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Abstract

The Structural Health Monitoring (SHM) research area is increasingly investigated
due to its high potential in reducing the maintenance costs and in ensuring the
systems safety in a wide range of industrial application fields. A growing demand
of new SHM systems, permanently embedded into the structures, for savings
in weight and especially in cabling, comes from the aeronautical and aerospace
application fields. As consequence, the embedded electronic devices are to be
wirelessly connected and battery powered. To this aim, a low power consumption
for the data transfer to central units and a reduced computational cost for the
data processing are the main constraints to be satisfied. At the same time, high
performance in defects or impacts detection and localization are to be ensured to
assess the structural integrity. In order to achieve these goals, the design paradigms
can be changed together with the associate signal processing.

The present dissertation proposes design strategies and unconventional solu-
tions, suitable both for real-time monitoring and periodic inspections, relying
on piezo-transducers and Ultrasonic Guided Waves (GWs). In the first context,
arrays of closely located sensors were designed, according to appropriate optimal-
ity criteria, by exploiting sensors re-shaping and optimal positioning, in order to
achieve improved damages/impacts localisation performance in noisy environments.
Therefore, two different solutions, referred to as Shaped Sensors Optimal Cluster
(SS-OC) and Disk Sensors Optimal Cluster (DS-OC) were designed and numerically
assessed. A dedicated signal processing, based on the waves time-delays estimation,
was developed to attain the estimation performance lower bound.

An additional sensor re-shaping procedure was developed to tackle another
well-known issue which arises in realistic scenario, namely the reverberation or
multi-path propagation. The designed sensor, referred to as Directive Complex
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Sensor (DCS), able to filter undesired mechanical boundaries reflections, was
validated via simulations based on the Green’s functions formalism and FEM. The
estimation performance of a DCSs array was assessed in some realistic cases, when
multiple edge reflections and noise affect the measurements.

In the active SHM context, a novel design methodology was used to develop
a single transducer, called Spectrum-Scanning Acoustic Transducer (S-SAT), to
actively inspect a structure. It is able to estimate the number of defects and their
distances with an accuracy of 2[cm]. It can estimate also the damage angular
coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial
gap between two defects is ensured. A suitable signal processing was developed in
order to limit the computational cost, allowing its use with embedded electronic
devices.
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Introduction

Motivations

In the last decades, structural Non Destructive Evaluation (NDE) techniques have
been used in many application contexts, e.g. civil, industrial, aerospace etc., for
identifying local damage, in order to prevent systems failure and ensure safety.
Among them, ultrasonic inspections have been widely investigated and exploited [1].
Conventional ultrasonic methods use piezoelectric probes placed on the structural
surface to excite ultrasonic waves and "listen" anomalous echoes due to damages
(pulse-echo method). Alternatively, the excited waves are acquired by a secondary
transducer. The wave dispersion and attenuation due to diffused damage in the
material are used as flaw indicators (pitch-catch method). Both methods require the
usage of an active transducer to excite ultrasonic waves and perform a structural
inspection.

In more recent times, a transition has been observed from the conventional
NDE techniques to approaches based on permanent installed instruments, which
define the Structural Health Monitoring (SHM) field. The benefits are multiple.
While ultrasonic NDE methods require time-consuming mechanical inspections and
to put offline the tested structures, the SHM ones allow to perform inspections
on in-service systems via embedded sensors, able to detect critical damages and
to prevent incipient structural collapses. Moreover, the SHM field makes possible
real-time monitoring: embedded passive piezoelectric sensors are able to detect
Acoustic Emissions (AEs) due to defects growth or impacts with objects. As result,
besides the opportunity to improve the systems safety, SHM technologies enable to
estimate the remaining life of the structures, particularly important for the ones
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10 INTRODUCTION

that are beyond their design life, and to reduce the maintenance costs.
For their high potentials, a growing demand of SHM systems comes from

different application fields, such as the aeronautic and aerospace ones. In particular,
the latter additionally require embedded monitoring systems with a reduced weight.
Typically, the main weight contribution is determined by the cabling. Wireless
and battery powered embedded devices for data acquisition, pre-processing and
transfer to a central unit are often the only feasible approach. Unfortunately, they
needs a low power consumption which, in turn, requests a reduced amount of data
to be transferred and a low computational cost for the in-site signal processing. If
these constraints are to be satisfied, on the other hand, the performance of the
monitoring systems in flaw detection and localization has to remain high, even
when issues, such as noise and reverberation, arise. This PhD research work was
conducted to tackle these issues.

In this Thesis, both passive and active monitoring techniques are investigated.
Regarding the first ones, the basic idea is to exploit interconnected nodes, composed
by a cluster of closely located passive piezo-sensors and an electronic device, such
as a micro-controller unit, in charge to acquire, pre-process and transfer the data.
Each node can estimate the wave-fronts Direction of Arrival (DoA) on each cluster.
Multiple DoAs estimations, provided by different nodes, allow to locate an Acoustic
Source (AS), given by a flaw growth or an impact. Acoustic Sources generate
Ultrasonic Guided (Lamb) Waves (GWs) in thin-plate structures, e.g. the aircraft
wing skins. This kind of waves cover large distances with low attenuation but are
prone to dispersion.

The corruption induced by noise, reverberations and dispersion were addressed,
mainly, at the sensors array design level, by exploiting the arrangement and the
shape of piezo-transducers. After defining suitable optimality criteria, the Shaped
Sensors Optimal Cluster (SS-OC) and the Disk Sensors Optimal Cluster (DS-OC)
were designed for a more robust DoA estimation for noise affected measurements.

In order to address the spatial colored noise, i.e. directional interference due to
edges reflections/reverberation, an unconventional array base sensor, refereed to as
Directive Complex Sensor (DCS) was designed. Its directivity properties, able to
filter GWs with a DoA out of the monitored angles work-range, were double assessed
via two different simulation methods (the Green’s functions (GFs) formalism-based
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simulations and the well-known FEM ones).
In the active SHM context, firstly a design procedure was investigated and

well-formalized to excite directional waves, developing a less general procedure
firstly proposed in [2]. After that, a novel single piezo-transducer, referred to
as Spectrum-Scanning Acoustic Transducer (S-SAT) was designed to inspect a
structure with an equivalent mainlobe aperture of 8°. According to the embedded
applications context which require a low power consumption, both the design and
the defined signal processing were developed to limit the computational cost.

Contributions

The research work illustrated in this Thesis led to the following contributions:

• A novel array consisting in 3 shaped-sensors was designed. An optimality
criterion based on the Theory of the Measurements and the Calculus of
Variations was proposed to find the optimal sensors shapes. The obtained
array is referred to as Shaped Sensors Optimal Cluster. A numeric validation,
based on the Green’s functions formalism, shows improved performance in
wave-front DoA estimation when compared to a Standard Cluster (SC) of
conventional disk-sensors.

• The Radon Transform, a math-tool used to shape appropriately the piezo-
sensors, was exploited to compute the time-response of a piezo-load, with an
arbitrary shape, to take into account both the wave-number tuning effect and
dispersion.

• A refined optimal criterion based on system and noise modeling, on Estimation
Theory techniques, and on the assumption of unknown wave velocity, was
developed to find the optimal M -disk-sensors positioning within a restricted
array area, i.e. a circle of fixed radius. Such criterion was then applied to the
case of a three sensors array (called Disk Sensor Optimal cluster). A DoA
efficient estimator was derived on the basis of the Gauss-Markov time-delays
estimation. The DS-OC and the efficient DoA estimator provided increased
performance w.r.t. a SC and conventional time-delays procedures.
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• The piezo-sensor reshaping procedure was used to design a novel base sensors
for array, refereed to as Directive Complex Sensor, to filter undesired direc-
tional interference such as edge reflections. The design procedure and the
DCS effectiveness was validated via a double numerically assessment thanks
to the GFs simulations and FEM ones. The double numerical check allowed
to assess the GFs simulator, widely employed for the numerical tests both in
the passive SHM context and the active one.

• In the active SHM context, the double-phase design procedure proposed in
[3] to excite directional waves, was reviewed and linked to the procedure
proposed in [2] with a novel mathematical formulation.

• A novel single Transducer, able to simultaneously inspect an angular range
of 360°, was designed according to the Encoder principles. It is referred to as
Spectrum-Scanning Acoustic Transducer. The number of defects and their
distances can be estimated with an accuracy of just 2[cm]. An equivalent
mainlobe aperture of 8[deg] was achieved, when a 24[cm] radial gap of two
different defects is ensured. The design and the signal processing were
developed to minimize the computational cost, enabling its use for low power
consuming electronic devices.

Organization

The manuscript is subdivided as follows. In Chapter 1 a brief overview on the
NDE-SHM transition and the passive ultrasonic SHM techniques is presented. The
SHM methods which uses cluster of closely located piezo-sensor was selected as the
most suitable technique for low power embedded devices. In Chapter 2, the Lamb
Waves Theory, a model for the frequency response of a piezo-sensor in presence of a
Lamb wave mode and the GFs formalism simulation are illustrated. In Chapter 3,
a cluster of three sensors optimally shaped is provided. The improved performance
in defect/impact acoustic emissions DoA estimation are shown w.r.t. the SC of
three disk-sensors. In Chapter 4 a more refined optimality criterion for the sensor
positioning, when wave velocity is unknown, is defined and applied to the case of
three-disks array. A DoA efficient estimator is found. The performance increase in
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DoA estimation is assessed numerically. In Chapter 5, the reverberation issue is
addressed by design novel shaped-sensor arrays, able to filter undesired directional
interference. The Chapter 6 is entirely dedicated to active SHM. A design procedure
and a suitable excitation signal to excite directional waves is illustrated and linked
to the less general model presented in [2]. A novel Transducer, called S-SAT, is
proposed. The design criteria and procedure are detailed shown, together with the
signal processing which was developed to limit the computational cost. Finally,
conclusions and future developments are provided in Chapter 7.





Chapter 1

Passive Monitoring

1.1 Transition from NDE to SHM

In the last decades, a large number of Non-Destructive Evaluation (NDE) tech-
niques have been proposed and used, able to test the structural integrity, avoiding
invasive inspections which could compromise the future usefulness. NDE techniques
have been developed relying on different inspection typologies, such as X-Rays,
Electromagnetic fields, Acoustic Emissions, etc. Among them, ultrasonic inspec-
tions have been widely investigated and used [1, 4]. A conventional ultrasonic
NDE techqniques relies on time-consuming, meticulous, trough-the thickness scans,
obtained by moving a transducer mechanically along the surface, e.g. aircraft
shells, tanks, pipelines etc. In this way, flaws, such as cracks can be detected
via anomalous acoustic echoes. Alternatively, Guided Lamb waves (GWs) [5] can
be generated to inspect large distances with low attenuation. A brief review of
guided wave theory is given in Ch. (2). Here, we observe that the Lamb waves
are dispersive, i.e. their wave velocity depends by the frequency, according to the
dispersion curve, and have a multi-mode character, i.e. each wave-mode has a
different behaviour (symmetric or antisymmetric) and a characteristic dispersion
curve. The multi-mode property can be used to detect different defect typologies,
thanks to the higher sensitive of certain modes with respect to some damages [6].
However, often the wave dispersive behaviour may complicate the acquired signal
interpretation. GWs are appropriate for thin-plate and shell structures. They have

15



16 CHAPTER 1. PASSIVE MONITORING

shown the ability to detects not only cracks but also disbounds in metallic and
composite structures [7].

With the technological evolution, increasingly smaller, lighter and more sensitive
piezoelectric sensors have been produced, replacing the conventional piezoelectric
ultrasonic probes (see [7]) . As result, conventional NDE techniques have been
applied in the emerging research area known as Structural Health Monitoring
(SHM).

SHM techniques use sensors/transducers permanently embedded (attached or
integrated) into the structure to be monitored. Unlike the conventional ultrasonic
methods, the SHM ones can be divided in passive and active. In the passive
methods, the sensors only "listen" the acoustic waves generated by ASs due to
damages or undesired impacts of external objects with the structure. In this case,
a real-time monitoring is performed.

Conversely, the active SHM approaches use transducers both as actuators and
receivers. Active sensors interact with the structure in much the same way that
conventional NDE transducers do. For this reason, active SHM can be also viewed
as embedded non-destructive evaluation (e-NDE), i.e. an NDE method that utilizes
embedded transducers. Viewing active SHM from the e-NDE point of view allows
us to draw on the experience already developed in the NDE field and to transition
it into SHM applications.

For an overview on the most commonly adopted techniques for active SHM,
refer to Ch. (6), entirely dedicated to the active monitoring.

In the following, some passive SHM techniques will be investigated considering
their pros and cons. Among them, a technique will be selected for its consider-
able advantages and considered for the following chapters related to the passive
monitoring for the AS localisation.

1.2 Ultrasound Passive SHM techniques: Back-

ground

In the ultrasonic passive SHM context, different techniques have been proposed and
used. In this Section, some of them will be presented with their advantages and
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disadvantages, with a special focus on the computational cost. The last aspect is
due to one of the main aim of the research work illustrated in this dissertation: SHM
sensor systems development which are suitable for an embedded low computational
cost signal processing. Indeed, such SHM approaches are demanded by aerospace
and aeronautical fields where low power wireless devices can be used, allowing to
limit the monitoring system wiring. In the following, a brief overview of the main
passive SHM techniques presented in literature is provided.

1.2.1 Time reversal

The time reversal method was developed by Fink [8] in the NDE context, namely
in the active one. It was observed that by using a transducer as actuator and a
second one as receiver (pitch-catch method), if the acquired signal is time-reversed
and sent back, also the medium effects are reversed. Therefore, the input signal
is equal to the acquired sent back signal. This behaviour is explained thanks
to the the linear reciprocity of a propagation system [9]. In the passive SHM
context, if a wave is detected, by knowing the accurate modeling of the ultrasonic
propagation, it can be simulated the inverse propagation to find the points where
waves energy concentrates, i.e. the acoustic sources. Ing and Fink in [10] showed
experimentally that the extensive dispersion of certain Lamb wave modes can
be almost completely compensated through the time reversal method. The time-
reversal method, used for the ultrasonic imaging, i.e. for the passive monitoring,
requires to know previously the structural parameters or to measure them [11].
However, the main limitations of inverse methods, are that they require a high
computational cost. As consequence, both the wireless-transmission of the entire
acquired signal and the reversal simulation on the in site devices, are incompatible
with the low-power embedded systems.

1.2.2 Hyperbolic positioning

The Hyperbolic positioning methods can be easily explained observing Fig. (1.1).
Each time-delay of wave signal between two sensors defines an hyperbole on the
geometric top plane, whose foci are given by the sensors location. The AS positioning
can be estimated as the intersection point of geometric hyperbola derived by the
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Figure 1.1: A graphical illustration of Hyperbolic positioning methods. The
differences in time of arrival of wave-fronts (time-delays) between sensors define the
differences in distances in the figure. They define hyperbola on the plane, whose
intersection determines the AS location.

time delays. In non-dispersive context, efficient hyperbolic estimators were provided
[12]. However, in a dispersive context, such as the GWs propagation, the wave
packets spread over the time according to the wave velocity-frequency relation, i.e.
the dispersion curve [13], of the GWs propagating mode. The larger the distance
between the AS and the sensor, the more "dispersed" the signal. Therefore, each
sensor acquires a different signal related to the same AS. Although signals can be
compensated via efficient dispersion compensation procedures [14], it is necessary
to know a priori the disperion curves, namely the material properties. Apart from
that, the hyperbolic positioning methods require a large number of distant and
well-synchronized sensors in order to reduce the estimation uncertainty. In [14] the
lower bound in the AS estimation via the dispersion compensation and hyperbolic
positioning methods was formally derived. It depends by the sensors number and
displacement, the AS location and the “errors” which affect the measurements given
by the differences in distance (see Fig. (1.1)). In practical cases the errors are
independent identically distributed Gaussian random variables with zero mean and
standard deviation σr. The last one can be estimated, for high Signal to Noise
Ratio (SNR) values, as:
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Figure 1.2: A graphical illustration of the AS localization via the DoAs estimation
(see [16]). By estimating the DoAs of wave-front (the angles) on each cluster, the
AS can be estimated via triangulation procedures by knowing the distance between
two (or more) arrays. The DoAs are estimated via the time-delays between the
sensors of each cluster.

σr = vs (2/fs + δtwf ) (1.1)

Where vs is the (constant) wave velocity of the compensated signals, fs is the
sampling frequency and, finally, δtwf is the time uncertainty due to a wireless
connection. Different methods have already been proposed to increase the WiFi
synchronisation uncertainty (δtwf ) down to some microseconds [15]. Nevertheless,
as illustrated in [14] via experimental results and considering different arrangements
of 3-4 sensors, for certain impact locations the AS estimation error (which attains
the lower bound, when the edge reflections don’t effect the measurements error)
can be already high without the supplementary δtwf uncertainty. As result, the
wireless connection can lead to an AS estimation error which is not tolerable.

1.2.3 Directions of Arrival (DoAs) on sensors-arrays

Arrays of closely located sensors can be used to estimate the AS location. In an
isotropic or slightly anisotropic structure, by estimating the Direction of Arrivals
(DoAs) of wave-front, i.e. the angles of arrival, on each sensor-cluster, the AS can
be estimated via simple triangulation procedures by knowing the distance between
two or more arrays (see Fig. (1.2)).

The DoA estimation performance of a simple cluster of three circular sensors
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placed on the vertices of an isosceles right triangle, with unknown wave velocity,
was widely investigated by kundu et al. in [16, 17, 18]. The DoA estimation is
performed by means of the Differences in Time of Arrival (DToAs) estimations, i.e.
time-delays. They are estimated via Cross-Correlation (CC) procedures. Given
two functions f(t) and g(t) (e.g. two acquired signals which are equal except for a
time-shift and spurious components due to the noise), defined on two supports T1
and T2 over a domain [t0, t0 + T ] ⊆ R, the observation time, the CC procedure is
defined by the product:

(f ∗ g)(τ) =
∞∫

−∞

f ∗(t)g(t+ τ)dt (1.2)

where the last integral can be computed just within [t0 − T, t0 + T ] and τ , called
displacement or lag can be made to vary just between t0 − T and t0 + T . It can be
computed efficiently in the frequency domain. Indeed, similarly to the convolution
theorem, the cross-correlation satisfies:

F {f ∗ g} = F ∗ {f}F {g} (1.3)

where F denotes the Fourier Transform. The time-delays are computed by de-
termining the (τmax − T ) value which maximize the CC function (1.2). In [19],
it was proved that the last method is a Maximum Likelihood (ML) estimator
approximation in presence of Additive Uncorrelated Gaussian Noise (AUGN).

It is worth noting that the time-delays can be easily estimated also in the GWs
propagation case, when the wave energy is concentrated in narrowband spectra.
Laboratory tests have shown that the A0 mode Acoustic Emissions (AEs) due to
screwdriver low-speed impacts on an aluminium plate, are already narrowband.
This kind of impacts typically are generated by tool drops during the off-line
maintenance of aeronautical structures [20]. In the most general case, AEs due
to different types of impact or to defects growth can be wideband. However, it is
always possible to decompose the acquired signal, through filters bank, in multiple
narrow-band signals and perform the time-delays estimation many times for a more
robust estimation in presence of noise.

Furthermore, multiple clusters can be used to estimate the AS localization even
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Figure 1.3: A graphical illustration of the AS localization in case of elliptic wave-
fronts. By estimating the DoAs at each clusters and knowing their positioning, a
three equations system can be solved to find the ellipsis center point coordinates,
Cx and Cy, and the major axis/minor axis ratio, γ (see work [21]).

in case of highly anisotropic structures. For example, in Fig. (1.3) it is shown the
case of elliptical wave-fronts. In [21], Park et al. estimated the ellipsis center point
coordinates, Cx and Cy, and the major axis/minor axis ratio, γ, by estimating the
DoAs at three clusters. Therefore, three equations are established to solve three
unknowns (γ, Cx, Cy). In [22], Sen and Kundu addressed the cases of different
wave-fronts shape by introducing others geometric parameters to be estimated.

Aljets et al. in [23] proposed a different approach for the AS localisation. In
particular, only one three-sensors cluster was used to estimate both the angular
coordinate and the radial one. For the last aim, two modes, i.e. A0 and S0, are to
be firstly detected. By knowing their velocity and estimating their time difference,
it is possible to estimate the AS distance. Grigg et al. in [24] proposed a second
differential empirical method for modal analysis which appears effective also in
complex structures. Although the last methods require just one cluster, they involve
the additional complexity to separate two modes and compute their time difference
on the sensors (see [23, 24]). Vice versa, the method which exploits the DoAs
at two or more sensors-cluster can be used considering just the more energetic



22 CHAPTER 1. PASSIVE MONITORING

AS Estimation
Methods

Wave velocity
knowledge

Usability on
anisotropic structures

Sensor wireless
synchonisation

Power
consumption

Time Reversal
[8, 9, 10, 11] Requested Yes Not requested

High
(due to the
inverse modelling
or to the wi-fi
long-lasting signal
transferring)

Hyperbolic
Positioning
[12, 14, 15]

Requested A modified method is
requested

Requested
(order of [us])

High
(due to the
wi-fi long-lasting
signals transferring)

Single
Sensor Array
[23, 24]

Requested
Yes (wave velocity
knowledge as function
of the DoA is requested)

Not requested

Low
(short time delays
estimation and
double mode
detection)

Multiple
Sensor Arrays
[16, 17, 18, 21, 22]

Not requested
Yes (different strategies
have already
been tested)

Requested
(order of [s])

Low
(short time delays
estimation
on each array)

Table 1.1: Comparison of AS estimation methods in terms of four different aspects
which impact on their usability.

wave-signal parts (e.g. typically due to the A0 mode) [16, 17, 18]. A comparison of
the considered AS estimation methods in terms of the main aspects, which impact
on their usability, is given in Tab. (1.1). As conclusion, the method based on
multiple DoA estimations (i.e. multiple arrays), thanks to its low computational
cost to perform CC products (1.3), and with the additional advantage of being
agnostic to the material properties (i.e. unknown wave-velocity [16] which can vary
with the DoA in anisotropic structures [21, 22]), was selected as the ground basis
for the structural monitoring approaches investigated in this dissertation. In the
following, the design paradigm of conventional sensors-arrays will be changed, as
well as the classical estimation procedures, in order to address typical issues which
arise in realistic scenarios, such as noise and reverberation.



Chapter 2

Guided Waves

2.1 Lamb waves Theory

In an infinite solide medium, elastic waves can propagate only in two basic modes:
pressure (P) waves and shear (S) waves. In Fig. (2.1), the motion of the two modes
is illustrated. However, if the medium is bounded, wave reflections accour and more
complicated wave patterns emerge. Of particular interest are the Guided Waves
(GWs), which remain contained in a wave guide and can travel at large distances.

In a thin-wall structure, namely when one dimension is small compared to the
other two, guided waves propagate as Lamb waves [5]. Thanks to the coverage of
large distances with a low attenuation, the Lamb waves result to be well suited
for the SHM in many applications fields, such as industrial, automotive, nautical,
aeronautical and aerospace.

In flat plates, Lamb waves can be symmetric or anti-symmetric with respect
to the plate mid-plate. A brief outline of the main equations is presented in this
dissertation, following [13, 7].

Let’s start by considering the equation of motion for an isotropic elastic medium,
given by:

µ∇2u+(λ+ µ)∇∇ · u ≡ ρ
∂2u

∂t2
(2.1)

where λ and µ are the Lamé constants, ρ is the mass density, and u is the
displacement vector. By using the potentials method, the displacement u is written

23
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Figure 2.1: Pressure (P) waves (or longitudinal waves) and shear (S) (vertical)
waves motion

Figure 2.2: The setup plate considered to derive the Lamb waves solutions: an
infinite plate along the direction x and y, with a 2d thickness (see [7]).

as:

u = ∇Φ +∇×H (2.2)

where Φ is the scalar potential and H the vector one.
The Eq. (2.2) re-written in terms of the potentials, provides:

∇2Φ =
1

c2p

∂2Φ

∂t2
, ∇2H =

1

c2S

∂2H

∂t2
, ∇ ·H = 0 (2.3)

where c2p= (λ+ 2µ)/ρ and c2s= µ/ρ. We seek the potential solutions in the
following form:
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Φ = f(y)ej(kx−ωt)

H = (hx(y)i+ hy(y)j+ hz(y)k)e
j(kx−ωt)

(2.4)

Note that the x axis corresponds to the propagation direction, in a thin-plate
as in Fig. (2.2). Furthermore, a plain strain condition (z-invariant) is assumed.
Therefore, the Eqs. (2.3) become:

f
′′ − k2f = −ω2f/c2p

h
′′
x − k2hx = −ω2hx/c

2
s

h
′′
y − k2hy = −ω2hy/c

2
s

h
′′
z − k2hz = −ω2hz/c

2
s

(2.5)

where c2p = (λ+ 2µ)/ρ and c2s = µ/ρ are the pressure (longitudinal) and shear
(transverse) wave speeds. Solution of Eqs. (2.5) is in the form:

Φ = (A cosαy +B sinαy)ei(kx−ωt)

Hx = (C cos βy +D sin βy)ei(kx−ωt)

Hy = (E cos βy + F sin βy)ei(kx−ωt)

Hz = (G cos βy +H sin βy)ei(kx−ωt)

(2.6)

where α2= (ω2/c2p)−k and β2= (ω2/c2s )−k. The constants A−H can be found
by applying the boundaries condition. It is assumed that the stress matrix has null
terms (both normal and shear) on the top and bottom plate surfaces. Therefore,
the following systems is obtained:



−c3 sinαd c4 sinβd 0 0 0 0 0 0 0

c1 cosαd c2 cosβd 0 0 0 0 0 0 0

0 0 c1 sinαd − c2 sinβd 0 0 0 0 0

0 0 c3 cosαd c4 cosβd 0 0 0 0 0

0 0 0 0 0 − c5 sinβd β2 sinβd 0 0

0 0 0 0 0 − β sinβd jk sinβd 0 0

0 0 0 0 0 0 0 β2 cosβd c5 cosβd

0 0 0 0 0 0 0 jk cosβd β cosβd





A

H

B

G

E

D

C

F


= 0 (2.7)

with c1 = (λ+ 2µ)α2 + λk2, c2 = 2jµkβ, c3 = 2jkα, c4 = k2 −−β2, c5 = ikβ.
The system of Eqs. (2.7) admits a non trivial solution if and only if the

determinant of coefficients matrix is equal to 0. It provides the characteristic
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(a)

(b)

Figure 2.3: Lamb waves dispersion curves: (a) normalized phase velocities (cp/cs) as
function of the normalized frequency-thickness product (2πf2d/cs); (b) normalized
group velocities (cg/cs) as function of the normalized frequency-thickness product
(steel,cs = 3141[m/s]).
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equation. By observing the coefficients matrix of system (2.7), we note that it can
be expressed as a product of four determinants of four smaller matrices related
to the pairs (A,H), (B,G), (E,D) e (C,F ). The first two pairs are related to
the symmetric and anti-symmetric Lamb waves w.r.t. the mid-plane. The other
ones are, again related to symmetric and anti-symmetric waves, which are Shear
Horizontal (SH) waves. Therefore, four constitutive equations are provided. The
first two ones, corresponding to the Lamb waves, are known as Rayleigh-Lamb’s
equations. These implicit transcendental equations can be solved numerically to
determine the permissible guided waves solutions. The solutions of the characteristic
equation determine a countable infinity of wave-number functions kn(ω) and hence
the wave phase and group velocities. The last two ones defines the, so called,
dispersion curves of the Lamb waves. The dispersion trends as function of the
frequency-thickness product, both normalized on the velocity cs, are illustrated in
Fig. (2.3). At lower frequency-thickness products, only two Lamb wave types exist:
S0, which is a symmetrical Lamb wave resembling the longitudinal waves, and A0,
which is an anti-symmetric Lamb wave resembling the flexural (or vertical Shear)
waves.

2.1.1 Sensing Lamb waves via piezo-sensors

In this section the equations which describe the sensing of Lamb guided waves
via a piezoelectric load are provided. Because, in the following chapters, they will
be used extensively in order to design piezo-transducers both for the passive and
active monitoring, their derivation is here given by following the work [2] of Senesi
and Ruzzene. The case of a piezoelectric sensor arbitrarily shaped used in passive
way is considered. However, the results can be extended to the case of transducer
used in active way, on the basis of acoustic reciprocity principles.

Electric charge vector computation via the piezoelectric constitutive
equations

Let’s consider a mechanical structure (a thin plate), with the surface area Ω, and
a bonded piezo-sensor with a domain ΩP and thickness tP . The reference system
used for the analysis is located at the mid-surface of the structure, with x1, x2
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Figure 2.4: A (thin) plate with a piezo-sensor arbitrarily shaped, bonded on the
top surface.

coordinates which define the structure plane. The considered system is illustrated
in Fig. (2.4)

The constitutive equations of a piezoelectric sensor are given by:{
σ = CEε− eTE

D = eσε+ εεE
(2.8)

where
σ = [σ11, σ22, σ33, τ13, τ23, τ12]

T

ε = [ε11, ε22, ε33, γ13, γ23, γ12]
T (2.9)

are respectively the mechanical stress and strain vectors. D and E are respec-
tively the electric charge and the electric field vectors. Also, eσ is the piezo-coupling
matrix evaluated at constant stress, εε is the permettivity matrix at constant strain
and, finally, CE is the stiffness matrix at constant electric field. In order to extend
the validity of Eq. (2.8) from the piezo-domain ΩP to the entire Ω plate domain, it
is convenient to define a function ϕ(x) as:

ϕ(x) =

{
1, if x ∈ ΩP

0, if x ∈ Ω− ΩP

. (2.10)

Without lack of generality, let’s suppose that a single piezo-patch is characterized
by a single polarization, ψ(x) = 1. Particularly important is the second of Eq.
(2.8), when an incoming wave is detected by a sensor. In order to derive a simple
model the following two assumptions are made:

• the polaritazion is "through-the-thickness". Therefore D1 = D2 = 0.

• the sensor is assumed in a state of plain strain, i.e. the strain w.r.t. the
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x3-coordinate is negligible. Therefore, [ε33, γ13, γ23] ≈ [0, 0, 0] and the strain
vector is reduced to ε = [ε11, ε22, γ12]

T .

The second of Eq. (2.8) is, then, re-writable as:

D3 = ϕ(x)bTD = ϕ(x)bT [eσε+ εεE] (2.11)

where b = [0, 0, 1]T . Now, let’s consider the charge induced by the strain
variation. The D3 component becomes:

D3 = ϕ(x)bT
[
dσCEε+

(
εσ − dσCEdσT

)
E
]

(2.12)

In the next subsection we will evaluate the electric field variation, in the form
of measured voltage variation, for a mechanical strain ϵ variation.

Measured voltage in the Lamb waves piezo-sensing

In sensing mode, namely when a voltage is measured, the total charge within
the piezo-volume is zero (whereas the charge induced on the top and bottom
piezo-electrodes, supports the electric field). To proceed, let’s model the piezo-load
as a ideal capacitor, namely let’s assume E1 = E2 = 0 and the voltage which varies
linearly across the thickness (tp):

E =
V

tp
b (2.13)

By multiplying the Eq. (2.12) for the unit vector i3 and integrating within
the entire volume of the piezo-material, the left-side term provides 0 (null charge),
via the 1st Maxwell equation, ∇ · D = ρ. Then, the integrated right-side term
provides a surface integral (for the divergence theorem). By using Eq. (2.13) and
the integrated Eq. (2.12), the following equation for the measured voltage V is
found:

V =
tp

AP

[
bT
(
εσ − dσCEdσT

)
b
]bTdσCE

∫
Ω

εϕ(x)dx (2.14)

where AP =
∫
Ω

ϕ(x)dx is the area of the top or bottom piezo-patch.
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Figure 2.5: An illustration of a Guided wave impinging on a piezo-patch at direction
i′1 (see [2]).

Figure 2.6: An infinitesimal volume extracted from the plate and the strain
components in the reference systems [i′1, i

′
2, i

′
3].
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The Eq. (2.14) can be evaluated in the presence of a plane wave propagating in
the plane of the structure at frequency ω. The out-of-plane displacement can in
general expressed as:

u(x, ω) = U0(ω)e
−jk0(ω)·x (2.15)

where U0(ω) denotes the amplitude and the polarization of the wave at the con-
sidered frequency, and k0(ω) = k0(ω)i

′
1 = k0(ω) (cos θi1 + sin θi2) is the considered

wave vector defining plane wave propagation at an angle θ. Assuming that the
considered wave is characterized by a displacement field such that u(x, ω) · i′2 = 0

(i.e. there aren’t shear components: ε2′2′ = 0, and γ1′2′ = 0), the only strain
component relevant to the surface mounted sensor is given by:

ε1′1′ =
du′1
dx′1

= jU1′0(ω)k0(ω)e
−jk0(ω)x′

(2.16)

According to the assumed model, the strain components of an infinitesimal
volume extracted from the plate is illustrated in Fig. (2.6).

Observe that neglect the strain component ε2′2′ [25] is legitimate when λ/d >> 1,
being λ the wavelength and d the plate thickness. Therefore, in the following
chapters where the piezo-response model being derived will use to do sensors design,
only simulation setups which satisfy the last condition will be considered.

The plane strain of Eq. (2.14) can be written as:

ε = ε1′1′r(θ) (2.17)

where r(θ) =
[
cos2θ, sin2θ, 0

]
. Substituing Eqs. (2.17) and (2.16) into Eq.

(2.14), the voltage V (ω) becomes:

VP (ω) = jU1′0(ω)k0(ω)HP (θ)DP (ω, θ) (2.18)

where:

HP (θ) =
tpb

TdσCEr(θ)

AP

[
bT
(
εσ − dσCEdσT

)
b
] (2.19)

and
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DP (k0(ω), θ) =

∫
ΩP

e−jk0(ω)(x1 cos θ+x2 sin θ)ϕP (x)dx (2.20)

define two different contributions to the frequency piezo-response. The first
quantity. HP (θ), is related only to the piezo-material properties and involves
directional component only in the case of non-isotropic properties of the patch. For
the case of monolithic PZT patch, for example, the quantity HP is constant and
no directionality is introduced.

Vice versa, the quantity DP describes the effect of the piezo-load distribution,
via the function ϕP (x) related to the sensor shape. Therefore, tha last one is
referred to as shape function, instead the function DP determines the directionality
properties and allows to select specific piezo-distribution to achieve the desired
sensor directivity properties. Therefore, it is referred to as Directivity function.

Noteworthy, the integration limits of Eq. (2.20) can be extended to infinity
without affecting the value of the integral. Therefore, the Directivity function can
be seen as the 2D-Fourier Transform (2D-FT) at angle θ. The last observation
will be used in Ch. (3) to design opportunely the sensors shape to better localize
impacts/defects in presence of noise. Furthermore, by rewriting the wave-vector
in the form k0(ω) = k0(ω) (cos θi1 + sin θi2) = k1i1 + k2i2, the Eq. (2.20) can be
written as:

DP (k0(ω)) =

∞∫
−∞

∞∫
−∞

e−jk0(ω)·xϕP (x)dx (2.21)

In this way, the Directivity is configured ad the 2D-FT of the shape function, in
the variables k1, k2. The Eq. (2.21) suggests the possibility of evaluating the sensor
directivity through Fast Fourier Transform (FFT) efficient algorithms in case of
complex material distributions. At the same time, imposed a Directivity function
in the k1, k2 plane, it is possible to obtain the correspondent sensor geometry by
inverting the Eq. (2.21), i.e.:

ϕP (x) = 2D − F−1 {DP (k0(ω))} (2.22)

where 2D − F−1 denotes the Inverse bi-dimensional FT. The Eq. (2.22) will
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be used in Chs. (5) and (6) to design transducers, respectively, suitable for the
passive monitoring in reverberant environments and for the active monitoring to
inspect a structure.

2.1.2 Green’s Functions formalism for LW piezo-response

In order to numerically assess the sensors/transducers design procedures which will
be defined in the following chapters, as well as the defects/impacts localization
performance, the Lamb waves and the piezo-responses will be simulated using
a Green’s functions (GFs) formalism, adopted in [26, 27]. In sensing mode, the
acquired signal is estimated as:

up(ω) =

Np∑
p=1

wp(xp)uLW (xp, ω) (2.23)

where wp(xp) takes into account, for each discrete point xp belonging to the
sensor, the polarity and the amplitude which can be imposed in acquisition phase.
The wave-field uLW (xp, ω) is computed as:

uLW (xp, ω) = g0(ω)
Na∑
a=1

wa(xa)G(xp,xa, ω) (2.24)

where, again, wa(xa) are weights to consider a different amplitude and polariza-
tion applied to a point source at location xa. g0(ω) is the spectrum of the signal
due, for example, to an impact or a defect growth. The Green’s function G, defining
the response to a unit source is expressed as:

G(xp,xa, ω) = jπ2H
(1)
0 (k0(ω)Ra−p) (2.25)

where, H(1)
0 is the Hankel function of the first kind and order 0, and Ra−p =

|xp − xa| is the distance from the sensor points xp and the location of the a− th

source point xa. Dispersion is included by taking into account the frequency
dependence of the wavenumber, via the function k0(ω) in (2.25), based on the
dispersion relation for the considered propagation mode.

Observe that the GFs formalism can be used also when a transducer is used in
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a pulse-echo operation. The actuation phase can be simulated by impacting the
excitation signal with a spectrum g0(ω), at different plate location xa, namely at
different angles and distances, and computing the corresponding piezo-responses
via the Eq. (2.23). Then, the acquired signal can be re-impacted at the same
location to simulate the sensing phase. The last procedure is allowed thanks to the
acoustic reciprocity principle.



Chapter 3

Sensors design for noisy
environments

3.1 Shaped Sensor arrays

Disclaimer: The content of this Section is based upon the research work [28]:
Marco Dibiase and Luca De Marchi. “Clusters of Shaped Ultrasonic Transducers
for Lamb Waves’ DoA Estimation”. In: Applied Sciences 10.22 (2020), p. 8150.

As previusly seen in Section (1.2.3), arrays of closely located sensors, able to es-
timate the DoA of guided waves, are very suitable for embedded monitoring systems
for impacts/damages localization, increasingly requested for many applications,
such as the aeronautical and aerospace ones.

Thanks to the low requested computational cost, passive sensors arrays systems
allow to satisfy the constraints of the previously mentioned application fields, such
as the capability to perform in-site signal processing, via wirelessly connected
electronic devices, characterized by low power consumption and the consequent
reduced cabling and weight.

Although simple clusters of disk-sensors have already investigated ([18, 21]) for
impacts localization, both in isotropic and anisotropic structures, it is well-known
that this task is quite complex due to the detrimental effect of noise. Typical noisy
physical sources are given by: structural vibration (e.g., due to turbulence on an
aircraft), scattered wavefield, interference of several edge reflections produced by

35
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(a) (b)

Figure 3.1: (a) A basic cluster of two circular piezo-sensors spaced apart by a
distance r; (b) upper and lower error bounds of the cluster illustrated in the Fig.
(a). The error bounds were computed as the uncertainty σ⌢

θ
, considering v =

2000[m/s] and the σ⌢
d 21

equal to 1[us].

different acoustic events, noisy acquisition channels, or noisy electronic devices.
When the noise level is comparable to the useful signal peak, given by the AEs due
to an impact or a defect growth to be located, even if robust techniques for the
time-delay estimation are used (i.e. Generalized Correlation methods [29]), the
DoA estimation could fail.

Our aim is to tackle the noise issue at the sensors design level. In particular,
sensors shaping procedures will be exploited to increase the DoA estimation per-
formance. To this aim, the problem statement will be addressed with a 2-step
procedure: firstly, two and three-sensors cluster configurations will be analysed to
show how we can improve the DoA estimation performance. Then, a sensor shaping
procedure, suitable for GWs detection, will be illustrated. Finally, the problem will
be formalized in order to find the optimal shapes, for a cluster composed by three
sensors and considering the wave velocity unknown.

Let us suppose to consider a cluster of two isotropic sensors, P1 and P2, ideally
point-like. The impact/defect distance is assumed to be sufficiently large, so that
the generated AEs wave-fronts can be considered locally planar at the cluster
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location (i.e. the cluster is in the Fraunhofer zone). The relationship between the
DToA of wave-fronts between two sensors (see Fig. (3.1)(a)), d21, and the DoA, θ,
is given by:

d21 =
r cos θ

v
(3.1)

where r is the distance between P1 and P2 and v is the wave velocity. Therefore,
by estimating the DToA can be estimated the angle θ. The Minimum Mean Square
Error (MMSE) is given by the following expression:

⌢

θ = arccos

(
v

⌢

d21
r

)
(3.2)

where the hat symbol over an argument, "⌢· ", indicates an estimator, namely a
random variable.

The Propagation of Uncertainty theory [30] provides the variance of a quantity
which is a function f of quantities directly measurable. In our case, the quantity
is

⌢

θ , with variance σ2
⌢
θ
, whereas the DToAs

⌢

d21,
⌢

d31, ...,
⌢

d(N−1)1 are the quantities
directly measurable. According to the theory, σ2

⌢
θ

is given by:

σ2
⌢
θ
=

(
∂f

∂
⌢

d21

)2

σ2
⌢
d 21

+

(
∂f

∂
⌢

d31

)2

σ2
⌢
d 31

+ ...+

(
∂f

∂
⌢

d(N−1)1

)2

σ2
⌢
d (N−1)1

(3.3)

where σ2
⌢
d j1

are the variances of the quantities
⌢

dj1. Observe that Eq. (3.3)

assumes the covariance elements equal to 0 and the first derivates are evaluated at
the mean value of all components of vector

[
⌢

d21,
⌢

d31, ...,
⌢

d(N−1)1

]
.

Eq. (3.3) applied to the function (3.2) reveals that the error can be very large
for low values of θ, as shown in Fig. (3.1)(b). This is due to the non-linear
characteristics of the arccos function. To counteract this problem, a sensor shaping
procedure can be applied in order to achieve a linear dependence between the
DToA and the DoA (see Fig. (3.2)(a)), so that:

d21 =
αθ + ρ0

v
=
ρ21(θ)

v
(3.4)
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(a) (b)

Figure 3.2: (a) A cluster of two sensors with P2 shaped so that a linear relation
between the DToA and DoA is geometrically achieved; (b) upper and lower error
bounds of the cluster of Fig. (a) (considering α = 2[cm]/90°, ρ0 = 0 in the Eq.
(3.4)). The error bounds were computed as the uncertainty σ⌢

θ
, considering v =

2000[m/s] and the σ⌢
d 21

equal to 1[us].

where the parameter α value can be chosen by the designer. Thanks to the
new linear relation, the worst-case error is constant over the considered range of
angles and considerably lower than the maximum error achieved by using two
conventional disks (Fig. (3.2)(b)). It is worth noting that the uncertainty σ⌢

θ
is

inversely proportional to the selected value of α. For this reason, the larger α the
lower is the error in the DoA estimation. However there is a trade off involved
in the selection of α because, the larger is α, the larger is the maximum value of
the DToA, which defines the time-window length of the acquired signal (i.e the
information to be stored and processed). Furthermore, when GWs are acquired,
higher is the maximum DToA value, higher is the dispersion effect between two
sensors. It is also worth noting that a cluster composed by two sensors can be used
to estimate θ only if the actual wave velocity v is assumed to be known. Therefore,
if the velocity is not known a priori, a third sensor P3 is needed to estimate the
DoA. In the work [28], a third sensor was added to establish a constant reference
to estimate the wave velocity, i.e.:
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d31 =
ρ31
v

=
ρ3C
v

(3.5)

where ρ3C is a constant. The relation between the DToAs ratio and the DoA is
given by:

d21
d31

=
αθ + ρ0
ρ3C

(3.6)

Therefore, the MMSE estimator
⌢

θ can be obtained by inverting the last one
w.r.t. the ratio of the estimators

⌢

d21,
⌢

d31, which are random variables. Observe
that in order to estimate the DoA, the knowledge of the wave propagation velocity
is not necessary, because such quantity does not appear in the Eq. (3.6).

However, the third sensor P3 introduces an additional uncertainty in the DoA
estimation due to σ2

⌢
d 31

. The values of the parameters α, ρ0 and ρ3C can be used to
minimize the uncertainty in DoA estimation and by limiting the maximum value
of |d21(θ)| and |d31(θ)|. The last ones can be set to be equal to r/v, where r is the
maximum distance for a disks-cluster. In this way, the performance comparison
between a disks-cluster and a shaped sensors-cluster are provided with the same
time-window lengths to be processed (i.e. same computational cost) and the same
dispersion effect between sensors. By considering a monitored area of 90°, with the
angles work-range given by [-45°,45°], the optimum parameters values are given by:

α = r/45[deg]; ρ0 = 0; ρ3C = r (3.7)

By using the Eq. (3.3), the estimation performance comparison in terms of
standard deviation,

√
σ2

⌢
θ
, between a 3-disks-cluster and the considered 3-shaped

sensors-cluster provides a theoretical average uncertainty reduction of 11% when
the shaped sensors are used (see the Fig. (3.3)).

From the previous discussion, two important points are to be noticed:

• The transducer shaping procedure aim is to realize a desired function dj1(θ)
between the signals of two sensors. This requires that the two sensors have
the same frequency response, apart from a phase shift equal to the desired
time-delay function, when GWs impinging on the sensors. To achieve this
goal, it must be considered that shaped sensors are generally characterized by
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(a) (b)

Figure 3.3: (a) Upper and lower error bounds of a cluster of 3-disks sensors spaced
apart by a distance r; (b) Upper and lower error bounds of the cluster of shaped
sensors according to the Eqs. (3.4) and (3.5) with the parameters values (3.7). The
error bounds were computed as the uncertainty σ⌢

θ
, considering v = 2000[m/s] and

the σ⌢
d 21

equal to 1[us].

an angle-dependent wavenumber tuning effect [31], i.e. the frequency response
of the transducer depends on the direction of propagation of the incident wave.
In turn, this effect may hamper the possibility to extract the time-delays
via optimal estimators, namely generalized cross-correlation procedures [29],
in which the response, among different transducers, is assumed to be equal
unless a time-shift.

• The previous considered case of three shaped sensors cluster design was
addressed by selecting suitable functions dj1(θ) one by one. Therefore, a
question arises: can we do better? In order to answer this question, an
optimality criterion has to be defined to find the two functions dj1(θ), with
j = 2, 3, for a 3-sensors cluster, able to minimize the θ estimation lower
bound. Furthermore, after defining a suitable cost function to be minimized,
it is requested to find a solving technique. The case of an array composed by
a generic number of sensors M , will be discussed in Ch. (4).

In the following two Sections, the previous issues will be respectively addressed.
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3.1.1 Radon Transform (RT) shaping procedure

Disclaimer: The content of this Section is based upon the research work [28]:
Marco Dibiase and Luca De Marchi. “Clusters of Shaped Ultrasonic Transducers
for Lamb Waves’ DoA Estimation”. In: Applied Sciences 10.22 (2020), p. 8150.

Aim of this Section is to find a design procedure, so that, given the frequency
response of a disk sensor VP1(ω, θ), the frequency response, VP2(ω, θ), of a shaped
sensor P2, is linked to the previous one, in the following form:

VP2(ω, θ) = VP1(ω) exp(−jk0(ω)ρ21(θ)) (3.8)

where ρ21(θ), defined as the Difference in Distance of Propagation (DDoP),
is related related to the DToA d21(θ) via d21(θ) = ρ21(θ)/v. The term k0(ω) is
the wave-vector frequency relationship of a 0 order Lamb waves mode (or, more
generally, any wave Lamb wave mode).

If the acquired signal is narrow-band, k0(ω) can be approximated via a Taylor
expansion, around the central frequency ωc to the first order:

k0(ω) ≃ k0(ωc) + (ω − ωc)k0
′(ωc)

= vp(ωc)ωc − ωck0
′(ωc) + ωk0

′(ωc)

= vp(ωc)ωc − ωck0
′(ωc) +

ω
vg(ωc)

(3.9)

Therefore, for a narrow-band signal, the expansion (3.9) well-approximates the
curve k0(ω) around the central (angular) frequency ωc, and a phase shift in the
frequency ω, equal to d21(θ) = ρ21(θ)/vg(ωc) is achieved and the wave velocity can
be considered approximately constant. Noteworthy, closer the sensors are, smaller
are the phase shift differences of each spectral components among all sensors,
when second order terms arise in the Taylor’s expansion (3.9). Observe that the
assumption of a narrow-band signal can not always be satisfied. Indeed, in the
most general case, AEs due to impacts or to defects growth can be wide-band.
However, the acquired signal can be always decomposed, via a digital filter bank,
in multiple narrow-band signals, within the bandwidth defined by fs/2. Therefore,
cross-correlation procedures can be computed many times to have a more robust
time-delay estimation.

Noteworthy, the decomposition of the acquired signal in multiple narrow-band
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signals, can be detrimental for low Signal to Noise Ratio (SNR) values. In these
contexts, efficient dispersion compensation procedures can be applied [32], but
this requires the knowledge of the dispersion curves. However, if the distances
between sensors are small, the dispersion effects are negligible in terms of envelope
distortion. This property derives by the energy distribution in the Frequency-Time
(FrT) domain, which follows the curve t = ρ21(θ)/vg(ω). For a small DDoP, ρ21(θ),
two curves related to two near sensors, differ slightly, then the wave packet profiles,
defined by all spectral components at different time, are very similar. However,
envelopes cross-correlation (CC) is less effective than applying the cross correlation
on the RF signals and doesn’t allow to use the signal phase for the Generalized
CC (GCC) with phase transform (GCC-PHAT) [33, 34], a suitable procedure in
reverberant scenarios.

In the following, we will consider only time-delay estimation strategies which
don’t require to known the wave velocity vg(ω), namely strategies in which vg can
be considered nearly constant, in order to design arrays suitable for any structure,
with no a priori material properties knowledge.

In order to impose the relationships (3.8) three key elements can be exploited:
a) The model of the frequency response of a sensor in the presence of a Lamb wave
mode.
b) The Radon Transform (RT) and its inverse (IRT).
c) The Projection Slice Theorem.

The key point a) has already seen in the Section (2.1.1). It is important
to highlight that the wavenumber tuning effect, which influences the frequency
responses of shaped sensors, is mainly due to the Directivity function DP (k0(ω), θ)

which is configured as a 2D-FT at angle θ of the shape function, ϕP (x), that
describes the piezo-load geometrical distribution.

Element b), i.e. the Radon Transform [35, 36], can be defined in different ways.
Given a continuous function g : D ⊆ R2 → R, defined on a compact support, its
Radon Transform RT (p, τ) is found by integrating the value of g along slanted
lines. Considering the lines equation in the explicit form, via the slope p and the
offset τ , the RT is defined as:
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y 

X 

RTe(e) 

Figure 3.4: Representation of the Radon transform of the function g(x, y) over the
domain ΩP .

RT (p, τ) =

∞∫
−∞

g(x, px+ τ)dx (3.10)

By using the Dirac delta "function" δ(·), the previous integral can be written
as:

RT (p, τ) =

∞∫
−∞

∞∫
−∞

g(x, y)δ(y − px− τ)dxdy (3.11)

Therefore, according to the definition, considering a fixed p slope value, the RT
can be seen as a function of offset, τ , whose values are given by multiple integrals
along lines of a set family, with the same slope p. Although the previous definition is
very intuitive, another definition is used in many fields of science, e.g., tomography,
astronomy and microscopy [35], where the transformed function g(x, y) has no
preferred orientation. In this case, and for our purpouse, it is more convenient to
describe a line on its normal form:
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Figure 3.5: A graphical illustration of the Projection Slice Theorem. Φ(kx, ky) is
the 2D-FT of ϕ(x, y). The projection given by the RT, pθ(ρ), is given by multiple
line-integrals along lines normal to θ direction. The slice Φ(kθ) on the 2D-Fourier
plain is along the θ direction. The Projection Slice Theorem states that the slice
Φ(kθ) is the 1D-FT of the projection pθ(ρ).

ρ = x cos θ + y sin θ (3.12)

where θ is the angle between the normal segment to the line, going through the
reference system origin, whereas ρ is the length of the normal segment. By using
the Eq. (3.12), the RT is given by:

RTθ(ρ)[g(x, y)] =

∫ ∫
g(x, y)δ(ρ− x cos θ − y sin θ)dxdy (3.13)

Again the RT consists of multiple integrals along lines shifted by ρ and normal
to the direction θ. A graphic illustration is given in Fig. (3.4). It can be observed
that the line-integrals are computed in the normal direction w.r.t. to the angle θ.
This aspect will be useful for the key point c).

When a piezo-load is considered, described by a shape function ϕP (x, y), which
is different to 0 over a ΩP area, the "normal" RT is given by:

Rθ(ρ)[φ(x, y)] =

∫ ∫
ΩP

ϕ(x, y)δ(ρ− x cos θ − y sin θ)dxdy (3.14)

The RT admits inverse. It will be referred to as Inverse RT (IRT)

Finally (element c)), the Projection Slice Theorem [37] states that the bidimen-



3.1. SHAPED SENSOR ARRAYS 45

sional FT at the angle θ of a given function, is equal to the mono-dimensional FT
of the Radon Transform of that function. A graphical illustration of the projection
slice theorem in given in Fig. (3.5).

Therefore, the Directivity function, and, in turn, the frequency response, can
simply be calculated as the monodimensional FT of the RT of the shape function
and by evaluating into k0(ω).

As a consequence, the desired time-delay d21(θ) = ρ21(θ)/v, i.e. the Eq. (3.8)
in frequency, is obtained by imposing a suitable relation between the RT of a
disk-sensor P1 and the RT of a shaped sensor P2:

RTθ(ρ)[φ2] = RTθ(ρ− ρ2(θ))[φ1] (3.15)

In conclusion, the synthesis procedure of the shape function for a sensor P2,
which realizes the desired DToA relation, can be summarized as follows: consider
an isotropic circular reference sensor 1, then calculate its RT (constant over θ) and
impose the RT of sensors P2 by using ((3.15)) with the desired ρ2(θ) shift. As
example, in Fig. (3.6)(a) is imposed a P2 sensor RT linearly shifted in θ w.r.t. the
disk-RT, in the range [-45°,45°] (as the Eq. (3.4) and in the work [28]).

By inverting the RT, we obtain a shape function which is continuously modulated
(Fig. (3.6)(b)). In order to obtain a step functions as in ((2.10)), a quantization
procedure is imposed by setting all values greater than a certain threshold to 1 and
the others to 0. In this way, the desired shape (step) function can be obtained (as
illustrated in Fig. (3.6)(c)).

Fig. (3.6)(d) shows the actual RT (i.e. the RT computed by the post quan-
tization shape function). It is worth noting that it differs from the imposed RT
(subfigures (a)) due to the binary quantization procedure.

3.1.2 Average Variance and Calculus of Variations for the

optimal shapes design

Disclaimer: The content of this Section is based upon the research work: Marco
Dibiase and Luca De Marchi. "An optimal shaped sensor array derivation". Sub-
mitted to Micromachines Journal (MDPI).
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(a) (b)

(c) (d)

Figure 3.6: A graphical illustration of the re-shaping design procedure. (a) Imposed
RT of sensor P2 (equal to disk-one in [-45°,45°], unless than a linear shift in θ;
(b) IRT; (c) binary quantization of the IRT (P1 and P2 sensors); (d) actual RT
(considering d = 20[mm], Threshold values to binary quantization equal to 30% of
maximum value of IRT).
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In this Section, the problem to find the optimal arrangement and shapes of
three sensors, composing an array, is addressed when the wave velocity is considered
unknown. The last assumption allows to define the optimal sensor design, being
agnostic on the structural material to be monitored. Furthermore, even if a design
procedure can be specialised for a certain target material, it is worthy to note that
the nominal wave-velocity can change due to temperature variations, tapered areas
etc. which can lead to an accuracy loss in the DoA estimation. A more general
problem statement for N-sensors-array will be considered in Chapter (4), in which
some differences will be highlighted.

As a starting point, let us consider two arbitrary relationships between the
DToAs (d21 and d31) at a given wave direction of propagation θ:

d21(θ) =
ρ21(θ)

v
, d31(θ) =

ρ31(θ)

v
(3.16)

where ρ21(θ) and ρ31(θ) are arbitrary functions and v is wave velocity1. Observe
that the two functions ρ21(θ) and ρ31(θ), corresponding to a spatial-ρ shift in the
RT domain, can be imposed via the procedure seen in the previous Section. The
aim is thus to find the optimal estimator in the mandatory form:

θ̂ = f

(
d̂21

d̂31

)
(3.17)

which is necessary to estimate DoA θ without knowing the wave velocity v. When
the measurements are affected by Additive Uncorrelated Gaussian Noise (AUGN),
a cross-correlation procedure (see [19]) can be used to implement a Maximum
Likelihood (ML) estimator approximation whose variance tends to the Cramér–Rao
Lower Bound (CRLB) of the (uncorrelated) DToAs.

The optimal estimator, with estimation function of form ((3.17)), is the one
that minimizes its variance, provided by the Theory of Uncertainty Propagation for
measurements [30]. Neglecting the correlation between d̂21, d̂31, it can be written

1The wave velocity v can be approximately regarded as a constant parameter under the
assumption of low dispersion.
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as:
Var(θ̂) = ems = E[θ̂2]− θ2 =

=
(

∂f

∂d̂21

)2∣∣∣∣
E[d̂21],E[d̂31]

σ2
d̂21

+
(

∂f

∂d̂31

)2∣∣∣∣
E[d̂21],E[d̂31]

σ2
d̂31

(3.18)

The variance value, Var(θ̂), of worst case is given by:

σ2
θ̂−WorstCase

=

((
∂f

∂d̂21

)2

+

(
∂f

∂d̂31

)2
)
σ2
d−Max (3.19)

where σ2
d−Max = max[σ2

d̂21
, σ2

d̂31
]. The aim is then to minimize ((3.19)) on average

over all the expansion points E[d̂21] = d21,E[d̂31] = d31. Therefore we want to
minimize the following integral:

J [f ] =
σ2
d−Max

Ω

∫ ∫
Ω

(
f 2
d21

+ f 2
d31

)
dd21dd31 (3.20)

where, to simplify the notation, fd21 =
∂f
∂d21

, fd31 =
∂f
∂d31

. The integral is computed
over Ω, i.e. the variation range of E[d̂21],E[d̂31]. It can be observed that Eq. (3.20)
is configured as a functional, J [f ] which can be minimize with the tools developed
within the Calculus of Variations (CoV) theory, which is widely used in multiple
Physics fields [38]: from classical Mechanics, with The Principle of Least Action, to
Optics, with the Maupertuis’s principle; from Quantum Mechanics, with Feynman
integrals, to the advanced Physics of elementary particles interaction.

CoV allows to derive compact expressions, via the integrand function, namely
the Lagrangian function. In our case, the Lagrangian function is simple expressed
by σ2

θ̂−WorstCase
.

The CoV provides the means to find extremal functions, which are the candidate
functions to be extremant, i.e. to minimize or maximize the generic functional J [f ].
These means consist in the Euler-Lagrange differential equation for functionals [39].

It is worth noting that the functional (3.20) depends by a function f of two
variables. Observe that the CoV requires that a functional J depends by functions
of independent variables. Therefore, we will start by considering d21, d31 as two
independent variables. Then, the function f within the Euler-Lagrange equation
will be written as a function of a single (independent) variable, i.e. the time-delays
ratio. The time-delays d21,d31 dependence will be resumed a posteriori by selecting
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two appropriate functions providing the found extremal function f .
It is useful for a following analysis in the Chapter (4) to formal prove that the

functional (3.20) can be rewritten the form J [d21(θ), d31(θ)], namely depending by
two functions of a single (independent) variable θ. To this aim, the Lagrangian
function, neglecting the constant terms, is written as:(

∂f
∂d21

)2
+
(

∂f
∂d31

)2
=
(

∂f
∂η

1
d31

)2
+
(
−∂f

∂η
d21
d231

)2
=

=
(

∂f
∂η

)2 (
d231(θ)+d221(θ)

d431(θ)

) (3.21)

where η = d21/d31 was posed. By using the theorem of the inverse function
derivative, the term ∂f/∂η can be rewritten as:

∂f

∂η
=

1

d
(

d21(θ)
d31(θ)

)
dθ

=
d231(θ)

d′21(θ)d31(θ)− d21(θ)d′31(θ)
(3.22)

Therefore:

J [d21, d31] =
2σ2

d−Max

θ0

θ0∫
−θ0

d231(θ) + d221(θ)

(d′21(θ)d31(θ)− d21(θ)d′31(θ))
2dθ (3.23)

Observe that the last functional proved the equivalence with Eq. (3.20) and, at
the same time, allows to select a prior probability function f(θ) which differs by a
uniform density function (implicit in (3.23)). However, the functional in Eq. (3.23)
involves an Euler-Lagrange equation more complicated w.r.t. functional (3.20).
Therefore, to proceed we consider the functional in the previous form (3.20).

Given an integrand function for a functional of form F (x, y, f(x, y), fx, fy), the
Euler’s equation is given by:

Ff =
∂Ffx

∂x
+
∂Ffy

∂y
(3.24)

where Ff = ∂F
∂f
, Ffx = ∂F

∂fx
and Ffy = ∂F

∂fy
. It follows that the following system must

be solved: {
fd21d21 + fd31d31 = 0

+boundary conditions : f = g(d21, d31)|∂Ω
(3.25)
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Figure 3.7: Standard Cluster (SC) of circular sensors

The first of ((3.25)) is the Laplace equation which is solved by harmonic functions.
More specifically, we seek solutions in the form f(d21/d31) which limits2 the possible
set of admissible domains for Ω.

By posing again η = d21/d31 the two terms of Eq. (3.25) can be written as:

fd21d21 =
∂2f
∂η2

1
d31

2

fd31d31 =
1

d31
2

(
∂2f
∂η2
η2 + ∂f

∂η
2η
) (3.26)

Then, the first equation of ((3.25)) becomes:

f ′′(1+η2)+f ′2η

d̂231
= 0 (3.27)

where f ′ = ∂f
∂η

and f ′′ = ∂2f
∂η2

. We can assume that d31 ̸= 0.Then, by integrating
equation ((3.27)), we obtain:

θ = f

(
d21
d31

)
= c1atan

(
d21
d31

)
+ c2 (3.28)

2Such limitation allows to associate the the ratio between the DToAs to the ratio between the
difference in distances among the senors along the different directions and neglect the propagation
velocity.



3.1. SHAPED SENSOR ARRAYS 51

where c1 and c2 are constants to be determined by taking into account the range
of θ. Eq. ((3.28)) is the extremal function, candidate to minimize the functional
((3.20)). It allows to select the Mean Square Error (MSE) estimator in the form:

θ̂ = f

(
d̂21

d̂31

)
= c1atan

(
d̂21

d̂31

)
+ c2 (3.29)

Observe that the CoV, when is applied to realistic physics problem, typically
provides an extremant function. In our context, the aim is related to the physics of
waves and to find their DoA with minimum uncertainty, for this reason, function
(3.28) is an extremant function for the functional (3.20). Furthermore, by selecting
any other function, it can be observed that (3.29) is the optimal estimation function,
in terms of minimum variance of worst case. Our goal is to find the two function
d21(θ) and d31(θ) which minimize the functional (3.23). By computing the σ2

θ̂
and

σ2
θ̂−WorstCase

, considering the estimator (3.29), the followings results are obtained:

σ2
θ̂
= 1

c21

d̂221σ
2
d̂31

+d̂231σ
2
d̂21

(d̂221+d̂231)
2

∣∣∣∣
E[d21],E[d31]

σ2
θ̂−WorstCase

= 1
c21

σ2
d−Max

(d221+d231)
2

∣∣∣∣
E[d21],E[d31]

(3.30)

It must be noticed that, considering two functionsE[d̂21(θ)] = d21(θ), E[d̂31(θ)] =

d31(θ) with an upper and lower bounds, the two functions which minimize the
σ2
θ̂−WorstCase

are a sine and cosine function with the same upper and lower bounds,
i.e. r/v.

A Standard Cluster (SC) of 3 disk-sensors is shown in Fig. (3.7)(a)), correspond-
ing to the MSE estimator in (3.29), with the values of the constants c1 = 1, c2 = 0.
This cluster configuration was validated by Kundu et al. [17]. In this case we have
that:

d21(θ) =
r sin θ

v
d31(θ) =

r cos θ

v
(3.31)

where r is the distance between the sensors. Using (3.18), we can calculate the
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variance (and its value of worst case) of the SC corresponding estimator as:

σ2
θ̂
=

d̂221σ
2
d̂31

+d̂231σ
2
d̂21

(d̂221+d̂231)
2

∣∣∣∣
E[d21],E[d31]

=
(
v
d

)2 (
sin2(θ)σ2

d̂31
+ cos2(θ)σ2

d̂21

)
σ2
θ̂−WorstCase

=
(
v
d

)2
σ2
d−Max

(3.32)

Although the SC already provides the optimal solution, it can be observed
that it is optimal when an area of 360° is monitored. However, in many realistic
scenarios, just a DoAs sector has to be monitor, e.g. a quadrant of 90°. In this case,
the two constant can be set to c1 = 1/2 and c2 = 0. The pair of optimal functions
d21(θ),d31(θ) are given by:

d21(θ) =
r sin 2θ

v
d31(θ) =

r cos 2θ

v
(3.33)

The functions ((3.33)) define our Optimal Cluster of Shaped Sensors (SS-OC).
Again, by applying the (3.18), the σ2

θ̂
and σ2

θ̂−WorstCase
can be computed:

σ2
θ̂
=

d̂221σ
2
d̂31

+d̂231σ
2
d̂21

(d̂221+d̂231)
2

∣∣∣∣
E[d21],E[d31]

= 1
4

(
v
d

)2 (
sin2(2θ)σ2

d̂31
+ cos2(2θ)σ2

d̂21

)
σ2
θ̂−WorstCase

= 1
4

(
v
d

)2
σ2
d−Max

(3.34)

Note that it is possible to reduce the uncertainty of the estimation by acting on
the trade-off uncertainty-work-range of DoA. The reduction factor of the square
root of the variance of worst case σθ̂−WorstCase, is equal to the reduction factor of
the work-range (for the SS-OC it is possible to work within (−π/4, π/4) and in
the dial diametrically opposite to this, evaluating the signs of the DToA given by
((3.33))).

The relation (3.33) can be realized through a cluster of shaped sensors with the
functions ρ21(θ), ρ31(θ) of ((3.16)) given by the numerators of ((3.33)). However, it
can be observed that the last ones are strongly non linear. A simple step sensor-
shape-function on a compact area, resulting by a binary quantization procedure,
shows strong limits to get the desired non linear trends in the Radon domain.
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Figure 3.8: A graphical illustration of the SS-OC design procedure. P2 and P3 are
related to first and second column respectively: (a)-(b) Imposed RTs (according to
the numerators of the Eqs. (3.33); (c)-(d) IRTs: ideal shape functions
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Figure 3.9: The Optimal Cluster of Shaped Sensors (SS-OC), after applying the
Error Diffusion quantization technique (in black colour the positive sensors shape
function parts, in yellow colour the negative sensors shape function parts).
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Figure 3.10: The Radon Transform of the sensors after applying the error diffusion
quantization technique: (a) Actual RT of P2; (b) Actual RT of P3.
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In order to address this problem, it is necessary to define a sensor shape function
which is continuously modulated in its values. Techniques developed in image
processing to quantize grey scale images with a bit per pixel, can be fruitfully
adopted for the transducer design purpose. In particular, the so called dithering
or half-toning techniques can be used (see the works [40, 41]). Among these, the
Error Diffusion technique is able to work on image sub-areas. Therefore, what the
algorithm does at one location influences what happens at other locations. Other
simpler techniques do not have these complications but have worse performance
in terms of "similarity" parameters w.r.t. the starting image. In more detail,
in the error diffusion approach, the image is scanned, the pixel is quantized and
the quantization error is subtracted from the adjacent pixels on the basis of the
coefficients of a predetermined filter (error filter). This technique will be exploited
and adapted, in Chapter (6), to detect and excite waves just in one verso.

To proceed, by following the steps of the RT procedure, defined in the previous
Section (3.1.1)), two continuously modulated shape functions are obtained. A
graphical illustration of the RT procedure, for the actual case is given in Fig. (3.8).
The Error Diffusion technique is then applied on the P2 and P3 sensors shape
functions. In the Fig. (3.10) are shown the RTs of the quantized sensors.

Although the experimental validation of the shaping concept was not the main
target of my research, some aspects were considered for a design relevant to the
technological possibilities. It is worth mentioning that the proposed cluster of
shaped sensors can be realized by relying on different piezoelectric materials and
manufacturing techniques. E.g., metallized PVDF (polyvinylidene fluoride) sheets
can be used by shaping the electrodes on the upper surface with a laser cut as in [42,
43]. Alternatively, the shaping strategy can be based on printing metallic electrodes
on PVDF films or PZT (Lead Zirconate Titanate) piezo-sensors, in order to obtain
the desired shape sensors as proposed in [44], or by using litographic procedures as
in [45]. In [46], an experimental validation of a shaped PZT transducer, obtained
via the screen-printing technique, is provided. In the practical adoption of these
devices, a fundamental step is the definition of a well controlled bonding procedure,
because it may heavily affect the sensor response [31].

Among the last techniques, the PVDF or PZT screen printing was considered
for its relative good resolution, near to the 200/250[um], and, at the same time, to
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limit the manufacturing cost.
It is worthy to note that the cabling of SHM dithered sensors is another

important issue to be considered. The main problem is to short-circuit the piezo-
patch descrete locations. Some strategies are currently being investigated such as
applying the dithering just to the lower electrode which must be grounded.

Therefore, the design procedure was computed to achieve a dots-shape functions
with a resolution of 0.25[mm] to satisfy the limitations that are associated with
patch manufacturing. Therefore, the half-toning technique was applied according
to the following steps:

1. The sensors shape functions are divided in two parts: the positive values part
and a negative values one.

2. In order to limit the physical sensors size, for each parts, the absolute values
lower than the 25% of the maximum absolute value, are discarded.

3. The Error Diffusion imaging technique is applied on each parts. As result,
each sensor is composed by two parts. However just a single differential
acquisition channel is required, namely no additional hardware complexity is
required.

The resulting SS-OC is illustrated in Fig. (3.9). It is worth noting that the increased
performance is not due to higher distances between sensors. Indeed, the maximum
distance between sensors, which defines the maximum time-window duration and
how much the dispersive effect influences the acquired signals, can be defined just
in the RT domain, via the maximum DDoP. Because in the RT domain, the same
maximum distance of disks sensors is imposed, the comparison of two clusters is
provided with the same computational cost (i.e. the same maximum duration of
time-windows to be stored and processed) and with the same detrimental dispersion
effect.

3.1.3 Numerical validation: performance and discussion

In order to validate the design procedure of the shaped sensors and the performance
of the proposed DoA estimator, a numerical analysis was performed. The estimation
functions of the two clusters of Fig. (3.7) are respectively:
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θ̂SC = f

(
d̂21

d̂31

)
= atan

(
d̂21

d̂31

)
; θ̂SS−OC = f

(
d̂21

d̂31

)
=

1

2
atan

(
d̂21

d̂31

)
(3.35)

In particular, impact waves propagating in aluminium plate 1[mm] thick
(Young’s modulus 70 [GPa], Poisson’s coefficient 0.3 and material density 2700
[Kg/m3]) were simulated with the Green’s functions formalism adopted in [26] (see
Sec. (2.1.2)). The impulse response of a band pass Butterworth filter (10th order)
with different bandwidths and center frequencies was used in order to simulate the
impact signal. The two DToAs with respect to the first sensor d2, d3 were computed
from the simulated acquired signals by locating the peaks of the cross-correlation
([19]) (an ML estimator approximation for uncorrelated time-delays)

Simulations were performed for multiple impact locations obtained by varying
the true DoA with 5◦ steps (θ = −45◦,−40◦,−35◦, ..., 45◦), the distance from the
reference sensor P1 being 0.8 [m]. The results achieved by the clusters of Figs. (3.7)
and (3.9) are given in Tables (3.1),(3.2) and (3.3), for different center frequencies
and bandwidths of the impact signal and different Peak Signal to Noise Ratios
(PSNR).

The selected bands were arbitrarily chosen as representative of three different
cases of impact signals whose frequency content may vary due to different factors
such as the impact energy and the material characteristics. The sensor performance
itself is influenced by the wave velocities (both phase and group) which, in turn,
depends on frequency and material characteristics. In fact, due to the wave number
filtering effect, even if the same piezo sensor is used, its amplitude-frequency
response (AFR) changes according to the wave vector dispersion function k0(ω).
Indeed, on the basis of model (2.18), the AFR of a piezo-disk, in the case of a
piezo-material with single polarization and H(θ) constant, is simply given by the
product of disk directivity D(k0(ω), θ) for k0(ω). An approximated expression of
the last one (see Sec. (5.1)), can be written as:

VDisk(k0(ω), θ) ≈ jk0(ω)2πR
2sinc(Rk0(ω)) (3.36)

As final result, the frequencies have not the same gain and the AFR will be
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Figure 3.11: A0 mode group velocity as function of frequency, in a aluminium plate
(1[mm] thick). Its values at the center frequency of the bands considered for the
numeric results (see Tabs. (3.1),(3.2) and (3.3)) are highlighted.

characterised by a sequence of peaks, corresponding to wavelengths which are
more “tuned”. To take into account this phenomenon, in the following, the DoA
estimation performance will be given as PSNR varies.

To assess the Standard Deviation (SD) of DoA estimations, 100 simulations,
on the entire 90◦ sector, were performed. Furthermore, the Maximum Error (ME)
over all simulations was considered. The simulations were run simulating the
propagation of the A0 Lamb mode, and considering: i) circular piezo sensors with
radius equal to 2.5 [mm], ii) maximum DDoP between sensors d equal to 2 [cm],
iii) sampling frequency (Fs) equal to 2 [MHz].

As shown in Tab. ((3.1), (3.2), (3.3)), the SD and ME values obtained with the
shaped sensors are, as expected, smaller w.r.t. the SC, particularly when the PSNR
value decreases. This behaviour can be interpreted in the following way. Due to the
non-ideal calibration curve (i.e. which differs by ideal 1/2 arctan(·), obtained via
the Eqs. (3.33)) achieved by the shaped sensors, there is an error (bias), different
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Standard Cluster Optimal Cluster of
Shaped Sensors

PSNR (dB) SD [deg] ME [deg] SD [deg] ME [deg]
60 1.13 1.95 2.53 4.53
40 1.38 4.09 2.52 5.77
35 1.77 5.75 2.59 6.98
30 2.75 8.37 2.76 7.64
28 3.16 10.8 2.92 8.61
27 3.51 12.2 2.92 8.57
26 3.88 13 2.99 8.91
24 4.91 17.7 3.36 11.10
22 5.88 20.1 3.67 12.10
20 7.25 23.7 4.19 15.40

Table 3.1: Comparison of Standard Deviation (SD) and Maximum Error (ME)
values (in degrees) between the arrays of the Figs. (3.7), (3.9), for noise-affected
measurements at different PSNR values. Actuated pulse band: [20-30][kHz].

Standard Cluster Optimal Cluster of
Shaped Sensors

PSNR (dB) SD [deg] ME [deg] SD [deg] ME [deg]
60 1.2 1.87 1.86 3.46
40 1.49 4.42 1.86 4.99
35 2.12 6.63 2.04 5.58
30 3.28 10.9 2.44 7.88
28 3.97 14 2.59 9.11
27 4.47 14 2.89 9.22
26 4.86 15.1 3.04 10.30
24 5.92 21 3.55 12.80
22 7.29 26.3 4.20 14.50
20 9.12 30 4.90 17.10

Table 3.2: Comparison of Standard Deviation (SD) and Maximum Error (ME)
values (in degrees) between the arrays of the Figs. (3.7), (3.9), for noise-affected
measurements at different PSNR values. Actuated pulse band: [30-40][kHz].
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Standard Cluster Optimal Cluster of
Shaped Sensors

PSNR (dB) SD [deg] ME [deg] SD [deg] ME [deg]
60 1.14 2.35 1.18 2.05
40 1.13 2.65 1.2 2.45
35 1.25 3.43 1.2 2.95
30 1.61 4.9 1.32 3.62
28 1.84 5.95 1.38 4.05
27 1.99 6.34 1.47 4.2
26 2.17 7.41 1.49 5.06
24 2.59 8.43 1.64 5.65
22 3.06 10.8 1.89 6.08
20 3.63 13.4 2.11 7.45

Table 3.3: Comparison of Standard Deviation (SD) and Maximum Error (ME)
values (in degrees) between the arrays of the Figs. (3.7), (3.9), for noise-affected
measurements at different PSNR values. Actuated pulse band: [30-60][kHz].

for the considered band, in the estimation function. However, the last disadvantage
is overcompensated when the noise increases, thanks to the achieved curve, more
robust w.r.t. the uncertainties on the estimated time-delays (i.e thanks to the
reduced variance (3.34)).

Due to the wave dispersion of the A0 mode, the higher is the considered
center frequency, the higher is the wave (group) velocity v (see Fig. (3.11)).
Therefore, according the the variances (3.32) and (3.34), which increase as v2,
worse performances are achieved by both clusters when the band center frequency
increases. This behaviour appears in the SS-OC when the noise increases, for the
above-mentioned reason.

Conversely, when the signal bandwidth increases, a more impulsive signal is
detected and the time-delays uncertainties are smaller. The last implication, will
be better clarified in Chapter (4) where the time-delays covariance matrix will
be expressed as function of the signal and noise spectrum. Therefore, the two
terms, wave velocity and central frequency have an opposite influence on the DoA
estimation performance (compare Tab. (3.1) and (3.2), and Tab. (3.3) which are
characterized by a 10 and 30 [kHz] Bandwidth, respectively).
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3.1.4 A RT application: time-response computation

A RT method useful to compute the time-response of a piezo to take into account
both the wave number tuning, due to the piezo-sensor, and the dispersion effect,
due to the GWs propagation, was software implemented. The procedure can be
summarized roughly in three steps:

1. The RT of a shape function is computed. Note that if a complex shape
function is designed (see the Ch. (6)) to detect or excite directional waves,
its Complex Radon Transform (CRT) is computed as the sum of the real part
RT and the imaginary one. In the following, the CRT will be considered to
cover both real shape functions and complex ones.

2. The CRT is shifted along the spatial coordinate ρ to take into account the
distance between the transducer and the defect-target, when a signal is
excited and conversely between the defect-target/impact point and the sensor,
when a signal is acquired. The spatial FT domain (k0-domain) of the RT
(ρ-domain) is computed for each DoA θ. Therefore, in order to move from the
spatial FT (k0-domain) to the time-FT (ω-domain) a non-uniform sampling
of the spatial 1D-FFT of each angle is computed (according to the dispersion
curve). It is important to highlight that a zero-padding technique has to
be applied to the CRT so that different discrete k0 values of the dispersion
curve refer to different spatial FT values (indexed by integers), also when the
excitation signal has an high resolution in the ω discrete values. If the zero-
padding technique is not applied appropriately, as result, spurious time signal
components can arise. The computed time-FT is the Directivity as function
of ω. According to the frequency response model (2.18), the Directivity is
then multiplied for k0(ω). In order to ensure the Hermitian property in the
frequency domain, the two-sided spectrum is computed via the one-sided
spectrum and its complex conjugate one. The last procedure provides the
Frequency Impulse Response (f-IR) at each angle θ.

3. The f-IR, for each angle, is multiplied by the excitation signal spectrum U(ω)

or the impact point spectrum, when the sensor is used in acquisition phase.
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The time response is computed via a simple 1D-IFFT. It is equal to the
convolution product in the time domain.

As example, in Fig. (3.12) the time responses of a piezo-patch P2 of Fig. (3.9) (a
sensor quantized via the error diffusion technique), provided by the previous RT
procedure and by the GFs formalism simulation, are shown. They match quite-well
and it can be observed that the larger the distance, the more wave packet spreads
over the time due to dispersion effect. The responses are quite similar so that the
analytical model can be used as a simulator with a negligible computation time.
In the Ch. (6), Sec. (6.6.2), the explained technique will be used to compute the
time response of a quantized complex shape function.
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Figure 3.12: The comparison of time-responses provided by the GFs simulations
and the RT procedure, when the sensor P2 of the Fig. (3.9) is used as example:
(a) impact signal at angle 10[deg] (the impulse response of the Butterworth filter
(10-th order) with cut-off frequencies equal to 30[kHz] and 60[kHz]; (b) P2 time
responses with a 0.4[m] impact distance; (c) P2 time responses with a 0.8[m] impact
distance; (d) P2 time responses with a 1.5[m] impact distance.





Chapter 4

Arrays Design for noisy environments

Disclaimer: The content of this Chapter is based upon the research work [47]:
Marco Dibiase, Masoud Mohammadgholiha, and Luca De Marchi. “Optimal Array
Design and Directive Sensors for Guided Waves DoA Estimation”. In: Sensors
22.3 (2022), p. 780.

In the Chapter (3), the noisy measurements issue has been tackled by exploiting
the sensors shape. The Optimal Cluster of Shaped Sensors was compared with the
cluster of disk-sensors placed on the vertices of an isosceles right triangle [17], here,
already referred to as Standard Cluster (SC). In the Sec. (3.1.2) was proved that
the SC is the optimal solution when a 360° area is covered.

However, in many realistic cases only a restricted angular range is requested to
be monitored, e.g. a quadrant of 90°. Therefore, the main aim of this Chapter is
to define an optimality criterion to find the optimal displacement of disk-sensors
composing a cluster, for a considered angles work-range and the wave-velocity being
unknown.

Although, in principle, it is possible to use the Eq. (3.23) by simply considering
the DToAs, dj1(θ), as functions of disks coordinates, a more refined procedure will
be defined to be suitable for a M-sensors cluster and to take into account also a
noise model.

By assuming the Additive White Gaussian Noise model (AWGN), the time-
delays variance-covariance matrix can be computed. Observe that the AWGN
assumption is fully justified when the electrons thermal motion of the electronic

65
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devices circuitry is the main noise contribution.
Note that in the Eq. (3.18), namely the propagation of uncertainty formula, the

variance-covariance matrix was assumed to be diagonal, i.e. with the covariance
terms, σ2

d̂23
and σ2

d̂32
, equal to 0 or negligible. Therfore, the SC can be considered

the optimal solution for a 360° angles-work-range, only under the last assumption
as well as the sensors shape of the SS-OC.

Unlike the procedure followed in the Sec. (3.23), where the variance of an
estimator was minimized in average sense, we will release by a particular form of a
DoA estimator, by using the Cramér–Rao (Lower) Bound (CRB), which defines
the minimum variance achivable by any unbiased estimator.

It is worth noting that the last procedure is equal to minimize the variance of
the estimator (3.17), when a cluster of three sensors is considered, because the form
(3.17) is mandatory, wave velocity unknown being. Conversely, for an arbitrary
number of sensors, M , the two procedures are equal if and only if a Maximum
Likelihood (ML) estimation function θ̂ = f

(
d̂21, d̂31, ..., d̂M1

)
is provided, when the

wave velocity v is considered unknown. Actually an ML estimator, is not known
a priori. Then, the CRB will be used as cost function to be minimized in mean
sense. This approach is also known as Bayesian CRB or global.

In [48], Oktel and Moses have already proposed the Bayesian approach of the
Cramér Rao bound, which depends on the sensors positioning. However, in that
work, the wave velocity is supposed to be known. Conversely, in many applications,
such an assumption is not verified and results in a loss in accuracy.

Therefore, as new approach, firstly we will compute the Cramér Rao Matrix
Bound (CRMB) of the unknown parameters θ and v, via the time-delays variance-
covariance matrix, with a AWG Noise model. After that, the CRMB first element,
related only to θ, will be minimized in mean sense.

In the following Sections the system model, the CRMBθ−v and the Bayesian
CRBunknown−v will be derived. The last one will be related also to the sensors shape
finding problem. The optimal sensors positioning solution for a 3-disk-sensors
cluster will be provided. An important link between the array beampattern and the
Bayesian CRBunknown−v will be shown. A DoA effcient estimator able to attain the
CRBunknown−v was found and used to numerically assess the improved performance
in DoA estimation via the proposed 3-sensors designed array, referred to as Disk
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Sensors Optimal Cluster (DS-OC).

4.1 System Model and Cramér-Rao Matrix Bound

Without lack of generality, let us assume that the sensors array consists of only
three (identical) sensors: P1, P2, and P3. The sensors are located at ri = [xi, yi]

T

for i ∈ [1, 2, 3]. Following [12, 49], we adopt a model with a single co-planar far-field
source which generates the wavefield impinging the 3 sensors array. The signal at
the ith sensor is s(t − di), where s(t) is the signal at a reference point near the
array and di is the delay at the ith sensor w.r.t. the reference point. Without loss
of generality, the reference point is assumed to be coincident with the location of
the first element in the array, P1, so that d1 = 0. We assume also that the sensors
are near enough so that the amplitude gradient across the array and the effect of
wave dispersion are negligible. The output signal of the ith sensor can be expressed
as:

xi(t) = s(t− di) + ni(t) (4.1)

where ni(t) is the additive sensor noise at ith sensor. In order to estimate the DoA
of wavefront, we first estimate the vector of DToAs, d = [d2, d3]

T . In the discrete
Fourier domain, the 3 × 1 measurements vector at kth frequency ωk, is given by:

x(ωk) = aθ(ωk)s(ωk) + n(ωk) (4.2)

where aθ(ωk) is the steering vector, defined as:

aθ(ωk) =
[
1, ejωkd2(θ), ejωkd3(θ)

]T
(4.3)

where di(θ) = (uT (θ) · ri−uT (θ) · r1)/v is the DToA between the ith sensor and the
reference sensor P1, v is the wave velocity and u(θ) = [cos(θ), sin(θ)]T is the unit
vector pointing toward the signal source. The followings hypotheses are formulated:

1. The noises are stationary Gaussian processes with zero mean. The signal
is a Gaussian process with zero means, approximately stationary. The last
hypothesis assumes that, for a narrowband signal and for closely spaced
sensors, the dispersion effect can be neglected;
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2. The signal and noises are mutually uncorrelated and uncorrelated between
themselves;

Under the previous hypotheses, Hahn and Tretter in [49], derived the Cramér-
Rao Matrix Bound (CRMB), Q, for the delays. Let d = [d21, d31, ..., dM1]

T be the
estimated M − 1 DToAs vector from M sensors. The covariance matrix Q is given
by [49]:

Q =


2T
2π

∫ B

0
ω2 S(ω)2

1+S(ω)tr(N(ω)−1)

×
[
tr
(
N(ω)−1)Np(ω)

−1 −Np(ω)
−111TNp(ω)

−1] dω


−1

(4.4)

where 0 to B is the frequency band processed and T is the observation time.
tr(∗) is the trace of the matrix ∗. S(ω) is the signal power spectrum, N(ω) =

diag {N1(ω), N2(ω), ..., NM(ω)} is the noise power spectral matrix, Np(ω) is the
lower right M − 1 by M − 1 partition of the matrix N(ω) and 1 is a vector of unity
which has the same size of Np(ω).

We suppose that an optimal estimator is used to estimate the DToAs, such as
the Maximum Likelihood (ML) estimator proposed in [49], therefore the covariance
matrix, (4.4), is equal to the CRMB. Moreover, we suppose that noises have
identical covariance matrix. This means that the noises have identical spectrum
and in case of white noises, they have the same noise level. Note that the last
assumption is typically satisfied when the acquired signals are processed by the
same device and the thermal electronic noise is prevalent. When the noises have
same spectrum, the covariance matrix Q assumes the following simple form:

Q = σ2
di

[
1 1/2

1/2 1

]
(4.5)

where the variance of time-delays, σ2
di

, is given by:

σ2
di
=

2

3

2π

T
B∫
0

2ω2 S2/N2

1+3(S/N)
dω

(4.6)

Where S(ω) and N(ω) are the power spectra of signal and noise, which are the
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same for each sensor. Thanks to the asymptotically Gaussian property of a ML
estimator, the conditional probability density function of d is:

f(d; θ) =
1

(2π)2
√
detQ

exp

{
−1

2

(
d− r

v

)T
Q−1

(
d− r

v

)}
(4.7)

with r = [r2(θ), r3(θ)]
T the vector of Differences in Distance of Propagation (DDoPs)

of the wavefront between the sensors and the reference sensor P1. Note that
ri(θ) (i = 2, 3) are so that the “true” values of di(θ) are di(θ) = ri(θ)/v =

(uT (θ) · ri − uT (θ) · r1)i/v. Let’s assume that the wave velocity is unknown. So,
the unknown parameters are θ and v. In [50], Malagò and Pistone provided the
Fisher information Matrix (FIM) for a Gaussian distribution when the vector of
the means µ and the covariance matrix Q are both functions of a set of parameters
γ = (γ1, γ2, ..., γK)

T . The expression, specialized in our case (with γ1 = θ and
γ2 = v), is the following:

Im,n(γ) =
∂ [r2(θ)/v, r3(θ)/v]

∂γm
Q−1

∂

[
r2(θ)/v

r3(θ)/v

]
∂γn

(4.8)

with Q−1, from ((4.5)) is given by:

Q−1 =
4

3σ2
di

[
1 − 1/2

−1/2 1

]
(4.9)

The inverse of the FIM provided in Equation (4.8) is the sought CRMB for
unknown parameters θ and v, which defines a lower bound of the covariance matrix
for any unbiased estimator of two parameters.

4.2 The Bayesian CRB Cost Function

The D-criterion (see [51]) uses the determinant of CRMB (equal to the inverse of
FIM determinant, often called generalized covariance bound) as a cost function to
be minimized to obtain the optimal design. However, in the current application
domain, only the DoA estimation performance has to be optimized. Therefore, the
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following function has been considered:

det(FIM)

I22
= I11 −

I12I21
I22

(4.10)

It consists of two terms: the first one is related only to the Fisher Information
(FI) on θ (when v is known) and the second one is related to information on θ

and v, when they are simultaneously estimated, divided by the FI on v (when θ is
known). Finally, adopting a Bayesian (or global) approach, similarly to [48], the
following CRBv−u cost function is defined:

JC(r) = E [I22 det(CRMB)] = E
[

I22
det(FIM)

]
=

= 1
2θ0

θ0∫
−θ0

I22(r(θ))
det(FIM(r(θ)))

f(θ)dθ
(4.11)

where f(θ) is the prior probability density function (pdf) of θ, thought as random
variable and [−θ0, θ0] is its domain, supposed compact. The column vector r(θ) is
function of sensors locations coordinates as:

r(θ) =

[
(x2 − x1) cos(θ) + (y2 − y1) sin(θ)

(x3 − x1) cos(θ) + (y3 − y1) sin(θ)

]
(4.12)

We define the CRBu−v-optimal array rC as the one whose elements location is
given by:

rC = argmin JC(r)

with


√
x21 + y21 ≤ r√
x22 + y22 ≤ r√
x23 + y23 ≤ r

(4.13)

where r is the radius of the circular domain where the sensor elements are constrained
to lie in.
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Figure 4.1: (a) Standard Cluster of three sensors (SC). (b) Disk-Sensors Optimal
Cluster (DS-OC) of three sensors, optimized for DoA estimation in [−45°.45°] sector
with unknown velocity v.

The general problem statement can be specified to the case of uniform pdf in a
90◦ sector, i.e., [−π/4, π/4]. Computing the terms Im,n of (4.8), the cost function
(4.11) is:

JC(r) = σ2
di

2v2

π

π/4∫
−π/4

r22(θ) + r23(θ)− r2(θ)r3(θ)

(r2′(θ)r3(θ)− r2(θ)r3′(θ))
2dθ (4.14)

It is worth noting that in the last integral, the functions ri(θ), with i = 2, 3,
can be interpreted as generic functions of θ, if they are not prescribed in the form
given by the (4.12). Therefore, by substituting ri(θ) = ρi(θ) and considering the
integral (4.14) as a functional J [ρ2(θ), ρ3(θ)], it can be minimized via the calculus
of variations, as seen in the Sec. (3.1.2), to find the optimal sensors shape, i.e. the
DDoPs functions ρi(θ), in presence of AWGN. Unfortunately, the Euler-Lagrange
differential equation provided by (4.14) is very complicated and requires a suitable
numerical solver. It can be observed that Eq. (4.14) differs by the functional (3.23)
due the time-delays covariance terms which are non zero when the AWGN model
is considered. As final note, the functional minimization strategy, used in the
Sec. (3.1.2), applied considering the covariance matrix in the form (4.5), will be
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considered for future developments.
The minimization of integral (4.14) with ri(θ) in the form (4.12) and the

constraints of the (4.13), can be achieved via the Lagrange multipliers method [52].
The solution rc provides a symmetric configuration with respect to 90°-axis (i.e.,
Y-axis), and a half-opening angle β equal to 23° (see Figure (4.1)(b)). Conversely,
when the wave velocity is known, the optimized array would be symmetric w.r.t the
X-axis [48]. This particular configuration is due to the minimization of the DoA
accuracy loss due to the unknown wave velocity [53], via Equation (4.14). The
obtained 3-sensor cluster will be referred to as Disk Sensors Optimal Cluster (DS-
OC) while the configuration of Figure (4.1)(a), is the Standard Cluster, investigated
by Kundu et al. in [18, 16].

Finally, it is worth noting that the previous design procedure of the optimal sen-
sor positioning is still valid for a generic number M of sensors, with an appropriate
covariance matrix (4.5).

4.2.1 Relationship with the array Beampattern

An important link is between the array beampattern of a conventional delay-and-
sum (DAS) beamformer and the CRB. The array beampattern Gij(ω), is defined
as:

Gij(ω) =
1

M2
a∗(θi, ω)a(θj, ω) (4.15)

where a(θi, ω) is the steering vector, (4.3), of a source at direction θi, while θj
is DoA of source and M is the number of sensors. Consider the function:

C(ω, θ) = −∂
2Gij(ω)

∂θi∂θj

∣∣∣∣
θi=θj=θ

(4.16)

it represents the curvature of mainlobe of array beampattern. Messer H. in [54]
shows that for the case of a single far-field source, and when other parameters are
known, the CRB of DoA is equal to:

CRB(θ) =

TW

BW

∫
BW

C(ω, θ)
M2ρ2(ω)

1 +Mρ(ω)
dω

−1

(4.17)
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where ρ(ω) = S(ω)/N(ω) is the Signal to Noise Ratio Factor (SNR), whereas
TW/BW is the time-bandwidth ratio.

Traditionally, array performance are typically characterised in terms of the
beamwidth of the beampattern rather than the mainlobe curvature value, as defined
in Eq. (4.16). Although the beamwidth is a descending function of the curvature
(4.16), i.e. larger the curvature is, narrower mainlobe is, the Eq. (4.17) tells us that
minimising the CRB is equivalent to maximising the curvature of the mainlobe
(its second derivative w.r.t. θ) for narrowband (or narrow-band-filtered) signals.
In this case the ω-dependence of the function C(ω, θ) can be neglected since the
propagation velocity can be considered constant and the signal-to-noise ratio ρ(ω)
can be considered approximately constant (under the approximation of nearly flat
signal and noise spectra).

Then, the CRB cost function, defined as E[CRB(θ)] = E[1/I11(θ)] (see also [48])
can be thought as the average mainlobe inverse curvature of the array (averaged
over the steering angle) and the optimal array provides the minimum average
mainlobe inverse curvature. Whereas the defined cost function ((4.11)), i.e. JC(r) =
E[1/(I11−I12I21/I22)], is still related to the curvature with the term I11, but also
to the term of covariance bound, I12I21/I22, due to unknown, nuisance, velocity v
parameter. A more extensive analysis might still link the defined cost function only
to properties of the array beampattern.

It’s worth noting that the DoA CRB (and also the CRMB for unknown v) is
derived using a small perturbation analysis. Then, it represents a tight bound
for DoA estimation only for DoA small-error region, namely until a certain SNR
threshold value. For larger estimation error, the local tightest bound for parameters
estimation is provided by the Barankin bound, BR (see [55, 56]). Messer in [54]
shows that, for small SNR, the DoA Barankin bound is affected by only the
higher sidelobe level. So, when the wave velocity is known, the DoA estimation
performance bounds can be related only to beampattern properties. Large mainlobe
curvature (i.e. narrower beamwidth) means good localization performance in the
small error region (SNR higher than a threshold value). Whereas small sidelobe level
is a sufficient condition for a good DoA estimation performance when large errors
are involved (ambiguity due to high SNR). Because our optimization approach is
related to DoA CRB, and so to the beamwidth of beampattern, better results are
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expected at medium-high SNR with respect to others positioning configurations.
Noteworthy, the previous discussion provides an important result: the array

design via the Bayesian CRB approach is suitable both for the passive monitoring
and the active one, when the defects radial and angular coordinates are to be
estimated and the wave velocity knowledge, in each narrow-bands, is limited
due to temperature variations, tapered monitored areas etc. Typically, in active
monitoring, the sensors are excited with different phases to scan the entire round-
angle. Such method is called beam-forming technique, also known as delay-and-sum
technique. Observe that the sensor phase-shifts depend by the wave-velocity, whose
accuracy, in turn, affects the angle accuracy. The acquired signals, for each scanned
"nominal" angle, can be processed similarly to the case of the passive sensor array to
estimate the DoA without using the wave-velocity knowledge, avoiding the angular
accuracy loss due to the uncertainty on the previous one. The estimated angle and
the nominal one can be compared to estimate the wave velocity variation w.r.t. its
nominal value. Eventually, this information can be used to improve the estimation
of the radial coordinate. The sensor array, in the active context, are often referred
to as Phased Array. The state of the art of the phased arrays will be illustrated in
Ch. (6).

4.3 An efficient DoA estimator

As anticipated, an efficient time delays estimator has to be used in order to match
the DToAs covariance matrix with the CRMB (4.5). The Maximum Likelihood
(ML) DToAs estimator, asymptotically efficient, was proposed by Hahn and Tretter
in [49]. The technique consists of measuring the DToAs for all possible sensors pairs
by Generalized Cross Correlation (GCC) and then calculating the Gauss-Markov
(GM) (weighted) estimate of the DToAs with respect to the first sensor. The GCC
procedure consists of computing the Cross-Correlation between the acquired signals,
filtered first by an appropriate filter. The Optimal Filtering to attain the time
delays CRMB is defined by:

∣∣FOPT (ω)

∣∣2 = S(ω)/N2(ω)

1 +M(S(ω)/N(ω))
(4.18)
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where M is the number of the sensor, whereas S and N are the power spectra
of respectively no-noisy signal and noise. In practice, the optimal filter requires
knowledge or estimation of the signal and noise spectra. A simple estimation method
consists in measuring the noise spectrum and computing S(ω) by subtracting the
noise spectrum from the noisy signal spectrum. However, due to random variations
of noise, spectral subtraction can result in negative estimates of the short-time
magnitude or power spectrum. Different methods for reducing and removing the
distortions due to the rectification process are proposed in [57].

Under the hypothesis that the noises have the same spectrum for each sen-
sors, the Gauss-Markov estimator coefficients, for the case of three sensors array
(regardless of what filter is used for the GCC procedures), are given by:

[
d2GM

d3GM

]
=

2

3

[
1 1/2 − 1/2

1/2 1 1/2

] d12GCC

d13GCC

d23GCC

 (4.19)

where dijGCC are the DToAs between sensor i and j estimated by using the GCC
procedure, whereas diGM are the time delays with respect to the reference sensor
estimated with the GM estimator. The weights of the Gauss-Markov estimator
have a more complex form (expressed by a ratio of time delays variances) only
when the noise spectra for each sensor, Ni, are not all equal.

In this paper, for testing the DoA estimation performance with the two clusters
of Figure (4.1), we assumed equal white noise spectra and a flat signal spectrum
within a band Bs, to emulate the narrow-band impulsive signals due to an impact.
In this case, the Optimum Filter ((4.18)) is equal to an arbitrary constant within
the signal band Bs (the system performance is unaffected by filter gain constant),
and 0 elsewhere:

|FOPTFlat
(ω)|2 =

{
1 ω ∈ Bs

0 elsewhere
(4.20)

The band Bs, is estimated by using the spectral subtraction technique, assuming
to know the white noise level. The distortions induced by the rectification of negative
values of the estimated power spectrum S are neglected. This assumption is justified
when SNR values are sufficiently high, while the non-linear distortions are not
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negligible when the signal-to-noise ratio decreases.
Finally, an optimal DoA estimation function from the estimated time delays has

to be found to attain the CRBunknown−v (the inverse of (4.10)). Given the designed
array geometry (DC in Figure (4.1)(b)), the following result is obtained:

d2 =
d

v
2 cos(α) cos(θ) , d3 =

d

v
(cos(α) cos(θ)− (1 + sin(α)) sin(θ)) (4.21)

θ can be computed by using the ratio η .
= d2/d3 and inverting with respect to

θ. The “true” relation between θ and η can be used as estimation function:

θ̂DC = atan

(
tan β(η − 2)

η

)
, with β= 23◦ (4.22)

Note that the estimator θ̂DC is a function only the ratio d2/d3. From the Theory
of Uncertainty Propagation [30], the mean square error and variance (when the time
delays d2, d3 are random variables with covariance matrix (4.5)) can be computed
by expanding the estimation function in the first order Taylor series:

ems = σ2
θ̂DC

= E[θ̂]−θ=

[(
∂f

∂d2

)2

+

(
∂f

∂d3

)2

+

(
∂f

∂d2

)(
∂f

∂d3

)]
σ2
di

(4.23)

this formula is valid around the point of expansion (E[d2],E[d3]) of function f in
Taylor series. Expanding Equation (4.23), we have:

σ2
θ̂DC

=
(

∂f
∂η

)2 [
d22+d23−d2d3

d43

]
σ2
di
=

=
d22(θ)+d23(θ)−d2(θ)d3(θ)

(d2
′(θ)d3(θ)−d2(θ)d3

′(θ))2
σ2
di

(4.24)

where the last equivalence is provided by the inverse function theorem. The function
in (4.24) is precisely the integrand of (4.14), i.e., I22/ det(FIM), expressed in terms
of DToAs di(θ), instead of elements ri(θ), namely the Differences in Distance of
Propagation (DDoPs).
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4.4 An optimal designed three sensor-array numer-

ical assessment

In order to validate the design procedure of the array geometry and the performance
of the proposed DoA estimator, a numerical analysis was performed. The estimation
functions of the two clusters of Figure (4.1) are respectively:

θ̂SC = atan

(
d2
d3

)
, θ̂DC = atan

(
tan(23◦)(d2/d3 − 2)

d2/d3

)
(4.25)

In particular, impact waves propagating in aluminium plate 1 [mm] thick
(Young’s modulus 70 [GPa], Poisson’s coefficient 0.3 and material density 2700
[kg/m3]) were simulated with the Greens function formalism adopted in [26]. The
impulse response of a bandpass Butterworth filter (10th order) with different
bandwidths and center frequencies was used in order to simulate the impact signal.
The two DToAs with respect to the first sensor d2, d3 were computed from the
simulated acquired signals by using three different estimation modalities:

1. locating the peaks of the cross-correlation ([19]);

2. by using the Gauss-Markov estimator (4.19) consisting in three cross-correlation
procedures;

3. by combining the Gauss-Markov estimator (4.19) with three GCC procedures
(filtering first the signals with the filter (4.20);

The last modality is the optimum one in the considered case which involves
(additive) white (zero-mean Gaussian) noise (AWGN) and quasi-flat signal spectrum
S in a fixed band. The power spectrum S(ω) and its band BS for the filter (4.20)
are estimated by the spectral subtraction technique.

Simulations were performed for multiple impact locations obtained by varying
the true DoA with 5◦ steps (θ = −45◦,−40◦,−35◦, ..., 45◦), the distance from the
cluster center being 0.8 [m]. The results achieved by the clusters of Figure (4.1)
are given in Tables (4.1)–(4.3), for different center frequencies and bandwidths of
the impact signal and different peak signal to noise ratios (PSNR). To assess the
Standard Deviation (SD) of DoA estimations, 200 simulations, on the entire 90◦
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Figure 4.2: A0 mode velocities as function of frequency, in a aluminium plate
(1[mm] thick). Their values at the center frequency of the bands considered for the
numeric results (see Tabs. (4.1),(4.2) and (4.3)) are highlighted. (a) Phase velocity
(b) Group velocity.

sector, were performed. Furthermore, the maximum error (ME) over all simulations
was considered. The simulations were run simulating the propagation of the A0
Lamb mode, and considering: (i) circular piezo sensors with radius equal to 5 [mm],
(ii) the radius of the array d equal to 2 [cm], (iii) sampling frequency (Fs) equal to
2 [MHz].
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Standard Cluster DS-Optimal Cluster

CC GM-CC GM-GCC CC GM-CC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME

60 dB 0.45 1.05 0.44 1.05 0.43 1.05 0.35 0.67 0.29 0.63 0.29 0.63

40 dB 0.94 3.14 0.80 3.30 0.46 1.86 0.84 2.94 0.59 1.84 0.32 1.16

35 dB 1.53 4.99 1.27 5.05 0.52 1.86 1.46 6.1 0.98 3.6 0.37 1.19

30 dB 2.50 8.13 2.14 7.50 0.67 2.58 2.35 8.8 1.62 5.82 0.51 1.92

28 dB 3.09 10.10 2.55 10.19 0.79 3.48 2.86 11.09 1.97 7.73 0.59 2.25

27 dB 3.50 12.41 2.90 12.46 1.80 8.31 3.24 10.82 2.25 7.79 1.73 6.02

26 dB 3.85 12.30 3.18 11.20 2.74 10.47 3.68 12.78 2.52 9.45 2.09 7.88

24 dB 4.78 15.30 3.98 14.44 3.64 12.85 4.57 20.67 3.1 11.17 2.83 9.87

Table 4.1: Comparison of Standard Deviation (SD) and Maximum Error (ME)
values (in [Deg]) between the arrays of Figure (4.1) for noise-affected measurements
at different PSNR values. Actuated pulse band: [30–40][kHz].

Standard Cluster DS-Optimal Cluster

CC GM-CC GM-GCC CC GM-CC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME

60 dB 0.58 1.05 0.52 1.05 0.52 1.05 0.44 0.92 0.28 0.83 0.26 0.83

40 dB 1.22 4.09 1.02 4.03 0.55 1.97 1.1 4.31 0.77 2.49 0.37 1.26

35 dB 1.93 6.99 1.61 6.95 0.63 2.91 1.83 8.7 1.26 4.31 0.44 2.06

30 dB 3.31 11.22 2.72 11.05 0.84 3.03 3.03 13.41 2.11 8.58 0.62 2.31

28 dB 4.14 14.2 3.41 13.05 1 4.88 3.76 14.42 2.58 9.6 0.93 3.51

27 dB 4.52 16.04 3.72 14.96 2.01 8.77 4.26 15.55 2.93 12.2 2.52 9.18

26 dB 5.08 16.14 4.23 15.77 3.92 15.97 4.79 16.89 3.23 12.34 2.86 9.79

24 dB 6.36 21.69 5.28 20.28 4.86 20.9 5.84 20.7 4.01 15.1 3.78 12.78

Table 4.2: Comparison of Standard Deviation (SD) and Maximum Error (ME) val-
ues (in degrees) between the arrays of Figure (4.1) for noise-affected measurements
at different PSNR values. Actuated pulse band: [50–60][kHz].

As shown by the Tables (4.1)–(4.3), the SD and the ME values obtained with
the designed cluster are, as expected, smaller w.r.t. the SC, for PSNR values higher
than 24 dB. In particular, the best performances are achieved when the optimal
DoA estimator, based on the GM-GCC time delays estimator, is used. In this case,
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the variances almost equate to the CRBunknown−v. Due to the wave dispersion of
the A0 mode, the higher is the considered center frequency, the higher is the wave
(group) velocity v (see Fig. (4.2)). It is important to consider this fact because the
DoA CRB in Equation (4.14) and the variance of the DoA estimator in Equation
(4.24) increase as v2. Conversely, for the case of quasi-flat signal spectrum in a
given band BS, the DToA variance term σ2

d of the Covariance Matrix (the CRMB in
Equation ((4.5)) for an optimal estimator) decreases as B2

S (see (4.6)). Therefore,
the two terms, wave velocity and central frequency have an opposite influence on
the DoA estimation performance (see the SD values of Tables (4.1) and (4.2)).
Furthermore, it can be noted that the higher is the bandwidth, the smaller is the
DToA and DoA variance (compare Tables (4.1)–(4.3) which are characterized by a
10 and 30 [kHz] Bandwidth, respectively).

Finally, observe that the distance between the disk-sensors differs by the max-
imum radius r. This aspect has to be consider in DoA estimation performance
achieved by the clusters of the Figs. (3.7),(3.9) and the clusters of the Figs.
(4.1)(a)-(b). In fact, by making explicit the distance r dependence in the variance
of the DoA estimator in the Eq. (4.24), observe that it decreases as r2. The same
dependence is for the variance of the DoA estimator of a SC, as it can be easily
verified. Therefore, with the same other parameters values, better performance
are achieved with the clusters of Figs. (4.1)(a)-(b), as expected. However, the
distance r can not be arbitrarily increased for two main motivations. The first is
related to the assumption that the wave-fronts impinging on the sensors cluster are
to about locally planar. The farther the sensors are, the less the last assumption
is satisfied. The second motivation is related to the hypothesis of low dispersion:
the farther the sensors are, the more the dispersion effect negatively affects the
cross-correlation procedures for the time-delays estimation.
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Standard Cluster DS-Optimal Cluster

CC GM-CC GM-GCC CC GM-CC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME

60 dB 0.35 0.85 0.34 0.85 0.34 0.85 0.45 0.72 0.4 0.72 0.4 0.72

40 dB 0.48 1.87 0.45 1.87 0.37 1.42 0.46 1.62 0.37 1.08 0.38 0.72

35 dB 0.73 2.28 0.64 2.3 0.41 1.87 0.63 2.31 0.46 1.76 0.37 1.08

30 dB 1.14 4.05 0.96 4.16 0.48 1.87 1.04 4.03 0.72 3.11 0.38 1.08

28 dB 1.35 5.1 1.15 4.83 0.49 1.87 1.25 4.69 0.87 3.15 0.39 1.12

27 dB 1.5 5.07 1.25 5.2 0.54 2.14 1.39 4.92 0.96 4.35 0.51 2.08

26 dB 1.67 5.53 1.4 5.46 1.1 4.53 1.54 6.08 1.07 3.75 0.82 3.75

24 dB 2.05 6.61 1.69 6.61 1.59 6.21 1.88 7.09 1.3 4.67 1.2 4.57

Table 4.3: Comparison of Standard Deviation (SD) and Maximum Error (ME) val-
ues (in degrees) between the arrays of Figure (4.1) for noise-affected measurements
at different PSNR values. Actuated pulse band: [30–60][kHz].





Chapter 5

Directive Sensors for reverberant
environments

Disclaimer: The content of this Chapter is based upon the research work [47]:
Marco Dibiase, Masoud Mohammadgholiha, and Luca De Marchi. “Optimal Array
Design and Directive Sensors for Guided Waves DoA Estimation”. In: Sensors
22.3 (2022), p. 780.

In the previous last two Chapters, the problem of designing the shape and
the arrangement of acoustical sensors were considered for improved performance
in the DoA estimation for noise affected measurements. However, in realistic
scenarios, another well-known issue arise, namely reflections and reverberation.
The last ones are due to fact that the monitored structures are finite and limited
by mechanical boundaries. The reverberation phenomenon is also known as multi-
path propagation. In particular, reflected directive waves can be distinguished in
coherent interference w.r.t the signal to be detected and incoherent signals. The
first ones are due to edge-reflections of the impact/defect AE to be detected. The
second ones are due to reflections produced by different impacts or acoustic events.

It is important to note forthwith that for the clusters design in the previous
chapters, a restricted angles range, subset of the round angle, was considered,
namely a quadrant of 90°, thanks to the structure finite size. Therefore, a sensors
cluster can be placed near a plate corner. Unfortunately, in this way the sensors
measurements are affected by the reflections due to the nearby edges. However,
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the design procedures, optimized for a DoA estimation more robust to the noise,
do not lose their validity. Indeed, the used time delay estimation procedures can
still rely on the cross-correlation between the pure acquired signals or the filtered
ones, just exploiting the phase transform (PHAT), namely the GCC-PHAT. The
last one has been shown to be a suitable alternative in reverberant scenarios [33,
34]. However, its performance can only be considered optimal for medium-high
signal-to-noise ratio (SNR) values (as shown in [58]).

A different DoA estimation method, the Multiple Signal Classification (MUSIC)
[59], is able to estimate up to N-1 DoAs due to different sources with N-sensor
arrays. Originally designed to estimate the number and DoAs of uncorrelated
signals, modified versions [60, 61] have been proposed to estimate also the DoAs of
coherent signals for the multipath environment. However, with a simple 3-sensor
cluster, just 2 coherent signals can be detected. This means that other directional
interference may cause wrong estimations. A more robust MUSIC algorithm for
reverberant scenarios is proposed in [62]. MUSIC algorithms are also limited by
the assumption of accurate knowledge or estimation of wave velocity. Therefore,
an additional iterative wave velocity estimation procedure is needed (as shown in
[63]), which increases consistently the computational cost.

Machine Learning (M-L) algorithms [64], such as Deep Learning (DL) algorithms
or Artificial Neural Networks (ANN), and sparse sensor networks can be used to
better estimate the Acoustic Sources by exploiting the multiple reflections from
boundaries as a supplementary information. In [65] a network of ten sparse sensors
and a DL approach are employed for the damages detection from signals that are
acquired over a long-time interval, where multi-modal dispersion and reverberations
effects are present. Nevertheless, it is important to note that:

1. several sparse sensors are to be linked via cables or long-lasting signals are
to be transferred wirelessly. As result, they are not suitable for embedded
applications.

2. Supervised DL and ANN algorithms require a time consuming training phase
in order to define the features which improve the estimation performance and
to derive the minimum size layered structure.

3. ML estimation techniques can be onerous from computational point of view.
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Despite the last two points, ML algorithms will be considered in future developments
in order to understand if and when they can be considered suitable for the AS
localization via multiple GWs DoA estimations on sensor arrays and embedded
electronic devices.

In the work [47], Dibiase et al. provided an unconventional solution to tackle
the detrimental effect of directional interference, allowing to use GCC procedures
without the PHAT. Both coherent and incoherent directional interference were
tackled by means of a novel directive piezo-sensor, suitable for guided propagation
structures. If in the work [28], the shaping of piezoelectric transducers has already
been used as a powerful means to detect DoA in non-reverberant contexts, in [47],
the shaping is used to filter all undesired directional interference. Again, it is worth
noting that the usage of these transducers is beneficial whenever a limited angular
sector has to be monitored. Therefore, a cluster of directive-sensors was designed
so that when it is placed near a plate-corner, it is able to filter the reflections of
edges close to it.

The design procedure for the directive transducer proposed in the paper [47]
draws inspiration from the work of Senesi and Ruzzene [2] which showed how to
relate the transducer shape to its directivity. However, the transducers consid-
ered in [2] are characterized by symmetric beam patterns which are unsuited to
distinguish sources related to opposite directions. To achieve this capability, a
novel complex (i.e., multi-phase) transducer was implemented [3]. The proposed
Directive Complex Sensor (DCS) consists of five piezoelectric patches and allows
to suppress the lobes out of a 90◦ monitoring sector. The details of the novel
directional transducer concept, a double numerical validation via GFs simulations
and Finite Elements Method (FEM) simulations in terms of directivity properties
and the DoA estimation performance by means of a DCSs cluster, are thoroughly
illustrated in the following sections.

5.1 Directive Complex Sensor (DCS) Design

In this Section, the steps used in the work [47], to design a directive base sensor,
are shown. Let pose a base sensor beam pattern is ideally equal to 1 in a given
range and 0 elsewhere. Without lack of generality, we refer to the [0°,90°] range as
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the one where the beampattern is equal to 1. When Lamb waves are detected, the
beampattern of a sensor is linked to its shape as described by the model (2.18),
proposed in [66] and [2]. More specifically, the directivity properties, namely the
sensor beampattern, are defined only by the Directivity function (2.20), which, in
turn, is related to the geometrical distribution of the piezo-load ϕP (x, y), i.e. the
shape function, as:

DP (ω, θ) =

∫
ΩP

e−jk0(ω)(x cos θ+y sin θ)ϕP (x, y)dxdy (5.1)

It defines, unless than other scale factor functions (i.e., the signal spectrum U(ω),
the wave-vector k0(ω) of a Lamb wave mode and H(θ) which, without lack of
generality, can be set 1), the sensor frequency response (2.18) for all possible angles
of arrival θ, hence the name of Directivity function. Defining ΩP the area of the
piezoelectric path, a step shape function is equal to 1 when (x, y) ∈ ΩP and 0
elsewhere.

Considering as an example a circular piezo-sensor of radius R, the (5.1) provides:

DP (ω, θ) = 2πR2J1(Rk0(ω))

Rk0(ω)
≈ 2πR2sinc(Rk0(ω)) (5.2)

where J1(·) is the first kind Bessel function of first order and k0(ω) is the wave
vector of the propagation mode of Lamb waves (e.g., A0 or S0 mode). Observe that
the (5.2) doesn’t depend by θ but only by frequency, so the directive properties of
a piezo-disk are the same for all angles, i.e., the disk is omnidirectional. We define
the base sensor beampattern at frequency ω as;

d(ω, θ) =
|DP (ω, θ)|

maxθ [|DP (ω, θ)|]
(5.3)

For a circular sensor then d(ω, θ) = 1. As already seen in the previous Chs.
(2) and (3), the Directivity function DP (ω, θ) (5.1) is equal to the bi-dimensional
spatial Fourier Transform (2D-FT) at angle θ of the shape function. Then, the
shape function which corresponds to a given desired directivity can be determined
with an Inverse Fourier Transform. In our approach, we impose the same Directivity
function (and so the same frequency response) of a piezo-disk of given radius in
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Figure 5.1: (a) Disk Directivity in k−space (|2D−FT|) (5.0 [mm] radius). (b)
Imposed Directivity equal to that of a disk in [0°,90°] and 0 elsewhere. (c,d)
Real part and imaginary part of 2D-IFT: the ideal shape functions continuously
modulated.
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Figure 5.2: Directive Complex Sensor (DCS) designed to priviledge the [0°–90°]
angular sector (a). The geometry of the piezopatches is generated by a quater-
nary phase quantization and a subsequent binary amplitude quantization of the
continuously modulated shape functions illustrated in Figure (5.1). (b) 2D-FT of
the complex quantized shape function: due to quantization procedure, it is not
perfectly matched to the desired one depicted in Figure (5.1)b but it is clearly
asymmetrical.

the [0–90]° angles-sector and 0 elsewhere. Therefore, we compute the 2D-FT of
a disk, set to 0 all values of 2D-FT in the k-space domain between [90;360]°, and
finally get back in the space-domain, via the 2D-Inverse FT (IFT) to obtain the
desired shape function (see Figure (5.1)).

Note that a real shape function is achieved if and only if the Directivity function
is Hermitian with respect to the origin, i.e. its amplitude is symmetric and its phase
is anti-symmetric. Instead, our procedure tolerates the generation of a complex
shape function, with a real part and an imaginary part, both having positive and
negative values (Figure (5.1)c,d). This higher complexity allows us to have a beam
pattern that is not symmetrical, i.e., without lobes in the [180:270]° range.

It is important to highlight that a complex shape function in math sense
is admitted when a sensor is used for the passive monitoring, when a digital
multiplication for the imaginary unit, +j, is allowed. Therefore, in this context, it
is legitimate to refer the generated two parts as real part and imaginary one. In the
following Ch. (6), because a transducer will be designed for the active monitoring,
the meanings or real and imaginary terms will be clarified in detail.

Note that, as already seen for the shaped sensors in the Ch. (3), the described
procedure produces a continuously modulated shape function. So, a quantization
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Phase Interval Quantized Value Patch Color in Fig. (5.2)a
[−π/4 + π/4) 0 Yellow
[π/4 + 3/4π) π/2 Red
[3/4π + 5/4π) π Blue
[5/4π + 7/4π) 3/2π Black

Table 5.1: Phase quantization scheme used in the complex shape function imple-
mentation

procedure has to be applied to the computed shape function. In particular, firstly,
the phase of the complex shape function is quantized, as detailed in the Tab. (5.1).

Then, the absolute values greater than a certain positive threshold are set to
1 and others to 0 (see Figure (5.2)). Areas associated with the same quantized
values define the shape of the electrodes of the piezo patches used as sensors. A
distance gap of at least 0.5 [mm] between the patches has been imposed to be
compliant with the typical geometrical limitations that are associated with patch
manufacturing.

Such a procedure generates the Directive Complex Sensor (DCS). As can be seen
in Figure (5.2)a, such a sensor consists of five piezo patches each one depicted with a
different color. It is worth noting that the two blue patches related to the quantized
phase π can be short-circuited. Moreover, the three patches corresponding to the
opposite phases 0 and π, i.e. the real part, correspond to regions where the computed
shape function has almost equal absolute average value. The same applies for the
two patches related to phases π/2 and 3/2π (the imaginary part). This implies
that piezo-patches related to the real part require just one differential acquisition
channel and a second differential channel is required by the patches related to the
imaginary part. In order to generate the complex time-signal, a weighted sum of
the two acquired differential signals has to be performed, in which the signal related
to the imaginary part is multiplied by the factor j ·WIm, where j is the imaginary
unit and WIm is a suitable weight. Finally, observe that the imposed directivity is
zero in third quadrant. Therefore, for each angle θ, the frequency response is zero
for the negative values of the scalar part of the wave-vector. Because the model
(5.1), for an incoming Lamb wave, associates the negative wave-vector value to
the positive frequency ω values and vice versa, the negative one-sided spectrum
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in ω has to be selected from the complex acquired signal, which is related to the
positive k values. Therefore, the anti-analytic signal of the complex acquired signal
is computed and used to feed the DToA estimator.

Figure (5.2)b shows the actual 2D-FT (absolute value) in the k-space domain,
i.e., the 2D-FT computed after the quantization of the shape function. Due to
quantization, the values of the 2D-FT, out of [0°,90°], are not 0, but are still smaller
than values in the monitored angular sector.

By using Equation (5.3), the DCS sensor theoretical beampatterns were com-
puted at different values of frequency, considering the wave vector values of A0 mode
when propagating in an aluminum plate with 1[mm] thickness (i.e., for a known
dispersion curve k0(ω)). As shown in Figure (5.3), useful directive beampatterns
are achieved in the [10–60] [kHz] frequencies band. However, the best directional
behavior is achieved in the [30–60] [kHz] frequency range.

The directivity properties at each frequency can be expressed by the Average
Directional Attenuation (ADA) parameter. It is computed by the beampatterns
values, as the ratio between the average beampattern value in the monitored
angular sector (i.e., [0–90]◦) and out of that one. In Figure (5.3), the ADA values
for different frequency values are shown. The ADA value is above 8.3dB in the
[10–60] [kHz] band, and 13.0dB in the [30–60] [kHz] band.

Regarding the WIm parameter, in order to find an optimal value a suitable cost
function JWIm

was defined:

JWIm
(W ) =

1

N

N∑
i=1

ς(W,ki)

DAβ
α(W,ki)

(5.4)

where ki are N wave-numbers in the considered (spatial) spectral region, DAγ
φ(W,ki)

is the directional attenuation at angle φ w.r.t the one at angle γ and ς(W,ki) is
equal to highest sidelobe level of beampatterns at each frequency ki. By minimizing
JWIm

for ki = 353, 409, 459, 505[rad/m] (corresponding to the frequencies fi =

30, 40, 50, 60[kHz] of the A0 mode in the considered setup plate), φ = 120° and
γ = 90°, the value WIm−Opt = 6.81 is obtained. It is worth noting that the DA of
the proposed DCS is sufficiently high to mask directional interference in a given
angular range [ψ1, ψ2], subset of [90°,360°]. For example, the DA is above 11.3 dB
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within [30–60] [kHz], for all undesired DoAs within [130–320]deg. This is due to
DCS beampattern non-idealities, in particular to the non-sharp mainlobe cut-off
near 0° and 90°. The DCS DA is also limited by the highest sidelobe level. The
previous facts justified the cost function (5.4).

Figure 5.3: The DCS beampatterns computed at 6 different values of frequency
when A0 mode propagating an aluminium plate (1 [mm] thick) and corresponding
Average Directional Attenuation (ADA) values.

Such non-idealities can be attributed to the detrimental effect of binary quanti-
zation. More specifically, the DCS shows the better directivity properties in the
wave vector k values range [353–505] [rad/m] (corresponding to the 30–60 [kHz]
beampatterns shown in Figure (5.3)). It is worth noting that the relationship
between wave vector function and frequency k0(ω) depends on the monitored
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structure characteristics (material, thickness, etc.). In other words, the optimal
frequency range of the DCS can be found by taking into account the dispersion
curves of the monitored medium.

5.1.1 Green’s functions and FEM simulations assessment

In order to validate the design procedure and the directivity properties of the DCS,
in the following subsections, the beampatterns obtained from the GFs formalism
and FEM simulations are shown and compared with the theoretical ones (see Figure
(5.3)).

Beampattern assessment via GFs simulations

As first, Gfs simulations, already used to assess numerically the DoA estimation
performance via the optimized shaped sensors (Sec. (3.1.3)) and the cluster of
optimized displacement disk-sensors (Sec. (4.4)), were performed on an Aluminium
plate, 1[mm] thick. The GFs numeric model was ran on the Matlab software [67].
Multiple impact locations were used by varying the DoA with 5° steps and by
covering the entire round angle. An impact distance from the sensor equal to 0.8[m]
was considered. The impulse response of the Butterworth filter (10° order) with
the cut-off frequencies equal to 10[kHz] and 80[kHz] was used in order to compute
the beampatterns to any desired frequency within the filter band. A sampling
frequency equal to 1[MHz] was used. Therefore, the simulated signals, acquired by
each single DCS patch were summed according to the theoretical model: the two
differential signals acquired by the real part and the imaginary one were summed
after multiplying the last one by the factor j · WIm. Therefore, the one-sided
amplitude spectrum of the complex signal was used to generate the beamptterns at
different frequencies, according to Eq. (5.3). Observe that only the spectrum of the
negative frequencies has to be selected, according to Directivity model (2.20), which
associates the positive frequencies ω to the negative wave vector −k0(ω). The GFs
simulations beampattern and the theoretical ones at 4 different frequencies are
shown in Fig. (5.4).
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Figure 5.4: Comparison of the GFs simulations and theoretical beampatterns
computed at 4 different frequencies.

Finite Element Simulation using COMSOL Multiphysics

To further validate the DSC performance, the theoretical beampatterns predicted
by the model have been compared with the ones resulting from finite element (FE)
simulations. The last ones were performed particularly by the PhD candidate
Masoud Mohammadgholiha, in the context of joint research efforts, conducted step
by step, in order to achieve the desired beampatterns matching. Therefore, the
designed DCS was transposed in a three dimensional Comsol FE model. In the
numerical model, an aluminum plate with dimensions of 500 [mm] × 60 [mm] and
thickness 1 [mm] was chosen as the propagation medium. Since it is sufficient to
shape just one metalization of the DCS (top or bottom) to achieve the desired
directive behavior, the DCS was modeled using the geometry obtained in the design
procedure, below which a small disk of piezoelectric material with a radius of 6
[mm] was defined. Then, the DCS was attached to the plate as shown in Figure
(5.5).
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Figure 5.5: Three-dimensional geometry of the model.

The excitation for the A0 mode was simulated using a line load in a way that a
plane wave is generated within the plate. It should be noted that the excitation
signal is considered as a sine-wave with a combination of four different frequencies
of 30, 40, 50 and 60 kHz. Unlike the common procedure to compute the directivity
pattern, which includes a number of point sources around a fixed transducer, a
different approach was utilized here: at each simulation run, the sensor was rotated
of 5 degrees, while the excitation load was fixed, as depicted in Figure (5.5). The
motivation of using such a method was to reduce the computational cost of the
numerical model. Furthermore, in order to prevent wave back-reflection at side
boundaries, the Low-Reflecting Boundary option was utilized. Two physics, Struc-
tural Mechanics and Electrostatics were coupled by the Multiphysics-Piezoelectric
Effect to take the solid mechanics of the aluminum plate and the electrical feature
of the piezoelectric sensor into consideration.

The simulation results including the sensor response and the generated wavefield
at different times for θ = 0 are given in Figures (5.6) and (5.7), respectively. The
beam patterns obtained from the FE simulation are compared to that of the
theoretical model in Figure (5.8). A notably good agreement between them is
observed, indicating the effectiveness of the proposed complex sensor.

Furthermore, the matching of the beampatterns provided by the
theoretical model and by both the GFs simulations and FEM simulations,
involves that the two simulations methods provides the same results at
least in terms of beampatterns. As result, the time required to perform
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simulations of piezo-sensors response, when GWs propagate, can be
drastically reduced thanks to the GFs simulator. It is important to highlight
that the key point to achieve the previous result was to consider each shaped patch
as a capacitor, whose voltage, in the COMSOL software [68], can be computed as
the integral of the charge density, divided for the capacitance. Therefore, just the
shaped electrodes can be considered for the voltage measure.

In practical terms, for piezoelectric sensors voltage reading, analog charge
amplifiers (namely, current integrator circuits), such as those proposed in the
works [69, 70], can be used. Theoretically, it is possible to use voltage amplifiers,
but in many cases it’s not the preferred solution. The problem is given by the
stray capacitances. Indeed, the input impedance of a charge amplifier circuit is
almost zero because of the Miller effect. Hence all the stray capacitances (the cable
capacitance, the amplifier input capacitance, etc.) are virtually grounded and they
have no influence on the output signal.

Figure 5.6: Sensor response for θ = 0: (a) time plot and (b) frequency spectrum.
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Figure 5.7: The generated wave field at different times for θ = 0.

Figure 5.8: Comparison of the FE simulation and theoretical beampatterns
computed at 4 different frequencies.
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5.1.2 DoA estimation performance in reverberant environ-

ments

Figure 5.9: The Designed Clusters (DC) of Disk sensors (a) and of DCSensors (b)
(rotated by 45º compared to Figure (4.1)b) for an optimal DoA estimation in

[0–90]◦.

As already discussed, in realistic reverberant environments, coherent reflections
and incoherent reflections may hamper the DoA estimation. This interference can
be viewed as waves generated by virtual Image Sources (ISs), due to the mirroring
produced by the boundaries of the monitored structure [71]. In the most general
case, undesired AE is given by multiple ISs. Let us suppose that the AS signal is
corrupted by undesired reflections due to an edge closely spaced w.r.t. the sensor
cluster, as shown in Figure (5.10). In this example, the AS is placed in the position
specified by the blue circle (DoA equal to 90°), while Edge 1 generates an IS (IS1)
which, in turn, generates coherent interference on the signal acquired by the DCS
cluster.

Additional incoherent interference may be generated by ISs of previous acous-
tic events. Both coherent and incoherent directional interference could have a
detrimental effect on DoA estimation. Improved DoA estimation performance is
achieved when the DoAs of ISs occur in angular ranges [ψ1, ψ2] filtered by the
beampattern of the DCS, which ensures a minimum DA level.
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Figure 5.10: Example of directional interference due to edges reflections. IS1

represents a coherent interference due to the edge reflection of the AS to be
detected, whereas IS2 represents an incoherent interference due to another acoustic
source.

In order to evaluate the DoA estimation performance of DCS clusters in realistic
simulation setups, the cases of coherent and incoherent reflection interferences are
considered. For both cases, in the [0–90]◦ angular-sector, the wave to be detected
were simulated by changing their orientation with a step of 5◦.

At first, coherent interference was simulated, the cluster was placed at dc =
17 [cm] from the edge, whereas the AS location distance was set equal to 40 [cm].
The directional interference IS1 is produced by the mirroring of the AS induced by
edge reflections (see the Figure (5.10): the AS DoA is equal to 90°, whereas the
corresponding IS1 DoA is equal to 130.36°). Considering a sampling frequency fs
equal to 2 [MHz], a 200 samples Tukey window (i.e., a rectangular window with
the first and last 47.5 percent of the samples equal to parts of a cosine) filtered by
using a Butterworth filter (10th order) with a bandpass equal to [30–40] [kHz] was
used as impact signal and as IS.

Considering the Design Array configuration depicted in Figure (5.9), the DoAs
estimated by the processing of the simulate response (via the GM-GCC time delays
estimator) of piezo disk-sensors and DCSs, together the actual AS DoA and the
corresponding IS DoA for 19 different simulated angles cases are reported in Table
(5.2). In these conditions, the Standard Deviation and the Maximum Error values



5.1. DIRECTIVE COMPLEX SENSOR (DCS) DESIGN 99

are equal to 18.48 deg and 70.76 deg for the piezo-disk cluster, and 1.47 deg and
3.33 deg for the DCSs cluster, respectively.

Two examples of acquired time signals, distinguishing the signal component
related to the wave to be detected and the reflection, on a piezo Disk and on a DCS
for the same DoAs are illustrated in Figure (5.11) (more specifically, for the DCS,
the anti-analytic real part of the complex time signal is plotted). As can be seen,
the AS signal and the IS signal are overlapped in time, hence a very unfavorable
condition for DoA estimation. However, the DCS clearly shows the capability to
strongly attenuate the spurious component.
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Figure 5.11: Superposition of two acquired signals: the AS to be detected, and the
coherent edge-reflection due to an IS, when (top plot) the sensor is a Disk, and
(bottom plot) a DCS. Impact distance d = 40 [cm]; Cluster distance from the edge
dc = 17 [cm].

In order to assess the DoA estimation performance in even more challenging
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conditions, the case of measurements affected both by directional interference and
diffuse noise (AWGN) was considered. 200 simulations of AWGN, on the entire 90°
sector, were performed for different PSNR values. The Standard Deviation and the
Maximum values are given in Table (5.3).

Then, we considered the case of an additional incoherent interference with ran-
dom DoA in the angular-sector ([169.69–180]◦) (to simulate an undesired incoherent
component due to an IS2 of a previous impact/defect).

In particular, we have simulated AS and incoherent spurious waves impinging on
the sensors simultaneously, because these are the most critical conditions to perform
the DoA estimation. The impulse response of a [30–40] [kHz] band Chebyshev
Type I filter (10th order with a passband ripple of 4 dB) with a 3dB amplification
(to simulate a high energy impact) was used as actuating signal of the incoherent
component.

The DoA estimation results in the presence both of a coherent and incoherent
interference by means of the cluster of disk sensors and DCSs (Figure (5.9)), for
19 different simulated cases are reported in Table (5.4). The Standard Deviation
and the Maximum Error values are equal to 31.4 deg and 67.3 deg for the piezo-
disk cluster, and 2.03 deg and 5.22 deg for the DCSs cluster, respectively. Three
examples of acquired time-signals, distinguishing the signal component related to
the wave to be detected and the spurious ones, on a piezo Disk and on a DCS
for the same DoAs are given in Figure (5.12). Also, in this case, the spurious
components are strongly attenuated by the directional sensor.
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Disks DCSs Disks DCSs

GM-GCC GM-GCC GM-GCC GM-GCC

AS

DoA

IS

DoA

Estimated

DoA

Estimated

DoA

AS

DoA

IS

DoA

Estimated

DoA

Estimated

DoA

0 180 2.71 −0.93 50 160.27 60.14 49.85

5 178.24 3.93 3.93 55 157.7 46.95 56.98

10 176.48 11.01 9.19 60 154.91 53.05 58.91

15 174.68 16.14 14.94 65 151.87 66.43 66.18

20 172.86 22.81 19.58 70 148.51 72.26 73.16

25 170.98 27.23 25.52 75 144.77 97.54 74.07

30 169.04 28.96 30.34 80 140.56 91.82 82.38

35 167.02 30.71 36.31 85 135.8 14.23 83.89

40 164.9 37.06 40.15 90 130.36 104.67 93.33

45 162.66 47.31 45.95 - - SD 18.48 SD 1.47

ME 70.76 ME 3.33

Table 5.2: Comparison of DoA estimation performance between the two arrays
depicted in Figure (5.9) for measurements affected by a coherent edge reflection
due to an Image Source (see Figure (5.10)). In the table, the nominal DoA value,
the direction of the interferring source, and the estimated values are reported in
degrees (ASs band: [30–40] [kHz]; Impact distance d = 40 [cm]; Cluster distance
from the edge dc = 17 [cm]).
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Figure 5.12: Superposition of three acquired signals, the AS to be detected and to
two undesired components (coherent and incoherent interference due to two ISs of
the current AS and the AS of a previous impact/defect), when the sensor is a Disk
(top plot) and a DCS (bottom plot).
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PSNR 60 dB 30 dB 20 dB 15 dB 10 dB 9 dB 8 dB 7 dB

SD 1.5 1.52 1.65 1.9 2.47 2.63 2.85 3.11

ME 3.33 4.58 5.69 6.69 9.24 9.57 11.91 12.99

Table 5.3: DoA estimation performance (SD and ME in degress) for the DCS
cluster shown in Figure (5.9)) when the measurementes are affected by a coherent
edge reflection (simulation setup of Table (5.2)) and diffuse noise (AWGN).

Disks DCSs Disks DCSs

GM-GCC GM-GCC GM-GCC GM-GCC

AS

DoA

IS

DoA

IS-2

DoA

Estimated

DoA

Estimated

DoA

AS

DoA

IS

DoA

IS-2

DOA

Estimated

DoA

Estimated

DoA

0 180 178 16.66 −2.03 50 160.27 171 69.3 49.85

5 178.24 179 7.62 5.42 55 157.7 179 28.44 58.49

10 176.48 171 17.76 10.07 60 154.91 179 116.24 58.91

15 174.68 179 32.01 15.4 65 151.87 175 20.26 68

20 172.86 176 29.71 20.23 70 148.51 178 83.38 73.16

25 170.98 171 30.2 25.38 75 144.77 171 83.52 73.62

30 169.04 172 23.41 28.9 80 140.56 174 27.38 81.15

35 167.02 175 25.85 34.42 85 135.8 179 17.65 79.78

40 164.9 179 61.1 40.15 90 130.36 178 110.89 92.33

45 162.66 179 92.82 46.87 - -
SD 31.49

ME 67.35

SD 2.03

ME 5.22

Table 5.4: Comparison of DoA (in degrees) estimation performance between two de-
signed arrays (Figure (5.9)) for measurements affected by a coherent edge reflection
due to an IS (see the IS1 in the Figure (5.10)), and a incoherent spurious signal due
to a second IS of a previous impact/defect with a random DoA within the range [169–
180] (see the IS2 in the Figure (5.10)). AS and ISs band: [30–40] [kHz]; (Impact
distance d = 40 [cm]; Cluster distance from the edge dc = 17 [cm]; Structure length
ls = 1.1 [m]).

Finally, the DoA estimation performance was evaluated when the measurements
are affected also by diffuse noise (AWGN). 200 simulations of AWGN were performed
for different PSNR values. The Standard Deviation and the Maximum values,
shown in Table (5.5), clearly validate the ability of the DCS to cancel out multiple
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spurious interferences.

PSNR 60 dB 30 dB 20 dB 15 dB 10 dB 9 dB 8 dB 7 dB

SD 2.04 2.04 2.13 2.53 3.38 3.54 4.26 4.04

ME 5.22 5.67 7.14 9.28 13.15 16.07 16.04 18.05

Table 5.5: DoA estimation performance (SD and ME in degress) by means of a
DCS designed cluster (Figure (5.9)) when the measurements are affected by a
coherent edge reflection and an incoherent one (simulation setup of Table (5.5))
and diffuse noise (AWGN).

It is worth noting that the analyzed configuration is representative of many
realistic scenarios. In all the considered cases, there is a clear advantage in the
performance achieved by the DCS cluster with respect to the conventional piezo
disks. The performance of the DCS is, however, degraded when the ISs and the AS
to be detected are generated at closely spaced locations. This is due to the fact that
the directional selectivity of the DCS is not perfect, and, in case of interferences
whose direction of arrival is slightly larger than 90° or slightly less than 0°, the
attenuation is poor.

It is also worth noting that the proposed DCS cluster provides good results in
DoA estimation both for coherent and incoherent directional interference even for
low PSNR values because the DoA estimator (4.25), based on the GM-GCC estima-
tor, is the optimal estimator in presence of noise, for any SNR value. Viceversa, the
GCC-PHAT signal processing is useful just for medium-high SNR values because
is based uniquely on the signal phase information. Furthermore, the DCS sensors
allow to work on all signal time-lapse, whereas the commonly-adopted selection of
smaller time windows reduces the DoA estimation accuracy, in particular when the
non-impulsive and long-lasting signal is to be detected.

5.1.3 DCS conclusions

In order to filter out directional interference, such as edge reflections, a novel direc-
tive passive sensor was designed to replace the piezo-disks which are conventionally
adopted in this application field. The novel sensor exploits its shape as a means
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to attenuate spurious waves coming from directions that are not included in the
monitored angular sector. It consists of five-piezo patches whose output is collected
by two differential channels. The new sensor is able to filter directional interference
in a known k wave vector bandwidth ([353–505] [rad/m]). In this band, the average
attenuation for spurious waves is 12.89 dB. Future developments are aimed to use
improved quantization procedures to achieve even better directivity properties in a
larger bandwidth and to provide experimental results of the proposed DCS concept
in different practical scenarios.



Chapter 6

Active Monitoring

6.1 Acoustic-Ultrasound techniques: Background

In the previous Chapters, some strategies and unconventional solutions were
proposed and numerically validated in the passive SHM context in order to address
typical issues, such as noise and reverberations. Passive SHM allows the real
time monitoring to detect and localize impacts or damages growths, via Acoustic
Emissions (AE). However, passive techniques may not detect all damages because
defects growth could not generate AEs, if the strucuture is not subjected to loading
or the AEs energy is not sufficient to be detected.

The complementary technique, namely, the active monitoring, allows to inspect
a structure on-demand. In this way, undetected damages via passive techniques,
can be identified and located. Observe that fixing a sharp dividing line between
the two methods is erroneous. Indeed, they can be combined by using transducers
in active way and, at the same time, sensors in passive one, to acquire the echoes
due to potential defects.

As background of the active ultrasound SHM, in the next Sections will be
illustrated two conventional solutions, which can use piezoelectric transducer,
bonded to the monitored structure, to interrogate a structure and detect potential
defects.
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6.1.1 Interdigital Transducers

Interdigital piezoelectric transducers are used to generate ultrasonic waves and
inspect metallic or composite plates. They can be used in the pitch-catch method,
by using two transducers acting respectively as transmitter and receiver, or in the
pulse-echo method, when an interdigital transducer is used both as transmitter and
receiver. The interdigital transducers have a fixed operating frequency which is
dictated by the interdigital spacing among multiple piezo-loads. GWs can be excited
to cover large distances. Rectangular piezo-wafer active sensors can be used with
their lengths oriented along the axis of a beam. This ensures that a Lamb waves
were predominantly excited along the beam length, according to the directivity
model (2.20) and a rectangular load shape function. In [72], Capineri L. and
Bulletti A. showed that it’s possible to control the mainlobe-width of Interdigital
Transducers even via the inclination of the electrodes which compose an interdigital
transducer. The ability to detect cracks was experimentally proved both in metallic
plates [73] and in composite ones [74] by using both the A0 mode at low frequency
and the S0 one, so that the wavelength is sufficiently smaller than the crack to be
detected. However, the main limitation of interdigital transducer is related to its
fixed directionality. In order to obtain a mobile detection directionality, phased
arrays can be used, as shown in the following Section.

6.1.2 Phased Array

Phased Arrays are a well-known and investigated solution for radar, sonar and med-
ical ultrasound systems, to excite directional waves. The beam steering is achieved
through constructive/destructive interference between multiple emitting/receiving
elements. The last physical behavior is obtained by exciting multiple elements with
appropriate phases so that focused waves are transmitted. The previous procedure
is commonly referred to as beam-forming or delay-and-sum technique. In the GW
SHM context, Deutsch et al. [76] developed a phased-array self-focusing method,
by which the delay times are adjusted to focus the beam exactly on the defect.
However, for the multiple defects localization, the technique allows to focus just the
defect that produces the largest backscattered signal. Additionally, phased-arrays
can exploit tomography techniques. Schwartz et al. [77] proposed a Lamb wave
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Figure 6.1: A SHM phased array setup example (it was investigated in [75])

ultrasonic tomography imaging system for aircraft structural health assessment.
The simulated results showed that the method could accurately determine the
dimension, shape, and location of defects. However, a higher computational cost is
required. Giurgiutiu and Bao [78] proposed the Embedded Ultrasonic Structural
Radar (EUSR) to avoid an heavy and complex multichannel phased excitation
equipment. However, the proposed technique assumes that just a monochromatic
signal is excited, to satisfy the non-dispersive hypothesis (i.e., a constant wave
velocity). However, long-lasting sinusoidal waves using can implicate ambiguity
issues in presence of multiple defects echoes. Vice versa short-time sinusoidal waves
at high frequency can implicate a poor radial resolution due to the very high wave
velocity. As shown in Fig. (6.1) (an experimental sensors-arrays investigated in
[75]), in order to reduce the mainlobe beamwidth, phased arrays typically require a
large number of sensors. This involves an wiring increasing as well as multiplexing
circuitry one. Further issue is related to the intensive signal processing on a large
amounts of recorded data. As conclusion, the phased array solution, due to the large
number of requested sensors, the sensors-system weight, a high installation cost,
the hardware complexity and a significant computational cost, is often unuseful for
embedded applications, such as aeronautical or aerospace ones.
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6.1.3 F-SAT: a single piezo-transducer for on-demand in-

spection

As already seen in the Chapter (5), the directivity model (2.20) for a piezo-sensor,
provides the possibility to design a single piezo-load to obtain the desired directive
properties. This chance can be used also to design Transducer for the active
monitoring. Senesi and Ruzzene, in [2], used this opportunity to design a spiral
Frequency Steerable Acoustic Transducer (F-SAT), in order to detect and localize
cracks with a broadband acoustic behaviour. The Directivty function was designed
so that at each wave-vector value and, via the dispersion curve, at each excited
frequency, ideally, corresponds a scanning direction or angle. The basic idea is
schematically illustrated in the Fig. (6.2). In [79], Senesi et al. achieved a feasible
F-SAT constituted by two parts to consider both the negative and positive shape
function values. In particular, a binary quantization procedure was used so that all
piezo-values higher than a positive threshold are set to 1, and all ones lower than a
negative threshold are set to -1. Furthermore, in [79], an experimental validation
of the design procedure and the F-SAT ability to scan different directions was
provided. However, the design criterion shows some limitations in the damages
detection and localization tasks. In fact, an intrinsic trade-off between the distance
and angle estimation accuracy can be observed: due to the fact that the beam
steering is obtained as a simple function of the excited frequency, the broader is
the frequency content of the excited pulse the wider is the uncertainty for angle
estimation. Vice-versa, as will be shown better in the following Sections, the range
evaluation requires broadband excitation signals to increase its estimation accuracy,
as well known in Radar antennas Theory ([80]). Short sinusoidal waves (e.g. just
one sinusoidal cycle) could be excited, in order to increase the distance resolution.
However, if the condition τ >> 1/fc is not satisfied (i.e. a signal filtered by
δ(fc)), where τ is the signal time duration and fc is the excited frequency, spurious
frequencies are generated with a consequent undesired bandwidth increase, namely
a wide mainlobe aperture. If the sinusoidal pulses are time-windowed, undesired
spectral components are excited around the central excitation frequency.

In addition, it is important to observe that the angular accuracy is relatively
poor even when long-lasting and narrowband pulses are actuated (not to mention
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(a) (b)

Figure 6.2: (a) The basic idea of F-SAT Transducer (proposed in [2]): at each
scan direction corresponds a different excitation frequency (b) A beampattern
example: both the DoA 30° and the 30°+180° are scanned for an appropriate
excitation frequency. Due to the wide mainlobe aperture, a poor angular resolution
is achieved.

the associated issues in terms of ambiguity in presence of multiple defects). This
is due to the fact that the achieved directivity, with a limited-size Transducer,
associates at the same frequency multiple angles. Therefore, the mainlobe (half-
power) aperture is wide and approximately equal to 18°, as shown in the work
[81].

Finally, another issue is related to the 180° ambiguity in the DoA estimation:
the F-SAT was designed so that it is impossible to determine whether a wave is
received from angle θ or θ + 180°. Similarly, in actuation waves are transmitted
simultaneously in opposite directions. A suitable design procedure to avoid the
180° ambiguity, and a more convenient design criterion to overcome the limited
localization performance is discussed in this Chapter.

In the next Section, the design procedure will be introduced and redefined
to excite and acquire directional waves along just one direction. Then, in the
subsequent Sections a novel Transducer will be illustrated.
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6.2 A generalized shape design procedure for direc-

tional GWs

As previously seen in Chapter (5), a novel Sensor (proposed in the work [47],
referred as DCS, was already designed to detect guided waves propagating along a
single direction, avoiding the 180° ambiguity. This result was obtained by designing,
thorough the Directivity model (2.20) a complex shape function. Because it
was used for the passive monitoring, a complex shape function could be easily
implemented by multiplying the imaginary part acquired signal for the imaginary
unit +j. Then, only the one side spectrum was used: by considering the analytical
or anti-analytical complex signal, the desired mainlobe orientation (i.e. a 180°
rotation) was selected. In the context of active monitoring, with the aim to excite
directional waves, it is mandatory to explain how the "complex shape function"
can be interpreted. In the following, the last aim will be addressed in three steps:

• An intuitive mathematical-physical explanation of the directional waves
excitation will be provided, in order to find the main points useful for the
purpose.

• It will be shown how the main points can be achieved by using the Directivity
model (2.20).

• An alternative design procedure to directly satisfy the key points will be
detailed.

6.2.1 Step 1: Main points derivation via a simple model for

directional GWs

As first stage, let consider a shape function constituted by two parts, referred to,
without lack of generality, as real (Re) and imaginary (Im). Let us suppose they
are super-directive in direction k = ±kc (both ones represented as two dots in the
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k-plane, with different phases). Therefore, they are:

D {Re (ϕP (x))}
.
= DRe = |AD−Re|

(
ejφ1(kc(ωc)δ (k+ kc) + e−jφ1(kc(ωc)δ (k− kc)

)
D {Im (ϕP (x))}

.
= DIm = |AD−Im|

(
ejφ2(kc(ωc)δ (k+ kc) + e−jφ2(kc(ωc)δ (k− kc)

)
(6.1)

For the convenience of notation, in the following φ1(kc(ωc) and φ2(kc(ωc) will be
denoted as φ1 and φ2, assuming implicit they are the phases at kc values. Let us
suppose to excite a cosine wave on the real part with frequency ωc, corresponding to
the kc value via the dispersion curve of a certain structure to be monitored. Then,
let us suppose to excite on the imaginary part a signal given by the multiplication
by −j of the positive one-sided signal spectrum (observe that the last multiplication,
except for the negative sign, was used also for the mono-directional DCS), and by
the multiplication by +j the negative spectrum of the signal actuated on the real
part. Therefore the excitation signal in the frequency domain are given by:

URe(ω) = A(δ (ω + ωc) e
−jφ + δ (ω − ωc) e

+jφ)

UIm(ω) = A(−jδ (ω + ωc) e
−jφ + jδ (ω − ωc) e

+jφ)
(6.2)

It is worth noting that uIm(t) = F−1 {UIm(ω)} is still a real signal. The last property
can be easily proved by considering the Hilbert Transform (HT), defined as:

H {u(t)} =
1

πt
∗ u(t) (6.3)

where ∗ denotes the convolution product. Therefore, The HT provides a real
signal. Thanks to the relationship between the Hilbert Transform and the Fourier
Transform, given by:

F {H {u(t)}} (ω) = −isign(ω)F {u(t)} (ω) =

= F (ω) ·


j for ω < 0

0 for ω = 0

−j for ω > 0

(6.4)

the second equation of (6.2) is achieved by applying the -HT operator to the signal
uRe(t). The result is still a real signal. By using the model (2.18) for the piezo-sensor
frequency response and, without lack of generality, discarding the constants and
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the known scale function factors (i.e ±j, k0(ω) and HP (θ)), the frequency responses
(2.18) for ω > 0 and ω < 0 are given by:

VP (ω>0)(ω) = URe(ω>0)(ω)DRe(k(ω)) + UIm(ω>0)(ω)DIm(k(ω))

VP (ω<0)(ω) = URe(ω<0)(ω)DRe(k(ω)) + UIm(ω<0)(ω)DIm(k(ω))
(6.5)

Therefore:

VP (k, ω) =

[
|AAD−Re|e+jφ (e−jφ1δ (k+ kc) + e+jφ1δ (k− kc))+

+j|AAD−Im|e+jφ (e−jφ2δ (k+ kc) + e+jφ2δ (k− kc))

]
δ (ω − ωc)+

+

[
|AAD−Re|e−jφ (e−jφ1δ (k+ kc) + e+jφ1δ (k− kc))+

−j|AAD−Im|e−jφ (e−jφ2δ (k+ kc) + e+jφ2δ (k− kc))

]
δ (ω + ωc)

(6.6)
Finally, observe that if and only if the two parts of the shape function, ϕP (x), are
designed so that: {

|AD−Re| = |AD−Im|
φ2(kc(ωc)) = φ1(kc(ωc))− π/2

(6.7)

here, referred to as constitutive equations for shape function able to excite directional
waves, the k− ω response is Hermitian. The corresponding excited Lamb wave is
given by:

Vp(ω<0)(k, ω) = |AAD−Re|ej(φ1+φ)δ (k+ kc) δ (ω + ωc)

Vp(ω>0)(k, ω) = |AAD−Re|e−j(φ1+φ)δ (k− kc) δ (ω − ωc)
(6.8)

It is worth noting that the (real) solution for the Lamb waves equation (2.1), is
postulated as a superposition of sinusoidal waves, having the out-of-plane displace-
ment along the thickness z-coordinate components equal to:

Lwsin (z,k(ω)) = Azf(z) [δ(ω − ωc)δ(k+ kc) + δ(ω + ωc)δ(k− kc)]

Lwsin (z,k(ω)) = Azf(z) [δ(ω + ωc)δ(k+ kc) + δ(ω − ωc)δ(k− kc)]
(6.9)

which are, respectively, a progressive and regressive wave. Therefore, the Eqs. (6.8)
in ω− k-domain correspond to only one Lamb wave, excited in direction kc. It is a
regressive wave (namely, the multiplied δ "functions" have the same signs in ω and
k). Conversely, progressive waves refer to incoming Lamb waves in direction kc.
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The physical explanation is that: the two parts of the sensor are characterized
by a phase shift equal to pi/2 in k-space , an additional pi/2 shift is generated by
the different propagating waves, such that Lamb waves excited by the two parts
interfere constructively and destructively, respectively, for ω > 0, in direction kc

and −kc. Vice-versa for ω < 0.
The alternative application of HT or -HT to the actuated or sensed pulse (on

the imaginary part) allows to scan separately an angle θ and θ + 180°.
A final important note is that if the operator -HT is used to scan the surface

along kc, due to the fact that potential echoes propagate in the opposite direction,
−kc, HT has to be used in the acquisition phase.

As conclusion, in order to excite or detect directional waves with a real shape
function, three main points has to be achieved:

1. The shape function has to be constituted by two parts (i.e. 2 different
acquisition channels are required)

2. The Directivity functions of the two parts have to be in quadrature (see the
constitutive equations (6.7)).

3. The signal computed from the HT or -HT operator applied on the "real" part
signal, has to be used as excitation signal on the "imaginary" part.

6.2.2 Step 2: A formal design procedure

The second step aim is to define a transducer design procedure which satisfies
the 3 key points of Step 2, linked to the model (2.20), for the active monitoring.
Let’s start to design, as for the DCS, a transducer by inverting the Eq. (2.20) and
imposing a Directivity function non-zero along certain directions (e.g. between
0° and 179.9°) and zero in the opposite ones (180°-359.9°). Subsequently, let us
impose the Hermitian property on the Directivity function. The first procedure,
as seen for DCS, results in a complex shape function ϕP (x). In the following, the
wave-vector will be expressed as k = κik, where κ is the wave-vector scalar part,
which assumes both positive and negative values, while ik is the unit vector so that
all directions are covered (e.g. ik points towards all angles between 0° and 179.9°).
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The Directivity function can be decomposed as:

D {ϕP (x)} (κ) = D {Re (ϕP (x))} (κ) + jD {Im (ϕP (x))} (κ) =
=
(
|DRe| e−jφDRe

)
(κ<0)

+
(
|DRe| e+jφDRe

)
(κ>0)

+

+j
[(
|DIm| e−jφDIm

)
(κ<0)

+
(
|DIm| e+jφDIm

)
(κ>0)

] (6.10)

The design procedure is so that:

D(κ<0) {ϕP (x)} (κ) = 0

D(κ>0) {ϕP (x)} (κ) = DFixed (κ)
(6.11)

From the fact that Re (ϕP (x)) and Im (ϕP (x)) are not influenced by the sign of
κ, and from the first equation of Eqs. (6.11), ti can be concluded that:{

|DRe| = |DIm|
φDIm

= φDRe
− π/2

(6.12)

Furthermore, DFixed (κ) = 2 |DRe| e+jφDRe . Observe that the Eqs. (6.12) are
the constitutive equations corresponding to ones derived in Step 1 (Eqs. (6.7)).
Then, the Hermitian property of the Transducer Sensing in ω − k-domain has
to be imposed to excite real signals. Therefore, DP (ω<0)

{
ϕP (ω<0)(x)

}
(κ > 0) =

D∗
P (ω>0)

{
ϕP (ω>0)(x)

}
(κ < 0) is imposed. Furthermore, the last procedure has to

preserve the properties in (6.12). Let us compute the complex conjugate of the
Directivity:

D∗
P (ω>0)

{
ϕP (ω>0)(x)

}
(κ < 0) =

(∫
e−j|κ|ik·xϕP (ω>0)(x)dx

)∗

=

=
∫
e+j|κ|ik·xϕ∗

P (ω>0)(x)dx = DP (ω<0)

{
ϕ∗
P (ω>0)(x)

}
(κ > 0)

(6.13)

Note that just −j |κ| in the first exp term is considered, due to the relation
between κ− ω: when a directional incoming progressive wave has to be detected,
the positive frequencies are associated to the negative values of κ and vice-versa,
as seen in the Eqs. (6.9). The last equivalence provides the necessary and sufficient



6.2. A DESIGN PROCEDURE FOR DIRECTIONAL GWS 117

condition to satisfy the Hermitian property:

ϕP (ω<0)(x) = ϕ∗
P (ω>0)(x) (6.14)

Observe that, considering separately the cases for ω > 0 and ω < 0, a shape function
which satisfies the last equation, preserves the constitutive equations (6.12), and
it is equivalent to exciting a signal on the real part and its HT on the imaginary
one. Finally, observe that the design procedure provides to use the HT, instead
of -HT, because in Eq. (6.14) it was assumed to detect incoming Lamb waves
which are progressive (namely with κ and ω with opposite signs). This choice is
in accordance to the Directivity model (2.20) (for mono-channel shape function),
which considers progressive the incoming Lamb waves. Therefore, as previously
seen, to excite waves in the directions |κ| ik -HT has to be used.

As conclusion, the procedure defined in this section will be used to
design novel Transducers for active monitoring . The real and imaginary
terms for the piezo-parts have still meaning when they are considered just as the
2D-IFT of the Directivity in the first phase of the design procedure. Actually, after
imposing the Hermitian property, the imaginary part is led back to a real one
considering the HT (or -HT) of the real part signal as an excitation signal.

6.2.3 Step 3: A secondary design procedure and discussion

The last step wants to answer to the question: is it possible to design transducers
without imposing a posteriori the Hermitian property on the Directivity function?
In order to answer to this question and simplify the discussion, it is convenient to
study the Directivity model by considering the 1D-FT of Radon Transform (RT)
at angle θ (as previously seen in Chapter (3)). Therefore, the Directivity can be
written as:

DP (k0(ω)) =
∫
ΩP

e−jk0(ω)·xϕP (x)dx =

=
∫
ρ

e−jκρRTθ {ϕP (x)} (ρ)dρ
(6.15)
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As any 1D-FT, the Directivity can be decomposed in the following way:

DP (κ) =


∫
ρ

e−j|κ|ρRTθ(ρ)dρ for k ≥ 0∫
ρ

e+j|κ|ρRTθ(ρ)dρ for k < 0
(6.16)

The first part can be seen as the anti-analytic part of the FT, while the second
part as the analytic part of the IFT. Let us consider a Hermitian Directivity
function so that D∗

P (κ) = DP (−κ) and to compute its related shape function
as the IFT of the anti-analytic Directivity part, when κ ≥ 0, and the FT of
the analytic Directivity part, when κ < 0, according to the previous Eq. (6.16).
Observe that the FT and the IFT differ just for a sign change in the exp term.
Therefore, F {RTθ(ρ)} (κ) = F−1(−κ) = F−1 {RTθ(−ρ)}. Furthermore, the Real
and Imaginary parts of the FT (or IFT) of a given function, can be related to even
and odd parts of the same function:

DRe(κ) =
1
2
[D(κ) +D∗(κ)]

⇔ 1
2
[RTθ(ρ) + RTθ

∗(−ρ)] = RTθ (Even)(ρ)

DIm(κ) =
1
2j
[D(κ)−D∗(κ)]

⇔ 1
2j
[RTθ(ρ)− RTθ

∗(−ρ)] = −jRTθ (Odd)(ρ)

(6.17)

Therefore, if the first equation of (6.16) provides Re {RTθ(ρ)} + jIm {RTθ(ρ)},
the second one will provide, thanks to FT and IFT relationship and the Even
and Odd symmetry provided by the Real and Imaginary FT (or IFT) parts,
Re {RTθ(ρ)} − jIm {RTθ(ρ)}. In this way, the Hermitian property is already
satisfied (and corresponds to a multiplication for ±j multiplication of the imaginary
part, respectively for κ ≥ 0 and κ < 0. It is equivalent to use the HT on the signal
acquired by the imaginary part, when an incoming progressive wave is detected.

It is interesting to observe that, overall, the discussed procedure doesn’t set
to zero the Directivity function for the negative and the positive wave-vector κ
values, but suggests only how to select the shape functions for κ ≥ 0 and κ < 0.
In order to excite or detect directional waves, according to the sinusoidal Lamb
waves postulated solutions, provided by the Eqs. (6.9), the shape function must
change as the sign of ω changes. The obtained result is that just one time the
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design procedure can be executed: the second one-side spectrum in wave-vector
domain can be restored by considering an apposite sign for the Imaginary part.
This is exactly how works the design procedure in the Step 2.

As conclusion the last design procedure allows to achieve the 3 key points
without imposing a posteriori the Hermitian property. As final note, it is very
interesting to observe that the even and odd symmetry of the Real and Imaginary
parts of the RT is mirrored on the symmetry of the Re and Im shape function
parts, as already shown for the DCS shape function and as it will be seen for the
novel transducer illustrated in the following sections. The symmetry properties
could be used in future developments to design transducers with a reduced area
occupation.

6.3 S-SAT: a Transducer for optimized damages

localization performance

After well-formalizing the shape function design procedure for directional guided
waves in active monitoring, in this Section and in the following ones, the design
procedure is used to realize a novel transducer. The aim is to overcome the F-SAT
limits in damages localization, seen in the Section (6.1.3), which are intrinsically
related to the design criterion. Therefore, a different design approach was considered.
The main idea is to discretize the considered angular range (180°), dividing it
in multiple angular steps. For each discrete angular step, a different spectrum
configuration is considered. Therefore, the transducer can be seen as an encoder:
the acquired signal spectrum configuration is exploited for the DoA estimation.
For this reason, the novel designed transducer is referred as Spectrum Scanning
Acoustic Transducer (S-SAT). In the following Sections, the S-SAT design will be
detailed according to the following scheme:

• The key points useful for the Directivity function design optmization.

• The Shape function synthesis: a more refined quantization procedure to get
better results in terms of directive properties.

• A numerical validation in terms of matching of the frequency and time
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responses provided by the Theoretical model and the Green’s Functions
simulations.

• The Signal Processing and estimation methods and performance for a consid-
ered excitation signal.

6.4 S-SAT: Directivity synthesis

As previously said, the novel Transducer is designed so that different spectral
configurations are excited in different directions. To this aim, different bit-sequences
are considered for different discrete angular steps. Therefore, on each step, the
Directivity function is discretized in the wavenumber domain according to a pre-
defined sequence of Bins. In each bin, the Directivity will be set to zero or non-zero
values. Each bin in the k-domain corresponds to a bin in the ω-domain, via the
relation km = km(ω) (i.e. the dispersion curve of a given Lamb wave m-mode). The
Bin size and shape, the Directivity function in each bin and the Bins-configuration
as a function of the angular step were selected, as follows:

6.4.1 Bin size and shape

First, the maximum sensor size has to be set. The sensor size influences the
transducer impedance and, consequently, the specifications of the driving circuits.
In the following, we will set the sensor size to be 10x10[cm].

The maximum transducer size defines the minimum Bin size in k-space. Let’s
start by considering a Bin with a rectangular shape. if a 2-D rect directivity function
is considered over that domain, the sensor size can be defined, approximately, as
the distance by the two first zeros of a 2-D sinc function, i.e. 2 (1/akM ), where akM
is the maximum length of the rectangular Bin sides, ak1 , ak2 . Conversely, by fixing
the sensor size to 10x10[cm], the Bin side length is given by 2 (1/10[cm]) ≃ 20[1/m].
The last value defines the minimum side length of a Bin in k-space. As far as the
Bin domain shape is concerned, considering that a sequence of Bins must cover an
angular step, a candidate shape is given by a wedge with a cut-out. Such shape
allows to fully cover a discrete angular step. When the two arches lengths difference
of wedge-Bin is negligible, the Bin domain can be approximated as a rectangular
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domain. In this case, in order to have similar transducer dimensions along the
radial coordinate and angular one, the length of two arches, lθ, and the two radii,
lr, of a single wedge-Bin have to be comparable. Otherwise, the transducer would
be elongated in one of two polar directions. For example, in Fig. (6.3)(a), it is
illustrated a Bin in k-space, shaped as a wedge with a cut-out and with a Gaussian
function over it, along the radial coordinate. In Fig. (6.3)(b), it is shown the
corresponding shape function. It can be observed that, due to a slight difference of
the lθ, lr lengths, the shape function is slightly elongated along a direction w.r.t.
its perpendicular one. Therefore, if just one single bin is much more elongated
along a polar coordinate, the entire transducer will be stretched along a physical
dimension. However, it is important to observe that even if two or more bins are
contiguous along the angular coordinate, they compose a unique Bins cluster in
the k-space. Instead, the Bins clustering along the radial coordinate is avoided
by considering a function over each i − th Bin domain which falls to zero near
the extremes, k0Bi−min, k0Bi−max, of the Bin k0-values range [k0Bi−min, k0Bi−max]. In
order to satisfy the hypothesis of planar wave fronts, independently by the DoA
of wave-fronts, in the following, it will supposed that for a Bins cluster with the
smallest arches lengths, other several rotated Bins, with the same size, are present
in the Directivity function. They have to be rotated in k0θ-domain so that the
transducer has the same radial dimension along all directions. In this way, the
wave fronts can be considered planar for a certain defect distance which does not
depend by the waves DoA.

6.4.2 Bin function selecting: ToF bound and signal patterns

recognition as criteria.

Once the Bin domain shape is defined, the Directivity function in each Bin has to
be selected appropriately. A rect function along the polar coordinate θ is selected
in order to obtain the Directivity “building Bin” which fully covers an angular step
in the same way along the angular unit vector of a polar reference system. Instead,
the function along the radial coordinate has to be selected to optimize the damages
localization accuracy.

Let’s start by finding the optimal Bin filter so that the estimation uncertainty of
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the time of flight (ToF), i.e. the time interval between the actuation and the echo
reception, is minimized. The aim is to maximize the range estimation accuracy
when the measurements are affected by noise and maximize the ability to distinguish
signal patterns related to multiple defects, which are located at similar distances
from the trasnducers.

The general formula for the CRLB of the ToF, namely δT 2, can be derived
fomr the Theory of radar and sonar systems [82, 83, 84, 49]. In case of white noise,
the time-delay estimation bound δT is given by:

δT =
1

β(2E/N0)
1/2

(6.18)

where E is the energy signal, N0 is the power for unit frequency, E/N0 is the
signal-to-noise ratio (SNR) in energy and β is defined as:

β2 =

∫∞
−∞ (2πf)2|S(f)|2df∫∞

−∞ |S(f)|2df
=

1

E

∫ ∞

−∞
(2πf)2|S(f)|2df (6.19)

|S(f)|2 is the two-sided energy spectrum. Observe that Eqs. (6.18), (6.19) can
be derivated from the Eq. (4.4), derived by Hahn and Tretter, for the DToA
between sensors, considering the case of 2 sensors, the noise modeling as AWG, and
considering the signals in energy, instead of in power. β is called Effective Bandwidth
and it is equal to the second moment of the frequency energy distribution of m− th

transmitted signal, normalized on the energy signal. From the definition, observe
that the larger is β value, the larger is the spreading of the energy distribution in
frequency. From Eq. (6.19), it can be observed that the maximum value of β is
given by πBs, where Bs is the maximum value of the bandwidth of the transducer
and it is obtained for a signal s(t) so that S(f) is equal to δ(f +BS/2)+δ(f −BS/2).
This optimal solution corresponds to two sine waves (actually, two windowed sine
waves so that their duration τ is τ >> 1/B). By estimating the phase shift of
two sine waves separated by a large band B, the ToA can be estimated optimally.
However, this solution can be suboptimal when there are multiple damage-targets.
Four or Five sinusoidal cycles are sufficient in radar applications to achieve a good
accuracy [85]. However in the SHM context, due to the plurality of echoes generated
by structural reflectors, the radar solution is unfeasible. Therefore, in order to
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avoid these problems, it is needed to increase the β value, by increasing the energy
spread on frequency over each Bin.

Let’s consider the case of exciting sine waves with central frequencies correspond-
ing the one associate to a given Bin. In [80], it was proved that, when a stationary
excitation signal is used, the optimal filter is given by the Gaussian filter which
provides the maximum β value equal to 2.66BHP , where BHP is the half-power
bandwidth. This result is justified as the Gaussian filter allows to have a smoother
frequency spectrum and, in dual way, sharper rise and fall time fronts. If a Gaussian
pulse allows to minimize the ToF uncertainty, when an excitation stationary signal
is used, at the same time it is characterized by two desired properties:

• the Gaussian pulse has the minimum time-frequency uncertainties product.

• the Gaussian shape is preserved also in a dispersive medium.

The first property allows to estimate, with reduced uncertainty, if a Gaussian Pulse
(GP) is set to 0 or 1, by computing the integral of its amplitude spectrum in
the frequency domain. The last procedure will be properly exploited to estimate
the DoA of acoustic emissions. Note that this procedure is not affected by wave
dispersion: the amplitude spectral integral is not influenced by the longer time-
duration of a wave packet because even if the spectral components assume different
phases, moving at different velocities, their amplitudes remain the same.

The second property allows to limit the signal processing computational cost
required to estimate both the defects radial and distance coordinates, as will be
detailed in Section (6.7). Finally, observe that Gaussian function in wave-vector
domain allows to minimize the Transducer size.

The Directivity function for a "building Bin" rotated by an angle ξ (in counter-
clockwise sense) and translated by k0c is described as follows:

D(k0(ω), θ) =

exp

(
−1

2

(k0−k0c)
2

σ2
k

)
rect

(
θ−ξ
∆θ

) (6.20)
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Figure 6.3: (a) Example of a Gaussian function Bin over a wedge with a cut-
out domain (radial length equal to 22[1/m]; angular range equal to [30°-40°]:
σk = 4.23[1/m]; k0min = 160[1/m]). (b) The Corresponding shape function in space
domain.

The corrisponding shape function is the following:

f(r, α) =
√
2πσk∆θ exp

(
−1

2
r2

σ2
r

)
sinc (∆θ(α− ξ))

≃
√
2πσklk exp

(
−1

2
r2

σ2
r

)
sinc (lkrk0c(α− ξ))

(6.21)

where lk is the wedge arc length for k0 = k0c and σ2
r = 1/2πσ2

k. Fig. ((6.3))(a) and
(b) show a Bin directivity function example and the corresponding shape function
in the space domain, respectively

Observe that it is convenient to excite a train of Gaussian pulses with carrier
frequencies matching those of each Bin.

In Eq. (6.19), S(f) is the spectrum of a Gaussian functions train. If the
acquired signal is composed by nB Gaussian pulses, so that nB Bins are set to 1,
theoretically, it is possible to perform nB cross-correlation procedures. When the
signal envelopes are used, the δT uncertainty, for a same defect, is reduced to:

δT = 1

β(2E/N0)
1/2

with β = nB2.66BHP

(6.22)
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The ToF uncertainty δT is directly related to the defect-target range or distance
R uncertainty, via the relation δR = vg(δT/2).

Although the previous discussion is well-validated for RADAR and SONAR
systems [80], the peculiarities of dispersive propagation must be taken into account.
Therefore, the uncertainty δR is different for each bin due to different wave propaga-
tion velocities, vg(fci). Moreover, conventional Cross-Correlation procedures, may
partially lose effectiveness, due to dispersion which affects the pulses time-width.

In order to address these issues, efficient dispersion compensation procedures
[32] allow to warp the frequencies axis so that a constant wave velocity is recovered
and the signal-packets are "re-compressed", holding constant the ability to resolve
two different defects. Alternatively, in order to reduce the computational cost, the
detrimental dispersion effect can be limited with the design strategies detailed in
the following Section.

6.4.3 Bins configurations in wave vector space

The number of Bins for each configurations to be set to 1 or 0, in k-space, has to
be selected with the aim to:

• satisfy the project specifications related to the minimum detectable defect
size and the maximum frequency excitable via embedded units;

• limit the computational cost for defects localization;

• maximize the number of Bins-configurations, increasing the DoA resolution;

• limit the detrimental dispersion effect;

• address issues of transducer feasibility.

Let’s start by considering the useful wave vector range for transducer design. The
minimum value of wave-vector is fixed by the minimum detectable defect/damage
size. Indeed, the inverse minimum k0 value defines the maximum excited wave-
length, which in turn defines the defects resolution. By fixing the maximum
wave-length to 1[cm], namely considering detectable defects 1[cm] in size, the
corresponding k value is equal to 100[1/m]. Instead, the maximum value of
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wave-vector is defined by the maximum frequency value which an micro-controller
embedded unit is able to excite on the driven sensor load, fixed to 450[kHz]. An
aluminium plate, 1[mm] thick was considered as setup structure to be monitored.
However, the same directivity design criteria that are considered in the following,
can be adopted when different structures/materials are considered. When A0 is
the excited wave mode, through the characteristic dispersion curve, the maximum
k value 250[1/m] is found. The minimum frequency value, corresponding, via the
same curve, to the minimum k0 value, is equal to 90[kHz]. To summarize the
previous results, the useful ranges, in k0 and f , are given by [100− 250][1/m] (or
[624− 1571][rad/m]) and [90− 450][kHz], respectively.

Once defined the useful k0 range, in order to limit the computational cost
for the defects localization, the Bin with the highest central wave vector value,
k0c, namely at the highest corresponding central-frequency fc, is set to 1 for all
directions in [0-179°] range. It will be referred to as range reference Bin. The echo
signal acquired in that range, properly filtered with a linear phase filter, can reveal
the number of defects and their distances.

The range reference Bin involves to consider again a supplementary bin with
the second highest central wave vector value, k0c, which is to be set to 0. The
motivation is related to the feasibility of the tranducer. In particular, the quan-
tization procedure, which is defined in Section (6.5.1), shows limited capabilities
to distinguish, in the dual domain, i.e. the k0-space, single Bins near to a Bin
cluster with high angular aperture. Therefore, the range reference Bin, overall,
involves the negative aspect to reduce the k0 available bandwidth but, in turn, it
significantly reduces the computational cost in the defects detection and ranging.
Further quantization procedure developments are aimed to avoid the secondary
unnecessary Bin. It is important to note that, although the defects δR uncertainty
is fixed by the reference bin (i.e. its effective bandwidth and its related group wave
velocity), in order to estimate both the defect distance and the angle is necessary
that all bins with the carrier frequencies fci , do not overlap in time the bins, with
the same fci , related to another defect. In this way, the signals due to two different
defects do not interfere and it is possible to assess what pulses, related to a defect
and to the other one, are set to 1 or 0, providing the DoAs information.

The number of the Bins which can be set to 0 or 1, is to be found so that the
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number of binary sequence Nc is maximized, considering the constraints on the
k0-bandwidth. Similarly to the case of the F-SATransducer, a trade-off can be
observed between the bandwidth of Bins in k0, and, via the dispersion curve, in
frequency f , and the angular accuracy. The lower is the number of Bins, the higher
is their bandwidth and the ability to distinguish two Bins related to two different
defects. Conversely, the higher is the number of Bins, the higher is the number of
useful binary configurations and the DoA estimation accuracy. However, there is
significant difference between the F-SAT and S-SAT design criteria. Indeed, in the
F-SAT design, the Bins are displaced so that they describe a continuous function
of θ in k0θ-space, for this reason the spectrum of a considered Bin is partially
overlapped to the one of the nearest Bins. This involves a detrimental effect on the
mainlobe aperture which is beyond the trade-off between the Bin bandwidth and
the angular accuracy. Instead, thanks to the approach based on discrete Bins, the
S-SAT transducer is characterized by a narrower mainlobe (and, consequently by a
better angular resolution).

If we divide the available k0 bandwidth into five equally spaced Bins, then
25 − 1 binary configurations are available. In the following example, Nc = 30

binary configurations were considered to achieve a discrete angular step equal to
6[deg]. Considering the k0 bandwidth equal to 150[1/m] and by dividing it into
7 Bins (5 for DoA estimation and the other two ones for detection and ranging),
the bandwidth of each Bin is equal to 21.4[1/m]. Slightly increasing the maximum
excitable frequency, a Bin bandwidth equal to 22[1/m] can be achieved. The
decision to select the same bandwidth in k0 was taken to limit the dispersion
effect. Due to the non-linear dispersion curve k0(f) shown in Fig. (6.4), when
we increase the central wave-vector value k0c, the corresponding central frequency
is increased according to the following relation fc = f−1(k0c). At the same time,
when the frequency increases, the wave group velocity increases too. Due to the
fact that the ability to solve two Bins related at two different defects is provided
by δR = vg(fc)(δT/2) and the uncertainty δT is inversely related to the (effective)
bandwidth (according to the Eqs. (6.18)), equal Bins bandwidth in k0 allows to
increase the Bins bandwidth, when the wave velocity increases too. In other words,
equal Bins k0 bandwidths allow to equalize the δR uncertainty of the Bins/pulses
at different fc. Of course, the equalization is imposed only to the waves excited
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under the piezo-tranducer. Due to the dispersion, the higher are the distances of
defects, the higher is the Bins δR uncertainty difference.

Theoretically, it is conceivable to select larger k0 bandwidths for lower k0c Bins.
In this way, the ability to solve two signal patterns due to two different defects
would be improved, by minimizing the distinguishable distance between two defects.
However, this solution was not implemented, again to favor transducer feasibility:
the quantization procedure shows poor performance when used to define in the
dual domain (the Directivity domain) Bins clusters with different k0 bandwidths.
The reason can be identified in the filter used to get better results in terms of
quantized shape function. This was defined considering a quantization processing to
be applied on images described by discrete points in a Cartesian reference systems.
Therefore, future developments are aimed to develop quantization procedure useful
for Directivity functions shaped like wedges with a cut-out.

Finally, it is very important to select appropriately the binary configurations
sequence. Our aim is to reduce the DoA uncertainty when a defect/damage is placed
between two different discrete angular steps. The Gray Code ([86]) is especially
important in applications where analog information is being converted to digital or
vice-versa. For example, if two adjacent discrete angular steps are characterized by
the configurations 00001 and 11111, wildly inaccurate measurements can occur at
the boundaries between two angular sectors. The Gray code characteristic is that
just one Bin configuration changes in k0 and f , when moving by an angular step
to the next or previous one.

Following the discussed strategy, the Directivity function was design as illus-
trated in Fig. (6.5) both in k-space and in k0, θ-space. In Fig. (6.5)(b) can
be observed that the Bins Gray tree satisfies the assumption posed in Section
(6.4.1). Apart from the first Bin on top, whose corresponding shape function is the
furthest from the origin, the second Bins cluster with the smallest arches lengths
are replicated in different directions to obtain a shape function with a radial size
equal along all directions.
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Figure 6.4: The dispersion curve for an Aluminium Plate, 1[mm] thick: (a)wave-
vector k0 as function of frequency; (b)wave group velocity as function of frequency.
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Figure 6.5: (a) Imposed Directivity function according to the defined design criteria:
(a) Directivity function in k1, k2-domain (b) Directivity function in k0, θ-domain (
σk = 5.00[1/m])
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Figure 6.6: (a) Imposed Directivity function according to the defined design criteria;
(b) Absolute value of the ideal shape function (ISF); (c) Real part of the ISF; (d)
Imaginary part of the ISF;
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6.5 S-SAT: Shape function transducer synthesis

The S-SAT Transducer shape function has to be computed so that its Fourier
Transform is as close as possible to the designed Directivity function. According
to the design procedure, defined in the Section (6.2.2), the ideal shape function
can be computed by inverting the Eq. ((2.20)). In this way, a complex shape
function, is obtained. Its absolute value and its real and imaginary parts are shown,
respectively, in Figs. (6.6)(b,c,d).

As already observed in Section (6.2.3), the real part shows a even symmetry,
while the imaginary part is charactized by an odd simmetry. The real part of the
shape function has positive and negative values, so does the imaginary part. For
this reason, the transducer requires two differential channels to excite and acquire
the correct signal. Furthermore, observe that the obtained complex shape function
is continuously modulated in values. Therefore, a quantization procedure has to
applied. A numerical zero-padding procedure was used to increase the resolution
in the space-domain, without reducing the k-space one, so that the quantization
procedure provided better results when its Directivity function is computed. The
discrete numerical dots have a 0.5[mm] physical size. In the next Subsection,
the applied qauntization, the so called double-phase Error Diffusion technique, is
illustrated.

6.5.1 Multi-phase Error Diffusion technique to emulate com-

plex shape function

In Sec. (3.1.2) a quantization technique, called Error Diffusion ([40, 41]) was used
in the passive SHM context to emulate shape functions which are continuously
modulated.

However, it is worth noting that, for the purpose of the present work, each
discrete value of the shape function, is a complex number. For such reason, the
traditional error diffusion procedure (applied to real numbers) has to be rearranged.
By following diagram shown in the patent [3] (see the Fig. (6.7)), the quantization
procedure consists in the following steps:

1. The plane (Re, Im) is divided according to a phase quantization, so that
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Figure 6.7: An illustrative scheme of the Halftoning-Error Diffusion quantization
technique, useful for two channels images, namely for two-channels piezo-transducers

if |atan(Re/Im)| <π/4 or > 3π/4 the real plane values are selected, vice-
versa, the imaginary ones. Therefore, the shape function in the nth point
f(x1[n], x2[n]) is quantized as a function of the performed division of the
plane (Re, Im).

2. The quantization error on point e(x1[n], x2[n]) is brought in feedback and
summed to the new current value of f(x1[n], x2[n]) according to the weights
associated to the error filters (H1).

3. Clustering: the numeric positive real values fq(x1[n], x2[n]), closely located,
are clustered into a small region corresponding to the possible positioning
of the electrical contact elements. The same procedure is executed for the
negative real values and the imaginary positive and negative ones.

In this work, the following error filter (see [87]) is used:

H1 =
1

16

[
− # 7

3 5 1

]
(6.23)

where "−" denotes a point in the current row which has already been processed
(hence diffusing error to it would be pointless), and "#" denotes the pixel currently
being processed.



6.5. S-SAT: SHAPE FUNCTION TRANSDUCER SYNTHESIS 133

Figure 6.8: The Spectrum-Scanning Acoustic Transducer piezo-load, after the
quantization procedure. The values +2 and −2 are related, respectively, to the
positive and negative real part. The values +1 and −1 are related, respectively, to
the positive and negative imaginary part.



134 CHAPTER 6. ACTIVE MONITORING

-2000 -1500 -1000 -500 0 500 1000 1500 2000

k
1
 [rad/m]

(a)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

k
2
 [

ra
d

/m
]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

k
1
 [rad/m]

(b)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

k
2
 [

ra
d

/m
]

Figure 6.9: (a) Directivity function achieved after the quantization procedure; (b)
Imposed Directivity function.

6.5.2 The feasible S-SAT and its directive properties

Once the Halfotning Error diffusion technique is applied to the ideal shape function,
the transducer composed by 0.5[mm] dots and requiring just two differential channels
is obtained. This is illustrated in Fig. (6.8).

By computing the Directivity function of the S-SAT piezo-load, it is possible
to compare the ideal Directivity function and the achieved one. The Root Mean
Square Error (RMSE), computed considering the range [k0min, k0max], is equal to
0.15. A qualitative comparison of the ideal Directivity and the achieved one is
provided in Fig. (6.9). Considering the dispersion curve k0(f) of the Lamb wave A0
mode which propagates in a Aluminium plate, 1[mm] thick, the angle-dependent
spectral response of the implemented device is shown in Fig. (6.10).

It is interesting to show as the S-SAT (after the quantization procedure), satisfies
the constitutive equations ((6.12)). This property is shown in the Fig. (6.11).

6.6 S-SAT: Numerical validation

6.6.1 Simulation Setup

Numerical simulations were run to evaluate the design transducer, considering
the propagation of Lamb waves in an Aluminium plate, 1[mm] thick and with
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Figure 6.10: Directivity functions (in f, θ-domain) when the Lamb wave A0 mode
propagates in an Aluminium plate, 1[mm] thick: (a) Directivity function after the
quantization procedure (b) Imposed Directivity function.
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Figure 6.11: (a)Achieved Directivity function (in k0, θ-domain); (b) a graphical
explanation of the constitutive equations ((6.12)): the phase difference between the
Directivity imaginary part and the real one is approximately equal to -90° over all
non-zero Bins areas.
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Figure 6.12: (a) Excitation phase simulated as an acquisition phase: multiple
phases acquisition considering impact points with different distances and angles
were ran, considering the GPs train as the excitation signal. (b) The acquired
signals due to waves impinging from different distances and angles were re-impacted
considering the same corresponding distances and angles of the excitation signal.

the following parameters : Young’s modulus 70 [GPa], Poisson’s coefficient 0.3
and material density 2700 [kg/m3]. The same GFs formalism, detailed in Section
(2.1.2), already adopted to validate the designed passive sensors network (shaped
sensors, optimized disk-sensors array and directive sensors) was used in this context.
Thanks to the reciprocity between the excitation of the waves acquisition and
excitation phases, the last one can be simulated by using the transducer in passive
way. Gaussian pulses train excitation signal were applied as input at a certain
angle and distance from the transducer and, successively, the acquired signal was
re-injected at the same angle and distance to emulate the effect of a perfect reflector.
The last procedure was replicated for different distances and angles as illustrated
schematically in the Fig. (6.12).

The excitation signal is shown in Fig. (6.13)(a). The Fig. (6.13)(b) shows
the corresponding FT of the excited signal. The GPs central frequencies and
bandwidths correspond nicely, via the dispersion curve k0(ω), to the central wave-
vector values and the bandwidths allocated to each Bin, during the design procedure
(see Section (6.4.3)). More specifically, the central frequency values fci and the
bandwidths BHPi

are given by the following values:



6.6. S-SAT: NUMERICAL VALIDATION 137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time [ms]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
x
c
it
a
ti
o
n
 S

ig
n
a
l

(a)

0 1 2 3 4 5 6 7 8 9 10

Frequency [kHz] 10
5

0

0.2

0.4

0.6

0.8

1

1.2

E
x
c
. 
S

ig
. 
F

T

(b)

Figure 6.13: (a) The Gaussian pulses train used as excitation signal; (b) The
corresponding Fourier Transform (it is computed via the FFT, preserving the signal
energy).

{
fci = (120; 164; 214; 267; 324; 444)[kHz]

BHPi
= (22; 25; 27; 29; 31; 33)[kHz]

(6.24)

The numerical validation is very significant for two main reasons:

• The propagation along a mechanical medium in form of GWs was widely
investigated and analytically well-formalised. Therefore, the propagation
properties, such as the dispersion curves are well known and a numerical
simulator can be reliably adopted.

• FEM simulations, tightly related to the experimental GWs propagation
physics, were used in the Section (5.1.1) to assess the GFs simulations.

Therefore, experimental results are expected to be very close to the numerical ones.
Noteworthy, in practical cases some complexities have to taken into account.

the GWs theory is derived considering a medium of infinite extension. However,
even if an elongated structure is considered, mechanical boundaries generate re-
flections/reverberations or, in other words, multi-path interference. The edges
reflections issue can be addressed, in the active monitoring, via the, so called, base-
line subtraction ([88]). The last procedure allows to acquire the signals components
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Figure 6.14: Frequency responses (divided by the constant terms and the known
scale factor function (±j, k0(ω)) and normalized on the maximum value) for
different DoAs (radius=0.8[m]) provided by the theoretical model (Eqs.(2.18)(2.20))
and the GFs formalism simulations.

due to boundaries reflections, on the pristine structure, free from damages. On
in-service systems, edge reflections can be pre-computed by knowing the structure
geometry.

Another issue is related to environmental and operational changes, such as
temperature fluctuations, which can alter the wave propagation behaviour. The
last effect can be addressed by using sensor able to estimate the dispersion curve
variations via the known piezo-response model. By estimating the dispersion curve
variations, the excitation signal can be tuned as well as the expected energy signals
distributions for each directions can be re-computed. Therefore, in the following
Sections the dispersion curves, derived in the Chapter (2), will be used, without
prejudice to their potential variations.

6.6.2 Theoretical model and GFs simulations frequency-time

responses matching

Although the validity of the theoretical model (2.18) was already proved (see Sec.
(3.1.4)) via the GFs simulations by considering sensors quantized with pixeling
procedure, as first step, due to the higher complexity of the S-SAT shape function,
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Figure 6.15: Time responses (when the frequency responses are divide by the
constant terms and the scale factor function (k0(ω)), and normalized on the
maximum value) for two different DoAs and distances ((a) DoA=14°, R=0.35[m]
(b) DoA=63°, R=0.7[m]), provided by the theoretical model (via the procedure of
Section (3.1.4)) and the GFs formalism simulations.

namely a multi-phase function, was convenient to verify how well the responses,
provided by the theoretical model and the GFs simulations one, match. As shown
in Fig. (6.14), the considered models match quite-well in frequency. Note that,
without lack of generality, the comparison, between the responses, is given only
in terms of Directivity. Therefore, the frequency responses provided by the GFs
simulations were divided by the constants (±j) and the scale factor function, k0(ω),
within the used frequency band. With the initial aim to compute the effect of the
transducer filtering on the excited pulses (namely, how varied the time-spread of a
Gaussian pulse) the theoretical time response was computed. Subsequently, the
time responses were calculated by considering the dispersion effect of a propagating
signal. To this aim, the procedure illustrated in Sec. (3.1.4) was applied. In Fig.
(6.15) the S-SAT time-responses provided by the theory and the GFs simulations
are given for two different distances and DoAs.
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(a) (b)

Figure 6.16: The ambiguity functions, on the same FrT plane, of two signal patterns
related at two different defects with radial and angular coordinates, respectively
equal to 0.35[m] and 0.7[m], 14° and 63°: (a) top view (the signal patterns are
traced by the red and yellow curves); (b) frontal view

6.7 S-SAT: Signal Processing and Estimation per-

formance

In this Section, the Signal Processing procedures to localize multiple-defects and the
estimation performance are will be detailed, when, the designed S-SAT Transducer
is used in conjuction with GPs sequences as excitation signals.

In order to proceed, it is important to highlight the ability to distinguish two
different signal patterns related to two different defects, when 180° are scanned
simultaneously, and both their distances and angles are to be estimated. The
previous ability is often called ambiguity in the Radar community.

In particular, it is often used the ambiguity function to define two different
ambiguities. The desired ambiguity function is given by an impulsive function in
the FrT plain. If this function is highly localized in the time domain, the distance
resolution is enhanced. While a narrowband pulse is requested to better estimate
the target (e.g. an aircraft) velocity, via the frequency shift, due to the Doppler
effect. Therefore, the two ambiguities requires opposite signal properties.

In our context, the targets are static defects. However, the ambiguity function
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of an acquired signal can be again used to provide two information: the time-shift,
i.e. the distance, and the sequence of pulses of the signal pattern, which provides
the angular coordinate. This concept can be better clarified by seeing two signal
patterns due to two different defects in the FrT domain. As an example, in Fig.
(6.16) two ambiguity functions (their energy distributions) are shown in the same
FrT plane. Such functions are related to two defects with different distances and
angular coordinates. The signal patterns corresponding to the two defects are
highlighted in Fig. (6.16)(a). It can be observed that:

• the two signals patterns are well-separated, even if their Difference in Time
is less than the pulses trains time-duration.

• two signals patterns are given by two different sequences of Gaussian pulses.
The binary pulses sequence provides the DoA information.

Observe that, the estimation of the DoA is hampered when multiple reflectors
are located at the same distance. In case of multiple defects, their radial distance
from the S SAT must be sufficiently large to generate separated patterns in the
TF plane. The worst case pulse, namely the pulse most spread in time, is the one
at the lowest central carrier frequency fc = 120[kHz] and with lowest bandwidth
BHP = 22.4[kHz], even if this frequency corresponds to the lowest wave velocity
vg(fc).

It is also worth noting the difference between the ability to distinguish two
different signal patterns and the meaning of Eq. (6.22). The Eq. (6.22) shows a
reduction of uncertainty δT , thanks to the multiple excited pulses. Theoretically,
nB cross-correlation procedures can be executed (after dispersion compensation)
to have a more robust estimation of the ToF in presence of noise. Therefore, δT
defines the ToA bound in presence of noise. Conversely, the ability to distinguish
two signal patterns, i.e. the ambiguity δTAS

, is equal to the uncertainty 2δT with
nB = 1, considering the worst case pulse (i.e. the pulse with the highest dispersion).

Several works proposed different tools to analyze Lamb waves signals in the
FrT domain. In [89], the Wigner-Ville distribution was investigated for the mode
analysis. In [90], it was shown that the reassigned scalogram distribution is able
to better define the Lamb A0 mode w.r.t. different FrT distributions. However,
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SNR (dB) Standard Deviation [m] Maximum Error [m]
12 0.009 0.0151
10 0.0091 0.0162
8 0.0091 0.0186
6 0.0093 0.0193
4 0.0094 0.0233
3 0.0096 0.0217
2 0.0097 0.0255
1 0.0098 0.0236

Table 6.1: Defect Distance estimation performance for different values of the SNR
(with: 51 random defects DoAs between 0° and 179°; 51 defects distances moving
from 0.5[m] to 3[m], with a 5[cm] step, to take into account the slight dispersion
effect; 100 AWGN simulated cases; removed distance attenuation).

it is important to observe that, when large distances are covered via GWs, the
FrT distributions may require a computational cost incompatible with embedded
systems applications. Alternatively, a bank of linear phase filters, such as FIR
filters, can be used to distinguish the GPs with different carrier frequencies.

Therefore, it is necessary to find a useful signal processing procedure for a
multi-defects localization with a limited computational cost. The considered signal
processing can be divided in the following steps:

6.7.1 Step 1: compute the Directivity response

As first step, observe that the scale factor k0(ω) may modify the shape of the GPs.
Therefore, a single FFT is computed on the entire acquired signal (composed by
multiple-signal patterns). The last one is divided by the scale factor function k0(ω).
Such procedure allows to restore the Gaussian shape of the pulses and to work just
on the frequency response given by the applied signals (the real part one and its
-HT application) and the Directivity function. The time-response can be computed
via an IFFT.



6.7. S-SAT: SIGNAL PROCESSING AND ESTIMATION PERFORMANCE 143

0 2 4 6 8 10 12

SNR [dB]

0

0.01

0.02

0.03

0.04

0.05

0.06

s
q

rt
(C

R
L

B
) 

- 
S

D
 -

 M
E

 

sqrt(CRLB)

Standard Deviation

Maximum Error

Figure 6.17: Defect distance estimation performance plots (related to the Tab (6.1))
in terms of Standard Deviation and Maximum Error (in meters), as function of the
SNR. The estimation bound (the square root of the Cramér–Rao lower bound) is
slightly attained.
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6.7.2 Step 2: defects and distances estimation

As previously seen in Section (6.4.3), the S-SAT was designed by setting to 1 a
Bin, called reference bin, between 0° and 179°. By using just its related signal,
filtered by a linear phase 250 taps filter FIR (designed with a Gaussian window),
the number of defects and their distances can be easily extracted. Thanks to
the high Bin central frequency (fc = 444[kHz]), the dispersion effect can be
actually neglected. Indeed, for that frequency, the wave velocity is near to the
constant Rayleigh velocity. Therefore, a single cross-correlation procedure can
be computed. If the cross correlation is larger than a given threshold, fixed a
priori considering the potential attenuation and the tolerated SNR value, a wave
peak is detected. The ToA of each peak provides the defects distance information.
The ToA uncertainty bound is given by the Eq. (6.22) with nB = 1. To avoid
multiple peaks identification in the same signal sub-band, which may result in
false defects identification, only the peaks which are separated by sufficiently large
time-intervals 2δT = 2

(
2.66BHP (SNR)

1/2
)

−1 are to be considered. Note that
the 2δT dependence by the SNR can be neglected for large values range. In Tab.
(6.1) and Fig. (6.17) are shown the distance estimation performance in terms
of Standard Deviation (SD) and Maximum Error (ME) as function of the SNR,
when a random DoA and 100 cases of AWGN are considered, and the bound
δR=vg(fc)δT =

√
CRLBR. The SD is near 1[cm] up to 1[dB], whereas the ME is

held under 2.5[cm].
Observe that the factor

√
2 to multiply the

√
SNR in Eq. (6.18) can be achieved

if two measurements are computed considering the same pulse. They rely on the
determining when either the leading edge or trailing edge of the pulse crosses the
threshold given by the 50% of the pulse peak. Due to dispersion effects, which can
arise on large distances, it is more convenient to perform only one measurement for
each pulse, determining the time-delay related to the peak value.

6.7.3 Step 3: GPs time-locating

Having designed a reference bin for the defects distances estimation and having
selected the Gaussian shape for all bins and for the excited pulses are the two basic
ingredients to easily time-locate all GPs, related to the same defect. This property
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involves two steps: first, detect the pulses related to the same defect and then filter
them to avoid time-overlapped pulses due to other defects. After that, the pulses
spectral integrals can be computed to decode a binary sequence and extract the
DoA information.

The detection of a Gaussian pulse by just knowing the dispersion curve of
the monitored structure can be done by considering the non-wide bandwidths in
wave-vector k0 of each bins, namely in (angular) frequency ω. The ω(k0) function
can be approximated via a Taylor expansion to the second order:

ω(k0) ≃ ω(k0C) + (k0 − k0C)ω′(kc) + 1
2
(k0 − k0C)

2ω′′(k0C) =
= vpk0C + (k0 − k0C)vg ++1

2
(k0 − k0C)

2Γ
(6.25)

where Γ = ω′′(k0C). Note that in non-dispersive medium, ω(k0) = vk0, then
vp = vg = v and Γ = 0.

According to the last expansion, discarding the distance attenuation and consid-
ering the radial propagation at a certain angle, a Gaussian wave packet propagates
along the spatial coordinate r over the time. Therefore, the GP can be written in
the complex form as:

A(r, t = 0) = f(r) = e
− 1

2σ2
r
(r−r0)

2

ejk0Cr (6.26)

F (k0) =
σr
2
√
π
e−

σ2
r
2
(k0−k0C)2ejr(k0−k0C) (6.27)

A(r, t) =
σr
2
√
π

∫
e−

σ2
r
2
(k0−k0C)2ejr0(k0−k0C)ej(rk0−[vpk0C+(k0−k0C)vg++ 1

2
(k0−k0C)2Γ]t)dk

(6.28)
the last integral, is obtained considering the approximation in Eq. (6.25), and it

is configured as the IFT of a Gaussian function, due to quadratic term in k0 − k0C

at the exponent. The last integral (excluding all terms which do not depend by k0)
provides:
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A(r, t) = exp

−1

2

(
r − (r0 + vgt)√

σ2
r − jΓt

)2
 ejk0Cre−jk0Cvpt (6.29)

It is helpful to pull the j out of the denominator, writing the solution:

A(r, t) = exp

[
−1

2

(
r − (r0 + vgt)

σ(t)

)2
]
ejϕ(r,t) (6.30)

where

σ(t) = σr

√
1 +

Γ2

σ4
r

t2 (6.31)

and

ϕ(r, t) = k0Cr − k0Ctvp −
tΓ

t2Γ2 + σ4
r

(6.32)

The solution (6.30) magnitude shows again a Gaussian profile. The packet is
centered at (r0 + vgt) at time t. The width of the Gaussian profile is given by the
σ(t) (6.31). Note that the width is increasing with time, as expected, as the Γ term
which takes into account the dispersion. The phase ϕ(r, t) causes the real solution
to oscillate between positive and negative values.

Therefore, if t0i are the time-instants in which each excited GP peaks, Rest is
the estimated distance via the reference bin pulse, δRmax(SNR) is the maximum
estimation uncertainty (see the Tab. (6.1)), σt is the time-width of the considered
GP at central frequency fci , and ±σt−disp is the time-width of the same dispersed
pulse, a GP can be localized in the following time-window:

[
t0i +

2Rest

vg(fci)
− σt−disp(Rest)− δRmax(SNR) , t0i +

2Rest

vg(fci)
+ σt−disp(Rest) + δRmax(SNR)

]
(6.33)

where
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σt−disp(Rest) = σt

√
1 + Γ2

σ4
r

(
2Rest

vg(fci )

)2
with

 σr = σtvg(fci)

Γ = dvg(k0)

dk0

∣∣∣
k0=k0Ci

(6.34)

Observe that the time-window (6.33), considering just ±σt−disp, covers only
the 68% of the GP width. Larger time-windows would reduce the probability of
successfully distinguishing reflections generated by defects positioned at similar
radial distances.

As conclusion, the duration of the time-window (6.33), related to the worst case
(w.c.) pulse, namely the pulse with the narrowest bandwidth, defines the capability
to distinguish two signal patterns (when both the defects distance and DoA are to
be estimated). Observe that the w.c. pulse provides, without the dispersion effect,
an half time-width σt equal to 51.85[us]. The corresponding half space-width is
given by σr = σtvg(fci = 122[kHz]) =≃ 9.9[cm], having vg(122[kHz]) = 1916[m/s].
In order to detect two defects, two pulses at the lowest frequency, 122[kHz], have
to be detected. This involves a radial resolution, for low dispersion distances, equal
to 2σr−low−disp + 2δRmax(SNR ≥ 6dB) ≃ (19.8 + 4)[cm].

6.7.4 Step 4: GPs filtering and spectral integrals

Each time-localized GP (with central frequency equal to fci) related to the same
defect has to be filter in order to remove all potential spectral components due to
other defects pulses which can be superimposed in the time domain. Therefore, 5
FIR filters, designed with a Gaussian window and 250 taps, are used with central
frequencies fci and bandwidths BHPi

given by the values (6.24).
The FFT of a short-time window composed by each (filtered) GP related to

the same defect is computed. It, in turn, provides a short frequency-window w.r.t.
the FFT of the acquired signal one. 4000 samples were considered to achieve
a frequency resolution ∆f equal to 500Hz. Subsequently, the pulses spectral
integrals are computed within the bandwidths BHPi

. It is worth noting that is
more convenient to compute the spectral-integral rather than the time-integrals. In
fact, the GPs widen and decrease over time, due to the dispersion effect, becoming
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more sensitive to the noise.

6.7.5 Step 5: GPs binary decoding and DoA estimation

performance

In order to evaluate which pulses, related to the same defect, are to be decoded to
1 or 0 values, a suitable cost function was implemented. It was defined so that a fix
optimal threshold value can be found, independently by the defect distance and the
GPs energy (which is imposed the same for all GPs via the the excitation signal).
For this purpose, the amplitude spectral integral is computed also for the pulse
related to the reference bin, used firstly to estimate the defect distance. Therefore,
the following cost function was defined:

CF (ISi−Bin
) =

ISi−Bin

ISRef−Bin

(6.35)

where ISi−Bin
is the spectral integral related to the i− th GP/Bin and ISRef−Bin

is the spectral integral related to the reference bin of a certain signal pattern.
Therefore, the i − th Bit of the bits sequence, corresponding to a binary pulses
sequence, is set to 0 or 1 according to the rule:{

Biti = 1 if CF (ISi−Bin
) ≥ rth

Biti = 0 if CF (ISi−Bin
) < rth

(6.36)

The optimum value of the threshold rth was found by using the theoretical
model. It is computed as:

rth = min
m

[
min
i,j

(
1

2

ISm,i
− ISm,j

ISRef−Bin

)]
(6.37)

where the indexes i and j are related, respectively, to the Bin set to 1 and 0 at
direction m− th. Therefore, according to the direction m− th, moving between 0

and 179 (considering a 1[deg] angular step discretization) the indexes i and j can
move from 1 to a maximum of 5, when their sum is always equal to 5. Therefore,
the Eq. (6.37), finds the optimal threshold rth by computing the minimum spectral
integrals difference between each couple of Bins set to 1 and 0 for all direction m.
Then, the minimum value is computed among all directions, indexed by m.
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Observe that, due to quantization non-idealities, the procedure (6.37) could
output very small threshold values. Indeed, there is no sharp transition of the
directivity function from 0 to 1 or vice-versa, moving along the polar coordinates.
Therefore, without modifying the notation of (6.37), for each 6[deg] discrete angular
step, ∆θl, the Bins set to 1, (with integrals I∆θl−Sm,i

) which are preceded and/or
followed by a Bin set to 0, moving along the polar coordinate, were excluded in
the procedure (6.37). In the same way, the Bins set to 0, (with integrals I∆θl−Sm,j

)
which are preceded and/or followed by a Bin set to 1, moving along the polar
coordinate, were excluded. In other words, we admit a sequence/symbol error
between two adjacent configuration, particularly when the direction m− th is near
to a direction placed between two different 6° discrete angular steps. The Eq. (6.37)
provides the optimum threshold value rth = 0.4751.

Note that the cost function (6.35) follows the minimum distance in spectral
integral for each Bin. This is a sub-optimal signal pattern estimation method
(in time or frequency domain). The optimal method, provided by the Digital
Communication Theory [91], finds the minimum distance between the spectrum
of the acquired signal (the pulses train) and all possible spectral configurations
(minimum Euclidean distance rule)). Therefore, for the designed S-SAT, at least
30 configurations are to be considered, with an associated increased processing
complexity equal to 30 factor.

After all pulses of a signal pattern are decoded, a bit-sequence is obtained. The
last one determine uniquely the associated 6[deg] discrete angular step.

The numeric results, obtained by considering 100 cases of simulated AWGN
at different SNR values, and covering the 180° angular range with 1[deg] step, are
given in Table (6.2) and in the Fig. (6.18), in terms of Standard Deviation and
Maximum error values. Observe that Maximum errors were computed considering
the middle angle of the estimated discrete angular step as the estimated angle.
They show that the Standard Deviation value is less than to 2[deg], up to 10dB
SNR value, while the Maximum Error vaue is limited to 8[deg].

In order to express the last result in terms of mainlobe-width, an equivalent
average mainlobe can be defined. To this aim, it can be assumed that the probability
function of θ − θest, with θ the "true" DoA value and θest the middle angle of
the 6° discrete angular steps, is approximately Gaussian. The last assumption



150 CHAPTER 6. ACTIVE MONITORING

SNR (dB) Standard Deviation [deg] Maximum Error [deg] DoA estimation error
≥ 5[deg] probability

18 2 5 0.0101
16 2 5 0.0103
14 1.99 5 0.0092
12 1.99 5 0.008
11 1.98 7 0.0074
10 1.98 8 0.0068
9 1.99 10 0.0084
8 2.08 43 0.0124
7 2.37 51 0.0252
6 3.48 160 0.0516

Table 6.2: Defect DoA estimation performance for different values of the SNR (with:
semi-round angle cover with a 1[deg] step; 100 AWGN simulated cases; removed
distance attenuation).
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Figure 6.18: Defect DoA estimation performance plots (related to the Tab. (6.2)
values) in terms of Standard Deviation and Maximum Error, as function of the
SNR.
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is justified considering that a binary sequence is well defined in the middle of a
discrete angular step, and moving to the left and right adjacent angular steps,
changes smoothly via a single Bin. Therefore, considering a mainlobe aperture
which provides a 95% probability that the DoA is within it, the beamwidth is given
by ±1.96 · 2[deg] ≃ ±4[deg], namely a 8[deg] average aperture. Finally, observe
that the probability that the DoA "error" is equal or higher than 5[deg], for a 10dB
SNR, is less than 0.01%. The last one means that there is a small number of angles
(namely 4 or 5 dependently by the noise case) which involve a wider equivalent
maninlobe aperture. Future quantization procedure developments are aimed to
remove these critical directions, at least for high-medium SNR values.

6.8 S-SAT: conclusions

Conventional solutions for Ultrasound active monitoring, such as the interdigited
transducers or phased arrays, are typically limited by some issues. In particular,
interdigited transducers have a fixed directionality, while phased arrays require
many sensors, with a consequent large amount of data to be stored and processed.
Therefore, phased arrays are unsuitable for low power applications, where the sensor
nodes are battery-powered and wireless, in order to reduce the weight penalty due to
cabling, a very important feature in the aeronautical or aerospace domains. In order
to overcome the previous limits, single piezo-transducer can be designed so that
all monitored structure can be scanned. This strategy was already used to design
the, so called, F-SAT Transducer ([2]), but this solutions has some limitations in
terms of defects localization, due to the wide mainlobe aperture, which increases
when multiple frequencies are excited to better estimate the defects distances.
Furthermore, it shows a 180° ambiguity when a defect is detected. In this Chapter,
a design-procedure to remove the ambiguity issue was illustrated, with the aim
to achieve a better defects localization capability, a novel design philosophy was
devised to originate a new transducer, called S-SAT. It was designed to perform a
simultaneous 180° scan and to associate a different signal pattern configuration for
different discrete angular steps. In other words, the new monitoring system was
designed according to the Encoder system principles.

Able to detect broadband defects, with size larger than 1[cm], it can be estimate
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the number of defects and their distances with a radial accuracy near to 2[cm],
even for low SNR values. However, in presence of multiple-defects, to ensure
a correct estimation both the defect distance and the its angle coordinate, the
radial resolution decreases to about 24[cm], for low dispersion distances. When
large distances are covered the last value increases, unless dispersion compensation
procedures are applied for a pulse compression, allowing to fix the request minimum
radial gap between two defects, independently by the covered distance.

The DoA estimation performance ensures an 8[deg] equivalent average beam-
width when the SNR is equal or grater than 10[dB], whereas a 16[deg] maximum
apeture is limited just to few critical DoAs (namely, 4 or 5 directions according to
the particular noise case).

The peculiar S-SAT design criterion and the excitation signal given by a Gaussian
pulses train are so that the computational cost for multiple-defects distances and
angles estimation is kept low. Only one FFT and IFFT and one peaks detection
and Cross-correlation procedure are requested on the acquired long-lasting signal.
Further signal processing is performed on short-time window, with a consequent low
computational cost. Therefore, the S-SAT results to be very suitable for embedded
applications which uses micro-controller units with limited processing capabilities
and Wi-Fi-battery powered.

Observe that multiple DoAs are estimated at the same time, due the 180°
simultaneous scan. Therefore, the low radial achieved resolution for multiple
defects localization could limit the number of defects to be localize. This issue can
be overcome under the hypothesis of periodic scans and that few new defects rise
between two subsequent scans. When a defect is detected, its signal can be summed
to the baseline signal. Thus, by applying the differential signal method, namely
the baseline subtraction, new radial defects can be detected, during subsequent
scans. Furthermore, three or more S-SATs, placed at different angles, can provide
a majority report on the defect coordinates estimation. This means that if two
defects are not actually neighbors, an S-SAT could "see" them radially too near to
correctly estimate also their angular coordinates. Vice versa other S-SATs can "see"
the two defects radially far, according to their positioning w.r.t. to the defects one.
Therefore, set a single polar reference systems, when the defect estimated radial
coordinate is the same, the angle coordinate can be selected as the most recurring
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estimated angle value among the S-SAT transducers.
Future developments are aimed to improve the quantization procedure, in order

to exploit all available bandwidth, increasing the radial resolution, and minimizing
the equivalent mainlobe aperture.





Chapter 7

Conclusions

This dissertation has illustrated the research work conducted to develop sensor
systems in the ultrasonic SHM context. Both real-time monitoring and periodically
activated inspection system were investigated and the sensors design paradigms
were adapted, as well as the signal processing, to achieve improved performance
in damage detection and ranging by using low power embedded devices. More
specifically, the research work and the novel contributions can be summarized as
follows:

• The first research part focused on passive SHM for damage/impacts localisa-
tion via Guided Waves in thin-wall structures (e.g. aircraft shells), by taking
advantage of their large distances coverage with a low attenuation. The
proposed method uses arrays of closely located piezo-sensors able to estimate
the wave-front directions of arrival (DoAs) on each ones. Such solution was
selected because it paves the way to low computational cost processing proce-
dures and because it is suitable both for isotropic and anisotropic structures,
being unknown the material properties. In order to minimize the corruption
of noise generated by different sources (such as structural vibrations, noisy
acquisition channels, noisy electronic devices etc.), unconventional shaped
sensors were designed. The exploited shaping design procedure allowed to
achieve the same sensors frequency response, avoiding the wavenumber tuning
effect. An optimality criterion based on the Theory of Measurements and the
Calculus of Variations was defined and applied to the case of three sensors
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array. The obtained array, refereed to as Optimal Cluster of Shaped Sensors
(SS-OC), showed improved performance w.r.t. the Standard Cluster composed
by three disk-sensors [16], when the acquired signals are affected by noise,
especially for medium-low PSNR values.

• A more refined optimality criterion was defined starting by the system model, a
model for the noise (i.e. AWGN), the Estimation Theory (i.e. the Cramér–Rao
bound (CRB)) and considering the wave velocity unknown. It allows to find
the optimal sensors shapes or the optimal disk-sensors positioning for a generic
number M of array piezo-loads, to minimize the error in DoA estimation.
It was applied again to the case of a three sensors array, and the optimal
arrangement of disk-sensors within a restricted array area, i.e. a circle of
fixed radius, was derived. The generated array was called Optimal Cluster
of Disk-Sensors (DS-OC). An efficient DoA estimator, able to attain the
minimized CRB of the unknown wave-velocity case, was found. It is based
on the Gauss-Markov time-delays estimator. Moreover, it was shown that
the proposed criterion is optimal also to design the phased array used in the
active SHM context, when the parameters distance r, angle θ and velocity v
are to be estimated.

• In order to address another well-known issue, namely the edge reflections/re-
verberation, the piezo-reshaping was used to design a novel array base sensor,
referred to as Directive Complex Sensor (DCS). Requiring just two differential
acquiring channels, it is able to filter undesired directional interference which
impinging from DoAs out of the monitored angles work-range. Its directivity
properties were assessed via a double numerical validation: the DCS theoreti-
cal beampatterns match the numeric ones provided by the Green’s Functions
(GFs) formalism simulations and the FEM ones. Thus, FEM simulations,
which are able to provide results very tight to the experimental ones, val-
idated the (GFs) simulator, widely used to assess the proposed sensor systems.

• In active SHM context, the double-phase design procedure [3], aimed at
exciting directional waves, was investigated. Such procedure was linked to
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the less general procedure proposed in [2], which doesn’t allow to avoid the
180° ambiguity during an acoustic inspection.

• Following the previous well-defined procedure, a novel single Transducer,
called Spectrum Scanning Acoustic Transducer (S-SAT), was designed to
overcome the hardware complexity required by the conventional phased array
solution and the limited F-SAT performance (see [66, 81]) in defects detection
and localization. Improved performance are achieved in detectable defects size
(1[cm] versus 2[cm]) and angle accuracy (8° versus about 18°). At the same
time the computational cost is limited. Only one cross-correlation procedure
is required, and up to 180° are simultaneously inspected. Additional signal
processing procedures are performed on short-time windows, thus minimizing
the computational cost.

7.1 Future work developments

The research work described in this dissertation open the way to future developments
to further increase the proposed sensory systems performance:

• The Directive Complex Sensor (DCS) directivity properties can be increased
by applying the halftoning quantization technique already used to generate
the S-SAT.

• Thanks to the high potential of Artificial Intelligence techniques to improve
the DoA estimation performance via the reflections of boundaries, future
developments are aimed to understand if M-L algorithms can result useful
for low power consumption embedded electronic devices and compare their
DoA estimation performance with the one achievable by a DCSs cluster.

• A sensor quantization technique able to work in polar coordinate, with an
appropriate error filter, can be devoloped in order to increase both the angular
resolution and the radial one (i.e. the necessary radial gap, to distinguish
two defects, can be reduced).
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• Similarly to the the Frequency-Time analysis tool, the sensor quantization
procedure could be performed in the 4D r − k space, namely in the 2D
ρ− k plane for each DoA (by using the transducer RT), in order to achieve
the desired directivity function simultaneously in the time and in frequency
domain. This strategy may be useful to design Spread Spectrum transducers,
able to increase the radial and angular accuracy and, at the same time,
minimize the interference due to signals excited by other transducers.

• The investigated design procedure to excite directional waves via a single
Transducer led to peculiar even and odd symmetry piezo-patches properties.
The last ones may used to reduce the patches area and the manufacturing
costs.

• A physics-math model for quantized mechanical guided waves, i.e. a phonons
model, can be defined. It could be used to do sensor-design, in order to
achieve super resolution in damages localization.
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• Design of a reference sensor (in the Radon Transform domain) of a
3-shaped sensor array, so that the wave-fronts DoA can be estimated
without knowing the wave velocity.

• The numerical validation of the proposed cluster by exploiting the
Green’s function (GFs) formalism (the MATLAB scripts were provided
by L. De Marchi). The last method was properly modified in order to
compute the piezo-sensors voltage due to the sensor strain.

159



160 AUTHOR’S PUBLICATIONS
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• The Theory of Propagation of Uncertainty was investigated in order
to re-define a 3-shaped sensors cluster so that the following points are
simultaneously satisfied:

– the DoA can be estimated as linear function of a time-delays ratio.

– the DoA estimation uncertainty is minimized and the theoretical
estimation bounds are derived.

– the dimensions of the transducers and the time-delays estimation
computational cost are minimized.

• The numerical tests of the proposed cluster (by exploiting the GFs formal-
ism) and the assessment of the improved DoA estimation performance
w.r.t. a cluster of 3 disk-sensors.
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• The main methods for AS localisation were reviewed.

• The main algorithms already proposed in literature for the DoA estima-
tion in presence of directional interference (e.g. edge reflections) were
reviewed.

• A general N-sensor array design procedure was defined so that the DoA
Cramér-Rao Bound is minimized, in Bayesian sense, when the wave
velocity is considered to be unknown. Therefore, the system model and
the cost function to be minimized were provided and specialized in the
case of a 3-sensor array. For the last one, the optimal solution was found
via the Lagrange multipliers method.

• An efficient DoA estimator is found based on the time-delays Gauss-
Markov estimator for a three sensors array.
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• The Designed Disk Sensor Optimal Cluster (DS-OC) and the DoA
estimator were validated by numerical simulations and compared, re-
spectively, with a conventional cluster and other sub-optimal estimators.

• A novel Directive Complex Sensor (DCS) for guided waves was designed
to cancel out undesired Acoustic Emissions impinging from DoAs out of
the given angles range (e.g. edge reflections).

• The DCS theoretical beampatterns were compared with the ones ob-
tained by the GFs simulations. The bempatterns matching was shown.

• Research joint efforts led also to the matching of beampatterns obtained
by FEM simulations (the last ones were ran by M. Mohammadgholiha).

• GFs simulations were ran in presence of directional interference and
noise considering an Optimal Cluster of DCS. They showed the DCS
ability to drastically reduce the undesired spurious waves, allowing to
estimate the DoA of the useful signal affected by noise.

4. Marco Dibiase and Luca De Marchi. "An optimal shaped sensor array
derivation". Submitted to Micromachines Journal (MDPI).

• The problem of designing the arrangement and shape of acoustical
sensors was reconsidered by defining an optimality criterion based on
Theory of Measurements.

• The DoA minimum variance problem statement was addressed by the
tools provided by advanced analysis, i.e. the Calculus of Variations for
functionals.

• The re-shaping procedure based on the Radon Transform (RT) tool,
already employed in [1,2] to address the different wave number filtering
among differently shaped sensors, was in more detail reviewed, providing
the physical meaning of the sensors RT, i.e. an equivalent 1D piezo-load
distribution able to provide the same effect of the in plane 2D piezo-load.

• The Error diffusion technique (ideated by De Marchi et al.[3]) was
applied to quantise the ideal sensors shape functions, provided by the
re-shaping procedure.
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• Different DoA estimators based on four different time-delays estimators
were illustrated and discussed.

• Synthetic noisy signals were used in order to assess the expected 50%
reduction of the Standard Deviation (SD) in DoA estimations via the
designed Shaped Sensors Optimal Cluster(SS-OC) w.r.t. a Standard
Cluster of piezo-disks.

• The numeric results were discussed and compared with the ones obtained
in the previous work [3] via the DS-OC.
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