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Abstract

In this thesis, new classes of models for multivariate linear regression defined by

finite mixtures of seemingly unrelated contaminated normal regression models and

seemingly unrelated contaminated normal cluster-weighted models are illustrated.

The main difference between such families is that the covariates are treated as fixed

in the former class of models and as random in the latter. Thus, in cluster-weighted

models the assignment of the data points to the unknown groups of observations

depends also by the covariates. These classes provide an extension to mixture-based

regression analysis for modelling multivariate and correlated responses in the pres-

ence of mild outliers that allows to specify a different vector of regressors for the

prediction of each response. Expectation-conditional maximisation algorithms for

the calculation of the maximum likelihood estimate of the model parameters have

been derived. As the number of free parameters incresases quadratically with the

number of responses and the covariates, analyses based on the proposed models can

become unfeasible in practical applications. These problems have been overcome by

introducing constraints on the elements of the covariance matrices according to an

approach based on the eigen-decomposition of the covariance matrices. The perfor-

mances of the new models have been studied by simulations and using real datasets

in comparison with other models. In order to gain additional flexibility, mixtures of

seemingly unrelated contaminated normal regressions models have also been speci-

fied so as to allow mixing proportions to be expressed as functions of concomitant

covariates.

The content of this thesis is organized as follows. In Chapter 1, a brief summary of

the state of the art is presented. The general specification of the new models with

fixed covariates and including the fully unconstrained parameterisation for the co-

variance matrices is presented in Chapter 2. In Chapter 3, the latter methodology is



extended to admit more parsimonious parameterisations. The new models developed

under the cluster-weighted approach are described in Chapter 4. Chapter 5 contains

an illustration of the new models with concomitant variables and a study on housing

tension in the municipalities of the Emilia-Romagna region based on different types

of multivariate linear regression models.
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Chapter 1

Introduction

1.1 Overview

In the last decades, the amount of scientific publications focused on the management of complex

data has increased exponentially. This growth has been motivated by the constant researchers’

need to develop faster and more accurate methods capable of eliciting information from this

kind of datasets. Many complexities can affect the data depending on the field of the research.

In multivariate regression analysis, for example, the interest of the researcher in modelling the

dependence of M dependent variables Y on P given predictors X can become more difficult in

a situation where the population from which the sample S comes from is heterogeneous (i.e. it

is composed of K unknown disjoint and homogeneous sub-populations); thus, the information

about the specific sub-population each sample observation belongs to is missing. A useful way

to manage the possible presence of K unknown clusters in the sample S while performing

multivariate regression analysis is to suitably embed a mixture of K distributions into the

regression model. Another source of complexity can arise from the fact that the covariates are

not always actively manipulated by the researchers. In particular, if the covariates are under the

control of the researcher, then X should be treated as fixed; otherwise, both X and Y have to

be considered as random vectors. Thus, either a conditional density function f(y|x) or a joint

density function f(x,y) should be utilized for modelling the conditional distribution of Y|X or

the joint distribution of (X,Y), respectively, where f(x,y) = f(x)f(y|x). Based on the two

above mentioned sources of complexity, the following approaches can be employed to perform

multivariate regression analysis:

(a) clusterwise regression analysis,
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(b) cluster-weighted analysis.

In particular, the approach (a) is useful when the unobserved heterogeneity affects Y|X and the

covariates are fixed; in the framework (b), instead, the covariates are treated as random and the

missing information about the membership to the K sub-populations affects (X,Y). Then, a

mixture of K different regression models (one for each sub-population) will describe either the

distribution of Y|X or the distribution of (X,Y) in the population, respectively. If the vector

Y is composed of M continuous responses, then Gaussian clusterwise linear regression models

(Jones and McLachlan, 1992) are generally employed. When all the variables are continuous,

a Gaussian cluster-weighted model (Dang et al., 2017) is usually specified within the approach

(b). The prediction of the responses in such approaches can become even more difficult in the

following situations.

(I) In economics or social sciences, there may be prior information about the regressors ex-

pected to be relevant in the prediction of the M responses. In such situations, the mul-

tivariate regression model specified by the researcher should be composed of a system of

M regression equations (one equation for each response) with equation-dependent vectors

of predictors (i.e., vectors which do not necessarily contain the same predictors for all the

responses). This means that certain regressors contained in X are absent from certain re-

gression equations. Furthermore, the M responses contained in Y may be correlated. This

latter feature is typically observed with multivariate longitudinal data, time-series data or

repeated measures. A parametric framework able to take into consideration both multi-

variate correlated responses and systems of regression equations with equation-dependent

vectors of predictors is given by the so-called seemingly unrelated regression approach (see,

e.g., Srivastava and Giles, 1987; Park, 1993).

(II) The data S are contaminated by the presence of mildly atypical observations (Ritter,

2015), i.e. observations which, in some way, deviate from the general pattern of the data

(Maronna et al., 2006). Several robust methods have been developed in the literature

by resorting to heavy-tailed models (e.g., Lange et al. (1989), Kibria and Haq (1999),

Lachos et al. (2011)). A solution proposed by Tukey (1960) is based on the use of the

contaminated normal distribution. This distribution is a two-component normal mixture in

which one component has a larger probability and represents the typical observations; the

other component has the same expected vector of the first one but an inflated covariance
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matrix, which allows to manage the outliers. In a multivariate regression framework,

suitable models able to manage the presence of mildly atypical observations have been

obtained by specifying a contaminated normal distribution for Y|X within the approach

(a) or for both X and Y|X within the approach (b). In particular, clusterwise linear

regression models and cluster-weighted models have been specified so as to be able to

manage, respectively:

(IIa) outliers in the y-direction (verticals or regression outliers);

(IIb) outliers either in the y-direction or in the x-direction (leverage points), depending

on whether they occur in the responses or the predictors, respectively (see, e.g.,

Rousseeuw and Leroy, 2005); if an observation is both a regression outlier and a

leverage point it will be classified as a bad leverage point (Rousseeuw and Leroy,

2005).

Based on all these considerations, until now authors have developed the following classes of

models for multivariate linear regression analysis:

(i) contaminated Gaussian clusterwise linear regression models (Mazza and Punzo, 2020),

which allow to manage the presence of (IIa) within the approach (a);

(ii) seemingly unrelated Gaussian clusterwise linear regression models (Galimberti and Sof-

fritti, 2020) for data affected by the complexity (I) under the approach (a);

(iii) contaminated Gaussian cluster-weighted models (Punzo and McNicholas, 2017) able to

manage (IIb) in the approach (b);

(iv) seemingly unrelated Gaussian cluster-weighted models (Diani et al., 2022) for data affected

by the complexity (I) under the approach (b).

On the one hand, limitations of the approaches (i) and (iii) are represented by the fact that the

same vector of regressors has to be employed for the prediction of all responses. On the other

hand, methods (ii) and (iv) are not robust against the presence of atypical observations in the

K sub-populations. The aim of this thesis is to extend such approaches so as to:

• jointly account for the sources of complexity (I) and (IIa) under the approach (a);

• jointly account for the sources of complexity (I) and (IIb) under the approach (b).
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1.2 Main contributions of the thesis

In Chapter 2, a new class of models for multivariate regression defined by finite mixtures of

seemingly unrelated contaminated normal regressions has been developed. This class provides

an extension to mixture-based regression analysis for modelling multivariate and correlated re-

sponses in the presence of atypical observations in the y-direction that let the researcher free to

use a different vector of covariates for each response. Conditions for the identifiability of such

models are provided. An expectation-conditional maximisation (ECM) algorithm for maximum

likelihood estimation (MLE) of the model parameters has been derived. The performance of the

new models has been studied by simulation in comparison with other clusterwise linear regres-

sion models. A comparative evaluation of their effectiveness and usefulness has been provided

through the analysis of a real dataset. The main results have been summarized in the following

paper:

Perrone G., Soffritti G. (2023). ”Seemingly unrelated clusterwise linear regression for contami-

nated data”. Stat Papers 64, 883–921. https://doi.org/10.1007/s00362-022-01344-6.

As the number of free parameters incresases quadratically with the number of responses, anal-

yses based on the models illustrated in the first part of this thesis can become unfeasible in

practical applications in which M is large. This problem has been overcome by introducing in

Chapter 3 constraints on the elements of the covariance matrices according to an approach due

to Celeux and Govaert (1995). The resulting parsimonious finite mixtures of seemingly unre-

lated contaminated normal regressions are illustrated in the second part of this thesis, whose

source is the following short paper:

Perrone G., Soffritti G. (2022). ”Parsimonious mixtures of seemingly unrelated contaminated

normal regression models”. In P. Brito, J. G. Dias, B. Lausen, A. Montanari, R. Nugent. Classi-

fication and Data Science in the Digital Age: the 17th Conference of the International Federation

of Classification Societies (IFCS 2022), Springer Cham. Series E-ISSN: 2198-3321 (pp. 1-8)

https://link.springer.com/book/9783031090332 (in press).

In clusterwise regression analysis, where covariates are treated as fixed, the assignment of the
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data points to the K clusters is assumed to not depend on X (assignment independence, Hennig

(2000)). This could be inadequate in some practical applications in which the assignment of the

sample data points to theK clusters is not independent of the covariates (assignment dependence,

Hennig (2000)). In order to overcome this limitation, a novel class of cluster-weighted models

has been introduced in Chapter 4.

This class allows to manage the presence of atypical observations either in the x-direction

or in the y-direction; furthermore, it makes it possible to specify a different vector of covariates

for each dependent variable. Conditions for the identifiability of such models are described.

Parsimonious models are presented; they have been obtained by constraining some elements of

the covariance matrices of both the covariates and responses. A new ECM algorithm for the

MLE of the model parameters has been developed. The effectiveness and usefulness of such

models are shown through the analysis of simulated and real datasets. The main results have

been summarized in the following paper:

Perrone G., Soffritti S. (2022). ”Parsimonious seemingly unrelated contaminated normal cluster-

weighted models”. Under review.

More flexible seemingly unrelated clusterwise linear regression models have been specified so

as to allow some covariates to influence the prior probabilities of the K sub-populations. This

task has been performed by modelling the mixing weights as a function of some concomitant

variables. Such variables can be different of the ones used in the prediction of the dependent

variables and in the identification of the clusters. Such models, together with other clusterwise

linear regression models, have been employed in Chapter 5 to study housing tension in the

municipalities of the Emilia-Romagna region. This research has been carried out thanks to an

implementation agreement between the region and the Department of Statistical Sciences of the

University of Bologna.



Chapter 2

Seemingly unrelated clusterwise

regression for contaminated data1

1This chapter coincides with the published paper: Perrone G., Soffritti G. (2023). ”Seemingly unrelated
clusterwise linear regression for contaminated data”. Stat Papers 64, 883–921. https://doi.org/10.1007/s00362-
022-01344-6
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Abstract

Clusterwise regression is an approach to regression analysis based on finite mixtures which

is generally employed when sample observations come from a population composed of several

unknown sub-populations. Whenever the response is continuous, Gaussian clusterwise linear

regression models are usually employed. Such models have been recently robustified with respect

to the possible presence of mild outliers in the sub-populations. However, in some fields of

research, especially in the modelling of multivariate economic data or data from the social

sciences, there may be prior information on the specific covariates to be considered in the

linear term employed in the prediction of a certain response. As a consequence, covariates

may not be the same for all responses. Thus, a novel class of multivariate Gaussian linear

clusterwise regression models is proposed. This class provides an extension to mixture-based

regression analysis for modelling multivariate and correlated responses in the presence of mild

outliers that let the researcher free to use a different vector of covariates for each response.

Details about the model identification and maximum likelihood estimation via an expectation-

conditional maximisation algorithm are given. The performance of the new models is studied

by simulation in comparison with other clusterwise linear regression models. A comparative

evaluation of their effectiveness and usefulness is provided through the analysis of a real dataset.

Keywords: Contaminated Gaussian distribution, ECM algorithm, Mild outlier, Mixture of

regression models, Model-based cluster analysis, Seemingly unrelated regression.
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2.1 Introduction

In multivariate regression analysis, when modelling the dependence of a random vector Y =

(Y1, . . . , Ym, . . . , YM )′ of M responses on a given vector X = (X1, . . . , Xp, . . . , XP )′ of P pre-

dictors through a sample S = {(x1,y1), . . . , (xI ,yI)} drawn from a certain population, the

following sources of complexity could affect the data and make the prediction of the responses

a task difficult to perform.

a) With multivariate longitudinal data, time-series data or repeated measures, the M re-

sponses contained in Y are typically correlated. Furthermore, in analyses of economic

data or data from the social sciences, it is not unusual that prior information about the

phenomenon under study enables the analyst to specify a system of M regression equa-

tions (one equation for each response) in which certain regressors contained in X are absent

from certain regression equations. This is especially true for multivariate economic data

referring to general theories (i.e., investment equations, production functions) or applica-

tions dealing with the explanation of a certain economic activity (i.e., demand of petrol,

employment) in different geographical locations (see, e.g., Zellner, 1962; White and Hew-

ings, 1982; Giles and Hampton, 1984). Further examples can be found also in other fields,

such as medicine, food quality, tourism economics, quality of life and health (see, e.g.,

Keshavarzi et al., 2012; Cadavez and Hennningsen, 2012; Keshavarzi et al., 2013; Disegna

and Osti, 2016; Heidari et al., 2017). A parametric framework able to take into consid-

eration both multivariate correlated responses and systems of regression equations with

equation-dependent vectors of predictors (i.e., vectors which do not necessarily contain

the same predictors for all the responses) is given by the so-called seemingly unrelated

regression approach (see, e.g., Srivastava and Giles, 1987; Park, 1993). In particular, in

this approach the random disturbances associated with the M regression equations are

allowed to be correlated with each other; hence, the variance-covariance matrix Σ of the

resulting M -dimensional vector of the error terms will have a non-diagonal structure.

b) In general, real data can often be characterised by the presence of atypical observations. In

parametric regression analysis, such observations negatively impact on both the estimation

of the regression coefficients and the prediction of the responses based on the classical

procedures. Such procedures have been widely recognized to be extremely sensitive to

even seemingly minor or negligible deviations from some conventional assumptions (see,
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e.g., Tukey, 1960). Thus, when the data are contaminated by such observations, it is crucial

that robust methods are employed (see, e.g., Maronna et al., 2006). Departures from the

Gaussian distribution of the error terms in the regression model caused by some mildly

atypical observations can be managed by simply resorting to heavy-tailed distributions for

Y|X = x. Those observations are also called small or mild outliers (see, e.g., Ritter, 2015).

Examples of robust methods against the presence of such outliers have been developed

by Lange et al. (1989), Kibria and Haq (1999), Lachos et al. (2011); to this end, the

multivariate t distribution or scale mixtures of Gaussian distributions have been exploited.

Other distributions, such as the multivariate power-exponential (see, e.g., Gómez et al.,

1998; Dang et al., 2015), the multivariate leptokurtic-normal distribution (Bagnato et al.,

2017), the multivariate tail-inflated normal distribution (Punzo and Bagnato, 2021), and

the multivariate shifted exponential normal distribution (Punzo and Bagnato, 2020), have

been employed to cope with the same issue. Another model able to manage the possible

presence of mild outliers in a dataset is the contaminated Gaussian distribution (see, e.g.,

Tukey, 1960; Aitkin and Wilson, 1980). This probabilistic model is defined as a mixture of

two Gaussian distributions having the same expected mean value but different variances-

covariances. Furthermore, the Gaussian distribution having the smallest mixing weight

also has inflated variances-covariances and is employed to represent the mild outliers.

Maximum likelihood (ML) estimation can be performed via an expectation-maximisation

(EM) algorithm (see Dempster et al., 1977; Aitkin and Wilson, 1980). Once such a model

is fitted to the observed data, each sample observation can be classified as either typical or

outlier using the maximum a posteriori probability (for further details see, e.g., Aitkin and

Wilson, 1980). With an approach based on the use of one of these distributions, robustness

can be achieved without suppressing any observation from the sample S.

c) Sometimes the population from which the sample S comes from is composed of a certain

number, say K, of sub-populations. Furthermore, when the information about the value

of K and the specific sub-population each sample observation belongs to is not known,

S is characterised by unobserved heterogeneity. If this source of heterogeneity affects the

distribution of Y|X = x, then a mixture of K different regression models (one for each

sub-population) will describe the distribution of Y|X = x in the population. This phe-

nomenon can be experienced in many fields, such as economics, marketing, agriculture,

education, human genomics, quantitative finance, social sciences and transport systems
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(see, e.g., Fair and Jaffe, 1972; Kamakura, 1988; Turner, 2000; Ding, 2006; Qin and Self,

2006; Tashman and Frey, 2009; Dyer et al., 2012; Van Horn et al., 2015; McDonald et al.,

2016; Elhenawy et al., 2017). In this case, the sample S should be analysed in a regression

framework able to detect both the number of sub-populations and their regression models.

Methods for clusterwise regression analysis play a special role. They exploit clusterwise

regression models, which are mixtures of K regression models (see, e.g., Hosmer, 1974; De

Sarbo and Cron, 1988; Frühwirth-Schnatter, 2006; Depraetere and Vandebroek, 2014). In

these models, the mixing weights can also be expressed as a function of some concomitant

variables (Wedel, 2002). With M continuous responses in vector Y, multivariate Gaussian

clusterwise linear regression models are generally employed (see, e.g., Jones and McLach-

lan, 1992). If the P predictors are random and the source of heterogeneity mentioned

above affects the distribution of (X,Y), then Gaussian cluster-weighted models should be

employed (see, e.g., Dang et al., 2017).

Recently, Mazza and Punzo (2020) have introduced methods to perform Gaussian clusterwise

linear regression analysis which are robust with respect to heavy-tailed departures from Gaus-

sianity due to the presence of mild outliers in the data. By relying on contaminated Gaussian

clusterwise linear regression models, their methods are able to produce a simultaneous clustering

of the sample observations and the detection of mild outliers in a multivariate regression context.

In this way, they allow to manage the sources of complexity b) and c); they are also capable of

explaining the correlation among responses. A limitation of an approach based on those models

is that the same vector of regressors has to be employed for the prediction of all responses.

Galimberti and Soffritti (2020) have developed models for Gaussian clusterwise linear regression

which make use of seemingly unrelated regression equations. The methods based on these latter

models are suitable for the analysis of data affected by complexities a) and c); however, they

are not insensitive to the possible presence of mild outliers in the K sub-populations. Based on

all these considerations, multivariate seemingly unrelated clusterwise linear regression models

for data contaminated by mild outliers are introduced here. They are obtained from the models

described in Mazza and Punzo (2020) by modifying the definition of the linear terms in the M

regression equations so that a different vector of regressors can be employed for each dependent

variable. With these new models, the three sources of complexities mentioned above are jointly

taken into consideration when predicting the responses in a multivariate linear regression frame-

work. Thus, a more flexible approach for the analysis of linear dependencies in multivariate data
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is provided.

The key contributions of this chapter are:

• the specification of a novel class of models able to jointly account for the sources of com-

plexity a), b) and c) mentioned above;

• a comparison with some other linear clusterwise regression models;

• the description of conditions for the identifiability of the novel models;

• details about ML estimation via an expectation-conditional maximisation (ECM) algo-

rithm (Meng and Rubin, 1993);

• a treatment of the initialisation and convergence of the ECM algorithm and the issue of

model selection;

• an investigation of the effectiveness of the new models, based on simulated datasets, in

comparison with the models proposed by Galimberti and Soffritti (2020) and Mazza and

Punzo (2020);

• an application to a study of the effects of prices and promotional activities on sales for

two U.S. brands of canned tuna.

The remainder of this chapter is organised as follows. The novel models are introduced in

Section 2.2.1. Section 2.2.2 shows how they relate to some clusterwise linear regression models.

Identifiability is treated in Section 2.2.3. Section 2.2.4 and Appendix A provide details on the

ECM algorithm. Issues of algorithm initialisation, convergence criterion and model selection are

discussed in Sections 2.2.5 and 2.2.6. Section 2.3 contains a summary of the experimental results

obtained from the analysis of simulated data. The study of the effects of prices and promotional

activities on U.S. canned tuna sales is presented in Section 2.4. Finally, in Section 2.5, some

concluding remarks and ideas for future research are illustrated.



2.2 Seemingly unrelated contaminated Gaussian linear clusterwise regression analysis 17

2.2 Seemingly unrelated contaminated Gaussian linear cluster-

wise regression analysis

2.2.1 Seemingly unrelated contaminated Gaussian linear clusterwise regres-

sion models

In order to introduce the new model, the following notation is required. Suppose that only Pm of

the P covariates contained in X are considered to be relevant for the prediction of the response

Ym, where Pm ≤ P . Thus, let Xm = (Xm1 , Xm2 , . . . , XmPm
)′ be the vector composed of such

Pm covariates, and let X∗m = (1,X′m)′. Furthermore, let βkm = (βk,m1 , βk,m2 , . . . , βk,mPm
)′ be

the vector of the Pm regression coefficients capturing the linear effect of such covariates on the

response Ym in the kth sub-population, and β∗km = (β0k,m,β
′
km)′. Then, the vector containing

all linear effects on the M responses in the kth sub-population can be obtained by stacking the M

regression coefficient vectors specific for the kth sub-population one underneath the other; it can

be denoted as β∗k = (β
∗′
k1, . . . ,β

∗′
km, . . . ,β

∗′
kM )′ and its length is P ∗ +M , where P ∗ =

∑M
m=1 Pm.

Finally, the following (P ∗ +M)×M partitioned matrix is required:

X̃∗ =



X∗1 0P1+1 . . . 0P1+1

0P2+1 X∗2 . . . 0P2+1

...
...

...

0PM+1 0PM+1 . . . X∗M


,

where 0Pm+1 denotes the (Pm + 1)-dimensional null vector.

The random vector Y follows a seemingly unrelated contaminated Gaussian linear clusterwise

regression model of order K if the conditional probability density function (p.d.f.) of Y|X = x

has the form

f(y|x;ψ) =

K∑
k=1

πkh (y;θk) , y ∈ RM , (2.1)

where πk is the mixing weight of the kth sub-population, with πk > 0 for k = 1, . . . ,K,

and
∑K

k=1 πk = 1; h (y;θk) is the contaminated Gaussian p.d.f. of Y|X = x in the kth sub-

population, defined as follows:

h (y;θk) = αkφM (y;µk(x;β∗k),Σk) + (1− αk)φM (y;µk(x;β∗k), ηkΣk) , (2.2)
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and φM (·;µ,Σ) denotes the p.d.f. of an M -dimensional Gaussian distribution with expected

mean vector µ and positive definite covariance matrix Σ. The term µk(x;β∗k) in equation (2.2)

is the conditional expected value of Y|X = x in the kth sub-population; it is defined as follows:

µk(x;β∗k) = x̃∗′β∗k =



x
∗′
1 β∗k1

...

x
∗′
m β

∗
km

...

x
∗′
M β∗kM


, (2.3)

where x̃∗ denotes the realisation of X̃∗ obtained when X = x. Thus, x̃∗′β∗k coincides with

an M -dimensional vector whose mth element is a linear combination of the realisations of the

Pm regressors selected for the prediction of Ym with weights given by the elements of vector

β∗km. Terms αk ∈ (0, 1) and ηk > 1 are the weight of the typical observations in the kth sub-

population and the factor contaminating the conditional variances and covariances of Y|X = x

for the mild outliers in the kth sub-population, respectively. In robust statistics, it is generally

assumed that at least half of the observations are typical (see, e.g., Punzo and McNicholas, 2016;

Mazza and Punzo, 2020); thus, it is also possible to consider αk ∈ [0.5, 1). As a consequence

of the constraint ηk > 1, ηk represents an inflation parameter for the elements of Σk. θk =

(β∗k,Σk, αk, ηk) is the parameter vector of model (2.2). The parameter vector of model (2.1) is

given by ψ = (ψ1, . . . ,ψk, . . . ,ψK), where ψk = (πk,θk); the number of free parameters in this

vector is equal to nψ = 3K − 1 +K(P ∗ +M) +KM(M+1)
2 .

In summary, the conditional p.d.f. f(y|x;ψ) in equation (2.1) can be interpreted as a

weighted average (namely, a mixture) of K Gaussian regression models with weights πk, k =

1, . . . ,K. The kth component of this mixture represents a multivariate seemingly unrelated

contaminated Gaussian linear regression model with intercepts and regression coefficients β∗k,

symmetric and positive definite covariance matrix Σk, proportion of typical points αk and in-

flation parameter ηk. Thanks to the non-diagonal structure of the variance-covariance matrices

Σk, k = 1, . . . ,K, the proposed model is able to account for correlated random disturbances

within each of the K sub-populations associated with the mixture (2.1). Since the contami-

nated Gaussian distribution (2.2) is a mixture of two Gaussian linear regression models which

are both associated with the kth component of the mixture in equation (2.1), the model defined
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by this latter equation can also be considered as a mixture of 2K seemingly unrelated Gaussian

clusterwise linear regression models, whose components can be grouped into K pairs, each of

which contains two Gaussian components having the same expected values and proportional

covariance matrices.

2.2.2 Comparisons with other linear clusterwise regression models

When specific conditions are met, some special linear regression models can be obtained from

model (2.1).

• If M > 1 and Xm = X ∀m (the same vector of predictors is considered for all responses),

the following equality holds: x̃∗ = IM ⊗ x∗, where IM is the identity matrix of order M

and ⊗ denotes the Kronecker product operator (see, e.g., Magnus and Neudecker, 1988).

Equation (2.3) can be rewritten as

µk(x;β∗k) = (IM ⊗ x∗)′ β∗k = B′kx, k = 1, . . . ,K, (2.4)

where Bk = [β∗k1 · · ·β∗km · · ·β∗kM ]. Thus, equation (2.1) reduces to the mixture of multi-

variate contaminated Gaussian regression models introduced by Mazza and Punzo (2020).

• If M > 1, αk → 1 and ηk → 1 ∀k (there is no contamination in the data), the resulting

model coincides with the mixture of multivariate seemingly unrelated linear regressions

described in Galimberti and Soffritti (2020).

• If αk → 1, ηk → 1 ∀k and Xm = X ∀m (there is no contamination in the data and the same

vector of predictors is considered for all responses), equation (2.1) reduces to a mixture

of either univariate Gaussian linear regression models (see, e.g., De Veaux, 1989; Quandt

and Ramsey, 1978; De Sarbo and Cron, 1988) or multivariate Gaussian linear regression

models (see Jones and McLachlan, 1992).

• If αk → 1, ηk → 1 ∀k, Xm = X ∀m and β∗k = β∗ ∀k (there is no contamination in the

data, the same vector of predictors is considered for all responses and their effects are the

same across all the sub-populations), the resulting model coincides with a linear regression

model with error terms distributed according to a mixture of K either univariate Gaus-

sian distributions (Bartolucci and Scaccia, 2005) or multivariate Gaussian distributions

(Soffritti and Galimberti, 2011).
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• If M > 1, αk → 1, ηk → 1 ∀k, β∗k = β∗ ∀k (there is no contamination in the data and

the effects of the predictors are the same across all the sub-populations), a multivariate

seemingly unrelated linear regression model whose error terms are assumed to follow a

Gaussian mixture model is obtained (Galimberti et al., 2016).

Seemingly unrelated regression models represent multivariate regression models in which

prior information about the absence of certain covariates for the prediction of certain responses

is explicitly taken into consideration (Srivastava and Giles, 1987). Thus, equation (2.1) can also

be seen as a mixture of multivariate contaminated Gaussian regression models in which some

regression coefficients are constrained to be a priori equal to zero. To the best of the authors’

knowledge, the inclusion of such constraints in these latter models has not been addressed

yet. Models obtained from equation (2.1) by embedding different constraints on the regression

coefficients could also be employed in any practical application in which the relevant regressors

for each response cannot be established from a priori information and, thus, the choice of the

regressors to be used for the M responses is questionable. As it will be illustrated in Section 2.4,

in such situations strategies based on a joint use of models (2.1) and variable selection techniques

could be devised and employed.

2.2.3 Identifiability

A preliminary requirement for the consistency and other asymptotic properties of the ML es-

timator is represented by identifiability of the model parameters. Thus, before detailing ML

estimation of ψ, a discussion about identifiability of model (2.1) is provided here. Consider the

class of models F = {FK ,K = 1, . . . ,Kmax}, where FK = {f(y|x;ψ),ψ ∈ Ψ}, f(y|x;ψ) is

the p.d.f. of Y|X = x under the seemingly unrelated contaminated Gaussian linear clusterwise

regression model of order K defined in (2.1) and Kmax denotes the maximum order specified

by the researcher for that model. This class is said to be identifiable if, for any two models M ,

M̃ ∈ F with parameters ψ = (ψ1, . . . ,ψk, . . . ,ψK) and ψ̃ = (ψ̃1, . . . , ψ̃k, . . . , ψ̃K̃), respectively,

K∑
k=1

πkh (y;θk) =

K̃∑
k=1

π̃kh
(
y; θ̃k

)
∀ y ∈ RM

implies that K = K̃ and ψ = ψ̃.

Several types of non-identifiability can affect the model class F. A first type is due to
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invariance to relabeling the components of the mixture (also known as label-switching). Non-

identifiability can also be caused by potential overfitting associated with empty components

or equal components (see, e.g., Frühwirth-Schnatter, 2006). Imposing suitable constraints on

the parameter space Ψ can prevent such sources of non-identifiability for F. Another type of

non-identifiability affecting this class is specifically associated with the use of finite mixtures

in linear regression analysis with fixed covariates, which requires an additional constraint on

the number of components of the mixture (2.1) (see Hennig, 2000). Non-identifiability due to

empty components is avoided by requiring the positivity of all the mixing weights πk. Conditions

specifically devised for ensuring identifiability of mixtures of contaminated Gaussian regression

models are provided in Mazza and Punzo (2020). These results have been exploited in Theorem

1 to show that model (2.1) is identifiable if the parameters (β∗k,Σk), k = 1, . . . ,K, are pairwise

distinct and the order K is exceeded by the number of distinct (Pm−1)-dimensional hyperplanes

required to cover the covariates employed for the prediction of Ym, for m = 1, . . . ,M . In order to

state Theorem 1, the following notation is also required: ‖·‖F is the element-wise matrix 2-norm

(also known as the Frobenious norm); HPm−1 = {xm ∈ RPm : λ′xm = c,λ ∈ RPm ,λ 6= 0} is a

(Pm − 1)-dimensional hyperplane; Jm is the minimum number of such hyperplanes required to

cover the covariates xm; HPm−1 is the space of (Pm − 1)-dimensional hyperplanes of RPm .

Theorem 1. Let M ∈ F and M̃ ∈ F be two models, ψ = (ψ1, . . . ,ψk, . . . ,ψK) and ψ̃ =

(ψ̃1, . . . , ψ̃k, . . . , ψ̃K̃) the corresponding parameters and, without loss of generality, K ≥ K̃. If

C1) K < Jm for m = 1, . . . ,M , where

Jm := min

{
qm : {xim, i ∈ Im} ⊆

qm⋃
b=1

HPm−1
b : HPm−1

b ∈ HPm−1

}
,

with Im being an index set associated with the distinct covariate points available for the

prediction of Ym, and

C2) k 6= l, with k, l ∈ {1, . . . ,K}, implies

‖β∗k − β∗l ‖
2
F + ‖Σk − aΣl‖2F 6= 0 ∀a > 0,

then the class F is identifiable.

Conditions C1) and C2) are obtained from Mazza and Punzo (2020) after suitable modi-

fications of similar conditions required for the identifiability of their mixtures of contaminated
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Gaussian regression models. In particular, condition C2) results from a simple substitution of

the vector β∗k of model (2.1) for the matrix Bk introduced in equation (2.4) containing the inter-

cepts and regression coefficients in the kth component of the regression mixture model developed

by Mazza and Punzo (2020). The modifications involved in the definition of the condition C1)

derive from the fact that each Ym ∈ Y may have its own covariates and, thus, M different

restrictions on K have to be required, each one involving a (possibly) different minimum num-

ber of low-dimensional hyperplanes to cover those covariates. As a consequence, the proof of

Theorem 1 can be obtained by exploiting the same arguments illustrated in Mazza and Punzo

(2020) for the proof of their theorem about identifiability of mixtures of contaminated Gaussian

regression models.

2.2.4 Maximum likelihood estimation

The ML estimation of the parameters ψ is carried out here for a fixed value of K. Given a sample

S of I independent observations drawn from model (2.1), the model log-likelihood is equal to

`(ψ) =
∑I

i=1 ln
(∑K

k=1 πkh (yi;θk)
)

. Following Mazza and Punzo (2020), ML estimates ψ̂ can

be computed by means of an ECM algorithm, which represents a variant of the EM algorithm

usually employed for the computation of ML estimates from incomplete data. In the considered

situation, the missing information is twofold. On the one hand, there is a classical source of

incompleteness of any mixture model associated with the component memberships of the I

sample observations. On the other hand, it is not known whether such observations are outliers

with reference to any component or not. These two sources can be described by two different

types of K-dimensional vectors. For the ith sample observation, they are given by zi and

ui, respectively: zi = (zi1, . . . , ziK)′, with zik = 1 if the ith observation comes from the kth

component and zik = 0 otherwise; ui = (ui1, . . . , uiK)′, with uik = 1 if the ith observation is

typical in the kth component and uik = 0 if it is an outlier, for k = 1, . . . ,K. Then, the set of

complete data would be Sc = {(x1,y1, z1,u1), . . . , (xI ,yI , zI ,uI)}, and the the complete-data

likelihood function is equal to

Lc(ψ) =

I∏
i=1

K∏
k=1

{
πk

[
αkφM

(
yi;µk(x;β∗k),Σk

)]uik
[
(1− αk)φM

(
yi;µk(x;β∗k), ηkΣk

)]1−uik}zik
.



2.2.4 Maximum likelihood estimation 23

Thus, up to an additive constant, the complete-data log-likelihood function employed in the

ECM algorithm for the computation of the parameter estimates can be expressed as follows:

`c(ψ) =
I∑
i=1

K∑
k=1

zik

[
lnπk + uik lnαk + (1− uik) ln(1− αk)−

1

2
ln |Σk|+

−
(M

2
ln ηk

)
(1− uik)−

1

2

(
uik +

1− uik
ηk

)
δ2Σk

(
yi,µk(xi;β

∗
k)
)]
,

where

δ2Σk
(yi,µk(xi;β

∗
k)) = (yi − µk(xi;β∗k))′Σ−1k (yi − µk(xi;β∗k)) (2.5)

is the squared Mahalanobis distance between yi and µk(xi;β
∗
k) with respect to the matrix Σk.

The hth iteration of the E-step in the ECM algorithm consists in calculating the conditional

expectation of lc(ψ) on the basis of the current estimate ψ(h) of the model parameters ψ; up to

an additive constant, this expected value can be expressed as follows:

Q
(
ψ|ψ(h)

)
= Eψ(h) [lc(ψ)]

=
I∑
i=1

K∑
k=1

ẑ
(h)
ik

{
lnπ

(h)
k + û

(h)
ik lnα

(h)
k + (1− û(h)ik ) ln(1− α(h)

k )+

+Qi

(
β∗k,Σk|ψ(h)

)}
,

where

Qi

(
β∗k,Σk|ψ(h)

)
= −1

2

[
ln |Σ(h)

k |+M(1− û(h)ik ) ln η
(h)
k +

+
(
û
(h)
ik +

1− û(h)ik

η
(h)
k

)
δ2
Σ

(h)
k

(
yi,µk(xi;β

∗(h)
k )

) ]
,

ẑ
(h)
ik and û

(h)
ik are the posterior probabilities (evaluated using ψ(h)) that the ith observation is

generated from the kth component of the mixture (2.1) and that the ith observation is a typical
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point of such a component, respectively:

ẑ
(h)
ik = Eψ(h) [Zik|(xi,yi)] =

π
(h)
k h

(
yi;θ

(h)
k

)
f
(
yi|xi;ψ(h)

) , (2.6)

û
(h)
ik = Eψ(h) [Uik|(xi,yi, zi)] =

α
(h)
k φ

(
yi;µk(xi;β

∗(h)
k ),Σ

(h)
k

)
h
(
yi;θ

(h)
k

) , (2.7)

with Zi = (Zi1, . . . , ZiK)′ denoting a K-dimensional multinomial random vector with probabili-

ties π = (π1, . . . , πK)′, and Uik|Zik = 1 having a Bernoulli distribution with success probability

of αk.

As far as the conditional maximisation is concerned, the update of ψ(h) is carried out by

considering the following two parameter sub-vectors: γ = (π,β∗,Σ,α) and η = (η1, . . . , ηK)′,

where β∗ = (β∗1, . . . ,β
∗
K), Σ = (Σ1, . . . ,ΣK), α = (α1, . . . , αK). At the (h + 1)th iteration

of the ECM algorithm, γ(h) = (π(h),β∗(h),Σ(h),α(h)) is updated through the maximisation of

Q(ψ|ψ(h)) with respect to γ with η fixed at η(h) (first CM step); then, the update of η(h) is

carried out by maximising Q(ψ|ψ(h)) with respect to η with γ fixed at γ(h+1) (second CM step).

The resulting updates of π
(h)
k , α

(h)
k and η

(h)
k are:

π
(h+1)
k =

1

I

I∑
i=1

ẑ
(h)
ik ,

α
(h+1)
k =

∑I
i=1 ẑ

(h)
ik û

(h)
ik∑I

i=1 ẑ
(h)
ik

, (2.8)

η
(h+1)
k = max

{
1,

∑I
i=1 ẑ

(h)
ik (1− û(h)ik )δ2

Σ
(h+1)
k

(
yi,µk(xi;β

∗(h+1)
k )

)
M
∑I

i=1 ẑ
(h)
ik (1− û(h)ik )

}
. (2.9)

Such updates coincide with the ones reported in Mazza and Punzo (2020) for their model. Based

on equation (2.9), it is possible to highlight that the update η
(h+1)
k will be larger when the kth

component is highly contaminated by the presence of outliers (i.e., when it is characterised by

many observations with a small value of û
(h)
ik and a large value of the squared Mahalanobis

distance from µk(xi;β
∗(h+1)
k )). As far as the remaining parameters are concerned, their updates
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are (details are reported in the Appendix):

β
∗(h+1)
k =

( I∑
i=1

ẑ
(h)
ik ŵ

(h)
ik x̃∗iΣ

(h)−1

k x̃∗
′
i

)−1( I∑
i=1

ẑ
(h)
ik ŵ

(h)
ik x̃∗iΣ

(h)−1

k yi

)
, (2.10)

Σ
(h+1)
k =

∑I
i=1 ẑ

(h)
ik ŵ

(h)
ik

(
yi − x̃∗

′
i β
∗(h+1)

k

)(
yi − x̃∗

′
i β
∗(h+1)

k

)′
∑I

i=1 ẑ
(h)
ik

, (2.11)

where

ŵ
(h)
ik = û

(h)
ik +

1− û(h)ik

η
(h)
k

. (2.12)

It is worth noting that the matrix
∑I

i=1 ẑ
(h)
ik ŵ

(h)
ik x̃∗iΣ

(h)−1

k x̃∗
′
i in (2.10) has to be nonsingular;

otherwise, the update β
∗(h+1)
k cannot be computed. Equation (2.10) also highlights that this

update can be considered as a generalised least squares estimate with weights depending on

ŵ
(h)
ik ; this latter term also affects the update Σ

(h+1)
k in (2.11), which represents a weighted

sum of squared residuals. Using such weights leads to a reduction in the effects of the outliers

on the estimation of β
∗(h+1)
k ; thus, this approach provides robust estimates of β

∗(h+1)
k , for

k = 1, . . .K. Furthermore, based on (2.12), sample observations with the highest posterior

estimated probabilities of being generated from the kth component and of representing typical

points in the kth component will have the largest impact on the updates of both the regression

coefficients and covariances within that component.

Once the convergence is reached and the ML estimates ψ̂ are computed, by exploiting

equation (2.6) the ECM algorithm provides estimates of the posterior probabilities Pψ̂[Zik =

1|(xi,yi)] = ẑik, i = 1, . . . , I, k = 1, . . . ,K. Such estimated probabilities can be employed

to partition the I sample observations into K clusters, by assigning each observation to the

component showing the highest posterior probability; for the ith observation:

MAP(ẑik) =


1 if maxh{ẑih} occurs when h = k;

0 otherwise.

Furthermore, equation (2.7) allows to compute the estimated posterior probabilities Pψ̂[Uik =

1|(xi,yi, ẑi)] = ûik, and an intra-cluster distinction between typical observations and mild out-

liers can be defined: the ith observation will be classified as an outlier of the hth cluster, where

h is the label of the component for which MAP(ẑik) = 1, if ûih < 0.5. From the ML estimates ψ̂
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and equation (2.5) it is also possible to compute the estimated squared Mahalanobis distances

d̂2ik = δ2
Σ̂k

(
yi, µ̂k(xi; β̂

∗
k)
)

, i = 1, . . . , I, k = 1, . . . ,K, which can be employed as multivariate

measures of the outlyingness of the I sample observations with respect to the K clusters detected

by the model. From the definition of the squared Mahalanobis distance given in equation (2.5)

and the expressions for û
(h)
ik and ŵ

(h)
ik reported in equations (2.7) and (2.12), respectively, it is

possible to express both ûik and ŵik as decreasing functions of d̂2ik (see Mazza and Punzo, 2020,

for the explicit expressions). Thus, atypical observations could also be detected and studied by

considering the values of d̂2ik ∀(i, k) ∈ {i ∈ {1, . . . , I}, k : MAP(ẑik) = 1} and by focusing on the

largest values obtained in this way (see McLachlan and Peel, 2000, p. 232).

2.2.5 Technical details about the ECM algorithm

A crucial point of any EM-based algorithm is the choice of the starting values for the model

parameters (i.e., ψ(0)). Multiple executions of the algorithm in association with multiple ran-

dom initialisations or approaches based on non-random choices of either ψ(0) or the missing

information can provide a solution (see, e.g., Biernacki et al., 2003; Karlis and Xekalaki, 2003).

As far as the ECM algorithm described above is concerned, the initialisation technique illus-

trated in Mazza and Punzo (2020) could be modified so as to be employed also for model (2.1).

This task would require setting the initial values ẑ
(0)
ik , i = 1, . . . , I, k = 1, . . . ,K, equal to the

posterior probabilities from the EM algorithm for the estimation of the seemingly unrelated

Gaussian clusterwise linear regression models, which are nested in model (2.1) when αk → 1−

and ηk → 1+, k = 1, . . . ,K; furthermore, û
(0)
ik = 0.999, i = 1, . . . , I, k = 1, . . . ,K. Another strat-

egy for the initialisation of ψ which exploits the relationship between model (2.1) and seemingly

unrelated Gaussian clusterwise linear regression models (see Section 2.2.2) could be composed

of the following three steps. Firstly, a Gaussian mixture model with K components is fitted

to the sample residuals of a seemingly unrelated linear regression model (Srivastava and Giles,

1987); this allows to obtain the starting values π
(0)
k and Σ

(0)
k . Secondly, the starting values β

∗(0)
k

are obtained from the fitting of K different seemingly unrelated linear regression models, one

for each cluster of the partition associated with the Gaussian mixture model considered in the

previous step. Thirdly, α
(0)
k and η

(0)
k , k = 1 . . . ,K, are set equal to 0.999 and 1.001, respectively.

Models involved in the first two steps can be estimated through the packages mclust (Scrucca

et al., 2017) and systemfit (Henningsen and Hamann, 2007) in the R environment (R Core

Team, 2021). In the analyses of Sections 2.3 and 2.4, the ECM algorithm has been initialised



2.2.6 Determining the value of K 27

using this latter strategy. Furthermore, since (1 − αk) in model (2.1) can be considered as

the proportion of outliers in the kth sub-population, when this model is employed for outlier

detection, a reasonable requirement is that in each cluster the number of typical observations

cannot be smaller than the number of outliers, that is αk ∈ [0.5, 1) ∀k. To guarantee this result,

constraints on the estimation of αk, k = 1, . . . ,K, have been included in the ECM algorithm;

namely, equation (2.8) has been modified as follows: α
(h+1)
k = max

{
0.5,

∑I
i=1 ẑ

(h)
ik û

(h)
ik∑I

i=1 ẑ
(h)
ik

}
.

In order to avoid premature stops of the ECM algorithm associated with the use of lack of

progress stopping criteria, such as the one based on the difference between the log-likelihood

values at two consecutive steps, a convergence criterion based on the Aitken acceleration (Aitken,

1926) has been adopted. It consists in stopping the algorithm when |`(h+1)
A − `(ψ(h))| < ε,

where 0 < ε < +∞, `
(h+1)
A is (h + 1)th Aitken accelerated estimate of the log-likelihood limit,

and `(ψ(h)) is the incomplete log-likelihood evaluated at ψ(h) (see, e.g., McNicholas, 2010).

Furthermore, a criterion based on a maximum number of iterations for the ECM algorithm has

been employed. In the analyses of Sections 2.3 and 2.4, the maximum number of iterations and

ε have been set equal to 500 and 10−6, respectively. Furthermore, in order to circumvent the

possible issue of unbounded likelihood associated with a degenerate model, the ECM algorithm

has been developed by embedding some constraints on the eigenvalues of Σ
(h)
k for k = 1, . . . ,K.

Namely, for all estimated covariance matrices, the ratio between the smallest and the largest

eigenvalues is required to be not lower than 10−10.

2.2.6 Determining the value of K

As illustrated in Section 2.2.4, the ML estimation of ψ based on the ECM algorithm is carried

out for a given number of mixture components. When this number is not known and has to be

determined from the data S, it is common practice to employ model selection criteria able to

take account of different aspects which are considered relevant when evaluating the adequacy of

a model (see, e.g., Frühwirth-Schnatter, 2006; Depraetere and Vandebroek, 2014). For example,

the Bayesian Information Criterion (Schwarz, 1978) provides a trade-off between the fit and the

model complexity; it can be computed as follows:

BIC(K) = 2`(ψ̂)− nψ ln I.
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Model selection criteria that also consider the uncertainty of the estimated partition of the sam-

ple observations could be employed. An example is represented by the integrated completed

likelihood (Biernacki et al., 2000), which can be computed according to different ways of mea-

suring the uncertainty of the estimated partition (see, e.g., Andrews and McNicholas, 2011; Baek

and McLachlan, 2011):

ICL1(K) = 2`(ψ̂)− nψ ln I + 2

I∑
i=1

K∑
k=1

MAP(ẑik) ln ẑik,

ICL2(K) = 2`(ψ̂)− nψ ln I + 2
I∑
i=1

K∑
k=1

ẑik ln ẑik.

These latter criteria penalize complex models more severely than BIC because of the presence

of an additional penalty, which represents the estimated mean entropy. Thus, when using

these criteria in comparison with the BIC, one cluster should be less likely split into two

different components. ICL1 and ICL2 differ on whether a soft (i.e., ẑik) or hard (i.e., MAP(ẑik))

clustering is considered in the estimation of the mean entropy. Higher values of these criteria

indicate better-fit models; as it will be illustrated in Section 2.4, BIC, ICL1 and ICL2 can

also be employed to select the predictors to be considered in the linear terms employed in the

prediction of the M responses in model (2.1).

2.3 Results from Monte Carlo studies

2.3.1 Settings

This section focuses on the investigation of the effectiveness of models (2.1) (mixtures of con-

taminated seemingly unrelated Gaussian regressions, hereafter denoted as MCSG) in comparison

with other approaches using simulated datasets. This task has been carried out in a multivari-

ate setting with M = 4 responses, P = 4 covariates and datasets comprising K = 3 groups of

observations. The additional models considered in the comparison are those described by Mazza

and Punzo (2020) and Galimberti and Soffritti (2020). From now on, these latter models have

been denoted as MCG (mixtures of contaminated Gaussian regressions) and MSG (mixtures of

seemingly unrelated Gaussian regressions), respectively.

The simulated datasets have been generated using three different data generation processes:

(a) MSG;
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Figure 2.1: Scatterplots of X1 and Y1 for samples of size I = 1000 generated from the first
(upper panel), second (intermediate panel) and third (lower panel) data generation processes
under higher (ε = 9, left panels) and lower (ε = 6.5, right panels) degree of separation. Black
circle, red triangle and green plus correspond to k = 1, k = 2 and k = 3, respectively.



30 Seemingly unrelated clusterwise regression for contaminated data

(b) MCSG with αk = 0.9 ∀k, η1 = 40, η2 = η3 = 20;

(c) mixtures of regression models with seemingly unrelated t-distributed errors (MSt), with

ν1 = ν2 = ν3 = 4 degrees of freedom.

In all the regression models employed to generate the datasets, the response Ym has been assumed

to depend on Xm, for m = 1, 2, 3, 4; thus, Pm = 1 ∀m. With each process, the following param-

eters have been employed: π1 = 0.3, π2 = 0.5, π3 = 0.2, β∗1 = (−3, 0.2,−3, 0.2,−3, 0.2,−3, 0.2)′,

β∗2 = −β∗1, β∗3 = (3 + ε,−0.2, 3 + ε,−0.2, 3 + ε,−0.2, 3 + ε,−0.2),

Σ1 =



1.0 0.5 0.5 0.5

0.5 1.0 0.5 0.5

0.5 0.5 1.0 0.5

0.5 0.5 0.5 1.0


, Σ2 = Σ3 =



1.00 0.75 0.75 0.75

0.75 1.00 0.75 0.75

0.75 0.75 1.00 0.75

0.75 0.75 0.75 1.00


.

It is worth noting that the second and third components only differ in the intercepts of the

four regression equations. Covariate values have been generated by a uniform distribution over

the interval (−5, 5). As concerns ε, two alternatives have been considered in order to produce two

different degrees of separation between groups of observations: ε = 9 (higher degree), ε = 6.5

(lower degree). Figure 2.1 shows the scatterplots of the variables Y1 and X1 for a sample of

size I = 1000 generated using the MSG (upper panel), MCSG (central panel) and MSt (lower

panel) processes with ε = 9 (on the left) and ε = 6.5 (on the right). Due to the values of

the regression coefficients employed to model the linear dependencies of Ym and Xm across the

three components, the scatterplots of Ym and Xm for m = 2, 3, 4 are similar. Under each data

generating process, 100 random samples of size I have been simulated for each ε. As far as the

sample size is concerned, the following values have been examined: I = 500, 1000. Thus, the

degree of separation and the sample size can be considered as experimental factors. This yields

a total of 600 generated datasets for each I. The whole analysis has been run on an IBM x3750

M4 server with 4 Intel Xeon E5-4620 processors with 8 cores and 128GB RAM.

2.3.2 Results

A first analysis has been carried out where the MSG, MCG and MCSG models of order K = 3

have been fitted to each dataset. It is worth noting that the MCG models have been specified and

estimated by assuming that each of the four responses depends on all covariates. Thus, using

such models leads to non-parsimonious specifications for all the models that have generated

the simulated datasets, as 12 regression coefficients for each component have been estimated
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Table 2.3: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the first process (I = 500).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 0.307 0.563 0.312 0.022 0.029 0.022
β12 −0.012 −0.108 −0.013 0.021 0.028 0.021
β13 −0.085 0.047 −0.084 0.024 0.030 0.024
β14 0.145 0.147 0.148 0.023 0.029 0.023
β21 −0.027 0.014 −0.027 0.014 0.021 0.014
β22 −0.119 −0.028 −0.119 0.010 0.024 0.010
β23 0.111 0.205 0.111 0.013 0.022 0.013
β24 −0.256 −0.165 −0.256 0.013 0.023 0.013
β31 −0.112 −0.141 −0.112 0.021 0.038 0.021
β32 0.239 0.439 0.239 0.021 0.036 0.021
β33 −0.257 −0.576 −0.257 0.021 0.036 0.021
β34 0.094 0.060 0.094 0.021 0.034 0.021

Low separation
β11 0.307 0.571 0.309 0.022 0.029 0.022
β12 −0.012 −0.106 −0.016 0.021 0.028 0.021
β13 −0.085 0.049 −0.089 0.024 0.030 0.024
β14 0.145 0.147 0.153 0.023 0.029 0.023
β21 0.010 0.107 0.005 0.014 0.022 0.014
β22 −0.098 0.153 −0.097 0.010 0.026 0.010
β23 0.107 0.204 0.117 0.013 0.025 0.013
β24 −0.252 −0.047 −0.252 0.014 0.025 0.014
β31 −0.224 −0.034 −0.219 0.021 0.046 0.021
β32 0.195 0.820 0.190 0.023 0.042 0.023
β33 −0.244 −0.512 −0.251 0.022 0.041 0.022
β34 0.094 0.166 0.092 0.021 0.040 0.021

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.4: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the second process (I = 500).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 6.732 0.515 0.288 0.103 0.029 0.023
β12 6.819 −0.054 −0.008 0.105 0.029 0.023
β13 6.728 0.062 −0.083 0.105 0.029 0.023
β14 6.816 0.297 0.246 0.104 0.031 0.025
β21 −0.833 0.104 0.049 0.061 0.022 0.015
β22 −0.983 −0.058 −0.113 0.057 0.025 0.012
β23 −0.852 0.131 0.086 0.064 0.023 0.014
β24 −1.165 −0.195 −0.288 0.060 0.025 0.014
β31 −1.220 −0.260 −0.272 0.044 0.041 0.023
β32 −0.441 0.295 0.270 0.034 0.036 0.021
β33 −0.917 −0.593 −0.241 0.041 0.039 0.021
β34 −0.248 0.261 0.184 0.034 0.036 0.021

Low separation
β11 7.440 0.900 0.306 0.118 0.052 0.022
β12 7.583 0.331 0.025 0.118 0.046 0.023
β13 7.517 0.418 −0.104 0.118 0.045 0.023
β14 7.421 0.527 0.189 0.117 0.050 0.025
β21 −1.508 0.368 0.030 0.074 0.024 0.014
β22 −1.791 0.140 −0.070 0.079 0.025 0.012
β23 −1.611 −0.008 0.123 0.081 0.026 0.014
β24 −1.890 0.010 −0.266 0.079 0.026 0.013
β31 −3.674 −0.764 −0.089 0.129 0.137 0.034
β32 −3.169 −3.185 0.174 0.101 0.200 0.052
β33 −3.644 −1.903 −0.536 0.145 0.177 0.077
β34 −2.049 −1.250 0.325 0.101 0.201 0.044

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.5: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the third process (I = 500).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 0.786 0.090 0.296 0.034 0.034 0.029
β12 0.861 0.224 0.411 0.035 0.043 0.029
β13 0.674 0.300 0.254 0.033 0.041 0.030
β14 0.532 0.108 −0.157 0.035 0.043 0.027
β21 0.145 −0.014 0.055 0.018 0.037 0.016
β22 0.109 −0.810 −0.003 0.017 0.045 0.014
β23 −0.082 −0.211 −0.152 0.020 0.041 0.018
β24 0.162 −0.023 0.027 0.015 0.032 0.014
β31 −0.206 −1.520 −0.273 0.029 0.056 0.027
β32 −0.384 −0.092 −0.319 0.031 0.061 0.027
β33 0.784 0.293 0.425 0.027 0.063 0.026
β34 0.060 0.326 0.384 0.026 0.049 0.025

Low separation
β11 0.312 −0.218 0.101 0.032 0.032 0.026
β12 0.411 0.024 0.264 0.029 0.035 0.028
β13 0.354 0.011 0.182 0.033 0.035 0.029
β14 −0.019 −0.297 −0.246 0.029 0.034 0.026
β21 0.026 0.124 0.048 0.017 0.038 0.017
β22 −0.117 −0.536 0.155 0.018 0.039 0.016
β23 0.105 0.232 −0.108 0.022 0.043 0.018
β24 0.371 −0.038 0.156 0.017 0.038 0.016
β31 −0.336 −3.023 0.052 0.056 0.138 0.034
β32 0.334 −2.051 −1.141 0.057 0.166 0.066
β33 1.120 0.634 −1.330 0.169 0.110 0.128
β34 −0.296 −1.419 −0.377 0.059 0.151 0.047

Biases have been multiplied by 100 to facilitate presentation.
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although in fact they are equal to zero. The average execution times (over the 100 datasets with

I = 500) for the MCSG models have ranged between 2.499 and 55.020 seconds, depending on

the process and the specific value of ε employed to generate the datasets. Concerning the other

two models, the minimum and maximum average execution times have resulted to be equal to

1.722 and 24.580 seconds with MSG models, 7.765 and 58.520 seconds with MCG models. It

is worth noting that, since the implementation of the ECM algorithm has not been carried out

with the goal of being efficient from a computational point of view, these CPU times should be

regarded as merely illustrative and can be reduced using more efficient implementations. In the

first analysis, the performances of the three competing models have been evaluated with respect

to the following aspects: textit(i) the estimation of the proportions of typical observations and

the degrees of contamination (proper estimation of αk and ηk); textit(ii) the ability to recover

the true values of the unknown parameters (parameter recovery); (iii) the ability to recover the

true partition of the sample observations (classification recovery). When evaluating properties

of the parameter estimators using simulation studies under mixture models, there may be label

switching issues. Several labeling methods have been proposed. For the models examined here,

as in Bai et al. (2012), Yao (2014) and Mazza and Punzo (2020), labels have been chosen by

minimising the Euclidean distance to the true parameter values.

A second analysis has been carried out so as to obtain an evaluation of the three approaches

without exploiting the knowledge of the true number of components. Thus, in addition to the

models already examined in the first analysis, also models of order K = 1, 2, 4, 5 have been

fitted to each dataset. All the obtained results have been employed to collect information on

the following aspects: (iv) the capability to reach the best trade-off between the fit and model

complexity; (v) the ability of BIC, ICL1 and ICL2 to detect the true value of K (comparison

among information criteria).

Estimation of αk and ηk

The aspect (i) has been studied for the fitted MCG and MCSG models with K = 3. Under the

first two data generation processes, the averages of the estimated proportions of good points

(α̂k) and the estimated inflation parameters (η̂k) are close to their true values under both MCG

and MCSG models, regardless of the level of separation and the sample size (see the upper

part of Tables 2.1 and 2.2). However, it is worth noting that slightly lower standard deviations

of such estimates have been registered under the first process, thus giving an indication of a
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Table 2.6: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the first process (I = 1000).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 0.162 0.128 0.162 0.016 0.020 0.016
β12 −0.066 0.009 −0.066 0.017 0.022 0.017
β13 0.127 0.478 0.127 0.015 0.020 0.015
β14 0.070 0.084 0.070 0.017 0.020 0.017
β21 −0.126 −0.314 −0.126 0.008 0.014 0.008
β22 −0.042 −0.080 −0.042 0.008 0.015 0.008
β23 0.081 0.077 0.081 0.010 0.016 0.010
β24 −0.057 0.080 −0.057 0.008 0.014 0.008
β31 0.075 0.161 0.075 0.014 0.025 0.014
β32 −0.153 −0.073 −0.153 0.015 0.026 0.015
β33 0.091 0.158 0.091 0.015 0.024 0.015
β34 −0.124 −0.452 −0.124 0.014 0.025 0.014

Low separation
β11 0.159 0.122 0.161 0.016 0.020 0.016
β12 −0.065 0.012 −0.060 0.017 0.022 0.017
β13 0.129 0.474 0.127 0.015 0.020 0.015
β14 0.070 0.077 0.073 0.017 0.020 0.017
β21 −0.008 0.276 −0.008 0.009 0.015 0.009
β22 −0.008 −0.045 −0.007 0.009 0.016 0.009
β23 0.059 −0.071 0.056 0.010 0.016 0.010
β24 0.028 −0.149 0.031 0.008 0.016 0.008
β31 −0.034 −0.027 −0.032 0.014 0.028 0.014
β32 −0.067 −0.248 −0.067 0.014 0.031 0.014
β33 0.069 −0.238 0.070 0.016 0.031 0.016
β34 −0.031 0.013 −0.030 0.015 0.031 0.015

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.7: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the second process (I = 1000).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 6.928 0.092 0.217 0.086 0.020 0.015
β12 7.415 0.161 0.116 0.094 0.385 0.019
β13 6.835 −0.304 −0.269 0.088 0.390 0.015
β14 6.101 −0.221 −0.219 0.081 0.021 0.018
β21 −0.277 −0.140 −0.102 0.033 0.016 0.010
β22 −0.100 0.045 0.077 0.031 0.015 0.011
β23 −0.246 −0.003 −0.055 0.033 0.386 0.010
β24 −0.276 −0.178 −0.103 0.034 0.016 0.009
β31 −0.906 −0.264 −0.185 0.030 0.027 0.015
β32 −0.218 0.214 −0.036 0.026 0.389 0.015
β33 −0.916 −0.396 −0.233 0.031 0.029 0.016
β34 −0.502 −0.099 −0.157 0.027 0.026 0.014

Low separation
β11 6.911 −0.051 0.147 0.092 0.020 0.015
β12 7.924 0.014 0.299 0.105 0.023 0.019
β13 7.733 0.175 −0.075 0.101 0.018 0.014
β14 6.543 −0.234 −0.239 0.090 0.023 0.017
β21 −0.713 0.223 −0.126 0.049 0.018 0.010
β22 −0.354 0.219 0.198 0.048 0.019 0.010
β23 −0.668 −0.148 −0.084 0.050 0.018 0.009
β24 −0.286 0.143 0.252 0.044 0.016 0.009
β31 −2.667 0.019 −0.876 0.081 0.085 0.116
β32 −1.447 −0.236 −0.033 0.072 0.080 0.068
β33 −2.959 0.591 0.184 0.092 0.087 0.035
β34 −2.173 0.732 −1.039 0.081 0.111 0.091

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.8: Bias and RMSE for the regression coefficients βkm under MSG, MCG and MCSG
models of order K = 3 in the third process (I = 1000).

Bias RMSE
MSG MCG MCSG MSG MCG MCSG

High separation
β11 0.325 −0.128 −0.022 0.022 0.027 0.019
β12 0.412 0.057 −0.011 0.024 0.026 0.022
β13 0.686 0.268 0.160 0.022 0.025 0.019
β14 0.326 −0.049 0.091 0.027 0.028 0.024
β21 0.006 −0.199 −0.027 0.011 0.020 0.011
β22 0.217 0.330 0.035 0.012 0.020 0.011
β23 −0.011 −0.280 −0.131 0.012 0.019 0.011
β24 −0.324 −0.406 −0.233 0.013 0.018 0.012
β31 −0.049 0.125 −0.083 0.021 0.033 0.019
β32 0.118 0.154 0.003 0.018 0.032 0.017
β33 −0.170 0.052 −0.190 0.020 0.036 0.018
β34 −0.271 −0.516 −0.251 0.020 0.033 0.018

Low separation
β11 0.197 0.035 0.052 0.022 0.028 0.018
β12 −0.075 −0.289 −0.160 0.021 0.038 0.019
β13 0.540 0.430 0.407 0.023 0.028 0.020
β14 0.257 0.081 0.130 0.019 0.027 0.018
β21 0.084 0.140 0.063 0.013 0.023 0.012
β22 0.137 −0.142 −0.049 0.013 0.026 0.011
β23 0.140 0.279 0.213 0.014 0.021 0.012
β24 −0.143 −0.130 −0.117 0.012 0.024 0.012
β31 −0.911 −1.273 0.050 0.057 0.104 0.019
β32 −1.822 −2.135 0.061 0.085 0.162 0.021
β33 −1.087 −1.037 0.041 0.077 0.107 0.021
β34 −0.408 −0.881 0.156 0.069 0.083 0.022

Biases have been multiplied by 100 to facilitate presentation.
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higher stability of the obtained estimates; furthermore, the estimation of η1, η2 and η3 under

the second process appears to be characterised by a certain instability, which results to reduce as

the sample size I increases using both MCG and MCSG models. As far as the results from the

analyses of the datasets generated using the third process are concerned (lower part of Tables 2.1

and 2.2), the estimated values of αk and ηk, k = 1, 2, 3, are far from 1, regardless of the values

of ε and I. Thus, the departure from a four-dimensional Gaussian distribution for the errors of

the regression model has been detected within each of the three mixture components of both

MCG and MCSG models for both sample sizes. The standard deviations of η̂k, k = 1, 2, 3 are

high, and this result holds true particularly with MCG models and I = 1000.

Parameter recovery

The evaluation of the aspect (ii) has been focused on the regression coefficients βkm and has

been carried out by computing the following quantities:

Bias
(
β̂km

)
=

∑100
r=1 β̂

(r)
km

100
− βkm, k = 1, 2, 3, m = 1, 2, 3, 4,

RMSE
(
β̂km

)
=

√√√√∑100
r=1

(
βkm − β̂

(r)
km

)2
100

, k = 1, 2, 3, m = 1, 2, 3, 4,

where β̂
(r)
km is the ML estimate of βkm obtained from the rth dataset (r = 1, . . . , 100) using

models of order K = 3. With I = 500 and under the first data generating process (Table 2.3),

MSG and MCSG models show the same performance in terms of recovering the true values of the

regression coefficients with both degrees of separation. The good performance of MCSG models

is consistent with the proper estimation of αk and ηk associated with these models under the

first process (see the previous aspect). On the contrary, the inclusion of irrelevant predictors

in the four regression equations (MCG models) leads to a slight increase in the RMSEs. With

contaminated datasets of size I = 500, as expected, the lowest (absolute) biases and RMSEs

are obtained using the MCSG model (see Table 2.4); there also seems to be a tendency for

MCG models to perform slightly better than MSG models for the majority of the regression

coefficients. When the datasets are generated with I = 500 and according to the third process,

the highest accuracy in the estimation of the regression coefficients is obtained using MCSG

models (see Table 2.5). It is also worth noting that, in spite of their ability to detect a departure

from the Gaussian distribution within each component, MCG models show the lowest accuracy.

Similar results have been obtained with I = 1000 (see Tables 2.6-2.8).
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Table 2.9: Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3:
average values (standard deviations) of the ARI index over 100 samples (I = 500).

Process ε MSG MCG MCSG

I 9 0.999 (0.003) 0.999 (0.003) 0.999 (0.003)
I 6.5 0.946 (0.018) 0.937 (0.028) 0.946 (0.018)
II 9 0.818 (0.024) 0.911 (0.027) 0.910 (0.031)
II 6.5 0.723 (0.094) 0.806 (0.100) 0.821 (0.087)
III 9 0.931 (0.033) 0.936 (0.037) 0.937 (0.040)
III 6.5 0.721 (0.147) 0.745 (0.145) 0.776 (0.129)

Classification recovery

To obtain information on the aspect (iii), the partitions of the sample units associated with

the models of order K = 3 under each competing model class have been compared with the

true partition; the agreement with this latter partition has been measured by resorting to the

adjusted Rand index (ARI) (Hubert and Arabie, 1985). When the datasets are generated using

the first process and the highest level of separation (see the upper part of Tables 2.9 and 2.10),

an almost perfect classification recovery (ARI = 0.999) is obtained by each of the three models

regardless of the sample size. When the level of separation is low (ε = 6.5), a slight decrease in

the ability to recover the true partition of the sample observations is registered for all models

and, in particular, for the MCG ones when I = 500 (ARI = 0.937). When there are outliers

in the data and ε = 9, the best performance is obtained using either MCG models or MCSG

models with both sample sizes (ARI = 0.91); these latter models slightly outperform MCG

models when ε = 6.5. As far as MSG models are concerned, due to their inability to manage the

presence of mild outliers in the data, the classification recovery appears to be markedly lower,

especially with the lowest level of separation (ARI = 0.723 with I = 500, ARI = 0.716 with

I = 1000). Under the third process and the highest level of separation, good performances are

obtained by all models with both sample sizes (ARI > 0.93). When the level of separation

is reduced, a general decrease in the capability to reconstruct the true partition is registered;

MCSG models appear to be less affected by this tendency, regardless of the sample size.

Trade-off between fit and complexity

In order to study the aspect (iv), for each dataset and each model class, the models of order K̂IC

have been selected, where IC denotes an information criterion (IC ∈ {BIC, ICL1, ICL2}) and

K̂IC = arg max IC(K) for K ∈ {1, 2, 3, 4, 5}. Then, the average values of the 100 resulting values
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Table 2.10: Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3:
average values (standard deviations) of the ARI index over 100 samples (I = 1000).

Process ε MSG MCG MCSG

I 9 0.999 (0.002) 0.999 (0.002) 0.999 (0.002)
I 6.5 0.951 (0.011) 0.949 (0.012) 0.951 (0.011)
II 9 0.803 (0.015) 0.914 (0.023) 0.916 (0.021)
II 6.5 0.716 (0.088) 0.823 (0.092) 0.831 (0.082)
III 9 0.941 (0.016) 0.943 (0.013) 0.944 (0.014)
III 6.5 0.706 (0.147) 0.814 (0.095) 0.814 (0.102)

of BIC(K̂BIC), ICL1(K̂ICL1) and ICL2(K̂ICL2) have been computed within the three model

classes. As expected, when datasets of I = 500 observations are generated without outliers (first

process), the best trade-off between the fit and model complexity is reached by MSG models,

regardless of the level of separation and the criterion employed to select the best model (see

the upper part of Table 2.11). With these datasets, MCSG models slightly outperform MCG

models. When there are outliers in the data (second process) or the error terms of the K

regression models have tails heavier than the Gaussian ones (third process), MCSG shows the

best performance in terms of capability to reach the best trade-off between fit and complexity,

regardless of the level of separation and the criterion employed to select the best model (see the

lower part of Table 2.11). Interestingly, when the outliers are generated using a MCSG model

(second process), MSG models slightly outperform MCG models, regardless of the value of ε.

Similar conclusions can be drawn also from the results obtained when I = 1000 (see Table 2.12).

Comparison among information criteria

As far as the aspect (v) is concerned, the attention has been focused on the number of times each

value of K has been selected by each examined criterion. With datasets generated using the first

process and the highest level of separation, all the examined information criteria always recog-

nize the presence of three clusters, regardless of the fitted model and the sample size (see the

upper part of Tables 2.13 and 2.14). If the level of separation is reduced (ε = 6.5), the BIC still

tends to correctly identify the presence of three clusters regardless of the fitted model only with

the largest sample size. If I = 500, the same tendency is slightly weaker with MSG and MCSG

models; the order of the models employed to generate the datasets is always underestimated by

the BIC when MCG models are employed. ICL1 and ICL2 show a clear preference for K = 3

components only when models embedding the information on the relevant regressors (e.g., MSG
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Table 2.13: Comparison among information criteria: number of selections over 100 samples for
MSG, MCG and MCSG models of order K ∈ {1, 2, 3, 4, 5} (I = 500).

K BIC(K) ICL1(K) ICL2(K)
MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG

First process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 100 100 100 100 100 100 100 100 100
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

First process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 25 100 51 52 100 72 76 100 85
3 75 0 49 48 0 28 24 0 15
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

Second process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 100 98 0 100 98 0 100 99
4 99 0 2 99 0 2 99 0 1
5 1 0 0 1 0 0 1 0 0

Second process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 99 50 0 99 75 0 100 94
3 11 1 50 15 1 25 19 0 6
4 89 0 0 85 0 0 81 0 0
5 0 0 0 0 0 0 0 0 0

Third process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 2 0 0 2 1 0 2 1
3 52 98 99 70 98 98 77 98 96
4 39 0 1 25 0 1 22 0 3
5 9 0 0 5 0 0 1 0 0

Third process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 40 100 89 82 100 100 93 100 100
3 24 0 11 7 0 0 4 0 0
4 27 0 0 10 0 0 3 0 0
5 9 0 0 1 0 0 0 0 0
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Table 2.14: Comparison among information criteria: number of selections over 100 samples for
MSG, MCG and MCSG models of order K ∈ {1, 2, 3, 4, 5} (I = 1000).

K BIC(K) ICL1(K) ICL2(K)
MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG

First process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 100 100 100 100 100 100 100 100 100
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

First process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 13 0 0 49 0 17 84 24
3 100 87 100 100 51 100 83 16 76
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

Second process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 99 100 0 99 100 0 100 100
4 100 1 0 100 1 0 100 0 0
5 0 0 0 0 0 0 0 0 0

Second process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 19 4 0 80 17 0 93 68
3 0 81 91 1 20 81 8 7 31
4 100 0 5 99 0 2 92 0 1
5 0 0 0 0 0 0 0 0 0

Third process - high separation (ε = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 14 100 98 48 100 99 69 100 99
4 69 0 2 49 0 1 31 0 1
5 17 0 0 3 0 0 0 0 0

Third process - low separation (ε = 6.5)
1 0 0 0 0 0 0 0 0 0
2 1 88 12 44 100 88 81 100 100
3 19 12 87 13 0 12 10 0 0
4 67 0 1 40 0 0 9 0 0
5 13 0 0 3 0 0 0 0 0
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and MCSG) are employed and the sample size is I = 1000. Otherwise, they generally underesti-

mate the true number of clusters. Under the second process, when MSG models are fitted to the

data, all the examined information criteria show a clear tendency to select K = 4 components

an additional component accommodating outliers is typically selected), regardless of the level of

separation and the sample size (see also Mazza and Punzo, 2020). On the contrary, with both

MCG and MCSG models, the three criteria almost always correctly identify three components,

regardless of the sample size, provided that the degree of separation is high. When ε = 6.5, the

same result is obtained by the BIC in association with MCG and MCSG models and by ICL1

in association with MCSG models only with the largest sample size; otherwise, due to both

a low separation between two clusters and a low sample size, the examined criteria generally

underestimate the true value of K. This behaviour is particularly evident when the selection of

K is based on ICL2. A possible explanation for this is that the penalty employed by ICL2 (a

function of the uncertainty of the estimated posterior probabilities ẑik) is the most severe and

is also expected to be particularly large whenever the analysed dataset contains true clusters

which are not well separated. When the datasets are generated using the third process and the

smallest sample size, the obtained results show that, if ε = 9, the three criteria generally detect

the true value of K (see the lower part of Table 2.13). This tendency appears to be stronger

when MCG and MCSG models are employed. These results hold true also with I = 1000 except

when MSG models are fitted to the data and K is selected using either the BIC or the ICL1;

in these latter situations the true K is overestimated. On the contrary, when the degree of

separation is low, models of order K = 2 are generally selected from each examined model class

according to ICL1 and ICL2, regardless of the sample size. Also this result could be due to

the role played by the penalties employed by these two latter criteria in the presence of true

clusters which are not well separated. As far as the BIC is concerned, it allows to detect the

true number of components only when MCSG models are fitted to samples of size I = 1000. It

also shows a tendency to underestimate the true K both with MCSG models fitted to smaller

samples and with MCG models regardless of the sample size. Finally, a slight preference with

MSG models of order K = 2 and K = 4 emerges in association with samples of size I = 500

and I = 1000, respectively.
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2.4 Results from the analysis of canned tuna sales

The practical usefulness and effectiveness of the proposed models have been evaluated through

the analysis of a dataset containing the volume of weekly sales (Move) for seven of the top 10

U.S. brands in the canned tuna product category for I = 338 weeks between September 1989

and May 1997 (Chevalier et al., 2003). Measures of the display activity (Nsale) and the log

price (Lprice) of each brand in each week are also available. This dataset is included in the R

package bayesm (Rossi, 2012). The analysis here considers two products: Star Kist 6 oz. (SK)

and Bumble Bee Solid 6.12 oz. (BBS). In order to study the dependence of canned tuna sales on

prices and promotional activites for these two brands, the analysis has been carried out starting

from the following vectors of variables: Y = (Y1 = Lmove SK, Y2 = Lmove BBS), X = (X1 =

Nsale SK, X2 = Lprice SK, X3 = Nsale BBS, X4 = Lprice BBS), where Lmove denotes the

logarithm of Move; thus, M = 2 and P = 4. Previous studies focused on other brands are

illustrated in Galimberti et al. (2016) and Galimberti and Soffritti (2020).

The analysis has been carried out through MSG, MCG and MCSG models. The additional

class comprising mixtures of linear Gaussian regression models (Jones and McLachlan, 1992) has

been included in the comparison; the notation employed for this model class is MRM. Models

from each of these four classes have been estimated for K ∈ {1, 2, 3, 4}. Furthermore, since

prices and promotional activities for one product could have an impact on the sales of the other

product, models from MSG and MCSG classes have been specified and fitted by considering

all possible sub-vectors of X as vectors Xm, m = 1, 2, for each K. Thus, the analysis has also

included an exhaustive search of the relevant regressors for both Lmove SK and Lmove BBS. For

each K, 2P ·M = 256 different mixtures of regression models have been estimated either with

contamination or without contamination; the overall number of estimated models is 2048. It

is worth noting that none of the models employed in this analysis explicitly accounts for serial

dependencies that may characterise this dataset.

Figure 2.2 shows the values of BIC, ICL1 and ICL2 for the fitted MCSG, MSG, MCG

and MRM models which maximise each of these model selection criteria by K. An analysis

based on a single linear regression model without contamination (MSG and MRM models with

K = 1) is clearly inadequate according to all criteria. The best trade-off among the fit, the

model complexity and the uncertainty of the estimated partition of the weeks is reached by

models of order K = 2 for each of the four examined model classes. If model selection is only
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Figure 2.2: Values of BIC, ICL1 and ICL2 for the best MCG, MCSG, MSG and MRM models
by number of components in the analysis of tuna sales.

Table 2.15: Maximised log-likelihood and values of BIC, ICL1 and ICL2 for six models selected
from the classes MCSG, MCG, MSG and MRM in the analysis of tuna sales.

Class K X1 X2 `(ψ̂) nψ BIC ICL1 ICL2

MCSG 2 X1, X2 X2, X3, X4 −242.5 25 −630.5 −636.0 −646.1
MCG 2 X2, X3, X4 X2, X3, X4 −247.0 27 −651.1 −662.3 −673.5
MSG 2 X1, X2 X3, X4 −277.5 19 −665.6 −673.8 −689.2
MRM 2 X2, X4 X2, X4 −289.2 19 −688.9 −700.5 −719.9
MSG 3 X2 X3, X4 −240.4 26 −632.2 −737.4 −865.7
MRM 3 X2, X3, X4 X2, X3, X4 −224.6 35 −653.0 −750.0 −877.9

based on the fit and the model complexity, the best MCSG and MCG models still have K = 2

components, while MSG and MRM models of order K = 3 should be preferred.

Table 2.15 reports more detailed information about the six models which best fit the analysed

dataset according to the three model selection criteria over the five examined values of K within

each model class. All the examined criteria select a seemingly unrelated contaminated Gaussian

linear clusterwise regression model of order K = 2 as the overall best model for studying the

effect of prices and promotional activities on sales for the two brands. In this model, the log

unit sales of SK canned tuna are regressed on the log prices and the promotional activities of

the same brand; as far as the regressors for the BBS log unit sales are concerned, the selected

regressors are the log prices of both brands and the promotional activities of BBS. From the

parameter estimates (see Table 2.16) it emerges that the analysed dataset is characterised both

by heterogeneity over time and by the presence of atypical observations. This latter feature

seems to characterise the two clusters of weeks detected by the model almost in the same way

(the estimated weights of the typical observations are α̂1 = 0.827 and α̂2 = 0.829); however, the

strength of the contaminating effect on the conditional variances and covariances of Y|X = x

results to be stronger in the first cluster, where the estimated inflation parameter for the elements
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Table 2.16: Parameter estimates of the overall best model for the analysis of tuna sales.

ψ̂ k = 1 k = 2

π̂k 0.062 0.938
α̂k 0.827 0.829
η̂k 13.44 6.80

β̂
′∗
k1 (8.86, 0.59,−4.68) (8.65, 0.27,−3.11)

β̂
′∗
k2 (15.09, 3.91, 2.77,−17.84) (9.98, 0.25, 0.12,−3.82)

Σ̂k

(
0.043 -0.022

-0.022 0.126

) (
0.118 0.011
0.011 0.028

)

of Σ1 is larger (η̂1 = 13.44). Heterogeneity over time appears to emerge both in some effects

of the selected regressors and in the conditional expected variances and covariances of log sales

for the typical observations. From the estimates of the regression equation for Lmove SK it

emerges that sales of SK canned tuna are negatively affected by prices and positively affected by

promotional activities of the same brand within both clusters detected by the model. However,

the estimated effects of these two variables in the first cluster result to be stronger than those in

the second cluster. Similar results have been obtained with reference to the regression equation

for Lmove BBS, from which it also emerges that the log prices of SK canned tuna positively

affect the log unit sales of the other brand, especially in the first cluster of weeks. As far as the

estimated conditional variances and covariances are concerned, typical weeks in the first cluster

appear to be characterised by values of Lmove SK which are more homogeneous than those

of Lmove BBC; the opposite holds true for the typical weeks belonging to the second cluster.

Heterogeneity over time appears to emerge also in the correlation between log sales of SK and

BBS products, which is slightly positive (0.191) within the largest cluster of weeks, while a

mild negative correlation (−0.299) between Lmove SK and Lmove BBC is estimated in the weeks

belonging to the first cluster.

The first cluster determined according to the highest estimated posterior probabilities of the

selected model is composed of 20 weeks; 17 of these weeks are consecutive (from week no. 58

to week no. 74) and correspond to a period (from mid-October 1990 to mid-February 1991)

characterised by a worldwide boycott campaign encouraging consumers not to buy Bumble Bee

tuna because Bumble Bee was found to be buying yellow-fin tuna caught by dolphin-unsafe

techniques (Baird and Quastel, 2011). The selected model seems to suggest that such events

may be one of the sources of the unobserved heterogeneity detected by the analysis. The fact

that the estimated effects of all the selected regressors on the log prices of both products are

stronger in the first cluster of weeks and weaker in the second cluster could be associated with



2.4 Results from the analysis of canned tuna sales 51

Figure 2.3: Scatterplots of the estimated residuals for the weeks assigned to the first (left) and
second (right) clusters detected by the overall best model for the analysis of tuna sales. Points
of the first scatterplot are labelled with the number of the corresponding weeks. Black circle and
red triangle in the second scatterplot correspond to typical and outlying weeks, respectively.

those events. According to the rule for the intra-class distinction between typical observations

and mild outliers illustrated in Section 2.2.4, some weeks have been classified as mild outliers

within both clusters. As far as the first cluster is concerned, this has happened for week no. 60

(immediately after Halloween 1990) and week no. 73 (two weeks immediately before Presidents

day 1999). For these weeks, the estimated squared Mahalanobis distances d̂2i1, equal to 36.68

and 37.82, respectively, appear to be extremely higher than those of the other 18 weeks of the

same cluster, which are comprised between 0.05 and 7.05. From the estimated sample residuals

yi− µ̂1(xi; β̂
∗
1) for the 20 weeks belonging to the first cluster (see the scatterplot on the left side

of Figure 2.3) it emerges that week no. 60 noticeably deviates from the other weeks because

log unit sales of SK tuna are slightly lower than the predicted value, while an opposite result

characterises the log unit sales of BBS tuna. On the contrary, the selected model identifies

week no. 73 as a mild outlier mainly because of a large overestimation of the sales of BBS

tuna. Among the 318 weeks of the second cluster, 35 have resulted to be mild outliers, most

of which are associated with holidays and special events that took place between September

1989 and mid-October 1990 or between mid-February and May 1997. The scatterplot with the

estimated sample residuals yi − µ̂2(xi; β̂
∗
2) for all the weeks of the second cluster (see the right

side of Figure 2.3) shows that, for the majority of the 35 mild outlying weeks, the reason for

the outlyingness detected by the model has been an overestimation or an underestimation of
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the sales for either brands. The values of the estimated distances d̂2i2 for the weeks that have

been classified as typical are between 0.003 and 7.993; the minimum and maximum of the same

distances for the outlying weeks are 8.20 and 114.95, respectively.

2.5 Conclusions

A new family of seemingly unrelated clusterwise linear regression models for possibly contam-

inated data has been introduced. Such models can account for heterogeneous regression data

with mild outliers and multivariate correlated responses, each one depending on its own vector

of covariates. This latter feature represents the main novelty of the models proposed here in

reference with the ones described in Mazza and Punzo (2020). The new family encompasses sev-

eral other types of Gaussian mixture-based linear regression models previously proposed in the

literature. It also provides a more flexible framework for modelling data in applications where

sample observations could be atypical and different covariates are expected to be relevant in the

prediction of different responses, based on some prior information to be conveyed in the analysis.

The new family could be made more flexible by exploiting the approach illustrated in Celeux

and Govaert (1995), which allows to introduce constraints on the elements of the covariance

matrices Σk, k = 1, . . . ,K, so that models with a lower number of variances and covariances

of Y|X = x in the K sub-populations are obtained. Monte Carlo studies have shown that

the choice of the number of components and the reconstruction of the true classification of the

sample observations can be negatively affected by the inclusion of irrelevant regressors in a clus-

terwise linear regression model, especially with overlapping clusters of observations. Whenever

the choice of the regressors to be considered in the specification of the linear predictor of each re-

sponse is questionable, models introduced here can be employed in conjunction with techniques

for variable selection (e.g., genetic algorithms, stepwise strategies) in a multivariate regression

setting in order to detect the relevant predictors for each regression equation. Since the ECM

algorithm for the ML estimation of the model parameters does not automatically produce any

estimate of the covariance matrix of the ML estimator, additional computations are necessary

to obtain an assessment of the sample variability of model parameter estimates. This task could

be carried out by means of some approaches commonly employed under finite mixture models

(see, e.g., McLachlan and Peel, 2000). We are currently developing an extension of the methods

proposed herein to some mixtures of Gaussian linear regression models with random covariates
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(Punzo and McNicholas, 2017). Another avenue of future research is represented by the study of

seemingly unrelated clusterwise regression models explicitly accounting for contaminated data

and space/time-dependent observations.

Appendix A - Update of β∗k and Σk

The updates of the model parameters β∗k and Σk at the (h + 1)th first CM-step of the ECM

algorithm, as illustrated in equations (2.10) and (2.11), can be obtained as follows.

∂

∂β
∗′
k
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(
ψ|ψ(h)

)
=
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∗′
k
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Focusing on the squared Mahalanobis distance δ2Σk
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k)) and using properties of trace

and transpose, it follows that
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Deriving (2.14) respect to β
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k and then replacing the so obtained result in (2.13) leads to
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Setting (2.15) equal to the null vector, solving the so obtained system with respect to β
∗′
k and

using properties of transpose results in the solution reported in equation (2.10). Finally,
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ẑ
(h)
ik Qi

(
β∗k,Σk|ψ(h)

)
=

∂

∂Σ−1k

I∑
i=1

K∑
k=1

ẑ
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where the second and third equalities are obtained using properties of trace and transpose and

differentiation rules of functions of matrices. Setting (2.16) equal to the null matrix and solving

the resulting system with respect to Σk gives the update in equation (2.11).
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Chapter 3

Parsimonious Mixtures of Seemingly

Unrelated Contaminated Normal

Regression Models1

1This chapter coincides with the published paper: Perrone G., Soffritti G. (2022). ”Parsimonious mixtures
of seemingly unrelated contaminated normal regression models”. In P. Brito, J. G. Dias, B. Lausen, A. Mon-
tanari, R. Nugent. Classification and Data Science in the Digital Age: the 17th Conference of the Interna-
tional Federation of Classification Societies (IFCS 2022), Springer Cham. Series E-ISSN: 2198-3321 (pp. 1-8)
https://link.springer.com/book/9783031090332 (in press).
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Abstract

In recent years, the research into linear multivariate regression based on finite mixture models

has been intense. With such an approach, it is possible to perform regression analysis for a

multivariate response by taking account of the possible presence of several unknown latent ho-

mogeneous groups, each of which is characterised by a different linear regression model. For a

continuous multivariate response, mixtures of normal regression models are usually employed.

However, in real data, it is not unusual to observe mildly atypical observations that can neg-

atively affect the estimation of the regression parameters under a normal distribution in each

mixture component. Furthermore, in some fields of research, a multivariate regression model

with a different vector of covariates for each response should be specified, based on some prior

information to be conveyed in the analysis. To take account of all these aspects, mixtures of

contaminated seemingly unrelated normal regression models have been recently developed. A

further extension of such an approach is presented here so as to ensure parsimony, which is ob-

tained by imposing constraints on the group-covariance matrices of the responses. A description

of the resulting parsimonious mixtures of seemingly unrelated contaminated regression models

is provided together with the results of a numerical study based on the analysis of a real dataset,

which illustrates their practical usefulness.

Keywords: Contaminated normal distribution, ECM algorithm, mixture of regression models,

model-based cluster analysis, seemingly unrelated regression.



3.1 Introduction 63

3.1 Introduction

Seemingly unrelated (SU) regression equations are usually employed in a multivariate regres-

sion analysis whenever the dependence of a vector Y = (Y1, . . . , Ym, . . . , YM )′ of M continuous

variables on a vector X = (X1, . . . , Xp, . . . , XP )′ of P regressors has to be modelled by allowing

the error terms in the different equations to be correlated and, thus, the regression parameters

of the M equations have to be jointly estimated (Srivastava and Giles, 1987). With such an

approach, the researcher is also enabled to convey prior information on the phenomenon under

study into the specification of the regression equations by defining a different vector of regressors

for each dependent variable. This latter feature is particularly useful in any situation in which

different regressors are expected to be relevant in the prediction of different responses, such as

in White and Hewings (1982); Cadavez and Hennningsen (2012); Disegna and Osti (2016). This

approach has been recently embedded into the framework of Gaussian mixture models, leading

to multivariate SU normal regression mixtures Galimberti and Soffritti (2020). In these mod-

els, the effect of the regressors on the dependent variables changes with some unknown latent

sub-populations composing the population that has generated the sample of observations to be

analysed. Thus, when the sample is characterised by unobserved heterogeneity, model-based

cluster analysis is simultaneously carried out.

Another source of complexity which could affect the data and make the prediction of Y a

difficult task to perform is represented by mildly atypical observations (Ritter, 2015). Robust

methods of parameter estimation insensitive to the presence of such observations in a sample

characterised by unobserved heterogeneity have been introduced in Mazza and Punzo (2020),

where the conditional distribution Y|X = x is modelled through a mixture of K multivariate

contaminated normal models, where K is the number of the latent sub-populations. A limitation

associated with these latter models is that the same vector of regressors has to be specified for

the prediction of all the dependent variables. To overcome this limitation while preserving all the

features mentioned above, a more flexible approach which employs mixtures of multivariate SU

contaminated normal regression models has been recently introduced in Perrone and Soffritti

(2023). These latter models are able to capture the linear effects of the regressors on the

dependent variables from sample observations coming from heterogeneous populations. The

researcher is also enabled to specify a different vector of regressors for each dependent variable.

Finally, a robust estimation of the regression parameters and the detection of mild outliers in
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the data are ensured.

In the presence of many responses and many latent sub-populations, analyses based on these

latter models can become unfeasible in practical applications because of a large number of

model parameters. In order to keep this number as low as possible, an approach due to Celeux

and Govaert (1995), based on the spectral decompositions of the K covariance matrices of

Y|X = x, is exploited here so as to obtain fourteen different covariance structures. The resulting

parsimonious mixtures of SU contaminated regression models are described in Section 3.2. The

usefulness of these new models is illustrated through a study aiming at determining the effect

of prices and promotional activities on sales of canned tuna in the US market. A summary of

the obtained results is provided in Section 3.3 .

3.2 Parsimonious SU contaminated normal regression mixtures

In a system of M SU regression equations for modelling the linear dependence of Y on X,

let Xm = (Xm1 , Xm2 , . . . , XmPm
)′ be the Pm-dimensional sub-vector of X composed of the Pm

regressors expected to be relevant for the explanation of Ym, for m = 1, . . . ,M . Furthermore,

let X∗m = (1,X′m)′. The mixture of K SU normal regression models described in Galimberti and

Soffritti (2020) can be defined as follows:

Y =


X̃∗′β∗1 + ε, ε ∼ NM (0M ,Σ1) with probability π1,

· · ·

X̃∗′β∗K + ε, ε ∼ NM (0M ,ΣK) with probability πK ,

(3.1)

where πk is the prior probability of the kth latent sub-population, with πk > 0 for k = 1, . . . ,K;∑K
k=1 πk = 1; X̃∗ is the following (P ∗ +M)×M partitioned matrix:

X̃∗ =



X∗1 0P1+1 . . . 0P1+1

0P2+1 X∗2 . . . 0P2+1

...
...

...

0PM+1 0PM+1 . . . X∗M


,

with 0Pm+1 denoting the (Pm + 1)-dimensional null vector; P ∗ =
∑M

m=1 Pm;

β∗k = (β
∗′
k1, . . . ,β

∗′
km, . . . ,β

∗′
kM )′ is the (P ∗ + M)-dimensional vector containing all the linear
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effects on the M responses in the kth latent sub-population, with β∗km = (β0k,m,β
′
km)′, for m =

1, . . . ,M ; ε = (ε1, . . . , εM )
′

is the vector of the errors, which are supposed to be independent and

identically distributed; NM (0M ,Σk) denotes the M -dimensional normal distribution with mean

vector 0M and positive-definite covariance matrix Σk. From now on, this mixture regression

model is denoted as MSUN. When Xm = X ∀m (the P regressors are employed in all the M

equations), model (3.1) reduces to the mixtures of K normal (MN) regression models (see Jones

and McLachlan (1992)).

When the data are contaminated by the presence of mild outliers, departures from the normal

distribution could be observed within any of the K latent sub-populations. A model able to

manage this situation has been recently introduced in Perrone and Soffritti (2023). It has been

obtained from equation (3.1) by replacing the normal distribution with the contaminated normal

distribution. Under this latter distribution, the probability density function (p.d.f.) of ε within

the kth sub-population is equal to h (ε;ϑk) = αkφM (ε; 0M ,Σk) + (1 − αk)φM (ε; 0M , ηkΣk),

where φM (·;µ,Σ) denotes the p.d.f. of the distribution NM (0M ,Σk), αk ∈ (0.5, 1) and ηk > 1

are the proportion of typical observations within the kth sub-population and a parameter that

inflates the elements of Σk, respectively, and ϑk = (αk, ηk,Σk). As a consequence, a mixture of

K SU contaminated normal (MSUCN) regression models is given by:

Y =


X̃∗′β∗1 + ε, ε ∼ CNM (α1, η1,0M ,Σ1) with probability π1,

· · ·

X̃∗′β∗K + ε, ε ∼ CNM (αK , ηK ,0M ,ΣK) with probability πK ,

(3.2)

where CNM (αk, ηk,0M ,Σk) denotes the M -dimensional contaminated normal distribution de-

scribed by the p.d.f. h (ε;ϑk). The parameter vector of model (3.2) is ψ = (ψ1, . . . ,ψk, . . . ,ψK),

where ψk = (πk,θk), θk = (β∗k,ϑk). The number of free elements of ψ is nψ = 3K − 1 +

K(P ∗ + M) + nσ, where nσ denotes the total number of free variances and covariances, with

nσ = KnΣ and nΣ = M(M+1)
2 . When Xm = X ∀m, model (3.2) coincides with the mixture

of K contaminated normal (MCN) regression models described in Mazza and Punzo (2020).

For αk → 1 or ηk → 1 ∀k, model (3.2) reduces to model (3.1). Conditions ensuring iden-

tifiability of models (3.2) are provided in Perrone and Soffritti (2023). The ML estimation

of ψ in equation (3.2) can be carried out by means of a sample S = {(x1,y1), . . . , (xI ,yI)}

of I independent observations drawn from model (3.2) and an expectation-conditional max-



66 Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models

imisation (ECM) algorithm Meng and Rubin (1993). Details about this algorithm, including

strategies for the initialisation of ψ and convergence criteria, are illustrated in Perrone and

Soffritti (2023). In practical applications, the value of K is generally unknown and has to be

properly chosen. This task can be carried out by resorting to model selection criteria, such as

the Bayesian information criterion Schwarz (1978): BIC = 2`(ψ̂)−nψ ln I, where ψ̂ is the max-

imum likelihood estimator of ψ. Another commonly used information criterion is the integrated

completed likelihood Biernacki et al. (2000), which admits two slightly different formulations:

ICL1 = BIC + 2
∑I

i=1

∑K
k=1 MAP(ẑik) ln ẑik and ICL2 = BIC + 2

∑I
i=1

∑K
k=1 ẑik ln ẑik, where

ẑik is the estimated posterior probability that the ith sample observation come from the kth

sub-population (for further details see Perrone and Soffritti (2023)), MAP(ẑik) = 1 if maxh{ẑih}

occurs when h = k (MAP(ẑik) = 0 otherwise). Whenever the specification of the subvectors

Xm, m = 1, . . . ,M , to be considered in the M equations of the multivariate regression model is

questionable, such criteria can also be employed to perform subset selection.

As the number of free parameters nψ incresases quadratically with M , analyses based on

model (3.2) can become unfeasible in real applications. A way to manage this problem can be

based on the introduction of suitable constraints on the elements of Σk, k = 1, . . . ,K, based

on the following eigen-decomposition Celeux and Govaert (1995): Σk = λkDkAkD
′
k, where

λk = |Σk|1/M , Ak is a diagonal matrix with entries (sorted in decreasing order) proportional

to the eigenvalues of Σk (with the constraint |Ak| = 1) and Dk is a M ×M orthogonal matrix

of the eigenvectors of Σk (ordered according to the eigenvalues). This decomposition allows

to obtain variances and covariances in Σk from λk, Ak and Dk. From a geometrical point of

view, λk determines the volume, Ak the shape and Dk the orientation of the kth cluster of

sample observations detected by the fitted model. By constraining λk, Ak and Dk to be equal

or variable across the K clusters, a class of fourteen mixtures of K SUCN regression models is

obtained (see Table 3.1). With variable volumes, shapes and orientations (VVV in Table 3.1),

the resulting model coincides with (3.2). When K > 1, the other covariance structures allow

to obtain thirteen different parsimonious mixtures of K SUCN regression models (i.e.: with a

reduced nσ). When K = 1, the possible covariance structures for Σ1 are: diagonal with different

entries, diagonal with the same entries and fully unconstrained. The ML estimation of ψ under

model (3.2) with any of these parameterisations can be carried out through an ECM algorithm

in which the CM-step update for Σk can be computed either in closed form or using iterative

procedures, depending on the parameterisation to be employed (see Celeux and Govaert (1995)).
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Table 3.1: Features of the parameterisations for the covariance matrices Σk, k = 1, . . . ,K
(K > 1).

Acronym Covariance structure Volume Shape Orientation CM step nσ
EEE λDAD′ Equal Equal Equal Closed nΣ

VVV λkDkAkD
′
k Variable Variable Variable Closed KnΣ

EII λI Equal Spherical − Closed 1
VII λkI Variable Spherical − Closed K
EEI λA Equal Equal Axis-aligned Closed M
VEI λkA Variable Equal Axis-aligned Iterative M +K − 1
EVI λAk Equal Variable Axis-aligned Closed MK − (K − 1)
VVI λkAk Variable Variable Axis-aligned Closed MK
EEV λDkAD′k Equal Equal Variable Iterative KnΣ − (K − 1)M
VEV λkDkAD′k Variable Equal Variable Iterative KnΣ − (K − 1)(M − 1)
EVE λDAkD

′ Equal Variable Equal Iterative nΣ − (K − 1)(M − 1)
VVE λkDAkD

′ Variable Variable Equal Iterative nΣ − (K − 1)M
VEE λkDAD′ Variable Equal Equal Iterative nΣ − (K − 1)
EVV λDkAkD

′
k Equal Variable Variable Iterative KnΣ − (K − 1)

3.3 Analysis of U.S. canned tuna sales

The models illustrated in Section 3.2 have been fitted to a dataset Chevalier et al. (2003)

containing the volume of sales (Move), a measures of the display activity (Nsale) and the log

price (Lprice) for seven of the top 10 U.S. brands in the canned tuna product category in the

I = 338 weeks between September 1989 and May 1997. The goal of the analysis is to study

the dependence of canned tuna sales on prices and promotional activites for two products: Star

Kist 6 oz. (SK) and Bumble Bee Solid 6.12 oz. (BBS). To this end, the following vectors have

been considered: Y′ = (Y1 = Lmove SK, Y2 = Lmove BBS), X′ = (X1 = Nsale SK, X2 = Lprice

SK, X3 = Nsale BBS, X4 = Lprice BBS), where Lmove denotes the logarithm of Move. The

analysis has been carried out using all the parameterisations of the MSUN, MN, MCSUN and

MCN models for each K ∈ {1, 2, 3, 4, 5, 6}. Furthermore, MSUN and MCSUN models have been

fitted by considering all possible subvectors of X as vectors Xm, m = 1, 2, for each K. In this

way, best subset selections for Lmove SK and Lmove BBS have been included in the analysis both

with and without contamination. The overall number of fitted models is 37376, including the

fully unconstrained models (i.e., with the VVV parameterisation) previously employed in Perrone

and Soffritti (2023) to perform the same analysis.

Table 3.2 reports some information about the nine models which best fit the analysed dataset

according to the three model selection criteria over the six examined values of K within each

model class. An analysis based on a single linear regression model (K = 1), both with and

without contamination, appears to be inadequate according to all criteria. All the examined

criteria indicate that the overall best model for studying the effect of prices and promotional
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activities on sales of SK and BBS tuna is a parsimonious mixture of two SU contaminated

Gaussian linear regression models with the EVE parameterisation for the covariance matrices in

which the log unit sales of SK tuna are regressed on the log prices and the promotional activites

of the same brand, while the regressors selected for the BBS log unit sales are the log prices

of both brands and the promotional activites of BBS. Thus, the analysis suggests that two

sources of complexity affect the analysed dataset: unobserved heterogeneity over time (K = 2

clusters of weeks have been detected) and the presence of mildly atypical observations. Since

the two estimated proportions of typical observations are quite similar (see the values of α̂k in

Table 3.3), contamination seems to characterise the two clusters of weeks detected by the model

almost in the same way. As far as the strength of the contaminating effects on the conditional

variances and covariances of Y|X = x is concerned, it appears to be stronger in the first cluster,

where the estimated inflation parameter is larger (η̂1 = 15.70). By focusing the attention on the

other estimates, it appears that also some of the estimated regression coefficients, variances and

covariances are affected by heterogeneity over time. Sales of SK tuna results to be negatively

affected by prices and positively affected by promotional activites of the same brand within both

clusters detected by the model, but with effects which are sligthly stronger in the first cluster of

weeks. A similar behavior is detected for the estimated regression equation for Lmove BBS, which

also highlights that Lmove BBS are positively affected by the log prices of SK tuna, especially in

the first cluster of weeks. Furthermore, typical weeks in the first cluster show values of Lmove

SK which are more homogeneous than those of Lmove BBC; the opposite holds true for the typical

weeks belonging to the second cluster. Also the correlation between log sales of SK and BBS

products results to be affected by heterogeneity over time: while in the largest cluster of weeks

this correlation has been estimated to be slightly positive (0.200), the first cluster is characterised

by a mild estimated negative correlation (−0.151). An interesting feature of this latter cluster is

that 17 out of the 20 weeks which have been assigned to this cluster are consecutive from week

no. 58 to week no. 74, which correspond to the period from mid-October 1990 to mid-February

1991 characterised by a worldwide boycott campaign encouraging consumers not to buy Bumble

Bee tuna because Bumble Bee was found to be buying yellow-fin tuna caught by dolphin-unsafe

techniques Baird and Quastel (2011). Such events could represent one of the sources of the

unobserved heterogeneity detected by the model. According to the overall best model, some

weeks have beed detected to be mild outliers. In the first cluster, this has happened for week

no. 60 (immediately after Halloween 1990) and week no. 73 (two weeks immediately before
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Table 3.2: Maximised log-likelihood `(ψ̂) and values of BIC, ICL1 and ICL2 for nine models
selected from the classes MSUCN, MCN, MSUN and MN in the analysis of tuna sales.

Model class K Acronym X1 X2 `(ψ̂) nψ BIC ICL1 ICL2

MSUCN 2 EVE X1, X2 X2, X3, X4 −242.9 23 −619.8 −625.7 −635.8
MCN 2 EVI X X −239.6 28 −642.2 −648.9 −663.2
MCN 2 EEV X X −240.8 29 −650.6 −650.8 −652.0
MCN 3 EVI X1, X2, X4 X1, X2, X4 −214.2 36 −638.0 −703.1 −788.6
MSUN 2 VEV X1, X2 X3, X4 −279.3 18 −663.4 −673.1 −692.1
MSUN 3 EEV X2, X3 X2, X3, X4 −259.8 28 −682.7 −684.7 −688.0
MSUN 5 VVV X2, X3 X1, X4 −167.4 49 −620.0 −701.1 −780.3
MN 3 EEV X2, X3, X4 X2, X3, X4 −258.7 31 −697.9 −699.6 −702.1
MN 4 VVE X2, X4 X2, X4 −216.6 36 −642.9 −725.3 −832.9

Table 3.3: Parameter estimates of the overall best model for the analysis of tuna sales.

ψ̂ k = 1 k = 2

π̂k 0.062 0.938
α̂k 0.810 0.844
η̂k 15.70 6.94

β̂
′∗
k1 (8.87, 0.56,−4.70) (8.64, 0.27,−3.09)

β̂
′∗
k2 (15.04, 3.92, 2.83,−17.76) (9.98, 0.25, 0.12,−3.83)

Σ̂k

(
0.034 −0.009
−0.009 0.105

) (
0.121 0.012
0.012 0.030

)

Presidents day 1999). The analysis of the estimated sample residuals yi − µ̂1(xi; β̂
∗
1) for the 20

weeks belonging to the first cluster (see the scatterplot on the left side of Figure 3.1) clearly

show that weeks 60 and 73 noticeably deviates from the other weeks. Among the 318 weeks

of the second cluster, 32 have resulted to be mild outliers, most of which are associated with

holidays and special events that took place between September 1989 and mid-October 1990 or

between mid-February and May 1997 (see the scatterplot on the right side of Figure 3.1). These

results are almost equal to those obtained using the best overall fully unconstrained fitted model

in the analysis presented in Perrone and Soffritti (2023). However, the EVE parameterisation for

the MSUCN model has allowed to obtain a better trade-off among the fit, the model complexity

and the uncertainty of the estimated partition of the weeks; furthermore, it has led to a slightly

lower number of mild outliers in the second cluster of weeks.

3.4 Conclusions

The parsimonious mixtures of seemingly unrelated linear regression models for contaminated

data introduced here can account for heterogeneous regression data both in the presence of

mild outliers and multivariate correlated dependent variables, each of which is regressed on a
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Figure 3.1: Scatterplots of the estimated residuals for the weeks assigned to the first (left) and
second (right) clusters detected by the overall best model. Points of the first scatterplot are
labelled with the number of the corresponding weeks. Black circle and red triangle in the second
scatterplot correspond to typical and outlying weeks, respectively.

different vector of covariates. Models from this class allow for simultaneous robust clustering

and detection of mild outliers in multivariate regression analysis. They encompass several other

types of Gaussian mixture-based linear regression models previously proposed in the literature,

such as the ones illustrated in Galimberti and Soffritti (2020), Mazza and Punzo (2020) and

Jones and McLachlan (1992), providing a robust and flexible tool for modelling data in practical

applications where different regressors are considered to be relevant for the prediction of different

dependent variables. Previous research (see Mazza and Punzo, 2020 and Perrone and Soffritti,

2023) demonstrated that BIC and ICL could be effectively employed to select a proper value

for K in the presence of mildly contaminated data. Thanks to an imposition of an eigen-

decomposed structure on the K variance-covariance matrices of Y|X = x, the presented models

are characterised by a reduced number of variance-covariance parameters to be included in the

analysis, thus improving flexibility, usefulness and effectiveness of an approach to multivariate

linear regression analysis based on finite Gaussian mixture models in real data applications.
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Chapter 4

Parsimonious seemingly unrelated

contaminated normal

cluster-weighted models1

1This chapter coincides with the paper under review: Perrone G., Soffritti S. (2022). ”Parsimonious seemingly
unrelated contaminated normal cluster-weighted models”.
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Abstract

Normal cluster-weighted models constitute a modern approach to linear regression which allows

to simultaneously perform model-based cluster analysis and multivariate linear regression analy-

sis with random quantitative regressors. Robustified models have been recently developed, based

on the use of the contaminated normal distribution, which can manage the presence of mildly

atypical observations. A more flexible class of contaminated normal linear cluster-weighted mod-

els is specified here, in which the researcher is free to use a different vector of regressors for each

response. The novel class also includes parsimonious models, where parsimony is attained by im-

posing suitable constraints on the component-covariance matrices of either the responses or the

regressors. Identifiability conditions are illustrated and discussed. An expectation-conditional

maximisation algorithm is provided for the maximum likelihood estimation of the model param-

eters. The effectiveness and usefulness of the proposed models are shown through the analysis

of simulated and real datasets.

Keywords: Contaminated normal distribution, ECM algorithm, Mixture model, Model-based

cluster analysis, Parsimonious model, Seemingly unrelated regression
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4.1 Introduction

In an era of rapid technological change, vast amounts of complex data are being generated in

many fields. Eliciting information from these kinds of data sets represents a crucial challenge

faced by scientists and researchers. In order to achieve this aim, advanced and flexible tools

and methods are required. From a statistical point of view, problems in learning from data

have been classified as either unsupervised or supervised (Hastie et al., 2009). This latter class

typically involves the task of modelling the dependence of M responses Y = (Y1, . . . , YM )′ on P

given predictors X = (X1, . . . , XP )′ through multivariate regression techniques. In this setting,

several issues can make the data analysis more complex. The novel methods introduced in this

chapter have been devised so as to be specifically employed when all the variables in Y as well

as in X are continuous and the following situations arise.

(I) Data contain measurements obtained without actively controlling or manipulating any of

the variables to be analysed. This is typically true in several disciplines (i.e., sociology,

economics, business, ecology and geology). For the analysis of such data, regression models

should treat both X and Y as random vectors. Thus, the joint distribution of (X
′
,Y

′
)
′

in a given population of an investigation, say G, is generally modelled using a probability

density function (p.d.f.) f(x,y) specified so as to take account of the different role played

by the responses and predictors in the analysis; that is: f(x,y) = f(x)f(y|x).

(II) The population G is heterogeneous, as it is composed of K disjoint and homogeneous sub-

populations, say G1, . . . , Gk, . . . , GK , and the sample data available for the estimation of

the regression model are S = {(x1,y1), . . . , (xI ,yI)}. This means that the information

about the specific sub-population each sample observation belongs to is missing. Fur-

thermore, this source of unobserved heterogeneity in the data affects the distribution of

(X
′
,Y

′
)
′
.

(III) The data S are contaminated by the presence of mildly atypical observations (Ritter,

2015); that is, observations that in some way deviate from the general pattern of the data

(Maronna et al., 2006). In a regression framework, an observation (xi,yi) ∈ S can be an

outlier either in the y-direction (vertical or regression outlier) or in the x-direction (leverage

point), depending on whether it occurs in the responses or the predictors, respectively (see,

e.g., Rousseeuw and Leroy, 2005). When (xi,yi) ∈ S is both a regression outlier and a
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leverage point it will have a large influence on the estimation of the regression coefficients;

thus, it is considered a bad leverage point (Rousseeuw and Leroy, 2005).

(IV) The multivariate regression model specified by the researcher is composed of a system of

M regression equations (one equation for each response) with equation-dependent vectors

of predictors (i.e., vectors which do not necessarily contain the same predictors for all the

responses). This means that certain regressors contained in X are absent from certain

regression equations. This situation is not unusual in economics or social sciences, where

different predictors may be expected to be relevant in the prediction of the M responses ac-

cording to some general theory or prior information about the phenomenon. Furthermore,

the M responses contained in Y are correlated. This latter feature is typically observed

with multivariate longitudinal data, time-series data or repeated measures.

An approach able to properly model the distribution of (X
′
,Y

′
)
′

in the presence of the un-

observed source of heterogeneity illustrated in situation (II) relies on the cluster-weighted (CW)

models (Gershenfeld, 1997). In this approach, the missing information about the memberships

to the K sub-populations is modelled using a mixture of K different p.d.f.’s, and each one of

these functions is specified by taking account of the different role played by X and Y. This

leads to the following mixture model for the joint distribution of X and Y:

f(x,y) =

K∑
k=1

πkf(x|Gk)f(y|x, Gk), (x,y) ∈ RP+M , (4.1)

where π1, . . . , πK are positive mixing weights summing to one and representing the prior proba-

bilities of the K sub-populations (i.e., P(Gk) = πk), f(x|Gk) is the conditional p.d.f. of X given

Gk, and f(y|x, Gk) is the conditional p.d.f. of Y given x and Gk. An eminent member of the

class of CW models for real-valued responses and predictors is the normal CW (NCW hereafter)

model (Ingrassia et al., 2012; Dang et al., 2017). In this model, normal distributions are em-

ployed for the p.d.f. of both X|Gk and Y|(X = x, Gk), for k = 1, . . . ,K. Thus, equation (4.1)

becomes

f(x,y;ϑ) =
K∑
k=1

πkφ(x;µk,Σk)φ(y|x;β′kx
∗,Ξk), (x,y) ∈ RP+M , (4.2)

where φ(·;µ,Σ) represents the p.d.f. of a normal random vector with expected value µ and

positive definite covariance matrix Σ, β′kx
∗ = E(Y|X = x, Gk), k = 1, . . . ,K, x∗ = (1,x′)′,
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βk ∈ R(1+P )×M is a matrix of intercepts and regression coefficients, and ϑ = (ϑ1, . . . ,ϑK) is

the vector of the model parameters, with ϑk = (πk,ϑkx,ϑky), ϑkx = (µk,Σk), ϑky = (βk,Ξk),

k = 1, . . . ,K. CW models which allow X|Gk and Y|(X = x, Gk) to be modelled using skewed

distributions have been recently introduced (Gallaugher et al., 2022). A by-product of a re-

gression analysis based on a CW model is a set of estimated posterior probabilities that each

sample observation comes from the K sub-populations. Thus, a clustering of the I sample ob-

servations that compose S can also be obtained, based on a rule that assigns an observation to

the sub-population from which it has the highest posterior probability of coming. As a result,

CW models allow to simultaneously perform multivariate regression and cluster analysis.

Mildly atypical observations in the data mentioned in situation (III) cause departures from

the normal distribution. A way to manage these departures is to resort to heavy-tailed mod-

els, such as the t distribution or the contaminated normal distribution (see, e.g., Tukey, 1960;

Aitkin and Wilson, 1980). This latter distribution is defined as a mixture of two normal distri-

butions having the same expected mean values but different variances-covariances; the normal

distribution having the smallest mixing weight also has inflated variances-covariances and is

employed to represent the mildly atypical observations. Multivariate regression models robust

against the presence of such observations and also suitable for the situations (I) and (II) have

been obtained from equation (4.1) by specifying either a t distribution (see, e.g., Ingrassia et

al., 2012, 2014) or a contaminated normal distribution (Punzo and McNicholas, 2017) for both

X|Gk and Y|(X = x, Gk), k = 1, . . . ,K. The CW models proposed by Punzo and McNicholas

(2017) are also called contaminated normal cluster-weighted (CNCW) models. By relying on

such models, it is possible able to produce a simultaneous clustering of the sample observations

and the detection of both mild outliers and leverage points in a multivariate regression context

with random regressors. A limitation of the CNCW models is that the same vector of predictors

has to be employed for all the M responses.

Multivariate correlated responses and the systems of regression equations with equation-

dependent vectors of predictors illustrated in situation (IV) can be managed by resorting to the

so-called seemingly unrelated regression approach (see, e.g., Srivastava and Giles, 1987; Park,

1993). This approach has been recently embedded into the specification of a class of NCW models

by Diani et al. (2022), thus leading to seemingly unrelated normal cluster-weighted (SuNCW)

models. Thus, the methods based on these latter models are suitable for jointly managing the

situations (I), (II) and (IV). However, they are not insensitive to the possible presence of mild
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outliers and leverage points in the K sub-populations.

Based on all these considerations, a novel class of multivariate seemingly unrelated contam-

inated normal cluster-weighted (SuCNCW) models for the analysis of data containing mildly

atypical observations either in the distribution of X|Gk or in the distribution of Y|(X = x, Gk),

k = 1, . . . ,K, are introduced here. With these novel models, the four situations mentioned

above are jointly managed when predicting the responses in a multivariate linear regression

framework with random predictors. In particular, SuCNCW models can be considered a more

flexible version of the CNCW models described in Punzo and McNicholas (2017), as the linear

terms in the M regression equations of a SuCNCW model are defined so that a different vector

of regressors can be employed for each dependent variable. In order to keep the total number of

parameters as low as possible, the novel class also includes parsimonious SuCNCW models; par-

simony is attained by parameterising the covariance matrices of both X|Gk and Y|(X = x, Gk),

for k = 1, . . . ,K, with their eigen-decomposition, and by imposing constraints on parts of the

elements of this decomposition (see, e.g., Celeux and Govaert, 1995). This leads to a flexible

approach for the analysis of linear dependencies in multivariate data.

In summary, this chapter provides the following key contributions:

• new parsimonious SuCNCW models able to jointly manage the situations (I)-(IV) are

introduced;

• the relationships between the proposed models and other mixture regression models are

described;

• conditions for the identifiability of the SuCNCW models are illustrated;

• maximum likelihood (ML) estimation via an expectation-conditional maximisation (ECM)

algorithm (Meng and Rubin, 1993) is detailed;

• strategies for the initialisation and convergence of the ECM algorithm as well as for model

selection are presented;

• the effectiveness of the new models in comparison with NCW, CNCW and SuNCW models

is investigated through simulated datasets;

• a study of the effects of prices and promotional activities on sales for two U.S. brands of

canned tuna is carried out.
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The remainder of this chapter is structured as follows. Section 4.2.1 illustrates the specifica-

tion of the SuCNCW models. A comparison between these models and other mixture regression

models is provided in Section 4.2.2. Identifiability conditions are reported in Section 4.2.3. The

ECM algorithm for the ML estimation of the model parameters is detailed in Section 4.2.4.

Computational details about the ECM algorithm (i.e., initialisation and convergence) are given

in Section 4.2.5. Some criteria which can be employed to establish the value of K are summarised

in Section 4.2.6. Parsimonious models are introduced in Section 4.2.7. The experimental results

obtained from the analysis of simulated data are summarised in Section 4.3. The application to

the study of the effects of prices and promotional activities on sales for two U.S. brands of canned

tuna is presented in Section 4.4. Finally, concluding remarks and ideas for future research are

illustrated in Section 4.5.

4.2 Seemingly unrelated contaminated normal cluster-weighted

analysis

4.2.1 Seemingly unrelated contaminated normal cluster-weighted models

The new class of SuCNCW models is introduced starting from the CNCW models illustrated

by Punzo and McNicholas (2017). These latter models can be obtained by replacing the normal

distributions for X|Gk and Y|(X = x, Gk) in equation (4.1) with the following contaminated

normal distributions, respectively:

h(x;θkx) = αkφ (x;µk,Σk) + (1− αk)φ (x;µk, ηkΣk) , x ∈ RP ,

h(y|x; ϑ̃ky) = τkφ (y|x;βk,Ξk) + (1− τk)φ (y|x;βk, λkΞk) , y ∈ RM ,

where θkx = (ϑkx, αk, ηk), ϑ̃ky = (ϑky, τk, λk). Parameters αk ∈ (0, 1) and τk ∈ (0, 1) represent

the weights of the typical observations in the x-direction and the y-direction, respectively, within

the sub-population Gk. Since in robust statistics it is generally assumed that at least half of the

observations are typical (see, e.g., Punzo and McNicholas, 2016, 2017), it is possible to require

that αk ∈ [0.5, 1) and τk ∈ [0.5, 1). Parameters ηk > 1 and λk > 1 determine the degree of

the contamination in the normal distributions for X|Gk and Y|(X = x, Gk); namely, ηk and

λk control the increase in variability due to the presence of the leverage points and the mild

outliers, respectively, within Gk. Thus, the random vector (X,Y) follows a CNCW model of
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order K if its p.d.f. has the form

f(x,y;θ) =
K∑
k=1

πkh(x;θkx)h(y|x; ϑ̃ky), (x,y) ∈ RP+M , (4.3)

where θ = (θ1, . . . ,θK), with θk = (πk,θkx, ϑ̃ky).

If only Pm of the P covariates (Pm ≤ P ) are known or assumed to be relevant for the

prediction of Ym (m = 1, . . . ,M), the linear predictor β′kx
∗ employed for modelling the con-

ditional expected value E(Y|X = x, Gk) in equation (4.3) should be modified accordingly. To

this end, let Xm = (X̃1, . . . , X̃Pm)′ be the vector composed of such Pm covariates, and let

βkm = (βkm1, . . . , βkmPm)′ be the vector of the Pm regression coefficients capturing the lin-

ear effect of Xm on Ym in the kth sub-population. Furthermore, let X∗m = (1,X′m)′ and

β∗km = (βkm0,β
′
km)′. Then, β∗k = (β

∗′
k1, . . . ,β

∗′
km, . . . ,β

∗′
kM )′ represents the (P ∗+M)-dimensional

vector containing all the linear effects of the relevant predictors on the M responses in the kth

sub-population, where P ∗ =
∑M

m=1 Pm. Finally, the (P ∗ +M)×M design matrix is defined as

follows:

X̃∗ =



X∗1 0P1+1 . . . 0P1+1

0P2+1 X∗2 . . . 0P2+1

...
...

...

0PM+1 0PM+1 . . . X∗M


,

where 0Pm+1 represents the (Pm + 1)-dimensional null vector. Using this additional notation, it

is possible to obtain the following definition for the conditional expected value of Y|X = x in

the kth sub-population:

E(Y|X = x, Gk) = x̃∗′β∗k =



x
∗′
1 β∗k1

...

x
∗′
m β

∗
km

...

x
∗′
M β∗kM


, (4.4)

where x̃∗ is the realisation of the design matrix X̃∗ obtained when X = x. The vector defined

in equation (4.4) has length M ; its mth element is given by a linear combination of the Pm

regressors selected by the researcher for the prediction of Ym whose coefficients are given by
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the elements of the vector β∗km. Thus, inserting the expression given in equation (4.4) into the

CNCW model (4.3) leads to the new SuCNCW model. More formally, the random vector (X,Y)

follows a SuCNCW model of order K if its p.d.f. has the form

f(x,y;ψ) =

K∑
k=1

πkh (x;θkx)h (y|x;θky) , (x,y) ∈ RP+M . (4.5)

The vector of the model parameters is ψ = (ψ1, . . . ,ψK), with ψk = (πk,θkx,θky), θky =

(β∗k,Ξk, τk, λk). From the comparison between ψ and the vector θ with the parameters of the

model (4.3) it is clear that a CNCW model of order K and a SuCNCW model of order K

have the same parameters except for the K matrices containing the intercepts and regression

coefficients. In model (4.5) it is assumed that πk > 0 for k = 1, . . . ,K and
∑K

k=1 πk = 1. As

far as the parameters αk, ηk, τk and λk are concerned, the requirements coincide with those

previously illustrated for the model (4.3). The number of free parameters in model (4.5) is

nψ = 5K − 1 +K(P + P ∗ +M) +K[P (P+1)
2 + M(M+1)

2 ].

The typical properties of the CNCW model (4.3) (i.e., the ability to determine the member-

ship of an observation (xi,yi) ∈ S to a specific sub-population and to establish whether (xi,yi)

is an outlier in the y-direction and/or in the x-direction in that sub-population) are inherited

by the SuCNCW model (4.5). In addition, this latter model offers a more parsimonious specifi-

cation of the linear term to be employed in the prediction of Y whenever it is known or assumed

that certain covariates are not relevant for this task. Model (4.5) can also be considered as

a CNCW model in which some regression coefficients are constrained to be a priori equal to

zero. To the best of the authors’ knowledge, including such constraints in the specification of a

multivariate CNCW model has not been addressed yet.

4.2.2 Comparisons with other mixture regression models

When specific conditions are met, some normal CW models can be obtained from model (4.5).

• If M > 1, Pm = P and Xm = X ∀m (the same vector of covariates is employed in

the prediction of the M responses), the realisation of the design matrix X̃∗ is equal to

x̃∗ = IM⊗x∗, with IM being the identity matrix of order M and ⊗ denoting the Kronecker

product operator (see, e.g., Magnus and Neudecker, 1988). Thus, equation (4.4) becomes

E(Y|X = x, Gk) = (IM ⊗ x∗)′ β∗k = β′kx
∗, k = 1, . . . ,K, (4.6)
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where βk = [β∗k1 · · ·β∗km · · ·β∗kM ]. Thus, equation (4.5) reduces to the CNCW model

(Punzo and McNicholas, 2017).

• If M > 1, αk → 1, ηk → 1, τk → 1 and λk → 1 ∀k (there is no contamination in the data),

the model resulting from equation (4.5) coincides with the SuNCW model described in

Diani et al. (2022).

• If M > 1, Pm = P and Xm = X ∀m, αk → 1, ηk → 1, τk → 1 and λk → 1 ∀k (there is no

contamination in the data and the same vector of covariates is employed in the prediction

of the M responses), equation (4.5) leads to the multivariate NCW model (4.2) (Dang et

al., 2017).

As illustrated in Section 4.2, SuCNCW models assume that X|Gk follows a contaminated

normal distribution with parameters θkx = (µk,Σk, αk, ηk), for k = 1, . . . ,K. However, for some

datasets it may happen that the probability a point (x,y) belongs to one of the K distributions

of the mixture (4.5) is the same for all covariate values x. In that case, the assignment of the

data points to the sub-populations is independent of the covariates. This condition is known as

assignment independence (see, e.g., Hennig, 2000). This implies that the p.d.f of X|Gk does not

depend on Gk, and h(x;θkx) = h(x;θ) for every k = 1, . . . ,K, where θ = (µ,Σ, α, η). Thus,

under the assignment independence condition, equation (4.5) becomes

f(x,y;ψ) = h(x;θ)
K∑
k=1

πkh (y|x;θky) , (x,y) ∈ RP+M ,

where

f(y|x; ψ̃) =
K∑
k=1

πkh (y|x;θky) , y ∈ RM , (4.7)

with ψ̃ = (ψ̃1, . . . , ψ̃K), ψ̃k = (πk,θky), is the seemingly unrelated contaminated normal clus-

terwise regression model described in Perrone and Soffritti (2023). As a consequence, when

in model (4.5) the following conditions hold true: µk = µ, Σk = Σ, αk = α and ηk = η

for k = 1, . . . ,K, then the task of extracting the information about both the K disjoint sub-

populations that compose the population G and the distinction between typical observations

and mild outliers in the y-direction within each sub-population can be equivalently carried out

using either the conditional p.d.f. f(y|x; ψ̃) through seemingly unrelated contaminated normal
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clusterwise models or the joint p.d.f. f(x,y;ψ) through SuCNCW models.

4.2.3 Identifiability

Since identifiability represents a regularity condition for the asymptotic theory to hold for

the ML estimator, a discussion about identifiability of model (4.5) is provided here. In par-

ticular, this discussion focuses on the class of models F = {FK ,K = 1, . . . ,Kmax}, with

FK = {f(x,y;ψ),ψ ∈ Ψ}, where f(x,y;ψ) is the p.d.f. of (X
′
,Y

′
)
′

under the SuCNCW

model of order K defined in (4.5) and Kmax denotes the maximum order specified by the re-

searcher for that model. This class is identifiable if, for any two members M , M̃ ∈ F with

parameters ψ = (ψ1, . . . ,ψk, . . . ,ψK) and ψ̃ = (ψ̃1, . . . , ψ̃s, . . . , ψ̃K̃), respectively, the equality

K∑
k=1

πkh (x;θkx)h (y|x;θky) =
K̃∑
s=1

π̃sh
(
x; θ̃sx

)
h
(
y|x; θ̃sy

)
∀ (x,y) ∈ RP+M

implies that K = K̃ and for each k ∈ {1, . . . ,K} there exists s ∈ {1, . . . ,K} such that πk = π̃s,

θkx = θ̃sx and θky = θ̃sy.

The model class F is affected by several sources of non-identifiability. As any finite mix-

ture model, also model (4.5) is invariant under relabelling the K distributions of the mix-

ture (label switching). Another source is represented by potential overfitting associated with

empty components or equal components of the mixture (see, e.g., Frühwirth-Schnatter, 2006,

for further details). In order to prevent such sources of non-identifiability for F, some con-

straints have been imposed on the parameter space Ψ. They have been obtained by suitably

modifying the constraints described in Punzo and McNicholas (2017) for ensuring the identi-

fiability of CNCW models. Namely, for the model (4.5), it is required that πk > 0 ∀ k and

(β∗k,Ξk) 6= (β∗h,Ξh) ∀ k 6= h. Thanks to these constraints, the two sources of non-identifiability

due to empty components and equal components can be avoided. Thus, in order to ensure

identifiability, the following restricted class of SuCNCW models is introduced:

F̄ =
{
f(x,y; ψ̄) : f(x,y; ψ̄) =

K∑
k=1

πkh (x;θkx)h (y|x;θky) ,

(x,y) ∈ RP+M , ψ̄ ∈ Ψ̄,K ∈ N
}
,
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where Ψ̄ is the following constrained parameter space:

Ψ̄ =

{
ψ̄ ∈ Ψ : πk > 0 ∀ k,

K∑
k=1

πk = 1, (β∗k,Ξk) 6= (β∗h,Ξh) ∀ k 6= h

}
.

For the identifiability of the class F̄ it is also required that there exists a set X ⊆ RP having

probability equal to one according to the P -dimensional contaminated normal distribution such

that the following mixture of contaminated normal regression models

K∑
k=1

πk(x)h (y|x; x̃∗′β∗k,Ξk) , y ∈ RM ,

is identifiable for each fixed x ∈ X , where π1(x), ..., πK(x) are positive weights summing to

one for each x ∈ W. Then, it is possible to prove that the class F̄ is identifiable in X × RM .

Such a proof can be easily obtained by exploiting the same arguments described in Punzo and

McNicholas (2017, Appendix B) for the identifiability of CNCW models with the following

modifications: (i) the linear term to be considered in the conditional expected value of Y|(X =

x, Gk) is x̃∗′β∗k; (ii) the set of all covariate points to be employed to distinct different regression

coefficients β∗k by different values of x̃∗′β∗k is:

X =
{

x ∈ RP : ∀ xm ∈ {x1, . . . ,xM},∀ k, h ∈ {1, . . . ,K} and s, t ∈ {1, . . . , K̃} ,

x̃
∗′
mβ
∗
km = x̃

∗′
mβ
∗
hm ⇒ β∗km = β∗hm, x̃

∗′
mβ
∗
km = x̃

∗′
mβ̃
∗
sm ⇒ β∗km = β̃

∗
sm ,

x̃
∗′
mβ̃
∗
sm = x̃

∗′
mβ̃
∗
tm ⇒ β̃

∗
sm = β̃

∗
tm

}
.

4.2.4 An ECM algorithm for ML estimation

Let S = {(x1,y1), . . . , (xI ,yI)} be a sample of I independent observations drawn from model (4.5).

Under these conditions, the log-likelihood function can be written as

l(ψ) =

I∑
i=1

ln

(
K∑
k=1

πkh (xi;θkx)h (yi|xi;θky)

)
.

Similarly to other finite mixture models and following Punzo and McNicholas (2017), ML esti-

mation of ψ has been carried out for a fixed value of K under a general framework dealing with

incomplete-data problems (Dempster et al., 1977; Meng and Rubin, 1993). In the considered

situation, there are three different types of incompleteness in the data S: (i) the missing in-

formation about the specific sub-populations from which the I sample observations come from;
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(ii) the missing information about whether such observations are leverage points with reference

to any given Gk or not; (iii) the missing information about whether each observation is an

outlier with reference to any given Gk or not. The first type is typical of any finite mixture

model; the second and third types are specific for model (4.5). Such information can be de-

scribed using three different types of K-dimensional vectors. For the ith sample observation,

they are given by zi, vi, ui. Namely, zi = (zi1, . . . , ziK)′, with zik = 1 if the ith observation

comes from the sub-population Gk and zik = 0 otherwise, for k = 1, . . . ,K; vi = (vi1, . . . , viK)′,

with vik = 1 if the ith observation is not a leverage point within the sub-population Gk and

vik = 0 if it is a leverage point; ui = (ui1, . . . , uiK)′, with uik = 1 if the ith observation is

typical within the sub-population Gk and uik = 0 if it is an outlier. Thus, the complete data

would be Sc = {(x1,y1, z1,v1,u1), . . . , (xI ,yI , zI ,vI ,uI)}. Then, following Punzo and McNi-

cholas (2017), to find the ML estimates ψ̂, an ECM algorithm (Meng and Rubin, 1993) has been

developed. To this end, the complete-data likelihood function has been derived:

Lc(ψ) =

I∏
i=1

K∏
k=1

{
πk

[
αkφP

(
xi;µk,Σk

)]vik[
(1− αk)φP

(
xi;µk, ηkΣk

)]1−vik
[
τkφM

(
yi; x̃

∗′
i β
∗
k,Ξk

)]uik[
(1− τk)φM

(
yi; x̃

∗′
i β
∗
k, λkΞk

)]1−uik}zik
;

thus, up to an additive constant, the complete-data log-likelihood function employed in the ECM

algorithm for the computation of ψ̂ is equal to:

`c(ψ) =

I∑
i=1

K∑
k=1

zik

[
lnπk + vik lnαk + (1− vik) ln(1− αk)−

1

2
ln |Σk|+

−
(P

2
ln ηk

)
(1− vik)−

1

2

(
vik +

1− vik
ηk

)
δ2Σk

(
xi,µk

)
+

+ uik ln τk + (1− uik) ln(1− τk)−
1

2
ln |Ξk|+

−
(M

2
lnλk

)
(1− uik)−

1

2

(
uik +

1− uik
λk

)
δ2Ξk

(
yi, x̃

∗′
i β
∗
k

)]
,

where

δ2Σk
(xi,µk) = (xi − µk)′Σ−1k (xi − µk), (4.8)

δ2Ξk

(
yi, x̃

∗′
i β
∗
k

)
= (yi − x̃

∗′
i β
∗
k)
′Ξ−1k (yi − x̃

∗′
i β
∗
k) (4.9)
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are squared Mahalanobis distances: the first is computed between xi and µk with respect to

Σk; the second is computed between yi and x̃
∗′
i β
∗
k with respect to Ξk.

The ECM algorithm consists in an iterative sequence. At each iteration, an E-step is

followed by two CM-steps. The first CM-step focuses on the parameter sub-vector ψa =

(π,µ,Σ,α,β∗,Ξ, τ ), where π = (π1, . . . , πK), µ = (µ1, . . . ,µK), Σ = (Σ1, . . . ,ΣK), α =

(α1, . . . , αK), β∗ = (β∗1, . . . ,β
∗
K), Ξ = (Ξ1, . . . ,ΞK), τ = (τ1, . . . , τK). The second CM-step

involves the parameter sub-vector ψb = (η,λ), where η = (η1, . . . , ηK), λ = (λ1, . . . , λK).

Iterations are repeated until convergence.

• On the hth iteration of the E-step, given the current estimate ψ(h) of the model parameters

ψ, the conditional expectation of lc(ψ) has to be computed; up to an additive constant,

it is equal to:

Q
(
ψ|ψ(h)

)
= Eψ(h) [`c(ψ)]

=
I∑
i=1

K∑
k=1

ẑ
(h)
ik

{
lnπ

(h)
k + v̂

(h)
ik lnα

(h)
k + (1− v̂(h)ik ) ln(1− α(h)

k )+

+Qi1

(
µk,Σk|ψ(h)

)
+û

(h)
ik ln τ

(h)
k + (1− û(h)ik ) ln(1− τ (h)k )+

+Qi2

(
β∗k,Ξk|ψ(h)

)}
,

where

Qi1

(
µk,Σk|ψ(h)

)
= −1

2

[
ln |Σ(h)

k |+ P (1− v̂(h)ik ) ln η
(h)
k +

+
(
v̂
(h)
ik +

1− v̂(h)ik

η
(h)
k

)
δ2
Σ

(h)
k

(
xi,µ

(h)
k

) ]
,

Qi2

(
β∗k,Ξk|ψ(h)

)
= −1

2

[
ln |Ξ(h)

k |+M(1− û(h)ik ) lnλ
(h)
k +

+
(
û
(h)
ik +

1− û(h)ik

λ
(h)
k

)
δ2
Ξ

(h)
k

(
yi, x̃

∗′
i β
∗(h)
k

) ]
,
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ẑ
(h)
ik = Eψ(h) [Zik|(xi,yi)] =

π
(h)
k h

(
xi;θ

(h)
kx

)
h
(
yi;θ

(h)
ky

)
f
(
xi,yi;ψ

(h)
) , (4.10)

v̂
(h)
ik = Eψ(h) [Vik|(xi, zi)] =

α
(h)
k φ

(
xi;µ

(h)
k ,Σ

(h)
k

)
h
(
xi;θ

(h)
kx

) , (4.11)

û
(h)
ik = Eψ(h) [Uik|(xi,yi, zi)] =

τ
(h)
k φ

(
yi; x̃

∗′
i β
∗(h)
k ,Ξ

(h)
k

)
h
(
yi;θ

(h)
ky

) , (4.12)

with Zi = (Zi1, . . . , ZiK)′ denoting a K-dimensional multinomial random vector with

probabilities π = (π1, . . . , πK)′, Vik|Zik = 1 and Uik|Zik = 1 being two Bernoulli ran-

dom variables with success probability of αk and τk, respectively, for i = 1, . . . , I and

k = 1, . . . ,K. Thus, ẑ
(h)
ik , v̂

(h)
ik and û

(h)
ik represent posterior probabilities (evaluated using

ψ(h)) of the following three events: (i) the sample observation (xi,yi) comes from the

kth distribution of the mixture (4.5); (ii) (xi,yi) is not a leverage point within such a

distribution; (iii) (xi,yi) is not an outlier within such a distribution.

• At the first CM-step on the (h+ 1)th iteration of the ECM algorithm, the sub-vector ψ
(h)
a

is updated through the maximisation of Q(ψ|ψ(h)) with respect to ψa with ψb fixed at

ψ
(h)
b . The resulting updates of π

(h)
k , α

(h)
k , τ

(h)
k , µ

(h)
k and Σ

(h)
k are:

π
(h+1)
k =

1

I

I∑
i=1

ẑ
(h)
ik ,

α
(h+1)
k =

∑I
i=1 ẑ

(h)
ik v̂

(h)
ik∑I

i=1 ẑ
(h)
ik

, (4.13)

τ
(h+1)
k =

∑I
i=1 ẑ

(h)
ik û

(h)
ik∑I

i=1 ẑ
(h)
ik

, (4.14)

µ
(h+1)
k =

∑I
i=1 ẑ

(h)
ik ŵ

(h)
1ik

xi∑I
i=1 ẑ

(h)
ik ŵ

(h)
1ik

, (4.15)

Σ
(h+1)
k =

∑I
i=1 ẑ

(h)
ik ŵ

(h)
1ik

(
xi − µ(h+1)

k

)(
xi − µ(h+1)

k

)′
∑I

i=1 ẑ
(h)
ik

, (4.16)

where

ŵ
(h)
1ik

= v̂
(h)
ik +

1− v̂(h)ik

η
(h)
k

. (4.17)

Such updates coincide with the solutions obtained for the CNCW model (for further details
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see Punzo and McNicholas, 2017, Appendices C.1-C.4). As far as the remaining elements

of the sub-vector ψ
(h)
a are concerned, their updates are:

β
∗(h+1)
k =

( I∑
i=1

ẑ
(h)
ik ŵ

(h)
2ik

x̃∗iΞ
(h)−1

k x̃∗
′
i

)−1( I∑
i=1

ẑ
(h)
ik ŵ

(h)
2ik

x̃∗iΞ
(h)−1

k yi

)
, (4.18)

Ξ
(h+1)
k =

∑I
i=1 ẑ

(h)
ik ŵ

(h)
2ik

(
yi − x̃∗

′
i β
∗(h+1)

k

)(
yi − x̃∗

′
i β
∗(h+1)

k

)′
∑I

i=1 ẑ
(h)
ik

, (4.19)

where

ŵ
(h)
2ik

= û
(h)
ik +

1− û(h)ik

λk
(h)

. (4.20)

The updates illustrated in equations (4.18)-(4.19) coincide with the ones obtained for

the seemingly unrelated contaminated normal clusterwise regression models (4.7) (further

details can be found in Perrone and Soffritti, 2023, Appendix A).

• At the second CM-step on the (h + 1)th iteration of the ECM algorithm, the update of

ψ
(h)
b is obtained by maximising Q(ψ|ψ(h)) with respect to ψb with ψa fixed at ψ

(h+1)
a .

The resulting updates of η
(h)
k and λ

(h)
k are (further details can be found in Punzo et al.,

2018):

η
(h+1)
k = max

{
1,

∑I
i=1 ẑ

(h)
ik (1− v̂(h)ik )δ2

Σ
(h+1)
k

(
xi,µ

(h+1)
k

)
P
∑I

i=1 ẑ
(h)
ik (1− v̂(h)ik )

}
, (4.21)

λ
(h+1)
k = max

{
1,

∑I
i=1 ẑ

(h)
ik (1− û(h)ik )δ2

Ξ
(h+1)
k

(
yi, x̃

∗′
i β
∗(h+1)

k

)
M
∑I

i=1 ẑ
(h)
ik (1− û(h)ik )

}
. (4.22)

It is worth noting that the update β
∗(h+1)
k can be computed only if the matrix∑I

i=1 ẑ
(h)
ik ŵ

(h)
2ik

x̃∗iΞ
(h)−1

k x̃∗
′
i in equation (4.18) is nonsingular. This equation also shows that the

update β
∗(h+1)
k can be seen as a generalised least squares estimate with weights depending on

ẑ
(h)
ik and ŵ

(h)
2ik

; such weights also affect the update Ξ
(h+1)
k in (4.19), which represents a weighted

sum of squared residuals. As a consequence, sample observations with the highest posterior

estimated probabilities of being generated from the kth distribution of the mixture (4.5) and of

representing typical points in y-direction within that distribution will have the largest impact on

the updates of both the regression coefficients and covariances of Y|(X = x, Gk). For this reason,

this approach provides robust estimates of β
∗(h+1)
k and Ξ

(h+1)
k for k = 1, . . .K. In a similar way,
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the term ŵ
(h)
1ik

in equations (4.15) and (4.16) allows to reduce the impact of the leverage points

on the estimation of µ
(h+1)
k and Σ

(h+1)
k , thereby proving to represent a robust solution also for

the estimation of these latter parameters. Furthermore, equations (4.21) and (4.22) show that

the updates η
(h+1)
k and λ

(h+1)
k will be larger when the kth distribution of the mixture in the

model (4.5) is highly contaminated by the presence of outliers and leverage points, respectively

(i.e., when many observations show small values of v̂
(h)
ik and û

(h)
ik or, equivalently, large squared

Mahalanobis distances from µ
(h+1)
k and x̃∗

′
i β
∗(h+1)

k ).

The main result of the ECM algorithm is represented by the ML estimate ψ̂, that is the value

of ψ(h) at convergence. As a by-product, by exploiting equations (4.10)-(4.12) this algorithm

also provides estimates of the following posterior probabilities: Pψ̂[Zik = 1|(xi,yi)] = ẑik,

Pψ̂[Vik = 1|(xi, ẑi)] = v̂ik and Pψ̂[Uik = 1|(xi,yi, ẑi)] = ûik, for i = 1, . . . , I and k = 1, . . . ,K.

Then, the I sample observations can be partitioned into K clusters according to the rule of the

maximum a posteriori probability; for the ith observation:

MAP(ẑik) =


1 if maxh{ẑih} occurs when h = k;

0 otherwise.

Furthermore, the estimates v̂ik and ûik can be employed to define two intra-cluster distinctions.

Namely, if v̂ih < 0.5, where h is the label of the cluster for which MAP(ẑik) = 1, the ith

observation will be classified as a leverage point for that cluster; in a similar way, if ûih < 0.5,

the ith observation will be classified as a mild outlier for the same cluster. The ML estimates

can also be exploited in conjunction with equations (4.8) and (4.9) to compute the estimated

squared Mahalanobis distances d̂2ikx = δ2
Σ̂k

(xi, µ̂k) and d̂2iky = δ2
Ξ̂k

(
yi, x̃

∗′
i β̂
∗
k

)
, for i = 1, . . . , I

and k = 1, . . . ,K, which can be interpreted as intra-cluster quantifications of the amount of

deviations from the pattern of the observations assigned to any given cluster. Thus, a more

detailed analysis of the leverage points and mild outliers could be carried out by considering

the values of d̂2ikx and d̂2iky ∀(i, k) ∈ {i ∈ {1, . . . , I}, k : MAP(ẑik) = 1} and by focusing on the

largest values obtained in this way (see McLachlan and Peel, 2000, p. 232).

4.2.5 Technical details about the ECM algorithm

Generally speaking, in finite mixture modelling, the parameter estimates resulting from an EM-

based algorithm are dependent on the values employed to initialise the iterative process. Thus,
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the quality of the solution can be largely affected by the choice of the starting value for the model

parameters. As this is true also for model (4.5), appropriately choosing ψ(0) is paramount for

obtaining a proper ML estimation of ψ. To this end, strategies usually employed in finite

mixture models (e.g., multiple executions of the algorithm using multiple random initialisations,

approaches based on non-random choices of either ψ(0) or the missing information) could be

adopted (see, e.g., Biernacki et al., 2003; Karlis and Xekalaki, 2003, for more details). More

specific initialisation strategies could be devised by resorting to the normal mixture model of

order K for (X,Y). This latter model has been proved to represent a reparameterisation of

the NCW model (4.2) (see Ingrassia et al., 2012, for more details) which, in turn, is nested

in the CNCW model (4.3) when αk → 1−, τk → 1−, ηk → 1+ and λk → 1+, k = 1, . . . ,K.

Thus, a first strategy for choosing the initial values ẑ
(0)
ik , i = 1, . . . , I, k = 1, . . . ,K, could set

such quantities equal to the estimated posterior probabilities of the normal mixture model of

order K for (X,Y). Furthermore, v̂
(0)
ik and û

(0)
ik could be set equal to 0.999 for i = 1, . . . , I and

k = 1, . . . ,K. In the analyses reported in Sections 4.3 and 4.4, the ECM algorithm has been

initialised using a strategy composed of the following three steps. Firstly, the normal mixture

model of order K for (X,Y) is estimated using the data S. The resulting estimates of the

mixing weights, the expected values and the variances-covariances of X are employed to obtain

the starting values π
(0)
k , µ

(0)
k and Σ

(0)
k . Secondly, a seemingly unrelated linear regression model

for E(Y|Xm = xm) is fitted to subsample of S composed of the observations assigned to the kth

cluster detected by the normal mixture model considered in the previous step (k = 1, . . . ,K).

The starting values β
∗(0)
k and Ξ

(0)
k are given by the vector containing the estimated intercept and

regression coefficients and the matrix with the variances and covariances of the sample residuals,

respectively. Thirdly, α
(0)
k and τ

(0)
k , for k = 1 . . . ,K, are set equal to 0.999; η

(0)
k and λ

(0)
k are

set equal to 1.001. The packages mclust (Scrucca et al., 2017) and systemfit (Henningsen and

Hamann, 2007) in the R environment (R Core Team, 2022) have been employed to estimate the

models involved in the first two steps.

As far as the estimation of αk and τk is concerned, equations (4.13) and (4.14) of the ECM

algorithm have been modified so as to guarantee that the estimated proportions of typical obser-

vations both in the x-direction and in the y-direction within each cluster is at least 0.5. The two

modified equations are: α
(h+1)
k = max

{
0.5,

∑I
i=1 ẑ

(h)
ik v̂

(h)
ik∑I

i=1 ẑ
(h)
ik

}
and τ

(h+1)
k = max

{
0.5,

∑I
i=1 ẑ

(h)
ik û

(h)
ik∑I

i=1 ẑ
(h)
ik

}
,

for k = 1, . . . ,K.

The iterative process is stopped using either a convergence criterion which exploits the Aitken



4.2.6 Determining the value of K 91

acceleration (Aitken, 1926) or a stopping rule in which the ECM algorithm is stopped after a

given maximum number of iterations. The convergence criterion is based on the computation

of the quantity |`(h+1)
A − `(ψ(h))|, where `

(h+1)
A is (h + 1)th Aitken accelerated estimate of the

log-likelihood limit and `(ψ(h)) is the incomplete log-likelihood evaluated at ψ(h) (see, e.g.,

McNicholas, 2010). Iterations are stopped when this quantity is lower than a positive and finite

tolerance threshold ε. The analyses reported in Sections 4.3 and 4.4 have been carried out

with ε = 10−4 and 500 as the maximum number of iterations. Finally, some constraints on the

eigenvalues of Σ
(h)
k and Ξ

(h)
k (k = 1, . . . ,K) have been embedded in the ECM algorithm so as

to avoid the issue of a unbounded likelihood caused by a degenerate model. Namely, following

Dang et al. (2017), all eigenvalues have been required to be greater than the conservative bound

10−20; furthermore, the ratio between the smallest and the largest eigenvalues of such matrices

is required to be not lower than 10−10.

4.2.6 Determining the value of K

Since the ECM algorithm allows to obtain an estimate of ψ for a given value of K, in any

practical application in which this number is not known, it has to be determined from the data

S. This task is typically carried out by resorting to model selection criteria, such as the Bayesian

information criterion (Schwarz, 1978) or the integrated completed likelihood (Biernacki et al.,

2000). They can be computed as follows:

BIC = 2`(ψ̂)− nψ ln I,

ICL1 = 2`(ψ̂)− nψ ln I + 2
I∑
i=1

K∑
k=1

MAP(ẑik) ln ẑik,

ICL2 = 2`(ψ̂)− nψ ln I + 2

I∑
i=1

K∑
k=1

ẑik ln ẑik.

Higher values of these criteria indicate better-fit models. The BIC evaluates the adequacy of

a model by taking account of the trade-off between the fit and the model complexity. In the

computation of the ICL, an additional penalty accounting for the uncertainty of the estimated

partition is considered (see, e.g., Andrews and McNicholas, 2011; Baek and McLachlan, 2011).

In the equations for ICL1 and ICL2, such a penalty is based on either a soft (i.e., ẑik) or

hard (i.e., MAP(ẑik)) clustering of the sample observations. As a consequence, ICL1 and ICL2

penalize complex models more severely than BIC; furthermore, they should less likely split one

cluster into two different components. This latter feature is consistent with the fact that the
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ICL has been proposed as a criterion able to select the model which shows the greatest evidence

of clustering (Biernacki et al., 2000). In contrast, selecting the number of components which

leads to a good approximation to the density is the aspect which the BIC mainly focuses on

(Baudry et al., 2010). In Section 4.4, BIC, ICL1 and ICL2 have been employed also to identify

the vectors of predictors X1, . . . ,XM required for the definition of the design matrix X̃∗ in the

specification of model (4.5).

4.2.7 Parsimonious models

In practical applications in which the analysis involves either many responses or many predictors,

using model (4.5) to perform the analysis can become unfeasible. This is a consequence of the fact

that the number of free parameters nψ of a SuCNCW model increases quadratically both with

M and with P . A way to manage this issue is to resort to the approach illustrated in Celeux and

Govaert (1995). With this approach, a reparameterisation of model (4.5) is obtained, in which

the covariance matrices Σk and Ξk, for k = 1, . . . ,K, are expressed in terms of their eigenvalues

and eigenvectors; furthermore, the introduction of suitable constraints on such quantities allows

to obtain parsimonious SuCNCW models. More specifically, let Ak be the diagonal matrix

containing the eigenvalues of Σk, normalised in such a way that |Ak| = 1; let Dk be the matrix

with the corresponding eigenvectors, and ξk = |Σk|1/D. By exploiting the eigen-decomposition

Σk = ξkDkAkD
′
k, variances and covariances in Σk can be obtained from ξk, Ak and Dk, which

control the volume, shape and orientation of the kth cluster of observations with respect to

the predictors. Constraining ξk, Ak and Dk on this decomposition in model (4.5) with K > 1

will lead to 14 different covariance structures for the predictors. Additional information about

these parameterisations are reported in Table 4.1. When ξk, Ak and Dk are all variable across

the K clusters (VVV acronym in Table 4.1), the resulting covariance structures of the predictors

will be fully unconstrained. From the simultaneous application of the same decomposition to

the covariance matrices Ξk, for k = 1, . . . ,K, 196 differentially parameterised SuCNCW models

of order K can be obtained, for any given K > 1. The updates of Σ
(h)
k and Ξ

(h)
k reported in

equations (4.16) and (4.19) apply to the SuCNCW models with the VVV parameterisation for

either Σk or Ξk (i.e.: fully unconstrained covariance structures of the predictors or responses).

For the ML estimation of Σk or Ξk under any other SuCNCW model, the M step updates in

the ECM algorithm depend on the specific parameterisation to be employed (see Celeux and

Govaert, 1995, for more details). For the estimation of models obtained using the EVE and VVE
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Table 4.1: Parameterisations of the component-covariance matrices.

Acronym Model Distribution Volume Shape Orientation

EEE ξDAD′ Ellipsoidal Equal Equal Equal
VVV ξkDkAkD

′
k Ellipsoidal Variable Variable Variable

EII ξI Spherical Equal Equal −
VII ξkI Spherical Variable Equal −
EEI ξA Diagonal Equal Equal −
VEI ξkA Diagonal Variable Equal −
EVI ξAk Diagonal Equal Variable −
VVI ξkAk Diagonal Variable Variable −
EEV ξDkAD′k Ellipsoidal Equal Equal Variable
VEV ξkDkAD′k Ellipsoidal Variable Equal Variable
EVE ξDAkD

′ Ellipsoidal Equal Variable Equal
VVE ξkDAkD

′ Ellipsoidal Variable Variable Equal
VEE ξkDAD′ Ellipsoidal Variable Equal Equal
EVV ξDkAkD

′
k Ellipsoidal Equal Variable Variable

parameterisations, it is possible to resort to some algorithms which are computationally feasible

also in high-dimensional situations (Browne and McNicholas, 2014a,b). As far as SuCNCW

models of order K = 1 are concerned, the possible covariance structures for both responses and

covariates are: diagonal with different entries (VI), diagonal with the same entries (EI) and fully

unconstrained (VV). Thus, when K = 1, only nine differentially parameterised models can be

specified.

4.3 Simulation studies

4.3.1 Settings

The task of investigating the effectiveness of SuCNCW models in comparison with NCW, CNCW

and SuNCW models has been carried out in a multivariate setting with M = 2 responses,

P = 3 covariates and simulated datasets comprising observations randomly sampled from K = 3

different distributions.

All the models employed to generate the datasets have been specified within the seemingly

unrelated approach. More specifically, the response Y1 has been assumed to linearly depend

on X1 and X2, while the assumption for Y2 is that it linearly depends on X1 and X3. Thus,

X1 = (X1, X2)
′, X2 = (X1, X3)

′, and equation (4.4) reduces to:

E(Y1|X = x,Gk) = x
∗′
1 β
∗
k1 = βk10 + βk11x1 + βk12x2,

E(Y2|X = x, Gk) = x
∗′
2 β
∗
k2 = βk20 + βk21x1 + βk22x3.
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As far as the data generation processes are concerned, models belonging to the following classes

have been employed:

(a) SuNCW;

(b) SuCNCW with αk = 0.95, ηk = 5, τk = 0.9, λk = 10 ∀k;

(c) Student-t CW models with ν1 = ν2 = ν3 = 4 degrees of freedom.

All of these processes share the following common parameters for the data generation: π1 = 0.4,

π2 = 0.35, π3 = 0.25, µ1 = (0, 0, 0)′, µ2 = (2, 4,−2)′, µ3 = µ2 + 2ε · 1P , where 1P is the P × 1

vector having each element equal to 1, β∗1 = (−2, 0.75, 1, 1, 0.5,−2)′, β∗2 = (0.5, 1.75, 0.25, 1, 1, 1)′,

β∗3 = β∗2 + ε · 16, Σ1 =


1.72 −0.18 0.27

−0.18 1.89 0.27

0.27 0.27 2.89

, Σ2 =


2.33 −0.52 −0.06

−0.52 0.88 −0.34

−0.06 −0.34 1.04

, Σ3 = Σ2,

Ξ1 =

1.34 0.47

0.47 1.66

, Ξ2 =

0.50 0.04

0.04 1.50

, Ξ3 = Ξ2. Thus, the covariance structures of both

the predictors and the responses within the three groups have been obtained using the VVV

parameterisation. Since the difference between the parameters (θkx,θky) for k = 2, 3 only

depends on ε, different values of ε can be chosen so as to determine different degrees of separation

between the second and third groups of sample observations.

Under each process mentioned above, 100 different datasets have been generated considering

the sample size (I = 500, 1000) and the degree of separation (ε = 0.35, 0.55) as experimental

factors. Thus, 1200 different datasets have been generated. The whole analysis has been run

by employing an IBM x3750 M4 server with 4 Intel Xeon E5-4620 processors with 8 cores and

128GB RAM.

4.3.2 Results

The comparative study of the effectiveness of the four model classes has been structured into

two parts. In the first part, SuNCW, NCW, CNCW and SuCNCW models of order K = 3 with

the VVV parameterisation for both Σk and Ξk (k = 1, 2, 3) have been fitted to each dataset.

As far as NCW and CNCW models are concerned, each response has been assumed to linearly
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depend on all the covariates; namely:

E(Y1|X = x,Gk) = βk10 + βk11x1 + βk12x2 + βk13x3,

E(Y2|X = x, Gk) = βk20 + βk21x1 + βk22x3 + βk23x2.

With this specification, the fitted NCW and CNCW models are not parsimonious: for each k, six

regression coefficients have been estimated although, in fact, only four of them are different from

zero. As far as the time elapsed between the start and completion of the parameter estimation is

concerned, fitting a SuCNCW model has required - on average over the 100 datasets with I = 500

- between 1.069 and 95.243 seconds, depending on the data generation process and the value of

ε. The minimum and maximum average execution times have resulted to be equal to 0.991 and

20.113 seconds with SuNCW models, 0.995 and 18.782 seconds with NCW models, 1.034 and

116.922 seconds with CNCW models. However, it is important to note that the ECM algorithm

has not been implemented with the goal of being efficient from a computational point of view.

Thus, more efficient implementations could greatly reduce these illustrative CPU times. In the

first part of this study, the comparison among the competing models has been carried out by

examining their performances with reference to the following three aspects: (i) the estimation of

the proportions of typical observations and the degrees of contamination both in the x-direction

(proper estimation of αk and ηk) and in the y-direction (proper estimation of τk and λk); (ii)

the ability to recover the true values of the unknown parameters (parameter recovery); (iii) the

capability to recover the true partition of the sample observations (classification recovery). The

aspect (i) has been studied only for the fitted CNCW and SuCNCW models. The evaluation

of the aspect (ii) has been focused on the regression coefficients. In order to prevent the effects

of label switching issues on the evaluation of these aspects, the components of the mixtures

involved in each fitted model have been labelled by minimising the Euclidean distance to the

true parameter values (see, e.g., Bai et al., 2012; Yao, 2014; Punzo and McNicholas, 2017; Perrone

and Soffritti, 2023).

In the second part, the study aims at evaluating the performances of the four model classes

without exploiting the knowledge of the true value of K. Thus, also SuNCW, NCW, CNCW

and SuCNCW models of order K = 1, 2, 4 with the VVV parameterisation for Σk and Ξk have

been fitted to each dataset. The results obtained for all the examined values of K have been

employed to study the following aspects: (iv) the capability to reach the best trade-off between
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the fit and model complexity; (v) the ability of BIC, ICL1 and ICL2 to detect the true value

of K (comparison among information criteria); (vi) a further evaluation of the classification

recovery.

Estimation of αk, τk, ηk, λk

When the datasets only contain typical observations in either directions (first process), the

averages of the estimated proportions of good points (α̂k and τ̂k) and the estimated inflation

parameters (η̂k and λ̂k) are close to 1. In the presence of datasets with contaminated observations

generated according to the second process, the estimates of such parameters are, on average, close

to their true values. These results hold true under both CNCW and SuCNCW models, regardless

of the level of separation and the sample size (see the upper and central parts of Tables 4.2–

4.5). Thus, the proportions of good points and the inflation parameters appear to be properly

estimated using either types of models. However, in the second process, slightly higher standard

deviations have been registered for the estimated inflation parameters, especially for λk. These

latter results seem to highlight that the estimation of the inflation parameters is characterised

by a certain instability under both CNCW and SuCNCW models. This phenomenon seems to

reduce as the sample size increases. Finally, with the contaminated datasets generated according

to the third process, the mean values of α̂k, τ̂k, η̂k and λ̂k for k = 1, 2, 3 are all quite far from

1, regardless of the values of ε and I (see the lower part of Tables 4.2–4.5). Thus, CNCW and

SuCNCW models have been able to detect the departure from a normal distribution for both

X|Gk and Y|(X = x, Gk), for k = 1, 2, 3, due to the use of the Student-t distribution in the

third data generation process.

Parameter recovery

To evaluate the aspect (ii) with respect to the regression coefficients βkmp, the following quan-

tities have been computed:

Bias
(
β̂kmp

)
=

∣∣∣∣∣∣
∑100

r=1 β̂
(r)
kmp

100
− βkmp

∣∣∣∣∣∣ , k = 1, 2, 3, m = 1, 2, p = 1, 2,

RMSE
(
β̂kmp

)
=

√√√√∑100
r=1

(
βkmp − β̂

(r)
kmp

)2
100

, k = 1, 2, 3, m = 1, 2, p = 1, 2,
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where β̂
(r)
kmp is the ML estimate of βkmp obtained from the rth dataset (r = 1, . . . , 100). Since

NCW and CNCW models also contain some regression coefficients associated with irrelevant

regressors, the bias and RMSE have been computed also for these additional coefficients, using

0 as their true value.

The ability to recover the regression coefficients using SuNCW and SuCNCW models under

the first process results to be the same with both sample sizes and both degrees of separation

(see their biases and RMSEs in Tables 4.6 and 4.7). As all the parameters able to capture

the possible presence of mildly atypical observations in SuCNCW have been properly estimated

(see the previous aspect), the inclusion of these parameters when the analysed datasets do not

contain atypical observations does not show any relevant impact on the recovery of the true

βkmp. On the contrary, if irrelevant predictors are included in both regression equations (i.e.,

using NCW and CNCW models), a slight increase in the RMSEs of some regression coefficients

is observed when I = 500, and this is especially true for ε = 0.35. However, such an effect

almost disappears with the sample size 1000. With the contaminated datasets generated using

the second process, as expected, SuCNCW models show the best performance with both sample

sizes and both degrees of separation (see Tables 4.8 and 4.9). With this process, the accuracy of

CNCW models seem to be slightly higher than that of NCW and SuNCW models for the majority

of the regression coefficients. Under the third process, the lowest RMSEs are still obtained using

the SuCNCW model with all the examined experimental situations (see Tables 4.10 and 4.11).

Furthermore, thanks to their effectiveness in detecting the non-normality of the distributions of

X|Gk and Y|(X = x, Gk) for k = 1, 2, 3, CNCW models generally perform slightly better than

NCW and SuNCW models. However, it is worth noting that, with the lowest values of I and

ε, the RMSEs obtained using the SuNCW model are slightly lower than those registered with

CNCW models for the majority of the regression coefficients. As far as the irrelevant regressors

are concerned, NCW and CNCW models appear to be equally capable of recognising their

presence in the analysis of uncontaminated datasets (I process), as the corresponding estimated

regression coefficients are on average quite close to 0. However, when the data are contaminated

(II and III processes), large values of the RMSE have been registered for the estimates of the

regression coefficients associated with the irrelevant regressors in the second and third cluster.

This latter result is particularly evident when the separation between these two clusters is low.

Furthermore, the precision of CNCW models in the estimation of the effect of most irrelevant

regressors using contaminated datasets results to be higher than that of NCW models.
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Table 4.6: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the first process (I = 500).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.004 0.007 0.007 0.004 0.047 0.049 0.049 0.047
β112 0.004 0.010 0.010 0.004 0.075 0.079 0.079 0.075
β121 0.004 0.003 0.003 0.004 0.068 0.074 0.074 0.068
β122 0.002 0.001 0.001 0.002 0.103 0.110 0.110 0.103
β211 0.000 0.001 0.001 0.000 0.037 0.038 0.038 0.037
β212 0.003 0.002 0.002 0.003 0.060 0.061 0.061 0.060
β221 0.002 0.001 0.001 0.002 0.058 0.064 0.064 0.058
β222 0.006 0.008 0.008 0.006 0.089 0.098 0.098 0.089
β311 0.002 0.003 0.003 0.002 0.064 0.064 0.064 0.064
β312 0.002 0.004 0.004 0.002 0.058 0.060 0.060 0.058
β321 0.006 0.005 0.005 0.006 0.073 0.074 0.074 0.073
β322 0.006 0.004 0.004 0.006 0.052 0.054 0.054 0.052
Irrelevant regressors
β113 - 0.003 0.003 - - 0.046 0.046 -
β123 - 0.006 0.006 - - 0.060 0.060 -
β213 - 0.012 0.012 - - 0.069 0.069 -
β223 - 0.008 0.008 - - 0.133 0.133 -
β313 - 0.004 0.004 - - 0.056 0.056 -
β323 - 0.006 0.006 - - 0.114 0.114 -
ε = 0.35
β111 0.009 0.009 0.009 0.009 0.036 0.039 0.039 0.036
β112 0.008 0.013 0.014 0.010 0.056 0.085 0.086 0.058
β121 0.002 0.001 0.001 0.001 0.049 0.055 0.055 0.049
β122 0.034 0.038 0.037 0.034 0.083 0.097 0.096 0.082
β211 0.008 0.010 0.010 0.008 0.032 0.046 0.046 0.032
β212 0.008 0.009 0.010 0.008 0.053 0.081 0.081 0.053
β221 0.015 0.017 0.017 0.016 0.049 0.055 0.055 0.049
β222 0.014 0.017 0.017 0.014 0.070 0.079 0.079 0.069
β311 0.004 0.004 0.004 0.003 0.042 0.042 0.042 0.042
β312 0.001 0.000 0.000 0.001 0.039 0.042 0.042 0.039
β321 0.000 0.001 0.001 0.001 0.047 0.049 0.049 0.048
β322 0.005 0.007 0.007 0.005 0.041 0.043 0.043 0.041
Irrelevant regressors
β113 - 0.003 0.003 - - 0.030 0.030 -
β123 - 0.006 0.006 - - 0.049 0.048 -
β213 - 0.003 0.003 - - 0.074 0.074 -
β223 - 0.002 0.002 - - 0.104 0.104 -
β313 - 0.004 0.004 - - 0.060 0.060 -
β423 - 0.006 0.005 - - 0.094 0.094 -
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Table 4.7: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the first process (I = 1000).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.003 0.004 0.004 0.003 0.033 0.034 0.034 0.033
β112 0.002 0.003 0.003 0.002 0.053 0.059 0.059 0.053
β121 0.001 0.002 0.002 0.001 0.051 0.056 0.056 0.051
β122 0.012 0.008 0.008 0.012 0.081 0.086 0.086 0.081
β211 0.003 0.004 0.004 0.003 0.030 0.030 0.030 0.030
β212 0.002 0.003 0.003 0.002 0.047 0.047 0.047 0.047
β221 0.002 0.003 0.003 0.002 0.046 0.052 0.052 0.046
β222 0.009 0.010 0.010 0.009 0.067 0.070 0.070 0.067
β311 0.004 0.004 0.004 0.004 0.047 0.048 0.048 0.047
β312 0.002 0.002 0.002 0.002 0.040 0.044 0.044 0.040
β321 0.004 0.004 0.004 0.004 0.050 0.051 0.051 0.050
β322 0.003 0.003 0.003 0.003 0.040 0.041 0.041 0.040
Irrelevant regressors
β113 - 0.004 0.004 - - 0.038 0.038 -
β123 - 0.006 0.006 - - 0.049 0.049 -
β213 - 0.010 0.010 - - 0.054 0.054 -
β223 - 0.009 0.009 - - 0.094 0.094 -
β313 - 0.002 0.002 - - 0.043 0.043 -
β323 - 0.001 0.001 - - 0.088 0.088 -
ε = 0.35
β111 0.004 0.004 0.004 0.004 0.025 0.026 0.026 0.025
β112 0.001 0.001 0.001 0.001 0.043 0.048 0.048 0.043
β121 0.004 0.008 0.008 0.004 0.040 0.042 0.042 0.040
β122 0.001 0.004 0.004 0.002 0.058 0.059 0.059 0.058
β211 0.002 0.002 0.002 0.002 0.019 0.020 0.020 0.019
β212 0.011 0.013 0.013 0.011 0.032 0.035 0.035 0.032
β221 0.001 0.000 0.000 0.001 0.031 0.034 0.034 0.031
β222 0.008 0.011 0.011 0.008 0.058 0.057 0.057 0.058
β311 0.005 0.006 0.006 0.005 0.030 0.031 0.031 0.030
β312 0.000 0.001 0.001 0.000 0.030 0.033 0.033 0.030
β321 0.014 0.015 0.015 0.015 0.038 0.039 0.039 0.038
β322 0.006 0.007 0.007 0.006 0.028 0.030 0.030 0.028
Irrelevant regressors
β113 - 0.000 0.000 - - 0.025 0.025 -
β123 - 0.005 0.005 - - 0.037 0.037 -
β213 - 0.001 0.001 - - 0.032 0.032 -
β223 - 0.017 0.016 - - 0.068 0.068 -
β313 - 0.003 0.003 - - 0.033 0.033 -
β323 - 0.005 0.005 - - 0.063 0.063 -
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Table 4.8: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the second process (I = 500).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.010 0.014 0.007 0.000 0.096 0.100 0.070 0.063
β112 0.041 0.072 0.038 0.006 0.199 0.269 0.203 0.107
β121 0.005 0.006 0.007 0.001 0.096 0.114 0.087 0.076
β122 0.025 0.006 0.008 0.005 0.153 0.160 0.126 0.111
β211 0.008 0.012 0.007 0.002 0.105 0.145 0.178 0.039
β212 0.074 0.095 0.083 0.003 0.291 0.333 0.358 0.062
β221 0.011 0.006 0.017 0.002 0.112 0.179 0.157 0.062
β222 0.045 0.049 0.012 0.002 0.375 0.316 0.288 0.095
β311 0.012 0.014 0.003 0.003 0.088 0.089 0.066 0.065
β312 0.001 0.004 0.002 0.001 0.075 0.085 0.068 0.062
β321 0.006 0.007 0.001 0.001 0.093 0.098 0.075 0.074
β322 0.009 0.006 0.004 0.002 0.064 0.071 0.059 0.053
Irrelevant regressors
β113 - 0.005 0.003 - - 0.060 0.051 -
β123 - 0.003 0.006 - - 0.105 0.073 -
β213 - 0.063 0.034 - - 0.246 0.191 -
β223 - 0.029 0.005 - - 0.228 0.168 -
β313 - 0.030 0.003 - - 0.190 0.322 -
β323 - 0.020 0.002 - - 0.315 0.328 -
ε = 0.35
β111 0.071 0.094 0.043 0.022 0.141 0.172 0.129 0.075
β112 0.230 0.321 0.115 0.063 0.464 0.516 0.334 0.324
β121 0.050 0.023 0.024 0.016 0.252 0.263 0.212 0.210
β122 0.003 0.038 0.052 0.032 0.248 0.276 0.193 0.150
β211 0.026 0.035 0.017 0.006 0.213 0.234 0.182 0.177
β212 0.093 0.120 0.115 0.073 0.335 0.408 0.439 0.265
β221 0.008 0.039 0.003 0.005 0.213 0.270 0.157 0.138
β222 0.052 0.084 0.099 0.038 0.439 0.554 0.555 0.269
β311 0.011 0.011 0.001 0.001 0.085 0.086 0.059 0.059
β312 0.003 0.003 0.002 0.004 0.081 0.086 0.061 0.058
β321 0.005 0.004 0.002 0.004 0.098 0.098 0.079 0.075
β322 0.007 0.007 0.005 0.003 0.075 0.083 0.062 0.059
Irrelevant regressors
β113 - 0.002 0.004 - - 0.057 0.044 -
β123 - 0.005 0.001 - - 0.097 0.074 -
β213 - 0.234 0.099 - - 0.358 0.259 -
β223 - 0.148 0.027 - - 0.363 0.264 -
β313 - 0.044 0.040 - - 0.306 0.241 -
β323 - 0.037 0.026 - - 0.459 0.463 -
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Table 4.9: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the second process (I = 1000).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.007 0.015 0.001 0.001 0.067 0.080 0.041 0.033
β112 0.024 0.053 0.012 0.007 0.154 0.212 0.107 0.058
β121 0.000 0.014 0.000 0.000 0.074 0.090 0.057 0.053
β122 0.006 0.018 0.006 0.009 0.104 0.120 0.081 0.080
β211 0.008 0.011 0.006 0.004 0.041 0.042 0.035 0.031
β212 0.028 0.032 0.011 0.001 0.168 0.176 0.110 0.044
β221 0.000 0.005 0.006 0.005 0.057 0.073 0.055 0.046
β222 0.020 0.022 0.006 0.010 0.239 0.265 0.189 0.065
β311 0.007 0.005 0.001 0.002 0.058 0.059 0.048 0.047
β312 0.008 0.006 0.002 0.003 0.060 0.064 0.047 0.044
β321 0.002 0.002 0.004 0.004 0.062 0.065 0.053 0.053
β322 0.001 0.002 0.006 0.006 0.053 0.056 0.043 0.042
Irrelevant regressors
β113 - 0.005 0.001 - - 0.049 0.042 -
β123 - 0.013 0.003 - - 0.066 0.046 -
β213 - 0.042 0.003 - - 0.181 0.099 -
β223 - 0.065 0.010 - - 0.177 0.100 -
β313 - 0.012 0.003 - - 0.062 0.041 -
β323 - 0.003 0.001 - - 0.126 0.095 -
ε = 0.35
β111 0.054 0.082 0.020 0.009 0.092 0.126 0.080 0.061
β112 0.130 0.267 0.097 0.013 0.221 0.377 0.261 0.104
β121 0.018 0.018 0.014 0.000 0.142 0.131 0.136 0.115
β122 0.060 0.006 0.014 0.006 0.237 0.178 0.150 0.099
β211 0.004 0.019 0.029 0.027 0.167 0.208 0.178 0.109
β212 0.103 0.108 0.061 0.027 0.299 0.337 0.341 0.167
β221 0.037 0.013 0.029 0.014 0.229 0.137 0.184 0.069
β222 0.182 0.142 0.005 0.013 0.566 0.502 0.492 0.151
β311 0.001 0.000 0.004 0.003 0.059 0.061 0.047 0.046
β312 0.003 0.003 0.001 0.001 0.058 0.057 0.045 0.041
β321 0.003 0.004 0.008 0.007 0.065 0.068 0.058 0.055
β322 0.004 0.001 0.003 0.003 0.044 0.053 0.044 0.041
Irrelevant regressors
β113 - 0.004 0.000 - - 0.046 0.035 -
β123 - 0.003 0.003 - - 0.068 0.052 -
β213 - 0.246 0.121 - - 0.401 0.341 -
β223 - 0.152 0.075 - - 0.470 0.457 -
β313 - 0.041 0.059 - - 0.180 0.228 -
β323 - 0.002 0.003 - - 0.250 0.200 -
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Table 4.10: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the third process (I = 500).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.026 0.024 0.005 0.004 0.103 0.090 0.050 0.045
β1121 0.124 0.182 0.028 0.017 0.290 0.394 0.181 0.136
β121 0.051 0.049 0.025 0.020 0.129 0.130 0.099 0.084
β122 0.049 0.006 0.010 0.009 0.164 0.124 0.112 0.106
β211 0.002 0.015 0.000 0.004 0.168 0.159 0.092 0.063
β212 0.125 0.134 0.043 0.010 0.341 0.337 0.274 0.070
β221 0.015 0.007 0.012 0.010 0.178 0.285 0.229 0.123
β222 0.183 0.191 0.068 0.022 0.690 0.730 0.427 0.104
β311 0.004 0.006 0.002 0.003 0.069 0.071 0.055 0.054
β312 0.004 0.000 0.003 0.003 0.068 0.074 0.057 0.051
β321 0.009 0.011 0.007 0.006 0.090 0.096 0.065 0.065
β322 0.036 0.034 0.006 0.007 0.162 0.177 0.046 0.042
Irrelevant regressors
β113 - 0.004 0.001 - - 0.055 0.048 -
β123 - 0.002 0.000 - - 0.118 0.069 -
β213 - 0.174 0.031 - - 0.375 0.189 -
β223 - 0.073 0.014 - - 0.204 0.141 -
β313 - 0.029 0.022 - - 0.147 0.212 -
β323 - 0.107 0.078 - - 0.473 0.335 -
ε = 0.35
β111 0.047 0.079 0.009 0.002 0.145 0.152 0.190 0.106
β112 0.219 0.373 0.148 0.060 0.311 0.477 0.435 0.164
β121 0.069 0.036 0.012 0.021 0.250 0.278 0.396 0.133
β122 0.122 0.042 0.078 0.060 0.208 0.246 0.751 0.147
β211 0.012 0.034 0.045 0.015 0.204 0.254 0.245 0.200
β212 0.185 0.248 0.205 0.055 0.344 0.443 0.574 0.271
β221 0.018 0.010 0.008 0.002 0.233 0.325 0.303 0.196
β222 0.138 0.195 0.073 0.037 0.581 0.803 0.501 0.163
β311 0.001 0.018 0.002 0.000 0.068 0.158 0.063 0.061
β312 0.002 0.013 0.003 0.000 0.072 0.101 0.060 0.061
β321 0.014 0.031 0.008 0.008 0.073 0.134 0.069 0.066
β322 0.003 0.028 0.005 0.005 0.081 0.230 0.045 0.046
Irrelevant regressors
β113 - 0.010 0.002 - - 0.075 0.040 -
β123 - 0.056 0.013 - - 0.199 0.073 -
β213 - 0.333 0.223 - - 0.401 0.500 -
β223 - 0.149 0.020 - - 0.310 0.484 -
β313 - 0.128 0.138 - - 0.342 0.506 -
β323 - 0.108 0.029 - - 0.496 0.441 -
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Table 4.11: Bias and RMSE for the regression coefficients βkmp under the four types of models
in the third process (I = 1000).

Bias RMSE
SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW

ε = 0.55
β111 0.034 0.029 0.003 0.000 0.085 0.071 0.034 0.030
β112 0.119 0.168 0.017 0.002 0.256 0.345 0.114 0.046
β121 0.043 0.030 0.003 0.002 0.113 0.114 0.055 0.048
β122 0.060 0.015 0.005 0.002 0.153 0.107 0.077 0.068
β211 0.015 0.002 0.007 0.001 0.125 0.159 0.057 0.026
β212 0.121 0.144 0.012 0.001 0.317 0.349 0.096 0.035
β221 0.017 0.012 0.005 0.000 0.140 0.218 0.056 0.043
β222 0.182 0.137 0.027 0.014 0.589 0.603 0.093 0.062
β311 0.001 0.001 0.002 0.002 0.044 0.046 0.037 0.037
β312 0.009 0.010 0.008 0.006 0.042 0.048 0.033 0.032
β321 0.013 0.012 0.008 0.008 0.074 0.080 0.045 0.045
β322 0.006 0.007 0.001 0.002 0.076 0.080 0.035 0.033
Irrelevant regressors
β113 - 0.002 0.001 - - 0.037 0.033 -
β123 - 0.005 0.003 - - 0.085 0.043 -
β213 - 0.172 0.018 - - 0.343 0.126 -
β223 - 0.097 0.015 - - 0.205 0.094 -
β313 - 0.047 0.004 - - 0.126 0.057 -
β323 - 0.015 0.012 - - 0.273 0.089 -
ε = 0.35
β111 0.025 0.043 0.022 0.001 0.076 0.089 0.087 0.038
β112 0.173 0.307 0.099 0.014 0.245 0.395 0.270 0.099
β121 0.109 0.081 0.026 0.024 0.156 0.150 0.114 0.084
β122 0.117 0.043 0.002 0.015 0.159 0.137 0.128 0.093
β211 0.016 0.041 0.031 0.002 0.216 0.222 0.192 0.134
β212 0.247 0.286 0.096 0.015 0.368 0.417 0.253 0.095
β221 0.021 0.027 0.032 0.016 0.187 0.168 0.124 0.080
β222 0.212 0.181 0.020 0.006 0.659 0.669 0.413 0.080
β311 0.006 0.006 0.005 0.004 0.046 0.046 0.038 0.037
β312 0.010 0.011 0.009 0.005 0.044 0.044 0.038 0.036
β321 0.009 0.007 0.001 0.000 0.077 0.078 0.044 0.043
β322 0.002 0.001 0.005 0.001 0.078 0.080 0.038 0.033
Irrelevant regressors
β113 - 0.003 0.007 - - 0.032 0.062 -
β123 - 0.008 0.013 - - 0.079 0.050 -
β213 - 0.314 0.106 - - 0.371 0.248 -
β223 - 0.138 0.066 - - 0.268 0.190 -
β313 - 0.110 0.065 - - 0.239 0.175 -
β323 - 0.036 0.009 - - 0.266 0.113 -
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Table 4.12: Classification recovery of the fitted SuNCW, NCW, CNCW and SuCNCW models
with K = 3: average values (standard deviations) of the ARI index over 100 samples.

I Process ε SuNCW NCW CNCW SuCNCW
500 I 0.55 0.988 (0.009) 0.988 (0.009) 0.988 (0.009) 0.988 (0.009)

I 0.35 0.949 (0.017) 0.945 (0.037) 0.945 (0.037) 0.949 (0.018)
II 0.55 0.921 (0.089) 0.915 (0.093) 0.939 (0.078) 0.954 (0.039)
II 0.35 0.799 (0.119) 0.770 (0.123) 0.848 (0.112) 0.882 (0.077)
III 0.55 0.848 (0.141) 0.838 (0.146) 0.911 (0.085) 0.923 (0.060)
III 0.35 0.663 (0.108) 0.639 (0.095) 0.744 (0.131) 0.804 (0.108)

1000 I 0.55 0.988 (0.005) 0.988 (0.006) 0.988 (0.006) 0.988 (0.005)
I 0.35 0.954 (0.010) 0.953 (0.010) 0.953 (0.010) 0.954 (0.010)
II 0.55 0.938 (0.060) 0.935 (0.060) 0.962 (0.038) 0.966 (0.010)
II 0.35 0.805 (0.127) 0.781 (0.123) 0.858 (0.119) 0.892 (0.079)
III 0.55 0.855 (0.145) 0.850 (0.146) 0.930 (0.051) 0.938 (0.015)
III 0.35 0.678 (0.122) 0.665 (0.110) 0.804 (0.116) 0.845 (0.080)

Classification recovery

The study of the aspect (iii) has required an evaluation of the agreement between the partitions

of the sample units detected by the four types of models and the true partition. To this end,

the adjusted Rand index (ARI) (Hubert and Arabie, 1985) has been employed. Average values

and standard deviations of this index (over the 100 datasets) for the four model classes under

the three data generation processes by the examined levels of the two experimental factors are

reported in Table 4.12. When the analysed datasets do not contain atypical observations, the

classification recovery of all model classes is almost perfect with both levels of separation and

both sample sizes (ARI ≥ 0.945). The results obtained under the second and third processes

show that the classification recovery associated with the use of all models increases with the level

of separation between the second and third components for each value of I; it also increases with

the sample size for each value of ε. With datasets generated using these processes, SuCNCW

models are characterised by the greatest ability to properly estimate the true classification of

the sample observations for each examined level of the two experimental factors. The partitions

obtained from SuCNCW models also show a good agreement with the true partitions (0.804 ≤

ARI ≤ 0.966). Among the other three model classes, CNCW models outperforms both SuNCW

and NCW models. For these two latter models, the classification recovery appears to be markedly

lower, especially with the lowest level of separation (0.639 ≤ ARI ≤ 0.663 with I = 500,

0.665 ≤ ARI ≤ 0.678 with I = 1000).
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Trade-off between fit and complexity

In order to study the aspect (iv), for each dataset and each model class, the models of order

K̂IC have been selected, where IC denotes an information criterion (IC ∈ {BIC, ICL1, ICL2})

and K̂IC = arg max IC(K) for K ∈ {1, 2, 3, 4}. Then, for each information criterion and each

dataset, the four values of IC(K̂IC) associated with the four examined model classes have been

compared, and the model with the highest IC value has been selected as the most adequate fitted

model. Table 4.13 provides the frequency distribution of the models selected in this way by each

IC for each data generation process and each value of ε and I. As expected, SuNCW models

have almost always been selected as the most adequate for the analysis of uncontaminated

datasets. With datasets containing atypical observations generated through the second and

the third processes, best trade-off between fit and complexity is generally obtained by the fitted

SuCNCW models. Such results hold true regardless of the level of separation and the information

criterion employed to perform model selection.

Comparison among information criteria

Information on the aspect (v) has been obtained by evaluating the number of times each value of

K has been selected by each examined criterion. The obtained results are reported in Tables 4.14

and 4.15. When the analysed datasets do not contain atypical observations and the level of

separation between the second and third cluster is high (first process, ε = 0.55), the presence of

three clusters is (almost) always recognised by all the examined information criteria regardless

of the fitted model and the sample size (see the upper part of Tables 4.14 and 4.15). If the

level of separation is reduced (ε = 0.35), the ability of the BIC to correctly detect the presence

of three clusters remains good regardless of the fitted model only with the largest sample size.

When I = 500, the true order of the generated datasets is slightly underestimated by the BIC

when CNCW models are employed. With datasets generated using the first process, ICL1 and

ICL2 show a clear preference for K = 3 components regardless of the model type with both

values of ε but only when the sample size is I = 1000. Otherwise, the true value of K is almost

always properly estimated by these two criteria as long as models embedding the information on

the relevant regressors are fitted (e.g., SuNCW and SuCNCW). With the other two examined

models, the true number of clusters appears to be underestimated, and this is especially true of

CNCW models.

Under the second and third processes, when SuNCW and NCW models are fitted to the
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Table 4.13: Trade-off between fit and compexity: number of selections over 100 samples of
SuNCW, NCW, CNCW and SuCNCW models, based on the highest BIC, ICL1 and ICL2.

I IC Process ε SuNCW NCW CNCW SuCNCW
500 BIC I 0.55 100 0 0 0

I 0.35 100 0 0 0
II 0.55 0 1 1 98
II 0.35 1 2 2 95
III 0.55 2 1 1 96
III 0.35 0 0 8 92

ICL1 I 0.55 100 0 0 0
I 0.35 99 1 0 0
II 0.55 0 1 1 98
II 0.35 1 2 2 95
III 0.55 2 2 1 95
III 0.35 2 0 6 92

ICL2 I 0.55 99 1 0 0
I 0.35 99 1 0 1
II 0.55 0 0 2 98
II 0.35 0 2 3 95
III 0.55 2 2 1 95
III 0.35 2 0 7 91

1000 BIC I 0.55 100 0 0 0
I 0.35 100 0 0 0
II 0.55 0 0 0 100
II 0.35 3 1 4 92
III 0.55 0 0 1 99
III 0.35 0 0 8 92

ICL1 I 0.55 100 0 0 0
I 0.35 99 1 0 0
II 0.55 0 0 0 100
II 0.35 4 1 6 89
III 0.55 0 0 1 99
III 0.35 0 0 6 94

ICL2 I 0.55 100 0 0 0
I 0.35 98 2 0 0
II 0.55 0 0 0 100
II 0.35 3 1 7 89
III 0.55 0 0 1 99
III 0.35 1 1 6 92
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data, the BIC shows a tendency to select K = 4 (outliers are typically accommodated using

an additional cluster), regardless of the level of separation (see also Mazza and Punzo, 2020).

This tendency appears to be more evident when the sample size is large. ICL1 shows the same

behaviour in association with SuNCW models (for both levels of separation) and NCW models

(for ε = 0.55). On the contrary, with SuCNCW models, BIC and ICL1 correctly identify

three clusters for the majority of the simulated datasets, regardless of the sample size and the

degree of separation. When these two criteria are employed in the selection of CNCW models,

the true value of K is properly estimated provided that the degree of separation is high or the

sample size is large; otherwise, the order of CNCW models is generally underestimated. As far

as ICL2 is concerned, CNCW and SuCNCW models of order K = 3 are almost always selected

with ε = 0.55 regardless of the sample size; however, when the degree of separation is low,

the order of the CNCW models is generally underestimated. With SuNCW and NCW models,

ICL2 shows a clear tendency to overestimate the true K when the analysed datasets have a

large sample size. With I = 500 and ε = 0.35, SuNCW and NCW models of order K = 2 are

generally selected by using the ICL2. These latter results may depend on the penalty employed

by ICL2 (a function of the uncertainty of the estimated posterior probabilities ẑik), which is

the most severe and is also expected to be particularly large whenever the generated datasets

contain poorly separated clusters.

Classification recovery (without exploiting the knowledge of K)

In order to study the aspect (vi), for each generated dataset the ARI index has been computed

between the partitions of the sample units detected by the fitted models showing the highest

BIC value under each competing model class and the true partition. In general, the resulting

average values of the ARI index (see Table 4.16) are quite similar to the ones obtained by

exploiting the knowledge of the true K (see Table 4.12). Obviously, whenever the value of

K determined according to the BIC is equal to the true K, the ability to recover the true

classification coincides with the one evaluated in Section 4.3.2. Thus, in general, using the BIC

to estimate the value of K seems to have a negligible impact on the classification recovery of

SuCNCW models. The impact on the performance of the other three model types is more

evident, especially for SuNCW and NCW models. More specifically, in the presence of datasets

with contaminated observations generated according to the second and third processes, SuNCW

and NCW models of order K̂BIC show a slight increase in the ability to estimate the true
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Table 4.16: Classification recovery of the fitted SuNCW, NCW, CNCW and SuCNCW models
with the highest BIC: average values (standard deviations) of the ARI index over 100 samples.

I Process ε SuNCW NCW CNCW SuCNCW
500 I 0.55 0.987 (0.012) 0.987 (0.011) 0.987 (0.011) 0.987 (0.012)

I 0.35 0.945 (0.035) 0.932 (0.068) 0.891 (0.119) 0.940 (0.055)
II 0.55 0.891 (0.048) 0.890 (0.059) 0.952 (0.038) 0.957 (0.019)
II 0.35 0.805 (0.091) 0.767 (0.111) 0.791 (0.134) 0.886 (0.068)
III 0.55 0.870 (0.071) 0.868 (0.078) 0.921 (0.050) 0.923 (0.043)
III 0.35 0.749 (0.102) 0.682 (0.108) 0.711 (0.123) 0.803 (0.106)

1000 I 0.55 0.988 (0.005) 0.988 (0.006) 0.988 (0.006) 0.988 (0.005)
I 0.35 0.952 (0.015) 0.951 (0.015) 0.951 (0.146) 0.952 (0.015)
II 0.55 0.885 (0.034) 0.885 (0.034) 0.965 (0.011) 0.966 (0.010)
II 0.35 0.827 (0.077) 0.819 (0.085) 0.861 (0.109) 0.898 (0.061)
III 0.55 0.880 (0.021) 0.879 (0.023) 0.934 (0.037) 0.938 (0.016)
III 0.35 0.769 (0.102) 0.737 (0.122) 0.834 (0.083) 0.865 (0.032)

classification of the sample observations in comparison with the same models of order 3. A

possible explanation of this behaviour could be related to the fact that such models are not able

to properly account for contaminated observations; thus, according to the BIC, SuNCW and

NCW models of order 4 should be preferred.

4.4 Analysis of canned tuna sales

The tuna dataset (Chevalier et al., 2003), which is available in the R package bayesm (Rossi,

2012), contains information about the volume of weekly sales (Move) for seven of the top 10 U.S.

brands in the canned tuna product category for I = 338 weeks between September 1989 and May

1997. The same dataset also provides information about measures of the display activity (Nsale)

and log price (Lprice) of each brand in each week. The dependence of log sales (Lmove) on log

prices and promotional activites for some brands selected from this dataset has been already

studied through either clusterwise linear regression models or cluster-weighted models (see, e.g.,

Galimberti et al., 2016; Galimberti and Soffritti, 2020; Diani et al., 2022). Such studies showed

that the analysed dependencies are characterised by heterogeneity over time. They were also

able to highlight some weeks (from week no. 58 to weeks no. 73/74) in which the volume of

weekly sales for one brand (Bumble Bee) were affected by a worldwide boycott campaign because

that brand was found to be buying yellow-fin tuna caught by dolphin-unsafe techniques (Baird

and Quastel, 2011). In a recent research conducted on the brands Star Kist 6 oz. (SK) and

Bumble Bee Solid 6.12 oz. (BBS) through mixtures of contaminated linear regression models

with fixed covariates (Perrone and Soffritti, 2023), some atypical observations in the y-direction
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Table 4.17: Pearson’s correlation matrix (lower diagonal part) and p-values of the Student’s
t test (upper diagonal part) for the hypotheses of pairwise linear independence between six
variables from the tuna dataset.

Lmove SK Lmove BBS Nsale SK Lprice SK Nsale BBS Lprice BBS

Lmove SK 1.0000 0.0181 < 10−20 < 10−52 0.2267 0.4000
Lmove BBS −0.1285 1.0000 0.1575 0.4734 < 10−10 < 10−9

Nsale SK 0.4757 0.0771 1.0000 < 10−36 0.0174 0.3831
Lprice SK −0.7067 0.0391 −0.6139 1.0000 0.0043 0.3808
Nsale BBS 0.0659 0.3256 0.1293 −0.1550 1.0000 < 10−52

Lprice BBS −0.0459 −0.3172 −0.0476 0.0478 −0.7050 1.0000

were also detected.

In line with this latter study, the analysis illustrated here has been focused on the SK

and BBS products. More specifically, the following vectors of variables have been considered:

Y = (Y1 = Lmove SK, Y2 = Lmove BBS), X = (X1 = Nsale SK, X2 = Lprice SK, X3 = Nsale

BBS, X4 = Lprice BBS). Thus, M = 2 and P = 4. A preliminary evaluation of the pairwise

linear dependencies for such variables has been carried out (see Table 4.17). For each brand, log

sales result to be negatively correlated with the log prices (−0.7067 for SK, −0.3172 for BBS)

and positively correlated with the display activities (0.4757 for SK, 0.3256 for BBS). A negative

correlation also emerges between Nsale SK and Lprice SK (−0.6139) and between Nsale BBS

and Lprice BBS (−0.7050). Lower but significant (for α = 0.05) pairwise linear dependen-

cies characterise Lmove SK and Lmove BBS (−0.1285), Nsale SK and Nsale BBS (0.1293), and

Lprice SK and Nsale BBS (−0.1550).

The dataset containing the information about these six variables for the 338 weeks has been

analysed with NCW, CNCW, SuNCW and SuCNCW models of order K, with K ∈ {1, 2, . . . , 9}

and with each of the parameterisations illustrated in Section 4.2.7. NCW and CNCW models

have been fitted by assuming that prices and promotional activities for one product may also

have an impact on the sales of the other product; thus, X is the vector of the covariates employed

for the prediction of both responses. As far as the SuNCW and SuCNCW models are concerned,

the selection of the regressors to be employed in the linear predictors of Lmove SK and Lmove BBS

has been carried out by exploiting the results of an exhaustive search of the relevant regressors

for such responses reported in Perrone and Soffritti (2023). That search demonstrated that the

log unit sales of SK canned tuna should be regressed on the log prices and the promotional

activities of the same brand; as far as the BBS log sales are concerned, they should be regressed

on the log prices of both brands and the promotional activities of BBS. Thus, for the SuNCW
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Figure 4.1: Values of BIC, ICL1 and ICL2 for the best NCW, CNCW, SuNCW and SuCNCW
models by number of components in the analysis of tuna sales.

Table 4.18: Maximised log-likelihood `(ψ̂) and values of BIC, ICL1 and ICL2 for the best
models selected from the classes SuCNCW, SuNCW, CNCW and NCW in the analysis of tuna
sales.

Class K acr.X acr.Y `(ψ̂) nψ BIC ICL1 ICL2

SuCNCW 5 VEV EEE 1747.1 120 2795.5 2780.5 2754.2
SuNCW 5 VEV VEV 1624.0 108 2619.1 2608.9 2592.4
CNCW 5 VEV EVE 1790.4 139 2771.3 2762.8 2746.8
NCW 6 VEV EVE 1622.9 142 2419.0 2413.1 2401.0

and SuCNCW models, the two sub-vectors of X employed to define the design matrix are

X1 = (X1 = Nsale SK, X2 = Lprice SK) and X2 = (X2 = Lprice SK, X3 = Nsale BBS, X4 =

Lprice BBS). The overall number of fitted models from each of the four examined model classes

is 1577.

Figure 4.1 shows the values of BIC, ICL1 and ICL2 for the best fitted models from each

class by K. The best trade-off between the fit and the model complexity is reached by SuCNCW,

SuNCW, CNCW models with K = 5 and a NCW model with K = 6, regardless of the model

selection criterion. More detailed information about these models can be found in Table 4.18.

According to all model selection criteria, the overall best trade-off is reached by the SuCNCW

model with K = 5. The distributions of the four regressors in the five clusters of weeks detected

by this model are ellipsoidal with variable volumes and orientations and equal shape; as far as

the joint conditional distributions of the two responses given the corresponding regressors are

concerned, clusters are characterized by equal distribution, volume and shape. The convergence

of the ECM algorithm for the estimation of this model has been reached after 136 iterations.

The obtained estimates of π, α, η, τ , λ, µ and β∗ are reported in Table 4.19. By focusing the

attention on the estimated regression coefficients, it emerges that the effects of prices for either
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Table 4.19: Estimated π, α, η, τ , λ, µ and β∗ of the overall best model for the tuna dataset.

k 1 2 3 4 5
π̂k 0.090 0.151 0.151 0.260 0.348
α̂k 0.506 0.999 0.997 0.982 0.922
η̂k 6.942 1.001 1.172 11.213 10.853
τ̂k 0.999 0.999 0.611 0.900 0.865

λ̂k 1.001 1.001 9.714 132.726 116.684
µ̂k1 0.001 0.323 0.597 0.647 0.000
µ̂k2 −0.194 −0.229 −0.320 −0.281 − 0.141
µ̂k3 0.227 0.996 0.693 0.003 0.001
µ̂k4 0.547 0.500 0.497 0.572 0.566

β̂k10 8.801 8.506 8.547 8.620 8.804

β̂k11 15.194 0.345 0.031 0.225 −13.874

β̂k12 −1.563 −3.394 −3.850 −3.549 −2.378

β̂k20 9.550 9.868 11.136 8.581 9.032

β̂k21 −0.166 0.299 0.503 −0.041 0.541

β̂k22 −0.242 0.959 0.199 0.491 4.830

β̂k23 −3.061 −5.234 −6.009 −1.548 −2.105

Table 4.20: Sizes of the five clusters of weeks detected by the overall best model and their
within-cluster distributions into four categories, based on ûik and v̂ik.

Cluster k typical outlier bad leverage good leverage Cluster size
1 17 0 0 14 31
2 53 0 0 0 53
3 33 15 0 0 48
4 79 8 1 0 88
5 94 16 0 8 118

brands on the log unit sales of the same brand are negative within all the clusters detected by the

model. Shifting attention towards the estimates of µk, for k = 1, . . . , 5, the five clusters of weeks

show similar estimated mean values for Lprice BBS. However, from an overall inspection of these

estimates it also seems that both the joint distribution of prices and promotional activities and

the conditional distribution of tuna sales for both brands are affected by a source of unobserved

heterogeneity over time. Furthermore, the values of α̂k, η̂k, τ̂k and λ̂k, for k = 1, . . . , 5, seem

to suggest that the analysed dataset is also contaminated by the presence of leverage points (in

clusters 1, 4 and 5) and regression outliers (in clusters 3, 4 and 5).

Table 4.20 reports the sizes of the five clusters of weeks determined by the best fitted model

according to the rule of the maximum a posteriori probability; it also shows the within-cluster

sizes of the following four categories of weeks: typical observations (ûik ≥ 0.5 and v̂ik ≥ 0.5);

regression outliers (ûik < 0.5 and v̂ik ≥ 0.5); good leverage points (ûik ≥ 0.5 and v̂ik < 0.5); bad
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Figure 4.2: Scatterplots for pairs of variables from the analysis of tuna sales. Weeks are pictured
with five different colours and symbols according to the classification obtained from the best
model.
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Figure 4.3: Scatterplots of the estimated sample residuals yi− x̃∗i β̂
∗
k (k = 1, . . . , 5) for the weeks

assigned to the five clusters detected by the best model for the analysis of tuna sales. Black
circles and red triangles correspond to typical and outlying weeks, respectively. The green plus
denotes a bad leverage point.
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leverage points (ûik < 0.5 and v̂ik < 0.5). The first cluster detected by the best fitted model

contains 31 weeks (see the black circle in the scatterplots of Figure 4.2). Almost half of these

weeks have been classified as good leverage points (see the first row of Table 4.20). New Year

1992, Memorial Day 1993, New Year 1994, Halloween 1995 are the special events associated with

such weeks. As far as the possible presence of regression outliers in the distribution of Y|(X =

x, Gk) is concerned, all the weeks belonging to this cluster can be considered as typical. This

latter result is also evident from the estimated sample residuals yi − x̃∗i β̂
∗
1 for the weeks of this

cluster (see the scatterplot on the left in the upper panel of Figure 4.3). A further proof is given

by the low values of d̂2i1y (see the first column in Table 4.21). The estimated mean promotional

activities in this cluster are quite low, especially those for the SK brand. Furthermore, the

estimated effects of promotional activities on sales are positive (and particularly strong) for SK,

while they result to be negative and negligible for BBS (see the first column in Table 4.19).

Finally, promotional activities of SK tuna appear to be highly homogenous, as suggested by the

low estimated variance of Nsale SK for the weeks of this cluster (not reported here). The second

cluster, which is composed of 53 weeks (labelled using a red triangle point up in the scatterplot

of Figure 4.2), only contain typical observations (see the second row in Table 4.20). Similarly to

the previous cluster, the estimated sample residuals yi− x̃∗i β̂
∗
2 (see the scatterplot on the right in

the upper panel of Figure 4.3) and low values of d̂2i2y (see the second column in Table 4.21) prove

the absence of outlying weeks. Furthermore, this cluster is mainly characterized by the highest

estimated mean value of promotional activities for BBS tuna (column 2 in Table 4.19) and the

highest variance for Lprice BBS (not reported here). Cluster 3 comprises 48 weeks (green plus

in Figure 4.2). It is characterized by the absence of leverage points. However, 15 weeks of this

cluster have been classified as mild outliers (see the red triangles in the scatterplot on the left

in the central panel of Figure 4.3). They are mostly associated with holidays and special events

that took place between 1990 and 1992 (weeks close to Easter 1990; Labor Day 1990; weeks

close to Halloween 1990; weeks close to Labor Day 1991 and Halloween 1991; Christmas 1991;

President Days 1992; Easter 1992) or with the first period of the boycott campaign (weeks from

no. 58 to week no. 60). It is worth noting that, for these 15 weeks, the estimated Mahalanobis

squared distances d̂2i3y are clearly larger than those computed for the other weeks of the same

cluster (see the third column in Table 4.21). Overall, the weeks belonging to this cluster show

the lowest mean prices of both brands (see the third column in Table 4.19). Furthermore, the

estimated effect of promotional activities for SK tuna on the sales of the same brand is negligible.
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Table 4.21: Minimum and maximum values of the estimated squared Mahalanobis distances
d̂2iky within the five clusters of weeks, by the categories: typical observations/outliers.

k 1 2 3 4 5

Typical observations

min{d̂2iky} 0.01 0.01 0.03 0.01 0.01

max{d̂2iky} 0.47 11.26 5.97 10.85 11.73

Outliers

min{d̂2iky} - - 7.38 15.32 13.64

max{d̂2iky} - - 82.80 982.52 691.09

Finally, the weeks belonging to this cluster are characterised by the strongest effect of prices on

sales for both brands. As far as cluster 4 is concerned, it contains 88 weeks (dark blue cross in

Figure 4.2). 8 of these weeks have been classified as outliers (see the scatterplot on the right in

the central panel of Figure 4.3); two of them (weeks no. 71 and no. 72) belong to the period of

the boycott campaign. The last week from the period of the boycott campaign (week no. 74)

has been detected as a bad leverage (see the green plus in the fourth scatterplot of Figure 4.3).

Similarly to the previous cluster, the estimated Mahalanobis squared distances d̂2i4y for the 8

outlying weeks of this cluster result to be larger than those computed for the other weeks (see

Table 4.21). The main distinctive feature of cluster 4 is the highest estimated mean price of BBS

tuna and the highest estimated mean value of promotional activities for SK tuna. Furthermore,

promotional activities of BBS tuna are instead negligible (see Table 4.19). Finally, the 88 weeks

of this cluster are also characterized by highly homogeneous prices and promotional activities of

both brands. Cluster 5 is composed of 118 weeks (sky-blue diamond in Figure 4.2); 8 and 16 of

these weeks have been detected as good leverage points and outliers, respectively. The outlying

weeks of this cluster can also be easily identified from the scatterplot on the bottom part of

Figure 4.3); they also show the largest within-cluster Mahalanobis squared distances d̂2i5y (see

Table 4.21). 10 of these 16 outlying weeks correspond with the central period of the boycott

campaign (weeks from no. 61 to no. 70). The 118 weeks of this cluster are characterised by the

lowest estimated mean values of the promotional activities for both brands. Furthermore, they

also show a quite high estimated mean price of BBS tuna. Finally, the effects of promotional

activities on sales are negative (and particularly strong) for SK and positive for BBS.
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4.5 Conclusions

The SuCNCW models introduced here allow to perform robust clustering in multivariate linear

regression analysis with correlated responses and random regressors for datasets characterised

by unobserved heterogeneity and mildly atypical observations. They can also be employed to

identify outliers and leverage points within each detected cluster. The main novelty of these

models in reference with the ones introduced by Punzo and McNicholas (2017) is that a different

vector of regressors is considered for each response. Thanks to this feature, the data analyst is

enabled to convey prior information concerning the absence of certain regressors from the linear

term employed in the prediction of a certain response in any application in which different

regressors are expected to be relevant in the prediction of different responses. SuCNCW models

with a reduced number of variance-covariance parameters have also been specified; they can be

more effectively employed when the analysis involves either many responses or many regressors.

Furthermore, since SuCNCW models encompass other normal mixture-based linear regression

models with random regressors (Dang et al., 2017; Punzo and McNicholas, 2017; Diani et al.,

2022), they represent a flexible approach for simultaneous robust clustering and detection of

mildly atypical observations in linear regression analysis. Monte Carlo studies have shown

that either the inclusion of irrelevant regressors in a cluster-weighted model or the presence of

mildly atypical observations in the data can negatively affect the reconstruction of both the true

classification and true parameter values, especially when the clusters of observations are not

well-separated. Furthermore, they can have a negative impact on the choice of the order K of

a CW model. The obtained results have demonstrated that such difficulties can be managed by

resorting to SuCNCW models. In practical applications in which the regressors to be considered

in the linear predictor of each response have to be determined from the data, an approach based

on a joint use of SuCNCW models and techniques for variable selection (e.g., genetic algorithms,

stepwise strategies) can also allow to identify the relevant predictors for each regression equation.

A disadvantage of using an ECM algorithm to perform ML estimation of SuCNCW models is

that it does not provide a direct assessment of the sample variability of the ML estimates. To

this end, approaches commonly employed under finite mixture models could be employed (see,

e.g., McLachlan and Peel, 2000). This aspect represents an avenue of future research.
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4.6 Data availability

• The real-world data supporting the findings of this study reported in Section 4.4 are openly

available in the R package bayesm (Rossi, 2012).
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Chapter 5

A study on housing tension in the

municipalities of the

Emilia-Romagna region1

1The results of this chapter will be summarized in a scientific paper to be submitted for publication.
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Abstract

Housing deprivation in Italy is a complex phenomenon that has been widely studied and dis-

cussed by several researchers in the last years. The general economic situation has worsened

and with it the housing instability of low-income households have grown dramatically. Housing

policies in support of marginalised groups of families have been also relatively weak. In such

context, strategies and social housing programs appear to be urgent. As far as the case of

Emilia-Romagna region is concerned, since 2001 a regional observatory of the housing system

has been established in order to monitor housing conditions. Thanks to an implementation

agreement between the region and the Department of Statistical Science of the University of

Bologna, a study of housing deprivation in the municipalities of the Emilia-Romagna region has

been carried out in order to provide a cognitive support for developing strategies and planning

tools or for implementing actions that are oriented to address the housing issue. This chapter

summarises the main results of this study. In particular, the dependence of housing tension in

the municipalities of the Emilia-Romagna region on several indicators coming from a dataset

created by the region has been evaluated through Mixtures of Contaminated Seemingly Gaussian

regressions (MCSG) models and other clusterwise linear regression models. Furthermore, a new

class of MCSG models is introduced here so as to allow the mixing weights to be expressed as a

function of some concomitant variables. To select the relevant indicators to be employed for the

explanation of the housing tension, a genetic algorithm and a backward elimination technique

have been exploited.

Keywords: Emilia-Romagna region, Genetic algorithm, Housing tension, Mild outlier, Mixture

of regression models, Model-based cluster analysis, Seemingly unrelated regression
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5.1 Introduction

The last decades have been characterized by profound environmental changes, economic crises

and an intensification of migration flows. All these factors, together with the recent Covid-19

pandemic, have contributed to worsening the level of social and spatial fragmentation of the

cities. Consequently, also the living conditions of the social groups with lower incomes have

deteriorated, contributing to increase both the population living below the poverty line and the

differences between income groups. As far as the field of housing is concerned, the decline in

social housing policies together with the aggravating residential segregation have contributed

to make up access to housing increasingly difficult. For these reasons, many researchers have

focused their attention on the study of public housing policies in order to understand contem-

porary housing dynamics and to identify the main determining characteristics of the housing

deprivation phenomenon. This is also the case of Italy. On the one hand, the housing deprivation

is still today a problem that concerns all the regions, provinces and municipalities. On the other

hand, urban policies result to be insufficient compared to the housing needs. To cope with this

situation, it results to be necessary to planning and developing strategies able to find solutions

for the housing issue. The focus of this chapter is the Emilia-Romagna region and, in particular,

the study on housing tension in its municipalities. Since 2001, this region has established the

Regional Observatory of the housing system (ORSA) with the regional law n. 24 of 8 August

2001, which aims to evaluate data on housing conditions, allowing for a better assessment of

both household conditions and the effectiveness of housing policies. Furthermore, the challenge

of ORSA is to analyse housing needs, monitor and evaluate interventions and programs in the

housing sector and to support the elaboration of housing policies, in particular, and of welfare,

in general. To better understand the phenomenon, the sharing of the data to external public

and private entities that are able to contribute to the activity of the Regional Observatory is also

appreciated. In thix context, research activities have been carried out within an implementation

agreement between the Emilia-Romagna region and the Department of Statistical Sciences of the

University of Bologna. Based on data provided by the region, Mixtures of Seemingly Unrelated

Contaminated Normal Regression Model (MCSG) (Perrone and Soffritti, 2023) and mixtures of

seemingly unrelated Gaussian (MSG) regressions models (Galimberti and Soffritti, 2020) have

been employed to study the effects of certain factors pertaining to three different areas (social

demography, social life/income conditions, housing supply and market) on housing tension in
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328 municipalities of the Emilia-Romagna region, by simultaneously allowing for the detection

of latent clusters of municipalities induced by some source of unobserved heterogeneity. In order

to ensure additional flexibility, new mixtures of seemingly unrelated contaminated normal linear

regressions models with concomitant variables (cMCSG) and mixtures of seemingly unrelated

Gaussian regressions models with concomitant variables (cMSG) are introduced here. With

these new models, prior probabilities of belonging to latent clusters are assumed to depend on

some concomitant covariates. In order to select the relevant predictors of housing tension in

MCSG, MSG, cMCSG and cMSG models, a genetic algorithm and a backward elimination tech-

nique have been employed.

The chapter is organised as follows. Section 5.2 provides a summary of housing deprivation in

Italy. A general introduction of the administrative situation in the Emilia-Romagna region is

reported in Section 5.3. Section 5.4 provides details on the indicators and the variables of the

analysed dataset. The specific aims of the study are reported in Section 5.5. A summary of the

methods employed in the analyses is given in Section 5.6, together with the introduction of the

cMCSG and cMSG model classes. The main results are presented in Section 5.7. Finally, in

Section 5.8, some conclusions and remarks are discussed.

5.2 Housing deprivation in Italy

In the last two decades, the phenomenon of housing deprivation in Italy has been widely studied

and discussed by several researchers. Housing problems, in fact, have increased dramatically in

recents years due to several transformations of contemporary society, migrant flows, economic

crises and, finally, Covid-19 pandemic. Furthermore, until the 1990s, the local jurisdictions

have marginalized housing problems, contributing to increase the mismatch between the income

groups. According to some researchers, the incorrect assessment of the severity of such problems

has been due to the common thought that housing tension concerns only the most disadvantaged

population bracket (renter households, foreigners, elderly people) and not also the middle class

(Bonafede, 2021). In general, housing problems have led to the overcoming of the family in the

traditional sense and the birth of new forms of family organization (single-parent families, sin-

gle people, couples without children, etc.). The housing tension phenomenon has been usually

focused on three main dimensions (Townsend, 1979): housing inadequacy (structural deficiency

or a lack of housing facilities, Kutty (1999)), overcrowding (insufficient space in relation to the
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number of users, Gray and Campbell (2001)) and unaffordability (the pressure on households

because housing costs (rent or mortgage) take up too large a proportion of the household in-

come, Hancock (1993)). The distribution of housing deprivation on the Italian territory, instead,

appears to be more pronounced in municipalities that are densely populated; thus, housing de-

privation seems to be more widespread in the North-West and in the South of Italy. For this

reason, in order to provide a cognitive support for developing strategies and planning tools for

the municipalities with a critical situation in terms of housing problems, some classifications of

municipalities have been specified. In particular, since 2003, the Inter-ministerial Committee for

Economic Programming (Comitato Interministeriale per la Programmazione Economica, CIPE)

has identified some municipalities as having High Housing Tension2 (Alta Tensione Abitativa,

ATA) based on demographic growth thresholds in order to stipulate special agreements. How-

ever, this criterion has appeared to be inadequate because it does not take into account the

territorial changes of the last years. For this reason, in 2016, the Italian Conference of Regions

and Autonomous Provinces proposed a revision of the thresholds for identifying ATA munici-

palities in order to integrate the previous criterion with an indicator of the housing problem3.

On the other hand, ISTAT (National Institute of Statistics, Istituto Nazionale di Statistica) has

introduced another classification of the Italian municipalities which defines some municipalities

as having High Housing Density (Alta Densità Abitativa, ADA) depending on their demographic

size. In particular, a municipality is defined as ADA if it has a number of inhabitants greater

than 10,000. Furthermore, municipalities can also be classified according to their geographic

location. In particular, based on the administrative reform evolved in 1999 with the national

law 265/99, it is also possible to identify mountain municipalities. This definition is primarily

intended for local public administrations located in mountainous or partially mountainous area.

Since 2014, a new strategy (National Strategy for Inner Areas, NSIA) has been established for

every region of Italy in order to contribute to their economic and social recovery by creating

jobs, fostering social inclusion and cutting the costs of regional depopulation. Specifically, the

strategy approved for 2014-2020 defines the ”inner areas” as areas at some considerable distance

(in terms of time) from a selected municipality to the nearest hubs (Poles - main centres) which

provide essential services (education, health and mobility) (Ministry of Economic Development,

2014). The wider this distance, the greater its periphery. In particular, the inner areas plan

classified municipalities into Intermediate (I), Peripheral (P) and Ultraperipheral (UP) areas.

2https://www.mit.gov.it/normativa/decreto-ministeriale-del-13112003
3see Regioni.it 2884 of 18 February 2016
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Table 5.1: Joint frequency distribution of the municipalities classified as ADA and ATA in the
ERR.

ATA
ADA Yes No Tot.

Yes 38 63 101

No 1 228 229

Tot. 39 291 330

Specifically, intermediate areas are those whose distance is between 20 and 40 min., peripheral

areas are between 40 and 75 min. and ultra-peripheral areas are greater than 75 min. Moreover,

this strategy also introduces an Urban Belts (UB) classification for the municipalities far less

than 20 min. from the nearest Pole (Barca et al., 2014; Moretto et al., 2021).

In this context, the Italian Public Residential Building (Edilizia Residenziale Pubblica - ERP)

endowment aims to help the economically weakest social groups, by encompassing various types

of building interventions. However, the latter policy is completely insufficient, safeguarding

only some parts of the population. Furthermore, in addition to ERP endowment, a national

fund was established in 1998 to support access to rental housing. Although both policies are

capable to limit the housing tension problems, their effectiveness is not fully satisfactory. For

these reasons, some Italian regions have invested in strategies and social housing programs in

order to improve the housing condition of the low-income households. This is also the case of

the Emilia-Romagna region, where for several years the Regional Observatory of the housing

system (Osservatorio regionale del sistema abitativo - ORSA4, art. 16 of Regional Law 24/2001)

has been established in order to continuously ascertain housing needs, support the development

of housing policies, monitor their effectiveness and, more generally, acquire, collect, process,

disseminate and evaluate data on housing conditions and activities in the building sector. In

particular, the Observatory has the task of collecting and processing information regarding: local

information flows on housing needs, public intervention in the housing sector, the cyclical and

structural surveys on housing scenarios, the verification and monitoring of the implementation

of the programmes and the methods of using the existing building stock. Housing problems are

often nothing more than a lack of disposable income compared to the needs of the family or

a lack of accommodation. In all these circumstances, it is important for the Emilia-Romagna

regional government to intervene with suitable public housing policies.

4https://territorio.regione.emilia-romagna.it/osservatorio-delle-politiche-abitative/fabbisogno-abitativo
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Figure 5.1: Map of the ATA and ADA municipalities in the ERR.

5.3 The Emilia-Romagna Region (ERR)

For administrative purposes, the 20 Italian regions are divided into provinces and municipalities.

As far as the Emilia-Romagna Region (in the north-east of Italy) is concerned, it covers an

area of 22,510 square kilometers (sq km) for a population of 4.459 million distributed among

nine provinces5. In particular, these latter provinces of the ERR are (in brackets the province

acronym and the number of municipalities for each province): Bologna (BO, 55), Forl̀ı-Cesena

(FC, 30), Ferrara (FE, 21), Modena (MO, 47), Piacenza (PC, 46), Parma (PR, 44), Ravenna

(RA, 18), Reggio Emilia (RE, 42) and Rimini (RN, 25). Thus, the total current number of the

ERR municipalities is 330. As far as the housing tension in the ERR is concerned, it appears

to be characterized by heterogeneity among the municipalities of the provinces. Thus, based

on the above mentioned classifications, also local public administrations of the ERR have been

classified as having High Housing Tension and High Housing Density. Figure 5.1 shows the map

of the municipalities based on ADA and ATA classifications. In particular, municipalities that

have been classified both as ADA and ATA have been colored in green, the ADA municipalities

are in blue, municipalities that are neither ADA nor ATA in red and, finally, in yellow the

unique municipality characterized both by a number of inhabitants lower than 10,000 and an

High Housing Tension. Table 5.1 shows the joint frequency distribution of the municipalities

classified as ADA and ATA. The majority of the ERR municipalities are classified as not ADA

nor ATA, while 11.5% have both high housing tension and high housing density. Classification

5Regione Emilia-Romagna Statistica. Available online: https://statistica.regione.emilia-romagna.it/)
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details of the ATA, ADA and mountain municipalities in the ERR by province have been reported

in Table 5.2. From the latter table, it emerges that the municipalities classified as ATA are also

classified as ADA municipalities. This is true for each province except Modena, where the

municipality of Campogalliano is characterized by High Housing Tension but is a municipality

with 8605 inhabitants (2020) (see the municipality in yellow in Figure 5.1). Table 5.3 shows

the list of municipalities for each province classified according to the NSIA criterion. Finally,

Table 5.4 shows details about the number of municipalities classified as ADA, ATA, Mountains

and in one of the five categories of NSIA for the nine Emilia-Romagna provinces.

5.4 Dataset

The dataset has been created by the ERR region and is composed by data from different sources.

It refers to the municipalities of the ERR and provides information about several quantitative

variables defined in 2020 by the ERR in collaboration with ART-ER6, within the document

”Regional Observatory of housing system and related activities”7 (Osservatorio Regionale del

Sistema Abitativo e attività connesse). From 17 June 2021, two municipalities from the Marche

region, Montecopiolo and Sassofeltrio, have been aggregated to the ERR8. Thus, since the

information assets contained in the dataset cover the period from 2016 to 2020, only the other

J =328 municipalities have been considered in this research. As far as the variables are concerned,

they have been divided into three macro-areas (named also pillars or fields). Then, a multitude

of aspects have been taken into consideration within each pillar. In particular, six Socio -

Demographic (SD) indicators, five Social Life and Income Condition (SLIC) indicators and

nine Housing Supply and Housing Market conditions indicators (HSHM) have been considered

(Table 5.5). They have been chosen because they are closely related with housing tension and,

therefore, could play an important role in its explanation. Moreover, some of these indicators

may be expected to have a direct (+) or inverse (−) effect on housing tension; in fact, as

an indicator increases, the housing tension can be expected also to increase (direct effect) or

decrease (inverse effect) (see the first column of Table 5.5 - the absence of the ”+” and ”−”

signs means that there is no any expectation for the effect on housing tension). Furthermore,

6Attractiveness Research Territory (ART) is the Emilia-Romagna (ER) Joint Stock Consortium born with the
purpose of fostering the region’s sustainable growth by developing innovation and knowledge, attractiveness and
internationalisation of the territory. https://www.art-er.it/

7https://territorio.regione.emilia-romagna.it/osservatorio-delle-politiche-abitative/misure-di-sostegno-alle-
famiglie/politiche-erp-regionali-e-locali/orsa verso un sistema informativo politiche abitative 2020.pdf

8Law No. 84 of 28 May 2021 published in the Official Gazette n.142 of 16/06/2021



136 A study on housing tension in the municipalities of the Emilia-Romagna region

T
ab

le
5
.2:

L
ist

of
A

T
A

,
A

D
A

an
d

m
ou

n
tain

s
m

u
n

icip
alities

in
th

e
E

R
R

.

P
ro

v
in

c
e
s

A
T

A
A

D
A

M
o
u

n
ta

in
s

B
olo

gn
a

A
n
zola

d
ell’E

m
ilia

-
B

olo
g
n
a

-
C

a
ld

era
ra

d
i

R
en

o
A

n
zola

d
ell’E

m
ilia

-
B

ologn
a

-
B

u
d
rio

A
lto

R
en

o
T

erm
e

-
B

o
rgo

T
o
ssign

an
o

-
C

a
m

u
gn

a
n
o

C
a
salecch

io
d
i

R
en

o
-

C
astel

M
a
g
giore

-
C

asten
aso

C
ald

erara
d
i

R
en

o
-

C
asalecch

io
d
i

R
en

o
-

C
astel

M
aggiore

C
asalfi

u
m

an
ese

-
C

astel
d
’A

ian
o

-
C

astel
d
el

R
io

G
ran

a
ro

lo
d
ell’E

m
ilia

-
Im

ola
-

P
ian

oro
C

astel
S
an

P
ietro

T
erm

e
-

C
asten

aso
-

C
revalcore

C
astel

d
i

C
asio

-
C

astig
lion

e
d
ei

P
ep

oli
-

F
o
n
tan

elice
S
a
n

L
azza

ro
d
i

S
aven

a
-

S
a
sso

M
a
rco

n
i

-
Z

ola
P

red
osa

G
ran

arolo
d
ell’E

m
ilia

-
Im

ola
-

M
ed

icin
a

G
aggio

M
on

tan
o

-
G

rizzan
a

M
ora

n
d
i

-
L

izzan
o

in
B

elved
ere

M
olin

ella
-

M
on

te
S
an

P
ietro

-
O

zzan
o

d
ell’E

m
ilia

L
oian

o
-

M
arza

b
otto

-
M

o
n
gh

id
oro

P
ian

oro
-

S
an

G
iovan

n
i

in
P

ersiceto
-

S
an

L
azzaro

d
i

S
aven

a
M

on
te

S
a
n

P
ietro

-
M

o
n
teren

zio
-

M
on

zu
n
o

S
an

P
ietro

in
C

asale
-

S
asso

M
arcon

i
-

V
alsam

oggia
P

ian
oro

-
S
an

B
en

ed
etto

V
al

d
i

S
am

b
ro

-
S
asso

M
arcon

i
Z

ola
P

ed
rosa

V
a
lsam

o
ggia

-
V

ergato

F
o
rl̀ı-C

esen
a

C
esen

a
-

C
esen

atico
-

F
orl̀ı

B
ertin

oro
-

C
esen

a
-

C
esen

atico
B

agn
o

d
i

R
om

agn
a

-
B

orgh
i

-
C

iv
itella

d
i

R
o
m

agn
a

F
orl̀ı

-
F

orlim
p

op
oli

-
G

am
b

ettola
D

ova
d
ola

-
G

a
leata

-
M

eld
ola

S
an

M
au

ro
P

ascoli
-

S
av

ign
an

o
su

l
R

u
b
icon

e
M

ercato
S
aracen

o
-

P
ortico

e
S
a
n

B
en

ed
etto

-
P

red
ap

p
io

P
rem

ilcu
o
re

-
R

o
cca

S
an

C
ascian

o
-

R
on

co
fred

d
o

S
an

ta
S
ofi

a
-

S
arsin

a
-

S
oglian

o
al

R
u
b
ico

n
e

T
red

ozio
-

V
ergh

ereto

F
errara

C
en

to
-

F
erra

ra
A

rgen
ta

-
B

on
d
en

o
-

C
en

to
-

C
o
d
igoro

C
om

acch
io

-
C

op
p
aro

-
F

errara
P

ortom
aggiore

-
T

erre
d
el

R
en

o

M
o
d
en

a
C

am
p

o
g
allia

n
o

-
C

arp
i

B
om

p
orto

-
C

arp
i

-
C

astelfran
co

E
m

ilia
F

an
a
n
o

-
F

iu
m

alb
o

-
F

ra
ssin

oro
C

a
stelfra

n
co

E
m

ilia
-

F
orm

igin
e

C
asteln

u
ovo

R
an

gon
e

-
C

astelv
etro

d
i

M
o
d
en

a
G

u
iglia

-
L

am
a

M
o
cogn

o
-

M
aran

o
su

l
P

an
a
ro

M
o
d
en

a
-

S
a
ssu

o
lo

F
in

ale
E

m
ilia

-
F

ioran
o

M
o
d
en

ese
-

F
orm

igin
e

M
on

tecreto
-

M
on

tefi
orin

o
-

M
o
n
tese

M
aran

ello
-

M
iran

d
ola

-
M

o
d
en

a
-

N
on

an
tola

P
alagan

o
-

P
av

u
llo

n
el

F
rign

an
o

-
P

ievep
elag

o
N

ov
i

d
i

M
o
d
en

a
-

P
av

u
llo

n
el

F
rign

an
o

P
olin

ago
-

P
rign

a
n
o

su
lla

S
ecch

ia
-

R
iolu

n
ato

S
an

F
elice

su
l

P
an

aro
-

S
assu

olo
-

S
oliera

S
erram

a
zzon

i
-

S
estola

-
Z

o
cca

S
p
ilam

b
erto

-
V

ign
ola

P
iacen

za
F

io
ren

zu
o
la

d
’A

rd
a

–
P

iacen
za

C
astel

S
an

G
iovan

n
i

-
F

ioren
zu

ola
d
’A

rd
a

A
lta

V
al

T
id

on
e

-
B

ettola
-

B
ob

b
io

P
iacen

za
-

R
ottofren

o
C

erign
ale

-
C

oli
-

C
orte

B
ru

gn
atella

F
a
rin

i
-

F
erriere

-
G

rop
p
a
rello

M
orfasso

-
O

tton
e

-
P

iozza
n
o

T
ravo

-
V

ern
asca

-
Z

erb
a

P
a
rm

a
F

id
en

za
–

P
arm

a
C

ollecch
io

-
F

id
en

za
-

L
an

gh
iran

o
A

lb
areto

-
B

ard
i

-
B

ed
on

ia
M

ed
esan

o
-

M
on

tech
iaru

golo
-

N
o
ceto

B
erceto

-
B

o
re

-
B

orgo
V

al
d
i

T
aro

P
arm

a
-

S
alsom

aggiore
T

erm
e

C
a
lestan

o
S
orb

olo
M

ezzan
i

R
aven

n
a

F
a
en

za
-

L
u
g
o

–
R

aven
n
a

A
lfon

sin
e

-
B

agn
acavallo

-
C

erv
ia

B
risigh

ella
-

C
asola

V
a
lsen

io
-

R
iolo

T
erm

e
F

aen
za

-
L

u
go

-
M

assa
L

om
b
ard

a
R

aven
n
a

-
R

u
ssi

R
eg

g
io

E
m

ilia
C

asa
lg

ran
d
e

-
C

o
rreggio

B
ib

b
ian

o
-

C
ad

elb
osco

d
i

S
op

ra
-

C
asalgran

d
e

B
a
iso

-
C

an
ossa

-
C

arp
in

eti
M

on
tecch

io
E

m
ilia

-
R

eggio
n
ell’E

m
ilia

C
astellaran

o
-

C
asteln

ovo
n
e’

M
on

ti
-

C
orreggio

C
asin

a
-

C
asteln

ovo
n
e’

M
on

ti
-

T
oan

o
R

u
b
iera

-
S
ca

n
d
ian

o
G

u
astalla

-
M

on
tecch

io
E

m
ilia

-
N

ov
ellara

V
en

tasso
-

V
etto

-
V

ian
o

-
V

illa
M

in
ozzo

Q
u
attro

C
astella

-
R

eggio
n
ell’E

m
ilia

-
R

u
b
iera

S
an

t’Ilario
d
’E

n
za

-
S
can

d
ian

o

R
im

in
i

C
attolica

-
R

iccion
e

–
R

im
in

i
B

ellaria
Igea

M
arin

a
-

C
attolica

-
C

orian
o

C
asteld

elci
-

M
aiolo

-
N

ovafeltria
M

isan
o

A
d
riatico

-
R

iccion
e

-
R

im
in

i
P

en
n
ab

illi
-

P
o
ggio

T
orrian

a
-

S
an

L
eo

S
an

tarcan
gelo

d
i

R
om

agn
a

-
V

eru
cch

io
S
an

t’A
gata

F
eltria

-
T

alam
ello

-
V

eru
cch

io



5.4 Dataset 137

T
ab

le
5.

3:
L

is
t

of
m

u
n

ic
ip

a
li

ti
es

in
th

e
E

R
R

b
as

ed
o
n

th
e

fi
ve

N
S

IA
cl

as
si

fi
ca

ti
on

(U
rb

an
B

el
ts

(U
B

),
In

te
rm

ed
ia

te
(I

),
P

ol
es

(P
O

),
P

er
ip

h
er

al
(P

)
a
n

d
U

lt
ra

-P
er

ip
h

er
al

(U
P

))
.

P
ro

v
in

c
e
s

U
B

I
P

O
P

U
P

B
ol

og
n

a
A

n
zo

la
d

el
l’

E
m

il
ia

-
A

rg
el

a
to

-
B

or
go

T
o
ss

ig
n

a
n

o
B

a
ri

ce
ll

a
-

B
en

ti
vo

g
li

o
-

B
u

d
ri

o
B

o
lo

gn
a

-
Im

o
la

A
lt

o
R

en
o

T
er

m
e

-
C

am
u

gn
a
n

o
C

as
te

l
d

’A
ia

n
o

C
al

d
er

ar
a

d
i

R
en

o
-

C
as

al
ec

ch
io

d
i

R
en

o
C

a
st

el
d
el

R
io

-
C

as
te

ll
o

d
’A

rg
il

e
-

C
re

va
lc

o
re

C
as

te
l

d
i

C
as

io
-

C
as

ti
gl

io
n

e
d

ei
P

ep
ol

i
C

as
a
lfi

u
m

an
es

e
-

C
a
st

el
G

u
el

fo
d

i
B

ol
o
gn

a
G

a
ll
ie

ra
-

M
a
rz

a
b

ot
to

-
M

in
er

b
io

G
a
gg

io
M

on
ta

n
o

-
G

ri
zz

an
a

M
or

an
d

i
C

as
te

l
M

ag
gi

o
re

-
C

as
te

l
S
an

P
ie

tr
o

T
er

m
e

M
o
li

n
el

la
-

M
o
n

zu
n

o
-

O
zz

an
o

d
el

l’
E

m
il

ia
L

iz
za

n
o

in
B

el
ve

d
er

e
-

L
oi

an
o

C
as

te
n

as
o

-
D

o
zz

a
-

F
on

ta
n

el
ic

e
P

ia
n

o
ro

-
P

ie
ve

d
i

C
en

to
-

S
a
la

B
ol

o
gn

es
e

M
o
n

gh
id

or
o

-
M

on
te

re
n

zi
o

G
ra

n
ar

ol
o

d
el

l’
E

m
il

ia
-

M
a
la

lb
er

go
-

M
ed

ic
in

a
S

an
G

io
rg

io
d

i
P

ia
n

o
-

S
a
n

G
io

va
n

n
i

in
P

er
si

ce
to

S
an

B
en

ed
et

to
V

al
d

i
S

am
b

ro
M

on
te

S
an

P
ie

tr
o

-
M

o
rd

an
o

S
a
n

P
ie

tr
o

in
C

a
sa

le
-

S
a
n
t’

A
g
at

a
B

ol
og

n
es

e
V

er
ga

to
S

an
L

az
za

ro
d

i
S

av
en

a
-

S
a
ss

o
M

ar
co

n
i

V
a
ls

am
o
gg

ia
Z

ol
a

P
ed

ro
sa

F
or

l̀ı
-C

es
en

a
B

er
ti

n
or

o
-

C
as

tr
o
ca

ro
T

er
m

e
e

T
er

ra
d

el
S

o
le

B
a
g
n

o
d

i
R

o
m

a
g
n

a
-

B
o
rg

h
i

C
es

en
a

-
F

o
rl̀

ı
P

re
m

il
cu

or
e

-
S

an
ta

S
ofi

a
C

es
en

at
ic

o
-

D
ov

ad
ol

a
-

F
or

li
m

p
op

ol
i

C
iv

it
el

la
d
i

R
o
m

ag
n

a
-

G
al

ea
ta

V
er

gh
er

et
o

G
a
m

b
et

to
la

-
G

a
tt

eo
-

L
on

gi
a
n

o
P

o
rt

ic
o

e
S

a
n

B
en

ed
et

to
M

el
d

ol
a

-
M

er
ca

to
S

ar
ac

en
o

-
M

o
d

ig
li

an
a

R
o
cc

a
S

a
n

C
a
sc

ia
n

o
M

on
ti

an
o

-
P

re
d

ap
p

io
-

R
on

co
fr

ed
d

o
S

o
g
li

a
n

o
a
l

R
u

b
ic

o
n

e
S

an
M

au
ro

P
as

co
li

-
S

ar
si

n
a

T
re

d
o
zi

o
S

av
ig

n
a
n

o
su

l
R

u
b

ic
on

e
F

er
ra

ra
A

rg
en

ta
-

M
a
si

T
o
re

ll
o

B
o
n

d
en

o
-

C
o
m

a
cc

h
io

-
C

o
p

p
ar

o
F

er
ra

ra
C

en
to

-
C

o
d

ig
or

o
P

og
gi

o
R

en
a
ti

co
-

V
ig

a
ra

n
o

M
ai

n
a
rd

a
F

is
ca

g
li

a
-

J
ol

a
n

d
a

d
i

S
av

oi
a

G
or

o
-

L
ag

os
an

to
V

og
h

ie
ra

O
st

el
la

to
-

P
o
rt

o
m

a
g
g
io

re
M

es
ol

a
R

iv
a

d
el

P
o

-
T

er
re

d
el

R
en

o
T

re
si

g
n

a
n

a
M

o
d

en
a

B
as

ti
gl

ia
-

B
o
m

p
o
rt

o
-

C
am

p
o
g
a
ll
ia

n
o

C
am

p
os

a
n
to

-
C

a
st

el
fr

a
n

co
E

m
il

ia
C

ar
p

i
-

M
o
d

en
a

G
u

ig
li

a
-

M
ar

an
o

su
l

P
an

ar
o

F
an

an
o

-
F

iu
m

al
b

o
C

as
te

ln
u

ov
o

R
an

g
on

e
-

C
av

ez
zo

C
a
st

el
ve

tr
o

d
i

M
o
d

en
a

-
F

in
al

e
E

m
il

ia
M

on
te

fi
or

in
o

F
ra

ss
in

or
o

-
L

am
a

M
o
co

g
n

o
C

on
co

rd
ia

su
ll

a
S

ec
ch

ia
M

ed
o
ll

a
-

M
ir

a
n

d
o
la

P
av

u
ll

o
n

el
F

ri
gn

an
o

M
on

te
cr

et
o

-
M

o
n
te

se
-

P
al

ag
a
n

o
F

io
ra

n
o

M
o
d

en
es

e
-

F
o
rm

ig
in

e
R

av
ar

in
o

-
S

a
n

C
es

ar
io

su
l

P
a
n

a
ro

P
ol

in
ag

o
P

ie
v
ep

el
ag

o
-

R
io

lu
n

at
o

-
S

es
to

la
M

ar
an

el
lo

-
N

on
a
n
to

la
S

a
n

F
el

ic
e

su
l

P
a
n

a
ro

P
ri

g
n

an
o

su
ll

a
S

ec
ch

ia
N

ov
i

d
i

M
o
d

en
a

-
S

a
n

P
o
ss

id
on

io
S

av
ig

n
a
n

o
su

l
P

a
n

a
ro

S
er

ra
m

az
zo

n
i

-
Z

o
cc

a
S

an
P

ro
sp

er
o

-
S

as
su

ol
o

-
S

ol
ie

ra
S

p
il

a
m

b
er

to
-

V
ig

n
o
la

P
ia

ce
n

za
A

ls
en

o
-

B
es

en
zo

n
e

-
B

or
go

n
ov

o
V

al
T

id
on

e
A

ga
zz

a
n

o
-

B
et

to
la

P
ia

ce
n

za
A

lt
a

V
al

T
id

on
e

-
B

ob
b

io
C

er
ig

n
al

e
C

ad
eo

-
C

a
le

n
d

as
co

-
C

ao
rs

o
G

ro
p

p
a
re

ll
o

C
ol

i
-

C
or

te
B

ru
gn

a
te

ll
a

F
er

ri
er

e
C

ar
p

an
et

o
P

ia
ce

n
ti

n
o

-
C

or
te

m
ag

g
io

re
P

ia
n
el

lo
V

a
l

T
id

o
n

e
-

P
io

zz
an

o
F

ar
in

i
-

M
or

fa
ss

o
O

tt
o
n

e
C

a
st

el
S

an
G

io
va

n
n

i
-

C
as

te
ll

’A
rq

u
a
to

-
C

as
te

lv
et

ro
P

ia
ce

n
ti

n
o

P
o
n
te

d
el

l’
O

li
o

-
T

ra
vo

Z
er

b
a

F
io

re
n

zu
ol

a
d

’A
rd

a
-

G
a
zz

o
la

-
G

os
so

le
n

go
Z

ia
n

o
P

ia
ce

n
ti

n
o

G
ra

gn
an

o
T

re
b

b
ie

n
se

-
L

u
ga

g
n

a
n

o
V

a
l

D
’A

rd
a

M
on

ti
ce

ll
i

d
’O

n
g
in

a
-

P
o
d

en
za

n
o

-
P

on
te

n
u

re
R

iv
er

ga
ro

-
R

o
tt

of
re

n
o

-
S

an
G

io
rg

io
P

ia
ce

n
ti

n
o

S
an

P
ie

tr
o

in
C

er
ro

-
S

a
rm

a
to

-
V

er
n

a
sc

a
V

ig
ol

zo
n

e
-

V
il

la
n

ov
a

su
ll

’A
rd

a
P

ar
m

a
B

u
ss

et
o

-
C

ol
le

cc
h
io

-
C

ol
or

n
o

C
a
le

st
an

o
-

L
a
n

g
h

ir
a
n

o
F

id
en

za
-

P
a
rm

a
A

lb
ar

et
o

-
B

ar
d

i
-

B
ed

on
ia

M
on

ch
io

d
el

le
C

or
ti

F
el

in
o

-
F

on
ta

n
el

la
to

-F
o
n
te

v
iv

o
L

es
ig

n
a
n

o
d

e’
B

a
g
n

i
B

er
ce

to
-

B
o
re

P
a
la

n
za

n
o

F
or

n
ov

o
d

i
T

ar
o

-
M

ed
es

an
o

P
el

le
gr

in
o

P
ar

m
en

se
-

S
o
li

gn
an

o
B

or
go

V
a
l

d
i

T
ar

o
-

C
om

p
ia

n
o

M
on

te
ch

ia
ru

g
o
lo

-
N

o
ce

to
T

ra
ve

rs
et

o
lo

C
or

n
ig

li
o

-
N

ev
ia

n
o

d
eg

li
A

rd
u

in
i

P
ol

es
in

e
Z

ib
el

lo
-

R
o
cc

ab
ia

n
ca

V
a
ra

n
o

d
e’

M
el

eg
a
ri

T
er

en
zo

-
T

iz
za

n
o

V
a
l

P
ar

m
a

S
al

a
B

ag
a
n

za
-

S
a
ls

o
m

ag
gi

or
e

T
er

m
e

T
or

n
ol

o
-

V
al

m
oz

zo
la

S
an

S
ec

on
d

o
P

a
rm

en
se

V
ar

si
S

is
sa

T
re

ca
sa

li
-

S
or

ag
n

a
S

o
rb

ol
o

M
ez

za
n

i
-

T
or

ri
le

R
av

en
n

a
A

lf
on

si
n

e
-

B
a
g
n

a
ca

va
ll

o
-

B
ag

n
a
ra

d
i

R
om

a
gn

a
C

a
so

la
V

a
ls

en
io

F
a
en

za
-

L
u

g
o

B
ri

si
gh

el
la

-
C

a
st

el
B

ol
og

n
es

e
-

C
er

v
ia

R
av

en
n

a
C

on
se

li
ce

-
C

ot
ig

n
ol

a
-

F
u

si
gn

a
n

o
M

as
sa

L
om

b
ar

d
a

-
R

io
lo

T
er

m
e

-
R

u
ss

i
S

an
t’

A
ga

ta
su

l
S

a
n
te

rn
o

-
S

ol
a
ro

lo
R

eg
gi

o
E

m
il

ia
A

lb
in

ea
-

B
ag

n
ol

o
in

P
ia

n
o

-
B

ib
b

ia
n

o
B

o
re

tt
o

-
C

a
n

o
ss

a
R

eg
gi

o
n

el
l’

E
m

il
ia

B
ai

so
-

C
ar

p
in

et
i

V
en

ta
ss

o
B

re
sc

el
lo

-
C

a
d

el
b

os
co

d
i

S
op

ra
C

as
a
lg

ra
n

d
e

-
C

a
st

el
la

ra
n

o
C

as
in

a
C

am
p

ag
n

ol
a

E
m

il
ia

-
C

am
p

eg
in

e
G

u
a
lt

ie
ri

-
G

u
as

ta
ll

a
C

as
te

ln
ov

o
n

e’
M

on
ti

C
as

te
ln

ov
o

d
i

S
o
tt

o
-

C
av

ri
ag

o
L

u
zz

a
ra

-
Q

u
a
tt

ro
C

a
st

el
la

T
oa

n
o

-
V

et
to

C
or

re
g
gi

o
-

F
ab

b
ri

co
-

G
at

ta
ti

co
S
a
n

P
o
lo

d
’E

n
za

-
S

ca
n

d
ia

n
o

V
il
la

M
in

oz
zo

M
on

te
cc

h
io

E
m

il
ia

-
N

ov
el

la
ra

V
ia

n
o

P
ov

ig
li

o
-

R
eg

g
io

lo
-

R
io

S
al

ic
et

o
R

ol
o

-
R

u
b

ie
ra

-
S

an
M

a
rt

in
o

in
R

io
S

an
t’

Il
ar

io
d

’E
n

za
-

V
ez

za
n

o
su

l
C

ro
st

ol
o

R
im

in
i

B
el

la
ri

a
Ig

ea
M

ar
in

a
-

C
at

to
li

ca
M

o
n

d
a
in

o
-

M
o
n
te

fi
o
re

C
on

ca
R

ic
ci

on
e

-
R

im
in

i
C

as
te

ld
el

ci
-

M
ai

ol
o

C
o
ri

an
o

-
G

em
m

an
o

-
M

is
an

o
A

d
ri

a
ti

co
M

o
n
te

g
ri

d
o
lf

o
-

P
o
gg

io
T

or
ri

a
n

a
N

ov
af

el
tr

ia
-P

en
n

ab
il

li
M

on
te

sc
u

d
o

M
on

te
C

o
lo

m
b

o
-

M
o
rc

ia
n

o
d

i
R

o
m

a
gn

a
S

an
t’

A
g
a
ta

F
el

tr
ia

S
an

L
eo

-
T

al
am

el
lo

S
al

u
d

ec
io

-
S

an
C

le
m

en
te

-
S

an
G

io
va

n
n

i
in

M
a
ri

gn
an

o
S

an
ta

rc
an

ge
lo

d
i

R
om

a
g
n

a
-

V
er

u
cc

h
io



138 A study on housing tension in the municipalities of the Emilia-Romagna region

Table 5.4: Number of municipalities classified as ADA, ATA, Mountains and in one of the five
NSIA classification for the Emilia-Romagna provinces.

Provinces ATA ADA Mountains NSIA
Yes No Yes No Yes No UB I PO P UP

Bologna 12 43 22 33 23 32 20 20 2 12 1
Forl̀ı-Cesena 3 27 8 22 17 13 17 8 2 3 0
Ferrara 2 19 9 12 0 21 5 10 1 5 0
Modena 6 41 19 28 18 29 15 12 2 8 10
Piacenza 2 44 4 42 15 31 27 8 1 6 4
Parma 2 42 9 35 7 37 19 7 2 14 2
Ravenna 3 15 8 10 3 15 14 1 3 0 0
Reggio Emilia 6 36 14 28 10 32 22 11 1 7 1
Rimini 3 24 8 19 11 16 12 6 2 7 0

Tot. 39 291 101 229 104 226 151 83 16 62 18

two variables representative of housing tension have been considered: the proportion of the low

income households and the proportion of households demanding for public residential housing

(Edilizia Residenziale Pubblica, ERP). Thus, a total number of P=22 different indicators have

been considered. Dataset also contains two variables that are the Total Resident Population

(TRP) and Total Resident Foreigners (TRF) in 2020. Details about the overall indicators are

presented in the following subsections.

5.4.1 Socio - Demographic (SD) indicators

The first set of indicators (SD1 - SD6, top side of the second column of Table 5.5) concerns the

demographic situation and demographic dynamics of the municipalities. In particular, the SD1

indicator (Population density) represents the number of inhabitants (inh) per square kilometer

(sq km) in 2020; thus, for each municipality, the first indicator has been computed as follows:

SD1 =
Resident population in 2020 (inh)

Municipal area (sq km)
.

Consequently, higher densities of people are expected to be associated with higher housing

tension (see the first column of Table 5.5). As far as the SD2, SD3 and SD4 indicators are

concerned, they represent changes in resident population, changes in resident households and
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changes in resident foreigners between 2017 and 2020 respectively. In particular,

SD2 =
Resident population in 2020 (inh)

Resident population in 2017 (inh)
− 1;

SD3 =
Resident households in 2020 (inh)

Resident households in 2017 (inh)
− 1;

SD4 =
Resident foreigners in 2020 (inh)

Resident households in 2017 (inh)
− 1.

Thus, positive changes of these indicators are assumed to have a direct impact on housing tension

(see the first column of Table 5.5) due to overcrowding issues. Furthermore, as far as the SD4

indicator is concerned, foregneirs face additional problems due to long standing reasons of racial

and housing market discrimination (Bogdon and Can, 1997). The last SD indicators have been

constructed as follows:

SD5 =
1

4

2020∑
t=2017

AHSt,

SD6 =
1

4

2020∑
t=2017

MBt,

where AHSt and MBt are the Average Household Size and the Migration Balance (the difference

between the number of immigrants and the number of emigrants) at time t, respectively. Thus,

as far as the SD5 indicator (Household Size, see the second column of Table 5.5) is considered,

an increase in family composition (e.g., presence of children) could have a direct effect on hous-

ing tension due to economic and overcrowding issues. The same holds for the SD6 indicator.

Table 5.6 reports some descriptive statistics of the indicators employed in the analysis. For the

SD indicators, it is worth noting that the Zerba municipality (PC) has the lowest population

density (2.9 inh/sq km - SD1), the highest decrease in resident households (−8.6 % - SD3) and

the lowest average value for the Household Size indicator (1.3 - SD5). Bologna (BO), instead,

is the municipality with the highest value for the first and the last SD indicators (Table 5.6).

As far as the SD2 indicator is concerned, the highest decrease and highest increase in resident

population correspond respectively to the Farini (PC) and Granarolo dell’Emilia (BO) munici-

palities; Monchio delle Corti (PR) and Casteldelici (RN), instead, are the ones with the highest

decrease (−34.0 %) and highest increase (53.8 %) in resident foreigners (SD4). Luzzara and

Reggiolo, two municipalities of the Reggio Emilia province, correspond respectively at the min-

imum (−88.500) and the maximum (2.633) values of the SD6 and SD2 indicators. Finally, the
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Figure 5.2: Boxplot of the SD indicators

municipality of Borghi (FC) has the maximum positive change in resident household (7.7 % -

SD3) (Table 5.6). For the construction of the overall indicators, ISTAT and ERR sources have

been taken into consideration. To better describe the overall descriptive statistics, Figure 5.2

shows the box-plots for this first strand of indicators. From the latter figure it emerges that each

SD indicator is characterized by the presence of outliers. In particular, some extreme outliers

can be easily identified in the first and the sixth socio-demographic indicators.

5.4.2 Social Life and Income Condition (SLIC) indicators

Among the five indicators of the second pillar (SLIC1-SLIC5, half side of Table 5.5), SLIC1 and

SLIC2 concern aspects of the Social Life while the other three indicators (SLIC3-SLIC5) include

informations about the Households Income Condition. In particular, for each municipality, the

Education indicator (SLIC1) and the Employment indicator (SLIC2) have been computed as

follows:

SLIC1 =

∑2020
t=2018 PALMt∑2020
t=2018 TRPt

,

SLIC2 =

∑2020
t=2018 WAPEt∑2020
t=2018 TRPt

,

where the acronyms PALMt, WAPEt and TRPt represent the number of People with At Least a

Middle school diploma, the number of Working Age Population that is in Employment and the

Total Resident Population at time t, respectively. Thus, SLIC1 and SLIC2 indicators describe

the proportion of people with medium-high level education and the proportion of people in

employment in a municipality, respectively (Table 5.5). For this reason, the higher the SLIC1
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Table 5.6: Descriptive statistics of the quantitative variables

Indicator Minimum First quartile Median Average Third quartile Maximum
SD1 2.901 47.253 136.899 223.766 252.555 2780.676
SD2 −0.079 −0.022 −0.010 −0.013 −0.003 0.028
SD3 −0.086 −0.005 0.008 0.007 0.019 0.077
SD4 −0.340 −0.006 0.053 0.049 0.112 0.538
SD5 1.302 2.142 2.272 2.228 2.371 2.633
SD6 −88.500 3.750 18.380 62.880 52.000 2617.500
SLIC1 0.641 0.761 0.780 0.774 0.794 0.844
SLIC2 0.273 0.483 0.512 0.505 0.537 0.591
SLIC3 −0.487 0.023 0.038 0.034 0.052 0.259
SLIC4 0.263 0.321 0.352 0.368 0.408 0.729
SLIC5 0.105 0.161 0.176 0.178 0.196 0.297
HSHM1 1.039 1.150 1.248 1.617 1.654 10.755
HSHM2 −0.024 0.002 0.006 0.006 0.011 0.038
HSHM3 0.022 0.140 0.178 0.186 0.220 0.641
HSHM4 −0.130 0.111 0.159 0.197 0.250 1.210
HSHM5 1.645 3.285 3.759 4.132 4.570 22.452
HSHM6 −0.210 0.171 0.249 0.245 0.329 1.076
HSHM7 −0.331 0.154 0.278 0.314 0.405 2.662
HSHM8 0.006 0.012 0.016 0.016 0.021 0.033
HSHM9 −0.588 0.003 0.151 0.271 0.422 3.097
ISEE.20 0.000 0.042 0.061 0.058 0.070 0.200
RANK.21 0.000 0.010 0.017 0.018 0.025 0.103

indicator is, the higher the housing tension will be. In fact, a high level of education generally

implies a high income and, consequently, a low difficulty in accessing the housing market. The

minimum (64.1 %) and the maximum (84.4 %) values the SLIC1 indicator are reached by Farini

(PC) and Bologna (BO) municipalities (Table 5.6). As far as the SLIC2 indicator is concerned,

the housing tension is expected to increase if the number of people in employment increases (see

the first column of Table 5.5). Two municipalities of the Piacenza province correspond to the

lowest (Cerignala, PC) and the highest (Gossolengo, PC) proportion for the SLIC2 indicator.

ISTAT sources have been considered for the SLIC1 and SLIC2 data (see the fourth column of

Table 5.5).

The remaining SLIC indicators concern the Households Income Condition area. In particular,

for each municipality, the Taxable Income indicator (SLIC3) and the Low Income Taxpayers

indicator (SLIC4) have been computed as follows

SLIC3 =
Taxable income per taxpayer in 2020

Taxable income per taxpayer in 2016
− 1,

SLIC4 =
T0 in 2020

TT in 2020
,

where T0 and TT represent the number of Low Income (e0 - e15,000) Taxpayers (T0) and the

Total number of Taxpayers (TT) in 2020, respectively. Thus, SLIC3 and SLIC4 represent the
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Figure 5.3: Boxplot of the SLIC indicators

change in Taxable Income per taxpayer computed between 2016 and 2020 and the proportion

of Low Income Taxpayers. Finally, the Gini Index (SD5) is a summary measure of income

inequality, which is commonly used to assess the degree of inequality in the distribution of

income (Giorgi and Gigliarano, 2017). It is a concentration index that provides a numerical

value between 0 and 1, with a 0 indicating perfect equality (all the individual households have

the same income), while a value of 1 reflects maximal inequality among incomes (one person

has all the income and all others have none). Thus, the closer the Gini index is to the value 1,

the higher the housing tension will be (see the first column of Table 5.5). Minimum (0.105) and

maximum (0.297) values of the Gini Index correspond to Jolanda di Savoia (FE) and Gazzola

(PC) municipalities, respectively. There is no given expectation for the relationship between

the SLIC3 indicator and housing tension; for the SLIC4 indicator, the higher the share of low-

incomes is, the more housing deprivation should be observed (see the first column of Table 5.5).

Riva del Po (FE) and Zerba (PC) are the municipalities with the minimum and the maximum

values of the Taxable Income indicator (SLIC3), respectively; Zola Predosa (BO) and Goro (FE)

municipalities are the ones for the SLIC4 indicator (Table 5.5). For the construction of the three

latter (SLIC3-SLIC5) indicators, data have been taken by the Ministry of Economy and Finance

source (Ministero dell’Economia e delle Finanze, MEF) (see the fourth column of Table 5.5).

The box-plots of the SLIC indicators have been reported in Figure 5.3. From the latter figure

it emerges that the presence of outliers for each indicator; furthermore, the distribution of the

SLIC4 and SLIC5 indicators appear to be slightly skewed.
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5.4.3 Housing Supply and Housing Market (HSHM) indicators

For the third pillar (Housing Supply and Housing Market indicators), as mentioned above, nine

indicators (HSHM, bottom side of the second column of Table 5.5) have been employed. The

HSHM1 (Housing Stock) and the HSHM2 (Change in Housing Stock) indicators concern the

housing units area. In particular, the Housing Stock indicator is the proportion of the Total

number of Housing Units (THU) of a certain municipality to the Total number of Resident

Households (TRH) in that municipality; thus, it has been computed as follows:

HSHM1 =
THU in 2020 (housing units)

TRH in 2020 (hsd)
,

where THU is computed as the sum of the Housing Units by cadastral categories (A01, A02,

A03, A04, A05, A06, A07, A08, A09, A11). Thus, Housing Stock (HSHM1) indirectly impacts

housing deprivation (see the first column of Table 5.5). Casalecchio di Reno (BO) and Zerba

(PC) are respectively two municipalities with the lowest and the highest proportion of Housing

Units per household (units/hsd) (Table 5.6). As far as the HSHM2 indicator is concerned, it

corresponds to the change in housing stock between 2016 and 2020 and it has been computed

as follows:

HSHM2 =
THU in 2020 (housing units)

THU in 2016 (housing units)
− 1.

For the latter indicator it would be natural to think that a positive change in housing stock means

greater housing tension. Moreover, the minimum and the maximum changes in housing stock

are observed respectively for Agazzano (PC) and Granarolo nell’Emilia (BO) municipalities

(more details have been reported in Table 5.5). The HSHM3 and HSHM4 indicators regard

rent area. For each municipality, three variables have been taken into consideration in order

to construct the latter indicators: the Average Household Income (e/year) in 2020 (AHI2020),

the Maximum Monthly Rent (e/month) in 2018 (MMR2018) and in 2020 (MMR2020); the

MMR2018 and MMR2020 variables have been computed by considering a civil dwelling of 80

square meters (sq m). The HSM3 and HSHM4 indicators have been computed as follows:

HSHM3 =
(MMR2020 ∗ 12) (e/year)

AHI2020 (e/year)
,

HSHM4 =
MMR2020 (e/month)

MMR2018 (e/month)
− 1.
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Thus, for each municipality, they measure the ratio of the Maximum Monthly Rent to the

Average Household Income (e/year) and the Change in Maximum Monthly Rent between 2018

and 2020, respectively. Furthermore, both indicators (HSHM3 and HSHM4) are expected to have

a direct impact on housing tension. As far as the Ratio of the rent to family income indicator is

concerned, if a household pays a high percentage of their income for housing, housing problems

are expected to grow up (see the first column of Table 5.5). The latter feature is especially true

for the renter households paying over 30% of their income for housing. Thus, it is also true that

a positive change in rent (HSM4 indicator) will increase the housing tension due to the fact that,

usually, rising rent does not also match to an increase in income.

The HSHM5 and HSHM6 indicators concern housing prices area. For each municipality, they

have been computed by taking into account for each municipality the Maximum Housing Price

per square meters (e) in 2020 for a civil dwelling (MHP2020), the Average Housing Price per

square meters (e) in 2017 (AHP2017) and 2020 (AHP2020) and, finally, the above mentioned

AHI2020 variable. The resulting indicators have been constructed as follows:

HSHM5 =
(MHP2020 ∗ 80) (e)

AHI2020 (e)
,

HSHM6 =
AHP2020 (e)

AHP2017 (e)
− 1.

Thus, HSHM5 represents the number of annual income years necessary to purchase a house in

2020 (Family income indicator, see the first column of Table 5.5). For this reason, as the latter

number increases, low-income households will face housing market access problems. As a conse-

quence, as the renter households increase so too will the housing tension (see the first column of

Table 5.5). Similar considerations can also be made for the HSHM6 indicator (Dwelling prices

indicator) which represents the changes in Average Housing Price between 2017 and 2020. In

fact, a positive change of the latter indicator means that housing problems will increase due to

the increase of Housing prices. Finally, three indicators (HSHM7-HSHM9) from the property

purchase and the Housing market dynamics area have also been considered. These indicators

are the change in averages of the total Number of Normalized Transactions (NNT) computed

between two different three-year periods, the average of the ratio of the number of housing units

sold to the Total Housing Stock (Housing Stock dynamics index - IMI) and the change in aver-

ages of the property purchase computed between two different three-year periods, respectively.
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Figure 5.4: Boxplot of the HSHM indicators.

For each municipality, the aforementioned indicators have been computed as follows:

HSHM7 =
Average(NNT in 2018, 2019 and 2020)

Average(NNT in 2015, 2016 and 2017)
− 1,

HSHM8 =Average(IMI in 2016, 2017, 2018, 2019 and 2020),

HSHM9 =
Average(NNT in 2018, 2019 and 2020)

Average(NNT in 2017, 2018 and 2019)
.

As far as the HSHM7 indicator is concerned, a positive change in total Number of Normalized

Transactions is expected to be associated with a greater housing tension. Instead, the HSHM8

indicator expresses the share of dwellings bought and sold in a given year and can be interpreted

as the measure of the market’s dynamism in light of the fact that a greater IMI value corresponds

to a greater quota of homes bought and sold, net of the effect of the stock’s size. Finally,

a positive change in property purchase should increase housing tension. The minimum value

of five HSHM indicators corresponds to municipalities coming from the Parma (PR) province.

These municipalities are Corniglio (HSHM2), Terenzo (HSHM4), Bore (HSHM6) and Albareto

(HSHM3 and HSHM9). The maximum value for these indicators are reached by municipalities
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belonging to other provinces: Cervia (RA, HSHM2 and HSHM9), San Giovanni in Persiceto

(BO, HSHM3), Riccione (RN, HSHM4) and Borghi (FC, HSHM6). The Borghi municipality

also has the maximum value (2.662) for the NNT indicator (HSHM5) while Riolunato (MO)

corresponds to the municipality with the highest negative change for the latter indicator. Finally,

two municipalities of the Forl̀ı-Cesena province correspond to the highest decrease (Sogliano al

Rubicone, FC) and highest increase (Galeata, FC) in property purchase. Data representing the

housing market vivacity are drawn from the Osservatorio del Mercato Immobiliare - Agenzia

delle Entrate (OMI - Revenue Agency), which is a branch of the country’s Inland Revenue

Department. The box-plots of the HSHM indicators have been reported in Figure 5.4. The

presence of outliers is evident for each HSHM indicator, with the exception of HSHM8 indicator.

From the latter figure it also emerges that the distributions of some indicators appear to be

skewed.

5.4.4 Housing tension indicators

Two indicators have been considered in order to obtain some information about housing tension:

the proportion of the low income households and the proportion of households demanding for

public residential housing (Edilizia Residenziale Pubblica, ERP). For the computation of the

first indicator, it has been taken into consideration the number of households belonging to the

Lowest Income Group (LIG, e0 - e17,154) of the Indicator of Equivalised Economic Situation

(ISEE) in 2020. As far as the second indicator is concerned, the number of households in

the Ranking of Housing Demand for the Households of the ERR in 20219 has been considered

(RHDH). Then, for each municipality, the above mentioned indicators have been constructed as

follows :

ISEE.20 =
LIG (hsd)

Resident households in 2020 (hsd)
,

RANK.21 =
RHDH (hsd)

Resident households in 2021 (hsd)
.

Thus, the variables ISEE.20 and RANK.21 are useful indicators of housing tension in munic-

ipalities. A high value of ISEE.20 indicates a municipality with a high proportion of LIG

(low-income households) relative to the total number of resident households. This suggests that

the municipality is facing a housing tension issue. Similarly, a high value of RANK.21 indicates

9https://www.comune.bologna.it/bandi/graduatorie-definitive-contributo-affitto-anno-2021
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Table 5.7: Descriptive statistics of the ISEE.20 and RANK.21 indicators by provinces.

Indicator Province Minimum First quar. Median Average Third quar. Maximum
ISEE.20 Bologna 0.020 0.057 0.063 0.066 0.077 0.112

Forl̀ı-Cesena 0.029 0.061 0.069 0.074 0.084 0.130
Ferrara 0.027 0.042 0.062 0.056 0.064 0.086
Modena 0.011 0.043 0.064 0.061 0.080 0.104
Piacenza 0.000 0.024 0.038 0.040 0.056 0.109
Parma 0.000 0.027 0.058 0.051 0.069 0.111

Ravenna 0.042 0.055 0.063 0.064 0.070 0.091
Reggio Emilia 0.013 0.045 0.058 0.056 0.068 0.089

Rimini 0.029 0.046 0.061 0.064 0.067 0.200
RANK.21 Bologna 0.003 0.013 0.018 0.019 0.024 0.047

Forl̀ı-Cesena 0.002 0.014 0.020 0.022 0.027 0.057
Ferrara 0.000 0.004 0.009 0.010 0.014 0.029
Modena 0.002 0.014 0.023 0.022 0.030 0.043
Piacenza 0.000 0.004 0.010 0.015 0.022 0.103
Parma 0.000 0.004 0.016 0.015 0.021 0.037

Ravenna 0.010 0.016 0.019 0.020 0.025 0.029
Reggio Emilia 0.004 0.014 0.019 0.019 0.024 0.048

Rimini 0.000 0.011 0.017 0.018 0.027 0.046

that the number of households in that municipality seeking housing assistance is high, which

is another indication of housing tension. Therefore, higher values of these two indicators are

related to municipalities characterized by housing tension. In summary, ISEE.20 and RANK.21

can be used as important measures to identify and evaluate housing tension in municipalities.

By using these indicators, policymakers and researchers can assess the extent of the problem and

design appropriate policies and interventions to address it. To better describe the geographical

distribution of RANK.21, some maps have been reported. In particular, Figure 5.5 shows the

distribution of the proportion of households demanding for Public Residential Housing in 2021

for the overall considered municipalities in the ERR. Then, the same distribution is represented

for the municipalities within the nine provinces (see Figure 5.6), and the classes of the ATA

(see Figure 5.7), the ADA (see Figure 5.8), the Mountain (see Figure 5.9) and NSIA (see Fig-

ure 5.10) classifications. In the latter maps, the darker the red color is, the higher the proportion

of households demanding for public residential housing is; the opposite is true for the blue color.

Table 5.7 shows some descriptive statistics of the ISEE.20 and RANK.21 indicators computed

by provinces. The lowest median values for such indicators are observed for the Piacenza and

Ferrara provinces, respectively. As far as the highest values are considered, they correspond to

Forl̀ı-Cesena (6.9 %) and Modena (2.3 %) provinces for the ISEE.20 and RANK.21 variables,

respectively. Some minimum values are equal to 0; specifically, Cerignale (PC) and Valmozzola

(PR) municipalities for the first indicator and 14 municipalities for the second one. In particular,

they correspond to six municipalities of the Piacenza province (Cerignale, Corte Brugnatella,

Morfasso, Ottone, Piozzano and Zerba), five from the Parma province (Compiano, Monchio delle

Corti, Tornolo, Valmozzola and Varsi), two from the Rimini province (Casteldelici, Sant’Agata
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Table 5.8: Descriptive statistics of the ISEE.20 and RANK.21 indicators for each of the consid-
ered classification.

Indicator Class. Categories Minimum First quar. Median Average Third quar. Maximum
ISEE.20 ATA yes 0.052 0.065 0.073 0.077 0.087 0.111

no 0.000 0.040 0.059 0.055 0.069 0.200
ADA yes 0.021 0.059 0.067 0.069 0.079 0.111

no 0.000 0.034 0.056 0.053 0.068 0.200
Mountains yes 0.000 0.029 0.048 0.050 0.069 0.130

no 0.000 0.051 0.062 0.062 0.071 0.200
SNAI UB 0.008 0.054 0.063 0.063 0.070 0.200

I 0.018 0.050 0.062 0.062 0.073 0.130
PO 0.065 0.071 0.086 0.087 0.103 0.112
P 0.000 0.026 0.039 0.043 0.061 0.100

UP 0.000 0.011 0.019 0.022 0.036 0.048
RANK.21 ATA yes 0.001 0.020 0.026 0.025 0.030 0.047

no 0.000 0.009 0.017 0.017 0.023 0.103
ADA yes 0.001 0.017 0.022 0.023 0.029 0.047

no 0.000 0.007 0.014 0.016 0.022 0.103
Mountains yes 0.000 0.005 0.012 0.014 0.020 0.057

no 0.000 0.013 0.018 0.020 0.027 0.103
SNAI UB 0.001 0.015 0.020 0.021 0.027 0.103

I 0.000 0.010 0.016 0.017 0.022 0.057
PO 0.014 0.024 0.028 0.028 0.031 0.047
P 0.000 0.003 0.009 0.011 0.019 0.039

UP 0.000 0.003 0.005 0.006 0.008 0.030

Feltria) and, finally, one from the Ferrara province (Goro). Thus, the latter municipalities cor-

respond to the darker red areas in Figure 5.6. Furthermore, minimum and maximum values of

ISEE.20 and RANK.21 within two provinces correspond to the same municipalities: Camug-

nano and Bologna within the BO province; Verghereto and Galeata within the FC province.

Furthermore, the highest proportion (20.0 %) of households with a low income is reached by

San Giovanni in Marignano (RN); the highest proportion (10.3 %) for the RANK.21 variable

is reached by the Alseno (PC) municipality (the darker blue area in Figure 5.5). Table 5.8

shows some descriptive statistics of the ISEE.20 and RANK.21 indicators for each of the four

classifications illustrated in Section 5.3. As far as ISEE.20 is concerned, the highest median

values are reached by the municipalities classified as ATA (7.3 %) and ADA (6.7 %); further-

more, no mountains (6.2 %) and Poles municipalities (8.6 %) are the categories with the highest

median values for the Mountains and SNAI classifications, respectively. The same also holds for

RANK.21 (see the third column of Table 5.8). Thus, the above mentioned municipalities (San

Giovanni in Marignano and Alseno) correspond to the following categories for the considered

classifications: no ATA, no ADA, no Mountains and UB. Thus, the municipalities of the ERR

seem to be characterized by heterogenity in their housing deprivation.
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Figure 5.5: Map of the RANK.21 variable in the ERR.

Figure 5.6: Map of the RANK.21 variable in the ERR by provinces (from the left to the right -
BO, FC, FE, MO, PC, PR, RA, RE, RN).
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Figure 5.7: Map of the RANK.21 variable in the ERR by ATA classification (from the left to
the right - yes/no).

Figure 5.8: Map of the RANK.21 variable in the ERR by ADA classification (from the left to
the right - yes/no).

Figure 5.9: Map of the RANK.21 variable in the ERR by the Mountain classification (from the
left to the right - yes/no).

Figure 5.10: Map of the RANK.21 variable in the ERR by the NSIA classification (from the left
to the right - UB, I, PO, P, UP).
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5.5 Aim of this study

This research aims to study the dependence of housing tension in the municipalities of the

ERR on the three types of indicators described in the previous section. From the preliminary

analysis of the dataset, the municipalities of the ERR seem to be characterized by unobserved

heterogeneity. Thus, in order to manage the possible presence of unknown clusters in the

municipalities while performing multivariate regression analysis, mixtures of regression models

have been considered. However, it also appears to be reasonable to study the housing deprivation

in the municipalities of the ERR through robust methods able to manage the possible presence

of outliers, i.e. municipalities whose features noticeably deviate from those registered for the

other municipalities. Such municipalities may negatively impact on both the estimation of the

regression coefficients and the prediction of the responses. Furthermore, in this research, it may

be relevant to specify a system ofM=2 regression equations (one equation for each response) with

equation-dependent vectors of regressors (i.e., vectors which do not necessarily contain the same

regressors for the two responses). In this way, the regressors can be different among dependent

variables. For this reason, an approach based on seemingly unrelated regression models (Park,

1993; Srivastava and Giles, 1987) have been exploited, which is able to take into consideration

both multivariate correlated responses and to allow each response to depend on its own vector

of covariates. In order to perform the analysis, the following vectors of variables have been

considered: Y =(ISEE.20, RANK.21), X=(SD1-SD6, SLIC1-SLIC5, HSHM1-HSHM9). The

two dependent variables have bounded support within [0,1]. In order to provide for continuous

values in the (−∞,+∞) range and to manage values restricted to a finite interval, the most

widely accepted solution is the simple logit transformation, originally proposed by Johnson

(1949), defined as follows:

logit(p) = ln
( p

1− p

)
= ln(p)− ln(1− p), for p ∈ (0, 1) (5.1)

where p may represent, in this analysis, either the proportion of the low income households or

the proportion of households demanding for public residential housing within any municipality.

However, this transformation cannot be employed in analyses of datasets where p=0 or p=1. To

deal with this drawback, Anscombe (2014) and Berkson (1955) proposed the use of the empirical

logit trasformation, which is a modified version of (5.1) in which the p=0 and p=1 proportions
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are transformed as follows:

logit(p) = ln
( p+ t

1− p+ t

)
, (5.2)

where t = 0.5
n and n is the number of observations over which p is computed. Thus, the empirical

logit transformation in (5.2) is a two-steps transformation defined as follows:

i) for proportions where p is strictly greater than 0 and less than 1, the simple logit trans-

formation is applied as in (5.1);

ii) for proportions where p=0 and p=1, the empirical logit transformation is applied as in

(5.2).

However, the latter transformation is sensitive to the value of n, especially when n is low. In fact,

in some situations, it may happen that the transformed values obtained by applying (5.2) could

become greater than the transformed value obtained with (5.1). A possible solution proposed

by Warton and Hui (2011) is to add a small value t (by experimenting with different values)

to the proportion p in (5.1). Thus, this approach can be considered as a modification of the

empirical logistic transform (see (5.2)).

For each dependent variable examined in this analysis, the t costant has been computed as the

smallest positive proportion registered among the municipalities multiplied by 0.5. In particular,

the smallest non-zero proportions correspond to the values p=0.0018 and p=0.0008 for ISEE.20

and RANK.21, respectively; thus, the values of the transformed dependent variables, ISEE.20T

and RANK.21T, have been obtained using t=0.0009 and t=0.0004, respectively. Figure 5.11

shows the scatterplots of the transformed dependent variables (ISEE.20T and RANK.21T) and

the same untransformed variable. From the latter figure appears evident the logarithmic trend

of the transformed values for both the dependent variables. Table 5.9 shows some descriptive

statistics (minimum, first and third quartile, average and maximum) of the two untransformed

(ISEE.20 and RANK.21) and transformed dependent variables (ISEE.20T and RANK.21T).

From the latter table it emerges that the values of both the transformed dependent variables

are negative because for all municipalities the proportions are lower than 0.5; in particular,

the zero values of the ISEE.20 and RANK.21 dependent variables have been transformed in

−6.995 and −7.851 values, respectively. Thus, in fact, the response vector is Y =(Y1=ISEE.20T,

Y2=RANK.21T).
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Figure 5.11: Scatterplots of the transformed dependent variables (ISEE.20T and RANK.21T)

Table 5.9: Descriptive statistics of the untransformed (ISEE.20 and RANK.21) and transformed
dependent variables (ISEE.20T and RANK.21T)

ISEE.20 RANK.21 ISEE.20T RANK.21T

Minimum 0.000 0.000 −6.995 −7.851
First quartile 0.042 0.011 −3.117 −4.578
Median 0.061 0.017 −2.740 −4.049
Average 0.058 0.018 −2.934 −4.333
Third quartile 0.070 0.025 −2.581 −3.658
Maximum 0.200 0.103 −1.384 −2.165

5.6 Methods

For the analysis, the Mixtures of Contaminated Seemingly Gaussian regressions (MCSG) models

defined in the equation 2.1 of Chapter 2 of this thesis have been considered, together with MSG

models (Galimberti and Soffritti, 2020). Furthermore, a new class of models has been developed.

To introduce the latter class, let’s start from the hierarchical representation for the MCSG model

(see Chapter 2):

Yi|(xi, Zik = 1, Uik = uik) ∼


NM

(
yi|xi; x̃

∗′
i β
∗
k,Σk

)
if uik = 1,

NM

(
yi|xi; x̃

∗′
i β
∗
k, ηkΣk

)
if uik = 0,

Uik|Zik = 1 ∼ Bernoulli(αk), Zi ∼ Multinomial(π1, . . . , πk),

with Bernoulli(αk) and Multinomial(π1, . . . , πk) denoting a Bernoulli distribution with suc-

cess probability equal to αk and a K-dimensional multinomial distribution with probabilities
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π1, . . . , πK , respectively (details about the latter quantities have been reported in Chapter 2).

Thus, the distribution of yi depends on the covariates xi and the latent variables zi and ui.

Furthermore, the latent cluster membership variable zi is assumed to be independent on xi.

The new class of models introduced in this section can be obtained by assuming that the latent

cluster membership variable zi depends on ci, where ci = (ci1, . . . , ciV ) is a vector composed

of the values of V concomitant variables, which may eventually coincide with some variables

of the vector xi. As a consequence, both the mixing weights and the model parameters of the

K component densities of the mixture depend on covariates. To distinguish the roles of such

covariates, the terms concomitant gating network variables and explanatory expert network

variables (Gormley and Murphy, 2011) are commonly used, where these expressions are gener-

ally employed to denote the covariates which affect the mixing weights (ci) and the covariates

which affect the parameters of the component densities (xi), respectively. The seemingly un-

related contaminated Gaussian linear clusterwise regression model with concomitant variables

(cMCSG) of order K can be introduced, as follows:

f(yi|xi;ψ) =

K∑
k=1

πk(ci)h (yi;θk(xi)) , (5.3)

where πk(ci) are the mixing weights of the kth sub-population with πk(ci) > 0 and
∑K

k=1 πk(ci) =

1; when K ≥ 2, they are allowed to depend on covariates ci. These mixing weights are modeled

using multinomial logistic regression as follows:

πk(ci) =
exp(c̃

′
iγk)

1 +
∑K

k=2 exp(c̃
′
iγk)

k = 2, . . . ,K. (5.4)

with the first component γ1 = (0, . . . , 0)
′

as baseline; γk is a (V + 1)-dimensional vector of

regression parameters for the concomitant variables, and c̃i = (1, ci); furthermore, h (yi;θk(xi))

is the same defined in equation 2.2 of Chapter 2 but with a modified notation which highlights

that the parameter θk depends on xi; thus, θk(xi) is the same quantity represented by θk

in Chapter 2. As a consequence of the assumptions just described, the following hierarchical
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representation for Yi|xi can be obtained in association with the new class of cMCSG models:

Zi = (Zi1, . . . , Zik, . . . , ZiK) ∼ Multinomial(1, π1(ci), . . . , πK(ci)),

P (Zik = 1|ci) = πk(ci),

Uik|Zik = 1 ∼ Bernoulli(αk),

Yi|xi, Zik = 1, Uik = uik ∼


NM

(
µik(xi;β

∗
k),Σk

)
if uik = 1,

NM

(
µik(xi;β

∗
k), ηkΣk

)
if uik = 0,

where zi has now a multinomial distribution with a single trial and probabilities equal to πk(ci),

µik(xi;β
∗
k) is the conditional expected value of Yi|X = xi in the kth sub-population (see

equation (2.3) of Chapter 2). Thus, the complete-data likelihood function is now equal to

Lc(ψ) =

I∏
i=1

K∏
k=1

{
πk(ci)

[
αkφM

(
yi;µk(xi;β

∗
k),Σk

)]uik
[
(1− αk)φM

(
yi;µk(xi;β

∗
k), ηkΣk

)]1−uik}zik
.

Up to an additive constant, the complete-data log-likelihood function employed in the ECM

algorithm for the computation of the parameter estimates can be expressed as follows:

`c(ψ) =
I∑
i=1

K∑
k=1

zik

[
lnπk(ci) + uik lnαk + (1− uik) ln(1− αk)−

1

2
ln |Σk|+

−
(M

2
ln ηk

)
(1− uik)−

1

2

(
uik +

1− uik
ηk

)
δ2Σk

(
yi,µk(xi;β

∗
k)
)]
,

where δ2Σk
(yi,µk(xi;β

∗
k)) is the squared Mahalanobis distance defined in equation (2.5) of the

Chapter 2. Given the current parameter value ψ(h), in the E-step on the hth iteration of the

ECM algorithm the estimated posterior probabilities that the ith observation come from the kth

sub-population and the same observation is a typical point of such a sub-population are now

equal to:

ẑ
(h)
ik =

π
(h)
k (ci)h

(
yi|xi;θ(h)k (xi)

)
f
(
yi|xi;ψ(h)

)
û
(h)
ik =

α
(h)
k φ

(
yi|xi; x̃

∗′
i β
∗(h)
k ,Σ

(h)
k

)
h
(
yi|xi;θ(h)k (xi)

) ,
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respectively, where f(y|x;ψ) =
∑K

k=1 πk(ci)h (y|x;θk(xi)). The update for π
(h)
k (ci) is now

computed as follows:

π
(h+1)
k (ci) = P (ẑ

(h+1)
ik = 1) =

exp(c
′
iγk)

1 +
∑K

k=2 exp(c
′
iγk)

k = 2, . . . ,K. (5.5)

It is worth noting that in the absence of concomitant variables, the update for the equation (5.5)

is the one defined in Section (2.2.4), i.e. π
(h+1)
k = 1

I

∑I
i=1 ẑ

(h)
ik . As far as the updtates for

the other parameters are concerned, they are equal to the ones defined in equations (2.8),

(2.9), (2.10) and (2.11). The strategies for the initialisation of ψ and convergence criteria

are similar to the ones illustrated in Section 2.2.5 of Chapter 2. The only difference is that,

in order to obtain starting values for the component weights πk(ci), the function MoEClust

(Murphy and Murphy, 2020) has been employed. In particular, this latter function has been

employed to fit a Gaussian mixture model with V concomitant variables and K components to

the sample residuals of a seemingly unrelated linear regression model (Srivastava and Giles, 1987)

through the package systemfit (Henningsen and Hamann, 2007) in the R environment (R Core

Team, 2021). Hence, the gating network parameters γ
(h)
k are updated through the function

multinom from the nnet package (Venables and Ripley, 2013) with the dependent variables

given by the a posteriori probability estimates ẑ
(h)
ik . The parameter vector of model (5.3) is

given by ψ = (ψ1, . . . ,ψk, . . . ,ψK), where ψk = (γk,θk(xi)). As concerns the formula for the

implementation of the Bayesian information criterion defined in Section (2.2.6), the number of

free parameters is now equal to nψ = 2K+K(P ∗+M)+KM(M+1)
2 +(V +1)(K−1). For αk → 1

or ηk → 1 ∀k, model (5.3) reduces to a mixture of seemingly unrelated Gaussian regressions

model with concomitant variables (here denoted with the acronym cMSG) of order K. Such a

mixture can be seen as an extension of the MSG model (Galimberti and Soffritti, 2020). It is

worth noting that, in the absence of concomitant variables and when the vectors of predictors

selected for the two dependent variables coincide (i.e., X1 = X2), the resulting model belongs to

either the Mixtures of multivariate Contaminated Gaussian regressions models (MCG, Mazza

and Punzo (2020)) or the Mixtures of multivariate gaussian Regressions Models (MRM, Jones

and McLachlan (1992)).
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5.7 Results

As above mentioned, the analysis has been carried out through MSG, MCSG, cMSG and cM-

CSG models. For the models defined by (5.3), the vector of the concomitant variables employed

in the analysis is c=(TRP, TRF). Models from MSG and MCSG classes have been estimated

for K ∈ {1, 2, 3, 4, 5} and each of the parameterisations for the covariance matrices reported in

Table 3.1 of Chapter 3. As far as cMSG and cMCSG models are concerned, they have been

estimated for K ∈ {2, 3, 4, 5} and without imposing any constraint on the covariance matrices

(i.e., with the VVV parameterisation).

In every scenario where predictive modeling or data analysis is being performed, it is crucial

to implement an effective variable selection strategy. Without an appropriate variable selection

strategy, in fact, some variables may have a negligible effect on the outcomes and the model may

suffer from overfitting (Chowdhury and Turin, 2020). Fewer variables in the model translate to

less computational time and less complexity, and are also preferred according to the principle of

parsimony, which prioritizes simpler models with fewer variables over complex ones. Complex

models that contain many variables make the model more dependent on the observed data,

while simpler models are easier to interpret, generalize, and use in practice. However, it is also

crucial to ensure that no relevant variables are excluded from the selected model, which may

impact the accuracy and reliability of the model. Therefore, selecting the right set of variables

is important to balance the practicality and simplicity of the model with the need to include

essential variables for accurate and meaningful results (Chowdhury and Turin, 2020). Thus, it

is important to possibly embed variable selection in the analysis. This is also the case of the

MSG, MCSG, cMSG and cMCSG models, where the selection of the appropriate variables to

be included in the regression equations is one important challenge. In general, an exhaustive

search for the optimal subset of predictors should be carried out. However, it is often impracti-

cal or impossible to exhaustively search the entire space of possible subsets of predictors to be

included in the model, particularly in the presence of complex and high-dimensional problems.

Therefore, various non-exhaustive strategies have been proposed in the literature. Such meth-

ods include stepwise selection, forward selection and backward elimination (Crawford and Hoel

(1972); Mallows (1973); Miller (1984); Sutter and Kalivas (1993)), interactive variable selection

(Lindgren et al. (1994); Miller (1991)), automatic variable selection (Breiman (1996); Forina

et al. (1986)), cyclic subspace regression (Bakken et al. (1999); Jolliffe and Cadima (2016)),
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and many other. However, some methods have the drawback of failing to select regressors that

may be of no value when used alone but offer useful information when combined. For instance,

forward selection adds regressors until a specific selection criterion is minimized or maximized,

but it cannot remove a regressor once it has been included. The same applies to backward

elimination, where a removed regressor cannot be reinserted. Thus, they can fail to find the

global optimum. Furthermore, when the number of regressors is high, these traditional selection

methods can be computationally expensive and lead to unstable results. To overcome this dis-

advantage, penalized likelihood methods (Jianqing and Runze (1999); Tibshirani (1996)) can be

used, which are statistical techniques used for variable selection in regression models and that

are able to manage a large number of regressors, by producing stable and interpretable models.

It involves modifying the likelihood function of a multivariate regression model by adding a

penalty term to the likelihood function. The penalty term is designed to shrink some of the es-

timated regression coefficients towards zero, resulting in a more parsimonious model with fewer

regressors. Furthermore, there are various types of probabilistic optimization techniques that

can be used to solve subset selection issue through stochastic iterative algorithms. Therefore,

optimization algorithms and techniques are developed to efficiently search the space and identify

near-optimal solutions. These algorithms consider different subsets of regressors and evaluate

their performance through an objective function (for example, the Akaike Information Crite-

rion (Akaike, 1974) and the Bayesian Information Criterion (Schwarz, 1978). After assessing

the performance of different subsets of regressors using an objective function, these algorithms

generate new subsets from the existing ones. Most techniques in this category employ genetic

algorithms (Michalewitz (1996); Goldberg (1989)) or simulated annealing (Kirkpatrick et al.,

1983) as a search algorithm.

In the analyses of this chapter, for each model class, the backward elimination technique and a

genetic algorithm have been employed in order to select the relevant regressors for each regression

equation. In particular, the genetic algorithm exploits principles and operators of the biologi-

cal evolution of a species (see, for example, Goldberg (1989), Chatterjee et al. (1996), Scrucca

(2016)). The algorithm employed in this analysis is similar to a genetic algorithm introduced in

Galimberti et al. (2018). It follows these steps:

• the chromosomes (ordered sequences of genes) that compose an initial population are ran-

domly generated and examined; each gene can take on a value of either 0 or 1. These

genes can be thought of as Bernoulli variables with a success probability of q. The chro-
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mosomes themselves are randomly generated by independently drawing realizations from

this Bernoulli distribution. This means that each gene in a chromosome is randomly as-

signed a value of 0 or 1 with equal probability. The purpose of generating chromosomes in

this way is to explore a wider range of potential solutions to the problem being optimized,

rather than being limited to a pre-specified set of starting solutions; furthermore, its fitness

is evaluated;

• in order to generate novel populations composed of chromosomes characterised by im-

proved fitness values, an iterative evolution process is performed, based on three genetic

operators; in particular,

– the crossover operator, which is a random process of genome recombination that ap-

plies to pairs of chromosomes to create new offspring; the process involves selecting

two parent chromosomes, and then randomly selecting a crossover point along their

sequence of genes. The genetic material from one parent before the crossover point

is combined with the genetic material from the other parent after the crossover point

to create two new offspring chromosomes. The uniform distribution is used in the

crossover process, where the crossover point is randomly selected with equal proba-

bility anywhere along the chromosome. This ensures that the offspring chromosomes

are diverse and have genetic material from both parent chromosomes.

– the mutation operator, which is a random alteration of a gene in a chromosome by

flipping its value from 0 to 1 or from 1 to 0; a Bernoulli distribution is used to

randomly generate the new value for the mutated gene, with success probability of

w.

– the selection operator, which is a weighted random sampling from the initial popu-

lation with weights proportional to the chromosomes’ fitness; thus, the chromosomes

selected in this way reproduce and their offspring will compose a novel generation,

obtained after crossover and mutation; in this technique, each chromosome’s fitness

value is used as the weight or probability of selection. The higher the fitness value

of a chromosome, the higher its weight or probability of being selected. This means

that the fittest chromosomes have a higher chance of being selected than the less

fit ones. To perform weighted random sampling, the algorithm generates a random

number between 0 and 1, and then iterates through the chromosomes in the popu-
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lation, adding up the weights until the cumulative sum exceeds the random number.

The chromosome corresponding to the weight that causes the sum to exceed the ran-

dom number is then selected. This process is repeated until the desired number of

chromosomes have been selected to create the next generation of solutions.

• the chromosomes of the resulting novel generation are assigned their fitness, and the evo-

lution process repeats; the algorithm stops when a maximum number of population has

been generated.

In this approach, each model is represented as a chromosome and its fitness is measured by

the BIC. For each dependent variable, the examined chromosome has a binary gene for each

candidate regressor in X, where 1 and 0 values denote whether any given candidate regressor has

been selected or not. For MCSG and MSG models, the chromosome also contains an additional

gene which can take values from the set {1, . . . , 14} so as to distinguish the 14 parsimonious

parameterisations for the covariance matrices. The genetic algorithm has been devised so as to

explore subspaces of the model space associated with each model class in which the value of K is

fixed. It is important to note that the process of selecting a model in this latter framework can be

quite complex, especially when dealing with high-dimensional datasets (here, the total number of

candidate regressors for each regression equation is 21). The effectiveness of a genetic algorithm

depends on the extent of exploration of the model space. However, there is no general rule for

choosing the appropriate population size and number of generations for a genetic algorithm.

The genetic algorithm has been implemented in R through the package GA (Scrucca, 2013).

The values of q and w that have been used in the analyses are equal to 0.5. Each execution

requires the specification of two tuning parameters: dimension of the examined population (N)

and maximum number of generations to be examined (dmax). For each model class and each

examined value of K, twelve independent executions of this algorithm have been performed, one

for each combination of the following values for the tuning parameters: N=200, 300, 400, 500;

dmax=30, 40, 50. Thus, for each model class, the number of models that have been examined is

about 400000.

As far as the analyses with the backward elimination technique are concerned, for each value

of K and each parsimonious parameterisation, the process starts with fitting a model with

all the candidate regressors included in both the regression equations and, thus, the Bayesian

Information Criterion (BIC) is computed; in this approach, after fixing a regression equation,
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the regressors are iteratively removed one by one from the other equation. Each model is then

refitted without the removed variable and the Bayesian Information Criterion (BIC) is again

computed. Finally, the BIC of the original model is compared with the BICs of the models

obtained by removing a single regressor. The process of variable elimination is then repeated,

starting from this improved model. Through iterative removal of variables and re-evaluation of

the BIC, the goal is to identify a model with a higher BIC, indicating a better fit to the data.

The iterative process continues until no further removal of regressors leads to a higher BIC. This

final model represents the optimal combination of variables (limited to the examined models) for

the regression analysis. Thus, using the BIC as a guide for variable elimination helps to identify

the most important predictors and simplifies the regression equation, potentially improving its

interpretability and predictive performance. It is worth noting that the backward elimination

technique, while widely used, may not always result in the selection of the best model, as it

can fail to find the global optimum. In contrast, the genetic algorithm technique is a modern

approach to model selection that can efficiently search for the optimal model by exploring a

large search space of possible models.

Table 5.10 and Table 5.11 report the models which best fitted the analysed dataset according

to the BIC for each examined value of K within each model class by using the genetic algorithm

and the backward elimination technique. Overall, it seems that the best trade-off between the

fit and complexity can be obtained using the MCSG model with K = 2 clusters of municipalities

(BIC=−764.6) identified using the genetic algorithm (see Table 5.10). The convergence of the

ECM algorithm for the parameter estimation of the latter model has been reached after 198

iterations. As far as the other model classes and the genetic algorithm analysis are concerned, the

best MSG and cMSG models have K = 4 clusters (BIC=−779.0 and BIC=−793.6, respectively),

while cMCSG models of order K = 3 should be preferred (BIC=−779.3) (see Table 5.10). The

analysis with the backward elimination technique has shown that the best MSG and MCSG

models have K = 2 clusters (BIC=−875.2 and BIC=−810.1, respectively) while the best cMSG

and cMCSG models have K = 5 clusters and the same BIC (−803.8). It is worth noting that in

the context of the 18 summaries listed in Table 5.10 and Table 5.11, in only one instance (cMCSG

model class and K=5), using the backward elimination technique resulted in the selection of a

model with a higher BIC than the one obtained through the genetic algorithm. As far as the

overall best model is concerned, the proportion of the low income households is regressed on

three socio-demographic indicators (Population Density, Change in household and Change in
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Table 5.12: Estimates of π, α, η and Σ under the overall best model for the analysis of housing
tension in the municipalities of the ERR.

ψ̂ k = 1 k = 2

π̂k 0.055 0.945
α̂k 0.999 0.829
η̂k 1.000 12.316

Σ̂k

(
0.676 0.034
0.034 0.002

) (
0.056 0.057
0.057 0.157

)

foreigners), one Social Life and Income Condition indicator (Education) and five Housing Supply

and Housing market (Housing Stock, Change in Housing Stock, Dwelling prices, NNT and IMI)

indicators. Thus, P1 = 9 regressors have been selected for the first equation of the regression

model. The selected regressors for the proportion of households demanding for public residential

housing are the same three SD indicators selected by the proportion of the low income households

together with Household Size, two SLIC (Taxable Income and Gini Index) and four HSHM

indicators (Housing Stock, Change in Housing Stock, Family Income and Property purchase).

Thus, P2 = 10. It is worth noting that the majority of the selected indicators belong to the SD

and HSHM macro-areas. The estimates of π, α, η and Σ of the overall best MCSG model are

reported in Table 5.12, while the estimates of the regression coefficients have been reported in

the fourth column of Table 5.13, together with the estimates of their standard errors (column

6) computed by the parametric bootstrap approach. In particular, 100 bootstrap samples have

been generated from the selected model. Thus, they have been utilized to compute 100 estimates

of the parameters for the selected model. The standard deviation of such estimates has been

employed as the estimated standard errors of the estimated regression coefficients. Furthermore,

tests for the hypotheses H0: βkmp=0 for k = 1, 2, m = 1, 2, p = 1, . . . , Pm, have been run

under an asymptotic normal distribution using the zkmp statistics, where zkmp =
β̂kmp

se(β̂kmp)
, with

se(β̂kmp) denoting the estimated standard error of β̂kmp. Some estimates of the regression

coefficients for both the dependent variables are not consistent with the expectation for the

effects reported in the first column of Table 5.10. However, using α = 0.05, all these regression

coefficients seem to be not significantly different from 0 according to the p-values obtained

using bootstrap approach (see the bold entries in column 8 of Table 5.13). Thus, as far as

the first cluster is concerned, only the number of inhabitants per square kilometer (SD1) and

the proportion of people in employment (SLIC2) regressors result to be significantly different

from 0. The estimated effects of the population density on both the dependent variables are

positive within both clusters detected by the model (see β̂111, β̂121, β̂211 and β̂221 in the fifth
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Table 5.13: β̂kmp, estimated standard errors, zkmp values and p-values obtained using the boot-
strap.

Regr. k m p β̂kmp se(β̂kmp) zkmp p-value

1 (Intercept) 1 1 0 −16.546 11.447 −1.445 0.148
SD1 1 1 1 0.007 0.003 2.188 0.029
SD3 1 1 2 −10.071 18.090 −0.557 0.578
SD4 1 1 3 1.674 2.657 0.630 0.529
SLIC1 1 1 4 14.189 14.182 1.000 0.317
HSHM1 1 1 5 0.170 0.605 0.281 0.779
HSHM2 1 1 6 21.949 36.627 0.599 0.549
HSHM6 1 1 7 −0.155 1.281 −0.121 0.904
HSHM7 1 1 8 −2.045 1.231 −1.662 0.097
HSHM8 1 1 9 85.630 74.353 1.152 0.249
1 (Intercept) 1 2 0 −10.399 6.646 −1.565 0.118
SD1 1 2 1 0.007 0.003 2.345 0.019
SD3 1 2 2 27.251 20.775 1.312 0.190
SD4 1 2 3 1.112 3.597 0.309 0.757
SD5 1 2 4 −6.289 3.497 −1.798 0.072
SLIC2 1 2 5 35.072 15.057 2.329 0.020
SLIC5 1 2 6 −14.588 12.934 −1.128 0.259
HSHM1 1 2 7 0.296 0.760 0.389 0.697
HSHM2 1 2 8 −75.651 44.154 −1.713 0.087
HSHM5 1 2 9 0.584 0.316 1.848 0.065
HSHM9 1 2 10 0.127 0.717 0.177 0.860
1 (Intercept) 2 1 0 −3.247 0.446 −7.278 0.000
SD1 2 1 1 0.0002 0.0001 3.732 0.000
SD3 2 1 2 2.348 1.094 2.147 0.032
SD4 2 1 3 0.827 0.187 4.410 0.000
SLIC1 2 1 4 0.985 0.576 1.709 0.087
HSHM1 2 1 5 −0.282 0.026 −10.979 0.000
HSHM2 2 1 6 −8.633 2.060 −4.190 0.000
HSHM6 2 1 7 −0.097 0.081 −1.191 0.233
HSHM7 2 1 8 −0.007 0.058 −0.129 0.897
HSHM8 2 1 9 4.670 4.195 1.113 0.266
1 (Intercept) 2 2 0 −5.815 0.568 −10.235 0.000
SD1 2 2 1 0.0004 0.0001 4.221 0.000
SD3 2 2 2 7.857 1.821 4.314 0.000
SD4 2 2 3 0.806 0.324 2.488 0.013
SD5 2 2 4 0.377 0.185 2.036 0.042
SLIC2 2 2 5 1.480 1.027 1.441 0.150
SLIC5 2 2 6 2.161 0.963 2.244 0.025
HSHM1 2 2 7 −0.296 0.050 −5.893 0.000
HSHM2 2 2 8 −9.378 3.124 −3.002 0.003
HSHM5 2 2 9 0.004 0.014 0.263 0.792
HSHM9 2 2 10 0.033 0.057 0.579 0.563
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column of Table 5.13). Furthermore, as far as cluster 1 is concerned, it emerges also that the

estimated effects of the Employment regressor (β̂125) are positive (and particularly strong) for

the proportion of households demanding for public residential housing (RANK.21T). As far

as cluster 2 is concerned, the estimates of the regression equation for the proportion of the

low income households show that ISEE.20T is negatively affected by Housing Stock (β̂215) and

Change in Housing Stock (β̂216) and positively affected by Change in household (β̂212) and

Change in foreigners (β̂213). Similar results have been obtained with reference to the regression

equation for the proportion of households demanding for public residential housing (RANK.21T)

(see β̂227, β̂228, β̂222 and β̂223), from which it also emerges that Household Size (β̂224) and Gini

Index (β̂226) positively affect the proportion of households demanding for public residential

housing. The parameter estimates demonstrate that the analysed dataset is characterised both

by heterogeneity over municipalities and by the presence of atypical observations. This latter

feature seems to characterise only the second cluster of municipalities (α̂2 = 0.829 and η̂2 =

12.316). By using the estimates of the conditional variances and covariances, it results that

the estimated correlation coefficients between the two dependent variables in the two clusters

of municipalities (0.925 and 0.597) are considerably different. The two clusters determined

according to the highest estimated posterior probabilities of the selected model are composed

of 18 and 310 municipalities, respectively. According to the rule for the intra-class distinction

between typical observations and mild outliers illustrated in Section 2.2.4 of Chapter 2, the first

cluster only contain typical observations. This is a consequence of the estimates α̂1 = 0.999 and

η̂1 = 1.000 (see Table 5.12). This latter result is also evident from the estimated sample residuals

yi− µ̂1(xi; β̂
∗
1) for the 18 municipalities belonging to the first cluster (see the scatterplot on the

left side of Figure 5.12). A further proof is given by the low values of the estimated distances

d̂2i1 for the municipalities of the first cluster, which are between 0.500 and 7.131. Table 5.14

reports the complete list of the 18 municipalities classified as typical in the first cluster, together

with the information concerning the ADA, ATA, Mountains and NSIA classifications. Among

the 310 municipalities of the second cluster, 40 have resulted to be mild outliers. Such outliers

correspond to municipalities from the nine provinces that have a ”no” category for the ATA

classification (see Table 5.15); as far as the NSIA classification for the latter 40 municipalities is

concerned, it is worth noting that none of these belong to the Poles (main centres); furthermore,

37 of these municipalities are also classified as having no ADA, with the exception of Comacchio,

Copparo (FE) and San Giovanni in Persiceto (BO). The scatterplot with the estimated sample
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Figure 5.12: Scatterplots of the estimated residuals for the municipalities assigned to the first
(left) and second (right) clusters detected by the overall best model for the analysis of housing
tension in the municipalities of the ERR. Black circle correspond to typical municipalities, while
outliers (red points) of the second scatterplot are labelled with the number of the corresponding
municipalities.

Table 5.14: List of municipalities classified of Cluster 1 in the analysis of housing tension in the
municipalities of the ERR.

Municipality Prov. ADA ATA Mountains NSIA

Albareto PR No No Yes P
Baricella BO No No No I
Besenzone PC No No No UB
Castel del Rio BO No No Yes I
Casteldelci RN No No Yes P
Cerignale PC No No Yes UP
Fiorenzuola d’Arda PC Yes Yes No UB
Gazzola PC No No No UB
Medicina BO Yes No No UB
Monterenzio BO No No Yes P
Montiano FC No No No UB
Morfasso PC No No Yes P
San Giovanni in Maragnano RN No No No UB
San Pietro in Cerro PC No No No UB
Tornolo PR No No No P
Valmozzola PR No No No P
Varsi PR No No No P
Zerba PC No No Yes UP
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Table 5.15: List of municipalities classified as outliers in Cluster 2 in the analysis of housing
tension in the municipalities of the ERR.

ID. Municipality Prov. ADA ATA Mountains NSIA

3 Albinea RE No No No UB
5 Alseno PC No No No UB
27 Bobbio PC No No Yes P
31 Bore PR No No Yes P
60 Casola Valsenio RA No No Yes I
95 Comacchio FE Yes No No I
96 Compiano PR No No No P
99 Copparo FE Yes No No I
101 Corniglio PR No No No P
103 Corte Brugnatella PC No No Yes P
112 Farini PC No No Yes P
115 Ferriere PC No No Yes UP
128 Fornovo di Taro PR No No No UB
129 Frassinoro MO No No Yes UP
132 Galeata FC No No Yes I
139 Goro FE No No No P
140 Gossolengo PC No No No UB
144 Gropparello PC No No Yes I
149 Jolanda di Savoia FE No No No I
165 Masi Torello FE No No No UB
172 Mesola FE No No No P
179 Monchio delle Corti PR No No No UP
187 Montefiorino MO No No Yes P
196 Mordano BO No No No UB
204 Ostellato FE No No No I
205 Ottone PC No No Yes UP
208 Palanzano PR No No No UP
217 Pievepelago MO No No Yes UP
218 Piozzano PC No No Yes I
222 Polesine Zibello PR No No No UB
230 Premilcuore FC No No Yes P
241 Riolunato MO No No Yes UP
242 Riva del Po FE No No No I
260 San Giorgio Piacentino PC No No No UB
262 San Giovanni in Persiceto BO Yes No No I
275 Sant’Agata Feltria RN No No Yes I
314 Vernasca PC No No Yes UB
319 Vigarano Mainarda FE No No No UB
322 Villa Minozzo RE No No Yes P
326 Ziano Piacentino PC No No No I
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Table 5.16: List of municipalities classified as typical in Cluster 2 in the analysis of housing
tension in the municipalities of the ERR.

Municipality Prov. ADA ATA Mountains NSIA Municipality Prov. ADA ATA Mountains NSIA

Agazzano PC No No No I Alfonsine RA Yes No No UB
Alta Val Tidone PC No No Yes P Alto Reno Terme BO No No Yes P
Anzola dell’Emilia BO Yes Yes No UB Argelato BO No No No UB
Argenta FE Yes No No UB Bagnacavallo RA Yes No No UB
Bagnara di Romagna RA No No No UB Bagno di Romagna FC No No Yes I
Bagnolo in Piano RE No No No UB Baiso RE No No Yes P
Bardi PR No No Yes P Bastiglia MO No No No UB
Bedonia PR No No Yes P Bellaria-Igea Marina RN Yes No No UB
Bentivoglio BO No No No I Berceto PR No No Yes P
Bertinoro FC Yes No No UB Bettola PC No No Yes I
Bibbiano RE Yes No No UB Bologna BO Yes Yes No PO
Bomporto MO Yes No No UB Bondeno FE Yes No No I
Boretto RE No No No I Borghi FC No No Yes I
Borgo Tossignano BO No No Yes UB Borgo Val di Taro PR No No Yes P
Borgonovo Val Tidone PC No No No UB Brescello RE No No No UB
Brisighella RA No No Yes UB Budrio BO Yes No No I
Busseto PR No No No UB Cadelbosco di Sopra RE Yes No No UB
Cadeo PC No No No UB Calderara di Reno BO Yes Yes No UB
Calendasco PC No No No UB Calestano PR No No Yes I
Campagnola Emilia RE No No No UB Campegine RE No No No UB
Campogalliano MO No Yes No UB Camposanto MO No No No I
Camugnano BO No No Yes P Canossa RE No No Yes I
Caorso PC No No No UB Carpaneto Piacentino PC No No No UB
Carpi MO Yes Yes No PO Carpineti RE No No Yes P
Casalecchio di Reno BO Yes Yes No UB Casalfiumanese BO No No Yes UB
Casalgrande RE Yes Yes No I Casina RE No No Yes P
Castel Bolognese RA No No No UB Castel D’Aiano BO No No Yes P
Castel di Casio BO No No Yes P Castel Guelfo di Bologna BO No No No UB
Castel Maggiore BO Yes Yes No UB Castel San Giovanni PC Yes No No UB
Castel San Pietro Terme BO Yes No No UB Castelfranco Emilia MO Yes Yes No I
Castellarano RE Yes No No I Castell’Arquato PC No No No UB
Castello D’Argile BO No No No I Castelnovo di Sotto RE No No No UB
Castelnovo Ne’ Monti RE Yes No Yes P Castelnuovo Rangone MO Yes No No UB
Castelvetro di Modena MO Yes No No I Castelvetro Piacentino PC No No No UB
Castenaso BO Yes Yes No UB Castiglione dei Pepoli BO No No Yes P
Castrocaro Terme e Terra del Sole FC No No No UB Cattolica RN Yes Yes No UB
Cavezzo MO No No No UB Cavriago RE No No No UB
Cento FE Yes Yes No P Cervia RA Yes No No UB
Cesena FC Yes Yes No PO Cesenatico FC Yes Yes No UB
Civitella di Romagna FC No No Yes I Codigoro FE Yes No No P
Coli PC No No Yes P Collecchio PR Yes No No UB
Colorno PR No No No UB Concordia sulla Secchia MO No No No UB
Conselice RA No No No UB Coriano RN Yes No No UB
Correggio RE Yes Yes No UB Cortemaggiore PC No No No UB
Cotignola RA No No No UB Crevalcore BO Yes No No I
Dovadola FC No No Yes UB Dozza BO No No No UB
Fabbrico RE No No No UB Faenza RA Yes Yes No PO
Fanano MO No No Yes P Felino PR No No No UB
Ferrara FE Yes Yes No PO Fidenza PR Yes Yes No PO
Finale Emilia MO Yes No No I Fiorano Modenese MO Yes No No UB
Fiscaglia FE No No No I Fiumalbo MO No No Yes P
Fontanelice BO No No Yes UB Fontanellato PR No No No UB
Fontevivo PR No No No UB Forli’ FC Yes Yes No PO
Forlimpopoli FC Yes No No UB Formigine MO Yes Yes No UB
Fusignano RA No No No UB Gaggio Montano BO No No Yes P
Galliera BO No No No I Gambettola FC Yes No No UB
Gattatico RE No No No UB Gatteo FC No No No UB
Gemmano RN No No No UB Gragnano Trebbiense PC No No No UB
Granarolo dell’Emilia BO Yes Yes No UB Grizzana Morandi BO No No Yes P
Gualtieri RE No No No I Guastalla RE Yes No No I
Guiglia MO No No Yes P Imola BO Yes Yes No PO
Lagosanto FE No No No P Lama Mocogno MO No No Yes P
Langhirano PR Yes No No I Lesignano de’ Bagni PR No No No I
Lizzano in Belvedere BO No No Yes P Loiano BO No No Yes P
Longiano FC No No No UB Lugagnano Val d’Arda PC No No No UB
Lugo RA Yes Yes No PO Luzzara RE No No No I
Maiolo RN No No Yes P Malalbergo BO No No No UB
Maranello MO Yes No No UB Marano sul Panaro MO No No Yes P
Marzabotto BO No No Yes I Massa Lombarda RA Yes No No UB
Medesano PR Yes No No UB Medolla MO No No No I
Meldola FC No No Yes UB Mercato Saraceno FC No No Yes UB
Minerbio BO No No No I Mirandola MO Yes No No I
Misano Adriatico RN Yes No No UB Modena MO Yes Yes No PO
Modigliana FC No No No UB Molinella BO Yes No No I
Mondaino RN No No No I Monghidoro BO No No Yes P
Monte San Pietro BO Yes No Yes UB Montecchio Emilia RE Yes Yes No UB
Montechiarugolo PR Yes No No UB Montecreto MO No No Yes P
Montefiore Conca RN No No No I Montegridolfo RN No No No I
Montescudo-Monte Colombo RN No No No UB Montese MO No No Yes P
Monticelli d’Ongina PC No No No UB Monzuno BO No No Yes I
Morciano di Romagna RN No No No UB Neviano degli Arduini PR No No No P
Noceto PR Yes No No UB Nonantola MO Yes No No UB
Novafeltria RN No No Yes P Novellara RE Yes No No UB
Novi di Modena MO Yes No No UB Ozzano dell’emilia BO Yes No No I
Palagano MO No No Yes P Parma PR Yes Yes No PO
Pavullo nel Frignano MO Yes No Yes P Pellegrino Parmense PR No No No I
Pennabilli RN No No Yes P Piacenza PC Yes Yes No PO
Pianello Val Tidone PC No No No I Pianoro BO Yes Yes Yes I
Pieve di Cento BO No No No I Podenzano PC No No No UB
Poggio Renatico FE No No No UB Poggio Torriana RN No No Yes I
Polinago MO No No Yes P Ponte dell’Olio PC No No No I
Pontenure PC No No No UB Portico e San Benedetto FC No No Yes I
Portomaggiore FE Yes No No I Poviglio RE No No No UB
Predappio FC No No Yes UB Prignano sulla Secchia MO No No Yes P
Quattro Castella RE Yes No No I Ravarino MO No No No I
Ravenna RA Yes Yes No PO Reggio nell’Emilia RE Yes Yes No PO
Reggiolo RE No No No UB Riccione RN Yes Yes No PO
Rimini RN Yes Yes No PO Rio Saliceto RE No No No UB
Riolo Terme RA No No Yes UB Rivergaro PC No No No UB
Rocca San Casciano FC No No Yes I Roccabianca PR No No No UB
Rolo RE No No No UB Roncofreddo FC No No Yes UB
Rottofreno PC Yes No No UB Rubiera RE Yes Yes No UB
Russi RA Yes No No UB Sala Baganza PR No No No UB
Sala Bolognese BO No No No I Salsomaggiore Terme PR Yes No No UB
Saludecio RN No No No UB San Benedetto Val di Sambro BO No No Yes P
San Cesario sul Panaro MO No No No I San Clemente RN No No No UB
San Felice sul Panaro MO Yes No No I San Giorgio di Piano BO No No No I
San Lazzaro di Savena BO Yes Yes No UB San Leo RN No No Yes P
San Martino in Rio RE No No No UB San Mauro Pascoli FC Yes No No UB
San Pietro in Casale BO Yes No No I San Polo D’Enza RE No No No I
San Possidonio MO No No No UB San Prospero MO No No No UB
San Secondo Parmense PR No No No UB Santa Sofia FC No No Yes P
Sant’Agata Bolognese BO No No No I Sant’Agata Sul Santerno RA No No No UB
Santarcangelo di Romagna RN Yes No No UB Sant’Ilario d’Enza RE Yes No No UB
Sarmato PC No No No UB Sarsina FC No No Yes UB
Sasso Marconi BO Yes Yes Yes UB Sassuolo MO Yes Yes No UB
Savignano sul Panaro MO No No No I Savignano sul Rubicone FC Yes No No UB
Scandiano RE Yes Yes No I Serramazzoni MO No No Yes P
Sestola MO No No Yes P Sissa Trecasali PR No No No UB
Sogliano al Rubicone FC No No Yes I Solarolo RA No No No UB
Soliera MO Yes No No UB Solignano PR No No No I
Soragna PR No No No UB Sorbolo Mezzani PR Yes No No UB
Spilamberto MO Yes No No I Talamello RN No No Yes P
Terenzo PR No No No P Terre del Reno FE Yes No No I
Tizzano Val Parma PR No No No P Toano RE No No Yes P
Torrile PR No No No UB Traversetolo PR No No No I
Travo PC No No Yes I Tredozio FC No No Yes I
Tresignana FE No No No I Valsamoggia BO Yes No Yes I
Varano de’ Melegari PR No No No I Ventasso RE No No Yes UP
Vergato BO No No Yes P Verghereto FC No No Yes P
Verucchio RN Yes No Yes UB Vetto RE No No Yes P
Vezzano sul Crostolo RE No No No UB Viano RE No No Yes I
Vignola MO Yes No No I Vigolzone PC No No No UB
Villanova sull’Arda PC No No No UB Voghiera FE No No No UB
Zocca MO No No Yes P Zola Predosa BO Yes Yes No UB
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Table 5.17: Joint classification of the 328 municipalities based on the ATA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall
best model.

ATA k = 1 k = 2 Row Total

No 17 272 289
0.059 0.941 0.881

Yes 1 38 39
0.026 0.974 0.119

Column Total 18 310 328

Table 5.18: Joint classification of the 328 municipalities based on the ADA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall
best model.

ADA k = 1 k = 2 Row Total

No 16 211 227
0.070 0.930 0.692

Yes 2 99 101
0.020 0.980 0.308

Column Total 18 310 328

Table 5.19: Joint classification of the 328 municipalities based on the Mountain classification
and the clusters determined according to the highest estimated posterior probabilities of the
overall best model.

Mountains k = 1 k = 2 Row Total

No 11 215 226
0.049 0.951 0.689

Yes 7 95 102
0.069 0.931 0.311

Column Total 18 310 328

Table 5.20: Joint classification of the 328 municipalities based on the NSIA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall
best model.

NSIA k = 1 k = 2 Row Total

UB 7 144 151
0.046 0.954 0.460

I 2 80 82
0.024 0.976 0.250

P 7 54 61
0.115 0.885 0.186

PO 0 16 16
0.000 1.000 0.049

UP 2 16 18
0.111 0.889 0.055

Column Total 18 310 328
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Figure 5.13: Boxplots of the two dependent variables (ISEE.20T and RANK.21T) for the clusters
of municipalities determined according to the highest estimated posterior probabilities of the
overall best model.

Table 5.21: Descriptive statistics of the two dependent variables (ISEE.20T and RANK.21T)
for the clusters of municipalities determined according to the highest estimated posterior prob-
abilities of the overall best model.

Dependent var. k Minimum First quar. Median Average Third quar. Maximum
ISEE.20T 1 −6.995 −4.850 −3.767 −4.036 −2.783 −1.384

2 −5.292 −3.053 −2.734 −2.870 −2.575 −1.904
RANK.21T 1 −7.851 −7.851 −6.272 −6.094 −4.481 −3.576

2 −7.851 −4.510 −4.021 −4.231 −3.639 −2.165

residuals yi − µ̂2(xi; β̂
∗
2) for all the municipalities of the second cluster (see the right side of

Figure 5.12) shows that, for the majority of the 40 mild outlying municipalities, the reason for

the outlyingness detected by the model has been an overestimation of the proportions for either

dependent variables. The values of the estimated distances d̂2i2 for the municipalities that have

been classified as typical are between 0.004 and 8.488; the minimum and maximum of the same

distances for the outlying municipalities are 9.53 and 89.54, respectively. Table 5.15 reports

the list of the municipalities identified as outliers in the second cluster, while those typical have

been reported in Table 5.16. Tables 5.17-5.20 report the contingency tables obtained from the

classifications reported in Section 5.3 and the classification determined according to the highest

estimated posterior probabilities by the overall best model. The latter tables also contain the

row percentages computed by dividing, for each group, the number of municipalities having one

of the category for the a priori classifications (cell value) by the total number of municipalities

classified in that category (cell’s row total). From such tables it seems that there is no association
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Figure 5.14: Boxplots of the ISEE.20 and RANK.21 variables (untransformed variables) for the
clusters of municipalities determined according to the highest estimated posterior probabilities
of the overall best model.

Table 5.22: Descriptive statistics of the ISEE.20 and RANK.21 variables (untransformed vari-
ables) for the clusters of municipalities determined according to the highest estimated posterior
probabilities of the overall best model.

Untransformed dep. var. k Minimum First quar. Median Average Third quar. Maximum
ISEE.20 1 0.000 0.008 0.023 0.041 0.058 0.200

2 0.005 0.045 0.061 0.059 0.071 0.130
RANK.21 1 0.000 0.000 0.002 0.006 0.011 0.028

2 0.000 0.011 0.018 0.018 0.026 0.103

between the partition of municipalities detected by the model and the a priori classifications

determined by the institutions. This result is confirmed by the values of the adjusted Rand index

(Hubert and Arabie, 1985), which are negative or close to zero for all the joint classifications

just mentioned. Figure 5.13 and Table 5.21 show respectively the boxplots and some descriptive

statistics of the two dependent variables for the clusters of municipalities determined according

to the highest estimated posterior probabilities of the overall best model. It seems that the

distributions of the two dependent variables among groups are different. Furthermore, the second

cluster of municipalities shows higher median values of ISEE.20T (−2.870) and RANK.21T

(−4.231). The second cluster also seems to be more homogeneous, although it also contains

some outlying municipalities. Consequently, the municipalities of the second cluster result to be

affected by a larger evidence of housing tension. Furthermore, Figure 5.14 and Table 5.22 show

the same information for the untransformed dependent variables (ISEE.20 and RANK.21). The

median values of ISEE.20 and RANK.21 in the second cluster of municipalities are respectively
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equal to 0.061 and 0.018. These latter values result to be greater than that of cluster 1.

5.8 Conclusions

A study on the housing tension in the municipalities of the Emilia-Romagna region has been

performed in this chapter, with the aim of helping the Regional Observatory of the housing

system to better comprehend the factors that may have a strong impact on housing tension in

the municipalities of the region and to detect the existence of clusters of municipalities with

different levels of housing tension. To this end, a new family of seemingly unrelated clusterwise

linear regression models has been developed as an extension of the model described in Chapter 2.

In particular, this class allows the mixing weights to depend on some concomitant variables.

The latter class, together with several types of Gaussian mixture-based linear regresion models

previously proposed in the literature, has been employed to study the dependence of housing

tension in the municipalities of the ERR on some indicators provided by the region. The

choice of the regressors to be considered in the specification of the linear predictors of the

two examined responses has been carried out through a genetic algorithm and a backward

elimination technique. The overall best model has suggested the presence of two clusters of

municipalities. In such a model some regressors are absent from both regression equations (SD2,

SD6, SLIC3, SLIC4, HSHM3, HSHM4), while some are common to both equations (SD2, SD6,

SLIC3, SLIC4, HSHM3, HSHM4). Additionally, certain regressors (SLIC1, HSHM6, HSHM7,

HSHM8) are relevant in explaining the ISEE.20T but are absent in the regression equation

of the second dependent variable. Conversely, SD5, SLIC2, SLIC5, HSHM5, and HSHM9 are

found to be relevant for the RANK.21T dependent variable, but they do not have an effect on

ISEE.20T. Therefore, using seemingly unrelated clusterwise regression models has allowed for

the specification of regression equations in which the two variables which describes the housing

tension in the municipalities of the ERR depend on different sets of covariates. The cluster

characterized by a greater association with the housing tension also shows the presence of some

outlying municipalities. Thus, the municipalities of this cluster seem to be the ones that need

more public housing policies. An avenue of future research is represented by the specification

of seemingly unrelated clusterwise regression models explicitly accounting for space-dependent

observations.
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Appendix A

R functions

This section contains the R functions which have been developed in this project and employed

in the analyses reported in Chapters 2-3 (MCSUN) and in Chapter 4 (SuCNCW)1.

A.1 MCSUN

#-----------------------------------------------------------------------------------

# Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models

#-----------------------------------------------------------------------------------

MCSUN<-function(formula.list,data=list(),k,tol=rep(10^(-8), 3), //

iter.max=c(500,500,10),modelnameY){

library(mclust)

library(mvtnorm)

library(Matrix)

library(matrixcalc)

library(systemfit)

library(tictoc)

library(ContaminatedMixt)

start_time <- Sys.time()

tic()

1The presence of “//” at the end of the row indicates that the corresponding command continues in the
following row.
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M<-length(formula.list)

#------------------

# Regressors Matrix

#------------------

v_list<-character(0)

y_list<-character(0)

for (i in 1:M){

tf<-terms(formula.list[[i]],data=data)

v_list<-c(v_list,attr(tf,"term.labels"))

y_list<-c(y_list,all.vars(formula.list[[i]])[1])

}

P.star<-length(v_list)

v_unique<-unique(v_list)

P<-length(v_unique)

d<-matrix(NA,M,P)

colnames(d)<-v_unique

d<-as.data.frame(d)

pm<-NULL

for (m in 1:M){

tf_i<-terms(formula.list[[m]],data=data)

v_list_i<-attr(tf_i,"term.labels")

pm[m]<-length(v_list_i)

d[m,]<-is.element(v_unique, v_list_i)*1

}

D<-d<-as.matrix(d)

D[D == 0] <- NA

colnames(D)<-v_unique

rownames(D)<-y_list
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#-------------------------

# Npar by parameterisation

#-------------------------

if (modelnameY == "EII") nparcov.Y = 1

else if (modelnameY == "VII") nparcov.Y = k

else if (modelnameY == "EEI") nparcov.Y = M

else if (modelnameY == "VEI") nparcov.Y = M+k-1

else if (modelnameY == "EVI") nparcov.Y = M*k-k+1

else if (modelnameY == "VVI") nparcov.Y = M*k

else if (modelnameY == "EEE") nparcov.Y = M*(M+1)/2

else if (modelnameY == "EEV") nparcov.Y = k*M*(M+1)/2-(k-1)*M

else if (modelnameY == "VEV") nparcov.Y = k*M*(M+1)/2-(k-1)*(M-1)

else if (modelnameY == "VVV") nparcov.Y = k*M*(M+1)/2

else if (modelnameY == "EVE") nparcov.Y = M*(M+1)/2+(k-1)*(M-1)

else if (modelnameY == "VVE") nparcov.Y = M*(M+1)/2+(k-1)*M

else if (modelnameY == "VEE") nparcov.Y = M*(M+1)/2+(k-1)

else if (modelnameY == "EVV") nparcov.Y = k*M*(M+1)/2-(k-1)

else stop("modelname or covtype for the responses is not correctly defined")

#-------------------------------------------------

# Ordering the data frame and Missing Data control

#-------------------------------------------------

v_all<-c(y_list,v_unique)

data_O<-data[,v_all]

missing<-is.na(data_O)

if (sum(missing)!=0) //

stop("Function MGlm can not deal with missing values")

#---------------------------------
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# Initialization of the parameters

#---------------------------------

modello<-systemfit(formula.list,data=data_O)

residui<-residuals(modello)

#--------------------

# Prior Probabilities

#--------------------

mclust.init<-mclustBIC(residui,G=k,modelNames=modelnameY)

if (is.na(mclust.init)==TRUE) {

mclust.init<-mclustBIC(residui,G=k)

mclust.init<-summary(mclust.init,residui,G=k)

} else {

mclust.init<-mclustBIC(residui,G=k)

mclust.init<-summary(mclust.init,residui,G=k,modelNames=modelnameY)

}

pro.init<-1

if (k>1) pro.init<-mclust.init$parameters$pro

y<-as.matrix(data_O[,1:M])

colnames(y)<-y_list

I<-length(y[,1])

Dcost<-NULL

#----------------------------------------

# Parameters of the Response distribution

#----------------------------------------

b.init.k<-matrix(0,P.star+M,k)

Sigma_init_Y.X<-array(0,c(M,M,k))
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for (h in 1:k){

mod.YX.h<-try(systemfit(formula.list,data=data_O //

[mclust.init$classification==h,]),silent=TRUE)

if (class(mod.YX.h)=="try-error") mod.YX.h<-systemfit(formula.list, //

data=data_O[sample(x=I,size=I*pro.init[h]),])

b.init.k[,h]<-as.vector(mod.YX.h$coefficients)

Sigma_init_Y.X[,,h]<-mod.YX.h$residCov

}

rownames(b.init.k)<-names(mod.YX.h$coefficients)

dimnames(Sigma_init_Y.X)<-list(y_list,y_list)

if (modelnameY == "EII") //

val = try(msEII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VII") //

val = try(msVII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEI") //

val = try(msEEI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VEI") //

val = try(msVEI(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVI") //

val = try(msEVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VVI") //

val = try(msVVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEE") //

val = try(msEEE(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEV") //

val = try(msEEV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VEV") //

val = try(msVEV(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //
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val = try(msVVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EVE") //

val = try(msEVE(Sk=Sigma_init_Y.X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val = try(msVVE(Sk=Sigma_init_Y.X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val = try(msVEE(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val = try(msEVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")

Sigma_init_Y.X<-val$sigma

#-------------------------

# Contamination parameters

#-------------------------

alpha<-rep(0.999,k)

eta<-rep(1.001,k)

#-------------------------------------

# Initialization of the Log Likelihood

#-------------------------------------

x.l<-list()

for (m in 1:M){

x.l[[m]]<-lm(formula.list[[m]],data_O,x=TRUE)$x

}
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Xpp<-bdiag(x.l)

priorphi.ih<-matrix(0,I,k)

h_1<-matrix(0,I,k)

h_m<-matrix(0,I,k)

for (h in 1:k){

mu_Y.X<- Xpp%*%b.init.k

h_1[,h]<-(alpha[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(Sigma_init_Y.X[,,h])))

h_m[,h]<-dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(Sigma_init_Y.X[,,h]), //

alpha[h],eta[h])

priorphi.ih[,h]<-pro.init[h]*h_m[,h]

}

zeri<-sum(priorphi.ih==0)>0

loglik<- sum(log(apply(priorphi.ih,1,sum)))

loglik.iterECM<-loglik

iterazioni.lc2.iterECM<-0

stopECM<-FALSE

iterECM<-0

C.noninvertibile<-0

SigmaY.noninvertibile<-0

Alpha_new<-alpha

Eta_new<-eta

Beta_init<-b.init.k

Beta_new<-Beta_init

SigmaY.X_init<-Sigma_init_Y.X

SigmaY.X_new<-SigmaY.X_init
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#--------------

# ECM ALGORITHM

#--------------

while (stopECM==FALSE){

#---------

# E-STEP

#---------

#Computation of the posterior probabilities

p.ih<-priorphi.ih/apply(priorphi.ih,1,sum)

u.ih<-h_1/h_m

#--------

# CM1 STEP

#--------

#Computation of the prior probabilities

pro.new<-apply(p.ih,2,sum)/I

num.ih<-p.ih*u.ih

#Computation of alpha

Alpha_new<-apply(num.ih,2,sum)/apply(p.ih,2,sum)

controllo.Alpha<-rep(0.5,k)

controllo1.Alpha<-rbind(Alpha_new,controllo.Alpha)

Alpha_new<-apply(controllo1.Alpha,2,max)

#-------------------------------------------------

# Iterative computation of Beta_new e SigmaY.X_new

#-------------------------------------------------
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iterCM<-0

stopCM<-0

while (stopCM==FALSE){

#Initialization of the matrices

C<-list()

N<-list()

F<-list()

#Weights

w.ih<-u.ih+t(t(matrix(1,I,k)-u.ih)/Eta_new)

for (h in 1:k){

F[[h]]<- crossprod(Xpp,suppressMessages((solve(SigmaY.X_new[,,h]) //

%x%Matrix(diag(p.ih[,h]*w.ih[,h]),sparse=TRUE) )))

C[[h]]<-F[[h]]%*%Xpp

N[[h]]<-F[[h]]%*% as.vector(y)

#Is matrix C nonsingular?

check.C<-eigen(as.matrix(C[[h]]),symmetric=TRUE)

invertibilitaC<-check.C$values[(P.star+M)]/check.C$values[1] //

> 1/(10^50)

if (invertibilitaC==FALSE){

#ECM algorithm stops

stopCM<-TRUE

stopECM<-TRUE

C.noninvertibile<-1

} else {

#Computation of Beta

Beta_new[,h]<-solve(as.matrix(C[[h]]),tol=1/(10^50))%*% //
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as.matrix(N[[h]])

}

}

if (C.noninvertibile==0) {

check.invertibilita.SigmaY<-rep(0,k)

for (h in 1:k){

U<-matrix((as.vector(y)-(Xpp%*%as.matrix(Beta_new[,h]))),M,I,byrow=TRUE)%*% //

diag(p.ih[,h]*w.ih[,h])%*%matrix((as.vector(y)- //

(Xpp%*%as.matrix(Beta_new[,h]))),I,M)

SigmaY.X_new[,,h]<- U/sum(p.ih[,h])

}

if (modelnameY == "EII") //

val2 = try(msEII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VII") //

val2 = try(msVII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEI") //

val2 = try(msEEI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VEI") //

val2 = try(msVEI(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVI") //

val2 = try(msEVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VVI") //

val2 = try(msVVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEE") //

val2 = try(msEEE(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEV") //

val2 = try(msEEV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VEV") //
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val2 = try(msVEV(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //

val2 = try(msVVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EVE") //

val2 = try(msEVE(Sk=SigmaY.X_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val2 = try(msVVE(Sk=SigmaY.X_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val2 = try(msVEE(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val2 = try(msEVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")

if (length(val2)>1){

SigmaY.X_new<-val2$sigma

for (h in 1:k){

if (M==1) {

contr.1<-SigmaY.X_new[,,h]< 1/(10^10)

contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)

contr.3<-(Eta_new[h]*SigmaY.X_new[,,h])< 1/(10^10)

contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

check.invertibilita.SigmaY[h]<- (contr.1==TRUE | class(contr.2)=="try-error" | //

contr.3==TRUE | class(contr.4)=="try-error")

} else {

check.ha<-eigen(SigmaY.X_new[,,h],symmetric=TRUE)

check.hb<-eigen(Eta_new[h]*SigmaY.X_new[,,h],symmetric=TRUE)

contr.1<-check.ha$values[M]/check.ha$values[1] < 1/(10^10)

contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)
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contr.3<-check.hb$values[M]/check.hb$values[1] < 1/(10^10)

contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

}

}

}

if (sum(check.invertibilita.SigmaY)!=0){

# the ECM algorithm stops

stopCM<-TRUE

stopECM<-TRUE

SigmaY.noninvertibile<-1

} else {

iterCM<-iterCM+1

criterio<-sqrt(sum(( Beta_init- Beta_new)^2) + //

sum((SigmaY.X_init-SigmaY.X_new)[upper.tri(diag(M),diag=TRUE)]^2))

nparametri.criterio<-k*(P.star+M)+k*M*(M+1)/2

if ((criterio/nparametri.criterio<tol[2]) || (iterCM==iter.max[2])){

stopCM<-TRUE

iterazioni.lc2.iterECM<-c(iterazioni.lc2.iterECM,iterCM)

} else {

Beta_init<- Beta_new

SigmaY.X_init<-SigmaY.X_new

}

}

}

#--------------------------

} # End of WHILE for B and SY

#--------------------------

nume.ih<-matrix(0,I,k)

deno.ih<-p.ih*(matrix(1,I,k)-u.ih)
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#---------------------------------

# Computation of Eta- STEP CM2

#---------------------------------

if (C.noninvertibile==0 & SigmaY.noninvertibile==0) {

for (h in 1:k){

mu_Y.X<- Xpp%*%Beta_new

nume.ih[,h]<-deno.ih[,h]*mahalanobis.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(SigmaY.X_new[,,h]))

}

etanew<-apply(nume.ih,2,sum)/(M*apply(deno.ih,2,sum))

controllo.Eta<-rep(1,k)

controllo1.Eta<-rbind(etanew,controllo.Eta)

Eta_new<-apply(controllo1.Eta,2,max)

}

if (C.noninvertibile==0 & SigmaY.noninvertibile==0) {

#---------------------------------

# Updating the log-likelihood

#---------------------------------

for (h in 1:k){

mu_Y.X<- Xpp%*%Beta_new

h_1[,h]<-(Alpha_new[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(SigmaY.X_new[,,h])))

xxx<-try(dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h],Eta_new[h]),silent=TRUE)

if (class(xxx)=="try-error") {

xxx<-dCNmod(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h],Eta_new[h])

}

h_m[,h]<-xxx
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priorphi.ih[,h]<-pro.new[h]*h_m[,h]

}

zeri<-c(zeri,sum(priorphi.ih==0)>0)

loglik.new<- sum(log(apply(priorphi.ih,1,sum)))

loglik.iterECM<-c(loglik.iterECM,loglik.new)

iterECM<-iterECM+1

if (iterECM>2){

#--------------------

# Stopping criterion

#--------------------

a<-(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])/ //

(loglik.iterECM[(iterECM)] - loglik.iterECM[(iterECM-1)])

if (a=="NaN") a<-0

loglik.inf<-loglik.iterECM[(iterECM-1)]+(1/(1-a))* //

(loglik.iterECM[iterECM]-loglik.iterECM[(iterECM-1)])

if (k==1) loglik.inf<-loglik.iterECM[iterECM]

improvement<-loglik.inf-loglik.new

if ((abs(loglik.inf-loglik.new)<tol[1]) || //

(iterECM==iter.max[1])) stopECM<-TRUE

else loglik<-loglik.new

} else {

loglik<-loglik.new

}

}

#-------------------------

} # End of the ECM Algorithm

#-------------------------

cat("numero tot. di iterazioni ECM = ", iterECM, "\n")

EM.ok<-C.noninvertibile+SigmaY.noninvertibile
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if (EM.ok == 0) {

#-----------

# BIC

#-----------

npar<- (3*k)-1 + k*(P.star+M) + nparcov.Y

bic<- 2*loglik-npar*log(I)

#-----------

# ICL

#-----------

massimo<-c()

cl<-apply(p.ih,1,which.max)

for (i in 1:I){

massimo[i]<-p.ih[i,cl[i]]

}

icl_mazza<-bic+2*sum(log(massimo))

entropia.post<-function(z) {

contr<-log(z)*z

contr.ok<-contr!="NaN"

-sum(contr[contr.ok])

}

icl_baek<-bic-2*sum(apply(p.ih,1,entropia.post))

#----------

# Ordering

#----------

pos<-sort.list(pro.new)
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Alpha<-Alpha_new[pos]

Eta<-Eta_new[pos]

B<-Beta_new[,pos]

SigmaY.X<-SigmaY.X_new[,,pos]

pi<-sort(pro.new)

pih<-p.ih[,pos]

uih<-u.ih[,pos]

end_time <- Sys.time()

tempo<-toc()

total_time<-end_time - start_time

total_time2<-tempo$toc-tempo$tic

} else {

Alpha<-NA

Eta<-NA

B<-NA

SigmaY.X<-NA

pi<-NA

pih<-NA

uih<-NA

loglik<-NA

loglik.iterEM<-NA

npar<-NA

bic<-NA

cl<-NA

icl_baek<-NA

icl_mazza<-NA

total_time<-NA

total_time2<-NA

}
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out<-list(M=M,k=k,P=P,P.star=P.star, D=D,pi=pi,B=B,SigmaY.X=SigmaY.X, //

loglik.iter=loglik.iterECM,loglik=loglik,npar=npar, BIC=bic, //

modelnameY=modelnameY, ICL_MAZZA=icl_mazza, ICL_BAEK=icl_baek, //

Alpha=Alpha, Eta=Eta, pih=pih, uih=uih,cl=cl,time=total_time, //

time2=total_time2)

class(out)<-"MCSUN"

out

}
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A.2 SuCNCW

#-----------------------------------------------------------------------------

# Parsimonious seemingly unrelated contaminated normal cluster-weighted models

#-----------------------------------------------------------------------------

CMW<-function(formula.list,data=list(),k,tol=rep(10^(-6),3), //

iter.max=c(500,1,10),v_input=c(),modelnameY,modelnameX){

library(mclust)

library(mvtnorm)

library(Matrix)

library(matrixcalc)

library(systemfit)

library(tictoc)

library(ContaminatedMixt)

start_time <- Sys.time()

tic()

M<-length(formula.list)

if (M==0) stop("No response variables have been selected for the analysis")

#--------------------

# Regressors Matrix

#--------------------

v_list<-character(0)

y_list<-character(0)

for (i in 1:M){

tf<-terms(formula.list[[i]],data=data)
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v_list<-c(v_list,attr(tf,"term.labels"))

yi<-attr(tf,"variables")[[2]]

class(yi)<-"character"

y_list<-c(y_list,yi)

}

P.star<-length(v_list)

v_unique<-unique(c(v_list,v_input))

P<-length(v_unique)

if (P==0) stop("Only response variables have been selected for the analysis")

#-------------------------

# Npar by parameterisation

#-------------------------

if (modelnameX == "EII") nparcov.X <- 1

else if (modelnameX == "VII") nparcov.X <- k

else if (modelnameX == "EEI") nparcov.X <- P

else if (modelnameX == "VEI") nparcov.X <- P+k-1

else if (modelnameX == "EVI") nparcov.X <- P*k-k+1

else if (modelnameX == "VVI") nparcov.X <- P*k

else if (modelnameX == "EEE") nparcov.X <- P*(P+1)/2

else if (modelnameX == "EEV") nparcov.X <- k*P*(P+1)/2-(k-1)*P

else if (modelnameX == "VEV") nparcov.X <- k*P*(P+1)/2-(k-1)*(P-1)

else if (modelnameX == "VVV") nparcov.X <- k*P*(P+1)/2

else if (modelnameX == "EVE") nparcov.X <- P*(P+1)/2+(k-1)*(P-1)

else if (modelnameX == "VVE") nparcov.X <- P*(P+1)/2+(k-1)*P

else if (modelnameX == "VEE") nparcov.X <- P*(P+1)/2+(k-1)

else if (modelnameX == "EVV") nparcov.X <- k*P*(P+1)/2-(k-1)

else stop("modelname or covtype for the predictors is not correctly defined")
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if (modelnameY == "EII") nparcov.Y <- 1

else if (modelnameY == "VII") nparcov.Y <- k

else if (modelnameY == "EEI") nparcov.Y <- M

else if (modelnameY == "VEI") nparcov.Y <- M+k-1

else if (modelnameY == "EVI") nparcov.Y <- M*k-k+1

else if (modelnameY == "VVI") nparcov.Y <- M*k

else if (modelnameY == "EEE") nparcov.Y <- M*(M+1)/2

else if (modelnameY == "EEV") nparcov.Y <- k*M*(M+1)/2-(k-1)*M

else if (modelnameY == "VEV") nparcov.Y <- k*M*(M+1)/2-(k-1)*(M-1)

else if (modelnameY == "VVV") nparcov.Y <- k*M*(M+1)/2

else if (modelnameY == "EVE") nparcov.Y <- M*(M+1)/2+(k-1)*(M-1)

else if (modelnameY == "VVE") nparcov.Y <- M*(M+1)/2+(k-1)*M

else if (modelnameY == "VEE") nparcov.Y <- M*(M+1)/2+(k-1)

else if (modelnameY == "EVV") nparcov.Y <- k*M*(M+1)/2-(k-1)

else stop("modelname or covtype for the responses is not correctly defined")

d<-matrix(NA,M,P)

colnames(d)<-v_unique

d<-as.data.frame(d)

pm<-NULL

for (m in 1:M){

tf_i<-terms(formula.list[[m]],data=data)

v_list_i<-attr(tf_i,"term.labels")

pm[m]<-length(v_list_i)

d[m,]<-is.element(v_unique, v_list_i)*1

}

D<-d<-as.matrix(d)

D[D == 0] <- NA

colnames(D)<-v_unique

rownames(D)<-y_list

#-------------------------------------------------
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# Ordering the data frame and Missing Data control

#-------------------------------------------------

v_all<-c(y_list,v_unique)

data_O<-data[,v_all]

missing<-is.na(data_O)

if (sum(missing)!=0) stop("Function CMW can not deal with missing values")

#---------------------------------

# Initialization of the parameters

#---------------------------------

#--------------------

# Prior Probabilities

#--------------------

mclust.init<-mclustBIC(residui,G=k,modelNames=c(modelnameY,modelnameX))

if (sum(is.na(mclust.init))==2) {

mclust.init<-mclustBIC(data_O,G=k)

mclust.init<-summary(mclust.init,data_O,G=k)

} else {

mclust.init<-mclustBIC(residui,G=k)

mclust.init<-summary(mclust.init,data_O,G=k, //

modelNames=c(modelnameY,modelnameX))

}

pro.init<-1

if (k>1) pro.init<-mclust.init$parameters$pro

y<-as.matrix(data_O[,1:M])

colnames(y)<-y_list

I<-length(y[,1])
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#-----------------------------------------

# Parameters of the Regressor distribution

#-----------------------------------------

mean_joint<-mclust.init$parameters$mean

var_joint<-mclust.init$parameters$variance$sigma

Dcost<-NULL

mean_init_X<-matrix(mean_joint[(M+1):(M+P),],P,k)

Sigma_init_X<-array(var_joint[(M+1):(M+P),(M+1):(M+P),],c(P,P,k))

rownames(mean_init_X)<-v_unique

dimnames(Sigma_init_X)<-list(v_unique,v_unique)

#----------------------------------------

# Parameters of the Response distribution

#----------------------------------------

b.init.k<-matrix(0,P.star+M,k)

Sigma_init_Y.X<-array(0,c(M,M,k))

for (h in 1:k){

mod.YX.h<-try(systemfit(formula.list,data=data_O //

[mclust.init$classification==h,]),silent=TRUE)

if (class(mod.YX.h)=="try-error") mod.YX.h<-systemfit(formula.list, //

data=data_O[sample(x=I,size=I*pro.init[h]),])

b.init.k[,h]<-as.vector(mod.YX.h$coefficients)

Sigma_init_Y.X[,,h]<-mod.YX.h$residCov

}

rownames(b.init.k)<-names(mod.YX.h$coefficients)

dimnames(Sigma_init_Y.X)<-list(y_list,y_list)

if (modelnameY == "EII") //

val <- try(msEII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
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else if (modelnameY == "VII") //

val <- try(msVII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEI") //

val <- try(msEEI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VEI") //

val <- try(msVEI(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVI") //

val <- try(msEVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VVI") //

val <- try(msVVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEE") //

val <- try(msEEE(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EEV") //

val <- try(msEEV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "VEV") //

val <- try(msVEV(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //

val <- try(msVVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EVE") //

val <- try(msEVE(Sk=Sigma_init_Y.X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val <- try(msVVE(Sk=Sigma_init_Y.X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val <- try(msVEE(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val <- try(msEVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")
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Sigma_init_Y.X<-val$sigma

if (modelnameX == "EII") //

val <- try(msEII(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VII") //

val <- try(msVII(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEI") //

val <- try(msEEI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VEI") //

val <- try(msVEI(Sk=Sigma_init_X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVI") //

val <- try(msEVI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VVI") //

val <- try(msVVI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEE") //

val <- try(msEEE(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEV") //

val <- try(msEEV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VEV") //

val <- try(msVEV(Sk=Sigma_init_X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVV") //

val <- try(msVVV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EVE") //

val <- try(msEVE(Sk=Sigma_init_X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVE") //

val <- try(msVVE(Sk=Sigma_init_X, ng=pro.init, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VEE") //
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val <- try(msVEE(Sk=Sigma_init_X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVV") //

val <- try(msEVV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the predictors is not correctly defined")

Sigma_init_X<-val$sigma

#-------------------------

# Contamination parameters

#-------------------------

alpha<-rep(0.999,k)

eta<-rep(1.001,k)

alpha_x<-rep(0.999,k)

eta_x<-rep(1.001,k)

#-----------------------------------------------

# Initialization of the Log Likelihood

#-----------------------------------------------

y<-as.matrix(data_O[,1:M])

colnames(y)<-y_list

x<-as.matrix(data_O[,(M+1):(M+P)])

colnames(x)<-v_unique

I<-length(y[,1])

int<-rep(1,length.out=I)

x.l<-list()

for (m in 1:M){

if (pm[m]==0) {
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x.l[[m]]<-int

} else {

x.sel<-t(t(x)*D[m,])

x.l[[m]]<-cbind(int,x.sel[, !apply(is.na(x.sel), 2, all)])

}

}

Xpp<-bdiag(x.l)

h_1<-matrix(0,I,k)

h_m<-matrix(0,I,k)

h_2<-matrix(0,I,k)

h_p<-matrix(0,I,k)

priorphi.ih<-matrix(0,I,k)

mu_Y.X<- Xpp%*%b.init.k

for (h in 1:k){

h_1[,h]<-(alpha[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(Sigma_init_Y.X[,,h])))

h_2[,h]<-(alpha_x[h]*dmvnorm.new(x,matrix(mean_init_X[,h],I,P,byrow=TRUE), //

sigma=as.matrix(Sigma_init_X[,,h])))

h_m[,h]<-dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(Sigma_init_Y.X[,,h]), //

alpha[h],eta[h])

h_p[,h]<-dCN(x,matrix(mean_init_X[,h],I,P,byrow=T),as.matrix(Sigma_init_X[,,h]), //

alpha_x[h],eta_x[h])

priorphi.ih[,h]<-pro.init[h]*h_m[,h]* h_p[,h]

}
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zeri<-sum(priorphi.ih==0)>0

loglik<- sum(log(apply(priorphi.ih,1,sum)))

loglik.iterECM<-loglik

iterazioni.lc2.iterECM<-0

stopECM<-FALSE

iterECM<-0

Alpha_new_x<-alpha_x

Eta_new_x<-eta_x

C.noninvertibile<-0

SigmaY.noninvertibile<-0

Alpha_new<-alpha

Eta_new<-eta

Beta_init<-b.init.k

Beta_new<-Beta_init

SigmaY.X_init<-Sigma_init_Y.X

SigmaY.X_new<-SigmaY.X_init

SigmaX.noninvertibile<-0

muX_new<-mean_init_X

SigmaX_new<-Sigma_init_X

#--------------

# ECM ALGORITHM

#--------------

while (stopECM==FALSE){

#---------

# E-STEP

#---------

#computation of the posterior probabilities

p.ih<-priorphi.ih/apply(priorphi.ih,1,sum)
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u.ih<-h_1/h_m

v.ih<-h_2/h_p

#---------

# CM1 STEP

#---------

#Computation of the prior probabilities

pro.new<-apply(p.ih,2,sum)/I

num.ih.x<-p.ih*v.ih

Alpha_new_x<-apply(num.ih.x,2,sum)/apply(p.ih,2,sum)

controllo.Alpha.x<-rep(0.5,k)

controllo1.Alpha.x<-rbind(Alpha_new_x,controllo.Alpha.x)

Alpha_new_x<-apply(controllo1.Alpha.x,2,max)

q.ih<-v.ih+t(t(matrix(1,I,k)-v.ih)/Eta_new_x)

#Computation of muX

for(h in 1:k){

u<-sweep(x,1,p.ih[,h]*q.ih[,h],"*")

muX_new[,h]<-apply(u,2,sum)/sum(p.ih[,h]*q.ih[,h])

}

#Computation of SigmaX

for(h in 1:k){

uu<-matrix((t(x)-muX_new[,h])%*%diag(p.ih[,h]*q.ih[,h]) //

%*%t(t(x)-muX_new[,h]),P,P)

rownames(uu)<-v_unique

colnames(uu)<-v_unique

SigmaX_new[,,h]<- matrix(uu/sum(p.ih[,h]),P,P)

}
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if (modelnameX == "EII") //

val <- try(msEII(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "VII") //

val <- try(msVII(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "EEI") //

val <- try(msEEI(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "VEI") //

val <- try(msVEI(Sk=SigmaX_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVI") //

val <- try(msEVI(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "VVI") //

val <- try(msVVI(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "EEE") //

val <- try(msEEE(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "EEV") //

val <- try(msEEV(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "VEV") //

val <- try(msVEV(Sk=SigmaX_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVV") //

val <- try(msVVV(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else if (modelnameX == "EVE") //

val <- try(msEVE(Sk=SigmaX_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVE") //

val <- try(msVVE(Sk=SigmaX_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VEE") //

val <- try(msVEE(Sk=SigmaX_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVV") //
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val <- try(msEVV(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else stop("modelname or covtype for the predictors is not correctly defined")

check.invertibilita.X<-rep(0,k)

if (length(val)>1){

SigmaX_new<-val$sigma

for (h in 1:k){

if (P==1) {

contr.X1<-SigmaX_new[,,h]< 1/(10^10)

contr.X2<-try(solve(SigmaX_new[,,h]),silent=TRUE)

contr.X3<-(Eta_new_x[h]*SigmaX_new[,,h])< 1/(10^10)

contr.X4<-try(solve(Eta_new_x[h]*SigmaX_new[,,h]),silent=TRUE)

check.invertibilita.X[h]<- (contr.X1==TRUE | class(contr.X2)=="try-error" | //

contr.X3==TRUE | class(contr.X4)=="try-error")

} else {

check.Xha<-eigen(SigmaX_new[,,h],symmetric=TRUE)

check.Xhb<-eigen(Eta_new_x[h]*SigmaX_new[,,h],symmetric=TRUE)

contr.X1<-sum(check.Xha$values[P]/check.Xha$values[1] < 1/(10^10)) //

+sum(check.Xha$values<10^(-20))

contr.X2<-try(solve(SigmaX_new[,,h]),silent=TRUE)

contr.X3<-sum(check.Xhb$values[P]/check.Xhb$values[1] < 1/(10^10)) //

+sum(check.Xhb$values<10^(-20))

contr.X4<-try(solve(Eta_new_x[h]*SigmaX_new[,,h]),silent=TRUE)

check.invertibilita.X[h]<-(contr.X1==1 | class(contr.X2)[1]=="try-error" | //

class(contr.X2)[2]=="try-error" | contr.X3==1 | //

class(contr.X4)[1]=="try-error" | class(contr.X4)[2]=="try-error")

}

}

}

if (sum(check.invertibilita.X)!=0){
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stopCM<-TRUE

stopECM<-TRUE

SigmaX.noninvertibile<-1

} else {

num.ih<-p.ih*u.ih

#aggiornamento di alpha

Alpha_new<-apply(num.ih,2,sum)/apply(p.ih,2,sum)

controllo.Alpha<-rep(0.5,k)

controllo1.Alpha<-rbind(Alpha_new,controllo.Alpha)

Alpha_new<-apply(controllo1.Alpha,2,max)

#--------------------------------------------------

# iterative computation of Beta_new e SigmaY.X_new

#--------------------------------------------------

iterCM<-0

stopCM<-0

while (stopCM==FALSE){

# Initialization of the matrices

C<-list()

N<-list()

F<-list()

#Weights

w.ih<-u.ih+t(t(matrix(1,I,k)-u.ih)/Eta_new)

for (h in 1:k){

F[[h]]<- crossprod(Xpp,suppressMessages((solve(SigmaY.X_new[,,h]) //
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%x%Matrix(diag(p.ih[,h]*w.ih[,h]),sparse=TRUE) ))

C[[h]]<-F[[h]]%*%Xpp

N[[h]]<-F[[h]]%*% as.vector(y)

# is matrix C nonsingular?

check.C<-eigen(as.matrix(C[[h]]),symmetric=TRUE)

invertibilitaC<-check.C$values[(P.star+M)]/check.C$values[1] //

> 1/(10^50)

if (invertibilitaC==FALSE){

# ECM algorithm stops

stopCM<-TRUE

stopECM<-TRUE

C.noninvertibile<-1

} else {

# computation of Beta

Beta_new[,h]<-solve(as.matrix(C[[h]]),tol=1/(10^50)) //

%*% as.matrix(N[[h]])

}

}

if (C.noninvertibile==0) {

check.invertibilita.SigmaY<-rep(0,k)

for (h in 1:k){

U<-matrix((as.vector(y)-(Xpp%*%as.matrix(Beta_new[,h]))),M,I,byrow=TRUE) //

%*% diag(p.ih[,h]*w.ih[,h])%*%matrix((as.vector(y)- //

(Xpp%*%as.matrix(Beta_new[,h]))),I,M)

SigmaY.X_new[,,h]<- U/sum(p.ih[,h])

}

if (modelnameY == "EII") //
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val2 <- try(msEII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VII") //

val2 <- try(msVII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEI") //

val2 <- try(msEEI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VEI") //

val2 <- try(msVEI(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVI") //

val2 <- try(msEVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VVI") //

val2 <- try(msVVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEE") //

val2 <- try(msEEE(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EEV") //

val2 <- try(msEEV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VEV") //

val2 <- try(msVEV(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //

val2 <- try(msVVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EVE") //

val2 <- try(msEVE(Sk=SigmaY.X_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val2 <- try(msVVE(Sk=SigmaY.X_new, ng=pro.new, D0=Dcost, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val2 <- try(msVEE(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val2 <- try(msEVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
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else stop("modelname or covtype for the responses is not correctly defined")

if (length(val2)>1){

SigmaY.X_new<-val2$sigma

for (h in 1:k){

if (M==1) {

contr.1<-SigmaY.X_new[,,h]< 1/(10^10)

contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)

contr.3<-(Eta_new[h]*SigmaY.X_new[,,h])< 1/(10^10)

contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

check.invertibilita.SigmaY[h]<- (contr.1==TRUE | class(contr.2)=="try-error" | //

contr.3==TRUE | class(contr.4)=="try-error")

} else {

check.ha<-eigen(SigmaY.X_new[,,h],symmetric=TRUE)

check.hb<-eigen(Eta_new[h]*SigmaY.X_new[,,h],symmetric=TRUE)

contr.1<-sum(check.ha$values[M]/check.ha$values[1] < 1/(10^10)) //

+sum(check.ha$values<10^(-20))

contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)

contr.3<-sum(check.hb$values[M]/check.hb$values[1] < 1/(10^10)) //

+sum(check.hb$values<10^(-20))

contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

check.invertibilita.SigmaY[h]<-(contr.1==1 | class(contr.2)[1]=="try-error"| //

class(contr.2)[2]=="try-error" | contr.3==1 | //

class(contr.4)[1]=="try-error" | class(contr.4)[2]=="try-error")

}

}

}

if (sum(check.invertibilita.SigmaY)!=0){

# the ECM algorithm stops

stopCM<-TRUE
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stopECM<-TRUE

SigmaY.noninvertibile<-1

} else {

iterCM<-iterCM+1

criterio<-sqrt(sum(( Beta_init- Beta_new)^2) + //

sum((SigmaY.X_init-SigmaY.X_new)[upper.tri(diag(M),diag=TRUE)]^2))

nparametri.criterio<-k*(P.star+M)+k*M*(M+1)/2

if ((criterio/nparametri.criterio<tol[2]) || (iterCM==iter.max[2])){

stopCM<-TRUE

iterazioni.lc2.iterECM<-c(iterazioni.lc2.iterECM,iterCM)

} else {

Beta_init<- Beta_new

SigmaY.X_init<-SigmaY.X_new

}

}

}

}

#-------------------------

} #END OF WHILE FOR B AND SY

#-------------------------

nume.ih<-matrix(0,I,k)

nume.ih.x<-matrix(0,I,k)

deno.ih<-p.ih*(matrix(1,I,k)-u.ih)

deno.ih.x<-p.ih*(matrix(1,I,k)-v.ih)

#---------------------------------

#Computation of Eta- STEP CM2

#---------------------------------

if (C.noninvertibile==0 & SigmaY.noninvertibile==0 & SigmaX.noninvertibile==0) {



A.2 SuCNCW 215

SigmaX.noninvertibile==0

mu_Y.X<- Xpp%*%Beta_new

for (h in 1:k){

nume.ih[,h]<-deno.ih[,h]*mahalanobis.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(SigmaY.X_new[,,h]))

nume.ih.x[,h]<-deno.ih.x[,h]*mahalanobis.new(x,matrix(muX_new[,h],I,P,byrow=T), //

as.matrix(SigmaX_new[,,h]))

etanew.x<-apply(nume.ih.x,2,sum)/(P*apply(deno.ih.x,2,sum))

controllo.Eta.x<-rep(1.001,k)

controllo1.Eta.x<-rbind(etanew.x,controllo.Eta.x)

Eta_new_x<-apply(controllo1.Eta.x,2,max)

etanew<-apply(nume.ih,2,sum)/(M*apply(deno.ih,2,sum))

controllo.Eta<-rep(1.001,k)

controllo1.Eta<-rbind(etanew,controllo.Eta)

Eta_new<-apply(controllo1.Eta,2,max)

}

if (C.noninvertibile==0 & SigmaY.noninvertibile==0 & SigmaX.noninvertibile==0) {

#---------------------------------

# Updating the log-likelihood

#---------------------------------

mu_Y.X<- Xpp%*%Beta_new

for (h in 1:k){

h_1[,h]<-(Alpha_new[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(SigmaY.X_new[,,h])))
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h_2[,h]<-(Alpha_new_x[h]*dmvnorm.new(x,matrix(muX_new[,h],I,P,byrow=T), //

as.matrix(SigmaX_new[,,h])))

qqq<-try(dCN(x,matrix(muX_new[,h],I,P,byrow=T),as.matrix(SigmaX_new[,,h]), //

Alpha_new_x[h],Eta_new_x[h]),silent=TRUE)

if (class(qqq)=="try-error" ) {

qqq<-dCNmod(x,matrix(muX_new[,h],I,P,byrow=T),as.matrix(SigmaX_new[,,h]), //

Alpha_new_x[h],Eta_new_x[h])

}

xxx<-try(dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h],Eta_new[h]),silent=TRUE)

if (class(xxx)=="try-error") {

xxx<-dCNmod(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h],Eta_new[h])

}

h_p[,h]<-qqq

h_m[,h]<-xxx

priorphi.ih[,h]<-pro.new[h]*h_m[,h]*h_p[,h]

}

zeri<-c(zeri,sum(priorphi.ih==0)>0)

loglik.new<- sum(log(apply(priorphi.ih,1,sum)))

loglik.iterECM<-c(loglik.iterECM,loglik.new)

iterECM<-iterECM+1

if (iterECM>2){

#--------------------

# stopping criterion

#--------------------
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a<-(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])/ //

(loglik.iterECM[(iterECM)]- loglik.iterECM[(iterECM-1)])

if (a=="NaN") a<-0

loglik.inf<-loglik.iterECM[(iterECM-1)]+(1/(1-a))*(loglik.iterECM[iterECM]- //

loglik.iterECM[(iterECM-1)])

loglik.inf.22luglio<-loglik.iterECM[(iterECM)]+(1/(1-a)) //

*(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])

improvement3<-loglik.inf.22luglio-loglik.new

if (k==1) loglik.inf<-loglik.iterECM[iterECM]

improvement<-loglik.inf-loglik.new

improvement2<-loglik.inf-loglik.iterECM[iterECM]

if ((((loglik.inf-loglik.new)<tol[1]) & (loglik.inf-loglik.new)>0) //

|| (iterECM==iter.max[1])) stopECM<-TRUE else loglik<-loglik.new

} else {

loglik<-loglik.new

}

}

#-------------------------

} # End of the ECM Algorithm

#-------------------------

EM.ok<-C.noninvertibile+SigmaY.noninvertibile+SigmaX.noninvertibile

EM.ok1<-sum(apply(SigmaY.X_new,3, function(x) eigen(x)$values)<10^(-20))+ //

sum(apply(SigmaX_new,3, function(x) eigen(x)$values)<10^(-20))

EM.ok<-EM.ok+EM.ok1

if (EM.ok == 0) {

dimnames(SigmaX_new)<-list(v_unique,v_unique)
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dimnames(SigmaY.X_new)<-list(y_list,y_list)

#-----------

# BIC

#-----------

npar<- (5*k)-1 + (k*P) + nparcov.X + k*(P.star+M) + nparcov.Y

bic<- 2*loglik-npar*log(I)

#-----------

# ICL

#-----------

massimo<-c()

#ICL1

cl<-apply(p.ih,1,which.max)

for (i in 1:I){

massimo[i]<-p.ih[i,cl[i]]

}

icl_mazza<-bic+2*sum(log(massimo))

#ICL2

entropia.post<-function(z) {

contr<-log(z)*z

contr.ok<-contr!="NaN"

-sum(contr[contr.ok])

}

icl_baek<-bic-2*sum(apply(p.ih,1,entropia.post))

#---------
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# Ordering

#---------

pos<-sort.list(pro.new)

AlphaX<-Alpha_new_x[pos]

EtaX<-Eta_new_x[pos]

muX<-muX_new[,pos]

SigmaX<-SigmaX_new[,,pos]

Alpha<-Alpha_new[pos]

Eta<-Eta_new[pos]

B<-Beta_new[,pos]

SigmaY.X<-SigmaY.X_new[,,pos]

pi<-sort(pro.new)

end_time <- Sys.time()

tempo<-toc()

total_time<-end_time - start_time

total_time2<-tempo$toc-tempo$tic

cl<-rep(1,I)

pih<-priorphi.ih/apply(priorphi.ih,1,sum)

if (k>1) {

p.ih<-pih[,pos]

cl<-apply(pih,1,which.max)

u.ih<-u.ih[,pos]

v.ih<-v.ih[,pos]

h1.ih<-h_1[,pos]

hm.ih<-h_m[,pos]

}

} else {
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Alpha<-NA

Eta<-NA

muX<-NA

SigmaX<-NA

AlphaX<-NA

EtaX<-NA

B<-NA

SigmaY.X<-NA

pi<-NA

p.ih<-NA

u.ih<-NA

v.ih<-NA

loglik<-NA

loglik.iterEM<-NA

npar<-NA

bic<-NA

cl<-NA

icl_baek<-NA

icl_mazza<-NA

total_time<-NA

total_time2<-NA

}

out<-list(M=M,k=k,P=P,P.star=P.star,h1.ih=h1.ih,hm.ih=hm.ih,muX=muX, //

SigmaX=SigmaX,D=D,pi=pi,B=B,loglik.inf=loglik.inf,loglik.new=loglik.new, //

SigmaY.X=SigmaY.X,loglik.iter=loglik.iterECM,loglik=loglik,npar=npar, //

BIC=bic, modelnameX=modelnameX, modelnameY=modelnameY, //

ICL_MAZZA=icl_mazza, ICL_BAEK=icl_baek, Alpha=Alpha, Eta=Eta, //

AlphaX=AlphaX, EtaX=EtaX,C.noninvertibile=C.noninvertibile,SigmaX.noninvertibile= //

SigmaX.noninvertibile,SigmaY.noninvertibile=SigmaY.noninvertibile, //

v_unique=v_unique, p.ih=p.ih, u.ih=u.ih,v.ih=v.ih,cl=cl, //

time=total_time,time2=total_time2)
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class(out)<-"SuCNCW"

out

}
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