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Introduction 

Landsat and Sentinel-2 missions offer a unique and continuously updated 

archive of multispectral images capturing Earth’s surface processes over time, 

ensuring global coverage and medium-to-high revisit time. On the one hand, 

Landsat mission, which has been capturing multispectral and thermal images 

from the 70s, represents a unique archive of information. On the other hand, the 

Copernicus Sentinel-2 mission, consisting of two satellites and collecting from 

June 2015 multispectral data with medium resolution, has been providing an 

unprecedented acquisition frequency.  

The open access policy of both the missions, together with their effort in 

producing easy to use products supported by cloud computing platforms, such 

as Google Earth Engine, played a key role in broadening the exploitation of 

moderate resolution multispectral data and triggering technological 

advancements. Traditional change detection techniques have been 

progressively replaced by the now possible analysis of dense time series of 

remotely sensed images, especially for environmental monitoring applications, 

such as vegetation analyses.  

Indeed, phenomena can be better identified when seen as sequence of 

different states over time, rather than considering few single states, helping 

deepen the knowledge of surface processes and changes; not only drastic 

changes but, more importantly, slight modification through time. This second 

case is particularly important when the purpose of the study is the monitoring 

of effects to land surface by climate drivers acting slowly. 
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This approach in vegetation monitoring related studies is well-

documented. Furthermore, vegetation indexes, such as NDVI, are often used for 

their simplicity in summarizing and highlighting the information contained in 

the original multispectral datasets. However, while the observations frequency 

is crucial in an efficient time series analysis, cloud coverage might highly affect 

passive sensors acquisition, resulting in gaps in information in the Time Series. 

For this reason, the integration and harmonization of different sensors play a 

crucial role to minimize these possible gaps. The harmonization can be based 

on statistics on the images themselves, but can also be assisted by ground 

measurements of surface reflectance, to ensure sufficient and comparable 

quality among the different instruments. 

Therefore, the present study addresses the issues related to the integration 

of different data sources for the analysis of long and dense time-series of 

multispectral images as well as their derived indexes. The possibility of using 

together Landsat and Sentinel-2 missions has been investigated through cross-

sensors comparisons, performed on a huge amount of data to ensure statistical 

significance. For this purpose, dedicated procedures have been coded and 

implemented in Google Earth Engine. 

Moreover, considering the ongoing Landsat and Sentinel-2 satellites, the 

analysis was supported with in situ spectroradiometer measurements, which 

can provide also an assessment of the recently launched Landsat-9 for a 

combined use. 

The research is presented as follows. 

Chapter 1 introduces the Landsat and Copernicus programs, their 

founding ideas and their programmatic development. The main characteristics 
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of satellites and sensors of Landsat-5, Landsat-7, Landsat-8, Landsat-9 and 

Sentinel-2 is given. 

In Chapter 2 are presented the products available for every mission, in 

particular differences in the generation of Bottom of Atmosphere (BOA) 

datasets are provided. 

Chapter 3 gives an overview on the novelties in the EO sector that led to 

the spread of time series analysis application using Landsat and Sentinel and 

presents the harmonization issues. 

In Chapter 4 is presented the study conducted to harmonize Landsat and 

Sentinel Missions (TM, ETM, OLI and MSI) derived popular vegetation indexes 

(NDVI, EVI, SAVI and NDMI) for environmental monitoring applications. An 

assessment of the computed calibration coefficients that can be used to 

minimize differences in the combined use is given.  

Finally, Chapter 5 provides a preliminary assessment of the Landsat-9 

mission for a combined use with Landsat-8 and Sentinel-2, based on cross-

sensor comparison of their common spectral bands. This analysis was 

supported by in situ measurements with a spectroradiometer. 
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Chapter 1 

1.Multispectral satellite missions 

The following chapter gives an overview of the two major international 

Earth Observation (EO) programs, Landsat and Copernicus. The programs’ 

objectives, foundational ideas and programmatic developments, and their 

multispectral missions specifications are presented hereinafter. The basic 

concept of multispectral remote sensing and digital image processing are taken 

for granted and here omitted for the sake of brevity, nevertheless, these notions 

can be found in (Camps-Valls et al., 2012; Elmoataz et al., 2008; Richards, 2022). 

1.1. Landsat program 

The Landsat program is a series of EO satellites equipped with 

multispectral instruments, launched by the United State (U.S.) which provide 

the longest continuous archive of the Earth’s surface (Teixeira Pinto et al., 2020). 

In the late 1960s, the U.S. government set up the framework for the 

longest-running and first medium-resolution Earth observation mission (Lauer 

et al., 1997). By that time, scientific and technological efforts were intensively 

involved in space exploration, to pursue greatest achievements such as the 
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human land on the Moon. In this context, the potential for space-based 

observation of the Earth was emerging and appeared promising as well as more 

and more possible from a technological point of view. Moreover, at that time 

there was a convergence of needs of the scientific community, private sector and 

state administration led to the establishment of the Landsat program, the first 

international Earth Observation program. Among the different driving forces, 

the most impelling included the need for better information about the Earth's 

features, the national security concerns and new business opportunities (Lauer 

et al., 1997). 

Firstly, the need to gather information about resources available on the 

globe to sustain the growing world population had already become clear. By 

that time the debate on sustainable development, sustainable management of 

renewable and not renewable resources was already open and felt to be vital 

(Simonett, 1969). It was recognized that only an improved understanding of the 

Earth’s resources, processes and their geographic distribution would allow to 

take conscious action for wiser resources management. In this context, 

capturing images of the Earth from space was identified as the technology that 

would make it possible to collect information on Land and Water, with a certain 

frequency, ensuring local to global coverage. 

Secondly, the opportunity to acquire images of portions of the Earth from 

cameras on board aircraft or satellites had already been experienced from the 

government for national security purposes during the Cold War, starting from 

the 1950s. Indeed, the successfully experience with reconnaissance systems, 

such as the aerial photographic mission U2  (Hammer and Ur, 2019) and the 

CORONA and ARGON  imagining satellites (Casana and Cothren, 2013; 

McDonald, 1995), which provided the US government with valuable 
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information since 1956,  has demonstrated the effectiveness of this technology 

for the security purpose. Hence, at that time the desire for new technological 

investments in the EO market for intelligence objectives. Moreover, private-

sector investors started to see a commercial opportunity in the satellite remote 

sensing potential to provide a new insight on the Earth resources, opening up 

the EO market to industries. 

In addition, international cooperation contributed to the launch of the 

Landsat programme: since that time there was the understanding that 

promoting of cooperation between national space agencies would lead to cost 

savings by sharing resources, facility and knowledge (The White House - 

National Science and Technology Council, 1996). 

Driven by these forces, the Landsat Program officially started in 1967 from 

a partnership between the National Aeronautics and Space Administration 

(NASA), accounting the satellite construction and their launches, and U.S. 

Geological Survey (USGS) which manages the archive and distribution of data. 
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Figure 1 Landsat satellites timeline. Credits: NASA's Scientific Visualization Studio. 

The first satellite of the Landsat family, the Landsat-1 (former Earth 

Resources Technology Satellite - ERTS-1), was launched in July 1972 starting a 

half-century legacy in data gathering and continuity (Kondratyev et al., 1971; 

Wulder et al., 2022). Indeed, the programmatic development of Landsat mission 

focuses on the continuity of the programme by providing high quality data 

without interruptions, thanks to a continuous turnover and update of satellites. 

The key parameter defining the Landsat missions and shared by all its satellites 

are the medium spatial resolution, the temporal and spectral coverage. The 

design of the missions was devoted to ensure global monitoring capacity, since 

the very beginning with Landsat-1. Figure 1 gives an overview on the timeline 

of the Landsat satellites showing their time-span operation from the launch of 

the first satellite, the Landsat-1 to the latest Landsat-9, providing an insight of 

these data availability.  Every mission has a repeat cycle of 16 days on every 

point on Earth, and every new Landsat satellite has been designed to create a 
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pair constellation with the previous one still operating, resulting in an 8-day 

revisit coverage.  

Despite the initial decade characterized by uncertainty (Waldrop, 1982), 

the program was able to keep improving itself and it has been devoted to meet 

the user needs, being a pioneer in many decisions about the program, for 

example in the data open access policy (Woodcock et al., 2008). The other 

Landsat key elements, the programmatic developments and the data products 

will be further discussed in Chapter 2. 

In the following sections a description of the Landsat-5 to the newest 

Landsat-9 missions and data characteristics is given. The details of the first 

satellites of the program are here omitted (Landsat-1 – Landsat-4) because their 

instruments do not meet the spatial (80m/px) and spectral characteristics of the 

sensors used in the cross-sensors comparison performed to harmonize different 

instruments that is presented in  Chapter 4 and 5 (Lauer et al., 1997). 

1.1.1. Landsat-5 

After its launch on the 1st March 1984, Landsat-5 was operated by USGS 

until January 2013. For more than 29 years it acquired over 2.5 million images 

of the Earth, exceeding its original three-year designed life. Being the longest 

running satellite made it earn a Guinness World Record: Landsat-5 represents 

the longest single satellite sensor archive of the Earth surface (Loveland and 

Dwyer, 2012; Roy et al., 2020). 

The satellite was launched at 705 km of nominal altitude into a sun-

synchronous polar orbit at with an inclination of 98.2 degrees. It completed 

every 99 minutes a circle around the Earth, resulting in a 14 orbit cycles in a day. 

The revisit time of Landsat-5 is 16 days, with a 9:45 a.m. mean sunlit equatorial 
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north to south crossing time. Despite the original plan, due to temporally sparse 

station keeping maneuvers, the satellite’s orbit changed during the almost 30 

years of life of the satellite, consequentially different overpass time up to 0.92 

hours were registered, resulting in changes in the solar geometry at the time of 

Landsat acquisition (Johnson and Hassett, 1984; Roy et al., 2020; Zhang and Roy, 

2016). 

The satellite is equipped with two different sensors: the Multi Spectral 

Scanner (MSS), which was the camera onboard the Landsat satellite since 

Landsat-1, and the innovative Thematic Mapper (TM).  

The Thematic Mapper sensor is a multispectral camera that captures the 

Earth surface spectral reflectance between 0.45 µm and 12.5 µm in seven 

different bands. In particular, Blue, Green, Red, NIR, SWIR-1 and SWIR-2 

spectral bands (bands 1-5 and 7) have an Instantaneous Field Of View (IFOV) of 

30m x 30m, and the thermal band (Band 7) is provided with 120m spatial 

resolution (IFOV of 120m x 120m) (Chander et al., 2007). In Table  characteristics 

of TM spectral bands can be found. TM sensor failed in November 2011. 

Band   Wavelength Spatial resolution 

Band 1 Blue 0.45-0.52 µm 30 m 

Band 2 Green 0.52-0.60 µm 30 m 

Band 3 Red 0.63-0.69 µm 30 m 

Band 4 NIR 0.76-0.90 µm 30 m 

Band 5 SWIR-1 1.55-1.75 µm 30 m 

Band 6 TIR 10.41-12.5 µm 120 m 

Band 7 SWIR-2 2.08-2.35 µm 30 m 

Table 1. Spectral bands characteristics of Landsat-5 TM 
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1.1.2. Landsat-7 

The next satellite in the series was supposed to be Landsat-6. It was 

designed and built to have a 15-meter panchromatic band and an Enhanced 

Thematic Mapper (ETM) sensor on board, the technological evolution of the L5 

TM. Unfortunately, Landsat-6 was lost after its launch in 1993, failing to reach 

its designated orbit (Lauer et al., 1997; National Oceanic and Atmospheric 

Administration (NOAA), 1995a, 1995b).  

Conversely, the Landsat-7 mission was launched on the 15th of April 1999 

and successfully reached its orbit at a nominal altitude of 705 km (Figure 2). The 

satellite overpasses the equator at 10:00 a.m. (+/- 15 minutes) from north to south 

on the descending orbital node. As the Landsat-5 TM, the Landsat-7 ensures a 

revisit time of 16 days.  

 

Figure 2 Landsat-7 orbit schema (U.S. Geological Survey, 2019a) 

The satellite was equipped with an Enhanced Thematic Mapper + (ETM+) 

instrument. The design of the ETM+ introduces some technological 

advancement with respect to the TM sensor. A new panchromatic band with a 

spatial resolution of 15 (Band 8) was added. Moreover, the spatial resolution of 
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the thermal-IR band was improved, providing images at 60 m/px. In addition, 

two full-aperture calibration panels were added allowing better absolute 

radiometric calibration (U.S. Geological Survey, 2019a). Table  provides an 

overview of the spectral characteristics of the ETM+ sensor. 

Band   Wavelength Spatial resolution 

Band 1 Blue 0.45 - 0.52 µm 30 m 

Band 2 Green 0.52 - 0.60 µm 30 m 

Band 3 Red 0.63-0.69 µm 30 m 

Band 4 NIR 0.77-0.90 µm 30 m 

Band 5 SWIR-1 1.55-1.75 µm 30 m 

Band 6 TIR 10.40-12.50 µm 60 m 

Band 7 SWIR-2 2.08-2.35 µm 30 m 

Band 8 Panchromatic 0.52 - 0.90 µm 15 m 

Table 2 Spectral bands characteristics of Landsat-7 ETM+. 

Unfortunately, some issues were experienced during Landsat-7 

operational life. Beside the lately satellite orbit drifting started after August 

2017, causing an earlier local acquisition time (Qiu et al., 2021), the biggest 

impact affecting the mission was caused by the failure of the Scan Line Corrector 

(SLC) on May 31, 2003. The SCL is an electro-optical mechanism which 

compensates for the along-track motion of the satellite that occurs when it is 

scanning across-track. As a result of this failure, the sensor line of sight traces a 

zig-zag pattern along the satellite ground track, as can be seen in Figure 3. As a 

consequence, from June 2003, when the Scan Line Corrector (SCL) failed, 

Landsat-7 images have been acquired and delivered with gaps, producing a loss 

of information up to the 22% (Andréfouët et al., 2003). The decommissioning of 

Landsat 7 began in mid-2021, leaving its orbit to the new Landsat-9.  

Landsat 7 products are delivered as 8-bit images with 256 grey levels. 
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Figure 3 ETM+ SLC Effect (U.S. Geological Survey, 2019a) 

1.1.3. Landsat-8 

Landsat-8 satellite, originally known as the Landsat Data Continuity 

Mission (LDCM), was launched on February 11, 2013. It operates in a 705 km 

near-polar, sun-synchronous orbit, crossing the equator on the descending node 

at 10:00 (±15 minutes) a.m. Mean Local Time (MLT). It ensures a 16-day ground 

track repeat cycle. Completing a single Earth orbit every 98.9 minutes, Landsat-

8 has been acquiring more data than ever before, with an imaging capacity 

about 725 images per day (Loveland and Irons, 2016). Indeed, while 

maintaining the consistency requirement with previous series missions, 

Landsat-8 represents the greatest technological improvement over its 

predecessors in terms of image acquisition capability, radiometric and 

geometric data quality (Irons et al., 2012; Roy et al., 2014).  

It is equipped with two different sensors: the Operational Land Imager 

(OLI) and the Thermal Infrared Sensor (TIRS). For the purposes of the study, 

only the OLI instrument is here considered and described. OLI measures the 
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visible, NIR and SWIR part of the electromagnetic spectrum, while TIRS 

operates in the thermal region, allowing to study the land surface temperature. 

Following the spectral improvements achieved with ETM+ instrument, OLI 

sensor was designed with a panchromatic 15m band (Band 9) and eight 30 m 

spectral bands. In OLI the new ultra-blue band (Band 1) and the Band 9 (1.36 - 

1.38 µm) are introduced for the purposes of coastal/aerosol studies and cirrus 

cloud detection respectively (U.S. Geological Survey, 2019b). Spectral bands 

details are reported in  Table . 

Band   Wavelength Spatial resolution 

Band 1 Coastal Aerosol 0.43 - 0.45 µm 30 m 

Band 2 Blue 0.45 - 0.51 µm 30 m 

Band 3 Green 0.53 - 0.59 µm 30 m 

Band 4 Red 0.64 - 0.67 µm 30 m 

Band 5 NIR 0.85 - 0.88 µm 30 m 

Band 6 SWIR-1 1.57 - 1.65 µm 30 m 

Band 7 SWIR-2 2.11 – 2.29 µm 30 m 

Band 8 Panchromatic 0.50 – 0.68 µm 15 m 

Band 9 Cirrus 1.36 - 1.38 µm 30 m 

    

Band 10 TIRS 1 10.6 - 11.19 µm  

Band 11 TIRS 2 11.5 - 12.51 µm  

Table 3 Spectral bands characteristics of Landsat-8 OLI/TIRS 

Beside the addition of two spectral bands, the designers of the OLI were 

able to reduce the Signal to Noise Ratio (Barsi et al., 2014). Moreover, data are 

stored with a 12-bit quantization, which improves once again the radiometric 

precision, open up to a maximum range of 4096 grey levels. Previous Landsat 

data were delivered as 8-bit digital image, allowing only 256 grey levels. The 

enhancement of SNR, the increased quantization, together with the new coastal 

and cirrus bands, made Landsat-8 valuable for new applications, increasing its 
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ability in land and water characterization (Lymburner et al., 2016; Schott et al., 

2016). Finally, the geometric and geodetic accuracy was estimated to be around 

11.4 m, when referenced to ground control points, and ~37 m in absolute 

geodetic accuracy. 

1.1.4. Landsat-9 

Landsat-9, the latest satellite of the series, was launched on September 27, 

2021. It took the Landsat-7 orbit, the near-polar, sun-synchronous orbit at a 

nominal altitude of 705 km. It completes an orbit cycle around the globe every 

98.9 minutes, with an MLT equatorial crossing of the descending node at 10:00 

a.m. (+15 minutes). As the previous satellites, it has a revisit time of 16 days (U.S. 

Geological Survey, 2022a).  

Landsat-9 is equipped with an Operational Land Imager 2 (OLI-2) 

instrument, which is nearly identical to the Landsat-8 OLI still operating. As 

OLI, OLI-2 captures images through nine channels in the solar reflective part of 

the spectrum (0.43–2.29 μm) at 30 m resolution, except for the panchromatic 

band which is delivered within 15m/px (Markham et al., 2019). The spectral 

band specifics can be found in OLI table previously presented (Table 3). Overall, 

the most significant difference between OLI and OLI-2 regards their 

quantization: the data captured by OLI-2, indeed, are stored as 14 bits digital 

images, which represents an improvement respects the 12-bits OLI products 

(Gross et al., 2022; Masek et al., 2020).  

In summary, the presented Landsat satellites, one after the other, 

acquiring digital images in the multispectral domain since 1984, provide a 

unique and continuous record of land and water surfaces of the globe. On the 

similarity of the multispectral instruments just described lays the chance of 

having consistency through data acquired by different sensors over different 
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periods. In Figure 4 a visual summary of spectral bands resemblance can be 

found. The main threats to the consistency of the archive are the orbit drifting 

of Landsat-5 and Landsat-7 together with the loss of information due to the SLC 

failure in Landsat-7 ETM+. 

All the Landsat family satellites, sharing the presented characteristics, 

were designed and have demonstrated to provide valuable data for a wide 

range of applications, including land use and land cover mapping, natural 

resource management, urban and regional planning, and disaster response. 

 

Figure 4 Comparison of the spectral bands of Landsat-1 to Landsat-9 missions. Source (NASA, 2023) 

1.2. Copernicus programme and its space component 

At the end of the XX century, the need of gathering information to support 

environmental, climate and security policies became a pan-European challenge 

(Aschbacher and Milagro-Pérez, 2012a). With this purpose, the Global 

Monitoring for Environment and Security (GMES) initiative was started in 1998, 

when the European Commission (EC), the European Organisation for the 

Exploitation of Meteorological Satellites (EUMETSAT), the European Space 
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Agency (ESA) and the main national space agencies of Member states signed 

the Baveno Manifesto. At that time, GMES was considered as the most 

ambitious operational Earth Observation programme, promoting a 

communitarian space-based environmental monitoring (Aschbacher and 

Milagro-Pérez, 2012b). In 2014 the EC established the Copernicus programme 

which formerly inherited all the activities achieved under the GMES initiative  

(Koch, 2015; The European parliament and The European council, 2014). 

Copernicus is defined in the Regulation (EU) 2021/696  as an “operational, 

autonomous, user-driven, civil Earth observation system under civil control, 

building on the existing national and European capacities, offering geo-

information data and services, comprising satellites, ground infrastructure, data 

and information processing facilities, and distribution infrastructure, based on 

a free, full and open data policy and, where appropriate, integrating the needs 

and requirements of security” (The European parliament and The European 

council, 2021). 

The main objectives of the Copernicus program can be summarized as 

follows: 

a) gathering information of Earth system and keeping track of its resources 

to support environmental protection and sustainable management; 

b) providing information for European citizens’ security and emergency re-

sponse through EO; 

c) maximizing socio-economic benefits of EO and supporting a sustainable 

development by promoting the use of the program data and derived ser-

vices; 

d) promoting the development of the European space industries; 
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In order to achieve these objectives, Copernicus was organized into three 

different components: service, space and in situ components. The service 

component delivers ready to use/high added value information useful for 

application in the following areas: atmosphere monitoring, marine environment 

monitoring, land monitoring, climate change, emergency management and 

security. The space component is in charge to ensure sustainable spaceborne 

observations, vital for the service areas just mentioned. Finally, the in situ 

component with its airborne, seaborn and ground-based networks coordinates 

product validation as well as data access and supports the services (Jutz, 2015; 

Jutz and Milagro-Pérez, 2018). 

The space component of the Copernicus Program, managed by ESA, 

includes a series of satellite missions, the Sentinels, specifically designed to 

pursue the program purposes. The space component also includes the missions 

from other space agencies, called Contributing Missions (Jutz and Milagro-

Pérez, 2016). The Sentinels were created to ensure long-term performance, and 

the missions development was conducted according to user requirements, 

driving scientific and technological development to fill their needs. In 

particular, each mission was specifically designed to address a different 

application area, among Atmospheric, Oceanic, and Land monitoring. For this 

purpose, a specific instrument has been designed for each mission to provide 

data suitable for the target application. Indeed, the Sentinels provide several 

instruments observations in different spectral bands and spatial resolutions, 

with global coverage and high revisit times, addressing specific applications 

(Berger et al., 2012). The Sentinel missions consist of (CSC Mission Management 

Team, 2018; Jutz and Milagro-Pérez, 2016) (Figure 5):  

• Sentinel-1: Moderate-resolution radar imaging; 
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• Sentinel-2: Moderate-resolution multispectral imaging; 

• Sentinel-3: Medium-resolution multispectral imaging and altimetry; 

• Sentinel-4: Atmospheric composition monitoring from geostationary or-

bit; 

• Sentinel-5, and Sentinel-5 Precursor: Atmospheric composition monitor-

ing from low- Earth orbit; 

• Sentinel-6 (Jason-CS): High precision radar altimeter mission. 

 

Figure 5 Copernicus satellite missions 

Among the Sentinel family constellations, for the purpose of the study 

here is described only the Sentinel-2 mission, the Copernicus wide-swath, 

medium-resolution, multi-spectral imaging mission (ESA, 2015). 

1.1.1. Sentinel-2  

Sentinel-2 mission is a twin polar-orbiting satellite phased at 180° to each 

other: Sentinel-2A and Sentinel-2B (ESA, 2015). Sentinel-2A was launched in 

2015, while Sentinel-2B was launched two years later in 2017. They are 

supposed to have a minimum lifetime of 7.25 years and they were provided 

with 12 years of consumables. To ensure long-term service, Sentinel-2C and D 

are under development (Toulemont et al., 2021). 
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After their launch, Sentinel-2A/B reached their orbit at an altitude of 786 

km, angled of 98.62°, and acquire images over land and coastal areas with a 290 

km width swath, covering the Earth surface between the latitudes 56° South and 

83° North. Their orbit crosses the equator at 10:30 a.m. Mean Local Solar Time 

(MLST) at the descending node (ESA, 2015).  The revisit frequency of each single 

satellite is 10 days, when considering the constellation 5 days revisit time is 

ensured. Moreover, the swath overlap between adjacent orbits increases even 

more the revisit frequency (Li and Roy, 2017). 

The two satellites are equipped with the Multi-Spectral Instrument (MSI), 

a sensor that measures the Earth's reflected radiance in 13 spectral bands, in the 

visible, near-infrared and shortwave infrared regions of the electromagnetic 

spectrum, providing imagery at different spatial resolution, ranging between 10 

m and 60 m (Drusch et al., 2012). Spectral and geometric resolution details can 

be found in Table 4. 

Sentinel-2 MSI 

Bands Wavelength (µm) Resolution 

B1 Coastal aerosol 0.433 – 0.453 60 m 

B2 Blue 0.458 – 0.523 10 m 

B3 Green 0.543 – 0.578 10 m 

B4 Red 0.650 – 0.680 10 m 

B5 Red Edge 1 0.698 – 0.713 20 m 

B6 Red Edge 2 0.733 – 0.748 20 m 

B7 Red Edge 3 0.773 – 0.793 20 m 

B8 NIR 0.785 – 0.900 10 m 

B8a NIRn 0.855 – 0.875 20 m 

B9 Water Vapour 0.935 – 0.955 60 m 
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B10 Cirrus 1.360 – 1.390 60 m 

B11 SWIR 1.565 – 1.655 20 m 

B12 SWIR 2.100 – 2.280 20 m 

Table 4. Spectral bands characteristics of Sentinel-2 MSI 

The paired Sentinel-2 MSIs have been designed to provide continuity with 

Landsat-like heritage and ongoing missions. Indeed, Landsat instruments 

wavelengths basically defined the core of the new multispectral Copernicus 

sensors. Indeed, the MSI keeps a NIR band (10 m Band 8, 0.78 – 0.90 µm) similar 

to these of the Landsat TM and ETM+ instruments (30 m Band 4, 0.77 - 0.90 µm). 

However, the NIR band provided by TM and ETM+ was affected by the 

presence of water vapour (Li et al., 2017). Therefore, a NIR narrow band (20m 

B8A, 0.855 – 0.875 µm) was added, similar to the improved NIR band of the OLI 

sensor, as highlighted in (Mandanici and Bitelli, 2016) (Figure 6). Moreover, 

following the OLI improvements, S2 sensor also provide a Coastal aerosol (0.433 

– 0.453 µm) and a Water vapour (0.935 – 0.955 µm) bands for atmospheric 

correction and cloud detection at a resolution of 60 m. 
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Figure 6. Comparison of the spectral response functions in the NIR bands of the Sentinel-2 MSI, 

Landsat-5 TM and Landsat-8 OLI. Source: (Mandanici and Bitelli, 2016) 

Beside these data continuity, the S2 introduces some innovations, 

especially with the new 20m narrow bands in the Red-edge part of the 

electromagnetic spectrum, which results in a great impact in vegetation 

monitoring (Delegido et al., 2011).   

The MSI instruments acquire and store information as a 12-bit digital 

image, allowing a radiometric resolution per pixel in the range of 0 to 4,095 

potential values. 

Summarizing, the Sentinel-2 multispectral mission provide information in 

the VNIR and SWIR domain, with medium spatial resolution and medium to 

high revisit time. From the spectral characteristics just described it can be stated 

that data consistency with Landsat family satellites should be ensured (see 

Figure 7 for visual comparison), still introducing some innovations including 

enhanced spatial, radiometric and temporal resolutions.  
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Figure 7. Comparison of multispectral bands of Landsat and Sentinel missions: Landsat-7 ETM+, 

Landsat-8 OLI and Sentinel-2 MSI. Credits: USGS 

In conclusion, the first chapter has highlighted the main similarities 

among Landsat and Sentinel-2 missions regarding the acquisition of 

multispectral images. It is clear that great similarity in the design of the sensor 

allow consistency between these datasets, with some limitation that have to be 

quantified. However, the main aspect that must be considered in data 

continuity and for the combined used of these missions regards the satellite 

orbits and the geometry of acquisition. Indeed, observing the Earth from 

slightly different point of view might lead to different measurement of the 

reflected electromagnetic energy. The orbit drifting and the different equator 

crossing time cause the data acquisition in different solar angle geometry 

conditions, which might introduce discrepancy in the data consistency. 
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Chapter 2 

2. Data products 

The Landsat and Sentinel-2 missions acquire images of the Earth surface 

since the 70s through the multispectral instruments described in Chapter 1. 

After acquisition, the raw data undergo different processing steps and both the 

programs provide users with more and more complexity processing levels of 

the original raw data. In the following section the main products delivered by 

USGS and ESA through several platforms are presented.  

2.1. Landsat collections and products 

The programmatic development of Landsat program is based on ensuring 

data acquisition continuity (guaranteed by recent launch of Landsat 9) and 

facing the needs of interoperability and ready-to-use data (Wulder et al., 2019). 

Since its foundation, the programme is committed to continuously improving 

data quality and delivering data with different levels of processing and 

complexity to reach as many users as possible (Wu et al., 2019; Wulder et al., 

2019).   

First, as pointed out in Chapter 1, data continuity is ensured by the effort 

of mission designers to combine innovations with maintaining a similarity to 
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previous operational sensors. Furthermore, continuity is possible due to the 

careful scheduling of new launches in order to avoid data gap in the earth 

surface observations archive. However, as highlighted in Chapter 1, besides 

these efforts, some diversities between different sensors are impossible to avoid. 

Moreover, as it will be further discussed in the following chapters, the combined 

used of Landsat and Sentinel-2 data as a virtual constellation is highly promoted 

by both the programs. Indeed, allowing the interoperability of all available 

Landsat-like missions has many advantages for all the stakeholders, such as 

improving data availability for user and reducing costs for government and 

space agencies sharing facilities (for details see Chapter 3) (Lauer et al., 1997; Li 

and Roy, 2017). 

In this context, in order to improve the interoperability between different 

subsequent operating missions, the Landsat archive was entirely reprocessed 

twice. After the first global Landsat 1 to 8 reprocessing into Collection-1 data 

(Dwyer et al., 2018), the second major reprocessing of the archive, performed in 

2021, led to the release of Collection 2 data, which replaced Collection 1 starting 

from January 2022. A summary on the Collection-2 highlights can be found in 

(U.S. Geological Survey, 2021a). See Figure 8 for an overview on improvements 

of Collection-2 with respect of previous Collection-1. The major improvement 

provided by Collection-2 dataset regards geometry accuracy: for a better 

exploitation of archive interoperability, the Landsat-8 Ground Control Points 

(GCPs) were rebaselined to the ESA Sentinel-2 Global Reference Image (GRI). 

In addition, the digital elevation model sources were updated and accessibility 

from commercial cloud-based environment was improved (U.S. Geological 

Survey, 2021a).  
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Since the realise of the Collection 1 data in 2016, the Landsat products are 

structured in a hierarchical three-level inventory to grant consistency in Landsat 

data processing and traceability of data quality records:  

• Tier 1 (T1) includes products with the highest available data quality and with a 

geodetic accuracy showing a Root Mean Square Error (RMSE) equal or lower 

than 12m; 

• Tier 2 (T2) includes products with a RMSE greater than 12m; 

• Near real-time Tier (RT) includes Landsat 7 (ETM+) and Landsat 8/9 (OLI/TIRS) 

available for download in less than 12 hours after acquisition. These products 

are processed immediately upon downlink with limited calibration and ephem-

eris predictions, but useful in emergency response.  

The data reprocessing into Collection-2 has definitely improved the data 

consistency along the archive and the interoperability with the S2 observations. 
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Figure 8 Comparison between the Landsat Collection-1 and Collection-2 sources (U.S. Geological 

Survey, 2021b) 

At the same time, since its very beginning, the program has been devoted 

to reach as many users as possible, ensuring to deliver data in an uncomplicated 

form and grant their easy use (Pecora, 1972). In order to satisfy the different user 

type needs, data are provided with different processing levels. In particular, 

three different product levels are delivered: the global Level-1 data (Top Of 

Atmosphere, TOA), Level-2 data (Surface Reflectance) and the U.S. Analysis 

Ready Data (ARD). Figure 9 shows the geographical distribution of the 

available Level-1 and Level-2 products of the Landsat archive, for an amount of 
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more than 17 million of products. The data refers to the scenes acquired by 

Landsat-5, Landsat-7, Landsat-8 and Landsat-9 missions until January 20, 2023.  

 

Figure 9. Landsat Level-1 and Level-2 products available acquired by Landsat-5, Landsat-7, Landsat-8 

and Landsat-9 missions. Source: (U.S. Geological Survey, 2021c) https://landsat.usgs.gov/landsat-

archive-dashboard 

A radiometric and geometric processing performed on raw data allows to 

deliver Level-1 products which are characterized by cubic convolution 

resampling, North Up image orientation, and Universal Transverse Mercator 

(UTM) map projection (WGS84 datum). Moreover, a quality assessment (QA) 

band providing image quality statistics and cloud mask information computed 

through the CFMask algorithm is included (U.S. Geological Survey, 2019a, 

2019b, 2022a). Refer to Foga et al. (2017) for more details about the CFMask 

algorithm.  

Level-1 data, which represent the standard Landsat product available for 

all sensors since 1972, are delivered with their pixel values expressed as Digital 

Numbers (DN) in an unsigned 16-bit integer format. These values can be easily 
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reconducted to Top-of-Atmosphere (TOA) reflectance values by applying 

transformation factors given in the metadata.  

Scenes classified as Tier-1 or Tier-2 are later processed to Landsat Level-2 

Science Products (L2SP), while Near real time data are available just in the 

Level-1 format. The more recent Level-2 data products contain surface 

reflectance (SR) values. SR, as described by Vermote et al., is the “satellite 

derived top of atmosphere (TOA) reflectance corrected for the temporally, 

spatially and spectrally varying scattering and absorbing effects of atmospheric 

gases and aerosols”, and it is needed to monitor land surface reliably (Vermote 

et al., 2016a).  

Usually Level-2 data are available within 24 hours after the T1/T2 scene 

classification. See Figure 10 for an overview of the timeline of product 

generation. 

SR data are available from 1982 to present and are obtained applying 

atmospheric correction to Level-1 products with a Solar Zenith Angle lower 

than 76 degrees  (Teixeira Pinto et al., 2020). To do that, the following algorithms 

are used: the Land Surface Reflectance Code (LaSRC) algorithm (Version 1.5.0) 

(Vermote et al., 2016a) was applied to Landsat-8 OLI products, while Landsat 

4-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus 

(ETM+) surface reflectance products are generated using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm (Version 3.4.0) 

(Masek et al., 2006). 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/atmospheric-gas
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/atmospheric-gas
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Figure 10 Time-line of different level products generation. Source: 

https://www.usgs.gov/media/images/landsat-collection-2-generation-timeline 

Both the LEDAPS and the LaSRC are based on the Second Simulation of 

the Satellite Signal in the Solar Spectrum (6S) model for atmospheric correction. 

More precisely, the LaSRC uses the vectorial version of the code (Kotchenova et 

al., 2006; Vermote et al., 1997). They are physically based atmospheric correction 

methods that produce the reflectance that would be measured at ground level 

considering the absence of atmosphere along the Sun-target-instrument path, 

starting from the TOA observations (Vermote et al., 1997). 

To do that, an estimation of atmospheric parameters is needed. Those are 

retrieved using the 6S code, a rigorous radiative transfer model, which provides 

a description of the properties of atmospheric constituents (such as the Rayleigh 

scattering and the gaseous absorption) based on ancillary data, and on retrieval 

of the aerosol concentration using the blue wavelengths bands, where the signal 

is mainly produced by aerosol (Vermote et al., 2016a, 1997).  
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For the LaSRC, ancillary data are provided by other missions, such as the 

climate information gathered from averaging 10 years of TERRA and AQUA 

Moderate Resolution Imaging Spectroradiometer (MODIS), or digital elevation 

terrain model from the Shuttle Radar Topography Mission (SRTM) (Vermote et 

al., 2016a). In Figure 11 the schema of how atmospheric correction is performed 

in the LaSRC as formulated by Vermote et al. is presented. 

 

 

Figure 11. Schema of the LaSRC atmospheric correction. a) Flowchart of the Landsat8/OLI 

atmospheric correction scheme. (Vermote et al., 2016a) b) Flowchart of the OLI Aerosol Optical 

Thickness (AOT) retrieval (Vermote et al., 2016a) 

On the other hand, LEDAPS uses ancillary data to estimate pressure, 

temperature, water vapor, ozone, and topography. For the aerosol retrieval a 

scene-dependent dense dark vegetation (DDV) is used (Kaufman and Sendra, 

1988). In this case, auxiliary data are gathered either from other missions and in 

situ data. For example, water vapor is derived from NCEP (National Centers for 
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Environmental Prediction) and ozone quantity information from TOMS (Total 

Ozone Mapping Spectrometer). 

The studies conducted by Vermote et al. and Pinto et al. demonstrated that 

the improvements of the OLI sensors allow to achieve better performances in 

the production of Level-2 products. Indeed, it is clear that LaSRC benefits of the 

use of Coastal aerosol band (0.433–0.450 μm), which cover shorter wavelengths 

than the conventional Landsat, TM and ETM + blue bands. Moreover, the 

LaSRC algorithm uses the OLI “cirrus” together with the TIRS bands instrument 

to produce a cloud and a cloud shadows masks (U.S. Geological Survey, 2022b). 

Beside this technical aspects, some limitation of LEDAPS in the aerosol 

retrieval are known: those are mainly due to lacked DDV for optimal aerosol 

estimation (Teixeira Pinto et al., 2020; U.S. Geological Survey, 2019a).  

Finally, when using Level-2 product, it is important to consider that even 

if the atmospheric correction algorithm is run on all the available scenes, the 

final product acquired at high latitude (> 65°) should be used with caution. 

Indeed, high latitude areas should be excluded for different reasons: the solar 

elevation varies more near the poles; lower solar elevations at high latitudes 

results in longer atmospheric paths, which cause more scattering; the surface 

reflectance retrieval uncertainty greatly increases up to been highly inaccurate, 

at solar zenith angle > 76 degrees (Campbell and Aarup, 1989; U.S. Geological 

Survey, 2022b). 

2.2. Sentinel-2 products 

The Copernicus program and its space component share the Landsat’s 

programmatic development goal of spreading as much as possible the use of 

the produced satellite data (in the following we will mainly refer to the satellite 
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images, but great importance towards end users is assigned to the development 

of six services dedicated to as many themes: Atmosphere, Marine, Land, 

Climate Change, Security, Emergency). In fact, the EO market can benefit from 

the dissemination of this data, making the most of all the investments made by 

agencies and governments. To achieve this, it is important to address different 

types of users, providing products with different levels of complexity. 

Furthermore, by providing pre-processed and almost ready to use data, 

scientists and final users can focus on their applications instead of data 

preparation, requiring high remote sensing skills. 

With this purpose, Sentinel-2 data, after the acquisition, undergo through 

different levels of processing, from raw data to Level-2 Science products (L2SP). 

Two different products are available for download to users: Level-1C and Level-

2A (ESA, 2015). 

Progressively complex processing is applied to produce Level-1C (L1C) 

and Level-2A (L2A) data. These are both orthorectified images delivered as 

granules (or tiles) with an extent of 100 x 100 km2 in the UTM/WGS84 projection 

(Gascon et al., 2017). 

In particular, Level-1C products are obtained after radiometric and 

geometric corrections (including orthorectification and spatial registration) 

applied to the Level-1B corresponding scenes. L1C products provide Top of 

Atmosphere (TOA) normalized reflectance observations, obtained from the 

radiance observation through the Solar Irradiance model described in (Thuillier 

et al., 2003) and then a b-spline interpolation of original values into the new 

orthorectified grid is performed.  
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Moreover, during the L1C processing, three masks layers are computed: 

quality, opaque clouds and cirrus clouds masks. Quality mask is based on image 

statistics provided by Level-1B. The opaque cloud mask is compute by using 

Band-1 (Coastal aerosol, 0.433 – 0.453 µm) and Band-12 (SWIR, 2.100 – 2.280 

µm), while cirrus clouds uses the dedicated Band-10 (Cirrus, 1.360 – 1.390 µm) 

(Gascon et al., 2017) . Finally, L1C products are stored as 15-bits integers and 

the physical values range from 1 (minimum reflectance 10-4) to 10000 

(reflectance 1), but values lower than 1 might occur due to particular angular 

reflectivity effects (Gascon et al., 2017). 

The last processing is carried out in the Level-2 step: Level-2A products 

provide Bottom Of Atmosphere (BOA) reflectance images derived from the 

associated L1C scenes by applying them atmospheric correction through the 

Sen2Cor processor (Main-Knorn et al., 2017). The Sen2cor atmospheric 

correction estimates the atmosphere aerosol type and its optical thickness using 

the Dense Dark Vegetation (DDV) algorithm (Kaufman and Sendra, 1988); 

while the water vapour retrieval over land is performed with the Atmospheric 

Pre-corrected Differential Absorption (APDA) algorithm (Schläpfer et al., 1998) 

applied to S2 Band-8a and Band-9. 

The Sen2Cor algorithm uses mainly two ancillary data: DEM by SRTM at 

90 m spatial resolution,  the Radiative Transfer Look-Up Tables (LUTs) obtain 

through the libRadtran software with rural/continental aerosol type condition 

(Emde et al., 2016; ESA, 2015; Mayer and Kylling, 2005). Moreover, when the 

DDV pixels on the L1C are not enough, the Sen2cor allows to use the 

meteorological data provided by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) like Mean Sea Level Pressure estimations or total 

Column Ozone (ESA, 2015; Louis, 2016; Main-Knorn et al., 2017). 
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L2A output products are made of several layers. These include surface 

reflectance images for all the spectral bands but band 10 (Cirrus band), which is 

omitted, since it does not contain surface information (Louis, 2016). Moreover, 

an Aerosol Optical Thickness (AOT) and Water Vapour (WV) maps (60 m, 20 m 

and 10 m) are computed. A Scene Classification (SCL) map with eleven classes 

is provided (see Figure 12) together with Cloud confidence and a Snow 

confidence maps (Main-Knorn et al., 2017).  

 

Figure 12. Scene Classification (SCL) map classes (Main-Knorn et al., 2017) 

Finally, the Sentinel-2 products can be identified with a processing 

baseline code, starting with the baseline 02.00 introduced in November 2015 as 

the Initial product Baseline. These Processing baselines are configuration files 

that evolve over the mission lifetime, and are useful to track corrections of errors 

in the processing chain. With these baseline, new features or product corrections 

might be included, updating and improving data quality. For example, as of 

January 25, 2022, the baseline 4.0 was introduced. The main change apported 
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with baseline 04.00 is the need to add an offset (readable in the metadata files) 

to the SR. This should results in an improvement of the performance over dark 

surfaces (ESA - European Space Agency, 2015; Gascon et al., 2017). Details on 

the processing baseline can be found in the periodic quality reports published 

through the ESA web pages (ESA - European Space Agency, 2022, 2015). 

In conclusion, the differences of the TOA and BOA products provided by 

Landsat and Sentinel-2 programs have been presented, and the effort in 

generating inter-operable products has been highlighted. 

The different product levels target different users and applications. In 

general, in the perspective of using these datasets for monitoring or change 

detection studies, the use of BOA observations is highly suggested, in order to 

exclude from the analysis the errors and changes due to modification in the 

atmosphere conditions instead of target surface actual change. However, as 

highlighted in section 1.1 and 1.2, Landsat and Sentinel-2 missions use three 

different algorithms to produce Level-2 products, each of them laying on 

different auxiliary data for the estimation of atmosphere parameters, such as 

water vapour, pressure or aerosol optical thickness. For this reason, it is 

important to assess the consistency of the Surface Reflectance datasets among 

these missions to ensure data continuity. Moreover, in order to evaluate the 

performance of atmospheric correction algorithms, the comparison of spectral 

response measured on the ground by in-situ survey with Level-1 and Level-2 

satellite data could provide valuable information. An example of this approach 

and its utility can be found in (Teixeira Pinto et al., 2020). 
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Chapter 3 

3. New approaches in EO data analysis  

In the last decades a rising number of scientists and professionals have 

found in optical satellite imagery a useful data source for their analysis. The 

potential of these data has been pointed out for a great variety of disciplines 

(Malenovský et al., 2012), such as water applications, vegetation monitoring, 

natural and man-made hazard monitoring,  but there is still an undiscovered 

potentiality that has not yet been fully exploited (Chawla et al., 2020; 

Malenovský et al., 2012; Poursanidis and Chrysoulakis, 2017; Tsatsaris et al., 

2021; West et al., 2019). Among the fields that satellite remote sensing can fulfil 

with valuable information, Land Use Land Cover (LULC) and LULC changes, 

in the perspective of climate change studies, are those where Earth Observation 

(EO) represents the most efficient approach (Dash and Ogutu, 2016; Phiri et al., 

2020; Tsatsaris et al., 2021). Indeed, missions like Landsat or Sentinel give a 

unique view over Earth surface dynamics and changes, capturing portion of 

Planet from the same point of view since the early 70s with a high-frequency 

revisit time and a medium geometric resolution. This represents a precious 

source of information from the past to deeply understand the dynamics that 

affected our rapidly changing world. Data availability together with recent 
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technical developments has open to new methodologies allowing to investigate 

these datasets extracting valuable information for wise resources management. 

In this chapter the standard and new methodological approaches in 

multispectral data analysis are presented. Limits and possibilities of this 

methods are highlighted. 

3.1. Change Detection Analysis traditional approaches and new per-

spectives 

Satellite remote sensing provides a viable source of data for efficient 

monitoring of large areas from local to global scales. Indeed, as described in 

previous chapters, the need to quantify Earth’s resources and improve Earth 

system process understanding leaded to the foundation of main international 

moderate resolution EO programs (Berger and Aschbacher, 2012; Lauer et al., 

1997). In this context, the Landsat archive, together with the ongoing Sentinel-

2, represents a precious source of information since they have been recording 

the Earth surface processes since the 1970s. The comparison of images acquired 

over the same area at different time is a very well-known powerful tool to detect 

and highlight changes occurred over that Earth surface portion. In remote 

sensing, since the very beginning, this approach in image processing is known 

as Change Detection Analysis (CDA).   

Change Detection (CD) can be defined as the process of identifying 

differences in the state of an object or phenomenon by observing it at different 

times (Singh, 1989). For the sake of brevity only a brief summary of the main 

standard CD approach is provided here, a more detailed description of the 

standard CDA can be found in (Canty, 2019). 
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Standard digital remote sensed images CD is made of two phases. The first 

consists in the accurate selection of data and their pre-processing procedures, 

such as precise spatial registration. This step is fundamental to ensure that 

modifications highlighted by the procedure are due to effective land cover (LC) 

changes. The second phase is the proper analysis, allowing the detection of 

changes in the LC.  

To do that, many algorithms and procedures were developed in the past 

and became standard approach in the CD analysis. Those can be grouped into 

(Mas, 1999):  

• Image enhancement methods, based on unclassified image data, which combine 

the data mathematically to enhance the information content. Among these 

methods, for example naive image-differencing or image-ratio are included, as 

well as principal component analysis (PCA) (Ehlers et al., 2010);   

• Multitemporal analysis, based on an isochronic analysis of a multitemporal 

image data set  (Ehlers et al., 2010). Following this approach, single n-bands 

images acquired at different date t1 and t2 are merged together into a new image 

with 2*n bands, allowing to extract the changed areas in the merged image.  

• Post classification comparison, involve the comparison of two independent 

classification results for at least two different dates. This methods allow the 

determination of the change occurred from one class to another class but is 

limited by the quality of each single classification. (Tomowski et al., 2010). 

Basically, the change detection studies of remotely sensed data are based 

on two following principles (Mas, 1999): 

• changes in land cover cause changes in radiance values;  
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• changes in radiance due to land cover change are larger with respect to 

those caused by others factors, such as atmospheric conditions or 

illumination differences.  

Regarding the latter point, it is important to remark that EO measurements 

their self are affected by errors, among other atmosphere has a crucial impact 

on the quality of observations. Furthermore, as described in Chapter 2, when 

retrieving information of the target surface over a time interval, atmospheric 

correction algorithm are needed “to prevent changes due to atmospheric effects 

being interpreted as changes in the surface conditions”(Vermote et al., 2016b). 

For this reason, in CDA involving multitemporal analysis based on radiometric 

change detection Bottom of Atmosphere products are necessary. In this regard, 

Landsat and Sentinel program put their effort in delivering always improved 

products, described in detail in Chapter 2, limiting as much as possible these 

errors.  However, illumination changes due to different atmospheric condition 

or geometric acquisition should be account when doing CDA.  

Finally, in the last decades some important innovations have drastically 

changed the possibility in remotely sensed data image processing analysis, such 

as the just mentioned improved quality datasets, their availability and new 

cloud-based technology to perform the analysis. All these innovations moved 

CDA to new methodological approaches, improving our knowledge and 

deepen the understanding of Earth surface processes. 

3.1.1. Open-access policy and cloud-based platforms 

One of the most significant turning point for the remote sensing market 

was in 2008, when the Landsat policy turned into open-access (Woodcock et al., 

2008). The USGS decision of making the Landsat archive available at no cost to 

anyone via the internet was unprecedented for medium spatial resolution data 
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(Woodcock et al., 2008). This new paradigm started a much faster spread of 

remote sensing applications, allowing more and more scientists to get familiar 

with the data and to start integrating it as part of their research. The impact of 

this change in the access to data is evident when looking at the records of 

scientific papers including Landsat missions. Indeed, as shown in Figure 13, the 

number of citations increased significantly after the decision to open the archive 

in December 2008. In addition, beside the tangible expansion in data 

utilizations, the no-charge data distribution has led to an increase of the depth 

and scope of the science questions asked and applications undertaken”(Wulder 

et al., 2022). 

The same programmatic path has been followed in the design and 

maintenance of the open-access Sentinel-2 missions, providing data at no cost 

to users. 

 

Figure 13. Record in Scopus of scientific papers involving Landsat products (orange line) and the cost 

per scene (blue line) from 1970 to 2022. Source: https://www.usgs.gov/landsat-missions/landsat-

project-statistics 
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In this context, the development of new technologies in the era of big EO 

data is crucial to enable the full exploitation of the data potentiality (Casu et al., 

2017). This demand has been successfully accomplished with the development 

of cloud-computing technologies like Google Earth Engine (GEE), which is the 

platform used in this research (Yao et al., 2019). GEE is a platform for geospatial 

analysis consisting in a multi-petabyte analysis-ready data catalog co-located 

with a high-performance, intrinsically parallel computation service powered by 

Google (Gorelick et al., 2017). From 2010 GEE makes available to users over 40 

years of satellite imagery from more than 600 different EO, such as all Landsat 

and Sentinel-2 collections, and other geospatial datasets like digital terrain 

models, climate, weather and demographic data. In addition to this huge data 

warehouse, GEE offers Google's computational capabilities and algorithms for 

data processing. The relative simplicity of this tool opens a new frontier for 

remotely sensed Big Data analysis, which would normally require significant 

computing and storage capacity, resulting in large hardware and software costs. 

Indeed, this cloud-computing platform, combining all these data in one easy-to-

use system with significant computational power, allows scientists (more than 

500,000 registered users) to deepen their investigations of the satellite data 

archives (Wulder et al., 2022). Figure 14 shows the increase of Landsat 

collections users between 2018 and 2022 through the GEE platform. 
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Figure 14. Summary of usage of redistributed Landsat Collection 1 data on Google Earth Engine, by 

collection and product traits. Source: (Wulder et al., 2022) 

3.2. Time series analysis and data harmonization 

The nowadays available open-access remote sensing datasets represent a 

massive source of information that has not been completely exploited yet to its 

full potential and requires new methodologies, supported by technological 

advances (West et al., 2019). Among these, Time Series Analysis (TSA) is 

undoubtedly promising to better understand Earth’s surface change processes, 

making it possible to study not only drastic changes, but also long-term or more 

subtle phenomena, crucial in climate change studies. Thanks to this great 

amount of free data accessible through cloud computing platforms, traditional 

remote sensing applications such as change detection have successfully moved 

from standard approaches involving image pairs to TSA of remotely sensed 

data (Mas, 1999; Zhu, 2017). The pixel-based TSA for monitoring pixel 

trajectories over time represents nowadays a well-established methodological 

trend (Chaves et al., 2020) Figure 15. An overview regarding potentiality, 
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methodologies and challenges of remote sensing time series can be found in 

(Kuenzer et al., 2015). 

 

Figure 15. Schema of remotely sensed data time series. Source: (Ghaderpour and Vujadinovic, 

2020) 

Moreover, this approach to the analysis of multispectral data is rapidly 

becoming a standard practice in vegetation-related studies, including 

monitoring of both forest and agricultural environments (Banskota et al., 2014; 

Xue et al., 2014). The reviews by Bégué et al. (2018) and Gómez et al. (2016) cover 

a variety of examples where this methodology proved to be effective in 

identifying seasonal phenological variation, allowing, for example, a better 

classification of crop types. In this context, information on the biophysical 

characteristics of vegetation collected by multispectral cameras can be 

successfully synthesised thanks to vegetation indices (VIs), which are obtained 

through the combination of spectral bands (Xue and Su, 2017; Zeng et al., 2020). 
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Four of the most widely used VIs are considered in this study: Normalized 

Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), 

Enhanced Vegetation Index (EVI) and Normalized Difference Moisture Index 

(NDWI). In the last years, these VIs has been successfully implemented in a 

large variety of applications for their simplicity and effectiveness (Liu et al., 

2020; Nagy et al., 2021; Roy and Yan, 2020; Wang et al., 2017; Zhong et al., 2019). 

However, in the context of TSA, it is important to remarks that remotely 

sensed time series are often non-stationary and unequally spaced (irregularly 

sampled) dataset. Moreover, they are often affected by noise due to atmospheric 

effects, such as clouds or haze (Ghaderpour and Vujadinovic, 2020). These are 

some of the known limits of multispectral derived datasets that need to be 

overcome to improve TSA applications. For example, a recent study conducted 

by USGS (Wu et al., 2019), investigating user needs for future Landsat missions, 

raised attention on desired cloud-free observation frequency: the survey 

showed that in the 71% of cases, subject matter experts believe that a weekly 

cloud-free observation frequency is a breakthrough requirement. Having cloud 

free data information on a weekly basis would actually lead to a significant 

improvement in data effectiveness for their applications. One possible answer 

to this need is the harmonisation of several sensors, which would allow to 

increase the number of acquisitions. Furthermore, since the main limitation of 

passive sensors is the dependence on weather conditions, harmonisation would 

increase the probability of collecting cloud-free images. Looking at the present, 

as demonstrated by the analysis of Li and Chen (2020), the harmonization of 

Sentinel-2 MSI and Landsat OLI/OLI-2 (equipped on Landsat-8 and Landsat-9) 

would highly increase the revisit time, up to a 2.3 days global average, giving 

satellite remote sensing a new perspective for land surface monitoring. 
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In order to achieve these purposes, by building synthetic multi-satellite 

constellation, some authors proposed statistical calibration parameters to adjust 

spectral reflectance values across similar instruments. Mandanici and Bitelli 

(2016) analysed the correlation between corresponding bands of Sentinel-2A 

and Landsat-8 on selected but limited sites, also evaluating the effects of spatial 

heterogeneity. Chastain et al. (2019) proposed a cross sensors comparison of 

Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere 

spectral bands, giving the regression coefficients that allow to integrate MSI 

data with ETM+ and OLI over the conterminous United States (CONUS). 

Denaro and Lin (2020) proposed the use of non-linear models for the cross-

sensor normalization of Landsat-7 and Landsat-8 imagery. More recently, Xie et 

al. (2022) estimated cross-sensors linear transformations between Landsat-8 and 

Sentinel-2 based on only 76 image pairs spread all over the world. Cao et al. 

(2022) proposed a similar analysis including Landsat-7 and deriving the 

transformations from a larger dataset but limited to the Chinese territory.  

Other authors explicitly addressed the problem of vegetation index 

comparison. Li et al (2013) conducted a cross-comparison of four VIs derived 

from 6 pairs of Landsat-7 and Landsat-8 images over Myanmar. Roy et al. (2016) 

compared Landsat-7 ETM+ and Landsat-8 OLI and computed transformation 

coefficients for the integration of their spectral bands and the Normalized 

Difference Vegetation Index (NDVI) obtained from them. Chen et al. (2019) 

proposed transformations to harmonize the NDVI computed from Landsat-4-5 

multispectral scanner and thematic mapper, elaborating on simulated data 

derived from Hyperion hyperspectral images.  Mancino et al (2020) a specific 

case study in Italy comparing six VIs between Landsat-7 and Landsat-8 and 
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finding statistically significant differences among four different land cover 

classes. 

In the last years, NASA and USGS developed the Harmonized Landsat-8 

and Sentinel-2 surface reflectance data set (HLS) currently at version 2.0 which 

provide harmonized multispectral bands with global coverage (Claverie et al., 

2018). However, at the time of the writing, there are not “analysis ready data” 

for vegetation index TSA including the full Landsat constellation and Sentinel 

data. Moreover, there is not any study available assessing spectral quality 

measurements by the new Landsat-9 nor evaluation of its interoperability with 

the ongoing Landsat and Sentinel-2 instruments. 
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Chapter 4 

4.Cross-sensors comparison of popular 

vegetation indexes from Landsat TM, 

ETM+, OLI and Sentinel MSI for time 

series analysis 

In the perspective of a long and dense time-series analyses for 

environmental monitoring applications, the paper discusses a cross-comparison 

analysis between the different instruments of Landsat and Sentinel Missions 

(TM, ETM+, OLI and MSI) and products levels (Collection-2 Surface Reflectance 

for Landsat and Surface Reflectance for Sentinel-2). The calibration coefficients 

for four of the most popular vegetation indexes (NDVI, EVI, SAVI and NDMI) 

were estimated, with the aim of harmonizing and minimizing radiometric 

differences for the combined use of these sensors. For this purpose, more than 

20,000 pairs of images almost simultaneously acquired (+/- one day tolerance 
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window) were selected over a period of several years (depending on the 

lifespan overlap of every sensor pair). Vegetation indices (VIs) were computed 

for each image, and, for each cross-comparison, 100 random extractions of 

300,000 sample pixels were performed all over the European continent. Linear 

transformation functions for each VI and between each sensor couple were 

computed by regression analyses, also assessing the repeatability of the 

estimation. Furthermore, the stability over time of the obtained coefficients was 

assessed when enough years of corresponding observations are available. 

In the following sections we provide: a summary of L5, L7, L8 and S2 

characteristics and their products; a description of the methodology including 

pre-processing, data gathering, sampling and statistical analysis; and finally, 

the results and the transformation coefficients are presented. 

4.1. Materials 

4.1.1. Landsat 

Landsat program has been collecting Earth surface multispectral images 

since 1972 and it represents the longest living remote sensing mission in the 

world. It is a joint project between NASA, responsible for the satellite 

construction and launch, and USGS, which manages the archive and the 

distribution of data. The key parameters defining Landsat missions are the 

medium spatial resolution, the temporal resolution and the spectral coverage. 

The mission was designed to achieve efficient multispectral monitoring of land 

surface, with 30 m pixel average resolution and a revisit cycle of 16 days on 

every point on Earth. Every new Landsat satellite has been designed to create a 

pair constellation with the previous one still operating, resulting in an 8-day 

revisit coverage (Wulder et al., 2019). 
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This study included datasets acquired by three different Landsat 

instruments: L5 Thematic Mapper (TM), L7 Enhanced Thematic Mapper Plus 

(ETM+) and L8 Operational Land Imager (OLI).  

After its launch in March 1984, L5 was operated by USGS until January 

2013. For more than 29 years it acquired over 2.5 million images of the Earth, 

largely exceeding its original three-year designed life. Its TM sensor captured 

the Earth surface spectral reflectance in six bands at 30m spatial resolution and 

120m spatial resolution for the thermal band (Chander et al., 2007). 

The L7 was launched in April 1999 and carried the ETM+ instrument. The 

ETM+ represents an improvement with respect to the TM sensors, with the 

addition of the panchromatic 15m resolution band. From June 2003, when the 

Scan Line Corrector (SLC) failed, L7 images were acquired and delivered with 

gaps, producing a loss of information up to the 22% (Andréfouët et al., 2003). 

The decommissioning of L7 began in mid-2021, leaving its orbit to the new 

Landsat-9.  

L8 was launched in February 2013 equipped with the OLI and the Thermal 

Infrared Sensor (TIRS). OLI measures the visible, NIR and SWIR part of the 

electromagnetic spectrum, while TIRS operates in the thermal region. Following 

the spectral improvements achieved with ETM+ instrument, OLI was designed 

with a panchromatic 15 m band and eight 30 m spectral bands. In OLI the new 

ultra-blue band (Band1) and the Band 9 (1.36 - 1.38 µm) are useful in 

coastal/aerosol studies and cirrus cloud detection respectively. Table 5 gives a 

summary of L5, L7 and L8 spectral characteristics. 

In this study the SR Collection-2 Tier-1 dataset was used for all the Landsat 

instruments considered. Refer to Chapter 1 and 2 for details about sensor 
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characteristics and mission products. Table 5 provides a summary on spectral 

and geometric characteristics of the datasets used in the study. 

Table 5 Spectral bands characteristics of L5 TM, L7 ETM+ and L8 OLI (U.S. Geological Survey, 

2021d) 

Landsat-5 TM Landsat-7 ETM+ Landsat-8 OLI 

Bands Wavelength (µm) Res. Bands Wavelength (µm) Res. Bands Wavelength (µm) Res. 

      B1 Coastal/Aerosol 0.435- 0.451 30 m 

B1 Blue 0.45 - 0.52 30 m B1 Blue 0.441 - 0.514 30 m B2 Blue 0.452 - 0.512 30 m 

B2 Green 0.52 - 0.60 30 m B2 Green 0.519 - 0.601 30 m B3 Green 0.533 - 0.590 30 m 

B3 Red 0.63 - 0.69 30 m B3 Red 0.631 - 0.692 30 m B4 Red 0.636 - 0.673 30 m 

B4 NIR 0.76 - 0.90 30 m B4 NIR 0.772- 0.898 30 m B5 NIR 0.851 - 0.879 30 m 

B5 SWIR-1 1.55 - 1.75 30 m B5 SWIR-1 1.547 - 1.749 30 m B6 SWIR-1 1.566 - 1.651 30 m 

B6 TIR 10.41 - 12.5 120 m B6 TIR 10.31 - 12.36 60 m B10 TIR-1 10.60 -11.19 100 m 

      B11 TIR-2 11.50 -12.51 100 m 

B7 SWIR-2 2.08 - 2.35 30 m B7 SWIR-2 2.064 - 2.345 30 m B7 SWIR-2 2.107 - 2.294 30 m 

- - - B8 Pan 0.515 - 0.896 15 m B8 Pan 0.503 - 0.676 15 m 

- - - - - - B9 Cirrus 1.363 - 1.384 30 m 

4.1.2. Sentinel-2  

S2 mission is a twin polar-orbiting satellite phased at 180° to each other: 

Sentinel-2A and Sentinel-2B were launched in 2015 and 2017, respectively. Their 

orbit is angled of 98.62° and acquires images over land and coastal areas with a 

290 km width swath, covering the Earth surface between the latitudes 56° South 

and 83° North. The Mean Local Solar Time at the descending node is 10:30 AM 

(ESA, 2015).   

The two satellites are equipped with the Multi-Spectral Instrument (MSI), 

a sensor that measures the Earth's reflected radiance in 13 spectral bands, from 

VNIR to SWIR, providing imagery at different spatial resolution, ranging 

between 10 m and 60 m, as summarized in Table 6. Details about sensor 

characteristics and Sentinel-products can be found in Chapter 1 and 2. In the 

study S2 Level-2A products were used. 
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Table 6 Spatial and spectral resolution of S2 MSI: band wavelengths interval and their geometric 

resolution. 

Sentinel-2 MSI 

Bands Wavelength (µm) Res. 

B1 Coastal aerosol 0.433 – 0.453 60 m 

B2 Blue 0.458 – 0.523 10 m 

B3 Green 0.543 – 0.578 10 m 

B4 Red 0.650 – 0.680 10 m 

B5 Red Edge 1 0.698 – 0.713 20 m 

B6 Red Edge 2 0.733 – 0.748 20 m 

B7 Red Edge 3 0.773 – 0.793 20 m 

B8 NIR 0.785 – 0.900 10 m 

B8a NIRn 0.855 – 0.875 20 m 

B9 Water Vapour 0.935 – 0.955 60 m 

B10 Cirrus 1.360 – 1.390 60 m 

B11 SWIR 1.565 – 1.655 20 m 

B12 SWIR 2.100 – 2.280 20 m 

 

Figure 16 shows the operational timeline of the satellites considered in the 

study and gives a comparison of main mission characteristics. 

 

 

Figure 16 Landsat and Sentinel satellites. Top: timeline of operational periods. Bottom: comparison of 

main characteristics of the two missions. 
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4.1.3. Vegetation Indices  

Four vegetation indices were considered in this study: NDVI, EVI, SAVI 

and NDMI. These VIs are obtained from the following bands: Green, Red and 

Red-edge bands (highly correlated with chlorophyll and other pigments 

contents); NIR band (sensitive to leaf structure) and the SWIR band (sensitive 

to water content) (Xue and Su, 2017; Zeng et al., 2020).  NDVI is the most 

widespread index sensitive to chlorophyll computed from NIR and Red bands 

(Huang et al., 2021; Kriegler et al., 1969). Being one of the most stable indexes, 

NDVI allows comparisons of seasonal and inter-annual changes in vegetation 

growth. Some improvements to NDVI were implemented to reduce the 

environmental effects to index variations. SAVI proposed by Huete (1988) 

minimizes background soil brightness influences of NDVI. On the other hand, 

the EVI is used to reduce atmospheric effects that could lead to high biomass 

saturation (Huete et al., 2002). Finally, NDMI consists in the normalized 

difference between NIR and SWIR and it helps in vegetation water content 

assessment, useful for example when dealing with irrigations systems (Ferrant 

et al., 2017; Gao, 1996). In this study, these VIs were calculated using the Landsat 

Collection-2 and Sentinel Level-2A SR datasets, selecting the most similar bands 

across sensors. Details regarding the index formulas and the bands used for the 

calculations, for each sensor examined, are given in Table 7. The coefficients in 

the formulas for EVI and SAVI are those suggested by USGS for the 

computation of on-demand vegetation indexes  (Masek et al., 2006; U.S. 

Geological Survey, 2021c; Vermote et al., 2016a). 
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Table 7 Left: Vegetation Indexes formulas. Right: comparison between bandwidth bands selected for each 

sensor for the VIs computation. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

𝐸𝑉𝐼 = 2.5 ∙
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 ∙ 𝑅𝑒𝑑 − 7.5 ∙ 𝐵𝑙𝑢𝑒 + 1
 

𝑆𝐴𝑉𝐼 = 1.5 ∙ (
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
) 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 

 TM 

(µM) 

ETM+ 

(µM) 

OLI 

(µM) 

MSI 

(µM) 

Blue B1 

(0.45-0.52) 

B1 

(0.441-0.514) 

B2 

(0.452-0.512) 

B2 

(0.458-0.523) 

Red B3 

(0.63-0.69) 

B3 

(0.631-0.692) 

B4 

(0.636-0.673) 

B4 

(0.650-0.680) 

NIR B4 

(0.76-0.90) 

B4 

(0.772-0.898) 

B5 

(0.851- 0.879) 

B8A 

(0.855-0.875) 

SWIR B5 

(1.55-1.75) 

B5 

(1.547- 1.749) 

B6 

(1.566-1.651) 

B11 

(1.565-1.655) 

4.2. Methodology 

The vegetation indexes derived from the spectral bands of the TM, ETM+, 

OLI and MSI sensors were compared. The sensors were compared in pairs, by 

randomly sampling the indexes values from overlapping images acquired with 

a maximum delay of one day, as detailed in the following sections. As a 

consequence, to ensure statistically robust samples of data, the comparison was 

possible just between those sensors which were actively operating for a 

common period of time of at least 2 years. For this reason, the newer Landsat 9 

sensor was not included in this study. In order to perform the entire data pre-

processing and extraction, a workflow was implemented in the Google Earth 

Engine (GEE) platform through the Javascript API. While the final statistical 

analysis on sampled data was performed in Python environment. 
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4.2.1. Study area 

The study area covers the entire European continent (Figure 17), which 

was tiled in 100 subregions for computational reasons. This area comprehends 

a wide spectrum of land cover types and ecosystems, and thus it provides an 

exhaustive and varied set of data. 

 

Figure 17. The Area of Interest covered by the analysis including continental Europe. Basemap: 

Sentinel-2 cloudless - https://s2maps.eu by EOX IT Services GmbH (Contains modified Copernicus 

Sentinel data 2020). 

4.2.2. Data gathering  

The data sampling was completely performed in GEE accessing the 

Landsat (Collection-2) and Sentinel-2 surface reflectance (SR) datasets available 

in its catalogue. 

First of all, the image collections were filtered based on time, space and 

cloud cover. Specifically, at least two common years of acquisition were selected 

between the two missions; the search area was limited to Europe and the 

maximum image cloud cover percentage was set to 1% for Landsat data and to 

0.1% for S2 data. This difference on cloud cover filter is to compensate for the 

higher revisit time of S2, resulting in higher data availability, and to consider 
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the lower effectiveness of the cloud masking algorithm of S2 (Baetens et al., 

2019). In order to obtain balanced datasets concerning images acquired in 

different seasons, and thus in different vegetative states, the dataset was split 

into two different time spans: one from October to March (autumn-wintertime) 

and one from April to September (spring-summertime). Because of cloud free 

images shortage during wintertime and to balance the datasets between 

autumn-wintertime images and spring-summertime images, the search time 

span for the autumn-wintertime images were doubled. In addition, the search 

time span was carefully adjusted to ensure a similar population of valid pixels 

for each sensors couple, considering also the operational period of each sensor 

and some specific peculiarities, such as the SCL issues of L7 (details can be 

found in Table 8).  
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Table 8 Sentinel and Landsat data filtering for the analysis. Firstly, time span, covering summer and 

winter period separately, and cloud cover percentage are the filters applied to a single satellite 

collection. The total record (Tot records) is the number of images satisfying those filters for each 

satellite. The Joined collection is the number of pairs cross sensors images satisfying clouds and time 

span filters which were acquired over the same area almost in the same date (+/- 1 day) by the two 

satellites considered in the cross-sensor analysis.  

 

L7-L8 Start Stop Month 

span 

Cloud 

cover 

Records Tot records 

L8 summer 01/01/2017 01/01/2021 Apr - Sep 1% 7994 13680 

L8 winter 01/01/2013 01/01/2021 Oct - Mar 1% 5686 
 

L7 summer 01/01/2017 01/01/2021 Apr - Sep 1% 6366 10321 

L7 winter 01/01/2013 01/01/2021 Oct - Mar 1% 3955 
 

Joined 

collection 

    
9608 

 

L5-L7 Start Stop Month span Cloud cover Records Tot records 

L7 summer 01/01/1999 01/01/2007 Apr - Sep 1% 7721 12148 

L7 winter 01/01/1999 01/01/2012 Oct - Mar 1% 4427 
 

L5 summer 01/01/1999 01/01/2007 Apr - Sep 1% 4821 7344 

L5 winter 01/01/1999 01/01/2012 Oct - Mar 1% 2523 
 

Joined collection 
    

3812 
 

 

L8-S2 Start Stop Month span Cloud cover Records Tot records 

S2 summer 01/01/2018 01/01/2020 Apr - Sep 0.1% 14824 25403 

S2 winter 01/01/2016 01/01/2020 Oct - Mar 0.1% 10579 
 

L8 summer 01/01/2018 01/01/2020 Apr - Sep 1% 4141 7121 

L8 winter 01/01/2016 01/01/2020 Oct - Mar 1% 2980 
 

Joined collection 
    

4924 
 

 

L7-S2 Start Stop Month span Cloud cover Records Tot records 

S2 summer 01/01/2018 01/01/2020 Apr - Sep 0.1% 14824 25403 

S2 winter 01/01/2016 01/01/2020 Oct - Mar 0.1% 10579 
 

L7 summer 01/01/2018 01/01/2020 Apr - Sep 1% 3294 5275 

L7 winter 01/01/2016 01/01/2020 Oct - Mar 1% 1981 
 

Joined collection 
    

4520 
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4.2.3. Pixel masking 

At this point, the selected images were pixel-wise masked on the basis of 

the pixel quality assessment (QA) bitmask band. For Landsat products, it was 

generated from the CFMASK algorithm. The CFMASK derives from the 

Function of Mask (FMask), which is able to label the scene pixels as cloud, cloud 

shadow, cirrus, snow/ice or water, and provides a bit-mapped values output 

(Foga et al., 2017; Zhu and Woodcock, 2012). This product was used to remove 

high and medium confidence clouds, dilated clouds, cloud shadows, snow/ice 

and water pixels, in order to include in the analysis only clear land pixels. Only 

for L8 products, it was possible to mask also pixel marked as high confidence 

cirrus. 

The same process was performed for the S2 images by means of the Scene 

Classification map (SCL) quality assessment band, which, likewise the one for 

the Landsat products, labels the pixels on the basis of a classification process 

and thus allows the user to easily perform pixel-wise masking. High and 

medium probability clouds, cloud shadows, cirrus, water and snow/ice pixels 

were removed, accordingly with the masking process done for the Landsat 

products (Louis et al., 2010). 

Furthermore, saturated and out-of-range pixels were masked using the 

radiometric saturation quality assessment bands and valid value range. This 

means that all the saturated pixels and the pixels with a value of the vegetation 

index outside the range of interest, which is [0; 1] for NDVI, EVI and SAVI, and 

[-1; 1] for NDMI, were discarded. 

4.2.4. Image coupling, co-registration and reprojection 

The images, or portion of images, of two different sensors, filtered and 

masked as described above, which are spatially overlapping and acquired 
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within 24 hours, were paired, finely co-registered with each other, reprojected, 

to make sure the images shared the same coordinate reference system, and 

resampled at the coarsest resolution (30m). This was done to avoid differences 

in the VI values due to land cover changes, bad spatial overlap or differences in 

pixel size. 

Despite the maximum time difference of 24 hours between the two images 

of each pair, which should ensure no land cover changes occurred, there are still 

some pixels showing huge reflectance differences. Therefore, the paired images 

were further masked following the methodology proposed by Roy et al. (2016), 

which is based on the pixel-wise difference in the blue band values. However, 

using here images already corrected at surface reflectance, pixels with a 

difference greater than the 50% of the average were discarded. 

4.2.5. Sampling 

For computational limit reasons, cross sensors comparisons were not 

performed on the entire pixel population but on statistical samples randomly 

extracted from the population of valid pixels (after masking) belonging to the 

paired images. For each couple of sensors, samples were independently selected 

on a purely random basis. A statistical analysis was performed to assess the 

optimal sample size looking for a trade of between computational complexity 

and statistical significance.  

Different sample sizes (in the range between 1,000 and 500,000 pixels) 

were tested by repeating the extraction 100 times and evaluating the variance of 

the cross-sensors parameters (described in section 3.6). 

Figure 18 shows the analysis performed on the L7 and L8 NDVI pair, here 

presented as an example. As it can be seen from these plots, the decrease of the 
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variance with the increase of the sample size is asymptotic and higher number 

of pixels would result only in an unfruitful increase of the computational 

burden. The optimal sample size was therefore set to 300,000 pixels which 

corresponds – for the NDVI index – to a standard deviation of the linear 

regression coefficients lower than 0.0004 (i.e. intercept equal to 0.0002 and slope 

equal to 0.0003). 

 

Figure 18. Variation of RMA coefficients for L7 and L8 NDVI image pairs. (a) RMA intercept, slope 

and r2 coefficients values are plotted against the sample size; the colour ramp is defined by values 

frequency (points represented in yellow are those with the most frequent values). (b) Standard deviation 

of RMA intercept, slope and r2 coefficients for the 100 random extractions for each sample size. 

The case of the comparison between L5 and L7 is singular, because of the 

exceptionally long period in which both the satellites were contemporary 

operational. This circumstance offers the opportunity to further analyse the 

linear relationships, in particular to investigate possible fluctuations of the 

estimated coefficients during time. For this purpose, further samples of the 

same size were extracted, one for each year in the period 1999-2011. 

4.2.6. Cross-sensors analysis 

For each couple of sensors two Ordinary Least Square (OLS) regressions 

and a Reduced Major Axis (RMA) regression were computed. The OLS 



69 

 

regression allows to find a transformation function from a sensor to the other: 

the slope and intercept parameters change depending on which variable (i.e., 

which sensor) is defined as dependent or independent; thus, the OLS regression 

was performed twice, inverting dependent and independent variable each time, 

in order to provide transformation functions from a sensor to the other and vice 

versa (Roy et al., 2016). On the contrary, the RMA regression is performed only 

once, since the relationship between the interchanged variables can be obtained 

with a simple algebraic operation (Harper, 2016). In any case, it is assumed that 

both the dependent and independent variables are subject to errors, which is 

appropriate because of the possible residual errors that the data may have, such 

as atmospheric correction and sensor calibration errors (Chastain et al., 2019; 

Roy et al., 2016). 

The goodness of the fit of the regressions was evaluated with the 

coefficient of determination (r2), while the significance of the regressions was 

defined by the overall F-statistic p-value (Roy et al., 2016). 

In order to provide an overall measure of similarity between the datasets, 

three different difference metrics were derived as: 

∆̅= ∑
𝑣𝑖

𝐴−𝑣𝑖
𝐵

𝑛

𝑛
𝑖   ( 1 ) 

𝑅𝑀𝑆𝐷 =  √∑ (𝑣𝑖
𝐴𝑛

𝑖 −𝑣𝑖
𝐵)2

𝑛
     ( 2 ) 

∆̅∗=
∑ (𝑣𝑖

𝐴−𝑣𝑖
𝐵/0.5(𝑣𝑖

𝐴+𝑣𝑖
𝐵)∙100𝑛

𝑖

𝑛
    ( 3 ) 

where ∆̅, RMSD and ∆̅∗ are the mean difference, the root mean square 

deviation, and the mean relative difference between corresponding values of 

the generic sensor A and sensor B for 𝑛 pixels, respectively.  
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4.3. Results 

The results obtained from the comparison of the vegetation indexes 

derived from different sensors are reported in Table 9-12 and Figure 19-27, and 

they are organized by couple of sensors: OLI and MSI, ETM+ and MSI, ETM+ 

and OLI and TM and ETM+. As explained above, for every sensor couple the 

results are obtained through 100 independent extractions of 300,000 paired 

observations. These analyses highlighted both differences and similarities 

between these products and allowed to derive transformation coefficients to be 

used for a harmonised integration of the different datasets. 

4.3.1. OLI and MSI 

In Table 9 and Figure 19 the results of the analysis involving the OLI and 

MSI sensors are presented. Considering the paired observations collected 

between 2016 and 2020, the lowest mean difference between corresponding 

indices was found in the NDVI, equal to -0.0008, whilst the highest in NDMI, 

equal to 0.0245. The RMSD values are quite similar for all the VIs, ranging from 

0.0451 (SAVI) to 0.0586 (NDMI). All the regression models are highly 

significant, all showing r2 values higher than 0.90 (p-values < 0.0001). In this case 

the highest deviation from the slope identity is given by the EVI, with an RMA 

slope value equal to 1.0846. As expected, the computed coefficients of the 

regression are quite stable in the 100 independent sample extractions, as can be 

observed by the standard deviations reported in Table 9. Indeed, the slope 

coefficients of EVI show the highest standard deviation for the regression, 

having OLI as the independent variable (0.0007 for the OLS and 0.0006 for the 

RMA). 
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Figure 19. Scatterplots of the VIs for S2 MSI (vertical axis) against L8 OLI (horizontal axis): a) 

NDVI, b) EVI, c) SAVI, d) NDMI. The plot colours illustrate the frequency of VIs values with 

logarithmic scale. The solid lines show the three regression fits.  

Table 9. Vegetation indexes sensor transformation functions (OLI to MSI and MSI to OLI): slope and 

intercept with their standard deviations in brackets, r2 coefficient, Mean Difference (MD), Root Mean 

Square Deviation (RMSD), Mean Relative Difference (MRD). 

VI Regression 

type 

Linear transformation functions 

(slope and intercept) 

r2 

OLS 

MD 

(OLI - MSI) 

RMSD MRD  

(OLI - MSI) 

NDVI RMA MSI = 1.0709(±0.0004) OLI -0.0403(±0.0003) 0.9418 -0.0008 0.0571 1.8271 

OLS OLI = 0.9062(±0.0004) MSI +0.0536(±0.0003) 

OLS MSI = 1.0392(±0.0004) OLI -0.0219(±0.0003) 

EVI RMA MSI = 1.0846(±0.0006) OLI -0.0179(±0.0002) 0.9046 -0.0104 0.0550 -0.9331 

OLS OLI = 0.8769(±0.0005) MSI +0.0321(±0.0002) 

OLS MSI = 1.0316(±0.0007) OLI -0.0002(±0.0002) 

SAVI RMA MSI = 1.0613(±0.0005) OLI -0.0180(±0.0002)  0.9112 -0.0022 0.0451 1.1433 

OLS OLI = 0.8994(±0.0005) MSI +0.0312(±0.0002)  

OLS MSI = 1.0131(±0.0005) OLI -0.0021(±0.0002)  

NDMI RMA MSI = 1.0052(±0.0003) OLI -0.0251(±0.0001) 0.9418 0.0245 0.0586 1.2995 

OLS OLI = 0.9655(±0.0004) MSI +0.0278(±0.0001)  

OLS MSI = 0.9755(±0.0004) OLI -0.0216(±0.0001)  
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To evaluate the residuals of the transformations, the RMA coefficients 

were applied to all the sample pixels extracted from the OLI images to compute 

the equivalent MSI* values. The differences between the transformed VI values 

(MSI*) and the original values from the paired MSI are then computed and the 

histograms are shown in Figure 20. The means of these residuals are very low 

for every index (always lower then 0.00005). 

 

Figure 20. Residuals distribution of MSI and OLI applying the RMA coefficients (OLI independent 

variable) for NDVI (a), EVI (b), SAVI (c) and NDMI (d). Dashed red lines represent the mean values. 

4.3.2. ETM+ and MSI 

The comparison between ETM+ and MSI instruments acquisition are 

showed in Table 10 and Figure 21. The mean difference of the sampled values 

ranges from -0.0284 (EVI) to 0.0065 (NDMI). The RMSD ranges from 0.0469 

(SAVI) to 0.0600 (NDVI). The relative mean difference values are all quite low, 

ranging from 0.2367 (NDMI) to -7.4047 (EVI). The r2 values and p-values 
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indicate a high significance of the regression models (r2 > 0.92 and p-values < 

0.0001). The index with the highest deviation from slope identity is the EVI, with 

a slope value of 1.1045. 

 

Figure 21. Scatterplots for all of the vegetation indexes for S2 MSI (vertical axis) against L7 ETM+ 

(horizontal axis): a) NDVI, b) EVI, c) SAVI, d) NDMI. The plot colours illustrate the frequency of 

occurrence of VIs values with logarithmic scale. The solid lines show the three regression fits. 

Table 10. Vegetation indexes sensor transformation functions (ETM+ to MSI and MSI to ETM+): slope 

and intercept with their standard deviations in brackets, r2 coefficient, Mean Difference (MD), Root 

Mean Square Deviation (RMSD), Mean Relative Difference (MRD). 

VI Regression 

type 

Linear transformation functions 

(slope and intercept) 

r2 

OLS 

MD 

(ETM+ - 

MSI) 

RMSD MRD 

(ETM+ - 

MSI) 

NDVI RMA MSI = 1.0436(±0.0004) ETM+ -0.0018(±0.0003) 0.9441 -0.0221 0.0600 -3.4924 

OLS ETM+ = 0.9311(±0.0004) MSI +0.0172(±0.0003) 

OLS MSI = 1.0140(±0.0004) ETM+ +0.0144(±0.0003) 

EVI RMA MSI = 1.1045(±0.0006) ETM+ -0.0056(±0.0002) 0.9234 -0.0284 0.0588 -7.4044 

OLS ETM+ = 0.8701(±0.0005) MSI +0.0176(±0.0002) 

OLS MSI = 1.0614(±0.0006) ETM+ +0.0084(±0.0002) 
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SAVI RMA MSI = 1.0660(±0.0005) ETM+ -0.0014(±0.0001) 0.9262 -0.0196 0.0469 -5.4098 

OLS ETM+ = 0.9028(±0.0005) MSI +0.0132(±0.0001) 

OLS MSI = 1.0259(±0.0005) ETM+ +0.0114(±0.0002) 

NDMI RMA MSI = 1.0052(±0.0004) ETM+ -0.0070(±0.0001) 0.9434 0.0065 0.0534 -0.2367 

OLS ETM+ = 0.9663(±0.0004) MSI +0.0094(±0.0001) 

OLS MSI = 0.9763(±0.0004) ETM+ -0.0043(±0.0001) 

Also in this case, the RMA transformation was computed on all the samples, 

using ETM+ observations as independent variable. The residuals distribution 

and mean values are presented in Figure 22. 

 

Figure 22. Residuals distribution of MSI and ETM+ applying the RMA coefficients (ETM+ 

independent variable) for NDVI (a), EVI (b), SAVI (c) and NDMI (d). Dashed red lines represent the 

mean value. 

4.3.3. ETM+ and OLI 

The mean differences of the sampled ETM+ and OLI paired observations 

range from a minimum of 0.0147, for the EVI, to a maximum of 0.0345, for the 

NDVI. The RMSD values go from 0.0416 (SAVI) and 0.0655 (NDVI), while the 
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relative mean difference is lower than 9 for all the vegetation indexes (Table 11). 

The r2 values are very high for all the regressions, with values higher than 0.93. 

The significance of the regression is confirmed also by the very low values of 

the F-statistic p-value (p-value < 0.0001). The highest deviation from the slope 

identity is given by the NDVI, with a slope value equal to 1.0211. In this case the 

standard deviations on the coefficients are small (for the slope lower than 0.0007 

and for the intercept lower than 0.0003). 

 
Figure 23 Scatterplots for all of the vegetation indexes for L7 ETM+ (vertical axis) against Landsat 

OLI (horizontal axis). a) NDVI, b) EVI, c) SAVI, d) NDMI. The plot colours illustrate the frequency 

of occurrence of VIs values with logarithmic scale. The solid lines show the three regression fits.  
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Table 11. Vegetation Indexes sensor transformation functions (ETM+ to OLI and OLI to ETM+): slope 

and intercept with their standard deviations in brackets, r2 coefficient, Mean Difference (MD), Root 

Mean Square Deviation (RMSD), Mean Relative Difference (MRD). 

VI  Regression 

type 

Linear transformation functions 

(slope and intercept) 

r2 

OLS  

MD 

(OLI-

ETM+) 

RMSD  MRD  

(OLI-

ETM+) 

NDVI RMA ETM+ = 1.0211(±0.0003) OLI -0.0460(±0.0002) 0.9414 0.0345 0.0655 8.6098 

OLS OLI = 0.9502(±0.0003) ETM+ +0.0599(±0.0002) 

OLS ETM+ = 0.9907(±0.0004) OLI -0.0294(±0.0002) 

EVI RMA ETM+ = 0.9995(±0.0005) OLI -0.0146(±0.0001) 0.9324 0.0147 0.0455 6.6034 

OLS OLI = 0.9660(±0.0006) ETM+ +0.0248(±0.0001) 

OLS ETM+ = 0.9651(±0.0005) OLI -0.0038(±0.0001) 

SAVI RMA ETM+ = 1.0037(±0.0005) OLI -0.0202(±0.0001) 0.9376 0.0191 0.0416 8.2362 

OLS OLI = 0.9647(±0.0005) ETM+ +0.0294(±0.0001) 

OLS ETM+ = 0.9719(±0.0005) OLI -0.0104(±0.0001) 

NDMI RMA ETM+ = 0.9963(±0.0003) OLI -0.0247(±0.0001) 0.9492 0.0251 0.0583 0.2988 

OLS OLI = 0.9779(±0.0004) ETM+ +0.0265(±0.0001) 

OLS ETM+ = 0.9706(±0.0003) OLI -0.0224(±0.0001) 

 

Over all the samples, the transformed ETM* was computed by means of 

the RMA using OLI observations as independent variables. The residuals 

distributions and mean values are presented in Figure 24. 
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Figure 24 Residuals distribution of ETM+ and OLI applying the RMA coefficients (OLI independent 

variable) for NDVI (a), EVI (b), SAVI (c) and NDMI (d). Dashed red lines represent the mean value. 

4.3.4. TM and ETM+ 

The results of the comparison between TM and ETM+ are summarized in 

Table 12 and graphically displayed in Figure 25. The mean difference ranges 

from 0.0004 (EVI) to -0.0188 (NDVI), the RMSD from 0.0597 (EVI) to 0.0384 

(SAVI). The relative mean difference is lower than 4, in absolute value, for all 

the indexes. All the regression models show a high significance (r2 values > 0.92 

and p-value < 0.0001), and the model parameters are very small in magnitude. 

The NDVI is the one showing the highest deviation from the slope identity, with 

a slope value equal to 1.0377. 
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Figure 25 Scatterplots for all of the vegetation indexes for L7 ETM+ (vertical axis) against L5 TM 

(horizontal axis): a) NDVI, b) EVI, c) SAVI, d) NDMI. The plot colours illustrate the frequency of 

occurrence of VIs values with logarithmic scale. The solid lines show the three regression fits. 

Table 12. Vegetation Indexes sensor transformation functions (TM to ETM+ and ETM+ to TM): slope 

and intercept with their standard deviations in brackets, r2 coefficient, Mean Difference (MD), Root 

Mean Square Deviation (RMSD), Mean Relative Difference (MRD). 

VI Regression 

type 

Linear transformation functions 

(slope and intercept) 

r2 

OLS 

MD  

(TM – 

ETM+) 

RMSD MRD (TM- 

ETM+) 

NDVI RMA ETM+ = 1.0377(±0.0003) TM +0.0010(±0.0002) 0.9389 -0.0188 0.0597 -3.7774 

OLS TM = 0.9338(±0.0003) ETM+ +0.0137(±0.0002) 

OLS ETM+ = 1.0055(±0.0004) TM +0.0162(±0.0002) 

EVI RMA ETM+ = 0.9929(±0.0005) TM +0.0016(±0.0001) 0.9200 0.0004 0.0464 0.1843 

OLS TM = 0.9660(±0.0006) ETM+ +0.0102(±0.0001) 

OLS ETM+ = 0.9524(±0.0006) TM +0.0132(±0.0002) 

SAVI RMA ETM+ = 1.0054(±0.0004) TM +0.0018(±0.0001) 0.9303 -0.0033 0.0384 -1.2528 

OLS TM = 0.9594(±0.0005) ETM+ +0.0081(±0.0001) 

OLS ETM+ = 0.9697(±0.0005) TM +0.0117(±0.0001) 

NDMI RMA ETM+ = 1.0138(±0.0004) TM +0.0058(±0.0001) 0.9312 -0.0066 0.0571 -1.5781 

OLS TM = 0.9518(±0.0004) ETM+ -0.0036(±0.0001) 

OLS ETM+ = 0.9783(±0.0004) TM +0.0077(±0.0001) 
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Again, for all the samples the transformed ETM* VIs were computed by 

the RMA using TM observations as independent variables. The residuals 

distribution and mean values are presented in Figure 26. 

 

Figure 26 Residuals distribution of ETM+ and TM applying the RMA coefficients (OLI independent 

variable) for NDVI (a), EVI (b), SAVI (c) and NDMI (d). Dashed red lines represent the mean value. 

4.3.5. Time 

Thanks to the longer period of contemporary acquisitions of these two 

sensors, an additional analysis was performed here to investigate the stability 

over time of the computed parameters for the transformations. Figure 27 shows 

the intercepts and slopes of the RMA transformations computed for all the VIs, 

but using 12 samples extracted in different years (between 1999 and 2011). A 

sensible fluctuation of the values can be noted, even though no apparent trends 

are detectable. 
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Figure 27. RMA intercept (a, c, e, g) and slope (b, d, f, h) coefficients computed for each VI on yearly 

samples of L5 and L7 paired observations. The red lines represent the coefficients resulting from the 

RMA computed within the entire period (from Table 12). 

4.4. Discussion 

In general, the presented results confirmed the data continuity expected 

from Landsat Collection-2. Furthermore, the calculated statistics validated its 

interoperability with the S2 mission. Indeed, the linear regression functions 

computed for each sensor pair showed a good agreement between the values of 

the indices, with r2 always greater than 0.9 and the great majority of pairs falling 

close to the bisector of the scatter plots. Nevertheless, the application of a 

transformation seems advisable, when trying assessing changes and detecting 

anomalies in multi-sensor time-series analyses. Considering for example the 

NDVI computed on ETM+ and TM (Table 12), a sensible improvement is 

observed in the MD (from -0.0188 to 0.00005 with the transformation). 

Observing the graphs in Figure 19, Figure 21, Figure 23 and Figure 25, two 

considerations can be made. EVI and SAVI are actually able to reduce noise and 
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saturation compared to the NDVI. NDVI observations, indeed, are the most 

disperse with respect to the linear function fits. This is confirmed by the values 

reported in Table 9, Table 10, Table 11 and Table 12 in which the NDVI 

difference metrics are higher, compared to the other indices, almost for every 

sensors pair. Furthermore, EVI and SAVI sample density is higher for lower 

values of the indexes, while NDVI is more homogeneously distributed along 

the entire range, showing a great concentration also for very high values of the 

index. Thus, EVI and SAVI effectively reduce the band saturations visible in 

NDVI. In addition, the NDVI scatter is the most asymmetric with respect to its 

linear regression lines: this is especially true when L7 ETM+ is considered. 

Generally, the NDMI performs similarly to the other indices, despite the fact 

that the SWIR bands – which are the ones with the lowest overlap in the spectral 

response function (Chastain et al., 2019) – are involved.  

A direct comparison of the coefficients of the linear transformations 

proposed here with analogous values published in previous works is 

problematic, because in many cases the estimation is based on limited samples 

(Li et al., 2013; Mandanici and Bitelli, 2016), or using different regression 

algorithms (Cao et al., 2022), or on limited timespan (Mancino et al., 2020). On 

the other hand, the observed RMSEs are similar. The coefficient proposed here 

are averaged among 100 random extractions of a very large number of pixels 

and the obtained standard deviations are relatively small, proving the 

robustness of the solution. For example, a standard deviation by 0.0003 for the 

slope coefficient of the NDVI in Table 12 means a variation of 0.00015 on the 

corrected index, when the original value is 0.5. 

More sensible fluctuations emerge instead from the analysis performed 

year by year when comparing ETM+ with TM. Indeed, their entity is one order 



82 

 

of magnitude higher than the standard deviations observed in the 100 

extractions over the full period considered as a unique population. Observing 

the charts of Figure 27, it seems not possible to ascertain a common trend, nor a 

clear periodical oscillation. One possible justification for these fluctuations may 

be sought in the orbit drifting of L5. As pointed out by Roy et al. (2020), L5 orbit 

was not maintained consistently over years, and a temporal pattern of 

increasing and then decreasing overpass times were observed, as the orbit was 

adjusted by periodic station keeping manoeuvres. These resulted in changes in 

the illumination geometry at the moment of acquisition in a place. Anyway, 

further investigations are necessary to clarify this specific issue. 

As a final remark, using all the considered sensors together appears 

beneficial for two main scenarios: firstly, the creation of a very long TS from 

1984 to present (for example for climate change related studies), and, secondly, 

the generation of a dramatically denser TS henceforth (for near real-time 

monitoring applications). In both the cases, when assembling the TS including 

all these sensors, the estimated linear transformations can be used to produce a 

harmonized dataset. Due to its operational timespan, the authors recommend 

using L7 as the common reference and harmonizing all the other sensors with 

it. 
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Chapter 5 

5.Preliminary assessment on Landsat-9 

for a combined use 

After its successful launch in September 2021 and a calibration period, 

Landsat-9 data were made available for download for the first time on February 

15, 2022. This new dataset increases as never before the number of Landsat-like 

satellites in orbit, representing a great potential for data availability and 

suitability for several applications. Indeed, as evidenced by the study of Li and 

Chen (2020), the combined use of Landsat-9 in a virtual constellation with 

Landsat-8 still operating and the twin Sentinel-2 satellites allows to reach a 2.3 

days revisit time. This achievement is vital for users requiring cloud-free data 

for monitoring purposes, providing more than three observations per week. 

Moreover, being a new mission, in order to use Landsat-9 data in a proper and 

aware way, there is the need for calibration as well as validation of its 

observations and data products. 

Therefore, the present study addressed both the following research 

questions: the need for assessment of the quality of these observations, together 
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with the assessment of the consistency within Landsat-9 and its similar ongoing 

satellite measurements. 

In order to achieve these purposes, the present study compared Landsat-

9 OLI-2, Landsat-8 OLI and Sentinel-2 MSI observations with in situ 

measurements. In particular, from a practical point of view, the research was 

designed following two phases, assessing different aspects of the quality and 

interoperability of these products. Firstly, the assessment was performed by 

means of spectroradiometer surveys on the ground, collecting spectral 

signatures in a time window centred at the satellites acquisition time. This 

analysis was conducted on two test sites in Emilia-Romagna, Italy. Secondly, a 

cross-comparison analysis of almost synchronous acquisition by S2, L9 and L8 

was performed over Europe. Both the study included the Top of Atmosphere 

and the Bottom of Atmosphere products for evaluation. 

5.1. Local comparison with in-field survey 

5.1.1. Survey design 

Firstly, in order to compare the spectral response of different sensors, one 

with each other as well as with in situ data, a survey campaign was conducted 

with a spectroradiometer. These surveys took place over specific dates and 

geographical locations. The areas were selected to be those where the orbits of 

Landsat-9, Landsat-8 and Sentinel-2A/B overlapped. In addition, the selected 

dates were those where scenes were acquired within a maximum interval of 48 

hours by the three instruments, but with only a 24-hour interval between the 

acquisition of L9 and that of each of the other two. Based on these requirements, 

and practical and logistic reasons, two areas of interest (AOIs) were selected 

(Figure 28). These areas are located in the Emilia-Romagna region, one in the 
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province of Reggio-Emilia and the other is in the area around the city of 

Ravenna, which includes Adriatic coastal areas. The two AOIs are situated in 

the Po river valley, which is mainly characterised by intense agricultural 

activities. 

 

Figure 28 Sentinel-2, Landsat-8/9 overlapping footprint in the Emilia-Romagna region in Italy 

Inside the selected overlapping footprints, homogeneous surfaces of at 

least 120x120 m2 were identified as possible survey locations. The surface extent 

parameter came from the need to address the cubic convolution (CC) applied 

during the orthorectification processing to produce the Level-1 data. Indeed, CC 

introduces a smoothing effect in the image over a heterogeneous area, by 

introducing a contamination in the DNs due to heterogeneous surrounding 

pixels. By isolating 120x120 m2 surfaces, which corresponds to a 4x4 Landsat 

pixels, the pixels in the middle should be less affected by this numeric effect. 

The selected thresholding extent represents a trade-off between having 

homogeneous surfaces and those actually available in the area: Po river basin is 

characterized by intense agricultural activity which leads to the high 
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fragmentation of the countryside. Moreover, the surveys aim to collect the 

spectral signature of different types of surface, both anthropic and natural. 

Therefore, a preliminary analysis of the feasibility of the survey was conducted: 

the different locations, satisfying these requirements, had to be close to each 

other allowing to reach one site to the other within a time range of a maximum 

of 2 hours, to meet the temporal window of satellite acquisition. This time 

window represents a trade-off between the need to limit as much as possible 

the illumination condition variation and the need of collecting a sufficient 

number of spectra. Finally, these locations needed to be open and accessible to 

public. Based on all these requirements, the seventeen points finally selected are 

shown in Figure 29.  

 

Figure 29 Location of surveys and their land cover. 
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Table 13 provides a summary of the “Contemporary Overlap Events” 

(COE) that occurred in the Emilia-Romagna region, i.e. when Sentinel-2, 

Landsat-8 and Landsat-9 captured the same site within 24h one to the others. 

COEs reported in Table 13 (where they are identified with a letter) are those 

when, thanks to cloud-free weather conditions, the spectroradiometer surveys 

on the field were possible. The campaign was conducted from March to May. 

For each COE, spectral signatures were collected on the ground in a temporal 

window of about 2 hours around the satellite’s overpass. Table 14 summarizes 

the temporal and geographic configuration of the surveys, providing 

information on the surveyed surfaces.  

 

COE Zone Data Sensor Orbit id Path/Row Time (UTC) 

A Reggio Emilia  
4/03/2022 

Landsat 9   193/29 10:04 

Sentinel 2 22-T32TPQ   10:10 

5/03/2022 Landsat 8   192/29 09:58 

B Reggio Emilia  

28/04/2022 Sentinel 2 22-T32TPQ   10:06 

29/04/2022 Landsat 8   193/29 10:04 

30/04/2022 Landsat 9    192/29 09:58 

C Ravenna 
21/03/2022 

Landsat 8   192/29 09:58 

Sentinel 2 122-T32TQQ   10:00 

22/03/2022 Landsat 9   191/29 09:52 

D Ravenna 

15/05/2022 Sentinel 2 122-T32TQQ   10:00 

16/05/2022 Landsat 9   192/29 09:58 

17/05/2022 Landsat 8   191/29 09:52 

Table 13. Contemporary Overlap Events details: date, platform and time of overpass over the same area. 
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zone id Land Cover Coordinate COE 
Survey time 

(UTC + 1) 

Survey 

date 
R

eg
g

io
 E

m
il

ia
 

M1 Turf 
44° 33' 47.809" N 

10° 46' 13.427" E 
A 11:49-11:57 03/03/2022 

M2 Maize 
44° 34' 21.144" N 

10° 45' 41.907" E 
A 12:11-12:32 03/03/2022 

P3 Asphalt 
44° 43' 59.729" N 

10° 38' 44.300" E 
A 10:45-10:52 04/03/2022 

P4 Ploughed field 
44° 39' 34.669" N 

10° 44' 51.921" E 

A 11:31-11:38 04/03/2022 

B 11:49-11:55 29/04/2022 

M4 Graved 
44° 35' 23.309" N 

10° 46' 46.399" E 
A 10:24-10:43 03/03/2022 

P6 Grass 
44° 38' 15.378" N 

10° 44' 23.771" E 
B 11:38-11:40 29/04/2022 

P8 Canola 
44° 36' 4.810" N 

10° 45' 24.441" E 
B 10:16-10:25 29/04/2022 

P9 Alfalfa 
44° 37' 6.201" N 

10° 45' 35.210" E 
B 10:44-10:51 29/04/2022 

P10 Ploughed field 
44° 37' 32.387" N 

10° 45' 38.616" E 
B 11:07-11:14 29/04/2022 

P11 Alfalfa 
44° 37' 20.648" N 

10° 45' 41.139" E 
B 11:18-11:26 29/04/2022 

R
av

en
n

a
 

C1 Asphalt 
44° 11' 54.303" N 

12° 4' 23.679" E 
D 10:27-10:32 16/05/2022 

C3 Ploughed field 
44° 14' 12.587" N 

12° 7' 14.461" E 

C 10:32-10:39 21/03/2022 

D 11:11-11:24 16/05/2022 

C4 Grass 
44° 14' 10.775" N 

12° 7' 14.461" E 
C 10:47-10:53 21/03/2022 

C8 Water 
44° 15' 33.202" N 

12° 21' 51.319" E 
D 12:12-12:16 16/05/2022 

C8 Sand 
44° 15' 29.993" N 

12° 21' 43.137" E 
D 12:00-12:06 16/05/2022 

C10 Carrots 
44° 14' 21.412" N 

12° 6' 9.982" E 

C 10:16-10:22 21/05/2022 

D 10:51-10:56 16/05/2022 

C12 Salt marshes 
44° 14' 52.927" N 

12° 19' 37.731" E 
C 11:34-11:49 21/05/2022 

Table 14 Contemporary Overpass Event (COE) with location, date (dd/mm/yyyy) and time (UTC +1) of surveys 

5.1.2. Spectroradiometer Survey 

The spectroradiometer used in the survey is the SVC HR-768i by Spectra 

Vista Corsporation. The instrument records spectra in the wavelength range 

between 350 and 2500 nm with a high spectral resolution (768 channels). Details 

about the instrument characteristics can be found in Figure 30a and in (Spectra 

Vista Corporation - SVC, 2019)  
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Figure 30 a) Spectroradiometer SVC HR-768i specifications; b) spectral signature as recorded by the 

spectroradiometer and displayed in the associated device; c) in situ measurement over an ploughed 

field 

For every location, several measurements were performed. Firstly, at the  

beginning and at the end of every measurements set, the spectral response 

of a specific calibrated panel with known scattering properties diffusion was 

recorded. The panel is made of Spectralon, a fluoropolymer with a very high 

reflectance close to 100% in all the wavelengths range of interest. It represents a 

good approximation of a Lambertian surface. This operation is vital to retrieve 

illumination conditions needed in the post processing to compute the surface 

reflectance of investigated target (Figure 31a). Secondly, four measurements 

with different inclination in the nadir direction were performed to take into 

account the BRDF (Roitberg et al., 2022), as shown in the schema of Figure 31b.  
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Figure 31 Schematic representation of surveying methodology a) Irradiance measurements using a 

Radiance spectroradiometer and reference panel; b) schematic example of off-nadir measurements for bi-

directional reflectance factors. Source: (Spectra Vista Corporation - SVC, 2019) 

5.1.3. Spectral signature processing  

The collected spectral signatures underwent some pre-processing. The 

spectral reflectance of the target is obtained by dividing the radiance measured 

directly on the target surface by the one measured onto the reference panel 

(Figure 31a). The so obtained spectral signatures were resampled to the spectral 

resolution of Landsat-9 OLI-2, Landsat-8 OLI and Sentinel-2 MSI, using the 

relative spectral response function of the sensor. In Figure 32 an example of the 

resampling results is shown.  This procedure allows to compare these in situ 

measurements with satellite observations, in particular the Level-2 images 

which provide atmospherically corrected information (i.e. as if they were 

collected on the ground and atmosphere in the sun-target-instrument path was 

not present). The spectral angle mapper (SAM) was used to quantify the 

similarity between the spectroradiometer derived signatures with the 

signatures extracted from the pixels in the image corresponding to the same 

location (Kruse et al., 1993). Indeed, the signatures extracted from the image 
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were compared with every spectra acquired on the ground, computing a SAM 

for every inclinations of the instrument (Figure 31b). The SAM algorithm 

calculates the angular distance between two positional vectors, which 

synthetize the two spectral signatures in the feature space. The smaller this 

angle, the more similar the two compared spectra are. 

 

Figure 32. Spectral resolution of in situ measurements against the Landsat-9 and Sentinel-2 

instruments. Comparison of the spectral signature originally recorded by the spectroradiometer (grey 

line) with its resampling as if it was collected by the OLI-2 (dashed blue line) and the MSI sensor (red 

line). 

5.1.4. Image-to-image preliminary assessment 

Moreover, referring to the COE acquisitions reported in Table 13, a 

preliminary image to image comparison was performed to assess the Landsat-

9 and Sentinel-2 interoperability. Firstly, the geometric images coregistration 

was verified. The assessment was performed by automatic tie points generation 

algorithm based on images correlations statistics. Thanks to the Landsat 

Collection-2 reprocessing, which rebasilined Landsat GCPs to those provided 
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in the Sentinel-2 Global Reference Image (as mentioned in Chapter 2), an high 

consistency was expected (U.S. Geological Survey, 2021b).  

Secondly, a first spectral evaluation was conducted by comparing image 

to image bands differences, considering both TOA and BOA datasets. 

5.2. Cross-sensors comparison at continent level 

5.2.1. Materials 

Landsat-9, Landsat-8 and Sentinel-2 BOA and TOA products were 

compared. For details about the spectral and geometric characteristics of these 

dataset, refers to Chapter 1, while information regarding Level-1, Level-2 

Surface reflectance products by Landsat and Level-1C and Level-2A products 

by Sentinel-2 can be found in Chapter 2.1 and Chapter 2.2 respectively. By 

comparing their spectral characteristics, six band were selected as the most 

similar to perform the cross-sensors analysis (Chastain et al., 2019). These are 

Blue, Green, Red, NIR, SWIR1 and SWIR2 bands. Indeed, the percentage of 

overlap in per-band SRF among the Sentinel-2 MSI and Landsat OLI were 

estimated as follows by Chastain et al.: Blue 79.2%,Green 99.5%, Red 78.1%, NIR 

(Band-8a) 98.8%, SWIR1 89.7% and SWIR2 92.2% (Chastain et al., 2019). Table 

15 provides a comparison of the spectral wavelength of the considered sensors. 

As discussed in Chapter 1 and Chapter 2, the main differences between 

sensors observations may derive from different geometry acquisition and 

atmospheric corrections algorithms applied in the Level-2 products. The first is 

caused by different orbits and sensing times, resulting in measurements of the 

electromagnetic energy from distinct viewpoints and varying solar illumination 

conditions. Landsat-8 and Landsat-9 orbit around the Earth at a nominal 

altitude of 705 km, crossing the equator on the descending node at 10:00 (±15 
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minutes) a.m. Mean Local Time (MLT), with a revisit cycle of 16 days each (8 

days considering both platforms). On the other hand, the orbit of Sentinel-2 

satellites is 786 km high and crosses the equator at 10:30 a.m. (± 15 min) Mean 

Local Solar Time (MLST) at the descending node (ESA, 2015).   

Landsat-8 OLI Landsat-9 OLI-2 Sentinel-2 MSI 

Bands Wavelength 

(µm) 

Res. 

(m) 

Bands Wavelength 

(µm) 

Res. 

(m) 

Bands Wavelength 

(µm) 

Res. 

(m) 

B2 Blue 0.452 - 

0.512 

30 B2 Blue 0.45 - 0.51 30 B2 Blue 0.435 - 0.451 10 

B3 Green 0.533 - 

0.590 

30 B2 Green 0.533 - 

0.590 

30 B3 Green 0.452 - 0.512 10 

B4 Red 0.636 - 

0.673 

30 B3 Red 0.636 - 

0.673 

30 B4 Red 0.533 - 0.590 10 

B5 NIR 0.851 - 

0.879 

30 B5 NIR 0.851 - 

0.879 

30 B8a NIR 0.851 - 0.879 20 

B6 SWIR-1 1.566 - 

1.651 

30 B6 SWIR-1 1.566 - 

1.651 

30 B11 SWIR-1 1.566 - 1.651 20 

B7 SWIR-2 2.107 - 

2.294 

30 B7 SWIR-2 2.107 - 

2.294 

30 B12 SWIR-2 2.107 - 2.294 20 

Table 15. Comparison of the similar spectral bands of the MSI, OLI-2 and OLI instruments 

Beside these elements affecting data acquisition, as described in Chapter 

2, to produce Level-2 products two different atmospheric correction algorithm 

are applied involving different ancillary datasets (see Chapter 2 for details). 

Senitnel-2 Level-2A dataset is produced by means of the Sen2Cor algorithm, 

while the Land Surface Reflectance Code (LaSRC) algorithm (Version 1.5.0) is 

used to correct scenes acquired by Landsat-9/8 platforms (Main-Knorn et al., 

2017; Vermote et al., 2016a).  

Another aspect to point out regards the different initial radiometric 

resolution due to the quantization of acquired images assigned to each satellite. 

Indeed, OLI and MSI acquire and store information as a 12-bit digital image, 

allowing a radiometric resolution per pixel in the range of 0 to 4,095 potential 

values; while OLI-2 stores information as a 14-bit digital image, increasing 

resolution of a maximum range of 16,383 values. Finally, all the products are 
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delivered as 16-bit digital images, redistributing the original DNs in the new 

range of 65,535 possible values (ESA, 2015; U.S. Geological Survey, 2022a, 

2019b). Clearly, in the present study all the images were converted to physical 

units of reflectance with values ranging between 0 and 1. 

In this study were analysed the TOA and BOA datasets available through 

the Google Earth Engine data catalog (Gorelick et al., 2017). It included: the 

Landsat-9 and Landsat-8 Collection-2 Tier-1 TOA and Surface Reflectance (SR) 

as well as the Sentinel-2 TOA and SR harmonized collection. This harmonized 

collection takes into account the shift in DN introduced with the processing 

baseline 04.00 and corrects all the new scenes, identified with this baseline, to 

provide all the images in the archive in the same data range (ESA - European 

Space Agency, 2015). 

In addition to these datasets, the land cover information was included in 

the analysis. With this purpose, the Dynamic World Land Use Land Cover 

(LULC) developed by Brown et al. (2022) and available in the GEE data catalog 

was used. It provides a 10 m LULC map, obtained from the classification of 

every Sentinel-2 image available from 27 June 2015 to present. In other words, 

in the GEE catalog there is a Dynamic World LULC layer associated with every 

S2 image, providing information about the land cover/use on the ground at the 

time of acquisition of the satellite. The deep-learning classification produces a 

thematic map with the following classes:  water, trees, grass, flooded vegetation, 

crops, shrub and scrub, built area, bare ground, snow and ice. This dataset was 

selected for its high spatial revolution and because it provides a LULC 

temporally coherent with every Sentinel-2 image used in the study. 
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5.2.2. Methodology 

The spectral bands of the OLI-2 were compared with their corresponding 

ones from both the MSI and OLI sensors (Table 15). The sensors were compared 

in pairs, by randomly sampling the pixel values from triplets of overlapping 

images sensed with a maximum delay of one day from the Landsat-9 

acquisition, as detailed in the following sections. In order to perform the entire 

data pre-processing and extraction, a workflow was implemented in the Google 

Earth Engine (GEE) platform through the Javascript API. While the final 

statistical analysis on sampled data was performed in Python environment. 

5.2.2.1. Study area 

The analysis was performed over the entire European continent. The total 

area was tiled into subregions in order to reduce as much as possible the 

computational burden. Since the reliability of the SR reflectance products is 

ensured for a latitude lower than 65° (see Chapter 2), the analysis excluded 

regions at higher latitude (Figure 33). 

 

Figure 33 Area covered by the cross-sensors comparison and distribution of random sampling. 

Basemap: Sentinel-2 cloudless - https://s2maps.eu by EOX IT Services GmbH (Contains modified 

Copernicus Sentinel data 2020) 
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5.2.2.2. Data gathering and preparation 

The data extraction used for the statistical analysis was performed in the 

Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017).  

First of all, the three sensors scenes archives were filtered separately based 

on metadata information, which includes time, space and cloud cover. For each 

collection all the images acquired between the 1 February 2022 until December 

2022, over Europe, with a cloud coverage lower than 15% were selected. The 

study was based on the idea of comparing the best scene available, but 

considering the recent launch of Landsat 9 the analysis had to be restricted to a 

11 months period. Therefore, the cloud coverage threshold was increased, when 

compared with the previous study in Chapter 4, to gather a sufficient number 

of images in the analysis. See Table 16 for the total records of images available 

with the time, space and cloud coverage requirements. Moreover, every 

Sentinel-2 image was joined with the associated LULC provided by the 

Dynamic World V1 dataset. 

Collection Start Stop Cloud cover Records 

Landsat-8 OLI Feb 2022 Dec 2022 15% 3826 

Landsat-9 OLI-2 Feb 2022 Dec 2022 15% 3765 

Sentinel-2 MSI Feb 2022 Dec 2022 15% 48664 

Table 16 Records of all Landsat-8/9 and Sentinel-2 images available in Europe, with a cloud coverage lower than 15%  from 

February to December 2022. 

At this point, the selected images were pixel-wise masked using the pixel 

quality assessment (QA) bitmask band. In Landsat Collections, QA layer, 

obtained  with the CFMASK algorithm (details can be found in Foga et al. 

(2017)), labels the scene pixels as cloud, cloud shadow, cirrus, snow/ice or water, 

and provides a bit-mapped values output (Foga et al., 2017; Zhu and Woodcock, 

2012). This product was used to remove high and medium confidence clouds, 
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dilated clouds, cloud shadows, high confidence cirrus, snow/ice and water 

pixels.  

The same masking process was performed on the S2 images by means of 

the Scene Classification map (SCL) quality assessment band, which, likewise the 

Landsat QA products, labels the pixels on the basis of a classification process 

and allows to easily perform pixel-wise masking. High and medium probability 

clouds, cloud shadows, cirrus, water and snow/ice pixels were removed, 

accordingly with the masking process done for the Landsat products (Louis et 

al., 2010).  In addition, saturated and out-of-range pixels were masked out 

thanks to the radiometric saturation quality assessment bands and valid value 

range. 

5.2.2.3. Image pairing, co-registration and reprojection 

Firstly, Landsat-8/Landsat-9 and Sentinel-2/Landsat-9 images were 

coupled. The images, or portion of images, of two different sensors, filtered and 

masked as described above, which are spatially overlapping and acquired 

within 24 hours, were paired, finely co-registered with each other, reprojected, 

to make sure the images shared the same coordinate reference system, and 

resampled at Landsat-9 30 m pixel resolution. In fact, in these operations the 

paired Landsat-9 image was used as reference grid. While Sentinel-2 was 

resampled by computing the mean values of the original 10 or 20 m pixels, since 

the land cover band is made of 10 m pixel with integer values identifying 

thematic classes, the resampling to the coarser resolution of 30 m was performed 

using the mode statistics.  

At this point, an additional mask was calculated to take into account any 

possible change in land cover that occurred between the two acquisitions of the 
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paired images (maximum distance of 24 hours). The mask was calculated on the 

pixel-wise difference in the blue band values, following the methodology 

proposed by Roy et al. (2016). Pixels with a difference in the blue greater than 

the 50% of their mean were discarded. It was assumed that such a change in the 

blue can be caused by surface changes or by the presence of undetected clouds 

and therefore masked out from the analysis. 

Finally, the two paired collections were merged together through an inner 

join operation, selecting those L8/L9 and S2/L9 pairs sharing the same Landsat-

9 image. This resulting collection is made of triplets of images acquired in the 

same area by Landsat-8, Sentinel-2 and Landsat-9, where L8 and S2 were 

acquired at a maximum distance of 1 day from the L9 resulting in a total 

maximum distance of two days in the triplet.  

The previously computed mask for the L8/L9 and S2/L9 pairs were 

multiplied to obtain a single mask that keeps in the analysis only the pixel with 

valid value in all the images. 

5.2.2.4. Data sampling 

As described for the study presented in Chapter 4, the cross sensors 

comparison was performed on randomly selected unmasked pixel, instead of 

using the entire valid pixel population, which would result in an excessive 

computational burden, samples were independently selected on a random 

basis. A stratified sampling approach was applied based on the land cover 

classes, in order to extract a representative sample from each class. The 

statistical analysis performed in Chapter 4 assessing the optimal sample size 

demonstrated that significant and stable results are given with a size greater 

than 250,000 observations. At the end, 30 independent extraction of 270,000 
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sample pixels were performed. For every pixel, Blue, Green, Red, NIR, SWIR1, 

SWIR2 bands were gathered for the Landsat-8/9 and Sentinel-2 both TOA and 

SR datasets. 

With the so extracted samples, for each product level (TOA and BOA) 

bands difference of Landsat-8/9 and Sentinel-2/Landsat-9 of almost 

synchronous observation were computed and compared. 

5.2.2.5. Cross-sensors analysis 

Following the methodology described in the previous chapter, a cross-

sensors analysis was performed between Sentinel-2/Landsat-9 and Landsat-8/9. 

In this case just the atmospherically corrected products were considered. For 

each couple of sensors (S2/L9 and L8/L9) two Ordinary Least Square (OLS) 

regressions and a Reduced Major Axis (RMA) regression were computed. See 

Chapter 4 for more details about the regression models. 

The goodness of the fit of the regression models was evaluated with the 

coefficient of determination (r2), while the regressions significance was defined 

by the overall F-statistic p-value (Roy et al., 2016). The similarity of the sampled 

pair values was quantifies using the parameters described in Chapter 4: Mean 

Difference (MD), the Root Mean Square Deviation (RMSD), and the mean 

relative difference (MRD). 

5.3.  Example of the impact of harmonization on time series analysis 

A final experiment was performed to verify the impact of using 

harmonization coefficients in a multi constellation time series on an anomaly 

detection algorithm. The procedure was implemented in GEE and tested in the 

same area of the COE A, but in this case all the images available were used, with 
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a cloud coverage lower than 40% and the clouds, cirrus and shadows pixels 

masked out. 

For the pixel corresponding to P3 site (asphalt) a time series (TS) of NDVI 

including both L9 and S2 imagery was created, one without any harmonization 

and the other by applying the harmonization coefficient previously computed. 

P3 was selected to perform the test since it is an anthropic surface which is 

expected to be coherent through time. 

These TS were then analysed with the Bayesian Ensemble Algorithm for 

Change-Point Detection and Time Series Decomposition BEAST (Zhao et al., 

2019). It derives the seasonality and trend components from the TS and it 

computes the probability of having an abrupt change. Refer to Zhao et al. (2019) 

for a detailed explanation of the algorithm. In this study, the BEAST was applied 

to test harmonized and not harmonized TS, by comparing the algorithm’s 

output in terms of the number of detected changing points in the TS and their 

probability.  

5.4. Results 

5.4.1. In situ survey and local analysis 

The image to image comparison has been performed on data summarized 

in Table 14 for a preliminary assessment of the new Landsat-9 acquisitions on a 

local scale.  

From a geometric point of view, the registration between Landsat-9 and 

Sentinel-2 contemporaneous acquisition was verified as expected. Two 

examples are here presented, based on images collected over the Reggio Emilia 

AOI on the 04 March 2022 and over Ravenna on the 15 (S2) and 16 (L9) May 

2022. As summarized in Table 17, the distance in X and Y directions between 
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the two grids was assessed and resulted in a mean Euclidean distance always 

lower than the 30 m pixel dimension. This is verified for both the products 

levels. The worst alignment resulted to be that computed for the S2 and L9 

Level-1 acquired in the Ravenna area and quantified in 0.7 pixel. At the same 

time, for the same pair the shortest distance was registered (0.46 pixel) but with 

the highest Standard deviation over the entire image. This might be due to the 

nature of the earth surface captured in the image: a coastal area, where a 

consistent portion of the surface in the scene is the sea. 

Reggio Emilia  

04.03.2022 

X difference [m] Y difference [m] Euclidean distance [m] 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev 

Level-1 (TOA) 15.13  1.28 -7.94 7.21 18.31 3.24 

Level-2 (BOA) 15.17 3.80 -7.89 8.01 18.72 4.54 

       

Ravenna  

15-16.05.2022 

X difference [m] Y difference [m] Euclidean distance [m] 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev 

Level-1 (TOA) 12.97 7.53 -15.67 2.19 21.06 5.62 

Level-2 (BOA) 8.04 5.24 -9.51 8.12 13.75 7.72 

Table 17 Results of the coregistration assessment between Landsat-9 and Sentinel-2 image 

From a radiometric point of view, the Landsat-9 and Sentinel-2 were 

compared. Figure 34 compares the Relative Spectral Response Functions (RSRF) 

in the NIR bands of the Sentinel-2 MSI and Landsat-9 OLI-2 sensors.  
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Figure 34 Comparison of relative the spectral response functions in the Red bands of the Sentinel-2 

MSI and Landsat-9 OLI-2 

Analysing the results obtained from image to image difference on the 

common bands (Figure 35 shows, as an example, the results for the Red band 

computed on the S2/L9 images of the 4 March 2022), it can be observed that the 

difference is higher in the BOA Level-2 products rather than in the TOA ones, 

since the standard deviation increases. For example, referring to Figure 35, the 

standard deviation for the BOA difference is twice the TOA one, they are 0.0266 

and 0.0160 respectively. As discussed above in this chapter and in previous 

ones, this is probably caused by different atmospheric correction algorithms, 

estimating atmosphere parameters from different datasets and introducing 

discrepancies in the two sensors observations. However these differences can 

be considered low, and are always lower than the declared radiometric 

accuracy, which is ± 5% for Sentinel and ± 3% for Landsat (ESA - European Space 

Agency, 2022). 
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Figure 35. Comparison between difference of Landsat-9 OLI-2 and Sentinel-2 MSI Red band TOA 

and BOA levels 

Regarding in situ measurement, the spectral signature collected with the 

spectroradiometer on the ground were compared with the Landsat-9 and 

Sentinel-2 Level-2 products acquired at the same time. The Figure 36 shows the 

results of the SAM computation between spectroradiometer survey and sensors 

acquisitions.  Moreover, the results obtained from Sentinel-2 and Landsat-9 can 

be compared. The lower the SAM, the highest the similarity between spectral 

signature measured on the ground and that measured by the satellite. In 

general, the parameter calculated are low, lower than 0.15. In rare cases, notable 

differences are registered between sensors, such as in the case of the salt 

marshes (C12). A possible explanation of this fact can be given by different 

atmospheric correction. Indeed, looking at the SCL band of the corresponding 

S2 image, C12 pixels are classified as cirrus; the level-2 generation algorithm 

may in fact over- or under-correct the reflectance values. An example of cirrus 

misclassification is given in Figure 37. 
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Residual differences may be due to different geometry of acquisition and 

BRDF effects.  

 

Figure 36. Comparison of the SAM resulted from different surveys and different sensors. 

 

Figure 37 S2 image of the COE C at C12 sample (salt marshes): (a) true color composite, (b) SLC 

classification included in the Level-2 product. It can be observed that the cirrus class follows the 

borders of the salt marsh and it is likely misclassified. 
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5.4.2. European cross-sensors comparison 

The results of the cross-sensors comparison between Landsat-9 OLI-2 with 

Landsat-8 OLI and Landsat-9 OLI-2 with Sentinel-2 MSI on their common bands 

(Blue, Green, Red, NIR, SWIR1 and SWIR2) are reported in the following tables 

and figures. As described in the methodology section, the here presented 

statistics and regression models were computed on a sampling of the entire 

dataset of almost synchronous acquisition in 2022 all over Europe. Indeed, the 

results are obtained through 30 independent extractions of at least 260,000 

triplets observations, for a total amount of more than 6.8 million of observations. 

For each band, the linear regression coefficients here reported are the mean 

value of the parameters estimated in each extraction.  

The analyses highlighted differences and similarities between L8, L9 and 

S2 products, allowing to derive transformation coefficients to be used for a 

harmonised integration of the three datasets. 

Moreover, following the approach used for the image to image 

comparison at a local scale, using the sample from a single extraction, BOA and 

TOA differences were computed for triplet observations. In particular L8/L9 

and S2/L9 Level-1 and Level-2 products differences were calculated. For a 

preliminary qualitative assessments histogram of these differences are shown 

in Figure 38 and Figure 39. The trend highlighted by the analysis performed by 

subtracting two single images is confirmed by data collected in eleven months 

and over Europe.  
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Figure 38 Comparison of band differences between TOA and BOA products by Landsat-8 and Landsat-

9 missions 

 

Figure 39 Comparison of band differences between TOA and BOA products by Sentinel-2 and Landsat-

9 missions 

Furthermore, it is evident the role of atmospheric correction in reducing 

similarity between data.  Although this effect is limited in the Landsat-8/9 

comparison, it seems non-negligible between L9 and S2. Moreover, some bands 
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are more affected than others, such as the Blue, SWIR1 and SWIR2 bands. These 

bands, indeed, are those more affected by atmosphere elements such as water 

vapour and aerosol.  

However, it is important to remark that the analysis was performed with 

almost synchronous acquisitions and for this reason the TOA observations are 

so similar. This is not the case of time series analysis, which covers large time 

spans, and does require the use of BOA data. 

5.4.2.1. Landsat-8 OLI and Landsat-9 OLI-2  

The results of the cross-sensors analysis are presented in a graphical and 

numerical way through Figure 40, Figure 41 and Table 18 and Table 19. 

To quantify the similarity between the two Landsat datasets, presented 

visually in Figure 38, the mean difference, root mean square deviation and mean 

relative difference parameters have been computed. All these coefficients, 

reported in Table 18, confirm a great similarity between OLI and OLI-2 Level-2 

products. The lowest MD value is registered for the blue band, while SWIR1 

and SWIR2 dataset have a MD equal to -0.0022 and -0.0018 respectively. 

Spectral Band 
Mean 

Difference 

Root Mean Square 

Deviation 

Mean Relative 

Difference 

Blue -0.0005 0.0091 -1.1214 

Green -0.0014 0.0109 0.0109 

Red -0.0010 0.0123 -0.9850 

NIR -0.0013 0.0236 -0.4423 

SWIR1 -0.0022 0.0231 -0.9050 

SWIR2 -0.0018 0.0184 -1.0219 

Table 18 Similarity coefficients computer for sampled pixel from Landsat-8/Landsat-9 image pairs: Mean Difference (MD), 

Root Mean Square Deviation (RMSD), Mean Relative Difference (MRD). 

In Table 19 the results of the linear regression models are summarized. For 

every band the RMA and the two OLS transformation functions are reported, 
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with the associated r2 value. In general, a high level of significance of selected 

regression models in describing the dataset is found: r2 > 0.9 and p-values < 

0.0001 for all the bands. It seems that the best fitting is achieved from the cross-

sensor analysis of the red bands, while the worst (r2 equal to 0.9195) is in the 

blue linear regression. On the other hand, it is well known that the blue 

wavelengths can be highly affected by water vapour introducing noise in the 

sampled paired observations. This effect can be seen also in the scatterplots of 

Figure 40. Indeed, in Figure 40a, in the scatterplot comparing the blue OLI and 

OLI-2 band, the paired observations are concentrated around the identity axis 

just for a very short range of low values. After this low threshold, the paired 

data points begin to disperse for higher values, drawing a fan shape in the plot.  

Landsat-8 OLI – Landsat-9 OLI-2 linear regressions (lat<65°) 

Band Reg. type Linear transformation function R2 (OLS) 

Blue RMA OLI-2 = 1.0065 (±0.0018) OLI +0.0002 (±0.0001)  0.9195 

OLS OLI = 0.9527 (±0.0019) OLI-2 +0.0021 (±0.0001)  

OLS OLI-2 = 0.9652 (±0.0017) OLI +0.0024 (±0.0001)  

Green RMA OLI-2 = 1.0100 (±0.0015) OLI +0.0005 (±0.0001)  0.9340 

OLS OLI = 0.9568 (±0.0015) OLI-2 +0.0024 (±0.0001)  

OLS OLI-2 = 0.9761(±0.0014) OLI +0.0034 (±0.0001)  

Red RMA OLI-2 = 1.0103 (±0.0012) OLI -0.0000 (±0.0001)  0.9570 

OLS OLI = 0.9683 (±0.0012) OLI-2 +0.0021 (±0.0001)  

OLS OLI-2 = 0.9883 (±0.0011) OLI +0.0021 (±0.0001) 

NIR RMA OLI-2 = 1.0070 (±0.0007) OLI -0.0006 (±0.0002)  0.9230 

OLS OLI = 0.9541 (±0.0007) OLI-2 +0.0114 (±0.0002) 

OLS OLI-2 = 0.9674 (±0.0007) OLI +0.0102 (±0.0002) 

SWIR1 RMA OLI-2 = 1.0077 (±0.0010) OLI +0.0003 (±0.0002) 0.9270 

OLS OLI = 0.9554 (±0.0010) OLI-2 +0.0087 (±0.0002) 

OLS OLI-2 = 0.9702 (±0.0010) OLI +0.0094 (±0.0002) 

SWIR2 RMA OLI-2 = 1.0142 (±0.0014) OLI -0.0005 (±0.0002) 0.9451 

OLS OLI = 0.9586 (±0.0018) OLI-2 +0.0050 (±0.0003)  

OLS OLI-2 = 0.9859 (±0.0010) OLI +0.0041 (±0.0002)  

Table 19 Bands sensor transformation functions (OLI to OLI-2 and OLI-2 to OLI): slope and intercept with their standard 

deviations in brackets, r2 coefficient 
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Figure 40 Scatterplots of the reflectance values for L9 OLI-2 (vertical axis) against L8 OLI (horizontal 

axis) in the a) Blue, b) Green, c) Red, d) NIR, e) SWIR1, f) SWIR2 bands. The plot colours illustrate 

the frequency of reflectance values with logarithmic scale. The solid lines show the three regression 

fits. 

After the linear regression fitting, the differences between the paired 

observations were compared. In general, the difference between L8 and L9 
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observations is very low, and as highlighted in Table 18 the similarity is higher 

in some bands more than others. This can be seen in the histogram in Figure 41, 

where the difference between original OLI and OLI-2 paired data are plotted 

together with the difference between the OLI-2* and OLI-2. OLI-2* is the OLI 

original observation harmonized to the OLI-2 by means of the computed 

transformation coefficients (Table 19). Overall, in the cross-sensors analysis 

performed between the ongoing Landsat satellites it is clear that the two 

datasets differ just for a very little amount that is corrected by means of the 

transformation coefficient: see the two almost overlapping histograms for every 

bands in Figure 41.  
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Figure 41 Residuals distribution of OLI-2 and OLI applying the RMA coefficients (OLI-2 

independent variable) for Blue (a), Green (b), Red (c), NIR (d), SWIR1 (e) and SWIR (2) bands, 

compared with the original paired observation differences. Dashed lines represent the mean values. 

In conclusion, a very high consistency and similarity between Landsat-8 

and Landsat-9 has been demonstrated. This was the expected result of the 

research, since the two instruments are almost identical in their design and their 

products undergo the same Collection-2 processing chain. However, this now-

verified condition must be monitored throughout the lifetime of the two 

satellites, as Landsat-8, which is in its 10th year of operation, might be affected 
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in the next year to possible orbital drifts as it happened to its predecessors (see 

Chapter 1). 

5.4.2.2. Sentinel-2 MSI and Landsat-9 OLI-2  

In Table 20, Table 21, Figure 42 and Figure 43 the results of the analysis 

involving the OLI-2 and the MSI instruments by Landsat and Sentinel-2 

missions are presented.  

The similarity of the paired observations sampled from the available 

scenes, acquired almost at the same time by Sentinel-2 and Landsat-9 over 

Europe during 2022, was quantified (see Figure 39 for a qualitative overview) 

through the MD, RMSD and the MRD coefficients. The computed coefficients 

for each band are reported in Table 20. In general, a great similarity was 

revealed. The lowest mean difference between reflectance measurements of 

corresponding bands was found in the green channel, equal to 0.004, whilst the 

highest in the blue, equal to 0.0095. The RMSD values are quite similar for all 

the visible bands, ranging from 0.0174 (blue) to 0.0142 (green), while it increases 

in the NIR (0.028) and the SWIR bands (up to 0.03 in the SWIR1 channel). 

Spectral Band 
Mean  

Difference 

Root Mean Square  

Deviation 

Mean Relative  

Difference 

Blue 0.0095 0.0174         13.9572 

Green 0.0040   0.0142          2.5506 

Red 0.0056 0.0169          2.8360 

NIR 0.0049   0.0280          1.5204 

SWIR1 0.0138   0.0306          5.6493 

SWIR2 0.0178   0.0293         10.5625 

Table 20 Similarity coefficients computer for sampled pixel from Sentinel-2/Landsat-9 image pairs: Mean Difference (MD), 

Root Mean Square Deviation (RMSD), Mean Relative Difference (MRD). 

All the results of the linear regressions are reported in Table 21, providing 

the transformation function needed to harmonize the common spectral bands 
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of Landsat-9 and Sentinel-2 for a combined use. All the regression models 

resulted as highly significant, all showing r2 values higher than 0.90 (p-values < 

0.0001). In this case, the r2 are lower than those obtained for the L8/L9 cross-

sensor analysis, however the red band linear regression is the one with the 

highest significance also in the S2/L9 fitting. On the other hand, as for the L8/L9 

analysis, the lower r2 is registered by the blue band and the same peculiar 

dispersion in the scatterplot can be seen in Figure 42a. 

As expected, the computed coefficients of the regression are quite stable 

in the 30 independent sample extractions, as can be observed by looking at the 

standard deviations reported in Table 21. The highest standard deviation on the 

slope coefficient is registered in the OLS regression of the blue band having OLI-

2 as independent variable. 

Sentinel-2 MSI and Landsat-9 (lat <65 °) 

Band Reg. type Linear transformation function R2  

Blue RMA OLI-2 = 0.7807(±0.0022) MSI +0.0045(±0.0001) (RMA) 

0.9004 OLS MSI = 1.2154(±0.0037) OLI-2 -0.0022(±0.0002) (OLS) 

OLS OLI-2 = 0.7408(±0.0021) MSI +0.0070(±0.0001) (OLS) 

Green RMA OLI-2 = 0.8635(±0.0019) MSI +0.0085(±0.0001) (RMA) 

0.9324 OLS MSI = 1.1183(±0.0026) OLI-2 -0.0063(±0.0002) (OLS) 

OLS OLI-2 = 0.8338(±0.0019) MSI +0.0112(±0.0001) (OLS) 

Red RMA OLI-2 = 0.8738(±0.0012) MSI +0.0074(±0.0001) (RMA) 

0.9544 OLS MSI = 1.1180(±0.0017) OLI-2 -0.0059(±0.0001) (OLS) 

OLS OLI-2 = 0.8536(±0.0012) MSI +0.0095(±0.0001) (OLS) 

NIR RMA OLI-2 = 0.9582(±0.0009) MSI +0.0068(±0.0002) (RMA) 

0.9014 OLS MSI = 0.9908(±0.0011) OLI-2 +0.0074(±0.0003) (OLS) 

OLS OLI-2 = 0.9098(±0.0010) MSI +0.0204(±0.0003) (OLS) 

SWIR1 RMA OLI-2 = 0.9603(±0.0012) MSI -0.0036(±0.0003) (RMA) 

0.9042 OLS MSI = 0.9902(±0.0015) OLI-2 +0.0161(±0.0004) (OLS) 

OLS OLI-2 = 0.9132(±0.0010) MSI +0.0086(±0.0003) (OLS) 

SWIR2 RMA OLI-2 = 0.9125(±0.0015) MSI -0.0018(±0.0003) (RMA) 

0.9285 OLS MSI = 1.0560(±0.0023) OLI-2 +0.0086(±0.0004) (OLS) 

OLS OLI-2 = 0.8792(±0.0013) MSI +0.0042(±0.0002) (OLS) 
Table 21 Bands sensor transformation functions (MSI to OLI-2 and OLI-2 to MSI): slope and intercept with their standard 

deviations in brackets, r2 coefficient. 
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Figure 42 Scatterplots of the reflectance values for L9 OLI-2 (vertical axis) against S2 MSI (horizontal 

axis): a) Blue, b) Green, c) Red, d) NIR, e) SWIR1, f) SWIR2. The plot colours illustrate the frequency 

of reflectance values with logarithmic scale. The solid lines show the three regression fits. 

 

 

 



115 

 

In addition to the linear regression fitting, the differences between the 

paired observations were considered. To evaluate the residuals of the 

transformations, the RMA coefficients were applied to all the sample pixels 

extracted from the MSI images to compute the equivalent OLI-2* values. The 

differences between the transformed reflectance (OLI-2*) and the original OLI-

2 values for every band from the paired observations are computed. Those are 

shown in Figure 43 together with the untransformed paired observation 

difference (MSI-OLI). This time, the beneficial effect of the harmonisation is 

more evident, and the use of the transformation coefficients allows to translate 

the curve and concentrate its values on the null mean axis. The bands which 

benefit more of this harmonization are the blue and the two SWIR bands.  

In conclusion, a good consistency between the two datasets from Landsat 

and Sentinel mission was verified. The possibility of interoperability was 

confirmed. Indeed, NIR, Red and Green bands have a good correspondence. 

However, in the blue and SWIR bands higher differences were registered.  
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Figure 43 Residuals distribution of OLI-2 and MSI applying the RMA coefficients (OLI-2 

independent variable) for Blue (a), Green (b), Red (c), NIR (d), SWIR1 (e) and SWIR (2) bands, 

compared with the original paired observation differences. Dashed lines represent the mean values. 

5.4.3. Harmonization example on selected sample 

The NDVI TS derived from L9 and S2 images were extracted for P3 site 

(asphalt surface), since it is expected to be quite stable over time. The BEAST 

algorithm was applied on both the TS and the Harmonized TS, as described in 

Section 5.3. Although this algorithm provides an exhaustive time series analysis, 
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in this case it was used only to assess the impact of harmonization on selected 

sample. Therefore, for simplicity, only the trend is here considered as example. 

In Figure 44 the asphalt case (P3) is shown, comparing the TS and BEAST 

trend analysis applied on the NDVI L9 and S2 observation before (on the left) 

and after (on the right) harmonizing S2 values to be as similar as OLI2. The 

BEAST retrieved a mean trend model and its probability of having 

changepoints. Focusing on the NDVI TS it is evident that the harmonization 

reduces the level of noise in the series, allowing the BEAST algorithm detecting 

the 15-10-2022 S2 observation as a change point with a probability of 80%. 

Clearly this is not a real change, but it can be interpreted as an anomaly in the 

TS. Checking the corresponding image, indeed, it resulted to be affected by 

clouds that remained undetected by the cloud mask. Reducing noise in the TS 

is the first benefit of harmonization, allowing also the detection and removal of 

anomalous values. This is more evident and effective when analysing data with 

low magnitude dynamics.  

 

Figure 44 Time series of original (on the left) and harmonized (on the right) L9 and S2 NDVI data 

with their trend and trend change points estimated with BEAST at P3 (asphalt surface). 

Overall, the two presented example highlights that harmonization highly 

benefit analysis of TS detecting lower-magnitude features, which usually are 
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more challenging to map (Cohen et al., 2017). By reducing spectral noise, it helps 

distinguish anomalies along temporal trajectories. 

 

Summarizing, the statistics and preliminary assessment conducted to 

evaluate the interoperability between Landsat-8 and Sentinel-2 together with 

the newest Landsat-9 over a localized area were confirmed in the continental 

scale cross-sensors analysis covering almost one year of observations.  

The first remarks to point out is that TOA observations acquired by 

different instruments at the same time are more similar to each other than their 

Level-2 products. As discussed above in this chapter and in previous chapters, 

this is probably due to different atmospheric correction algorithms, estimating 

atmosphere parameters from different datasets, introducing differences in the 

measurements. On one hand, atmospheric correction is needed for studies 

involving images acquired at different time, such as change detection 

applications, in order to remove changes in the reflectance measurement due to 

changes in the atmospheric condition instead of actual change in the land 

surface. On the other hand, it is here demonstrated that atmospheric corrections 

introduces changes in the observations that might lead to misinterpretation of 

changes occurred on the ground. 

Moreover, among the cross-sensors analysis performed in this study, 

despite a general consistency of the datasets, higher differences were registered 

in the Blue, SWIR1 and SWIR2 band. This is due to their sensitivity of these 

wavelength to water vapour, that is also the reason why they result effective in 

the monitoring of water content. Indeed, these bands are often used in the 

computation of index, such as the EVI or NDMI, commonly employed in 
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vegetation monitoring studies. In such studies, where the improved frequency 

that the use of these three data sources would allow is highly requested, the use 

of the presented harmonization coefficients is highly recommended, especially 

when using index involving SWIR or blue band. 

For these reasons, calibration and validation studies are needed, as well as 

transformation coefficient to harmonize these datasets. In this way, it is possible 

to perform improved time series analysis of remote sensed data with increased 

frequency benefitting by these virtual constellation of Landsat/Sentinel data 

availability, and at the same time reducing errors of algorithm and residual 

diversity of the datasets. 
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Conclusion 

The presents study addressed the problem of evaluating interoperability 

of Landsat and Sentinel-2 multispectral datasets for a combined use, to increase 

the frequency of observation for time series analysis with the purpose of 

environmental monitoring. In particular, two different studies were conducted, 

including different datasets and time spans.  

The research presented in chapter 4 focused on popular multispectral 

vegetation index, extensively used in vegetation monitoring studies through 

time series analysis. In this case, cross-sensors transformation coefficients for 

NDVI, EVI, SAVI and NDMI computed from Landsat-5 TM, Landsat-7 ETM+, 

Landsat-8 OLI and Sentinel-2 MSI were computed. The aim was to enable long 

time series to increase the frequency of data thanks to different sensors 

harmonization. For each sensor pair, RMA and OLS linear regressions were 

computed on 300,000 pixels, randomly sampled from couples of almost 

simultaneous acquisitions by different sensors, and the computations were 

repeated 100 times to check the repeatability. The adopted methodology moves 

from the works by Roy et al. (2016) and Chastain et al. (2019), but with several 

novelties. For the first time a cross-comparison analysis on VIs (NDVI, SAVI, 

EVI, NDMI) derived from Landsat Collection-2 and Sentinel SR (L2A) products 

acquired all over the European continent was performed. Furthermore, the 

study included data from L5, L7, L8 and S2 altogether, allowing the extraction 

of time series starting from 1984. This approach highly increases the acquisition 

frequency, combining the 16 days L8 repeat cycle with the 5 days of S2 and thus 

raising the chance to collect cloud-free images that enables effective vegetation 

monitoring. This study was able to compute coefficients that allow to create a 
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consistent TS starting from 1984 to present, combining in a temporal sequence 

L5, L7, L8 and S2. 

In this context, the launch of the new Landsat-9 mission in September 2021 

further increases data frequency of observations gathered from the ongoing 

multispectral moderate resolution missions. In order to quantify the similarity 

of Landsat-9, Landsat-8 and Sentinel-2 datasets for a combined use, a cross 

comparison analysis based on the six common bands was performed. The 

coefficients computed for harmonization of Landsat-8/9 and Sentinel-

2/Landsat-9 bands of blue, green, red, NIR, SWIR1 and SWIR2 were presented. 

Moreover, the preliminary assessment of L9 measurements was supported by 

spectroradiometer survey campaign on the ground. 

In general, a very high consistency between the Landsat-9 and the others 

ongoing missions was verified. However, some bands appeared more noisy, 

probably due to residual atmospheric effects and different correction 

algorithms. A lower consistency was found, as described in Chapter 5, for blue 

and SWIR bands, especially in the Sentinel-2/Landsat-9 comparison. These 

bands are those more sensitive to water content. For this reason, these bands are 

often used for the calculation of multispectral indexes, such as EVI and NDMI, 

in many effective studies dealing with, for example, humidity or vegetation 

monitoring. Therefore, although the differences in the red, NIR and green 

channels are generally smaller than the declared product accuracies and 

harmonization may be unnecessary, the use of the transformation coefficients is 

recommended for users who wants to integrate L8/L9/S2 blue or SWIR bands 

(and their deriver index). In any case, users who intend analysing Landsat and 

Sentinel data together should firstly estimate the minimum difference in the 

band reflectance or in the index values that is meaningful for the phenomena 
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they want to observe. Then, they should consider if the discrepancies due to the 

radiometric characteristics of the sensors, here discussed, are sensible or not. 

In conclusion, the present research assessed the differences between 

Landsat-9, Landsat-8, Landsat-7, Landsat-5 and Sentinel-2 multispectral data 

and proposed a set of harmonization coefficients. For the ongoing satellite 

missions, a very high consistency was found.  

The research conducted has produced results that can be directly used in 

various application areas, and it will in any case be useful for analyses of this 

type to be updated in the future by taking into consideration the new missions 

that will be implemented and checking mission consistency over time. 
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