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Academic activities carried out during the 3 years of PhD 

 

I year 

The period from November 2019 to April 2020 was dedicated to the PhD lectures 

and examinations. Then, I started the literature review on (i) unstructured-grid 

modelling (e.g SHYFEM model (Umgiesser et al., (2004); Federico et al., 

(2017)), used in the modelling framework of the thesis); (ii) Data Assimilation 

methodologies (Ash et al. (2016), Carassi et al. (2017), Dobricic & Pinardi 

(2008)), and (iii) attempts of data assimilation in SHYFEM (Bajo (2020), Ferrarin 

et al. (2020)).  

An investigation on type of Data Assimilation to be developed in the thesis has 

been performed taking into account the possibility to use variational methods (e.g. 

3Dvar, 4Dvar) or statistical (e.g. Kalman Filter, Extended Kalman Filter, Optimal 

Interpolation). Considering statistical methods, most operational systems in 

oceanography currently use optimal interpolation schemes (e.g. Dobricic et al., 

(2005)). However, the use of an optimal interpolation scheme requires a relatively 

complex implementation of the linearized observational operator, because the 

Kalman gain contains this operator several times, multiplying the background 

error covariance matrix. It may therefore become difficult to assimilate 

observations with complicated observational operators or make the existing 

observational operators more complex. Another disadvantage of optimal 

interpolation is that the solution is always local and discontinuities might appear 

in the analysis due to the presence of nearby observations (e.g. Gauthier et al., 

(1999)) or discontinuous regional EOFs (Bellucci et al., (2008)). The negative 

impact of the local operator on the analysis field may be attenuated by the usage 

of overlapping observations and EOFs. However, in this way the problem is 



alleviated by arbitrary assumptions involving an additional computational cost. 

Furthermore, the computational cost of an optimal interpolation scheme is 

approximately proportional to the number of observations that are assimilated 

(Dobricic & Pinardi 2008)). Based on this analysis, we have decided to move in 

the direction to use 3D-Var Data Assimilation because the computational cost of 

that scheme mainly depends on the size of the model state vector and much less 

on the number observations. Therefore, the application of the 3D-Var may 

facilitate the use of a relatively large number of observations. Furthermore, 3D-

Var represents the assimilation scheme currently applied in the parent model of 

SHYFEM (MFS system in CMEMS based on NEMO model which use OceanVar 

(Dobricic & Pinardi (2008)). (3D-Var scheme developed at CMCC; it will be 

used for the thesis work)   

In order to decide the geographical domain of interest, we have studied and 

mapped the in-situ CMEMS products (ARGO, Glider, XBT, Tide Gauges, etc.) 

in the Italian Mediterranean Sea in the period 2017-2019. This task is made 

building a Python tool which allows to search measurements in different 

worldwide areas and periods.  

Looking at the spatial distribution of the observations we have selected the South 

Adriatic Northern Ionian Sea (SANI) basin where we are already implemented a 

modelling system based on unstructured grid approach [Federico et al., 2017]. 

To validate the simulation performed with SHYFEM model I have adopted a 

Python tool capable to select the ARGO profile and compare with model results. 

This tool has been extended to read unstructured grid outputs.  

OcenaVar currently is implemented and used with regular mesh oceanographic 

model (NEMO). 

 



    II year 

During the II year the main activities were the adaptation of the OceanVar in 

order to make it able to work with SHYFEM oceanographic model which is 

implemented using unstructured mesh.  

The 3DVar scheme implemented in OceanVar compute the minimum of a cost 

function built starting from model and observations information. The cost 

function mainly depends on vertical and horizontal covariance matrix. The 

horizontal covariance matrix is implemented using Recursive Filter, instead 

vertical covariance is implemented using Empirical Orthogonal Function (EOF).  

In order to compute EOF I performed a 4 years (2017-2020) simulation using 

SHYFEM and I adapted a Fortran tool writing different subroutines to read model 

output and grid information. Furthermore, I built a tool using bash script and CDO 

libraries to perform SST validation. For the results visualization I wrote Python 

scripts.  

After the task about EOF, in order to adapt OceanVar to read model output and 

grid information. I wrote different Fortran subroutines and merged them in 

OceanVar software.  

Finally, the first experiment using SHYFEM and OceanVar on the SANI (South 

Adriatic Northen Ionian) domain has been implemented without Recursive Filter 

assimilating Argo observations. 

 

    III year 

Following the work of the previous year, during the III year the main activities 

were about the adaptation of OceanVar in the recursive filter (RF) routine and 

experiment performing. 



RF is formulated and used on regular mesh to model the horizontal component of 

the background error covariance matrix. Considering that the data assimilation 

application in this project use unstructured mesh, a novel first order RF algorithm 

has been developed. The main problems to be solved in this work were about the 

geometrical structure of the unstructured mesh. Indeed, the advantages of 

applying RF on regular grids is in the intrinsic ordering of the nodes and a strong 

symmetry feature inherited by the RF formulation on an infinite line. Both the 

problems have been solved ordering the triangles edges respect longitude and 

latitude and developing an algorithm that emulates forward and backward pass of 

RF on regular grid. Test on regular grid shows that the novel algorithm is 

equivalent to the regular one. Testing the new algorithm on unstructured mesh 

shows that it produces a gaussian shape spreading in areas with irregular grid 

tessellation, like in coastal regions, and it can be used to model the horizontal 

component of B matrix on unstructured mesh. 

Once the assimilation system OceanVar-SHYFEM has been fully adapted for 

unstructured mesh 2 different experiments have been performed: 

1. Assimilating T and S from Argo floats using 25 bivariate EOF. 

2. Assimilating T, S from Argo floats and SLA from satellite observations 

using 25 trivariate EOF. 

Despite the lack of observations on SANI domain, the experiments show that we 

are able to improve the model state using the assimilation scheme implemented. 

Activities related to the abroad period have been performed during this year.  

In the period September – November 2022 I visited the Imperial College in 

London in the Data Learning group of prof. Rossella Arcucci. Here the main goal 

was to apply Machine Learning techniques in order to train a LSTM (Long-Short-

Term-Memory) model that is able to forecast the analysis increments. Here the 

idea is to correct model forecast using predicted increments, since the 

observations are not available in the future and data assimilation can¶t be applied. 



Evaluating the LSTM model skills is clear that such a model can generate a good 

prediction of analysis increments. 

Finally, during this last year I presented my work to: EGU general assembly, 

Interreg Italy-Croatia AdriaClim workshop, University of Reading and Imperial 

College London. And participate to ECMWF-ESA workshop on Machine 

learning for Earth Observation and Prediction. 

    List of talks 

1. EGU general assembly 

2. Interreg Italy-Croatia AdriaClim workshop 

3. University of Reading 

4. Imperial College London 

 

    List of supplementary training activities 

1. NASA¶s Applied Remote Sensing Training Program: Remote Sensing 

of Coastal Ecosystems.  

2. Participation at ECMWF-ESA Workshop on Machine Learning for 

Earth System Observation and Prediction (I Edition).  

3. NASA¶s Applied Remote Sensing Training Program: MODIS to VIIRS 

Transition for Air Quality Applications  

4. NASA¶s Applied Remote Sensing Training Program: Introduction to 

NASA¶s “Black Marble” Night Lights Data  

5. ECMWF virtual training course: Data Assimilation  

6. ECMWF/Ocean Predict workshop:  Advances in Ocean Data 

Assimilation.  

7. Participation at ECMWF-ESA workshop on Machine learning for Earth 

Observation and Prediction (III Edition) 



 







Abstract
The coastal ocean is a complex environment with extremely dynamic processes that

require a high-resolution and cross-scale modeling approach in which all hydrodynamic
fields and scales are considered integral parts of the overall system. In the last decade,
unstructured-grid models have been used to advance in seamless modeling between scales.
On the other hand, the data assimilation methodologies to improve the unstructured-grid
models in the coastal seas have been developed only recently and need significant ad-
vancements. Here, we link the unstructured-grid ocean modeling to the variational data
assimilation methods. In particular, we show results from the modeling system SANIFS
based on SHYFEM fully-baroclinic unstructured-grid model interfaced with OceanVar, a
state-of-art variational data assimilation scheme adopted for several systems based on a
structured grid. OceanVar implements a 3DVar DA scheme. The combination of three
linear operators models the background error covariance matrix. The vertical part is rep-
resented using multivariate EOFs for temperature, salinity, and sea level anomaly. The
horizontal part is assumed to be Gaussian isotropic and is modeled using a first-order
recursive filter algorithm designed for structured and regular grids. Here we introduced
a novel recursive filter algorithm for unstructured grids. A local hydrostatic adjustment
scheme models the rapidly evolving part of the background error covariance. We de-
signed two data assimilation experiments using SANIFS implementation interfaced with
OceanVar over the period 2017-2018, one with only temperature and salinity assimilation
by Argo profiles and the second also including sea level anomaly. The results showed a
successful implementation of the approach and the added value of the assimilation for
the active tracer fields. While looking at the broad basin, no significant improvements
are highlighted for the sea level, requiring future investigations. Furthermore, a Machine
Learning methodology based on an LSTM network has been used to predict the model
SST increments.
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1. Introduction

Eight of the world’s top ten most populated cities are located by the coast. Around
10% of the world’s population live in coastal areas less than 10 m above sea level. Since
coastal areas are closely connected to human activities, improving the coastal ocean rep-
resentation is crucial to understanding the present and near-future ocean state and pre-
dicting its evolution under climate change conditions. In the climate change framework,
catastrophic events are increasing in frequency and intensity causing enormous damage
along the coastal regions. So, developing a good oceanographic forecasting model in-
tegrated with a DA system and coupled with a Numerical Weather Prediction (NWP)
model, which can predict efficiently and carefully small-scale events like storm surges and
medicane, can give us the possibility to face them and reduce the damage.
Since the presence of complex coastlines, interaction with inland waters, rapid changes
in topography, and high space-time variability of the phenomena involved, modeling the
coastal ocean is a complex task. During recent decades, finite element models along with
unstructured mesh (FESOM (Danilov, Kivman, and Schröter (2004) and Wang, Danilov,
and Schröter (2008)), FLUIDITY (Ford et al. (2004) and Piggott et al. (2008)), SCHISM
(Zhang and Baptista (2008)), FVCOM (Chen, Liu, and Beardsley (2003)) and SHYFEM
(Umgiesser et al. (2004)) to name a few) has been used to represent the complex fea-
tures of the coastlines (Chiggiato et al. (2012), Zhu et al. (2017), Federico et al. (2017),
Aydoğdu et al. (2018), Bajo (2020), Shi, Tang, and Myers (2020), Gunduz, Özsoy, and
Hordoir (2020), and Ferrarin, Bajo, and Umgiesser (2021)). In the recent years, models
that use an unstructured-grid, like FESOM2 (Danilov et al. (2017)) and MPAS (Petersen
et al. (2019)), have been employed to simulate the global ocean.
The coastal model generally is a cross-scale representation of the interested area of study
describing regional and local dynamics. The model is nested in a large-scale parent model
to have information from large-scale dynamics. So, the coastal model connects large-scale
and coastal dynamics through a dynamic downscale approach.
Using finite element models allows us to describe small ocean scale; however, it does not
resolve the problem of the deterministic chaos introduced by Lorenz (1963). Indeed, it is
well known that geophysical systems like the ocean and atmosphere are highly sensitive
to the initial conditions and express chaotic behavior. That feature makes the system
prediction using numerical models challenging. In fact, supposing that a numerical model
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1. Introduction

is initialized by an observational dataset, reanalysis data, or the output of another nu-
merical model, the predicted integrated trajectory gradually will move far from the "true
state" of the system. This is a consequence that the numerical model equations are solved
in a discrete space, and any dataset used to initialize a numerical model is imperfect and
has errors. A good product that can be used to avoid the drifting of the model from the
true state are observations. Using them to correct the model integration and produce the
best estimation of the system’s state would be useful.
In the last three decades, much effort has been made to build a mathematical theory,
named data assimilation (DA), that acts as a bridge between numerical model and
observations. DA combines a model state with observations to estimate a state and its
uncertainty better. This process and the resulting state is called analysis. The analysis
state can be used to initialize a forecast or produce re-analyses over long periods. Alterna-
tively, DA can be used to estimate the model parameters or infer the best characterization
of the model forcing or controls.
Using the words in Fletcher (2017), we can say that the main goal of a DA method is to:

optimize the strengths of the models and observations while simultaneously minimizing
their weaknesses

Many different DA methods and algorithms enable the bridging between model and
observations, which can be grouped into two main branches: statistical and variational
DA methods. These two approaches can also be combined, and the resulting method-
ology is named hybrid DA (Fig. 1.1). In both statistical and variational methods, we
seek an optimal solution. Statistically, we will seek a solution with minimum variance,
whereas variationally, we will seek a solution that minimizes a suitable cost (or error)
function. The two approaches are identical and provide the same solution in the excep-
tional cases of assumption of Gaussian probability distribution. However, the statistical
approach, though often more complex and time-consuming, can provide a richer informa-
tion structure: an average solution and some characteristics of its variability (probability
distribution) (Asch, Bocquet, and Nodet, 2016). Given the nature of the modeling and
observation infrastructure in geosciences, DA is conveniently formalized as a discrete-
model/discrete-observation estimation problem (Carrassi et al. (2018)). Considering the
problems’ dimensionality, DA can be identified as a big data problem. Indeed, if n is the
dimensionality of the physical problem, the matrices involved have dimensionality of On

2 .
At Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), which is also the in-
stitution where this Ph.D. work has been done, the Mediterranean Forecasting System
(MedFS) is used. MedFS is a numerical ocean prediction system that produces anal-
yses, reanalyses, and short-term forecasts for the Mediterranean Sea and its adjacent
Atlantic ocean areas. Since 2015, MedFS is part of the Copernicus Marine Service. It
has been developed and operationally maintained by CMCC since 2018 providing reg-
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1. Introduction

Figure 1.1: DA methods and algorithms. From: Asch, Bocquet, and Nodet, 2016.

ular and systematic information about the physical state of the Mediterranean Sea (for
more information, see www.medfs.cmcc.it). The system uses a 3DVar assimilation scheme
named OceanVar (Dobricic and Pinardi (2008) and Storto, Masina, and Navarra (2016)).
The assimilated data includes: along-track satellite Sea Level Anomaly (SLA), in situ
temperature profiles by VOS XBTs (Voluntary Observing Ship-eXpandable Bathyther-
mograph), in situ temperature and salinity profiles by ARGO floats and from different
survey CTD profiles. Satellite objectively analyzed Sea Surface Temperature (SST) is
used to correct surface heat fluxes. All the assimilated observations are provided by the
Copernicus Marine Service (marine.copernicus.org). Also, to model cross-scale ocean,
the unstructured-grid finite-element three-dimensional hydrodynamic model SHYFEM
(Umgiesser et al. (2004) and Micaletto et al. (2021)) is used at CMCC. An application of
the SHYFEM model is SANIFS (Southern Adriatic Northern Ionian coastal Forecasting
System, Federico et al. (2017)). SANIFS is a coastal-ocean operational system providing
short-term forecasts. The operational chain is based on a downscaling approach starting
from the large-scale system, MedFS, which provides the open-sea fields. Thanks to the
high and proper horizontal resolution, ranging from 3-4 km in the open sea to 50-500 m
in coastal areas (Fig. 1.2, www.sanifs.cmcc.it), the model configuration has been outlined
to provide reliable hydrodynamics and active tracer forecasts in mesoscale-shelf-coastal
waters of Southern Eastern Italy (Apulia, Basilicata, and Calabria regions). Since MedFS
includes an assimilation cycle, SANIFS inherits this correction at the open boundaries.
During the last few years, machine learning and neural network approaches have been
applied in combination with DA methods to allow non-linearity in DA problems. For
example, in Amendola et al. (2020) and Peyron et al. (2021) is presented a formulation
of a new methodology that combines machine learning and DA called Latent Space
Assimilation. It consists in performing the Optimal Interpolated Kalman Filter in the

14



1. Introduction

latent space obtained by a Convolutional AutoEncoder with non-linear encoder functions
and non-linear decoder functions. In the latent space, the dynamic system is represented
by a surrogate model built by a Long-Short-Term-Memory (LSTM) network to train a
function that emulates the dynamic system in the latent space.
This thesis aims to interface SHYFEM (using SANIFS configuration) with OceanVar to
introduce DA on unstructured grid nested models. The approach will be cross-scale.
Temperature and salinity from Argo profiling floats and sea level anomaly from satellite
altimetry observations will be assimilated in the open sea. The model project the analysis
in space reaching coastal regions and forward in time to the next assimilation step. No
coastal observations (e.g., tide gauge) will be assimilated.
Applying DA techniques in models with an unstructured-grid is a new branch in oceanog-
raphy. Mainly, in ocean modeling, statistical methods are used (e.g., nudging, Kaman
filter or Ensemble Kalman filter Zhu et al. (2017), Aydoğdu et al. (2018), Bajo (2020),
Shi, Tang, and Myers (2020), and Ferrarin, Bajo, and Umgiesser (2021)) and to our knowl-
edge, variational DA has never been applied in combination with an unstructured-grid
finite element ocean model.
This thesis is organized as follows. Chapters 2 and 3 will introduce the 3DVar mathemat-
ical formulation and a novel first-order recursive filter algorithm developed to interface
the OceanVar DA scheme with the ocean model. Next, in Chapter 4, we will describe
the modeling setting, the observation datasets used in the assimilation process, and the
experiment design. Chapter 5 will discuss experiment results and the added value of in-
troducing a 3DVar scheme in coastal modeling. Chapter 6 presents an application of the
LSTM network for sea surface temperature increment prediction. Finally, in Chapter 7,
we will see the conclusions and future perspectives.
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1. Introduction

Figure 1.2: SANIFS numerical domain, grid, and bathymetry.
Coastal resolution: from 50m to 500m.

Open sea resolution: from 3Km to 4Km.
Number of vertical levels: 92
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2. A 3DVar scheme for ocean data as-
similation

Variational DA methods have been used in operational weather prediction for quite
some time. National Center for Environmental Prediction (NCEP) was the first to go
operational with a 3DVar system (Derber (1992)), followed not too far behind by the
European Center for Medium-range Weather Forecasting (ECMWF) using the formula-
tion described in Heckley (1992) and the United Kingdom’s Meteorological Office (Lorenc
et al. (2000)), along with most of the operational centers for global numerical weather
prediction. The reason for introducing 3DVar was that DA schemes could fully model
three-dimensional covariances for the errors of the background field globally but also use
nonlinear observation operators, especially those associated with satellites. This was a
problem for the optimum interpolation-based methods, as they rely on the linear obser-
vation operator.
The introduction of the time component in the analysis scheme enables the assimilation
of observations in a window, which is the length of time between two consecutive analysis
times. Schemes that do not include the time dimension are referred to as filters, while
those that do contain the time components are smoothers. Filter-based methods usu-
ally only use observations available at the analysis time. As such, the data assimilation
scheme filters the observations and the dynamical scales to find the best estimate of the
geophysical state at that time that fits the observations. The observations here are all
those in a specific assimilation window. The assimilation window can be (in most NWP
centers) 6h,12h, or 24h. Once all the observations are collected, they are all referred to
at the same time: the analysis time. However, in circumstances where the system has
a fast dynamic (e.g., tide assimilation) or the observations has a wide time distribution,
considering all the observation valid at analysis time can lead to an incorrect analysis.
To overcome this problem, the first guess at the appropriate time (FGAT), a method for
obtaining the instantaneous background field at the correct time, can be combined with
3DVar.
This chapter will first introduce the mathematical formulation of the 3DVar scheme used
in this work. Next, we will describe the formulation of the three linear operators used to
model the different components of the background error covariance matrix:

18



2.1. Mathematical Formulation

1. empirical orthogonal functions (EOFs) using singular value decomposition (SVD) is
used to model the vertical component;

2. a first-order recursive filter is used to model the horizontal component;

3. a formulation of the dynamic height operator, which calculates the sea surface height
errors covariance from temperature and salinity fields

2.1 Mathematical Formulation

We discussed that one of the aims of DA is to introduce the observations in a fore-
casting system to reduce the initialization errors and eventually improve the forecast. So,
considering the forecast as our prediction of the system’s state that presents errors and
is a chaotic deterministic system, the observations cover the role of priori information to
constrain the problem. In this framework, the strategy to tackle the problem is to use
the Bayesan probability approach. The following general formulation can be applied to
any geophysical or not system.

• Let the state vector of the system be x where x = (x1, x2, . . . , xN)T and N is total
number of state variable. x defines the physical/model space;

• Let the observational vector y where y = (y1, y2, . . . , yN0)
T and N0 is total num-

ber of observations. y defines the observational space;

• N0 < N .

Now, considering that observations are an evaluation of the model state, a relationship
between x and y should exist. This relationship is given by

y = H(x) (2.1)

where H(x) is a non linear operator, named observational operator, from the physical
space to the observational space given by

H(x) =

0

BBBB@

h1(x1, x2, . . . , xN)

h2(x1, x2, . . . , xN)
...

hN0(x1, x2, . . . , xN)

1

CCCCA
(2.2)

The state estimation problem is a discrete inverse problem (Menke, 2018), which aim is
to find the best x that inverts Eq. (2.1) for a given yo, where yo is a physical observation
which contains errors and the best value of x is the analysis, xa. The method to set up
this problem is considering a Bayesian probability approach and using Bayes’ theorem.
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2.1. Mathematical Formulation

BAYES’ THEOREM

P (A | B) =
P (B | A)P (A)

P (B)
P (B) 6= 0 (2.3)

where A and B are events.

• P (A | B) is a conditional probability: the probability of event A occurring
given that B is true. It is also called the posterior probability of A given B.

• P (B | A) is also a conditional probability: the probability of event B occurring
given that A is true. It can also be interpreted as the likelihood of A given a
fixed B.

• P (A) and P (B) are the probabilities of observing A and B without any given
conditions, known as the marginal or prior probability.

In our case, we have that:

• A is the event that x = xt, where the subscript stands for "true".

• B is the event that y = yo, where the subscript stands for observed value.

Bayes’ theorem is:

P (x = xt | y = yo) / P (y = yo | x = xt)P (x = xt) (2.4)

Thus Eq. (2.4) defines an N -dimensional probability density function (PDF). Let’s now
evaluate the various terms of Eq. (2.4) starting from the last term on the right-hand side.

• P (x = xt)

As we know, the true state, xt, is not known. However, we have an estimation of it
through the background state, xb which deviates from xt by a quantity "b

"b ⌘ xt � xb = x� xb (2.5)

So, the prior probability P (x = xt) can be expressed in terms of the error of the back-
ground state with respect to the true state.

P (x = xt) = Pb(x� xb) = Pb("b) (2.6)

xb is propagated from time-step T-1 to T through the model operator, MT�1,T

xbT = MT�1,T(xbT�1) (2.7)
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2.1. Mathematical Formulation

and MT�1,T is a non-linear operator.

The first term on the right-hand side of Eq. (2.4) is

• P (y = yo | x = xt)

Here we can apply the same reasoning used before and Eq. (2.1) on the conditional part.
So, if we know that the true values of y is given by yt, Eq. (2.1) becomes:

yt = H(xt) (2.8)

If "o is the deviation of yo from yt than

P (y = yo | x = xt) ⌘ P (y = yo | y = yt)

= Po(yo �H(x))

= Po("o)

(2.9)

Eq. (2.9) can be read as: the probability to obtain y = yo knowing that y = yt is
equivalent to the probability of the deviation of yo from yt.
"o is the observational error. It takes into account two sources of errors: instrumental or
measurement error, "I, and the representativeness error, "r

"o = "I + "r (2.10)

"r represents the error introduced by the model in representing phenomena at a scale
smaller than the grid resolution. So the representativeness error arises due to a mismatch
between the scales represented in the observations and the model fields. For instance, an
observation may represent the value of a geophysical variable at a single point in space
and time. In contrast, the model will represent a spatial and temporal average, depending
on the model’s discretization. The observation and the prior will then differ, depending
on the true geophysical variability at scales different from those represented by the model
(Janjić et al., 2018).

The term on the left-hand side of Eq. (2.4) is

• P (x = xt | y = yo)

This is the probability to obtain x knowing the observed values y, which is the analysis
probability that we denote with Pa(x). Lorenc (1986) asserts that the best estimate of
x, is either the mean or the mode of Pa(x) and these two quantities are the minimum
variance and the maximum likelihood states respectively.
So, neglecting the denominator of Bayes’ theorem, which can be seen as a normalization
factor, Eq. (2.4) became
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2.1. Mathematical Formulation

Pa(x) = Po(yo �H(x))Pb(x� xb) = Po("o)Pb("b) (2.11)

Now we assume that these PDFs are multivariate Gaussian, MG, such that Po("o) =

MG(0,R) and Pb("b) = MG(0,B), where both have 0 mean and covariance matrix R

for observational error and B for the background error. A common assumption is that
observational errors are uncorrelated, which implies that the observational error covari-
ance matrix, R, is diagonal. This assumption could not be true for satellite observations.
Indeed, observations from different channels on a sensor could be correlated. Another
important assumption that we did implicitly, and that simplifies the mathematical de-
scription, as well as the operational work, is that "b and "o are unbiased

h"i
b
= 0 (2.12)

h"i
o
= 0 (2.13)

The two multivariate Gaussian distributions are then defined as

Pb("b) / exp

⇢
�1

2
"
T

o
B�1

"o

�
⌘ exp

⇢
�1

2

⇣
x� xb

⌘T
B�1

⇣
x� xb

⌘�
(2.14)

Po("o) / exp

⇢
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B�1
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�
⌘ exp

⇢
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⇣
yo �H(x)

⌘T
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⇣
yo �H(x)

⌘�
(2.15)

Therefore substituting Eq. (2.14) and Eq. (2.15) into Eq. (2.11) yelds

Pa(x) / exp

⇢
�1

2

⇣
x� xb

⌘T
B�1

⇣
x� xb

⌘
� 1

2

⇣
yo �H(x)

⌘T
R�1

⇣
yo �H(x)

⌘�
(2.16)

Applying �ln to Eq. (2.16) yields the nonlinear cost function that characterize the 3DVar
scheme

J (x) =
1

2

⇣
x� xb

⌘T
B�1

⇣
x� xb

⌘
+

1

2

⇣
yo �H(x)

⌘T
R�1

⇣
yo �H(x)

⌘
(2.17)

The first term in cost function J (x) measures the difference between the initial model
state and our a priori expectation of this state in the model space. The second term
encodes the difference between the observations and the model states in the observational
space.
In the time-dependent formulation of Eq. (2.17) (4DVar), M enter in the equation through
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2.1. Mathematical Formulation

Eq. (2.7). However, in the 3DVar formulation, Eq. (2.17) is not time-dependent and M
will not enter in the minimization process.
To maximize Pa(x) is equivalent of minimizing J (x). However, the non-linearity of H
complicates this computation. Indeed, to minimize J (x), a computer algorithm needs
to compute also rJ (x) to know in which direction to proceed to minimize it. Comput-
ing the gradient with non-linear H(x) introduce in rJ (x) a term which is the gradient
of H(x). So, it is not possible to write a general formulation of J (x) since rH(x) de-
pends on the problem considered. To tackle this problem, we can approximately linearize
these operators around the background state, xb, by formulating the problem in terms of
perturbations.

�x := x� xb

H(x) ⇡ H(xb) +H�x
(2.18)

Substituting Eq. (2.18) into Eq. (2.17), the cost function in the increment formulation
is

J (�x) =
1

2
(�x)TB�1(�x) +

1

2

⇣
yo �H(xb)�H�x

⌘T
R�1

⇣
yo �H(xb)�H�x

⌘

=
1

2
(�x)TB�1(�x) +

1

2

⇣
d�H�x

⌘T
R�1

⇣
d�H�x

⌘ (2.19)

where �x is called increment, H is the linearized observational operator around the
background state (mathematically speaking it is the H’s Jacobian evaluated at x = xb)
and d is the misfit or innovation

d = yo �H(xb) (2.20)

Now the problem becomes to find the increment, �xa, such that the cost function in
Eq. (2.19) is minimized.
The minimum of the cost function J (�x) on the increment space may be justified by
posing rJ (�x) = 0. Then we obtain the following preconditioned linear system.

(I+BHTR�1H)�x = BHTR�1d (2.21)

To solve the linear equation system Eq. (2.21), iterative methods able to converge toward
a practical solution are needed. At this point, we have to face two problems:

1. The system Eq. (2.21) is highly ill conditioned (Haben, Lawless, and Nichols, 2011).

2. The matrix B has dimensionality of O14 or higher. This implies that solving
Eq. (2.21) has a high computational cost.

It is convenient to write Eq. (2.19) in the control space to tackle these problems. The
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2.1. Mathematical Formulation

basic assumption is that B is Gaussian symmetric, block diagonal, and positive definite
matrix. So, there exists a Cholesky decomposition such that

B = VVT (2.22)

and Eq. (2.19) becames

J (�x) =
1

2
(�x)T

⇣
VVT

⌘�1

(�x) +
1

2

⇣
d�H�x

⌘T
R�1

⇣
d�H�x

⌘
(2.23)

Introducing the control vector

v = V�1
�x (2.24)

finally, we have the cost function defined on the control space

J (�v) =
1

2
vvT +

1

2

⇣
d�HVv

⌘T
R�1

⇣
d�HVv

⌘
(2.25)

Eq. (2.25) is said the dual problem of Eq. (2.19). Eq. (2.25) is used in the OceanVar
minimization cycle. Once the convergence criteria are satisfied, the result is written in
the increment space inverting Eq. (2.24)

�x = Vv (2.26)

Due to its large size, in OceanVar, the transformation matrix V is modeled at each
minimization iteration as a sequence of linear operators

V = V⌘VHVV (2.27)

In Eq. (2.27), the linear operator VV transforms coefficients which multiply vertical EOFs
into vertical profiles of temperature and salinity defined at the model vertical levels, VH

applies horizontal covariances on fields of temperature, salinity, and SLA and it is modeled
using a first-order recursive filter algorithm, finally V⌘ is the dynamic height operator
and calculates the sea surface height error covariance from three-dimensional fields of
temperature and salinity.
Most of the computational time necessary to minimize the 3DVar cost function is spent in
transforming increments from the control space to the physical space by the linear operator
V and its transpose. Therefore, the computational cost of the 3DVar is approximately
proportional to the size of the control vector v (Dobricic and Pinardi, 2008).
The following three sections will present the three components of V. First, the vertical
component will be formulated using SVD methodology. Next, the first-order recursive
filter algorithm on the regular mesh will be introduced to model the horizontal part of the
horizontal error covariance matrix. Finally, we will present the mathematical formulation
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2.2. The vertical covariance based on Empirical Orthogonal Function

of the dynamic height operator.

2.2 The vertical covariance based on Empirical Orthog-

onal Function

A geophysical system’s variations result from exceedingly complex non-linear interac-
tions between many degrees of freedom or modes. We saw that this system is characterized
by non-linearity and high dimensionality. Consequently, a challenging task is to find ways
to reduce the system’s dimensionality to a few modes. A further yet challenging task is
to link these modes to the dynamics/physics of the system.
Given any oceanographic space-time field, EOFs analysis finds a set of orthogonal spa-
tial patterns and associated uncorrelated time series or principal components (PCs). In
this thesis, we refer to EOFs and PCs for the spatial and temporal pattern, following
the literature terminology. The geometrical constraints characterizing EOFs and PCs can
be beneficial in practice since the covariance matrix of any subset of retained PCs is al-
ways diagonal. However, Navarra and Simoncini (2010) shows that EOFs have a domain
dependence. Indeed, since normal modes derived from dynamical/physical models are
not necessarily orthogonal can be challenging to interpret the obtained patterns because
physical modes are not necessarily orthogonal. This derives from the fact that physical
processes are not necessarily uncorrelated (Hannachi, Jolliffe, and Stephenson (2007)).
EOF analysis aims to find a new set of variables that capture most of the observed vari-
ance from the data through linear combinations of the original variables. This fact allows
us to reduce the large number of variables of the original data to a few variables without
compromising much of the variability of the data (Hannachi and O’Neill (2001)).
In this work, as we mentioned in the previous section, we use EOFs to model the vertical
component of the background error covariance matrix, VV. To compute EOFs, we use an
SVD of an anomaly matrix.
Let X(t, s) the space-time field of a gridded dataset, such as temperature or salinity, at
time t and spatial position s. The value of the field at discrete time ti and grid point sj,
with i = 1 . . . n and j = 1 . . . p is denoted xij. The observed field is then represented by
the data matrix:

X = (x1,x2, . . . ,xn)
T =

0

BBBB@

x11 x12 x13 . . . x1p

x21 x22 x23 . . . x2p

...
...

... . . . ...
xn1 xn2 xn3 . . . xnp

1

CCCCA
(2.28)

where the columns represent the time series of the field at position sj and rows represent
the map, or the value of the field, at time t.
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2.2. The vertical covariance based on Empirical Orthogonal Function

The climatology of the field is defined by

X = (x1,x2, . . . ,xp) =
1

n
1T

n
X (2.29)

where 1T

n
is a row vector of length n that contains only one and xj is the time average of

the field at the spatial grid point j

xj =
1

n

nX

i=1

xij (2.30)

So, the anomaly field, or departure from the climatology, is defined as

A = X� 1nx (2.31)

and the covariance matrix of A is defined as

S =
1

n
ATA (2.32)

EOFs/PCs analysis aims to find uncorrelated linear combinations of the different variables
that explain the maximum variance, and the EOFs are obtained as the solution to the
eigenvalue problem:

Su = �
2u (2.33)

Computing the covariance matrix, S, has a high computational cost considering the high
dimensionality of the field. To reduce the computational cost, we use SVD decomposition
of the anomaly matrix A.
Any n⇥ p data matrix A can be decomposed as

A
[n⇥p]

= U
[n⇥r]

⌃
[r⇥r]

VT

[r⇥p]

(2.34)

where U and V are unitary matrices (i.e. UUT = VVT = Ir) and
r  min(n, p) is the rank of A.
The matrix ⌃ is diagonal, and the diagonal elements are the singular values of A sorted
in decreased order, i.e., �1 � �2 � . . . �r � 0. The columns u1,u2, . . . ,ur of U and
v1,v2, . . . ,vr of V are respectively the left and right singular vectors of the data matrix
A and represent PCs and EOFs respectively. Using Eq. (2.34), the covariance matrix S

(Eq. (2.32)) is
S =

1

n
V⌃2VT (2.35)

where ⌃2 = Diag(�2

1
, �

2

2
, . . . , �

2

r
). The EOFs are therefore orthogonal and the PCs un-

correlated, and this is a major characteristic of conventional EOFs. The orthogonality is
useful since it provides a complete basis for the data matrix. Indeed, Eq. (2.34) yields the
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2.2. The vertical covariance based on Empirical Orthogonal Function

decomposition

A =
rX

k=1

�kukv
T

k
(2.36)

and the map at = (at1, at2, . . . , atp)T of the anomaly field A at time t is

at =
rX

k=1

�kutkv
T

k
(2.37)

Eq. (2.37) is useful when EOFs are used to reduce the dimensionality of the data. This
can be achieved simply by truncating the above sum by keeping the first M terms where
M is generally much smaller than the rank r of A. However, there is no universal rule for
truncation, and the choice of M is generally arbitrary. The first approach is to choose the
first M EOFs representing a fixed variance, e.g., 90%. This quantity can be computed as
the cumulative percentage contribution, µM, of the first M EOFs modes

µM =
MX

k=1

µk =
MX

k=1

100
�
2

kP
r

i=1
�
2

i

% (2.38)

In this work, the EOFs are derived from the variations of four years (2017-2020) long
SHYFEM integration and are grouped by month for the temperature, salinity, and SLA
(trivariate EOFs) in each node. Eq. (2.38) is not a resolutive and complete method for
truncating the EOFs; the user experience and the specific problem for which the EOF-
s/PCs are computed should lead the final number of modes to be used (as we will see in
chapter 7). Indeed, looking at the cumulative function in Fig. 2.1, we observe that, in the
location marked with a red star in the Gulf of Taranto at coordinates 39.92�N 17.43�E
(Fig. 2.1(a)), the first five modes represent almost 100% of the variance contribution in
both February Fig. 2.1(b) and JulyFig. 2.1(c). This means that the field has predom-
inant modes of frequency variability in that location (Navarra and Simoncini (2010)).
Furthermore, the eigenvalues provide information on the distribution of power (energy)
as a function of scale and the separation/degeneracy of the EOFs patterns. For example,
high/low power is associated with low/high frequency variability. Hence, low frequency
and large-scale patterns tend to capture most of the variance observed in the system
(Hannachi, Jolliffe, and Stephenson (2007)). This suggests that performing cross-scale
oceanographic experiments, as in this work, the choice of the leading number of EOFs
should be tackled by looking at the percentage of variance and considering the scale di-
mension. Fig. 2.2 (note the different percentage scale between Fig. 2.2(a), Fig. 2.2(b) and
Fig. 2.2(c), Fig. 2.2(d)) shows how the percentage of variance is distributed for February
and July on SANI domain for the first Figs. 2.2(a) and 2.2(b) and sixth mode Figs. 2.2(c)
and 2.2(d). Here, it is clear how the percentage of variance varies over the whole domain,
and that six modes could not be enough to represent the variability in locations differ-
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2.2. The vertical covariance based on Empirical Orthogonal Function

(a) EOF location

(b) February (c) July

Figure 2.1: Percentage of variance (red line) and cumulative function, µk (blue line) of 25 EOFs computed from 4 years
long (2017-2020) SHYFEM integration in the Gulf of Taranto at coordinates 39.92

�N 17.43
�E (a) on February (b) and July

(c).

ent than Fig. 2.1(a). For this reason, in the experiments, we will use 25 EOFs. Finally,
the covariance matrix of temperature (T), salinity (S), and sea level anomaly (SLA) for
February and July, in the exact location as Fig. 2.1(a), is shown in Fig. 2.3. Fig. 2.3(d)
shows that the covariance between T and SLA is higher in July than in February. This
is the expression of the water column stratification during the summer period. Indeed,
during summer, the sea surface temperature variation has a higher impact on sea surface
height (SSH) compared to the winter period when the water column is generally well
mixed, and the sea surface temperature has no significant diurnal variations.
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2.2. The vertical covariance based on Empirical Orthogonal Function

(a) February first mode (b) July first mode

(c) February sixth mode (d) July sixth mode

Figure 2.2: Percentage of variance computed from 4 years long (2017-2020) SHYFEM integration on February and July for
first mode(a,b) and sixth mode (c,d) on SANI domain.

Note the different percentage scale between (a,b) and (c,d).
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2.2. The vertical covariance based on Empirical Orthogonal Function

(a) February S, T covariance (b) July S, T covariance

(c) February S, T, SLA covari-
ance

(d) July S, T, SLA covariance

Figure 2.3: Covariance between S, T, SLA against the depth of 25 EOFs computed from 4 years long (2017-2020) SHYFEM
integration on February and July in the Gulf of Taranto at coordinates 39.92N 17.43E (Fig. 2.1(a)).
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2.3. The horizontal covariance based on first order recursive filter on regular mesh

2.3 The horizontal covariance based on first order re-

cursive filter on regular mesh

It is assumed that horizontal covariances are Gaussian with a constant correlation
radius. In oceanographic models, isotropic and Gaussian spatial correlations can be rel-
atively efficiently modeled by a repeated application of the Laplacian operator, which is
also the solution of the horizontal diffusion equation (Derber and Rosati (1989)). Ap-
plying the Laplacian operator reduces the computational cost by eliminating the explicit
calculation of the exponential function between each pair of points and may facilitate the
introduction of coastal boundaries. Weaver and Courtier (2001) investigated the appli-
cation of the diffusion equation to calculate horizontal covariances in the ocean in the
presence of coastal boundaries and spherical coordinates. However, although much more
computationally efficient than the direct application of Gaussian correlation functions,
the approximation using the explicit solution of the diffusion equation typically requires
a relatively large number of iterations. An alternative to the Laplacian operator is the
recursive filter (RF) (Lorenc (1992) and Hayden and Purser (1995)). It is conceptually
simple, typically requires only a few iterations to approximate the Gaussian function, and
its application on a horizontal grid can be split into two independent directions ( Purser
et al. (2003)). Furthermore, the RF has the unique feature of locally varying scaling,
which gives it greater flexibility over inhomogeneous data, like unstructured mesh.
The mathematical formulation of the RF is quite simple. However, the basic assumptions
about the mathematical formulation are crucial when RF is used in oceanographic appli-
cations for the presence of the coastline.
We introduce a first-order RF formulation starting from its 1D formulation, and then we
generalize the concept on a 3D regular mesh.
Let’s consider an infinite line with n grid points and an initial field Ai with i = 1, 2, . . . , n.
The fundamental algorithm, in the forward pass ("left" to "right"), is described by

Bi = ↵Bi�1 + (1� ↵)Ai i = 1, 2, . . . , n (2.39)

followed by the backward pass

Ci = ↵Ci+1 + (1� ↵)Bi i = n, n� 1, . . . , 1 (2.40)

The application of the RF in each direction is performed to ensure zero phase change.
Generally, the RF algorithm is applied recursively N times, and from N = 2 it starts to
approximate a Gaussian function Fig. 2.3.
In RF application, the maximum number of recursive steps is usually N = 4. In Eqs. (2.39)
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2.3. The horizontal covariance based on first order recursive filter on regular mesh

(a) N=1 (b) N=2

(c) N=4

Figure 2.4: Comparison between RF and the Gaussian function for a different number of iterations and R=10.

and (2.40), ↵ is the smoothing factor, and it is defined from the following equations

E =
2N�

2

4R2

↵ = 1 + E �
p

E(E + 2)
(2.41)

Where � is the grid resolution and R is the correlation radius set by the user, which defines
the radius of application of the RF around the initial point Ai. It is possible to derive the
Gaussian variance, �, of the approximate Gaussian through the relation:

� =
R

�
(2.42)

Increasing R implies that the initial information is spread over more nodes, and we have
a lower maximum of the RF output (Fig. 2.5). The advantage of using the RF is that we
can apply the 1D algorithm separately on each dimension of a regular grid. In Fig. 2.6,
we show this concept graphically on a 2D regular mesh. From Fig. 2.6, it is clear that, on
a regular mesh, we profit from the RF formulation on an infinite line. Indeed, the regu-
lar meshes have the advantages of having the nodes intrinsically ordered and, introducing
some boundary conditions in the presence of the coastline (see Dobricic and Pinardi (2008)
for details), we can express the symmetry inherited from the formulation on an infinite
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2.3. The horizontal covariance based on first order recursive filter on regular mesh

Figure 2.5: RF output with N=4 and different R.

Figure 2.6: Schematic application of the first order RF on a regular mesh.
Blue arrows represent the forward pass, and the green arrows are the backward one.

line. Fig. 2.7 shows the RF application on a 2D regular mesh for different N and R = 100

Km. As in the 1D case, we approximate a Gaussian shape by increasing the number of
iterations. From a computational point of view, a drawback of the RF algorithm is that it
is inherently sequential, and with the infinite formulation, it is difficult to be parallelized.
Also, using the RF algorithm, it is a complex task to describe covariance across various
scales (Purser, Rancic, and Pondeca (2022)).
When we work with unstructured meshes, we lose all the advantages inherited by the infi-
nite support. For this reason, in chapter 3, we will return to this issue and present a novel
algorithm for the RF that applies to unstructured meshes. The new algorithm has the
same mathematical structure given above. The key points are ordering the unstructured
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2.4. The dynamic height operator

(a) N=1 (b) N=2

(c) N=4

Figure 2.7: Application of the first order RF on a 2D regular grid. The black point in the center of the grid refers to the
position of the initial value. R=100 km.

grid nodes using a specific algorithm and applying a scaling factor, which is necessary to
use the RF on a highly varying resolution grid as SANI. Also, the new algorithm can be
applied to grids with high variability in resolution (as the grid used in this work, Fig. 1.2)
by formulating a local smoothing factor.

2.4 The dynamic height operator

The dynamical balance between surface elevation perturbations and the corresponding
T and S perturbations may be estimated either statistically using EOFs decomposition
(e.g., Dobricic et al. (2005)) as we do in this work or by applying some kind of the
geostrophic constraint (e.g., Dobricic et al. (2006)). Dobricic et al. (2006) found that
the vertical EOFs computed solely from the covariance between T, S, and SLA could
produce sea level corrections that are not geostrophically balanced with the density cor-
rections. If we assimilate only in situ observations of T and S, all unbalanced corrections
will be rapidly removed by the fast barotropic adjustment. On the other hand, it was
demonstrated in Dobricic et al. (2006) that when the SLA observations were assimilated,
the enforcement of the geostrophic relationship for the sea level in the error covariance
matrix had a significant positive impact on the accuracy of the analyses. However, the
geostrophic relationship is usually assumed with some arbitrary hypothesis on the level
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2.4. The dynamic height operator

of no motion or the bottom pressure gradients. For example, Cooper and Haines (1996)
assume that the perturbation bottom pressure gradient is zero and forms the surface
elevation perturbation from the vertical integral of T and S perturbation in the whole
water column. Dobricic et al. (2006) use the formula by Pinardi, Rosati, and Pacanowski
(1995), which assumes that the horizontal pressure gradient at a depth of 1000m equals
zero. We will assume the existence of a no motion level of 700 m (less than in Dobricic
et al. (2006) since the region covered by SANIFS grid, Fig. 1.2) and V⌘ is defined through
a local hydrostatic adjustment operator defined in Storto et al. (2011).
In the previous section, we derived the 3DVar cost function (Eq. (2.19)). We saw
that Eq. (2.19) is composed of the background-related term (first addendum) and the
observation-related term (second addendum). Satellite altimetry measures the along-
track SSH (⌘ in Eq. (2.43)) referred to the reference ellipsoid. Finally, the SLA (⇠ in
Eq. (2.43)) is obtained by subtracting the Mean Sea Surface (MSS, ⌘MSS in Eq. (2.43))
from SSH (see section 4.2.2 for details).

⇠ = ⌘ � ⌘MSS (2.43)

From Eq. (2.19) and Eq. (2.20), we see that the SLA contribution to the observational
term of the cost function is Eq. (2.44)

yo �H(xb)�H(x� xb) = ⇠o � ⇠b �H(x� xb) (2.44)

where ⇠o is the SLA observed (Eq. (2.43)) and ⇠b is the sea level anomaly predicted
by the ocean model. To compute the tangent-linear increments of the ⇠b within the
minimization, V⌘ has been formulated in terms of the Local Hydrostatic Adjustment
(LHA) scheme based on the vertical integration of density increments. In other words,
we can use the 1980 United Nations Educational, Scientific and Cultural Organization
(UNESCO) International Equation of State (IES 80), as described in Fofonoff (1985) to
link the temperature and salinity variations with the density variations and then the SSH
variations. This means that we are going to compute the steric variations of the sea level.
Consider a water column of unitary surface and height z = �H(x, y, t). The free surface
at time t is z = ⌘(x, y, t). Both levels are referred to a reference level z = 0, i.e., the
geoid. The mass of the water column is:

m (x, y, t) =

Z
z=⌘(x,y,t)

z=�H(x,y,t)

⇢ (x, y, z, t) dz =)

=) @m(x, y, t)

@t
= ⇢ (x, y, ⌘, t)

@⌘(x, y, t)

@t
+

Z
z=⌘(x,y,t)

z=�H(x,y,t)

@⇢(x, y, z, t)

@t
dz

(2.45)
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where ⇢ (x, y, z, t) is the density distribution along the water column and ⇢ (x, y, ⌘, t)

is the surface density that we can define as ⇢S(x, y, t). So, the time variation of water
column eight, ⌘(x, y, t), is:

@⌘(x, y, t)

@t
= � 1

⇢s(x, y, t)

Z
z=⌘(x,y,t)

z=�H(x,y,t)

@⇢(x, y, z, t)

@t
dz +

1

⇢s(x, y, t)

@m(x, y, t)

@t
(2.46)

In Eq. (2.46), we have that the time variation of the sea level height depends on two
components:

• STERIC COMPONENT =) � 1

⇢s(x,y,t)

R
z=⌘(x,y,t)

z=�H(x,y,t)

@⇢(x,y,z,t)

@t
dz

• MASS COMPONENT =) 1

⇢s(x,y,t)

@m(x,y,t)

@t

For Stevino’s law and remembering that the water column has a unitary surface, we have

P (x, y, z = �H, t) = P (x, y, z = ⌘, t) + ⇢(x, y, z, t)gH(x, y, t) =)

=) m(x, y, t) =
P (x, y, z = �H, t)

g
� P (x, y, z = ⌘, t)

g

(2.47)

where P (x, y, z = �H, t) is the pressure at the bottom of the water column, and P (x, y, z =

⌘, t) is the atmospheric pressure. And finally we can write Eq. (2.46) as

@⌘(x, y, t)

@t
=� 1

⇢s(x, y, t)

Z
z=⌘(x,y,t)

z=�H(x,y,t)

@⇢(x, y, z, t)

@t
dz

+
1

⇢s(x, y, t)g

@P (x, y,�H, t)

@t

� 1

⇢s(x, y, t)g

@P (x, y, ⌘, t)

@t

(2.48)

The mass component is divided into a term that considers processes that add or remove
water mass, e.g., evaporation, precipitation, river runoff, and one that considers water
mass advection due to gradients in atmospheric pressure. Neglecting the atmospheric
component, which is a boundary condition in ocean models, and assuming the existence
of a level of no motion, corresponding to a depth �H⇤, where horizontal velocities are
practically zero, through geostrophy, the bottom pressure variation vanishes and Eq. (2.48)
in the field of increments becomes

�⌘(x, y, t) = � 1

⇢s(x, y, t)

Z
z=⌘(x,y,t)

z=�H
⇤
(x,y,t)

�⇢(x, y, z, t)dz (2.49)
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2.4. The dynamic height operator

Finally, our linearized observation operator is:

H(x� xb) = �
1

⇢s(x, y, t)

Z
z=⌘(x,y,t)

z=�H
⇤
(x,y,t)

�⇢(x� xb)dz (2.50)

In practice, this scheme splits the observation departure into its thermosteric and halosteric
contributions over the water column using the adjoint version of the density operator lin-
earized around the background fields of temperature and salinity. However, in areas of
highly variable bottom topography (like coastal regions), the assumption of a uniform
level of no motion may be wrong, and the sea level correction should be derived with
more accuracy. How the sea level increment is vertically spread on the temperature and
salinity increments depends upon the bivariate definition of the vertical background-error
covariances, which are spatially nonuniform.
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3. A novel algorithm for the first order
recursive filter in unstructured grid
ocean modeling

In the previous chapter, we introduced the first-order RF algorithm on a regular grid,
and the entire theory was based on a strong assumption:

• The 1D RF formulation is referred to on an infinite line. This assumption leads to
a strong symmetry feature of the theory. In fact, the infinite line assumption makes
each point on the line a symmetry point ensuring that forward and backward steps
are applied to the same geometric structure. This is suitable to have a symmetric
Gaussian shape with respect to the x and y orthogonal axis.

Furthermore, a regular grid has the feature of having the nodes intrinsically ordered, and
its symmetry is with respect to the x and y orthogonal axis. This means that, referring to
a 2D regular grid, the "regular" RF (from here on we will denote it rRF) algorithm can
be applied in its 1D formulation separately in the x and y direction, as shown in Fig. 2.6.
Consequently, applying rRF on a regular n-dimensional grid is simply the application of
1D formulation on each dimension. Finally, boundary conditions are applied to avoid dis-
continuity due to grid open and closed boundary (Hayden and Purser (1988) and Dobricic
and Pinardi (2008)).
When we move to unstructured mesh, we lose all these features. Indeed, referring to a
simple triangular mesh as in Fig. 3.1, we see that there is no simple connection pattern
referred to the node numbering, and we can not move through two connected nodes simply
using a constant increment or decrement of the node index as in Eq. (2.39). Furthermore,
the grid is no longer symmetric about the orthogonal x and y axis. For all these reasons,
it is necessary to adapt the rRF algorithm to be applied to the particular case of an
unstructured triangular mesh.
In the next session, the formulation of a novel RF algorithm for unstructured triangular
meshes, identified as uRF in this thesis, will be shown.
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3.1. Description of the algorithm and methodology

Figure 3.1: A small portion of a simple triangular grid. The connectivity node to node is not expressed by a constant
increment or decrement of the node index as in Fig. 2.6. The symmetry is not with respect to the x and y orthogonal axis.

3.1 Description of the algorithm and methodology

We aim to apply the first-order RF algorithm on an unstructured triangular mesh,
using the mathematical formulation shown in Eq. (2.39) and Eq. (2.40). To do that, we
have to solve the node ordering problem. On a regular grid, the intrinsic ordering of
the nodes leads to the intrinsic order of the connectivity node to node, i.e., node 1 is
connected to node 2 by the edge both in the x and y direction. The particular square
grid case is shown in Fig. 2.6. With this geometrical feature, applying Eq. (2.39) and
Eq. (2.40), the information is spread from node 1 to node 2, from node 2 to node 3,
and from node n-1 to node n in forward passes. The other way around for the backward
passes. This reasoning suggests that it is more important to approach the problem from
the connectivity node-to-node (i.e. the edges) point of view and order the edges rather
than the nodes.
The idea implemented in this work is to order the edges with respect to the longitude and
latitude applying different ordering criteria for the forward and backward steps both in x
and y directions, as described in Algorithm 1.
Algorithm 1 produces four different matrices of dimension [k⇥ 2], whith k the number of
edges which, in combination with Eq. (2.39) and Eq. (2.40), must reproduce the Gaussian
spreading defined by rRF. For each order defined in Algorithm 1, Eq. (2.39) and Eq. (2.40)
are used running over the triangle’s edges and taking the specific connected nodes.
In the next section, we will present results from synthetic experiments of the novel algo-
rithm on two types of unstructured triangular mesh: Delaunay frontal equilateral trian-
gles constant resolution unstructured mesh and SANI grid which has a variable resolution
(Fig. 1.2).
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3.1. Description of the algorithm and methodology

Algorithm 1 Edges ordering algorithm

Consider the generic edge ek, k 2 K ⇢ N. ek is uniquely identified by a couple of
connected nodes (n1k

, n2k
) with n1k

, n2k
2 n ⇢ N. In a two-dimensional space, each

node is uniquely identified by its coordinates, n1k
 !(x1k , y1k) and n2k

 ! (x2k , y2k)
with xik , yik 2 r ⇢ R. Emulating the forward and backward steps of rRF both in x
and y direction, we can define four different criteria for edge ordering.

Require: Connectivity node to node! ek, k 2 K ⇢ N! (n1k
, n2k

) with n1k
, n2k

2 n ⇢ N
Require: Node coordinates ! n1k

 !(x1k , y1k) and n2k
 ! (x2k , y2k)

X-FW
1: Ordering the edges considering n1k

coordinates in the following two sequential steps

1- x11 < x12 < x13 < . . . x1k
2- y11 < y12 < y13 < . . . y1k

This ordering results in edge steps that start in the lower-left corner and stop in the
upper-right corner of the grid moving from left to right.
This ordering is used in combination with Eq. (2.39).

X-BW
2: Ordering the edges considering n2k

coordinates in the following two sequential steps

1- x21 > x22 > x23 > . . . x2k
2- y21 > y22 > y23 > . . . y2k

This ordering results in edge steps that start in the upper-right corner and stop in
the lower-left corner of the grid moving from right to left.
This ordering is used in combination with Eq. (2.40).

Y-FW
3: Ordering the edges considering n1k

coordinates in the following two sequential steps

1- y11 < y12 < y13 . . . y1k
2- x11 < x12 < x13 . . . x1k

This ordering results in edge steps that start in the lower-left corner and stop in the
upper-right corner of the grid moving from down to up.
This ordering is used in combination with Eq. (2.39).

Y-BW
4: Ordering the edges considering n2k

coordinates in the following two sequential steps

1- y21 > y22 > y23 > . . . y2k
2- x21 > x22 > x23 > . . . x2k

This ordering results in edge steps that start in the upper-right corner and stop in
the lower-left corner of the grid moving from up to down.
This ordering is used in combination with Eq. (2.40).
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3.2. Validation with idealized test cases

3.2 Validation with idealized test cases

Algorithm 1 in combination with Eq. (2.39) and Eq. (2.40) defines the novel RF algo-
rithm for the unstructured grid, which we denote as uRF. To validate the geometrical and
mathematical features of uRF we will test the uRF on a 2D Delaunay frontal equilateral
triangles mesh using two different constant resolutions, 20 km, and 5 km. This type of
unstructured mesh is the closer case to the SANI grid. Finally, we will test uRF on the
SANI grid, which has a variable resolution from coastal to open sea regions (Fig. 1.2).

3.2.1 2D Delaunay frontal grid and local smoothing factor ↵

To test the algorithm on an unstructured triangular mesh, we use the grid in Fig. 3.2
that has the same structure as SANI grid, i.e., tessellation of equilateral triangles using
Delaunay frontal technique.
Given a set of points P in the Euclidean plane, a Delaunay triangulation defines a unique
triangulation of them such that no one of P is inside the circumcircle of any triangle.
The resulting Delaunay triangulation is the dual graph of the Voronoi diagram (see Lee
and Schachter (1980) and Mavriplis (1997) for details). In the advancing-front algorithm,
the grid generation begins with discretizing the boundaries as a set of edges. The bound-
ary edges form the initial front, which progressively advances into the defined domain
(Mavriplis (1997)).
For our purpose, the triangular mesh is built on an idealized square domain defined on
10N-20N and 10E-20E with a resolution of 20 km. The initial field A in Eq. (2.39) is
zero everywhere except in (15.1N,15.1E) where it has a value of 100. As discussed in the

Figure 3.2: Delaunay frontal grid used to test the uRF. Resolution 20 km.

introduction of this chapter, that grid does not have the same symmetry as the regular
one. Furthermore, another difference is that the symmetry of the unstructured triangular
mesh is not constant on the whole domain but has a local variable symmetry. Indeed,
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3.2. Validation with idealized test cases

considering a regular grid, it inherits the local symmetry from the infinite line geometri-
cal structure, so it has a constant local symmetry with respect to the x and y orthogonal
axis. Considering that, in the case of an unstructured triangular mesh, it is necessary
to introduce a local smoothing factor ↵ to apply Eq. (2.39) and Eq. (2.40) and keep in
consideration the variable local grid symmetry.
The local smoothing factor ↵ is derived from Eq. (3.1) that links the Gaussian variance
�, the correlation radius R, and the local grid resolution � (i.e., the length of the edges
of the triangles which represent the distance between two nodes)

�i =
Ri

�i
i = 1, 2, . . . , e (3.1)

Where e is the number of edges. From Eq. (3.1), it is possible to design an algorithm
(Algorithm 2) to compute the local correlation radius Ri and then the local ↵i using
Eq. (2.41).

Algorithm 2 Local smoothing factor ↵

R is the correlation radius, � is the triangle’s edge measure and � is the Gaussian
variance

Require: Initial correlation radius such that R �MAX(�)

1: Compute �: � = R

MAX(�)

2: Compute Ri: Ri = � · �i

3: Compute ↵i using the result of Step 2 along with Eq. (2.41)

From here on, all the applications of the uRF will be made using the local smoothing
factor ↵ (Algorithm 2).
The application of uRF in combination with Algorithm 2 on the grid in Fig. 3.2 produces
the results shown in Fig. 3.3. In the four tests shown in Fig. 3.3, the initial correlation
radius is R=60 km. Fig. 3.3(a) - Fig. 3.3(d) show the results N=4, 6, 8, 10 respectively.
We observe that as N increases the Gaussian shape is better reproduced.

To approach SANI grid resolution, we can test uRF on an unstructured mesh of the
same type as the one in Fig. 3.2 but with a resolution of � = 5 km closer to the maximum
open sea SANI grid resolution (4 km). As in the previous case, we consider an initial field
A (Eq. (2.39)) zero everywhere except in (15.0N,15.0E) where it has a value of 100.
In Fig. 3.4 we can see the results of four different tests using R=15 km and N as in the
previous case. Also here, we obtained the desired Gaussian symmetry. From both these
test cases we can conclude that, on a triangular grid generated using Delaunay frontal
algorithm, N=6 provides a good approximation of the 2D Gaussian shape. For this reason,
in the SANI grid, we are going to show just the application of N=6.
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3.2. Validation with idealized test cases

(a) (b)

(c) (d)

Figure 3.3: Application of uRF in combination with Algorithm 2 on the Delaunay frontal grid in Fig. 3.2 with a resolution
of 20 km(note that here we show a zoom for better visualization). R=60 km. (a) N=4, (b) N=6, (c) N=8, (d) N=10.

Increasing N increase also the Gaussian symmetry.

(a) (b)

(c) (d)

Figure 3.4: Application of uRF in combination with Algorithm 2 on the Delaunay frontal grid as in Fig. 3.2 with a
resolution of 5 km (note that here we show a zoom for better visualization). R=60 km. (a) N=4, (b) N=6, (c) N=8, (d)

N=10. Increasing N increase also the Gaussian symmetry.
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3.3. Validation on SANIFS grid

3.3 Validation on SANIFS grid

Fig. 3.5 shows the SANIFS unstructured triangular mesh and zoom on the Gulf of
Taranto coastal region and Northern Ionian open sea region. The grid has the highest
resolution along Italian coasts (from 50 m to 500 m). The resolution in the open sea and
along the East closed boundary is from 3 km to 4 km. Fig. 3.6 shows the results of applying

Figure 3.5: SANIFS numerical domain and grid with a zoom on Gulf of Taranto coastal region and Northern Ionian open
sea region. Coastal resolution: from 50 m to 500 m. Open sea resolution: from 3 km to 4 km. The resolution is higher in

Mar Grande to better model that region.

uRF on the SANIFS grid. Considering the conclusions of the previous section here we
test uRF only with N=6. To approach to correlation radius used in real applications, we
show results for R=10 km in Fig. 3.6(a) and Fig. 3.6(c) and R=20 km in Fig. 3.6(b) and
Fig. 3.6(d). In open sea (Fig. 3.6(a) and Fig. 3.6(b)) and coastal region tests (Fig. 3.6(c)
and Fig. 3.6(d)) the novel algorithm, uRF, exhibits the desired Gaussian symmetry.
In conclusion, we demonstrated that uRF in combination with a local smoothing factor

algorithm (Algorithm 2) on a triangular unstructured grid generated using the Delaunay
frontal algorithm with a constant resolution of 20km and 5km, and on SANIFS grid
exhibits the desired Gaussian symmetry. From the tests, we also concluded that N=6
produces a suitable Gaussian shape approximation.
With the OceanVar technical components developed and adapted for unstructured mesh
applications (SVD for the vertical component of the background error covariance matrix,
the novel uRF for the horizontal component and the dynamical height operator for SLA
covariance from T and S) SANIFS is interfaced with OceanVar to build an analysis and
forecasting system.
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3.3. Validation on SANIFS grid

(a) (b)

(c) (d)

Figure 3.6: Application of uRF on SANI grid for open sea (a) and (b) and coastal regions (c) and (d). N=4. All the results
exhibit the desired Gaussian symmetry.

In the next chapter, we will discuss the setting of the assimilation cycle and experiments.
The first section will see the SANIFS settings, and next we will describe the observational
datasets used in the assimilation process. Those components are the primary input for
the 3D-Var cycle implemented using OceanVar.
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4. Assimilation cycle: the case of the
Southern Adriatic Northern Ionian
coastal Forecasting System

With all the OceanVar technical components developed and adapted for unstructured
mesh applications, SANIFS can be interfaced with OceanVar in an assimilation system.
As discussed in the introduction, SANIFS is a coastal-ocean operational system based on
the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model,
providing short-term forecasts. Currently, the operational chain is based on a downscaling
approach starting from the large-scale system for the entire Mediterranean Basin (MedFS,
Mediterranean Forecasting System), which provides initial and boundary condition fields
to the nested system (Federico et al. (2017)). In the introductory part of this thesis, we
saw that MedFS is coupled with OceanVar and the nested model, SANIFS, inherits DA
at open boundaries. SANIFS is configured to provide hydrodynamics and active tracer
forecasts both in the open ocean and coastal waters using a variable horizontal resolution
from the open sea (3-4 km) to coastal areas (50-500 m) (Fig. 1.2 or Fig. 3.5). OceanVar
(Dobricic and Pinardi (2008) and Storto, Masina, and Navarra (2016)) is a state-of-art
3DVar assimilation scheme implemented and used with NEMO (Nucleus for European
Modelling of the Ocean) regular grid ocean model at CMCC.
This chapter will first present the SHYFEM computational grid and equations. Next, we
will describe the observational datasets used in the assimilation process: Argo profiling
floats and satellite altimetry missions. Those components are the primary input for the
3DVar cycle that, combined with OceanVar, define the assimilation system. Finally, in the
last part of this chapter, we will describe the data assimilation workflow and experiments
settings.

4.1 Model description

In this study, we use the parallel implementation of SHYFEM described in Micaletto
et al. (2021).
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4.1. Model description

SHYFEM is a 3-D finite element unstructured mesh hydrodynamic model (Umgiesser et al.
(2004) and Cucco and Umgiesser (2006)) solving the Navier-Stokes equations by applying
hydrostatic and Boussinesq approximations. The unstructured grid is Arakawa-B with
triangular meshes (Bellafiore and Umgiesser (2010) and Ferrarin et al. (2013)) which
provides an accurate description of irregular coastal boundaries (Fig. 1.2). In Fig. 4.1(a),
we see how variables are staggered in the horizontal grid. Horizontal momentum (U, V) is
located in the element centers, while all the others are on the vertices (vertical velocity !

and scalars). Each vertex has a corresponding finite volume (dashed lines in Fig. 4.1(a)).
The staggering of hydrodynamic variables is important to have a mass-conserving model
(Jofre et al. (2014) and Fuhrer et al. (2014)). Variables are also staggered in the vertical
grid, as shown in Fig. 4.1(b). The turbulent and molecular stresses and the vertical
velocity are computed at the bottom interface of each layer (black dots in Fig. 4.1(b)).
The free surface is at the top of the upper layer, determining the variable volume of the
top cells. All the other variables are defined at the layer center (red dots in Fig. 4.1(a)).
Scalar variables (red) are staggered with respect to vertical velocity (black), referenced
in the middle and at layer interfaces, respectively. The sea surface elevation is a 2D field
defined only in the points at the surface. The grid cells on the top layer can change their
volume due to the oscillation of the free surface. The number of active cells along the
vertical direction depends on the sea depth (Micaletto et al. (2021)).

(a) Horizontal grid (b) Vertical grid

Figure 4.1: Disposition of model variables on the SANIFS grid. From Micaletto et al. (2021)

SHYFEM solves the ocean primitive equations, assuming incompressibility in the con-
tinuity equation, and advection-diffusion equation for active tracers using finite-element
discretization based on triangular elements (Umgiesser et al. (2004)). A semi-implicit al-
gorithm is used for the time integration of the free surface equation, the Coriolis term, the
pressure gradient in the momentum equation, and the divergence terms in the continuity
equation. Vertical eddy viscosity and vertical eddy diffusivity in the tracer equations are
treated fully implicitly for stability reasons. Finally, the advective and horizontal diffu-
sive terms in the momentum and tracer equations are treated explicitly (Micaletto et al.
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4.1. Model description

(2021)). To compute the vertical viscosities is used a turbulence closure scheme adapted
from the k-✏ module GOTM (General Ocean Turbulence Model, Burchard and Petersen
(1999)).
As described in Maicu et al. (2021), the momentum equations, integrated over each layer
are:
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(4.2)
Where ⇣ = ⇣(x, y, t) is the free surface, l = 1, 2 . . . N is the vertical layer index,

zl = 1, 2 . . . N are the depths of the layer interfaces at the bottom with z0 being the free
surface ⇣ and zN the bottom interface of the deepest layer. zlmid is the depth at the middle
of layer l. ul and vl are the horizontal velocity components. The horizontal velocities
integrated over the layer l (layer transports) are defined by Ul = ulhl and Vl = vlhl

where hl is the layer thickness. Pa is the atmospheric pressure at the sea surface, g is
the gravitational acceleration, ⇢0 is the reference density of sea water, ⇢ = ⇢0 + ⇢

0 is the
water density with ⇢

0 representing the perturbation of the density from the reference value
⇢0. AH is the horizontal eddy viscosity computed following the Smagorinsky formulation
(Smagorinsky (1963) and Blumberg and Mellor (1987)). wl is the vertical velocity for layer
l defined at the bottom interface. ⌧xz and ⌧yz are the turbulent shear stresses defined at the
bottom interface of each layer and written according to the flux-gradient theory (Maicu
et al. (2021)).
Following Maicu et al. (2021), the continuity equation integrated over a vertical layer l is:

@Ul

@x
+

@Vl

@y
= wzl

� wzl�1 (4.3)

The continuity equation at l = 1 has an additional term representing the time variability
of the top layer thickness and thus it reads as:

@h1

@t
+

@U1

@x
+

@V1

@y
= wz1 � wz0 (4.4)
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The layer-integrated salinity and temperature equations reads, respectively:
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where KH and KV are the horizontal and vertical turbulent diffusion coefficients respec-
tively. Sl and ✓l are salinity and temperature at layer l. The solar irradiance is expressed
by the last term on the right side of Eq. (4.6). It expresses the solar irradiance at depth
z, parametrized with a double exponential according to Paulson and Simpson (1977).
The hydrostatic pressure is obtained by the layer-integrated vertical momentum under
the hydrostatic hypothesis:

pl (x, y, zlmid , t) = ⇢0g (⇠ � zlmid ) +

Z
0

zlmid

⇢
0
gdz (4.7)

Finally, the density ⇢ at layer l is computed from salinity, temperature and pressure
according to the UNESCO equation of state (Fofonoff (1985)).

pl (x, y, zlmid , t) = pl (Sl, ✓l, pl) (4.8)

As we saw in (Fig. 1.2 or Fig. 3.5) in the coastal waters of the eastern Italian coast-
lines, SANIFS has a high spatial resolution, reaching an element size of 500 m, with higher
resolution in specific areas (e.g., Mar Grande of Taranto Fig. 3.5) where the resolution
reaches 50m. The horizontal resolution in the open sea areas is approximately 3-4 km
(Fig. 3.5). The SANIFS bathymetry (Fig. 1.2) was derived from the US Digital Bathy-
metric Data Base Variable Resolutions (DBDB-1) at 1’ resolution for the Mediterranean
Basin and integrated with higher-resolution bathymetry for coastal areas in the Gulf of
Taranto provided by the Italian Navy Hydrographic Institute. Vertical discretization has
92 levels. This is appropriate for solving the field in coastal and open-sea areas (Federico
et al. (2017)). The vertical resolution is 2m from the sea surface to 40m. The resolution is
then progressively (stepwise) decreasing to the bottom with a maximum layer thickness of
200 m. All the other numerical settings of the modeling systems are described in Federico
et al. (2017).
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4.2. The observing data

SANIFS is forced using ECMWF (European Centre for Medium Weather Forecasts)
dataset with 12.5 Km horizontal resolution of the following atmospheric fields:

• 2m air temperature;

• 2m dew point temperature;

• total cloud cover;

• mean sea level atmospheric pressure;

• meridional and zonal 10m wind components;

As in Federico et al. (2017), those fields are corrected by land-contaminated points fol-
lowing Kara, Wallcraft, and Hurlburt (2007) and horizontally interpolated at each ocean
grid node using Cressman’s interpolation technique (Cressman (1959)).
As we discussed in the introduction of this thesis, SANIFS is nested in MedFS through
the two lateral open boundaries Fig. 1.2. The current MedFS implementation is based on
NEMO with a horizontal resolution of 1/24� (4-5 km approximately) and 141 unevenly
spaced vertical levels.
The scalar MedFS fields (non-tidal sea surface height, temperature and salinity) are im-
posed at the SANIFS boundary nodes. In contrast, the MedFS total velocities are specified
in the barycentre of the triangular elements with two nodes attached to the boundaries.
The tidal elevation derived from the OTPS (Oregon State University Tidal Prediction
Software (Egbert and Erofeeva (2002))) tidal model is prescribed at each boundary node.
Eight of the most significant constituents are considered: M2, S2, N2, K2, K1, O1, P1,
and Q1.

4.2 The observing data

In the experiments that we will present in the next chapter, we assimilate observations
of temperature (T), salinity (S), and Sea Level Anomaly (SLA). In-situ Argo profiling float
observations provide T and S. SLA comes from 4 satellite missions (Saral/Altika, Cryosat-
2, Jason-3, Sentinel-3A). All the products are provided by the Copernicus Marine Service
(marine.copernicus.org.). The products are accessible through the Copernicus Marine
Service web portal, which includes a structured information catalog.

4.2.1 Temperature and salinity profiles from Argo profiling floats

Argo is an international program that collects information from inside the ocean using
a fleet of robotic instruments that drift with the ocean currents and move up and down
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between the surface and a mid-water level (Fig. 4.2). The name Argo, from Greek mythol-
ogy, was chosen to emphasize the strong complementary relationship of the global ocean
float array with the space-borne Jason altimeter mission (launch Dec. 7, 2001) as well
as other altimeter missions. The Argo measurements of temperature, salinity, pressure,
reference velocity, and sea surface height from satellite altimetric data form a dynamic
description of the upper ocean. Each instrument (float) spends almost all its life below
the surface. The standard Argo float mission is a 10-day cycle, with most of the float’s

Figure 4.2: Argo measurement cycle. From https://argo.ucsd.edu/how-do-floats-work/

time spent in free-drifting along with deep ocean currents (Lagrangian measurement),
followed by taking a series of measurements as it moves back up (profiles) to the ocean
surface. Once the float is on the surface, it gets its location, often through GPS, and then
communicates with a satellite to send its data and receive any new mission instructions.
For most Argo fleet, the surface interval is between 15 minutes and one hour. After that,
the float sinks to a drift depth of 1000 m for about 9 days. Then, the float sinks to its
profile depth of 2000 m before slowly rising to the surface while measuring conductivity
(salinity), temperature and pressure through CTD sensors. Depending on water depth, a
standard CTD cast requires two to five hours to collect a complete data set. The lifetime
of an Argo float is about 4-5 years. During this period, the instrument provides around
150 profiles.
In the next chapter, we will discuss experimental results over two years, 2017-2018. Over
these years, the distribution of assimilated Argo profiling floats is shown in Fig. 4.3. Since
the assimilation window used in the experiment is 24h, we show the Argo distribution on
six different randomly chosen days (Fig. 4.4) and the number of profiles in a 24 h time
window in the entire SANIFS domain (Fig. 4.5). From Fig. 4.5 and Table 4.1, we see
that on the SANIFS domain during 2017-2018, the daily amount of Argo profiles is about
1-3 per day. The maximum number of profiles in 24h is 6. We also note that there are
122 days with no Argo observations. This is a crucial information to be considered in
the DA experiments discussion in the next chapter. Finally, the total daily assimilated
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(a) (b)

Figure 4.3: Distribution of Argo profiling floats over the years 2017 (a) and 2018 (b). Different platform code refers to
different Argo float.

temperature and salinity observations are shown in Fig. 4.6. The total amount is the sum
of temperature (Fig. 4.6(a)) and salinity (Fig. 4.6(b)) observations both in horizontal and
vertical dimensions.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Daily distribution of Argo profiling floats over the years 2017 (a,b,c) and 2018 (d,e,f). Different platform code
in (a,b,c,d,e,f) refers to different Argo float.
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Figure 4.5: Daily amount of Argo profiles over the entire SANIFS domain over the period 2017-2018.

NUMBER OF
PROFILES

DAYS
(PERIOD 2017-2018)

0 122
1 227
2 201
3 89
4 64
5 9
6 5

TOTAL 717

Table 4.1: Number of days with 0, 1, 2, 3, 4, 5, 6 profiles over 2017-2018.
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(a)

(b)

Figure 4.6: Amount of assimilated temperature and salinity observations in 24h over the entire SANIFS domain over the
period 2017-2018.
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4.2.2 Sea level anomaly from satellite altimetry missions

SLA is derived from satellite measurements made by a sensor called altimeter or Syn-
thetic Aperture Radar (SAR) altimeter on board of several satellites. Radar altimeters
transmit signals at a specific frequency toward the Earth and receive the return signal.
This is analyzed to obtain measurements of the round-trip time (with an accuracy of
approximately 0.1 ns), which multiplied by the speed of light, gives the distance R be-
tween the satellite and the surface. However, as the electromagnetic wave travels through
the atmosphere, it can be decelerated by water vapor or electrons contained in the iono-
sphere. Measurements can be corrected for these interferences by measuring them with
assistive instruments, making measurements at different frequencies, or modeling them.
The satellite altitude S is another crucial parameter. It is the distance of the satellite
from a reference surface (Fig. 4.7). Considering how R and S are defined, they are strictly
related to the satellite’s orbit. Satellite’s orbit is measured with high accuracy (around
1-2 cm) with systems such as Doris and GPS (Fig. 4.7). The Sea Surface Height (SSH in

Figure 4.7: Satellite altimetry. From www.aviso.altimetry.fr

Fig. 4.7) is derived by subtracting R from S.

SSH = S �R (4.9)

The SLA is then obtained by subtracting the Mean Sea Surface (MSS) from SSH (Eq. (6.2)).
MSS is the mean SSH over a defined period. Consequently, the SLA obtained is relative
to the reference period.

SLA = SSH �MSS (4.10)

Related to the mission objectives, in altimetry observations different signals frequency are
used:

• Ku-band (13.6 GHz)
It is the band commonly used for altimetric measurements. It is the best compromise
between the technology’s functionality (relative to the power emitted), the available
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bandwidth, sensitivity to atmospheric perturbations and perturbation due to the
electrons present in the ionosphere.

• C and S band (5.3 GHz)
This is more sensitive than the Ku band to disturbances in the ionosphere and less
sensitive to the effects of water vapor in the atmosphere. Their main use is to
allow the correction of ionospheric lag by combining measurements with Ku- band
measurements.

• Ka-band (35 GHz)
The signal frequency in the Ka-band allows for better observations of glaciers, rain-
fall amounts, coastal areas, land masses (forests, deserts, etc.) and wave heights. In
this case, more bandwidth is available than for other frequencies, so higher resolution
is possible, especially along coasts. However, the attenuation due to water or water
vapor in the troposphere is high, which results in the impossibility of performing
measurements if the precipitation is greater than 1.5 mm/h

In this study, we use SLA from 4 satellite missions: Saral/Altika, CryoSat-2, Jason-3
and Sentinel-3A.

• SARAL/Altika is an ISRO (Indian Space Research Organization) satellite, SARAL
(Satellite with ARgos and ALtika), embarks the Altika altimeter (working in Ka-
band, 35GHz), built by the Centre National d’Études Spatiales (CNES), as well as
a DORIS instrument. Signal frequencies in the Ka-band will enable better obser-
vation of ice, rain, coastal zones, land masses (forests, etc.), and wave heights. Its
central objectives are:

1. to carry out precise, repetitive global measurements of sea surface height for:

– developing operational oceanography;

– improving understanding of the climate and developing forecasting capa-
bilities;

– operational meteorology;

– coastal, inland waters and ice applications.

2. to ensure, in association with Jason-2, the continuity of the ocean observation;

3. to meet the requirements of various international ocean and climate study
programs and contribute to building a global ocean observing system.

From its launch on February 2013 to July 2016, Saral/Altika had a repetitive or-
bit. Due to technical issues on the reaction wheels from March 2015, CNES and
ISRO have decided to pursue this mission with a new phase named "SARAL-DP,
for SARAL-Drifting Orbit." From July 2016, and during this drifting phase, the
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repetitive ground track is no more maintained and with the natural decay of the
orbit, the ground track will drift.

• CryoSat-2 is an altimetry satellite built by the European Space Agency dedicated
to polar observation. It embarks on a three-and-a-half-year mission to determine
variations in the thickness of the Earth’s continental ice sheets and marine ice cover,
and to test the prediction of thinning arctic ice due to global warming. Its orbit,
at an inclination of about 92 degrees and an altitude of 717 Km, covers almost
all polar regions. CryoSat-2 carries an altimeter/interferometer called Siral and a
Doris instrument but no radiometer. Siral is a Ku-band instrument (13.575 GHz).
CryoSat-2 was initially designed to study the cryosphere, but it is also an opportu-
nity mission for oceanographic studies as it operates over the oceans for validation
purposes in low-resolution mode, and in SAR mode over some specific zones. That
means that the ground segments can process oceanic altimetry measurements ac-
quired by Siral.

• Jason-3 succeeding Topex/Poseidon, Jason-1 and Jason-2. It extends the high-
precision ocean altimetry data record to support climate monitoring, operational
oceanography and seasonal forecasting. Jason-3 is the result of a joint effort by
CNES, NASA, EUMETSAT and NOAA, pursuing a heritage that has kept the
oceans under close watch for over 20 years. The partnership is as for Jason-2, but
the operational agencies (NOAA and EUMETSAT) take the lead; CNES serves
as the system coordinator and all partners -including Nasa- support science team
activities. From its launch to April 7th 2022, Jason-3 is on its nominal orbit (1336
Km). From April 25th, 2022 (cycle 300), Jason-3 is on the repeat interleaved orbit
used by Topex from 2002 to 2005, Jason-1 from 2009 to 2012 and Jason-2 from
October 2016 to July 2017. Jason-3 main mission is related to ocean topography
and waves. The altimetric measurements are performed using a dual-frequency
radar that measures in the Ku (13.575 GHz) and C (5.3 GHz) bands.

• Sentinel-3A fits into the Copernicus program, a joint project between ESA and
European Union. The main objective of the Sentinel-3 mission is to measure sea
surface topography, sea and land surface temperature, and ocean and land surface
colour with high accuracy and reliability to support ocean forecasting systems, envi-
ronmental monitoring and climate monitoring. The main frequency used for range
measurements is the Ku-band (13.575 GHz), but, contrary to CryoSat, a second
frequency in the C-band (5.41 GHz) is used for ionospheric correction. Its central
objectives are:

1. to carry out precise, repetitive global measurements of sea surface height for:

– ocean, inland sea and coastal zone colour measurements;
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– sea surface temperature measurements;

– sea surface topography measurements including an along-track SAR ca-
pability of CryoSat heritage for improved measurement quality in coastal
zones and over sea-ice.;

2. to ensure, in association with Jason-2, the continuity of the ocean observation;

3. to meet the requirements of various international ocean and climate study
programs and contribute to building a global ocean observing system.

Table 4.2 resumes the principal features of the different altimetric missions.

SARAL/Altika CryoSat-2 Jason-3 Sentinel-3A
Agency ISRO/CNES ESA CNES/NASA/EUMETSAT/NOAA ESA

Project CMEMS CMEMS EUMETSAT Jason-3 L2P/L3
Marine Altimetry Service

EUMETSAT Sentinel-3 L2P/L3
Marine Altimetry Service

Goals Observe the oceans Polar Observation Observe the oceans
Observe the oceans and

deliver routine operational services
to policy-makers and marine and land service users

Launch on 25/02/2013 08/04/2010 17/01/2016 16/02/2016
Altitude 800 Km 717 Km 1336 Km 814 Km
Inclination 98.5� 92.0� 66.0� 98.6�

Repetitivity 35 days 369 days with 30 day sub-cycle 10 days 27 day repeat cycle, 14+7/27 orbits per day
Lat Max 70.99N 70.99N 66.14N 70.98N
Lat Min 15.04N 27.90N 15.05N 27.49N
Lat Resolution 0.0560N 0.0560N 0.009N 0.054N
Lon Max 359.95E 354.75E 359.90E 359.98E
Lon Min 0.022E 4.54E 0.007E 0.014E
Lon Resolution 0.020E 0.008E 0.050E 0.025E
Processing Level L3 L3 L3 L3

Table 4.2: Resume of the principal features of the 4 altimetric missions used in this study.
From www.aviso.altimetry.fr and product NetCDF files.

The SLA variable from Copernicus Marine Service product used in this study is
sla_filtered (SLA filtered from high-frequency signal considered as noises) from phy_assim
products (duacs.cls.fr) with a reference period [1993-2012]. While the SLA (filtered
or not) field is by default corrected from different geophysical effects, some of them
(namely, the ocean tide, internal tide, dynamical atmospherical correction and Long Wave-
length Error correction) are included in the phy_assim product to let the user compute
the SLA field without these corrections (https://duacs.cls.fr/faq/phy-and-phy_assim-l3-
products/ ).
Fig. 4.8 shows the daily distribution of the satellite tracks. The difference between avail-
able and assimilated observations is related to applying the no motion level at 700 m
in the dynamic height operator (see chapter 3). All observations located in places with
depths less than 700 m are rejected.

The daily assimilated amount of along-track SLA observations is shown in Fig. 4.9.
As discussed in section 4.1, SANIFS has the tidal elevation derived from the OTPS tidal
model prescribed at each boundary node. However, the SLA assimilated variable consid-
ered will not be defined as sla_filtered + ocean_tide as the model background field has.
SANIFS does not yet provide an interface for FGAT (First Guess at Appropriate Time), a
method for obtaining the instantaneous background field at the correct observation time.
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(a) (b)

(c)

Figure 4.8: Daily distribution of SLA observation from the four altimetry missions used in this study. The figure shows the
available observations and the assimilated ones. The difference is due to applying no motion level of 700 m in the dynamic

height operator. All the observations located in places with depths less than 700 m are rejected.

Figure 4.9: Amount of assimilated along-track SLA observations in 24h over the entire SANI domain over the period
2017-2018.

This may be a future improvement to the work presented here.
In the next section, we will discuss the data assimilation workflow and experiment setting.

4.3 The data assimilation workflow and experiments

setting

Fig. 4.10 shows the assimilation workflow of coupling SANIFS and OceanVar. We saw a
detailed description of all the components in Fig. 4.10 in chapter 2 and chapter 4. SANIFS
provides the background state xb, which along with the observations yo, are the main input
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Figure 4.10: SANIFS-OceanVar workflow.

for the OceanVar algorithm. OceanVar’s first step is formulating the cost function in the
physical space. However, as discussed in chapter 2, it is more appropriate to minimize
the cost function in the control space by applying the Cholesky transformation B = VVT

at the background error covariance matrix. In the inner loop, the minimum of JC is
computed using the L-BFGS algorithm. At this point, the minimum of the cost function
in the control space is projected in the physical space and can be used to correct the
model state. The solution of the minimization process is a matrix of increments referred
to the variables used in the EOFs computation. Finally, the last timestep of the model
background is corrected by summing the increments field to the variables to which those
refer. This correction provides the analysis, which will be the new initial condition for
the next SANIFS integration. This process will be repeated in the next data assimilation
step forming the outer loop. In the experiments performed, the data assimilation step
has a frequency of 24h, using all the observations included in the temporal range of 24h
before the assimilation time. SANIFS is then used to project the analyzed fields forward
to the next assimilation step.
In the next chapter, we will discuss the results of two assimilation experiments over the
period 2017-2018:

1. STSLA: assimilation of salinity and temperature observations from Argo profiles
and sea level anomaly from satellite altimetry missions (Saral/Altika, CryoSat-2,
Jason-3 and Sentinel-3A).

2. ST: assimilation of salinity and temperature observations from Argo profiles.

The purpose of the two experiments is to evaluate quantitatively the improvement of
SANIFS skills coupled with OceanVar and if the SLA observations improve the model
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skills when assimilated in combination with S and T observations. In both experiments,
we use 25 trivariate (S, T, SLA) EOFs derived from the variations in four years of SANIFS
integration (2017 - 2020). As shown in chapter 2, the EOFs are grouped by month and
computed at each node. The uRF algorithm has been implemented using a correlation
radius of 8km and 4 iterations. Table 4.3 e Table 4.4 summarise the main informations
related to the experiments setting.

MODEL DOMAIN GRID COASTAL
RESOLUTION

OPENS SEA
RESOLUTION LEVELS

SHYFEM
SANIFS IMPLEMENTATION

(Federico et al. (2017))

SANI
(Fig. 1.2)

Unstructured
Arakawa-B
triangular

mesh
90351 nodes

50� 500 m 3� 4 km

92
2 m up to 40 m

stepwise up to the bottom
max step 200 m

Table 4.3: Summarise of the ocean model features.

EXP NAME PERIOD SANIFS
speed-up

ASSMILATION
SCHEME

ASSIMILATION
WINDOW EOF OBSERVATIONS

USED
uRF

CORR RADIUS
uRF

ITERATIONS
NO MOTION

LEVEL

STSLA 2017 - 2018 10 days
3DVar

OceanVar
(Dobricic and Pinardi (2008))

24 h
before

assimilation time

25 trivariate
S, T, SLA S,T,SLA 8 km 6 700 m

ST 2017 - 2018 10 days
3DVar

OceanVar
(Dobricic and Pinardi (2008))

24 h
before

assimilation time

25 trivariate
S, T, SLA S,T 8 km 6 700 m

Table 4.4: Summarise of the DA experiments.
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5. Results of data assimilation experi-
ments

In the previous chapters, we introduced and discussed the components of the assim-
ilation system OceanVar-SHYFEM. In this chapter, we will discuss the results of the
two experiments resumed in Table 4.4. Referring to the experiment STSLA, we will see
how data assimilation is correcting the model temperature, salinity profiles and sea level
anomaly locally in two example days, one in September 2017 and the other in December
2017. The choice of the two days is to show SANIFS skills along with data assimilation
correction for temperature and salinity profiles and sea level anomaly on different seasons,
which present different water column structure. Next, we will discuss the daily mean ab-
solute error of misfits and residuals (MAE in Eq. (5.1)) for the three state variables over
the entire period of experiments (2017-2018).

MAE =
1

N

NX

i=1

|Xi|

RMSE =

vuut 1

N

NX

i=1

X
2

i

(5.1)

Xi represents the misfits or residuals and N is the number of those quantities in the
defined temporal window. Also, temperature, salinity and sea level anomaly increment
fields will be shown. Finally, to quantify the differences between the two experiments
and the improvement introduced by the data assimilation, we will see the monthly root
mean square of misfits and residuals (RMSE in Eq. (5.1)) for both the experiments at the
surface layer and in the (2-60] m layer. The (2-60] m layer is so defined for the presence
of the thermocline at different depths during different seasons.
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5.1 Temperature, salinity and sea level anomaly misfits

and residuals

To demonstrate the corrections introduced by DA, we discuss results in two days on
2017, 2017-09-05 and 2017-12-04, representing the summer and winter seasons. Fig. 5.1
and Fig. 5.2 show the Argo profiles and along-track satellite observation distribution over
the two days respectively.

(a) 2017-09-05 (b) 2017-12-04

Figure 5.1: Distribution of assimilated Argo profiles on 2017-09-05 (a) and 2017-12-04 (b).

(a) 2017-09-05 (b) 2017-12-04

Figure 5.2: Assimilated along-track satellite observation on 2017-09-05 (a) and 2017-12-04 (b).
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On 2017-09-05, we have five Argo profiles (Fig. 5.1(a)). On 2017-12-04, there are
four Argo profiles (Fig. 5.1(b)). On both days, the satellite track is almost crossing the
entire SANIFS domain (Fig. 5.2(a) and Fig. 5.2(b)). As discussed in chapter 4, assuming
a no motion level of 700 m in the dynamical height operator, only satellite along-track
observations located in places with a depth greater than 700 m are assimilated.
Fig. 5.3 and Fig. 5.4 show results for temperature profiles, Fig. 5.5 and Fig. 5.6 instead
show results for salinity profiles on 2017-09-05 and 2017-12-04 in the first 120 m. In the
subfigures (e.g., Fig. 5.3(a)) the left side profiles refers to the value of the considered
variable for model representation (blue line), observations (green line) and analysis (red
line). The right side shows misfits (blue line) and residuals (red line).

All the figures show that the analysis reproduces temperature and salinity profiles in
all the Argo locations better than the background in both the considered days. Indeed,
looking at the profiles of misfits and residuals, we observe that over the water column, the
residual profile is closer to zero with respect to the misfit profile. In particular, observing
the temperature profiles, we see how the analysis corrects the sea surface temperature
and the thermocline shape (e.g., Fig. 5.3 (b, d and e)). Observing misfits and residual
profiles in Fig. 5.3(d), we see that around 40m the temperature correction reaches a value
of about 3�C. Referring to Fig. 5.3 (a and c) we can observe how only in some cases
DA introduces a complete correction of the thermocline model representation. Indeed,
the analysis thermocline is still at a shallower level than the observed one and exhibits a
smoother gradient, as in the model profile.
In Fig. 5.4, we observe how the model can better reproduce the thermocline features in
the representative winter day 2017-12-04. This is a consequence of the lower temperature
gradient with respect to summer. During winter, the correction introduced by the analysis
is almost constant along the water column depth with fewer oscillations of the residuals
around zero.
Since ocean models have difficulty reproducing sea surface temperature and thermocline
features, the correction introduced by DA on the temperature field is an important added
value.
Observing salinity profiles Fig. 5.5 and Fig. 5.6, we see how the correction introduced is
one magnitude order smaller than in the temperature. Also, in this case, DA introduces a
correction in the surface layer and in the layers where there are fast variations of salinity
with respect to depth. In Fig. 5.6(d), we can observe that DA introduces a small salinity
correction with respect to the other salinity profiles.
To show how model and analysis reproduce temperature and salinity in deeper layers in
the two days, we can observe Fig. 5.7 and Fig. 5.8. These figures are referred to Argo
6902826 for 2017-09-05 and 6901862 for 2017-12-04 in Fig. 5.1. For both the considered
variables, we observe that both in summer and in winter, the model reproduces well the
deep water features, and DA introduces minor corrections with respect to the upper layers,
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where mixing phenomena occur.
To observe the correction introduced in sea level anomaly, we can observe Fig. 5.9.

This figure shows along-track sea level anomaly misfits and residuals for the two consid-
ered days, 2017-09-05 (Fig. 5.9(a)) and 2017-12-04 (Fig. 5.9(b)). Fig. 5.9 shows that on
2017-09-05 (Fig. 5.9(a)) the misfits are higher with respect to 2017-12-04 (Fig. 5.9(b)).
However, DA is partially correcting the model error. In fact, the residuals are closer to
zero than the misfits in both Fig. 5.9(a) and Fig. 5.9(b) .
To have a global view of misfits and residuals of the STSLA experiment over the period
2017-2018, we plot in Fig. 5.10 the daily mean absolute of misfits and residuals for temper-
ature and salinity at the surface (Fig. 5.10(a) and Fig. 5.10(b)) and (2-60] m (Fig. 5.10(c)
and Fig. 5.10(d)) layer. Fig. 5.10(e) shows the daily mean absolute of misfits and residuals
for sea level anomaly. As you can see, we have a consistent correction in temperature (by
2�C) during the summer period on both layers (Fig. 5.10(a) and Fig. 5.10(c)). We observe
that the model error decreases during winter and DA introduces a smaller correction. This
is in accordance with the discussion on the profiles (Fig. 5.3 and Fig. 5.4).
Considering the salinity (Fig. 5.10(b) and Fig. 5.10(d)), we observe that there is a higher
error during the last part of 2018, and there is no identified difference between the sum-
mer and winter seasons. Finally, Fig. 5.10(e) shows how DA is correcting the sea level
anomaly with an average improvement of about 0.01 m.

To quantify the improvement introduced by DA and the differences between the two
experiments summarized in Table 4.4, we can observe the monthly RMS of misfits over
the period 2017-2018 for temperature and salinity on surface layer (Fig. 5.11(a) and-
Fig. 5.11(b)) and (2-60] m layer (Fig. 5.11(c) andFig. 5.11(d)). Fig. 5.11(e) refers to sea
level anomaly. The temperature on the surface and (2-60] m layers show the same im-
provement in both experiments with a relative gain with respect to the control run of 5%
and 10% respectively. Salinity, on the considered layers, shows different improvements in
the two experiments. On the surface layer, it has a relative gain of 2.4% in the STSLA
experiment and 2.9% in the ST experiment. On (2-60] m layer STSLA experiment intro-
duces an improvement of 5.3%. Instead, the ST experiment has an added value of 5.9%.
Finally, the sea level anomaly in the STSLA experiment has an added value of 0.5%.
Instead, the ST experiment has a negative gain of �3.2%. Table 5.1, summarizes the
relative gains with respect to the control run of the two experiments for all the variables
assimilated on the two considered layers.
Referring to the sea level anomaly case, we must remember that, in SANIFS, tidal bound-
ary conditions are prescribed at boundaries. To assimilate the correct observation of sea
level anomaly in the STSLA experiment, it is necessary to implement the FGAT interface
in the ocean model. This allows us to consider the proper tide at the appropriate time
to be added at sea level anomaly observation. Furthermore, as future improvement, also
the Mean Dynamic Topography adjustment must be introduced. However, in the STSLA
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experiment, the positive relative gain in the sea level anomaly RMS of misfits shows that
the assimilation system is improving the model state.
To explain the small differences in temperature and salinity relative gain between the
two experiments, we can observe the increment fields of the three assimilated variables
in Fig. 5.12 and Fig. 5.13. We observe how, thanks to the EOFs cross-covariance matrix
between temperature, salinity and sea level anomaly (introduced in chapter 2), the incre-
ments introduced in a variable also influence the others. However, the different order of
magnitude is such that the sea level anomaly increment has a small impact on temperature
and salinity fields. In those figures, the increment isolines of ±0.002 are drawn. As you
can observe, the temperature increments introduced by the sea level anomaly observation
are relatively small compared to the magnitude of the temperature increments computed
in the observation location. The same happens for salinity. However, the magnitude of
salinity increments is closer to the sea level anomaly increments and in this case we have
a different improvement in the two experiments. This consideration explains why the rel-
ative gain on temperature and salinity is small when sea level anomaly is also assimilated.
In conclusion, the assimilation system implemented using SANIFS and OceanVar improves
the model state. However, considering that SANIFS includes tides at the open bound-
aries, an FGAT interface is necessary to assimilate the sea level anomaly with appropriate
tide observations.

EXPERIMENT VARIABLE LAYER GAIN
STSLA T Surface 5.0%

ST T Surface 5.0%
STSLA T (2-60] m 10.0%

ST T (2-60] m 10.0%
STSLA S Surface 2.4%

ST S Surface 2.9%
STSLA S (2-60] m 5.3%

ST S (2-60] m 5.9%
STSLA SLA Surface 0.5%

ST SLA Surface -3.2%

Table 5.1: Relative gain with respect to the control run in terms of RMS of misfits for the temperature and salinity on the
surface and (2-60] m and sea level anomaly for the two experiments performed.
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(a) Temperature (b) Temperature

(c) Temperature (d) Temperature

(e) Temperature

Figure 5.3: Temperature profiles on 2017-09-05.
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(a) Temperature (b) Temperature

(c) Temperature (d) Temperature

Figure 5.4: Temperature profiles on 2017-12-04.
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(a) Salinity (b) Salinity

(c) Salinity (d) Salinity

(e) Salinity

Figure 5.5: Salinity profiles on 2017-09-05.
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(a) Salinity (b) Salinity

(c) Salinity (d) Salinity

Figure 5.6: Salinity profiles on 2017-12-04.
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(a) 2017-09-05 (b) 2017-12-04

Figure 5.7: Temperature profiles on 2017-09-05 (a) and 2017-12-04 (b). The reference for platform code in Fig. 5.1 is
6902826 in (a) and 6901862 in (b). The purpose is to show deeper layers with respect to Fig. 5.3 and Fig. 5.4.

(a) 2017-09-05 (b) 2017-12-04

Figure 5.8: Salinity profiles on 2017-09-05 (a) and 2017-12-04 (b). The reference for platform code in Fig. 5.1 is 6902826 in
(a) and 6901862 in (b). The purpose is to show deeper layers with respect to Fig. 5.6 and Fig. 5.10.
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(a) 2017-09-05 (b) 2017-12-04

Figure 5.9: Sea level anomaly along track misfits and residuals on 2017-09-05 (a) and 2017-12-04 (b).

(a) Sea surface temperature (b) Sea surface salinity

(c) Temperature in layer (2-60] m (d) Salinity in layer (2-60] m

(e) Sea level anomaly

Figure 5.10: Daily mean absolute of misfits and residuals over the period 2017-2018. Sea surface temperature (a), sea
surface salinity (b), temperature in layer (2-60] m (c), salinity in layer (2-60] m (d), sea level anomaly (e).
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(a) Sea surface temperature (b) Sea surface salinity

(c) Temperature in layer (2-60] m (d) Salinity in layer (2-60] m

(e) Sea level anomaly

Figure 5.11: Monthly root mean square of misfits over 2017-2018. Sea surface temperature (a), sea surface salinity (b),
temperature in layer (2-60] m (c), salinity in layer (2-60] m (d), sea level anomaly (e).
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(a) Surface temperature increments (b) Surface salinity increments

(c) Sea level anomaly increments

Figure 5.12: Increments on 2017-09-05. Surface temperature (a), surface salinity (b) and sea level anomaly along track (c).

(a) Surface temperature increments (b) Surface salinity increments

(c) Sea level anomaly increments

Figure 5.13: Increments on 2017-12-04. Surface temperature (a), surface salinity (b) and sea level anomaly along track (c).

77





6. A Long Short Term Memory algo-
rithm for increment prediction

In the last decade, we have witnessed the rapid growth of Artificial Intelligence (AI)
applications in different fields. When talking about AI, we are referring to the branch
of computer science which aims to develop intelligent systems and machines that can
carry out tasks that typically require human intelligence. A more complex family of AI is
Machine Learning (ML) algorithms. ML aims to create algorithms to learn from data and
make decisions based on observed patterns. ML requires human intervention when the
decision is incorrect. A subset of ML is Deep Learning (DP). DP uses an artificial neural
network (ANN) to reach accurate conclusions without human intervention (Fig. 6.1).

Figure 6.1: AI, ML and DL classification. From https://www.scs.org.sg/

In geoscience, DL applications are largely used on different systems. There are ap-
plications related to weather and climate forecasting and extreme events forecasting at a
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global and local scale (e.g., Dueben and Bauer (2018), Scher and Messori (2019), Zheng
et al. (2019)). In oceanography, there are ML applications for sea surface temperature
prediction (e.g., Xiao et al. (2019b), Xiao et al. (2019a), Lins et al. (2013) ), parame-
ter prediction for wave models and wave height forecasting (e.g. Makarynskyy (2004),
Agrawal and Deo (2002), Jain and Deo (2008), James, Zhang, and O’Donncha (2018)),
eddy forecasting and classification (e.g., Bai, Wang, and Li (2019), Lguensat et al. (2018)).
During the last years, since the large interest in assessing the risk of coastal areas due to
the sea level rise related to climate change, the main ML applications in oceanography
are focused on sea level forecast (e.g., Accarino et al. (2021), Raj et al. (2022), Wang
et al. (2022)) and storm surge events forecast (e.g., Rus et al. (2022), Ayyad, Hajj, and
Marsooli (2022), Zhang et al. (2022), Vincent et al. (2022)). Moreover, there is a growing
interest in integrating DA with ML. The purpose of these applications is mainly to reduce
the computational cost of DA problems in case of complex dynamical systems (e.g., Gao
et al. (2022), Buizza et al. (2022), Lee et al. (2022)). Furthermore, Farchi et al. (2021)
proposed to use machine learning to correct the model error in data assimilation and
forecast applications.
All the DL applications that involve predicting time series data use the Long Short Term
Memory (LSTM) technique. LSTM is a neural network methodology with a strong learn-
ing and predictive ability for time-series data.
In this thesis, we propose an LSTM Luong-attention (Luong, Pham, and Manning (2015))
model trained on available SST increments data extracted from the trivariate experiment
assimilating T, S and SLA that we discussed in the previous chapter. This model can
predict the SST increments. The predicted SST increments can be used to correct the
model forecast, which can not benefit DA since no observations are available.
In the following sections, the LSTM Luong-attention algorithm and the results of its
application on SST increments prediction will be presented.

6.1 The Long-Short Term Memory network

The Long Short-Term Memory (LSTM) model is a Recurrent Neural Networks (RNN)
subtype. LSTMs have feedback connections that differentiate them from ANN, also known
as feedforward neural networks. This property enables LSTMs to process entire data
sequences without treating each point in the sequence independently. Rather, retaining
useful information about previous data in the sequence to help process new data points.
As a result, LSTMs are particularly good at processing data sequences such as text, speech
and general time series.
To understand how RNN works, looking at how ANN are structured is helpful. In these,
a neuron (also called node or unit) of the hidden layer is connected with the neurons
from the previous layer and the neurons from the following layer (Fig. 6.2). In ANN, the
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output of a neuron can only be passed forward, but never to a neuron on the same layer
or even the previous layer, hence the name feedforward. This is different for RNN, also
named feedback neural networks, since the output of a neuron can be used as input for a
previous or current layer. For this reason, they are called recurrent. This is much closer
to how our brain works than how feedforward neural networks are constructed. Indeed,
while you are reading this thesis, your brain’s neurons share information at the same level
of learning/understanding (layer). Also, the meaning of each word is linked to the sense
of the previous one. This means that the learned information is an input for the next
input word, which, in turn, adds meaning to the previous one to have a comprehensive
understanding. Let’s n the number of neurons of the considered layer (input or hidden

Figure 6.2: ANN or feedforward neural network.

layer) in ANN. To produce an output from a neuron, three different steps are executed
at the left side of it in Fig. 6.2:

1. On each neuron the inputs, xi, are multiplied by a weight factor, wi; i = 1, 2, . . . , n

(Eq. (6.1)). The weight factors decide how important the input is to solve the
considered problem. If an input xi is very important, the value for the factor wi

becomes larger. An unimportant input is multiplied by a value of 0.

xi ! xi · wi i = 1, 2, . . . , n (6.1)
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2. All weighted inputs of a neuron are summed and a bias is added (Eq. (6.2))

si =
nX

i=1

(xi · wi) + bi i = 1, 2, . . . , n (6.2)

3. The result is given into a so-called activation function, � (Eq. (6.3)). The primary
role of the activation function is to transform the summed weighted input from
the node into an output value to be fed to the next hidden layer or as output.
The purpose of the activation function is, besides introducing nonlinearity into the
neural network, to bind the value of the neuron so that the neural network is not
paralyzed by divergent neurons (Wang (2003)). Different activation functions can
be chosen: Sigmoid, Tanh, Rectified Linear Unit (ReLU), Leaky ReLU (Fig. 6.2) to
cite a few commonly used. The activation function’s choice depends on the problem
you are facing. For example, the sigmoid activation function is used to represent
probability output since it maps values in the range between 0 and 1.

hi = �(si) = �

 
nX

i=1

(xi · wi) + b

!
i = 1, 2, . . . , n (6.3)

Figure 6.3: Examples of activation functions. From. https://stanford.edu/

Now, it is clear how ANN is trying to emulate our brain. Indeed, considering the example
of the reader of this thesis, the process is not simply reading the text word by word and
understanding the sentences, but also weighting how each word is important for under-
standing the text, summing all the information, and finally matching what you read in
the framework of a Ph.D. thesis evaluation (the activation function purpose). However,
more is needed. Reading the next word, you need to remember the information from the
previous one; otherwise, you cannot understand the sentence’s overall meaning. In other
words, it is necessary to have a memory of the previous sequence of words to understand
the sentence. The process of remembering each word of a sentence to understand the
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meaning of the sequence and predict the next word is named the short-term memory fea-
ture of a neural network. Furthermore, remembering each word is not enough to predict
the next one and have a complete understanding of the sequence and be able to predict
the next word; it is also necessary to update the meaning of the previous word with the
intention of the current one. RNN overcomes the short-term memory problem of ANN
and also recursively updates the weight of each word for the prediction process.
RNN consists of multiple layers similar to ANN (Fig. 6.2). However, RNN has a recurrent
unit on each neuron of the hidden layers (Fig. 6.4). A recurrent unit processes informa-

Figure 6.4: RNN or feedback neural network.

tion for a predefined number of timesteps. Let’s consider the problem of predicting the
following 24 timestep increment field from the previous 24 timesteps. Each input xt is an
input for the recurrent unit, producing an output that will feed in the hidden neuron ht.
ht will be passed back, and with the following timestep input, xt+1 will contribute to the
ht+1 for the same hidden neuron. Predicting n timestep from the previous n is known as
many-to-many or sequence-to-sequence RNN Fig. 6.5. While ANN networks have differ-
ent weights across each node, recurrent neural networks share the same weight parameter
within each network layer. The weights are adjusted in the backpropagation and gradient
descent processes to facilitate reinforcement learning. The algorithm of backpropagation
is a backpropagation through time (BPTT) algorithm. It is used to determine the gradi-
ents. The principle of BPTT is that the model trains itself by calculating errors from its
output layer to its input layer. These calculations allow us to adjust and fit the model’s
parameters appropriately. BPTT differs from the traditional approach in that BPTT
sums errors at each time step, whereas feedforward networks do not need to sum errors
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Figure 6.5: Recurrent unit structure in a many-to-many (also named sequence-to-sequence) RNN. �(si) represent the
activation function. ht is the hidden state and xt is the input state at timestep t.

as they do not share parameters across each layer. Through this process, RNNs tend to
run into two problems, known as exploding gradients and vanishing gradients (Bengio,
Simard, and Frasconi (1994)). These issues are defined by the size of the gradient, which
is the slope of the loss function along the error curve. When the gradient is too small,
it continues to become smaller, updating the weight parameters until they become zero.
When that occurs, the algorithm is no longer learning. Exploding gradients occur when
the gradient is too large, creating an unstable model. In this case, the model weights
will grow too large and eventually be represented as NaN. One solution to these issues
is to reduce the number of hidden layers within the neural network, eliminating some of
the complexity in the RNN model. However, more than a short-term memory is needed
for the reader’s purpose. A memory of the meaning of the previous sentences is also
necessary to completely understand the text. For that reason, it is necessary to have a
short-term memory combined with a long-term memory. LSTM networks have been intro-
duced (Hochreiter and Schmidhuber (1997)) to overcome the long-term and the gradient
problem of RNN.
LSTM is a particular type of RNN. LSTM has the same structure as RNN (Fig. 6.4 and
Fig. 6.5); however, the recurrent unit structure is different (Fig. 6.6). The forget gate
controls what information should be forgotten or retained. The input gate helps to iden-
tify essential elements that need to be added to the cell state. Note that the results of the
input gate get multiplied by the cell state candidate, with only the information deemed
important by the input gate being added to the cell state. To obtain the updated cell
state first, the previous cell state ct gets multiplied by the results of the forget gate. Then
we add new information from [input gate ⇥ cell state candidate] to get the latest cell
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Figure 6.6: LSTM recurrent unit. �(si) represent the activation function. ht is the hidden state, ct is the cell state and xt

is the input state at timestep t.

state ct+1. In the last part, the hidden state is updated. The newest cell state ct+1 is
passed through the activation function and multiplied by the results of the output gate
ht+1. Finally, the latest cell state ct+1 and the hidden state ht+1 go back into the recurrent
unit, and the process repeats at timestep t + 2. The loop continues until we reach the
end of the last timestep of the sequence. This is a great step forward in emulating the
human brain. However, for the reader’s purpose, more is needed. In this thesis, some
sections need more attention than others. The information in that section must be stored
in memory with a higher importance value to understand the other sections and chapters.
The reader purpose has the same structure as the increment SST field prediction. In-
deed, looking at Fig. 6.7, we observe that the SST increments field is not homogeneous
over the SANIFS domain but has some peaks corresponding with observation locations.
This means that the values in these locations must be stored in memory with a higher
importance value. Furthermore, the increments computed for the winter season differ
from those calculated for the summer. So, the DL algorithm must remember these fea-
tures for long-term memory with the appropriate attention. A simple RNN, which has
only short-term memory abilities, cannot achieve this. So, to accomplish the increment
prediction problem, we will use an LSTM attention-based RNN algorithm. The atten-
tion algorithm implemented in this work is the Luong attention algorithm (Luong, Pham,
and Manning (2015)) used in text translation. The structure of the Luong attention is
an LSTM network with the introduction of an attention layer. The goal is to derive a
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Figure 6.7: SST increments over six different assimilation times on SANIFS over 2017-2018.

cell vector ct that captures relevant source-side information to help predict the current
target feature (Luong, Pham, and Manning (2015)). The core idea is to calculate and
distribute the attention weight, and the focus is placed on important content by increasing
its weight. This addresses the problem of the sequence-to-sequence model losing informa-
tion when the input sequence is too long. Taking a typical machine translation scenario
as an example, the sequence-to-sequence model only uses the final hidden state of the
input sentence to calculate the cell vector. In contrast, the attention layer calculates the
individual cell vector for each word of the input sentence (Yang, Li, and Liu (2021)). In
the next section, we will present the methodology used for the LSTM-Luong attention
model implementation and we will discuss the results.

6.2 Methodology and results

In chapter 4 and 5, we presented the SANIFS-OceanVar assimilation system and dis-
cussed the results. We saw an experiment assimilating T, S, and SLA over 2017-2018.
The ocean model produced the hourly output of the ocean state. Considering only the
surface layer of the temperature model variable, we can compute the SST increments as
the difference between STSLA (Table 4.4) and control run experiments. The dimension-
ality of the SST increment field is 17232 (hourly output from DA experiments) timesteps

86



6.2. Methodology and results

times 90351 SANIFS grid nodes. From a computational point of view, this is too high
dimensionality to be used to train an LSTM model. Using the methodology discussed in
chapter 2, PCs and EOFs analysis is used to reduce the space dimensionality. So, we apply
the LSTM model in the reduced PCs space and then back on the SST increment space
by the multiplication of PCs with EOFs. Indeed, if n is the number of PCs/EOFs, T is
the time dimensionality, and S is the space dimensionality of the physical space Eq. (6.4)
holds.

�SST
[T⇥S]

= PC
[T⇥n]

⇥ EOF
[n⇥S]

(6.4)

where �SST identifies the SST increments space. As discussed in chapter 2, the correct
choice of n is important to represent the correct features of the considered field. Fig. 6.8
- Fig. 6.11 show the true SST increment field (first row) and the reduced space using n
= 25, n=125, n=200 and n=500 PCs/EOFs (second row) respectively over three different
timesteps of 2017 (a) and three different timesteps of 2018 (b). Here we observe how
the chosen n affects the features representation of the six timesteps of the SST increment
field shown in Fig. 6.7. Using 25 PCs/EOFs, we observe that the increment features

(a) 2017 (b) 2018

Figure 6.8: True (first row) and reduced space using n = 25 PCs/EOFs (second row) SST increment field over 3 different
timesteps of 2017 (a) and 3 different timesteps of 2018 (b)

are not well represented and we can only represent the average field shape. Increasing n,
we also increase the details that PCs/EOF can represent. For example, looking at the
timestep referred to 2017-04-11T00:00:00, we observe in Fig. 6.8 - Fig. 6.11 how increasing
n we are increasing the SST increments representation in the observation location. This
happens because a higher number of modes capture more field variability. So, to train
an LSTM attention-based model that can predict the SST increments field, it is more
appropriate to use n = 500 PCs/EOFs. Each PCs mode will represent a different time
series input for the LSTM model. However, the drawback of using n = 500 is that it
increases the training process’s complexity. Indeed, since the higher modes represent
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(a) 2017 (b) 2018

Figure 6.9: True (first row) and reduced space using n = 125 PCs/EOFs (second row) SST increment field over 3 different
timesteps of 2017 (a) and 3 different timesteps of 2018 (b)

(a) 2017 (b) 2018

Figure 6.10: True (first row) and reduced space using n = 200 PCs/EOFs (second row) SST increment field over 3 different
timesteps of 2017 (a) and 3 different timesteps of 2018 (b)

lower variability, they introduce noise in the training process. This makes the model
training harder concerning the use of lower n. To show that, we will discuss prediction
results from an LSTM attention-based model using n = 25 and n = 500.
The LSTM model is trained using 85% of the PCs time series length and 15% for prediction
validation. The LSTM model implemented is a sequence-to-sequence that predicts the
next 24 hourly SST increment field from the previous 24 timesteps. The hidden layers
are 100 for the model trained using n = 25 and 24 for n = 500 PCs/EOFs. We use fewer
hidden layers with n = 500 to reduce the network complexity, which is a drawback when
the input dataset has a high level of complexity. The activation function is tanh (Fig. 6.3)
for each LSTM state. Finally, the model has been trained for 2000 epochs.
Fig. 6.12 shows the prediction chain. It is such that the last available 24 hours of SST
increments from the analysis are the input for the LSTM model to predict the first 24
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(a) 2017 (b) 2018

Figure 6.11: True (first row) and reduced space using n = 500 PCs/EOFs (second row) SST increment field over 3 different
timesteps of 2017 (a) and 3 different timesteps of 2018 (b)

timesteps. The predicted timesteps are the input for the next 24 hours. This process will
continue up to the decided number of timesteps after the last assimilation time.

In this thesis, we predict 72 hourly timesteps from the last analysis SST increments

Figure 6.12: Prediction chain implemented using LSTM.

considering two initial days, 2018-09-19 and 2018-10-13. Each of those days represents
the input LSTM sequence of 24 timesteps. Results for the midnight (which is also the
analysis time in the STSLA experiment) of each predicted sequence for n = 25 are shown
in Fig. 6.13 and Fig. 6.15. For n = 500 in Fig. 6.14 and Fig. 6.16. We observe in the first
column of Fig. 6.13 - Fig. 6.16 the difference in the reduced true SST increments field
features using n = 25 and n = 500 as we discussed for Fig. 6.8 - Fig. 6.11. However, we
can see how, in the case of Fig. 6.15 and Fig. 6.16, the two representations are much more
similar with respect to Fig. 6.13 and Fig. 6.14. This is happening because in the case of
Fig. 6.13 and Fig. 6.14, the SST increment field complexity is captured by higher modes
than in the case of Fig. 6.15 and Fig. 6.16. For both the examples days, we observe from
the predicted field (second column in Fig. 6.13 - Fig. 6.16) from the absolute error (third
column in Fig. 6.13 - Fig. 6.16) and the scatter plot of predicted increments against the
reduced true (fourth column in Fig. 6.13 - Fig. 6.16 in which the red line represents the
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reduced true) that the model trained using n = 25 has better prediction abilities with
respect to n = 500. Furthermore, the same figures show how the prediction error increases
as we increase the number of prediction steps.
The problems related to the model trained with n = 500 are for sure linked to the higher
complexity of the input dataset with respect to n = 25 and the presence of higher modes
that add noise to the learning process. Here the cases of n = 125 and n = 200 are not
shown. However, experiments using them showed the same results as n = 500.
Considering that building an LSTM model was not the primary purpose of this thesis
and that the prediction of the SST increment field has been just a first approach to
this topic, we can conclude that: using an LSTM attention-based network, it is possible
to have a reasonable prediction of the increments to be added to the model forecast.
Nevertheless, the high complexity of the input dataset is a drawback, and PCs/EOFs
are needed to reduce the space dimensionality. If the domain considered in the DA
process has sparse observations, as in the study case of this thesis and in general in
ocean applications, the model training becomes difficult. Indeed, since the increments
field has peaks in correspondence of the location of the observations, a sparse field of
observations introduces high variability to be reproduced in the reduced space. A high
number of PCs/EOFs is necessary to capture the essential increment features. However,
the drawback of increasing the number of modes is that it also increases the training
process’s complexity. The future perspective of this application is to solve this problem
to predict the essential increment features. Furthermore, considering that the increment
field features are similar on different variables (see chapter 5 Fig. 5.12 and Fig. 5.13), this
approach could be applied and tested also on salinity or sea level anomaly increments field.
This will allow us to introduce a suitable correction also in the forecast. In combination
with the correction introduced by DA, the LSTM increment prediction could be a further
added value to improve the model skills.
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(a) 2018-09-14T00:00:00

(b) 2018-09-15T00:00:00

(c) 2018-09-16T00:00:00

Figure 6.13: Prediction of three timesteps of SST increments field using 25 PCs/EOFs starting from 24 timesteps of
2018-09-13.
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(a) 2018-09-14T00:00:00

(b) 2018-09-15T00:00:00

(c) 2018-09-16T00:00:00

Figure 6.14: Prediction of three timesteps of SST increments field using 500 PCs/EOFs starting from 24 timesteps of
2018-09-13.
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(a) 2018-10-14T00:00:00

(b) 2018-10-15T00:00:00

(c) 2018-10-16T00:00:00

Figure 6.15: Prediction of three timesteps of SST increments field using 25 PCs/EOFs starting from 24 timesteps of
2018-10-13.
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(a) 2018-10-14T00:00:00

(b) 2018-10-15T00:00:00

(c) 2018-10-16T00:00:00

Figure 6.16: Prediction of three timesteps of SST increments field using 500 PCs/EOFs starting from 24 timesteps of
2018-10-13.
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7. Conclusions and Future Perspectives

In this thesis, we presented for the first time the implementation of an assimilation
system using SANIFS (a SHYFEM unstructured grid finite element ocean model imple-
mentation) and OceanVar based on a 3Dvar assimilation scheme. A complete adaptation
of OceanVar to an unstructured grid was necessary to reach this goal. Indeed, OceanVar
and all its components have been adapted to be coupled with ocean models with regular
grids, e.g., NEMO. The adaptation involves mainly the vertical and horizontal compo-
nents of the background error covariance matrix. The vertical component is modeled
using 25 trivariate (temperature, salinity and sea level anomaly) EOFs. Those EOFs are
computed using singular value decomposition methodology from 4 years of SANIFS in-
tegration and the cross-covariance matrix has been derived. A novel first order recursive
filter algorithm for the unstructured grid (uRF) has been introduced to adapt the hori-
zontal component. This algorithm is based on the triangle’s edges ordering with respect
to latitude and longitude. An ordering algorithm for backward and forward passes in the
x and y direction has been developed using this principle. The uRF algorithm has been
tested on idealized test case grids. In particular, we showed that it is equivalent to the
regular grid algorithm and produce the same results on a regular grid. Then we moved
on to the unstructured meshes and highlighted the sensitivity to the mesh tessellations
here. In particular, on an unstructured Delaunay Frontal grid, we showed that the uRF
algorithm exhibits a gaussian shape elongated with respect to a particular direction which
depends on the grid symmetry. Finally, on the SANIFS grid, we showed that uRF pro-
duces a gaussian shape over all the domains except the open sea in the Southern Ionian
region, which has a homogeneous triangles tessellation.
Then we designed two assimilation experiments: STSLA, in which we assimilate tem-
perature and salinity from Argo profiling floats and along-track sea level anomaly, and
ST, in which we assimilate only temperature and salinity. From these experiments, we
showed that the introduction of data assimilation improves the model skills in modeling
temperature ad salinity fields. Indeed, looking at the profiles, we showed how the analysis
reproduces surface temperature and thermocline better than the model. The maximum
gain is found for the temperature up to 10% with respect to the control run without data
assimilation.
Concerning the sea level anomaly, we showed a positive improvement in the STSLA exper-
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iment and a negative one in the ST experiment. However, one source of these contrasting
results could be due to the tidal inputs included in SANIFS at the boundaries. These
results on sea level could be improved in the near future by introducing an FGAT inter-
face in SHYFEM. In conclusion, the assimilation system SHYFEM-OceanVar improves
the model skills. This makes this system suitable for a more detailed cross-scale forecast.
Finally, using the sea surface temperature increment field, we trained a deep learning
model using an LSTM attention-based network for SST increment field prediction. This
application aimed to predict the increments field to be applied as a correction to the
model forecast, which cannot benefit from data assimilation. Here we showed that the
high dimensionality of the model space requires a space dimensionality reduction using
PCs and EOFs. Also, we showed that the number of PCs/EOFs chosen is an important
parameter to be defined. We were able to train a suitable prediction model using 25 PC-
s/EOFs. However, the drawback is that more than 25 PCs/EOFs are needed to represent
all the essential features of the sea surface temperature increment field. The future per-
spectives of this work are related to a better investigation of the novel first order recursive
filter algorithm introduced for the unstructured triangular grid, reducing the sensitivity
to the mesh tessellations. Future investigations could go toward consolidating the LSTM
algorithm to complement the data assimilation approach.
At this stage, the assimilation cycle includes open sea observations, which could help
improve the propagation of these more accurate fields in coastal zones. The next step is
introducing coastal observations (e.g., tide gauges, coastal radar) in the assimilation cycle
to improve the local coastal dynamics and foster the mutual exchange between the scales
(e.g., from coastal to open ocean).
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