
AlmaMater Studiorum - Università di Bologna

Dottorato di Ricerca in
COMPUTER SCIENCE AND ENGINEERING

Ciclo XXXV

Settore concorsuale:
09/H1 - SISTEMI DI ELABORAZIONEDELLE INFORMAZIONI

Settore scientifico disciplinare:
ING-INF/05 SISTEMI DI ELABORAZIONEDELLE INFORMAZIONI

Concepts and Methods for Efficient
Decentralized Learning in Federated Settings

Presentata da: AlessioMora

Coordinatore Dottorato: Supervisore:
Prof.ssa Ilaria Bartolini Prof. Paolo Bellavista

Esame finale anno 2023





Abstract
Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond tradi-
tional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, nat-
ural language processing and others. At the same time, edge devices have become central in our
society, generating an unprecedented amount of data which could be used to train data-hungry
models such as DNNs. However, the potentially sensitive or confidential nature of gathered
data poses privacy concerns when storing and processing them in centralized locations. To this
purpose, decentralized learning decouples model training from the need of directly accessing
raw data, by alternating on-device training and periodic communications. The ability of distill-
ing knowledge from decentralized data, however, comes at the cost of facing more challenging
learning settings, such as coping with heterogeneous hardware and network connectivity, sta-
tistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an ex-
tensive overview of decentralized learning literature, including a novel taxonomy and a detailed
description of the most relevant system-level contributions in the related literature for privacy,
communication efficiency, data and system heterogeneity, and poisoning defense. Next, this
Thesis presents the design of an original solution to tackle communication efficiency and system
heterogeneity, and empirically evaluates it on federated settings. For communication efficiency,
an original method, specifically designed for Convolutional Neural Networks, is also described
and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth re-
view of recently proposed methods to tackle the performance degradation introduced by data
heterogeneity, followed by empirical evaluations on challenging data distributions, highlight-
ing strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a
novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized
learning systems in settings characterized by data heterogeneity or system heterogeneity. Our
vision on relevant future research directions close the manuscript.

iii



Acknowledgements
I would like to express my deepest gratitude to my supervisor Professor Paolo Bellavista, for his
invaluable guidance, support, and encouragement throughout my PhD program.

I am also deeply grateful to Professor Irina Rish for providing me with the opportunity to spend
my visiting period at Mila and for making me feel at home.

Furthermore, I am thankful to my colleagues at the Lab, who shared this journey with me.

I would also like to express my heartfelt gratitude to my friends and family. Their encourage-
ment and unwavering affection have been my safe haven during the challenging times.

My immeasurable gratitude goes to Anna, who always supported me with love and patience
especially during the most difficult moments.

My admiration goes to my mother, whose strength has been a constant inspiration for me.

Finally, my thoughts go to my father, who was my first and greatest supporter. I know he would
have been proud and euphoric to read this dissertation, and I dedicate this achievement to his
memory.

iv



Contents

1 Introduction 1
1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions beyond the state of the art . . . . . . . . . . . . . . . . 4
1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Decentralized Learning in Federated Settings 7
2.1 The Rising of Decentralized Learning . . . . . . . . . . . . . . . . . . 7
2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning . . 10

2.2.1 Cross-Silo and Cross-Device Federated Settings . . . . . . . . 11
2.2.2 A Taxonomy for Decentralized Learning Systems . . . . . . . 13
2.2.3 Baselines for Decentralized Learning Systems . . . . . . . . . . 17

3 Issues in Decentralized Learning 25
3.1 Improving Communication Efficiency . . . . . . . . . . . . . . . . . 27
3.2 Protecting Pivacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Combining Privacy and Communication Efficiency . . . . . . 39
3.3 Data Heterogeneity and Client Drift . . . . . . . . . . . . . . . . . . 41
3.4 Handling System Heterogeneity . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Defending against Poisoning . . . . . . . . . . . . . . . . . . 48

4 StructuredSparseTernaryCompressionforConvolutionalLay-
ers 51
4.1 Sparse Ternary Compression . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Our SSTC original proposal . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Lossless Encoding . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Measured Performance Results and Related Discussion . . . . 58

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Communication-EfficientHeterogeneous Federated Dropout 63
5.1 Federated Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



Contents

5.2 CE-HFD: Communication-Efficient Heterogeneous Federated Dropout 65
5.2.1 Heterogeneous Federated Dropout . . . . . . . . . . . . . . . 66
5.2.2 Per-layer Sparse Ternary Compression . . . . . . . . . . . . . 67

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Knowledge Distillation in Federated Learning 75
6.1 Federated Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Codistillation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Knowledge Distillation in Federated Learning . . . . . . . . . . . . . 79

6.3.1 FL Model Heterogeneity via KD . . . . . . . . . . . . . . . . 80
6.3.2 Data-distribution-agnostic FL via KD . . . . . . . . . . . . . 85

6.4 Comparison of Existing Solutions, Adoption Guidelines and Future Di-
rections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.1 FL model heterogeneity via KD . . . . . . . . . . . . . . . . 89
6.4.2 Data-agnostic FL via KD . . . . . . . . . . . . . . . . . . . . 91

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Tackling DataHeterogeneity 95
7.1 Client-side Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.1 Local Regularizations via Correction Terms . . . . . . . . . . 98
7.1.2 Local-Global Knowledge Distillation . . . . . . . . . . . . . . 101
7.1.3 Model-contrastive Learning . . . . . . . . . . . . . . . . . . 102
7.1.4 Data and Feature Augmentation . . . . . . . . . . . . . . . . 102
7.1.5 Seeking Flat Minima . . . . . . . . . . . . . . . . . . . . . . 103
7.1.6 Normalization Methods . . . . . . . . . . . . . . . . . . . . 104
7.1.7 Logit Calibration . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Server-side Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.1 Modified Aggregation Procedure . . . . . . . . . . . . . . . . 105
7.2.2 Post-Aggregation Refinement . . . . . . . . . . . . . . . . . 107

7.3 Empirical Evaluations of SOTA Algorithms . . . . . . . . . . . . . . . 108
7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.2 Datasets and baselines . . . . . . . . . . . . . . . . . . . . . 109
7.3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . 110
7.3.4 Client-side Methods . . . . . . . . . . . . . . . . . . . . . . 114
7.3.5 Server-side Methods . . . . . . . . . . . . . . . . . . . . . . 117
7.3.6 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



Contents

7.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Future Directions and Conclusions 121
8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1.1 Towards Model Heterogeneity . . . . . . . . . . . . . . . . . 121
8.1.2 Towards Model Personalization . . . . . . . . . . . . . . . . 121
8.1.3 Evaluating Federated Algorithms on Real Testbeds . . . . . . . 122
8.1.4 Rethinking the Traditional ML Workflow for Federated Learning 123
8.1.5 Going beyond Supervised Learning . . . . . . . . . . . . . . 123
8.1.6 Towards Fully Decentralized Systems at Scale . . . . . . . . . 124

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Acronyms 127

Bibliography 129

vii





List of Figures

2.1 A taxonomy for decentralized learning systems. . . . . . . . . . . . . . 14

3.1 Visualization of major issues in decentralized learning. . . . . . . . . . 25
3.2 Example of adding Gaussian noise on an image. . . . . . . . . . . . . . 42
3.3 Client drift phenomenon in FedAvg. . . . . . . . . . . . . . . . . . . 43
3.4 Degradation in accuracy of the global model trained with FedAvg in

presence of increasing data heterogeneity. . . . . . . . . . . . . . . . . 44
3.5 Distribution of labels (0-9) on the private data of 20 clients. . . . . . . 45

4.1 An example of STC application to a tensor with 10 elements. . . . . . . 52
4.2 Distribution of convolutional weight updates after sparsification at three

different rounds on three randomly sampled clients. . . . . . . . . . . 54
4.3 The figure reports a comparison among STC-compressed and SSTC-

compressed updates at three different rounds (round 1, 500 and 1000). . 55
4.4 Top-1 accuracy of global model on test set for STC and SSTC, with spar-

sity equal to 0.01 and the fraction of kernel equal to 0.125. . . . . . . . 58
4.5 Number of elements in STC updates that belong to the convolutional

layers during experiments in Fig. 4.4. . . . . . . . . . . . . . . . . . . 59
4.6 Accuracy reached with different tuning of k in SSTC. . . . . . . . . . 59

5.1 How Federated Dropout works for convolutional layers and fully con-
nected layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 HFD and CE-HFD accuracy. . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Top-1 Accuracy of uncompressed FedAvg, FedAvg plus STC and Fe-

dAvg plus per-layer STC in upload. . . . . . . . . . . . . . . . . . . . 70
5.4 Top-1 Accuracy of FedAvg, and CE-HFD with different compression

techniques and tuning. . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Top-1 Accuracy on the y-axis, number of rounds on the x-axis. 50 clients

selected per round. CE-HFD with per-layer STC applied only on the
larger layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 A schematic visualization of KD-based solutions for FL issues. . . . . . 79
6.2 Visualization of FedAvg baseline with respect to statistics-based feder-

ated codistillation and resonse-based federated codistillation. . . . . . . 81

ix



List of Figures

6.3 Overview of approaches that distill global knowledge using a regulariza-
tion term during local training. . . . . . . . . . . . . . . . . . . . . . 86

6.4 Overview of FedGKD and FedNTD. . . . . . . . . . . . . . . . . . . 87
6.5 Overview of FedMLB. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Schematic classification of approaches proposed in literature to enhance
global model generalization in presence of heterogeneous data. . . . . . 96

7.2 Label distribution with different levels of heterogeneity. . . . . . . . . 112
7.3 FedAvgM accuracy with different momentum parameters. . . . . . . . 112
7.4 Global model’s performance (accuracy and loss) of considered methods. 115

x



List of Tables
2.1 Defining characteristics of data-center distributed learning, cross-silo fed-

erated learning and cross-device federated learning. . . . . . . . . . . . 12

4.1 Compression factors of STC and SSTC for updates coming from the
convolutional layers with respect to uncompressed FedAvg. . . . . . . . 61

5.1 Global model and sub-models sizes comparison. . . . . . . . . . . . . 69
5.2 Comparison of different client-to-server compression against full-precision

FedAvg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Top-1 Accuracy of FedAvg, and CE-HFD with different compression

techniques and tuning. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Comparison among strategies to enable model heterogeneity via FL adap-
tations of codistillation. . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Concise overview of KD-based solutions. . . . . . . . . . . . . . . . . 90

7.1 Classification of reviewed client-side methods, listed by year (from old-
est to most recent). . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Classification of reviewed server-side methods, listed by year (from old-
est to most recent). . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Hyperparameter tuning of evaluated algorithms. . . . . . . . . . . . . 111
7.4 Performance comparison among considered client-side methods on CIFAR-

100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Performance comparison among considered server-side methods on CIFAR-

100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Performance comparison among hybrid methods on CIFAR-100. . . . 114
7.7 Execution time of best performing client-side algorithms. . . . . . . . . 114

xi





1 Introduction

The unprecedented amount of data being generated at the edge of the Internet network
— the number of IoT devices has surpassed the global population and is expected to reach
an astounding 80 billion by 2025 [175] — represents the ideal ingredient for training ac-
curate Machine Learning (ML). In particular, Deep Learning (DL) models [99] allow
to enhance and support a wide range of more intelligent applications, services, and in-
frastructures, such as powering recommender systems [215], developing data-driven ma-
chine health monitoring [219], enabling new ways for clinical diagnoses [134], or driving
the design of new generation mobile networks [209]. However, the potentially sensitive
or confidential nature of gathered data poses privacy concerns when managing, storing,
and processing those data in centralized locations. At the same time, the capacity of the
network infrastructure risks to be saturated by such continuous data collection, such as
from distributed sources at the network edge to centralized cloud resources.

To this purpose, decentralized learning has recently gained momentum exactly to de-
couple model training from the need of directly accessing raw data, by becoming a promis-
ing alternative solution to the more traditional cloud-based ML. In fact, decentralized
learning leaves the training data distributed and supports the learning of joint models via
local computation and periodic communication: data no longer need to leave the data
owner. For example, data remain on the premises of organizations or institutions that
may want to collaborate, but without sharing their private data. Other significant use
cases embrace intelligent applications for end-users of smartphones or IoT devices, where
the private preferences or habits sensed through user-device interaction do not leave the
source devices.

The literature includes several differently designed approaches to enable decentralized
learning. The common key idea is to be able to just transmit ephemeral locally-computed
updates (e.g., model parameters or gradients) and/or meta-level information (e.g., activa-
tions in neural-networks), which are meaningful only with respect to the current global

1



1 Introduction

model and typically bring significantly lower informative content compared to the raw
data (data processing inequality). This design paves the way to upgrading the user’s pri-
vacy so to meet the rising legislative requirements about it (e.g., the California Consumer
Privacy Act [27] and the European General Data Protection Regulation (GDPR) [49]).
Similarly, in the case of federated deployment environments participated by different in-
stitutions, the use of decentralized learning techniques can ensure privacy guarantees,
especially in sensitive domains such as healthcare where data sharing is impeded by regu-
lation (e.g., the Health Insurance Portability and Accountability Act - HIPAA [69]).

Besides the above privacy concerns, decentralized learning techniques are strongly mo-
tivated from the infrastructural perspective. The huge amount of raw data coming from
the edge of the network and headed to datacenters risks to overwhelm the network back-
bone, hence a part of these data should, instead, be consumed locally, as suggested in [37].

Note that, even with decentralized learning, the periodic exchange of uncompressed up-
dates in place of the upload of all the raw data may not necessarily reduce the total com-
munication cost needed to train a model in a satisfying way [119]. Lastly, but not less
important, in some circumstances collaborative learning at the edge can have a reduced
carbon footprint with respect to cloud-based ML, and can be a greener technology than
data center GPUs [151].

Although collaborative learning systems can open up new opportunities for utilizing
a wider range of data in data science pipelines, their implementation can be challenging
due to the peculiarities of federated environments, such as the variations in data statistics
among learners, the limited and diverse hardware of participating devices, the possibility
of still leaking sensitive information during the process, and the complexity of optimizing
the process in a distributed environment [14].

The first part of this Thesis provides a comprehensive overview of decentralized learn-
ing systems. Through the lens of an original taxonomy from [14], this Thesis highlights
the principal characteristics of collaborative learning solutions, presenting the concepts,
the main baselines and the challenges faced in the very recent literature. In the second part
of the Thesis, we focus on solutions for specific issues. We firstly present and evaluate our
original methodologies and algorithmic solutions to address communication efficiency
and system heterogeneity. Then, we propose an in-depth review and classification of the
state-of-the-art contributions to reduce the impact of data heterogeneity, with empirical
evaluations and discussion of the most promising approaches. This Thesis also provides

2



1.1 Structure of the Thesis

a novel review of the literature under an original perspective: employing Knowledge Dis-
tillation as a mean to optimize collaborative learning systems, with particular emphasis
on system and data heterogeneity.

1.1 Structure of the Thesis

After briefly introducing the motivations of this Thesis, this Chapter summarizes the
candidate’s contributions beyond the state of the art. The remainder of this document is
based on published or in review papers, which are listed in the last section of this Chapter.

Chapter 2 provides background information on the topic, the description of feder-
ated settings, and an original taxonomy to guide the reader through a literature review of
the principal baseline algorithms.

Chapter 3 introduces the major issues in the field and the principal research directions
emerged in the last years, with a review of significant contributions for each issue.

Chapters 4 presents and empirically evaluates a novel solution for addressing system
heterogeneity and communication efficiency in cross-device settings, which takes inspira-
tion from the Dropout technique originally proposed in regular Deep Learning contexts.

Chapter 5 presents and empirically evaluates a novel solution explicitly designed for
Convolutional Neural Networks (CNNs) to further enhance the communication effi-
ciency of a state-of-the-art method, namely Sparse Ternary Compression. The code used
in the experiments is also provided.

Chapter 6 provides an in-depth review and classification of state-of-the-art methods,
which are inspired by the Knowledge Distillation framework from non-federated set-
tings, to address specific issues in federated environments.

Chapter 7 explores and discusses existing solutions to address data heterogeneity, in-
cluding experimental results and a comparison of different methods, shedding light on
their strengths and possible weaknesses. The code used in the experiments is also pro-
vided.

Chapter 8 concludes this Thesis with a summary and details the most promising fu-
ture research directions from a general perspective, and from the specific work carried out
by the author.

3



1 Introduction

1.2 Contributions beyond the state of the art

Conceptual Contributions:

• In [14] we provided a detailed and up-to-date overview of the major contributions
available in decentralized learning literature. In particular, such survey paper orig-
inally provides the reader audience with a clear presentation of the peculiarities
of federated settings, with a novel taxonomy of decentralized learning approaches,
and with a detailed description of the most relevant and specific system-level con-
tributions of the surveyed solutions for privacy, communication efficiency, data
heterogeneity, device heterogeneity, and poisoning defense. Chapter 2 and Chap-
ter 3 are partially based on this work.

• In [137] and in Chapter 6, we provide a detailed review of state-of-the-art contribu-
tions in the Federated Learning literature which employ Knowledge Distillation as
a mean for optimizing the learning process, which represents a novel perspective,
and we are not aware of similar contributions in literature.

• In Chapter 7, we review state-of-the-art algorithms to tackle the degradation in per-
formance introduced by data heterogeneity, firstly classifying them in two macro
categories, and then clustering them in subcategories according to their insights,
rationale, and possible inspirations.

Technical and Experimental Contributions:

• In [13] we claimed that Federated Dropout can efficiently cope with device het-
erogeneity by exploiting a server that broadcasts custom and differently-sized sub-
models, selected from a discrete set of possible sub-models, to match the computa-
tion capability constraints of FL clients. In addition, we further reduce the up-link
communication cost by applying per-layer or traditional Sparse Ternary Compres-
sion (STC) to sub-model updates. We demonstrate the effectiveness of our solu-
tion by reporting results for a well-known neural networks used for classification
tasks considering the Federated EMNIST dataset. Chapter 5 is partially based on
the work in [13].

4



1.2 Contributions beyond the state of the art

• In [136], we proposed an original variant of Sparse Ternary Compression that is
specifically designed and implemented for convolutional layers. Our variant is orig-
inally based on the experimental evidence that a pattern exists in the distribution
of client updates, namely, the difference between the received global model and
the locally trained model. In particular, we have experimentally found that the
largest (in absolute value) updates for convolutional layers tend to form clusters
in a kernel-wise fashion. Therefore, our primary novel idea is to a-priori restrict
the elements of STC updates to lay on such a structured pattern, thus allowing us
to further reduce the STC communication cost. We have designed, implemented,
and evaluated our novel technique, called Structured Sparse Ternary Compression
(SSTC). Reported experimental results show that SSTC shrinks compressed up-
dates by a factor of x3 with respect to traditional STC and with a reduction up to
x104 with respect to uncompressed ones, at the expense of negligible degradation
of the global model accuracy. Chapter 4 is partially based on the work in [136].

• In [135], we originally provide a review of the most relevant related solutions in the
literature to alleviate the harmfulness of non-identically and independently dis-
tributed (IID) data, highlighting the intuition behind these alternative strategies as
well as their possible drawbacks. Furthermore, we propose an empirical compari-
son among a subset of such state-of-the-art solutions under different levels of data
heterogeneity running them in the same operating conditions. We end up iden-
tifying the most promising approaches considering both empirical performances
and defining characteristics (e.g., assumptions the strategy possibly make).

• In Chapter 7, we evaluate a set of recent state-of-the-art algorithms in challenging
settings of simulated data heterogeneity.

• We provide the reference to TensorFlow code we used for experiments of Chapter
7, which contains the implementations of several state-of-the-art baselines, and can
be relevant for the research community, given the fact that the vast majority of
available code does not use TensorFlow (e.g., based on Pytorch instead). The code
is fully reproducible thanks to the use of seeds, and the complete specification of
client dataset composition. We also provide the code to generate client data shard
with a distribution-based label skew method (explained in Chapter 3).

5



1 Introduction

1.3 List of Publications

The following list contains all contributions made by the author to the field of decentral-
ized learning. Some of the materials presented in this dissertation have been previously
published as journal articles, presented at scientific conferences or still being in the pro-
cess of peer review.

1. Bellavista Paolo, and Alessio Mora. “Edge Cloud as an Enabler for Distributed AI in
Industrial IoT Applications: the Experience of the IoTwins Project.” AI&IoT@ AI* IA.
2019.

2. Bellavista Paolo, Luca Foschini, and Alessio Mora. “Decentralised learning in federated
deployment environments: A system-level survey.” ACM Computing Surveys (CSUR)
54.1 (2021): 1-38. DOI: https://doi.org/10.1145/3429252

3. Bellavista Paolo, Luca Foschini, and Alessio Mora. “Communication-Efficient Het-
erogeneous Federated Dropout in Cross-device Settings”. GLOBECOM 2021 - 2021
IEEE Global Communications Conference, 2021, pp. 1-6.
DOI: 10.1109/GLOBECOM46510.2021.9685710.

4. Alessio Mora, Luca Foschini and Paolo Bellavista. “Structured Sparse Ternary Com-
pression for Convolutional Layers in Federated Learning.” 2022 IEEE 95th Vehicular
Technology Conference: (VTC2022-Spring), 2022, pp. 1-5,
DOI: 10.1109/VTC2022-Spring54318.2022.9860833.

5. Alessio Mora, Irene Tenison, Paolo Bellavista, Irina Rish. “Knowledge Distillation for
Federated Learning: a Practical Guide.” arXiv preprint arXiv:2211.04742 (2022).

6. Alessio Mora, Davide Fantini, Paolo Bellavista. “Federated Learning Algorithms with
Heterogeneous Data Distributions: An Empirical Evaluation.” The Seventh ACM/IEEE
Symposium on Edge Computing 2022. DOI: 10.1109/SEC54971.2022.00049

7. Alessio Mora, Irene Tenison, Paolo Bellavista, Irina Rish. “Knowledge Distillation in
Federated Learning.” Under review. Submitted to ACM Computing Surveys (CSUR).

6



2 Decentralized Learning in
Federated Settings

This Chapter firstly presents the motivations that led decentralized learning techniques
to rise as an alternative to cloud-based ML and illustrates some real-life examples of its
application. Next, it provides a characterization of possible federated settings as well as an
original taxonomy to highlight the primary design choices when building a collaborative
learning system. The Chapter also details relevant baseline algorithms, such as Federated
Averaging, that has emerged in the recent literature.

2.1 The Rising of Decentralized Learning

The public opinion is becoming increasingly sensitive to individual privacy rights, es-
pecially after the notorious Facebook-Cambridge Analitica scandal [192] has made no
longer ignorable the Orwellian levels of data held by such companies about us and has ex-
posed the weakness (or even the non-existence) of privacy regulation and data protection.
Anyway, even without thinking to striking episodes such the above cited one, individu-
als’ privacy is threatened whenever personal raw data are disclosed. For example, elemen-
tary data anonymization (i.e., removing all explicit identifiers such as name, address, and
phone number) has demonstrated to be almost ineffective in protecting privacy, since
combinations of simple non-unique attributes often allow to re-identify individuals by
matching “anonymized” records with non-anonymized ones in a different public dataset
(e.g., [139]).

The actual legislative vacuum about data harvesting, data holding, and data processing
has been — and still is — the subject of regulation efforts around the world. About that,
it is worth mentioning the CCPA and the GDPR, respectively from California and from

7



2 Decentralized Learning in Federated Settings

European Union, that both leverage the principles of purpose specification and data min-
imization. In concrete terms, for example, the GDPR’s Article 5 states that personal data
shall be “collected for specified, explicit and legitimate purposes and not further processed
in a manner that is incompatible with those purposes” and “kept in a form which permits
identification of data subjects for no longer than is necessary for the purposes for which
the personal data are processed”. Such guidelines are often incompatible with more tradi-
tional cloud-based ML solutions, where potential privacy-sensitive raw data flow towards
datacenters to train ML/DL models. In particular, (i) companies harvesting data tend to
keep them forever and users cannot delete them1, hence same data can be used several
times for different learning purposes (for extracting different kinds of insights); (ii) users
from whom the data were collected are unaware of the associated learning objectives; (iii)
models trained on collective data typically remain property of the companies that built
them; and (iv) users disclose their raw data, in a more or less informed way, to infer cen-
tralized models, such as for training.

It could seem that an inevitable dichotomy between the protection of individual’s pri-
vacy and the distillation of useful knowledge from a population exists (i.e., not disclosing
private data to preserve privacy, by merely performing local learning, versus sharing pri-
vate raw data to produce more accurate models at the cost of exposing data owners to pri-
vacy violation risks). On the opposite, decentralized learning tries to alleviate the privacy
concerns of traditional cloud-centric training by design and is data-minimization-prone.
In fact, (i) companies do not need anymore to collect possible privacy-sensitive raw data
to build ML/DL models; (ii) users could likewise be unaware of the learning objective
for which their data are used, but data processing happens locally, hence facilitating the
shift to full transparency; (iii) models (or fractions of models, i.e., portions of their pa-
rameters) reside locally at the user’s device or inside the organization’s premises (or in
very proximity of it). This could be seen as a first step to give back to the community
the knowledge acquired from joint contributions2; (iv) users do not need to upload their
raw data to query centralized models, in fact on-device inference is typically enabled if
the entire model is replicated locally — if only a portion of the model parameters is lo-

1At least until the time this thesis has been written.
2However, it is worth noting that restricting or preventing access to model’s parameters, even if the model

itself is locally available, makes it harder for an attacker to undermine it, e.g., via backdooring. There-
fore, companies or organizations that adopt Decentralized Learning techniques may be anyway moti-
vated to hamper model inspection.

8



2.1 The Rising of Decentralized Learning

cally held instead, distributed inference is performed by just communicating meta-level
information in place of raw data.

In addition, shifting model training from the cloud towards the network edge recalls a
trend that was already in act with the rising of mobile edge computing during the last
decade. Besides the urge of privacy guarantee, several aspects are similar and seem to
overlap. A primary one is the need to relief the burden on the backbone of the net-
work infrastructure, which risks to collapse under the tsunami of data if not partially
consumed locally or in proximity of the associated sources. Intuitively, actively involving
the ecosystem of edge devices in the learning process and exchanging model updates in a
communication-efficient way (e.g., employing stream compression) in place of centraliz-
ing raw data can substantially reduce network traffic while leading to limited degradation
(or in some cases to no degradation) of model accuracy. Secondly, the low-latency re-
quirements of real-time applications often cannot be met by only leveraging the cloud
(for instance when monitoring a shared industrial workspace, during human robot col-
laboration, to enforce policies for worker protection [163]). Enabling on-device infer-
ence of the learned or in-learning models, which naturally comes with most decentralized
learning approaches as we will discuss in the continuation of the thesis, benefits such del-
icate aspect. Let us finally note that decentralized training, with its potential reduction of
ML-related energy consumption because of reduced network traffic and decreased trans-
mission distance, also contributes to the overall sustainability of the approach: it is con-
sidered as one of the key enabling technologies towards green networking via distributed
and federated datacenters [151].

Decentralized learning finds natural applications in smart apps for mobile devices which
learn by user interaction, and where low-latency responses are required. In this con-
text, gathering user-labeled or automatically annotated data points for feeding supervised
learning algorithms is a common practice. Related examples include on-device intelligent
keyboards that power content suggestions [202], or that predict the most suitable next
words [61] or the most fitting Emojis [153] given the chat history; or again vocabular-
ies that evolve to follow the ongoing trending expressions by learning out-of-vocabulary
words [31], and all of this without exporting sensitive text to servers. Other examples deal
with human activity recognition (e.g., [173]) and keyword spotting for voice assistants in
smart homes (e.g., [102]) .

9



2 Decentralized Learning in Federated Settings

Decentralized learning has been used also to conjugate user privacy and prediction abil-
ity of the infrastructure in the 5G multi-access edge computing architecture [43, 92, 127],

for example for proactive content caching [207] or for optimal allocation of virtual ma-
chine replicas copies [50], and it is considered a key enabling tool for next generation wire-
less networks [141] as well, e.g., for spectrum management.

Confirming its versatility, decentralized learning has been also applied to network traf-
fic classification, anomaly detection, and VPN traffic recognition tasks, while preserving
appropriate privacy levels [220] [12]. Similar considerations apply to vision-based safety
monitoring systems in smart cities [122].

In the relevant healthcare domain, the popularity of decentralized training approaches
has been also pushed by the need to enable collaboration among healthcare institutions.
In fact, the disclosure of patients’ raw data is often impeded or limited by regulations such
as the HIPAA Privacy Rule, or the patient herself might not want her clinical data to be
released to other entities, or again the institutions might not want to sell out their valu-
able datasets. Therefore, plain old centralized training results to be not feasible for pre-
dictive clinical models in many cases. Furthermore, manual labeling of data is often very
time-consuming in medical contexts and typically requires qualified personnel. Datasets
held by single institutions tend to be small and may lack in diversity [145], and this is
exacerbated when considering rare diseases. Hence, from the perspective of isolated lo-
cal learning, sample scarcity may lead to models with poor predictive ability, especially
when considering deep learning models that notoriously need abundant data points to
reach high fidelity. As practical use cases in smart healthcare, we report the training of a
detector for abnormal retinal fundus and a classifier for common chest radiography ob-
servations (from visual datasets) [150]. Other clinical learning tasks include prediction of
prolonged length of stay and in-hospital mortality [147], prediction of hospitalizations
for cardiac events [22], or gaining insights about brain diseases [158].

2.2 Fundamentals. Taxonomy and Baselines for
Decentralized Learning

This Section gives some concise background to make highly accessible the following pre-
sentation of diverse decentralized learning solutions, by defining the targeted deployment

10



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

settings and the modular building blocks that are emerging in the related literature. These
building blocks are at the cornerstones of our original taxonomy, which we will introduce
in this Section and use in the remainder of the thesis to better highlight the features, the
pros, and the cons of the surveyed contributions. We also present the most interesting
baseline solutions to enable decentralized learning.

2.2.1 Cross-Silo and Cross-Device Federated Settings

Here we provide an informal and qualitative characterization of the two most common
settings for decentralized learning, by highlighting their specific elements with respect to
traditional distributed settings [39]. As anticipated in the previous sections, decentral-
ized learning techniques are strongly motivated when data sharing is impeded by law or
by privacy concerns, hence they apply to several real-world contexts. For the sake of sim-
plicity, let us consider two extreme scenarios: (i) the federation of entities participating
in collaborative learning tasks consists of compute nodes from different organizations or
companies (e.g., hospitals, banks) — that typically store their private data in on-premise
silos —; (ii) the federation comprises a massive amount of edge devices (such as smart-
phones, IoT devices, or IIoT devices). Such primary distinction leads to the identifica-
tion of two very general settings, which are respectively referred to as Cross-silo federated
settings and Cross-device federated settings [89]. The comparison among settings is also
summarized in Table 2.2.1.

Those two federated scenarios are substantially different from more traditional dis-
tributed settings, where raw data are centralized in datacenters to perform learning. In
fact, in cloud-centric training, the participants of the learning task are compute nodes
(generally up to 1000) interconnected through very fast networks, making the computa-
tion cost the major bottleneck. Data can be balanced across compute nodes; moreover,
they can be partitioned and re-partitioned according to the need. Importantly, any par-
ticipant can access any part of the dataset. Worker machines are reliable and low rate of
failure or drop out (i.e., abandoning the learning task without notice) are expected.

The Cross-silo federated setting refers to a scenario in which the entities involved in
the learning process are limited in number (up to 100 participants), and typically they
are trusted and reliable. In addition, they are likely to participate in the entire training
task. Data can be unbalanced, but in general not as much as in Cross-device settings. No

11



2 Decentralized Learning in Federated Settings

Table 2.1: Defining characteristics of data-center distributed learning, cross-silo federated learning
and cross-device federated learning.

Setting Data-Center Cross-silo Cross-device

Distributed Training Federated Learning Federated Learning

Description Clients are compute
nodes in a datacenter
environment or in a
single cluster.

Clients are organiza-
tions, companies or
geo-distributed data-
centers.

Clients are edge devices,
e.g. IoT devices, IIoT
devices.

Data
distribution

Data on clients are
supposed to be identi-
cally and independently
distributed (IID); they
can be arbitrarily par-
titioned, shuffled and
balanced across clients.
Any client can read any
part of the dataset.

Data is stored locally and remains distributed.
Each client cannot access the data of other clients.
Data is supposed to be not independently or
identically distributed (non-IID).

Data
availability

Clients are supposed to be available almost al-
ways.

Only a subset of the
total clients may be
available at a certain
point in time (e.g.
clients may be not
eligible for a learning
rounds if they have
low battery or scarce
network connection).

Client
reliability

Low rate of failure is expected. Clients can drop out
without notice.

Client scale Up to 1000 clients. Up to 100 clients. Up to 1010 clients.

Principal
bottlenecks

Very fast network are
supposed to be available;
computation dominates
communication bottle-
necks.

No assumptions about
communication or com-
putation bottlenecks are
made a priori.

Both communication
and computation
represent bottlenecks.
Also, the federation is
supposed to be hetero-
geneous in the hardware
capabilities on clients.

Example Health institutions such
as hospitals.

A federation of smart-
phones.

12



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

assumptions about communication or computation bottlenecks are made a priori. Fur-
thermore, while training data are assumed to be independently and identically distributed
(IID) in typical datacenter settings, such assumption does not hold for federated settings
(neither for Cross-silo nor for Cross-device): the training data on a given device or on a
given machine are likely not to be representative of the full population distribution.

In the Cross-device federated settings, participants are very numerous instead (up to
1010), data are massively distributed and unbalanced (e.g., the number of training exam-
ples held by participants can differ by one or two orders of magnitude) [96]. Learners are
highly unreliable; failure and drop out must be addressed, and each client is likely not to
take part in the entire training process (actually they may contribute only once per task).
Furthermore, since edge devices have limited bandwidth, communication efficient solu-
tions are preferable in Cross-device setting; the federation may comprise computation-
ally constrained devices as well, making more delicate the computation/communication
trade-off. Another peculiarity is that participants may be malicious in this scenario, e.g.
trying to infer sensitive information about other learners or voluntarily hampering the
global learning.

For the sake of clarity, we use this characterization3 to readily approximate the setting
to which the referenced works in Chapter 3 refer — we will show that the targeted fed-
erated setting relevantly influences the design choices of a solution. We indeed use such
characterization of the setting as a primary dimension of our taxonomy.

2.2.2 A Taxonomy for Decentralized Learning Systems

To favor the readability of the remainder of this Section and of the Thesis, we propose a
taxonomy for decentralized learning systems that highlights the main alternative options
in designing such frameworks.

Data processing: Data-sequential vs Data-parallel

The common thread when designing decentralized learning algorithm is leveraging data-
parallel variants of iterative optimization algorithms that are inherently sequential, e.g.

3We use the terminology found in [89]. However, the existence of a central orchestrator (i.e., an entity
orchestrating the collaborative training) in federated settings, either Cross-silo or Cross-device, is fur-
ther supposed in [89]. To embrace all the decentralized learning work from the literature, we relax this
last trait in our terminology usage in this paper.

13



2 Decentralized Learning in Federated Settings

Decentralized Learning Systems

Data Processing

ParallelSequential

Update Mode

MEC-awareNetwork Topology On-device Model Exchanged Information

Synchronous Asynchronous

Star-shaped Peer-to-peer Full Split Model params

Gradients

Activations

Model updates

NoYes

Setting

Cross-deviceCross-silo

Model outputs

Others

Figure 2.1: A taxonomy for decentralized learning systems.

Stochastic Gradient Descent (SGD) and its optimizations. Typically, the federation of
learners collaborates to minimize a global objective function, that is unknown to the par-
ticipants since no single node has direct access to all the data. The global objective can
be thought as a linear combination of the local empirical losses, available locally to the
participants [96].

We further divide data-parallel approaches into systems that leverage synchronous or
asynchronous update mode. In fact, as traditional distributed training algorithms, also
data-parallel decentralized learning approaches can exploit asynchronous updates to opti-
mize on speed by using potentially stale parameters for local training or wait for local com-
putation of the slowest participant to synchronously aggregate updates without risking to
use outdated parameters. With synchronous update mode, it is usual to talk about rounds
of communication, i.e., all the triggered participants retrieve the global model state, pro-
duce their locally computed updates and communicate such updates, from which the
new generation model will be derived. Communication efficient algorithms have their
principal goal in minimizing the rounds of communication. Relaxing the synchronicity
can instead spread the communications over time, particularly helpful when handling a
large number of learners. However, examples of data-sequential systems exist, i.e., sys-
tems in which each participant uses as starting model state the result of the computation
of another participant, and thus produces as output the input model state for the next
participant. Anyway, let us note that these solutions are usually limited to the Cross-silo
setting.

14



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

Network Topology: Star-shaped vs Peer-to-peer

The coordination among learners can be facilitated by a star-shaped network topology
that leverages a central entity to distribute the current state of the global model at the be-
ginning of each local iteration, and maintain the state updated during the training task.
Participants can directly exchange their locally computed updates as well, in a peer-to-
peer fashion, hence not requiring any infrastructure at the price of increased coordination
complexity. In literature, decentralized learning frameworks that exploit peer-to-peer net-
works of participants are often referred to as fully decentralized, i.e., decentralized in both
data and coordination.

On-deviceModel: FullModel vs SplitModel

Besides the full local replication of the (current) global model during the training process,
it can be possible to have participants that are only responsible for a fixed subset of model
parameters (in this case, typically, the parameters belonging ton shallower layers in a deep
neural network, i.e. split models). The full replica of the global model enables on-device
inference by design, while in the case of split model, without retrieving the entire model at
the end of the training, distributed inference is required. Note that, anyway, the primary
privacy concerns have been bypassed by having feature extraction locally4.

Exchanged knowledge: Model Parameters/Updates, Gradients,
Activations andOthers

We also emphasize that the degrees of freedom in designing decentralized learning frame-
works also involve the kind of exchanged information during the distributed learning.
Supposing gradient descent based methods for optimization, the usual practice is to have
participants exchanging gradients or model updates, with the latter option valuable in
case of participant-specific local solver. In star-shaped topology, a common practice is to
have participants downloading the current model parameters and communicating back
to the aggregator either the gradients, the locally updated model parameters typically gen-
erated through SGD iteration(s), or the locally computed updates for the global model
(i.e., the difference among the received global parameters and the locally computed ones).

4It is important to remind that information leakage is still possible. This will be faced in Section 3.2.

15



2 Decentralized Learning in Federated Settings

While the most common strategy is to have the server broadcast the global model param-
eters and collects model updates5, there are examples of star-shaped frameworks where
the communication in both the directions only involves gradient information (e.g., [180],

[15]) as well, i.e., the server aggregates gradients and the back-propagation is performed
on-device. We underline that the exchanged information may be not limited to gradients
and model parameters, in fact other kinds of parameters may be transmitted for diverse
optimization purposes. For instance, the exchange of moment estimates to implement
an ADAM[95]-inspired optimization algorithm [133], or also of information for gradi-
ent correction terms [109], and of control variates [91] to tackle non-IIDness, or of other
local estimations to meet given budget resources [190]. Or again, in presence of split mod-
els (e.g., in Split Learning), besides model parameters and gradients, also activations (and
labels) have to be communicated by design. Also, as presented more in detail in Chapter
6, information based on model outputs (or more in general on model responses) can be
exchanged in place of model parameters, providing advantages which span from reducing
the communication cost of the process to enabling model heterogeneity among clients,
while possibly introducing other trade-offs.

MEC-awareness

It is also worth mentioning that, considering the MEC architecture and therefore the
existence of a middle layer of edge servers between the edge devices and the cloud, two
levels of topology organization can be identified. On the one hand, decentralized learning
systems may leverage edge servers as intermediate aggregators for updates produced by the
edge devices in their locality (i.e., matching a star-shaped topology) and then edge servers
may directly exchange intermediate-level updates among them in a peer-to-peer fashion,
to collaboratively build the global model. On the other hand, the cloud may be involved
as “master aggregator” collecting intermediate aggregations from the federation of edge
servers (the latter solution is referred as hierarchical). An in-depth discussion about edge-
cloud continuum roles in edge intelligence can be found in [226].

5Sending back updates instead of model parameters have at least three major advantages: (i) they can be
interpreted as gradients for a server-side optimizer of choice (this will be presented more in depth in
Chapter 7), (ii) they are more suitable for compression, (iii) they leak less information.

16



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

2.2.3 Baselines for Decentralized Learning Systems

In this subsection, we propose some baseline frameworks to enable decentralized learn-
ing. We introduce the most significant baselines for star-shaped systems, followed by in-
stances of fully decentralized (server-less) alternatives, i.e. peer-to-peer.

Star-shaped Baselines

Federated Averaging (FedAvg) is a widely accepted heuristic algorithm used as baseline
for star-shaped Federated Learning (FL), given its simplicity and its empirical effective-
ness [128] also in non-convex setting. Its skeleton is presented in Algorithm 1. The learn-
ing process proceeds in synchronous rounds of communication; the (full) current global
model is broadcast at the beginning of the round to the (selected) participants, that use
their private dataset to produce an update (e.g., gradients or model weights) for the re-
ceived model, and upload such contributions. The aggregator, i.e. a sort of parameter
server, collects and aggregates (e.g., by averaging) the updates from participants and com-
putes the new-generation global model. The process typically ends when a certain ac-
curacy for the global model is reached, or when a certain number of rounds has been
executed. SGD is typically chosen as local solver. Four hyperparameters have to be tuned
in FedAvg;C controls the fraction of participants to be selected in a certain round t (with
C = 0.0 indicating only one participant involved per round, andC = 1.0 meaning the
totality of participants), E defines the number of local epochs to be performed in each
round,B denotes the minibatch size, and η the local learning rate. It is worth noting that
the contributions in the aggregation are weighed accordingly to the number of local data
points held by each participant.

When the full local dataset is treated as a single minibatch (i.e.,B =∞), and the local
iterations at each participant are limited to one epoch (i.e.,E = 1), FedAvg is also known
as FedSGD. An equivalent variant of FedSGD can be formulated by uploading gradients
in place of model parameters.

An accurate convergence analysis, in strongly convex and smooth problems, of FedAvg
in presence of data heterogeneity and partial device participation — peculiar of cross-
device settings — can be found in [111]. The authors theoretically showed that, in such
circumstances, model convergence is slowed down with respect to the ideal case of IID-
ness and full participation. They also pointed out that a decaying local learning rate is

17



2 Decentralized Learning in Federated Settings

Algorithm 1: FedAvg algorithm
TheK participants are indexed by k,Dk is the local dataset at participant k,nk =

|Dk| and n =
∑K

k=1 nk, B is the local minibatch size, E represents the number
of local epochs, η is the learning rate. Note the common initialization of model
parametersw0.
1 Server executes:
2 initializew0

3 for each round t = 1, 2, 3, ..
4 m← max(C ×K, 1)
5 St ← (random set ofm clients)
6 for each client k ∈ St in parallel
7 wk

t+1 ←ClientUpdate(k, wt)

8 wt+1 ←
∑K

k=1
nk

n
wk

t+1

9 ClientUpdate(k, w)
10 B ← (splitDk into batches of sizeB)
11 for each local epoch e from 1 toE
12 for batch b ∈ B
13 w ← w − η∇ℓ(w; b)
14 return w to server

fundamental for the convergence of FedAvg under non-IIDness: gradually diminishing
the learning rate can neutralize biased local updates. Considering FL-suitable participant
sampling and related averaging schemes, the authors of [111] establish a convergence rate
of O( 1

T
), where T represents the total number of SGD iterations performed by every

participant.

FedAvg is considered a communication efficient algorithm mainly thanks to two as-
pects: (i) it selects a (random) subset of participants per round (i.e., if only a portion of
participants is selected, the per-round communication cost is reduced with respect to full
participation); (ii) it allows for additional iterations of local solver (i.e., SGD) to reduce
the total number of synchronizations needed for model convergence – it has been empir-
ically showed that FedAvg significantly reduces the total communication rounds (under
the same C-fraction of per-round selected clients) with respect to FedSGD, while reach-
ing the same (or higher) model accuracy [128]. A plethora of works in literature propose
improvements for FedAvg (as presented in the next Chapters).

18



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

Star-shaped alternatives to FedAvg exist in literature as well. The major instances are
represented by solutions that exploit adaptations of regular Knowledge Distillation (KD)
– such a class of algorithms will be treated in depth in Chapter 6. For the sake of this
system-level analysis, it is worth mentioning that such KD-based solutions do not need
to exchange model parameters, but they transfer knowledge based on the client model
outputs. For example, Federated Distillation (FD), is presented in [83], and it is explic-
itly designed to be extremely communication efficient; it is inspired by an online version
of knowledge distillation, namely co-distillation [71], [8]. In a nutshell, each device (the
student) stores its model outputs, i.e. a set of logit values normalized via softmax func-
tion, from which it derives per-label mean logit vectors, and periodically uploads such
local-average logit vectors to the aggregator. The server produces the per-label global-
average logit vector by averaging the contributions of all the participants in that round,
and broadcasts such aggregation to the federation; each device locally regularizes training
with a distillation term derived from the received global logit vector (i.e., their local loss
becomes a linear combination of two terms). It is straightforward to note that exchanging
logit-vector (local or global averaged, whether they are upload or download parameters),
in place of model parameters or gradients, reduces the per-round communication cost
with respect to FedAvg: the dimension of logit-vectors depends on the number of labels,
and not on the number of model parameters 6.

A differently designed method to enable collaborative training of neural networks with-
out sharing raw private data is the so-called Split Learning (SL), also referred as SplitNN
[59] to emphasize the suitability for DL architectures. This technique employs split mod-
els instead of full model replication. In fact, the training participants hold replications of
the shallower layers up to a certain layer (i.e., the cut layer), and a central entity holds the
deeper layers. Inter-layer values, i.e., activations and gradients exchange occurs between a
certain participant and the central entity, instead of centralizing the raw data.

The training process as formulated in [59] is data-sequential, albeit distributed. Each
participant retrieves the current state of the shallower layers of the neural network either
in a peer-to-peer mode, downloading it from the last training participant, or in a cen-
tralized mode, downloading it from the central entity itself, and runs the local gradient

6Referring to a classification task performed via a neural network.

19



2 Decentralized Learning in Federated Settings

descent based local solver (e.g., SGD), using its private dataset7. The participant com-
putes the forward propagation up to the cut layer, and the outputs of this layer, together
with label associated to the data examples, are communicated to the central entity that
concludes the forward pass on the deeper layers. The back propagation of gradients takes
place in a similar fashion, flowing from the deepest layer to the cut layer, where they are
sent from the central entity to the participant that has initially triggered the forward prop-
agation (only the gradients that refers to the cut layer). Then, the process repeats with a
different participant, collectively learning a joint model without sharing private raw data.
In [170] the position of the cut layer is empirically discussed.

Authors of [59] also proposed a variant of the SplitNN algorithm, namely U-shaped
Split Learning, in which the labels related to the locally available training examples are
not centralized but remains private at the participant side.

A data-parallel variant of SplitNN is proposed in [182], namely SplitFed learning (SFL),
to combine the advantages of FL and SL, that are respectively the parallel processing
among distributed learners and the model partitioning among participants and central
entity.

Although splitNN has demonstrated to reduce computation burden and bandwidth
utilization with respect to baseline FedAvg [170] in presence of “big” models and high
number of clients, star-shaped FL and fully decentralized FL allow on-device inference of
the model by design, while this is not true for splitNN that requires a distributed inference
unless the complete trained model is provided to the participants.

Peer-to-peer baselines

In star-shaped FL, the coordination server orchestrates the communication rounds; it
iteratively broadcasts the current model state to the participants and gathers the locally
computed updates to produce the next-generation model by aggregation. Although lever-
aging a client-server architecture permits to ignore topology-related issues, FL presents
two downsides: (i) the central entity can be seen as a single point of failure; (ii) the central
entity may represent a bottleneck considering a significant number of training partici-
pants (as demonstrated in [114] though not explicitly targeting federated settings). Fur-

7Regardless of the strategy to retrieve the current state of the participant-side model, either peer-to-peer
or centralized, in SplitNN a server exists by design; this is why we consider it as star-shaped.

20



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

thermore, the learners should trust such central aggregator, and, even though techniques
such as multi-party computation can ensure inscrutability of updates (see Section 3.2),
the participants may prefer to coordinate each others directly (as could be the case of
health institutions).

In fully decentralized learning, the topology of star-shaped FL becomes a peer-to-peer
topology, represented as a connected graph (generally assumed to be sparse). Such graph
can be a directed graph or an undirected graph, i.e. unidirectional or bidirectional chan-
nels of communication among the nodes. The topology can be assumed to be fixed or
dynamic, i.e. in which interconnections between nodes may change over time.

In each round, participants perform local computation and then communicate with
(a subset of) the other nodes in the graph — note that not leveraging the server-client
architecture (as well as relaxing the synchronous update mode) redefines the semantic
of rounds. Straightforward optimization algorithms, similarly to FedAvg, employ fully
decentralized variants of SGD (e.g., peers directly exchanging and merging gradients or
model updates). It is also worth highlighting that, while in star-shaped FL the FedAvg
algorithm has been widely accepted as baseline, in peer-to-peer (server-less) FL there is no
algorithm that has distinctly emerged among others; solutions in literature, in fact, make
different assumptions on the connectivity of the graph, in particular considering each
node connected to all the other nodes in the network or considering only a set of nodes
(i.e., the neighbours) reachable by each one, considering a fixed topology or a dynamic
topology, assuming directed (e.g., [65]) or undirected graphs, and employing different
strategies for model fusions.

In the continuation of this subsection, we present examples of baseline algorithms that
consider fixed-topology and undirected graphs — most common assumptions. The first
work, BrainTorrent [158], targets cross-silo federated settings, while the subsequently pre-
sented ones also embrace the cross-device setting [70] [84] [163].

BrainTorrent considers the graph as fully connected, from this consideration comes
our labeling as cross-silo framework — it explicitly targets the collaboration of medical
institutions, where it is reasonable to further suppose full connectivity besides fixed topol-
ogy and undirected network graph. In a nutshell, a random participant k in the network
starts the learning process by pinging all the others node requesting for model updates;
the ones that have a fresher version of the model respond with their model parameters;
the learner that has initiated the process, gathers the updates from the subset of partici-

21



2 Decentralized Learning in Federated Settings

pants that have responded, referred asNk, and aggregates them with its own local model
by using this strategy: ψk = nk

n
wk +

∑
i∈Nk

ni

n
wi. Next, the participant k fine tunes the

aggregated modelψk using its own private dataset, it updates the version of its model and
it is ready to respond to ping request from other nodes by providing its new generation
fine-tunedwk. Then the process repeats.

Gossip-based protocol for distributed learning has been explored in the datacenter set-
ting as alternative to the parameter-server approach (e.g., [16], [62]). Inspired from them,
Gossip Learning (GL) has been proposed in [70] for Cross-device federated settings. In
the baseline GL algorithm, starting from a common initialization, each node sends its lo-
cal model to a randomly selected peer, which firstly merges (e.g., by averaging and weigh-
ing the average according to an age parameter associated with the freshness of the models)
the received model with its current parameters, then updates the resulting model by ex-
ploiting its private dataset, and the process repeats. In a nutshell, there could be different
models scattered across the network of peers, with each one of these models taking ran-
dom walks (in the network) and being updated when visiting a new node. Typically, the
local update is implemented through minibatch SGD algorithm. It is worth noting that
due to the push only nature of the considered protocol, the merge-update-push cycles
are not synchronized among participants: a node may merge its fresher model with an
outdated one. The GL strategy, in [70], is not evaluated on DL architectures. Further-
more, this seminal work does not thoroughly discuss some aspects related to different
kinds of heterogeneity that arise in real-world cross-device setting; in particular, the data
held by peers, the neighbors reachable by each peer in the network, and the processing
and communication speeds of devices are unrealistically supposed to be homogeneous.
Such aspects are considered and discussed in [55], where it is claimed that gossip learning
shows poor performance on restricted communication topologies and it is highlighted
that GL fails to converge when communication speeds of the nodes and heterogeneity
of data are correlated. Authors of [55] propose some strategies to improve GL in such
realistic scenarios.

In BACombo [84], authors consider a fixed topology of neighbors for each learner,
not limiting the spreading of the updates to one peer per round, and propose a neural-
network specific solution. The local model held by each peer is splitted into a set of S
not-overlapped segments, and each participant does not pull all the segments (i.e., the
entire model) from the same peer but collects S segment from S different links in the

22



2.2 Fundamentals. Taxonomy and Baselines for Decentralized Learning

Algorithm 2: Consensus FedAvg algorithm
Nk represents the set of neighbors of the participant k, hence k excluded, Dk is
the local dataset at participant k, B is the local minibatch size, η is the learning
rate.
1 Participant k executes:
2 initializewk

0

3 for each round t = 1, 2, 3, ..
4 receive{wi

t}i∈Nk

5 ψk
t ← wk

t

6 for all devices i ∈ Nk

7 ψk
t ← ψk

t + ζtαt,i(w
i
t − wk

t )
8 wk

t+1 = ModelUpdate(ψk
t )

9 send(wk
t+1) to neighbors

10 ModelUpdate(ψk
t )

11 B ← (splitDk into batches of sizeB)
12 for batch b ∈ B
13 ψk

t ← ψk
t − η∇ℓ(ψk

t ; b)
14 wk

t ← ψk
t

15 return(wk
t )

network of neighbours. In this way, each peer reconstructs a model update by building a
mixed model composed by such S segments that have been pulled from different peers.
They extend the solution by allowing each peer to pull S×R segments in each round of
communication, withR being an hyper-parameter, to be carefully tuned, that represents
the number of mixed models that can be reconstructed, thus impacting the communica-
tion efficiency while accelerating the propagation of fresh model. The mixing strategy is
similar to FedAvg, weighing contributions (i.e., segments) according to the cardinality of
the dataset held by participants.

In [163], authors propose a consensus-based FedAvg-inspired algorithm (referred as
CFA), supposing sparse connectivity. The algorithm is formalized in Algorithm 2. In
each round, the participant k receives models from its neighbors and produces an aggre-
gated model,ψk. Next, local iterations of mini-batch SGD are performed to produce the
new-generation model, that will be sent to the neighbors, before the process repeats. The
peculiarity of the algorithm stands in how the aggregated model is obtained, at round t,
from the neighbor contributions, that is: ψk

t = wk
t + ζt

∑
i∈Nk

αk,i(w
i
t−wk

t ), where ζt

23



2 Decentralized Learning in Federated Settings

is the “consensus step size” and the mixing weights αk,i are chosen, similarly to FedAvg,
as αk,i =

ni∑
i∈N

k
ni

with ni being the cardinality of data samples at participant i.
We conclude this overview about instances of baseline algorithms for server-less fed-

erated learning by mentioning the fact that blockchain-based implementations of peer-
to-peer learning frameworks have been — and are — explored in literature (e.g., [93]),
though not being explored in this thesis.

24



3 Issues in Decentralized
Learning

COMMUNICATION

EFFICIENCY

PRIVACY

POISONING

DEFENSE

MULTI-TASK

LEARNING

SYSTEM

HETEROGENEITY

&

MODEL

HETEROGENEITY

NON-IIDNESS

(DATA HETEROGENEITY)

PERSONALIZATION

Figure 3.1: Visualization of major issues in decentralized learning.

Decentralized learning decouples by design the ability to learn a predictive ML/DL
model from the direct access to raw data and meets the rising urge of ensuring privacy
guarantees to the data owners while still being able to distill useful knowledge for the com-
munity. However, as already pointed out in this Thesis, diverse challenges emerge. Chief
among them, privacy is not completely secured by means of just disclosing ephemeral
updates (e.g., gradients, model parameters, model updates) or meta-level information, as
well as the communication efficiency is of paramount importance in cross-device feder-
ated settings. Furthermore, having the raw data (massively) distributed and/or unbal-
anced among participants naturally implies dealing with non-IIDness. An additional

25



3 Issues in Decentralized Learning

factor to be addressed is the heterogeneity of devices’ resources in cross-device settings
(system heterogeneity), which calls for model heterogeneity. Moreover, the design of de-
centralized learning approaches opens up to new possibilities for attackers, since learners
actively participate in the training process, e.g. forcing information leakage from other
participants or trying to influence the behaviour of the system. Recently, the FL commu-
nity is witnessing a growing interest to personalization, i.e., while typically the collabora-
tive solutions are designed and evaluated on the generalization ability of the global model,
in personalization the prerogative is to perform well on local data (e.g., build global mod-
els which are prone to local specialization). These are the most investigated issues in lit-
erature so far, but additional aspects and challenges are rising and taking the scene while
effective solutions for the urgent aspects permit to already apply decentralized learning in
real scenarios. In this section, we discuss the systems in the literature that aim at solving
some of the above mentioned issues, i.e. communication efficiency, privacy, device het-
erogeneity, and poisoning defense. For non-IIDness of data among clients, we present the
issue in detail, while leaving the analysis of the state-of-the-art related methods to Chap-
ter 7. In the following, we do not deepen the literature related to client personalization,
and we refer to [178] for this aspect. Also, discussing multi-task FL (e.g., [171]) is outside
the scope of this Thesis.

Fig. 3.1 visualizes the major issues faced in FL settings. Issues in collaborative learning –
and the related proposed solutions – are often correlated, i.e. a methods that aim at allevi-
ating a specific issue may be beneficial or detrimental for another aspect. The overlapping
of issues in the figure underline such a mutual influence. For example, data heterogeneity,
as we will detail in the following, hampers the converge of the global model and requires
more rounds to achieve consensus among nodes (e.g., more communications), with re-
spect to an ideal IID case. As a consequence, methods that reduce the degradation intro-
duced by data heterogeneity, simoultaneously decrease the amount of communication
rounds for the convergence. In a similar vein, approaches that compresses the informa-
tion exchanged during the collaborative training can have beneficial effects in terms of
privacy guarantees, i.e., the exchanged payload leaks less sensitive information. However,
typically such benefits come at a cost, which may be, for example, local computation or
memory overhead, as we will detail later on in this Thesis.

26



3.1 Improving Communication Efficiency

Let us note that, in the following sub-sections, we will use the taxonomy definitions
and terms introduced previously in this Thesis; where not possible or convenient, we
explain in-line the specific meaning of the employed definitions/terms/symbols.

3.1 Improving Communication Efficiency

The communication efficiency in decentralized learning can be addressed from different
perspectives. In the first place, decentralized optimization algorithms are usually designed
to allow for multiple local training iteration between communication rounds to reduce
the total communication cost of the training process (e.g.,[90, 128]); in synchronous star-
shaped federated learning the number of participants selected per round is typically lim-
ited (e.g., [128]), as well as in peer-to-peer topology the number of neighbours to scatter
the updates to is bounded (e.g. bounded to 1 such as in GL [70] or in [179]). Stream
compression (e.g., by encoding, quantization and/or sparsification of updates) is typi-
cally employed to reduce the per-round communication cost [26, 87, 97, 108, 133, 157, 161,

179, 180]. Furthermore, specific strategies can be crafted accordingly to the peculiarities of
the model to train (e.g., by introducing asynchrony between the updating of the neural-
network parameters belonging to shallower/deeper layers [35]). Stream compression has
been mostly explored in star-shaped federated learning, but similar solutions may be eas-
ily adapted in peer-to-peer topology. An orthogonal approach is to improve the commu-
nication efficiency by reducing the total communication rounds needed for the model
convergence (e.g., implementing distributed variants of SGD optimizers [120, 133, 163]).
Or again, communication-efficiency can be architecturally favoured by leveraging MEC
[118]. Obviously, combinations of the previous strategies are common.

FedAvg can be seen as a periodic averaging protocol that involves in each round of
communication only a random subset of the participants. However, FedAvg (and pe-
riodic averaging protocol in general) maintains the same frequency of communication
independently from the utility of the specific synchronization, e.g., when all models are
approximately equal or they have already converged to an optimum then synchronization
may be omitted. Leveraging this observation, authors of [90] propose a dynamic averag-
ing protocol to invest the communication efficiently by avoiding to synchronize models

27



3 Issues in Decentralized Learning

when the impact of such aggregation on the resulting model is negligible. To this end, au-
thors leverage a simple measure, ∥wi

t−r∥2, for model divergence to quantify the effect of
synchronizations; specifically, they measure the divergence of the locally trained model,
wi

t, for the round t at participant i, with respect to a reference model r that is common
among all participants, e.g. the last received global model, and compare such divergence
with an a-priori chosen threshold to decide whether perform a synchronization.

In [97], two strategies have been proposed to reduce the uplink cost in star-shaped FL
(explicitly considering FedAvg as baseline) by means of compression, and they are struc-
tured updates and sketched updates. Such strategies can be combined to further compress
the data to be sent from clients to server. The peculiarity of structured updates is that
the updates are restricted to have a pre-defined structure, and they are directly trained
to fit such structure. Two types of structures are considered by authors: (i) updates are
enforced to be a low-rank matrix of rank k, with k being a fixed parameter (low-rank up-
dates); (ii) updates are restricted to be a sparse matrix following a pre-defined random
sparsity pattern (i.e., a random mask), thus only the non-zero values along with the seed
to generate the pattern have to be communicated. Regarding sketched updates, the full
(or structured) update resulting from the local training is approximated, i.e. sketched,
in a lossy compressed form. To this end, two (compatible and jointly usable) tools are
proposed: subsampling, i.e only a random subset of the (scaled) values of the updates are
communicated, and probabilistic quantization. As the reader can note in the continua-
tion, several successive works addressing communication efficiency in decentralized train-
ing combine subsampling or sparsification and quantization. Furthermore, supported by
empirical evidence, authors highlight the usefulness of applying structured random rota-
tions before quantizing to reduce the quantization error.

Similarly to [97], authors of [26] use a combination of basis transform, subsampling
and probabilistic quantization to reduce the server-to-client communication cost of Fe-
dAvg.1

FedPAQ [157], aside from periodic average of models and partial device participation
(standard in FedAvg), leverages quantized updates, i.e. quantizing the weight deltas that
are the differences between the received model and the locally-computed models, to en-
hance the communication efficiency targeting a cross-silo federated setting. The authors

1Note that in the work [97] the objective is to reduce the client-to-server communication cost.

28



3.1 Improving Communication Efficiency

propose to use the low-precision quantizer [6]. An accurate convergence analysis for both
strongly convex loss function and non-convex loss function is provided. As expected, the
fastest convergence rate corresponds with synchronization at each local SGD step; for
the strongly convex setting tuning the local SGD iterations in each round as τ = o(

√
T ),

with T being the total number of iterations, ensures the convergence of the FedPAQ to
the global optimal, while for the non-convex setting the period length τ can grow up to
O(
√
T ) to reach a stationary point with an overall convergence rate ofO(1/

√
T ).

Building on their previous Sparse Binary Compression (SBC) [162] technique that tar-
gets the traditional distributed setting, in [161] authors specifically design a compression
framework for cross-device federated settings. The proposed Sparse Ternary Compres-
sion (STC) compresses both the upstream and the downstream communication with re-
spect to the baseline FedAvg while improving the robustness to non-IID data as well as to
partial client participation. In addition to experimentally confirming the already known
weakness of vanilla FedAvg in presence of heterogeneous data, authors also show poor
model accuracy with aggressive quantization schemes, such as SignSGD [15], in non-IID
scenarios.2 Conversely, topp% sparsification, i.e. dropping all but the p fraction of up-
dates with the highest magnitude, suffers least from heterogeneous data. This observa-
tion leads the design of the proposed compression scheme for the upstream communi-
cation in FL. As happens in SBC, STC exploits (i) topp% sparsification of weight deltas
(i.e., the difference between the global model and the local model), (ii) local residual ac-
cumulation3, (iii) binary quantization of the topp% elements4 and (iv) encoding (to loss-
lessly compress the distance between the non-zero elements of the sparse weight-update)
to reduce the amount of data to be sent from participants to the server. It is worth to
highlight once more that this strategy alone does not affect the downstream communi-

2In SignSGD [15], gradient updates are locally quantized to their binary sign from clients. The parameter
server gathers such binary updates and broadcasts the belief about the sign of the true gradient. The
server uses majority vote on the gathered gradient updates (See Algorithm 3 in [15]).

3Note that, differently from [180] (presented later on), in STC (and SBC) the residual accounts for ig-
nored weights and not for gradients.

4The result of the sparse weight-update binarization is a ternary tensor containing values−µ, 0, µ with
µ being the mean of the topp% weight-updates in absolute value. STC sets all the positive non-zeroed
elements to µ and all the negative non-zeroed elements to−µ. Note that in SBC the resulting sparse
tensor is binary instead, and the algorithm is slightly different; they independently compute the mean of
all non-zeroed positive and all non-zeroed negative weight-updates; if the positive mean is bigger than
the absolute negative mean, they set all negative values to zero and all positive values to the positive
mean and vice versa.

29



3 Issues in Decentralized Learning

cation. In this regard, authors observe that, although clients-to-server updates are sparse,
the server-to-clients update essentially becomes dense as the participation rate, i.e the frac-
tion of participants involved in each round, exceeds the inverse sparsity, i.e. the inverse of
the hyperparameter that rules the sparsification. In fact, in the worst case, the number of
non-zero elements in the aggregate (the sum) of clients-to-server updates grows linearly
with the number of participating clients. The dense nature of server-to-clients updates
prevent an effective compression. Therefore, they propose to apply their STC algorithm
also to the aggregated updates at server side, hence the server maintains a residual as well.
However, the partial client participation in each round of FL prevents a straightforward
application of STC at server-side: STC sparsifies and compresses weight deltas, and, con-
sidering that not all the participants are involved in every round, some participants could
not recover the updated weights from the received (compressed) delta, since they may
not have participated to the previous round(s). The solution adopted is to cache the last
τ updates at server-side, and to require a prior synchronization step for those outdated
participants before initiating the local training. Thanks to this shrewd protocol addition,
the downstream communication can be effectively reduced regardless the partial client
participation.

In Edge Stochastic Gradient Descent (eSGD) [180], besides tacking advantage of edge
servers to scale the collaborative training process, authors propose an algorithm to reduce
the uplink communication cost when exchanging gradients in a star-shaped synchronous
learning framework. The solution builds on the observation that gradients, produced by
iterations of mini-batch SGD optimization, are very sparse [176]; in eSGD, participants
upload only a fraction (i.e., a fixed percentage) of the gradient coordinates, only the ones
that are considered important, while accumulating a residual to account for ignored co-
ordinates5 — merely dropping these portions of gradients, even if they are small values,
can hamper the model convergence [5].

To reduce the network traffic headed to the cloud, a MEC-aware extension of FL is
proposed in [118], namely Hierarchical Federated Averaging (HierFAVG). Authors ex-
ploit the hierarchical architecture of such brand-new paradigm to have middle-level ag-

5Gradient sparsification and local gradient accumulation is a well-known technique in the traditional dis-
tributed setting to reduce the communication cost by speeding up the training process (i.e. less com-
munication rounds) without significantly degrading the resulting model accuracy [5, 117, 176]. Error
accumulation, in this case weight accumulation, permits to not waste gradient information, although
they may suffer from staleness.

30



3.1 Improving Communication Efficiency

gregator entities; each τ1 local updates, edge servers gather the updates of the participants
in their proximity to produce the aggregated models of their locality; each τ2 edge-level
aggregations, the cloud updates the global model (hence each τ1τ2 local iterations). It
is worth noting that if τ2 is equal to 1, the HierFAVG corresponds to the traditional Fe-
dAvg, while, intuitively, with τ2 greater than 1, HierFAVG reduces the communication
cost with respect to FedAvg.

From another perspective, the communication cost of decentralized training can be
reduced if less rounds are needed to reach a certain target accuracy. To this end, authors of
[133] empirically demonstrate the suitability of an Adam[95]-inspired variant of FedAvg.
As well known, the ADAM optimizer leverages per-parameter learning rates, 1st moment
and 2nd raw moment estimates to converge faster in traditional minibatch SGD. In the
proposed CE-FedAvg, participants locally compute their update by exploiting ADAM,
and they send back to the server the 1st and the 2nd moment estimates as well as the locally
trained model (specifically, their deltas). Thus, beyond the global model parameters, the
server also aggregates the 1st and the 2nd moment estimates, that are broadcasted at the
beginning of every round to the learners. Since moment estimates have the same size of
model parameters, it is straightforward to note that the communication cost per round
is tripled with respect to FedAvg in absence of compression. However, authors highlight
that this is compensated by the faster convergence of CE-FedAvg. 6 Furthermore, they
employ compression techniques to reduce the amount of data to be sent; sparsification,
quantization and encoding are used. Authors also emphasize an additional advantage of
CE-FedAvg over FedAvg: in absence of a central test/validation set of data, it is difficult
to tune the learning rate for FedAvg, while the default Adam’s hyperparameters seem to
be suitable for general use.

Similarly, the authors of [120] implement a federated version of momentum gradient
descent, namely Momentum FL, where momentum terms and model updates are ex-
changed between participants and server, round by round, doubling the communication
cost of each round with respect to FedAvg, while taking advantage of faster convergence
rate.

6Note that CE-FedAvg implements a distributed version of the Adam optimizer, which is different from
the approach in [155], presented in detail in Chapter 7, that instead uses Adam as a server-side opti-
mizer that sees the aggregated model updates as “pseudo-gradients”. Furthermore, in FedAdam [155]
the per-round communication cost is the same as FedAvg.

31



3 Issues in Decentralized Learning

The same purpose, i.e. reducing the total communication rounds to reach model con-
vergence, motivates an improvement of the CFA algorithm (already presented in 14) in
peer-to-peer topology of learners. Authors propose to introduce a “negotiation” phase
where, before using the aggregated modelψk

t to run local training, the participant k feeds
back ψk

t to the same neighbors. Neighbors compute gradients with respect to ψk
t , and

send them back to the participant that has forwarded the request. Next, gradients are ag-
gregated, leveraging a tunable mixing parameter, to produce ψ̃k

t that is then used as start-
ing point for the local learning iteration. This strategy should make the learning faster7.
However, this algorithm requires four communication rounds, and moreover the negoti-
ation is synchronous. Therefore, the algorithm is transformed into a two-stage algorithm,
referred as Consensus FedAvg Gradient Exchange (CFA-GE) [163]: the negotiation phase
is performed without the need of sendingψk

t and receiving back the neighbors’ gradients,
permitting to save communications and avoid the synchronization intermediate step (i.e.,
waiting for the neighbors to send back the gradients with respect toψk

t ). The insight is to
exploit past (and outdated) models received from a certain neighbor during the previous
rounds to produce, in advance, a gradient prediction for that neighbor, and this is done
for all the neighbors. In this way, it is possible to scatter such gradients prediction to-
gether with the next-generation model parameters; each participant hence receives such
information, produces ψk

t by aggregating the neighbors’ model as we have seen for the
baseline CFA algorithm, and uses the received gradient predictions to adjust the model
to obtain ψ̃k

t , and finally applies the local training to ψ̃k
t that will generate the updated

model.
In [179], the authors propose an efficient peer-to-peer framework for cross-silo com-

munication, namely SAPS-PSGD, where aggressive model sparsification is coupled with
single-peer communication scheme. They leverage a coordinator entity – not a parame-
ter server – that, in extreme synthesis, broadcasts to the participants a gossip matrix and
other some necessary information (i.e., the current global step, a random seed to generate
the mask for applying the desired sparsification) and synchronizes the rounds of commu-
nication among such node pairs. The gossip matrix is built by taking into account the
peers’ bandwidth to favour faster links; it dynamically determines the couples of peers
that will exchange highly sparse model updates during that round.

7The negotiation phase, from an high-level perspective, can be thought to be similar to the approach of
[109].

32



3.2 Protecting Pivacy

3.2 Protecting Pivacy

It may be believed that sharing gradients, model updates or meta-level information (such
as outputs of layers in neural-networks) in place of raw data ensures privacy protection.
However, it has been demonstrated that gradients exchanged during the distributed train-
ing process do leak information about the training data [63, 72, 140, 148, 216, 227] as well as
model updates [131, 140] — even though it may be preferable to exchange model weights
instead of gradients under a privacy-preserving perspective [149] — and activations [44,

205].

The literature about protecting privacy in decentralized learning comprises diverse ap-
proaches; differentially-private mechanisms [54, 129] can be employed during the dis-
tributed training process to mask updates at the cost of reduced model accuracy [11], and
relaxations of traditional Differential Privacy (DP) can be leveraged to inject less noise
[183], limiting the incurred performance degradation. Data-augmentation [52] and ob-
fuscation [74] techniques can be used in visual application to prevent reconstruction of
images in the training set. Multi-party secure aggregation [19, 172] and similar techniques
[63] can hide the individual contributions to the aggregator, finding its main utility in
star-shaped federated learning, but producing non-negligible overheads. Additively ho-
momorphic encryption also allows the aggregator to sum updates, thus ensuring the in-
scrutability of single contributions [148] while not degrading model accuracy but increas-
ing communication cost. Combinations of DP-mechanisms with secure aggregation and
additively homomorphic encryption are also explored [60, 185] to balance the weaknesses
of such techniques. Minimizing distance correlation between raw data and activations (at
cut layer) [187] and step-wise activation functions [205] are used to prevent the invertibil-
ity from intermediary representations in the context of privacy-preserving Split Learning.

The first works enforcing participant-level (ϵ, δ)-DP [48] in federated settings are most
notably [54] and [129]. The aim, common to both the works, is to ensure that a model
trained with FedAvg does not reveal whether a certain participant has been involved dur-
ing the decentralized training process, balancing the trade-off between privacy loss and
model performance. It is worth highlighting that the proposed solutions protect the
whole client’s dataset differently from [1] where a single data point’s contribution in the
trained model is protected.

33



3 Issues in Decentralized Learning

Authors of [54] use two randomized mechanisms to guarantee client-level DP: (i) ran-
dom subsampling of participants for a certain round of communication; (ii) Gaussian
mechanism. In FedAvg, the central aggregator averages the participants’ updates, that
here are considered to be weight deltas (i.e., the difference between the received parame-
ter weights and the locally computed parameter weights). The key idea of [54] is to per-
turb and approximate such averaging (i.e. perturbing the sum of updates) by employing
a Gaussian mechanism. As usual, the Gaussian-distributed noise has to be calibrated ac-
cording to a certain sensitivity; such sensitivity is calculated as the median norm of all
the gathered updates and the updates are scaled according to such sensitivity, i.e. clipped
updates.8 To keep track of the privacy loss within subsequent communication rounds,
authors use the moments account of [1] instead of the privacy amplification lemma and
the standard composition theorem [48] to obtain tighter bounds. In particular, they stop
the collaborative training once the (cumulative) δ, that represents the likelihood that a
participant’s contribution is disclosed, becomes greater than a threshold.

The approach of [129] is slightly different from [54]. Authors, in fact, randomly sam-
ple participants by selecting each independently with probability q, hence producing
variable-sized samples of participants and influencing the sensitivity of (weighted) average
queries — in [54] a fixed number of clients is randomly selected. Two different bounded-
sensitivity estimators are proposed to account for such participant-sampling process. Fur-
thermore, two clipping strategies are evaluated for multi-layers models: (i) flat clipping,
i.e. using an overall clipping parameter, or (ii) per-layer clipping, i.e. treating the param-
eters of each layer as separate vector and using per-layer clipping parameters, motivated
by the observation that such vectors may have vastly different L2 norms — anyway the
clipping parameter is fixed throughout the training process, while in [54] is dynamically
calculated as the median norm of all the unclipped contributions.

In [183], authors allocate a tighter privacy budget for guaranteeing client-level DP and
instance-level DP, i.e. less noise to reach the same privacy guarantee, also improving the
accuracy of the trained model. They employ a relaxation of traditional DP, in this case
Bayesian DP (BDP) [184], by making two assumptions (i) stationary data distribution and
(ii) datasets with unchangeable samples. Authors also use a Bayesian accounting method
instead of state-of-the-art moments accountant [1] thanks to the assumption that data

8The sensitivity is calculated by the server in each communication round.

34



3.2 Protecting Pivacy

come from a particular distribution and not all the data are equally likely; this observa-
tion can lead to sharper privacy loss bounds with BDP in federated setting. Besides the
proposed use of BDP, to limit the noise added to guarantee both instance-level and client-
level DP, the noise to be added by the server for client-level DP is “re-counted” consider-
ing the injected noise during the on-device gradient descent. They call this approach joint
accounting. However, a limitation emerges: joint accounting is only usable for FedSGD
algorithm, not for FedAvg (because the possible multiple local iterations in FedAvg, hence
multiple noisy steps, may influence the point at which the gradient is computed: a differ-
ent gradient distribution can arise or the total noise variance can be underestimated).

To prevent the server from peeking in individual updates during the aggregation phase,
a practical protocol for secure aggregation, namely SECAGG, has been proposed in [19]

for federated settings — reminding that the communication bottleneck and the drop-
ping of users are peculiar of such scenarios. In a nutshell, star-shaped FL systems leverage
a central server that computes sums of updates from which deriving the new-generation
global model round by round. The scope of SECAGG is to hide the individual contri-
butions of participants and release only the sum of such updates to the server, preventing
privacy violations from the aggregator entity. The essence of the approach is similar to
differential privacy: updates are locally perturbed, but, while in DP-mechanisms such
perturbations become part of the updates (they are never removed, in fact noise calibra-
tion is fundamental to not compromise the training), in SECAGG such perturbations
are neutralized during the aggregation phase. The insight is to have pairs of participants
— hereinafter referred as participant u and participant v— that share randomly sampled
0-sum pairs of mask vectors, pu,v and pv,u; before uploading their model updates, partic-
ipants u and v add such masks to their contributions, with pu,v +pv,u = 0 ∀u ̸= v; each
participant u computes a random mask vector and perturbs (i.e., adding pu,v if u > v or
subtracting pu,v otherwise) its local update for each other user v; mask-pairs are canceled
out during the sum of all contributions. Every pair of participants share a common ran-
dom seed su,v of some fixed length that can be fed to a secure Pseudorandom Generator
PRG [17] to generate the mask pairs, hence the seed can be transmitted in place of the
the entire mask (that has the same size of updates) reducing the communication burden.
These shared seeds are established through Diffie-Hellman [42] key exchange, composed
with a hash function. It is worth noting, that (i) SECAGG requires the elements of the
input vectors, i.e. the participant’s updates, to be integersmodK , while (ii) the elements

35



3 Issues in Decentralized Learning

of the vector updates are typically real-valued instead, and that (iii) the employed PRG’s
output space is the same of the input space. Therefore, the real-valued elements of the
updates are typically clipped to a fixed range of real numbers, and then quantized among
such range using k bins, and the SECAGG modulus is chosen to be K = kn, with n
being the number of participants.

A practical protocol for collaborative training in federated settings must be able to tol-
erate a fraction of dropping users. To this end, SECAGG leverages Shamir’s t-of-n Secret
Sharing [166] to permit recovering the pair-wise seeds of a limited numbers of dropping
participants; in practice, each participant sends encrypted shares of its Diffie-Hellman
secret to all other participants via server. SECAGG also accounts for the critical case in
which a certain participant belatedly responds to the server with its contribution by using
a double masking for the updates. In addition to pu,v, a private mask vector pu (generated
from a seed bu as well) is further added to the update, and also its shares are distributed
during the secret sharing round for the pair-wise masks.

SECAGG has been employed in the FL system designed in [18] but highlighting that
the quadratically grow (with respect to the number of participants) of the computational
cost for the server limits the maximum size of an instance of SECAGG to hundreds of
learners. They indeed leverage intermediate secure aggregators for subsets of participants,
and the intermediate sums are further aggregated without SECAGG by a master aggre-
gator.

A recent work [172], namely Turbo-Aggregate, addresses the quadratic growth of the
computational cost and of the communication overhead by slightly changing the ap-
proach, and still being resilient to user dropouts (up to 50% of participants). The key
idea is to partition the federation of learners in groups that actively participate in the ag-
gregation and dropout-recovery phases instead of just leveraging the central server, and to
add redundancy directly in the model updates to reconstruct the missing contributions
of dropout participants instead of Shamir’s t-of-n Secret Sharing such as in SECAGG. In
a nutshell, reminding that the scope is to securely compute a sum (i.e., the sum of locally
computed updates) and assuming that all communications take place via central server
employing Diffie-Hellman key exchange protocol, Turbo-Agg works as follow. Firstly,
participants are randomly divided in L groups, with each group being composed of Nl

participants. The set of participants in group l is referred as Ul. The process involves
L stages, and Turbo-Agg adopts a circular and sequential strategy in its simplest ver-

36



3.2 Protecting Pivacy

sion: in each stage only one group is involved; the output produced from a group in
a certain stage is the input for the next group.9 Ignoring for a moment the possibility
of dropout, in each stage, the participant i in group l masks its update x(l)i with a ran-
dom vector u(l)i being known (and communicated) only by the honest server, similarly to
what happens in SECAGG. To be secure against server-participants collusion, learner i
additionally masks its update with another random vector r(l)i,j , and the resulting masked
update x̃(l)i,j = x

(l)
i + u

(l)
i + r

(l)
i,j is sent to each participant j of the group l + 1, with∑

j∈[Nl+1]
r
(l)
i,j = 0, i.e. random vectors r cancel out during aggregation. The secure

sum is cooperatively computed, group by group, and can be summarized thanks to the
recursive relation s̃(l)i = 1

Nl−1

∑
j∈[Nl−1]

s̃
(l−1)
j +

∑
j∈[Ul−1]

x̃
(l−1)
j,i with s̃(l)i that is a vari-

able locally held by each participant i in group l > 1, and that represents the aggre-
gated masked updates from the previous group10. It is important to highlight that each
participant i of group l sends s̃(l)i and x̃(l)i,j to each learner j of the group l + 1. A fi-
nal aggregation step is necessary to preserve the privacy of the participants in group L
at the stage L; an additional group (referred as final), in fact, is randomly composed
(for example, among the survived learners) with each participant aggregating the con-
tributions coming from the group L, and sending the results to the server. Specifically,
participants j in the final group produces s̃(final)j = 1

NL

∑
i∈[NL]

s̃
(L)
i +

∑
i∈[UL]

x̃
(L)
i,j

and send it to the server, that can recover the sum of unperturbed updates by apply-
ing 1

Nfinal

∑
j∈[Nfinal]

s̃
(final)
j −

∑
m∈[L]

∑
j∈[Um] u

(m)
j . However, in case of participant

dropouts the protocol will fail, since, for example, the random vectors r cannot be can-
celled out. To this end, authors propose to employ Lagrange coding [206] to allow partic-
ipants of group l to recover the missing contributions from group l− 1, and to compute
the partial aggregation anyway. Being concrete and redirecting to the full paper [172] and
to [206] for theoretical detail, each participant has to send to each participant j in group
l+1 two additional (coded) vectors in each stage, namely s̄(l)i and x̄(l)i,j , in addition to s̃(l)i
and x̃(l)i,j . The employed coding strategy allow each learner in group l + 1 to reconstruct
the vector {s̃(l)i }i∈Nl

starting from at leastNl evaluations (i.e, s̄(l)i and x̄(l)i,j) from the pre-
vious stage. Therefore, since each participant send two evaluations to the learners in the
next group, this redundancy permits to tolerate up to half of learners dropping.

9Since only one group is active per stage, for ease of notation, group and stage are referred both with the
index l.

10The initial aggregation at group l = 1 is set as s̃(1)i = 1.

37



3 Issues in Decentralized Learning

It is worth noting that, although SECAGG and its variant Turbo-Aggregate explicitly
targets star-shaped networks of learners, they are suitable for fully decentralized networks,
i.e. peer-to-peer topologies, with one peer (or more) working as aggregator.

An alternative to SECAGG for star-shaped FL frameworks is represented by Addi-
tively Homomorphic Encryption; since such technique guarantees the additivity of mul-
tiple ciphertexts, the server can perform the aggregation without the need of seeing the
updates in clear. In [60], authors propose to use a symmetric additively homomorphic
encryption called PPDM [223] for its efficiency, combining it with Laplacian mechanism
for DP in order to neutralize collusion between compromised users and malicious server.
They show drastically reduced communication overhead with similar solution [148], that
employs paillier encryption instead.

In [185], authors combine multi-party computation (MPC) via Threshold Homomor-
phic Encryption and Differential Privacy to balance their respective weaknesses; in fact,
applying DP to provide the required level of privacy may degrade accuracy while MPC
alone is vulnerable to inference attacks over the output, i.e. the intermediate models dur-
ing the collaborative training process and the final predictive model. Leveraging only on
one of those two techniques may compromise the effectiveness of the system (in terms
of prediction accuracy of the resulting model or in terms of privacy guarantee). The key
intuition in [185] is to reduce the traditional amount of locally-injected noise to ensure
ϵ-DP by exploiting the MPC framework building on the assumption that t participants
are trusted (i.e., non-colluding parties), with t being a customizable parameter; thanks to
this assumption, the Gaussian noise to be added to each local query is reduced by a fac-
tor of t − 1. In the worst scenario, the performance (in terms of model accuracy) of the
proposed system converges with existing local DP approaches.

Considering the scenario in which the data quality of certain participants, namely un-
reliable participants, may be poor (meaning that a portion of their data is not always ac-
curate as the data held by others), authors of [218] focus on guaranteeing two levels of
privacy: (i) preserving privacy of the participant’s data and (ii) hiding the eventual par-
ticipation in the training process of unreliable participants. At the same time, they focus
on limiting the impact on the global model of such participants. The proposed solu-
tion, SecProbe [218], ensures participants’ privacy by perturbing, during the local training
process, the objective function of the neural network using the functional mechanism

38



3.2 Protecting Pivacy

(FM) [212] to achieve ϵ-DP, and obtaining the sanitized parameters by minimizing the
perturbed objective function.

To make the metadata exchanged in Split Learning irreversible, in [205] authors pro-
pose to modify the conventional activation functions to be step-wise, i.e. the activation
function is discretized by having the input domain divided into intervals and the output
constant for each interval; in this way, it is not possible to exactly recover the activations’
input from their outputs11. In this context, another approach to reduce invertibility of
intermediate representations consists in minimizing the distance correlation between raw
data and the communication payload, i.e. having a low distance correlation while main-
taining the accuracy in predicting the output labels. Authors of [187] hence train the
neural network by using a weighted combination of two losses as loss function, and such
losses are the log distance correlation [177] and the categorical cross entropy. The former is
used as a measure of statistical dependence between the input data and the estimated cut
layer activations, while the latter traditionally considers the true labels for the inputs and
the predicted labels. Intuitively, the distance correlation is minimized to ensure privacy
and the cross entropy is minimized for classification accuracy. The solution is evaluated
on visual datasets.

3.2.1 Combining Privacy and Communication Efficiency

Lossy compression techniques inherently lead to a privacy improvement, however it is
not straightforward to measure the effective privacy guarantees, for example under DP
formalism. The works surveyed in Section 3.1 do not explicitly measure privacy, and the
ones in Section 3.2 do not address the communication cost as primary concern, while
examples of combined approaches can be found in [108] and in [87]. Furthermore, other
aspects in conjugating privacy and communication efficiency emerge; the secure aggrega-
tion protocol [19] can be redesigned to account from the beginning for communication
efficiency [20], while tailored DP-mechanisms can be more amenable to privacy analysis
when quantization of noisy DP-updates is employed [4].

11Authors of [205] consider three activation functions: sigmoid, hyperbolic tangent and ReLU [138].
While sigmoid and hyperbolic tangent are bijective functions, ReLU is a surjective function, and the
output of ReLU can be reversed only if the input is positive. The proposed solution “masks” the output
of such positive inputs by using a step-wise variant of ReLU.

39



3 Issues in Decentralized Learning

In [87], authors combine communication efficiency, privacy guarantees and resilience
to malicious participants under non-IID data distribution. They consider a star-shaped
synchronous collaborative learning framework in which participants and server exchange
(aggressively compressed) gradients instead of model parameters. The proposed algo-
rithms use as baseline the SignSGD [15] algorithm with majority vote, that, however, does
not explicitly and formally address privacy protection of participants and that has been
shown to fail to converge when the data on different learners are heterogeneous [34, 161].

In particular, to deal with non-IID data, authors first propose a variation of SignSGD,
namely sto-sign, that applies a two-level stochastic quantization on locally computed gra-
dients, and then only transmits the signs of such quantized values. Additionally, dp-sign,
a differentially private version of sto-sign, is designed to ensure formal privacy guaran-
tees for participants involved in the training. Authors theoretically relate the Byzantine
resilience, i.e. the number of Byzantine workers that can be tolerated without harming
the convergence guarantees, of their proposed algorithms to the heterogeneity of local
datasets. 12 Authors also propose an extension of their algorithms which takes account
for residual error on server side and uses it to correct the majority vote. The convergence
of the proposed algorithms is established theoretically.

With respect to just sending the quantized updates in clear, the SECAGG[19] protocol
leads to a bandwidth expansion that is less than 2x while ensuring reliability of the secure
aggregation to dropping or collusion of a fraction of users.13 However, in [20], authors
critically observe some limitations of a straightforward combination of SECAGG and
compression techniques; chief among them (i) quantizing to a fixed point representation
requires selecting the clipping range [−c, c] a priori that may be challenging to establish
or may lead to poor approximations if the clipping range is not large enough, and (ii) the
SECAGG modulus is chosen to be K = nk to represent all possible aggregated vectors
without overflow (for example, if clients are 210 the SECAGG modulus are 10 bits wider
than they would be without accounting for secure aggregation) dominating the commu-
nication cost introduced by SECAGG — the bandwidth expansion determined by secret

12A Byzantine participant may transmit arbitrary information. Authors of [87] assume that such Byzan-
tine participants upload the opposite signs (the opposite sign of each entry) of the true gradients, with
the true gradients being the average gradients of all the normal workers (hence, it is supposed that the
attackers know such quantities).

131.73x bandwidth expansion considering 210 participants (i.e., n = 210) and 16 bit fixed point represen-
tation (i.e., k = 216).

40



3.3 Data Heterogeneity and Client Drift

sharing and cryptography is much less influential. The scope of [20] is to propose a recipe
for an auto-tuning (observation (i)) communication-efficient (observation (ii)) secure ag-
gregation. The key idea is to avoid clipping at client-side but instead quantizing over an
unbounded range according to a quantization bin size b that is dynamically and tightly
adjusted by the server (and communicated round by round) according to the distribu-
tion of the entries of the sum relative to the previous round, and then locally applying
the mod k operation instead of clipping; the server can compute a tight bin size b ex-
ploiting the assumption that the entries of the sum fit a normal distribution thanks to a
random rotation that is locally performed by the participants (before quantizing) to their
updates.

3.3 DataHeterogeneity and Client Drift

While in a typical distributed DL setting (e.g., a datacenter environment) training data
on worker machines are assumed to be independently and identically distributed (IID),
such assumption does not hold for FL settings: the local data on clients are likely not to
be representative of the global distribution (i.e., the union of local datasets).

Considering a classification task, data heterogeneity among clients can be determined
by (1) label distribution skew, (2) feature distribution skew and (3) quantity skew. In la-
bel distribution skew, the label distributions vary among participants. This can be very
common in reality, thinking for example to the health care domain, where a specific hos-
pital may treat patients with specific diseases/pathologies, collecting data examples for a
subset of the total possible class of diseases/pathologies.

In literature, the label distribution skew is reproduced leveraging two major strategies,
(a) quantity-based label imbalance, where clients hold examples belonging to a fixed num-
ber of labels – in practice, the original dataset is partitioned in subsets of a certain size,
with each subset containing only examples with the same label, and each participant is as-
signed a certain amount of per-label subset, (b) distribution-based label imbalance, where
the per-client label distributions is ruled by a distribution. In the latter case, usually the
label imbalance is drawn from a Dirichlet distribution, as proposed in [76]. In this case,
the degree of heterogeneity, i.e. how much the amount of per-label examples vary across
clients, is tuned by a (non negative) concentration hyperparameter – the lower the con-

41



3 Issues in Decentralized Learning

centration the higher the heterogeneity, with two extreme cases: with large concentration
values (e.g. > 100) clients will hold approximately the same amount of per-label examples,
while with low concentration values (e.g., < 0.1) client will tend to hold data belonging
to only one class.

In feature distribution skew, the focus is on the distribution of features while the amount
of per-class examples may be the same. For example, in a real federated visual dataset, im-
ages belonging to the same class may exhibit different features for different clients (e.g., the
same bird may vary in feather color and pattern depending on the specific habitat). The
work in [105] identifies two ways of generating datasets with a feature distribution skew,
i.e. noise-based feature imbalance and synthetic feature imbalance. In the first case, dif-
ferent levels of noise (e.g., Gaussian noise) is injected to the examples of different clients,
which can be created by randomly and uniformly partitioning a balanced IID dataset. An
example is depicted in Fig. 3.2. For the latter case, synthetic feature imbalance refers to
dataset explicitly generated to have different features in the same class of examples, to be
then distributed on different clients.

0 10 20

0

5

10

15

20

25

original

0 10 20

0

5

10

15

20

25

std_dev = 0.05

0 10 20

0

5

10

15

20

25

std_dev = 0.1

Figure 3.2: Example of adding Gaussian noise, with varying standard deviation, on an image from
the MNIST dataset.

In quantity skew, the amount of local data examples varies across participants; also
here, it can be regulated by a Dirichlet distribution, similarly to the distribution-based
label distribution.

It is worth noting that these three kinds of heterogeneity, i.e. label distribution skew,
feature distribution skew and quantity skew, can be present simultaneously in real-life ap-
plications. For example, in the FEMNIST dataset [25], a federated version of the MNIST
dataset, each client holds the handwritten digits and letters from the same person, hence

42



3.3 Data Heterogeneity and Client Drift

w*

w2*

w1*
w1

w2

wt+1

wt

client drift

true opt.

client opt.

local 
update

global
update

Figure 3.3: Client drift phenomenon in FedAvg is depicted for two learners performing three lo-
cal updates (light blue circles). Such local steps move towards the individual client
optima w∗

i (green square) by minimizing their cost function for local data. The server
aggregates client updates by average, and therefore the updated version of the global
model at the next round (i. e.,wt+1) (gray hexagon) move towards the average of client
optima instead of to the true optimum w∗ (red triangle) [91].

retaining his or her unique style (feature distribution skew), and each client holds a differ-
ent amount of per-label examples (label distribution skew) and of total examples (quan-
tity skew).

Non-IIDness of local data implies that the local objective of each FL participant is
inconsistent with the global optima. In fact, when fine tuning on private data, client
model drifts apart from the global model they received at the beginning of the round
and also from the models of the other clients, which hold data drawn from a different
distribution. Such a phenomenon is referred to as client drift, depicted in Fig. 3.3.

It is worth underlining that client drift is more significant in presence of large number
of local updates (large number of epochs and/or small local batch size) [91, 110, 189], which
amplifies the divergence among personalized client models, while, on the other hand, a
too reduced number of local iterations translates to high cumulative communication cost
(i.e., a high number of rounds is needed to achieve global model convergence).

For the sake of clarity, Fig. 3.4 reports some qualitative results to highlight the degrada-
tion, in terms of global model generalization, introduced by non-IIDness. The accuracy
of a global model trained while considering three different levels of data heterogeneity

43



3 Issues in Decentralized Learning

(low, moderate, and high) is tracked, empirically showing that a higher level of data het-
erogeneity translates into reduced performance of the FedAvg global model (test accu-
racy). The data among clients is allocated following a distribution-based label imbalance
(case 1b above), and ruled by a concentration hyperapameter α (larger the α the higher
the heterogeneity level). Fig. 3.5 illustrates the distribution of labels among clients.

In the last Chapters of this Thesis, we will focus on state-of-the-art methods to tackle
data heterogeneity with algorithmic approaches. In Section 6.3.2, we will review FL ap-
proaches, based on Knowledge Distillation, that tackle data heterogeneity either recti-
fying the server model resulting from averaging drifted client models or directly limiting
client drifts during local training. In Section 7, we will review and discuss the state-of-the-
art algorithms to tackle data heterogeneity from a general perspective, and we empirically
evaluate a selection of the reviewed methods.

0 25 50 75 100 125 150 175 200
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 = 0.1
 = 1.0
 = 100.0

Figure 3.4: The figure shows how the accuracy of the global model trained with FedAvg deterio-
rates with increasing data heterogeneity. A lowerα coefficient translates to higher non-
IIDness. The performed experiments consider the CIFAR-10 dataset, and a ResNet-
18 architecture.

44



3.4 Handling System Heterogeneity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0

1

2

3

4

5

6

7

8

9

La
be

l
 = 100.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0

1

2

3

4

5

6

7

8

9

La
be

l

 = 1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0

1

2

3

4

5

6

7

8

9

La
be

l

 = 0.1

Figure 3.5: The figure shows the distribution of labels (0-9) on the private data of 20 clients. From
left to right the heterogeneity is increased by reducing the α parameter that rules the
Dirichlet distribution, as in [76]. This is an example of label distribution skew, simu-
lated with distribution-based label imbalance.

3.4 Handling SystemHeterogeneity

Device heterogeneity, i.e. device with diverse hardware characteristics or/and with dif-
ferent connectivity (in general referred as resources), is common in cross-device federated
settings. Such heterogeneity negatively influences the training process; for example, in
federated learning frameworks that leverage synchronous rounds, the slower participants
dictate the pace if any counteraction is taken.

Inspired by the well-known dropout technique [174], clients train their updates con-
sidering a smaller sub-model with respect to the global model. This further reduces the
server-to-client traffic, reduces the local computational cost, shrink the local memory re-
quirements, and obviously, reduces the client-to-server traffic. Differently from the tradi-
tional dropout, a fixed number of activations are zeroed out at each fully-connected layer,
thus all the possible sub-models have the same reduced architecture, while a fixed percent-
age of filters are zeroed out for convolutional layers. Authors call this strategy Federated
Dropout. As we will detail in Chapter 5, Federated Dropout can be extended to allow
for differently-sized sub-models and can be coupled with lossy and lossless compression.

From a different perspective, authors of [196] claim that the synchronous nature of Fe-
dAvg can limit the scalability, the efficiency and the flexibility of the FL framework. In
fact, (i) only few hundreds of participants are selected per round due to avoid server-side
congestion (the server broadcasts the global model at the beginning of every rounds to
all the selected participants); (ii) given the heterogeneity of training devices (e.g., there
could be significant diversity in terms of computational power), the server usually sets

45



3 Issues in Decentralized Learning

a timeout for receiving back the updates and then synchronizing the model. It could
happen that the selected participants that are able to complete the round within such
timeout are not enough to produce a reliable update (i.e., less than the minimum partic-
ipant goal count) [18]. By leveraging asynchronous updates, FedAsync avoids server-side
timeouts and abandoned rounds as well as not requiring to broadcast the model to all the
selected participants at the same time. Moreover, to limit the effect of staleness, a well-
know drawback of asynchronous SGD approaches, FedAsync uses a weighted average to
generate the new global model after aggregation as happens in SLSGD, relying a mixing
hyperparameter that weighs the freshness of the aggregated model. Furthermore, to deal
with drifting clients and non-IIDness, a proximal term in the local objective functions
is employed as it happens in FedProx. Different alternatives are proposed to account for
staleness, and to adaptatively decrease the mixing hyperparameter that rules the average
in function of staleness, i.e. less weight associated with larger staleness.Under the same
communication overhead, they show that FedAsync converges fester than FedAvg when
staleness is small while the two approaches have similar performances considering large
staleness for FedAsync. Authors state that, in general, the convergence rate of FedAsync
is between single-thread SGD and FedAvg.

Asynchronous approaches, such as FedAsync [196], limit the influence of resource-
constrained devices on the collaborative training process — synchronization among par-
ticipants requires to wait for the slowest. In TiFL [28], authors design a system to alleviate
the stragglers problem without relaxing the synchronization of FedAvg, but by cluster-
ing participants in tiers with similar response latency per round, while in LoAdaBoost
[79], authors propose to use the cross-entropy loss information to early stopping the lo-
cal training.

Besides asynchronism and tier of participants with similar response latency, a natu-
ral solution to address straggler clients in FL frameworks (resource constrained devices
and/or devices under poor network condition) was priorly proposed in [142], in their
FedCS. The goal is to maximize the number of updates to be aggregated within a specific
deadline, since involving a larger fraction of participants in each round typically reduces
the time needed to achieve a certain model accuracy [128]. Taking advantage of the MEC
infrastructure, authors propose to extend the FL algorithm by replacing the random se-
lection of clients with a two-step client selection; the MEC operator asks random clients
to provide their resource information (computational capacities, wireless channel states,

46



3.4 Handling System Heterogeneity

size of the dataset relevant to the current training task) from which deciding whether
including them in the current training round according to an estimation of the time nec-
essary for such participants to complete the download-train-upload process.

In [190], authors address the problem of dynamically adapting the global aggregation
frequency (in real time) to optimize the learning process with a given resource14 budget
targeting a star-shaped FL framework in edge computing environments. They consider
M types of resources that can be taken into account, and define that all the participants
consume cm units of type-m resource at each local update step, and each global aggre-
gation consumes bm units of type-m resource (with cm > 0, bm > 0). Being T , the
number of total local update steps for the training process, and being τ , the number of
local updates between two global synchronizations, and considering the resulting num-
ber of global synchronizations K , i.e. K = T/τ , the total amount of consumed type-m
resource is (T +1)cm + (K + 1)bm, noting that the additional “+1” accounts for comput-
ing the last loss value after the last synchronization K . The objective is to minimize the
global loss function by tuning τ andK (and, consequently,T ) such that the total amount
of consumed type-m resource is not greater than the resource budget Rm (each type-m
resource has a certain budget associated). Such minimization problem is approximately
solved by leveraging a theoretical convergence upper bound of the canonical distributed
gradient descent after T iterations, although assuming that the loss function is (i) con-
vex, (ii) ρ-Lipschitz and (iii) β-smooth. In the convergence analysis, authors also define
an upper bound for gradient divergence, i.e. an upper bound of the divergence between
the gradient of the local loss function and the gradient of the global loss function, that
depends on how the data is distributed among different participants, hence taking into
account the non-IIDness of data. We redirect to the full paper for the complete theo-
retical analysis. In a nutshell, the proposed control algorithm recomputes the optimal
τ , hereinafter referred as τ ∗, during each aggregation step via linear search on integer val-
ues of τ accordingly to the most updated parameter estimations needed to approximately
solves the minimization problem mentioned above. 15

14Authors of [190] consider a general definition of “resources” including, e.g., bandwidth, energy, time
and monetary cost.

15It is worth noting that, intuitively, if the resource budget is unlimited, τ∗ is equal to 1, i.e. global synchro-
nization after each local update, while in presence of budget constraints it may be convenient investing
the resource for local computations rarefying the global synchronizations, i.e. τ∗ > 1.

47



3 Issues in Decentralized Learning

In regards to peer-to-peer frameworks, BACombo (already presented in 14) interest-
ingly leverages a bandwidth-aware worker selection, i.e the peers to be requested for model
segments are not trivially chosen randomly. To reduce transmission time, peers with faster
network connections should be preferred. However, it is not easy to know the network
condition of a certain peer a priori. The proposed solution exploit a multi-armed bandit
algorithm [9]; each participant, with probability ϵ, either explores the network condi-
tions of peers by selecting them randomly or exploits its already acquired knowledge —
each participant maintains a table, that is updated each time a peer is picked for commu-
nication, that contains historical indications about the network state of that peer — by
greedily selecting the peers with best network conditions.

3.4.1 Defending against Poisoning

From being passive data providers, in cloud-based ML, participants become active enti-
ties in the learning process of decentralized training: they locally compute updates and
observe intermediate model states. Although this design is the cornerstone to improve
several aspects of traditional ML/DL, it exposes the system to a larger variety of attacks
from malicious learners, since participants, in theory, can contribute with arbitrary up-
dates, and could try to manipulate the learning process for diverse scopes (e.g., merely
hampering the convergence, forcing other participants to over-expose their contribution
or backdooring the system), while making their detection harder since the raw data are
not accessible. This is known as model poisoning, besides the more traditional data poi-
soning. We redirect the reader to [125] for a complete understanding of the threat model
and of the attack variety. We present here some strategies to detect and/or neutralize poi-
soning attacks.

Authors of [197] (SLSGD) propose a variation of FedAvg to address non-IIDness and
to tolerate data poisoning attacks (evaluated by simulating the attack through label flip-
ping). They act on the baseline FedAvg algorithm by varying (i) the aggregation step and
(ii) the new-model generation step; (i) instead of aggregating the updates by averaging,
they use a trimmed mean to (try to) filter out poisoned updates, and (ii) instead of re-
placing the previous global model with the resulting aggregated model, they use a mov-

48



3.4 Handling System Heterogeneity

ing average between the previous and the just aggregated model to limit the influence of
non-IID datasets and to mitigate the extra variance caused by such “robust” aggregation.

In [53], authors propose a defense against sybil-based poisoning (precisely, label-flipping
and backdoor poisoning), namely FoolsGold, targeting a federated learning framework
where participants upload locally computed gradients to the (honest) aggregator. The
idea is to identify malicious colluding participants, i.e. poisoning sybils, by monitoring
the diversity of participants’ update; sybils are supposed to share a common objective
and the directions of poisoning gradients should seem unusually similar respect to up-
dates from honest learners. In a nutshell, FoolsGold maintains an historical aggregate of
updates per participant at server side, i.e. the cumulative sums of its updates so far, and it
measures the cosine similarity between couple of participants’ historical aggregates before
each aggregation step — the rational behind this strategy is that gradients resulting from
single local iteration of SGD can be very similar in directions even among honest clients,
however colluding parties will share the same objective in the long run, limiting the effec-
tiveness of poisoning throughout the training process by accordingly re-scaling the learn-
ing rate of participants that are deemed as possible sybils. The clear limit of FoolsGold —
apart from being incompatible with secure aggregation and assuming honest aggregator
— is that it is designed to look for sybils, hence a single participant adversary can remain
undetected.

Authors of [217] propose a defense against poisoning, specifically targeting label flip-
ping and semantic backdoor attacks, in a synchronous federated learning framework ac-
counting also for non-IIDness. Differently from FoolsGold [53], their strategy actively
leverages on clients; the server asks to the participants to evaluate some sub-models, each
one derived from the aggregation of disjoint subsets of the model updates related to a
certain round, and they provide back to the server an indication about the correctness in
the classification task of such sub-models, tested on their private dataset, in the form of a
binary matrix (obviously, a certain participant cannot receive a sub-model derived from
its own contribution). Thanks to the gathered matrices, the server computes a penalizing
coefficient for each sub-update to weigh the aggregation of such sub-models (for example,
if more than half of the clients report the anomaly for the same sub-model, it should be
zero-weighed). Authors highlight that their solution can be also combined to FoolsGold
[53], e.g. to detect single-participant attack.

49



3 Issues in Decentralized Learning

Similarly to [53] and [217], authors of [107] use a server-side pre-trained autoencoder
model to detect abnormal weight updates that are then accordingly penalized during the
aggregation.

50



4 Structured Sparse Ternary
Compression for
Convolutional Layers

In this Chapter, we introduce our original variant of STC that has been specifically de-
signed and implemented for convolutional layers, and previously presented in [136]. As
for the method in Chapter 5, we devise a star-shaped synchronous protocol which ex-
changes model parameters and model updates as FedAvg. Our variant is originally based
on the experimental evidence that a pattern exists in the distribution of client updates,
namely, the difference between the received global model and the locally trained model.
In particular, we have experimentally found that the largest (in absolute value) updates
for convolutional layers tend to form clusters in a kernel-wise fashion. Therefore, our
primary novel idea is to a-priori restrict the elements of STC updates to lay on such a
structured pattern, thus allowing us to further reduce the STC communication cost. This
Chapter details the design, implementation, and evaluation of our novel technique, called
Structured Sparse Ternary Compression (SSTC). Reported experimental results show
that SSTC shrinks compressed updates by a factor of x3 with respect to traditional STC
and with a reduction up to x104 with respect to uncompressed FedAvg, at the expense of
negligible degradation of the global model accuracy. For the sake of result reproducibilty
and to foster related lines of work, we provide a reference to our repository that contains
the simulation code we used for experimental results (https://github.com/alessiomora/
SSTC).

51

https://github.com/alessiomora/SSTC
https://github.com/alessiomora/SSTC


4 Structured Sparse Ternary Compression for Convolutional Layers

0 1 2 3 4 5 6 7 8 9

0.01 0.02 0.03 -0.2 -0.01 0.05 0.5 0.07 0.04 -0.06

0 0 0 -0.2 0 0 0.5 0 0 0

0 0 0 -0.35 0 0 0.35 0 0 0

0 1 2 3 4 5 6 7 8 9

what is communicated

3 6 0.35

index of positive elements

index of negative elements

mean of topp elements 
in absolute value

index

index

tensor

ternary 
tensor

sparse
tensor

Figure 4.1: An example of STC application to a tensor with 10 elements with p=20%.

4.1 Sparse Ternary Compression

STC [161] is a lossy compression scheme able to extremely reduce the per-round com-
munication cost of FL iterations. STC uses, in series, topp sparsification and ternary
quantization. Firstly, all but the p larger absolute values in the input tensor (either model
weights or weight updates) are zeroed out.1 Then, the survived fraction of elements is bi-
nary quantized to {µ,−µ}, with positive values substituted with µ, negative values with
−µ, and µ being the mean, in absolute value, of the non-zero elements. Therefore, the
algorithm outputs a ternary tensor with values {−µ, 0, µ}.

The ternarization process of STC reduces the entropy of the tensor to be communi-
cated, and favors an efficient encoding. Only the mean value, µ, and the indexes of non-
zero elements has to be transmitted, instead of all the values in the original tensor. The
decoder assumes that elements corresponding to non-communicated indexes are filled
with 0 value. Fig. 4.1 illustrates a simplified example of STC application to a flat tensor
with 10 elements.

It is worth noting that indexes can be losslessly compressed by transmitting the dis-
tances between consecutive indexes instead of their absolute positions in the tensor. Then
distances can be optimally encoded with Golomb code [161], by reducing the bits neces-
sary to represent them2. Let us highlight that this can be applied as well in our SSTC
proposal; however, we do not consider the possibility of using Golomb encoding for in-

1p can be expressed as a percentage of the number of elements in the input tensor. topx% sparsification
retains the x% larger values.

2In [161] the authors assume a random sparsity pattern, and that the distances among consecutive indexes
can be approximated by a geometric distribution.

52



4.2 Our SSTC original proposal

Algorithm 3: FedAvg with clients sending updates ∆ instead of complete local
models.
1 Server executes:
2 initializew0

3 for each round t = 0, 1, 2, 3, ..
4 c← max(C ×K, 1)
5 St ← (random set of c clients)
6 for each client k ∈ St in parallel
7 ∆k

t ←ClientUpdate(k, wt)
8 ∆t ←

∑
i∈St

nk

n
∆k

t

9 wt+1 ← wt +∆t

10 ClientUpdate(k, wt)
11 w ← wt

12 B ← (splitDk into batches of sizeB)
13 for each local epoch e from 1 toE
14 for batch b ∈ B
15 w ← w − η∇ℓ(w; b)
16 ∆← w − wt

17 return ∆ to server

dexes either in STC and SSTC in the comparison that follows in order to better point out
the advantages deriving from the only exploitation of the SSTC approach.

4.2 Our SSTC original proposal

As also demonstrated in [193], for convolutional layers, the distribution of client updates
in FedAvg is not uniformly distributed. For the sake of clarity, Alg. 3 presents FedAvg
with clients sending back to the server model updates instead of full model parameters. A
specific pattern has been demonstrated to emerge: the largest (in absolute value) updates
form clusters on a subset of kernels. Fig. 4.2 shows the output of top0.1% sparsification
on updates (in absolute value) for a convolutional layer at three different rounds of the
federated training. Each column in the depicted heat maps represents a kernel update.
The reported results are obtained using the neural architecture and settings described in
Sec. 4.3, and refer to the first layer of the network.

53



4 Structured Sparse Ternary Compression for Convolutional Layers

On the other hand, in traditional STC the communication payload is almost entirely
due to indexes. In our original SSTC we propose to exploit the presence of kernel-wise
pattern in the distribution of large updates for convolutional layers to reduce the com-
munication cost of STC. In a practical perspective, the principle is that knowing a priori
that the largest elements of the updates will lay on a restricted subset of the convolutional
kernels makes possible a more efficient encoding of indexes.

SSTC supposes to find the majority of the largest updates on a subset of the kernels
in the convolutional layers, and restricts the search space for the topp elements by con-
sidering only a fixed number of kernels among all the convolutional layers (i.e., the topk

kernels, identified according to the average of the absolute values of the elements in ker-
nels updates – the columns in the heat maps in Fig. 4.2 and Fig. 4.3).

Figure 4.2: Distribution of convolutional weight updates (in absolute value) after top0.1% sparsi-
fication at three different rounds on three randomly sampled clients.

Algorithm 4 formalizes our compression method. For the sake of clarity, Alg. 4 con-
siders a neural network composed by only convolutional layers with the same kernel size.
This simplification does not preclude the application of SSTC to neural networks that
also have, e.g., fully connected layers, as it is shown also in the reported experimental re-
sults.

Lastly, we note that SSTC exactly matches STC when there is no pre-selection of ker-
nels, i.e., when the fraction of kernels to search for larger elements is equal to 1.

Fig. 2 compares the effect of STC and SSTC on the same convolutional weight up-
dates. Different aspects emerge:

• The distribution of the non-zero elements of STC exhibits a column-wise pattern.

• The SSTC approximation of STC is quite accurate even though we are consid-
ering, in the depicted results, only the 12.5% of the columns. This is due to the

54



4.2 Our SSTC original proposal

Figure 4.3: The figure reports a comparison among STC-compressed and SSTC-compressed up-
dates at three different rounds (round 1, 500 and 1000). Each column of three heat
maps refers to a round. From top to bottom, the heat maps represent the uncom-
pressed updates, the updates after STC application and the updates after SSTC ap-
plication for that round on a random client. The reported results are obtained using
the neural architecture and settings described in Sec. 4.3, and refer to the second layer
of the network, with STC sparsity equal to 1% and kernel fraction for SSTC equal to
12.5%. Each column in the heat maps visualizes kernel update.

55



4 Structured Sparse Ternary Compression for Convolutional Layers

fact that STC’s topp sparsification zeroes out entire columns while SSTC does not
consider such columns in the first place.

• SSTC tends to have more dense kernel updates with respect to STC since it con-
siders a reduced subset of them;

• SSTC inevitably ignores and zeroes out large absolute values that lay on kernels
with average lower than the topk while it may include elements that would have
been excluded by STC.

Algorithm 4: SSTC algorithm.
l ∈ [1, L] with L the number of convolutional layers in the neural network,
sparsity p, fraction of kernels k.
Input : list ∆ of per-layer update tensors ∆l ∈RK×K×Cl×Fl , p, k
Output: list ∆sstc of per-layer SSTC update tensors ∆sstc

l

∈ {−µ, 0, µ}K×K×Cl×Fl

1 ∆←Reshaping ∆l to 2-d tensors
2 T ←Concatting reshaped ∆l to one 2-d tensor
3 T topk_kernels, indexes← Selecting topk kernels on T
4 T topk_kernels← Flattening T topk_kernels

5 T stc ← STC on T topk_kernels with sparsity p
6 T sstc ← Scattering T stc column to the original shape of T by means of kernel

indexes
7 ∆sstc ← Slicing and reshaping T sstc

8 return∆sstc

4.2.1 Lossless Encoding

To transmit the produced structured sparse ternary tensor, the indexes of the topk kernels
and a ternary map of the values’ sign in each kernel are communicated. The ternary maps
have the size of the kernel. The values in the maps are {−1, 0, 1}, i.e, 0 for sparsified
elements,−1 or 1 to signify the sign of the non-zero elements. The zeros within retained
kernels are communicated since we expect the non-zero values to be dense in the selected
kernels. Intuitively, the gain stands in indexing groups of consecutive values, instead of
indexing values one by one.

56



4.3 Experimental Results

Let us note that the above SSTC encoding results to be convenient if compared with
STC when it holds that:

bp ∗ p
bk ∗ k + 2 ∗K ∗K ∗ k

> 1 (4.1)

Where the nominator and denominator in Eq. 4.1 respectively refer to the communi-
cation cost due to indexes in STC and SSTC, and bk = 1+ ⌊log2(C ∗ F )⌋ is the bitsize
to represent each of the kernels in SSTC with F being the number of filters and C the
number of channels, bp = 1 + ⌊log2(K ∗K ∗ C ∗ F )⌋ is the bitsize to represent each
of the non-zero elements in STC with K × K being the size of convolutional kernels,
k is the number of the communicated kernels in SSTC and p is the number of non-zero
values in STC. Eq. 4.1 can be rewritten as:

k < p ∗ bp
2 ∗K ∗K + bk

(4.2)

It is worth noting that Eq. 4.1 and Eq. 4.2 refer to the application of STC and SSTC on
convolutional weights only. Hence, if we consider a neural network with only convolu-
tional layers, p = sparsity∗W withW being the total amount of weights. Conversely, if
we consider a neural network with, for example, both convolutional and fully connected
layers, pwill most probably vary round by round, since sparsification is applied consider-
ing the whole model parameters, and non-zeroed elements can be distributed among all
the layers.

4.3 Experimental Results

4.3.1 Experimental Setup

We consider FedAvg as the baseline and we compare SSTC vs. STC in terms of top-1
accuracy of the global model and of compression ratio. We use the same hyperparameter
tuning for every strategy: the local epochs of each client are fixed to 5; Stochastic Gradient
Descent (SGD) is used as local optimizer with 0.1 learning rate; the client batch size is
fixed to 16. The simulations are run for 1000 rounds with 50 clients (out of 3,400 total
learners) randomly selected per round. The sparsity is equal to 0.01 (i.e. 1%) both for

57



4 Structured Sparse Ternary Compression for Convolutional Layers

Figure 4.4: Top-1 accuracy of global model on test set for STC and SSTC, with sparsity equal to
0.01 and the fraction of kernel equal to 0.125.

STC and SSTC. We implement the simulation using TensorFlow (TF) and TensorFlow
Federated (TFF).

For the experiments, we use the LEAF version of the Federated EMNIST dataset (FEM-
NIST) available in TFF for 62-class image classification. Each learner holds her/his own
handwritten characters to reproduce data heterogeneity, and the labels are unbalanced in
number and not uniformly distributed among clients. FEMNIST has a total of 671,585
examples for training, distributed among 3,400 participants, and 77,483 examples for
testing. For the FEMNIST classification task, we use a Convolutional Neural Network
(CNN) composed by two 5x5 convolution layers, 32 and 64 filters respectively, each fol-
lowed by a max pooling layer, a fully connected dense layer with 512 units, and a final
softmax output layer.

4.3.2 Measured Performance Results and Related
Discussion

The first two convolutional layers of the neural network that we considered for the exper-
iments have 52,000 weights in total, excluding biases that are not subject to compression
(the first layer has 32 filters with 5x5 kernels size, the second layer has 32 channels with

58



4.3 Experimental Results

Figure 4.5: Number of elements in STC updates that belong to the convolutional layers during
experiments in Fig. 4.4.

Figure 4.6: Accuracy reached with different tuning ofk, expressed as a fraction, in SSTC. The line
represents the maximum accuracy of STC. The top x-axis reports the compression
factor, averaged within 1000 rounds, of SSTC with respect to STC, i.e. the average
gain introduced by the encoding proposed in Sec. 4.2.1 with respect to communicate
indexes one by one.

59



4 Structured Sparse Ternary Compression for Convolutional Layers

64 filters with 5x5 kernel size). The neural network also has two fully connected layers
for classification. As we explained in Alg. 4, the algorithm performs a pre-selection of the
kernels with larger element mean, in absolute value, and then consider only such a sub-
set of convolutional weights when sparsification is applied to the whole neural network
weights (parameters belonging to both convolutional and fully connected layers).

To compare the compression gain introduced by SSTC with respect to STC, as we
noted in Sec. 4.2.1, we monitored how many non-zeroed elements belonging to the con-
volutional layers are communicated round by round in STC (Fig. 4.5). In this way, we
have a range of values for the term p in Eq. 4.1; in the experiments, p ranges among 2,000
and 3,000 (approximately). K is fixed to 5, since kernels have size of 5x5. In STC, to rep-
resent the maximum index (i.e., 51,999) 16 bits are needed (i.e., bp = 16), also considering
the worst case when encoding using distances. In SSTC the maximum index for kernel
depends on the tuning of k. For example, if we select only the 12,5% of the kernels, we
have k = 260 for the considered neural network, and 11 bits needed to represent them
(i.e., bk = 11). So, applying Eq. 4.1, the gain of SSTC with respect to STC considering the
convolutional part of the considered neural network ranges, approximately, between 2x
and 3x.

The gain introduced by SSTC is more evident if compared with uncompressed Fe-
dAvg, as reported in Table 4.1.

Fig. 4.6 depicts the maximum accuracy reached by different options for k tuning. The
global model accuracy of SSTC converges to the one of STC when k approaches the 40%
of the kernels. However, the proposed encoding is efficient for very dense (i.e., containing
few zero values) sign maps, hence with low k value. In fact, in the considered deployment
environment, when the fraction of topk kernels is over (approximately) the 30% the en-
coding proposed in Sec. 4.2.1 becomes less efficient than directly sending indexes one by
one (Fig. 4.6 reports, in the top x-axis, the compression factor of SSTC with respect to
STC).

4.4 RelatedWork

As reviewed in Chapter 3 a plethora of strategies have been recently designed to reduce the
per-round cost of Cross-device FL. Sparsification, quantization and encoding, proposed

60



4.5 Concluding Remarks

Table 4.1: Compression factors of STC and SSTC for updates coming from the conv layers with
respect to uncompressed (32-bit float) FedAvg. Sparsity = 1%, and k = 12.5% for SSTC.

compression (≈) max acc.
FedAvg + STC 41x 84.33%

FedAvg + SSTC (ours) 104x 83.94%

in different flavors represent the main line of work to significantly lower the bandwidth
requirements of the decentralised learning process. Also federated pruning [198] and fed-
erated dropout [13] result in reduced communication cost for learners, but alone cannot
achieve extreme compression as sparsification- and quantization-based compression.

To the best of our knowledge, FedSCR [193] is the only work that analyses and exploits
patterns in the distribution of convolutional updates for enhancing compression. They
focus on convolutional architecture, as we do in our SSTC. However, the main similarity
between our work and FedSCR stands in the attempt of exploiting update patterns for
compression scope, while ours and their proposed techniques are deeply different from
several other perspectives: in our proposal we try to embed such empirical observations
in STC for a more efficient encoding and we act at the kernel level, while in FedSCR
they consider channels and filters for their structure-wise identification of more signifi-
cant update components; furthermore, in FedSCR, learners accumulate updates deemed
insignificant, eventually synchronizing them with the server; conversely, SSTC does not
assume that the same client will participate more than once in the FL process.

4.5 Concluding Remarks

In this paper we presented an original compression technique that builds on top of STC,
and leverages a specific pattern in the distribution of convolutional weight updates to
shrink the STC encoding.

While this work may be seen as a specialization of STC, SSTC can be more generally
thought as an attempt to exploit – and benefit from – evident patterns in FL updates,
a research line that is still largely unexplored in the existing literature and that calls for
additional future work by the Federated Learning community. Assumptions on the dis-

61



4 Structured Sparse Ternary Compression for Convolutional Layers

tribution of client updates can enhance compression techniques, as well as strategies that
analyse updates (e.g., identifying malicious updates leveraging autoencoders).

The SSTC technique originally presented here only considers convolutional weight
updates; our current research work includes the analysis of the distribution of fully con-
nected or recurrent weight updates in search of meaningful patterns. In addition, it could
be interesting to extend the experimental results on deeper CNNs and more complex
datasets.

62



5 Communication-Efficient
Heterogeneous Federated
Dropout

In this Chapter, we illustrate our novel solution, originally presented in [13], to address
device heterogeneity and to extremely reduce the communication cost in Cross-device
federated settings. The proposed method is based on the FedAvg algorithm, hence, fol-
lowing the taxonomy (Fig. 7.1) from Chapter 2, we devise a star-shaped synchronous
protocol which exchanges model parameters and model updates.

First, we extend the Federated Dropout technique to allow the server to broadcast dif-
ferently sized sub-models that best fit the capabilities of the learning participants. Then,
we drastically reduce the communication cost of the process by applying, in series to Fed-
erated Dropout, sparsification-based compression. In addition, we revisit Sparse Ternary
Compression to account for single layers of the neural network, and we either use it or tra-
ditional STC within our Communication-Efficient Heterogeneous Federated Dropout
(CE-HFD). In our experiments, we show that CE-HFD can substantially lighten the
computation burden on clients (up to 50% less model weights for local training) and
drastically reduce the client-to-server communication payload (up to 191x) without sig-
nificantly degrading the global model performance.

5.1 Federated Dropout

As reviewed in Chapter 3, in Cross-device FL, stream compression (e.g., by encoding,
quantisation and/or sparsification of model weights/updates) is typically employed to
reduce the per-round communication cost as widely recognised in literature.

63



5 Communication-Efficient Heterogeneous Federated Dropout

conv1 conv2 output features
flattened

features fc1 fc2input output

conv1 dropped filters

conv2 dropped filters

fc1 dropped neurons

dropped connections

8

7

9

0

The biases related to the dropped filters/connections are dropped as well.

Resulting sub-model architecture

Figure 5.1: How Federated Dropout works for convolutional layers and fully connected layers.

Orthogonally, Federated Dropout [26] has emerged as an elegant solution to conjugate
communication-efficiency and computation-reduction on FL clients. Inspired from the
well-known Dropout regularization technique [174], Federated Dropout has been pro-
posed to both reducing communication payloads and lightening the computation bur-
den on clients in FL processes. In a nutshell, the server assembles reduced sub-models
by randomly dropping out a fixed fraction of the global model neurons and clients train
their updates for such smaller sub-models [26]. The fraction of kept neurons is referred
to as the federated dropout rate. Therefore, every client receives the same sub-model ar-
chitecture, but filled with different (random) portions of the global model that, before
aggregating the gathered client model updates, have to be mapped back accordingly. A
slightly different alternative implementation consists in considering the same dropped
elements (i.e., filters for convolutional layers and activations for fully connected layers)
for all the clients in a certain round. Fig. 5.1 depicts a simplified example of a Federated
Dropout process. The depicted neural network has 2 convolutional layers, i.e. conv1 and
conv2, and 2 fully connected layers, i.e. fc1 and fc2, that classifies a character from Feder-
ated EMNIST dataset. Max pooling operations are ignored in the figure for the sake of
clarity. Note the flattening operation to connect the output of convolutional layers to the

64



5.2 CE-HFD: Communication-Efficient Heterogeneous Federated Dropout

fully connected ones. The coloured filters/activations are the ones that will be dropped;
the grey filters/activations will be kept in sub-models.

Locally training by using smaller models not only implies having reduced updates in
size but also reduced memory footprint for gradients and for the state tensors associated
with the local optimizer, e.g., momentum SGD. Furthermore, it is worth highlighting
that the forward and backward passes only involve the units survived after the Federated
Dropout pruning, hence resulting in reduced computation requirements for clients. In
fact, the amount of weights of each fully-connected/convolutional layer is shrunk by a fac-
tor of Ni·Ni+1

⌊d·Ni⌉·⌊d·Ni+1⌉ ≈
1
d2

, withNi and Ni+1 representing the number of input/output
neurons of a certain layer, and d ∈ (0, 1] being the dropout rate, and considering the
number of surviving neurons/filters rounded to the nearest integer. Bias terms are re-
duced by a factor of Ni+1

⌊d·Ni+1⌉ ≈
1
d

.

5.2 CE-HFD: Communication-Efficient
Heterogeneous Federated Dropout

In order to address a federation of heterogeneous clients with diverse computation/ com-
munication capabilities, we use in series two techniques: (i) Heterogeneous Federated
Dropout, and (ii) sparsification-based compression, either traditional STC or per-layer
STC. A logic overview of our approach, named Communication-Efficient Heteroge-
neous Federated Dropout (CE-HFD), is depicted in Fig. 5.2.

A round of CE-HFD proceeds as follows. The server broadcasts to each of the selected
clients a compressed, custom sized sub-model by mapping the global model to such a re-
duced sub-model architecture. Clients decompress the received sub-model, and locally
train the received sub-models – note that clients can be fully unaware of the global model
architecture. Then, clients produces their updates by subtracting the locally computed
weights from the received decompressed ones, and further shrink their updates by apply-
ing a specific, sparsification-based compression. Next, they send back to the server the
lossy compressed model deltas (i.e., compressed updates). The server gathers the com-
puted model deltas, decompresses them to recover the sub-models, re-maps the recon-
structed sub-models to the global model and aggregates all the received updates. A new
round can start again. The algorithm of CE-HFD is formalized in Alg. 5.

65



5 Communication-Efficient Heterogeneous Federated Dropout

1. Sub-models 
Selection

2. Sub-models 
Extraction

3. Sub-models 
Compression

4. Sub-models 
Broadcasting

5. Decompression

6. Local Training

7. Updates 
Compression

8. Updates 
Uploading

9. Updates 
Decompression

10. Full-Updates 
Reconstruction

11. Aggregation

Server Clients Server

Global Model

Global Model

Figure 5.2: The server-side and client-side steps for one round of our CE-HFD strategy.

5.2.1 Heterogeneous Federated Dropout

In known Federated Dropout techniques all the selected clients for a given round receive
the same sub-model architecture. We originally extended the idea of Federated Dropout
to allow for model heterogeneity considering that the devices that constitute the fed-
eration can be clustered in tiers that reflect their capabilities. To this regard, the server
maintains a discrete set of predefined sub-models to be then broadcast accordingly to the
tier to which a given client belongs. For example, the server may choose among three
sub-architectures, each one resulting from a specific tuning of the dropout rate (e.g., 0.8,
0.75 and 0.7). The server assembles the model as in traditional Federated Dropout. To
map back the trained sub-models, the server identifies to which sub-model the received
weight deltas refer and knows the seed for pseudo-random generation of the dropout
mask (i.e., which filters/activation to be dropped), so that it can reconstruct the updates
for the larger global model. It is worth noting that in our solution, when mapping the
sub-models back to the global model, the server considers the weights of the dropped fil-
ters/activations as zeros, and uses the original FedAvg aggregation step (i.e., line 8 of Alg.
1), apart from possibly using other server-side optimizers (not only mini-batch SGD, see
also Chapter 7 for details).

66



5.2 CE-HFD: Communication-Efficient Heterogeneous Federated Dropout

Algorithm 5: CE-HFD Algorithm.
tier defines the sub-model to be assigned to a certain client, s the seed for pseudo-
random generation of activations/filters has been dropped, the comp prefix un-
derlines compressed entities.
1 Server executes:
2 initializew0

3 for each round t = 1, 2, 3, ..
4 m← max(C ×K, 1)
5 St ← (random set ofm clients)
6 for each client k ∈ St in parallel
7 wk

t ← ExtractSubModel(wt, tier, sk)
8 comp_wk

t ←Compress(wk
t )

9 comp_∆k
t , sk ←ClientUpdate(comp_wk

t , sk)
10 ∆k

t ←Decompress(comp_∆k
t )

11 ∆k
t ←Remap(∆k, tier, sk)

12 ∆t ←
∑K

k=1
nk

n
∆k

t

13 wt+1 ←ApplyGradients(∆t)

14 Clients execute:
15 ClientUpdate(comp_w, sk)
16 w ←Decompress(comp_w)
17 winitial ← w
18 B ← (splitDk into batches of sizeB)
19 for each local epoch e from 1 toE
20 for batch b ∈ B
21 w ←ApplyLocalOptimizer(w, b)
22 ∆← w − winitial

23 comp_∆w ←Compress(∆w)
24 return comp_∆, sk to server

5.2.2 Per-layer Sparse Ternary Compression

STC applies topp% sparsification and calculates µ to be used in the ternarization process,
by considering the weight deltas (i.e., updates) irrespectively from the layer they belong to.
However, different layers may have weights of different magnitude, and in turn updates
of different scales [126]. Hence, the topp% sparsification may favour updates coming from
a specific layer of the neural network and penalize others. We instead propose to evalu-
ate the employing of STC at the layer level. This gives also the possibility to tune the

67



5 Communication-Efficient Heterogeneous Federated Dropout

sparsification in a finer way: specific layers can be compressed more or less aggressively
with respect to others. In fact, as we will see from the results reported in the following
section, some layers may be more sensible to sparsification, either for their specific con-
nectivity (e.g., convolutional), for their size (e.g., number of filters/activations), and for
their placement in the network (shallower/deeper layers).

5.3 Experimental Results

5.3.1 Experimental Setup

We evaluate our strategy against already established FL benchmarks, and in particular we
use Federated Averaging (FedAvg) [128] as a benchmark. Both for our strategy and for
FedAvg, we fix the local epochs of each client to 5; we use SGD Nesterov momentum
with 0.9 momentum as local optimizer. We set the local batch size to 10. We use a learn-
ing rate of 0.004. In all experiments, local training is performed with full precision, i.e.
32-bit float. Biases are never compressed since their compression results in a negligible
communication saving; they are only reduced in size through HFD.

Dataset

For the experiments, we use the LEAF version [25] of the Federated EMNIST dataset
(FEMNIST) [38] available in TensorFlow Federated1 for a 62-class image classification.
FEMNIST reproduces the data heterogeneity (non-IIDness) among clients by having
each participants holding her/his handwritten characters, and the distribution of per-
client labels is also unbalanced. It has 3,400 users with a total of 671,585 examples for
training and 77,483 examples for testing. We implemented the simulations with Tensor-
Flow and TensorFlow Federated.

Model

For FEMNIST’s image classification task, we use a CNN composed of two 5x5 convolu-
tion layers, a fully connected dense layer with 512 units, and a final softmax output layer.

1https://www.tensorflow.org/federated

68

https://www.tensorflow.org/federated


5.3 Experimental Results

The first convolutional layer has 32 channels, and the second one has 64 channels; each
of them followed by 2x2 max-pooling.

Sub-Models

We define three sub-models resulting from applying 0.8, 0.75 and 0.7 dropout rates to the
model described in the previous subsection. Table 5.1 reports how dropout rates translate
in reduced model size. We assign one out of these three sub-models to each client selected
per round by using a discrete uniform distribution; there is no correlation by the amount
of local data examples and sub-model assignment.

Table 5.1: Global model and sub-models sizes comparison.

# param dropout rate size reduction (≈)
global model 1,690,046 0.0
sub-model (i) 1,084,359 0.8 36%
sub-model (ii) 956,894 0.75 43%
sub-model (iii) 837,373 0.7 50%

Table 5.2: Comparison of different client-to-server compression against full-precision FedAvg.
p.l. stands for per-layer. Columns l1, l2, l3, l4 represent the four layers of the considered
neural network; l1 is the first convolutional layer. In per-layer STC, 8-bit quantization
is applied for non-sparsified layers. Last column reports the rounds for 75% accuracy.

sparsification compr. max. acc.

l1 l2 l3 l4 (≈) (round)
FedAvg - - 85.36% (168)

STC .01 100x 83.84% (166)
p.l. STC (1) .01 .01 .01 .01 100x 82.09% (194)
p.l. STC (2) - .05 .0075 .05 100x 82.71% (195)
p.l. STC (3) - .1 .005 .1 100x 81.98% (193)
p.l. STC (4) - - .01 - 44.9x 84.55% (191)

69



5 Communication-Efficient Heterogeneous Federated Dropout

Figure 5.3: Top-1 Accuracy on the y-axis, number of rounds on the x-axis. 50 clients selected per
round. Comparison of uncompressed FedAvg, FedAvg plus STC and FedAvg plus
per-layer STC in upload.

Figure 5.4: Top-1 Accuracy on the y-axis, number of rounds on the x-axis. 50 clients selected per
round. Comparison of FedAvg, and CE-HFD with different compression technique
and tuning.

70



5.3 Experimental Results

Table 5.3: The first row refers to uncompressed HFD, the others entries refer to CE-HFD.
Columns s1, s2, s3 refer to each sub-model. Server-to-clients communications are quan-
tized to 8-bit precision.

sparsification compr. (≈) max. acc.

l1 l2 l3 l4 s1 s2 s3 (round)
HFD - 1.6x 1.8x 2x 84.89% (191)

HFD 8bit - 6x 7x 8x 85.29% (170)
STC .01 148x 168x 191x 83.73% (194)

p.l. STC (1) .01 .01 .01 .01 148x 168x 191x 81.97% (198)
p.l. STC (4) - - .01 - 66x 74x 83x 84.25% (162)

5.3.2 Results and Analysis

We compared uncompressed FedAvg with per-layer STC and traditional STC both with
the same sparsification rate (i.e., 0.01) – that translates2 to the same compression (≈100x)
–, without applying dropout-related techniques. Table 5.2 shows the detailed compar-
ison; Fig. 5.3 depicts the training accuracy over 200 rounds for the different configura-
tions. Traditional STC outperforms per-layer STC; this is probably due to the fact that
per-layer STC forces a compression in all the neural-network layers, also in more sensible
layers that in STC are less aggressively sparsified. However, per-layer STC can be tuned in
a finer way, e.g. by applying less/more aggressive sparsification on specific layer of the neu-
ral network. For example, we excluded the first convolutional layer from sparsification,
and we applied a sparsification rate of, respectively, 0.05, 0.0075 and 0.05 to the second
convolutional layer and to the fully connected layers. That results in a 100x (≈) com-
pression, improving model accuracy with respect to per-layer constant sparsification, but
still not reaching the performance of traditional STC. Taking per-layer STC at its most
extreme by only applying STC on the larger layer (the first fully-connected layer that re-
tains the ≈ 95% of the model parameters), and by quantize the other weights to 8-bit
representation, the model achieves performances comparable to uncompressed FedAvg
and still translates to client-to-server communication reduction of 44x.

2The compression factor can be further improved by applying lossless compression on the representation
of non-zeroed element’s indexes.

71



5 Communication-Efficient Heterogeneous Federated Dropout

Figure 5.5: Top-1 Accuracy on the y-axis, number of rounds on the x-axis. 50 clients selected per
round. CE-HFD with per-layer STC applied only on the larger layer.

Then, we evaluated the performances of HFD, considering sub-models defined as out-
lined in previous subsection, with traditional FedAvg, both exchanging full-precision
(i.e. 32 bit) model weights in broadcast and full-precision updates in upload. We com-
pare these two baselines with different configurations of CE-HFD. Fixing 8-bit quanti-
zation as the compression technique for server-to-client communications, we evaluated
the following compression techniques for client-to-server updates within CE-HFD: (i)
8-bit quantization, (ii) traditional STC and (iii) per-layer STC with diverse tuning. Table
5.3 details such results. 8-bit HFD shows a faster convergence with respect to its full-
precision counterpart while almost reaching the same maximum accuracy of uncom-
pressed FedAvg baseline, even though with a slower start. As happens without HFD,
traditional STC outperforms per-layer STC in CE-HFD (see Fig. 5.4). Note that with
a sparsification rate of 0.01, the per-layer and traditional STC translate to extreme com-
munication reduction, i.e., 191x update compression for the lower-capacity tier of de-
vices. CE-HFD with traditional STC as compressor almost matches the performance
of STC only; HFD does not significantly degrade the model performances in any of the
communication-efficient configuration. Furthermore, applying per-layer STC only to
the first (the larger) fully connected layer of the neural network, and employing 8-bit
quantization for the updates belonging to the rest of the neural network weights, results

72



5.4 Related Work

in model accuracy degraded by slightly more than 1% with respect to the FedAvg baseline,
and still translates to 66x, 74x, and 83x update compression respectively for the three con-
sidered sub-models.

Finally, we evaluated CE-HFD with different sparsification rate associated to the client
tiers. Each client applies a constant 66x compression to the updates with respect to the
global model size, irrespectively of the actual sub-model associated with the specific client
(that means less aggressive sparsification for smaller sub-models). Such a configuration of
CE-HFD is indicated as HFD+p.l.HSTC in Fig. 5.5. Although the latter configuration
results in lower overall compression, it does not improve the performance of CE-HFD
configured with a fixed sparsification rate for all the three sub-models (see Fig. 5.5).

5.4 RelatedWork

Bouacida et al. presented a variant of the originally proposed FD, called Adaptive Feder-
ated Dropout [21], that maintains an activation score map at server-side to assemble sub-
models with filters/activations that show the higher activation score round by round. In
their experiments, Deep Gradient Compression (DGC) [116] is applied to further reduce
the client-to-server communications. It is worth noting that they use the same sub-model
architecture (i.e., same sub-model size) for all the clients. Horvath et al. proposed FjORD
[73], a FL framework that exploits Ordered Federated Dropout (OFD), i.e., dropping ad-
jacent components of the model instead of random ones, and introduced the possibility
to broadcast differently sized sub-models to meet client computation/communication
capabilities as well. Alongside, FjORD uses a self-distillation method to enhance the fea-
ture extraction of smaller sub-models resulting in improved global model performances.
However, their framework does not focus on further reducing the communications in
series to OFD.

Finally, we note that other strategies similar to Federated Dropout in their effect of re-
ducing both computation and communication for clients, but inspired from the Pruning
[104] technique rather than Dropout [174], have been proposed in literature, e.g. [198].

Differently from [73], we use the same aggregation step of the traditional FedAvg (see
line 8 of Alg. 1) and we employ a random – instead of ordered – Federated Dropout;
most importantly, we use sparsification-based client-to-server compression. With respect

73



5 Communication-Efficient Heterogeneous Federated Dropout

to [21, 26], we propose to broadcast heterogeneous model architectures, and we use a
different compression technique; we also evaluate a variant of the Sparse Ternary Com-
pression (STC) technique proposed in [161].

5.5 Concluding Remarks

In this Chapter, we presented our CE-HFD, which can cope with device heterogeneity
and address communication bottlenecks while almost reaching the performances of un-
compressed FedAvg. We introduced and evaluated per-layer STC; while classical STC
outperforms per-layer STC, the latter allows to finely tune the compression applied to
each layer of the neural network. Possible extensions of the work presented in this Chap-
ter include extensions of CE-HFD implementation to other neural-network models and
to additional classes of neural networks (e.g., RNNs) as well as using additional federated
datasets for evaluation.

74



6 Knowledge Distillation in
Federated Learning

Federated Averaging (FedAvg) represents the baseline algorithm for Federated Learning
(FL) [128] with the collaborative learning proceeding in synchronous rounds by leverag-
ing a client-server paradigm. However, parameter-averaging aggregation schemes, such
as FedAvg, have well-known limits. Firstly, this class of algorithms implies model ho-
mogeneity among the federation, i.e. each client is constrained to use the same neural
architecture since the server directly merges clients’ updates (e.g., by weighted average).
This may be an issue when the federation of learners is composed of clients with hetero-
geneous hardware capabilities. Furthermore, exchanging model parameters and model
updates have high communication cost which scales with the number of model parame-
ters – even though a plethora of strategies (as we reviewed previously in this Thesis) have
been proposed to extremely improve the communication efficiency at the cost of global
model performance. In addition, exchanging model parameters/updates exposes client to
information leakage, and the server must know the architecture and structure of clients’
model to broadcast the global parameters, possibly incurring in intellectual property is-
sues (i.e., clients in the federation are unwilling to share the architecture they are using).
Lastly, but not less important, when clients hold heterogeneous data, local models tend
to diverge from each other during training and fine tune on private examples (i.e., client
drift). As a consequence, directly aggregating model parameters/updates degrades global
model performances [76, 91, 105, 110, 111, 162, 188, 221].

This Chapter focuses on reviewing federated adaptations of regular Knowledge Distil-
lation (KD) that have been employed to alleviate the above mentioned weaknesses of FL
parameter-averaging aggregation schemes. Initially, KD-based strategies, also motivated
by encouraging privacy properties [146], have been introduced to enable model hetero-
geneity and to reduce the communication cost of the process by exchanging model out-

75



6 Knowledge Distillation in Federated Learning

puts and/or model-agnostic intermediate representations instead of directly transferring
model parameters/model updates [29, 36, 56, 64, 77, 81, 83, 103, 160, 195]. Then, a set of
strategies have been proposed to enhance the aggregation step of FedAvg with a server-side
ensemble distillation phase to enable model heterogeneity and/or improve model fusion
in presence of heterogeneous data [30, 115, 159, 213, 214]. Recently, two KD-based lines of
work have focused on mitigating the phenomenon of client model drift – which makes
averaging-based aggregations inefficient – either using regularization terms in clients’ ob-
jective functions [67, 68, 94, 100, 132, 203, 225] or leveraging globally learned data-free
generator [228].

In this Chapter, we provide a review of the current literature about KD-based ap-
proach in FL, with the help of tabular comparisons, following an issue-solutions struc-
ture. A discussion on the weaknesses of distillation-based FL algorithms and our vision
for future research directions close this Chapter.

6.1 Federated Averaging

Assuming that there are K clients over which the data is partitioned, with each client
k holding a private dataset Dk, the goal of FL algorithms is to solve a global objective
function, defined as a weighted average over all the clients:

min
w
f(w) :=

K∑
k=1

nk

n
Fk(w), (6.1)

where w represents the parameters of the global model to be trained, nk represents the
cardinality of Dk, and n =

∑K
k=1 nk is the total amount of examples held by the par-

ticipating clients. Fk is a generic local objective function (e.g. cross-entropy loss for a
supervised classification task).

Federated Averaging (FedAvg) is considered as the baseline for synchronous FL algo-
rithms that adopt a client-server paradigm. FedAvg proceeds in rounds, and, at each
round, performs the following steps in order to approximately solve the optimization
problem of Eq. 6.1:

1. The global model is broadcast to a random subset of clients;

76



6.2 Knowledge Distillation

2. The activated clients locally fine tune the received model for a certain number of
epochs;

3. The clients send back an update for the global model (i.e., the difference among
the received and the locally computed model parameters);

4. The server collects the updates, aggregates them by weighted average according to
the number of local data points held by clients;

5. The server applies the averaged updates to the current global model.

At step (5), the inverse of the averaged updates can be seen as pseudo-gradient, and the
server can apply such pseudo-gradient to the current version of the global model by us-
ing an optimizer of choice. For FedAvg, the server-side optimizer is Stochastic Gradient
Descent (SGD) with a learning rate equal to 1, which is equivalent to add the averaged
updates to the previous-generation global model [155].

As already underlined, parameter-based FL schemes as FedAvg dictate that clients must
implement the same model architecture since the server directly broadcasts and aggregates
model parameters/updates. In Section 6.3.1, we review FL approaches, based on Knowl-
edge Distillation, to enable model heterogeneity, i.e., each client can implement a model
architecture of choice.

As examined in Chapter 3, when clients hold data drawn from different distributions,
FedAvg suffers from client drift phenomenon which hampers the convergence of the
globally trained model. In Section 6.3.2, we will review the FL approaches based on
Knowledge Distillation, which tackle data heterogeneity either rectifying the server model
resulting from averaging drifted client models or directly limiting client drifts during local
training.

6.2 Knowledge Distillation

Knowledge Distillation (KD) methods have been designed to transfer knowledge from a
larger deep neural network, the teacher, to a lightweight network, the student [23, 71]. In
the simplest form of KD, the student model learns by mimicking the (pre-trained) teacher

77



6 Knowledge Distillation in Federated Learning

model’s outputs on a proxy dataset, also called transfer set. If the transfer set is labeled,
the student can be trained using a linear combination of two loss functions,

L = (1− λ)LCE(q
S, y) + λLKD(q

S
τ , q

T
τ ) (6.2)

LCE is the usual cross-entropy loss between the true label y (e.g., hot encoded) and the
class probabilities q (i.e., soft targets) predicted by the student neural network. Soft tar-
gets qτ are typically produced by applying a softmax layer to the logits zi so that qτ (i) =

exp(zi/τ)∑
j exp(zj/τ)

, where zi is the i-th value of logits vector z. The temperature τ controls the
softness of the probability distribution. qS is computed with τ set to 1. λweights the im-
pact of the two loss terms. LKD is a general distillation loss that measures the agreement
between the student soft targets and the teacher soft targets, e.g. via Kullback-Leibler
(KL) divergence. Alternatively, LKD could directly measure the error between student
and teacher logits (e.g., mean squared error). We refer to [58] for taxonomy and recent
progress in the KD area.

6.2.1 Codistillation

Codistillation (CD) refers to an online version of distillation, which obviates the need of
a pre-trained teacher in regular KD [8, 58]. In fact, codistillation simultaneously trains
T copies of a model by adding a distillation term to the regular loss function of the jth
model to mimic the average prediction of the otherT−1models. In this way, each worker
network sees the ensemble of the other models as a virtual teacher.

For CD, the pre-trained teacher’s soft targets in Eq. 6.2 is replaced with the ensemble
soft targets of T − 1 workers.

In the original formulation of codistillation [8], (1) all the workers implement the same
neural architecture1, (2) all the workers use the same dataset for training and, most no-
tably, (3) the distillation loss is employed during training before any model has fully con-
verged. In the following, we classify a set of FL algorithms as federated adaptations of
codistillation since such strategies train in parallel multiple client models using a distilla-
tion loss or adding a distillation term to their loss before any model has converged, and
each client sees the ensemble of clients at round t − 1 as a virtual teacher. On the other

1The requirement of workers implementing the same model architecture is needed to use codistillation
to fasten data-center distributed training of large neural networks.

78



6.3 Knowledge Distillation in Federated Learning

Knowledge Distillation 
in

Federated Learning

Model 
Heterogeneity

Data Agnosticism

Ensemble Distillation on top of FedAvg Aggregation

Client-side Approaches

Federated Adaptations of Codistillation

Server-side Approaches

Local-Global Distillation

Refinement of Global Model

Regularization Term

Data-free Generator-based

Proxy Data

Data-free Generator-based

Statistics-based

Response-based

Feature-based

issues solutions

Reducing Overfitting

Figure 6.1: A schematic visualization of KD-based solutions for FL issues.

hand, with respect to regular codistillation, such federated adaptations avoid the need of
a shared training dataset and relax the constraint of implementing the same model archi-
tecture among clients.

6.3 Knowledge Distillation in Federated
Learning

During recent years, KD has been increasingly employed in FL algorithms. In this Chap-
ter, we make a primary distinction according to the purpose KD is used for, identifying
two main lines of work: (1) FL algorithms that use KD to enable model heterogeneity
(FL model heterogeneity FL); (2) FL algorithms that use KD to mitigate the impact of
data heterogeneity on global model performance (data-agnostic FL). Then, we further
structure the review according to how these purposes are achieved. For model hetero-
geneity, we distinguish among (a) solutions that leverage server-side ensemble distillation
on top of FedAvg’s aggregation phase and (b) communication-efficient strategies that en-
able model heterogeneity via federated adaptations of codistillation, which we further
classify accordingly to the type of exchanged knowledge between clients and server. In
regard of strategies to mitigate the degradation introduced by non-IIDness, we differen-
tiate (a) server-side strategies that refine FedAvg’s aggregation with a distillation phase
and (b) client-side techniques that locally distill global knowledge to directly tackle client
drift. If not differently specified in the text, the reviewed solutions adopt a server-client

79



6 Knowledge Distillation in Federated Learning

paradigm – the majority in literature – and implement synchronous protocols, which
proceed in rounds.

6.3.1 FLModel Heterogeneity via KD

KD has been initially designed to transfer knowledge among neural networks with dif-
ferent structure and depth. In this Subsection, we review strategies that adopt KD to en-
able model agnosticism in FL, i.e. transfer knowledge among clients with heterogeneous
model architectures.

Enhancing FedAvg aggregation

FedAvg’s protocol can be enhanced to enable model heterogeneity by leveraging server-
side ensemble distillation on top of the aggregation step [115, 159], through which knowl-
edge is transferred among clients with different model architecture. To this end, the server
can maintain a set of prototypical models, with each prototype representing all learners
with same architecture. After collecting updates from clients, the server firstly performs
a per-prototype aggregation and then produces soft targets for each received client model
either leveraging unlabeled data or synthetically generated examples. Next, such soft tar-
gets are averaged and used to fine tune each aggregated model prototype. Alternative
possible solutions to enable model heterogeneity consist in exploiting distributed adap-
tations of codistillation [8] instead of parameter-averaging algorithms such as FedAvg, as
presented in the following.

Federated adaptations of codistillation

The strategies reviewed here can be seen as federated adaptations of codistillation (CD)
[8]. In a general federated adaptation of CD, each client at round t acts as student and
sees the ensemble of clients knowledge at round t − 1 as a virtual teacher knowledge.
As highlighted in Section 6.2.1, traditional codistillation postulates that the worker net-
works have access to the same training dataset to form an ensemble of model responses on
common samples. Such a requirement is not acceptable in the FL context, where collabo-
rative training is performed without disclosing the private raw data of clients. Therefore,
considering a classification task, federated adaptations of CD avoids the aforementioned
problem of collecting model responses on common training data examples by exchanging

80



6.3 Knowledge Distillation in Federated Learning

Dk

Client k

ΔWkW

Server W
5. apply updates 

4. aggregate updates

3. upload 
local updates1. broadcast 

2. local 
training 

Wk

(a) FedAvg.

Dk

Client k

Zk

ZkZ

Server 4. aggregate statistics Zk  
and generate Z 

1. broadcast 
statistics

3. upload local
statistics

2. local train with 
Z-based 

regularizer 
& 

collect local 
statistics Zk

Z

(b) Statistics-based federated
codistillation.

Dk

Client k

Server

5. upload model 
response 

1. broadcast 
model response 

2. distill 

Y 
p Yk 

p

7 (optional). distill server 
model & predict Y 

p

X p,Y  
p

4. predict

X p,Y  
p

3. train

X p

Yk 
p

6. aggregate
and 
generate Y 

p

Yk 
p

(c) Response-based federated codistil-
lation.

Figure 6.2: Visualization of FedAvg baseline (6.2a) with respect to statistics-based federated codis-
tillation (6.2b) and resonse-based federated codistillation (6.2c). Dashed lines indicate
communications among parties.

a different kind of knowledge. Among the solutions in the literature, we identify three
types of knowledge to enable federated versions of codistillation, and they are:

1. ensemble of aggregated statistics of model responses on local data (e.g. per-label
mean model responses),

2. ensemble of local model responses computed on a publicly available dataset and
not on local data,

3. or ensemble of both model responses and model-agnostic intermediate features.

It is worth noting that the clients and the server exchange this kind of information instead
of model parameters. Furthermore, FL adaptations of codistillation relax the constraint
of implementing the same model architecture, which was needed in regular codistilla-
tion for datacenter-oriented distributed training. In fact, exchanging knowledge based
on model responses (or on model-agnostic intermediate features) enables heterogeneous
models among workers, i.e. FL clients, as long as they have the same output shape. Table
6.1 sums up the comparison among FL adaptations of codistillation.

Disclosing aggregated statistics of model responses on local data In
[83] Jeong et al. presented a pioneering distillation-based baseline for FL, FedDistill. Par-
ticipants periodically transmit only per-label mean soft targets computed on their private

81



6 Knowledge Distillation in Federated Learning

dataset. The server, in turn, averages such tensors and produces per-label global soft tar-
gets to be broadcast the next round. When locally training, clients regularize their local
loss with a per-label distillation term which uses the received global soft targets as the
teacher’s output. A similar strategy is later presented in [165]. It is worth noting that
FedDistill is extremely communication efficient with respect to parameter-based schemes
when considering DL models for classification task, since the communication payload
size depends on the model response size and not on model size.

Exchangingmodel responses on publicly available data. Federated codis-
tillation can be enabled by using knowledge formed by an ensemble of model responses
computed on a proxy transfer set (publicly available, both clients and server can retrieve
it). In this way, clients train on their private data, and share knowledge via their model
response on the transfer set. Here, the approaches in literature are more variegated, but a
general skeleton of algorithmic steps can be the following:

1. broadcast: clients receive the current global logits/soft targets;

2. local digest: clients distill their local model by mimicking the received global logits/soft-
labels on a subset of the transfer dataset. Here the parallel with traditional codis-
tillation: each client sees the averaged predictions of the other clients at the previ-
ous round as a virtual teacher. This step can be also seen as a way to retrieve the
global model parameters instead of directly receiving them from the server as in
parameter-based schemes (e.g., FedAvg);

3. revisit (local train): clients fine-tune the distilled model on local data;

4. local predict: clients compute their local logits/soft targets on a subset of the trans-
fer dataset;

5. upload: clients sends back the computed logits/soft targets;

6. aggregate: the server aggregates the client predictions to produce the updated global
logits/soft targets. Next, a new round begins.

While a subset of solutions use the server entity just as aggregator for locally computed
model responses [29, 81, 103] (6. aggregate), more recent strategies add an additional

82



6.3 Knowledge Distillation in Federated Learning

step to distill a server-side model (7. server digest), with the server model being used to
produce the global logits/soft targets to broadcast [36, 77, 160]. Learning a server-side
model can improve the training process when there is partial participation of clients [160].

Also, considering either a labeled or unlabeled proxy dataset influences the design of algo-
rithms. FedMD [103] uses a proxy labeled dataset to perform an initial pretraining phase
on clients, before the protocol starts. Itahara et al. modify the 6. aggregate step propos-
ing an Entropy Reduction Aggregation (ERA), demonstrating that using a temperature
lower than 1 when applying softmax to the aggregated logits reduces the entropy of global
soft targets, and can help the training process, especially in non-IID settings [81]. Com-
pressed Federated Distillation (CFD) [160] implements an extreme and effective compres-
sion technique for soft targets based on quantization and delta coding, which is applied
both by clients and server before communicating. Cronus [29] merges the 2. digest and
3. revisit step by directly training on the union (i.e., concatenation) of the private dataset
and the soft-labeled public one. In addition, Cronus aggregates (6. aggregate step) soft
targets following the approach of Diakonikolas et al. [41] for enhanced robustness. Sim-
ilarly to Cronus, in MATH [77] clients jointly train on private dataset, public dataset,
and public dataset tagged with global soft targets. MATH [77] considers a labeled proxy
dataset, and distills its server model by training it on the union of such a public dataset
with the soft-labeled version of it. FedGEM [36] adopts a protocol that matches FedMD,
additionally enhancing it with a server model similarly to CFD. The intuition of FedGEM
is to take advantage of a powerful model server. FedGEMS, a variation of FedGEM, ex-
ploits the labels in the public transfer set to enforce a selection and weighting strategy
which can improve the knowledge transfer [36].

Leveraging intermediate features. FedAD [56] also uses intermediate features
besides model output to extend response-based knowledge distillation. The intermediate
features are model-agnostic attention maps [121, 164], which still enable model hetero-
geneity as long as there is consensus on attention map shape. FedAD is a one-shot feder-
ated learning framework, which means that clients do not have to distill their local model
at the beginning of each round, and can participate asynchronously. FedGKT [64] uses
intermediate features tacking advantage of both asynchronous split learning paradigm

83



6 Knowledge Distillation in Federated Learning

[150] and regular FL.2 Edge devices train small networks composed of a feature extrac-
tor, which produces intermediate feature maps, and a classifier, which produces soft tar-
gets. Similarly, the server leverages a deeper network and a classifier. After local training,
for each local examples, clients communicate their computed intermediate features, the
predicted soft targets and the related ground truth labels. The server takes locally com-
puted extracted features as input for its deeper network and produces global soft targets.
Both clients and server use a linear combination of regular cross-entropy loss and KD-
based loss as objective function. The first considers soft targets and ground truth labels,
the latter measures the discrepancy among local and global logits. A similar framework
is implemented and extended in FedDKC [195], where Wu et al. also develop server-side
knowledge refinement strategies.

Table 6.1: Comparison among strategies to enable model heterogeneity via FL adaptations of
codistillation. Dk represents the local private dataset of a generic client. Dp represents
a public transfer set. (Xp, Ỹp) is the public transfer dataset labeled with soft targets Ỹp.
Knowledge column is inspired by the classification in [58]; statistics-based disclose ag-
gregated statistics (e.g., per-label mean logit vector) of client model responses on local
data, response-based methods communicate model outputs, feature-based also share
intermediate representations.

Knowledge Transfer Set Server Model Notes

FedDistill [83] statistics data-free no KD-based regularizer
FedMD [103] response labeled no Pre-training on Dp

Cronus [29] response unlabeled no Local training on (Xp, Ỹp) ∪Dk

DS-FL[81] response unlabeled no Entropy Reduction Aggregation
MATH [77] response labeled yes Server training on (Xp, Ỹp) ∪Dp

CFD [160] response unlabeled yes Compressed soft targets
FedGEMS [36] response labeled yes Server-side kowledge refinement

FedAD [56] feature unlabeled yes One-shot algorithm
FedGKT [64] feature data-free yes FL + Split learning paradigm

FedDKC [195] feature data-free yes Knowledge refinement

2Split learning refers to a paradigm in which the DL model to be trained is split among server and clients.
The server holds the deeper layers of the neural network. During forward pass, activations in output
from the split layer are communicated from clients to server along with labels of data samples. Then,
the server concludes the forward pass, starts the backward pass and sends back the gradients computed
at the split layer so that clients can complete the model update.

84



6.3 Knowledge Distillation in Federated Learning

6.3.2 Data-distribution-agnostic FL via KD

KD-based solutions can be used to handle data heterogeneity either at server side, recti-
fying FedAvg’s global model via ensemble distillation on a proxy dataset [30, 115, 159] or
using a data-free generator [213, 214], or at client side, reducing local overfitting [132] or
distilling global knowledge via on-device regularizers [67, 68, 94, 100, 203] or synthetically-
generated data [228], directly controlling the phenomenon of client drift.

Server-side KD-based refinement of global model

In [115], the authors propose FedDF, a server-side ensemble distillation approach to both
enable model heterogeneity and enhance FedAvg’s aggregation. In FedDF, the global
model is fine tuned imitating the ensemble (e.g., weighted average) of clients’ model out-
put on a proxy dataset. FedAUX [159] boosts the performances of FedDF [115] leverag-
ing unsupervised pre-training on auxiliary data to find a suitable model initialization for
client-side feature extractor. In addition, FedAUX weights the ensemble predictions on
the proxy data according to (ϵ, δ)-differentially private [48] certainty score of each partic-
ipant model. FedBE [30] proposes to combine client predictions by means of a Bayesian
model ensemble to further improve robustness of the aggregation instead of averaging
the model predictions. While server-side ensemble distillation approaches suppose the
existence of a proxy dataset, FedFTG [214] performs a server-side refinement of the global
model via data-free knowledge distillation where the server adversarially trains both a gen-
erator model and the global model, and fine-tunes the latter with synthetic data. A data-
free generator-based refinement of global model is also proposed in [213]. It is worth not-
ing that server-side global model rectifications, as the ones reviewed in this Subsection,
are orthogonal to client-side approach to control model drift, as the ones presented in
Section 6.3.2, and can be used in combination [214].

Client-side KD-based regularization

Local regularization to reduce overfitting In [132], Mendieta et al. show
that GradAug [201], a distillation-based structural regularization not specifically designed
for FL settings, effectively mitigates client drift issues though substantially introducing
computation overhead. Hence, Mendieta et al. design a novel method, FedAlign [132],

which has similar effect and performances but with a sustainable computation overhead.

85



6 Knowledge Distillation in Federated Learning

wk
t+1

Dk
softmax

CE loss

KD loss

local 
losswt

yi

xi

softmax

Figure 6.3: Overview of approaches that distill global knowledge using a regularization term dur-
ing local training. Dk is the private dataset at clientk, withxi and yi respectively being
the data sample i and the corresponding ground-truth label. wt represents the global
model at round t. wk

t+1 represents the local model.

In particular, FedAlign targets the deeper layers of a neural network, most prone to over-
fit client distribution [124], imposing a distillation-based term in the local objective func-
tion. Such term minimizes the discrepancy among the intermediate features produced in
output by the final block of the full network and the features produced by the same block
but at reduced width (via temporary uniform pruning). The discrepancy is measured via
mean squared error of the approximated Lipschitz constants (i.e. top Hessian eigenval-
ues) of the two intermediate representations. Employing a slimmed sub-block permits to
introduce a limited computation overhead.

Local-global distillation via regularization term. Respectively inspired
by fine-tuning optimization ideas and continual learning research, the recent works in
[100] and [203] find that local KD-based regularization is an effective way of reducing the
influence of non-IID data in FL settings. 3 In local-global distillation, the local objective
function of clients becomes a linear combination between the cross-entropy loss and a
KD-based loss,

L = LCE(q
wk

t+1 , y) + βLKL(q
wk

t+1 , qwt) (6.3)

where qwk
t+1 and qwt are the soft targets produced on local data respectively by the local

model of client k and by the received global model. β weights the impact of the KD-based
term. The KD-based loss measures the discrepancy among the global model’s output (i.e.,
the teacher model’s output) and the local model’s output (i.e., the student model output)

3Local-side regularization strategies, as we will detail in the next Chapter, which do not use KD, have been
proposed as well, e.g. in [2, 91, 110, 169].

86



6.3 Knowledge Distillation in Federated Learning

wk
t+1

Dk
softmax

CE loss

KD loss

local 
losswt

h

yi

xi

wt -1 wt -2
wt -M +1

historical models

softmax

(a) FedGKD.

wk
t+1

softmax

wt

yi

xi

logits

discard 
true-class 

logit

true-class logit

CE loss

KD loss

local 
lossDk

(b) FedNTD.

Figure 6.4: Overview of FedGKD and FedNTD.

on private data, e.g. via Kullback-Leibler divergence, and works as a regularization term.
Fig. 6.3 depicts the basic framework for this kind of local-global distillation.

The inspiration for such a framework is twofold. In [203], Yao et al. borrow the idea
from the work in [199], where, in a non-federated setting, self-distillation mechanisms
are shown to improve the fine-tuning of pre-trained models such as BERT[40]. In self-
distillation, knowledge from past snapshots [200], i.e. produced at previous training steps
of the in-training model, assists the current step of model training. Orthogonally, in [100],

Lee et al. observe a phenomenon similar to catastrophic forgetting [57] in continual learn-
ing research: in presence of heterogeneous data, FedAvg-trained global models exhibit
inconsistent predictions on test data between subsequent rounds (i.e., the global model
at round t+1 shows reduced performance on classes that the global model at round tpre-
dicted correctly). Local distillation of global knowledge is shown to mitigate forgetting
among subsequent rounds, and in turn to alleviate the harmfulness of data heterogeneity
[100].

Local-globaldistillationviaregularizationterm: further improvements.
FedGKD [203] uses an ensemble of M historical global models as teacher for the KD-
based regularization where such an ensemble model is computed as the average of M
past global models. Fig. 6.4a visualizes how FedGKD works. FedGKD-VOTE is also pro-
posed as a variation that considers the averaged discrepancy of all the M historical mod-
els’ outputs as the regularization term [203]. In the simplest formulation of FedGKD,
i.e. with M = 1, the communication cost is the same of FedAvg, while for M > 1

the server-client communication cost is doubled, and for FedGKD-VOTE it scales with

87



6 Knowledge Distillation in Federated Learning

BL
2 BL

3BL
1

BG
2

BG
3

BG
3

Dk

xi

CE loss KD losshybrid 
CE loss

predictions
main pathway

hybrid 
pathway 2

hybrid 
pathway 1

yi

yi

local loss

Figure 6.5: Overview of FedMLB. Bi
L and Bi

G respectively indicate local and global blocks (i.e. a
series of layers).

M . To reduce forgetting among subsequent rounds of learning, FedNTD [100] ignores
the logits produced by the true classes when computing the softmax score later fed to
the KD-based loss, as depicted in Fig. 6.4b. Inspired by the work of Lukasik et al. [123],

He et al. further observe that, in the framework of Fig. 6.3, leveraging an inaccurate
global model (i.e., inaccurate teacher) on specific classification classes might mislead lo-
cal training [68]. To alleviate such phenomenon, a class-wise adaptive weight is proposed
in FedCAD [68] to control the impact of distillation: when the global model is accurate
on a certain class, local models learn more from the distilled knowledge. FedCAD de-
termines the class-wise adaptive weight based on the performances of the global model
on an auxiliary dataset, and the server broadcasts such information along with model
parameters round by round. FedSSD [67] extends FedCAD by also considering the cred-
ibility of global model at the instance level when computing the distillation term in local
training. FedMLB [94] enhances the local-global distillation also using intermediate rep-
resentations, preventing them from deviating too significantly during local fine tuning.
To this end, FedMLB crafts hybrid pathways composed of local and global subnetworks,
i.e. of local network blocks followed by non-trainable global blocks. Besides regular cross-
entropy, local learning also considers the average cross-entropy from hybrid paths and the
average KL divergence between the outputs produced by the hybrid paths and the main
path as regularization term. Due to backpropagation through hybrid pathways, FedMLB
locally introduces a moderate computation overhead. FedDistill+, used as alternative
baseline in [203, 228], extends the work of [83, 165] by exchanging model parameters in

88



6.4 Comparison of Existing Solutions, Adoption Guidelines and Future Directions

addition to per-label local logits on training dataset. With respect to the framework in
Fig. 6.3, FedDistill+ uses the received per-label globally averaged logits – instead of the
output of the global model on private data – to calculate the KD loss.

Local-globaldistillationviadata-freegeneratormodels. Differently from
the other work in this subsection, FedGen [228] learns a lightweight server-side generator
which is distributed, round by round, to clients that sample it to obtain augmented train-
ing examples, using global knowledge as inductive biases in local learning. To build the
generator, FedGen needs to disclose local model parameters (at least the classifier weights)
and local label count.

6.4 Comparison of Existing Solutions, Adoption
Guidelines and Future Directions

Table 7.2 lists the solutions reviewed in this Chapter, by classifying them according to
their primary aim, and by detailing the kind of per-round exchanged information, the
need of auxiliary data, and the type of KD involved. In short, the main take away from
Table 7.2 is that KD-based FL solutions can enhance collaborative learning under some
perspectives while introducing other trade-offs to consider for an appropriate selection
and adoption.

6.4.1 FL model heterogeneity via KD

Federated adaptations of codistillation can enable model heterogeneity, and can reduce
the communication requirements at the cost of computation overhead with respect to
parameter-based schemes. Hence, despite being extremely communication efficient, it
may be not always possible to deploy such algorithms on resource-constrained devices
due to the overhead of client-side distillation (in Table 7.2, solutions which use digestion
at client side), while being a suitable model-agnostic alternative for cross-silo settings.4

Furthermore, this class of solutions usually performs worse than FedAvg-based baselines

4For example, in [160] 80000 data points from a public dataset are used to distill on-device model before
local training.

89



6 Knowledge Distillation in Federated Learning

Table 6.2: Concise overview of the surveyed solutions. We have identified 5 possible categories
for the primary purpose of the proposed solution, i.e., communication efficiency (CE),
model heterogeneity (MH), non-iidness (NIID), server-side aggregation (A), and client
drift (CD). Upload refers to the client-to-server link. Symbols: w model parameters, z
logit vectors (model output before softmax), Ỹ soft targets (model output after soft-
max),wh historical model parameters,Z per-label average logit vectors,Y labels of local
data,H intermediate feature maps,A attention maps,αy per-class adaptive weights,C
credibility matrix, c local label count. For the last column, a regularizer-based approach
uses KD to regularize local training, generator-based leverages a generator model, diges-
tion means that knowledge is absorbed by imitating teacher outputs on common data.

Purpose Exchanged information Auxiliary data KD approach

Upload Download Client-side Server-side

FedDistill [83] CE, MH Z Z data-free regularizer -
FedMD [103] CE, MH Ỹ Ỹ labeled digestion -
Cronus [29] CE, MH, A Ỹ Ỹ unlabeled digestion -
DS-FL[81] CE, MH Ỹ Ỹ unlabeled digestion -

MATH [77] CE, MH Ỹ Ỹ labeled digestion digestion
CFD [160] CE, MH Ỹ Ỹ unlabeled digestion digestion

FedGEMS [36] CE, MH Ỹ Ỹ labeled digestion digestion
FedAD [56] CE, MH z, A - unlabeled - digestion

FedGKT [64] CE, MH z,H, Y z data-free regularizer regularizer
FedDKC [195] CE, MH z,H, Y z data-free regularizer regularizer

FedDF [115] MH, NIID, A w w unlabeled - digestion
FedAUX [159] MH, NIID, A w w unlabeled - -

FedBE [30] NIID, A w w unlabeled - -
FedFTG [214] NIID, A w, c w data-free - generator
FedZKT [213] NIID, A w w data-free - generator
FedGKD [203] NIID, CD w w,wh data-free regularizer -
FedNTD [100] NIID, CD w w data-free regularizer -
FedCAD [68] NIID, CD w w,αy labeled regularizer -
FedSSD [67] NIID, CD w w,C labeled regularizer -
FedMLB[94] NIID, CD w w data-free regularizer -

FedAlign[132] NIID, CD w w data-free regularizer -
FedDistill+ [203] NIID, CD w,Z w,Z data-free regularizer -

FedGen [228] NIID, CD w, c w data-free generator -

(in terms of global model accuracy) [159] – even though they typically improve the perfor-
mance of non-collaborative training [81]. Moreover, most works in this category suppose
the existence of a semantically-similar proxy dataset (in some cases even labeled), which
may be an unrealistic assumption in some deployment scenarios and use cases (e.g., for
specific medical applications). The pioneering communication-efficient data-free strat-
egy in [83] does not incur in local computation overhead, but it is far from achieving
global model test accuracy comparable to FedAvg, as demonstrated in [228], also disclos-

90



6.4 Comparison of Existing Solutions, Adoption Guidelines and Future Directions

ing possible privacy-sensitive information about private data (i.e., per-label model out-
puts). Solutions as [64, 195] enable model heterogeneity, are usually more communica-
tion efficient than FedAvg, and include resource-constrained devices in the federation, by
adopting a split-learning paradigm and by taking advantage of KD-based regularization.
However, as shown in Table 7.2, due to their split-learning approach, the solutions in [64,

195] disclose local ground-truth labels, which again may incur in privacy violation.

Future Directions While some seminal efforts are recently emerging [3], model-
agnostic KD-based strategies for collaborative learning are still poorly understood theo-
retically. This is going to call for deeper analysis of convergence properties, as it occurred
for parameter-based schemes in the recent literature [188].

6.4.2 Data-agnostic FL via KD

For what relates to the solutions to tackle non-IIDness, KD-based server-side refinement
strategies such as [30, 115, 159] can improve FedAvg global model performance in presence
of highly heterogeneous data when semantically-similar unlabeled proxy data are avail-
able. It is worth noting that this class of algorithms exhibits most improvements when
several local epochs are performed between communication rounds and client models
tend to drift apart. Also, such algorithms do not introduce computation or communica-
tion overhead on clients. Data-free generator models can also be used to perform server-
side global model corrections as in [214] or to limit client drift directly at the participating
devices as in [228], in both cases at the cost of disclosing local label count.

No additional information has to be disclosed from clients and not even proxy data are
needed in solutions that regularize local training by employing global model output on lo-
cal data, as in FedGKD [203] and FedNTD [100]. In addition, this set of strategies do not
introduce significant on-device computation overhead and has the same communication
requirements as FedAvg.5 Although FedGKD and FedNTD – and similar approaches
– would require to store two full-size models in memory (the local model as usual and
the global model as reference), such limitation can, in practice, be avoided by firstly com-
puting the predictions of the received global model (or historical model) on local data,
and then proceeding with local training by overwriting the global model. If limited la-

5If FedGKD [203] only considers the current global model as its historical model.

91



6 Knowledge Distillation in Federated Learning

beled proxy data are available, local-global knowledge distillation can be improved as in
[67, 68]. When moderate computing overhead is sustainable, local global distillation can
be enhanced by using intermediate features and hybrid pathways as in [94], thus signif-
icantly improving the effectiveness of local-global distillation. It is worth noting that in
FedMLB most of the global model parameters must be stored locally during training, and
this cannot be avoided as for regularization based on model responses. As highlighted in
[94], client-side regularization can be coupled with standard server-side strategies to boost
performances (e.g., FedAdam, FedYogi, FedAdagrad [155], or FedAvgM [76]).

Future Directions Cross-device FL algorithms need to take into account the dif-
ferent hardware capabilities of clients, as resource-constrained devices may struggle or
be excluded when the computation, memory, or communication requirements are too
demanding. Client-side KD-based algorithms often introduce non-negligible computa-
tion and memory overhead, which may prevent their use on these devices. Therefore,
there is a growing focus on methods to minimize memory and computation overhead
(with respect to FedAvg) on clients (e.g., [132]). On the other hand, server-side KD-based
solutions often rely on model generators to overcome the need for semantically-similar
datasets, but this comes at the cost of collecting possible privacy-sensitive local informa-
tion; this may raise privacy-related issues, calling for methods which do not need to dis-
close additional information about client local data. Additionally, while KD-based solu-
tions are commonly used to enhance the generalization ability of the global model, the
impact of these solutions on personalization, which has received growing interest in the
community [178], is yet marginally explored with some first contributions (e.g., [86]).

6.5 Concluding Remarks

While distributed adaptations of codistillation have been initially introduced as a mean
for both reducing the communication cost of FedAvg-like algorithms and enabling model
heterogeneity, KD has been recently explored to tackle non-IIDness, either rectifying the
aggregation phase of FedAvg or directly limiting the client drift. This Chapter reviews
and compares state-of-the-art KD-based techniques for FL, by classifying them according
to their purpose and the way to achieve it. We believe that the presented comparison
can provide researchers and practitioners in the field with a practical and useful guide

92



6.5 Concluding Remarks

to the primary pros/cons of existing solutions, as well as with practical guidelines for the
selection of the most appropriate technique depending on the application case and for
the identification of still open research challenges for the near future.

93





7 TacklingDataHeterogeneity

This chapter provides a detailed overview of the state-of-the-art solutions designed to
cope with data heterogeneity. While a parallel line of work focuses on improving local per-
sonalization performances in presence of non-IID data [144, 178], this Chapter exclusively
considers approaches to enhance the generalization ability of the global model. 1 The con-
sidered solutions, unless differently specified, adopt a star-shaped topology (client-server
as in FedAvg) and proceed in synchronous rounds; usually, classification tasks are consid-
ered for design and evaluation.

For the sake of clarity, as shown in Fig. 7.1, we primarily differentiate the reviewed solu-
tions among client-side optimizations and server-side optimizations. The first class of al-
gorithms modify the local training routine of clients – with respect to FedAvg – to explic-
itly limit the client drift phenomenon (see Section 7.1). At the other end of the spectrum,
server-side optimizations modify the aggregation step of FedAvg to limit the degradation
introduced by averaging drifted client models (see Section 7.2). Usually, client-side and
server-side optimizations are orthogonal and can be used in combination to amplify the
performance gain (e.g., to reduce the total rounds needed to reach global model conver-
gence or to achieve better global model generalization).

In the second part of this Chapter, we provide the researchers and practitioners in the
field with the original technical contribution of empirically evaluating and comparing a
selection of algorithms, among the ones presented here; the comparative evaluation is the
basis for a technical and practical discussion on the possible advantages and weaknesses
of the considered solutions when implemented and deployed in real application cases and
deployment environments. Furthermore, our code is publicly available for result repro-
ducibility and to foster research advances.

1The generalization ability of the global model is measured via metrics, such as loss and accuracy, on a test
set. The test set contains unseen examples uniformly distributed among classes.

95



7 Tackling Data Heterogeneity

Client-side 
methods

Server-side 
methods

FL Algorithms for 
data heterogeneity

KD-based terms

Regularization via correction terms Modified aggregation
Proximal terms

Dynamic terms Post-aggregation model refinement

Model-contrastive terms

Logit calibration

Seeking flat minima

Normalization layers

Data augmentations

Feature augmentations

Section 7.2Section 7.1

Figure 7.1: Schematic classification of approaches proposed in literature to enhance global model
generalization in presence of heterogeneous data.

7.1 Client-side Optimizations

This section goes through solutions that intervene in the local training phase so to limit
the degradation introduced by client model drift (see Fig. 3.3) on the global model per-
formance since local models tend to diverge from the received global model and from the
model of other clients in the federation in presence of heterogeneous data.

In their pioneering study [221], the authors show via an experimental analysis that Fe-
dAvg’s test accuracy can be considerably improved in the presence of heterogeneous data
by supplementing participants’ private datasets with a small portion of the globally shared
data provided by the server. While this approach is effective, it comes at the expense of
reduced decentralization and necessitates transmitting the common data to the learners.

Without resorting to data-sharing techniques, a common approach to limit the client
drift phenomenon is to locally regularize the training phase by introducing one or more
additional terms to the client’s objective function. This typically translates into applying
a penalty that scales with some measure of the client drift, controlling the divergence
from the current global model. As discussed in the following, most of the works leverage
the current global model as a reference for local training, using it as an anchor for not
letting the local model parameters drift apart (e.g., [110]) or using it as a guide during local
training (e.g., [67, 68, 94, 203]), or again employing it to prevent catastrophic forgetting
[100]. Other lines of work do not actively leverage the global model in their solutions, for
example focusing on normalization layers (e.g., [112]), or seeking flatter minima in local
objective functions [24, 85, 152], or again proposing federated adaptations of traditional

96



7.1 Client-side Optimizations

Table 7.1: Classification of reviewed client-side methods, listed by year (from oldest to most re-
cent).

Control Normalization Logit Flat Feature Data
Method Term(s) Methods Calibration Minima Aug. Aug.

FedProx [110] ✓
SCAFFOLD [91] ✓
FedDANE [109] ✓
FedMix [204] ✓
SiloBN [7] ✓
MOON [106] ✓
FedDyn [2] ✓
FedBN [112] ✓
FedRS [113] ✓
AdaBest [186] ✓
FedGen [228] ✓
FedGKD [203] ✓
FedNTD [100] ✓
FedMAX[33] ✓
FedCAD [68] ✓
DMFL [154] ✓
FedSSD [67] ✓
FedMLB [94] ✓
FedAlign [132] ✓
HarmoFL [85] ✓
FedLC [211] ✓
FedSAM [24] ✓
FedSAM [152] ✓
FedASAM [24] ✓
MoFedSAM [152] ✓
FedFA [224] ✓
FixBN [222] ✓
FedTAN [191] ✓
WSM [24] ✓

data augmentation techniques [132, 204], or modifying the output softmax layer and/or
the cross-entropy loss before the network output (e.g., [113, 211]). Authors of [155] also

97



7 Tackling Data Heterogeneity

Table 7.2: Classification of reviewed server-side methods, listed by year (from oldest to most re-
cent).

Modified Post-Aggregation
Aggregation Refinement

FedAvgM [76] ✓
FedNova [189] ✓
FedBE [30] ✓
FedDF [115] ✓
FedOpt [155] ✓
FedAux [159] ✓
FedZKT [213] ✓
FedDNA [46] ✓
GMA [181] ✓
SWA [24] ✓
FedFTG [214] ✓

provide theoretical convergence analysis, and observe the need for a decaying learning rate
at client-side in non-IID settings.

7.1.1 Local Regularizations via Correction Terms

Specifically, FedProx [110] adds a proximal term to the local objective function of clients
that is proportional to the L2-norm distance between the received global model parame-
ters and the in-learning local parameters, i.e.:

LProx(w,wt) = L(w) +
µ

2
||w − wt||2 (7.1)

whereL is the classic supervised loss for the classification task,µweights the impact of the
L2-norm regularization term, w and wt are respectively the in-learning local model and
the current global model. Besides reducing the impact of heterogeneous data, FedProx
was also designed to enable uneven amounts of local training iterations among clients.

Similarly to FedProx, FedDyn [2] proposes a dynamic tuning that is adapted based on
the current global model. However, while FedProx does not result in aligning local and
global stationary points, during each round, FedDyn dynamically tailors the local objec-

98



7.1 Client-side Optimizations

Algorithm 6: FedDyn.
1 Server executes:
2 initializew1

3 ∇L(wk
0)← 0

4 for each round t = 1, 2, 3, ..
5 c← max(C ×K, 1)
6 St ← (random set of c clients)
7 for each client k ∈ St in parallel
8 wk

t ← wt

9 wk
t ← argmin

w
Eq. 7.2

10 ∇L(wk
t )← ∇L(wk

t−1)− αdyn(w
k
t − wt)

11 // FedDyn needs a server-side state ht
12 ht ← ht−1 − αdyn

1
K
(
∑

k∈St
wk

t − wt)

13 wt+1 ← ( 1
|St|

∑
k∈St

wk
t )− 1

αdyn
ht

tive function with a penalty term so that the local optima is asymptotically consistent with
stationary points of the global optima. More concretely, the penalty term in FedDyn is
composed of a linear term and a quadratic penalty term, and the resulting objective func-
tion is in the form of:

LDyn(w,wt, w
k
t−1) = L(w)− ⟨∇L(wk

t−1), w⟩+
αdyn

2
||w − wt||2 (7.2)

where∇L(wk
t ) = ∇L(wk

t−1) − αdyn(w
k
t − wt) and it is computed recursively, α is a

hyperparameter, and clients are indexed by k. 2 It is worth noting that FedDyn is treated
here as a client-side optimization, but it also requires a server-side state, and can be used in
combination with other client-side optimizations (e.g., FedDyn plus local multi-branch
regularization, FedMLB, as presented in the experimental results of [94]). Algorithm 6
displays the FedDyn method. While rooted in theory, FedDyn requires clients to main-
tain state (i.e., ht in Algorithm 6) throughout the process. Furthermore, as demonstrated
in [186], FedDyn needs a high rate of client re-sampling to exhibit a stable convergence,
otherwise, the unbounded increase of ht norm will cause instability in the learning pro-
cess.

2∇L(wk
0 ) is initialized to 0.

99



7 Tackling Data Heterogeneity

Conceptually similar, SCAFFOLD [91] leverages correction terms (i.e., control vari-
ates) for local gradients to ensure that the local update moves towards the true optimum.
Such correction terms are used as proxy for the clients’ true gradients, whose disclosure
would require unsustainable frequency of synchronization (after each local step, clients
should communicate local gradients). Instead, during each FL round, control variates are
locally computed and updated, then communicated back to the server for aggregation at
the end of local training, and finally aggregated to produce global control variates which
are broadcast during the next round. Hence, SCAFFOLD doubles the communication
cost with respect to FedAvg.

In addition, it is worth noting that SCAFFOLD and FedDyn require prior knowledge
of the number of total clients in order to properly weight their accumulator (i.e., ht in
Algorithm 6), which may be an unrealistic assumption in large-scale FL settings. The
authors of [186] propose Adabest, which can be seen as a generalization of FedDyn that
does not assume prior knowledge about the number of participating clients and does not
require a high re-sampling rate of clients to ensure stability. As a result, AdaBest is most
beneficial in the presence of large-scale settings with low participation rates.

FedDANE [109] is a method inspired by DANE [167] and its inexact variant [156],

which combines the proximal term used in FedProx with a gradient correction term simi-
lar to SCAFFOLD. The update process involves two steps: compute the gradient correc-
tion term and solve the Newton-type sub-problem inexactly, the locally computed gra-
dients of the local objective functions are collected and then averaged to approximate
the full gradients. To keep from gathering all the locally-computed gradients, FedDANE
approximates the complete gradients by aggregating the gradients of a random subset of
learners. It is important to note that FedDANE doubles the communication cost with re-
spect to FedAvg, as previously noted for SCAFFOLD. Furthermore, despite being rooted
in theory, FedDANE exhibits inferior empirical performance compared to FedAvg and
FedProx.

FedMAX [33] focuses on limiting the divergence in activation vectors, i.e. input to the
neural network’s classification layer, among clients and aims at making the activation vec-
tors of same classes as similar as possible in the federation. FedMAX employs a correction
term in the loss function of clients to maximize the entropy of such activation vectors, so
to limit their uncontrolled divergence.

100



7.1 Client-side Optimizations

7.1.2 Local-Global Knowledge Distillation

Besides proximal or dynamic regularizations, also regularization techniques based on Knowl-
edge Distillation (KD) [71] can be employed to tackle the client drift phenomenon by lo-
cally distilling global knowledge. Instead of directly considering global and local model
parameters as in FedProx, the global model is seen as a teacher in a distillation framework
[137], and its model responses on private examples are used to guide the local learning and
limit the divergence of client models [67, 68, 94, 100, 203].

FedGKD [203] and FedNTD [100] regulate the local objective function of clients with
a term that measures the discrepancy among the output of the global and local models on
the same local data. However, such a mechanism does not necessarily transfer the ability
of the global model to produce better intermediate features with respect to client mod-
els. FedMLB, presented in [94] extends the KD-based framework presented in FedGKD
and FedNTD by considering hybrid paths composed of client model blocks followed by
global model blocks, encouraging the local model to reproduce intermediate features sim-
ilar to the ones generated by the global model. The model block is intended as an en-
semble of consecutive layers, e.g. a residual block in a residual architecture. However,
while FedGKD and FedNTD introduce a negligible computation overhead on clients,
FedMLB needs to propagate gradients through the hybrid paths, introducing significant
computation overhead and increased local training time. Also, FedGKD, FedNTD and
FedMLB require the global model to be stored (and not overwritten as it happens in Fe-
dAvg) during local training, hence doubling the memory requirements. This limitation
can, in practice, be avoided for FedGKD and FedNTD by firstly computing the predic-
tions of the received global models, and then proceeding with local training, and over-
writing the global model.

Considering the local-global distillation framework, the authors in [68] observe that
imitating the output of an inaccurate global model as a teacher can misguide local train-
ing (for example, in early rounds the global model exhibits poor predictions). To address
this issue, FedCAD [68] introduces a class-wise adaptive weight to control the impact of
distillation, so that the global model knowledge is distilled when accurate. FedCAD com-
putes the class-wise adaptive weight based on the performance of the global model on a
proxy dataset and broadcasts this matrix along with model parameters at each commu-

101



7 Tackling Data Heterogeneity

nication round. FedSSD [67] builds on FedCAD by incorporating the credibility of the
global model at the instance level when computing the distillation term in local training.

7.1.3 Model-contrastive Learning

MOON [106], inspired by typical data-level contrastive learning frameworks such as Sim-
CLR [32], is a model-level contrastive learning method designed to rectify the local train-
ing of clients. While typical contrastive learning compares representations of different
augmented views computed on the same image (positive pairs) and representations of
different augmented versions computed on different images (negative pairs), in MOON
[106], positive and negative pairs come from the representations computed by the global
model and the previous-version local model on the same private example, respectively.
The key idea is to correct the local training of individual clients by maximizing the con-
sensus on the representation learned by the current client model and the representation
learned by the server model. At the same time, MOON encourages the representation
learned by the current client model to diverge from the representation learned by the
previous-version client model (client model resulting from the last active round). 3 In
practice, this translates to a local objective function composed of a typical term to account
for supervised loss (e.g., cross-entropy loss among ground-truth labels and predicted soft
labels) and a model-contrastive term. It is worth noting that, differently from FedAvg,
MOON implies stateful clients, demanding to store the last trained local model. Addi-
tionally, the approach requires the modification of the locally learned model by adding a
projection head, also adding computation and storage overhead attributed to the need of
producing and comparing the representation of three models (global, current, and last-
version local model).

7.1.4 Data and Feature Augmentation

From another perspective, FedMix [204] adapts the simple, well-knownMixup augmen-
tation [210] to the federated context. Similarly, the authors of [132] recently demon-
strated that augmentations like GradAug [201] and StochDepth [78] significantly im-
prove the performance of FedAvg in presence of heterogeneous data, though they in-

3To produce the representation, MOON [106] injects a projection head before the output layer of the
model. The considered representation is the output of the projection head.

102



7.1 Client-side Optimizations

troduce substantially computation overhead. Addressing the issue, the authors of [132]

design a method, FedAlign, which has similar effects and performance as GradAug in
FL but with a reduced computation overhead. In particular, FedAlign aligns the Lips-
chitz constants (i.e. top Hessian eigenvalues) of deeper layers of the neural network –
most prone to overfit client distribution [124] – through the use of slimmed sub-blocks
and a distillation-based regularization term. FedGen [228] employs a generator model,
broadcast by the server to clients round by round, to be used to locally obtain augmented
training examples, while incorporating global knowledge as inductive biases. To train the
generator, FedGen requires the disclosure of the local label count, besides local model pa-
rameters. While approaches such as FedMix and FedGen works at the input level, FedFA
[224] proposes to augment features by injecting Gaussian noise calibrated according to
the channel-wise statistics (i.e., mean and standard deviation) of the participants in the
federation.4 In this way, FedFA allows client models to be trained over data examples
drawn from more variegated feature distributions, encouraging participant-invariant rep-
resentation learning, and eventually producing a server model that generalizes better.

7.1.5 Seeking FlatMinima

Recently, the technique of Sharpness-Aware Minimization (SAM) [51] has been employed
and proposed in FedSAM [24, 152]. In fact, the authors of [24] suggest that the geometry
of the loss surface is a relevant indicator for generalization, and in particular that sharp
minima translate to a lack of generalization. To this end, FedSAM locally encourages flat-
ter minima and smoother loss landscape by leveraging SAM, and resulting in improved
performance of global model. Also, adaptive and momentum versions of FedSAM have
been proposed to speed up convergence, respectively named FedASAM [24], based on
Adapative SAM [98], and MoFedSAM [152], which leverages a momentum parameter.

Similarly inspired, HarmoFL [85] promotes client models that are easy to aggregate
via weight perturbation (clients that exhibit flatter loss landscape are more amenable to
be aggregated via FedAvg’s averaging scheme). In addition, HarmoFL couples the weight-
perturbation strategy with amplitude normalization of local training. To this scope, Har-
moFL leverages special layers in the client’s model architecture which perform amplitude

4FedFA [224] explicitly focuses on data in the form of images.

103



7 Tackling Data Heterogeneity

normalization and collect local amplitudes, to be then aggregated by the server to produce
and employ a global one.

7.1.6 NormalizationMethods

As demonstrated in several works [45, 75, 112, 191, 222], in presence of non-IID data,
Batch Normalization (BN) layers [80] are detrimental for global model performance due
to a mismatch among local statistics which cause shifted local features learned by clients.
FedBN [112] proposes to only locally train BN’s parameters (batch variance, batch mean,
scale, and shift parameters) and never communicate the updates of such layers to the
server for aggregation. Similarly, SiloBN [7] keeps batch variance and mean local, but
communicates the scale parameter and the shift parameters for global merge. FixBN
[222] proposes to regularly train, communicate and aggregate all the BN’s parameters,
but freezing BN’s global and local statistics from a certain communication round on-
ward. The work in [75] and the work in [45], respectively, suggest employing Group
Normalization [194] or Layer Normalization [10], which do not use mini-batch statis-
tics, in place of BN layers. FedTAN [191] tailors the local training procedure of FedAvg to
ensure convergence properties in presence of BN layers at the cost of several intra-round
synchronizations among client and servers.

7.1.7 Logit Calibration

A parallel line of work focuses on mitigating the detrimental effect caused by label dis-
tribution skew, a specific type of data heterogeneity, on the classification layer of neural
networks. The recent work in [211] and in [154] respectively propose FedLC and DMFL
that use a modified cross-entropy loss (fine-grained calibrated cross-entropy) which cal-
ibrates the local model output (i.e., logits), before feeding them to the softmax output
layer, according to per-class local number of samples. A similar approach has been re-
cently proposed in [101] with re-weighted softmax (WSM) to reduce catastrophic forget-
ting. Similarly inspired, FedRS [113] advocates the use of a restricted softmax, which em-
ploys rescaling factors to account for under-represented classes on the local dataset.

104



7.2 Server-side Optimizations

7.2 Server-side Optimizations

This section proposes an updated and in-depth overview of server-side approaches pro-
posed to reduce the degradation introduced by averaging drifted model parameters/updates.
Relevant lines of work include proposing different weighting schemes with respect to Fe-
dAvg, rectifying the aggregated global model with an additional phase (e.g., a distillation
phase), or interpreting the model updates as “pseudo-gradient” and using an optimizer
of choice – usually different from SGD – to apply them to the global model.

7.2.1 Modified Aggregation Procedure

FedNova [189] improves FedAvg in the aggregation step by considering that different
clients may perform a different number of local steps (i.e., the number of mini-batches
in the local training) during each round. This can result, for example, from clients hold-
ing different amounts of local examples given a fixed batch size, or from learners having
approximately the same amount of local examples but different amounts of local epochs.
To ensure that the global updates are not biased, FedNova designs a normalized averag-
ing method to replace the simple FedAvg update, i.e, before updating the global model,
it scales the client updates based on the local number of local steps.

Conceptually similar to the works discussed in Section 7.1.6, FedDNA [46] revisits
the aggregation of statistical parameters belonging to normalization layers in the neu-
ral network (e.g., batch mean and batch variance of BN layers). In particular, FedDNA
aggregates statistical parameters with an importance weighting method, and they are op-
timized collaboratively leveraging an adversarial learning approach, while gradient-based
parameters are updated via regular FedAvg’s scheme.

From another perspective, the authors of [24] suggest incorporating stochastic weight
averaging (SWA) from [82] into the aggregation stage of FedAvg so to enhance the re-
silience of the learning process [24]. The work shows that the SWA technique is most
effective when applied toward the end of the training phase, specifically after completing
75% of the total rounds.

Another body of research leverages server-side optimizers which handle aggregated
model updates as “pseudo-gradient”. In fact, in FedAvg, instead of uploading the brand-
new model parameters, clients typically send updates to the server, which are computed as

105



7 Tackling Data Heterogeneity

the difference between the received global model and the locally computed client model,
i.e. the update rule of FedAvg can be written as:

wt+1 =
1

|St|
∑
i∈St

wk
t = wt +

1

|S|
∑
i∈St

(wk
t − wt) (7.3)

with St being the subset of clients selected for round t. For the sake of clarity, in Eq.
7.3 the model parameters/updates are not weighted according to the number of local data
samples, but it does not have an impact on the following observation: defining the client
updates as ∆k

t := wk
t − wt and their aggregated form as ∆t :=

1
|St|

∑
i∈St

∆k
t , we have:

wt+1 = wt +∆t = wt − (−∆t) (7.4)

Hence, the server update rule in FedAvg is equivalent to applying SGD to the “pseudo-
gradient”−∆t with learning rate ηs = 1. From this observation, FedAvg can be consid-
ered a specialization of a more general framework, called FedOpt, that uses SGD as a
server-side optimizer [155].

Algorithm 7 presents the FedOpt framework and variants. This body of work shows
that optimizers different from SGD can be used on the server, leading to the proposal of
using server-side momentum or adaptive optimizers.5 It is worth noting that, with the
introduction of a server-side optimizer, ηs represents the global learning rate, which is
an additional hyperparameter to tune. For server-side momentum, FedAvgM [76] uses
SGD with momentum at the server side, while FedAdagrad, FedYogi, and FedAdam are
the specializations of FedOpt, employing Adagrad [47, 130], Yogi [208] or Adam [95],

respectively. It is worth noting that FedAvgM, FedAdam, FedYogi, and FedAdagrad do
not introduce computation or communication overhead on clients with respect to Fe-
dAvg. The algorithms exhibit improved convergence rate both theoretically and empiri-
cally, also in presence of heterogeneous data. Algorithm 8 describes FedAdagrad, FedYogi
and FedAdam.

Drawing connections with out-of-distribution generalization, Tenison et al. designed
a Gradient Masked Aggregation (GMA) as an alternative for regular FedAvg’s update
aggregation [181]. In GMA, a soft mask, based on sign agreement among client updates,

5The client-side optimizer (ClientOpt in Algorithm 7) is supposed to be SGD.

106



7.2 Server-side Optimizations

Algorithm 7: FedOpt.
1 Server executes:
2 initializew0

3 for each round t = 0, 1, 2, 3, ..
4 c← max(C ×K, 1)
5 St ← (random set of c clients)
6 for each client k ∈ St in parallel
7 ∆k

t ←ClientOpt(k, wt)
8 ∆t ←

∑
i∈St

nk

n
∆k

t

9 wt+1 ← ServerOpt(wt,−∆t, ηs, t)

is applied to the aggregated updates. It is worth noting that GMA can be plugged into any
other algorithm as an alternative to FedAvg aggregation (e.g., into FedOpt framework).

7.2.2 Post-Aggregation Refinement

Concluding, other contributions focus on fine-tuning the global model after aggregation,
before a new FL round begins. In particular, KD-based approaches have been proposed
to rectify the server model by applying post-aggregation ensemble distillation. In practice,
the global model is fine-tuned by mimicking the aggregated predictions of clients’ mod-
els on common data. This class of solutions supposes the existence of publicly-available
proxy data (semantically similar to the clients’ local dataset) or leverages model generators.
In detail, FedDF [115] builds the ensemble of clients’ model outputs by computing their
average, while FedBE [30] employs a Bayesian model ensemble to merge client predictions
to improve aggregation robustness. FedAUX [159] further extends FedDF’s procedure by
utilizing unsupervised pre-training on auxiliary data to determine a suitable model ini-
tialization for local feature extractor. FedAUX also weighs the ensemble predictions on
the proxy data based on a (ϵ, δ)-differentially private certainty score [48] of each partic-
ipant model. While server-side ensemble distillation methods assume the availability of
a (semantically similar) proxy dataset, FedFTG [214] conducts server-side rectification of
the global model through data-free knowledge distillation, where the server adversarially
trains both a generator model and the global model, and refines the latter on synthetic
data. A similar data-free refinement strategy is proposed in FedZKT [213].

107



7 Tackling Data Heterogeneity

Algorithm 8: FedOpt: FedAdagrad , FedYogi and FedAdam .

1 Server executes:
2 initializew0

3 initialize decay parameters β1, β2 ∈ [0, 1), v−1 ≥ τ 2

4 for each round t = 0, 1, 2, 3, ..
5 c← max(C ×K, 1)
6 St ← (random set of c clients)
7 for each client k ∈ St in parallel
8 ∆k

t ←ClientUpdate(k, wt)
9 ∆t ←

∑
i∈St

nk

n
∆k

t

10 mt ← β1mt−1 + (1− β1)∆t

11 vt ← vt−1 +∆2
t (FedAdagrad)

12 vt ← vt−1 − (1− β2)∆2
t sign(vt−1 −∆2

t ) (FedYogi)
13 vt ← β2vt−1 + (1− β2)∆2

t (FedAdam)
14 wt+1 ← wt + ηs

mt√
vt+τ

15 ClientUpdate(k, wt)
16 w ← wt

17 B ← (splitDk into batches of sizeB)
18 for each local epoch e from 1 toE
19 for batch b ∈ B
20 w ← w − η∇ℓ(w; b)
21 ∆← w − wt

22 return ∆ to server

7.3 Empirical Evaluations of SOTAAlgorithms

In this section, we propose an experimental evaluation of the discussed approaches, con-
sidering both client- and server-side classes. Further contributing to the current body of
knowledge, we propose a benchmark of hybrid FL approaches, emerging as a combina-
tion of client- and server-side algorithmic tweaks, discussing the tradeoffs that emerge.
Our code is publicly available at https://github.com/alessiomora/fl_algorithms_non_

iid_2.

108

https://github.com/alessiomora/fl_algorithms_non_iid_2
https://github.com/alessiomora/fl_algorithms_non_iid_2


7.3 Empirical Evaluations of SOTA Algorithms

7.3.1 Experimental Setup

In the following, we provide some details on the dataset used in the analysis, the partition-
ing strategy used to produce different levels of heterogeneity, along with the experimental
parameters comprising the evaluation matrix. All the experimental simulations have been
run in a Python virtual environment on a machine equipped with two NVIDIA RTX
A5000 GPUs.

7.3.2 Datasets and baselines

We conducted a set of experiments on the CIFAR-100 dataset, which consists of 60.000
examples of 32x32 color images - 50.000 for training and 10.000 for testing - belonging
to 100 classes. We partitioned the training set to simulate 100 clients in the federation. As
standard in FL algorithm evaluations, we used the method proposed in [76] to generate
the clients’ shard of data. A concentration parameter α tunes the heterogeneity of local
training sets. With a high α value (e.g., > 100) the distribution of labels among clients
tends to be homogeneous while lowering theα value translates to local data with different
amounts of examples per label until the extreme case of local examples belonging to only
one label.

We performed simulations with two levels of data heterogeneity, determined by α =

0.3 and α = 0.1. In the first setting (α = 0.3), we restrict the clients to have a balanced
local set (i.e., the same amount of total examples) and we distribute the examples as in
[94], where the authors provide the exact list of examples per client. In the latter case
(α = 0.1), we do not restrict the learners to have the same amount of total data points,
and learners can have significantly unbalanced data sets. When possible, different clients
do not rely on repeated examples. Fig. 7.2a and Fig. 7.2b depict the distribution of labels
among the clients with varying α values.

We consider FedAvg as a baseline and benchmark a selection of state-of-the-art FL
techniques among the ones presented in the first part of this paper. For client-side opti-
mizations, we compared the following methods: FedProx, FedNTD, FedGKD, FedMLB,
FedDyn, FedSAM, FedFA. For server-side optimizations, we considered FedAvgM and
FedAdam. Also, we coupled promising compatible approaches, i.e. FedAdam + FedMLB,
FedAvgM + FedMLB, FedDyn + FedMLB, FedAvgM + FedSAM, FedAdam + FedSAM,
FedAvgM + FedFA, FedAdam + FedFA, to assess the gain deriving from both client- and

109



7 Tackling Data Heterogeneity

server-side optimizations. While preserving the general nature of our study and with-
out loss of generality, we have excluded from the analysis works that either assume the
existence of (semantically-similar) additional public datasets or approaches known to be
more bandwidth-hungry in the upload link when compared to FedAvg or techniques that
do not disclose their code base and/or did not include the hyperparameter tuning proce-
dure, or that do not use standard classification tasks in their evaluation.

7.3.3 Implementation details

Similar to [2, 94], in all the experiments, SGD with a learning rate fixed to 0.1 is used as
local optimizer, and the global learning rate is set to 1.0, except for FedAdam, which used
0.01 for both local and global learning rate, and for FedAdam + FedSAM, which used
0.1 for local and 0.01 for global learning rate. Local epochs are fixed to 5 and a random
fraction of 0.05 (5 %) clients are selected per round. A weight decay with a factor of 0.001
is applied to limit local overfitting. Local epochs are fixed to 5. Local batch size is deter-
mined so that each client performs 50 local updates. Gradient clipping is performed to
stabilize local training. The local learning rate is exponentially decayed with a factor of
0.998 similar to the work in [2, 94]. The model architecture used in our experiments is
ResNet-18 [66], but we have replaced the batch normalization layer with group normal-
ization as suggested in [75, 94]. We used random rotation, horizontal flip, and random
crop as preprocessing layers. For a fair comparison, seeds are used to select a set of ran-
dom clients at each round, to perform local data preprocessing, and to initialize client
models; different algorithms are compared using the same set of seeds on more runs. For
ease of readability, we report a distilled set of parameters in Tab.7.3.

For algorithmic-specific hyperparameters, we proceeded as follows:

• For FedProx we tuned µ in {0.1, 0.01, 0.001}. µ controls the weight of the proxi-
mal term in the local objective function. We selected µ = 0.01 for α = 0.3 and µ =
0.001 for α = 0.1.

• For FedGKD we set γ to 0.2, as in the original paper. γ controls the weight of the
KD-based term in the local objective function.

• For FedNTD we selected λ in {0.3, 1.0}.

110



7.3 Empirical Evaluations of SOTA Algorithms

• For FedDyn we set αdyn equal to 0.1 as in the original paper.

• For FedMLB λ1 and λ2 are both set to 1 (λ1, λ2 weight the impact of the hybrid
cross-entropy loss and the KD-based loss). 5 blocks are considered, formed as in the
original paper, where conv1, conv2_x, conv3_x, conv4_x, conv5_x and the fully
connected layer constitutes a single block.

• For FedSAM we tuned ρ in {0.5, 0.1, 0.05, 0.01} and we selected 0.05 as best value.
ρ defines the neighborhood size for seeking flat minima.

• For FedFA we augment the clients’ ResNet18 architecture with five FA layers, one
after each ResNet block. The server aggregates the FedFA’s channel-wise feature
statistics and uses a regular ResNet18 architecture for test. FA layers are tuned as
in the original paper [224].

• For FedAvgM we tuned the momentum parameter among {0.4, 0.6, 0.8, 0.9},
and selected 0.6 for α = 0.1 and 0.8 for α = 0.3.

• For FedAdam we set τ (a constant for numerical stability) equal to 0.001 as in [94,

155].

Table 7.3 reports the per-algorithm hyperparameter selection.

Table 7.3: Hyperparameter tuning of evaluated algorithms.

Selected
Method (α = 0.3, bal.) (α = 0.1, unbal.)

FedProx µ = 0.01 µ = 0.001
FedNTD λ = 0.3
FedGKD (M=1) γ = 0.2
FedGKD (M=5) γ = 0.2
FedDyn αdyn = 0.1
FedMLB λ1 = 1, λ2 = 1
FedSAM ρ = 0.05
FedAdam τ = 0.001, β1=0.9, β2=0.999
FedAvgM momentum = 0.8 momentum = 0.6

111



7 Tackling Data Heterogeneity

1 10 20 30 40 50 60 70 80 90 100

Client

100

90

80

70

60

50

40

30

20

10

1

La
be

l

 = 0.3

0 20 40 60 80

(a) α = 0.3, balanced datasets.

1 10 20 30 40 50 60 70 80 90 100

Client

100

90

80

70

60

50

40

30

20

10

1

La
be

l

 = 0.1

0 40 80 120 160

(b) α = 0.1, unbalanced datasets.

Figure 7.2: Label distribution with different levels of heterogeneity. (a) Distribution of labels (0-
99) on clients (100 clients) with concentration parameter set to 0.3. Local datasets
have the same cardinality. This is the exact same setting of [94]. (b) Distribution of
labels (0-99) on clients (100 clients) with concentration parameter set to 0.1.

0 200 400 600 800 1000
Round

0

10

20

30

40

50

Ac
cu

ra
cy

FedAvgM_0.4
FedAvgM_0.6
FedAvgM_0.8
FedAvgM_0.9

Figure 7.3: FedAvgM accuracy with different momentum parameters, α = 0.3.

The algorithms are implemented in Python using the TensorFlow library. It is worth
noting that most of the code available for such algorithms is implemented leveraging the
Pytorch library, hence the accompanying code of this paper constitutes a valuable con-
tribution to the FL community. The code base also provides the implementation of
MOON, but the latter is not included in the comparison analysis since it locally mod-
ifies the model architecture by injecting a 2-layer head.

Table 7.4, Tab.7.5 and Tab. 7.6 respectively report the results of the client-side, server-
side and hybrid FL methods, for different levels of data heterogeneity. The arrows de-
note whether the higher (accuracy) or the lower (rounds) is better. Since both final accu-
racy and convergence speed are relevant indicators for federated learning [168], we report
the performance attained at different rounds and the number of needed communication

112



7.3 Empirical Evaluations of SOTA Algorithms

Table 7.4: Comparison among considered client-side methods on CIFAR-100 within different
federated learning settings. The accuracy at the target round and the number of com-
munication rounds to reach the target test accuracy are based on smoothed average with
parameter 0.9.

α = 0.3 (balanced) α = 0.1 (unbalanced)

Method Accuracy (%, ↑) Rounds (↓) Accuracy (%, ↑) Rounds (↓)

500R 1000R 25% 45% 47% 500R 1000R 25% 39%

FedAvg 42.78 47.02 127 756 965 33.06 39.83 309 889
FedProx 42.36 46.91 128 754 1000+ 33.21 39.83 309 889
FedNTD 42.38 46.66 123 764 1000+ 33.91 40.67 307 807
FedGKD (M=1) 43.13 47.64 122 657 935 33.74 40.56 309 806
FedGKD (M=5) 42.61 46.48 123 663 1000+ 34.07 40.55 307 802
FedDyn 48.90 58.11 89 334 414 36.39 48.02 269 536
FedMLB 49.21 55.60 122 390 440 31.97 42.68 368 743
FedSAM 43.62 48.54 143 575 729 34.12 42.83 321 708
FedFA 46.54 52.08 149 443 548 37.48 47.17 310 549

Table 7.5: Comparison among considered server-side methods on CIFAR-100 in two different
federated learning settings. The accuracy of the target round and the number of com-
munication rounds to reach the target test accuracy are based on smoothed average with
parameter 0.9.

α = 0.3 (balanced) α = 0.1 (unbalanced)

Method Accuracy (%, ↑) Rounds (↓) Accuracy (%, ↑) Rounds (↓)

500R 1000R 25% 45% 55% 500R 1000R 25% 39%

FedAvg 42.78 47.02 127 756 1000+ 33.06 39.83 309 889
FedAvgM 42.99 53.55 113 464 1000+ 35.38 42.51 250 724
FedAdam 44.56 53.09 139 422 1000+ 41.76 47.42 193 430

rounds to reach a target accuracy. For the solutions that do not achieve the target accuracy
in 1000 rounds, we use the notation 1000+.

Table 7.7 reports the local execution time of the best performing client-side approaches
(i.e., FedDyn, FedMLB, FedSAM, FedFA) with respect to FedAvg. The reported time (in
seconds) is the average local training time across 5 clients per round, over 150 rounds,
considering the setting (α = 0.3, balanced), 500 local examples, 5 local epochs, and 50

113



7 Tackling Data Heterogeneity

Table 7.6: Comparison among hybrid methods on CIFAR-100 in two different federated learning
settings. The accuracy at the target round and the number of communication rounds
to reach the target test accuracy are based on smoothed average with parameter 0.9.

α = 0.3 (balanced) α = 0.1 (unbalanced)

Method Accuracy (%, ↑) Rounds (↓) Accuracy (%, ↑) Rounds (↓)

500R 1000R 25% 45% 55% 500R 1000R 25% 39%

FedAvg 42.78 47.02 127 756 1000+ 33.06 39.83 309 889
FedAvgM + FedFA 48.56 55.25 113 329 849 41.94 49.71 221 413
FedAvgM + FedSAM 49.43 56.75 122 330 751 39.01 47.27 235 504
FedAdam + FedSAM 49.58 56.55 144 265 790 38.88 49.65 279 501
FedAvgM + FedMLB 52.56 58.55 133 333 636 35.30 50.21 329 603
FedAdam + FedMLB 51.22 58.17 124 357 742 39.6 50.74 242 476
FedDyn + FedMLB 58.97 63.31 81 222 264 34.92 54.59 341 573

Table 7.7: Execution time (in seconds) of best performing client-side algorithms and overhead
with respect to FedAvg, setting (α = 0.3, balanced).

Method Time (s, ↓) wrt FedAvg (↓)

FedAvg 10.91
FedDyn 11.07 ≈
FedFA 15.91 1.45x
FedSAM 17.64 1.61x
FedMLB 25.25 2.31x

local updates. The per-round pseudo-random selection of clients is ruled by the same
set of seeds for all the measurements to ensure fairness. Clients run sequentially in our
centralized simulations. We use the results in Tab. 7.7 as a proxy for qualitatively assessing
the computation overhead, with respect to FedAvg, introduced by the considered state-
of-the-art algorithms.

7.3.4 Client-sideMethods

Fig. 7.4a and Fig. 7.4f show the test accuracy for the considered client-side methods. As
it is shown, FedProx has a similar performance to FedAvg, while being very sensitive to its

114



7.3 Empirical Evaluations of SOTA Algorithms

0 200 400 600 800 1000
Round

35

40

45

50

55

60

Ac
cu

ra
cy

 = 0.3

FedAvg
FedGKD (M=5)
FedGKD (M=1)
FedProx
FedNTD
FedDyn
FedMLB
FedFA
FedSAM

(a)

0 200 400 600 800 1000
Round

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

 = 0.3

FedAvg
FedGKD (M=5)
FedGKD (M=1)
FedProx
FedNTD
FedDyn
FedMLB
FedFA
FedSAM

(b)

0 200 400 600 800 1000
Round

35

40

45

50

55

Ac
cu

ra
cy

 = 0.3

FedAvg
FedAdam
FedAvgM

(c)

0 200 400 600 800 1000
Round

2.5

3.0

3.5

4.0

4.5

Lo
ss

 = 0.3

FedAvg
FedAdam
FedAvgM

(d)

0 200 400 600 800 1000
Round

35

40

45

50

55

60

65

Ac
cu

ra
cy

 = 0.3

FedAvg
FedAvgM+FedFA
FedAdam+FedMLB
FedAvgM+FedMLB
FedAdam+FedSAM
FedAvgM+FedSAM
FedDyn+FedMLB

(e)

0 200 400 600 800 1000
Round

25

30

35

40

45

50

Ac
cu

ra
cy

 = 0.1

FedAvg
FedGKD (M=5)
FedGKD (M=1)
FedProx
FedNTD
FedDyn
FedMLB
FedFA
FedSAM

(f)

0 200 400 600 800 1000
Round

2.5

3.0

3.5

4.0

4.5
Lo

ss

 = 0.1

FedAvg
FedGKD (M=5)
FedGKD (M=1)
FedProx
FedNTD
FedDyn
FedMLB
FedFA
FedSAM

(g)

0 200 400 600 800 1000
Round

25

30

35

40

45

50

Ac
cu

ra
cy

 = 0.1

FedAvg
FedAdam
FedAvgM

(h)

0 200 400 600 800 1000
Round

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

 = 0.1

FedAvg
FedAdam
FedAvgM

(i)

0 200 400 600 800 1000
Round

30

35

40

45

50

55

Ac
cu

ra
cy

 = 0.1

FedAvg
FedAvgM+FedFA
FedAdam+FedMLB
FedAvgM+FedMLB
FedAdam+FedSAM
FedAvgM+FedSAM
FedDyn+FedMLB

(j)

Figure 7.4: The figure depicts the global model’s performance (accuracy and loss), also reported in
Tab. 7.4, Tab. 7.5 and Tab. 7.6, on test data across 1000 communication rounds. The
first row of charts refers to the setting (α = 0.3, balanced datasets), the second one
to (α = 0.1, unbalanced datasets). (a, f) Accuracy of considered client-side methods
with different levels of data heterogeneity. (b, g) Loss of considered client-side methods
with different level of data heterogeneity. (c, h) Accuracy of considered server-side
methods with different level of data heterogeneity. (d, i) Loss of considered server-
side methods with different level of data heterogeneity. (e, j) Accuracy of considered
combined methods with different level of data heterogeneity.

additional hyperparameter (reported best results with µ = 0.01 for α = 0.3 and with µ =
0.001 forα = 0.3) since the proximal term directly scales with a measure of model weight
divergence. Furthermore, it is worth noting that FedProx has been also designed to handle
a different number of local computations (e.g., different amounts of local epochs), which
is not the setting we reproduced (all the clients perform the same number of local updates
in our experiments).

One interesting result is that the baseline methods that use the global model output
in a KD-based framework (FedGKD, FedNTD) only show negligible gains or even de-
grade global the model accuracy. As also claimed in [68], this can be explained by the
fact that the predictions of the global model can be misleading during training, especially
in the first communication rounds, due to inaccurate predictions. Hence, mimicking
the response of the global model is suboptimal and can hamper local training. Contrar-
ily, FedMLB is more robust in presence of heterogeneous data and largely outperforms
the other client-side KD-based methods, even though it results to be more effective on
the setting (α = 0.3, balanced) with a relative increase of 18% with respect to FedAvg
which drops to slightly more than 7% for (α = 0.1, balanced). This result confirms that

115



7 Tackling Data Heterogeneity

local-global distillation is motivated: the guidance of the global model can be significantly
beneficial to tackle data heterogeneity. At the same time, in response-based local-global
distillation (FedGKD, FedNTD), locally learned intermediate features may drift apart,
and approaches that also pose constraints to intermediate representations are more effec-
tive. From a different perspective, the global model should be better at producing general
intermediate features, and its influence on local training is beneficial.

However, FedMLB introduces significant local computation and memory overhead, as
well as more local execution time (see Tab. 7.7), which obviously translates to an increase
in energy consumption. While not representing an issue in cross-silo federations, such
overhead may preclude the participation of resource-constrained nodes in cross-device
settings.

It is worth mentioning that FedGKD (with M = 5 historical models) shows a slight
improvement over FedAvg in theα = 0.1 setting with limited memory and computation
overhead. However, it requires 2 times the server-client communication costs compared
to FedAvg and the other methods, since the server also transmits the aggregated historical
model. Fig. 7.4b and Fig. 7.4g depict the global model loss on test data for client-side
approaches, and the trends that emerge are quite consistent with the analysis conducted
on global model accuracy. An interesting aspect is that FedGKD reaches lower loss values
with respect to FedAvg, which however translates either to a slight improvement or even
in degradation in accuracy. Similarly, FedMLB results in lower test loss with respect to
FedDyn, which conversely achieves the best accuracy, in both the heterogeneity levels.

FedFA exhibits significant improvements in generalization over FedAvg, at negligible
cost of memory overhead and limited overhead of local execution time – FedFA resulted
to be the solution with the lowest execution time after FedDyn (see Table 7.7). It is worth
highlighting that FedFA requires to modify the local model architecture (FedFA leverages
special layers that inject feature noise) and requires disclosing additional local information
about aggregated statistics of data – which have negligible communication cost.

FedSAM results to be more effective in presence of higher heterogeneity levels (α =

0.1, unbalanced), surpassing FedMLB in global model accuracy both at 500R and 1000R.
Contextually, FedSAM requires longer local training time with respect to FedDyn and
FedFA which however exhibit better generalization, while not requiring prior knowledge
about the federation or modifications to the local model architecture.

116



7.3 Empirical Evaluations of SOTA Algorithms

With respect to client-side approaches, FedDyn shows impressive results in both the
considered settings and achieves the best accuracy after 1000 learning rounds (respectively
58.11% and 48.02%), while introducing marginal overhead in local execution time (see
Table 7.7). Recall that FedDyn is classified among client-side approaches, even though
it maintains a server-side state which is vital to the algorithm. Its memory requirements,
however, are at least doubled with respect to FedAvg to be attributed to the computation
of its penalty term; furthermore, FedDyn supposes a prior knowledge about the number
of total clients, which may be not a realistic assumption in certain circumstances.

7.3.5 Server-sideMethods

When considering the server-side approaches - FedAvgM and FedAdam - they exhibit
significant improvements over FedAvg in both the considered settings (see Tab. 7.5, Fig.
7.4c, Fig. 7.4h). The global model loss on test data confirms the trends of global model
accuracy (see Fig. 7.4d, 7.4i). Overall, FedAdam achieves the best results, performing
slightly worse than FedAvgM in (α = 0.3, balanced) but showing a significant improve-
ment in the more extreme setting. Also, FedAdam is consistently faster in achieving target
accuracy levels. We note once again that, differently from client-side methods, FedAvgM
and FedAdam do not introduce client-side overhead. Hwever, they require additional
hyperparameters to be tuned, i.e. the server-side learning rate and other hyperparameters
specific to the optimizer (e.g., momentum for FedAvgM). Although their best config-
urations outperform FedAvg, they seem quite sensitive to such hyperparameters, as also
shown in [155]. For the sake of clarity, in Fig. 7.3, we report the performance of FedAvgM
with different momentum parameters.

7.3.6 HybridMethods

Table 7.6 reports the results of hybrid methods, derived as a combination of the most
promising client- and server-ide approacheswhich are: FedAvgM + FedMLB, FedAdam
+ FedMLB, FedDyn + FedMLB, FedAvgM + FedSAM, FedAdam + FedSAM, and Fe-
dAvgM + FedFA. Fig. 7.4e and Fig. 7.4j depict the achieved accuracy of the considered
combined solutions.

The first two methods exhibit very similar performance, achieving approximate levels
of accuracy, while the Adam-based one converges faster. Overall, the combination Fed-

117



7 Tackling Data Heterogeneity

Dyn + FedMLB attains the best generalization performances. For the setting (α = 0.3,
balanced), FedDyn + FedMLB results to be the best method in convergence speed and
in maximum accuracy achieving 55% accuracy in 264 communication rounds, with Fe-
dAvg never achieving a comparable accuracy even in 1000 communication rounds. For
(α = 0.1, unbalanced), FedDyn + FedMLB converges slower than other solutions but
shows the best final accuracy. It is worth noting that, while outperforming all the other
considered solutions, FedDyn + FedMLB requires the combined overhead of the two so-
lutions, resulting in a non-negligible increase in memory usage and local execution time
for client devices (see Tab. 7.7), hence at the expense of greater energy consumption, as
well as supposing FedDyn’s prior knowledge about the federation. FedAvgM + FedFA
shows an impressive slope in the first part of the training, resulting as the faster method
to achieve the target levels of accuracy (25%, 39%) in the most extreme setting. FedSAM
seems to be most effective when coupled with server-side optimization, bridging the gap
with other client-side methods.

7.3.7 Discussion

The analysis shows that improving FedAvg’s robustness to data heterogeneity is a chal-
lenging task. Superior approaches, e.g. FedDyn or FedMLB, usually introduce additional
overhead (memory, execution time and energy consumption, communication costs), as-
sume prior domain knowledge or leverage proxy datasets. Overall, the results confirm
that (1) approaches rooted in theory, like FedDyn, are extremely effective, (2) transferring
knowledge between global and local models, in an effort to limit catastrophic forgetting,
effectively improves generalization, with utilizing intermediate features being crucial, (3)
seeking for flatter local minima also translates to improved robustness of the global model
confirming that SAM-trained local models are more amenable to averaged aggregation,
and (4) feature-augmentation layers can be an additional architectural element to be con-
sidered when designing neural networks for use in federated environments. Finally, it is
evident the benefit of combining client- and server-side techniques so to boost the effec-
tiveness of single-sided approaches.

118



7.4 Concluding Remarks

7.4 Concluding Remarks

In this Chapter, we have reviewed state-of-the-art algorithms to tackle the degradation in
global model performance introduced by data heterogeneity. We classified the methods
in two macro categories, client- and server-side optimizations, to then clustering them in
finer subgroups driven by the same inspirations or observations. In the second part of
this Chapter, we have provided experimental evaluations of a subset of the reviewed so-
lutions in challenging simulated levels of data heterogeneity. In line with the most recent
literature in the field, we showed that some solutions are more effective than others, but
these benefits may come at an unsustainable cost for client devices. The code we used for
experiment is available at https://github.com/alessiomora/fl_algorithms_non_iid_2.

119

https://github.com/alessiomora/fl_algorithms_non_iid_2




8 Future Directions and
Conclusions

8.1 Future Directions

To conclude, in the next subsections, we will present some open challenges that will likely
influence the incoming future of decentralized learning systems, by also sketching possi-
ble and most promising directions for future research.

8.1.1 TowardsModel Heterogeneity

As we have seen in Chapter 6, the literature comprises a plethora of strategies to enable
model heterogeneity; however, they rely on unpractical assumptions or show significantly
reduced effectiveness with respect to methods that communicate model parameters. We
expect work to narrow such a performance gap with traditional algorithms. This degree
of freedom would further favor the collaboration among institutions — under the per-
spective of intellectual property related to the tailored model architecture — and can be
also leveraged to favor the inclusion of more resource-constrained edge devices in the
learning process. In addition, methods that enable model heterogeneity may be more
amenable to model personalization, representing an interesting perspective to be deep-
ened.

8.1.2 TowardsModel Personalization

The literature review, the discussions and the empirical evaluations present in this The-
sis focus on methods that aim at building a global model that generalizes well on unseen
data, either reducing the communication cost to train it, including resource-constrained

121



8 Future Directions and Conclusions

devices in the process, guaranteeing certain privacy levels, or being robust to data hetero-
geneity. However, recently, there has been an increasing focus in the field on personalizing
the global model to better fit the data of individual participants, and it is emerging as a
significant factor in evaluating algorithms or for designing new ones [86, 144]. Particularly
relevant for this Thesis, it would be to extend the treatment in Chapter 7 by evaluating
the state-of-the-art methods to tackle data heterogeneity under personalization metrics
(e.g., after a certain number of communication rounds, how effective the global model
is in fitting local data, using a simulated local test data which reflects the local distribu-
tion). In particular, the focus would be to understand whether KD can be used to boost
model personalization as it has been done to increase robustness of the global model to
data heterogeneity.

8.1.3 Evaluating Federated Algorithms on Real Testbeds

Almost all the approaches proposed in literature and referenced in this Thesis evaluate
their novel solutions on simulated federation of clients, running them in a centralized
manner and leveraging datacenter-like hardware, such as powerful GPUs. However, of-
ten such evaluations do not take into account the actual possible overhead on client de-
vices, which is a very relevant aspect for cross-device settings, as we pointed out several
times in this document. Usually, the performance analysis focuses on metrics such as
the global model generalization (or personalizaiton) ability, the loss on test data either
from a local or global distribution, comparing them with respect to well-known base-
lines for a baseline algorithm, e.g. FedAvg for synchronous, star-shaped FL. We claim that
evaluations of state-of-the-art solutions should include empirical evaluations of possible
overhead on clients, such as execution time, computational cost and energy consump-
tion, measured on hardware representative of real edge devices. Most importantly for
this Thesis, the empirical results in Chapter 7 could be extended to include these kind
of metrics as future work, which would be novel for the field as well as necessary for the
adoption. From another perspective, the datasets usually employed in experiments are
federated variants of well-known regular datasets, such as EMNIST, CIFAR10, and CI-
FAR100. Such simulated client distributions, while being very practical for benchmark-
ing new algorithms, may be not fully representative of actual federated environments,
calling for new generations of datasets, collected in real-life exemplary use case.

122



8.1 Future Directions

8.1.4 Rethinking the TraditionalMLWorkflow for
Federated Learning

The literature explored in this survey proposes solutions to the main challenges of em-
ploying federated learning systems in real-world scenarios. However, most works suppose
that the hyperparameters (e.g., the neural network’s architecture, regularization tech-
niques, and optimizers) of the model to be trained have been already established, and
typically the focus is not about the tuning of their determination. Furthermore, decen-
tralized learning systems introduce additional algorithm-specific hyperparameters (e.g.,
the number of local epochs or the number of participants involved per round) that sig-
nificantly influence the performance of the adopted solution. While in cloud-centric DL
it is feasible to run many rounds of training to empirically search the hyperparameters
space towards optimality, this strategy is probably infeasible for cross-silo settings and
surely incompatible with cross-device settings. Hence, we expect that hyperparameter op-
timization that targets the communication and computation overhead on the devices that
compose the federation, and not only aiming at the best accuracy of models as happens in
datacenter optimizations, will gain traction, by fostering the development of easy-to-tune
and/or auto-tuning algorithms for federated settings.

Another relevant phase of the traditional workflow in cloud-centric ML, which is re-
shaped by the design of decentralized learning systems, relates to the debugging of trained
models’ behaviour. In fact, preventing the access to the raw data by design does preclude
modelers and practitioners from directly investigating the causes of the detected problems
(e.g., investigating missclassification, noticing evident bias in the training set, identifying
outliers, manually adding or adjusting labels), i.e. manual data inspection is impossible.
Connected to that, the design and implementation of privacy-preserving techniques to
enable the debug phase also for federated learning systems are open areas of research.

8.1.5 Going beyond Supervised Learning

It is important to underline once more that almost all the cited works in this survey sup-
pose labeled data examples within supervised learning contexts. However, in real feder-
ated settings it could not be straightforward to automatically or to manually label data
samples; while systems to favour the collection of user-annotated examples are arising

123



8 Future Directions and Conclusions

(e.g., [122]), the huge amount of unlabeled raw data, that will be produced in the next
years at the edge of the network, may not be adequately exploited by only supervised
learning techniques. Anyway, opening up to semi-supervised [88], unsupervised or to
reinforcement learning approaches would require similar issues in terms of privacy guar-
antees, heterogeneity, communication efficiency and scalability.

8.1.6 Towards Fully Decentralized Systems at Scale

While cross-device (star-shaped) FL is mature enough to be used in large scale applications
[18] (e.g., in the realm of smartphone apps), cross-device fully decentralized solutions have
not reached such mature implementations yet. As already highlighted, dealing with peer-
to-peer topologies inherently adds layers of complexity with respect to the client-server
paradigm; that makes it harder the implementation as well as the theoretical analysis of
such systems. A very practical solution may be having a central orchestrating entity that
is aware of the current topology status thanks to periodic reports provided by the feder-
ation of peers (as in [179]); in this way the orchestrator1 can determine and dictate the
(favourable) peer links to be used in exchanging model updates. In this perspective, in
the short-term future research in the field, we expect growing efforts in practical (and
maybe more elegant) solutions to dominate the complexity of dynamic large-scale peer-
to-peer topologies, as in the case of real cross-device federated scenarios of practical us-
age, since fully decentralized systems bring, in principle, several advantages with respect
to star-shaped solutions (e.g., no need to trust central entities, no server bottlenecks, no
unique points of failure). We also note that while communication-efficient strategies can
be more easily adapted from star-shaped to fully decentralized systems (e.g., [179]), this
may be not so natural for non-IIDness and for privacy guarantees. Furthermore, as far as
we know, poisoning has not been investigated considering such topology of participants.
In short, the literature about fully decentralized learning is still in its embryonic stages:
approaches to ensure formal privacy guarantees (e.g., DP-based approaches and secure
aggregation adaptations) and to effectively tackle non-IIDness (e.g., [143]) have still to
be thoughtfully explored and investigated before achieving the efficient implementation
and deployment of an associated large-scale prototype.

1The orchestrator may also easily dictate the hyperparameters of the model to be trained and of the algo-
rithm to be used.

124



8.2 Conclusions

8.2 Conclusions

In this Thesis, we firstly proposed an extensive overview of decentralized learning liter-
ature, enriched by the proposal and usage of a novel taxonomy, which has been used to
analyze and classify state-of-the-art algorithmic methodologies. Then, the main issues in
decentralized learning have been explored, providing a landscape on possible solutions
tailored for diverse settings or architectural designs. In Chapter 4 and Chapter 5, we pre-
sented the rationale, the design and the empirical evaluation of two methods which aim at
improving the communication efficiency and the robustness to system heterogeneity of
FedAvg, the most spread baseline algorithm. The conceptual contribution of this Thesis
also included, in Chapter 6, a novel perspective on the usage of Knowledge Distillation
as a mean for alleviating issues such as data heterogeneity and system heterogeneity. Fi-
nally, in Chapter 7, we provided a vertical review on recently proposed methods to tackle
the performance degradation introduced by data heterogeneity in star-shaped Federated
Learning, enriched by empirical evaluations on challenging heterogeneous data distribu-
tions.

125





Acronyms

CCPA California Consumer Privacy Act
CNN Convolutional Neural Network
DL Deep Learning
DP Differential Privacy
FL Federated Learning
GDPR European General Data Protection Regulation
GL Gossip Learning
HIPAA Health Insurance Portability and Accountability Act
IID Identically and Independently Distributed
IIoT Industrial Internet of Things
IoT Internet of Things
KD Knowledge Distillation
MEC Multi-access Edge Computing
ML Machine Learning
MPC Multi-party Computation
NN Neural Network
SGD Stochastic Gradient Descent
SSTC Structured Sparse Ternary Compression
STC Sparse Ternary Compression
VPN Virtual Private Network

127





Bibliography

1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. “Deep learning with differential privacy”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM.
2016, pp. 308–318.

2. D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and V.
Saligrama. “Federated learning based on dynamic regularization”. arXiv preprint
arXiv:2111.04263, 2021.

3. A. Afonin and S. P. Karimireddy. “Towards Model Agnostic Federated Learning
Using Knowledge Distillation”. arXiv preprint arXiv:2110.15210, 2021.

4. N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan. “cpSGD:
Communication-efficient and differentially-private distributed SGD”. In: Advances
in Neural Information Processing Systems. 2018, pp. 7564–7575.

5. A. F. Aji and K. Heafield. “Sparse communication for distributed gradient de-
scent”. arXiv preprint arXiv:1704.05021, 2017.

6. D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. “QSGD: Communication-
efficient SGD via gradient quantization and encoding”. In: Advances in Neural
Information Processing Systems. 2017, pp. 1709–1720.

7. M. Andreux, J. O. du Terrail, C. Beguier, and E. W. Tramel. “Siloed Federated
Learning for Multi-centric Histopathology Datasets”. In: Domain Adaptation and
Representation Transfer, and Distributed and Collaborative Learning. Springer.
2020, pp. 129–139.

8. R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton. “Large
scale distributed neural network training through online distillation”. arXiv preprint
arXiv:1804.03235, 2018.

129



Bibliography

9. P. Auer, N. Cesa-Bianchi, and P. Fischer. “Finite-time analysis of the multiarmed
bandit problem”. Machine learning 47:2-3, 2002, pp. 235–256.

10. J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer normalization”. arXiv preprint arXiv:1607.06450,
2016.

11. E. Bagdasaryan, O. Poursaeed, and V. Shmatikov. “Differential privacy has dis-
parate impact on model accuracy”. In: Advances in Neural Information Processing
Systems. 2019, pp. 15453–15462.

12. E. Bakopoulou, B. Tillman, and A. Markopoulou. “A Federated Learning Ap-
proach for Mobile Packet Classification”. arXiv preprint arXiv:1907.13113, 2019.

13. P. Bellavista, L. Foschini, and A. Mora. “Communication-Efficient Heterogeneous
Federated Dropout in Cross-device Settings”. In: 2021 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE. 2021, pp. 1–6.

14. P. Bellavista, L. Foschini, and A. Mora. “Decentralised Learning in Federated De-
ployment Environments: A System-Level Survey”. ACM Computing Surveys (CSUR)
54:1, 2021, pp. 1–38.

15. J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. “signSGD:
Compressed optimisation for non-convex problems”. arXiv preprint arXiv:1802.04434,
2018.

16. M. Blot, D. Picard, M. Cord, and N. Thome. “Gossip training for deep learning”.
arXiv preprint arXiv:1611.09726, 2016.

17. M. Blum and S. Micali. “How to generate cryptographically strong sequences of
pseudorandom bits”. SIAM journal on Computing 13:4, 1984, pp. 850–864.

18. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.
Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan, et al. “Towards federated
learning at scale: System design”. arXiv preprint arXiv:1902.01046, 2019.

19. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D.
Ramage, A. Segal, and K. Seth. “Practical secure aggregation for privacy-preserving
machine learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM. 2017, pp. 1175–1191.

130



Bibliography

20. K. Bonawitz, F. Salehi, J. Konečnỳ, B. McMahan, and M. Gruteser. “Federated
learning with autotuned communication-efficient secure aggregation”.
arXiv preprint arXiv:1912.00131, 2019.

21. N. Bouacida, J. Hou, H. Zang, and X. Liu. “Adaptive Federated Dropout: Im-
proving Communication Efficiency and Generalization for Federated Learning”.
arXiv preprint arXiv:2011.04050, 2020.

22. T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi. “Fed-
erated learning of predictive models from federated electronic health records”. In-
ternational journal of medical informatics 112, 2018, pp. 59–67.

23. C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. “Model compression”. In: Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. 2006, pp. 535–541.

24. D. Caldarola, B. Caputo, and M. Ciccone. “Improving Generalization in Feder-
ated Learning by Seeking Flat Minima”. In: Proc. of European Computer Vision
Conference. Springer. 2022, pp. 654–672.

25. S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith,
and A. Talwalkar. “Leaf: A benchmark for federated settings”.
arXiv preprint arXiv:1812.01097, 2018.

26. S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar. “Expanding the reach
of federated learning by reducing client resource requirements”. arXiv preprint
arXiv:1812.07210, 2018.

27. S. of California Department of Justice. California Consumer Privacy Act (CCPA).
URL https://oag.ca.gov/privacy/ccpa. Accessed on May 2020.

28. Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou, H. Ludwig,
F. Yan, and Y. Cheng. “TiFL: A Tier-based Federated Learning System”. arXiv
preprint arXiv:2001.09249, 2020.

29. H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr. “Cronus: Robust and
heterogeneous collaborative learning with black-box knowledge transfer”. arXiv
preprint arXiv:1912.11279, 2019.

131

https://oag.ca.gov/privacy/ccpa


Bibliography

30. H.-Y. Chen and W.-L. Chao. “Fedbe: Making bayesian model ensemble applicable
to federated learning”. arXiv preprint arXiv:2009.01974, 2020.

31. M. Chen, R. Mathews, T. Ouyang, and F. Beaufays. “Federated Learning Of Out-
Of-Vocabulary Words”. arXiv preprint arXiv:1903.10635, 2019.

32. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A simple framework for
contrastive learning of visual representations”. In: International conference on ma-
chine learning. PMLR. 2020, pp. 1597–1607.

33. W. Chen, K. Bhardwaj, and R. Marculescu. “Fedmax: Mitigating Activation Di-
vergence for Accurate and Communication-efficient Federated Learning”. In: Proc.
of Machine Learning and Knowledge Discovery in Databases: European Confer-
ence. Springer. 2021, pp. 348–363.

34. X. Chen, T. Chen, H. Sun, Z. S. Wu, and M. Hong. “Distributed Training with
Heterogeneous Data: Bridging Median and Mean Based Algorithms”. arXiv preprint
arXiv:1906.01736, 2019.

35. Y. Chen, X. Sun, and Y. Jin. “Communication-Efficient Federated Deep Learning
With Layerwise Asynchronous Model Update and Temporally Weighted Aggre-
gation”. IEEE Transactions on Neural Networks and Learning Systems, 2019.

36. S. Cheng, J. Wu, Y. Xiao, and Y. Liu. “Fedgems: Federated learning of larger server
models via selective knowledge fusion”. arXiv preprint arXiv:2110.11027, 2021.

37. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Pa-
per. URL https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed on
April 2020.

38. G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. “EMNIST: Extending MNIST
to handwritten letters”. In: 2017 International Joint Conference on Neural Net-
works (IJCNN). IEEE. 2017, pp. 2921–2926.

39. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A.
Senior, P. Tucker, K. Yang, et al. “Large scale distributed deep networks”. In: Ad-
vances in neural information processing systems. 2012, pp. 1223–1231.

132

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html


Bibliography

40. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”.
arXiv preprint arXiv:1810.04805, 2018.

41. I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. “Be-
ing robust (in high dimensions) can be practical”. In: International Conference on
Machine Learning. PMLR. 2017, pp. 999–1008.

42. W. Diffie and M. Hellman. “New directions in cryptography”. IEEE transactions
on Information Theory 22:6, 1976, pp. 644–654.

43. T. V. Doan, Z. Fan, G. T. Nguyen, H. Salah, D. You, and F. H. Fitzek. “Follow Me,
If You Can: A Framework for Seamless Migration in Mobile Edge Cloud”. IEEE
INFOCOM Workshops, 2020, pp. 1178–11183.

44. A. Dosovitskiy and T. Brox. “Inverting visual representations with convolutional
networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2016, pp. 4829–4837.

45. Z. Du et al. “Rethinking Normalization Methods in Federated Learning”. In:
Proc. of the 3rd International Workshop on Distributed Machine Learning. 2022,
pp. 16–22.

46. J.-H. Duan, W. Li, and S. Lu. “FedDNA: Federated Learning with Decoupled
Normalization-layer Aggregation for Non-iid Data”. In: Proc. of Machine Learn-
ing and Knowledge Discovery in Databases. Springer. 2021, pp. 722–737.

47. J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learn-
ing and stochastic optimization.” Journal of machine learning research 12:7, 2011.

48. C. Dwork, A. Roth, et al. “The algorithmic foundations of differential privacy”.
Foundations and Trends® in Theoretical Computer Science 9:3–4, 2014, pp. 211–
407.

49. EU. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL. URL https://eur-lex.europa.eu/legal-content/EN/TXT/.

50. R. Fantacci and B. Picano. “Federated learning framework for mobile edge com-
puting networks”. CAAI Transactions on Intelligence Technology 5:1, 2020, pp. 15–
21.

133

https://eur-lex.europa.eu/legal-content/EN/TXT/


Bibliography

51. P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. “Sharpness-aware Minimiza-
tion for Efficiently Improving Generalization”. In: Proc. of International Confer-
ence on Learning Representations. 2021.

52. Y. Fu, H. Wang, K. Xu, H. Mi, and Y. Wang. “Mixup Based Privacy Preserving
Mixed Collaboration Learning”. In: 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE). IEEE. 2019, pp. 275–2755.

53. C. Fung, C. J. Yoon, and I. Beschastnikh. “Mitigating sybils in federated learning
poisoning”. arXiv preprint arXiv:1808.04866, 2018.

54. R. C. Geyer, T. Klein, and M. Nabi. “Differentially private federated learning: A
client level perspective”. arXiv preprint arXiv:1712.07557, 2017.

55. L. Giaretta and Š. Girdzijauskas. “Gossip learning: Off the beaten path”. In: 2019
IEEE International Conference on Big Data (Big Data). IEEE. 2019, pp. 1117–
1124.

56. X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doermann, and A. Innanje.
“Ensemble Attention Distillation for Privacy-Preserving Federated Learning”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 15076–15086.

57. I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. “An empirical
investigation of catastrophic forgetting in gradient-based neural networks”. arXiv
preprint arXiv:1312.6211, 2013.

58. J. Gou, B. Yu, S. J. Maybank, and D. Tao. “Knowledge distillation: A survey”.
International Journal of Computer Vision 129:6, 2021, pp. 1789–1819.

59. O. Gupta and R. Raskar. “Distributed learning of deep neural network over mul-
tiple agents”. Journal of Network and Computer Applications 116, 2018, pp. 1–8.

60. M. Hao, H. Li, G. Xu, S. Liu, and H. Yang. “Towards Efficient and Privacy-Preserving
Federated Deep Learning”. In: ICC 2019-2019 IEEE International Conference on
Communications (ICC). IEEE. 2019, pp. 1–6.

61. A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kid-
don, and D. Ramage. “Federated learning for mobile keyboard prediction”. arXiv
preprint arXiv:1811.03604, 2018.

134



Bibliography

62. C. Hardy, E. Le Merrer, and B. Sericola. “Gossiping GANs”. In: 2018.

63. V. Hartmann and R. West. “Privacy-Preserving Distributed Learning with Secret
Gradient Descent”. arXiv preprint arXiv:1906.11993, 2019.

64. C. He, M. Annavaram, and S. Avestimehr. “Group knowledge transfer: Federated
learning of large cnns at the edge”. Advances in Neural Information Processing
Systems 33, 2020, pp. 14068–14080.

65. C. He, C. Tan, H. Tang, S. Qiu, and J. Liu. “Central server free federated learning
over single-sided trust social networks”. arXiv preprint arXiv:1910.04956, 2019.

66. K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 770–778.

67. Y. He, Y. Chen, X. Yang, H. Yu, Y.-H. Huang, and Y. Gu. “Learning Critically:
Selective Self-Distillation in Federated Learning on Non-IID Data”. IEEE Trans-
actions on Big Data, 2022.

68. Y. He, Y. Chen, X. Yang, Y. Zhang, and B. Zeng. “Class-Wise Adaptive Self Distil-
lation for Heterogeneous Federated Learning”, 2022.

69. U. D. of Health & Human Services. The HIPAA Privacy Rule. URL https : / /

www.hhs.gov/hipaa/for-professionals/privacy/index.html. Accessed on May
2020.

70. I. Hegedűs, G. Danner, and M. Jelasity. “Gossip Learning as a Decentralized Alter-
native to Federated Learning”. In: IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer. 2019, pp. 74–90.

71. G. Hinton, O. Vinyals, and J. Dean. “Distilling the knowledge in a neural net-
work”. arXiv preprint arXiv:1503.02531, 2015.

72. B. Hitaj, G. Ateniese, and F. Perez-Cruz. “Deep models under the GAN: informa-
tion leakage from collaborative deep learning”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM. 2017, pp. 603–
618.

135

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html


Bibliography

73. S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. I. Venieris, and N. D. Lane.
“FjORD: Fair and Accurate Federated Learning under heterogeneous targets with
Ordered Dropout”. arXiv preprint arXiv:2102.13451, 2021.

74. W. Hou, D. Wang, and X. Chen. “Generate Images with Obfuscated Attributes
for Private Image Classification”. In: International Conference on Multimedia
Modeling. Springer. 2020, pp. 125–135.

75. K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons. “The non-iid data quag-
mire of decentralized machine learning”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 4387–4398.

76. T.-M. H. Hsu, H. Qi, and M. Brown. “Measuring the effects of non-identical data
distribution for federated visual classification”. arXiv preprint arXiv:1909.06335,
2019.

77. L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang. “MHAT: an efficient model-
heterogenous aggregation training scheme for federated learning”. Information
Sciences 560, 2021, pp. 493–503.

78. G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. “Deep networks with
stochastic depth”. In: European conference on computer vision. Springer. 2016, pp. 646–
661.

79. L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu. “LoAdaBoost: Loss-
Based AdaBoost Federated Machine Learning on medical Data”. arXiv preprint
arXiv:1811.12629, 2018.

80. S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift”. In: Proc. of the International Confer-
ence on Machine Learning. pmlr. 2015, pp. 448–456.

81. S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto. “Distillation-
based semi-supervised federated learning for communication-efficient collabora-
tive training with non-iid private data”. arXiv preprint arXiv:2008.06180, 2020.

82. P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. “Aver-
aging weights leads to wider optima and better generalization”. arXiv preprint
arXiv:1803.05407, 2018.

136



Bibliography

83. E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim. “Communication-
efficient on-device machine learning: Federated distillation and augmentation un-
der non-iid private data”. arXiv preprint arXiv:1811.11479, 2018.

84. J. Jiang, L. Hu, C. Hu, J. Liu, and Z. Wang. “BACombo—Bandwidth-Aware De-
centralized Federated Learning”. Electronics 9:3, 2020, p. 440.

85. M. Jiang, Z. Wang, and Q. Dou. “Harmofl: Harmonizing Local and Global Drifts
in Federated Learning on Heterogeneous Medical Images”. In: Proc. of AAAI Con-
ference on Artificial Intelligence. Vol. 36. 1. 2022, pp. 1087–1095.

86. H. Jin, D. Bai, D. Yao, Y. Dai, L. Gu, C. Yu, and L. Sun. “Personalized Edge Intel-
ligence via Federated Self-Knowledge Distillation”. IEEE Transactions on Parallel
and Distributed Systems 34:2, 2022, pp. 567–580.

87. R. Jin, Y. Huang, X. He, H. Dai, and T. Wu. “Stochastic-Sign SGD for Federated
Learning with Theoretical Guarantees”. arXiv preprint arXiv:2002.10940, 2020.

88. Y. Jin, X. Wei, Y. Liu, and Q. Yang. “A Survey towards Federated Semi-supervised
Learning”. arXiv preprint arXiv:2002.11545, 2020.

89. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K.
Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. “Advances and open
problems in federated learning”. arXiv preprint arXiv:1912.04977, 2019.

90. M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz, and S. Wrobel.
“Efficient decentralized deep learning by dynamic model averaging”. In: Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2018, pp. 393–409.

91. S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh.
“SCAFFOLD: Stochastic controlled averaging for on-device federated learning”.
arXiv preprint arXiv:1910.06378, 2019.

92. K. Karras, E. Pallis, G. Mastorakis, Y. Nikoloudakis, J. Mongay Batalla, C. X. Mavro-
moustakis, and E. K. Markakis. “A Hardware Acceleration Platform for AI-Based
Inference at the Edge”. Circuits Syst. Signal Process. 39:2, 2020, pp. 1059–1070.

93. H. Kim, J. Park, M. Bennis, and S.-L. Kim. “On-device federated learning via
blockchain and its latency analysis”. arXiv preprint arXiv:1808.03949, 2018.

137



Bibliography

94. J. Kim, G. Kim, and B. Han. “Multi-Level Branched Regularization for Federated
Learning”. In: International Conference on Machine Learning. PMLR. 2022, pp. 11058–
11073.

95. D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv
preprint arXiv:1412.6980, 2014.

96. J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. “Federated optimiza-
tion: Distributed machine learning for on-device intelligence”.
arXiv preprint arXiv:1610.02527, 2016.

97. J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon.
“Federated learning: Strategies for improving communication efficiency”. arXiv
preprint arXiv:1610.05492, 2016.

98. J. Kwon, J. Kim, H. Park, and I. K. Choi. “Asam: Adaptive Sharpness-aware Min-
imization for Scale-invariant Learning of Deep Neural Networks”. In: Proc. of In-
ternational Conference on Machine Learning. PMLR. 2021, pp. 5905–5914.

99. Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. nature 521:7553, 2015,
pp. 436–444.

100. G. Lee, M. Jeong, Y. Shin, S. Bae, and S.-Y. Yun. “Preservation of the Global Knowl-
edge by Not-True Distillation in Federated Learning”. In: Advances in Neural In-
formation Processing Systems. 2022.

101. G. Legate, L. Caccia, and E. Belilovsky. “Re-Weighted Softmax Cross-Entropy
to Control Forgetting in Federated Learning”. arXiv preprint arXiv:2304.05260,
2023.

102. D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau. “Federated learn-
ing for keyword spotting”. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 6341–6345.

103. D. Li and J. Wang. “FedMD: Heterogenous Federated Learning via Model Distil-
lation”. arXiv preprint arXiv:1910.03581, 2019.

104. H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. “Pruning filters for
efficient convnets”. arXiv preprint arXiv:1608.08710, 2016.

138



Bibliography

105. Q. Li, Y. Diao, Q. Chen, and B. He. “Federated learning on non-iid data silos:
An experimental study”. In: 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE. 2022, pp. 965–978.

106. Q. Li, B. He, and D. Song. “Model-contrastive federated learning”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 10713–10722.

107. S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen. “Abnormal client behavior detec-
tion in federated learning”. arXiv preprint arXiv:1910.09933, 2019.

108. T. Li, Z. Liu, V. Sekar, and V. Smith. “Privacy for Free: Communication-Efficient
Learning with Differential Privacy Using Sketches”.
arXiv preprint arXiv:1911.00972, 2019.

109. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. “FedDANE:
A Federated Newton-Type Method”. arXiv preprint arXiv:2001.01920, 2020.

110. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. “Feder-
ated optimization in heterogeneous networks”. arXiv preprint arXiv:1812.06127,
2018.

111. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. “On the convergence of fedavg
on non-iid data”. arXiv preprint arXiv:1907.02189, 2019.

112. X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. “Fedbn: Federated learning on
non-iid features via local batch normalization”. arXiv preprint arXiv:2102.07623,
2021.

113. X.-C. Li and D.-C. Zhan. “Fedrs: Federated learning with restricted softmax for
label distribution non-iid data”. In: Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining. 2021, pp. 995–1005.

114. X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. “Can decentral-
ized algorithms outperform centralized algorithms? a case study for decentralized
parallel stochastic gradient descent”. In: Advances in Neural Information Process-
ing Systems. 2017, pp. 5330–5340.

139



Bibliography

115. T. Lin, L. Kong, S. U. Stich, and M. Jaggi. “Ensemble distillation for robust model
fusion in federated learning”. Advances in Neural Information Processing Systems
33, 2020, pp. 2351–2363.

116. Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally. “Deep Gradient Compression:
Reducing the Communication Bandwidth for Distributed Training”. In: Inter-
national Conference on Learning Representations. 2018.

117. Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. “Deep gradient compression:
Reducing the communication bandwidth for distributed training”. arXiv preprint
arXiv:1712.01887, 2017.

118. L. Liu, J. Zhang, S. Song, and K. B. Letaief. “Edge-Assisted Hierarchical Federated
Learning with Non-IID Data”. arXiv preprint arXiv:1905.06641, 2019.

119. M. Liu, H. Jiang, J. Chen, A. Badokhon, X. Wei, and M.-C. Huang. “A collabora-
tive privacy-preserving deep learning system in distributed mobile environment”.
In: 2016 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE. 2016, pp. 192–197.

120. W. Liu, L. Chen, Y. Chen, and W. Zhang. “Accelerating Federated Learning via
Momentum Gradient Descent”. IEEE Transactions on Parallel and Distributed
Systems 31:8, 2020, pp. 1754–1766.

121. W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O.
Camps. “Towards visually explaining variational autoencoders”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 8642–8651.

122. Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu,
and Q. Yang. “FedVision: An Online Visual Object Detection Platform Powered
by Federated Learning”. arXiv preprint arXiv:2001.06202, 2020.

123. M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar. “Teacher’s pet: under-
standing and mitigating biases in distillation”. arXiv preprint arXiv:2106.10494,
2021.

124. M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng. “No fear of heterogene-
ity: Classifier calibration for federated learning with non-iid data”. Advances in
Neural Information Processing Systems 34, 2021, pp. 5972–5984.

140



Bibliography

125. L. Lyu, H. Yu, and Q. Yang. “Threats to Federated Learning: A Survey”. arXiv
preprint arXiv:2003.02133, 2020.

126. A. Malekijoo, M. J. Fadaeieslam, H. Malekijou, M. Homayounfar, F. Alizadeh-
Shabdiz, and R. Rawassizadeh. “FEDZIP: A Compression Framework for Communication-
Efficient Federated Learning”. arXiv preprint arXiv:2102.01593, 2021.

127. E. K. Markakis, K. Karras, N. Zotos, A. Sideris, T. Moysiadis, A. Corsaro, G. Alex-
iou, C. Skianis, G. Mastorakis, C. X. Mavromoustakis, and E. Pallis. “EXEGESIS:
Extreme Edge Resource Harvesting for a Virtualized Fog Environment”. IEEE
Commun. Mag. 55:7, 2017, pp. 173–179.

128. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. “Communication-
efficient learning of deep networks from decentralized data”.
arXiv preprint arXiv:1602.05629, 2016.

129. H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. “Learning differentially
private language models without losing accuracy”. arXiv preprint arXiv:1710.06963,
2017.

130. H. B. McMahan and M. Streeter. “Adaptive bound optimization for online con-
vex optimization”. arXiv preprint arXiv:1002.4908, 2010.

131. L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. “Exploiting unintended
feature leakage in collaborative learning”. In: 2019 IEEE Symposium on Security
and Privacy (SP). IEEE. 2019, pp. 691–706.

132. M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen. “Local Learning
Matters: Rethinking Data Heterogeneity in Federated Learning”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 8397–8406.

133. J. Mills, J. Hu, and G. Min. “Communication-Efficient Federated Learning for
Wireless Edge Intelligence in IoT”. IEEE Internet of Things Journal, 2019.

134. A. Mitani, A. Huang, S. Venugopalan, G. S. Corrado, L. Peng, D. R. Webster,
N. Hammel, Y. Liu, and A. V. Varadarajan. “Author Correction: Detection of
anaemia from retinal fundus images via deep learning”. Nature Biomedical En-
gineering 4:2, 2020, pp. 242–242.

141



Bibliography

135. A. Mora, D. Fantini, and P. Bellavista. “Federated Learning Algorithms with Het-
erogeneous Data Distributions: An Empirical Evaluation”. In: 2022 IEEE/ACM
7th Symposium on Edge Computing (SEC). IEEE. 2022, pp. 336–341.

136. A. Mora, L. Foschini, and P. Bellavista. “Structured Sparse Ternary Compression
for Convolutional Layers in Federated Learning”. In: 2022 IEEE 95th Vehicular
Technology Conference:(VTC2022-Spring). IEEE. 2022, pp. 1–5.

137. A. Mora, I. Tenison, P. Bellavista, and I. Rish. “Knowledge Distillation for Feder-
ated Learning: a Practical Guide”. arXiv preprint arXiv:2211.04742, 2022.

138. V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann
machines”. In: Proceedings of the 27th international conference on machine learn-
ing (ICML-10). 2010, pp. 807–814.

139. A. Narayanan and V. Shmatikov. “Robust de-anonymization of large datasets (how
to break anonymity of the Netflix prize dataset)”. University of Texas at Austin,
2008.

140. M. Nasr, R. Shokri, and A. Houmansadr. “Comprehensive privacy analysis of
deep learning: Stand-alone and federated learning under passive and active white-
box inference attacks”. arXiv preprint arXiv:1812.00910, 2018.

141. S. Niknam, H. S. Dhillon, and J. H. Reed. “Federated Learning for Wireless Com-
munications: Motivation, Opportunities, and Challenges”. IEEE Communica-
tions Magazine 58:6, 2020, pp. 46–51.

142. T. Nishio and R. Yonetani. “Client selection for federated learning with heteroge-
neous resources in mobile edge”. In: ICC 2019-2019 IEEE International Confer-
ence on Communications (ICC). IEEE. 2019, pp. 1–7.

143. K. Niwa, N. Harada, G. Zhang, and W. B. Kleijn. “Edge-consensus Learning: Deep
Learning on P2P Networks with Nonhomogeneous Data”. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2020, pp. 668–678.

144. J. Oh, S. Kim, and S.-Y. Yun. “Fedbabu: Towards enhanced representation for
federated image classification”. arXiv preprint arXiv:2106.06042, 2021.

142



Bibliography

145. T. Panch, P. Szolovits, and R. Atun. “Artificial intelligence, machine learning and
health systems”. Journal of global health 8:2, 2018.

146. N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar. “Semi-supervised
knowledge transfer for deep learning from private training data”. arXiv preprint
arXiv:1610.05755, 2016.

147. S. R. Pfohl, A. M. Dai, and K. Heller. “Federated and Differentially Private Learn-
ing for Electronic Health Records”. arXiv preprint arXiv:1911.05861, 2019.

148. L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. “Privacy-preserving
deep learning via additively homomorphic encryption”. IEEE Transactions on In-
formation Forensics and Security 13:5, 2018, pp. 1333–1345.

149. T. T. Phuong et al. “Privacy-preserving deep learning via weight transmission”.
IEEE Transactions on Information Forensics and Security 14:11, 2019, pp. 3003–
3015.

150. M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, and R.
Raskar. “Split Learning for collaborative deep learning in healthcare”. arXiv preprint
arXiv:1912.12115, 2019.

151. X. Qiu, T. Parcollet, D. Beutel, T. Topal, A. Mathur, and N. Lane. “Can Federated
Learning Save the Planet?” In: NeurIPS-Tackling Climate Change with Machine
Learning. 2020.

152. Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu. “Generalized Federated Learn-
ing via Sharpness Aware Minimization”. In: Proc. of International Conference on
Machine Learning. PMLR. 2022, pp. 18250–18280.

153. S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays. “Federated Learning for
Emoji Prediction in a Mobile Keyboard”. arXiv preprint arXiv:1906.04329, 2019.

154. X. Ran, L. Ge, and L. Zhong. “Dynamic margin for federated learning with imbal-
anced data”. In: 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2021, pp. 1–8.

155. S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and
H. B. McMahan. “Adaptive Federated Optimization”.
arXiv preprint arXiv:2003.00295, 2020.

143



Bibliography

156. S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola. “Aide: Fast and
communication efficient distributed optimization”.
arXiv preprint arXiv:1608.06879, 2016.

157. A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. “Fed-
paq: A communication-efficient federated learning method with periodic averag-
ing and quantization”. arXiv preprint arXiv:1909.13014, 2019.

158. A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger. “Braintorrent:
A peer-to-peer environment for decentralized federated learning”. arXiv preprint
arXiv:1905.06731, 2019.

159. F. Sattler, T. Korjakow, R. Rischke, and W. Samek. “Fedaux: Leveraging unlabeled
auxiliary data in federated learning”. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

160. F. Sattler, A. Marban, R. Rischke, and W. Samek. “Cfd: Communication-efficient
federated distillation via soft-label quantization and delta coding”. IEEE Transac-
tions on Network Science and Engineering, 2021.

161. F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. “Robust and communication-
efficient federated learning from non-iid data”. IEEE transactions on neural net-
works and learning systems, 2019.

162. F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. “Sparse binary compres-
sion: Towards distributed deep learning with minimal communication”. In: 2019
International Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1–
8.

163. S. Savazzi, M. Nicoli, and V. Rampa. “Federated Learning with Cooperating De-
vices: A Consensus Approach for Massive IoT Networks”. IEEE Internet of Things
Journal, 2020.

164. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. “Grad-
cam: Visual explanations from deep networks via gradient-based localization”. In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 618–
626.

165. H. Seo, J. Park, S. Oh, M. Bennis, and S.-L. Kim. “Federated knowledge distilla-
tion”. arXiv preprint arXiv:2011.02367, 2020.

144



Bibliography

166. A. Shamir. “How to share a secret”. Communications of the ACM 22:11, 1979,
pp. 612–613.

167. O. Shamir, N. Srebro, and T. Zhang. “Communication-efficient distributed op-
timization using an approximate newton-type method”. In: International confer-
ence on machine learning. 2014, pp. 1000–1008.

168. M. Al-Shedivat, J. Gillenwater, E. Xing, and A. Rostamizadeh. “Federated learn-
ing via posterior averaging: A new perspective and practical algorithms”. arXiv
preprint arXiv:2010.05273, 2020.

169. N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef, and I.
Zeitak. “Overcoming forgetting in federated learning on non-iid data”. arXiv preprint
arXiv:1910.07796, 2019.

170. A. Singh, P. Vepakomma, O. Gupta, and R. Raskar. “Detailed comparison of
communication efficiency of split learning and federated learning”. arXiv preprint
arXiv:1909.09145, 2019.

171. V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. “Federated multi-task
learning”. In: Advances in Neural Information Processing Systems. 2017, pp. 4424–
4434.

172. J. So, B. Guler, and A. S. Avestimehr. “Turbo-Aggregate: Breaking the Quadratic
Aggregation Barrier in Secure Federated Learning”. arXiv preprint arXiv:2002.04156,
2020.

173. K. Sozinov, V. Vlassov, and S. Girdzijauskas. “Human Activity Recognition Using
Federated Learning”. In: 2018 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Commu-
nications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE. 2018, pp. 1103–
1111.

174. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout:
a simple way to prevent neural networks from overfitting”. The journal of machine
learning research 15:1, 2014, pp. 1929–1958.

145



Bibliography

175. Statista. Number of Internet of Things (IoT) Connected Devices Worldwide from
2019 to 2030. 2022. URL https://www.statista.com/statistics/1183457/iot-

connected-devices-worldwide/. Accessed on January 2023.

176. N. Strom. “Scalable distributed DNN training using commodity GPU cloud com-
puting”. In: Sixteenth Annual Conference of the International Speech Communi-
cation Association. 2015.

177. G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al. “Measuring and testing depen-
dence by correlation of distances”. The annals of statistics 35:6, 2007, pp. 2769–
2794.

178. A. Z. Tan, H. Yu, L. Cui, and Q. Yang. “Towards personalized federated learning”.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

179. Z. Tang, S. Shi, and X. Chu. “Communication-efficient decentralized learning
with sparsification and adaptive peer selection”. arXiv preprint arXiv:2002.09692,
2020.

180. Z. Tao and Q. Li. “esgd: Communication efficient distributed deep learning on
the edge”. In: {USENIX}Workshop on Hot Topics in Edge Computing (HotEdge
18). 2018.

181. I. Tenison, S. A. Sreeramadas, V. Mugunthan, E. Oyallon, E. Belilovsky, and I.
Rish. “Gradient masked averaging for federated learning”.
arXiv preprint arXiv:2201.11986, 2022.

182. C. Thapa, M. Chamikara, and S. Camtepe. “SplitFed: When Federated Learning
Meets Split Learning”. arXiv preprint arXiv:2004.12088, 2020.

183. A. Triastcyn and B. Faltings. “Federated Learning with Bayesian Differential Pri-
vacy”. arXiv preprint arXiv:1911.10071, 2019.

184. A. Triastcyn and B. Faltings. “Improved Accounting for Differentially Private Learn-
ing”. arXiv preprint arXiv:1901.09697, 2019.

185. S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou.
“A hybrid approach to privacy-preserving federated learning”. In: Proceedings of
the 12th ACM Workshop on Artificial Intelligence and Security. 2019, pp. 1–11.

146

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/


Bibliography

186. F. Varno, M. Saghayi, L. Rafiee, S. Gupta, S. Matwin, and M. Havaei. “Minimiz-
ing client drift in federated learning via adaptive bias estimation”. arXiv preprint
arXiv:2204.13170, 2022.

187. P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar. “Reducing leakage in dis-
tributed deep learning for sensitive health data”. arXiv preprint arXiv:1812.00564,
2019.

188. J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew,
S. Avestimehr, K. Daly, D. Data, et al. “A field guide to federated optimization”.
arXiv preprint arXiv:2107.06917, 2021.

189. J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. “Tackling the objective incon-
sistency problem in heterogeneous federated optimization”. Advances in neural
information processing systems 33, 2020, pp. 7611–7623.

190. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan.
“Adaptive federated learning in resource constrained edge computing systems”.
IEEE Journal on Selected Areas in Communications 37:6, 2019, pp. 1205–1221.

191. Y. Wang, Q. Shi, and T.-H. Chang. “Why Batch Normalization Damage Federated
Learning on Non-IID Data?” arXiv preprint arXiv:2301.02982, 2023.

192. Wikipedia. Facebook–Cambridge Analytica data scandal. URL https://en.wikipedia.

org / wiki / FacebookâĂŞCambridge _ Analytica _ data _ scandal. Accessed on May
2020.

193. X. Wu, X. Yao, and C.-L. Wang. “FedSCR: Structure-Based Communication Re-
duction for Federated Learning”. IEEE Transactions on Parallel and Distributed
Systems 32:7, 2020, pp. 1565–1577.

194. Y. Wu and K. He. “Group Normalization”. In: Proc. of the European conference on
computer vision (ECCV). 2018, pp. 3–19.

195. Z. Wu, S. Sun, Y. Wang, M. Liu, and Q. Liu. “Exploring the Distributed Knowl-
edge Congruence in Proxy-data-free Federated Distillation”.
arXiv preprint arXiv:2204.07028, 2022.

196. C. Xie, S. Koyejo, and I. Gupta. “Asynchronous federated optimization”. arXiv
preprint arXiv:1903.03934, 2019.

147

https://en.wikipedia.org/wiki/Facebook–Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook–Cambridge_Analytica_data_scandal


Bibliography

197. C. Xie, S. Koyejo, and I. Gupta. “SLSGD: Secure and Efficient Distributed On-
device Machine Learning”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. 2019.

198. W. Xu, W. Fang, Y. Ding, M. Zou, and N. Xiong. “Accelerating Federated Learn-
ing for IoT in Big Data Analytics With Pruning, Quantization and Selective Up-
dating”. IEEE Access 9, 2021, pp. 38457–38466.

199. Y. Xu, X. Qiu, L. Zhou, and X. Huang. “Improving bert fine-tuning via self-
ensemble and self-distillation”. arXiv preprint arXiv:2002.10345, 2020.

200. C. Yang, L. Xie, C. Su, and A. L. Yuille. “Snapshot distillation: Teacher-student
optimization in one generation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 2859–2868.

201. T. Yang, S. Zhu, and C. Chen. “Gradaug: A new regularization method for deep
neural networks”. Advances in Neural Information Processing Systems 33, 2020,
pp. 14207–14218.

202. T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F.
Beaufays. “Applied federated learning: Improving google keyboard query sugges-
tions”. arXiv preprint arXiv:1812.02903, 2018.

203. D. Yao, W. Pan, Y. Dai, Y. Wan, X. Ding, H. Jin, Z. Xu, and L. Sun. “Local-
Global Knowledge Distillation in Heterogeneous Federated Learning with Non-
IID Data”. arXiv preprint arXiv:2107.00051, 2021.

204. T. Yoon, S. Shin, S. J. Hwang, and E. Yang. “FedMix: Approximation of Mixup
under Mean Augmented Federated Learning”. In: International Conference on
Learning Representations. 2020.

205. C.-H. Yu, C.-N. Chou, and E. Chang. “Distributed Layer-Partitioned Training
for Privacy-Preserved Deep Learning”. In: 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE. 2019, pp. 343–346.

206. Q. Yu, S. Li, N. Raviv, S. M. Mousavi Kalan, M. Soltanolkotabi, and S. Avestimehr.
“Lagrange Coded Computing: Optimal Design for Resiliency, Security, and Pri-
vacy”. In: International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2019). 2019.

148



Bibliography

207. Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas. “Federated
learning based proactive content caching in edge computing”. In: 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE. 2018, pp. 1–6.

208. M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. “Adaptive methods for
nonconvex optimization”. In: Advances in neural information processing systems.
2018, pp. 9793–9803.

209. C. Zhang, P. Patras, and H. Haddadi. “Deep learning in mobile and wireless net-
working: A survey”. IEEE Communications Surveys & Tutorials 21:3, 2019, pp. 2224–
2287.

210. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. “mixup: Beyond empirical
risk minimization”. arXiv preprint arXiv:1710.09412, 2017.

211. J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu. “Federated learning
with label distribution skew via logits calibration”. In: International Conference
on Machine Learning. PMLR. 2022, pp. 26311–26329.

212. J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. “Functional mechanism:
regression analysis under differential privacy”. arXiv preprint arXiv:1208.0219,
2012.

213. L. Zhang and X. Yuan. “Fedzkt: Zero-shot knowledge transfer towards heteroge-
neous on-device models in federated learning”. arXiv preprint arXiv:2109.03775,
2021.

214. L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan. “Fine-tuning global model
via data-free knowledge distillation for non-iid federated learning”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 10174–10183.

215. S. Zhang, L. Yao, A. Sun, and Y. Tay. “Deep learning based recommender system:
A survey and new perspectives”. ACM Computing Surveys (CSUR) 52:1, 2019,
pp. 1–38.

216. B. Zhao, K. R. Mopuri, and H. Bilen. “iDLG: Improved Deep Leakage from Gra-
dients”. arXiv preprint arXiv:2001.02610, 2020.

149



Bibliography

217. L. Zhao, S. Hu, Q. Wang, J. Jiang, C. Shen, and X. Luo. “Shielding Collaborative
Learning: Mitigating Poisoning Attacks through Client-Side Detection”. arXiv
preprint arXiv:1910.13111, 2019.

218. L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen. “Privacy-preserving collabo-
rative deep learning with unreliable participants”. IEEE Transactions on Informa-
tion Forensics and Security 15, 2019, pp. 1486–1500.

219. R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao. “Deep learning and
its applications to machine health monitoring”. Mechanical Systems and Signal
Processing 115, 2019, pp. 213–237.

220. Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu. “Multi-Task Network Anomaly De-
tection using Federated Learning”. In: Proceedings of the Tenth International Sym-
posium on Information and Communication Technology. 2019, pp. 273–279.

221. Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. “Federated learning
with non-iid data”. arXiv preprint arXiv:1806.00582, 2018.

222. J. Zhong, H.-Y. Chen, and W.-L. Chao. “Making Batch Normalization Great in
Federated Deep Learning”. arXiv preprint arXiv:2303.06530, 2023.

223. J. Zhou, Z. Cao, X. Dong, and X. Lin. “PPDM: A privacy-preserving protocol
for cloud-assisted e-healthcare systems”. IEEE Journal of Selected Topics in Signal
Processing 9:7, 2015, pp. 1332–1344.

224. T. Zhou and E. Konukoglu. “FedFA: Federated Feature Augmentation”. arXiv
preprint arXiv:2301.12995, 2023.

225. X. Zhou, X. Lei, C. Yang, Y. Shi, X. Zhang, and J. Shi. “Handling Data Hetero-
geneity in Federated Learning via Knowledge Fusion”.
arXiv preprint arXiv:2207.11447, 2022.

226. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. “Edge intelligence: Paving
the last mile of artificial intelligence with edge computing”. Proceedings of the IEEE
107:8, 2019, pp. 1738–1762.

227. L. Zhu, Z. Liu, and S. Han. “Deep leakage from gradients”. In: Advances in Neural
Information Processing Systems. 2019, pp. 14747–14756.

150



Bibliography

228. Z. Zhu, J. Hong, and J. Zhou. “Data-free knowledge distillation for heterogeneous
federated learning”. In: International Conference on Machine Learning. PMLR.
2021, pp. 12878–12889.

151


	Introduction
	Structure of the Thesis
	Contributions beyond the state of the art
	List of Publications

	Decentralized Learning in Federated Settings
	The Rising of Decentralized Learning
	Fundamentals. Taxonomy and Baselines for Decentralized Learning
	Cross-Silo and Cross-Device Federated Settings
	A Taxonomy for Decentralized Learning Systems
	Baselines for Decentralized Learning Systems


	Issues in Decentralized Learning
	Improving Communication Efficiency
	Protecting Pivacy
	Combining Privacy and Communication Efficiency

	Data Heterogeneity and Client Drift
	Handling System Heterogeneity
	Defending against Poisoning


	Structured Sparse Ternary Compression for Convolutional Layers
	Sparse Ternary Compression
	Our SSTC original proposal
	Lossless Encoding

	Experimental Results
	Experimental Setup
	Measured Performance Results and Related Discussion

	Related Work
	Concluding Remarks

	Communication-Efficient Heterogeneous Federated Dropout
	Federated Dropout
	CE-HFD: Communication-Efficient Heterogeneous Federated Dropout
	Heterogeneous Federated Dropout
	Per-layer Sparse Ternary Compression

	Experimental Results
	Experimental Setup
	Results and Analysis

	Related Work
	Concluding Remarks

	Knowledge Distillation in Federated Learning
	Federated Averaging
	Knowledge Distillation
	Codistillation

	Knowledge Distillation in Federated Learning
	FL Model Heterogeneity via KD
	Data-distribution-agnostic FL via KD

	Comparison of Existing Solutions, Adoption Guidelines and Future Directions
	FL model heterogeneity via KD
	Data-agnostic FL via KD

	Concluding Remarks

	Tackling Data Heterogeneity
	Client-side Optimizations
	Local Regularizations via Correction Terms
	Local-Global Knowledge Distillation
	Model-contrastive Learning
	Data and Feature Augmentation
	Seeking Flat Minima
	Normalization Methods
	Logit Calibration

	Server-side Optimizations
	Modified Aggregation Procedure
	Post-Aggregation Refinement

	Empirical Evaluations of SOTA Algorithms
	Experimental Setup
	Datasets and baselines
	Implementation details
	Client-side Methods
	Server-side Methods
	Hybrid Methods
	Discussion

	Concluding Remarks

	Future Directions and Conclusions
	Future Directions
	Towards Model Heterogeneity
	Towards Model Personalization
	Evaluating Federated Algorithms on Real Testbeds
	Rethinking the Traditional ML Workflow for Federated Learning
	Going beyond Supervised Learning
	Towards Fully Decentralized Systems at Scale

	Conclusions

	Acronyms
	Bibliography

