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Abstract

Deep moist convection (DMC) is an atmospheric phenomenon leading to high-impact
severe weather events such as heavy rainfall, wind gusts, flash floods, tornadoes, or
hail. These events produce critical damages to the environment, infrastructures, and
properties globally every year, generating enormous economic losses, and threaten-
ing human and animal health. From a climatological perspective, anthropogenic
global warming is expected to induce increases in the frequency and severity of ex-
treme events, hence there is an urgent need to advance their understanding. The
occurrence of extreme events can be simulated through numerical weather predic-
tion models. However, convection is characterized by chaotic dynamics, often im-
plying reduced predictability of the associated processes. Additionally, models em-
ploy physical parameterization schemes to account for sub-grid processes such as
convection initiation, which, however, still have substantial limitation. DMC pa-
rameterizations can be switched off in numerical simulations with refined spatial
resolutions reaching the convection-permitting scales. These allow for the explicit
representation of most convective motions, thus producing notable improvements.
To enhance understanding and representation of the present and future atmospheric
extremes, in-depth knowledge of the past is also necessary. Backward investigations
of weather and climate are possible through atmospheric reanalyses obtained by
combining numerical simulations with the available observations and representing
the most complete picture of the past atmosphere.

For these reasons, SPHERA, a new convection-permitting regional reanalysis
over Italy, has been produced at ARPAE-SIMC. SPHERA is obtained by dynami-
cally downscaling the global reanalysis ERA5 by the model COSMO ran at 2.2 km
grid spacing, and by continuously ingesting regional observations through a nudging
data assimilation scheme over 1995-2020. SPHERA has been conceived to enhance
the description of the past atmosphere over Italy and neighboring countries and is
expected to improve the representation of weather processes linked to DMC. Hence,
this thesis aims to verify the expectations placed on SPHERA by analyzing two
weather phenomena that are particularly challenging to simulate: heavy rainfall
and hail.

Concerning the reproduction of precipitation, a quantitative statistical analysis
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over Italy during 2003-2017 is carried out to compare the performance of SPHERA
with its driver ERA5, particularly in case of heavy accumulations. Considering the
national network of rain-gauge observations as a reference, several characteristics are
investigated, such as the geographical distributions of precipitation, the ability to
reproduce daily and hourly accumulations, and the daily cycle of summer rainfall.
Additionally, two extreme precipitation events are deeply analyzed to investigate
the performance of the reanalyses in specific conditions. The results indicate a
quantitative added skill of SPHERA in representing precipitation, especially for
moderate to severe and rapid accumulations in various terms: better adherence to
the intensities of the observed states, higher detailing of the spatial fields, and more
precise temporal matching.

These encouraging enhancements promoted the use of SPHERA for the in-
vestigation of hailstorms occurrence. Hail is, in fact, one of the most hazardous
perils related to DMC. However, the scientific understanding of hail still needs im-
provement owing to intrinsic difficulties in observing and simulating its occurrence.
Hence, the combination of multiple information is crucial to reduce the uncertain-
ties associated with hailstorms. For this reason, a technique is proposed to combine
a set of hail-favoring environmental predictors from SPHERA with observations of
ESWD surface-based hail reports and satellite overshooting top detections, used as
a proxy for severe convective thunderstorms. To obtain a proxy specifically for hail,
a filter based on the environmental conditions surrounding the overshooting tops is
developed to retain only the occurrences with the potential for hailstorm formation.
The procedure is applied to the extended summer season (April-October) of 2016-
2018 over the whole SPHERA spatial domain. The results show maximum hail
likelihood over pre-Alpine regions and the northern Adriatic sea around 15 UTC
in June-July, in agreement with recent European hail climatologies. Furthermore,
the match with hail reports shows a better ability to detect occurred hailstorms
compared to a previous study considered as the primary reference. Moreover, the
method demonstrates enhanced performance in case of severe hail occurrences and
can separate between ambient characteristics depending on hail severity.

The results presented in this thesis prove the added value in the description of
DMC processes brought in by the new convection-permitting reanalysis SPHERA
and ultimately indicate it as a valuable tool for advancing the representation of the
associated weather dynamical features.
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Chapter 1

Introduction and motivation

1.1 Extreme weather events, climate change, and
deep moist convection

The IPCC (Intergovernmental Panel on Climate Change), in the Sixth Assessment
Report (AR6), defines an extreme weather event as “an event that is rare at a partic-
ular place and time of year” and an extreme climate event as “a pattern of extreme
weather that persists for some time, such as a season” (Seneviratne et al., 2021). Ex-
amples of extreme weather events are floods, severe storms, heatwaves, or droughts.
Extreme weather events may produce severe impacts having socio-economical con-
sequences on our everyday life, affecting our food or water supplies, damaging our
infrastructures, and putting our and animal lives and whole ecosystems in dan-
ger (e.g., Paul et al., 2018). Hence, these meteorological events constitute some of
the most threatening natural hazards which potentially may happen simultaneously
and combine, producing multiple concomitant extremes of different nature and ul-
timately leading to even stronger impacts (e.g., as happened with Hurricane Irma
in the Caribbean and the southeastern United States in September 2017 – Emrich
et al., 2019). Additionally, it has been demonstrated by numerous research efforts
in the last years, and documented in the AR6, that a changing climate leads to
changes in the frequency, intensity, duration, spatial extent, and timing of weather
and climate extremes and that the associated risks will continue to increase as the
global mean temperature rises, possibly resulting in unprecedented extremes (e.g.,
Guerreiro et al., 2018; Wuebbles et al., 2017; Forzieri et al., 2016; Quevauviller and
Gemmer, 2015). The reports “Explaining Extreme Events from a Climate Perspec-
tive” published annually by the American Meteorological Society since 2012 (Herring
et al., 2021), found a substantial link between extreme events and climate change
for 70% of the studies included in their analyses. The Germanwatch Global Cli-
mate Risk Index 2021 (Eckstein et al., 2021) estimated that between 2000 and 2019,
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more than 475,000 people lost their lives globally due to more than 11,000 extreme
weather events, which produced losses for US$ 2.56 trillion. Within high-impact
natural hazards, hydro-meteorological disasters (i.e., meteorological, hydrological,
or climatological events) account for over 87% of the damages globally, including ca-
sualties, infrastructural and economic losses, and disruption to everyday life (Porcù
et al., 2019).

Among hydro-meteorological hazards, severe convective storms, accompanied
by phenomena such as tornadoes, large hail, wind gusts, or extreme precipitation,
often causing flash floods, represent one of the main risks to society (Brooks et al.,
2003). For example, in the 40 years from 1980 to 2019, the United States regis-
tered US$ 258 billion in damages from weather- and climate-related disasters (NCEI,
2020), ∼44% of which resulted from severe convective storms (Gensini, 2021). More-
over, the frequency and intensity of severe convective thunderstorms are expected to
increase in response to anthropogenic-induced climate change (Allen, 2018; Trapp
et al., 2019, 2007), even if recent investigations suggest that possible future shifts
may not be straightforward and homogeneous over the planet (Taszarek et al., 2021;
Raupach et al., 2021). Severe convective storms may form under favorable conditions
for the instauration of deep moist convection (DMC). Generally, atmospheric con-
vection is referred to as the process by which heat is transported by the vertical flow
component associated with buoyancy. DMC occurs when air is lifted to saturation
and achieves positive buoyancy with the potential to rise vertically to great heights,
implying the convective overturning of most of the troposphere and causing water
condensation (Markowski and Richardson, 2011). This process causes the release
of large amounts of energy owing to phase changes of water, which often result in
hazardous weather events (Doswell, 2001). Three main ingredients are required for
the instauration of DMC and the associated development of severe thunderstorms:
atmospheric instability, sufficient low-level moisture, and a lifting mechanism.

1.2 Extremes of hydrometeors

A hydrometeor is defined as “any product of condensation or deposition of atmo-
spheric water vapor, whether formed in the free atmosphere or at the Earth’s sur-
face” (American Meteorological Society, 2023). When referring to extremes in this
context, two of the most prominent meteorological phenomena outstanding in terms
of global entities of the produced impacts and risks are severe precipitation and hail.
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1.2.1 Heavy rainfall

Extreme precipitation events (EPEs) cause large socio-economic losses worldwide
(e.g., Lugo, 2018; Ackerman, 2017). They consist of fast accumulations of liquid
precipitative water exceeding normal (i.e., climatological) conditions and reaching
a hundred or even several hundreds of millimeters even in a few hours. The major
hazard posed by EPEs is their potential to trigger flash floods or landslides, the
former being considered the deadliest hazard associated with convection worldwide
(Markowski and Richardson, 2011). Densely populated areas are the most vulner-
able in this sense, especially where drainage systems may not be sufficient (Dale
et al., 2015). Further, excessive amounts of rainfall can degrade the water quality
of rivers, lakes, or seas, subsequently putting into danger aquatic ecosystems and,
hence, human and animals health (Aguilera et al., 2019; Puczko and Jekatierynczuk-
Rudczyk, 2020; Fukushima et al., 2021). Some recent examples of catastrophic EPEs
worth mentioning include: the flood in central Europe in July 2021, causing hun-
dreds of fatalities and estimated damages of EUR 32 billion (Mohr et al., 2022),
the record-breaking heavy rainfalls in eastern China in June 2015, which produced
widespread flooding affecting 5,380,000 people and causing the collapse of 46,600
houses (Wang and Gu, 2016), the torrential precipitation over southeastern Brazil
in January 2020, leading to cascading effects of flooding and landslides, causing more
than 90,000 people to lose their houses, and estimated to be >70% more likely to
occur as a consequence of human-induced climate change (Dalagnol et al., 2022), or
the multiple disastrous floods in Pakistan from June to October 2022 which inun-
dated a third of the country, killed more than 1,700 people and affected 33 million,
and caused over US$ 30 billion of damage (Nanditha et al., 2022; Bhutta et al.,
2022).

As EPEs are the product of the interaction among several physical processes
involving broad spatio-temporal scales, the complexity of the resulting impacts is
strongly dependent on the local distribution of precipitation (e.g., Müller et al.,
2018). Rainfalls can be classified into two categories based on the originating mecha-
nisms of the associated clouds (Bližňák et al., 2021): stratiform precipitation, affect-
ing widespread areas and lasting from several hours to several days (e.g., Minářová
et al., 2017; Houze Jr, 2014), and convective precipitation, produced by convec-
tive thunderstorms and usually confined over smaller areas, lasting from minutes to
several hours, and possibly resulting in sudden heavy accumulations potentially pro-
ducing flash floods (e.g., Grazzini et al., 2020b,a). The latter kind of precipitation
is generally mostly prone to producing EPEs (Semie and Bony, 2020; Gimeno et al.,
2022). Furthermore, recent findings indicate that, as a consequence of anthropogenic
global warming, the ratio between stratiform and convective precipitation has been
changing in the last decades in favor of convective rainfalls (Chernokulsky et al.,
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2019; Ye, 2018; Han et al., 2016). As previously mentioned, this is linked to the
growing evidence that extreme weather conditions under global warming are likely
to strengthen in intensity and frequency of occurrence (Seneviratne et al., 2021).
For EPEs, this translates into an expected shift towards higher accumulations, es-
pecially in those regions with high moisture availability, with a consequent increase
in the frequency and severity of flood events (Tabari et al., 2020; Alfieri et al., 2015).

Multiple factors related to the atmospheric and geographical characteristics of
a specific region play a central role in the development of EPEs, a necessary precon-
dition of which is moisture availability in the lower troposphere and related mecha-
nisms for its transport (Lavers and Villarini, 2015). Other elements are the thermal
and moisture stratification of the atmosphere, the presence of convection and its
organization, the interaction with topography and available mechanisms for the air-
flow ascent, or the proximity to water bodies (Grazzini et al., 2020a). Hence, due to
the high complexity characterizing EPEs formation and the multiple spatio-temporal
scales involved in their dynamical evolution, it is still challenging to skillfully fore-
cast and observe these phenomena despite the significant improvements in the last
decades. Concerning the observations, precipitation has been historically recorded
through rain-gauge sensors deployed over a certain region to form a network. These
have provided tremendous insights into regional hydrology and its long-term tem-
poral characterization. However, this approach is mainly limited by the relatively
small reference areas covered by the sensors and the partial information they pro-
vide, owing to their sparseness and inhomogeneous spatial density (Paz et al., 2020).
This constitutes a serious limitation, especially in the case of EPEs characterized by
peaked spatial localization. Remote sensing methods, whether through radar net-
works or satellite instruments, fill this gap thanks to their higher spatial resolution,
homogeneity, and wider coverage. While radar coverage extends to several hundred
kilometers, satellites can potentially encompass the entire Earth. However, also in
this context, some limitations emerge, such as the sensitivity of the sensors to cap-
ture and distinguish all types of precipitation or the influence of complex orography
that may block electromagnetic signals (Falconi and Marzano, 2019; Herold et al.,
2017). For any kind of observation, numerous methods for post-processing the data
to provide reliable estimates have been developed over the years (e.g., Lyra et al.,
2018; Bhatti et al., 2016; Vulpiani et al., 2012), and the combination of different
data sources represents a promising avenue of research (Ochoa-Rodriguez et al.,
2019; Manz et al., 2016; Ma et al., 2021) that still needs further investigation.

Indeed, a deeper level of understanding of EPEs is envisaged in various direc-
tions, such as: i) better investigating the local-scale implications of global warming
on atmospheric moisture availability and EPEs formation, ii) improving the tech-
niques for the attribution of EPEs variability to human-induced warming to help
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decision-makers in better managing the risks and to reduce societal and ecosys-
temic vulnerability to EPEs, iii) reducing the uncertainty lying in the numerical
simulations of, especially, severe convective rainfall events mainly owing to the use
of parameterization schemes, which reveal a further need, i.e., iv) better under-
standing and representing the physical processes behind convective mechanisms for
example through simulations with enhanced spatio-temporal resolutions, or via the
assimilation of water vapor flux observations in model simulations (Gimeno et al.,
2022).

1.2.2 Hail

Another hazardous weather phenomenon associated with precipitative hydromete-
ors is hail. Hailstones are more or less regular-shaped lumps of ice of diameter 5
mm or more produced by convective thunderstorms, which, in these cases, are also
referred to as hailstorms. Hailstorms produce yearly billions of dollars of damage to
crops, buildings, and properties worldwide, whose effects are proportional to hail-
stones size and frequency, resulting in severe economic and insurance losses. The
extent of the impacts can range from the complete destruction of crops (Zhou et al.,
2016) to damage to roofing, windows, or walls of buildings (Paterson and Sankaran,
1994) or to vehicle paneling and windows (Hohl et al., 2002). Additionally, although
more rarely, very large hailstones (i.e., exceeding 5 cm diameters) may cause injury
or death to animals or humans (e.g., Calianese et al., 2002). A striking case, in this
sense, is the hailstorm that struck Moradabad, India, on the 30th of April 1888,
which recorded the highest mortality rate globally of 246 people deceased as a result
of hailfall (Cerveny et al., 2017). The damages that hail can produce depend on
hailstone size: while for crops or trees, damages owing to small hail of 2-3 cm is
most frequently reported, damages to properties such as buildings or vehicles are
typically caused by larger hailstones of 4-6 cm or more (Púčik et al., 2019). Addi-
tionally, large accumulations of small hail (even <2 cm diameters) on the ground
constitute a further threat (Kumjian et al., 2019). Although generally not as catas-
trophic as larger hail, deep small hail accumulations pose substantial risks to life
and property, causing motor vehicle accidents, road closures, urban flooding and
associated water rescues (Kalina et al., 2016; Schlatter and Doesken, 2010), or even
reduced visibility owing to the formation of dense “hail fog” (Ward et al., 2018).
With deep hail accumulations reaching 15-60 cm in 30 minutes, these kinds of hail-
storms may produce significant economic losses (Grahame et al., 2009). Generally,
individual hailstorm events can cause losses exceeding US$ 1 billion (Gunturi and
Tippett, 2017), as reported in case-study analyses in Europe (Kunz et al., 2018),
United States (Changnon and Burroughs, 2003), and Australia (Yeo et al., 1999).
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Europe also boasts one of the costliest events in modern world history, i.e., the hail-
storm that struck Munich, Germany, on the 12th of July 1984, damaging 70,000
houses and 200,000 automobiles, injuring 400 people, and producing damages for
US$ 2 billion (Höller and Reinhardt, 1986). In the United States, hail damage is
the costliest natural hazard in terms of insured losses to properties and agriculture
and shows a tendency to increase (Changnon, 2009). In comparison, hailstorms in
Europe (Punge and Kunz, 2016) generally tend to be less frequent and severe owing
to the different orientation of large-scale mountain ranges (i.e., the Rocky mountains
running north-south vs. the Alps running east-west) and the associated circulation
patterns (Brooks et al., 2003).

Hail can form in severe DMC thunderstorms characterized by strong updrafts
containing large amounts of supercooled liquid content, with high-reaching cloud
tops and a sufficient lifetime for the accretion of the hailstones (Houze Jr, 2014;
Knight and Knight, 2001). Hence, hail-prone storms are usually highly-organized
convective systems such as multicells, mesoscale convective systems, or supercells
(Dennis and Kumjian, 2017).

Anthropogenic global warming is expected to induce changes in the environ-
ments associated with hailstorm developments, mainly in the form of increased low-
level moisture and hence convective instability (Trapp et al., 2007; Brooks, 2013;
Rasmussen et al., 2020), higher freezing level altitudes (Xie et al., 2008; Mahoney
et al., 2012; Dessens et al., 2015), and enhanced vertical wind shear (Trapp et al.,
2007; Brooks, 2013; Brimelow et al., 2017). These conditions will generally increase
the likelihood of hailstorm formation and the development of larger hailstones within
them (Trapp et al., 2019; Brimelow et al., 2017; Dessens et al., 2015). However,
due to the complexity of the formation mechanisms controlling hail and the crucial
dependency on local geographical features, the response of hailstorms to warming
is highly heterogeneous (Raupach et al., 2021). Furthermore, given the numerous
limitations imposed by the general lack of direct hail observations, the incomplete
understanding of microphysical processes controlling hail formation and growth,
and the insufficient level of detail of the models numerically simulating the process,
a high degree of uncertainty still permeates hailstorm response to climate change
(Seneviratne et al., 2021; Allen et al., 2020).

The low probability of occurrence of hailstorms at a certain location makes ob-
serving hail, both with direct or indirect methods, still a major challenge worldwide
(Allen et al., 2020; Prein and Holland, 2018). Indeed, a widespread, standard-
ized, and operational surface hail observing system is still missing, and the exist-
ing methodologies are highly variable on a country-to-country basis. Atmospheric
weather stations do not usually include dedicated sensors for hail detection (except
for China - Li et al., 2018b), and the few manned stations providing them, which
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often are operative only during daytime, are too scarce to capture highly localized
hailstorm events reliably (Punge and Kunz, 2016). Automatic hail recorders also
exist (Löffler-Mang et al., 2011), a network of which has been recently deployed over
Switzerland (Kopp et al., 2022). However, the elevated costs of these instruments
prevent their systematic deployment over extended areas. Specific in-situ hailpad
networks have been deployed in several parts of the world (e.g., Changnon Jr, 1970;
Xie et al., 2008; Palencia et al., 2010; Dessens et al., 2015; Sánchez et al., 2009;
Giaiotti et al., 2003; Manzato, 2012). Hailpad measurements can provide precious
homogeneous long-term records for hail, including important information, such as
the hailstone size spectrum. However, they are characterized by serious limitations
such as the restricted area of extension implying only regional coverage possible, the
considerable costs for their maintenance owing to their non-automatization, or the
often low spatial density which could likely cause, for example, to miss the largest
hailstones (Changnon, 1977; Smith and Waldvogel, 1989). An additional source of
hail data comes from event-based reports collected by multiple sources such as storm
spotters, voluntary observers, or media. This practice has been adopted for several
years in different regions of the world, such as the United States (the Storm Predic-
tion Center Severe Weather Database - Allen et al., 2015), Australia (the Bureau of
Meteorology Severe Thunderstorm Archive - Allen and Allen, 2016), or Europe (the
European Severe Weather Database, presented in detail in Section 4.1.1 - Dotzek
et al., 2009). However, these data are also affected by a number of limitations, such
as the non-uniform spatial coverage of observations being biased towards densely
populated areas, the possible errors in reporting the largest hailstones, which could
easily be missed owing to the limited spatial coverage of severe hailstorms, or the po-
tential underreporting in cases of non-damaging hailstorms which are generally less
interesting for the public to be reported (Allen et al., 2020). In any case, these data
represent one of the most valuable sources of direct observations for hail and other
convection-related events. Further, their reliability has the potential to increase in
the future owing to the enhanced cooperation among various institutes allowing the
establishment of standardized reporting practices and increasing the spatial homo-
geneity of the reports (Púčik et al., 2019), as well the growing interest of the general
public for severe weather reporting also thanks to the introduction of specific mobile
apps for the purpose (e.g., Holzer et al., 2017). Moreover, these data are essential
to validate hail proxies from remote sensing observations. Indeed, a further impor-
tant source of hail data comes from radar or satellite observations from which it is
possible to indirectly estimate the occurrence of hail with more spatial homogeneity
and higher temporal frequency than reports or hailpad measurements (e.g., Murillo
and Homeyer, 2019; Gobbo et al., 2021; Mecikalski et al., 2021). Radar reflectivity
information constitutes the most powerful instrument for detecting hail and esti-
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mating its size and probability of occurrence (Fluck et al., 2021; Nisi et al., 2020),
even if limitations exist in the correct inference of hailstone dimensions (Ortega,
2018). Satellite observations cover larger regions of the world than radars (Cecil
and Blankenship, 2012). The information relying on passive instruments measur-
ing the outgoing electromagnetic radiation on the infrared or visible spectrum has
been used to develop hailstorm detection methods (e.g., Melcón et al., 2016). In
this context, a prominent approach for detecting severe convective updrafts is by
identifying overshooting cloud tops from geostationary satellite imagery. The first
version of the automatic identification algorithm was developed by Bedka et al.
(2010) and subsequently refined and optimized by Bedka and Khlopenkov (2016)
and Khlopenkov et al. (2021). Hence, constituting a promising proxy for severe
convective storms identification, overshooting top detections have been employed
in several studies specifically for investigating hail (Setvák et al., 2013; Mikuš and
Mahović, 2013; Punge et al., 2017; Bedka et al., 2018; Punge et al., 2021). A de-
tailed description of this technique is reported in Section 4.1.2. Another method
for satellite-based hail detection, originally developed by Cecil (2009), exploits pas-
sive microwave imagery through which it is possible to detect areas of low apparent
brightness temperatures as a consequence of radiative scattering owing to ice hy-
drometeors (e.g., Laviola et al., 2020). In any case, proxy data, based on empirical
relationships generally hardly valid in multiple different contexts, are usually in-
sufficient to characterize a challenging phenomenon to observe such as hail (Allen
et al., 2020). Hence, direct and indirect hail observations are often combined and
coupled with numerical simulations for hail estimation. For example, in the insur-
ance sector dealing with hail-related damages, there is an impelling urge to enhance
hail risk understanding and estimation to assess the possible average loss by region
and time of the year (Martius et al., 2018). For this reason, some firms started
to combine model data with supplemental information of various nature as proxies
for hail occurrence (e.g., lightning detections, satellite- and radar-based detection
algorithms, and event-based reports) to overcome observational limitations. Indeed,
assessments performed by combining multiple data sources have the potential to
reduce the biases of single-sourced records and overall account for knowledge gaps.

For a comprehensive review of the actual state of hail understanding, including
the microphysical processes for hailstones formation and growth in a thunderstorm,
the available observations worldwide, the numerical methods employed for hail es-
timation, the associated impacts, and possible future directions for their better
understanding, the reader is referred to Allen et al. (2020).
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1.3 Numerical modeling of extreme rainfall and
hail

DMC processes, including EPEs and hailstorms, are characterized by extremely
chaotic and non-linear behaviors, growing from the micro- and reaching even the
meso- or synoptic-scales. Indeed, the dynamics controlling mesoscale and local-
scale convective atmospheric processes are notoriously characterized by intermit-
tency, characteristic of the non-linear evolution of chaotic systems (Doswell, 2001).
Hence, the sensitive dependence on initial conditions characterizing chaotic dynam-
ics (Lorenz and Haman, 1996) is also central to the development of DMC. This
implies that, for example, the difference between a major outbreak of severe con-
vective thunderstorms and a complete lack of convection might be imputable to a
minimum difference in the initial state of convection inhibition. Furthermore, the
microphysical processes occurring in convective clouds have a much higher level
of complexity than stratiform counterparts owing to the strong vertical motions
supporting mixed-phase water processes and the formation of a broad spectrum of
hydrometeor types (Pruppacher et al., 1998). The non-linearity in the evolution of
such atmospheric processes is the historical reason behind the substantial difficulties
in understanding and forecasting DMC.

Since the earliest research days investigating atmospheric convection (e.g.,
Stommel, 1947), a long way has come in the representation of DMC through nu-
merical weather prediction (NWP) models, with subsequent dynamical and physical
refinements with increased complexity (Dudhia, 2014). Indeed, continuous improve-
ments have been made over the years owing to the advancement in the physical
understanding of the processes, combined with the advances in computer resources.
This made evident that a crucial necessity for a reliable representation of specifi-
cally, but not exclusively, DMC is the need for a fine spatio-temporal resolution in
the models (Wilhelmson and Wicker, 2001; Bryan et al., 2003; Wu and Arakawa,
2014; Clark et al., 2016). To the present moment, the investigation of extreme
weather events linked to DMC, such as heavy rainfalls or hailstorms, with numer-
ical models with high spatio-temporal resolutions is a primary field of research, as
demonstrated by numerous recent studies (e.g., Tu et al., 2022; Chen et al., 2021;
Lupo et al., 2020; Trapp et al., 2019; Malečić et al., 2022a,b; Tiesi et al., 2022).
However, the high complexity characterizing DMC and severe thunderstorm for-
mation and dynamical evolution substantially limit their predictability. The direct
simulations of the storms through very high-resolution numerical models constitute
a possible approach (e.g., Mahoney et al., 2012; Brimelow et al., 2017), but the
associated high computational costs still prohibit anything beyond regional evalua-
tions or case-by-case analyses. To address this issue, a common practice developed
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over the years is to investigate the simulated environmental proxies favorable for
the development of DMC and associated hazards in a climatological sense (Johns
and Doswell III, 1992; Brooks et al., 2003). This approach has demonstrated useful-
ness in identifying the atmospheric processes favoring the occurrence of phenomena
associated with DMC events, such as hail, wind gusts, or tornadoes. This led the
forecasters to improve their ability to anticipate severe thunderstorms (Thompson
et al., 2003; Hitchens and Brooks, 2014; Tippett et al., 2014) and to develop ex-
tended climatologies on the global (Riemann-Campe et al., 2009; Chen et al., 2020;
Prein and Holland, 2018) or regional scale (Gascón et al., 2015; Púčik et al., 2017; Li
et al., 2018a; Tang et al., 2019; Taszarek et al., 2021). Most of these studies rely on
atmospheric descriptions retained by reanalysis datasets instead of mere numerical
models. As will be discussed in detail in the next Section, reanalyses provide a more
comprehensive description of the past atmospheric states. Indeed, the investigation
of past meteorological conditions leading to DMC and the associated events is cru-
cial to enhance their understanding and increase their predictability in the present
and future evolutions of the atmosphere.

1.3.1 The role of atmospheric reanalyses

Atmospheric reanalyses constitute the most common way to investigate past me-
teorological states and respond to the necessity of homogeneous spatio-temporal
meteorological data by combining numerical weather predictions and observations.
In these datasets, data assimilation, i.e., the blending process between atmospheric
observations and simulations, is used to ingest real-state information and physically
constrain model data. Atmospheric reanalyses extend from several years to a few
decades. ERA5 (the fifth generation reanalysis, Hersbach et al., 2020) produced at
ECMWF (European Centre for Medium-range Weather Forecasts) is widely consid-
ered state-of-the-art among reanalyses covering the whole globe. Anyhow, global
datasets, including ERA5, are still characterized by coarse horizontal grid spacings
spanning from 125 km to 31 km and with temporal frequencies varying from 6 to 1
hour. As previously stated, finer spatial grids are essential to describe small-scale
and rapidly-evolving features characterizing convective processes with sufficient de-
tail. In fact, physical parameterization schemes are necessary to account for sub-grid
convective processes in large-scale models, but these are a major source of errors and
inaccuracies in the simulations (Prein et al., 2015; Jones and Randall, 2011; Arakawa
et al., 2011). Hence, even if ERA5 horizontal grid spacing (31 km) constitutes a
significant leap forward compared to its predecessors, the need for DMC parameter-
ization at this spatial resolution discourages its direct use for regional- or local-scale
applications. This holds especially for investigating precipitative phenomena as re-
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vealed by recent research (Bandhauer et al., 2022; Jiang et al., 2021; Singh et al.,
2021). This difficulty in reliably parameterizing DMC emerges from the interplay of
scales involved in the processes responsible for triggering and developing convection
ranging from micro- to synoptic scales.

The necessity of a superior level of precision for describing the phenomena
associated with DMC led to the development of higher resolutions limited-area re-
analyses. These are usually obtained by downscaling a global dataset to produce
a finer displacement of the data over a smaller spatial domain (on the continen-
tal or regional scale). The higher level of detail gained in this way has been widely
demonstrated to produce more realistic simulations of convective thunderstorms (Liu
et al., 2017; Trapp et al., 2019; Prein et al., 2017; Hoogewind et al., 2017; Trapp and
Hoogewind, 2016). In dynamical downscaling, the boundary conditions of the global
driving model force a limited-area system to produce atmospheric fields at the de-
sired grid spacing (e.g., Castro et al., 2005). However, the downscaling process could
generate relevant small-scale variabilities (constrained to the larger-scale state but
not to the observations), which can be detrimental to the finer-scale estimates (De-
samsetti et al., 2019; Simon et al., 2013; Giorgi, 1990). The assimilation of regional
observations is used to minimize coarse-scale driven variabilities and improve the
quality of high-resolution estimates. Regional reanalyses are produced by coupling
a downscaling strategy with a data assimilation method, which has proven to be su-
perior to a mere downscaling (i.e., hindcast) of a global reanalysis (e.g., Bollmeyer
et al., 2015; Jermey and Renshaw, 2016). Several regional reanalyses have been
produced in recent years on the continental or national scales. Some examples are:
CNRR (China Regional Reanalysis project, Zhang et al., 2017) having 18-km grid
spacing, ASRv2 (Arctic System Reanalysis version 2, Bromwich et al., 2018) with 15-
km grid spacing, BARRA (Bureau of Meteorology Atmospheric high-resolution Re-
gional Reanalyses for Australia, New Zealand, and Southeast Asia, Su et al., 2019),
or CARRA, the Arctic Regional Reanalysis produced by the Copernicus Climate
Change Service (C3S) at a very fine grid spacing of 2.5 km (Køltzow et al., 2022).
In Europe, the interest has been particularly high, as demonstrated by the numer-
ous datasets recently developed: EURO4M (European Reanalysis and Observations
for Monitoring, Klein Tank, 2010) and its continuation UERRA (Uncertainties in
Ensembles of Regional Reanalyses, Unden et al., 2016), COSMO-REA6 (the Consor-
tium for Small-scale MOdeling regional reanalysis, Bollmeyer et al., 2015) covering
part of the European CORDEX domain (Coordinated Regional Downscaling EX-
periment, www.cordex.org) with a grid spacing of 6 km, the new ensemble-based
CERRA (the Copernicus European Regional ReAnalysis, El-Said et al., 2022) cover-
ing Europe and North Africa at 11-km horizontal grid spacing (while 5.5 km is used
for its deterministic counterpart), or MERIDA (MEteorological Reanalysis Italian

www.cordex.org
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DAtaset, Bonanno et al., 2019) covering Italy with a 7 km grid. The increased detail
of these datasets provides added value, especially in the representation of precipita-
tion (Bollmeyer et al., 2015; Jermey and Renshaw, 2016) and in the case of complex
orography (Isotta et al., 2015). However, these grid spacings are still too coarse
to permit the explicit representation of DMC, which is paramount for substantially
improving the simulations.

1.3.2 Benefits of convection-permitting simulations

The explicit representation of DMC can be achieved through the so-called
convection-permitting (CP) scales, implying horizontal grid spacings of few km,
commonly less than 5. Indeed, at these spatial scales, numerical parameterization
schemes for convection may be switched off as DMC starts to be resolved explic-
itly (Weisman et al., 1997). Furthermore, the enhanced spatial resolution in CP
settings, besides allowing for a more realistic representation of convective processes
(Leutwyler et al., 2017; Prein et al., 2015), also permits enhanced descriptions of the
topographical features of the surface boundary of the model, implying improved rep-
resentation of complex mountainous terrains or heterogeneous surfaces, like coastal
or urban regions (Trusilova et al., 2013; Prein et al., 2013b). Anyhow, the fine grid
spacings of CP simulations require computational costs that are still very demand-
ing to cover extended/global domains (e.g., Schär et al., 2020). For this reason,
CP reanalyses are limited to small spatial domains on the order of the national-
and below the continental scales. Recently produced CP reanalyses over Europe in-
clude: COSMO-REA2 (nested in COSMO-REA6, Wahl et al., 2017) covering Cen-
tral Europe at 2-km grid spacing, MERA (Met Éirann ReAnalysis, Gleeson et al.,
2017) over Ireland and the United Kingdom with a 2.5-km grid, and the still-in-
development IBERA (high-resolution regional reanalysis for Iberian Peninsula and
Balearic Islands, Calvo Sánchez et al., 2021) developed by AEMET (Agencia Estatal
de METeorología) at 2.5-km grid spacing.

When coming to precipitative phenomena, an improved description through CP
models compared to larger-scale counterparts is obtained in terms of numerous as-
pects: enhanced representation of the summer diurnal cycle of precipitation (Fosser
et al., 2015; Brisson et al., 2016), better accordance with the observed intensities of
the most severe precipitation events (Prein et al., 2013a; Fosser et al., 2015), lower
biases of average and extreme rainfalls (Pal et al., 2019), and smaller frequency
biases of weak precipitation events (Berg et al., 2013). Similarly, CP regional re-
analyses/hindcasts better describe the spatial variability on the local scale of precip-
itation and the frequency of heavy rainfalls (Wahl et al., 2017; Capecchi et al., 2022).
Furthermore, CP simulations successfully represent organized convective structures
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and the formation of isolated convective cells and self-regenerating thunderstorms
(Clark et al., 2016), as well as orographically-driven convection thanks also to the
enhanced detailing of the topography and surface heterogeneities (Kirshbaum et al.,
2018; Weusthoff et al., 2010). Considering specific severe weather phenomena linked
to DMC, CP simulations have been shown to reliably reproduce proxies for haz-
ardous convective events such as tornadoes or large hail on a climatic term (Gensini
and Mote, 2014), to skillfully detect tornadoes path lengths (Clark et al., 2013),
or to provide reasonable predictions of surface hail size (Adams-Selin and Ziegler,
2016; Labriola et al., 2019; Gagne II et al., 2019; Manzato et al., 2020). Addition-
ally, the simulation of hailstorms in CP-scale frameworks have demonstrated to well
resemble hail observations through radar reflectivity estimates or in-situ measure-
ments (Malečić et al., 2022b) and also to provide future climatological changes in
hailstorm seasonality and regionality under global warming conditions (Trapp et al.,
2019; Mahoney et al., 2012).

1.3.3 The new CP reanalysis SPHERA

The need for a better description of the atmospheric processes related to DMC
prompted the development of a new CP regional reanalysis: SPHERA (High rEs-
olution ReAnalysis over Italy). SPHERA has been produced by ARPAE-SIMC
(the hydro-meteo-climate service of the Regional Agency for Prevention, Environ-
ment and Energy of Emilia Romagna region, Italy) with computational resources
provided by ECMWF (the European Center for Medium-Range Weather Forecasts).
Obtained through a dynamical downscaling of the global reanalysis ERA5, SPHERA
is driven by the non-hydrostatic limited-area model COSMO, run deterministically
with a 0.02° x 0.02° grid spacing (i.e., approximately 2.2 km x 2.2 km) over 65
vertical levels, and assimilates regional in-situ observations with a continuous nudg-
ing scheme during the forward model integration. The covered spatial domain is
centered over south-central Europe and coincides with that of COSMO-2I, includ-
ing Italy, the surrounding seas, and part of the neighboring states (Figure 2.1).
SPHERA produces outputs at hourly temporal frequency over 26 years (1995-2020),
but future extensions of the dataset are possible. The details of SPHERA production
and the necessary preliminary experimentations to define its optimal setup have been
investigated by Cerenzia et al. (2022). The main aims that led to the development of
this new limited-area reanalysis are multiple: to have a high-resolution, space- and
time-consistent description of the climatic characteristics during the past decades
over the region, to provide an accurate and long-term estimate for the COSMO
model to be used as reference (whether for climate change scenarios investigations
or for shorter-term applications, calibrations, and comparisons with the operational
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setting of the model COSMO employed at ARPAE-SIMC for issuing weather fore-
casts and alerts), and, ultimately, to supply a novel tool to investigate extreme
weather phenomena, whether on a long-term statistical term or for detailed investi-
gations of specific events, whose understanding and reproduction could potentially
benefit by the improvements introduced with the new weather archive data. Chapter
2 reports a comprehensive presentation of SPHERA.

It is worth noting that other datasets sharing similar characteristics have been
recently produced. Indeed, when coming to Italy, the considerable interest in devel-
oping highly-resolved re-forecast datasets is demonstrated by the recent production
of two CP regional hindcasts. These are also obtained by downscaling ERA5 using
the COSMO model at 2.2-km grid spacing (Raffa et al., 2021; Reder et al., 2022) or
the model MOLOCH at 2.5 km (Capecchi et al., 2022). The main difference with
respect to SPHERA is that in neither case is the additional assimilation of regional
observations included in the development of the datasets. Additionally, the produc-
tion and comparison of similar but independent CP reforecast datasets is useful and
encouraged owing to the high model-dependency of the simulations at these spatial
scales (Prein et al., 2015), which potentially could further improve when consider-
ing multiple model settings together for the representation of high-impact weather
occurrences (Coppola et al., 2020).

1.4 Goals and outline of the thesis
This thesis aims to assess the potential enhancements in the representation of DMC
processes over Italy and neighboring countries and seas brought in by the newly-
developed high-resolution regional reanalysis SPHERA, representing a state-of-the-
art approach in NWP modeling. To accomplish this task, the analyses for two
individual but closely related aspects are presented:

1. The statistical validation of SPHERA and a quantitative comparison in the
performance simulation with its driver ERA5 for the representation of precip-
itation over Italy for a 15-year period, with particular focus towards heavy-
rainfall occurrences, with the intent to respond to the scientific question: to
what extent do the improvements of CP reanalysis simulations
outperform coarser counterparts in representing precipitation and,
specifically, severe precipitation events?

2. The investigation of hailstorm occurrences over south-central Europe through
the development of a method for the combination of high-resolution environ-
mental predictors, simulated by SPHERA, with observative proxies for hail,
such as satellite thunderstorm detections and surface-based hail reports, over
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three years to answer the question: can the combination of CP-simulated
ambient predictors with observational proxies for hail enhance the
ability to detect hailstorm events and improve the understanding
of the necessary convective environmental conditions for their de-
velopment?

As extensively reported in the previous paragraphs, enhancing the representation of
heavy precipitation is of primary importance in the context of NWP modeling and
climate monitoring. Recent research employing similar CP reanalysis to SPHERA
over Ireland (MERA - Gleeson et al., 2017) and Germany (COSMO-REA2 - Wahl
et al., 2017) reported multiple benefits when comparing their simulated precipita-
tion fields with coarser reanalysis datasets (i.e., ERA-Interim for the former and
ERA-Interim, HIRLAM, and COSMO-REA6 for the latter). The found enhance-
ments regard particularly the local scale of precipitation in terms of a more realistic
representation of its spatial variability and temporal frequency, especially of summer
convective rainfall, improved adherence to the observations in case of daily- and even
more for sub-daily precipitation frequencies, and a higher ability to capture rainfall
extremes in terms of intensity and spatial location. For this reason, similar improve-
ments are expected with SPHERA from the comparison with ERA5. To quantify the
potential added value of SPHERA, a long-term statistical assessment is performed
and reported in Chapter 3 of this thesis, which also constitutes the first extensive
validation of the novel dataset. After presenting the independent observational data
used in the comparison of the two reanalyses, and the associated statistical methods
employed to quantify the performance in representing precipitation, a preliminary
analysis is dedicated to the identification of the optimal spatial scale to be used for
the performance assessment. Then, an extensive comparison is performed over 15
years considering the statistical proximity to rain-gauge records of, separately, av-
erage and maximum precipitation estimates. Various aspects are investigated, such
as the adherence to the observed spatial distributions, the representation of daily
and hourly accumulations, and the daily cycle of summer precipitation. Finally, to
deeply understand the abilities of the reanalyses in simulating extreme precipitation
occurrences, detailed analyses for two EPEs case studies are presented.

The intrinsic difficulties encountered in the observation and simulation of hail
call for new attempts at improving its understanding. Indeed, as reminded above,
both observations and numerical simulations lack sufficient reliability to be stan-
dalone methods for accurate retrievals of hail information. Hence, a combination of
various data sources is often applied to fill the gaps of their individual uncertain-
ties. In recent years, much attention was devoted to the investigation of hailstorms
through the identification of hail-favoring environmental conditions. These consist
of proximity-soundings atmospheric parameters statistically associated with hail-
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storm formation, whether obtained through rawinsonde or model/reanalysis data.
Reanalyses play a major role in this context, given the spatial homogeneity and
long-term records they provide. However, reanalysis estimates need to be coupled
with the available hail observations to retrieve the most skillful environmental hail
proxies. Numerous efforts recently were devoted to the development of statistical
models for estimating hail hazard by coupling large-scale reanalysis/regional climate
models with lightning data (Rädler et al., 2018), surface-based reports (Prein and
Holland, 2018; Torralba et al., 2022), or combinations of lightning, insurance loss,
severe weather reports, and 3-D radar data (Mohr et al., 2015b; Taszarek et al.,
2020). Additionally, another perspective exists for the usage of numerically sim-
ulated ambient ingredients associated with favorable hailstorm conditions. Such
an approach involves their coupling in “calibration mode” with observational hail
proxies, such as remote-sensing thunderstorm detections, to retain only those oc-
currences that are likely to have produced hail. In this context, satellite detections
such as microwave scattering information (Bruick et al., 2019) or radar-based reflec-
tivity estimates (Smith et al., 2012) have been considered. A particularly promising
satellite-based proxy for hail is given by overshooting cloud top detections, which,
when coupled with reanalysis-based predictors, have demonstrated to be a valu-
able tool for the spatio-temporal characterization of hail hazard (Punge et al., 2017;
Bedka et al., 2018; Punge et al., 2021). However, these investigations rely on envi-
ronmental conditions described with coarse global reanalysis such as ERA-Interim
or ERA5, and, to the author’s knowledge, no similar studies have been performed
so far in this field by employing CP simulations. Moreover, due to the scarcity
of studies involving environmental descriptions performed at increased resolutions,
which potentially allow for a better representation of hail hazard, this direction
has been indicated as a promising avenue of research (Allen et al., 2020; Raupach
et al., 2021). This prompted the development of a methodology to couple a se-
lected set of SPHERA environmental predictors for hail with satellite overshooting
top detections from Meteosat Second Generation (MSG) SEVIRI instrument and
surface-based hail reports. The analysis is applied for three years over south-central
Europe to assess its value in representing hailstorm likelihood of occurrence and
the related ambient signatures and is presented in Chapter 4 of this thesis. The
main ideas for this investigation were developed during the Ph.D. mandatory period
abroad, spent at the Atmospheric Risks group of the Institute of Weather and Cli-
mate research, Department of Tropospheric research (IMK-TRO), at the Karlsruhe
Institute of Technology (KIT) in Karlsruhe, Germany. This opportunity was pos-
sible thanks to the collaboration and supervision of Prof. Dr. Michael Kunz, Dr.
Heinz Jürgen Punge, and Dr. Kristopher M. Bedka from NASA Langley Research
Center (who gently provided satellite data).
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The remainder of the thesis is organized as follows: Chapter 2 presents the new
reanalysis SPHERA including the technical details of the modeling setup, the data
assimilation procedure adopted, and a brief summary of the preliminary investiga-
tions performed to define the optimal setup for its production. The comparative
analysis with ERA5 for precipitation estimates is reported in Chapter 3, which in-
cludes a description of the data and statistical methods employed, the preliminary
sensitivity analysis to define the optimal spatial configuration for the comparison,
the long-term statistical analysis, the investigation of two heavy-rainfall case-studies,
and a summary and discussion of the results through critical comparisons with simi-
lar works. Chapter 4 presents the analysis for hailstorm identification and associated
environmental description, starting from presenting the satellite and in-situ obser-
vations included in the analysis, the description of the method developed to filter
satellite detections based on the environmental signatures described with SPHERA
coupled with hail reports, the resulting hailstorm spatio-temporal characterization
over south-central Europe for three years, the investigation devoted to the sepa-
ration of ambient conditions for different types of hailstorms, and a summary and
discussion of the results including comparisons with similar research as well as pos-
sible further developments to enhance the method. Finally, the overall conclusion
of the thesis and possible future developments are drawn in Chapter 5.
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Chapter 2

SPHERA: High rEsolution
ReAnalysis over Italy

In this Chapter the technical configuration of SPHERA reanalysis is presented with
details of the driving numerical model, the modality by which the downscaling from
ERA5 is operated, and the implemented data assimilation technique.

SPHERA (Special Project: High rEsolution ReAnalysis over Italy) is the new
high-resolution regional reanalysis dataset produced at ARPAE-SIMC. SPHERA
covers Italy, part of the neighboring countries, and the surrounding seas (Figure
2.1) at the CP horizontal grid spacing of 0.02°x 0.02°(approximately 2.2 x 2.2 km).
Table 2.1 summarizes SPHERA main features, including the list of parameteri-
zations employed to account for sub-grid physical processes. SPHERA spans 26
years (from 1995 to 2020) at hourly temporal frequency, and future extension of
the dataset will be possible. The non-hydrostatic limited area model COSMO
(https://www.cosmo-model.org/ - Schättler et al., 2018; Baldauf et al., 2011),
developed by the European Consortium for Small-Scale Modeling, drives SPHERA
simulations. COSMO is a Numerical Weather Prediction (NWP) model used opera-
tionally in several European and extra-European countries belonging to the epony-
mous consortium (i.e., Germany - Baldauf et al. (2011); Greece - Avgoustoglou
et al. (2018); Italy - Marsigli et al. (2005); Israel - Hochman et al. (2018); Poland
- Starosta and Wyszogrodzki (2016); Romania - Dumitrache et al. (2011); Russia -
Rivin et al. (2015); Switzerland - Klasa et al. (2018)). COSMO employs the primi-
tive non-hydrostatic thermo-hydrodynamical equations for a compressible flow in a
moist atmosphere. The three-dimensional equations are defined in advective form
and numerically solved in SPHERA through a third-order Runge-Kutta split-explicit
scheme (Wicker and Skamarock, 2002). The grid is defined in a rotated geograph-
ical coordinate system as an Arakawa C-grid with Lorenz vertical staggering. The
vertical coordinate, extending up to 22,000 m a.s.l. over 65 levels, of which 19 in the
lowest 1000 m, is defined through the terrain-following transformation of Gal-Chen

19
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Figure 2.1: The spatial domain and model orography of SPHERA.

and Somerville (1975). In the soil, seven vertical levels are considered at depths of
0.005, 0.02, 0.06, 0.18, 0.54, 1.62, 4.86, and 14.58 m below the surface to account
for near-surface, root-level, and deep-soil layer processes interactions with the atmo-
sphere. The spatial domain is obtained by rotating the South Pole to W 10°, S 43°,
and the horizontal grid mesh consists of 576 and 701 grid points in the west-east
and south-north direction, respectively, with 0.02° spacing. The physical package
included in the model is formed by: a radiation scheme (δ-two-stream scheme -
Ritter and Geleyn, 1992), a turbulence scheme (prognostic turbulent kinetic energy
closure at 2.5 level - Raschendorfer, 2001), a multi-layer soil scheme (based on the
direct numerical solution of the heat conduction equation - Jacobsen et al., 1982),
a multi-layer transfer scheme (Doms et al., 2018), a grid-scale cloud and precipita-
tion scheme with prognostic cloud water, cloud ice and graupel, and a statistical
scheme for sub-grid clouds (Sommeria and Deardorff, 1977), a two-layer bulk lake
scheme (Mironov, 2008), and a shallow-convection scheme (reduced from Tiedtke,
1989). An extensive description of the parameterization schemes implemented in
COSMO can be found in Schättler et al. (2018). A critical process not parameter-
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ized in the configuration used in SPHERA is deep moist convection, thanks to the
fine grid spacing allowing its explicit representation (or at least for a large part of
the associated convective motions). The reader is referred to Cerenzia et al. (2022)
for a detailed description of the modeling framework adopted. SPHERA is initial-
ized through dynamically downscaling the fifth-generation global reanalysis ERA5
produced at ECMWF (Hersbach et al., 2020), and continuously nudged towards
the observed state during the forward model integration by assimilating regional
observations. ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2,
producing deterministic hourly three-dimensional outputs at the spectral resolution
TL639 (i.e., approximately 31 km grid spacing at mid-latitudes) over 137 vertical
levels. The initialization process includes a pre-processing step by which ERA5
is interpolated to the COSMO grid with the procedure described in Schättler and
Blahak (2017).

Preliminary analyses have been carried out to define the optimal setup for the
production of SPHERA (Cerenzia et al., 2022) pertaining to the boundary conditions
inherited from ERA5. As regards the nesting modality to downscale the lateral
boundary condition to SPHERA, which is updated every hour, a 1-step nesting
has been chosen. Indeed, this setup has proven more skillful than nesting passing
through an intermediate grid. Additionally, the identification of the optimal bottom
boundary conditions defining the deep-soil temperature has been investigated to
avoid spurious drifts during the forward model integration caused by excessively
warm or cold soils. The three-yearly running mean of ERA5 bottom soil temperature
with a temporal delay showed the best adherence to the observed counterpart and
hence was included in SPHERA.

For computational reasons, the production of SPHERA has been performed
through six 4-year streams, each preceded by six months of rerun to account for the
soil spin-up. The streams are formed by COSMO 24-hour long runs, each providing
the initial condition for the subsequent one. The runs are then all stitched together
to create a continuous hourly series. The boundary conditions imposed include a
non-penetrative and free-slip condition at the model top, and free-percolation at the
soil bottom for depths below 2.43 m. The data assimilation technique implemented
in COSMO is a continuous nudging of in-situ observations, similar to COSMO-REA6
(Bollmeyer et al., 2015). The continuous nudging is based on the Newtonian relax-
ation principle and aims to dynamically adjust the model towards the prescribed
observations within a predetermined time window (Stauffer and Seaman, 1990). This
is done by inserting an additional term (so-called nudging term) in the prognostic
model equations, which is proportional to the spatio-temporal misfit between the
observations and the model, and that continuously adapts the simulation towards
the observed values during the forward integration of the model. The nudging term
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Initial conditions ERA5
Boundary conditions ERA5, updated every hour

Nesting modality 1-way nested in ERA5
Sea surface temperature Interpolated from ERA5 every day

Deep soil temperature Parameterized from ERA5 soil temperature
after Cerenzia et al. (2022)

Assimilated observations SYNOP and SHIP (not temperature at 2m and
precipitation for both), TEMP, PILOT, and AIREP

Code version INT2LM 2.04 (pre-processing), COSMO 5.05
in double precision

Spatial domain Approximately 35°N, 5°E; 49°N, 20°E
(estimated from the rotated domain, Figure 2.1)

Spatial resolution
0.02° (∼2.2km) horizontal (576x701 grid cells),
65 vertical levels terrain-following (0-22 km),
7 soil levels (0-14.58 m)

Temporal frequency 1 h
Temporal coverage 1995-2020

Physical schemes:
Radiation scheme δ-two-stream scheme after Ritter and Geleyn (1992)

Turbulence scheme Prognostic turbulent kinetic energy closure at
level 2.5 after Raschendorfer (2001)

Land-surface scheme Multi-layer soil after Jacobsen et al. (1982)

Transfer scheme Surface layer scheme coupled with the turbulence
scheme (Doms et al., 2018)

Convection scheme Only shallow convection with reduced Tiedtke (1989)

Microphysics scheme
Grid-scale cloud and precipitation scheme (3-categories
ice scheme) and statistical scheme for sub-grid clouds
after Sommeria and Deardorff (1977)

Subgrid-scale orography
scheme

Lott and Miller (1997)

Lake scheme Two-layer bulk model after Mironov (2008)
External parameters:

Orography Global Land One-km Base Elevation Project
(Hastings et al., 1999)

Land cover Global Landcover 2000 Database (Mayaux et al., 2006)
Soil type Digital soil map of the World (FAO/UNESCO)

Table 2.1: Main technical characteristics of SPHERA.
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Figure 2.2: Average number of assimilated observations in SPHERA per year from 1995
to 2020. The assimilated observational datasets are reported in different colors. Panel a):
SYNOP (in yellow), SHIP (in blue), AIREP (in green), and TEMP (in light blue). Panel
b): PILOT (in orange), separated from the rest of the assimilated data given its lower
numerosity.

always remains smaller than the largest term of the dynamics in the model equations
in order to relax the model fields towards the observations without significantly dis-
turbing their dynamic balance. The reader is referred to Schraff and Hess (2013) for
a detailed description of the nudging method implemented in COSMO. The set of
observational data nudged in SPHERA comes from the ECMWF catalog. It com-
prises near-surface observations over land and sea (SYNOP and SHIP), radiosound-
ing and radar profilers data (TEMP and PILOT), and aircraft reports (AIREP).
The meteorological variables assimilated include meridional and zonal wind speed
components, pressure, air humidity, and temperature, except for temperature at 2
meters. All the assimilated observations are operationally quality-checked before the
assimilation process and thus accepted or rejected following the standard procedure
implemented in COSMO (details are reported in Schraff and Hess, 2013).
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Figure 2.2 reports the average number of accepted observations per year for
each assimilated dataset. Notably, their number increased almost constantly dur-
ing the 26 years of SPHERA, from approximately 30 thousand in 1995 to roughly
100 thousand in 2019. This may have introduced artificial trends in the reanalysis
estimates, owing to the inevitable increase of their quality with time due to the con-
straint of the numerical simulations with a larger number of observations. However,
it is believed that an increasing quality is preferable to the maintenance of temporal
homogeneity of the assimilated data. A sensitivity analysis to quantify the impact
of the number of assimilated observations over time would shed more light on the
actual weight of this effect. However, this would have required a substantial effort
beyond the scope of the present thesis. During the last year of the dataset (2020),
the number of accepted records remarkably reduced for SYNOP, SHIP, TEMP, and
especially AIREP observation types (Figure 2.2a). This decrease is due to the lower
number of available observations (and not to an increased data rejection), which
have possibly originated from the globally reduced observational activity during the
first year of the COVID-19 pandemic spreading (Riishojgaard, 2020). With respect
to PILOT records (Figure 2.2b), a consistent decrease in the number of data with
time is noted, approaching 0 after 2012. Also in this case, this is not a consequence
of an increased rejection ratio in the assimilation process and is marginal compared
to the much larger numerosity of the other types of assimilated data in SPHERA
considering the whole 26-year period.



Chapter 3

Improving heavy-rainfall
representation with SPHERA

This Chapter is devoted to the comparative analysis between SPHERA and its
driver ERA5 to assess their ability in representing precipitation over a 15-year pe-
riod (2003-2017) over Italy, and to highlight any possible added value owing to the
CP description of the novel reanalysis. The simulations are evaluated against the
independent observative dataset of the national rain-gauges network, maintained by
the National Department of Civil Protection (DPCN), in terms of spatial distribu-
tion and daily and hourly precipitation accumulations, focusing on heavy rainfall
events. The statistical assessment is performed with objective verification meth-
ods, considering various skill scores to evaluate different aspects of the simulations.
As precipitation is a discontinuous atmospheric variable that may be character-
ized by strong local forcings and rapid temporal evolution, especially in the case
of convective-driven events, a fuzzy methodology allowing for a certain degree of
displacement between simulations and observation estimates is adopted. For this
purpose, a preliminary sensitivity analysis to identify the optimal upscaling spatial
dimension is performed. Finally, to better understand the performances of the two
reanalyses in representing precipitation in specific conditions, two case studies of
severe-precipitation events are additionally analyzed in detail.

The Chapter is organized as follows: Section 3.1 presents the observational data
and the statistical methods considered for the verification performance analysis;
Section 3.2 reports the sensitivity analysis for identifying the optimal dimension to
upscale the precipitation fields, the results of the statistical verification in terms of
spatial distribution, daily and hourly rainfall accumulations and the representation
of the diurnal cycle of summer precipitation are presented in Section 3.3, while the
analyses for the two heavy precipitation events are described in Section 3.4; finally,
the findings are discussed and compared with similar works in Section 3.5.
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a) b)

Figure 3.1: Dewetra rain-gauge observations. Panel a): spatial distribution of their
location. Panel b) example of spatial upscaling operated in the performance process, with
yellow boxes containing a sufficient number of pluviometers to represent the observed state
(i.e., ⩾5), conversely to white boxes, which are then discarded from the analysis

3.1 Data and validation strategy

3.1.1 Rain-gauge observations

The performance of SPHERA and ERA5 is assessed through a comparison with
rainfall rain-gauges observations. These pertain to the national composite of meteo-
rological stations available on Dewetra, the Italian Civil Protection database of plu-
viometers maintained by the DPCN (Italian Civil Protection Department & CIMA
Research Foundation, 2014), which contains the entirety of the Italian regional net-
works for precipitation and covers the period 2003-2017. These observations are
independent of both ERA5 and SPHERA as they are assimilated in neither re-
analyses. Dewetra contains a set of ground pluviometers supplying data at hourly
temporal frequency, whose spatial distribution is reported in Figure 3.1a.

The number of rain gauges has significantly increased from approximately 1500
in 2003 to 6200 in 2017. Pluviometric data have been quality-checked operatively
by the Department of Civil Protection. Additional controls have been performed
for the most extreme rainfalls recorded (i.e., daily accumulations exceeding 500
mm). Anyhow, rain-gauge data are always affected by limitations, such as spatial
inhomogeneity due to the low density of pluviometers in some areas or the sensors
inadequacy to detect snowfall precipitation properly. Over the Italian territory, the
former is a relevant issue in southern regions (where the situation has improved
significantly in recent years), and in mountainous terrains (Crespi et al., 2018). The
second issue pertains more to the northern and central regions during winter, partic-
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ularly over mountains. Nevertheless, given the comparative nature of this analysis,
these limitations should not be a major issue for assessing the added benefits of one
reanalysis over the other with respect to their long-term statistical performance.
On the other hand, for the case studies reported in Section 3.4, the results may be
substantially affected by the spatial inhomogeneity of Dewetra pluviometers. For
this reason, only for these specific analyses, two additional sources of rainfall obser-
vations to compare with the simulations are considered, namely: ARCIS (ARchivio
Climatologico per l’Italia Settentrionale) and SRI (surface rainfall intensity) esti-
mates. ARCIS is the high-resolution gridded precipitation analysis of pluviometric
data covering north-central Italy at roughly 5-km spacing (Pavan et al., 2019). The
analysis dataset is available over 1961-2015, including data from 1761 rain gauges,
which are systematically controlled for quality, time consistency, synchronicity and
statistical homogeneity, and then interpolated to a common grid using a modified
Shepard scheme. SRI estimates are obtained by blending rain-gauge observations
with radar reflectivity measures to overcome individual data limitations. The merg-
ing can be done with various methods, one of those providing the most accurate
estimates is the kringing with external drift method (Goudenhoofdt and Delobbe,
2009) which is employed in this analysis. Indeed, the merging of these two different
sources of rainfall information can lead to substantial improvements in the accuracy
of the estimated precipitation state used for reference (e.g., Gabriele et al., 2017).

3.1.2 Validation strategy

A fuzzy verification approach (Ebert, 2008) is used to compare the precipitation
performances of SPHERA and ERA5. With a fuzzy method, the matching condi-
tions between the model and observations are relaxed, and the forecast is required
to be in approximate agreement with the observation (by being close in space, time,
or other quantities). This is alternative to traditional nearest-point verifications,
seeking exact matches between forecast/observation pairs. Fuzzy methods are pre-
ferred when considering high-resolution models for which matching the observations
with absolute precision is too difficult, due to the increased risk of “double-penalty”
issues (i.e., to correctly forecast a situation but being offset from the observation).
Indeed, small displacements in this context doubly penalize the simulation by pro-
ducing a false alarm and missing the observation. Additionally, given the sparse
nature of rain-gauge observations, a spatial aggregation is necessary to objectively
assess the quality of the model simulation (Bollmeyer et al., 2015) and to compen-
sate for representativeness limitations that may affect individual point observations
(e.g., Weusthoff et al., 2010). These issues are particularly relevant in the repre-
sentation of highly localized phenomena, such as severe convective precipitations,
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characterized by low spatio-temporal predictability. Indeed, their description needs
high-resolution simulations, but the outcomes would be strongly penalized if tradi-
tional point-to-point comparisons were used (Lanciani et al., 2008).

With fuzzy methods, a spatial neighborhood to assess the closeness between
forecasts and observations is defined around a certain point of interest. This is
achieved by systematically upscaling (or boxing) forecasts and observations to a
common coarser grid (compared to the respective original ones). The verification
domain is subdivided into boxes of the same size, each containing a certain number
of reanalysis and observation points (e.g., Weygandt et al., 2004). This process is
schematically represented in Figure 3.1b. The upscaled distributions are then ag-
gregated to provide a single forecast-observation pair for each box. The comparison
between the aggregated data pairs is carried out considering both the mean and
maximum (or 95th percentile) of their distributions within each box of the upscaled
domain (similar to Marsigli et al., 2008). This is needed to evaluate different char-
acteristics of the precipitation distributions. The comparison between the mean
values can indicate the average skill of a reanalysis in representing precipitation. In
contrast, comparing the maxima (or the 95th percentiles) can assess the ability to
describe intense and localized rainfalls by considering the most extreme events (or
the tail of extremes, respectively). Particularly, from the latter analysis, a high-
resolution system is expected to reveal its added value over its coarser counterpart
(e.g., Klasa et al., 2018). These distribution parameters have different impacts on
identifying a useful forecast (i.e., a positive match between reanalysis and obser-
vations within a box). The matching between maxima is more generous than the
averages: for the former case, a useful forecast implies its maximum in the neigh-
borhood to be close to the observative counterpart, i.e., the match relies only on
one value of each distribution. For the averages, the closeness criterion is more re-
strictive since their values are calculated from the whole distributions found in the
neighborhood (Ebert, 2008). For this reason, comparing the performances obtained
through different statistical aggregations is also useful to understand whether possi-
ble deviations from the observed states are due to the method used for aggregating
the meteorological fields. Moreover, an observational mask is applied to retain only
the grid cells where appropriate closeness between reanalysis-observations is met
(similar to Marsigli et al., 2008). This is done to minimize the errors owing to the
heterogeneous pluviometers distribution and the larger spatial domain covered by
the reanalysis. In particular, for any dimension of the upscaled grid hereafter con-
sidered (see Section 3.2), boxes containing less than five rain gauges are withdrawn
to avoid errors caused by insufficient sampling of the observed distribution (rep-
resented as white boxes for the exemplary upscaling shown in Figure 3.1b). This
number has been defined for the operational verification of numerical forecasts at
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Observed
Yes No

Fo
re

ca
st

Yes a
Hits

b
False

alarms

a+b
forecast

yes

No c
Misses

d
Correct

negatives

c+d
forecast

no
a+c

observed
yes

b+d
observed

no

a+b+c+d
total

Table 3.1: 2x2 contingency table representing the relationship between fore-
cast/observation pairs for the dichotomous non-probabilistic verification related to the
occurrence of an event.

ARPAE as the minimum required to allow a representation of precipitation suitable
for this work. The upscaled grid neighborhood (or box) size defines the allowed
spatial displacement between forecast and observations. The most appropriate def-
inition of this horizontal scale is not trivial. It depends on various factors (e.g.,
the particular features investigated through the simulations, the time resolution,
the meteorological situation, and the model itself, Gallus Jr, 2002; Ebert, 2008).
Therefore, a preliminary sensitivity analysis on the neighborhood size is performed
to investigate how reanalysis skill scores vary with grid size and to find the optimal
grid spacing for the upscaling (described in Section 3.2).

The performance assessment of SPHERA and ERA5 is carried out with a cat-
egorical approach. A 2x2 contingency table (Table 3.1) is obtained by classifying
precipitation occurrences in each box as yes/no events based on the exceedance of a
rainfall threshold and aggregating the entire spatial domain considered. The reader
is referred to Wilks (2019) for a detailed description of these statistical methods. A
contingency table is built for each threshold considered from the joint distributions
of forecasts (i.e., reanalysis estimates, in our case) and observations, determining
the frequency of forecast/observation pairs falling within each of the four possible
categories (a, b, c and d in Table 3.1). With the contingency table, a complete
representation of the joint distribution between the binary observations and the bi-
nary outcome of the simulations (i.e., event observed/forecasted or not observed/not
forecasted) is gained. From the results of the contingency tables, it is possible to
calculate a variety of scalar attributes assessing different aspects of the simulations
under exam. Particularly, in the context of the comparative performance analysis
carried on, we considered the following dichotomous scores (considering the termi-
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nology defined in Table 3.1):

• Probability of Detection (POD), or hit rate: describes the fraction of observed
"yes" that has been correctly forecasted, ranges between 0 (i.e., worst possible
forecast: not even one observed event has been forecasted) and 1 (i.e., perfect
forecast: all the observed events have been correctly simulated). It is defined
as

POD = a

a + c

• False Alarm Ratio (FAR): describes the fraction of the simulated “yes” events
that actually did not occur, ranges between 0 (i.e., perfect forecast: the sim-
ulations did produce not even one false detection) and 1 (i.e., worst possible
forecast: all the simulations produced false event detections). It can be ex-
pressed as the Success Ratio (SR) through the relation SR = 1 - FAR, which
is alternatively used (e.g., in the abscissa of the performance diagram). It is
defined as

FAR = b

a + b

• Threat Score (TS) or Critical Success Index (CSI): measures the fraction of
observed and/or forecast events that were correctly predicted, ranges between
0 (i.e., worst possible forecast: not even one forecast was correctly simulated)
and 1 (i.e., perfect forecast: all the forecasts were correctly predicted without
missing any observed event and producing any false alarm). TS can be ex-
pressed as a non-linear combination of POD and FAR, and this property is
exploited in the performance diagram where POD is plotted against SR. It is
defined as

TS = a

a + b + c
=

( 1
POD

+ 1
1 − FAR

− 1
)−1

• Frequency Bias: evaluates the deviation of the simulated- from the observed
frequency of event occurrences, and it is defined as their ratio. With the fre-
quency bias, it is possible to evaluate the tendency of the forecasting system to
underestimate (BIAS < 1) or overestimate (BIAS > 1) the number of observed
events. It ranges from 0 to infinity, and the score for the perfect forecast is 1
(i.e., equal frequency of occurrence between forecasts and observations). It is
defined as

BIAS = a + b

a + c

The skill scores are calculated for the average and maximum values of the daily pre-
cipitation distributions, which are both needed to get a more complete assessment of
the performance. Conversely, since the main interest of the present work is investi-
gating precipitation extremes for rapidly-evolving cases, only maxima are considered
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for the hourly precipitation analysis. The resulting skill scores are aggregated over
the entire verification domain and different temporal periods and reported through
the performance diagram. The performance diagram (e.g., Figure 3.5) is a way to
summarize the information of the four skill scores by exploiting their geometrical re-
lationships, hence permitting a more comprehensive evaluation of the performance.
A good forecast would lie in the top right corner of the diagram, where POD, SR,
TS, and BIAS approach unity. At the same time, deviations in a particular direction
would indicate relative differences in POD and SR and, thus, in TS and BIAS. The
variability in the scores is estimated with a bootstrap resampling technique of 1000
new data samples and shown in the diagram as “cross-hairs”. The reader is referred
to Roebber (2009) for a detailed description of the performance diagram.

3.2 Sensitivity analysis for the upscaling

This section is devoted to the sensitivity analysis of the neighborhood size to find the
optimal upscaling configuration and is performed on a sample period of three years
(2015-2017). The maxima of SPHERA and Dewetra daily precipitation distributions
are compared within boxes of different sizes before extending the verification to the
entire 15-year period. The box dimensions cover a broad range from 0.14° x 0.14° to
1.85° x 1.85°, corresponding approximately to grids from 15 km x 15 km to 200 km
x 200 km. Each of these grid spacings allows an adequate sampling of the number
of grid points of SPHERA contained in the box, ranging from approximately 46 grid
points (for the finest box of 15 km) to roughly 8264 grid points (for the coarsest box
of 200 km).

Figure 3.2 reports the dependency of TS, POD, FAR, and frequency bias scores
on the upscaled grid spacing and the daily precipitation intensity (with thresholds
ranging from 1 to 150 mm/day). The results pertain to seasonal averages over
summer (JJA) and winter (DJF). Two distinct effects contribute to a joint deteri-
oration of the scores: the increase of precipitation intensity and the refinement of
the upscaled grid spacing. The decrease of POD (panels c-d) and TS (a-b) and
the increase of FAR (e-f) and frequency bias (g-h) for growing rainfall thresholds
reflect the rising difficulty in detecting occurred events. As precipitation intensifies,
the number of observations correctly simulated reduces, more false detections are
produced, and the most extreme and rare events are overestimated. This positive
frequency bias is reasonably dependent on the inadequate spatial sampling of the
sensor networks to detect precipitation extremes. Indeed, if the mean daily precipi-
tation is considered (Figure 3.7b), the overestimation disappears from rainfalls ⩾20
mm/day. This observative limitation also plausibly explains the large number of
false alarms detected, with FAR ranging 0.4-1.0 in JJA and 0.3-0.8 in DJF.
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Figure 3.2: Seasonal averages of dichotomous scores over 2015-2017 obtained from the
maximum values of the upscaled rainfall distributions within boxes of different sizes (in-
dicated with different colors). From top to bottom: TS (panels a and b), POD (panels
c and d), FAR (panels e and f), and frequency bias (panels g and h, note the different
scale on the y-axis), as functions of daily precipitation threshold, on the left column for
the summer season (JJA) on the right column for the winter season (DJF).

The performance degradation owing to the upscaled grid spacing is expected
due to the rising impact of short-lived and localized events with low predictability.
These are responsible for most spatio-temporal double-penalty errors, particularly
in JJA (Marsigli et al., 2008). If the grid spacing is enlarged, the increased rain-
gauge quantity per box and the removal of numerous small-scale occurrences affected
by phase errors produce a better performance (Weygandt et al., 2004). However,
simultaneously, the simulations lose sharpness due to the removal of actually oc-
curred heavy rainfall events as well (Roberts and Lean, 2008). The performance
improvement for coarser box sizes is enhanced in JJA when convective rainfall is
most likely. Figure 3.2 shows a larger spread among different upscalings for all skill
scores in JJA than in DJF. POD in JJA shows the strongest dependence on the grid
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size, especially for intense rainfall accumulations (⩾25 mm/day, Figure 3.2c). For
example, in the case of 50 mm/day, POD ranges from approximately 0.4 (15 km
box) to 0.9 (200 km box), while in DJF, the spread never exceeds 0.2 points. This
effect is most likely imputable to different precipitation predictability during the two
seasons: the detection of localized summer convective rainfalls is more challenging
than the widespread frontal-like winter counterparts (e.g., Crespi et al., 2018). This
seasonal dependency is also reflected by the systematic lower risk of committing
false alarms in DJF, as expressed by the lower FAR scores (panel f) obtained for
each threshold and grid size.

Finally, there is a further effect influencing the performance of the simulations
and connected to the upscaling neighborhood size, which is linked to the typical spa-
tial length of precipitation. This effect causes the opposite behavior in the perfor-
mance on a seasonal basis, particularly visible for coarser boxes in terms of FAR and
frequency bias (black and purple lines in Figure 3.2). In DJF, the worst performance
is obtained with the 200-km grid box, while in JJA, with the 25-km one. Indeed,
even if the risk of missing events is reduced with coarser grids due to the more gen-
erous matching condition, the likelihood of mixing different unrelated events falling
within the same box is higher. This is particularly detrimental for the 200-km box
case, likely because this spatial resolution may exceed the characteristic length scale
of precipitation: while in JJA, typical convective rainfalls are associated with hor-
izontal scales on the order of a few kilometers, in DJF, the horizontal extension
of stratiform-like precipitation may vary from tens to few hundred of kilometers
(Houze Jr, 2014). However, this length-scale issue does not seem to affect summer
precipitation, most likely due to the higher impact of double penalties in localizing
convective showers and the undersampling of the observed state in JJA, which mask
this secondary effect.

The deviation between the normalized rainfall distributions of SPHERA and
Dewetra as a function of rainfall intensity for different box sizes is also analyzed
(Figure 3.3). The aim is to identify the spatial dimension that minimizes the dif-
ference between the two distributions, with particular emphasis on severe precipi-
tation, to let the reanalysis maintain its resolution, i.e., providing predictions able
to correctly distinguish situations with distinctly different frequencies of occurrence
(Lewis et al., 2015; Murphy, 1993). For weak to moderate precipitation (up to 50-
55 mm/day), the grid size best minimizing the difference is the coarsest one (200
km). In comparison, the others worsen almost linearly by reducing the box size. A
reversal trend is evident mainly for intense rainfalls exceeding 60 mm/day. Indeed,
the coarsest horizontal grid spacings (200 and 100 km) are always associated with
the highest deterioration of the similarity between SPHERA and Dewetra. This
excessive upscaling causes the removal of extreme rainfall occurrences, which are as-
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Figure 3.3: Normalized absolute difference between the number of precipitation events
per daily threshold relative to the rainfall distributions of SPHERA and Dewetra observa-
tions for the period 2015-2017 for different horizontal resolutions of the upscaled domain
(in different colors).

sociated with small-scale processes, inevitably smoothed out at these grid spacings.
Moving to finer upscalings, the differences in this rainfall range are not prominent,
except for the finest 15-km box always producing the most effective minimization.
However, this grid spacing is excluded from the present analysis (as well as the 25-
km box) since one of its main goals is the long-term comparison between SPHERA
and its driver ERA5. ERA5 has a native grid spacing of 31 km. Therefore, upscaling
to a 15-km grid (or 25-km grid) would result in a downscaling for ERA5, causing an
underpopulation of the boxes containing less than one native ERA5 point. Consid-
ering the remaining box sizes (i.e., 35, 45, and 60 km), no decisive improvements of
one over the other emerge at any intensity regime (Figures 3.2 and 3.3). However,
boxes of 60 km contain enough grid points of ERA5 for its consistent representation
(approximately 4 per box). For this reason, the 60-km grid spacing is chosen to
perform the reanalysis evaluation in the next section. For any other application
non-constrained by a comparative analysis, finer grid boxes should be considered
(e.g., 15-25 km) for the investigation of severe precipitation events.



3.3 Evaluation of precipitation 35

3.3 Evaluation of precipitation

This section presents the performance verification of SPHERA and ERA5 rainfall
estimates against Dewetra pluviometric data over 15 years (2003-2017). Section
3.3.1 compares daily spatially-distributed rainfall fields when focusing on severe
precipitation events. In Section 3.3.2, daily-accumulated precipitation is the subject
of the fuzzy verification performed with the optimal upscaling resolution of 60 km.
This analysis extends to hourly accumulations in Section 3.3.3. Finally, the mean
diurnal precipitation cycle during the summer season is analyzed in Section 3.3.4.

3.3.1 Spatial distribution

A fundamental feature to investigate is the reanalysis ability to represent the "correct
climate" in terms of the spatial distribution of precipitation. This section reports
the analysis of the spatially-distributed daily observed state aggregated over 2003-
2017, on the annual and seasonal terms (JJA and DJF), and the relative deviations
of the reanalyses. In this context, the 95th percentile of the boxed distributions
is chosen for the spatial intercomparison in order to focus on intense precipitation
occurrences. Only in this section the precipitation fields are upscaled over a common
grid of 31-km spacing, roughly corresponding to the ERA5 native grid. Indeed, the
loss of detail resulting from the coarser optimal grid of 60 km (defined in Section
3.2 when aggregating the precipitation fields over the whole domain) would be too
much for this spatial analysis.

Figure 3.4 (panels a,b,c) reports the observed 95th percentiles of daily rainfall
distribution. Italy’s wettest regions are visible from the annual plot: the northern
Apennines and the far-eastern Alps, with daily accumulations exceeding 10 mm/day
(the reader is referred to Figure 2.1 for geographical references). The western Alps
and the south-central Apennines are other areas particularly prone to precipitation,
with daily rainfalls of 5-8 mm/day. These precipitation patterns are mainly linked
to the orographic enhancement of precipitation characterizing the Italian region
(Napoli et al., 2019), of which an emblematic case study is reported in Section 3.4.1.
The drier regions, presenting daily accumulations below 3 mm/day, are found over
the plains and hilly areas, especially over the Po valley, the Sardinia and Sicily
islands, and the Apulian peninsula. The observed patterns are consistent with
several recent rainfall climatologies obtained with higher resolution datasets (Pavan
et al., 2019; Longobardi et al., 2016; Crespi et al., 2018) and reflect the impact of the
very complex Italian topography on the spatial behavior of precipitation. Therefore,
the upscaling procedure does not affect the observed precipitation patterns estimated
with Dewetra.

Considering reanalysis estimates on the annual term, ERA5 (Figure 3.4g)
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Figure 3.4: Observed (top row - panels a,b,c) average of the 95th percentile of daily
precipitation distributions for different temporal aggregations over the years 2003-2017:
annual (left column), summer (JJA, central column) and winter (DJF, right column). On
the central (panels d,e,f) and bottom (panels g,h,i) rows are reported the daily deviations
from the observed spatial distributions for SPHERA and ERA5, respectively. All three
datasets are upscaled over a common grid of approximately 31-km horizontal grid spacing.

presents a heterogeneous dry bias, peaked over the wettest regions (i.e., primar-
ily mountainous areas) and dampened over the plains, with an average relative bias
per box of -1.1 mm/day. SPHERA also shows a heterogeneous distribution of the
annual bias (panel d), but mainly linked with an overestimation of rainfall intensity,
particularly over the Po valley and in southern Italy, with an average bias per box
of 1.4 mm/day.

The distribution of the observed 95th percentiles over JJA and DJF (panels
b and c) reveals the seasonality of precipitation: summer rainfalls are mainly en-
hanced over the Alps, particularly over their far-Eastern region, presenting daily ac-
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cumulations above 10 mm/day; winter precipitation is characterized by even more
orographic enhancement: rainfall peaks extend across the entire Apennines with
daily accumulations larger than 13 and 10 mm/day at their northern and southern
ends, respectively. These patterns are due to the dominant mesoscale humid flows
impinging over mountainous ranges typical of the cold season (e.g., Miglietta and
Davolio, 2022; Khodayar et al., 2021; Krichak et al., 2015).

Moving to reanalysis estimates, in JJA ERA5 (Figure 3.4h) shows a similar bias
distribution to that of the annual term with a mean bias per box of -1.7 mm/day.
SPHERA (panel e) presents a higher wet bias, marked over the Po valley, southern
Apennines, and eastern Sicily, with a daily average bias per box of 2.9 mm/day.
During wintertime, ERA5 (panel i) notably underestimates precipitation, especially
over the cited mountainous wet spots, with an average bias of -1.7 mm/day per box.
Also SPHERA in DJF (panel f) shows a dry bias over part of the northern Italy
orography (with an average bias per box of 0.1 mm/day). This indicates a difficulty
in correctly representing dynamically-driven orographic precipitation in specific re-
gions, even for a CP model. However, weaker and more spatially limited dry biases
are obtained compared to ERA5. Furthermore, ERA5 always underestimates pre-
cipitation if the long-term average of the 95th percentile distributions is considered,
suggesting a systematic inability to simulate severe rainfall events. This is typical
of low-resolution models that employ convection-parametrizing schemes and lack
sufficient detail in the representation of topography, which is crucial especially over
complex terrains. On the other hand, the substantial overestimation committed by
SPHERA in summer should be interpreted as something other than a systematic wet
bias of the driving model. Suppose the observed state is not sampled as well as the
reanalysis (as potentially could be the case for Dewetra as highlighted in Sections
3.1.1 and 3.2, especially in mountainous regions). In that case, an overestimation of
the high-resolution rainfall simulations is likely when considering the tail of extreme
values of its distribution (such as the 95th percentile). This hypothesized under-
sampling of the observed state is supported by the analysis of the distribution for
average daily rainfall intensities in the next section: a systematic overprediction of
SPHERA for intense rainfall rates is not found in that case. These results confirm
and extend the preliminary equivalent analysis over 2015-2016 reported in Cerenzia
et al. (2022).

3.3.2 Daily precipitation

The daily accumulated precipitation of the two reanalyses is assessed through per-
formance diagrams (Figure 3.5). The performance diagram exploits the geometrical
relationship of four dichotomous scores: the probability of detection POD (on the
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Figure 3.5: Performance diagrams for the aggregation of the scores over 2003-2017 for
SPHERA (purple symbols) and ERA5 (turquoise symbols) when the maximum (panel a)
and average (panel b) values over boxes of 60 km are considered. The threat score is indi-
cated in different shades of gray, and the results pertaining to various daily-precipitation
intensities (with thresholds ranging from 1 to 150 mm/day) are reported with different
symbols. The frequency bias can be estimated from the deviations from the 45° black line,
indicating an unbiased forecast (i.e., frequency bias = 1). Cross-hairs indicate the uncer-
tainty related to the sampling variability of the data and are calculated from a bootstrap
resampling of 1000 new samples.

y-axis), the false alarm ratio FAR (expressed on the x-axis as the success ratio
SR=1-FAR), the threat score TS (indicated in the diagrams with gray shading con-
touring), and the frequency bias (shown by dashed diagonal lines). In the diagrams,
the results of an accurate model would lie on the bisector line describing a null
frequency bias, and a perfect simulation would lie on the top right corner of the
diagram (i.e., POD, SR, and TS =1).

With respect to maximum precipitation (Figure 3.5a), ERA5 outperforms
SPHERA in the range of weak rainfalls (1-10 mm/day), mainly due to fewer false
alarms (i.e., higher SR score). As precipitation intensifies, the SR score stays almost
constant for ERA5 (roughly 0.7) and is always higher than SPHERA counterpart,
which gradually decreases from 0.7 to 0.2. Conversely, the hit rate of ERA5 (i.e.,
POD score), with a difference of more than 0.1 points for every consecutive threshold,
decreases more rapidly than for SPHERA, which stays above 0.7 up to 25 mm/day.
The result is a gradual increase in the score gap between the reanalyses in moderate-
to heavy precipitation (25-80 mm/day). This suggests, on the one hand, a better
ability of SPHERA to detect actually-occurred heavy rainfalls at the expense of a
larger number of false detections. On the other hand, ERA5 shows a lower ability to
simulate an adequate number of events for increasing rainfall intensity, but it keeps
an almost constant skill to avoid false alarms due to the smaller sample of events
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Figure 3.6: As Figure 3.5 but for seasonal aggregations over 2003 to 2017: MAM, JJA,
SON, and DJF (columns from left to right) when maximum (upper row) and average
(lower row) values over boxes of 60 km are considered.

simulated at increasing intensities. These outcomes are in line with the tendency of
ERA5 to produce dry biases (as seen in Section 3.3.1), which are amplified for in-
tense precipitation, as detected from the decreasing frequency bias from roughly 1.3
(1 mm/day) to <0.3 (80 mm/day). Conversely, SPHERA overestimates the number
of events, with a frequency bias larger than 1 for the entire set of intensities, which
is maximum (>2.0) for 50 mm/day, in line with the weakly wet annual bias found
in Figure 3.4d.

The analysis of the distributions for average rainfall intensities (Figure 3.5b)
confirms at first that the oversampling detected for maxima counterparts and for
spatially-distributed fields is not linked to a systematic wet bias of the model driv-
ing SPHERA. In this case, a substantial reduction of the positive frequency bias of
SPHERA is detected (always <1.3), which turns negative for rainfalls >15 mm/day
and reaches a minimum of roughly 0.3 for 80 mm/day. This indicates a better agree-
ment with the number of observed events (revealed by the lower deviation from the
null frequency bias line at all intensities). Also ERA5 produces generally higher skill
scores considering the averages. However, an increasing dry bias for intense accu-
mulations, larger than SPHERA counterpart, is detected starting from 15 mm/day
and reaches values <0.3 for 80 mm/day. This further proves the larger difficulty
for ERA5 in producing a sufficient number of events even to match the average ob-
served state. Both reanalyses present similar TS scores, suggesting comparable skills
to represent the average daily precipitation for weak to moderate rainfalls. At the
same time, the improvement of SPHERA is evident for the heaviest accumulations
considered.

Figure 3.6 reports the seasonal analysis of the performance for maximum and
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average values in the boxes. The main differences compared to the annual aggrega-
tions are obtained in JJA and DJF, while MAM and SON are in line with the annual
term performances (hence not discussed in the following). A general detriment of
the scores is evident in JJA considering the maximum (upper row): ERA5 produces
more false alarms and fewer hits, with SR and POD scores decreasing in the order of
0.1 points for most intensities. A performance deterioration in JJA is also detected
for SPHERA in the form of a higher fraction of false detections (generally lower
SR scores of 0.1 points than annual). Nevertheless, the ability to detect observed
events is preserved and slightly enhanced compared to the annual term (POD scores
systematically increased by roughly 0.1 points for most thresholds). This causes an
exacerbation of the positive frequency bias at all intensities, which exceeds 4.0 for
⩾50 mm/day.

As regards DJF, SPHERA performance shows a general opposite behavior com-
pared to JJA (i.e., higher SR and lower POD and frequency bias at all intensities),
as well as ERA5, even if less markedly (higher SR and lower POD). These results
highlight the different seasonal predictability of precipitation. During summer, pre-
cipitation is mainly localized, short-lived, and linked to intense convective thun-
derstorms, making it typically more challenging to simulate compared to winter. In
wintertime, stratiform rainfalls dynamically driven by large-scale frontal activity are
more likely (Antolini et al., 2016; Houze Jr, 2014). Interestingly, the performance of
SPHERA suggests the added ability of the high-resolution simulations, particularly
in JJA when compared to ERA5, to reach heavy rainfall intensities at the expense of
a high number of unrequited events (false alarms). As demonstrated previously, the
latter is more likely a consequence of the undersampled observed state when con-
sidering extreme values (maxima) of precipitation rather than a deficit owing to the
COSMO model. Indeed, moving to seasonal daily averages (Figure 3.6 - lower row),
a decisive reduction of the frequency bias of SPHERA is detected for all seasons (in
JJA confined between 1.0 and 1.3 for the majority of intensities), suggesting a good
agreement with the mean observed precipitation state. For ERA5, similarly to the
annual term, the bias (generally wet for intensities ⩽10 mm/day and dry above) is
reduced for the averages, but it always remains stronger than SPHERA counterpart
(i.e., larger deviations from the 1:1 line at all intensities and seasons).

A complementary aspect in comparing simulated and observed precipitation
series are the rates of daily rainfall distribution intensities, reported as histograms
in Figure 3.7 for average and maximum values. Focusing on maxima (panel a), in
the range below 5 mm/day, ERA5 overestimates while SPHERA underestimates
the number of events. The trend is reversed for heavier intensities (i.e., ⩾10-20
mm/day), with SPHERA overpredicting and ERA5 undersampling Dewetra. The
maximum overestimation for SPHERA is detected in the range of 30-50 mm/day,
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Figure 3.7: Normalized frequency histograms of the distributions of daily rainfall occur-
rences over 2003-2017 for SPHERA (in purple), ERA5 (in green), and Dewetra observa-
tions (in blue), when maximum (panel a) and average (panel b) values over boxes of 60
km are considered. For better visualization, the distributions of the average values for the
highest thresholds are highlighted in a black-framed subplot.

decreasing then for higher thresholds but consistently producing more events than
observed. The underestimation committed by ERA5 gets larger with rainfall inten-
sity, producing almost no events above 80 mm/day. This supports the inadequacy
of coarse and convection-parametrizing systems in representing severe precipitation
occurrences. Conversely, SPHERA successfully simulates events at all rainfall in-
tensities considered, even for the heaviest precipitation ranges (⩾ 80-100 mm/day),
confirming the added value of CP models in this sense, as expected (e.g., Klasa
et al., 2018). As previously discussed, SPHERA overestimating moderate- to heavy
precipitation is more a throwback of the upscaling aggregation based on maxima
rather than a systematic tendency of the reanalysis. If Dewetra undersamples pre-
cipitation maxima, representativity discrepancies may arise in datasets comparison
when considering 60-km boxes. In this case, the number of SPHERA grid points
falling within a box may be significantly larger than the corresponding number of
rain gauges. This benefits the reanalysis to the disadvantage of the sparser plu-
viometric network when coming to detecting precipitation peaks. As proof of this,
the frequency distribution analysis performed with the averages (Figure 3.7b) con-
firms the absence of the wet systematic bias in SPHERA: both reanalyses better
agree with the observations, with SPHERA outperforming ERA5 starting from 5-10
mm/day. Moreover, ERA5 underestimates the number of rainfall events starting
from 10-20 mm/day, although in a less pronounced way than maxima counterparts.
This further confirms its increasing dry bias as precipitation intensifies.

3.3.3 Hourly precipitation

The seasonal performance of the sub-daily (hourly) time scale of precipitation is as-
sessed through performance diagrams for maximum accumulations aggregated from
2003 to 2017 (Figure 3.8). A systematic worsening of the scores is evident compared
to daily accumulation counterparts. Similarly to daily performance, the added value
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Figure 3.8: As Figure 3.6 but for hourly-accumulated precipitation, verified against
Dewetra, when maximum values over boxes of 60 km are considered. The results pertain
to hourly precipitation thresholds ranging from 0.5 to 20 mm/hour, reported with different
symbols.
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Figure 3.9: As Figure 3.7a, but for hourly rainfall occurrences.

of SPHERA over its driver emerges particularly in the larger fraction of hit events
(starting from 2 mm/h for every season, but summer from 5 mm/h), as indicated by
the higher POD, with gaps as large as 0.2 points more than ERA5. Further, as in the
daily analysis, ERA5 systematically produces fewer false detections than SPHERA,
as indicated by the larger SR values obtained for every season and threshold, but
undersamples the number of hourly rainfalls as the intensity increases. The main
difference with daily results is the strongly reduced overestimation of the number of
events produced by SPHERA compared to the observations. Indeed, the frequency
bias for hourly rainfall maxima is always close to 1 for every intensity and season:
it is confined between 0.8 and 1.3 in MAM and SON, slightly dry in DJF (being
arranged along the 0.8 line), and increasingly wet with rainfall intensity in JJA
moving from roughly 1.0 to 2.0.

Figure 3.9 reports the histogram of the relative frequency distributions for
hourly accumulations. The maximum hourly distributions reflect the behaviors de-
tected for daily frequencies (Figure 3.7a). The overestimation committed by ERA5
in the number of low-precipitation events (<1 mm/h) is more pronounced, with the
lowest bin populated by almost 80% of the entire sample of events, which is about
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Figure 3.10: Relative frequency distributions of hourly rainfall occurrences for the sum-
mer months (JJA) aggregated over 2003-2017 for SPHERA (in purple), ERA5 (in green),
and Dewetra (in blue). The distributions are obtained from the original unboxed horizon-
tal resolutions of the datasets and are divided into two plots to separate lower-precipitation
occurrences (panel a) from less frequent heavy rainfall rates (panel b).

20% more than observed. Starting from 1-2 mm/h, ERA5 frequency underestima-
tion worsens as rainfall intensifies, producing an almost complete lack of occurrences
for precipitation thresholds greater than 5-7 mm/h. Concerning SPHERA, despite
the significant underestimation of roughly 10% in the number of weak rainfalls (<1
mm/h), for heavier accumulations the number of events is always in agreement with
the observations, even in the range of severe events (>20mm/h). An overestimation
with a frequency deviation roughly- or below 2% is present, with the maximum in
the range of 10-20 mm/h. However, this effect is less pronounced than its daily coun-
terpart in relative terms, indicating an improved skill in representing precipitation
maxima at high temporal resolution.

As previously mentioned, when considering the maximum area-aggregated rain-
fall distributions over 60-km grids, important dynamical aspects of the simulations
may be removed from the analysis, which is even more likely at hourly resolution.
For this reason, it is worth investigating the frequency of hourly precipitation at
the original resolutions of the datasets (i.e., 31 km for ERA5, 2.2 km for SPHERA,
and scattered data points for pluviometers). It is worth highlighting the quali-
tative nature of this comparison given the numerous limitations arising from this
approach (which were previously compensated by using a fuzzy verification method).
Namely: the representativeness limitations of the uneven distribution of individual
point observations, the non-fixed number of rain gauges in Dewetra over the years
(increasing by a factor of 4), and the different sample sizes in grid points between
the two reanalyses (as SPHERA is roughly 200 times denser than ERA5). The
frequency distributions at the respective original resolutions of the datasets are re-
ported in Figure 3.10. The results pertain to hourly summer rainfalls aggregated
over 15 years when distinguishing between weak to moderate (Figure 3.10a) and
severe (panel b) rainfalls to better visualize the less frequent severe events. Since
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Figure 3.11: Mean diurnal cycle of hourly summer (JJA) precipitation intensity averaged
over Italy during 2003-2017, considering only wet hours of the day. The time series are
calculated from the datasets at their original resolutions.

numerical weather predictions frequently simulate substantial amounts of low rain-
fall occurrences, especially when their fields are not spatially aggregated, only wet
hours (i.e., precipitation exceeding 0.1 mm/h, similar to Ban et al., 2014) are consid-
ered. The results confirm and strengthen the findings of the upscaled datasets: the
substantial overestimation of weak rainfalls committed by ERA5 is evident, as well
as its inefficiency in simulating heavier precipitation events, producing less than 1%
of its occurrences, versus the 11% of the observed, for precipitation amounts greater
than 5 mm/h. Additionally, SPHERA event distribution suits the observed coun-
terpart well, without any systematic over- or underprediction. Indeed, SPHERA
deviation from the observed frequency is always less than 5% in the range of weak-
to moderate precipitation (0.1-5.0 mm/h). Moving to higher intensities, SPHERA
generally overestimates Dewetra, with deviations in the frequency below 2%, result-
ing in a population of occurrences in the 5-50 mm/h range equivalent to the 14% of
the total distribution, which is slightly larger than the observed 11%.

3.3.4 Diurnal cycle

A further relevant feature to assess is the ability to represent the diurnal cycle
of summer precipitation. In JJA, daily variations of convective activity strongly
control weather dynamics over Italy. Hence, we expect an enhanced description
when employing CP simulations (Fosser et al., 2015; Brisson et al., 2016). The
diurnal time series of hourly averaged rainfall during JJA for SPHERA, ERA5 and
Dewetra, aggregated over 2003-2017, are reported in Figure 3.11. Land grid points
only are selected for the reanalyses and averaged over Italy. At the same time,
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hourly unboxed rain-gauge data are aggregated with the same premises described
at the end of Section 3.3.3. Only wet hours are considered also in this comparison.
The observed cycle is characterized by higher rainfall intensities between 09 and 17
UTC, with the main peak at 13 UTC, and weaker rainfalls during the night and
early morning, with a second lower peak between 23 and 00 UTC. ERA5 is unable to
simulate the average observed precipitation rates, implying strong underestimations
of the overall intensity and amplitude variation as a natural consequence of the coarse
horizontal resolution (Bollmeyer et al., 2015), while the timing of the precipitation
peak (13 UTC) is well captured. SPHERA diurnal cycle is more in line with the
observations, with an optimal agreement during the rainiest hours of the day of the
early afternoon (from 12 to 17 UTC) and a slight underestimation of the intensity
(always ⩽1 mm/h) for the rest. SPHERA well replicates rainfall temporal evolution.
The main difference with the observed cycle is evident in the morning from 06 to
11 UTC when observations exhibit higher precipitation intensities. No substantial
temporal shifts in the timing of the wettest and driest hours of the day are found
for both reanalyses.

3.4 Heavy rainfall case studies

Besides the global statistical assessment for quantifying the overall ability of
SPHERA and ERA5 to represent precipitation, it is relevant to investigate their
simulation of specific meteorological conditions leading to extreme rainfall. For this
reason, this section analyzes two relevant case studies of severe rainfall events in
Italy: the severe orographic rainfalls leading to the flood of the Secchia river in
January 2014 (Section 3.4.1) and the extreme precipitation associated with multi-
ple mesoscale convective systems (MCS) over Sardinia in November 2013 (Section
3.4.2). For both events, an investigation of the dynamical configuration preced-
ing the rainfall occurrence is presented to get a more comprehensive picture of the
performance of the reanalyses.

3.4.1 Flood of the Secchia river (17-19 January 2014)

From the 17th to the 19th of January 2014, the passage of an upper-level trough
over north-central Italy produced moderate to very intense rainfalls over the whole
Po river valley. As a result, a large amount of rain fell over the Emilian catchments
of the Secchia and Panaro rivers, two right tributaries of the Po river originating
from the Apennines, thus leading to their flood. This event caused one fatality, the
evacuation of approximately 10,000 people, and damages of roughly €500 million
due to the failure of the Secchia river embankment (Porcù et al., 2019; D’Alpaos
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Figure 3.12: Geopotential height map at 500 hPa (from ERA5 reanalysis) over Europe
and the northern Atlantic ocean on the 17th of January 2014 at 23 UTC (map courtesy
of weather.us).

et al., 2014).
On the days preceding the event, the synoptic situation was characterized by

an intensification of the subtropical jet stream, caused by the southward movement
of a deep low-pressure trough centered on southern Iceland. From the geopoten-
tial height map at 500 hPa simulated by ERA5 during the night between the 17th
and 18th of November (Figure 3.12), the deep upper-air trough extending down
to northern Africa is well visible. Thanks to this baric configuration, the cold air
masses carried southward by the trough were favored to ascend latitudinally over
the Mediterranean and Tyrrhenian sea, where they received an important contri-
bution of moisture. Subsequently, the polar and humid air masses, forced by the
expansion of the anticyclonic ridge over the eastern Mediterranean sea, moved north-
eastward ahead of the cold front separating them from the warmer sub-tropical air,
and reached the Italian coasts of Liguria and Tuscany. This is visible from Figure
3.13 reporting the geopotential height superposed to the horizontal wind field at
the two isobaric levels of 950 hPa (Figure 3.13a) and 500 hPa (Figure 3.13b) as
simulated by SPHERA on the 17th of January at 02 UTC. The intense flow blowing
and extending throughout the vertical section of the atmosphere is evident, from the
upper-levels (500hPa), with a north-eastern direction, to the lower-levels (950hPa),
with a more northward direction. Near the surface, maximum wind intensity reach-
ing 30-35 m/s was detected over the maritime sectors of the Thyrrenian and Ligurian
seas, already from the early hours of the 17th. The sustained ventilation continued
up to the evening of the 18th, with a progressive shifting of the jet-stream axis, and
of the entire frontal system, towards south-east, as a result of the progression of the

www.weather.us
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Figure 3.13: Geopotential height (black and red contours), in dam units, superposed to
the wind field at 950hPa (panel a) and at 500hPa (panel b) simulated by SPHERA for
the 17th of January 2014 at 02 UTC. The intensity and direction of wind speed fields are
shown with blue color shading and black arrows, respectively (reported for an exceedance
threshold of 10 m/s).

trough over the eastern Mediterranean (not shown).
On the 17th, the low-level flow bringing maritime moist air impacted over the

Ligurian and Tuscanian coasts where it was forced to uplift by the presence of the
northern Apennines. The result was the formation of intense and long-lasting oro-
graphic rainfalls starting over the mountains and extending on their leeward side
over a large sector of the southern Po valley. Over the Tuscan-Emilian Apennines,
high values of maximum wind speed were detected at mountainous meteorological
stations over the Secchia, Panaro, and Reno catchments, in some cases exceeding
values as large as 20 m/s for several consecutive hours (ARPAE, 2014). The asso-
ciated precipitative event was active from the early morning of the 17th over the
Apennine ridges, reaching heavy accumulations in a few hours, and intermittently
persisting up to the evening of the 19th with a more widespread extension. Then,
the decrease in the intensity of the moist air flow, and the counterclockwise rotation
of the subtropical jet stream axis northward, led to the depletion of rainfalls over
the area owing to their displacement towards southern Italy.

The accumulated precipitation in 72 hours simulated by SPHERA and ERA5 is
compared to ARCIS analysis in Figure 3.14. The highest amounts of precipitation
were reached over the Apennine sectors, especially over the Secchia river catchment
(approximately around E 10.5°, N 44.3°). Here, upstream accumulations exceeded
250 mm/72h, affecting the overall river embankment stability and triggering its
subsequent failure downstream. SPHERA simulated rainfall peaks reaching values
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Figure 3.14: Maps of 72 hours-accumulated rainfall fields (from the 17th of January
00 UTC to the 19th of January 23 UTC) for SPHERA (upper-left panel), ERA5 (upper-
right panel) over Italy, and ARCIS observative analysis (lower panel) over north-central
Italy (the same sub-domain is reported also for the reanalyses maps). The solid gray
dot represents the location of Civago where the ARPA rain gauge detected the maximum
hourly amount of rainfall during the event (14.2 mm/h).

as high as 300 mm/72h over the river basin, in good agreement with the observed
magnitude. In comparison, the rainfall field simulated by ERA5 did not exceed
maximum accumulations of 150 mm/72h in the area. Furthermore, SPHERA spatial
distribution presents complex details as a consequence also of the highly-resolved
topography in the area. As a result, the localization of the most prominent rainfall
peaks is sharp and in approximate (but non-exact) agreement with the respective
observed pattern, with a tendency for displacing the wettest spots slightly towards
north-east. On the other hand, the insufficient spatial detail of ERA5 produced a
blunted, widespread, and smoothed rainfall field over the event area.

The observed maximum rainfall rates were recorded on the late morning of the
17th by a few isolated mountain rain gauges: the absolute maximum was detected
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Accumulated precipitation in Civago, 16-20 Jan 2014
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Figure 3.15: Accumulated precipitation for the period 16-20 January 2014, observed
(black dots) and simulated by SPHERA (purple dots) and ERA5 (green dots) in the
station of Civago. The vertical blue dashed line reports the timing of the observed hourly-
cumulated precipitation peak, while the red dashed line indicates the timing of the Secchia
river embankment failure downstream.

in Civago (1011 m a.s.l), located upstream in the Secchia river catchment, with
14.2 mm/h at 11 UTC. The most widespread and long-lived phenomena occurred
during the evening and night of the 18th when almost the entirety of pluviometers
located in the Panaro and Secchia rivers basins recorded more than 5 mm/h for at
least three consecutive hours (Porcù et al., 2019). Figure 3.15 reports the temporal
evolution of the heavy accumulation over Civago. A bilinear interpolation is applied
to the reanalyses to perform a point-to-point comparison with pluviometric data.
A total of 174.6 mm fell by the end of the first day of the event (17th). SPHERA
well represents this steep accumulation trend by matching the observed peak time
(between 9 and 12 UTC) and simulating 189.1 mm by the end of the 17th (i.e.,
roughly 8% more than observed). By the end of the third day, characterized by less
intense and more spatially distributed rainfalls, SPHERA underestimates the total
accumulation by 24%, producing 318.9 mm versus the 419.0 mm observed. The
high-resolution simulation maintains a good match with rainfall timing throughout
the event (as evident by the black and purple profiles in Figure 3.15, particularly
during the intermittent phase of precipitation on the 19th of January). Moving
to ERA5, its simulated field largely underestimates rainfall accumulation for the
entire duration of the event. The underprediction is 113.8 mm (i.e., 65% less than
observed) by the end of the 17th, increasing to 305.3 mm (i.e., 73%) by the end of
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the 19th. ERA5 also delays rainfall timing throughout the three days, indicating a
lower ability to predict the correct temporal sequence during all the phases of the
orographically-driven event.

This kind of extreme precipitation events, generated by the interaction with
the orography of a strong and humid confluent flow ahead of a polar cold front, is
frequent in the Mediterranean region during the winter season (Krichak et al., 2015).
Evidence is provided by the observed spatial distribution in DJF (Figure 3.4c) and
recent investigations (e.g., Grazzini et al., 2020a,b).

3.4.2 Cyclone Cleopatra and MCSs over Sardinia (18
November 2013)

During the fall season over the Mediterranean sea, a series of factors may favor the
formation and organization of convective activity. Namely: the strong temperature
gradients between the warm subtropical air and the colder northern air masses, the
still-warm sea surface releasing large amounts of heat and moisture in the lower
troposphere, and atmospheric instabilities caused by the more frequent changes in
the baric configurations at these latitudes following the end of the warm season
(Caillaud et al., 2021; Nieto et al., 2005; Jansa et al., 2000, 2001).

In this framework, the extratropical cyclone Cleopatra formed in November
2013, starting from a deep low-pressure trough in the westerlies and evolving into
an upper-air cut-off low-pressure system centered in southern Europe. This system
was well visible already from the 15th of November from the 500 hPa geopotential
height map obtained with ERA5 (Figure 3.16a). On the following days, the cut-off
system carrying the polar air mass moved towards south-west, reaching the southern
Iberian peninsula (Figure 3.16b), where it stayed until the late afternoon of the 17th.
In the meantime, its vertical extension reached the lower troposphere up to the
formation of an enclosed low-pressure minimum at the surface over the Balearic sea.
During the evening of the 17th, the cyclone started to move north-eastward, causing
the advection of warm air coming from the subtropical continental African region
towards the western Mediterranean, including Sardinia. This process was favored
also by the presence of an intensification of the upper-air subtropical jet stream over
northern Africa: a moderate jet streak was present (i.e., the fastest moving flow
embedded in the jet stream with wind speed maxima >230 km/h), which inevitably
interacted with the intense cyclonic circulation of the upper troposphere associated
with the cut-off.

The interaction of the flows is visible from the fields of wind speed and direction
at 300 hPa simulated with ERA5 for two distinct times (Figure 3.17). In the early
morning of the 17th (Figure 3.17a), the beginning of the interaction between the jet
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Figure 3.16: Geopotential height map at 500 hPa simulated with ERA5 over central-
southern Europe and northern Africa. The four panels (a through d) show the evolution of
the cyclone starting from the 15th of November 2013 at 14 UTC to the 18th of November
at 17 UTC, respectively (maps courtesy of weather.us).

streak, located over northern Africa, and the cyclone, which circulation was flattened
over the south-eastern Iberian peninsula, is evident. The interaction caused the for-
mation of two distinct air flows presenting maximum wind speed, one following the
eastward jet stream path and the other diverted towards the cyclonic circulation.
By the early morning of the 18th (Figures 3.16c and 3.17b), the cyclone had moved
towards north-east, and the meridional deviation of the jet streak was more devel-
oped and extended to larger sectors, causing the advection of warm subtropical air
reaching the northern Mediterranean. The strong northward advection is well visible
also from Figure 3.18 reporting the geopotential height superposed to the horizontal
wind field simulated by SPHERA at 500hPa (right column) and at 950hPa (left col-
umn) at sequential temporal stages, from the evening of the 17th to the afternoon
of the 18th of November 2013. The upper-level north-eastward ventilation started
to reach Sardinia during the evening of the 17th as stronger pressure gradients ap-
proached the eastern Mediterranean (Figure 3.18b), while at the surface the wind
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b)a)

Figure 3.17: Wind speed at 300 hPa expressed in kilometers per hour (kph) and wind
direction, represented as white streamlines, simulated with ERA5 over central-southern
Europe and northern Africa. Panel a) for 17 November at 05 UTC, panel b) for the 18th
of November at 02 UTC (maps courtesy of weather.us).

field remained weaker and less well established (Figure 3.18a). As the cyclone slowly
moved eastward, the ventilation in the upper troposphere over Sardinia intensified
(Figure 3.18d) and the flow aligned northward. At this stage, from the morning
of the 18th, the vertical extension of the fast moving air flow reached the surface
levels, where the further approach of the enclosed pressure minimum diverted the
flow northwestward (Figure 3.18c), indicating the presence of a relevant wind shear
between the surface and the upper atmosphere. This low-level Sirocco, pushed the
warm African air over the Mediterranean sea surface, forcing the release of large
amounts of moisture before reaching the Sardinian coasts. The large potential of
these advected and humid air masses was triggered by the presence of the orography
(presenting peaks as high as 1800 m a.s.l. in the central Gennargentu massif, approx-
imately around E 9.5°, N 40°), that blocked the horizontal motion of the air flow by
imparting a strong vertical acceleration to it. This blocking action is visible from the
surface horizontal wind field (Figure 3.18c-e), characterized by strong gradients in
the proximity of the eastern and south-eastern Sardininan coasts and in the central
mountainous hinterland. The resulting vertical motions forced by the orography are
visible from Figure 3.19a, showing the vertical wind speed component at 700 hPa
obtained with SPHERA at 06 UTC of the 18th. Isolated peaks in the vertical wind
speed are evident in the central-eastern sectors of Sardinia owing to the presence
of the Gennargentu massif. Furthermore, the band structures oriented northeast-
ward located on the northwestern part of the island (and also in southern Corsica)
were due to the perpendicular orientation of the mountain ranges with respect to
the air flow direction, resulting in strong vertical air lift extending from the central
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Figure 3.18: As Figure 3.13 but with the spatial domain centered over Sardinia and for
three different times: at 18 UTC of the 17th of November (panels a and b), at 06 UTC
(panels c and d) and at 15 UTC (panels e and f) of the 18th of November.

western- to the northern eastern coast. On the following temporal stages in the af-
ternoon of the 18th (Figure 3.19b-e), stronger vertical motions organized along long
narrow bands oriented towards north-west and moving northeastward are detected.
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Figure 3.19: Vertical wind component field at 700hPa simulated by SPHERA at five
sequential times, from 06 UTC (panel a) to 18 UTC (panel e) of the 18th of November.
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Figure 3.20: Temperature at 2 metres simulated by SPHERA at four sequential times,
from 06 UTC (panel a) to 18 UTC (panel d) of the 18th of November.

These intense vertical velocities were caused by strong updrafts, owing to convec-
tive activity triggered by the front circulation, and organizing to form mesoscale
convective systems (MCS), as discussed later. MCSs resulted by the combination
of two processes: the aforementioned orographic lifting, and the collision of the two
air masses at stake along the cyclonic cold front right over Sardinia (well visible
also from Figure 3.18e). These are: the dry polar air associated to the cold front,
slowly approaching from west and moving counterclockwise following the cyclonic
motion, and the warm, humid and fast subtropical air advected from south-east,
that is forced to lift over the colder air mass. The surface temperature field simu-
lated by SPHERA gives an insight of the thermic differences between the two air
masses (Figure 3.20). The low-level advection of warm air from southern latitudes
was effective already at 06 UTC (Figure 3.20a). The arrival of the cyclone in the
proximity of Sardinia is evident from the cooling of the surface air in the western
Mediterranean, and from the strongest temperature gradients arranged along the
line of the cold branch of the cyclonic front (Figure 3.20b-d).

This dynamical evolution resulted in extreme rainfalls causing extensive dam-
age, loss of lives, and record-breaking accumulations (ARPAS, 2014). The approach
of Cleopatra, and the interaction with the complex orography of Sardinia, led to
the development on the 18th of November of multiple stationary MCSs over the
island producing extreme precipitation. These are visible from the daily accumula-
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Figure 3.21: Daily accumulated precipitation on the 18th of November simulated by
ERA5 (panel a), simulated by SPHERA (panel b), and obtained from the combination
of radar estimates with pluviometric observations (SRI) (panel c - taken from Niedda
et al., 2014). On panel c) the rain gauges over the territory are indicated with solid black
triangles.

tion estimated through surface rainfall intensity (SRI) data obtained by combining
radar with rain-gauge observations (Figure 3.21c). Figure3.21a-b report the daily
accumulated rainfall fields simulated by ERA5 and SPHERA, respectively. The
ability of the high-resolution reanalysis to simulate the convective band structures
leading to severe rainfalls is evident. ERA5 produces a well-localized precipitation
field. However, it results in excessively smoothed estimates with low spatial detail,
and presenting daily accumulations below 90 mm. The accumulated intensities of
SPHERA show lower underestimation than ERA5: the simulated values reach up to
150 mm versus the >400 mm detected, which can be expected when comparing re-
analysis simulations to observational datasets in case of extreme convective rainfalls
(Hu and Franzke, 2020).

To get better insights into the temporal evolution of the event, a comparison
between SPHERA accumulated rainfall and SRI estimates at hourly temporal res-
olution is reported (Figure 3.22). During the early morning (at 5 UTC) of the 18th
(Figure 3.22a), SRI fields reveal the initiation of moderate and localized rainfalls
exceeding 12 mm/h in central-southern Sardinia. These are associated with the
formation of the first convective cells starting to get organized along narrow bands
aligned with the low-level flow direction (i.e., north-west) and resulting from the oro-
graphic lift of the advected subtropical air. The radar-based imagery then shows the
permanence and development of the convective bands during the rest of the morn-
ing, gradually producing more sustained rainfalls with values larger than 25 mm/h
(Figure 3.22b). Convective precipitation significantly intensified and extended start-
ing from the early afternoon (14 UTC - Figure 3.22c), owing to the upscale growth
of the MCSs, as a result of the gradual aggregation of the isolated convective cells,
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Figure 3.22: Hourly accumulated precipitation for progressive hours of the 18th of
November (columns a through g) simulated by SPHERA (upper row) and estimated as
SRI from radar/rain-gauge data (lower row).

with particular emphasis over central-eastern Sardinia. The peaked extension and
strengthening of the MCSs derived from the uninterrupted orographic lift, coupled
with the gradual approach of the strong thermal and pressure gradients linked with
the arrival of the cyclonic front (not shown). This configuration triggered a decisive
increase in the convective activity and organization, besides favoring strong station-
arity and hence regeneration of the convective cells. The marked stationarity of the
MCSs is visible from the comparison of SRI fields at 9 UTC (Figure 3.22b) with 14
UTC (Figure 3.22c), showing no significant spatial shifts of the heavy precipitation
bands in five hours. The two most intense band structures located in central-eastern
Sardinia were characterized by very similar geometries and dimensions, with a width
in the range of 5-15 km, and presenting extreme spatial gradients in precipitation at
their borders (approximately 200 mm/5km), as further proof of their sharped sta-
tionarity (Niedda et al., 2014). SPHERA successfully simulates the correct timing
of hourly accumulations throughout the 18th of November, producing a remarkable
agreement with the observed precipitation field (Figure 3.22c through g). Already
from the early morning, the initiation of isolated and moderate rainfalls is satisfac-
torily simulated, forming along short bands that gradually organize and extend to
larger areas. From 14 UTC, the simulated intensification and extension of the MCSs
associated with the cold front passage are evident by the resulting heavier precip-
itation rates. However, SPHERA rainfall estimates are spatially shifted compared
to the observations: the former are located more westward (of ∼20 km) and have
their axis slightly tilted northwestward compared to the more northward-oriented
radar-based structures. The cause is possibly a slightly different localization of the
simulated surface low-pressure minimum of the cyclone (not shown): being further
south and west than observed, it caused a slight tilt in the convective band axis
orientation and a westward shift of their localization, respectively.
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3.5 Summary and discussion

Rainfall is one of the most critical meteorological quantities to be estimated in
numerical weather predictions and climate monitoring contexts. Severe rainfalls
represent one of the most important causes of extended damages and societal costs
in Europe (Spekkers et al., 2017; Rebora et al., 2013), hence the improvement in
their representation is crucial (Feng et al., 2021). The assessment of the potential
added value in the representation of extreme rainfalls as simulated by SPHERA, a
new CP regional reanalysis over Italy, is the subject of the present investigation. The
validation of precipitation simulated by SPHERA, and the comparison with its driver
ERA5, is performed against the national rain-gauges network Dewetra for 2003-
2017. The methodology consists of a spatial-neighborhood technique after assessing
the optimal scale size to operate the upscaling aggregation. An excessive loss of
detail in the representation of precipitation fields is detected, especially for heavy
rainfall occurrences, when using grid boxes excessively wide (i.e., 100 or 200 km),
as expected (Marsigli et al., 2008), while finer resolutions have proven to perform
similarly to each other. Hence, a grid spacing permitting an adequate sampling of
both SPHERA and ERA5 is chosen (i.e., 60 km).

The statistical analysis of precipitation permits assessing the added value of the
CP system, particularly in terms of precipitation extremes for which higher bene-
fits are expected. Concerning heavy-rainfall (i.e., the 95th percentile) geographical
distributions, ERA5 locally underestimates precipitation intensity throughout the
year, especially over the mountainous wettest regions (with a bias as large as -12
mm/day in DJF). SPHERA shows wet biases of up to 12 mm/day in JJA over
the plains and dry biases of -9 mm/day in DJF. Moving to the analysis of daily-
accumulated rainfalls, ERA5 better represents weak precipitation intensities with
generally higher skill scores and weak wet biases. The benefits of the CP setting
are evident for moderate and heavy accumulations in all seasons. In these cases,
SPHERA successfully simulates severe rainfall occurrences, mainly related to warm-
season locally-driven convective events, which ERA5 strongly underrepresents. The
CP enhancement in skill scores shows a tendency to overpredict the number of events
when considering daily distribution maxima. This is most likely due to undersam-
pling of the observed state rather than a systematic deficit of the model, as proved
by the almost null frequency bias obtained for daily average precipitation. In terms
of hourly accumulation maxima, the accordance with the observed frequency stays
stronger for SPHERA at all rainfall intensities. At the same time, ERA5 produces
an insufficient number of events worsening with accumulation intensity. Further
proof of the added value of SPHERA is the improved accordance with the observed
average daily cycle of summer precipitation, compared to the consistent amplitude
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underestimation proper of ERA5.
Two case studies are considered to assess the ability of SPHERA to represent

extreme precipitation and to further compare the reanalysis systems in describing
specific severe-rainfall events. Both cases relate to extreme accumulations over a
few hours resulting from orographic lifting and MCSs producing floods and exten-
sive damage. ERA5 simulates blunted and smooth rainfall fields for both events,
underpredicting the observed intense accumulations by 73% (when looking at the
rainiest location for one of the events). SPHERA represents the precipitation fields
with a higher level of detail in their spatial distribution, hourly-frequency timing,
and intensity of extreme precipitation. Anyhow, an underestimation of 24% is de-
tected at the same location (simulating an accumulated rainfall peak of 318 mm/72h
vs. the observed 419 mm/72h). This result is expected when considering the simu-
lation of heavy rainfall accumulations, even when performed with very fine spatial
grid spacings (e.g., Buzzi et al., 2014, using 1.5-km CP simulations, obtained an un-
derestimation of the 38% for a severe-precipitation event exceeding 500 mm/24h).
The results suggest the potential of the CP system to reach high precipitation rates.
In comparison, the stronger underestimation of the coarser ERA5 is most likely
linked to the convection parameterization included in the driver model. In this case,
smooth rainfall fields and a decreasing agreement with the observed state with in-
creasing rainfall intensity are obtained, as expected when tailing the analysis towards
the extremes (Bandhauer et al., 2022; Rivoire et al., 2021). The underestimation
detected with SPHERA may potentially be linked to the spatial shifts in the lo-
calization of the rainiest areas and are acceptable in the context of high-resolution
weather simulations. Indeed, these mismatches fall into the double-penalty class
of occurrences, for which it is challenging to match the observations with absolute
precision. The cause is the intrinsic chaotic behavior controlling DMC, which is
responsible for the low predictability of the exact localization of the associated con-
vective processes, justifying the use of fuzzy verification techniques for quantifying
the performance of their simulations (Marsigli et al., 2021). This issue could be
relevant in downstream modeling applications that require high spatial precision,
such as in hydrological modeling (e.g., Lobligeois et al., 2014). Possible strategies
to overcome spatial phase errors in high-resolution simulations when dealing with
localized rainfalls are the additional assimilation of radar observations. This can
be done by employing a latent heat nudging data assimilation scheme (Wahl et al.,
2017), or by post-processing reanalysis data with optimal interpolation techniques
(Bonanno et al., 2019).

These results prove the added value of SPHERA for describing medium-to-
severe local precipitation events, owing to several improvements compared to its
global driver. These are: the finer grid spacing allowing for an enhanced physical
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and microphysical description of the processes, and the explicit representation of
DMC, the resulting higher level of topography detailing allowing for a better rep-
resentation of atmosphere-land interactions, and, possibly, the better adherence to
assimilated regional observations. Previous studies reported multiple benefits re-
lated to increased grid resolutions in numerical simulations, allowing an adequate
representation of local dynamical features and forcings leading to or intensifying
precipitation events (Capecchi, 2021; Cerenzia et al., 2020; Klasa et al., 2018; Wahl
et al., 2017; Clark et al., 2016; Cassola et al., 2015; Davolio et al., 2015; Buzzi et al.,
2014). Furthermore, the results obtained are in line with those of recently produced
CP hindcasts over Italy, sharing similar characteristics with SPHERA, and obtained
by downscaling ERA5 with the BOLAM/MOLOCH model (Capecchi et al., 2022)
or COSMO model (Reder et al., 2022; Raffa et al., 2021). In Capecchi et al. (2022),
similar wet frequency biases in reproducing the 90th percentiles of annual, daily,
and hourly rainfalls are detected for MOLOCH simulations at 2.5-km grid spacing,
as opposed to the dry biases detected with BOLAM ran at 7 km. Further, from the
analysis of two severe-precipitation events, a higher level of detail in the spatial char-
acterization and less deviation from maximum intensities is maintained with the CP
hindcast, despite underestimating the most extreme rainfall observations (by 64%
in one case). As regards the hindcast obtained by downscaling ERA5 at 2.2 km over
20 European cities (Reder et al., 2022), enhancements over its driver are obtained in
terms of the spatial patterns of annual precipitation and the relative annual maxima,
as well as the monthly and hourly cycles of precipitation. In fact, ERA5 tends to
simulate precipitation fields that are too smooth to give an appropriate representa-
tion of rainfall extremes, in agreement with the results presented here. A significant
difference between SPHERA and the CP-reforecasts mentioned above is the lack of
the additional assimilation of regional observations in the latter. The assimilation
procedure in the production phase of the dataset is known to substantially enhance
the representation of the simulated atmospheric state (Bollmeyer et al., 2015; Bo-
nanno et al., 2019), particularly for precipitation estimates (Gustafsson et al., 2018;
Clark et al., 2016; Lewis et al., 2015). In SPHERA, this is accomplished by in-
cluding several conventional observations on the near-surface (SYNOP and SHIP)
or upper-air (TEMP, PILOT, and AIREP) through a continuous nudging scheme,
permitting a better adherence of the past-weather simulations to the observed atmo-
spheric state. The same observations are also assimilated in the global driver ERA5.
However, the much finer grid spacing at which they are ingested in SPHERA (2.2
km vs. 31 km of ERA5) substantially impacts their representativeness. Moreover,
it is worth noting that neither reanalyses assimilate precipitation observations. Fur-
ther and deeper investigations are needed to assess the potential added value of the
assimilation of regional observations in SPHERA through a quantitative comparison
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with similar CP datasets.
Concerning the observational data considered as the reference state, a crucial

aspect emerging is the critical dependency of the performance of SPHERA and
ERA5 on the quality of rain-gauge measurements. In fact, as reminded several
times, sparse pluviometric data such as those of Dewetra, despite the enhanced
spatial density over the years, may be affected by various representativity issues,
namely: measurement errors, spatial inhomogeneities due to lower station coverage
in some areas (i.e., especially in southern Italy or in mountainous regions, where
additionally slightly different sensors positioning may cause significant underesti-
mations in the recorded data, Crespi et al., 2018), and the non-constant number
of the sensors during the years in exam which increased by roughly 400% (from
1500 in 2003 to 6200 in 2017). For these reasons, the results should be interpreted
with caution, as the reference state is far from ideal. A possible way to partly
overcome spatial inhomogeneities issues may be to consider multiple observative
datasets, especially in the form of high-resolution gridded analyses such as GRIPHO
(Fantini, 2019) over Italy or ARCIS (Pavan et al., 2019) over north-central Italy.
The combined use of these datasets could enhance the uncertainty quantification in
describing the actual atmospheric state. Anyhow, the data interpolation required
to construct these gridded datasets may be an additional source of error due to the
resulting intrinsic smoothing of the rainfall fields, which constitutes a major limit,
particularly for the representation of extreme precipitation.

In conclusion, to respond to the first question posed in this thesis:

“To what extent do the improvements of CP reanalysis simulations outper-
form coarser counterparts in representing precipitation and, specifically, severe
precipitation events?”

The CP reanalysis SPHERA demonstrated a quantitative added value over
ERA5 in the representation of precipitation and severe precipitation over Italy in
terms of various aspects: more variable and locally-driven spatial distributions of
the 95th percentile of precipitation, higher statistical skill scores, especially for the
occurrence of moderate- to intense accumulations, both on a daily and hourly fre-
quency, and more detailed, higher-intensity reaching, and better spatio-temporally
localized rainfall fields in case of specific extreme precipitation events.

Note: the analyses presented in this Chapter are the subject of a scientific manuscript pub-
lished on the Quarterly Journal of the Royal Meteorological Society (Giordani et al., 2023).



Chapter 4

Describing hail-prone convective
environments with SPHERA and
overshooting top detections

This Chapter is dedicated to the analysis of hailstorms and the associated convec-
tive hail-favoring environments described with SPHERA numerical proxies, satellite
thunderstorm detections, and crowdsourced surface-based hail observations.

The inspiration for this analysis relies on recent research led by Punge et al.
(2017) and further applied by Bedka et al. (2018) and Punge et al. (2021). It repre-
sents an attempt to reduce the uncertainty around hailstorm events understanding
and predictability by combining multiple direct and indirect data sources. A crucial
innovation introduced by the present study is the description of hail-favoring envi-
ronmental conditions with a CP reanalysis (SPHERA) instead of a coarser global
dataset. Indeed, higher resolutions are expected to improve the representation of
the atmospheric state thanks to the removal of physical parameterization schemes
for describing DMC processes, which represent a dominant source of errors in the
simulations. Furthermore, the updated automatic satellite-based algorithm for de-
tecting thunderstorms of Khlopenkov et al. (2021) brings in a further novelty, which
has already demonstrated its added value over the United States (Cooney et al.,
2021).

The analysis is performed over three years (2016-2018), owing to the availability
of the different datasets and to the increased numerosity of ESWD hail reports in
the last years, for the extended summer season (April-October). The area consid-
ered comprises the entire SPHERA spatial domain (i.e., roughly 6-19°E, 35-49°N,
see Figure 2.1). This region contains one of the main European hot spots for the de-
velopment of severe convective thunderstorms and, hence, hailstorms (i.e., northern
Italy, Taszarek et al., 2020). Furthermore, in the same area, the greatest likeli-
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hood of a worsening of hailstorm severity in the coming years as a consequence of
anthropogenic global warming is expected (Raupach et al., 2021).

The Chapter is organized as follows: Section 4.1 presents the observational
data considered; in Section 4.2, the methodology developed to couple reanalysis and
hailstorm observations in the form of an environmental-based filter is reported; Sec-
tion 4.3 shows the resulting satellite-based hailstorm characterization, while Section
4.4 is dedicated to the investigation of the environmental conditions identified with
reanalysis proxies; finally, the results are summarized and discussed in Section 4.5.

4.1 Hail observations

4.1.1 The European hail-reports database ESWD

The European Severe Weather Database (ESWD, https://www.eswd.eu/; Dotzek
et al., 2009) constitutes one of the primary sources of severe convective storm data
in Europe and represents the biggest and only multinational European hail reports
archive. Maintained by the European Severe Storm Laboratory (ESSL), the ESWD
provides quality-checked data collected by networks of voluntary observers, meteo-
rological services, weather enthusiasts, and news and media reports. The transver-
sal cross-collaboration between multiple entities at the heart of this database was
necessary to overcome the previous fragmentation of severe weather databases in
Europe. Thanks to technological innovations and increasing public awareness of
extreme meteorological events, reports have rapidly increased in number in recent
years (Groenemeijer et al., 2017). The introduction of a mobile app, the European
Weather Observer (EWOB; Holzer et al., 2017), made decisive contribution in this
sense, which further enhanced the engagement with the general public for report-
ing severe weather occurrences in real- or near real-time. The encouraging added
value given by crowdsourced severe-weather reporting prompted the development of
similar modules in national weather services apps of Germany (DWD WarnWetter-
App - Spitzer et al., 2022) and Switzerland (MeteoSwiss-App - Barras et al., 2019).
Anyhow, despite the promising ameliorations, the ESWD database still suffers from
serious deficits in data representativity, namely: the spatial-inhomogeneity bias in
the localization of a larger part of reports towards the most populated areas (i.e., the
main urban centers), especially in central Europe where the most active voluntary
observer networks are located, and the short temporal series owing to the newness of
the database. However, the ESWD forms the only reliable source of direct hail data
for Europe, including information for any report such as location, date, hour (with
an estimate of the temporal accuracy), and maximum size of hailstones. Further, an
operational quality control procedure categorizes each report with different quality

https://www.eswd.eu/
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Figure 4.1: ESWD hail reports during April-October over 2016-2018. The reports are
classified by distinguishing among three classes: reports with no information on hail size
(in gray), small hail (maximum diameter <3 cm, in orange), and large hail (maximum
diameter ⩾ 3 cm in red). a) spatial distribution, b) temporal accuracy distribution, c)
maximum hailstone diameter distribution, d) number of reports per hour of the day (UTC),
e) number of reports per month, and f) number of reports per year.

levels: QC0 (“as received”), QC0+ (“plausibility checked”), QC1 (“confirmed by
reliable source”), and QC2 (“scientific case study”). Púčik et al. (2019) present the
first ESWD-based hail climatology for 1990-2018, quantifying injuries and damages
from hailstorms and noting an upward trend in the annual number of days with hail
losses and their magnitude over Germany.

The set of ESWD hail reports considered in this work pertains to the extended
summer season (April-October) during the years 2016-2018 over the whole SPHERA
reanalysis domain and having a minimum quality level QC0+ (Figure 4.1). In total,
1386 hail reports were available, of which 1050 have information on hail size (i.e., the
76%). Hereafter we refer to small hail reports having maximum hailstone diameters
<3 cm, large hail (⩾3 cm), and very large hail (⩾5 cm). They compose 38%, 62%,
and 17% respectively of ESWD reports with information on hail size. Their spatial
distribution (Figure 4.1a) denotes a strong inhomogeneity with a larger density of
reports in northern Italy, south-western Austria, eastern Slovenia, and northern
Croatia. On the other hand, the regions with the lowest hail reporting are central-
southern Italy and islands, the Alpine arc, and southern Balkans (southern Croatia
and Bosnia and Herzegovina). 90% of the reports have a temporal accuracy ⩽ 1h
(Figure 4.1b), and they pertain to a minimum hailstone size of 2 cm (Figure 4.1c).
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Their temporal distribution indicates the maximum likelihood for hail occurrence
at 15 UTC (Figure 4.1d) in July (Figure 4.1e), with a similar number of reports
(between 400 and 500) for each of the three years considered (Figure 4.1f).

4.1.2 Overshooting top detections

Remotely observing severe convective thunderstorms from space is possible through
visible and infrared (IR) imagery from geostationary satellites. Particularly, severe
thunderstorms extending throughout the troposphere are detectable in the IR as
local cold spot anomalies sprouting from warmer areas. These are associated with
Overshooting Tops (OT) resulting from intense updrafts protruding in the stable
layer near the tropopause and penetrating the lower stratosphere, surrounded by a
warmer cirrus anvil cloud confined below the last unstable level of free buoyancy
(Adler et al., 1985). It is well known that thunderstorms presenting satellite OTs sig-
natures have the potential to produce a variety of hazardous weather at the surface,
such as tornadoes, heavy rainfall, large hail, and wind gusts, which are typically
concentrated near OT regions (Reynolds, 1980; Brunner et al., 2007; Setvák et al.,
2013; Bedka and Khlopenkov, 2016; Mikuš and Mahović, 2013; Mecikalski et al.,
2021). Therefore, automatic OTs detection as a proxy to predict and investigate
severe weather has become a common practice globally (de Coning et al., 2015;
Hong et al., 2022). OTs can rapidly form and evolve within a thunderstorm and can
exist for less than 15 minutes (even less than 5 minutes - Elliott et al., 2012) with
a maximum diameter of roughly 15 km (Fujita, 1992; Brunner et al., 2007), and
presenting typical temperatures between 190 and 215 K (Allen et al., 2020). The
remote detection of OTs has been automated by Bedka et al. (2010) and has been
considered to characterize OTs climatological distribution in North America (Bedka
et al., 2010), Europe (Bedka, 2011), and Australia (Bedka et al., 2018). This OT
detection algorithm relies on the comparison between clusters of cold pixels likely
related to strong updrafts with warmer pixels consistent with the temperature in
the anvil of the thunderstorm, as detected with IR satellite scans. A large tem-
perature difference (> 6K) helps at separating actually occurred OTs from other
non-convective clouds (e.g., cirrus) and is indicative of updraft penetration through
the anvil of at least 1 km (Griffin et al., 2016). Recently, the automatic OT detection
algorithm has been substantially improved by moving to a probabilistic approach
(Bedka and Khlopenkov, 2016; Khlopenkov et al., 2021) conversely to the binary
yes/no decisions based on predefined fixed thresholds in the identification of an OT.
The statistical combination of tropopause-relative IR brightness temperature, the
prominence of a candidate OT relative to the surrounding anvil, and the spatial
uniformity of the area covered by the anvil delivers a 3-km gridded probabilistic
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Figure 4.2: Number of overshooting tops detected per grid cell (on a 10-km regular grid)
during April-October in 2016-2018.

OT estimate at 15-min resolution. The validation of this methodology (Khlopenkov
et al., 2021; Cooney et al., 2021) revealed important ameliorations over the original
OT-detection design of Bedka et al. (2010), especially in the form of a consistent
reduction in the number of false OT detections.

Several studies reported the linking between large hail at the surface and OT
intensity (Bedka, 2011; Punge et al., 2014; Proud, 2015; Jurković et al., 2015; Punge
et al., 2017; Bedka et al., 2018; Punge et al., 2021; Scarino et al., 2022), indicating
the appropriateness of OT observations as a proxy for hail occurrence. In this
context, here are considered the cloud-top scans obtained through IR imagery from
geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) (Schmetz et al., 2002) between 2016 to 2018 in the
extended summer months of April to October at a continuous temporal resolution of
15 minutes for developing a proxy for hail over Italy and the surrounding countries
and seas. Only OTs detected with the Khlopenkov et al. (2021) algorithm having a
probability >50% are considered, similarly to Punge et al. (2021). This constraint
is derived by comparing OT detections with radar echo tops (Cooney et al., 2021)
and demonstrated enhanced reliability as it indicates colder and more prominent
anvil-relative tops. The resulting spatial distribution of the 633,141 OTs detected
is reported over a 10-km regular grid in Figure 4.2. A generally higher number of
OTs over land is observed, especially around the Alps, Apennines, and Dinaric Alps
mountainous ranges.
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4.2 Hail filter design

Although OT-producing thunderstorms can generate severe weather, many thunder-
storms presenting OT signatures do not produce phenomena such as severe winds,
heavy rainfall, or hail. In fact, intense updrafts reaching the tropopause and pen-
etrating the stratosphere may be associated with convective environments not nec-
essarily supportive of severe weather production. Although recent studies suggest
links between convective storm severity and specific characteristics of the OTs, such
as their area extension (Marion et al., 2019) or the temperature gradient between
the OT top and the tropopause (Khlopenkov et al., 2021), satellite detections alone
are not a sufficient proxy for investigating hail occurrence. Therefore, a way to
discriminate between hail-producing and non-hail-producing OTs is necessary. The
combination of satellite OT detections with storm environmental conditions offers a
possible approach with the potential to analyze better the conditions leading to hail
occurrence. In the methodology developed by Punge et al. (2017) for Europe, which
has been similarly applied also in Australia (Bedka et al., 2018) and South Africa
(Punge et al., 2021), the environmental conditions are described through reanalysis
simulations. While global reanalyses such as ERA-Interim and, more recently, ERA5
have been considered in the former studies, the more detailed CP SPHERA reanal-
ysis is used in this work to filter OTs not associated with hail. In fact, given the
benefits shown by SPHERA over ERA5 in the description of severe rainfalls (Chap-
ter 3), a better representation of hail-producing severe convective environments is
expected compared to coarser global datasets. Section 4.2.1 reports the SPHERA
parameters selected to describe environmental conditions, and the construction of
the OT-filter is presented in Section 4.2.2.

4.2.1 SPHERA reanalysis data

For selecting the numerical proxies to best describe convective environments prone
to hail development, we relied on common knowledge from previous literature (Jelić
et al., 2020; Kunz, 2007; Kunz et al., 2020; Allen et al., 2020; Punge et al., 2017;
Bedka et al., 2018; Prein and Holland, 2018; Punge et al., 2021). The selected param-
eters originate in operational forecasting and rely on direct or indirect relationships
between hail observations and proximal atmospheric soundings. Their involvement
can help in discriminating convective situations in which hail formation is improb-
able and are employed to filter out OT detections related to such occasions. They
represent dynamic and thermodynamic characteristics of the atmosphere describing
key ingredients for hail formation in a thunderstorm: atmospheric instability, storm
organization, and freezing level altitude.

Atmospheric instability and the relative updraft strength of a thunderstorm are
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particularly relevant as strong updrafts are necessary for hail growth. Atmospheric
instability can be quantified with numerous indices. We selected three parameters
because only one is generally insufficient to comprehensively express the likelihood
of thunderstorm development. This holds especially in Europe where thunderstorm
environmental conditions may substantially differ from those found in the United
States (Brooks, 2009; Taszarek et al., 2020, 2021), where the majority of the indices
were developed. The chosen instability predictors represent some of the most used
parameters for the purpose and show the highest skills for the prediction of severe
thunderstorms (Kunz, 2007), and are: CAPE (Convective Available Potential En-
ergy) in its Most Unstable (MU) formulation (to account for elevated convection
and shallow boundary layers), K index and SLI (Surface Lifted Index). They are
defined as:

CAPE = g
∫ LZB

zi

Tvparc − Tvenvir

Tvenvir

dz

K = (T850hP a − T500hP a) + Td850hP a − (T700hP a − Td700hP a)

SLI = T500hP aenvir
− T500hP aparc

where g is the gravitational acceleration, zi is the altitude in the lowest 300 hPa
where the equivalent potential temperature is at its maximum (i.e., most unsta-
ble conditions), LZB is the level of zero buoyancy (or equilibrium level) where the
virtual temperature of the parcel Tvparc equals the virtual temperature of the sur-
rounding environment Tvenvir

, TxxhP a and TdxxhP a are respectively the temperature
and the dew-point temperature at the isobaric level xx hPa. CAPE represents the
integrated amount of work over the vertical air column exerted by the upward buoy-
ancy force over the air parcel, K index is a combination of the lapse rate, the low-level
moisture content, and the moist layer depth, while SLI evaluates the temperature
difference between the environment at 500 hPa and a parcel lifted dry adiabatically
from the surface to the lifting condensation level and pseudo-adiabatically to 500
hPa.

Along with atmospheric instability, thunderstorms with an enhanced convective
organization are more likely to produce severe weather such as hail. For this reason,
in the filter, we included the deep layer shear DLS, a parameter typically used for
investigating hail-favoring environments (e.g., Wellmann et al., 2020; Trapp et al.,
2007). DLS represents the horizontal change in wind speed in the vertical between
the surface (v10m) and approximately 6 km above the ground (v500hP a), which reads:

|
−−−→
DLS| = |−−−−→v500hP a − −−→v10m|

Finally, a determinant factor influencing specifically hail, among other severe
deep-convective phenomena, is the thermal characteristic of the vertical atmospheric
profile that directly affects the phase state of the water content suspended in the air
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column. This critical factor is quantified through the freezing level height H0, defined
as the altitude of the 0 °C isotherm above mean sea level. In fact, the atmospheric
thermal characteristics in different regions of the world imply thermodynamical dif-
ferences in thunderstorms evolution (Ludlam, 1980), and hence explain, for example,
the low hail frequency registered at latitudes near the tropics where surface atmo-
spheric layers are generally warmer and the tropopause altitude is higher (Prein and
Holland, 2018). This indicates that storms with high H0 are less likely to produce
hail on the surface, mainly because hailstones produced at higher altitudes could
melt more easily before reaching the ground (Dessens et al., 2015). Indeed, the
amount of moisture available below the freezing level height potentially influences
the hydrometeor density in the thunderstorm and hence the hail growth rate (Allen
et al., 2015; Johnson and Sugden, 2014). On the other hand, too low H0 may limit
the amount of supercooled water in the updraft necessary for hail growth (Prein and
Holland, 2018). Recent findings also determined that anthropogenic-induced climate
change could cause a general global increase in freezing level height, low-level mois-
ture, and convective instability. This could influence the likelihood of hailstorms
with a shift towards enhanced severity owing to increased hail melt, causing a larger
average size of surviving hailstones, hence producing not unambiguous prediction
in the change of their frequency due to the complex combination of these factors
(Raupach et al., 2021).

While CAPE, SLI, and H0 are direct outputs of SPHERA, DLS and K are
computed from temperature and wind profile data simulated by SPHERA at the
relative pressure levels. Every parameter is available at hourly frequency at the
native high horizontal resolution of ∼2.2 km. However, the difficulties in simulating
local and rapidly-evolving deep convective processes with exact precision, charac-
terized by low predictability at this spatial resolution, could pose major limits in
data representativity (see Section 3.2). For this reason, SPHERA fields are upscaled
to a common coarser grid of 10 km to avoid possibly “noisy” reanalysis estimates
and data representativity issues, similar to the precipitation analysis presented in
Chapter 3.

4.2.2 OT-hail filter by conditions from SPHERA

The filter presented here intends to remove all OT detections for which hail presence
is very unlikely based on the surrounding environmental conditions described by
SPHERA. The methodology is mostly inspired by the work of (Punge et al., 2017),
which has been applied similarly also in (Bedka et al., 2018) and (Punge et al.,
2021).

Around each OT detection, SPHERA parameters are considered within a spatial
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Figure 4.3: Cumulative density functions of the five parameters selected from SPHERA
in the presence of ESWD hail reports in 2016-2018 during the extended summer season
(April-October). Hail reports are divided into different classes: all reports (blue lines),
small hail (<3 cm, purple lines), large hail (⩾3 cm, green lines), and very large hail (⩾5 cm,
red lines). The blue dashed vertical lines indicate the thresholds selected for defining the
OT hail filter reported in Table 4.1. The shadowed portion of the distributions indicates
the range of values of the parameters where the filter is effective. a) SLI, b) CAPE, c) K,
d) H0, and e) DLS.

window of 0.63° x 0.63° (i.e., roughly 70 km x 70 km) over the three hours preceding
the OT (including the hour at which the OT is issued). Indeed, the extremely local-
ized and rapidly-evolving nature of hailstorms calls for some spatial relaxation in the
matching criterion with numerical simulations. This is done to limit double-penalty
issues owing to the incapacity of the models to predict the dynamical evolution of
DMC processes with absolute precision (Ebert, 2008). Additionally, to take into
account the pre-convective conditions included in the computation of instability pa-
rameters, a certain temporal window before the OT event is considered. Within this
spatio-temporal neighborhood, the maximum (for CAPE, K, and DLS) or minimum
(for SLI and H0) are extracted.

To define the parameter thresholds for filtering the OTs, the same spatio-
temporal analysis is applied to SPHERA parameters distributions in the presence of
ESWD hail reports. In this case, we can be confident that hail actually occurred; fur-
ther, we can also account for outliers in the ESWD-based parameters distributions
due both to uncertainties in the timing of the reports and to the inaccuracies in the
simulations. The thresholds are then defined as percentiles pth of the distributions.



70 Describing hail-prone convective environments with SPHERA and OT detections

Variable Threshold OTs filtered Fraction
SLI < p95 = −2.08 °C 60,675 9.6%

CAPE > p5 = 618.42 J/kg 47,923 7.6%
K > p5 = 32.5 °C 44,639 7.1%

H0 < p95 = 4039 m 45,394 7.2%
DLS > p5 = 9.25 m/s 38,744 6.1%

Full filter All those above 163,510 25.9%

Table 4.1: Variables and thresholds used in the OT filter and relative number and fraction
of OTs filtered.

After numerous tests, the 5th percentiles (for CAPE, K, and DLS) and the 95th
percentiles (for SLI and H0) of the distributions were selected. The ESWD-based
cumulative density functions (CDFs) of every parameter are reported in Figure 4.3.
To investigate the relationship between each parameter and hailstorm severity, the
CDFs are reported for the distribution of the whole ESWD hail reports set and
distinguishing among small hail, large hail, and very large hail. A general shift of
the predictors towards severe-convective environments presenting higher instability
(i.e., larger values of CAPE and K and lower values of SLI), enhanced organization
(i.e., larger DLS) is detected for increasing hail severity, as well as generally higher
freezing level heights H0. This indicates the ability of the numerical proxies selected
to distinguish between different convective environments prone to hail formation
and suggest their appropriateness for the OT-filtering purpose. The shaded areas in
Figure 4.3 indicate the tail of the CDFs (corresponding to the 5th or 95th percentile
portions) where the filter is active.

The numbers and the fractions of OTs filtered by the full filter (i.e., applying
the five conditions together) and by every single parameter are listed in Table 4.1.
Singular parameter contributions to the filter vary from 6.1 to 9.6%. Since the
impacts of different variables overlap with each other, the fraction of removed OTs
with the full filter is lower than the sum of the singular filters and reaches 25.9%.

Figure 4.4 shows the spatially-distributed filtered fractions of OTs on a 10-
km grid for the single-parameters filters (panels a-e) and for full filter (panel f).
Instability parameters (CAPE, K, and SLI – panels a,b,c, respectively) filter mainly
over the sea (especially in the southern and western Mediterranean) and the Alpine
arc. The largest contribution over the sea is given by K, while over land, CAPE
and SLI are more effective. This behavior may be linked to the formulation of K
that, conversely to CAPE and SLI, explicitly considers the water vapor content
in the atmospheric column (through Td), which weighs more over the sea. The
identified values as thresholds for instability parameters responsible for these spatial
distributions agree with previous research in this direction. For SLI, the imposed
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Figure 4.4: Percentage of filtered OTs per grid cell (on a 10-km regular grid) during
April-October in 2016-2018. a) SLI, b) CAPE, c) K, d) H0, e) DLS, and f) full filter.

threshold of -2.08 °C is in almost perfect agreement with the optimal threshold of
-2.07 °C identified by Kunz (2007) for distinguishing between hail- from non-hail
days in south-western Germany. Hence, the identified threshold can be considered
an appropriate choice as an upper bound of SLI values distribution in light also of
the mean value of -3.8 °C found in the presence of hailstorm events by Kunz et al.
(2020). The 5th-percentile threshold for K (32.5 °C) well resembles the order of
magnitude identified by Kunz (2007) for the distinction between widespread and
isolated hail events (31.1 °C) or for separating between hail from non-hail days
(38.9 °C, using a modified version of K where T and Td at 850hPa are substituted
with an average from the surface to that pressure level). Torralba et al. (2022) also
found a comparable median value of 30 °C for the K index for the occurrence of
hailstorm events as described by ERA5 reanalysis. Regarding the most unstable
CAPE (minimum conditions of 618.42 J/kg), Kunz (2007) found a higher optimal
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threshold of 1474 J/kg distinguishing hail- from non-hail days. Anyhow, the analysis
from observational proximity soundings over central Europe provided a median value
for most unstable CAPE in the case of small hail (<2 cm) of ∼250 J/kg, which
increased to ∼700 J/kg when considering ESWD reports for larger hail of 2-5 cm
diameter coupled with radiosounding data (Púčik et al., 2015). Additionally, using
ERA5, Torralba et al. (2022) found CAPE values >500 J/kg to represent favorable
atmospheric conditions for hail development. Further, given the less strict criteria
used in previous similar works (i.e., thresholds of 0 or 100 J/kg in Punge et al., 2017,
2021, respectively), the identified criterion for CAPE is justified.

H0 (Figure 4.4d) is filtering most OTs over lower latitudes (with fractions >60%
in Tunisia and Algeria) and high-elevation terrains, especially over the whole Alpine
arc, where almost 100% of OTs are removed. This enhanced removal is a direct
consequence of the threshold value of 4039 m used for filtering, which, in the Alpine
region, may be very close to the topographical surface (especially since the imposed
topography boundary condition of SPHERA reaches elevations as high as 3950 m, see
Figure 2.1). However, as seen by the OTs spatial distribution (Figure 4.2), the crest
of the Alpine arc is the least active region of the domain in terms of OT formation.
This is a consequence of the difficulties for deep-organized convective systems to
develop in extremely complex terrains, in agreement with a recent climatology of
lightning flashes and convective initiation over the Alpine area (Manzato et al.,
2022). Furthermore, Jelić et al. (2020) found no evidence of hail observations over
the north-eastern Adriatic region when considering ERA5 environments with H0

exceeding 4000 m. Hence, it is believed that the limitation imposed by choice of
the H0 threshold is not detrimental to the analysis presented here. A proposal for
a more sophisticated H0-filtering could be topography-dependent, which, however,
would require a deeper investigation beyond the scope of the present analysis.

DLS (Figure 4.4e) is the least filtering parameter, and its spatial distribution is
mostly homogeneous, with enhanced filtering in the northern part of the domain (i.e.,
southern Germany and northern Austria). The 5th-percentile threshold of 9.25 m/s
well represents the necessity of minimum storm organization conditions for hailstorm
development. Indeed, the found value is close to the magnitude identified for the
transition from single-cellular to multi-cellular convection (i.e., 10 m/s, Markowski
and Richardson, 2011), which is also the minimum condition for the development
of severe thunderstorms as defined in Taszarek et al. (2021). Further, the identified
threshold well compares with the median value of DLS of ∼13 m/s in case of small
hail (< 2cm) found from proximity soundings over central Europe, which increases
to 15 m/s in case of larger hail of 2-5 cm diameter (Púčik et al., 2015), or with the
average of 12.5 m/s found around hailstorm events by Kunz et al. (2020).

The combination of the five conditions (Figure 4.4f) leads to a spatial OT filter-
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Figure 4.5: Percentage of filtered OTs aggregated over the spatial domain per hour of the
day (top row) and per month (bottom row) in the period 2016-2018 considering singular
parameters filters: a) & g) SLI, b) & h) CAPE, c) & j) K, d) & k) H0, e) & l) DLS, and
f) & m) the full filter.

ing which is maximum (∼100%) over the inner Alpine region and substantially high
(∼60%) but locally variable over the western and southern Mediterranean sea and in
the northern part of the domain (southern Germany and Austria). In contrast, the
regions with the lowest OT removal (<20%) are the whole Po valley, the northern
Adriatic and Thyrrenean seas, and the associated Italian and Croatian coastlines.

Figure 4.5 shows the fractions of filtered OTs by every parameter used in the
filter, depending on the hour of the day (upper row) and the month of the year (lower
row), and aggregated over the whole spatial domain. It should be kept in mind that
the local time zone over the considered region, the Central European Summer Time
(CEST), is two hours ahead of the UTC time zone. Instability parameters (CAPE,
SLI, and K – panels a,b,c,g,h,j) filter mainly during the night and early morning
(exceeding the 15% of OT removal around 3-6 UTC), in the Spring months of April
(where more than the 50% are removed) and May, and in October. This reflects the
lower likelihood of deep convection establishment at these times of the day and year.
Conversely, their contribution to the filter is minimum when the increased heating
of the lower troposphere enhances the potential for convective activity and reduces
convective inhibition (Markowski and Richardson, 2011), i.e., in the central hours
of the day (with less than 5% removal around 14-16 UTC) during JJA (particularly
in July). No significant differences between the three parameters are detected. The
only notable exception is the lower impact that K has in the late-evening/early-
night hours (roughly around 20-23 UTC with slightly more than 5% OT removal),
which may be explained again by the enhanced thermal inertia owing to atmospheric
moisture explicit inclusion in the parameter leading to high values of K maintained
in the hours after sunset.

H0 (Figure 4.5d-k) contribution to the filter is roughly opposite to that of insta-
bility. The largest removal is found in the afternoon (∼12% at 16-18 UTC) and in
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late summer, especially in August (exceeding 20%), and to some extent in Septem-
ber. This seasonal variation may be linked to the warming of the lower troposphere,
which reaches its peak in this region in August as a consequence of the annual cycle
of solar insolation. Hence, the general high temperatures of the atmospheric profile
cause a shifting of the freezing level height towards higher altitudes, for which it is
more likely to exceed the threshold of 4039 m, causing an increased OT removal at
this time of the year. On the other hand, the daily cycle in H0-filter removal can
not be generally related to the diurnal cycle of low-tropospheric heating. In fact,
at altitudes of ∼4 km a.s.l., temperature changes are mainly driven by horizontal
advective processes rather than vertical sensible heat fluxes. In any case, the largest
fraction of H0-driven OT removal is found over the Alpine crest (Figure 4.5d), where
the atmospheric boundary layer could extend over 4 km altitude a.s.l., despite being
very shallow, implying a direct diurnal impact on the H0 variation.

The DLS filter (Figure 4.5e-l) also shows diurnal and seasonal variations, with
higher OT removal rates around noon (∼12%) in May (∼15%), while the minimum
is detected during the night (∼3% at 00 UTC) and in October when the filter
is almost inefficient. DLS generally shows less abrupt increases in the daily and
monthly variability compared to the other parameters and more gradual trends.
The diurnal impact of the DLS filter is also roughly opposite to that of instability
parameters. Similarly to H0, its variation may not be directly related to low-layers
diurnal heating: while the wind field close to the surface (−−→v10m) could be affected by
thermally-driven daily variations, its counterpart at ∼6 km a.s.l. (−−−−→v500hP a) is much
less influenced by daily variability. For this reason, a deeper investigation confined
to the Alpine region is planned to shed more light on the diurnal behavior of H0 and
DLS filters.

The resulting full filter on the daily term (Figure 4.5f) leads to generally higher
but less variable OT removal rates as an effect of the combination of the parameters,
with a maximum removal reaching almost 30% in the morning and late afternoon (4-
7 and 18-20 UTC respectively) and a minimum of ∼23% at 14 UTC. On the annual
term (Figure 4.5m), the single parameters combination sums almost linearly due
to their separate influence over different times of the year. This causes the highest
OT removal in Spring (April with almost 80% and May almost 40%) followed by
August with ∼35%. The highest likelihood for hail-favoring conditions standing to
the filter is met in July and June, where minimum OTs removal of ∼13% and ∼22%
are issued, respectively. This result is in good accordance with the ESWD observed
distributions of hail reports over the years considered (Figure 4.1e), as well as with
the 28-year ESWD-based hail climatology presented by Púčik et al. (2019) or with
the radar-based hailstorm frequency over France and Germany estimated by Kunz
et al. (2020).
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Figure 4.6: As Figure 4.2, but for OTs retained after the hail-specific filter.

4.3 The resulting hail proxy

This section focuses on the spatio-temporal characterization of the hail proxy ob-
tained by the retained OTs after the environmental filtering and its comparison with
ESWD hail reports.

4.3.1 Spatio-temporal characterization

Figure 4.6 shows the spatial distribution of the 468,890 OTs retained after hail-
specific filtering over the three extended warm seasons considered (April-October,
2016-2018). Compared to the original distribution (Figure 4.2), the lower amount of
OTs over the Alpine arc is evident, consequently to the highest OT removal detected
(Figure 4.4f). Fewer OTs linked to hailstorm conditions are also detected over land
at lower latitudes (Algeria and Tunisia), over the Mediterranean sea, throughout the
Apennines, and in north-eastern continental areas (Austria, Slovenia, Croatia, and
Bosnia). At the same time, the main hotspot for OT activity along the southern
pre-Alpine region is well preserved after filtering. The resulting contrast between the
minimum found in the inner-Alpine region and the increased hailing OT frequency in
pre-Alpine areas is more pronounced than before filtering, in agreement with Punge
et al. (2017), earliest hail researchers (Marbach, 1835), and recent radar-based hail
climatology (Nisi et al., 2020).

The three years considered show significantly different hail-specific OT activity
during the extended summer season (Figure 4.7), indicating a marked inter-annual
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Figure 4.7: As Figure 4.6, but separating among a) 2016, b) 2017, and c) 2018.

variability. 2016 (panel a) shows the lowest annual number of hailing OTs (126,599)
that are heterogeneously distributed over the region, while 2017 (panel b), with
143,469 detections, is characterized by a decisive increase over land areas, especially
in the southern pre-Alpine region and northern Adriatic sea. Finally, 2018 reports
the largest number of detected hail-prone OTs (198,823), most of which are linked
to convection activity developed over the Mediterranean sea. In this context, it
is important to mention that single events may significantly influence the overall
annual OT spatial distribution. For example, it is the case of the Vaia storm, a high-
impact event characterized by widespread convective activity producing extreme
precipitation accumulation (up to 850 mm in three days), wind gusts exceeding 50
m/s, which damaged 41,000 ha of Alpine forest, and caused several landslides and
floods (Giovannini et al., 2021). On the third day of this event, the 29th of October
2018, a total of 12,754 OTs were detected (i.e., almost 5% of the extended warm
season of the year), the majority of which (6,735) over the sea.

The intra-annual variations in OT activity are investigated on a monthly basis,
both in terms of the geographical distribution of hail-specific detections (Figure 4.8),
as well through histograms of the spatial aggregation for the original, hail-filtered,
and removed OT sets separately over land and sea areas (Figure 4.9). Very few OTs
in Spring are detected, increasing from April to May, when the cool temperatures of
the land and sea surface coupled with the limited availability of low-level moisture
do not permit the establishment of significant convective motions. The number of
OTs rapidly increases in June (characterized by the absolute maximum number of
OTs) and July over continental areas, with a well-defined peak detected around
the Alpine region. Starting from August and extending to September, a significant
reduction in hail-filtered OT rate over land is evident (Figure 4.8e-f and Figure 4.9a),
coupled with a gradual increase in thunderstorm development over the warm waters
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Figure 4.8: As Figure 4.6, but separating among a) April, b) May, c) June, d) July, e)
August, f) September, and f) October.

Apr May Jun Jul Aug Sep Oct
Month

0

2

4

6

8

10

N
um

be
r o

f O
Ts

 (x
10

e3
)

Landa)
Original set

Filtered set

Removed set

b)

Apr May Jun Jul Aug Sep Oct
Month

0

2

4

6

8

10
Sea

N
um

be
r o

f O
Ts

 (x
10

e3
)

Figure 4.9: Histograms of the number of OTs detected per month separately over land
(panel a) and sea (panel b) during 2016-2018 for the original set (in red), the hail-specific
set (in light blue), and the removed detections after filtering (in green).

of the Tyrrhenian and Adriatic seas (Figure 4.9b). Finally, in October (Figure 4.8g)
a further shift of convective thunderstorm activity towards lower latitudes of the
southern Mediterranean sea is detected. This is linked to the increased cooling of
the continental surface and the growing likelihood of mid-latitude cyclone formation
in this region resulting from the maintenance of warm sea surface temperatures.

Hail-specific OTs are generally more frequent over land during daytime (from
8:00 to 19:45 UTC, Figure 4.10a) and over the sea during nighttime (from 20:00
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Figure 4.10: As Figure 4.6, but separating between a) Daytime (i.e., 8:00-19:45 UTC)
and b) Nighttime (i.e., 20:00-7:45 UTC).

to 7:45 UTC, Figure 4.10b). The daytime bias is maximum over southern pre-
Alpine areas and significantly pronounced over high-elevation terrains, especially in
the eastern continental part of the domain (Austria, Slovenia, and the Balkans) and
over the central-southern Italian peninsula. During the nighttime, the north Adriatic
sea is an evident hotspot for OTs formation, with the maximum displaced along
the western Croatian coast. This may be linked to the combination of the north-
eastern mountains, supporting convective development, with local near-surface wind
convergence, causing the formation and organization of convective cells over coastal
areas later in the day (Jelić et al., 2020; Mikuš et al., 2012). A further relevant
hotspot of nighttime OT activity is detected over the western pre-Alpine region along
the Italian-Swiss border. This is linked to late-evening thunderstorm formation over
the foothills, most likely imputable to katabatic winds interacting with thermally-
driven Alpine Pumping circulation (Bica et al., 2007). This configuration produces
local flow convergences, enhances vertical wind shear and orographic lifting, and
ultimately promotes convection initiation over the region (Nisi et al., 2020).

Figure 4.11 shows the diurnal cycle of OT activity separating between land and
sea areas. Over land, very infrequent OT detections are revealed during the night
and early morning, with a rapid increase starting from 10 UTC and peaking at
15 UTC (i.e., 5 pm local time), as a consequence of the maximum diurnal heating
of the near-surface troposphere and increased likelihood for atmospheric instability
conditions. During the afternoon, a slightly more gradual decrease is detected. Over
sea surface, OTs are more likely to form over the night and early morning (from 23
UTC to 9 UTC) compared to land, with a local maximum at 3 UTC. This is most
likely linked to the north-eastern Adriatic hotspot of nocturnal thunderstorm gen-
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Figure 4.11: Hourly fraction of overshooting top detected after hail-specific filtering over
2016-2018, separating land (in brown) and sea surface (in blue) and aggregating over the
whole spatial domain.

eration detected in Figure 4.10b. Then, a gradual decrease in marine OT activity is
detected up to 12 UTC, when OT frequency slightly fluctuates during the afternoon
and increases during the evening. The enhanced number of OTs over water during
the last part of the day coincides with a decrease in land OTs. This pattern may
be linked to a combination of several factors, such as: the advection towards wa-
ter bodies of thunderstorms initially developed over land, the influence of land/sea
breezes circulations responsible for coastal storm initiation, and the inertia exerted
by warm waters and low-level moisture in late Summer-Fall to the maintenance of
storms linked to mid-latitude cyclones.

These findings are in good agreement with the spatio-temporal distribution of
the previous European OT characterization (over 2004-2009) of Bedka (2011).

4.3.2 Comparison of hail-specific OTs with ESWD reports

The aim of the comparison between OT detections and ESWD hail reports is to
evaluate how often the formers are detected close to the spatio-temporal location
of observed confirmed hailstorms. This ultimately gives a quantitative indication
of the appropriateness of the reanalysis-OT-based hail proxy developed, which, if
sufficiently according to reports, may increase forecaster confidence in predicting
hailstorm occurrence, potentially on an operational basis. Unfortunately, a complete
assessment of the method performance is not possible due to the limitations of the
reports database, as previously mentioned in Section 4.1.1, which does not describe
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All reports QC1> reports TA⩽ 1h reports QC1> & TA⩽ 1h
Filt OT Orig OT Filt OT Orig OT Filt OT Orig OT Filt OT Orig OT

Number of ESWD rep. 1386 1059 1246 1009

Hit ESWD rep. 871
62.8%

969
69.9%

677
63.9%

749
70.7%

807
64.8%

890
71.4%

658
65.2%

727
72.1%

% loss (Filt on Orig OT) -7.1% -6.8% -6.6% -6.9%
Number of OTs 283,039 391,740 283,039 391,740 283,039 391,740 283,039 391,740

OTs hitting ESWD rep. 7,928
2.80%

9,356
2.30%

6,552
2.31%

7,578
1.93%

7,379
2.61%

8,604
2.20%

6,404
2.24%

7,384
1.89%

% gain (Filt on Orig OT) +0.41% +0.38% +0.41% +0.37%

Table 4.2: Comparison between overshooting top detections (both for the original “Orig
OT” and the hail-filtered “Filt OT“ datasets, only over land) and four different sets of
ESWD hail reports: all reports, only reports with quality level QC1 or superior (QC1>),
only reports with TA⩽ 1h, and the combination of QC1> and TA⩽ 1h. For each compar-
ison are reported the fraction of ESWD reports matching with OT detections (Hit ESWD
rep. row), the difference in the ESWD hit rate between Filt OT and Orig OT (% loss
row), the fraction of OTs hitting at least one ESWD report (OTs hitting ESWD row), and
the difference in the OT hit rate between Filt OT and Orig OT (% gain row).

the real state in a sufficiently comprehensive way. In fact, while confirmed reports
can give us precious information on the spatio-temporal occurrence of actually oc-
curred hailstorms, the lack of reports does not necessarily imply the non-occurrence
of events, as the reason may be linked to underreporting which is still a dominant
issue of the ESWD database (Púčik et al., 2019). Hence, in statistical terms, this
means that we can assess the hit and the miss rates in the contingency table of
hailstorm events describing the joint distribution of the forecast (in this case, the
reanalysis-OT combination) and observations (the hail reports) for the performance
assessment. Contrariwise, it is not possible to evaluate crucial aspects such as the
number of false alarms or the correct negatives.

The matching conditions for analyzing the correspondence between satellite
detections and hail reports consist of a temporal window of ± 1.5 h around the
OT detection time and 25 km from each OT location. This relatively sharp tem-
poral window is considered given the high temporal accuracy below or equal to 1
h characterizing 90% of ESWD reports (Figure 4.1b). The 25-km distance crite-
rion is retained from Bedka (2011) and Punge et al. (2017) and accounts for: a
maximum storm motion of 60 km/h, possible errors in parallax correction in the
post-processing of OT detections with heights differing from 14 km, and possible
latitude/longitude erroneous reporting for ESWD events. The matching compari-
son is applied considering both the original and the hail-filtered OT datasets (over
land only) to investigate possible differences owing to the hail-filter procedure. Dif-
ferent ESWD reports sets are employed: the whole set of 1386 reports considered
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up to now, only reports having Temporal Accuracy (TA) ⩽ 1 h, only reports having
quality level QC1 or superior, and the combination of these two conditions. The
results of the comparisons are reported in Table 4.2.

An OT of the unfiltered dataset is found in the vicinity of 69.9% of the complete
ESWD hail database, while the fraction of OTs associated with hail reports is 2.39%.
For hail-filtered OTs, the hit rate slightly reduces to 62.8%, and the portion of OTs
matching ESWD reports increases to 2.80%. With the refinement in the selection
of ESWD reports by considering higher quality levels and temporal accuracy, the
peak performance is obtained when considering both QC1> and TA⩽ 1 h conditions
together. In this case, the hail reports hit rate increases to 72.1% and 65.2% for the
original and hail-filtered OT sets, respectively. A lower fraction of OTs matching
the reports is seen (2.26% and 1.89% for hail-filtered and original OTs, respectively)
mainly due to a reduction of 27% in the number of hail reports considered (from 1386
to 1009) owing to the more stringent conditions applied. For all four comparisons,
a loss of ∼7% in report hit rate is obtained by comparing the hail-filtered to the
original OT sets (corresponding to less than 100 ESWD reports). As regards the
fraction of OTs found in the vicinity of reports, a gain of ∼0.4% is always seen
comparing filtered with unfiltered OT detections as a consequence of the smaller
sample size of the former set.

To give an objective evaluation of these results, it is worth a comparison with
a similar analysis previously performed by Punge et al. (2017). However, given the
several substantial differences with their research design, the qualitative nature of
this comparison must be pointed out. Particularly, the main dissimilarities of their
study with the investigation here reported are: a larger spatial domain covering all
of Europe (extending from England to Russia and from Norway to Egypt) over ten
years (2004-2014), the employment of a previous non-probabilistic version of the OT
detection algorithm from satellite infrared imagery, and the substantially coarser de-
scription of hail-favoring convective environments owing to ERA-Interim reanalysis
(having a horizontal grid spacing of roughly 80 km). Using a spatio-temporal win-
dow of 25 km and ± 1h around each OT detection, they found a hit rate decreasing
from 40.3% to 39.7% for the unfiltered and filtered OT datasets, respectively, for
a subset of 2475 ESWD reports with quality level QC1 or superior and TA ⩽ 15
min. This indicates that, considering the hail-filtered OT set performance obtained
in the present analysis for the most similar conditions (i.e., QC1> & TA ⩽ 1h -
Table 4.2), the ESWD hail reports hit rate exceeds 25% more than what obtained
by Punge et al. (2017). The main source for this improvement is likely imputable to
the enhanced ability to detect overshooting top occurrences and avoid false detec-
tions, thanks to the probabilistic algorithm developed by Khlopenkov et al. (2021).
As a possible indication of this, the fraction of OTs found in the vicinity of hail
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reports in Punge et al. (2017) went up from 0.67% before to 0.84% after the fil-
ter, conversely to the values of 1.89% and 2.26%, respectively found in the present
analysis (Table 4.2). However, even if an increase in the fraction of OTs associated
with hail reports is detected, its absolute value remains low. This is most likely im-
putable to under-reporting issues characterizing the ESWD dataset more than the
impact given by possible OT false detections. Indeed, under-reporting constitutes
the main limitation of the observed state estimated through ESWD (Púčik et al.,
2019) and weighs more than possible false alarms in the matching assessment with
the hail proxy. However, despite this limitation, ESWD represents the best available
dataset to estimate the real state of hail occurrence.

4.4 Separating hailstorm environmental condi-
tions

Given the promising performance shown in the detection of hail events with the
reanalysis-OT-based approach, it is worth investigating the relative environmen-
tal characterization during the occurrence of ESWD hailstorm events with the five
reanalysis parameters considered for the filtering. In the following, are presented
the behaviors and interrelations among the numerical convective descriptors in the
presence of hit or missed ESWD reports considering the least stringent conditions
for matching hail-filtered OT detections (i.e., the first column in Table 4.2). Fur-
thermore, to analyze the relationship between environmental conditions and hail
severity, only the subset of 1050 ESWD hail reports having information on hailstone
size are considered (in the following referred to ESWD-S), and results are presented
by separating between small (<3 cm) and large hail (⩾ 3 cm). The reason behind
these separations is to investigate the appropriateness of the hail-filtering approach
for different hailstorm conditions and to understand the causes for its inability to
detect certain hail events (i.e., missed ESWD reports). Additionally, the thermal
characteristics of satellite OT detections in the presence of ESWD-S hail reports are
analyzed.

The cumulative density functions of SPHERA convective parameters in the
presence of ESWD-S reports, separated into four categories based on matching and
hail severity conditions, are reported in Figure 4.12. Among the ESWD-S sub-
sample, 66% are successfully detected with the filter method. Out of them, the
majority (68%) pertain to large hail, while missed reports are almost equally dis-
tributed between the two hailstone size categories. Moving from small to large hail, a
tendency of the distributions to shift towards parameter values with higher potential
for severe convection (i.e., larger CAPE, K, and DLS and smaller SLI) and higher
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Figure 4.12: Cumulative density functions of the five parameters selected from SPHERA
in the presence of ESWD-S hail reports. The same criteria described in Section 4.2.2 apply
to spatio-temporally aggregate the parameters in the vicinity of hail reports. Reports are
divided into small hail (< 3 cm, dashed lines) and large hail (⩾ 3 cm, solid lines) when
hit (in blue) or missed (in red) by the hail-specific OT dataset (Table 4.2 - “All reports”
column). The black dashed vertical lines indicate the thresholds used for the filtering
defined in Table 4.1. The shadowed portion of the distributions reports the range of
values when the filter is active. a) SLI, b) CAPE, c) K, d) H0, and e) DLS.

freezing level heights H0 is detected. Indeed, the hit–large hail class (Figure 4.12
- solid blue lines) shows this systematic trend for every parameter and almost the
entire range of the distributions, but always being very close to the curves pertain-
ing to hit–small hail (dashed blue lines) and missed–large hail (solid red lines). The
most evident separation for the whole set of parameters emerges for the missed–small
hail class (dashed red lines), showing cumulative density curves significantly shifted
towards values with less potential for convection and lower freezing level heights.
Interestingly, only for the 2.5% of hit ESWD-S reports at least one parameter falls
in its filtered data range (i.e., shadowed areas in Figure 4.12), while the fraction
increases to 33.6% for missed reports.

To deeper understand the relationships between ambient convective descriptors
and different hailstorm severity and matching conditions, the phase spaces of the
parameters for the four samples of hail reports are considered in the form of bi-
variate histograms. Figure 4.13 shows the joint distributions of H0 and K index
for the four hailstorm classes. In all cases, a joint increase of freezing level height
with atmospheric instability and low-level moisture content is noted, suggesting a
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positive linear relationship between H0 and K. This is particularly evident for missed
hail reports (panels c and d). In fact, the distributions for hits (panels a and b)
are more compact, as indicated by the sharper interquartile (IQR) ranges of both
parameters, reported with blue dashed lines. Further, they are shifted towards
higher values and do not show strong differences between small and large hail cases.
On the other hand, the missed reports counterparts show distributions covering
wider ranges and extending towards lower H0 and K, with a significant difference
between large hail (median values of 38.7°C for K and 3678.6 m for H0) and small
hail (36.7°C for K and 3176.7 m for H0). This suggests that hail, in case of missed
reports, especially for small hailstones, tends to form in environments with lower
instability and freezing level height. Furthermore, the tendency for missed–small
hail parameters distribution to populate the lowest range of values, extending to
freezing levels below 2000 m and K <30 °C, is linked to convective environments
in which the overall cool thermal conditions of the atmosphere limit the presence
of supercooled liquid water in the updraft, ultimately blocking hail growth (e.g.,
Dessens et al., 2015). Appendix A reports the joint distributions of the parameters
for the hit/miss small/large hail separation for the cases not treated here to avoid an
excessive number of figures in the main text. Similar trends to that of Figure 4.13
are detected for the relationships between H0 and the other atmospheric instability
parameters (CAPE and SLI, Figure A.1 and A.2 respectively).

A more dispersed and less explicit relationship emerges from the analysis of
the joint distributions between H0 and DLS (Figure 4.14). In all four classes, DLS
covers a broad spectrum with IQR ranges exceeding 10 m/s, in agreement with the
difficulty in separating hailstorm events based on their hailstone size using DLS,
also found by Kunz et al. (2020). Hit reports (Figure 4.14a-b) show median DLS
values of 22.0 m/s and 18.9 m/s for large and small hail, respectively. Moving to
missed reports (Figure 4.14c-d), the central values of the distributions decrease to
20.7 m/s and 16.3 m/s respectively. The spread of H0, as seen in Figure 4.13, is more
circumscribed for hit reports, with IQR extending to 367.4 m for large hail and 501.9
m for small hail, and decisively increasing to 765.9 m and 782.3 m for missed reports
of large and small hail, respectively. As suggested from the results of Figure 4.12, the
most diverse parameter distributions are obtained in the case of missed–small hail
class. This is confirmed by the corresponding bi-variate histogram of H0 and DLS
(Figure 4.14d), for which, despite the large spread in both parameters, the central
values of their distributions indicate environments associated with lower freezing
level altitudes and less storm organization (with p25 of DLS being 9.60 m/s, very
close to the value defined as the threshold of 9.25 m/s) compared to the other three
classes of events considered.

Finally, the relationship between atmospheric instability and storm organiza-
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Figure 4.13: Bi-variate histogram distributions of H0 vs. K index in the presence of
ESWD-S hail reports for the separation considered in Figure 4.12: a) hits–large hail, b)
hits–small hail, c) misses–large hail, and d) misses–small hail. The blue dashed vertical
and horizontal lines represent the median (p50) and the interquartile (IQR) range values
(p25 and p75) of the distributions. The black dotted lines report the thresholds used for
the filter defined in Table 4.1.

tion is analyzed by reporting the phase spaces of CAPE versus DLS for the four
hail classes (Figure 4.15). Also in this case, a significant spread in the parameters
distributions and a not-so-direct link between CAPE and DLS emerges. CAPE, for
the hit–large hail cases (Figure 4.15a), shows a median value of 2146.4 J/kg with an
IQR spread of 1065.1 J/kg, which stays roughly equal when moving to hit–small hail
Figure 4.15b) while the median decreases to 1892.7 J/kg. The CAPE distribution
for missed–large hail (Figure 4.15c) remains similar to that of hit–small hail, with a
very closer median and an enhanced IQR range extending to 1360.2 J/kg. Finally,
a decisive shift towards lower CAPE values is detected for missed–small hail (Fig-
ure 4.15d) cases, presenting a central value of 1094.4 J/kg. The reasoning behind
DLS behavior is the same as that discussed in Figure 4.14. Hence, also in this case,
the most different conditions emerge for the missed–small hail class, characterized
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Figure 4.14: As Figure 4.13, but for H0 and DLS.

by generally pronounced low-CAPE and low-DLS environments. Similar degrees of
dispersion emerge also from the joint distributions of K and SLI with DLS (Figure
A.3 and A.4, respectively), as well as an evident shift of the central value of the
distributions towards conditions with less potential for DMC for the misses-small
hail class.

A factor playing a central role in the identification of an overshooting top from
satellite scans data is the thermal characteristic of the cloud top where the OT can
be found. Previous research showed how OTs linked to deep convective clouds can
be detected as cold pixels in visible and infrared satellite imagery scans (e.g., Morel
and Senesi, 2002; Mikuš and Mahović, 2013). These cold spots are associated with
small and sharp infrared brightness temperature (IRBT) minima that are near to or
colder than the tropopause temperature associated with the anvil cirrus cloud. For
this reason, a critical variable included in the Khlopenkov et al. (2021) algorithm for
automatic OT detection employed in this study is the temperature difference ∆T

between infrared brightness and tropopause. A large ∆T (> 6 K) indicates a strong
penetration of the updraft through the anvil of at least 1 km (Griffin et al., 2016).
Consequently, these observed thermal variables are worth investigating to get a more
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Figure 4.15: As Figure 4.13, but for CAPE and DLS.

complete picture of the environmental conditions established during hailstorms. To
do so, all satellite detections are considered (for any OT probability of occurrence
that up to now has been constrained to be >0.5) in the presence of hit or missed
ESWD and ESWD-S reports datasets, when matching the hail-specific OT dataset
and separating among small, large, and very large hail.

Figure 4.16 shows the distributions of IRBT and ∆T minima in separate pres-
ence of hit and missed hail reports, where the continuous probability density func-
tions (dashed curves) are calculated with a kernel density estimate method. Hit
reports present sharp IRBT minima distributions (Figure 4.16a) centered towards
mean values of ∼211 K and rarely exceeding warmer temperatures than 224 K. No
significant deviations between different hail severity subsamples are detected, only a
slight opposite behavior than expected with the average IRBT for small hail (210.98
K) being 0.36 K colder than large hail counterpart (211.34 K), most likely imputable
to the excessively small data sample considered. Considering ∆T minima for hits
(Figure 4.16c), an almost total absence of positive values is noted, meaning that
IRBT temperature is almost always colder than tropopause anvil temperature, as
expected from severe thunderstorms producing prominent overshooting tops. Fur-
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Figure 4.16: Normalized distributions of minimum IRBT (top row) and ∆T (bottom
row) of OT detections in the presence of ESWD hail reports. The histogram bars quantify
the normalized frequency of OTs in the presence of the ESWD-S subset for small hail (light
blue), large hail (purple), and very large hail (red). Legends report the mean values for
every distribution. The kernel-density estimated probability density functions are reported
with dashed curves in respective colors, additionally, the density functions for the whole
ESWD set (including all reports, also those without maximum hailstone size information)
are displayed with black dashed curves. Hail reports are divided into hit (panels a and c)
and missed (panels b and d) when matching with the hail-specific OT dataset.

ther, a slightly more pronounced separation among hail severity classes is evident,
with an average ∆T difference between small and very large hail exceeding 1 K (i.e.,
-4.62 K for small hail vs. -5.74 K for very large hail). Moving to missed reports,
more blunted and warmer IRBT minima distributions are detected, which extend to
temperatures as high as 240 K (Figure 4.16b). These generally warmer conditions
are also reflected by the mean values, which suggest a more pronounced separation
among hail severity classes. Indeed, the minimum IRBT for very large hail is on
average ∼4.5 K colder than small hail counterpart (i.e., 214.14 K for very large vs.
218.70 K for small hail). The analysis of ∆T minima (Figure 4.16d) confirms and
strengthens these results: the majority (i.e., 56%) of the "All reports" distribution
presents positive ∆T , holding especially in the case of small and large hail for which
the positive portions are 56% and 48%, respectively, that reach and exceed values
as large as 15 K. These conditions indicate tropopause temperatures substantially
colder than those of the detected OT, thus suggesting not particularly prominent
protrusions over the cloud top anvil. This is also reflected by the ∆T minima av-
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erage, that for small hail (1.65 K) is more than 3 K warmer than very large hail
counterpart (-1.58 K), i.e., more than three times the difference detected for hit
reports.
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4.5 Summary and discussion

4.5.1 Summary of the results

This work presents an enhanced hailstorm identification approach based on a combi-
nation of CP reanalysis proxies from SPHERA, satellite overshooting top detections,
and crowdsourced ESWD hail reports. The analysis is performed over three years
(2016-2018) during the extended summer season (April-October) to investigate the
environmental conditions necessary for hailstorm development and, ultimately, the
potential to describe hail hazard over Italy and surrounding countries and seas. For
this purpose, a filter to identify OTs potentially linked to hailstones formation in a
thunderstorm, taking into account their surrounding environmental conditions, is de-
veloped. This filtering technique considers five numerical proxies describing convec-
tive potential and quantifying key ingredients for hail formation in a thunderstorm
that are: atmospheric instability and low-level moisture content, the degree of orga-
nization of the storm, and the altitude of the freezing level. The identified thresholds
for the filter show good agreement with minimum conditions for severe convection
development and agree with previous findings in this context (Kunz, 2007; Púčik
et al., 2015; Taszarek et al., 2020; Jelić et al., 2020; Kunz et al., 2020). The spatio-
temporal analysis of the singular parameter contributions to the filter highlights
their different impacts in the identification of hail-prone conditions. Their combina-
tion shows enhanced non-hailing OT removal over high-elevation terrains during the
early morning and afternoon of Spring and late Summer/Fall months. The result-
ing OT-hail proxy characterization delivers a maximum hail potential over northern
Italy pre-Alpine areas in the summer months of June and July peaking at 15 UTC,
but with strong intra-annual and inter-annual variability. Significant differences are
also detected considering daytime and nighttime periods separately, with enhanced
OT frequency over land during the day and a more important contribution over the
sea at night. From the statistical matching comparison with the ESWD database,
a hail-filtered OT is found in the vicinity of 65.2% of reports, exceeding 25% more
than what previously found with a similar but less sophisticated methodology (in
terms of OTs detection and reanalysis proxies – Punge et al., 2017). Finally, investi-
gating the relationships between convective parameters and hail reports separating
between hit/misses and small/large hail, enhanced appropriateness of the developed
method in case of severe hailstorm events is suggested. Indeed, the majority (68%)
of correctly identified reports are linked to storms producing hailstones with diam-
eters exceeding 3 cm. These show comparable environmental signatures to that of
hit–small hail and missed–large hail samples. The class of reports presenting the
most distinct conditions from the others is that of missed reports with hailstones
having small diameters (<3 cm), accounting for the 17% of the sample. In this case
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is found a general tendency for hail to form in ambients characterized by system-
atically lower instability, less storm organization, lower freezing level heights, and
presenting warmer cloud top temperature signatures, making it more challenging to
be detected with the developed methodology.

4.5.2 Comparison with similar studies

The obtained OT-hail proxy characterization shows good agreement with recent and
extended hail climatologies over the region (Punge and Kunz, 2016). No particu-
larly favorable conditions for hail development are detected in southern Germany,
which is instead considered a main hotspot in Europe for hail hazard (Fluck et al.,
2021; Punge et al., 2017, 2014). The reason is most probably the limited temporal
extent of the analysis performed which may produce a significant deviation from
the long-term statistical tendency. Pre-Alpine regions over Switzerland, Austria,
and Slovenia show an enhanced likelihood for hail formation as described by the
OT-hail proxy. In contrast, the most prominent minimum for hail likelihood over
the whole spatial domain is found throughout the inner Alpine arc. These results
agree with a 15-year radar-based characterization over the western Alps (Nisi et al.,
2018, 2020), which found evidence of the nighttime hailstorm hotspot confined on
the southern Alpine foothills area along the Swiss-Italian border also detected in the
present analysis. Good accordance is found with the Austrian hail hazard map based
on radar and point observations developed by Svabik et al. (2013). Particularly, the
most hail-prone eastern Alpine region, according to the resulting OT-hail frequency,
is detected over south-eastern Austria and Slovenia, even if, over the latter, a cli-
matological regime characterized by considerable variability in hail occurrence has
been recently highlighted (Stržinar and Skok, 2018). Close to this area, also the
northern Adriatic shows high potential for hailstorm development, representing the
primary marine hotspot over the whole region, particularly enhanced during night-
time along the Croatian coastline. A similar pattern is detected by Jelić et al.
(2020), who, considering 60 years of data, found significant spatial variability in
hail occurrence with enhanced likelihood in central summer months around 14:00-
16:00 CEST in the hinterland and a significant peak in hail probability also in Fall
months at 8:00-12:00 CEST over the coastal area. Over the Italian peninsula, the
most favorable conditions for hail development are found throughout the northern
pre-Alpine regions, where the absolute maximum in OT activity over the whole spa-
tial domain is detected. Nevertheless, the potential for hailstorm formation is met
more or less in all Italian regions. This is in agreement with several regional radar-
based hail climatologies over north-western Italy (Davini et al., 2012), north-eastern
Italy (Sartori, 2012), especially over the easternmost Friuli Venezia Giulia region as
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described by the hailpad-based climatology of Giaiotti et al. (2003). Additionally,
the first developed national hail climatology (Baldi et al., 2014) found evidence of
non-homogeneous spatial distributions in hail frequency of occurrence over Italy,
with local maxima over the northern regions and minor hot spots in central and
south-western coastal areas, in agreement also with Taszarek et al. (2020). A re-
cently developed Italian hail characterization obtained by combining ESWD reports
and regional hailpad data with machine-learning-derived optimal large-scale mete-
orological variables from ERA5 over 1979-2020 (Torralba et al., 2022) further con-
firms these tendencies. Moreover, the monthly hail distribution obtained with their
method, confirms our detected tendency of an increasing likelihood for hailstorm
events in Spring. The maximum detected in June and July over northern regions,
then decreasing and shifting towards lower latitudes along central-southern coast-
lines in September and October. Good temporal matching is also found compared
with the recent ESWD-based hail statistics over 1990-2018 (Púčik et al., 2019).

The results of the analysis investigating ambient characteristic separations and
interrelations based on hail severity and OT-matching condition agree with previous
environmental analyses. The conditions identified by Torralba et al. (2022) for the
occurrence of hailstorm events over Italy, as described by ERA5 reanalysis proxies
when separating between all and severe (i.e., diameters >2.5 cm) hail, include CAPE
values exceeding 900 and 1000 J/kg respectively for the two classes, and K index
with a median of 30 °C in case of all hail, with a significant increase detected consid-
ering only severe hail. This suggests a good agreement with the necessary enhanced
instability for severe hail development also detected in this work and other previous
research (e.g., Marcos et al., 2021; Púčik et al., 2015). Regarding the remaining
parameter quantifying atmospheric instability (SLI), Kunz et al. (2020), consider-
ing ERA-Interim reanalysis estimates, found only a slight difference between small
and large hail conditions (∼-3.7 °C and -4.5 °C respectively). In the same study,
a more decisive separation emerged for deep layer wind shear (DLS), which, how-
ever, is more linked to the length of the storm tracks included in their analysis
than to the relative hailstone size. Indeed, distinguishing between hailstones with
diameters <3 cm and ⩾5 cm, they obtained similar scattered distributions showing
DLS ranging ∼0-30 m/s for the former and ∼5-30 m/s for the latter, confirming
the high degree of dispersion in the relationship between hail severity and storm
organization detected in the present work. This result is also confirmed in the anal-
ysis with proximity radiosounding data performed by Púčik et al. (2015), where a
higher degree of separation using DLS emerges, differentiating between severe (2-5
cm) and extremely severe (⩾5 cm) hail compared to the less distinct counterpart
between non-severe (⩽2 cm) and severe hail. This indicates that small and medium
hail can also form in weakly organized storms, while very large hail exceeding 5
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cm requires strongly sheared environments which are almost exclusively related to
supercell thunderstorms (Púčik et al., 2021; Blair et al., 2017). The joint distribu-
tion of instability and organization parameters (CAPE and DLS) has been used in
numerous studies as a proxy for severe thunderstorms. Specifically for hail, Púčik
et al. (2015) found wide ranges in the joint distribution but with a clear lack of
severe events in low-CAPE and low-DLS environments, which instead tend to con-
centrate on the opposite high-CAPE and high-DLS range, similarly to the tendency
found in this analysis. Likewise, Taszarek et al. (2020) also found more stringent
ambient conditions with increasing hail severity towards higher values in CAPE and
DLS phase spaces. This is systematically more evident in the United States than
in Europe, where the distribution of CAPE is shifted towards lower values. The
freezing level height characterization is also in accordance with similar studies: Jelić
et al. (2020) found an upper limit for H0 of ∼4000 m above which they observed no
hail, similar to the upper ranges of the distributions found in this analysis for which
hail events exceeding this altitude (which is also close to the threshold of 4039 m
selected for the filter) are found only rarely and mainly in case of missed reports.
The separation between all and severe hail conditions, as described by Torralba et al.
(2022), yielded a median H0 of ∼3400 m for the former and increased to ∼3500 m
for the latter, confirming the tendency identified in the present analysis. Finally,
the resulting joint distribution of freezing level height and instability, indicating a
positive relationship for which large hail can form in environments with low insta-
bility if H0 is low while larger instability is needed if H0 is higher, has been detected
also by Prein and Holland (2018).

The proposed approach mainly relies on the exclusion of conditions for which
hail is very unlikely to form by the application of the environmental filtering pro-
cedure on satellite OT data. Other possible approaches exist more focusing on
the identification of hail occurrences without excluding unlikely situations but by
training a model to estimate favorable ambient conditions for hail on a climatolog-
ical timescale through, for example, logistic regression models (Rädler et al., 2018;
Mohr et al., 2015b). With these approaches, a quantification of hail potential over
past and future timescales is possible over broad spatial domains and without the
necessity of direct hail observations. However, this missing constraint may produce
significant discrepancies (Mohr et al., 2015a).

Additionally, in recent years the employment of machine learning techniques to
objectively identify the predictors best performing for the description of hailstorm
environments in a multivariate approach is receiving considerable interest (Scarino
et al., 2022; Torralba et al., 2022; Gagne et al., 2017). These approaches allow
greater dimensionality within forecast parameters, which could potentially reduce
the overall uncertainty in the ambient description, but have also proven computa-
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tionally expensive. Furthermore, despite the less influence on subjective choices for
the identification of hailstorm environmental parameters, in the majority of these
studies, the best-performing predictors coincide with the variables considered to
characterize hail-favoring environments employed in the present and other similar
works (Brooks et al., 2003; Kunz, 2007; Kunz et al., 2020; Punge et al., 2017; Bedka
et al., 2018; Raupach et al., 2021; Punge et al., 2021).

4.5.3 Limitations and potential improvements

The method presented in this analysis has demonstrated its appropriateness for
hailstorm identification over south-central Europe, particularly in case of severe
conditions producing large hailstones (with diameters ⩾3 cm). This is revealed
by the majority of detected ESWD reports presenting large maximum hail diame-
ters and sharper distributions of their thermodynamical and kinetic environmental
characteristics. In the case of less severe hailstorms producing smaller hailstones, a
larger degree of uncertainty is detected through less explicit OT signatures charac-
terized by warmer cloud top temperatures and by environments showing systemat-
ically lower instability and shear and colder atmospheric profiles. Hence, the fixed
thresholds introduced to filter the high-resolution reanalysis proxies could be in-
appropriate in these occasions. Anyhow, despite this limitation, since the main
interest is to enhance the understanding of the generation processes and character-
istics of damaging-producing hailstorms, our methodology has demonstrated to be
appropriate for the scope.

The main limitation of this study is the very short time period of three years
considered (2016-2018), which, as demonstrated by the detected large intra-annual
variability, is insufficient for a robust assessment of hail likelihood of occurrence.
However, it is sufficient for the purpose to present the novel methodology developed
and assess its potentialities. Given the promising results demonstrated, a further
extension of the analysis, including the years 2019 and 2020, is planned soon. During
these two years, additional ∼900 ESWD reports have been recorded, which could
constitute a decisive increase in the robustness of the analysis, as well as improved
reliability in the use of crowdsourced hail observations. Afterward, ideally, a back-
ward extension down to 2010 is envisaged in order to present a minimum of 10-year
hail statistics.

Another limitation is constituted by the imperfect OT observations detected
with IR satellite instruments. Indeed, a large amount of missed ESWD reports
in this study is linked with cloud top temperatures warmer than the tropopause,
which are more difficult to detect with the satellite-based approach developed by
Khlopenkov et al. (2021) applied to the MSG SEVIRI instrument. This difficulty,
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as noted by Cooney et al. (2021), may be linked with satellite scans performed
when storm tops are not optically thick enough at the initial stages of the storm
development, causing the radiation measurements to be performed in warmer and
deeper regions of the cloud than the updraft top, likely owing to the insufficient
density of the particles in this region (Sherwood et al., 2004). This results in a
lower magnitude of the temperature difference between tropopause and cloud top,
ultimately reducing the probability of OT detection and, consequently, causing to
miss the event. Hence, possible ways to overcome this issue and improve the OT
detection methodology are the inclusion of visible channel textures together with
IR detections (Bedka and Khlopenkov, 2016), or the enhancement in the spatio-
temporal resolution of the satellite scanning that in this study are limited to 3
km and 15 minutes, respectively. Particularly, an higher temporal frequency for
detecting thunderstorm cloud tops, such as that possible with the Geostationary
Operational Environmental Satellites (GOES) 16 or 17, is essential given the rapidity
of their formation and dissipation, which may be even below 15 minutes (Elliott
et al., 2012).

Other potential sources of improvements in hailstorm characterization may
emerge by considering additional observational data types, given the necessity for
as comprehensive an approach as possible. Indeed, several techniques exist for hail
detection relying on different information, such as satellite microwave scattering
data (Laviola et al., 2020) or ground-based hailpad networks (Manzato, 2012; Eccel
et al., 2012). In this context, radar reflectivity observations inclusion could represent
a significant improvement, constituting one of the best proxies for severe convective
thunderstorm identification (Fluck et al., 2021; Nisi et al., 2020). In fact, the higher
spatio-temporal resolution in the atmospheric description possible with radar data,
compared to satellite detections which in this work are limited to a 15 min frequency,
is crucial to achieve given the rapid and local-scale evolution of DMC phenomena.
However, while European archives aggregating data from multiple national weather
radar networks exist, such as the Operational Program on the Exchange of Weather
Radar Information (OPERA – Saltikoff et al., 2019), at the present moment, they
do not include Italy where, additionally, the regional fragmentation of the weather
services maintaining the instruments makes even more challenging to retrieve histor-
ical series of radar products on a national basis for the purpose. Another potential
source to enhance hailstorm detections and characterization could be automatic
lightning detections presenting rapid intensification in the total flash rates (i.e.,
lightning jump, LJ - Schultz et al., 2009). LJs has, in fact, demonstrated to be a
promising proxy for detecting severe thunderstorms (Taszarek et al., 2020; Farnell
et al., 2017), particularly for hailstorms (Farnell et al., 2018; Jurković et al., 2015).
However, although it was initially considered to include in the analysis lightning
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data from the Italian LAMPINET dataset (Biron, 2009), the identification of LJs,
as defined by Schultz et al. (2009) (which is now the most widely accepted definition
in the scientific community), has demonstrated to be impractical with LAMPINET
owing to the very high sampling frequency on the order of 100 µs required for the
purpose.

An important innovation introduced in the analysis here presented is the use of
high-resolution numerical simulations to describe atmospheric ambient conditions,
which is considered a promising avenue of development in hail research (Allen et al.,
2020). This is opposed to coarser global datasets employed in similar studies up to
now, whose simulations, through the use of physical parameterizations to account
for deep convection, may be affected by significant errors and inaccuracies (Prein
et al., 2015). In this work, the atmospheric characterization has been carried out
employing the new regional reanalysis SPHERA, which, thanks to the high horizon-
tal resolution of 2.2 km, allows the explicit representation of most deep convective
motions. However, unfortunately, a quantification of the added value introduced by
this innovation was not feasible, and, generally, no quantitative studies have been
performed so far to assess the benefits of finer spatial grid spacings configurations
over coarser datasets specifically for the reproduction of hailstorm environments. A
possible contribution towards this direction can be found in the study of Kunz et al.
(2020), who compared the ambient conditions favorable for hailstorm development
simulated by ERA-Interim (with ∼80 km horizontal resolution) with those of
coastDat-3 reanalysis (∼11 km) over central Europe for a 10-year period. The re-
sults suggest that no significant improvements emerge of one dataset over the other
for the simulation of the dynamical parameters, while a higher model resolution
is envisaged for estimating the thermodynamical signatures of hailstorm ambient
conditions. Nevertheless, this investigation does not pertain to CP-scale simulations
and has been limited in the comparison of only two specific numerical proxies
(i.e., vertical lapse rate and deep layer shear). Hence, a possible future direction
could be to conduct a sensitivity analysis on the driver dataset providing hail envi-
ronmental predictors to better understand the role of CP simulations in this context.

In conclusion, to respond to the second question posed in the introduction of
the thesis:

“Can the combination of CP-simulated ambient predictors with observational
proxies for hail enhance the ability to detect hailstorm events and improve the
understanding of the necessary convective environmental conditions for their
development?”
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The proposed methodology, relying on high-resolution ambient numerical pre-
dictors for hail development from SPHERA, coupled with satellite overshooting
cloud top detections and surface-based hail reports, demonstrated its potential in
the distinction between hailing and non-hailing convective conditions. In particular,
the spatio-temporal characterization of the obtained hail-proxy has demonstrated to
be in line with several recent hail climatologies developed with different techniques,
its ability to match with direct hail reports has shown significant improvement
compared to a previous similar estimate, and the description of hailstorm environ-
mental conditions revealed separate ambient signatures associated with different
hailstorm severity classes.
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Chapter 5

Conclusion and future
perspectives

The aim of this thesis, as stated in the Introduction (Section 1.4), was to investigate
the potential benefits brought in by a new convection-permitting regional reanalysis
centered over Italy, SPHERA, in the description of deep moist convective phenom-
ena. Indeed, advancing the representation and understanding of extreme weather
events associated with DMC is of crucial relevance, both from a scientific stand-
point and to adopt successful strategies to mitigate their impacts and reduce the
associated risks to human and animal health and to the environment. A possible
road in this direction is the development of meteorological datasets at increased res-
olution and sophistication, permitting the enhancement in the representation of the
physical atmospheric processes associated with DMC. For this reason, SPHERA,
presented in Chapter 2, has been recently developed at ARPAE-SIMC through a
dynamical downscaling of the global reanalysis ERA5, driven by the limited-area
model COSMO at 0.02°x0.02° horizontal resolution, and continuously assimilating
regional observations over 1995-2020. In this thesis, two main topics were developed
to separately address the ability of the reanalysis to represent severe precipitation
over Italy and to investigate the occurrence of hailstorm events and the associated
atmospheric characteristics employing SPHERA in conjunction with multiple obser-
vations.

The first analysis, presented in Chapter 3, had the intention to answer the
question:

“To what extent do the improvements of CP reanalysis simulations outper-
form coarser counterparts in representing precipitation and, specifically, severe
precipitation events?”

To respond, a statistical analysis has been carried out to compare the simu-
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lated precipitation fields of SPHERA with those of its coarser driver ERA5 and
evaluate both against the historical series of the Italian rain-gauge network over
2003-2017. Several aspects were taken into account to give a comprehensive picture
of the performance of the reanalyses, such as the geographical distribution of daily
precipitation on the annual and seasonal terms, the assessment of various aspects
of the simulations through quantitative skill scores for daily and hourly rainfalls
both for the maximum and average aggregations, and the daily cycle of summer
precipitation. Moreover, a detailed analysis was dedicated to two specific extreme
precipitation events, with an in-depth dynamical assessment of the atmospheric
evolution leading to severe rainfalls, which constitute additional material for a
comprehensive comparative evaluation. The results demonstrated a quantitative
added value of SPHERA over ERA5 for the description of precipitation, particularly
evident in the case of severe precipitation. Indeed, SPHERA has shown: more
variable and locally-driven geographical distributions of the 95th percentile of
precipitation, higher skill scores at all seasons, especially for the occurrence of
moderate- to intense accumulations, both on a daily and hourly frequency, and a
magnitude of the daily cycle of summer precipitation more adherent to the observed
counterpart. For the two case-study analyses, SPHERA rainfall fields, compared
to ERA5, were characterized by more spatial detailing with sharper distributions
reaching higher intensities and better spatio-temporal localization of the related
maximum accumulations.

The second analysis reported in this thesis and presented in Chapter 4 had the
purpose of responding to the question:

“Can the combination of CP-simulated ambient predictors with observational
proxies for hail enhance the ability to detect hailstorm events and improve the
understanding of the necessary convective environmental conditions for their
development?”

Given the major difficulties still persisting for a reliable observation and sim-
ulation of hail events, the combination of different data sources is necessary to
reduce the uncertainty permeating this hazardous phenomenon. For this purpose,
a methodology has been developed relying on the numerical simulations of ambient
hail-favoring conditions provided by SPHERA, overshooting top detections from
satellite infrared imagery scans associated with thunderstorms presenting strong
updrafts, and crowdsourced surface-based hail reports. The method, mainly
inspired by previous investigations making use of coarser global reanalyses, consists
of the identification of the favorable ambient conditions for the formation of hail,
obtained by combining SPHERA predictors with hail reports information, with
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the intent to define an environmental filter to exclude the overshooting tops not
associated with hail. The analysis was performed over 2016-2018 during the
extended summer period (April-October) and considering the whole SPHERA
spatial domain, which is centered over Italy and includes Switzerland, Austria,
southern Germany, Slovenia, Croatia, and the Adriatic and Tyrrhenian seas. The
resulting overshooting tops distribution has been tested as a proxy for hail, and
the performed analysis indicated a positive outcome in this sense. Indeed, the
spatio-temporal characterization of the proxy, indicating a maximum probability for
hail occurrence in pre-Alpine areas, especially in northern Italy during June-July
around 15 UTC, is in agreement with several hail climatologies over the area
obtained with different methods and extending over longer temporal periods.
Furthermore, a significant improvement was related to the matching between the
hail proxy and surface-based hail reports, with a detected hit rate exceeding 25%
more than what was obtained in the previous study taken as the main inspiration
(Punge et al., 2017). Finally, from the analysis of the environmental conditions
characterizing hail events, different signatures emerged from the separation between
hit and miss events and different hail severity classes linked with small and large
hailstones. Notably, the strongest separation was evident for the missed-small hail
class characterized by systematically less instability and storm organization and
lower freezing level altitudes, as well as by generally warmer cloud top temperatures
making the associated overshooting tops hardly detectable with the automatic
satellite algorithm employed.

The results of this thesis demonstrated promising enhancements in the represen-
tation of severe weather events related to DMC using CP simulations, particularly
in the case of heavy precipitation and hailstorms, motivating potential future inves-
tigations of phenomena not treated here, such as wind gusts, tornadoes, or even heat
waves, droughts or local heat island effects. However, there is still room for improve-
ment. Indeed, even if reduced, relevant uncertainties in the numerical simulations
are still present at these spatial scales. A major one is the inability to explicitly re-
solve shallow convection at the CP scales (Khairoutdinov and Randall, 2006), which
may also be detrimental in the simulation of deep convection given the intrinsic bond
between these two processes (Teixeira et al., 2008). Consequently, CP simulations
are highly model-dependent, posing the problem of the robustness of the results. A
way to overcome this issue is through multi-model ensemble-based approaches with
which it would be possible to “advance parameterizations of unresolved physics and
to assess the full potential of CP models” (Prein et al., 2015). In this context, the
detailed analysis of specific severe weather events highlighted the necessity of multi-
model approaches to reduce the uncertainty and deficiencies in local-scale detailing
of deterministic products (Giovannini et al., 2021), as well as the benefits of running
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high-resolution CP ensembles in this framework (Capecchi, 2021). On a broader
perspective, several recent European efforts demonstrated the potential that multi-
model CP regional climate simulations have for numerous aspects: better under-
standing the response of convection extremes to human-induced climate change and
providing critical added value to decision-makers due to the enhanced confidence in
simulating convection extremes (Coppola et al., 2020), more realistic representation
of heavy precipitation with a significant reduction of the hourly summer bias and a
reduction of their temporal uncertainty (Ban et al., 2021), and improved representa-
tion of fine-scale details of seasonal, daily and hourly heavy rainfalls (Pichelli et al.,
2021). Furthermore, ensemble-based approaches are extremely useful to quantify a
crucial aspect that can not be estimated with deterministic counterparts alone, i.e.
the uncertainty associated with the model driving the simulations. This may shed
more light on the reasons producing the differences in the dynamical evolution of
the models, that may also indirectly advantage a deeper comprehension of future
scenario simulations driven with the models used to produce the reanalyses. In light
of this, a possible promising direction to take in future studies would be to com-
bine the efforts leading to the recent development of similar CP reanalysis/hindcast
datasets over Italy (such as SPHERA or those developed by Capecchi et al., 2022;
Reder et al., 2022), which could reveal of paramount importance to make further
progress in improving extreme weather events representation. Hence, the proposal is
to jointly develop the first Italian multi-model high-resolution reanalysis/hindcast
ensemble. This tool is expected to better assess the uncertainty of past climate,
with a particular focus on high-impact convective events such as extreme precipita-
tion and hailstorms. Additionally, it would be possible to quantify the role of data
assimilation in SPHERA simulations, given the lack of this component in similar
datasets.

To conclude from a broader perspective, numerous European achievements have
been recently made to improve our understanding of hydro-meteorological hazards,
assess their risk, and mitigate their effects through disaster-risk reduction strategies
(Shah et al., 2020). Among them, nature-based solutions play a central role. Com-
pared to traditionally engineered risk-reduction strategies, nature-based solutions
are designed to be long-lasting, cost-effective, and environmentally sustainable (Sa-
hani et al., 2019). Several European projects aim at the investigation and enhance-
ment of nature-based solutions, such as OPERANDUM (OPEn-air laboRAtories for
Nature baseD solUtions to Manage hydro-meteo risks Mapping, Debele et al., 2019),
PHUSICOS (“According to nature” in Greek, Baills et al., 2021), or RECONECT
(Regenerating ECOsystems with Nature-based solutions for hydro-meteorological
risk rEduCTion, Ruangpan et al., 2020). The effectiveness of nature-based solutions
can be improved with a finer knowledge of the small-scale heterogeneities character-
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izing the spatio-temporal meteorological configurations (Qiu et al., 2019). This is
possible through CP simulations able to better describe high-impact weather events,
such as severe precipitation and wind gusts associated with DMC activity (Weis-
man et al., 1997). Finally, applications in climate monitoring can also benefit from
high-resolution datasets, which can improve the understanding of climate change
impacts on a regional basis, help identify the mechanisms accountable for local cli-
matic features, and add information on the climatology of severe weather-related
phenomena.
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Appendix A

Additional figures

In the following are reported the remaining bi-variate histograms plots for the joint
distributions of the parameters not treated in Section 4.4. In particular, Figure
A.1 pertains to the H0-CAPE distributions, Figure A.2 to H0-SLI, Figure A.3 to
K-DLS, Figure A.4 to SLI-DLS, Figure A.5 to CAPE-SLI, Figure A.6 to K-CAPE,
and Figure A.7 to K-SLI.
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Figure A.1: As Figure 4.13, but for H0 and CAPE.
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Figure A.2: As Figure 4.13, but for H0 and SLI.
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Figure A.3: As Figure 4.13, but for K index and DLS.
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Figure A.4: As Figure 4.13, but for SLI and DLS.
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Figure A.5: As Figure 4.13, but for CAPE and SLI.
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Figure A.6: As Figure 4.13, but for K index and CAPE.
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Figure A.7: As Figure 4.13, but for K index and SLI.



Appendix B

Hardware and software

The statistical analysis for precipitation was conducted on the ARPAE machines us-
ing internal scripts that are routinely used within the institute and are mainly based
on Fortran (gathered in the Libsim library and accessible at the GitHub repository
ARPA-SIMC/libsim). To handle the original reanalysis data extracted in grib file
format, I employed ecCodes and Magics, two packages for decoding/encoding the
data and visualize them, respectively, that were developed at ECMWF. All the
rest of this thesis was thought, computed, and written on my laptop Asus S510U
X510UNR, using Manjaro Linux v5.13.19-2. The pre-processing of satellite over-
shooting top detections data provided by NASA in NetCDF format was partly based
on Python scripts developed by Heinz Jürgen Punge. All the rest of the scripts used
to perform the analyses and visualize the results were written in Python v3.8.8.
In particular, I used Spyder (v4.2.5) and Jupyter Notebook (v6.3.0) to write and
run all the code. For data handling and calculations, I made use especially of the
packages pandas, geopandas, numpy, and rpy2. All the plots were produced with
matplotlib and seaborn and eventually post-processed with the vector graphics
software Inkscape v1.2.1. I wrote the thesis in LATEX using TeXstudio v4.3.1. The
scripts developed for the analysis centered on hail are freely accessible at the GitHub
repository agiord/hail-analysis.
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