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Abstract

The accurate representation of the Earth Radiation Budget by General Circulation Models
(GCMs) is a fundamental requirement to provide reliable historical and future climate
simulations.

In this study, we found reasonable agreement between the integrated energy fluxes at
the top of the atmosphere simulated by 34 state-of-the-art climate models and the obser-
vations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a
global scale, but large regional biases have been detected throughout the globe. Further-
more, we highlighted that a good agreement between simulated and observed integrated
Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of
opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this
and to understand the causes of these biases, we compared the observed Earth emission
spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the
period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric
fields provided by the EC-Earth GCM. To this purpose, the fast σ − IASI radiative
transfer model was used, after its validation and implementation in EC-Earth.

From the comparison between observed and simulated spectral radiances, a positive
temperature bias in the stratosphere and a negative temperature bias in the middle tro-
posphere, as well as a dry bias of the water vapor concentration in the upper troposphere,
have been identified in the EC-Earth climate model. The analysis has been performed in
clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose
impact on the radiation represents the greatest source of uncertainty in climate models,
has also been proven.

Finally, the analysis of simulated and observed OLR trends indicated good agreement
and provided detailed information on the spectral fingerprints of the evolution of the main
climate variables.
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Introduction

Earth’s thermal equilibrium results from the balance between the incoming solar radiation,
which is partly absorbed by the surface and the atmosphere and partly reflected back to
space, and the Outgoing Longwave Radiation (OLR), the infrared energy emitted by the
planet. Without external forcings, of natural or anthropic origin, over a long enough
timescale compared to those controlling the redistribution of energy on a global scale, the
net energy retained by the planet should be equal to zero at the top of the atmosphere
(TOA).

For several decades, the dramatic increase in greenhouse gases (GHGs) and aerosol con-
centration in the atmosphere, both induced by human activities, has affected the amount
of energy flowing inside and outside the planet, imposing a positive radiative forcing to
the Earth System (IPCC-AR6 2018). Climate system responds to this forcing through
different feedback processes, which act to amplify or dampen the initial perturbation.

In this framework, General Circulation Models (GCMs) represent the most advanced
tools at our disposal to investigate climate evolution. By solving a set of physically based
prognostic equations and by simulating the main processes occurring in the Earth system,
models provide a description of a fictional planet, which is as similar as possible to the
real one.

Therefore, accurate representation by GCMs of the radiative balance of the planet, the
so-called Earth Radiation Budget (ERB), and the strength of climate feedbacks is crucial
to get reliable historical and future simulations. In this context, the availability of large
and continuous amounts of physical data, monitoring the state of the ERB, is essential
to reduce the uncertainties of climate projections: observations are the first-order inputs
required for GCMs and the unique benchmark for evaluating their performance. In addi-
tion, GCMs are regularly tuned by adjusting parameters related to sub-grid processes not
explicitly represented in the model, to constrain the simulated energy fluxes to observed
values.

This study represents a bridge activity between climate modeling and the use of ob-
servational data from a climate perspective. In the first part of the work, simulated and
observed broadband integrated fluxes have been compared to highlight the main biases
present in the representation of the ERB provided by the state-of-the-art GCMs. A spe-
cific focus is given to the OLR radiation, which is a key contribution to the ERB and the
most sensitive quantity to atmospheric composition.

Furthermore, the OLR fluxes, whose measurements are mainly provided by the Earth
Radiation Budget Experiment (ERBE) and the more recent Cloud and Earth Radiant
Energy System (CERES) mission, have been monitoring since 1970s, making this quantity
an excellent candidate to assess the performance of GCMs.

In this framework, Wild [2020] recently examined the radiative global budget of 40
state-of-the-art global climate models participating in the Coupled Model Intercomparison
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Introduction

Project phase 6 (CMIP6) through a systematic comparison of broadband energy fluxes at
surface and TOA with CERES Energy Balanced and Filled (EBAF) dataset. The study
has shown an important improvement of the CMIP6 models compared to the earlier
model generations, but also a persistent inter-model spread, with a standard deviation of
2.8 Wm−2 for the all-sky OLR and of 2.6 Wm−2 for OLR in clear sky conditions.

In this thesis, the analysis of the CMIP6 models biases is extended to a regional scale
exploiting the new release of the CERES dataset (EBAF 4.1).

However, although the comparison of observed and simulated OLR broadband fluxes
provides fundamental information about the performance of climate models, the detection
of model biases is complicated by the spectral integration, which may mask compensation
errors in the OLR estimation. Conversely, the long-term comparison between simulated
and observed spectrally resolved radiances represents a stricter test for the direct veri-
fication and improvement of GCMs. In fact, OLR radiances contain the signatures of
greenhouse gases, water, and clouds, and monitoring their behavior by comparison to
satellite measurements offers an unprecedented opportunity to attribute GCMs biases to
a specific portion of the spectrum and, thus, to a specific variable [Kiehl and Trenberth,
1997].

From the mid-2000s, stable hypersectral observations from satellites of the Earth emis-
sion spectrum in the Mid-Infrared (MIR) region (667 to 2750 cm−1) have been provided
by different sensors, such as the Atmospheric Infrared Sounding (AIRS, 2002-present)
[Le Marshall et al., 2006], the Infrared Atmospheric Sounder Interferometer (IASI, 2006-
present) [Clerbaux et al., 2009] and the Cross-track Infrared Sounder (CrIS, 2011-present)
[Brindley and Bantges, 2016], opening interesting perspectives for climate applications.

In this context, Whitburn et al. [2021] evaluate linear trends in 10 years (2008 - 2017)
of IASI clear-sky spectrally resolved fluxes. In this work, the spectral fingerprints due
to the increase of CO2 and CH4 concentration in the atmosphere are highlighted and
quantified. In addition, the effect of temperature variation on radiation at TOA, mainly
related to El Niño activity, is assessed in a detailed way.

In the same framework, Susskind et al. [2012] investigate the OLR interannual vari-
ability using AIRS data from 2002 to 2011. They find a good agreement between the
energy fluxes computed from AIRS spectrally resolved radiances and CERES broadband
fluxes and highlight the crucial role of El Niño and La Niña events in the energy fluxes
variations at TOA, both over tropical latitudes and on a global scale.

AIRS measurements are also exploited in Huang and Ramaswamy [2009] to detect
change in the climate system evolution and to assess the performance of the Geophysical
Fluid Dynamics Laboratory coupled atmosphere–ocean–land general circulation model.
The study demonstrates how, under climate change, spectrally resolved radiances show
more pronounced variations with respect to integrated broadband flux.

Using a similar approach, an existing negative bias in the OLR flux of about 4 Wm−2 in
the AM2 GCM [Team et al., 2004], is investigated by Huang et al. [2006] by comparison
of AIRS spectra to simulated radiances, and attributed to a water vapour transport
deficiency of the model. In the same way, Huang et al. [2007] highlight the existence
of opposite-in-sign biases in water vapour and in CO2 spectral bands, which produce
fortuitous cancellations of spectral errors in the computation of the total broadband fluxes
in the AM2 GCM.

While the aforementioned instruments are able to provide accurate measurements of
the entire Mid-Infrared (MIR) portion of the spectrum, generally from 667 to 2500 cm−1
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(4 - 15 µm), the Far-Infrared (FIR) spectral range, from 100 to 667 cm−1 (15 - 100
µm), which accounts for at least half of the Earth’s energy emitted to space [Harries
et al., 2008], still lacks of systematic measurements from satellite because of the intrinsic
difficulties of development of the proper FIR technology [Palchetti et al., 2020].

Planned for launch in 2027, the Far-Infrared Outgoing Radiation and Monitoring
(FORUM) mission will fill this observational gap. FORUM will fly in loose formation
with the IASI new generation (IASI-NG) on the Metop-SG-1A satellite [Ridolfi et al.,
2020] thus, for the first time from space, the two instruments will cover the whole Earth’s
emission spectrum, allowing the validation of climate models on the whole range of the
OLR.

In anticipation of these measurements, the IASI OLR radiances at TOA are exploited
to inspect and evaluate the performance of the EC-Earth climate model. In particu-
lar, we describe how the comparison between simulated and observed spectrally resolved
clear-sky radiances can provide detailed information on model biases in temperature and
humidity at different atmospheric levels. This approach is preferred over the comparison
of retrieval products for the following reason: the retrieval of vertical profiles from mea-
sured upwelling spectral radiances represents a strongly ill-conditioned inverse problem,
therefore a priori profile estimates are always used to constrain the retrieval. The used a
priori information causes both global biases and local systematic smoothing errors in the
retrieved profiles [Rodgers, 2000], thus making tricky the comparison of climatologies of
profiles derived from the model and from the inversion of spectral radiance measurements
[Rodgers and Connor, 2003].

In order to simulate upwelling OLR radiances starting from the climate model atmo-
sphere, the fast radiative transfer model (RTM) σ − IASI [Amato et al., 2002] has been
implemented in the CFMIP Observation Simulator Package (COSP v.1.4.1) inside the
EC-Earth GCM. On-line historical simulations with prescribed sea surface temperatures
(SSTs) and sea ice concentration (SIC) have been performed using COSP + σ− IASI in
clear-sky conditions, in the MIR and FIR spectral regions, over the period 2008 - 2016,
compatible with IASI available observations.

Chapter 1 recalls the basic radiometric definitions and the fundamentals of radiative
transfer theory, the different components involved in the Earth Radiation Budget and
principles of climate modeling, with a specific focus on the main approximations imple-
mented in the radiative transfer calculations in GCMs. In chapter 2, the performances of a
set of state-of-the-art climate models participating to the Coupled Model Intercomparison
Project - Phase 6 (CMIP6) are assessed through a systematic comparison between simu-
lated and observed integrated energy fluxes, provided by CERES dataset. In chapter 3,
the σ−IASI Radiative Transfer Model is used to reconstruct synthetic spectrally resolved
radiances, that are then compared to observed spectra measured during the Teresina cam-
paign (2005).

The bulk of the thesis work is presented in chapter 4, which contains a detailed
description of the implementation of the σ− IASI RTM in the EC-Earth climate model.
The modified model is then used to simulate a clear-sky radiance climatology, which is
compared to IASI observations to identify climate model biases.

The future perspectives are described in chapter 5 and then we draw the conclusions.
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1
Background

In this section, we briefly recall the basic radiometric definitions used in the study and
fundamentals of radiative transfer theory. We then provide a description of the present-
day ERB on the basis of CERES measurements, with a particular focus on the Outgoing
Longwave Radiation. Finally, we introduce some fundamentals of climate modelling,
including state-of-the-art GCMs, and focus on the main approximations adopted in the
model physics and radiative transfer calculations.

1.1 Radiative transfer theory

1.1.1 Radiance and spectral flux

First of all, the spectral radiance is defined as the energy flowing through a unit area, per
unit time, per unit wavenumber and solid angle. The radiance emitted by a black body
is described by the Planck law as a function of the wavenumber ν, or, equivalently, as a
function of wavelength λ:

Bν =
2hv3c2

e
hν
kT − 1

or Bλ =
2hc2

e
hc

λkT − 1
(1.1)

where h = 6.62 · 10−34Js is the Planck constant, c = 2.99 · 108m
s

is the speed of light,
k = 1.31 · 10−23 J

K
the Boltzmann constant and T the temperature of the emitting body.

The spectral radiance Lν emitted by a body of uniform temperature T at wavenumber
ν is described by the product of the black-body radiance B and the emissivity ϵ:

Lν = Bνϵν (1.2)

The radiation emitted by a black-body can be converted into another useful quantity,
called Brightness Temperature (BT). Specifically, BT is defined as the temperature of the
body emitting the radiance Lν at the wavenumber ν.
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1.1. Radiative transfer theory

By inverting 1.1:

Tν =
hcν

k ln(1 + 2hc2ν3

Lν
)
. (1.3)

From the spectral radiance, it is possible to compute the spectral flux Fν , defined as
the integral of the radiance over a hemisphere of solid angle:

Fν =

∫
Ω

Lν(θ, ϕ) cos(θ)dΩ (1.4)

where dΩ is the infinitesimal element of the solid angle Ω, the hemispheric domain of
integration. In spherical coordinates, it is represented as dΩ = sin(θ)dθdϕ, where θ is the
zenith angle and ϕ the azimuth angle:

Fν =

∫ 2π

0

dϕ

∫ π/2

0

dθLν(θ, ϕ) cos(θ) sin(θ) (1.5)

As a consequence, if the radiance field is isotropic, the spectral flux can be simply
obtained by the following expression:

Fν = πLν (1.6)

Figure 1.1: Blackbody emission spectra for the Sun (temperature 5800 K) and Earth
(temperature 255 K, as seen from space) as function of wavelength.

As shown by the spectral flux depicted in Figure 1.1, most of the solar energy is
confined in the spectral range between 0.2 and 4 µm and is termed short-wave (SW)
radiation, including near-infrared, visible and ultra-violet spectral ranges. Conversely,
Earth emitted energy falls between approximately 3 and 100 µm (from about 100 to
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Chapter 1. Background

3000 cm−1) and is known as Long-Wave (LW) radiation (Far-Infrared and Mid-Infrared
spectral ranges).

The total flux can be obtained by integrating the spectral flux Fν over frequency ν.

F =

∫ ν2

ν1

Fνdν (1.7)

Under the assumption of isotropic radiation, the total flux of a black body computed
over the spectral range from 0 to ∞ is equal to:

F = σT 4 (1.8)

where σ = 5.67010−8Wm−2K−4. The formula, known as Stefan-Boltzmann law,
demonstrates that the energy per unit time and unit area emitted by a black body depends
on the fourth power of the temperature.

1.1.2 Radiative transfer equation
A beam of radiation (radiance Lν) interacting with a medium experiences the processes
of absorption, emission and scattering.

In the absence of scattering and emission, the pencil of radiation is reduced on the
basis of the Lambert’s law:

dLν

Lν

= −ρka,λds (1.9)

where ρ is the density of the medium, s is the distance traveled by the wave and
ka,λ is the absorption cross section, which has units of area/mass. Equation 1.9 can also
be expressed replacing the product ρka,λ with nk̃a,λ, where n is the number of particles
present in the medium and k̃a,λ now represents the absorbing area of a single particle
interacting with the radiation.

By integrating the Lambert’s law along the path of radiation, we obtain the following:

Lν(s) = Lν(0) exp(−
∫ s

0

ρka,λds
′) (1.10)

Thus, the radiance decreases exponentially with the optical path
∫ s

0
ρka,λds

′, that is
the distance traveled by the radiation weighted by the density and absorption cross section
of the medium.

A useful quantity is the transmissivity, which is defined as the ratio between the
incident beam of radiation and the radiation intensity at distance s:

τν =
Lν(s)

Lν(0)
= exp(−

∫ s

0

ρka,λds
′) (1.11)

In order to maintain thermal equilibrium, the substance absorbing radiant energy must
also emit it. In the previous section, by introducing the basic radiometric quantities, we
have already introduced the spectral emissivity (see Eq. 1.2).

In Local Thermodynamic Equilibrium (LTE) condition a substance emits radiation as
efficiently as it absorbs it. This statement derives from Kirchhoff’s law, which expresses:

aν = ϵν (1.12)
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1.2. The Earth Radiation Budget

where aν is the absorptivity.
The LTE condition is verified when energy transitions are controlled by molecular

collisions and it generally occurs in the troposphere and stratosphere, at altitudes below
60 km.

Based on 1.2 and Kirchhoff’s law, the following equation can be derived:

dLν

Bν(T )
= dϵν = daν (1.13)

Thus, from Lambert’s law, we obtain:

dLν = ρka,λJν(T )ds (1.14)

where Jν = Bν(T ) is the source function in absence of scattering in LTE conditions.
Therefore, if a beam of radiation is confined in a small solid angle ∆Ω and experiences

both absorption and emission processes, its variation is written as:

dLν = −ρka,λLνds+ ρka,λJν(T )ds (1.15)

The process of emission is isotropic, but the equation of radiative transfer 1.15 is
derived in the case of absorption and emission along the single direction n⃗. We do not
address in this section the study of the scattering processes that would require a more
complex treatment, involving the angular dependence of the radiation field. However,
if we continue to refer to a single direction, the scattering process can be embedded in
equation 1.15 by considering a new cross section, defined as an extinction cross section,
obtained by the sum of absorption and scattering cross sections:

ke,v = ka,v + ks,v, (1.16)

The solution of equation 1.15 is:

Lν(S) = Lν(0)e
−

∫ s
0 ρke,vds +

∫ s

0

ρke,vBνe
−

∫ S
s ρke,vds′ds (1.17)

that is known as Schwarzchild’s equation. The first term describes the exponential
decrease of the incident beam of radiation, while the second term represents the emission
of each layer ds and how it is attenuated by the successive layers (between s and S). The
same equation can be written in a more synthetic way through the transmissivity term:

Lν(S) = Lν(0)τ(0, S) +

∫ s

0

ρke,vBντ(s, S)ds (1.18)

1.2 The Earth Radiation Budget

Earth Radiation Budget drives the evolution of the Earth’s climate. At TOA, Earth gains
energy from the solar radiation, which is partly reflected back to space, while it loses
energy through the Outgoing Longwave Radiation, the infrared energy emitted by the
planet. The balance between the absorbed solar energy (ASR) and the OLR determines
the thermal equilibrium of the planet.

The first estimation of the ERB was performed in 1917 by Dines [1917], using balloon
measurements. It was followed by several attempts, whose results were however unreliable
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Chapter 1. Background

and strongly affected by the assumptions made in the calculations. For example, until
the early 1970s, the planetary albedo, defined as the fraction of the solar radiation energy
reflected back by the surface, was supposed to be between 40 % and 50% [Kiehl and
Trenberth, 1997]. Only when the data provided by space-borne instruments were available,
starting with Nimbus 6 in 1975 [Dewitte and Clerbaux, 2017], the assumptions were
replaced by measurements and the planetary albedo was estimated to be approximately
equal to 30%.

From the mid 1980s, the Earth Radiation Budget Experiment (ERBE) [Barkstrom,
1984] and then, from 2000s, the CERES mission [Loeb et al., 2018], have been continuously
collecting measurements of the Earth energy fluxes at TOA, becoming the fundamental
reference point for monitoring the evolution of the ERB.

In Figure 1.2, the present-day ERB is represented on the basis of CERES Energy
Balanced and Filled (EBAF) observations, covering the period 2005-2015. Here, the SW
(yellow arrows) and LW (red arrows) components are illustrated together with their mean
values and uncertainties.

Figure 1.2: Earth global mean energy budget for July 2005-June 2015 (CERES dataset
https://ceres.larc.nasa.gov/science/ ).

We can easily estimate the SW radiation flux of the Sun, starting from Figure 1.1.
Here, the yellow area under the black-body curve, corresponding to the black-body flux
of Eq. 1.8, describes the energy per unit time and area emitted by the Sun and it is equal
to 63 · 106 Wm−2. Considering the surface of the Sun ( 6 · 1012 km2), the total energy
emitted by the Sun is about 3.8 · 1026 W.

The solar radiation arriving on a surface normal to the direction of light propagation
and located at the mean distance Sun-Earth (1.5 · 108km) is about 1370 Wm−2 and is
commonly known as solar constant. This amount of energy intercepts the surface of a
circle of area πr2p, where rp is the radius of the Earth and is then distributed over the
entire surface of the planet, which is four times greater (4πr2p). As a result, incident solar
radiation can be approximated by one-fourth of the solar constant (∼ 340 Wm−2).
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1.2. The Earth Radiation Budget

Of this energy, a total of ∼ −99 Wm−2 is reflected back to space by the surface
(∼ 23 Wm−2), atmosphere and clouds (∼ −66 Wm−2). Consequently, the ASR at the
Earth’s surface is approximately 164Wm−2.

On a global scale, the surface emits much more (∼ 398 Wm−2) than the ASR because
the ground also gains energy from the LW radiation emitted downward by the atmosphere.
The surface loses its surplus of energy also by transferring sensible and latent heat to the
atmosphere.

At TOA, the OLR flux is equal to ∼ 240Wm−2 and can be approximated with the
integral of the spectral flux (equation 1.5) in Figure 1.1, between 3 and 100 µm (100 to
about 3000 cm−1 in wavenumber).

1.2.1 The Earth emission spectrum

The OLR measured at TOA comes from the small portion of energy emitted by the
surface, which freely passes through the atmosphere, and by the radiative cooling of the
atmosphere and clouds. The interaction of infrared radiation emitted by the Earth with
optically active gases, such as water vapour, carbon dioxide, methane and ozone, produces
several absorption lines due to the vibrational and rotational transitions of these molecules
(Section 1.1.2).

In Figure 1.3, a simulated OLR spectrum is shown under all-sky (blue curve) and
clear-sky (black curve) conditions, distinguishing the Far-Infrared (FIR) and Mid-Infrared
(MIR) spectral regions. The dashed lines show the equivalent blackbody emission at
typical surface (295 K) and tropopause (210 K) temperatures. The main gas absorption
bands are indicated.

Figure 1.3: Simulated Earth emission spectrum.

Spectrally resolved radiances have been measured for the first time from space in the
1970s [Brindley and Bantges, 2016], but only starting from the 2000s stable hyperspectral
observations of the MIR spectral range became available, with the key satellite missions
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of the Atmospheric InfraRed Sounder (AIRS, 2002-present) [Le Marshall et al., 2006], the
Infrared Atmospheric Sounding Interferometer (IASI, 2006-present)[Clerbaux et al., 2009]
and the Cross-track Infrared Sounder (CrIS, 2011-present) [Bloom, 2001].

A more accurate description of the IASI mission together with a thorough analysis of
the Earth emission spectrum and its sensitivity to temperature and gas concentrations,
will be provided in Chapter 4.

1.2.2 Energy Imbalance at TOA

The Earth Energy Imbalance (EEI) represents one of the most important metrics for
defining the status of global climate change. EEI derives from the difference between the
net incoming solar radiation and the emitted OLR at TOA. Therefore, a positive (nega-
tive) EEI value indicates that the planet is accumulating (losing) energy: consequently,
the Earth’s system will warm (cool) until a new energy balance is restored.

From several decades, observational data have confirmed that the climate system is
out of balance. In this framework, Von Schuckmann et al. [2020] provided an accurate
estimate of the heat gain in the ocean, atmosphere, cryosphere and land on the basis of in
situ data, multi-satellite data, atmospheric reanalysis, radiosonde records and microwave
sounding techniques and during the period 1971-2018 a long-term increase in EEI is found,
corresponding to a total heat gain of 0.47± 0.10Wm−2.

One of the major difficulty of estimating EEI derives from the multiple internal and
external factors acting on the ERB over different time and space scales. For example,
internal natural forcings, such as El Niño, La Niña, or weather systems, occur from
monthly/annual timescales to several decades. In a similar way, external forcing repre-
sented by volcanic eruptions or changes in solar radiation can affect the energy imbalance
at TOA. However, among external factors, in recent decades, EEI has become increasingly
dominated by human activities (IPCC-AR6, 2018) through the growth of greenhouse gas
concentrations in the atmosphere, which causes a dramatic accumulation of energy in the
system [Hansen et al., 2011]. Most of this excess energy is stored in the oceans (93%),
while the remaining portion warms the surface and the atmosphere [Meyssignac et al.,
2019].

Since the ocean is the key energy storage for EEI, the energy accumulated therein is
constantly monitored through the Global Ocean Observing System (GOOS). From the
most recent measurements, the increase of the global Ocean Heat Content (OHC) is found
to be in the range between 0.1 and 0.9 Wm−2 [Von Schuckmann et al., 2016].

On the basis of CERES data, obtained between 2005 and 2015, the magnitude of the
EEI is equal to about 0.7Wm−2 (see Figure 1.2). However, this estimation is still very
challenging and the energy fluxes involved in the computation of the EEI are affected by
errors (calibration and conversion of radiances to fluxes) that are of the same order of
magnitude of the EEI expected value [Loeb et al., 2018, 2009].

For this reason, the availability of long-term measurements of radiative fluxes from
space, combined with the ground observing system, are essential to reduce the uncertainty
in EEI and it is fundamental to investigate the actual roles of the different forcings on
climate evolution.
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1.3. Climate models

1.3 Climate models

Numerical climate models provide a physically based estimation of the past and future
climate and allow to investigate the response of climate system to different forcings over
long time scales.

1.3.1 Energy Balance Model

The simplest type of model is represented by Energy Balance Model (EBM), which belongs
to the first generation of models and is exclusively based on the energy conservation
equation.

By simply describing the energy conservation equation for a single atmospheric layer,
we can write:

4πR2hρc
dT

dt
= πR2(1− α)S0 − 4πR2ϵkT 4 (1.19)

where h is the vertical extent of the layer, ρ the density of the air, c the specific heat
of the air, T the global temperature, α the planetary albedo, S0 the solar constant, ϵ the
emissivity of the planet, and k the Stefan-Boltzmann constant.

As discussed in the previous section, the global heat uptake of the atmosphere (left
term of the equation) is modulated by the incoming solar energy (first term on the right)
and the energy emitted by the Earth, here in a simplified form (second term on the right).

When the equilibrium is reached, the first term is equal to zero and the average global
temperature is:

T =

(
(1− α)S0

4ϵα

) 1
4

(1.20)

The resulting equilibrium temperature depends directly on the emissivity and the
planetary albedo.

More reliable EBMs take into account two (or more) energy conservation equations
for the planet surface and for the atmospheric layers. EBMs can also be one- or two-
dimensional, by considering meridional and zonally energy flows or both of them.

1.3.2 General Circulation Model

Full-physics models, known as General Circulation Models (GCMs), explicitly resolve the
dynamics of the atmosphere on a three-dimensional grid and provide a representation of
all relevant thermodynamic and physical processes in the system.

Since the 1940s, with the advent of digital computers, the first GCMs were developed,
initially as numerical weather prediction (NWP) models, for forecast limited over time
and space, and later as climate models, extending the forecast to global scale and to longer
time scales [Edwards, 2011].
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The Dynamical Core

All GCMs are characterized by a "dynamical core" capable of simulating the evolution of
the atmospheric flow using primitive equations integrated over a three-dimensional grid
(Figure 1.4).

Figure 1.4: Example of the grid structure of a General Circulation Model. Figure from
Edwards [2011]

The continuous equations integrated in the model are expressed in the coordinates
(λ, θ, σ) where λ is the longitude, θ is the latitude and σ the vertical coordinate. In most
models, the vertical coordinate is not expressed as function of pressure or height but it
is described by a hybrid terrain following coordinate, depending on the surface pressure
and constrained by the following conditions:

σ(0, ps) = 0 and σ(ps, ps) = 1 (1.21)

In this coordinate system, the primitive equations are as follows:

• Momentum equations:

∂U

∂t
+

1

rpcos2θ

(
U
∂U

∂λ
+ V cosθ

∂U

∂θ

)
+

dσ

dt

∂U

∂σ
− fV+

+
1

rp

(
∂ϕ

∂λ
+RdTv

∂(lnp)

∂λ

)
= Pu +Ku

(1.22)

∂V

∂t
+

1

rpcos2θ

[
U
∂V

∂λ
+ V cosθ

∂V

∂θ
+ sinθ(U2 + V 2)

]
+− dσ

dt

∂V

∂σ
+ fU+

cosθ

rp

(
∂ϕ

θ
+RdTv

∂(lnp)

∂θ

)
= Pv +Kv

(1.23)
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where rp is the radius of the Earth, ϕ is the geopotential, Rd is the gas constant for
dry air, Tv the virtual temperature defined as:

Tv = T + [1 + (
Rv

Rd

− 1)q] (1.24)

where q is the specific humidity and Rv the gas constant of water vapour. Finally,
Pu and Pv describe the parametrized physical processes, while Ku and Kv are the
horizontal diffusion terms.

• Thermodynamic equation:

∂T

∂t
+

1rp
cos2θ

[
U
∂T

∂λ
+ V cosθ

∂T

∂θ

]
+

dσ

dt

dT

dσ
− kTvω

(1 + (δ − 1)q)p
= PT +KT (1.25)

where k is Rd

cpdry
with cpdry the specific heat of dry air at constant pressure, ω is the

vertical velocity expressed as (dp
dt

) and δ = is cpvap
cpdry

with cpvap the specific heat of
water vapour at constant pressure.

• Moisture equation:

∂q

∂t
+

1

rpcos2θ

[
U
∂q

∂λ
+ V cosθ

∂q

∂θ

]
+

dσ

dt

dq

dσ
= Pq +Kq (1.26)

• Continuity equation:

∂

∂t

(
∂p

∂σ

)
+∇

(
v⃗h

∂p

∂σ

)
+

∂

∂σ

(
dσ

dt

∂p

∂σ

)
= 0 (1.27)

where ∇ is the horizontal gradient operator in spherical coordinates and v⃗h = (u, v)
is the horizontal wind.

These equations are discretized over the grid cells of the model (Figure 1.4) and nu-
merically solved to provide the main prognostic variables, such as wind components,
temperature, specific humidity, cloud cover and ice/liquid content.

From the 1980s, climate models moved in the direction of increasingly comprehensive
models. In the so-called coupled atmosphere-ocean general circulation models (AOGCMs),
the atmospheric and ocean components - each one represented by a GCM - are put into
communication and at fixed time steps, momentum, heat and water fluxes are exchanged.
Global ocean models in AOGCMs also contain a representation of the sea-ice in polar
regions.

Finally, Earth System Models (ESMs) also include other processes/components of
the climate system, for example biogeochemical cycles (carbon cycle, sulfur cycle, or
ozone), land ice, dynamic vegetation and interactive chemistry, representing the most
comprehensive tools available today to simulate the past and future response of the climate
system.
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Model Physics and Parametrizations

In addition to the "dynamical core", all the other relevant physical processes (radiative
transfer, cloud formation and precipitation, ..) and all dynamical processes involving
scales smaller than the model grid (convection, turbulence, orographic drag, etc.) are
represented by the so-called "model physics". In fact, even if these processes are dynamical
in nature, they are not explicitly resolved in the model through the primitive equations,
and their effects have to be formulated in terms of the resolved grid-scale variables through
physical parametrizations.

Here, we briefly introduce the main physical processes simulated in the Integrated
Forecast System (IFS) model of the European Centre for Medium-Range Weather Fore-
casts (ECMWF), which is the atmospheric component of the EC-Earth climate model
used in this work.

Starting from the prognostic variables provided by the model, the radiative transfer
scheme is generally the first process to be simulated. The way the radiative computation
is solved in climate models will be further described in the following section.

Orography strongly affects the air flow in the lowest atmospheric layers and at the
standard model resolution (today of the order of tens to hundreds of kilometers for climate
models) many details of the orographic features cannot be directly described [Pithan et al.,
2016]. The impact of the sub-grid orographic drag on the atmospheric dynamics is then
represented by the parametrization introduced by Lott and Miller [1997]. The orography
drag is also strictly related to the representation of the turbulent processes at the surface
and, for this reason, the scheme that simulates the transfer of heat, momentum and
moisture between the surface and the lowest atmospheric levels is generally called by the
climate model right after the orographic drag scheme.

As shown in Figure 1.5, other fundamental processes contained in the "model physics"
of GCMs involve cloud, precipitation and convection. The prognostic scheme used for sim-
ulating stratiform and convective clouds is described in Tiedtke [1993]. The same scheme
also takes into account several important cloud processes like cloud-top entrainment, pre-
cipitation of water and ice and evapouration of precipitation.

A distinction is made between the deep, mid-level and shallow convection: the deep
convection is directly related to the instability of the air column and it is modulated
by the Convective Available Potential Energy (CAPE), while the mid-level convection
depends on large-scale vertical velocity and the shallow convection is mainly controlled
by sub-cloud layer turbulence [LeMone and Pennell, 1976].

1.3.3 Radiative Computation in Climate Models

In this section, we present a brief description of the Rapid Radiative Transfer Model
(RRTM), that is implemented in most of the models presented in the following chapter,
including EC-Earth. RRTM can provide accurate simulations of energy fluxes in the LW
spectral interval, which is the region where we will focus our analysis.

Solving the radiative transfer equation to calculate the energy fluxes is computationally
expensive. As a consequence, the spatial grid used for radiative calculations in climate
models is generally coarser than the actual model resolution and the full radiation scheme
is called at lower temporal frequency.

One of the existing strategies used to limit the computational cost in climate models
is based on the correlated-k distribution method, an approximate and fast procedure
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Figure 1.5: Scheme of the physical processes simulated in the "model physics" of General
Circulation Models (from IFS documentation)

that can provide the fluxes and cooling rate of the atmosphere [Mlawer et al., 1997].
The results obtained with this approximation have been widely validated [Hogan and
Matricardi, 2020] against the more accurate outputs obtained by line-by-line radiative
transfer models, whose usage in climate models remains prohibitive.

The correlated-k distribution method consists in dividing the spectrum into a number
of bands and then reordering the gaseous absorption coefficients k (see paragraph 1.1.2)
within each band based on their amplitude.

Figure 1.6: Absorption coefficients due to carbon dioxide for a single layer (Pressure =
507 mbar) over the spectral range 630 − 700cm−1 -a) absorption coefficients as function
of the wavenumber; b) rearranged in ascending order. Figure from Mlawer et al. [1997]

Panel A of Figure 1.6 shows the carbon dioxide absorption coefficient k(ν) as a function
of the wavenumber from 630 to 700 cm−1. By mapping the k(ν)to the g-space, where
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g(k) is the cumulative distribution function, or the fraction of the absorption coefficients
smaller than k, we obtain the curve illustrated in panel B.

While a line-by-line model solves the radiative transfer equation for each spectral line,
the correlated-k distribution (CKD) method works with this smoothly increasing g(k)
function, which is equivalent to solving the radiative transfer equation for monochromatic
radiation [Hogan and Matricardi, 2020].

Starting from the averaged radiance R over the interval [ν1, ν2], we can write:

R =
1

ν2 − ν1

∫ ν2

ν1

dν

{
R0(ν) +

∫ 1

tν

[B(ν, T (t′ν))−R0(ν)]dt
′
ν

}
(1.28)

where R0 is the incoming radiance to the layer taken into account, B(ν, T ) is the
Planck function at wavenumber ν and temperature T while tν is the transmittance for
the layer optical path, and t′ν is the transmittance at a specific point of the optical path
in the layer.

By rearranging the absorption coefficients in ascending order, we obtain the monotonic
function k(g) represented in panel B of Figure 1.6. Thus, mapping ν to g, the previous
equation becomes:

R =

∫ 1

0

dg

{
B(g, Tg) + [R0(g)−B(g, Tg)] exp[−k(g, P, T )

ρ∆z

cosϕ
]

}
(1.29)

The dependence of the transmittance is now written in terms of the absorption co-
efficient k(g, P, T ), characterized by a pressure P and a temperature T , a density ρ, a
vertical thickness of the layer ∆z, and the angle ϕ of the optical path.

For a given spectral interval, such as that represented in panel A of figure 1.6, the
domain of the variable g is then divided into a number of sub-intervals (called g-points)
on the basis of the shape of the k(g) function. Then, for each sub-interval, a single
representative value of k (ksel) is chosen.

Now, for each ksel the outgoing radiance can be computed as:

Rsel = [B + (R0 −B) exp(−ksel
ρ∆z

cosϕ
)] (1.30)

The average radiance over all the spectral range corresponds to the sum of the radiance
Rj computed over the n sub-intervals or g-points.

Rj =
∑
j

Wj[B + (R0 −B) exp(−kj
ρ∆z

cosϕ
)] (1.31)

where Wj is the size of the sub-intervals with
∑

j Wj = 1.

Radiative Computation in presence of clouds

As discussed in the previous paragraph, climate models are able to provide broadband
integrated fluxes through approximated methods, which are extremely faster than the
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calculations performed by line-by-line radiative transfer models. Another complication
arises when the radiative equation is solved in presence of clouds. The resolution of the
climate models, generally in the order of tens to hundred of kilometers, is not adequate
to correctly represent the sub-grid scale structure of the clouds.

Indeed, the model is only able to provide the profile of cloud cover, ice and liquid
water content representative of the whole grid cell. In addition, clouds are homogeneous
within the cloudy portion of the cell. To take into account the vertical and horizontal
clouds heterogeneity in a single cell, the radiative computation is performed by introducing
assumptions on how sub-grid clouds overlap [Zhang and Jing, 2016].

The most used overlap schemes, shown in Figure 1.7, are listed below:

• the Maximum Overlap assumes clouds at different levels with the maximum overlap.
The total cloud fraction corresponds to the largest single-layer cloud cover;

• the random overlap assumes that clouds are randomly overlapped;

• the Maximum-Random Overlap is based on both the previous schemes. When two
clouds are adjacent, clouds are maximum overlapped, while, when there is a gap
between two cloud layers, clouds are randomly overlapped.

Many climate models implement the maximum-random overlap scheme, even if a more
realistic assumption is represented by the exponential-random overlap [Hogan and Illing-
worth, 2000].

Figure 1.7: Most used overlap assumptions in climate models. Figure from Hogan and
Illingworth [2000]

A more flexible technique to compute domain-average radiative fluxes was proposed
and validated by Pincus et al. [2003] and it is known as the Monte Carlo Independent
Column Approximation (McICA).

This scheme is based on the division of the large spatial domain, represented by the
grid cell of the model, into a number N of sub-columns. In each layer of the sub-column,
the cloud fraction can be only 0 or 1 and the ice and water content is constant. The
sub-columns are stochastically generated by a cloud generator algorithm, following one
of the overlap assumptions described above, and its ensemble reproduce the probability
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distribution function corresponding to the cloud profiles of the model grid cell [Räisänen
et al., 2004].

In principle, when the sub-columns are generated, the total flux should be computed
by the sum of the fluxes obtained in each sub-column:

Ftot =
1

N

N∑
n=1

Fn (1.32)

Given the number K of spectral intervals (g-points of Section 1.3.3) where the flux is
computed, the same expression can be written as:

Ftot =
1

N

N∑
n=1

K∑
k=1

wkFn,k (1.33)

where wk is a spectral weight corresponding to k-th spectral interval.
Because the computation cost of the double sum of 1.33 is too expensive for a climate

model, McICA adopts the following approximation, simplifying the equation in:

FMcICA ≈
K∑
k=1

Fnk,k (1.34)

where Fnk,k is the monochromatic flux computed for a single randomly selected sub-
column nk. Consequently, the computational cost of 1.34 is the same as a full spectral
integration on a single subcolumn. Since the McICA method uses randomly selected sub-
columns in the computation of the fluxes, a random error is associated to the estimation.
However, the impact of McICA noise has been already addressed and in different models
was found to be negligible [Barker et al., 2008].

As mentioned, this approximation is implemented in the radiative scheme of climate
models, such as RRTM, together with a cloud generator based on specific cloud overlap
rules.

1.3.4 Matching the observations: the tuning technique
As discussed above, the sub-grid processes, involving turbulent, convective dynamics and
clouds, have to be parameterized in climate models. These parameterizations affect the
radiation, thermodynamics, dynamics, etc., of the model and rely on a set of parameters
which sometimes are poorly constrained by observations [Hourdin et al., 2017]. The
process of "model tuning" consists in adjusting the values of these parameters in order to
best match the known state of the Earth system.

There is no single procedure to tune a climate model but, generally, the first-order
requirement is to provide a correct temperature of the system in equilibrium conditions,
usually representing a pre-industrial climate. Moreover, it is fundamental to have globally
outgoing (reflected) shortwave and longwave radiation at TOA which are in good agree-
ment with the satellite observations [Mauritsen et al., 2012]. In this respect, almost all
state-of-the-art climate models are tuned on the basis of the energy fluxes provided by
the CERES-EBAF dataset.
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To better illustrate the tuning of a climate model, we refer to figure 1.8, where the
main processes tuned in the ECHAM model are shown [Mauritsen et al., 2012].

Figure 1.8: Processes tuned in the ECHAM model in Mauritsen et al. [2012]. Parameters
are (a) convective cloud mass flux above the level of nonbuoyancy, (b) shallow convective
cloud lateral entrainment rate, (c) deep convective cloud lateral entrainment rate, (d)
convective cloud water conversion rate to rain, (e) liquid cloud homogeneity, (f) liquid
cloud water conversion rate to rain, (g) ice cloud homogeneity, and (h) ice particle fall
velocity.

Following the example of Hourdin et al. [2017], we consider the effect of the tuning
of the ice crystal fall velocity, depicted by the process h in Figure 1.8. The effect of the
scaling of this parameter on the RSR and the OLR is shown in Figure 1.9: when the
fall velocity increases, the amount of ice clouds is reduced and, as a consequence, the
reflected solar radiation, while the outgoing longwave radiation increases. Scientists set
the value of this parameter so that the simulated OLR flux corresponds to the observed
value within the measurement error (240± 4Wm−2).
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Figure 1.9: Example of tuning process described in Hourdin et al. [2017] involving the ice
crystal fall velocity
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2
How well do climate models

represent the Earth Energy Budget?

2.1 The Coupled Model Intercomparison Project

A large number of climate models is currently developed in different scientific centers
around the world. These are periodically assessed and compared through the Coupled
Model Intercomparison Projects (CMIPs). The CMIP, which has reached its sixth phase,
represents the largest existing framework for the analysis, development and testing of
climate models.

Its structure comprises five baseline experiments:

• Atmospheric Model Intercomparison Project (AMIP) simulation from 1979 to 2014;

• Pre-industrial control simulation (piControl or esm-piControl);

• Simulation forced by an abrupt quadrupling of CO2 (abrupt-4× CO2);

• Simulation forced by a 1 % year CO2 increase (1pct CO2);

• coupled historical simulation from 1850 to 2014.

In AMIP simulations, the Sea Surface Temperatures (SSTs) and Sea Ice Concentra-
tion (SIC) are prescribed based on observations. In this way, the internal variability of
the models, as short-term climate cycles in the oceans, such as El Niño and La Niña
events, are constrained to be as similar as possible to the real world. The prescribed
SST and SIC come from the AMIP protocol configuration for CMIP6 [Eyring et al.,
2016] and are provided as standard input to all models participating to CMIP6 (see also
https://pcmdi.llnl.gov/mips/amip/ and https://esgfnode.llnl.gov/projects/input4mips/).
The comparison between AMIP simulations and observations allows to directly test the
atmospheric component of the climate model.
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Figure 2.1: CMIP6 experiments configuration

Pre-industrial control runs are used to analyze the natural variability of the model
at equilibrium, without external forcing, and to provide the reference outputs for the
comparison with the other configurations. In the Abrupt-4 CO2 experiments, the CO2
concentration is fixed at 1120 ppm, four times higher then the pre-industrial value (280
ppm). These idealized simulations allow us to investigate the response of the Earth System
to a strong radiative forcing, starting from a pre-industrial climate and holding all the
other parameters constant. The 1pct CO2 represents another diagnostic test, where CO2
emissions from pre-industrial levels is increased by 1% per year.

The so-called historical runs start from 1850 and allow scientists to compare long-term
observations to model simulations, which are performed under observed (or estimated, for
the first part) atmospheric greenhouse gas concentration, other natural and anthropogenic
forcings (including aerosols), land use, etc. In addition, CMIP6 includes a large set of
additional "MIPs", with experiments targeting specific issues in climate studies. The
most participated is the ScenarioMIP, which defines a set of future scenarios of GHG,
aerosol and land-use changes for the 21st century.

2.2 Climate Models Assessment

In this chapter, we assess the performance of the CMIP6 climate model in representing
the energy fluxes at TOA. To do this, we have compared 15 years (2000-2014) of model
outputs, provided by the AMIP simulations of 34 CMIP6 models, with the observational
data contained in the CERES Energy Balance and Filled (EBAF) dataset. This dataset
(https://ceres.larc.nasa.gov/data/) is built from observations collected by several instru-
ments: CERES instruments, MODIS, VIIRS and almost 20 geostationary satellites. The
observed fluxes are affected by uncertainties derived from calibration errors and from the
conversion of the radiances, measured by different instruments, into fluxes. The calibra-
tion error is equal to about 2 Wm−2 (two standard deviation) for the reflected solar energy
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and to about 4 Wm−2 (two standard deviation) for the OLR [Loeb et al., 2018].
The study follows the work of Wild [2020], that has recently examined the radiative

global budget of 40 state-of-the-art global climate models participating in the Coupled
Model Intercomparison Project phase 6 (CMIP6) through a systematic comparison of
global-averaged broadband energy fluxes at surface and TOA with the CERES-EBAF
dataset (v. 4.0). In this work, these results are also compared to CMIP5 multi-model
means. On the one hand, the last model generation shows better agreement with the
observed values, as for the shortwave atmospheric clear-sky component and the radiative
fluxes at the surface, which present important improvements with respect to CMIP5
models. On the other hand, large inter-model spreads persist, in particular for Cloud
Radiative Effect at TOA and global mean latent heat fluxes.

In this thesis, we extended the analysis of the CMIP6 model biases on a regional scale,
exploiting the new release of the CERES dataset as observational benchmark (v 4.1) .

The 34 CMIP6 models listed below have been selected for comparison because they
provide all the variables under consideration over the whole period taken into account:
BCC-ESM1, CAMS-CSM1, CERSM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-
FV2, CIESM, CMCC-CM2-HR4, CMCC-CM2-SR5, CNRM-CM-1, CNRM-CM6-HR, CNRM-
ESM2, E3SM-1, EC-Earth3, EC-Earth3-AerChem, EC-Earth3-CC, EC-Earth3-Veg, FGOALS-
f3-L, GISS-E2-1-G, HadGEM3-GC31-LL, HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-
0, IPSL-CM6A-LR, KIOST-ESM, MIROC6, MIROC-ES2L, MPI-ESM-1-2-HR, MPI-ESM-
1-2-LR, MPI-ESM-1-2-HAM, MRI-ESM2-0, NESM3, NorESM2-LM, SAM0-UNICON.

In addition, the simulated variables we compared to the observed ones are listed below:

• OLR (Outgoing Longwave Radiation TOA)

• OLRCS (Outgoing Longwave Radiation TOA - clear sky conditions)

• RSR (Reflected Shortwave Radiation TOA)

• RSRCS (Outgoing Shortwave Radiation TOA - clear sky conditions)

• Clt (Cloud Cover)

• CRElw (Cloud Radiative Effect Longwave)

• CREsw (Cloud Radiative Effect Shortwave)

• LWP (Cloud Liquid Water Path)

• IWP (Cloud Ice Water Path)

Starting from the CMIP6 model outputs and the CERES dataset, we computed the
global averages of both the observed and simulated quantities over the period 2000 -
2014, shown in Table 2.1. In the following, we discuss each variable in detail in a separate
paragraph.

Then, to better investigate the distribution of the biases over the globe, we compare
the simulated and observed climatologies. For the variables in Table 2.1, we provide the
following plots: taking Figure 2.2 as example, the observed values are shown in panel
A (top-left), the multi-model mean in panel B (top-right), their differences in panel C
(bottom-left) and their zonal means in panel D. All the values are averaged over 15 years
(2000-2014).
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Variable CERES Multimodel Unit
OLR 240.23± 0.23 238.40± 0.21 Wm−2

OLRCS 266.17± 0.30 262.21± 0.27 Wm−2

RSR 99.20± 0.25 100.64± 0.28 Wm−2

RSRCS 53.84± 0.14 52.94± 0.14 Wm−2

CLT 67.46± 0.16 64.23± 0.13 %
CRELW 25.90± 0.25 23.80± 0.34 Wm−2

CRESW −45.35± 0.27 −47.70± 0.31 Wm−2

Table 2.1: Global mean of CMIP6 models (AMIP simulations) and CERES over the
period 2000-2014, with the respective standard deviations.

2.2.1 Outgoing Longwave Radiation

As mentioned in Section 1.1.1, the total OLR flux is defined as the Earth radiance emitted
at TOA, integrated over the solid angle and over the spectral range, from 100 to about
3000 cm−1 (3 - 100 µm).

F =

∫ 3000

100

dν

∫ 2π

0

dϕ

∫ π/2

0

dθLν(θ, ϕ) cos(θ) sin(θ) (2.1)

OLR at TOA is mainly controlled by surface temperature and atmospheric humidity.
As a consequence, maximum values of OLR on the globe are present over subtropical dry
zones [15-30° N, 15-30° S], corresponding to the subsiding branches of the Hadley Cell.
In contrast, over the narrow tropical belt of convective clouds, between about 15 ° S and
15 ° N, known as the intertropical convergence zone (ITCZ), the OLR drastically drops
because the radiation emitted by the surface and lower atmospheric layers is absorbed by
clouds and re-emitted at the cloud top at lower temperatures (see panels A,B in Figure
2.2).

On a global scale, the CMIP6 ensemble mean simulated OLR is about 2Wm−2 less
than the observed OLR (see Table 2.1). However, this result is within the 2 standard
deviation uncertainty of CERES measurements.

Despite the good agreement on a global scale, the global map of the bias (panel
C), shows how negative model biases dominate at most latitudes, with the exception of
significant positive differences (reaching about 10 Wm−2) affecting tropical regions [15°S-
15°N], especially Central Africa, South America and Indonesia. Although in the subtropics
[15-30 ° S and 15-30 ° N] the negative biases are still visible in the zonal mean, over the
tropics the biases are completely offset (panel D) when zonally averaged.

Clear-sky

In the absence of clouds, the OLR is mostly controlled by the surface and vertical profile
of temperature and concentration of GHGs. As a consequence, it is mainly related to the
latitude and height of the emitting ground (see panels A,B in Figure 2.3). The pronounced
minimum over the tropics found in the all-sky case (Fig 2.2 - panel D) is now strongly
mitigated, even if the high concentration of water vapour still present here reduces the
amount of the emitted OLR flux at TOA, with respect to subtropical latitudes. In this
comparison, the negative biases occur throughout the globe, as shown in panels C and D.
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Figure 2.2: A: Observed OLR flux (top left); B: Multi-Model Mean of simulated OLR
(top right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-model
mean and observed OLR (bottom right). The blue shade identifies the 1σ (standard
deviation) of multi-model mean

However, before going into more detail, it is relevant to indicate that the simulated
clear-sky fluxes are generally not directly comparable to clear-sky observations. In fact,
while the latter are inferred from clear-sky pixels or regions within the CERES instru-
ments footprints that are cloud-free (on the basis of information provided by the high-
spatial resolution spectral imager [Trepte et al., 2019]), clear-sky radiative computations
in climate models exploit the same all-sky properties (e.g., surface temperature, tem-
perature/humidity profile, surface albedo, aerosol), with only clouds removed. Since the
temperature and humidity profiles of the models continue to be affected by the presence of
clouds, a systematic negative bias persists when clear-sky simulated fluxes are compared
with the observed ones.

According to Sohn et al. [2006], this difference can be significant, reaching up to -
12 Wm−2 in active convective regions at tropical latitudes.

To mitigate this bias and to provide TOA clear-sky fluxes that are more in line with
the clear-sky fluxes produced by climate models, a new adjustment factor (∆) has been
introduced in the CERES EBAF 4.1 dataset [Loeb et al., 2020], we exploit in this compar-
ison. The correction term is derived from a monthly comparison of the synthetic fluxes
computed following the approach of climate models and those inferred from clear-sky
pixels of the observations. The ∆ factor is then used to correct the estimations of the
clear-sky TOA fluxes contained in the previous release of the CERES dataset (EBAF 4.0)
[Loeb et al., 2018].

As shown in Figure 2.4, the impact of ∆ is significant in the LW and it is negative over
the tropical, subtropical and middle latitudes. As already mentioned, observed clear-sky
fluxes are generally warmer with respect to climate model clear-sky output because models
use moister and thus colder profiles in the radiative computation. On the contrary, the
radiative computation in climate models produces the opposite impact over high latitudes,
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Figure 2.3: A: Observed OLRCS flux (top left); B: Multi-Model Mean of simulated OL-
RCS (top right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-
model mean and observed OLRCS (bottom right). The blue shade identifies the 1σ
(standard deviation) of multi-model mean (ORLCS ) averaged over 15 years

Figure 2.4: TOA LW adjustment for (a) January, (b) April, (c) July, and (d) October
based upon 10-yr climatology of CERES EBAF data for July 2005–June 2015 (units:
Wm−2). From Loeb et al. [2020]

keeping surface temperatures warm compared to observed cloud-free conditions. The
global mean value of ∆ over the 10 years, from 2005 to 2015, is −2.2 Wm−2 with an error
of 0.15 Wm−2.
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In the analysis carried out by Wild [2020], which is based on the CERES dataset
4.0, the difference of the OLR clear-sky fluxes between CMIP6 models and observations is
about 6 Wm−2. On the contrary, in our comparison, due to the correction, this discrepancy
is reduced to 4 Wm−2 on a global scale.

Wild [2020] also found that the CMIP6 models show a relevant improvement in the
OLR estimation compared to the earlier model generations (CMIP5), even if a significant
inter-model spread persists, with a standard deviation of 2.8 Wm−2 (2.9 Wm−2 for the
CMIP5 models) for the all-sky OLR and of 2.6 Wm−2 for OLR under clear sky conditions
(3.3 Wm−2 for CMIP5 models).

2.2.2 Outgoing Shortwave Radiation
The Reflected Shortwave Radiation (RSR) flux at TOA is defined as the solar reflected
radiance integrated over the solid angle and over the spectral range, from about 2500 to
about 50000 cm−1 (0.2 - 4 µm)

Fν =

∫ 50000

2500

dν

∫ 2π

0

dϕ

∫ π/2

0

dθLν(θ, ϕ) cos(θ) sin(θ) (2.2)

The area of maximum RSR corresponds to surfaces of high reflectivity, such as deserts,
ice, snow and sea ice, or regions persistently affected by clouds. Indeed, the highest RSR
values are found over the ITCZ, the Sahara desert, the Tibetan Plateau and over high-
latitude areas such as Greenland and Antarctica, although much less incident solar radia-
tion. On the contrary, the lowest RSR values are present over subtropical oceans dry zones.
Even if simulated RSR radiation under all-sky and clear-sky conditions (RSR,RSRCS)
shows good agreement with observations on a global scale, with a bias of about 1 Wm−2

(within 1 standard deviation of observational uncertainty), large regional differences are
found throughout the globe (panel C of Figure 2.5) and between models, as indicated by
the zonal standard deviation in panel D.

Positive biases dominate the oceans with the exception of the western coastlines of
South and North America, Indian Ocean and Atlantic Ocean, where the difference be-
tween simulated and observed RSR reaches the value of -30 Wm−2. These biases can
be related to the marine low clouds representation, that affects these regions with high
frequency. Previous model generations (CMIP3, CMIP5) already exhibited large spread
in the representation of marine low cloud cover (LCC), in particular in the subtropical
stratocumulus regions off the west coasts of continents [Qu et al., 2014, Soden and Vecchi,
2011]. Furthermore, in this analysis, also the simulated aerosol concentration in the at-
mosphere could play a significant role: aerosol and their interactions with clouds induce a
cooling effect on climate and the strength of this forcing is affected by large uncertainties
(IPCC, 2018) and still poorly represented in AMIP models.

Finally, the uniform negative difference between modelled and observed RSR over the
Southern Ocean is again most likely linked to LCC since the extension of this bias is too
large to be compatible with the sea-ice cover. This known issue will be discussed further
in the following paragraph.

Clear-sky

In the absence of clouds (see Figure 2.6), surface reflectivity directly controls the RSR
flux reaching the TOA. As a consequence, the highest RSR values are found in the polar
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Figure 2.5: A: Observed RSR flux (top left); B: Multi-Model Mean of simulated RSR (top
right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-model
mean and observed RSR (bottom right). The blue shade identifies the 1σ (standard
deviation) of multi-model mean (RSR) averaged over 15 years

regions and desert areas (panels A,B). It is evident that, in clear sky conditions, the
differences between the simulated and observed RSR fluxes are strongly reduced (panels
C and D) with respect to the all-sky case, highlighting the importance of clouds for the
representation of the global energy budget.

Strong negative differences still occur over North America, especially during boreal
summer and spring (not shown), whereas a positive bias persists over Antarctica and
northern polar regions, suggesting a potential bias in modeled snow reflectivity. Finally, a
strong negative bias is present during austral summer along the Antarctica coastline (not
shown), likely due to an overly simplified representation of sea-ice in climate models.

The strong positive bias occurring over the Tibetan Plateau in panel C of Figure 2.6
is likely due to the complexity of topography of the region, which is not well represented
in plane-parallel radiative transfer schemes of the models [Lee et al., 2013].

The inter-model spread in the global mean RSR in CMIP6 and CMIP5 models has re-
mained unchanged [Wild, 2020], indicating that model biases are persistent in this respect.
The adjustment factor ∆ introduced in CERES-EBAF v4.1 (see previous paragraph), has
a limited impact on the RSR: the global value of ∆, obtained from the 10 years 2005 -
2015, is 0.47± 0.16 Wm−2.

2.2.3 Cloud Radiative Effect

The presence of clouds strongly influences the TOA energy fluxes, with an opposite effect
on the SW and LW radiation. To quantify the impact of clouds on radiation, clear-
sky fluxes at TOA are compared to fluxes computed in the presence of clouds. The cloud
radiative effect (CRE), in the LW and SW spectral ranges separately, is defined as follows:
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Figure 2.6: A: Observed RSRCS flux (top left); B: Multi-Model Mean of simulated RSRCS
(top right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-model
mean and observed RSRCS (bottom right). The blue shade identifies the 1σ (standard
deviation) of multi-model mean (RSRCS ) averaged over 15 years

CRELW = OLRclear−sky −OLRall−sky (2.3)

CRESW = RSRclear−sky −RSRall−sky (2.4)

Generally, low clouds, that contain large amounts of water droplets, which are highly
reflective, reflect back solar incoming radiation, resulting in a cooling effect of the climate
[Stephens, 1978]. At the same time, the cloud top is low (< 2 km), so the emission
temperature at the cloud top is not that different from the surface one. On a global scale,
in the SW spectral range, about -45.3 Wm−2 is reflected back to space due to clouds. In
the CMIP6 multi-model mean this value is about -47.4 Wm−2.

On the contrary, for the optically thick clouds or high clouds, the amount of reflected
SW radiation is generally lower than the quantity of LW energy they trap in the Earth’s
System: in fact, they efficiently absorb the LW radiation and then re-emit it at higher
altitude and, consequently, at a lower temperature. As a result, the emitted radiation
is less than the absorbed one, causing a warming effect: from observational data, about
25.9 Wm−2 of OLR are retained in the climate system due to clouds. Climate models
simulate a lower CRE in the LW, approximately equal to 23.8 Wm−2.

Thus, on the one hand, climate models understimate the CRE in the LW, while, on
the other hand, they overestimate the CRE in the SW. The total CRE, given by the sum
of LW and SW CRE components, shows an overall cooling effect of clouds in the Earth
system: this amounts to about -20 Wm−2, based on the CERES dataset, while it is
approximately equal to -24 Wm−2 in the multi-model mean of CMIP6 models. So there
is a general overestimation of the cooling effect of clouds in CMIP6 models, amounting
to about 4 Wm−2 globally.
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Figure 2.7: A: Observed CRE LW (top left); B: Multi-Model Mean of simulated CRELW
(top right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-model
mean and observed Cloud Cover (bottom right). The blue shade identifies the 1 σ (stan-
dard deviation) of multi-model mean (CLT ) averaged over 15 years

Figure 2.8: A: Observed CRESW (top left) ; B: Multi-Model Mean of simulated CRESW
(top right); C: Difference (MODEL-OBSERVATION) (bottom left); D: Zonal multi-model
mean and observed Cloud Cover (bottom right). The blue shade identifies the 1σ (stan-
dard deviation) of multi-model mean (CLT ) averaged over 15 years

In Wild [2020], the global comparison of CRE between CMIP6 models and the observa-
tions provided by CERES shows a slightly greater discrepancy, approximately 5 Wm−2.
In fact, in that study the reference used for the comparison is the previous version of
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CERES EBAF (edition 4.0), and the observed CRE in the LW and in the SW were about
28 and -46 Wm−2 respectively [Loeb et al., 2018]. This difference depends again on the
∆ adjustment factor (see Section 2.2.1) that most affects the estimation of the CRE in
the LW. Limited differences are found between the two CERES datasets for CRE in the
SW, where the factor ∆ is smaller.

Panels C and D of Figure 2.7 highlight that the simulated CRE in the LW shows
mostly negative biases, distributed quite homogeneously across the globe. Larger biases
(of the order of 30 Wm−2) are detected in the shortwave CRE, where also the intermodel
spread strongly increases (panel D of Figure 2.8).

Since the simulated and observed CRE in the shortwave are negative, when the biases
in panel D of Figure 2.8 are positive, it indicates that climate models underestimate the
effect of clouds on the reflected radiation (see Section 2.2.2). In this context, a long-
standing issue in models concerns the underestimation of reflected shortwave radiation
from clouds across the Southern Ocean [Trenberth and Fasullo, 2010] (Figure 2.8, panel
C).

Kay et al. [2016] demonstrates that, in the case of the CESM1(CAM5) climate model,
the bias is most likely originating from an insufficient amount of simulated supercooled
liquid clouds, which strongly affect radiation at these latitudes.

2.2.4 Cloud Cover, Liquid and Ice content

Simulated cloud cover shows substantial differences with respect to observations (see Fig-
ure 2.9). Observed cloud properties of the CERES dataset are derived from MODIS and
geostationary imager measurements [Minnis et al., 2020]. By comparing the output of
the CMIP5 and CMIP6 models with observational data acquired by CLOUDSAT and
CALIPSO over the period 2006 - 2011, Vignesh et al. [2020] found that the global mean
cloud fractions of CMIP6 increased by about 4.5% with respect to CMIP5, reducing the
gap with respect to observations (see Table 2.1). In the same work, a negative cloud cover
bias is observed in most of the tropics and the mid-latitudes in both hemispheres, while
a positive bias is found over high-latitudes, between 60°N–80°N and the 60°S–80°S. These
results are in line with our comparison, shown in panels C and D of Figure 2.9.

At latitudes between 60°S and 60°N, the smallest biases occur in the tropics (5%),
while the highest discrepancies are present in the subtropics and locally reach 10 %. At
latitudes between 15°S and 30°S, the observed cloud cover is out the 1 σ multi-model
standard deviation range (see Figure 2.9 - panel D). These areas, affected by the largest
negative differences, correspond to the regions affected by the highest discrepancies in the
RSR comparison (see Section 2.2.2).

Finally, large differences are present at polar latitudes, especially over Antarctica,
where models overestimate cloud cover. However, cloud cover detection in these regions
is generally less reliable because the cloud tops and the surface have similar temperature
and reflectivity [Trepte et al., 2003].

Cloud liquid water path (LWP) and cloud ice water path (IWP) are defined, respec-
tively, as the total amount of liquid and ice particles vertically integrated inside the clouds.
The zonally averaged observed values of LWP and IWP in Figures 2.10 are shown within
70°S, +70°N because, over polar latitudes, especially over Antarctica, few retrieval points
are available from MODIS measurements in the CERES dataset. Since these variables
show large differences between models, as shown by the zonal standard deviation, the ob-
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Figure 2.9: A: Observed Cloud Cover; B: Multi-Model Mean of simulated Cloud Cover; C:
Difference (MODEL-OBSERVATION); D: Zonal multi-model mean and observed Cloud
Cover. The blue shade identifies the 1σ (standard deviation) of multi-model mean (CLT )
averaged over 15 years

served LWP is always within the multi-model standard deviation range (panel A of Fig.
2.10). In this context, it is also important to note that the accuracy of retrieved LWP from
MODIS measurements is still debated. For example, a recent work of Khanal et al. [2020],
highlights that LWP tends to be overestimated by MODIS measurements, particularly at
high latitudes and, over around 50°, the bias can reach values up to +50 gm−2.

The observed distribution of IWP appears instead completely outside the range of
CMIP6 models (Figure 2.10, right panel). However, this large difference between ob-
served and simulated values is due to the fact that models make a clear distinction be-
tween precipitating and suspended cloud ice, while the retrieval products, computed from
observations, constitute a mixture of both. In climate models, at each step, the pre-
cipitating ice cloud is removed and only the floating cloud ice is accounted for, which
amounts to approximately 10 - 30 % of the total column of ice particles [Waliser et al.,
2009]. Therefore, model results are in good agreement with this estimation, since the
multi-model mean of the cloud ice water path is about 20% of the observed value.

2.3 Conclusions

In this work, we have compared the radiative fluxes and cloud variables obtained from
climate model simulations with observational data provided by CERES, over the period
2000 - 2014. The comparison is based on multi-model means computed from 34 climate
models participating to CMIP6, both in clear-sky and all-sky conditions. We consider
here the AMIP simulations, so that all models are constrained with observed SSTs and
SIC.

In general, CMIP6 models show good agreement with observations on a global scale,
better than any previous generation of models [Wild, 2020]. In all-sky conditions, both
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Figure 2.10: A: Zonal Cloud Liquid Water Path; B: Zonal Cloud Ice Water Path. The
blue shade identifies the 1σ (standard deviation) of multi-model mean averaged over 15
years

the OLR and RSR multi-model means are very close to the CERES reference values and
largely within the 2σ observational uncertainties provided by Loeb et al. [2018].

Nevertheless, the grid-point comparison performed here allows to highlight regions
affected by significant biases, avoiding spatial compensation effects produced by the zonal
and global averages. For example, at tropical and subtropical latitudes, the OLR at TOA,
in all-sky conditions, shows large areas of positive and negative biases (up to 10 Wm−2),
which are completely offset in the zonal average. Spatial compensation errors are even
more pronounced in the comparison of all-sky RSR, where we found biases of the order of
30 Wm−2 locally, despite the good agreement between the observed and simulated global
averages.

Comparisons of the all-sky and clear-sky OLR and RSR demonstrate that the largest
biases originate mainly from the representation of clouds in models. This is especially
evident for the RSR: while in the all-sky conditions large biases affect tropics, subtropics
and the Southern Ocean, in the clear-sky comparison, differences are smaller and only
limited to land, most likely due to the poor representation in climate models of topography,
as in the case of the Tibetan Plateau, and snow reflectivity, as highlighted over polar
regions.

In addition, climate models underestimate the positive LW CRE of approximately
2 Wm−2, while they overestimate for about 2 Wm−2 the negative SW CRE (in absolute
value). As a consequence, from the multi-model mean, the simulated cooling effect of
clouds on the climate is approximately 4 Wm−2 more than that found in observations.

Despite the significant improvement achieved with respect to CMIP5 models, the cloud
cover is still generally underestimated by climate models, which also show a significant
inter-model spread. Largest differences occur over subtropics, where the reflected solar
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radiation, analyzed trough the CRE in the SW spectral range, is overestimated by models
along the western coastlines of America, Africa and Australia. These biases are mostly
linked to the representation of marine low clouds, which dominate over large-scale sub-
sidence regions. Furthermore, the same type of clouds may be responsible for the wide
and long-standing bias found over the Southern Ocean. In this context, a recent study of
Kay et al. [2016] highlighted that this bias may originate from the insufficient amount of
simulated supercooled liquid clouds at these latitudes.

Finally, a strong inter-model spread is found in the representation of the cloud liquid
and ice content. However, the comparison of these variables is also make difficult due
to lower reliability of the LWP and IWP inferred from measurements and the different
definitions of the retrieved and simulated quantities.

The comparison of observed and simulated broadband fluxes provides fundamental
information about the performance of climate models, and highlights the prominent role
of clouds and the importance of their reliable representation in models. However, the
detection of specific model biases is complicated by spectral integration, which may mask
compensation errors, for example in the computation of the OLR. On the basis of these
considerations, in the next Sections the analysis focuses on the comparison between sim-
ulated and observed spectrally resolved radiances. Indeed, the use of spectrally resolved
OLR allows avoiding potential compensation errors. Furthermore, radiances contain the
fingerprints of temperature, individual gases and clouds: from the differences between
observations and simulations in specific spectral ranges, it is then possible to attribute
the observed biases to the representation of specific climate variables in the GCMs.
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3
Teresina campaign: measurements of
the Earth emission spectrum in the

FIR and test of the σ − IASI
radiative transfer model

In the first chapter, we stressed the importance of spectrally resolved measurements of
the outgoing longwave radiation, in addition to broadband fluxes. We here perform a
first comparison between simulated and observed spectrally resolved radiances: observed
spectra, measured during the field campaign of Teresina (Brazil) in 2005, are compared
to synthetic spectra computed with the radiative transfer model (RTM) σ−IASI, on the
basis of retrieved atmospheric profiles. The retrieval is performed using the FAst Retrieval
Model (FARM), a Bayesian retrieval algorithm, using the σ−IASI as forward model and
for the calculations of Jacobians. Through this procedure, we verified the accuracy of the
σ − IASI RTM in reproducing the Earth emission spectrum, both in the Far-Infrared
and the Mid-Infrared spectral regions.

3.1 Teresina campaign

On June 30th 2005, from the airfield of Timon, near Teresina (Brazil), the first spectral
measurements of FIR Earth’s emission spectrum were performed by the Radiation Ex-
plorer in the Far InfraRed Prototype for Applications and Development (REFIR-PAD)
from a stratospheric balloon. REFIR-PAD was the result of previous prototyping activ-
ities aimed at measuring spectrally resolved radiances in the FIR region without using
expensive and inefficient cooled detectors, indispensable until that moment [Carli et al.,
1999, Rizzi et al., 2002].

The field campaign was led by the French Centre National d’Etudes Spatiales (CNES)
in collaboration with the European Space Agency (ESA) and REFIR-PAD was integrated
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onboard the Laboratoire de Physique Moleculaire pour l’Atmosphere et l’Astrophysique
(LPMAA) gondola, also hosting the Infrared Atmospheric Sounding Interferometer (IASI)
balloon. During the 8 hours of flight at floating altitude of 34 km, REFIR-PAD acquired
45 sequences of observations (10 spectra per sequence) of the outgoing longwave radiance,
covering the spectral range from 100 to 1400 cm−1, with a spectral apodized resolution of
0.475 cm−1.

Figure 3.1: Examples of REFIR-PAD and IASI-Balloon measured spectra

On the same platform, IASI balloon measured radiances in the MIR spectral range,
from 700 to 1400 cm−1. With a geometry similar to the IASI space-borne instrument,
whose details will be presented in the next chapter, IASI balloon provided radiance mea-
surements with a spectral apodized resolution of 0.1 cm−1

3.2 The σ-IASI radiative transfer model

σ-IASI Radiative Transfer Model, developed at University of Basilicata [Amato et al.,
2002], is a fast monochromatic RTM able to simulate up-welling infrared radiances at
high resolution (0.01 cm−1) in the 10 - 3000 cm−1 range, Consequently, any Spectral Re-
sponse Function (SRF) can be convoluted with the high-resolutions radiances, according
to the specific instrument being processed. For each atmospheric layer, absorbing gas
and wavenumber, the optical depths are computed using polynomial parametrizations
determined on the basis of pre-tabulated values. The pre-tabulated optical depths of
all trace species in correspondence of an appropriate and fixed layering were computed
by KLIMA, a validated line-by-line RTM developed at IFAC-CNR [Cortesi et al., 2014,
Del Bianco et al., 2013]. The inputs to the σ − IASI RTM are the surface pressure and
temperature, the surface spectral emissivity, the profiles of temperature, humidity and
concentrations of 11 gases (O3, CO2, N2O, CO, CH4, SO2, HNO3, NH3, OCS, HDO, CF4)
and the cloud parameters (cloud cover, ice and liquid water content, effective radius of
ice and liquid particles). The radiative transfer calculations are then performed using 61
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fixed pressure levels and on a fixed wavenumber grid with a step of 0.01 cm−1. The radia-
tive code is also able to compute Jacobians with respect to all the geophysical variables,
including the cloud parameters. Once the synthetic spectrum has been calculated by the
RTM, it is possible to simulate the instrumental effects by convolving the spectral radi-
ance with an Apodized Instrument Spectral Response Function (AISRF). In this case,
to simulate the REFIR-PAD apodized measurement, we use as AISRF a Norton-Beer
strong apodizing function [Norton and Beer, 1976, 1977] relative to a sampling of 1/(2
MOPD) = 0.5 cm−1, where MOPD is the Maximum Optical Path Difference adopted
for the measurement. For IASI balloon spectra, we use the same AISRF relative to a
sampling of 1/(2 MOPD) = 0.1 cm−1.

The σ−IASI RTM has been extensively validated against IASI measurements [Liuzzi
et al., 2017], Aircraft based Measurements (NAST-I) [Grieco et al., 2007] and ground-
based measurements [Serio et al., 2008]. In this work, we further test the accuracy of
σ−IASI following 3 steps:

• The retrieval of surface and atmospheric properties from the measurements of REFIR-
PAD and IASI balloon, considering single (only REFIR-PAD) and synergistic re-
trievals (section 3.3)

• The verification of retrieved quantities with correlative radiosondes measurements
(section 3.4)

• The comparison of the observed and simulated spectra (section 3.5)

3.3 The inverse problem

To simulate the spectrally resolved radiances corresponding to the REFIR-PAD and IASI-
balloon observations, we need to know the surface and atmospheric properties present
during the measurements. In many cases, especially for satellite-borne instruments, we
do not directly measure these quantities, but we derive them from the observed radiances
y. This is called the inverse problem.

Let assume that the state of the atmosphere is defined by a limited set of parameters
(i.e., temperature, pressure, gases concentration, etc.) that are collected in the state
vector x. The computation of x, starting from observations y, is known as the inverse or
retrieval problem.

First, to solve the inverse problem, we need a model that relates the measurements y
and the state vector x:

y = f(x) + ϵ (3.1)

Here, f(x) represents the forward model or, in other terms, the radiative transfer
equation used to simulate radiances starting from x, while ϵ describes the measurement
error. In this study, the forward model is represented by the σ− IASI RTM followed by
the AISRF convolution process.

In a Bayesian view, the inverse problem consists in finding the conditional probability
P (x|y) that is the probability the state vector x is true under the condition we have
obtained the measurements y.

From the Bayes theorem:
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P (x|y) = P (y|x)P (x)
P (y)

(3.2)

Assuming that error ϵ is normally distributed and characterized by its covariance
matrix Sy, we can explicitly write the terms of the equation 3.2:

• Assuming that y is normally distributed, conditional probability P (y|x) is written
as a m-dimensional Gaussian distribution with mean f(x) and standard deviation
Sy:

P (y|x) = 1

(2π)
m
2 detSy

e−
(y−f(x))tSy

−1(y−f(x))
2 (3.3)

• We introduce an a-priori estimation of the vector state x, identified by xa, and an
associated error represented by the covariance matrix Sa.

Assuming x normally distributed, the a-priori probability P(x) is defined as:

P (x) =
1

(2π)
n
2 detSa

e−
(x−xa)

tSa
−1(x−xa)
2 (3.4)

• Finally, we do not have an analytical expression for P(y) but it does not depend on
x and it is just a normalization factor.

As a result, from the previous equations, we obtain:

P (x|y) = 1

(2π)
n+m

2 detSa detSy
e−

(xa−x)tSa
−1(xa−x)+(y−f(x))tSy

−1(y−f(x))
2 (3.5)

3.3.1 Maximum Likelihood
It is now possible to extract the best estimate of x starting from equation 3.5. The
maximum likelihood method seeks the solution that "best" explains the observed dataset
y, assuming that it is described by a normal distribution.

In order to maximize the probability in 3.5, we have to minimize the exponent, that
is the cost function:

χ2 = (xa − x)tSa
−1(xa − x) + (y − f(x))tSy

−1(y − f(x)) (3.6)

Thus, we look for the solution of ∇xχ
2 = 0.

We can write:

∇xχ
2 = −2KtSy

−1(y − f(x))− 2Sa
−1(x − xa) (3.7)

where K is the jacobian matrix of the function f(x), defined as:

Ki,j =
∂fi(x)

∂xj

(3.8)

In many cases, the equation 3.7 does not have an analytical solution and it is necessary
to solve it numerically.
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3.3.2 The Gauss-Newton Method

The Gauss-Newton method represents one of the numerical methods we can apply to solve
equation 3.7. Considering we want to find the zero of a uni-dimensional function g(x),
with x ∈ (a, b) (see picture 3.2), we can write:

xi−1 − xi = g(xi−1)tan(π/2− α) =
g(xi−1)

g′(xi−1)
(3.9)

Figure 3.2: Newton’s Method

As a consequence, we have:

xi = xi−1 − g(xi−1)tan(π/2− α) =
g(xi−1)

g′(xi−1)
(3.10)

We can now find the tangent of the function at the point xi and apply the same
procedure to find the intersection of the tangent at the point xi+1.

This expression can be iterated until convergence is reached, on the basis of a prede-
fined convergence criteria.

It is important to note that the iterative method just explained fails if the functions
is not monotonic or if more zeros of the function exist.

Extending the solution to n-dimensional space, we can write:

xi = xi−1 − J−1g(xi−1) (3.11)

where J is the jacobian of g, defined as Jk,h = [∂gk
xh

]x=xx−1

If we apply this method to the inverse problem, we aim to find the minimum of χ2

expressed by equation 3.6. The Jacobian J is now the Hessian of the χ2 and it results:

J =
∂∇χ2(x)

∂x
= 2KtSy

−1K − 2[∇xKt]Sy
−1(y − f(x)) + 2Sa

−1 (3.12)

The second term in the expression above is related to the second derivatives of the
function f. The approximation, known as Gauss-Newton method, consists in neglecting
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this term, which is often small. With this approximation, the Gauss-Newton method
provides the following result:

xi = xi−1 + (KtSy
−1K + Sa)

−1[KtSy
−1(y − f(xx−1) + Sa

−1(xa − xi−1)] (3.13)

This expression can be iterated until convergence is reached, on the basis of a pre-
defined convergence criteria. Finally, we can write the following solution:

x̃ = x0 + (KtSy
−1K + Sa

−1)−1[KtSy
−1(y − f(x0) + Sa

−1(xa − x0)] (3.14)

The error of the solution, depending on the error affecting the a-priori estimation and
the error associated to the measurements y, is described by the following equation:

Sx = (KtSy
−1K + Sa

−1)−1 (3.15)

3.3.3 Averaging Kernels

The Averaging Kernels Matrix A defines the relation between the retrieved state vector
x̃ and the true state vector x. Indeed, its elements are the partial derivatives ∂x̃i

∂xj
of the

i-th component of the estimated state variables with respect to the j-th component of the
true state variable x.

We can compute the expression for the averaging kernels from the equation 3.13:

A = (KtSy
−1K + Sa

−1)−1(KtSy
−1K) (3.16)

The i-th row of the matrix A indicates how much the i-th component of the retrieval is
sensitive to the different components of the atmospheric state. If the retrieval is perfectly
costrained and the error of the a-priori is equal to zero (Sa) = 0, A is the identity
matrix. However, in general, the matrix A is not symmetric and the non-diagonal elements
represent the effect of the perturbation of the true state on the retrieved parameters.

A useful metric to test the sensitivity of the retrieval is to compute the degrees of free-
dom (DOFs), defined as the trace of matrix A: Tr(A) =

∑
i Ai,i. For a well constrained

problem, the number of degrees of freedom is close to the number of retrieved parameters.

3.3.4 Retrieval strategy

The MIR and FIR intervals of the electromagnetic spectrum are differently sensitive to
atmospheric and surface variables. In this work, atmospheric profiles are retrieved both
using REFIR-PAD measurements alone and also combining IASI balloon and REFIR-PAD
measurements, in order to extract information from different spectral regions, improving
the retrieval product in terms of resolution and errors reduction [Ridolfi et al., 2022]. This
procedure is called synergistic retrieval and its solution is obtained by fitting simultane-
ously the radiances acquired by the two instruments with the forward model simulations,
i.e., by minimizing the cost function:

χ2 = (xa − x)tSa
−1(xa − x) +

∑
i=1,2

(yi − fi(x))tSyi
−1(yi − fi(x)) (3.17)
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where we indicate with i=1 REFIR-PAD and i=2 IASI balloon. From the Gauss-
Newton method, we obtain the same solution of 3.13, but extended to two instruments:

x̃ = x0 +

[∑
i=1,2

Kt
iSyi

−1Ki + Sa
−1

]−1 [∑
i=1,2

Kt
iSyi

−1(yi − fi(x0)) + Sa
−1(xa − x0)

]
(3.18)

The error expressed by the covariance matrix is now described by:

Sx̃ =

[∑
i=1,2

Kt
iSyi

−1Ki + Sa
−1

]−1

(3.19)

In the application of the synergistic retrieval, we select correspondent REFIR-PAD
and IASI balloon measurements with temporal mismatch within few minutes. As a con-
sequence, the measurements refer to the same atmospheric condition and we retrieve one
state vector x, characterizing the same atmosphere:

x =


T(p)

xCO2(p)
Ts

q(p)
xO3(p)

 (3.20)

The state vector includes the surface temperature Ts, the profiles of temperature T(p),
water vapour q(p), ozone xO3(p) and carbon dioxide xCO2(p).

All the quantities are retrieved at 48 heights, from the surface (p = 1009 hPa) to the
stratosphere (p = 29 hPa).

Finally, the a-priori values (xa) are provided by the dataset of the Atmospheric Con-
stituent Profiles [Anderson et al., 1986], referring to a standard tropical atmosphere.

3.4 Validation of the retrieval

The temperature and the humidity profiles derived from the inversion of REFIR-PAD
measurements (rpad-red) and from the synergistic inversion of REFIR-PAD and IASI
balloon measurements (syn-black) are shown in figure 3.3. In the same plot, we added
the temperature and water vapour profiles measured up to 10 km on 30 June 2005 by
three nearby radiosondes, that are distant about 400 km from each other and about 250
km from Teresina.

The spectra used for the retrieval are chosen in order to have the best coincidence
with the daily measurements provided at 12 UTC by the radiosondes.

The measured temperature profiles are well reproduced by the retrieved ones and the
largest discrepancy is found only at about 6 km and it is limited to the synergistic case.

On the contrary, water vapour concentration profiles obtained from REFIR-PAD and
IASI present some discrepancies with respect the radiosondes measurements. However,
also the water vapour profiles provided by the radiosondes show a marked variability
(right plot in figure 3.3), in particular way between 5 and 10 km. In addition, radiosondes
perform higher spatial resolution measurements compared to the retrieved profiles.
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Figure 3.3: Comparison between the retrieved profiles of temperature (left) and water
vapour (right), obtained from the inversion of REFIR-PAD measurements (rpad) and by
the synergistic inversion of REFIR-PAD and IASI balloon measurements (syn). In the
plot are also shown the measured profiles of temperature and water vapour provided by
nearby radiosondes (Carolina, Floriano, Sao Luis).

Since Teresina is distant about 200 km from the closest radiosonde site (Floriano),
we can consider the results of the two retrievals in a reasonable agreement with the
measurements.

Now we wonder to what extent the observations contribute to determining the state
vector x. A value of DOF equal to 0 means that all information is provided by a-priori.
In contrast, a value of DOF equal to the dimension of the retrieved profiles indicates that
all the information is extracted from the measurements.

The DOFs computed for each variable, shown in Table 3.1, suggest that the results of
the retrieval take enough information from the measurements, in both the inversion cases
(rpad, syn). However, in the synergistic retrieval, profiles result better constrained by the
measurements and less dependent on the a priori : for example, in the case of temperature
profile, the DOFs are approximately 18 compared to 12 obtained from the inversion based
exclusively on the REFIR-PAD measurements, but the same generally occurs for all the
other quantities.

3.5 Verification of the σ-IASI radiative transfer model

Starting from the retrieved profiles, we compute the synthetic spectra through the forward
RTM σ − IASI. Figure 3.4 shows the comparison of the observed and simulated spectra
for the two instruments in the case of synergistic retrieval. The black spectra indicate
the observations, while the red ones represent the simulated spectra. In both cases, the
residuals (differences between observation and simulation) are very small and they are
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Parameter Dimension DOFs (rpad) DOFs (syn)
T(p) 48 12.36 18.43

xCO2(p) 48 6.20 11.97
Ts 1 0.99 1.00

q(p) 48 3.78 8.49
xO3(p) 48 0.29 3.48

Table 3.1: Degrees of freedom for each retrieved parameter type. We distinguish between
results obtained from REFIR-PAD inversion (rpad) and synergistic inversion of REFIR-
PAD and IASI balloon (syn).

within the measurement error ranges.

Figure 3.4: Comparison between the observed (black) and simulated spectra (red) of
REFIR-PAD and IASI balloon. For both spectra, the residuals (orange) and the mea-
surement noise error ranges (blue) are plotted.

3.6 Conclusions

In this chapter, we described the measurement campaign carried out in Teresina (Brazil),
in 2005. The measurements performed in this occasion are important in the study of the
Earth emission spectrum because, for the first time, the FIR spectral range was measured
without the use of cooled detectors by the REFIR-PAD instrument. This technology
allowed to design the FORUM mission, that from 2027 will provide measurements of the
FIR spectral range from space. During the Teresina campaign, on the same platform
hosting REFIR-PAD, the IASI balloon instrument was also operated, in order to perform
measurements of the OLR radiances over the MIR spectral interval.

Surface temperature Ts and profiles of temperature T(p), water vapour q(p), ozone
xO3(p) and carbon dioxide xCO2(p) were retrieved from the measurements. Retrieval has
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been performed both using only the REFIR-PAD measurements and using the combined
measurements of REFIR-PAD and IASI balloon. The products obtained from the two
procedures show that in the second case, the so-called synergistic retrieval, more informa-
tion is extracted from the measurements and the derived profiles are less dependent on the
a-priori. This is due to the different sensitivity of the MIR and FIR spectral ranges to the
atmospheric variables we inferred, and to the greater amplitude of the spectral interval
involved in the synergistc retrieval. In addition, the retrieved profiles of temperature and
water vapour agree with the existing measurements performed by nearby radiosondes.

Finally, we compared the observations provided by these two instruments, with the
simulations performed with the σ -IASI RTM, a fast radiative code able to provide high
resolution radiances of the whole Earth emission spectrum, which can be convolved with
the spectral function response of any instrument. Although the accuracy of σ-IASI has
already been assessed in the past by comparison with different sensors (ground-based,
space-borne), we further tested the accuracy of this RTM by extending the comparison
to balloon-borne measurements involving also the FIR region. This further validation
strengthens our confidence on the σ−IASI performance, in view of its implementation in
a climate model. The synthetic spectra were calculated on the basis of profiles inferred
from the synergistic retrieval. The good agreement, both in the case of REFIR-PAD and
IASI balloon, confirms the high accuracy of σ-IASI RTM.

Based on these results, as described in the next chapter, the σ-IASI RTM has been
implemented in a climate model, with the aim to build a climatology of synthetic, spec-
trally resolved, radiances to be compared to analogous climatology, based on satellite
measurements.
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4
The contribution of IASI observed

radiances to the detection of
EC-Earth climate model biases

The work presented in this chapter aims at the assessment of possible wavenumber-
dependent biases in the OLR predicted by the EC-Earth climate model. To this end,
we first implemented the σ−IASI RTM in the Cloud Feedback Model Intercomparison
Project (CFMIP) Observation Simulator Package (COSP) that can be run online with
the climate model. After verification, the EC-Earth model equipped with the upgraded
COSP module has been run with prescribed sea surface temperature and sea-ice concen-
tration, every 6 hours, to build a climatology of OLR spectral radiances in the years from
2008 to 2016, a timeframe consistent with the availability of IASI measurements. We
then computed an analogous climatology of IASI measured spectral radiances and carried
out a critical comparison of measured and model climatologies in 10 cm−1-wide intervals
spanning the IASI spectral region, form 650 to 2760 cm−1. As explained in the next
Sections, for convenience the analysis focuses on geographical regions over the ocean, in
the latitude belt from 30°S to 30°N, and is limited to clear sky conditions. The results of
this analysis are also published in Della Fera et al. 2022.

4.1 Models

4.1.1 EC-Earth Climate Model

The EC-Earth climate model version 3.3.3 (Hazeleger et al. [2010], Döscher et al. [2021],
http://www.ec-earth.org) is a state-of-the-art, high-resolution Earth-system model par-
ticipating in the last intercomparison project (CMIP6) [Eyring et al., 2016]. EC-Earth
model (Figure 4.1) includes advanced, robust and validated components for the atmo-
sphere (the ECMWF IFS model cy36r4), the ocean (NEMO 3.6, [Madec et al., 2017]), sea
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ice (LIM3, [Fichefet and Maqueda, 1997]) and land processes (H-Tessel, [Balsamo et al.,
2009]). The model exploits the approximations introduced in Section 1.3.3 to compute
the integrated broadband fluxes. Furthermore, it has been tuned by minimizing the dif-
ferences in the radiative fluxes at TOA and at the surface with respect to the observed
fluxes from the CERES-EBAF-Ed4.0 dataset [Döscher et al., 2021].

Figure 4.1: EC-Earth3 components and couplings

In this work, atmosphere-only historical simulations have been performed with pre-
scribed Sea Surface Temperatures (SSTs) and Sea Ice Concentration (SIC) in the stan-
dard resolution TL255L91-ORCA1 used for CMIP6. More in detail, the prescribed SST
and SIC come from the AMIP protocol configuration for CMIP6 [Eyring et al., 2016]
and are provided as standard input to all models participating in CMIP6 (see also
https://pcmdi.llnl.gov/mips/amip/ and https://esgfnode.llnl.gov/projects/
input4mips/). The dataset is created with the procedure described in Hurrell et al. [2008]
and merges the HadISST observational dataset (since 1870) to the more recent NOAA-OI
(since 1981). EC-Earth reads the SST and SIC as mid-month boundary conditions, which
are then interpolated daily in the model run.

In this configuration, the atmospheric model IFS is characterized by a horizontal
resolution of approximately 80 km and uses 91 vertical layers [Döscher et al., 2021].

Spectrally resolved OLR radiances are not provided by GCMs outputs. In the case
of EC-Earth, we extracted spectral radiances by implementing the σ-IASI RTM [Amato
et al., 2002] inside the COSP module (v 1.4.1), a simulator package capable of mapping
the state of the climate model into synthetic observations that are directly comparable to
the measurements of the real instruments [Bodas-Salcedo et al., 2011].

The current version of COSP implemented in EC-Earth includes simulators for pas-
sive sensors such as MODIS and MISR and active sensors like CALIOP. It also provides
a simulator of the International Satellite Cloud Climatology Project (ISCCP) dataset, a
simulator of the observation products of CLOUDSAT and an interface for an old ver-
sion (v. 9.1) of the Radiative Transfer for Television and Infrared Observation Satellite
(TIROS) Operational Vertical Sounder (RTTOV), which can be linked to the package
(see Figure 4.2).
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Figure 4.2: COSP scheme from [Bodas-Salcedo et al., 2011]

4.1.2 Implementation of the σ-IASI RTM in the EC-Earth cli-
mate model

We created a specific GCM-RTM interface inside the COSP module of the EC-Earth cli-
mate model to perform radiative transfer calculations online, i.e., by passing instantaneous
atmospheric fields on a global scale to the RTM with a time step of 6 hours.

In the radiative scheme of IFS, the spectral emissivity of the surface is assumed to
be constant and equal to 0.99 outside the atmospheric window region (800 - 1250 cm−1).
Conversely, within this region the emissivity depends on 8 types of surface: open sea,
sea ice, interception layer, low and high vegetation, exposed and shaded snow and bare
ground. These emissivity values are interpolated into a regular wavenumber grid with
steps of 10 cm−1, in the range from 100 to 3000 cm−1 and supplied to the σ-IASI RTM.
The surface pressure and surface temperature are supplied directly to σ-IASI, while the
simulated temperature, humidity and gases concentration profiles are first interpolated
into the fixed pressure grid used by σ-IASI . Carbon dioxide, methane and nitrous oxide
concentrations are assumed horizontally and vertically uniform, depending only on time.
More in detail, the CO2, CH4, N2O, concentrations used are the global and annual mean
observed values (interpolated daily from one year to the other) provided by CMIP6 for the
AMIP simulations and referenced in Meinshausen et al. [2017]. Finally, the ozone mixing
ratio used in the model simulation is a function of pressure, latitude and time, as described
in Fortuin and Langematz [1995]. The concentrations of the other trace gases required by
σ-IASI (SO2, CO, HNO3, NH3, OCS, HDO, CF4) are not modeled in the IFS, thus they
are extracted from the U.S. Standard Atmosphere of the Atmospheric Constituent Profiles
dataset [Anderson et al., 1986]. In order to minimize the huge impact of the radiative
code on the GCM computing performance, the Look-Up Tables (LUTs) of optical depths
parametrization coefficients are allocated and loaded from file only once at the beginning of
the simulation, stored, and deallocated at the end of the process. Moreover, the outgoing
radiance is computed only one every 4 latitude x longitude grid points of the EC-Earth
model, for a total of about 6000 simulated spectra every 6 hours. To limit the data
storage required, the high resolution spectrum computed by σ-IASI is convolved with a
10 cm−1-wide box function and sampled every 10 cm−1. Since EC-Earth does not include
variables with a spectral dimension, we stored the simulated spectra in new auxiliary 4D
variables declared in the IFS grib code scheme, using the dimension corresponding to
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vertical model levels for the spectral channels. The implemented simplifications allowed
to strongly reduce the computational cost of the model run, passing from an initial value
of 90000 core hours per simulated year (CHPSY) to 4000 CHPSY, which is comparable to
the cost of the other simulators already present in COSP and about 8 times higher than
an EC-Earth standard atmosphere-only simulation without COSP (about 500 CHPSY).

4.1.3 ECE radiance climatology
The model was run with prescribed SSTs and SIC, using observed GHG concentrations,
from January 2008 to December 2014. Strictly speaking, for the last 2 years (2015-16),
we used the SSP2-4.5 scenario data Meinshausen et al. [2020], which, however, matches
observations until 2017.

Due to the complication in comparing all-sky measurements at different resolutions,
here we focus only on the clear-sky part, leaving the analysis of cloudy sky to a future
work.

However, as described in section 2.2.1 of chapter 2, the radiative computation in clear-
sky conditions in climate models exploits the same all-sky profiles (temperature, humidity,
etc.). While in the CERES-EBAF 4.1 dataset, the adjustment factor ∆ is introduced to
generate TOA clear-sky fluxes that are more in line with the clear-sky fluxes represented
in climate models, in the EC-Earth vs. IASI comparison, to mitigate this problem, we
select only the spectra computed over grid cells where the simulated total cloud cover is
less than 30%.

This threshold allows to remove most humid grid cells, while ensuring a good global
coverage. In particular, the threshold is the result of a trade-off between reducing the
impact of this potential source of bias and keeping a significant number of measurements
in the analysis. In principle, a lower threshold would be more desirable, but, at the same
time, would reduce the statistics.

Furthermore, to save computing time, ECE simulates spectra in correspondence of
only once every 4 latitude x longitude grid cells. The actual model cells for which the
spectra are simulated are shown in Figure 4.3.

For each of these cells, we compute the monthly average radiance using only the
simulated spectra with local solar time between 6 and 12 hours. The same conditions
are used to build the IASI radiance climatology, in order to mitigate the potential bias
deriving from the temporal mismatch of the simulated and observed radiances. We then
compute the monthly zonal averages by averaging the monthly mean radiances relating to
the model cells within the considered latitude belt. With this procedure, all model cells
contribute to the zonal mean with equal weight.

4.2 Observations

The large amount of data available from sensors able to perform measurements of the
Earth emission spectrum opened interesting perspectives for intercomparisons of instru-
mental measurements and long-term analysis. Whitburn et al. [2020] computed OLR
spectral fluxes starting from IASI radiances, using precalculated angular distribution mod-
els (ADM), and compared IASI OLR integrated fluxes to CERES and AIRS broadband
OLR products. In his later work, Whitburn et al. [2021] exploits ten years (2008-2017)
of IASI data to evaluate linear trends in clear-sky spectrally resolved OLR. Susskind
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Figure 4.3: The dots indicate the center of the ECE model cells for which a spectral
radiance is simulated.

et al. [2012] investigated the interannual variability of OLR using AIRS data from 2002
to 2011 and compared the energy fluxes computed from spectrally resolved radiances to
CERES broadband fluxes. In the same framework, Brindley et al. [2015] explored the
interannual variability of spectrally resolved radiances at different spatial scales using 5
years of IASI/MetOp-A data. While the aforementioned instruments are able to provide
accurate measurements of the entire Mid-Infrared (MIR) portion of the spectrum, from
667 to 2500 cm−1 (4 - 15 µm), the Far-Infrared (FIR) spectral range, from 100 to 667
cm−1 (15 - 100 µm), which accounts for at least half of the Earth’s energy emitted to
space [Harries et al., 2008], still lacks of systematic measurements from satellite because
of the intrinsic difficulties of development of the proper FIR technology [Palchetti et al.,
2020]. Planned for launch in 2027, the Far-Infrared Outgoing Radiation and Monitoring
(FORUM) mission will fill this observational gap.

4.2.1 Fourier Transfor Spectrometer
IASI and FORUM sensors are Fourier Transform Spectrometers (FTS). The operating
principle is that of the Michelson interferometer, as illustrated in Figure 4.4.

A source of monochromatic light crosses a semi-reflective mirror (beam splitter (BS))
and it is divided in two different beams that are reflected again by a movable mirror (M1)
and a fixed mirror (M2), respectively. The two paths crossed by the lights have different
lengths in order to produce a phase shift. The beams cross again the beam splitter and
meet the detector R.

The intensity of a monochromatic source measured by the detector is:

I = E2ϵ[1 + cos(2πσx)] (4.1)

Where in equation 4.1 E is the sum of the electric fields of the two beams, ϵ is the
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Figure 4.4: Optical layout of a Michelson interferometer

efficiency of the beam splitter, σ is the wavenumber and x is the optical path difference
between the two beams.

When the source is not monochromatic and is characterized by a continuum spectral
distribution B(ν) we can define the relation:

dE2(σ) = B(σ)dσ (4.2)

We can now introduce the interferogram I, defined as:

dI = ϵB(σ) cos(2πσx)dσ (4.3)

Thus, the total interferogram is obtained by an integration over the wavenumber σ:

I(x) =

∫ +∞

0

ϵB(σ) cos(2πσx)dσ (4.4)

The spectrum B(σ) is obtained from the inverse Fourier transform of 4.4 :

B(σ) =

∫ +∞

−∞
I(x) cos(2πσx)dx (4.5)

This solution is based on the assumption that the optical path difference between the
beams, that is to say the distance covered by the movable mirror, can be infinite. But,
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in a real case, x ∈ (−L,+L), where L is the Maximum Optical Path Difference (MOPD)
for which the interferogram has been measured.

The truncation of this integral is equivalent to multiplying the integral in 4.5 by a
function F (x) = 1 for x ∈ (−L,+L) and 0 elsewhere.

Based on the properties of Fourier transform, this operation is equivalent to convolute
the spectrum obtained from the interferogram with the "sinc" function:

B′(σ) = B(σ) ∗ sinc(2πσL) (4.6)

A graph of the function sinc(y) ≡ sin(y)/y, also called instrument response function
(or instrument line-shape) is shown in Fig. 4.5. The first intersection of the function with

Figure 4.5: Sinc function

the x-axis in σ = 1/2L provides the spectral resolution of the instrument.

IASI

Part of the payload of the MetOp series of EUMETSAT polar-orbiting meteorological
satellites [Edwards and Pawlak, 2000], IASI is composed of the FTS and of an associ-
ated Integrated Imaging Subsystem (IIS), a broadband radiometer with a high spatial
resolution for the co-registration with the Advanced Very-High-Resolution Radiometer
(AVHRR) [Blumstein et al., 2004]. MetOp is characterized by a sun-synchronous orbit
with equatorial crossing time at 9:30 a.m. and 21:30 p.m. local times. IASI has been pro-
viding continuous data since October 2006, when it was firstly launched aboard MetOp-A.
It was followed by IASI-B (MetOp-B), launched in 2012 and IASI-C (MetOp-C), launched
in 2018.
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All the three instruments (A, B and C) cover the spectral range from 645 to 2760 cm−1,
with a spectral resolution of 0.5 cm−1 and a spectral sampling of 0.25 cm−1, for a total
of 8461 spectral channels. In order to obtain a uniform global coverage, IASI acquires
measurements by scanning its Field of Regard (FOR) across the orbit track, with viewing
angles that range from nadir up to 48.3 degrees on either side of the satellite track.
Angularly, each FOR has a dimension of about 3.3° x 3.3°,which, on ground, corresponds
to a footprint of about 50 x 50 km at nadir. For each FOR (30 in total for scan) the
instrument simultaneously acquires 4 spectra, each with a Field of View (FOV) of about
12 km of diameter at nadir.

Figure 4.6: IASI trace and geometry from [Clerbaux et al., 2009]

In the next years, the continuity of the IASI mission will be guaranteed by the new
generation of IASI (IASI-NG). This sensor will be characterized by the same features of
the previous IASI instruments, but with an improved spectral resolution of 0.25 cm−1 and
a spectral sampling of 0.125 cm−1. Furthermore, since FORUM will fly in loose formation
with IASI-NG, thus, for the first time from space, the two instruments will cover the
whole Earth’s emission spectrum [Ridolfi et al., 2020].

4.2.2 CERES

In this work, we exploit the CERES − SY N1deg − Ed4A products (https : //doi.org/
10.5067/TERRA+AQUA/CERES/SY N1DEG−1HOURL3.004A) to get information
about the observed cloud cover field on a global scale. Among the various products, the
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dataset provides 1°-regional 3-hourly cloud coverage derived from MODIS and geostation-
ary satellites.

The high temporal resolution of the product allows to easily find coincidences with
IASI measurements and to analyze the large-scale atmospheric conditions where the IASI
spectrum has been detected. As discussed in Section 4.3.1, this is useful for the anal-
ysis, since CERES data refer to an area (1° x 1°) of extension similar to the EC-Earth
atmospheric resolution (0.7° x 0.7°). We also use the CERES Energy Budget and Filled
(EBAF) dataset v.4.1 to estimate the observed clear-sky broadband fluxes.

4.2.3 IASI radiance climatology
In this work, we consider IASI data from the Fundamental Climate Data Record (FCDR)
of reprocessed Metop-A Level 1c product (DOI : 10.15770EUM_SEC_CLM_0014),
provided by EUMETSAT through the European Weather Cloud (EWC) service. On the
basis of this dataset, which is homogeneous and validated over the whole selected time
period (2008-2016), we build a monthly clear-sky radiance climatology on a global scale.

First, we use the quality flag (variable GQisFlagQual) available in the dataset to
discard corrupted spectra. Then, among the 120 observed spectra of each scan across
the satellite track, we only select those corresponding to the 8 pixels closest to the nadir
view. Thus, the clear-sky spectra are detected by exploiting the cloud cover derived from
the AVHRR (variable GEUMAVHRR1BCLDFRAC and GEUMAvhrr1BQual) [Guidard
et al., 2011]. In the same way, we distinguish the land / ocean surface through the
information (variable GEUMAvhrr1BLandFrac) provided by the AVHRR.

IASI measured spectra are selected from 2°x2° cells centered on the ECE model cells
for which spectra are simulated (Figure 4.3). On the one hand, the dimension of these
cells is large enough to allow the selection of a sufficiently large number of IASI spectra.
On the other hand, these cells do not overlap each other, thus each IASI measurement
contributes only once to the statistics. For each of these cells, we compute the monthly
average radiance using IASI measured spectra that meet the following conditions:

• The radiance is measured in day-time, in the near-nadir geometry, over the ocean,
and corresponds to clear-sky conditions (cloud mask of AVHRR = 0).

• The measured radiance falls into a CERES grid cell, measured within 3 hours from
the IASI observation time, with cloud cover less than 30 %. Since CERES grid cells
have a dimension of 1x1 degree, similar to the ECE model cells, applying the same
threshold to the cloud cover we ensure consistency of the atmospheric conditions
between model and observations.

Finally, we compute the monthly zonal averages of observed radiances by averaging the
monthly means obtained at the 2°x2° cells falling within the selected latitude belt.

4.3 Results and Discussion

4.3.1 Model-Observation comparison strategy
While the model outputs are provided every 6 hours on a fixed grid, MetOp performs
about 14 orbits per day and IASI ground track is at 9:30 AM (descending node) and PM
(ascending node) at the equator.
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As already discussed in the previous sections, in order to limit the time mismatch
between model and satellite measurements, we limit the comparison to day-time and
IASI observations performed during the descending node (9:30 Local Solar Time equator
crossing) are compared to EC-Earth synthetic radiances provided between 6 and 12 local
time.

Figure 4.7: Number of observed (left) and simulated (right) spectral radiances that con-
tribute to the clear-sky statistics, for each lat x long cell.

Figure 4.8: Number of observed (left) and simulated (right) spectral radiances that con-
tribute to the clear-sky zonal means presented.

The left and right panels of Fig. 4.7 show, respectively, the number of measured and
simulated spectra that meet the above specified conditions, in the time interval from 2008
to 2016.

As expected, the number of selected spectra is not homogeneously distributed across
the globe. Indeed, most of the selected spectra are located in the subtropics ([15°-30° N]
and [15°-30° S]), corresponding to the descending branch of the Hadley Cell. However, the
pattern of the number of selected spectra is very similar in simulations and measurements
in the tropical and subtropical regions.

Note, however, that the filters used particularly affect the mid-latitudes ([45°-60° N]
and [45°-60° S]), where only few IASI pixels survive the selection process (see plots in
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Fig 4.8). The small number of observations meeting the mentioned criteria could con-
tribute to spurious biases at these latitudes. This is one of the reasons why we mostly
focus our analysis on the tropical regions ([-30° S 30° N]). In these regions the comparison
method and the main results of the work are considered reliable.

For the sake of clarity, the following table describes the statistics of the clear-sky
spectra used in the climatology for IASI and EC-Earth (Table 4.1). For each latitudinal
band, the table shows the total number of grid cells (second column), the number of
clear-sky grid cells with at least 1 measured or simulated spectrum per month (third and
fourth columns) and the average number of spectra per month in these grid cells (fifth
and sixth columns).

Lat Band Tot gcells N. of gcells (IASI) N. of gcells (ECE) N. of obs. (IASI) N. of obs. (ECE)
60S − 45S 493 33 428 8 3
45S − 30S 506 147 495 9 5
30S − 15S 573 332 565 14 10
15S − 0S 497 317 457 17 10
0N − 15N 501 256 447 15 8
15N − 30N 491 320 477 18 10
30N − 45N 304 116 291 15 7
45N − 60N 221 34 198 9 4

Table 4.1: Statistics of the IASI and ECE spectra contained in the respective climatologies

In general, for IASI only a few grid cells per month have spectra at the highest lat-
itudes. On the contrary, simulated spectra can be detected at almost all grid cells in a
month. This difference can affect the comparison, especially at high and mid-latitudes,
where the large difference in the number of available cells may represent a source of bias.
On the other hand, in the tropical oceans this difference is smaller and the statistics tend
to be similar (Table 4.1).

To check the sensitivity of our analysis, we also applied a threshold to select the
minimum number of spectra in each grid cell. More in detail, we removed the grid cells
containing less than 5 spectra per month, in order to eliminate from the comparison the
grid cells with too few observations, which, as a consequence, could be not representative
of the whole month.

Lat Band Tot gcells N. of gcells (IASI) N. of gcells (ECE) N. of obs. (IASI) N. of obs. (ECE)
60S − 45S 493 15 41 16 7
45S − 30S 506 72 206 15 8
30S − 15S 573 220 439 19 12
15S − 0S 497 239 321 24 15
0N − 15N 501 171 247 22 13
15N − 30N 491 239 356 23 13
30N − 45N 304 74 139 25 11
45N − 60N 221 18 41 16 8

Table 4.2: Statistics of the IASI and ECE spectra contained in the respective climatologies
after the application of the threshold

The statistics of the clear-sky spectra under this condition is shown in Table 4.2. The
number of cells with at least 5 spectra per month (third column of the tables) appears
strongly reduced, in particular in the model, since here we have an average of few spectra
per month over most grid points.
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Furthermore, we have verified that the application of the threshold does not affect
the results of our analysis over tropical latitudes, where we focus our study. As a con-
sequence, we have proceeded with the comparison performed without the application of
the threshold.

4.3.2 Sensitivity of a simulated OLR spectrum to atmospheric
temperature and gas concentrations

In order to better correlate the differences between modelled and observed radiances to
model biases, we first studied, for a reference tropical atmosphere, the sensitivity of the
radiance computed with σ-IASI to model temperature and trace species concentration.

Figure 4.9 shows a spectrum of OLR at the TOA simulated by σ-IASI in clear-sky
conditions. The spectral ranges measured by IASI and FORUM are highlighted, together
with the approximated spectral ranges of the atmospheric window regions and the main
gas absorption bands, which are summarised in table 4.3.

The FIR region (from 100 - 667 cm−1) is dominated by the signature of the rotational
band of water vapour (blue shade), whose study will be consolidated with the help of
future FORUM measurements [Brindley and Harries, 1998]. In anticipation of FORUM
measurements, we focus here on the MIR region of the spectrum measured by IASI (645 -
2760 cm−1) from 2006 onward. In this region, the spectrum undergoes a strong absorption
between 640 - 750 cm−1 due to CO2. In more detail, in the core of CO2 band (cenetered at
660 cm−1), the atmosphere appears opaque from space and the radiance reaching TOA is
originated from the stratosphere. On the contrary, in the wing of the CO2 band measured
by IASI (700 - 750 cm−1) , the effective emission level is located in the middle- to upper-
troposphere. From 800 to 950 cm−1 and from 1100 to 1250 cm−1 (red shades), the
atmosphere is almost transparent and the radiance reaching the TOA mainly originates
from the surface or the atmospheric layers closest to the surface. Other strong absorption
bands are located between 980 and 1080 cm−1 (ozone, green shade), between 1200 and
1400 cm−1 (methane, pink shade) and between 1250 and 1350 cm−1 (nitrous oxide, grey
shade). Finally, the roto-vibrational water vapour band, located between 1400 and 1850
cm−1, is highlighted.

Acronym Band Details Spectral Range (cm−1)
WV1 Water vapour (1) 100 - 500
CO2 Carbon Dioxide 640 - 750
AW1 Atmospheric Window (1) 800 - 950
O3 Ozone 980 - 1080

AW2 Atmospheric Window (2) 1100 - 1250
CH4 Methane 1200 - 1400
N2O Nitrous Oxide 1250 - 1350
WV2 Water vapour (2) 1400 - 1850

Table 4.3: Approximated spectral intervals of the atmospheric windows and the main
absorption bands highlighted in Fig. 4.9.

The radiance reaching TOA originates mainly from upper atmospheric layers in the
spectral regions of strong absorption, while in more transparent regions it originates from
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Figure 4.9: Spectrum simulated in clear-sky conditions over tropical ocean by the σ-IASI
RTM. The main absorption bands are highlighted. Dashed lines show the equivalent
blackbody emission at typical surface (295 K) and tropopause (210 K) temperatures.

the lower atmospheric layers. More accurate information on the atmospheric layers con-
tributing to the observed OLR spectrum can be extracted from the analysis of the Ja-
cobians, defined as the partial derivatives of radiance with respect to the most relevant
atmospheric parameters. The Jacobians in Figure 4.10 are computed with the σ-IASI
RTM for a tropical standard atmosphere over ocean at the IASI sampling of 0.25 cm−1

from 10 to 2250 cm−1. For a better readability of the graph, the Jacobian values shown
are the absolute values normalized to the maximum value for each quantity, separately.

As we can see from Figure 4.10, the entire spectrum is sensitive to the temperature
profile (red areas):

• the atmospheric window AW1 is more transparent than the atmospheric window
AW2, where the radiation is slightly sensitive to the water vapour concentration. In
the first case (AW1 ), the radiation is affected by the temperature of atmospheric
layers between 0 and 3 km while, in the second one (AW2 ), it is controlled by the
temperature of layers at greater heights, up to about 7 km;

• the FIR is strongly affected by the temperature of lower and medium troposphere
[3 - 10 km];

• the CO2 absorption band is mainly sensitive to stratospheric temperature [25 -
40 km] in the core of the band and to mid-to-upper tropospheric temperature [5 -
20 km] in the wing of the band;

• the O3 band is affected by surface, lower troposphere and lower stratosphere tem-
perature;

• the roto-vibrational band of water vapour WV2 is sensitive to tropospheric temper-
ature [5 - 10 km].

Specific features can be noticed for each gas:
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Figure 4.10: Absolute values of normalized Jacobians computed with σ-IASI for a tropical
standard atmosphere with respect to the temperature (top panel) and gases concentration
(bottom panel).

• the outgoing radiance between 1400 and 1850 cm−1 (WV2 ) is attenuated by H2O
in the upper troposphere (blue area) from 10 to 20 km. Water vapour also reduces
OLR in the FIR region (WV1 );

• between 980 and 1080 cm−1, the ozone concentration strongly influences the spec-
trum over most of the troposphere (green area);

• at the same levels, the spectrum is affected by CH4 concentration between 1200 and
1400 cm−1 and by N2O between 1250 and 1350 cm−1;

• in the CO2 band, the spectrum is sensitive to CO2 concentration at the same height
where it is particularly sensitive to temperature profile. Thus, it is influenced by
CO2 concentration in the stratosphere in the core of the band while in the wings of
the band it is sensitive to CO2 present in the troposphere.

A change of sign of the Jacobian is observed for all gases between troposphere and
stratosphere (not shown). In fact, in the troposphere absorption processes dominate the
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emission ones (so increased concentration reduces the OLR), while the opposite happens
in the stratosphere.

4.3.3 Assessment of EC-Earth biases in simulated clear-sky ra-
diances with respect to IASI measurements

On the basis of these assumptions, a systematic comparison has been performed using a
dataset that covers the years from 2008 to 2016, for latitudes ranging from 60°S to 60°N.
Land and ocean surface cases were analyzed separately, however, here we focus only on the
ocean cases. In fact, the low temporal sampling of the model (the RTM is called every
6 hours) and the uncertainties in the land surface emissivity do not allow to perform
accurate comparisons between measured and observed radiances over land. In general,
over land, the model shows a strong negative bias with respect to day-time measurements,
and an important positive bias in night-time cases. Considering all-day measurements and
simulations, a negative difference of about 3 K in brightness temperature persists in the
atmospheric window between model and observations, pointing at a cold model bias of
land surface temperature. Due to the significant differences in the atmospheric window,
here we do not speculate on the results of the intercomparisons over land. We rather
focus on the comparison of daytime measurements and model outputs over ocean.

Figure 4.11 shows the 9 years average of Brightness Temperature (BT) differences
(model - observations) over the ocean. Considering that model SSTs are constrained to
be equal to the observed values, we expect small differences between model and IASI
spectral radiances in the atmospheric spectral windows (AW1, AW2 ). Thus, the limited
discrepancies in BTs obtained in the spectral window AW1 in the tropical belt [30° S,
30° N] confirm the self-consistency of the comparison performed. Instead, as mentioned
in Sec. 4.3.2, the atmospheric window AW2 is more sensitive to the presence of water
vapour and shows a small positive bias. At mid latitudes, however, especially in the
southern hemisphere, a negative model bias is present in both the atmospheric windows,
thus making difficult the comparison at all the frequencies at these latitudes. This model
bias is thought to be due to the difference in the number of points selected for ECE and
IASI and affected by the cloud cover representation in the model, as further discussed in
Sect. 4.3.6.

Significant discrepancies, of about 3.5 K, are present in the CO2 band at all latitudes,
which might indicate a warm bias in the model temperature of the upper-troposphere and
stratosphere. A warm bias is also seen in the roto-vibrational water vapour band (WV2 ),
but this is limited to the tropical latitudinal belt, between 30°S and 30°N.

In a similar way, the bias visible in the O3 band is strictly dependent on latitude and
is characterised by a positive sign at the tropics, while it tends to take negative values at
mid latitudes. As described in Sect. 4.3.2, this spectral band is affected by surface, lower
troposphere and stratospheric temperatures.

On the basis of the above considerations, we focus our analysis on the discrepancies
found over tropical ocean where the BT differences in the atmospheric windows are close
to zero.

Figure 4.12 shows the 2008-2016 average of model simulated and observed BTs (equa-
tion 1.3) over ocean, at tropical latitudes [30° S, 30°N] (top panels) and their differences
(bottom panels). In this case we see that the model is generally in good agreement with
the observations and the most significant discrepancies are found in the CO2 band, in the
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O3 band and along the water vapour absorption band (WV2 ).

Figure 4.11: Brightness Temperature differences (model - observations) over ocean, aver-
aged over the period 2008 - 2016

For the same period, the average clear-sky OLR flux computed by EC-Earth over
ocean, between the latitudes 30°S and 30°N is equal to 288.47 ± 0.34 Wm−2. This is
slightly overestimated compared to the analogous average clear-sky flux obtained from
CERES observations, that is equal to 287.36± 0.32 Wm−2. From the Stefan-Boltzmann
law, considering the power radiated by a black body at the temperature of 295 K (about
the average surface temperature of tropical ocean), a difference of 1 Wm−2 corresponds
to a BT difference of about 0.2 K, i.e. smaller than the biases localized in specific
wavenumber ranges that we found from the spectral analysis.

To date, systematic FIR spectral radiance measurements from space are not yet avail-
able, thus we are not able to characterize the discrepancies between model and obser-
vations in the whole OLR spectral range. Despite that, the analysis presented shows
clearly that a good agreement between simulated and observed total OLR fluxes may be
obtained from the cancellation of opposite-in-sign systematic errors, localized in specific
spectral ranges. In conclusion, observations of spectrally resolved OLR fluxes from space
are needed for a proper tuning of model parameters.

4.3.4 Temperature biases
It is possible to characterise the height dependence of the model temperature bias by
focusing the analysis on specific spectral bands, that are sensitive to the atmospheric
temperature at different heights.

Figure 4.13 shows the 9-years monthly averages of simulated and observed BTs over
ocean in four spectral intervals together with the respective temperature Jacobians, which
highlight the atmospheric levels to which the spectrum is most sensitive to the tempera-
ture.

The largest sensitivity to temperature in the stratosphere is found in the spectral in-
terval centered at 660 cm−1 (panel A), while the channel at 700 cm−1 is sensitive to
temperature in the upper troposphere and stratosphere (panel B). The maximum sensi-
tivity to temperature in the mid-troposphere is reached in the spectral interval centered
at 730 cm−1. Finally, as usual, the spectral channels in the atmospheric window, in this
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Figure 4.12: Average (2008-2016) Brightness Temperatures computed by EC-Earth and
measured by IASI over the tropical ocean [30° S, 30°N] (top panel). The bottom panel
shows the BT differences model minus observation.

case averaged between 845 and 855 cm−1, are a proxy of the lower troposphere and surface
temperature. As already mentioned, the spectral intervals centered at 660 cm−1, 700 cm−1

and 730 cm−1 are not only sensitive to temperature but also to CO2 concentration. The
model, however, uses CO2 global average concentrations smoothly increasing with time
according to the actual measurements, thus any uniform warm model bias cannot be at-
tributed to an erroneous carbon dioxide concentrations (see Section 4.1.1). The regional
and seasonal variabilities of CO2 concentrations amount at most to a few ppm, causing
only small local seasonal biases.

Therefore, panel A of Figure 4.13 confirms the presence of a strong stratospheric warm
bias in the model. The more we move towards the lower layers of the atmosphere (panels
A and B of Fig. 4.13), the more the bias is reduced, until its sign reverses in the spectral
band centered at 730 cm−1 (see panel C), which is sensitive to the mid-tropospheric
temperature. Finally, as expected, the bias is very small in the atmospheric window
over ocean (panel D). A more peaked seasonality is present in the ECE curve, which is
however within the standard deviation of the two curves. BT differences between ECE
and IASI in the spectral intervals of Figure 4.13 are also shown on a global scale in Figure
4.14. From these plots, it is evident that the biases are homogeneous over the tropical
and subtropical latitudes, where we are comparing the simulated and observed BT. Some
spatial compensating biases are only present at 850 cm−1, in the atmospheric window.
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Figure 4.13: Brightness Temperature (BT) averaged in different spectral intervals over
tropical ocean [30° S, 30°N]. The red line identifies the model BT while the black line
describes the observed BT. The shadow areas represent the standard deviations. Note
the different vertical scales used in the plots. On the right, the integrated jacobians of
the temperature in the respective spectral bands.

However, these differences are generally very small, always within 1 K.
We further tested the results of the spectral analysis by comparing the temperature

and humidity obtained from the climate model outputs with data provided by ERA5,
the latest climate reanalysis from ECMWF. The reanalysis combines available data from
different instruments (satellites, ships, weather stations etc.) with models, to generate
a complete and continuous global coverage of the main geophysical variables [Hersbach
et al., 2020]. The Figure 4.15 shows the temperature differences between EC-Earth
and ERA5 reanalysis, averaged over 15 years (2000 - 2014). The strong warm bias in
the stratosphere confirms the discrepancy found in our spectral analysis in the region at
660 cm−1. In the same way, we find an agreement of the small temperature bias found
in the lower troposphere compared to the ERA5 reanalysis with the result highlighted at
730 cm−1 (see panels C in Figures 4.13 and 4.14).

On the other hand, through the analysis of the band centered at 700 cm−1 (see Panel
B of Fig. 4.13), sensitive to the upper tropospheric temperature, we did not detect the
cold model bias visible in Fig. 4.15 at the tropopause.

Actually, the result of our spectral analysis is not in contradiction with the outcome of
the comparison with the ERA5 reanalysis. In fact, the spectral band at 700 cm−1 (panel
B of Fig. 4.13) is also partially affected by the positive stratospheric temperature bias,
which can easily mask the underlying negative bias at the tropopause.

To prove the agreement, we inferred the BT bias from the temperature bias obtained
from the comparison between the EC-Earth model and ERA5 (Figure 4.15).

Since we are performing this comparison over tropical latitudes, we computed the
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Figure 4.14: Brightness Temperature (BT) averaged in different spectral intervals over
the globe [60° S, 60°N]

mean profile of these temperature biases along tropical latitudes [-30S, 30N]. Then, we
performed the scalar product of these profiles with the respective Jacobians, computed
from the profiles of a standard tropical atmosphere.

The result of this estimation is summarized in Table 4.4.

Spectral Channel( cm−1) 660 700 730 850
Most sensitive region to temperature (km) [25-45] [5-15] and [20-35] [3-10] [0-5]

BT bias - ERA5 (K) +2.5 +0.8 -0.2 -0.2
BT bias - IASI (K) +3.5 +1.5 -0.8 -0.2

Table 4.4: Inferred BT biases estimated from the comparison between climate model
outputs and ERA5 data and from the comparison of climate model and IASI BT clima-
tologies

The clear-sky BT biases found in the comparison with IASI are generally consistent
with the estimates inferred here from the comparison with ERA5. Remarkably, the sign is
consistent in all cases, although some differences are found in the magnitude. The spectral
analysis indicates a stronger positive bias in the stratosphere (660 cm−1) than inferred
from ERA5. This is also seen in the spectral band at 700 cm−1. In addition, we also have
a more pronounced negative bias at 730 cm−1, possibly produced by a larger negative
temperature bias of the model in the middle troposphere. Finally, the BT biases for the
spectral bands at 850 cm−1 show a very good agreement with the estimates obtained
from the ERA5 reanalysis. It is important to note that the discrepancies between the
BT biases, described in the last two rows of Table 4.4 may arise from different causes.
First, the comparison of temperature and water vapour concentration profiles of Figure
4.15 is performed in all-sky conditions, while the spectral analysis reflects the differences
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Figure 4.15: Differences betweeen EC-Earth climate model and ERA5 reanalysis temper-
atures. Differences are a 15 years [2000 - 2014] average.

observed in clear-sky. Furthermore, the Jacobian used in the estimation of Table 4.4 is
referred to a standard tropical atmosphere, on the basis of the dataset of Anderson et al.
[1986], which may differ from the real one.

4.3.5 Water vapour biases

We now exploit the intervals 725-735 cm−1 and 1395-1405 cm−1 to explore the accuracy
of the representation of the water vapour concentration in the model. In fact, as illus-
trated by the integrated Jacobians reported on the left panel of Fig. 4.16, the spectral
band at 1400 cm−1 (WV2) is sensitive both to the tropospheric temperature and to the
upper tropospheric water vapour concentration. In both spectral intervals, the maximum
sensitivity to temperature occurs between 3 and 10 km (green and pink lines on the left
panel of Fig. 4.16). Since the previous analysis (panel C of Fig. 4.13) has shown a small
negative BT bias at 730 cm−1 assigned to a cold bias of the mid-tropospheric tempera-
ture in the model, if the water vapour concentration were well represented, we would see
a negative BT bias in the spectral band 1395-1405 cm−1. However, since the model BT
in the spectral interval centered at 1400 cm−1 shows a slightly positive bias (Figure 4.16,
right panel), we conclude that the negative temperature bias of the model seems to be
over-compensated by a dry bias of the water vapour profile in the 7 - 15 km range. In
fact, a too dry upper troposphere in the model allows more radiant energy to reach the
TOA, as also witnessed by the negative sign of the water Jacobian shown on the left panel
of Fig. 4.16.

As for the temperature, we compared our results with that obtained from the com-
parison with the ERA5 reanalysis (Figure 4.17).

Furthermore, to verify the consistency of the BT bias derived from our analysis, we
inferred the BT bias obtained from the ERA5 water vapour biases.

The result of this estimation is summarized in Table 4.5.
The BT biases for the spectral bands at 1400 cm−1 show a very good agreement with

the estimates obtained from the ERA5 reanalysis. In both cases, the positive BT bias at

80



Chapter 4. The contribution of IASI observed radiances to the detection of
EC-Earth climate model biases

Figure 4.16: On the left, the integrated jacobians of the water vapour and temperature
in the spectral bands 730 and 1400 cm−1. On the right, Brightness Temperature (BT)
averaged at 1400 cm−1 over tropical ocean [30° S, 30°N]. The red line identifies the
model BT while the black line describes the observed BT. The shadow areas represent
the standard deviations.

Spectral Channel( cm−1) 730 1400
Most sensitive region to temperature (km) [3-10] [3-10]
Most sensitive region to water vapour (km) – [5-20]

BT bias - ERA5 (K) -0.2 +0.7
BT bias - IASI (K) -0.8 +0.5

Table 4.5: Inferred BT biases estimated from the comparison between climate model
outputs and ERA5 data and from the comparison of climate model and IASI BT clima-
tologies

1400 cm−1 may be interpreted as a negative bias of water vapour concentration in the
upper troposphere of the model.

4.3.6 Discussion
We have seen that a perfect spatial and temporal matching of measurements and simu-
lations is very difficult to actualise, therefore, systematic biases could also arise from the
strategy adopted to sample the data. To evaluate the impact of the data sampling strat-
egy, we carried out the following test. We interpolated the EC-Earth model cloud fraction
and the measured CERES cloud fraction to a regular space grid of 1° x 1° and time step
of 6 hours. Then, assuming alternatively the interpolated CERES and EC-Earth cloud
fractions, we built the statistical distributions for the year 2008 of the same observed
SST for the grid points with a cloud fraction less than 30 %. Figure 4.18 shows the SST
statistical distributions obtained for EC-Earth and CERES cloud fractions, at tropical
(left) and mid- (right) latitudes. At tropical latitudes the SST distributions obtained
with the model (red boxes) and CERES (grey boxes) cloud fractions are quite similar:
the average values differ by 0.4 K and the standard deviations (≈ 4.5 K) differ by less
than 0.1 K. On the other hand, at southern mid-latitudes (-60° S, -45° S, see the right
panel of Fig. 4.18) the offset between the two distributions amounts to 0.9 K. The small
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Figure 4.17: Differences betweeen EC-Earth climate model and ERA5 water vapour con-
centration in the troposphere (left) and in the stratosphere (right). Differences are a 15
years [2000 - 2014] average.

bias at the tropics could be related to the differences in the seasonal cycle we observed in
the BT of the atmospheric spectral window (panel D of Figure 4.13). The larger bias of
0.9 K at the southern mid-latitudes is likely contributing to the observed negative model
BT bias found in the atmospheric window at the southern mid-latitudes in Figure 4.11.
The good agreement between the two SST distributions found in the tropical latitude belt
strengthens our confidence on the previous analyses we presented for tropical latitudes.
At these latitudes, the choice of comparing model and measured climatologies correspond-
ing to cloud fractions smaller than 30 % ensures that the biases introduced by the data
sampling strategy is smaller than ≈0.5 K, i.e., also smaller than most of the model biases
inferred from Fig. 4.13.

Figure 4.18: Distribution of sea surface temperature for cloud fraction < 30 %, assuming
the EC-Earth (red) or the CERES (grey) cloud fractions. The distributions were com-
puted for tropical- [-30 °S, + 30° N] latitudes (left) and mid- [-60 °S, - 45° S] latitudes
(right).

4.4 Conclusions

In this work, we implemented the σ-IASI RTM in the COSP package in order to perform
on-line simulations of synthetic clear-sky spectra starting from the EC-Earth GCM profiles
on a global scale with a time step of 6 hours for the period 2008-2016. Thus, we compared
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the EC-Earth-simulated spectral radiances to the IASI-measured radiances built from the
Fundamental Climate Data Record (FCDR) of reprocessed Metop-A Level 1c product on
a frequency grid of 10 cm−1. We limited the analysis to the clear-sky conditions identified
by grid-points where the observed (CERES) and simulated (EC-Earth) cloud fraction is
smaller than 30%. We found that such a small threshold limits the indirect effect of clouds
on radiation in the model. The comparison has been firstly performed on a global scale
ensuring spatial and temporal coincidence between the modeled and observed spectra.
Then, we focused on the day-time tropical ocean [30° S, 30°N] area, where the analysis is
not affected by the uncertainties due to the land emissivity and the discrepancies between
observed and simulated radiances in the atmospheric window are close to zero.

The spectral analysis carried out in these conditions leads to the detection of the
following EC-Earth model biases, which, due to compensations, do not show up in the
comparison of the total OLR fluxes:

• A strong (≈3.5 K) positive temperature bias in the stratosphere.

• A small (≈1 K) negative temperature bias in the troposphere.

• A positive bias in the BTs in the water vapour band indicating an under-estimation
of water vapour in the model in the upper troposphere.

Finally, the clear-sky BT biases found in the comparison with IASI are generally
consistent with the estimates inferred here from the comparison with ERA5.
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5
Future perspectives

We have shown how the comparison of the OLR radiation of the EC-Earth model with
spectrally resolved measurements has allowed to identify biases in the model in clear-sky
conditions. The extension of this analysis in presence of clouds opens new possibilities of
testing and improving climate modelling since the representation of clouds constitutes the
greatest source of uncertainty in climate models. Here, we provide a possible approach to
mitigate the prohibitive computational cost of simulating spectrally resolved radiances in
all-sky conditions with the COSP+σ− IASI tool, implemented in the EC-Earth climate
model. In addition, in the second part of this chapter, we calculate the linear trend of
observed and synthetic clear-sky spectrally resolved radiances, over the period 2008-2016.
Since OLR spectra contain the spectral signatures of the main climate variables, the
calculation of spectral trends may allow to directly infer specific climate feedbacks from
observations.

5.1 Towards the EC-Earth-IASI comparison in all-
sky conditions

In Section 1.3.3 we have described how the radiative transfer scheme of the EC-Earth
climate model relies on subcolumns generators to represent the sub-grid structure of
clouds and improve the simulation of radiative fluxes. Indeed, the subcolumns generator
stochastically provides sub-grid profiles of the cloud cover, ice and water cloud content.
The ensemble of these subcolumns reproduces the overall mean profile of the coarser
grid cell of the model [Räisänen et al., 2004]. Finally, for each model cell, the McICA
approximation is applied to the set of subcolumns generated to compute the broadband
energy fluxes.

The instrument simulators contained in the COSP package exploit the same principle:
the Subgrid Cloud Overlap Profile Sampler (SCOPS) [Bodas-Salcedo et al., 2011] provides
a set of subcolumns to mimic the footprint size of the simulated instrument and to directly
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compare the synthetic observations with the real ones [Oreopoulos et al., 2022]. However,
SCOPS is a built-in module of COSP while the radiation scheme adopted in the climate
model is coupled with its own subcolumns generator.

Initially developed for the ISSCP simulator, SCOPS generates subgrid profiles of cloud
cover, ice and water content that are compatible with the mean vertical profiles of clouds
of the model grid cell, on the basis of one of the overlap rules presented in 1.3.3.

SCOPS accounts for convective and stratiform clouds: for each type, the cloud fraction
of the generated subcolumns at the different layers is 0 or 1, and the water and ice content
are horizontally homogeneous. The same scheme can be applied for the hydrometeors.

In chapter 4.3.1, by restricting the analysis to clear-sky ocean areas, we avoided the
difficulties arising from the representation of sub-grid cloud structure, directly providing
the atmospheric profiles of the model grid cells to the COSP + σ − IASI tool.

To extend the comparison between simulated and observed radiances to all-sky condi-
tions, a different approach has to be adopted, and here we present some preliminary results
in that direction. First of all, to mimic the size of IASI pixel, whose diameter is about
12 km, at least 50 subcolumns have to be generated starting from the EC-Earth grid-cell,
which covers an area of 80x80 km at the equator. Then, the SCOPS code is applied to
generate a set of subcolumns for each grid cell, on the basis of the "maximum-random
overlap" scheme. As a consequence, in addition to the whole-cell variables, mentioned in
Section 4.1.1, the σ − IASI RTM now receives as input N subcolumn profiles of cloud
cover, ice and water cloud content, ice and water radius of the cloud particles.

In this new configuration, the whole-cell radiance should be computed as:

Rtot =
1

N

N∑
n=1

Rn (5.1)

where Rtot is the radiance averaged over the N sub-columns (with N = 50) and Rn is the
radiance computed for a single sub-column. This operation produces a strong increase
of the computational cost of the model simulation. First of all, in presence of clouds,
σ− IASI requires more computational resources to solve the radiative transfer equation.
In addition, the RTM should be called for each subcolumn (Rn). In this configuration,
the estimated computational cost of the tool COSP + σ − IASI becomes approximately
200 times higher than the cost required in clear-sky conditions. For the climate model
simulation, this means passing from the initial 4000 CHPSY to the prohibitive computa-
tional cost of 800 000 CHPSY. Moreover, the synthetic radiance calculated in this way
is not directly comparable to the IASI measurements, which involves a single pixel at a
time.

Since we will compare EC-Earth and IASI climatologies, we consider here the radiance
average over a relatively long time period. Following an approach similar to that adopted
in the McICA approximation (see equation 1.3.3), we can express the temporal averaged
radiance as:

Rtot =
1

N

1

T

N∑
n=1

T∑
t=1

Rn,t (5.2)

where Rn,t is the radiance computed for the n-th subcolumn at each time step t of the
time range T .
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To reduce the computational cost of 5.2, we randomly pick only one subcolumn n in
each grid cell for each time step t:

Rtot ≈
1

T

T∑
t=1

Rnt
(5.3)

Now Rnt is the radiance computed at time step t for a randomly selected subcolumn
n. In this way, σ − IASI RTM is called only once per grid cell and the computational
cost of the simulation is not burdened with the high number of generated sub-columns.
Moreover, in this way we simulate the all-sky radiance for a single subcolumn, whose
dimension is directly compatible with the field of view of IASI instrument.

Summarizing, there are three possible strategies for the computation of the all-sky
radiances:

1. The radiative transfer equation is solved using the mean profiles of the cloud prop-
erties relative to the ECE grid cell, without the generation of subcolumns. More in
detail, the grid cell profiles of clouds used in the simulation are computed in IFS
using a generalised cloud overlap assumption between maximum and random: the
degree of randomness between two layers increases with increasing vertical separa-
tion distance between the layers [Hogan and Illingworth, 2000]

2. Radiative computations are performed for all the subcolumns generated (high com-
putation cost)

3. Radiative transfer is computed for one randomly selected subcolumns whose dimen-
sion is compatible with the IASI field of view (equation 5.3)

Here, we present a first comparison between methods 1 and 3, applied to a single time
step t1 of the model (January 2008, 6 AM).

The model cloud field at t1 is shown in Figure 5.1, while the differences between
radiance fields computed with the method 3 and method 1 are shown for a spectral (880
cm−1) of the atmospheric window in figure 5.2. This channel is selected because the
differences between radiances computed in clear and all-sky condition are generally larger
in the atmospheric window.

With method 3, that considers only one subcolumn, it is more likely to pick a clear-
sky scene because while the subcolumn is representative of an area of about 100 km2, the
coarse grid cell of the model represents an area of approximately 6000 km2.

The analysis presented in this Section is preliminary and further work is needed in this
direction. However, the result provided by method 3 above (a single random subcolumn)
seems promising for the final implementation of the all-sky simulator in EC-Earth.

5.2 Spectral trends

Starting from the climatologies of the observed and synthetic spectra, provided by IASI
and EC-Earth, we evaluate linear trends in clear-sky spectrally resolved radiances, follow-
ing the approach presented by Whitburn et al. [2021]. In that work, trends are calculated
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Figure 5.1: Simulated total cloud fraction for January 2008 - 06 UTC

from 10 years of IASI spectrally resolved fluxes, on the basis of the algorithm described
in Whitburn et al. [2020].

We here obtain the trends of OLR radiances by performing a fit of a Fourier series in
each spectral band, over steps of 10 cm−1, using the method presented in Gardiner et al.
[2008].

F (t, b0, c,d) = b0t+
8∑

i=1

(
ci cos(

2πt

Ti

) + di cos(
2πt

Ti

)

)
(5.4)

In this equation, t is measured in months and b0, ci, di are the fitting parameters. The
terms in the sum are eight sine and eight cosine functions and represent the periodic
oscillations with period Ti. In Ti we include annual (12 months), semi-annual (6 months),
and other characteristic atmospheric periodicities of 3, 4, 8, 9, 24 and 36 months [Haenel
et al., 2015], [Valeri et al., 2017].

In Figures 5.3 and 5.4, the trends are computed from the monthly zonal means of OLR
and are provided as the relative variation of the OLR with respect to 2008 (expressed in
percent). While in the case of IASI data we focus on MIR spectral range, here restricted
between 650 and 2250 cm−1, in the case of EC-Earth, we simulated radiances also in the
FIR, so the analysis is extended to the spectral interval between 200 to 2250 cm−1.

Generally, the pattern of simulated and observed trends is in good agreement over
the MIR spectral range, where both the measurements and the simulations are available.
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Figure 5.2: Radiance difference at 880 cm−1 between method 3 and method 1

Indeed, the core of the CO2 band [660-670 cm−1] shows a negative trend over tropical and
subtropical latitudes, while it is positive in mid-latitudes. In contrast, the wing of CO2
[690-730 cm−1] is uniformly negative at all latitudes. In the atmospheric windows (AW1
and AW2 in Table 4.3), both simulated and observed radiances provide small positive
trends, with most significant discrepancies at mid-latitudes, where, however, the number
of clear-sky spectra involved in the analysis is very small (see Section 4.3.3). Finally, the
largest differences occur in the water vapour band (WV2), even if the signs of the trends
are generally consistent, especially in the tropics.

To better investigate the physical causes of the spectral trends, we also show the trend
computed from EC-Earth simulated radiances on a global scale in the four spectral bands
already analyzed in the previous chapter (Fig. 4.13). More in detail, Figure 5.5 - panel A
shows the plot of ECE trends of the monthly means OLR computed for each model grid
cell in the atmospheric window AW1 (850 cm−1). Panel B describes the trends centered
at 660 cm−1, panel C shows the ECE trends at 730 cm−1 and panel D describes the
ECE trends at 1400 cm−1.

In the following sections, we show how the spectral trends, in this example limited to
the atmospheric window and to the CO2 band, can provide detailed information about
the evolution of the main variables of climate system and its impact on the OLR.
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Figure 5.3: Zonal mean spectrally resolved linear trends from ECE climate model (2008-
2016)

Atmospheric window

In the atmospheric windows AW1 and AW2 (Table 4.3), the OLR at TOA is mainly
controlled by the change in surface temperature. As a consequence, trends found in these
spectral regions are closely linked to the change in the surface temperatures. Since the
ECE model was run with prescribed SSTs and SIC, from January 2008 to December 2016,
a very similar pattern is expected in trends of IASI clear-sky radiances in the atmospheric
window.

Despite the zonal averages show a uniform positive trend (Fig. 5.3), the plot in Fig.
5.5 (panel A) highlights a significant spatial heterogeneity.

Starting from the Northern hemisphere, we can observe a region of negative trend
in the North Atlantic. According to [Whitburn et al., 2021], this is related to the North
Atlantic Warming Hole (WH) and it is identified as a consequence of the weakening of the
Atlantic Meridional Overturning Circulation (AMOC) and the increase of the ice melting
rate in Greenland. In fact, AMOC is responsible for the transport of warm tropical
masses in the North Atlantic and climate projections indicate a weakening of this process
causing a cooling of the subpolar Artic [Keil et al., 2020] in the last decades, despite global
warming.

In the North Eastern Pacific, we can distinguish a large area affected by a strong
positive trend. This is likely the effect of the Pacific Decadal Oscillation (PDO), a periodic
surface temperature anomaly in the Pacific Ocean. When the interior Pacific is cool, the
temperatures along the Pacific coast are above the climatic average and PDO is defined
as positive. Otherwise, the PDO is defined as negative and the temperature anomalies are
inverted. The period we take into account starts with a negative PDO (during 2008-2012)
and ends with a positive PDO (during 2014-2016), directly affecting the trends over the
Pacific Ocean.

In the Southern Hemisphere, the occurrence of a strong La El Niña episode in 2010-
2011 and a strong El Niño event in 2015-2016 affects dramatically the trends, providing a
positive trend ( about 0.1 %/year, or 0.7 · 10−4Wm−2 per year) over the Tropical Pacific
Ocean.
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Figure 5.4: Zonal mean spectrally resolved linear trends from IASI (2008-2016)

CO2 band

In the core of the CO2 spectral band, where OLR measured at TOA is emitted mainly
from the stratosphere, positive trend dominates at high latitudes, while negative trends
occur over the Tropical Ocean (see Fig. 5.3 and Fig. 5.4). Conversely, the wings of CO2
spectral band, particularly sensitive to the mid-troposphere are characterized by negative
trends at all latitudes in both cases. The global OLR trends provided by ECE in these
spectral bands are shown in Figure 5.5, panel B (660 cm−1 core CO2) and C (730 cm−1

wing CO2).
Trends in stratosphere and troposphere are mainly affected by the change of temper-

ature at these altitudes and by the increase of greenhouse gases concentration. In turn,
global atmospheric temperatures are conditioned by a strengthening of the Brewer-Dobson
Circulation (BDO) under climate warming. This global scale circulation is responsible
for the rise and intrusion of tropospheric air into the stratosphere at tropical latitudes
and the consequent transport of these air masses poleward until their descent at middle
and high latitudes [Butchart, 2014]. Due to the increase of greenhouse gases and SSTs,
this circulation is accelerating causing a warming of the troposphere at the tropics and a
cooling of the lower stratosphere [Garcia and Randel, 2008]. Conversely, at high latitudes
the strengthening of the descending motion of the stratospheric air masses produces an
increase of the temperature due to the adiabatic heating.

This could explain the different signs of trends in the tropics and mid-latitudes in
Figures 5.3 and 5.4 and in the panel B of Figure 5.5.

Finally, in the wings of the CO2 band, trends are always negative due to the increase
of CO2 concentration in the atmosphere (see panel C of Figure 5.5). This causes a shift
of the radiation emission level at higher, and then cooler, tropospheric altitudes and is
the main driver of present-day climate change.
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5.2. Spectral trends

Figure 5.5: Global Trends computed on the basis of ECE simulated radiances over the
period 2008-2016. Panel A describes trends is the atmospheric window at 850 cm−1,
panel B represents trends at 660 cm−1, panel C shows trends at 730 cm−1 and panel D
describes trends at 1400 cm−1

.
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The availability of long-term measurements of broadband integrated energy fluxes at Top
of the Atmosphere makes these data the standard benchmark to evaluate the ability of
general circulation models to represent the Earth’s radiation budget and hence to infer on
climate evolution. For this reason, climate models are systematically tuned to best match
the observed broadband fluxes, mainly provided by the ERBE mission [Barkstrom, 1984],
started in the mid-70s, and the more recent CERES mission [Loeb et al., 2018], which is
the current reference dataset.

In the first part of this work, we followed this standard approach and we compared the
main variables contributing to the ERB, simulated by 34 state-of-the-art climate models
participating to CMIP6, with CERES observational data, over the period 2000-2014. On
a global scale, the simulated values are generally consistent with the observed quantities
and the CMIP6 models perform better than any previous model generation [Wild, 2020].
In particular, the global average of the OLR and the OSR fluxes in all-sky conditions are
found within the calibration error of CERES, which is equal to about 4 Wm−2 and 2 Wm−2

(corresponding to two standard deviations), in the two spectral regions, respectively.
However, the spatial distribution of the biases highlights large regional differences: in the
case of the all-sky OLR, we found biases reaching 10 Wm−2 at the tropical latitudes,
while the OSR in all-sky conditions showed even larger biases, up to 30 Wm−2 over the
subtropical regions.

By comparing energy fluxes in all and clear-sky conditions, the greatest source of
uncertainty in GCMs has been identified in the representation of clouds and, consequently,
in the effects of clouds on solar and thermal radiation. Specifically, the largest biases are
detected in the subtropics and over the Southern Ocean, that are the areas more affected
by the presence of low marine clouds. At the subtropics, simulated cloud cover is less
than the observed value and this could explain the low simulated reflectivity of solar
radiation highlighted in the multi-model mean. Furthermore, most models share the
uniform negative bias of the OSR over the Southern Ocean. It is hypothesized that this
long-standing bias could be generated by an insufficient amount of simulated supercooled
liquid clouds modelled at these latitudes [Kay et al., 2016].

In clear-sky conditions, OLR and OSR model biases are generally much smaller as
compared to all-sky case. The main sources of biases for the clear-sky OSR are mainly
attributed to surface albedo and to the too high snow reflectivity, affecting polar regions.
In some regions, also the complexity of the topography, that is roughly approximated
in climate models, contributes to this bias. Although referring to simplified atmospheric
conditions, clear-sky OLR is still affected by a uniform negative bias, present at all the
latitudes. In this framework, we stressed that a complication may arise in this comparison,
due to the different approaches used in climate models and CERES in computing energy
fluxes in the absence of clouds.

93



Conclusions

An additional problem to be considered consists in the fact that even when simulated
energy fluxes are very close to the observed ones, a seemingly good agreement may be due
to compensation errors occurring in different spectral bands. For this reason, in the sec-
ond part of this PhD work, we aimed to highlight the significant contribution of satellite
measurements of the outgoing longwave spectrally resolved radiances in the evaluation of
climate models performances. In fact, starting from the analysis of the spectral radiances,
the signatures of the main climate variables can be identified, separated and used to assess
climate model biases. In addition, spectra measured on a global scale represent a more
accurate benchmark than those provided by reanalysis datasets, which are computed as-
similating observations in model simulations. Moreover, the direct comparison of spectral
radiances is not affected by the systematic biases affecting atmospheric profiles derived
by applying a priori constraints to otherwise severely ill-conditioned inversions of satellite
nadir spectral measurements.

This kind of comparison is possible because stable hyperspectral measurements have
been performed since the mid-2000s, and, nowadays, long time series of OLR spectral
radiances are available for the exploitation from a climate perspective. Specifically, the
Mid-Infrared spectral range (667 to 2750 cm−1) has been deeply investigated thanks to
the measurements of various space-borne sensors (IASI, AIRS, etc.) on a global scale,
while the Far-Infrared region, from 100 to 667 cm−1, will be explored from space from
2027, by the FORUM instrument, selected to be the ninth ESA Earth Explorer mission.
Both IASI-NG and FORUM are Fourier Transform Spectrometer and they will fly in loose
formation to acquire high resolution radiances of all the Earth emission spectrum.

On the basis of these considerations, we compared 9 years of IASI clear-sky radiances to
synthetic spectra extracted from the EC-Earth GCM, a state-of-the-art European model
based on ECMWF’s Integrated Forecasting System for the atmosphere–land component.
IASI radiances climatology is built from the Fundamental Climate Data Record (FCDR)
of the reprocessed Metop-A Level 1c product, provided by EUMETSAT through the Eu-
ropean Weather Cloud (EWC) service. To simulate spectra based on the atmospheric and
surface state provided by the climate model, the radiative transfer model σ−IASI has been
integrated within the COSP package inside the EC-Earth model. The implementation of
the RTM is required to produce OLR radiances because the radiative scheme of climate
models can only provide integrated energy fluxes using approximated procedures, such as
the correlated-k distribution method [Mlawer et al., 1997] and the McICa approximation
[Pincus et al., 2003].

Even if the σ−IASI RTM had already been validated against IASI measurements,
Aircraft Measurements (NAST-I) and ground-based measurements, before implementing
σ−IASI in the EC-Earth climate model, the accuracy of this RTM in the FIR region was
further tested by comparison with REFIR-PAD measurements acquired in 2005 during
a stratospheric balloon campaign from Teresina (Brazil). During this experiment, on-
board a balloon gondola, the REFIR-PAD instrument measured for the first time the
FIR spectral range, without the use of cooled detectors, laying the ground for the fu-
ture FORUM mission. At the same time, IASI balloon, hosted on the same platform,
performed measurements in the MIR spectral interval.

To assess the σ−IASI accuracy, we first retrieved the atmospheric profiles using a
Bayesian inversion algorithm based on the σ−IASI and then, starting from the retrieved
profiles, we simulated the spectral radiances. Since σ−IASI is able to provide high-
resolution radiances that can be convolved with the Spectral Response Function of any
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instrument, we simulated both the REFIR-PAD and the IASI balloon measured spectra.
We found a very good agreement between observed and simulated radiances, in both
cases.

After the implementation of the new COSP + σ − IASI module in EC-Earth, we
performed an atmosphere-only simulation from 2008 to 2016, with prescribed sea surface
temperature and sea-ice concentration, to generate a set of synthetic radiances in clear-sky
conditions. The outputs have been provided every 6 hours, in 10 cm−1 spectral bands for
the time period 2008-2016. The same conditions have been used to build a climatology
of IASI clear-sky spectral radiance measurements.

The long term comparison between EC-Earth simulated radiances and IASI observed
radiances has shown the presence of a warm positive model bias (≈3.5 K) in the strato-
sphere and a smaller (≈1 K) negative temperature bias in the troposphere. Finally, we
have found a positive bias in the model BTs relating to the water vapour spectral band,
which is caused by an under-estimation of water vapour in the EC-Earth upper tropo-
sphere. These biases have been further confirmed through the comparison of the profiles of
temperature and water vapour of the EC-Earth climate model and the ERA5 reanalysis.

Long-term spectrally resolved radiances are still poorly exploited to test and improve
climate models performance. This work shows a fruitful approach to detect biases in
climate model and opens new possibilities for extending the analysis in presence of clouds,
that represent the greatest source of uncertainty in models. The same approach can be
extended to the comparison of trends in the spectral radiance, which are directly linked to
specific climate feedbacks. In addition, in the near future, the comparison will hopefully
be extended to include FORUM FIR measurements, for a comprehensive analysis of the
climate model ability in reproducing the whole Earth emission spectrum.
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