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Abstract

The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased
need for efficient and secure communication between connected devices. Wireless Sensor
Networks (WSNs) are composed of small, low-power devices that are capable of sensing and
exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve
intermediate nodes forwarding data to ensure more robust communication. The integration of
Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for
increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing
extended communication range and reducing energy consumption. However, the integration
of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control
and communication strategies.

This thesis explores the networking capabilities of WSNs and investigates how the
integration of UAVs can enhance their performance. The research focuses on three main
objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor
Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate
the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The
second objective focuses on deploying aerial nodes to maximize data collection effectiveness
and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third
objective investigates hybrid WMSN scenarios with air-to-ground communication links.
One of the main contribution of the thesis consists in the design and implementation of a
software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh
Sensor Networks and abstracts and handles multiple M2M communication stacks on both
ground and aerial links. The operations of Uhura have been validated through simulations
and small-scale testbeds involving ground and aerial devices.
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Chapter 1

Introduction

Thanks to the recent advances in technology and the decreasing cost of hardware solutions,
in the last decade, the use of the Internet of Things(IoT) has grown exponentially [1]. It is
being used in many different applications, e.g., smart home, smart agriculture, and smart
grid, and usually involves a certain number of devices connected to accomplish a specific
task. Each device is considered part of the same system since they are connected to the same
network, like sensors deployed in a field to monitor the humidity and temperature of the soil
or cameras installed in a building to monitor the occupancy.

The increasing usage of IoT has resulted in a growing need for efficient and secure
communication between these devices. One of the key challenges in IoT is to ensure reliable
networking, especially in situations where the devices are distributed in a rural area, have
limited resources, or are subject to harsh environments. This is where wireless sensor
networks (WSNs) come into play [2].

WSNs are composed of a large number of small, low-power devices, such as sensors, that
are capable of sensing, computing, and exchanging data. They are often used to collect data
from the environment and transmit it to a central device, called a sink, for data processing or
simply storage. Mesh WSN or WMSN is a type of network to address these challenges [3].
It involves using intermediate nodes to forward data from a source to a destination, allowing
for more robust and efficient communication. In Structural Health Monitoring (SHM)
applications, mesh networking is particularly useful as it collects data from various sensors
distributed throughout a large-scale structure and enables the data transmission to a sink unit
for analysis and monitoring of the structural integrity [4].

However, the use of mesh networking in SHM also raises new challenges, such as the
need for efficient data collection algorithms to enable the real-time monitoring of scenario.
Additionally, the design of energy-efficient communication protocols is crucial to ensure the
lifespan of the sensor devices, which are often battery-powered. Unmanned Aerial Vehicle-
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aided Wireless Sensor Networks (UAV-aided WSNs) represent a promising solution for
dealing with these challenges [5, 6]. In this approach, UAVs act as mobile relays for the sensor
nodes, providing an extended communication range and reducing the energy consumption of
the devices. Furthermore, UAVs can be deployed in areas where it is difficult or impossible
to get access with traditional methods, such as remote locations or hazardous environments.
Multiple UAVs, or, in general, unmanned vehicles, have different communication capabilities
compared to WSNs, such as higher mobility, larger communication range, and the ability to
provide a relay between different WSNs.

At the same time, the integration of UAVs in WSNs also poses new challenges, such as
the design of efficient control and communication strategies to ensure the coordination and
cooperation of the UAVs with the ground devices. Indeed, in a swarm of UAVs or ground
vehicles (UGVs), nodes can autonomously coordinate their activities and cooperate to accom-
plish a given task. Due to unpredictable environmental conditions, wireless communication
on air-to-air, ground-to-air, and ground-to-ground links can experience completely different
channel conditions. For this reason, several Machine-to-Machine (M2M) communication
technologies have been proposed with different Quality of Service (QoS) characteristics in
terms of range, bandwidth, and energy consumption profile [7]: such fragmentation poses
formidable challenges on the how to support the joint utilization of multiple M2M stacks in
heterogeneous IoT robotic environments.

In summary, the primary objective of this thesis is to explore the networking capabilities
of WSNs for IoT monitoring applications and investigate how the integration of UAVs can
enhance their performance. Specifically, the research focuses on three main objectives: (1)
design and deployment of solutions enabling the creation of Ground Wireless Mesh Sensor
Networks (WMSN) solutions, (2) design and deployment of solutions enabling the creation
of Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial mesh integration in the
so-called Hybrid WMSN. The first objective aims to investigate the use of the emerging
Bluetooth Mesh [8] standard for IoT monitoring applications in different environments,
including outdoor and indoor settings. The second objective focuses on deploying aerial
networks so that they can maximize the effectiveness of the data collection in terms of
ground nodes connected and in QoS of the mesh links while preserving the aerial mesh
connectivity. Finally, the third objective is to investigate hybrid scenarios with air-to-ground
communication links among the two network meshes. For objectives (2) and (3), a major
contribution of the thesis consisted in the design and implementation of Uhura, a novel
software framework that enables multi-radio H-WMSN, abstracting and handling multiple
M2M communication stacks in both ground and aerial nodes.
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The thesis is structured into five main chapters. Chapter 2 provides an overview of the
related work in the field of WSNs for SHM applications, Wireless Mesh Sensors Networks,
and UAV-aided sensor networks. Chapter 3 clarifies the scenario and the objectives of the
thesis, including the methodologies adopted. Chapter 4 investigate the Bluetooth Mesh
performance as a promising Wireless technology for Ground WMSN development in IoT
scenarios. Chapter 5 describes our contribution on aerial WMSN depployment; more
specifically, it presents ELAPSE, a cooperative localization algorithm to support aerial
mesh formation even in poor GPS conditions. Chapter 6 focuses on Uhura, a software
framework that provides communication facilities for a swarm of UAVs by abstracting from
the underlying M2M technologies. In addition, our tool supports automatic selection of
the M2M stack on multi-radio ground/aerial nodes based on QoS requirements of the IoT
application.





Chapter 2

State of Art

Nowadays, computer science is largely used in many different fields. For Structural Health
Monitoring (SHM), as the main research field of this Ph.D., there are a lot of different aspects
to investigate using a combination of multidisciplinary knowledge. In particular, this thesis
describes how multiple heterogeneous networks can work together, like Ground Wireless
Sensor Networks (WSN) and Aerial networks, in order to create an infrastructure with more
capabilities useful for problematic IoT monitoring applications, e.g., SHM. To aim this,
WSNs were largely investigated under many aspects; this chapter presents the state of the art
of WSNs for Iot Monitoring 2.1.1. In particular, the SHM application was chosen. For the
scope of this research, the networking aspect was mainly investigated; hence, the second part
of this chapter is dedicated to WSNs in Mesh configuration 2.2 as it opens to new possibilities
without special configurations, like more scalability and reliability of a WSN and, let to add
mobile nodes like drones described in Section 6.5.

2.1 IoT Monitoring Systems

Advancements in technology and lower hardware costs have conducted to significant growth
in the use of the Internet of Things (IoT) in the past decade [1]. IoT is applied in various
domains, such as smart homes, agriculture, and grids, where multiple devices are connected
to perform a specific task. Devices within the same system are connected through a network,
like soil sensors monitoring humidity and temperature or cameras monitoring occupancy in a
facility.

To ensure reliable communication between these devices, there is a growing demand for
efficient and secure networking in IoT. This can be particularly challenging in rural areas,
harsh environments, or devices with limited resources. To address these challenges, wireless
sensor networks (WSNs) have become increasingly important [2].
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WSNs consist of considerable low-power devices, such as sensors, that are capable of
sensing, computing, and exchanging data. These devices are often used to collect data from
the environment and transmit it to a central unit, known as a sink, for processing or storage.
WSNs are crucial in various applications, including health, industrial, and environmental
monitoring systems.

One of the most spread categories is the Urban domain. Here we can find some relevant
sub-categories.

• Smart Cities WSNs in this kind of application can provide real-time data from traffic
monitoring, smart car parking systems, or the current status of tunnels, bridges, and
other public infrastructure.

• Smart Home WSNs can be used to monitor and control various devices and appli-
ances in a home, such as lighting, heating, cooling, and security systems, providing
convenience and energy efficiency.

• Transportation Systems this subcategory includes the monitoring and managing
various modes of transportation, such as vehicles, trains, buses, and shipping containers.
WSNs can be used to track the location and status of transportation assets, monitor
fuel consumption, manage traffic flow, and optimize delivery routes, among other
applications.

Another sub-category of the Urban domain is for sure Structural Health Monitoring. The
next Section, as mentioned at the beginning of this chapter, is dedicated to WSNs for SHM
applications, including detailed characteristics to understand better which kind of data these
WSNs need to collect, elaborate, and communicate.

2.1.1 SHM using Wireless Sensors

The ability of structural health monitoring (SHM) employing wireless sensor networks
(WSNs) to lower installation costs has attracted study attention.

As well as the upkeep of SHM systems, it is possible to extend the life of structures and
increase public safety by using SHM systems, which have been utilized to monitor important
infrastructure, including stadiums, highrise buildings, and bridges. WSNs for SHM have a
high data-gathering rate, which presents special network design difficulties.

The process of structural health monitoring using WSNs requires the installation of a
large number of sensors throughout a structure in order to collect data about the condition of
the structure. This data is then processed to make decisions about the overall health of the
structure. Historically, one of the first WSNs successful and largest installations was on the
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Golden Gate Bridge in 2007 by a research team at the University of California in Berkeley [9].
In order to cover the length of the structure, they deployed 64 nodes reaching 46 hops from
the start to the end, achieving a bitrate of 441B/s at the 46th hop. As another important
deployment is the monitoring system of the Torre Aquila located in Trento(Italy) [10]. It is a
31-meter-high medieval tower that requires several sensors deployed so as not to disfigure it.
Here are the advantages of WSNs: a civil engineer can move the sensors many times without
expending money compared to the wired version and without ruining the structure.

Fig. 2.1 process of structural health monitoring using wireless sensor networks

Sensor and Data for SHM

The approach for SHM using WSNs is shown in Figure 2.1. Everything starts from the
module that sense and acquires data. In the next two subsections, I describe the data useful
for SHM and which sensor can detect these parameters.

Collectable Data A SHM system typically collects data on the condition of a structure,
such as cracks or changes in shape. This data can be used to assess the safety of the structure
and to determine when repairs or maintenance are necessary. Typical data includes the
temperature, humidity, light and sound. So far, the most commonly measured parameters for
structures are their acceleration and velocity. From a design and analysis point of view, these
data can be classified to explain easier which aspect can be investigated [11].

• Load The loads acting on a structure can be divided into two categories: environmental
loads and loads due to passing vehicles. Environmental loads include factors such as
wind speed and precipitation, while the weight of the vehicles themselves typically
causes loads due to passing vehicles.
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• Global Load Response The response of a structure to a given load that can be measured
throughout the entire structure is called a global load response. The most common
parameters that are measured are a structure’s acceleration and velocity.

• Local Load Response The response of a structure to a local load can only be measured
in a specific part of the structure. The measured parameters are typically strain, crack,
and tension forces.

• Environmental Factors The environment surrounding a structure can significantly
impact the structure’s condition. Environmental factors such as temperature, humidity,
and atmospheric acidity can contribute to environmental loads such as wind.

Sensor Types A specific sensor can collect the data described in section 2.1.1. As for the
data, it exists different sensor types, and the most common are described as follows [11, 12]:

• Accelerometers An accelerometer for SHM consists of a mass attached to a spring.
The mass is free to move in response to acceleration, and the spring restrains it.
The accelerometer measures the acceleration of the mass in response to the applied
acceleration. Also, a piezoelectric effect is used to detect the movement of the mass.
Spring-mass accelerometers are typically more rugged and can withstand higher
acceleration levels than piezoelectric accelerometers. They are also less sensitive
to temperature changes. However, piezoelectric accelerometers are typically more
accurate than spring-mass accelerometers [13].

Fig. 2.2 Accelerometer by Move Srl [14]

• Strain sensors Strain sensors used for SHM can be classified as piezoresistive or
embedment strain gauge based. For the piezoresistive sensors, the changes in the
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resistivity of a material caused by external strain is measured. While for embedment
strain gauge based sensors, the external strain caused changes in the gauge resistance,
which is then measured.

There are several types of strain sensors used for SHM, including optical fiber sensors,
piezoelectric sensors, and piezoresistive sensors.

– Optical fiber sensors are based on the principle of Bragg grating, in which
the external strain causes a change in the grating constant, and this change is
measured [15].

– Piezoelectric sensors are based on the piezoelectric effect, in which the external
strain causes a change in the electrical polarization of the material, and this
change is measured [13].

– Piezoresistive sensors are based on the piezoresistive effect, in which the exter-
nal strain causes a change in the resistivity of the material, and this change is
measured [16].

• Corrosion Sensors Corrosion sensors used for SHM work on the principle of monitor-
ing the corrosion of a metal by measuring the variable impedance of the metal at the
frequency of the applied ac field [17, 18].

The principle of the impedance sensor is based on the fact that the impedance of a
metal is a function of the corrosion of the metal. The impedance of metal is affected
by the presence of corrosion products on the metal surface. The impedance sensor
measures the impedance of the metal at the frequency of the applied ac field. The
sensor is able to detect the presence of corrosion products on the metal surface and
monitor the corrosion of the metal.

Damage Detection and Localization

Once the sensor collects the data, the node can aggregate it or send it to the next node or
directly to a sink node according to the measurement policy or the node’s capabilities.

Damage Detection One of the main goals of structural health monitoring is to detect
damage. This usually requires collecting sensor data that can be used to identify parameters
related to the overall health of the structure. The most common parameters used for damage
detection are modal parameters like natural frequency and mode shape. Modal parameter
estimation can be done in both the time and frequency domains [19]. Once modal parameters
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have been extracted, damage detection algorithms are used to determine if damage has
occurred.

There are many different types of damage detection algorithms. Some of the most
common include:

• Change detection: Compare modal parameters from a known healthy state to modal
parameters from a suspected damaged state. If there is a significant difference, damage
is likely present.

• Correlation-based methods: Use a correlation function to compare modal parameters
from different states. If the correlation is low, damage is likely present.

• Neural network-based methods: Use a neural network to learn the relationship
between modal parameters and damage. The neural network can then be used to
predict damage based on new modal parameter data.

As mentioned above, damage detection algorithms can be classified into two distinct
domains: time domain and frequency domain.

• Time Domain Algorithms

The time domain algorithms are based on the analysis of the time history of the signals.
The structural response is usually compared with the excitation that caused it. The
excitation is usually known, and as a result, the comparison between the excitation and
the response can provide information on the structure damage state.

A common approach to time domain analysis is to use the impulse response function
(IRF) of the structure [19]. The IRF is a linear operator that transforms a source into a
response. Once the IRF is known, the structure’s response to any arbitrary source can
be found. When the structure is damaged, the IRF changes. The changes are usually
small, but they are significant enough to be detected by the IRF.

Time domain damage detection algorithms use the changes in the IRF to detect damage.
The most common approach is to compare the structure’s response to two different
sources. The sources can be two different excitations, or they can be the same excitation
at two different times. If the structure has not changed, the two responses should be
identical. However, if the structure has changed, the two responses will be different.
The difference between the two responses can be used to detect damage.

• Frequency Domain Algorithms Frequency domain algorithms are based on the
analysis of the frequency content of the signal. The signal is usually the response
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of the structure to an excitation. The excitation is usually known, and as a result,
the comparison between the signal and the excitation can provide information on the
structure damage state [19].

The most common approach to frequency domain analysis is to use the Fourier trans-
form. The Fourier transform is a linear operator that transforms a signal into its
frequency components. Once the Fourier transform is known, the frequency content of
the signal can be found. When the structure is damaged, the Fourier transform changes.
The changes are usually small, but they are significant enough to be detected by the
transform [20].

Frequency domain damage detection algorithms use the changes in the Fourier trans-
form to detect damage. The most common approach is to compare the signal to the
excitation. If the structure has not changed, the two signals should be identical. How-
ever, if the structure has changed, the two signals will be different. The difference
between the two signals can be used to detect damage [21].

Damage Localization After damage has been detected in a structure, it is necessary to
determine its location. This process, called damage localization, requires the installation of
enough sensors to provide coverage sufficient to locate damage anywhere in the structure.
Insufficient sensor coverage can result in damage detection without localization. Commonly
used damage localization techniques are frequency-based, mode shape–based, flexibility
matrix-based, stiffness matrix-based, and support vector machine based.

• The main idea behind frequency-based damage localization is to compare the change
in the fundamental frequencies of the structure with that of the damaged structure to
localize the damage [22].

• The mode shape–based damage localization technique is based on the mode shape
change of the structure [22].

• The flexibility matrix–based damage localization technique is based on the flexibility
matrix, which is the inverse of the stiffness matrix [23].

• The stiffness matrix–based damage localization technique is based on the stiffness
matrix [24].

• Support vector machine–based damage localization technique is based on support
vector machines [25].
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SHM WSN approach

As mentioned in the section above, there are two types of sensor networks that can be used
for any sensing task. Especially for SHM, there are a lot of challenges to take into account
before designing the topology. In this section, firstly, I describe the main advantages of a
WSN compared to the wired version for SHM. Then, a full process of a WSN configuration
is presented, starting from the collection data module to the monitoring one.

Sensor Networks The selection of the specific network configuration is not obvious; for
sure, the WSN may be the easiest one for many good characteristics, but it’s hard to keep
reliable compared to the Wired. A Wired Sensor Network is formed by many nodes spread
in the scenario, connected to each other by wire or directly to a base station that gathers the
data collected by each sensor. The wire is not only used to transfer data, but also transfer
the power source. So, by the nature of this approach, the deployment time is very long and
expensive in terms of cost, and the number of sensors is limited since more space for the
wire is needed. But as advantages, we have to consider the high quality of connection since
the wire can reach high bandwidth, Data rate, and higher synchronicity. Latter is needed for
the Damage Detection and Localization shown in section 2.1.1 and is crucial for the final
data analysis.

On the opposite side, a WSN reduces the cost drastically, and the installation time is
very short since we don’t have to place a wire for every sensor module; also, it is possible
to install many nodes. For these reasons is preferred for SHM applications due to the main
requirements for Damage Detection and localization to have a minimum number of sensors
spread on the structure. The disadvantages are basically two: the lifespan is related to the
battery, so very limited in a scenario particularly challenging like SHM, and the connection
capabilities are limited by the wireless technology used [26].

Challenges in WSN for SHM Compared to regular WSNs, WSNs designed for structural
health monitoring have to tackle several distinct difficulties. These include the necessity of
gathering, manipulating, and transmitting large amounts of data, the need for densely packed
sensor nodes, and the long distance between nodes and base stations. We can find different
WSN approaches to accomplish this kind of task in the literature. Starting with a general
wireless network, it’s possible to centralize the final analysis or let the sensor pre-process
some data before sending the valuable one to the final destination. A fully centralized case
described here [27] shows the time on collecting, compressing, and sending 1min of vibration
of 6000 samples with a sampling rate of 100Hz. This system generates traffic of 667 Bps,
and the authors say that it is not scalable due to network issues. So, the direction of the
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research is to take into account the possibility of processing more data directly on the sensor
as described by Hackmann [28] in order to reduce the payload to send. In this case, with
a sampling rate of 560Hz, the authors decide to perform the process phase with a reduced
sample array, collecting processing and sending in 5s, 3.7s of vibration, and obtaining 2048
samples. Of this final time, 1.3s are used to apply Fast Fourier Transform (FFT) algorithm
for curve fitting, reducing the payload to 300Bps. Even if they pre-process data directly on
the sensor, they don’t take into account the possibility of sharing useful data between the
sensors and the sink node, and this is what Dos Santos made in his work [29]: 512 samples at
1000Hz rate for 0.5s vibrations time. The system takes 9.5s to perform FFT, peak extraction,
data collecting by the sink node, coefficient calculation, and collaborative decision. This
processing time reduces drastically, the payload to 28Bps. Of course, the trade-off of this
kind of system is related to the power calculation of the sensor itself, so in the end, a balance
between network capabilities and the sensors (including energy consumption) is needed for
SHM applications using WSNs.

2.2 Wireless Mesh Sensor Networks

As shown in the previous section, some WSN applications may produce large amounts of
data and needs sometimes a short response, which can be a heavy load on networks. Mesh
networks can be used in situations where the structure or shape of the network does not
allow each node to be within the range of its final destination, improving the scalability
and reliability of the network. Routing protocols are a crucial component of Wireless Mesh
networks (WMNs) [30] as they determine the best path for data to travel from one node to
another in the network. The choice of a routing protocol can have a significant impact on
the performance of the WMN, including factors such as network scalability, reliability, and
power consumption. In recent years, the IT industry has dramatically increased the use of
wireless devices and mobile networks. This expansion was accompanied by developing of
various routing protocols responsible for delivering data packets across the network. They
optimize the use of network resources, such as power consumption, processor time, memory,
etc., allowing for maximizing the network’s lifetime. In this section, I will describe some
advantages of using WMN topology in conjunction with WSN [31], starting to describe
WMNs, then moving on to introducing some possible cases study for Wireless Mesh Sensor
Networks (WMSN). I will end by citing some related works about WMSN.
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Fig. 2.3 Wireless Mesh Sensor Network concept

2.2.1 Wireless Mesh Networks

A Wireless Mesh Network (WMN) is a type of wireless network infrastructure that is
composed of radio nodes interconnected by wireless links. The main characteristic of
WMNs is their ability to provide strong, secure, and reliable wireless connections between
multiple nodes, enabling communication over a wide area. The nodes in the network act as
routers, relaying data from one node to another, thereby allowing data to travel over multiple
hops [32]. This feature enables WMNs to offer robust and flexible wireless connectivity
solutions, making them an attractive option for various applications, such as disaster response,
rural connectivity, and smart cities.

WMNs are used in various applications, from providing wireless access for urban areas
to providing secure wireless connectivity for enterprise networks. They are also increasingly
being used in disaster relief scenarios to provide communications networks for emergency
responders. From a technical point of view, WMNs are attractive for many reasons. WMNs
are typically more reliable than other wireless networks, like star topology, due to their
mesh topology and redundancy, allowing for communication even if some nodes are lost
or fail. Additionally, WMNs are scalable and can easily be expanded to cover a large area,
making them ideal for large-scale applications. Finally, WMNs offer lower latency than other
wireless networks and can typically support higher data rates.

Some technical key features of WMNs are described deeply as follows [33]:

• Self-healing capability: WMNs employ a self-healing mechanism that utilizes redun-
dant paths and dynamic routing protocols to automatically reroute data packets in case
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of node failure or disconnection, thus ensuring that the network remains operational
and minimizing disruption to users.

• Scalability: WMNs are designed to easily expand and accommodate new devices, as
well as increase capacity by adding new nodes to the network. This is made possible
by using mesh topology, which allows for seamless integration of new nodes without
the need for reconfiguration.

• Redundancy: WMNs utilize multiple paths for data transmission by using routing
protocols that explore multiple routes between source and destination. This increases
the reliability and availability of the network and reduces the risk of network failure.

• Multi-hop routing: WMNs employ multi-hop routing protocols, which allow data
packets to travel through multiple nodes before reaching their final destination, allowing
for efficient use of network resources. This improves overall network performance, as
well as reduces congestion.

• Support for multiple wireless standards: WMNs can support various wireless
standards, including IEEE 802.11 (Wi-Fi), IEEE 802.15 (Zigbee), and IEEE 802.16
(WiMAX), making them versatile and flexible. This allows for a wide range of devices
and communication protocols to be accommodated by the network.

• Quality of Service (QoS): WMNs are designed to support Quality of Service (QoS)
mechanisms that allow for prioritization and allocation of resources to different types
of traffic, such as real-time video or voice, to ensure that critical applications receive
the necessary bandwidth.

• Security: WMNs employ a set of security measures, such as encryption and authentica-
tion, to protect against unauthorized access and data breaches. These measures include
the use of encryption to protect data as it travels over the network and authentication to
ensure that only authorized devices can access the network.

Routing Protocols

In WMNs, several types of routing protocols can efficiently route data between nodes
efficiently [34].

Reactive routing protocols, such as Ad-hoc On-demand Distance Vector (AODV) and
Dynamic Source Routing (DSR), are used to establish routes on an as-needed basis. These
protocols work by flooding the network with route requests when a node needs to send data
to a destination it does not have a route. A route is established only when a node that has



16 State of Art

a route to the destination responds to the request. These protocols are highly adaptive to
changes in the network topology, but they can introduce delays in route establishment and
may generate high control overhead in highly dynamic networks. AODV is a reactive routing
protocol that is used to find routes between nodes in an ad hoc network. It uses a combination
of both distance vector and link state routing techniques. DSR is another reactive routing
protocol which is used to find routes in wireless ad-hoc networks. DSR uses source routing,
which means that the sender of a packet specifies the complete route that a packet should
follow through the network.

Proactive routing protocols, such as Destination-Sequenced Distance Vector (DSDV) and
Optimized Link State Routing (OLSR), maintain a table of all destinations in the network
by periodically distributing routing table updates to all nodes. These protocols are able to
route data between nodes as routes are already established quickly, but they can generate
high control overhead and may not adapt well to changes in the network topology. DSDV is
a proactive routing protocol that is used to find routes between nodes in an ad-hoc network.
DSDV uses a distance vector routing technique and is based on Bellman-Ford algorithm.
OLSR is another proactive routing protocol that is used to find routes in wireless ad-hoc
networks. It uses a link state routing technique and is based on the shortest path first
algorithm.

Hybrid routing protocols, such as Zone Routing Protocol (ZRP), combine the best of
both worlds by using a proactive scheme for local routes and a reactive scheme for remote
routes. This can reduce the control overhead of route discovery and allow for fast route
establishment. ZRP is a hybrid routing protocol that is used to find routes in wireless ad-hoc
networks. It uses a combination of both proactive and reactive routing techniques. ZRP
divides the network into smaller zones and uses proactive routing within a zone and reactive
routing between zones.

It is important to note that different routing protocols have different trade-offs, and the
choice of which protocol to use depends on the specific requirements and constraints of the
wireless mesh network. Factors such as network size, mobility, and traffic patterns should be
taken into consideration when selecting a routing protocol for a wireless mesh network.

Routing metrics

In wireless mesh networks (WMNs), routing metrics are used to determine the best path for
data to travel from a source node to a destination [35]. The most commonly used metric is
the hop count, which selects the shortest path based on the number of nodes between the
source and destination. However, this metric has been recognized as a limitation in WMNs
as it can result in congested paths. To address this limitation, researchers have begun using
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quality-aware metrics, which take into account factors such as link loss ratio and transmission
rate. One example of this is the expected transmission count (ETX) metric, which estimates
the number of transmissions required for successful data delivery. Nonetheless, it does not
consider bandwidth, packet size, or link interference. Another metric, expected transmission
time (ETT), considers packet size and link bandwidth but not load or link interference. An
alternative, interference and channel switching (MIC), is topology-dependent and selects
paths with the least number of nodes that share the wireless channel; however, it does not
indicate if the interfering node has data to transmit. Another factor that is taken into account
is the transmission rate, there are several widely adopted algorithms that help in controlling
the transmission rate, such as automatic rate fallback (ARF) or adaptive ARF, and recently
developed rate adaptation algorithm based on reinforcement learning (RARE). The choice
of which metric to use depends on the specific requirements and constraints of the wireless
mesh network.

2.2.2 Usage of WMN with WSN

In section 2.2 I introduced how WMNs can enhance WSNs. At this point, using a fully
connected network opens new possible use cases. Overall, WMNs are an increasingly popular
technology that can be used for a variety of purposes, such as monitoring and control in
industrial and transportation networks, monitoring and security in extreme environments,
and surveillance in public spaces. Furthermore, WMN can provide reliable communications,
accurate data collection, and real-time control systems, making it a powerful tool for many
applications[3].

• Smart Home
The implementation of Internet of Things in the home environment brings with it a
variety of benefits. Smart lights, TVs, and robotic vacuum cleaners are some of the
products already available on the market. However, making a home ’smart’ requires
more than just connecting an existing device to Wi-Fi. Wireless sensors and controllers
must be placed in the room, on pipes, and even on the floors and walls to collect and
transmit data. This data should be primarily processed at home, as this reduces the
amount of data traveling across the external network and helps protect privacy. In this
situation, a WMSN topology is ideal for creating a smart home environment, as it
allows for the installation of a gateway with a dedicated operating system (OS). This
OS can be used to manage better and deliver the data, whilst also allowing for local
processing, reducing the strain on the bandwidth. The use of WMSN also supports
the development of home automation applications. These can be used to control
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lighting, heating and ventilation, as well as provide the ability to monitor and control
appliances and other devices in the home. WMSN can also be used to create an efficient
and secure home network, allowing multiple devices to connect to the network with
minimal interference and latency[36, 37].

Fig. 2.4 Smart Home

• Smart City
WMSN can be implemented in smart cities to create a Smart Vehicle Infrastructure
that can detect and prevent road accidents. The WMSN will consist of anisotropic
magnetoresistance circuits for vehicle detection, radio modules, rechargeable lithium-
ion batteries, and a WMSN coordinator. When a vehicle passes over a wireless node,
the sensor device records the detection, marks the time stamp, and sends the record to
the WMSN coordinator. This information data can be transmitted over long distances
with less delay, creating a large area of coverage. The Smart Vehicle Infrastructure will
also include a Vehicle Adhoc Network (VANET). This network will have randomly
organized nodes that are mobile, with travel speeds of up to 120 km/h. The Roadside
Infrastructure Elements (RIE) of the network will be stationary and connected to other
objects in the wireless sensor mesh network. When a road accident is detected, the car
stop action is initiated for the approaching vehicle, and a message is sent to the RIE to
prompt the departure of emergency vehicles[3, 38].

• Large-Area Monitoring
WMN has been gaining traction in recent years for its superior features such as
high-speed deployment, flexible structure, high bandwidth, NLOS transmission and
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reliability, and their ability to connect to the Internet, Wi-Fi LAN, PSTN, and other
networks. This technology has many advantages in the industry of electric power,
healthcare, construction, logistics, Industry 4.0, and more. In order to implement
control and transfer of sensor information in a large industrial facility, a wireless mesh
sensor network combining sensing, distributed information processing, integrated
computing and reliable communication technologies are created. This network allows
for accurate data collection to ensure precision and high status in personalized or small-
sized products. The goal is to coordinate the perception, collection, and processing of
information about perceived objects in the network coverage area. This information can
be used to track and monitor the status of equipment and the environment and to create
real-time control systems. WMN can also be used for the purpose of monitoring and
control in transportation networks. Here, WMN can be used to optimize the efficiency
of transport and reduce the cost of operations by integrating the transportation network.
Additionally, WMN can be used for the purpose of monitoring and security in extreme
environments, such as the hazardous environment. Here, WMN can be used to provide
reliable communication and monitoring of personnel and equipment. Finally, WMN
can be used for the purpose of surveillance in public spaces, such as airports and
stadiums. Here, WMN can be used to monitor areas of interest, detect suspicious
activities and take appropriate action[39].

The introduction of mesh capability to traditional WSNs has a significant effect on the
commercial expansion of this technology and provides new chances for applications or
markets such as situational awareness and locating assets, safeguarding firefighting activities,
streaming media services, or monitoring environmental security. In order to accomplish
this interconnection objective, certain essential needs must be taken into account during the
design phase of a WMSN, which impact the performance of a WMSN; these can be outlined
as follows.

• Energy Management
The energy management policy and energy efficiency design is essential for the design
of WMSN networks, and it is a significant issue. Typically, power for the devices is
supplied by AA/AAA batteries, which reduces the lifetime of the elements during
continuous operations. In some cases, solar or wind energy sources are too costly
or impractical to use. This is especially true in large-scale mesh networks, where
the number of hops between source and destination can be very large, and thus the
power needed for data transmission/retransmission may reduce the network’s lifetime.
Power management mechanisms can address these problems by decreasing power
consumption by turning off certain components of a node, such as a processor or radio
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module. Other considerations, such as addressing schemes, routing procedures, or
security, should also be taken into account to prevent overloading the nodes, which
will increase the energy requirement.

• Link Reliability
Ensuring that there is a reliable connection between the source and destination nodes
throughout the application’s operation is a vital factor in the design of WMSN networks.
The mesh topology approach can provide dependable connectivity as it offers multiple
paths to link source-destination pairs. This allows for alternative paths to be used
in the event of, for instance, a dead intermediary node. Additionally, the need for
reliable communication can be addressed by increasing the number of nodes in the
restricted area, thus leading to more redundancy in the path. This offers more reliable
connectivity to all of the nodes in the particular area as they would have more neighbors
in the coverage region.

• Robustiness
WMSNs must possess the capability of being flexible, robust, and self-healing in
order to effectively address issues such as changes in the network topology due
to sudden node appearance and disappearance or to manage hostile and dynamic
environment conditions or radio interference. Radio interference is often caused by
external radio waves from other wireless technologies, such as Wi-Fi devices, which
use the same transmission medium as WMSNs and also operate within the same
frequency range. Therefore, in order to guarantee the redundancy of network routes
and the implementation of effective mechanisms for mitigating the effects of external
interference, WMSNs need to be able to maintain these properties.

• Scalability
The requirement of scalability is becoming increasingly crucial to guarantee reliable
communication, robustness, and efficient power consumption as the number of devices
increases and the traditional WSNs expand to include hundreds of battery-powered
network elements. Therefore, it is important to ensure that network performance does
not degrade with the expansion of the WMSN

• Interoperability
To ensure compatibility and interoperability across heterogeneous networks, including
various wireless/wired technologies, WMSN protocols must be able to interoperate
multiple networks without significantly increasing the complexity of software and
hardware components.
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• Self-Organization
The most attractive aspect of a WMSN network for end-users is the minimal or no
effort required to maintain it. However, for developers, self-organization is not a simple
task. In order for these nodes to autonomously form a mesh network topology, they
must be equipped with efficient hardware and software modules, which may result in a
significant trade-off in terms of energy efficiency.

• End-To-End Reliability
Ensuring that data is correctly delivered to its intended destination is essential. As
stated before, the reliability of communication channels can be increased by adding
more nodes to the service area. This will help reduce the rate of lost messages in
the WMSN that can be caused by fading due to a broken connection in a wireless
environment. Additionally, it is important to note that there are applications, such
as personal health monitoring or the exact location of assets, that require transport-
level services or notifications of significant events, such as the detection of intruders in
secure areas. Thus, utilizing methods that prioritize data can also enhance the reliability
of the overall network.

• Mobility Support
In certain applications, such as large networks, it may be beneficial to ensure transmis-
sion latency and ensure data delivery from sources to recipients by moving receivers
to different strategic points, even though many WSN or WMSN solutions are usually
designed for static devices that remain in their original destinations.

2.2.3 WMN Technologies

Since one of the main aspects of this thesis involves Mesh networks as network topology,
it is important to spend more words on the possible technologies able to do that. In the
market, there are a lot of them specifically created for a task to accomplish the requirements
discussed in 2.2.2. It is sometimes necessary to extend a standard in order to create the mesh
system itself or maybe create a proprietary one from scratch. In this section, I want to cite
ZigBee, DigiMesh, and Bluetooth Mesh as the most interesting technologies for WSNs used
in this thesis.

ZigBee

Zigbee, named after the zigzagging pattern of honey bees between flowers, is a widely used
Wireless Sensor Network standard with low power, low data rate, low cost, and short time
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delay properties, making it easy to develop and deploy. It provides strong security and reliable
data[40]. The ZigBee Alliance, consisting of hundreds of members such as Ember, Freescale,
Chipcon, Invensys, Mitsubishi, CompXs, AMI Semiconductors, and ENQ Semiconductors,
is the developer of the ZigBee protocol. ZigBee and IEEE 802.15.4 are distinct; ZigBee is a
proprietary network protocol created by the ZigBee Alliance, which utilizes the transport
services of the IEEE 802.15.4 network specification. It is analogous to TCP/IP using IEEE
802.11b network specification. The ZigBee Alliance is responsible for defining the network,
security, and application layers, while IEEE 802.15.4 is responsible for the physical and
media access control layers of LR-WPAN. It can reach up to 150 meters outdoors thanks to
Direct Sequence Spread Spectrum (DSSS) technique consuming less power than Frequency
Hopping Spread Spectrum (FHSS). ZigBee frequency bands are 868MHz (Europe), 915MHz
(North America and Australia), and 2.4Ghz (worldwide), reaching up to 20kbps, 40kbps, and
250kbps data rates, respectively. As logical roles in a ZigBee network, we need a Coordinator,
Routers, and of course, End nodes:

• A Coordinator is the network’s root and can be the bridge of multiple networks. Takes
care to initialize the network and choose the radio frequency channel, network identifier,
and other operating parameters.

• Routers are the intermediate nodes of a ZigBee network. They can relay data from one
node to the others.

• End devices are the most basic device in a ZigBee network. They can communicate
only with Routers or the Coordinator, and since they are not used frequently, they can
go into sleep mode by design.

All the possible topologies using the roles described above with AODV as the routing
algorithm are:

• Star Topology: One coordinator and many End Devices connected to it directly. In this
case, ZigBee uses a master-slave model

• Cluster Tree Topology: sharing some aspects with the Star version, but in this case,
some of them can create a chain formation in order to expand the size of the network.

• Mesh topology: Each node can communicate with others if they are routers or the
coordinator and in wireless range space. End devices are connected to them as they are
the outline devices of the network.
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Fig. 2.5 ZigBee Topologies

XBee DigiMesh

XBee DigiMesh is a proprietary protocol made by Digi International over the IEEE 802.15.4
network specification as the ZigBee. Works on 900Mhz and 2.4Ghz frequency bands using
FHSS and DSSS, respectively [41].

This protocol is used by all of the DigiMesh devices and implements characteristics as
follows:

• self-healing system since any node can join or leave the network at any moment

• all nodes are equals so there is no father-son relationships

• Silent protocol for routing heading, a custom extension of Ad hoc On-Demand Vector
Routing (AODV)

• Route discovery without keeping a route map but discovered when they are needed

• Selective ACKs for data transmission reliability

• Sleep Modes: for low energy consumption modes using synchronization mechanisms
to wake up simultaneously.

By default, as all the nodes assume the same role, it creates a mesh topology. It is also
possible to create a Star topology activating the "Waspmote" on each edge node: basically,
force the node to communicate through only one Xbee Device (gateway in this case).

As mentioned above, the routing algorithm uses a reactive method derived from AODV
in conjunction with an associative routing table to map the destination node’s addresses
for the next hop. A Route Discovery Process is used when a route fails or doesn’t exist
(thanks to the ack system). This process broadcasts a Route Request (RREQ), and any node



24 State of Art

that is not the final destination receives this message is called an intermediate node. The
intermediate nodes can drop the RREQ or forward if it has better route information, updating
the info on the request and then broadcasting again. Once the destination node receives an
RREQ, it unicasts a route reply(RREP) back to the source node using the path saved on the
RREQ. This can happen many times so that the source can select the best route based on the
round-trip quality.

Bluetooth Mesh

Bluetooth Mesh is a software standard built on Bluetooth Low Energy (BLE). The first version
was released in 2017, enabling a mesh mechanism without changing the hardware 2.6. This
opens the possibility of connecting every device already equipped with at least a Bluetooth
5.0 Module in a mesh topology, like smartphones, headsets, wearables, smart cams, etc.
Based on BLE, it uses 2.4GHz and different payload sizes depending on the network topology
in use: for mesh, it is 29 bytes [8, 42].

Internally, a node can assume different roles depending on the complexity of the tasks
and can possess any of the following four features:

• Low-Power Feature Nodes that are limited in terms of power can utilize the low-power
feature to minimize the time their radio is on, thus saving power. Low-power nodes
(LPNs) work together with their companion nodes.

• Friend Feature Nodes with no limitations on the power supply are ideal for functioning
as friend nodes. Such friend nodes are responsible for preserving and guarding
messages and security updates meant for LPNs; when requested by an LPN, the friend
node can provide the required data.

• Relay Feature Relay nodes act as transmitters, taking in messages and then sending
them out to other nodes, thus allowing for a larger communication network. The
capabilities of a node in terms of power and computing ability will determine how well
it can perform this function.

• proxy Feature Proxy nodes facilitate the transmission and receipt of mesh messages
between GATT and Bluetooth mesh nodes. This role necessitates a reliable power
source and adequate computing power.

Element A single node can handle independent tasks like turning on light and reading
temperature from a sensor called Elements. At least one default element must be implemented
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on a Bluetooth mesh node, and many elements are possible. Each element has a unique
address, enabling unicast on each of them if needed.

Models and States A node’s functionality and behavior are determined and put into
practice by models. Models exist within elements, and elements must include at least one
model. Models define and carry out the functionality and behavior of a node, and states
outline the condition of elements. This is applicable regardless of whether the nodes are
connected on a factory floor, hotel, office building, or business campus.

Bound states refer to when a change in one state affects another state. A common example
is the connection between level states and On/Off states. For instance, when the level changes
from 0 to 1, the On/Off state automatically transitions from off to on. Bluetooth SIG-adopted
models are identified by 16-bit codes, while vendor models are identified by 32-bit codes
(16-bit Bluetooth-assigned company identifier and a 16-bit vendor-assigned model identifier).
This ensures each model is uniquely identifiable. Bluetooth mesh networks communicate via
a client-server architecture, where the server’s purpose is to expose the states of an element.
A basic state is a binary switch, which is either on or off. A Generic On/Off Server Model
contains the state of the switch, and a Generic On/Off Client Model is used to control the
Server Model by sending messages. This allows the client to turn the light on or off.

Model Types In the end, the client-server architecture defines 3 types of models:

• Server Model defines the element’s behavior along specific messages

• Client Model defines the messages used as requests to change / read states of a server

• Control Model is a combination of Server Models / Client Models on the same node
plus control logic to coordinate interactions between them.

Addresses As mentioned above, each element has its own address. In a Bluetooth mesh
network, there are four types of addresses, and three of them are used for messaging:

• Unassigned Address Elements that have not been set up with a specific address have
an unassigned address, meaning they cannot be used for messaging purposes since
they do not have a distinctive address.

• Unicast Address When provisioning, a provisioner assigns a unique address to every
element in a node that will be used throughout the node’s lifetime on the network.
Unicast addresses may be seen in the source and/or destination address of a message.
Messages sent to a unicast address are only received and acted upon by one element.
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Fig. 2.6 BLE Mesh Architecture.[43]

• Virtual Address Virtual addresses are associated with a unique 128-bit Label UUID,
which can be used to publish or subscribe to various elements. These elements can
originate from a single node or multiple nodes.

• Group Address Group addresses are another type of multicast address found in
Bluetooth mesh networking. There are two types of group addresses representing
multiple elements from one or more nodes: static and dynamic. Static group addresses
are pre-defined and cannot be changed, while dynamic group addresses are assigned on
the fly by the network and can change. Group addresses can be used to send messages
to multiple nodes or elements at the same time, like "all proxy nodes" or "all friends
nodes".

2.3 UAV-aided sensor networks

UAV-aided systems are systems that utilize unmanned aerial vehicles (UAVs) to assist in the
completion of tasks. UAVs can be used to gather data on the environment, such as images or
video, as well as to provide coverage for areas that are difficult to access by traditional ground
vehicles. Additionally, UAVs can also be used for surveillance and tracking, providing an
extra layer of security. UAVs can also be used to deliver packages or to provide remote
medical assistance, making them versatile technology for various fields.

UAV-aided wireless sensor networks are a new technology that combines the advantages
of both UAVs and wireless sensor networks. UAVs can extend the range of a wireless sensor
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Fig. 2.7 UAV-aided Wireless Mesh Sensor Network

network, enabling sensors to be placed in areas that would otherwise be difficult or impossible
to access. UAVs can also be used to increase the speed of data transmission, enabling data to
be collected more quickly. They can also be used to monitor a wide area, allowing for more
comprehensive monitoring than is possible with a single wireless sensor. In addition, UAVs
can provide additional power to wireless sensor nodes, allowing them to operate for longer
periods of time and in more remote locations. Finally, UAVs can provide a secure platform
for data exchange, ensuring that data is not intercepted or tampered with.

In the literature, is possible to find theoretical works such as protocol simulations and
path planning over the WSNs, as presented in the following, but lack documented real use
cases regarding drone-sensor communication, an important aspect of this research work.

2.3.1 UAV-Sensor protocols

Talking about UAV-aided WSN, an important aspect to consider is certainly the technology
behind the UAV-Sensor communication. This kind of communication can be managed by
using well-known wireless technologies such as WiFi, ZigBee [44], and LoRa [45], but
they are not designed to be power efficient enough for this kind of application. Since at
least the drone involved in the communication has a limited lifespan caused by the battery,
a different approach is needed for this kind of transmission. Researchers are investigating
ways to reduce the energy consumption of the media access control (MAC) layer of the
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communication stack. This includes optimizing the transmission power and data rate, as well
as investigating energy-efficient channel access and data scheduling algorithms. Regarding
the MAC protocols, they are largely surveyed by Poudel et al. [46] and explain in detail which
ones are designed for specific QoS. For example, PESC[47], CSMA/CA-based cooperative
relay and heuristic algorithm [48], and AD-PS MAC[49] focus on the energy aspect;
PCWAS [50] and HP-MAC [51] focus on low-delay transmissions.

2.3.2 Energy Management

Many works regarding UAV-aided power management for WSN are in the literature. It covers
the possibility of using UAVs to recharge each sensor using wireless energy harvesting [52]
or improving the communication aspect [53], using them as Data Mules with optimal path
planning considering the environment. In [54], the authors studied how hilly or mountainous
areas are difficult to build and maintain for infrastructure-less WSNs, finding optimal altitude
transmission for each cluster deployed on the scenario to avoid lossy communication and
then extra power consumption. Since the UAVs have limited energy, each sensor can assist
it in preparing useful data before the collecting phase. Bin Liu et al. [55] investigates the
possibility of changing the transmission mode between waiting for the UAV, conventional
sink node transmission, or uploading data to UAV when possible within a time tolerance.
This kind of approach aims to guarantee data delivery and, at the same time, save energy on
both the sensor node and UAVs.

2.3.3 Data Collection

The integration of unmanned aerial vehicles (UAVs) with wireless sensor networks (WSNs)
has the potential to improve data collection and overall network performance significantly.
UAVs bring a unique advantage to WSNs by enabling data collection from various locations
within the network, providing a more comprehensive and accurate picture of the monitored
environment.

Haider et al. [56] demonstrated how UAVs can improve WSN data collection through
effective path planning. By dividing the environment into cells and creating multiple clusters
of nodes, the UAV can efficiently collect data from each cluster, allowing the nodes to focus
on their primary tasks without being burdened by communication-related issues.

Juan Liu et al. [57] tackled the age-optimal data collection problem for UAV-aided WSNs.
They proposed two optimization problems to minimize the Age of Information (AoI) at each
sensor node, which is calculated based on the data uploading time and the UAV’s flight
time after leaving the sensor area. Through simulations, they designed and evaluated a
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strategy to achieve better AoI performance, which is crucial for real-time monitoring and
decision-making applications.

Chixiong Mao et al. [58] expanded on the work of Juan Liu et al. [57] by introducing the
use of multiple UAVs to address the same problem. They considered power consumption as
an additional factor and proposed a solution that minimizes the AoI while reducing the energy
consumption of the network. The use of multiple UAVs provides even more opportunities for
improving data collection and network performance.

Overall, the integration of UAVs with WSNs brings new challenges and opportunities for
research and is expected to continue evolving to meet the demands of various monitoring
and control applications.





Chapter 3

Objectives and Methodologies

The chapter introduces scenarios and macro-objectives of the thesis, which are investigated
in detail in the following chapters. First, in Section 3.1, the definition and components of
Hybrid Wireless Mesh Sensor Networks (H-WMSN) are provided. Scenario assumptions
and requirements are briefly discussed in Section 3.2. Finally, research objectives and
methodologies are presented in Sections 3.3 and 3.4, respectively.

3.1 Scenario

In Section 2, we introduced UAV-aided WSNs as special instance of hybrid aerial-ground
networks, in which the mobile nodes can support effective and energy-efficient data collection
in harsh environments. This is the case with IoT monitoring systems which must be deployed
in rural areas with limited wireless coverage and no access to stable/wired power suppliers.

Although the thesis addresses general research problems of IoT monitoring systems,
in the following, we refer to a specific application related to Structural Health Monitoring
(SHM) of critical infrastructures (e.g., a bridge) only as an example of a target scenario that
meets requirements and assumptions of our work. Figure 3.1 shows the overall scenario. We
assume that multiple sensor nodes (denoted as red squares in the Figure) have been deployed
at specific locations of the target structure, in this case, a bridge. Without loss of generality,
we also assume that the WSN nodes will sense the environment and offload their data to a
Sink Node (denoted as blue circles in Figure), which works as a network data aggregator.
Multiple paths may be available between a Sensor and a Sink node, hence creating a ground
Wireless Mesh Sensor Network (WMSN). As pointed out in Section 2, several Machine to
Machine (M2M) technologies can be used to build such topology. At the same time, the
Sink Node may not be equipped with reliable or stable connections to a remote unit. For
this reason, Unmanned Aerial Nodes (UAVs) can be deployed as data mules, i.e., hovering
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Fig. 3.1 Scenario investigated in this thesis.

over the Sink Node and collecting data from the environment. In the presence of multiple
UAVs, the latter can create a swarm and build an aerial WMSN, depicted through green
lines in Figure 3.1. In this thesis, we focus on the possibility of integrating the aerial and
ground WMSNs through specific UAV-to-Sink links. We refer to such integrated network
infrastructure as Hybrid WMSNs (H-WMSN) in the rest of the thesis. In the following, we
detail the characteristics of nodes that build the H-WMSN:

• Sensor Node. This represents a computational unit able to sense the environment,
process the sensing data, and communicate with the Sink and other peers via short-
range M2M technologies. In the specific SHM use case, the sensor nodes could measure
the overall vibration of the structure through transducers such as accelerometers, strain
gauges, and inclinometers. The type of sensing data is out of scope of the thesis, which
is application-agnostic. Sensor nodes can also serve as relays in order to forward the
traffic from other peers and establish multi-hop connectivity within the ground WMSN.

• Sink Node. Sensor nodes are clustered, as depicted in Figure 3.1. Each cluster has
a Sink Node collecting the data from sensor nodes of relevance. We assume each
Sink node to be provided with one or multiple M2M communication technologies in
order to extend the capabilities of the data offloading process. The supported M2M
communication technologies can be short or long-range, red and blue lines in Figure,
and each of them may support different Quality of Service (QoS) characteristics in
terms of throughput, packet delivery rate, and latency.
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• Aerial Nodes with autonomous mobility can fly over the scenarios at periodic intervals
and hover over the Sink Nodes. Based on the requirements of the IoT monitoring
application, they can be provided with sensing capabilities (e.g., camera). As depicted
in the Figure, multiple UAVs may be deployed, especially on large-scale scenarios, and
create a fully connected aerial WMSN. In addition, each UAV may be equipped with
multiple M2M technologies to communicate with ground devices (i.e., Sink nodes) and
with other peers. In this thesis, we investigate two possible use cases of aerial nodes. In
the first case (data muling), the UAVs serve as mobile data collectors; hence they must
be able to establish a reliable communication link with the ground WMSN and gather
the sensing data from the Sink Node. In the second case (self-healing WSN), the UAVs
must be able to temporarily replace the operations of faulty ground devices, being a
Sensor and Sink Node, and support the data acquisition in such extreme situations.
The two use cases can be considered complementary (i.e., one UAV acts as a data mule
while the other replaces the operations of a faulty sensor/sink node).

3.2 Requirements and Challenges

Generically speaking, the deployment of H-WMSNs to support IoT monitoring systems
is highly challenging and should take into account a wide range of requirements, which
depend on the specific application in use. For instance, a SHM application may introduce
strict requirements regarding network throughput since sensor nodes typically involved (e.g.,
accelerometers) may acquire data at high frequency. This is not the case with some proposed
IoT-based smart agriculture applications that focus on maximizing the energy efficiency
of battery-powered devices [59]. In this thesis, we focus on four main requirements of
H-WMSNs:

• Device Heterogeneity. The current IoT landscape is characterized by extreme hard-
ware/software fragmentation, which poses formidable interoperability issues. If we
limit our attention to the radio communication, several M2M communications for
WMSN are available on the market, each characterized by its protocol stacks and
network performance. Existing UAV-aided systems rely on the assumption that both
the network and aerial segments are based on the same M2M stack, limiting the poten-
tial and applicability of such systems. Vice versa, we can envision a more ambitious
scenario in which different providers manage ground and aerial segments, and their
integration has not been designed at design time. Similarly, we may envision generic
UAV swarms with drones provided by different manufacturers and mapped to different
M2M technologies.
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• Adaptive QoS management. As mentioned before, IoT monitoring applications may
have different QoS requirements. At the same time, in H-WMSN, static and mobile
nodes may experience time-varying network performance on the air-to-air and air-
to-ground links based on the scenario characteristics (e.g., propagation conditions)
and on their current positions. The problem may become even more challenging in
multi-radio environments, with additional parameters to be tuned. In our work, we
address the problem of dynamic reconfiguration of H-WMSN nodes so that per-link
QoS requirements are continuously monitored and met. This is addressed through the
dynamic selection of M2M stack on each multi-radio link described in Chapter 6.

• Reliability. In IoT monitoring applications, Sensor or Sink nodes can fail for many
reasons, including system errors or battery depletion. Also, in ground WMSN, nodes
may also serve as relays and enable multi-hop communication towards the Sink. Hence,
a single device failure may lead to network fragmentation and raise harmful issues
such as communication disruptions, data loss, and reduced efficiency. Therefore, the
design of a reliable and robust system capable of handling device failures is crucial.
In this thesis, we investigate the usage of UAVs as recovery units able to temporarily
replace the operations of ground devices till the intervention of a manual operators. Of
course, such solution poses additional research challenges, such as where to place the
recovery UAVs and how to detect the failure of ground devices in an effective manner.

• Scalability. IoT monitoring applications may include large sets of networked nodes
sensing a wide scenarios. Thanks to their inner characteristics, such as multi-path
support, WMSN has been designed to scale at least better than traditional, single-
path/single-sink approaches. Still, we have to consider that new devices, on the ground
or aerial network segments, may be dynamically added and that each device may offer
different capabilities in terms of sensing (e.g., a novel sensor) or computational power.
Hence, we believe that to unlock full network scalability, the existing routing strategies
must be coupled with effective discovery mechanisms enabling each node to be aware
of the services/functionalities offered by other peers. In Chapter 6, we demonstrate
how such discovery may ease the federation of UAVs collaborating on a learning task.

The aforementioned requirements introduce several research challenges which must be
considered at design time. In the thesis, we address four main challenges of H-WMSNs:

• Interoperability. Achieving radio interoperability is a complex task. If not done
properly, the result may be a system that is difficult to manage and extend to support
additional M2M stacks. As a result, the multi-radio environment may become a
bottleneck rather than a system resource.
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• Mobility. UAVs are mobile devices; hence the performance of the links they establish
may not be stable. This creates challenges in maintaining consistent and reliable
communication and can have a significant impact on the overall system performance.

• Connectivity. Due to the nodes’ mobility and other factors, the mesh networks can
experience link failures which may lead to network partitions. The latter may impact
the system coordination and -in more severe cases- determine application disruption.

• Power Constraints. UAVs are typically powered by batteries, which have limited
energy and lifetime, requiring careful power management to ensure the network’s
operational efficiency and reliability.

3.3 Research Objectives

The thesis aims to develop solutions for H-WMSN, considering the four requirements
mentioned in the previous Section. Specifically, separate research contributions have been
proposed for each of the three layers composing the H-WMSN:

1. Ground WMSN. The possibility of building ground WMSN has been test-fielded.
After a preliminary literary review, during which different WMSN stacks have been
analyzed and compared, we focused on the emerging BLE Mesh standard, which
allows to deploy of multi-hop, short-range WSN on top of the popular BLE stack.
Such technology envisions low-power performance and native multi-path routing
support; hence it may fit well the requirements of IoT monitoring applications in harsh
environments, such as SHM of remote structures. The goal of our research study
(described in Chapter 4) was to characterize the profiles of IoT systems supported by
the BLE Mesh stack, as well as test-field its usage for air-to-ground communication
links.

2. Aerial WMSN. As second contribution of the thesis, we restricted our attention to
the aerial WMSN collecting data from an isolated ground WMSN. Specifically, we
addressed the problem of how to deploy the aerial nodes so that they are able to
maximize the effectiveness of the data collection in terms of ground nodes connected
and in QoS of the UAV-to-UAV and UAV-to-Sink links while maintaining the aerial
mesh connectivity. A novel swarm mobility algorithm (called ECLIPSE chapter 5) was
proposed and implemented: differently from existing solutions, ECLIPSE supports
distributed swarm management relying on radio signal localization only (no GPS).
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3. Ground/Aerial WMSN integration. Finally, we investigated hybrid scenarios with air-
to-ground communication links among the two network meshes. Here, we investigated
effective data collection strategies in the presence of multi-radio UAVs/Sink nodes.
In addition, we addressed the reliability requirement by enabling the faulty node
replacement.

For the second and third research objectives, a major contribution of thesis consisted
in the design and implementation of the Uhura framework. The latter is a novel software
framework that facilitates communication both within an aerial swarm and between the
swarm and the ground devices, regardless of the multiple M2M communication technologies
used. It includes a core module, known as the Uhura Core, which dynamically selects the
most suitable adapter for each link based on the QoS needs of the application. The Uhura
Adapter provides an abstraction layer for managing multiple M2M communication stacks.
The Uhura framework has been extended with additional services, supporting scalability (see
Section 6.6) and reliability requirements (see Section 6.5).

3.4 Methodologies

To achieve the objectives described above, several research methodologies have been used,
including:

• Literature review: To characterize the current state of the art of mesh and UAV-
aided networking and identify the main challenges and requirements for the proposed
scenario.

• Software design: To develop the Uhura Framework that addresses the challenges and
requirements identified in the literature review.

• Simulation and emulation: To evaluate the performance of components of the proposed
framework using simulation tools such as OMNet++ 1.

• Field experiments: To validate the proposed framework in a real-world scenario, such
as a bridge structure, and to collect data on energy consumption, latency, throughput.

• Data analysis: To analyze the data collected from simulations, emulations, and field
experiments and draw conclusions on the performance of the proposed framework.

1https://omnetpp.org/



Chapter 4

Ground Mesh Networking

In Chapter 3, we identified the first objective of this thesis as the development of ground
WMSN solutions to support IoT monitoring applications in harsh environments. To achieve
this goal, we conducted a literature review and focused on the BLE Mesh standard as a
potential solution. In this chapter, we describe our research study on characterizing the
profiles of IoT systems supported by the BLE Mesh stack and testing its usage for air-to-
ground communication links. We also discuss our findings and the potential applications of
this technology for ground WMSN.

Introduction

In this project, we explore the use of Bluetooth Mesh technology for monitoring indoor
environments and mobile device localization. The focus of this study is on the BLE Mesh
standard, which is promoted by the Bluetooth Special Interest Group (SIG) [60]. BLE Mesh
is not a new wireless communication technology but rather a networking solution that enables
multi-hop communication and routing on top of the legacy BLE stack. The advantages
of BLE Mesh over other WPAN solutions, such as LoRa and Sigfox [61, 62], Zigbee and
6LoWPAN [63], include the ability to seamlessly integrate legacy BLE devices into the mesh
network [64, 65] and the ability to exploit BLE advertisements for device localization and
location-aware networking.

The research approach for this study is divided into three stages. The first stage involves
designing an IoT-based monitoring system using BLE Mesh and a layered software stack
running on an Edge Processing Unit (EPU). The second stage involves implementing the
system in an indoor, single-floor test bed using the ESP-BLE-MESH framework by Espres-
sif [66] and evaluating the system performance under different traffic loads and network
sizes. The final stage involves discussing the suitability of BLE Mesh for indoor navigation
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services [67] and identifying key challenges and limitations that need to be addressed to
realize its potential fully.

Additionally, previous studies have raised concerns about the performance of multi-hop
BLE Mesh networks and their ability to support IoT monitoring systems with specific Quality
of Service (QoS) requirements [68, 69]. These studies highlight the number of parameters that
need to be tuned, which can create complex trade-offs between energy efficiency and end-to-
end delay, and the interference issues on the ISM bands. Furthermore, multi-hop deployments
can suffer from broadcast problems caused by the controlled flooding mechanism, which
simplifies the routing strategy but affects scalability and throughput [70]. In this project, we
aim to provide insights into the capabilities and limitations of BLE Mesh technology for
indoor monitoring and device localization by addressing research issues such as network
scalability, traffic loads, and QoS requirements for different classes of IoT applications and
services. By using a thorough and methodical approach, we hope to contribute to a better
understanding of the potential of BLE Mesh for IoT monitoring systems and its capability to
support the growing demands of IoT applications.

Fig. 4.1 The BLE Mesh-based monitoring system with the layered software suite installed
on the EPU device (on the right) and the sequence messages involved in the localization
procedure (on the left).

In addition to the above-mentioned research approach, we also consider the impact
of different network sizes, densities, and traffic loads on the performance of BLE Mesh
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networks. This will allow me to determine the scalability of the technology and its ability
to support a large number of devices and data traffic. Furthermore, we also investigate the
impact of different IoT application profiles and their corresponding QoS requirements on
the BLE Mesh network. This will allow me to identify the classes of IoT applications and
services that BLE Mesh can support and the level of QoS that can be achieved.

Additionally, we also consider the impact of different network topologies and deployment
scenarios on the performance of BLE Mesh networks. This includes the impact of different
node densities, node positions, and the number of hops on the overall performance of the
network. Furthermore, we also investigate the impact of different routing strategies on the
performance of BLE Mesh networks. This will allow me to determine the most suitable
routing strategy for different deployment scenarios and IoT applications.

Overall, this project aims to provide a comprehensive evaluation of the performance
and suitability of BLE Mesh technology for IoT monitoring systems and indoor navigation
services. By investigating the key research issues mentioned above, we hope to provide
valuable insights into the capabilities and limitations of BLE Mesh technology and contribute
to a better understanding of the potential of BLE Mesh for IoT monitoring systems and its
capability to support the growing demands of IoT applications.

4.1 System Design

Without loss of generality, we consider a multi-room, single-floor indoor scenario like the
one depicted in Figure 4.1. The goal of this study is to investigate the design and deployment
of BLE Mesh networking solutions with twofold functionalities: (i) scenario monitoring,
i.e. the WSN is able to collect environmental data from BLE sensors spread out all over
the scenario; (ii) human monitoring, i.e. the WSN enables room-level indoor localization
of BLE devices moving within the same building. A possible use case is represented by an
industrial environment, where there is a need of monitoring the state of health of critical
equipment (e.g. the temperature of a tank) as well as of tracking the access of workers to the
restricted area, for security or safety reasons. For this purpose, in Section 4.2, we assess the
characteristics of IoT monitoring applications that can be supported by the BLE Mesh, by
evaluating the system performance under different traffic loads and node density.
The proposed system includes many hardware/software components. On the hardware side,
we installed N +1 BLE devices, n0, . . . ,nN , forming a connected multi-hop WSN; n0 is used
as data collector, also called Sink node in the following, and is directly connected to an
Edge Processing Unit (EPU) through a Serial cable. All the BLE devices, except for the
Sink, are equipped with multiple sensors and report their sensing data to the Sink, as further
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detailed in Section 4.1.1. On the EPU, we deployed the software stack for data processing
and analytics. More specifically, the Parser Module is in charge of filtering the messages
received from the BLE Mesh network via the Sink node. The useful data are extracted and
sent to the Monitoring Module, which includes two separate software components: (i) the
Network Monitor Module is in charge of computing the network metrics of the BLE Mesh
network as well as of extracting the application-specific features from the sensor data (e.g.
the average of temperature values); (ii) the Human Monitor Module is in charge of detecting
the presence of mobile devices, and of estimating their current positions according to the
procedure detailed in Section 4.1.2. Finally, the Data Module allows to store network and
application-related metrics and position data in a database, and to visualize them through a
Web Dashboard powered by external tools. In the following, we detail the operations of BLE
Mesh networking, and of the proposed BLE-based localization technique.

4.1.1 BLE Mesh Networking

Consider a system setup where all the BLE Mesh devices are configured as Router nodes.
We do not analyze energy efficiency issues in the paper; hence all the nodes are assumed
to be powered by current. Also, all the N nodes (Sink excluded) support the Sensor Model
and act as Servers, i.e., they hold a state related to the current sensing values, while the Sink
node acts as Client. The data collection process works as follows. We assume that the IoT
monitoring system must collect measurements from each sensor at periodic intervals. Let
Tp be the interval among consecutive sensing actions. Every Tp seconds, the EPU triggers
the Sink node, which in turns publishes a new GET request on the measure group address
(to which the other N Servers subscribed), and expects to receive N measurements from
the other devices. The received messages are then transferred to the EPU via the Serial
connection and here processed for the computation of the network metrics and for the sensor
data analytics. The setting of Tp is clearly application-dependant and strongly affects the
system performance, as further investigated in Section 4.2.

4.1.2 BLE Mesh Localization

The localization procedure through the BLE Mesh network is illustrated in the left part of
Figure 4.1. We assume that each agent moving within the environment (being a person or a
robot) is equipped with a mobile device provided with BLE connectivity and provisioned
to operate over the BLE Mesh as a Normal node. Let j indicate its unique unicast address.
We omit further details regarding the characteristics of the mobile device. Rather, we focus
on its interaction with the nodes composing the BLE Mesh network. More specifically, we
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set-up the system so that: (i) all the N + 1 Mesh nodes subscribed to the loc_req group;
(ii) the Sink node subscribed to the user_detected group. The mobile device periodically
advertises its presence by publishing a message on the loc_req channel, with TTL set to 1,
every Tpresence seconds. Let k j be the unique sequence number of the advertising message
sent by the mobile device j. The BLE Mesh nodes located in the transmitting range of the
mobile device will detect the message; however, they will not forward it because of the
TTL restriction. We denote them as Anchor nodes in Figure 4.1; since their positions are
assumed static and known, the current position of the mobile device can be inferred via
trilateration techniques further detailed in Section 4.2. Let S( j,k j) be the list of Anchor
nodes for mobile device j sending the advertisement with sequence number k j, where
|S( j,k j)| ≤ N +1. Each node s ∈ S( j,k j) reports the event to the Sink node by publishing a
message on the user_detected topic by adding the following information to the payload:
< ads,P( j,k j), tc > where ads is its unicast address, R( j,k j) is the Received Signal Strength
(RSS) of the received message from the mobile node j, and tc is the current time-stamp. The
message is filtered by the Parsing Module of the EPA, and the payload is processed by the
Human Monitor Module, which is in charge of estimating Pj, i.e., the current position of
mobile node j. We consider two possible formats for Pj, with different spatial granularity
levels, i.e.: (i) Pj is the room id, hence the localization procedure aims at detecting the current
room where the mobile node is located, or (i) Pj is a continuous value representing the 2D
relative coordinates with respect to a reference point (e.g., the top left angle of the building).

4.2 Implementation And Performance Evaluation

In this Section, we describe the implementation of the BLE Mesh network, and we evaluate
the performance over multiple configurations.
We rely on the Espressif ESP321 devices (wroom and wrover versions) to setup the BLE
Mesh nodes. Espressif provides an implementation of the BLE Mesh stack that can be
deployed and customized via the provided Espressif IoT Development Framework2. For the
experiments, we uploaded two different profiles on the BLE Mesh devices: (i) the Sensor
module profile, enabling the device to send sensory data and to exchange control messages, as
well as the usage of different topics depending on the experiment, and (ii) the Relay module
profile enabling the routing and message forwarding capabilities. We set the transmission
power Ptx =−6dBm and used the default configuration with no packet retransmissions and
no message acknowledgements. As depicted in Figure 4.1, the Sink node n0 is connected

1https://www.espressif.com/en/products/socs/esp32
2https://github.com/espressif/esp-idf - Used version v4.3
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Fig. 4.2 The end-to-end delay varying TP and N in the mesh topology scenario.
[

Fig. 4.3 The measurements for the path-loss calibration

directly to the EPU device. In our deployment, the Sink is constituted by a Raspberry
Pi 3B+ executing Nodejs v16.4.0 scripts that implement the software modules (i.e., the
Parser Module, the Data Module, the Network Monitor, and the Human Monitor) previously
described.

First, we assess the network performance through the metrics computed by the Network
Monitor Module, i.e., the Packet Delivery Ratio (PDR) and the end-to-end delay. The former
states the network’s reliability, while the latter indicates the crossing speed of data packets



4.2 Implementation And Performance Evaluation 43

Fig. 4.4 The localization error for the different reference points P0, . . . ,P8.

through a multi-hop connection. Two different BLE Mesh network deployments have been
considered: a chain topology and a multi-path mesh topology.
In the chain scenario, the N +1 nodes are placed at equal distances in such a way that device
ni is connected with its predecessor and its successor only, ni−1 and ni+1 respectively, with
1 ≤ i < N, while node nN is the only sensor that is subscribed to the measure topic. In
addition, we deployed the Relay profile module on all the devices, the Server Sensor profile
only on nN and the Client Sensor profile on n0. Despite its simplicity, the topology permits
us to analyze the multi-hop capabilities of the BLE Mesh network under self-interference
and external interference conditions caused by WLAN devices operating on the same bands
and on the same area. The evaluation results related to the chain topology are depicted in
Figures 4.2 and 4.3. We varied the length of the chain N (denoted by different curves) and
the transmission period TP (denoted by different values on the x-axis). As expected, the chain
length impacts negatively both the PDR (Figure 4.2) and the delay (Figure 4.3). For N > 1,
the data packets experience a non-zero probability of packet loss, leading to a PDR value
lower than 40% for N = 5. When increasing the number of hops, the variance of results
becomes relevant due to the unpredictable fluctuations of the channel conditions. Similarly,
the end-to-end delay increases accordingly with the chain length N and the related number
of forwarding actions. The analysis in terms of the application-dependent variable TP (on the
x-axis) allows us to determine the maximum workloads of the BLE Mesh network. However,
we can notice that the TP parameter impacts the system performance only under high loads
(low TP), i.e., when many packet losses may be experienced due to self-interference issues or
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buffer overflow events at the intermediate nodes. Figure 4.3 shows that the delay is higher
than 1 second for N = 5 and TP ≤ 50 ms.

Fig. 4.5 The end-to-end delay varying TP and N in the mesh topology scenario.

Fig. 4.6 The measurements for the path-loss calibration

The second deployment consists of a generic multi-path mesh topology, where the BLE
devices are placed randomly within the scenario. Also in this case we analyzed the network
metrics by varying the mesh size (N) and the transmission period (TP). However, differently
from the previous experiment, all the devices feature both the Relay and the Server Sensor
profiles, while the Sink node features the Client Sensor profile only. All the nodes but the sink
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Fig. 4.7 The localization error for the different reference points P0, . . . ,P8.

subscribe to the measure topic. Figures 4.4 and 4.5 show respectively the PDR and delay
metrics. Regarding the PDR index, we can notice a significant performance degradation with
a mesh of 11 nodes (N = 10). It is easy to notice that the TP parameter becomes effective
only when N ≥ 8, suggesting that the network size, and mainly the flooding mechanism,
impacts the system performance more than the network load. Similar considerations can be
drawn from the end-to-end delay results shown in Figure 4.5.

Finally, we analyze the performance of the Human Monitor Module. Figure 4.8 shows the
planimetry of the indoor environment used for our localization tests, i.e. a floor hosting the
research laboratory at the Department of Computer Science and Engineering of the University
of Bologna. We consider N = 12 nodes (denoted as red squares and green diamonds in the
Figure) and P = 8 localization points (the blue dots) where the experiments are executed.
The mobile user j is provided with a provisioned BLE Mesh node and walks through
predefined fixed points (P1, . . .P8 in Figure 4.8) where the current position is estimated and
the localization error is computed. As described in Section 4.1.2, the mobile device sends a
message on the loc_req topic with TTL = 1, and every BLE Mesh node that receives the
message acts as an Anchor node. Then, it computes the RSS value and forwards it to the Sink
node. The Human Monitor Module implements the Least-Squares Trilateration Algorithm
to estimate Pj from the received RSS measures. It is worth remarking that the aim of this
work is not to evaluate the localization algorithm itself, rather to evaluate the ability of the
BLE Mesh to support it. Interested readers can refer to [71] for other indoor localization
algorithms that could be deployed on top of our testbed.
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Fig. 4.8 Scenario map used for the localization deployment where N = 11. The red squares
and the green diamond represent the devices belonging to the BLE Mesh; the blue points
indicate the locations where the localization tests have been carried out.

The Trilateration Algorithm estimates the device location assuming the knowledge of
distances from known anchor points. In our case, the distance d between the mobile device
and the Anchor node ni is computed from the RSS value by using the log-normal path-loss
model: d = d0 ·10

Ptx−RSSI−PL0
10·α , where d0 = 1 is the close-in reference distance at which the

path-loss PL0 has been measured and α is the path-loss exponent. The values of PL0 and α

have been empirically calibrated as shown in Figure 4.6. The accuracy of the localization
process is depicted in Figure 4.7; the points on the x-axis (P0, . . . ,P8) indicate the reference
measuring locations depicted in the map of Figure 4.8. The y-axis shows the localization error
Eloc, in meters, as the difference between the estimated position computed by the Human
Monitor Module and the ground truth.

We can notice significant differences in the Eloc values between the locations close to
the Sink node (e.g. P2) and the others (e.g. P6,P7,P8). At location P2, Eloc ≈ 1m due to
the presence of many Anchor nodes and the proximity to the Sink. Vice versa, locations
P6,P7,P8 experience higher Eloc values because they are placed on the borders of the mesh
network. From further investigations, we realized that the poor localization accuracy is
again a consequence of the poor network performance; indeed, in Figure 4.2 we show that
the PDR sharply decreases with the number of hops. As a result, even if the presence of
a mobile node is detected by some Anchor nodes, only few messages belonging to group
user_detected are reaching the Sink node, hence negatively affecting the calculations
of the trilateration algorithm. The average localization error is around 4m, hence this
system can be considered suitable only for low-granularity spatial requirements. Indeed, we
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implemented a room localization module that exploits the knowledge of the floor planimetry
for the estimation. Figure 4.9 depicts the per-room accuracy of the localization process,
while the red line indicates the average accuracy within the target building. Similarly to the
previous experiment, the accuracy is highly dependant on the user position with respect to
the Sink; the accuracy exceeds 80% for rooms close to it, with the exception of room R3

which is actually a very small corridor. On the other side, the accuracy drops drastically for
rooms covered by few Anchor nodes (since the trilateration algorithm lacks of inputs), and
for rooms far away from the Sink due to the poor network performance.

Fig. 4.9 The room detection accuracy at different rooms of the scenario. The red line indicates
the average accuracy within the building.

Based on these results, we can conclude that the proposed BLE Mesh network is not
capable of supporting IoT applications with strict delivery requirements, or where the
data aggregation/fusion algorithm is computed on the Sink node. Also, high transmission
frequency impacts harmfully the system performance, but still less than the network size.





Chapter 5

Aerial Network Deployment

Chapter 3 identified the second objective of this thesis as the development of an aerial WMSN
to collect data from an isolated ground WMSN. To address this problem, we proposed and
implemented a novel swarm mobility algorithm called ECLIPSE. Unlike existing solutions,
ECLIPSE supports distributed swarm management relying on radio signal localization only,
without the need for GPS. In this chapter, we describe the design and implementation of
ECLIPSE, as well as our experiments and evaluation of its performance in maximizing data
collection effectiveness while maintaining aerial mesh connectivity.

Introduction

In this project, we consider a generic scenario composed of isolated, mobile ground nodes
(MGNs), and we investigate the deployment of distributed aerial mesh networks aimed to
provide wireless coverage of the target area and multi-hop connectivity between ground
nodes. To this aim, we propose ELAPSE, a distributed UAV swarm architecture that ad-
dresses mobility-related (e.g., aerial connectivity), task-related (e.g., ground coverage), and
networking-related functionalities. Differently from the literature, the ELAPSE framework
takes into account the QoS on the AtA and AtG links both during the network formation
and maintenance in order to dynamically meet the application requirements of the ground
nodes. In addition, the ELAPSE framework does not rely on geo-localization capabilities
of the aerial/ground devices; hence, it can be deployed on mini-drones (not provided with
the GPS sensor) or it can support aerial mesh formation and mobility on environments not
covered by the GPS (e.g., indoor scenarios). More in detail, three main contributions are
described in this paper:
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• We extend the QoS-aware UAV swarm mobility model in [72] for disaster environments:
the distributed algorithm aims to maximize the number of connected MGNs while
guaranteeing the quality of the AtA and AtG links. In addition, it ensures mesh
connectivity and collision avoidance among the UAVs.

• We investigate the implementation of the proposed swarm mobility algorithm in
scenarios where geo-location capabilities are not available: to this aim, two distributed
neighbor localization schemes are presented, one based on local sensor data processing
(e.g., IMU and Wi-Fi RSSI values) and the other on cooperative mechanisms. The
operations of the proposed algorithms are further enhanced by means of error filters
and computational swarm intelligence techniques.

• We validate the proposed solutions through a twofold evaluation. We consider large-
scale OMNeT++ simulations of the ELAPSE framework and measure its performance
in terms of localization accuracy and coverage under varying node density conditions.
In addition, we validate the effectiveness of the QoS-aware mechanism on a small
ground robotic test bed.

Fig. 5.1 The scenario considered in this study and the deployed framework.

5.1 System Model

5.1.1 Scenario definition

We consider the emergency scenario of size M ×M depicted in Figure 5.1. Let U =

{u1,u2, . . .uNU} be the set of the available UAVs flying at a fixed altitude fa from the ground.
Similarly, let G = R∪H be the set of Mobile Ground Nodes (MGNs), further divided into
two sub-sets: rescue personnel R = {r1,r2, ...rNR} and help requesters H = {h1,h2, ...hNH}.
The system evolves over ordered time T = {t0, t1, . . .} having time slots of length equal to



5.1 System Model 51

tslot seconds. We denote with pni,k the current absolute 3D (error-free) position of node ni in
the scenario at time tk, with ni ∈N =U ∪G. Localization errors are introduced in Section 5.3.
Each help requests hi ∈ H is provided with a mobile app, through which it generates a data
rate equal to D(hi) bps; the destination of the flow originated by hi ∈H is any r j ∈ R available
in the scenario. We abstract from the specific content of the communication between hi

and r j, which might include any emergency-related information e.g. current position, video,
audio, etc, that might support the rescue operations. The goal of the ELAPSE framework is
to enable the communication between help requesters and rescue personnel via multi-hop
aerial links, by maximizing the number of data-flows which are currently served. To this aim,
the optimal placement of the UAVs must be determined.

We modeled the system as a complete graph G = {N,E}, where N =U ∪G is the set of
nodes and E = {

〈
ni,n j

〉
, . . .} is the set of edges. Let Ck(ni,n j) the capacity at time slot tk

of the wireless AtG/AtA link between nodes ni,n j ∈ N: the value of Ck(ni,n j) depends on
the wireless propagation model that is introduced later in Section 5.1.3. By construction,
Ck(ni,n j) = 0, ∀ni,n j ∈ G, i.e. no direct communication between ground nodes is possible.
We model the communication network topology through the following state variables:

• ek(ni,n j) indicates whether nodes ni,n j ∈ N are connected by a wireless link at time
slot tk, i.e. Ck(ni,n j)> 0: in such case, ek(ni,n j)=1, ek(ni,n j)=0 otherwise.

• êk(ni,n j) indicates whether there exists a multi-hop connection between nodes ni,n j ∈
N, i.e. ∃ pathk

i, j = {n1,n2, . . . ,n|pathk
i, j|
} ⊆ N such that n1 = ni, n|pathk

i, j|
= n j, and

ek(nq,nq+1) = 1, ∀q < |pathk
i, j|.

Similarly, we introduce the following state variable in order to model the multi-hop connec-
tivity through the aerial mesh:

• lk(ni,n j,hz) indicates whether the link between nodes ni,n j ∈ N is used to convey the
traffic flow from ni to n j originated by the help requester hz ∈ H during time slot tk: in
such case, lk(ni,n j,hz)=1, lk(ni,n j,hz)=0 otherwise.
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5.1.2 Problem formulation

Based on the definitions above, the research problem can be formulated as follows:

find p⃗ui,k ∀ui ∈U (5.1)

lk(ni,n j,hz) ∀ni,n j ∈ N,hz ∈ H (5.2)

maximize ∑
ui∈U,r j∈R,hz∈H

lk(ui,r j,hz) (5.3)

subject to the following constraints:

∑
ui∈U,r j∈R

ek(ui,r j)≥ 1 (5.4)

∗ek(ui,u j) = 1 ∀ui,u j ∈U (5.5)

distk(ui,u j)≥ distmin ∀ui,u j ∈U (5.6)

∑
hz∈H

(
lk(ni,n j,hz) ·D(hz)

)
≤Ck(ni,n j) ∀ni,n j ∈ N (5.7)

lk(ui,u j,hz) ·
(

1− ∑
ni′∈N
ni′ ̸=ui

(
lk(ni′,ui,hz)

))
= 0

∀ui,u j ∈U,hz ∈ H (5.8)

∑
ni∈N

lk(ni,n j,hz)≤ 1 ∀n j ∈ N,∀hz ∈ H (5.9)

∑
n j∈N

lk(ni,n j,hz)≤ 1 ∀ni ∈ N,∀hz ∈ H (5.10)

∑
n j∈N,hz∈H

lk(ri,n j,hz) = 0 ∀ri ∈ R (5.11)

∑
n j∈N

lk(hi,n j,hi)≤ 1 ∀hi ∈ H (5.12)

∑
n j∈N

hz∈H,hz ̸=hi

lk(hi,n j,hz) = 0 ∀hi ∈ H (5.13)

where the constraints are assumed to be ∀tk ∈ T .
Here, constraint (5.4) states that the aerial mesh should connect at least one rescue personnel;
constraint (5.5) ensures the aerial mesh connectivity, i.e., there must exist a multi-hop path
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between each couple of UAVs; constraint (5.6) avoids the collisions among the UAVs;
constraint (5.7) ensures that the throughput of each wireless link (AtA or AtG) cannot exceed
the current link capacity; constraint (5.8) ensures the consistency of the data flow through
the aerial mesh, i.e., if an aerial link ui,u j carries data originated by hz ∈ H, then there is
an incoming data link on UAV ui (ui is routing data for hz); constraints (5.9) and (5.10)
guarantee that there is no multipath in the mesh, namely, each data flow can be sent and
received by only one node, respectively; constraint (5.11) states that the rescue personnel
is not transmitting data; constraints (5.12) and (5.13) ensure that any data flow labeled with
hi ∈ H is generated only by hi.

5.1.3 Channel Model

We assume a generic path loss model on the AtA/AtG links, defined as follows:

PL(d) = 10 ·αLT · log10(d)+κLT (5.14)

where d is the node distance, αLT is a decay model depending on the Link Type (AtA or
AtG), and κ is a constant value related again to the frequency and to the Link Type in use. In
this work we do not focus in the specific characterization of the AtA and AtG links. Instead,
we used the generic log-distance path loss model by using different αLT parameters. Readers
can refer to [73] for an in-depth modeling of the AtG link. The values of the parameters
used in the simulation study are reported in Section 5.4.2. The maximum capacity Ck(ni,n j)

between node ni and n j placed at distance d can be derived according to the well-known
Shannon law:

Ck(ni,n j) = BW · log2

(
PT −PL(distk(ni,n j))

κk
noise

)
(5.15)

where BW is the channel bandwidth, PT is the node transmitting power (both values are
assumed constant for all nodes and wireless links), and κk

noise the current noise value. In this
study, we aim to monitor the per-link Quality of Service (QoS) by means of the Link Budget
(LB) metric. The latter is defined as the residual capacity of link between ni (receiver) and n j

(transmitter) at time tk, and it is computed as follows:

LBk(ni,n j) = PRk(ni,n j)−RS(ni) (5.16)

where PRk(ni,n j) is the received power at node ni and RS(ni) is its receiving sensitivity that
is specific of the wireless network interface. The LB metric measures the communication
reliability, and it indicates when the link is going to break.
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5.2 ELAPSE: Swarm Mobility Algorithm

The optimization problem presented in the previous Section requires a global knowledge of
the scenario and a fine-grained description of the system evolution at each time slot. Given
the practical limitations posed by a centralized approach, we propose here a distributed,
iterative technique which continuously updates the UAV positions’ with the aim of addressing
the following requirements at the final deployment: (i) there is always at least one rescue
personnel connected to the aerial mesh; (ii) the number of help requesters connected to the
mesh is maximized; (iii) the aerial mesh is connected (i.e., no UAV clusters are created) but
at the same time (iv) all the AtA and AtG links meet the QoS requirements expressed through
the requested LB values.

For these purposes, we refine the the virtual spring model described in [74] and further
extended in [75, 72] for channel-aware QoS support. For a comprehensive review of different
deployment algorithms for UAV networks, reader can refer to [76]. More specifically, we
assume that at each time slot tk ∈ T , multiple virtual forces can act on each ui ∈ U , i.e.
F⃗k

i,1,F⃗k
i,2, ...,F⃗k

i,N f
. Let F⃗(i) be the sum of virtual forces acting on ui, i.e.:

F⃗(i) =
N f

∑
j=0

F⃗i, j (5.17)

As depicted in Figure 5.1, we consider three virtual Forces Types (FT), i.e.: (i) Mesh-to-
Mesh (MtM) forces, acting between two UAVs, (ii) Mesh-to-Helpers (MtH) forces, acting
between an UAV and a help requester on the ground and (iii) Mesh-to-Rescuers (MtR), acting
between and UAV and a member of the rescue teams. The MtM forces guarantee the internal
connectivity of the aerial mesh, while the MtH/MtR forces enable space exploration and
connectivity toward the ground nodes. Regardless of their type, all the virtual forces are
modeled according to the well-known Hooke’s law assuming that the force is proportional to
the spring deformation [77]:

F⃗ (⃗xu,x) = x⃗u ·
(
− k(FT ) · (x− l0)

)
(5.18)

where k(FT ) is the stiffness constant (assuming different values according to the force type,
i.e. MtM, MtH or MtR), x⃗u denotes the spring unit-vector direction, x denotes the spring
actual length, l0 its natural length, and δ = (x− l0) defines the spring displacement. Here we
assume that k(MtM) and k(MtH) are constant values, which must be statically configured
before the system deployment; Section 5.4 reports the values used in the experiments. Vice
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versa, the k(MtR) value is dynamically set by each UAV ui according to the Equation below:

kMtR
i =

{
KT if ∑ j∈NBi CovR(u j, tk) = 1
k(MtH) otherwise

(5.19)

Here, CovR(u j, tk) returns the number of rescue personnel connected to UAV u j at time-slot
tk, while NBi denotes the list on 1-hop neighbors of UAV ui. The stiffness value is set to
KT >> k(MtH) in case the UAV is the only node in its neighborhood providing connectivity
to a rescue personnel, and hence it should avoid breaking the link. Vice versa, the MtR
virtual spring behaves like the MtH one. Like in [72], we formulate the link displacement as
a function of the requested and current LB on the ni−n j link, i.e.:

δ
k(ni,n j) =

αLT

√
max(LBk(ni,n j),LBk

req(ni,n j))

min(LBk(ni,n j),LBk
req(ni,n j))

−1 (5.20)

Here, δ k(ni,n j) is the spring displacement, αLT is the propagation decay exponent of Equa-
tion (5.14), again assuming different values based on the AtA (MtM) or AtG (MtH and MtR)
links. Let LBk

req(ni,n j) be the requested link budget on the link connecting node ni with node
n j at time slot tk; LBk

req(ni,n j) represents the per-link QoS requirement, and it is computed
based on maximum number of data-flows that can be supported. This value can be derived
from Equations (5.15) and (5.16) as follows:

LBk
req(ni,n j) =

(
2LLk(ni,n j)/BW −1

)
·κk

noise−RS(ni) (5.21)

Here, LLk(ni,n j) is the requested load on this specific link. In order to fulfill the constraint
defined in Equation (5.7), it is defined as follows:

LLk(ni,n j) = ∑
hz∈H

(
lk(ni,n j,hz) ·D(hz)

)
(5.22)

The value LBk
req(ni,n j) of Equation (5.21) as a function of the required link load (Equation

(5.22)). Figure 5.2 shows the trend of Equation (5.21) when varying the requested link
load LLk(ni,n j). As described before, the Hooke’s law defines the attractive force as well as
the repulsive force. However, for the AtG links the UAVs do not need to be repulsed from
ground nodes and hence we activate the MtH and MtR forces only if they are attractive.

Every tdec intervals, each ui computes the resultant force F⃗(i) on Equation 5.17, and
moves in the direction indicated by F⃗(i), with constant speed. In [72], we assumed that
the direction could be directly derived by assuming that the UAVs are equipped with any
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geo-location system (like GPS, GLONASS, Galileo, etc) and that the position information
is periodically exchanged among the UAVs. Here, we extend the study by removing such
assumption; vice-versa, we address the case where each UAV and MGNs ni ∈ N is equipped
only with Inertial Measurement Unit (IMU) sensors to estimate its actual velocity. Details on
the how the UAV direction is estimated are provided in the Section below.

5.3 ELAPSE: Positioning Technique

In this study, we do not aim at estimating the absolute position of the UAVs and the MGNs
(e.g. geo-location), rather their relative positions since only this information is relevant to
compute the direction of each virtual spring according to Equation 5.17. To this aim, let v⃗ni,k

and p⃗ni,k be the real velocity and position of each node ni ∈ N at time slot tk, respectively.
Also, let p⃗(ni,n j),k = p⃗n j,k− p⃗ni,k be the real relative position of node n j with respect of node
ni and ˙⃗p(ni,n j),k be its estimated value computed by node ni. For ease of exposition, we use
the dot (˙) notation to refer to an estimated value, which might differ from the real one.

While moving, each node ni ∈ N broadcasts one HELLOni,k message every tbroadcast time
slots, by including the following information:〈

ni, ˙⃗vni,k,
˙⃗vni,k−

〉
(5.23)

Here ˙⃗vni,k is the instantaneous velocity of node ni at time tk, while ˙⃗vni,k− is the average
velocity of node ni between time slot tk−tbroadcast and tk, defined by ˙⃗vni(k− tbroadcast,k). The
function ˙⃗vni(k,k

′) returns the estimated average velocity of node ni within the interval [tk..tk′].
After receiving an HELLOn j,k message from node u j, node ui determines the Received Sig-
nal Strength (indicated as RSSn j,k in the following) in order to estimate the distance from
the sender node. We skip details on this issue, well addressed in the literature; interested
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readers can refer to [78] for a comprehensive survey on the topic. We just highlight that,
for evaluation purposes, we assume the presence of an additive white Gaussian noise, i.e.

˙distk(ui,u j) = distk(ui,u j)+N (0,σd), where σd is a system variable denoting the distance
estimation error, whose impact on system operations has been evaluated in Section 5.4.
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Fig. 5.3 The building blocks of the proposed relative localization algorithm.

The proposed relative localization algorithm involves three blocks executed sequentially,
as depicted in Figure 5.3:

• Neighbour estimator: this module is executed by each node and it aims at estimating
the relative position of its neighbours. To this purpose, two different methods are
presented: a local algorithm (Section 5.3.1) and a cooperative one (Section 5.3.2).
In both cases, the estimation exploits the RSS values and payloads of the HELLOn j,k

messages exchanged among the ELAPSE nodes.

• Error filter: this module applies proper filters on the output of the previous step, in
order to avoid large variations among consecutive estimations (Section 5.3.3). To this
purpose, a per-node estimation history is adopted.

• Optimizer: this module is executed only in cooperative mode and it further improves
the position estimation by taking into account additional information from each neigh-
bour node (Section 5.3.4).

5.3.1 Local Neighbour Estimator

We consider a local technique wherein each node ni estimates the position of its neighbor n j

by using the information contained in the HELLOn j,k message. At each message reception,
node ni performs two, independent estimation of its distance from n j, i.e.: (i) it derives the
distance from the RSSn j,k value and (ii) by considering the average nodes’ speed and the
temporal interval among consecutive message receptions. By computing the intersection
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of the circumferences associated to the estimated distances, and under the assumption of
2D mobility (since all the UAVs are flying at the same altitude), two different solutions for
the n j position at time tk are derived and inserted into a solution set P(ni,n j),k. After having
collected a threshold number of solutions, the Z-score function is applied on P(ni,n j),k in order
to remove the outliers; finally, the centroid is returned as the estimated position of n j. The
process above is iterated by ni for all its active neighbours. This latter is defined as the set of
nodes from which ni has received at least one HELLO message within a timeout interval.
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Fig. 5.4 One-step position estimation.

More formally, at each reception of the HELLOn j,k sent by node n j, the node ni updates
the RSS-based position estimation ˙⃗p(ni,n j),k for node n j. Then it stores such value in a
local list PKTi, j

rcv along with the values contained in the HELLOn j,k message, i.e.: pkti, j
k =〈

k,RSSn j,k,
˙⃗vn j,k,

˙⃗vn j,k−,
˙⃗p(ni,n j),k

〉
. Given the dynamic nature of the aerial mesh topology, we

consider dynamic update mechanisms of the data structures, i.e. node ni will remove the
PKTi, j

rcv list in case no packet from node n j has been received within a time threshold ttimeout.
We can hence define the active neighbours of node ni as: NBi = {n j ∈ N | PKTi, j

rcv ̸= /0}.
Algorithm 1 shows the pseudo-code the proposed technique. In the main loop (lines 6

- 16), the solution set P(ni,n j),k is updated, by considering the HELLOn j,k̂
message received

at time slot tk̂, with k̂ ≤ k. We consider a coordinate system rooted at ui at time slot tk, i.e.
p⃗(ni,ni),k = (0,0). The process of position estimation that is executed at each loop cycle is
described in Figure 5.4.
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Algorithm 1: The LOCAL estimation algorithm
Input: PKTi, j

rcv
1 Function Identity(n j, p⃗1, p⃗2):
2 return { p⃗1, p⃗2}
3 Function OnPacketRCV(HELLOn j ,k):
4 P(ni,n j),k← /0; k′← k;
5 ˙⃗v j← (0,0); p⃗(ni,ni),k← (0,0);
6 forall pkti, j

k̂
∈ PKTi, j

rcv descending ordered by k̂ do
7 ˙⃗si(k̂,k)← ˙⃗vni(k̂,k) · (k− k̂) · tslot

8 ˙⃗p(ni,ni),k̂
← p⃗(ni,ni),k− ˙⃗si(k̂,k)

9 ˙⃗v j←
(

˙⃗v j,k′− ·tslot·(k′−k̂)
)
+( ˙⃗v j ·(k−k′))

k−k̂
10 ˙⃗s j(k̂,k)← (k− k̂) · tslot · ˙⃗v j

11 ˙⃗pi→ j,k̂← ˙⃗p(ni,ni),k̂
+ ˙⃗s j(k̂,k)

12
〈

p⃗′
(ni,n j),k̂

, p⃗′′
(ni,n j),k̂

〉
← CI

(
p⃗(ni,ni),k, ˙distk(ni,n j), ˙⃗pi→ j,k̂, ˙distk̂(ni,n j)

)
13 fn j ,k← Identity(n j, p⃗′

(ni,n j),k̂
, p⃗′′

(ni,n j),k̂
)

14 P(ni,n j),k← P(ni,n j),k ∪ fn j ,k

15 k′← k̂
16 end
17 forall p⃗∗

(ni,n j),k̂
∈ P(ni,n j),k do

18 ZS(p⃗∗
(ni,n j),k̂

)←
p⃗∗
(ni,n j),k̂

−mean(P(ni ,n j),k
)

stddev(P(ni ,n j),k
)

19 end
20 P(ni,n j),k← ZS_halve(P(ni,n j),k)

21 ˙⃗p(ni,n j),k← centroid(P(ni,n j),k)

22 PKTi, j
rcv

add←−−
〈

k,RSSIn j ,k,
˙⃗v j,k, ˙⃗v j,k− , ˙⃗p(ni,n j),k

〉



60 Aerial Network Deployment

u1

u2

p'        ∈ P 

distu1,u2

k
.

(u1, u2),k (u1, u2),k 

Fig. 5.5 Relative position estimation. The stars define the P(i, j),k set. The grey stars denote
the points removed after the Z-score filter is applied.

At line 8, the term ˙⃗p(ni,ni),k̂
denotes the position estimation of ni at time slot tk̂. The

distance covered by node n j from time slot tk̂ to tk is derived at line 10, based on its average
speed in the time interval (the ˙⃗v j variable at line 9). Knowing the original position, and
the distance covered, a second estimation of the position of node n j at time tk ( ˙⃗pni→n j,k̂

)
is derived in line 11 (the red UAV in Figure 5.4). Based on the positions produced so far
( p⃗(ni,ni),k and ˙⃗pni→n j)k̂

) and distances ( ˙distk(ni,n j) and ˙distk̂(ni,n j)), the CI(p⃗1,d1, p⃗2,d2)
function (line 12) calculates the intersections between the circles with centers p1, p2 and
radius d1, d2, respectively. Figure 5.4 shows the outputs of the circle intersection function,
with two results being returned, denoted by the red UAV (correct estimation) and the grey
one (wrong estimation). A single HELLO message does not allow discriminating the right
solution, hence both the outputs are processed and inserted into the P(ni,n j),k set through
the Identity function; this latter returns the arguments provided as inputs, and has been
introduced only for ease of exposition, and more specifically to highlight the difference with
the cooperative-based algorithm described in the next Section. Figure 5.5 depicts the solution
set P(ni,n j),k computed by node ni (green UAV) regarding the position of node n j (blue UAV).
Half of the estimations are clustered close to the real UAV position, while the other half is
located on the circle of radius ˙distk(ni,n j). In order to remove the outliers with respect to the
main clusters, the Z-score index is computed at lines 17 - 19; based on such metric, half of
the points are removed from the P(ni,n j),k set (function ZS_halve at line 20). This operation
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is shown in Figure 5.5 where the grey points are removed from the solution set. Finally, at
line 21, the centroid of P(ni,n j),k is returned as the relative position estimation of UAV u j at
time slot tk.

Computational Complexity

The computational complexity CC of Algorithm 1 is determined by the main loop (lines
6-16 of Algorithm 1) where the set of possible solutions P(ni,n j),k is built. We assume that
each node keeps only a limited number of received packets, defined by the system parameter
PKTmax. It is easy to notice that CC(Algorithm1) = O(PKTmax).

5.3.2 Cooperative-based Neighbour estimator

The local algorithm described before might introduce some errors when pruning the solution
set, as depicted in Figure 5.5. To this purpose, we propose an enhanced version of the
algorithm, in which each node shares also its relative distance matrix with respect to its active
neighbours: this is performed by extending the information contained in each HELLOni,k

message as follows:〈
ni, ˙⃗vni,k,

˙⃗vni,k−,
[〈

n j, ˙distk(ni,n j)
〉
. . .
]〉
∀n j ∈ NBi (5.24)

The cooperative-based neighbour estimator is mainly based on Algorithm 1, however
it introduces a new method for the solution selection at each iteration. More in details,
we replace the Identity function (line 13 in Algorithm 1) with the ChooseCoop function
shown in Algorithm 2). Here, we consider the neighbours of ni (i.e. the nq ∈ NBi in line 3)
which are also neighbours of n j. A mean square positioning error for both the candidate
solutions (p⃗1 and p⃗2) is computed by considering the distance estimation between nq and nk

(contained in the HELLO message), and the estimated distance between ni and nq (computed
locally by ni). The solution associated with the lowest error (i.e. better fitting with the relative
distance matrix) is returned and included in the set P(ni,n j),k.

Figure 5.6 depicts the operations of the cooperative-based algorithm, by using the same
notation of Figure 5.5: it is easy to notice that, even with more sparse position estimations,
the algorithm is able to identify the correct UAV position within P(ni,n j),k thanks to the
neighbours’ relative distances information.
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Algorithm 2: The COOPERATIVE algorithm
Input: PKTi, j

rcv, NBq,∀nq ∈ NBi
1 Function ChooseCoop(n j, p⃗1, p⃗2):
2 perr

1 ← 0; perr
2 ← 0;

3 forall nq ∈ NBi,nq ̸= n j do
4 if n j ∈ NBq then
5 perr

1 ← perr
1 +(

∣∣∣p⃗1− p⃗(ni,nq),k

∣∣∣− ˙distk(nq,n j))
2

6 perr
2 ← perr

2 +(
∣∣∣p⃗2− p⃗(ni,nq),k

∣∣∣− ˙distk(nq,n j))
2

7 end
8 end
9 if perr

1 < perr
2 then

10 return { p⃗1}
11 else
12 return { p⃗2}
13 end
14 Function OnPacketRCV(HELLOn j,k):
15 . . .
16 fn j,k← ChooseCoop(n j, p⃗′

(ni,n j),k̂
, p⃗′′

(ni,n j),k̂
)

17 . . .
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Fig. 5.6 Relative position estimation of UAV u2 calculated by node u1 using the cooperative-
based algorithm.
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Computational Complexity

The computational complexity of Algorithm 2 can be derived from the complexity of Al-
gorithm 1. In addition to it, at each step of the mail loop, the ChooseCoop function is
invoked; the latter iterates over the neighbour set in order to compute the localization errors
for the candidate solutions p⃗1 and p⃗2. Hence, CC(Algorithm2) = O(PKTmax · |N|), where
|N|= NU +NH +NR.

5.3.3 Error Filter

Both the algorithms described before attempt to estimate the relative node position of node
n j by analyzing the list PKTi, j

rcv of received messages at node ni. However, consecutive
position estimations performed by the same node (ni) on the same target (n j) can incur into
large variations/oscillations, due to noisy distance computations and low mobility conditions.
For this reason, we included a filter mechanism that takes into account the history of the
estimations produced so far and applies smoothing functions.

Algorithm 3: The Estimation Filter algorithm
Input: PKTi, j

rcv
1 Function EstimationFilter( ˙⃗p(ni,n j),k):
2 FI j← /0
3 forall pkti, j

k̂
∈ PKTi, j

rcv do
4 ˙⃗estk̂← ˙⃗p(ni,n j),k̂ +

˙⃗vn j(k̂,k) · (k− k̂) · tslot

5 wk̂← f (k−k̂)
filter ·1/e

dispersion(P(ni ,n j),k̂
)2

6 FI j←
〈

˙⃗estk̂,wk̂

〉
7 end
8 ˙⃗pfilt← WeightedAverage(FI j)

9 pdist← | ˙⃗pfilt− ˙⃗p(ni,n j),k|
10 maxdist← 2 · ˙distk(ni,n j)
11 if maxdist > pdist then
12 ffactor← p2

dist/(p2
dist+(maxdist−pdist)

2);
13 else
14 ffactor← 1
15 end
16 return ˙⃗pfilt · ffactor + ˙⃗p(ni,n j),k · (1− ffactor)

Algorithm 3 shows the pseudocode of the proposed error filtering mechanism. Within
the main loop (lines 3 - 7), we derive ˙⃗estk̂, i.e. the estimated position of node n j ∈ N based
on the previous estimation calculated at time slot tk̂ and on the average velocity till time
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slot tk. A weight coefficient wk̂ quantifies the accuracy of each estimation, by considering
two factors (line 5): (i) the temporal freshness of the information, since positioning errors
may accumulate over time and hence too old estimations can be largely inaccurate1; (ii) the
trustworthiness of the estimation, reflected by an index of dispersion (i.e. the dispersion
function) that is defined as dispersion = σ2/µ. The weighted average of the estimations
produced so far, i.e. ˙⃗pfilt, is produced at line 8. Finally, the position of node n j is built
as combination between the original estimation ˙⃗p(ni,n j),k (i.e. the output of the previous
algorithms) and the weighted historic average, ˙⃗pfilt. Again, the the factor ffactor ∈ ]0..1[ (lines
11 - 15) works as a weighting coefficient, and it gives more trust to the historic average or to
the original estimation based on the distance between ˙⃗p(ni,n j),k and ˙⃗pfilt (we use the estimated
distance as reference max distance, see line 10).

Computational Complexity

Similarly to Algorithm 1, the computational complexity of Algorithm 3 is dominated by the
loop over the received packets, hence: CC(Algorithm3) = O(PKTmax).

5.3.4 PSO optimizer

Finally, we further enhance the position estimations produced so far by means of a Parti-
cle Swarm Optimization (PSO). Since the latter exploits the knowledge of each node ni

neighbourhood NBi, it can be used only when the cooperative technique (Section 5.3.2) is
enabled. The PSO is a heuristic computational technique which explores a solution space
for the optimum search, by means of a set of candidate solutions named particles. At each
iteration, the candidate solutions are updated by adjusting the particle’s position and velocity
with respect to a goal function.
In our scenario, the PSO particles correspond to the relative positions of each node n j ∈ NBi.
The PSO technique -described in Algorithm 4- is executed by node ni each tPSO time slots,
and the goal is to minimize an error/loss positioning function introduced later in this Section.

Let PA be the set of particles and paw the w-th particle, with w ≤ Npa. Moreover, let
papos

w, j be the candidate relative position of node n j ∈ NBi with respect to node ni belonging
to the w-th particle, and pavel

w, j its velocity. Here, Npa is a system variable and defines the
number of used particles. The structure of each particle is shown in Figure 5.7. In the
initialization phase (lines 2-12 of Algorithm 4), all the particles are randomly initialized,
except one which corresponds to the output of the cooperative-based algorithm (line 5). The

1 ffilter ∈ [0..1] is a system parameter, powered to the freshness of the information given by the time interval
tk− tk̂.
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Algorithm 4: The PSO optimization algorithm
Input: NBi; NBj,∀n j ∈ NBi

1 Function ExecPSO():
2 forall paw ∈ PA do
3 forall n j ∈ NBi do
4 if w = 1 then
5 papos

w, j ← ˙⃗p(ni,n j),k

6 else
7 papos

w, j ←
〈
rnd(x j

min,x
j
max),rnd(y

j
min,y

j
max)

〉
8 end
9 pavel

w, j← rnd(vmin,vmax)

10 end
11 palocw

← paw
12 end
13 for ite = 1; ite≤ itePSO; ite++ do
14 forall paw ∈ PA do
15 forall n j ∈ NBi do
16 pavel

w, j← ω ·pavel
w, j+

17 +cloc ·rnd(0,1) ·
(

papos
locw, j−papos

w, j

)
+

18 +cglob ·rnd(0,1) ·
(

papos
globw, j

−papos
w, j

)
19 papos

w, j ← papos
w, j +pavel

w, j

20 checkIfOutside(papos
w, j)

21 end
22 palocw

← argminpaz∈{paw,palocw}
L (paz)

23 end
24 PAloc←

⋃
paw∈PA palocw

25 paglob← argminpaz∈PAloc∪{paglob}L (paz)

26 end
27 forall n j ∈ NBi do
28 ˙⃗p(ni,n j),k← papos

glob, j

29 end
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Fig. 5.7 The w-th particle definition in the PSO algorithm.

search space of the particles is defined by the variables x j
min, x j

max, y j
min, and y j

max. We define
x j

max = y j
max = 2 · ˙distk(ni,n j) and x j

min = y j
min = −2 · ˙distk(ni,n j), while the rnd function

returns a random number within the range passed as input. Similarly, the particle’s velocity
is randomly initialized (line 9) within the range vmin and vmax. The algorithm keeps track of
the the best local candidate solution (visited by particle palocw

) and also of the best global
candidate solution (visited by particle paglob). The space exploration is performed within the
main loop which is executed for a number of itePSO iterations (lines 13-26). At each iteration,
the particle’s position and velocity are updated (lines 15-21) and then, the best and local
candidates are also updated in line 22 and line 25, respectively. Finally, the paglob is returned
as the final result (line 28). The velocity update rule is defined as in [79]: ω indicates the
inertia weight factor; cloc and cglob quantifies the attraction force toward the local and global
best values, respectively. The overall rationale is that each particle has its own velocity
and hence its inertial force, but it is still attracted by the local and global optimal solutions
discovered so far. The randomness factor enforces the space exploration; to this purpose, the
checkIfOutside function ensures that the candidate positions lie within the search space
defined by x j

min, x j
max, y j

min, and y j
max.

The PSO loss is modeled by the L (paz) function, which is executed on node ni ∈ N at time
slot tk and is defined as follows:

L (paz) = ∑
n j∈NBi

(
|papos

z, j − ˙⃗p(ni,n j),k|
2 (5.25)

+
(
|papos

z, j |− ˙distk(ni,n j)
)2

+ ∑
nq∈NBi
[nq ̸=n j,

n j∈NBq]

(
|papos

z,q −papos
z, j |− ˙distk(nq,n j)

)2
)

Here, the second row computes the positioning error of node n j with respect to the local
distance estimation ˙distk(ni,n j), whereas the third line computes the positioning error with
respect to the estimations produced by the other neighbours of ni. It is worth highlighting
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that the optimal solutions might be infinite since the loss function takes into account only
the nodes’ distances; hence, given an optimal solution, a new one can be produced by a
simple rotation. To avoid the problem, we used as fixed anchor the previous relative position
estimation of node n j (described in the first row of Equation (5.25)).

Computational Complexity

The computational complexity of the PSO technique is dominated by the main loop over the
particles. i.e. by lines 13-26 of Algorithm 4. Here, three additional, consecutive loops are
executed for the particles’ updates: the first is bound by the number of iterations itePSO; the
second goes over all the particles; the third visits all the node neighbours, i.e. O(|N|). Hence,
we can state that CC(Algorithm4) = O(itePSO ·Npa · |N|).

5.4 Performance Evaluation

In this Section, we evaluate the system performance of the ELAPSE framework by a twofold
evaluation. First, in Section 5.1, we investigate the swarm creation and management for the
aerial coverage of large-scale, disaster areas by means of extensive OMNeT++ simulations.
Then, we focus the attention on selected components of our framework (e.g. the QoS support),
and demonstrate their effectiveness through a small-case testbed composed of autonomous
ground robots.

5.4.1 OMNeT++ Simulations

We modelled the scenario characteristics and the wireless communications on the AtA
and AtG links in OMNeT++, by creating new modules for the virtual-spring based swarm
mobility algorithms and the positioning techniques. Similarly, we modeled the position
of the Help Requesters via a Markov-Gaussian mobility model (to simulate the pedestrian
mobility), and of mobility of each Rescue Personnel via a Random-direction mobility
model (to simulate a search mobility around the scenario). Unless stated otherwise, we
used the following parameters: NU = 12, NH = 20, NR = 6, fa = 10 m, distmin = 10 m,
k(MtM) = 120, k(MtH) = 100, KT = 180, tdec = 3 s, tslot = 01 s, tbroadcast = 5, αAtA = 2,
αAtG = 2.6, σd = 5m, ttimeout = 50, ffactor = 0.85, tPSO = 20, NPA = 20, itePSO = 120, ω = 0.1,
cloc = cglob = 1.25. In the evaluation, we keep uniform the value of LBk

req(ni,n j) = LBreq =

12 dB.
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Relative Position Estimation

The first analysis investigates the performance of the GPS-free positioning techniques pro-
posed in Section 5.3, and more specifically the average accuracy of each node in estimating
the relative positions of its neighbours. To this aim, we compare the two methods described
in Section 5.3, i.e. the local-based and cooperative-based algorithms.
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Fig. 5.8 Average position estimation error when varying the number of UAVs NU .

Figure 5.8 shows the average neighbour position error when varying the number of
UAVs composing the swarm. As we can notice from the plot, the two methods follow
different trends, i.e. the average error increases with the number of UAVs for the local-based
algorithm while it decreases for the cooperative-based one. For the local-based solution, the
trend can be explained by the error accumulation; indeed, each local neighbour estimation
introduces some positioning errors, which impact the computation of the resultant spring
force in Equation 5.17 and hence the (wrong) positioning of the node. The spring direction
error will clearly increase when considering more forces, i.e. when increasing the UAV
density. Vice versa the cooperative-based algorithm exploits the neighborhood information
in order to select the next position of each neighbour, between the speed-based and a RSS-
based estimations (the ChooseCoop function of Algorithm 2). The higher is the number of
neighbors, the higher becomes the probability to remove potential outliers. Figure 5.8 shows
that the error is in the order of a tens of meters, which is still quite high in absolute way,
however tolerable in relative way when compared with the average node distance which is in
the order of 300 meters.

Figure 5.9 highlights the impact of the different building blocks of Figure 5.3 on the
final position error of the cooperative-based algorithm. We can see that the error filter
and the optimizer blocks introduce higher performance gains with low number of UAVs
(e.g. NU ≤ 10), since the neighbour estimation module has more uncertainty regarding the
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scenario. For the same reason, the impact of the two blocks is reduced when increasing the
number of UAVs.
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Fig. 5.10 Relative angle estimation error over the number of UAVs NU .

The same trend of Figure 5.8 is confirmed by Figure 5.10 which shows the angle/direction
error of the positioning techniques. Again, the cooperative-based algorithm overcomes the
local-based and it improves its performance with increasing densities of UAVs.

Finally, we analyze the capability of the proposed algorithms to cope with noisy distance
estimations; to this purpose, in Section 5.3, we introduced the σd parameter which models
the error on the RSS-based distance estimator. Figure 5.11 shows the average position
errors when varying the σd values on the x-axis. As expected, both the single-based and the
cooperative-based algorithm degrade their performance when increasing the error on the
input. However, while the error for the single-based almost triple from σd=0 to σd=20, the
increase is limited to few meters for the cooperative-based algorithm. This result confirms
the robustness of the proposed technique also over noisy channels.
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Fig. 5.11 Position estimation error when varying the distance estimation noise σd .

Scenario Coverage

In this analysis, we investigate the ability of the swarm mobility model of Section 5.2 to
provide multi-hop connectivity among the MGNs, and the impact caused by the positioning
algorithms on the overall coverage. It is worth reminding that the connections among
ground/aerial nodes, and the mobility of the UAVs are both governed by the abstraction of
virtual spring forces. Obviously, the higher is the accuracy in estimating the nodes’ positions,
the higher is the ability to create a connected aerial mesh network and to discover the ground
nodes.
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Fig. 5.12 Percentage of covered help requesters when varying the number of UAVs NU .

Figure 5.12 shows the percentage of the help requesters covered by at least one UAV. As
in the previous Section, we considered the local-based and cooperative-based algorithms,
and compared them against a reference GPS-based solution where all the UAVs are equipped
with a geo-localization device (also, assumed error-free). Clearly, the latter constitutes an
upper bound on the system performance. It is easy to notice that the coverage percentage
increases with the number of UAVs and that the cooperative-based algorithm approaches the
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Fig. 5.13 Number of UAVs cluster when varying the number of UAVs NU .

GPS-based one. Vice versa, the local-based seems to maximize the coverage when NU ≤ 6,
while its performance degrades quickly for larger values of UAVs due to the impact of the
positioning errors on the configuration of the virtual springs. A better insight on this analysis
is provided by Figure 5.13 which shows the average number of UAV isolated clusters created
during the simulation. The aerial mesh connectivity is a constraint of our problem (Equation
5.5), and it is always met by the GPS-based and cooperative-based algorithms. Vice versa,
for the local-based algorithm, isolated clusters might occur due to AtA link breakages when
the number of UAVs -and hence the number of virtual forces acting on each node- is low.
Clearly, multiple, independent aerial mesh networks can cover larger areas than a single
swarm; this explains the higher performance of the local-based algorithm in Figure 5.12
for low UAV density values. At the same time, isolated clusters do not allow coordinated
emergency responses that involve all the ground nodes connected, and for this reason they
are considered as a goal of the ELAPSE framework.
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Figure 5.14 shows the coverage percentage when we vary the number of help requesters
NH while keeping constant the number of UAVs (NU = 12). Also in this case we can notice
that the cooperative-based algorithm performs very similar to the GPS-based system, and
that the performance gap reduces when increasing the number of NH . This result confirms the
ability of the our solution to maximally exploit the information exchanged by an increasing
number of cooperative nodes.

Aerial Network Deployment
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Fig. 5.15 Percentage of covered help requesters when varying the number of UAVs NU .
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Fig. 5.16 Percentage of time in which at least one rescue personnel is covered, when varying
the number of rescue personnel NR in the scenario.

The last analysis investigates the QoS support of the aerial mesh network, and the overall
multi-hop connectivity between the help requesters and the rescue teams, which is the final
goal of the ELAPSE deployment in emergency scenarios.
To this purpose, we compare the ELAPSE framework against two alternative solutions for
aerial mesh deployments: (i) a Fixed deployment, where the UAVs are placed according to a
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Fig. 5.18 A screenshot of an OMNeT++ simulation, showing the ability of the ELAPSE
framework to adapt its deployment to the ground mobility of the MGNs.

connected grid formation at the center of the scenario; (ii) Static formation where again a
specific grid formation is considered, however not anchored to static positions, i.e. the UAVs
can continuously move over the scenario. In both cases, the grid formation is designed in
order to guarantee a link budget value equal to LBref between each couple of neighbours
UAVs.
Figure 5.15 compares the three deployment methods in terms of coverage percentage of the
help requesters. We can notice that the ELAPSE framework greatly overcomes the other two
methods thanks to its flexibility, i.e. the possibility to dynamically adapt the UAV formation
(also assuming irregular shapes) based on the current location of the ground nodes; vice
versa the Fixed approach provides the worst performance due the limited exploration of the
scenario. A visual evidence of the self-organization capabilities of the ELAPSE framework is
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provided by Figure 5.18, which shows a screenshot of the OMNeT++ simulation; we can
notice the irregular formation of the self-configuring aerial mesh which is able to provide
global coverage of the MGNs.
Figure 5.16 further analyzes the dual coverage metric, this time in terms of rescue personnel
connected to the UAVs. More specifically, we plot on the y axis the percentage of time-
slots in which at least one rescue personnel is connected to the aerial mesh, while on the
x axis we vary the number of rescue personnel available within the scenario. We notice
that the constraint is not always satisfied over time by the Fixed and the Static formation
methods, while it is always satisfied by the ELAPSE framework through the MtG virtual
spring mechanism. Considering this result in conjunction with Figures 5.13 and 5.14, we
can conclude that the ELAPSE framework is able to support rescue operations in an effective
manner, by guaranteeing end-to-end connectivity among isolated help requesters and rescue
personnel.
Finally, in Figure 5.17 we analyze the average link budget available on each communication
link (here LBref = 12 dB). We can notice that both the Fixed and the Static formation methods
do not guarantee the QoS on the communication links. Indeed, despite the fact that -by
construction- the UAVs are placed in order to meet the requested link budget, i.e. LBref, the
AtG links might experience much lower values. Vice versa, the ELAPSE framework, by
taking into account the LBref value inside the virtual spring Equation, is able to guarantee
uniform link qualities on both AtA and AtG links, and to meet the QoS constraint on almost
all the UAV configurations.

5.4.2 Ground vehicle Test-Bed

UGVHR RP

Fig. 5.19 The test-bed scenario with the ground robot.

We further characterized the performance of selected components of the ELAPSE frame-
work through a small-case testbed. More in details, we consider the experimental setup
depicted in Figure 5.19. Here we consider one help requester (on the left), one rescuer (on
the right) and one autonomous Unmanned Ground Vehicle (UGV), which must move within
the scenario, discover the nodes, and control its own position in order to provide QoS-aware
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end-to-end connectivity among the two end-points. To this purpose, the MGN nodes are
constituted by two Bluetooth Low Energy (BLE) devices, periodically broadcasting HELLO
messages with the payload defined in Section 5.20. Beside the wireless link differences in
comparison with the aerial vehicles, the UGVs will be able to test the core of the ELAPSE
framework, i.e. the swarm mobility algorithm and the positioning technique.

Fig. 5.20 The UGV used in our test-bed

The UGV is the ground robot depicted in Figure 5.20, equipped with the hardware below:
(i) a Raspberry PI (model 3B+) board, which embeds the overall UGV controller, including
the spring algorithm, the positioning technique (in this case, the UGV attempts to estimate
the position of the two BLE devices), the sensor data acquisition and the wireless communi-
cations; (ii) an IMU, model GY-88, including accelerometer, gyroscope and magnetometer
sensors used for speed computation and direction estimation; (iii) a NodeMCU microcon-
troller, used for the sensor data acquisition; (iv) two 2.4 GHz radio interfaces (embedded
within the Raspberry board) for the wireless communications, i.e. BLE to communicate
with the two MGNs and Wi-Fi to communicate with a laptop used for statistics collection.
We performed the tests on an outdoor scenario, with a distance of 8.5 meters between the
two MGNs, assumed static. The software has been implemented using the Johnny-Five2

framework, which communicates with NodeMCU via the Firmata protocol. The software
components have been dockerized and deployed on the BalenaCloud3, a container-based
platform for IoT applications.

First, we estimated the path-loss model, which is used to calibrate the RSS-based distance
estimation (from the BLE signal), and more specifically the αGtG and κGtG parameters of
Section 5.1.3. We highlight that the goal here is slightly different from the original problem
since we are not considering aerial network deployments, hence the path loss refers to

2https://github.com/rwaldron/johnny-five
3https://www.balena.io/cloud/
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Ground-to-Ground (GtG) links. We collected a consistent set of BLE samples at different
real distances, denoted as points in Figure 5.21. The path-loss estimation, i.e. the fitting line
in the curve, is computed as follows:

PL(d) = 10 ·2.046 · log10(d)+64.4 (5.26)
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Fig. 5.22 In Figure 5.22a the UGV reaching the best spot between the two BLE anchors A
and B and Figure 5.22b shows the measured Link Budget (LB) values over time on the two
GtG links

In Figure 5.22b we demonstrate the QoS support offered by the virtual spring mechanism
described in Section 5.2. Specifically, we consider a situation where LBref=15 dB. On the
graph we depict the LB values on the wireless links, i.e. from the help requester to the UGV
(purple line) and from the rescue personnel to the UGV (green line). The UGV is initially
placed at a random position of the scenario, but closer to the rescuer node. It is easy to notice
that the UGV progressively adjusts its 2D position over time in order to balance the LB on
both links; this corresponds more or less to the central position between the MGNs. After
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300 seconds, both the LB values converge to the requested threshold, and hence the UGV
achieves a stable position.

Number of received beacons Error ratio
5 1.78

15 1.73
20 1.67
25 1.08

Table 5.1 Positioning Error Ratio with respect to the number of HELLO messages received by
the UGV.

We conclude the analysis by investigating the relationship between the number of HELLO
messages received by the UGV and the accuracy of the neighbour estimator. We consider the
cooperative-based algorithm, executed by UGV in order to estimate the relative position of
the each MGN. In the table below, the error is computed as the ratio between the average
positioning error (i.e. the difference between the real position of a MGN and the estimation
computed by the UGV) and the actual distance among the nodes. It is easy to notice that
the error ratio decreases considerably with the number of received updates, i.e. the more
the UGV moves within the scenario, the higher is the accuracy of the neighbors’ knowledge
acquired by the UGV.





Chapter 6

Uhura: enabling hybrid mesh networking

Chapter 3 identified the third objective of this thesis as investigating hybrid scenarios with air-
to-ground communication links between the ground and aerial WMSN meshes. In Chapters 4
and 5, we presented our contributions to addressing this objective, including the development
of ground and aerial WMSN solutions, as well as a novel swarm mobility algorithm called
ECLIPSE. In this chapter, we investigate the integration of the ground and aerial network
segments previously described using the Uhura, a novel software framework that facilitates
communication within an aerial swarm and between the swarm and ground devices.

As discussed in Chapter 3, the Uhura framework was designed and implemented to meet
the four requirements of this thesis. Specifically, the Uhura Adapter and Uhura Core modules
meet the Device Heterogeneity and Adaptive QoS Management requirements, respectively, by
enabling multiple stack M2M communication in an agnostic way. Additionally, we describe
two relevant modules of the Uhura core architecture in this chapter. The Service Discovery
System meets the Scalability requirement by enabling efficient discovery and utilization of
services within the hybrid network, while the Autonomic Faulty Node Replacement module
meets the Reliability requirement by enabling the detection and replacement of faulty nodes
in the network.

Overall, this chapter presents our work on integrating the ground and aerial WMSN
segments using the Uhura framework, including our implementation details, evaluation of
performance, and potential applications.

Introduction

Thanks to the recent advances in technology and to the decreasing cost of hardware solutions,
in the last decade, the use of robotic swarms increased exponentially. Swarm behaviors offer
scalability and robustness to failure which is often ensured by decentralized and distributed
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design methodologies. However, such approaches usually rely on local interactions that
have somehow to be assured by the underlying communication technologies installed on the
platform [80].

For instance, drone shows are the most well-known displays of swarming technologies
among the many applications. These are also the most impressive, with 1,824 unmanned
aerial vehicles at the Tokyo Olympics and a record-breaking show that involved up to 3,281
in a show set up by a famous luxury car retailer [81]. Despite the impressive numbers, as
reported in Coppola et al. [82], these demonstrations lack of the decentralized and distributed
properties of swarm robotics approaches and, in most cases, rely on traditional communi-
cation technologies. In particular, broadcast mechanisms have often been employed in the
more classic swarm robotics to cope with the devices’ limited computational/networking
capabilities [83]. Although many different solutions can be found in the literature, they
are mainly constrained to only one specific wireless technology: this is the case of simple
flooding mechanisms [84], Geo-Aware flooding approaches [85] and synchronous flooding
over IEEE 802.15 standard [86].
However, the trend is changing due to the new possibilities and challenges posed by the
growth of the Internet of Things (IoT). On the one side, new services and applications of
swarm robotics demand the possibility to communicate with ground IoT devices, hence
imposing the need for different wireless technologies on the ground-to-grand ground-to-air
and air-to-air links. On the other side, several Machine-to-Machine (M2M) communications
stacks are nowadays available on the market [7] with different Quality of Service (QoS)
support in terms of range, bandwidth, and energy consumption; this may pose formidable
challenges for the technology integration but may also constitute a boosting factor for robotic
mesh development.
In this work, we move away from the single technology scenario by investigating hetero-
geneous robotic networks composed of swarms of Unmanned Aerial Networks (UAVs) or
Ground vehicles (UGVs) interacting with each other and with ground IoT devices. To this
aim, we present Uhura, a novel software framework that enables communication within the
swarm and from the swarm to the IoT in an M2M agnostic way. Indeed, a Uhura node can be
equipped with multiple M2M stacks and can manage them through the abstraction of Uhura
Adapter. In addition, the Uhura Core module allows dynamic selection of the best adapter to
use on each link of the swarm based on the QoS requirements of the application. The chapter
is structured as follows. Section 6.1 introduces the architecture and main components of
the Uhura framework. Section 6.3 provides few details about the implementation. Section
6.2 illustrates three generic use-cases of the Uhura framework. Experimental setup and
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results are presented in Section 6.4. Finally, Section 6.6 shows a Service Discovery System
implemented over Uhura Framework.

6.1 Software Architecture

Communication technologies play a key role in the deployment of swarm robotic networks.
Although most of the existing testbeds reported in the literature employ the WiFi either
in single-hop centralized or multi-hop mesh modes for performance and easiness of setup
reasons [80], an incredible number of Machine to Machine (M2M) communication technolo-
gies are available on the market, also as a consequence of the explosion of the Internet of
Things (IoT) devices [7]. Integrating such low-power devices with the robotic swarms may be
challenging and require using different technologies on the sensor-to-robot and robot-to-robot
links. Similarly, multi-technology swarm robotic networks are gaining progressive interest
due to the possibility of supporting Quality of Service (QoS) requirements by introducing per-
link technology differentiation and/or completely separating the data and control planes [87].
Here the Uhura framework comes to play: it provides functionalities to deploy integrated
robotic systems composed of UAV, UGV, and ground sensors in a communication-agnostic
way. More specifically, the framework includes the concept of Uhura Adapter as a software
module aimed to enable message exchange with a specific M2M technology. Our platform
is easily extensible, and new modules can be easily integrated in order to support other
technologies by implementing a common API. In addition, the Uhura framework allows
monitoring of the network performance of each active adapter towards a neighbor node. It
dynamically selects the one to use for message transmission/reception, so that (i) per-link
QoS requirements are continuously met and/or (ii) robustness of communication is increased
by switching from one adapter to another in case of wireless link failure.

Fig. 6.1 Uhura high level layered architecture
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The high-level layered architecture of Uhura is depicted in 6.1; it shows four layers
starting from the Network layer that includes the multiple instances of Uhura Adapter
running for each M2M technology, then Core Communication layer where Uhura Core
taking his place and eventually new core modules can be added in the future. The Service
Layer composed of two components, Discovery and Gateway, largely described in Section 6.6
that enables, as names suggest, a service deploy and discovery system for Uhura; lastly,
the Application Layer specify the messages to send over the Uhura Network and accept
the incoming ones. It is important to highlight that not all of the layers are mandatory:
Sometimes, if only one adapter is running, the Network Layer can communicate directly with
the Application Layer without the other two layers. Overall, the resource-consuming, in terms
of network performances, and optional is the Service Layer since it leverages the abstraction
of the network to a level that sometimes is too overstructured for robotic scenarios.

The logic architecture of Uhura framework is depicted in Figure 6.2. Internally, it relies
on a publish/subscribe paradigm between each Uhura Adapter and a central module called
Uhura Core. The latter is the entry point for the upper layer applications (called generic
application modules in the Figure) that need to receive/send data to other nodes of the swarm
or the integrated IoT robotic system. A generic application module can request for a new
message to be sent by publishing its message on the topic send_bits_string_data (binary
data) or the topic send_string_data (string data). Similarly, it can receive messages by
subscribing to topics received_bits_string_data or received_string_data. Under
the hood, the core is in charge of selecting the available adapters to transmit the message
on every single hop of the path toward the destination; this is implemented by employing
another dedicated topic that each adapter has previously subscribed for outgoing and incoming
technology-specific data. In the following, we detail the operations of the Uhura Core and
Uhura Adapters.

6.1.1 Uhura Core

The Uhura Core is in charge of handling all the communication requests from a generic,
upper-layer application and selecting -in a dynamic way- the most suitable adapter to use
for the data transfer. Similarly, on the reverse channel, the module receives data from the
adapters and forwards a parsed version of them to the generic application on top. To this aim,
the Uhura Core has been designed with a modular architecture as depicted in Figure 6.3.

Its five modules are:

• Message Handler: The Uhura Core introduces a structured message format including
the payload, type, timestamps, destination, and other metadata useful for the Router
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Fig. 6.2 Uhura publish/subscribe architecture

Fig. 6.3 Uhura Core architecture

Module. The metadata is added to each outgoing message received from the generic
application module; each message generated in this way is then transmitted to the
Router Module.

• Router Module: The module is in charge of determining the end-to-end path towards
the Uhura destination. To this purpose, we assume that each Uhura node is assigned
to a unique identifier. The module receives the list of active neighbors from each



84 Uhura: enabling hybrid mesh networking

Fig. 6.4 The operations of the Uhura Core components on a simplified network robotic scenario with
5 Nodes. Node 1 is the source; Node 5 is the destination; all nodes are provided with a single adapter
except for Node 2 and Node 5. The Routing Module (Figure in the center) establishes two different
paths. The QoS Module (Figure on the right) takes into account the average throughput on each link
and selects Path 2 since it maximizes the performance on the bottleneck link.

Uhura Adapter. It runs a routing algorithm to discover single or multiple paths toward
the destination, as depicted in Figure 6.4. Note that a path can be composed of links
mapped to different Uhura Adapters. In addition, the module collects QoS statistics
for each link provided by the Channel Manager described later in Section 6.1.2.

• Device Registry: Each adapter during its startup must register itself to the Uhura
Core through the Devices Registry. The module stores a list of available devices and
their tech-specific addresses. In addition, it keeps the current status of the adapters by
collecting periodic feedback about their operations.

• QoS Module: The QoS module receives the list of paths towards the Uhura destination,
which the Router Module has computed. Then, it selects the most suitable path
according to the QoS requirement of the generic application. Multiple policies can be
used at this stage. For the case of Figure 6.4, the path with maximum throughput on the
bottleneck link is selected. In Section 6.4 we evaluate the Qos Module’s performance
for a multi-stack single-hop scenario where the policy is to maximize the network
reliability.

• Parser Module: The Parser is in charge of transforming generic data from an adapter
or a generic application into a valid Uhura message using an interface definition
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language(IDL)[88] like Protocol Buffers1 or OMG IDL2. Data generated in this
way can be quickly pushed and read if there is an intra-process system like ROS [89] or
NATS[90] able to process structured messages.

• Network Recovery Module enable an Autonomic Faulty Node Replacement system
for WSNs deploying UAVs to heal the network or increase the overall coverage and
reliability of the network. This module has a dedicated section 6.5 since was deeply
investigated and validated.

6.1.2 Uhura Adapter

The adapter wraps the device API of a specific antenna module (e.g., XBEE 900 pro or any
transmission module) and can receive an adapter-specific request from the core or directly
from an external source. Eventually, a generic application can invoke the adapter directly, e.g.,
to minimize the processing latency or to reduce the software layers on low-power devices,
but clearly lose all the advantages provided by the core component.

Figure 6.5 shows the component of each adapter, i.e.:

• Device API. It is the specific API of the antenna module attached to the host. This
module permits sending and receiving data in plain text or binary format and retrieves
all the information about the incoming packets (and all their metadata).

• SerDes (Serializer/Deserializer). As the name suggests, it performs data conversion
in order to optimize the payload. In addition, it adds a packets id field to the binary
payload with a fixed length in order to create a unique combination of id-host-timestamp
for each packet received The deserializer identifies the packet type and parses the
payload that the upper modules will use.

• Log Manager All packets transmitted/received are logged into a file created during
the adapter startup. The log has the same structure for all the Uhura Adapters so that
it can be easily processed and analyzed by external scripts, again regardless of the
specific M2M stack in use.

• Channel Manager. The module allows the computation of the QoS wireless link. To
this purpose, it periodically transmits heartbeat messages with its own Uhura-id to all
other available devices in a 1-hop neighborhood. The output is used by the Uhura
Core and specifically by the Routing and the QoS modules. we remark that the link

1https://developers.google.com/protocol-buffers
2https://www.omg.org/spec/IDL
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Fig. 6.5 Uhura Adapter layered architecture

performance estimation can be done with real traffic transmitted on that link as well
and that the heartbeat mechanism is used only in the absence of it.

• Network Simulator. This optional module is used if a new technology is available,
but the performance limits are unknown. To this aim, the module provides a collection
of basic configurable tests to simulate the channel traffic.

• Adapter Interface This interface implements all services and topics presented in the
software architecture overview. A Uhura Adapter must expose the topics and services
needed by the Uhura Core to send and receive parsed data. Moreover, it should provide
access to the Channel Manager for gathering information about the link performance.
As for the Log Manager, the adapter’s interface is uniform across all the M2M stack
supported.
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Fig. 6.6 Three use cases of the Uhura framework: the left side shows a small-scale UAV swarm
exchanging data by using two different adapters module based on type of the message. The subfigure
in the center shows an aerial swarm connecting two IoT gateways on the ground by exploiting two
different adapters on the air-to-ground link. The subfigure on the right shows a UAV acting as a
network bridge between a UGV and a satellite.

6.2 Use cases

The Uhura framework can be used on a wide set of scenarios. The most straightforward one
is when a single M2M technology is available on each device of the swarm. In this case, the
Uhura node can communicate by using the adapter of that technology without employing
the core. At the same time, the combined usage of multiple M2M technologies within the
same scenario can give more flexibility to the swarm deployment or may represent the only
solution to communicate with specific IoT devices, as mentioned in the Project Chapter.
we remark that Uhura supports multi-stack scenarios natively by hiding all the networking
details to the application layer, for which only the virtual Uhura network is visible. In the
following, we discuss three possible use-cases for the Uhura framework, also depicted in
Figure 6.6.

6.2.1 Multi M2M stacks swarm

In this use-case, a subset or all the nodes of the robotic swarm are equipped with multiple
M2M stacks. We assume that M2M stacks are used concurrently but for different applications
by taking into account both their QoS requirements and the characteristics of each wireless
technology. In the example of Figure 6.6, the swarm uses two Uhura Adapters. The Blue
adapter is used to broadcast position messages, while the Red adapter is used to exchange
telemetry messages about the UAV. we consider position data critical for swarm maintenance;
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for these reasons, they should be sent as soon as possible with a stable connection. The
Uhura Core would select the best adapter available in terms of packet delivery ratio. Vice
versa, the telemetry application uses the less reliable channel since packet losses are not as
critical as in the previous case.

6.2.2 Swarm connecting multiple base stations

In this scenario, the swarm must collect data from multiple IoT gateways that are mapped
to different M2M technologies. Differently from the previous case, only a few UAVs need
to support multiple adapters (only one in the Figure), while the rest of the swarm can use a
single adapter for intra-mesh communications.

6.2.3 Network bridging

Similarly to the previous case, a node of the swarm acts as a bridge across multiple M2M
stacks and enables communication from other nodes of the swarm. Specifically, in Figure 6.6
the swarm is composed of one UAV and one UGV. The UAV supports two Uhura Adapters,
one for the UGV link and the other for the satellite link. Thanks to the Routing Module of
the Uhura Core, the UGV can exchange data on the satellite link via the UAV node.

6.3 Implementation

As mentioned in the previous Section, the Uhura architecture is based on a publish/subscribe
environment provided by the host. In our case, we implemented and tested a preliminary
version of the Uhura framework using ROS Noetic3 as an intra-process communication
enabler: although designed for robotic scenarios, it can be used as a standalone framework on
every application. Since the ROS community moved to its second version, ROS2, we decided
to use NATS as intra-process communication in combination with Protocol Buffer as IDL
for the current Alpha Version. This decision was made to expand the possibility of writing
new adapters taking into account the numerous implementation of the NATS client.

6.3.1 Uhura Core

The Uhura Core is a NodeJs [91] application. The current implementation includes a subset
of the modules presented in Section 6.1. More specifically, it supports the registration of a
Uhura Adapter and the message input/output to/from all the network transceivers available

3http://wiki.ros.org/noetic
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on the host. The Router Module supports only single-hop communication while the QoS
Module implements a policy so that it switches to a different Uhura Adapter in case the
Channel Manager reports errors or a high number of packet loss. In addition, it supports
multiple active network connections at the same time.

6.3.2 Uhura Adapter

Each adapter is a NodeJs application written with the specific API device language. At
present, we implemented three adapters, one for XBee 900 pro from Digimesh, one for BLE
Mesh[92] using a nordic nRF52840 DK, and one for NATS over TCP/IP.

Uhura Adapter XBee

The adapter for XBee has been implemented in Python3 thanks to the Device API provided
by Digimesh. It supports dedicated “udev” rules for its devices to bind the port. For example,
a device XBee can be found in the list as uhura_XBEE_DEVICE_n. The adapter works with
the antenna’s standard version and the programmable version.

Uhura Adapter bleshjs

The adapter communicates with custom firmware using BLE Mesh SDK flashed on an
nrf52840 called Blesh. If provisioned in a proper way, it can exchange plain text messages
thanks to a vendor model implemented on it. The firmware can be interfaced with the Nodejs
package called bleshjs4; so the adapter is a NodeJS process.

Uhura Adapter NATS

This adapter allows the exchange of messages using a NATS cluster. Basically, two or more
Uhura Nodes in the same TCP/IP network, like WiFi, are servers of the same NATS cluster.
This is an improved Socket TCP/IP communication version since NATS handles all the
high-level networking aspects. In this case, there is no serialize/deserialize phase because
the core itself uses the same system and data structure. In case clustering is not possible, the
Socket basic version is used. Real-world experiments were performed using a multi-rotor
system developed by the company Fly4Future and running the open source software stack
release by the Multi-robot Systems Group at the Czech Technical University in Prague [93]
and called MRS System (MRS450). Regarding the hardware, we used the UAV of Figure 6.7
consisting of a DJI f450 frame with four rotors, a Pixhawk4 autopilot, and an Intel NUC

4https://www.npmjs.com/package/@patonz/bleshjs
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Fig. 6.7 UAV equipped with XBee 900 pro, nRF52840 and a NUC Intel

companion board for controlling the mission flow and running the Uhura framework. In
addition, we employed sensors such as a rangefinder for height above ground estimation,
a GPS module for self-localization in the test arena, and two wireless radio transceivers
mounted on the UAV: a Nordic nRF52840 board with BLESH firmware and a DigiXbee 900
pro for RF 900Mhz communication.

Fig. 6.8 A schematic view of the quality of all the wireless links available on UAV1.
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Fig. 6.9 The QoS of the links over time for UAV1

Fig. 6.10 Double Connection experiment: during the first part of the experiment, the Bluetooth
connection is active and used, while the sub-GHz link is active during the second part.
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6.4 Validation and Experimental Results

we validated the operations of the Uhura framework through two studies: i) a test bed using
a UAV swarm where each drone is equipped with only one wireless interface/adapter, and ii)
a test bed using a single drone and a ground gateway where both the devices are equipped
with two different wireless interfaces/adapters. The studies allow me to evaluate different
functionalities and components of the Uhura framework. The first test described more in
detail in Section 6.4.1, shows the framework’s capability, specifically of the Channel Manager
module, to collect and analyze the performance metrics related to the network quality of the
available adapters. The second test, detailed in Section 6.4.2, investigates the operations of
the QoS Module described in Section 6.1 and its ability to select the best adapter based on a
desired policy.
The experiments have been performed by using the aerial hardware/software platform de-
scribed in Section 6.3.

6.4.1 Uhura Channel Manager

In this test, we considered a swarm composed of 9 UAVs, {UAV1,UAV2, . . . ,UAV9}, whose
task is to fly while keeping a predefined static formation. The rationale of the formation
algorithm is not the focus of this test; rather, we investigate the ability of each drone to
monitor the available connections in order to take relative actions based on the QoS of
the links. Regarding the communication workload, the formation algorithm relies on a
continuous exchange of 1-hop broadcast messages of HELLO packets that contain, among
other fields, the position information used for the UAV’s movements. The message’s size
is 20bytes; a new message is broadcasted every 200ms. As described in Section 6.1, the
Channel Manager module plays an important role in monitoring the QoS on each available
Uhura Adapter. In this experiment, we focused on the throughput index to monitor the
quality of the connections between each pair of neighbor UAVs.
Figure 6.8 depicts an example of connection monitoring for UAV1 while flying in formation.
Shows that the UAV has eight links representing the wireless connections with the other
UAVs belonging to the swarm. For each link, we report a snapshot of the actual QoS, i.e., the
throughput expressed in bps. Here, UAV1 has good connections with all the UAVs except for
the UAV2. For the same flying experiment, Figure 6.9 shows the QoS of the eight links over
time. Due to flight maneuvers inside the swarm, it is possible to notice a high throughput
variation for the link UAV1↔ UAV2. Here is possible to see how the application algorithm has
all the information needed to monitor all the connections. After 60sec of flying, we notice
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that the formation algorithm was able to improve the total amount of throughput for UAV1,
while, on the contrary, the connection UAV1↔ UAV2 is getting worse.

6.4.2 Uhura QoS Module

In this second experiment, we analyze the QoS module’s operations capable of orchestrating
the presence of multiple Uhura Adapters. The testbed is composed of one UAV and one
ground gateway (GW). Both devices are equipped with two network interfaces: the sub-GHz
and the Bluetooth Mesh. After the take-off, the experiment works as follows: the UAV
moves toward the GW. As soon as the Bluetooth Mesh connection is activated, the GW starts
sending the sensor data to the UAV. If the connection becomes unstable, the transmission
switches to the sub-GHz technology that works as a backup link. The rationale behind this
test is the emulation of an application scenario where multiple ground sensors, and one UAV,
are connected through the Bluetooth Mesh network technology. In such an environment, the
UAV serves as a data mule, i.e., it flies over all the ground sensors in order to collect all the
data through the Bluetooth Mesh links. Here, a subset of ground sensors acts as gateways to
send data to the UAV. Due to the high speed of the UAV and the short-range connectivity of
the Bluetooth links, we envision the possibility of adding long-range communication - like
the sub-GHz technology - on both the UAV and all (or a subset of) GWs. As a result, the
long-range communication will serve as a backup channel in case the data transmissions on
the Bluetooth link become unstable or unavailable due to the UAV movements.
The key role in this experiment is the QoS Module of the Uhura framework that decides
which adapter to use if multiple connections are available. The adopted policy for this
experiment is described by the pseudo-code in Algorithm 5.

Algorithm 5: Policy adopted by the QoS Module
input : i1, i2, thr
output :out

1 out← i1;
2 if QoS(i1) < thr and QoS(i2) ≥ thr then
3 out← i2;
4 end
5 return out;

Here, i1 is the Bluetooth Mesh interface, and i2 is the sub-GHz one. QoS is the function
that calculates the actual quality index of the specific interface. In this test, we used the
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Packet Delivery Ratio (PDR) as the channel index to evaluate the channel reliability. we put
as an example a quality threshold (thr = 0.8) in the experiment to decide when to switch to
the backup interface.
The experiment results are depicted in Figure 6.10. Here, the blue line indicates the Bluetooth
connection, while the red indicates the sub-GHz link. Moreover, the dashed lines indicate
the control packets’ PDR, whereas the continuous line indicates the data packet’s PDR. As
explained in Section 6.1, the Uhura framework provides a heartbeat control message to track
each adapter’s QoS continuously. The Channel Manager uses these control messages to
monitor the available interfaces when no data is transmitted on them.

It is possible to notice that, on the left part of the Figure, the PDR of Bluetooth increases
as a consequence of the connection establishment process. When the UAV is close to the GW,
the PDR is above the thr, and hence the transmission continues using the Bluetooth Mesh
adapter. As soon as the UAV moves out from the Bluetooth range, the PDR drops below the
threshold value (see around the second 70). At this point, the QoS Module triggers the policy
action and activates the backup connection over the sub-GHz channel. We can see that the
quality of the Bluetooth link does not improve anymore; hence the wireless transmission
completes at a second 130 by using the backup connection.

The dashed lines in Figure 6.10 show the PDR of the heartbeat message on both the
technologies, blue for Bluetooth and red for sub-GHz. These lines reveal the ability of the
framework to keep monitoring the idle interfaces to be prepared in case of need.

6.5 Autonomic Faulty Node Replacement

In this work, we delve into the application of Unmanned Aerial Vehicles (UAVs) in the field
of Wireless Sensor Networks (WSNs) for resilient communications. With the increasing
need for reliable data transmission in remote and inaccessible areas, UAVs can be used to
bridge the gap between ground-based sensor nodes, thereby increasing the overall coverage
and reliability of WSNs.

One of the major challenges in WSNs is the replacement of faulty nodes, which can occur
due to various factors such as battery exhaustion or physical damage. To address this issue,
we propose an autonomic replacement system for faulty nodes in UAV-assisted WSNs. The
proposed system utilizes a test-bed to simulate the replacement of faulty nodes in real-time,
and evaluate its performance.

To support the proposed system, we draw upon various studies and literature on the
Internet of Things, UAVs, and WSNs. For example, [94] presents an overview of the enabling
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technologies, protocols, and applications of the Internet of Things, while [95] explores the
use of UAVs for air quality sensing in smart cities. Additionally, [96] examines the data
collection mechanism of WSNs based on UAVs, and [97] investigates the use of UAVs for
energy consumption minimization in WSNs.

Furthermore, [98] provides a survey of medium access control protocols for UAV-aided
WSNs, [99] presents a case study on the use of UAVs for ultra-low-power monitoring
systems, [100] discusses the joint optimization of UAV trajectory, altitude, velocity, and
link scheduling for minimum mission time in UAV-aided data collection. Moreover, [101]
investigates the UAVs assisted network partition detection and connectivity restoration in
wireless sensor and actor networks, [72] explores the self-organizing aerial mesh networks
for emergency communication, [102] presents a placement learning for multi-UAV relaying
using Gibbs sampling approach and [103] studies the optimization of energy-latency trade-off
in sensor networks with controlled mobility.

Overall, this work presents a novel approach to addressing the challenges of faulty
node replacement in UAV-assisted WSNs and provides a comprehensive analysis of related
literature and studies.

6.5.1 Network Recovery Algorithm

The main envisioned scenario for UAV-assisted WSNs is where the sensors data is collected
by an elected cluster head (statically or dynamically selected among the network nodes) and
then offloaded to one or more UAVs physically transporting them to a remote server not
directly connected to the WSN [96]. In this work, we assume that the Uhura framework is in-
stalled on every device and that a sink node - statically selected among the ground devices - is
continuously collecting the sensory data from the WSN. Periodically, a UAV fleet, composed
of one or more UAVs, visits the WSN to gather the data from the sink node. During the WSN
lifetime, some sensors may run out of energy or just disconnect from the other peers due to
hardware failures. In such cases, multiple regions of the WSN could be disconnected due to
the multi-hop topology. Our proposal envisages that the sink node is in charge of detecting
the occurrence of a network partition and activating a recovery procedure; at the end of it,
faulty sensors are replaced with UAVs working as mobile routers. In the following, we detail
the recovery procedure running on the Recovery Module within the Uhura Core (Figure 6.11).

Let G0 = {S0,E0} be the overlay graph at deployment time, where S0 = {ssink,s1,s2, . . . ,sN}
is the set of N+1 deployed sensors, with ssink defined as the sink node, and E0 = {wi, j

0 |si,s j ∈
S0} is the set of weighted edges connecting the sensors. The edge weight wi, j

0 , with
0 < wi, j

0 ≤ 1, defines the quality of the network connection based on the Packet Delivery
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Fig. 6.11 The architecture of the Uhura framework with the Recovery Module.

Ratio (PDR). Such metric is periodically computed by the QoS Module of the Uhura Core.
We assume that the graph G0 is calculated, and then frozen, after the initial deployment of
the WSN.
We assume that at time t, a UAV fleet U = {u1,u2, . . . ,uM} of M UAVs, establishes a connec-
tion with the sink node s1 to download the sensory data. After completing the data transfer,
the sink node activates the recovery procedure from the Recovery Module in the Uhura Core.
The procedure includes the following steps (see Figure 6.12):

1. Calculate Gt = {St ,Et} as the actual overlay graph at time t, with St ⊆ S0. Let
GF = {SF ,EF} be the inactive graph where SF is the set of disconnected sensors, with
SF ∪St = S0, SF ∩St = /0, and EF ⊂ E0 are the arcs connecting only the inactive nodes.
If SF = /0 then ends the recovery procedure.

2. Calculate SC ⊆ St as the set of candidate inactive sensors to be replaced by a UAV:
s j ∈ SC only if ∃si ∈ St such that wi, j

0 ∈ E0, i.e., if the active sensor si at time t were
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Fig. 6.12 WSN scenario and the setup of the proposed network recovery strategy.

directly connected to the inactive sensors s j at deploy time. Here, let w j
0↔t be the

maximum edge weight from E0 connecting the inactive node s j ∈ SF with any sensor
in St .

3. For each s j ∈ SC calculate in GF the connected components set CC j to which s j belongs
to. We use a Breadth-First Search (BFS) graph visit starting from s j to determine the
connected components.

4. Select ŝ j ∈ SC as the chosen sensor to be replaced by the UAV, where ŝ j = argmaxs j∈SC |CC j|+
w j

0↔t . In case multiple sensors have the same connected components set size, we
choose the sensor with the maximum value of w j

0↔t .

5. Choose randomly one available UAV from the UAV fleet and send it to the ŝ j coordi-
nates in order to replace the operations of the inactive sensor. The target UAV will land
at that position and re-broadcast each received Uhura message on each adapter.

6. If at least one UAV is left, then iterate the procedure starting from point 1.

6.5.2 Performance Evaluation

we evaluated the proposed network recovery strategy in a small scale test-bed deployed at
the drone arena of the TII 5 (Technology Innovation Institute, Abu Dhabi). The test-bed
included one ground WSN and one drone. The ground network consisted of four Raspberry
PI 4 devices, each provided with a Nordic nRF52840 BLE interface with the Bluetooth mesh
stack. we created a multi-hop Bluetooth mesh WSN as depicted in Figure 6.15: nodes S1, S2

5https://www.tii.ae/
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and S3 transmitted periodic measurements towards the sink, with nodes S1 and S2 working
as mesh relay nodes. The drone was a DJI f450 frame with 4 rotors, a Pixhawk4 autopilot,
and an Intel NUC companion board. The sink node was connected via cable to a laptop
device which we used to collect the network logs and compute the performance metrics.
Both the drone and all the ground devices ran a local instance of Uhura with a BLE adapter6.

Fig. 6.13 PDR for each data flow between nodes S1, S2 and S3 and the ground sink before
and after the recovery procedure.

Balena Cloud7 was used to ease software deployment. In my experiments, we forced
the failure of node S1, which at time t=70 seconds disconnected from the WSN and stopped
sending its own and relayed messages towards the sink. As a result, the recovery procedure
was started, with the sink detecting the network partition at time t=95 seconds and issuing a
command to the UAV; the latter landed close to node S2 at time t=125 seconds (see Figure
6.13). The landing coordinates were hardcoded in the control software of the drone, leaving
the optimization of the mobile sink placement as future work. Figure 6.13 shows the PDR
computed at the sink node for the three different data flows originated from nodes S1, S2
and S3. The PDR was affected by the source node position: for this reason, S3 experienced
the lowest PDR before node S1 failure due to the two hop distance from the sink. After
node S1 failure (t=70 seconds), the data collection was completely disrupted for around 50
seconds; after t > 125 seconds, it was easy to notice that the data flows of nodes S2 and S3
were fully re-established and the PDR metric achieved similar results than before the node
failure. However, the message relay operations were now operated by the UAV landed on
the ground rather than by node S1. Figure 6.14 shows the Received Signal Strenght (RSS)
of the wireless link between nodes S1, S2, S3 and the UAV. It was easy to notice that the

6https://github.com/patonz/uhura/tree/main/src/lib/adapters/blesh
7https://www.balena.io/
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RSS values before and after the recovery procedure were similar, but with higher fluctuations
when the UAV relay was active. This was due to the different UAV antenna as well as the
varied channel conditions.

Fig. 6.14 RSS between each node and the UAV.

6.6 Distributed Service Discovery System

As Scalable requirement described in Section 3, we want to describe a Distributed Service
Discovery System created as Service Layer of Uhura. In this layer, novel features were
designed and implemented, allowing nodes to discover and execute custom services provided
by other peers in a Uhura Network. More specifically, it is a distributed service discovery
protocol designed for Robotic Systems-of-Systems, implemented and tested using the Uhura
Framework.

6.6.1 Scenario Model

we consider a generic RSoS scenario like the one depicted in Figure 6.15. The nodes compos-
ing the robotic swarm can be unmanned ground, aerial or marine vehicles, or a combination
of them; indeed, my solution can be implemented on different types of robots and has been
tested on the hybrid ground/aerial robotic scenarios as described in Section 6.6.4. we address
heterogeneous RSoS in which robots are provided with different M2M communication tech-
nologies; to ensure connectivity within the swarm, we assume that some robots are equipped
with multi-radio transceivers, as shown in Figure 6.15. The robot-to-robot interactions are
handled through the Uhura platform, which supports technology-agnostic data exchange
among the robots: assume Uhura platform to be installed on each robot, as further detailed in
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Fig. 6.15 Robotic scenario with heterogeneous Uhura nodes.

Section 6.6.4. Some nodes of the swarm may expose network services that can be requested
from the other peers; for instance, one robot with higher computational power and energy
autonomy may expose a service for ML-based object detection, which may be requested
from other robots with constrained computational capabilities. Without loss of generality,
we consider in this study two classes of services: (i) state-less functions, which take some
parameters in input and return some values in output (like the aforementioned classification
task) or (ii) property values, which return the current value of a readable variable (e.g., sensor
data) available at one robot. we investigate the case where services provided by one robot
may change at run-time due to varying conditions during the mission (e.g., a property value
change), triggering events, or software updates. The goal of the robotic service discovery is
to enable robot 1 of Figure 6.15 to be continuously updated about the services available on
robot 2 and other robots of the scenario. To this purpose, we highlight that the existing M2M
technologies differ in terms of supported range and throughput [104]; in some cases (e.g.,
BLE, XBee, LoRa), their network stack imposes strict constraints on the maximum size of
the communication frame. For this reason, our solution aims at enabling lightweight service
discovery by reducing both the latency and the network overhead in terms of the number of
messages and size of the latter.
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6.6.2 Proposed Protocol

We consider distributed service discovery, i.e., there is no centralized register, and every robot
keeps a Service Table (see Figure 6.15) that keeps track of the network services within the
swarm. Each entry of the Service Table is a triple: ⟨Node ID,Version,Service List⟩. Here,
the Node ID identifies the robot inside the Uhura network; the Version is the version number
of the services offered by the robot with Node ID, which represents an incremental counter
that keeps track of any change in the service list of the node it refers to; finally, Service
List contains the list of offered procedures, each with a name, input parameter(s), produced
output, and a short description. we assume that each service definition has a maximum size
equal to sservice byte. Let Version Table be the table made by the first two columns only, i.e.,
⟨Node ID,Version⟩, as highlighted in Figure 6.15.

The Service Table structure is updated according to Algorithm 6. Due to the lack of a
centralized controller, the aim of Algorithm 6 is to keep synchronized the Service Table of
all the robots of the RSoS via a gossiping technique. Sending the full Service Table to the
neighborhood in a periodic way would increase the network overhead drastically because:
(i) there may be unnecessary transmissions when robots are already synchronized; (ii) the
size of the messages may exceed the size of the maximum frame of the M2M technology in
use, hence requiring costly in-network fragmentation operations when supported. For this
reason, we introduce a hashing function hvt that generates the hash code of the Version Table.
This latter, in fact, contains the Service Counter, which represents an incremental counter
that keeps track of any change in the service list of the node it refers to. For this reason,
by comparing the hash code received from a peer with the local hash code, each robot can
understand whether a synchronization action is needed.



102 Uhura: enabling hybrid mesh networking

Algorithm 6: Service Discovery
Input: nodeID, dmax

1 Procedure ServiceManager
2 vt← initVersionTable();
3 st← initServiceTable();
4 version← 0;
5 hvt← hash(vt);

6 Procedure serviceRegistration_Delete_Update(serv)
7 version← version +1 vt← updateVersionTable(vt, nodeID, version) st←

updateServiceTable(st, nodeID, serv, version) hvt← hash(vt)
send_SYNC_BETTER(nodeID, dmax, [⟨ nodeID, version, servicesnodeID ⟩])

8 Procedure tCheckExpires
9 send_SYNC_CHECK(nodeID, dmax,hvt)

10 Procedure receiveSYNC_CHECK(rcvID, h′vt)
11 if h′vt ̸= hvt then
12 send_SYNC_INTEREST(nodeID, rcvID, vt)
13 end

14 Procedure receiveSYNC_INTEREST(rcvID, rcv_vt)
15 if rcv_sv ̸= sv then
16 worsevt← getMyWorse(rcv_vt, vt) lw← [ ] ;
17 forall ⟨id,v⟩ ∈ worsevt do
18 lw← lw + ⟨ id, v ⟩
19 end
20 send_SYNC_REQUEST(nodeID, rcvID, lw) bettervt← ;
21 getMyBetter(rcv_vt, vt) ;
22 lb← [ ] ;
23 forall ⟨id,v⟩ ∈ bettervt do
24 lb← lb + ⟨ id, v, servicesid ⟩
25 end
26 send_SYNC_BETTER(nodeID, rcvID, lb)

27 end

28 Procedure receiveSYNC_REQUEST(rcvID, l)
29 lb← [ ] ;
30 forall ⟨id,v⟩ ∈ l do
31 lb← lb + ⟨ id, v, servicesid ⟩
32 end
33 send_SYNC_BETTER(nodeID, rcvID, lb)

34 Procedure receiveSYNC_BETTER(rcvID, l)
35 forall ⟨id,v,servicesid⟩ ∈ l do
36 if v > get_version(vt, id) then
37 vt← updateVersionTable(vt, id, v) ;
38 st← updateServiceTable(st, id, v, servicesid) ;
39 hvt← hash(vt)

40 end
41 end
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The algorithm introduces four different control messages to manage the discovery task:
synccheck, syncinterest, syncrequest, and syncbetter. More in detail, we can split the operations
of Algorithm 6 into three phases. After the initialization phase (lines 1 - 5), the following
steps are executed:

• difference checking: every tcheck seconds, each node in the Uhura network broadcasts
the synccheck control message. The latter is re-broadcasted at dmax maximum hops
distance; if dmax = ∞, then the message will cover the whole network. If a robot is
provided with multiple M2M communication technologies and corresponding Uhura
Adapters (see Section 6.3), the message is broadcasted on all of them. The synccheck

message contains the hash value hvt of the Version Table (lines 8 - 9). Without loss
of generality, let A and B be two robots of the swarm. When robot B receives the
synccheck message from robot A, it checks whether its hash value hvt differs from the
received one. If so, the next phase is started.

• difference discovery: in case a difference in the Version Table is detected, robot B
sends the message syncinterest to robot A. The message contains the full Version Table
of robot B (lines 10 - 13).

• synchronization: after having received the syncinterest message from robot B, robot A
can check the differences between the local and received Version Table. Here, two
actions are taken: (i) for all services which are outdated (i.e., robot B holds a fresher
version), it requests an updated version from robot B by sending the syncrequest message
(lines 16 - 16 and 28 - 33); and (ii) for all services which are more up-to-date than robot
B, it sends their corresponding entries to B using the syncbetter message (lines 21 - 26).
The syncbetter message contains the entries of Service Table that are more up-to-date;
when robot B receives it, it updates the local Version Table by synchronizing the service
entries (lines 34 - 41).

Moreover, to speed up the synchronization procedure, when a node generates, updates, or
disables a local service, it advertises all other peers by broadcasting a syncbetter message
(lines 6 - 7). During this procedure, we can notice that the Version is incremented for any
kind of service list change: update, delete, or update (line 7).

6.6.3 Architecture & Implementation

One of the main advantages of this protocol is real testbeds realized thanks to Uhura. Thanks
to its modularity and scalable architecture, we defined and implemented two new modules
for the Service Discovery Protocol: Discovery and Gateway modules.
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Architecture

The Service Discovery and Service Gateway modules manage the services among the nodes
belonging to the Uhura network. Differently from other service discovery solutions, a
heterogeneous multi-radio robotic network is of paramount importance to minimize both the
overhead due to control messages and the time of service discovery. For this reason, we split
the service management into two different modules: Service Discovery, which is in charge of
the discovery and dissemination of the available services, and Service Gateway, which eases
the use of remote services. The extended architecture is depicted in Figure 6.16

Fig. 6.16 The Uhura architecture with the novel modules.

In particular, the Discovery module allows both the registration of a new service (or
the cancellation and update of a service) and the localization of the services available in
the network. More in detail, the Discovery module keeps a service table to store all the
available nodes in the network and their exposed services. An example is depicted in Table
6.1 that shows the Service Table that contains the network services organized in triples:
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Service Table
Version Table

Node ID Service Counter Service List
1 4 [services1]
2 6 [services2]

. . . . . . . . .

Table 6.1 The available services discovered. The full table is called Service Table, while the first two
columns specify the Service Vector

⟨Node ID,Service Counter,Service List⟩. Here, the Node ID identifies unequivocally the
node inside the Uhura network; the Service Counter specifies the versioning of the services
offered by the node Node ID, i.e., every time the node updates the offered services, it increases
the Service Counter value; finally, Service List contains the list of offered services. The latter
contains the list of all the exposed services containing its name, the input parameters, the
produced output, and its description. We assume that each service definition has size sservice

byte. Let Version Table be made by only the first two columns: ⟨Node ID,Service Counter⟩.

Implementation

The full architecture is implemented in the Uhura framework and can be deployed using
Docker8. Every robot of the swarm needs to install at least four local Uhura modules, i.e.:
the Core, at least one Adapter for the basic networking functionalities, and the Discovery and
Gateway modules to find and use the custom services offered by other robots. In the testbed
described in Section 6.6.4, we used the NATS Adapter and the BLE Adapter, both in Nodejs
v16.169. The Core is a Nodejs application orchestrating the adapters activated on a specific
robot.

Discovery and Gateway Both the modules are implemented in Typescript10, and they
define Services 6.6.3 and their procedures 6.6.3 according to Protobuff declarations. Also,
the API of these modules uses Protobuf as IDL and can be found in the public Uhura Github
repository 11.

Listing 6.1 Protocol Buffers message declaration of Service

8https://hub.docker.com/repository/docker/patonz/uhura
9https://nodejs.org/en/

10https://www.typescriptlang.org/
11https://github.com/hyperloris/uhura-discovery/tree/main/src/common/protos
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1 message Service {
2 string id = 1;
3 string name = 2;
4 string description = 3;
5 string nodeId = 4;
6 string modified = 5;
7 map <string , Procedure > procedures = 6;
8 }

Listing 6.2 Protocol Buffers message declaration of Procedure

1 message Procedure {
2 string type = 1;
3 string name = 2;
4 string description = 3;
5 bool reply = 4;
6 map <string , string > inputFields = 5;
7 map <string , string > outputFields = 6;
8 }

The Gateway handles all service requests using a ProcedureRequest proto-buffer mes-
sage 6.6.3. As the name suggests, inside this request, the client must indicate the remote
procedure name to call and the sender and receiver Uhura IDs. The module leverages the
Core API to send the encoded version of the proto-buffer to the Uhura destination. On the
receiver side, the Gateway module decodes each request and then invokes the procedure 6.6.3.

Listing 6.3 Protocol Buffers message declaration of ProcedureReq

1 message ProcedureReq {
2 string receiverUhuraId = 1;
3 string senderUhuraId = 2;
4 Procedure procedure = 3;
5 map <string , string > inputs = 4;
6 }

6.6.4 System Evaluation

This section evaluates the proposed framework using simulations and real test beds. In the
first case, we tested the algorithm presented in Section 6.6.2 by simulating a large-scale
environment with a variable number of mobile robots in a multi-hop ad-hoc topology. In
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Fig. 6.17 Figure shows the Overhead index by varying the dmax parameter.

Fig. 6.18 Figure shows the synchronization time of the robots during the execution time.

Fig. 6.19 Figure shows the Overhead index by varying Nr in the chain formation test-bed.
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Fig. 6.20 Figure shows the robots used for the test beds.

Fig. 6.21 Figure analyzes the FL application’s convergence time and accuracy.

Fig. 6.22 Figure shows the accuracy of the FL application in a multi-radio scenario.
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Fig. 6.23 Figure shows the Tsync index by varying Nr.

the second case, we considered different robot scenarios aimed to validate the operations of
the Discovery module and the multi-radio support in a FL use-case. More specifically, we
compared three different service discovery algorithms:

• Hash-based: this setup corresponds to Algorithm 6 presented in Section 6.6.2.

• Table-based: this is our implementation of the algorithm presented in [105]. Different
from our proposal, this method does not use any hash function. Hence, it broadcasts
the full Service Table to discover services’ dissimilarities among the robots of the
swarm.

• Periodic: this method is used as baseline and it consists of an algorithm that broadcasts
the full Service Table at dmax hops every tcheck seconds.

We compared the algorithms in terms of synchronization time and the network overhead
induced by the discovery process. The former is given by Tsync, which defines the time
elapsed between the starting of the service update procedure and the instant when all the
swarm robots have been synchronized. The latter is defined by the variable Overhead, which
specifies the network load in B/s caused by the service discovery task, i.e., the amount of
traffic constituted by control messages.

Simulated Large-scale Ad-Hoc Scenarios

Without loss of generality, we model a dynamic search and rescue application where the
swarm is used to explore an unknown scenario; depending on environmental conditions, each
robot can activate specific pre-loaded sensing or data processing services. To this aim, we
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Fig. 6.24 Figure shows the Overhead index by varying Nr.

Fig. 6.25 Figure shows the Tsync index by varying dmax.



6.6 Distributed Service Discovery System 111

assume that the swarm is made of Nr mobile robots exploring a map of 1 km×1 km. Robots
move at a constant speed of vr meters per second and are able to activate/deactivate a fixed
number of heterogeneous Ns network services. To simulate the dynamic loading/unloading
of functionalities based on run-time conditions, every 5s, each robot activates or deactivates
one of its Ns services with probability ps. In this way, it is possible to evaluate the service
discovery algorithm in a mobile and time-varying scenario. When not specified differently,
the following values are used: Nr = 25, Ns = 5, sservice = 128B, vr = 5m/s, ps = 0.2, dmax = 1,
tcheck = 5s. In the first experiment, we analyzed both the synchronization time (Tsync) and the
network overhead (Overhead) when varying the size of the robotic swarm from Nr = 10 to
Nr = 50. The results are depicted in Figures 6.23 and 6.24. We can notice that Tsync decreases
when increasing the number of robots in the swarm. This behavior is due to the impact of
random mobility since temporary network disconnections are quite frequent when Nr < 30.
For low values of Nr, all the algorithms behave similarly; however, with medium/high robot
densities, the Hash-based algorithm outperforms the other two algorithms. This can be
explained by Figure 6.24 that shows the Overhead metric. Indeed, even for high values of
Nr, the Hash-based algorithm drastically limits the traffic load and hence reduces the risk of
network congestion.
In the second experiment, we analyzed the impact of the dmax variable (Figures 6.25 and
6.17) on both the metrics. From the Figures, we can notice that by increasing the number of
hops of the dissemination process, the synchronization time is shortened (Figure 6.25) but
introducing higher network overheads (Figure 6.17). Similarly to the previous experiment,
our algorithm Hash-based algorithm outperforms the competitors by limiting the network
overhead and reducing the average time needed for the service discovery.

Single-technology Robotic Test-bed

In this Section, we investigate the performance of Hash-based service discovery algorithm
when implemented in Uhura and deployed in small-scale robotic test-beds.
In the first experiment, we deployed a variable number of ground robots placed in a chain
formation, i.e., the robots are arranged in a row, and each robot can communicate only with
the robot in front of it and the robot behind it. With this configuration, we can evaluate
the discovery algorithm in an always-connected multi-hop environment. The ground robots
used in our tests are depicted in Figure 6.20. Each node runs an instance of the Uhura
platform and is equipped with a single Wi-Fi network interface (the multi-radio scenario
will be presented later in this Section). Also, each node provides a single network service
that needs to be discovered by the other peers. The experiment worked as follows. Initially,
we deployed Nr− 1 robots; after their synchronization, we introduced a new robot in the
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swarm and computed both the synchronization time Tsync and the network Overhead needed
for the robotic swarm to discover the new service belonging to that robot. Figure 6.18
shows the percentage of robots discovering the newly available service over the time of the
experiment. When the plotted lines reach the 100% of nodes, then Tsync is achieved. we
repeated the experiment for different numbers of robots (Nr). At the very beginning of the
experiment, when the new robot arrives, the syncbetter message is transmitted immediately
to notify the presence of the service; as a result, the first node of the chain become aware
of the new service with a fast control messages exchange. Figure 6.19 shows the Overhead
for discovering the new service. When the chain is short, the Table-based method performs
better than the Hash-based since the size of the syncinterest message is comparable with the
synccheck message. On the opposite, when Nr > 10, our proposal outperforms the other
methods.

Multi-technology Robotic Test-bed: Federated Learning

The last experiment considers a hybrid scenario with the ground and aerial robots. The
application scenario envisages the presence of Nr−1 ground robots that can gather image
data and an unmanned aerial vehicle (UAV) that visits all the ground nodes. Here, we
deployed a Federated Learning (FL) service that allows ground devices to train a local model
based on their available onboard data and to send the local models (i.e., model’s weights) to
a server for their aggregation. In this way, there is no need to transmit all the data to a central
server and the network traffic is drastically reduced. Also, the privacy of the data sources is
maximized. Regarding the FL application service, we propose the distributed training of a
model for image classification. For this purpose, we used the CIFAR-10 dataset12, consisting
of 60k 32x32 RGB images belonging to 10 different classes. To emulate the presence of
multiple nodes participating to the same federated learning task, we distributed the data over
14 Uhura-enabled nodes, and we let only a subset of these nodes actively perform the local
training. Figure 6.21 shows both the convergence epochs and the accuracy achieved by the
global model after convergence has been reached. In the experiment, each ground robot
implements a client FL service while the UAV implements the master FL service. The used
devices are shown in Figure 6.20: only the Wi-Fi radio has been used in this experiment. All
robots are in the same communication range and thus the UAV can communicate directly
with each ground robot. Due to the simple model employed in training, the performance
does not exceed 65% of accuracy. However, optimizing the learning accuracy is out of
the scope of this work, which focuses on the capability of robots to join and discover the
FL task. To this aim, after the discovery of all the ground nodes’ services, the master FL

12https://www.cs.toronto.edu/ kriz/cifar.html
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service, located at the UAV, starts the FL training process. The best performance comes
when Nr = 15, i.e., all of the 14 ground nodes participate in the federated learning, given the
more complete observation that we can obtain at the cost of an increased convergence time.
we then performed a second experiment for the following use case: 14 ground robots are
placed randomly in a 150m×150m area. Half of the nodes have a Wi-Fi wireless interface,
while the other half can communicate via BLE. The UAV is in charge of periodically visiting
these sensors to collect the local models that they have been training through their local
observations. The UAV, with a speed of 5m/s, sequentially visits all the nodes within a
travel time of Ttr seconds, and it hovers on each sensor to receive its local model within a
connection time of Tconn seconds. Hence, a single loop to receive all the local models and
update the global one lasts for Ttr +Nr×Tconn seconds. The mean (µ) and standard deviation
(σ ) of these time parameters are obtained over multiple preliminary experiments (see Table
6.2).

Table 6.2 Mean and standard deviation of travel and connection times according to the nodes’
wireless interface.

Parameter Value
µ(Ttr) 57.521 s
σ(Ttr) 2 s

µ(Tconn) (WiFi) 3.697 s
σ(Tconn) (WiFi) 0.949 s

µ(Tconn) (Bluetooth) 6.919 s
σ(Tconn) (Bluetooth) 0.02 s

Figure 6.22 shows three different alternatives to the scenario presented earlier: (i) only the
Wi-Fi nodes participate in the learning, (ii) only the BLE nodes participate in the learning,
(iii) regardless of the wireless interface, all of the nodes participate in the learning. Despite
connecting either to Wi-Fi or BLE nodes helps in reducing the convergence time, it is
evident that the inclusion of all the interfaces to the learning approach, made possible by the
implementation of the service discovery over Uhura-enabled robots, helps in achieving a
more complete observation of the environment. In the experiment, in fact, we obtained an
accuracy of the model which is 8% higher than the performance achieved from the single
interface scenarios.





Chapter 7

Conclusion and Future Work

This thesis aimed to explore the networking capabilities of WSNs and investigate how the
integration of UAVs can enhance their performance. The research was divided into three
main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh
Sensor Networks, and (3) Ground/Aerial WMSN integration.

The first objective investigated using Bluetooth Mesh for IoT monitoring in different
environments, including outdoor and indoor settings. The results showed that Bluetooth
Mesh can be a promising solution for IoT monitoring in different environments, providing
reliable and efficient communication between devices.

The second objective focused on deploying aerial nodes to maximize the effectiveness
of the data collection in terms of ground nodes connected and QoS of the UAV-to-UAV and
UAV-to-Sink links while maintaining the aerial mesh connectivity. The results showed that
UAVs can provide a valuable solution for data collection in WSNs, particularly in SHM
applications, by providing extended communication range and reducing energy consumption.

The third objective was to investigate hybrid scenarios with air-to-ground communication
links between the two network meshes. A major contribution of the thesis was the design
and implementation of the Uhura framework, which enables Hybrid Wireless Mesh Sensor
Networks and abstracts and handles multiple M2M communication stacks. The results
showed that the Uhura framework can effectively handle multiple M2M communication
stacks, providing a promising solution for integrating UAVs in WSNs.

In conclusion, the results of this thesis showed that the integration of UAVs in WSNs can
enhance the performance of WSNs and provide a valuable solution for data collection in SHM
applications. The Uhura framework can effectively handle multiple M2M communication
stacks, providing a promising solution for integrating UAVs in WSNs.
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7.1 Future Works

The work presented in this thesis provides a foundation for further research in the field of
UAV-aided WSNs. Possible future studies that can be pursued to build upon this work include
the following:

• Investigating the application of Dedicated Short-Range Communications (DSRC) for
intra-swarm communication in UAV-aided WSNs and evaluating its performance in
combination with other long-range wireless technologies, such as FANETs.

• Utilizing advanced machine learning algorithms, such as Multi-Agent Deep Q-Learning,
for distributed SDN to improve network performance, adaptability, and decision-
making of the Uhura’s QoS Module.

• Exploring the integration of popular FANET protocols, such as AODV and OLSR, for
UAV-aided WSNs and evaluating their impact on network performance, scalability,
and robustness.

• Conducting extensive simulations and experiments under different conditions and
scenarios, such as varying node density, mobility, and environmental factors, to evaluate
the proposed framework and identify areas for improvement.

These research directions have the potential to significantly expand upon the work
presented in this thesis and contribute to the advancement of UAV-aided WSNs in various
application domains.
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