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Abstract

In this thesis, new classes of models for multivariate linear regression defined by
finite mixtures of seemingly unrelated contaminated normal regression models and
seemingly unrelated contaminated normal cluster-weighted models are illustrated.
The main difference between such families is that the covariates are treated as fixed
in the former class of models and as random in the latter. Thus, in cluster-weighted
models the assignment of the data points to the unknown groups of observations
depends also by the covariates. These classes provide an extension to mixture-based
regression analysis for modelling multivariate and correlated responses in the pres-
ence of mild outliers that allows to specify a different vector of regressors for the
prediction of each response. Expectation-conditional maximisation algorithms for
the calculation of the maximum likelihood estimate of the model parameters have
been derived. As the number of free parameters incresases quadratically with the
number of responses and the covariates, analyses based on the proposed models can
become unfeasible in practical applications. These problems have been overcome by
introducing constraints on the elements of the covariance matrices according to an
approach based on the eigen-decomposition of the covariance matrices. The perfor-
mances of the new models have been studied by simulations and using real datasets
in comparison with other models. In order to gain additional flexibility, mixtures of
seemingly unrelated contaminated normal regressions models have also been speci-
fied so as to allow mixing proportions to be expressed as functions of concomitant
covariates.

The content of this thesis is organized as follows. In Chapter [I], a brief summary of
the state of the art is presented. The general specification of the new models with
fixed covariates and including the fully unconstrained parameterisation for the co-

variance matrices is presented in Chapter 2 In Chapter [3] the latter methodology is



extended to admit more parsimonious parameterisations. The new models developed
under the cluster-weighted approach are described in Chapter |4} Chapter [5| contains
an illustration of the new models with concomitant variables and a study on housing
tension in the municipalities of the Emilia-Romagna region based on different types

of multivariate linear regression models.
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Chapter 1

Introduction

1.1 Overview

In the last decades, the amount of scientific publications focused on the management of complex
data has increased exponentially. This growth has been motivated by the constant researchers’
need to develop faster and more accurate methods capable of eliciting information from this
kind of datasets. Many complexities can affect the data depending on the field of the research.
In multivariate regression analysis, for example, the interest of the researcher in modelling the
dependence of M dependent variables Y on P given predictors X can become more difficult in
a situation where the population from which the sample & comes from is heterogeneous (i.e. it
is composed of K unknown disjoint and homogeneous sub-populations); thus, the information
about the specific sub-population each sample observation belongs to is missing. A useful way
to manage the possible presence of K unknown clusters in the sample S while performing
multivariate regression analysis is to suitably embed a mixture of K distributions into the
regression model. Another source of complexity can arise from the fact that the covariates are
not always actively manipulated by the researchers. In particular, if the covariates are under the
control of the researcher, then X should be treated as fixed; otherwise, both X and Y have to
be considered as random vectors. Thus, either a conditional density function f(y|x) or a joint
density function f(x,y) should be utilized for modelling the conditional distribution of Y|X or
the joint distribution of (X,Y), respectively, where f(x,y) = f(x)f(y|x). Based on the two
above mentioned sources of complexity, the following approaches can be employed to perform

multivariate regression analysis:

(a) clusterwise regression analysis,
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(b)

cluster-weighted analysis.

In particular, the approach (a) is useful when the unobserved heterogeneity affects Y|X and the

covariates are fixed; in the framework (b), instead, the covariates are treated as random and the

missing information about the membership to the K sub-populations affects (X,Y). Then, a

mixture of K different regression models (one for each sub-population) will describe either the

distribution of Y|X or the distribution of (X,Y) in the population, respectively. If the vector

Y is composed of M continuous responses, then Gaussian clusterwise linear regression models

(Jones and McLachlan, [1992)) are generally employed. When all the variables are continuous,

a Gaussian cluster-weighted model (Dang et all 2017)) is usually specified within the approach

(b). The prediction of the responses in such approaches can become even more difficult in the

following situations.

(D)

(1)

In economics or social sciences, there may be prior information about the regressors ex-
pected to be relevant in the prediction of the M responses. In such situations, the mul-
tivariate regression model specified by the researcher should be composed of a system of
M regression equations (one equation for each response) with equation-dependent vectors
of predictors (i.e., vectors which do not necessarily contain the same predictors for all the
responses). This means that certain regressors contained in X are absent from certain re-
gression equations. Furthermore, the M responses contained in Y may be correlated. This
latter feature is typically observed with multivariate longitudinal data, time-series data or
repeated measures. A parametric framework able to take into consideration both multi-
variate correlated responses and systems of regression equations with equation-dependent
vectors of predictors is given by the so-called seemingly unrelated regression approach (see,

e.g., [Srivastava and Giles|, 1987} [Park, |1993]).

The data S are contaminated by the presence of mildly atypical observations (Ritter,
2015)), i.e. observations which, in some way, deviate from the general pattern of the data
(Maronna et al., [2006]). Several robust methods have been developed in the literature
by resorting to heavy-tailed models (e.g., [Lange et al. (1989), Kibria and Haq (1999),
Lachos et al. (2011)). A solution proposed by [Tukey| (1960) is based on the use of the
contaminated normal distribution. This distribution is a two-component normal mixture in
which one component has a larger probability and represents the typical observations; the

other component has the same expected vector of the first one but an inflated covariance
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matrix, which allows to manage the outliers. In a multivariate regression framework,
suitable models able to manage the presence of mildly atypical observations have been
obtained by specifying a contaminated normal distribution for Y|X within the approach
(a) or for both X and Y|X within the approach (b). In particular, clusterwise linear
regression models and cluster-weighted models have been specified so as to be able to

manage, respectively:

(ITa) outliers in the y-direction (verticals or regression outliers);

(ITb) outliers either in the y-direction or in the x-direction (leverage points), depending
on whether they occur in the responses or the predictors, respectively (see, e.g.,
Rousseeuw and Leroy, 2005); if an observation is both a regression outlier and a
leverage point it will be classified as a bad leverage point (Rousseeuw and Leroy,

20085).

Based on all these considerations, until now authors have developed the following classes of

models for multivariate linear regression analysis:

(i) contaminated Gaussian clusterwise linear regression models (Mazza and Punzo, 2020)),

which allow to manage the presence of (IIa) within the approach (a);

(ii) seemingly unrelated Gaussian clusterwise linear regression models (Galimberti and Sof-

fritti, [2020) for data affected by the complexity (I) under the approach (a);

(iii) contaminated Gaussian cluster-weighted models (Punzo and McNicholas, [2017)) able to

manage (IIb) in the approach (b);

(iv) seemingly unrelated Gaussian cluster-weighted models (Diani et al., [2022)) for data affected

by the complexity (I) under the approach (b).

On the one hand, limitations of the approaches (i) and (iii) are represented by the fact that the
same vector of regressors has to be employed for the prediction of all responses. On the other
hand, methods (ii) and (iv) are not robust against the presence of atypical observations in the

K sub-populations. The aim of this thesis is to extend such approaches so as to:
e jointly account for the sources of complexity (I) and (ITa) under the approach (a);

e jointly account for the sources of complexity (I) and (IIb) under the approach (b).
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1.2 Main contributions of the thesis

In Chapter |2, a new class of models for multivariate regression defined by finite mixtures of
seemingly unrelated contaminated normal regressions has been developed. This class provides
an extension to mixture-based regression analysis for modelling multivariate and correlated re-
sponses in the presence of atypical observations in the y-direction that let the researcher free to
use a different vector of covariates for each response. Conditions for the identifiability of such
models are provided. An expectation-conditional maximisation (ECM) algorithm for maximum
likelihood estimation (MLE) of the model parameters has been derived. The performance of the
new models has been studied by simulation in comparison with other clusterwise linear regres-
sion models. A comparative evaluation of their effectiveness and usefulness has been provided

through the analysis of a real dataset. The main results have been summarized in the following

paper:

Perrone G., Soffritti G. (2023). ”Seemingly unrelated clusterwise linear regression for contami-

nated data”. Stat Papers 64, 883-921. https://doi.org/10.1007/s00362-022-01344-6.

As the number of free parameters incresases quadratically with the number of responses, anal-
yses based on the models illustrated in the first part of this thesis can become unfeasible in
practical applications in which M is large. This problem has been overcome by introducing in
Chapter |3| constraints on the elements of the covariance matrices according to an approach due
to |Celeux and Govaert| (1995). The resulting parsimonious finite mixtures of seemingly unre-
lated contaminated normal regressions are illustrated in the second part of this thesis, whose

source is the following short paper:

Perrone G., Soffritti G. (2022). ”Parsimonious mixtures of seemingly unrelated contaminated
normal regression models”. In P. Brito, J. G. Dias, B. Lausen, A. Montanari, R. Nugent. Classi-
fication and Data Science in the Digital Age: the 17th Conference of the International Federation
of Classification Societies (IFCS 2022), Springer Cham. Series E-ISSN: 2198-3321 (pp. 1-8)
https://link.springer.com/book /9783031090332 (in press).

In clusterwise regression analysis, where covariates are treated as fixed, the assignment of the
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data points to the K clusters is assumed to not depend on X (assignment independence, Hennig
(2000)). This could be inadequate in some practical applications in which the assignment of the
sample data points to the K clusters is not independent of the covariates (assignment dependence,
Hennig (2000)). In order to overcome this limitation, a novel class of cluster-weighted models
has been introduced in Chapter

This class allows to manage the presence of atypical observations either in the x-direction
or in the y-direction; furthermore, it makes it possible to specify a different vector of covariates
for each dependent variable. Conditions for the identifiability of such models are described.
Parsimonious models are presented; they have been obtained by constraining some elements of
the covariance matrices of both the covariates and responses. A new ECM algorithm for the
MLE of the model parameters has been developed. The effectiveness and usefulness of such
models are shown through the analysis of simulated and real datasets. The main results have

been summarized in the following paper:

Perrone G., Soffritti S. (2022). ” Parsimonious seemingly unrelated contaminated normal cluster-

weighted models”. Under review.

More flexible seemingly unrelated clusterwise linear regression models have been specified so
as to allow some covariates to influence the prior probabilities of the K sub-populations. This
task has been performed by modelling the mixing weights as a function of some concomitant
variables. Such variables can be different of the ones used in the prediction of the dependent
variables and in the identification of the clusters. Such models, together with other clusterwise
linear regression models, have been employed in Chapter |p| to study housing tension in the
municipalities of the Emilia-Romagna region. This research has been carried out thanks to an
implementation agreement between the region and the Department of Statistical Sciences of the

University of Bologna.



Chapter 2

Seemingly unrelated clusterwise

regression for contaminated dataﬂ

!This chapter coincides with the published paper: Perrone G., Soffritti G. (2023). ”Seemingly unrelated
clusterwise linear regression for contaminated data”. Stat Papers 64, 883-921. https://doi.org/10.1007/s00362-
022-01344-6
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Abstract

Clusterwise regression is an approach to regression analysis based on finite mixtures which
is generally employed when sample observations come from a population composed of several
unknown sub-populations. Whenever the response is continuous, Gaussian clusterwise linear
regression models are usually employed. Such models have been recently robustified with respect
to the possible presence of mild outliers in the sub-populations. However, in some fields of
research, especially in the modelling of multivariate economic data or data from the social
sciences, there may be prior information on the specific covariates to be considered in the
linear term employed in the prediction of a certain response. As a consequence, covariates
may not be the same for all responses. Thus, a novel class of multivariate Gaussian linear
clusterwise regression models is proposed. This class provides an extension to mixture-based
regression analysis for modelling multivariate and correlated responses in the presence of mild
outliers that let the researcher free to use a different vector of covariates for each response.
Details about the model identification and maximum likelihood estimation via an expectation-
conditional maximisation algorithm are given. The performance of the new models is studied
by simulation in comparison with other clusterwise linear regression models. A comparative
evaluation of their effectiveness and usefulness is provided through the analysis of a real dataset.
Keywords: Contaminated Gaussian distribution, ECM algorithm, Mild outlier, Mixture of

regression models, Model-based cluster analysis, Seemingly unrelated regression.
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2.1 Introduction

In multivariate regression analysis, when modelling the dependence of a random vector Y =
(Y1,...,Ym, ..., Yy)" of M responses on a given vector X = (X1,...,X,,...,Xp) of P pre-
dictors through a sample & = {(x1,y1),..., (x7,¥1)} drawn from a certain population, the
following sources of complexity could affect the data and make the prediction of the responses

a task difficult to perform.

a) With multivariate longitudinal data, time-series data or repeated measures, the M re-
sponses contained in Y are typically correlated. Furthermore, in analyses of economic
data or data from the social sciences, it is not unusual that prior information about the
phenomenon under study enables the analyst to specify a system of M regression equa-
tions (one equation for each response) in which certain regressors contained in X are absent
from certain regression equations. This is especially true for multivariate economic data
referring to general theories (i.e., investment equations, production functions) or applica-
tions dealing with the explanation of a certain economic activity (i.e., demand of petrol,
employment) in different geographical locations (see, e.g., |Zellner, 1962; White and Hew-
ings, [1982; |Giles and Hamptonl [1984)). Further examples can be found also in other fields,
such as medicine, food quality, tourism economics, quality of life and health (see, e.g.,
Keshavarzi et al.] 2012; [Cadavez and Hennningsen| [2012; [Keshavarzi et al., 2013} |Disegna
and Osti, 2016; Heidari et al., 2017). A parametric framework able to take into consid-
eration both multivariate correlated responses and systems of regression equations with
equation-dependent vectors of predictors (i.e., vectors which do not necessarily contain
the same predictors for all the responses) is given by the so-called seemingly unrelated
regression approach (see, e.g., Srivastava and Giles, [1987; Park, [1993)). In particular, in
this approach the random disturbances associated with the M regression equations are
allowed to be correlated with each other; hence, the variance-covariance matrix 3 of the

resulting M-dimensional vector of the error terms will have a non-diagonal structure.

b) In general, real data can often be characterised by the presence of atypical observations. In
parametric regression analysis, such observations negatively impact on both the estimation
of the regression coefficients and the prediction of the responses based on the classical
procedures. Such procedures have been widely recognized to be extremely sensitive to

even seemingly minor or negligible deviations from some conventional assumptions (see,
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e.g., Tukey,|1960). Thus, when the data are contaminated by such observations, it is crucial
that robust methods are employed (see, e.g., Maronna et al., [2006). Departures from the
Gaussian distribution of the error terms in the regression model caused by some mildly
atypical observations can be managed by simply resorting to heavy-tailed distributions for
Y |X = x. Those observations are also called small or mild outliers (see, e.g., Ritter, 2015).
Examples of robust methods against the presence of such outliers have been developed
by [Lange et al.| (1989), Kibria and Haq (1999), [Lachos et al. (2011); to this end, the
multivariate ¢ distribution or scale mixtures of Gaussian distributions have been exploited.
Other distributions, such as the multivariate power-exponential (see, e.g., |Gomez et al.,
1998; Dang et al.l 2015)), the multivariate leptokurtic-normal distribution (Bagnato et al.,
2017), the multivariate tail-inflated normal distribution (Punzo and Bagnatol 2021, and
the multivariate shifted exponential normal distribution (Punzo and Bagnato, [2020), have
been employed to cope with the same issue. Another model able to manage the possible
presence of mild outliers in a dataset is the contaminated Gaussian distribution (see, e.g.,
Tukeyl, 1960} |Aitkin and Wilson, [1980). This probabilistic model is defined as a mixture of
two Gaussian distributions having the same expected mean value but different variances-
covariances. Furthermore, the Gaussian distribution having the smallest mixing weight
also has inflated variances-covariances and is employed to represent the mild outliers.
Maximum likelihood (ML) estimation can be performed via an expectation-maximisation
(EM) algorithm (see Dempster et al., |1977; |Aitkin and Wilson, [1980]). Once such a model
is fitted to the observed data, each sample observation can be classified as either typical or
outlier using the maximum a posteriori probability (for further details see, e.g., Aitkin and
Wilson, [1980]). With an approach based on the use of one of these distributions, robustness

can be achieved without suppressing any observation from the sample S.

Sometimes the population from which the sample § comes from is composed of a certain
number, say K, of sub-populations. Furthermore, when the information about the value
of K and the specific sub-population each sample observation belongs to is not known,
S is characterised by unobserved heterogeneity. If this source of heterogeneity affects the
distribution of Y|X = x, then a mixture of K different regression models (one for each
sub-population) will describe the distribution of Y|X = x in the population. This phe-
nomenon can be experienced in many fields, such as economics, marketing, agriculture,

education, human genomics, quantitative finance, social sciences and transport systems



2.1 Introduction 15

(see, e.g., Fair and Jaffe, |1972; Kamakuray, [1988; |Turner, |2000; Ding, 2006; Qin and Self]
2006; Tashman and Frey| [2009; [Dyer et al., [2012; [Van Horn et al., [2015; [McDonald et al.|
2016; Elhenawy et al.,2017). In this case, the sample S should be analysed in a regression
framework able to detect both the number of sub-populations and their regression models.
Methods for clusterwise regression analysis play a special role. They exploit clusterwise
regression models, which are mixtures of K regression models (see, e.g., Hosmer, 1974} De
Sarbo and Cron, [1988; [Frithwirth-Schnatter, 2006; [Depraetere and Vandebroek, 2014)). In
these models, the mixing weights can also be expressed as a function of some concomitant
variables (Wedel, [2002). With M continuous responses in vector Y, multivariate Gaussian
clusterwise linear regression models are generally employed (see, e.g., Jones and McLach-
lan, 1992)). If the P predictors are random and the source of heterogeneity mentioned
above affects the distribution of (X,Y), then Gaussian cluster-weighted models should be

employed (see, e.g., Dang et al., [2017)).

Recently, Mazza and Punzo| (2020) have introduced methods to perform Gaussian clusterwise
linear regression analysis which are robust with respect to heavy-tailed departures from Gaus-
sianity due to the presence of mild outliers in the data. By relying on contaminated Gaussian
clusterwise linear regression models, their methods are able to produce a simultaneous clustering
of the sample observations and the detection of mild outliers in a multivariate regression context.
In this way, they allow to manage the sources of complexity b) and c¢); they are also capable of
explaining the correlation among responses. A limitation of an approach based on those models
is that the same vector of regressors has to be employed for the prediction of all responses.
Galimberti and Soffritti| (2020]) have developed models for Gaussian clusterwise linear regression
which make use of seemingly unrelated regression equations. The methods based on these latter
models are suitable for the analysis of data affected by complexities a) and c¢); however, they
are not insensitive to the possible presence of mild outliers in the K sub-populations. Based on
all these considerations, multivariate seemingly unrelated clusterwise linear regression models
for data contaminated by mild outliers are introduced here. They are obtained from the models
described in |Mazza and Punzo (2020) by modifying the definition of the linear terms in the M
regression equations so that a different vector of regressors can be employed for each dependent
variable. With these new models, the three sources of complexities mentioned above are jointly
taken into consideration when predicting the responses in a multivariate linear regression frame-

work. Thus, a more flexible approach for the analysis of linear dependencies in multivariate data
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is provided.

The key contributions of this chapter are:

e the specification of a novel class of models able to jointly account for the sources of com-

plexity a), b) and ¢) mentioned above;
e a comparison with some other linear clusterwise regression models;
e the description of conditions for the identifiability of the novel models;

e details about ML estimation via an expectation-conditional maximisation (ECM) algo-

rithm (Meng and Rubin|, [1993]);

e a treatment of the initialisation and convergence of the ECM algorithm and the issue of

model selection;

e an investigation of the effectiveness of the new models, based on simulated datasets, in
comparison with the models proposed by |Galimberti and Soffritti (2020) and Mazza and
Punzo| (2020));

e an application to a study of the effects of prices and promotional activities on sales for

two U.S. brands of canned tuna.

The remainder of this chapter is organised as follows. The novel models are introduced in
Section Section shows how they relate to some clusterwise linear regression models.
Identifiability is treated in Section 2.2.3] Section [2.2.4) and Appendix A provide details on the
ECM algorithm. Issues of algorithm initialisation, convergence criterion and model selection are
discussed in Sections and [2.2.6] Section [2.3]contains a summary of the experimental results
obtained from the analysis of simulated data. The study of the effects of prices and promotional
activities on U.S. canned tuna sales is presented in Section [2.4] Finally, in Section [2.5] some

concluding remarks and ideas for future research are illustrated.
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2.2 Seemingly unrelated contaminated Gaussian linear cluster-

wise regression analysis

2.2.1 Seemingly unrelated contaminated Gaussian linear clusterwise regres-

sion models

In order to introduce the new model, the following notation is required. Suppose that only P, of
the P covariates contained in X are considered to be relevant for the prediction of the response
Y., where P, < P. Thus, let X,, = (X, Ximg, - - - ,mem)’ be the vector composed of such
Py, covariates, and let X7, = (1,X],)". Furthermore, let By, = (Bt,my, Be,mas - - > Bkymp,, ) De
the vector of the P, regression coefficients capturing the linear effect of such covariates on the
response Y, in the kth sub-population, and 8%, = (Bok.m, Bkm) - Then, the vector containing
all linear effects on the M responses in the kth sub-population can be obtained by stacking the M
regression coefficient vectors specific for the kth sub-population one underneath the other; it can
be denoted as B} = (B4, Bps- - -+ Bray) and its length is P* + M, where P* = Z%Zl P,.

Finally, the following (P* + M) x M partitioned matrix is required:

X3 Op+1 ... Opt1
Op X3 ... 0
& 2+1 2 Py+1
X" = ,
0py 41 Opysr o X |

where Op,_ 41 denotes the (P, + 1)-dimensional null vector.
The random vector Y follows a seemingly unrelated contaminated Gaussian linear clusterwise
regression model of order K if the conditional probability density function (p.d.f.) of Y|X = x

has the form

K
Flylx;e) =D meh (y;0k), y € RM, (2.1)
k=1

where 7 is the mixing weight of the kth sub-population, with 7 > 0 for £ = 1,..., K,
and Zszl 7 = 1; h(y;0) is the contaminated Gaussian p.d.f. of Y|X = x in the kth sub-

population, defined as follows:

h(y;0r) = ardn (5 (X3 BE), Bie) + (1 — ar)dar (s e (%5 B1) e ) (2.2)
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and ¢y (3 b, X) denotes the p.d.f. of an M-dimensional Gaussian distribution with expected
mean vector p and positive definite covariance matrix 3. The term p,(x; 37) in equation ([2.2))

is the conditional expected value of Y|X = x in the kth sub-population; it is defined as follows:

*
Xll B

(%5 8%) =X By = | xm By | (2.3)

k7
| Xpr Biens ]

where X* denotes the realisation of X* obtained when X = x. Thus, x* 3} coincides with
an M-dimensional vector whose mth element is a linear combination of the realisations of the
P, regressors selected for the prediction of Y, with weights given by the elements of vector
Brm- Terms ap € (0,1) and 7 > 1 are the weight of the typical observations in the kth sub-
population and the factor contaminating the conditional variances and covariances of Y |X = x
for the mild outliers in the kth sub-population, respectively. In robust statistics, it is generally
assumed that at least half of the observations are typical (see, e.g., Punzo and McNicholas, [2016;
Mazza and Punzo, 2020); thus, it is also possible to consider oy € [0.5,1). As a consequence
of the constraint 7, > 1, n; represents an inflation parameter for the elements of ¥;. 6, =
(B%, Xk, o, mi) is the parameter vector of model . The parameter vector of model is
given by ¥ = (¢¥q,..., %y, ..., Y ), where 1, = (7, O%); the number of free parameters in this
vector is equal to ny = 3K — 14+ K(P*+ M) —i—K%.

In summary, the conditional p.d.f. f(y|x;%) in equation can be interpreted as a
weighted average (namely, a mixture) of K Gaussian regression models with weights g, k =
1,..., K. The kth component of this mixture represents a multivariate seemingly unrelated
contaminated Gaussian linear regression model with intercepts and regression coefficients 37,
symmetric and positive definite covariance matrix Xy, proportion of typical points «j and in-
flation parameter ;. Thanks to the non-diagonal structure of the variance-covariance matrices
3, k=1,..., K, the proposed model is able to account for correlated random disturbances
within each of the K sub-populations associated with the mixture . Since the contami-
nated Gaussian distribution is a mixture of two Gaussian linear regression models which

are both associated with the kth component of the mixture in equation (2.1)), the model defined
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by this latter equation can also be considered as a mixture of 2K seemingly unrelated Gaussian
clusterwise linear regression models, whose components can be grouped into K pairs, each of
which contains two Gaussian components having the same expected values and proportional

covariance matrices.

2.2.2 Comparisons with other linear clusterwise regression models

When specific conditions are met, some special linear regression models can be obtained from

model (2.1)).

e If M >1 and X,,, = X Vm (the same vector of predictors is considered for all responses),
the following equality holds: X* = I;; ® x*, where I; is the identity matrix of order M
and ® denotes the Kronecker product operator (see, e.g., Magnus and Neudecker, |1988)).
Equation can be rewritten as

ue(x85) = Iy @x*) B =Bix, k=1,..., K, (2.4)

where By, = [B%1 - Bim - - Brar)- Thus, equation (2.1]) reduces to the mixture of multi-

variate contaminated Gaussian regression models introduced by Mazza and Punzo| (2020).

o If M >1, a — 1 and n — 1 Vk (there is no contamination in the data), the resulting
model coincides with the mixture of multivariate seemingly unrelated linear regressions

described in |Galimberti and Soffritti| (2020).

o If ay — 1, m — 1Vk and X,;, = X Vm (there is no contamination in the data and the same
vector of predictors is considered for all responses), equation reduces to a mixture
of either univariate Gaussian linear regression models (see, e.g., De Veaux, 1989} |Quandt
and Ramsey), [1978; De Sarbo and Cronl, |1988]) or multivariate Gaussian linear regression

models (see [Jones and McLachlan, [1992).

o If ap = 1, mp — 1VEk, X,, = X Vm and B, = 8" Vk (there is no contamination in the
data, the same vector of predictors is considered for all responses and their effects are the
same across all the sub-populations), the resulting model coincides with a linear regression
model with error terms distributed according to a mixture of K either univariate Gaus-
sian distributions (Bartolucci and Scaccial 2005) or multivariate Gaussian distributions

(Soffritti and Galimberti, 2011)).
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o If M >1,ar — 1, ny — 1 Vk, By = 8" Vk (there is no contamination in the data and
the effects of the predictors are the same across all the sub-populations), a multivariate
seemingly unrelated linear regression model whose error terms are assumed to follow a

Gaussian mixture model is obtained (Galimberti et al., 2016).

Seemingly unrelated regression models represent multivariate regression models in which
prior information about the absence of certain covariates for the prediction of certain responses
is explicitly taken into consideration (Srivastava and Giles|, |1987)). Thus, equation can also
be seen as a mixture of multivariate contaminated Gaussian regression models in which some
regression coefficients are constrained to be a priori equal to zero. To the best of the authors’
knowledge, the inclusion of such constraints in these latter models has not been addressed
yet. Models obtained from equation by embedding different constraints on the regression
coefficients could also be employed in any practical application in which the relevant regressors
for each response cannot be established from a priori information and, thus, the choice of the
regressors to be used for the M responses is questionable. As it will be illustrated in Section
in such situations strategies based on a joint use of models and variable selection techniques

could be devised and employed.

2.2.3 Identifiability

A preliminary requirement for the consistency and other asymptotic properties of the ML es-
timator is represented by identifiability of the model parameters. Thus, before detailing ML
estimation of 1), a discussion about identifiability of model is provided here. Consider the
class of models § = {Fx, K = 1,..., Knaz}, where §x = {f(y|x;¢), ¥ € ¥}, f(y|x;v) is
the p.d.f. of Y|X = x under the seemingly unrelated contaminated Gaussian linear clusterwise
regression model of order K defined in and K., denotes the maximum order specified

by the researcher for that model. This class is said to be identifiable if, for any two models M,

M € § with parameters ¢ = (Y, .., Yy, ..., Yg) and = (Y. .. ,{pk, ..., ), respectively,

K K
> (yi0k) = Y 7kh (vi65) vy € RV
k=1 k=1

implies that K = K and P = 1~b

Several types of non-identifiability can affect the model class §. A first type is due to
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invariance to relabeling the components of the mixture (also known as label-switching). Non-
identifiability can also be caused by potential overfitting associated with empty components
or equal components (see, e.g., Fruhwirth-Schnatter, |2006). Imposing suitable constraints on
the parameter space W can prevent such sources of non-identifiability for §. Another type of
non-identifiability affecting this class is specifically associated with the use of finite mixtures
in linear regression analysis with fixed covariates, which requires an additional constraint on
the number of components of the mixture (see [Hennig, 2000). Non-identifiability due to
empty components is avoided by requiring the positivity of all the mixing weights 7. Conditions
specifically devised for ensuring identifiability of mixtures of contaminated Gaussian regression
models are provided in Mazza and Punzo| (2020). These results have been exploited in Theorem
1 to show that model is identifiable if the parameters (8%, X2g), k =1,..., K, are pairwise
distinct and the order K is exceeded by the number of distinct (P, —1)-dimensional hyperplanes
required to cover the covariates employed for the prediction of Y;,,, form = 1,..., M. In order to
state Theorem 1, the following notation is also required: [-|| is the element-wise matrix 2-norm
(also known as the Frobenious norm); Hfm=! = {x,, € RFm : N'x,,, = ¢, A € RFPm X\ # 0} is a
(P, — 1)-dimensional hyperplane; J,, is the minimum number of such hyperplanes required to

cover the covariates x,,; H»~! is the space of (P, — 1)-dimensional hyperplanes of RPm

Theorem 1. Let M € § and M € § be two models, p = (y,...,y,..., ) and @ =

(1701, . ,{bk, el 1~b[~() the corresponding parameters and, without loss of generality, K > K. If
Cl) K < Jy, form=1,...,M, where
gm
Jp, := min {qm Axim, i €L} C U Hfm’l : Hlf)mfl c HPml} 7
b=1

with T, being an index set associated with the distinct covariate points available for the

prediction of Yy, and

C2) k#1, with k,l € {1,..., K}, implies
185 —:3?”% + |2 — aZlHiﬂ # 0 Va > 0,

then the class § is identifiable.

Conditions C1) and C2) are obtained from Mazza and Punzo (2020) after suitable modi-

fications of similar conditions required for the identifiability of their mixtures of contaminated
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Gaussian regression models. In particular, condition C2) results from a simple substitution of
the vector B, of model for the matrix By, introduced in equation containing the inter-
cepts and regression coefficients in the kth component of the regression mixture model developed
by [Mazza and Punzo| (2020). The modifications involved in the definition of the condition C1)
derive from the fact that each Y;;, € Y may have its own covariates and, thus, M different
restrictions on K have to be required, each one involving a (possibly) different minimum num-
ber of low-dimensional hyperplanes to cover those covariates. As a consequence, the proof of
Theorem 1 can be obtained by exploiting the same arguments illustrated in Mazza and Punzo
(2020) for the proof of their theorem about identifiability of mixtures of contaminated Gaussian

regression models.

2.2.4 Maximum likelihood estimation

The ML estimation of the parameters v is carried out here for a fixed value of K. Given a sample
S of I independent observations drawn from model , the model log-likelihood is equal to
() = Zi[:l In (Zszl meh (yi; Gk)) Following Mazza and Punzo| (2020), ML estimates t can
be computed by means of an ECM algorithm, which represents a variant of the EM algorithm
usually employed for the computation of ML estimates from incomplete data. In the considered
situation, the missing information is twofold. On the one hand, there is a classical source of
incompleteness of any mixture model associated with the component memberships of the [
sample observations. On the other hand, it is not known whether such observations are outliers
with reference to any component or not. These two sources can be described by two different
types of K-dimensional vectors. For the ith sample observation, they are given by z; and
u;, respectively: z; = (z1,...,2ik)’, with z;z = 1 if the ith observation comes from the kth
component and z;; = 0 otherwise; w; = (w1, ..., ux)’, with u;z = 1 if the ith observation is
typical in the kth component and wu;; = 0 if it is an outlier, for £k = 1,..., K. Then, the set of
complete data would be S, = {(x1,y1,21,u1),...,(X71,¥71,27,us)}, and the the complete-data

likelihood function is equal to

Le() = H ﬁ{ﬂk [akﬂsM (yz'; (%3 B), Ekﬂw

i=1k=1

(1= oo (v el B mem) |



2.2.4 Maximum likelihood estimation 23

Thus, up to an additive constant, the complete-data log-likelihood function employed in the

ECM algorithm for the computation of the parameter estimates can be expressed as follows:

K

1
Zzzk[lnﬂk + uip Inag + (1 — ug) In(1 — o) — 3 In ||+
1 k=1

"
™~

.
Il

—<7 1H77k) (1 — ) — 5 (uzk + - k)5§:k <Yz', Hk(Xﬁﬂk))},
where
0%, (yir by, (x5 B1)) = (yi — pp, (x5 B1)) 2y (vi — g (% B1)) (2.5)

is the squared Mahalanobis distance between y; and p;(x;; 3%) with respect to the matrix Xj.
The hth iteration of the E-step in the ECM algorithm consists in calculating the conditional
expectation of (1) on the basis of the current estimate zp(h) of the model parameters 1; up to

an additive constant, this expected value can be expressed as follows:

Q (wly™) =y le(9)]

I K
— Z Z 21(:){ lnﬂ(h) + ﬂ(z) In agl) +(1- QEZ)) In(1 — algh))+

where

Qi(B1, Sl ® )= — 5 [w2] + M (1 - )+

a® 178 i 52 e )
+( ik T 77() > ) (YZ7I~%( i By, ))}7
k

:22(,? ) and ﬁfz) are the posterior probabilities (evaluated using w(h) ) that the ith observation is

generated from the kth component of the mixture (2.1)) and that the ith observation is a typical
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point of such a component, respectively:

h h

5(h) mh (vis6l”)

i = By [Zin| (xi, y3)] = N (2.6)
<Yz|xu ( ))

a;gh)¢<Yi; o (i Z(h)), E;(ch))

~(h
a® = By [Uikl(%4,yi,2:)] = B : (2.7)
h (Yi§ Ok )
with Z; = (Zi1, ..., Zik)" denoting a K-dimensional multinomial random vector with probabili-
ties w = (m1,...,7x)’, and Uj|Z;x = 1 having a Bernoulli distribution with success probability

of a.

As far as the conditional maximisation is concerned, the update of ¢(h) is carried out by
considering the following two parameter sub-vectors: v = (7,8, ¥, ) and n = (n1,...,nK),
where B* = (87,...,8%), & = (21, o, 2K), a = (a1,...,ak). At the (h + 1)th iteration
of the ECM algorithm, 4" = (7" g*") 53" (") is updated through the maximisation of
Q(’l/)"l,b(h)) with respect to v with 7 fixed at n(®) (first CM step); then, the update of n® is
carried out by maximising Q(tp|9p™) with respect to 1 with ~ fixed at v"*t1) (second CM step).

The resulting updates of ﬂ](ch), agl) and n,gh) are:

)1y
h+1
1A

h) ~(h
(h+1) Z{:l Zi(k)uz(k)

ay, =T (2.8)

doic1 Zip

Zf=1 Z( )<1 - U(h))5 <h+1> (y“ll'k(xlﬂak hﬂ)))

MY —al)

771(9’1+1) = max{ 1,

}. (2.9)

Such updates coincide with the ones reported in Mazza and Punzo) (2020) for their model. Based
on equation 1) it is possible to highlight that the update nlihﬂ) will be larger when the kth

component is highly contaminated by the presence of outliers (i.e., when it is characterised by

(h)

many observations with a small value of 4, °~ and a large value of the squared Mahalanobis

distance from p,(x;; Z(h+1))). As far as the remaining parameters are concerned, their updates
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are (details are reported in the Appendix):

I o, d B

e (3 a5 ) (e ), 10
=1 =1

N /

il S Az(k) z(k‘)(yl X1 B, AR )(Yz x: 3, )
» ) — S , (2.11)

Zz 1 zk:
where
. (h)
1—a

) =) + gk (2.12)

1 !
It is worth noting that the matrix ZZ 1 l,?) z(k)X*E( ""%¢ in (2.10) has to be nonsingular;

7

otherwise, the update BZ ) cannot be computed. Equation also highlights that this
update can be considered as a generalised least squares estimate with weights depending on
w(,’;); this latter term also affects the update Z(hH) in -D which represents a weighted
sum of squared residuals. Using such weights leads to a reduction in the effects of the outliers

on the estimation of Bz(hﬂ) (h+1)

; thus, this approach provides robust estimates of ,82 , for
k = 1,... K. Furthermore, based on , sample observations with the highest posterior
estimated probabilities of being generated from the kth component and of representing typical
points in the kth component will have the largest impact on the updates of both the regression
coefficients and covariances within that component.

Once the convergence is reached and the ML estimates 1:0 are computed, by exploiting
equation the ECM algorithm provides estimates of the posterior probabilities P 5 [Zi =
1(xi,y:)] = Zik, @ = 1,...,I, k = 1,..., K. Such estimated probabilities can be employed

to partition the I sample observations into K clusters, by assigning each observation to the

component showing the highest posterior probability; for the ith observation:

1 if maxp{Z;n} occurs when h = k;
MAP(Zi,) =

0 otherwise.

Furthermore, equation (2.7 allows to compute the estimated posterior probabilities P {p[Uik =
1/(x4,¥4,2:)] = Uik, and an intra-cluster distinction between typical observations and mild out-
liers can be defined: the ith observation will be classified as an outlier of the hth cluster, where

h is the label of the component for which MAP(2;,) = 1, if @;, < 0.5. From the ML estimates P
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and equation it is also possible to compute the estimated squared Mahalanobis distances
a?fk = (%k <yi,ﬂk(xi;,@:)), 1=1,...,1, k=1,..., K, which can be employed as multivariate
measures of the outlyingness of the I sample observations with respect to the K clusters detected
by the model. From the definition of the squared Mahalanobis distance given in equation
and the expressions for ﬁgz) and QIJEZ) reported in equations and , respectively, it is
possible to express both u;;, and w;; as decreasing functions of (i?k (see Mazza and Punzol, {2020,
for the explicit expressions). Thus, atypical observations could also be detected and studied by
considering the values of c?fk V(i k) e {ie{l,...,1},k: MAP(Z;) = 1} and by focusing on the

largest values obtained in this way (see McLachlan and Peel, 2000, p. 232).

2.2.5 Technical details about the ECM algorithm

A crucial point of any EM-based algorithm is the choice of the starting values for the model
parameters (i.e., ¢(0)). Multiple executions of the algorithm in association with multiple ran-
dom initialisations or approaches based on non-random choices of either 1/;(0) or the missing
information can provide a solution (see, e.g., Biernacki et al., [2003; Karlis and Xekalaki, [2003)).
As far as the ECM algorithm described above is concerned, the initialisation technique illus-
trated in Mazza and Punzo| (2020) could be modified so as to be employed also for model .
This task would require setting the initial values 2§2), 1=1,...,1, k=1,..., K, equal to the
posterior probabilities from the EM algorithm for the estimation of the seemingly unrelated
Gaussian clusterwise linear regression models, which are nested in model when ap — 17
andn, — 17, k=1,..., K; furthermore, 111(.2) =0.999,i=1,...,1,k=1,..., K. Another strat-
egy for the initialisation of 1 which exploits the relationship between model and seemingly
unrelated Gaussian clusterwise linear regression models (see Section could be composed
of the following three steps. Firstly, a Gaussian mixture model with K components is fitted
to the sample residuals of a seemingly unrelated linear regression model (Srivastava and Giles,
1987)); this allows to obtain the starting values 7T](€0) and E,(CO). Secondly, the starting values ﬁz(o)
are obtained from the fitting of K different seemingly unrelated linear regression models, one
for each cluster of the partition associated with the Gaussian mixture model considered in the
previous step. Thirdly, oz,(go) and 77]({0), k=1...,K, areset equal to 0.999 and 1.001, respectively.
Models involved in the first two steps can be estimated through the packages mclust (Scrucca
et al., 2017) and systemfit (Henningsen and Hamann, 2007) in the R environment (R Core

Team, [2021). In the analyses of Sections and the ECM algorithm has been initialised
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using this latter strategy. Furthermore, since (1 — ay) in model (2.1)) can be considered as
the proportion of outliers in the kth sub-population, when this model is employed for outlier
detection, a reasonable requirement is that in each cluster the number of typical observations

cannot be smaller than the number of outliers, that is oy, € [0.5,1) Vk. To guarantee this result,

constraints on the estimation of ag, K = 1,..., K, have been included in the ECM algorithm;
I ;(h).(h)

namely, equation 1) has been modified as follows: a,ihﬂ) = max {0.5, le}z““(q;f;’“}
Dim1 Ziy

In order to avoid premature stops of the ECM algorithm associated with the use of lack of
progress stopping criteria, such as the one based on the difference between the log-likelihood
values at two consecutive steps, a convergence criterion based on the Aitken acceleration (Aitken,
1926) has been adopted. It consists in stopping the algorithm when |€(:+1) — UM < e,
where 0 < € < 400, Egﬂrl) is (h + 1)th Aitken accelerated estimate of the log-likelihood limit,
and E('L,b(h)) is the incomplete log-likelihood evaluated at (") (see, e.g., McNicholas, [2010).
Furthermore, a criterion based on a maximum number of iterations for the ECM algorithm has
been employed. In the analyses of Sections [2.3] and the maximum number of iterations and
¢ have been set equal to 500 and 1075, respectively. Furthermore, in order to circumvent the
possible issue of unbounded likelihood associated with a degenerate model, the ECM algorithm
has been developed by embedding some constraints on the eigenvalues of Zl(ch) fork=1,...,K.

Namely, for all estimated covariance matrices, the ratio between the smallest and the largest

eigenvalues is required to be not lower than 10719,

2.2.6 Determining the value of K

As illustrated in Section the ML estimation of @ based on the ECM algorithm is carried
out for a given number of mixture components. When this number is not known and has to be
determined from the data S, it is common practice to employ model selection criteria able to
take account of different aspects which are considered relevant when evaluating the adequacy of
a model (see, e.g., Fruhwirth-Schnatter, 2006; Depraetere and Vandebroek, 2014)). For example,
the Bayesian Information Criterion (Schwarz, [1978) provides a trade-off between the fit and the

model complexity; it can be computed as follows:

BIC(K) = 26(1)) — ny InT.
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Model selection criteria that also consider the uncertainty of the estimated partition of the sam-
ple observations could be employed. An example is represented by the integrated completed
likelihood (Biernacki et al., |2000), which can be computed according to different ways of mea-
suring the uncertainty of the estimated partition (see, e.g., Andrews and McNicholas, |2011} [Baek

and McLachlan, 2011)):

I K
ICLy(K) = 20(h) —nypInl+2 > MAP(%) In &y,
=1 k=1

I K
ICLy(K) = 20(3h) —nypInT+2> > 2y ln 2.
=1 k=1

These latter criteria penalize complex models more severely than BIC because of the presence
of an additional penalty, which represents the estimated mean entropy. Thus, when using
these criteria in comparison with the BIC, one cluster should be less likely split into two
different components. /C' Ly and IC Ly differ on whether a soft (i.e., 2;;) or hard (i.e., MAP(2;x))
clustering is considered in the estimation of the mean entropy. Higher values of these criteria
indicate better-fit models; as it will be illustrated in Section BIC, ICLy and ICLy can
also be employed to select the predictors to be considered in the linear terms employed in the

prediction of the M responses in model ([2.1)).

2.3 Results from Monte Carlo studies

2.3.1 Settings

This section focuses on the investigation of the effectiveness of models (mixtures of con-
taminated seemingly unrelated Gaussian regressions, hereafter denoted as MCSG) in comparison
with other approaches using simulated datasets. This task has been carried out in a multivari-
ate setting with M = 4 responses, P = 4 covariates and datasets comprising K = 3 groups of
observations. The additional models considered in the comparison are those described by |Mazza
and Punzo| (2020) and |Galimberti and Soffritti (2020). From now on, these latter models have
been denoted as MCG (mixtures of contaminated Gaussian regressions) and MSG (mixtures of
seemingly unrelated Gaussian regressions), respectively.

The simulated datasets have been generated using three different data generation processes:

(a) MSG;
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Figure 2.1: Scatterplots of X; and Y; for samples of size I = 1000 generated from the first
(upper panel), second (intermediate panel) and third (lower panel) data generation processes

under higher (e = 9, left panels) and lower (¢ = 6.5, right panels) degree of separation. Black
circle, red triangle and green plus correspond to k = 1, k = 2 and k = 3, respectively.
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(b) MCSG with ay = 0.9 Vk, n1 = 40, 9o = n3 = 20;

(c) mixtures of regression models with seemingly unrelated ¢-distributed errors (MSt), with

v1 = vg = v3 = 4 degrees of freedom.

In all the regression models employed to generate the datasets, the response Y;,, has been assumed
to depend on X,,, for m = 1,2, 3,4; thus, P, =1 VYm. With each process, the following param-
eters have been employed: m; = 0.3, mo = 0.5, 713 = 0.2, 87 = (—3,0.2,-3,0.2,-3,0.2,-3,0.2)’,

By =—B% B5=0B+¢-023+¢-023+¢-02,3+¢ —0.2),

1.0 05 0.5 0.5 1.00 0.75 0.75 0.75
0.5 1.0 05 0.5 0.75 1.00 0.75 0.75
0.5 05 1.0 0.5 0.75 0.75 1.00 0.75
0.5 05 05 1.0 0.75 0.75 0.75 1.00

It is worth noting that the second and third components only differ in the intercepts of the
four regression equations. Covariate values have been generated by a uniform distribution over
the interval (—5,5). As concerns €, two alternatives have been considered in order to produce two
different degrees of separation between groups of observations: € = 9 (higher degree), ¢ = 6.5
(lower degree). Figure shows the scatterplots of the variables Y7 and X; for a sample of
size I = 1000 generated using the MSG (upper panel), MCSG (central panel) and MSt (lower
panel) processes with ¢ = 9 (on the left) and ¢ = 6.5 (on the right). Due to the values of
the regression coefficients employed to model the linear dependencies of Y, and X,,, across the
three components, the scatterplots of Y;, and X,, for m = 2, 3,4 are similar. Under each data
generating process, 100 random samples of size I have been simulated for each €. As far as the
sample size is concerned, the following values have been examined: I = 500,1000. Thus, the
degree of separation and the sample size can be considered as experimental factors. This yields
a total of 600 generated datasets for each I. The whole analysis has been run on an IBM x3750
M4 server with 4 Intel Xeon E5-4620 processors with 8 cores and 128GB RAM.

2.3.2 Results

A first analysis has been carried out where the MSG, MCG and MCSG models of order K = 3
have been fitted to each dataset. It is worth noting that the MCG models have been specified and
estimated by assuming that each of the four responses depends on all covariates. Thus, using
such models leads to non-parsimonious specifications for all the models that have generated

the simulated datasets, as 12 regression coefficients for each component have been estimated
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Table 2.2: Estimation of aj and 7: averages and standard deviations of the estimates over 100 samples for the fitted MCG and MCSG models

with K = 3 (I = 1000).

MCG MCSG
Q Qo Qs T2 72 73 Q1 Qo Qs h T2 i3

First process - high separation (e = 9)

average 0.999 0.999 0.998 1.001 1.001 1.015 0.999 0.999 0.999 1.001 1.001 1.001

s.d. 0.000 0.000 0.012 0.000 0.000 0.145 0.000 0.000 0.000  0.000  0.000 0.000
First process - low separation (e = 6.5)

average 0.973 0.986 0.983 1.196 1.116 1.155 0.973 0.984 0.988 1.185 1.157 1.090

s.d. 0.080 0.061 0.064 0444  0.260 0.450 0.079 0.062 0.050 0.394 0.343 0.272
Second process - high separation (e = 9)

average 0.901 0.909 0.901 41.061 19.267 18.435 0.903 0912 0.897 40.358 18.882 18.850

s.d. 0.033 0.038 0.042 7512 6.962 6.380 0.025 0.029 0.045 7465 6.788  5.862
Second process - low separation (e = 6.5)

average 0.897 0.917 0.881 37.201 16.182 18.595 0.900 0.924 0.889 37.569 15.547 19.722

s.d. 0.049 0.052 0.092 11.199 9.403 11.045 0.033 0.040 0.071 8730 9.090 12.401
Third process - high separation (¢ = 9)

average 0.860 0.713 0.789 9317 5433  6.132 0.849 0.727 0.789 7.846 4.344 6.132

s.d. 0.102 0.138 0.136 16.161 12.798  3.347 0.116 0.134 0.133 9.670 2569  6.354
Third process - low separation (e = 6.5)

average 0.812 0.757 0.762 10.637 4.706 10.179 0.812 0.763 0.764 6.883  4.579 6.650

s.d. 0.122 0.124 0.155 33.859 2.597 25.126 0.124 0.113 0.140 8.518 3.895 8.262
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Table 2.3: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the first process (I = 500).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG
High separation
B11 0.307 0.563 0.312 0.022 0.029 0.022
B12 —0.012 —-0.108 —0.013 0.021 0.028 0.021
B3 —0.085 0.047 —0.084 0.024 0.030 0.024
B14 0.145 0.147 0.148 0.023 0.029 0.023
B21 —0.027 0.014 —0.027 0.014 0.021 0.014
Boo —-0.119 —-0.028 —-0.119 0.010 0.024 0.010
P23 0.111 0.205 0.111 0.013 0.022 0.013
Bo4 —0.256 —0.165 —0.256 0.013 0.023 0.013
531 —-0.112 —-0.141 —-0.112 0.021 0.038 0.021
B39 0.239 0.439 0.239 0.021 0.036 0.021
B33 —0.257 —0.576 —0.257 0.021 0.036 0.021
B34 0.094 0.060 0.094 0.021 0.034 0.021
Low separation

B11 0.307 0.571 0.309 0.022 0.029 0.022
B2 —0.012 —-0.106 —0.016 0.021 0.028 0.021
B3 —0.085 0.049 —0.089 0.024 0.030 0.024
B14 0.145 0.147 0.153 0.023 0.029 0.023
B21 0.010 0.107 0.005 0.014 0.022 0.014
522 —0.098 0.153 —0.097 0.010 0.026 0.010
B3 0.107 0.204 0.117 0.013 0.025 0.013
Bo4 —0.252 —0.047 —0.252 0.014 0.025 0.014
531 —0.224 —-0.034 —-0.219 0.021 0.046 0.021
B32 0.195 0.820 0.190 0.023 0.042 0.023
B33 —-0.244 -0.512 —-0.251 0.022 0.041 0.022
B34 0.094 0.166 0.092 0.021  0.040 0.021

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.4: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the second process (I = 500).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG

High separation

B11 6.732 0.515 0.288 0.103 0.029 0.023
512 6.819 —0.054 —0.008 0.105 0.029 0.023
B13 6.728 0.062 —0.083 0.105 0.029 0.023
514 6.816 0.297 0.246 0.104 0.031 0.025
b1 —0.833 0.104 0.049 0.061 0.022 0.015
Boo —0.983 —0.058 —0.113 0.057 0.025 0.012
P23 —0.852 0.131 0.086 0.064 0.023 0.014
Bos —1.165 —0.195 —0.288 0.060 0.025 0.014
531 —1.220 —-0.260 —0.272 0.044 0.041 0.023
B39 —0.441 0.295 0.270 0.034 0.036 0.021
B33 —0.917 —-0.593 —0.241 0.041 0.039 0.021
B34 —0.248 0.261 0.184 0.034 0.036 0.021
Low separation
b1 7.440 0.900 0.306 0.118 0.052 0.022
B2 7.583 0.331 0.025 0.118 0.046 0.023
B13 7.517 0.418 —0.104 0.118 0.045 0.023
514 7.421 0.527 0.189 0.117  0.050 0.025
B21 —1.508 0.368 0.030 0.074 0.024 0.014
Boo —1.791 0.140 —0.070 0.079 0.025 0.012
B23 —1.611 —0.008 0.123 0.081 0.026 0.014
Bo4 —1.890 0.010 —0.266 0.079 0.026 0.013
531 —-3.674 —-0.764 —0.089 0.129 0.137 0.034
B39 -3.169 —-3.185 0.174 0.101  0.200 0.052
B33 —-3.644 —1.903 —0.536 0.145 0.177 0.077
B34 —2.049 —-1.250 0.325 0.101 0.201 0.044

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.5: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the third process (I = 500).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG
High separation
B11 0.786 0.090 0.296 0.034 0.034 0.029
B12 0.861 0.224 0.411 0.035 0.043 0.029
B13 0.674 0.300 0.254 0.033 0.041 0.030
B14 0.532 0.108 —0.157 0.035 0.043 0.027
b1 0.145 —0.014 0.055 0.018 0.037  0.016
Boo 0.109 —-0.810 —0.003 0.017 0.045 0.014
P23 —0.082 —0.211 —0.152 0.020 0.041 0.018
Bo4 0.162 —0.023 0.027 0.015 0.032 0.014
531 —0.206 —1.520 —0.273 0.029 0.056 0.027
B39 —0.384 —-0.092 —-0.319 0.031 0.061 0.027
B33 0.784 0.293 0.425 0.027  0.063 0.026
B34 0.060 0.326 0.384 0.026  0.049 0.025
Low separation

b1 0.312 —0.218 0.101 0.032 0.032 0.026
B2 0.411 0.024 0.264 0.029 0.035 0.028
B3 0.354 0.011 0.182 0.033 0.035 0.029
B14 —0.019 —-0.297 —0.246 0.029 0.034 0.026
B21 0.026 0.124 0.048 0.017 0.038 0.017
Boo —0.117 —0.536 0.155 0.018 0.039 0.016
B3 0.105 0.232 —0.108 0.022 0.043 0.018
Bo4 0.371 —0.038 0.156 0.017 0.038 0.016
531 —-0.336 —3.023 0.052 0.056  0.138 0.034
B32 0.334 —2.051 -—1.141 0.057 0.166 0.066
B33 1.120 0.634 —1.330 0.169 0.110 0.128
B34 —-0.296 —1.419 —-0.377 0.059 0.151 0.047

Biases have been multiplied by 100 to facilitate presentation.
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although in fact they are equal to zero. The average execution times (over the 100 datasets with
I = 500) for the MCSG models have ranged between 2.499 and 55.020 seconds, depending on
the process and the specific value of ¢ employed to generate the datasets. Concerning the other
two models, the minimum and maximum average execution times have resulted to be equal to
1.722 and 24.580 seconds with MSG models, 7.765 and 58.520 seconds with MCG models. It
is worth noting that, since the implementation of the ECM algorithm has not been carried out
with the goal of being efficient from a computational point of view, these CPU times should be
regarded as merely illustrative and can be reduced using more efficient implementations. In the
first analysis, the performances of the three competing models have been evaluated with respect
to the following aspects: textit(i) the estimation of the proportions of typical observations and
the degrees of contamination (proper estimation of ay and ny); textit(ii) the ability to recover
the true values of the unknown parameters (parameter recovery); (iii) the ability to recover the
true partition of the sample observations (classification recovery). When evaluating properties
of the parameter estimators using simulation studies under mixture models, there may be label
switching issues. Several labeling methods have been proposed. For the models examined here,
as in Bai et al. (2012)), |[Yao| (2014) and Mazza and Punzo| (2020)), labels have been chosen by
minimising the Euclidean distance to the true parameter values.

A second analysis has been carried out so as to obtain an evaluation of the three approaches
without exploiting the knowledge of the true number of components. Thus, in addition to the
models already examined in the first analysis, also models of order K = 1,2,4,5 have been
fitted to each dataset. All the obtained results have been employed to collect information on
the following aspects: (iv) the capability to reach the best trade-off between the fit and model
complexity; (v) the ability of BIC, IC'L; and I1C Ly to detect the true value of K (comparison

among information criteria).

Estimation of «; and 7

The aspect (i) has been studied for the fitted MCG and MCSG models with K = 3. Under the
first two data generation processes, the averages of the estimated proportions of good points
(&) and the estimated inflation parameters (7)) are close to their true values under both MCG
and MCSG models, regardless of the level of separation and the sample size (see the upper
part of Tables and . However, it is worth noting that slightly lower standard deviations

of such estimates have been registered under the first process, thus giving an indication of a
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Table 2.6: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the first process (I = 1000).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG
High separation
B11 0.162 0.128 0.162 0.016  0.020 0.016
B2 —0.066 0.009 —0.066 0.017 0.022 0.017
B13 0.127 0.478 0.127 0.015 0.020 0.015
B4 0.070 0.084 0.070 0.017 0.020 0.017
b1 —-0.126 —0.314 —0.126 0.008 0.014 0.008
Boo —0.042 —0.080 —0.042 0.008 0.015 0.008
P23 0.081 0.077 0.081 0.010 0.016 0.010
Bo4 —0.057 0.080 —0.057 0.008 0.014 0.008
531 0.075 0.161 0.075 0.014 0.025 0.014
B39 —0.153 —-0.073 —0.153 0.015 0.026 0.015
B33 0.091 0.158 0.091 0.015 0.024 0.015
B34 —0.124 —-0.452 —-0.124 0.014 0.025 0.014
Low separation

b1 0.159 0.122 0.161 0.016  0.020 0.016
B2 —0.065 0.012 —0.060 0.017 0.022 0.017
B3 0.129 0.474 0.127 0.015 0.020 0.015
514 0.070 0.077 0.073 0.017 0.020 0.017
B21 —0.008 0.276 —0.008 0.009 0.015 0.009
Boo —0.008 —0.045 —0.007 0.009 0.016 0.009
B3 0.059 —0.071 0.056 0.010 0.016 0.010
Bo4 0.028 —0.149 0.031 0.008 0.016 0.008
531 —0.034 —-0.027 —0.032 0.014 0.028 0.014
B32 —0.067 —0.248 —0.067 0.014 0.031 0.014
B33 0.069 —0.238 0.070 0.016 0.031 0.016
B34 —0.031 0.013 —0.030 0.015 0.031 0.015

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.7: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the second process (I = 1000).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG

High separation

B11 6.928 0.092 0.217 0.086  0.020 0.015
512 7.415 0.161 0.116 0.094 0.385 0.019
B13 6.835 —0.304 —0.269 0.088 0.390 0.015
514 6.101 —-0.221 —-0.219 0.081 0.021 0.018
b1 —-0.277 —0.140 —0.102 0.033 0.016 0.010
Boo —0.100 0.045 0.077 0.031 0.015 0.011
P23 —0.246 —0.003 —0.055 0.033 0.386 0.010
Bos —-0.276 —0.178 —0.103 0.034 0.016 0.009
531 —0.906 —0.264 —0.185 0.030 0.027 0.015
B39 —0.218 0.214 —0.036 0.026  0.389 0.015
B33 —0.916 —-0.396 —0.233 0.031 0.029 0.016
B34 —0.502 —-0.099 —0.157 0.027  0.026 0.014
Low separation
B11 6.911 —0.051 0.147 0.092 0.020 0.015
512 7.924 0.014 0.299 0.105 0.023 0.019
B3 7.733 0.175 —0.075 0.101 0.018 0.014
514 6.543 —0.234 —0.239 0.090 0.023 0.017
Bo1 —0.713 0.223 —0.126 0.049 0.018 0.010
Boo —0.354 0.219 0.198 0.048 0.019 0.010
B23 —0.668 —0.148 —0.084 0.050 0.018 0.009
Bo4 —0.286 0.143 0.252 0.044 0.016 0.009
531 —2.667 0.019 —-0.876 0.081 0.085 0.116
B39 —1.447 —-0.236 —0.033 0.072  0.080 0.068
B33 —2.959 0.591 0.184 0.092 0.087 0.035
B34 —2.173 0.732 —1.039 0.081 0.111 0.091

Biases have been multiplied by 100 to facilitate presentation.
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Table 2.8: Bias and RMSE for the regression coefficients (i, under MSG, MCG and MCSG
models of order K = 3 in the third process (I = 1000).

Bias RMSE
MSG  MCG MCSG MSG MCG MCSG
High separation
B11 0.325 —0.128 —0.022 0.022 0.027  0.019
B12 0.412 0.057 —0.011 0.024 0.026 0.022
B13 0.686 0.268 0.160 0.022 0.025 0.019
B14 0.326 —0.049 0.091 0.027 0.028 0.024
Ba1 0.006 —0.199 —-0.027 0.011  0.020 0.011
Boo 0.217 0.330 0.035 0.012 0.020 0.011
P23 —-0.011 —-0.280 —0.131 0.012 0.019 0.011
Bo4 —0.324 —0.406 —0.233 0.013 0.018 0.012
531 —0.049 0.125 —0.083 0.021 0.033 0.019
B39 0.118 0.154 0.003 0.018 0.032 0.017
B33 —0.170 0.052 —0.190 0.020 0.036 0.018
B34 —-0.271 —-0.516 —0.251 0.020 0.033 0.018
Low separation

b1 0.197 0.035 0.052 0.022 0.028 0.018
B2 —0.075 —0.289 —0.160 0.021 0.038 0.019
B3 0.540 0.430 0.407 0.023 0.028 0.020
B14 0.257 0.081 0.130 0.019 0.027  0.018
B21 0.084 0.140 0.063 0.013 0.023 0.012
Boo 0.137 —0.142 —0.049 0.013 0.026 0.011
B3 0.140 0.279 0.213 0.014 0.021 0.012
Bo4 —-0.143 —-0.130 —-0.117 0.012 0.024 0.012
B31 —-0.911 -—-1.273 0.050 0.057 0.104 0.019
B32 —1.822 —-2.135 0.061 0.085 0.162 0.021
B33 —1.087 —1.037 0.041 0.077 0.107  0.021
B34 —0.408 —0.881 0.156 0.069 0.083 0.022

Biases have been multiplied by 100 to facilitate presentation.
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higher stability of the obtained estimates; furthermore, the estimation of 7, 7y and 73 under
the second process appears to be characterised by a certain instability, which results to reduce as
the sample size I increases using both MCG and MCSG models. As far as the results from the
analyses of the datasets generated using the third process are concerned (lower part of Tables
and , the estimated values of oy and ng, k = 1,2, 3, are far from 1, regardless of the values
of e and I. Thus, the departure from a four-dimensional Gaussian distribution for the errors of
the regression model has been detected within each of the three mixture components of both
MCG and MCSG models for both sample sizes. The standard deviations of 7y, kK = 1,2,3 are

high, and this result holds true particularly with MCG models and I = 1000.

Parameter recovery

The evaluation of the aspect (ii) has been focused on the regression coefficients Sk, and has

been carried out by computing the following quantities:

2100 5(r)

Bias (Bkm) = Sl g k=123 m=1,234,
~am)?
RMSE (Bkm) - oo (B];go Bkm) k=1,2,3 m=1,234,

where BA,S;)@ is the ML estimate of S, obtained from the rth dataset (r = 1,...,100) using
models of order K = 3. With I = 500 and under the first data generating process (Table ,
MSG and MCSG models show the same performance in terms of recovering the true values of the
regression coefficients with both degrees of separation. The good performance of MCSG models
is consistent with the proper estimation of aj and 7 associated with these models under the
first process (see the previous aspect). On the contrary, the inclusion of irrelevant predictors
in the four regression equations (MCG models) leads to a slight increase in the RMSEs. With
contaminated datasets of size I = 500, as expected, the lowest (absolute) biases and RMSEs
are obtained using the MCSG model (see Table ; there also seems to be a tendency for
MCG models to perform slightly better than MSG models for the majority of the regression
coefficients. When the datasets are generated with I = 500 and according to the third process,
the highest accuracy in the estimation of the regression coefficients is obtained using MCSG
models (see Table . It is also worth noting that, in spite of their ability to detect a departure
from the Gaussian distribution within each component, MCG models show the lowest accuracy.

Similar results have been obtained with I = 1000 (see Tables [2.642.8]).
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Table 2.9: Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3:
average values (standard deviations) of the ARI index over 100 samples (I = 500).

Process € MSG MCG MCSG

I 9 0.999 (0.003) 0.999 (0.003) 0.999 (0.003)
I 6.5 0.946 (0.018) 0.937 (0.028) 0.946 (0.018)
II 9 0.818 (0.024) 0.911 (0.027) 0.910 (0.031)
II 6.5 0.723 (0.094) 0.806 (0.100) 0.821 (0.087)
111 9 0.931 (0.033) 0.936 (0.037) 0.937 (0.040)
111 6.5 0.721 (0.147) 0.745 (0.145) 0.776 (0.129)

Classification recovery

To obtain information on the aspect (7ii), the partitions of the sample units associated with
the models of order K = 3 under each competing model class have been compared with the
true partition; the agreement with this latter partition has been measured by resorting to the
adjusted Rand index (ARI) (Hubert and Arabie, [1985). When the datasets are generated using
the first process and the highest level of separation (see the upper part of Tables and ,
an almost perfect classification recovery (ARI = 0.999) is obtained by each of the three models
regardless of the sample size. When the level of separation is low (e = 6.5), a slight decrease in
the ability to recover the true partition of the sample observations is registered for all models
and, in particular, for the MCG ones when I = 500 (ARI = 0.937). When there are outliers
in the data and € = 9, the best performance is obtained using either MCG models or MCSG
models with both sample sizes (ARI = 0.91); these latter models slightly outperform MCG
models when € = 6.5. As far as MSG models are concerned, due to their inability to manage the
presence of mild outliers in the data, the classification recovery appears to be markedly lower,
especially with the lowest level of separation (ARI = 0.723 with I = 500, ARI = 0.716 with
I =1000). Under the third process and the highest level of separation, good performances are
obtained by all models with both sample sizes (ARI > 0.93). When the level of separation
is reduced, a general decrease in the capability to reconstruct the true partition is registered;

MCSG models appear to be less affected by this tendency, regardless of the sample size.

Trade-off between fit and complexity

In order to study the aspect (iv), for each dataset and each model class, the models of order K Ic
have been selected, where IC' denotes an information criterion (IC € {BIC,ICLy,I1CLs}) and

K¢ = arg max IC(K) for K € {1,2,3,4,5}. Then, the average values of the 100 resulting values
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Table 2.10: Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3:
average values (standard deviations) of the ARI index over 100 samples (I = 1000).

Process € MSG MCG MCSG

I 9 0.999 (0.002) 0.999 (0.002) 0.999 (0.002)
I 6.5 0.951 (0.011) 0.949 (0.012) 0.951 (0.011)
II 9 0.803 (0.015) 0.914 (0.023) 0.916 (0.021)
II 6.5 0.716 (0.088) 0.823 (0.092) 0.831 (0.082)
111 9 0.941 (0.016) 0.943 (0.013) 0.944 (0.014)
111 6.5 0.706 (0.147) 0.814 (0.095) 0.814 (0.102)

of BIC(KBIC), ICLl(KICLI) and ICLQ(K[CLQ) have been computed within the three model
classes. As expected, when datasets of I = 500 observations are generated without outliers (first
process), the best trade-off between the fit and model complexity is reached by MSG models,
regardless of the level of separation and the criterion employed to select the best model (see
the upper part of Table . With these datasets, MCSG models slightly outperform MCG
models. When there are outliers in the data (second process) or the error terms of the K
regression models have tails heavier than the Gaussian ones (third process), MCSG shows the
best performance in terms of capability to reach the best trade-off between fit and complexity,
regardless of the level of separation and the criterion employed to select the best model (see the
lower part of Table . Interestingly, when the outliers are generated using a MCSG model
(second process), MSG models slightly outperform MCG models, regardless of the value of e.

Similar conclusions can be drawn also from the results obtained when I = 1000 (see Table [2.12]).

Comparison among information criteria

As far as the aspect (v) is concerned, the attention has been focused on the number of times each
value of K has been selected by each examined criterion. With datasets generated using the first
process and the highest level of separation, all the examined information criteria always recog-
nize the presence of three clusters, regardless of the fitted model and the sample size (see the
upper part of Tables and . If the level of separation is reduced (e = 6.5), the BIC still
tends to correctly identify the presence of three clusters regardless of the fitted model only with
the largest sample size. If I = 500, the same tendency is slightly weaker with MSG and MCSG
models; the order of the models employed to generate the datasets is always underestimated by
the BIC when MCG models are employed. IC'Ly and IC Lo show a clear preference for K = 3

components only when models embedding the information on the relevant regressors (e.g., MSG
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Table 2.12: Average values of NNQAMQ:QY NQHZNQQFV and NthQﬁQFV over 100 samples (I = 1000).

BIC(Kpgic) ICLi(Kicr,) ICLy(Kicr,)
MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG

First process - high separation (e = 9)

—11298 —11552 —11339 —11299 —11553 —11340 —11300 —11554 —11341
First process - low separation (e = 6.5)

—11217 —11469 —11257 —11253 —11492 —11293 —11296 —11507 —11334
Second process - high separation (e = 9)

—13116 —13202 —13000 —13131 —13251 —13049 —13167 —13313 —13111
Second process - low separation (e = 6.5)

—12989 —13107 —12923 —13039 —13159 —13002 —13119 —-13209 —13070
Third process - high separation (e =9)

—13699 —13760 —13541 —13773 —13786 —13568 —13833 —13829 —13611
Third process - low separation (e = 6.5)

—13495 —13510 —13346 —13611 —13536 —13401 —13681 —13575 —13444
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Table 2.13: Comparison among information criteria: number of selections over 100 samples for
MSG, MCG and MCSG models of order K € {1,2,3,4,5} (I = 500).

K BIC(K) ICLi(K) ICLy(K)
MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG
First process - high separation (e = 9)

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 100 100 100 100 100 100 100 100 100
4 0 0 0 0 0 0 0 0 0
) 0 0 0 0 0 0 0 0 0
First process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 25 100 51 52 100 72 76 100 85
3 75 0 49 48 0 28 24 0 15
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
Second process - high separation (e = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 100 98 0 100 98 0 100 99
4 99 0 2 99 0 2 99 0 1
5 1 0 0 1 0 0 1 0
Second process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 99 50 0 99 75 0 100 94
3 11 1 50 15 1 25 19 0 6
4 89 0 0 85 0 0 81 0 0
) 0 0 0 0 0 0 0 0 0
Third process - high separation (e = 9)
1 0 0 0 0 0 0 0 0 0
2 0 2 0 0 2 1 0 2 1
3 52 98 99 70 98 98 77 98 96
4 39 0 1 25 0 1 22 0 3
) 9 0 0 5) 0 0 1 0 0
Third process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 40 100 89 82 100 100 93 100 100
3 24 0 11 7 0 0 4 0 0
4 27 0 0 10 0 0 3 0 0
5 9 0 0 1 0 0 0 0 0
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Table 2.14: Comparison among information criteria: number of selections over 100 samples for
MSG, MCG and MCSG models of order K € {1,2,3,4,5} (I = 1000).

K BIC(K) ICLi(K) ICLy(K)
MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG
First process - high separation (e = 9)

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 100 100 100 100 100 100 100 100 100
4 0 0 0 0 0 0 0 0 0
) 0 0 0 0 0 0 0 0 0
First process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 13 0 0 49 0 17 84 24
3 100 87 100 100 o1 100 83 16 76
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
Second process - high separation (e = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 99 100 0 99 100 0 100 100
4 100 1 0 100 1 0 100 0 0
5 0 0 0 0 0 0 0 0
Second process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 0 19 4 0 80 17 0 93 68
3 0 81 91 1 20 81 8 7 31
4 100 0 5) 99 0 2 92 0 1
) 0 0 0 0 0 0 0 0
Third process - high separation (e = 9)
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 14 100 98 48 100 99 69 100 99
4 69 0 2 49 0 1 31 0 1
5) 17 0 0 3 0 0 0 0
Third process - low separation (e = 6.5)
1 0 0 0 0 0 0 0 0 0
2 1 88 12 44 100 88 81 100 100
3 19 12 87 13 0 12 10 0 0
4 67 0 1 40 0 0 9 0 0
5 13 0 0 3 0 0 0 0 0
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and MCSG) are employed and the sample size is I = 1000. Otherwise, they generally underesti-
mate the true number of clusters. Under the second process, when MSG models are fitted to the
data, all the examined information criteria show a clear tendency to select K = 4 components
an additional component accommodating outliers is typically selected), regardless of the level of
separation and the sample size (see also Mazza and Punzo, 2020). On the contrary, with both
MCG and MCSG models, the three criteria almost always correctly identify three components,
regardless of the sample size, provided that the degree of separation is high. When € = 6.5, the
same result is obtained by the BIC' in association with MCG and MCSG models and by IC'L;
in association with MCSG models only with the largest sample size; otherwise, due to both
a low separation between two clusters and a low sample size, the examined criteria generally
underestimate the true value of K. This behaviour is particularly evident when the selection of
K is based on ICLy. A possible explanation for this is that the penalty employed by IC'Ls (a
function of the uncertainty of the estimated posterior probabilities Z;;) is the most severe and
is also expected to be particularly large whenever the analysed dataset contains true clusters
which are not well separated. When the datasets are generated using the third process and the
smallest sample size, the obtained results show that, if e = 9, the three criteria generally detect
the true value of K (see the lower part of Table . This tendency appears to be stronger
when MCG and MCSG models are employed. These results hold true also with I = 1000 except
when MSG models are fitted to the data and K is selected using either the BIC or the ICLy;
in these latter situations the true K is overestimated. On the contrary, when the degree of
separation is low, models of order K = 2 are generally selected from each examined model class
according to IC'Ly and IC Lo, regardless of the sample size. Also this result could be due to
the role played by the penalties employed by these two latter criteria in the presence of true
clusters which are not well separated. As far as the BIC' is concerned, it allows to detect the
true number of components only when MCSG models are fitted to samples of size I = 1000. It
also shows a tendency to underestimate the true K both with MCSG models fitted to smaller
samples and with MCG models regardless of the sample size. Finally, a slight preference with
MSG models of order K = 2 and K = 4 emerges in association with samples of size I = 500

and I = 1000, respectively.
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2.4 Results from the analysis of canned tuna sales

The practical usefulness and effectiveness of the proposed models have been evaluated through
the analysis of a dataset containing the volume of weekly sales (Move) for seven of the top 10
U.S. brands in the canned tuna product category for I = 338 weeks between September 1989
and May 1997 (Chevalier et all 2003). Measures of the display activity (Nsale) and the log
price (Lprice) of each brand in each week are also available. This dataset is included in the R
package bayesm (Rossi, 2012)). The analysis here considers two products: Star Kist 6 oz. (SK)
and Bumble Bee Solid 6.12 oz. (BBS). In order to study the dependence of canned tuna sales on
prices and promotional activites for these two brands, the analysis has been carried out starting
from the following vectors of variables: Y = (Y; = Lmove SK, Y2 = Lmove BBS), X = (X; =
Nsale SK, X9 = Lprice SK, X3 = Nsale BBS, X, = Lprice BBS), where Lmove denotes the
logarithm of Move; thus, M = 2 and P = 4. Previous studies focused on other brands are
illustrated in |Galimberti et al.| (2016) and |Galimberti and Soffritti| (2020]).

The analysis has been carried out through MSG, MCG and MCSG models. The additional
class comprising mixtures of linear Gaussian regression models (Jones and McLachlan, |{1992) has
been included in the comparison; the notation employed for this model class is MRM. Models
from each of these four classes have been estimated for K € {1,2,3,4}. Furthermore, since
prices and promotional activities for one product could have an impact on the sales of the other
product, models from MSG and MCSG classes have been specified and fitted by considering
all possible sub-vectors of X as vectors X,,,, m = 1,2, for each K. Thus, the analysis has also
included an exhaustive search of the relevant regressors for both Lmove SK and Lmove BBS. For
each K, 20"M = 256 different mixtures of regression models have been estimated either with
contamination or without contamination; the overall number of estimated models is 2048. It
is worth noting that none of the models employed in this analysis explicitly accounts for serial
dependencies that may characterise this dataset.

Figure [2.2] shows the values of BIC, ICLy and ICLy for the fitted MCSG, MSG, MCG
and MRM models which maximise each of these model selection criteria by K. An analysis
based on a single linear regression model without contamination (MSG and MRM models with
K = 1) is clearly inadequate according to all criteria. The best trade-off among the fit, the
model complexity and the uncertainty of the estimated partition of the weeks is reached by

models of order K = 2 for each of the four examined model classes. If model selection is only
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Figure 2.2: Values of BIC, IC' Ly and IC L for the best MCG, MCSG, MSG and MRM models
by number of components in the analysis of tuna sales.

Table 2.15: Maximised log-likelihood and values of BIC, IC' Ly and IC'Ly for six models selected
from the classes MCSG, MCG, MSG and MRM in the analysis of tuna sales.

Class K X, X, () ny BIC ICL, ICLy
MCSG 2 Xy, X  Xo, X3, X, -—2425 25 —6305 —636.0 —646.1

MCG 2 Xo, X3, Xa Xo,X3,X4 —247.0 27 —651.1 —662.3 —673.5
MSG 2 X, X X5, X, 2775 19 —665.6 —673.8 —689.2
MRM 2 Xo, X4 X5, Xy  —289.2 19 —688.9 —700.5 —719.9
MSG 3 X X3, X4 —2404 26 —632.2 —737.4 —865.7
MRM 3 Xo, X3, Xa Xo,X3,X4 —2246 35 —653.0 —750.0 —877.9

based on the fit and the model complexity, the best MCSG and MCG models still have K = 2
components, while MSG and MRM models of order K = 3 should be preferred.

Table2.15 reports more detailed information about the six models which best fit the analysed
dataset according to the three model selection criteria over the five examined values of K within
each model class. All the examined criteria select a seemingly unrelated contaminated Gaussian
linear clusterwise regression model of order K = 2 as the overall best model for studying the
effect of prices and promotional activities on sales for the two brands. In this model, the log
unit sales of SK canned tuna are regressed on the log prices and the promotional activities of
the same brand; as far as the regressors for the BBS log unit sales are concerned, the selected
regressors are the log prices of both brands and the promotional activities of BBS. From the
parameter estimates (see Table it emerges that the analysed dataset is characterised both
by heterogeneity over time and by the presence of atypical observations. This latter feature
seems to characterise the two clusters of weeks detected by the model almost in the same way
(the estimated weights of the typical observations are &; = 0.827 and &y = 0.829); however, the
strength of the contaminating effect on the conditional variances and covariances of Y |X = x

results to be stronger in the first cluster, where the estimated inflation parameter for the elements
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Table 2.16: Parameter estimates of the overall best model for the analysis of tuna sales.

Y k=1 k=2

T 0.062 0.938

ax 0.827 0.829

Tk 13.44 6.80

B (8.86,0.59, —4.68) (8.65,0.27, —3.11)
Bry (15.00,3.91,2.77, —17.84)  (9.98,0.25,0.12, —3.82)
o < 0.043 -0.022) (0.118 0.011 >

0022 0.126 0.011 0.028

of ¥ is larger (1 = 13.44). Heterogeneity over time appears to emerge both in some effects
of the selected regressors and in the conditional expected variances and covariances of log sales
for the typical observations. From the estimates of the regression equation for Lmove SK it
emerges that sales of SK canned tuna are negatively affected by prices and positively affected by
promotional activities of the same brand within both clusters detected by the model. However,
the estimated effects of these two variables in the first cluster result to be stronger than those in
the second cluster. Similar results have been obtained with reference to the regression equation
for Lmove BBS, from which it also emerges that the log prices of SK canned tuna positively
affect the log unit sales of the other brand, especially in the first cluster of weeks. As far as the
estimated conditional variances and covariances are concerned, typical weeks in the first cluster
appear to be characterised by values of Lmove SK which are more homogeneous than those
of Lmove BBC; the opposite holds true for the typical weeks belonging to the second cluster.
Heterogeneity over time appears to emerge also in the correlation between log sales of SK and
BBS products, which is slightly positive (0.191) within the largest cluster of weeks, while a
mild negative correlation (—0.299) between Lmove SK and Lmove BBC is estimated in the weeks
belonging to the first cluster.

The first cluster determined according to the highest estimated posterior probabilities of the
selected model is composed of 20 weeks; 17 of these weeks are consecutive (from week no. 58
to week no. 74) and correspond to a period (from mid-October 1990 to mid-February 1991)
characterised by a worldwide boycott campaign encouraging consumers not to buy Bumble Bee
tuna because Bumble Bee was found to be buying yellow-fin tuna caught by dolphin-unsafe
techniques (Baird and Quastel, |2011). The selected model seems to suggest that such events
may be one of the sources of the unobserved heterogeneity detected by the analysis. The fact
that the estimated effects of all the selected regressors on the log prices of both products are

stronger in the first cluster of weeks and weaker in the second cluster could be associated with
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Figure 2.3: Scatterplots of the estimated residuals for the weeks assigned to the first (left) and
second (right) clusters detected by the overall best model for the analysis of tuna sales. Points
of the first scatterplot are labelled with the number of the corresponding weeks. Black circle and
red triangle in the second scatterplot correspond to typical and outlying weeks, respectively.

those events. According to the rule for the intra-class distinction between typical observations
and mild outliers illustrated in Section [2.2.4] some weeks have been classified as mild outliers
within both clusters. As far as the first cluster is concerned, this has happened for week no. 60
(immediately after Halloween 1990) and week no. 73 (two weeks immediately before Presidents
day 1999). For these weeks, the estimated squared Mahalanobis distances d?l, equal to 36.68
and 37.82, respectively, appear to be extremely higher than those of the other 18 weeks of the
same cluster, which are comprised between 0.05 and 7.05. From the estimated sample residuals
Vi — B (xi; BT) for the 20 weeks belonging to the first cluster (see the scatterplot on the left side
of Figure it emerges that week no. 60 noticeably deviates from the other weeks because
log unit sales of SK tuna are slightly lower than the predicted value, while an opposite result
characterises the log unit sales of BBS tuna. On the contrary, the selected model identifies
week no. 73 as a mild outlier mainly because of a large overestimation of the sales of BBS
tuna. Among the 318 weeks of the second cluster, 35 have resulted to be mild outliers, most
of which are associated with holidays and special events that took place between September
1989 and mid-October 1990 or between mid-February and May 1997. The scatterplot with the
estimated sample residuals y; — fio(x;; B;) for all the weeks of the second cluster (see the right
side of Figure shows that, for the majority of the 35 mild outlying weeks, the reason for

the outlyingness detected by the model has been an overestimation or an underestimation of
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the sales for either brands. The values of the estimated distances a% for the weeks that have
been classified as typical are between 0.003 and 7.993; the minimum and maximum of the same

distances for the outlying weeks are 8.20 and 114.95, respectively.

2.5 Conclusions

A new family of seemingly unrelated clusterwise linear regression models for possibly contam-
inated data has been introduced. Such models can account for heterogeneous regression data
with mild outliers and multivariate correlated responses, each one depending on its own vector
of covariates. This latter feature represents the main novelty of the models proposed here in
reference with the ones described in [Mazza and Punzo (2020). The new family encompasses sev-
eral other types of Gaussian mixture-based linear regression models previously proposed in the
literature. It also provides a more flexible framework for modelling data in applications where
sample observations could be atypical and different covariates are expected to be relevant in the
prediction of different responses, based on some prior information to be conveyed in the analysis.
The new family could be made more flexible by exploiting the approach illustrated in [Celeux
and Govaert| (1995), which allows to introduce constraints on the elements of the covariance
matrices Xy, k = 1,..., K, so that models with a lower number of variances and covariances
of Y|X = x in the K sub-populations are obtained. Monte Carlo studies have shown that
the choice of the number of components and the reconstruction of the true classification of the
sample observations can be negatively affected by the inclusion of irrelevant regressors in a clus-
terwise linear regression model, especially with overlapping clusters of observations. Whenever
the choice of the regressors to be considered in the specification of the linear predictor of each re-
sponse is questionable, models introduced here can be employed in conjunction with techniques
for variable selection (e.g., genetic algorithms, stepwise strategies) in a multivariate regression
setting in order to detect the relevant predictors for each regression equation. Since the ECM
algorithm for the ML estimation of the model parameters does not automatically produce any
estimate of the covariance matrix of the ML estimator, additional computations are necessary
to obtain an assessment of the sample variability of model parameter estimates. This task could
be carried out by means of some approaches commonly employed under finite mixture models
(see, e.g., McLachlan and Peel, |2000). We are currently developing an extension of the methods

proposed herein to some mixtures of Gaussian linear regression models with random covariates
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(Punzo and McNicholas| |2017). Another avenue of future research is represented by the study of
seemingly unrelated clusterwise regression models explicitly accounting for contaminated data

and space/time-dependent observations.

Appendix A - Update of 3; and X

The updates of the model parameters 37 and Xy at the (h + 1)th first CM-step of the ECM

algorithm, as illustrated in equations (2.10)) and (2.11)), can be obtained as follows.
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Setting (2.15) equal to the null vector, solving the so obtained system with respect to BZ' and

using properties of transpose results in the solution reported in equation (2.10). Finally,
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where the second and third equalities are obtained using properties of trace and transpose and
differentiation rules of functions of matrices. Setting (2.16)) equal to the null matrix and solving

the resulting system with respect to 3 gives the update in equation (2.11)).
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Abstract

In recent years, the research into linear multivariate regression based on finite mixture models
has been intense. With such an approach, it is possible to perform regression analysis for a
multivariate response by taking account of the possible presence of several unknown latent ho-
mogeneous groups, each of which is characterised by a different linear regression model. For a
continuous multivariate response, mixtures of normal regression models are usually employed.
However, in real data, it is not unusual to observe mildly atypical observations that can neg-
atively affect the estimation of the regression parameters under a normal distribution in each
mixture component. Furthermore, in some fields of research, a multivariate regression model
with a different vector of covariates for each response should be specified, based on some prior
information to be conveyed in the analysis. To take account of all these aspects, mixtures of
contaminated seemingly unrelated normal regression models have been recently developed. A
further extension of such an approach is presented here so as to ensure parsimony, which is ob-
tained by imposing constraints on the group-covariance matrices of the responses. A description
of the resulting parsimonious mixtures of seemingly unrelated contaminated regression models
is provided together with the results of a numerical study based on the analysis of a real dataset,
which illustrates their practical usefulness.

Keywords: Contaminated normal distribution, ECM algorithm, mixture of regression models,

model-based cluster analysis, seemingly unrelated regression.
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3.1 Introduction

Seemingly unrelated (SU) regression equations are usually employed in a multivariate regres-
sion analysis whenever the dependence of a vector Y = (Y1,..., Y, ..., Yy) of M continuous
variables on a vector X = (X1,...,X,,...,Xp)" of P regressors has to be modelled by allowing
the error terms in the different equations to be correlated and, thus, the regression parameters
of the M equations have to be jointly estimated (Srivastava and Giles, [1987)). With such an
approach, the researcher is also enabled to convey prior information on the phenomenon under
study into the specification of the regression equations by defining a different vector of regressors
for each dependent variable. This latter feature is particularly useful in any situation in which
different regressors are expected to be relevant in the prediction of different responses, such as
in |White and Hewings| (1982); Cadavez and Hennningsen| (2012); Disegna and Osti (2016)). This
approach has been recently embedded into the framework of Gaussian mixture models, leading
to multivariate SU normal regression mixtures (Galimberti and Soffritti (2020)). In these mod-
els, the effect of the regressors on the dependent variables changes with some unknown latent
sub-populations composing the population that has generated the sample of observations to be
analysed. Thus, when the sample is characterised by unobserved heterogeneity, model-based
cluster analysis is simultaneously carried out.

Another source of complexity which could affect the data and make the prediction of Y a
difficult task to perform is represented by mildly atypical observations (Ritter, |2015). Robust
methods of parameter estimation insensitive to the presence of such observations in a sample
characterised by unobserved heterogeneity have been introduced in [Mazza and Punzo| (2020),
where the conditional distribution Y|X = x is modelled through a mixture of K multivariate
contaminated normal models, where K is the number of the latent sub-populations. A limitation
associated with these latter models is that the same vector of regressors has to be specified for
the prediction of all the dependent variables. To overcome this limitation while preserving all the
features mentioned above, a more flexible approach which employs mixtures of multivariate SU
contaminated normal regression models has been recently introduced in [Perrone and Soffritti
(2023). These latter models are able to capture the linear effects of the regressors on the
dependent variables from sample observations coming from heterogeneous populations. The
researcher is also enabled to specify a different vector of regressors for each dependent variable.

Finally, a robust estimation of the regression parameters and the detection of mild outliers in
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the data are ensured.

In the presence of many responses and many latent sub-populations, analyses based on these
latter models can become unfeasible in practical applications because of a large number of
model parameters. In order to keep this number as low as possible, an approach due to |Celeux
and Govaert| (1995)), based on the spectral decompositions of the K covariance matrices of
Y |X = x, is exploited here so as to obtain fourteen different covariance structures. The resulting
parsimonious mixtures of SU contaminated regression models are described in Section The
usefulness of these new models is illustrated through a study aiming at determining the effect
of prices and promotional activities on sales of canned tuna in the US market. A summary of

the obtained results is provided in Section [3.3] .

3.2 Parsimonious SU contaminated normal regression mixtures

In a system of M SU regression equations for modelling the linear dependence of Y on X,
let Xy = (Xmys Ximg,y - - - s Xmp,, )’ be the P,,-dimensional sub-vector of X composed of the P,
regressors expected to be relevant for the explanation of Y,,, for m = 1,..., M. Furthermore,
let X, = (1,X],)’. The mixture of K SU normal regression models described in |Galimberti and

Soffritti (2020]) can be defined as follows:

p

X* Bt +€, €~ Ny(0y,X1) with probability 7y,

X* 3% + €, €~ Np(0p, Xf) with probability 7y,

where 7y, is the prior probability of the kth latent sub-population, with 7, > 0 for k =1,..., K;

SO me = 1; X* is the following (P* 4+ M) x M partitioned matrix:

X7 Op+1 ... Op 41

~ OP2+1 X; e 0P2+1
X* = ,

_OPM+1 Opy+1 - Xy ]

with Op_ 41 denoting the (P, + 1)-dimensional null vector; P* = Z%zl Po;

Bi = (Bl Bos- - Bry) s the (P* + M)-dimensional vector containing all the linear
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effects on the M responses in the kth latent sub-population, with 3%, = (Bok.m» Bkm)’» for m =
1,...,M;e=(e,..., EM)/ is the vector of the errors, which are supposed to be independent and
identically distributed; Nys(0ps, 3g) denotes the M-dimensional normal distribution with mean
vector 0p; and positive-definite covariance matrix 3. From now on, this mixture regression
model is denoted as MSUN. When X,,, = X Vm (the P regressors are employed in all the M
equations), model reduces to the mixtures of K normal (MN) regression models (see Jones
and McLachlan| (1992])).

When the data are contaminated by the presence of mild outliers, departures from the normal
distribution could be observed within any of the K latent sub-populations. A model able to
manage this situation has been recently introduced in [Perrone and Soffritti (2023). It has been
obtained from equation by replacing the normal distribution with the contaminated normal
distribution. Under this latter distribution, the probability density function (p.d.f.) of € within
the kth sub-population is equal to h(€;9) = arpdrr (€;00,2k) + (1 — ag)odn (€00, M Xk),
where ¢ps (+; p, X) denotes the p.d.f. of the distribution Ny (07, i), ax € (0.5,1) and n, > 1
are the proportion of typical observations within the kth sub-population and a parameter that
inflates the elements of 3y, respectively, and 9 = (ax, nk, Xg). As a consequence, a mixture of

K SU contaminated normal (MSUCN) regression models is given by:

X*’ﬂi‘ +€, €~ CNyl(a1,m,0n,31) with probability 7,

X* 3% +€ €~ CNylag,ni,0n, ) with probability 7,

where CNjps(ag, nk, Oar, L) denotes the M-dimensional contaminated normal distribution de-
scribed by the p.d.f. h(€;9%). The parameter vector of model sy =,..., %, ..., Vg),
where ¢, = (m1,0), 01 = (B),9r). The number of free elements of 9 is ny = 3K — 1 +
K(P*+ M) + ng, where n, denotes the total number of free variances and covariances, with
ne = Knsy and ny = % When X,, = X Vm, model coincides with the mixture
of K contaminated normal (MCN) regression models described in |Mazza and Punzo| (2020).
For ap — 1 or g — 1 Vk, model reduces to model . Conditions ensuring iden-
tifiability of models are provided in [Perrone and Soffritti (2023). The ML estimation
of ¥ in equation can be carried out by means of a sample S = {(x1,y1),..., (x1,¥1)}

of I independent observations drawn from model (3.2) and an expectation-conditional max-
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imisation (ECM) algorithm Meng and Rubin| (1993)). Details about this algorithm, including
strategies for the initialisation of @ and convergence criteria, are illustrated in |Perrone and
Soffritti (2023). In practical applications, the value of K is generally unknown and has to be
properly chosen. This task can be carried out by resorting to model selection criteria, such as
the Bayesian information criterion Schwarz| (1978): BIC = 2£(1) —ny In 1, where 1 is the max-
imum likelihood estimator of ¥. Another commonly used information criterion is the integrated
completed likelihood Biernacki et al.| (2000]), which admits two slightly different formulations:
ICLy = BIC+ 20 ST%  MAP(24)In 2 and ICLy = BIC + 231 ST 2, In 24, where
Zir is the estimated posterior probability that the ith sample observation come from the kth
sub-population (for further details see Perrone and Soffritti (2023)), MAP(Z;;) = 1 if maxp,{Z;}
occurs when h = k (MAP(Z;;) = 0 otherwise). Whenever the specification of the subvectors
X, m=1,..., M, to be considered in the M equations of the multivariate regression model is
questionable, such criteria can also be employed to perform subset selection.

As the number of free parameters n, incresases quadratically with M, analyses based on
model can become unfeasible in real applications. A way to manage this problem can be
based on the introduction of suitable constraints on the elements of X5, £k = 1,..., K, based
on the following eigen-decomposition |Celeux and Govaert| (1995): X, = A\,D,A;D), where
M = |Zp|YM, Ay is a diagonal matrix with entries (sorted in decreasing order) proportional
to the eigenvalues of ¥ (with the constraint |Ag| = 1) and Dy is a M x M orthogonal matrix
of the eigenvectors of ¥ (ordered according to the eigenvalues). This decomposition allows
to obtain variances and covariances in X from A;, A and Dy. From a geometrical point of
view, A determines the volume, Ay the shape and Dj the orientation of the kth cluster of
sample observations detected by the fitted model. By constraining Ax, A and Dj to be equal
or variable across the K clusters, a class of fourteen mixtures of K SUCN regression models is
obtained (see Table . With variable volumes, shapes and orientations (VVV in Table ,
the resulting model coincides with . When K > 1, the other covariance structures allow
to obtain thirteen different parsimonious mixtures of K SUCN regression models (i.e.: with a
reduced ny). When K = 1, the possible covariance structures for 3 are: diagonal with different
entries, diagonal with the same entries and fully unconstrained. The ML estimation of ¥ under
model with any of these parameterisations can be carried out through an ECM algorithm
in which the CM-step update for X; can be computed either in closed form or using iterative

procedures, depending on the parameterisation to be employed (see |Celeux and Govaert|(1995))).



3.3 Analysis of U.S. canned tuna sales 67

Table 3.1: Features of the parameterisations for the covariance matrices X, £k = 1,..., K
(K >1).
Acronym Covariance structure  Volume Shape Orientation CM step No
EEE ADAD’ Equal Equal Equal Closed nx
VvV AxDpArDY Variable Variable Variable Closed Knys
EII AL Equal  Spherical — Closed 1
VII Akl Variable Spherical — Closed K
EEI AA Equal Equal Axis-aligned  Closed M
VEI AA Variable  Equal  Axis-aligned Iterative M+K-1
EVI AA Equal  Variable Axis-aligned Closed MK - (K —-1)
VVI Ay Variable Variable Axis-aligned  Closed MK
EEV AD,ADj, Equal Equal Variable Iterative Kny — (K -1)M
VEV AxDAD) Variable Equal Variable Iterative Kny — (K —1)(M —1)
EVE ADA,.D’ Equal Variable Equal Iterative nx— (K —1)(M —1)
VVE A DA D’ Variable  Variable Equal Iterative ny — (K —-1)M
VEE A, DAD’ Variable  Equal Equal Iterative ny — (K —1)
EVV ADA; D) Equal  Variable Variable Tterative Kny — (K —1)

3.3 Analysis of U.S. canned tuna sales

The models illustrated in Section have been fitted to a dataset |Chevalier et al. (2003)
containing the volume of sales (Move), a measures of the display activity (Nsale) and the log
price (Lprice) for seven of the top 10 U.S. brands in the canned tuna product category in the
1 = 338 weeks between September 1989 and May 1997. The goal of the analysis is to study
the dependence of canned tuna sales on prices and promotional activites for two products: Star
Kist 6 oz. (SK) and Bumble Bee Solid 6.12 oz. (BBS). To this end, the following vectors have
been considered: Y’ = (Y7 = Lmove SK, Y5 = Lmove BBS), X’ = (X; = Nsale SK, Xy = Lprice
SK, X3 = Nsale BBS, X; = Lprice BBS), where Lmove denotes the logarithm of Move. The
analysis has been carried out using all the parameterisations of the MSUN, MN, MCSUN and
MCN models for each K € {1,2,3,4,5,6}. Furthermore, MSUN and MCSUN models have been
fitted by considering all possible subvectors of X as vectors X,,,, m = 1,2, for each K. In this
way, best subset selections for Lmove SK and Lmove BBS have been included in the analysis both
with and without contamination. The overall number of fitted models is 37376, including the
fully unconstrained models (i.e., with the VVV parameterisation) previously employed in [Perrone
and Soffritti (2023]) to perform the same analysis.

Table|3.2|reports some information about the nine models which best fit the analysed dataset
according to the three model selection criteria over the six examined values of K within each
model class. An analysis based on a single linear regression model (K = 1), both with and
without contamination, appears to be inadequate according to all criteria. All the examined

criteria indicate that the overall best model for studying the effect of prices and promotional
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activities on sales of SK and BBS tuna is a parsimonious mixture of two SU contaminated
Gaussian linear regression models with the EVE parameterisation for the covariance matrices in
which the log unit sales of SK tuna are regressed on the log prices and the promotional activites
of the same brand, while the regressors selected for the BBS log unit sales are the log prices
of both brands and the promotional activites of BBS. Thus, the analysis suggests that two
sources of complexity affect the analysed dataset: unobserved heterogeneity over time (K = 2
clusters of weeks have been detected) and the presence of mildly atypical observations. Since
the two estimated proportions of typical observations are quite similar (see the values of & in
Table , contamination seems to characterise the two clusters of weeks detected by the model
almost in the same way. As far as the strength of the contaminating effects on the conditional
variances and covariances of Y |X = x is concerned, it appears to be stronger in the first cluster,
where the estimated inflation parameter is larger (7; = 15.70). By focusing the attention on the
other estimates, it appears that also some of the estimated regression coefficients, variances and
covariances are affected by heterogeneity over time. Sales of SK tuna results to be negatively
affected by prices and positively affected by promotional activites of the same brand within both
clusters detected by the model, but with effects which are sligthly stronger in the first cluster of
weeks. A similar behavior is detected for the estimated regression equation for Lmove BBS, which
also highlights that Lmove BBS are positively affected by the log prices of SK tuna, especially in
the first cluster of weeks. Furthermore, typical weeks in the first cluster show values of Lmove
SK which are more homogeneous than those of Lmove BBC; the opposite holds true for the typical
weeks belonging to the second cluster. Also the correlation between log sales of SK and BBS
products results to be affected by heterogeneity over time: while in the largest cluster of weeks
this correlation has been estimated to be slightly positive (0.200), the first cluster is characterised
by a mild estimated negative correlation (—0.151). An interesting feature of this latter cluster is
that 17 out of the 20 weeks which have been assigned to this cluster are consecutive from week
no. 58 to week no. 74, which correspond to the period from mid-October 1990 to mid-February
1991 characterised by a worldwide boycott campaign encouraging consumers not to buy Bumble
Bee tuna because Bumble Bee was found to be buying yellow-fin tuna caught by dolphin-unsafe
techniques Baird and Quastel (2011). Such events could represent one of the sources of the
unobserved heterogeneity detected by the model. According to the overall best model, some
weeks have beed detected to be mild outliers. In the first cluster, this has happened for week

no. 60 (immediately after Halloween 1990) and week no. 73 (two weeks immediately before
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Table 3.2: Maximised log-likelihood ¢(v)) and values of BIC, IC Ly and IC Ly for nine models
selected from the classes MSUCN, MCN, MSUN and MN in the analysis of tuna sales.

Model class K  Acronym X4 X L) ny  BIC ICLy ICL,
MSUCN 2 EVE X1, Xo X9, X3, Xy —2429 23 —619.8 —625.7 —635.8
MCN 2 EVI X X —239.6 28 —642.2 —648.9 —663.2
MCN 2 EEV X X —240.8 29 —650.6 —650.8 —652.0
MCN 3 EVI X1, X9, Xy X1,Xo, Xy -—-2142 36 —-638.0 —-703.1 —788.6
MSUN 2 VEV X1, Xo X3, X4 —279.3 18 —-663.4 —673.1 —692.1
MSUN 3 EEV X9, X3 X9, X3, Xy —259.8 28 —682.7 —684.7 —688.0
MSUN 5 AW X9, X3 X1, Xy —-1674 49 —-620.0 -701.1 -—780.3
MN 3 EEV X, X3, X4 Xo. X3, X, —2587 31 —697.9 —699.6 —702.1
MN 4 VVE Xo, X4 Xo, Xy —216.6 36 —642.9 —725.3 —832.9

Table 3.3: Parameter estimates of the overall best model for the analysis of tuna sales.

) k=1 k=2

e 0.062 0.938

Qg 0.810 0.844

Nie 15.70 6.94

B;ﬁ (8.87,0.56, —4.70) (8.64,0.27, —3.09)
B;;; (15.04,3.92,2.83, —17.76)  (9.98,0.25,0.12, —3.83)
s, ( 0.034 —0.009 ) ( 0.121 0.012 >

—0.009  0.105 0.012 0.030

Presidents day 1999). The analysis of the estimated sample residuals y; — f1; (x;; ,Bi) for the 20
weeks belonging to the first cluster (see the scatterplot on the left side of Figure clearly
show that weeks 60 and 73 noticeably deviates from the other weeks. Among the 318 weeks
of the second cluster, 32 have resulted to be mild outliers, most of which are associated with
holidays and special events that took place between September 1989 and mid-October 1990 or
between mid-February and May 1997 (see the scatterplot on the right side of Figure. These
results are almost equal to those obtained using the best overall fully unconstrained fitted model
in the analysis presented in [Perrone and Soffritti| (2023)). However, the EVE parameterisation for
the MSUCN model has allowed to obtain a better trade-off among the fit, the model complexity
and the uncertainty of the estimated partition of the weeks; furthermore, it has led to a slightly

lower number of mild outliers in the second cluster of weeks.

3.4 Conclusions

The parsimonious mixtures of seemingly unrelated linear regression models for contaminated
data introduced here can account for heterogeneous regression data both in the presence of

mild outliers and multivariate correlated dependent variables, each of which is regressed on a
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Figure 3.1: Scatterplots of the estimated residuals for the weeks assigned to the first (left) and
second (right) clusters detected by the overall best model. Points of the first scatterplot are
labelled with the number of the corresponding weeks. Black circle and red triangle in the second
scatterplot correspond to typical and outlying weeks, respectively.

different vector of covariates. Models from this class allow for simultaneous robust clustering
and detection of mild outliers in multivariate regression analysis. They encompass several other
types of Gaussian mixture-based linear regression models previously proposed in the literature,
such as the ones illustrated in |Galimberti and Soffritti (2020)), Mazza and Punzo (2020) and
Jones and McLachlan| (1992), providing a robust and flexible tool for modelling data in practical
applications where different regressors are considered to be relevant for the prediction of different
dependent variables. Previous research (see Mazza and Punzo, 2020 and Perrone and Soffritti,
2023) demonstrated that BIC and ICL could be effectively employed to select a proper value
for K in the presence of mildly contaminated data. Thanks to an imposition of an eigen-
decomposed structure on the K variance-covariance matrices of Y|X = x, the presented models
are characterised by a reduced number of variance-covariance parameters to be included in the
analysis, thus improving flexibility, usefulness and effectiveness of an approach to multivariate

linear regression analysis based on finite Gaussian mixture models in real data applications.
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Abstract

Normal cluster-weighted models constitute a modern approach to linear regression which allows
to simultaneously perform model-based cluster analysis and multivariate linear regression analy-
sis with random quantitative regressors. Robustified models have been recently developed, based
on the use of the contaminated normal distribution, which can manage the presence of mildly
atypical observations. A more flexible class of contaminated normal linear cluster-weighted mod-
els is specified here, in which the researcher is free to use a different vector of regressors for each
response. The novel class also includes parsimonious models, where parsimony is attained by im-
posing suitable constraints on the component-covariance matrices of either the responses or the
regressors. Identifiability conditions are illustrated and discussed. An expectation-conditional
maximisation algorithm is provided for the maximum likelihood estimation of the model param-
eters. The effectiveness and usefulness of the proposed models are shown through the analysis
of simulated and real datasets.

Keywords: Contaminated normal distribution, ECM algorithm, Mixture model, Model-based

cluster analysis, Parsimonious model, Seemingly unrelated regression
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4.1 Introduction

In an era of rapid technological change, vast amounts of complex data are being generated in
many fields. Eliciting information from these kinds of data sets represents a crucial challenge
faced by scientists and researchers. In order to achieve this aim, advanced and flexible tools
and methods are required. From a statistical point of view, problems in learning from data
have been classified as either unsupervised or supervised (Hastie et al., [2009). This latter class
typically involves the task of modelling the dependence of M responses Y = (Y1,...,Yy) on P
given predictors X = (X7, ..., Xp)" through multivariate regression techniques. In this setting,
several issues can make the data analysis more complex. The novel methods introduced in this
chapter have been devised so as to be specifically employed when all the variables in Y as well

as in X are continuous and the following situations arise.

(I) Data contain measurements obtained without actively controlling or manipulating any of
the variables to be analysed. This is typically true in several disciplines (i.e., sociology,
economics, business, ecology and geology). For the analysis of such data, regression models
should treat both X and Y as random vectors. Thus, the joint distribution of (X', Y")’
in a given population of an investigation, say G, is generally modelled using a probability
density function (p.d.f.) f(x,y) specified so as to take account of the different role played

by the responses and predictors in the analysis; that is: f(x,y) = f(x)f(y|x).

(IT) The population G is heterogeneous, as it is composed of K disjoint and homogeneous sub-
populations, say G1,..., Gg,...,Gk, and the sample data available for the estimation of
the regression model are S = {(x1,y1),..., (Xr,yr)}. This means that the information
about the specific sub-population each sample observation belongs to is missing. Fur-
thermore, this source of unobserved heterogeneity in the data affects the distribution of
(X', Y.

(ITI) The data S are contaminated by the presence of mildly atypical observations (Ritter,
2015)); that is, observations that in some way deviate from the general pattern of the data
(Maronna et al., 2006)). In a regression framework, an observation (x;,y;) € S can be an
outlier either in the y-direction (vertical or regression outlier) or in the x-direction (leverage

point), depending on whether it occurs in the responses or the predictors, respectively (see,

e.g., [Rousseeuw and Leroy, 2005). When (x;,y;) € S is both a regression outlier and a
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leverage point it will have a large influence on the estimation of the regression coefficients;

thus, it is considered a bad leverage point (Rousseeuw and Leroyl 2005)).

(IV) The multivariate regression model specified by the researcher is composed of a system of
M regression equations (one equation for each response) with equation-dependent vectors
of predictors (i.e., vectors which do not necessarily contain the same predictors for all the
responses). This means that certain regressors contained in X are absent from certain
regression equations. This situation is not unusual in economics or social sciences, where
different predictors may be expected to be relevant in the prediction of the M responses ac-
cording to some general theory or prior information about the phenomenon. Furthermore,
the M responses contained in Y are correlated. This latter feature is typically observed

with multivariate longitudinal data, time-series data or repeated measures.

An approach able to properly model the distribution of (X/, Y')/ in the presence of the un-
observed source of heterogeneity illustrated in situation (II) relies on the cluster-weighted (CW)
models (Gershenfeld}, [1997). In this approach, the missing information about the memberships
to the K sub-populations is modelled using a mixture of K different p.d.f.’s, and each one of
these functions is specified by taking account of the different role played by X and Y. This

leads to the following mixture model for the joint distribution of X and Y:

K
Fxy) = mf(xIGr)f(ylx. Gr), (x.y) € RPH, (4.1)
k=1
where 71, ..., mx are positive mixing weights summing to one and representing the prior proba-

bilities of the K sub-populations (i.e., P(Gy) = k), f(x|Gk) is the conditional p.d.f. of X given
Gr, and f(y|x, Gg) is the conditional p.d.f. of Y given x and Gi. An eminent member of the
class of CW models for real-valued responses and predictors is the normal CW (NCW hereafter)
model (Ingrassia et all [2012; [Dang et al., 2017). In this model, normal distributions are em-
ployed for the p.d.f. of both X|Gy and Y |(X = x,Gy), for k = 1,..., K. Thus, equation

becomes

K
f(X, Yy; 79) = Z WkQS(X; M, 2k)¢(y’X, /6,/I§X*7 Ek)a (X7 y) € RPJFM) (42)
k=1

where ¢(-; u, X) represents the p.d.f. of a normal random vector with expected value p and

positive definite covariance matrix ¥, @;x* = E(Y|X = x,G), k= 1,.... K, x* = (1,x/)/,
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B, € RUFPIXM s 5 matrix of intercepts and regression coefficients, and 9 = (91,...,9) is
the vector of the model parameters, with 9, = (mk, Opx, Oy )s Fex = (g Bi), Fry = (Bs Ene),
k=1,...,K. CW models which allow X|Gj and Y|(X = x,G}) to be modelled using skewed
distributions have been recently introduced (Gallaugher et al., [2022). A by-product of a re-
gression analysis based on a CW model is a set of estimated posterior probabilities that each
sample observation comes from the K sub-populations. Thus, a clustering of the I sample ob-
servations that compose S can also be obtained, based on a rule that assigns an observation to
the sub-population from which it has the highest posterior probability of coming. As a result,
CW models allow to simultaneously perform multivariate regression and cluster analysis.

Mildly atypical observations in the data mentioned in situation (III) cause departures from
the normal distribution. A way to manage these departures is to resort to heavy-tailed mod-
els, such as the ¢ distribution or the contaminated normal distribution (see, e.g., [Tukey, |1960;
Aitkin and Wilson, [1980). This latter distribution is defined as a mixture of two normal distri-
butions having the same expected mean values but different variances-covariances; the normal
distribution having the smallest mixing weight also has inflated variances-covariances and is
employed to represent the mildly atypical observations. Multivariate regression models robust
against the presence of such observations and also suitable for the situations (I) and (II) have
been obtained from equation by specifying either a ¢ distribution (see, e.g., [Ingrassia et
al., 2012} 2014) or a contaminated normal distribution (Punzo and McNicholas|, 2017) for both
X|Gf and Y|(X = x,Gg), k =1,..., K. The CW models proposed by Punzo and McNicholas
(2017) are also called contaminated normal cluster-weighted (CNCW) models. By relying on
such models, it is possible able to produce a simultaneous clustering of the sample observations
and the detection of both mild outliers and leverage points in a multivariate regression context
with random regressors. A limitation of the CNCW models is that the same vector of predictors
has to be employed for all the M responses.

Multivariate correlated responses and the systems of regression equations with equation-
dependent vectors of predictors illustrated in situation (IV) can be managed by resorting to the
so-called seemingly unrelated regression approach (see, e.g., [Srivastava and Giles, [1987; Park,
1993)). This approach has been recently embedded into the specification of a class of NCW models
by Diani et al.| (2022), thus leading to seemingly unrelated normal cluster-weighted (SUNCW)
models. Thus, the methods based on these latter models are suitable for jointly managing the

situations (I), (II) and (IV). However, they are not insensitive to the possible presence of mild
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outliers and leverage points in the K sub-populations.

Based on all these considerations, a novel class of multivariate seemingly unrelated contam-
inated normal cluster-weighted (SUCNCW) models for the analysis of data containing mildly
atypical observations either in the distribution of X|Gy or in the distribution of Y|(X = x, Gj),
k =1,...,K, are introduced here. With these novel models, the four situations mentioned
above are jointly managed when predicting the responses in a multivariate linear regression
framework with random predictors. In particular, SUCNCW models can be considered a more
flexible version of the CNCW models described in [Punzo and McNicholas| (2017)), as the linear
terms in the M regression equations of a SUCNCW model are defined so that a different vector
of regressors can be employed for each dependent variable. In order to keep the total number of
parameters as low as possible, the novel class also includes parsimonious SuUCNCW models; par-
simony is attained by parameterising the covariance matrices of both X|Gy and Y|(X = x, Gy),
for k =1,..., K, with their eigen-decomposition, and by imposing constraints on parts of the
elements of this decomposition (see, e.g., Celeux and Govaert, 1995)). This leads to a flexible
approach for the analysis of linear dependencies in multivariate data.

In summary, this chapter provides the following key contributions:

e new parsimonious SUCNCW models able to jointly manage the situations (I)-(IV) are

introduced;

e the relationships between the proposed models and other mixture regression models are

described;
e conditions for the identifiability of the SUCNCW models are illustrated;

e maximum likelihood (ML) estimation via an expectation-conditional maximisation (ECM)

algorithm (Meng and Rubin| [1993)) is detailed;

e strategies for the initialisation and convergence of the ECM algorithm as well as for model

selection are presented;

o the effectiveness of the new models in comparison with NCW, CNCW and SuNCW models

is investigated through simulated datasets;

e a study of the effects of prices and promotional activities on sales for two U.S. brands of

canned tuna is carried out.
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The remainder of this chapter is structured as follows. Section [£.2.1]illustrates the specifica-
tion of the SUCNCW models. A comparison between these models and other mixture regression
models is provided in Section [£.2.2] Identifiability conditions are reported in Section [£.2.3] The
ECM algorithm for the ML estimation of the model parameters is detailed in Section
Computational details about the ECM algorithm (i.e., initialisation and convergence) are given
in Section[d.2.5] Some criteria which can be employed to establish the value of K are summarised
in Section [£:2.6] Parsimonious models are introduced in Section [£:2.7} The experimental results
obtained from the analysis of simulated data are summarised in Section [£.3] The application to
the study of the effects of prices and promotional activities on sales for two U.S. brands of canned
tuna is presented in Section [£.4] Finally, concluding remarks and ideas for future research are

illustrated in Section [4.5]

4.2 Seemingly unrelated contaminated normal cluster-weighted

analysis

4.2.1 Seemingly unrelated contaminated normal cluster-weighted models

The new class of SUCNCW models is introduced starting from the CNCW models illustrated
by Punzo and McNicholas (2017)). These latter models can be obtained by replacing the normal
distributions for X|Gj and Y|(X = x,Gj) in equation (4.1) with the following contaminated

normal distributions, respectively:

h(x; Oux) = ot (x5, Bi) + (1 — k)@ (%3 g, e Ze) , x € RY,

h(y\x, {9ky) = T]f¢ (y]x,,@k, Ek) + (1 - Tk)¢ (Y|X75k7 AkE'k') , Y € RMv

where Opx = (ix, Ok, k), {9ky = (Oky, Tk, Ai;). Parameters ay, € (0,1) and 7, € (0, 1) represent
the weights of the typical observations in the x-direction and the y-direction, respectively, within
the sub-population G. Since in robust statistics it is generally assumed that at least half of the
observations are typical (see, e.g., Punzo and McNicholas, 2016} 2017)), it is possible to require
that ag € [0.5,1) and 7 € [0.5,1). Parameters n; > 1 and Ay > 1 determine the degree of
the contamination in the normal distributions for X|Gj and Y|[(X = x,Gy); namely, 7, and
A control the increase in variability due to the presence of the leverage points and the mild

outliers, respectively, within Gy. Thus, the random vector (X,Y) follows a CNCW model of
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order K if its p.d.f. has the form
K ~
F,y;0) =) meh(x; 0k h(y]x; Dry), (x,y) € REFM, (4.3)
k=1

where 8 = (81, ...,0K), with 8}, = (7, Orx, Oy )-

If only P, of the P covariates (P, < P) are known or assumed to be relevant for the
prediction of Y, (m = 1,..., M), the linear predictor 3} x* employed for modelling the con-
ditional expected value E(Y|X = x,Gj) in equation should be modified accordingly. To
this end, let X,, = (Xl, . ,Xpm)/ be the vector composed of such P,, covariates, and let
Bim = (Bkmis---sBkmp, ) be the vector of the P, regression coefficients capturing the lin-
ear effect of X,, on Y;, in the kth sub-population. Furthermore, let X} = (1,X/ )" and
B = (Brmos Bim)'- Then, By = (ﬁ;:'l, . ,ﬂzlm, . ,BZ'M)’ represents the (P*+ M )-dimensional
vector containing all the linear effects of the relevant predictors on the M responses in the kth

sub-population, where P* = 2%21 P,,. Finally, the (P* 4+ M) x M design matrix is defined as

follows:
i X Opy1 ... 0P1+1-
o |Om XE O |
Opy+1 Opyqr oo Xy |

where Op,, 41 represents the (P, + 1)-dimensional null vector. Using this additional notation, it
is possible to obtain the following definition for the conditional expected value of Y|X = x in

the kth sub-population:

B *
X1/ B

E(Y|X =x,Gx) =X"B = | x1n B | - (4.4)

*7
| Xar Br

where X* is the realisation of the design matrix X* obtained when X = x. The vector defined
in equation (4.4) has length M; its mth element is given by a linear combination of the P,

regressors selected by the researcher for the prediction of Y, whose coefficients are given by
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the elements of the vector 3j,,. Thus, inserting the expression given in equation (4.4) into the
CNCW model (4.3]) leads to the new SuCNCW model. More formally, the random vector (X,Y)
follows a SUCNCW model of order K if its p.d.f. has the form

K
f(X, y; d)) = Z mih (X; ekx) h (Y‘X; Hky) ) (X, Y) € RP+M‘ (45)
k=1

The vector of the model parameters is ¥ = (¢y,..., %), with ¥, = (7, Oix, Oky), Ory =
(B Bk, Ty Ar). From the comparison between 1 and the vector @ with the parameters of the
model it is clear that a CNCW model of order K and a SuCNCW model of order K
have the same parameters except for the K matrices containing the intercepts and regression
coefficients. In model it is assumed that 7, > 0 for £k = 1,..., K and Zszl m, = 1. As
far as the parameters ag, nr, 7 and A\p are concerned, the requirements coincide with those

previously illustrated for the model (4.3)). The number of free parameters in model (4.5) is

ng = 5K — 1+ K(P + P* + M) + K[2£H) | MOTH))

The typical properties of the CNCW model (i.e., the ability to determine the member-
ship of an observation (x;,y;) € S to a specific sub-population and to establish whether (x;,y;)
is an outlier in the y-direction and/or in the x-direction in that sub-population) are inherited
by the SUCNCW model . In addition, this latter model offers a more parsimonious specifi-
cation of the linear term to be employed in the prediction of Y whenever it is known or assumed
that certain covariates are not relevant for this task. Model can also be considered as
a CNCW model in which some regression coefficients are constrained to be a priori equal to
zero. To the best of the authors’ knowledge, including such constraints in the specification of a

multivariate CNCW model has not been addressed yet.

4.2.2 Comparisons with other mixture regression models
When specific conditions are met, some normal CW models can be obtained from model (4.5).
e If M > 1, P, = P and X,;, = X Vm (the same vector of covariates is employed in
the prediction of the M responses), the realisation of the design matrix X* is equal to

x* = Ip®x*, with I being the identity matrix of order M and ® denoting the Kronecker

product operator (see, e.g., [Magnus and Neudecker} [1988)). Thus, equation (4.4)) becomes

E(YIX =x,G;) = Iy @x*) 8 =8\ x*, k=1,...,K, (4.6)
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where B, = [Bi1 - Bim - - Bral- Thus, equation (4.5) reduces to the CNCW model
(Punzo and McNicholas|, 2017).

e If M >1,ap — 1, m — 1, 7% — 1 and Ay — 1 Vk (there is no contamination in the data),
the model resulting from equation (4.5) coincides with the SUNCW model described in
Diani et al.| (2022).

e If M >1,P,=Pand X,, =XVm, a, > 1, — 1, 7 — 1 and \y — 1 Vk (there is no
contamination in the data and the same vector of covariates is employed in the prediction
of the M responses), equation leads to the multivariate NCW model (Dang et
al., 2017)).

As illustrated in Section SuCNCW models assume that X|Gy follows a contaminated
normal distribution with parameters Ox = (p,, Xk, @k, M), for k =1, ..., K. However, for some
datasets it may happen that the probability a point (x,y) belongs to one of the K distributions
of the mixture is the same for all covariate values x. In that case, the assignment of the
data points to the sub-populations is independent of the covariates. This condition is known as
assignment independence (see, e.g., Hennig, 2000). This implies that the p.d.f of X|G}, does not
depend on Gg, and h(x;0kx) = h(x;0) for every k = 1,..., K, where 8 = (u, %, a,n). Thus,

under the assignment independence condition, equation (4.5)) becomes

K
f(X, y; ’l/J) = h(X7 0) Z th (y|X7 oky) ’ (X7 y) € RPJFM;
k=1
where
_ K
Flylxip) = mih (y|x;0ky) , y € RM, (4.7)
k=1
with ¢ = (¢y,..., k), ¥ = (T3, O}y ), is the seemingly unrelated contaminated normal clus-

terwise regression model described in [Perrone and Soffritti (2023). As a consequence, when
in model the following conditions hold true: p;, = p, ¥ = 3, a = o and 9 = 7
for k = 1,..., K, then the task of extracting the information about both the K disjoint sub-
populations that compose the population G and the distinction between typical observations
and mild outliers in the y-direction within each sub-population can be equivalently carried out

using either the conditional p.d.f. f(y|x; '&) through seemingly unrelated contaminated normal
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clusterwise models or the joint p.d.f. f(x,y;%) through SUCNCW models.

4.2.3 Identifiability

Since identifiability represents a regularity condition for the asymptotic theory to hold for
the ML estimator, a discussion about identifiability of model is provided here. In par-
ticular, this discussion focuses on the class of models § = {Fx, K = 1,..., Kynae}, with
Sk = {f(x,y;9),% € ¥}, where f(x,y;%) is the p.d.f. of (X', Y') under the SUCNCW
model of order K defined in and K4, denotes the maximum order specified by the re-

searcher for that model. This class is identifiable if, for any two members M, M € § with

parameters ¥ = (¢, ..., ¥y, ..., g ) and P = (12}1, .oy, ..., Y ), respectively, the equality

K K

>l (5 O1o) B (Y13 Opy) = D Tl (%5005 ) B (s By ) ¥ (x,y) € RTFM

k=1 s=1
implies that K = K and for each k € {1,..., K} there exists s € {1,..., K} such that 7, = 7,
01x = 05 and Oy = ésy.

The model class § is affected by several sources of non-identifiability. As any finite mix-
ture model, also model is invariant under relabelling the K distributions of the mix-
ture (label switching). Another source is represented by potential overfitting associated with
empty components or equal components of the mixture (see, e.g., [Frihwirth-Schnatter, {20006,
for further details). In order to prevent such sources of non-identifiability for §, some con-
straints have been imposed on the parameter space ¥. They have been obtained by suitably
modifying the constraints described in Punzo and McNicholas (2017) for ensuring the identi-
fiability of CNCW models. Namely, for the model , it is required that 7, > 0 V k£ and
(B Bk) # (B, En) ¥V k # h. Thanks to these constraints, the two sources of non-identifiability
due to empty components and equal components can be avoided. Thus, in order to ensure

identifiability, the following restricted class of SUCNCW models is introduced:

K
F={/xyi¥): f(6,yi%) = Y mrh(X;0kx) b (y]X; Oky) ,
k=1

(x,y) e RFTM 4 ¢ ¥ K € N},
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where W is the following constrained parameter space:

K
‘iJ: {{bE‘II7Tk>OVkvzﬂ-k:17(B275k)#(ﬂ273h)Vk#h}

k=1

For the identifiability of the class § it is also required that there exists a set X C R” having
probability equal to one according to the P-dimensional contaminated normal distribution such

that the following mixture of contaminated normal regression models

K

> m(x)h (ylx %785, Ex), y € RM,
k=1

is identifiable for each fixed x € X, where m(x),..., Tk (x) are positive weights summing to
one for each x € W. Then, it is possible to prove that the class § is identifiable in X x RM.
Such a proof can be easily obtained by exploiting the same arguments described in [Punzo and
McNicholas| (2017, Appendix B) for the identifiability of CNCW models with the following
modifications: (%) the linear term to be considered in the conditional expected value of Y |(X =
x, Gy) is X* By; (it) the set of all covariate points to be employed to distinct different regression

coefficients B}, by different values of X* 3, is:

X = {xeRP:mee{xl,...,xM},Vk:,he{1,...,K}ands,te{l,...,K},
~ %/ % ~ %/ % * * ~ %/ % ~ k7 ¥ * =%
Xmﬂkm = Xmﬂhm = ng’m = /ma’ Xm,Bkm = Xmﬂsm = Bkm = /Bsm ’

4.2.4 An ECM algorithm for ML estimation

Let S = {(x1,y1),--., (X71,¥1)} be asample of I independent observations drawn from model ({4.5]).

Under these conditions, the log-likelihood function can be written as

I K
(¢) =) In <Z Tih (X35 Orx) b (yi|xi; eky)> .
k=1

i=1

Similarly to other finite mixture models and following Punzo and McNicholas| (2017, ML esti-
mation of ® has been carried out for a fixed value of K under a general framework dealing with
incomplete-data problems (Dempster et al., [1977; Meng and Rubin, 1993). In the considered
situation, there are three different types of incompleteness in the data S: (i) the missing in-

formation about the specific sub-populations from which the I sample observations come from;
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(ii) the missing information about whether such observations are leverage points with reference
to any given Gy or not; (i) the missing information about whether each observation is an
outlier with reference to any given Gy or not. The first type is typical of any finite mixture
model; the second and third types are specific for model . Such information can be de-
scribed using three different types of K-dimensional vectors. For the ith sample observation,
they are given by z;, v;, u;. Namely, z; = (z1,...,2x)’, with z;z = 1 if the ith observation
comes from the sub-population Gy and z;; = 0 otherwise, for k =1,..., K; v; = (vi1,..., k),
with v;; = 1 if the ith observation is not a leverage point within the sub-population Gy and
v = 0 if it is a leverage point; w; = (41, ..., uix)’, with uy = 1 if the ith observation is
typical within the sub-population G and wu; = 0 if it is an outlier. Thus, the complete data
would be S, = {(x1,¥y1,21,v1,w1),...,(X1,¥1,271,Vr,ur)}. Then, following Punzo and McNi-
cholas (2017)), to find the ML estimates 1, an ECM algorithm (Meng and Rubin, 1993)) has been

developed. To this end, the complete-data likelihood function has been derived:

f[ ﬁ{ [akd)P (X“ i Ekﬂ h [(1 ~ ) (Xi; Fgs 77/@21@)} o

i=1k=1

S * —_ Uik ) — 1—uiky zik
TkﬁbM(yz, -:k:ﬂ [(1*Tk)¢M(yz';Xi Bkv)\kﬁkz)} } ;

thus, up to an additive constant, the complete-data log-likelihood function employed in the ECM

algorithm for the computation of 12; is equal to:

]~

K
1
le(yp) = Zzzk[lnﬂk + v Inag + (1 —vg) In(1 — o) — - ln |3k |+

1 k=1

1 1-— Vik
< 5 1D771<:)(1 — Vik) — 5(% + " - )%k (Xz‘,uk)+

.
Il

1
+uikln7'k—|—(1—uik)ln(l—7'k)—§ln\Ek|+
M 1 ]-_uzk ~ %1 %
~(G ) (= ) = 5 (o + )8, v 78|

where

0%, (xis i) = (3 — b)) By (%1 — ), (4.8)

0%, (vir X, B) = (vi — %' BL) ;. (vi — %, B7) (4.9)
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are squared Mahalanobis distances: the first is computed between x; and p; with respect to
3k; the second is computed between y; and 5(?,6}'; with respect to Zy.

The ECM algorithm consists in an iterative sequence. At each iteration, an E-step is
followed by two CM-steps. The first CM-step focuses on the parameter sub-vector v, =
(m,p, X, a0, 3,2, 7), where w = (71,...,7r), = (W1, g), 2 = (Z1,...,2¥k), a =
(a1,...,ar), B =(6%,...,B%), B = (E1,...,Bk), T = (11,...,7K). The second CM-step
involves the parameter sub-vector ¥, = (n,A), where n = (1,...,7x), A = (A1,..., k).

Iterations are repeated until convergence.

e On the hth iteration of the E-step, given the current estimate ¢(h) of the model parameters
1, the conditional expectation of I.(¢0) has to be computed; up to an additive constant,

it is equal to:

Q (wlp™) = Eyyon o))

I K
-y 22.,?){ ma™ + 5™ mal™ + (1 - ™) In(1 — oM+
i=1 k=1
+ Qi (,uk, Ekhﬂ(h)>+ﬁ§£) In T,Eh) +(1- ﬁgz)) In(1 — T]gh))+
+ Qi (B Belp™) |,

where

Qi1 (“ka Ekw(’”) = —% [ln =M+ P — ) nn"M+
o+ g s ]

1 )
Qo (5,’;,Ek\¢<h>) - -2 {m 2"+ 1 —al"ym A+

() 1—115?) 2 (vox5:) ]
ik A;(Ch) E,ﬁh) v Mk )
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" (x:00) h (ys; 00
#40 = By [ Zanl s, y1)] = — §<X:y3¢(§)> 5) (4.10)
oo (xis ", =)
o)
s =)

(eol)

with Z; = (Za,...,Zik) denoting a K-dimensional multinomial random vector with

o) = By [Vik|(xi,21)] = (411)

QEZ) = Eqp<h) [Uik|(xi7Yi7Zi)] = (4.12)

probabilities ® = (m1,...,7k)", Vig|Zix = 1 and Ui|Zix = 1 being two Bernoulli ran-
dom variables with success probability of aj and 7g, respectively, for ¢ = 1,...,I and
k=1,...,K. Thus, 731(,?), ﬁff,?) and ﬁZ(Z) represent posterior probabilities (evaluated using
™) of the following three events: (i) the sample observation (x;,y;) comes from the
kth distribution of the mixture ; (7i) (x;,y:) is not a leverage point within such a

distribution; (4ii) (x;,y;) is not an outlier within such a distribution.

e At the first CM-step on the (h+ 1)th iteration of the ECM algorithm, the sub-vector ngh)
is updated through the maximisation of Q(¢|w(h)) with respect to v, with 9, fixed at

@bl()h). The resulting updates of W,gh), a,(ch), T,ih), u,gh) and E,(gh) are:

I
h+1 1 (h
ﬂ-l(c ) :jzzi(k)a

=1
I ~(h)~(h
o) — PR (4.13)
I b '
Dim1 Zi(k:)
I () ()
Pt _ izt Fip Uy (4.14)

I .k
dic1 Zi(k)

I ) (h
(h+1) dic1 ng)wgik)xi

l‘l'k; - ~(h) ~(h 9 (415)
25:1 Zi(k)wik)
I Ah) (h htl A1)\
(h+1) D im1 ng)w§i,3 (Xi - Hi(g )) (Xi - l"lg )>
I} = T , (4.16)
doie1 ik
where
. (h)
NOBERROIE Y
i) = o) + —ga-. (4.17)

M

Such updates coincide with the solutions obtained for the CNCW model (for further details
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see [Punzo and McNicholas, |2017, Appendices C.1-C.4). As far as the remaining elements

of the sub-vector ngh) are concerned, their updates are:

I I
«(h+1) A (h) mwm(h) ok T () ~(h) ~sxm(h
N (Z YDolxrEl ) (sz o xzEl yi>, (4.18)
i=1 i=1
I 4(h) ~(h) ¥ gD o g
E’(Ch+1) Zz 1 %ik w2 ik (}’z Bk ) ( X; 'Bk ) (4 19)
~(h ) .
Z{:I Zz(k)
where
~ (h)
~(h (h 1—u
wék) = afy) + T(h)k (4.20)

The updates illustrated in equations (4.18)-(4.19) coincide with the ones obtained for
the seemingly unrelated contaminated normal clusterwise regression models (4.7)) (further

details can be found in [Perrone and Soffritti, |2023, Appendix A).
e At the second CM-step on the (h + 1)th iteration of the ECM algorithm, the update of
zpb is obtained by maximising Q(¢]¢(h ) with respect to 1, with 1, fixed at 1, (ht1),

The resulting updates of 77,(C ) and )\,(€ ) are (further details can be found in [Punzo et al.,

2018):

h (h h
Y z(k)(l - Uz(k))62 (1) (Xi’“l(c H))
(h
PZZ 1 zk ( Uz(k))
ZZI ) Z( )(1 . U’SZ))(S-—U'L-&-I) (3’1'75(;“,61:(}1“))

Ah ~(h
MY P —al)

(h+1) = max{l,

}, (4.21)

A max{l, } (4.22)

It is worth noting that the update Bz(hﬂ) can be computed only if the matrix
ZI (1) (h) Zsom(h) ™ o/

=1 %, Wo, X; 8y X; in equation (4.18) is nonsingular. This equation also shows that the

update ,8*( +b)

22(1? ) and wéh) such weights also affect the update =

can be seen as a generalised least squares estimate with weights depending on

=(h+1)

in (4.19), which represents a weighted

sum of squared residuals. As a consequence, sample observations with the highest posterior
estimated probabilities of being generated from the kth distribution of the mixture and of
representing typical points in y-direction within that distribution will have the largest impact on
the updates of both the regression coefficients and covariances of Y |(X = x, G). For this reason,

this approach provides robust estimates of Bz(hﬂ) and Egﬂhﬂ) for k=1,... K. In a similar way,
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the term u?ﬁlk) in equations (4.15)) and (4.16)) allows to reduce the impact of the leverage points
on the estimation of ,uéhﬂ) and 2}(€h+1)’ thereby proving to represent a robust solution also for

the estimation of these latter parameters. Furthermore, equations (4.21)) and (4.22]) show that

,(chﬂ) and Aéhﬂ)

the updates n will be larger when the kth distribution of the mixture in the

model is highly contaminated by the presence of outliers and leverage points, respectively
(i.e., when many observations show small values of 171(,? ) and ﬁgz) or, equivalently, large squared
Mahalanobis distances from ,ung) and X' ,62(’”1)).

The main result of the ECM algorithm is represented by the ML estimate 1,Ab, that is the value
of 't,b(h) at convergence. As a by-product, by exploiting equations - this algorithm
also provides estimates of the following posterior probabilities: P 12,[Zik = 1|(xi,y:)] = Zik,
P;P[Vik = 1|(xi,2;)] = Vs and ]P’{P[Uik = 1|(x4,¥i,2i)] = G, fori =1,...., T and k =1,... K.

Then, the I sample observations can be partitioned into K clusters according to the rule of the

maximum a posteriori probability; for the ith observation:

1 if maxp{Z;,} occurs when h = k;
MAP () =

0 otherwise.

Furthermore, the estimates 0;;, and u;; can be employed to define two intra-cluster distinctions.
Namely, if 95, < 0.5, where h is the label of the cluster for which MAP(2;) = 1, the ith
observation will be classified as a leverage point for that cluster; in a similar way, if 4;, < 0.5,
the ith observation will be classified as a mild outlier for the same cluster. The ML estimates
can also be exploited in conjunction with equations and to compute the estimated
squared Mahalanobis distances dka = (%k (xi, fj;) and Jfky = 52ék (yi,iz‘,,@Z), fori=1,...,1
and kK = 1,..., K, which can be interpreted as intra-cluster quantifications of the amount of
deviations from the pattern of the observations assigned to any given cluster. Thus, a more
detailed analysis of the leverage points and mild outliers could be carried out by considering

the values of cZ?kx and d?

Ty V(i k) € {i € {1,...,I},k: MAP(Z;) = 1} and by focusing on the

largest values obtained in this way (see McLachlan and Peel, 2000, p. 232).

4.2.5 Technical details about the ECM algorithm

Generally speaking, in finite mixture modelling, the parameter estimates resulting from an EM-

based algorithm are dependent on the values employed to initialise the iterative process. Thus,
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the quality of the solution can be largely affected by the choice of the starting value for the model
parameters. As this is true also for model , appropriately choosing ¢<0) is paramount for
obtaining a proper ML estimation of @. To this end, strategies usually employed in finite
mixture models (e.g., multiple executions of the algorithm using multiple random initialisations,
approaches based on non-random choices of either 1/J(0) or the missing information) could be
adopted (see, e.g., [Biernacki et all 2003; |[Karlis and Xekalaki, 2003, for more details). More
specific initialisation strategies could be devised by resorting to the normal mixture model of
order K for (X,Y). This latter model has been proved to represent a reparameterisation of
the NCW model (see |Ingrassia et all 2012, for more details) which, in turn, is nested
in the CNCW model when ap = 17, 7 = 17, g — 1T and \y, - 17, k=1,..., K.
Thus, a first strategy for choosing the initial values 27;(2), 1=1,...,1,k=1,...,K, could set
such quantities equal to the estimated posterior probabilities of the normal mixture model of
order K for (X,Y). Furthermore, v(k) and u( ) could be set equal to 0.999 for ¢ = 1,...,I and
k =1,...,K. In the analyses reported in Sections [£.3] and [£.4] the ECM algorithm has been
initialised using a strategy composed of the following three steps. Firstly, the normal mixture
model of order K for (X,Y) is estimated using the data S. The resulting estimates of the
mixing weights, the expected values and the variances-covariances of X are employed to obtain
the starting values WIEO), u,(co) and E,(go). Secondly, a seemingly unrelated linear regression model
for E(Y|X,, = x;») is fitted to subsample of S composed of the observations assigned to the kth
cluster detected by the normal mixture model considered in the previous step (k = 1,..., K).
The starting values ,BZ(O) and E,(CO) are given by the vector containing the estimated intercept and
regression coefficients and the matrix with the variances and covariances of the sample residuals,
respectively. Thirdly, a,go) and Tk(;o), for k =1...,K, are set equal to 0.999; 7],(60) and )\,(CO) are
set equal to 1.001. The packages mclust (Scrucca et all[2017) and systemfit (Henningsen and
Hamann, 2007) in the R environment (R Core Team), 2022) have been employed to estimate the
models involved in the first two steps.

As far as the estimation of «j and 7y is concerned, equations (4 and (| of the ECM
algorithm have been modified so as to guarantee that the estimated proportions of typical obser-
vations both in the x-direction and in the y-direction within each cluster is at least 0.5. The two
modified equations are: a,(fhﬂ) = max {0.5, W} and T(h+ ) = max {O 5, W},

>liz1 g 2i=1 ik
fork=1,..., K.

The iterative process is stopped using either a convergence criterion which exploits the Aitken
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acceleration (Aitken, 1926]) or a stopping rule in which the ECM algorithm is stopped after a
given maximum number of iterations. The convergence criterion is based on the computation
of the quantity |€ff+1) — 0(xp"M)], where K%H) is (h + 1)th Aitken accelerated estimate of the
log-likelihood limit and E(1,b(h)) is the incomplete log-likelihood evaluated at 3" (see, e.g.,
McNicholas), 2010). Iterations are stopped when this quantity is lower than a positive and finite
tolerance threshold e. The analyses reported in Sections [1.3] and [£.4] have been carried out
with € = 10~ and 500 as the maximum number of iterations. Finally, some constraints on the
eigenvalues of Z,(fh) and E,gh) (k =1,...,K) have been embedded in the ECM algorithm so as
to avoid the issue of a unbounded likelihood caused by a degenerate model. Namely, following
Dang et al.| (2017)), all eigenvalues have been required to be greater than the conservative bound
10~20; furthermore, the ratio between the smallest and the largest eigenvalues of such matrices

is required to be not lower than 10710,

4.2.6 Determining the value of K

Since the ECM algorithm allows to obtain an estimate of 1@ for a given value of K, in any
practical application in which this number is not known, it has to be determined from the data
S. This task is typically carried out by resorting to model selection criteria, such as the Bayesian
information criterion (Schwarz, 1978) or the integrated completed likelihood (Biernacki et al.,

2000). They can be computed as follows:

BIC = 20(3p) —ngInl,
I K

ICLy = 20(h) —nypInT+2) > MAP(2;)In 2y,
i=1 k=1

I K
ICLy = 26(3h) —nypInI+2> > zylnzy.
i=1 k=1

Higher values of these criteria indicate better-fit models. The BIC' evaluates the adequacy of
a model by taking account of the trade-off between the fit and the model complexity. In the
computation of the IC'L, an additional penalty accounting for the uncertainty of the estimated
partition is considered (see, e.g., Andrews and McNicholas| [2011; [Baek and McLachlan| [2011)).
In the equations for ICL; and ICLgy, such a penalty is based on either a soft (i.e., Z;) or
hard (i.e., MAP(Z2;;)) clustering of the sample observations. As a consequence, /C'L; and 1C Ly
penalize complex models more severely than BIC'; furthermore, they should less likely split one

cluster into two different components. This latter feature is consistent with the fact that the
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ICL has been proposed as a criterion able to select the model which shows the greatest evidence
of clustering (Biernacki et al., 2000). In contrast, selecting the number of components which
leads to a good approximation to the density is the aspect which the BIC mainly focuses on
(Baudry et al.,2010). In Section BIC, ICL; and IC Ly have been employed also to identify
the vectors of predictors Xy, ..., X s required for the definition of the design matrix X* in the

specification of model (4.5)).

4.2.7 Parsimonious models

In practical applications in which the analysis involves either many responses or many predictors,
using model to perform the analysis can become unfeasible. This is a consequence of the fact
that the number of free parameters ny, of a SUCNCW model increases quadratically both with
M and with P. A way to manage this issue is to resort to the approach illustrated in|Celeux and
Govaert| (1995)). With this approach, a reparameterisation of model is obtained, in which
the covariance matrices 3 and Eg, for kK =1, ..., K, are expressed in terms of their eigenvalues
and eigenvectors; furthermore, the introduction of suitable constraints on such quantities allows
to obtain parsimonious SUCNCW models. More specifically, let A, be the diagonal matrix
containing the eigenvalues of 3y, normalised in such a way that |Ag| = 1; let Dy be the matrix
with the corresponding eigenvectors, and & = \Ek|1/ D By exploiting the eigen-decomposition
= kakAkDﬁc, variances and covariances in X can be obtained from &, Ax and Dy, which
control the volume, shape and orientation of the kth cluster of observations with respect to
the predictors. Constraining &, Aj and Dy on this decomposition in model with K > 1
will lead to 14 different covariance structures for the predictors. Additional information about
these parameterisations are reported in Table When &, Ay and Dy are all variable across
the K clusters (VVV acronym in Table , the resulting covariance structures of the predictors
will be fully unconstrained. From the simultaneous application of the same decomposition to
the covariance matrices B, for k =1,..., K, 196 differentially parameterised SUCNCW models
of order K can be obtained, for any given K > 1. The updates of Elgh) and Egl) reported in
equations and apply to the SUCNCW models with the VVV parameterisation for
either 3y or By (i.e.: fully unconstrained covariance structures of the predictors or responses).
For the ML estimation of 3 or E; under any other SUCNCW model, the M step updates in
the ECM algorithm depend on the specific parameterisation to be employed (see (Celeux and

Govaert,, 1995, for more details). For the estimation of models obtained using the EVE and VVE
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Table 4.1: Parameterisations of the component-covariance matrices.

Acronym Model Distribution  Volume Shape  Orientation

EEE ¢DAD’ Ellipsoidal Equal Equal Equal
VvV &DpARD).  Ellipsoidal ~ Variable Variable Variable
EII 3! Spherical Equal Equal —
VII &l Spherical Variable  Equal -
EEI EA Diagonal Equal Equal -
VEI EA Diagonal Variable  Equal -
EVI EAL Diagonal Equal  Variable —
VVI EAyg Diagonal Variable Variable -
EEV ¢DRAD), Ellipsoidal Equal Equal Variable
VEV & DR AD)  Ellipsoidal ~ Variable — Equal Variable
EVE ¢DALD’ Ellipsoidal Equal  Variable Equal
VVE &.DALD! Ellipsoidal ~ Variable Variable Equal
VEE £ DAD’ Ellipsoidal ~ Variable  Equal Equal

EVV ¢DRAD}.  Ellipsoidal Equal  Variable Variable

parameterisations, it is possible to resort to some algorithms which are computationally feasible
also in high-dimensional situations (Browne and McNicholas, 2014allb). As far as SuUCNCW
models of order K = 1 are concerned, the possible covariance structures for both responses and
covariates are: diagonal with different entries (VI), diagonal with the same entries (EI) and fully
unconstrained (VV). Thus, when K = 1, only nine differentially parameterised models can be

specified.

4.3 Simulation studies

4.3.1 Settings

The task of investigating the effectiveness of SUCNCW models in comparison with NCW,; CNCW
and SUNCW models has been carried out in a multivariate setting with M = 2 responses,
P = 3 covariates and simulated datasets comprising observations randomly sampled from K = 3
different distributions.

All the models employed to generate the datasets have been specified within the seemingly
unrelated approach. More specifically, the response Y7 has been assumed to linearly depend
on X7 and Xo, while the assumption for Y5 is that it linearly depends on X; and Xj3. Thus,
X; = (X1, X2), Xy = (X1, X3)’, and equation reduces to:

EMIX =x,Gr) = x\'B% = Brio + Briiz1 + Briaza,

E(Y2|X =x,Gr) = x5 Bry = Broo + Br2121 + Broaws.
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As far as the data generation processes are concerned, models belonging to the following classes

have been employed:
(a) SUNCW;
(b) SUCNCW with oy, = 0.95, n = 5,7, = 0.9, A\ = 10 Vk;
(¢) Student-t CW models with 11 = vy = v3 = 4 degrees of freedom.

All of these processes share the following common parameters for the data generation: m; = 0.4,
7o = 0.35, m3 = 0.25, p; = (0,0,0), py = (2,4, —2), pg = py + 2¢ - 1p, where 1p is the P x 1

vector having each element equal to 1, 8% = (-2,0.75,1,1,0.5, —2)', 85 = (0.5,1.75,0.25,1,1,1)’,

1.72 —0.18 0.27 2.33 —0.52 —0.06
B3 =PB5+¢c-16, 3 = [ —-018 1.89 027, Z2=]-052 0838 —0.34][, T3 = 2o,
027 027 289 —0.06 —0.34 1.04
1.34 047 0.50 0.04

[

= = 3 = Zo. Thus, the covariance structures of both

, By =
0.47 1.66 0.04 1.50

the predictors and the responses within the three groups have been obtained using the VVV

)

parameterisation. Since the difference between the parameters (0px,60ry) for k = 2,3 only
depends on ¢, different values of € can be chosen so as to determine different degrees of separation
between the second and third groups of sample observations.

Under each process mentioned above, 100 different datasets have been generated considering
the sample size (I = 500,1000) and the degree of separation (¢ = 0.35,0.55) as experimental
factors. Thus, 1200 different datasets have been generated. The whole analysis has been run
by employing an IBM x3750 M4 server with 4 Intel Xeon E5-4620 processors with 8 cores and
128GB RAM.

4.3.2 Results

The comparative study of the effectiveness of the four model classes has been structured into
two parts. In the first part, SUNCW, NCW, CNCW and SuCNCW models of order K = 3 with
the VVV parameterisation for both ¥ and E; (k = 1,2,3) have been fitted to each dataset.

As far as NCW and CNCW models are concerned, each response has been assumed to linearly
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depend on all the covariates; namely:

EY1|X =xGr) = Brio+ Briiz1 + Brizxa + Brises,

E(Y2|X =x,Gr) = PBrao + Bra1x1 + Broaws + Brazwa.

With this specification, the fitted NCW and CNCW models are not parsimonious: for each k, six
regression coefficients have been estimated although, in fact, only four of them are different from
zero. As far as the time elapsed between the start and completion of the parameter estimation is
concerned, fitting a SUCNCW model has required - on average over the 100 datasets with I = 500
- between 1.069 and 95.243 seconds, depending on the data generation process and the value of
€. The minimum and maximum average execution times have resulted to be equal to 0.991 and
20.113 seconds with SUNCW models, 0.995 and 18.782 seconds with NCW models, 1.034 and
116.922 seconds with CNCW models. However, it is important to note that the ECM algorithm
has not been implemented with the goal of being efficient from a computational point of view.
Thus, more efficient implementations could greatly reduce these illustrative CPU times. In the
first part of this study, the comparison among the competing models has been carried out by
examining their performances with reference to the following three aspects: (i) the estimation of
the proportions of typical observations and the degrees of contamination both in the x-direction
(proper estimation of oy and 7;) and in the y-direction (proper estimation of 7, and A\g); (1)
the ability to recover the true values of the unknown parameters (parameter recovery); (iii) the
capability to recover the true partition of the sample observations (classification recovery). The
aspect (1) has been studied only for the fitted CNCW and SuCNCW models. The evaluation
of the aspect (ii) has been focused on the regression coefficients. In order to prevent the effects
of label switching issues on the evaluation of these aspects, the components of the mixtures
involved in each fitted model have been labelled by minimising the Euclidean distance to the
true parameter values (see, e.g., Bai et al. 2012; Yao, 2014} Punzo and McNicholas, |2017; [Perrone
and Soffritti, 2023)).

In the second part, the study aims at evaluating the performances of the four model classes
without exploiting the knowledge of the true value of K. Thus, also SUNCW, NCW, CNCW
and SUCNCW models of order K = 1, 2,4 with the VVV parameterisation for ¥; and Z; have
been fitted to each dataset. The results obtained for all the examined values of K have been

employed to study the following aspects: (iv) the capability to reach the best trade-off between
ploy y g asp p y
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the fit and model complexity; (v) the ability of BIC, ICL; and ICLs to detect the true value
of K (comparison among information criteria); (vi) a further evaluation of the classification

recovery.

Estimation of oy, 7%, Nk, Ak

When the datasets only contain typical observations in either directions (first process), the
averages of the estimated proportions of good points (& and 7) and the estimated inflation
parameters (7 and j\k) are close to 1. In the presence of datasets with contaminated observations
generated according to the second process, the estimates of such parameters are, on average, close
to their true values. These results hold true under both CNCW and SuCNCW models, regardless
of the level of separation and the sample size (see the upper and central parts of Tables
. Thus, the proportions of good points and the inflation parameters appear to be properly
estimated using either types of models. However, in the second process, slightly higher standard
deviations have been registered for the estimated inflation parameters, especially for ;. These
latter results seem to highlight that the estimation of the inflation parameters is characterised
by a certain instability under both CNCW and SuCNCW models. This phenomenon seems to
reduce as the sample size increases. Finally, with the contaminated datasets generated according
to the third process, the mean values of &g, 7k, N and A for k = 1,2,3 are all quite far from
1, regardless of the values of € and I (see the lower part of Tables . Thus, CNCW and
SuCNCW models have been able to detect the departure from a normal distribution for both
X|Gr and Y|(X = x,Gy), for £ = 1,2,3, due to the use of the Student-t distribution in the

third data generation process.

Parameter recovery

To evaluate the aspect (i) with respect to the regression coefficients S, the following quan-
tities have been computed:
100 A(r)
Zr:l 6kmp

Bias </ékmp> = T - /Bk‘mp ) k= 172737 m = 1727 p= 1727

) \2
A 5202 (B — i)
RMSE (ﬁkmp) — o k=1,23 m=12, p=1,2,
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Table 4.3: Estimation of 75, and Ax: averages
of order K = 3 (I = 500).

and standard deviations of the estimates over 100 samples for the fitted CNCW and SuCNCW models

CNCW SuCNCW
71 Ty T3 A1 A2 A3 Ty To T3 A1 A2 A3
I process, € = 0.55
average 0.999 0.999 0999 1.001 1.001 1.001 0.999 0.999 0.999 1.001 1.001 1.001
s.d. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I process, e = 0.35
average 0.991 0.978 0.993 1.138 1.193 1.078 0.994 0.981 0.993 1.0568 1.138 1.077
s.d. 0.057 0.079 0.060 0.743 0.697  0.362 0.050 0.072 0.060 0.412 0.509  0.347
IT process, e = 0.55
average 0.881 0.894 0.901 9.589  9.361 10.107 0.877 0.895 0.897 10.045 9.295 10.171
s.d. 0.077 0.061 0.048 4.844 4.401 3.350 0.069 0.058 0.045 4.428 3.957  3.222
IT process, € = 0.35
average 0.886 0.892 0.901 12.431 8.671  9.155 0.889 0.893 0.896 10.334 8.981  9.887
s.d. 0.096 0.077 0.055 22.491 4.854  3.940 0.081 0.070 0.049 6.784 4.698  3.583
IIT process, € = 0.55
average 0.794 0.787 0.802 9.019 7.516 10.560 0.786 0.774 0.796 9.125  8.822 10.598
s.d. 0.179 0.161 0.153 14.686  6.687 25.360 0.173 0.159 0.150 12.024  9.031 24.847
IIT process, € = 0.35
average 0.866 0.799 0.834 12.529 9.095 6.161 0.833 0.780 0.800 9.607 9.505  6.278
s.d. 0.154 0.155 0.137 47.673 19.489  9.883 0.154 0.156 0.135 17.960 20.006  7.455
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Table 4.5: Estimation of 7, and Ax: averages
of order K =3 (I = 1000).

and standard deviations of the estimates over 100 samples for the fitted CNCW and SuCNCW models

CNCW SuCNCW
71 Ty T3 A1 A2 A3 Ty To T3 A1 A2 A3
I process, € = 0.55
average 0.999 0.999 0999 1.001 1.001 1.001 0.999 0.999 0.999 1.001 1.001 1.001
s.d. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I process, e = 0.35
average 0.999 0.997 0.998 1.015 1.023 1.021 0.999 0.994 0999 1.002 1.035 1.001
s.d. 0.001 0.021 0.006 0.100 0.212 0.201 0.000 0.000 0.000 0.009 0.240 0.002
IT process, e = 0.55
average 0.888 0.903 0.900 10.379 10.362 10.249 0.888 0.901 0.898 10.416 10.447 10.290
s.d. 0.052 0.035 0.029 3.943 2.849 2371 0.044 0.033 0.027 3.813 2.688 2.171
IT process, € = 0.35
average 0.898 0.909 0911 9.163 8.950  8.706 0.897 0.903 0.905 9.442 9.152  9.722
s.d. 0.078 0.048 0.044 5473 4411 3.872 0.059 0.047 0.035 4.857 4.289  3.096
IIT process, € = 0.55
average 0.792 0.768 0.819 8.368 6.934  7.159 0.792 0.773 0.824 8.054 7.149 7.251
s.d. 0.144 0.140 0.109 7.353  5.327  4.632 0.144 0.140 0.103 6.703 6.907 4.871
IIT process, € = 0.35
average 0.822 0.783 0.810 7.178 7.504  6.651 0.801 0.781 0.805 7.670 7.371 @ 6.647
s.d. 0.147 0.160 0.136 8954 7.514 4.071 0.151 0.148 0.137 8.435 5392  3.768
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where B,(cz)bp is the ML estimate of S, obtained from the rth dataset (r = 1,...,100). Since
NCW and CNCW models also contain some regression coefficients associated with irrelevant
regressors, the bias and RMSE have been computed also for these additional coefficients, using
0 as their true value.

The ability to recover the regression coeflicients using SUNCW and SuCNCW models under
the first process results to be the same with both sample sizes and both degrees of separation
(see their biases and RMSEs in Tables and . As all the parameters able to capture
the possible presence of mildly atypical observations in SUCNCW have been properly estimated
(see the previous aspect), the inclusion of these parameters when the analysed datasets do not
contain atypical observations does not show any relevant impact on the recovery of the true
Brmp- On the contrary, if irrelevant predictors are included in both regression equations (i.e.,
using NCW and CNCW models), a slight increase in the RMSEs of some regression coefficients
is observed when I = 500, and this is especially true for ¢ = 0.35. However, such an effect
almost disappears with the sample size 1000. With the contaminated datasets generated using
the second process, as expected, SUCNCW models show the best performance with both sample
sizes and both degrees of separation (see Tables and . With this process, the accuracy of
CNCW models seem to be slightly higher than that of NCW and SuNCW models for the majority
of the regression coefficients. Under the third process, the lowest RMSEs are still obtained using
the SUCNCW model with all the examined experimental situations (see Tables and [4.11)).
Furthermore, thanks to their effectiveness in detecting the non-normality of the distributions of
X|Gy and Y|(X = x,Gy) for k = 1,2,3, CNCW models generally perform slightly better than
NCW and SuNCW models. However, it is worth noting that, with the lowest values of I and
¢, the RMSEs obtained using the SUNCW model are slightly lower than those registered with
CNCW models for the majority of the regression coefficients. As far as the irrelevant regressors
are concerned, NCW and CNCW models appear to be equally capable of recognising their
presence in the analysis of uncontaminated datasets (I process), as the corresponding estimated
regression coefficients are on average quite close to 0. However, when the data are contaminated
(IT and III processes), large values of the RMSE have been registered for the estimates of the
regression coeflicients associated with the irrelevant regressors in the second and third cluster.
This latter result is particularly evident when the separation between these two clusters is low.
Furthermore, the precision of CNCW models in the estimation of the effect of most irrelevant

regressors using contaminated datasets results to be higher than that of NCW models.
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Table 4.6: Bias and RMSE for the regression coefficients B, under the four types of models
in the first process (I = 500).

Bias RMSE

SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
€ = 0.55
P11 0.004 0.007  0.007 0.004 0.047 0.049 0.049 0.047
B112 0.004 0.010 0.010 0.004 0.075 0.079 0.079 0.075
B121 0.004 0.003 0.003 0.004 0.068 0.074  0.074 0.068
B122 0.002 0.001 0.001 0.002 0.103 0.110 0.110 0.103
Ba11 0.000 0.001 0.001 0.000 0.037 0.038 0.038 0.037
Ba12 0.003 0.002 0.002 0.003 0.060 0.061 0.061 0.060
Ba21 0.002 0.001 0.001 0.002 0.058 0.064 0.064 0.058
Ba22 0.006 0.008 0.008 0.006 0.089 0.098 0.098 0.089
Bs11 0.002 0.003 0.003 0.002 0.064 0.064  0.064 0.064
B312 0.002 0.004 0.004 0.002 0.058 0.060 0.060 0.058
B321 0.006 0.005 0.005 0.006 0.073 0.074 0.074 0.073
B322 0.006 0.004 0.004 0.006 0.052 0.054 0.054 0.052
Irrelevant regressors
B113 - 0.003 0.003 - - 0.046 0.046 -
B123 - 0.006 0.006 - - 0.060 0.060 -
B213 - 0.012 0.012 - - 0.069 0.069 -
B223 - 0.008 0.008 - - 0.133 0.133 -
B313 - 0.004 0.004 - - 0.056 0.056 -
P23 - 0.006  0.006 - - 0.114  0.114 -
€ =0.35
B111 0.009 0.009 0.009 0.009 0.036 0.039 0.039 0.036
B112 0.008 0.013 0.014 0.010 0.056 0.085 0.086 0.058
B121 0.002 0.001 0.001 0.001 0.049 0.055 0.055 0.049
B122 0.034 0.038 0.037 0.034 0.083 0.097  0.096 0.082
Ba11 0.008 0.010 0.010 0.008 0.032 0.046 0.046 0.032
Ba12 0.008 0.009 0.010 0.008 0.053 0.081 0.081 0.053
Ba21 0.015 0.017  0.017 0.016 0.049 0.055 0.055 0.049
Ba22 0.014 0.017  0.017 0.014 0.070 0.079 0.079 0.069
B311 0.004 0.004 0.004 0.003 0.042 0.042 0.042 0.042
B312 0.001 0.000 0.000 0.001 0.039 0.042 0.042 0.039
B321 0.000 0.001 0.001 0.001 0.047 0.049 0.049 0.048
B322 0.005 0.007  0.007 0.005 0.041 0.043 0.043 0.041
Irrelevant regressors
P13 - 0.003 0.003 - - 0.030 0.030 -
P23 - 0.006 0.006 - - 0.049 0.048 -
B213 - 0.003  0.003 - - 0.074  0.074 -
223 - 0.002  0.002 - - 0.104  0.104 -
B313 - 0.004 0.004 - - 0.060 0.060 -

Bazs - 0.006  0.005 - - 0.094  0.094 -
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Table 4.7: Bias and RMSE for the regression coefficients S, under the four types of models

in the first process (I = 1000).

Bias RMSE

SuUNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
€ = 0.55
Bi11 0.003 0.004  0.004 0.003 0.033 0.034  0.034 0.033
P12 0.002 0.003  0.003 0.002 0.053 0.059  0.059 0.053
P21 0.001 0.002 0.002 0.001 0.051 0.056  0.056 0.051
B122 0.012 0.008  0.008 0.012 0.081 0.086  0.086 0.081
Ba11 0.003 0.004  0.004 0.003 0.030 0.030  0.030 0.030
B212 0.002 0.003  0.003 0.002 0.047 0.047  0.047 0.047
Ba21 0.002 0.003  0.003 0.002 0.046 0.052  0.052 0.046
B222 0.009 0.010  0.010 0.009 0.067 0.070  0.070 0.067
Bs11 0.004 0.004  0.004 0.004 0.047 0.048  0.048 0.047
B312 0.002 0.002 0.002 0.002 0.040 0.044  0.044 0.040
B321 0.004 0.004  0.004 0.004 0.050 0.051 0.051 0.050
B322 0.003 0.003  0.003 0.003 0.040 0.041 0.041 0.040
Irrelevant regressors
P13 - 0.004  0.004 - - 0.038  0.038 -
P23 - 0.006  0.006 - - 0.049  0.049 -
B213 - 0.010  0.010 - - 0.0564  0.054 -
Baos - 0.009  0.009 - - 0.094  0.094 -
B313 - 0.002 0.002 - - 0.043  0.043 -
B323 - 0.001 0.001 - - 0.088  0.088 -
€ =0.35
P11 0.004 0.004  0.004 0.004 0.025 0.026  0.026 0.025
P12 0.001 0.001 0.001 0.001 0.043 0.048  0.048 0.043
P21 0.004 0.008  0.008 0.004 0.040 0.042  0.042 0.040
P22 0.001 0.004  0.004 0.002 0.058 0.059  0.059 0.058
Ba11 0.002 0.002 0.002 0.002 0.019 0.020  0.020 0.019
B212 0.011 0.013  0.013 0.011 0.032 0.035  0.035 0.032
Ba21 0.001 0.000  0.000 0.001 0.031 0.034  0.034 0.031
B222 0.008 0.011 0.011 0.008 0.058 0.057  0.057 0.058
B311 0.005 0.006  0.006 0.005 0.030 0.031 0.031 0.030
B312 0.000 0.001 0.001 0.000 0.030 0.033  0.033 0.030
B321 0.014 0.015 0.015 0.015 0.038 0.039  0.039 0.038
B322 0.006 0.007  0.007 0.006 0.028 0.030  0.030 0.028
Irrelevant regressors
Bi1s - 0.000  0.000 - - 0.025  0.025 -
P23 - 0.005 0.005 - - 0.037  0.037 -
B213 - 0.001 0.001 - - 0.032  0.032 -
B223 - 0.017  0.016 - - 0.068  0.068 -
B313 - 0.003  0.003 - - 0.033  0.033 -
B323 - 0.005 0.005 - - 0.063  0.063 -
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Table 4.8: Bias and RMSE for the regression coefficients B, under the four types of models
in the second process (I = 500).

Bias RMSE

SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
€ = 0.55
P11 0.010 0.014 0.007 0.000 0.096 0.100 0.070 0.063
B112 0.041 0.072 0.038 0.006 0.199 0.269 0.203 0.107
B121 0.005 0.006 0.007 0.001 0.096 0.114 0.087 0.076
B122 0.025 0.006 0.008 0.005 0.153 0.160 0.126 0.111
Ba11 0.008 0.012 0.007 0.002 0.105 0.145 0.178 0.039
Ba12 0.074 0.095 0.083 0.003 0.291 0.333 0.358 0.062
Ba21 0.011 0.006 0.017 0.002 0.112 0.179 0.157 0.062
Ba22 0.045 0.049 0.012 0.002 0.375 0.316 0.288 0.095
B311 0.012 0.014 0.003 0.003 0.088 0.089 0.066 0.065
B312 0.001 0.004 0.002 0.001 0.075 0.085 0.068 0.062
B321 0.006 0.007 0.001 0.001 0.093 0.098 0.075 0.074
B322 0.009 0.006 0.004 0.002 0.064 0.071 0.059 0.053
Irrelevant regressors
B113 - 0.005 0.003 - - 0.060 0.051 -
B123 - 0.003 0.006 - - 0.105 0.073 -
Pais - 0.063  0.034 - - 0.246  0.191 -
B223 - 0.029 0.005 - - 0.228 0.168 -
B313 - 0.030  0.003 - - 0.190  0.322 -
B323 - 0.020 0.002 - - 0.315 0.328 -
€ =0.35
B111 0.071 0.094 0.043 0.022 0.141 0.172 0.129 0.075
B112 0.230 0.321 0.115 0.063 0.464 0.516 0.334 0.324
B121 0.050 0.023 0.024 0.016 0.252 0.263 0.212 0.210
B122 0.003 0.038 0.052 0.032 0.248 0.276 0.193 0.150
Ba11 0.026 0.035 0.017 0.006 0.213 0.234 0.182 0.177
Ba12 0.093 0.120 0.115 0.073 0.335 0.408 0.439 0.265
Ba21 0.008 0.039 0.003 0.005 0.213 0.270 0.157 0.138
Ba22 0.052 0.084 0.099 0.038 0.439 0.554 0.555 0.269
B311 0.011 0.011 0.001 0.001 0.085 0.086 0.059 0.059
B312 0.003 0.003 0.002 0.004 0.081 0.086 0.061 0.058
B321 0.005 0.004 0.002 0.004 0.098 0.098 0.079 0.075
B322 0.007 0.007 0.005 0.003 0.075 0.083 0.062 0.059
Irrelevant regressors
P13 - 0.002 0.004 - - 0.057 0.044 -
P23 - 0.005 0.001 - - 0.097 0.074 -
B213 - 0.234 0.099 - - 0.358 0.259 -
B223 - 0.148 0.027 - - 0.363 0.264 -
P13 - 0.044  0.040 - - 0.306  0.241 -

Bs2s - 0.037  0.026 - - 0.459  0.463 -
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Table 4.9: Bias and RMSE for the regression coefficients B, under the four types of models
in the second process (I = 1000).

Bias RMSE

SuUNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
€ = 0.55
P11 0.007 0.015 0.001 0.001 0.067 0.080 0.041 0.033
B112 0.024 0.053 0.012 0.007 0.154 0.212 0.107 0.058
P21 0.000 0.014 0.000 0.000 0.074 0.090 0.057 0.053
B122 0.006 0.018 0.006 0.009 0.104 0.120 0.081 0.080
Ba11 0.008 0.011 0.006 0.004 0.041 0.042 0.035 0.031
B212 0.028 0.032 0.011 0.001 0.168 0.176 0.110 0.044
Ba21 0.000 0.005 0.006 0.005 0.057 0.073 0.055 0.046
B222 0.020 0.022 0.006 0.010 0.239 0.265 0.189 0.065
Bs11 0.007 0.005 0.001 0.002 0.058 0.059 0.048 0.047
B312 0.008 0.006 0.002 0.003 0.060 0.064  0.047 0.044
B321 0.002 0.002 0.004 0.004 0.062 0.065 0.053 0.053
B322 0.001 0.002 0.006 0.006 0.053 0.056 0.043 0.042
Irrelevant regressors
B113 - 0.005  0.001 - - 0.049  0.042 -
B123 - 0.013 0.003 - - 0.066 0.046 -
B213 - 0.042 0.003 - - 0.181 0.099 -
Baos - 0.065 0.010 - - 0.177  0.100 -
B313 - 0.012 0.003 - - 0.062 0.041 -
B323 - 0.003 0.001 - - 0.126 0.095 -
€ =0.35
P11 0.054 0.082 0.020 0.009 0.092 0.126 0.080 0.061
P12 0.130 0.267  0.097 0.013 0.221 0.377  0.261 0.104
P21 0.018 0.018 0.014 0.000 0.142 0.131 0.136 0.115
B122 0.060 0.006 0.014 0.006 0.237 0.178 0.150 0.099
Ba11 0.004 0.019 0.029 0.027 0.167 0.208 0.178 0.109
B212 0.103 0.108 0.061 0.027 0.299 0.337  0.341 0.167
Ba21 0.037 0.013 0.029 0.014 0.229 0.137  0.184 0.069
B222 0.182 0.142 0.005 0.013 0.566 0.502 0.492 0.151
B311 0.001 0.000 0.004 0.003 0.059 0.061 0.047 0.046
B312 0.003 0.003 0.001 0.001 0.058 0.057  0.045 0.041
B321 0.003 0.004 0.008 0.007 0.065 0.068 0.058 0.055
B322 0.004 0.001 0.003 0.003 0.044 0.053 0.044 0.041
Irrelevant regressors
P13 - 0.004 0.000 - - 0.046 0.035 -
P23 - 0.003 0.003 - - 0.068 0.052 -
B213 - 0.246  0.121 - - 0.401  0.341 -
B223 - 0.152 0.075 - - 0.470 0.457 -
B313 - 0.041 0.059 - - 0.180 0.228 -
B323 - 0.002 0.003 - - 0.250 0.200 -
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Table 4.10: Bias and RMSE for the regression coefficients S, under the four types of models
in the third process (I = 500).

Bias RMSE

SuUNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
€ = 0.55
P11 0.026 0.024 0.005 0.004 0.103 0.090 0.050 0.045
Br121 0.124 0.182 0.028 0.017 0.290 0.394  0.181 0.136
P21 0.051 0.049 0.025 0.020 0.129 0.130 0.099 0.084
B122 0.049 0.006 0.010 0.009 0.164 0.124  0.112 0.106
Ba11 0.002 0.015 0.000 0.004 0.168 0.159 0.092 0.063
B212 0.125 0.134 0.043 0.010 0.341 0.337  0.274 0.070
Ba21 0.015 0.007  0.012 0.010 0.178 0.285 0.229 0.123
B222 0.183 0.191 0.068 0.022 0.690 0.730 0.427 0.104
Bs11 0.004 0.006 0.002 0.003 0.069 0.071 0.055 0.054
B312 0.004 0.000 0.003 0.003 0.068 0.074  0.057 0.051
B321 0.009 0.011 0.007 0.006 0.090 0.096 0.065 0.065
B322 0.036 0.034 0.006 0.007 0.162 0.177  0.046 0.042
Irrelevant regressors
B113 - 0.004 0.001 - - 0.055 0.048 -
B123 - 0.002 0.000 - - 0.118 0.069 -
B213 - 0.174 0.031 - - 0.375 0.189 -
Baos - 0.073 0.014 - - 0.204 0.141 -
P13 - 0.020  0.022 - - 0.147  0.212 -
B323 - 0.107  0.078 - - 0.473 0.335 -
€ =0.35
P11 0.047 0.079 0.009 0.002 0.145 0.152 0.190 0.106
P12 0.219 0.373 0.148 0.060 0.311 0.477  0.435 0.164
P21 0.069 0.036 0.012 0.021 0.250 0.278 0.396 0.133
B122 0.122 0.042 0.078 0.060 0.208 0.246 0.751 0.147
Ba11 0.012 0.034 0.045 0.015 0.204 0.254 0.245 0.200
B212 0.185 0.248 0.205 0.055 0.344 0.443 0.574 0.271
Ba21 0.018 0.010 0.008 0.002 0.233 0.325 0.303 0.196
B222 0.138 0.195 0.073 0.037 0.581 0.803 0.501 0.163
B311 0.001 0.018 0.002 0.000 0.068 0.158 0.063 0.061
B312 0.002 0.013 0.003 0.000 0.072 0.101 0.060 0.061
B321 0.014 0.031 0.008 0.008 0.073 0.134  0.069 0.066
B322 0.003 0.028 0.005 0.005 0.081 0.230 0.045 0.046
Irrelevant regressors
P13 - 0.010 0.002 - - 0.075 0.040 -
P23 - 0.056 0.013 - - 0.199 0.073 -
B213 - 0.333 0.223 - - 0.401 0.500 -
223 - 0.149  0.020 - - 0.310  0.484 -
B313 - 0.128 0.138 - - 0.342 0.506 -

B323 - 0.108  0.029 - - 0.496  0.441 -
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Table 4.11: Bias and RMSE for the regression coefficients S, under the four types of models

in the third process (I = 1000).

Bias RMSE

SuNCW NCW CNCW SuCNCW SUNCW NCW CNCW SuCNCW
c=0.55
Bi11 0.034  0.029  0.003 0.000 0.085  0.071  0.034 0.030
Briz 0.119  0.168  0.017 0.002 0.256  0.345  0.114 0.046
Br21 0.043  0.030  0.003 0.002 0.113  0.114  0.055 0.048
B2 0.060  0.015  0.005 0.002 0.153  0.107  0.077 0.068
Ba11 0.015  0.002  0.007 0.001 0.125  0.159  0.057 0.026
P12 0.121  0.144  0.012 0.001 0.317  0.349  0.096 0.035
Ba21 0.017  0.012  0.005 0.000 0.140  0.218  0.056 0.043
B222 0.182  0.137  0.027 0.014 0.589  0.603  0.093 0.062
B311 0.001  0.001  0.002 0.002 0.044  0.046  0.037 0.037
B312 0.009  0.010  0.008 0.006 0.042  0.048  0.033 0.032
B321 0.013  0.012  0.008 0.008 0.074  0.080  0.045 0.045
B322 0.006  0.007  0.001 0.002 0.076  0.080  0.035 0.033
Irrelevant regressors
Bi13 - 0.002  0.001 - - 0.037  0.033 -
P23 - 0.005  0.003 - - 0.085  0.043 -
B213 - 0.172  0.018 - - 0.343  0.126 -
Baas - 0.097  0.015 - - 0.205  0.094 -
B313 - 0.047  0.004 - - 0.126  0.057 -
B323 - 0.015  0.012 - - 0.273  0.089 -
e=0.35
Bi11 0.025  0.043  0.022 0.001 0.076  0.089  0.087 0.038
B2 0.173  0.307  0.099 0.014 0.245  0.395  0.270 0.099
Bi21 0.109  0.081  0.026 0.024 0.156  0.150  0.114 0.084
P22 0.117  0.043  0.002 0.015 0.159  0.137  0.128 0.093
Ba11 0.016  0.041  0.031 0.002 0.216  0.222  0.192 0.134
Ba12 0.247  0.286  0.096 0.015 0.368  0.417  0.253 0.095
B221 0.021  0.027  0.032 0.016 0.187  0.168  0.124 0.080
P22 0.212  0.181  0.020 0.006 0.659  0.669  0.413 0.080
B311 0.006  0.006  0.005 0.004 0.046  0.046  0.038 0.037
B312 0.010  0.011  0.009 0.005 0.044  0.044  0.038 0.036
B321 0.009  0.007  0.001 0.000 0.077  0.078  0.044 0.043
B322 0.002  0.001  0.005 0.001 0.078  0.080  0.038 0.033
Irrelevant regressors
Bi13 - 0.003  0.007 - - 0.032  0.062 -
B123 - 0.008  0.013 - - 0.079  0.050 -
B213 - 0.314  0.106 - - 0.371  0.248 -
B223 - 0.138  0.066 - - 0.268  0.190 -
B313 - 0.110  0.065 - - 0.239  0.175 -
B323 - 0.036  0.009 - - 0.266  0.113 -
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Table 4.12: Classification recovery of the fitted SUNCW, NCW, CNCW and SuCNCW models
with K = 3: average values (standard deviations) of the ARI index over 100 samples.

I Process € SuNCW NCW CNCW SuCNCW

500 1 0.55 0.988 (0.009) 0.988 (0.009) 0.988 (0.009) 0.988 (0.009)
I 0.35 0.949 (0.017) 0.945 (0.037) 0.945 (0.037) 0.949 (0.018)
II 0.55 0.921 (0.089) 0.915 (0.093) 0.939 (0.078) 0.954 (0.039)
II 0.35 0.799 (0.119) 0.770 (0.123) 0.848 (0.112) 0.882 (0.077)
111 0.55 0.848 (0.141) 0.838 (0.146) 0.911 (0.085) 0.923 (0.060)
III 0.35 0.663 (0.108) 0.639 (0.095) 0.744 (0.131) 0.804 (0.108)

1000 I 0.55 0.988 (0.005) 0.988 (0.006) 0.988 (0.006) 0.988 (0.005)
I 0.35 0.954 (0.010) 0.953 (0.010) 0.953 (0.010) 0.954 (0.010)
II 0.55 0.938 (0.060) 0.935 (0.060) 0.962 (0.038) 0.966 (0.010)
II 0.35 0.805 (0.127) 0.781 (0.123) 0.858 (0.119) 0.892 (0.079)
111 0.55 0.855 (0.145) 0.850 (0.146) 0.930 (0.051) 0.938 (0.015)
111 0.35 0.678 (0.122) 0.665 (0.110) 0.804 (0.116) 0.845 (0.080)

Classification recovery

The study of the aspect (iii) has required an evaluation of the agreement between the partitions
of the sample units detected by the four types of models and the true partition. To this end,
the adjusted Rand index (ARI) (Hubert and Arabie, |1985) has been employed. Average values
and standard deviations of this index (over the 100 datasets) for the four model classes under
the three data generation processes by the examined levels of the two experimental factors are
reported in Table [f.12] When the analysed datasets do not contain atypical observations, the
classification recovery of all model classes is almost perfect with both levels of separation and
both sample sizes (ARI > 0.945). The results obtained under the second and third processes
show that the classification recovery associated with the use of all models increases with the level
of separation between the second and third components for each value of I; it also increases with
the sample size for each value of e. With datasets generated using these processes, SUCNCW
models are characterised by the greatest ability to properly estimate the true classification of
the sample observations for each examined level of the two experimental factors. The partitions
obtained from SuCNCW models also show a good agreement with the true partitions (0.804 <
ARI <0.966). Among the other three model classes, CNCW models outperforms both SUNCW
and NCW models. For these two latter models, the classification recovery appears to be markedly
lower, especially with the lowest level of separation (0.639 < ARI < 0.663 with I = 500,

0.665 < ARI < 0.678 with I = 1000).
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Trade-off between fit and complexity

In order to study the aspect (iv), for each dataset and each model class, the models of order
K¢ have been selected, where IC denotes an information criterion (IC € {BIC,ICLy,ICLy})
and Kjo = argmax IC(K) for K € {1,2,3,4}. Then, for each information criterion and each
dataset, the four values of IC' (K 1¢) associated with the four examined model classes have been
compared, and the model with the highest IC' value has been selected as the most adequate fitted
model. Table provides the frequency distribution of the models selected in this way by each
I1C for each data generation process and each value of € and I. As expected, SUNCW models
have almost always been selected as the most adequate for the analysis of uncontaminated
datasets. With datasets containing atypical observations generated through the second and
the third processes, best trade-off between fit and complexity is generally obtained by the fitted
SuCNCW models. Such results hold true regardless of the level of separation and the information

criterion employed to perform model selection.

Comparison among information criteria

Information on the aspect (v) has been obtained by evaluating the number of times each value of
K has been selected by each examined criterion. The obtained results are reported in Tables
and When the analysed datasets do not contain atypical observations and the level of
separation between the second and third cluster is high (first process, ¢ = 0.55), the presence of
three clusters is (almost) always recognised by all the examined information criteria regardless
of the fitted model and the sample size (see the upper part of Tables and . If the
level of separation is reduced (e = 0.35), the ability of the BIC to correctly detect the presence
of three clusters remains good regardless of the fitted model only with the largest sample size.
When I = 500, the true order of the generated datasets is slightly underestimated by the BIC
when CNCW models are employed. With datasets generated using the first process, ICL; and
ICLy show a clear preference for K = 3 components regardless of the model type with both
values of € but only when the sample size is I = 1000. Otherwise, the true value of K is almost
always properly estimated by these two criteria as long as models embedding the information on
the relevant regressors are fitted (e.g., SUNCW and SuCNCW). With the other two examined
models, the true number of clusters appears to be underestimated, and this is especially true of
CNCW models.

Under the second and third processes, when SUNCW and NCW models are fitted to the
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Table 4.13: Trade-off between fit and compexity: number of selections over 100 samples of
SuNCW, NCW, CNCW and SuCNCW models, based on the highest BIC, IC'L; and ICL,.

I e Process € SuNCW NCW CNCW SuCNCW

500 BIC 1 0.55 100 0 0 0
I 0.35 100 0 0 0

II 0.55 0 1 1 98

II 0.35 1 2 2 95

III 0.55 2 1 1 96

III 0.35 0 0 8 92

ICL, 1 0.55 100 0 0 0
I 0.35 99 1 0 0

II 0.55 0 1 1 98

II 0.35 1 2 2 95

III 0.55 2 2 1 95

III 0.35 2 0 6 92

ICLy 1 0.55 99 1 0 0
I 0.35 99 1 0 1

II 0.55 0 0 2 98

II 0.35 0 2 3 95

11 0.55 2 2 1 95

11 0.35 2 0 7 91

1000 BIC 1 0.55 100 0 0 0
I 0.35 100 0 0 0

IT 0.55 0 0 0 100

II 0.35 3 1 4 92

III 0.55 0 0 1 99

111 0.35 0 0 8 92

ICL; 1 0.55 100 0 0 0
I 0.35 99 1 0 0

II 0.55 0 0 0 100

II 0.35 4 1 6 89

111 0.55 0 0 1 99

11 0.35 0 0 6 94

ICLy; 1 0.55 100 0 0 0
I 0.35 98 2 0 0

II 0.55 0 0 0 100

II 0.35 3 1 7 89

III 0.55 0 0 1 99

III 0.35 1 1 6 92
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data, the BIC shows a tendency to select K = 4 (outliers are typically accommodated using
an additional cluster), regardless of the level of separation (see also Mazza and Punzo, 2020).
This tendency appears to be more evident when the sample size is large. IC'L; shows the same
behaviour in association with SUNCW models (for both levels of separation) and NCW models
(for e = 0.55). On the contrary, with SUCNCW models, BIC' and ICL; correctly identify
three clusters for the majority of the simulated datasets, regardless of the sample size and the
degree of separation. When these two criteria are employed in the selection of CNCW models,
the true value of K is properly estimated provided that the degree of separation is high or the
sample size is large; otherwise, the order of CNCW models is generally underestimated. As far
as IC Ly is concerned, CNCW and SuCNCW models of order K = 3 are almost always selected
with € = 0.55 regardless of the sample size; however, when the degree of separation is low,
the order of the CNCW models is generally underestimated. With SUNCW and NCW models,
ICLs shows a clear tendency to overestimate the true K when the analysed datasets have a
large sample size. With I = 500 and € = 0.35, SUNCW and NCW models of order K = 2 are
generally selected by using the IC'Lo. These latter results may depend on the penalty employed
by ICLs (a function of the uncertainty of the estimated posterior probabilities Z;;), which is
the most severe and is also expected to be particularly large whenever the generated datasets

contain poorly separated clusters.

Classification recovery (without exploiting the knowledge of K)

In order to study the aspect (vi), for each generated dataset the ARI index has been computed
between the partitions of the sample units detected by the fitted models showing the highest
BIC value under each competing model class and the true partition. In general, the resulting
average values of the ARI index (see Table are quite similar to the ones obtained by
exploiting the knowledge of the true K (see Table . Obviously, whenever the value of
K determined according to the BIC is equal to the true K, the ability to recover the true
classification coincides with the one evaluated in Section Thus, in general, using the BIC
to estimate the value of K seems to have a negligible impact on the classification recovery of
SuCNCW models. The impact on the performance of the other three model types is more
evident, especially for SUNCW and NCW models. More specifically, in the presence of datasets
with contaminated observations generated according to the second and third processes, SUNCW

and NCW models of order K prc show a slight increase in the ability to estimate the true
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Table 4.14: Comparison among information criteria: number of selections over 100 samples for SUNCW, NCW, CNCW and SuCNCW models of
order K € {1,2,3,4} (I = 500).

K BIC(K) ICL,(K) ICLy(K)
SuUNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW SuNCW NCW CNCW SuCNCW
I process, € = 0.55

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 99 99 99 99 99 99 99 99 99 99 99 99
4 1 1 1 1 1 1 1 1 1 1 1 1
I process, € = 0.35
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 5 19 3 4 15 38 7 6 31 63 12
3 98 95 81 97 96 85 62 93 94 69 37 88
4 1 0 0 0 0 0 0 0 0 0 0 0
II process, € = 0.55
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 1 0 1 2 2 0
3 15 23 94 98 27 36 94 98 59 66 95 98
4 85 75 5 2 73 63 5 2 40 32 3 2
II process, € = 0.35
1 0 0 0 0 0 0 0 0 0 0 0 0
2 7 22 40 6 22 47 69 14 47 79 91 31
3 24 24 60 93 23 17 31 85 19 6 9 69
4 69 54 0 1 55 36 0 1 34 15 0 0
IIT process, € = 0.55
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2 2 1 2 4 2 1 2 4 2 1
3 30 34 91 95 37 40 92 96 50 49 93 96
4 70 64 7 4 61 56 6 3 48 47 5 3
IIT process, € = 0.35
1 0 0 0 0 0 0 0 0 0 0 0 0
2 5 25 57 21 28 ol 75 40 53 73 88 71
3 31 33 42 (s 24 28 24 59 21 15 11 28
4 64 42 1 2 48 21 1 1 26 12 1 1
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Table 4.16: Classification recovery of the fitted SUNCW, NCW, CNCW and SuCNCW models
with the highest BIC: average values (standard deviations) of the ARI index over 100 samples.

I Process € SuNCW NCW CNCW SuCNCW

500 1 0.55 0.987 (0.012) 0.987 (0.011) 0.987 (0.011) 0.987 (0.012)
I 0.35 0.945 (0.035) 0.932 (0.068) 0.891 (0.119) 0.940 (0.055)
II 0.55 0.891 (0.048) 0.890 (0.059) 0.952 (0.038) 0.957 (0.019)
II 0.35 0.805 (0.091) 0.767 (0.111) 0.791 (0.134) 0.886 (0.068)
III 0.55 0.870 (0.071) 0.868 (0.078) 0.921 (0.050) 0.923 (0.043)
111 0.35 0.749 (0.102) 0.682 (0.108) 0.711 (0.123) 0.803 (0.106)

1000 I 0.55 0.988 (0.005) 0.988 (0.006) 0.988 (0.006) 0.988 (0.005)
I 0.35 0.952 (0.015) 0.951 (0.015) 0.951 (0.146) 0.952 (0.015)
II 0.55 0.885 (0.034) 0.885 (0.034) 0.965 (0.011) 0.966 (0.010)
II 0.35 0.827 (0.077) 0.819 (0.085) 0.861 (0.109) 0.898 (0.061)
111 0.55 0.880 (0.021) 0.879 (0.023) 0.934 (0.037) 0.938 (0.016)
111 0.35 0.769 (0.102) 0.737 (0.122) 0.834 (0.083) 0.865 (0.032)

classification of the sample observations in comparison with the same models of order 3. A
possible explanation of this behaviour could be related to the fact that such models are not able
to properly account for contaminated observations; thus, according to the BIC, SUNCW and

NCW models of order 4 should be preferred.

4.4 Analysis of canned tuna sales

The tuna dataset (Chevalier et al., [2003)), which is available in the R package bayesm (Rossi,
2012), contains information about the volume of weekly sales (Move) for seven of the top 10 U.S.
brands in the canned tuna product category for I = 338 weeks between September 1989 and May
1997. The same dataset also provides information about measures of the display activity (Nsale)
and log price (Lprice) of each brand in each week. The dependence of log sales (Lmove) on log
prices and promotional activites for some brands selected from this dataset has been already
studied through either clusterwise linear regression models or cluster-weighted models (see, e.g.,
Galimberti et al., [2016; (Galimberti and Soffritti, 2020; Diani et al., 2022). Such studies showed
that the analysed dependencies are characterised by heterogeneity over time. They were also
able to highlight some weeks (from week no. 58 to weeks no. 73/74) in which the volume of
weekly sales for one brand (Bumble Bee) were affected by a worldwide boycott campaign because
that brand was found to be buying yellow-fin tuna caught by dolphin-unsafe techniques (Baird
and Quastel, 2011). In a recent research conducted on the brands Star Kist 6 oz. (SK) and
Bumble Bee Solid 6.12 oz. (BBS) through mixtures of contaminated linear regression models

with fixed covariates (Perrone and Soffritti, 2023]), some atypical observations in the y-direction
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Table 4.17: Pearson’s correlation matrix (lower diagonal part) and p-values of the Student’s
t test (upper diagonal part) for the hypotheses of pairwise linear independence between six
variables from the tuna dataset.

Lmove SK Lmove BBS Nsale SK Lprice SK Nsale BBS Lprice BBS

Lmove SK 1.0000 0.0181 < 10=2Y < 10752 0.2267 0.4000
Lmove BBS —0.1285 1.0000 0.1575 0.4734 < 10710 <1079
Nsale SK 0.4757 0.0771 1.0000 < 10736 0.0174 0.3831
Lprice SK —0.7067 0.0391 —0.6139 1.0000 0.0043 0.3808
Nsale BBS 0.0659 0.3256 0.1293 —0.1550 1.0000 < 10752
Lprice BBS —0.0459 —0.3172 —0.0476 0.0478 —0.7050 1.0000

were also detected.

In line with this latter study, the analysis illustrated here has been focused on the SK
and BBS products. More specifically, the following vectors of variables have been considered:
Y = (Y1 = Lmove SK, Y, = Lmove BBS), X = (X; = Nsale SK, Xy = Lprice SK, X3 = Nsale
BBS, X, = Lprice BBS). Thus, M = 2 and P = 4. A preliminary evaluation of the pairwise
linear dependencies for such variables has been carried out (see Table. For each brand, log
sales result to be negatively correlated with the log prices (—0.7067 for SK, —0.3172 for BBS)
and positively correlated with the display activities (0.4757 for SK, 0.3256 for BBS). A negative
correlation also emerges between Nsale SK and Lprice SK (—0.6139) and between Nsale BBS
and Lprice BBS (—0.7050). Lower but significant (for v = 0.05) pairwise linear dependen-
cies characterise Lmove SK and Lmove BBS (—0.1285), Nsale SK and Nsale BBS (0.1293), and
Lprice SK and Nsale BBS (—0.1550).

The dataset containing the information about these six variables for the 338 weeks has been
analysed with NCW, CNCW, SuNCW and SuCNCW models of order K, with K € {1,2,...,9}
and with each of the parameterisations illustrated in Section NCW and CNCW models
have been fitted by assuming that prices and promotional activities for one product may also
have an impact on the sales of the other product; thus, X is the vector of the covariates employed
for the prediction of both responses. As far as the SUNCW and SuCNCW models are concerned,
the selection of the regressors to be employed in the linear predictors of Lmove SK and Lmove BBS
has been carried out by exploiting the results of an exhaustive search of the relevant regressors
for such responses reported in |Perrone and Soffritti| (2023)). That search demonstrated that the
log unit sales of SK canned tuna should be regressed on the log prices and the promotional
activities of the same brand; as far as the BBS log sales are concerned, they should be regressed

on the log prices of both brands and the promotional activities of BBS. Thus, for the SUNCW
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Figure 4.1: Values of BIC, IC L1 and I1C L4 for the best NCW, CNCW, SuNCW and SuCNCW
models by number of components in the analysis of tuna sales.

Table 4.18: Maximised log-likelihood ¢(%) and values of BIC, ICL; and ICLy for the best
models selected from the classes SUCNCW, SUNCW, CNCW and NCW in the analysis of tuna
sales.

Class K acrX acrY {() ny BIC ICLy ICL,
SuCNCW 5 VEV EEE  1747.1 120 2795.5 2780.5 2754.2
SuNCW 5 VEV VEV  1624.0 108 2619.1 2608.9 2592.4
CNCW ) VEV EVE 17904 139 27713 2762.8 2746.8
NCW 6 VEV EVE 16229 142 2419.0 2413.1 2401.0

and SuUCNCW models, the two sub-vectors of X employed to define the design matrix are
X; = (X; = Nsale SK, X9 = Lprice SK) and X9 = (X = Lprice SK, X3 = Nsale BBS, Xy =
Lprice BBS). The overall number of fitted models from each of the four examined model classes
is 1577.

Figure [£.1] shows the values of BIC, ICL; and ICLg for the best fitted models from each
class by K. The best trade-off between the fit and the model complexity is reached by SuCNCW,
SuNCW, CNCW models with K = 5 and a NCW model with K = 6, regardless of the model
selection criterion. More detailed information about these models can be found in Table
According to all model selection criteria, the overall best trade-off is reached by the SUCNCW
model with K = 5. The distributions of the four regressors in the five clusters of weeks detected
by this model are ellipsoidal with variable volumes and orientations and equal shape; as far as
the joint conditional distributions of the two responses given the corresponding regressors are
concerned, clusters are characterized by equal distribution, volume and shape. The convergence
of the ECM algorithm for the estimation of this model has been reached after 136 iterations.
The obtained estimates of w, a, m, 7, A, p and 8" are reported in Table By focusing the

attention on the estimated regression coefficients, it emerges that the effects of prices for either
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Table 4.19: Estimated =, a, , 7, A, p and 3" of the overall best model for the tuna dataset.

k 1 2 3 4 5
T 0.090 0.151 0.151 0.260 0.348
O 0.506 0.999 0.997 0.982 0.922
Nk 6.942 1.001 1.172  11.213 10.853
Tk 0.999 0.999 0.611 0.900 0.865
N 1.001 1.001 9.714 132,726 116.684

g 0001 0323 0597 0.647  0.000
Qre —0.194 —0.229 —0.320 —0.281 — 0.141
frs 0227 0996  0.693  0.003  0.001
fre 0547 0500 0497 0572 0.566
Bro 8801 8506 8547 8620  8.804
Ben 15194 0345 0031 0225 —13.874
Bris  —1.563 —3.394 —3.850 —3.549 —2.378
Brso 9550  9.868 11.136 8581  9.032
Bror  —0.166  0.299  0.503 —0.041 0.541
Bras  —0.242 0959  0.199 0491  4.830
Bros  —3.061 —5234 —6.009 —1.548 —2.105

Table 4.20: Sizes of the five clusters of weeks detected by the overall best model and their
within-cluster distributions into four categories, based on ;. and ;.

Cluster k£ typical outlier bad leverage good leverage Cluster size

1 17 0 0 14 31
2 53 0 0 0 53
3 33 15 0 0 48
4 79 8 1 0 88
5 94 16 0 8 118

brands on the log unit sales of the same brand are negative within all the clusters detected by the
model. Shifting attention towards the estimates of i, for £ = 1,..., 5, the five clusters of weeks
show similar estimated mean values for Lprice BBS. However, from an overall inspection of these
estimates it also seems that both the joint distribution of prices and promotional activities and
the conditional distribution of tuna sales for both brands are affected by a source of unobserved
heterogeneity over time. Furthermore, the values of &y, 7, 7 and ;\k, for k =1,...,5, seem
to suggest that the analysed dataset is also contaminated by the presence of leverage points (in
clusters 1, 4 and 5) and regression outliers (in clusters 3, 4 and 5).

Table reports the sizes of the five clusters of weeks determined by the best fitted model
according to the rule of the maximum a posteriori probability; it also shows the within-cluster
sizes of the following four categories of weeks: typical observations (@;; > 0.5 and v;; > 0.5);

regression outliers (4;; < 0.5 and 0;; > 0.5); good leverage points (@ > 0.5 and 05, < 0.5); bad
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Figure 4.2: Scatterplots for pairs of variables from the analysis of tuna sales. Weeks are pictured
with five different colours and symbols according to the classification obtained from the best
model.
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Figure 4.3: Scatterplots of the estimated sample residuals y; — 5(2‘,32 (k=1,...,5) for the weeks
assigned to the five clusters detected by the best model for the analysis of tuna sales. Black
circles and red triangles correspond to typical and outlying weeks, respectively. The green plus
denotes a bad leverage point.



120 Parsimonious seemingly unrelated contaminated normal cluster-weighted models

leverage points (u;x < 0.5 and 0;, < 0.5). The first cluster detected by the best fitted model
contains 31 weeks (see the black circle in the scatterplots of Figure [£.2). Almost half of these
weeks have been classified as good leverage points (see the first row of Table . New Year
1992, Memorial Day 1993, New Year 1994, Halloween 1995 are the special events associated with
such weeks. As far as the possible presence of regression outliers in the distribution of Y|(X =
x, Gy) is concerned, all the weeks belonging to this cluster can be considered as typical. This
latter result is also evident from the estimated sample residuals y; — x; BT for the weeks of this
cluster (see the scatterplot on the left in the upper panel of Figure. A further proof is given
by the low values of a?%ly (see the first column in Table . The estimated mean promotional
activities in this cluster are quite low, especially those for the SK brand. Furthermore, the
estimated effects of promotional activities on sales are positive (and particularly strong) for SK,
while they result to be negative and negligible for BBS (see the first column in Table .
Finally, promotional activities of SK tuna appear to be highly homogenous, as suggested by the
low estimated variance of Nsale SK for the weeks of this cluster (not reported here). The second
cluster, which is composed of 53 weeks (labelled using a red triangle point up in the scatterplot
of Figure , only contain typical observations (see the second row in Table . Similarly to
the previous cluster, the estimated sample residuals y; — X} ,[:1; (see the scatterplot on the right in
the upper panel of Figure and low values of a%y (see the second column in Table prove
the absence of outlying weeks. Furthermore, this cluster is mainly characterized by the highest
estimated mean value of promotional activities for BBS tuna (column 2 in Table and the
highest variance for Lprice BBS (not reported here). Cluster 3 comprises 48 weeks (green plus
in Figure . It is characterized by the absence of leverage points. However, 15 weeks of this
cluster have been classified as mild outliers (see the red triangles in the scatterplot on the left
in the central panel of Figure . They are mostly associated with holidays and special events
that took place between 1990 and 1992 (weeks close to Easter 1990; Labor Day 1990; weeks
close to Halloween 1990; weeks close to Labor Day 1991 and Halloween 1991; Christmas 1991;
President Days 1992; Easter 1992) or with the first period of the boycott campaign (weeks from
no. 58 to week no. 60). It is worth noting that, for these 15 weeks, the estimated Mahalanobis
squared distances c%y are clearly larger than those computed for the other weeks of the same
cluster (see the third column in Table . Overall, the weeks belonging to this cluster show
the lowest mean prices of both brands (see the third column in Table . Furthermore, the

estimated effect of promotional activities for SK tuna on the sales of the same brand is negligible.
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Table 4.21: Minimum and maximum values of the estimated squared Mahalanobis distances

cf?k,y within the five clusters of weeks, by the categories: typical observations/outliers.

k 1 2 3 4 5
Typical observations

min{dZ,, } 0.0l 001 003 001 001
max{d? } 047 1126 597 10.85 11.73
Outliers

min{dfky} - - 7.38 15.32  13.64
max{dZ,, } - - 82.80 982.52 691.09

Finally, the weeks belonging to this cluster are characterised by the strongest effect of prices on
sales for both brands. As far as cluster 4 is concerned, it contains 88 weeks (dark blue cross in
Figure . 8 of these weeks have been classified as outliers (see the scatterplot on the right in
the central panel of Figure ; two of them (weeks no. 71 and no. 72) belong to the period of
the boycott campaign. The last week from the period of the boycott campaign (week no. 74)
has been detected as a bad leverage (see the green plus in the fourth scatterplot of Figure .
Similarly to the previous cluster, the estimated Mahalanobis squared distances d?4y for the 8
outlying weeks of this cluster result to be larger than those computed for the other weeks (see
Table. The main distinctive feature of cluster 4 is the highest estimated mean price of BBS
tuna and the highest estimated mean value of promotional activities for SK tuna. Furthermore,
promotional activities of BBS tuna are instead negligible (see Table . Finally, the 88 weeks
of this cluster are also characterized by highly homogeneous prices and promotional activities of
both brands. Cluster 5 is composed of 118 weeks (sky-blue diamond in Figure; 8 and 16 of
these weeks have been detected as good leverage points and outliers, respectively. The outlying
weeks of this cluster can also be easily identified from the scatterplot on the bottom part of
Figure ; they also show the largest within-cluster Mahalanobis squared distances a%y (see
Table . 10 of these 16 outlying weeks correspond with the central period of the boycott
campaign (weeks from no. 61 to no. 70). The 118 weeks of this cluster are characterised by the
lowest estimated mean values of the promotional activities for both brands. Furthermore, they
also show a quite high estimated mean price of BBS tuna. Finally, the effects of promotional

activities on sales are negative (and particularly strong) for SK and positive for BBS.
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4.5 Conclusions

The SuUCNCW models introduced here allow to perform robust clustering in multivariate linear
regression analysis with correlated responses and random regressors for datasets characterised
by unobserved heterogeneity and mildly atypical observations. They can also be employed to
identify outliers and leverage points within each detected cluster. The main novelty of these
models in reference with the ones introduced by |Punzo and McNicholas| (2017) is that a different
vector of regressors is considered for each response. Thanks to this feature, the data analyst is
enabled to convey prior information concerning the absence of certain regressors from the linear
term employed in the prediction of a certain response in any application in which different
regressors are expected to be relevant in the prediction of different responses. SUCNCW models
with a reduced number of variance-covariance parameters have also been specified; they can be
more effectively employed when the analysis involves either many responses or many regressors.
Furthermore, since SUCNCW models encompass other normal mixture-based linear regression
models with random regressors (Dang et al., [2017; Punzo and McNicholas|, |2017} |Diani et al.,
2022)), they represent a flexible approach for simultaneous robust clustering and detection of
mildly atypical observations in linear regression analysis. Monte Carlo studies have shown
that either the inclusion of irrelevant regressors in a cluster-weighted model or the presence of
mildly atypical observations in the data can negatively affect the reconstruction of both the true
classification and true parameter values, especially when the clusters of observations are not
well-separated. Furthermore, they can have a negative impact on the choice of the order K of
a CW model. The obtained results have demonstrated that such difficulties can be managed by
resorting to SUCNCW models. In practical applications in which the regressors to be considered
in the linear predictor of each response have to be determined from the data, an approach based
on a joint use of SUICNCW models and techniques for variable selection (e.g., genetic algorithms,
stepwise strategies) can also allow to identify the relevant predictors for each regression equation.
A disadvantage of using an ECM algorithm to perform ML estimation of SUCNCW models is
that it does not provide a direct assessment of the sample variability of the ML estimates. To
this end, approaches commonly employed under finite mixture models could be employed (see,

e.g., McLachlan and Peel|, |2000)). This aspect represents an avenue of future research.
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4.6 Data availability

e The real-world data supporting the findings of this study reported in Section [£.4)are openly

available in the R package bayesm (Rossi, [2012)).
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Chapter 5

A study on housing tension in the
municipalities of the

Emilia-Romagna regionﬂ

!The results of this chapter will be summarized in a scientific paper to be submitted for publication.
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Abstract

Housing deprivation in Italy is a complex phenomenon that has been widely studied and dis-
cussed by several researchers in the last years. The general economic situation has worsened
and with it the housing instability of low-income households have grown dramatically. Housing
policies in support of marginalised groups of families have been also relatively weak. In such
context, strategies and social housing programs appear to be urgent. As far as the case of
Emilia-Romagna region is concerned, since 2001 a regional observatory of the housing system
has been established in order to monitor housing conditions. Thanks to an implementation
agreement between the region and the Department of Statistical Science of the University of
Bologna, a study of housing deprivation in the municipalities of the Emilia-Romagna region has
been carried out in order to provide a cognitive support for developing strategies and planning
tools or for implementing actions that are oriented to address the housing issue. This chapter
summarises the main results of this study. In particular, the dependence of housing tension in
the municipalities of the Emilia-Romagna region on several indicators coming from a dataset
created by the region has been evaluated through Mixtures of Contaminated Seemingly Gaussian
regressions (MCSG) models and other clusterwise linear regression models. Furthermore, a new
class of MCSG models is introduced here so as to allow the mixing weights to be expressed as a
function of some concomitant variables. To select the relevant indicators to be employed for the
explanation of the housing tension, a genetic algorithm and a backward elimination technique
have been exploited.

Keywords: Emilia-Romagna region, Genetic algorithm, Housing tension, Mild outlier, Mixture

of regression models, Model-based cluster analysis, Seemingly unrelated regression
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5.1 Introduction

The last decades have been characterized by profound environmental changes, economic crises
and an intensification of migration flows. All these factors, together with the recent Covid-19
pandemic, have contributed to worsening the level of social and spatial fragmentation of the
cities. Consequently, also the living conditions of the social groups with lower incomes have
deteriorated, contributing to increase both the population living below the poverty line and the
differences between income groups. As far as the field of housing is concerned, the decline in
social housing policies together with the aggravating residential segregation have contributed
to make up access to housing increasingly difficult. For these reasons, many researchers have
focused their attention on the study of public housing policies in order to understand contem-
porary housing dynamics and to identify the main determining characteristics of the housing
deprivation phenomenon. This is also the case of Italy. On the one hand, the housing deprivation
is still today a problem that concerns all the regions, provinces and municipalities. On the other
hand, urban policies result to be insufficient compared to the housing needs. To cope with this
situation, it results to be necessary to planning and developing strategies able to find solutions
for the housing issue. The focus of this chapter is the Emilia-Romagna region and, in particular,
the study on housing tension in its municipalities. Since 2001, this region has established the
Regional Observatory of the housing system (ORSA) with the regional law n. 24 of 8 August
2001, which aims to evaluate data on housing conditions, allowing for a better assessment of
both household conditions and the effectiveness of housing policies. Furthermore, the challenge
of ORSA is to analyse housing needs, monitor and evaluate interventions and programs in the
housing sector and to support the elaboration of housing policies, in particular, and of welfare,
in general. To better understand the phenomenon, the sharing of the data to external public
and private entities that are able to contribute to the activity of the Regional Observatory is also
appreciated. In thix context, research activities have been carried out within an implementation
agreement between the Emilia-Romagna region and the Department of Statistical Sciences of the
University of Bologna. Based on data provided by the region, Mixtures of Seemingly Unrelated
Contaminated Normal Regression Model (MCSG) (Perrone and Soffritti, [2023]) and mixtures of
seemingly unrelated Gaussian (MSG) regressions models (Galimberti and Soffritti, 2020) have
been employed to study the effects of certain factors pertaining to three different areas (social

demography, social life/income conditions, housing supply and market) on housing tension in
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328 municipalities of the Emilia-Romagna region, by simultaneously allowing for the detection
of latent clusters of municipalities induced by some source of unobserved heterogeneity. In order
to ensure additional flexibility, new mixtures of seemingly unrelated contaminated normal linear
regressions models with concomitant variables (¢c(MCSG) and mixtures of seemingly unrelated
Gaussian regressions models with concomitant variables (cMSG) are introduced here. With
these new models, prior probabilities of belonging to latent clusters are assumed to depend on
some concomitant covariates. In order to select the relevant predictors of housing tension in
MCSG, MSG, cMCSG and cMSG models, a genetic algorithm and a backward elimination tech-
nique have been employed.

The chapter is organised as follows. Section [5.2] provides a summary of housing deprivation in
Italy. A general introduction of the administrative situation in the Emilia-Romagna region is
reported in Section Section provides details on the indicators and the variables of the
analysed dataset. The specific aims of the study are reported in Section A summary of the
methods employed in the analyses is given in Section together with the introduction of the
cMCSG and cMSG model classes. The main results are presented in Section Finally, in

Section [5.8] some conclusions and remarks are discussed.

5.2 Housing deprivation in Italy

In the last two decades, the phenomenon of housing deprivation in Italy has been widely studied
and discussed by several researchers. Housing problems, in fact, have increased dramatically in
recents years due to several transformations of contemporary society, migrant flows, economic
crises and, finally, Covid-19 pandemic. Furthermore, until the 1990s, the local jurisdictions
have marginalized housing problems, contributing to increase the mismatch between the income
groups. According to some researchers, the incorrect assessment of the severity of such problems
has been due to the common thought that housing tension concerns only the most disadvantaged
population bracket (renter households, foreigners, elderly people) and not also the middle class
(Bonafede], 2021)). In general, housing problems have led to the overcoming of the family in the
traditional sense and the birth of new forms of family organization (single-parent families, sin-
gle people, couples without children, etc.). The housing tension phenomenon has been usually
focused on three main dimensions (Townsend| [1979): housing inadequacy (structural deficiency

or a lack of housing facilities, [Kutty| (1999))), overcrowding (insufficient space in relation to the
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number of users, (Gray and Campbell (2001))) and unaffordability (the pressure on households
because housing costs (rent or mortgage) take up too large a proportion of the household in-
come, [Hancock! (1993)). The distribution of housing deprivation on the Italian territory, instead,
appears to be more pronounced in municipalities that are densely populated; thus, housing de-
privation seems to be more widespread in the North-West and in the South of Italy. For this
reason, in order to provide a cognitive support for developing strategies and planning tools for
the municipalities with a critical situation in terms of housing problems, some classifications of
municipalities have been specified. In particular, since 2003, the Inter-ministerial Committee for
Economic Programming (Comitato Interministeriale per la Programmazione Economica, CIPE)
has identified some municipalities as having High Housing TensionEl (Alta Tensione Abitativa,
ATA) based on demographic growth thresholds in order to stipulate special agreements. How-
ever, this criterion has appeared to be inadequate because it does not take into account the
territorial changes of the last years. For this reason, in 2016, the Italian Conference of Regions
and Autonomous Provinces proposed a revision of the thresholds for identifying ATA munici-
palities in order to integrate the previous criterion with an indicator of the housing problerrﬂ
On the other hand, ISTAT (National Institute of Statistics, Istituto Nazionale di Statistica) has
introduced another classification of the Italian municipalities which defines some municipalities
as having High Housing Density (Alta Densita Abitativa, ADA) depending on their demographic
size. In particular, a municipality is defined as ADA if it has a number of inhabitants greater
than 10,000. Furthermore, municipalities can also be classified according to their geographic
location. In particular, based on the administrative reform evolved in 1999 with the national
law 265/99, it is also possible to identify mountain municipalities. This definition is primarily
intended for local public administrations located in mountainous or partially mountainous area.
Since 2014, a new strategy (National Strategy for Inner Areas, NSIA) has been established for
every region of Italy in order to contribute to their economic and social recovery by creating
jobs, fostering social inclusion and cutting the costs of regional depopulation. Specifically, the
strategy approved for 2014-2020 defines the ”inner areas” as areas at some considerable distance
(in terms of time) from a selected municipality to the nearest hubs (Poles - main centres) which
provide essential services (education, health and mobility) (Ministry of Economic Development,
2014). The wider this distance, the greater its periphery. In particular, the inner areas plan

classified municipalities into Intermediate (I), Peripheral (P) and Ultraperipheral (UP) areas.

https://www.mit.gov.it /normativa,/decreto-ministeriale-del-13112003
3see Regioni.it 2884 of 18 February 2016
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Table 5.1: Joint frequency distribution of the municipalities classified as ADA and ATA in the
ERR.

ATA
ADA Yes No Tot.
Yes 38 63 101
No 1 228 229
Tot. 39 291 330

Specifically, intermediate areas are those whose distance is between 20 and 40 min., peripheral
areas are between 40 and 75 min. and ultra-peripheral areas are greater than 75 min. Moreover,
this strategy also introduces an Urban Belts (UB) classification for the municipalities far less
than 20 min. from the nearest Pole (Barca et al., [2014; [Moretto et al., [2021)).

In this context, the Italian Public Residential Building (Edilizia Residenziale Pubblica - ERP)
endowment aims to help the economically weakest social groups, by encompassing various types
of building interventions. However, the latter policy is completely insufficient, safeguarding
only some parts of the population. Furthermore, in addition to ERP endowment, a national
fund was established in 1998 to support access to rental housing. Although both policies are
capable to limit the housing tension problems, their effectiveness is not fully satisfactory. For
these reasons, some Italian regions have invested in strategies and social housing programs in
order to improve the housing condition of the low-income households. This is also the case of
the Emilia-Romagna region, where for several years the Regional Observatory of the housing
system (Osservatorio regionale del sistema abitativo - ORSAEL art. 16 of Regional Law 24/2001)
has been established in order to continuously ascertain housing needs, support the development
of housing policies, monitor their effectiveness and, more generally, acquire, collect, process,
disseminate and evaluate data on housing conditions and activities in the building sector. In
particular, the Observatory has the task of collecting and processing information regarding: local
information flows on housing needs, public intervention in the housing sector, the cyclical and
structural surveys on housing scenarios, the verification and monitoring of the implementation
of the programmes and the methods of using the existing building stock. Housing problems are
often nothing more than a lack of disposable income compared to the needs of the family or
a lack of accommodation. In all these circumstances, it is important for the Emilia-Romagna

regional government to intervene with suitable public housing policies.

“https:/ /territorio.regione.emilia-romagna.it /osservatorio-delle-politiche-abitative /fabbisogno-abitativo
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Figure 5.1: Map of the ATA and ADA municipalities in the ERR.

5.3 The Emilia-Romagna Region (ERR)

For administrative purposes, the 20 Italian regions are divided into provinces and municipalities.
As far as the Emilia-Romagna Region (in the north-east of Italy) is concerned, it covers an
area of 22,510 square kilometers (sq km) for a population of 4.459 million distributed among
nine provincesﬂ In particular, these latter provinces of the ERR are (in brackets the province
acronym and the number of municipalities for each province): Bologna (BO, 55), Forli-Cesena
(FC, 30), Ferrara (FE, 21), Modena (MO, 47), Piacenza (PC, 46), Parma (PR, 44), Ravenna
(RA, 18), Reggio Emilia (RE, 42) and Rimini (RN, 25). Thus, the total current number of the
ERR municipalities is 330. As far as the housing tension in the ERR is concerned, it appears
to be characterized by heterogeneity among the municipalities of the provinces. Thus, based
on the above mentioned classifications, also local public administrations of the ERR have been
classified as having High Housing Tension and High Housing Density. Figure [5.1|shows the map
of the municipalities based on ADA and ATA classifications. In particular, municipalities that
have been classified both as ADA and ATA have been colored in green, the ADA municipalities
are in blue, municipalities that are neither ADA nor ATA in red and, finally, in yellow the
unique municipality characterized both by a number of inhabitants lower than 10,000 and an
High Housing Tension. Table shows the joint frequency distribution of the municipalities
classified as ADA and ATA. The majority of the ERR municipalities are classified as not ADA

nor ATA, while 11.5% have both high housing tension and high housing density. Classification

®Regione Emilia-Romagna Statistica. Available online: https://statistica.regione.emilia-romagna.it/)
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details of the ATA, ADA and mountain municipalities in the ERR by province have been reported
in Table From the latter table, it emerges that the municipalities classified as ATA are also
classified as ADA municipalities. This is true for each province except Modena, where the
municipality of Campogalliano is characterized by High Housing Tension but is a municipality
with 8605 inhabitants (2020) (see the municipality in yellow in Figure [5.1). Table shows
the list of municipalities for each province classified according to the NSIA criterion. Finally,
Table shows details about the number of municipalities classified as ADA, ATA, Mountains

and in one of the five categories of NSIA for the nine Emilia-Romagna provinces.

5.4 Dataset

The dataset has been created by the ERR region and is composed by data from different sources.
It refers to the municipalities of the ERR and provides information about several quantitative
variables defined in 2020 by the ERR in collaboration with ART—EREI, within the document
”Regional Observatory of housing system and related activities’ﬂ (Osservatorio Regionale del
Sistema Abitativo e attivita connesse). From 17 June 2021, two municipalities from the Marche
region, Montecopiolo and Sassofeltrio, have been aggregated to the ERRﬁ Thus, since the
information assets contained in the dataset cover the period from 2016 to 2020, only the other
J=328 municipalities have been considered in this research. As far as the variables are concerned,
they have been divided into three macro-areas (named also pillars or fields). Then, a multitude
of aspects have been taken into consideration within each pillar. In particular, six Socio -
Demographic (SD) indicators, five Social Life and Income Condition (SLIC) indicators and
nine Housing Supply and Housing Market conditions indicators (HSHM) have been considered
(Table . They have been chosen because they are closely related with housing tension and,
therefore, could play an important role in its explanation. Moreover, some of these indicators
may be expected to have a direct (+) or inverse (—) effect on housing tension; in fact, as
an indicator increases, the housing tension can be expected also to increase (direct effect) or
decrease (inverse effect) (see the first column of Table - the absence of the "4” and 7"

signs means that there is no any expectation for the effect on housing tension). Furthermore,

6 Attractiveness Research Territory (ART) is the Emilia-Romagna (ER) Joint Stock Consortium born with the
purpose of fostering the region’s sustainable growth by developing innovation and knowledge, attractiveness and
internationalisation of the territory. https://www.art-er.it/

"https:/ /territorio.regione.emilia-romagna.it /osservatorio-delle-politiche-abitative /misure-di-sostegno-alle-
famiglie/politiche-erp-regionali-e-locali/orsa_verso_un_sistema_informativo_politiche_abitative_2020.pdf

8Law No. 84 of 28 May 2021 published in the Official Gazette n.142 of 16/06,/2021
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Table 5.2: List of ATA, ADA and mountains municipalities in the ERR.

Provinces

ATA

ADA

Mountains

Bologna

Anzola dell’Emilia - Bologna - Calderara di Reno
Casalecchio di Reno - Castel Maggiore - Castenaso
Granarolo dell’Emilia - Imola - Pianoro
San Lazzaro di Savena - Sasso Marconi - Zola Predosa

Anzola dell’Emilia - Bologna - Budrio

Calderara di Reno - Casalecchio di Reno - Castel Maggiore

Castel San Pietro Terme - Castenaso - Crevalcore
Granarolo dell’Emilia - Imola - Medicina
Molinella - Monte San Pietro - Ozzano dell’Emilia

Pianoro - San Giovanni in Persiceto - San Lazzaro di Savena

San Pietro in Casale - Sasso Marconi - Valsamoggia
Zola Pedrosa

Alto Reno Terme - Borgo Tossignano - Camugnano
Casalfiumanese - Castel d’Aiano - Castel del Rio
Castel di Casio - Castiglione dei Pepoli - Fontanelice
Gaggio Montano - Grizzana Morandi - Lizzano in Belvedere
Loiano - Marzabotto - Monghidoro
Monte San Pietro - Monterenzio - Monzuno
Pianoro - San Benedetto Val di Sambro - Sasso Marconi
Valsamoggia - Vergato

Forli-Cesena

Cesena - Cesenatico - Forli

Bertinoro - Cesena - Cesenatico
Forli - Forlimpopoli - Gambettola
San Mauro Pascoli - Savignano sul Rubicone

Bagno di Romagna - Borghi - Civitella di Romagna
Dovadola - Galeata - Meldola
Mercato Saraceno - Portico e San Benedetto - Predappio
Premilcuore - Rocca San Casciano - Roncofreddo
Santa Sofia - Sarsina - Sogliano al Rubicone
Tredozio - Verghereto

Ferrara Cento - Ferrara Argenta - Bondeno - Cento - Codigoro
Comacchio - Copparo - Ferrara
Portomaggiore - Terre del Reno
Modena Campogalliano - Carpi Bomporto - Carpi - Castelfranco Emilia Fanano - Fiumalbo - Frassinoro
Castelfranco Emilia - Formigine Castelnuovo Rangone - Castelvetro di Modena Guiglia - Lama Mocogno - Marano sul Panaro
Modena - Sassuolo Finale Emilia - Fiorano Modenese - Formigine Montecreto - Montefiorino - Montese
Maranello - Mirandola - Modena - Nonantola Palagano - Pavullo nel Frignano - Pievepelago
Novi di Modena - Pavullo nel Frignano Polinago - Prignano sulla Secchia - Riolunato
San Felice sul Panaro - Sassuolo - Soliera Serramazzoni - Sestola - Zocca
Spilamberto - Vignola
Piacenza Fiorenzuola d’Arda — Piacenza Castel San Giovanni - Fiorenzuola d’Arda Alta Val Tidone - Bettola - Bobbio
Piacenza - Rottofreno Cerignale - Coli - Corte Brugnatella
Farini - Ferriere - Gropparello
Morfasso - Ottone - Piozzano
Travo - Vernasca - Zerba
Parma Fidenza — Parma Collecchio - Fidenza - Langhirano Albareto - Bardi - Bedonia
Medesano - Montechiarugolo - Noceto Berceto - Bore - Borgo Val di Taro
Parma - Salsomaggiore Terme Calestano
Sorbolo Mezzani
Ravenna Faenza - Lugo — Ravenna Alfonsine - Bagnacavallo - Cervia Brisighella - Casola Valsenio - Riolo Terme

Faenza - Lugo - Massa Lombarda
Ravenna - Russi

Reggio Emilia

Casalgrande - Correggio
Montecchio Emilia - Reggio nell’Emilia
Rubiera - Scandiano

Bibbiano - Cadelbosco di Sopra - Casalgrande
Castellarano - Castelnovo ne’ Monti - Correggio
Guastalla - Montecchio Emilia - Novellara
Quattro Castella - Reggio nell’Emilia - Rubiera
Sant’Ilario d’Enza - Scandiano

Baiso - Canossa - Carpineti
Casina - Castelnovo ne’ Monti - Toano
Ventasso - Vetto - Viano - Villa Minozzo

Rimini

Cattolica - Riccione — Rimini

Bellaria Igea Marina - Cattolica - Coriano
Misano Adriatico - Riccione - Rimini
Santarcangelo di Romagna - Verucchio

Casteldelci - Maiolo - Novafeltria
Pennabilli - Poggio Torriana - San Leo
Sant’Agata Feltria - Talamello - Verucchio
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Table 5.4: Number of municipalities classified as ADA, ATA, Mountains and in one of the five
NSTA classification for the Emilia-Romagna provinces.

Provinces ATA ADA Mountains NSIA

Yes No Yes No Yes No UB I PO P UP
Bologna 12 43 22 33 23 32 20 20 2 12 1
Forli-Cesena 3 27 8 22 17 13 17 8 2 3 0
Ferrara 2 19 9 12 0 21 5 10 1 5 0
Modena 6 41 19 28 18 29 15 12 2 8 10
Piacenza 2 44 4 42 15 31 27 8 1 6 4
Parma 2 42 9 35 7 37 19 7 2 14 2
Ravenna 3 15 8 10 3 15 14 1 3 0 0
Reggio Emilia 6 36 14 28 10 32 22 11 1 7 1
Rimini 3 24 8 19 11 16 12 6 2 7 0
Tot. 39 291 101 229 104 226 151 83 16 62 18

two variables representative of housing tension have been considered: the proportion of the low
income households and the proportion of households demanding for public residential housing
(Edilizia Residenziale Pubblica, ERP). Thus, a total number of P=22 different indicators have
been considered. Dataset also contains two variables that are the Total Resident Population
(TRP) and Total Resident Foreigners (TRF) in 2020. Details about the overall indicators are

presented in the following subsections.

5.4.1 Socio - Demographic (SD) indicators

The first set of indicators (SD1 - SD6, top side of the second column of Table |5.5) concerns the
demographic situation and demographic dynamics of the municipalities. In particular, the SD1
indicator (Population density) represents the number of inhabitants (inh) per square kilometer

(sq km) in 2020; thus, for each municipality, the first indicator has been computed as follows:

Resident population in 2020 (inh)

SD1 =
Municipal area (sq km)

Consequently, higher densities of people are expected to be associated with higher housing
tension (see the first column of Table . As far as the SD2, SD3 and SD4 indicators are

concerned, they represent changes in resident population, changes in resident households and
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changes in resident foreigners between 2017 and 2020 respectively. In particular,

SD2 :Resident population in 2020 (inh) 1.
Resident population in 2017 (inh)
SD3 _ Resident households in 2020 (inh) 1.
Resident households in 2017 (inh)
SD4 Resident foreigners in 2020 (inh)

" Resident households in 2017 (inh)

Thus, positive changes of these indicators are assumed to have a direct impact on housing tension
(see the first column of Table due to overcrowding issues. Furthermore, as far as the SD4
indicator is concerned, foregneirs face additional problems due to long standing reasons of racial
and housing market discrimination (Bogdon and Can, 1997). The last SD indicators have been

constructed as follows:

2020

1
SD5 =~ > AHS,,
t=2017
1 2020
SD6 = > MB,
t=2017

where AHS; and MBy, are the Average Household Size and the Migration Balance (the difference
between the number of immigrants and the number of emigrants) at time t, respectively. Thus,
as far as the SD5 indicator (Household Size, see the second column of Table is considered,
an increase in family composition (e.g., presence of children) could have a direct effect on hous-
ing tension due to economic and overcrowding issues. The same holds for the SD6 indicator.
Table reports some descriptive statistics of the indicators employed in the analysis. For the
SD indicators, it is worth noting that the Zerba municipality (PC) has the lowest population
density (2.9 inh/sq km - SD1), the highest decrease in resident households (—8.6 % - SD3) and
the lowest average value for the Household Size indicator (1.3 - SD5). Bologna (BO), instead,
is the municipality with the highest value for the first and the last SD indicators (Table |5.6)).
As far as the SD2 indicator is concerned, the highest decrease and highest increase in resident
population correspond respectively to the Farini (PC) and Granarolo dell’Emilia (BO) munici-
palities; Monchio delle Corti (PR) and Casteldelici (RN), instead, are the ones with the highest
decrease (—34.0 %) and highest increase (53.8 %) in resident foreigners (SD4). Luzzara and
Reggiolo, two municipalities of the Reggio Emilia province, correspond respectively at the min-

imum (—88.500) and the maximum (2.633) values of the SD6 and SD2 indicators. Finally, the
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Figure 5.2: Boxplot of the SD indicators

municipality of Borghi (FC) has the maximum positive change in resident household (7.7 % -
SD3) (Table [5.6). For the construction of the overall indicators, ISTAT and ERR sources have
been taken into consideration. To better describe the overall descriptive statistics, Figure
shows the box-plots for this first strand of indicators. From the latter figure it emerges that each
SD indicator is characterized by the presence of outliers. In particular, some extreme outliers

can be easily identified in the first and the sixth socio-demographic indicators.

5.4.2 Social Life and Income Condition (SLIC) indicators

Among the five indicators of the second pillar (SLIC1-SLIC5, half side of Table , SLIC1 and
SLIC2 concern aspects of the Social Life while the other three indicators (SLIC3-SLIC5) include
informations about the Households Income Condition. In particular, for each municipality, the
Education indicator (SLIC1) and the Employment indicator (SLIC2) have been computed as

follows:

2020

SLIC1 = —2018 PALM{
2020 TRpp,
t=2018 t

2020
SLICQ = £=t=2018 WAPE;

2020
i=2018 TRPs

)

where the acronyms PALM;, WAPE; and TRP; represent the number of People with At Least a
Middle school diploma, the number of Working Age Population that is in Employment and the
Total Resident Population at time t, respectively. Thus, SLIC1 and SLIC2 indicators describe
the proportion of people with medium-high level education and the proportion of people in

employment in a municipality, respectively (Table . For this reason, the higher the SLIC1
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Table 5.6: Descriptive statistics of the quantitative variables

Indicator ~ Minimum First quartile Median Average Third quartile Maximum

SD1 2.901 47.253 136.899  223.766 252.555 2780.676
SD2 —0.079 -0.022 -0.010 —-0.013 —0.003 0.028
SD3 —0.086 —0.005 0.008 0.007 0.019 0.077
SD4 —0.340 —0.006 0.053 0.049 0.112 0.538
SD5 1.302 2.142 2.272 2.228 2.371 2.633
SD6 —88.500 3.750  18.380 62.880 52.000 2617.500
SLIC1 0.641 0.761 0.780 0.774 0.794 0.844
SLIC2 0.273 0.483 0.512 0.505 0.537 0.591
SLIC3 —0.487 0.023 0.038 0.034 0.052 0.259
SLIC4 0.263 0.321 0.352 0.368 0.408 0.729
SLIC5 0.105 0.161 0.176 0.178 0.196 0.297
HSHM1 1.039 1.150 1.248 1.617 1.654 10.755
HSHM?2 —0.024 0.002 0.006 0.006 0.011 0.038
HSHM3 0.022 0.140 0.178 0.186 0.220 0.641
HSHM4 —0.130 0.111 0.159 0.197 0.250 1.210
HSHMS5 1.645 3.285 3.759 4.132 4.570 22.452
HSHM6 —0.210 0.171 0.249 0.245 0.329 1.076
HSHM7 —0.331 0.154 0.278 0.314 0.405 2.662
HSHMS8 0.006 0.012 0.016 0.016 0.021 0.033
HSHM9 —0.588 0.003 0.151 0.271 0.422 3.097
ISEE.20 0.000 0.042 0.061 0.058 0.070 0.200
RANK.21 0.000 0.010 0.017 0.018 0.025 0.103

indicator is, the higher the housing tension will be. In fact, a high level of education generally
implies a high income and, consequently, a low difficulty in accessing the housing market. The
minimum (64.1 %) and the maximum (84.4 %) values the SLIC1 indicator are reached by Farini
(PC) and Bologna (BO) municipalities (Table [5.6]). As far as the SLIC2 indicator is concerned,
the housing tension is expected to increase if the number of people in employment increases (see
the first column of Table [5.5). Two municipalities of the Piacenza province correspond to the
lowest (Cerignala, PC) and the highest (Gossolengo, PC) proportion for the SLIC2 indicator.
ISTAT sources have been considered for the SLIC1 and SLIC2 data (see the fourth column of
Table .

The remaining SLIC indicators concern the Households Income Condition area. In particular,
for each municipality, the Taxable Income indicator (SLIC3) and the Low Income Taxpayers

indicator (SLIC4) have been computed as follows

Taxable income per taxpayer in 2020

SLIC3 =
Taxable income per taxpayer in 2016 ’
TO in 2020
LIC4 =—————
SLIC TT in 2020’

where T0 and TT represent the number of Low Income (€0 - €15,000) Taxpayers (T0) and the

Total number of Taxpayers (TT) in 2020, respectively. Thus, SLIC3 and SLIC4 represent the



5.4.2 Social Life and Income Condition (SLIC) indicators 143

stic1 stic2 sLic3 sLica sLics

Figure 5.3: Boxplot of the SLIC indicators

change in Taxable Income per taxpayer computed between 2016 and 2020 and the proportion
of Low Income Taxpayers. Finally, the Gini Index (SD5) is a summary measure of income
inequality, which is commonly used to assess the degree of inequality in the distribution of
income (Giorgi and Gigliarano, 2017). It is a concentration index that provides a numerical
value between 0 and 1, with a 0 indicating perfect equality (all the individual households have
the same income), while a value of 1 reflects maximal inequality among incomes (one person
has all the income and all others have none). Thus, the closer the Gini index is to the value 1,
the higher the housing tension will be (see the first column of Table [5.5)). Minimum (0.105) and
maximum (0.297) values of the Gini Index correspond to Jolanda di Savoia (FE) and Gazzola
(PC) municipalities, respectively. There is no given expectation for the relationship between
the SLIC3 indicator and housing tension; for the SLIC4 indicator, the higher the share of low-
incomes is, the more housing deprivation should be observed (see the first column of Table .
Riva del Po (FE) and Zerba (PC) are the municipalities with the minimum and the maximum
values of the Taxable Income indicator (SLIC3), respectively; Zola Predosa (BO) and Goro (FE)
municipalities are the ones for the SLIC4 indicator (Table . For the construction of the three
latter (SLIC3-SLIC5) indicators, data have been taken by the Ministry of Economy and Finance
source (Ministero dell’Economia e delle Finanze, MEF) (see the fourth column of Table .
The box-plots of the SLIC indicators have been reported in Figure |5.3] From the latter figure
it emerges that the presence of outliers for each indicator; furthermore, the distribution of the

SLIC4 and SLICS5 indicators appear to be slightly skewed.



144 A study on housing tension in the municipalities of the Emilia-Romagna region

5.4.3 Housing Supply and Housing Market (HSHM) indicators

For the third pillar (Housing Supply and Housing Market indicators), as mentioned above, nine
indicators (HSHM, bottom side of the second column of Table have been employed. The
HSHM1 (Housing Stock) and the HSHM2 (Change in Housing Stock) indicators concern the
housing units area. In particular, the Housing Stock indicator is the proportion of the Total
number of Housing Units (THU) of a certain municipality to the Total number of Resident

Households (TRH) in that municipality; thus, it has been computed as follows:

THU in 2020 (housing units)

HSHM1 =
5 TRH in 2020 (hsd)

where THU is computed as the sum of the Housing Units by cadastral categories (A01, A02,
A03, A04, A05, A06, A07, A0S, A09, All). Thus, Housing Stock (HSHM1) indirectly impacts
housing deprivation (see the first column of Table . Casalecchio di Reno (BO) and Zerba
(PC) are respectively two municipalities with the lowest and the highest proportion of Housing
Units per household (units/hsd) (Table [5.6). As far as the HSHM2 indicator is concerned, it
corresponds to the change in housing stock between 2016 and 2020 and it has been computed

as follows:

THU ; : .
HSHM2 — U in 2020 (hous?ng un?ts) q
THU in 2016 (housing units)

For the latter indicator it would be natural to think that a positive change in housing stock means
greater housing tension. Moreover, the minimum and the maximum changes in housing stock
are observed respectively for Agazzano (PC) and Granarolo nell’Emilia (BO) municipalities
(more details have been reported in Table . The HSHM3 and HSHM4 indicators regard
rent area. For each municipality, three variables have been taken into consideration in order
to construct the latter indicators: the Average Household Income (€ /year) in 2020 (AHI2020),
the Maximum Monthly Rent (€/month) in 2018 (MMR2018) and in 2020 (MMR2020); the
MMR2018 and MMR2020 variables have been computed by considering a civil dwelling of 80

square meters (sq m). The HSM3 and HSHM4 indicators have been computed as follows:

(MMR2020 * 12) (€ /year)
AHI2020 (€/year) ’
MMR2020 (€,/month)

HSHM4 = -1
MMR2018 (€/month)

HSHM3 =
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Thus, for each municipality, they measure the ratio of the Maximum Monthly Rent to the
Average Household Income (€/year) and the Change in Maximum Monthly Rent between 2018
and 2020, respectively. Furthermore, both indicators (HSHM3 and HSHM4) are expected to have
a direct impact on housing tension. As far as the Ratio of the rent to family income indicator is
concerned, if a household pays a high percentage of their income for housing, housing problems
are expected to grow up (see the first column of Table . The latter feature is especially true
for the renter households paying over 30% of their income for housing. Thus, it is also true that
a positive change in rent (HSM4 indicator) will increase the housing tension due to the fact that,
usually, rising rent does not also match to an increase in income.

The HSHM5 and HSHMG6 indicators concern housing prices area. For each municipality, they
have been computed by taking into account for each municipality the Maximum Housing Price
per square meters (€) in 2020 for a civil dwelling (MHP2020), the Average Housing Price per
square meters (€) in 2017 (AHP2017) and 2020 (AHP2020) and, finally, the above mentioned

AHI2020 variable. The resulting indicators have been constructed as follows:

MHP2020 * 80) (€)
AHI2020 (€)
AHP2020 (€)

HSHM6 = rmo017 © !

HSHMS5 = (

Thus, HSHM5 represents the number of annual income years necessary to purchase a house in
2020 (Family income indicator, see the first column of Table [5.F]). For this reason, as the latter
number increases, low-income households will face housing market access problems. As a conse-
quence, as the renter households increase so too will the housing tension (see the first column of
Table . Similar considerations can also be made for the HSHM6 indicator (Dwelling prices
indicator) which represents the changes in Average Housing Price between 2017 and 2020. In
fact, a positive change of the latter indicator means that housing problems will increase due to
the increase of Housing prices. Finally, three indicators (HSHM7-HSHM9) from the property
purchase and the Housing market dynamics area have also been considered. These indicators
are the change in averages of the total Number of Normalized Transactions (NNT) computed
between two different three-year periods, the average of the ratio of the number of housing units
sold to the Total Housing Stock (Housing Stock dynamics index - IMI) and the change in aver-

ages of the property purchase computed between two different three-year periods, respectively.
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Figure 5.4: Boxplot of the HSHM indicators.

For each municipality, the aforementioned indicators have been computed as follows:

Average(NNT in 2018, 2019 and 2020)
Average(NNT in 2015, 2016 and 2017) ’
(

HSHM7 =

HSHMS8 =Average(IMI in 2016, 2017, 2018, 2019 and 2020),

Average(NNT in 2018, 2019 and 2020)

(
HSHM9 = .
Average(NNT in 2017, 2018 and 2019)

As far as the HSHMY7 indicator is concerned, a positive change in total Number of Normalized
Transactions is expected to be associated with a greater housing tension. Instead, the HSHMS
indicator expresses the share of dwellings bought and sold in a given year and can be interpreted
as the measure of the market’s dynamism in light of the fact that a greater IMI value corresponds
to a greater quota of homes bought and sold, net of the effect of the stock’s size. Finally,
a positive change in property purchase should increase housing tension. The minimum value
of five HSHM indicators corresponds to municipalities coming from the Parma (PR) province.
These municipalities are Corniglio (HSHM2), Terenzo (HSHM4), Bore (HSHM6) and Albareto

(HSHM3 and HSHM9). The maximum value for these indicators are reached by municipalities
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belonging to other provinces: Cervia (RA, HSHM2 and HSHM9), San Giovanni in Persiceto
(BO, HSHM3), Riccione (RN, HSHM4) and Borghi (FC, HSHM6). The Borghi municipality
also has the maximum value (2.662) for the NNT indicator (HSHM5) while Riolunato (MO)
corresponds to the municipality with the highest negative change for the latter indicator. Finally,
two municipalities of the Forli-Cesena province correspond to the highest decrease (Sogliano al
Rubicone, FC) and highest increase (Galeata, FC) in property purchase. Data representing the
housing market vivacity are drawn from the Osservatorio del Mercato Immobiliare - Agenzia
delle Entrate (OMI - Revenue Agency), which is a branch of the country’s Inland Revenue
Department. The box-plots of the HSHM indicators have been reported in Figure [5.4] The
presence of outliers is evident for each HSHM indicator, with the exception of HSHMS indicator.
From the latter figure it also emerges that the distributions of some indicators appear to be

skewed.

5.4.4 Housing tension indicators

Two indicators have been considered in order to obtain some information about housing tension:
the proportion of the low income households and the proportion of households demanding for
public residential housing (Edilizia Residenziale Pubblica, ERP). For the computation of the
first indicator, it has been taken into consideration the number of households belonging to the
Lowest Income Group (LIG, €0 - €17,154) of the Indicator of Equivalised Economic Situation
(ISEE) in 2020. As far as the second indicator is concerned, the number of households in
the Ranking of Housing Demand for the Households of the ERR in 2021ﬂ has been considered

(RHDH). Then, for each municipality, the above mentioned indicators have been constructed as

follows :
LIG (hsd)
ISEE.20 =
Resident households in 2020 (hsd)’
RANK.21 — RHDH (hsd)

Resident households in 2021 (hsd)’

Thus, the variables ISEE.20 and RANK.21 are useful indicators of housing tension in munic-
ipalities. A high value of ISEE.20 indicates a municipality with a high proportion of LIG
(low-income households) relative to the total number of resident households. This suggests that

the municipality is facing a housing tension issue. Similarly, a high value of RANK.21 indicates

“https://www.comune.bologna.it/bandi/graduatorie-definitive-contributo-affitto-anno-2021
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Table 5.7: Descriptive statistics of the ISEE.20 and RANK.21 indicators by provinces.

Indicator Province Minimum  First quar. Median Average Third quar. Maximum
ISEE.20 Bologna 0.020 0.057 0.063 0.066 0.077 0.112
Forli-Cesena 0.029 0.061 0.069 0.074 0.084 0.130

Ferrara 0.027 0.042 0.062 0.056 0.064 0.086

Modena 0.011 0.043 0.064 0.061 0.080 0.104

Piacenza 0.000 0.024 0.038 0.040 0.056 0.109

Parma 0.000 0.027 0.058 0.051 0.069 0.111

Ravenna 0.042 0.055 0.063 0.064 0.070 0.091

Reggio Emilia 0.013 0.045 0.058 0.056 0.068 0.089

Rimini 0.029 0.046 0.061 0.064 0.067 0.200

RANK.21 Bologna 0.003 0.013 0.018 0.019 0.024 0.047
Forli-Cesena 0.002 0.014 0.020 0.022 0.027 0.057

Ferrara 0.000 0.004 0.009 0.010 0.014 0.029

Modena 0.002 0.014 0.023 0.022 0.030 0.043

Piacenza 0.000 0.004 0.010 0.015 0.022 0.103

Parma 0.000 0.004 0.016 0.015 0.021 0.037

Ravenna 0.010 0.016 0.019 0.020 0.025 0.029

Reggio Emilia 0.004 0.014 0.019 0.019 0.024 0.048

Rimini 0.000 0.011 0.017 0.018 0.027 0.046

that the number of households in that municipality seeking housing assistance is high, which
is another indication of housing tension. Therefore, higher values of these two indicators are
related to municipalities characterized by housing tension. In summary, ISEE.20 and RANK.21
can be used as important measures to identify and evaluate housing tension in municipalities.
By using these indicators, policymakers and researchers can assess the extent of the problem and
design appropriate policies and interventions to address it. To better describe the geographical
distribution of RANK.21, some maps have been reported. In particular, Figure [5.5] shows the
distribution of the proportion of households demanding for Public Residential Housing in 2021
for the overall considered municipalities in the ERR. Then, the same distribution is represented
for the municipalities within the nine provinces (see Figure , and the classes of the ATA
(see Figure , the ADA (see Figure , the Mountain (see Figure and NSTA (see Fig-
ure[5.10)) classifications. In the latter maps, the darker the red color is, the higher the proportion
of households demanding for public residential housing is; the opposite is true for the blue color.
Table shows some descriptive statistics of the ISEE.20 and RANK.21 indicators computed
by provinces. The lowest median values for such indicators are observed for the Piacenza and
Ferrara provinces, respectively. As far as the highest values are considered, they correspond to
Forli-Cesena (6.9 %) and Modena (2.3 %) provinces for the ISEE.20 and RANK.21 variables,
respectively. Some minimum values are equal to 0; specifically, Cerignale (PC) and Valmozzola
(PR) municipalities for the first indicator and 14 municipalities for the second one. In particular,
they correspond to six municipalities of the Piacenza province (Cerignale, Corte Brugnatella,
Morfasso, Ottone, Piozzano and Zerba), five from the Parma province (Compiano, Monchio delle

Corti, Tornolo, Valmozzola and Varsi), two from the Rimini province (Casteldelici, Sant’Agata
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Table 5.8: Descriptive statistics of the ISEE.20 and RANK.21 indicators for each of the consid-
ered classification.

Indicator  Class. Categories Minimum First quar. Median Average Third quar. Maximum
ISEE.20 ATA yes 0.052 0.065 0.073 0.077 0.087 0.111
no 0.000 0.040 0.059 0.055 0.069 0.200

ADA yes 0.021 0.059 0.067 0.069 0.079 0.111

no 0.000 0.034 0.056 0.053 0.068 0.200

Mountains yes 0.000 0.029 0.048 0.050 0.069 0.130

no 0.000 0.051 0.062 0.062 0.071 0.200

SNAI UB 0.008 0.054 0.063 0.063 0.070 0.200

I 0.018 0.050 0.062 0.062 0.073 0.130

PO 0.065 0.071 0.086 0.087 0.103 0.112

P 0.000 0.026 0.039 0.043 0.061 0.100

UP 0.000 0.011 0.019 0.022 0.036 0.048

RANK.21 ATA yes 0.001 0.020 0.026 0.025 0.030 0.047
no 0.000 0.009 0.017 0.017 0.023 0.103

ADA yes 0.001 0.017 0.022 0.023 0.029 0.047

no 0.000 0.007 0.014 0.016 0.022 0.103

Mountains yes 0.000 0.005 0.012 0.014 0.020 0.057

no 0.000 0.013 0.018 0.020 0.027 0.103

SNAI UB 0.001 0.015 0.020 0.021 0.027 0.103

I 0.000 0.010 0.016 0.017 0.022 0.057

PO 0.014 0.024 0.028 0.028 0.031 0.047

P 0.000 0.003 0.009 0.011 0.019 0.039

Up 0.000 0.003 0.005 0.006 0.008 0.030

Feltria) and, finally, one from the Ferrara province (Goro). Thus, the latter municipalities cor-
respond to the darker red areas in Figure [5.6l Furthermore, minimum and maximum values of
ISEE.20 and RANK.21 within two provinces correspond to the same municipalities: Camug-
nano and Bologna within the BO province; Verghereto and Galeata within the FC province.
Furthermore, the highest proportion (20.0 %) of households with a low income is reached by
San Giovanni in Marignano (RN); the highest proportion (10.3 %) for the RANK.21 variable
is reached by the Alseno (PC) municipality (the darker blue area in Figure . Table
shows some descriptive statistics of the ISEE.20 and RANK.21 indicators for each of the four
classifications illustrated in Section [5.3] As far as ISEE.20 is concerned, the highest median
values are reached by the municipalities classified as ATA (7.3 %) and ADA (6.7 %); further-
more, no mountains (6.2 %) and Poles municipalities (8.6 %) are the categories with the highest
median values for the Mountains and SNAI classifications, respectively. The same also holds for
RANK.21 (see the third column of Table [5.8). Thus, the above mentioned municipalities (San
Giovanni in Marignano and Alseno) correspond to the following categories for the considered
classifications: no ATA, no ADA, no Mountains and UB. Thus, the municipalities of the ERR

seem to be characterized by heterogenity in their housing deprivation.
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Figure 5.5: Map of the RANK.21 variable in the ERR.
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Figure 5.6: Map of the RANK.21 variable in the ERR by provinces (from the left to the right -

BO, FC, FE, MO, PC, PR, RA, RE, RN).
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Figure 5.7: Map of the RANK.21 variable in the ERR by ATA classification (from the left to
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Figure 5.8: Map of the RANK.21 variable in the ERR by ADA classification (from the left to
the right - yes/no).
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Figure 5.9: Map of the RANK.21 variable in the ERR by the Mountain classification (from the
left to the right - yes/no).
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Figure 5.10: Map of the RANK.21 variable in the ERR by the NSIA classification (from the left
to the right - UB, I, PO, P, UP).
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5.5 Aim of this study

This research aims to study the dependence of housing tension in the municipalities of the
ERR on the three types of indicators described in the previous section. From the preliminary
analysis of the dataset, the municipalities of the ERR seem to be characterized by unobserved
heterogeneity. Thus, in order to manage the possible presence of unknown clusters in the
municipalities while performing multivariate regression analysis, mixtures of regression models
have been considered. However, it also appears to be reasonable to study the housing deprivation
in the municipalities of the ERR through robust methods able to manage the possible presence
of outliers, i.e. municipalities whose features noticeably deviate from those registered for the
other municipalities. Such municipalities may negatively impact on both the estimation of the
regression coefficients and the prediction of the responses. Furthermore, in this research, it may
be relevant to specify a system of M =2 regression equations (one equation for each response) with
equation-dependent vectors of regressors (i.e., vectors which do not necessarily contain the same
regressors for the two responses). In this way, the regressors can be different among dependent
variables. For this reason, an approach based on seemingly unrelated regression models (Park,
1993} Srivastava and Giles, [1987)) have been exploited, which is able to take into consideration
both multivariate correlated responses and to allow each response to depend on its own vector
of covariates. In order to perform the analysis, the following vectors of variables have been
considered: Y =(ISEE.20, RANK.21), X=(SD1-SD6, SLIC1-SLIC5, HSHM1-HSHM9). The
two dependent variables have bounded support within [0,1]. In order to provide for continuous
values in the (—oo,+00) range and to manage values restricted to a finite interval, the most
widely accepted solution is the simple logit transformation, originally proposed by |[Johnson

(1949), defined as follows:

logit(p) = ln(1 ﬁp): In(p) —In(1 —p), for pe (0,1) (5.1)

where p may represent, in this analysis, either the proportion of the low income households or
the proportion of households demanding for public residential housing within any municipality.
However, this transformation cannot be employed in analyses of datasets where p=0 or p=1. To
deal with this drawback, [Anscombe] (2014) and Berkson| (1955|) proposed the use of the empirical

logit trasformation, which is a modified version of ([5.1]) in which the p=0 and p=1 proportions
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are transformed as follows:

ptt ) (5.2)

. —1 (7
logit(p) = In —

where t = % and n is the number of observations over which p is computed. Thus, the empirical

logit transformation in ([5.2)) is a two-steps transformation defined as follows:

i) for proportions where p is strictly greater than 0 and less than 1, the simple logit trans-

formation is applied as in (5.1);

ii) for proportions where p=0 and p=1, the empirical logit transformation is applied as in

62

However, the latter transformation is sensitive to the value of n, especially when 7 is low. In fact,
in some situations, it may happen that the transformed values obtained by applying could
become greater than the transformed value obtained with . A possible solution proposed
by (Warton and Hui (2011) is to add a small value ¢ (by experimenting with different values)
to the proportion p in . Thus, this approach can be considered as a modification of the
empirical logistic transform (see ([5.2])).

For each dependent variable examined in this analysis, the ¢ costant has been computed as the
smallest positive proportion registered among the municipalities multiplied by 0.5. In particular,
the smallest non-zero proportions correspond to the values p=0.0018 and p=0.0008 for ISEE.20
and RANK.21, respectively; thus, the values of the transformed dependent variables, ISEE.20T
and RANK.21T, have been obtained using t=0.0009 and t=0.0004, respectively. Figure [5.11
shows the scatterplots of the transformed dependent variables (ISEE.20T and RANK.21T) and
the same untransformed variable. From the latter figure appears evident the logarithmic trend
of the transformed values for both the dependent variables. Table shows some descriptive
statistics (minimum, first and third quartile, average and maximum) of the two untransformed
(ISEE.20 and RANK.21) and transformed dependent variables (ISEE.20T and RANK.21T).
From the latter table it emerges that the values of both the transformed dependent variables
are negative because for all municipalities the proportions are lower than 0.5; in particular,
the zero values of the ISEE.20 and RANK.21 dependent variables have been transformed in
—6.995 and —7.851 values, respectively. Thus, in fact, the response vector is Y =(Y1=ISEE.20T,
Yo=RANK.21T).
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Figure 5.11: Scatterplots of the transformed dependent variables (ISEE.20T and RANK.21T)

Table 5.9: Descriptive statistics of the untransformed (ISEE.20 and RANK.21) and transformed
dependent variables (ISEE.20T and RANK.21T)

ISEE.20 RANK.21 ISEE.20T RANK.21T

Minimum 0.000 0.000 —6.995 —7.851
First quartile 0.042 0.011 —3.117 —4.578
Median 0.061 0.017 —2.740 —4.049
Average 0.058 0.018 —2.934 —4.333
Third quartile 0.070 0.025 —2.581 —3.658
Maximum 0.200 0.103 —1.384 —2.165

5.6 Methods

For the analysis, the Mixtures of Contaminated Seemingly Gaussian regressions (MCSG) models
defined in the equation [2.I] of Chapter [2] of this thesis have been considered, together with MSG
models (Galimberti and Soffritti, 2020)). Furthermore, a new class of models has been developed.
To introduce the latter class, let’s start from the hierarchical representation for the MCSG model

(see Chapter [2)):

Ny (}’i’Xi;i?ﬁL Ek) if wi = 1,
Yi|(xi, Zik, = 1, Uiy, = wig) ~
Ny (Yi|Xi§)~(:/:82a7]kzk) if uik, =0,

Uik|Zir, = 1 ~ Bernoulli(ay ), Z; ~ Multinomial(7y, ..., m),

with Bernoulli(ag) and Multinomial(my,...,m;) denoting a Bernoulli distribution with suc-

cess probability equal to aj and a K-dimensional multinomial distribution with probabilities
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T1,...,TK, respectively (details about the latter quantities have been reported in Chapter [2)).
Thus, the distribution of y; depends on the covariates x; and the latent variables z; and u;.
Furthermore, the latent cluster membership variable z; is assumed to be independent on x;.
The new class of models introduced in this section can be obtained by assuming that the latent
cluster membership variable z; depends on c¢;, where ¢; = (¢;1,...,¢) is a vector composed
of the values of V' concomitant variables, which may eventually coincide with some variables
of the vector x;. As a consequence, both the mixing weights and the model parameters of the
K component densities of the mixture depend on covariates. To distinguish the roles of such
covariates, the terms concomitant gating network variables and explanatory expert network
variables (Gormley and Murphy, [2011) are commonly used, where these expressions are gener-
ally employed to denote the covariates which affect the mixing weights (c;) and the covariates
which affect the parameters of the component densities (x;), respectively. The seemingly un-
related contaminated Gaussian linear clusterwise regression model with concomitant variables

(cMCSG) of order K can be introduced, as follows:

K

Fyilxisgp) =D mrle)h (yi; Ok(xi) , (5.3)

k=1
where 7 (c;) are the mixing weights of the kth sub-population with 74 (c;) > 0 and Zszl mr(c;) =
1; when K > 2, they are allowed to depend on covariates c¢;. These mixing weights are modeled

using multinomial logistic regression as follows:

me(ci) = eﬁ’(ci7k)~, k=2,... K. (5.4)
L+ > ke exp(Cvy)
with the first component v, = (0,...,0) as baseline; 7, is a (V + 1)-dimensional vector of

regression parameters for the concomitant variables, and ¢; = (1, ¢;); furthermore, h (y;; 0x(x;))
is the same defined in equation [2:2) of Chapter [2] but with a modified notation which highlights
that the parameter 0 depends on x;; thus, O(x;) is the same quantity represented by 6y

in Chapter As a consequence of the assumptions just described, the following hierarchical
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representation for Y;|x; can be obtained in association with the new class of cMCSG models:

Zz’ = (Zila ey Zilm ceey Zz‘K) ~ Multz'nomml(l,m(ci), ceey 7TK(C1')>,
P(Zik = 1|Ci) = wk(ci),

Uik|Zi = 1 ~ Bernoulli(ay),

Nar (an (xis ). Be) - if wa = 1.

Ny (Nik(XiSIBZ)a nk2k> if i =0,

Y%, Zipy = 1, Uiy = g, ~

where z; has now a multinomial distribution with a single trial and probabilities equal to 7 (c;),
i (xi; 8%) is the conditional expected value of Y;|X = x; in the kth sub-population (see

equation (2.3) of Chapter . Thus, the complete-data likelihood function is now equal to

— f[ ﬁ{ﬂ'k (c [aMM <Yz'; o (xi: BL), Ekﬂuk

i=1 k=1

[(1 — ap)pum (Yi; i (xi3 BE), Uk2k>} 1ﬂik}zm.

Up to an additive constant, the complete-data log-likelihood function employed in the ECM

algorithm for the computation of the parameter estimates can be expressed as follows:

K
= ZZzlk[lnwk (¢i) + uig Inag, + (1 — uig) In(1 — ay) — fln |25+
=1 k=1

M 1 1—uy
—<7 1H77k> (1 — k) — 3 (uzk + *

>6§;k <Yivll'k(xi§52)>}7

where 5§Jk (i, i, (%45 B3)) is the squared Mahalanobis distance defined in equation of the
Chapter |2 Given the current parameter value 'I/J(h), in the E-step on the hth iteration of the
ECM algorithm the estimated posterior probabilities that the ith observation come from the kth
sub-population and the same observation is a typical point of such a sub-population are now

equal to:

Ly _ e (vibe 6 (xi)
! f (vibxisp®)

a,ih) <YZ|X27 K1 Z(h)’zéh)>
T (yi!xi;ﬁ’;(ch)(xz‘))
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respectively, where f(y|x;v) = Zszl mi(ci)h (y]x;0%(x;)). The update for W,(ch)(ci) is now

computed as follows:

(h+1) ~(h+1) 69519(0;’)%)
T c;) = P(z =1)= - k=2,...,K. 5.5
e o) = Pl )73 + 3 h, exp(ciyy) o9

It is worth noting that in the absence of concomitant variables, the update for the equation
is the one defined in Section , ie. 7T,(€h+1) = %Zijzl 22(,?) As far as the updtates for
the other parameters are concerned, they are equal to the ones defined in equations ,
, and . The strategies for the initialisation of @ and convergence criteria
are similar to the ones illustrated in Section of Chapter The only difference is that,
in order to obtain starting values for the component weights 7(c;), the function MoEClust
(Murphy and Murphy, 2020) has been employed. In particular, this latter function has been
employed to fit a Gaussian mixture model with V' concomitant variables and K components to
the sample residuals of a seemingly unrelated linear regression model (Srivastava and Giles, |1987)
through the package systemfit (Henningsen and Hamann| |2007)) in the R environment (R Core
Team, 2021). Hence, the gating network parameters ’y,(ch) are updated through the function
multinom from the nnet package (Venables and Ripley, 2013|) with the dependent variables
given by the a posteriori probability estimates 21(,?) The parameter vector of model is
given by ¥ = (¢, ..., ¥y, ..., ¥g), where ¥, = (7, 0k(x;)). As concerns the formula for the
implementation of the Bayesian information criterion defined in Section , the number of
free parameters is now equal to ny = 2K+ K (P*+ M) +Kw +(V+1)(K—1). For oy — 1
or n — 1 Vk, model reduces to a mixture of seemingly unrelated Gaussian regressions
model with concomitant variables (here denoted with the acronym cMSG) of order K. Such a
mixture can be seen as an extension of the MSG model (Galimberti and Soffritti, [2020). It is
worth noting that, in the absence of concomitant variables and when the vectors of predictors
selected for the two dependent variables coincide (i.e., X1 = Xs), the resulting model belongs to
either the Mixtures of multivariate Contaminated Gaussian regressions models (MCG, Mazza,
and Punzo| (2020)) or the Mixtures of multivariate gaussian Regressions Models (MRM, |Jones
and McLachlan| (1992])).
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5.7 Results

As above mentioned, the analysis has been carried out through MSG, MCSG, ¢cMSG and cM-
CSG models. For the models defined by , the vector of the concomitant variables employed
in the analysis is c=(TRP, TRF). Models from MSG and MCSG classes have been estimated
for K € {1,2,3,4,5} and each of the parameterisations for the covariance matrices reported in
Table of Chapter 3] As far as ¢cMSG and ¢cMCSG models are concerned, they have been
estimated for K € {2,3,4,5} and without imposing any constraint on the covariance matrices
(i.e., with the VVV parameterisation).

In every scenario where predictive modeling or data analysis is being performed, it is crucial
to implement an effective variable selection strategy. Without an appropriate variable selection
strategy, in fact, some variables may have a negligible effect on the outcomes and the model may
suffer from overfitting (Chowdhury and Turin, [2020). Fewer variables in the model translate to
less computational time and less complexity, and are also preferred according to the principle of
parsimony, which prioritizes simpler models with fewer variables over complex ones. Complex
models that contain many variables make the model more dependent on the observed data,
while simpler models are easier to interpret, generalize, and use in practice. However, it is also
crucial to ensure that no relevant variables are excluded from the selected model, which may
impact the accuracy and reliability of the model. Therefore, selecting the right set of variables
is important to balance the practicality and simplicity of the model with the need to include
essential variables for accurate and meaningful results (Chowdhury and Turin, 2020)). Thus, it
is important to possibly embed variable selection in the analysis. This is also the case of the
MSG, MCSG, cMSG and cMCSG models, where the selection of the appropriate variables to
be included in the regression equations is one important challenge. In general, an exhaustive
search for the optimal subset of predictors should be carried out. However, it is often impracti-
cal or impossible to exhaustively search the entire space of possible subsets of predictors to be
included in the model, particularly in the presence of complex and high-dimensional problems.
Therefore, various non-exhaustive strategies have been proposed in the literature. Such meth-
ods include stepwise selection, forward selection and backward elimination (Crawford and Hoel
(1972); [Mallows| (1973)); Miller| (1984); [Sutter and Kalivas (1993)), interactive variable selection
(Lindgren et al.| (1994); [Miller| (1991))), automatic variable selection (Breiman (1996)); Forina

et al| (1986)), cyclic subspace regression (Bakken et al. (1999)); Jolliffe and Cadimal (2016)),
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and many other. However, some methods have the drawback of failing to select regressors that
may be of no value when used alone but offer useful information when combined. For instance,
forward selection adds regressors until a specific selection criterion is minimized or maximized,
but it cannot remove a regressor once it has been included. The same applies to backward
elimination, where a removed regressor cannot be reinserted. Thus, they can fail to find the
global optimum. Furthermore, when the number of regressors is high, these traditional selection
methods can be computationally expensive and lead to unstable results. To overcome this dis-
advantage, penalized likelihood methods (Jianqging and Runze (1999); Tibshirani| (1996))) can be
used, which are statistical techniques used for variable selection in regression models and that
are able to manage a large number of regressors, by producing stable and interpretable models.
It involves modifying the likelihood function of a multivariate regression model by adding a
penalty term to the likelihood function. The penalty term is designed to shrink some of the es-
timated regression coefficients towards zero, resulting in a more parsimonious model with fewer
regressors. Furthermore, there are various types of probabilistic optimization techniques that
can be used to solve subset selection issue through stochastic iterative algorithms. Therefore,
optimization algorithms and techniques are developed to efficiently search the space and identify
near-optimal solutions. These algorithms consider different subsets of regressors and evaluate
their performance through an objective function (for example, the Akaike Information Crite-
rion (Akaikel [1974) and the Bayesian Information Criterion (Schwarz, [1978|). After assessing
the performance of different subsets of regressors using an objective function, these algorithms
generate new subsets from the existing ones. Most techniques in this category employ genetic
algorithms (Michalewitz| (1996); |Goldberg (1989)) or simulated annealing (Kirkpatrick et al.,
1983) as a search algorithm.

In the analyses of this chapter, for each model class, the backward elimination technique and a
genetic algorithm have been employed in order to select the relevant regressors for each regression
equation. In particular, the genetic algorithm exploits principles and operators of the biologi-
cal evolution of a species (see, for example, |Goldberg| (1989), |Chatterjee et al.| (1996), |Scrucca
(2016)). The algorithm employed in this analysis is similar to a genetic algorithm introduced in

Galimberti et al.| (2018). It follows these steps:

e the chromosomes (ordered sequences of genes) that compose an initial population are ran-
domly generated and examined; each gene can take on a value of either 0 or 1. These

genes can be thought of as Bernoulli variables with a success probability of q. The chro-



160

A study on housing tension in the municipalities of the Emilia-Romagna region

mosomes themselves are randomly generated by independently drawing realizations from
this Bernoulli distribution. This means that each gene in a chromosome is randomly as-
signed a value of 0 or 1 with equal probability. The purpose of generating chromosomes in
this way is to explore a wider range of potential solutions to the problem being optimized,
rather than being limited to a pre-specified set of starting solutions; furthermore, its fitness

is evaluated;

in order to generate novel populations composed of chromosomes characterised by im-
proved fitness values, an iterative evolution process is performed, based on three genetic

operators; in particular,

— the crossover operator, which is a random process of genome recombination that ap-
plies to pairs of chromosomes to create new offspring; the process involves selecting
two parent chromosomes, and then randomly selecting a crossover point along their
sequence of genes. The genetic material from one parent before the crossover point
is combined with the genetic material from the other parent after the crossover point
to create two new offspring chromosomes. The uniform distribution is used in the
crossover process, where the crossover point is randomly selected with equal proba-
bility anywhere along the chromosome. This ensures that the offspring chromosomes

are diverse and have genetic material from both parent chromosomes.

— the mutation operator, which is a random alteration of a gene in a chromosome by
flipping its value from 0 to 1 or from 1 to 0; a Bernoulli distribution is used to
randomly generate the new value for the mutated gene, with success probability of

W.

— the selection operator, which is a weighted random sampling from the initial popu-
lation with weights proportional to the chromosomes’ fitness; thus, the chromosomes
selected in this way reproduce and their offspring will compose a novel generation,
obtained after crossover and mutation; in this technique, each chromosome’s fitness
value is used as the weight or probability of selection. The higher the fitness value
of a chromosome, the higher its weight or probability of being selected. This means
that the fittest chromosomes have a higher chance of being selected than the less
fit ones. To perform weighted random sampling, the algorithm generates a random

number between 0 and 1, and then iterates through the chromosomes in the popu-
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lation, adding up the weights until the cumulative sum exceeds the random number.
The chromosome corresponding to the weight that causes the sum to exceed the ran-
dom number is then selected. This process is repeated until the desired number of

chromosomes have been selected to create the next generation of solutions.

e the chromosomes of the resulting novel generation are assigned their fitness, and the evo-
lution process repeats; the algorithm stops when a maximum number of population has

been generated.

In this approach, each model is represented as a chromosome and its fitness is measured by
the BIC. For each dependent variable, the examined chromosome has a binary gene for each
candidate regressor in X, where 1 and 0 values denote whether any given candidate regressor has
been selected or not. For MCSG and MSG models, the chromosome also contains an additional
gene which can take values from the set {1,...,14} so as to distinguish the 14 parsimonious
parameterisations for the covariance matrices. The genetic algorithm has been devised so as to
explore subspaces of the model space associated with each model class in which the value of K is
fixed. It is important to note that the process of selecting a model in this latter framework can be
quite complex, especially when dealing with high-dimensional datasets (here, the total number of
candidate regressors for each regression equation is 21). The effectiveness of a genetic algorithm
depends on the extent of exploration of the model space. However, there is no general rule for
choosing the appropriate population size and number of generations for a genetic algorithm.
The genetic algorithm has been implemented in R through the package GA (Scrucca, 2013).
The values of q and w that have been used in the analyses are equal to 0.5. Each execution
requires the specification of two tuning parameters: dimension of the examined population (V)
and maximum number of generations to be examined (dq.). For each model class and each
examined value of K, twelve independent executions of this algorithm have been performed, one
for each combination of the following values for the tuning parameters: N=200, 300, 400, 500;
dmaz=30, 40, 50. Thus, for each model class, the number of models that have been examined is
about 400000.

As far as the analyses with the backward elimination technique are concerned, for each value
of K and each parsimonious parameterisation, the process starts with fitting a model with
all the candidate regressors included in both the regression equations and, thus, the Bayesian

Information Criterion (BIC) is computed; in this approach, after fixing a regression equation,
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the regressors are iteratively removed one by one from the other equation. Each model is then
refitted without the removed variable and the Bayesian Information Criterion (BIC) is again
computed. Finally, the BIC of the original model is compared with the BICs of the models
obtained by removing a single regressor. The process of variable elimination is then repeated,
starting from this improved model. Through iterative removal of variables and re-evaluation of
the BIC, the goal is to identify a model with a higher BIC, indicating a better fit to the data.
The iterative process continues until no further removal of regressors leads to a higher BIC. This
final model represents the optimal combination of variables (limited to the examined models) for
the regression analysis. Thus, using the BIC as a guide for variable elimination helps to identify
the most important predictors and simplifies the regression equation, potentially improving its
interpretability and predictive performance. It is worth noting that the backward elimination
technique, while widely used, may not always result in the selection of the best model, as it
can fail to find the global optimum. In contrast, the genetic algorithm technique is a modern
approach to model selection that can efficiently search for the optimal model by exploring a
large search space of possible models.

Table[5.10]and Table[5.11]report the models which best fitted the analysed dataset according
to the BIC for each examined value of K within each model class by using the genetic algorithm
and the backward elimination technique. Overall, it seems that the best trade-off between the
fit and complexity can be obtained using the MCSG model with K = 2 clusters of municipalities
(BIC=-764.6) identified using the genetic algorithm (see Table . The convergence of the
ECM algorithm for the parameter estimation of the latter model has been reached after 198
iterations. As far as the other model classes and the genetic algorithm analysis are concerned, the
best MSG and cMSG models have K = 4 clusters (BIC=-779.0 and BIC=-793.6, respectively),
while cMCSG models of order K = 3 should be preferred (BIC=—779.3) (see Table [5.10]). The
analysis with the backward elimination technique has shown that the best MSG and MCSG
models have K = 2 clusters (BIC=-875.2 and BIC=-810.1, respectively) while the best cMSG
and cMCSG models have K = 5 clusters and the same BIC (—803.8). It is worth noting that in
the context of the 18 summaries listed in Table[5.10/and Table[5.11] in only one instance (cMCSG
model class and K=5), using the backward elimination technique resulted in the selection of a
model with a higher BIC than the one obtained through the genetic algorithm. As far as the
overall best model is concerned, the proportion of the low income households is regressed on

three socio-demographic indicators (Population Density, Change in household and Change in
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Table 5.11: Selected regressors, maximised log-likelihood ¢()) and values of BIC for the best models within the classes MSG, MCSG,
c¢MCSG in the analysis of housing tension in the municipalities of the ERR through backward elimination selection.

~

Model class K  Acronym X, X () ny BIC Model class K  Acronym X, X () ny,  BIC
MSG 1 VAR SD5, SD6, SLIC4, SD1, SD4, SD5, —540.7 15 —1168.3 MCSG 1 EEE SD4, SD6, SLIC4, SD1, SD3, SLIC4, —3789 20 —873.7
HSHM3 SLIC4, HSHM3, HSHMS8 SLIC5, HSHM1, HSHM2 HSHM1, HSHM3, HSHMS8
HSHM3
MSG 2 VEE SD1, SD4, SD5 SD1, SD4, SLIC5, —379.7 25 —904.3 MCSG 2 VEE SD1, SD2, SD3, SD1, SD2, SD3, —147.3 89 —810.1
HSHM1 SLIC4 SD4, SD5, SD6, SD4, SD5, SD6,
SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3,
SLIC4, SLIC5, SLIC6, SLIC4, SLIC6, HSHM1,
HSHM2, HSHM3, HSHM4, HSHM2, HSHM3, HSHM4,
HSHMS5, HSHM6, HSHM7, HSHMS5, HSHM6, HSHM7,
HSHMS, HSHM9 HSHMS, HSHM9
MSG 3 VVV SDI, SD2, SD3, SDI1, SD2, SD3, 9510 122 —916.3 MCSG 3 EEV SDI, SD2, SD3, SD1, SD2, SD3, 477 133 —903.9
SD6, SLIC1, SLIC2, SD4, SD5, SD6, SD4, SD5, SD6, SD4, SD5, SD6,
SLIC3, SLIC4, SLIC5, SLICI, SLIC2, SLIC3, SLIC?2, SLIC3, SLIC4, SLIC1, SLIC2, SLIC3,
HSHM1, HSHM3, HSHM4,  SLIC4, HSHM1, HSHM2, SLICH, SLIC6, HSHM, SLIC4, SLIC5, SLICG,
HSHMS5, HSHM6, HSHM7, HSHM3, HSHM4, HSHMS5, HSHM2, HSHM3, HSHM4, HSHM1, HSHM2, HSHM3,
HSHMS, HSHM9 HSHM6, HSHM7, HSHM9 HSHMS5, HSHM6, HSHM7, HSHMS5, HSHM6, HSHM?7,
HSHMS8, HSHM9 HSHMS, HSHM9
MSG 4 VEE SD1, SD2, SD3, SD1, SD2, SD3, =737 173 -875.2 MCSG 4 VEI SD1, SD2, SD3, SD1, SD2, SD3, —79.5 180 —884.8
SD4, SD5, SD6, SD4, SD5, SD6, SD4, SD5, SD6, SD4, SD5, SD6,
SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3,
SLIC4, SLIC5, HSHM1, SLIC4, SLIC5, HSHM1, SLIC4, SLIC5, SLIC6
HSHM2, HSHM3, HSHM4, HSHM2, HSHM3, HSHM4, HSHM1, HSHM2, HSHM3, HSHMI1, HSHM2, HSHM3,
HSHMS5, HSHM6, HSHM7, HSHMS5, HSHM7, HSHMS, HSHM4, HSHM5, HSHM6, HSHM4, HSHM5, HSHMG6,
HSHMS, HSHM9 HSHM9 HSHMS, HSHM9 HSHM7, HSHMS, HSHM9
MSG 5 VVE SD1, SD2, SD3, SD1, SD2, SD3, 175.8 220 —922.8 MCSG 5 VVE SD1, SD2, SD3, SD1, SD2, SD3, 200.2 230 -931.9
SD4, SD5, SDG, SD4, SD5, SD6, SD5, SD6, SD4, SD5, SD6,
SLIC1, SLIC2, SLIC3, SLICI, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3, SLICI, SLIC2, SLIC3,
SLIC4, SLIC5, HSHM1, SLIC4, SLIC5, HSHM1, SLIC4, SLIC5, SLIC6, SLIC4, SLIC5, SLIC6,
HSHM2, HSHM3, HSHM4, HSHM2, HSHM4, HSHMS5, HSHM1, HSHM2, HSHM3, HSHMI1, HSHM2, HSHM3,
HSHMS5, HSHM6, HSHM7, HSHM6, HSHM7, HSHMS, HSHM4, HSHM5, HSHM6, HSHM4, HSHM6, HSHM?7,
HSHMS, HSHM9 HSHM9 HSHM7, HSHMS, HSHM9 HSHMS8, HSHM9
cMSG 2 \AA% SD4, SD5, SD6, SD1, SD3, SD5, —329.6 45 —919.9 cMCSG 2 \AAY SD1, SD2, SD3, SD1, SD2, SD3, —189.2 81 —847.6
SLIC2, SLIC4, HSHM1, SLIC2, SLIC4, HSHM1, SD4, SD5, SD6, SD4, SD5, HSHM1,
HSHM2, HSHM3 HSHM3, HSHMS8 SLIC1, SLIC2, SLIC4, SLIC2, SLIC3, SLIC4,
SLICS5, SLIC6, HSHM1, HSHM1, HSHM?2, HSHM3,
HSHM2, HSHM3, HSHM4, HSHM2, HSHM3, HSHM4,
HSHMS5, HSHM6, HSHM?, HSHMS5, HSHM9
HSHMS
MSG 3 VVV SD1, SD2, SD3, SDI1, SD2, SD3, 759 135 —933.9 MCSG 3 VVV SDI1, SD2, SD3, SD1, SD2, SD3, 788 144 —991.8
SD4, SD5, SDG, SD5, SD6, SLICI, SD4, SD5, SD6, SD4, SD5, SD6,
SLIC1, SLIC2, SLIC3, SLIC2, SLIC3, SLIC4, SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3,
SLIC4, SLIC5, SLIC6, SLIC6, HSHM1, HSHM2, SLIC4, SLIC5, SLIC6, SLIC4, SLIC5, SLIC6,
HSHM1, HSHM2, HSHM3, HSHM3, HSHM4, HSHMS5, HSHM1, HSHM2, HSHM3, HSHMI1, HSHM2, HSHM3,
HSHM4, HSHM5, HSHM6, HSHM6, HSHM7, HSHMS, HSHM4, HSHM5, HSHM6, HSHM4, HSHM5, HSHMG6,
HSHM7, HSHMS8, HSHM9 HSHM9 HSHM7, HSHMS8, HSHM9 HSHM7, HSHMS8
cMSG 4 \AA% SD1, SD2, SD3, SD1, SD2, SD3, 61.9 181 —924.8 cMCSG 4 \AA% SD1, SD2, SD3, SD1, SD2, SD3, 1044 185 —862.9
SD4, SD5, SDG, SD4, SD6, SLICI, SD4, SD5, SD6, SD4, SD5, SD6,
SLIC1, SLIC2, SLIC3, SLIC2, SLIC4, SLIC5, SLIC1, SLIC2, SLIC3, SLIC1, SLIC2, SLIC3,
SLIC4, SLIC5, SLICG, SLIC6, HSHM1, HSHM?2, SLIC4, SLIC5, SLICG, SLIC4, SLIC5, SLIC6,
HSHM1, HSHM2, HSHM3, HSHM4, HSHM5, HSHM6, HSHM1, HSHM2, HSHM3, HSHMI1, HSHM2, HSHM3,
HSHM4, HSHM5, HSHM6, HSHM?7, HSHMS, HSHM9 HSHM4, HSHM5, HSHM6, HSHM4, HSHM6, HSHM9
HSHM7, HSHMS8, HSHM9 HSHM7, HSHMS8, HSHM9
cMSG 5 VvV SD1, SD2, SD3, SD1, SD2, SD3, 2411 222 —803.8 cMCSG 5 VAR SD1, SD2, SD3, SD1, SD3, SD4, 299.0 242 —-803.8
SD4, SD5, SDG, SD4, SD5, SDG, SD4, SD5, SDG, SD5, SD6, SLIC1,

SLIC2, SLIC3, SLIC4,
SLIC5, SLICG, HSHMI,
HSHM2, HSHM3, HSHM4,
HSHMS5, HSHMG6, HSHM?7,
HSHMS, HSHM9

SLIC1, SLIC2, SLIC3,
SLIC4, SLICS5, SLIC6,
HSHM1, HSHM2, HSHM3,
HSHM4, HSHMS5, HSHMG,
HSHM9

SLIC1, SLIC2, SLIC3,
SLIC4, SLIC5, SLIC6,
HSHM1, HSHM2, HSHM3,
HSHM4, HSHM5, HSHMG,
HSHM7, HSHMS8, HSHM9

SLIC2, SLIC3, SLIC4,
SLIC5, SLIC6, HSHM1,
HSHM?2, HSHM3, HSHM4,
HSHM5, HSHM6, HSHM?,
HSHMS, HSHMO,

cMSG and
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Table 5.12: Estimates of 7, &, n and 3 under the overall best model for the analysis of housing
tension in the municipalities of the ERR.

W k=1 k=2

T 0.055 0.945

b 0.999 0.829

i 1.000 12.316

$ < 0.676 0.034 > < 0.056 0.057 >
k\ 0.034 0.002 0.057 0.157

foreigners), one Social Life and Income Condition indicator (Education) and five Housing Supply
and Housing market (Housing Stock, Change in Housing Stock, Dwelling prices, NNT and IMI)
indicators. Thus, P; = 9 regressors have been selected for the first equation of the regression
model. The selected regressors for the proportion of households demanding for public residential
housing are the same three SD indicators selected by the proportion of the low income households
together with Household Size, two SLIC (Taxable Income and Gini Index) and four HSHM
indicators (Housing Stock, Change in Housing Stock, Family Income and Property purchase).
Thus, P» = 10. It is worth noting that the majority of the selected indicators belong to the SD
and HSHM macro-areas. The estimates of 7, a, n and ¥ of the overall best MCSG model are
reported in Table while the estimates of the regression coefficients have been reported in
the fourth column of Table together with the estimates of their standard errors (column
6) computed by the parametric bootstrap approach. In particular, 100 bootstrap samples have
been generated from the selected model. Thus, they have been utilized to compute 100 estimates
of the parameters for the selected model. The standard deviation of such estimates has been
employed as the estimated standard errors of the estimated regression coefficients. Furthermore,

tests for the hypotheses Hp: Bimp=0 for £ = 1,2, m = 1,2, p = 1,..., P, have been run

under an asymptotic normal distribution using the zj,,, statistics, where zy,, = sefgz:p), with
se(ﬁkmp) denoting the estimated standard error of Bkmp' Some estimates of the regression
coefficients for both the dependent variables are not consistent with the expectation for the
effects reported in the first column of Table However, using o = 0.05, all these regression
coefficients seem to be not significantly different from 0 according to the p-values obtained
using bootstrap approach (see the bold entries in column 8 of Table |5.13). Thus, as far as
the first cluster is concerned, only the number of inhabitants per square kilometer (SD1) and
the proportion of people in employment (SLIC2) regressors result to be significantly different

from 0. The estimated effects of the population density on both the dependent variables are

positive within both clusters detected by the model (see 3111, 5’121, Bgn and 3221 in the fifth
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Table 5.13: Bkmp, estimated standard errors, zj,,, values and p-values obtained using the boot-
strap.

Regr. k m p Bkmp se(/?kmp) Zkmp  P-value
1 (Intercept) 1 1 0 —16.546 11.447  —1.445 0.148
SD1 1 1 1 0.007 0.003 2,188  0.029
SD3 1 1 2 -10.0711 18.090  —0.557  0.578
SD4 1 1 3 1.674 2.657 0.630  0.529
SLIC1 1 1 4 14.189 14.182 1.000 0.317
HSHM1 1 1 5 0.170 0.605 0.281  0.779
HSHM?2 1 1 6 21.949 36.627 0.599  0.549
HSHM6 1 1 7 -0155 1.281 —-0.121  0.904
HSHM7 1 1 8 —-2045 1.231  —1.662 0.097
HSHMS 1 1 9 85630 74.353 1.152 0.249
1 (Intercept) 1 2 0 —10.399 6.646  —1.565 0.118
SD1 1 2 1 0.007 0.003 2.345 0.019
SD3 1 2 2 27.251 20.775 1.312 0.190
SD4 1 2 3 1.112 3.597 0.309 0.757
SD5 1 2 4 -6.289 3.497  —1.798 0.072
SLIC2 1 2 5 35.072 15.057 2.329 0.020
SLIC5 1 2 6 —14.588 12.934 —-1.128  0.259
HSHM1 1 2 7 0.296 0.760 0.389  0.697
HSHM2 1 2 8 75651 44.154 —-1.713 0.087
HSHMS5 1 2 9 0.584 0.316 1.848  0.065
HSHM9 1 2 10 0.127 0.717 0.177  0.860
1 (Intercept) 2 1 0  —3.247 0.446  —7.278 0.000
SD1 2 1 1  0.0002 0.0001 3.732 0.000
SD3 2 1 2 2.348 1.094 2.147 0.032
SD4 2 1 3 0.827 0.187 4.410  0.000
SLIC1 2 1 4 0.985 0.576 1.709  0.087
HSHM1 2 1 5 —0.282 0.026 —10.979  0.000
HSHM2 2 1 6 —8633 2.060 —4.190  0.000
HSHMG6 2 1 7 —=0.097 0.081 -1.191 0.233
HSHMT7 2 1 8 —0.007 0.058  —0.129  0.897
HSHMS 2 1 9 4.670 4.195 1.113 0.266
1 (Intercept) 2 2 0 —5.815 0.568 —10.235 0.000
SD1 2 2 1 0.0004 0.0001 4.221 0.000
SD3 2 2 2 7.857 1.821 4.314 0.000
SD4 2 2 3 0.806 0.324 2.488 0.013
SD5 2 2 4 0.377 0.185 2.036 0.042
SLIC2 2 2 5 1.480 1.027 1.441 0.150
SLIC5 2 2 6 2.161 0.963 2.244 0.025
HSHM1 2 2 7 —0.29 0.050  —5.893 0.000
HSHM2 2 2 8 93718 3.124  —3.002 0.003
HSHM5 2 2 9 0.004 0.014 0.263  0.792
HSHM9 2 2 10 0.033 0.057 0.579  0.563
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column of Table . Furthermore, as far as cluster 1 is concerned, it emerges also that the
estimated effects of the Employment regressor (3125) are positive (and particularly strong) for
the proportion of households demanding for public residential housing (RANK.21T). As far
as cluster 2 is concerned, the estimates of the regression equation for the proportion of the
low income households show that ISEE.20T is negatively affected by Housing Stock (3215) and
Change in Housing Stock (3216) and positively affected by Change in household (3212) and
Change in foreigners (3213). Similar results have been obtained with reference to the regression
equation for the proportion of households demanding for public residential housing (RANK.21T)
(see 5’227, 5’228, ngg and 3223), from which it also emerges that Household Size (3224) and Gini
Index (3226) positively affect the proportion of households demanding for public residential
housing. The parameter estimates demonstrate that the analysed dataset is characterised both
by heterogeneity over municipalities and by the presence of atypical observations. This latter
feature seems to characterise only the second cluster of municipalities (& = 0.829 and 7y =
12.316). By using the estimates of the conditional variances and covariances, it results that
the estimated correlation coefficients between the two dependent variables in the two clusters
of municipalities (0.925 and 0.597) are considerably different. The two clusters determined
according to the highest estimated posterior probabilities of the selected model are composed
of 18 and 310 municipalities, respectively. According to the rule for the intra-class distinction
between typical observations and mild outliers illustrated in Section [2.2.4] of Chapter [2] the first
cluster only contain typical observations. This is a consequence of the estimates &; = 0.999 and
71 = 1.000 (see Table. This latter result is also evident from the estimated sample residuals
Vi — By (x5 B:) for the 18 municipalities belonging to the first cluster (see the scatterplot on the
left side of Figure . A further proof is given by the low values of the estimated distances
cigl for the municipalities of the first cluster, which are between 0.500 and 7.131. Table
reports the complete list of the 18 municipalities classified as typical in the first cluster, together
with the information concerning the ADA, ATA, Mountains and NSIA classifications. Among
the 310 municipalities of the second cluster, 40 have resulted to be mild outliers. Such outliers
correspond to municipalities from the nine provinces that have a "no” category for the ATA
classification (see Table; as far as the NSIA classification for the latter 40 municipalities is
concerned, it is worth noting that none of these belong to the Poles (main centres); furthermore,
37 of these municipalities are also classified as having no ADA, with the exception of Comacchio,

Copparo (FE) and San Giovanni in Persiceto (BO). The scatterplot with the estimated sample
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residuals for RANK.21T
residuals for RANK.21T

residuals for ISEE.20T residuals for ISEE.20T

Figure 5.12: Scatterplots of the estimated residuals for the municipalities assigned to the first
(left) and second (right) clusters detected by the overall best model for the analysis of housing
tension in the municipalities of the ERR. Black circle correspond to typical municipalities, while
outliers (red points) of the second scatterplot are labelled with the number of the corresponding
municipalities.

Table 5.14: List of municipalities classified of Cluster 1 in the analysis of housing tension in the
municipalities of the ERR.

Municipality Prov. ADA ATA Mountains NSIA
Albareto PR No No Yes P
Baricella BO No No No I
Besenzone PC No No No UB
Castel del Rio BO No No Yes I
Casteldelci RN No No Yes P
Cerignale PC No No Yes UP
Fiorenzuola d’Arda PC Yes  Yes No UB
Gazzola PC No No No UB
Medicina BO Yes No No UB
Monterenzio BO No No Yes P
Montiano FC No No No UB
Morfasso PC No No Yes P
San Giovanni in Maragnano RN No No No UB
San Pietro in Cerro PC No No No UB
Tornolo PR No No No P
Valmozzola PR No No No P
Varsi PR No No No P

Zerba PC No No Yes UP
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Table 5.15: List of municipalities classified as outliers in Cluster 2 in the analysis of housing
tension in the municipalities of the ERR.

ID. Municipality Prov. ADA ATA Mountains NSIA
3 Albinea RE No No No UB
5 Alseno PC No No No UB
27 Bobbio PC No No Yes P
31 Bore PR No No Yes P
60 Casola Valsenio RA No No Yes 1
95 Comacchio FE Yes No No I
96 Compiano PR No No No P
99 Copparo FE Yes No No I
101 Corniglio PR No No No P
103 Corte Brugnatella PC No No Yes P
112 Farini PC No No Yes P
115 Ferriere PC No No Yes 19) 5
128 Fornovo di Taro PR No No No UB
129 Frassinoro MO No No Yes UP
132 Galeata FC No No Yes I
139 Goro FE No No No P
140 Gossolengo PC No No No UB
144 Gropparello PC No No Yes I
149 Jolanda di Savoia FE No No No I
165 Masi Torello FE No No No UB
172 Mesola FE No No No P
179 Monchio delle Corti PR No No No Up
187 Montefiorino MO No No Yes P
196 Mordano BO No No No UB
204 Ostellato FE No No No I
205 Ottone PC No No Yes Up
208 Palanzano PR No No No Up
217 Pievepelago MO No No Yes UP
218 Piozzano PC No No Yes I
222 Polesine Zibello PR No No No UB
230 Premilcuore FC No No Yes P
241 Riolunato MO No No Yes UP
242 Riva del Po FE No No No I
260 San Giorgio Piacentino PC No No No UB
262 San Giovanni in Persiceto BO Yes No No I
275 Sant’Agata Feltria RN No No Yes I
314 Vernasca PC No No Yes UB
319 Vigarano Mainarda FE No No No UB
322 Villa Minozzo RE No No Yes P

326 Ziano Piacentino PC No No No

—
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Table 5.16: List of municipalities classified as typical in Cluster 2 in the analysis of housing
tension in the municipalities of the ERR.

Mountains _NSIA Prov. ADA Mountains _NSIA
Rgazzano No T Alfonsine  RA Yes No  UB
Alta Val Tidone Yes P Alto Reno Terme BO~ No Yes P
Anzola dell'Emilia No UB Argelato BO  No No UB
Argenta No  UB Bagnacavallo  RA  Yes No  UB
Bagnara di Romagna. No  UB Bagno di Romagna ~ FC No Yes 1
Bagnolo in Piano No  UB Baiso  RE  No Yes P
Bardi P Bastiga MO No No UB
Bedonia P Bellaria-Igea Marina RN Yes No  UB
Bentivoglio 1 Bereto PR No Yes P
Bertinoro UB Bettola ~ PC No Yes 1
Bibbiano UB Bologna  BO  Yes No PO
Bomporto uB Bondeno  FE  Yes No 1
Boretto 1 Borghi  FC  No Yes 1
Borgo Tossignano UB Borgo Val di Taro PR No Yes P
Borgonovo Val Tidone UB Brescelo  RE  No No UB
Brisighella uB Budrio  BO  Yes No 1
Busseto UB Cadelbosco di Sopra~ RE  Yes No  UB
Cadeo UB Calderara di Reno ~ BO  Yes No  UB
Calendasco UB Calestano PR No Yes 1
Campagnola Emilia UB Campegine  RE  No No UB
Campogalliano uB Camposanto MO No No 1
Camugnano P Canossa~ RE No Yes 1
Caorso UB Carpancto Piacentino ~ PC No No UB
Carpi PO Carpineti ~ RE No Yes P
Casalecchio di Reno uB Casalfiumanese  BO  No Yes  UB
Casalgrande 1 Casina~ RE No Yes P
Castel Bolognese UB Castel D'Aiano~ BO~ No Yes P
Castel di Casio P stel Guelfo di Bologna ~ BO  No No  UB
Castel Maggiore uB Castel San Giovamni~ PC Yes No UB
Castel San Pietro Terme UB Castelfranco Emilia MO Yes No 1
Castellarano 1 CastellArquato~ PC No No  UB
Castello D' Argile 1 astelnovo di Sotto  RE No No  UB
Castelnovo Ne' Monti P Castelnovo Rangone MO Yes No UB
Castelvetro di Modena 1 Castelvetro Piacentino ~ PC No No  UB
Castenaso UB Castiglione dei Pepoli ~ BO No Yes P
Castrocaro Terme ¢ Terra del Sole UB Cattolica RN Yes No UB
Cavezzo uB Cavriago  RE  No No  UB
Cento P Cervia  RA Yes No  UB
Cesena PO Cesenatico  FC Yes No  UB
Civitella di Romagna 1 Codigoro ~ FE  Yes No P
Coli P Collecchio PR Yes No UB
Colorno, uB Concordia sulla Secchia MO No No  UB
Conselice UB Coriano RN Yes No  UB
Correggio UB Cortemaggiore  PC No No UB
Cotignola UB Crevalcore  BO  Yes No 1
Dovadola uB Dozza  BO  No No  UB
Fabbrico UB Faenza  RA  Yes No PO
Fanano P Felino PR No No UB
Ferrara PO Fidenza PR Yes No PO
Finale Emilia 1 Fiorano Modenese MO Yes No  UB
glia 1 Fiumalbo MO No Yes P
Fontanelice UB Fontanellasto PR No No UB
Fontevivo uB Forli  FC  Yes No PO
Forlimpopoli uB Formigine MO Yes No  UB
Fusignano uB Gaggio Montano ~ BO  No Yes P
alli 1 Gambettola ~ FC Yes No  UB
Gattatico uB Catteo  FC No No  UB
Gemmano UB Gragnano Trebbiense ~ PC No No UB
Granarolo dell'Emilia UB Grizzana Morandi~ BO  No Yes P
Gualtieri 1 Guastalla ~ RE  Yes No 1
Guiglia P Imola  BO  Yes No PO
Lagosanto P Lama Mocogno MO No Yes P
Langhirano 1 Lesignano de’ Bagni PR No No 1
Lizzano in Belvedere P Loiano  BO  No Yes P
Longiano UB Lugagnano Val d'Arda~ PC No No UB
Lugo PO Luzzara  RE  No No 1
Maiolo P Malalbergo~ BO  No No  UB
Maranello UB Marano sul Panaro MO No Yes P
Marzabotto 1 Massa Lombarda ~ RA Yes No  UB
Medesano uB Medolla MO No No 1
Meldola uB Mercato Saraceno~ FC No Yes  UB
Minerbio 1 Mirandola MO Yes No 1
Misano Adriatico UB Modena MO Yes No PO
Modigliana uB Molinella ~ BO  Yes No 1
Mondaino 1 Monghidoro  BO  No Yes P
Monte San Pietro UB Montecchio Emilia ~ RE  Yes No  UB
Montechiarugolo UB Montecreto MO No Yes P
Montefiore Conca 1 Montegridolio RN No No 1
Monteseudo-Monte Colombo uB Montese MO No Yes P
Monticelli d'Ongina. UB Monzuno ~ BO  No Yes 1
Morciano di Romagna UB Neviano degli Arduini PR No No P
Noceto uB Nonantola MO Yes No UB
Novafeltria P Novellara  RE  Yes No UB
Novi di Modena. uB Ozzano dellemilin ~ BO  Yes No I
Palagano P Parma PR Yes No PO
Pavullo nel Frignano P Pellegrino Parmense PR No No 1
Pennabilli P Piacenza  PC Yes No PO
Pianello Val Tidone 1 Pianoro  BO  Yes Yes 1
Pieve di Cento 1 Podenzano  PC No No UB
Poggio Renatico UB Poggio Torriana RN No Yes 1
Polinago P Ponte dell'Olio  PC No No 1
Pontenure uB Portico e San Benedetto ~ FC No Yes 1
Portomaggiore 1 Povigio RE  No No  UB
Predappio UB Prignano sulla Secchia MO No Yes P
Quattro Castella 1 Ravarino MO No No 1
Ravenna, PO Reggio nell Emilia ~ RE  Yes No PO
Reggiolo UB Riccione RN Yes No PO
Rimini PO Rio Saliceto  RE  No No  UB
Riolo Terme uB Rivergaro  PC No No UB
Rocea San Casciano 1 Roceabianca PR No No  UB
Rolo UB Roncofreddo ~ FC No Yes  UB
Rottofreno UB Rubiera  RE  Yes No UB
Russi UB Sala Baganza PR No No UB
Sala Bolognese 1 Salsomaggiore Terme PR Yes No  UB
Saludecio UB  San Benedetto Val di Sambro~ BO No Yes P
San Cesario sul Panaro 1 San Clemente RN No No UB
San Felice sul Panaro 1 San Giorgio di Piano ~ BO  No No 1
San Lazzaro di Savena uB SaLeo RN No Yes P
San Martino in Rio uB San Mauro Pascoli ~ FC Yes No UB
San Pietro in Casale 1 San Polo D’Enza ~ RE  No No 1
San Possidonio uB San Prospero MO No No  UB
San Secondo Parmense uB Santa Sofia  FC  No Yes P
Sant’Agata Bolognese 1 Sant’Agata Sul Santerno ~ RA No No  UB
Santarcangelo di Romagna UB SantTlario 'Enza~ RE  Yes No  UB
Sarmato UB Sarsina FC No Yes UB
Sasso Marconi uB Sasswolo MO Yes No UB
Savignano sul Panaro 1 Savignano sul Rubicone ~ FC  Yes No  UB
Scandiano 1 Serramazzoni MO No Yes P
Sestola P Sissa Trecasali PR No No UB
Sogliano al Rubicone 1 Solarolo RA No No UB
Soliera. UB Solignano PR No No 1
Soragna UB Sorbolo Mezzani PR Yes No  UB
Spilamberto 1 Talamello RN No Yes P
Terenzo P Terre del Reno ~ FE  Yes No 1
Tizzano Val Parma P Toamo  RE  No Yes P
orrile UB Traversetolo PR No No 1
Travo 1 Tredozio  FC  No Yes 1
Tresignana. 1 Valsamoggia  BO  Yes Yes 1
Varano de’ Melegari 1 Ventasso  RE  No Yes  UP
Vergato P Verghereto~ FC No Yes P
Verucehio UB Vetto RE  No Yes P
Vezzano sul Crostolo uB Viano  RE  No Yes 1
Vignola 1 Vigolzone  PC No No  UB
Villanova sull'Arda uB Voghiera ~ FE  No No  UB
Zocea P Zola Predosa _ BO__ Yes No UB
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Table 5.17: Joint classification of the 328 municipalities based on the ATA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall

best model.
ATA k=1 k=2 Row Total
No 17 272 289
0.059 0.941 0.881
Yes 1 38 39
0.026 0.974 0.119
Column Total 18 310 328

Table 5.18: Joint classification of the 328 municipalities based on the ADA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall

best model.
ADA k=1 k=2 Row Total
No 16 211 227
0.070 0.930 0.692
Yes 2 99 101
0.020 0.980 0.308
Column Total 18 310 328

Table 5.19: Joint classification of the 328 municipalities based on the Mountain classification
and the clusters determined according to the highest estimated posterior probabilities of the

overall best model.

Mountains k=1 k=2 Row Total
No 11 215 226
0.049 0.951 0.689
Yes 7 95 102
0.069 0.931 0.311
Column Total 18 310 328

Table 5.20: Joint classification of the 328 municipalities based on the NSIA classification and
the clusters determined according to the highest estimated posterior probabilities of the overall

best model.
NSIA k=1 k=2 Row Total
UB 7 144 151
0.046 0.954 0.460
1 2 80 82
0.024 0.976 0.250
P 7 54 61
0.115 0.885 0.186
PO 0 16 16
0.000 1.000 0.049
UP 2 16 18
0.111 0.889 0.055
Column Total 18 310 328




172 A study on housing tension in the municipalities of the Emilia-Romagna region

ISEE.20T by Clusters RANK.21T by Clusters
N o
o -
' : ‘ o :
i f—%
@ |
[ T T |
P - .
& v § g :
H I~ o _] '
i f z |
) g 3
Rl ' 8 © :
' [ °
H e
© | |
I H ~
' 1
T A —_— o | °
T T ! T T
1 2 1 2
Clusters Clusters

Figure 5.13: Boxplots of the two dependent variables (ISEE.20T and RANK.21T) for the clusters
of municipalities determined according to the highest estimated posterior probabilities of the
overall best model.

Table 5.21: Descriptive statistics of the two dependent variables (ISEE.20T and RANK.21T)
for the clusters of municipalities determined according to the highest estimated posterior prob-
abilities of the overall best model.

Dependent var. k&  Minimum First quar. Median Average Third quar. Maximum
ISEE.20T 1 —6.995 —4.850 —3.767  —4.036 —2.783 —1.384
2 —5.292 -3.003 —2.734 —2.870 —2.575 —1.904
RANK.21T 1 —7.851 —-7.851 —6.272 —6.094 —4.481 —3.576
2 —7.851 —4.510 —4.021 —4.231 —3.639 —2.165

residuals y; — fio(Xi; B;) for all the municipalities of the second cluster (see the right side of
Figure shows that, for the majority of the 40 mild outlying municipalities, the reason for
the outlyingness detected by the model has been an overestimation of the proportions for either
dependent variables. The values of the estimated distances c% for the municipalities that have
been classified as typical are between 0.004 and 8.488; the minimum and maximum of the same
distances for the outlying municipalities are 9.53 and 89.54, respectively. Table reports
the list of the municipalities identified as outliers in the second cluster, while those typical have
been reported in Table Tables report the contingency tables obtained from the
classifications reported in Section [5.3| and the classification determined according to the highest
estimated posterior probabilities by the overall best model. The latter tables also contain the
row percentages computed by dividing, for each group, the number of municipalities having one
of the category for the a priori classifications (cell value) by the total number of municipalities

classified in that category (cell’s row total). From such tables it seems that there is no association
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Figure 5.14: Boxplots of the ISEE.20 and RANK.21 variables (untransformed variables) for the
clusters of municipalities determined according to the highest estimated posterior probabilities
of the overall best model.

Table 5.22: Descriptive statistics of the ISEE.20 and RANK.21 variables (untransformed vari-
ables) for the clusters of municipalities determined according to the highest estimated posterior
probabilities of the overall best model.

Untransformed dep. var. k£ Minimum First quar. Median Average Third quar. Maximum
ISEE.20 1 0.000 0.008 0.023 0.041 0.058 0.200
2 0.005 0.045 0.061 0.059 0.071 0.130
RANK.21 1 0.000 0.000 0.002 0.006 0.011 0.028
2 0.000 0.011 0.018 0.018 0.026 0.103

between the partition of municipalities detected by the model and the a priori classifications
determined by the institutions. This result is confirmed by the values of the adjusted Rand index
(Hubert and Arabie, [1985)), which are negative or close to zero for all the joint classifications
just mentioned. Figure and Table show respectively the boxplots and some descriptive
statistics of the two dependent variables for the clusters of municipalities determined according
to the highest estimated posterior probabilities of the overall best model. It seems that the
distributions of the two dependent variables among groups are different. Furthermore, the second
cluster of municipalities shows higher median values of ISEE.20T (—2.870) and RANK.21T
(—4.231). The second cluster also seems to be more homogeneous, although it also contains
some outlying municipalities. Consequently, the municipalities of the second cluster result to be
affected by a larger evidence of housing tension. Furthermore, Figure and Table show
the same information for the untransformed dependent variables (ISEE.20 and RANK.21). The

median values of ISEE.20 and RANK.21 in the second cluster of municipalities are respectively
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equal to 0.061 and 0.018. These latter values result to be greater than that of cluster 1.

5.8 Conclusions

A study on the housing tension in the municipalities of the Emilia-Romagna region has been
performed in this chapter, with the aim of helping the Regional Observatory of the housing
system to better comprehend the factors that may have a strong impact on housing tension in
the municipalities of the region and to detect the existence of clusters of municipalities with
different levels of housing tension. To this end, a new family of seemingly unrelated clusterwise
linear regression models has been developed as an extension of the model described in Chapter 2]
In particular, this class allows the mixing weights to depend on some concomitant variables.
The latter class, together with several types of Gaussian mixture-based linear regresion models
previously proposed in the literature, has been employed to study the dependence of housing
tension in the municipalities of the ERR on some indicators provided by the region. The
choice of the regressors to be considered in the specification of the linear predictors of the
two examined responses has been carried out through a genetic algorithm and a backward
elimination technique. The overall best model has suggested the presence of two clusters of
municipalities. In such a model some regressors are absent from both regression equations (SD2,
SD6, SLIC3, SLIC4, HSHM3, HSHM4), while some are common to both equations (SD2, SD6,
SLIC3, SLIC4, HSHM3, HSHM4). Additionally, certain regressors (SLIC1, HSHM6, HSHM7,
HSHMBS) are relevant in explaining the ISEE.20T but are absent in the regression equation
of the second dependent variable. Conversely, SD5, SLIC2, SLIC5, HSHMb5, and HSHM9 are
found to be relevant for the RANK.21T dependent variable, but they do not have an effect on
ISEE.20T. Therefore, using seemingly unrelated clusterwise regression models has allowed for
the specification of regression equations in which the two variables which describes the housing
tension in the municipalities of the ERR depend on different sets of covariates. The cluster
characterized by a greater association with the housing tension also shows the presence of some
outlying municipalities. Thus, the municipalities of this cluster seem to be the ones that need
more public housing policies. An avenue of future research is represented by the specification
of seemingly unrelated clusterwise regression models explicitly accounting for space-dependent

observations.
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Appendix A

R functions

This section contains the R functions which have been developed in this project and employed

in the analyses reported in Chapters (MCSUN) and in Chapter (SuCNCW)El

A.1 MCSUN

MCSUN<-function(formula.list,data=list(),k,tol=rep(10°(-8), 3), //

iter.max=c(500,500,10) ,modelnameY){

library(mclust)
library (mvtnorm)
library(Matrix)
library(matrixcalc)
library(systemfit)
library(tictoc)

library(ContaminatedMixt)

start_time <- Sys.time()

tic()

'The presence of “//” at the end of the row indicates that the corresponding command continues in the
following row.
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M<-length(formula.list)

v_list<-character(0)
y_list<-character(0)

for (i in 1:M){
tf<-terms(formula.list[[i]],data=data)

v_list<-c(v_list,attr(tf,"term.labels"))

y_list<-c(y_list,all.vars(formula.list[[i]]) [1])

}
P.star<-length(v_list)
v_unique<-unique(v_list)

P<-length(v_unique)

d<-matrix(NA,M,P)

colnames(d)<-v_unique

d<-as.data.frame(d)

pm<-NULL

for (m in 1:M){

tf_i<-terms(formula.list[[m]],data=data)

v_list_i<-attr(tf_i,"term.labels")
pm[m]<-length(v_list_i)

d[m,]<-is.element(v_unique, v_list_i)*1

}

D<-d<-as.matrix(d)

D[D == 0] <- NA

colnames(D)<-v_unique

rownames (D)<-y_list
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e
if (modelnameY == "EII") nparcov.Y = 1

else if (modelnameY == "VII") nparcov.Y = k

else if (modelnameY == "EEI") nparcov.Y = M

else if (modelnameY == "VEI") nparcov.Y = M+k-1

else if (modelnameY == "EVI") nparcov.Y = M*k-k+1

else if (modelnameY == "VVI") nparcov.Y = Mx*k

else if (modelnameY == "EEE") nparcov.Y = M*x(M+1)/2

else if (modelnameY == "EEV") nparcov.Y = k*Mx(M+1)/2-(k-1)*M
else if (modelnameY == "VEV") nparcov.Y = k*Mx(M+1)/2-(k-1)*(M-1)
else if (modelnameY == "VVV") nparcov.Y = k*Mx(M+1)/2

else if (modelnameY == "EVE") nparcov.Y = M*x(M+1)/2+(k-1)*(M-1)
else if (modelnameY == "VVE") nparcov.Y = Mx(M+1)/2+(k-1)*M

else if (modelnameY == "VEE") nparcov.Y = M*(M+1)/2+(k-1)

else if (modelnameY == "EVV") nparcov.Y = k*Mx(M+1)/2-(k-1)

else stop("modelname or covtype for the responses is not correctly defined")

v_all<-c(y_list,v_unique)

data_0<-datal,v_all]

missing<-is.na(data_0)
if (sum(missing)!=0) //

stop("Function MGlm can not deal with missing values")
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# Initialization of the parameters

modello<-systemfit (formula.list,data=data_0)

residui<-residuals(modello)

mclust.init<-mclustBIC(residui,G=k,modelNames=modelnameY)

if (is.na(mclust.init)==TRUE) {
mclust.init<-mclustBIC(residui,G=k)
mclust.init<-summary(mclust.init,residui,G=k)

} else {
mclust.init<-mclustBIC(residui,G=k)

mclust.init<-summary(mclust.init,residui,G=k,modelNames=modelnameY)

pro.init<-1

if (k>1) pro.init<-mclust.init$parameters$pro

y<-as.matrix(data_0[,1:M])

colnames(y)<-y_list

I<-length(y[,1])

Dcost<-NULL

b.init.k<-matrix(0,P.star+M,k)

Sigma_init_Y.X<-array(0,c(M,M,k))
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for (h in 1:k){

mod.YX.h<-try(systemfit(formula.list,data=data_0 //
[mclust.init$classification==h,]),silent=TRUE)

if (class(mod.YX.h)=="try-error") mod.YX.h<-systemfit(formula.list, //
data=data_0[sample(x=I,size=I*pro.init[h]),])

b.init.k[,h]<-as.vector(mod.YX.h$coefficients)

Sigma_init_Y.X[,,h]<-mod.YX.h$residCov

}

rownames (b.init.k)<-names (mod.YX.h$coefficients)

dimnames (Sigma_init_Y.X)<-list(y_list,y_list)

if (modelnameY == "EII") //
val = try(msEII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VII") //
val = try(msVII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEI") //
val = try(msEEI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VEI") //
val = try(msVEI(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "EVI") //
val = try(msEVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VVI") //
val = try(msVVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEE") //
val = try(msEEE(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEV") //
val = try(msEEV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VEV") //
val = try(msVEV(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //
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val = try(msVVV(Sk=Sigma_init_Y.X, ng=pro.

else if (modelnameY == "EVE") //

val = try(msEVE(Sk=Sigma_init_Y.X, ng=pro.

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val = try(msVVE(Sk=Sigma_init_Y.X, ng=pro.

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val = try(msVEE(Sk=Sigma_init_Y.X, ng=pro.

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

init) ,silent=TRUE)

init, DO=Dcost, eplison= tol[3], //

init, DO=Dcost, eplison= tol[3], //

init, eplison= tol[3], //

val = try(msEVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")

Sigma_init_Y.X<-val$sigma

alpha<-rep(0.999,k)

eta<-rep(1.001,k)

x.1<-1ist )

for (m in 1:M){

x.1[[m]]<-1m(formula.list[[m]],data_0,x=TRUE) $x
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Xpp<-bdiag(x.1)

priorphi.ih<-matrix(0,I,k)

h_1<-matrix(0,I,k)

h_m<-matrix(0,I,k)

for (h in 1:k){

mu_Y.X<- Xpp#%*/b.init.k

h_1[,h]l<-(alpha[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //
as.matrix(Sigma_init_Y.X[,,h])))

h_m[,h]<-dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(Sigma_init_Y.X[,,h]), //
alphal[h],eta[h])

priorphi.ih[,h]<-pro.init[h]*h_m[,h]

3

zeri<-sum(priorphi.ih==0)>0

loglik<- sum(log(apply(priorphi.ih,1,sum)))
loglik.iterECM<-loglik
iterazioni.lc2.iterECM<-0

stopECM<-FALSE

iterECM<-0

C.noninvertibile<-0

SigmaY.noninvertibile<-0

Alpha_new<-alpha
Eta_new<-eta
Beta_init<-b.init.k
Beta_new<-Beta_init
SigmaY.X_init<-Sigma_init_Y.X

SigmaY.X_new<-SigmaY.X_init
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#Computation of the posterior probabilities

p.ih<-priorphi.ih/apply(priorphi.ih,1,sum)

u.ih<-h_1/h_m

#Computation of the prior probabilities

pro.new<-apply(p.ih,2,sum)/I

num.ih<-p.ih*u.ih

#Computation of alpha
Alpha_new<-apply(num.ih,2,sum)/apply(p.ih,2,sum)
controllo.Alpha<-rep(0.5,k)
controllol.Alpha<-rbind(Alpha_new,controllo.Alpha)

Alpha_new<-apply(controllol.Alpha,2,max)
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iterCM<-0

stopCM<-0

while (stopCM==FALSE){

#Initialization of the matrices
C<-1ist ()
N<-1list ()

F<-1ist ()

#Weights

w.ih<-u.ih+t(t(matrix(1,I,k)-u.ih)/Eta_new)

for (h in 1:k){

F[[h]]<- crossprod(Xpp,suppressMessages((solve(SigmaY.X_new[,,h]) //
YxYMatrix(diag(p.ih[,h]*w.ih[,h]),sparse=TRUE) )))

C[[h]1<-F[[h]]%*%Xpp

N[[h]l]1<-F[[h]1%*% as.vector(y)

#Is matrix C nonsingular?
check.C<-eigen(as.matrix(C[[h]]) ,symmetric=TRUE)
invertibilitaC<-check.C$values[(P.star+M)]/check.C$values[1] //

> 1/(10°50)

if (invertibilitaC==FALSE){
#ECM algorithm stops
stopCM<-TRUE
stopECM<-TRUE
C.noninvertibile<-1
} else {
#Computation of Beta

Beta_new[,h]<-solve(as.matrix(C[[h]]),tol=1/(10"50))%x*% //
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as.matrix(N[[h]])

if (C.noninvertibile==0) {

check.invertibilita.SigmaY<-rep(0,k)

for (h in 1:k){

U<-matrix((as.vector(y)-(Xppk+*%as.matrix(Beta_new[,h]))) ,M,I,byrow=TRUE)%*), //
diag(p.ih[,h]*w.ih[,h])%*/matrix((as.vector(y)- //
(Xppk*%as.matrix(Beta_new[,h]))),I,M)

SigmaY.X_newl[,,h]<- U/sum(p.ih[,h])

}

if (modelnameY == "EII") //

val2 = try(msEII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "VII") //

val2 = try(msVII(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "EEI") //

val2 = try(msEEI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "VEI") //

val2 = try(msVEI(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVI") //

val2 = try(msEVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "VVI") //

val2 = try(msVVI(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "EEE") //

val2 = try(msEEE(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)
else if (modelnameY == "EEV") //

val2 = try(msEEV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "VEV") //
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val2 = try(msVEV(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVV") //

val2 = try(msVVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else if (modelnameY == "EVE") //

val2 = try(msEVE(Sk=SigmaY.X_new, ng=pro.new, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val2 = try(msVVE(Sk=SigmaY.X_new, ng=pro.new, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val2 = try(msVEE(Sk=SigmaY.X_new, ng=pro.new, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val2 = try(msEVV(Sk=SigmaY.X_new, ng=pro.new),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")

if (length(val2)>1){
SigmaY.X_new<-val2$sigma
for (h in 1:k){
if (M==1) {
contr.1<-SigmaY.X_new[, ,h]< 1/(10710)
contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)
contr.3<-(Eta_new[h]*SigmaY.X_new[,,h])< 1/(10710)
contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)
check.invertibilita.SigmaY[h]<- (contr.1==TRUE | class(contr.2)=="try-error" | //
contr.3==TRUE | class(contr.4)=="try-error")
} else {

check.ha<-eigen(SigmaY.X_new[, ,h],symmetric=TRUE)
check.hb<-eigen(Eta_new[h]*SigmaY.X_newl[, ,h],symmetric=TRUE)
contr.1<-check.ha$values[M]/check.ha$values[1] < 1/(10710)

contr.2<-try(solve(SigmaY.X_new[, ,h]),silent=TRUE)
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contr.3<-check.hb$values[M]/check.hb$values[1] < 1/(10°10)
contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

3

if (sum(check.invertibilita.SigmaY)!=0){
# the ECM algorithm stops
stopCM<-TRUE
stopECM<-TRUE
SigmaY.noninvertibile<-1
} else {
iterCM<-iterCM+1
criterio<-sqrt(sum(( Beta_init- Beta_new)"2) + //
sum((SigmaY.X_init-SigmaY.X_new) [upper.tri(diag(M) ,diag=TRUE)]"2))
nparametri.criterio<-k*(P.star+M)+k*Mx(M+1)/2
if ((criterio/mparametri.criterio<tol[2]) || (iterCM==iter.max[2])){
stopCM<-TRUE
iterazioni.lc2.iterECM<-c(iterazioni.lc2.iterECM, iterCM)
} else {
Beta_init<- Beta_new

SigmaY.X_init<-SigmaY.X_new

}
}
}
oo
} # End of WHILE for B and SY
o

nume.ih<-matrix(0,I,k)

deno.ih<-p.ih*(matrix(1,I,k)-u.ih)
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if (C.noninvertibile==0 & SigmaY.noninvertibile==0) {

for (h in 1:k){

mu_Y.X<- XppY%*%Beta_new

nume.ih[,h]<-deno.ih[,h]*mahalanobis.new(y,matrix(mu_Y.X[,h],I,M), //
as.matrix(SigmaY.X_new[, ,h]))

}

etanew<-apply(nume.ih,2,sum)/(M*apply(deno.ih,2,sum))

controllo.Eta<-rep(1,k)

controllol.Eta<-rbind(etanew,controllo.Eta)

Eta_new<-apply(controllol.Eta,2,max)

}

if (C.noninvertibile==0 & SigmaY.noninvertibile==0) {

for (h in 1:k){

mu_Y.X<- Xpp%*%Beta_new

h_1[,h]l<-(Alpha_new[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //
as.matrix(SigmaY.X_newl[,,h])))

xxx<-try(dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_newl[,,h]), //
Alpha_new[h] ,Eta_new[h]),silent=TRUE)

if (class(xxx)=="try-error") {

xxx<-dCNmod (y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_newl[,,h]l), //

Alpha_new[h] ,Eta_new[h])
}

h_m[,h]<-xxx
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priorphi.ih[,h]<-pro.new[h]*h_m[,h]
}

zeri<-c(zeri,sum(priorphi.ih==0)>0)
loglik.new<- sum(log(apply(priorphi.ih,1,sum)))
loglik.iterECM<-c(loglik.iterECM,loglik.new)
iterECM<-iterECM+1

if (iterECM>2){

a<-(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])/ //
(loglik.iterECM[(iterECM)] - loglik.iterECM[(iterECM-1)])

if (a=="NaN") a<-0

loglik.inf<-loglik.iterECM[(iterECM-1)]+(1/(1-a))* //

(loglik.iterECM[iterECM]-loglik.iterECM[(iterECM-1)1)

if (k==1) loglik.inf<-loglik.iterECM[iterECM]

improvement<-loglik.inf-loglik.new

if ((abs(loglik.inf-loglik.new)<tol[1]) || //
(iterECM==iter.max[1])) stopECM<-TRUE

else loglik<-loglik.new

} else {

loglik<-loglik.new

cat ("numero tot. di iterazioni ECM = ", iterECM, "\n")

EM.ok<-C.noninvertibile+SigmaY.noninvertibile
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if (EM.ok == 0) {

npar<- (3*k)-1 + k*x(P.star+M) + nparcov.Y

bic<- 2*loglik-npar*log(I)

massimo<-c()

cl<-apply(p.ih,1,which.max)

for (i in 1:1){
massimo[i]<-p.ih[i,c1[i]]

}

icl_mazza<-bic+2*sum(log(massimo))

entropia.post<-function(z) {

contr<-log(z)*z

contr.ok<-contr!="NaN"

-sum(contr [contr.ok])

}

icl_baek<-bic-2*sum(apply(p.ih,1,entropia.post))

pos<-sort.list(pro.new)
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Alpha<-Alpha_new[pos]
Eta<-Eta_new[pos]
B<-Beta_new[,pos]
SigmaY.X<-SigmaY.X_new[, ,pos]
pi<-sort(pro.new)

pih<-p.ih[,pos]

uih<-u.ih[,pos]

end_time <- Sys.time()
tempo<-toc()

total_time<-end_time - start_time

total_time2<-tempo$toc-tempo$tic

} else {

Alpha<-NA
Eta<-NA

B<-NA
SigmaY.X<-NA
pi<-NA

pih<-NA
uih<-NA
loglik<-NA
loglik.iterEM<-NA
npar<-NA
bic<-NA

cl<-NA
icl_baek<-NA
icl_mazza<-NA
total_time<-NA

total_time2<-NA
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out<-list(M=M,k=k,P=P,P.star=P.star, D=D,pi=pi,B=B,Sigma¥.X=SigmaY.X, //
loglik.iter=loglik.iterECM,loglik=1oglik,npar=npar, BIC=bic, //
modelnameY=modelnameY, ICL_MAZZA=icl_mazza, ICL_BAEK=icl_baek, //
Alpha=Alpha, Eta=Eta, pih=pih, uih=uih,cl=cl,time=total_time, //
time2=total_time2)

class(out)<-"MCSUN"

out
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A.2 SuCNCW

CMW<-function(formula.list,data=1ist(),k,tol=rep(10~(-6),3), //

iter.max=c(500,1,10),v_input=c() ,modelnameY,modelnameX){

library(mclust)
library (mvtnorm)
library(Matrix)
library(matrixcalc)
library(systemfit)
library(tictoc)

library(ContaminatedMixt)

start_time <- Sys.time()

tic()

M<-length(formula.list)

if (M==0) stop("No response variables have been selected for the analysis")

v_list<-character(0)

y_list<-character(0)

for (i in 1:M){

tf<-terms (formula.list[[i]],data=data)
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v_list<-c(v_list,attr(tf,"term.labels"))

yi<-attr(tf,"variables") [[2]]

class(yi)<-"character"

y_list<-c(y_list,yi)

P.star<-length(v_list)

v_unique<-unique(c(v_list,v_input))

P<-length(v_unique)

if (P==0) stop("Only response variables have been selected for the analysis")

if (modelnameX == "
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else

else

else

else

else

else

else

else

else

else

else
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if

if
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predictors is not correctly defined")
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if (modelnameY == "EII") nparcov.Y <- 1

else if (modelnameY == "VII") nparcov.Y <- k

else if (modelnameY == "EEI") nparcov.Y <- M

else if (modelnameY == "VEI") nparcov.Y <- M+k-1

else if (modelnameY == "EVI") nparcov.Y <- Mxk-k+1

else if (modelnameY == "VVI") nparcov.Y <- Mxk

else if (modelnameY == "EEE") nparcov.Y <- M*x(M+1)/2

else if (modelnameY == "EEV") nparcov.Y <- k*Mx(M+1)/2-(k-1)*M
else if (modelnameY == "VEV") nparcov.Y <- k*M*(M+1)/2-(k-1)*(M-1)
else if (modelnameY == "VVV") nparcov.Y <- kxM*(M+1)/2

else if (modelnameY == "EVE") nparcov.Y <- Mx(M+1)/2+(k-1)*(M-1)
else if (modelnameY == "VVE") nparcov.Y <- Mx(M+1)/2+(k-1)*M
else if (modelnameY == "VEE") nparcov.Y <- Mx(M+1)/2+(k-1)

else if (modelnameY == "EVV") nparcov.Y <- k*xM*(M+1)/2-(k-1)

else stop("modelname or covtype for the responses is not correctly defined")

d<-matrix(NA,M,P)

colnames(d)<-v_unique

d<-as.data.frame(d)

pm<-NULL

for (m in 1:M){

tf_i<-terms(formula.list[[m]],data=data)

v_list_i<-attr(tf_i,"term.labels")
pm[m]<-length(v_list_i)

d[m,]<-is.element(v_unique, v_list_i)*1

}

D<-d<-as.matrix(d)

D[D == 0] <- NA

colnames(D)<-v_unique

rownames (D)<-y_list
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# Ordering the data frame and Missing Data control

v_all<-c(y_list,v_unique)

data_0<-datal[,v_all]

missing<-is.na(data_0)

if (sum(missing)!=0) stop("Function CMW can not deal with missing values")

mclust.init<-mclustBIC(residui,G=k,modelNames=c (modelnameY,modelnameX))
if (sum(is.na(mclust.init))==2) {
mclust.init<-mclustBIC(data_0,G=k)
mclust.init<-summary(mclust.init,data_0,G=k)
} else {
mclust.init<-mclustBIC(residui,G=k)
mclust.init<-summary(mclust.init,data_0,G=k, //

modelNames=c (modelnameY,modelnameX))

pro.init<-1

if (k>1) pro.init<-mclust.init$parameters$pro

y<-as.matrix(data_0[,1:M])
colnames(y)<-y_list

I<-length(y[,1])
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mean_joint<-mclust.init$parameters$mean
var_joint<-mclust.init$parameters$variance$sigma

Dcost<-NULL

mean_init_X<-matrix(mean_joint[(M+1): (M+P),],P,k)
Sigma_init_X<-array(var_joint[(M+1): (M+P), (M+1): (M+P),],c(P,P,k))
rownames (mean_init_X)<-v_unique

dimnames (Sigma_init_X)<-list(v_unique,v_unique)

b.init.k<-matrix(0,P.star+M,k)
Sigma_init_Y.X<-array(0,c(M,M,k))

for (h in 1:k){
mod.YX.h<-try(systemfit(formula.list,data=data_0 //

[mclust.init$classification==h,]),silent=TRUE)

if (class(mod.YX.h)=="try-error") mod.YX.h<-systemfit(formula.list, //

data=data_0[sample(x=I,size=I*pro.init[h]),])
b.init.k[,h]<-as.vector(mod.YX.h$coefficients)
Sigma_init_Y.X[,,h]<-mod.YX.h$residCov
}
rownames (b.init.k)<-names (mod.YX.h$coefficients)

dimnames (Sigma_init_Y.X)<-list(y_list,y_list)

if (modelnameY == "EII") //

val <- try(msEII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
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else if (modelnameY == "VII") //
val <- try(msVII(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEI") //
val <- try(msEEI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VEI") //
val <- try(msVEI(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "EVI") //
val <- try(msEVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VVI") //
val <- try(msVVI(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEE") //
val <- try(msEEE(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "EEV") //
val <- try(msEEV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)
else if (modelnameY == "VEV") //
val <- try(msVEV(Sk=Sigma_init_Y.X, ng=pro.init, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "VVV") //
val <- try(msVVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else if (modelnameY == "EVE") //

val <- try(msEVE(Sk=Sigma_init_Y.X, ng=pro.init, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VVE") //

val <- try(msVVE(Sk=Sigma_init_Y.X, ng=pro.init, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "VEE") //

val <- try(msVEE(Sk=Sigma_init_Y.X, ng=pro.init, eplison= toll[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameY == "EVV") //

val <- try(msEVV(Sk=Sigma_init_Y.X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the responses is not correctly defined")
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Sigma_init_Y.X<-val$sigma

if (modelnameX == "EII") //

val <- try(msEII(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VII") //

val <- try(msVII(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEI") //

val <- try(msEEI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VEI") //

val <- try(msVEI(Sk=Sigma_init_X, ng=pro.init, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVI") //

val <- try(msEVI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VVI") //

val <- try(msVVI(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEE") //

val <- try(msEEE(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EEV") //

val <- try(msEEV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "VEV") //

val <- try(msVEV(Sk=Sigma_init_X, ng=pro.init, eplison= toll[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVV") //

val <- try(msVVV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else if (modelnameX == "EVE") //

val <- try(msEVE(Sk=Sigma_init_X, ng=pro.init, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVE") //

val <- try(msVVE(Sk=Sigma_init_X, ng=pro.init, DO=Dcost, eplison= tol[3], //
max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VEE") //
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val <- try(msVEE(Sk=Sigma_init_X, ng=pro.init, eplison= tol[3], //

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVV") //

val <- try(msEVV(Sk=Sigma_init_X, ng=pro.init),silent=TRUE)

else stop("modelname or covtype for the predictors is not correctly defined")

Sigma_init_X<-val$sigma

alpha<-rep(0.999,k)
eta<-rep(1.001,k)
alpha_x<-rep(0.999,k)

eta_x<-rep(1.001,k)

y<-as.matrix(data_0[,1:M])
colnames(y)<-y_list
x<-as.matrix(data_0[, (M+1): (M+P)])
colnames (x)<-v_unique

I<-length(y[,1])

int<-rep(l,length.out=I)

x.1<-1ist )

for (m in 1:M){

if (pm[m]==0) {
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x.1[[m]]<-int
} else {
x.sel<-t(t(x)*D[m,])
x.1[[m]]1<-cbind(int,x.sel[, !apply(is.na(x.sel), 2, all)l)

}

Xpp<-bdiag(x.1)

h_1<-matrix(0,I,k)

h_m<-matrix(0,I,k)

h_2<-matrix(0,I,k)

h_p<-matrix(0,I,k)

priorphi.ih<-matrix(0,I,k)

mu_Y.X<- Xpp#%*%b.init.k

for (h in 1:k){

h_1[,h]l<-(alpha[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //
as.matrix(Sigma_init_Y.X[,,h])))

h_2[,h]<-(alpha_x[h]*dmvnorm.new(x,matrix(mean_init_X[,h],I,P,byrow=TRUE), //
sigma=as.matrix(Sigma_init_X[,,h])))

h_m[,h]<-dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(Sigma_init_Y.X[,,h]l), //
alphalh],etalh])

h_p[,h]<-dCN(x,matrix(mean_init_X[,h],I,P,byrow=T),as.matrix(Sigma_init_X[,,h]), //

alpha_x[h],eta_x[h])
priorphi.ih[,h]<-pro.init[h]l*h_m[,h]* h_p[,h]

}
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zeri<-sum(priorphi.ih==0)>0

loglik<- sum(log(apply(priorphi.ih,1,sum)))
loglik.iterECM<-loglik
iterazioni.lc2.iterECM<-0

stopECM<-FALSE

iterECM<-0

Alpha_new_x<-alpha_x
Eta_new_x<-eta_x
C.noninvertibile<-0
SigmaY.noninvertibile<-0
Alpha_new<-alpha
Eta_new<-eta
Beta_init<-b.init.k
Beta_new<-Beta_init
SigmaY.X_init<-Sigma_init_Y.X
SigmaY.X_new<-SigmaY.X_init
SigmaX.noninvertibile<-0
muX_new<-mean_init_X

SigmaX_new<-Sigma_init_X

#computation of the posterior probabilities

p.ih<-priorphi.ih/apply(priorphi.ih,1,sum)
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u.ih<-h_1/h_m

v.ih<-h_2/h_p

#Computation of the prior probabilities

pro.new<-apply(p.ih,2,sum)/I

num.ih.x<-p.ih%*v.ih
Alpha_new_x<-apply(num.ih.x,2,sum)/apply(p.ih,2,sum)
controllo.Alpha.x<-rep(0.5,k)

controllol.Alpha.x<-rbind (Alpha_new_x,controllo.Alpha.x)

Alpha_new_x<-apply(controllol.Alpha.x,2,max)

q.ih<-v.ih+t(t (matrix(1,I,k)-v.ih)/Eta_new_x)

#Computation of muX
for(h in 1:k){
u<-sweep(x,1,p.ih[,h]l*q.ih[,h],"*")

muX_new[,h]<-apply(u,2,sum)/sum(p.ih[,h]*q.ih[,h])

#Computation of SigmaX
for(h in 1:k){
uu<-matrix ((t(x)-muX_new[,h])%*%diag(p.ih[,h]l*q.ih[,h]) //
%*%t (t (x) -muX_new[,h]),P,P)
rownames (uu) <-v_unique
colnames (uu)<-v_unique

SigmaX_new[, ,h]<- matrix(uu/sum(p.ih[,h]),P,P)
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if (modelnameX == "EII") //
val <- try(msEII(Sk=SigmaX_new,
else if (modelnameX == "VII") //
val <- try(msVII(Sk=SigmaX_new,
else if (modelnameX == "EEI") //
val <- try(msEEI(Sk=SigmaX_new,
else if (modelnameX == "VEI") //

val <- try(msVEI(Sk=SigmaX_new,

ng=pro

ng=pro

ng=pro

ng=pro

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVI") //
val <- try(msEVI(Sk=SigmaX_new,
else if (modelnameX == "VVI") //
val <- try(msVVI(Sk=SigmaX_new,
else if (modelnameX == "EEE") //
val <- try(msEEE(Sk=SigmaX_new,
else if (modelnameX == "EEV") //
val <- try(msEEV(Sk=SigmaX_new,
else if (modelnameX == "VEV") //

val <- try(msVEV(Sk=SigmaX_new,

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVV") //
val <- try(msVVV(Sk=SigmaX_new,
else if (modelnameX == "EVE") //

val <- try(msEVE(Sk=SigmaX_new,

ng=pro

ng=pro

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VVE") //

val <- try(msVVE(Sk=SigmaX_new,

ng=pro

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "VEE") //

val <- try(msVEE(Sk=SigmaX_new,

ng=pro

max.iter=iter.max[3]),silent=TRUE)

else if (modelnameX == "EVV") //

.new)

.new)

.new)

.new,

.new)

.new)

.new)

.new)

.new,

.new)

.new,

.new,

.new,

,8ilent=TRUE)

,8ilent=TRUE)

,Silent=TRUE)

eplison= tol[3], //

,silent=TRUE)

,8ilent=TRUE)

,8ilent=TRUE)

,silent=TRUE)

eplison= tol[3], //

,8ilent=TRUE)

DO=Dcost, eplison= tol[3], //

DO=Dcost, eplison= tol[3], //

eplison= tol([3], //
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val <- try(msEVV(Sk=SigmaX_new, ng=pro.new),silent=TRUE)

else stop("modelname or covtype for the predictors is not correctly defined")

check.invertibilita.X<-rep(0,k)

if (length(val)>1){
SigmaX_new<-val$sigma
for (h in 1:k){
if (P==1) {
contr.X1<-SigmaX_new[, ,h]< 1/(10710)
contr.X2<-try(solve(SigmaX_new[,,h]),silent=TRUE)
contr.X3<-(Eta_new_x[h]*SigmaX_newl[,,h])< 1/(10710)
contr.X4<-try(solve(Eta_new_x[h]*SigmaX_new[, ,h]),silent=TRUE)
check.invertibilita.X[h]<- (contr.X1==TRUE | class(contr.X2)=="try-error" | //
contr.X3==TRUE | class(contr.X4)=="try-error")
} else {
check.Xha<-eigen(SigmaX_new[, ,h],symmetric=TRUE)
check.Xhb<-eigen(Eta_new_x[h]*SigmaX_new[, ,h],symmetric=TRUE)
contr.X1<-sum(check.Xha$values[P]/check.Xha$values[1] < 1/(10710)) //
+sum(check.Xha$values<10~(-20))
contr.X2<-try(solve(SigmaX_newl[, ,h]),silent=TRUE)
contr.X3<-sum(check.Xhb$values [P]/check.Xhb$values[1] < 1/(10710)) //
+sum(check.Xhb$values<10~(-20))

contr.X4<-try(solve(Eta_new_x[h]*SigmaX_newl[,,h]),silent=TRUE)

check.invertibilita.X[h]l<-(contr.X1==1 | class(contr.X2)[1]=="try-error" | //
class(contr.X2) [2]=="try-error" | contr.X3==1 | //
class(contr.X4) [1]=="try-error" | class(contr.X4)[2]=="try-error")

}

if (sum(check.invertibilita.X)!=0){
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stopCM<-TRUE
stopECM<-TRUE
SigmaX.noninvertibile<-1

} else {

num.ih<-p.ih*u.ih

#aggiornamento di alpha
Alpha_new<-apply(num.ih,2,sum)/apply(p.ih,2,sum)
controllo.Alpha<-rep(0.5,k)
controllol.Alpha<-rbind(Alpha_new,controllo.Alpha)

Alpha_new<-apply(controllol.Alpha,2,max)

# __________________________________________________
iterCM<-0
stopCM<-0
while (stopCM==FALSE){
# Initialization of the matrices
C<-1list ()
N<-1list ()
F<-1list ()
#Weights

w.ih<-u.ih+t (t(matrix(1,I,k)-u.ih)/Eta_new)

for (h in 1:k){

F[[h]]<- crossprod(Xpp,suppressMessages((solve(SigmaY.X_newl[,,h]) //
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hx/iMatrix(diag(p.ih[,h]l*w.ih[,h]),sparse=TRUE) ))
CL[h]1<-F[[h]]1%*%Xpp
N[[h]11<-F[[h11%*% as.vector(y)
# is matrix C nonsingular?
check.C<-eigen(as.matrix(C[[h]]),symmetric=TRUE)
invertibilitaC<-check.C$values[(P.star+M)]/check.C$values[1] //

> 1/(10750)

if (invertibilitaC==FALSE){

# ECM algorithm stops

stopCM<-TRUE

stopECM<-TRUE

C.noninvertibile<-1

} else {
# computation of Beta
Beta_new[,h]<-solve(as.matrix(C[[h]]),tol=1/(10"50)) //

%*% as.matrix(N[[h]])

if (C.noninvertibile==0) {

check.invertibilita.SigmaY<-rep(0,k)

for (h in 1:k){

U<-matrix((as.vector (y)-(Xpplk*%as.matrix(Beta_new[,h]))),M,I,byrow=TRUE) //
J*% diag(p.ih[,h]*w.ih[,h])%*/matrix((as.vector(y)- //
(Xpp%*%has.matrix(Beta_new[,h]))),I,M)

SigmaY.X_new[,,h]<- U/sum(p.ih[,h])

}

if (modelnameY == "EII") //
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val2 <- try(msEII(Sk=SigmaY.X_new,
else if (modelnameY == "VII") //
val2 <- try(msVII(Sk=SigmaY.X_new,
else if (modelnameY == "EEI") //
val2 <- try(msEEI(Sk=SigmaY.X_new,
else if (modelnameY == "VEI") //
val2 <- try(msVEI(Sk=SigmaY.X_new,
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "EVI") //
val2 <- try(msEVI(Sk=SigmaVY.X_new,
else if (modelnameY == "VVI") //
val2 <- try(msVVI(Sk=SigmaY.X_new,
else if (modelnameY == "EEE") //
val2 <- try(msEEE(Sk=SigmaY.X_new,
else if (modelnameY == "EEV") //
val2 <- try(msEEV(Sk=SigmaVY.X_new,
else if (modelnameY == "VEV") //
val2 <- try(msVEV(Sk=SigmaY.X_new,
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "VVV") //
val2 <- try(msVVV(Sk=SigmaY.X_new,
else if (modelnameY == "EVE") //
val2 <- try(msEVE(Sk=SigmaY.X_new,
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "VVE") //
val2 <- try(msVVE(Sk=SigmaY.X_new,
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "VEE") //
val2 <- try(msVEE(Sk=SigmaY.X_new,
max.iter=iter.max[3]),silent=TRUE)
else if (modelnameY == "EVV") //

val2 <- try(msEVV(Sk=SigmaY.X_new,

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

ng=pro

.new) ,silent=TRUE)

.new) ,silent=TRUE)

.new) ,silent=TRUE)

.new, eplison= toll[3], //

.new) ,silent=TRUE)

.new) ,silent=TRUE)

.new) ,silent=TRUE)

.new) ,silent=TRUE)

.new, eplison= tol[3], //

.new) ,silent=TRUE)

.new, DO=Dcost, eplison=

.new, DO=Dcost, eplison=

.new, eplison= tol[3], //

.new) ,silent=TRUE)

tol[3], //

tol[3], //
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else stop("modelname or covtype for the responses is not correctly defined")

if (length(val2)>1){
SigmaY.X_new<-val2$sigma
for (h in 1:k){
if (M==1) {
contr.1<-SigmaY.X_new[, ,h]< 1/(10710)
contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)
contr.3<-(Eta_new[h]*SigmaY.X_newl[,,h])< 1/(10710)
contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)
check.invertibilita.SigmaY[h]<- (contr.1==TRUE | class(contr.2)=="try-error" | //
contr.3==TRUE | class(contr.4)=="try-error")
} else {
check.ha<-eigen(SigmaY.X_newl[,,h],symmetric=TRUE)
check.hb<-eigen(Eta_new[h]*SigmaY.X_new[, ,h],symmetric=TRUE)
contr.1<-sum(check.ha$values[M]/check.ha$values[1] < 1/(10710)) //
+sum(check.ha$values<10~(-20))
contr.2<-try(solve(SigmaY.X_new[,,h]),silent=TRUE)
contr.3<-sum(check.hb$values [M]/check.hb$values[1] < 1/(10710)) //
+sum(check.hb$values<10~(-20))

contr.4<-try(solve(Eta_new[h]*SigmaY.X_new[,,h]),silent=TRUE)

check.invertibilita.SigmaY[h]<-(contr.1==1 | class(contr.2)[1]=="try-error"| //
class(contr.2) [2]=="try-error" | contr.3==1 | //
class(contr.4) [1]=="try-error" | class(contr.4)[2]=="try-error")

}

if (sum(check.invertibilita.SigmaY)!=0){
# the ECM algorithm stops

stopCM<-TRUE
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Sigm

nume

nume.

deno

deno.

if (

stopECM<-TRUE
aY.noninvertibile<-1
} else {
iterCM<-iterCM+1
criterio<-sqrt(sum(( Beta_init- Beta_new)"2) + //
sum((SigmaY.X_init-SigmaY.X_new) [upper.tri(diag(M),diag=TRUE)]"2))

nparametri.criterio<-k*(P.star+M)+k*Mx(M+1)/2

if ((criterio/nparametri.criterio<tol[2]) || (iterCM==iter.max[2])){
stopCM<-TRUE
iterazioni.lc2.iterECM<-c(iterazioni.lc2.iterECM,iterCM)

} else {

Beta_init<- Beta_new

SigmaY.X_init<-SigmaY.X_new

3

.ih<-matrix(0,I,k)
ih.x<-matrix(0,I,k)
.ih<-p.ih*(matrix(1,I,k)-u.ih)

ih.x<-p.ih*(matrix(1,I,k)-v.ih)

C.noninvertibile==0 & SigmaY.noninvertibile==0 & SigmaX.noninvertibile==0) {
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SigmaX.noninvertibile==0

mu_Y.X<- Xpp¥%*/Beta_new

for (h in 1:k){

nume.ih[,h]<-deno.ih[,h]*mahalanobis.new(y,matrix(mu_Y.X[,h],I,M), //
as.matrix(SigmaY.X_new[, ,h]))

nume.ih.x[,h]<-deno.ih.x[,h]*mahalanobis.new(x,matrix(muX_new([,h],I,P,byrow=T), //

as.matrix(SigmaX_newl[,,h]))

etanew.x<-apply(nume.ih.x,2,sum)/(P*apply(deno.ih.x,2,sum))
controllo.Eta.x<-rep(1.001,k)
controllol.Eta.x<-rbind(etanew.x,controllo.Eta.x)

Eta_new_x<-apply(controllol.Eta.x,2,max)
etanew<-apply(nume.ih,2,sum)/(M*apply(deno.ih,2,sum))
controllo.Eta<-rep(1.001,k)

controllol.Eta<-rbind(etanew,controllo.Eta)

Eta_new<-apply(controllol.Eta,2,max)

}

if (C.noninvertibile==0 & SigmaY.noninvertibile==0 & SigmaX.noninvertibile==0) {

mu_Y.X<- Xpp%*/Beta_new

for (h in 1:k){

h_1[,h]<-(Alpha_new[h]*dmvnorm.new(y,matrix(mu_Y.X[,h],I,M), //

as.matrix(SigmaY.X_new[,,h])))
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h_2[,h]<-(Alpha_new_x[h]*dmvnorm.new(x,matrix (muX_new[,h],I,P,byrow=T), //
as.matrix(SigmaX_new[,,h])))
9qq<-try(dCN(x,matrix (muX_new[,h],I,P,byrow=T),as.matrix(SigmaX_newl[,,h]), //

Alpha_new_x[h] ,Eta_new_x[h]),silent=TRUE)

if (class(qqq)=="try-error" ) {
qq9q<-dCNmod (x ,matrix(muX_new[,h],I,P,byrow=T) ,as.matrix(SigmaX_newl[,,h]), //

Alpha_new_x[h] ,Eta_new_x[h])

xxx<-try(dCN(y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h] ,Eta_new[h]),silent=TRUE)

if (class(xxx)=="try-error") {
xxx<-dCNmod (y,matrix(mu_Y.X[,h],I,M),as.matrix(SigmaY.X_new[,,h]), //

Alpha_new[h],Eta_new[h])

h_p[,h]<-qqq
h_m[,h]<-xxx
priorphi.ih[,h]l<-pro.new[h]*h_m[,h]*h_p[,h]

}

zeri<-c(zeri,sum(priorphi.ih==0)>0)

loglik.new<- sum(log(apply(priorphi.ih,1,sum)))
loglik.iterECM<-c(loglik.iterECM,loglik.new)
iterECM<-iterECM+1

if (iterECM>2){
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a<-(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])/ //
(loglik.iterECM[(iterECM)]- loglik.iterECM[(iterECM-1)]1)
if (a=="NaN") a<-0
loglik.inf<-loglik.iterECM[(iterECM-1)]+(1/(1-a))*(loglik.iterECM[iterECM]- //
loglik.iterECM[(iterECM-1)1)
loglik.inf.221luglio<-loglik.iterECM[(iterECM)]+(1/(1-a)) //

*(loglik.iterECM[iterECM+1]-loglik.iterECM[(iterECM)])

improvement3<-loglik.inf.22luglio-loglik.new
if (k==1) loglik.inf<-loglik.iterECM[iterECM]
improvement<-loglik.inf-loglik.new

improvement2<-loglik.inf-loglik.iterECM[iterECM]
if ((((loglik.inf-loglik.new)<tol[1]) & (loglik.inf-loglik.new)>0) //
|| (iterECM==iter.max[1])) stopECM<-TRUE else loglik<-loglik.new

} else {

loglik<-loglik.new

EM.ok<-C.noninvertibile+SigmaY.noninvertibile+SigmaX.noninvertibile

EM.ok1<-sum(apply(SigmaY.X_new,3, function(x) eigen(x)$values)<10~(-20))+ //

sum(apply(SigmaX_new,3, function(x) eigen(x)$values)<10~(-20))

EM. ok<-EM. ok+EM. okl

if (EM.ok == 0) {

dimnames (SigmaX_new)<-list(v_unique,v_unique)
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dimnames (SigmaY.X_new)<-list(y_list,y_list)

npar<- (6xk)-1 + (k*P) + nparcov.X + kx(P.star+M) + nparcov.Y

bic<- 2*loglik-npar*log(I)

massimo<-c()

#ICL1

cl<-apply(p.ih,1,which.max)

for (i in 1:1){
massimo[i]<-p.ih[i,c1[i]]

}

icl_mazza<-bic+2*sum(log(massimo))

#ICL2

entropia.post<-function(z) {
contr<-log(z) *z
contr.ok<-contr!="NaN"

-sum(contr[contr.ok])

}

icl_baek<-bic-2*sum(apply(p.ih,1,entropia.post))
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# Ordering

pos<-sort.list(pro.new)

AlphaX<-Alpha_new_x[pos]
EtaX<-Eta_new_x[pos]
muX<-muX_new[,pos]
SigmaX<-SigmaX_new[, ,pos]
Alpha<-Alpha_new[pos]
Eta<-Eta_new[pos]
B<-Beta_new[,pos]
SigmaY.X<-SigmaY.X_new[, ,pos]
pi<-sort(pro.new)

end_time <- Sys.time()
tempo<-toc()
total_time<-end_time - start_time

total_time2<-tempo$toc-tempo$tic

cl<-rep(1,I)

pih<-priorphi.ih/apply(priorphi.ih,1,sum)

if (kx>1) {

p.ih<-pih[,pos]
cl<-apply(pih,1,which.max)
u.ih<-u.ih[,pos]
v.ih<-v.ih[,pos]
h1.ih<-h_1[,pos]
hm.ih<-h_m[,pos]

}

} else {
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Alpha<-NA
Eta<-NA
muX<-NA
SigmaX<-NA
AlphaX<-NA
EtaX<-NA

B<-NA
SigmaY.X<-NA
pi<-NA
p.ih<-NA
u.ih<-NA
v.ih<-NA
loglik<-NA
loglik.iterEM<-NA
npar<-NA
bic<-NA

cl<-NA
icl_baek<-NA
icl_mazza<-NA
total_time<-NA
total_time2<-NA

}

out<-list (M=M,k=k,P=P,P.star=P.star,hl.ih=h1.ih,hm.ih=hm.ih,muX=muX, //

SigmaX=SigmaX,D=D,pi=pi,B=B,loglik.inf=loglik.inf,loglik.new=loglik.new, //

SigmaY.X=SigmaY.X,loglik.iter=loglik.iterECM,loglik=1loglik,npar=npar, //

BIC=bic, modelnameX=modelnameX, modelnameY=modelnameY, //
ICL_MAZZA=icl_mazza, ICL_BAEK=icl_baek, Alpha=Alpha, Eta=Eta, //

AlphaX=AlphaX, EtaX=EtaX,C.noninvertibile=C.noninvertibile,SigmaX.noninvertibile= //

SigmaX.noninvertibile,SigmaY.noninvertibile=SigmaY.noninvertibile, //

v_unique=v_unique, p.ih=p.ih, u.ih=u.ih,v.ih=v.ih,cl=cl, //

time=total_time,time2=total_time?2)
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class (out)<-"SuCNCW"
out

3
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