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Abstract

Given a transitive Anosov diffeomorphism on a closed manifold it is known that,
for smooth enough observables, the system is mixing w.r.t. the measure of maximal
entropy. Therefore, it makes sense to investigate the speed of decay of correlations
and to look for the so-called Ruelle-Pollicott resonances, in order to determine a
complete asymptotics for the decay of correlations. In this thesis we are able to
find the first terms of that asymptotics and to prove an estimate for the speed of
decaying of correlations. The proof is based on a surprising connection between the
action of a transfer operator on suitable anisotropic Banach spaces of currents and

the action induced by the Anosov map on the de Rham cohomology.
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Introduction

Hyperbolic dynamics has a long history in the field of dynamical systems. Both
discrete-time and continuous-time systems consist of smooth maps, or smooth flows,
which acts on a differentiable manifold and, at least in a region of that manifold,
it defines an expanding and a contracting direction for the derivative. This double
behavior produces very complicated orbits, so that the dynamics can be considered
random, even if the system is entirely deterministic. Thus, these systems show a de-
terministic chaos. Anosov systems falls into the category of (uniformly) hyperbolic
dynamical systems and they owe their name to D.V. Anosov [2], one of the great
mathematicians, with S. Smale [69], R. Bowen [15], D.Ruelle [65], Ya. Sinai [66, 67],
who gave the main initial contributions to the topic. The investigation of chaotic
dynamical systems, which include Anosov systems, is generally complex, and the
computation of a few single orbits, when achievable, turns out to be meaningless
for the study of real phenomena. To give an idea of this, think for instance of a
hyperbolic dynamical system which models a real phenomenon and assume that one
wants to predict the evolution of some initial state xy. The measurement of the
initial state is subjected to errors, hence one gets an xy which is close to xg, but
may not coincide with zy. Since the system is chaotic, the computed evolution of
To is usually far from the real orbit of xy. In view of this fact, the usual approach
to study these dynamical systems is a qualitative and quantitative statistical ap-
proach, through the use of ergodic theory [71]. The main statistical properties that
one generally wants to study concern topological transitivity, topological mixing,
minimality, ergodicity, unique ergodicity, mixing, exponential mixing, central limit
theorems, etc. (see [47] for definitions). Some of these properties require to set a
reference invariant probability measure, which is usually the SRB measure [74] or

the measure of maximal entropy [54].
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In this thesis, we deal with smooth Anosov diffeomorphisms f € C*°(M), acting
on a Riemannian manifold M, with expansion factor A > 1 and contraction factor
A~! < 1(see Definition 1.1). We study the mixing property, and consequently the
speed of mixing w.r.t. the measure of maximal entropy ugas, also named Bowen-
Margulis measure, after R. Bowen [13, 14] and G.Margulis [54], who gave two differ-
ent, but equivalent, constructions of this important invariant measure (see Appendix
D). For the sake of completeness, recall that the f-invariance of ppys means that,
for any continuous function ¢ € LY (M, upnr), upm(¢ o f) = pupu(4). In addition,

Mpp is mixing, that is,

n—-+0o

i o ™ d = d d
im M(gb ) dusm /M¢ ,UBM/Mw KUBM,

for any ¢, 1 € L?(M, upys). The mixing property is equivalent to the so-called decay
of correlations, namely liIJIrl CH(p,ap) = 0, for all ¢,v» € L*(M, pigar), where the
n—-+0oo

correlation function is defined to be

Ol () = /M (60 F") dupar — /M 6 dusar /M ¥ dua.

Once the decay of correlations is established, natural questions are: how fast is the
convergence to the limit? Is there a complete asymptotics for the correlation func-
tion, for n — 400? By classical results [15], the decay of correlations is exponential,
at least for Holder observables, in the sense that there exists a o € (0,1) such that
|CI (¢, )] < Cyp0™, whenever ¢ and 1) are Holder functions on M. With the ter-
minology “classical” we refer to all results obtained by coding the system, through
the construction of a Markov partition, and then by studying spectral properties of
transfer operator of the induced shift map (see for instance [5] for an overview of
the transfer operator tool). This is the point of view adopted by the authors above
cited. On the other hand, a “modern” approach to solve this kind of problems was
introduced in [11], where the authors studied spectral properties of transfer opera-
tors, on appropriate anisotropic Banach spaces of distributions, without coding the
system. This pioneering work opens the possibility to gain deeper results, princi-
pally with the work of C.Liverani, S.Gouézel, V.Baladi, M.Tsujii et al. [6, 37, 38,
50, 52, 8, 9, 35, 36]. We point out that the construction of Gouézel and Liverani
is quite different from the one of Baladi and Tsujii. In effect, the first two give a

geometric definition, obtained considering cones in tangent space, while the others
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adopt a dual point of view, considering cones in cotangent space, via Fourier trans-
form, obtaining anisotropic Sobolev spaces. In this thesis, we follow the geometric
construction of Gouézel and Liverani. By using anisotropic Banach spaces, they
proved in [38] the following result, that we rewrite with our setting in mind, and
they answered our second question, i.e., the existence of the asymptotics for the

correlation function, for n — +oo.

Theorem 0.1. Let f € C be a topologically transitive Anosov diffeomorphism on
M, with expansion, resp. contraction, factor X > 1, resp. A=t < 1. Then there
exists a unique measure of mazximal entropy ppnr. In addition, for every e > 0 there
exists r € N, with \™" < ¢, and a finite set Z(r) = {&1, ..., &} C C, with |&§] < 1,
such that, for every & there are a finite number N; € Z of nonzero bilinear forms

{Cfi,k('a )}ivil, f07" which

ne N;
ofd = d d "nFee " .
/M<¢> Y dpsas /M¢ uBM/Mw uonr+ 30 S €rnkeg (6, 0) o€, (0.1)

i=1 k=1

for any ¢, € C™(M). In particular, Z(r") D Z(r), whenever r’ > r.

The equality (0.1) is generally called a Ruelle-Pollicott asymptotics, after D.Ruelle
(63, 64] and M.Pollicott [60], and the complex numbers {1,&,...,&,. } are called
Ruelle-Pollicott resonances. We point out that (0.1) holds true for any € > 0 only
for observables ¢, € C>°(M). We also underline that above theorem only proves
the existence of the asymptotics of the decay of correlations, but it does not give
any information about the number and location of Ruelle-Pollicott resonances. For
instance, it is well known that for hyperbolic automorphisms of tori (see Example
1.6), which are the easiest example of Anosov diffeomorphisms, = = @ and the
set of Ruelle-Pollicott resonances reduces to {1}. This fact can be easily proved
by using Fourier analysis. On the other hand, there exist Anosov diffeomorphisms
which admit nontrivial Ruelle-Pollicott resonances for the SRB measure [1, 68, 61],
or for which there is an estimate on the number of resonances [45]. We warn the
reader that some to these references use equivalent definitions of Ruelle-Pollicott
resonances, such as the poles of dynamical zeta functions or the inverse of zeros of
Ruelle-Fredholm determinants (see [7]).

Concerning the measure of maximal entropy, there are few results about the exis-

tence and location of Ruelle-Pollicott resonances and a complete asymptotics (0.1) is
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known only in the trivial case of hyperbolic automorphisms of tori, when the Bowen-
Margulis measure coincides with the SRB measure and the Lebesgue measure. Some
new ideas to face this problem arose from [20, Section 5], which, in turn, is inspired
by results of [31] (see also [70] for another recent application of these ideas). In
fact, the authors of [31] found the complete set of Ruelle-Pollicott resonances for
linear pseudo-Anosov maps on half-translation surfaces, that are a generalization to
higher genus surfaces of hyperbolic automorphisms of the 2-torus [32]. Their proof
is based on the investigation of the spectrum of Koopman composition operator
T ¢ = ¢o f on anisotropic Banach spaces of distributions, since eigenvalues of 7 co-
incide with Ruelle-Pollicott resonances. Moreover, since linear pseudo-Anosov maps
admit, up to a finite set of points, smooth 1-dimensional stable/unstable foliations,
one can take the normalized vector field v* (resp. v*), tangent to the stable (resp.
unstable) foliation. Then, since in their case the Lie derivatives L,s and L,. map
eigenvectors to eigenvectors, they are able to obtain all eigenvalues of 7 and to
relate them to eigenvalues of the induced action on the first de Rham cohomology
group. On the other side, the authors of [20] considered transitive (not necessarily
linear) Anosov diffeomorphisms of the 2-torus. They constructed anisotropic Ba-
nach spaces of currents (the 2-dimensional version of the spaces used in these thesis),
obtained as the closure of differential forms w.r.t. a suitable norm, and looked for
eigenvalues of the pushforward operator. Unlike [31], the role of the Lie derivative
in this case is taken by the exterior derivative. By relating the spectrum of the
pushforward operator on 1-currents and the induced action on the first de Rham
cohomology group, they proved that there are no Ruelle-Pollicott resonances in the
annulus {z € C| e ™ < z < 1}, for the measure of maximal entropy (A4, rep-
resents the topological entropy of the system, see Appendix D). As a consequence,
they obtained the following result for the speed of mixing relative to the measure of

maximal entropy.

Theorem 0.2. There exist v € N, C' > 0 and k € (0,1) such that, for any couple
of observables ¢, € C(T?),

[0 dumsi = [ 6 dun [ v duBM‘ < Clller []lcr (e~
T2 T2 T2

The aim of this thesis is to extend [20] to include every transitive Anosov dif-

feomorphism on manifolds of every dimension. Notice that every known example
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of Anosov diffeomorphism is topologically transitive and it is conjectured that this
is always the case (see Remark 1.14). Accordingly, the following main theorem we
prove in this thesis is currently the analogous, except for a small detail (see Remark
0.3), of Theorem 0.2.

Theorem (Main Theorem). Let M be an orientable, closed (compact and without
boundary), connected Riemannian manifold and let f: M — M be a C* a topo-
logically transitive Anosov diffeomorphism on M with expanding, resp. contracting,
factor X > 1, resp. A7t < 1. Let = max{|Ay|, \"Le*r} where Ay is the second
largest eigenvalue of the induced action fu on the ds-de Rham cohomology group
Hi (M) (d, is the dimension of stable manifolds). Then, there exist r € N and
C' > 0 such that, for every couple of observables ¢, € C(M),

\ / (60 f™) dpugas — / 6 dupas / wduBM'gcme"hwpu<z>||muwum
M M M

We actually obtain the following stronger result.

Theorem (Strong Theorem). Let M be an orientable, closed (compact and without
boundary), connected Riemannian manifold and let f: M — M be a C* a topo-
logically transitive Anosov diffeomorphism on M with expanding, resp. contracting,
factor X > 1, resp. A=t < 1. Let {A; = e*or Ay, ... A} be the set of eigenvalues
of the induced action fiu on ng%(M) such that |A;| > X~teMor foranyi=1,... ,m.
Then, there exist r € N, C' > 0 and, for any i = 2,...,m, there exist N; € N and

nonzero bilinear forms {cp, x(-, ')}kaial, such that

‘ /M (b0 F") dpipai— /M b dusa /M ¥ dupy—

m Ni—l

=0 (NeherymFey (6, 0)

1=2 k=0

< OA"[gllerl[¢ller

for every couple of observables ¢, € C(M).

The strong theorem shows that Ruelle-Pollicott resonances larger than A7, as
well as theirs multiplicities, are completely determined by the action induced by f
on de Rham cohomology. On the other hand, we are not aware of any example for
which |Ay| > A~leor. In particular, assuming f to be topologically conjugated to
a hyperbolic automorphism of a torus, a property which is satisfied in many cases

(see Proposition 1.18), we obtain the following corollary.
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Corollary (Main Corollary). Let f: M — M be a C* Anosov diffeomorphism of a
torus M with expanding, resp. contracting, factor A\ > 1, resp. A=t < 1. Then, there
exist 1 € N and C > 0 such that, for every couple of observables ¢, € C*(M),

‘ / (60 )i — / odiinar / wduBM‘scx”rwncruwucr (0.2)
M M M

Moreover, when M = T?,

/ (¢ o f")dupn — / ¢dupm / wduBM'Sce”hf””HéHm\lew (0.3)
'Ir2 T2 T2

Remark 0.3. As a consequence of this corollary, there are no Ruelle-Pollicott res-
onances in the annulus {z € C | A™! < |2] < 1} {z# € C | e ™P < |2| < 1}
in the 2-dimensional case). Notice that the bound of (0.3) is stronger than (0.2),
since eor > X\. We point out that the authors of [20] proved a slightly stronger
result for Anosov diffeomorphisms of the 2-torus. In effect, they showed that there
are no Ruelle-Pollicott resonances in the annulus {z € C | e7™r < |2] < 1}, ex-
cluding values of modulus |e~"#|. This is a peculiarity of the 2-dimensional case
and Remark 3.26 gives an idea of the proof and why it cannot be generalized to

higher-dimensional cases.

The thesis is organized as follows. In Chapter 1, we firstly recall some basic con-
cepts of Anosov diffeomorphisms, we give the setup of the problem and we restate
our main results. In Chapter 2, we introduce a suitable family BP%! of anisotropic
Banach spaces of currents. They are obtained as the closure of spaces of differential
forms on M w.r.t. an appropriate anisotropic norm. Anisotropic means that this
norm encodes different behaviors along stable and unstable subbundles. In particu-
lar, the elements of our Banach spaces behave as differential forms along the unstable
subbundle, while they behave as currents (the dual of differential forms) along the
stable subbundle. As already specified, anisotropic spaces have been largely used
in the last twenty years, starting with [11], and there are nowadays many different
versions. The ones that inspired our spaces are taken by [37, 38, 36|, and coincide
with the spaces used in [20] for the case of the 2-torus. Secondly, we prove that
the pushforward operator f,, i.e., the suitable transfer operator to get our results,
is quasi-compact. Quasi-compact means that the spectrum of f, on B! is made of

a finite set of eigenvalues of finite multiplicity out of a small ball of radius slightly
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larger than the essential spectrum. Accordingly, we may consider the action of f,,
limited to eigenspaces corresponding to the largest eigenvalues, as the action of a
matrix on a finite-dimensional vector space. We exploit Hennion’s Theorem 2.9 to
do it. Chapter 3 contains the key part of the thesis and it is dedicated to the investi-
gation of the spectrum of f, on BP%!. For later use, we are interested in the spectrum
of f, when acting on BP%%  where d, is the dimension of the stable subbundle. The
first section of the chapter contains an adaptation to our setting of some results in
[38]. In particular, we prove that e is the unique maximal eigenvalue of f,|zp.q.d.,
it is simple and the corresponding eigenvector, joined to its dual eigenvector, de-
fines the measure of maximal entropy. The second and third sections include the
cohomology aspects of our reasoning and contain the main original contributions.
We relate part of the spectrum of fi|gp.q.as to the spectrum of the induced action fyu
on the anisotropic de Rham cohomology ] g}g’ds, obtained as the quotient of closed
ds-currents w.r.t. exact currents in BP%% . The next point consists in the proof that
the anisotropic de Rham cohomology is isomorphic to the standard de Rham coho-
mology. It is difficult, at least to us, to prove directly that the two vector spaces
are isomorphic (see Remark 3.24). Hence, in Section 3.3, we define a new family of
anisotropic Banach spaces of currents C?%!, which are an intermediate version of the
spaces BP9l that is Brrha—Li C crel C BP9l Once we have these spaces, we are
able to define the anisotropic de Rham cohomology H g}g’l(M ), which turns out to be
isomorphic to the standard de Rham cohomology. In conclusion, we can study the
action on the standard de Rham cohomology to get information about the discrete
spectrum of f, on BP%%  or equivalently on CP%%. The last section of Chapter 3
contains the proofs of the main results above stated. In Appendix A and Appendix
B we recall some tools of functional analysis and Hodge theory that we use in the
thesis. Appendix C contains the proof of some technical results, while Appendix D
contains a basic overview of entropy theory in dynamical systems.

We conclude this introduction by saying that the thesis is almost self-contained.

For the few results that are stated without proof, we indicate direct references.
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Chapter 1
Setup and results

In this chapter we first recall some basic notions of Anosov diffeomorphisms,
then we state the assumptions regarding the dynamics we are going to study and

our main result.

1.1 A survey about Anosov diffeomorphisms

This section is a brief reminder of the main properties of Anosov diffeomorphisms.
For a complete introduction to this topic we refer to the original monograph of D.V.
Anosov [2], which collects most of the oldest known results about these dynamical
systems. We also suggest the following more recent references [17, Chapter 5] and
[47, Part 4]. We also rewrite the proof of some results, while for the others we just

mention the reference.

Definition 1.1. Let M be a C* Riemannian manifold and let f: M — M be a C*
diffeomorphism on M. The discrete dynamical system defined by repeated iterations
of f is said to be Anosov if M is a hyperbolic set. This means that the tangent
bundle T'M splits into two subbundles

TM = E*® E"
such that:
1. both subbundles E*/* are invariant under the action of df, i.e.,
d fE" = By for allx € M;

1
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2. there exist real constants ¢ > 0 and X\ > 1 such that, for all n € N,

|dof"0|| > cA™|o||  for allv € E,
ldef"v]| > eA™||v|| for allv € EY,

where the norm is induced by the metric g of M.
E? and E* are called the stable and the unstable subbundles, respectively.

Lemma 1.2. The subbundles E*/* depends continuously on x € M. Accordingly, if

M is connected, then dim(E?®) and dim(E") are constant.

PROOF. Let {x;}rez+ be a sequence converging to xy. Up to subsequences, we
can assume that dim(E; ) = m is constant. Let vg1,... 0%, be an orthonormal
basis of E; . Since the unit tangent bundle T' 'M is compact, up to considering
subsequences, we obtain an orthonormal basis vg 1, ..., vy, of Ej , which satisfies
the first condition of (1.1), since df is continuous. In addition, dim(E; ) > m =
dim(E;, ). Repeating the argument for E* on a subsequence of {x;}, one obtains
that dim(E} ) > dim(E}, ). But, dim(E;)) +dim(£; ) = dim(M), hence £° and E*
depends continuously on x and, if M is connected, their dimension is constant.

Q.E.D.

The following lemma shows that there exists an equivalent adapted metric g,
such that (1.1) holds for ¢ = 1.

Lemma 1.3 ([55, Mather]). For every X € (1,\) and € > 0, there exists a metric
g, equivalent to g, such that (1.1) holds true for ¢ = 1 and for \ replaced by A
Moreover,

g(vs,v,) < €
for all vy € E® and v* € E“.
PROOF. Fix a constant A € (1, A) and consider K € N such that ¢(A\/A)% > 1. Let
v,w € T, M and assume v = vs + v, w = ws +w, € E; @ £ is the unique splitting

into stable and unstable components. We define

g;(;(?], w) = gx(“s; ws) + gx(vua wu)a

where

=

-1

gm(@ea ws) = Aikgf*k(r)(dmfikvm dmfikws%
0

i



1.1 A survey about Anosov diffeomorphisms

K-1
Uu;wu Z)‘ g x) d f 'Uiud fkwu)
k=0

In order to simplify the notation, from now on we drop the dependence on x € M.

Given v, € E® and v, € E" their induced norms are

o, ZHA o, ol = Z\M Edftu, ||

Thus, for v, € E?,

|df v, |* = ZHA Rdf 1)1 = VZHA Tdf~Iu,|* =

= X2([osl” = llosll® + 1A df 7 0,]?) > R (josl” = fos|* + XS Jlus]l) >
> N2u, 2

Similarly, one can prove that |dfv,|> > A2|v,|? for v, € E*. Notice that § is a
continuous but generally not smooth metric, because it depends on the splitting of
the tangent bundle into stable/unstable subbundles which is generally not smooth.
Moreover, we remark that E° and E* are orthogonal with respect to g. Finally,
using classical results of differential geometry [43], given a small ¢ > 0, one can
approximate g with a smooth adapted metric g, which is hyperbolic with constant
X — e and with the angle between stable and unstable subbundles uniformly bounded

by e. Q.E.D.

An equivalent definition of Anosov diffeomorphisms involves invariant cones.
Recall that a subset K of a vector space is a cone if cv € K, for any vector v € K,
and for any constant ¢. When f is an Anosov diffeomorphism, we can write any
vector v, € T, M, in a unique way, as a sum v, = v, +vy, with v} € E? and v¥ € E}.
Accordingly, for any a € (0,1), we define the following families of stable/unstable

cones:

Ct ={veT.M|v=2v"+v", |0 < afv’]},

(1.2)
Cr = {o e TLM| v =+ 0", '] < allo"]}

Proposition 1.4. For any a € (0,1) and for any x € M

d, fCy € int(C7% ) U{0}, dofC™ C int(Cy 7)) U {0}
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Moreover, for any § € (0, ), there exists o € (0,1) such that

[ f~ 0[] > (A = 6)"[|v]] if ve
e f"0]l > (A = 0)"[v] ifveC”.

PROOF. Let v € CJ** be a nonzero vector in the stable cone and let v = v* + v* be
the decomposition of v along the unstable and stable directions with ||v*|| < al[v®]|.

Accordingly, d,f~'v = d,f~'v* + d,f~*v® and, by using (1.1), we obtain that
e f 10 < A7H[wt | < Ahallo®| < APalld. f .

We conclude that d,f~'v € int(C7% ())- A similar computation shows the second
inclusion.

Let us prove the second part of the statement. By using the inclusions we have
just proved, we can limit to consider the case n = 1. Let v = v" +v° € CJ“ be as

above. Then

A= A"la
da: -1 Mlosl = /\—1 ull > () — /\—1 5| > (_)
e f = 0ll > Allv”l] lo*]l = ( )l = =) vl

where we used that [[v"|| < «f[v?|| and ||v|| < (1 + «)||v®||. By setting
< )
a —
TAFAE=6

we obtain that
A=Al
1+«
which concludes the proof of the first inequality. The second one can be proved with

ZA_(Sa

a similar argument. Q.E.D.

Next proposition shows that one can actually define Anosov diffeomorphisms

using families of stable/unstable cones.

Proposition 1.5. Let f be a C* diffeomorphism on the Riemannian manifold M.
Let us suppose that there exists o > 0 for which there are two continuous bundles

Es/% that define two families of cones C/™, as in (1.2). Assume that
1. d, f71Cy* C int(Cy4 ) U {0} and d, fC3 C int(Cy5,) U {0}

2. \ldafoll < Joll if v € C3*\{0} and [|dof 0l < [0l if v € C*\ {0}
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Then f is an Anosov diffeomorphism.

PROOF. Since the unit tangent bundle T*M is compact, there exists A > 1 such
that
e f 10| > Ao ifvecC®
ldzfoll > Aol it v e C*

Next, define
E; = () dpwf*Ch,) and EY = [ dpr@) FFC15% -
keN keN
Since E?, resp. E*, belong to the stable, resp. unstable, cone C;“, resp. C'»*, the
condition (1.1) is verified. In addition, if v € Ef N EY, then v € C>* N C%*, which
implies v = 0. Since the dimensions of £* and E* coincide with the dimensions of
E® and E*, respectively, we conclude that TM = E° @ E*.
Q.E.D.

Example 1.6 (hyperbolic automorphisms of tori). Let M = T¢ = R4/Z? be the
d-dimensional torus, with d > 2. Given a matrizx A € SL(d,Z) with no eigenvalues
of modulus 1, the action of A on R? induces a hyperbolic automorphism of T¢
f:T¢—T?
x+— Ar  mod Z
This is the easiest example of Anosov diffeomorphism, whose stable (resp. unstable)

subspace is the direct sum of generalized eigenspaces corresponding to the eigenvalues

of modulus smaller (resp. greater) than 1.

Hyperbolic toral automorphisms do not exhaust the set of Anosov diffeomor-

phisms. In effect, we have the following

Proposition 1.7. [17, Corollary 5.5.2] The Anosov property is an open condition
in the space of smooth diffeomorphisms with respect to the C topology.

Example 1.8. Consider the linear automorphism of T?

fo: T2 = T?
2z +

x = T +y
Y Tty

)
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Given 6 € (0,1), let fs be the family of C* diffeomorphisms

fs: T? = T?

il

One can easily check that || fs — follcr < C0, hence, by Proposition 1.7, there exists

2z 4y — 2 sin(27x)

T +y— L sin(2rz)

§ > 0 such that, for every § € (0,9), f5 is a nonlinear Anosov diffeomorphism. To

learn more about this nonlinear examples see for instance [35, 49, 51].
In addition, the following result also holds

Proposition 1.9. [17, Corollary 5.5.4] Anosov diffeomorphisms are structurally
stable (a diffeomorphism f of M is structurally stable if, for each e > 0, there exists
d > 0 such that, for any other diffeomorphism g, with ||f — g||cr <, there exists a
homeomorphism h of M for which ho f = goh and ||h —id||co < €).

Proposition 1.7 and Proposition 1.9 imply that, if f is an Anosov diffeomorphism
and g is C! close to f, then g is Anosov and f is topologically conjugated to g (see
Definition 1.17), with a conjugacy homeomorphism h close to the identity.

An Anosov diffeomorphism defines a geometric structure on M which is summa-

rized by the following stable/unstable manifold theorem.

Theorem 1.10. [17, Theorem 5.6.4, Proposition 5.6.5, Corollary 5.6.6, Proposition
5.9.1] Let f be a C" Anosov diffeomorphism, with r > 1 or r = co. Assume that
A > 1 1is the expansion factor and that the metric g is adapted. Then there exist
€ >0 and 6 > 0 such that, for any x € M,

1. denoting by d the distance induced by the metric g, the local stable manifolds
We(z) ={y € M d(f"(x), f"(y)) < € for any n > 1}
and the local unstable manifolds
W(z) ={y € M| d(f"(x), ["(y)) < € for anyn > 1}
are C" embedded disks.

2. T,We(x) = E*(y), ify € Wi(z), and T,W*(z) = E*(y), if y € W*(x).
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5. f(We(x)) S We(f(x)) and f~H (W (x)) € We(f~H ().
4. Let d*, resp. d*, be the distance induced by d on W(x), resp. W(z). Then
d(f (), F71(2) > Ad*(y, 2),
when y,z € W2 (x), and
d*(f(y), f(2)) > Ad"(y, 2),
when y, z € W*(x).

5. Denote by exp,: T,M — M the exponential map at p. If 0 < d(z,y) < € and
exp, ! (y) belongs to the stable cone C5%, then

xT

d(f (@), [~ (y)) > Ad(z,y)

If 0 < d(z,y) < € and exp, ' (y) belongs to the unstable cone C*, then

d(f(x), F(y)) > Ad(z,y)

6. If y € Wi(x), there exists € such that W5(y) C W(z). If y € W*(x), there
exists € such that Wi(y) C Wk (x).

7. For every € > 0 there exists § > 0 such that, if d(z,y) < 6, then W?(x) and
W(y) are uniformly transversal and W2 (x) NWX(y) consists of a single point,
denoted by [x,y].

8. The global stable manifolds

WH@) = {y € M| lm_d(f"(), f"(y)) =0}

and the global unstable manifolds

W(z) ={y € M| lim d(f™"(x), f"(y)) = 0}

n—-+o0o
are C" immersed manifolds. In particular, there exists € > 0 such that, for

any € € (0,€)
400 +00
W) = | W), W) = o))

As a consequence, d*(f~(z), f~H(y)) > Ad*(z,y), whenever y € W*(x), and
d"(f(x), f(y)) > Xd*(x,y), whenever y € W*(z). f(W?*(x)) = W*(f(z)) and
fW(z)) = W(f(x))-
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Remark 1.11. Notice that global stable/unstable manifolds define two transversal
foliations, called the stable/unstable foliation. We point out that, despite each leaf
of the stable/unstable foliation has the same degree of smoothness as f, the foliation
itself is generally only Hélder [47, Theorem 19.1.6].

We recall some basic concepts of topological dynamics.

Definition 1.12. A topological dynamical system f: X — X, where f is a home-
omorphism of a topological space X, is topologically transitive if, for any U, V
nonempty open sets, there exists n € N such that f"(U) NV # &. When X is a
compact metric space, topological transitivity is equivalent to the existence of a dense
orbit [71, Theorem 5.8/, i.e., there exists x € X such that {f"(z)| n € Z} = M. f is
topologically mizing if, for any U, V nonempty open sets, there exists ng > 0 such
that f*(U)NV # @, for any n > ny.

For Anosov diffeomorphisms the following equivalence holds.

Proposition 1.13. [17, Theorem 5.10.3] Let f be an Anosov diffeomorphism on a

connected manifold M. Then the following properties are equivalent.
e Fvery unstable manifold is dense in M
e Fvery stable manifold is dense in M ;
e f is topologically transitive;
e f is topologically mixing.

Remark 1.14. Every known example of Anosov diffeomorphism is topologically
transitive, hence Proposition 1.13 applies. In effect, it is conjectured that every

Anosov diffeomorphism is topologically transitive.

Up to now, we only gave examples of Anosov diffeomorphisms on tori (Example
1.6, Example 1.8). On the other hand, there are also other manifolds (i.e., manifolds
not homeomorphic to tori) which admit Anosov diffeomorphism. The following

example by Smale should be the first appearance of nontoral Anosov diffeomorphism.

Example 1.15. [69, Section 1.3.] Let G, G two copies of the Heisenberg Lie group.
Hence, the Lie Algebra g;, i = 1,2, is generated by {X;,Y;, Z;} with [X;,Y;] = Z; and
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(Xs, Zi] = [Yi, Z;]) = 0. Let us consider G = Gy x Go and let us define a hyperbolic
automorphism of f on G by defining the action of df on g;, i =1,2. Set A = 2++/3

and assume that

df(Xl) - )\Xl df(Xg) = /\71X2
df (Y1) = A*Y; df (Y2) = A\7Ya
df (7)) = N*Z, df (Zy) = N3 2,

Recall that every element of G;, resp. g;, can be represented as a 3 X 3 matrix

z

0 z
y |, resp. 0
1 0

o O R

1
0
0

o = 8

Yy )
0

where x,y,z € R. Let Q(\/3) be the field of rational numbers extended with /3
and let 0: Q(v/3) — Q(V/3) be the nontrivial Galois automorphism. Let b be the

subgroup of g = g1 X g2 containing the 6 X 6 matrices

0Oz 20 0 0
00y 0 0 0
00 0O0 O 0
000 0 o) o(z)
0000 0 oy
00 0O0 O 0

b is a lattice of g, while H = exp(h), which is defined through the exponential map, is
a uniform discrete subgroup of G. The quotient M = G/H is a manifold, actually a
nilmanifold, i.e, the quotient of a nilpotent Lie group w.r.t. a uniform lattice. Since
f preserves H, it induces an Anosov action on M. Finally, by topological reasons,

M cannot be homeomorphic to a torus.

Remark 1.16. Notice that tori are particular examples of nilmanifolds, i.e., they
are the quotient of the nilpotent Lie group R™ w.r.t. the lattice Z". Accordingly,
nilmanifolds Anosov diffeomorphisms include toral Anosov diffeomorphisms. There
are also other manifolds, called infranilmanifolds, that are not nilmanifolds, but are
finitely covered by a nilmanifold, and that could support this dynamical systems.

We do not get into details and refer to [42, 24, 25]. We only mention that these
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algebraic manifolds cover all known examples of Anosov diffeomorphisms. In fact,
it is conjectured [69] that there are no other manifolds, in addition to infranilmani-
folds, which admit Anosov diffeomorphisms. To conclude, we specify that there are
infranilmanifolds which do not admit Anosov diffeomorphisms and there is a lot of
recent literature about the problem of classifying infranilmanifolds which do (see for
instance [26, 48, 28)).

In view of Remark 1.16, every known manifold admitting Anosov diffeomorphism
is of algebraic nature. Accordingly, one can define hyperbolic automorphisms of in-
franilmanifolds, which generalize the concept of hyperbolic automorphisms on tori.
Thus, given an infranilmanifold M admitting Anosov diffeomorphisms, there are
examples of linear hyperbolic invertible maps on M, which can be easily studied,
because of linearity (Example 1.15 is a hyperbolic automorphism of a 6-dimensional
nilmanifold). Nonlinear Anosov diffeomorphisms are, of course, much more compli-
cated, but, in many cases, one can relate it to linear cases. In effect, let us recall

the following definition.

Definition 1.17. Let f;: M; — M;, i = 1,2, be two (at least continuous) invertible
dynamical systems. fi is topologically conjugated to fo if there exists a homeomor-

phism h: My — Ms, which makes the following

MlL)Ml

.
M2 i) M2

a commutative diagram. Consequently, My and Ms are homeomorphic.
By classical results of Franks and Newhouse we have the following proposition.
Proposition 1.18. The following statements hold true.

1. Let f: T¢ — T? be an Anosov diffeomorphism of the torus T?. Then f is
topologically conjugated to a hyperbolic automorphism of T [34].

2. Let f: M — M be a codimension 1 Anosov diffeomorphism of M, i.e., as-
sume that the dimension of the stable or unstable subbundle is 1. Then f
is topologically conjugated to a hyperbolic automorphism of the torus T4,

Accordingly, M is homeomorphic to a torus [33, 58].
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Franks’ theorem (statement 1. above) was extended by Manning [53] to include
Anosov diffeomorphisms on infranilmanifold. Only recently [25], it was discovered
that there is a mistake in Manning’s proof, because he makes use of a lemma by
Auslander [3], which in turn is false. What remains true of Manning’s paper is the

following proposition.

Proposition 1.19. Let f: M — M be an Anosov diffeomorphism of the nilmanifold
M. Then f is topologically conjugated to a hyperbolic automorphism of M.

The author of [25] gives an explicit example of an Anosov diffeomorphism of an
infranilmanifold M which is not topologically conjugated to a hyperbolic automor-
phism of M. Defining the broader concept of hyperbolic affine automorphism of an

infranilmanifold he also conjectured the following.

Conjecture 1 ([25]). Let f: M — M be an Anosov diffeomorphism of the infranil-
manifold M. Then f is topologically conjugated to a hyperbolic affine automorphism
of M.

Remark 1.20. The veracity of this conjecture is reasonable. In effect, Gromov [39]
firstly proved a parallel, actually stronger, results for expanding maps. Then the
author of [25] fixed the same mistake as above. In particular, they proved that every
expanding map of a compact manifold M is topologically conjugated to an affine
expanding infranilmanifold endomorphism. As a consequence, it is reasonable to

state the following stronger conjecture.

Conjecture 2 ([25]). Let f: M — M be an Anosov diffeomorphism of the compact

manifold M. Then f is topologically conjugated to a hyperbolic affine automorphism
of the infranilmanifold M.

We conclude this section devoted to the basic prerequisites with a warning about

notation.

Notation. Throughout this thesis we denote by C' a generic constant that could
depend on the manifold, the dynamics or the atlas of M. We underline that C' may
change also inside the same equation. If we want to point out the dependence of C'
from a parameter a, we write Cy. Also this constant could change at any occurrence

mside a single equation.
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1.2 The dynamical system

In this section we set assumptions about the dynamical system we are going to
study in this thesis.

Let M be an orientable, closed (compact and without boundary), connected
Riemannian manifold, endowed with the metric g. We consider a smooth diffeomor-
phism f € C*°(M) on the manifold which satisfies the Anosov property. In view of
Proposition 1.4 and Proposition 1.5, we can assume that f satisfies the hypotheses
of Definition 1.1, or, equivalently, the cones condition (1.2), with expansion fac-
tor A > 1. We always assume to work with an adapted metric g, in the sense of
Lemma 1.3 and we denote by d, resp. d,,, the dimension of the stable, resp. unstable,
subbundle E*, resp. E“.

Next, we need to introduce cohomology. By classical algebraic topology, every
homeomorphism f on a topological manifold M induces an action on homology
and cohomology. For a complete overview of this subject we refer the reader to
[40]. Hence, we simply recall the basics of de Rham cohomology. In fact, since M
is a differentiable manifold and f is a diffeomorphism, it makes sense to consider
the space of O differential forms Q'(M) endowed with the coboundary operator
d: QM) — QM) given by the exterior derivative. Since d o d = 0, this defines
a cochain complex. A differential form w € Q!(M) is closed if dw = 0, while it is
exact if there exists u € Q'1(M) such that du = w. From dod = 0, one obtains that
exact forms are a vector subspace of closed forms. Finally, one defines the de Rham
cohomology group H%,(M) as the quotient of closed k-forms w.r.t. exact k-forms.
The pushforward f, of a C'*°-diffeomorphism f on M preserves closed and exact
forms, thus it induces a linear map from the cohomology group H%.(M) to itself
defined by fu|w] = [f.w]. In particular, let us consider the action of f4 on Hj;%(M ),
i.e., the de Rham cohomology group of degree corresponding to the dimension of
the stable subbundle. Since M is a compact manifold, the action of fx is a linear
automorphism of a finite dimensional vector spaces. Therefore, it admits a finite

(complex) spectrum {Ay,...,Ax} with
Al > [Ag] > -+ > |An_a| > |An| >0

In Chapter 3, we prove that A; = e"*r € R, where hy,, is the topological entropy
of the dynamical system (see Appendix D for details about topological entropy). In
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addition, let us consider the second highest eigenvalue Ay and let us set
0 = max{|Ay|, \"telor},

where again A represents the expansion factor of the Anosov splitting (1.1).

To conclude this section, we also need to assume the following.
Assumption 1. The Anosov diffeomorphism f is topologically transitive.

As already anticipated in Remark 1.14, this is not a strict condition and it is

satisfied by every known Anosov diffeomorphism.

1.2.1 Statement of the main theorem

We can now state our main result. As already specified in the introduction, it
generalizes [20, Theorem 5.10] to Anosov diffeomorphisms on generic manifold (not

necessarily tori) with dim(M) > 2.

Theorem 1.21. Let M be an orientable, closed (compact and without boundary),
connected Riemannian manifold. Let f: M — M be a topologically transitive C'*°

Anosov diffeomorphism. Then, there exist r € N and C' > 0 such that

o fd — d d
[ v raun~ [ odums [ i
for any ¢, € C(M).

We actually obtain Theorem 1.21 as consequence of the following stronger result,

< CO"em"or ||| or ||| o

which gives partial Ruelle-Pollicott asymptotics for these systems.

Theorem 1.22. Let M be an orientable, closed (compact and without boundary),
connected Riemannian manifold. Let f: M — M be a topologically transitive C*
Anosov diffeomorphism. Assume that, for any i =1,...,m, the complex eigenvalue
A; satisfies |A;| > Mteor. Then, there exist r € N, C > 0 and, for any i =

2,...,m, N; € N and nonzero bilinear forms {ca, x(-,-)}~,, such that

‘ /M b0 Frdpisn— /M b /M Pl

i

m N,
=D (e ey b (¢, 1)

i=1 k=2

< CX"|gller 1l er

for every ¢, € C*(M).
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Notice that we refer to Theorem 1.21, and not to the stronger Theorem 1.22,
as our main result. The reason is that we do not have any example of Anosov dif-
feomorphism for which [As| > A~!. In particular, let us assume that f: M — M is
a C'*° Anosov diffeomorphism of a torus M. Then, by Proposition 1.18, f is topo-
logically conjugated to a hyperbolic automorphism of M. This assumption actually
reduces the set of Anosov diffeomorphisms to which the following Corollary 1.23
can be applied. For instance, Example 1.15 gives an Anosov diffeomorphism on a
nilmanifold which is not a torus. On the other hand, since every codimension 1
Anosov diffeomorphism acts on a torus (Proposition 1.18 - 2.), the following Corol-
lary 1.23, applies, at least, to every Anosov diffeomorphism on a manifold M with
dim(M) < 3.

Corollary 1.23. Let f: M — M be a C* Anosov diffeomorphism of a torus M.
Then, there exist r € N and C > 0 such that

' / b0 Frdupa — / o / WMBM‘gcx"|r¢|rmW|rm
M M M

for any ¢,v € C°(M). Moreover, when M = T2

W

cr cr

/(stof”)wdﬂBM_/ ¢dﬂBM/ /l/]dILLBM‘ Sc’e*nhtop||¢|
T2 T2 T2

Notice that we have also dropped the assumption on topological transitivity. In
effect, every Anosov diffeomorphism of a torus is topologically conjugate to a hy-
perbolic automorphism, the topological transitivity is invariant under topological
conjugacy and it is well-known (see for instance [56]) that every hyperbolic auto-

morphism of a torus is topologically transitive.

Remark 1.24. Corollary 1.23 follows from Theorem 1.21 by proving that 6 =
maxt{|Ay|, \"tehter} = X~lehtor We obtain this estimate for tori, because, in these
cases, we can easily compute the eigenvalues of the induced action on cohomology
and we are able to prove that |Ay| < A~tefer. If Conjecture 2 were true, it would
be possible to extend Theorem 1.22 or Corollary 1.23 to every Anosov diffeomor-
phism, up to computing the spectrum of the action on de Rham cohomology for the

corresponding infranilmanifold.



Chapter 2

Anisotropic Banach spaces of

currents

This chapter is devoted to the construction of a family of anisotropic Banach
spaces which makes the transfer operator we are interested in quasi-compact (see
Section 2.4 for details and Appendix A for a short introduction to quasi-compact
operators). Anisotropic means that the elements belonging to our spaces have differ-
ent behaviors along stable and unstable manifolds. In particular, our objects behave
as smooth differential forms in the unstable direction, while they behave as distri-
butional differential forms, actually currents, in the stable direction (see Definition
2.5 and Lemma 2.8). We cannot avoid mentioning [11] where similar spaces were
firstly defined to investigate Anosov diffeomorphisms, without coding the system.
The spaces we use in this chapter recall the ones introduced in [37, 36](see also [4,
20, 21, 35, 38]). In particular, Section 2.2 is focused on a suitable set of stable
leaves and it refers to [37, Section 3]. Then, Section 2.3 is a simplified version of [36,
Section 3.2|, because we work with Anosov diffeomorphisms, while the cited paper

treats Anosov flows. For a recent survey of this construction we also refer to [27].

2.1 Local charts and norms

We now introduce local coordinates on the manifold, conformed to the hyperbolic

dynamics. Given a small constant p > 0, there exists a smooth atlas (U;, ¥;)", such

15
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that!

Ba,(0,3p) x Ba,(0,3p) € Ui
and the maps 1;: U; — M satisfy the following properties:?
L Ui ¢i(B(0,p)) = M;
2. dyp(R% x {0}) = E5 and dop;({0} x R*™) = E | where p; = ;(0);
3. For every x € U;, let
si=wtweTU:ve R x {0}, w € {0} x R%™, |lw| < ||v||},
and let
i = {v+weT,U, :ve R% x {0}, w e {0} x R lv]] < JJw]||}.

Choosing p > 0 small enough, we require that the Euclidean stable/unstable

cones C;/Zu satisfy
Cliw) € da¥iCeir Cya) € datiCas

Ay @) (Clumy \{0}) C dyay T deti (G5, \ {0}) Cint(Ci1p )5
(@) f (Cilyay \{O}) C dupy @) fdathi (G5 N {0}) € Inb(Cloyy, )
where C*/* = C*/*“ are the stable/unstable bundles of (1.2) for some a € (0, 1).

As a consequence, Ci/lu fulfill Property 1. of Proposition 1.5 with respect to

the Fuclidean metric and also the cone hyperbolicity property, i.e.,
dx(w;l o f*l o 1/}0(571 C int(cizflof_IOW(ﬂc),j) U {O},
A7 0 f 0 i)y € It(Clos, gy ) U 1O}

Once we have fixed local charts, we introduce appropriate norms on some spaces
of functions, whose properties will be used over and over again in this chapter. We

first recall that a Banach space (B, || -||) is a Banach algebra if it is a linear algebra

'We denote by B;(p,r) the ball centered in p of radius r in RY. When the subscript ¢ is not

specified we mean ¢t = dim(M).
20ne may use the exponential map to construct such charts around every point of the manifold.

A finite covering of M gives the atlas we need.
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and ||zy|| < ||z|||ly||, whenever z,y € B. We define particular norms on C"(U, B),
for r € N, U C R? and B Banach algebra, so that this becomes a Banach algebra.
We point out that, in our context, » will be chosen as big as we want, because our
Anosov map is C*°. Given a > 1, to be fixed at the end of the proof of Lemma 2.1,

we define by induction

16l cow.s) = sup [o(v)]l,
velU

i=1,...,

[@llcr+1wsy = sup |9z, dllew + allpll, for k= 0.
=1,..,d

A short computation shows that C"(U, B) is a Banach algebra and

k I ,
Illcx =" () sup || 9 ¢l|co. (2.1)

i=0 |B|=1

Finally, given a linear map L: C"(U,B) — C"(U, B), we define the usual operator
norm
[Lllcry = sup  [|Lo][cr
peCT

ll¢ller<1

2.2 Set of stable leaves

First of all, we describe the set of stable leaves that we are going to use to define
our anisotropic Banach spaces. We remark that by stable leaf we do not mean a
piece of stable manifold, but instead a small piece of manifold whose tangent space
belongs to the stable cone bundle C*.

We consider the following set of stable graphs in R4m(M)

F ={F € C"(B,4,(0,2p); R™)| F(0) =0,

(2.2)
1 Fllcosa, 0.20) < 205 [|1AF (0 (5,4, (0.200)+ < 1}-

Given F € F and a point = € B(0, p) let G,  be the graph of F in REm(AY) centered
at x, namely G, (B, (0,2p)) = 2+(y, F(y))yeB,, (0.20)- Notice that the tangent space
to the graph G, r belongs to the Euclidean stable cone (; ;. Finally, we define the

set of full admissible leaves

iz{wlOG$7F(Bds(072p))| %EB(O,p), Fef? 221,,771}



18

2. Anisotropic Banach spaces of currents

and the set of admissible leaves
Y ={¢;oG, (B4 (0,p)| x € B(0,p), FeF, i=1,...,m}.

Observe that, for any admissible leaf W € ¥, there is a full admissible leaf Wes
containing W. Moreover, notice that the sets of leaves ¥ and 5 are well-defined. In
effect, the graph of I’ € F is included in B, (0, 2p) x B, (0, 2p) and, since z € B(0, p),
Gor(Ba,(0,2p)) C By, (0,3p) X Ba,(0,3p) CU;, foralli =1,...,m.

The importance of the set X is given by the following lemma. This is a simplified
version of [37, Lemma 3.3], where the authors proved a similar result for what
they call v-admissible leaves, which are useful to study perturbations of the Anosov

system.

Lemma 2.1. There exists ng € N and p > 0 small enough such that for each full
admissible leaf W, with corresponding admissible leaf W, and for each n > ng, there
exists a finite number (depending only on n) of admissible leaves Wy, ..., W, € ¥
such that

1. (W) C UL W; C f7(W)

2. The leaves Wy, ..., W, admit a uniformly finite (in W and n) number of over-
laps.

3. There exists a constant C, and a C" partition of unity ny,...,n subordinated
to {Wy,..., Wi} on f="(W), such that ||n;||cr < C,, foranyi=1,...,1L.

PROOF. Let W = 9; o G4 r(B4,(0,p)) be an admissible leaf and let W be the
corresponding full admissible leaf. Since the tangent space to 1% belongs to the
stable cone, there exists nyg € N such that the distance between the boundary of
f~™(W) and the boundary of f*”(va) is greater than 2r, for every n > ng. Let
n > ng and p € f~"(W). By definition there exists ¢t € B, (0, p) such that p =
f"o;0G, r(t). Moreover, by property 1. of the charts, there exists j € {1,...,m}
such that p € 1;(B(0, p)); thus we denote by y = ;' (p) € B(0,p). The uniform
hyperbolicity of the Anosov map implies that there exists F, € C"(By,(0,2p), R%)
such that F,(0) = 0, [|[Fpllce < 2p and W, = ¢ 0 G 1, (Ba,(0,2p)) C f(W).
We need to prove that [[dFy[|cr—1 is bounded by 1, so that F, € F. Let f; " =



2.2 Set of stable leaves

19

zﬁj_l o f7"o1;: U; — U; be the dynamics induced by f~" on the charts. There exists
a subset I C By, (0,2p) and a bijection ac: I — B,4,(0,2p) such that

[i7(Gap(s)) = [i'(x + (s, F(s))) = Gyr,(als) =y + (als), Fp(a(s))).

Computing the differential at s € I we obtain

p o id B dso (2.3)
Gl‘»F(S) "7 dsF da(S)desOé ‘

Notice that, by assumption 2. on the charts, if = p; = ¢;(0) and y = p; = 1;(0),

then the differential
Y A j(pi) 0
dpi f ij ’ )
0 Dij(p)

where A; ;(p;) is a dy X ds matrix such that ||A;;(p;)7t* < A7, while D; ;(p;) is a
d,, X d,, matrix such that || D; ;(p;)||* < A™™. By continuity of the differential, given
every d > 0 there exists p > 0 small enough such that, for every i,j € {1,...,m}
and for all z € U;,

Ai i\Z Bﬁ' z
d:fi]" = dp fij + Dij(z) = ( 4(7) i(2) ),

Cij(z) Dij(z)

A{i’szdu Ac.lwd“> is a dim(M) x dim (M) matrix such that ||A; ;|| < 9,

Aij(2) = Aig(pi) + A5 (=), Bigl=) = A" (2), Cigle) = A" (2) and Dyy(2) =
D;j(pi) + Azg’d“(z). Equation (2.3) implies

A; j(Ger(8)) + Bij(Grr(s))dsF = dsa
Oi7j(Gx,F(5)) + DZ'J‘(GQC’F(S))dsF = da(S)deSO{

from which it follows

dFy = [C; j(Gap(a(s))) 4+ Dij(Gep(a™(s)))da-1(5F] -
[id + [A; j(Gap (@7 1(5))) By j(Gap (@ (8)))da-1(5) F]

-1

Ai,j(G:p,F(Ofl (3)))71
(2.4)

We now want to estimate ||dF)|/(cr)«. To this end, we need the following trivial

computation.
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Lemma 2.2 ([27, Sub-lemma 4.5]).

sup a || 07 dF,||co < |dF,||(cry- < €"(r!)? sup a” 1P| 9% dF,|| co

I81<r I81<r

Since ||A; j||co < 6, using Lemma 2.2, we can choose a large enough so that there
exists a constant C., depending only on r, such that ||A, ||+ < C,0, for all 4, j.
Moreover, for every constant C' > 1 large enough, we can fix § small enough and ng

large enough, so that
sup{|| Bij © G rll(cr)- + [|Cij © Gorll(cmy-
7

1
14;} © Gorllicrys [1Dij o Gopllicry- J< 35

To conclude the proof we need the following

Lemma 2.3 ([27, Sub-lemma 4.6]). There exists a constant, depending exclusively

on r, such that
”dG roa—1()J; "o 1”(@« < (C, HdG z',_jnH(C"")*
Using Lemma 2.3, (2.4) and (2.5), we conclude that

dEy ey = 1| [Cig(Gap(@™ () + Dij(Gaup(a™ () dar( F] -
[id + [Ais (G (@7 (D) Big (G0 (D) darr( F] " Aig(Gap(@™ () liomye <
< G|l [Cij(Ga (1) + Dij(Ga p(-))dF]

[id + [A‘ ( ( ))Bu<Gw F( )) ]_1 Ai,j(Gw,F('»_lH(CT)* <
G, (+[dFlen) G _,
= 402 (1 i Hdﬁ;\ggr)*) 2002 =

provided that C' > 1 is large enough.
The construction of a C” partition of unity is a standard argument (see for
example [44, Theorem 1.4.5]). Q.E.D.

2.3 Norms and Banach spaces

We are ready to construct our family of anisotropic Banach spaces. In particular,

we are going to define anisotropic norms on spaces of differential forms, and then we
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obtain the suitable family of anisotropic spaces by completing spaces of differential
forms with respect to these norms.

We denote by QY(M), for each [ = 0, ...,dim(M), the space of complex smooth
differential forms on M, namely the set of C'° sections of the [-exterior algebra
of the cotangent bundle T*M over M, with values in C. Given an admissible leaf
W = 4;0G, ¢(B4,(0,p) €%, 5s>0and [ € {0,...,dim(M)}, we denote by T';*(W)
the space of complex C* sections of the fiber bundle over W, with the fiber space
AY(T*M) and compact support. In other words, we may think the elements I (1)
as [—differential forms of class C?, defined on W and vanishing in a neighborhood
of 0 W. This is exactly the space introduced in [36, Section 3| and, in the definition
of the norm, its elements have the role of “test forms”. Let V*(I¥) be the space of
C* vector fields defined in a dim(M) -dimensional neighborhood U(W) C U; of W.

We want to express forms and vector fields in local coordinates. Given the atlas
{Ui, i}, let {x;}7, be a smooth partition of unity subordinate to the atlas, such
that x; Fdim(A)
fields on U; such that 0y, := ¥;(0y,), Oz, := ¥ (0r,), ..., Opy, :=V;(0r, ) € C° and
Ozgosr = Vi (Orgir)s Ovgyo = Vi (Orgi0)s vy Ouy s, = U5 (Or, ., ) € C". Without

loss of generality, we may suppose that this is an orthonormal basis of vector fields,

a basis for the vector

b:i(B03p)) = 1. We denote by 0,,, 0p,,..., 0

otherwise one to apply the Gram-Schmidt procedure without essentially affecting
the forthcoming arguments. Finally, let dxy, dzs, ..., dxg be the dual basis of
Ozys Ozgy-vny Ogy, 1€, the corresponding basis of differential forms on ;(U;). Let
J=17=0-...0) € {1,...,d}" 71 < jo < --- < ji} the set of ordered I-
multi-indexes. We adopt the following notation for fields and differential forms:
Op; := Opy Ao+ N0y, daz = dxyy, N -+ A dxy, whence da;(0,;) = Il

We can decompose every form h € Q'(M) as h = >.,_, h;, where h; = hy; €
QU (3 (Uy)), i.e., h; is a smooth differential form on ;(U;) with compact support.
Moreover, using the local basis, we can write every h; in coordinates as h; =
diea hgdx]f-. We define the C® norm of h € Q'(M) as

15

csony = sup_ sup [ Allesiwyy = sup sup A o v lesw,)- (2.6)

i=1,...,m5e7 i=1,...m7%e7
Similarly, given ¢ € I3 (W), we can write

6= o= di=Y > ¢ldu;
i=1 =1

=1 36\71
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and

[@llpis gy = sup sup [ llos pioc, r(Ba, 0.0) = SUP sup I67ov; e
i=1,..mje7 i=1,...mjec7,

Ga,r (B (0,6))):

The last ingredient we need is a scalar product for differential forms. We point
out that this scalar product, and consequently the induced norm, depends on the
metric. On the other hand, the Banach space we are establishing is independent from
the metric. Let us consider the adapted metric g (see Lemma 1.3) and the induced
volume form wy € QI™M) (M), The non-degeneracy condition of g induces an
isomorphism ¢ between smooth vector fields V(M) and smooth 1-forms Q' (M) such
g(v,-) = &(v)(+) for every v € V(M). A pointwise scalar product between 1-forms
wi, wy € QM) is (wi,ws) = g(§ " (w1), € (wa)). Similarly, for {w;;}i—12; j=1,.0 C

QY (M), it is defined a pointwise scalar product between [-forms
<w171, w2,1> e <0J1,1> w2,1>
<(JJ171 VASRIVA Wi, W21 VASREEIVAY w2’l> = det :
<w1,1, w2,l> e (wu, w2,1>
Finally, the scalar product between [-forms is the integral of the pointwise scalar

product, i.e.,
(wn, ws) = / (n e, wiws € QHM)
M

Remark 2.4. The scalar product (-, -) induces a duality operator between [-forms
and (dim(M) — [)-forms, the so-called Hodge star operator (see Appendix B for
a review of Hodge theory). In effect, given w;,ws € Q/(M) there exist unique
*xw1, *wy € Q4H(M) such that

wo N\ w1 = (—1)l(d_l) * Wi AWy = wi N *wy = <(,L)1, WQ)CUO.
We are now ready to define the anisotropic norms.

Definition 2.5. Let p,q € N. Given h € Q{(M), we define a seminorm

Ml = sup sup sup ‘/ e
WES w1, up€VPHI(U(W))  pertte!(w
H’Uk”cp+q(U(W))§1 ||¢Hrp+q l(W

where L,, is the Lie derivative of the [-form h w.r.t. the vector field v; and wy 1s

the measure induced by g on W. We define, for every h € QY (M), the norm

1ellp.q = max [[Afl g,
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Finally, we denote by BP#! = QZ(M)HMP’%Z the closure of the space of l-forms w.r.t.

such a norm.

Remark 2.6. The following inequalities are trivial consequences of the definition.
[Bllpas < [hllps1-10 and [bllpq0 < CllAlcr, hence BrHia-i € Brat and Q'(M)
BP4!. Furthermore,
sup HLvl...vahHa,erq,l < ||h’||;7q,l'
01,0 0p EVPTI(U (W)
lvelleptar vy <1
Remark 2.7. Notice that the Banach space B»%! coincide with the space studied
in [20, Section 5] for Anosov map acting on a 2-torus. The authors of [20] were
in turn inspired by [36], where these spaces were exploited to analyze dynamical
zeta functions of Anosov flows. The following proposition, whose proof recalls [36,
Lemma 3.10], shows that we can think these spaces as subspaces of currents, i.e., the
continuous dual space of differential forms. For an overview of currents’ properties

we refer the reader to de Rham’s book [23].

l
p+q

with the C?*? norm as defined in (2.6). Let (Q2},,

(M) the space of CPT? [-forms equipped
(M))* be its dual space with the

Given p,q € N, let us denote by €2

weak-*topology, i.e., the space of currents of dimension [, degree dim(M) — [ and

regularity CP+4,

Lemma 2.8. The space BP%! can be identified with a subspace of the space of cur-
rents of dimension dim(M) — 1, degree | and regularity CP™% on the manifold M;
(M))*.

i.e., there exists an injective bounded linear operator v: BP9 — (QéJrq

PROOF. Given a smooth differential form h € Q!(M), we define

t(h)(g) = (h,g9) = /M<h,g>w0, for each g € O, (M).

Notice that, by Remark 2.4, we may consider xg € ng;(M)fl(M), so that «(h)(g) =

/ ar P Axg, and the dimension of h is consistent with the definition of the dimension
for currents. We can break down M into admissible leaves belonging to Y. Thus,

recalling the definition of the norm, there exists a constant C' > 0 such that, for all

geQ, (M),

p+q

[L(P)(9)] < CllAllpgullgllor+a
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As a consequence, the map ¢ extends to a bounded linear operator, denoted by the
(M))*.

It remains to show that this operator is injective. Let us consider h € BP9

same symbol, ¢: BP! — (O,
such that «(h) = 0. By definition, there exists a sequence of smooth forms {h,} €
QY(M) such that nl_l)gloo h,, = h, which means that nEToo |y, — hllpqgs = 0. We want
to prove that h = 0, i.e., ||hlpq = 0. Let W = ¢;(G, r(B4,(0,p))) € X be an
admissible leaf and let ¢ € T2/ (1) be a test form. We need to smoothen ¢, that
we suppose equal zero out of W. Given a classical mollifier x € C>(R¥™M) R)

such that & > 0, [paman s = 1 and supp(x) € B(0,1), we consider, for e > 0,

ke(z) = e MMM (2e71) . Since W belongs to 1;(U;), we limit ourselves to consider
the chart (U;, ;). In particular, the coordinate form of ¢ becomes ¢ = Z;e 7 ¢! dxy,
where supp(¢!) C ¢;(U;). We can define

0d0) =3 ([ wdwr ) =)ol i)y o

jea, R

so that ¢. € Q'(1;(U;)) and

[ Gy =t [ (b = tim 50a)(0),

w e—0t M e—0t
hence
Hm [ (b, dJow = lm lim j(h,)(de), (2.7)

n—-+oo w n—+o00 e—0+
Moreover, given p vector fields vy, ..., v, € VPTI(U(W)) as required in the definition

of the norm,

lim (Lo, ... Ly b, @)ww = lim lm j(La, ... Ly, hy)(0c), (2.8)

n——4o00 w n—+00 e—0+

We claim that, assuming e small enough, for each g € QY(M) and ¢ € T3 (W)

[ .00

Additionally, for p > 0, vy,...,v, € VWT(U(W)) as in the definition of the norm

and for e small enough,

< Cllglloqalléllrge (2.9)

‘/ <Lv1 e va97 ¢6>WO
M

< OHng,q,l||¢||Fg+q,z(w), (2.10)

for each g € Q/(M) and ¢ € TF ().
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As a consequence of (2.9) we obtain that, for m,n € N,

() (00 = () (60)] = L/" — By @b < Cllt = Banlloaall Sl

Therefore, we can swap the two limits in (2.7) gaining

lim (hn, Pe)ww = lim  lim j(h,)(¢e) = lim j(h)(oe) =0,

n—-+o0o w e—0t+ n%+oo €—+00

that is ||||o,q; = 0. Similarly, one can prove that ||h|,,; = 0 using (2.8) and (2.10).
We finally prove the claim. Although a more general result is proven in [36, Lemma
D.2.], we give a proof adapted to our context. Let g = ;> -, ggd:ﬂ; € QY(M)
and let ¢ € TL'(W). We compute

[ @

wol = / ng(m) /Rdim(M) &1 (Wi(y)) ke (7 () — y)dywo(dz)| =

N /M /Rd.m M) Z gg(m)ﬁwiw;l@) — 2))ke(2)dzwy(dx)| =

N /]Rdim(M> / Zgz Vo2 (i (07 () — 2))wo(da)dz| = (¥)

JET

Assuming e small enough, for each z € B(0, €), there exist W, € ¥ and ¢, € T¥ (W)
such that (¢.)](z) = ¢! (¢s(¥; () — 2)), so that 1621l rat .y = 19]lrai ), and

/Rdim(M) ke(2) / Z<9>¢z)wwzdz

In addition, the same computation shows that, given p vector fields vy,...,v, as
above and for each ¢ € T8 (1)

‘/ <L111 s L'Upgu ¢e>w0
M

where the last inequality is a consequence of the last property in Remark 2.6. This

(%) = < Cl[hllogllollrg:-

< ClLuy - Loygllopsaal@llcpat iy < Cllgllpaal9llpgsariyy:

concludes the proof of the claim. Q.E.D.

2.4 Quasi-compactness of the transfer operator

This section is devoted to proof of the spectral properties of the pushforward

operator f,, whose action on differential form, extends to a bounded linear operator
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on BP%! In the field of dynamical systems, f, falls into the category of transfer
operators. The transfer operator approach to statistical properties of dynamical
systems was inspired by classical results of statistical mechanics and it was firstly
carried out by Ya.G. Sinai [66, 67], D. Ruelle [62, 65] and R. Bowen [15]. Their main
idea was to code the system through the construction of a Markov partition, with
a suitable transfer matrix, and then to apply Perron-Frobenius theory (we refer the
reader to [5] for a complete description of the topic). As already said, the authors
of [11] firstly defined anisotropic Banach spaces to tackle directly transfer operators
of Anosov systems without coding it. With this new idea, many original, as well
as already known results, have been demonstrated applying these techniques. At
the same time, their great flexibility gave the opportunity to analyze many other
dynamical systems, including partially hyperbolic, non-uniformly hyperbolic and
parabolic systems. We only mention papers of C. Liverani and S. Gouézel [37, 3§]
or papers of V. Baladi and B. Tsujii[8, 9], which are at the cornerstone of the theory.

When we talk about a transfer operator without specifying it, we generally refer
to a linear operator £ acting on the space L*(M,wy), which is the adjoint, w.r.t. the

L?(M, wy)-scalar product, of the composition (Koopman) operator, that is

<g © f7 h>L2 = <97 Eh)Lz-
In particular, given h € L*(M, wy), there is an explicit formula

Chiz) = oS

= — 7 f -a.a. point M.
|detdf—1(x)f| Oor wp-a.a. points xr €

In the context of Anosov diffeomorphisms, £ does not have good spectral properties
when acting on L2, but it behaves very well when it acts on anisotropic Banach
spaces of distributions, for example the ones introduced in [37]. In fact, the authors
of [37] proved that, under transitivity, £ is quasi-compact (see Definition A.14), 1
is the unique, maximal and simple eigenvalue, whose eigenvector is density of the
SRB measure (see [74] for a survey of SRB measures). Additionally, they obtain
exponential mixing, as well as the existence of a complete asymptotic expansion for
the decay of correlations, of smooth observables [37, Corollary 2.6].

We now notice that, for every w € QI (M), can write w = hwy, where

h € C*(M) and wy is the volume form induced by the metric g. For all x € M, for
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all vy, vs,...,v4 € T, M it holds

(fe)a(vr, .. va) = ho f7H @) (Wo) g1 (daf TH(W1), oy da f T (va)) =
=ho f(x)|detd, f |(wo)u(v1, ..., v4) = (2.11)

= (Lh)(x)wo(vy, ..., v4)

In other terms, the action of f, on smooth dim(M )-forms (i.e., a subset of BP-a-dim(M))

corresponds to the action of the transfer operator £ on the corresponding density.
This means that we can read results of [37] studying how f, behaves on BP@-dim(M),
We are interested in the spectral properties of the pushforward operator acting on
BPet for [ = 0,...,dim(M). In particular, our main theorem will be a consequence
of our analysis on the action of f, on the Banach space of currents BP%%  where we
recall that d, is the dimension of stable manifolds.

The first ingredient we need to investigate the spectrum of our transfer operator
is a quasi-compactness result. We recall that a bounded linear operator 7 on the
Banach space B is quasi-compact if the essential spectral pess(7) radius is strictly
smaller than the spectral radius p(7). Roughly speaking, this means that, for all
t € (pess(T), p(T)), the annulus {z € C| ¢t < z < p(T)} contains finitely many eigen-
values of finite multiplicity. The standard procedure to prove quasi-compactness of
linear operators is based on the following classical result of Hennion [41], whose

proof is recalled in Appendix A-Section 3.

Theorem 2.9 ([41] Corollary 1). Let T be a bounded linear operator on the Banach

space (B, || - ||). Assume that there exists another norm |- | on B such that
1. the immersion i: (B, - ||) = (B,]|-|) is bounded and compact;

2. for alln € N there exist R,,, r, > 0, with liminf, . ri/m < p(T) such that

[T F < rll Il + Bal £1;

then the operator, acting of (B, || - ||), is quasi-compact with essential spectral radius

pe(T) < liminf, ri/m

Lemma 2.10. The inclusion v: BP% — BP~L9tLl is compact for eachp € Z+, g € N
and for alll =1, ..., dim(M).
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The above lemma is proved in [37, Lemma 2.1] for the anisotropic Banach space

of distributions BP%°. We generalize their proof to anisotropic currents.

Proor or LEMMA 2.10. By definition, the inclusion ¢ is compact if the open
unit ball B C BP%! is relatively compact in BP~14T1t We use a general criterion|[31,
Proposition 2.8] to prove that a linear operator L: (B, ||-|l5) — (C,||-|lc) is compact.
Assume that, for all € > 0, there are finitely many continuous linear operators
li: B — R such that ||z|lc < €||z|lz+ >, |li(x)], then L is compact. We recall the
proof of this criterion in Appendix A - Lemma A.3.

We fix a chart (Uy, 1), for somei = 1,...,m,and h € Q'(M). Recall that we fixed
rin (2.2) as large as we want. Therefore, we may suppose that p+¢ < r, so that the
inclusion i: C"(Bg,(0,2p,R%)) — CPT4(By,(0,2p,R%)) is compact. Consequently,

—_—

for any € > 0, there exists a finite number of full admissible leaves Wl, ..., W,, such
that W, = 1; 0 Gy (Ba, (0,2p)), with j = 1,...,n, z; € B(0,p) and F; € F, and,
in addition, for any other W = 1, o G, r(B(0, p)), there exists j € {1,...,n} such
that |z — x;] < e and ||[F' — Fjl[crrags,, (0,0)ren) < €. We now introduce a family of
admissible stable leaves {Wt}te[(]’l], such that Wy = W and W, = W;. In particular,
let 2, = x +t(z; —x) and let Fy = F +t(F; — F). We define W, = ;0 G,, 7,(Bo, p)
and we denote by {¥;}c[o,1) the family of maps mapping W to W,. One can trivially
check that {Wt}te[o,l] is actually a family of admissible leaves, i.e they are shortening
of full admissible leaves. Consequently, for any ¢ € TZ % (W), H¢|]Fp+qz y <1, and
for vi,...,v,01 € VPYY(U(W)), with ||v;||crtamry) < 1,

/<¢ Ly, ... Ly, hyww — / (@1, Ly - - L= hwar), =

/ /‘;Vt dt ¢t7L(’U1 . L(,Up 1) h> ( )dt

where ¢, = Ui (¢) and (v3); = U} (vy), for any k = 1,...,p— 1. Writing last integral

in coordinates the r.h.s. becomes

[ [ @ Loty =)+ F6) 4 1E6) = F6 ey, (s

which is bounded by Ce||h|p, 4., since |z —x;| < € and || F — Fj||cr+e < € (with a slight
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abuse of notation, d; denotes the vector field v = (¢;).[(z; — x) 0¢].) Accordingly,

Hth—LqH,l :krggfl ”h”k,q+1,l < Cellh palt
+ max sup sup sup / (¢, Ly, - .. Ly, hyww,
k<p—-1 J=Lenyy . wp €VRTHL(U(W)) ¢6Fg+q+1’l(W), W
; <1
Vil okt a+1 0wy < [0kt ) ST

and, up to a small error, we can reduce to consider the integral on a finite number
of admissible leaves Wy, ..., W;. Therefore, assume W = W;. The set of test forms
ot Y (W), with ||¢||Fg+q,l(w) < 1 is relatively compact inside TZ™ ' (17). As a
consequence, for any e > 0, there exist ¢1,...,¢y € [ZTY(W), such that for
each ¢ € TP (W), H<;§||Fg+q,z(w) < 1, it holds ||¢ — (bj”l—%ﬂrqfl,l(w) < ¢, for some
Jj € {1,...,dim(M)}. Similarly, there exist vy,...,vy € VP41 (U(W)) such that
for each v € V(U(W)), ||v]lcr+« < 1, it holds ||v — vj||cr+e—1 < €, for some j €

{1,...,dim(M)}. It follows that

‘ / (6, Loy .. Lo, B — / (05 Liony, -+ Liapvry,, Weow| < Cellhlly- g1
w w

< Cellhllp.gu-
Defining
Uguygp (B) = /‘;V<¢]"L(U1)j1 Ly, Mww,
we obtain
[Allp-rg410 < Cellbllpgr+ D gy (B)] (2.12)
Judtsedp1

for any h € Q!(M). By density, we can extend (2.12) to BP%! and we can apply
Lemma A.3. Q.E.D.

Property 2. of Hennion’s theorem is generally called a Lasota-Yorke type inequal-
ity. The following theorem states that such inequalities hold for the pushforward
operator when acting on the anisotropic banach spaces B”%!. Notice that by prop-
erty 1. of Theorem 2.9 |-| < || - ||, hence the norm || - || is stronger than |- |. In

our context the role of the strong norm is taken by || - ||, 4, while the weak norm is

|| : ||p—17q+1,l-



30

2. Anisotropic Banach spaces of currents

Theorem 2.11. f, acts as a bounded linear operator on the spaces BP4!. In par-
ticular, for p > 0 and for 0 < < dim(M),
1< Pllp.g0 < Clihllp.q.0; (2.13)
[ £ Bllpgr < C)‘ildf”nehmpnHth,q,U (2.14)
Hffhunq,dim(M) < CHth,q,dim(M)' (215)
Moreover, for p > 0 and for 0 < < dim(M),
Hfthp,q,O < C)\_nmin{p’q}nh”p,q,o + CHh”p—l,q—H,O% (2'16)
2 hlpga < AP bt chonm ) 4 OXP e b |[B], gy ; (2.17)
12 hllp.g.dimar) < CA" ™M P A|| o qimary + CllAllp—1,q41,dim(a1)- (2.18)

Remark 2.12. Notice that (2.14) and (2.17) also work for [ = 0 and [ = d;, but they
give weaker bounds than the other four inequalities. In effect, by using Ledrappier-
Young entropy formula [19, Theorem D.3.1], it is easy to check that efiter \=ds > 1.
The reasons behind this mismatch will be clear at the end of the proof, but, just to
give an idea, the factor A7l ~!leor comes up from the estimate on the expansion of
[-dimensional subspaces of the tangent bundle, under the action of the differential.
Hence, there is no expansion on 0-dimensional subspaces when [ = 0 and, by using
the duality (2.11), when [ = dim(M). On the other hand, the bounds of (2.14)
and (2.17) work for every Anosov diffeomorphism, but they could be improved on a
case by case basis. Since our main results strongly depend on such bounds, better

estimates of that factor would improve them.

PROOF. Let us prove (2.13) for p = 0. Let h € C®(M), W € £, ¢ € I'¥°(W) =
CZ(W). The following integral can be split, using the partition of unity (W, n;)ier

of Lemma 2.1, as

Jomn= [ onerm=[ sormi=3 [ oorixm,

where A2 (z) is the Jacobian of the change of variables. As a consequence of Lemma
C.1, the C¥-norm of A;, is bounded by C|f™(W;)|, where |f"(W;)] is the wg-measure

of f*(W;). Moreover, the C%-norm of ¢o f™ is bounded by the C%norm of ¢, because

the composition with f™ reduces norms along stable manifolds. Thus, since we can
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assume that the C%-norm of 7; is uniformly bounded, the norm of ¢ o f"A’n; is

bounded by C|f™(W;)|[llcgw, , hence

‘ [ orn

Choosing an appropriate covering of f~"(W), without many overlaps, the sum is

<C Z | Wl ol ca w1l lo,q,-

bounded by a constant and, by density, we get (2.13) with p = 0.
Let us tackle together (2.13) for p > 0 and (2.16). We firstly show that, for
h e QY(M),

CA " hlpg0 + Collhl,— ift <p
IRl < et Gl B0 (219)
AT 0D g0 + Callhllp-rgrno if £ =p

so that
£ lq0 = s |7y < CX P80 Rl g + Collily 1410 (2:20)

The inequality (2.20) does not prove (2.16), as well as (2.13) for p > 0, because the
coefficient of the weak norm does depend on n. We proceed by induction on p to
remove the dependence on that n. We already proved (2.13) for p = 0. Assume that
(2.13) holds for p— 1, then we show (2.16) and (2.13) for p. Let X > X be a constant
for which the Anosov property (1.1) continues to be true. Then (2.20) implies

12 hllpg0 < CX" P R, q0 + CallAllp-1q410.

Let N € Z" be a positive integer such that '\~ N min{p.g} < A\ Nmindp.a} Then, for
everyn € Z", we write n = Q, N+ R,, with 0 < R,, < N and ),, € N. Consequently,

12 bl g0 SCAN D f1=Np|l o+ Cn [l £27N hllpes g0 <
<CANmintpah || gn=Np o+ O llhllp-1gi10 <
~~ . 2 ~ =7 H
< <C>\—len{p7Q}> IIfS‘QNth,q,g + ONC)\_Nmm{p’q}||ff_2Nh”p—l,q+l70+

+ 5NHth—1,q+l,o <
Qn-1

~\ —N min @n —~ ~\ —N min L
< (OXTN e Y £ bl g0 + O D (CATN™00D ) bl g0 <
1=0
~ - S )\—NQn min{p,q}
SO)\ (NQn+Rn) {p7q}”h||p7q’o+CN 1 — )\mein{p,q} Hth—l,q+1,0+

+ ORthHp—LqH,O < C’/\_nmin{p’q}Hth,fL0 + CHh”p—Lq-&-LOv
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where we used (2.20) to estimate || f2 k|, 4.0 and the inductive hypothesis to estimate
| /2= h|p—1,4+10- This computation also proves (2.13) for p. Moreover, both (2.13)
and (2.16) extend by density to BP0,

We are left with the proof of (2.20). Let h € QM) = C*(M), W € X,
¢ € To (W) = Gy (W), such that [|g[| ety < 1, and vr,..., v, € VA(U(W))
with ||v||ce+e < 1. We compute

/¢ w o Lo 7 /¢ v uho £ ().

By linearity we can assume that v; = g; d,, where 0, is a coordinate vector field,

hence

[ ot i @ = [ 0@ T o ")) =
-y /n(w)cb(x)m(f‘”(w))ﬂgj D TL 00 (b F7)0) + Cullb s

where the last term comes out deriving at least one of the coefficients of the vector
fields. With a slight abuse of notations we rewrite ¢(x)n;(f~"(z)) H?:l gj(x), which
is again a test function, as ¢(x). By [37, Lemma 6.5, given a C*"(U(W;)) vector
field v, there exist C*t? vector fields w* and w®, in a neighborhood U(W;) of W,

such that v = w* + w?® and

o for all z € f*(W;) w® € T, f*(W;);
[ HU)HCHﬁ < C%v
o [[w®o fMcita-1wy < C

o lldpmi) [ w (f*(@)llerrarrwmy < CAT

We obtain
d

x Oy (hof T w? (ho f~™)(z).
[, 2@ L0 - [ o ILutho 7))

j=1 oe{su}t
Since wjwy = wiwj + [w;-‘, wi], we can swap two vector fields up to a term which is

again Cy,||h||p—1,4+1,0- Thus, we need to estimate terms of the form

/ i)cb(w)Hw?f[lw?(hOf / wa I vt r)a)

7j=1 Jj=g+1



2.4 Quasi-compactness of the transfer operator 33

where we applied an integration by parts. Every vector field w?; can be written again
in terms of the coordinate vector fields wj = Zle b;.0,. . As above, if one of the
vector fields acts on one of the coefficients we get a term bounded by C,, || ||p—1,4+1.0-

Therefore, we remain with the following terms

9 9 d
/fn(w‘)Haxf ¢(50)Hbj,zj(:c) [T wiho ™)) =

J=g+1
g d
/ 110, 60 @ [ by, o £ ) T] #2003 )
Wi j=1 J=1 J=g+1

By the third property || [T, ;.,(x) o f"||ct+e < C. We distinguish two cases If t = p
and g = 0 it holds

/| TT 0| < O bl cpeo
Z] 1

On the other hand, if t < p or g > 0, let ¢ = [[-,0:,0€ C’gH*g(W). We need to

smoothen this function through the following standard lemma.

Lemma 2.13. Let « be the bigger integer smaller than q+t—g. Fore > 0, there exists
¢6 € Cq+t—g+1 such that |’¢€ch+t79 < CHEHC‘Z“*Q; H¢€HC‘1+I‘/*9+1 < CE_IHEHCqutfg
and ||pe — @llce < Cet™I7|g]|.

The proof of the above lemma easily follows convolving the function ¢ with a

mollifier of order ¢ and then computing the norms. In our context we fix € to be
M\~ (att=g)n/latt—g—a) g4 that

e — Bllca < CAT@H=| 3.

This implies that

d
/ [10n, 6 ) [[ s, 0 ) [] nN2(0)] <
2] 1 Jj=1 Jj=g+1
d

< (¢ —¢c)o bj- o f"(x wi(h)A, ()] +

f, @00 r@IIts o e T1

g d

[ oo f (@) [ byey 0 THIPMES

/W | [:[1 ][ng .
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The first term is bounded by
O I G| cavt [ Al pgo < CX(|Bllcas | ~lpg0

where we used that A~(@+=9)\~(=9) < A\~ when g < t. Since the function ¢, is
strictly more regular than ¢, because t — k < p, the second term is bounded by
Chllh|lp-1.4+1.0- This concludes the proof of (2.19).

For (2.14) and (2.17), we proceed as above. Hence, we firstly prove (2.14) for
p = 0, then we show the analogous of (2.20) and, finally, we conclude by induction
proving that (2.14) for p — 1 implies (2.17) and (2.14) for p. Let us show (2.14) for
p = 0. We consider h € Q(M), W € ¥ and a test form w € T5(W). We need to

compute the integral
| .o
w

We fix the local bases for vector fields and forms introduced in section 2.3. Assuming
that W C ¢, (U, ), we can write w = wox, = » =, wjdry on . (B(0,3p)). It follows
that

/ /Z“ (dzj, J7h) Z/ wyo [*(dxs, fIh) o [N, =

Jed Jed
Z Z/ hgws o f"(dxg, fi'dxg) o f"A4n
Jkeq

where h = hox; = > ;. hgdag, on ¢;(B(0, 3p)) 2 W;. The C%norm of the functions
(dxg, fIdwg) o f*A;, is bounded by CA7lds=ln (see Lemma C.2). Thus,

[ g2 | < X W)l

By classical results (see for instance Theorem D.7), the volume growth of f~" (W)
fulfills | f~™(W)| ~ efter™|W|, where hy,, is the topological entropy of f. By density,
we get (2.14) for p = 0.

Next, let us prove that, for h € QY(M),

||fthp,q,l < C)‘inmin{p’q}inldr”enhmHth,q,l + Cthprl,qul,l- (2-21)

Let h € QY(M), W € ¥, w € T¥"(W) and let vy, ..., v, € V(U (W)) be t vector

fields such that |[v;|lco+a@wy) < 1. As above, we can write w = } =, wydz; and we
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compute
[ @ Lo L 12 =3 / X gl L Lyl o S £
w 7,kET,
_Z/ > Y waLvahof Vdaz, [T Lo, (f7(dzg))mio f7
7 jkGJl AC{1,...,p} acA a€Ac

where h = } 7. 7 hgdxy on Wi, while the product of derivatives is ordered. If
A=A{1,...,p} the terms

p
DY D S | UV CENATE I
m(Wi) - 7ked, a=1
can be treated putting together the proofs of (2.14), for p = 0, and (2.16). Hence,
it is bounded by CA~mmin{pa} \—nlds—llenheop || p|| )+ C||h|| -1 441.- Every other term

has the form

> JD O] | RIS, | R ARTRUE)
"Wi)sges  acA a€AcAP
Since there are t < p derivatives acting on (hz o f~"), (2.14), for p = 0, and (2.16)
imply that these terms are bounded by C,,||h||,—1,4+1, and this concludes the proof
of (2.21). Finally, by the same inductive procedure used to prove (2.13) and (2.16),
one can prove (2.14) for p > 0 and (2.17). Moreover, by density, these inequalities
extend to BP%!. Notice that in this case we cannot expect that coefficient in front
of the weak norm in (2.17) is uniformly bounded. On the contrary, we have just

proved that it cannot grow more that \~"Ids—!ghtor

We are left with the proof of (2.15) and (2.18). We have already noticed in
(2.11) the duality, induced by the volume form wy, between d,-forms and functions.
Accordingly, (2.15) and (2.18) hold true in Q% (M) for f, if and only if the same
are satisfied by the transfer operator £ acting on functions C*(M) = Q°(M). The
authors of [37, Lemma 2.2] proved Lasota-Yorke inequalities for £. By density, we
conclude that (2.15) and (2.18) extend to Br-@dim(),

Q.ED.

Remark 2.14. The inequalities (2.17) and (2.14), for [ = d;, also implies the

following inequality that we are going to use later (see the proof of Lemma 3.9). In
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fact, for p >0, ¢ > 0, | = d, and w € BP%% one can easily prove by induction that

1£2"wllpg.a. < CE™ P X" [lpga, + Ce™™||hllop+qa., (2.22)

where the p in fP" represents the same parameter p of the norm. In effect, (2.17)
gives (2.22) for p = 1. Assume (2.22) true up to p— 1. Then, by using (2.14), (2.17)
and the property || - ||p—1,4+1.ds < || - [|p.g.d5» We Obtain
12" Ml g, SO A0, + Cem s S0 g, <
<SCeP™Me N7 Bl g.a, + C Mo X FETRY g1 a,+
+ O 0| Rlo pyga, <

<Ce™ N lp g, + Ce™ |

07p+Q7dS ?

which proves (2.22).

Corollary 2.15. The spectral radius and the essential spectral radius of f,: BP®! —
Brat fulfill

(] )< 1 ifl=0orl=d
P\Jx|Bral) >
Nlds=lleheor  if 0 <1 < d
N\~ min{p.q} ifl=0orl=d

Pess f* ) <
lorat) S oyttt 450 < 1 < 4

PROOF. The estimates on spectral radii follow by (2.13), (2.14) and (2.15), using
Lemma A.9. The estimates on the essential spectral radii are consequence of Hen-
nion’s theorem 2.9 whose hypotheses are satisfied by Lemma 2.10 and Theorem 2.11.
Q.E.D.

Once we have established this spectral picture a natural question may arise: how
does the spectrum of f, acting on BP%! denoted by o(f.|gra:), depends on p and
q? The following lemma answers this question, at least for the spectrum we are

interested in.

Lemma 2.16. Let BP9 and B”9! be two anisotropic Banach spaces of currents for

some parameters p,q,p',q € N. Assume that pess(filgoai) < pess(fe|prat). Then

o(filprat) {2z € C: |2] > pess(filprar)} = o(felgr o) {2 € C 1 |2] > pess(felprai) }-

Moreover, the corresponding generalized eigenspaces coincide and they are included
in B4l N Brd'L
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PROOF. This is a consequence of Lemma A.15, where By = Q'(M), By = BP9,
By = BP0 and B — Brintea’hmax{aa'h1, QED.
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Chapter 3

The spectrum of the pushforward

operator

We now want to investigate the spectrum of the pushforward operator acting on
anisotropic Banach spaces BP%!, 0 < | < dim(M). In particular, we are going to use
information about the spectrum of f,: BP4% — BP49ds <where d, is the dimension
of the stable bundle, to prove our main theorem.

From now on, we always assume p and ¢ large enough, so that there exists
v € (0,1) such that

maxd max{)\* min{pii,q$i}f|dsfl|eht0p’ A~ min{pii,q$i}} <v< 1, (31)
1=0,...,ds

for any i = 0,...,dim(M). Corollary 2.15 and (3.1) ensure that the essential spec-
tral radius f, acting on the Banach spaces we are interested in is bounded by v.
Results of this chapter reflect the reasoning of [20, Sections 5.5.2 and 5.5.3] for the
2-dimensional case. Since the dimension of the stable bundle in their case was 1,
the authors of that paper were interested in the action of f, on BP%!. The key point
of their idea was to relate some eigenvalues of f,: BP%! — BP9l to the action of
the dynamics on de Rham cohomology. This is why in this chapter we also recall
some basic notions of de Rham cohomology, we define the anisotropic de Rham co-
homology (Section 3.2) and we prove the connection between the standard and the
anisotropic de Rham cohomology (Section 3.3). Before approaching the cohomo-
logical aspects, we analyze the peripheral spectrum of f,: BP9% — BP9ds and we

construct the measure of maximal entropy. This is the content of the following sec-

39
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tion. Most of the results of Section 3.1 are inspired by [38, Section 4, 5|, where the
authors treat a generalization of Anosov diffeomorphisms as well as other invariant
measures. They also use different Banach spaces, which in some sense contain our
anisotropic Banach spaces. For all these reasons, we rewrite the proofs we need in

our simplified setting.

3.1 Peripheral spectrum and measure of maximal

entropy

By peripheral spectrum we mean the set of eigenvalues of f,|gp.¢.¢; of maximal
modulus. Corollary 2.15 only tells us that the spectral radius p( f.|gp.e.as ) is bounded
by e®e». On the other hand, the following lemma proves that this upper bound is

actually attained.
Lemma 3.1. The spectral radius of f.|gea.as is exactly etor.

Before giving the proof of Lemma 3.1, we introduce the following d-differential
form wy, € Q% (M), that we are going to use along this section. We need a dy-form
which gives positive volume to every admissible stable leaf W € X, in the sense that
fw wy > 0, for any W € 3. The first idea would be to consider the volume wy,
induced by wy on every admissible leaf W € X, but this is only a ds-form on W and
not on M. On the other hand, on every chart (U;,1);), one can easily define a d;-
differential form u; which gives positive volume to every leaf with tangent space in
the Euclidean stable cone bundle ¢*. Consequently, ;u; € Q% (1;(U;)) gives positive
volume to every W € ;(U;). Finally, by using the partition of unity {y;}™,, we
define wy = >0 xithr (u;) € Q% (M).

ProoOF OoF LEMMA 3.1. We have already used that

1
elor = lim sup (sup |f_n(W)|> ’

n—-+o0o wex

where | f~"(W)] is the volume of f~" (W) w.r.t. the measure induced by the Rieman-
nian volume wy on f~(W) (see Theorem D.7). Let wx € Q% (M) the differential
form defined above which gives positive volume to every admissible stable leaf of
Y. Then, given any W € 3, let {W;}._, be the covering of f~"(W), constructed in
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Lemma 2.1. By compactness of every W, there exists C; such that

/ ww; SCj/ Wy,
W W

where wyy, is the volume form induced by wp on W;. As a consequence,

! l l
TRCUSTED SIUED I (RVEE SIc/l IR O
j=1 =1 Wi 1

j= fn(WJ)

pads = CHffHBM’dS%BMvdsv

<c / frws < C|lfrws
%%

hence

1
n 1
eer = timsup (sup [/W)]) " < e sup | 7203 i, = £l

n—-+o0o wex n—-+o00

where last equality follows by Lemma A.9. Corollary 2.15 gives p( f.|gp.ads) < eiter,
hence we conclude that p(f.|ge.ad.) = eltor. Q.E.D.

As a consequence of Lemma 3.1 and the quasi-compactness of f,, we can write

N
Je= Z(zieht”")ﬂi + R, (3.2)

i=0
where every z; is a complex number of modulus 1, the operator II; is the finite
rank projection on the eigenspace corresponding to the eigenvalue z;e*» and R is
a quasicompact linear operator whose spectral radius is strictly smaller than e’ .
Moreover, II; o II; = 6; ;1I; and II; o R = R o II; = 0. Notice that, as a consequence
of (2.14), the operator e ™ f* is bounded for all n and there cannot be Jordan

blocks for eigenvalues of modulus e

Remark 3.2. Up to now, we have not considered orientability issues. We have just
assumed that M is an orientable manifold, but we have never made any assumption
about the orientation of the stable/unstable foliation. In effect, up to considering
a finite covering of M we can always assume that these two foliation are oriented.
Moreover, we can also suppose that f preserves the orientation of both foliations.
Otherwise, it would be enough to consider f? in place of f. Accordingly, from now
on, we assume to work with a diffeomorphism f preserving the orientation of the

oriented stable and unstable manifolds.
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The rest of this section is devoted to the proof of the following proposition.

Proposition 3.3. e"*» is the unique simple mazimal eigenvalue of f. acting on
BPads Let o € BP9% be a corresponding eigenvector and let t € (BP94:) be the
dual eigenvector such t(0) = 1. The continuous linear operator ¢ — t(¢), defined
on CPTa-functions, extends to a bounded linear operator on C°-functions, i.e., it is
a measure. In particular, pupy () = t(- @) is a positive measure and it is the unique

measure of mazimal entropy.

PROOF. Let us consider the d,-differential form wy, that gives positive volume to
every admissible leaf W € ¥ and that is defined before the proof of Lemma 3.1. We
set @ = I ws, where II; is the eigenprojector related to the eigenvalue e’*or of (3.2).
Accordingly, f.w = e*r@. Notice that, a priori, @ could be null, because we do not
know yet that e*r is an eigenvalue of f,. On the other hand, we are going to prove
that @ is actually nonzero.

Next lemma recalls [38, Lemma 4.9] adapting it to our setting.

Lemma 3.4. Let w € BP%% be an eigenvector for the eigenvalue ze™ such that
|zi| = 1. Then w gives a measure on every admissible leaf W € 3. Moreover, every
such w 1s absolutely continuous with bounded density w.r.t. the measure defined by

Ww.

PRrROOF OF LEMMA 3.4. We firstly show that, given W € ¥ and ¢ € Fg’ds(W), it
holds

| @.0hn] < ol (33)
w

In fact, since Q4 (M) is dense in BP%4: TI.. is continuous and I1,,Q% (M) is closed,
we get I1,. Q4 (M) = IL,, BP9 Thus, there exists a smooth form @ € Q9 (M) such
that I1,,00 = w and, by (3.2),

n—1
1
= lim — sefor -k/ kY. 3.4
[ o= tm = D (et [ (6D (34)
Therefore,
1 n—1
< l _ 7khtop / k-~
'/VV<¢’ w>wW‘ = n—1>I—&I-100n Ze W<¢7 f*w>wW
n—1

1
< lim =) el o

n—+oo N

Fiolloga. < Cliollpoa

&VJHO,O,dS‘
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where last inequalities follows by the smoothness of @ and by (2.14).

We point out that, since w € BP%% then above integral can always be estimated
by the C'%-norm of ¢. The lemma we have just proved shows that for eigenvectors
corresponding to maximal eigenvalues, the bound is given by the C° norm of ¢.

Next, let us consider a function ¢ € C§(W), then Ywy € ngds and we define

| M) = [ o wpa.

As a consequence of (3.3),

‘ /W waw‘ < Cléleogm,

hence w defines a measure on any admissible leaf W € ¥. When w = w = [Ljws,
the equality (3.4) implies that My, (@) is a nonnegative measure. In addition, for
every 1) € C{(W),

ottt = | [ o]

<),

<C /W (o, @) w < C /W 6 My (@)

n—1

/<¢ww, lim lZ(zieh“’p)_kffw)wW
w

IN

n—+oo N

n—4oco N,

. 1 _
(o, Jim =3 e i) o = | (o, Tl <
w

and, since above inequality extends to continuous functions by density, the measure
My (w) is absolutely continuous w.r.t. My, (@) with bounded density.
Q.ED.

Let w € Q% and let W, W’ € ¥ be admissible leaves, whose intersection is again
a dg-dimensional submanifold. In addition, assume that the orientations of W and
W' agree on W N W’'. Then, for every function ¢ € C{(W), the operator My, (w),
such that

/ VM (w) = / (Yww, www,
w W
is a bounded operator on C¢(W). Moreover, for ¢ € C{(W NW’)

/ Y My (w) = / (Yww, w)wy = / (Yiywo, w)iywo =

1% w w

_/ (wi%,wo,wﬂ}'},,wo = / <¢(,UW/,W>CUW/ = wMW/ (w),
i I W/
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where iy, resp. iy, are the embeddings of W, resp W', in M. Accordingly, every
w € Q% defines an element of the dual of CJ(S), where S can be obtained by gluing
elements of ¥. By density, if w € BP%! is an eigenvector such that II,,w = w, then w
induces a measure, denoted by M (w), on every oriented stable manifold of M.

The following lemma takes up [38, Lemma 4.10] by adapting it to our context.

Lemma 3.5. The function w +— M(w), defined on the eigenspace 11, BP%! corre-

sponding to the eigenvalue ze™» is injective. Additionally, @ is nonzero.

PROOF OF LEMMA 3.5. Assume that M(w) = 0 for some w € II,,B7%% . We firstly
show that ||w]|o4.4, = 0. Along the proof of Lemma 2.10, we proved that there exists
a constant C' > 0 such that, for any ¢ > 0, there are a finite number of admissible
leaves W1y, ..., W} € X, such that for every W € ¥ and for any ¢ € Fg’ds, there is at
least one W such that

ot = [ (G

where ¢, = Ui¢ (see the proof of Lemma 2.10). Since W, is a compact oriented

< Cellgllpges (35)

ds-dimensional manifold endowed with a volume form wyy,, there exists 1, € C(W;)

such that ¢; = @ij- Consequently, if IW; is contained in a stable manifold, then

/Wj@l’w)wwf - /Wj MiM(w) =0

and above inequality becomes

[ (0] < Celol..
W

More generally, there exist ng € N and a sequence {€, },>n,, going exponentially fast

to zero, such that, for each n > ny and for any full admissible leaf W e f],

Fw) c Ul wi C ),

as stated in Lemma 2.1. In addition, every Wl-(n) is €,-closed to some leaf contained
in a stable manifold in the sense of (3.5). Next, given W € X and ¢ € T'&% (W),
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there exists ¢ € CZ(W) such that ¢ = pwy,. We compute

[ | = | [ o prigen -
enhtop/W( 1)l(dlm < (f")* *¢,w>of"det(df”)ww' <

< e_n}Ltop §
7

Notice that (x(f")**¢,w) = o f™(x( ) xww,w), while (— 1)) =0 (f1)5 5y =
(As) ™" det(df")ww . In effect, by definition wy Axww = wo, TeSP. Wy, Aw

= ()

[ OO D 7)) detdr ) o A,

W(") = WO,
on W, resp. on Wi(n), hence

)\flwWi(m A (") *ww = (f")wow A (f")" *ww = det(df")wo = det(df")wwi@) A *yy

that is (wy, ), (—1) DD (F1)* wwy) = (W, m, (A5) 7 det(df™)w Wiy )) and that

proves the second equality. Continuing the calculation

(0) =y

7

B0 f Wy, Wy | < Cene ™ Mr g WY 1o fco

W;")

Since |e‘"ht°p#{VVi(n)}\ < C and ¢, decays exponentially to zero, we obtain that
|lwllo.q.da. = 0. Let us proceed by induction on p in order to prove that ||w||,q.4. = O.
Assume that the result is true up to p — 1. Then, using the Lasota-Yorke inequality
(2.17),

HWHp,q,ds = e_nhtopr:W”p,q,ds < C)‘_nmm{pﬂ}nw“p,q,ds —0
n—-+4o0o

We conclude that w = 0, that is w — M(w) is injective. Finally, assume by
contradiction that w = 0, then, by injectivity M(w) = 0. Thus, for any other
eigenvector w corresponding to an eigenvalue of modulus e, it must hold that
M (w) = 0, because M(w) is absolutely continuous with respect to M(w) by Lemma
3.4. We conclude that any such w = 0, hence the spectral radius of f, acting on
BP:@4s is strictly smaller than e and this contradicts Lemma 3.1.

Q.ED.

The following step consists in proving that, assuming f topologically transitive,

eMter is a simple eigenvalue and it is the unique maximal eigenvalue of f.|gp.e.d.
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Before proceeding with the proof, we need to recall some basic notions regarding
continuous leafwise measure and their properties. We avoid to rewrite the proofs of
results about this concept, but refer the reader to the survey [38, Section 9], where

they are proved in great generality.

Definition 3.6. Let X be a locally compact space. We assume that there exists an
atlas {U, ¢y} such that U C X is open and it is homeomorphic to By(0,1) x Ky,
for some locally compact space Ky, under the homeomorphism ¢y . In addition, we
assume that the changes of coordinates fulfill ¢y o ¢y (z,y) = (a(x,y),b(y)), i.e.,
they map leaves to leaves. A continuous leafwise measure m is a family of Radon
measures, each one defined on a leaf, such that, for every continuous function ¥

supported on the chart (U, ¢y ), the integral

Iy(y) = ¢ dm

/¢>U1(Bd(071)x{y})

s a continuous function of y.

Suppose that there exists a family of metrics on X, each one defined on a leaf,
such that they also vary continuously with the leaf. Let T: X — X be a continuous,
leaves preserving homeomorphism, which uniformly expands distances on every leaf
(i.e., there exists 6 > 0 and C' > 1, such that dy (Tx,Ty) > Cdw(z,y), whenever
x,y belong to the leaf W and dw (x,y) < §). We can now recall the result we need

in order to prove the subsequent Lemma 3.8.

Proposition 3.7. [38, Proposition 9.1, Proposition 9.4]

Let m be a nonnegative continuous leafwise measure and let m’' be another complex
continuous leafwise measure. Assume that there exists C' > 0 for which |m'| < Cm
on every leaf. Moreover, suppose that T*m = m and T*m’' = ym/, with |y| = 1.
Finally, assume that T is topologically mixing and that given any open set O of a
leaf, there exists x € O with dense orbit. Then there is a ¢ € C such that m’ = cm,

hence v =1 orm’ = 0.

Lemma 3.8. Under the assumption that f is topologically transitive, e*r is the

unique mazimal eigenvalue of fi|gv.ads. In addition, er is simple.

PrROOF OF LEMMA 3.8. We already know that @ # 0 and f.@ = e*r®, hence

eMtor is an eigenvalue of f.|grads. Let w € BP%% be any other eigenvector with
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corresponding eigenvalue ye™r  such that |y| = 1. As a consequence of Lemma 3.4,
w is a continuous leafwise measure on each stable manifold and |[M(w)| < CM(w).
We check that the other hypotheses of Proposition 3.7 hold true. Firstly, an Anosov
diffeomorphism is topologically transitive if and only if it is topologically mixing [17,
Theorem 5.10.3]. Next, setting T = f~!, then T is uniformly expanding on stable
leaves of f. Moreover, defining T*M(w) = M(T*w), we get T*M(@) = eor M(©)
and T*M(w) = veo» M(w). It remains to prove that every open set O contained
in a stable manifold admits a point z € O with dense orbit. Let x be a point
in O. By topological transitivity, there exists a y close to z, with dense orbit.
By classical results (see Theorem 1.10), the local stable manifold centered at z,
W#(x), and the local unstable manifold centered at y, W*(y), intersect in exactly
one point z = [x,y] = W?(x) N W¥(y). Accordingly, z € O and its orbit is dense.
By Proposition 3.7, we conclude that M(w) = ¢M(w), which in turn implies that
w=cw and v = 1.
Q.E.D.
It remains to prove that the eigenvectors corresponding to the unique eigenvalue
elor defines a positive invariant measure and this is the measure of maximal entropy.
Let @ € BP%% be, as above, the eigenvector for which f,w = etor@. Let t € (BP9
the unique element of the dual space of BP44 such that! f/t = eftert and #(w) = 1.
Lemma 3.9. The linear operator pgy = t( - @), actually defined on CPTI(M)
functions, extends to a bounded linear operator on continuous functions, i.e., it is a
measure. In addition, for every ¢ € C°(M), upym( o f) = upn(¥) and ppyr is a

positive probability measure.

PROOF OF LEMMA 3.9. As above, we adapt to our setting the proofs of [38,

Lemma 6.1, Lemma 6.2]. Notice that, for every w € BP%! and for every function

1 € CPT4(M), the product Yw € BP4!. Moreover, for every w € BP%% it holds
[H(w)] < Cllwllop+qd.- (3.6)

In effect, using (2.22),

[t(w)] =T er | (fLPHw)| = e E(f2w)| < e || W] p g, <

SCXN"|wllpgds + Cllwl|op+q.ds

!We recall that the dual action of f, is the linear operator f.: (BP:%ds)" — (BP9’ guch that,
for each t € (BP+9:4:)" and for each w € BP:@%s | f!(t)(w) = t( fuw).
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Taking the limit for n going to oo we get (3.6). Next, by (3.3), we obtain that
[Y@llop+qa. < CllYllco. Thus,

t(vw)| < Cl[Yllco

and ¢( - @) extends to a bounded operator on continuous functions. Furthermore,

peu(Wo f) =ty o fo) = e"ri(f*(y@)) = e"r (f*)H(yo) = {(v®) = ppm(¥),

which proves that pugys is f-invariant.
Let us prove that ppgy is a positive measure. By the spectral decomposition
(3.2), we can write

Jim emher fl = m ()@,

whenever w € BP4% where 7 is a linear form on BP4!. Moreover, since #(&) = 1,

(@) = m(W)i(E) = i (@)2) = I lim_ e o flw) = T e (1) = fw)

Accordingly,

imemer o = flw)w

Given ¢,1 > 0 and a leaf W € X, we get

0 < lim (pwy, e ™o {1 (Yws ) wy = H(Yws) /W dMy (@) (3.7)

n—-+00 w

Lemma (3.4) shows that M (w) is a nonnegative and nonzero measure. Consequently,
we can choose W and ¢ > 0 so that last integral of (3.7) is strictly positive. This
shows that, for every ¥ > 0, t(¢ws) > 0. Thus, for ¢» > 0, we get

pen(¥) =t(Yo) = lim e "Merf(y flws) = nglfoo e "Merf(fr (o frws)) =

n—-+o0o

= lim #(¢o ffws) >0,

n——+o00

which shows that gy is a positive measure. Finally, since ¢(@) = 1, we conclude
that ppgys is a probability measure.

Q.E.D.

It remains to prove that pgys is the unique measure of maximal entropy. What

follows is proved in full generality in [38, Theorem 6.4], where the authors showed
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that the measure given by the maximal eigenvalue of their transfer operator max-
imizes the variational principle. Since we are studying the action of pushforward
operator, our case can be read by their paper considering a null potential. As
above, we give the proofs adapting them to our case. The following Lemma 3.10 is

a streamlined version of [38, Proposition 6.3].

Lemma 3.10. Givenn € N, x € M and € > 0, we denote by

Bu(z,6) ={y € M| d(f"(v), f(z)) <€, fori=0,1,...,n—1}

the dynamical ball centered at x, of length n and radius €. Then, there exist two

constants c., Ce > 0 such that

cee™or < pipar(Bn(x,€)) < ppar(Ba(z,€)) < Coe™er

PROOF OF LEMMA 3.10. Let ¢ € CP*Y be a compactly supported function such
that 0 < ¢ < 1, supp(¢) C B, (z,€) and ¢|p, (z,/2) = 1. We show that

ceeMMor < pppr(@) < Coemior,

which implies the lemma. Let W € X, ¢ € I'§(W), with [[¢)[[pey) < 1. Then,
writing ¢ = Yowy for some ¢ € C{(W), and proceeding as in the proof of Lemma
3.5, we get

/(1/)7 p)ww =e "o [ hodlww, floyww = e [ g lww, @) o fTHAL) rww =

w w w

__,—nhtop ) o f*ho M — ,
=€ ;/WJ pjvoo fhpo f <WW,W>WWJ

The number of W on which the integral is nonzero is uniformly bounded, because

¢ is supported in B, (z,€). Accordingly,

s (9)] = 1(69)] < 6l < Csip

/<¢’¢@>WW| < CoeMher
w

To estimate the other inequality, firstly notice that M(w) gives strictly positive
measure to any open piece of stable leaf. If it were not the case, there would be
a ball B = B (x,6), contained in a stable manifold, such that M(w)(B) = 0. By

invariance, M(w) also assigns zero measure to f~"(5). By reasoning as in the proof
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of Lemma 3.8, using the topological mixing property, f~"(B) will meet a point
z € W#(x) with dense orbit. Finally, since M(@) is a continuous leafwise measure
and since the orbit of z is dense, we conclude that M(w) = 0, which contradicts
Lemma 3.5.

Next we prove that, if W is a piece of stable manifold and W contains a point y
with d(z,y) < €/10 and d(y, dW) > ¢, then

/ PM(w) > c.e”Mer,
W

In fact, f~™(W) contains a ds-dimensional ball B of radius €/10, which is contained
in f7"(By(z,€/2)). Consequently,

[ oM@ = [ geemig) -
w w
:/ QbO fne—nhtopM(a}) > e_nhtop / M((D) > ceeht"p,
f=r(w) B

where, in the last inequality, we used that M(w) assigns positive measure to B.
Notice that, by compactness, the constant ¢, does not depend on the leaf WW.

Topological mixing also implies the following fact: for every § > 0 there exists
M, depending on € and 4, such that, for each m > M, there is a constant C, which
depends on €, § and m, such that, for every connected W contained in a stable
manifold, with diam(W) > 24, it holds

/ PM (@) > Ce e, (3.8)
Fomw)

Finally, we prove that, for a full admissible stable leaf W, contained in a stable

manifold, there exists C', depending on e and W, such that, if p is large enough,

o /~ FoM(w)) = Cemmheer (3.9)
w

Let L be a positive integer such that M < L < p. Let {Wj} be the subdivision of
“P(W) as described by Lemma 2.1. Then

f
[reme = [ e )20y / HoM@) = €3 /% ,

where B; is a ds-dimensional ball of radius 24 contained in f*(W;). To every integral

on f~1(B;) we can apply (3.8) and, since the sum growth as e we obtain that

htop ,—Nhto
| oM@ = cenemien
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which implies (3.9). Since

lim e f7(¢) = #(¢m),

p—+0oo

considering a W which satisfies (3.9), we conclude that

ppn (@) > H(w) > lim e Pher /17/ fPOM(w)) > cce™™or.

p—r+00
Q.E.D.

Next result is the last ingredient for the proof of Proposition 3.3.

Lemma 3.11. The measure ppys is the unique measure of maximal entropy, i.e., it

1s the Bowen-Margulis measure of the system.

Proor oOF 3.11.  Recall that, for every invariant measure p for f, the metric
entropy h,(f) measure the average information given by the knowledge of the present
state, assuming to know arbitrarily long past. The Variational Principle (Theorem
D.6) states that

sup{h,(f)| p is a f-invariant measure} = hy,p.

For a basic overview of these topics we refer to [47, Sections 4.3-4.5]. Next, notice
that the spectral decomposition (3.2) implies that ppy is mixing, hence ergodic.
Thus, by the local entropy theorem [16], since ppys is a f-invariant, ergodic, prob-
ability measure, we obtain

1 1
lim limsup ——log(ppm(By(z,€)))= lim liminf ——log(ppr (B (2, €))) =huy,, (f)

e—+00 n——+oo n e—+00 n—+400 n

By Lemma 3.10 we conclude that h,, = hH(BM)( f), hence ppy is a measure of
maximal entropy. The proof that this p gy, is the unique measure of maximal entropy
easily follows repeating the proof of [47, Theorem 20.3.7]

Q.E.D.

This concludes the proof of Proposition (3.3).
QED.
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3.2 Anisotropic de Rham cohomology and spec-

trum

We recall that the space of C* (complex) differential forms Q'(M) with the
exterior derivative d: Q/(M) — QY(M) is a cochain complex, i.e., dod = 0.
w € QYM) is closed if dw = 0, while w is exact if there exists u € Q'"}(M) such
that du = w. Since d o d = 0, exact forms are a vector subspace of closed forms.
Accordingly, it makes sense to define the de Rham cohomology group with complex
coefficients Hyn(M,C) = H'n(M) as the quotient of closed I-forms w.r.t. exact [-
forms. The pushforward f, of a C°-diffeomorphism f on M preserves closed and
exact forms, hence it induces a linear map from the cohomology group H)p(M) to
itself defined by fu|w] = [fuw].

Next lemma give us the possibility to extend these ideas to our anisotropic Ba-

nach spaces.

Lemma 3.12. The exterior derivative extends to a continuous operator, denoted by
the same letter, d: BP®t — BP=LatLi+l [t holds true again that d o d = 0.

PRrROOF. Consider h € Q{(M), W € ¥, ¢ € THT Y and vy, ... v, € VWL U(W)).
If W C ¢;(U;), then we can write, using coordinates, h = ho x; = > =, hydz; on
¥;i(B(0,3p)). Accordingly,

/ (gb,LUl...va_lthW': / (6 Loy - Lo,y d | Y hyda; | ww| =
w w -
JET
dim(M)
B / (6 Loy - Loy, 0s, iy A deory | < Cldllppeasion [l
36% s=1 w

We conclude that d extends to a bounded operator d: BP%! — BP~LatLIFL [et us
prove dod = 0. Recall that, given two differential forms h, g € Q'(M), h behaves as
a current in the following way:

i(h)(g) = (h. g) = /

(h, gywo = / h A *g.
M M

Consequently, given h € BP%! and a sequence h, € Q'(M) converging to h in the

| - ||p.q-norm, then dh, converges to dh in BP~L4FLIHL and, for each g € QF1(M),

i(dh)(g) = lim i(dhy,)(g) = lim i(h,)(dg) = i(h)(dg),

n—-+o0o n—-+4o0o



3.2 Anisotropic de Rham cohomology and spectrum

53

where 0, defined in Definition B.3, is the dual operator of d (Lemma B.4). Accord-
ingly, since § 0§ = 0, we conclude that, for h € BP%! i(dodh)(g) = i(h)(dodg) = 0,
for any g € Q2(M), hence d o d = 0.

Q.E.D.

We say, by analogy, that a current w € BP%! is closed if dw = 0, while it is exact
if there exists u € BPT14~11~1 guch that du = w. As a consequence of Lemma 3.12,
we define the anisotropic De Rham cohomology H C’l’}g’l(M ) as the quotient of closed
currents w.r.t. exact currents of BP%!. Since f,: BP%! — BP@! and d: Brrhahi=l
BP4! are both continuous linear operators, f, sends closed currents in closed currents
and exact currents in exact currents. Consequently, it induces a linear map on
HP%' (M) such that fuw] = [f.w].

Next proposition relates the spectrum of f, acting on anisotropic Banach spaces
and the spectrum f4 on anisotropic de Rham cohomology. We just consider the
spectrum of f, contained in the set {z € C | |z| > v}, where v is the bound defined

in (3.1). Accordingly, we only consider discrete spectrum.

Proposition 3.13.

o(fulsrat){|2] > v} € [o(fulsprra-ri) Uo(fulgrar) Uo(ful o) | N{]2] > v},

PROOF. Let w € BP%! be an eigenvector of the pushforward operator f, corre-
sponding to the eigenvalue p, with |p| > v, that is fiw = pw. If w is not closed,
then f.dw = df.w = pdw, i.e., dw # 0 is an eigenvector for f, in BP~L4+LI+1 This
proves that p € o(fi|gr-1.ar1.001). On the other hand, if w is closed, i.e., dw = 0 we
need to distinguish two cases. If w is not exact, then it defines a nontrivial coho-
mology class [w] € ﬁfl’}g’l and, by definition, fuxlw] = [fiw] = [pw] = plw], hence
p € o(fylm ). Finally, if w is exact, then there exists ¢ € Brtha=Li=1 guch that
w = dq. It follows that f.dq = df.q = pdqg. This is not enough to conclude that
i € o(felgptra-12-1), because it only gives that d( f.q — ug) = 0, hence f.q = pg+v
with v € BP14=LI=1 closed. On the other hand, if the operator f, — pid was invert-
ible on closed (I — 1)-currents of BPH14=4=1 then u = (f, — pid)~*v and u would
be closed. But du = w # 0, hence we obtain that f, — uid cannot invertible on
closed currents of BPH14=LI=1 Accordingly, 1 must be an eigenvalue with a closed
eigenvector in BPH14~1I=1 "hecause the spectrum of f,|gp1.0-11-1 in {z € C| |z| > v}

is discrete.
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Q.E.D.

We can also prove that the spectrum of the action on anisotropic cohomology

out of the ball of radius v is included into the spectrum of f,.
Proposition 3.14.
a(f#|ﬁ51,g,z) N{|z| > v} C o(filprat) N{|z] > v}

Proor. If [w] € ﬁg}g’l is an eigenvector of fy of modulus greater than v, then
fulw] = plw] and [w] # 0. If fiw = pw, then p € o(fi|grat). On the other hand,

there exists v € BPTL9~11=1 guch that

fiw = pw + du.

We can proceed as above looking for a current w’ = w + du/, with «/ € Brrha—Li=1

so that [w] = [w'], and with f.w' = pw’. Last equality means
pw + pdu’ = pw' = fu' = fuw + fudd = pw + du + fodu,

hence (f, — pid)du’ = —du. If (f. — pid) is invertible on exact currents of BP%! then
the desired v/ = (f, — pid)'u and pu € o(f.|grat). Conversely, if (f, — pid) is not
invertible, on exact currents of BP%! since the spectrum is discrete in {|z| > v},

there exists du € BP%! such that f.di = udi. Q.E.D.

In the particular case [ = d; we can identify the spectrum of f, with the spectrum

of the action on anisotropic cohomology out of the ball of radius A ~'eMer,
Corollary 3.15.
o(fulprads) N{z € C: |z| > A telor) = O'(f#|’H"5,q,d5) N{z € C:|z| > A ter}
R

Proor. It follows by Proposition 3.13, Proposition 3.14 and Corollary 2.15, because
the spectral radius of f, on BPH14=Li=1 and on BP~14tLHL is hounded by A ~lefter,

Q.E.D.
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3.3 Connection with the standard de Rham coho-
mology

In view of Corollary 3.15, it makes sense to study the spectrum of f, on the
anisotropic de Rham cohomology group H S}g’ds(M ). The first attempt to solve this
problem could be trying to show that anisotropic de Rham cohomology is actually
isomorphic to the standard de Rham cohomology recalled at the beginning of Section
3.2. In fact, it is well-known by classical results of G. de Rham [23] that the de Rham
cohomology for currents is isomorphic to the de Rham cohomology for differential
forms. On the other hand we are working with a linear subspace BP%! of the dual
space of CP*¢ differential forms (QL, (M))*(see Lemma 2.8) , which is in turn a
subspace of the space of currents (Q(M))*, i.e., the dual of C* differential forms.
Therefore, we have fewer closed currents and fewer exact currents than the full
space of currents and, a priori, there is no relation between our cohomology and the
standard cohomology.

The authors of [20, Section 5.7] showed that this isomorphism exists when dg = 1
and it is enough to prove our main result for Anosov diffeomorphisms of the 2-torus.
Their strategy also works for our Anosov diffeomorphisms on higher dimensional
manifolds whenever dy = 1, but unfortunately, the extension to other cases requires
a bit of work. A motivation for which their proof fails is given in Remark 3.24.

In order to overcome this obstacle, we firstly need to introduce an intermediate

version of our anisotropic Banach spaces.

Definition 3.16. Let w € QM) be a C* differential form and let p,q € N. We

define the following norm

|w|p7q,l = ||WHp,q,l + || dw p.q,l+1s

where || - ||p.q1 18 the norm of Definition 2.5. Let us denote by CP%! = Ql(M)Hp’q’l

the closure of the space of I-forms w.r.t. this norm.

The following proposition collects all the properties we need about this new

anisotropic Banach spaces.

Proposition 3.17. The following properties hold
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a) Brria=it C cral C Bt for any p,q € N and for each j =1,...,¢;
b) w e CPif and only if w € BP4 and dw € BPo!ITL;

c¢) The exterior derivative extends to a bounded linear operator d: CP%' — CPa!+1
and dod = 0.

d) f. extends to a bounded linear operator f,: crat — CPol. The spectral radius
p(felopar) < XTlds=lehon hile, for p and q large enough, the essential spectral

radius pess(felerat) < v, where v is the same as in (3.1).

PROOF. By definition [|w]|,q: < l|wllpgs + [[dwllpgir: = |w]p.q1, hence CP1 C BPaL,
Next, (Wl = [@llpat + ldollpgrer < Nollpa + 1dl1@lpire10 < Clellprae
where the first inequality follows by the continuity of d: BP1a—1l — BPalHl (see
Lemma 3.12), while the second one is a consequence of the inclusion Brtha-Ll C Br.al
(see Remark 2.6). Accordingly, BPH1a—1l C CcPe!l C BP%! and, using again Remark
2.6, we get a). b)is a trivial consequence of Definition 3.16. To prove ¢) notice that
|dwlpgir1 = [|dwllpgirr < |wllpgi + [ldwllpgisr = |wlpg hence d: CPEE — CPAHT s
bounded. d o d = 0 easily follows by the inclusions a) and by Lemma 3.12. Finally,
let us prove d). The statement about the spectral radius is a consequence of the
inclusion CP%' C BP%! and Corollary 2.15. Moreover, by using the Lasota-Yorke

inequality (2.17), we obtain

| fiwlpar = [[fiwllpgs + L2 dwllpgir1 <
SC)\—H(\ds—l\+min{pﬁq})€nht0p||pr’q’l 4 O\ Mlds=l gnhiop wllp-1.gr1+
4 ONT A 0D o |y -+ AT ] g1 <
Scmax{)\—n\ds—l\’ )\—n\ds—l—1|})\—nmin{pﬂ}enhmp|w|p7qyl_|_
+ C'max{ A\l \Tnlds Tt enheon )
Hence, using again Hennion’s Theorem, we conclude that the essential spectral ra-
dius is bounded by max{\ =%~ \~lds=l=1} \~min{p.a}chior - which is smaller than v

for p and ¢ large enough.
Q.ED.

Property ¢) of Proposition 3.17 gives the following cochain complex

0% CPa0 4, cpast 4, cra2 _y 4, CP-a-dim(M)—1 4, CP-a-dim(M) 49

Y
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hence we can define H2:%'(M) as the quotient of closed currents w.r.t. exact currents
of CP¢!. Collecting information about the spectrum of f, acting on different versions

of anisotropic Banach space we obtain the following result.

Corollary 3.18. Let p,q € N be large enough. Then
1. o(filevat) NA{|z| > v} = o(filprriazic) N {|z| > v} for anyi=0,... dim(M);
2. o(filepar)N{|z| > v} C [a(f*|cp,q,l71) U 0(f#|Hggvl) U U(f*|czw7l+1)] N{lz] > v}
9. 0(filapee) 0 {12 > v} € o(fulenar) N {l2] > v):
4o o(Lleraa) N1{z € C 2] > Aeh} = 0(fyl gpgar) N {z € C | [2] > A~elor)

PROOF. Equality 1. is a consequence of Lemma A.15 with By = QY{(M), By = CP%!,
B, = BrEuaFil and B = Braxdprribmin{eeFihl 9 yesp 3. can be proved by repeating
the proof of Proposition 3.13, resp. Proposition 3.14, with BP%! replaced by CP:%!
and ﬁgg’ds replaced by ﬁgg’ds. Finally, 2., 3. and d) of Proposition 3.17 imply /.
Q.E.D.

Remark 3.19. Notice that one may directly study the action of f, on C”%! without
considering the original anisotropic Banach spaces BP¢!. There are several reasons
that have led us to our choice. In fact, proofs of Lasota-Yorke inequalities (Lemma
2.13) and compact inclusion(Lemma 2.10), as well as the inclusion into currents
(Lemma 2.8) turn out to be simpler from a technical point of view. Secondly, these
spaces have been largely investigated in recent years [37, 38, 36] and we have picked
up some ideas from the literature. Lastly, we found the issue when we started
treating anisotropic cohomology for ds > 1 and we discovered that without our trick
the proof of the isomorphism Theorem 3.21 does not work with ﬁ%’l, that is the
cohomology obtained with BP4! (see Remark 3.24 below).

We are now ready to prove the isomorphism between the anisotropic de Rham
cohomology F[gj’g’l and the standard de Rham cohomology. It is well known, in the
fields of algebraic topology and differential geometry, that the standard (complex)
de Rham cohomology is isomorphic to the (complex) Cech cohomology. In effect,
denoting with H (M, C) = H (M) the Cech cohomology with complex coefficients,
it holds
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Theorem 3.20 (De Rham isomorphism theorem). There exists a natural isomor-

phism between the standard de Rham cohomology and the Cech cohomology
Hap(M) = Hg(M)

There are several different proofs of above result. The most elegant one, due to
André Weil [72] (see also [57], [12]), inspires our proof of the following isomorphism
theorem. In fact, the careful reader may also be able to reconstruct the proof of
Theorem 3.20 from the one of Theorem 3.21.

Theorem 3.21. Let p,q € N be large enough. There exists a natural isomorphism

between the anisotropic de Rham cohomology and the Cech cohomology
33" (M) = H;
By Theorem (3.20), we obtain
Hd™ (M) = Hjp(M).

Before giving the proof of Theorem (3.21), we recall the basic facts about Cech
cohomology (for a complete treatment of the topic see [40, 57]).
Let U = {U,}sea be a contractible open covering of the manifold M, i.e., we

suppose that every finite nonempty intersection
Uy NUg, N---NU,, # 9

is contractible (homotopic to a point). We denote by (aq, ..., ax) := Uy N---NU,,.
Let Cyp(M,U) be the complex vector space generated by elements (ao, . . ., ax) # @;
the elements in Cy(M,U) are called (Cech) k-chains. A (Cech) k—cochain ¢ is an
element of the dual of Cj,(M,U) such that, for every permutation o of the indexes
{0,...,k},

c(ao, ..., ar) = sgn(o)c(as(y, - - - Ao(k))-
Let C (M, U) be the complex vector space of all k—cochains. We define the cobound-

ary operator

§: CM(M,U) — C* (M, U)

such that
k+1

(60)(&0, c. ,ak+1) = Z(—l)jC(Go, ceey A1, 541, - - ,akH).
7=0
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A straightforward computation (see Lemma 3.22) shows that 6 = § o § = 0, hence
the couple (C*(M,U), d) is a cochain complex. Recall that a k-cochain ¢ € C*(M,U)
is a k-cocycle if §(c) = 0, and it is a k-coboundary if there exists ¢ € C* (M, U)
such that 0(c’) = c. As always, every k-coboundary is a k-cocycle, because of 6% = 0.
Therefore, we define the Cech k-cohomology group H g(M ,U) as the quotient of
k-cocycles with respect to k-coboundaries. A priori, this new cohomology depends
on the covering U of the manifold M. It will be clear from the proof of Theorem 3.21
that it is actually independent of that choice and it make sense to write Hx(M) in
place of Hx(M,U).

Without loss of generality we can assume that the sets {V; = ¢;(U;)}1, is a
contractible covering of the manifold M. Let ¢; be a smooth partition of unity
subordinated to the covering {V;}!",. We can also suppose that {int(supp(¢r)) iy,
where int(supp(¢x)) is the interior of the support of ¢y, is a contractible open
covering. If w is a differential form on M, then the restriction to V; is well-defined.
On the other hand, in our case w is a current and the restriction of w to the subset
V; can be defined as we;. A straightforward computation shows that we; € CP%!,

We are now ready to present the proof of Theorem 3.21.

PROOF OF OF THEOREM 3.21. Let us introduce the following notations. CP%!(M)
denotes the above anisotropic Banach space CP%!. Let CP%!%(l{) be the vector space

of linear functions

w: C’k(M,U) — Pt

such that, for every permutation o of the set {0, ..., k},

W(Ao(0); - - - Gok)) = sgn(0)w(ao, .. ., ax). (3.10)
We extend the operators § and d defining:

§: CPahY) —  crotET(Yy)

wir dw: Crp (MUY — CPAY
) k1

(ow)(ag, ay ..., axp1) = Z(—l)jw(ao, ey @1y Qg ey Q1)
j=0

d: CPO R (YY) —  crettbRy)
Wi dw: Cr(M,U) — CPot!
(dw)(ag, . ..,a;) = d(w(ag, ..., az))
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Moreover, we define

i: crel Pkl
w i(w): Co(M,U) — CPe!
i(w)(ag) = w
J: CF(M,U) —CraoF
c—j(c): Cp(M,U) — CPeO

je)(ag, ... ar) = c(ag, ..., ax)

Lemma 3.22. The following equalities hold true.

SH

§od=006= od=00i=doj=0,

S8

od=

o)

dod=6od, jod=60j, iod=doi.

PROOF OF LEMMA 3.22. For every (aq, ..., agr2) € Crpa( M, U)

k+2
0’w(ag, ..., api2) = Z(—l)téw(ao, e @1, Qg - (fgn) =
t=0
k+2 t—1
= (—1) (—1)°w(agy -+ s Qs 1, gty e vy Qp1y gyt - - -y Qy2)+
t=0 s=0
k+2 k+2
+ Z(—l)t Z (=1)* o (ag, -+ vy @1y Qpray ey Qg 1y Agits - - s Qpyg) = 0,
t=0 s=t+1

because each term of the first sum appears in the second one with opposite sign.
The same computation, with w € BP%4* replaced by ¢ € C’k(M,L{), gives d o 6 = 0.
The equality d o d = 0 is a trivial consequence of Lemma 3.12 and, by definition,
(32w)(a0, oap) = d*(wlag,...,ar)) = 0. Next, (§ oi(w))(ag,a;) = i(w)(ar) —
i(w)(ay) = w —w = 0. Moreover, d o j(c)(ag, . ..,ar) = d(c(ag, ..., a;)) = 0, because
c(ag,...,ax) is a constant smooth function on M. This proves the first line of

equalities. Let us show commutation properties.

(doéw)(ag, ..., ar1) = d(dwlag,...,ax1)) =

k+1
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Similarly,
k+1
(jod(e))(ag, -, art1) = 6(c)(ao, - - ., ar1) = Z(—l)tc(ao, ey @1, Qg+ Qgg1) =
t=0
k+1 B
=3 (1)) (a0, @ty Gaits s agsn) = 50 §(€) (g, - ).
t=0
Finally,

(doi)(w)(ag) = d(i(w)(ag)) = dw = (i o d)(w).
This concludes the proof of Lemma 3.23.
Q.E.D.

As a consequence of Lemma 3.22; we obtain the following commutative diagram.
In particular, we underline that the first column contains the anisotropic de Rham
cohomology complex (CP4*(M),d), while the bottom row represents the Cech coho-
mology complex (C*(M,U),d).

cral(M) - craloyf) S5 crallyq) o ... 3 cratkyy) 2

&
SN

AN

d d

Crol (M) by Crelo(1f) KN craebl (i) NN CPrabk(14) N

N AN

d

&

AN AN AN AN

d d d d
Crad(M) L crao(yf) 5 cradlyg) S ... S cradkyy) S L

J J J

COM, U 2 CH MUY S - % CRMUY S -

The key idea of our proof is a zigzag argument which links closed non-exact
elements of the first column to a closed non-exact elements of the bottom row, and
vice versa. The next Lemma 3.23 is the tool we exploit to go through vertical

arrows. In fact, we recall that, by classical results of differential geometry, every
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closed differential form is locally exact. This is an informal way of writing Poincaré’s
lemma. The following statement generalizes Poincaré’s lemma to the context of our
anisotropic Banach spaces. In particular, this is analogous to [20, Lemma 5.15]

where the authors proved that every closed 1-currents is, in a way, locally exact.

Lemma 3.23. Let h € CP%° be a closed O-current. Then, for any k = 1,...,m,
there exists ¢, € C, such that ¢y, - (h — cx) = 0. Let w € CP4Y(M) be an [-current,
for 1> 0.1f (dw)¢y, = 0, then there exists ux € CP4'=1(M) such that

d(uppr) = wor + (—=1)' "up A doy.

Remark 3.24. Lemma 3.23 represents the main difference between this thesis and
20, Section 5] and it justifies the introduction of the spaces CP4!. In effect, they
only considered closed elements of BP%! and such currents are locally exact with
potential in BPT19=10 In general, if w € BP% is a closed current for [ > 1, then
this is locally exact, but we cannot expect that the potential is more regular than
w. Notice that the same issue holds for differential forms. In fact, if w is a closed
C" 1-form on a star-shaped domain U, then w = du where v € C"(U). On the
other hand, if w is a closed C" I-form on U for some [ > 1, then w = du for some

(I—1)-form u of class C" and coefficients of u are C™! exclusively in some directions.

We postpone the proof of Lemma 3.23 to Appendix C and we describe its ap-
plication to our problem. We use the above diagram and Lemma 3.23 to define an
isomorphism

®: HYPN (M) — He(M,U).

Let [w] € H gg’l(M ) be an element of the anisotropic de Rham cohomology, where w €
CPalis closed. By definition, i(w) € CP40U), (doi(w)) = dw = 0 and (Joi(w)) = 0,
by Lemma 3.22. Therefore, by Lemma 3.23, for any ay = 1,...,m, there exists

ullt e cral=1 such that d(uao )qbao) = wgbao ( 1) Lyl A dgzﬁao Let us define
u(l_l e Crai=19(24), such that u=Y(ag) = uls V. Consequently, (dul~1)(ag)de, =
(duglg”)% = Weg,. Next, we consider dul"1 € CP@!=11(1{). Since the diagram

commutes,

(d o 6u" V) (ag, a1)Payda, = (0 0 du'Y)(ag, a1)Gagda, =
=(dul™)puybar — (AUl by by = Whagbar — WPagPay = 0
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As a consequence, d(6u'"Y(ag, a1))¢a,Pa, = 0, hence, by Lemma 3.23 there exists
w2 e cral=2 guch that (duls ) ey da, = 0u'=Y(ag, a1)dada, and

( ¢(1l0 azl¢ao¢a1) = )(a07a1)¢a0¢a1 + <_1)l 2 ao a1 /\ d(¢a0¢a1)

As above, we define u(~2 € CP%=22(1f) such that u(=? (ao, a;) = uls2). We point
out that the choice of u"?(ag,a,) is not unique, but it is unique up to elements

v € CP%=2 such that (dv)¢e,da, = 0. Therefore, we set u=?(ag,a;) = w2 for

ap < ap, while we impose that =% (ay,ay) = —uffo a21) In fact, this agrees with

(3.10) and

du(l_2)(@0) al)¢ao¢a1 (5 (CLO; G1>¢ao¢a1 - ( (l_l)(al) - u(l_l) (ao))¢a0¢a1 =
_ (u(l—l)(ao) - U(l_l)(a1)>¢ao¢a1 = —5U (t=1) (aly a0)¢ao¢a1 = _du(l_2)<a1’ ao)gbaogbal'

Repeating the argument, we consider dul=2). Then, for any ag,ai,as € {1,...,m},

( ((IO, ay, a?))¢ao¢a1 ¢a2 - (JO SU(Z_Q))(a07 ay, a’2)¢ao¢a1 ¢a2 -
(5 )(a07 ag, a2)¢ao¢a1¢a2 - (dufll%lg - duflo%ﬁbg + dufzoil)qbaoquﬁbm =
(0 U( (a1, a2) — 6ul'™Y(ag, az) + 6u""V (a0, a1))Pag G, Gay =

(8 5 = 1))(a07a17a2)¢a0a1a2:07

where, in the last line, we used §0d = 0. Consequently, there exists ugo 5’1) a4y € CPOI3
such that (dua0 pe a2)¢a0¢a1¢a2 = 6u'"(ag, ay, as) by Pa, da, and

( ao ai, a2¢ao¢a1¢a2) - 6u(l 1) (CL(), a’l)gbaogbalgbtm ( )l ’ t(zlo 21) a2z /\ d(¢a0¢a1¢a2)

. _ 1-3)
We fix a representative u 3)(a0, ap, as) = u((m aras, TOr ag < ay < as, and we define

- (1-3)

ul 3)(%(0), Uo(1); Go(2)) = SEN(0)Uag,ar,as, fOr any permutation o of {0,1,2}. After {

steps, using the same procedure, we obtain u(® € CP¢%=1(f) such that, for any

ag,...,a—1 € {1,...,m},

d(u(ag, ..., a01-1)bay - - - Par_,) =0uM (ag, ..., a1-1)bay - - - Pay_, +
+U(0)(CL0, . ,al_l) A d((bao . ¢al_1),
d(u(O) (CLO? e 7al—1>>¢a0 ct ¢al_1 :Su(l) (CLO, e 7al—1)¢ao e ¢al_1

and

(u(o)(ag(o), s Gea-1))) = sgn(o) (u(o) (ag,...,a1-1))
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for any permutation o of {0,...,l — 1}. Using again the commutation property of

the diagram, we obtain that

d(gu(0)<a0, e ,al))¢a0 - ¢al =0,

for any ay,...,a; € {1,...,m}. Thus, by Lemma 3.23, there exists ¢, € C such
that

(5u(0)(a0, ces @) — Cag,.oay)Pag - - - Pay = 0.
Consequently, we can choose ¢: Cy(M,U) — C fixing c(ag, ... ,a;) = Cqq.... a;» When-
ever ag < a; < --- < a, and define ¢(ao(0); - - -, o)) = sgn(a)c%(o) ,,,,, aqs for each

permutation o of {0,...,l}. Thus, ¢ € CY(M,U) and j(c)(ao,. .., @) ¢aq - - Pay =
5u®(ag, ..., a;)Pay - - - Pa,- Since
jod(c)ao, -, a141)0ag - - - Payyy = Sojlc)(ag, ..., a141)Pa - - - Pay s =
=6 o 5u(0)(a0, ey 141 Gag - Doy =0
and j is injective, d(c)(ao, ..., a141)Paq - - - $a,,, = 0, hence d(c)(ag, ..., a141) = 0.
Accordingly, ¢ is a coboundary and we set ®(Jw]) = [c].

Now, we need to prove that ® is well-defined, that is, if [@] = [w] € H2S (M),
then it must be true that [c¢,] = ®([w]) = P([w]) = [¢z]. In fact, if [w] = [@], then
there exists ¢ € CP%!~1 such that dg = w — @. Clearly, i(w) and i(w) are cohomolo-
gous, i.e., i(w) — (@) = i(w — @) = i(dg) = d(i(q)). Let ul=V 7= € cra!=10(yy)
such that, for any ag € {1,...,m}, dul™Y(ag)da, = i(wW)da, and du(ag)¢e, =
i(W)pa,, as determined above. It holds true that

g(a(l—l) _ u(lfl))(ao)%o = d(i(@ — w))(ag)Pa, = d o d(i(q))(ag)pe, =0,
hence, by Lemma 3.23, there is ¢/=" € CP%=29(1{) such that
dq" D (ag)¢a, = (@' = u"V)(a)Pa,,
for each ag € {1,...,m}. Iterating the previous procedure, we obtain that
@ —uY(ag, ..., 01-1)¢ag - - - Ga,_, = 1@ (a0, ..., 6-1)Gag - - - Day_,
for some ¢® € C*~1(M,U). Moreover,

5ﬁ(0)(a07 R 7al)¢ao s (baz - j(C@)(ao, SR 7al)¢a0 T ¢al =0
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and
5u(0)(a0, cey Q) Gag - - Py — J(Cu) (@0 Q) Pag - - - Pgy = 0.

Accordingly,

(](CLTJ) - j(cw))(a0> o aal)¢ao s ¢al = S(a(()) - U(O))(ao, cee 7al)¢ao s ¢al =
=5 05(q(ag,...,a)Pay -t =37 06(¢D) ag,...,a )b - ba

hence, by injectivity of 7,
(c5 — co)(ao, ..., a) = 8¢V (ag, ..., a),

i.e., ¢, and ¢z are cohomologous.
We now need to show that ® is invertible. In particular, we construct the inverse
map following the strategy of the direct map. Next result plays the role of Lemma

3.23 for the rows of the abelian diagram, i.e., it is a Poincaré’s lemma for .

Lemma 3.25. Let h € CP*'9(Y), such that 6h = 0. Then there exists w € CP@!
such that i(w) = h. Let w € CPkE(U) for some k > 0.If dw = 0, there exists
u € CPOY*=Y(UY) such that du = w.

As above, we postpone the proof of Lemma 3.23 to Appendix C and we apply it to
conclude this proof. Let [c] € H5(M,U) be a Cech cohomology class. Since §(c) = 0,
it holds 6 0 j(c) = j 0 6(c) = 0. Consequently, Lemma 3.25 implies that there exists
v©® € cPa0i=1 guch that §v(® = j(c). Considering dv(®, we get §odv® = dodv® =
doj(c) = 0. Thus, we can apply again Lemma 3.25 to find a v™") € CP%=2 guch that
svM = dv®, Tterating this argument, after [ steps, we obtain a v € CP¢!=19 such
that ov® = dv=1. Since 6 o dvW = d o 6v® = d o dv*"") = 0, we can apply again
Lemma 3.25 and we conclude that there exists w € CP% such that i(w) = dv¥. One
can easily check, using the same method described in the definition of &, that w is
a closed current and it is unique up to exact currents. As a consequence, we can
define W: HY(M,U) — H29Y(M) such that ¥([c]) = [w].

It remains to show that ® and ¥ are each other’s inverses to get the required

isomorphism. Let [w] € HZ4 (M), where w € CP%!. Then we associated to w a

.....

d(u'® (ag, ..., a1-1-5))bay - - - Pay_,_. = U (ag, ..., q1-1-5)ay - - - Pay_,_.-
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On the other hand, the construction of ¥ produces a sequence (v*)),_g
that v(®) € CP¢%!=17% guch that §(v*™)) = dv®), that is

SU(S—H)(CLU, e ,al_l_s)gbao e qbal—l—s = d(U(S)(ao, Ce ,al_l_s))gbao Ce qbal—l—s'

77777

Without loss of generality we can assume v® = u(®), so that @ o ¥ = U o & = id.
This concludes the proof of Theorem 3.21.
Q.E.D.

3.4 Proof of Theorems 1.21, 1.22 and Corollary
1.23

We are ready to prove our main theorem and its corollary. In particular, Theo-
rem 1.21 trivially follows by Theorem 1.22. Accordingly, let us prove the stronger
Theorem 1.22.

PROOF OF THEOREM 1.22. As a consequence of Theorem 3.21 and Corollary 3.18

O-(f*|cp,q,ds) N {Z eC: |Z| > /\_leht"p} = O'(f#|H§1,g,ds) N {Z e C: |z| > /\—lehtoz)}
= U(f#bg;) N{z € C:|z| > A telor)

Since eer is a simple maximal eigenvalue of f.|gs.q.d, it holds that A;, the maximal
cigenvalue of fy| Hs (M) is eMter while the second one fulfills |A,| < €. In addition,
by Proposition 3.3, the eigenvector @ and the dual eigenvector £ related to ePter
defines the measure of maximal entropy ppys. Furthermore, for any other eigenvalue
Ay, with |A;| > A7tef*or | we set a Jordan basis {wi,k}{j;‘l, such that f.(@;1) = Ajw;1
and fo(@0ix) = Ni@ig + ©ip—1, for k = 2,..., N;. Let {727;{}2\[;'1 be the dual Jordan
basis, such that ; x(w; ;) = 0k ;. Notice that flt; n, = Aits n, and [t = Nt g+ 11,
for k=1,..., N;—1. We point out that every A; represents a single Jordan, because

eigenvalues are counted according to their algebraic multiplicity. We obtain that

N; N;—1
A; (Z i ®ti,j) + Y @iy ® i
=1 =1

where Q is a linear operator such that || Q|| craasy < A7'eMr. As a consequence,

m Ni—l Ni—k
_ n _
= eMoriy @ 1 4+ E E (k) A?_k ( E Wi ® ti,j+k> + o,
J=1

1=2 k=0

f* g ehtopw ® £+ Z —|— Q’

1=2
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where (Z) = 0 for k > n. Then, for any ¢,¢ € C*(M),

/ ¢ o frdupy = ppm(dy o f1) = Hew o fr@) = e H(f (¢ o fr@)) =
= Mty (f1(¢w)) = H(o@)E (@) +

m N;—

+y (”)A ke nhior (Z fiier(00) ww”)) + e (1 Q" (¢w))

=2 k=

By defining a finite number of bilinear forms {ca, x(-,)} i=2,...m such that
k=0,...,N;—1

N;—1 n N;—k
Z <k>Ai_k (Z ti i (@)t (Y ;) ) Z n"ca, x(@,1),
j=1

k=0

we get

/M oo frdupn =ppa (@) ppar()+

m N;—1

+ 0 (M) e, k(¢ 0) + e M (1 QM (¢w)),
=2 k=0

hence
‘/M@ﬂofnduBM—/M<Z5duBM/N[1/1dMBM—

m N;—1

=30 (e eyt en (60| < CAT Sl 19 e
=2 k=0

Q.E.D.

Proor oF COROLLARY 1.23. Proposition 1.18 implies that f is topologically
conjugate to a hyperbolic automorphism of the torus F': Tdm(M) _y dim(M) = Ac
cordingly, since F' is topologically transitive [56], the same goes for f and we can
apply Theorem 1.22. It is enough to show that the second highest eigenvalue Ay of
Ful Hs (1) satisfies |Ay| < A7teler. Since the action of the dynamics on de Rham
cohomology is invariant under topological conjugacy, it holds fx = Fjy. But F'is
linear, hence, with a slight abuse of notation we can write F~! = F#|H1 . No-
tice that this equality makes no sense, because F'~' acts on T4™M)  while F# acts
on Hl,(T4m(M)) On the other hand, fixing a basis of R¥™®™) =1 is induced by
a dim(M) x dim(M) matrix A € GLgim()(Z) with det(A) = %1, and the same
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A is the matrix associated to Fy w.r.t. the canonical basis of Hly(T4m®M)) that
is {[dz1], [dxs), ..., [dTaimn)]}. Next, assume that oy = {v1,vs, ..., Vaim)} is the

spectrum of f, acting on H, éR(Tdim(M )). Then, we can assume that
] < o] <0 S| <1< vga] < |va,r2] <0 < Vaiman)|

and it holds true that ‘Hdlm Vi
on H fiR(Td‘m(M)) can be determined by multiplying [ eigenvalues of oy, i.e., o =
{ILe, vl I € {1,...,dim(M)}, |I| = I}. Since e is the maximal eigenvalue of

= 1. Moreover, the spectrum o; of Fl acting

F#|H5§(M), we have

dim(M ds
]’Ltop J— H 7/2 V_l
| | (2
i=dy+1 =1

Notice that this equality agrees with Ledrappier-Young entropy formula [19, Theo-
rem D.3.1]

dim(M du -1
Niop = Z Iny, = (Z In VZ'> .
i=1

In addition, we deduce that

while the maximal eigenvalues of Fy acting on Hiz '(M), resp. Hizx (M), is

dim(M) dim(M)
Cdy—1 = H Vi, T€8p. (d 41 = H V.
i=dqy i=dy+2

Furthermore, [(g,—1| < A7'eMer and |(y,,,| < A'elor. In fact, by 3.18, (4,1, resp.
Caot1, is an eigenvalue of fi|epads—1, T€Sp. filcpadsti, and p(fi|epaassr) < A7tehtor,

Finally, noticing that

|Az| < min{|Ca,—1], [Caura |} < A Heler,

we conclude that

’A2| <A ! hmp

Q.E.D.
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Remark 3.26. We recall the argument of [20] which works for Anosov diffeomor-
phisms on the 2-dimensional torus (see Remark 0.3) and that cannot be extended
to higher-dimensional spaces. Let f: T? — T2 be a C* Anosov diffeomorphism of
the 2-torus. Then, by Corollary 1.23,

/ (po fMybdupn — | ddupu wduBM‘SC@‘""f°P||¢||m||¢||cr
T2 T2 T2

On the other hand, authors of [20] proved that there exists a k € (0,1) such that

/ (60 f")Ybdjunr — / Sdjipas / wduBM\gc%"hwp|r¢r|muw|rm,
'H‘Q ']1‘2 ']1‘2

excluding Ruelle-Pollicott resonances of modulus e~ i.e., eigenvalues of f.|cpa:
of modulus 1. In fact, by Corollary 2.15, p(filerao) < 1, p(filerar) < eMor and
p(feleraz) < 1. Assume that w € CP%! satisfies f.w = vw with |v| = 1. Then v does
not belong to the spectrum of the action on cohomology fy| H (M) which contains
eFhor - Accordingly, either w is not closed or w is exact. In the first case, dw # 0 and
fedw = vdw. As a consequence of [20, Lemma 5.14], the Hodge operator, actually

defined on differential forms, extends to a bounded isomorphism

* Cp,q,O N Cp,qﬂ

h — xh = hwy

In addition, Lh = f, x h as in (2.11). Consequently, dw = hwy, where h = *xdw and
Lh = vh. [37, Theorem 2.3| states that 1 is the unique maximal eigenvalue of £
and the corresponding eigenvector is the density of the SRB-measure pusgg. Thus,
L *dw = *dw and dw = usrp. We conclude that fM ISRB = fM dw = 0 and this
contradicts the property that pgrp is a positive measure, hence w must be closed.
Assume w = dh for some h € CP%°. Then f,h = vh + ¢ with dc = 0. In particular,
Lemma 3.23 implies that ¢ is a constant. Let pugpp be the SRB-measure for f'.
Then we can write h = a+ g where a is a constant and fM gigrp = 0. Since fia = a

and the space of null pg,z-measures is fi-invariant, we obtain that
c+va+vg= f.g+ f.a.

By integrating w.r.t. pigpp, we conclude that ¢ = a(1l — v), hence f.g = vg. By |20,

Lemma 5.17], 1 is the unique maximal eigenvalue of f.|cr.q0 and the corresponding
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eigenvector is constant. We obtain that f.g = g and g is constant, that is g = 0.
We conclude that h = ¢ and 0 = dh = w, which contradicts the assumptions.

Accordingly, fi|cra1 does not have eigenvalues of modulus 1.



Appendix A

A toolbox of Functional Analysis

This appendix contains basic concepts of Functional Analysis that we use in this
thesis. It is not our intention to provide a complete description of the topics, but

we refer the interested reader to [29, 30].

A.1 Linear operators on Banach spaces

Let (B, ||||5) and be (C, || -||c) be Banach spaces, i.e., a complete normed spaces.

We denote by L(B,C) the vector space of bounded, hence continuous, linear operator

from B to C, namely the set of linear maps 7 : B — C such that supg_,cz % <
+00. L(B,C) becomes a Banach space once equipped with the norm
T ZT)llc
T sup 1T @le
oxzes  ||Z]lB
Moreover, one may prove that, if (B, |- ||) is a Banach algebra, i.e., ||zy|| < ||z|||ly]],

for all z,y € B, then also (L(B,B),|| - ||) is a Banach algebra w.r.t. composition.
Given T € L(B,C), we denote by ker(T) = {z € B: T(z) = 0} and im(7) =
{T(z) : x € B} the kernel and the range of T, respectively. Notice that, by

continuity, ker(7) is a closed subspace of B.

Definition A.1. A bounded linear operator T € L(B,C) is compact if T (Bg(0,1))

18 compact, i.e., if the image of the unit ball in B is relatively compact in C.

Remark A.2. We underline that 7 is compact if and only if 7(B) is compact for

any bounded set B C B. In effect, it is clear that, if the second condition is true, then

71
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T is compact. On the other hand, if 7 is compact, then, for any bounded set B C B,
there is R > 0 such that B C B(0, R). Consequently, 7(B) C RT(B(0,1)). Since,
by assumption, 7 (B(0,1)) is compact and T (B) is closed, then 7 (B) is compact.

The following is a useful criterion to prove that a linear operator is compact.

Lemma A.3. [31, Proposition 2.8] Let T € L(B,C) be a bounded linear operator.
Assume that for all € > 0 there are finitely many continuous linear maps l;: B — R,
i =1,...,m, such that | T (2)|lc < €llz|ls + >, |li(x)| for each x € B, then T is

compact.

PROOF. Let (z,)nen C Bp(0,1) be a sequence inside the unit ball of B. Up to
considering a subsequence, we can assume that (I;(x,))nen converges for every i =

1,...,m. Accordingly,

limsup [T (z,) — T () < 2,

m,n—-+00

hence we can extract a Cauchy subsequence (7 (z,,)). Since C is a Banach space,

(T (xn,)) converges and we conclude that 7 is compact. Q.E.D.

A.2 Bochner integral and functions with values

in a Banach space

In the following we need to integrate functions on measure spaces (M, 3, u) with
values in a Banach space (B, ||-]|). The Bochner integral (see also [73]) plays exactly
this role. As in the definition of Lebesgue integral, we firstly want to integrate
simple functions. Let Aq,..., A,, be disjoint elements of the o-algebra ¥ and let
bi,...,bm € B. If u(A;) < +oo for each i = 1,...,m, then we say that the simple

function is integrable and we define the integral

/ Z 14, (2)b;p(dx) ZM(Ai)bi’

Let us endow B of the Borel o-algebra induced by the norm.
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Definition A.4. Let f: M — B be a measurable function. We say that f is Bochner

integrable, if there is a sequence (¢p,)ien Such that

Ml/Hf—@MMZQ
M

1—+00

where every ¢; 1s a simple integrable function. In that case we define

[ sdn=tin_[ oy
M 1——+00 M

Lemma A.5. Bochner integral is well-defined, i.e., it does not depends on the se-

quence of simple integrable functions we choose.

PROOF. Let (1;);en be another sequence of simple integrable functions. Then for
all € > 0 there exists ig € N such that for all ¢ > i

/Mwi—smdu‘ =‘/Mwi—f+f—¢idu sH/Mwi—fduH+H/M¢i—fduH<2e.

Therefore,
z‘Beroo/M@du - z‘l}+moo/M¢idu'

Q.E.D.
We also need to extend the definition of analytic functions to maps of C°(C, B).

Definition A.6. Let U C C be an open set and let f € C°(C, B). We say that f is
analytic on U if, for each zy € U there is a neighborhood U(zy) C U containing 2o

and a sequence (ay)nen in B such that

for every z € U(z).

The following proposition collects properties of analytic functions with values in
C that are also true for analytic functions with values in B. We leave the proof to

the reader, since it reflects the proof for functions with values in C.

Proposition A.7. Let f € C°(C,B) and suppose that f is analytic in a simply
connected open set U C C. Let v be a simple smooth closed curve inside U and let

Z be a point in the interior of the region bounded by . Then

/f(z)dz =0; (A.1)
1

f@w———/«—zrvqmc (A2)

271 .
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A.3 Specturm and essential spectrum

Definition A.8. Let T € L(B,B) be a bounded linear operator. We say that z € C
belongs to the spectrum o(T) of T, if the operator (2id—T) does not admit a bounded
inverse. Otherwise, z € C belongs to the resolvent R(T) of T. If z € R(T), we
denote by R(z,T) = (zid — T)~! the resolvent operator.

Lemma A.9. Given T € L(B,B), the limit

p(T) = lim |77

n—-+o0o
exists, it is finite and

p(T)= sup [z].
z€a(T)

Accordingly, we call p(T) the spectral radius of T .

PrROOF. We firstly notice that the sequence a,, = In||7"| is subadditive, that is

Upim < A + a,,. In fact, since L(B,B) is a Banach algebra,
A = W [T < In(IT 7)) < |77 + I |7 < an + apm.

We now show that, for a subadditive sequence, (a,)nez+ the limit lim,,_, | o o exists
and it equals inf,ey %*. Let us denote by A = inf,,ey . For all € > 0, let n € 7+
such that a, < n(A+ ¢), and let A,, = max;<;<, a,. Then, for m > n, we write

m = qn + r, where 0 < r < n — 1, and we obtain

n | An A Ay,
a qa _ qn(A+e) N

As a consequence, the limit

1 1 1
lim [|[7"]|» = lim exp (—lnH’T”H> = inf exp (—lnH’T”H>
n—r+00 n—+00 n nezt n

exists. Moreover, since T is bounded and L(B, B) is a Banach algebra,

p(T) = lim_||T"][= < |[T]| < +oo.

We now prove the second equality. Let us recall that, by Neumann’s theorem,

(id—7T)" ZT’
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in case the series at the right hand side converges in L(B, B). In fact, considering
the partial sum S, = > 7" we have

n n+1
(=TS =) T =) T =id-T"" ——id,
1=0 =1

because 7" ——— 0 as a consequence of the convergence of the series. Notice
n—-+00

that a sufficient (not necessary) condition for the convergence of Neumann’s sum is

|7 < 1. It is actually sufficient that there exist n € N and a € (0, 1) such that, for

any n > n, |[z7"7T"|| < a™ < 1. We can write
+oo
(d=T) ' =z id—2'T) =21 2T
n=0

Moreover, for any € > 0, there exists n. € N such that, for all n > n, it holds || 7" <
(p(T) 4+ €)™ Accordingly, the Neumann’s series converges whenever |z7"7T"| <
|2| 7" (p(T) + €)™ < a™ < 1, for instance when |z| > p(T) + 2¢. Since € is arbitrary
small, we conclude that

sup |z] < p(T)
z€a(T)

To prove the equality, assume by contradiction that sup,c,r [2| < 7 < p(T).
Let v be the boundary of B(0,r) C C. Then, we compute

L n(id — 17, _ L niy_ _ 17, _
5 72(21d T) dZ—T"—i—Qm,Ky(Z d—=T")(z=T) dz =
1 — 1T Nn—1
:ﬂ+%L;zT dz=T".

where we used (A.1) in the first equality and (A.2) in the last equality. Accordingly,
|7 < Cr™ for all n € N, hence p(T) < r against the assumption. Q.E.D.

Lemma A.10. Let P € L(B,B) be a projection operator, which means that P> = P.
Then B = ker(P) & im(P). Furthermore, both ker(P) and im(P) are closed.

PROOF. If z € B, then x = (id — P)x + Pz and P(id — P)z = Px — P?z =0, i.e,,
(id— P)z € ker(P). In addition, if x € ker(P)Nim(P), then Py = z and 0 = P(z) =
P?(y) = P(y) = z. Thus, ker(P)Nim(P) = {0}. In addition, ker(P) = P~1(0) and P

is continuous, hence ker(P) is closed. The same is true for im(P), because it is easy
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to show that im(P) = ker(id — P). In effect, (id — P)Pz = Px— P?x = Px— Px = 0,
that is im(P) C ker(id — P). On the other hand, if (id — P)z = 0, then Pz = z, i.e.,
x € im(P) and im(P) D ker(id — P). Q.E.D.

The following result allows us to decompose a bounded linear operator in accor-

dance with a splitting of the spectrum.

Proposition A.11. Let T € L(B,B) be a bounded linear operator. Suppose that
the spectrum of T splits into two disjoint nonempty subsets o(T) = o1 U 0q. Let 7y
be a simple smooth closed curve on R(T) such that oy and oy are divided by . In
particular, suppose that oy is contained in the interior of v. We define the linear
operator
P = % V(Zid —T) 'dz.

Then P is a projection, it does not depends on v and it commutes with T, i.e.,
TP = PT. Moreover, ker(P) and im(P) are T invariant linear subspaces of B,

(T lin(r) = o1 and o(T ler(r)) = 0.

PROOF. One can prove that the definition of P does not depend on v repeating the
analogous proof for analytic functions. Let 4 be another curve containing v in its

interior and satisfying the hypothesis. Then, we compute

P = ﬁ L /_Y(zid — T\ (zd — T)"'dzdz =

_ (27%)2 / / L ((id = T — (5id — ) Ydzde =
1

z—Zz

B 1 -t L1 1 el 1 _
= amie A(zld T) Lz_zdzdz e A(md T) Lz—dedZ’

where in the second equality we used

. S[(zid = 7)™ = (zid = T)7(=id = T)(zd — T) =
1

zZ—Z

[zid — T — zid + 7] = id.

Since 7 is outside 7, (z — 2)~! is analytic in the region bordered by ~, we obtain
J,(z = 2)7'dz = 0. On the other hand, the function ¢(2) = (2 — 2)~" has a simple
pole inside the region bordered by 5. Accordingly, by Cauchy’s residue theorem

[.(Z = 2)7'dz = 2mi and we conclude that
7

pro L (zid = T) 'dz = P.

271 .
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Since (zid—T)7T ' = 2T '—id = T ! (2id—T), T commutes with (zid—7), hence T
commutes with P. As a consequence, T'(ker(P)) C ker(P) and T'(im(P)) C im(P),
that is T'|iex(p) and T'|im(p) are well-defined linear endomorphisms. It remains to
prove that o (7 |im7)) = 01 and o(T |ker()) = 02. Let A € 05, we must show that

(Aid = T|im(py) is invertible. Let us define, given ~ as above,

Q= 1 /(Zid—7d|im(p))ldz.
¥

T omi A—z

Notice that

(Aid = Tlimp))@ = =— dz =

1 / (Aid — T lim(p)) (21d = T lism(p)) "
.

27 A— 2
_ L (Aid — 2id + 2id — T imp)) (2id = T |imp)) 5 (A3)
211 . A— 2
1 1 id
—_— d —_ im _1d —_— d — P,
271 W(Zl 71 (P)) “t 271 . A— 2z :

where we used the fact that (A—2z)~! is analytic for A € 09, hence last integral equals
0. Therefore, given y = Pz € im(P), (Ad — T |imp))Qy = Py = y, that is (Aid —
T lim(p))@ = id|im(p). Accordingly, (T |imp)) C 01. Let us prove that o(7 |ker(p)) €
0. Let A € o1, then we consider @) as above. The computation (A.3) holds with
T|im(P) replaced by T|ker(P), except for last integral. In fact, since A is inside 7,
then it is a pole of (A — z)~!. Using again Cauchy’s residue theorem, we get (Aid —
T |ker(p))@ = P+id. Consequently, if x € ker(P), then (Ad—T |ex(p))Qx = Pr+2 =
z, ie., (AMid — T |im(p))@ = id. By Lemma A.10, we conclude that o(7 |imp)) = 01
and (T |ker(p)) = 02. Q.E.D.

Definition A.12. Let T € L(B,B) be a bounded linear operator. We say that
A € o(T) belongs to the discrete spectrum of T if

1. X is isolated inside o(T);

2. the projection
1
P=_— [(zid—T) 'dz,

21 .

where v is a simple smooth closed curve in R(T) around \, has finite rank;

3. the range of A\id — T s closed.
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We denote by oais(T) C o(T) the discrete spectrum, while we denote by oess(T) C
o(T) the complementary part, that is the essential spectrum. In particular, X belongs

to the essential spectrum if at least one of the following conditions is true:
1. the range of (Aid — T) or the range of (A\id — T)~! is not closed;
2. Ujs1 ker((Mid — T)?) is infinite dimensional;
3. X is a limit point in o(T) \ {\}.

We finally denote by

Pess(T) = sup |z
2€0ess(T)

the essential spectral radius.

Remark A.13. There are many different definitions of essential spectrum. The
one we use in this thesis is the most common in the field of dynamical systems and
it is Browder’s definition [18]. We point out that, although the essential spectrum
depends on the definition, for bounded linear operator, the essential spectral radius
is independent of it [30, Corollary 4.11].

Definition A.14. Let T € L(B,C) be a bounded linear operator between Banach
spaces. We say that T is quasi-compact if there exist a bounded linear operator
Tess € L(B,C) and a compact linear operator of finite rank Tas € L(B,C), such
that T = Tess + Tais and || Tessll < ||Taisl|- As a consequence of Proposition A.11,
if T € L(B,B) is a linear endomorphism, then T is quasi-compact if and only if
Pess(T) < p(T).

We conclude this section recalling a useful result [9, Lemma A.l.] about the

spectrum of quasicompact operators acting on different Banach spaces.

Lemma A.15. Let B be a separable topological vector space and let (B, || - ||1)
and (Ba, || - ||2) be two Banach spaces that are continuously embedded in B. Assume
that there exists a linear subspace By C By N By which is dense in By and By. Let
T: B — B be a continuous linear map preserving By, By and By. Assume that there

exists p > 0 such that

max {pess(T|B1)7 10688(7-|32)} <p.
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Then the eigenvalues of the operators T |g, and T |, coincide out of the ball {z € C :
|z| < p}. In addition, the generalized eigenvectors corresponding to such eigenvalues

coincide and belong to By N Bs.

ProoOF. We firstly prove that
Pess(T) = nf{p(T|w): W e W}, (A.4)

where W is the family of closed T-invariant linear subspaces W &€ W of finite
codimension. In effect, for any p > pess(7T), let W be the image of the projection
corresponding to the spectrum contained in {z € C : |z| < p}. As a consequence
of Lemma A.10, Proposition A.11 and Definition A.12, W is a closed T-invariant
linear subspace of finite codimension, i.e., W € W. Accordingly, p > inf{p(7T |w) :
W e W} for any p > pess(T), hence pess(T) > inf{p(T|w) : W € W}. On the
other hand, let W € W and let W’ a complementary finite dimensional subspace in
B. Denoting by 7: B — W and n’: B — W’ the corresponding projections, one can
decompose T =T om+ T on’, where T on’ is a finite rank operator. This implies
that pess(7T) < p(T|w) for any W € W, hence pess(T) < inf{p(T|w): W € W}.

Let us consider By NB,. This is a Banach space once we endow it with ||-[|; 4| - ||2.
Using (A.4), we get pess(T |5ins,) < max{pess(T5,), pess(T|s,)}- In fact, let W; be
the family of closed T-invariant linear subspaces of finite codimension in B;, for
i € {1,2}. Similarly, let W, 5 be the analogous family for B; N B,. The existence
of the linear subspace By C B; N By, which is dense in B; and B, implies that
Wi 2 €Wy UWs, ie., the relation among essential spectral radii. As a consequence,
we assume, without loss of generality, that By C By and || - [|2 < || - |-

Fix p as in the statement of the lemma. Denote by £ C B; the finite dimensional
subspace obtained as the direct sum of generalized eigenspaces corresponding to
eigenvalues A with |\| > p. Up to considering the quotient spaces B;/E, for i = 1,2,
we can assume that £ = {0}, so that p(7|p,) < p. We finally show that there are
no eigenvalues A for 7: By — By such that |A| > p. Assume by contradiction that
such a A\ exists, then there exists a nonzero v € By such that Tv = Av. By the
density of By C Bs, there exists v' € By, close enough to v in both the B; and Bs
topologies, such that, for all n > 0, |[7"'||; > ||[T™V|l2 > |A|"]|¢/]|2. Accordingly
|7 |l3,—8, = |Al, and this contradicts the assumption p(7T|5,) < p-

Q.E.D.
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A.4 Proof of Hennion’s theorem

In this section we prove Theorem 2.9. We essentially follow [27], but we give the
original proof of Hennion [41], which is a consequence of Nussbaum formula [59].
In effect, the authors of [27] prove a generalization of Hennion’s original result (see
also [10]).

We firstly recall some prerequisites.

Definition A.16. Let (B,|| - ||) be a Banach space and let W C B be a linear

subspace. The distance between a point x € B and the subspace W is
d(x, W) = inf ||z — y||.
(z, W) = inf [z —y]

The following result, which is intuitive for finite-dimensional Banach spaces, also

holds for infinite-dimension spaces.

Lemma A.17. Let W C B be a proper subspace of the Banach space B, that is
0 # W # B. Then for each € > 0 there exists x € B such that ||z|| = 1 and
dlz,W)>1—ce.

PROOF. Let y € B\ W, then by definition, for all § > 0 there exists z € W such
that d(y, W) < |ly — z|| < d(y, W) + 0. Let consider z = =% and ¢ = %_’EW). For
every ¢ € W we have
ew
ly—=—aly ==l o _dwW) _, __
ly — =]l d(y, W) +6

Iz —qll =

Q.E.D.

Definition A.18. Let B be a Banach space. B is locally compact if every bounded

sequence in B has a convergent subsequence.
Lemma A.19. Let B be a locally compact Banach space. Then B is finite-dimensional.

PROOF. Assume by contradiction that B is infinite-dimensional. Let W, = span{w; }
be a 1-dimensional subspace with ||w;|| = 1. Then, by Lemma A.17, we can define
by induction W,, = span{wy, ..., w,}, n € Z*, such that ||w;|| =1, fori=1,...,n,
and ||w; —w;|| > %, foralli,7 =1,...,n, i # j. Therefore, we have built a bounded

sequence (Z,)neny With no convergent subsequences. Q.E.D.
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Definition A.20. Let T: X — Y be a continuous function between topological
spaces. We say that T is proper if, for every compact set A CY, T~Y(M) is compact
mn X.

Lemma A.21. Let T € L(B,C) be a bounded linear operator, such that T restricted
to closed bounded sets is proper. Then ker(T) is finite-dimensional and im(T) is

closed.

ProOOF. By assumption, 7 is proper when restricted to bounded closed sets. There-
fore, ker(7) is locally compact. As a consequence of Lemma A.19, it is finite-
dimensional. To prove the second part, let (7 (x,,))nen be a sequence in im(7), such
that (7 (z,)) Y€ C. The set A = {y,T(z,)| n € N} is compact, hence
T'A is compact and we can extract a convergent subsequence (2, )xen, such that

Tn, — « € B. By continuity, 7 (z,,) — T(z) =y € im(T). We conclude
—+00

k—+o00

that im(7) is closed. Q.E.D.

k

Definition A.22 (Measure of noncompactness). Let B be a Banach space and let
B C B be a bounded subset. The measure on moncompactness of B, denoted by
v(B) > 0, is the infimum over d > 0, such that there exists By, ..., B,, subsets of
B of diameter diamB; < d, for which B C U} | B;. When By,..., B, are balls of
radius smaller that d, the same definition gives the ball-measure of noncompactness
¥(B). Given a bounded linear operator T € L(B,C), we define the measure of

noncompactness of T

~(T) = inf{d > 0| v(T(B)) < dvyg(B), for each bounded B C B}
and the ball-measure of noncompactness of T

Y(T) = inf{d > 0| 3c(T(B)) < dys(B), for each bounded B C B}

The following lemma collects some properties of the (ball-)measure of noncom-

pactness.

Lemma A.23. Let A, B C B be bounded subsets of the Banach space B and let
T € L(B,C) be a bounded linear operator. The following properties hold:

1) The closure of A, A, is compact if and only if v(A) = 0. Moreover, A is
compact if and only if 7(A) = 0;
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2) T is compact if and only if v(T) = 0. Moreover, T is compact if and only if
T) =0;

3) 1(T) <|IT1;
4) 1(A+ B) <7(A) +7(B) and y(A+ B) <75(A) +7(B)

PRrOOF. If A is compact, then for all € > 0 there is a finite open covering of A
made of bounded subsets of B of radius e. Thus, v(A) = 0. Similarly, 7(A) = 0.
On the other hand, if A is not compact, then there is a sequence (z,,),en With no
accumulation points. Let us consider the family of balls (B(z,,€))nen of radius e.
We claim that there is a subsequence (x,, )ken, such that lf)’(:z:nk1 ,€) ﬂlS’(az:nk2 €)= O,
for some € > 0 and for each ki, ks € N. In effect, if this is not true, then for all € > 0
and for any subsequence (z,, )ren, there are ki, ko € N such that d(ocnk1 , xnk2) < 2e.
Accordingly, there is Cauchy subsequence (z,, )reny Which converges to some point
r € A, against the assumption. We conclude that 5(7) > (7T) > € > 0.

Let us prove 2). If T is compact, then, by Remark A.2, m is compact,
whenever B C B is bounded. By 1) (7 (B)) = v(T(B)) = 0,1.e.,5(T) =~(T) = 0.
If v(T') = 0, then let us take B C B bounded and contained in a ball of radius R.
For any e > 0, we have y(7(B)) < 5v(B) < ¢, ie., 7(T(B)) = 0, which implies
that 7(B) is compact by 1).

For any B C B bounded, let | > ~(B), so that B is covered by bounded
sets Bi,..., B, of diameter smaller than [. Consequently, 7 (B) is covered by
T(By),...,T(B,) and diam (7 (B;)) = sup, ep, [|T(x) — T (y)|| < ||T|diam(B;) <
I|IT||- This proves 3).

We now show 4). Let [ > v(A) and let t > ~(B). By definition there are cov-
erings {A;}, and {B;}}", of A and B, respectively, such that diam(A;) < [ and
diam(B;) < t. It is clear that A + B is covered by sets {A; + B,};; whose diameter
is bounded by [ +¢. We conclude that y(A+ B) < v(A) +~(B). The proof of second
inequality is essentially the same noticing that the sum of two balls is again a ball.

Q.E.D.

Lemma A.24. Let T € L(B,B) be a bounded linear operator. Suppose that there
exists n € Z such that 5(T) < k < 1. Then (id — T)" restricted to bounded closed

sets is proper, for any r > 1.
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PRrROOF. Let B C B be a bounded closed set. By definition, we need to show that,
for any compact set C € B, D = (id — 7)~!(C) is compact, which is equivalent to
¥(D) = 0. For any € D x = Tx + ¢, with ¢ € C. Iterating this equality we get
x=T"(x) + 307 Ti(c). Writing C = S TC, we get that C' is compact, since
it is the image of a compact set under a continuous map, and D C T™(D) + C.
Accordingly, ¥(D) < 7(7T"D) < k¥(D), i.e., (D) = 0. For r > 1 we proceed by
induction. Assume the statement is true up to r — 1, then, for any compact set
CCB,[id—T)]1C) = (id — T)7!(id — T)"'|71(C) is compact and (id — T)"
is proper. Q.E.D.

Lemma A.25. Let T € L(B,C) be a bounded linear operator. Denote by B* the dual
space of the Banach space B, that is the space of bounded linear forms [: B — C.
Let T* € L(C*, B*) be the dual map of T, i.e.,T*()(x) = (T (z)) for anyl € C* and
for any x € B. Then ~(T*) <5(T).

PrROOF. We have to prove that for any bounded set S C C*, T*(S) can be covered
by finitely many bounded set of diameter less or equal than (7 )diam(S) + ¢, for
any € > 0. By definition, 7(B(0,1)) < 1, hence 7(B(0,1)) can be covered by finitely
many balls By,..., B, in C of radius ¥(7) + m. Let ¢; € C be the center of
B;. We fix M € R such that ||¢;|] < M for any ¢ = 1,...,n, and ||c*|| < M for
any ¢* € S. Consequently, |c*(¢;)| < M? for any ¢* € S and any i = 1,...,n. Now,
we subdivide the interval [—M? M?] into subintervals A;, j = 1,...,p, of length
smaller than § and we define the following equivalence relation: ¢* ~ d* if and only
if ¢*(¢;) and d*(¢;) belong to the same interval A; (7). Let S =5/ ~ be the quotient
w.r.t. the relation ~. We show that, for any s € S, diam([s]) < J(7)diam(S) + e,
where [s] € S represents the equivalence class of s € S. Consider ¢t, ¢} € [s]. Then

[T7(c) =T (@)l = sup (T (2)) = (T(@))| = sup [ei(y) — 3(y)]-

zeB(0,1) ye€T(B(0,1))

Assume that y € B <ciﬁ(7‘) + m), then

lc1(y) — & (y)| < ety — i) — &y — ) +|ei(e) — e(a)| =
=[(c; — )|y — el + | (e;) — ¢3(ci)| < diam(S) (’i(fr) + m> + % -
=diam(5)7(T) +e.
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This gives diam(7*(5;)) < diam(S)7(7) + € and, since these sets cover T*(S), we
conclude that v(7*) <~(T) + dia%(s) for any € > 0, that is v(7*) < 5(T).
Q.E.D.

The following theorem gives an important formula to estimate the essential spec-

tral radius.

Theorem A.26 (Nussbaum formula [59]). Let T € L(B,B) be a bounded linear
operator. Then it holds

= infy(77")7 <inf (T = Tim 3(T")".

n—-+o0o

S=

lim ~(7")

n——+0o0o
Moreover, denoting by pess = inf,cy 5(7-”)%, if || > Pess: then ker((Aid — T)") is
finite-dimensional, for any r € Z*, im(A\Md — T) is closed and X is not a limit point
of o(T) \ {\}. By Definition A.12, we get pess < Pess-

PROOF. Let 7,8 € L(B, B) be bounded operators. We firstly show that 7(7 oS) <
Y(T)H(S), so that In7(-) is a subadditive function and the last limit exists, and
equals pess by the same reason of the limit in Lemma A.9. By definition, for any
bounded B C B, (T (B)) < 5(T)¥(B). Therefore ¥(T o S(B)) < ¥(T)J(S(B)) <
F(T)7(S)¥(B), hence 7(+) is submultiplicative. The proof for v(-) is exactly the
same, while the inequality is a consequence of vy(-) < 7(-).

Let |A| > pess, then there exists n such that F(T™)= < |A|. Accordingly F(T"A™") <
1 and, by Lemma A.24, (id—7 \~1) is proper on closed and bounded sets. By Lemma
A.21, ker((Aid — T)") = ker((id — TA™!)") is finite-dimensional and im(\id — T) =
im(id — TA™1) is closed.

Finally, we prove that X is an isolated point of ¢(7). In particular, we show
that there is a neighborhood U containing A, such that U \ {A\} € R(T). Since
the resolvent is open, the result is trivial if A € R(T). Assume A € o(T). We
claim that ker(id —7) # 0 or ker(id — 7*) # 0. Otherwise, the inverse function
(Aid — 7)~!: im(Aid — 7)) — B exists and the domain is closed. If we prove that
im(Aid — 7) = B, then A € R(T) and we gain a contradiction. On the other
hand, if im(Aid — 7) # B, then, by Lemma A.17, there exists x € B, ||z| = 1
and d(z,im(Ad — T)) > 1. Let y € span{z, im(Aid — T)}, hence y = az + ¢, with

q € im(\id — T) and a € C. We define I(y) = a, so that
ol _ U(y)

-1
lyll = llaz + ql| = |alllz — (=a™"q)|| 5 9
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Since, |I(y)| < 2|ly||, by Hahn-Banach theorem we can extend [ to a linear form on
B. Consequently, (AMid — 7%)I(z) = I[(Aid — T)(z)) = 0, for any z € B. Thus, | €
ker(Aid — 7*) against the assumption. So, B = im(Aid — 7)) and A € R((T")), which
is a contradiction. To conclude we need to show that there is no sequence {\, },en
in o(7) \ {\} which converges to A. Assume that such a sequence exists. Then, for
any € > 0 there exists nyg € N such that |\, — A| < ¢, for each n > ng. By the claim,
there are infinitely many nonzero z,, € ker(\,id — 7) or infinitely many nonzero
I, € ker(\,id — T*). In the first case, we consider X} = span{, 11, .., Tnotr} for
any k € Z*. X,,_; is proper inside X}, hence, by Lemma A.17, there exists y, € X}
such that d(yg, X;_1) > 1 — €. In addition, yx = axTnyir + wi_1, with a; € C and
wy_1 € Xp_1. For any k,s,r € Z", with s > k

177 (ys) = T ()l = 1T (astnors) + T (ws—1) = T" (yu)[| =
=[[Asas@ngrs + T (ws—1) = T (y) | = X 1llys — (ws—1 = AT (T (ws—1 — y)))I| =
AT — AT

1
+ G

ZAJ(T =€) = A= A"+ AT|(1 =€) = |\ (1—-¢) =

> |\ (1— AS;A) (1—¢) > [N](1—e) .

The computation shows that we cannot cover 7"(B(0,1)) with finitely many sets
of diameter $|A|"(1 —¢)", for any r € Z* and any ¢ > 0. We have prove that
(TT) = ~(T") > 3|A|". In the other case, the same proof gives v((7*)") > $|A|".
Lemma A.25 implies that F(77) > ~v((T*)") > 1|A", hence pess > |A| against the
assumption. This proves that A is an isolated point in (7). Q.E.D.

We now have all the ingredients to prove Hennion’s theorem (see Theorem 2.9
for the statement).
PROOF OF THEOREM 2.9. We want to apply Nussbaum formula (Theorem A.26),

hence we need to compute ¥(7"). Since i is compact and B is bounded, we get that

i o T(B)(0,1)) is compact. Consequently, for any e > 0, there exists x1,..., 2, €
B”.H(O, 1), such that

i0 T(Byy(0,1)) € |JB(T (), €) 0 By (0, | T1).

=1

For any y € Bj.(T (z;),€) N By (0, || T'||), then, by second assumption,

[T (i) = T < rall T (i) = yll + Bl T () — yl < 2| T + 2Rne.
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Accordingly, F(T™) < 2, || T, hence pess < liminf,,(r,,) .
QED.



Appendix B

A toolbox of Hodge theory

In this appendix we recall some basic facts about Hodge x operator. References
we suggest to the reader are [46, Chapter 2| and [22], where these concepts are
deepened.

Let M be an orientable, closed, Riemannian manifold equipped with the metric
g, which induces a volume form wy, as in Chapter 1. We assume to work with
an oriented atlas {U;,1;}, with an orthonormal, positively oriented basis of vector
fields {0,,,...,0 >}, and with the corresponding basis of differential forms (see

) P Tdim(M
Section 2.3).
Definition B.1. The Hodge x operator is the unique linear map
*: QU M) — QImAD=L(pr)

such that

<w1,w2>w0 = w1 /\*CUQ, fOT Wi, Wo - QZ<M>

The existence of xw is a consequence of the nondegeneracy of the scalar product

(-,-). In addition, * is unique, because if * is another Hodge operator, than
w1 A (*wg — *OJQ) = <u)1,u)g — LUQ>UJO = O,
for any wy,ws € QY(M). Thus, *wy = *wy.

Remark B.2. Notice that, using the orthonormal basis {dz1, ..., dZgm(n } of TM,

the Hodge operator can be written as
*dxyy Adwi, N Ndxg, = dxg, Ndxg, N Ndzg o
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where dx;,, dx,,, ..., dz;,,dv; dxj,, . .. ,dxjdim(M)fl is a positively oriented. Accord-
ingly, if h =} = ; hydxs on ¢;(U;), then

jed
Definition B.3. We define the linear operator §: Q'(M) — QI=1(M)

5 = (_1>dim(M)(l+1)+1 wdx.

The following proposition put together some properties of the Hodge operator,

the exterior derivative d and the linear operator 9.
Lemma B.4. The Hodge x operator satisfies
1ok grany = (= 1)/ O0=Did | gu 93
2. wy Akwy = (=140 sy A wy = wy A xwo;
3. § is the adjoint of d w.r.t. the scalar product (-,-);
4. 6006 =0.

Moreover, let f: M — N be a diffeomorphism of Riemannian manifolds. Let w; €
WH(M) and let wy € QY(N), then

5. (fowr,ws) = (=1)H(dim(M) — I){wy, *f* xwy) o f~Ldet(df 1)
PROOF. Let us prove 1. Notice that «x maps Q(M) onto itself and suppose
*dxiy, A dxi, N - Ndxg, = dxy Ndxg, N NdTg o
Consequently,
*Hkdry Ndxi, N Ndxg, =xdxg, Ndzg, N Ndagy o = edrg Ndxgg A A day,
where € is the sign. Since,

dx'h A dl'iQ VANEIVAY dl’il A\ dl’jl A\ dl'jg VANERIVA d.ﬁlﬁ'jdim(M)il =
=(=1)" @O, Adag, A Adzgy oo A dag Ade A A d,)

we conclude that € = I(dim(M) —1).
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As a consequence of the definition, we obtain

/ w1 N\ *wy = (wl,wg) = (LUQ,LUl) = / Wy N\ *wyp = (—1)l(d_l)/ *wi A\ Wa.
M M

M

Let us show that ¢ is the adjoint operator of d. For w; € Q71(M) and w, €
Q'(M),
d(wy A *ws) = dwi Axws + (=1 7w Adxwy =
:dw1 A *ws + (_1)l—1(_1>—(l—1)(dim(M)—l+1)w1 /\**d*WQ _

(_ 1)d(l+1)+1

:dwl/\*wg— wl/\**d*wg

By Stokes’ theorem,

0= / d(w1 /\*CUQ) :/ dwl N\ *Wo —/ W1 /\*5(,02 = (dwl,wg) — <W1,5WQ).
M M M

Trivially, 0 0 § = *d x xdx = £ x d o dx = 0 proves 4.
Finally, we check point 5. In fact, denoting by wy;, resp. wy, the volume form

induced by the metric on M, resp. N, we compute

(fawr,wo)wy = fawr A kwy = filwr A f**wsy) = (—1)l(dim(M)7l)f*(W1 ANxx f5Hwy) =

= (—1)l(dim(M)_l)f*((w1,*f* * ws) )wy = (—1)l(dim(M)_l) (Wi, % f* % wy) o [ det(df H)w,

Q.ED.

0-
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Appendix C
Technical results

In this section we collect some technicalities that we used in some proofs of this

thesis, as well as some technical results.

Lemma C.1 (Distortion Lemma). Let W € ¥ be an admissible leaf. Let W; be
an admissible leaf, as in Lemma 2.1, such that W; C f~™(W). Define X\i(x) =
|det(d, f™|r,w;)|, that is the contraction of f™ along the stable manifold W;. Let

Ay i = mingew, Ay (). Then there exists a constant C > 0 such that, for any n € N

and for each x € W,

/\fm‘ < \(z) < C)\f@,z‘-

In addition, |Xllceqwy < £ (W),

PrRoOOF. We claim that there exists a constant D > 0 such that for any n € N and
for any x,y € W;

A ()
A ()

In fact, assuming that the claim is true, we get A\’ (z) < DS (y), for all x,y € W,
hence \; (z) < Dmingew, A (y) = DA, ;.

D7l <

<D.

Let us prove the claim. Denoting by W} = f(W;), we obtain

n—1
_ = H ‘det (dft(x)f|Tft<z)Wit>‘ :

t=0

An(x) = |det(de f*[r,w:)

n—1
det (H dft(m)f|Tft(z)Wit>
t=0
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Consequently,
A8 n—1l ‘det(dft(z)f|T t(a Wit) U
In )\:Exi - Zln o =2 (Vin ‘det(dft(z)ﬂTmz)Wf) oY) =
n\Y t=0 det ‘dft(y)f|Tft(y)Wf t=0
n—1

= > (- )V In [det(dyee) flr,, we) |7 = v) =
t=0
n—1

= Z(V In ‘det(dft(z)ﬂTft(Z)Wf)‘ ,dzft(x —y)) <
t=0

t
_ will <

n—1
< vl ’dtd .

J/

<C CA t
t=0 A ! '

We have proved [|CO(W;)|| < CX; ;. Notice that

= [ = [ X (@) 2 45 W = O
fr(wi) Wi

k3

hence || A3 |[cow,) < C|f"(W;)|. Let us consider derivative of A7. We compute

>:

det(dsn () f |Tfh(m)Wih)

n—1
0, No(2) = 0, (H ‘det(df @y w)
t=0

n—1n—1 ax
J

[det(dgio) L, o)

h=0 t=0

det(dfh(x)f‘Tfh(x)Wlh)
n—1
=X(2) Y0, In <‘det(dfh(m) Fl ) ) -
h=0
n—1
=\’ () Z <V1n ()det(dfh(m)ﬂTfh(z)Wﬁ)D O, fh(x)|T1W¢> <
h=0
n—1

e f* |z w,

n—1
<N(@)) max ||V In | det(d, f|, ) <ON(2) Y A< ON(2).
h—o YW h=0

Accordingly, |3,y < ClA|lcow,y < Clf™(W;)| and, iterating the reasoning,
X loaqwsy < CL (W)
Q.ED.
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Lemma C.2. Let W € ¥ be an admissible leaf in ,(U,). Let W; be an admis-
sible leaf, as in Lemma 2.1, such that W; C f=™(W) in ¢;(U;). Define X (z) =
|det(d, f™|r,w;)|, that is the contraction of f™ along the stable manifold W;. Let
dy; € Q' (Y;(U;)) and day € Q' (¢.(U.)), as defined in Section 2.3. Then,

||<d.7}j, ffdl’g) o anfLHCq(WZ) < C}\_|ds_l|n'

PRrROOF. We firstly consider the case | < d,. Let S! be the family of [-dimensional

vector subspaces of C5. For any V, € S! and for any n € N, let us denote by
an(m) = dxfn‘/;c Then

[(dx5, fldxg) o " (2) A (2)] = [{dxg, fi'drg) o f*(x) det(def" |7, w;)| <
det(dyn@)f ™" Vyn(,))
det(df" x)f |Tf"(z)W)

< max |det(dfn(a; _n|vfn(w)) det(de f"|T.w;)| =

Vo €SL Vzesl

Notice that

‘r/?a;( | det(dpn(ay f " Vine)| < vﬁ?s?s | det(dgnia) f " [Vin ) IA ;

hence

det(df“ Vi)

masx det(dsn(zy f " Vyn(s))

)\—(ds—l)n
det(dfn(x)f

X
‘Tf"(z))W) V,€8;° 7n|Tfn<z)W)

Since both dgn gy f 7" (Vin()) and dgn(z) f 7 (Tpn(zyw) converge to the stable subbundle
as n — +00, by continuity of the differential, there exist v € (0,1) and 7 € N such
that, for m > n,

|det(dfm(x)f_1‘yfm(x))‘ — |det(dfm(m)f_l|Tfm(z)fm(wi))| <rv < 17

hence
|det(dfn(x)f_n|vfn(z))| — |det(dfn(x)f_n|Tfn<z)W>| <Oy <C
We obtain that

det(df”($)f_n|‘/fn(l)) 1
max -n S -n - nds —
Vzesgs det(dfn(x)f |Tf"(z)W) | det(dfn(x)f |Tf"(z)W)| )\ S

We conclude that

H<d$37 ffd%g> o f"(x))\‘;(x)“co(wi) < C)\f(dsfl)n
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Let us compute derivatives. W.l.o.g. we can assume that 9, € T,WW;. Then

Ou; (| det(dpna) ™" Vim0 AR (2)]) = Ouy (| det(d pna) [ " [vim ) ) DA () +
+ | det(df"(x)f_n|vfn(z))|| 8xj )\Z(l‘)

Since 0., A;,(7) (see the proof of Lemma C.1), the second term of the sum can be
estimated by the C%-norm. Similarly, one can repeat the argument of the proof of

Lemma C.1 to prove that

Thus, also the first term of the sum can be estimated by the C°-norm. By iterating
that procedure one obtains the estimate for the C%-norm. It remains to prove the
case | > d,. Let V, be an [-dimensional subspace of T, M. The worst estimate for
|det(dfn(x)f_”lvfn<z>)] is given by the case for which V, = S, & U,, where S, is a
ds-dimensional subspace in the stable cone and U, is a (I — d)-dimensional unstable

subspace. Since | det(d () f ™" |vn(,)] < A=) e obtain again

det(deniy "5
(day, frdeg) o @R (@)] < ma | oo @] Tlspren) |\

’ S,e8%s det(dfn(x)f_”hfn(x)w)
and we can conclude as above. Q.E.D.

We now prove two generalizations of Poincaré’s lemma that we used in Section
3.3 to get the isomorphism between the anisotropic de Rham cohomology and the
Cech cohomology.

Proor or LEMMA 3.23. The first part the lemma informally says that closed
O-currents are constant and it generalizes [20, Lemma 5.15] to higher-dimensional
manifolds. Let h € CP%Y be a closed current of degree 0 (and dimension dim(M)). By
Lemma 2.8, BP9 can be identified with a subspace the dual space of CP*4 function
on M, i.e., a space of distribution, and the behavior of h, acting on ¢ € CP™? as a

current, is obtained disintegrating the integral
i0)(0) = [ hown
M

along leaves of Y. The same holds true for C?%°, which is a subspace of BP9, Let
¢ € CP*1(M) such that supp(¢) C int(supp(ér)), where we recall that {@x i, is
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the partition of unity subordinated to the contractible open covering {Vi = ¥, (Us)}.
Then

b1 ba,,
8% h / ¢ 8 h(.U() / / / ¢ 8961 hft1 by, Wiy ,.. dtl . dtdu
Wiy,

e

depending on d, parameters tq,...t5,. Notice that, since leaves are smooth, the

U

where we disintegrated the integral along ds-dimensional “stable” leaves Wy, 4,

Jacobian f, 4, 1s a smooth function. Consequently,

by bd,,
Z(axl h) (¢) :/ c. / / <ft1,-~~7tdu ¢,;1¢de, ¢kdh>wt1’“_7tdu dtl e dtdu =0.
ai a th,mtdu

This implies that 9., h = 0 as a distribution on the interior of supp(¢s). Since, by
assumption, supp(¢y) is simply connected, hence connected, there exists ¢, € C such
that ¢y - (h—cx) = 0 in (CPT9)*. Thus, ¢;- (h—cx) = 0 in CP*°, because the inclusion
i': CP90 — BP2Y and the map i: BP%0 — (CPT9)* are injective (see Lemma 2.8).

Let us prove the second part of the lemma. We firstly introduce an enlarged
partition of unity {¢;}7", such that supp(¢r) C supp(¢l) C Vi and ¢ = 1 on
supp(¢y). Next consider a differential form w € QY(M) such that dwg, = 0 for
some k € {1,...,m}. We fix z;, € V}, \ supp(¢;) and we define the linear operator
ay: QM) — QY(M) such that

1
ap(w)y = Vpa ( /0 7 (g (o) () PR =1 () (1—t) dt)

where ¢,w denotes the interior product of w with a vector field v. Next, denoting

k k) _
by yr = (rg ), .. rélm ) wk (rx) and y = (r1,...,Tdim(M)) = wkl(;ﬂ), we can
compute

1
((doy, + axd)w)z = Vs (/ tl_l((d’fyfyk + Lyykd)w;::w)yk(lt)wtdt) =
0

1
=kx (/0 tl1(Lyyk¢zw)yk(1—t)+ytdt> = (%)

where, in the second line, we used Cartan’s magic formula [57, Theorem 2.11] which
states that, given a smooth vector field X, Lx = ditx +txd. Let ®4(y) = yp +€e*(y —
Yi), so that ®o(y) = y and £|,_o®,(y) = y — yx. Writing v, in place of ¢jw and
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assuming that (vx). = > sc 0 f5(2)dr; in coordinates, we get (Pivg). = *(vr) s, (2)

and T
d i} 1m af
(Ly—yvr)s = _ (Pvx)> = l(vk): + ; (2 = ye)i 87“1( z)dr3,

where the first equality is the definition of the Lie derivative. Consequently,

tl_1<Ly—ykvk>yk(1—t)+yt =

dim(M

8f
=" 1wy =y + Z Z (Y — Y (yk(l —t) +yt)dr; | =

jegt =1

= ltl_l(vkz>yk(1—t)+yt + ¢ Z <vfj(yk(1 —t)+yt),y — yk>d77
JjeT!

d
Tt (tl(vk)yk(l—t)wt)

hence
Ld
(*) = ¢k>k dt (t wkwyk(l t)—i—yt) dt = Wy
0

We have thus proved that (doy + apd)w = w. Accordingly, if w is a [-form such
that dwey, = 0, then we get dag(w)pr = wor — ag(dw)dr = wey, that is we have
just proved Poincaré’s lemma for differential forms. Once we have the result for
forms, we could try to extend a; to a bounded linear operator from CP%! to CP9!~1,
Unfortunately, ay(w), for a differential form w, is not defined on every admissible
stable leaf of W € ¥. In fact, we can just consider leaves inside ¢ (Uy). On the other
hand, the product ay(w)¢; is well defined on the full manifold, because it is null out
of supp(¢;). Accordingly, we consider the operator B, : Q'(M) — Q'=1(M), such that
Br(w) = ag(w)¢;, and we want to prove that it can be extended to a bounded linear
operator from CP4! to CP%'=1. Let w € QY (M), and ¢y, 0 G, p(Ba,(0,p)) = W € %,
with p € B(0, p) and F € F, as defined in Section 2.2. Let ¢ € T?'"1(1W) be a test
form. Then, denoting again by y = ¥} '(2), yx = ¥}, ' (1), vi = Yjw, and x; = V}e

[ttt whon o= (62 ( / 1“<Lyykvk>yk<u>+ytdt) ok o)

w

- < / »

k

<(Xk>y7/0 fl1(%ykvk)yk(l—t)+ytdt>¢$(¢k(y))¢2ww(Z/)) = (%)

Setting l;(y) = yx(1 —t) + yt, we have ' (iy—y, k)i = (liniy—y,Vk)y and (xx)y =
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(lzlt*Xk)y (lt*Xk)lt . Thus,

=ks (/1/; 1W/0 <(Xk)y7 (l;skby—ykvk)y>¢z_(¢k(y>)dt¢ZwW<y)) =

. ( / / tl—1<zt*<xk>h<y>,<Ly_ykvk>zt<y>>¢;wk(y))dw;wmy)) -
v, 'w Jo

dim(M)
= Z (. (/1;1‘11/1/ ) N L A dri, Vk)1,(5) (Y — yk)@?(?ﬂk(y))dtw,’;cuw(y)) = (o)

Next, we compute
1
[ [E e mnly - it (oulw)desion(s) -
SwJo
1
B i dr v, 00 (G (5) )G 0 ()G (5) =
Bag (0,0

1
_ / / e (A V)16 1) G (1) — g G sl (G o Gt

0 Bds (Oatp)

Let ¢t = yx(1 — t) + tp and F;: By (0,tp) — By, (0, p) such that Fi(z) = F(t7'2).
Then ¢, € B(0, p) and F; can be extended to a function F, € F. As a consequence,
Setting Wy = W © GQmFt(Bds (07 tp)) - ﬁ\/t = wk ° GQt,Ft (Bds <O7 p)) € X and

(M)
((Et)z = Z (wk*lt*xk A d%)x(wgl(ﬂ?) - yk)Zsz('T)a (Cl)

we obtain )
I/ tlilids <((Z_5t):p7 wx>th (‘T>dt
0 Wi

In summary, we have shown that

1
\ J{Buran) ot @ @)| < [ 81 ol el Wi
w 0

One can easily check, using (C.1), that Hq;t”rgvl < C‘|¢||Fg,l—1. In addition, |W;| <
C'tds 171\@| < C't%, hence we conclude that

1
<C / t @l pa-1 llwllo.gadt
0

< Cll¢llpgi-rllwllog.s

'/vé% a(w)a) 81 (2)ww (2)

(C.2)
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e, [|Be()logi-1 < Cllwlogs and By : B2 — BY%=1 is a bounded linear operator.
Similarly, let vx: QY(M) — QY(M), such that vx(w) = ag(w) A dp; . Then, by the
same proof, one can easily check that it can be extended to a bounded linear operator

e BP0 — B9 Next, we compute
/WMMMF/%MWWMMFW/%MMMWWZ
%% %% 1%%4
=/wwﬁw—/wmmme+w/wmwAmwm
w w

w

(C.3)

hence

M@wmmwﬂgcwmwwmw+mwmmmuwmw+mwmm%wmmﬂl

< Cllollpatllwllog: + Clidllralldwllogis,
(C.4)

where, in the last inequality, we used the continuity of £;: Bo®*+1 — B%! and
Y BOOIHL — BO@HL From (C.2) and (C.4) we get

1B (@) 0,g.-1 = [ Bre(@)llo,gi—1 + [[dBr(wW)l0,q0 < Cllwllogs + Clldwllogir1 < Clwlogr

that is B: CO%! — C%%'~1 is continuous. Since w is closed, dyx(w) = w A d¢} and
Ve (W)l0.g1 < Cllwllo.gs- Therefore, |vi(w)]oq1 < Clwlogs and also g : CO4F — €04
is bounded.

We now want to prove that 3 : C1%! — C1%!~1 is still a bounded linear operator.
Therefore, let w € Q(M), W € £, ¢ € T 1 (W) and v € V(U (W)). We firstly
show that ¢,ax(w) = —ag(L,w). In fact, once we have this preliminary result, we get
Lyag(w) = (diy + tyd) oy (w) = —dag(t,w) + tyw — tyag(dw) = —t,w + ag(di,w) +
Low + ag(t,dw) = ap(Lyw). With a slight abuse of notation, in order to simplify
notations, we confuse w, z, zj and v, with {g.w, Vx (), ¥ (xr) and Yy,v, respectively.

Accordingly, we compute

1 1
Lvak(w) =ly (/ tll(/fa:ka)zzc(lt)Jr:rtdt) :/ Lv(l:%—ka)xdt
0 0
1 1
:/ (llet*ULm_mkw)zdt:/ t_l(l;‘LvLm_mkw)mdt:
0 0

1 1
=— / T (U gy o) 2t = —/ tl’QLx,xk(Avw)xk(l_t)+tmdt = —ag(L,w).
0 0
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As a consequence,
/ (¢, Ly (w))ww Z/ (¢, Lyou(w fbk ww +/ (0, ak(w)vqﬁ)ww =
w w
= ¢7 ak UW ¢k ww + / <¢a Qg (W)U¢2>WW
w

s

— [ (6. Bu(Lo))ow + / (6, cn (@)oo

s

hence

j [ Lvﬁk(w»ww’ <Clllpgri 8Ll it + Clldllgraisellers follogrs <
w
<Clllpgrislfollcrs [l o + Cll@llpgrris oo @l

which proves that ||Si(w)|[1,40-1 < C||lwll1,4s- By the same procedure of (C.3) we

obtain
/<¢>, LodBu(w))on = /<¢, Low)diww — /<¢, e (Lodw)) 6o+
w %% %%
(-1 /<¢, (L) A d Yoo
w
hence

\ /éf’ Lvdﬁkw»ww\ <Cllpgrris | Euiwllogera + Clldlgroa-i | Be(Lodeo)llogr i+
Ol pgrns e (Lotw) o gns < Cllllpgeracs follcess el g0+
£ ¢llggrras lollcrss ol gs + Clldllpgis [0l follan.

i.e ||dBk(w)|1,4: < Cllwll1,q: + C|ldw]|1,4441.- We conclude that

1Br(W)]1,q0-1 = [1Br(W)l1,q0-1 + [|[dBr(w) 1,40 < Cllwll1,g0 + Clldw]|1 141 < Clwligu,

so that B: Cb%! — CM'~! is a bounded linear operator. A similar computation
show that v, : C%! — C1%! is a continuous operator. By the same argument f3;, and
v extend to bounded linear operators fj: CP4! — CP%!=1 and ~,: CPol — CPal,

Finally, since ¢} ¢, = ¢y, we obtain

d(Br(w)dr) =dBr(w) ey, + (=1)' Br(w) A doy, =
=woy 4+ (1) ag(w) A def o + (1) 7' By(w) A depy, =
=wor + (—1)' 7' Br(w) A doy,
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hence, setting u, = [x(w) we get the lemma.

Q.E.D.

PROOF OF LEMMA 3.25. Let h € C»%"Y such that dh = 0. Then 0 = 6h(ag,a;) =
h(ay) — h(ap), i.e., h(ag) = h(ay), for all ap,a; € {1,...,m}. Accordingly, defining
w = h(ag) € CP¥, we get i(w) = h.

Next, we consider w € CP44* for some k > 0, such that dw = 0. We define the

operator =: CP#bk — CPabk=1 gych that
m
E(M)(ao, ce 7ak71> = Z ¢jw(j7 ag, - - - 7ak71)7
j=1

where {¢;}7, is the partition of unity subordinated to the cover {V; = ;(U;)}7.,
that we used to define Cech cohomology. We show that 6 o =+ Z 0§ = id. In effect,

M-

doZw(ag,...,ax) (—=1)Zw(ag, ..., @1, 041, .., 0) =
=0
k m
= (—1)Zz¢jw(j,a0,...,ai,l,aiﬂ,...,ak),
=0 j=1

while

Zodwlag,...,a;) = Z d;j0w(j, ag, ..., a;) = Z pw(ag, ..., ar)+
=1 =1

m

k
+ Z(_l)iﬂ Z¢jw<j7 A0y -y Wi 1, Aig 1y - - - Q) =
i=0 j=1
=(w — 0 0 Zw)(ag, . .., ax).
Accordingly, if §(w) = 0, defining u = Zw, we get

00w = w.

du=2do

[1]
(11

W =w —

Q.E.D.



Appendix D
A minimal introduction to entropy

For the sake of completeness, in this appendix we recall the key aspects of entropy
of dynamical systems used in this thesis. We underline that this short survey is far
to be a complete treatment of the topic, which can be found for instance in [47, 17,
71].

D.1 Measure-theoretic entropy

Let (X, B, i) be a probability space and let P = {P;};c; be finite or countable
measurable partition. This means that every P € B, u(X \ U;c; P5) = 0 and
w(P; N P;) = 0, for any couple of distinct indexes ¢,j € I. The entropy of this
partition is

== u(P)log pu(P;) € [0,+0d]

el
with the convention that 0log0 = 0. A finite or countable measurable partition R

is finer than P, or equivalently P is coarser than R, if for any R € R there exists
P € P such that R € P mod (u). Given another finite or countable measurable
partition @ = {Q,};eJ, the joint partition is

PVvO={PNQ;liel, jeJ}

Let T: X — X be a measure preserving transformations, i.e., a map which
satisfies u(T~*(B)) = u(B), for any B € B. Given a finite or countable measurable
partition P of X, we define

Pr=PVvT Y P)V--- VT "(P),
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where T-"(P) = {T~™PF;| j € J}. Notice that, since p is T-invariant, then 7-""(P)
is again a measurable partition and H(T~™(P)) = H(P).

Proposition D.1. The limit

h.(T,P) = lim lH(P{{ )

n—-+oo 1,

exists and h,(T,P) € [0,+00]| is called the metric entropy of T relative to the par-
tition P.

PROOF. Let us recall the definition of conditional entropy. In P and Q are finite or

countable measurable partition, then the conditional entropy of P w.r.t. Q is

H(P|Q) == (@) Y n(Pi|Q;) log p(Pi|Q;),
jeJ il
where pu(P|Q;) = (PN Q;)/1(Q;) when p(Q;) # 0, and it is zero otherwise. It is
not difficult to prove that (see for instance [47, Proposition 4.3.3. - (4)])

H(PV Q)< H(P)+ H(Q).

Thus,
H(P!

n+m

) < H(Py) + H(P,,),

hence (H(PIL)),en is subadditive and we conclude that this limit exists (see the
proof of Lemma A.9). Q.E.D.

Definition D.2. The entropy of (T, 1) is

hu(T) = sup{h (T, P)| hu(T,P) < +oo}

D.2 Topological entropy and the Variational Prin-
ciple

In this section we recall the topological counterpart to the metric entropy h,(T),
i.e., the topological entropy, introduced by Dinaburg and Bowen. Roughly speaking,
the topological entropy h,, is a number which measures the exponential growth rate

of orbits segments that can be distinguished with arbitrarily fine, but finite precision.
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Definition D.3. Let (X, d) be a metric space and let T be a continuous map on X.
We define the dynamic distance of length n of X

dn(z,y) = max d(T"(x), T"(y)).

0<i<n

Let us denote by B, (x,r) the open dynamic ball of length n and radius r, that is
By(z,r) ={y € X| dn(z,y) <7}
Given € >0, a set E C X 1is said to be an (n,€)-spanning set, if

X = U B, (z,€).

zel

Let Sy(n,€) = min{#(F)| E is a (n,€)-spanning set}. Then we define

1
hq(T') = lim lim sup — log(S4(n, €))
=0 pstoo
Proposition D.4. Let d d' be two metrics which induce the same topology on X .
Then hg(T) = ha(T) and we can write hioy = hiop(T) = ha(T) = ha(r). We call
hiop the topological entropy of T'. In particular, hi,, is invariant under topological

conjugation.

PROOF. Let d’ be another metric on X. For any ¢ > 0, let D, be the subset of points
(x,y) € X x X such that d(z,y) > €. D, is compact in X x X and the metric d’
is continuous on D.. Accordingly, there exists the minimum m,. = min d’'|p,. Notice
that m. > 0, otherwise, there would exists (x,y) € D,, such that d'(z,y) = 0, but
then z = y and d(z,y) = 0, i.e., (z,y) ¢ D.. As a consequence, if d'(x,y) < m,, then
d(z,y) < €, hence B, g(x,m.) C By 4(z,€) and Sy (n,me) > Sy(n,€). We conclude
that hg (T) > hae(T). By reversing the roles of d and d’ one obtains hy(T) = ha (T),
hence h,, does not depend on d.

Finally, assume that T: X — X is topologically conjugated to T, with a home-
omorphism ®: X — X. Let d be a metric on X and let d be the pushforward
metric d(Z,7) = d(®'(Z),® (7). Then hy(T) = hy(T) and we conclude that
ion(T) = haop ().

QE.D.
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Remark D.5. An equivalent definition of topological entropy is obtained through
the (n,€)-separated sets. In fact, £ C X is (n,€)-separated if d,(x,y) > € for any
x,y € E. SettingZy(n, €) = max{#(F)| E is a (n, €)-separated set}, we define
1
he(T) = lim lim sup — log Z4(n, €)

€0 notoo
Notice that Sy(n,€) < Zg(n,e) < Syg(n,e/2). In effect, If E is an (n, €)-separated
set with maximal cardinality, then it is also an (n, €)-spanning set. Thus, Sy(n,€) <
Zg(n,€). On the other hand, if E is an (n,€)-separated set and F' is an (n,€/2)-
spanning set, then to every x € E we can assign injectively a point ¢(x) € F such
that d,(z,¢(z)) < €/2. Accordingly, #(F) < #(F') and Zy(n,€) < Sg(n,€/2). We
conclude that

1 1
ha(T') = lim lim sup — log Z4(n, €) = lim lim sup — log S4(n, €),

=0 pstoo N =0 notoo

i.e., the two definitions of topological entropy are equivalent.

Next theorem gives the connection between metric entropy and topological en-
tropy. We do not rewrite the proof, but we refer the interested reader to [47, Theorem
4.5.3] or [71, Theorem 8.6]

Theorem D.6 (Variational Principle). Let M(T') be the space of Borel T-invariant
probability measures , where T is a homeomorphism of a compact metric space (X, d).
Then

hiop(T) = sup{h,(T)| p € M(T)}.

If the r.h.s. s a maximum, then u is said to be a measure of mazximal entropy.

D.3 Volume growth of invariant manifolds for Anosov

diffeomorphisms

We conclude this chapter showing that the volume of stable leaves of ¥ (see
Section 2.2) of Anosov diffeomorphisms asymptotically grow as e™or under the
action of f™". Notice that we used this estimate in the proof of Lasota-Yorke
inequalities (Theorem 2.11). Consequently, in this section we assume the setup of

the problem of this thesis (see Section 1.2). The proof is taken by [36, Appendix C]
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We point out that there is a small mistake in their result, because W are close to
stable leaves, hence they grow under the action of f~", and not f", as specified in
(36, Appendix CJ.

Let pf = supyex |f7(W)| and let p, = infyes | f(W)|, where | f~"W]| repre-
sents the volume of f~"(W). We prove the following theorem.

Theorem D.7. If f is topologically transitive, then, for everyn € N,
enhtop S p;:‘ S C’enhtop‘
Before proving Theorem D.7, we need a couple of lemmas.

Lemma D.8. Given n,m € N, pt. < Cplpt and p,.., > Cp, p,,- Moreover, if
[ is topologically transitive, then pi < Cp; .

PROOF. Let W € ¥ and let W,, = {W, }ic; C X, of maximal cardinality, such that
(W) D UiefW; and W; N W, = @ for i # j. Thus, #W,, > C|f~(W)| and

[fTm W)=Y 1MW) = Cpy ppe
el
Taking the inf on the Lh.s., we obtain that p,,,, > Cp, p,,. The other inequality can
be proved similarly by considering a minimal disjoint covering W, of f~"(W). Let
0 be the sup on the volume of leaves of X. By topological transitivity, for any € > 0
there exists n., such that, given By, By, balls of radius ¢, then f~"B; N By # &, for
some n < n.. We set i = ng. For any n > a1, let W,, € ¥ such that |f~"T"(W,,)| >
%p,f_,-l. Let x € W, and consider a ball B; of center z and radius cd, for some
c € (0,1), that we fix later. For any W € X let By be a ball of radius ¢ with
center in a point z € W. Since f is topologically transitive, there exists m < n such
that f~"(By)N By # @. By uniform transversality of stable and unstable manifolds,
there exists a ¢ € (0, 1) such that, for any point y € W,,, the local unstable manifold
Wi (y) intersect f~™W) and consists of a single point 7 € f~™(W). Since r € W¥(y),
the distance between y and r is always smaller than § iterating f~!. Accordingly,

[fRW)] < Clf~F=™(W)]. Hence,
V) = CLF T (W)l = Coy s = -

By taking the the inf on W € ¥ we obtain the desired inequality.
Q.ED.
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Lemma D.9. If f is topologically transitive, then, for anyn € N and for each € > 0,
Cep: < Zd(na 6) < Cep:,
where Zy(n, €) is the mazimal cardinality of a (n, €)-separated set (see Remark D.5).

PROOF. Let W € ¥ and let S,, be an e-separated set on f~"(W), in the sense that
the distance between points of 5, is at least €, with respect to the distance induced
by the metric of M on f~"(W). Since W € X, this distance does not grow under
iterations of f. Thus, S, is an (n, €)-separated set. Since #5S, > C|f~™(W)|, we
obtain that Z,(n,€) > Cp;.

Next, let W € 3 and let E be an (n, €)-separated set of maximal cardinality.
Let us consider a family of balls { B;}%_, of radius ce. By topological transitivity, for
any ¢ = 1,...,k, there is n; < n such that f~™W N B; # @& (n is the same of the
proof of Lemma D.8). Let W; € ¥, W; C f~"(W), be a leaf which intersect the
ball B. To every point of x € BN E we assign the unique point y € Wi'(z) N W,.
Two point 1,9 € SN B are (n, €)-separated if and only if the corresponding y1, y2
are (n,Ce)-separated. In particular, y;,ys are (n,Ce)-separated in f~"(W;). We
conclude that the number of these points y; is at most C.|f~"(W;)|, hence

Za(n,€) <D CJfH(W)| < Copyl
el

Q.E.D.

Proor or THEOREM D.7. Lemma D.8 and Lemma D.9 imply that

log Z4(n, €) < log(Cepil) < log C. N log p;
kn kn kn n

By passing to the limit for k¥ — 400 and € — 0, we get
e"er < pf
On the other hand, Lemma D.8 gives p;. > C*(p;)*, hence
log(pi,)

log(py, log(Z,
log(Cp,,) < ——> < lim % < nlimlim SUPM

]{: n——+oo e—0 n——400 n

S nhtopa

where we used again Lemma D.9. Q.E.D.
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