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A B S T R A C T

In the last decades, we saw a soaring interest in autonomous robots
boosted not only by academia and industry, but also by the ever in-
creasing demand from civil users. As a matter of fact, autonomous
robots are fast spreading in all aspects of human life, we can see them
clean houses, navigate through city traffic, or harvest fruits and veg-
etables. Almost all commercial drones already exhibit unprecedented
and sophisticated skills which makes them suitable for these appli-
cations, such as obstacle avoidance, simultaneous localisation and
mapping, path planning, visual-interial odometry, and object track-
ing. The major limitations of such robotic platforms lie in the limited
payload that can carry, in their costs, and in the limited autonomy
due to finite battery capability. For this reason researchers start to de-
velop new algorithms able to run even on resource constrained plat-
forms both in terms of computation capabilities and limited types
of endowed sensors, focusing especially on very cheap sensors and
hardware. The possibility to use a limited number of sensors allowed
to scale a lot the UAVs size, while the implementation of new ef-
ficient algorithms, performing the same task in lower time, allows
for lower autonomy. However, the developed robots are not mature
enough to completely operate autonomously without human super-
vision due to still too big dimensions (especially for aerial vehicles),
which make these platforms unsafe for humans, and the high proba-
bility of numerical, and decision, errors that robots may make. In this
perspective, this thesis aims to review and improve the current state-
of-the-art solutions for autonomous navigation from a purely practi-
cal point of view. In particular, we deeply focused on the problems
of robot control, trajectory planning, environments exploration, and
obstacle avoidance. The proposed methodology enbraces a control
theoretic view, where control and planning algorithms are designed
to approach the system theory field. Under this point of view, this the-
sis aspires to create a bridge between control system approaches and
robotics problems to let both fields borrow useful tools to improve
domain-specific solutions.
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I N T R O D U C T I O N T O T H E T H E S I S

This thesis is born from the combination in different shapes of three
main research branches. On one side, we have a completely robotic
view with the development of a fully autonomous aerial vehicle, while
on the other side we have a study about nonlinear control techniques
especially focused in the field of output regulation. The link between
these two topics is represented by an unsupervised learning tech-
nique known as Gaussian process regression. The ambitious objec-
tive of this thesis is to join the two fields of robotics and control the-
ory in order to let both of them borrow tools from its counterpart
to improve domain-specific solutions. Being this goal very ambitious,
the thesis aims to start building this link from the ground, using the
learning tool as the initial bridge. In this scenario, we started our
discussion by reviewing the main problems encountered when ap-
proaching the autonomous navigation problem, from the modeling
and control, to the trajectory planning, and ending with autonomous
exploration. For each proposed chapter, namely each faced problem,
we proposed a literature review, followed by the implementation and
testing of one of the most promising state-of-the-art algorithms, then
we try to question the major limitations of such approach, proposing,
when possible, novel solutions focused on improving the detected
cons. The reader will find some pure robotics solutions as well as con-
trol theory oriented ones, which represent, under the aforementioned
perspective, the main proposed vision of this thesis. Approaching the
end, we discuss advanced control techniques involving output regu-
lation tools to design robust control laws able to face the noisy and
varying nature of real robot applications. The difficulty in establish-
ing actuator saturations makes these approaches not mature enough
to be applied in real contexts yet. All the discussion is seasoned with
a strong use of Gaussian process regression that turns out to be a fun-
damental tool to deal with the high uncertainties affecting physical
models and with the time-varying external disturbances.

The thesis unfolds as follows, Chapter 1 briefly analyses the moti-
vations behind this work, with an eye to the proposed project where
the Ph.D. has been developed, and describes the benchmark plat-
form used to test the developed algorithms, while Chapter 2 recaps
the “golden standard” in quadrotor modeling and control. Chap-
ters 3, 4, 5, and 6 are devoted to discuss, analyse, and implement
solutions to the four basic problems in autonomous navigation, i.e.
localisation and mapping, environment exploration, trajectory plan-
ning, and obstacle avoidance. Finally Chapter 7 proposes a new ap-
proach to the output regulation problem, with an eye to the applica-

1
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tion in the robotic control framework. Chapter 7.6 closes the thesis
with some final considerations.
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1
I N T R O D U C T I O N

This thesis found a place inside the big and ambitious topic of motion
planning, decision making, and control of highly nonlinear robotic
systems, with particular attention to the case of quadrotor flight plat-
forms. In this context, we aim to discuss and review the main prob-
lems which arise when approaching this field and try to contribute by
proposing novel solutions enabling the possibility to safely use these
kinds of robots in humans’ everyday life. In the next chapters, we fol-
low a tight golden line that allows touching each aspect of this field
starting from the used hardware, to the problem of mapping and lo-
calisation, ending with the motion planning, obstacle avoidance, and
advanced control techniques that make the robot acts safely in any
conditions. This chapter unfolds as follows, in Section 1.1 and Sec-
tion 1.2 we briefly analyse the motivations behind this work, with
an eye to the proposed project where the Ph.D. has been developed.
In Section 1.3 we describe the used UAV hardware, pointing out its
sensing capabilities and the main challenges that emerge from its us-
age in cluttered environments, finally in Section 1.4 we recap the main
contributions of this dissertation.

1.1 motivations

In the last decades, we saw a soaring interest in autonomous robots
boosted not only by academia and industry, but also by the ever in-
creasing demand from civil users. As a matter of fact, autonomous
robots are fast spreading in all aspects of human life, we can see them
clean houses, navigate through city traffic, or harvest fruits and veg-
etables. This trend is motivated by the fact that autonomous robots
can assist humans in a plethora of daily activities ranging from trans-
portation and surveillance, to handling heavy loads and inspection.
In particular, UAVs can perform aerial inspection of industrial facil-
ities or hazardous areas [110], surveillance and monitoring of conur-
bations [43], crowded public places and warfare zones. The automa-
tisation of such activities can improve their quality, efficiency, and
effectiveness, especially when performed by robots designed to use
the most advanced technologies in analyzing and understanding the
surrounding environment, such as LiDAR laser scanners [95], RGB-
D and thermographic cameras [85], event-based cameras [149], and
others more. Offloading error-prone, and potentially dangerous ac-
tivities to robots that can automatically cope with them also increases
the quality of life for the human operators. In this respect, UAVs can

5
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contribute to preventing critical situations and optimizing the man-
agement of urban environments [151, 152], performing search and
rescue missions in hazardous scenarios [1], performing film shooting
in dangerous areas [70], and monitoring cultivated fields [144]. In or-
der to perform the aforementioned tasks, the UAV platform must be
endowed with a high level of onboard intelligence that process the
information gathered by the carried sensors and take real-time de-
cisions. Taking decisions is not the only workload that the onboard
intelligence must sustain, as the UAV is also required to fly smoothly
without colliding and often mapping and memorising the explored
environment. Almost all commercial drones already exhibit unprece-
dented and sophisticated skills such as obstacle avoidance [68], simul-
taneous localisation and mapping [41], path planning [111], visual-
interial odometry [49], and object tracking [104]. The major limita-
tions of such robotic platforms lie in the limited payload that can
carry, in their costs, and in the limited autonomy due to finite bat-
tery capability. Nowadays, industries try to overtake these problems
by designing very oversized structures able to carry a large variety of
sensors and very big batteries that can benefit from a very high au-
tonomy. This solution is not resolutive at all since it limits the UAVs
field of application to very large environments, without containing
their cost and making their use unsafe for human operators. For this
reason researchers start to develop new algorithms able to run even
on resource constrained platforms both in terms of computation ca-
pabilities and limited types of endowed sensors, focusing especially
on very cheap sensors and hardware. The possibility to use a limited
number of sensors allowed to scale a lot the UAVs size, while the im-
plementation of new efficient algorithms, performing the same task in
lower time, allowed for lower autonomy. In this respect, a new wave
of innovation in aerial robotics is rapidly soaring: the miniaturization
of vehicles [47, 61, 159]. Insect-scale autonomous UAVs can extend
the applicability of flying robotic-helpers, making them even more
pervasive in everyday life. Thanks to their small form-factor, they can
reach places otherwise inaccessible and increase the safety of oper-
ations in human-populated and indoor environments. Although the
field of nano- and pico-size UAVs is nowadays very widespread, the
available algorithms are not mature enough to cope with the limited
resources and sensor data available onboard of these small platforms.
Besides that, a second big problem is related to the robustness of the
adopted solutions as often require fine-tuning procedures to be really
effectiveness. In this respect, the focus of this thesis lies on reviewing
and discussing current state-of-the-art solutions to the problem of
motion planning and control specially tailored for autonomous aerial
vehicles, then we aim to propose a bunch of new robust approaches
focused on minimising the required computational load with an eye
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Figure 1: Snapshot of the synthetic environment used during the Leonardo
drone contest.

to their flexibility and applicability in a wide range of different envi-
ronments.

1.2 the leonardo drone contest

The project behind the study which lead to the development of this
dissertation consists of a drone competition proposed by Leonardo
S.p.A. to encourage the research in the field of autonomous flight
robots. The proposed contest completed five different Italian universi-
ties that developed five fully autonomous drones able to navigate and
explore a completely unknown environment and perform landing or
inspection operations inside that area. Leonardo builds a synthetic
scenario mimicking an urban canyon of 20 × 10 × 3 meters (see Fig-
ure 1) to test the proposed solutions in three different application
scenarios of increasing complexity. In the following, we briefly report
a description of the three proposed challenges, one for each Ph.D.
study year.

The first year challenge.
In the first proposed challenge, the autonomous UAV was re-
quired to navigate and explore as fast as possible a completely
unknown environment with the twice objective to generate a
complete and precise map, and find out a set of ten ArUco mark-
ers [57] scattered inside the environment. The UAV then had to
perform a precise sequence of landing and takeoff actions on
the detected markers.
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The second year challenge.
In the second challenge, the autonomous UAV was required to
localise itself inside a previously mapped area, and to explore
the environment to search for an autonomous ground agent
moving randomly through the obstacles. Then the UAV had to
track the found agent for a fixed amount of time without losing
its sight, reading and recognizing an alphanumerical sequence
printed on the chased robot. The read string contained the se-
quence of landing that the UAV was required to perform. The
UAV had to collaborate with an external surveillance camera
for better performing both the tasks of localisation and intrude
finding.

The third year challenge.
In the third proposed challenge, the autonomous UAV was re-
quired to localise itself inside a previously mapped area, and to
explore the environment to search for an autonomous ground
agent moving randomly through the obstacles. During such an
exploration procedure, the UAV had to avoid unmapped static
obstacles that suddenly appeared inside the area. Then the UAV
had to track the found ground robot for a fixed amount of time
without losing its sight. Once done that, a human operator com-
mitted a sequence of landing or buildings inspection actions
that the drone was required to perform.

As the reader can conceive, the proposed challenges cover almost all
the aspects of the big field of autonomous navigation. As a matter
of fact, the developed platform must be able to localise itself, map
the surrounding environment, plan safe paths or trajectories through
already mapped obstacles, and react to the unknown by replanning
previously established safe paths. Moreover, the UAV must be able to
reliably chase moving objects, explore unknown environments, per-
forming precise landings, and plan highly informative trajectories to
perform building inspection. The list of required capabilities is not
short, and for each of them a deeper study of the current state-of-the-
art had been carried out. In this thesis, the reader will find a brief
review of most of the aforementioned topics along with a description
of how each problem has been solved in the Leonardo drone contest.

1.3 the benchmark platform

The quadcopter deployed during the Leonardo drone contest (see Fig-
ure 2) is a commercial drone Holybro X500 customized for our par-
ticular application, of dimension 750 × 750 × 370 millimeters, with
a weight of 1530 grams, and is powered with a 6200 mAh battery.
The quadcopter is endowed with a Pixhawk 4 [101] computational
unit running the PX4 Autopilot [100]. Besides this unit, the UAV car-
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Figure 2: Developed drone used during the Leonardo drone contest.

ries a Jetson Xavier NX companion computer responsible for running
all control, planning, localisation, and perception algorithms. All the
developed algorithms are tightly integrated inside a ROS network
and exchange messages with the Pixhawk computational unit via
MAVLink interface [83]. The chosen sensor suite consists of a 9-axis
Inertial Measurement Unit (IMU), inclusive of accelerometers, gyro-
scopes, and magnetometers, and two stereo cameras pointing back-
ward and forward, respectively. The sensor suite is intentionally poor
and GPS free, to let the robot navigate in GPS-denied environments
such as indoor areas, and to keep the overall platform cost low. The
overall quadcopter comprising of all sensors and computational units
weights 1960 grams and has a payload of 500 grams at 60% of throttle.

1.4 contributions

The contribution of this thesis is twofold, on one side it is meant
to present and describe a practical software solution to the problem
of autonomous navigation in unknown, or partially known, environ-
ments. Such a solution has been extensively tested and validated in
real scenario experiments and presented as a final UAV architecture
during the Leonardo drone contest (see Section 1.2). The proposed
solution is often built upon existing stat-of-the-art algorithms prop-
erly modified and robustified to cope with the strong real-time and
reliability requirements imposed by the contest. A reader only inter-
ested in the aforementioned architecture hardly finds a smooth dis-
cussion of all software modules. The thesis presentation is in fact in-
tentionally left unstructured, although the chapters sequence remark
the localisation-planning-control pipeline, each chapter decomposes
the problem at hand and in addition to providing a practical solution,
it aspires to present innovative ideas and contributions. This is the
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second contribution of this thesis that, for each aspect of autonomous
navigation, tries to improve the current state-of-the-art by leveraging
on solutions which reduce, or eliminate, the major limitations of the
most popular algorithms.



2
Q U A D R O T O R M O D E L I N G A N D C O N T R O L

In this chapter we briefly collect and review the “golden standards”
in quadcopter modeling and control, borrowing the formalism and
the results from [42, 44, 75, 102, 128, 137, 138]. The chapter unfolds
as follows, in Section 2.1 we develop the quadrotor dynamical model,
in Section 2.2 we describe a very useful property of the developed
model known as differential flatness. Then in Section 2.3 we briefly
describe two possible quadcopter control approaches. This chapter is
intentionally poor in terms of scientific contribution as it is meant
to introduce the reader to the complex world of quadcopter motion
planning and control.

2.1 quadrotor modeling

Let I = {eI1 , eI2 , eI3 } denotes a right-hand inertial frame stationary
with respect to the earth and such that eI3 denotes the vertical direc-
tion downwards into the earth. Let the vector ξ = (x, y, z)⊤ ∈ R3

denotes the position of the centre of mass of the object in the frame
I relative to a fixed origin OI ∈ R3. Let B = {eB1 , eB2 , eB3 } be a body-
fixed reference frame whose center coincides with the center of mass
of the vehicle and such that eB3 is in the opposite direction of thrust
generation. The attitude of the body-fixed frame is represented by a
rotation matrix R ∈ SO(3) : B 7→ I , with SO(3) the Special Orthog-
onal group of dimension 3. Applying the Newton-Euler equations to
the system, it is possible to retrieve the translational and rotational
kinematics

ξ̇ = v,

Ṙ = RS (ω) ,
(1)

with ω ∈ R3 and v ∈ R3 denoting the vector of coordinates of the an-
gular velocity and the linear vehicle velocity with respect to I , while
S (ω) denotes the skew-symmetric matrix associated with the vector
ω, and the translational and rotational dynamics

v̇ = m−1 f ReI3 − geI3 ,

ω̇ = −S(ω)ω + J−1τ,
(2)

with m ∈ R and J ∈ R3×3 being the quadrotor mass and inertia
matrix with respect to the frame B, g ∈ R the gravity acceleration,
f ∈ R the collective thrust generated by the four rotors, and τ ∈
R3 the torque vector expressed in the frame B. The system inputs

11
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are the collective thrust f and the torque vector τ which are directly
generated by the rotation of the four rotors. In particular, each rotor
has an angular speed ωi and produces a force, Fi, and moment, Mi,
according to

Fi = kFω2
i , Mi = kMω2

i ,

therefore the control input to the system can be expressed as
f

τx

τy

τz

 =


kF kF kF kF

0 kFL 0 −kFL

−kFL 0 kFL 0

kM −kM kM −kM




ω2
1

ω2
2

ω2
3

ω2
4

 ,

with L ∈ R the distance from the axis of rotation of the rotors to
the center of the quadrotor. For further details about the modeling
of the constants kF ∈ R and kM ∈ R the reader is referred to [75].
Equations (1) and (2) express the system dynamics with the aid of the
rotational matrix R, the same equation can be equivalently expressed
using the quaternion dynamics as

ξ̇ = v,

q̇ = 0.5Λ(ω)q,

v̇ = m−1 f R(q)eI3 − geI3 ,

ω̇ = −S(ω)ω + J−1τ,

(3)

with

R(q) =


1 − 2(q2

y + q2
z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) 1 − 2(q2
x + q2

z) 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1 − 2(q2
x + q2

y)

 ,

and the matrix Λ ∈ R4×4 defined as

Λ(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 .

In the aforementioned relation q ∈ H is the normed quaternion atti-
tude vector. Overall the state of the system is given by the position
and velocity of the center of mass and the orientation (locally param-
eterized by Euler angles) and the angular velocity

x =
(

x, y, z, vx, vy, vz, ϕ, θ, ψ, ωx, ωy, ωz
)⊤ .
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2.2 differential flatness

In this section we recall the results of [102] showing that the quadro-
tor dynamics (1)-(2) is differentially flat [148], i.e. the states and the
inputs can be written as algebraic functions of four carefully selected
flat outputs and their derivatives. This is a fundamental result as it
can ease a lot the process of trajectory generation and optimisation,
since any smooth trajectory (with reasonably bounded derivatives)
in the space of flat outputs can be followed by the underactuated
quadrotor. Let σ = (x, y, z, ψ)⊤ the selected set of flat outputs, with
ξ = (x, y, z)⊤ coordinates of the center of mass in the world coordi-
nate system and with ψ the yaw angle, and define σ(t) as a smooth
curve in the space of flat outputs

σ(t) : [0, TF] 7→ R3 × SO(2),

then the objective is to show that the state of the system and its con-
trol inputs can be rewritten in terms of σ(t) and its derivatives. First
of all, the position and velocity of the center of mass are simply the
first three terms of σ and σ̇. In order to reconstruct R as a function of
the selected flat outputs, let us define it as R = IRC CRB where IRC
represents the yaw rotation to the intermediate frame C and CRB rep-
resents the effect of roll and pitch. In this setting, considering Equa-
tion (2), we can write

eB3 =
m
f
(
σ̈x, σ̈y, σ̈z + g

)
, (4)

which defines the body frame z-axis of the quadrotor. From the yaw
angle, σ4 = ψ, we can derive the unit vector

eC1 = (sin (σ4) , cos (σ4) , 0)⊤ ,

while eB1 and eB2 can be determined as

eB2 =
eB3 × eC1∥∥eB3 × eC1

∥∥ , eB1 = eB2 × eB3 ,

provided that eB3 × eC1 ̸= 0. Finally, the rotational matrix R is uniquely
determined as

R =
(

eB1 , eB2 , eB3
)

.

Now, take the first derivative of Equation (2)

v̈ = m−1
(

ḟ eB3 + ω × f eB3
)

,

projecting this equation along eB3 and using the fact that ḟ = eB3 · mv̈,
we can define the vector h ∈ R3 as

h = ω × eB3 =
m
f

(
v̈ −

(
eB3 · v̈

)
eB3
)

.
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In this settings, h is the projection of m
f v̈ along the eB1 − eB2 plane. Thus,

decoposing ω into its components ω = peB1 + qeB2 + reB3 , we can write

p = −h · eB2 ,

q = h · eB1 ,

r = σ̇4eI3 · eB3 .

Finally, the components of the angular acceleration α are found by
computing the second of derivative of Equation (2) and following
the same procedure as above. Having σ, ω, and α at hand we can
exploit Equation (2) and Equation (4) to directly compute the inputs
f and τ.

2.3 quadrotor control

The literature is cluttered with works about the stabilisation and con-
trol of aerial vehicles such as quadcopters. In the first stage, given the
unstable nature of the quadrotors, the initial works were focused on
achieving stable hovering and near-hover flights. Thanks to the small-
angle assumptions in these conditions, linear control methods such
as PID and LQR demonstrate sufficiently good performance [37, 79].
However, as increased the necessity to push these platforms toward
the boundaries of their dynamical capabilities, these assumptions
were no longer valid. In particular, the nonlinearities coming from
the attitude dynamics were no longer negligible, for this reason re-
searchers started developing controllers based on feedback lineariza-
tion [153], backstepping [92], and geometric properties [87]. Once the
differential flatness property has been revealed [102], the differential
flatness-based controller becomes the most used regulator for trajec-
tory tracking, as it showed the best tracking performance at relatively
high speeds [42, 138]. Besides that, recently, some studies started us-
ing Model Predictive Controls (MPCs), jointly with the full quadrotor
dynamics, to compute optimal control inputs able to both stabilise
the quadcopter flight and track a given reference trajectory [12, 48,
142]. These methods either directly use the optimized single rotor
thrust commands [12] or send intermediate states from the solution
(such as the angular rates) to a low-level controller [48, 142]. A recent
study [48] demonstrates the ability of the full-model MPC with a PID
low-level controller in tracking a pre-planned race trajectory at speed
up 20m/s which surpasses the top speed of 12.9m/s reported in [138]
using a differential flatness-based controller, in spite of a much larger
tracking error.

In this chapter, we briefly review these two main used control tech-
niques based on the flatness property explained in Section 2.2 and on
the MPC tool. In the particular case of the Leonardo drone contest,
we employed a non-linear model predictive controller encoding the
full quadrotor dynamics (3).
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2.3.1 Differential Flatness-Based Controller

Let define the errors on position and velocity as

eξ = ξ − ξref, ev = v − vref,

then the desired force vector is

Fdes = −Kξeξ − Kvev + mgeI3 + mv̇ref,

where Kξ and Kv are positive definite gain matrices. In order to com-
pute the desired force for the quadrotor, that correspond to the first
input f , we simply project the desired force vector onto the actual
body frame z-axis

f = Fdes · eB3 .

To determine the other three inputs, we must consider the rotation
errors. First, observe that the desired eB3 direction is along the desired
thrust vector

eB3des
=

Fdes

∥Fdes∥
,

thus the desired rotation is given by

Rdese3 = eB3des
,

with e3 = (0, 0, 1)⊤. Knowing the specified yaw angle along the tra-
jectory, ψ(t), we can compute eB1des

and eB2des
as

eC1des
= (cos (ψ) , sin (ψ) , 0)⊤ ,

and

eB2des
=

eB3des
× eC1des∥∥∥eB3des
× eC1des

∥∥∥ , eB1des
= eB2des

× eB3des
.

provided that eB3des
× eC1des

̸= 0. Next, define the error in orientation

eR = 0.5
(

R⊤
desR − R⊤Rdes

)∧
,

where Rdes =
(

eB1des
, eB2des

, eB3des

)
and ∧ represents the vee map which

takes elements of so(3) to R3. The angular velocity error is simply the
difference between the actual and desired angular velocity in body
frame

eω = ω − ωref,

then the desired moments can be computed as

τ = −KReR − Kωeω,

where KR and Kω are diagonal gain matrices.



16 quadrotor modeling and control

2.3.2 Nonlinear Model Predictive Controller

Model predictive control generates control commands by solving a
finite-time Optimal Control Problem (OCP) in a receding horizon
fashion. Given a reference trajectory, the cost function is the error
between the predicted states and the reference states inside the time
horizon, meaning that multiple reference points in the time horizon
are used. In order to perform numerical optimizations, we discretize
the states and inputs into N equal intervals over the time horizon
ρ ∈ [t, t + h] of size ∆t = h/N with h denoting the horizon length,
yielding a constrained nonlinear optimization problem

u = arg min
u

N−1

∑
k=0

(
∥xk − xk,ref∥Q + ∥uk − uk,ref∥R

)
+ ∥xN − xN,ref∥QN

sub.to. xk+1 = f (xk, uk) ,

x0 = xinit,

u ∈ [umin, umax] ,

ω ∈ [ωmin, ωmax] ,

where the state vector is defined as x =
(

ξ⊤, v⊤, q⊤, ω⊤
)⊤

, the in-

put vector as u =
(

f , τ⊤)⊤, and Q, R, and QN are positive definite
matrices that shape as

Q = diag
(
Qξ , Qv, Qq, Qω

)
, R = diag

(
Q f , Qτ

)
, QN = Q.

The reference state vector xref and input uref can be obtained from a
trajectory generator procedure as described in the next chaptes, while
the function f (xk, uk) is the discretized version of the full nonlinear
quadrotor model (3).

Remark 2.3.1. In the above optimization problem, the following abuse of
notation is used when calculating quaternion error

q − qref = q ⊗ q−1
ref

The above MPC solves the full nonlinear model of a quadrotor,
instead of resorting to a cascaded structure, or linear assumptions.
The solution presented during the Leonardo drone contest resorts on
this control thecnique, where the quadratic nonlinear optimization
problem is solved by a Sequential Quadratic Programming (SQP) al-
gorithm executed in real-time. The algorithm has been implemented
using ACADO [0] toolkit with qpOASES [0] as solver.
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3
E N V I R O N M E N T M A P P I N G A N D L O C A L I S AT I O N

3.1 the framework

The problem of Simultaneous Localisation And Mapping (SLAM) is
related to the issue of concurrently estimating the robot position, in a
local or global reference system, and mapping the obstacles, or visual
clues, present in the environment under exploration. SLAM is the
process by which a robot builds a map of the environment and, at the
same time, uses this map to compute its location, as the reader can
conceive such a problem undergoes the so-called chicken-egg dilemma
as a map is needed to perform localisation, but a pose estimation is
necessary to build the map. To enable planning and navigation a reli-
able and resilient localisation is of fundamental importance as it can
provide the reference systems necessary to ground the onboard drone
intelligence. Such a problem has been widely studied and a large
number of solutions have been presented along the literature, for a
large number of different sensors, starting from frame monocular [49,
107, 125] and stereo cameras [20, 58, 108], to event cameras [150],
and LiDAR sensors [19, 80, 162, 163, 168]. In the specific case of the
Leonardo drone contest (see Section 1.2), the autonomous robot was
required to perform SLAM with some apriori information at hand, as
the environment under exploration was already mapped by means of
user-friendly tools, and a three-dimensional geometrical reconstruc-
tion was made available for the robot. In these settings, the only way
to localise inside the precomputed environment reconstruction was
to exploit the endowed stereo camera to build a local pointcloud,
via stereo matching, and match it with the provided 3D map, in a
purely LiDAR SLAM paradigm [19, 80, 162, 163, 168]. At the same
time, visual SLAM approaches, as well as the build pointcloud, could
have been used to enrich the initial map with new details useful to
improve the localisation stability. Following the latter intuition, we
choose to deploy two different SLAM solutions working in parallel
on two different sets of data. On one side, we employ state-of-the-art
visual-inertial-based SLAM approaches to estimate the robot motion
with respect to an odometry frame [107, 125], by means of hardware-
calibrated stereo images, while, on the other hand, we borrow from
the LiDAR SLAM field the idea of pointcloud matching to precisely
align the sensed pointcloud with the apriori provided map.

In this chapter we review and adapt a novel pointcloud match-
ing algorithm, designed for LiDAR-based localisation, to the case of
quadrotor localisation in cluttered environments using limited FoV
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sensors, such as stereo cameras. For further details the reader is re-
ferred to the original work [19].

3.1.1 Related Works

The literature is cluttered with works trying to solve both the prob-
lems of LiDAR odometry and SLAM, although very few of them
deeply discuss the problem of map-based localisation, considering it
a sub-class of problem strictly related to the SLAM one. A recent com-
prehensive review of LiDAR-based localisation solutions for ground
vehicles can be found in [39]. The basic idea, on which most of the
solutions are grounded, is to register (aka match) the current LiDAR
reading into a local submap, being it composed by the last LiDAR
measure or a collection of data from previously registered points. As
the reader can conceive, matching every point of the LiDAR data
with every point of the current map is a process that quickly grows
and reaches infeasibility due to the limited computation capabilities
available, especially onboard drones. To overtake this limitation, most
state-of-the-art solutions make use of geometric features such as cor-
ners or planes directly extracted from the sensors pointcloud [26, 88,
168]. The key idea is to select points or areas that are easy to identify
and match when reviewed again from a different perspective, point
of view, or distance. LOAM [168] exploits exactly this idea, as it ex-
tracts point features on sharp edges and planar surfaces and matches
them between consecutive scans. On the other hand [38] uses a sim-
ilar approach, pointcloud segments and descriptors are used to per-
form localisation; while MULLS [115] tries to increase the localisa-
tion accuracy by combining a feature-based front-end SLAM with a
multi-cetric ICP for map alignment. Although feature-based LiDAR-
to-map registration approaches show very good results with low com-
putational burden, they may fail in poor texture scenes, or when
multiple occlusions happen. Iterative Closest Points (ICP)-based ap-
proaches [24] showed better performance and robustness with respect
to the aforementioned issues, as their use the raw pointcloud for reg-
istration, and no features or interest points are extracted. This accu-
racy and stability come at the price of a high computational burden,
especially when dealing with large pointcloud maps. Moreover, the
ICP convergence strongly depends on the quality of the provided
initial pose estimation. In the literature can be found a bunch of
works aiming to approximate the neighbors search procedure [40,
105], which turns out to be the major computational bottleneck. While
many ICP variants have been proposed to improve the global robust-
ness against noise or bad initialization by means of new criteria as
Branch-and-Bound in GO-ICP [167], or reformulating the ICP prob-
lem as Expectation-Maximization in EM-ICP [60], or as a Truncated
Lest Squares in TEASER [166]. The Normal Distribution Transform
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(NDT) was the first approach to propose nearest-neighbor-free solu-
tion for pointcloud registration [66, 93] allowing for very high ac-
curacy while avoiding the computational burden induced by ICP ap-
proaches. The NDT is used to encode both scan and map using a prob-
abilistic representation. Registration is then performed between these
representations and not the original scans. Such a representation al-
lows for numerical optimization methods, and does not require ex-
pensive nearest-neighbor search procedures. Recently, [19] proposed
a direct approach for registration, where the raw pointcloud is regis-
tered inside the map in a nearest-neighbor-free fashion. The registra-
tion is reformulated as a non-linear least square optimisation problem
which aims to minimise the scan points distance to the current envi-
ronment map continuously maintained as a Euclidean Signed Dis-
tance Field (ESDF).

3.2 an optimization-based localization approach

3.2.1 Problem Formulation

Let M = {eM1 , eM2 , eM3 } denotes a right-hand inertial frame asso-
ciated with the provided three-dimensional reconstruction, and let
S = {eS1 , eS2 , eS3 } be a sensor-fixed reference frame, rigidly attached
to the body-fixed one B by means of a static transformation BTS =[BRS , {tS}B

]
∈ SE(3), with SE(3) the Special Euclidean group of

dimension 3. Assume that the endowed sensor, being a stereo-frame
camera in the Leonardo drone contest case, streams as output a point-
cloud {PCk}S = {{pk

0}S , {pk
1}S , . . . , {pk

Nk
p
}S} at each timestamp k ∈

R≥0, consisting of Nk
p points {pk

i }S ∈ R3 expressing the obstacles
position in the sensor reference frame S . Moreover, assume that a
map of the environment is also available as a pointcloud {PCk}M =

{{pk
0}M, {pk

1}M, . . . , {pk
Nk

m
}M}, where each point {pk

i }M is static in-
side the interval [k, k + 1]. In this setting, the localisation goal is to
find the transformation MTS =

[MRS , {tS}M
]
∈ SE(3) that better

aligns {PCk}S with {PCk}M. In other terms, the goal is to find out
the minimiser of the optimisation problem

arg min
MTS

Nk
p

∑
i=0

∥∥∥∥∥MTS{pk
i }S − arg min

{pk}M

∥∥∥MTS{pk
i }S − {pk

j }M
∥∥∥2
∥∥∥∥∥

2

, (5)

where

arg min
{pk}M

∥∥∥MTS{pk
i }S − {pk

j }M
∥∥∥2

represents the map point closest to MTS{pk
i }S . Solving the aforemen-

tioned problem needs to deal with two major challenges, first how to
determine the closest map point, and then how to solve a massively
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overdetermined non-linear optimization problem. ICP solutions work
by iteratively searching for pairs of nearby points in the two point-
clouds and minimising the sum of all point-to-point distances, while
NDT approaches model the pointclouds as combinations of normal
distributions instead of individual points, describing the probability
of finding a point at a certain position. The latter piecewise smooth
representation allows for standard numerical optimisation methods
for registration. Since the major bottleneck in registration is repre-
seted by the nearest neighbor search, NDT solutions generally work
better, with high performance. For this reason, [19] follows the same
NDT idea, and converts the registration process in a non-linear opti-
mization problem where pointclouds are modeled as Euclidean dis-
tance fields. Let dk (p) : R3 7→ R be the ESDF build up with the map
points {PCk}M at time k, then (5) boils down to

arg min
MTS

Nk
p

∑
i=0

dk
(
MTS{pk

i }S
)2

. (6)

The map dk (p) is everywhere continuous and smooth, except to the
object boundaries where the gradient is discontinuous [73], so the
aforementioned optimisation problem can be solved using off-the-
shelf non-linear least squares solvers (eg. Ceres [8]).

Remark 3.2.1. Due to the high nonlinearities encoded in (6), its conver-
gence to the global optimum is ensured only in front of good enough initial
conditions. To overtake this problem, a state-of-the-art visual-inertial-based
SLAM approach has been employed to estimate the robot motion between
two different time instants k and k + 1, in order to supply (6) with a very
good initial condition.

Remark 3.2.2. When dealing with (6), it is of fundamental importance to
keep care about possible outliers. In particular, the sensed pointcloud may
contain objects not mapped yet, such as dynamic obstacles that can cross the
environment, or previously unmapped static obstacles, or may contain points
that fall outside the map bounds. At the same time, the sensed pointcloud
may be affected by noise and can contain many points that do not belong to
any object in the scene. To overtake these problems three actions have been
taken to improve the solver convergence

1. The sensed pointcloud is pre-elaborated with a bunch of downsampling
and outliers removal filters.

2. A robust Cauchy kernel is applied to each loss factor in (6), in order
to penalize large costs induced by outliers and not matched points (in
the nearest neighbor sense).

3. If a point lies outside the map, the ESDF returns a zero value, pro-
ducing both error and gradient equal to zero to avoid affecting the
optimization process.
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3.2.2 Signed Distance Field Computation

As emerges from the previous section, [19] encodes the ESDF in-
side the optimisation problem (5) in place of the nearest neighbor
search, to speed-up its solution. This choice has the advantage to
avoid heavy nearest neighbor searches, at the expense of ESDF com-
putation, which can turn out to be very computationally expensive
for large environments. As a matter of fact, [19] proposes to build-
up the Euclidean field offline, and assume the environment to be
static, so the precomputed map is always valid. Such an assumption
is clearly not satisfied in the Leonardo drone contest settings (Sec-
tion 1.2), thus we require to build and adapt the signed distance on-
line to account for environments modifications. Although along the
literature there exist several different approaches to compute ESDFs,
both in discrete [62, 113], and continuous settings [122, 136, 160], none
of these is able to cope with prior map information, so we propose a
novel structured approach able to account for previous maps and to
locally modify the computed ESDF to cope with environment mod-
ifications. Unlike state-of-the-art approaches, our method assumes a
bounded map and is able to add and remove newly sensed obstacles,
but is unable to remove previously already mapped objects.

The proposed ESDF computation follows two steps. In the first of-
fline stage it builds up the distance field of the apriori mapped envi-
ronment, to do so the overall environment is discretised with a fixed
resolution ∆ =

[
∆x, ∆y, ∆z

]
, then each cell grid ξi ∈ R3 is filled with

the squared distance of the closest map point {p0}M

min
{p0}M

∥∥∥ξi − {p0
j }M

∥∥∥2
.

The latter nearest neighbor search is performed via FLANN KDTree
search [106].

Remark 3.2.3. The built FLANN KDTree is kept maintained in memory
and used later for ESDF online adaptation.

The second step is performed online, at each new sensor update,
the incoming cloud {PCk}S is downsampled and filtered against pos-
sible outliers, then it is converted in map coordinate via the estimated
transformation MTS and inserted inside an octree probability occu-
pancy map [67], build-up with the same discretisation resolution ∆.
The latter insertion is fundamental to robustify the approach both in
terms of sensor noise and possible localisation errors. All previously
free cell grids branded as occupied, and all previously occupied cells
branded as free are grouped into two vectors and used for the distance
field update.

From free to occupied.
A new (very small) FLANN KDTree is build out of the provided
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point vector, then each ESDF cell grid is updated with the mini-
mum between the current cell value and the distance computed
over the last built KDTree.

From occupied to free.
Two new (very small) FLANN KDTrees are build out of the
provided point vector, and the current occupied voxels from
the occupancy map. Then each ESDF cell grid is updated with
the minimum between the original map distance and the one
evaluated on the occupancy map KDTree, only if the current cell
value matches with the distance evaluated on the point vector
KDTree.

The first step explains the insertion procedure, which turns out to
be very easy, as each cell grid is replaced with the new minimum
distance, while the second step analyzes the removal procedure. In
the latter step, the point vector KDTree is used to identify each map
cell affected by the removal, then it is updated with the minimum
between the original map distance and the distance evaluated on the
new sensed obstacles.

Remark 3.2.4. Due to the discrete nature of the adopted ESDF, the map
dk (p) presents discontinuities at the cell borders, losing the required smooth-
ness to let (6) converge properly. To overtake this limitation we approximate
the real value of dk (p) via trilinear interpolation.

Remark 3.2.5. The overall approach can be speeded-up by restricting the
occupancy points insertion to only those that do not belong to previously
mapped obstacles (i.e. belong to new scene objects).

Remark 3.2.6. The proposed approach is not able to deal with the removal
of previously mapped obstacles that have been moved, leaving the previously
occupied space free. This represents a strong limitation in the case of high
dynamic scene, where obstacles may continuously change their location, but
on the other hand, this assumption leads to a conservative solution suitable
for our case of study.

3.3 contributions

This chapter is devoted to discuss the problem of localisation and
mapping in dynamic scenarios where some apriori information, in
the format of three-dimensional geometrical reconstruction, of the
navigating environment was provided. The discussion unfolds by
first reviewing the current state-of-the-art solutions both in terms of
SLAM, occupancy mapping, and ESDF reconstruction, then we pro-
pose the adaptation of the most promising solution, to the quadcopter
navigation case, where stereo-frame cameras are used to retrieve a
pointcloud reconstruction of the surroundings. The selected solution
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is then extended to dynamic environment scenarios via a novel struc-
tured approach to continuously update the computed ESDF. The pro-
posed solution has the limitation of obstacle removal, as it is not able
to remove objects scene already mapped inside the initial geometrical
reconstruction. The proposed localisation approach has been success-
fully developed and deployed inside the Leonardo drone contest.





4
E N V I R O N M E N T E X P L O R AT I O N

4.1 the framework

The ability to autonomously plan and execute informative trajectories
in previously unknown, or partially known, environments is a funda-
mental requirement for mobile robots. As a matter of fact, they started
to be employed in a huge number of different applications which
require the ability to efficiently collect new information about the
surroundings, such as surface inspection, object search, weed recog-
nition, search and rescue missions, and others. The problem of Infor-
mative Path Planning (IPP), jointly with the problem of environment
exploration, has been extensively studied in literature and a wide va-
riety of approaches have been proposed so far. The majority of recent
works had focused on novel hybrid approaches leveraging the inter-
play between the concepts of local and global exploration [130, 132]. In
particular, the major issue behind such works is related to how effi-
ciently combine the two local and global exploration steps, and how
to plan highly informative global paths out of the current environ-
ment information. A limited number of papers focused on improv-
ing the local exploration step [132]. On the other hand, the necessity
to push the autonomous platform always toward unknown frontiers
limited the research of solutions where the environment is a priori
known, or partially known, and the agent should perform patrolling-
like operations [31]. In this chapter, we present two novel approaches
aiming, in the first stage, to push the current state-of-the-art toward
more smooth and resilient solutions for local exploration in cluttered
and possibly varying environments, and, in the second stage, to adapt
global exploration tools to the problem of fast environment patrolling
and object search.

4.1.1 Related Works

Although the number of solutions presented in the literature is quite
variegated, the majority of them can be classified as frontier-based or
sampling-based methods. The former class was pioneered in [165] and
later more comprehensively developed in [74]. The key idea is to
guide the agent toward the borders between free and unmapped
space (aka frontiers), since these points may represent those with
higher potential information gain. Exploration is then carried out by
extracting the map frontiers and by navigating through them sequen-
tially. Several works propose to extend it by adding constraints to en-

27
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sure low localization errors [135]. The basic frontier-based approach
has been also extended to high-speed flight for fast exploration in [27].
In this case, the authors propose to extract frontiers only inside the
current Field-Of-View (FoV) and select the one leading to the mini-
mal change in velocity. In recent years, other works focused on rapid
exploration [173], by planning global coverage paths and optimising
them with respect to the robot dynamics, and on the reformulation of
the frontier information gain as a differentiable function [34], allow-
ing paths to be optimised with gradient information. On the other
hand, sampling-based methods typically sample random viewpoints to
explore the space in a Next-Best-View (NBV) fashion [28, 96]. Much
of the work in this domain can be traced back to [59], where the NBV
problem has been moved for the first time from the computer graphic
field to the robotic domain, with the introduction of the notion of
reconstruction gain. The concept of NBV exploration has been after-
ward extended by [16], where the building of a Rapidly-Exploring
Random Tree (RRT) allows one to weigh both the amount of informa-
tion gained at the viewpoints and during the agent motion to reach
each viewpoint. Unlike frontier-based methods, which are difficult
to adapt to other tasks, the sampling-based ones have the advantage
to allow any kind of gain formulation. Thanks to that, the original
NBV algorithm was extended to consider the uncertainty of localisa-
tion [116, 143] and the visual importance of different objects [32]. On
the other hand, sampling-based methods suffer from stacking in local
minima, leading to a premature ending of the exploration procedure
in unlucky scenarios. For this reason, the recent trend is to merge the
two frontiers and sampling-based approaches in a local-global explo-
ration fashion. The pioneer of this idea was [22], which makes use
of a frontier method to detect global goals and supplements these
with motion primitives for local exploration. More recent approaches,
instead, leverage the capabilities of sampling-based methods and em-
ploy additional planning stages to escape from local minima [30, 132].
Other approaches focus on memorising previously visited places and
sampled information under the format of roadmaps [158, 164]. Sim-
ilarly, the work presented in [130] continuously maintains and ex-
pands a single RRT of candidate paths. Although the literature has
seen some impressive works in the field of NBV, there are very few
works concentrating on fast exploration. Even if previous solutions
are able to quickly plan global coverage paths [82, 130, 164], the prob-
lem of efficient trajectory planning is rarely addressed. Both under
the perspective of local exploration and the patrolling, or object find-
ing, problem.
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4.1.2 Problem Definition

The problem addressed in this chapter consists of exploring, as fast as
possible, a bounded 3D volume V ⊂ R3. Each point x = (x, y, z) ∈ V
of this space can take only two values, i.e. free or occupied, and the
problem of exploration ideally consists of clustering the volume V
in the free Vfree = {x ∈ V | Γ(x) = free} or occupied Vocc = {x ∈
V | Γ(x) = occ} volumes, with a mapping function Γ(x) : V 7→
{free, occ}. Since this operation is subjected to the agent constraints
and its sensing capabilities, it may happen that some map point can-
not be observed by construction. These points will remain unmapped
and, for this reason, we introduce a further set Vres collecting the
residual points that cannot be observed. Thus, the exploration will be
considered complete when Vfree ∪ Vocc = V \ Vres. Due to the nature
of the problem, it has to be solved in real-time by planning suitable
safe trajectories through the free space which is not known a priori.

4.2 large-scale environments exploration

In this section, we propose a novel solution to the aforementioned
exploration problem (Section 4.1.2) in a setting where timing is the
major issue during the task of completely unknown environment ex-
ploration. The basic idea behind the proposed solution is that efficient
local procedures allow for a very high speed up in the overall task.
Although the global-local paradigm is fundamental to ensure consis-
tency and completeness of the exploration procedure, it is not the
key to compute efficient exploration paths, due to the fact that the
switching between local and global may lead to a waste of time, re-
quiring the agent to change direction very frequently. On the other
hand, optimising local trajectories with respect to the agent capabil-
ities and the locally gathered information of the environment under
exploration may lead to faster motions, low energy consumption, and
lower waste of time. This is especially true when dealing with Un-
manned Aerial Vehicles (UAVs), whose high maneuverability moti-
vates solutions able to stress the quadrotor to fully exploit both its
computational and dynamical capabilities. Similarly to [132] and [16],
the core of the proposed solution consists of an RRT-inspired [84]
sampling-based exploration algorithm that aims to directly plan highly
informative feasible trajectories in known space, leading to an opti-
mal local exploration procedure. The obtained tree is executed one
node at a time, in a receding-horizon fashion. Unlike previous works,
our algorithm employs a Bézier curve parameterisation to grow and
maintain a tree of possible trajectory segments. The proposed ap-
proach weights both potential information gain and trajectory cost
during the selection of the next goal. Moreover, the planned trajectory
does not constrain the end velocity to zero, thus the exploration can
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be performed quickly by avoiding “stop-and-go” like behaviors. Moti-
vated by the promising results obtained using hybrid approaches [132],
we allow adaptability of the proposed solution by letting the tree be
easily extended with global exploration routines. In particular, we
implemented efficient rewiring procedures in order to keep in mem-
ory and continuously refine the same tree, following the ideas of
roadmaps memorisation [164] and continuous tree expansion [130].
We show that the combination of the planning of both path and the
associated timing law leads to a solution outperforming the state-of-
the-art approaches in this field, which usually plans point-to-point
trajectories requiring stopping the robot at each exploration step.

4.2.1 Bézier Trajectory Parameterisation

In this framework, instead of using traditional polynomial functions,
we adopt the Bernstein polynomial basis and define trajectories as
piecewise Bézier curves. A Bézier curve is completely defined by its
degree p and a set of m = p + 1 control points CP =

[
q0 · · · qp

]
, with

qi ∈ R. The curve can be evaluated, for any u ∈ [0, 1], as

s (u) =
p

∑
i=0

Bp
i (u) qi, (7)

where the basis functions Bp
i (u) are pth degree Bernstein basis polyno-

mials [11, 46] of the form

Bp
i (u) =

p!
i!(p − i)!

ui(1 − u)p−i.

A gentle introduction to Bézier curves can be found in Appendix A,
to seek of clarence we report here the major properties required to
properly understand the subsequent analysis. The aforementioned
polynomials enjoy a partition-of-unity property (i.e. ∑

p
i=0 Bp

i (u) = 1
for all u), by which the curve defined by Equation (7) is constrained
inside the convex hull generated by its control points CP . More-
over, a p-degree Bézier curve is always p times differentiable and its
derivatives preserve a Bézier structure of lower degree. In particular,
s′ (u) := ds/du is a Bézier curve of order p − 1 whose control points
CP ′ can be evaluated as q′

i = p
(
qi+1 − qi

)
∀i = 0, . . . , p − 1. The over-

all quadrotor reference trajectory can be expressed through the evo-
lution of its flat outputs [102], as explained in Section 2.2, σ = [r, ϕ]⊤,
where r = [x, y, z]⊤ ∈ R3 represents the coordinates of the center of
mass in the world coordinate system, while ϕ ∈ R is the yaw angle.
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Both the quantities r and ϕ are expressed as l-segments piecewise
Bézier curves of order pr and pϕ, respectively

r (t) =



∑
pr
i=0 Bpr

i (ζ1)r1
i t ∈ [T0, T1],

∑
pr
i=0 Bpr

i (ζ2)r2
i t ∈ [T1, T2],

...
...

∑
pr
i=0 Bpr

i (ζl)rl
i t ∈ [Tl−1, Tl ],

ϕ (t) =



∑
pϕ

i=0 Bpϕ

i (ζ1)ϕ
1
i t ∈ [T0, T1],

∑
pϕ

i=0 Bpϕ

i (ζ2)ϕ2
i t ∈ [T1, T2],

...
...

∑
pϕ

i=0 Bpϕ

i (ζl)ϕ
l
i t ∈ [Tl−1, Tl ],

with ζi =
t−Ti−1
Ti−Ti−1

. The quantities rj
i ∈ R3 and ϕ

j
i ∈ R describe the ith

control point of the jth trajectory segment of r(t) and ϕ(t) respectively,
while Tj−1 and Tj are the start and end time of the jth trajectory seg-
ment. Note that the introduced time scaling does not affect the spatial
path described by the Bézier curve, but strongly affects its derivatives
as

r′ ji =
pr(r

j
i+1 − rj

i)

Tj−1 − Tj
∀i = 0, . . . , pr − 1,

ϕ′ j
i =

pϕ(ϕ
j
i+1 − ϕ

j
i )

Tj−1 − Tj
∀i = 0, . . . , pϕ − 1.

The convex hull containment property is a powerful tool to verify
both the trajectory feasibility in terms of dynamic constraints, such
as velocity or acceleration bounds, and to check for collisions. Fig-
ure 3a reports the classical condition used for collision checking with
Bézier curves [139], where the overall curve is constrained inside a
safe sphere. The aforementioned approach often results in being too
conservative, as a matter of fact the considered sphere is far to be tight
over the convex hull, and thus over the curve itself. For this reason
we formulate a new proposition that represents a less conservative
tool to verify collision (see Figure 3b).

Proposition 4.2.1. Let r (u) be a Bézier curve of order p, with control points
CP =

[
r0, . . . , rp

]
. Moreover, let ri ∈ R and ci ∈ R3 with i = 0, . . . , p be

respectively the radii and centre of p spheres (C0 . . . Cp), defined as:

ci = (ri + c)/2,

ri = ∥ri − ci∥ ,
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Figure 3: Representation of a fifth-degree Bézier curve with (a) the classical
sphere used for collision checking [139] (b) the proposed multiple
spheres envelope. The O shaded gray area represents a generic
obstacle.

with c be the centre of the convex hull generated by CP , i.e. c = ∑
p
i=0 ri/p.

Then the curve r (u) is entirely contained inside the spheres envelope, namely

r (u) ∈
p⋃

i=1

Ci ∀u ∈ [0, 1].

Proof. The proof follows from the fact that c belongs to the convex
hull and that the spheres envelope composed by Ci and Ci+1 always
contains the convex hull edge riri+1. The first statement is true by
construction, since c is a linear combination of ri, while the second
one follows from the triangle inequality

∥ri − ri+1∥ ≤ ∥ri − c∥+ ∥ri+1 − c∥ .

Proposition 4.2.1 states that the convex hull containment property
can be reformulated taking into account a set of p spheres. Since this
set of spheres results to be tighter around the curve with respect to
a single big safe ball, the use of this proposition in formulating a
new collision condition results in a less conservative approach. The
following proposition states the sufficient condition for non-collision
as a corollary of Proposition 4.2.1.

Proposition 4.2.2. Let r (u) be a Bézier curve of order p, with control points
CP =

[
r0, . . . , rp

]
. Moreover, let ci and ri with i = 0, . . . , p be the centre

and radii of p spheres defined as in Proposition 4.2.1. The curve r (u) is said
to be collision-free, with a safety bound of dsafe ∈ R+, if the condition

ri − dobs
ci

− dsafe > 0 ∀i = 0, . . . , p

holds, where dobs
ci

represents the Euclidean distance of ci from the closest
obstacle.
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From now on, we use fifth-order Bézier curves to represent the
quadrotor position (pr = 5), while the yaw trajectory is parameterised
using third-order Bézier curves (pϕ = 3).

4.2.2 Tree Structure

The proposed algorithm works by growing and maintaining, at each
iteration, a tree T = (N , E) of possible trajectories. Such tree con-
sists of a set of nodes N = {N1, . . . , NnN} and a set of edges E =

{Ei, . . . , EnE}. Each node Ni is completely defined by the following
five quantities

Ni =
{

gi, ci, δi, CP r
i , CPϕ

i

}
where gi = g (Ni) represents the amount of information gained if that
node is executed, and ci = c (Ni) is the cost associated to the node
execution. CP r

i and CPϕ
i are the two sets of control points defining

the trajectories ri(t) and ϕi(t), while δi is the execution time. Two
nodes Ni−1 and Ni are connected by an edge Ei−1 only if the first
(pr/ϕ + 1)/2 control points of the latter node satisfy some continuity
criterion with the last (pr/ϕ + 1)/2 control points of the former one.
This constraint is required to ensure continuity among all trajectory
segments of the tree. In particular, since pr = 5 and pϕ = 3, we enforce
continuity up to the third derivative along r(t) and continuity up to
the second derivative along ϕ(t), namely

ri
0 = ri−1

5 , (8)
1
δi
(ri

1 − ri
0) =

1
δi−1

(ri−1
5 − ri−1

4 ), (9)

1
δ2

i
(ri

2 − 2ri
1 + ri

0) =
1

δ2
i−1

(ri−1
5 − 2ri−1

4 + ri−1
3 ), (10)

ϕi
0 = ϕi−1

3 , (11)
1
δi
(ϕi

1 − ϕi
0) =

1
δi−1

(ϕi−1
3 − ϕi−1

2 ). (12)

The aim is to plan sub-optimal trajectories by maximising a user-
specified utility function J (R (Ni)), with R (Ni) be the sequence
of nodes connecting Ni to the tree root, which properly combines
gains and costs of all nodes in R (Ni). In this context, the tree root
is defined as the tree node which is about to be executed by the fly-
ing agent. It results that the agent behavior strongly depends on the
choice of functions g (Ni), c (Ni) and J (R (Ni)). The proposed algo-
rithm is agnostic with respect to these functions. Therefore, the user
can specify any formulation of them by ensuring that the following
criteria are satisfied [130]:

1. g (Ni) should be a function that depends on the trajectory end
position only (g

(
ri

5, ϕi
3
)
),
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2. all node gains should be mutually independent,

3. c (Ni) is required to be an intrinsic property of the trajectory
(c
(
CP r

i , CPϕ
i , δi

)
).

4.2.3 Tree Update

The tree, initially composed by just one root node, is iteratively ex-
panded by randomly sampling viewpoints inside a sphere centred on
the current best node (Nbest), namely the one among all tree nodes that
maximise the utility function J (·). In particular, the sphere is centred
exactly on the last control point of CP r

best, i.e. rbest
5 , while its radius

(rsp) is a user chosen value defined as a parameter for the algorithm.
The sampled viewpoint is retained only if it belongs to a known and
free part of the environment under exploration and, at the same time,
it is far enough from the mapped obstacles. Such viewpoint is con-
sidered as the last control point of the next trajectory segment (ri

5).
Moreover, due to Condition (8), also the control point ri

0 is already
defined to ensure position continuity. As regards the heading trajec-
tory, the first control point (ϕi

0) is established through Condition (11),
while the last one (ϕi

3) is chosen as the value that maximise the poten-
tial information gain g(ri

5, ϕ), namely

ϕ3
i = arg max

ϕ
g(ri

5, ϕ),

in a similar way as done in [132]. The choice of the remaining points
(CP r

i [1 : 4], CPϕ
i [1 : 2]) and the trajectory duration (δi) is performed

concurrently. In particular, the interval of admissible trajectory dura-
tion ∆ = [δmin, δmax] is uniformly discretised as

∆d = {δmin, δmin + ∆δ, δmin + 2∆δ, . . . , δmax} ,

with ∆δ = δmax−δmin
r , leading to r + 1 possible time intervals. For

any δ ∈ ∆d, the control points ri
1 and ri

2 are computed exploiting
Condition (9) and Condition (10). If the obtained points do not sat-
isfy Proposition 4.2.2 the current δ is discarded, otherwise also the
points ri

3 and ri
4, as well as ϕi

1 (Condition (12)) and ϕi
2 are computed.

Note that the quantities ri
3, ri

4 and ϕi
2 are not constrained by any con-

ditions (8)–(12), thus these points are computed by optimising the
induced cost c(CP r

i , CPϕ
i , δi). In the same way as before, if the com-

puted points violate Proposition 4.2.2, or the induced velocity or accel-
eration exceed the dynamic bounds, the current δ is discarded. Once
all δ ∈ ∆d have been considered, the one leading to the optimal value
of ci is selected with the corresponding computed control points and
the node is added to the tree. The tree growth continues until it be-
came impossible to find a new node with higher information gain
g(·) and the number of sampled nodes goes beyond a given thresh-
old (nmax). Once the tree expansion is terminated, the branch leading
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Figure 4: Qualitative evaluation of the proposed method in a real-world ex-
periment. The Bézier-based exploration succeeded in fast planning
motion inside the unknown area without forcing zero end veloci-
ties and successfully avoiding the two obstacles placed at the cen-
ter. In the figure, blue lines represent the reference trajectory, while
in red are depicted the planned safe maneuvers.

to the best node is extracted and only the first node of such branch
(Nopt) is executed.

It may happen that the tree growth procedure takes too much time,
or it may result impossible to find a valid candidate as next trajec-
tory segment. In order to handle these issues, at each iteration two
trajectory segments are computed. The first one corresponds to the
execution of the best branch, while the second one is a safe trajectory,
linked via Constraints (8)–(12) to the first committed segment. The
safe trajectory constrains the final velocity to be zero, as well as the
final acceleration, and it is executed every time the algorithm fails in
planning a new node.

4.2.4 Reconstruction Gain, Trajectory Cost & Total Utility

The algorithm presented in Section 4.2.3 is used to plan spatial tra-
jectories by maximising the total utility function J (·). As a conse-
quence, since this function combines both node gain and cost, the
choice of functions g(·) and c(·), as well as J (·) itself, is crucial for
the success of the exploration procedure and of its performance. In
this context, the reconstruction gain is defined as the amount of space
that can be discovered if the agent is located in the considered posi-
tion (r) and oriented with a given heading angle (ϕ). The function
g(·) can be computed by casting rays outward from the sensor and
summing up all the unmapped volume elements that the ray crosses.
Although there exist very efficient procedures useful to compute g(·),
such as sparse ray-casting [132], its explicit evaluation is still the bot-
tleneck for most of the exploration algorithms proposed within the
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literature. The work [132], motivated by the continuous nature of the
reconstruction gain over its domain, tries to overtake this problem
by modelling it as a realisation of a Gaussian process [127]. The idea
is to infer, when possible, the gain value using previously sampled
data, avoiding its explicit computation at each exploration iteration.
This approach has the limitation that when the process returns a poor
(in terms of resulting variance) estimation, the gain must be explicitly
re-computed, leading to a higher overhead due to the double compu-
tation. In this work we show that it is possible to completely avoid
the gain explicit computation in real-time, during the planning proce-
dure, and it can be left as a background thread. Unlike previous ap-
proaches, we propose to evaluate g(·) exclusively through Gaussian
Process inference. The motivating assumption is that in previously
unexplored areas the reconstruction gain evaluates as the sensor FoV
volume. Therefore we impose a GP prior g(r) ∼ GP(Vfov, k(r, r′, τ))

consisting of a constant mean function, equivalent to the sensor FoV
volume, and a squared-exponential kernel

κ(r, r′, τ) = exp

(
−∥r − r′∥2

2
2τ2

)
,

where τ is a hyper-parameter known as characteristic length-scale, it-
eratively estimated by minimising the associated log-likelihood func-
tion [127]. The proposed approach alternates between gain prediction,
using the currently sampled data and the current estimation of the
hyper-parameter, and correction, where τ is estimated by minimising
the log-likelihood over the data.

In autonomous exploration applications, where classical RRT algo-
rithms are employed, the trajectory cost is usually associated with
node distance [16, 132], or execution time [130]. The former penalises
long trajectories, while the latter pushes the agent near its dynamical
limits in order to execute the task as fast as possible. Recent stud-
ies about frontier exploration [27] have shown great results in terms
of execution time and traveled distance. In these works, viewpoints
are selected considering minimal variations in velocity. Encouraged
by the success of these algorithms and keeping in mind the neces-
sity to end the exploration as fast as possible, we propose a trajectory
cost that weight execution time and total control effort. The overall
trajectory cost is formalised as

c
(
CP r

i , CPϕ
i , δi

)
= µ1δi + µ2cr (CP r

i , δi) + µ3cϕ

(
CPϕ

i , δi

)
,
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where µ1:3 are tuning parameters, while cr (·) and cϕ (·) take the fol-
lowing form

cr (CP r
i , δi) =

∫ δi

0

∥∥∥∥∥dkri( τ
δi
)

dτk

∥∥∥∥∥
2

dτ, (13)

cϕ

(
CPϕ

i , δi

)
=
∫ δi

0

∥∥∥∥∥dpϕi( τ
δi
)

dτp

∥∥∥∥∥
2

dτ. (14)

In this particular case we selected k = 2 and p = 1, leading to trajec-
tories with minimal accelerations and angular velocities. Minimising
the angular velocity has several benefits in terms of mapping recon-
struction accuracy, due to the fact that the captured data present low
blur effect, especially when working with RGBD cameras. Note that
the three components of r(·) = [rx(·), ry(·), rz(·)] are decoupled inside
the cost function, thus Equation (13) can be rewritten as

cr (CP r
i , δi) =

x,y,z

∑
j

∫ δi

0

dkri
j(

τ
δi
)

dτk

2

dτ. (15)

The Bernstein basis parameterisation is closed with respect to oper-
ations of derivative, power elevation and integral [46], thus Equa-
tion (14) and Equation (15) can be evaluated in closed form just acting
on the trajectory control points in the following way

cr (CP r
i , δi) =

[
ri

0 · · · ri
nr

]
Br (δi)

[
ri

0 · · · ri
nr

]⊤
,

cϕ

(
CPϕ

i , δi

)
=
[
ϕi

0 · · · ϕi
nϕ

]
Bϕ (δi)

[
ϕi

0 · · · ϕi
nϕ

]⊤
,

where Br(δi) and Bϕ(δi) are the matrix form of the Bézier curves cr(·)
and cϕ(·) [124]. We take advantage of this property during the plan-
ning stage, when selecting the remaining free points ri

3, ri
4 and ϕi

2.
These are computed solving the following optimisation problem

min
ri

3,ri
4,ϕi

2



ri
0
...

ri
nr

ϕi
0
...

ϕi
nϕ



⊤

[
µ2Br(δi)

µ3Bϕ(δi)

]


ri
0
...

ri
nr

ϕi
0
...

ϕi
nϕ


,

which results in an unconstrained QP problem, solvable by equalising
the gradient to zero in a similar way as done in [128]. Finally, the total
utility function, responsible to merge gains and costs of the tree nodes
in only one utility value, has been chosen borrowing the idea of [130]
that proposes a total utility function based on the notion of efficiency

J (R(Ni)) =
∑Nl∈R(Ni) gl

∑Nl∈R(Ni) cl
.
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Figure 5: The overall scheme of the proposed exploration system.

4.2.5 Implementation Details

The overall structure of the proposed framework is shown in Figure 5.
The planning framework is built on top of a reliable UAV control
scheme and an occupancy map integrator whose construction is out
of the scope of this chapter. The solution relies on three different
threads running in parallel.

1. Exploration Module.
This thread acts as the exploration supervisor and is in charge
of computing the reference trajectories to be executed from the
UAV platform. The exploration module continuously grows and
maintains the trajectories tree via random sampling and by reeval-
uating each sampled non-executed node at each new iteration.
Since the tree is executed in a receding-horizon fashion, ev-
ery time a new trajectory is commissioned, a bunch of previ-
ously planned trajectories may become infeasible due to conti-
nuity issues. To handle this problem an activation flag is added
as a node property. Note that at each sampling, only the ac-
tive branches are taken into consideration. Furthermore, the ex-
plorer node also keeps care about possible deadline violations. In
these cases the executed safe trajectory is added to the tree and
rewired to all nearby active nodes. This prevent us to lose pre-
vious sampled possible promising trajectories.

2. Gaussian Regressor.
This thread receives all sampled points from the exploration
module and implements a policy to allow the cache of only the
most informative ones. In particular, a new point is retained
only if it belongs to a new and not explored area. The imple-
mentation of a R-tree structure allows for fast point insertion
and retrieval, moreover it eases the insertion condition check.
In order to be consistent with the exploration task, and the evo-
lution of the known map, all cached points are reevaluated pe-
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riodically via explicit gain computation. Such a module is in
charge to train the Gaussian process parameters used by the
explorer.

3. Information Gain Evaluator.
This thread receives the evaluating point and computes explic-
itly the information gain via sparse ray-casting as in [132].

The architectural subdivision of the implemented algorithm in three
different threads allows fast computing high informative trajectories
without the explicit gain computation bottleneck. The whole algo- The implemted code

is open-source and
completely available
at the GitHub
repository
github.com/casy-
lab/BezierFastExploration.

rithm has been implemented as a ROS network and paired with the
PX4 autopilot both for the software-in-the-loop simulations and the
real-world tests. As a map representation we use OctoMap [67].

4.2.6 Experimental Evaluation

The proposed approach has been evaluated via Gazebo-based simu-
lations, exploiting the environment RotorS [50] along with the pro-
vided 3DR Iris quadrotor model, endowed of a depth sensor. The
algorithm performance have been also qualitatively evaluated in real-

Max Vel. 1.5m/s Max Acc. 1.5m/s2

Sampled Nodes 40 Max Length 3m

Min Range 0.3m Max Range 5.0m

Camera FoV 115 × 60 deg Map Res. 0.2m

µ1 µ2 µ3 0.5 0.1 0.1 Time Res. 0.5s

Min Time 1s Max Time 5s

Table 1: Parameters used in simulations.

Max Vel. 0.5m/s Max Acc. 0.5m/s2

Sampled Nodes 20 Max Length 3m

Min Range 0.3m Max Range 3.0m

Camera FoV 87 × 58 deg Map Res. 0.2m

µ1 µ2 µ3 0.5 0.1 0.1 Time Res. 0.5s

Min Time 1s Max Time 5s

Table 2: Parameters used in the real-world experiments.
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(a)
(b)

(c)

Figure 6: Results of the simulation tests. The exploration algorithm runs
over a map of 20 × 10 × 3 meters and was able to complete the
exploration after only 400 seconds. In the image, in order, (a) ex-
ploration state at 100 seconds, (b) exploration state at 200 seconds,
and (c) exploration state at 300 seconds. At the bottom of each time
snapshot, a visual representation of the Gaussian inferred informa-
tion gain is reported.

world scenario tests. In all tests the agent starts in the origin with
zero yaw angle. The agent performs an initial rotation of 360 degrees
around the initial hovering point in order to be sure to start the explo-
ration with some initial information at hand. The parameters used
during the simulation tests are reported in Table 1. Figure 6 shows
the obtained simulation results when agent is required to map an
20 × 10 × 3 urban canyon. In particular, in Figure 6, the blue lines
represent the reference trajectory, the red ones are the planned safe
motions (both executed and non-executed), while the bottom surface
represents the current Gaussian process state. It can be noticed that,
the Gaussian process is constantly kept updated with the current map
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(a) (b)

(c)

Figure 7: Results of the real-world exploration test. The exploration algo-
rithm was run using only integrated onboard sensors and compu-
tational capabilities. In the image, in order, (a) exploration state
at 20 seconds, (b) exploration state at 57 seconds, and (c) explo-
ration state at 167 seconds. At the bottom of each time snapshot, a
visual representation of the Gaussian inferred information gain is
reported.

information and it results to be consistent, at each time instant, with
the exploration task. In order to evaluate the performances against the
state-of-the-art solutions, the proposed algorithm has been compared
with the Autonomous Exploration Planner (AEP) described in [132]. Fig-
ure 8 compares the amount of explored volume over time by both
the approaches. The blue line represents the average of explored area
obtained deploying our approach over 10 experiments, with the as-
sociated standard deviation represented in shaded blue. Conversely,
the line and shade red reports the results obtained via AEP, with the
global exploration module disabled, on the same number of exper-
iments. It can be noticed that both algorithms achieve comparable
results at the beginning of the exploration, where most of the volume
needs to be explored, then our solution tends to get higher explo-
ration rate, thanks to the ability to fast plan the next trajectory. More-
over, it is worth noting that our solution provides more consistency
between different tests, as the variance is narrower with respect to the
AEP, thus guaranteeing better repeatability of the experiment and a
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Figure 8: Exploration progress for the urban 20 × 10 × 3 canyon. Mean and
standard deviation over 10 experiments are shown. Notice that
due to the employing of pierced nets as maps borders makes the
overall explored volume higher than the real volume.

Figure 9: Overall traveled distance in the urban canyon. The traveled dis-
tances over 10 experiments are shown.

mitigation of the worst case scenarios. Figure 9 depicts the overall
travelled distance on same experiments. Since our solution plans tra-
jectories by never stopping the UAV motion, this leads to an overall
travelled distance 2 times higher than the AEP solution. The solution
has been tested using a real UAV inside an indoor scenario using our
office spaces. The obtained results are depicted in Figure 7. The used
parameters are reported in Table 2. The available area was 9 × 6 × 2.5
meters and it was successfully mapped in 170 seconds, the maximum
camera range was saturated at 3 meters in order to stress navigation
trajectories around obstacles. The used UAV was powered by the PX4

autopilot and endowed with a depth Intel RealSense D455 camera,
mounted frontally. Visual odometry, used to localize the UAV in the
indoor scenario, was provided by an Intel Realsense T265 tracking
camera.
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4.3 patrolling : a different exploration perspective

In this section, we review a novel and different solution to the ex-
ploration problem stated in Section 4.1.2, in the setting where the
environment is completely known and the only goal is to find out
interesting points, or objects, inside the explored area. In this frame-
work, the general exploration problem can be specialised by consid-
ering a third attribute, jointly with free and occupied, namely inter-
est. A subset of the overall volume V ∈ R3 will be categorised as
Vint = {x ∈ V | Γ(x) = int}, thus the exploration task will be con-
sidered complete when Vfree ∪ Vocc ∪ Vint = V \ Vres, with Vfree, Vocc,
and Vres defined as in Section 4.1.2. Let us suppose to completely
apriori known the set Vfree, then the exploration goal reduces to cor-
rectly classify V \ Vres \ Vfree between Vocc and Vint. The proposed
approach is based on the idea that the employed software pipeline
used to recognise the objects of interest may fail in doing that, and
the probability of failure is jointly linked with the capability of the en-
dowed sensor. Moreover, the autonomous platform may not be able
to perform the commissioned motion due to environment modifica-
tions, or unexpected and unmapped obstacles. The stochastic nature
of the problem at hand, along with the stochasticity of the adopted
pipeline, embraces a purely probabilistic approach, so the locations
of the objects are expressed in a likelihood form, that in the following
takes the name of probabilistic map.

Similar to the algorithm described in Section 4.2, the core of the
proposed solution consists of an RRT of possible and feasible motions.
Unlike the previous approach, here we do not constrain the tree to di-
rectly represents pieces of possible trajectories. In this case, the tree
is built to describe possible collision-free paths inside the environ-
ment, while the computation of the associated timing laws is left as
next step, during the trajectory optimisation stage. In this view, the tim-
ing law is selected to ensure trajectory feasibility in terms of induced
maximum velocity and acceleration. The tree expansion is supplied
with the aforementioned probabilistic map, which is copied and kept
updated on each new sampled node. The extension of the node at-
tributes set with a copy of the current likelihood map allows for time
consistency. The map in each node is in fact constantly kept updated,
allowing for cost increase or decrease if the exploration time grows,
or if a particular node has been visited, respectively. The remainder of
this section unfolds as follows Section 4.3.1 and Section 4.3.2 deeply
analyze the aforementioned mapping strategy, bridging the gap be-
tween discrete and continuous maps, and proposing a novel map-
ping framework. In Section 4.3.3 the tree structure is briefly described,
along with the adopted growth policy, Section 4.3.4 introduces the
used time allocation procedure and how the final trajectory is itera-
tively refined before its commissioning. Finally, Section 4.3.5 reports
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Camera

Figure 10: Probabilistic adopted camera model.

the obtained results when the proposed approach is exploited to per-
form target search in a completely known environment.

4.3.1 Mapping Strategy

In this solution we employ a discrete occupancy-based mapping ap-
proach [67] to store information about occupied and free spaces, while
interesting environment features, or objects, are stored by following
a continuous probability mapping paradigm. In particular, Gaussian
processes are used to infer the belief of features existence. This ap-
proach allows to increase the map reliability by introducing spatial
correlations between data while maintaining the memory consump-
tion low, and to formulate an information gain that trades-off between
target re-observation and exploration for new ones. In a probabilis-
tic framework, the target positions are usually represented through
a set of discrete random variables defined over a discretization of
the search space (E ⊂ R3). This approach leads to a discrete occu-
pancy map (M) where each grid cell is associated with an indepen-
dent Bernoulli random variable (ζi) whose Probability Mass Function
(PMF) represents the probability of target occupancy [121]

P (ζi = k) =

pi if k = 1,

1 − pi if k = 0.
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The value of pi for each ζi ∈ M inside the sensor FoV is updated, at
each new sensor measurement, via the Bayes formula

P
(

ζi | z1:t, s1:t
)
=

P
(
zt | ζi, st) P

(
ζi | z1:t−1, s1:t−1)

P (zt)
,

where zt is the current observation at sensor position st. The afore-
mentioned relation is usually rewritten in log-likelihood notation,
where products are replaced by additions, allowing for faster up-
dates [67]

L
(

ζi | z1:t, s1:t
)
= L

(
ζi | z1:t−1, s1:t−1

)
+ L

(
zt | ζi, st) , (16)

with

L (ζi) = log
(

P (ζi = 1)
1 − P (ζi = 1)

)
.

In Equation (16) the quantities L
(
ζi | z1:t−1) and L

(
ζi | z1:t) represent

the prior and posterior probability, respectively. While, L
(
zt | ζi

)
is

the observation likelihood that strongly depends on the adopted prob-
abilistic sensor model. In our specific case, we employ a downward-
facing monocular camera to detect targets on the ground, Figure 10

shows the probabilistic model for such type of sensor. The probability
to retrieve correct measures decreases approaching the FoV bound-
aries, as well as the maximum distance allowed. This kind of behavior
is well described by a modified logistic function of the kind

P
(
zt = 1 | ζi, st) = 0.5 +

pmax

1 + exp (∥xi − st∥W − c)
,

where xi ∈ M represents the grid cell associated with ζi, while st ∈
R3 is the current sensor position. The weight matrix W ∈ R3×3, and
the parameters pmax and c are responsible to shape the function over
the camera field of view.

Despite the power of discrete maps, in our solution we choose
to adopt a continuous mapping strategy. Continuous maps allow
to incorporate spatial correlations of input data and, potentially, re-
quire lower memory to maintain the overall map. These advantages
are not for free since continuous maps present a higher computa-
tional complexity. Gaussian processes are well suited for this pur-
pose since can encode spatial correlations in a probabilistic way and,
with a careful choice of training points, take low computational and
storage memory. With this idea in mind, the log-likelihood of occu-
pancy is treated, in this case, as a continuous function over the search
space L : E ⊂ R3 7→ R. The key idea is to model such function as
a realization of a Gaussian process. A GP model is completely de-
fined by a mean function m (x) : E 7→ R and a covariance function
κ (x, x′) : E × E 7→ R

L (x) ∼ GP
(
m (x) , κ

(
x, x′

))
.
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Although there are many possible choices for mean and covariance
functions, usually the structure of m and κ are assumed to be known
up to certain hyper-parameters (m (·, ϑm), κ (·, ϑκ)). In the particular
case of target search, the mean function should be chosen on the basis
of some a prior notions about the target existence, thus it is a priori
fixed and does not depend on any hyper-parameter. In those cases in
which no prior information is available, the mean function is simply
m (x) = 0 ∀x ∈ E , that corresponds to an occupancy probability of
0.5. The covariance function, aka kernel, influences the GP behavior
when fed with training data points. The results presented afterward
are obtained using a Matérn 3/2 kernel, that takes the form

κ
(
x, x′, ϑ

)
=

(
1 +

√
3d
ϑ

)
exp

(
−
√

3d
ϑ

)
,

where d = ∥x − x′∥2
2, while ϑ is a hyper-parameter known as char-

acteristic length-scale [127]. The Matérn 3/2 kernel is very common
in geostatistical analysis, due to its capability to capture discrete tar-
gets [97], thus it results very suitable also for this particular appli-
cation. Given N noisy observations y1:N ∈ RN and the respective
sampling locations x1:N ∈ RN×3, the posterior distribution of L is a
Gaussian distribution, whose mean and variance can be evaluated as

µ (x) = m (x) + κ (x)⊤
[
K+ σ2

n I
]−1

(
y1:N − m

(
x1:N

))
, (17)

σ2 (x) = κ (x, x)− κ (x)⊤
[
K+ σ2

n I
]−1

κ (x) . (18)

To deal with the unknown hyper-parameter, we follow an empirical
Bayes approach [10], where the prediction steps are alternated with
parameters estimation steps via maximum likelihood

ϑ = arg max
ϑ

p
(

y1:N | x1:N ; ϑ
)

.

Under the Gaussian process prior, the quantity p
(
y1:N | x1:N ; ϑ

)
can

be evaluated in closed form as log-likelihood (dropping the apex 1:N)

log (p (y | x; ϑ)) =

− 1
2
(m (x)− y)⊤

[
K+ σ2

n I
]−1

(m (x)− y)

− 1
2

log
(∣∣K+ σ2

n I
∣∣)− N

2
log (2π) .

4.3.2 Complexity Reduction & Spatial Partitioning

Exact GP inference is expensive due to matrix inversion, whose com-
putational complexity scales with the number of training points as
O
(

N3). Moreover, after training, the computation of posterior mean (17)
and variance (18) costs O (N) and O

(
N2) respectively, per testing
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Figure 11: 2-Dimensional example of the adopted environment discretiza-
tion. In this particular case, the presence of a target makes the
likelihood level increases in that area, leading to a finer adopted
discretization.

point. This makes the application of GP regression in real-time chal-
lenging, in particular for large environments. The common approach
to deal with this issue was to divide the environment into regions
and train several experts, one for each region [81]. This approach was
effective, but the complexity problem still persists as long as the num-
ber of observations per region increases. Recently, approaches that
leverage on approximate regression have shown great success thanks to
their good scaling capabilities [56, 126, 157]. To reduce the GP com-
plexity, the adopted approach leverages on the Subset of Regressors
(SoR) method [126] to compute an approximation of the gram matrix
K and the kernel vector κ, jointly with a spatial partitioning and a
targeted choice of the training points. In particular, a set of Np induc-
ing variables (u1:Np ∈ RNp×3) are arbitrarily selected out of the training
points set (x1:N), then the covariance quantities can be approximated
as

K ∼ KxuK−1
uu Kux,

κ (x) ∼ KxuK−1
uu κu (x) .

(19)

Where Ku ∈ RNp×Np and κu ∈ RNp are the covariance matrix and
vector computed along the inducing points, while Kxu ∈ RN×Np is
the cross-covariance between x1:N and u1:Np , with entries

Ki,j
xu = κ

(
xi, uj

)
with i ∈ [1, N] and j ∈

[
1, Np

]
.
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Plugging Equation (19) in Equation (17) and Equation (18) leads to

µ (x) = m (x) + κu (x)⊤
[
KuxKxu + σ2

nKuu
]−1 Kux·

·
(

y1:N − m
(

x1:N
))

,

σ2 (x) = κu (x)⊤
[
KuxKxu + σ2

nKuu
]−1

κu (x) .

The SoR approximation method allows to reduce the computation
complexity of the training procedure up to O

(
NN2

p

)
, while the eval-

uation complexity of predictive mean and variance is kept constant
(O (N) and O

(
N2), respectively). The hyper-parameter estimation

is carried out by maximizing the log-likelihood function evaluated
just on the inducing points (log

(
p
(
y1:Np | u1:Np ; ϑ

))
). In order to fur-

ther decrease the map computation complexity, we propose a novel
methodology to proper select the expert training points. A good ap-
proach should trade-off between process complexity and map preci-
sion. To achieve that, the 3-dimensional environment is discretized
with a very coarse resolution, then we let this discretization be flex-
ible in areas where higher precision is required. The discretization
level is then dependent on the local likelihood value: higher is the
probability of target existence and finer is the adopted discretization.
In particular, the probability range [0, 1] is divided into q intervals,
each of which corresponds to a given map resolution. Note that those
intervals are such that a discretization level and the consecutive one
differ of a factor equal to 2. This leads to a quad-tree space discretiza-
tion (see Figure 11). Training points are store in memory only when
a measure of them is retrieved, each new point inherits the current
local GP value, then is updated at each new sensor measurement
through Equation (16). The adopted hierarchical structure allows to
select the inducing variables as those training points obtained from
the coarsest discretization, associated with null probability. Moreover,
when a training point gets a promotion to the upper discretization
level, that point is also promoted to inducing variable, while a set of
new training points are added to still be compliant with the associ-
ated discretization level.

4.3.3 Tree Structure & Update

The proposed algorithm works by iteratively growing an RRT, T =

(N , E), of possible feasible motions, whose each node Ni ∈ N is
described by means of six quantities

Ni =
{

gi, ci, ri, y1:N
i , x1:N

i , u1:Np
i

}
,

where gi = g (Ni−1, Ni) and ci = c (Ni−1, Ni) are the information gain
and the cost, respectively, associated with the execution of node Ni,
i.e. navigate from Ni−1 to Ni. The quantity ri ∈ R3 describes the node
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position, while y1:N
i , x1:N

i , and u1:Np
i represent the parameterisation

of the likelihood map, at the time of node creation. As already men-
tioned, unlike the approach described in Section 4.2, here the adopted
tree does not directly represent a set of possible trajectories, but in-
stead describes a set of feasible paths through the environment. As
a matter of fact, the aforementioned node description does not take
into account neither a trajectory parameterisation, nor a possible ex-
ecution time. In this sense, two nodes Ni−1 and Ni are connected
by an edge Ei−1 if the straight path connecting ri−1 and ri is collision-
free, no other continuity constraints are required. Although the nodes
present a slight different structure, the aim of this tree is the same
of the one build in Section 4.2.2. Basically, the goal is to compute
sub-optimal paths that maximise a given utility function J (R (Ni)),
with the latter that combines gains and costs of all nodes in R (Ni).
It results that the final agent behavior strongly depends on the cho-
sen functions g (Ni−1, Ni), c (Ni−1, Ni) and J (R (Ni)). Unlike gen-
eral planners, who exploit RRT structures to plan flyable trajectories,
in this case the tree expansion logic must be designed around the
aforementioned loss functions, with particular attention to the gain
g (Ni−1, Ni). Tailoring the algorithm behavior on g allows for keeping
the exploration task consistent during the motion, and avoids cases
in which the agent gets stuck in little areas, without exploring the
overall environment. This is particularly true when the chosen utility
function presents many local minima, which are difficult to escape.
In this respect, we formulate a new information gain index that takes
into account the amount of improvement, in the current likelihood
map, brought by the execution of the considered node. In particular,
consider two nodes Ni−1 and Ni, with their respective map parameter-
isation µi−1

(
y1:N

i−1, x1:N
i−1, u1:Np

i−1 , x
)

and µi

(
y1:N

i , x1:N
i , u1:Np

i , x
)

, the gain
associated with the node Ni can be evaluated as

gi (Ni, Ni−1) =
∫
E

exp (µi−i (·, x))
1 + exp (µi−i (·, x))

− exp (µi (·, x))
1 + exp (µi (·, x))

dx,

where the quantities y1:N
i , x1:N

i , and u1:Np
i are computed out of the

corresponding values of the Ni−1 node via Equation (16), along the
path connecting ri−1 to ri. Note that, unlike previous works in this
field [121, 130], here the information gain is not a function of the node
end-position only, thus allows us to consider also frustrum overlap be-
tween consecutive poses and the amount of information gained while
moving from Ni−1 to Ni. On the other hand, the node execution cost is
fixed as the intra-node Euclidean distance ci (Ni, Ni−1) = ∥ri−1 − ri∥,
while the total utility function as been designed following the same
idea of efficiency stated in Section 4.2.4

J (R(Ni)) =
∑Nl∈R(Ni) gl

∑Nl∈R(Ni) cl
.
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With these notion at hand, we can now proceed to the design of the
core of the algorithm. The chosen tree updating procedure is as sim-
ple as it is effective, and it is designed to cope with the multi-modal
nature of the chosen utility function, as well as the possibility to in-
ject prior notions about the obstacles occupancy. The tree, initially
composed of just one root node, is iteratively expanded via random
sampling of the next node position ri. In particular, we constrain the
sample points to lie inside a circular crown of radii Rmin and Rmax,
centered on the current best node (Nbest), namely the one among all
tree nodes that maximise the utility function J (·). In order to es-
cape from local minima and let the tree grow in all directions, the
best node is reevaluated each nsample samples, ensuring that every
expanded node presents exactly nsample childs. This choice, jointly
with the circular crown constraint, allows the algorithm to expand
the tree without getting stuck in little areas, with many local minima.
Each sampled viewpoint is retained only if it belongs to a known
and free part of the environment and, at the same time, the line con-
necting it with the respective father is far enough from the mapped
obstacles. The tree expansion continues until the number of sampled
nodes goes beyond a given threshold nmax, then the path connecting
the root node to the best one is extracted and completely executed. It
may happen that, the autonomous robot is not able to complete the
commissioned path due to unexpected obstructions, in this case the
algorithm keeps track of the executed nodes and reinitialize the tree
with the final executed node as root.

4.3.4 B-Spline Trajectory Optimisation

As already pointed out in previous sections, the built tree does not
directly represent flyable trajectories, but just feasible paths through
the environment’s obstacles. For the purpose of control, a timing law
is essential to ensure the dynamic feasibility of the resulting reference.
In the specific case of a quadcopter, such a reference can be computed
just in terms of heading angle ϕ and space position r = [x, y, z] ∈ R3,
following the concept of differential flatness [102]. The latter property
can be used only if the heading trajectory is guarante to be at least
a class C1 function, while r must be at least class C3. Contrary to
the solution presented in Section 4.2, here we enforce the use of B-
splines as time parameterisation tool for the planned collision-free
path. B-splines are a generalization of Bézier curves which allows for
a more compact representation, especially when dealing with long
trajectory segments. Unlike Bézier curves, B-splines are defined by
a set of control points CP = [q0, . . . , qm], and a set of time knots
u =

[
u0, . . . , um+p+1

]
, as

s (u) =
m

∑
i=0

Bp
i (u) qi,
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with p order of the spline and Bp
i basis functions, recursively com-

puted via the De-Boor formula [33]. B-splines and Bézier curves share
several properties, among all, the most important ones at the time be-
ing, are the (a) convex hull containment and (b) closure with respect
to differentiation. These two properties allow to easily formulate a
constrained quadratic programming problem and solve it for the fi-
nal trajectory control points. A deeper analysis of B-spline properties
and their evaluation is reported in Section A. In the specific case of pa-
trolling, since we are using a downward-facing camera, the heading
trajectory loses importance, thus we consider it as a constant refer-
ence in time, and focus only on solving the optimisation problem for
the x, y, and z components. Suppose to discretize the node sequence
R (Nbest) with a given resolution ∆r, leading to a sequence of way-
points, r0, · · · , rm, moreover let p = 7 and fix the knot vector as

u =
[
00:7, ∆u, 2∆u, . . . , (m − p)∆u, T0:7

]
,

with T = ∑m−1
i=0 ∥ri − ri+1∥ /vmax and ∆u = T/(m − p + 1). Then, the

problem of feasible trajectory generation can be solved via the con-
strained quadratic programming

min
q0,...,qm

λ1

∫ T

0

∥∥∥∥d3s (u)
du3

∥∥∥∥2

du + λ2

m

∑
i=0

∥qi − ri∥2 ,

sub.to. q′
i ≤ vmax ∀i = 0, . . . , m − 1,

q′′
i ≤ amax ∀i = 0, . . . , m − 2,

q0 = r0, qm = rm,

q′
0 = vinit, q′′

0 = ainit,

(20)

with λ1,2 ∈ R tuning parameters and vmax, amax, vinit, and ainit pro-
vided as inputs. The aforementioned optimisation problem, framed in
the context of quadcopter control, tries to compute minimal effort tra-
jectories that propagate in time close to the sampled waypoints. The B-
spline properties are used here to constrain the dynamical quantities
to strictly remain inside the imposed structural limits and to shape
the curve along the selected viewpoints. Note that no final velocity
nor acceleration constraints have been imposed, letting the algorithm
select the optimal ones on its own. This choice is motivated by the
discussion carried out in Section 4.2, where emerges that constraining
the robot to stop at each exploration step may degrade the algorithm
performance. As in the case of Bézier curves (see Section 4.2.4), the
loss function in problem (20) can be fully decomposed along the tree
axis, yielding

min
q0,...,qm

x,y,z

∑
j

λ1

∫ T

0

(
d3sj (u)

du3

)2

du + λ2

m

∑
i=0

(
qj,i − rj,i

)2

 ,

sub.to. Same of problem (20).
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(a) (b)

(c)

Figure 12: Results of the proposed search algorithm. The figure depicts the
simulated environment along with the built tree of possible view-
points. Red circles represent the tree nodes, while the yellow con-
necting lines its edges. In the image, in order, (a) exploration state
after only one step, (b) after two steps, and (c) after five steps.
Note how the tree grows toward previously unexplored areas.

4.3.5 Experimetal Results & Future Directions

The proposed approach has been tested on a synthetic urban canyon
scenario, similar to the one proposed during the Leonardo drone
contest during the third year (see Section 1.2). In this scenario, the
10 × 20 × 3 meters map was already completely known in advance
and the flying agent was required to find as fast as possible a sin-
gle moving unmanned ground robot. Thanks to these experiment set-
tings the explorer was initialized with a prior guess of probability
distribution that equalizes to zero near and over the known obsta-
cles. The obtained results are reported in Figure 12, 13, and 14. In
particular, Figure 12 depicts the built tree, where red circles represent
nodes and the yellow connecting lines the tree edges, along with a dis-
crete representation of the environment map. Overlapping Figure 12

with Figure 13 the blue continuous line represents the final trajectory
followed by the drone during the exploration task. Finally, Figure 14

reports the used probability map. In all the figures, in order, has been
depicted the exploration state after one, two, and five steps. Note how
the agent tends to explore quickly previously unseen areas, while the
probability increases over time in not visited areas and decreases a
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(a) (b)

(c)

Figure 13: Results of the proposed search algorithm. The figure depicts the
planned reference trajectory after (a) one exploration step, (b) two
exploration steps, and (c) five exploration steps. The reported tra-
jectory is built on top of the viewpoints tree reported in Figure 12.

lot after one agent visit. The proposed solution has been successfully
employed during the Leonardo challenge, where the drone was able
to find out the ground agent in almost a couple of minutes, with a
maximum velocity of 0.5m/s and starting always from random initial
positions. The algorithm was able to run completely real-time with
only onboard computation and sensing capabilities. For a complete
list of the used parameters, please refer to Table 3.

In this section, we proposed a novel solution to the exploration
problem in the setting where target search is the only final goal. This
approach is in contrast with the one described in Section 4.2 under
different aspects, first it plans paths instead of directly flyable trajec-
tories, this approach may lead to degraded performances in all those
cases in which the environment is not a priori known, constraining
the agent to perform several stops before starting a new exploration
step. On the other hand, the latter solution allows for continuous
mapping of the target probability, which is constantly kept updated
during the tree expansion. Future research directions in this field may
aim to fill the gap between these two solutions and try to solve both
the problem of environment exploration and target finding concur-
rently. At the same time, we wish to import the local-global paradigm
even in this class of problems, which currently is not considered yet.
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(a) (b)

(c)

Figure 14: Results of the proposed search algorithm. The figure depicts the
costmap state during the searching task after (a) one exploration
step, (b) two exploration steps, and (c) five exploration steps. The
reported costmap is used to build the tree of possible viewpoints
reported in Figure 12. Note how the cost decreases a lot after each
agent visit, how it increases in time in not visited areas, and how
the cost is almost zero on obstacle cells. The latter property can
be easily integrated into the algorithm thanks to its flexibility to
apriori knowledge about probability distributions.

4.4 contributions

This chapter is devoted to reviewing two original approaches to the
problem of rapid exploration in two different contexts. In the first
stage, the focus is on the robot’s capabilities and the employed algo-
rithm is meant to carry out the exploration task as fast as possible
pushing the drone on the boundaries of its dynamical limits. While

nmax 1500 nsample 60

Rmin 0.5m Rmax 4.0m

vmax 0.5m/s amax 0.5m/s2

pinc 1.01 pdec
max 0.5

W [5, 0; 0, 5] c 0.0

λ1 1.0 λ2 10.0

Table 3: Parameters used to test the object search algorithm.
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in the second stage, the focus is on the exploration for target search.
In this second case, the proposed solution mixes a continuous map-
ping paradigm with the random nature of RRTs. It results in two
approaches able to sequentially build high informative trajectories,
or paths, in unknown, partially known or completely known envi-
ronments. In both cases, Gaussian processes have been used to fast
infer the node’s information gain, and both approaches have been val-
idated with real scenario tests. As previously mentioned, we propose,
as future work to bridge the gap between these two solutions and
try to solve both the problems of environment exploration and target
searching concurrently, by planning directly sub-optimal and feasible
trajectories. We believe that the introduction of these solutions opens
a new research frontier able to cope with the gap between the learning
theory, from supervised to unsupervised techniques, and the robotic
world, where the limited computational power does not allows for
online network training or big data processing.





5
T R A J E C T O RY P L A N N I N G

5.1 the framework

In the previous chapter, we tracked the problem of autonomous envi-
ronment exploration from a very practical point of view, providing a
couple of possible solutions to efficiently compute high informative
trajectories. Here, we moved to a slightly different problem as the en-
vironment to navigate is completely known and the main objective is
to move the autonomous agent from an initial position, to a final one,
without getting in collision with the mapped obstacles and without
the necessity to gather information about the surroundings. In these
settings, the planned trajectory is required only to be safe in the sense
that does not collide with any obstacles and develops inside known
and free environment areas, and to fully satisfy the agent dynamical
capabilities. As the trajectory is not meant to gather as much data
as possible, it can be designed to optimise whatever user-defined
loss function, from the overall travel time, to control effort, or high
derivatives. In the Leonardo drone contest case, a trajectory planning
module was required to navigate the environment and reach a goal
position smoothly and quickly, so the quadrotor is steered in a way
that the localisation and the collision avoidance (see later in Chap-
ter 6) parts can work as well as possible.

In this chapter, after a brief literature review, we analyze and adapt
a state-of-the-art solution to the trajectory planning problem. The pro-
posed solution has been successfully implemented and deployed dur-
ing the Leonardo drone contest. For further details the reader is re-
ferred to the original work [171].

5.1.1 Related Works

Although the literature is cluttered with possible solutions to the
problem of trajectory planning, most of them can be classified solely
into two categories: hard-constrained and soft-constrained methods. Hard-
constrained methods reformulate the planning problem as a convex
optimisation one, where collisions are avoided by constraining the
planned path to be inside a set of convex flight corridors. This idea
was pioneered by [102] who proposes to generate minimum-snap tra-
jectories via Quadratic Programming (QP) approach, and by [128]
who, in turn, presented a closed-form approach to the minimum-snap
trajectory generation problem. Both the latter approaches parametrise
the overall trajectory as n-segments piecewise polynomial curve, and

57
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ensure the trajectory safety by iteratively adding intermediate way-
points. Similar approaches generate safe trajectories via convex opti-
misation [23, 35, 36, 53, 55, 89], but, unlike the pioneer solutions, here
the problem is solved in a two-steps pipeline. First, a sequence of
cubes [55], spheres [54], or polyhedrons [89], are fitted inside the free
and navigable space, then the reconstructed flight corridors are used
as convex constraints inside the optimisation problem. The works
of [35, 36] proposed a B-Spline-based search able to generate trajec-
tories used as an initial guess for the subsequent optimisation step.
Thanks to the convex reformulation, hard-constrained methods guar-
antee global optimality at the expense of all possible nonconvex costs
and constraints, such as distance from obstacles and conservative kin-
odynamic constraints, leading often to unsafe and conservative paths.
On the other hand, soft-constrained methods reformulate trajectory
planning as a non-linear optimisation problem able to keep smooth-
ness, feasibility, and safety into account. In [174] the authors gener-
ate discrete-time trajectories minimizing both smoothness and risk of
collision via gradient descent methods, while in [76] the optimisation
is solved in a gradient-free fashion. The work of [112] extended the
latter approaches to continuous-time polynomial trajectories, thanks
to the continuous-time formulation it avoids numeric differentiation
errors leading to a more accurate representation. However, the ap-
proach proposed by [112] suffers from low success rate, being the
proposed optimisation problem solved without a good initial guess.
As a matter of fact, the success rate considerably improved when [52]
proposes to solve the same problem with a collision-free path used
as an initial condition. The latter path is obtained via sampling-based
path searching methods. In [147] the trajectory is parameterized as
an uniform B-Spline, whose intrinsic continuity allows to reduce the
overall number of constraints. Soft-constrained solutions make use of
gradient information to push the final trajectory far from obstacles,
but may suffer from local minima and do not have any guarantee
of success rate and kinodynamic feasibility. The work of [171] pro-
poses a novel soft-constrained method where the B-Spline parameter-
isation is used to both speed-up the cost computation and simplify
the collision checking thanks to its convex hull containment property
(see Appendix A).

5.2 quadrotor trajectory generation

In this section we review a trajectory planning approach first pro-
posed by [171]. The considered approach aims to efficiently compute
minimum effort safe trajectories, balancing both the induced control
effort and the overall trajectory time. This soft-constrained approach
develops in two steps, first a collision-free suboptimal trajectory is
computed via hybrid-state A⋆ search, then the obtained solution is it-
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eratively refined via non-linear optimisation. In this second step the B-
Spline formulation is adopted to improve the algorithm convergency
rate.

5.2.1 Hybrid-State A⋆

The first step consists of raw trajectory planning via A⋆ graph search,
unlike the standard A⋆ formulation, here the proposed solution ex-
pands and optimises a graph of possible kinodynamic feasible trajec-
tories (from this property the hybrid-state attribute). In this settings,
the A⋆ optimisation is applied to a tree T = (N , E) consisting of a
set of nodes N = {N1, . . . , NnN} and a set of edges E = {E1, . . . , EnE},
where each node is completely defined by the following six quantities

Ni =
{

xi, ui, δt
i , χi, gi, hi

}
,

where xi and ui represent the current quadrotor state and the applied
input used to reach that state, δt

i is the amount of time for which ui
is applied, χi is an unique integer indexing xi over a voxel grid, and
(gi, hi) are two costs associated with the current node useful for the
graph optimisation, in particular gi is the true trajectory cost, while
hi represents a heuristic estimating the cost-to-go to reach the goal
state. The graph edges are generated by motion primitives respect-
ing the quadrotor dynamics, instead of standard straight lines. As
in Section 4.2, here we enforce the differential flatness property com-
monly used in quadrotor planning, and express the final state trajec-
tory through the evolution of only the three axis-wise positions so
x =

(
px, py, pz

)
∈ R3, where each component can be designed as a

time-parameterized polynomial function

pj (t) =
n

∑
k=0

aktk. (21)

The aformentioned formulation correspond to a Linear Time-Invariant

(LTI) system, letting z =
(

x⊤, x(1)
⊤

, . . . , x(n−1)⊤
)⊤

∈ R3n the state vec-

tor, and u = x(n) ∈ U = [umin, umax] ⊂ R3 the control input, then the
state-space model can be defined as

ż = Az + Bu,

with A ∈ R3n×3n and B ∈ R3n×3 matrices in prime form. The com-
plete solution for the state equation, giving the quadrotor trajectory
from the initial condition z0, is expressed as

z (t) = exp (At) z0 +
∫ t

0
exp (A (t − τ)) Bu (τ) dτ. (22)

In these settings, a set of motion primitive, leading to a set of possi-
ble graph edges for each node, can be efficiently computed by prop-
agating Equation (22) for a fixed time step δt, applying a set of dis-
cretised control inputs UD ⊂ U . From a practical point of view, the
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set [umin, umax] can be uniformly discretised in r steps along each
axis, yielding to r3 possible motion primitives. The graph search then
unfolds as a classical A⋆ search, for each node a set of edges and
children nodes are generated via motion primitive propagation, then
each child is checked against dynamical feasibility and possible colli-
sion with map obstacles, and only those nodes considered as feasible
are retained for future expansions. To speed-up the search a voxel
grid discretisation is imposed over the trajectory space so all chil-
dren nodes whose associated index χ matches in the list of already
expanded cells are culled out from the open set.

In order to let the adopted search effective, we need an admissible
and informative loss formulation for both the true trajectory cost and
the estimated cost-to-go. Under this perspective, since the main trajec-
tory planning objective is to generate motions balancing both control
effort and overall traveling time, the natural loss formulation is

J = T + ρ
∫ T

0
∥u (τ)∥2 dτ, (23)

where T is the total trajectory time, u is the control action, and ρ ∈
R>0 is a weight coefficient balancing between minimum time and
minimum effort trajectories. Under the loss function (23), the true
cost gi, representing the trajectory cost form the start position, can be
computed summing up the cost of all primitives applied so far

gi = gi−1 +
(

1 + ρ ∥ui∥2
)

δt
i .

As regards the heuristic cost-to-go hi, we need an estimation of J
from the current state xi to the goal one. To retrieve this estimation,
we compute a closed-form trajectory, from xi to the goal state, that
minimizes the cost J by applying the Pontryagins minimum princi-
ple [103]. In particular, letting n = 3 in Equation (21), then the optimal
trajectory p (t) minimising J can be computed as

p⋆µ =
1
6

αµt3 +
1
2

βµt2 + vµ0 t + pµ0 with µ = x, y, z, (24)

where the parameters αµ and βµ follow the relation(
αmu

βµ

)
=

1
T⋆3

(
−12 6T⋆

6T⋆ −12T⋆2

)(
pµgoal − pµ0 − vµgoal T

⋆

vµgoal − vµ0

)
,

and pµ0 , pµgoal , vµ0 , and vµgoal represent the initial and goal position
and velocity, respectively. The optimal time T⋆ can be compute by
deriving Equation (24) and plugging it inside Equation (23)

T⋆ = arg min
T>0

∑
µ∈{x,y,z}

1
3

α2
µT3 + αµβµT2 + β2

µT.

The optimal cost J ⋆ = J (p⋆, T⋆) is then used in place of hi as cost-
to-go estimation.
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Remark 5.2.1. The choice n = 3 leads to minimum jerk trajectories as the
control action u = x(3).

Remark 5.2.2. The computed optimal trajectory p⋆ contributes to the plan-
ning procedure more than only providing an admissible heuristic. As a mat-
ter of fact, p⋆ is useful twice as it can be used to stop the search in advance,
provided that the computed trajectory satisfies all dynamical and collision
constraints. Moreover, such an analytic expansion is of fundamental impor-
tance as, due to the control discretisation, it is difficult to have a primitive
end exactly in the goal state.

5.2.2 B-Spline Trajectory Optimisation

The second step of the proposed trajectory planning method consists
of a trajectory optimisation procedure. This step is fundamental in
smoothing the initial trajectory produced by the path searcher, which
is suboptimal due to the control discretisation, and to push the final
trajectory away from the obstacles, since the distance information in
the free space is ignored at search time. Here, as in Section 4.3.4, to
speed-up the solver and improve the planner success rate, we enforce
the use of B-Spline curves (see Section A) as time parameterisation
for the quadrotor trajectory. As already mentioned in Section 4.3.4,
B-splines are defined by a set of control points CP = [q0, . . . , qm], and
a set of time knots u =

[
u0, . . . , um+p+1

]
, as

s (u) =
m

∑
i=0

Bp
i (u) qi,

with p order of the spline and Bp
i basis functions, recursively com-

puted via the De-Boor formula [33]. The use of B-Spline in trajectory
optimisation is attractive thanks to its convex hull containment prop-
erty, which allows approximating the collision condition of the overall
trajectory by directly conditioning its control points CP lying to a free
non-necessary convex environment area. Moreover, by evaluating the
control points distance from the obstacles we can directly assess the
trajectory safeness. Another useful property is represented by the clo-
sure with respect to integration and derivation, so the derivatives s(d)

of a B-Spline still maintain a B-Spline structure with control points

q(d)
i = p

q(d−1)
i+1 − q(d−1)

i

u(d−1)
i+p+1 − u(d−1)

i+1

.

These properties, jointly with the differential flatness one, can be used
to ease the trajectory optimisation procedure as both the collision and
dynamics constraints can be refurmulated linearly in terms of the
trajectory control points, which are then used as decision variables.
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For this purpose, we fix an uniformly distributed knot vector of the
form

u =
[
00:7, ∆u, 2∆u, . . . , (m − p)∆u, T0:7

]
,

with ∆u = T/(m− p+ 1), and T the total trajectory time computed in
the search phase. Then we formulate the trajectory optimisation step
as an uncostrained optimisation problem of the form

min
q0,q1,...,qm

λsJs + λcJc + λf (Jv + Ja) , (25)

where λs ∈ R<0, λc ∈ R<0, and λf ∈ R<0 are weight coefficients
balacing between trajectory smoothness Js, distance from obstacles
Jc, velocity feasibility Jv, and acceleration feasibility Ja. Each cost
is formulated taking into account the B-Spline parameterisation and
properties. The smoothness cost Js tries to pursue the same goal car-
ried out by the searcher to minimise the overall control effort, thus
with n = 3, Js reads to

Js =
∫ T

0

∥∥∥∥dns (u)
dun

∥∥∥∥2

du,

which can be computed in closed form for B-Spline parameterisation
(see Section A). The collision cost Jc is formulated as the repulsive
force of the obstacles acting on each control point

Jc =
m

∑
i=0

(d (qi)− dthr)
2 d (qi) ≤ dthr,

0 d (qi) > dthr,

where d (qi) is the distance of qi from the closer mapped obstacle, and
dthr is a minimum distance considered as safe. Finally the velocity and
acceleration feasibility cost is formulated as

Jv = ∑
µ={x,y,z}

m−1

∑
i=0


(

q(1)2

i − v2
max

)2

q(1)2

i ≤ v2
max,

0 q(1)2

i < v2
max,

Ja = ∑
µ={x,y,z}

m−2

∑
i=0


(

q(2)2

i − a2
max

)2

q(2)2

i ≤ a2
max,

0 q(2)2

i < a2
max,

where vmax and amax are the axis-wise maximum velocity and accel-
eration, respectively.

Remark 5.2.3. The problem (25) does not ensure neither safety, nor dynam-
ical feasibility as the constraints has been softly injected inside the cost. Nev-
ertheless, there exists a local optimal close to the initial trajectory planned
by the searcher, so the problem (25) quickly converges to the local optimal
solution if initialised with a good and feasible initial condition.



5.2 quadrotor trajectory generation 63

(a) (b)

Figure 15: Results of the proposed trajectory planning algorithm. The figure
depicts the simulated environment along with the planned trajec-
tory by the searcher (yellow line), and the output of the trajectory
optimisation step (red line). Notice how the optimised trajectory
smoothly follows the yellow path without colliding with the en-
vironment obstacles.

(a) (b)

Figure 16: Results of the proposed trajectory planning algorithm. The pic-
ture reports the same results displayed in Figure 15 without the
environment map for better visualisation.

5.2.3 Experimental Results

The results obtained applying the proposed approach are reported in
Figures 16a and 16b, where the yellow lines represent the trajectories
computed by the path searcher, while the red lines are the outputs
of the trajectory optimisation step. As the reader can observe, both
yellow and red lines lie to the free part of the environment, ensuring
safeness of the overall trajectory, moreover the yellow path presents
sharp turns which are not present in the red one. This latter property
is the smoothing effect introduced by the optimiser, that, unlike the
search part, makes use of a continuous set of possible inputs u.
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5.3 contributions

The chapter is devoted to discuss the problem of trajectory planning
in completely known and mapped environments. The discussion un-
folds by first reviewing the current state-of-the-art solutions then we
review and implement one of the most promising approach to the
problem of quadrotor trajectory planning in cluttered environments.
The proposed solution has been deeply analyzed, implemented, and
deployed during the Leonardo drone contest with great results. More-
over, the implemented solution has been fully integrated inside a com-
plete navigation pipeline which makes use, and thus may be affected
by noise and errors, of a localisation, mapping, planning, replanning,
and control pipeline. The implemented solution has been tested in
a bunch of different scenarios where the surrounding map was con-
tinuously kept updated and the planning procedure may, sometimes,
not have a feasible solution.



6
T R A J E C T O RY R E P L A N N I N G F O R O B S TA C L E
AV O I D A N C E

6.1 the framework

React to the unknown, avoid previously unseen obstacles, and replan
trajectories in real-time are three basics capabilities that take part in-
side the set of elementary abilities that an autonomous robot must
master before being able to start moving in real-world environments,
cluttered of objects, people, animals, cars, and hopefully other robots,
which may behave unpredictably. Due to the importance of the prob-
lem at hand, a huge number of solutions have been presented in the
literature, first in a pure path planning approach [98], where the tim-
ing law is not considered during the planning stage and its compu-
tation is left as a posteriori task, later in a direct trajectory planning
framework [36], where the path and timing law are concurrently com-
puted, letting the planner to exploit the full robot capabilities and to
shape the path in order to ease the time allocation for a final feasi-
ble trajectory. Although we saw very impressive works in this field,
very few of them try to approach the planning, or replanning, prob-
lem from a numeric point of view, and even fewer try to use con-
solidated control system theory to guarantee the convergence of the
planning algorithm. It results that, although the proposed solutions
work well in simulations, or in not-too-complex environments, their
failure rate in real environments is very high. Besides that, careful
parameters tuning is often required, yielding to a very poor general-
ization. With the aforementioned problems in mind, we try to con-
tribute by firstly analyzing, and implementing on our flight platform,
a carefully selected state-of-the-art replanning algorithm, to test its
performance in real-world scenarios, then we try to perturb the cur-
rent trend of purely algorithmic solutions by proposing two numeri-
cal and control-oriented approaches. In this chapter, we aim to review
three different avoidance techniques starting from a purely algorith-
mic solution, borrowed from the state of the art, to more numerical
and control-oriented ones, which instead represent original unpub-
lished works. The core concept behind the proposed solutions is rep-
resented by the idea that treating the problem of obstacle avoidance
numerically allows assessing its performances via stability analysis
tools, borrowed from the control theory field, which ensures conver-
gence in all cases where some conditions are fulfilled, unlike purely
algorithmic approaches where the convergence to a correct solution
is not guaranteed at all. Although the reader hardly finds in this the-

65
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sis the aforementioned stability analysis, the algorithm presentation,
as well as the research carried out in this field, is oriented in this
direction.

6.1.1 Related Works

The trajectory replanning framework is a large field of study that
may embrace several different solutions, often quite variegated with
different inputs and outputs, and suitable for different environmental
conditions where only static obstacles are present, where moving ob-
jects may suddenly appear, or where other robotic agents move, with
the possibility to networking and share motion information. Due to
this variety, the referring literature is as large as to be unmanage-
able, even focusing on a specific problem, so we choose to mention
here the most important works which motivated this thesis more. In
particular, we first focused on the problem of static obstacles avoid-
ance, then moved to the case with moving objects, overlooking the
multi-agent case, being that a specialization of the more general one
where objects move with a priori unknown pattern. In this field, the
first sharp split in the research direction was caused by the intro-
duction of the Bézier curves as a new trajectory parameterisation ap-
proach, pioneer of this idea was [25], where this parameterisation was
used to plan fixed-wing aircraft trajectories. The good properties of
such curves allowed for easy arc length computation and collision
checking, thanks to which the approaches developed with this tool
outperform classical solutions based on polynomial trajectories [112,
128]. The work [25] introduced also a novel concept of time allocation
as curve composition, allowing to use the same curve properties not
only for spatial paths but also to shape the associated timing law. This
innovative idea dropped into obsolescence due to the complexity of
evaluating high-order derivatives. As a matter of fact, further works
in this field, which exploit the Bézier curves properties, were devoted
only to modifying the current agent path, ensuring dynamic continu-
ity, but without keeping into account the possibility of locally chang-
ing the allocated timing law [98, 99]. Bézier curves were subsequently
used in an uncountable number of works, together with their strict
brother, the B-splines. The work of [54] proposes to use Bézier curves
to plan trajectories inside the pointclouds retrieved from LiDAR sen-
sor updates, while [172] makes use of B-splines to ensure trajectory
feasibility during optimisation. The works of [117] and [118] exploit
the convex hull containments property to avoid collisions, constrain-
ing the planned curve inside a set of convex safe corridors iteratively
updated in time, while [141] used B-splines to represent both robot
and obstacle dynamics, a carefully selected and optimized set of sep-
aration planes was used to keep the planned path safe. A new re-
cent trend was finally introduced by [36], who first proposed a novel



6.1 the framework 67

sampling-based approach meant for directly planning B-spline trajec-
tories. The basic idea was to translate the classic robot pose sampling,
into a higher dimensional space where each sample configuration rep-
resents directly a piece of possible trajectory, allowing for dynamical
considerations. Although some state-of-the-art works may consider
time allocation as an active part of the problem at hand [36, 118, 141]
there is no explicit optimization procedure that allows its computa-
tion yet, losing a set of degrees of freedom especially useful in highly
cluttered environments. Besides the approaches just analyzed, which
consider a time-parameterised trajectory as algorithm output, there
exist other solutions that try to elevate the problem abstractness to a
higher level, considering velocity, or acceleration, as algorithm output,
allowing for easier control algorithms at the plant side. In this field, it
is worth mentioning the works of [27] and [45] which select the robot
velocity on the basis of a reconstructed map of the environment in
the former case, and on the basis of event camera updates in the lat-
ter one. Furthermore, learning-based techniques obtained impressive
results when trained to compute safe velocity commands [90, 91]. Fi-
nally, other approaches take into consideration the full robot dynam-
ics via model predictive control [120], or control barrier functions [78,
133, 155] solutions. The latters, although more complicated, allow the
use of control system tools to verify stability, ensuring convergence
to a feasible solution under a set of well-specified assumptions.

6.1.2 Problem Definition

The problem of trajectory replanning is strictly linked to the prob-
lem of planning, with the only difference that, in the former case, is
supposed a prior notion of a dynamically feasible trajectory, which
may become unfeasible due to possible collisions when new sensor
readings become available. Let (x (t) , u (t)) be an initial feasible state
trajectory, solution of

ẋ = f (x, u) ,

and satisfying x ∈ X and u ∈ U . Where f (·) represents the robot
dynamics, while X ∈ Rnx and U ∈ Rnu are the allowed sets for x and
u, respectively. Then the problem of replanning can be formalized
as the computation of the tuple (x⋆ (t) , u⋆ (t)) as a solution of the
optimisation problem

min
x′,u′

∥∥x − x′
∥∥+ ∥∥u − u′∥∥ ,

subj. to x′ ∈ X ′, u′ ∈ U ′,

ẋ′ = f
(
x′, u′) ,

(26)

with X ′ and U ′ the new allowed sets computed after the integration
of the new sensor readings. Note that (26) addresses the problem of
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replanning by looking for a new feasible trajectory that lies as close
as possible to the original one. This choice is motivated by the idea
that if an initial trajectory was provided, it was optimal for the task at
hand, and computed by minimising a precise index. Although prob-
lem (26) embraces a large number of use cases addressed in the liter-
ature, it misses the case where the safe set X is not fixed in time, thus
in the environment are present moving objects, or other agents. In
this view, let us suppose to have the knowledge of how these objects,
or agents, move, having at hand an estimation of their current trajec-
tory in terms of ro = (xo, yo, zo) position. Moreover, let Γ (x) the map
able to extract, from the current state trajectory, only the x, y, z compo-
nents expressing the agent position in space. Thus problem (26) can
be rewritten as

min
x′,u′

∥∥x − x′
∥∥+ ∥∥u − u′∥∥ ,

subj. to x′ ∈ X ′, u′ ∈ U ′,

ẋ′ = f
(
x′, u′) ,

∥Γ (x (t))− ro (t)∥ > dsafe ∀t ∈ R+,

with dsafe ∈ R≥0 expressing the minimum distance intra-agent, or
between the considered agent and the moving obstacle. In the partic-
ular case of a quadcopter, its differential flatness property allows to
ease the optimisation procedure by directly optimise on the space of
its flat outputs σ = (x, y, z, ϕ) = (r, ϕ). For more details about this
property please refer to Section 2.2.

6.2 on flight trajectory replanning

In this section we review and adapt a purely algorithm solution to
the problem stated in Section 6.1.2, in particular we focused on the
solution proposed by [172] being the state-of-the-art work that shows
the most promising results. We borrowed from [172] the core idea,
while the algorithm implementation, as well as its integration inside
our operative framework has been completely developed internally.
The reviewed solution has been successfully coupled with a fast and
reliable perception stack, that allows to detect possible collisions and
triggers the replanning system, as well as the control layer. Moreover,
we proposed a novel solution, exploiting the B-spline properties, to
fast link the replanned trajectory with the previously provided one,
ensuring continuity up to the adopted spline order. Experimental re-
sults show how the proposed stack is effective in fast replanning col-
liding trajectories, and how continuity is always guaranteed.

The proposed replanning system takes the outputs of a global plan-
ning procedure, along with the perception, or mapping, output, and
the current robot position, and deforms the global reference trajec-
tory locally to avoid previously unknown obstacles. The replanning
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works in two steps. Firstly, a set of local guiding paths are generated
through the free space, although may there exists an infinite number
of possible paths we restrict the final choice only to those dinstic-
tive paths considered as topologically different, by pruning the ones
bringing more detour from the initial planned trajectory. Secondly, a
B-spline-based Path-Guided Optimisation (GTO) step is in charge to
build a set of locally optimal trajectories out from the found paths.
The “best” trajectory is then extracted and executed.

6.2.1 Collision Perception & Replanning Trigger

In order to check the trajectory safeness, we employ two different data
structures (a) an Euclidean Signed Distance Field (ESDF), which is in
charge to represent the known environment obstacles, and is continu-
ously updated with new sensor readings, and (b) a ktree structure
built on the last pointcloud computed via stereo image matching.
The necessity to employ two different data structures may seem as
an useless redundancy, since them are actually representing the same
information, but is of fundamental importance to maintain the time
consistency of the data. As a matter of fact, the integration of new
measurements inside any map structure is costly and cannot be made
completely real-time, moreover checking the current trajectory in the
sensor frame may improve the solution robustness against position
estimation errors and sensor noise. The same structures are then later
used to generate the topological paths, and to steer the path-guided
optimisation away from the detected obstacles. The perception layer
works by continuously checking, at each new sensor reading, the cur-
rently running trajectory for possible collisions inside both the cur-
rent pointcloud, via ktree nearest search, and inside the current re-
constructed ESDF. In particular, the running trajectory is checked for
collisions in a sliding time window of fixed-dimension Tmax, at a fixed
resolution of ∆T. The initial time of the window is chosen in order to
correspond exactly to the current robot position, while Tmax results
from a tradeoff between algorithm performances, sensor range, and
the robot capabilities. If a collision is detected very close to the cur-
rent position, let’s say there exists a minimum allowed time tmin, then
an emergency stop procedure is triggered, and the robot tries to ap-
ply all efforts in slowing down and stop as fast as possible. On the
other hand, if a collision is detected on a feasible time, the replanning
procedure is triggered. In order to let the solution be resilient versus
sensor noise and false detections, we inject a lower bound Nmin of
consecutive detections before considering the current trajectory un-
safe.
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6.2.2 Topological Path Searching

The core of the proposed solution is a Gradient-based Trajectory Op-
timisation (GTO) which allows to formulate locally optimal and safe
trajectories in real-time. GTO methods, which typically formulate tra-
jectory generation as non-linear optimization problems, trading off
smoothness, safety and dynamic feasibility, are shown to be partic-
ularly effective in local replanning [52, 112, 147, 170], but previous
works [131] showed that GTO methods are very sensitive to unfa-
vorable initialization, which may even lead to unfeasible solutions.
Typical GTO methods incorporate the gradients of a ESDF in a colli-
sion cost to push the trajectory out of obstacles. Yet there are some
“valleys” or “ridges” in the ESDF, around which the gradients differ
greatly. Consequently, if a trajectory is in collision and crosses such
regions, the gradients of ESDF will change abruptly at some points.
This can make gradients of the collision cost push different parts of
the trajectory in opposing directions and fail the optimisation. Nor-
mally, such points, which correspond to the space that has an identi-
cal distance to the surfaces of nearby obstacles, are difficult to avoid,
especially in complex environments. Therefore, optimization depend-
ing solely on the ESDF fails inevitably at times. To solve the problem,
it is essential to introduce extra information that can produce an ob-
jective function whose gradients consistently deform the trajectory to
the free space. For this reason, we adopt a sampling-based topologi-
cal path searching to find a collection of distinctive paths, later used
inside the proposed GTO method reformulated as a GPO.

Whereas there exists an infinite number of possible paths, we re-
strict the GPO procedure to apply to a subset of distinctive paths,
that are considered topologically different. In this sense, we employ
the notion of Uniform Visibility Deformation (UVD) firstly introduced
in [172], which provides a constructive method to assess the sampled
paths equivalency.

Definition 6.2.1. Two trajectories s1 (u), s2 (u) parameterized by u ∈ [0, 1]
and satisfying s1 (0) = s2 (0), s1 (1) = s2 (1), belong to the same uniform
visibility deformation class, if for all u, the line s1 (u) s2 (u) is collision-free.

The proposed solution works by building a roadmap capturing
an abundant set of paths from different UVD classes. Unlike stan-
dard roadmap planning algorithms, which create maps containing
many redundant loops, the adopted method generates a more com-
pact roadmap where each UVD class contains just one or a few paths.
The final roadmap is iteratively created as a graph connecting a series
of nodes, randomly sampled in the x, y, z configuration space. Each
sampled node can be recognised as a guard or a connector. Guards
are responsible for exploring different parts of the free space, while
connectors connect two guards to create a feasible piece of path. Any
two guards g1 ∈ R3 and g2 ∈ R3 of the graph cannot be visible to
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each other, i.e. the line g1g2 is in collision, thus every time a sampled
point is invisible to all other guards, a new guard is created. On the
other hand, if a sampled point is visible at least from two guards, a
new connector is created and all possible paths, connecting the latter
node to all visible guards, are generated. Finally, if a sampled node is
visible from only one guard is discarded. The newly generated paths
are added to the global roadmap only if belong to a different UVD
class, or the counterpart of the same class represents a longer path.
In the beginning, the roadmap graph is initialized with exactly two
guards, representing the starting and goal points. The start position is
computed as the point corresponding to half of the detected collision
time tcoll (i.e. tstart = 0.5tcoll), while the goal is selected as the point far
at least dobs from the detected collision point, at time tgoal. In this set-
ting, halving the collision time turns out to be effective to instantiate
enough time for the replanning procedure, while the robot is moving,
and dobs is provided as an input parameter. We stress the fact that
dobs is representative of a priori notion about the surrounding envi-
ronment, being it ideally the maximum obstacle size that the robot
should avoid. A wrong tuning of dobs may lead to further unneces-
sary replanning procedure, which may even fail if the guessed value
is too far from the real one. The graph growth continues until a limit
of time ∆max of a limit of sampling nodes Nmax is reached. With the
roadmap at hand, a depth-first search algorithm, augmented by a vis-
ited node list, is applied to search for all the possible paths between
the start and goal node, in a similar way as done in [129].

6.2.3 Path Shortening and Optimisation

The extracted paths may present two distinctive pathologies, on the
first stage they may present very high detours from the original trajec-
tories, and in the second stage may be redundant in the UVD sense,
even if redundant connections between two guards are avoided. In
order to correct these unwanted pathologies, we firstly search for
topologically equivalent shortcut path for each one, then we check
the equivalence between any two paths and only preserve topologi-
cally distinct ones. In particular, to perform shortening, each found
path is discretised with a fixed resolution dres and a new path is gen-
erated by adding the discretised points, one to each other, only if the
considered point is not visible from the last added point. The afore-
mentioned procedure generates shorter, but infeasible, paths, due to
not visibility condition. To solve this problem, all infeasible points
of the new paths are pushed away from obstacles in the direction of
the ESDF gradient, of a fixed distance dsafe. Then the generated paths
are checked for equivalence to preserve only topologically distinct
ones. It is worth to remark that the number of distinctive paths grows
exponentially with the number of obstacles, and in case of complex
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environments, it is computationally intractable to use all paths. For
this reason, we only select the first Npaths shortest paths.

Once a set of topologically different short paths, connecting the
start and goal node, have been collected, a PGO procedure is em-
ployed to optimise all found paths and allocate a feasible timing law.
The optimisation procedure is efficiently performed using B-spline
parameterisation and by parallelizing the computation load on all
available cores. The proposed PGO method follows a two steps ap-
proach, the first phase is devoted to generate a warmup trajectory by
deforming the current one toward the selected path, that lies on the
free and flyable space. While, in the second phase the obtained solu-
tion is iteratively refined via nonlinear optimisation to push it away
from obstacles and to guarantee its dynamical feasibility. Going down
in the details, the trajectory segment in collision is reparameterized
as a p-degree B-spline s (u) with control points CP = [q0, . . . , qm] and
knot vector

u =
[
00:p, ∆u, 2∆u, . . . , (m − p)∆u, T0:p

]
,

where m is given by the chosen discretisation resolution dres, while T
correspond with the time elapsed from the selected initial to the goal
point. In this setting, the first phase correspond to the solution of the
following optimisation problem

min
q0,...,qm

λ1

∫ T

0

∥∥∥∥d3s (u)
du3

∥∥∥∥2

du + λ2

m

∑
i=0

∥qi − ri∥2 , (27)

with λ1, λ2 ∈ R+, and ri with i = 0, . . . , m represents the discretised
points obtained from the collected topological paths. In problem (27),
the first loss term aims to improve the final trajectory smoothness,
while the second one penalizes its distance from the guiding path.
Both the terms can be simplified in their formulation using the B-
spline properties (Section A), yielding to an unconstrained quadratic
programming problem, that can be easily solved in closed form. The
first phase outputs a smooth trajectory in the vicinity of the guid-
ing path. Since the path is already collision-free, usually the warmup
trajectory is also so. Even though it is not completely collision-free,
its major part will be attracted to the free space. At this stage, the
gradients of ESDF along the trajectory vary smoothly, and the gra-
dients of the objective function push the trajectory to the free space
in consistent directions. In the second phase, we adopt a nonlinear



6.2 on flight trajectory replanning 73

optimisation framework to further refine the warmup trajectory into
a smooth, safe, and dynamically feasible one.

min
q0,...,qm

λ1

∫ T

0

∥∥∥∥d3s (u)
du3

∥∥∥∥2

du + λ2

m

∑
i=0

F (q, dsafe) ,

sub.to. q′
i ≤ vmax ∀i = 0, . . . , m − 1,

q′′
i ≤ amax ∀i = 0, . . . , m − 2,

q0 = r0, qm = rm,

q′
0 = vinit, q′′

0 = ainit,

(28)

where F (q, dsafe) shapes as

F (q, dsafe) =

0 if d (q) ≥ dsafe,

(d (q)− dsafe)
2 if d (q) < dsafe.

In the aforementioned equation, d (q) is the distance of q from the
closest obstacle evaluated using both the ESDF map and the ktree
built out of the current sensor reading. Once all topological paths
as been time parameterised and optimised, the trajectory leading to
the minimum cost is extracted and executed. Although the proposed
PGO has one more step of optimization compared with previous
methods, it can generate better trajectories within shorter time. The
first-phase takes only negligible time, but generate a warmup trajec-
tory that is easier to be further refined, which improve the overall
efficiency.

6.2.4 B-Spline Trajectory Injection

The optimisation problem (28) yields to locally optimal trajectories
guaranteed to be continuous up to the second derivative, with the
initial colliding trajectory. This is a fundamental feature since the tree
segments, namely the first initial trajectory, the replanned piece, and
the final one, must be executed one after each other, consecutively.
Some issues may arise when the replanning procedure is called sev-
eral times, during the execution of a previously replanned segment.
Indeed, the replanner may commission an even large number of tra-
jectory pieces, that quickly become intractable for the reference gen-
erator. Moreover, if the application at hand requires a higher level of
continuity, this new requirement must be encoded inside (28) which
at the end may take too much time to solve. In this section we propose
a novel method to join the new replanned segment with a previously
computed B-spline trajectory. The proposed method is as simple as
effective, it ensures continuity up to the spline order and outputs only
one trajectory, allowing for any replanning procedure as required by
the surrounding environment. The key idea comes from the B-spline
property to be shaped, at each time instant u ∈ [0, T], by only p + 1
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(a) (b)

Figure 17: Results of the reviewed approach in the synthetic environment
adopted in the Leonardo drone contest. The solution was able to
replan feasible and safe trajectories in real-time, without forcing
the quadcopter to an emergency stop. In the figure, the red path
represents the initial colliding trajectory, the yellow points are the
optimised hypothesis for replanned trajectory, and the blue path
represents the final choice. Images (a) and (b) depict the same
simulation, captured from two different points of view.

control points. It follows that, splitting the control points vector ex-
actly in the correspondence of the final (p + 1)th control point that
spans the curve at time tstart and the first control point that spans the
curve at tgoal, allows for inserting the new set of points, identifing the
replanned curve, without loosing any spline continuity feature. Find-
ing the splitting points can be easily done by checking the knot span
for the first ui ≥ tstart and uj ≥ tgoal, then converting the found value
in terms of the corresponding control point indeces icp and jcp as

icp = i − ⌈p/2⌉ − 2,

jcp = j − ⌈p/2⌉ − 1.

Giving two control points sequences CP1 =
[
q1

0, . . . , q1
m1

]
and CP2 =[

q2
0, . . . , q2

m2

]
, with the corresponding knot vectors u1 =

[
00:p, ∆1

u, . . . ,

(m1 − p)∆1
u, T1

0:p

]
and u2 =

[
00:p, ∆2

u, . . . , (m2 − p)∆2
u, T2

0:p

]
, represent-

ing the initial and replanned trajectory respectively, then the com-
posed curve with control points

CP =
[
q1

0, . . . , q1
icp

, q2
0, . . . , q2

m2 , q1
jcp

, . . . , q1
m1

]
,

and knot vector

u =
[
00:p, ∆1

u, 2∆1
u, . . . , ((m2 + m1 − jcp + icp)− p)∆1

u, T0:p

]
,

preserves the path described by the consecution of the aforemen-
tioned three segments, ensuring continuity up to the chosen spline
order.
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Figure 18: Initial velocity trajectory (a) and replanned one (b). In the images,
the red line represents the velocity along the x-axis, the green one
is the velocity along the y-axis, and the blue represents the veloc-
ity along the z-axis. The two vertical purple lines mark the initial
and final cutting points, where the initial trajectory is broken and
reconnected with the replanned one. Note that the velocity conti-
nuity is completely preserved. In both cases the velocity is kept
below the safe level of 1.5m/s.
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Figure 19: Initial acceleration trajectory (a) and replanned one (b). In the im-
ages, the red line represents the acceleration along the x-axis, the
green one is the acceleration along the y-axis, and the blue rep-
resents the acceleration along the z-axis. The two vertical purple
lines mark the initial and final cutting points, where the initial tra-
jectory is broken and reconnected with the replanned one. Note
that the acceleration continuity is completely preserved. In both
cases the acceleration is kept below the safe level of 0.5m/s.

6.2.5 Experimental Results

The proposed approach has been successfully applied to the syn-
thetic environment proposed during the Leonardo drone challenge
(see Section 1.2), in two meaningful contexts. In the first stage, we
supposed that the robot was performing a point-to-point trajectory
to reach a particular area, the committed initial trajectory was com-
puted without the obstacles knowledge, leading to an unsafe motion.
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Figure 20: Initial jerk trajectory (a) and replanned one (b). In the images,
the red line represents the jerk along the x-axis, the green one is
the jerk along the y-axis, and the blue represents the jerk along
the z-axis. The two vertical purple lines mark the initial and final
cutting points, where the initial trajectory is broken and recon-
nected with the replanned one. Note that the jerk continuity is
completely preserved. No jerk limits have been fixed in this sim-
ulation.

(a) (b)

Figure 21: The reviewed approach applied to the specific case of exploration.
In the image the trajectory has been replanned without a real col-
lision in order to test its performance against previously unseen
static obstacles, which may appear during the exploration task.
As emerges from the figure, the replanning stack was able to suc-
cessfully replan the exploring trajectory.

Next, we recreated the same exploration settings of Section 4.1.2,
where the robot was performing an exploration task driven by the
algorithm proposed in Section 4.3. In this second case, the initial tra-
jectory was computed using the environment knowledge, thus the
performed trajectory was not in collision with obstacles, in order to
trigger the replanning procedure we inject a false sensor update con-
taining an obstacle exactly on the motion direction. The obtained re-
sults are reported in Figure 17 for the first case, and in Figure 21 for
the exploration case. In both the images is reported the environment
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occupancy map, the initial trajectories, the optimised ones, and the
sampled nodes. In particular, the red continuous line represents the
initial colliding motion, which requires replanning, in Figure 17 the
collision is particularly clear, while in Figure 21 the red path is not
colliding with any obstacles due to the false measurement injected.
The green circles represent the topologically different sampled and
then shortened paths, the yellow lines are the trajectories obtained
after path-guided optimisation, and the blue line is the final selected
trajectory. As the reader can notice, the blu line is always overlapped
to the red one in the beginning end at the end, while is overlapped to
the yellow one inside the replanned segment. Figures 18, 19, and 20

show the behavior of velocity, acceleration, and jerk before and after
replanning. In the images, the red lines are the quantities along the
x-axis, the green ones are the same quantities along the y-axis, and
the z-axis is shown in blue. The purple vertical lines remark the start
and goal points, where the initial colliding trajectory has been broken.
Note how the continuity is preserved, among the different trajectory
segments, up to the chosen trajectory order p. A full list of param-
eters used to carry out the aforementioned simulations is reported
in Table 4.

6.3 spatio-temporal curves separation

Despite the effectiveness of the replanning algorithm described in Sec-
tion 6.2, it may fail in environments where are present moving objects,
as these are all treated as static obstacles. This simplifying assump-
tion can be fatal to the replanning procedure as the final trajectory
may still be unsafe during the next time instant. In this view, we pro-
posed a novel approach to the replanning problem described in Sec-
tion 6.1.2, in the setting where the safe set is not fixed in time, thus
moving obstacles may cross the robot motion. The proposed solution

vmax 1.5m/s amax 0.5m/s2

Tmax 2.0s ∆T 0.1s2

Tmin 0.5s Nmin 3

dobs 4m ∆max 0.1s

Nmax 3000 dres 0.2m

dsafe 0.5m p 7

λ1 1.0 λ2 10.0

Table 4: Parameters used to test the replanning algorithm.
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Figure 22: Example of two colliding Bézier curves. In the figure, the blue cir-
cles represent the randomly sampled control points of the contin-
uous curve, while the red ones are the randomly sampled control
points of the dotted one. The two curves are obtained as the com-
position of two Bézier curves of order 5 for the position and 3 for
the timing law. The color shadows represent the time behavior of
the two curves, normalized inside the interval [0, 1].

is grounded on the assumption to have a priori knowledge of the
surrounding environment, as well as an estimation of the obstacle to
which the agent may collides. We stress the fact that, even if we es-
pecially focus on the particular case of one single moving obstacle,
the proposed approach can easily extended to the multi-objects or
multi-agent ones, where some of them are static.

Motivated by the success of GTO approaches [52, 112, 147, 170], and
inspired by the flexibility of Bézier curves in trajectory planning [54,
98, 118], we propose a novel optimisation-based replanning paradigm
where the Bézier parameterisation is employed twice in expressing
the path and the associated timing law. The final trajectory recalls the
same structure chosen in Section 4.2.1, where the piecewise structure
allows for splitting the planning problem in several segments, and
considering one environment area, or obstacle collision, at a time. In
the next sections we firstly remark how the double parameterisation
is the key to fast plan optimal avoiding trajectories and state the final
trajectory equations (Section 6.3.1), then we formulate the proposed
solution as a single step optimisation problem (Section 6.3.2).

6.3.1 Spatio-Temporal Parameterisation & Composition

The key idea behind the proposed solution is to parametrise both
path and timing law by means of two Bézier curves. In order to un-
derstand how this choice may helps during the planning stage, let
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Figure 23: Convex hull representation of Figure 22. The third dimension is
represented by the time, normalized inside the interval [0, 1].

us consider the example reported in Figure 22. In this 2-dimensional
case, two 5-order Bézier curves

r =
p

∑
i=0

qiB
p
i (u) ,

ro =
p

∑
i=0

qo
i Bp

i (u
o) ,

with p = 5 and qi, qo
i randomly sampled in R2. The timing laws

fixing u and uo are chosen as other two Bézier curves ensuring the
contidition u ∈ [0, 1] for any t ∈ R≥0

u =
pu

∑
i=0

uiB
pu
i (t) ,

uo =
pu

∑
i=0

uo
i Bpu

i (t) .

In the aforementioned relation, pu = 3, while u0 = uo
0 = 0 and

upu = uo
pu

= 1 to constraining u, uo ∈ [0, 1]. The remaining free points
have been selected randomly in R. In this settings, r is thought of as
the robot trajectory, while ro as the obstacle one. Figure 22 depicts the
curves behavior on the R2 plane and along time thanks the reported
colormap, in particular r is depicted as a continuous line, with the
blue circles as associated control points, while ro is represented as a
dotted line, with the orange circles as control points. The reader can
immediately recognize a possible collision around 0.5/0.6 seconds,
where the two lines cross each other. The replanning problem may
be solved just by moving the path control points qi, leading to a very
huge detour from the initial planned trajectory, or by slowing down
the agent until its motion is safe from possible collisions. In this sec-
ond case, instead of moving the position control points we require to
change the timing law, making the agent trajectory slower and with
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a higher execution time. Although very appealing, the latter solution
is not feasible as long as the relation between the timing law and the
induced agent-obstacle distance is not clear. In this framework, the
Bézier curve properties help us in formalizing such a relation exploit-
ing first the composition rule, then the difference rule, and finally
the product one. Although the reader can find a complete analysis
in Section A, we recall here these properties applied to the considered
specific case. Let us suppose we want formalize the agent-obstacle
squared distance d (t) as a Bézier curve, whose control points di must
be function of the initial quantities qi, qo

i , ui, and uo
i . Applying the

composition rule to r and u, and ro and uo leads to

qui
= λ

p
0,j j = 0, . . . , ppu,

qo
ui
= ρ

p
0,j j = 0, . . . , ppu,

(29)

where

λk
i,j =

(
kpu

j

)−1 min(j,kpu−pu)

∑
l=max(0,j−pu)

(
kpu − mu

l

)(
pu

j − l

)
[(

1 − uj−l
)

λk−1
i,l + uj−lλ

k−1
i+1,l

]
,

(30)

ρk
i,j =

(
kpu

j

)−1 min(j,kpu−pu)

∑
l=max(0,j−pu)

(
kpu − mu

l

)(
pu

j − l

)
[(

1 − uo
j−l

)
ρk−1

i,l + uo
j−lρ

k−1
i+1,l

]
,

(31)

for k = 1, . . . , p, i = 0, . . . , p − k, and j = 0, . . . , kpu and setting λ0
i,0 =

qi. The obtained control points qui
and qo

ui
represent two new curves

of order ppu, encoding both path and timing law, then the agent-
obstacle distance, along the two axis, can be evaluated as

q∆i
= qui

− qo
ui

∀i = 0, . . . , ppu. (32)

The final step consists in converting the axis-wise distance, to a squared
Euclidean one. To do this, q∆i

=
[
qx

∆i
, qy

∆i

]
must be first decomposed

alog the two axis, then each component must be squared up as

(
qk

∆i

)2
=

min(ppu,i)

∑
j=max(0,i−ppu2)

(
ppu

j

)(
ppu

i − j

)
(

2ppu

i

) qk
∆j

qk
∆i−j

, (33)

with k = x, y and i = 0, . . . , 2ppu. Finally, the squared Euclidean
distance can be evaluated as a Bézier curve d (t) of order 2ppu with
control points

di =
(

qx
∆i

)2
+
(

qy
∆i

)2
. (34)
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Remark 6.3.1. Equations (29)-(34) look complicated, but at the end, the
relation between di and qi, ui, qo

i , and uo
i results to be a simple algebraic

relation. Let define the map Γ : R2(p+pu) 7→ R2ppu as the function map-
ping the initial path and time control points to the final squared Euclidean
distance.

Remark 6.3.2. Equations (29)-(34) have been developed for a planar case,
but the extension to the three-dimension case is straightforward, considering
q, qo ∈ R3 and k = x, y, z.

The key idea behind the proposed approach lies in the possibility to
separate the agent curve and the obstacle one both in space, and time,
letting the algorithm to select the optimal trade-off between mov-
ing the position control points, or the timing law ones. The adopted
Bézier parameterisation is crucial in this view since it allows to con-
tinuously keep separated the two curves, and straightforwardly join
them when is required. A graphical representation of this property
is depicted in Figure 23, where is reported a convex hull representa-
tion of the colliding curves shown in Figure 22. In Figure 23 the two-
dimensional curves are depicted in R3, with the time being the third
axis. This three-dimensional representation has been obtained enlarg-
ing the set of composed control points from Equation (29), with ui
and uo

i . The resulting trajectories are still Bézier curves, thus the con-
vex hull containment property still holds, and the obtained polyhedra
can be used to verify collisions both in time and space.

We conclude this section by recalling the piecewise Bézier structure
defined in Section 4.2.1, used here to represent the final quadcopter
trajectory.

r (t) =



∑
p
i=0 Bp

i (u1 (ζ1))q1
i t ∈ [T0, T1],

∑
p
i=0 Bp

i (u2 (ζ1))q2
i t ∈ [T1, T2],

...
...

∑
p
i=0 Bp

i (ul (ζl))ql
i t ∈ [Tl−1, Tl ],

(35)

with ζi =
t−Ti−1
Ti−Ti−1

and uj
(
ζ j
)
= ∑

pu
i=0 Bpu

i (ζ j)u
j
i . From now on we sup-

pose p = 5 and pu = 3.

6.3.2 Spatio-Temporal Separation

With the previous analysis at hand, we propose here an optimisation-
based approach to the replanning problem described in Section 6.1.2,
in the specific case where the obstacle trajectory ro (t) is known and
parameterised as a Bézier curve with control points qi

o for the path,
and ui

o for the timing law. In particular, let rj (t) the segment of Equa-
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Figure 24: Experimental setting used to test the proposed approach. Figure
(a) depicts the initial trajectory planning made using the corri-
dords depicted in image (b). The colored lines represent the initial
agent trajectory, along with the respective selected control points,
while the dotted blue line is the moving obstacle path, chosen
in order to get in collision with the third green piece. The red
rectangles are environment obstacles assumed to be completely
known.
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Figure 25: Initial setting extrapolated from Figure 24. In the left image, the
two colliding pieces of trajectory are depicted with their behavior
in time, normalized inside the interval [0, 1], while in the right
image the blue line represents the agent-obstacle distance in time.
The red dotted line, in the right image, is the chosen threshold
for the minimum safe distance.

tion (35) in (possible) collision with the obstacle trajectory ro (t), then
the problem of trajectory replanning can be solved as

min
q0,...,qp;
u0,...,upu

J
(

q0, . . . , qp, u0, . . . , upu , qj
0, . . . , qj

p, uj
0, . . . , uj

pu

)
subj. to Continuity constraint,

Dynamical constraint,

Collision constraint,

(36)
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with the constraints set depending on qo
0, . . . , qo

p, uo
0, . . . , uo

pu
. The cost

function J (·) can be chosen so as described in Section 6.1.2, recalling
the necessity to keep the replanned trajectory as close as possible to
the original one

J (·) =
p

∑
i=0

∥∥∥qi − qj
i

∥∥∥+ pu

∑
i=0

∣∣∣ui − uj
i

∣∣∣ , (37)

or so as described in Section 6.2.3, including some trajectory regular-
isation terms. In the following we briefly details and formulate the
constraints in (36).

Continuity constraint.
Belongs to this family of constraints all those conditions re-
quired to continuously connect the replanned trajectory seg-
ment with rj−1 and rj+1. In this context, we enforce continuity
up to the third derivate, since higher order differentiations may
complex the problem unnecessarily. Position continuity is easily
obtained via control points matching as

u0 = 0,

upu = 1,

r0 = rj
0,

rp = rj
p,

where points denoted with apex j are the old control points.
As regards velocity and acceleration continuity, we differentiate
rj (t), with an eye to the composed stucture.

(r1 − r0) (u1 − u0) =
(

rj
1 − rj

0

) (
uj

1 − uj
0

)
,(

rp − rp−1
) (

upu − upu−1
)
=
(

rj
p − rj

p−1

) (
uj

pu − uj
pu−1

)
.

(r1 − r0) (u2 − 2u1 + u0) + (r2 − 2r1 + r0) (u1 − u0)
2 =(

rj
1 − rj

0

) (
uj

2 − 2uj
1 + uj

0

)
+
(

rj
2 − 2rj

1 + rj
0

) (
uj

1 − uj
0

)2
,(

rp − rp−1
) (

upu − 2upu−1 + upu−2
)
+
(
rp − 2rp−1 + rp−2

) (
upu − upu−1

)2
=(

rj
p − rj

p−1

) (
uj

pu − 2uj
pu−1 + uj

pu−2

)
+
(

rj
p − 2rj

p−1 + rj
p−2

) (
uj

pu − uj
pu−1

)2
.

Dynamical constraint.
In the specific use case of quadcopter trajectory planning, differ-
ential flatness (Section 2.2) can be used to collapse the dynamics
constraint to velocity and acceleration bounds.

ppu
(
rui+1 − rui

)
/
(
Tj+1 − Tj

)
≤ vmax ∀i = 0, . . . , ppu − 1,

ppu (ppu − 1)
(
rui+2 − 2rui+1 + rui

)
/
(
Tj+1 − Tj

)2 ≤ amax ∀i = 0, . . . , ppu − 2,

with qui
be the ith control point of the composed curve (29).

Here we are exploiting the properties of closure with respect
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Figure 26: Results of the proposed solution when used to optimise ui only.
In the left image is depicted the same path as Figure 25, but with
the new time behavior, normalized inside the interval [0, 1]. The
blue continuous line, in the right image, represents the new agent-
obstacle distance, and the red dotted line is the fixed minimum
safe distance.

to composition and derivation, along with the convex hull con-
tainment one. In this context, as well as in the next collision con-
straint, the Bézier parameterisation plays a crucial role in sim-
plifying the constraint formulation and dimensionality, leading
to a manageable problem.

Collision constraint.
Finally, collision constraints are formulated as nc flght safe cor-
ridors for static obstacles avoidance, and as spatio-temporal dis-
tance for dynamic obstacle avoidance

di ≥ dsafe ∀i = 0, . . . , 2ppu,

Akri ≤ bk ∀i = 0, . . . , p, ∀k = 0, . . . , nc.

In the aforementioned relation di are the 2ppu control points
defining the squared agent-obstacle distance, defined in Equa-
tion (34), while Ak and bk are nc convex polyhedra defining the
safe regions free of static obstacles. In this setting,

X ′ =
nc⋃

k=0

{
x ∈ Rnx : Akx ≤ bk

}
.

Remark 6.3.3. The optimisation problem (36) has been formulated for one
agent only, colliding with a moving obstacle, the extension to the multi-
agents case can be straightforwardly obtained by adding a new set of optimi-
sation variables, describing the new agent trajectory.

6.3.3 Experimental Results

The proposed approach has been successfully applied in two differ-
ent meaningful scenarios representing a two-dimensional framework
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Figure 27: Results of the proposed solution when used to optimise both qi
and ui. In the left image is depicted the new path with the new
time behavior, normalized inside the interval [0, 1]. The blue con-
tinuous line, in the right image, represents the new agent-obstacle
distance, and the red dotted line is the fixed minimum safe dis-
tance.
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Figure 28: Initial three-dimensional testing scenario. In the left image, the
two colliding pieces of trajectory are depicted with the considered
collision sphere. In the right image, the blue line represents the
agent-obstacle distance in time, and the red dotted line is the
chosen threshold for the minimum safe distance.

(Figure 25), and a three-dimensional one (Figure 28). In both cases,
the optimisation problem (36) has been solved for ui only and for
both qi and ui. The obtained results are reported in Figures 26 and 27

for the two-dimensional case, and in Figures 29 and 30 for the three-
dimensional one. In all figures the (a) image reports the resulting
trajectory along with its behavior in time, while image (b) depicts the
agent-obstacle distance (blue line) with the fixed minimum safe dis-
tance (red dotted line). In all simulations, we choose the loss function
as in Equation (37), dsafe = 0.25, vmax = 1.5m/s2, and amax = 0.5m/s2.
The proposed solution succeeds, in each proposed scenario, to solve
the trajectory replanning problem. In the complete optimisation case,
in Figures 27 and 30, the algorithm is left free to trade-off between
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Figure 29: Results of the proposed solution when used to optimise ui only.
In the left image is depicted the same path as Figure 28, but with
the new time behavior, normalized inside the interval [0, 1]. The
blue continuous line, in the right image, represents the new agent-
obstacle distance, and the red dotted line is the fixed minimum
safe distance.
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Figure 30: Results of the proposed solution when used to optimise both qi
and ui. In the left image is depicted the new path with the new
time behavior, normalized inside the interval [0, 1]. The blue con-
tinuous line, in the right image, represents the new agent-obstacle
distance, and the red dotted line is the fixed minimum safe dis-
tance.

∥∥∥qi − qj
i

∥∥∥ and
∣∣∣ui − uj

i

∣∣∣ leading to a local optima with an higher final
minimum distance.

6.4 data-driven control barrier functions

In this section, we detail a novel control-oriented approach to the
replanning problem described in Section 6.1.2, focusing on the par-
ticular simplified case where only static obstacles may appear in a
partially known environment. The considered framework is well rep-
resented by Equation (26) with X representing free and navigable
space, U the set of all possible inputs, and f the considered system
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dynamics. In this settings, the autonomous robot is pursuing an initial
motion planned with only partial information about the surrounding
environment and concurrently is gathering information about it. The
initial motion is then continuously refined with the collected new in-
formation in order to ensure the robot safety at each time instant. Mo-
tivated by this safety requirement, we ground the proposed solution
on the notion of Control Barrier Function (CBF) [9] which has been
successfully demonstrated on many safety-critical applications [9, 69,
154]. CBF applications ensure safety by enforcing the forward invari-
ance of a safe set described as a superlevel set of a candidate function
h which maps the system states to this notion of safety. In particular,
the candidate function defines the hyper space where the system is
considered in a safe condition. Traditionally, these safety functions
have been hand-designed. However, depending on the application,
designing such a candidate CBF is not straightforward in many practi-
cal settings. Consider, as an example, the obstacle avoidance scenario,
where the safe space is simply the free space, design the map h in this
context requires the complete environment knowledge, which is usu-
ally not completely a priori known. Due to the aforementioned prob-
lem, we enforce the run-time adaptation of h via Gaussian process in-
ference exploiting real-time collected data, allowing for a constantly
reshaping of the current motion with newly upcoming safe informa-
tion. The idea of learning the safe set from data is not new, in this
sense Support Vector Machines (SVMs) were used in [134] to param-
eterize CBFs with the help of sensor measurements. Neural networks
were successfully used to regress the safety barrier function in [7, 51,
145, 169], while a second-order cone program was formulated in [21],
with GPs used for modeling the control input and the system uncer-
tainties. However, all these solutions are limited to offline training
which limits their applicability in many practical scenarios. Gaussian
processes have been successfully used in [77] and [78] where the can-
didate function h is directly learned out of the collected data. The lat-
ter works, completely detach from a possible parameterised CBF and
exploit the GP regression in a completely data-driven scenario, with-
out any a priori knowledge about the safe set. However the quantity
of collected data, required to build run-time the safe set, increases
a lot with the system relative degree, leading to poor, or even com-
pletely wrong, results. Here we focused on the latter problem by for-
malising a new CBF-based solution that implements a Gaussian pro-
cess regression requiring a limited number of samples whatever the
system relative degree is. Then, the developed safety tool is success-
fully implemented in the obstacle avoidance scenario.

We stress the fact that, unlike the approaches detailed in Section 6.2
and Section 6.3, the proposed solution does not require neither a re-
source consuming map building and maintenance, nor heavy random
sampling procedure which may lead to very large set of samples,
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or possible trajectories, hard to handle. The remain of this section
unfolds as follow, in Section 6.4.1 we briefly review key results on
CBFs, Section 6.4.2 describes a possible method to enforce the safe
set learning, while in Section 6.4.3 and Section 6.4.4 we formulate the
proposed regulator and show the obtained results.

6.4.1 Control Barrier Functions

Consider the nonlinear control affine system

ẋ = f (x) + g (x) u, y = h (x) (38)

where x ∈ Rnx is the system state, u ∈ U ⊂ Rnu is the input, and
y ∈ Rny the measurable output. Moreover let f : Rnx 7→ Rnx g :
Rnx 7→ Rnx×nu and h : Rnx 7→ Rny Lipschitz continuous maps. Let
the safety of (38) be encoded as the superlevel set S of the smooth
function h

S = X ′ = {x ∈ Rnx : h (x) ≥ 0} ,

in this context we recall a couple of results from [9, 109, 161].

Definition 6.4.1. The map h (x) : Rnx 7→ Rny is defined as a Control
Barrier Function (CBF), if there exists a class K function α, i.e. with the
features (a) α (0) = 0 and (b) α stricly increasing, such that the relation

sup
u∈U

L f h (x) + Lgh (x) u + α (h (x)) ≥ 0,

holds for any x ∈ S .

In the previous definition the quantities L f h (x) and Lgh (x) are
the directional derivatives of h, along the flow defined by f and g,
respectively (along the literature called Lie derivatives). With the afore-
mentioned definition at hand, we can easily enforce the system safety,
which in this context implies no collisions, by shaping the control in-
put u of (38) over the designed CBF in Definition 6.4.1.

Theorem 6.4.1. Given a nonlinear system as in Equation (38), with a de-
fined safe set S ⊂ Rnx , and a smooth control barrier function h (x) : Rnx 7→
Rny , any Lipschitz continuous control law u (t) ∈ Rnu satisfying

L f h (x (t)) + Lgh (x (t)) u (t) + α (h (x (t))) ≥ 0, (39)

for any x ∈ Rnx , makes the safe set S forward invariant for (38).

The reader can immediately conceive from Theorem 6.4.1 and Defi-
nition 6.4.1 the very limiting requirement to have relative degree (here
referred to as p) equal to one, p = 1. For systems with p > 1, we re-
quire an extension to the CBF notion defined so far. In particular,
referring to [109, 161], let’s introduce the concept of Exponential Con-
trol Barrier Function (ECBF).
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Definition 6.4.2. The smooth function h (x) : Rnx 7→ Rny , with relative
degree p, is defined as an exponential control barrier function, if there exists
a set of coefficients Λ ∈ Rp such that for any x ∈ Rnx

sup
u∈U

Lp
f h (x) + LgLp−1

f h (x) u + Λ⊤H ≥ 0 (40)

holds with H =
[

h (x) , L f h (x) , . . . , Lp−1
f h (x)

]⊤
∈ Rp the Lie derivative

vector for h, and Λ =
[
λ0, λ1, . . . , λp−1

]⊤ is a coefficient gain vector for H
which can be conputed via standard linear control techniques.

The functions (39) or (40) can then be combined with Quadratic
Programs (QPs) to achieve safety constrained control, in particular,
for high relative degree systems, the forward invariance of the safe
set S = {x ∈ Rnx : h (x) ≥ 0} can be enforced solving the following
optimisation problem

u = arg min
v∈U

1
2
∥v − u⋆∥

subj. to Lp
f h (x) + LgLp−1

f h (x) v + Λ⊤H ≥ 0
(41)

with u⋆ ∈ Rnu previous planned control input, referred to as nominal
input.

Remark 6.4.1. The problem (41) resembles the replanning problem (26) bor-
rowing the same loss and with the safe and dynamic constraints condensed
in Equation (40).

6.4.2 Learning the Safe Set

The major issue in using CBF to enforce safety lies in designing the
candidate function h, whose superlevel set must encode all safe re-
gions where the system state is allowed to evolve. This problem is
mainly present also in obstacle avoidance scenarios where the en-
vironment in not a priori known making impossible the design of
h. To overcome this limitation, [78] proposes to handle the construc-
tion of h following a complete data-driven approach: the key idea
was to model this unknown map as a realisation of a Gaussian pro-
cess. In particular, supposing to have access to a data-set (x, y) =

{(x(t1), y(t1)) , . . . , (x(tN), y(tN))} of N samples, with each pair (x(th),
y(th)) ∈ Rnx × Rny obtained as y(th) = h (x(th)) + ε(th) with ε(th) ∼
N
(
0, σ2

n Iny

)
be a white Gaussian noise, then an approximation of h

can be computed as

µ (x) = κ (x)⊤
(
K+ σ2

n IN
)−1

y,

σ2 (x) = κ (x, x)− κ (x)⊤
(
K+ σ2

n IN
)−1

κ (x) ,
(42)

where K ∈ RN×N is the Gram matrix whose (k, h)th entry is Kk,h =

κ (xk, xh), with xk the kth entry of x, κ (x) ∈ RN is the kernel vector
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whose kth component is κk (x) = κ (x, x), and κ (x, x′) is a custom ker-
nel function [127]. For further information about Gaussian regression
and about the kernel structure the reader is referred to Appendix ??.
Gaussian regression works by iteratively restricting the pool of pos-
sible functions, conditioning a prior Gaussian distribution on the col-
lected dataset. In this sense, Equation (42) expresses the a posteriori
mean (µ) and variance (σ2) computed after the collection of N sam-
ples (x, y). In this context, the computed mean represents the “best”
function approximation, while σ2 quantifies the amount of uncertain-
ties affecting the current estimation, as it strongly depends on the
amount of data collected near the evaluating point x. Although the
estimation µ of h can be directly used inside the optimisation prob-
lem (41) in place of h, we should be careful of possible errors and
uncertainties in the reconstructed approximation as a wrong value of
µ may make condition (40) holds even in unsafe conditions. As a mat-
ter of fact, evaluating an unknown function out of data may lead to
wrong results, especially if the collected data are poorly informative
or very scattered. To overtake this particular problem, [78] proposed
a re-reading of the candidate function keeping into consideration also
the provided a posteriori variance of the current estimation µ, thus h
has been reformulated as

hGP (x) = µ (x)− ρσ2 (x) ,

with ρ ∈ R+ a tunable value, leading to the new optimisation prob-
lem

u = arg min
v∈U

1
2
∥v − u⋆∥

s.t. Lp
f hGP (x) + LgLp−1

f hGP (x) v + Λ⊤H ≥ 0.

The aforementioned approach is very promising under the perspec-
tive of adapt CBF tools to a very large number of use cases, especially
when an analytical formulation of h is not accessible, but results to
be very poor practically when dealing with systems with high rela-
tive degrees p > 1 because of loss of information during Gaussian
process differentiation [65]. Furthermore, the parameter ρ results to
be the key to obtain good performances even with p = 1, thus a
very careful tuning is required to make the algorithm works correctly.
The aforementioned problems motivated our research in the field of
Gaussian control barrier functions toward more general and resilient
solutions, especially tailored for high relative degree systems.

6.4.3 Proposed Gaussian Control Barrier Function

The proposed regulator reads as

ż = Az + B
(

L f µ (x) + Lgµ (x) u
)
+ G (l) H (y − Cz) , (43)
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(a) (b)

(c)

Figure 31: Comparison between (a) classic ECBF, (b) GP-CBF proposed
by [78], and (c) GP-CBF proposed here. In image (a) the safe set
is designed using the complete knowledge of the environment,
while in images (b) and (c) the candidate function is reconstructed
run-time using the collected sensor data.

with output

u = arg min
v∈U

1
2
∥v − u⋆∥+ Lgσ2 (x) v

subj. to L f µ (x) + Lgµ (x) v + Λ⊤H ≥ 0.
(44)

As emerges from Equation (43), the proposed regulator consists in a
standard high-gain observer with A, B, and C matrices in prime form

A =

0(p−1)ny×ny I(p−1)ny

0ny×ny 0ny×(p−1)ny

 , B =

(
0(p−1)ny×ny

Iny

)
,

C =
(

Iny 0ny×(p−1)ny

)
,

and G(l) = diag
(
l Iny , l2 Iny , . . . , lr Iny

)
, H = diag (H1, . . . , Hr), and

Hi = diag
(
h1

i , . . . . . . , hny
i

)
with {hj

1, hj
2, . . . , hj

r+1} for all j = 1, . . . , ny

coefficients of a Hurwitz polinomial, where l ∈ R>0 is a control pa-
rameter. In this context, the proposed observer is meant to directly
reconstruct Lp−1

f h, that in turn is feeded back to a Gaussian regressor
which outputs an analytical and differentiable estimate

µ (x) = κ (x)⊤
[
K+ σ2

n IN
]−1

z,
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with z extracted from the recostructed data-set

(x, z) = {
(
x(t1), zp−1(t1)

)
, . . . ,

(
x(tN), zp−1(tN)

)
}.

The regressed directional derivate is then used to reconstruct the
observer consistency term [17]. Equation (44) reformulates the one-
relative-degree problem (41) in this particular framework. Note that
the used candidate function does not take into account any uncertain-
ties in the retrieved estimation, which in turn are encode inside the
loss function as Lgσ2 (x) v, with σ2 the a posteriori Gaussian variance

σ2 (x) = κ (x, x)− κ (x)⊤
[
K+ σ2

n IN
]−1

κ (x) .

Remark 6.4.2. Although the new loss proposed in Equation (44) presents
a slightly different structure with respect to classical CBF formulation (41)
and with respect to the formulated problem in Section 6.1.2, it still succeed
in solving the obstacle avoidance problem as the collision is encoded as opti-
misation hard constraint. Moreover, minimise Lgσ2 (x) v directly implies a
minimisation of the induced uncertainties affecting µ as the agent is forced
to navigate toward already visited frontiers. As a matter of fact, the afore-
mentioned term comes out from Equation (40) cosidering h = µ + σ2

sup
u∈U

L f h (x) + Lgh (x) v + Λ⊤H ≥ 0,

L f
(
µ (x) + σ2 (x)

)
+ Lg

(
µ (x) + σ2 (x)

)
v.

We stress the fact that encoding an uncertainties term inside the cost for-
mulation drops the necessity to introduce a weight ρ inside the candidate
function, as done in [78], whose wrong tuning may degrade the algorithm
performance.

Remark 6.4.3. The proposed solution (43)-(44) is well suited for high rel-
ative degree applications as the regressed map µ is differentiated only once,
leading to a very few loss of information. In the context of Gaussian process,
the latter property implies the possibility to keep the value of N low, leading
to light real-time training procedures.

We conclude this section by recalling two basic properties which
the regressor should undergo to make the proposed solution works
correctly. We stress the fact that the assumptions reported below are
not restrictive under the practical point of view, and can be easily
satisfied by all commonly used kernels. The following assumptions
are borrowed from [17].

Assumption 6.4.1. µ is Lipschitz continuous with Lipschitz constant Lµ,
and its norm is bounded by µmax.

Assumption 6.4.2. The kernel function κ(·, ·) is Lipschitz continuous with
constant Lκ, with a locally Lipschitz derivative of constant Ldκ, and its norm
is bounded by κmax.
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(a) (b)

Figure 32: Results obtained in challenging environments when applying the
proposed approach without taking into account estimation un-
certainties carried by σ2. As the reader can observe, the proposed
solution does not make the agent colliding, but can stuck it close
to obstacles.

(a) (b)

Figure 33: Results obtained in challenging environments when applying
the overall proposed approach. The encoded uncertainties via σ2

drive the agent in regions with low uncertainties, making the fi-
nal solution working in all cases.

6.4.4 Experimental Results

The proposed approach has been applied to a synthetic scenario and
tested against the classical ECBF, where the safe set design has been
made using the full knowledge about the navigating environment,
and the state-of-the-art Gaussian-based CBF proposed by [78]. In
both the learning techniques, the training data are collected real time,
while the agent is moving inside the environment. The testing sce-
nario (see Figure 31) is equal in all experiments and consists of four
shpere-like obstacles with random positions and four surrounding
walls. The agent is modeled a simple double integrator with acceler-
ation as control input, while the nominal control input u⋆ consists in
a straight line from the initial to the goal position. In this settings,
the candidate function h is modeled as the distance from the closest
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obstacle, following the Euclidean Signed Distance Field (ESDF) princi-
ple [113]. The obtained results are reported in Figures 31, 32, and 33.
In particular, Figure 31 depicts a comparison between the classical
ECBF, the GP-CBF proposed by [78], and our approach when applied
in the same settings described above. The classical ECBF, designed
on the complete knowledge of the environment, always succeeds in
safely steering the agent to the goal and its results are kept here as
a baseline to follow in the case where no prior information about
the obstacles is provided. As the reader can see, from Figure 31, the
approach proposed by [78] sometimes fails, especially in highly clut-
tered environment, while our approach always wins. To highlight the
fundamental role which plays the regulariser Lgσ2 (x) v in (44), we
reported here two simulations in Figures 32 and 33 where the pro-
posed approach is applied without and with the regularisation term.
In particular, in Figure 32 the term is not present, while in Figure 33

the optimisation problem is solved with the proposed complete loss
function. It is worth to remark how in both cases the agent does
not collide with obstacles, but in the first reported simulations the
high uncertainties affecting the estimated candidate function made
the agent stuck near to obstacles.

6.5 contributions

In this chapter we reviewed and discussed the problem of real-time
trajectory replanning in front of new environmental information. The
chapter develops firstly by reviewing a state-of-the-art solution to the
problem at hand, adapted, re-implemented and tested in the spe-
cific case of the Leonardo drone contest. The selected solution per-
formed well and succeed in replanning jerk-continuous trajectories
well suited for quadcopter navigation. Then, two novel solutions have
been described and analyzed, one primarily focused on the specific
case of moving obstacles and multi-agent scenarios, and the second
one focused on static environments. The proposed flow embraces a
research direction especially focused on numeric and system theory-
oriented solutions where the possibility of success can be easily as-
sessed via analysis tools commonly used in the system theory field.
As a future research direction, we will continue to follow this idea
and try to encode Lyapunov theory in novel trajectory plaNning, or
replanning, techniques yielding to very high reliable and robust solu-
tions.
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7
D ATA - D R I V E N N O N L I N E A R R E G U L AT I O N

In this chapter, we collect the basic notions behind the concept of
output regulation and data-driven output regulation for nonlinear
systems. The section unfolds as follows, first we introduce, in the
simplest possible terms, the problem of output regulation in the non-
linear context, with an eye to the taxonomy usually adopted in this
field. Then, the next part is devoted to briefly presenting the state-of-
the-art of the most consolidated approaches to the emergent field of
adaptive nonlinear output regulation and how these techniques can
be extended via learning tools, obtaining a highly robust and flexi-
ble solution, able to adapt to a very large class of systems. The same
concepts, notation, and results can also be found in [13–15, 2, 3] thus
we refer the reader to these works for the complete analysis of the
presented results.

7.1 the framework of output regulation

Consider a continuous-time nonlinear system of the form

ẋ = f (w, x, u) ,

y = h (w, x) ,
(45)

with state x ∈ Rnx , control input u ∈ Rnu , measured output y ∈ Rny ,
and with w ∈ Rnw exogenous signal generated by an exosystem of
the form

ẇ = s (w) . (46)

The exogenous signal can be treated, in this context, as references to
be tracked or disturbances to be rejected. For this purpose, associated
to Equation (45), there is a set of ne > 0 regulation errors

e = he (w, x) .

In this framework, we define the problem of ε-approximate output
regulation as the problem to find an output feedback regulator of the
form

ẋc = φ (xc, y) ,

u = γ (xc, y) ,
(47)

possibly ε-dependent, with state xc ∈ Rnxc , such that:

97
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Stability. The origin of the interconnection between Equation (45) and Equa-
tion (47), with w = 0, is asymptotically stable with a domain of
attraction X ×Xc ∈ Rnx ×Rnxc that is an open neighborhood of
the origin.

Boundedness. There exists W ∈ Rnw such that the closed-loop system is uni-
formly bounded from W ×X ×Xc.

Regulation. Each solution to the closed-loop system originating in W ×X ×
Xc satisfies

lim sup
t→∞

∥e (t) ∥ ≤ ε.

If X coincides with Rnx , we say that the problem is solved globally,
otherwise we say that the problem is solved locally. If given each
X ⊂ Rnx it is possible to find a possibly X -dependent regulator
that solves the problem in X , we say that the problem is solved semi-
globally. If ε = 0, we refer to the problem as the asymptotic output
regulation problem, while we talk about practical regulation problem
whenever, given any ε > 0, there exists a regulator that solves the
ε-approximate output regulation problem. An anchor point in the so-
lution of the above problem is represented by the steady-state trajec-
tories (x∗(t), u∗(t)), solution of the so-called regulator equations

ẇ = s (w) ,

ẋ∗ = f (w, x∗, u∗) ,

0 = he (w, x∗) ,

(48)

with x∗ representing the ideal state trajectory associated with a zero
regulation error and u∗ the associated input (often referred to as “the
friend” of x∗). Regulator structures proposed in the nonlinear context
are typically composed of two units, an internal model unit, and a
stabilising unit, with a neat, albeit limiting in many contexts, “role”
conferred on the two at the design stage: the former is designed to
generate the steady state input u∗ required to keep the error at zero in
steady state, while the latter is designed to steer the closed-loop tra-
jectories of the system to x∗. What makes the design problem particu-
larly challenging is, of course, the fact that (x∗(t), u∗(t)) are unknown
as the initial conditions of Equation (48) are such. Moreover, the suf-
ficient conditions under which asymptotic regulation is ensured are
typically expressed by equations whose analytic solution becomes a
hard task even for “simple” problems. Moreover, even if a regulator
can be constructed, asymptotic regulation remains a fragile property
that is lost at front of slightest plant’s or exosystem’s perturbation.
The aforementioned problems motivate the researcher to move to-
ward more robust solutions, introducing the concept of adaptive reg-
ulation. In the following we briefly present the two main adaptive
approaches to nonlinear regulation designs that have influenced this
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thesis most strongly, then we try to extend them via non-supervised
learning techniques, to adapt the proposed structure on an ideally
infinite class of systems. The reported regulators embed two differ-
ent internal models, being a “post-processing” the first one and a
“pre-processing” the second one, but both apply to multivariable sys-
tems. The proposed construction is not “friend-centric” but rather
it is based on a “qualitative” information on the ideal error-zeroing
steady state.

7.2 identification-based post-processing internal model

In this section, we focus on a subclass of the general regulation prob-
lem presented in Section 7.1 by considering continuous-time nonlin-
ear systems of the form

ż = f0(x, w) + b0(x, w)u,

χ̇ = Fχ + Hζ,

ζ̇ = q(x, w) + b(x, w)u,

e = Cχ, y = col(χ, ζ),

(49)

in which z ∈ Rnz , y ∈ Rny , e ∈ Rne , χ ∈ Rne , and, u ∈ Rnu with
nu ≥ ne. The entire stack of states is denoted here by x = col(z, χ, ζ).
Moreover, χ = col(χ1, . . . , χne), with χi ∈ Rni

χ , i = 1, . . . , ne, and
∑ne

k=1 nk
χ = nχ. The exogenous signal w ∈ Rnw is generated by an ex-

osystem of the same form of Equation (46). The matrices F ∈ Rnχ×nχ ,
H ∈ Rnχ×ne , and C ∈ Rne×nχ are defined as a block-diagonal matrices
with entries

Fi =

0(ni
χ−1)×1 Ini

χ−1

0 01×(ni
χ−1)

 , Hi =

(
0(ni

χ−1)×1

1

)
,

Ci =
(

1 01×(ni
χ−1)

)
.

Equation (49) frames the problem of output regulation on a partic-
ular class of systems that embraces a large number of use-cases ad-
dressed in literature. In particular, note that all systems presenting (a)
a well-defined vector relative degree and admitting a canonical nor-
mal form, or that are (b) strongly invertible and feedback linearisable,
with respect to the pair (u, e), fit inside the proposed framework. The
regulator presented in this section is based on the following standing
assumptions (see [14, Assumption A1, A2]).

Assumption 7.2.1. There exist β0 ∈ KL, α0 > 0 and, for each solution w
of (46), there exist z⋆ : R≥0 7→ Rnz and u⋆ : R≥0 7→ Rnu fulfilling

ż⋆ = f0(w, x⋆) + b0(w, x⋆)u⋆,

0 = q(w, x⋆) + b(w, x⋆)u⋆,
(50)
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where x⋆ = (z⋆, 0, 0), and for all t > 0 the following holds

|z(t)− z⋆(t)| ≤ β0 (|z(0)− z⋆(0)| , t) + α0 |(χ, ζ)|[0,t) .

Assumption 7.2.2. There exists a full-rank matrix L ∈ Rnu×ne such that
the matrix b(w, x)L is bounded, and

L⊤b(w, x)⊤ + b(w, x)L ≥ Ine

holds for all (w, x) ∈ Rnw × Rnx , and the map

(w, x) 7→ (b(w, x)L)−1q(w, x)

is Lipschitz.

Equations (50) are the specialisation of the regulator equations (48)
in this non-equilibrium context. As a consequence of the latter as-
sumption, u⋆ in (50) is given by

u⋆ = −b (w, x⋆)⊤
(

b (w, x⋆) b (w, x⋆)⊤
)−1

q (w, x⋆) .

In this framework, [14] proposes a post-processing internal model of
the form

η̇ = Φ(η) + Ge, η ∈ Rdne ,

with d ∈ N, η = (η1, . . . , ηd)
⊤, ηi ∈ Rne , and

Φ(η) =


η2
...

ηd

ψ(η, ϑ)

 , G =


gh1 Ine

g2h2 Ine
...

gdhd Ine

 . (51)

In the aforementioned definition, the coefficients hi, with i = 1, . . . , d,
are fixed so that the polynomial sd + h1sd−1 + · · ·+ hd−1s + hd is Hur-
witz, g > 0 is a parameter to be designed, and ψ : Rdne × Rnϑ 7→ Rne

is a function to be fixed and ϑ ∈ Rnϑ , with nϑ ∈ N, is an adaptive
parameter generated by the identifier subsystem, whose dynamics is
described by

ς̇ = µ (ς, η, e) ,

ϑ = ω (ς) ,
(52)

in which µ : S × Rdne × Rne 7→ S and ω : S 7→ Rnϑ , with S a normed
vector space of finite dimension, have to be fixed. Finally, the static
stabiliser control action is chosen as

u = L(Kχχ + Kζζ + Kηη1 + Kwν(x⋆, w)),
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where the matrices Kχ, Kζ , and Kη take the form

Kχ(l, δ) = lK(δ), Kζ(l) = −l Ine , Kη(l, δ) = lK(δ)C⊤,

with K(δ) = blkdiag
(
K1(δ), . . . , Kne(δ)

)
, where

Ki(δ) = −
(

ci
1δni

χ ci
2δni

χ−1 ci
ni

χ
δ
)

,

for i = 1, . . . , ne, in which the coefficients ci
j are chosen so that the

polynomial sni
χ + ci

ni
χ
sni

χ−1 + · · · + ci
2s + ci

1, i = 1, . . . , ne, is Hurwitz,
and l, δ > 0 are design parameters to be fixed. Note that the matrix
Kw and the function ν(·, ·) are left as a degree of freedom. Indeed
these quantities can be used to represent possible feedforward con-
tributions added by the designer employing knowledge about w and
x⋆ (Equation (50)). The degrees of freedom left to be fixed at this
stage are the dimension d and function ψ of the internal model unit,
the data (S , nϑ, µ, ω) of the identifier, and the control parameters g, l,
and δ. A key step in the regulator synthesis is the choice of the in-
ternal model (51) and of its adaptation through the design of the
identifier (52). This should be chosen in order to achieve small, possi-
bly zero, asymptotic regulation error, in spite of uncertainties involv-
ing the regulation equations and the system dynamics. From Equa-
tion (51) we can write

e (t) =
(

hdgd
)−1

(η̇d (t)− ψ (η (t) , ϑ (t))) . (53)

The proposed design strategy chooses (d, ψ) and the identifier pivot-
ing around the idea that η̇d (t)− ψ (η (t) , ϑ (t)) can be interpreted as
a prediction error attained by the model ψ in relating the next deriva-
tive η̇d (t) to the previous derivatives η (t), and that, by minimising
this prediction error, the actual regulation error is also minimised due
to (53). In this context, the problem of choosing (d, ψ) is treated as an
identification problem, where ψ (η, ϑ) is referred to as prediction model
and the set

M = {ψ (η, ϑ) : ϑ ∈ Rnϑ}

of all the possible candidate models as the corresponding model set.
The selection of such quantities must be grounded on some prelimi-
nary knowledge about the class of signals to η̇d and η are expected to
belong. In this context, the steady-state signals (x⋆, u⋆) resulting from
the regulator equations are the anchor point on which that knowledge
can be drawn. The original work [14] provides a constructive proce-
dure to design the internal model quantities, as well as the identifier
functions, showing how approximate regulation can be attained, thus
for more details the reader is referred to it.



102 data-driven nonlinear regulation

7.3 adapting the post-processing internal model

All the approaches that assume to known the membership model of
the friend have the disadvantage of limiting the class of friends which
we can deal with, leading to a degraded performance in all those
cases in which the steady-state signals (x⋆, u⋆) are highly uncertain
and the chosen class M is inadequate to represent the ideal function
ψ⋆. Unlike previous works in this field, we dropped the assumption
of ψ belonging to a given model set on behalf of a more general and
less conservative hypothesis. In particular, we let such a function be
of whatever shape, with the only constraint to be sufficiently smooth. In
this respect, we refer to ψ (η, ϑ) with ψ (η), to highlight the generality
of the proposed framework, being ψ not parameterised by any ϑ. In
view of the latter, we recall [14, Assumption A3] under which the
asymptotic stability results can be drawn.

Assumption 7.3.1. The map ψ (η) is Lipschitz and differentiable with a
locally Lipschitz derivative, and the Lipschitz constants do not depend on δ

and l. Moreover, there exists a compact set H⋆ ⊂ Rne × Rdne , independent
from δ and l, such that every solution of

η̇ = Φ(η) + Ge,

satisfies
(
η⋆

d (t), η⋆(t)
)
∈ H⋆ for all t ∈ R≥0.

7.3.1 Gaussian Process Regression

The key idea behind the proposed approach dwells in modeling the
unknown function ψ as the realization of a Gaussian process. GPs are
function estimators widely used because of the flexibility they offer in
modeling nonlinear maps directly out from the collected data [127]. A
GP model is fully described by a mean function m : Rdne 7→ Rne and a
covariance function (aka kernel) κ : Rdne ×Rdne 7→ Rne . Whereas there
are many possible choices of mean and covariance functions, in this
work we keep the formulation of κ general, with the only constraint
expressed by Assumption 7.3.3 below. Yet we force, without loss of
generality, m (η) = 0ne for any η. Thus we assume that

ψ (η) ∼ GP (0, κ (·, ·)) .

Supposing to have access to a data-set (η, η̇d) = {(η(t1), η̇d(t1)) , . . .
. . . , (η(tN), η̇d(tN))} with each pair (η(th), η̇d(th)) ∈ Rdne × Rne ob-
tained as η̇d(th) = ψ(η(th)) + ε(th) with ε(th) ∼ N

(
0, σ2

n Ine

)
be a

white Gaussian noise, then the posterior distribution of ψ given the
data-set is still a Gaussian process with mean µ and variance σ2 given
by [127]

µ (η) = κ (η)⊤
(
K+ σ2

n IN
)−1

η̇d,

σ2 (η) = κ (η, η)− κ (η)⊤
(
K+ σ2

n IN
)−1

κ (η) ,
(54)
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where K ∈ RN×N is the Gram matrix whose (k, h)th entry is Kk,h =

κ (ηk, ηh), with ηk the kth entry of η, and κ (η) ∈ RN is the kernel
vector whose kth component is κk (η) = κ (η, ηk). The problem of
inferring an unknown function ψ from a finite set of data can be
seen as a special case of ridge regression where the prior assumptions
(mean and covariance) are encoded in terms of smoothness of µ. In
particular, let H be a RKHS associated with the kernel function κ,
then the function ψ can be infered by minimizing the functional

J =
λs

2
∥µ∥2

H + Q (η̇d, µ (η)) ,

where the first term plays the role of regularizer and represents the
smoothness assumptions on µ as encoded by a suitable RKHS, while
the second one represents the data-fit term assessing the quality of the
prediction µ (η) with respect to the observed data η̇d [127]. According
to the representer theorem [114], each minimizer µ ∈ H of J takes
the form µ (η) = κ (η) α. In the particular case in which Q (η̇d, µ (η))
corresponds to a negative log-likelihood of a Gaussian model with
variance σ2

n , namely

Q (η̇d, µ (η)) =
1

2σ2
n
∥η̇d − µ (η)∥2

2 ,

the value of α recovers the expression in Equation (54) as

α =
(
K+ σ2

n I
)−1

η̇d.

From now on we suppose that the following standing assumptions
hold (see [17, Assumption 2, Assumption 3])

Assumption 7.3.2. µ is Lipschitz continuous with Lipschitz constant Lη ,
and its norm is bounded by µmax.

Assumption 7.3.3. The kernel function κ(·, ·) is Lipschitz continuous with
constant Lκ, with a locally Lipschitz derivative of constant Ldκ, and its norm
is bounded by κmax.

Although any kernel fulfilling Assumption 7.3.3 can be a valid can-
didate, in the following, we exploit the commonly adopted squared ex-
ponential kernel as prior covariance function, which can be expressed
as

κ
(
η, η′) = σ2

p exp
(
−
(
η − η′)⊤ Λ−1 (η − η′)) (55)

for all η, η′ ∈ Rdne , where Λ = diag(2λ2
η1

, . . . , 2λ2
ηdne

), ληi ∈ R>0 is
known as characteristic length scale relative to the ith signal, and σ2

p
is usually called amplitude [127]. We conclude this section by stating
a constructive assumption, on which the main contribution of this
chapter is built.
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Figure 34: The vertical takeoff and landing aircraft considered in numerical
simulations.

Lemma 7.3.1. Let H be a RKHS induced by a positive-definite kernel κ,
satisfying Assumption 7.3.3, and let f ∈ H, then f is Lipschitz continuous
with constant L f = ∥ f ∥H cHLκ, where cH is a positive real constant.The L2 and H

norms, being the
latter induced by a

positive definite
kernel, are

equivalent with
constant cH

(see [29] for further
details).

Proof. ∣∣ f (x)− f (x′)
∣∣ = ∣∣⟨ f , κ(·, x)⟩H − ⟨ f , κ(·, x′)⟩H

∣∣
=
∣∣⟨ f , κ(·, x)− κ(·, x′)⟩H

∣∣
≤ ∥ f ∥H

∥∥κ(·, x)− κ(·, x′)
∥∥
H

≤ ∥ f ∥H cH
∥∥κ(·, x)− κ(·, x′)

∥∥
≤ ∥ f ∥H cHLκ

∥∥x − x′
∥∥

≤ L f
∥∥x − x′

∥∥
Assumption 7.3.4. The map ψ belongs to the RKHS associated to the kernel
function κ(·, ·) in Equation (55).

It is worth noting that the first statement of Assumption 7.3.1 is
implied by Assumption 7.3.4 by means of Lemma 7.3.1.
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7.3.2 Gaussian Process-based Adaptive Regulation

The proposed regulator reads as follows

ζ̇ = 1

η̇ = Φ(η, µ(η, ς, α, ζ)) + Ge

ξ̇1 = ξ2 − m1ρ(ξ1 − ηd)

ξ̇2 = µ̇(η, ς, α, ζ)− m2ρ2(ξ1 − ηd)

ς̇ = 0

(η, ξ1, ξ2, ς, ζ) ∈ C,

ζ+ = 0

η+ = η

ξ+1 = ξ1

ξ+2 = ξ2

ς+ =
(
S ⊗ Ip

)
ς +

(
B ⊗ Ip

) [
η ξ2 ζ

]⊤
(η, ξ1, ξ2, ς, ζ) ∈ D,

(56)

in which α = γ (ς) ∈ RN×N , p = dne + ne + 1, (ξ1, ξ2) ∈ Rne × Rne ,
and ς ∈ Rnς with nς = pN. The matrices S ∈ RN×N and B ∈ RN have
the “shift” form

S =

(
0(N−1)×1 IN−1

0 01×(N−1)

)
, B =

(
0(N−1)×1

1

)
,

while Φ and G have the same structure described by Equation (51),
C = {(η, ξ1, ξ2, ς, ζ) ∈ Rdne × Rne × Rne × S × R≥0 : σ2 (η, ς, α, ζ) ≤
σ2

thr} represents the flow set, and D = {(η, ξ1, ξ2, ς, ζ) ∈ Rdne × Rne ×
Rne × S × R≥0 : σ2 (η, ς, α, ζ) ≥ σ2

thr} is the jump set, with σ2
thr ar-

bitrary. The functions µ (η, ς, α, ζ) and σ2 (η, ς, α, ζ) represent the a
posteriori GP estimated mean and variance after the collection of N
samples, and S ⊆ RNnς . The proposed regulator is composed of (a)
a purely continuous-time subsystem (η, ξ1, ξ2) whose dynamics de-
pends on ς and α that are constant during flow, (b) a purely discrete-
time subsystem ς updated ad each jump time, and (c) a hybrid clock
ζ. Note that, due to the definition of the sets C and D the jumping law
is not directly related to the clock variable ζ, thus at the moment it is
not clear if (56) suffers from zeno or chattering issues. The subsystem
η plays the role of internal model unit, and it is taken of the same
form as (51). The subsystem (ξ1, ξ2) plays the role of observer of the
quantity η̇d required to build the data-set and not directly available.
The dynamic equation of

(
ξ̇1, ξ̇2

)
follows the canonical high-gain con-

struction with the coefficients m1, m2 > 0 arbitrary and ρ > 0 left as
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a design parameter. The quantities (ξ2, η) act as proxy for the ideal(
η̇⋆

d , η⋆
)

required to build an approximation of ψ⋆; (ξ2, η) are thus
feeded to the discrete-time GP regressor represented by the subsys-
tem ς and by the properly defined functions

(
µ, σ2, γ

)
. In particular,

denoting z = col (η, ζ), the latter functions read as

µ (z) = κ (z)⊤ γ (ς) ξ2,

σ2 (z) = κ (z, z)− κ (z)⊤ γ (ς) κ (z) ,

γ (ς) =
(
K+ σ2

n IN
)−1

,

where κ and K are defined as in Section 7.3.1, with the only differency
that the kernel function κ has been enhanced by adding a dependency
from ζ. In this context, Equation (55) takes the form

κ
(
zi, zj

)
= σ2

p exp
(
−
(
ηi − ηj

)⊤ Λ−1 (ηi − ηj
))

exp

−
max(i,j)

∑
k=min(i,j)

∥∥∥∥ ζk

2λζ

∥∥∥∥
 if zi, zj ∈ z,

κ(z, zj) = σ2
p exp

(
−
(
η − ηj

)⊤ Λ−1 (η − ηj
))

exp

(
− ζ

2λ2
ζ

+
m

∑
k=j

∥∥∥∥ ζk

2λζ

∥∥∥∥
)

if z /∈ z, zj ∈ z,
(57)

where λζ is a parameter to be tuned and the quantity (z, ξ2) repre-
sents the data-set constructed as discussed in Section 7.3.1 extended
with the sampled clock ζ, and stored, as a state variable, inside the
shift register ς. The addition of the clock as independent variable in-
side the GP regression is the key to obtain a good estimation of ψ

starting from the noisy proxy (ξ2, η). This choice is motivated by the
fact that the introduction of ζ allows us to shape µ through the param-
eter λζ whose inverse value can be interpreted as a forgetting factor,
commonly used in identification.

The design parameters (g, l, δ, ρ) in (56) can be chosen so that the
closed-loop system has an asymptotic regulation error bounded by a
function of the best attainable prediction, namely

lim
t→∞

sup ∥e(t)∥ = ce lim
t→∞

sup ∥η̇⋆
d (t)− µ(η⋆(t))∥ ,

with ce constant that depends on the chosen parameters. Such a re-
sults directly follows from the adaptation of the arguments reported
by [14] and [13] in the specific case in which (56) satisfies a set of
properties known as identifier requirements. The following results are
instrumental to verify that the proposed regulator fits inside the same
framework of [14] and [13].
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Lemma 7.3.2. Let Assumptions 7.3.1, 7.3.2, and 7.3.3 hold. Moreover, sup-
pose that the chosen σ2

thr satisfies

σ2
pσ2

n

σ2
p + σ2

n
< σ2

thr < σ2
p , (58)

then any solution (η, ξ1, ξ2, ς, ζ) of (56) originating from the set χ0 =

{(η, ξ1, ξ2, ς, ζ) ∈ Rdne × Rne × Rne × S × R≥0 : ζ = 0} satisfies a dwell
time condition in the sense of [64], and a reverse dwell time condition in the
sense of [63].

Proof. Using the same arguments proposed by [63], we shape the
proof to show the existence of T and T such that C ⊆ {(η, ξ1, ξ2, ς, ζ) ∈
Rdne × Rne × S × Rmp × R≥0 : 0 ≤ ζ ≤ T} and D ⊆ {(η, ξ1, ξ2, ς, ζ) ∈
Rdne × Rne × S × Rmp × R≥0 : T ≤ ζ ≤ T}. First note that, in view
of Assumption 7.3.1, from the definition of kernel in (57), the value
of σ2 (η, ς, α, ζ) reaches σ2

p as long as t goes to infinty, i.e.

lim
t→∞

σ2 (η(t), ς(t), α(t), ζ(t)) = σ2
p . (59)

Recalling z = col (η, ζ), then the flow and jump dynamics of σ2 are
described by

˙(σ2) = ż⊤
(

dκ (z, z)
dz

− 2
dκ(z)

dz

⊤
γ (ς) κ (z)

)

= −2ż⊤
dκ (z)

dz

⊤
γ (ς) κ (z) ,

(60)

when (η, ξ1, ξ2, ς, ζ) ∈ C, and(
σ2)+ = κ

(
z+, z+

)
− κ

(
z+
)

γ
(
ς+
)

κ
(
z+
)

, (61)

when (η, ξ1, ξ2, ς, ζ) ∈ D. The existence of T follows from (59) and
the second inequality of (58), in particular by choosing σ2

thr < σ2
p ,

since σ2 →ζ→∞ σ2
p , there exists a real value T such that σ2 ≥ σ2

thr
for any ζ ≥ T. This ensures persistency of jump intervals. Consider
now Equations (60) and (61), the flow dynamics ˙(σ2) results to be a
continous function being it a product of Lipschitz functions (Assump-
tions 7.3.1, 7.3.2, 7.3.3). Moreover, its norm can be upper bounded as∥∥∥ ˙(σ2)

∥∥∥ ≤ 2 ∥ż∥
∥∥∥∥dκ (z)

dz

∥∥∥∥ ∥γ (ς)∥ ∥κ (z)∥ ,

with ż = [η2, . . . , ηd, ψ (η) , 1]⊤. Since during flow the function κ takes
the form of (57), rewriting the latter as

κ
(
z, zj

)
= σ2

p exp
(
−
(
z − zj

)⊤ Λ̄−1 (z − zj
))

,
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the quantity

dκ (z)
dz

=


−κ
(
z, z1) Λ̄−1 (z − z1)

−κ
(
z, z2) Λ̄−1 (z − z2)

...

−κ (z, zm) Λ̄−1 (z − zm)

 ,

where zi denotes the ith training point stored inside ς, and with Λ̄
properly defined. Assumption 7.3.1 ensures ∥ż∥ ≤ lz, with lz depen-
dent on the chosen H⋆, while Assumption 7.3.3 ensures boundedness
of γ (ς) and κ (z), namely

∥γ (ς)∥ ≤ lγ, ∥κ (z)∥ ≤ lk.

From the previous arguments follows that ∥dκ (z) /dz∥ ≤ ldk, yield-
ing to

∥∥∥σ̇2
∥∥∥ ≤ lσ2 with lσ2 = lzldklγlk. Note that the bound lσ2 does not

depend neither on the chosen regulator parameters, nor on the initial
conditions. Consider now the jump dynamics, under the Assump-
tion 7.3.3 of Lipschitz continuous kernel, we can explicitly derive an
upper bound on the value of

(
σ2)+ at each jump (see [86, Theorem

1])

(
σ2)+ ≤

[∣∣B (z̄)
∣∣ (κ (z⋆, z⋆) + 2Lkϱ) + σ2

n

]−1

[ (
2lb
(
κ
(
z+, z+

)
+ κ

(
z⋆, z+

))
− L2

kϱ2)∣∣B (z⋆)
∣∣+ σ2

nκ
(
z+, z+

) ]
,

where B (z⋆) denotes the training data set restricted to a ball around
z⋆ with radius ϱ ∈ R. In our specific case z⋆ = z+, thus the aforemen-
tioned relation boils down to

(
σ2)+ ≤

(
4Lkϱσ2

p − L2
kϱ2
)

mB(z⋆) + σ2
nσ2

p(
σ2

p + Lkϱ
)

mB(z⋆) + σ2
n

with ϱ ≤ σ2
p/Lk and mB(z⋆) ≤ m is the cadinality of B (z⋆). Clearly, the

worst case scenario is represented by the case in wich B (z⋆) cannot
embrace any training points, thus when ϱ = 0. In this particular case
we get

(
σ2)+ ≤

σ2
nσ2

p

σ2
p + σ2

n
< σ2

thr.

Finally, the existence of T follows from the fact that the flow dynam-
ics (60) is continuous with upper bounded norm and its initial condi-
tion, at each jump time, is lower than the chosen threshold σ2

thr. This
ensures persistency of flow intervals.
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Lemma 7.3.3. Consider the hybrid subsystem
ζ̇ = 1

η̇ = Φ (η, µ (η, ς, α, ζ)) + Ge

ς̇ = 0

(η, ς, ζ) ∈ C,

ζ+ = 0

η+ = η

ς+ =
(
S ⊗ Ip

)
ς +

(
B ⊗ Ip

)[
η + δη1:d−1 ηd + δηd ζ

]⊤
(η, ς, ζ) ∈ D,

(62)

with C and D defined as above and δη =
(
δη1:d−1 , δηd

)
∈ Rdne hybrid input.

Let Assumptions 7.3.2 and 7.3.3, and Lemma 7.3.2 hold, then the tuple
(S , µ, γ, α) satisfies the identifier requirements [13] relative to J , namely
there exists a compact set S⋆ ⊂ S , βς ∈ KL, a Lipschitz function ρς ∈ K,
and for each solution (w, x, η, ζ) to Equations (46), (49), and (51), a hybrid
arc ς⋆ : dom (w, x, η, ζ) 7→ S and a j⋆ ∈ N such that (ζ, η, ς⋆, d) with
δη = 0 is a solution pair to (62) satisfying ς⋆(j) ∈ S⋆ for all j ≥ j⋆, and the
following holds:

1. Optimality: For all j ≥ j⋆, the function µ⋆(·) = µ (η, ς⋆, γ (ς⋆) , ζ)
satisfies

µ⋆
j (·) ∈ arg minJj.

2. Stability: For every hybrid input δη , every solution pair (η, ς, ζ, δ)
of the hybrid subsystem (62) satisfies for all j ∈ Jmp (η, ς, ζ)

|ς(j)− ς⋆(j)| ≤ max{βς(|ς(0)− ς⋆(0)| , j), ρς(
∣∣δη

∣∣
j)}.

3. Regularity: The map µ(·) is Lipschitz and differentiable with a locally
Lipschitz derivative.

The proof of the latter lemma directly follows from the same argu-
ments proposed by [13, Proposition 2].

7.3.3 Numerical Simulations

We consider, as a testbed, the problem of regulation the lateral (y1, y2)
and angular (θ1, θ2) dynamics of a Vertical-TakeOff-and-Landing (VTOL)
aircraft [72] subjected to lateral forces produced by the wind denoted



110 data-driven nonlinear regulation

0 5 10 15 20 25 30
(a)

600

400

200

0

200

400

600
q(t)

0 5 10 15 20 25 30
(b)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
eBM(t)
eGP(t)

8 6 4 2 0 2
(c)

0.4

0.2

0.0

0.2

0.4

0.6

0.8 (t)

6 4 2 0 2
(d)

0.2

0.0

0.2

0.4

0.6

0.8 (t)

Figure 35: Results obtained comparing our approach (eGP) versus [14] (eBM)
when the exogenous disturbance d(w) is generated by (65). In
both cases, the used regulator parameters are the same reported
in Table 6. In the figure, image (a) depicts the injected noise, (b)
compares the behavior of the regulation errors, while (c) and (d)
shows the dynamics of (η1, η2) along the experiments in which
the Bin-Marconi regulator [14] and ours is applied, respectively.
In figure (c) the used samples (ς) during the last flow interval
are shown as green dots. The reported quantities are plotted with
respect to the time in seconds (abscissa).

by d(w). A graphical representation of the considered system is re-
ported in Figure 34. The VTOL dynamics reads as

ẏ1 = y2,

ẏ2 = d(w)− g tan(θ1) + v,

θ̇1 = θ2,

θ̇2 = 2l J−1u,
(63)

N λη1 λη2 λζ σ2
p σ2

n σ2
thr

100 0.1 0.1 2 1 0.01 0.1

Table 5: Gaussian process parameters used in simulations.

(c1, c2, c3) l δ L (h1, h2) g (m1, m2) ρ

(15, 75, 125) 250 150 20 (15, 70) 2 (20, 20) 2

Table 6: Regulator parameters used in simulations.

M J l g

5 · 104 1.25 · 104 2 9.81

Table 7: Model parameters used in simulations.
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Figure 36: Results obtained comparing our approach (eGP) versus [14] (eBM)
when the exogenous disturbance d(w) is generated by (66). For a
comprehensive explanation of Figures (a), (b), (c), and (d) please
refer to Figure 35. The reported quantities are plotted with respect
to the time in seconds (abscissa).

where M > 0 and J > 0 are the aircraft mass and inertia respectively,
while l > 0 represents the wings lenght and g > 0 the gravitational
constant. The input u is the force (F) on the wingtips, v is a vanish-
ing input taking into account the (controlled) vertical dynamics (not
considered here), and d(w) := M−1d0(w), with d0(w) that is the lat-
eral force produced by the wind. Considering as regulation error the
aircraft lateral position (e = y1), the control objective is to remove the
wind disturbance out from the lateral dynamics. Let w(t) be gener-
ated by an exosystem of the form (46) and consider the following
change of coordinates

χ1 = y1,

χ2 = y2,

χ3 = d(w) + g tan(θ1),

ζ = Lsd(w)− gθ2/cos(θ1).

In the new coordinates, letting x = col (χ, ζ), the system (63) reads as
follow

χ̇1 = χ2,

χ̇2 = χ3,

χ̇3 = ζ,

ζ̇ = q(w, x) + b(w, x)u,
(64)

with q(w, x) and b(w, x) given by

q(w, x) = L2
s d(w)− 1

g
(Lsd(w)− ζ)2

sin
(

2 tan−1
(

d(w)− χ3

g

))
,
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Figure 37: Results obtained comparing our approach (eGP) versus [14] (eBM)
when the exogenous disturbance d(w) is generated by (67). For a
comprehensive explanation of Figures (a), (b), (c), and (d) please
refer to Figure 35. The reported quantities are plotted with respect
to the time in seconds (abscissa).

b(w, x) = −2gl J−1 cos
(

tan−1
(

d(w)− χ3

g

))−2

.

The system (64) is in the form (49) with Assumption 7.4.2 trivially ful-
filled, since the z dynamics is absent, by x⋆ = 0 and u⋆ = (gL2

s d(w)−
2d(w)(g2 + d(w)2)(Lsd(w))2)/2l J−1(g2 + d(w)2), and Assumption 7.4.3
fulfilled on each compact set with L a negative number. With (c1, c2, c3)
the coefficients of a Hurwitz polynomial and δ, l > 0 design parame-
ters, we fix the control law as

u = L
[
c1lδ3(y1 + η1) + c2lδ2y2

+ c3lδ(−g tan(θ1)) + l(−gθ2/ cos2(θ1))
]
.

Figures 35, 36, and 37 report the obtained results when the aircraft is
perturbed with a lateral disturbance d(w) = (2(107w1) + 106w3)/M,
where w1 and w3 are the states of three different exosystems. In par-
ticular, in Figure 35, s(w) reads as

ẇ1 = w2,

ẇ2 = −w1,

ẇ3 = w4,

ẇ4 = −4w3,
(65)

in Figure 36, s(w) behaves as

ẇ1 = w2,

ẇ2 = 4w1 − w3
1,

ẇ3 = w4,

ẇ4 = −4w3,
(66)
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while in Figure 37, the exosystem is described by

ẇ1 = w2,

ẇ2 = 3 tan−1 (w1)− w1,

ẇ3 = w4,

ẇ4 = −4w3.
(67)

In all simulations we exploit the same set of parameters, for both the
regulator and the discrete-time identifier. The adopted parameters are
reported in Table 5, Table 6, and Table 7.

7.4 identification-based pre-processing internal model

In this section, we recall an adaptive pre-processing internal model
design technique for a nonlinear system of the same kind of (49). In
this second case, we set, without loss of generality, b0 = 0, and restrict
the analysis to those systems having an equal number of inputs and
regulated outputs nu = ne. For seek of clarity, we report here the
reference nonlinear system, with a slightly different notation

ż = f0 (w, z, e) ,

ė = Ae + B (q (w, z, e) + b (w, z, e) u) ,

y = Ce,

(68)

in which z ∈ Rnz together with the error dynamics e ∈ Rne represent
the overall state of the plant. The quantities u ∈ Rny and y ∈ Rny

are the control input and the measured output respectively, while
w ∈ Rnw is an exogenous input, f0 : Rnw × Rnz × Rne 7→ Rnz , q :
Rnw ×Rnz ×Rne 7→ Rny , b : Rnw ×Rnz ×Rne 7→ Rny×ny are continuous
functions, and A, B, and C are defined as

A =

0(r−1)ny×ny I(r−1)ny

0ny×ny 0ny×(r−1)ny

 , B =

(
0(r−1)ny×ny

Iny

)
,

C =
(

Iny 0ny×(r−1)ny

)
,

The presented regulator is based on the following set of standing
assumptions.

Assumption 7.4.1. The function f0 is locally Lipschitz and the functions q
and b are C1 functions, with local Lipschitz derivative.

Assumption 7.4.2. There exists a C1 map π : C ⊂ Rnw 7→ Rnz , with C an
open neighborhood of W , satisfying

L(w)
s(w)

π (w) = f0 (w, π (w) , 0) ,

with L(w)
s(w)

π (w) = ∂π(w)
∂w s (w), such that the system

ẇ = s (w) , ż = f0 (w, z, e) ,

is Input-to-State Stable (ISS) with respect to the input e, relative to the
compact set A = {(w, z) ∈ W × Rnz : z = π (w)}.
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Assumption 7.4.3. There exists a known constant nonsingular matrix b ∈
Rny×ny such that the inequality∥∥∥(b(w, z, e)− b)b−1

∥∥∥ ≤ 1 − µ0,

holds for some known scalar µ0 ∈ (0, 1), and for all (w, z, e) ∈ W × Rnz ×
Rne .

Remark 7.4.1. Although not necessary (see [18]), Assumption 7.4.2 is a
minimum-phase assumption customary made in the literature of output reg-
ulation (see [71], [119]). In particular, Assumption 7.4.2 is asking that the
zero dynamics

ẇ = s (w) , ż = f0 (w, z, 0) ,

has a steady-state of the kind z = π (w), compatible with the control ob-
jective y = 0. As a consequence, the ideal input u⋆ making the set B =

A× {0} invariant for (68) reads as

u⋆ (w, π (w)) = −b (w, π (w) , 0)−1 q (w, π (w) , 0) .

The ability of the regulator to generate such an input is generally referred to
as the internal model property. With a little abuse of notation, from now
on we refer to u⋆ (w, π (w)) with u⋆ (w).

Remark 7.4.2. Assumption 7.4.3 is a stabilizability assumption asking that
b (w, z, e) is always invertible whatever (w, z, e) is (see [156]). Moreover,
the designer is required to have access to an estimate b of b (w, z, e) which
captures enough information about its behavior.

In this framework, we now recall two results based on [94] and [13,
Theorem 1].

Lemma 7.4.1. Let previous assumptions hold and let nη = 2(nw + nz + 1).
Then, for any choice of controllable pair (F, G), with F a Hurwitz matrix,
there exist two maps τ : Rnw 7→ Rnη , and γ : Rnη 7→ Rny such that for all
w in W

γ ◦ τ(w) = u⋆(w),

L(w)
s(w)

τ(w) = Fτ(w) + Gu⋆(w),

and the system

ẇ = s(w),

ż = f0(w, z, e),

η̇ = Fη + Gu⋆(w) + δ,

is ISS relative to the set E =
{
(w, z, η) ∈ A × Rnη : η = τ(w)

}
and with

respect to the input (e, δ).
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Let previous assumptions hold, and let M = {ψ(ϑ, ·) : Rnη 7→ Rny |ϑ ∈ Θ},
with Θ a finite-dimensional normed vector space, be a finite-dimensional
model set where γ is supposed to range. Consider the following reg-
ulator structure Same regulator

proposed in [13],
with the only
difference in the
definition of
ϑ = ω (ς). It is, in
fact, equivalent to
set ϑ+ = ω (ς) with
ϑ̇ = 0 and delay the
optimality condition
of one step, i.e. ϑ⋆ ∈
arg minϑ∈Θ J (j − 1, ϑ).



ζ̇ = 1

η̇ = Fη + Gu

˙̂e = Aê + B (χ̂ + bu) + Λ(l)H (y − ê1)

˙̂χ = −bψ (ϑ, η, u) + lr+1Hr+1 (y − ê1)

ς̇ = 0

(ζ, η, ê, χ̂, ς, ϑ, y) ∈ Cζ × Rnη+ne+ny × S × Θ × Rny ,

ζ+ = 0

η+ = η

ê+ = ê

χ̂+ = χ̂

ς+ = µ (ς, η, u)

(ζ, η, ê, χ̂, ς, ϑ, y) ∈ Dζ × Rnη+ne+ny × S × Θ × Rny ,

with ϑ = ω (ς) and output u = b−1sat(−χ̂ + κs (ê)). Where A, B, b
are the same in (68) and Assumption 7.4.3, while (F, G) and nη are
the same of Lemma 7.4.1, and S a finite-dimensional normed vector
space. The sets Cζ , Dζ are defined as

Cζ =
[
0, T
]

, Dζ =
[
T, T

]
,

with T, T ∈ R+, satisfying 0 < T ≤ T. Furthermore, fix Λ(l) =

diag
(
l Iny , l2 Iny , . . . , lr Iny

)
, H = diag (H1, . . . , Hr), and Hi = diag

(
h1

i , . . .

. . . , hny
i

)
with {hj

1, hj
2, . . . , hj

r+1} for all j = 1, . . . , ny coefficients of a
Hurwitz polinomial, and l ∈ R>0 is a control parameter. Let the tu-
ple

(
M,S , ψ, Θ, ω

)
be such that the identifier requirements, relative to a

given cost function J , are satisfied [13]. Namely there exist βς ∈ KL,
locally Lipschitz ρς, ρϑ ∈ K, a compact set S⋆ ⊂ S and, for each
solution pair ((ζ, w, ς, ϑ), (dη , dy)) to

ζ̇ = 1

ẇ = s(w)

ς̇ = 0(
ζ, w, ς, ϑ, dη , dy

)
∈ Cζ ×W ×S × Θ × Rnη × Rny ,

(69)
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
ζ+ = 0

w+ = w

ς+ = µ
(
ς, τ(w) + dη , γ(τ(w)) + dy

)(
ζ, w, ς, ϑ, dη , dy

)
∈ Dζ ×W ×S × Θ × Rnη × Rny ,

with ϑ = ω (ς), there exists a pair (ς⋆, ϑ⋆) and a j⋆ ∈ N, such that
((ζ, w, ς⋆, ϑ⋆), (0, 0)) is a solution pair to (69) satisfying ς⋆(j) ∈ ς⋆ for
all j ≥ j⋆ and the following properties hold:

1. Optimality: For each j ≥ j⋆

ϑ⋆ ∈ arg min
ϑ∈Θ

J (j, ϑ) .

2. Stability: For each j

|ς(j)− ς⋆(j)| ≤ max
{

βς (ς(0)− ς⋆(0), j) , ρς

(∣∣(dη , dy
)∣∣) }.

3. Regularity: The function ω satisfies

|ω (ς)− ω (ς⋆)| ≤ ρϑ (|ς − ς⋆|) ,

for all (ς, ς⋆) ∈ S × S⋆, the map ψ (ϑ, η, u) is C1 with locally
Lipschitz derivative in the argument η.

Then, for each compact sets Z ⊂ Rnz , E ⊂ Rne , and B ⊂ Rne × Rny

of initial conditions for z, e, and (ê, b) respectively, there exists l⋆s > 0
such that if l > l⋆s then the aggregate state x = (ζ, w, z, e, η, ê, χ̂, ς, ϑ)

of the closed-loop system is bounded. Moreover, there exists a αx > 0
and for each T > 0, an l⋆ε > 0, such that if l > l⋆ε (T) then

lim sup
t→∞

|y(t)| ≤ αx lim sup
t+j→∞

|u⋆(w)− ψ(ϑ⋆, τ(w))| .

7.5 adapting the pre-processing internal model

Building an identifier satisfying the requirements presented in Sec-
tion 7.4 is necessary linked to a specific choice of the model set
M, which is the space of functions where γ is supposed to range.
Due to implementation constraints, it is customary to focus on finite-
dimensional sets, which allows the parametrization of γ by a param-
eter ϑ ranging in a finite-dimensional vector space Θ. This, in turn,
limits the flexibility of the proposed approach, especially when the
structure of the friend is not a priori known. For this reason, we drop
the assumption about M by performing regression in the space of
universal approximators made by Gaussian processes.
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Remark 7.5.1. Assumption 7.4.1 asks for some Lipschitz conditions on
maps that play a fundamental role in the stability analysis. In particular,
Lipschitz continuity is required as long as high-gain-based observers are
employed inside the regulator structure, later detailed in (??). Furthermore,
even if here we deal with data-driven adaptive control techniques, that ideally
require smoothness assumptions on the function to be identified u⋆, in prac-
tice the adaptation of the internal model structure proposed by [94] makes
the problem solvable without any further assumption. The details about this
issue are more deeply discussed in Section ??.

7.5.1 Gaussian Process Inference

As in Section 7.3.1, the key idea behind the proposed approach con-
sists in modeling the unknown function γ as the realization of a Gaus-
sian process defined by a prior mean function m : Rnη 7→ Rny and
the kernel κ : Rnη × Rnη 7→ R [127]. While there are many possible
choices of mean and covariance functions, we force m (η) = 0ny for
any η ∈ Rnη , and we keep the formulation of κ general, with the only
constraint expressed by Assumption 7.5.2 below. Thus, we assume
that

γ ∼ GP (0, κ (·, ·)) .

Supposing to have access to a data-set of samples collected at differ-
ent time instants ti ∈ R>0, DS = {(η, u) ∈ Rnη × Rny : η = η(ti), u =

u(ti) with i = 1, . . . , N}, with each pair (η, u) ∈ DS obtained as
u(ti) = γ(η(ti)) + ε(ti) with ε(ti) ∼ N (0, σ2

n Iny) white Gaussian noise
with known variance σ2

n , the regression is performed by conditioning
the prior GP distribution on the training data DS and a test point
η. Denoting η = (η(t1), . . . , η(tN))

⊤ and u = (u(t1), . . . , u(tN))
⊤, the

conditional posterior distribution given the data-set is still a Gaussian
process with mean µ and variance σ2 given by [127]

µ (η) = κ (η)⊤
(
K+ σ2

n IN
)−1

u,

σ2 (η) = κ (η, η)− κ (η)⊤
(
K+ σ2

n IN
)−1

κ (η) ,
(70)

where K ∈ RN×N is the Gram matrix whose (k, h)-th entry is Kk,h =

κ (ηk, ηh), with ηk the k-th entry of η, and κ (η) ∈ RN is the kernel
vector whose k-th component is κk (η) = κ (η, ηk).

Remark 7.5.2. The assumption of measurements perturbed by Gaussian
noise is commonly used in learning-based control since it is caused, for ex-
ample, by numerical differentiation (see [146]).

From now on we suppose that the following standing assumptions
hold (see [17], [86])

Assumption 7.5.1. The unknown function γ has a bounded norm in the
RKHS H generated to the kernel κ.
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Assumption 7.5.2. The kernel function κ is isotropic and Lipschitz con-
tinuous with constant Lκ, with a locally Lipschitz derivative of constant Ldκ.

Isotropic kernels are
functions depending

only on the
Euclidean distance
of their arguments.
In this respect, the
compact notation

κ (x, x′) =
κ (∥x − x′∥) is
commonly used.

Although any kernel fulfilling Assumption 7.5.2 can be a valid can-
didate, in the following, we exploit the commonly adopted squared
exponential kernel as prior covariance function, which can be ex-
pressed as

κ
(
η, η′) = σ2

p exp
(
−
(
η − η′)⊤ Λ−1 (η − η′)) (71)

for all η, η′ ∈ Rnη , where Λ = diag(2λ2
η1

, . . . , 2λ2
ηnη

), ληi ∈ R>0 is

the characteristic length scale relative to the i-th signal, and σ2
p is the

amplitude [127].

Remark 7.5.3. Assumption 7.5.2 is asking some Lipschitz continuity prop-
erty of the unknown function that makes it well-representable by means of
a Gaussian process prior. Nevertheless, it represents a very strong assump-
tion, difficult to be checked even if the unknown function is known. As-
sumption 7.5.2 can be relaxed to the condition that γ is a sample from the
Gaussian process GP (0, κ (·, ·)), which, in turn, leads to a larger pool of
posssible unkown functions and it is easier to be check. As an example, the
pool generated by the squared exponenial kernel Equation (71) is equal to the
space of continuous functions.

Remark 7.5.4. The isotropic kernel structure is a customary (although not
necessary) assumption in the literature of Gaussian process regression. In
this respect, the following results can be generalized for any Lipschitz con-
tinuous kernel by means of well-known arguments (see [86]).

We conclude this section by recalling two results based on [86].

Lemma 7.5.1. Consider a zero-mean Gaussian process defined through a
kernel κ : X × X 7→ R, satisfying Assumption 7.5.2 on a compact subset
X of Rnη , and N ∈ N observations DS =

{(
x1, y1) , . . . ,

(
xN , yN)}, with

yi = f
(

xi) + εi, where εi ∼ N (0, σ2
n Iny). Then, the posterior variance is

bounded as

σ2 (x) ≤ κ(0)− κ(ρ)2

κ(0) + σ2
n

|Bρ(x)|
∀x ∈ X ,

where Bρ(x) = {x′ ∈ DS : ∥x − x′∥ ≤ ρ} denotes the training data-set
restricted to a ball around x with radius ρ ∈ R>0, and |·| denotes the
cardinality.

Lemma 7.5.2. Consider a zero-mean Gaussian process defined through a
kernel κ : X × X 7→ R, satisfying Assumption 7.5.2 on the compact set
X . Furthermore, consider a continuous unknown function f : X 7→ R

with Lipschitz constant L f , and N ∈ N observations yi = f
(
xi) + εi,
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with εi ∼ N (0, σ2
n Inny). Then, there exists ρ ∈ R>0 such that the posterior

mean µ and posterior variance σ2 conditioned on the training data DS ={(
x1, y1) , . . . ,

(
xN , yN)} are continuous with Lipschitz constants Lµ and

Lσ2 on X , respectively, satisfying

Lµ ≤ Lκ

√
N
∥∥∥(K+ σ2

n IN
)−1

y
∥∥∥ ,

Lσ2 ≤ 2ρLκ

(
1 + N

∥∥∥(K+ σ2
n IN
)−1
∥∥∥ max

x,x′∈X
κ(x, x′)

)
,

with x = (x1, . . . , xN)⊤ and y = (y1, . . . , yN)⊤. Moreover, pick δ ∈ (0, 1)
and set

β (ρ) = 2 log
(

M (ρ,X )

δ

)
,

α (ρ) =
(

L f + Lµ

)
ρ +

√
β (ρ) Lσ2 ρ,

with M (ρ,X ) the ρ-covering number related to the set X . Then, the bound The ρ-covering
number related to
the set X is the
minimum number
satisfying
minx∈X maxx′∈DS ∥x − x′∥ ≤
ρ.

| f (x)− µ(x)| ≤
√

β (ρ)σ2 (x) + α (ρ) ∀x ∈ X

holds with probability al least 1 − δ.

7.5.2 The Proposed Regulator

The proposed regulator reads as follows

ζ̇ = 1

η̇ = Fη + Gu

˙̂e = Aê + B (χ̂ + bu) + Λ (l) H (y − ê1)

˙̂χ = −b (µ̇ (η, ς, ϑ)) + lr+1Hr+1 (y − ê1)

ς̇ = 0

(ζ, η, ê, χ̂, ς, ϑ, y) ∈ C,

ζ+ = 0

η+ = η

ê+ = ê

χ̂+ = χ̂

ς+ = (S ⊗ IN) ς + (B ⊗ IN)
[
η u

]⊤
(ζ, η, ê, χ̂, ς, ϑ, y) ∈ D,

(72)

with ϑ = ω (ς) and output u = b−1sat(−χ̂ + κs (ê)). Where A, B,
and b are the same as in (68) and Assumption 7.4.3, F, G, and nη are
the same as Lemma 7.4.1, and Λ (l), H are defined as in Section 7.4
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with l ∈ R>0 a free control parameter fixed later to a sufficiently large
number, while the matrices S ∈ RN(nη+ny)×N(nη+ny) and B ∈ RN(nη+ny)

have the shift form, denoting nς = N(nη + ny)

S =

(
0(nς−1)×1 Inς−1

0 01×(nς−1)

)
, B =

(
0(nς−1)×1

1

)
.

The flow and jump set are defined as C =
{
(ζ, η, ê, χ̂, ς, ϑ, y) ∈ R>0 ×

Rnη+ne+ny × S × Θ × Rny : 0 ≤ ζ ≤ T, σ2 (η, ς, ϑ) ≤ σ2
thr

}
and D ={

(ζ, η, ê, χ̂, ς, ϑ, y) ∈ R>0 × Rnη+ne+ny × S × Θ × Rny : T ≤ ζ ≤ T,
σ2 (η, ς, ϑ) ≥ σ2

thr

}
respectively, where S ⊂ RN(nη+ny), Θ ⊂ RN with

N ∈ N>0, and T, T, σ2
thr ∈ R>0 satisfying T ≤ T and σ2

pσ2
n(σ

2
p +

σ2
n)

−1 < σ2
thr ≤ σ2

p . The functions µ (η, ς, ϑ) and σ2 (η, ς, ϑ) are the
a posteriori GP estimate mean and variance, respectively, after the
collection of N samples. According to Section 7.5.1, denoting ς =(
ςη , ςu

)⊤, the latter functions read to

µ (η, ς, ϑ) = κ (η)⊤ ϑ,

σ2 (η, ς, ϑ) = κ (η, η)− κ (η)⊤
(
K+ σ2

n IN
)−1

κ (η)

with ϑ =
(
K+ σ2

n IN
)−1

ςu. In this settings, K and κ are evaluated
with respect to the data-set DS as defined in Section 7.5.1.

Claim 7.5.1. Let Assumption 7.5.1 and 7.3.3 hold, then the tuple (S , µ, ω)
satisfies the identifier requirements relative to the functional

J =
λs

2
∥µ∥2

H + Q (u, µ (η)) .

Claim 7.5.2. Let Assumption 7.4.1-7.5.2 hold and consider the regulator (72),
then for each compact sets Z0, E0, and S0 there exists αx > 0 and l⋆ϵ > 0,
and for any choice of T, σ2

thr ∈ R>0, and N ∈ N>0, and for each initial
condition w0 ∈ W , a ρ⋆ (w0) > 0 such that if l > l⋆ϵ , then the bound

lim sup
t→∞

|y(t)| ≤ αx

∣∣∣∣√β

[
κ(0)− κ(ρ⋆)2

κ(0) + σ2
n

]
+ α (ρ⋆)

∣∣∣∣
with β and α defined as

β = 2 log
(N

δ

)
, α (ρ⋆) =

(
L f + Lµ

)
ρ⋆ +

√
βLσ2 ρ⋆,

holds with probability at least 1 − δ.

Remark 7.5.5. The quantity ρ⋆ in Claim 7.5.2 represents a notion of cover-
age of the set E by the collected data-set. In particular, the lower ρ⋆ is, the
better the set E is covered. As long as it approaches to zero, the regulation
error approaches the lower bound

lim sup
t→∞

|y(t)| ≤ αx

∣∣∣∣√β

[
σ2

n
κ(0) + σ2

n

]∣∣∣∣ ,

driven by the measurement noise σ2
n .
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Figure 38: Top: Value of the real feedforward term u⋆ (w(t)) (orange line)
and of its approximations γ̂ (η(t)), along the system trajectory.
The blue line shows the steady-state friend provied by the linear
identifier, while the green lines report the gaussian-based identi-
fier estimation with N = 50 (dark green line), N = 100 (green
line), and N = 200 (light green line). Bottom: zoom-in to high-
light the difference in the case of gaussian-based identifier with
different number of samples. The reported quantities are plotted
with respect to the time in seconds (abscissa).

7.5.3 Numerical Simulation

To test the proposed regulator performances against state-of-the-art
output regulation solutions, we consider the same problem proposed
by [13] where the output of a Van der Pol oscillator, with unknown
parameter, must be synchronized with a triangular wave with un-
known frequency. The forced Van der Pol oscillator is described by
the following equations

χ̇1 = χ2,

χ̇2 = −χ1 + a
(
1 − χ2

1
)

χ2 + u,
(73)

with a scalar unknown parameter regulating the system damping.
Furthermore, a triangular wave can be generated by an exosystem of
the form

ẇ1 = w2, ẇ2 = −ϱw1,

with output

χ⋆ (w) =
2
√

w2
1 + w2

2

π
arcsin

 w1√
w2

1 + w2
2

 ,
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Figure 39: Top: steady-state evolution of the tracking error y(t) in the two
cases obtained by employing a linear identifier (blue line), and a
gaussian-based identifier with N = 50 (dark green line), N = 100
(green line), and N = 200 (light green line). Bottom: zoom-in to
highlight the error behavior. The reported quantities are plotted
with respect to the time in seconds (abscissa).
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Figure 40: The transient evolution of the tracking error y(t) in the two
cases obtained by employing a linear identifier (blue line), and a
gaussian-based identifier with N = 50 (dark green line), N = 100
(green line), and N = 200 (light green line). The reported quanti-
ties are plotted with respect to the time in seconds (abscissa).

with scalar parameter ϱ the unknown oscillating frequency. The goal
is to steer the output χ1 of (73) to the reference χ⋆ (w). The error
coordinates e are thus defined as(

e1

e2

)
=

(
χ1 − χ⋆ (w)

χ2 − Ls(w)χ
⋆ (w)

)
,
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and the error system reads as

ė1 = e2,

ė2 = −e1 − χ⋆ − L2
s(w)χ

⋆

+ a
(

1 − (e1 + χ⋆ (w))2
) (

e2 + Ls(w)χ
⋆ (w)

)
.

(74)

The system (74) is in the same form of (68) with Assumption 7.4.2 triv-
ially fulfilled since the z dynamics is absent. Furthermore, Assump-
tion 7.4.1 and Assumption 7.4.3 hold with b = 1 and any µ ∈ (0, 1).
To be compliant with the results presented by [13] we exploit the
same controller parameters

1. κs (ê) = Kê with K such that σ (A − BK) = {−1,−2}, and the
input u has been saturated inside the interval [−100, 100].

2. The internal model dimension is nη = 2(nw + 1) = 6, and the
matrices F and G has been fixed as

F =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 −1


, G =



0

0

0

0

0

1


.

3. The control parameters has been chosen as l = 20, h1 = 6, h2 =

11, h3 = 6, and T = T = 0.1.

The simulations reported in Figures 39, 40, and 38 show the pro-
posed regulator applied with a = ϱ = 2 in three cases with N =

50, N = 100, and N = 200. The obtained results are then com-
pared with the regulator proposed by [13] where the identifier is
chosen as a least-squares identifier working on the model set M ={

ψ (ϑ, η) : Rnη 7→ Rny |ψ (ϑ, η) = ϑ⊤η, ϑ ∈ Θ ⊂ Rnη
}

. In all simulations
the GP parameters has been kept fixed at σ2

n = 0.01 and σ2
thr = σ2

p = 1,
while the kernel hyperparameters λ = (λη1 , . . . , ληnη

) has been esti-
mated via log-likelihood minimization [127] yielding to the values of
λ = (7.7, 34.3, 19.9, 0.4, 133.6, 1.2). As emerges from Figure 39, the pro-
posed approach reduces the maximum error of more than 100 times
compared to the case with least-square identifier.

7.6 contributions

We presented two learning-based techniques to design internal model-
based regulators for a large class of nonlinear systems. The proposed
techniques fit in the general frameworks recently proposed in [14]
and [13], and shows how the identification of the optimal steady state
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control input can be performed by using Gaussian process models.
The flexibility of the proposed approaches make the regulator able
to deal with highly uncertain shapes of the optimal steady-state con-
trol input useful to make zero the output error. Thanks to the fact
that only coarse and qualitative knowledge about the friend is re-
quired, the proposed designs may be employed as solution to many
of the output regulation problems addressed in literature. The pre-
vious analysis also derives probabilistic bounds on the attained per-
formances and presents numerical simulations showing how the pro-
posed methods outperforms state-of-the-art approaches when the reg-
ulated plant or the exogenous disturbances are subject to unmodeled
perturbations. Future research directions will be aimed at exploring
deeper the Gaussian process flexibility by focusing on the injection of
possibly a priori knowledge of the friend structure, and at investigat-
ing how the proposed performance bound changes. We also aim to
investigate if Gaussian process-based internal models may deal with
non minimum-phase systems.



C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

In this thesis we approached the problem of autonomous navigation
by smoothly going through a sequence of issues that arise when ap-
proaching this field of study for the first time. Although the discus-
sion mainly focused on quadcopter control and planning, the pre-
sented algorithms easily extend to a very large class of problems
involving several different autonomous platforms, such as ground
robots, fixed-wing UAVs, or even underwater robots. We started by
reviewing the “golden standards” of quadcopter modeling and con-
trol in Chapter 2, representing in some way the baseline from which
we started our work, then we moved to the problem of localisation
and mapping in Chapter 3, trajectory planning (Chapter 5) and re-
planning (Chapter 6), and environments exploration in Chapter 4.
We especially focused on the re-planning and exploration problems,
where beyond reviewing, developing, and testing state-of-the-art so-
lutions, we contribute by proposing new fast and light approaches,
with an eye to the system theory field from which we aim to borrow
analysis tools to prove the algorithms stability. The touched problems,
as they are reported in the thesis, are exactly the same issues that we
faced during the development of a fully autonomous platform able to
cope with the requirements proposed by the Leonardo drone contest.

The thesis ends with a window on a completely new output regula-
tion control paradigm which although demonstrated very impressive
results, it is not been used on real-scenario applications yet. The rea-
son behind that lies mainly in its difficult design and poor general-
isation in front of different exosystems and system uncertainties, in
this sense we try to steer the research toward completely data-driven
designs able to cope with a very large number of model sets. Besides
that, the necessity to bound the computed control inputs to real ac-
tuator saturations is a fundamental issue that has not been deeply
studied yet. The generality of the presented control technique, jointly
with the possibility to extend the proposed algorithms to a very large
number of different applications and robots motivate the chosen the-
sis title. The material presented is far from being a complete answer
to the problem of motion planning and control of highly nonlinear
robots which is definitely an open and challenging research field. As
a matter of fact, many research directions are open by the proposed
vision.
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Part IV

A P P E N D I C E S





A
B - S P L I N E S , N U R B S A N D B É Z I E R C U RV E S

This appendix briefly collects the central notions and properties of B-
Splines, NURBS, and Bézier curves, borrowing the formalism and the
framework from [11]. We start with a general overview of the three
curve parameterizations mentioned above, then go deep through their
properties and correlations. For further details, the reader is referred
to [11, 46, 123].

a.1 b-spline curves

A B-spline, or Basic-spline, is a computationally efficient technique to
implement interpolating splines or to approximate functions, curves,
and surfaces. Any generic spline can be expressed in B-form by lin-
early combining a proper number of B-splines basis functions Bp

i (u),

s (u) = ∑m
i=0 qiB

p
i (u) with umin ≤ u ≤ umax,

where p is the curve order, while the coefficients qi ∈ Rn, i = 0, . . . , m,
are known as control points and can be computed by imposing some
approximation or interpolation conditions on a given set of data points.
Let u =

[
u0, . . . , up+m+1

]
be a nondecreasing vector of real numbers,

in this framework called knots, then the jth B-spline basis function of
order p can be recursively computed via the De-Boor formula [33]

B0
i (u) =

1 if ui ≤ u < ui+1,

0 otherwise,

Bp
i (u) =

u − ui

ui+p − ui
Bp−1

i (u) +
ui+p+1 − u

ui+p+1 − ui+1
Bp−1

i+1 (u) .

An example of B-spline basis functions of order 5 is reported in Fig-
ure 41, notice that each basis Bp

i (u) is equal to zero everywhere ex-
cept in the interval

[
ui, ui+p+1

)
, it results that in every knot span only

p + 1 basis functions are not null, yielding a dependency on only
p + 1 control points. The latter property is usually referred to as local-
ity property since the curve is locally bent only by p + 1 control points,
this opens the possibility of deforming the curve without necessarily
recomputing the overall B-spline. Moreover, from the aforementioned
relation emerges that the basis functions enjoy a partition of the unity
property (i. e. ∑m

i=0 Bp
i (u) = 1 for any u), the latter implies that the

B-spline curve s(u) is entirely contained inside the convex hull gen-
erated by the given control points, being a convex combination of
these.
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Figure 41: Example of B-spline basis functions of order 5.

A common choice during the design of a B-spline curve is to imple-
ment a non-uniform knot vector of the form

u =
[
umin, . . . , umin, up+1, . . . , um, umax, . . . , umax

]
,

this particular form allows for endpoints interpolation, i. e. s (umin) =

q0 and s (umax) = qm, an example of this type of curve is depicted
in Figure 42. Moreover, the non-uniform knots vector allows shaping
the endpoints of the k derivate only acting on the first and last k + 1
control points. A B-spline curve is in fact differentiable infinite times
in the interior of the knot intervals, and it is p − j times continuously
differentiable at a knot of multiplicity j. The curve derivate can be
still represented in B-form with an order p − 1 and control points

q′
i = p

qj+1 − qj

uj+p+1 − uj+1
.

a.2 nurbs curves

The Non Uniform Rational B-Spline (NURBS) is a generalization of
the classic B-spline curves that implements a set of m additional pa-
rameters encoded as control points weight. A NURBS curve of order
p is defined as

s (u) = ∑m
i=0 qiwi B

p
i (u)

∑m
i=0 wi B

p
i (u)

with umin ≤ u ≤ umax,

where qi is the ith control point, wi the ith weight and Bp
i the B-spline

basis function. An example of a NURBS curve of order 3 is reported
in Figure 43, where the weight associated with the 4th control point
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Figure 42: Example of B-spline curve of order 5.

is left free to span the range (0, 5] while all others are fixed at 1, note
that the introduce degree of freedom allows to locally shape the curve
toward the control point just by increasing the associated weight. In
this context, the absolute value of the single weight does not play a
role in the final curve shape, which instead is governed by the value of
the relative weight. As a matter of fact, if the weights are constant and
equal the NURBS degenerate to a B-spline curve. The aforementioned
relation can be rewritten in B-form by setting

Np
i (u) = wi B

p
i (u)

∑m
i=0 wi B

p
i (u)

=⇒ s (u) = ∑m
i=0 qiN

p
i (u) ,

in this setting, Np
i are piecewise rational functions, called rational basis

functions. All properties stated for the B-splines hold also for NURBS
curves with the only exception that the NURBS derivates cannot be
represented in B-form. This limits their application in motion plan-
ning due to the poor practical derivates bounds evaluation and im-
plementation.

a.3 relation between b-spline & nurbs curves

Even if NURBS curves can be represented in B-form, which resem-
bles the B-spline notation, the obtained curve is not a non-rational
B-spline, leading to inefficient representation and evaluation, jointly
with the loss of some good properties. An efficient way to represent
NURBS curves is based on homogeneous coordinates. In the three-
dimensional case, for a given set of control points qi =

[
qx,j, qy,j, qz,j

]⊤
and weights wi, it is possible to construct the weighted control points
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Figure 43: Example of NURBS curve of order 3.

qw
i =

[
wiqx,j, wiqy,j, wiqz,j, wi

]⊤ ∈ R4, which define the nonrational
B-spline

sw(u) =
m

∑
i=0

qw
i Bp

i (u) .

The latter representation and the NURBS curve formulation are equiv-
alent in the sense that they are related to a bijective map.

a.4 bézier curves

While NURBSs are a generalization of B-splines, Bézier curves rep-
resent a specialization of them. In particular, a Bézier curve can be
obtained from a B-spline by setting the control points number equal
to the curve order (i. e. m = p) and letting the knots vector degenerate
to

u =
[
u0

min, . . . , up
min, u0

max, . . . , up
max
]

.

Usually, in this framework, the spline variable bounds are chosen as
umin = 0 and umax = 1. The obtained curve is still in B-form, but
allows for a more efficient evaluation

s(u) = ∑m
i=0 qiB

p
i (u) with 0 ≤ u ≤ 1, (75)

where the coefficients qi are the control points, and the basis functions
Bp

i (u) are pth order Bernstein polynomials defined by

Bp
i (u) =

(
p

i

)
ui(1 − u)p−i.
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In this context, the possibility to evaluate the curve without a recur-
sive formula allows for a more efficient implementation. The Bézier
curves, unlike B-splines and NURBSs, enjoy a set of new proper-
ties [46], summarized in the following.

1. Derivate. The Bézier space is closed with respect to the operation
of derivation, as a matter of fact, the basis function satisfies

d
du

Bp
i (u) = p

(
Bp−1

i−1 (u)− Bp−1
i (u)

)
,

that, jointly with Equation (75), yields to

d
du

s(u) =
m−1

∑
i=0

p
(
qi+1 − qi

)
Bp−1

i (u) ,

which in turn still represents a Bézier curve of lower degree.

2. Arithmetic operations. Two curves can be added, subtracted, or
multiplied in a new Bézier curve by acting only on the respec-
tive control points. In particular, as regards addition and sub-
traction, the operation can be done by simply adding or sub-
tracting the control points element-wise. If the two curves have
different degrees, the lowest must be elevated to match the other
one (see next properties). In case of product, two Bézier curves
with coefficients q1

0, . . . , q1
m1

and q2
0, . . . , q2

m2
, can be combined in

a new curve with control points

q3
i =

min(m1,i)

∑
j=max(0,i−m2)

(
m1

j

)(
m2

i − j

)
(

m1 + m2

i

) q1
j q2

i−j.

3. Curve composition. Two curves s (u) and u (ū) with Bernstein co-
efficients qs

0, . . . , qs
ms

and qu
0 , . . . , qu

mu
can be composed in a new

Bézier curve s̄ (ū) = s (u (ū)) via the recoursive formula

λk
i,j =

(
kmu

j

)−1 min(j,kmu−mu)

∑
l=max(0,j−mu)

(
kmu − mu

l

)(
mu

j − l

)
[(

1 − qu
j−l

)
λk−1

i,l + qu
j−lλ

k−1
i+1,l

]
for k = 1, . . . , ms, i = 0, . . . , ms − k, and j = 0, . . . , kmu, and
by setting λ0

i,0 = qs
i . Finally the Bernstein coefficients of the

composed curve are specified by

qs̄
i = λms

0,j , j = 0, . . . , msmu
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4. Degree elevation. A curve of order p and with coefficients q0, . . . , qm
can be expressed in the Bernstein basis of degree p + r, for all
r > 0, as sp+r (u) = ∑m+r

i=0 qp+r
i Bp+r

i (u) where the coefficients
can be computed as

qp+r
i =

min(m,k)

∑
j=max(0,i−r)

(
r

i − j

)(
m

j

)
(

m + r

i

) qj

5. Scaling the independent variable. The change of variable u 7→ λu
maps the interval [0, 1] to [0, λ], without changing the curve
path, and scaling the kth derivate of λ−k.

The latter properties are not completely for free, as a matter of fact,
the Béziez curve requires a higher number of parameters to express
the same spline with respect to B-splines or NURBs. On the other
hand, the Béziez parameterization leads to a less conservative contain-
ment property, since the obtained convex hull is tighter over the curve
itself [140]. Notice how going from general formulations (NURBS)
to specialized forms (B-spline, Bézier), the number of properties in-
creases a lot, but loses curve flexibility and degrees of freedom.

a.5 relation between b-spline & bézier curves

The relation linking B-spline and Bézier curves is purely algebraic
and goes through their matrix representation. To give an insight to
the reader, both parameterizations can be represented in a form

s (u) =
[
1 u u2 · · · up

]⊤
B
[
q0 q1 · · · qm

]⊤
,

with B being different depending on if s (u) represents a B-spline or
a Bézier curve. Let BBS and BBC the two matrices representing a B-
spline and a Bézier curve, respectively, moreover let qBS and qBC the
associated control points, then the following relation holds[

qBS0
qBS1

· · · qBSm

]⊤
= B−1

BS BBC

[
qBC0

qBC1
· · · qBCm

]⊤
.

For further information about the construction of matrices BBS and
BBC, the reader is referred to [123].



B I B L I O G R A P H Y

[7] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. “Formal
synthesis of Lyapunov neural networks.” In: IEEE Control Sys-
tems Letters 5.3 (2020), pp. 773–778.

[8] S. Agarwal, K. Mierle, and The Ceres Solver Team. Ceres Solver.
Version 2.1. Mar. 2022. url: https : / / github . com / ceres -

solver/ceres-solver.

[9] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. “Control
barrier function based quadratic programs for safety critical
systems.” In: IEEE Transactions on Automatic Control 62.8 (2016),
pp. 3861–3876.

[10] A. Benevento, M. Santos, G. Notarstefano, K. Paynabar, M.
Bloch, and M. Egerstedt. “Multi-robot coordination for estima-
tion and coverage of unknown spatial fields.” In: 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 7740–7746.

[11] L. Biagiotti and C. Melchiorri. Trajectory planning for automatic
machines and robots. Springer Science & Business Media, 2008.

[12] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi.
“Nonlinear model predictive control with enhanced actuator
model for multi-rotor aerial vehicles with generic designs.”
In: Journal of Intelligent & Robotic Systems 100 (2020), pp. 1213–
1247.

[13] M. Bin, P. Bernard, and L. Marconi. “Approximate nonlinear
regulation via identification-based adaptive internal models.”
In: IEEE Transactions on Automatic Control 66.8 (2020), pp. 3534–
3549.

[14] M. Bin and L. Marconi. ““Class-Type” Identification-Based In-
ternal Models in Multivariable Nonlinear Output Regulation.”
In: IEEE Transactions on Automatic Control 65.10 (2019), pp. 4369–
4376.

[15] M. Bin and L. Marconi. “Model identification and adaptive
state observation for a class of nonlinear systems.” In: IEEE
Transactions on Automatic Control 66.12 (2020), pp. 5621–5636.

[16] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Sieg-
wart. “Receding horizon" next-best-view" planner for 3d ex-
ploration.” In: 2016 IEEE international conference on robotics and
automation (ICRA). IEEE. 2016, pp. 1462–1468.

135

https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver


136 bibliography

[17] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio.
“Joint state and dynamics estimation with high-gain observers
and Gaussian process models.” In: 2021 American Control Con-
ference (ACC). IEEE. 2021, pp. 4027–4032.

[18] C. I Byrnes and A. Isidori. “Limit sets, zero dynamics, and
internal models in the problem of nonlinear output regula-
tion.” In: IEEE Transactions on Automatic Control 48.10 (2003),
pp. 1712–1723.

[19] F. Caballero and L. Merino. “DLL: Direct LIDAR Localization.
A map-based localization approach for aerial robots.” In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2021, pp. 5491–5498.

[20] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós. “Orb-slam3: An accurate open-source library for
visual, visual–inertial, and multimap slam.” In: IEEE Transac-
tions on Robotics 37.6 (2021), pp. 1874–1890.

[21] F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath.
“Gaussian process-based min-norm stabilizing controller for
control-affine systems with uncertain input effects and dynam-
ics.” In: 2021 American Control Conference (ACC). IEEE. 2021,
pp. 3683–3690.

[22] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N.
Michael, and V. Kumar. “Information-Theoretic Planning with
Trajectory Optimization for Dense 3D Mapping.” In: Robotics:
Science and Systems. Vol. 11. Rome. 2015, pp. 3–12.

[23] J. Chen, K. Su, and S. Shen. “Real-time safe trajectory genera-
tion for quadrotor flight in cluttered environments.” In: 2015
IEEE International Conference on Robotics and Biomimetics (RO-
BIO). IEEE. 2015, pp. 1678–1685.

[24] Y. Chen and G. Medioni. “Object modelling by registration
of multiple range images.” In: Image and vision computing 10.3
(1992), pp. 145–155.

[25] R. Choe, J. Puig, V. Cichella, E. Xargay, and N. Hovakimyan.
“Trajectory generation using spatial pythagorean hodograph
bézier curves.” In: AIAA Guidance, Navigation, and Control Con-
ference. 2015, p. 0597.

[26] C. Choy, J. Park, and V. Koltun. “Fully convolutional geomet-
ric features.” In: Proceedings of the IEEE/CVF international con-
ference on computer vision. 2019, pp. 8958–8966.

[27] T. Cieslewski, E. Kaufmann, and D. Scaramuzza. “Rapid ex-
ploration with multi-rotors: A frontier selection method for
high speed flight.” In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 2135–
2142.



bibliography 137

[28] C. Connolly. “The determination of next best views.” In: Pro-
ceedings. 1985 IEEE international conference on robotics and au-
tomation. Vol. 2. IEEE. 1985, pp. 432–435.

[29] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. F. F. Balcan, and
L. Song. “Scalable kernel methods via doubly stochastic gra-
dients.” In: Advances in neural information processing systems 27

(2014).

[30] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis.
“Graph-based path planning for autonomous robotic explo-
ration in subterranean environments.” In: 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).
IEEE. 2019, pp. 3105–3112.

[31] T. Dang, C. Papachristos, and K. Alexis. “Autonomous explo-
ration and simultaneous object search using aerial robots.” In:
2018 IEEE Aerospace Conference. IEEE. 2018, pp. 1–7.

[32] T. Dang, C. Papachristos, and K. Alexis. “Visual saliency-aware
receding horizon autonomous exploration with application to
aerial robotics.” In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 2526–2533.

[33] C. De Boor. A practical guide to splines. Vol. 27. springer-verlag
New York, 1978.

[34] D. Deng, R. Duan, J. Liu, K. Sheng, and K. Shimada. “Robotic
Exploration of Unknown 2D Environment Using a Frontier-
based Automatic-Differentiable Information Gain Measure.”
In: 2020 IEEE/ASME International Conference on Advanced Intel-
ligent Mechatronics (AIM). IEEE. 2020, pp. 1497–1503.

[35] W. Ding, W. Gao, K. Wang, and S. Shen. “Trajectory replan-
ning for quadrotors using kinodynamic search and elastic op-
timization.” In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 7595–7602.

[36] W. Ding, W. Gao, K. Wang, and S. Shen. “An efficient b-spline-
based kinodynamic replanning framework for quadrotors.” In:
IEEE Transactions on Robotics 35.6 (2019), pp. 1287–1306.

[37] W. Dong, G. Y. Gu, X. Zhu, H. Ding, et al. “Modeling and
control of a quadrotor UAV with aerodynamic concepts.” In:
World Academy of Science, Engineering and Technology 7.5 (2013),
pp. 901–906.

[38] R. Dubé, M. G. Gollub, H. Sommer, I. Gilitschenski, R. Sieg-
wart, C. Cadena, and J. Nieto. “Incremental-segment-based lo-
calization in 3-d point clouds.” In: IEEE Robotics and Automa-
tion Letters 3.3 (2018), pp. 1832–1839.

[39] M. Elhousni and X. Huang. “A survey on 3d lidar localiza-
tion for autonomous vehicles.” In: 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2020, pp. 1879–1884.



138 bibliography

[40] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter. “Com-
parison of nearest-neighbor-search strategies and implemen-
tations for efficient shape registration.” In: Journal of Software
Engineering for Robotics 3.1 (2012), pp. 2–12.

[41] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-scale
direct monocular SLAM.” In: Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part II 13. Springer. 2014, pp. 834–849.

[42] M. Faessler, A. Franchi, and D. Scaramuzza. “Differential flat-
ness of quadrotor dynamics subject to rotor drag for accurate
tracking of high-speed trajectories.” In: IEEE Robotics and Au-
tomation Letters 3.2 (2017), pp. 620–626.

[43] J. Faigl and P. Váňa. “Surveillance planning with Bézier curves.”
In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 750–757.

[44] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza. “PAMPC:
Perception-aware model predictive control for quadrotors.” In:
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 1–8.

[45] D. Falanga, K. Kleber, and D. Scaramuzza. “Dynamic obsta-
cle avoidance for quadrotors with event cameras.” In: Science
Robotics 5.40 (2020), eaaz9712.

[46] R. T. Farouki. “The Bernstein polynomial basis: A centennial
retrospective.” In: Computer Aided Geometric Design 29.6 (2012),
pp. 379–419.

[47] D. Floreano and R. J. Wood. “Science, technology and the fu-
ture of small autonomous drones.” In: nature 521.7553 (2015),
pp. 460–466.

[48] P. Foehn, A. Romero, and D. Scaramuzza. “Time-optimal plan-
ning for quadrotor waypoint flight.” In: Science Robotics 6.56

(2021), eabh1221.

[49] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-
direct monocular visual odometry.” In: 2014 IEEE international
conference on robotics and automation (ICRA). IEEE. 2014, pp. 15–
22.

[50] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. “RotorS—A
modular gazebo MAV simulator framework.” In: Robot operat-
ing system (ROS). Springer, 2016, pp. 595–625.

[51] N. Gaby, F. Zhang, and X. Ye. “Lyapunov-net: A deep neural
network architecture for Lyapunov function approximation.”
In: arXiv preprint arXiv:2109.13359 (2021).



bibliography 139

[52] F. Gao, Y. Lin, and S. Shen. “Gradient-based online safe tra-
jectory generation for quadrotor flight in complex environ-
ments.” In: 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE. 2017, pp. 3681–3688.

[53] F. Gao and S. Shen. “Online quadrotor trajectory generation
and autonomous navigation on point clouds.” In: 2016 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE. 2016, pp. 139–146.

[54] F. Gao, W. Wu, W. Gao, and S. Shen. “Flying on point clouds:
Online trajectory generation and autonomous navigation for
quadrotors in cluttered environments.” In: Journal of Field Robotics
36.4 (2019), pp. 710–733.

[55] F. Gao, W. Wu, Y. Lin, and S. Shen. “Online safe trajectory gen-
eration for quadrotors using fast marching method and bern-
stein basis polynomial.” In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 344–351.

[56] J. Gardner, G. Pleiss, R. Wu, K. Weinberger, and A. Wilson.
“Product kernel interpolation for scalable Gaussian processes.”
In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2018, pp. 1407–1416.

[57] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marín-Jiménez. “Automatic generation and detection of
highly reliable fiducial markers under occlusion.” In: Pattern
Recognition 47.6 (2014), pp. 2280–2292.

[58] R. Gomez-Ojeda, F. A. Moreno, D. Zuniga-Noël, D. Scaramuzza,
and J. Gonzalez-Jimenez. “PL-SLAM: A stereo SLAM system
through the combination of points and line segments.” In:
IEEE Transactions on Robotics 35.3 (2019), pp. 734–746.

[59] H. H. González-Banos and J. C. Latombe. “Navigation strate-
gies for exploring indoor environments.” In: The International
Journal of Robotics Research 21.10-11 (2002), pp. 829–848.

[60] S. Granger and X. Pennec. “Multi-scale EM-ICP: A fast and ro-
bust approach for surface registration.” In: Computer Vision—ECCV
2002: 7th European Conference on Computer Vision Copenhagen,
Denmark, May 28–31, 2002 Proceedings, Part IV 7. Springer. 2002,
pp. 418–432.

[61] M. A. Graule, P. Chirarattananon, S. B. Fuller, N. T. Jafferis, K.
Y. Ma, M. Spenko, R. Kornbluh, and R. J. Wood. “Perching and
takeoff of a robotic insect on overhangs using switchable elec-
trostatic adhesion.” In: Science 352.6288 (2016), pp. 978–982.

[62] L. Han, F. Gao, B. Zhou, and S. Shen. “Fiesta: Fast incremental
euclidean distance fields for online motion planning of aerial
robots.” In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2019, pp. 4423–4430.



140 bibliography

[63] J. P. Hespanha, D. Liberzon, and A. R. Teel. “On input-to-state
stability of impulsive systems.” In: Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE. 2005, pp. 3992–3997.

[64] J. P. Hespanha and A. S. Morse. “Stability of switched systems
with average dwell-time.” In: Proceedings of the 38th IEEE con-
ference on decision and control (Cat. No. 99CH36304). Vol. 3. IEEE.
1999, pp. 2655–2660.

[65] T. Holsclaw, B. Sansó, H. K. H. Lee, K. Heitmann, S. Habib, D.
Higdon, and U. Alam. “Gaussian process modeling of deriva-
tive curves.” In: Technometrics 55.1 (2013), pp. 57–67.

[66] H. Hong and B. H. Lee. “Probabilistic normal distributions
transform representation for accurate 3D point cloud registra-
tion.” In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2017, pp. 3333–3338.

[67] A. Hornung, Kai M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees.” In: Autonomous robots 34.3 (2013),
pp. 189–206.

[68] S. Hrabar. “Reactive obstacle avoidance for rotorcraft uavs.”
In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2011, pp. 4967–4974.

[69] S. C. Hsu, X. Xu, and A. D. Ames. “Control barrier function
based quadratic programs with application to bipedal robotic
walking.” In: 2015 American Control Conference (ACC). IEEE.
2015, pp. 4542–4548.

[70] C. Huang, F. Gao, J. Pan, Z. Yang, W. Qiu, P. Chen, X. Yang,
S. Shen, and K. T. Cheng. “Act: An autonomous drone cin-
ematography system for action scenes.” In: 2018 ieee interna-
tional conference on robotics and automation (icra). IEEE. 2018,
pp. 7039–7046.

[71] A. Isidori. Lectures in feedback design for multivariable systems.
Springer, 2017.

[72] A. Isidori, L. Marconi, and A. Serrani. Robust autonomous guid-
ance: an internal model approach. Springer Science & Business
Media, 2003.

[73] M. W. Jones, J. A. Baerentzen, and M. Sramek. “3D distance
fields: A survey of techniques and applications.” In: IEEE Trans-
actions on visualization and Computer Graphics 12.4 (2006), pp. 581–
599.

[74] M. Juliá, A. Gil, and O. Reinoso. “A comparison of path plan-
ning strategies for autonomous exploration and mapping of
unknown environments.” In: Autonomous Robots 33.4 (2012),
pp. 427–444.



bibliography 141

[75] J. M. Kai, G. Allibert, M. D. Hua, and T. Hamel. “Nonlinear
feedback control of quadrotors exploiting first-order drag ef-
fects.” In: IFAC-PapersOnLine 50.1 (2017), pp. 8189–8195.

[76] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S.
Schaal. “STOMP: Stochastic trajectory optimization for motion
planning.” In: 2011 IEEE international conference on robotics and
automation. IEEE. 2011, pp. 4569–4574.

[77] M. Khan, T. Ibuki, and A. Chatterjee. “Safety uncertainty in
control barrier functions using gaussian processes.” In: 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 6003–6009.

[78] M. Khan, T. Ibuki, and A. Chatterjee. “Gaussian Control Bar-
rier Functions: A Non-Parametric Paradigm to Safety.” In: arXiv
preprint arXiv:2203.15474 (2022).

[79] S. Khatoon, D. Gupta, and L. Das. “PID & LQR control for
a quadrotor: Modeling and simulation.” In: 2014 international
conference on advances in computing, communications and infor-
matics (ICACCI). IEEE. 2014, pp. 796–802.

[80] G. Kim, S. Choi, and A. Kim. “Scan context++: Structural place
recognition robust to rotation and lateral variations in urban
environments.” In: IEEE Transactions on Robotics 38.3 (2021),
pp. 1856–1874.

[81] S. Kim and J. Kim. “Continuous occupancy maps using over-
lapping local gaussian processes.” In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 4709–4714.

[82] Y. Kompis, L. Bartolomei, R. M. Palliser, L. Teixeira, and M.
Chli. “Informed Sampling Exploration Path Planner for 3D Re-
construction of Large Scenes.” In: IEEE Robotics and Automation
Letters (2021).

[83] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and
M. Khalgui. “Micro air vehicle link (mavlink) in a nutshell: A
survey.” In: IEEE Access 7 (2019), pp. 87658–87680.

[84] S. M. LaValle. “Rapidly-exploring random trees: A new tool
for path planning.” In: (1998).

[85] S. Lagüela, L. Díaz, D. Roca, H. Lorenzo, et al. “Aerial ther-
mography from low-cost UAV for the generation of thermo-
graphic digital terrain models.” In: Opto-Electronics Review 23.1
(2015), pp. 78–84.

[86] A. Lederer, J. Umlauft, and S. Hirche. “Uniform error and pos-
terior variance bounds for Gaussian process regression with
application to safe control.” In: arXiv preprint arXiv:2101.05328
(2021).



142 bibliography

[87] T. Lee, M. Leok, and N. H. McClamroch. “Geometric tracking
control of a quadrotor UAV on SE (3).” In: 49th IEEE conference
on decision and control (CDC). IEEE. 2010, pp. 5420–5425.

[88] H. Liu, Q. Ye, H. Wang, L. Chen, and J. Yang. “A precise and
robust segmentation-based lidar localization system for auto-
mated urban driving.” In: Remote Sensing 11.11 (2019), p. 1348.

[89] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar. “Planning dynamically feasible trajec-
tories for quadrotors using safe flight corridors in 3-d com-
plex environments.” In: IEEE Robotics and Automation Letters
2.3 (2017), pp. 1688–1695.

[90] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun,
and D. Scaramuzza. “Learning high-speed flight in the wild.”
In: Science Robotics 6.59 (2021), eabg5810.

[91] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scara-
muzza. “Dronet: Learning to fly by driving.” In: IEEE Robotics
and Automation Letters 3.2 (2018), pp. 1088–1095.

[92] T. Madani and A. Benallegue. “Backstepping control for a
quadrotor helicopter.” In: 2006 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2006, pp. 3255–
3260.

[93] M. Magnusson, A. Lilienthal, and T. Duckett. “Scan registra-
tion for autonomous mining vehicles using 3D-NDT.” In: Jour-
nal of Field Robotics 24.10 (2007), pp. 803–827.

[94] L. Marconi, L. Praly, and A. Isidori. “Output stabilization via
nonlinear Luenberger observers.” In: SIAM Journal on Control
and Optimization 45.6 (2007), pp. 2277–2298.

[95] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K.
Konolige. “The office marathon: Robust navigation in an in-
door office environment.” In: 2010 IEEE international conference
on robotics and automation. IEEE. 2010, pp. 300–307.

[96] J. Maver and R. Bajcsy. “Occlusions as a guide for planning the
next view.” In: IEEE transactions on pattern analysis and machine
intelligence 15.5 (1993), pp. 417–433.

[97] A. A. Meera, M. Popović, A. Millane, and R. Siegwart. “Obstacle-
aware adaptive informative path planning for uav-based tar-
get search.” In: 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2019, pp. 718–724.

[98] S. B. Mehdi, R. Choe, V. Cichella, and N. Hovakimyan. “Colli-
sion avoidance through path replanning using Bézier curves.”
In: AIAA Guidance, navigation, and control conference. 2015, p. 0598.



bibliography 143

[99] S. B. Mehdi, R. Choe, and N. Hovakimyan. “Collision avoid-
ance in cooperative missions: Bézier surfaces for circumnavi-
gating uncertain speed profiles.” In: Journal of Guidance, Con-
trol, and Dynamics 42.8 (2019), pp. 1779–1796.

[100] L. Meier, D. Honegger, and M. Pollefeys. “PX4: A node-based
multithreaded open source robotics framework for deeply em-
bedded platforms.” In: 2015 IEEE international conference on
robotics and automation (ICRA). IEEE. 2015, pp. 6235–6240.

[101] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. “Pix-
hawk: A system for autonomous flight using onboard com-
puter vision.” In: 2011 IEEE International Conference on Robotics
and Automation. IEEE. 2011, pp. 2992–2997.

[102] D. Mellinger and V. Kumar. “Minimum snap trajectory gener-
ation and control for quadrotors.” In: 2011 IEEE international
conference on robotics and automation. IEEE. 2011, pp. 2520–2525.

[103] M. Ww. Mueller, M. Hehn, and R. D’Andrea. “A computation-
ally efficient motion primitive for quadrocopter trajectory gen-
eration.” In: IEEE transactions on robotics 31.6 (2015), pp. 1294–
1310.

[104] M. Mueller, G. Sharma, N. Smith, and B. Ghanem. “Persis-
tent aerial tracking system for uavs.” In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 1562–1569.

[105] M. Muja and D. G. Lowe. “Fast approximate nearest neighbors
with automatic algorithm configuration.” In: VISAPP (1) 2.331-
340 (2009), p. 2.

[106] M. Muja and D. Lowe. “Flann-fast library for approximate
nearest neighbors user manual.” In: Computer Science Depart-
ment, University of British Columbia, Vancouver, BC, Canada 5

(2009).

[107] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. “ORB-SLAM:
a versatile and accurate monocular SLAM system.” In: IEEE
transactions on robotics 31.5 (2015), pp. 1147–1163.

[108] R. Mur-Artal and J. D. Tardós. “Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras.” In:
IEEE transactions on robotics 33.5 (2017), pp. 1255–1262.

[109] Q. Nguyen and K. Sreenath. “Exponential control barrier func-
tions for enforcing high relative-degree safety-critical constraints.”
In: 2016 American Control Conference (ACC). IEEE. 2016, pp. 322–
328.

[110] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler,
and R. Siegwart. “A UAV system for inspection of industrial
facilities.” In: 2013 IEEE Aerospace Conference. IEEE. 2013, pp. 1–
8.



144 bibliography

[111] K. Ok, S. Ansari, B. Gallagher, W. Sica, F. Dellaert, and M.
Stilman. “Path planning with uncertainty: Voronoi uncertainty
fields.” In: 2013 IEEE International Conference on Robotics and
Automation. IEEE. 2013, pp. 4596–4601.

[112] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E.
Galceran. “Continuous-time trajectory optimization for online
UAV replanning.” In: 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE. 2016, pp. 5332–5339.

[113] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto.
“Voxblox: Incremental 3d euclidean signed distance fields for
on-board mav planning.” In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 1366–
1373.

[114] F. O’sullivan, B. S. Yandell, and W. J. Raynor Jr. “Automatic
smoothing of regression functions in generalized linear mod-
els.” In: Journal of the American Statistical Association 81.393 (1986),
pp. 96–103.

[115] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li. “MULLS: Versatile
LiDAR SLAM via multi-metric linear least square.” In: 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 11633–11640.

[116] C. Papachristos, S. Khattak, and K. Alexis. “Uncertainty-aware
receding horizon exploration and mapping using aerial robots.”
In: 2017 IEEE international conference on robotics and automation
(ICRA). IEEE. 2017, pp. 4568–4575.

[117] J. Park, D. Kim, G. C. Kim, D. Oh, and H. J. Kim. “Online Dis-
tributed Trajectory Planning for Quadrotor Swarm with Feasi-
bility Guarantee using Linear Safe Corridor.” In: IEEE Robotics
and Automation Letters 7.2 (2022), pp. 4869–4876.

[118] J. Park, J. Kim, I. Jang, and H. J. Kim. “Efficient multi-agent
trajectory planning with feasibility guarantee using relative
bernstein polynomial.” In: 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2020, pp. 434–440.

[119] A. Pavlov, N. Van De Wouw, and H. Nijmeijer. Uniform output
regulation of nonlinear systems: a convergent dynamics approach.
Vol. 205. Springer, 2006.

[120] B. Penin, P. R. Giordano, and F. Chaumette. “Vision-based re-
active planning for aggressive target tracking while avoiding
collisions and occlusions.” In: IEEE Robotics and Automation Let-
ters 3.4 (2018), pp. 3725–3732.
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