
0.109 0.688 0.813 0.156 0.297 0.813 

T2 [ms] 

567.84 

(122.49) 

560.06 

(99.24) 

545.67 

(98.77) 

548.06 

(106.24) 
0.938 0.219 0.469 0.219 0.219 0.813 

meanEDA 

[n.u.] 

0.34 

(1.16) 

0.56 

(1.48) 

0.49  

(1.35) 

0.33 

(1.14) 
1.000 1.000 0.688 0.688 0.375 0.219 
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stdEDA 

[n.u.] 

0.03 

(0.06) 

0.06 

(0.13) 

0.08  

(0.15) 

0.04 

(0.05) 
0.297 0.156 0.688 0.375 0.578 0.469 

SIE [ ] 

0.89 

(0.13) 

0.99 

(0.06) 

0.64  

(0.40) 

0.62 

(0.38) 
0.156 0.219 0.297 0.078 0.016 0.813 

meantonic 

[n.u.] 

0.32 

(1.14) 

0.53 

(1.43) 

0.49  

(1.34) 

0.33 

(1.14) 
1.000 0.938 0.813 0.688 0.375 0.219 

stdtonic 

[n.u.] 

0.04 

(0.08) 

0.07 

(0.15) 

0.07  

(0.14) 

0.04 

(0.05) 
0.578 0.156 0.688 0.938 0.688 0.469 

meanampED

R [n.u.] 

0.02 

(0.06) 

0.04 

(0.08) 

0.003 

(0.01) 

0.003 

(0.0.01) 
0.250 1.000 1.000 0.250 0.375 1.000 

stdampEDR 

[n.u.] 

0.02 

(0.05) 

0.02 

(0.05) 

0.001 

(0.004) 

0.005 

(0.008) 
1.000 1.000 1.000 1.000 1.000 1.000 

freqEDR 

[#peaks/min] 

15.43 

(9.07) 

10.20 

(3.81) 

8.99  

(2.73) 

13.71 

(4.54) 
0.016 0.031 1.000 0.203 0.016 0.031 

meanRR 

21.94 

(9.32) 

20.27 

(4.56) 

22.56 

(1.53) 

25.11 

(2.37) 
1.000 1.000 1.000 0.625 0.031 0.187 

 

 

 

 

 



 

 

Table D.3 Results from the Inflated cuff - pressure pain test – Healthy Control subjects 

 Pre-test 30 sec 60 sec 90 sec 120 sec After p-value 

 
mean 

(std) 

mean 

(std) 

mean 

(std) 

mean 

(std) 

mean 

(std) 

mean 

(std) 

Pre-

test – 

30 sec 

Pre-

test – 

60 sec 

Pre-

test – 

90 sec 

Pre-

test – 

120 

sec 

Pre-

test – 

Post-

test 

30 

sec – 

60 

sec 

30 

sec – 

90 

sec 

30 sec - 

120 sec 

30 sec - 

Post-test 

60 

sec – 

90 

sec 

60 

sec – 

120 

sec 

60 sec 

- Post-

test 

90 

sec – 

120 

sec 

90 sec 

- 

Post-

test 

120 

sec – 

Post-

test 

meanIBI [ms] 
860.94 

(93.03) 

855.23 

(117.66) 

857.85 

(118.05) 

869.01 

(146.63) 

869.62 

(126.03) 

837.87 

(112.70) 
0.626 0.903 0.952 0.542 0.058 0.326 0.358 0.217 0.463 0.326 0.173 0.241 0.808 0.091 0.025 

SDNN [ms] 
54.78 

(18.08) 

58.28 

(15.36) 

53.18 

(19.57) 

58.11 

(19.42) 

50.44 

(15.07) 

52.75 

(20.87) 
0.217 0.358 0.463 0.326 0.358 0.091 1.000 0.091 0.217 0.241 0.626 1.000 0.058 0.135 0.502 

RMSSD [ms] 
66.38 

(27.74) 

65.23 

(25.98) 

62.11 

(32.98) 

67.85 

(38.61) 

59.98 

(33.76) 

58.79 

(31.83) 
0.626 0.296 1.000 0.194 0.217 0.626 0.761 0.326 0.426 0.326 0.903 0.583 0.217 0.326 1.000 

SD1 [ms] 
46.88 

(19.61) 

46.06 

(18.37) 

43.85 

(23.35) 

47.94 

(27.28) 

42.39 

(23.87) 

40.89 

(22.14) 
0.626 0.296 1.000 0.194 0.194 0.626 0.761 0.326 0.358 0.326 0.903 0.502 0.241 0.326 0.952 

SD2 [ms] 
58.78 

(19.19) 

65.10 

(16.57) 

57.76 

(19.47) 

63.01 

(17.86) 

53.50 

(13.40) 

54.43 

(18.48) 
0.173 0.761 0.358 0.268 0.326 0.119 0.583 0.035 0.091 0.217 0.358 0.715 0.042 0.135 0.670 

PulseAmpl 

[a.u.] 

3.21 

(0.25) 

3.28 

(0.22) 

3.13 

(0.23) 

3.16 

(0.20) 

3.17 

(0.23) 

3.19 

(0.25) 
0.104 1.000 0.042 0.104 0.003 0.296 1.000 0.855 0.003 0.173 0.078 0.005 0.583 0.000 0.001 

A1 [a.u.*s] 
72.07 

(22.38) 

65.91 

(13.71) 

73.76 

(16.44) 

77.50 

(25.84) 

75.97 

(30.37) 

70.91 

(22.11) 
0.020 0.011 0.194 0.296 0.626 0.001 0.001 0.001 0.049 0.583 0.808 0.358 0.542 0.463 0.502 

A2 [a.u.*s] 
268.01 

(42.71) 

273.30 

(47.53) 

270.56 

(40.79) 

271.95 

(53.03) 

269.12 

(55.84) 

254.90 

(42.86) 
0.268 1.000 0.296 0.326 0.952 0.035 0.007 0.009 0.049 0.153 0.583 0.903 0.903 0.358 0.426 

A [a.u.*s] 
340.07 

(47.85) 

339.21 

(44.08) 

344.32 

(46.98) 

349.45 

(63.51) 

345.09 

(58.97) 

325.81 

(47.71) 
0.583 0.542 0.761 0.808 0.030 0.952 0.952 0.626 0.058 0.903 0.808 0.025 0.426 0.058 0.058 

T1 [ms] 
160.74 

(37.74) 

151.83 

(28.71) 

164.93 

(28.69) 

170.71 

(41.79) 

167.40 

(46.81) 

163.15 

(38.55) 
0.952 0.583 0.426 0.268 0.042 0.391 0.391 0.715 0.194 0.903 0.808 0.091 0.358 0.020 0.007 

T2 [ms] 
680.83 

(73.95) 

690.01 

(104.40) 

681.21 

(95.32) 

690.52 

(127.78) 

702.43 

(122.13) 

665.65 

(101.29) 
0.017 0.903 0.194 0.268 0.761 0.002 0.001 0.002 0.017 0.194 0.542 0.463 0.463 0.296 0.583 

meanEDA 

[n.u.] 

-0.02 

(0.49) 

0.76 

(0.78) 

0.34  

(0.59) 

0.14  

(0.66) 

-0.01 

(0.63) 

-0.08 

(0.61) 
0.808 1.000 1.000 0.463 0.296 0.735 1.000 0.715 0.173 0.808 0.241 0.391 0.358 0.241 0.042 

stdEDA [n.u.] 
0.07 

(0.12) 

0.33 

(0.24) 

0.13  

(0.11) 

0.11  

(0.12) 

0.09  

(0.01) 

0.08  

(0.09) 
0.000 0.058 0.670 0.808 0.583 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.002 

2
1
2

 



 

 

 

SIE [ ] 
0.50 

(0.38) 

0.88  

(0.12) 

0.66  

(0.33) 

0.68  

(0.38) 

0.62  

(0.34) 

0.86  

(0.18) 
0.000 0.009 0.104 0.194 0.268 0.000 0.000 0.000 0.000 0.135 0.013 0.001 0.626 0.296 0.241 

meantonic [n.u.] 
-0.05 

(0.52) 

0.64  

(0.68) 

0.30  

(0.57) 

0.11 

(0.63) 

-0.04 

(0.61) 

-0.10 

(0.60) 
0.000 0.042 0.626 0.808 0.626 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.007 

stdtonic [n.u.] 
0.05 

(0.08) 

0.30  

(0.23) 

0.11  

(0.09) 

0.09  

(0.08) 

0.08  

(0.05) 

0.06  

(0.05) 
0.000 0.001 0.078 0.104 0.104 0.000 0.000 0.000 0.000 0.296 0.017 0.001 0.502 0.173 0.217 

meanampEDR 

[n.u.] 

0.05 

(0.18) 

0.19  

(0.34) 

0.08  

(0.16) 

0.06  

(0.16) 

0.05  

(0.12) 

0.04  

(0.07) 
0.000 0.064 0.461 0.945 0.496 0.003 0.001 0.001 0.000 0.557 0.037 0.064 0.578 0.734 0.820 

stdampEDR 

[n.u.] 

0.004 

(0.01) 

0.11  

(0.13) 

0.03  

(0.06) 

0.03  

(0.06) 

0.04 

(0.08) 

0.04  

(0.10) 
0.001 0.250 0.063 0.188 0.219 0.001 0.014 0.010 0.014 0.688 0.844 0.156 0.688 0.938 0.438 

freqEDR 

[#peaks/min] 

13.71 

(4.36) 

8.63  

(6.10) 

4.39  

(4.30) 

5.80  

(5.24) 

3.80  

(4.41) 

6.26  

(3.74) 
0.007 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.119 0.715 0.670 0.068 0.358 0.761 0.009 

meanRR 
24.45 

(4.95) 

17.59 

(3.65) 

17.74 

(2.68) 

16.93 

(5.16) 

17.78 

(2.82) 

18.91 

(2.66) 
0.125 0.125 0.250 0.125 0.125 0.670 0.626 0.670 0.104 0.715 0.855 0.104 1.000 0.241 0.078 
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Table D.4 Results from the Inflated cuff - pressure pain test – cLBP patients 

  Pre-test 30 sec 60 sec 90 sec 120 sec Post-test p-value 

  

mean (std) mean (std) 
mean 

(std) 
mean (std) mean (std) 

mean 

(std) 

Pre-

test – 

30 sec 

Pre-

test – 

60 sec 

Pre-

test – 

90 sec 

Pre-

test – 

120 

sec 

Pre-

test – 

Post-

test 

30 

sec – 

60 

sec 

30 

sec – 

90 

sec 

30 sec - 

120 sec 

30 sec – 

Post-test 

60 

sec – 

90 

sec 

60 

sec – 

120 

sec 

60 sec 

- Post-

test 

90 

sec – 

120 

sec 

90 sec 

- 

Post-

test 

120 

sec – 

Post-

test 

meanIBI [ms] 
698.78 

(129.34) 

722.21 

(154.87) 

711.28 

(140.26) 

699.52 

(127.60) 

698.19 

(122.31) 

721.97 

(93.38) 
0.11 0.69 1.00 0.578 0.813 0.219 0.109 0.156 0.813 0.219 0.297 0.813 0.813 1.000 0.688 

SDNN [ms] 
36.65 

(31.59) 

35.42 

(29.62) 

35.31 

(27.74) 

34.95 

(29.46) 

28.57 

(23.73) 

38.64 

(28.94) 
0.94 1.00 0.47 0.031 0.938 0.688 0.938 0.031 0.813 0.813 0.016 0.688 0.297 0.688 0.469 

RMSSD [ms] 
43.07 

(27.86) 

42.44 

(36.78) 

43.10 

(35.19) 

42.18 

(36.86) 

32.64 

(28.24) 

52.03 

(36.68) 
0.81 0.94 0.30 0.109 0.938 1.000 0.688 0.219 0.688 0.578 0.109 0.469 0.375 0.219 0.078 

SD1 [ms] 
30.45 

(26.77) 

29.97 

(25.95) 

30.46 

(24.88) 

29.82 

(26.07) 

23.06 

(19.96) 

36.56 

(25.68) 
0.81 0.94 0.30 0.109 0.938 1.000 0.813 0.219 0.688 0.578 0.109 0.469 0.375 0.219 0.078 

SD2 [ms] 
41.00 

(35.89) 

38.65 

(31.63) 

37.01 

(30.10) 

37.81 

(31.14) 

32.32 

(27.04) 

34.81 

(33.24) 
0.94 0.58 0.58 0.156 0.156 0.938 0.813 0.016 0.578 0.375 0.016 0.469 0.219 0.813 0.813 

PulseAmpl 

[a.u.] 

3.28  

(0.25) 

3.27  

(0.24) 

3.25  

(0.24) 

3.24  

(0.23) 

3.25  

(0.21) 

3.24 

(0.29) 
0.02 0.11 0.30 0.219 0.031 0.078 0.156 0.078 0.031 0.688 0.813 0.031 0.375 0.031 0.031 

A1 [a.u.*s] 
63.93 

(25.84) 

59.11 

(18.17) 

67.43 

(25.23) 

63.94 

(18.67) 

61.10 

(17.13) 

72.09 

(24.79) 
0.47 0.37 0.30 0.375 0.375 0.578 0.375 0.469 0.375 0.375 0.813 0.688 0.688 0.938 0.938 

A2 [a.u.*s] 
177.13 

(41.33) 

189.23 

(56.07) 

195.57 

(51.63) 

191.77 

(53.09) 

186.17 

(45.26) 

181.51 

(39.83) 
0.22 0.81 0.69 0.813 0.688 0.297 0.016 0.219 0.078 1.000 1.000 0.578 0.578 0.469 0.297 

A [a.u.*s] 
241.06 

(58.72) 

248.35 

(62.62) 

263.00 

(61.24) 

255.71 

(60.73) 

247.28 

(52.85) 

253.60 

(43.20) 
0.16 0.08 0.22 0.156 0.375 0.219 0.938 0.813 0.688 0.297 0.016 0.219 0.219 0.375 0.578 

T1 [ms] 
157.16 

(45.89) 

146.05 

(33.26) 

157.54 

(46.51) 

149.51 

(33.19) 

146.14 

(27.58) 

181.51 

(73.22) 
0.69 0.16 0.22 0.375 0.469 0.219 0.813 0.813 0.578 0.078 0.031 0.578 0.156 0.688 0.938 

T2 [ms] 
549.30 

(99.78) 

575.95 

(128.86) 

555.51 

(116.53) 

554.55 

(113.27) 

560.69 

(109.75) 

546.71 

(94.34) 
0.11 0.47 0.81 0.219 0.688 0.938 0.813 0.938 0.219 0.688 1.000 0.297 0.469 0.156 0.156 

meanEDA 

[n.u.]  

0.03  

(0.54) 

0.56  

(0.90) 

0.17  

(0.69) 

0.07  

(0.92) 

-0.10 

(1.03) 

-0.27 

(0.94) 
0.11 0.37 0.69 0.109 0.938 0.688 0.078 0.375 0.375 0.938 0.813 0.688 0.688 0.813 0.375 

2
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stdEDA [n.u.] 
0.11  

(0.21) 

0.33  

(0.33) 

0.12  

(0.07) 

0.21  

(0.36) 
0.09 (0.0'9) 

0.05 

(0.04) 
0.109 0.578 0.813 0.469 0.219 0.031 0.219 0.156 0.078 0.297 0.297 0.156 0.047 0.016 0.047 

SIE [ ] 
0.59  

(0.44) 

0.74  

(0.27) 

0.57  

(0.37) 

0.48  

(0.40) 

0.43  

(0.38) 

0.82 

(0.36) 
0.297 0.469 0.469 0.813 0.938 0.047 0.297 0.109 0.016 0.297 0.375 0.016 0.078 0.047 0.156 

meantonic [n.u.] 
-0.78 

(2.36) 

0.51 

(80.90) 

0.16  

(0.68) 

-0.01 

(0.76) 

-0.10 

(1.03) 

.0.29 

(0.96) 
0.688 0.938 0.688 0.156 0.688 0.469 0.297 0.109 0.688 0.031 0.375 0.219 1.000 0.297 0.047 

stdtonic [n.u.] 
0.30  

(0.71) 
0.36 (0.30) 

0.12  

(0.07) 

0.20 

(0.33) 

0.09  

(0.09) 

0.07 

(0.06) 
0.078 0.219 0.578 0.938 0.938 0.031 0.156 0.156 0.109 0.297 0.297 0.156 0.297 0.078 0.047 

meanampEDR 

[n.u.] 
1.19 (3.13) 

0.10 

(0.015) 

0.02  

(0.04) 

0.21  

(0.53) 

0.001 

(0.002) 

0.06 

(0.10) 
0.469 0.469 0.578 0.688 0.813 0.016 0.297 0.078 0.016 0.297 0.375 0.031 0.078 0.578 0.813 

stdampEDR 

[n.u.] 

0  

(0) 

0.07  

(0.10) 

0.01  

(0.02) 

0.20  

(0.53) 

0  

(0) 

0.04 

(0.07) 
0.813 0.875 0.750 0.500 0.875 0.438 0.813 0.250 0.625 0.500 0.250 0.625 0.500 0.875 0.250 

freqEDR 

[#peaks/min] 

12  

(0) 

5.43  

(4.95) 

3.71  

(4.37) 

3.64  

(3.74) 

1.96  

(0.20) 

6.59 

83.23) 
0.250 1.000 0.500 1.000 0.500 0.375 0.813 0.250 0.625 0.500 1.000 0.500 0.500 1.000 0.500 

meanRR 
23.44 

(4.76) 

18.90 

(4.46) 

18.39 

(5.37) 

17.73 

(4.28) 

18.93 

(4.35) 

20.59 

(4.62) 
0.750 1.000 0.250 0.750 0.750 0.469 0.297 0.469 0.844 0.813 0.375 0.313 0.297 0.063 0.063 
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APPENDIX E  

 

Table E.1 Glossary of physiological signals and computed parameters 

Physiological signal 

Physiological 

parameter 

acronym 

Explanation 

Unit 

of 

mea

sure 

Electrocardiogram 

(ECG) / 

Photoplethysmography 

(PPG) 

HR Heart Rate bpm 

SDNN Standard deviation of NN intervals ms 

SDAAN Standard deviation of the mean of NN intervals ms 

SDDNindex Mean of the standard deviation of NN intervals [ ] 

rMSSD Root mean square of successive differences ms 

pNN50 
Percentage of successive NN intervals that differ 

from one another by > 50 milliseconds 
% 

Total power Total power ms2 

LF Low Frequency   ms2 

HF  High Frequency ms2 

LF/HF Low frequency/High frequency ratio [ ] 

Log LF/HF  
Logarithm of Low Frequency/High Frequency 

ratio  
[ ] 

Deep breathing 

ratio 

Ratio of the longest RR interval over the shortest 

RR interval during deep breathing test 
[ ] 

Valsalva ratio 

Ratio of the longest RR interval after Valsalva 

manoeuvre over the shortest RR interval during 

the manoeuvre 

[ ] 
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Photoplethysmography 

(PPG) 
SpO2 

Amount of oxygen-carrying hemoglobin in the 

blood relative to the amount of non-oxygen-

carrying hemoglobin 

% 

Electrochemical Skin 

Conductance (ESC) 

Hands ESC Hands Electrochemical Skin Conductance μS 

Feet ESC Feet Electrochemical Skin Conductance μS 

Blood Pressure (BP) 

SysBP Systolic Blood Pressure 
mm

Hg 

DiaBP Diastolic Blood Pressure 
mm

Hg 

MAP Mean Arterial Pressure 
mm

Hg 

Respiration RR Respiration Rate 

breat

hs/m

in 
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Figure D.1 Graphical representation of the salient features of concurrent validity studies 
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Figure D.2 Graphical representation of the sensitivity to change studies 
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APPENDIX F 

Table F.1 Physiological signals recorded with Emaptica E4 wristband and related features 

Signal Analysis Acronym Description u.o.m 

PPG 

Heart Rate 

Variaibility 

Analysis 

HR Heart Rate [bpm] 

RMSSD Root Mean Squared of Successive Differences [ms] 

SDNN Standard Deviation of Normal Heartbeats [ms] 

pNN50 Percentage of successive heartbeats that differ more than 50 ms % 

LF Absolute power of the low frequency band [0.04-0.15] Hz 
[ms^2

] 

HF Absolute power of the high frequency band [0.15-0.4] Hz 
[ms^2

] 

LF/HF Ratio of LF to HF power [ ] 

SD1 Poincaré plot standard deviation perpendicular the line of identity [ms] 

SD2 Poincaré plot standard deviation along the line of identity [ms] 

SD1/SD2 Ratio of SD1 to SD2 [ ] 

ApEn Approximate Entropy [ ] 

Basic 

Morphological 

analysis 

Pulse 

Amplitude 
Systolic peak's amplitude [a.u.] 

A1 
Area under the waveform between systolic foot and successive 

systolic peak 
[a.u.] 

A2 
Area under the waveform between systolic peak and successive 

systolic foot 
[a.u.] 

A Area under the waveforme [a.u.] 

T1 Time between systolic peak and successive systolic foot [ms] 

T2 Time between systolic foot and successive systolic peak [ms] 

IPA Inflection Point Area, rapporto tra A2 e A1 [ ] 

deltaT Intervallo di tempo fra systolic peak e il successivo diastolic peak [ms] 
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Higher 

Morphological 

analysis 

AI 
Augmentation Index, rapporto tra altezza diastolic peak e systolic 

peak 
% 

EDA 

Full EDA 

meanEDA Mean of EDA signal [n.u.] 

stdEDA Standard deviation of EDA signal [n.u.] 

minEDA Minimum of EDA signal [n.u.] 

maxEDA Maximum of EDA signal [n.u.] 

Fmax Maximum Frequency [n.u.] 

SlopeEDA Slope of EDA signal 
[n.u./s

] 

SIE Symbolic Information Entropy [ ] 

Electrodermal 

Level (EDL) - 

Tonic 

component 

meanEDL Mean EDA tonic component [n.u.] 

stdEDL Standard deviation of  EDA tonic component [n.u.] 

minEDL Minimum of EDA tonic component [n.u.] 

maxEDL Maximum of EDA tonic component [n.u.] 

slopeEDL Slope of EDA tonic component 
[n.u./s

] 

Electrodermal 

Response 

(EDR) - Phasic 

component 

meanampE

DR 
Mean amplitude of phasic component's peaks [n.u.] 

stdampEDR Standard deviation of amplitude of phasic component's peaks [n.u.] 

minampED

R 
Minimum of amplitude of phasic component's peaks [n.u.] 

maxampED

R 
maximum of amplitude of phasic component's peaks [n.u.] 

freqEDR Frequency of phasic component's peaks 
[#/mi

n] 

SKT   
meanTEMP Mean Temperature [°C] 

stdTEMP Standard deviation of Tempetrature [°C] 

ACC 

Vector 

Magnitude 

meanVM Mean of Vector Magnitude [g] 

stdVM Standard deviation of Vector Magnitude [g] 

Activity Index 
meanAI Mean Activity Index [ ] 

stdAI Standard Deviation of Activity Index [ ] 

 

Table F.2 Practical pipeline for PAINLESS clinical study 

Day 1: Enrollment and devices delivery 

 
The participant arrives to the hospital 

 
Place the E4 wristband on the non-dominant wrist (make sure the USB dock has been correctly removed 

 
Administer the questionnaires with smartphoneproject with the following order:  

  
CRF 1 - Recruitment 

  
CRF 2 - Sleep-wake questionnaire 



 

223 

 

   
Set reminders on smartphoneparticipant based on CRF 2 questionnaire's outcomes 

  
CRF 3 - Stratification questionnaire 

 
Ask the participant to fulfill the CRF 4 - Monitoring questionnaire to see if he/she has any problems 

 
Provide the participant with the smartphoneparticipant 

  

Set the appointment for Day 2, approx. one hour before the already scheduled neurorehabilitation 

session 

Day 2: Neurorehabilitation session 

 
The participant arrives to the hospital 

 
Pick up the E4 wristband 

  
Download data 

  
Put the device on charge 

 
Pick up the smartphoneparticipant 

  
Put the device on charge 

  
Reset the reminders 

Neurorehabilitation session (approx. 1 hour after participant arrival) 

 
Place the E4 wristband on the non-dominant wrist (make sure the USB dock has been correctly removed 

 

Administer the CRF 3 - Stratification questionnaire with smartphoneproject at the beginning of the 

neurorehabilitation session 

 
Neurorehabilitation session starts 

  
Administer the CRF 5 - Monitoring treatment questionnaire every 10 minutes 

  
Note down exercises done during the neurorehabilitation session 

 
Neurorehabilitation session ends 

 

Administer the CRF 4 - Stratification questionnaire with smartphoneprokect at the end of the 

neurorehabilitation session 

 
Provide the participant with smartphoneparticipant 

  

Set the appointment for Day 3, approx. after 24 hours from the beginning of the neurorehabilitation 

session 

Day 3: Exit from the study 

 
The participant arrives to the hospital 

 
Administer the CRF 3 - Stratification questionnaire with smartphoneproject 

 
Pick up the E4 wristband 

  
Download data 

  
Put the device on charge 

 
Pick up the smartphoneparticipant 

  
Put the device on charge 

  
Remove the reminders 

  Ask for opinions and advice from the participant 
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