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Abstract

This thesis analyzes the impact of heat extremes in urban and rural environ-

ments, considering processes related to severely high temperatures and unusual dry-

ness. The first part deals with the influence of large-scale heatwave events on the

local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-

year summer period by meteorological stations in 37 European cities are examined to

evaluate the variations of UHI during heatwaves with respect to non-heatwave days.

A statistical analysis reveals a negligible impact of large-scale extreme temperatures

on the local daytime urban climate, while a notable exacerbation of UHI effect at

night. A comparison with the UrbClim model outputs confirms the UHI strength-

ening during heatwave episodes, with an intensity independent of the climate zone.

The investigation of the relationship between large-scale temperature anomalies and

UHI highlights a smooth and continuous dependence, but with a strong variability.

The lack of a threshold behavior in this relationship suggests that large-scale tem-

perature variability can affect the local-scale UHI even in different conditions than

during extreme events.

The second part examines the transition from meteorological to agricultural

drought, being the first stage of the drought propagation process. A multi-year

reanalysis dataset involving numerous drought events over the Iberian Peninsula is

considered. The behavior of different non-parametric standardized drought indices

in drought detection is evaluated. A statistical approach based on run theory is

employed, analyzing the main characteristics of drought propagation. The prop-

agation from meteorological to agricultural drought events is found to develop in

about 1-2 months. The duration of agricultural drought appears shorter than that

of meteorological drought, but the onset is delayed. The propagation probability

increases with the severity of the originating meteorological drought. A new com-

bined agricultural drought index is developed to be a useful tool for balancing the

characteristics of other adopted indices.
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Chapter 1

Introduction

1.1 Heat-Related Extreme Events

All over the world, the effects of human-induced climate change are well documented

in several kinds of weather and climate hazardous phenomena. Heatwaves, heavy

rainfalls, tropical cyclones, river flooding and droughts have become more frequent

during the last decades and, according to the Sixth Assessment report from the

Intergovernmental Panel on Climate Change IPCC (Masson-Delmotte et al. [1]),

their intensities are unprecedented in the observed record and will further increase

in alignment with global warming. In particular, the worldwide dramatic growth in

temperature monitored since the 1950s, with 2012-2021 defined as the hottest mea-

sured decade since the beginning of thermometer-based observations, has originated

a substantial amplification of heat-related extremes.

The relationship between global warming and heat extremes can be effortlessly

comprehended from a statistical point of view. Considering a normal distribution of

possible temperatures in a certain region, the most likely values of observable tem-

perature are concentrated at the center of the curve, while the most rare events are

located at the edges. Under the simplifying assumption that the shape of frequency

distribution stays approximately unvaried when its average modifies, the most ap-

preciable relative changes lie in the “tails” of the distribution. In this regard, to

reproduce the effect of global warming, a shift can be applied to the whole curve

by enhancing the average temperature of a small δT . After this alteration, the per-

ceived effect near the center of the curve is not really marked, whereas changes in the

extremes are substantial. Indeed, the previously estimated extremes have become

not so unusual, and even more impactful events, which were not feasible before, can

occur (see Figure 1.1).

Abandoning statistics to make considerations of a physical nature, the most rel-
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Figure 1.1: Schematic showing the effect on extreme temperatures when the average
temperature increases of a small δT considering a normal distribution. From Masson-
Delmotte et al. [1].

evant effect of this shift towards higher temperatures is the strengthening of evap-

oration rate from Earth’s surface and the increment of precipitable water. In fact,

from the Clausius-Clapeyron equation (Brown [2]) it can be deduced that, for a 1°C
temperature increase, the equilibrium vapor pressure of water grows approximately

of 7%. Therefore, keeping a fixed relative humidity, the atmospheric water vapor

available for conversion into rainfall increases, concurrently with the loss of water

from the surface by evapotranspiration in dry land conditions. In other words, an

exacerbation of the raise of temperature leads to both more meaningful precipitation

phenomena and to an accelerated soil desiccation, namely heavy storms and severe

droughts. Moreover, several feedback responses can be activated through dynami-

cal and thermo-dynamical processes capable of farther aggravating the impacts of

global warming. For example, when droughts occur dehydrating the surface, the

evaporative cooling can be reduced, producing additional heat-related extremes.

The environmental factors characterizing severe thermal climatic conditions can

seriously affect human health and well-being. Indeed, the human body responds

to hot temperatures by lowering the blood pressure, accelerating the heartbeat and

enhancing the loss of body fluids through perspiration. These variations can jeop-

ardize the cardiovascular system, particularly in infirm and elder people, and for

this reason the extreme heat is one of the main weather-related causes of death

worldwide. In this respect, Figure 1.2 shows the increasing trend of global heat-

related mortality for old people during the last 20 years. However, not only the

air temperature can generate a stress accumulation for human body, but also hu-
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midity, wind speed and radiation play a significant role in what is called perceived

temperature, which is proven to be strongly correlated with the rate of mortality

during periods of extremely hot meteorological conditions. In addition to its health

effects, prolonged periods of heat may negatively influence economy. To cite some

critical effects, roads, electrical wires and other infrastructure can get damaged and

even enhance the accident rate, more expenses are needed to maintain efficient air

conditioning systems and generally employee productivity diminishes during adverse

work conditions.

Figure 1.2: Global heat-related mortality for people older than 65 years. From Watts et
al. [3].

Besides heatwaves and severe temperatures, also prolonged dry conditions con-

nected with extreme heat patterns can be responsible of disastrous consequences on

many regions across the globe. The development of droughts, indeed, can produce

major impacts on agriculture, with repercussions involving crop and livestock short-

age and incidence of plant diseases, ultimately leading to famine. During recurring

periods of drought, the damage to ground and flora often become so irreversible

that the land is transformed into desert. The low availability of water implies the

reduction of activities of hydroelectric and thermal power plants, with related high

economic losses for the sectors involved. Finally, dangerous wildfires can be gener-

ated in case of prolonged hot temperatures and extremely dry conditions.

1.2 Objective and Thesis Structure

The study of heat-related extreme events has acquired rising importance during the

last years, both for their documented exacerbation in intensity and frequency and for

the posed threats. In particular, the potential multi-scale features of these phenom-

ena and the generated impacts on various natural and human ecosystems are issues of
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primary interest. For example, considering extremes associated to hot temperatures,

the formation of a heatwave at large scale is capable to influence human health in

populated areas, affecting the local scale urban heat island effect. This phenomenon,

especially marked at night, consists in a higher temperature retrieved in urban cen-

ters with respect to the surrounding rural areas, mainly due to the anthropogenic

heat released from buildings, to the reduced vegetation and evapotranspiration and

to the abundance of low albedo surfaces. Therefore, the large-scale temperature

anomaly generated by a heatwave occurrence may have repercussions on the urban

heat island intensity, with results depending on the different response of urban and

rural environment to the unusual warming. Several studies have addressed the issue

of the relationship between urban heat island and heatwave, following various ap-

proaches ranging from numerical to observational analyses. Generally, the literature

on urban heat island-heatwave interaction reveals an increase of urban heat island

during heatwaves in numerous cases, while some studies assess the absence of a sig-

nificant synergy between the two phenomena, or even a lowering effect of heatwaves

on the urban heat island. The lack of a universally accepted multi-scale modelling

approach and the inhomogeneities in data and adopted methodologies complicate

the comparison through the results of different studies, and reaching a consistent

assessment about the effect produced on urban heat island by heatwave events is

a challenging task. Recently, diverse research gaps have been identified, in partic-

ular regarding the importance to examine multi-year datasets including multiple

heatwave episodes, and the usefulness of analyzing collections of cities with distinct

characteristics to reveal the general trend. The first part of the thesis attempts to

fill these gaps for the European continent, by evaluating the heatwave effects on the

urban heat island of a large ensemble of European cities over a period of 20 years

with an empirical approach, estimating the urban heat island intensity from daily

temperature measured by meteorological stations.

Considering instead extremes connected to dry patterns, since the effects of pre-

cipitation deficits occur in different systems with distinct time scales, drought can be

defined a multi-scale event. Indeed, the drought signal propagates through the water

cycle involving a multitude of processes, and this phenomenon takes the name of

drought propagation. The first transition typically occurs when the development of

large-scale precipitation deficits provokes consequences on cultivated areas, inducing

soil moisture deficits affecting plant growth and crop yield. In this way, the prop-

agation from a meteorological to an agricultural drought takes place, according to

the response of soil to variables as precipitation and evapotranspiration. Currently,

studies about this kind of process are rather limited, and more investigations are

necessary to understand the propagation characteristics especially in terms of tem-
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poral response and of driving factors. Since usually only the soil moisture is taken

into account in examining agricultural droughts, the combined contribute provided

by evapotranspiration and precipitation deficits has not been completely explored.

Therefore, the application of recently formulated multi-variate indices could be use-

ful to clarify this aspect. Moreover, although the investigation of drought propaga-

tion requires long-term data, the majority of studies are based on poor observation

networks with relatively short records of soil moisture. The second part of the thesis

tries to overcome these research gaps regarding the analysis of agricultural drought

phenomena and particularly the propagation from meteorological droughts, employ-

ing a long multi-annual dataset containing numerous drought events and diverse

types of standardized drought indices which take into account the various physical

quantities involved. The analysis aims at describing the multi-scale drought prop-

agation characteristics, and it is entirely conducted over the Iberian Peninsula, a

widely acknowledged drought-prone area.

This thesis fits in the field of studies concerning the investigation of interaction

and propagation of heat-related extreme events, considering the effects of large-

scale occurrences on phenomena acting at a different spatio-temporal scale. The

overarching purpose is to analyze how the heat extremes influence both urban and

rural environment taking separately into account hazardous processes dealing with

severely high temperatures and unusual dryness. In this regard, the thesis addresses

two distinct problems by examining independently the heatwave and the drought

phenomenon, trying to reach conclusions about the relationship between different

scales heat-related events.

After this introductory chapter, the thesis is structured as follows:

• Chapter 2 separately describes the general characteristics of heatwaves and ur-

ban heat island phenomena, then it focuses on the main drivers and outcomes

of their relationship according to the recent literature;

• Chapter 3 discusses in detail the research gaps and the purpose of the con-

ducted study about the urban heat island effect during heatwaves in European

cities through observational data, then it describes the employed methodology

and the major outcomes retrieved;

• Chapter 4 introduces the drought phenomenon, reporting the main features

of the different types of drought and the relevant concepts about drought

propagation, also illustrating some examples of the most adopted standardized

drought indices;
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• Chapter 5 precisely clarifies the objective of the study about droughts, and

includes the information about the analyses performed to characterize drought

events on the Iberian Peninsula, with a focus on the propagation from mete-

orological to agricultural droughts;

• Chapter 6 delineates the concluding discussion about the whole work, provid-

ing the summary of the main results and furnishing ideas for future develop-

ments.
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Chapter 2

Notions of Heatwaves and Urban

Heat Island

2.1 Heatwaves

Among the environmental extremes, heatwaves are one of the most dangerous be-

cause of their impacts on many different systems such as human health, infrastruc-

tures, natural habitats and socioeconomy. For example, two significant episodes

recently experienced in the European continent were the 2003 Central Europe heat-

wave, characterized by reiterated temperatures of 35 to 40 ◦C causing economic

damages superior to 13 billion euros (De Bono et al. [4]) and more than 70,000

life losses (Guha-Sapir et al. [5]), and the 2010 Eastern Europe/Russia heatwave,

that provoked more than 50,000 deaths in several countries (Barriopedro et al. [6]).

These kinds of events are proven to be more frequent and severe in the last decades,

and the evolution of climate change will be responsible of a further aggravation of

this trend in the future years (Guerreiro et al. [7], Fischer et al. [8] and Perkins-

Kirkpatrick et al. [9]).

2.1.1 Defining a Heatwave

Intuitively, a heatwave is a phenomenon which features large-scale persistent high-

temperature conditions that may have adverse health effects on the affected popu-

lation. Even though heatwaves can be considered from a climatological perspective,

they are identified as meteorological events since generally their temporal scale is

limited to one week, with the most impactful effects relevant on regional spatial

scales. However, despite the widespread usage and understanding of the term heat-

wave with the associated features, there is still lack of a unified definition for this
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phenomenon. Indeed, the majority of studies involving heatwaves adopt different

metrics, particularly due to the multiple factors related to their characterization, for

example the temperature climatology varying with the investigated locations. To

provide a guideline, the World Meteorological Organization WMO (Bekiashev et al.

[10]) delineated a recommended definition of heatwave, designating it as ”A period

of marked unusual hot weather over a region persisting for at least three consecutive

days during the warm period of the year based on local climatological conditions,

with thermal conditions recorded above given thresholds”. Since this overall defini-

tion leaves room for interpretation, a range of weather-related and bioclimatic indices

were developed to identify the heatwaves, by using methodologies often valid only

for a specific region or purpose. In spite of the large number of definitions employed

in literature, it is possible to find three parameters which differentiate them:

• Temperature Metric - The type of temperature indicator selected to prop-

erly consider the features of a heatwave. A wide range of variables has been

used including maximum temperature, mean temperature, apparent tempera-

ture, heat index and their combinations. For studies regarding death exposure

in urban areas, frequently the minimum temperature at night is chosen, while

daytime temperature is barely important;

• Intensity - The kind of temperature threshold imposed. It can be a relative

threshold, namely a temperature percentile (the most used are 90th, 95th and

99th percentiles) or an absolute threshold depending on the area of interest,

usually ranging from 35 to 38 ◦C;

• Duration Threshold - The minimum number of consecutive days with tem-

perature above the chosen threshold. It does not necessarily match the 3 days

recommendations by WMO, and it generally varies from 2 to 6 days depending

on the aim of the analysis.

2.1.2 Mechanism and Characteristics of European Heatwaves

The synoptic structure which commonly characterizes the heatwaves is the blocking

high (Coughlan et al. [11]), namely a quasi-stationary and self-sustaining high-

pressure system whose center remains in a fixed location for a longer period than

usual, 7-10 days on average. Typically blockings originate from tropospheric flows

which are influenced by a large meridional flow component, capable of interrupting

the zonal westerly flow at the mid-latitudes (Nakamura et al. [12]). More specifically,

traditional blocking highs occur due to the meandering of the jet stream, which is

a narrow band of fast-moving air in the upper atmosphere that influences weather
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patterns. When the jet stream meanders, it can split into two branches, with one

branch passing to the north and the other to the south of the blocked region. This

creates a blockage that prevents the normal eastward movement of weather systems.

As a result, the region affected by the blocking high experiences several days of

relatively stable weather conditions, often characterized by clear skies and warm

temperatures. The lack of mixing between colder air to the north and warmer air

to the south allows the warm air to build up, leading to an increase of high pressure

at the surface. This high pressure system, which further reinforces the blockage

and helps to maintain the stable weather conditions, generally extends vertically

from the surface to the entire troposphere, with large pressure anomalies at the

500 hpa geopotential height (Figure 2.1 shows an example of observed high-pressure

anomalies at 500 hPa during the 2003 European heatwave).

Figure 2.1: Observed geopotential height anomalies at 500 hPa (gpm) during the Eu-
ropean heatwave in 2003. Anomalies were calculated against the 1948–2003 monthly
averages of August, the month when the heatwave occurred. From Meehl et al. [13].

The persistent anticyclonic flow anomalies of blockings strongly correlates with

the occurrence of European temperature extremes in summer. Indeed, heatwaves

in Europe are typically associated with co-located anticyclonic circulation features

in the free troposphere, mostly due to a northward displacement of an anticyclonic

ridge from North Africa with a southerly advection of hot air, and high pressure

anomalies throughout the troposphere till the surface. More in detail, European

heatwaves form through two main processes, both fostered by blockings: heat ac-

cumulation due to atmospheric transport and diabatic heating via radiation and

surface fluxes (Miralles et al. [14]). Clearly the blocking formation itself, associated
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to the northward advection of subtropical warm dry air masses to the region affected,

plays an important role. However, this effect is mostly relevant in the middle and

upper troposphere, while it is of only secondary importance for the near-surface air

layers. In fact, the accumulation of heat near the surface is mainly resulting from

the adiabatic descent of air inside the blocking anticyclones, which is also linked

to clear-sky conditions promoting firstly the surface heating by solar radiation, and

secondly the diabatic heating of the near-surface air due to enhanced sensible heat

fluxes. Moreover, the soil moisture can be fundamental for this diabatic heating

depending on a feedback mechanism (Miralles et al. [15]). Whereby the precipita-

tion deficit in the blocking region provokes a depletion of soil moisture and, thus,

an increment in the sensible heat fluxes, the latent heat fluxes become almost negli-

gible and a further atmospheric heating and soil drying occur. Viceversa, when the

land surface has plenty of moisture, latent heat is the dominant flux over sensible

heat, producing a negative feedback. However, in both cases the duration of block-

ing strongly impacts the lifetime of the heatwaves, and consequently the long-term

accumulation of heat.

2.2 The Urban Heat Island Effect

The growth of urban population, which has recently overcome the 50% of total

population across the globe (World Bank [16]), and the fact that urban-based activ-

ities have repercussions both at the local and at the large scales, have contributed

to augment the interest about phenomena affecting the urban climate. Moreover,

the concomitant evolution of global warming has aggravated both the heat-related

health effects and the vulnerability of urban populations. The urbanization process

transformed the environments characterized by natural vegetation into agglomera-

tions of buildings whose structure enhances the thermal-storage capacity, producing

notable modifications in urban climate with respect to adjacent rural areas, result-

ing in the so called urban heat island (UHI) effect (Oke [17]). Most major global

cities experience UHI to varying degrees, mostly due to the combined effect of the

elevated thermal inertia provided by asphalt roads and the other impervious surfaces

of the urban environment, the low ventilation induced by the urban “canyons” be-

tween tall buildings, and the heat emanated from vehicles and air conditioners. The

most serious concern about UHI effect is the large heat absorption during the day-

time and its diffusion at night, with the subsequent raise of the nighttime minimum

temperatures which can lead to an exacerbation of heat-related mortality.
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2.2.1 Urban Heat Island Classification and Retrieving Meth-

ods

The urban heat island is generally defined as a variation in temperature between

urban areas and their surroundings, but it is possible to classify four types of UHI

considering various layers to calculate the temperature difference (Figure 2.2). In

particular:

• Subsurface UHI (UHIsub): the temperature gradient between subsoil urban

and rural patterns. It originates from a transfer of sensible heat from the urban

surface and infrastructure into the ground. It can reveal climatic processes

since UHIsub regards the behavior of the heat stored in the terrain over long

periods;

• Surface UHI (UHIsurf ): the temperature difference at the atmosphere-

ground interface of the city and of the rural regions. It reveals a complex

spatial pattern primarily due to the geometry, radiative and thermal proper-

ties of surface features, and its magnitude is maximum during clear daytime

conditions in low vegetated urban areas;

• Canopy layer UHI (UHIUCL): the gradient between the temperature of the

air confined in the urban canopy layer (UCL), which is the layer between the

urban surface and roof level, and the corresponding height in the near-surface

layer of the rural surroundings. Its intensity is greatest after sunset, because

air above urban surfaces cools more gradually than in rural ones. In city centre

sites with tall buildings and narrow streets, its magnitude is strongest during

nighttime, while during daytime UHIUCL is frequently smaller;

• Boundary layer UHI (UHIUBL): the temperature difference of the air

enclosed between the top of the UCL and the maximum height of the ur-

ban boundary layer (UBL), and the height equivalent air in the atmospheric

boundary layer of the rural area. It is driven by an intensified sensible heat

flux from the city, which supports the mixing in the lower atmosphere during

daytime and preserves it at night, producing an UBL warmer than the rural

one all over its depth.

To study each type of UHI, different retrieving methods can be adopted to mea-

sure or model the distinct processes involved. At this purpose, three notable tech-

niques have been used, namely in-situ measurement, remote sensing and numerical

modelling. The in-situ measurement approach is made up of values estimated by
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Figure 2.2: Schematic of the temperature differences generating the four types of UHI.
From Kong et al. [18].

weather stations, so it can permit direct, instantaneous and continuous measure-

ments of many useful variables such as air temperature, wind speed and humidity.

On the other hand, it also exhibits some constraints, in fact the restricted number

of stations makes difficult to provide a high spatial resolution of the investigated

phenomena. Moreover, it is important to accurately select the most appropriate

urban and rural stations to calculate the correct UHI without including spurious

effects. Many suggestions and criteria have been dispensed in literature about this,

describing methodologies involving land cover, population and satellite night-time

brightness index. To overcome the issue of low spatial resolution information pro-

vided by the in-situ measurements, thermal infrared remote sensing from satellites

has been employed for its capability to globally monitor numerous parameters such

as land surface temperature, which is extremely used for the study of UHIsurf . The

most utilized satellite instrument is the Moderate Resolution Imaging Spectrora-

diometer MODIS (Pagano et al. [19]), which can furnish images almost every day

with a spatial resolution of few hundred meters. The main disadvantage of these

retrieving methods lies in the fact that they cannot be used to monitor continuous

temporal variations of UHI, since they move orbiting around the Earth. Also, the

cloud cover may be responsible of alterations in measured data. The necessity to

obtain continuous information at high spatial and temporal resolutions has con-

tributed to increase the interest about the modelling approach, which even offers

the possibility to assess hypothetical future scenarios. Among the many existing

models, the most commonly employed are the Consortium for Small-scale Modeling

COSMO (Baldauf et al. [20]), the Community Earth System Model CESM (Hur-

rell et al. [21]), and especially the Weather Research and Forecasting Model WRF

14



(Powers et al. [22]). These models can capture temporal–spatial variations caused

by urbanization of countless physical quantities, all performing with the same con-

servation laws but differing in the hydrostatic assumptions, in the formulation of

equations and in the parameterization schemes. Typically, these differences must be

taken into account choosing appropriate models to properly study specific processes

of interest.

2.2.2 Energy Budget of Urban Heat Island

The UHIUCL is the most commonly studied heat island, and the following discus-

sion is specifically referred to this type of phenomenon. As aforementioned, the

birth of new urban settlements creates substantial modifications in the conditions

of the original environment. For example, the superimposition of a linear and com-

pact topography causes the disruption of air flows, reducing the wind speed and

increasing the turbulence. Then, the replacement of the natural soil with building

materials and drainage systems changes the local energy and water balances, as well

as the extensive generation and release of anthropogenic heat, influencing both the

temperature and the humidity and strengthening the convection. Side effects are

related to the emission of aerosols and gaseous pollutants, capable of deteriorat-

ing air quality by reducing visibility, increasing cloudiness and leading to several

respiratory diseases.

According to Oke [23], to model the UHI effect the starting point is to define

the different energy balance over a simplified flat rural surface (Figure 2.3(a)) and

over the urban ecosystem (Figure 2.3(b)). In the first case, the balance is obtained

between the net radiative heat flux Q∗ (including both incoming and outgoing long-

wave and short-wave), the ground heat flux QG (transferring sensible heat to the

subsoil by conduction), and the two turbulent heat fluxes exchanging energy between

the surface and atmosphere, namely the sensible heat flux QH and the latent heat

flux QE:

Q∗ = QG +QH +QE (2.1)

The warming or cooling of an air layer is directly related to changes in its heat

content. Indeed, the impact of heat fluxes on temperature variation in a rural near-

surface layer of air can be described by the equation

∂T

∂t
=

divQ∗
z

C
− div(QHz +QEz)

C
, (2.2)

where C is the heat capacity of air and divQ∗
z and div(QHz + QEz) denote the

change of net radiation and sensible/latent heat with height in the layer z, and
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Figure 2.3: Schematic of the fluxes in the surface energy balance of a rural (a) and an
urban (b) building-soil-air volume. From Oke [23].

the term relative to QG is negligible since it acts only at the surface. Regarding

the urban context, it is inadequate to describe separately the energy balance of

individual surfaces to provide a characterization of the whole urban area. In this

situation, it is recommended to define a conceptual volume, integrating the entire

urban ecosystem from the top of the roughness sublayer (the layer immediately

adjacent to the surface including roughness elements such as trees or buildings) to a

certain depth in the subsoil for which the vertical heat flux by conduction across the

bottom is irrelevant over the period of consideration. The surface energy balance

for such a control volume is defined by the equation

Q∗ +QF = QH +QE +∆QS +∆QA, (2.3)

where additional contribution with respect to the rural energy budget are given

by the anthropogenic heat flux QF released within the volume due to human ac-

tivities (e.g. traffic, air conditioners, residencies), by the net stored heat flux ∆QS

referring to all energy storage mechanisms within the volume (including air, soil,

building fabric and trees), and by the net horizontal advective heat flux through the

sides of the volume ∆QA. In this case, to represent the temperature change in this

air volume, it is necessary to use the equation

∂T

∂t
=

divQ∗
v +QFv

C
− div(QHv +QEv)

C
− ∂S

cp∂t
− u⃗ · ∇⃗T, (2.4)
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where divQ∗
v + QFv and div(QHv + QEv) are respectively the volumetric diver-

gence of net radiation plus anthropogenic fluxes and of sensible plus latent heat

fluxes, cp is the specific heat of air at constant pressure and the last two terms

denote the contributions from heat storage and the advection by the mean wind.

Therefore, the origin of UHIUCL lies in the difference between the air temperature

in the urban volume and that of a layer at the same height in the rural surroundings.

Obviously the anthropogenic heat fluxes are one of the main responsibles of temper-

ature increase in urban areas with respect to rural, especially the heat release due

to fuel combustion or by ”consumption” of electricity for human activities such as

heating and cooling of buildings. Also the thermal properties of building materials

in urban environments play an important role, often having a higher capacity to

store and release sensible heat compared to vegetation and soil. Additionally, the

surface moisture-waterproofing caused by buildings and paving reduces soil moisture

and surface wetness, with a consequent diminished cooling effect with respect to the

high evapotranspiration in densely vegetated rural regions. Regarding radiation, the

more polluted urban atmosphere emits higher downward long-wave radiation com-

pared to the rural one, and the closely-spaced buildings characterizing the urban

surface geometry generate multiple reflection (greater short-wave absorption) and

inhibit the net long-wave loss because of small sky view factors. Finally, the wind

sheltering of tall infrastructures reduces the heat losses by convection. All these

factors generally result in a positive temperature gradient between urban zones and

rural territories, with features depending on the city structures, usually with max-

imum magnitude after the sunset when air above urban surfaces cools more slowly

than air above rural ones, in condition of calm wind.

2.2.3 Impact of Heatwaves on Urban Heat Island

The major impact of heatwaves is definitely the increase of temperature in a certain

location with respect to its climatology. Thus, at first glance it could be reasonable

to assume that a raise in the background temperature is simply added to that re-

sulting by the UHI effect. Nonetheless, the UHI definition relies on the temperature

difference between urban and adjacent rural areas, and its intensity is regulated by

the conditions in both kinds of environment, together with the background climate.

As aforementioned, the warming of the urban and rural environments is connected

to the energy balance, which is governed by numerous drivers such as atmospheric

stability, wind speed, air pressure, cloudiness, evapotranspiration, surface albedo,

pollution, soil moisture, and so on. Therefore, the impacts of heatwaves on UHI are

determined by the urban–rural contrasting feedback to the various drivers and the

resultant modifications in the energy budgets. In general, three possible outcomes
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have been assessed in the literature:

• UHI increases - Considering that heatwaves are characterized by clear sky

condition and lower water vapor, the net all-wave radiation is commonly higher

with respect to normal conditions, so urban zones gather more radiative energy

input than rural ones. Also, the high atmospheric stability during heat waves

prolongs stagnant conditions and inhibits the horizontal advective cooling ef-

fect, and the presence of tall buildings in densely built urban areas contribute

to interrupt the wind flows, lessening the heat removal. Moreover, during heat-

waves it is typical to observe an increase in the anthropogenic heat released

due to higher air conditioners demand together with a notable increment of

heat storage in urban areas (An et al. [24]). Finally, while in urbanized ar-

eas the rare vegetation cover and soil moisture minimize the cooling effect

of latent heat fluxes by evapotranspiration, in rural regions this process can

be enhanced during heatwaves due the higher atmospheric temperature and

the better capability of air to absorb water vapor. All these considerations

make reasonable to expect a UHI magnitude intensification concurrently with

heatwave events;

• UHI decreases - The absence of rainfall during heatwaves and the consequent

possibility of heatwave–drought co–occurrence must be taken into account (He

et al. [25]), possibly generating more severe impacts than the occurrence of

individual extremes especially on water scarcity in soils (Jiang et al. [26]).

Indeed, poor precipitation produces a decrease in soil wetness reducing the

evapotranspiration cooling effect in rural areas whereas the impact on urban

temperature is minimum, and UHI can undergo a decrease concurrently with

heatwaves (Kumar et al. [27]). Also the advective heat flux can be an impor-

tant component in UHI diminution, mainly in coastal cities where the urban

region is influenced by the advection of humid and cool air from the sea, while a

dry and warm advection in rural areas can accelerate the depletion of moisture

and latent heat flux;

• UHI is unaffected - A restricted number of studies report an unvaried UHI

intensity during heatwaves compared to climatological values. This is justified

by the fact that the investigated periods show very similar wind features in

heatwave and normal conditions, with consequent unaltered urban–rural soil

moisture deficit and heat storage. Furthermore, it is important to note that

other studies which have concluded that UHI effects remain constant during

heatwaves are primarily based on analyses of smaller cities. These cities may

not have a sufficiently large thermal capacity or a significant urban-rural soil
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moisture gradient to accurately account for any substantial changes in UHI

effects during heatwaves.
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Chapter 3

Study of Urban Heat Island

during Heatwaves in Europe

3.1 Purpose

The assessment about the effect produced on urban heat island by heatwave events

is not homogeneous. Indeed, regarding the capability of heatwaves to influence

the urban-rural temperature difference, dissimilar outcomes for different locations

or heatwave events were retrieved, describing both exacerbations and reductions

of urban heat island. Numerous studies examined the interaction between these

two phenomena acting at different scales, following various approaches. Employing

numerical simulations, many studies assessed the existence of a synergistic behavior

producing intensified urban–rural temperature differences in heatwave conditions

especially in places located across the USA (Zhao et al. [28], Ramamurthy et al.

[29]), also suggesting that added heat stress in cities is higher than the sum of

the background UHI and the heatwave effect (Li et al. [30]). Conversely, other

numerical studies such as Chew et al. [31] retrieved the absence of a significant

synergistic interaction between UHI and heatwaves, even for the USA (Kunke et

al. [32]). Another approach involved analyses of observational measurements and

was adopted in several studies, addressing different locations and heatwave events.

For example, Schatz et al. [33] retrieved an UHI increment in Madison, USA,

during summertime heatwaves and similar results were obtained for diverse cities

across the globe, such as the metropolitan city of Karachi, Pakistan (Rizvi et al.

[34]), Beijing, China (He et al. [35]) and Athens, Greece (Katavoutas et al. [36]),

with more remarkable consequences for the nighttime UHI. On the other hand,

the investigations about UHI intensity based on observational and reanalysis data

during hot temperature extremes in Dijon, France (Richard et al. [37]) and in
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Lisbon, Portugal (Oliveira et al. [38]), did not reveal significant synergistic effect of

heatwaves on UHI, or even a decrease of UHI values. Variations of UHI behavior

were found also inside the same city, as evidenced by a study regarding Shanghai,

China (He et al. [39]). In this case, the amplification of UHI during heatwaves

was found to depend on localized effects, especially assessing that less urbanized

districts were generally more sensitive to this synergy. Not only the features of urban

areas, but also different rural backgrounds were proven to be crucial in determining

the heatwave-induced UHI augmentation, particularly the rural evapotranspiration

cooling effects based on humidity and vegetation type (Miao et al. [40]).

Along these lines, Kong et al. [18] currently reviewed the scientific literature on

UHI-heatwave interaction concluding that most examined studies suggest an UHI

increase during heatwaves due to a raise in incoming shortwave radiation or to high

anthropogenic heat released, although others detect no significant synergy or even a

reduction of UHI intensity during heatwaves, motivated by a decreased cooling effect

of evapotranspiration due to soil moisture depletion in rural areas. However, the

lack of widely accepted multi-scale modelling approaches and the inhomogeneities

in data and methodologies adopted blur the picture on UHI-heatwave interaction,

raising questions on its robustness and making the comparison through the results

of different studies an arduous mission. Several research gaps were identified, in

particular highlighting the necessity to investigate multi-year datasets instead of

single heatwave events and the importance of considering an ensemble of cities with

different characteristics to reveal the large-scale general trend. The present study at-

tempted to fill these gaps for the European continent, refining the methodology used

by Scott et al. [41] which investigated a large ensemble of USA cities through in-situ

meteorological records and observed a reduced UHI intensity during warmer synop-

tic conditions, a result remarkably in contrast with the majority of studies. Bearing

also in mind the different morphology of European and USA cities (Antipova [42]),

respectively characterized by abrupt and smooth urban-rural transitions, it was un-

clear whether European cities behave like those examined by Scott et al. or they

follow the dominant paradigm of positive UHI-heatwave correlation. Therefore, the

adopted approach was aimed at clarifying this question and at complementing recent

existing literature on specific case studies for European cities (e.g. Founda et al.

[43], Nicholson [44], Unger et al. [45]), by providing an unprecedented assessment

through observational data for Europe about impacts of large-scale features on ther-

mal stress at local scale. In particular, the analyses were addressed at the evaluation

of heatwave effects on UHI in European cities over a long record of events adopting

an empirical approach, estimating UHI intensity from daily temperature measured

by meteorological stations. The focus was particularly on summer nighttime, when
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UHI effect is generally more pronounced and dangerous for human health (Wong et

al. [46]).

3.2 Methodology

3.2.1 Data Sources for Urban Heat Island Analysis

In this study the meteorological stations data gathered by European Climate As-

sessment & Dataset ECA&D (Klein Tank et al. [47]) and by World Meteorological

Organization network WMO (Bekiashev et al. [10]) were employed. The ECA&D

consists of daily records obtained from climatological divisions of National Meteoro-

logical and Hydrological Services, together with station series maintained by obser-

vatories and research centres across the European continent and the Mediterranean.

Following the recommendations of Klok et al. [48], only the series which passed

the quality controls and the homogeneity tests were used. Similarly, the selected

WMO dataset was the Global Surface Summary Of Day (GSOD) product provided

by NOAA’s National Centers for Environmental Information (NCEI), which uses

as input the quality controlled Integrated Surface Data ISD (Smith et al. [49]).

The two variables extracted from these datasets were daily maximum and minimum

temperatures, used to estimate daytime and nighttime UHI, respectively, as in Scott

et al. The analysis covered 20 years (from 2000 to 2019) of heatwave events, binding

the observational data availability and the length of the dataset, and considering

only boreal summers, namely the months of June, July and August, following the

suggestions of Rasilla et al. [50] and Stefanon et al. [51].

3.2.2 Urban Heat Island Index

For each city the daily intensity of urban heat island effect was determined by

calculating a Composite UHI Index (UHII) as defined in Basara et al. [52] and [53]:

UHII = TU − TR, (3.1)

where TU and TR are the urban and rural temperatures, respectively, and the overline

indicates that the values are averaged over all the employed stations. Compared to

the original definition based on a couple of observations (Oke [54] and Ackerman

[55]), this UHI index was chosen since it allows to reduce the demonstrated impact

of site-specific variability for both the urban and rural zones (Hawkins et al [56]).
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3.2.3 Method to Select Cities and Weather Stations

The selection of weather stations started from European cities having more than

150,000 inhabitants according to Eurostat [57], keeping only those with available

data in ECA&D or WMO repositories. Then, 3 parameters were employed to ensure

the uniformity of the analysis and to reduce the heterogeneity of dataset character-

istics. In particular:

1) the maximum distance D of urban and rural stations from the central point of

the city (according to the coordinates provided byWolfram Knowledgebase [58]

and reported in Table 3.1), necessary to circumscribe the surrounding area of

the cities and to guarantee a homogeneous analysis among cities with different

sizes. Urban stations within a distance D ≤ 10 km from the city centre were

considered, a choice supported by a check on the European Urban Atlas [59]

which suggested this value as the average radius of the urban area for analyzed

cities. Rural stations were selected at a distance 10 < D ≤ 35 km from the

city centre, with an additional control over stations positioned near 10 km to

distinguish urban from rural ones. The 35 km threshold was appropriately

within the range between 1 and 50 km identified by Li et al. [60], which

reviewed studies about effects of rural extent on UHI. This adopted parameter

was similar to those employed by Scott et al. to have a solid reference and

to enable comparisons with another study focusing on highly populated cities

through observational data. For vast cities like Paris or London, the rural

stations were adequately chosen to consider the larger size of the urban area.

Also, the Copernicus Climate Change Service UHI application (Hooyberghs et

al. [61]) was checked for available cities to verify the spatial extension of the

UHI effect. Other thresholds like 20 km as in Zhang et al. [62] were tested for

maximum rural distance, obtaining unaltered results;

2) the maximum height difference |∆H| between urban and rural stations, nec-

essary to remove factors such as topography capable of impacting the UHI

evaluation. This threshold for altitude was based on Martin-Vide et al. [63],

which indicated the rules for correctly selecting the stations to measure UHI

removing temperature differences depending on external components such as

vertical temperature gradient. The suggested threshold of ± 30 m was modi-

fied into ± 70 m to increase the number of stations included and, consequently,

the analysis strength. However, to check the reliability of the adapted thresh-

old, sensitivity tests were performed using ± 30 m without noticing significant

variations in the results;
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3) a check of land cover like in Scott et al., since Ngarambe et al. [64] recom-

mended to select rural areas in terrains surrounded by natural properties, with-

out densely constructed buildings. In this regard, the urban climate dataset

provided by Copernicus Climate Change Service C3S (Hooyberghs et al. [61])

and the land cover characteristics furnished by CORINE Land Cover 2018

inventory (CLC [65]) were used. The imposed condition was that urban sta-

tions had to present land cover characteristics of urban areas according to the

rural-urban mask of C3S based on CLC, also discussed in Schumacher [66].

The CLC method classifies each pixel obtained on satellite images into differ-

ent land cover classes, as described in the technical report (Berckmans et al.

[67]). While the C3S dataset lacked masks for some of the cities analyzed,

it was possible to reproduce them for those missing locations based on C3S

guidelines. However, it is worth noting that the dataset did not differentiate

between urban and suburban areas, and simply classified all non-urban zones

as rural. This classification was not extremely refined, as it did not recognize

the detail of suburban regions.

List of selected locations

Location Latitude Longitude Location Latitude Longitude
1) Aachen 50.77 N 6.09 E 20) Karlsruhe 49.00 N 8.04 E
2) Amsterdam 52.37 N 4.89 E 21) Leipzig 51.35 N 12.40 E
3) Antwerp 51.22 N 4.42 E 22) Lisbon 38.72 N 9.14 W
4) Athens 37.98 N 23.73 E 23) Ljubljana 46.06 N 14.51 E
5) Berlin 52.52 N 13.38 E 24) London 51.50 N 0.12 W
6) Bologna 44.50 N 11.34 E 25) Madrid 40.42 N 3.71 W
7) Bremen 53.08 N 8.81 E 26) Malmo 55.61 N 13.02 E
8) Brussels 50.83 N 4.33 E 27) Mannheim 49.50 N 8.47 E
9) Budapest 47.51 N 19.08 E 28) Munich 48.14 N 11.58 E
10) Catania 37.50 N 15.08 E 29) Nuremberg 49.45 N 11.05 E
11) Cologne 50.95 N 6.97 E 30) Paris 48.86 N 2.34 E
12) Copenhagen 55.68 N 12.57 E 31) Saarbrucken 49.25 N 6.97 E
13) Dresden 51.05 N 13.74 E 32) Stockholm 59.33 N 18.07 E
14) Dublin 53.33 N 6.25 W 33) Stuttgart 48.79 N 9.19 E
15) Frankfurt 50.12 N 8.68 E 34) Toulouse 43.62 N 1.45 E
16) Goteborg 57.72 N 12.01 E 35) Vienna 48.22 N 16.37 E
17) Hamburg 53.55 N 10.00 E 36) Zagreb 45.80 N 15.97 E
18) Hanover 52.40 N 9.73 E 37) Zurich 47.38 N 8.54 E
19) Helsinki 60.17 N 24.94 E

Table 3.1: Analyzed cities with information about their locations. Source: Wolfram
Knowledgebase™[58].

3.2.4 Selection Results

Following the described methodology, a total of 37 suitable cities was identified.

The geographical distribution of these cities (Figure 3.1) covers areas with different

geographical features of the European continent such as latitude, distance from the

sea and altitude.
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Figure 3.1: Geographical distribution over the European continent of the cities compos-
ing the final dataset. The numbers refer to locations reported in Table 3.1.

Figure 3.2 (left) shows the percentage of stations located at different distances D

from the city centres, where more than 80% of the stations are placed at a distance

D ≤ 8 km. Rural sites exhibited a homogeneous distribution from 15 ≤ D ≤ 35 km,

while only a small percentage positioned between 9 and 15 km. Figure 3.3 depicts

an example of the spatial distribution of selected stations for the city of Berlin.

Figure 3.2 (right) contains the histogram of rural stations settled at various

height difference |∆H| from the city centre and shows more than 50% of the stations

attending the |∆H| ≤ 30 m of Martin-Vide et al. [63], while the more |∆H| increases,
the less the number of stations. Despite the abundance of rural stations with |∆H| >
30 m, the produced temperature difference did not significantly affect the following

analysis, which regarded the differences of UHI in presence and absence of heatwaves,

when this altitude effect was assumed to act likewise.

3.2.5 Method for Heatwaves Identification

The target of this study was the interaction between phenomena acting at differ-

ent scales, therefore to detect large-scale heatwave events a distinct dataset with

respect to that used for local scale UHI analysis was employed, in order to avoid su-
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Figure 3.2: Characteristics of meteorological stations employed: on the left histogram
of the distance D from city centres of urban (cyan) and rural (red) stations; on the right
histogram of the height difference ∆H of rural stations with respect to the city centres.

Figure 3.3: Example of distribution of the selected urban and rural meteorological sta-
tions for Berlin, distinguishing ECA&D in green and WMO in blue.

perposing the identification of the two phenomena. To determine the occurrences of

heatwaves, the methodology of Stefanon et al. [51] was reproduced, originally based

on gridded and multi-year datasets and applied specifically to the European conti-

nent. ECMWF Reanalysis 5th Generation (ERA5) dataset (Hersbach et al. [68])

was selected, which combines model results with observations and provides hourly

data on atmospheric, land-surface and sea-state parameters on regular latitude-

longitude grids at 0.25◦ x 0.25◦ resolution, comparable with gridded observational
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dataset (Cornes et al. [69]). This dataset was appropriate for this kind of study, as

suggested in Rousi et al. [70], also due to its applicability for developing heat-related

quality-checked products at local scale (Di Napoli et al. [71] and Berckmans et al.

[72]).

The adopted definition of heatwave was mentioned by Perkins [73] as an exam-

ple of a recent multi-criteria definition since it includes the constraints on spatial

and temporal extensions, expressly suitable for detecting large-scale phenomena and

useful for removing discontinuous and local events. In detail, for each ERA5 grid-

point daily temperature anomalies were evaluated with respect to the 2000-2019

climatology extracted from the ERA5 dataset. Extremely hot days were defined

when anomalies exceeded the upper 95th percentile (T95) of the local probability

density function, computed for each day d using the 21 days centred moving average

(d − 10 and d + 10) along the 20 summers of temperature data. The choice of the

95th percentile threshold was considered more appropriate than higher thresholds,

such as the 99th percentile, which would have excessively reduced the number of

detected events and the statistical significance of the analysis. On the other hand,

using lower thresholds as the 90th percentile could have allowed to include other

than extreme heat events. Each city reference gridpoint was selected as the nearest

to the coordinates shown in Table 3.1. To take into account the spatial extension

of heatwaves and to avoid considering isolated hot gridpoints, it was required to T95

threshold to be overcome in at least 60% of a square of side L = 1◦, namely a 5× 5

gridpoints matrix centred on the city reference gridpoint. If these two criteria were

satisfied for at least 3 consecutive days, all days in this time interval were labelled

as HeatWave days (HW). All days not considered HW days were defined Normal

Summer days (NO) as in Rasilla et al. [50]. To verify the reliability of the results,

other heatwave definitions involving different thresholds were examined. In particu-

lar, the definitions based on the temperature 90th percentile for 3 days persistence,

applied by Herbel et al. [74] and the definition used by Pyrgou et al. [75] based on

the 95th percentile but shifting the temporal threshold to 4 days, were tested.

3.2.6 Characteristics of Identified Heatwaves

The methodology presented in Section 3.2.5 identified from 1 to 10 heatwave events

for each city (Table 3.2).

Figure 3.4 shows the geographical distribution of heatwave properties across the

European cities, highlighting the average heatwave duration and the average inten-

sity. The latter describes the mean large scale temperature anomaly TAN during

heatwave events. The average heatwave duration for the 37 cities varied between 3

and 6 days, but for 28/37 cities it did not exceed 4 days. The heatwave intensity clas-
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Location Number of HWs Location Number of HWs

1) Aachen 7 20) Karlsruhe 7
2) Amsterdam 5 21) Leipzig 4
3) Antwerp 9 22) Lisbon 2
4) Athens 1 23) Ljubljana 5
5) Berlin 5 24) London 6
6) Bologna 3 25) Madrid 9
7) Bremen 7 26) Malmo 2
8) Brussels 10 27) Mannheim 6
9) Budapest 10 28) Munich 7
10) Catania 3 29) Nuremberg 8
11) Cologne 7 30) Paris 6
12) Copenhagen 3 31) Saarbrucken 6
13) Dresden 6 32) Stockholm 5
14) Dublin 2 33) Stuttgart 5
15) Frankfurt 7 34) Toulouse 4
16) Goteborg 3 35) Vienna 8
17) Hamburg 6 36) Zagreb 6
18) Hanover 7 37) Zurich 6
19) Helsinki 1

Table 3.2: Number of detected heatwaves for each location.

sification presented in Figure 3.4, often employed in marine HW studies (Oliver et

al, [76]), showed that 27% and 51% of cities experienced strong and severe intensity

events since 2000, respectively.

Figure 3.4: Geographic distribution of heatwave features for the analyzed cities: the dot
size indicates the average duration [days] of heatwaves detected, while the colour depicts
their average intensity.
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3.2.7 Methods of Analysis

The first part of the analysis investigated the different behavior of the UHI Index

during heatwaves and normal summer conditions from a statistical perspective, by

comparing the mean UHII during HW days (UHIIHW ) to the mean UHII during NO

days (UHIINO), calculating separately the case for nocturnal and for diurnal values.

The results for daytime exhibited negligible variations of UHII during HWs, while

considerable modifications were retrieved for nighttime UHII, so a detailed analysis

was focused on nocturnal UHII. A parametric test to reject the null hypothesis that

the two samples belonged to the same distribution was performed using a Welch

t-test (Welch [77]), reliable for two unequal sample sizes (Ruxton [78]). To compute

the t value, the effective sample size n′ estimated as in Wilks [79] was used:

n′ ∼= n
1− ρ1
1 + ρ1

, (3.2)

where n is the initial sample size and ρ1 is the lag-1 autocorrelation coefficient.

A test was conducted to assess the impact of intra-seasonal temperature varia-

tions on UHI in each city. This involved calculating the average intra-seasonal cycle

for a period of 20 years and then determining the daily UHII anomaly with respect

to the corresponding average intra-seasonal cycle for each city. Subsequently, the

characteristics of UHII anomalies obtained from this analysis were compared with

those of the previously described UHII. Also the modifications in frequency of posi-

tive UHII days during NO and HW were investigated, with the purpose to recognize

if the variations of mean UHII were only due to the alteration of UHII values or

they were also provoked by a modification of the percentage of days subjected to

the UHI effect. An analysis taking into account the local features regarding the

selected cities and related meteorological stations was conducted, involving the av-

erage altitude of the urban area, the population (associated to the city size), the

geographical position, the influence of the sea/ocean, the distance and the height

differences between urban and rural stations. In particular, the Pearson correlation

among UHII and these characteristics was explored. In addition, a specific analysis

was addressed to evaluate the influence of the morphology of the area surrounding

the urban stations, following the well-established local climate zone (LCZ) classifi-

cation (Stewart [80]). The LCZs are properly defined as zones of uniform surface

cover, structure, material, and human activity ranging from hundreds of meters to

several kilometers in the horizontal scale. The characteristic temperature regime of

each LCZ is connected with the homogeneous ecosystems of cities (e.g., parks, com-

mercial cores), natural biomes (e.g., forests, deserts), and agricultural lands. The

LCZs are distinguished according to the height and packing of roughness objects or
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the prevailing land cover, and they are usually separated in 17 standard classes (see

Figure 3.5). The common set is divided into built types 1–10, and land cover types

A–G, where built types consist of constructed features on a predominant land cover

which is generally paved or low plants/scattered trees respectively for compact and

for open regions.

Figure 3.5: Building and land cover types according to the LCZ classification system.
From Stewart et al. [81].
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For this study, the European LCZ map from Demuzere et al. [82] was employed,

which was created at a 100 m spatial resolution by experts in LCZ class labels

through the use of multiple earth observation datasets. After identifying the ap-

propriate LCZ for every urban station considered in the final dataset, a statistical

examination regarding the potential impact of LCZ on the UHI modification during

heatwave condition was performed.

Moreover, the possible dependence of the results on the Köppen-Geiger climate

zone (Geiger [83]) was investigated. The Köppen-Geiger system organizes climate

into 5 main categories (A tropical, B arid, C temperate, D continental, and E polar)

and all climates except for those belonging to the polar group are divided into

subgroups depending on the seasonal precipitation patterns (the second letter) and

on temperature features (the third letter), establishing a total of 30 sub-types based

on different threshold values (see Figure 3.6).

Figure 3.6: Koppen-Geiger climate zones map of Europe, which involves 29 of the dif-
ferent sub-types. From Peel et al. [84].

The re-analyzed Köppen-Geiger map with the high resolution of 5 arc minutes

using the downscaling algorithms described by Rubel et al. [85] was employed to

observe the climate zone of each considered city, and the UHII variations during

heatwave days were examined distinguishing the Köppen-Geiger climate classes.

The second part of the study concerned the UHII temporal evolution during

heatwave occurrences, also in relation to the behavior of large scale temperature

anomaly TAN computed with respect to T95. This analysis was inspired by Scott et

al. and the aim was to analyze the heatwave impacts on UHI more in detail with
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respect to the statistical investigation, observing shapes and possible shifts of the

signals. The focus was to examine the peak of UHI with respect to the maximum

intensity of the heatwave, and the behavior of UHI few days before and after the

heatwave occurrence. A standardization of UHII, urban/rural temperatures and TAN

by their climatological values (considering the period 2000-2019) was performed.

In particular, urban and rural temperature data (and their ∆T ) relative to the

same lag day i with respect to heatwave onset were averaged over the number of

heatwaves for each city, obtaining a mean value Ti. Then, these mean values were

standardized to scale the UHI modifications according to the different city features.

The standardized temperature T̃i referring to lag day i was calculated for every city

as

T̃i =
Ti − T

σTi

, (3.3)

where σTi
was the Ti-related standard deviation, and T was the 20 years climato-

logical value, including both HW and NO days. To identify possible temperature

spikes, a test through a moving average was accomplished: the temperature values

of each HW day d were determined by calculating the mean of the interval between

d − n · rHW and d + n · rHW , where rHW was the heatwave duration and n was an

integer set equal to 1,2 or 3, and then the results were compared to those previously

obtained.

The last part of the study was addressed at the evaluation of linear correlation

among different variables. The objective was to better understand the motivation

behind the variation of UHI during heatwaves and to compare the outcomes with

those of Scott et al. Specifically, the analysis consisted of evaluating the slope m of

the linear regressions

Tx = m · Ty + c, (3.4)

where Tx and Ty stand for the different combinations of T̃U , T̃R and T̃A, the latter

defined as the standardized environmental average temperature (TU + TR)/2, useful

to provide information about the conditions of the entire city area. Finally, the

relationship between UHI and temperature anomaly TAN intensities was calculated,

to assess the features of the correlation between these types of local and large-scale

phenomena.
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3.3 Results and Discussion

3.3.1 Statistical Analysis

The statistical behavior of urban heat island during NO days and HW days for

the 37 selected cities was analyzed. Despite the results for daytime urban heat is-

land revealed negligible variations of UHII during HW days compared to NO days,

assessing the absence of a synergistic influence of large-scale features on urban cli-

mate, on the contrary substantial modifications were observed regarding nighttime.

Therefore, the in-depth analysis was addressed specifically to nocturnal values. Fig-

ure 3.7(a) shows nocturnal UHIINO and UHIIHW values with the corresponding

standard deviation for each city, computed averaging respectively over NO and HW

days for the 20 summer period. The cities are sorted by the magnitude of UHIINO,

where some of them presented negative values, indicating that the adopted method-

ology did not sample the UHI effect for a subset of cities. However, excluding not

statistically significant results, only Copenhagen exhibited UHII < 0 values.

Focusing on the subset of 32 cities where a positive UHIINO was retrieved, it is

possible to notice that for 28 out of 32 the UHII increased during heatwave days.

The intensification was on average 0.7 ◦C (roughly 50% of the average magnitude

of UHIINO). The Welch t-test revealed that 18 out of 28 cities presenting UHII

increment provided statistically significant results with a confidence level p = 0.05,

while 10/28 did not (p ≥ 0.2). Moreover, the test described in Section 3.2.7 re-

garding the potential influence of intra-seasonality established that UHII values

did not depend on intra-seasonal variability. Indeed, the comparison between the

intra-seasonal cycle daily anomaly of UHII with respect to the UHII previously

computed produced negligible variations.

Figure 3.7(b) shows the HW-NO percentage difference of days with positive UHII

values. Here, 25 of the 32 cities with UHIINO > 0 exhibited an increase in per-

centage, and 18/25 were statistically significant. The amplification of UHII and

percentage of days appeared slightly linearly correlated, in fact the Pearson corre-

lation coefficient was estimated about 0.5. This Figure was helpful to understand

the contribution of UHII > 0 frequency to the intensification during heatwaves.

In particular, in Figure 3.7(b) it is possible to distinguish 3 groups with differ-

ent behaviors. The left side of the graph (from Copenhagen to Toulouse) contains

cities having negative or zero UHIINO and irregular variations in the percentage.

The central area (with few exceptions as Mannheim) includes locations exhibiting

relatively small UHIINO values, but UHIINO > 0 percentage undergoing large in-

crement for days with UHIIHW > 0, meaning that UHI exacerbation was due to
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Figure 3.7: (a) Mean and standard deviation of nighttime UHII values for each analyzed
city (blue dots indicate UHIINO and red dots UHIIHW ). The numbers between paren-
theses represent the statistical significance, and filled dots refer to results with significance
> 95%. (b) Difference between HW and NO of the percentage of days with positive UHII.
The numbers between parenthesis are the percentages during HW and NO.
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a higher frequency of positive UHI nights. The right side (from Frankfurt onward)

shows cities presenting high UHIINO values, and a UHIINO > 0 percentage close

to 100% which did not experience substantial modifications during heatwaves, sug-

gesting that the primary cause of UHI exacerbation were larger UHII values, rather

than higher frequency of UHII > 0 days.

To observe the impact of different heatwave definitions on the obtained results,

the analysis of Figure 3.7(a) was reproduced modifying the temperature and dura-

tion thresholds in heatwave detection (as Herbel et al. and Pyrgou et al.). Observing

Figure 3.8, the outcomes showed slightly different results, e.g. in Figure 3.8(b) there

are 4 missing locations due to the more restrictive heatwave definition, but the be-

havior was the same retrieved with the adopted Stefanon et al. methodology for all

the statistically significant cities. Indeed, the obtained results confirmed the incre-

ment of nocturnal UHII for all significant locations with positive UHIINO, assessing

the independence of the analysis from heatwave definition.

The characteristics of selected cities and stations were analyzed to detect com-

mon features between locations showing similar changes in the UHII between HW

and NO days. Linear Pearson correlations between UHII values and several variables

were calculated, including urban altitude, population, latitude, longitude, distance

from the sea, urban-rural stations |∆H| and urban-rural stations distance D (Figure

3.9). Nonetheless, no significant correlations were retrieved (Pearson coefficient al-

ways smaller than |0.36|). Small correlation between UHII and urban-rural stations

∆H confirmed the possibility to extend the ∆H ≤ 30 m threshold proposed by

Martin-Vide et al. without noticeably affecting the analysis. Also the poor correla-

tion between the computed UHII and the urban-rural station distance D suggested

the possibility to modify this parameter without impacting the results.

The analysis regarding the contribution of different LCZs to the variation of

UHI during heatwave periods began with the identification of the LCZ classes for

the urban stations considered in the dataset. In this regard, it is important to note

that only 7 out of the 17 total LCZ classes were involved. In particular, as concerns

the built types, LCZ2 compact midrise, LCZ3 compact low-rise, LCZ5 open mid-rise,

LCZ6 open low-rise, LCZ8 large low-rise were included, while the two land cover

types LCZA dense trees and LCZB scattered trees were combined into a new LCZP

class (following the definition of Zong et al. [86]), which referred to the stations

placed inside urban parks regardless of the density of vegetation. In order to isolate

the individual contribution of different LCZs, a nocturnal UHII was computed for

every single urban station as the difference between the temperature measured by

that urban station and the average rural temperatures, namely
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Figure 3.8: Similar to Figure 3.7(a), sensitivity tests modifying the definition of heat-
wave: (a) Definition based on the temperature 90th percentile and the 3 days persistence
thresholds, as Herbel et al. (b) Definition based on the temperature 95th percentile and
the 4 days persistence thresholds, as Pyrgou et al.
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Figure 3.9: Heatmap of correlations among the characteristics of the analyzed cities.

UHIILCZ = TU − TR. (3.5)

The UHIILCZ was calculated distinguishing HW and NO days, and Figure 3.10

shows the distribution of the average UHII variation over the 20 years period of data

for each urban station, grouping the results based on the LCZ.

The morphology of areas enclosing urban stations appeared to slightly impact

the behavior of UHI during heatwaves. Although the mean values of UHIIHW −
UHIINO resulted similar among the LCZs (ranging from 0.4 to 0.9 ◦C), by observing

the distribution of values it was noticeable how LCZ2, associated with the highest

density of midrise buildings, exhibited a more exacerbated UHII difference between

HW and NO periods than other LCZs. This was in agreement with other studies re-

lated to Asian cities such as Ngarambe et al. [64] and Tian et al. [87], and it was due

to the larger capacity of concrete and steel in LCZ2 to store heat in the urban canopy

layer during the day and then releasing it at nighttime to warm the environment.

LCZ3, LCZ5 and LCZ6 showed comparable outcomes, while UHIIHW − UHIINO

values related to LCZ8 described a small increment. Moreover, no substantial miti-

gation effect on the UHI phenomenon was generated by the predominantly vegetated

land cover of LCZP, reporting similar values to the built type classes.
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Figure 3.10: Distribution of the average UHII variation during HW and NO days for
the various LCZs of the analyzed cities. The blue diamonds show the mean value for each
LCZ, the red lines represent the median, while the bottom and top edges of the boxes
indicate the 25th and 75th percentiles, respectively.

The investigation about the dependence of UHII values on the Köppen-Geiger

classification started with the identification of the appropriate climate zone for each

selected city. A low variability of climate zones was found, in fact 35 out of 37

cities belonged to the temperate macro-class, in particular 30 to temperate oceanic

climate CFB, 4 to hot-summer Mediterranean climate CSA and 1 to humid subtrop-

ical climate CFA, and for 2 the macro-class was continental (warm-summer humid

continental climate DFB). The UHII variations during HW days distinguishing the

4 categories of climate zones were examined (Figure 3.11).

Although almost all the selected cities belonged to the same CFB class, they

exhibited different behaviors, with values of UHII modification ranging from negative

to highly positive. It was therefore difficult to retrieve a common feature depending

on the climate zone. Only the CSA class revealed similar outcomes, showing a

substantial increase in all 4 cities involved. However, the statistics were too poor

to make solid assessments and to retrieve reasonably exhaustive conclusions. The

results were also compared to those retrieved by Scott et al. for USA cities, with the

purpose to search for common or contrasting features depending on climate zones.
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Figure 3.11: Geographic distribution of UHIIHW −UHIINO difference for all the ana-
lyzed cities. The colors represent the 4 Köppen-Geiger categories involved.

In this regard, the geographic distribution of values of temperature variations ∆T

during heat days provided by their study was observed. Even in their case the

outcomes did not demonstrate a clear dependence on the climate zone, because

each region of USA exhibited significantly different ∆T values. For example, the

North-West continental climate area showed both positive and negative ∆T even in

adjacent locations. Only the West Coast, belonging to the temperate climate zone

(mostly CSA and CSB categories), revealed a common behavior (except one city)

with considerably negative ∆T . This was remarkably in contrast with the results of

the present study for European cities corresponding to temperate climate zones.

3.3.2 Temporal Evolution

After the study about the statistical UHII variations between NO and HW peri-

ods, the temporal evolution of nighttime temperatures and UHII during heatwave

events was analyzed. Figure 3.12 depicts the results obtained for urban and rural

temperature standardized as described in Section 3.2.7 and their ∆T (representing

the urban heat island) from 10 days before to 14 days after the first day of heatwave

occurrence, retrieved by averaging over the 32 cities with a positive UHIINO.

Both urban and rural temperature (Figures 3.12(a) and 3.12(b)) showed a sym-
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(a) Urban Temperature (b) Rural Temperature

(c) Urban-Rural ∆T (d) Temperature Anomaly

Figure 3.12: Temporal evolution during heatwave events averaged over the selected
cities: (a) the standardized urban temperature, (b) the standardized rural temperature,
(c) the standardized urban-rural ∆T and (d) the standardized large-scale temperature
anomaly with respect to T95. The black dashed lines represent the mean value obtained
averaging on cities which exhibit positive UHI effect, while the green area is the standard
deviation.

metrical evolution, gradually increasing from day 0, reaching the peak around day

3-4 and then diminishing, but with significant differences. Noticeably relevant was

the discrepancy between the two maximum values of TU and TR, indicating that a

few days after the heatwave occurrence the urban temperature tended to amplify

more than rural temperature, reaching higher absolute values. Observing the trend

of the two curves before and after the peaks, it is also evident that urban temper-

ature began to grow before the rural, even a few days before the development of

the heatwave, and then it required more days to stabilize around the climatological

mean. These curves were also reproduced modifying the temporal definition of heat-

wave, extending the 3 days threshold to 4 and 5 days. The asymmetric behavior

of UHI was confirmed, so the results were found to be qualitatively independent
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from the methodology. The evolution of standardized mean urban-rural ∆T (Fig-

ure 3.12(c)) confirmed the intensification of UHI during HW days, with an evident

growth starting before the heatwave onset and reaching its maximum 3 days after

day 0. To quantify the possible impact of anomalous spikes in temperature values,

the test through running average described in Section 3.2.7 was conducted. Even

with these modifications, the results demonstrated a similar behavior as that in

Figure 3.12(c), describing an amplification in UHI few days before the onset of the

heatwave. This asynchronicity between the evolution of the HW and its imprint on

the UHI was also retrieved in Richard et al. [37], where maximum UHI occurred be-

fore or during the first few days of extreme warm weather, and they used it to prove

the absence of temporal correlation between UHI and heatwaves. However, in this

study Figure 3.12(d) allowed to put this result in a different context, representing

the standardized mean large scale TAN during HW periods. Here, it is notable that

the raise of ∆T began simultaneously with the increase in TAN , namely almost a

week before the heatwave onset. Then, during the first days of heatwave, when the

maximum values of temperature anomaly were reached, also the UHI-related ∆T

experienced an enhancement.

3.3.3 Correlation Analysis

To facilitate the comparison with Scott et al., the correlations between T̃U , T̃R and

the environmental temperature T̃A were calculated. Figure 3.13 shows the linear

regressions between these three quantities referring to the time interval ranging from

10 days before to 14 days after the heatwave onset, considering the mean values for

each of the 32 cities with a positive UHIINO. The obtained slope greater than 1 in

Figure 3.13(a), indicating that T̃U increased more than T̃R during warmer conditions,

confirmed for this study the exacerbation of UHI during heatwave events, contrarily

to Scott et al. Moreover, Figures 3.13(b) and 3.13(c) were useful to evaluate the

role played by the different variables involved. In particular, the results showed that

while urban temperatures warmed at the same rate as environmental temperatures

(slope m = 1 for the regression between T̃U and T̃A), rural temperature increased at

a slower rate (slope m < 1 for the regression between T̃R and T̃A). From this analysis

emerged that UHI intensified under heatwave conditions due to different response of

rural areas with respect to urban zones, the former being more resistant to heating

than the latter. Although the results appeared in contrast with those reported by

Scott et al., it is important to mention that their study referred to generally warm

meteorological conditions, regardless of the occurrence of heatwave events.

The analysis of the relationship between large-scale temperature anomalies and
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Figure 3.13: Linear regressions between standardized mean temperatures during heat-
waves: (a) TU versus TR, (b) TU versus TA and (c) TR versus TA.
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local scale UHI revealed a smooth and continuous correlation, but a large variability.

In particular, Figure 3.14 shows a binned scatter plot between large scale TAN and

nighttime urban-rural ∆T including all data during both NO and HW days for the

32 cities with UHIINO > 0. The black dots concern HW days exhibiting the peak

of UHI averaged for each city.
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Figure 3.14: Binned scatter plot between large scale TAN computed with respect to T95

and nocturnal urban-rural ∆T , including all data during both NO and HW days relative
to 32 cities with UHIINO > 0. Each black dot refers to HW days showing the maximum
UHI values for a single city, averaged over the total number of heatwaves.

An increasing trend of ∆T with growing temperature was noticeable, verifying

that UHI effect was exacerbated depending on temperature intensity. However, the

lack of a threshold behavior in this relationship suggested that large-scale tempera-

ture variability could affect UHI at local scale not only during extreme events. The

black dots revealed that the UHI peaks of ∼ 2◦C lied in a range around TAN = 4◦C,

but the highest values of UHI were found for lower values of TAN (about 0◦C). This

indicated that the behavior of UHI was partially linked not only to temperature

magnitude, but also to the duration of extreme heat conditions. In fact the greatest

∆T regarded even NO conditions, events not sufficiently hot or prolonged to be

considered heatwaves. Moreover, an almost symmetrical behavior of UHI minima

and maxima at TAN = −10◦C and 0◦C is observable.
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3.4 Comparison with UrbClim Model Products

3.4.1 The UrbClim Model

The UrbClim model (De Ridder et al. [88]) was developed to scale large-scale me-

teorological conditions down to local scale and to retrieve the influence of urban

topography on the weather parameters. It is composed of a land surface scheme

describing the physics of energy and water exchange between the soil and the atmo-

sphere in a urban area, coupled to a 3D atmospheric boundary layer module. The

urbanization is accomplished by expressing the urban surface as a rough imperme-

able slab, with opportune values for the albedo, emissivity, thermal conductivity

and volumetric heat capacity. Every surface grid cell is considered composed of a

mixture of vegetation, bare soil and urban land cover, each type of land cover hav-

ing a distinct energy/water balance. Moreover, the model takes into account the

information about anthropogenic heating in urban grid cells. This surface scheme

generates as outputs the turbulent fluxes of sensible and latent heat and momentum,

which are then required as lower boundary conditions for the atmospheric boundary

layer module. This module consists in a simple 3D model of the lower atmosphere,

including the atmospheric boundary layer with an extension of a few kilometers al-

titude which describes the conservation equations for horizontal momentum, poten-

tial temperature, specific humidity and mass, while the pressure field is provided by

the large-scale driving model. The atmospheric conservation equations are solved

through a finite difference scheme, while the surface fluxes are generated by the

land surface scheme, and the top values are interpolated from the large-scale driv-

ing model. Despite the primitiveness of some of its calculation procedures, UrbClim

is proven to be of the same level of accuracy as more refined models, and it requires

an inferior computational cost than high-resolution mesoscale climate models mak-

ing it suitable for long time integrations. Generating hourly outputs at high spatial

resolution (100 m), the model has been subjected to extensive validation for various

European cities, and it was considered functional to produce comparisons with the

previously presented outcomes related to observational data.

3.4.2 Methodology

Copernicus Climate Change Service (C3S) provides the UrbClim model outputs of

2 m temperature and the rural-urban mask obtained from Corine Land Cover CLC

2018, over a time period of 10 years (2008-2017) (Hooyberghs et al. [61]). The

purpose of this analysis was to complement the results obtained about the UHI-
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heatwave interaction, evaluating the data calculated by the model for urban areas

in presence and in absence of heatwaves. In particular, 4 cities which revealed statis-

tically significant results and representative of the different Köppen-Geiger climate

zones identified in Figure 3.11 were selected, namely Bologna for CFA, Madrid for

CSA, Frankfurt for CFB and Stockholm for DFB. For each city the UHI modifica-

tion was analyzed distinguishing the 10 years climatology of C3S temperature data

and the average values during heatwave events retrieved through the methodology

described in Section 3.2.5. Specifically, also in this case urban and rural minimum

daily temperatures were employed as a reference for nocturnal UHI, and the spatial

pattern of the phenomenon was observed. The rural-urban mask of CLC 2018 was

used to distinguish urban and rural zones.

3.4.3 Results and Discussion

Figures 3.15 and 3.16 show the 2 m temperature patterns distinguishing the 10-years

summer climatology and the heatwave days respectively for Bologna and Madrid,

and for Frankfurt and Stockholm. The temperature values were normalized by

subtracting the average over the domain area in order to facilitate the comparison

among the results of different cities.

Considering the case of Bologna, the distinction between urban and rural temper-

ature was evident. The higher temperature values in areas related to the urban land

cover with respect to the surrounding rural ones, according to the C3S rural-urban

mask, revealed a notable UHI effect (∼ 1.5◦C) during summer (Figure 3.15(a)).

During heatwaves, the UHI exhibited an exacerbation both in the intensity and in

the spatial distribution. Indeed, Figure 3.15(b) shows UHI ≥ 2◦C over a wider

zone of urban center. Also, the contrast between Southern and Northern rural ar-

eas was notable, the former being placed over a mountainous zone and therefore

producing a significantly larger temperature difference with respect to the urban

center. The outcomes related to Madrid were similar, describing a pronounced UHI

phenomenon in summer (Figure 3.15(c)) which underwent an intensification during

heatwave days (Figure 3.15(d)). Also in this case the rural region located near the

mountainous zone (North) exhibited a more considerable UHI effect. Compared to

Bologna, the UHI values for Madrid appeared slightly weaker. Moreover, another

difference emerged by considering the classes of CLC 2018: while the discontinuous

urban fabric was the land cover category which manifested the larger UHI increment

in Bologna, the industrial or commercial units category was the most affected in

Madrid.

The results for Frankfurt (Figure 3.16(a) and (b)) were analogous to the previ-

ous ones. However, the enhancement of UHI appeared more homogeneous across the
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(a) (b)

(c) (d)

Figure 3.15: Temperature in summer (a), (c) and during heatwave days (b), (d) for
Bologna and Madrid. The values are normalized with respect to the average over the
domain area.

entire urban region, independent of the CLC classes involved. As for Bologna and

Madrid, the temperature differences considerably varied across the regions surround-

ing the urban center, with substantial modifications depending on the topography.

The results regarding Stockholm were moderately different. Indeed, the summer

temperature gradient between urban and rural areas (Figure 3.16(c)) was found to

be inferior compared to the other examined locations, and also the UHI enhance-

ment during heatwave days (Figure 3.16(d)) was less evident, about ∼ 0.5◦C. A

possible explanation of the low UHI intensification could be provided by the pe-

culiar structure of Stockholm, which is surrounded by rivers and waterways whose

effect is proven to mitigate the UHI effect (Hatway et al. [89]).

Generally, the results obtained in the study through observational data and

showed in Figure 3.7(a) were confirmed. The UHI effect was found to intensify

during heatwaves in all the 4 investigated cities, with a ∼ 1◦C increment with respect
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(a) (b)

(c) (d)

Figure 3.16: Temperature in summer (a), (c) and during heatwave days (b), (d) for
Frankfurt and Stockholm. The values are normalized with respect to the average over the
domain area.

to the surrounding rural areas. A strong variation of UHI values depending on

the rural reference area was noticed, supporting the appropriateness of the adopted

criteria for the selection of correct stations in the observational study. No significant

differences were retrieved among cities belonging to distinct Köppen-Geiger climate

zones. Only Stockholm produced an UHI exacerbation less significant compared to

other cities, but the reason was attributed to its peculiar topography, characterized

by several water bodies.

3.5 Synthesis of the Main Results

In the first part of the thesis, the relationship between heatwave and urban heat is-

land was investigated. To this end, the daily maximum and minimum temperature

records (for diurnal and nocturnal UHI, respectively) measured by meteorological
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stations in 37 European cities were examined by distinguishing heatwave days from

not-heatwave days during the summers from 2000 to 2019. A methodology that

allows to select appropriate urban and rural stations was adopted, considering dif-

ferent characteristics of the station site such as altitude, distance from the city centre

and land cover. The UHI magnitude was quantified through the Composite UHI In-

dex (UHII), designed to reduce the role of site-specific variability, while a heatwave

was defined as a persistent large-scale temperature anomaly diagnosed in reanalysis

data.

For the majority of examined cities the nocturnal UHII featured a positive clima-

tological mean that increased during heatwaves on average by 0.7 ◦C. The analysis

of the frequency of days with significantly positive UHII allowed to distinguish be-

tween cities where the UHII enhancement was attributed to more days subjected

to UHI effect and to more intense UHII values. The analysis of the temporal evo-

lution of UHII during heatwave periods highlighted that the intensification of the

UHII was explained by a larger and more persistent increase of urban temperature

with respect to rural during a heatwave. The intensification peaks were found at

about 1.3 ◦C, three days after the heatwave onset, but notably the increment of

urban-rural temperature difference started to strengthen even one week before the

heatwave peaks, suggesting that the meteorological conditions of clear-sky and weak

winds on the days preceding the heatwave can be also responsible of positive UHI

anomalies. The analysis of the relationship between large-scale temperature anoma-

lies and UHII revealed a smooth and continuous relationship between large scale

temperatures and UHII, but a large variability. The lack of a threshold behavior in

this relationship suggested that large-scale temperature variability can affect UHI at

local scale not only during extreme events. A comparison with the outputs provided

by the numerical model UrbClim was performed for 4 representative European cities,

confirming the evidence of a synergistic interaction between the nighttime UHI and

heatwaves independent of the climate zone.
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Chapter 4

Concepts of Drought

Drought is acknowledged as a heat-related environmental hazard with catastrophic

impacts on several ecosystems. It can take place in all climatic zones and areas

around the world, since it deals with the decrease in the amount of collected precip-

itation during a protracted period, from days to years. Among the other features,

the time scale of drought differentiates it with respect to aridity, which is a perma-

nent feature describing only low rainfall areas, and with heatwaves whose duration

is usually of the order of a week. The variables involved in the characterization of

drought are numerous, ranging from temperature, wind, humidity, and rain distri-

bution, making it a complex phenomenon to analyze (Mishra et al. [90]).

Contrarily to other extreme weather events such as earthquakes or hurricanes,

the onset of drought is gradual, and the severity worsens over time. When a drought

occurs, it can last for long periods with effects lingering even for decades. The water

shortages caused by the lack of precipitation make drought one of the most dangerous

weather hazards. Indeed, about 55 million people are globally affected by droughts

each year, and these phenomena contribute to further aggravate the issues related to

water scarcity, which already impacts 40% of the world’s population. Additionally,

more than 700 million people are estimated to be at-risk of displacement by 2030

due to drought occurrences (World Health Organisation [91]), and on top of that

droughts are projected to be larger in frequency and intensity with every additional

increment of global warming (see Figure 4.1).

4.1 Definitions of Drought

The different hydro-meteorological and socioeconomic characterization of various

areas across the globe, together with the stochastic nature of water demands, make

complicated to provide a unique definition of drought. In addition, depending on
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Figure 4.1: Projected changes in agricultural and ecological droughts in drying regions.
From Masson-Delmotte et al. [1].

the variable used to describe the phenomenon of interest, drought definitions can

change. For example, the World Meteorological Organization [92] defines drought as

”a sustained, extended deficiency in precipitation”, while the Food and Agriculture

Organization of the United Nations [93] designates a drought hazard as ”the per-

centage of years when crops fail from the lack of moisture”. It is therefore evident

that these two definitions refer to different aspects of the drought event, one related

to its generating mechanism and the other concerning its impacts on the soil. In

this regard, Wilhite et al. [94] classified the definitions in terms of four attitudes to

detect droughts: meteorological, hydrological, agricultural and socioeconomic. The

first three approaches treat drought as a physical phenomenon, whereas the last one

focuses on the effects of water shortage on the socioeconomic systems. In detail:

• Meteorological drought is what usually originates when a precipitation deficit

occurs in a certain area. It depends on the level of dryness and the duration
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of the dry period with respect to standard climatological conditions. Owing

to the variability of atmospheric conditions in different zones, the resulting

deficiencies of precipitation are highly dissimilar from area to area, so gen-

erally the validity of meteorological drought definitions is limited to a fixed

region. For example, some definitions establish drought periods according to

the number of days with precipitation inferior to a determined threshold. This

kind of methodology can be only applied to regions characterized by a yearly

precipitation regime, such as humid mid-latitudes climate, while for areas with

seasonal rainfall patterns and protracted periods without rainfall it can be not

appropriate. For this reason, other definitions have been developed based on

actual precipitation variations with respect to average amounts on monthly,

seasonal or even annual time scales;

• Agricultural drought refers to agricultural impacts of droughts induced by

precipitation shortages, that is to say the effects on evapotranspiration, the

soil water deficits, the diminution of groundwater, and so on. In particular,

the focus of this definition is mainly about the characteristics of croplands

and agricultural terrains, which strongly depend on water supply and on the

properties of the soil. A precise definition of agricultural drought should be

capable of taking into account the susceptibility to precipitation deficit of

crops according to soil moisture, considering also that agricultural droughts

are usually out of phase with or delayed with the occurrence of meteorological

droughts;

• Hydrological drought is connected with the repercussions of prolonged lack

of precipitation on surface and subsurface water supply, including streamflow,

reservoir and lake levels, and groundwater. Even though all kinds of drought

arise from a precipitation deficit, the necessity of this definition comes from

the peculiar interest about the role of the hydrologic system. Indeed, as agri-

cultural droughts, even hydrological ones often exhibit a lag with respect to

the onset of meteorological droughts because it takes a longer time for precip-

itation shortage to impact the components of the hydrological process. The

significance of this kind of drought is noticeable since it can eventually compli-

cate the management of water usage in hydrologic storage systems dedicated

to multiple purposes, such as flood control, irrigation, hydropower, and so on;

• Socioeconomic drought definitions derive from the link of the other types

of droughts with the supply and demand of some economic assets. Since it is

not directly associated to a physical driver, it differs from the aforementioned

kind of drought and depends on the temporal and spatial processes of the
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economic evolution. To assess the occurrence of socioeconomic drought it is

necessary to have a greater demand than the supply for an economic good

related to weather-related shortage. Therefore, it is the ratio between demand

and supply, and more precisely their relative rate of change, that gives place to

this kind of drought. Commonly, the demand for water-related economic goods

can increase in line with population growth, and the development or not of

socioeconomic drought depends on the correlated improvement of production

efficiency, of technology, and overall of the quality of storage surface water.

Nowadays, also a new definition is catching on, namely ecological drought (Craus-

bay et al [95]). Since an episodic deficit in water availability can lead the ecosystems

to overcome the thresholds of vulnerability, can impact ecosystem services, and can

trigger some feedbacks in natural and human systems, this term has been developed

to take into account all these environmental consequences. In particular, ecological

droughts consider aspects from various points of view such as losses in plant growth,

increases in fires, altered rates of carbon, and water cycle.

4.2 Drought Propagation and Indices

The various drought types appear to be strongly connected with each other, mutu-

ally influencing in a direct or indirect manner. Firstly, drought generally originates

from precipitation deficits, which define meteorological droughts, and then propa-

gates through the hydrological cycle. Through this process, other factors than the

lack of precipitation acquire relevance, such as the high vapor pressure deficit and the

enhanced atmospheric evaporative demand. This leads to soil moisture deficits that

affect plants and cultivated terrains, generating the agricultural droughts. The di-

minished soil moisture and evapotranspiration can be then responsible of low runoff

and streamflow on the surface or reduced groundwater in the subsurface, producing

the hydrological droughts. In turn, the impacts caused by these kind of droughts can

deplete the water resources, and ultimately affecting human society when the water

supply is insufficient to meet the water demand, resulting in socioeconomic droughts.

At the same time, the considerable effect induced by droughts on environmental sys-

tems, like forests or aquatic systems, can be accountable of ecological droughts. The

entire process regarding the evolution of anomalous hydro-meteorological quantities

through the interdependent terrestrial hydrological cycle, outlined in Figure 4.2, has

been conceptualized by using the term drought propagation (Van Lanen et al. [96]).

A quantitative technique has been adopted for comparing different kinds of

drought in various regions across the globe. In particular, the development of drought

indices has played a fundamental role in the contribution to measure these kinds
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Figure 4.2: Diagram showing the sequence of drought occurrence and impacts of the
drought types linked with physical drivers. From Wilhite et al. [97].

of phenomena, and because of their complex mechanisms, several indices have been

formulated to appropriately capture drought characteristics. According to Friedman

[98], a drought index should be formulated by following these four basic criteria:

1) Its time scale, or reference period, should be adequate to the investigated

problem;

2) It should be a quantitative measure of large-scale, persistent drought condi-

tions;

3) It should be applicable to the examined phenomenon;

4) A long and precise past record of the index should be available or at least

estimable.

Since different systems exhibit distinct response times to the accumulated pre-

cipitation deficits, drought impacts have a multi-scalar nature. For this reason, to

compare drought conditions across different temporal and spatial scales, standard-

ized drought indices have been developed over the years, with different methodolo-

gies and purposes. There is not a specific index universally performing better than
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others, so for selecting the most appropriate for the purpose of a study, it is fun-

damental to take into account various aspects such as the capability to identify the

spatio-temporal characteristics of droughts in the region of interest and the primary

features of the drought index, as the calculation technique, the input variables,

and general advantages and weaknesses. Regarding the detection of meteorolog-

ical droughts, one of the most employed is the Standardized Precipitation Index

SPI (McKee at al. [99]), due to its computational and interpretative simplicity, its

robustness, its multi-scalar nature, the possibility of being easily compared across re-

gions subjected to considerably different climates, and especially because it requires

only precipitation as input data. By contrast, the Palmer Drought Severity Index

PSDI (Palmer [100]), mostly used to monitor long-term droughts, can take into ac-

count the potential reduction of moisture due to temperature influences (i.e. the

effect of evapotranspiration), so it is opportune in a context of warming environment.

However, the main disadvantage is the complexity of its calculation and evaluation,

together with its temporally invariant nature. Another index, the Standardized Pre-

cipitation and Evapotranspiration Index SPEI proposed by Vicente-Serrano et al.

[101], has been recently developed for the study of meteorological droughts, whose

formulation follows that of the SPI, but combined with the reference of evapotran-

spiration, like the PDSI. Therefore, it comprises both the multiple advantages of

the SPI and the better accuracy in considering the global warming given by the

inclusion of evapotranspiration. Other relevant examples of meteorological drought

indices are the Effective Drought Index EDI (Byun et al. [102]), which can identify

the onset and end of water deficit periods with high precision since it is based on

daily precipitation inputs, and the Drought Reconnaissance Index DRI (Tsakiris

et al. [103]), based on the ratio between precipitation and potential evapotran-

spiration at different time scales and therefore sensitive and suitable in cases of a

changing environment, similarly to the SPEI. Regarding agricultural droughts, the

Standardized Soil Moisture Index SSI (Hao et al. [104]) is one of the most simple

and adopted indicators. It treats the soil moisture analogously to how SPI uses

the precipitation, namely considering the accumulation across different time scales

with respect to the corresponding climatology. Also the Soil Moisture Deficit Index

SMDI, introduced by Narasimhan et al. [105] and based on weekly data of soil wa-

ter in the root zone (100 cm of depth), has been frequently selected for identifying

short-term droughts affecting agriculture. Other more elaborate indices have been

lately created to deal with the effects of agricultural droughts. For example, the

Multivariate Standardized Drought Index MSDI (Hao et al. [106]) uses as inputs

monthly precipitation and soil moisture data, so it is helpful for the identification

and monitoring of drought in cases where the lack of rainfall and the subsequent
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dehydration of soil are the major contributors. To investigate hydrological drought a

widely adopted index is the Standardized Streamflow Index SSFI (Modarres [107]),

developed using monthly streamflow values and the standardization method associ-

ated to the SPI, and helpful to monitor the hydrological conditions at multiple time

scales. Similarly, also the Streamflow Drought Index SDI (Nalbantis et al. [108]) is

often employed, exploiting monthly streamflow values and a historical time series for

the reference stream gauge to identify hydrological drought events. The analysis of

the relationship between distinct types of drought detected through these different

kinds of indices furnishes the basis for understanding drought propagation.
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Chapter 5

Analysis of Drought Propagation

over the Iberian Peninsula

5.1 Purpose

Since the effects of precipitation deficits appear in different systems at distinct time

scales, drought is defined as a multi-scalar phenomenon (McKee et al. [109]). Involv-

ing mechanisms at multiple scales, the drought signal propagates in the water and

energy cycle through a multitude of processes. The first transition generally occurs

from the meteorological to the agricultural drought according to the response of soil

moisture or crop yield to various meteorological variables, such as precipitation and

evapotranspiration. Indeed, the combined effect of water shortage due to a lack of

precipitation and the enhanced atmospheric evaporative demand can be responsible

of a significant depletion of soil moisture, and therefore lead to agricultural drought

events.

Presently, studies on the propagation from meteorological drought to agricultural

drought are rare, and more investigations are necessary to deeply understand the

propagation characteristics. In a recent review, Zhuang et al. [110] highlighted

the most crucial aspects regarding this kind of drought propagation which require

further studies. The first one deals with the concurrence of multiple driving factors

in drought generation. In particular, since commonly only soil moisture (Xu et al.

[111]) or soil water deficit (Zhou et al. [112]) and agricultural reservoir levels (Bae et

al. [113]) are taken into account, the conjoint contribute provided by soil moisture,

evapotranspiration and precipitation to the development of agricultural droughts

is not completely comprehended. Accordingly, as suggested in previous studies,

the development and application of new multi-variate indices (Vicente-Serrano et

al. [101]) could be helpful in shedding light on the complex relationships between
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meteorological and agricultural drought. Also, for the analysis of propagation from

meteorological to agricultural drought it is appropriate to employ high resolution

and long-term data, as highlighted by Li et al. [114], in particular as concerns soil

moisture which can be obtained through three major sources: in-situ observations,

remote sensing, and hydrological models. The majority of studies based on in-situ

observations involve measuring soil moisture levels at different depths across the

globe using various soil moisture networks, but this approach has limitations as

the observations are relatively short (Quiring et al. [115]) and unevenly distributed

(Zhu et al. [116]), or may be unavailable in some isolated areas. Remote sensing

products have been preferred in some studies (Tian et al. [117]) since they provide

better spatial coverage, but they appeared insufficient because they only cover a

few centimeters of soil, while soil moisture from hydrological simulations has been

found to be possibly affected by discrepancies compared to in-situ data (Xia et

al. [118]). Therefore, more studies combining and evaluating different datasets are

needed. Note that variations in vegetation health and/or cover may be due not only

to rainfall or soil moisture deficits, but also to other stress factors, such as plant

diseases. In this sense, indicators of vegetation stress and information on the deficit

of precipitation and soil moisture must be considered together.

Bearing in mind these considerations, the present study attempted to fill the

evidenced research gaps related to the study of agricultural droughts and particu-

larly to the propagation from meteorological droughts. The purpose was to analyze

an adequately selected multi-annual dataset containing multiple drought events in

order to characterize the meteorological and agricultural drought with a sufficiently

wide spectrum of information. The study involved diverse kinds of standardized

drought indices, ranging from uni-variate to multi-variate indices considering var-

ious physical quantities, together with a suggestion for a new combined index, in

order to consider the contribution provided by different factors to the phenomenon

of drought propagation. The entire analysis was carried out over the well recognized

drought hot spot of Iberian Peninsula (IP) (Figure 5.1), a Mediterranean region

with a highly variable rainfall regime, that has presented recurrent droughts and a

significant tendency towards more arid conditions in the last decades (Pàscoa et al.

[119]).

5.1.1 The Iberian Peninsula Hot Spot

The spatial patterns of droughts are complex, because the variability of conditions

between adjacent locations can be high. Indeed, it is easy to find an area subject

to drought while neighbouring regions feature a normal or even wet environment.

Different spatial characteristics of droughts are mainly detectable in climatic tran-
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Figure 5.1: Location of the Iberian Peninsula within the Mediterranean sector. It in-
cludes the continental areas of Spain, Portugal and Andorra.

sition areas, where atmospheric influences are heterogeneous. A notable example of

this kind of zones is the Iberian Peninsula (IP), which is located between temperate

and subtropical climates and it is subjected to a large variability of precipitation

caused by diversified atmospheric patterns. Studies demonstrated that droughts

have been severe and long in the IP during the years (Mart́ın-Vide et al. [120]), and

that this phenomenon has produced strong effects in ecosystems with related social

and economic impacts. In the IP, agricultural droughts have produced substantial

losses in cultivated terrain, and crop yields have been seriously reduced during dry

years (Austin et al. [121]). Moreover, the frequency of droughts affecting the semi-

arid areas of the IP hindered the development of vegetation cover and made the

soil inclined to erosion. Additionally, the socioeconomic vulnerability to drought

exacerbated due to the growth in water demands concurrent with the population

increase. In the last decades, the severity of droughts in the IP has intensified, with

a reduction of vegetation land cover owing to an enhanced atmospheric evaporative

demand (Vicente-Serrano et al. [122]). Moreover, Greve et al. [123] assessed that

the South-West of the IP is one hot spot of the pattern dry gets drier, and that

the projected increase of drought frequency in this region during the 21st century is

estimated to further worsen this problem.
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5.2 Methodology

5.2.1 Drought Indices

For the identification of meteorological droughts, the Standardized Precipitation

and Evapotranspiration Index SPEI based on precipitation minus evapotranspira-

tion (water balance) was selected, due to its demonstrated suitability for drought

detection in Spain (Vicente-Serrano et al. [101]). To capture agricultural droughts,

several standardized indices were adopted, with the purpose to analyze the different

outcomes generated depending on their distinct formulations. The first agricultural

drought index was the Standardized Soil Moisture Index SSI, which was chosen

for its simplicity and well documented capability to detect agricultural drought

events [124], besides its reliability at a global scale for studying the propagation

from meteorological drought detected by SPEI (Zhu et al. [116]). Then, to evalu-

ate the composite effect of different variables in the characterization of agricultural

droughts, an additional multi-variate index was computed, namely the Multivari-

ate Standardized Drought Index MSDI based on precipitation and soil moisture.

Moreover, a currently developed index was included in the analysis, due to its ca-

pacity to entirely account for the different variables involved in agricultural drought

generation. It is named the Standard Precipitation, Evapotranspiration and Soil

Moisture Index SPESMI, introduced by Xu et al. [125] and formulated depending

on both precipitation minus evapotranspiration balance and soil moisture. All the

indices employed in this study were calculated following the non-parametric proce-

dure indicated by Hao et al. [104], which provided an alternative to the commonly

employed technique proposed in Hao et al. [106] based on multivariate parametric

copulas (Nelsen et al. [126]). Specifically, considering the formulation of MSDI as a

representative example, precipitation and soil moisture at a selected time scale (e.g.

3 months) were defined as random variables X and Y , respectively, and their joint

distribution was indicated as

P (X ≤ x, Y ≤ y) = p. (5.1)

In contrast with the parametric method, which computes the cumulative joint prob-

ability p through the copula C[F (X), G(Y )] where F (X) and G(Y ) are the marginal

cumulative distribution functions of X and Y , in this case the empirical joint prob-

ability p was estimated with the Gringorten plotting position formula (Gringorten
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[127]) as in Hao et al. [104]

P (xk, yk) =
mk − 0.44

n+ 0.12
, (5.2)

where n was the number of the total input data and mk was the number of occur-

rences of the pair (xi, yi) with xi ≤ xk and yi ≤ yk for i = 1, 2, ..., n. Removing the

adoption of a copula family, which is typically chosen making assumptions regard-

ing the probability distributions of the involved variables (Salvadori et al. [128]),

allowed to avoid the computational burden due to the necessary goodness-of-fit tests.

Similarly, for univariate indices such as SSI, the empirical marginal probability was

calculated by using the univariate form of the Gringorten plotting position formula

P (xi) =
i− 0.44

n+ 0.12
, (5.3)

where n was again the number of total input data and i was the rank of the observed

values from the smallest. After obtaining the joint or marginal probability P , to

compute the drought index it was only needed to retrieve the inverse of the standard

normal distribution function ϕ, namely

MSDI = ϕ−1(P ). (5.4)

Following this procedure it was possible to accomplish all the aforementioned drought

indices simply modifying the considered variables. For example, in SPESMI the

joint probability p of precipitation minus evapotranspiration and soil moisture was

calculated (see Table 5.1 for all the details).

Drought Index Structure Variables Type of Drought

SPEI Multivariate P-E Meteorological
SSI Univariate SM Agricultural

MSDI Multivariate P, SM Agro-Meteorological
SPESMI Multivariate P-E, SM Agro-Meteorological

Table 5.1: Characteristics of the standardized drought indices constructed with the
non-parametric technique. P stands for Precipitation, SM for Soil Moisture and E for
Evapotranspiration.

The advantage of this method was evident, not only related to the simplicity

but also to the uniformity of the required calculations. Thanks to this homo-

geneous methodology, the entire analysis was unaffected by the different nature

of the drought indices and it was possible to assess their distinct features exclu-

sively depending on the physical quantities concerned. The selected time scales for
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drought indices were 1-, 3- and 6-month since the focus was from the immediate to

seasonal/semi-annual influence of precipitation, evapotranspiration and soil mois-

ture on drought characterization. The drought categories were defined according

to the study of Ojeda et al. [129] regarding the IP, in order to classify the values

of the drought indices. Therefore, all indices with values below -2 were considered

to be extreme, namely drought category -2; the severe drought category (-1.5) was

assigned to index values between -2 and -1.5; moderate drought category (-1) was

assigned to values below -1 but above -1.5; normal/wet conditions (1) were associ-

ated to values above 0; and finally -0.5 was set for all other cases, identifying dry

conditions (see Table 5.2).

Drought Index Drought Category Conditions

Index≤ −2 -2 Extreme Drought
−2 <Index≤ −1.5 -1.5 Severe Drought
−1.5 <Index≤ −1 -1 (Moderate) Drought
−1 <Index≤ 0 -0.5 Dry

Index> 0 1 Normal/wet

Table 5.2: Drought categories for the uni-variate and the multi-variate standardized
drought indices.

Besides the described uni-variate and multi-variate indices, owing to the com-

plex nature of drought events, another new index was proposed. In order to avoid

relying on the information provided by a single index only, which might omit im-

portant characteristics of drought phenomena, a Combined Agricultural Drought

Index (COMB) was developed adapting the Combined Drought Indicator described

by Spinoni et al. [130]. In detail, COMB was based on the composition of the

three agricultural drought indices SSI, MSDI and SPESMI, and it was structured

to favour the predominance of drought conditions over the other possible classes,

namely when more than one indicator showed values below -1. Following the indica-

tions proposed by Spinoni et al. [131], COMB was not built as a simple average, but

in agreement with the drought categories reported for individual drought indices.

Therefore, it was assigned a value corresponding to extreme drought conditions (-2)

when at least two single indices revealed values below -2, to severe drought condi-

tions (-1.5) if at least two indices showed values between -2 and -1.5, to moderate

drought conditions (-1) if at least two indices reported values below -1 and above

-1.5, to dry conditions (-0.5) when two or more indices had values between -1 and

0, and normal/wet conditions (1) if at least two single indicators showed positive

values (see Table 5.3).

The severe drought condition (-1.5) was a refinement with respect to Spinoni et
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Drought Indices (SSI, MSDI, SPESMI) COMB Conditions

2+ indices ∈ (−∞,−2] -2 Extreme Drought
2+ indices ∈ (−2,−1.5] -1.5 Severe Drought
2+ indices ∈ (−1.5,−1] -1 (Moderate) Drought
2+ indices ∈ (−1, 0] -0.5 Dry
2+ indices ∈ (0,+∞) 1 Normal/wet

Table 5.3: Methodology for the calculation of Combined Agricultural Drought Index
COMB. Adapted from Spinoni et al. [131], with a refined classification.

al., useful to provide information with higher detail and consistent with the study of

Ojeda et al. In the event that the three indices belonged to three different classes,

the arithmetic average was calculated and COMB was defined depending on the

category of the resulting value. Is is evident that, through this procedure, the main

focus of the combined index is on identifying drought conditions, while normal and

wet conditions are important only to detect the end of the drought events.

5.2.2 Dataset

With the development of data assimilation technology, reanalysis data has become

more representative of observed conditions and less limited than in-situ and remote

sensing data. Reanalysis data offers global coverage, long time series, no gaps in

space and time, and contains subsurface data, making it ideal for assessing agri-

cultural drought. Several reanalysis datasets have been developed, and this study

was conducted by employing the state-of-the-art reanalysis dataset for land appli-

cations ERA5-Land (Muñoz et al. [132]), provided by the European Centre for

Medium-Range Weather Forecasts (ECMWF) and included in the Copernicus Cli-

mate Change Service (C3S) of the European Commission. The ERA5-Land dataset

was chosen as recommended in Zhang et al. [133] due to its demonstrated relatively

high accuracy compared to other remote sensing and reanalysis datasets (Beck et al.

[134]). It furnishes a detailed record of land surface evolution from several decades

ago to the present with a large amount of key variables representing the water and en-

ergy cycles. ERA5-Land contains data at a monthly temporal resolution, which were

accumulated for the computation of the drought indices according to the different

time scales employed. ERA5-Land was produced by replaying the land component

of the ERA5 climate reanalysis, and it was chosen due to its improvement in char-

acterizing the water cycle compared to ERA5 (Muñoz et al. [135])). The original

spatial resolution of the ERA5-Land reanalysis dataset is 9 km on a reduced Gaus-

sian grid, but C3S provides data re-gridded to a regular latitude-longitude grid of

0.1◦ x 0.1◦, which corresponds to ∼11 km at mid-latitudes. As aforementioned, the
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selected area was the Iberian Peninsula for a 72 years period ranging from 1950 to

2021, using monthly-mean averages pre-calculated by C3S since sub-monthly fields

were not required. The variables used for this study, which were necessary for the

computation of drought indices, were essentially three:

• Total Precipitation [m] - The accumulated liquid and frozen water (rain and

snow), that fell to the Earth’s surface from the beginning of the simulation

time to the end of the model step. It includes large-scale precipitation and

convective precipitation, but it does not consider fog, dew or precipitation

evaporating in the atmosphere before reaching the surface of the Earth. The

units of precipitation are depth in metres, which correspond to the extent that

water would have if it were spread uniformly over the grid box;

• Soil Moisture [m3m−3] - The volume of water in different soil layers defined

by the ECMWF Integrated Forecasting System. In particular, considering the

surface at 0 cm of depth, layer 1 goes from 0 - 7 cm, layer 2 from 7-28 cm, layer

3 from 28-100 cm and layer 4 from 100-289 cm. Although the depth required

for the most adequate representation of soil moisture content for agricultural

droughts is still under exploration (Arora et al. [136], Qiu et al. [137]), it

is common to consider the first 100 cm of depth, namely the Root Zone Soil

Moisture. However, for this study the indication of Bageshree et al. [138]

was taken into account, which suggested to remove the lower layers to better

represent the soil moisture conditions due to ancillary sources such as local

rainfall or irrigation, and only the first two ERA5-Land layers were used (0-28

cm);

• Potential Evapotranspiration [m] - Usually considered to be the amount

of evaporation, under existing atmospheric conditions, from a surface of water

having the temperature of the lowest layer of the atmosphere. The ECMWF

Integrated Forecasting System computes it for an agricultural surface as if it

is well irrigated, but assuming that the atmosphere is not affected by this

artificial surface condition. For completeness, the values of potential evapo-

transpiration provided by ERA5-Land were compared to those obtained with

an analytical calculation by using the Penman-Monteith equation (Monteith

[139]), and negligible variations were retrieved.

5.2.3 Methods of Analysis

In the present study several aspects of drought phenomenon were investigated. In

particular, the main focus was the propagation from meteorological to agricultural
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drought, and this process was addressed through different approaches always in a

perspective of retrieving the distinct behaviors of the employed drought indices. The

first part of the analysis was dedicated to separately characterize the two types of

droughts selected, with a more in-depth attention to agricultural drought events.

Considering the entire time window of the utilized dataset (1950-2021), the initial

step was a qualitative examination of the temporal evolution of the diverse drought

indices at the three time scales, observing the trend over the years and trying to

identify possible similarities or differences between SPEI and agricultural indices,

and among the agricultural indices themselves.

Then, a comparison with observations was conducted for agricultural drought in-

dices. In detail, the Fraction of Absorbed Photosynthetically Active Radiation (FA-

PAR) Anomaly was chosen, which provides an estimation of the health conditions

of vegetation (Myneni et al. [140]), due to its demonstrated capability of monitor-

ing and assessing agricultural drought impacts (Gobron et al. [141]). The FAPAR

Anomaly indicator that is implemented in the Copernicus European Drought Ob-

servatory EDO (Spinoni et al. [142]) was employed, whose values are computed as

deviations from the long-term mean of the biophysical FAPAR derived from surface

reflectances measured by the MODIS-Terra satellite over a time window of 21 years

(2001-2021). The FAPAR anomalies furnished by EDO are available with a 1 km

spatial resolution and are calculated for every 10-day interval, so it was necessary

to integrate them on a 11 km grid and to compute the mean for every 3 values (30

days) in order to appropriately compare these products with the monthly drought

indices obtained from the ERA5-Land dataset. In addition, as recommended by

Peng et al. [143], a re-standardization Fs of the obtained monthly averaged FAPAR

anomalies was computed, described by

Fs =
Fi − F

σ
, (5.5)

where Fi is the monthly averaged FAPAR anomaly for month i during a specific

year, while F and σ are the mean and the standard deviation of monthly aver-

aged FAPAR anomaly considering all months i over the whole time period from

2001 to 2021. The analysis through FAPAR anomalies was aimed at evaluating

the efficiency of agricultural indices to detect vegetation stress in areas affected by

severe droughts, and it was based on the verification metrics adapted from Zhang

et al. [144]. In particular, to compare the results of the drought indices SSI, MSDI,

SPESMI and COMB with FAPAR anomalies, the following verification metrics were

used: Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success

Index (CSI) and Effect Of Drought (EOD). Keeping in mind the drought categories

reported in Tables 5.2 and 5.3, the metrics were formulated as:
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POD = H/(H +M)

FAR = F/(H + F )

CSI = H/(H +M + F )

EOD = (H +HN)/(M + F +H +HN)

where H (Hit) denoted the number of gridpoints where the agricultural drought

index evidenced drought categories -1,-1.5 or -2 and FAPAR anomaly showed val-

ues belonging to the same range of categories; M (Miss) designated the number of

grids where FAPAR anomaly was subjected to drought categories -1,-1.5 or -2 and

the agricultural drought index was subjected to categories higher than -1; F (False

Alarm) stood for the number of grids where the FAPAR anomaly belonged to cate-

gories higher than -1 but agricultural drought index indicated drought categories -1,

-1.5 or -2; HN (Hit Null) expressed the amount of grids where drought indices and

FAPAR anomaly revealed categories 0.5 or 1; and (M + F +H +HN) denoted the

total quantity of grids considered. Therefore, the values of all the four verification

metrics range between 0 and 1, and a perfect fit is characterized by POD = 1,

FAR = 0, CSI = 1 and EOD = 1.

The successive step consisted in studying the relationship between the properties

of droughts detected with different types of indices. To identify the drought events,

from which to extract the drought characteristics, the widely applied run theory

(Yevjevich [145]) was chosen. According to this method, a drought event starts when

a drought index falls below a fixed threshold, then persists until the index values

are continuously below that threshold (negative run), and finishes when the index

exceeds the threshold level (positive run). For this study, the threshold value for

drought indices was established at -1 as usual, but a specific attention was dedicated

to severe and extreme drought events, which are generally the most relevant in terms

of impacts and consequences. Referring to the recognized drought events, average

quantities over the whole time period were calculated for all agricultural drought

indices on each gridpoint. Specifically,

- Percentage: spatial fraction of IP affected by severe/extreme droughts;

- Duration: number of months with drought index values below the severe

drought (-1.5) threshold;

- Frequency: number of drought events per year;

- Severity: lowest value of the drought index during the drought periods;

- Intensity: ratio of drought severity to the drought duration;
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- Magnitude: sum of absolute values of the drought index during the drought

period.

After describing the average behavior and features of the agricultural drought

events through different indices, the second part of the study dealt with the proper

analysis of propagation from meteorological to agricultural droughts. Taking into

account the entire time period of ERA5-Land dataset, in the first place the response

time scale RT as in Huang et al. [146] was computed. The response time scale,

also known as drought propagation time, refers to the duration required for the

cumulative shortage of precipitation during a meteorological drought to translate

into an agricultural drought, and it is based on a correlation analysis between the

agricultural drought index at a monthly time scale and the meteorological drought

indices at different time scales. Essentially, for each location the Pearson correlation

coefficient between the time series of SSI/MSDI/SPESMI/COMB at 1-month time

scale and SPEI at time scales 1-, 2-, 3-, ..., 48-month was calculated. Then, the

response time scale for a certain agricultural drought index corresponded to the time

scale of SPEI showing the highest Pearson correlation coefficient with the values of

that index.

Due to the characteristics of soil and other factors, not all meteorological droughts

generate agricultural droughts, and vice versa not all agricultural droughts derive

from meteorological droughts. For this reason, it was interesting to evaluate the

drought propagation rate PR (Sattar et al. [147]), defined as the ratio between the

occurrences of the two different drought types

PR =
m

n
, (5.6)

where m is the number of agricultural drought events and n is the total amount of

meteorological drought events occurred in the whole dataset period and area. Also

in this case PR was calculated for all the agricultural drought indices, considering

different time scales.

To analyze other specific parameters of drought propagation, it was helpful to

restrict the investigation to a significant case study. In this respect, the most im-

pactful drought event in the IP during the 72 years record of ERA5-Land occurred

in 2005, which generated severe effects on the entire European continent reducing by

a 10% the cereal yields (Ivanova [148]). This episode is well documented by Spinoni

et al. [131], and it is reported in the European Drought Observatory database and

in the Emergency Events Database EM-DAT (Sapir et al. [149]), which provided

a good reference and allowed to select this event for the analysis. The period in-

cluding the 2005 drought was investigated by empirically examining the sequential
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spatial extent of drought coverage according to different drought indices at various

time scales (Tijdeman et al. [150]). Through this procedure, the spatial drought

propagation across different systems was observed over the IP and some locations

were identified for a further analysis involving the lag time LT between the onset of

meteorological and agricultural droughts. According to Sattar et al. [147], the lag

time LT for two different types of drought event was expressed as

LT = TM − TA, (5.7)

where TM and TA represented the initial time (in months) of meteorological and

agricultural drought, respectively. Therefore, LT was useful to characterize the

drought propagation through the difference of the onset timing of the two drought

episodes.

5.3 Results and Discussion

5.3.1 Characterization of Drought Phenomena over IP

Temporal Evolution of Drought Indices

The introductory phase of the analyses concerned the qualitative inspection of the

behavior of the computed indices during the whole time period considered. Figure

5.2 shows the temporal evolution of the IP averaged meteorological index (SPEI) and

agricultural drought indices (MSDI, SPESMI, and SSI; AD indices hereafter) from

1950 to 2021. In particular, the spatially averaged SPEI and the four AD indices

computed at 1-, 3- and 6-month time scales are represented separately, allowing to

distinguish the main features of meteorological and agricultural events.

Due to the nature of the indices, clearly the evolution appeared smoother for

the largest time scales with respect to the 1-month scale, but a common feature

was evident. Indeed, both for SPEI and AD indices a slight trend towards an

enhanced dryness was noticeable during the last two decades, confirming the results

for meteorological droughts obtained by Coll et al. [151] with parametric indices,

and extending the assessment also to agricultural droughts. Figure 5.2 revealed that

the frequency and the severity of meteorological drought episodes have increased

since 1990’s, and especially for the last 10 years the recurrence of severe droughts

has experienced a notable development. Despite it was difficult to retrieve detailed

information to characterize drought phenomena from Figure 5.2, the similarities of

the indices suggested a good correlation between the contributions of precipitation

deficit, water balance and soil moisture. Moreover, regarding AD indices some
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(a) (b)

(c)

Figure 5.2: Temporal evolution of Iberian Peninsula averaged SPEI and agricultural
drought (AD) indices (SSI, COMB, MSDI and SPESMI) at 1-month (a), 3-month (b)
and 6-month (c) time scales for the entire period considered. The linear trend is also
represented for each index. The orange dashed line indicates the -1.5 threshold for severe
drought events.
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differences emerged. In fact, the highest values among the AD indices were reached

by SSI, while the two multi-variated indices reported the lowest values. COMB

index revealed its intrinsic characteristic of being a compromise between these two

types of indices. Also, the two multi-variate indices, which include the effect of

precipitation, seemed to better reproduce the variations of SPEI, suggesting only a

limited impact of soil moisture in their computation.

Comparison with FAPAR Anomaly

Figure 5.3 presents the skill score metric indices for the four AD indices at dif-

ferent time scales (1-, 3-, and 6-month) in comparison to FAPAR anomalies. As

defined in section 5.2.3, H (Hit) means that the considered AD index could success-

fully identify the drought-affected areas in regions where there were also conditions

of dry vegetation identified by FAPAR anomalies, while M (Miss) stands for the

gridpoints where the AD index failed to detect drought in the zones with high

vegetation stress monitored by FAPAR anomalies. Therefore, the large values of

POD = (H +M)/M > 0.8 meant that M was near zero, implying that gridpoints

dominated by agricultural droughts were definitely those characterized by a stressed

land vegetation, especially concerning semi-annual droughts (6-month time scale)

detected through MSDI and SPESMI. On the other hand, F (False Alarm) denotes

the number of grids when SSI, MSDI, SPESMI or COMB detected drought con-

ditions but with disagreement compared to the FAPAR anomalies. The non-zero

results for FAR = F/(H + F ) indicated that there were some areas with dehy-

drated plants that could not be accurately monitored by AD indices, with almost

negligible variations among the time scales and indices. This was also confirmed by

the values of CSI = H/(H + M + F ), suggesting that the regions classified with

a desiccated flora by FAPAR anomalies were not only those where the AD indices

identified drought conditions, while the opposite was almost everywhere true. The

ratio of drought-affected areas detected by AD indices corresponding to high veg-

etation stress with respect to the total zones of high vegetation stress recognized

by FAPAR anomalies was approximately 0.5, with slightly increasing CSI for semi-

annual droughts. This suggests that FAPAR could monitor arid areas which could

not be successfully captured by SSI, MSDI, SPESMI, or COMB, maybe due to the

fact that FAPAR anomalies reveal variations in the vegetation health which can

derive not only from rainfall or soil moisture deficits, but also from other stress

factors such as plant diseases. In parallel, considering HN (Hit Null) the amount

of gridpoints that were free of droughts and with healthy foliage, the values of

EOD = (H +HN)/(M + F +H +HN) lower than 1 implied some areas in mixed

conditions, namely affected by drought which had no relevant impacts on vegetation
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or unhealthy vegetated regions caused by other factors than droughts. In conclusion,

SSI, MSDI, SPESMI, and COMB were efficient in assessing the vegetation stress of

IP during drought events, but they were not sufficient to distinguish all the areas

identified by FAPAR anomalies, whose stress could be due to different factors than

drought occurrence.
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Figure 5.3: Skill score metrics regarding FAPAR anomalies for AD indices at the 1-, 3-,
6 month time scales.

Characteristics of Agricultural Droughts

To examine the different behaviors of the AD indices over the IP during the selected

period, several drought characteristics were analyzed. In the first place, the percent-

age of the IP averagely affected by severe drought events was calculated by evaluating

the spatial fraction of areas that showed an average severity value of −1.5 or lower.

A relevant outcome is represented in Figure 5.4, which shows the percentage of IP

averagely subjected to severe/extreme droughts (i.e. AD indices ≤ −1.5) at 1-, 3-

and 6-month time scales. The most visible outcome was the considerably reduced

drought affected area retrieved by SSI with respect to other indices, especially the

two multi-variate. Indeed, while MSDI and SPESMI revealed a percentage superior
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to 75% of IP, SSI did not reach the 40%. The joint effect of precipitation (or water

balance) and soil moisture deficits produced drought events in a wider fraction of IP

compared to the soil moisture deficiency alone, approximately with a 40% difference

for each time scale, a logical consequence of the MSDI capability MSDI to detect

both meteorological and agricultural events. COMB exhibited percentage values

around 60%, a compromise between the uni-variate and the multi-variate indices.

The variations of the values for the same AD index depending on the time scale were

small, and generally the highest percentage were reached for 1-month droughts.

Figure 5.4: Percentage of the IP affected on average by severe/extreme droughts accord-
ing to agricultural indices at the 1-, 3-, 6-month time scales.

Other interesting characteristics were investigated for agricultural droughts de-

tected by AD indices at 1-, 3- and 6-month time scales. Figure 5.5 represents the

frequency of severe/extreme droughts per year, which is strictly correlated with du-

ration, and the drought severity, which is generally accounted as the most adequate

characteristic to furnish information about the significance of drought events.

The frequency of severe/extreme drought events per year (Figure 5.5(a), 5.5(c),

and 5.5(e) for 1-, 3- and 6-month time scales, respectively) confirmed that multi-

variate indices were more sensitive than uni-variate ones in detecting drought events

in a larger area. Specifically, SSI identified less than 1 severe/extreme drought event

per year, on average, across all the IP at the 1-month time scale, while SPESMI
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Patterns of the average characteristics of drought events on Iberian Peninsula
according to 1-, 3- and 6-month time scales for the different AD indices: frequency of
severe/extreme droughts per year ((a), (c), (e)), and absolute value of drought severity
((b), (d), (f)).

and MSDI detected multiple drought episodes in several areas, with values ranging

from around 1 event/year to 1.2 events/year on average. This is in agreement with
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the fact that precipitation, evapotranspiration and soil moisture variables are vital

factors to adequately represent agricultural drought conditions (Xu et al. [125]),

and especially in large areas with different climate characteristics their combination

by using multi-variate indices could better detect the occurrence of drought events.

As for the percentage, similarly the patterns of COMB appeared a balance between

SSI and MSDI/SPESMI. The most affected zones were found to be the North-

West and the Pyrenees for all the indices, indicating that both soil moisture and

precipitation/water balance deficits were recurrent. The patterns were analogous for

indices at 3- and 6-month timescales, whereas the frequency values were naturally

lower due to the longer duration of the considered events. Regarding the average

drought severity, a more complex behavior among the AD indices was obtained.

Considering the 1-month time scale (Figure 5.5(b)), SSI exhibited a large area of

non-severe droughts (severity smaller than 1.5), while COMB, SPESMI and MSDI

showed gradually increasing regions affected by severe drought conditions. However,

the distribution of the severity values revealed some differences among the indices.

For instance, a small fraction of the Centre-East of the IP was one of the most

affected zones according to SSI but was not equivalently accounted for by the other

indices, especially by MSDI, which retrieved its lowest severity values in the same

area. This suggested a balance between the contribution of water balance variables

in multi-variate indices, which could significantly impact the effect of soil moisture.

Severity also showed a wider range of values for longer time scales. Bi-annual deficits

in water balance and soil moisture resulted in large areas affected by severe droughts,

with peaks close to extreme droughts in certain regions. On the other hand, even if

the 6-month scale showed severity values similar to shorter time scales on average,

severity appeared more pronounced or not depending on the region and the index.

For example, in the south of Portugal COMB-6, MSDI-6 and especially SPESMI

described a higher severity than their corresponding at 1 and 3 months time scales.

Other areas, such as the mountain region in the southern part of the IP and the

northern peninsular zone, reported the opposite behavior revealing lower severity

values at longer time scales.

5.3.2 Propagation fromMeteorological to Agricultural Drought

Response Time Scale

The first analyzed parameter related to the drought propagation was the response

time scale (RT ), which represents the accumulated precipitation deficiency in an-

tecedent RT months causing the agricultural drought, and the shorter it is, the

faster the response to meteorological drought. Figure 5.6(a) reports the maximum
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Pearson correlation retrieved between 1 month AD indices and SPEI computed from

1- to 48-month time scale over the whole 72 years period for the entire IP, while

Figure 5.6(b) indicates the corresponding RT in months for each gridpoint.

(a) (b)

Figure 5.6: (a) Maximum Pearson correlation retrieved between the SPEI at the 1-,2-,...,
48-month time scales and the 1-month time scale AD indices. (b) Corresponding RT in
months for each gridpoint.

The first notable element was the high correlation values for small time scales,
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in agreement with other studies (Scaini et al. [152]) which retrieved a short RT

of agricultural drought to meteorological drought, assessing that usually it is no

longer than few months. In particular, for SSI it was obtained RT = 2 months

for the majority of the IP (except the Pyrenees, where RT = 1 month, and RT =

3-4 months for some isolated regions, especially in the Southern coastal ares), while

it was retrieved RT = 1 month for MSDI, SPESMI and COMB, suggesting that

the contribution of other variables accelerated the response compared to the soil

moisture alone. Typically, the inclusion of evapotranspiration in SPESMI produced

the highest values of correlation with meteorological droughts detected by SPEI,

which was also based on water balance.

Propagation Rate

Taking into account the results regarding RT , the second studied feature of drought

propagation was the propagation rate (PR). Since the response time scale of agri-

cultural droughts to meteorological droughts was found to be 1 or 3 months, Figure

5.7 displays the values of PR over the entire IP for these time scales.

The largest values were retrieved for 1-month AD indices and 3-months SPEI,

indicating high sensitivity and strong response of agricultural droughts to meteoro-

logical droughts at these time scales. High PR values were mostly obtained for MSDI

and SPESMI, which revealed PR > 1 for the majority of IP over the investigated

period. This result was in accordance with the study of Ojeda et al. [153] based on a

multi-ensemble of regional climate simulations within the EURO-CORDEX project

(Jacob et al. [154]), and implied that a single meteorological drought was capable of

generating multiple agricultural drought events due to 1 month deficits in water bal-

ance and soil moisture. The lowest PR values were reached for SSI, while COMB

showed an intermediate behavior. PR values near 1 were reported for 3 months

AD indices, confirming the intense response between the two types of drought also

for a longer time scale. The maximum PR was found in the North-Western and

in the Centre-Eastern regions of the IP, which therefore resulted the most drought

propagation-prone areas.

The 2005 Drought Event

The 2005 drought episode over the IP was selected for a detailed analysis regarding

the propagation from meteorological to agricultural drought. To get a first general

view of the event, Figure 5.8 shows the temporal evolution of the IP averaged AD

indices at 3-month time scale and FAPAR Anomaly from October 2004 to December

2005.
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(a) (b)

(c)

Figure 5.7: Propagation rate considering 1-, 3-month time scales SPEI and 1-, 3-month
time scales AD indices.

The four AD indices clearly revealed the occurrence of a seasonal agricultural

drought during the considered time window. In particular, according to run theory,

MSDI and SPESMI similarly detected the drought onset in December 2004 (indices

equal or below -1), with a duration of 9-10 months. On the other hand, SSI iden-

tified a 2 months delayed onset in February 2005, while the term was almost the

same found for the multi-variate indices. COMB exhibited an intermediate onset

in January 2005 and an extent in agreement with the other indices. The most rele-

vant difference was found regarding the severity of the event, which was noticeably

higher for MSDI and SPESMI compared to the others. Indeed, whereas for SSI

the event could be categorized as moderate drought for the majority of its duration

with an aggravation to severe drought only during a fraction of the time, MSDI and

SPESMI classified the entire event as severe drought with a further exacerbation to

extreme drought in July 2005. Because of the way it was formulated, COMB showed

the minimum severity values (since its values could range only between -2 and 1).

The FAPAR Anomaly revealed a similar behavior to AD indices in identifying the
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Figure 5.8: Temporal evolution of the IP averaged AD indices at 3-month time scale
from October 2004 to December 2005, including FAPAR Anomaly.

drought event, despite suggesting a delayed onset in March 2005 and less severe

values.

This picture provided an initial overview of the behavior of the indices during

the event, but it was not sufficient to analyze the spatial evolution of the drought

phenomenon. For this reason, the monthly patterns of drought indices values during

the reference period (October 2004 - December 2005) were investigated. In particu-

lar, the variations of the AD indices at 1-month time scale were examined compared

to the SPEI progression at 1-month and 3-month time scales, to analyze respec-

tively the propagation from the current month and from the seasonal meteorological

water balance deficit to the development of agricultural drought. Figure 5.9 shows

the temporal evolution of the meteorological drought identified by SPEI at 1- and

3-month time scales from October 2004 to December 2005 over the whole IP.

According to Figure 5.9(a), the evolution of SPEI calculated at monthly time

scale depicted a first moderate drought condition extended over the majority of the

IP in December 2004, while February 2005 was identified as the driest month, with

large areas subjected to extreme drought. This pattern exhibited a rapid evolution

described by two wetter following months, and the severe/extreme drought episode

reoccurred in May 2005 initially involving only the South of the IP. This condi-
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(a) (b)

Figure 5.9: Temporal evolution of meteorological drought pattern over the IP according
to SPEI at (a) 1- and (b) 3-month time scales, from October 2004 to December 2005.

tions lasted until the end of Summer 2005 (September) with a modified pattern,

more concentrated in the Centre and Northern IP. This event provoked the most

remarkable impacts in Spain and Portugal, as reported in European Drought Ob-

servatory, with a relaxation during the winter of 2005. The evolution of seasonal

meteorological drought described in Figure 5.9(b) revealed some similarities, such

as the initial peak of drought in February 2005. However, the patterns showed

by SPEI-3 appeared more continuous compared to SPEI-1, essentially reporting

prolonged drought conditions over the reference period, with a delayed conclusion

(extreme drought conditions were retrieved even in October 2005). Also, in this case

the driest region resulted the Southern IP, in the beginning, with varying features

extending to Central and Northern IP.

In order to observe the evolution of the agricultural drought during the iden-

tified meteorological drought conditions, Figure 5.10 depicts the spatial patterns

corresponding to the 4 different AD indices at 1-month time scale over the IP.

The onset of agricultural drought in February 2005 was also captured by all

the 4 AD indices. However, while COMB, MSDI and SPESMI assessed moderately

dry conditions over the IP even from December 2004 except for the eastern coastal

region, SSI showed generally normal/wet patterns during the period preceding the

drought event. Also, SSI values described overall less severe drought conditions with
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(c) (d)

Figure 5.10: Temporal evolution of drought pattern over the IP according to the four
AD indices: (a) COMB, (b) SSI, (c) MSDI, and (d) SPESMI at 1-month time scale from
October 2004 to December 2005.
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respect to the other indices, implying that including other variables than soil mois-

ture allowed to retrieve stronger impacts. Moreover, the patterns represented by SSI

were less uniform and homogeneous with respect to those indicated by MSDI and

SPESMI, especially observing the first month of the drought occurrence (February

2005). The behaviors of MSDI and SPESMI appeared noticeably congruent, re-

vealing also in this case that the introduction of evapotranspiration only marginally

impacted the obtained results. Once again, COMB showed features balanced be-

tween the other 3 indices, but the notable similarity between the two multi-variate

produced a greater influence on its behavior with respect to SSI. The patterns of the

agricultural drought determined by the AD indices were consistent with those iden-

tified by SPEI, particularly by SPEI-3, revealing a higher spatial correlation with

seasonal meteorological drought than monthly water balance deficits. Except for the

aforementioned differences, the four AD indices demonstrated higher severity values

compared to SPEI-1 and SPEI-3, assessing that the generated agricultural drought

was evaluated severe or extreme in larger areas than the meteorological drought.

Figures 5.9 and 5.10 were useful to qualitatively monitor the spatial details of

the 2005 drought evolution. However, to retrieve more quantitative information

about the drought propagation, a further investigation was performed. Taking in-

spiration by the study of Zhu et al. [116], the probability of drought propagation

from meteorological to agricultural under different levels of severity was analyzed.

In particular, the fraction of the IP subjected to agricultural drought conditioned

on the occurrence of meteorological drought was calculated for each month during

the October 2004 - December 2005 period. This fraction was defined propagation

probability (PP ) and it was computed separately for the four AD indices at 1-

month time scale distinguishing 3 severity thresholds, namely moderate, severe and

extreme. Figure 5.11 represents the temporal evolution of PP for each AD index.

Specifically, panels in the same row exhibit the PP values of gradually increasing

types of agricultural drought from left to right, and in each panel the 3 different

colors refer to the imposed severity threshold of meteorological drought according

to SPEI-1. For example, the red line in the first panel of row one exhibits the time

evolution of PP for the occurrence of moderate agricultural drought (according to

SSI-1) conditioned on the occurrence of severe meteorological drought (based on

SPEI-1).

The first notable outcome regarded a common characteristic showed by all the

AD indices, i.e. the significant PP increment depending on the enhancement of

severity levels of meteorological drought from moderate to extreme, with values

close to 1, implying that the likelihood of agricultural drought tended to be higher

when the meteorological conditions were drier. Taking the case of the first row (SSI)
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Figure 5.11: Propagation probability (PP ) from meteorological drought detected with
SPEI-1 to agricultural drought of different severity levels according to 1-month time scale
AD indices. The colors distinguish the severity of generating meteorological drought (blue
for SPEI-1≤ −1, red for SPEI-1≤ −1.5, green for SPEI-1≤ −2).

as example, areas where extreme meteorological drought developed from February

2005 were very likely to be subjected to a propagation into agricultural drought

of various severity levels, with the maximum PP obtained for moderate severity

propagation. The almost constant values of PP = 1 in the left panels of MSDI and

SPESMI assessed that the two multi-variate indices were exceptionally sensitive to

moderate agricultural drought propagation, while less prone to severe and extreme.

Generally, SSI revealed lower values of PP for the 3 levels of severity compared to

the multi-variate indices, whereas COMB once again resulted in a balance between

these two typologies of indices. Excluding the exceptional cases reported in the

left panels of MSDI and SPESMI, all the indices showed overall high values of PP

during the period of the identified drought event, with PP > 0.5 for moderate SPEI-
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1 severity and PP > 0.75 for severe/extreme SPEI-1 severity. Only the two months

following the initial drought onset (March and April 2005) exhibited a deflection,

meaning that in this period the meteorological drought did not propagate in all the

involved regions. Moreover, while for MSDI, SPESMI and COMB the PP values

remained above 0.5 during this variation, SSI showed a more considerable reduction

reaching PP < 0.25.

Then, the same procedure was applied to observe the propagation from seasonal

meteorological drought, and in this regard Figure 5.12 shows the behavior of PP

for agricultural droughts conditioned on the values of SPEI-3.

Figure 5.12: Propagation probability PP from meteorological drought detected with
SPEI-3 to agricultural drought of different severity levels according to 1-month time scale
AD indices. The colors distinguish the severity of generating meteorological drought (blue
for SPEI-3≤ −1, red for SPEI-3≤ −1.5, green for SPEI-3≤ −2).

Also in this case, the notable PP increment with meteorological drought severity

levels gradually enhancing from moderate to extreme was evident. At the same time,
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the maximum values of PP were found for moderate agricultural droughts, signifying

that the propagation to more severe droughts were less likely to occur. Compared to

the outcomes reported in Figure 5.11, the propagation from seasonal meteorological

drought revealed a more homogeneous behavior among the AD indices. Both the

maxima/minima of PP and the PP signal evolution exhibited common features.

As the previous case, the lowest value of PP was reached in March-April 2005, sug-

gesting that during this period the meteorological drought was present, but without

propagating into agricultural. Additionally, in particular the panel regarding severe

and extreme agricultural drought displayed smaller PP with respect to the SPEI-1

example, therefore the seasonal drought was in general less efficient in propagation

with respect to drought provoked by monthly water balance deficits.

To further investigate the 2005 drought event, two areas of the Iberian Peninsula

that showed significant variations during the event were selected: the Centre and

the South. In order to monitor changes in drought indices and evaluate the lag

time (LT ), one city was chosen to represent each region. Following the approach

of Garćıa-Herrera et al. [155], Madrid was chosen as the representative location for

the IP Centre, and Granada was selected for the IP South. Figure 5.13 shows the 3-

month time scale drought indices for these cities from January 2004 to January 2006.

The seasonal drought was considered, as it is characterized by smoother and slower

variations than the 1-month drought and provides more significant information for

the calculation of LT .

To obtain LT , the differences of drought onset time between SPEI and the AD in-

dices were calculated. Focusing on Madrid, the multivariate indices showed LT ∼ 0,

while LT ∼ 2 months for SSI, since in that city the agricultural drought resulted to

start in February 2005 while the meteorological in December 2004. Also, AD indices

revealed low variability with respect to SPEI, whose high range of values indicat-

ing different meteorological drought conditions was not reflected in modifications of

agricultural droughts. In this case, the propagation of meteorological drought evo-

lution produced prolonged and almost constant effects in the agricultural droughts,

especially according to COMB. The situation for Granada was slightly different.

Firstly, the meteorological drought onset preceded by 2 months that occurred in

Madrid (October 2004), and it was simultaneous to all AD indices, so LT ∼ 0. Ac-

tually, MSDI showed the onset of agricultural drought even 1 month before SPEI,

thus the nature of this detected event was not associated to drought propagation.

In Granada, even though the onset lag time was approximately zero between me-

teorological and agricultural drought, it is important to notice that the duration of

the two phenomena was not equivalent. That is to say that, while SPEI returned

to assess dry meteorological conditions without the presence of drought in August
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(a)

(b)

Figure 5.13: Local temporal evolution of different drought indices at 3-month time scale
in Madrid (a) and Granada (b) from January 2004 to January 2006.

2005, SSI and COMB estimated the end of agricultural drought in October 2005,

and MSDI and SPESMI required even more time.
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5.4 Synthesis of the Main Results

This second part of the thesis was dedicated to the study of drought phenomenon.

In particular, the propagation from meteorological to agricultural drought was ana-

lyzed, identifying the meteorological drought events through the SPEI index, while

for agricultural droughts 3 non-parametric agricultural drought (AD) indices were

employed, the uni-variate SSI based on soil moisture, and the multi-variate MSDI

and SPESMI, which also consider precipitation and water balance, respectively.

Also, a new combined agricultural drought index (COMB) was proposed. The

study was conducted on a multi-annual reanalysis dataset (1950-2021) regarding

the Iberian Peninsula, a recognized European drought hot-spot. Considering the

characterization of agricultural droughts, SSI revealed a remarkably reduced area of

the IP subjected on average by severe/extreme droughts (40%) with respect to the

other AD indices (75%). Also, the frequency of severe/extreme drought events per

year described a higher sensitivity of multi-variate AD indices compared to SSI, to-

gether with a lower severity. Concerning the proper mechanism of propagation from

meteorological to agricultural drought, the calculation of the response time scale

(RT ) produced small values for all the AD indices, with RT = 2 months for SSI and

RT = 1 month for MSDI, SPESMI and COMB. Moreover, large propagation rate

values (PR ≥ 1) were retrieved examining the propagation from monthly/seasonal

meteorological to monthly/seasonal agricultural drought, implying that a single me-

teorological drought was capable of generating multiple agricultural drought events,

and the lowest values were obtained by SSI. The analysis of the 2005 drought episode

allowed to identify for SSI a 2-month delayed onset with respect to other AD indices,

while the term was almost coincident (October 2005), together with smaller severity

values. The patterns of the agricultural drought determined by the AD indices were

consistent with those detected by SPEI, especially assessing a higher spatial correla-

tion with seasonal than monthly meteorological drought. The severity values of the

four AD indices were generally higher than those of SPEI-1 and SPEI-3, indicat-

ing that the agricultural drought impacts were more severe and extensive than the

meteorological drought. Large values of propagation probability PP from monthly

meteorological drought to monthly agricultural drought were retrieved during the

2005 drought event, with increasingly PP for drier meteorological conditions. Lower

PP values were obtained for propagation from seasonal meteorological drought to

monthly agricultural drought. The computation of lag time (LT ) reported values

ranging from LT ∼ 0 to LT ∼ 2 months for SSI depending on the location, while the

multi-variate indices showed a constant LT ∼ 0. These values close to 0 suggested

interest for a future analysis concerning sub-monthly features of LT .
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Chapter 6

Conclusion

6.1 Summary of Relevant Outcomes

The thesis provided a comprehensive analysis of heat-related phenomena and their

relationships at different spatio-temporal scales, with a focus on two distinct aspects.

The first part of this work addressed an important and novel topic related to the

influence of large-scale heatwave events on the local-scale urban heat island (UHI)

effect. In this regard, temperatures recorded by a large number of meteorological

stations in 37 European cities over a 20-year period were analyzed, furnishing a

broad perspective on the behavior of UHI during heatwaves compared to standard

meteorological condition across different climate zones and urban context. The

study provided new insights into the relationship between these two phenomena,

which have not been fully explored in literature. In particular, although no signif-

icant modifications were retrieved for daytime UHI, revealing a negligible impact

of large-scale extreme temperatures on the local urban climate, interesting features

emerged regarding the nocturnal UHI. The majority of the considered cities exhib-

ited an increase of nighttime UHI effect concurrently with heatwave episodes, on

average about 0.7 ◦C, also with an increment in frequency of days subjected to

reasonably positive UHI. This finding highlights the potential intensified nighttime

discomfort in urban areas during heatwaves, which may ultimately result in higher

mortality rates, with major diseases in densely built zones. The study revealed an

absence of linear correlations between the intensity of the UHI modifications and

some features of the analyzed cities and related stations, suggesting that the UHI

response to heatwaves is complex and dependent on multiple factors. The exacer-

bation of the nocturnal UHI during heatwave periods was explained by a different

response to heating of urban and rural temperature, showing the former a larger

and more persistent increase during a heatwave, which gave partial insights into

the mechanisms underlying the relationship between heatwaves and UHI. Moreover,
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the study found that the maximum amplification of UHI occurred 3 days after the

onset of the heatwave. However, an increase in the temperature difference between

urban and rural areas was observed even one week before the peak of the heatwave.

This outcome suggests that there may be implications for early warning systems for

heatwaves. The investigation of the relationship between large-scale temperature

anomalies and UHI highlighted a smooth and continuous dependence, but with a

strong variability. Moreover, the lack of a threshold behavior in this relationship sug-

gested that large-scale temperature variability can affect the local-scale UHI even

in different conditions than during extreme events. Additionally, the comparison

with the UrbClim model outputs confirmed the result about the UHI strengthening

during heatwave episodes, with an intensity independent of the climate zone. This

finding provided an important validation for the methodology used in the study.

In summary, this study presented observational evidence of the synergistic inter-

action between nocturnal UHI and heatwaves, utilizing a homogeneous methodology

for in-situ observations in a large cluster of European cities. The results supported

the conclusion that UHI exacerbates during heatwave events in the majority of Eu-

ropean cities, in agreement with the increasingly dominant paradigm in scientific

literature (Kong et al. [18], Zhao et al. [28], Miao et al. [40]). Furthermore, this

study suggested that the conclusion reached by Scott et al. [41], who found a reduc-

tion of UHI during hot days in many US cities using a similar methodology, does not

hold for the majority of European cities analyzed in this study. This thesis adds to

the existing literature on single case studies (e.g. Founda et al. [43], Nicholson [44],

Unger et al. [45]). The findings of the study have important implications for ur-

ban planning and management, particularly in the context of climate change, where

heatwaves are expected to become more frequent and intense.

The second part of the thesis dealt with the characteristics and temporal patterns of

drought, with a focus on the transition from meteorological to agricultural drought,

the first stage in the spread of drought. The study drew on a multi-year reanaly-

sis dataset spanning 1950 to 2021, and covering numerous drought events over the

Iberian Peninsula, an established drought hotspot in Europe. The analysis employed

multiple non-parametric drought indices ranging from uni-variate to multi-variate

in order to separately take into account the various physical quantities involved

in the process. Meteorological droughts were identified using the SPEI index, a

proven tool for this purpose, while the detection of agricultural droughts relied on

three non-parametric agricultural drought (AD) indices: SSI (uni-variate), MSDI

and SPESMI (multi-variate), which separately accounted for soil moisture, precipi-

tation, and evapotranspiration. In addition, a novel combined agricultural drought

index (COMB) was proposed to enhance the accuracy of drought detection. Once
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again, it is worth emphasizing that the use of a large spatial area and a multi-year

dataset was crucial in providing a comprehensive understanding of the propagation

process. The study began with characterizing drought events across different time

scales (monthly, seasonal, and six-monthly) over the Iberian Peninsula throughout

the entire dataset period. Results indicated a slight trend towards increased dry-

ness during the last two decades, as supported by both the SPEI and AD indices.

These findings were consistent with those of Coll et al. [151], who analyzed meteo-

rological droughts using similar indices but in their parametric form. Moreover, the

AD indices resulted effective in assessing vegetation stress during drought events,

even though they did not reveal all the variations identified by the Fraction of Ab-

sorbed Photosynthetically Active Radiation (FAPAR) anomaly values, which take

into account other factors than rainfall and soil moisture deficits, such as plant dis-

eases. In terms of the average characteristics of agricultural drought events across

the Iberian Peninsula, it was observed that SSI identified a significantly smaller area

affected by severe or extreme droughts. The frequency values of severe or extreme

drought events per year indicated that multi-variate AD indices were more sensi-

tive than SSI, although they had lower severity. Moreover, when considering long

time scales, the severity values covered a wider range than that of monthly time

scales, including both the most and the least severe values. In the second step,

the mechanism of propagation from meteorological to agricultural drought was an-

alyzed. The response time scale (RT ) was calculated for the AD indices, and small

values were obtained, in agreement with other studies (Scaini et al. [152]). Specif-

ically, in the majority of the Iberian Peninsula, an RT of 2 months was found for

SSI, while MSDI, SPESMI, and COMB had an RT of 1 month, suggesting that

the contribution of water balance accelerated the response compared to the effect of

soil moisture alone. The transition from monthly/seasonal meteorological drought

to monthly/seasonal agricultural drought was analyzed and a high propagation rate

(PR ≥ 1) was found, indicating that multiple agricultural drought events could

be generated from a single meteorological drought. This was observed in all the

AD indices, with the lowest values being obtained by SSI. The analysis of the 2005

drought episode was valuable in examining the temporal and spatial characteristics

of drought propagation. In contrast to global results described in Zhu et al. [116],

the time evolution of seasonal agricultural drought showed a 2-month delayed on-

set for SSI compared to other AD indices, while the termination time was almost

coincidental. Additionally, the severity values indicated by SSI were lower. The

patterns of agricultural drought determined by the AD indices were consistent with

those identified by SPEI, particularly showing a higher spatial correlation with sea-

sonal rather than monthly meteorological drought. The evaluation of propagation
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probability (PP ) from monthly meteorological drought revealed high values of PP

during the period of the identified drought event. Monthly agricultural drought

tended to occur more frequently in the presence of increasingly drier meteorological

conditions. In contrast, smaller PP values were obtained from seasonal meteoro-

logical to monthly agricultural drought, indicating a reduced propagation efficiency

compared to meteorological drought caused by monthly water balance deficits. The

computation of lag time (LT ) revealed different outcomes for SSI depending on the

location considered, with values ranging from LT ∼ 0 to LT ∼ 2 months, while the

multivariate indices consistently showed LT ∼ 0 regardless of the position.

In conclusion, this study employed a climatological approach to investigate the

diverse typologies and temporal scales of drought. The innovative aspect of this

research lies in its comprehensive dataset, covering a lengthy time period and uti-

lizing a variety of standardized indices that consider not only soil moisture but also

other significant factors, such as precipitation and evapotranspiration. Through

this analysis, it was found that multi-variate indices are more effective in identifying

severe drought events compared to uni-variate indices, suggesting that other vari-

ables contribute to a faster response compared to soil moisture alone. Moreover,

the study introduced a novel combined agricultural drought index that balances

the characteristics of the other adopted indices, which could be a valuable resource

for future investigations. Overall, this work provides valuable insights into drought

propagation from meteorological to agricultural conditions, contributing to a deeper

understanding of this relatively unexplored phenomenon.

6.2 Future Developments

Regarding the first part, the statistical analysis of temperature data in a large

ensemble of cities with remarkably heterogeneous characteristics described in this

thesis is probably inadequate to shed light on the details of physical mechanisms

regulating the UHI-heatwave interaction and of drivers at play. However, it can

provide valuable information in the effort to conceptualize the UHI-heatwave re-

lationship and its multi-scale nature. Indeed, being able to detect features of the

UHI-heatwave synergy that are common to many cities can provide guidance to

develop simple models on how synoptic meteorological conditions affect the UHI,

and can foster the development of simplified large-scale methodologies for the as-

sessment of health-related threats of temperature extremes in urban environment.

For instance, results in Figures 3.12(c) and 3.14 suggest that, while UHI and large

scale temperature are strongly correlated, heatwave phenomena should exhibit syn-

optic conditions that favour a strong UHI even when the large-scale temperature
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anomaly of the heatwave is not mature. This is an indication to further explore the

UHI-heatwave relationship focusing also on the synoptic scale circulation before the

heatwave has reached a mature stage. Along these lines, future studies could look

for meteorological variables other than temperature that exhibit a sharp collapse

like the one found in Figure 3.12(c). Moreover, the temporal asymmetry found in

the UHI-heatwave lead-lag relationship can per se provide guidance in a prospective

development of early warning systems.

To further advance our understanding of the complicate interaction between ur-

ban heat islands (UHIs) and heatwaves, several next steps could be taken. Firstly,

there is a need to investigate the mechanisms that regulate the behavior of UHI

during summer heatwaves compared to standard meteorological conditions. This

can be achieved through conducting numerical simulations using mesoscale models.

The high-resolution outputs obtained from these models can be used to validate the

temperature values presented in this thesis, and extend the limited temporal range

of C3S products to cover the entire 20-year period analyzed. Additionally, these

simulations can be used to examine other variables that may undergo modifications

under heatwave conditions, such as humidity. Moreover, it is important to inves-

tigate the main causes of nocturnal UHI enhancement. The strength of nocturnal

UHI is commonly more pronounced during clear-sky conditions and weak winds,

which are also typical during heatwaves. It would be worthwhile to compare the in-

tensity of UHI between heatwave and non-heatwave days, selecting only those days

with low cloud cover and weak winds, to examine the influence of heatwaves on UHI

while controlling for other factors that may affect UHI intensity. To further enhance

the characterization of UHI based on land cover and Local Climate Zone (LCZ)

classification, it would be worthwhile to take advantage of high-resolution models

as suggested by Kong et al. [18]. This approach would distinguish the varying im-

pacts of heatwaves on different land cover types such as low-intensity urban areas,

high-intensity urban areas, forests, grasslands, croplands, etc. This would provide

a more detailed assessment compared to the observational dataset. Studying the

hourly diurnal behavior of UHI would also be an interesting avenue of research.

This would allow for the estimation of the evolution of the spatial pattern of UHI

over time and an assessment of where the observed temporal shift is confirmed. Fi-

nally, in the context of global warming, it would be enlightening to examine the

interactions between UHI and heatwaves in European cities under future scenarios

as recommended by Ma et al. [156], taking into account forthcoming urban struc-

tural modifications as discussed by Silva et al. [157]. Overall, these investigations

would provide a more comprehensive understanding of the complex interactions be-

tween UHI and heatwaves. This understanding could potentially inform strategies
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for mitigating the effects of UHI on urban populations.

Regarding the second part of the thesis, this study provided valuable insights

into the mechanisms of drought propagation from meteorological to agricultural,

and this knowledge could be useful for drought monitoring and management. It

could also contribute to the development of more accurate and reliable drought

forecasting models, which are essential for effective drought planning and response.

However, there are currently a number of challenges that need to be addressed in

drought propagation analysis. One of these challenges is the complicated comparison

between studies that refer to distinct indices and approaches. Another difficulty is

the need to constrain the analysis to single factors, which can prove to be a complex

task. Future studies on agricultural drought propagation will need to address these

challenges and involve the integration of other techniques beyond statistical analysis

based on run theory. For example, a probabilistic approach, as demonstrated in the

study conducted by Wong et al. [158], could be extended to explore further analysis

techniques. Moreover, the phenomenon of global warming highlights the importance

of conducting studies that address the changing environment of the future, taking

into account non-stationary conditions. To this end, a study based on a multi-

ensemble of regional climate simulations within the EURO-CORDEX project was

set up, analyzing the non-parametric SSI, MSDI, and SPESMI indices for different

warming scenarios (1.5, 2, 3, 4 ◦C from 1980 to 2099) relative to the pre-industrial

period (1861-1900). Future work could build upon this investigation by extending

it to the newly developed COMB index and including an ensemble analysis that

incorporates other types of meteorological and agricultural drought indices from

existing literature. Moreover, future studies could investigate more in detail the

lead time between meteorological drought onset and agricultural drought onset, and

how this changes depending on the location and the type of crop. This could help to

achieve a more comprehensive understanding of agricultural drought propagation,

leading to improved drought monitoring and early warning. Overall, the study of

drought propagation from meteorological to agricultural is an important area of

research that has the potential to contribute significantly to our understanding of

drought and its impacts. By addressing these challenges and incorporating new

techniques, future studies that follow the methodology proposed in this thesis could

make significant contributions to this field, thereby aiding in the improvement of

drought prediction and response.
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Supplementary Figures

This section provides additional figures that offer supplementary information about

certain aspects of the thesis.

In particular, regarding the study of interactions between urban heat island

and heatwaves in European cities through observations, Figure S1 and S2 show the

distribution of ECA&D and WMO meteorological stations composing the selected

dataset.

Concerning the study about drought, Figure S3 represents the patterns of the

average duration of severe/extreme droughts and the average drought magnitude

across the IP according to 1-, 3- and 6-month time scale for the different AD indices.
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Figure S1: Maps of meteorological stations: locations of employed urban and rural
meteorological stations for each city analyzed, distinguishing ECA&D in green and WMO
in blue.
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Figure S2: Maps of meteorological stations: locations of employed urban and rural
meteorological stations for each city analyzed, distinguishing ECA&D in green and WMO
in blue.
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Patterns of the average characteristics of drought events on the IP according
to 1-, 3- and 6-month time scale for the different AD indices: duration in months of
severe/extreme droughts ((a), (c), (e)), and drought magnitude ((b), (d), (f)).
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Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews

J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R and Zhou B. IPCC,
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