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Abstract

In the last decades, urbanization led to an increasing number of vehicles on the roads, resulting
in more polluted air and more congested urban centers. As a countermeasure, the national agencies
have started to introduce stricter regulations in terms of pollutant emissions per driven kilometers
alongside more demanding type approval procedures. Thus, manufacturers are responding with
innovative solutions such as more efficient conventional engines and the introduction of Hybrid
Electric Vehicles (HEVs), which have proven to be a sustainable alternative to the conventional
powertrain. In this framework, there is also the need to re-organize the management of urban mo-
bility to optimize traffic flows to decrease congestion. The most frequently applied measures are
urban centers with increasing traffic limitations, regarding both the conventional vehicles (Low-
Emission Zone – LEZ) and the non-conventional vehicles (Zero-Emission Zone – ZEZ). Moreover,
innovative technologies are being implemented both on the vehicle and the infrastructure, such as
wireless communication, cloud computing, and innovative sensors. These technologies are gener-
ally indicated as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-network
(V2N) communication. Together with the latest Advanced Driver-Assistance Systems (ADAS),
these technologies allow calculating an electronic horizon (shortly known as eHorizon) which rep-
resents a virtual reconstruction of the trip ahead for a planned route. It is conventionally divided
into “short horizon”, regarding information about nearby vehicles and traffic lights, and the “long
horizon”, which includes information about the selected route, the slope, and the speed limits.

In this regard, this dissertation aims to demonstrate the advantages of such information to
manage the energy flow and the pollutant emissions more efficiently and sustainably, comparing
the results with the noteworthy works presented in the literature review in Chapter 2.

Firstly, since the more the control function becomes complex the more its testing and vali-
dation are demanding, Chapter 3 presents an innovative and universal simulation environment
supported by Vehicle-to-Everything (V2x) connectivity that has been set up with a focus on safety,
reliability, and reproducibility. More in detail, it consists of a Hardware-in-the-Loop (HiL) sys-
tem enhanced with vehicular connectivity to test a supervisory controller (Hybrid Control Unit)
where the predictive functions will be implemented. In addition to all the advantages of a con-
ventional HiL layout, it can exchange real data with cloud service providers and nearby devices.
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Furthermore, to handle the over-the-air interfaces between the powertrain controllers, the cellu-
lar network, and the Intelligent Transportation Systems (ITS-G5), a custom Telecommunication
Control Unit (TeCU) with proprietary functionalities has been developed and implemented in the
HiL. Moreover, a Human-Machine Interface (HMI), based on a tablet running an Android-based
Navigator App, has been introduced to allow the driver to set the desired destination and to visu-
alize the suggested route based on actual traffic conditions. Then, the navigation and connectivity
data have been used in Chapter 4 and Chapter 5 to develop energy management strategies. In
particular, focusing on the changes in urban mobility, several metropolitan cities have introduced
Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce lo-
calized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles,
which usually work in charge depleting mode. So, the risk of not having enough energy stored to
carry out the driving mission and then paying a fee is substantial. Thus, this dissertation presents a
viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event
along a selected route. The battery energy needed, in the form of a minimum State of Charge
(SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That
value is then fed to both a Rule-Based Strategy, developed specifically for this application, and
an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this
approach has been tested with the Connected Hardware-in-the-Loop (C-HiL) on a driving cycle
measured on-road, stimulating the predictions with multiple re-routings.

However, even if hybrid vehicles represent a key enabler to comply with the upcoming regu-
lations, the inherently reduced engine load and the repeated engine starts and stops may reduce
substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant
issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs)
represent a promising solution to ensure high pollutant conversion efficiency without affecting
engine efficiency and performance. Chapter 7, Chapter 8, and Chapter 9 aim at studying the advan-
tages provided by introducing a predictive EHC control function for a light-duty Diesel plug-in
hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of
future driving scenarios provided by vehicular connectivity, engine first start can be predicted and
therefore an EATS pre-heating phase can be planned. For this purpose, a representative 0-D model
has been considered to define the most convenient pre-heating strategy and different real driving
scenarios have been simulated to test the proposed EHC predictive control strategy. Moreover, this
would allow complying with the scenarios introduced by the Euro 7 regulation proposal, while
enabling the adoption of a simplified EATS architecture resulting in reduced manufacturing costs.

All the activities presented in this doctoral dissertation have been carried out at the Green Mo-
bility Research Lab (GMRL), a research center resulting from the partnership between the University
of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.

viii



Keywords

hybrid electric vehicles (HEVs) · Software-in-the-Loop (SiL) · Hardware-in-the-Loop (HiL) ·
vehicle-to-everything (V2X) · zero-emission zone (ZEZ) · predictive functions · energy manage-
ment · emissions management · electrically heated catalyst

ix



x



Contents

Abstract vii

List of figures xv

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Type-approval regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Greenhouse gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1.1 Eco-innovation bonus . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Criteria Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2.1 Real-driving emissions . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Advanced powertrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Exhaust after-treatment systems . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1.1 CO and HC oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1.2 NOx reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1.3 Particulate matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1.4 Advanced EATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Hybrid electric vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.3 Connected and autonomous vehicles . . . . . . . . . . . . . . . . . . . . . . 23

2 Literature review 27
2.1 Energy management control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Heuristic control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Optimal and sub-optimal control strategies . . . . . . . . . . . . . . . . . . . 30

2.1.2.1 Equivalent Consumption Minimization Strategy . . . . . . . . . . 31
2.2 Emissions management control strategies . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



2.2.1 Engine control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 After-treatment control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Testing and validation platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Innovative contribution of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

I Energy management strategies 47

3 Simulation environment 49
3.1 Vehicle under test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Modeling approach for energy analysis . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Powertrain modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2.1 Internal combustion engine . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2.2 Electric machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2.3 High-voltage battery . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.3 Controllers modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3.1 Hybrid Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3.2 Battery Management System . . . . . . . . . . . . . . . . . . . . . . 58

3.1.4 Vehicle model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Connected Hardware-in-the-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Human-Machine Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Telecommunication control unit . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Predictive control strategy 67
4.1 Predictive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Speed profile prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Backward Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Standard on-board strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Rule-based strategy for energy management . . . . . . . . . . . . . . . . . . 79
4.2.2 Adaptive rule-based strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Equivalent Consumption Minimization Strategy . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Basic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Adaptive-ECMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2.1 A-ECMS with navigation data . . . . . . . . . . . . . . . . . . . . . 81
4.4 Strategies comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 CO2 correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.2 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 Combined rule-based strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



5 Application of the control strategies 89
5.1 Test case scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Energy prediction comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Fuel consumption comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Part I - Conclusions 97
6.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II Emissions management strategies 99

7 Simulation environment 101
7.1 Vehicle under test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Powertrain components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1 Internal combustion engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.2 Electric machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Exhaust after-treatment system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3.1 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4.1 Powertrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4.2 Exhaust after-treatment system . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Predictive control strategies 117
8.1 Conventional rule-based strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.1.1 Torque split strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.1.2 Standard EHC strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.1.3 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2 Improved model-based strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.1 Torque split strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.2 Improved EHC strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.3 Performance assessment and comparison . . . . . . . . . . . . . . . . . . . . 125

8.3 Predictive strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.1 Pre-heating strategy definition . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.2 Adaptation of the Backward Vehicle Model . . . . . . . . . . . . . . . . . . . 128

8.3.2.1 Energy prediction and compensation . . . . . . . . . . . . . . . . . 130

9 Application of the predictive strategy 133
9.1 Test case scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



9.2.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Vehicle decontenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Part II - Conclusions 143
10.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11 Conclusions 145

Bibliography 149

xiv



List of figures

1.1 Trend of the population living in urban and rural areas [2] . . . . . . . . . . . . . . 2
1.2 NO2 concentration in Europe [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The WLTP test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Test procedure for hybrid electric vehicles [10] . . . . . . . . . . . . . . . . . . . . . 5
1.5 CD Type 1 test [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 CS Type 1 test [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Utility factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Average CO2 savings and number of vehicles registered with each eco-innovation

technology [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Diesel passenger cars EU regulations limits trend from Euro 3 to Euro 6 . . . . . . 11
1.10 Example of a Real-Driving Emissions driving cycle with a focus on each phase . . 13
1.11 Dynamic boundary conditions with three illustrative RDE trips. [6] . . . . . . . . . 14
1.12 Example of a diesel EATS compliant with Euro 6 [36] . . . . . . . . . . . . . . . . . 16
1.13 Qualitative representation of conversion efficiency of a TWC for each species . . . 18
1.14 Schematic representation of the flow through the PF walls . . . . . . . . . . . . . . 20
1.15 Overview of the Hybrid Electric Vehicle depending on hybridization degree and

CO2 reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.16 Hybrid architecture depending on EM(s) position [43] . . . . . . . . . . . . . . . . . 24

3.1 Prototype PHEV: P1P4 architecture layout . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Forward-backward modeling approach based on the direction of the energy flow [74] 51
3.3 Forces acting on a vehicle in motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Fuel consumption map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Efficiency map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Electric machine efficiency map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Single-polarization equivalent circuit model for cell electrical characterization . . . 55
3.8 Electric powertrain validation (black line: experimental data; red line: simulation

data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 Conventional powertrain validation (black line: experimental data; red line: simu-

lation data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xv



3.10 Connected HiL layout for testing predictive functions exploiting long-range con-
nectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Connected HiL during a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.12 Screenshot of the Navigator App: suggested route from point A to point B . . . . . 63
3.13 Telecommunication control unit hardware . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Workflow of the predictive functions for target SoC evaluation as implemented in
the supervisory controller software. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Driving scenario with different traffic codes and speed limits, within an urban area 72
4.3 Frequency analysis with FFT for the traffic code 𝑐=2 . . . . . . . . . . . . . . . . . . 73
4.4 Top plot: speed profile predicted from the navigation data (black) and the measured

speed on the road (red). Three bottom plots: comparison between the three energy
components related to the prediction (black) and the measurements (red) . . . . . 76

4.5 a) Speed profile predicted by the algorithm after calibration; b) detail of MAS limited
by the orange traffic code; c) detail of MAS limited by the red traffic code . . . . . . 77

4.6 Map of the adaptive factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Map of the update time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8 Charge Blended (CB) A-ECMS handling the ZEZ . . . . . . . . . . . . . . . . . . . . 83
4.9 Driving cycles (black) and altitudes (magenta) profile . . . . . . . . . . . . . . . . . 84
4.10 a, b, c) RDE 1: SoC trends for each strategy approaching the ZEZ (green area) with

initial SoC of 30%, 50%, and 90% respectively; d, e, f) RDE 2: SoC trends for each
strategy approaching the ZEZ (green area) with initial SoC of 30%, 50%, and 90%
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Representation of the measured route (blue line) from point A to point B and the
proposed routes at each query: first one at the beginning of the test (purple line)
and the second related to re-routing 1 (cyan line) . . . . . . . . . . . . . . . . . . . . 90

5.2 Real driving profile under test (black), altitude profile (magenta), and the ZEZ area
(green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Results of the tests at the C-HiL: a) b) c) simulations performed with C-RBS at 𝜉𝑖
= 30%, 50%, 90% respectively; d) e) f) simulations performed with A-ECMS at 𝜉𝑖 =
30%, 50%, 90% respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Light Commercial PHEV: powertrain layout . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Cold and warm fuel consumption maps . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Cold and warm NOx production maps . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4 Cold and warm exhaust gas temperature maps . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Efficiency map, power and torque limitations of the electric machine . . . . . . . . 106
7.6 Schematic representation of vehicle EATS architecture . . . . . . . . . . . . . . . . . 106
7.7 Secondary air pumps: absorbed current for different supply voltages [153] . . . . . 107

xvi



7.8 Schematic representation of the thermal model with the representative tempera-
tures and heat flows for the generic 𝑖-th brick [153] . . . . . . . . . . . . . . . . . . . 108

7.9 Vehicle model validation: experimental (black dashed) and simulated (red solid)
results over a WLTC CD cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.10 EM and HV battery model validation: experimental (black dashed) and simulated
(red solid) results over a WLTC CD cycle . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.11 ICE model validation: experimental (black) and simulated (red) results over a WLTC 114
7.12 EATS components model validation: experimental (black) and simulated (red) re-

sults over a WLTC. A schematic representation of the specific tested layout and
measurement location is also provided . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.13 E-heater model validation: exhaust gas temperature at e-heater outlet from GT-
power® (black dashed) and Simulink® (red solid) given the same input data . . . . 116

8.1 DoE analysis for SoC thresholds definition: resulting weighted CO2 emission . . . 118
8.2 EHC power request as a function of exhaust gas temperature at the e-heater outlet 120
8.3 Results of DoE analysis for the definition of BSNOx and engine-out gas tempera-

ture targets: average NOx emission (left), weighted CO2 emission (right), and final
selected configuration (red dot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 BSFC, BSNOx, and exhaust gas temperature maps with corresponding defined targets123
8.5 Load point shift maps for normal and cat-heating modes with the related SoC-based

correction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.6 EATS temperature and energy consumption comparison between standard and

improved EHC strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.7 DOC (a), LTM-SCR (b), SDPF (c), and SCR (d) light-off time as a function of sec-

ondary air flow rate and EHC power. The green area highlights the feasible range of
power and secondary air flow taken into consideration for the pre-heating strategy
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.8 Relative tailpipe NOx (a) and CO2 (b) emission for variable EHC power and pre-
heating time for fixed air flow rate of 55 kg/h . . . . . . . . . . . . . . . . . . . . . . 128

8.9 BVM validation on WLTC for the P2 architecture, with a focus on the gearshift
prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.10 Predicted and actual HV battery state of charge (top) and corresponding adsorbed
energy (bottom) along an RDE urban cycle with 25% initial SoC . . . . . . . . . . . 131

9.1 Vehicle speed (black) and slope (magenta) profiles of the simulated urban driving
cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Comparison between the proposed predictive EHC strategy, the EHC rule-based
strategy, and the same strategy with no EHC usage: resulting average NOx and
corresponding CO2 emissions for different urban driving cycles with variable initial
SoC (SoCinit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xvii



9.3 Case 1: comparison of SoC traces for rule-based (black) and predictive (red) EHC
control strategies; cyan dashed line shows the SoC trace prediction. Lower and
upper SoC thresholds below and above which ICE is turned on or off respectively
are shown as well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.4 Case 1: comparison of ICE speed and torque for rule-based (black) and predictive
(red) EHC control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.5 Case 1: exhaust temperatures at LTM-SCR, SDPF, and SCR outlet for rule-based
(black) and predictive (red) EHC control strategies and corresponding EHC ad-
sorbed power; on the bottom, tailpipe NOx emission for the two considered EHC
control strategies; EO: engine out, TO: tailpipe out . . . . . . . . . . . . . . . . . . . 138

9.6 Case 2: comparison of SoC traces for rule-based (black) and predictive (red) EHC
control strategies; cyan dashed line shows the SoC trace prediction. Lower and
upper SoC thresholds below and above which ICE is turned on or off respectively
are shown as well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.7 Case 2: comparison of ICE speed and torque for rule-based (black) and predictive
(red) EHC control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.8 Case 2: exhaust temperatures at LTM-SCR, SDPF, and SCR outlet for rule-based
(black) and predictive (red) EHC control strategies and corresponding EHC ad-
sorbed power; on the bottom, tailpipe NOx emission for the two considered EHC
control strategies; EO: engine out, TO: tailpipe out . . . . . . . . . . . . . . . . . . . 140

9.9 Case 3: EM torque for rule-based (black) and predictive (red) EHC control strategies
in the last 500 seconds of the considered driving cycle; cyan dashed line shows EM
torque prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.10 Case 3: ICE speed and torque for rule-based (black) and predictive (red) EHC control
strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.11 Case 3: exhaust temperature at LTM-SCR, SDPF, and SCR outlet for rule-based
(black) and predictive (red) EHC control strategies and corresponding EHC ad-
sorbed power in the last 500 seconds of the considered driving cycle; on the bottom,
tailpipe NOx emission for the two considered EHC control strategies; EO: engine
out, TO: tailpipe out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.12 Average tailpipe NOx emission on RDE 1 cycle (a) and RDE 3 cycle (b) resulting
from the rule-based strategy applied to the complete EATS layout, including LTM-
SCR, and from the predictive strategy applied to a simplified EATS layout with no
LTM-SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xviii



List of tables

1.1 WLTC test section specifications for class 3 vehicle [10] . . . . . . . . . . . . . . . . 4
1.2 Euro 6 criteria pollutants limits [26] compared with the two Euro 7 scenarios intro-

duced in [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Distance and speed specifications for each urban, rural, and motorway part of the

RDE test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Boundary conditions for RDE test [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Comparison of testing methods on RDE cycles according to in-force regulation and

the Euro 7 proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Overview of remarkable studies on advanced energy management strategies . . . 33
2.2 Overview of remarkable studies on advanced fuel consumption and emissions

reduction strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Overview of remarkable studies on advanced EATS management strategies . . . . 39
2.4 Overview of remarkable studies on eHorizon simulation environments . . . . . . . 42

3.1 Prototype PHEV: Vehicle powertrain specifications . . . . . . . . . . . . . . . . . . . 50
3.2 Navigation data sent by the MSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Stop-over probability with respect to the traffic codes . . . . . . . . . . . . . . . . . 71
4.2 Speed and energy KPI for the presented use case . . . . . . . . . . . . . . . . . . . . 75
4.3 Target Soc, length of the route and of the ZEZ for each RDE . . . . . . . . . . . . . 83
4.4 Results of the simulations in terms of CO2 production and relative errors for each

test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 C-RBS: state of charge limits for the electric drive . . . . . . . . . . . . . . . . . . . . 87
4.6 EMS working mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Length of the driving profile and ZEZ for the measured test case . . . . . . . . . . 90
5.2 List of all the test cases with the respective boundary conditions . . . . . . . . . . . 91
5.3 Results of the tests at the C-HiL: comparison of predictions depending on the initial

SoC and the meters remaining to the ZEZ event . . . . . . . . . . . . . . . . . . . . 92

xix



5.4 Results of the tests at the C-HiL: comparison between the two strategies in terms of
raw and corrected CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Vehicle powertrain specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Cold and warm weighting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Exhaust after-treatment components specifications . . . . . . . . . . . . . . . . . . . 106

8.1 Conventional RBS performance tested with R1151 [10] . . . . . . . . . . . . . . . . . 121
8.2 Definition of DoE parameters range of variation. . . . . . . . . . . . . . . . . . . . . 122
8.3 Improved RBS performance tested with R1151 [10] . . . . . . . . . . . . . . . . . . . 125
8.4 Pre-heating strategy definition: tested and final configurations . . . . . . . . . . . . 126
8.5 ICE start prediction testing over different driving cycles and initial HV battery SoC 131

9.1 Simulated driving cycles specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xx



Nomenclature

Acronyms

4WD Four-Wheel Driving
CO2 Carbon dioxide
CO Carbon monoxide
NH3 Ammonia
NMHC Non-methane hydrocarbons
NO2 Nitrogen dioxide
Nox Nitrogen oxides
A-ECMS Adaptive ECMS
A-RBS Adaptive RBS
ADAS Advanced Driver-Assistance Systems
ADASIS Advanced Driver Assistant Systems Interface Specifications
AER All-Electric Range
AMT Automated Manual Transmission
BEV Battery Electric Vehicle
BMEP Brake Mean Effective Pressure
BMS Battery Management System
BSFC Brake Specific Fuel Consumption [g/kWh]
BSG Belt-driven Starter Generator
BSNOx Brake Specific NOx [g/kWh]
BVM Backward Vehicle Model
C-HiL Connected Hardware-in-the-Loop
C-RBS Combined RBS
CAV Connected Automated Vehicles
CB Charge Blended
CD Charge Depleting
CG Central gateway
CI Charge Increasing
CS Charge Sustaining

xxi



DCT Dual-Clutch Transmission
DOC Diesel Oxidation Catalyst
DoE Design of Experiments
DP Dynamic Programming
DPF Diesel Particulate Filter
EATS Exhaust After-Treatment Systems
EATS Exhaust After-treatment System
EC European Commission
ECMS Equivalent Consumption Minimization Strategy
ECPMS Equivalent Consumption and Pollutant Minimization Strategy
ECU Electronic / Engine Control Unit
EECMS Equivalent Emissions and Consumption Minimization Strategy
EGR Exhaust Gas Recirculation
EHC Electrically heated catalyst
EM Electric Motor
EMS Energy Management Strategies
EO Engine Out
EPA Environmental Protection Agency
FC Fuel Consumption
FFT Fast Fourier Transform
GHG Greenhouse gas
HC Unburned hydrocarbons
HCU Hybrid Control Unit
HD Hybridization Degree
HEV Hybrid Electric Vehicles
HiL Hardware-in-the-Loop
HMI Human-Machine Interface
HV High-Voltage
ICE Internal Combustion Engines
ISG Integrated Starter Generator
ITS Intelligent Transport Systems
KPI Key Performance Indicators
LCV Light Commercial Vehicle
LEZ Low-Emission Zone
LNT Lean NOx-trap
LP EGR Low Pressure EGR
LPS Load-Point Shift
LTM-SCR Low Thermal Mass SCR
LV Low-Voltage

xxii



MAE Mean Absolute Error
MiL Model-in-the-Loop
MPC Model Predictive Control
MSP Map Service Provider
NEDC New European Driving Cycle
OBU On-Board Unit
OCV Open-circuit Voltage
OEM Original Equipment Manufacturers
OVC Off-Vehicle Charging
PEMS Portable Emission Measuring Systems
PF / S Predictive Functions / Strategy
PHEV Plug-in Hybrid Electric Vehicle
PM Particulate matter
PMP Pontryagin’s Minimum Principle
PN Particulate number
RBS Rule-Based Strategy
RDE Real Driving Emissions
REESS Rechargeable Electric Energy Storage System
RSU Road-Side Unit
SCR Selective Catalytic Reduction
SDPF SCR-coated Diesel Particulate Filter
SiL Software-in-the-Loop
SoC State of Charge
SPP Speed Profile Prediction
TAT Turnaround time [ms]
TCU Transmission Control Unit
TeCU Telecommunication Control Unit
THC Total hydrocarbons
TO Tailpipe Out
TWC Three-Way Catalyst
UF Utility Factors
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle
WLTC Worldwide harmonized Light vehicles Test Cycle
WLTP Worldwide harmonized Light vehicles Test Procedure
ZEZ Zero-Emission Zone

xxiii



Roman symbols

𝑎(·) Adaptive term of the equivalence factor [-]
𝐴0 Amplitude at f = 0 m-1 [m]
𝐴𝑟 Amplitude of the 𝑟-th harmonic of the noise-related MAS [km/h]
𝑎𝑎𝑐𝑐,𝑚𝑎𝑥 ,𝑎𝑑𝑒𝑐,𝑚𝑎𝑥 Maximum vehicle acceleration / deceleration [m/s2]
𝑎𝑎𝑐𝑐 ,𝑎𝑑𝑒𝑐 Vehicle acceleration and deceleration [m/s2]
𝐴𝑐,𝑟 Amplitude related to the traffic code 𝑐 and range 𝑟 [m]
𝐴𝑐𝑜𝑛𝑑 Contact area of the brick [m2]
𝐴𝑒𝑥𝑡 ,𝐴𝑖𝑛𝑡 External and internal brick surface [m2]
𝐴𝑛,𝑟,𝑗 Amplitude related to the 𝑗-th speed signal [m]
CO2 CO2 production [g/km]
𝐶1(·) Capacitance of the RC circuit [F]
𝑐𝑐 Coolant specific heat capacity [J/(kg · K)]
𝐶𝑛(·) Battery nominal capacity [Ah]
𝑐𝑝 Specific heat capacity (at constant pressure) [J/(kg·K)]
𝑐𝑠 Corrective factor for close segments [-]
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Δ𝐸𝑝𝑟𝑒 Additional energy required for the pre-heating [J]
𝐸𝐼+𝑝 ,𝐸𝐼+𝑟 Predicted and measured energy related to positive inertia [Wh]
𝐸𝐼−𝑝 ,𝐸𝐼−𝑟 Predicted and measured energy related to negative inertia [Wh]
𝐸𝑅𝐿𝑝 ,𝐸𝑅𝐿𝑟 Predicted and measured energy related to the road load [Wh]
𝐹(·) Force [N]
𝐹0 ,𝐹1 ,𝐹2 Coast-down parameters [N], [N/(km/h)], [N/(km/h)2]
𝑓𝑟 Frequency of the 𝑟-th harmonic of the noise-related MAS [1/m]
𝐹𝑟(·) Force acting on the wheels [N]

Rolling friction force [N]
𝐹𝑎(·) Aerodynamic friction force [N]
𝑓𝑐,𝑟 Frequency related to the traffic code 𝑐 and range 𝑟 [m-1]
𝐹𝑐𝑑(·) Total resistance curve calculated with the coast-down test [Nm]
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𝐹𝐼+(·),𝐹𝐼−(·) Positive/negative inertial force [N]
𝐹𝑚𝑜𝑡(·) Propulsion force for vehicle traction [N]
𝑓𝑛,𝑟,𝑗 Frequency related to the traffic code 𝑐 and range 𝑟 [m-1]
𝐹𝑟𝑒𝑠(·) Resistant force acting on the vehicle [N]
𝐹𝑅𝐿(·) Road load [N]
𝐹𝑟(·) Rolling friction force [N]
𝑔 Gravitational acceleration [m/s2]
ℎ𝑎 Convective heat transfer coefficient of the environmental air [W/(K·m2)]
ℎ𝑐 Convective heat transfer coefficient of the battery coolant [W/(K·m2)]
ℎ𝑒𝑥𝑡 ,ℎ𝑖𝑛𝑡 External and internal convective heat transfer coefficient [W/(m2K)]
ℎ 𝑓 𝑎𝑠𝑡 ,ℎ𝑠𝑡𝑑 ,ℎ𝑠𝑙𝑜𝑤 Enthalpy of the fast, standard, and slow SCR reactions respectively [J/mol]
𝐼𝑏(·) Battery current [A]
𝐽 (𝑥0 ,𝑢) ,𝐽 (𝑥0 ,𝑢

∗) Admissible/minimum cost for the optimal problem
𝑘 Discrete time index (or stage)
𝑘𝑎(·) Adaptive factor [-]
𝑘𝑑 Minimum number of sub-segments to create an acceleration-deceleration

maneuver
𝑘𝑝 Penalty factor [-]
𝑘CO2 CO2 conversion factor [gCO2/lfuel]
𝑘𝑎𝑐𝑐 ,𝑘𝑑𝑒𝑐 Reductive factor of the vehicle maximum acceleration/deceleration [-]
𝑘𝐹𝐶 ,𝑘𝑁𝑂𝑥 ,𝑘𝑇3 DoE parameters [-]
𝑙 Length of the brick [m]
𝑙 𝑗 Measured speed segmentation [m]
¤𝑚𝑐(·) Battery coolant mass flow rate [kg/s]
¤𝑚 𝑓 ,𝑏(·) Virtual fuel mass flow rate associated to battery usage [kg/s]
¤𝑚 𝑓 ,𝑒𝑞(·) Equivalent fuel mass flow rate [kg/s]
¤𝑚 𝑓 (·) Fuel mass flow rate [kg/s]
𝑚𝑠 Mass of the considered solid material [kg]
𝑚 𝑓 ,𝑐(·) Corrected fuel consumption [kg]
𝑀𝑋 Molar mass of the species X [g/mol]
𝑚 𝑖𝑛
𝑋
,𝑚𝑜𝑢𝑡

𝑋
, Mass of the species X [g]

𝑀𝐴𝑆 Vehicle maximum allowable speed [km/h]
𝑀𝐴𝑆𝑛 Noise-related MAS [km/h]
𝑀𝐴𝑆𝑡 Traffic related MAS [km/h]
𝑁 Number of sub-segments of the speed profile prediction [-]

Number of iterations of the backward vehicle model [-]
𝑛 Polynomial coefficient of the penalty function
𝑛(·) Engine revolution speed [rpm]
𝑛𝑐 Number of close segments [-]
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𝑛𝑝 Number of cells strings [-]
𝑁𝑟 Number of points within range 𝑟 [-]
𝑁𝑠 Number of segments [-]
𝑛𝑠 Number of series-connected cells [-]
𝑛𝑣 Maximum number of elements of output vector
𝑛 𝑓 𝑎𝑠𝑡 ,𝑛𝑠𝑡𝑑 ,𝑛𝑠𝑙𝑜𝑤 Moles involved in the fast, standard, and slow SCR reactions respectively

[mol]
𝑛𝑋 Moles of the species X [mol]
𝑁𝑢 Nusselt number [-]
𝑁𝑢𝑡 Corrected Nusselt nuber [-]
𝑃(·) Power [W]
𝑝(·) Penalty term of the equivalence factor [-]
𝑃𝑏(·) Battery net power output [W]
𝑃𝑎𝑢𝑥 Auxiliary power [W]
𝑃𝑏,𝑙𝑜𝑠𝑠(·) Battery power losses [W]
𝑃𝑒𝑙(·) Electrical power [W]
𝑃𝐸𝑀(·) Required power to electric motors [W]
𝑃𝑚𝑒𝑐ℎ(·) Mechanical net power at the crankshaft [W]

Mechanical power [W]
𝑃𝑝𝑟𝑒 Power required for the pre-heating [W]
¤𝑄𝑎𝑖𝑟(·) Thermal power related to the air-battery convective heat exchange [W]
¤𝑄𝑐𝑜𝑜𝑙(·) Cooling heat rate due to battery-coolant convective heat exchange [W]
¤𝑄𝑒𝑥𝑜(·) Heat transfer related to the NOx reduction [W]
¤𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡,𝑖

(·), ¤𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡,𝑖

(·) External and internal convection heat exchange for the 𝑖-th brick [W]
¤𝑄𝑐𝑜𝑛𝑑
𝑖

(·) Conduction heat exchange for the 𝑖-th brick [W]
¤𝑄𝑐𝑜𝑛𝑑
𝑖

(·) Total heat exchange for the 𝑖-th brick [W]
¤𝑄𝑟𝑎𝑑
𝑖

(·) Radiation heat exchange for the 𝑖-th brick [W]
𝑄𝑙ℎ𝑣 Fuel lower heating value [J/kg]
𝑅 Number of dominant harmonics of the noise-related MAS [-]
𝑅0(·) Ohmic resistance [Ω]
𝑅1(·) Resistance of the RC circuit [Ω]
𝑟𝑤 Wheel radius [m]
𝑅𝑒 Reynolds number [-]
𝑠(·) Equivalence factor [-]
𝑆𝑎 Surface of the air-battery convective heat transfer [m2]
𝑆𝑐 Surface of the battery-coolant convective heat transfer [m2]
𝑠 𝑓 𝑐𝑒𝑞 Virtual specific fuel consumption [kg/kJ]
�̄�𝑠,𝑖(·),�̄�𝑔,𝑖(·) Solid and gas average temperature [°C]
Δ𝑇𝑚𝑙,𝑐(·) Logarithmic mean temperature difference [°C]
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Δ𝑡𝑝𝑟𝑒 Time required for the pre-heating [s]
𝑡 Time [s]
𝑇(·) Torque [Nm]

Temperature [°C]
𝑇𝑖(·) Initial temperature [°C]
𝑡𝑖 ,𝑡 𝑓 Initial/final time instant delimiting CB mode [s]
𝑇𝑟(·) Torque request at the wheels [Nm]
𝑡𝑠 Computational time step [s]
𝑡𝑢(·) Update time [s]
𝑇𝑎𝑚𝑏 Ambient temperature [°C]
𝑇𝑐,𝑖𝑛 ,𝑇𝑐,𝑜𝑢𝑡 Input / output coolant temperature [°C]
𝑇𝑐𝑜𝑙𝑑 ,𝑇𝑤𝑎𝑟𝑚 Temperature thresholds for engine maps [°C]
𝑇𝐸𝑀(·) Electric machines torque [Nm]
𝑇𝑔,0,𝑖(·),𝑇𝑠,0,𝑖(·) Initial temperatures of the gas and of the solid material respectively [°C]
𝑇𝑔,𝑜𝑢𝑡,𝑖(·) Gas temperature at the brick outlet [°C]
𝑡𝑖 ,𝑍 ,𝑡 𝑓 ,𝑍 ZEZ entrance/exit time instant [s]
𝑇𝐼𝐶𝐸(·) Internal combustion engine torque [Nm]
𝑇𝐿𝑃𝑆(·) Torque required for the load-point shift [Nm]
𝑇𝑚𝑖𝑛 ,𝑇𝑚𝑎𝑥 Minimum/maximum torque in CS mode [Nm]
𝑇𝑟𝑒𝑞(·) Torque requested by the driver for traction [Nm]
𝑇𝑠, 𝑓 𝑖𝑛,𝑖(·) Final temperature of the 𝑖-th solid brick [°C]
𝑇𝑡𝑟𝑚,𝑖𝑛(·) Total requested torque upstream of the transmission [Nm]
𝑇𝑤(·) Driver torque request at the wheels [Nm]
u Control variables vector
v Predicted vehicle speed profile [km/h]
𝑉(·) Voltage [V]
𝑣(·) Vehicle longitudinal speed [km/h]
𝑉0(·) Voltage drop related to the ohmic resistance [V]
𝑉1(·) Voltage drop related to the RC circuit [V]
𝑉𝑏(·) Battery voltage [V]
𝑉𝑏,𝑖𝑛𝑡 Internal battery voltage [V]
𝑣𝑙𝑖𝑚 Road segment’s legal speed limit [km/h]
𝑣𝑚𝑖𝑛 ,𝑣𝑚𝑎𝑥 Minimum/maximum speed in CS mode [Nm]
𝑉𝑂𝐶(·) Open circuit voltage [V]
𝑣𝑝,𝑖 ,𝑣𝑟𝑖 Predicted and measured speed at point 𝑖 [km/h]
𝑤𝑤𝑎𝑟𝑚 ,𝑤𝑐𝑜𝑙𝑑 Weighting factors for engine maps [-]
x State variables vector
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Greek symbols

𝛼(·) Angle of slope [rad]
𝛼%(·) Percentage road slope [%]
𝛂% Predicted road slope profile [%]
𝛽 NO2/NOx mass ratio [-]
𝜖 Emissivity [-]
𝜖𝑠 Gas heat transfer effectiveness in space [-]
𝜖𝑡 Solid heat transfer effectiveness in time [-]
�̄�𝐸𝑀 Electric motors average efficiency [-]
�̄�𝐼𝐶𝐸 Engine average efficiency [-]
�̄�𝐼𝑆𝐺 ISG average efficiency [-]
𝜂 Efficiency [-]
𝜂𝑐 Coulombic efficiency [-]
𝜂𝐷𝐶𝐷𝐶 DCDC efficiency [-]
𝜆𝑔 ,𝜆𝑠 Thermal conductivity of the gas and the solid [W/(m·K)]
𝛏 Vector of the predicted battery SoC [-]
Δ𝜉𝑡 Target SoC tolerance [-]
Δ𝜉𝑍 Net SoC for ZEZ in eDrive [-]
𝜉(·) Battery state of charge [-]
𝜉𝑖 Initial SoC [-]
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Chapter 1

Introduction

In this chapter, an overview of the current automotive background is given in order to practically
comprehend the reasons and motivations lying behind the research project and how the global

regulatory targets and customer demand are driving the automotive industry to improve vehicle
efficiency. In particular, the current and upcoming European regulations in terms of CO2 and
pollutant emissions are presented alongside their measurement and test procedures. Finally, the
state-of-the-art of exhaust after-treatment systems and the electric hybridization of the vehicles
are presented as valid solutions to address the air pollution related to the transportation sector.

1.1 Motivation

The last decades of the twentieth century have been characterized by an exponential trend of
industrialization and consequently a growth in greenhouse gas (GHG) emissions, such as carbon
dioxide (CO2). This is heavily conditioning one of the most demanding challenges of present
times: global warming. Moreover, the increasing rate of urbanization led to a massive migration
of people from the rural areas to the urban centers as shown in Fig. 1.1. In [1], it is reported that,
in 2016, 4 billion people lived in urban areas and this number is projected to increase to 7 billion
by 2050 [2].

One of the direct consequences is the worsening of urban mobility and air quality. In fact, 21%
of the CO2 emitted comes from the transportation sector [3], especially near the city centers. As
an example, in Fig. 1.2 the concentration in ppm of nitrogen dioxide (NO2) is represented, thus
it is possible to see that the higher concentration corresponds to the urban areas (the red dots
on the map). This trend forced the national governments and local administrations to introduce
countermeasures such as more demanding vehicle approval procedures and traffic limitations.

In particular, the European Commission (EC) sets the limit of 95 [g/km] of CO2 for 2021 and
80 [g/km] for 2025. Moreover, the EC replaces the New European Driving Cycle (NEDC) with
the Worldwide harmonized Light vehicles Test Procedure (WLTP) to better match the laboratory
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Figure 1.1: Trend of the population living in urban and rural areas [2]

Figure 1.2: NO2 concentration in Europe [4]

estimates of fuel consumption and emissions with the measures of an on-road driving condition.
In fact, the difference between in-use and type-approval fuel consumption has been evaluated to
be around 11% [5]. Then, in 2017 it introduced the Real Driving Emissions (RDE) testing procedure
in addition to laboratory tests. In the RDE test, a car is driven on public roads and over a wide
range of different conditions which are designed to be more representative of driving conditions
normally encountered on European roads [6]. On-board emissions measuring is performed by
means of Portable Emission Measuring Systems (PEMS) that provide a complete real-time moni-
toring of the key pollutants emitted by the vehicle. On the other hand, the local administrations
introduce measures to optimize the traffic flows and to avoid localized pollution, often related
to the urban areas. One of the more common actions is to increase traffic limitations, regarding
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1.2 – Type-approval regulations

both the conventional vehicles (Low-Emission Zone – LEZ) and the non-conventional vehicles
(Zero-Emission Zone – ZEZ) [7].

In response to this trend, the Original Equipment Manufacturers (OEM) developed innovative
solutions such as more efficient conventional internal combustion engines (ICE), effective Exhaust
After-Treatment Systems (EATS), and more complex but efficient powertrains such as Hybrid
Electric Vehicles (HEVs). In fact, if the electric energy used for propulsion can be derived from
renewable energy sources, this vehicle technology is a promising way to reduce global warming.
As a consequence, the penetration of HEVs in the automotive market is supposed to increase in the
next decades [8], with 48% of the total volume of passenger cars represented by hybrid vehicles in
2030 [9]. Alongside the improvements in the propulsion system, the OEMs also developed dedi-
cated EATS for the abatement of each regulated pollutant, such as the Three-Way Catalyst (TWC)
for conventional gasoline engines, the Diesel Oxidation Catalyst (DOC), the Diesel Particulate
Filter (DPF) and the Selective Catalytic Reduction (SCR) for diesel engines.

Moreover, technological advancement allowed innovations to be implemented both on the
vehicle and on the infrastructure, such as wireless communication, cloud computing, innovative
sensors, and artificial intelligence functions (such as computer vision). These technologies result in
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Network (V2N) commu-
nication. Together with the latest Advanced Driver-Assistance Systems (ADAS), these technologies
allow calculating an electronic horizon (shortly known as eHorizon) which represents a virtual
reconstruction of the planned route. It is conventionally divided into short horizon, which compre-
hends information about nearby vehicles and traffic lights, and the long horizon, which includes
information about the selected route, the slope, and the speed limits.

In light of the considerations above, HEVs and vehicular connectivity could represent a valid
solution for addressing not only the CO2 but even the pollutant emissions. This possibility has
been addressed and further investigated during this research activity by focusing on the reduction
of urban air pollution. In particular, predictive energy and emissions management strategies for
HEVs have been developed on the basis of navigation data retrieved via long-range connectivity.
With this aim, an advanced connected Hardware-in-the-Loop (HiL) system has been set up to
effectively test the control strategies in a simulation environment with the real control unit and
real-time, up-to-date route information.

1.2 Type-approval regulations

As mentioned before, this work focuses on the reduction of CO2 and pollutant emissions
produced by HEVs using them as parameters for the performance evaluation of the control
strategies under test. Hence, a brief introduction to the related in-force regulations is provided in
this section. For the sake of brevity, only the European laws for passenger cars will be discussed
in detail, firstly the ones related to greenhouse gases (GHG) and then the ones concerning criteria
pollutants.
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1.2.1 Greenhouse gases

In 2017, The EC introduced the law EU2017/R1151 [10] that regulates greenhouse gases pro-
duced by light- and heavy-duty vehicles by means of the WLTP. The latter was intended to
harmonize test procedures worldwide, thus a cycle representing typical driving characteristics
around the world has been developed. This is referred to as the World Harmonized Light-duty
Vehicle Test Cycle (WLTC), depicted in Fig. 1.3 as it was designed using a large number of real-
world drives gathered from around the world to better represent everyday driving profiles. The
real-world driving data used as input for this development came from five different regions: the
European Union plus Switzerland, the United States, India, Korea, and Japan. More in detail, the
WLTC is divided into four parts with different average speeds: low, medium, high, and extra high,
which are listed in Tab. 1.1.

Figure 1.3: The WLTP test cycle

Table 1.1: WLTC test section specifications for class 3 vehicle [10]

Units Low Medium High Extra high Total
Distance m 3095 4756 7162 8254 23266
Duration s 589 433 455 323 1800
Idle time % 26 11.1 6.8 2.2 -
Maximum speed km/h 56.5 76.6 97.4 131.3 -
Average speed km/h 25.7 44.5 60.8 94 -

The regulation also defines a specific procedure, summarized in Fig. 1.4, for vehicles propelled
by more than one power source, such as the Off Vehicle Charging (OCV) HEVs, also known as
Plug-in HEV (PHEV). In fact, the electrical energy consumption must be properly converted into
equivalent fuel consumption. With this aim, after initial preconditioning, the vehicle performs
consecutive driving cycles in Charge Depleting (CD) mode, using the electrical power as a prefer-
ential source until the battery is completely discharged. Then, the vehicle performs another WLTC,
but without charging the battery at the beginning, hence in Charge Sustaining (CS) mode. Finally,
the values of energy and fuel consumption are weighted to obtain the corrected value. Since this
procedure will be applied in Chapter 4 and Chapter 5 to compare the different strategies, the
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specific tests are discussed hereafter.

Soak Charging
EACCD + CS

At least 1
precon. cycle

Charging,
soaking

CD Type 1
test

CS Type 1
test

Figure 1.4: Test procedure for hybrid electric vehicles [10]

- CD Type 1 test: the Type 1 test shall consist of prescribed sequences of dynamometer
preparation, fueling, soaking, and operating conditions. During each driven preconditioning
cycle, the charging balance of the rechargeable electric energy storage system (REESS) shall
be determined. Moreover, the test vehicle shall be kept in an area with ambient conditions of
23°C with a tolerance of ± 3°C. Then, the consecutive cycles are carried out, starting with a
fully charged REESS and with the vehicle operated in charge-depleting operating condition,
as represented in Fig. 1.5.

PreconditioningPreconditioning

REESS
state of charge

REESS
fully charged

applicable test
cycle n-2

CD Type 1 test

applicable test
cycle n-1

Soak
+

REESS charging

Charge depleting cycle range RCDC

Charge depletingrange RCDC

All Electric Range

Fu
lly

ch
ar
ge

d

applicable test
cycle n+1

(confirmation cycle)

applicable test
cycle n

(transition test)

Figure 1.5: CD Type 1 test [10]

The end of the charge-depleting Type 1 test is reached when the break-off criterion, described
by Eq. (1.1), is verified for the first time. The number of applicable WLTP test cycles up to
and including the one where the criterion was reached is set to n+1. The applicable WLTP
test cycle n is defined as the transition cycle while the n+1 as the confirmation cycle.

𝑅𝐸𝐸𝐶𝑖 =
|Δ𝐸𝑅𝐸𝐸𝑆𝑆,𝑖 |
𝐸𝑐𝑦𝑐𝑙𝑒 · 1

3600
=

∫ 𝑡𝑒𝑛𝑑

𝑡0
𝑈𝑖(𝑡)𝐼𝑖(𝑡)𝑑𝑡∫ 𝑡𝑒𝑛𝑑

𝑡0
𝐹(𝑡)𝑑(𝑡)𝑑𝑡

< 4% (1.1)

where:
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– 𝑅𝐸𝐸𝐶𝑖 is the relative electrical energy change for the 𝑖-th cycle of the CD test;

– Δ𝐸𝑅𝐸𝐸𝑆𝑆,𝑖 is the variation of electrical energy of the REESS during 𝑖-th cycle in𝑊ℎ;

– 𝐸𝑐𝑦𝑐𝑙𝑒 energy demand related to the complete driving cycle in𝑊𝑠;

– 𝐼𝑖 is the electric current of the REESS during the cycle 𝑖 in 𝐴;

– 𝑈𝑖 represents the voltage of the REESS during the cycle 𝑖 in 𝑉 ;

– 𝑑(𝑡) is the traveled distance at the instant 𝑡 in 𝑚;

– 𝐹(𝑡) represents the driving force at the instant 𝑡 in 𝑁 and that is expressed by:

𝐹(𝑡) = 𝑓0 + 𝑓1 · 𝑣(𝑡) + 𝑓2 · 𝑣2 (1.2)

where:

– 𝑓0, 𝑓1 and 𝑓2 are the road load coefficients for the test vehicle under consideration in 𝑁 ,
𝑁

𝑘𝑚/ℎ and in 𝑁
𝑘𝑚/ℎ2 respectively;

– 𝑣(𝑡) is the vehicle speed in 𝑘𝑚/ℎ

Moreover, the CD Type 1 test defines the All-Electric Range (AER) as the distance driven
when the first engine start occurs and it is expressed by the purple line in Fig. 1.5.

REESS
state of charge

1 applicable test
cycle (cold)

Charging

CS Type 1 test

Soak

Max
120 min

∆E

Figure 1.6: CS Type 1 test [10]

- CS Type 1 test: after the soaking period the procedure continues without recharging the
REESS, as shown in Fig. 1.4. The test provides for a set of 𝑛 CS Type 1 cycles, represented
in Fig. 1.6, where the first one is called reference cycle. The other 𝑛 − 1 cycles have to contain
at least one measurement with a negative charging balance 𝐸𝑅𝐸𝐸𝑆𝑆,𝑖 , and one measurement
with a positive charging balance.
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An additional correction of the measured CO2 shall be applied if Δ𝐸𝑅𝐸𝐸𝑆𝑆,𝐶𝑆 calculated as
Eq. (1.1) is negative, thus corresponding to the discharging of REESS, and the following constraint
is verified:

𝑐 =
|Δ𝐸𝑅𝐸𝐸𝑆𝑆,𝐶𝑆 |

𝐸 𝑓 ,𝐶𝑆
> 0.005 (1.3)

where 𝑐 is the correction criterion and 𝐸 𝑓 ,𝐶𝑆 is the charge-sustaining energy content of the
consumed fuel during the test, calculated as:

𝐸 𝑓 ,𝐶𝑆 = 10 · 𝑄ℎ𝑣 · 𝑚 𝑓 ,𝐶𝑆,𝑛𝑏 · 𝑑𝐶𝑆 (1.4)

where 𝑄ℎ𝑣 is the heating value of the fuel (specified in [10]) in 𝑘𝑊ℎ
𝑙

, 𝑚 𝑓 ,𝐶𝑆,𝑛𝑏 is the fuel
consumed during the CS cycle in 𝑙

100𝑘𝑚 , the suffix 𝑛𝑏 stands for not balanced and 𝑑𝐶𝑆 is the total
driven distance during the test in 𝑚. The factor 10 is only the conversion factor to𝑊ℎ.

If these conditions are verified, the CO2 must be corrected considering the electrical energy
consumption for each WLTC phase (shown in Fig. 1.3) as follows:

𝑚𝐶𝑂2 ,𝑝 = 𝑚𝐶𝑂2 ,𝑛𝑏,𝑝 + 𝐾𝐶𝑂2 · 𝐸𝐶𝑆,𝑝 (1.5)

where𝑚𝐶𝑂2 ,𝑛𝑏,𝑝 is the CO2 emission of phase p in 𝑔

𝑘𝑚
, 𝐸𝐶𝑆,𝑝 is the electrical energy consumed in

phase p of the WLTC (described in Tab. 1.1), and 𝐾𝐶𝑂2 is the corrective factor, analytically defined
by:

𝐾𝐶𝑂2 =

∑𝑛𝐶𝑆
𝑛=1((𝐸𝐶𝐶𝑆,𝑛 − 𝐸𝐶𝐶𝑆,𝑎𝑣𝑔) · (𝑀𝐶𝑂2 ,𝐶𝑆,𝑛𝑏,𝑛 −𝑀𝐶𝑂2 ,𝐶𝑆,𝑛𝑏,𝑎𝑣𝑔))∑𝑛𝐶𝑆

𝑛=1(𝐸𝐶𝐷𝐶,𝐶𝑆,𝑛 − 𝐸𝐶𝐷𝐶,𝐶𝑆,𝑎𝑣𝑔)2
(1.6)

where:

– 𝐸𝐶𝐶𝑆,𝑛 is the energy consumption associated with the 𝑛-th CS cycle, in 𝑘𝑊ℎ/𝑘𝑚;

– 𝐸𝐶𝐶𝑆,𝑎𝑣𝑔 is the average energy consumption over the 𝑛 CS cycles, in 𝑘𝑊ℎ/𝑘𝑚;

– 𝑚𝐶𝑂2 ,𝐶𝑆,𝑛𝑏,𝑛 is the net CO2 emissions during the 𝑛-th CS test, in 𝑔𝐶𝑂2/𝑘𝑚;

– 𝑚𝐶𝑂2 ,𝐶𝑆,𝑛𝑏,𝑎𝑣𝑔 is the average CO2 emissions of the 𝑛 CS test, in 𝑔𝐶𝑂2/𝑘𝑚.

Consequently, the mass of CO2 is weighted on the distance of each phase and then summed as
in 1.7 both for the charge depleting and charge-sustaining test.

𝑚𝐶𝑂2 ,𝐶𝑆,𝑤 =

∑𝑖=4
𝑖=1(𝑀𝐶𝑂2 ,𝐶𝑆,𝑛𝑏,𝑛 · 𝑑𝑖)

𝑑𝑡𝑜𝑡
(1.7)

where 𝑑𝑖 is the driven distance of the 𝑖-th phase in 𝑘𝑚.
Furthermore, the regulation introduces the utility factors (UF), which are ratios based on

driving statistics depending on the range achieved in charge-depleting condition and they are
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Figure 1.7: Utility factors

reported in Fig. 1.7 [10]. The UFs are used to weigh the charge-depleting and charge-sustaining
exhaust emission compounds, CO2 emissions, and fuel consumption for Off-Vehicle Charging
(OVC) HEVs, as described by Eq. (1.8).

𝑚𝐶𝑂2 ,𝑤 =

𝑘∑
𝑝=1

(𝑈𝐹𝑝 · 𝑚𝐶𝑂2 ,𝐶𝐷,𝑝) + (1 −
𝑘∑
𝑝=1

(𝑈𝐹𝑝) · 𝑚𝐶𝑂2 ,𝐶𝑆,𝑤 (1.8)

1.2.1.1 Eco-innovation bonus

Even if the WLTC simulates the real-driving CO2 emissions more accurately than the previous
NEDC, a certain discrepancy between declared and real-world CO2 and pollutant emissions
remains [11]. On the one hand, this is related to the more dynamic and unpredictable driving
behaviors [12][13] that can lead to an increase in CO2 production by up to 95%. On the other hand,
there are innovative technologies that produce real-world CO2 savings beyond what is measured
over the standardized test cycle during vehicle type approval, also referred to as eco-innovations.
These were first introduced by the EU regulation 2009/R443 [14] for passenger cars and EU
regulation 2011/510 for light commercial vehicles. In 2020, EU regulation 2019/631 [15] entered
into force replacing the previous ones and setting new CO2 emission targets and standards for
new-registered cars and vans. Policy schemes similar to the European eco-innovation scheme can
be found outside the European Union, like in USA [16] and China [17].

In an attempt to ensure that the eco-innovations provision incentivizes novel technologies,
the approval procedure presented by the European Commission for eco-innovations [18] restricts
which technologies are eligible, as summarized in [19]. In particular, eco-innovations:

- may not be currently mandated or part of the EC strategy to reduce CO2 emissions from light-
duty vehicles [20] (e.g., tire pressure monitoring systems, tire rolling resistance measures,
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1.2 – Type-approval regulations

gear shift indicators), and must be outside of type-approval conditions;

- must be novel and thus not have a market penetration higher than 3% in 2009;

- must contribute to the safety or performance of the vehicle, thus excluding nonessential
comfort technologies like entertainment and air-conditioning systems;

- must produce measurable CO2 savings during repeated tests, exceeding 1 g/km in a statis-
tically significant manner.

- can be bundled in technology packages in order to meet the 1 g/km CO2 saving threshold
as long as they are functionally similar, i.e., aggregate CO2 savings can be measured using
one testing methodology.

Figure 1.8: Average CO2 savings and number of vehicles registered with each eco-innovation technology [19]

For the sake of clarity, Fig. 1.8 gives an example of the eco-innovations used in the 2017 new
passenger car market in terms of average emission reduction and the number of cars equipped
with it. Because some vehicles were sold with multiple eco-innovations, several markers repre-
sent combined eco-innovations. The figure shows that five eco-innovation technology packages
accounted for more than 90% of fleet-average CO2 savings, which are reported here as a reference:

- innovative alternator with high-efficiency diodes (eco-innovation 8), developed by Bosch
and by far the most impactful eco-innovation. Although it had a relatively minor impact on
CO2 emissions for a single vehicle, with CO2, it was installed in more than 200.000 new cars
in 2017;

9
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- high efficient alternator with synchronous active rectification (eco-innovation 09) also devel-
oped by Bosch;

- another highly efficient alternator (eco-innovation 2) presented by Valeo;

- lighting technologies (eco-innovation 10) by Daimler

A noteworthy technology is an adaptive state of charge control in hybrids (eco-innovation 04)
developed by Bosch. In fact, the functions developed and presented in this dissertation would be
left apart by the type approval regulations but may be proposed as eco-innovations technologies.
Thus, the functions will not only provide more efficient energy management of the vehicle but
also possibly help the OEM with CO2 credits.

1.2.2 Criteria Pollutants

The US Environmental Protection Agency (EPA) denominates the "criteria" air pollutants be-
cause it sets standards for them based on the criteria, which are characterizations of the latest
scientific information regarding their effects on health or welfare [21]. These pollutants are par-
ticulate matter, photochemical oxidants (including ozone), carbon monoxide, sulfur oxides, and
nitrogen oxides. In particular:

- Carbon monoxide (CO): predominantly controlled by the fuel–air mixture in the cylinder,
independently of fuel type [22]. With a rich mixture, more fuel than the stoichiometric
amount can react with the air in the cylinder. Therefore, not all of the fuel can be completely
burned. Conversely, with lean mixture, the probability of complete combustion increases
and the CO decreases. The CO formation can be described by the combustion reaction:

C𝑥H𝑦 + zO2 → aCO2 + bCO + dH2O (1.9)

where 𝑥 = 𝑎 + 𝑏, 𝑦 = 2𝑑, and 𝑧 = 𝑎 + 𝑏/2 + 𝑑/2.

- Unburned hydrocarbons (HC): primarily formed from the hydrocarbons-based present in
the fuel that partially reacts, recombines, or remains unburnt. Even the partial oxidation and
evaporation of the lubricant oil could generate a small amount of HC.

- Nitrogen oxides (NOx): they include both nitrogen monoxide (NO), which is predominant
during combustion [23], and nitrogen dioxide (NO2) species. Their formation was described
by the well-known Zel’dovich mechanism, further extended by Lavoie [24], and comprises
three reactions for near-stoichiometric fuel–air mixtures:

N2 + O ↔ NO + N (1.10)

N + O2 ↔ NO + H (1.11)
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N + OH ↔ NO + O (1.12)

On the other hand, NO2 is formed by NO being further oxidized following the forward
reaction:

NO + O ↔ NO2 (1.13)

- Particulate matter (PM) and number (PN): generally formed in the rich regions of the com-
bustion chamber, at temperatures around 1400°C and pressures of 100 bar. The particulate
matter or "soot" are also grouped with respect to the diameter, while also the number of
particles is regulated.

Due to their inherent harmfulness to human beings, and the increasing number of passenger
cars and transportation vehicles on the roads, in Europe the criteria pollutants have been regulated
since the 1990s by means of the Euro emission standards [25], setting more stringent limits. The
Fig. 1.9 shows the emissions limits trend for Diesel passenger cars from the Euro 3 (2000) to the
actual in-force regulation Euro 6 (2015), where for example the NOx limit is decreased by 84%.

Figure 1.9: Diesel passenger cars EU regulations limits trend from Euro 3 to Euro 6

For a matter of completeness, the not-to-exceed limits introduced by the in-force regulation
EU2012/R459 [26] are reported in Tab. 1.2, both for gasoline and diesel passenger cars, since the
limits will be used in Chapter 9 to assess the performance of the developed strategies. In Tab. 1.2
THC are the total hydrocarbons, NMHC are the non-methane hydrocarbons, PM and PN are the
particulate matter and number respectively.

In order to further reduce emissions on the road to climate neutrality, the EC is planning to
introduce more demanding limits with the upcoming Euro 7 regulation, which should come into
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Table 1.2: Euro 6 criteria pollutants limits [26] compared with the two Euro 7 scenarios introduced in [27]

Euro 6 Euro 7
PI CI Scenario A Scenario B

CO mg/km 1000 500 300 100
THC mg/km 100 - tbd tbd
NMHC mg/km 68 - tbd tbd
NOx mg/km 60 80 30 10
THC + NOx mg/km - 170 - -
PM mg/km 4.5 4.5 tbd tbd
PN n/km 6 × 1011 6 × 1011 1 × 1011 6 × 1011

CH4 mg/km - - 10 5
N2O mg/km - - 10 5
NH3 mg/km - - 5 2

force between 2025 and 2027. According to the first draft proposed in [27], the Euro 7 regulation
would require that the emission limits, besides being lower than Euro 6 ones, are enforced in nearly
any possible operating condition. Focusing on pollutant emissions limits, two different scenarios
have been proposed within the current draft, referred to as Scenario A and the more demanding
Scenario B. The criteria pollutants limits are reported in Tab. 1.2, where the reduction of 90%
of NOx emissions and the introduction of new regulated species are observed. NOx emissions
control will become critical considering this challenging limit and the new testing conditions
which will increase the impact of cold start phases on the whole driving cycle. Therefore, car
manufacturers would be required to adopt extremely advanced after-treatment technologies to
fulfill such demanding emission standards, leading to increased manufacturing costs [28].

1.2.2.1 Real-driving emissions

Initially, EU regulators were using the NEDC to certify exhaust emissions of cars and light
commercial vehicles in an easy, repeatable, and reproducible manner. The test is performed at
the chassis dynamometer in a vehicle-emissions laboratory under well-defined temperature and
humidity ambient conditions. Nevertheless, modern vehicles complete the NEDC using a modest
share of available engine power and covering a limited portion of possible real-world operating
conditions. In fact, the researchers reported growing discrepancies between laboratory and on-
road emissions from 9% in 2009 to a peak of 42% in 2015 [29], especially for nitrogen oxide (NOx)
emissions [30]. To overcome this problem, in 2017 the European Council introduced the WLTP
for the type approval, as already explained in Chapter 1.2.1. In addition to the WLTP laboratory
tests, the Real-Driving Emissions (RDE) test cycle, represented in Fig. 1.10, has been adopted. This
four-part package regulation was introduced over the course of three years between September
2017 and September 2020 for the type approval of light-duty vehicles in the EU. The RDE test uses
a portable emissions measurement system (PEMS) to measure the gaseous emissions, emitted
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during the road driving test. Pollutant limits are only defined for NOx and PN according to the
Euro 6 limits expressed in Tab. 1.2 multiplied by a conformity factor. This allows vehicles to be
measured with higher pollutant levels during an RDE test than the Euro 6 standard by including
the measurement uncertainty of PEMS.

During an RDE cycle, a car is driven on public roads over a wide range of different conditions,
so it’s easy to understand how it can differ from a laboratory test. The vehicle must follow a speed
profile that has to satisfy a series of requisites defined by the R1151 regulation, Annex IIIA [10].
These are related to maximum/minimum accelerations, average speeds (for all the phases), time
share, altitude, and three different zones, and are summarized in Tab. 1.3 and Tab. 1.4.

Table 1.3: Distance and speed specifications for each urban, rural, and motorway part of the RDE test

Trip specifications Provision set in the legal text
Total trip duration Between 90 and 120 min

Distance
Urban > 16 km
Rural > 16 km
Highway > 16 km

Trip composition
Urban 29% to 44% of the distance
Rural 23% to 43% of the distance
Highway 23% to 43% of the distance

Average speeds
Urban 15 to 40 km/h
Rural Between 60 km/h and 90 km/h
Highway > 90 km/h (> 100 km/h for at least 5 min)

Figure 1.10: Example of a Real-Driving Emissions driving cycle with a focus on each phase

To be valid, each section of an RDE trip (urban, rural, and motorway) must be below the line
in Fig. 1.11 showing speed multiplied by acceleration (𝑣 ∗ 𝑎) and above the line showing relative
positive acceleration (RPA). As clearly explained in [6], three possible RDE trips are plotted to
illustrate how dynamic boundary conditions work. In this case, only Trip 1 is valid, while Trip
2 would be too aggressive in urban driving and Trip 3 too passive on both rural and motorway
sections.
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Table 1.4: Boundary conditions for RDE test [6]

Parameter Provision set in the legal text
Payload ≤ 90% of maximum vehicle weight

Altitude Moderate 0 to 700 m
Extended Between 700 and 1300 m

Altitude difference No more than a 100-m-altitude difference be-
tween start and finish

Cumulative altitude
gain 1200 m/100 km

Ambient temperature Moderate 0°C to 30°C
Extended From –7°C to 0°C and 30°C to 35°C

Stop percentage Between 6% and 30% of urban time

Maximum speed 145 km/h (160 km/h for 3% of motorway driving
time)

Dynamic boundary con-
ditions Maximum metric 95th percentile of 𝑣 ∗ 𝑎
(see Fig. 1.11) Minimum metric RPA (relative positive acceleration)
Use of auxiliary systems Free to use as in real life (operation not recorded)

Figure 1.11: Dynamic boundary conditions with three illustrative RDE trips. [6]

Despite the in-force RDE trip definition is moving closer to the real-world driving operation,
[27] highlights that there are several maneuvers not covered properly. Euro 7 proposal defines a
more stringent real-driving procedure with the aim to clear the gap between the type-approval
tests and the real world. In particular, vehicle laboratory testing would be maintained only for CO2

and pollutants that cannot be measured with PEMS, while a wider range of ambient temperatures
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and altitudes would be investigated during the road tests. Moreover, there would be no substantial
limitations on the driving cycles to be considered for the vehicle type approval procedure, meaning
that any driving cycle longer than 5 km and any possible performed maneuver will be considered
valid for the test, since no more speed, acceleration, and road grade limitations are provided.

The differences between the in-force RDE type approval procedure and the RDE proposed by
Euro 7 are summarized in Tab. 1.5.

Table 1.5: Comparison of testing methods on RDE cycles according to in-force regulation and the Euro 7
proposal

Parameter Euro 6 Euro 7

Ambient temperature Moderate: 0 ÷ 30°C -10 ÷ 40°C
Extended: -7 ÷ 35°C -

Average Speed Urban: 15-40 km/h -

Altitude Moderate: 0 – 700m -
Extended: 700 – 1300m -

𝑎 ∗ 𝑣 [95th]* Limits defined in [31] -

Positive elevation Total: <1200 [m/100km] -
Urban: <1200 [m/100km] -

Trip distance Urban/Rural/Motorway >16 km each > 5 km

1.3 Advanced powertrains

As a response to the stringent regulations presented above, the OEMs boost research and
development to define more efficient and clean solutions [32]. In the following paragraphs, the
more relevant components, architecture, and technologies will be briefly discussed, starting from
the countermeasures to abate criteria pollutants, then analyzing the different hybrid powertrain
typologies developed so far to reduce CO2 emissions, and finally presenting the innovative tech-
nologies introduced to make the vehicles as sustainable and safe as possible.

1.3.1 Exhaust after-treatment systems

Exhaust after-treatment systems (EATS) for internal combustion engines have been in devel-
opment for over 60 years, with the first publication being presented in 1957 by Cannon et al.[33]
of Ford and in 1959 by Nebel and Bishop [34] of General Motors. As noted by [35], the researchers
have found ways to improve the efficiency and efficacy of catalytic converters which translates
into lower component and operating costs for the EATS overall. Due to the inherent nature of the
several criteria pollutants introduced in 1.2.2, the EATS require specialized components to ensure
the highest conversion efficiency possible, leading to complex layouts such as the one shown in
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Fig. 1.12. Moreover, the criteria pollutants formation heavily depends on the different kinds of the
engine (e.g., spark ignition, compression ignition), the fuel composition, and the mixture forma-
tion. Therefore, in the following paragraphs, an overview of the commonly adopted components
is given for each pollutant species.

Figure 1.12: Example of a diesel EATS compliant with Euro 6 [36]

1.3.1.1 CO and HC oxidation

– Oxidation catalysts: they were developed by Engelhard Corporation in 1973 [37] to lower
the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust from gasoline
spark ignition (SI) engines, and installed in Light Commercial Vehicle (LCV) from model year
1975. The oxidation catalyst was introduced in response to the 1970 Clean Air Act, resulting in
an emissions reduction of 95% in the following decade [38]. The oxidation catalyst assumed
a more important role in emissions abatement with the arrival of compression ignition
(CI) engines, where it became known as the diesel oxidation catalyst (DOC), as shown in
Fig. 1.12. The performance of the DOC especially depends on the operating temperature, on
the precious metal catalyst used, and the washcoat that supports it. In fact, it has an operating
temperature range (250-600°C [39]) outside of which its activity can fall off severely. For
catalysts in general, the activity within the catalytic converter is commonly assessed by the
light-off temperature, which corresponds to the reaching of 50% conversion, 𝑇50. Focusing
on the oxidation reactions, within the DOC the pollutant emissions are oxidized as follows:

C𝑥H𝑦 + (2 x + 1/2y)O2 → xCO2 + 1/2yH2O (1.14)
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2 CO + O2 → 2CO2 (1.15)

where the HCs are oxidized to form CO2 and water vapor as shown in Eq. (1.14) using a
generic HC compound (𝐶𝑥𝐻𝑦), and CO is oxidized to CO2 following Eq. (1.15), completing
the combustion of the fuel-derived emissions species. Both reactions are exothermic, thus it
can be used alongside a late injection of fuel to heat up the downstream components and
trigger particulate filter regeneration. Moreover, the oxidation catalyst can also significantly
influence the ratio of the nitrogen oxide (NOx species in the exhaust gas, as nitric oxide (NO)
can be oxidized to nitrogen dioxide (NO2) or vice versa as expressed by Eq. (1.16):

2 NO + O2 = 2 NO2 (1.16)

influencing also the performance of the downstream abatement systems, which will be
presented in the next paragraph.

– Three-way catalyst (TWC): they became predominant as a response to the regulations
regarding NOx, developed by adding the reduction of NOx (expressed in Eq. (1.17)) as the
"third-way" to the original oxidation catalyst. Thanks to the implementation of the three-way
catalyst (TWC), the exhaust emissions from light-duty vehicles with SI engines have been
drastically reduced by up to 95% with respect to the 1970s [38].

2 NO = N2 + O2 (1.17)

The conversion efficiency of the TWC, depicted in Fig. 1.13, is strongly affected by 𝜆, that
is the ratio between the current air-fuel ratio (AFR) and the stoichiometric value for the
given fuel. In fact, if the engine operates in lean conditions (𝜆 > 1), the exhaust gas is in a net
oxidizing condition favoring the abatement of HC and CO, while penalizing the reduction of
NOx. Conversely, if the engine works rich (𝜆 > 1). Thus, the SI engines are operated near the
stoichiometric AFR (𝜆 = 1) thanks to a closed-loop control to ensure that the TWC facilitates
the three key redox reactions for criteria pollutant abatement, which is represented by the
gray area in Fig. 1.13. Moreover, TWCs are designed to store (and subsequently release)
excess oxygen, thus allowing a more efficient reduction of NOx, and oxidation of HCs and
COs, if the AFR is forced to oscillate around stoichiometry by the Engine Control Unit.

1.3.1.2 NOx reduction

– Lean NOx-trap (LNT): it was first presented by Johnson Matthey [40] aiming at reducing
NOx in a lean condition. In fact, it adsorbs and stores NOx from the exhaust gases when it is
in a net oxidizing state. The LNT is then regenerated by desorbing the NOx and reducing it to
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Figure 1.13: Qualitative representation of conversion efficiency of a TWC for each species

N2 during a fuel-rich combustion mode. The reducing agents are hydrocarbons (HC), carbon
monoxide (CO), and hydrogen gas (H2) which are generated by the partial decomposition
of the fuel in the engine under rich operating conditions. In their basic function, LNTs are
similar to the TWC, since they use HC and CO to reduce NOx, and NOx and residual oxygen
(O2) to oxidize the HC and CO, but LNT perform these steps cyclically in series, instead
of simultaneously [23]. Therefore, its implementation presents inherent complexity, since it
requires specific control of the engine operation mode. Moreover, the most effective catalyst
for LNT function is platinum (Pt), which is expensive, and the LNT requires a substantial
loading of Pt for good performance through the useful life of the engine, up to two times the
loading of TWC.

– Selective Catalytic Reduction (SCR): introduced in the US for gas turbines in the 1990s [41],
then adapted for other industrial applications, such as refineries and plants, and marine
engines, all of them characterized by large displacement and quasi-steady-state operation.
The first production application dates back to 2004 by Nissan [42] for heavy-duty vehicles,
then broadly diffused in LCV after regulations became more demanding, as shown in Fig. 1.9.
In general, the SCR system is able to selectively reduce NOx despite the presence of O2 by
reacting with ammonia over a catalyst. Since ammonia has been declared harmful to human
beings, its direct use has been ruled out. Thus, ammonia is indirectly delivered by using urea
in an aqueous solution, as the ammonia source. The urea is sprayed into the exhaust pipe
upstream of the SCR system as described in Fig. 1.12, where it decomposes into ammonia
and CO2 as shown by Eq. (1.18), Eq. (1.19), and Eq. (1.20). The thermolysis of the urea is
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limited by the temperature that must be above 200°C.

CO(NH2)2,acq → CO(NH2)2,gas + nH2O (1.18)

CO(NH2)2 → NH3 + HNCO (1.19)

HNCO + H2O → NH3 + CO2 (1.20)

Consequently, the ammonia reacts with the NOx on the catalytic sites in the SCR as described
by the following chemical reactions:

4 NH3 + 4 NO + O2 → 4 N2 + 6 H2O (1.21)

4 NH3 + 4 NO2 → 4 N2 + 6 H2O + O2 (1.22)

2 NH3 + NO + NO2 → 2 N2 + 3 H2O (1.23)

Eq. (1.21) represents the standard stoichiometric SCR reaction in presence of oxygen, while
by contrast Eq. (1.22) is slower and so called "slow SCR reaction". On the other hand, the
Eq. (1.23), where both NO and NO2 participate in the reaction, is considerably faster than
the other two, thus, it is named "fast SCR reaction [23]. Moreover, the conversion efficiency
strongly depends on the NH3:NOx and the NO2:NOx ratios, the ammonia “slip” through
the system, and the production of N2O that is a significant GHG.

1.3.1.3 Particulate matter

– Particulate filters: firstly introduced for CI engines, in the last years they started to be applied
to SI engines, especially those with direct injection (DI) fuel systems, usually referred to as
DPF for diesel, like in Fig. 1.12, and GPF for gasoline. Since the PM is not a specific chemical
species but a compound of unburned additives of lubrication oil and engine debris upstream,
the particulate filters perform a mechanical filtration: the exhaust flow enters through open
channels, encounters the plugs on the back end, and is forced to flow through the porous
walls of the ceramic substrate to be able to exit through a channel open on the downstream
end, as schematically represented in Fig. 1.14. As the particulates are trapped in and on
the wall, they are creating partially clogged wall pores and a surface particulate filter cake
leading to an unsuitable pressure drop. As a consequence, the particulate filters required
a periodical regeneration to remove the trapped particles, as already anticipated in the
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previous paragraphs. In general, the regeneration is done by means of oxidation reactions
with oxygen or nitrogen oxides and can be active, if it is triggered periodically, or passive,
if it is performed continuously. In the first case, the temperature of the exhaust has to be
increased to favor the oxidation reactions, and it can be done by heating the exhaust gases
or increasing the in-cylinder combustion temperature. As previously mentioned, the DOC
can be used also as a gas pre-heater. In fact, with a late cycle, or post fuel injection, the fuel
enters directly into the DOC that oxidizes it (with an exothermic reaction) thus triggering the
regeneration. On the other hand, if passive, the NO2 already present in the exhaust is used
to oxidize the stored particulate matter without forcefully increasing the gas temperature
[23].

Figure 1.14: Schematic representation of the flow through the PF walls

1.3.1.4 Advanced EATS

Section 1.2 introduced the proposal of the EC in terms of future regulations, that aim at filling
the gap between laboratory tests and real-world operation by lowering the criteria pollutants
limits and introducing a less restricted RDE driving cycle. In this condition, even a modern vehicle
with state-of-the-art EATS, like the one shown in Fig. 1.12, would not be enough. In fact, the
proposed RDE cycle would increase the relevance of localized events, such as the high-power cold
starts, where the EATS works in low efficient conditions. To overcome this problem, OEMs have
started to develop innovative solutions to directly heat the exhaust gases without modifying the
engine control strategies (e.g., late injection, early exhaust valve opening) and so avoiding a lower
engine efficiency. The more promising technologies investigated so far are the implementation of
an electrical heater or a diesel mini-burner.

With an electrically heated catalyst, a resistive heating element is placed in the exhaust system
just upstream of the leading element of the EATS, such as the DOC. The main challenge with an
electrical heater is the power required for effective heating, and the effect of that electrical power
on fuel consumption. Conversely, mini-burners can provide 10-30 kW [23] of thermal power
but present several challenges such as maintaining stable and clean combustion, additional fuel
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consumption, and a more complex layout.

1.3.2 Hybrid electric vehicles

The regulations presented in Section 1.2 put in evidence also the necessity to reduce the GHG
emitted by transportation, so the OEMs needed to develop more efficient powertrains alongside
the EATS presented in the previous chapter. A promising solution in terms of CO2 reduction is the
introduction of a secondary energy source, that can be of different natures (hydraulic, mechanical,
electrical, etc). These innovative layouts are broadly discussed in literature in the latest years,
especially analyzing the Hybrid Electric Vehicles (HEV) in terms of powertrain configuration,
control strategies, and achievable benefits [43–46].

They comprehend also an electric REESS which is usually represented by a battery. The voltage
and the capacity of this component are chosen on the base of the desired power output, defining
the degree of electrification described by Eq. (1.24).

𝐻𝐷 =
𝑃𝑆,𝑚𝑎𝑥

𝑃𝑆,𝑚𝑎𝑥 + 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥
(1.24)

where 𝑃𝑆,𝑚𝑎𝑥 is the maximum power of the secondary source of energy while 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 is
the maximum power deliverable by the engine. Moreover, one or more Electric Motors (EM) are
installed, as well, not only for traction purposes but even for transforming vehicle kinetic energy
into electrical energy for battery recharging during deceleration phases (braking).

The advantages of HEVs consist in combining the characteristics of pure-electric and conven-
tional vehicles, allowing to reduce the global energy consumption of the vehicle, and in particular:

– regenerative braking: the possibility to recover energy during braking phases instead of
dissipating it using mechanical brakes;

– load-point shift: for a given speed, the operating point of the engine could be shifted to a
higher efficient point by increasing the requested torque and using the energy in advance to
recharge the battery. This functionality can be achieved with an energy management strategy
of the power required by the engine;

– downsizing: since electric machines can provide part of the torque requested for traction,
the engine displacement can be reduced;

– zero-emission policy can be achieved: in certain areas the use of the engine could be pro-
hibited to maintain air pollution levels below a certain threshold. This task can be achieved
by an HEV by addressing the full amount of torque requested to the electric motors.

On the base of what has been said so far, it’s possible to distinguish the following typology of
HEVs, also represented in Fig. 1.15:
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– Micro Hybrid -𝐻𝐷 ∼ 5%: vehicles equipped with an EM directly coupled to the engine with
stop/start functionality. Most of them also have advanced energy management functions,
which optimize the consumption of the low voltage (LV) battery;

– Mild Hybrid EV (MHEV) - 𝐻𝐷 ∼ 15%: these types generally use a compact electric motor
(usually < 20𝑘𝑊) to provide stop/start features, extra power assistance during accelerations
and regenerative braking. The battery is still LV allowing a minimum range of full-electric
drive;

– Full Hybrid Electric Vehicle (FHEV) - 𝐻𝐷 ∼ 35%: the EMs and the battery increase in size,
allowing an extended full-electric drive. The recharging of the battery can happen only with
breaking recuperation and with the ICE; in this case, zero-emission policy can be fulfilled;

– Plug-in HEV (PHEV) - 𝐻𝐷 ∼ 50%: generally an FHEV with Off-Vehicle Charging (OVC)
capability and an increased energy storage capacity. This allows the vehicle to drive in all-
electric mode with a range that depends on the battery size and its mechanical layout (series
or parallel) and shall be connected to the main electricity supply through a socket. As with
pure electric vehicles, the total emissions saving, for example in CO2 terms, depends on the
electric energy production mix of the given country.

Figure 1.15: Overview of the Hybrid Electric Vehicle depending on hybridization degree and CO2 reduction

Then, different layouts can be defined depending on how the energy flows from the energy
storage (tank for ICE or battery for the EMs) to the wheels:

– Series: the series layout provides torque at the wheels solely by using electric motors,
like electric vehicles, and the aim of ICE is to recharge the battery with the generator.
The powertrain is equivalent to an EV, but since the vehicle also includes an engine, it is
considered a hybrid.
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– Parallel: both the engine and the electric motor(s) are connected to the wheels, and their
mechanical torque can be summed for propulsion. This cooperation allows to avoid engine
working points where the specific fuel consumption is high.

– Series/parallel: hybrid vehicles that share characteristics of both series and parallel layouts.
In particular, the EM powers the vehicle from a standing start and at low speed whereas, as
the speed increases, ICE and EM work together to efficiently provide the power required. As
can be expected, the system is more complex featuring a power split device and a generator.

Power split: both series and parallel working modes are applied simultaneously. This layout
allows higher degrees of freedom than the parallel one and higher efficiency than the series
one, but with a higher cost and complexity;

For what concern the HEVs parallel topology, several architectures are possible by varying the
position of the electric machines within the driveline. As shown in Fig. 1.16, they can be defined
as follow:

– P0: the engine is coupled to the motor through a belt, so the electric machine is called Belt-driven
Starter Generator (BSG);

– P1: the EM is directly mounted on the crankshaft, upstream of the clutch, and it is named
Integrated Starter Generator (ISG);

– P2: the EM is separated from the engine by a clutch, thus allowing pure electric drive;

– P3: the EM is mounted on the secondary shaft out of the gearbox;

– P4: the EM is connected to the front or rear wheels by means of a transmission ratio;

Introducing a different type of energy flow (electrical energy) in addition to the chemical
one, engineers have to face new challenging problems. In fact, while the available space remains
the same, the components rise in number: one or more electric motors, a bigger battery, a more
powerful control unit, and the inverters have to be rationally placed inside the vehicle. Adding new
components doesn’t imply only a different spacing configuration but also means a more complex
control at the system level.

1.3.3 Connected and autonomous vehicles

Since navigation systems are increasingly employed in the automotive sector, the available map
data may not only be used for routing purposes but also to enable advanced in-vehicle applications
[47]. The area of potential features reaches from headlight control up to active safety applications.
With the ongoing development of navigation-based ADAS features, the interface to access the
so-called ADAS Horizon is of rising importance. At this end, Advanced Driver Assistant Systems
Interface Specifications (ADASIS) is an industrial platform where map providers and automotive
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Figure 1.16: Hybrid architecture depending on EM(s) position [43]

developers work together to standardize the map data. The method of how a vehicle’s control unit
could be provided with the navigation data is specified as well in the ADASIS protocols [48, 49].

To enable this kind of technology, on-board vehicle sensors play a vital role in driving au-
tomation, providing the spreading concept of data fusion in order to improve navigation data
availability as well as reconstruct an electronic horizon of upcoming events. In general, sensors
include:

– LIDAR (LIght Detection And Ranging): surveying method that measures the distance to a
target by illuminating that target with pulsed laser light;

– RADAR (RAdio Detection And Ranging): object-detection system that uses radio waves to
determine the range, angle, or velocity of road objects;

– Camera: a video sensor used to analyze the environment outside and inside the vehicle.

Moreover, advancements in wireless communication technologies, sensor fusion, imaging tech-
nologies, Big Data, and analytics have created opportunities for automotive manufacturers to
discover a wide range of solutions for multiple applications. Miniaturization of electronic com-
ponents, advancements in navigation, and adoption of smart devices are expected to lead to ad-
vancements in the Vehicle-to-Everything (V2X) communications industry [50–54]. It is expected
to show high growth potential for the development of future connected cars that will be able to
interact with the surrounding environment to improve driver safety. One of the practical applica-
tions of such technologies implies reducing traffic congestion, which leads to an increase in fuel
consumption and to a worsening of urban air pollution. As an additional drawback, the economic
impact of traffic jam-related problems is not negligible [55], as well.
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According to 3GPP [56], V2X technologies include communication between different entities
and the ego-vehicle, both for safety and non-safety application. Navigation data exchange is made
via different vehicular communication networks, also called nodes. Depending on the type of the
node, the following classification applies:

– Vehicle-to-Vehicle (V2V): the moving nodes are represented by the vehicles communicating
with each other

– Vehicle-to-Infrastructure (V2I): road infrastructures transmit navigation data regarding
traffic lights timing, road works, traffic congestions, and so on

– Vehicle-to-Network (V2N): the ego-vehicle communicates with IT networks and/or data
centers

– Vehicle-to-Pedestrian (V2P): vehicles connect with pedestrians or bikers on the road to
prevent accidents
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Chapter 2

Literature review

Chapter 1 depicted a challenging background for the automotive sector, with stricter and stricter
regulations and complex powertrain layouts. In this context, vehicular connectivity and ve-

hicle hybridization proved to be promising solutions for OEMs. Thus, this research project focuses
on innovative solutions both in terms of energy management of Plug-in HEVs and emissions
reduction. For this reason, a comprehensive literature review on such topics is here presented.
Firstly, a broad overview of the relevant energy management strategies (EMSs) implemented and
studied so far is given. Then, the more relevant studies and applications of advanced emissions
reduction strategies are presented as well. Alongside their description, an analysis of the possible
use of vehicular connectivity is done. Finally, a presentation of the commonly used simulation and
testing environments exploiting V2x is also provided.

2.1 Energy management control strategies

In general for HEVs, and in particular for PHEVs that are capable of pure electric drive, the
EMS evaluates the more efficient operating condition for the propulsion system and actuates
several hybrid functions (e.g., load-point shift, regenerative breaking), as introduced in Chapter 1,
by coordinating the other control units, thus the powertrain control is defined as hierarchical. In
general, this kind of functions are deployed within a supervisory control unit, usually named
Hybrid Control Unit (HCU) or Vehicle Control Unit (VCU). Focusing on a parallel hybrid, which
is the one considered in this dissertation, the torque requested by the driver for traction, 𝑇𝑟𝑒𝑞 ,
can be provided by the engine and/or by the motor(s), and so a torque-split factor, 𝑢𝑠(𝑡), can be
introduced. So, the torque request to the engine and the electric motor(s) may respectively be
defined as: 𝑇𝐼𝐶𝐸(𝑡) = (1 − 𝑢𝑠(𝑡)) · 𝑇𝑟𝑒𝑞(𝑡) and 𝑇𝐸𝑀(𝑡) = 𝑢𝑠(𝑡) · 𝑇𝑟𝑒𝑞(𝑡). In this case, if 𝑢𝑠(𝑡) = 1 the
vehicle is driven in pure electric mode, conversely if 𝑢𝑠(𝑡) = 0 the ICE is used as the sole energy
source. The amount of power to reserve for battery recharge is one of the tasks of the EMS and it
may actively be controlled by applying load-point shift to the ICE (𝑢𝑠(𝑡) < 0).
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A first distinction can be made whether optimal control theory is adopted to define the control
policy or not. As proposed in [57, 58], EMSs can be classified as:

- heuristic
such strategies are based on physical considerations or intuitions and are usually developed
considering maps or rules to evaluate the operative working conditions of the powertrain.
Thus, there is not an explicit optimization of the power distribution;

- sub-optimal
the main objective of the control algorithm is achieved by optimizing instant by instant
the energy flow within the powertrain, thus minimizing a certain cost function, which could
represent the energy consumption of the vehicle. Since the optimization is performed locally,
namely at each calculation step of the control unit, the solution of the minimization process
is inherently sub-optimal;

- optimal
in this case, a global optimization is performed, meaning that the solution is the one with
the best performance in terms of cost function minimization all over the possible actuation
set-points. This implies the a priori knowledge of the driving cycle, with a consequent high
computational load.

Since V2x technologies enhanced the possibility of retrieving navigation data and making them
available on board, the prediction of future conditions of the powertrain has been investigated with
the main objective of providing the supervisory controller with detailed information regarding
the status of the components. In this way, the power distribution of the hybrid vehicle can be
optimized while satisfying global constraints for different scenarios, such as ensuring all-electric
driving in a Zero-Emission Zone.

Thus, the control strategy can be referred to as:

- causal
when no prediction on the route ahead is available and then used. Then, the powertrain
control is governed by a cause-effect relationship between the actuator set-points and the
state variables;

- non-causal
when state variables are predicted on the base of the available information of the driving
mission.

Numerous investigations have been conducted on the energy management strategies [59–62]
and more extensive reviews on the topic are available in literature, spanning among different
characteristics such as numerical comparisons [63, 64], real-time applicability [65], and future
trends for EMSs [66, 67]. In the next paragraphs, a general overview of the worth mentioning
control policies is given.
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2.1.1 Heuristic control strategies

As suggested by their name, heuristic energy management control strategies are based on
intuitions and physical considerations to evaluate the required power distribution among the
powertrain. Although a wide range of possibilities exists in choosing the vehicular parameters
and the conditions to be satisfied for this task, several common design guidelines can be found.

Since HEVs have been introduced to reduce the fuel consumption and so the CO2 production,
firstly the internal combustion engine should be used in high-efficiency working conditions (for
HEVs), and, in particular for PHEVs, as less as possible. Another useful guideline suggests main-
taining the battery state of charge (SoC) within a certain range (for HEVs), which may correspond
to the entire working range of the battery defined by the manufacturer (for PHEVs). As a result
of the application of these principles, the operative mode of an HEV, without off-board charging
capabilities, is typically represented by a charge-sustaining (CS) mode around a certain target
value of SoC. On the other hand, for PHEVs the operative mode may result in a combination of
charge-depleting (CD) and then charge-sustaining modes, since the battery can be recharged by
plugging the vehicle to the grid. Therefore, the use of the electric energy stored in the REESS is
always encouraged when possible because the conversion efficiency of the chemical energy of the
fuel to the electrochemical one of the battery is quite low.

The aforementioned principles can be applied by means of different approaches: map-based
and rule-based. The first ones are defined by multi-dimensional look-up tables usually as a function
of the driver torque request, the vehicle speed, and the battery SoC. Moreover, the upper and lower
thresholds can be dynamically managed by means of fuzzy-logic rules [68, 69]. On the other hand,
rule-based strategies rely on a set of conditions defined considering vehicular parameters such
as the ones above mentioned [70]. Other parameters such as the power limitations of the electric
machine(s) during pure electric driving [71] can be considered for this purpose. In this case, fixed
thresholds have to be established to fulfill all the conditions. Such rules can be implemented in the
control policy in different ways: for example, by means of finite state machines, representing the
state condition to be fulfilled for the transition from one state to another, or through hard-coded
boolean conditions.

Moreover, the heuristic approach does not require to develop any optimization algorithm,
which is usually more complex due to its mathematical formulation. This implies a lower com-
putational burden required instant by instant to the supervisory controller. For those reasons,
heuristic strategies, especially rule-based ones, are widely used in the automotive industry to
control the energy management of the hybrid powertrain. Nevertheless, an intensive calibration
campaign is needed to properly tune the look-up tables or the threshold values of such strategies.
In order to speed up this process and increase the energy efficiency of the power distribution,
optimal energy management strategies can be used as benchmarks [72, 73].
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2.1.2 Optimal and sub-optimal control strategies

To properly understand the optimization-based control strategies, the analytical formulation
of the energy management problem for HEVs is provided in this section.

Generally for HEVs, the aim of an optimal energy management strategy is to minimize the
global energy consumption and so the CO2 production, which can be represented by a mathemat-
ical function depending on actuator set-points and state variables. The latter is usually known as
cost function, or performance index. In this case, the energy management strategies aim to provide a
solution to this problem, which is represented by the control law that minimizes the cost function
over a certain time horizon. Thus, as proposed in [64, 74], a formulation of the cost function 𝐽 for
HEVs including the fuel consumption can be expressed as:

𝐽 =

∫ 𝑡 𝑓

𝑡0

¤𝑚 𝑓 (x(𝑡),u(𝑡),𝑡) 𝑑𝑡 (2.1)

where ¤𝑚 𝑓 is the instantaneous fuel mass flow rate, x(𝑡) and u(𝑡) are the vectors of the variables
states of the system and the control inputs, and [𝑡0 ,𝑡 𝑓 ] is the time domain in which the optimal
control problem is defined. Its solution is then represented by the control policy u∗(𝑡) that min-
imizes the performance index over the given time interval and is subjected to global boundary
conditions, related to the state of the system:

𝜓
(
𝑥(𝑡 𝑓 ),𝑡 𝑓

)
= 0 (2.2)

and local constraints, representing the admissible actuator set-points and the physical limita-
tions of the system in terms of available torque and power, admissible speed, and SoC:

𝐺(x(𝑡),𝑡) ≤ 0

u(𝑡) ∈ 𝑈(𝑡)
(2.3)

The worth-mentioning optimal strategies are listed below:

- Dynamic Programming

- Pontryagin’s Minimum Principle [74]

- Convex Optimization

Since this research project does not focus on optimal control development and a wider analysis
has been already given by [75], only Dynamic Programming is briefly discussed in the following
paragraph for a matter of completeness. The latter is an optimal, non-casual algorithm that relies
on a numerical approach based on the Principle of Optimality proposed by the mathematician
Richard E. Bellman in 1952 [76–78]. In particular, considering the powertrain as a generic dynamic
system evolving over time, and assuming that all the intermediate states of this evolution are
known (so a non-causal approach), the aim is to find the control policy that minimizes the given
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cost function. The Bellman’s principle ensures that the policy related to the last part of the problem
belongs to the overall optimal control policy if it is optimal by itself. Therefore, the optimization
is performed in a backward-facing approach, starting from the final state to the initial one, and
establishing the optimal control input at each step. In this way, it can be noticed that an a priori
knowledge, or at least a prediction, of the state vector is needed. Moreover, the dynamic, multi-
stage decision process strongly increases the computational load required to numerically solve
the problem. For this reason, optimization-based algorithms are theoretically not implementable
online. Nevertheless, since the optimality of the provided solution, they are used as benchmarks
for the calibration of other energy management strategies [72].

On the other hand, sub-optimal control policies solve the optimal energy management problem
defined in Eq. (2.1) by locally minimizing the cost function, which means considering a time
horizon compatible with the calculation step of the supervisory controller.

The main applications of this approach are represented by

- Model Predictive Control (MPC) [79]

- Equivalent Consumption Minimization Strategy (ECMS)

Local optimization is a reliable trade-off between the real-time capability of heuristic EMSs
and the optimal solution guaranteed by non-causal controllers. In particular, the ECMS has been
demonstrated in [80] to be directly deducible from the optimal Pontryagin’s Minimum Principle,
if properly formulated. Sub-optimal strategies are inherently implementable online and do not
require an intensive calibration effort. For these reasons, this kind of strategy has been chosen to be
further improved with vehicular connectivity data and then deployed in the HCU. In particular,
the focus is put on the ECMS, which is then briefly described hereafter.

2.1.2.1 Equivalent Consumption Minimization Strategy

The Equivalent Consumption Minimization Strategy was initially formulated by Gino Paganelli
in 1999 [81] and then applied as a practical solution for the energy management problem in HEVs
[82, 83].

It is based on the empirical consideration that a virtual fuel consumption can be attributed
to the usage of the electric energy of the battery. Under this assumption, the cost function to
be minimized can be represented by an equivalent fuel consumption that can be formulated as
follows:

¤𝑚 𝑓 ,𝑒𝑞 = ¤𝑚 𝑓 + ¤𝑚 𝑓 ,𝑏 (2.4)

where
¤𝑚 𝑓 ,𝑏 = 𝑠(𝑡)𝑃𝑏(𝑡)

𝑄𝑙ℎ𝑣
(2.5)

In other words, the electrical energy used by the battery and the chemical energy of the fuel are
correlated by an equivalence factor 𝑠(𝑡), shortly EF.
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Other supervisory controllers perform a local minimization of an equivalent fuel consumption
that considers both the real fuel consumption and the electrical power requested to the battery.
Such controllers are usually considered as sub-optimal [72, 80, 84–86]. Another option is repre-
sented by optimization-based controllers, which are based on optimal control algorithms and can
determine the global optimal solution for the powertrain control [58, 87, 88]. Such methodology
guarantees the best energy management, but still presents issues related to online implementation,
due to the high computational effort required, and the need to exactly predict future operating
conditions. These energy management strategies have been deeply studied and several of them
have been already deployed on board the vehicles on the market. To keep pace with the regulations
trend, innovative technologies are being implemented both on the vehicle and the infrastructure,
such as wireless communication, and cloud computing. Consequently, they can provide the afore-
mentioned strategies with a forecast of the driving path ahead, resulting in more efficient energy
management. Musardo et al. [89] and more recently Onori et al. [90] presented remarkable im-
provements to make the ECMS a real-time control strategy. In particular, in the latter work, an
adaption of the equivalence factor based on a feedback from SoC has been proposed, defining the
so-called Adaptive-ECMS (A-ECMS).

Several studies highlighted the benefits of future driving information for energy management
strategies. An improved A-ECMS based on long-term target driving cycle recognition and short-
term vehicle speed prediction is presented by Yu et al. [91]. It can optimize the equivalence factor
based on mileage, SoC, long-term driving cycle, and real-time vehicle speed, resulting in a reduc-
tion of fuel consumption of 8.7%. Similarly, algorithms can determine the optimal SoC trajectory
according to the traffic information, while the equivalence factor is regulated dynamically, thus
enabling effective tracking of the reference SoC trajectory [92, 93]. Sun et al. [94] presented a differ-
ent A-ECMS that uses a historical driving profile for equivalence factor estimation, the proposed
strategy is able to foresee the change of the driving behaviors and adjust the equivalence factor
more reasonably. Furthermore, Soldo et al. [95] developed a LEZ-anticipating control strategy for
a PHEV bus with P2-type parallel powertrain configuration. The control strategy is based on a
combined RB/ECMS, and it is superimposed by generating an optimal SoC reference trajectory
aimed at enabling pure electric driving within forthcoming LEZs and minimizing the overall fuel
consumption. The optimal SoC reference trajectory is generated by minimizing its length over
traveled distance.

In light of this, the A-ECMS represents a good trade-off for control policy and it is suitable for
implementing our predictive functions, considering both the computational power of the vehicle
control unit and the results obtained so far in the literature. A general overview of the previous
works performed on the topic is given in Tab. 2.1, with a focus on the improvements in ECMS
on-board implementation and vehicular connectivity integration.
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Table 2.1: Overview of remarkable studies on advanced energy management strategies
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2.2 Emissions management control strategies

Emissions reduction can be achieved by acting on engine control, thus directly avoiding the
production of pollutants, or on the EATS, handling the thermal management to reduce the time
required to reach light-off temperature. In particular, the first approach aims at using the engine
in operating points with lower emissions flow rate, trying to affect fuel consumption the least
possible. On the other hand, it is possible to raise the exhaust gas temperature and so to reduce
the light-off time of the EATS, increasing the conversion efficiency, as described in Section 1.3. To
do so, there are two possible ways: acting directly on the engine and the combustion, or externally
heating the gases through dedicated components (e.g., EHC, burner). Hence, these solutions are
described in detail in the following paragraphs.

2.2.1 Engine control

For what concerns engine control to reduce emissions, different solutions have been researched
during the last decades. One of the commonly employed solutions is the start of combustion delay,
both for diesel and gasoline engines, which can be very effective to reduce catalyst light-off
time, however it leads to significant fuel penalty, which imposes limitations on its application.
Higher idle speed provides a higher exhaust gas flow rate, speeding up the catalyst heating phase;
however, it is not sufficient in itself and it also implies higher fuel consumption [96]. Moreover,
during idle operation, Exhaust Gas Recirculation (EGR) and Variable Valve Timing (VVT) can
help the catalyst’s warm-up phase, but even in this case affecting engine performance [97]. A valid
alternative that can be applied to HEVs is given by the request for a higher load to the engine,
using the additional power to recharge the battery.

Another promising solution is to apply the same mathematical approach presented in Sec-
tion 2.1, but considering the fuel consumption and the pollutant emissions as part of the same cost
function. An Equivalent Emissions and Consumption Minimization Strategy (EECMS) has been
developed by Nüesch et al. [98] that tracks a specific NOx emission limit to be respected during the
real driving. Under these conditions, the strategy is developed to minimize the fuel consumption
in CS mode while respecting the NOx limits, and the results show a reduction of fuel consumption
of 7%. A similar methodology has been applied by Millo et al. [99], but in this case the engine
NOx flow rate has been inserted in the cost function by means of a NOx flow rate equivalence
factor. Here, the EECMS shows a reduction of the fuel consumption of 6.1%, engine out NOx

emissions of -16.1%, and tailpipe emissions of -12.6% on the WLTC. Moreover, Tribioli et al. [100]
designed a supervisory controller, based on Pontryagin’s Minimum Principle, for online energy
management optimization of a diesel PHEV with a parallel architecture while reducing particulate
matter at the same time, reaching a decrease of -35% of PM emissions but leading to a worsening
of the fuel consumption. The above-mentioned approaches can be extended also to the optimal
control as done by Simon et al. [101], where a pollutant-constrained optimal energy management
is derived from the Pontryagin’s Minimum Principle (PMP). Then, this online approach called the
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Equivalent Consumption and Pollutant Minimization Strategy (ECPMS) has been developed and
tested on a Hardware-in-the-Loop test bench, proving the following emissions reduction: for CO
of -3.1%, for HC of -4%, and for the NOx of -15.9%. Conversely, a fuel consumption increase of 4.6%
has been observed. Another worth mentioning study, presented by Villani et al. [102], develops
a DP-based energy management strategy for the HEV with a multi-objective cost function that
takes into account engine start/stops and pollutant emissions. The results show that a trade-off
solution can be selected, for which the fuel consumption is near-optimal (less than 5% increase),
the engine start/stops are low, and the pollutant emissions are reduced by more than 50%.

Even in this context, the availability of navigation data from the V2x communication technol-
ogy can be used to better improve the powertrain and the EATS efficiencies. In particular, Kuchly
et al. [103] propose an online-oriented method based on a long-term vehicle speed prediction
(~20min), using cartographic information such as speed limitation, road curvature, traffic, and
road signs. The Pontryagin’s Maximum Principle is then applied to this speed prediction signal
to convert the optimal control problem into a root-finding problem, solved using an algorithm
initialized by a black-box method trained offline, allowing high computational efficiency. Here,
the beneficial effects are measurable as a reduction of 1.1% of fuel consumption and of 4.4% of
NOx emissions. Furthermore, also short-range and other traffic participants can be considered
as well. Moreover, Xu et al. [104] developed a traffic scenario and powertrain model in different
platforms with the capability of information interchange, simulating V2I communication. With
DP optimization for a single trip and different driving conditions, NOx can be reduced by 15%
while FC increases by 3%. All the previous works have been summarized and compared to the
methodology presented in this dissertation in Tab. 2.2.
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Table 2.2: Overview of remarkable studies on advanced fuel consumption and emissions reduction strategies
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2.2.2 After-treatment control

As mentioned before, a substantial reduction of pollutant emissions is achieved by considering
the components of the EATS, and their performance parameters. One of them is the light-off
temperature which can be used as a constraint in the cost function definition for both optimal and
sub-optimal control policy. To this end, Guille des Buttes et al. present in [105] a pollution-centered
energy management to decrease pollutant emissions during the catalyst start-off phase without
affecting fuel consumption. The strategy has been developed using three-dimensional dynamic
programming with a weighted objective function and taking into account the thermal dynamics
of the catalyst monolith. However, the simplified models contain few parameters and consider
the internal combustion engine as a black box, omitting the influence of its control parameters
(e.g. air-fuel ratio and ignition timing). Nevertheless, the reduction can vary between 8 and 33%,
depending on the driving cycle, while the fuel consumption remains constant.

In addition, focusing on the highest degrees of hybridization, which means full hybrid and
plug-in hybrid vehicles, the advantages and flexibility introduced by this technology are even
clearer if integrated with a predictive control strategy. Such information about future driving
conditions could be also employed for the management of specific EATS devices, for example by
developing smart strategies to optimize particulate filter regeneration [106] or urea consumption
of SCR systems [107].

More in general, the OEMs have developed and tested different solutions to reduce the emis-
sions and increase the powertrain efficiency even considering the implementation of more ad-
vanced components, and external heaters as introduced in Section 1.3. Hassdenteufel et al. [108]
presented, in collaboration with BOSCH, a demonstrator vehicle equipped with high-pressure
injectors, a new cat-heating model-based strategy, 2nd generation gasoline particulate filter, and
two TWCs, coupled with an external burner. The results are that conventional GDI vehicles still
can be a viable solution to satisfy the upcoming Euro 7 regulation. Another possible solution is
represented by the e-boost, which could take over from the turbocharger during the warm-up
phase, but all these solutions of course imply the installation of further powertrain components,
increasing the overall cost and complexity. The problem is more evident for HEVs, where the
production cost is already high, and they introduce another issue related to the EATS, which is
the high-power cold start. That situation can occur when the hybrid strategy requires the engine
to start at a high load operation point even if the EATS is still cold due to the previous electric
driving period.

In this context, according to the state of the art, electrically heated catalysts (EHCs), employing
one or more discs upstream of the catalyst that are heated by current flowing in high-resistance
circuits, provide an effective solution to reduce emissions during engine cold start without affecting
engine performance, since they act directly on the exhaust line [109–111].

Hamedi et al. [112] a novel EHC control strategy is investigated to increase DOC conversion
efficiency minimizing EHC electric energy consumption; the results show that a reduction of more
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than 70% of the cumulative CO and HC emission can be reached with respect to a standard post-
injection strategy. According to Gao et al. [110], the implementation of a 12V electrical heater to
a standard Diesel Euro 6 EATS leads to a significant reduction of the overall pollutant emission,
reaching more than 60% of cumulative NOx emission reduction along a cold start WLTC. The CO2

percentage penalty due to the additional EHC energy consumption is also evaluated, showing
values in the range of 6-9% depending on the considered EHC control strategy. Hofstetter et al.
[109] evaluated the performance in terms of CO2 and NOx emission of a 48V P0 Diesel hybrid
equipped with an EHC, compared to those of a conventional non-hybrid vehicle. The results show
that, despite the fuel consumption penalty, the NOx level can be reduced significantly especially
during city and short-distance drives, while for the same NOx emissions level, a CO2 saving of 7%
can be achieved. The effect of the addition of an EHC on the behavior of a DOC in a hybrid RCCI
truck is studied by Garcia et al. [113]; in particular, the authors show that the electrical heating
helps to reduce HC and CO emissions, which is the main challenge related to high-efficiency
low-temperature combustion systems, even if in some cases the EURO 6 limits are exceeded
anyway. Bargman et at. [111] evaluated the effectiveness of pre-heating a PHEV’s after-treatment
system by means of a 48V EHC. A reduction of more than 50% of the cumulative NOx emission
related to the first engine start is observed along the considered test cycle, showing the potential
of such a system in solving the issue related to ICE high-power cold start. Schallhart et al. [114]
considered an innovative conductive ceramic composite material for the SCR catalyst support for
a Diesel passenger vehicle; the investigated material allows direct electrical heating of the catalytic
converter, thus reducing the light-off time up to one-third with respect to the base system if a pre-
heating phase is considered. Also here, the potential of the introduction of an EATS pre-heating
phase for reducing tailpipe pollutant emissions is highlighted, introducing also the issue of how
to predict engine start.

Therefore, even if this heating method needs the installation of an additional device and the
availability of a significant amount of electric energy to power it, the promising results reached in
terms of reduced catalyst light-off time and improved catalyst conversion efficiencies justify further
development of this technology, especially considering the current powertrain electrification trend,
which makes available the electrical power needed by the EHC. The overview of the worth-
mentioning works is given in Tab. 2.3 with a focus on all the innovative technologies implemented
to improve the after-treatment systems management.
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Table 2.3: Overview of remarkable studies on advanced EATS management strategies
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2.3 Testing and validation platform

The validation and verification of connectivity-based functionalities are becoming more de-
manding as they must be tested in a huge number of scenarios, regarding dangerous (e.g., emer-
gency brake) and highly unpredictable situations (e.g., Collaborative Adaptive Cruise Control
and connectivity-related functions) to be declared reliable [115]. The challenge is therefore to de-
velop a testing and validation framework that can replicate the effectiveness of road conditions
and traffic scenarios. In this way, it is possible to transfer the tests from the road to the virtual
simulation, saving costs and time. Following this tendency, specific commercial software were
developed and made available on the market, such as PreScan and ITS Modeller presented by
Tideman and van Noort in [116], whose aim is to provide the automotive industry with a tool for
developing connected vehicle systems from concept to production. Always in a virtual environ-
ment, Aramrattana et al. [117] presented a simulation framework (consisting of driving, traffic,
and network-simulators) for testing and evaluating Co-operative Intelligent Transport Systems
(C-ITS) applications. Once the simulation of vehicles and networks in a virtual environment is
established, Xu and Shen [118] improve it with optimal energy management, which is tested using
the short horizon information coming from the leading vehicle in the collaborative environment.
Grahle et al. [119], from Bosch, used this simulation framework to evaluate the advantages of a
route preview (long horizon) in order to determine in which part of the trip it would be more
convenient to regenerate the DPF. Likewise, in Ford, Hopka et al. [106] translate that example into
a real prototype controller mounted on a prototype vehicle. On the other hand, the short horizon
communication is not implemented in this contribution. A similar on-road test is proposed by
Menarini et al. [120] where a short-range wireless communication is tested with an Intersection
Collision Warning function and then verified on a real vehicle. Symmetrically, the long horizon is
left apart as well as the vehicle dynamics. An evolution of that work is presented by Szendrei et al.
[121] where several On-Board Units (OBU) and Road-Side Units (RSU) hardware have been con-
nected to a microscopic traffic simulator (Simulator of Urban Mobility - SUMO) to integrate real
vehicular communication devices. This research focuses on the C-ITS simulation for automated
vehicles while it does not simulate the vehicles’ dynamics nor the long horizon connectivity.
Simulation frameworks like these are used also for Automated Vehicles functions development
as shown by Gelbal et al. [122], who set up a Hardware-in-the-Loop simulator for developing
automated driving algorithms. In this case, the Real-Time PC carries out the simulations of other
moving vehicles while also generating traffic scenarios while the prototype control unit runs the
algorithm. However, the long horizon is not simulated even in this work. A step further was made
by Shao et al. [123] who developed an Engine-in-the-Loop system integrated with a real-time
traffic simulator (named VISSIM), to evaluate the performance of emerging connected vehicle ap-
plications. This allows a systematic evaluation of connected vehicle mobility and energy savings,
as emissions and fuel consumption can be measured precisely. Then, a real vehicle equipped with
an OBU is driving along with other connected vehicles. That vehicle data is transmitted to the
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HiL, which reacts consequently. There is nothing concerning the long horizon, and, besides, it
has been assumed that perfect communication is available between vehicles. Finally, Kim et al.
[124] focused on the development of a sustainable framework for testing control strategies for
Connected Automated Vehicles (CAVs). They presented an HiL where vehicle dynamics are up to
ETAS DESK-LabCar, controlled by on-board ECUs i.e., MicroAutoBox and Matrix embedded PC-
Adlink. The latter oversees the communication with the OBU and the cloud, respectively through
Ethernet and LTE. The environment and the perception sensors are simulated with PreScan while
the micro-traffic with PTV VISSIM. Such an advanced simulation framework is very interesting,
but it has been presented with a short driving routine. The overmentioned state of the art is
summarized in Tab. 2.4.
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Table 2.4: Overview of remarkable studies on eHorizon simulation environments
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2.4 Innovative contribution of the dissertation

The present dissertation is focused on exploiting vehicular connectivity to improve energy
and emissions management, in order to help the OEMs comply with future regulations. Firstly,
a Speed Profile Prediction (SPP) algorithm has been developed [125] and formally presented in
[75] to predict an energetically equivalent velocity trace based on navigation data. The speed
profile is then forwarded to the Backward Vehicle Model (BVM) described in [126], which predicts
the necessary amount of electrical energy to perform the ZEZ in full electric mode. This value,
expressed in terms of a target SoC, is used as input for the energy management strategies under
test. Regarding the latter, since the RBS introduced in [126] is not designed to work differently from
the conventional Charge-Depleting / Charge-Sustaining (CD/CS) mode, in this work an Adaptive-
RBS (A-RBS) has been defined. In particular, it uses the same reference SoC used by the A-ECMS
to dynamically adapt the electric drive thresholds depending on the remaining distance from the
ZEZ, thus working in a Charge Blended (CB) mode. To verify the improvements with respect to
the RBS in terms of CO2 reduction, the two strategies are compared on two different RDE cycles at
the Software-in-the-Loop (SiL). The results show that the A-RBS outperforms the RBS only when
the initial SoC is lower than the target SoC and so the HV battery must be charged. Conversely, the
RBS is still more efficient when the initial SoC is higher than the target SoC and the CD/CS mode is
required. Consequently, since the aim is to design a strategy that reduces the energy consumption
in all the possible scenarios, a Combined-RBS (C-RBS) is finally defined to perform CB mode or
in CD/CS depending on the initial value of the SoC. Finally, the A-ECMS and the C-RBS have
been tested at the C-HiL on a driving profile measured on the road during a specific time slot
of the day. Differently from the one presented in [127], this simulation environment presents a
layout reduced in complexity as the sole Telecommunication Control Unit (TeCU) is in charge of
querying the Map Service Provider (MSP) and gatewaying the data. Moreover, a Human-Machine
Interface (HMI) has been introduced to be as close to the prototype vehicle as possible. More in
detail, the vehicle HMI is replicated by a tablet running an Android-based Navigator App, that
allows the driver to set the desired destination and to see the suggested route based on actual
traffic conditions. Meanwhile, the related navigation data are collected from the MSP and sent
to the TeCU. Moreover, if the actual position of the vehicle deviates from the route proposed by
the app or if the actual level of traffic changes, the app can trigger the request for a re-routing. In
these cases, the navigation data are refreshed, and the prediction is performed again, evaluating
the updated target SoC. Besides, the tests have been conducted starting from different initial SoC
values, during the same time slot of the recorded driving profile to reduce the natural randomness
of the traffic conditions as much as possible. In conclusion, the simulations highlight both the
goodness of the predictions even under varying traffic conditions, and the improvements brought
by the A-ECMS in terms of CO2 reduction.

Regarding the simulation environment in which the previous strategies have been developed
and tested, this work counts on a highly detailed vehicle model (validated over experimental data)
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supervised by the production level HCU software unlike those presented in [116, 120, 121] with
complete access to the components and controllers models. The HCU is then equipped with the
typical V2x communication technologies, both for the long horizon such as in [106, 119], and
the short horizon such as in [120–124]. Moreover, the connection to the private server enables the
testing of cloud computing and predictive maintenance functions, as in [124]. So, the proposed HiL-
based validation platform results in a more modular and universal tool for testing and validating
predictive eHorizon functions. On one hand, it provides higher flexibility due to the possibility to
test different kinds of predictive functions (long and short horizon, predictive maintenance) and
the capability of acting on each component and controller model. On the other hand, it grants
higher reliability, as both the hardware and the software are the same as those implemented on the
vehicle, allowing seamless functions implementation on-board once validated at the HiL. Thus,
it shortens the validation process and further reduces the gap between laboratory and on-vehicle
tests.

The second part of this dissertation focuses on the evaluation of emissions reduction for a
high-efficiency hybrid powertrain. As a first step, an advanced hybrid RBS has been developed
and calibrated using a model-based approach resulting in a cycle-independent strategy that out-
performs the default one. Then, since the hybrid powertrain is coupled with an advanced EATS,
together with the availability of vehicular connectivity, a predictive thermal management strategy
has been developed to avoid the problem of cold-start emissions. In particular, the potential of
catalyst pre-heating by means of an electrical heater in reducing the overall emissions should be
further investigated as one of the most effective and feasible solutions to solve the problem of
cold starts on hybrid vehicles. The key enabler for the application of an EATS pre-heating to real
driving cycles is the possibility to predict the engine start: therefore, this study proposes to take
advantage of the knowledge of future vehicle operating conditions to predict engine first start and
plan a pre-heating based on that to prevent cold start emissions. To the knowledge of the author,
the contribution of a similar EHC predictive control function based on navigation data has not
been investigated yet.

2.5 Organization of the dissertation

Following this introduction to the research topics and the presented novel contributions, the
organization of the dissertation is as follows:

• in Chapter 3 the powertrain modeling of the high-performance PHEV under study is briefly
analyzed, since it has been already discussed in detail in [75]. Then, the Connected HiL
simulation environment is presented, with a focus on the navigation data exchange and the
HMI development;

• in Chapter 4 the conventional RB strategies, so the Adaptive-RBS and the Combined-RBS,
are introduced and tested on different RDE driving cycles; alongside, the Adaptive-ECMS is
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briefly re-called from [126] as well as the predictive functions under test;

• in Chapter 5 the A-ECMS and the C-RBS are then compared at the C-HiL, on a measured
driving cycle in the Metropolitan City of Bologna, using real-time navigation data forwarded
by the TeCU. Then, the predictions are analyzed in terms of energy prediction assessment
while the strategies’ performance is evaluated by means of a fuel consumption comparison;

• in Chapter 7 the light commercial vehicle model used for the development of predictive
emissions strategy is described, with a focus on the thermal model of the after-treatment
components and their conversion efficiency, alongside the hybrid strategy developed for the
purpose;

• in Chapter 8 the conventional RB strategy is presented and modified into a model-based
strategy, to further optimize the fuel consumption and reduce the pollutants emissions
independently on the driving cycle. Finally, the predictive functions are adapted for the
specific application, in particular the BVM that has to be validated again. Hence, considering
the available navigation data, the predictive pre-heating strategy is presented;

• in Chapter 9 the results of Urban RDE simulations at the MiL are then individually analyzed
in terms of emissions reduction. Moreover, a possible alternative layout to reduce the overall
cost of the EATS is finally introduced;

• in Chapter 11 the achievements of this work are analyzed, together with the possible future
works to overcome the limits of this Ph.D. research project.
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Chapter 3

Simulation environment

I n this chapter, the focus is on the modeling of the considered hybrid electric powertrain whose
main objective is to properly represent the energy flows within the powertrain itself in order

to evaluate the fuel and energy consumption. At this aim, an overview of the vehicle under test is
given, alongside the respective modeling approach. Moreover, the components of the powertrain
are introduced and analytically described, with particular attention to the high-voltage (HV)
battery, which plays a crucial role in HEVs. However, a more detailed analysis of them can be found
in [75]. Finally, an overview of the Connected Hardware-in-the-Loop simulation environment is
provided, with a focus on the long-range communication protocols implementation, testing, and
validation.

3.1 Vehicle under test

The vehicle under test is a high-performance prototype Plug-in Hybrid Electric Vehicle equipped
with a V10 5.2 liters FSI engine able to provide 533 Nm at 6500 rpm and two electric machines
mounted on the front axle (in P4 position, as shown in Fig. 1.16). The latter can guarantee the
four-wheel drive (4WD) to be independent by the state of charge (SoC) of the battery, as the con-
ventional engine can work as a range-extender. In fact, the engine is coupled with an Integrated
Starter Generator (ISG, P1), capable of recharging the HV battery independently or providing a
positive boost. With respect to the original prototype presented in detail in [128], here the elec-
tric axle is powered by a high-voltage battery with a 2p93s layout, able to provide 19.4 Ah of
total capacity (at 1C rate and T=25°C) and 384 V nominal voltage (at SoC=50% and T=25°C). The
conventional powertrain is completed with a 6-speed gearbox. Then, the propulsion system is
depicted in Fig. 3.1 and the vehicle’s main characteristics are listed in Tab. 3.1.

Even if it is just a technology demonstrator, the vehicle had to run several validation processes,
both at a component level and as a whole vehicle. From the simulation side, the prototype is entirely
modeled in MATLAB & Simulink. The components’ models are described in Paragraph 3.1.2 while
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Figure 3.1: Prototype PHEV: P1P4 architecture layout

Table 3.1: Prototype PHEV: Vehicle powertrain specifications

Vehicle Curb weight 1990 kg
Configuration P1P4, four-wheel drive

Engine

Type Gasoline FSI V10
Displacement 5.2 l
Rated power 449 kW @ 8000 rpm
Rated torque 533 Nm @ 6500 rpm
Gearbox 6-AMT

Electric machines
Type PM synchronous
Continuous/peak power 64/140 kW
Continuous/peak torque 145/350 Nm
Maximum speed 8000 rpm

Battery
Type Lithium-ion polymer
Capacity (1C @25°C) 7.5 kWh / 19.4 Ah
Nominal voltage 384 V

the controllers’ models in Paragraph 3.1.3. All of them have been validated over experimental data
and the results of the validation are shown in Paragraph 3.1.4.

3.1.1 Modeling approach for energy analysis

In order to properly conduct the energy analysis of the vehicle comprehending the developed
control strategies, the forward-backward approach shown in Fig. 3.2 has been chosen for vehicle
modeling. In this approach, the powertrain is dynamically modeled with a forward approach (also
known as dynamic approach), meaning that the energy flows from the propellers to the wheels
and the vehicle speed is the result of the control chain. The latter is based on a backward model, and
so on the inverted path of the energy flow inside the vehicle, used by the driver to compute the
torque set-point. On one hand, the accuracy of the speed-following control is increased due to the
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feedback of the effective vehicle speed, as it would happen for a realistic driver. On the other, the
dynamic powertrain model ensures the power limitations of each component, introduced by the
forward-facing energy flow. In this way, the actuators set-points evaluated by each tested strategy
can be applied to the powertrain.

Driving
CycleWheel

feedback

Drivetrain

Engine Drivetrain Wheel Vehicle
dynamics

Driver model

+

Torque request
(feedforward) Torque request

(feedback) Vehicle speed

Speed
setpointForce

Torque Torque Force

Speed

Speed

Fuel
consumption

Wheel
speed

Wheel
speed

Torque
setpoint

Figure 3.2: Forward-backward modeling approach based on the direction of the energy flow [74]

3.1.2 Powertrain modeling

Since the objective of the present work is the energy assessments of HEVs, the performance
analyses focused on drivability (vehicle stability, handling, etc.) and comfort (noise, harshness,
and vibrations) issues are neglected. For this reason, lateral and horizontal vehicle dynamics are
not taken into account. Hence, considering Fig. 3.3, the fundamental equation representing the
longitudinal dynamics of a vehicle in motion is the following:

𝑚𝑣 ·
𝑑

𝑑𝑡
𝑣(𝑡) = 𝐹𝑡(𝑡) = 𝐹𝑚𝑜𝑡(𝑡) − 𝐹𝑟𝑒𝑠(𝑡) (3.1)

where 𝑚𝑣 , 𝑣 are the mass and the speed of the vehicle, 𝐹𝑚𝑜𝑡 is the propulsion force supplied
by the internal combustion engine and/or the electrical machines (P4), 𝐹𝑟𝑒𝑠 is the resistant force
acting on the vehicle, and 𝐹𝑡 is the resulting traction force. The latter can be expressed as follows:

𝐹𝑟𝑒𝑠(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) + 𝐹𝑔(𝑡) (3.2)

where 𝐹𝑎 , 𝐹𝑟 , and 𝐹𝑔 are the aerodynamic friction losses, the rolling friction losses, and the
gravitational force, respectively.

Another more practical solution is to consider the air and rolling friction losses together since
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Figure 3.3: Forces acting on a vehicle in motion

they both depend on vehicle speed. In particular, their contributions can be gathered in a single
polynomial expression as a function of 𝑣(𝑡) with coefficients depending on the considered vehicle
and which can be practically obtained by means of a coast-down test.

As explained in [129], the test consists in driving the vehicle on a flat road at a certain reference
speed and then starting the coast-down deceleration phase, which means the transmission shall
be in neutral and the engine shall run in idle. Moreover, the brakes shall not be operated during
coasting. Experimental data of measured vehicle speed are then fit with a regression curve, namely
the total-resistance curve, which has the following form:

𝐹𝑐𝑑(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) = 𝐹0 + 𝐹1 · 𝑣(𝑡) + 𝐹2 · 𝑣2(𝑡) (3.3)

where 𝐹0 is the constant term [N], 𝐹1 is the coefficient of the first-order term [N/(km/h)], 𝐹2 is the
coefficient of the second-order term [N/(km/h)2].

The force induced by the gravitational field on the vehicle when driving on a road with a
certain gradient is described by the following equation:

𝐹𝑔(𝑡) = 𝑚𝑣 · 𝑔 · sin 𝛼(𝑡) (3.4)

where 𝛼(𝑡) is the slope angle [rad] of the road, which can be derived from the percentage slope
𝛼%(𝑡) by the relationship

𝛼(𝑡) = arctan 𝛼%(𝑡)
100 (3.5)

Hence, the resistant force becomes:

𝐹𝑟𝑒𝑠(𝑡) = 𝑓0 + 𝑓1 · 𝑣(𝑡) + 𝑓2 · 𝑣2(𝑡) + 𝑚𝑣 · 𝑔 · sin 𝛼(𝑡) (3.6)

By substitution of Eq. (3.3), Eq. (3.4) in Eq. (3.2), the fundamental equation Eq. (3.1) can be
written in the form of a non-homogeneous first-order non-linear ODE. Therefore, the acceleration
and the velocity of the vehicle, which represent the output of the vehicle model, can be evaluated.
Moreover, the vehicle is able to follow a given driving path thanks to a driver model. To improve
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the speed-following capability, the calculated vehicle speed is fed into a calibrated proportional-
integral (PI) controller, that computes the accelerator and brake pedals position values.

Then, the powertrain main components, namely the engine, the electric motors, and the Auto-
mated Manual Transmission (AMT) have been modeled with Simscape mechanical libraries. More
in detail, Simscape is a tool for modeling and simulating multidomain physical systems within
the Simulink environment by means of physical connections [130].

3.1.2.1 Internal combustion engine

The combustion engine is modeled as a torque generator, where the requested torque input is
evaluated by the supervisory controller and then saturated according to engine limitations, which
depend on the temperatures of the oil and the coolant, and the engine speed. As shown in Fig. 3.4,
a fuel consumption map is adopted, having as input variables the brake mean effective pressure
(BMEP) and the speed of the engine, which has been generated by engine characterization at the
test cell. For reasons of confidentiality, the fuel consumption has been normalized with respect to
the maximum value. Moreover, an engine efficiency map, depicted in Fig. 3.5, is also implemented
for the energy analyses and so the fuel consumption. Both maps are limited by the maximum
torque curve (black line in bold), which depends on the engine BMEP and speed as well.

Figure 3.4: Fuel consumption map Figure 3.5: Efficiency map

3.1.2.2 Electric machine

Analogously, the electric machines, so the P1 (ISG) and the P4, have been modeled following
the same approach. In particular, since all the installed motors are identical machines, a unique
efficiency map accounts for energy losses occurring at the motor-inverter side, shown in Fig. 3.6.

The standard operating mode of an electric machine consists of a continuous power rating,
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Figure 3.6: Electric machine efficiency map

which can be supported for a long period of time. In the case of high-performance requests,
such a component is able to provide peak power for brief time intervals. As a consequence, two
threshold curves of maximum torque can be defined, namely in continuous (dashed line) and peak
(continuous line) operating modes.

The considerations previously made are still valid if the electric machine acts as a generator.
Thus, the same maximum performance, with negative signs (resistant torque and power), are
achieved. In fact, as a generator, the electric machine is able to convert the input mechanical
energy into electrical energy, for example during regenerative braking or load point shifting. In
both cases, the produced electrical energy is transferred to the battery and its charge increases.
Nevertheless, it is worth pointing out that the direction of the energy flow within the electric
machine affects the efficiency of the energy conversion, from mechanical to electrical (generator)
and vice versa (motor), as follows:

𝑃𝑒𝑙 =
𝑃𝑚𝑒𝑐ℎ

𝜂𝛼 (𝜔,𝑇) =
𝑇 𝜔

𝜂𝛼 (𝜔,𝑇) , 𝛼 =


1, 𝑇 ≥ 0 (motor)

−1, 𝑇 < 0 (generator)
(3.7)

The electric power distribution is completed with the DC/DC converter and the Integrated
Power Unit (IPU), which are modeled as energy conversion efficiencies, and shown in Fig. 3.1,
where the High-Voltage (red line) and the Low-Voltage buses are also depicted.

3.1.2.3 High-voltage battery

The high-voltage battery is a key component in hybrid electric vehicles, and consequently
for their performance evaluation. To this aim, a control-oriented model of the battery including
electrical and thermal behaviors has been developed, calibrated, and validated over experimental
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data in [75], and so only briefly reported hereafter. The electrical behavior of the cell has been
represented by a single-polarization equivalent circuit model, also known as the first-order RC
equivalent circuit model. As depicted in Fig. 3.7, the circuit model comprehends an open-circuit
voltage (OCV), 𝑉𝑂𝐶 , a resistor, 𝑅0, representing the ohmic resistance caused by the accumulation
and dissipation of charge in the electrical layer. 𝑅1 and 𝐶1 are the activation polarization resistance
and capacitance respectively, which characterize the fast transient response of the cell to a current
pulse. Usually, all the mentioned parameters depend on the cell state of charge, 𝜉, and temperature,
𝑇, values.

+

−

𝑉(𝑡)
+ −

𝐶1

𝑅1

𝑅0

𝐼(𝑡)

𝑉1+
−

𝑉𝑂𝐶

Figure 3.7: Single-polarization equivalent circuit model for cell electrical characterization

When considering a battery pack consisting of 𝑛𝑝 parallel strings made of 𝑛𝑠 series cells, the
battery voltage 𝑉𝑏 and current 𝐼𝑏 can be calculated from the following system of equations:

𝑉𝑏(𝑡) =
(
𝑉𝑂𝐶−𝑅0 ·𝐼𝑏 (𝑡)

𝑛𝑝−𝑉1

)
· 𝑛𝑠

𝑃𝑏(𝑡) = 𝑉𝑏(𝑡) · 𝐼𝑏(𝑡)
(3.8)

where 𝑉1 is the voltage drop related to the RC circuit, and 𝑃𝑏 is the battery power request,
which takes into account the power requested by the EMs and the auxiliaries.

It is then possible to calculate the power losses 𝑃𝑏,𝑙𝑜𝑠𝑠 of the battery due to resistive heating as
follows:

𝑃𝑏,𝑙𝑜𝑠𝑠 (𝑡) = 𝑉𝑏,𝑖𝑛𝑡 (𝑡) · 𝐼𝑏 (𝑡) =
𝑛𝑠

𝑛𝑝
𝑅0 · 𝐼2𝑏 (𝑡) + 𝑛𝑠𝑉1 · 𝐼𝑏 (𝑡) (3.9)

in which𝑉𝑏,𝑖𝑛𝑡 = (𝑛𝑠𝑉𝑂𝐶 −𝑉𝑏 (𝑡)), from Eq. (3.8), is the internal voltage drop of the battery due to
the presence of the internal resistance that causes the power dissipation 𝑃𝑏,𝑙𝑜𝑠𝑠 when the current
𝐼𝑏 is flowing in the circuit.

Then, the battery state of charge is estimated with an Ampere-hour (Ah) integral method (also
known as Coulomb counting) [131]. In formula:

𝜉(𝑡) = 𝜉𝑖 −
𝜂𝑐
𝐶𝑛

∫
𝐼𝑏(𝑡)𝑑𝑡 (3.10)

being 𝐶𝑛 the nominal battery capacity [Ah], 𝜂𝑐 the coulombic efficiency, and 𝜉𝑖 the initial value of
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the state of charge.

On the other hand, since the temperature influences the battery’s behavior and performance,
a thermal model has been developed using a single thermal mass to reproduce the thermal
behavior of the whole battery pack. In this case, contributions to the net heat flow rate are given
by power losses (due to the Joule effect), air-battery convective heat exchange, and coolant-battery
convective heat exchange. The latter is calculated using a simplified cooling circuit model in which
the main actuators, namely the high-voltage compressor and the electric pump, have been inserted
via experimentally derived characteristics respectively in the refrigerant and coolant loop of the
system. Therefore, the equation for energy balance applied to the whole battery pack can be
written as:

𝑚𝑏 𝑐𝑝,𝑏
𝑑

𝑑𝑡
𝑇(𝑡) = 𝑃𝑏,𝑙𝑜𝑠𝑠(𝑡) −

( ¤𝑄𝑎𝑖𝑟(𝑡) − ¤𝑄𝑐𝑜𝑜𝑙(𝑡)
)

(3.11)

which gives the following equation if solved for the battery temperature 𝑇:

𝑇(𝑡) = 𝑇𝑖 +
1
𝑚𝑏

𝑐𝑝,𝑏

∫ (
𝑃𝑏,𝑙𝑜𝑠𝑠(𝑡) − ¤𝑄𝑎𝑖𝑟(𝑡) − ¤𝑄𝑐𝑜𝑜𝑙(𝑡)

)
𝑑𝑡 (3.12)

where:

𝑚𝑏 ,𝑐𝑝,𝑏 : mass and specific heat capacity [J/(kg·K)], respectively, of the battery pack;
𝑇𝑖 : initial battery temperature in [K], assumed to be equal to the environmental one;

𝑃𝑏,𝑙𝑜𝑠𝑠 : battery power loss in [W] due to Joule heating effect, from Eq. (3.9);
¤𝑄𝑐𝑜𝑜𝑙 : cooling heat rate in [W] due to battery-coolant convective heat exchange;
¤𝑄𝑎𝑖𝑟 : thermal power in [W] related to the air-battery convective heat exchange.

The latter can be expressed as:

¤𝑄𝑎𝑖𝑟(𝑡) = ℎ𝑎 (𝑣(𝑡)) · 𝑆𝑎 · (𝑇(𝑡) − 𝑇𝑎𝑚𝑏) (3.13)

where ℎ𝑎(𝑣(𝑡)) is the convective heat transfer coefficient [W/(K·m2)] of the surrounding air, 𝑇𝑎𝑚𝑏
is the ambient temperature, which is considered constant, and 𝑆𝑎 is the exchange surface, i.e. the
external surface of the battery pack expose to the air.

Moreover, the cooling heat rate ¤𝑄𝑐𝑜𝑜𝑙 due to battery-coolant convective heat exchange can be
formulated as:

¤𝑄𝑐𝑜𝑜𝑙(𝑡) = ℎ𝑐 · 𝑆𝑐 · Δ𝑇𝑚𝑙,𝑐 (3.14)

where ℎ𝑐 is the convective heat transfer coefficient of the coolant in [W/(K·m2)], and 𝑆𝑐 is the
exchange surface where the heat exchange takes place, i.e. the internal surface of the pipelines of
the cooling plate.

The term Δ𝑇𝑚𝑙,𝑐 , used to characterize the convective heat exchange, is referred to as logarithmic
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mean temperature difference, and it can be written as:

Δ𝑇𝑚𝑙,𝑐(𝑡) =
𝑇𝑐,𝑜𝑢𝑡 − 𝑇𝑐,𝑖𝑛

ln
(
𝑇 − 𝑇𝑐,𝑖𝑛
𝑇 − 𝑇𝑐,𝑜𝑢𝑡

) (3.15)

For the sake of simplicity, the refrigerant loop has not been modeled, so the assumption𝑇𝑐,𝑜𝑢𝑡 =
const. can be made. Although experimental data confirm the weakness of this approach, the
control-oriented objective of the model justifies this choice, as demonstrated by previous works
[75].

Then, in order to evaluate the outlet coolant temperature, the thermal balance is applied:

¤𝑄𝑐𝑜𝑜𝑙(𝑡) = ¤𝑚𝑐 · 𝑐𝑐 · Δ𝑇𝑐(𝑡) (3.16)

which gives:

𝑇𝑐,𝑜𝑢𝑡(𝑡) = 𝑇𝑐,𝑖𝑛 +
¤𝑄𝑐𝑜𝑜𝑙(𝑡)

𝜌𝑐 · ¤𝑉𝑐 · 𝑐𝑐
(3.17)

where 𝑐𝑐 is the coolant heat specific capacity, ¤𝑚𝑐 = 𝜌𝑐 · ¤𝑉𝑐 is the coolant mass flow rate, 𝜌𝑐
is the density, and ¤𝑉𝑐 is the pump volume flow, which can be considered known with good
approximation while operating.

3.1.3 Controllers modeling

The simplified models of the controllers that have been implemented in the vehicle model are:

- the Engine Control Unit (ECU), which receives from the HCU the engine torque request and
the start and stop command. Then, it controls the Internal Combustion Engine applying the
torque limitation according to the engine characteristic and managing the idle phases;

- the Transmission Control Unit (TCU) controls the shifting phases such as the opening of the
clutch, the torque reduction, the discs engagement, and the clutch closure;

- The IPUs, the DC/DC, and the ISG controllers introduce torque and power limitations,
taking into account the respective efficiencies.

Then, the two software-level control unit models, which are the vehicle supervisor (HCU) and
the battery control unit (BMS) are described in the next paragraphs.

3.1.3.1 Hybrid Control Unit

The prototype supervisor, named Hybrid Control Unit, coordinates the requests to the power-
train’s subsystems and the respective controllers, in order to guarantee the vehicle’s performance
and all the safety requirements, such as:
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- electric traction;

- front axle torque vectoring 1;

- four-wheel drive control;

- torque management during shifting;

- boosting function.

In particular, regarding the four-wheel drive control, the HCU calculates the driver torque
request which is mapped as a function of the vehicle speed and the throttle pedal. When the
latter is less than 5% and the vehicle is moving, the supervisor control interprets this condition
as a negative torque request, which is actuated by electric motors operating as generators (and
thus regenerative braking is performed). If the entire negative torque can not be supplied by
the motors, then the mechanical brakes are actuated as well. In all the other conditions, positive
torque is demanded. So, the rule-based energy management strategy, developed and presented in
[128], evaluates the torque split between the ICE and the EMs depending on rules based on fixed
thresholds (which have been previously calibrated).

Usually in PHEV, like the one used for this activity, the HCU is calibrated to use electric energy
as a preferred source for traction. In this way, the strategy tends to discharge the battery until the
lower limit (set by the manufacturer for safety reasons) is reached. Then, that limit is maintained
by switching on the engine and performing load-point shift and regenerative braking. Such an
approach is commonly referred to as the charge-depleting/charge-sustaining (CD/CS) approach.
Since this kind of control logic is characterized by reliability and easy real-time implementation
due to the low computational load required [58], it is currently the on-board standard strategy. In
this case, the software of the supervisor controller has been written in MATLAB & Simulink and
deployed into the dedicated rapid prototyping control unit, which is the MicroAutoBox II [132].

3.1.3.2 Battery Management System

The application software of the onboard Battery Management System (BMS) has been im-
plemented in the Real-Time PC in the present configuration, but the Connected-HiL system is
designed to integrate the corresponding hardware component seamlessly. This highly detailed
model has most of the functionalities of the real software, such as:

- contactors control (for battery pre-charge);

- isolation monitoring;

- power limitation;

- system diagnostics.

1In this model the lateral dynamics of the vehicle are not modeled, thus this function is not enabled
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Particular attention has been paid to the latter because error monitoring plays a vital role
in preserving the safety of the vehicle’s components and the passengers. Moreover, regarding
the present work, the implementation of the real HCU at the HiL enables the testing of this
functionality before implementing on-board any control function. Therefore, the BMS is able
to recognize if threshold values for monitoring are exceeded for several important parameters,
such as battery voltage, current, power, and temperature. High-voltage interlock lines and battery
isolation status are monitored, as well. In case of an error, the BMS sends this information to
the HCU which takes remedial action depending on the type and severity of the error. If such
an action is not applied within a certain time, the BMS itself takes over control and opens the
high-voltage relays. At this aim, also the battery pre-charge circuit comprehending the contactors
has been implemented in the battery model.

3.1.4 Vehicle model validation

The whole vehicle model has been validated with experimental data acquired:

- during an All-Electric Range test, that consists of consecutive NEDC cycles, repeated until
the battery is fully discharged and the ICE starts up. This test has been conducted on behalf of
the industrial partner as a final step of the validation of the prototype vehicle [128] following
the relative in force regulation EU2012/101 [133]. As it can be deduced from the typology of
the test, it is then focused on the validation of the electric propulsion only;

- on a rural road drive that consists of driving the prototype vehicle in conventional mode
forcing the ICE to entirely fulfill the torque request (and so neither boosting nor electric drive
is allowed). In this way, the validation is not affected by the hybrid strategy but only focused
on the conventional powertrain.

The results of the validations are shown in Fig. 3.8 and Fig. 3.9, respectively. The ability to
correctly predict experimental data is demonstrated by the graphs, and it proves to be accurate
enough for a control-oriented modeling approach.

3.2 Connected Hardware-in-the-Loop

Differently from the one presented in [127] and in [75], this simulation environment presents
a layout reduced in complexity as the sole Telecommunication Control Unit (TeCU) is in charge
of querying the Map Service Provider (MSP) and gatewaying the data. Moreover, in this work,
an Human-Machine Interface (HMI) has been introduced to be as close to the prototype vehicle
as possible. More in detail, the vehicle HMI is replicated by a tablet running an Android-based
Navigator App, that allows the driver to set the desired destination and to see the suggested route
based on actual traffic conditions. Meanwhile, the related navigation data are collected from the
MSP and sent to the TeCU. Moreover, if the actual position of the vehicle deviates from the route
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Figure 3.8: Electric powertrain validation (black line: experimental data; red line: simulation data)

proposed by the app or if the actual level of traffic changes, the app can trigger the request for a
re-routing.

In this work, the focus is put on the long-range connectivity provided by the layout presented
in [127]. With respect to the latter, the C-HiL has been improved and its complexity reduced. In
particular, as shown by the blue boxes in Fig. 3.10, the TeCU is now in charge of both the internet
service manager and the data processing, while an Android-based tablet is connected via Wi-Fi
to the TeCU itself to replicate the vehicle’s HMI. Furthermore, the data exchange handled by the
TeCU is divided into:

- direct-flow (“NAV Data” label in Fig. 3.10), responsible for the transmission of the navigation
data (listed in Tab. 3.1) from the MSP to the HCU;

- back-flow (“HMI Data” label in Fig. 3.10), for querying and transmitting the actual GPS
position from the Real-Time PC to the MSP and the HMI.
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Figure 3.9: Conventional powertrain validation (black line: experimental data; red line: simulation data)

To give a proper outlook of the simulation environment, in Fig. 3.11 a photo taken during a
simulation is reported, showing all the physical components of the C-HiL that are described in
detail in the next paragraphs, following the workflow of the simulations.
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Figure 3.10: Connected HiL layout for testing predictive functions exploiting long-range connectivity

Figure 3.11: Connected HiL during a simulation

3.2.1 Human-Machine Interface

In the layout presented in [127], the destination had to be set directly via the Central Gateway
(CG) by modifying directly on the software level, making all the process complex and prone to
errors. Moreover, the original layout was not capable of re-routing and navigation data update,
thus the simulated scenarios would not properly reflect the real test case. To overcome this prob-
lem, an Human-Machine Interface (HMI) Navigator App, integrating HERE SDK [134], has been
developed and deployed into an Android-based tablet. In this way, several features are introduced,
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such as the possibility to choose the route suggestion method based on different objectives (fastest
route, shortest route, etc.), directly select the destination on the touchscreen, and see the actual
vehicle position moving on the map as well as the real-time traffic conditions.

So, focusing on the direct-flow, in order to set up the simulation, the driver first selects the desired
destination directly on the HMI Navigator App, whose screenshot is represented in Fig. 3.12. The
latter includes the start and destination coordinates boxes, the actual vehicle’s position (blue dot),
and data (coordinates, altitude, speed, and SoC in the black box on the left), and the zero-emission
zone plotted as a green area. The latter has been designed by increasing the limits of the legal
Limited Traffic Zone of Bologna [135] to also include the residential areas nearby. In this way, the
average urban trip to reach the city center is between 2-4 kilometers and so the maneuver in pure
electric is more demanding.

Figure 3.12: Screenshot of the Navigator App: suggested route from point A to point B

Then, the HMI queries the MSP with the request for navigation data from the actual vehicle
position (point A in Fig. 3.12) to the selected destination (point B in Fig. 3.12). This communication is
allowed by the TeCu that works as a hotspot for the LTE, replicating the usual vehicle’s infotainment
layout where the communication is handled by the connectivity control unit, in this case the TeCU.
Consequently, the MSP evaluates a proposed route according to actual traffic conditions (orange,
red, and dark red lines in Fig. 3.12) and sends back the navigation data, reported in Tab. 3.1, via
LTE Uu Interface to the tablet (yellow line in Fig. 3.10).

Concurrently, the HMI receives from the back-flow the actual vehicle position and system data
and then plots it into the interface. Moreover, the Navigator App can also detect if the actual
position of the vehicle is moving away from the proposed route and so triggering the so-called
re-routing where another request is performed to the MSP to retrieve the updated navigation data.
These data are then forwarded again to the TeCU following the same workflow as above.
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Table 3.2: Navigation data sent by the MSP

No Parameter Unit Size Type
1 Route latitudes deg n+1 single
2 Route longitudes deg n+1 single
3 Route altitudes m n+1 uint16
4 Legal speed limits m/s n uint8
5 Legal speed limits segments m n uint16
6 ZEZ entrance/exit positions m uint16
7 Stop events classification - p uint8
8 Traffic code classification - m uint8
9 Stop events positions m p uint16

3.2.2 Telecommunication control unit

The TeCU is based on a Raspberry Pi 4 computer [136], shown in Fig. 3.13a, coupled with
the PiCAN2 board [137], shown in Fig. 3.13b, to manage the automotive CAN Bus standard
communication. The software has been developed in Simulink by means of the MATLAB Support
Package for Raspberry Pi Hardware [138], while the LTE protocol is handled by two Python scripts
running in parallel.

(a) Raspberry Pi 4 Model B [136] (b) PiCAN2 Board [137]

Figure 3.13: Telecommunication control unit hardware

The TeCU is now in charge of querying the map service provider and gatewaying the data,
merging the tasks of the original TeCU (described in [127]) and the CG in a single and more flexible
component. In general, the TeCU is still capable of exchanging the standardized messages for the
cooperative vehicular communication systems, as described in [139], which are: the Cooperative
Awareness Messages (CAM), the Signal Phase and Timing (SPaT) messages, and the Decentralized
Environmental Notification Messages (DENM). Nevertheless, even if these messages could include
short-horizon data (such as the next traffic lights phases and timing), in this dissertation the focus
is put only on the long-range communication since the merging of long- and short-horizon data
is still under development.
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For what concerns the communication with the MSP, and so the direct-flow, the TeCU receives
from the HMI the navigation data listed in Tab. 3.2 via IEEE 802.11n LAN (blue line) and performs
the necessary data processing to make the navigation data compliant with the HCU computational
power capability. In particular, the data processing includes the removal of redundant data such
as segments where both the speed limit and the slope do not change, to respect the dimensions
limits listed in Tab. 3.2. Furthermore, it evaluates the ZEZ topological limits by crossing the route
proposed by the MSP with the city center (green area in Fig. 3.12). Finally, it prepares and sends
them via CAN bus (red line in Fig. 3.10) to the HCU itself.

Focusing on the back-flow, the HCU sends to the TeCU the vehicle’s actual status via CAN
messages, in the form of the actual state of charge of the high-voltage battery, the vehicle’s speed,
and the GPS position (latitude, longitude, and altitude).
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Chapter 4

Predictive control strategy

In this chapter, an overview of the predictive functions’ architecture is given, to explain how
the navigation data are processed by the HCU (red box in Fig. 3.10). The focus is then put on

the Speed Profile Prediction (SPP) algorithm developed to estimate an energetically equivalent
velocity trace, related to the urban event and on the Backward Vehicle Model (BVM) that evaluates
the battery energy required to fulfill the specific urban event.

Then, the RBS presented in [126] is modified into an Adaptive-RBS to increase its efficiency
and then compared with the A-ECMS at the SiL on two complete Real-Driving Emissions (RDE)
cycles. Consequently, analyzing the results, a Combined-RBS is finally defined to test the predictive
functions at the C-HiL.

4.1 Predictive functions

The developed Predictive Functions (PF) have been implemented within the HCU according
to the high-level architecture depicted in Fig. 4.1. The used nomenclatures are: driver model
(DRV), space-to-time (S2T) conversion, wheels (W), motors (M), battery (B), limits (L), energy
management strategies (EMS), reference SoC (REF) evaluation, equivalence factor (EF) evaluation,
charge-sustaining (CS) SoC thresholds evaluation.

In general, the HCU performs the eHorizon reconstruction by picking up all the CAN messages
and concatenating the values in dedicated vectors. The number of CAN messages needed for a
particular route depends on the number of data and the format chosen for them.

The BVM together with the SPP represents the part of the HCU software in charge of the
predictive tasks. It then takes into account the following parameters:

- input parameter(s)
navigation data from the eHorizon reconstruction in the form of vectors representing the
vehicle speed profile, v, the road slope profile, 𝛂, and topological information regarding the
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Figure 4.1: Workflow of the predictive functions for target SoC evaluation as implemented in the supervisory
controller software.

zero-emission zone (distances from city entrance and exit);

- output parameter(s)
target state of charge at ZEZ entrance, 𝜉𝑡 , evaluated by the BVM function (Section 4.1.2);

- state variable(s)
state of charge, 𝜉 of the battery, predicted over the given urban horizon by the BVM.

In particular, the SPP algorithm (described in detail in Section 4.1.1 and in [75, 125]) calculates
a space-based velocity profile that proved to be energetically equivalent to the one effectively
driven. This is motivated by the fact that the aim is to evaluate the electrical energy usage of the
HV battery and not to predict the exact maneuvers of the driver. Therefore, the speed profile is
converted into time-domain and used by the BVM, which is described in detail in Section 4.1.2
and in [126], to predict the amount of energy to perform the ZEZ in pure electric mode, thus
respecting the local legislation. Finally, the value of the SoC target becomes the input of the energy
management strategies, as shown in Fig. 4.1.

4.1.1 Speed profile prediction

The application of predictive functions upon the control unit is still challenging since they
are inherently dependent on future trajectories of velocity, road slope, and external disturbances,
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which are generally unknown for real-world drive cycles. However, with the help of the navigation
data provided by the MSP, an estimation of the trajectories can be made and then used by the
energy management strategy.

To do so, different approaches can be identified, which are divided into parametric and non-
parametric [140]. In the first category, the driving task is modeled as a stimulus-response system,
so, as a control problem where the driver’s goal is to keep a safe distance from the vehicle in
front or to pursue a target speed according to some imposed constraints. The second one includes
algorithms based on probabilistic and artificial intelligence theories such as Artificial Neural
Networks, Markov chains, or Monte Carlo methods. As reported in [140], advanced parametric
models are commonly used for long-range energy management prediction, representing a valuable
trade-off between reliability and ease of implementation. A remarkable algorithm for Speed Profile
Prediction has been proposed by [58], which for this reason has been assumed as the reference for
the one developed and tested at the MiL level in [125].

The algorithm is implemented in the simulation environment as follows:
Algorithm 1: SPP algorithm

1 begin
2 nodes vector creation from navigation data
3 for 𝑗 = 1 : 𝑁𝑆 do
4 legal speed limit and traffic code assignment

5 𝑑 = 𝐿𝑡𝑟𝑖𝑝/(𝑛𝑣 · 𝑐𝑠) → discretization step
6 for 𝑗 = 1 : 𝑁𝑆 do
7 𝑁 = (𝑙 𝑗 − 𝑙 𝑗−1)/𝑑 → sub-segmentation
8 for 𝑖 = 1 : 𝑁 do
9 next point i MAS evaluation

10 next point i speed evaluation

11 speed and space values vector assignment

12 space-to-time conversion

The output of the algorithm are the vectors of the speed and slope trajectories, whose size is
limited by the computational power of the HCU as well as the navigation data. As a consequence,
their accuracy is dependent on trip segmentation, which is the result of:

1. a first segmentation that depends on the road characteristics (slope, stop events, legal speed
limits) and on the traffic, so on the navigation data. This kind of segmentation is represented
by 𝑁𝑆 “nodes” in Algorithm 1. The nodes have been defined as the coordinates along the
trip that correspond to the presence of a stop event or a variation in the speed limit, slope,
or traffic code.

2. a second segmentation that is then applied by the algorithm to actually generate the speed
trace, as shown in Fig. 4.5a (vertical black lines). In particular, a discretization step, 𝑑, is
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evaluated as the ratio between the total length of the trip, 𝐿𝑡𝑟𝑖𝑝 , and the size of the output
vector, 𝑛𝑣 . Then, each segment defined by the first segmentation, with a length of 𝑙 𝑗 − 𝑙 𝑗−1,
is subdivided again into 𝑁 sub-segments having a length equal to 𝑑 (Algorithm 1, line 7).
In this way, the density of the sub-segmentation is kept constant, since the longer is the 𝑗-th
segment, the higher is the number of required sub-segments. When:

(𝑙 𝑗 − 𝑙 𝑗−1) < 𝑘𝑑 · 𝑑 (4.1)

i.e., the two adjacent nodes are too close to each other, a smaller discretization step is applied
to have sufficient values to create the speed trace within the 𝑗-th segment. The coefficient 𝑘𝑑 =
4 represents the minimum number of points required to create an acceleration-deceleration
maneuver following Eq. (4.5) and Eq. (4.6). Moreover, a corrective factor 𝑐𝑠 is applied in line 5
to take into account the additional elements required by the condition expressed by Eq. (4.1)
and avoid the complete saturation of the memory. The latter is evaluated as 𝑐𝑠 = 1−(𝑘𝑑 ·𝑛𝑐)/𝑛𝑣 ,
where 𝑛𝑐 is the number of segments that verify the condition expressed by Eq. (4.1). As a
final remark on the second segmentation, it must be said that the discretization is dependent
on the overall length of the route, so the accuracy of the speed profile could be affected for
longer trips. However, this algorithm is applied only to the ZEZ, which is usually a limited
event for the test cases under evaluation, and the overall accuracy is more than satisfying as
proved by the results of the calibration and of the tests at the C-HiL. Moreover, the problems
related to the computational power will be overcome by moving the predictive functions
from the HCU to the cloud, as it will be proposed in future work.

After that, the starting values of the speed limit and traffic code are assigned to every sub-
segment 𝑖 = 1 , ... , 𝑁 of each segment 𝑗 = 1 , ... , 𝑁𝑆 (line 4 of Algorithm 1). Consequently, for each
sub-segment, the Maximum Allowed Speed (MAS) is calculated (line 7 of Algorithm 1). If a node
coincides with a stop event position, then the MAS is imposed by the kind of the stop event itself.
In particular, a stop event is commonly referred to as an event whose presence implies that the
speed of the vehicle in that position must be partially or totally decreased. They are divided into
static, if the breaking or stop is mandatory (e.g., bumps, stop signal), and dynamic, if they may not
affect the current speed even if their position is known (e.g., green lights and right of ways). For
the latter, a stop-over probability is introduced, as in [58], depending on traffic codes modeled by
means of binomial probability and summarized in Tab. 4.1.

For the other nodes, the MAS value is affected by the traffic density, which influences the
maximum speed due to the presence of the other cars and induces oscillations around that limit
due to the variation of traffic flow. Thus, the MAS can be expressed as:

𝑀𝐴𝑆 = 𝑀𝐴𝑆𝑡 +𝑀𝐴𝑆𝑛 (4.2)
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Table 4.1: Stop-over probability with respect to the traffic codes

Traffic code Traffic color Congestion Stop-over probability Code weight1

𝑐 [-] [-] [%] 𝐶𝑊

1 absent 15 0.85
2 light 40 0.60
3 medium 60 0.40
4 heavy 70 0.30

1 the code weight and its value will be discussed in the next paragraphs.

where:

- 𝑀𝐴𝑆𝑡 considers the effect related to the traffic condition, expressed in terms of colors (blue,
orange, red, and dark red) and can be expressed as:

𝑀𝐴𝑆𝑡 = 𝑣𝑙𝑖𝑚 · 𝐶𝑊 (4.3)

where 𝑣𝑙𝑖𝑚 is the legal speed limit, and 𝐶𝑊 is the code weight that depends on the traffic
code 𝑐.

- 𝑀𝐴𝑆𝑛 replicates the effect of the driver behavior that depends on the traffic condition. In
fact, the velocity often exhibits oscillations around the speed limit due to inharmonic traffic
flow. As suggested by [58], to account for these oscillations, the 𝑀𝐴𝑆𝑛 can be expressed as
a sum of 𝑅-cosines:

𝑀𝐴𝑆𝑛 =

𝑅∑
𝑟=1

𝐴𝑟 · 𝑐𝑜𝑠(2𝜋 𝑓𝑟𝑥) (4.4)

where 𝐴𝑟 and 𝑓𝑟 are the amplitudes and frequencies of the oscillation respectively, and 𝑅 is
the number of the considered cosine terms (in this case 𝑅 = 3)

After the evaluation of MAS for each 𝑖-th point, the vehicle speed can be calculated (line 10 of
Algorithm 1). Since the objective of the algorithm is to generate a speed vector, with the assumption
of traveling time minimization, the driver will always try to reach the MAS, if possible. Therefore,
the driver decides whether to accelerate, decelerate or keep the velocity constant depending on
the actual value of the speed and on the boundary conditions of the 𝑖 + 1-th point. Thus, if the
MAS has been already reached, the driver can maintain the speed or start braking. Otherwise, it
starts to accelerate. For this reason, an exponential acceleration and a linear deceleration law are
adopted:

𝑎𝑎𝑐𝑐 (𝑥) = 𝑎𝑎𝑐𝑐,𝑚𝑎𝑥 · 𝑘𝑎𝑐𝑐 · (1 − 𝑒−𝜏𝑥) (4.5)

𝑎𝑑𝑒𝑐 (𝑥) = −𝑎𝑑𝑒𝑐,𝑚𝑎𝑥 · 𝑘𝑑𝑒𝑐 · 𝑥 (4.6)
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where 𝑎𝑎𝑐𝑐,𝑚𝑎𝑥 and 𝑎𝑑𝑒𝑐,𝑚𝑎𝑥 are the maximum acceleration and deceleration that depend on
vehicle performance, 𝑘𝑎𝑐𝑐 and 𝑘𝑑𝑒𝑐 are the reductive factors that consider the different driver
behaviors, and 𝜏 is the time constant defining the acceleration transient.

Finally, the speed profile is converted from space to time domain by following a linear inter-
polation of the values to feed the Backward Vehicle Model with proper input signals (line 12 of
Algorithm 1). Moreover, a stop time is assigned to each stop event depending on the traffic code
and the typology of the stop event itself.

After the analysis of the algorithm, its calibration has been performed, focusing on:

- driver-related parameters, so 𝑘𝑎𝑐𝑐 , 𝑘𝑑𝑒𝑐 , and 𝜏, that regards the acceleration and deceleration
maneuvers described by Eq. (4.5) and Eq. (4.6), respectively. Thus, the conceived scenario
is represented by a ramp-up / ramp-down cycle with a nominal speed of 50 km/h (i.e., a
typical urban speed limit) and performed on a straight road;

- traffic-related parameters, that are 𝐶𝑊 , 𝐴𝑟 , and 𝑓𝑟 . To do so, the algorithm has been calibrated
over three urban driving scenarios within the city of Bologna, the more representative of
which is shown in Fig. 4.2.

Measured route

Figure 4.2: Driving scenario with different traffic codes and speed limits, within an urban area

Furthermore, as suggested by [58], the measurements have been performed to include all
the possible common situations. In particular, they have been performed at different times of
day to assess the influence of various traffic conditions (from the less congested road of the
night to the rush hour) and on different types of urban roads, to consider as many driving
conditions as possible (from the urban roads to the high-velocity ones). Since the purpose
of the algorithm is to predict the amount of energy related to an urban event, the calibration
and validation campaign are focused only on scenarios inside a ZEZ.

The weight of the traffic codes, the amplitudes, and the frequency of Eq. (4.4) have been
determined by dividing the measured space-based velocity traces into segments and clustering
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them with respect to the traffic code. Then, a Fast Fourier Transform (FFT) is applied in the
space domain for each traffic code cluster, as suggested in [58], obtaining a magnitude-frequency
diagram. In fact, the influence of traffic congestion leads to different oscillations for each traffic
code. The oscillations are intended as the variation of the vehicle speed with respect to the
average value every certain number of meters, whose inverse can be seen as the space-domain
frequency [m-1]. By filtering the measurements, it is possible to isolate the first four space-domain
frequencies and amplitudes. The first one represents the average values that are used to calculate
the code weight Eq. (4.9) determining the corrected MAS value. Finally, the oscillations due to the
frequencies and amplitudes going from 𝑟 = 1 , ... , 3 are added to the average value. For a matter
of brevity, only the one related to the orange traffic color (code 𝑐=2) is reported in Fig. 4.3.

Figure 4.3: Frequency analysis with FFT for the traffic code 𝑐=2

In this case, 𝐽=3 measured speed signals have been investigated, each of them related to a
certain space segmentation of length 𝑙 𝑗 . Then, the three ranges (𝑟 = 1 , ... , 3) of frequencies have
been identified to describe the oscillatory phenomenon with acceptable accuracy (red boxes in
Fig. 4.3, where 𝑁𝑟 is the number of points within each range). At this point, focusing on Eq. (4.4),
both the frequencies and the amplitudes of each range can be expressed as arithmetic means of
the relative measured values:

𝐴𝑐,𝑟 =

∑𝐽

𝑗=1

(
1/𝑁𝑟 ·

∑𝑁𝑟
𝑛=1 𝐴𝑛,𝑟,𝑗

)
· 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(4.7)

𝑓𝑐,𝑟 =

∑𝐽

𝑗=1

(
1/𝑁𝑟 ·

∑𝑁𝑟
𝑛=1 𝑓𝑛,𝑟,𝑗

)
· 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(4.8)
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where 𝐽 is the number of segments with the same traffic code 𝑐, 𝑁𝑟 is the number of pairs
of magnitudes 𝐴𝑛,𝑟,𝑗 and frequencies 𝑓𝑛,𝑟,𝑗 corresponding to the 𝑟-th range of the 𝑗-th signal.
Moreover, since the amplitude 𝐴0 of the oscillation at 𝑓 = 0 m-1 (blue box in Fig. 4.3) represents
the average speed on the given segments, it can be used to determine the parameter 𝐶𝑊 for each
traffic code as follows:

𝐶𝑊 𝑐 =

∑𝐽

𝑗=1
𝐴0, 𝑗
𝑣𝑙𝑖𝑚,𝑗

· 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(4.9)

being 𝑣𝑙𝑖𝑚,𝑗 the legal speed limit for the 𝑗-th segment. In this way, according to Eq. (4.3), the
static contribution to the MAS can be determined.

Afterward, two different kinds of Key Performance Indicators (KPI) have been identified to
evaluate the goodness of the prediction: speed-based and energy-based KPIs. Regarding the first
ones, reliable parameters for speed traces comparison are provided by [140, 141] and they can
be represented by the mean absolute error (MAE) and the BIAS, both expressed in [km/h] and
defined as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑣𝑝,𝑖 − 𝑣𝑟,𝑖 | (4.10)

𝐵𝐼𝐴𝑆 =
1
𝑛

𝑛∑
𝑖=1

(
𝑣𝑝,𝑖 − 𝑣𝑟,𝑖

)
(4.11)

where 𝑣𝑝,𝑖 and 𝑣𝑟,𝑖 are respectively the predicted and the measured speed at point 𝑖, and 𝑛 is
the total amount of points where the differences are calculated. Moreover, since the MAE does
not consider the algebraic signs of the errors, it is used to express the mean distance between the
prediction and real data. Differently, the BIAS represents a good instrument to identify eventual
issues related to a systematic under/overestimation of the speed.

On the other hand, energy-based KPIs suggested by SAE [142] have been assumed as references.
At first, three energy components are calculated for both the predicted and the measured cycle,
and they are the road load, the positive and the negative inertia, expressed as follows:

𝐸𝑅𝐿 =

∫ 𝐿

0
𝐹𝑅𝐿𝑑𝑙 =

∫ 𝐿

0
(𝐹0 + 𝑣 · 𝐹1 + 𝑣2 · 𝐹2)𝑑𝑙 (4.12)

𝐸𝐼+ =

∫ 𝐿

0
𝐹𝐼+𝑑𝑙 =

∫ 𝐿

0
(𝑚𝑣 · 𝑎𝑑𝑒𝑐)𝑑𝑙 (4.13)

𝐸𝐼− =

∫ 𝐿

0
𝐹𝐼−𝑑𝑙 =

∫ 𝐿

0
(𝑚𝑣 · 𝑎𝑑𝑒𝑐)𝑑𝑙 (4.14)

where 𝐿 is the total length of the route, 𝐸𝑅𝐿 represents the energy required to win rolling resis-
tance and drag force, 𝐸𝐼+ represents the energy required by the vehicle mass 𝑚 to be accelerated,
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and 𝐸𝐼− represents the energy required by the vehicle mass to be decelerated. Now, three energy
KPIs can be introduced in form of energy rate, where subscripts 𝑝 and 𝑟 are respectively referred
to as the predicted and real (measured) speed profile:

Δ𝐸𝑅𝐿 =

(
𝐸𝑅𝐿𝑝 − 𝐸𝑅𝐿𝑟

)
𝐸𝑅𝐿𝑟

· 100 (4.15)

Δ𝐸𝐼+ =

(
𝐸𝐼+𝑝 − 𝐸𝐼+𝑟

)
𝐸𝐼−𝑟

· 100 (4.16)

Δ𝐸𝐼− =

(
𝐸𝐼−𝑝 − 𝐸𝐼−𝑟

)
𝐸𝐼−𝑟

· 100 (4.17)

The results of the calibration and validation campaign are described in detail in [125]. So, for
the sake of brevity, in this work, only a representative test case’s validation is reported in Fig. 4.4.
In this case, the scenario under test includes different traffic codes, stop events, and speed limits to
consider as many conditions as possible. The numeric results of that validation are summarized
in Tab. 4.2.

Table 4.2: Speed and energy KPI for the presented use case

MAE BIAS 𝐸𝑅𝐿 Δ𝐸𝑅𝐿 𝐸𝐼+ Δ𝐸𝐼+ 𝐸𝐼− Δ𝐸𝐼−

[𝑘𝑚/ℎ] [𝑘𝑚/ℎ] [𝑊ℎ] [%] [𝑊ℎ] [%] [𝑊ℎ] [%]
12.4 -0.1 5 -0.4 32 -2 32 -2

In conclusion, Fig. 4.5a shows the calibrated predicted speed profile with respect to the test
case presented in Fig. 4.2, alongside the legal speed limits on that route (magenta line) and the
related traffic colors (filled area below the speed profile) listed in Tab. 4.1. As shown, the velocity
trace is always below the limits because the 𝐶𝑊 , as expressed by Eq. (4.9), affects the 𝑀𝐴𝑆𝑡 , the
static component of MAS, lowering the 𝑣𝑙𝑖𝑚 , while the oscillations described by Eq. (4.4) simulate
the natural speed deviation from that value.

Moreover, as shown in Fig. 4.5b and Fig. 4.5c, the speed is also reduced in correspondence
to the orange and dark-red traffic codes respectively by the values reported in Tab. 4.1, showing
the impact that each traffic code has on the predicted profile. Furthermore, on the 𝑥-axis, the
stop events positions are plotted with the red triangles. As it can be noticed, since the stop-over
probability is applied, the vehicle’s speed is not always zero.
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4 – Predictive control strategy

Figure 4.4: Top plot: speed profile predicted from the navigation data (black) and the measured speed on the
road (red). Three bottom plots: comparison between the three energy components related to the
prediction (black) and the measurements (red)

4.1.2 Backward Vehicle Model

In order to reconstruct the behavior of SoC over the given electronic horizon, the predictive
functions rely on a Backward Vehicle Model (BVM) which takes the vectors of the speed, 𝒗,
and the road slope, 𝛂%, generated by the SPP for the predicted eHorizon, and it evaluates the
predicted state of charge profile, 𝛏. The BVM is implemented in a for-loop block, where the number
of iterations, 𝑁 , is equal to the period of time required for crossing the urban area. In other words,
𝑁 = Δ𝑡𝑍 = 𝑡 𝑓 ,𝑍 − 𝑡𝑖 ,𝑍 . This results in a function time step equal to 𝑡𝑠 = 1s that is sufficient to
represent the slow dynamic of the state of charge.

The prediction is carried out by means of a quasi-static analytical model of the vehicle, de-
veloped through a backward-facing approach and based on the inverted path of the energy flow
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(a)

(b) (c)

Figure 4.5: a) Speed profile predicted by the algorithm after calibration; b) detail of MAS limited by the
orange traffic code; c) detail of MAS limited by the red traffic code

inside the vehicle. In this case, the source is represented by the wheels and the sinks are the energy
storage devices. Here, the traction force, and consequently torque and power, are evaluated on
the base of the vehicle speed and road slope, which can be considered as external disturbances
acting on the dynamic system represented by the vehicle [143–145]. Thus, there is no closed-loop
control on the speed, i.e., a driver model is not needed. Moreover, dynamic effects such as torque
control are not inherently included. Therefore, this results in a less complex model with benefits
regarding computational load [146], which is a relevant aspect to be considered for algorithm
implementation inside the rapid prototyping control unit. The main equations of the Backward
Vehicle Model, presented in [126], are briefly reported in the following paragraphs, while the
model validation can be found in [75]. Firstly, since the vehicle dynamics analytical model only
considers the longitudinal forces acting on the car, the fundamental equation for vehicle longitudi-
nal dynamics (Eq. (3.1)) in discrete domain, i.e. for the 𝑘-th iteration of the for-loop, for 𝑘 = 1,...,𝑁 ,
can be rewritten as::

𝑚𝑣 ·
Δ𝑣(𝑘)
Δ𝑡(𝑘) = 𝑚𝑣 ·

𝑣(𝑘) − 𝑣(𝑘 − 1)
𝑡𝑠

= 𝐹𝑚𝑜𝑡(𝑘) − 𝐹𝑟𝑒𝑠(𝑘) = 𝐹𝑟(𝑘) (4.18)

where 𝑣(𝑘) = [v]𝑘 is the predicted vehicle speed, and being Δ𝑡(𝑘) = 𝑡(𝑘) − 𝑡(𝑘 − 1) = 𝑡𝑠 . Then,

77



4 – Predictive control strategy

considering the discrete formulation of resistance forces and inertia forces, as widely shown in
literature [75], the total torque requested at the wheels can be expressed as:

𝑇𝑟(𝑘) = 𝐹𝑟(𝑘) · 𝑟𝑤 (4.19)

with 𝑟𝑤 being the wheel radius.
Since the output of the BVM is the battery behavior within a zero-emission zone, where the

vehicle should be driven in pure electric mode, the total torque request at the wheels is entirely
provided by the electric machines Then, as already discussed in [57, 58], and reported in [126], the
global electrical power request can be evaluated from Eq. (4.18) and expressed as follows:

𝑃𝑏 (𝑡) = 𝑃𝐸𝑀 (𝑡) + 𝑃𝑎𝑢𝑥

𝜂𝐷𝐶𝐷𝐶
(4.20)

in which 𝑃𝐸𝑀 (𝑡) is the power requested from the electrical motors on the front axle either for
traction or regenerative braking,𝑃𝑎𝑢𝑥 is the constant power to be supplied to the low-voltage battery
and the other auxiliaries, and 𝜂𝐷𝐶𝐷𝐶 is the efficiency of the DC\DC converter. At this point, the
battery power request is modified according to power limitation maps related to charge-discharge
and peak-nominal working conditions of the HV battery. These parameters are calculated by
the battery electrical and thermal models, respectively, which are the same used in the vehicle’s
model, in Section 3.1.2. Thus, the electrical behavior of the cell has been represented by a single-
polarization equivalent circuit model, also known as the first-order RC equivalent circuit model.
Battery voltage 𝑉𝑏 and current 𝐼𝑏 can be calculated as already explained in Section 3.1.2.3. In
conclusion, the battery state of charge is estimated with an Ampere-hour (Ah) integral method
(also known as Coulomb counting) [131]. In formula:

𝜉(𝑘) = 𝜉1 −
𝜂𝑐
𝐶𝑛

∑
𝑘

𝐼𝑏(𝑘)𝑡𝑠 (4.21)

being 𝜉1 = 𝜉(𝑘 = 1) = 95%. From Eq. (4.21), the net amount of SoC needed to drive the ZEZ in
pure electric drive can be calculated as the difference between the maximum and minimum value
of the predicted SoC profile 𝜉:

Δ𝜉𝑍 = 𝑚𝑎𝑥(𝜉) − 𝑚𝑖𝑛(𝜉) (4.22)

Then, the target SoC value is calculated as follows:

𝜉𝑡 = 𝜉𝑚𝑖𝑛,𝑏 + Δ𝜉𝑍 + 𝜉𝑠 (4.23)

where 𝜉𝑚𝑖𝑛,𝑏 is the minimum SoC to drive the vehicle in pure electric mode (in this application,
it is set to 20%), 𝜉𝑠 is a positive offset value that has been set to 5% to compensate for the
physiological inaccuracies of the navigation data, as proved in [75]. Finally, 𝜉𝑡 is the output of the
model representing the minimum value of SoC to be stored in the HV battery to perform the ZEZ
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in pure electric, which is then forwarded to the control strategy.

4.2 Standard on-board strategies

The baseline strategies for energy and battery thermal management are presented in this
section. They have been calibrated, tested, and implemented in the HCU by the industrial partner,
which then represents the software developer of the entire supervisory controller. Then, the
modified energy management RBS for zero-emission zones handling is introduced, as well.

4.2.1 Rule-based strategy for energy management

As previously explained, this heuristic energy management strategy, already presented in [75,
126, 127], controls the electric drive, the front axle torque vectoring, the 4WD control, the torque
filling, and the boosting. Focusing on the electric drive, the RBS is based on rules depending
on fixed thresholds (which have been previously calibrated). In addition to the driver torque
request, parameters such as the SoC 𝜉, the torque at the wheels 𝑇𝑤 , and the actual vehicle speed
𝑣 are involved in the torque split factor evaluation. Eq. (4.24) represents the conditions to switch
from electric to hybrid drive, while Eq. (4.25) to conditions to switch back to electric drive. Thus,
the controller first discharges the battery and then keeps the state of charge around the chosen
threshold. Such an approach is commonly referred to as the charge-depleting/charge-sustaining
approach and is typically used for PHEVs, like the one used for this activity.

𝜉 < 𝜉min

𝑇𝑤 > 𝑇max(𝑛)
𝑣 > 𝑣max

(4.24)


𝜉 > 𝜉max

𝑇𝑤 < 𝑇min(𝑛)
𝑣 < 𝑣min

(4.25)

Moreover, if a negative torque is requested by the driver, regenerative braking occurs and the
battery is recharged by the electric motors (i.e., P4), acting as generators.

Since this kind of control logic is reliable and easily real-time implementable due to the low
computational burden required [57, 70, 84], it is currently the onboard standard strategy. It has
been calibrated in previous activities by the industrial partner. The reliability and robustness of
the rule-based energy management strategy are proven by the numerous HiL and on-road tests
performed on the HCU as well as on the whole vehicle. Further details can be found in [128].

4.2.2 Adaptive rule-based strategy

The presence of constrained events, such as a ZEZ, along the route adds a boundary condition
for the EMS. Without the connectivity and the information from the server, the conventional
strategy works blindly, thus the driver could run into fees or traffic limitations imposed by the
local municipalities. Conversely, the control strategy has to fulfill an additional objective besides
fuel consumption, which is granting enough energy to drive the ZEZ in full electric drive. Then,
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when the ZEZ is reached by the vehicle, the strategies are bypassed, and the electric drive is
forcedly switched on. Hence, the RBS is modified into an Adaptive-RBS to increase its efficiency
and then compared with the A-ECMS at the SiL on two complete RDE cycles.

To do so, following the trend in literature, a blended mode leads to increased efficiency for the
PHEV [147], especially if road and traffic data are accessible [148]. In fact, if the information about
the ZEZ is available, thus the target SoC 𝜉𝑡 can be higher than the initial SoC of the battery. In
[126], the RBS has been modified to receive the navigation data as input, but it can only recharge
the HV battery and then performs a conventional CS around the target, as follows:


𝜉𝑚𝑖𝑛 = 𝜉𝑡

𝜉𝑚𝑎𝑥 = 𝜉𝑡 + 5
(4.26)

This could lead to an imbalanced comparison since the RBS has not been conceived to work
in this operating condition. Thus, the control policy has been adapted to take as input the same
SoC reference, 𝜉𝑟 , that will be defined in Section 4.3.2 by the Eq. (25) and use it to define the new
values of 𝜉𝑚𝑎𝑥 , 𝜉𝑚𝑖𝑛 instant by instant:


𝜉𝑚𝑖𝑛 (𝑑 (𝑡)) = 𝜉𝑟 (𝑑(𝑡))
𝜉𝑚𝑎𝑥 (𝑑 (𝑡)) = 𝜉𝑟 (𝑑(𝑡)) + 5

(4.27)

4.3 Equivalent Consumption Minimization Strategy

4.3.1 Basic formulation

It is well known that the approach proposed by the ECMS allows reducing the global energy
minimization problem of HEVs to a local one that can be solved instantaneously, leading to a sub-
optimal control strategy. In particular, the formulation of this control policy is based on the physical
equivalence between the electric energy usage of the battery and the virtual fuel consumption
associated with it. Thus, the instantaneous equivalent fuel consumption to be minimized results
in:

¤𝑚 𝑓 ,𝑒𝑞(𝑡) = ¤𝑚 𝑓 (𝑡) + ¤𝑚 𝑓 ,𝑏(𝑡) (4.28)

where ¤𝑚 𝑓 is the effective fuel consumption referred to the engine, and ¤𝑚 𝑓 ,𝑏 is the virtual fuel
consumption associated with battery usage. By analogy with the engine, the latter can be expressed
introducing a virtual specific fuel consumption, 𝑠 𝑓 𝑐𝑒𝑞 , giving:

¤𝑚 𝑓 ,𝑏(𝑡) = 𝑠 𝑓 𝑐𝑒𝑞(𝑡) · 𝑃𝑏(𝑡) =
𝑠(𝜉(𝑡),𝑡)
𝑄𝑙ℎ𝑣

𝑃𝑏(𝑡) (4.29)

80



4.3 – Equivalent Consumption Minimization Strategy

where 𝑄𝑙ℎ𝑣 is the lower heating value of the fuel in [kJ/kg], 𝑃𝑏(𝑡) is the global electrical power
request to the battery, and 𝑠 𝑓 𝑐𝑒𝑞 is considered proportional to a dimensionless equivalence factor,
𝑠.

4.3.2 Adaptive-ECMS

In [89] and more recently in [90] remarkable improvements have been obtained to make the
ECMS a real-time control strategy. In particular, in the latter work, an adaptation of the equiva-
lence factor based on feedback from SoC has been proposed. An attempt to apply this adaptive
formulation of the ECMS to PHEVs is proposed in [149, 150]. As a result, the equivalence factor is
expressed as:

𝑠 (𝜉(𝑡),𝑡) = 𝑝 (𝜉(𝑡),𝑡) · 𝑎 (𝜉(𝑡),𝑡) (4.30)

where:

𝑝 (𝜉(𝑡),𝑡) = 1 − 𝑘𝑝
[
𝜉(𝑡) − (𝜉max + 𝜉min) /2

(𝜉max − 𝜉min) /2

]𝑛
(4.31)

𝑎 (𝜉(𝑡),𝑡) = 𝑘𝑎 (𝜉𝑟(𝑡) − 𝜉(𝑡)) + (𝑠𝑘−1 + 𝑠𝑘−2)
2 (4.32)

From Eq. (4.30) it can be noticed that there are two main contributions to the adaptive formu-
lation of the equivalence factor, 𝑠.

The first one is expressed in Eq. (4.31) and it represents a penalty function intended to maintain
the state of charge of the battery within the range [𝜉min ,𝜉max]. This condition represents a local
control constraint for HEV applications (where only a CS mode could be applied), while it can be
considered a physical constraint in the case of a PHEV, like the considered vehicle. The definition
of the penalty function is completed by the gain factor, 𝑘𝑝 , also known as the penalty factor, and
the polynomial coefficient, 𝑛, which can be considered as tunable parameters.

The second contribution is represented in Eq. (4.32) by an adaptive function that plays a vital
role in the real-time implementation of the ECMS. In fact, the drawback of the offline tuning of the
equivalence factor for a given drive cycle is solved by an online adaptation based on the feedback
from the SoC, represented by the term 𝜉𝑟(𝑡) − 𝜉(𝑡). This results in a proportional correction of 𝑠
by considering an adaptive factor, 𝑘𝑎 , and the difference between the reference value of the SoC,
𝜉𝑟 , and the actual one. The introduced gain factor can be used for algorithm tuning, as well as
the penalty factor. Since the adaptation is performed periodically every 𝑡 = 𝑘 · 𝑡𝑢 , 𝑘 = 1,2, . . ., the
terms 𝑠𝑘−1 and 𝑠𝑘−2 are the values of the equivalence factor used in two previous time intervals,
namely adaptation steps, working as an integral correction.

4.3.2.1 A-ECMS with navigation data

In case of availability of navigation data regarding the planned route, that are including a ZEZ
in these test cases, the 𝑘𝑎 has been calibrated as a 2-D map [126], presented in Fig. 4.6, based on a
logarithmic approach depending on the remaining distance to the ZEZ (Δ𝑑𝑍(𝑡) = 𝑑𝑖 ,𝑍 − 𝑑(𝑡)) and
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the difference between the reference SoC and the actual SoC Δ𝜉𝑟, 𝑓 (𝑡) = 𝜉𝑡 − 𝜉𝑟, 𝑓 . Moreover, the
more the vehicle gets closer to the ZEZ entrance the more the update time 𝑡𝑢 of the adaptive factor
decreases, granting more accurate control, as shown in Fig. 4.7.

Figure 4.6: Map of the adaptive factor Figure 4.7: Map of the update time

In general, for a PHEV the reference SoC to be followed by the control policy can be expressed
as a linear function of the total distance of the trip to gradually discharge the battery during the
driving mission. Thus, neither a battery discharging nor sustaining behavior is favored, and then
the resulting working mode could be referred to as charge blended. So, the general formulation
for a generic drive cycle has been modified as:

𝜉𝑟 (𝑑 (𝑡)) = 𝜉𝑖 +
𝜉 𝑓 − 𝜉𝑖
𝑑 𝑓 − 𝑑𝑖

(𝑑(𝑡) − 𝑑𝑖) (4.33)

with the following assumptions related to the ZEZ:


𝑡 𝑓 = 𝑡𝑖 ,𝑍

𝑑(𝑡 𝑓 ) = 𝑑 𝑓 = 𝑑𝑖 ,𝑍

𝜉(𝑡 𝑓 ) = 𝜉 𝑓 = 𝜉𝑖 ,𝑍

(4.34)

Where 𝑡𝑖 ,𝑍 is the instant of time when the vehicle reaches the ZEZ, 𝑑𝑖 ,𝑍 is the distance of the
ZEZ from the actual position, and 𝜉𝑖 ,𝑍 is the value of the SoC at the beginning of the ZEZ.

A qualitative use case is shown in Fig. 4.8a, where a generic prediction happens in between the
driving cycle (point 𝑑𝑖 ∈ [𝑑0 ,𝑑 𝑓 ,𝑍]). In general, the first prediction occurs when the driver selects
the destination on the navigator, and it is performed again every time a re-routing or changes
in traffic condition occurs. Here, the CB mode is applied by the A-ECMS following the reference
SoC expressed by Eq. (4.33) until the urban area is accessed at 𝑑 𝑓 = 𝑑𝑖 ,𝑍 reached at the instant
𝑡 = 𝑡 𝑓 . Moreover, it is important to mention that in contrast to other formulations of the reference
SoC, the global constraint 𝜉𝑟(𝑡 𝑓 ) = 𝜉𝑟, 𝑓 = 𝜉𝑡 has been softened, as shown in Fig. 4.8b. The unused
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Figure 4.8: Charge Blended (CB) A-ECMS handling the ZEZ

electrical energy associated with the SoC difference 𝜉𝑖 ,𝑍 −𝜉𝑡 is justified by the more important aim
of pursuing a reliable and robust energy management control strategy for handling all the ZEZ
in pure-electric driving mode. Therefore, the final reference SoC value becomes the reference SoC
range [𝜉𝑡 ,𝜉𝑡 + Δ𝜉𝑡] centered in 𝜉𝑟, 𝑓 , with 𝜉𝑟, 𝑓 > 𝜉𝑡 and Δ𝜉𝑡 = 5%.

4.4 Strategies comparison

The simulations of two RDE cycles have been performed at the SiL to compare the strategies
in terms of CO2 production, and in particular to understand if the A-RBS outperforms the con-
ventional RBS and can be used as the new reference. Differently from the conventional RDE cycle,
the two used here have been driven in the opposite direction, thus the urban event (and so the
ZEZ) is located at the end of the trip. This allows the energy management strategies to prepare the
battery with the proper amount of energy for the urban area. The driving cycles are represented
in Fig. 4.9a and Fig. 4.9b along with the altitude profile (the 0 value is the initial vehicle position)
and the ZEZ (green area).

Table 4.3: Target Soc, length of the route and of the ZEZ for each RDE

Cycle 𝝃𝒕 𝒅𝒁 𝒅𝒊 ,𝒁 𝒅 𝒇 ,𝒁
[%] [km] [km] [km]

RDE 1 80 15.0 75.1 90.1
RDE 2 80 11.8 80.9 92.7

The length in km of the cycles and the urban event are listed in Tab. 4.3, where 𝜉𝑡 is the target
SoC calculated by the BVM, 𝑑𝑍 is the duration of the ZEZ, while 𝑑𝑖 ,𝑍 and 𝑑 𝑓 ,𝑍 identify the start
and the end of the ZEZ. The comparisons have been made starting from different values of the
initial SoC 𝜉𝑖 (30%, 50%, and 90%), whereas the ZEZ event remains the same and consequently the
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(a) RDE 1

(b) RDE 2

Figure 4.9: Driving cycles (black) and altitudes (magenta) profile

target SoC. The initial values have been chosen to cover different operation modes of the strategies
due to the difference between the initial SoC and the target SoC (in both test cases 80%):

- 𝜉𝑖 = 30% : implies a significant negative difference and so a demanding recharging phase;

- 𝜉𝑖 = 50% : in this case, the difference is less pronounced and so is the recharging phase;

- 𝜉𝑖 = 90% : here the difference is positive, as commonly happens with PHEV. This is necessary
to understand if the A-RBS proposed is suitable even for a conventional CD/CS mode.

4.4.1 CO2 correction

CO2 production has been chosen as the assessment parameter for comparing the energy con-
sumption related to the strategies under test with respect to the reference one (namely the RBS).
To make a proper comparison, a correction of CO2 production has been proposed. In particular,
the electrical energy additionally used or saved, Δ 𝐸 = 𝐸𝐴𝑅 − 𝐸𝐴𝐸 (𝐴𝑅: A-RBS, 𝐴𝐸: A-ECMS), at
the end of the driving mission should be converted into an equivalent amount of fuel as already
described in [126]. Hence, the energy correction can be:

- negative, meaning that more electrical energy was used by the strategy under test than the
reference strategy. In this case, the assumption is that the Δ𝐸 is provided by the ICE and the
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P1 is working as a generator. Thus, considering the energy balance, the mass fuel correction
is expressed by:

Δ𝑚 𝑓 =
Δ𝐸

𝑄𝑙ℎ𝑣
· 1
�̄�𝐼𝐶𝐸 · �̄�𝐼𝑆𝐺

(4.35)

where𝑄𝑙ℎ𝑣 is the lower heating value of the gasoline, �̄�𝐼𝐶𝐸 and �̄�𝐼𝑆𝐺 are the average efficiencies
of the ICE and the ISG respectively. The instantaneous efficiency of the ICE is calculated as
the ratio between the mechanical power provided by the engine and the chemical power
related to the injected fuel.

- positive, on the contrary, if less electrical energy was used by the strategy under test. Here,
the Δ𝐸 is assumed to be provided by the EMs, as the vehicle is driving in electric mode.
Thus, the energy balance can be expressed as:

Δ𝑚 𝑓 =
Δ𝐸

𝑄𝑙ℎ𝑣
· �̄�𝐼𝑆𝐺
�̄�𝐼𝐶𝐸

(4.36)

where �̄�𝐸𝑀 is the average efficiency of the EMs, calculated as the ratio between the input and
output power.

Finally, to evaluate the CO2 production, the corrected fuel consumption 𝑚 𝑓 ,𝑐 = 𝑚 𝑓 + Δ𝑚 𝑓

is multiplied by a conversion factor whose value is 𝑘𝐶𝑂2 = 2370 [gCO2/lfuel]. The latter can be
calculated as suggested by [10] from the following equation:

𝐹𝐶 =

(
0.1206
𝜌 𝑓

)
(0.829 · 𝐻𝐶 + 0.429 · 𝐶𝑂 + 0.273 · 𝐶𝑂2) (4.37)

where 𝜌 𝑓 = 0.75 [kg/l] is the fuel density, and HC, CO, and CO2 are the production of the
relative chemical agents [g/km]. For the conversion factor evaluation, the conservative assumption
HC=CO=0 [g/km] has been made.

4.4.2 Simulations and results

The Fig. 4.10a, Fig. 4.10c, and Fig. 4.10e show the simulation results for the RDE 1 at 30%,
50%, and 90% respectively, and likewise the Fig. 4.10b, Fig. 4.10d, and Fig. 4.10f for the RDE 2.
In particular, the SoC trends for each strategy have been plotted, along with the reference SoC
𝜉𝑟(𝑑 (𝑡)), used by both the A-RBS and the A-ECMS, expressed by Eq. (4.33). The simulation results
for all the test cases are reported in Tab. 4.4 in terms of a relative percentage difference of corrected
CO2. The A-RBS and the A-ECMS are compared to the RBS by means of the parameters Δ𝐶𝑂𝐴𝑅

2,%
and Δ𝐶𝑂𝐴𝐸

2,%.

Δ𝐶𝑂𝐴𝑅
2,𝑐,% =

(
𝐶𝑂2

𝐴𝑅 − 𝐶𝑂2
𝑅
)

𝐶𝑂2
𝑅

· 100 (4.38)
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Δ𝐶𝑂𝐴𝐸
2,𝑐,% =

(
𝐶𝑂2

𝐴𝐸 − 𝐶𝑂2
𝑅
)

𝐶𝑂2
𝑅

· 100 (4.39)

where the superscript 𝑅 stands for RBS, 𝐴𝑅 for A-RBS, and 𝐴𝐸 for A-ECMS. Analyzing the
results listed in Tab. 4.4, for the test cases with 𝜉𝑖 = 30% and 𝜉𝑖 = 50%, where the strategies must
work in charge increasing (CI) mode (negative values of Δ𝜉 = 𝜉𝑖 − 𝜉𝑡), the A-RBS performs better
than the RBS, as shown by the negative values ofΔ𝐶𝑂𝐴𝑅

2,𝑐,%. On the other hand, if the strategies must
work in the conventional CD/CS mode (positive values of Δ𝜉), the RBS still represents the most
efficient solution. Differently, the values of Δ𝐶𝑂𝐴𝐸

2,𝑐,% for the A-ECMS highlight the considerable
improvements in all the test cases, confirming the results previously obtained in [126].

(a) TC 1: 𝜉𝑖 = 30% (b) TC 2: 𝜉𝑖 = 30%

(c) TC 3: 𝜉𝑖 = 50% (d) TC 4: 𝜉𝑖 = 50%

(e) TC 5: 𝜉𝑖 = 90% (f) TC 6: 𝜉𝑖 = 90%

Figure 4.10: a, b, c) RDE 1: SoC trends for each strategy approaching the ZEZ (green area) with initial SoC
of 30%, 50%, and 90% respectively; d, e, f) RDE 2: SoC trends for each strategy approaching the
ZEZ (green area) with initial SoC of 30%, 50%, and 90% respectively

86



4.4 – Strategies comparison

Table 4.4: Results of the simulations in terms of CO2 production and relative errors for each test case

TC RDE 𝝃𝒊 𝝃𝒕 𝚫𝝃 𝑪𝑶𝑹
2,𝒄 𝑪𝑶𝑨𝑹

2,𝒄 𝑪𝑶𝑨𝑬
2,𝒄 𝚫𝑪𝑶𝑨𝑹

2,𝒄,% 𝚫𝑪𝑶𝑨𝑬
2,𝒄,%

[%] [%] [%] [g/km] [g/km] [g/km] [%] [%]
1 1 30 80 -50 319 305 268 -4.3 -16.1
2 2 30 80 -50 360 352 296 -2.2 -17.6
3 1 50 80 -30 307 295 240 -3.7 -21.7
4 2 50 80 -30 344 334 272 -3.1 -21.1
5 1 90 80 10 280 288 208 3.0 -25.4
6 2 90 80 10 312 321 230 2.8 -26.3

4.4.3 Combined rule-based strategy

In conclusion, the tests highlight that for this specific powertrain the A-RBS is more efficient
only in CI, while the RBS is still better otherwise. Hence, a Combined-RBS has been identified
merging the limits expressed by Eq. (4.26) and by Eq. (4.27) in Tab. 4.5.

This new strategy, defined as a combination of the RBS and the A-RBS to be the most efficient
in terms of CO2 reduction, is adopted from now on as the reference strategy and it will be tested
at the C-HiL and compared to the A-ECMS to confirm the results obtained at SiL level. In Tab. 4.6
all the EMS described so far, and the relative working modes are summarized with respect to the
SoC difference Δ𝜉 = 𝜉𝑡 − 𝜉𝑖 .

Table 4.5: C-RBS: state of charge limits for the electric
drive

𝝃𝒎𝒊𝒏 𝝃𝒎𝒂𝒙

𝝃𝒊 > 𝝃𝒕 𝜉𝑟 𝜉𝑟 + 5%
𝝃𝒊 < 𝝃𝒕 𝜉𝑟 (𝑑(𝑡)) 𝜉𝑟 (𝑑(𝑡)) + 5%

Table 4.6: EMS working mode summary

𝚫𝝃 > 0 𝚫𝝃 < 0
RBS [126] CD/CS CI/CS
A-RBS CB CB
C-RBS CD/CS CB
A-ECMS [126] CB CB
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Chapter 5

Application of the control strategies

In this chapter, the C-RBS and the A-ECMS are tested at the C-HiL on a driving profile measured
on-road under varying and unpredictable traffic conditions. More in detail, each test starts

querying the MSP to retrieve the online navigation data in real-time for the same destination as
the measured trace. Consequently, the HCU calculates the target SoC, as described in Section 4.1.
Since the navigation data depends on the actual traffic conditions, they could differ from the
measured data both for the proposed route and the traffic data. When the Navigator App detects
that the distance between the GPS position of the vehicle and the planned route is higher than a
certain threshold, it triggers a re-routing. Hence, it queries the MSP again for updated navigation
data and the HCU calculates a new target SoC. In this way, the test forces the control strategies to
work in conditions as near as possible to reality, validating both the predictions of the target SoC
and the effectiveness of A-ECMS with respect to the C-RBS in terms of CO2 production.

5.1 Test case scenarios

The tests have been performed on a driving profile measured onboard using MATLAB Online,
and installed on a smartphone, to retrieve the actual vehicle speed, and GPS position (latitude,
longitude, and altitude). To replicate a plausible and realistic scenario, the starting point has been
set in the rural area near the city of Bologna, point A in Fig. Fig. 5.1a, while the destination has
been set on a parking lot in the middle of the ZEZ, point B.

The measurement has been done in the afternoon of a working day to consider medium traffic
congestion while maintaining a driving behavior neither aggressive nor cautious. Then, the same
measured data have been set as the reference speed profile to be followed by the vehicle model and
then deployed in the Real-Time PC. Finally, the tests have been conducted starting from different
values of initial SoC, as for the comparison described in Section 4.4, at comparable hours of the
day, to reduce the physiological variability of the traffic as much as possible. The measured driving
cycle is reported in Fig. 5.2, as well as the altitude and the ZEZ.
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(a)

(b)

Figure 5.1: Representation of the measured route (blue line) from point A to point B and the proposed routes
at each query: first one at the beginning of the test (purple line) and the second related to re-
routing 1 (cyan line)

Figure 5.2: Real driving profile under test (black), altitude profile (magenta), and the ZEZ area (green)

In Tab. 5.1, the data regarding the length of the route 𝑑 𝑓 ,𝑍 , the remaining distance to the ZEZ
𝑑𝑖 ,𝑍 , and the urban event are reported. Furthermore, in Tab. 5.2 all the test cases are summarized,
along with the initial value of SoC 𝜉𝑖 , and the number of re-routing 𝑛𝑟 (excluding the first prediction
that is mandatory), which occurred during the simulations.

Table 5.1: Length of the driving profile and ZEZ for the measured test case

Cycle 𝒅𝒁 𝑑𝑖 ,𝑍
[km] [km]

Measured route 3.0 27.5
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5.2 – Results and discussion

Table 5.2: List of all the test cases with the respective boundary conditions

TC EMS 𝝃𝒊 𝒏𝒓

[%] [-]
1 C-RBS 30 0
2 A-ECMS 30 1
3 C-RBS 50 1
4 A-ECMS 50 1
5 C-RBS 90 1
6 A-ECMS 90 0

5.2 Results and discussion

In Fig. 5.3 the results of the testing at the C-HiL have been reported. The subfigures Fig.
Fig. 5.3a, Fig. 5.3c and Fig. 5.3e are referred to the simulations performed with the C-RBS, while
Fig. 5.3b, Fig. 5.3d and Fig. 5.3f to the ones performed with the A-ECMS at the initial SoC value of
30%, 50%, and 90% respectively. In particular, each subfigure is divided as follows:

- top plot: showing the actual HV battery SoC (black line), the reference SoC (dotted line)
calculated with Eq. (4.33), and the target SoC (petrol green line) calculated by the BVM
with the Eq. (4.23). The latter is related to the real-time navigation data received during the
simulation, so it changes when a re-routing occurs;

- central plot: it represents the comparison of the energy associated with each predicted speed
profile with respect to the driven one (grey). The comparison is referred to the energies
defined by Eq. (4.15), Eq. (4.16), and Eq. (4.17), namely the positive inertia energy (cyan),
the negative inertia energy (green), and the road load (yellow). In addition, the battery
consumption predicted by the BVM is also compared (orange) to the actual one. Moreover,
for a matter of graphical representation, the predictions are distributed on the 𝑥-axis, whereas
during the simulations they are performed at the same time once all the navigation data are
received. The predictions are highlighted in each plot by means of grey boxes, but since the
central plot is an enlargement of the predictions themselves the grey boxes are wider;

- bottom plot: the turnaround time (TAT) of the HCU, expressed in milliseconds, is reported to
prove the real-time capability of these strategies. It can be noticed that the TAT is well below
the maximum allowable time-step of 10ms of the HCU software for almost the duration of
the test. However, the TAT presents a peak every time a prediction occurs, reaching higher
values closer to the limit. This can be accepted since it occurs very few times during the
cycle, and the dimensions of the vector listed in Tab. 3.2 have been chosen to avoid software
overruns.
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5.2.1 Energy prediction comparison

Table 5.3: Results of the tests at the C-HiL: comparison of predictions depending on the initial SoC and the
meters remaining to the ZEZ event

c) TC5: f$ = 90% f) TC6: f$ = 90% 

Fig. 14 Results of the tests at the C-HiL: a) b) c) simulations performed with C-RBS at D, = 30%, 50%, 90% respectively; d) e) f) simulations performed with A-

ECMS at D, = 30%, 50%, 90% respectively 
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In Tab. 5.3, the predicted energies 𝐸𝐼+ , 𝐸𝐼− , 𝐸𝑅𝐿, and 𝐸𝑏𝑎𝑡𝑡 are reported and compared to the
ones related to the driven route in terms of percentage difference Δ%, as in Eq. (4.12), Eq. (4.13),
and Eq. (4.14). Analogously, the predicted battery energy consumption and SoC are also analyzed.
Since the TC2 is the most representative test case, the related scenario is reported on the map in
Fig. 5.1a and it is analyzed in detail in the following paragraph. In fact, it simulates the realistic
scenario of a driver that does not follow exactly the suggestion of the navigator, independently if
on purpose or not, inducing several re-routings. Focusing on it, the MSP suggests the fastest route
related to the actual real-time traffic data, the purple line in Fig. 5.1a, and the HCU makes the
prediction referring to that route. This leads to the first target SoC represented in Fig. 5.3b and as
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long as the driver follows the proposed route, the target SoC remains constant. Then, when the
driver takes a different road, a re-routing occurs leading to a new query to the MSP, so updated
navigation data, cyan line in Fig. 5.1b, and thus a recalculation of the target SoC, second grey
box in Fig. 5.3b. Looking at the results in terms of energy in Tab. 5.3, the first prediction presents
relevant errors for most of the KPIs due to the differences in the routes, and consequently a not
precise target SoC calculation. After the re-routing, the driver follows the suggested route, so in
this case, the energy KPIs present significantly lower errors leading to an accurate prediction. Even
if there is such a considerable initial error, and the re-routing occurs close to the ZEZ (𝑑𝑖 ,𝑍 = 3307
m), the initial target SoC does not change significantly after re-routing, and the EMS can grant the
ZEZ in full electric. As shown in Fig. 5.1b, another re-routing occurs but this time within the ZEZ,
identified also by the spike within the green area in the TAT bottom plot. Thus, the TeCU queries
the MSP and retrieves the navigation data, but no prediction will be performed. In fact, at this
point, the vehicle can only go in electric drive and no countermeasures can be taken by the EMS if
the SoC is not sufficient enough. In general, it can be noticed that if the driver follows the proposed
route (and so no re-routings occur), the energy predictions well-represent the energy necessary
to perform the ZEZ in full electric drive. That is the case of TC1 and TC6, where the SoC errors
are -0.6% and 0.2% respectively. For TC2, TC4, and TC5, the driver does not follow the suggested
route, inducing re-routings. Even in these cases, the SoC prediction error is below 2.3%, which is
covered by the offset 𝜉𝑠 expressed in Eq. (4.23), and then improved after the rerouting, as well as
the KPIs and the predicted battery’s energy consumption. Differently, for what concerns the TC3,
the relative errors increase after the re-routing, worsening the energy prediction. This was due
to inaccurate values of the real-time traffic data provided by the MSP, which underestimates the
congestion along the route. Even if this represents a common situation that can happen when the
vehicle is driving on the road, however, the error produced is still compensated by the offset 𝜉𝑠 .

5.2.2 Fuel consumption comparison

Table 5.4: Results of the tests at the C-HiL: comparison between the two strategies in terms of raw and
corrected CO2

Table 12  Results of the tests at the C-HiL: comparison between the two strategies in terms of raw and corrected CO2 

TC EMS c̅<HD 
[%] 

c̅DE 
[%] 

c̅<!Q 
[%] 

f$ 
[%] 

fM 
[%] 

X6 
[l/100km] 

S 
[Wh] 

6|; 
[g/km] 

∆6|;,% 
[%] 

ΔS 
[Wh] 

6|;,, 
[g/km] 

∆6|;,,,% 
[%] 

1 C-RBS 16.0 80.3 75.0 30 27.2 13.3 -139 315     
2 A-ECMS 24.3 80.9 75.6 30 29.7 10.6 -196 250 -20.4 57 250 -20.4 
3 C-RBS 14.8 80.0 73.7 50 26.4 10.8 1444 256     

4 A-ECMS 23.6 80.9 75.6 50 28.3 8.4 1184 198 -22.5 260 189 -26.1 
5 C-RBS 15.3 81.5 74.4 90 29.1 4.8 3902 113     

6 A-ECMS 21.4 81.2 76.1 90 31.8 4.2 3684 99 -12.5 218 90 -20.1 
 

In Table 11, the predicted energies S<", S<#, S_`, and SC2"" are 
reported and compared to the ones related to the driven route in 
terms of percentage difference Δ%, as in Eq. (15), (16), and (17). 
Analogously, the predicted battery energy consumption and SoC are 
also analyzed.  

Since the TC2 is the most representative test case, the related 
scenario is reported on the map in Fig. 12 and it is analyzed in detail 
in the following paragraph.  In fact, it simulates the realistic scenario 
of a driver that does not follow exactly the suggestion of the 
navigator, independently if on purpose or not, inducing several re-
routing. 

Focusing on it, the MSP suggests the fastest route related to the 
actual real-time traffic data, the purple line in Fig. 12, and the HCU 
makes the prediction referring to that route. This leads to the first 
target SoC represented in Fig. 14d and as long as the driver follows 
the proposed route, the target SoC remains constant. Then, when the 
driver takes a different road, a re-routing occurs leading to a new 
query to the MSP, so updated navigation data, cyan line in Fig. 12b, 
and thus a recalculation of the target SoC, second grey box in Fig. 
14b. Looking at the results in terms of energy in Table 11, the first 
prediction presents relevant errors for most of the KPIs due to the 
differences of the routes, and consequently a not precise target SoC 
calculation. After the re-routing, the driver follows the suggested 
route, so in this case, the energy KPIs present significantly lower 
errors leading to an accurate prediction. Even if there is such a 
considerable initial error, and the re-routing occurs close to the ZEZ 
("$,K = 	3307 m), the initial target SoC does not change 
significantly after re-routing, and the EMS can grant the ZEZ in full 
electric. In Fig. 12b, another re-routing occurs but this time within 
the ZEZ, identified also by the spike within the green area in the 
TAT bottom plot. Thus, the TeCU queries the MSP and retrieves the 
navigation data, but no prediction will be performed. In fact, at this 
point, the vehicle can only go in electric drive and no 
countermeasures can be taken by the EMS if the SoC is not enough. 

In general, it can be noticed that if the driver follows the proposed 
route (and so no re-routings occur), the energy predictions well-
represent the energy necessary to perform the ZEZ in full electric 
drive. That is the case of TC1 and TC6, where the SoC errors are -
0.6% and 0.2% respectively. For TC2, TC4, and TC5, the driver 
does not follow the suggested route, inducing re-routings. Even in 
these cases, the SoC prediction error is below 2.3%, which is 
covered by the offset f+ expressed in Eq. (24), and then improved 
after the rerouting, as well as the KPIs and the predicted battery’s 
energy consumption. Differently, for what concerns the TC3, the 
relative errors increase after the re-routing, worsening the energy 
prediction. This was due to inaccurate values of the real-time traffic 
data provided by the MSP, which underestimates the congestion 
along the route. Even if this represents a common situation that can 
happen when the vehicle is driving on the road, however, the error 
produced is still compensated by the offset f+. 

Then, focusing on Table 12, the C-RBS and the A-ECMS are 
compared in terms of corrected CO2 production, calculated with Eq. 
(32), (33), and (34). In particular, the Table 12 reports the ICE’s and 
electric machines’ average efficiency, the fuel consumption X6, the 
energy consumption S, the raw CO2, and the corrected CO2. Similar 
to the comparison made in sec. 3.4, the relative percentage 
difference has been chosen as the assessment parameter, both for the 

raw ∆6|;,% and corrected value ∆6|;,,,%. This comparison can be 
considered representative since the driven profile is always the same, 
while the only variable parameter is the target SoC. Although, the 
latter varies in a limited range of a few percentage points, so it does 
not significantly affect the EMS. Hence, it can be noticed that for the 
A-ECMS the average efficiencies of the ICE and the ISG are higher, 
leading to lower fuel consumption and, apart from the case f$ =
30%, a lower energy consumption. This means a reduction of raw 
and corrected CO2 production, in a range of 12.5% - 22.5% and 
20.1% - 26.1%, respectively. Moreover, the final values of SoC are 
well above the minimum SoC, f/$-,C, proving that the ZEZ has been 
performed in full electric drive even if the navigation data present 
some normal inaccuracies, due to different proposed routes and 
traffic data that do not reflect exactly the current situation.  

5. Conclusions and future works 
In this paper, a supervisory controller architecture for PHEVs based 
on predicted functions and an Adaptive-ECMS has been proposed to 
handle a Zero-Emission Zone using navigation data retrieved in real-
time from the map service provider. With this information, the Speed 
Profile Prediction is performed to evaluate an energetically 
equivalent driving profile that is then fed to the BVM. The latter 
calculates the amount of energy necessary to drive the ZEZ in pure 
electric mode and forward that target SoC to the control policy. For 
a proper comparison, also the conventional RBS has to be modified 
into an A-RBS to handle the ZEZ even in situations where a Charge 
Increasing mode is required. Thus, the latter has been tested on two 
inverted RDE cycles while facing a ZEZ event. As a consequence, 
the test results helped to define a more efficient Combined-RBS that 
is finally tested on a real driving scenario measured on the road and 
compared to the A-ECMS at the C-HiL. The latter exploits the real 
vehicular connectivity, the TeCU, and the HMI to manage the 
communication with the MSP itself, as it would be in the real 
vehicle. Since the navigation data from the MSP are real and referred 
to the current traffic situation, the proposed route can differ from the 
driven one, leading to re-routing and consequent adaptation of the 
target SoC. 

The results show that: 

- The SPP evaluates an energetically equivalent profile with a 
relative error of the required battery’s energy between 0.4% and 
11%, which results in a variation of the target SoC between 0.1% 
to 2.4%. These values are compensated by the SoC offset used 
to calculate the target SoC, so the ZEZ in pure electric is always 
granted. However, the SPP prediction is strongly dependent on 
the accuracy of the navigation and traffic data as shown in TC3, 
and on the driver behavior; 

- The A-ECMS outperforms the C-RBS in all the test cases in 
terms of fuel consumption and so corrected CO2 production, 
with a reduction between 20.1% and 26.1%. Thus, the proposed 
predictive strategy not only grants the fully electric drive in an 
urban event, preventing the payment of fees, but also optimizes 
the fuel consumption while driving outside the ZEZ; 

- Both strategies have been deployed into the real HCU and tested 
with real vehicular connectivity, proving the real-time capability 
and robustness of the predictive functions under different and 
unpredictable conditions. This has accelerated the function 
development laying the ground for future on-road tests. 

Then, focusing on Tab. 5.4, the C-RBS and the A-ECMS are compared in terms of corrected
CO2 production, calculated with Eq. (4.35), Eq. (4.36), and Eq. (4.37). In particular, the Tab. 5.4
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reports the ICE’s and electric machines’ average efficiency, the fuel consumption 𝐹𝐶, the energy
consumption𝐸, the raw CO2, and the corrected CO2. Similar to the comparison made in Section 4.4,
the relative percentage difference has been chosen as the assessment parameter, both for the raw
Δ𝐶𝑂2,% and corrected valueΔ𝐶𝑂2,𝑐,%. This comparison can be considered representative since the
driven profile is always the same, while the only variable parameter is the target SoC. Although,
the latter varies in a limited range of a few percentage points, so it does not significantly affect
the EMS. Hence, it can be noticed that for the A-ECMS the average efficiencies of the ICE and
the ISG are higher, leading to lower fuel consumption and, apart from the case 𝜉𝑖 = 30%, a lower
energy consumption. This means a reduction of raw and corrected CO2 production, in a range of
12.5% - 22.5% and 20.1% - 26.1%, respectively. Moreover, the final values of SoC are well above the
minimum SoC, 𝜉𝑚𝑖𝑛,𝑏 , proving that the ZEZ has been performed in full electric drive even if the
navigation data present some normal inaccuracies, due to different proposed routes and traffic
data that do not reflect exactly the current situation.
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5.2 – Results and discussion

(a) TC 1: 𝜉𝑖 = 30% (b) TC 2: 𝜉𝑖 = 30%

(c) TC 3: 𝜉𝑖 = 50% (d) TC 4: 𝜉𝑖 = 50%

(e) TC 5: 𝜉𝑖 = 90% (f) TC 6: 𝜉𝑖 = 90%

Figure 5.3: Results of the tests at the C-HiL: a) b) c) simulations performed with C-RBS at 𝜉𝑖 = 30%, 50%, 90%
respectively; d) e) f) simulations performed with A-ECMS at 𝜉𝑖 = 30%, 50%, 90% respectively
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Chapter 6

Part I - Conclusions

In this activity, a Connected Hardware-in-the-Loop system with integrated connectivity has
been set up resulting in a more modular and universal tool for testing and validation of predictive
electronic horizon functions. On one hand, it provides higher flexibility due to the possibility to
test different types of predictive functions (both long and short horizon) and the capability of
acting on each component and controller model. On the other hand, it grants higher reliability, as
both the hardware and the software are the same as those implemented on the vehicle, allowing
seamless functions implementation on-board once validated at the HiL. In particular, the latter
is equipped with a Telecommunication Control Unit (TeCU), and a Human Machine Interface
(HMI) to manage the communication with the Map Service Provider (MSP) itself, as it would be
in the real vehicle, set the desired destination, and see the route suggested by the MSP. This testing
platform results in a shortening of the validation process as well as a further reduction of the gap
between laboratory and on-vehicle tests.

Then, a supervisory controller architecture for PHEVs based on predicted functions and an
Adaptive-ECMS has been proposed to handle a Zero-Emission Zone using navigation data re-
trieved in real-time from the map service provider. With this information, the Speed Profile
Prediction is performed to evaluate an energetically equivalent driving profile that is then fed to
the BVM. The latter calculates the amount of energy necessary to drive the ZEZ in pure electric
mode and forward that target SoC to the control policy. For a proper comparison, also the conven-
tional RBS has to be modified into an A-RBS to handle the ZEZ even in situations where a Charge
Increasing mode is required. Thus, the latter has been tested on two inverted RDE cycles while
facing a ZEZ event. As a consequence, the test results helped to define a more efficient Combined-
RBS that is finally tested on a real driving scenario measured on the road and compared to the
A-ECMS at the C-HiL. Since the navigation data from the MSP are real and referred to the current
traffic situation, the proposed route can differ from the driven one, leading to re-routing and
consequent adaptation of the target SoC.
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The results show that:

- the SPP evaluates an energetically equivalent profile with a relative error of the required
battery’s energy between 0.4% and 11%, which results in a variation of the target SoC between
0.1% to 2.4%. These values are compensated by the SoC offset used to calculate the target
SoC, so the ZEZ in pure electric is always granted. However, the SPP prediction is strongly
dependent on the accuracy of the navigation and traffic data as shown in TC3, and on the
driver behavior;

- the A-ECMS outperforms the C-RBS in all the test cases in terms of fuel consumption and so
corrected CO2 production, with a reduction between 20.1% and 26.1%. Thus, the proposed
predictive strategy not only grants the fully electric drive in an urban event, preventing the
payment of fees but also optimizes the fuel consumption while driving outside the ZEZ;

- both strategies have been deployed into the real HCU and tested with real vehicular con-
nectivity, proving the real-time capability and robustness of the predictive functions under
different and unpredictable conditions. This has accelerated the function development laying
the ground for future on-road tests.

6.1 Future works

Even if the C-HiL tests already provide positive results under challenging scenarios, further
tests are required. Firstly, a scenario simulator and an improved driver model must be implemented
at the C-HiL to create multiple test cases without measuring them on the road. Then, additional
tests on the vehicle have to be fulfilled to definitely prove the effectiveness of the control policy.
Moreover, the testing with real connectivity underlined how the SPP still presents room for
improvement. On one hand, despite the good results achieved during this part of the Ph.D.
research project, the validation of the SPP is limited to the scenarios under test, thus a wider and
more generic campaign is needed. On the other hand, it should be enhanced with the addition
of Machine Learning algorithms to adapt itself with respect to the driver’s behavior preventing
physiological variability. Finally, the TAT measurements show how the predictions affect the HCU,
thus the next step is to transfer all the computational burden firstly to the TeCU and then to a
cloud server since the information exchange does not need very low latencies.
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Part II

Emissions management strategies





Chapter 7

Simulation environment

I n Part I of this dissertation, the effectiveness of the energy management strategies based on
navigation data has been proved by the testing at the C-HiL on a high-performance hybrid

prototype vehicle. Nevertheless, this application does not aim at reducing pollutant emissions,
since both the model and the strategies only focus on fuel consumption minimization. Then, in
this Part II a wider analysis is performed to assess the advantages of navigation data even from
the pollutants’ point of view, by developing and testing an advanced model-based strategy.

With this regard, in this chapter, the vehicle’s model used for the simulation is presented, with
a brief description of each of the powertrain components. Then, since the focus is put on NOx

emissions, a detailed analysis of the EATS components is provided with a particular emphasis
on the respective thermal model. In fact, the conversion efficiency of the components strongly
depends on their temperature and on the space velocity, modeled with a map-based approach.
The models’ validation is then presented to underline its prediction capability for the powertrain
dynamics, the fuel consumption, and the pollutants emissions.

7.1 Vehicle under test

The vehicle selected as a case study for this activity is a P2 Diesel PHEV classified as a light
commercial vehicle (LCV). The chosen hybrid architecture, represented in Fig. 7.1, provides high
flexibility in terms of possible operating modes and torque split strategies. The location of the EM,
thanks to the separation clutch, allows performing regenerative braking as well as pure electric
drive. The combination of a 9.4 kWh high-voltage (HV) battery and a 90 kW / 440 Nm electric
motor ensures a significant all-electric range with a top speed that reaches 130 km/h, depending on
hybrid strategy calibration. The electric power unit is paired with a 2.3-liter compression ignition
engine and a 6-speed automatic transmission. The main vehicle specifications are listed in Tab. 7.1.

The operating mode between pure electric drive and hybrid drive is managed through a
calibrated strategy based on vehicle speed, requested torque, and battery state of charge. Focusing
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Figure 7.1: Light Commercial PHEV: powertrain layout
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Table 7.1: Vehicle powertrain specifications

Vehicle Curb weight 2750 kg
Configuration P2, front wheel drive

Engine

Type Turbocharged Diesel
Displacement 2.3 l
Rated power 95 kW @ 3000 rpm
Rated torque 380 Nm @ 2000 rpm
Gearbox 6-DCT

Electric machine
Type PM synchronous
Peak power 90 kW
Peak/continuous torque 440 / 260 Nm
Maximum speed 6000 rpm

Battery
Type Lithium-ion polymer
Capacity 9.4 kWh / 25.5 Ah
Nominal voltage 370 V

on hybrid operating mode, different configurations are possible thanks to P2 architecture: the EM
can provide additional torque to support the ICE when the driver request is particularly relevant
or, on the contrary, it can operate as a generator to charge the battery with the engine providing
additional torque with respect to the driver request, allowing to follow the best trade-off between
fuel economy and pollutant emissions. A so-called range-extender mode is also possible when the
vehicle is at a standstill and the engine is running for the sole purpose of charging the battery.
Hybrid strategy definition and calibration will be further discussed in Chapter 8.
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7.2 Powertrain components

The vehicle has been modeled in Simulink® starting from an existing mild-hybrid P0 Diesel
model relative to a light-commercial vehicle, previously developed and validated by the industrial
partner. That model provides a detailed engine and EATS model, which is essential for the pur-
poses of this activity, but does not have a high-voltage line and an electric machine in a position
capable of electric drive. Thus, the model has been modified in order to have a P2 architecture
with a detailed HV battery and motor model, following the same analytical approach described in
Section 3.1.2. The respective components’ specifications have been derived from a benchmarking
activity performed by the industrial partner on a comparable vehicle. By doing so, the resulting
Simulink® model represents a proof of concept and can not be validated on the prototype vehicle
experimental data. Hence, the validation procedure, which will be described in Section 7.4, focuses
on the vehicle’s components individually and not on the whole system, such as the one done in
Section 3.1.4. However, the obtained accuracy of the model is still acceptable for the purpose of
this dissertation.

Focusing on the powertrain components, each of these has been modeled with the same
analytical approach as in Section 3.1.2, so for a matter of brevity the detailed description is here
omitted but it can be found in [151, 152]. However, a general overview of the propulsion systems
is provided hereafter.

7.2.1 Internal combustion engine

For what concerns the internal combustion engine, a map-based approach has been adopted:
fuel flow, exhaust gas temperature, and pollutant emissions maps allow calculating fuel consump-
tion, turbine inlet temperature, and engine-out emissions of HC, CO, soot, and NOx as a function
of engine coolant temperature, load, and speed. All the data included in the mentioned maps have
been obtained from previous activities and confidentially shared by the industrial partner. For
completeness, fuel consumption, engine-out NOx emission, and exhaust gas temperature maps
have been reported in Fig. 7.2, Fig. 7.3, and Fig. 7.4 respectively.

To take into account the dependency of the maps on the engine temperature, two different
maps have been evaluated by the industrial partner at the test bench: one measured when the
engine has just been started, defined as cold, and the other measured in steady state when the
coolant temperature reached its target, thus called warm. Focusing on the transient maneuvers,
three different conditions have been identified and expressed by Eq. (7.4).

𝑇𝑐(𝑡) < 𝑇𝑐𝑜𝑙𝑑 (7.1)

𝑇𝑐𝑜𝑙𝑑 ≤ 𝑇𝑐(𝑡) < 𝑇𝑤𝑎𝑟𝑚 (7.2)

𝑇𝑐(𝑡) ≥ 𝑇𝑤𝑎𝑟𝑚 (7.3)
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(a) (b)

Figure 7.2: Cold and warm fuel consumption maps

(a) (b)

Figure 7.3: Cold and warm NOx production maps

where 𝑇𝑐 is the temperature of the coolant in °C, while 𝑇𝑐𝑜𝑙𝑑 and 𝑇𝑤𝑎𝑟𝑚 are temperature thresh-
olds equal to 30°C and 90°C, respectively. Then, the cold and warm instantaneous values of fuel
consumption, NOx and exhaust gas temperature are weighted as follows:

𝑋𝑤 = 𝑋𝑐𝑜𝑙𝑑 · 𝑤𝑐𝑜𝑙𝑑 + 𝑋𝑤𝑎𝑟𝑚 · 𝑤𝑤𝑎𝑟𝑚 (7.4)
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(a) (b)

Figure 7.4: Cold and warm exhaust gas temperature maps

where 𝑋𝑐𝑜𝑙𝑑 and 𝑋𝑤𝑎𝑟𝑚 are the generic values evaluated from the maps Fig. 7.2, Fig. 7.3, and
Fig. 7.4, while 𝑤𝑐𝑜𝑙𝑑 and 𝑤𝑤𝑎𝑟𝑚 are the weighting factors that depend on the conditions identified
by Eq. (7.1),Eq. (7.2), and Eq. (7.3) and are summarized in Tab. 7.2.

Table 7.2: Cold and warm weighting factors

Cold Warm
Low-temperature range (Eq. (7.1)) 1 0

Medium-temperature range (Eq. (7.2)) 1 − 𝑇𝑐(𝑡) − 𝑇𝑐𝑜𝑙𝑑
𝑇𝑤𝑎𝑟𝑚 − 𝑇𝑐𝑜𝑙𝑑

𝑇𝑐(𝑡) − 𝑇𝑐𝑜𝑙𝑑
𝑇𝑤𝑎𝑟𝑚 − 𝑇𝑐𝑜𝑙𝑑

High-temperature range (Eq. (7.3)) 0 1

7.2.2 Electric machine

A similar map-based approach is used for the electric machine whose efficiency map is repre-
sented in Fig. 7.5, where the black lines specify the continuous (dashed line) and peak (continuous
line) torque limitations while the magenta ones the continuous (dashed line) and peak (continuous
line) limitations.

7.3 Exhaust after-treatment system

As introduced in Section 1, an advanced EATS is mandatory to meet the demanding targets
imposed by the regulation in terms of pollutant emissions without affecting engine efficiency,
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Figure 7.5: Efficiency map, power and torque limitations of the electric machine

while being compliant with CO2 emissions limits. Therefore, the modeled vehicle is equipped
with a Euro 7-oriented Diesel EATS, represented in Fig. 7.6, which includes the devices listed in
Tab. 7.3 with the corresponding volume 𝑉 . A detailed description of each component and the
respective operation methodology is provided in Section 1.3.

Table 7.3: Exhaust after-treatment components specifications

Component Volume
[l]

Electrical heater -
Diesel Oxidizing Catalyst (DOC) 1.6
Low Thermal Mass Selective Catalytic Reduction (LTM-SCR) catalyst 1.2
SCR-coated Diesel Particulate Filter (SDPF) 4.0
SCR catalyst 3.5

Figure 7.6: Schematic representation of vehicle EATS architecture

Moreover, as pointed out in Fig. 7.6, a secondary air flow is also provided since a gas flow
through the heating disc is mandatory to transfer the heating power to the following devices
along the exhaust line. This means that if a pre-heating phase is planned before the engine
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7.3 – Exhaust after-treatment system

start, the air flow through the exhaust line must be provided by installing a secondary air pump
upstream of the EHC. The pump is modeled by providing an additional air mass flow during
pre-heating phases when the engine is not running. Then, the resulting power consumption is
calculated depending on the supply voltage and air flow rate, according to the experimental data
shown in Fig. 7.7, derived from secondary air pumps available on the market.

Figure 7.7: Secondary air pumps: absorbed current for different supply voltages [153]
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The DOC conversion efficiency maps of HC, CO, and NO depend on the volumetric flow rate
and gas average temperature and allow to calculate the resulting pollutant emissions after the
oxidizing reactions that take place in the DOC. Similarly, NOx reduction performed by LTM-SCR,
SDPF, and SCR is modeled for each device with a map based-approach, by first calculating NOx

conversion efficiency, which depends on gas average temperature, NO2/NOx ratio, and space
velocity; all the mentioned maps of pollutants conversion efficiency for the different EATS devices
have been obtained from experimental campaigns previously carried out by the industrial partner
and the related data are confidential. Then, from the knowledge of the conversion efficiency, it
is possible to obtain the amount of NH3 that can react to reduce NOx, and thus the amount
of AdBlue® to be injected. Therefore, a comprehensive and robust EATS thermal model, which
allows to correctly estimate the average temperature of each after-treatment device, is mandatory
to obtain realistic results in terms of tailpipe pollutant emissions.

7.3.1 Thermal model

The thermal heat exchange with the exhaust gases is modeled for each device by dividing
the physical component into a series of equivalent elementary bricks. For each of them, the
contributions of conduction, radiation, external and internal convection are calculated separately
using semi-empirical formulas to determine the temperature of the solid material of the brick and
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7 – Simulation environment

Figure 7.8: Schematic representation of the thermal model with the representative temperatures and heat
flows for the generic 𝑖-th brick [153]

of the exhaust gas at the brick outlet. The heat exchanged by internal convection ¤𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡,𝑖

in one
simulation time-step for the single 𝑖-th brick is given by the following equation:

¤𝑄𝑐𝑜𝑛𝑣
𝑖𝑛𝑡,𝑖 = ℎ𝑖𝑛𝑡 · 𝐴𝑖𝑛𝑡 ·

©«𝑇𝑔,0,𝑖
𝜖𝑠

1 + 𝜖𝑠
𝜖𝑡

− 𝜖𝑠
− 𝑇𝑠,0,𝑖

𝜖𝑡

1 + 𝜖𝑡
𝜖𝑠

− 𝜖𝑡

ª®®¬ (7.5)

where 𝐴𝑖𝑛𝑡 is the internal brick surface in contact with the gas, 𝑇𝑔,0,𝑖 and 𝑇𝑠,0,𝑖 are the initial
temperatures of the gas and of the solid material respectively, while the parameters 𝜖𝑠 and 𝜖𝑡 are
calculated for each brick as described in [154]. Finally, ℎ𝑖𝑛𝑡 is the convective heat transfer coefficient
(HTC), obtained as:

ℎ𝑖𝑛𝑡 =
𝑁𝑢 · 𝜆𝑔

𝑑
(7.6)

being 𝜆𝑔 the thermal conductivity of the considered gas, 𝑑 the diameter of the cross-section,
and𝑁𝑢 the Nusselt number, calculated as a function of Reynolds number𝑅𝑒 according to Meisner-
Sorenson relation [155]:

𝑁𝑢 = 0.077 · 𝑅𝑒0.769 (7.7)

The temperature of the gas at the brick outlet 𝑇𝑔,𝑜𝑢𝑡,𝑖 at the considered simulation time-step is
calculated as:

𝑇𝑔,𝑜𝑢𝑡,𝑖 = 𝑇𝑔,0,𝑖 − 𝑁𝑢𝑡 ·
©«𝑇𝑔,0,𝑖

𝜖𝑠

1 + 𝜖𝑠
𝜖𝑡

− 𝜖𝑠
− 𝑇𝑠,0,𝑖

𝜖𝑡

1 + 𝜖𝑡
𝜖𝑠

− 𝜖𝑡

ª®®¬ (7.8)
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7.3 – Exhaust after-treatment system

where 𝑁𝑢𝑡 is the corrected Nusselt number, calculated as suggested in [156] to improve the
model behavior during transients. The average temperature of the solid material �̄�𝑠,𝑖 , which is
used to evaluate the other types of heat exchange, is obtained through the following equation:

�̄�𝑠,𝑖 = �̄�𝑔,𝑖 + 𝜖𝑡 ·
(
𝑇𝑠,0,𝑖 − �̄�𝑔,𝑖

)
(7.9)

where �̄�𝑔,𝑖 is the average temperature of the gas crossing the brick, calculated as:

�̄�𝑔,𝑖 =

𝑇𝑔,0,𝑖 + 𝑇𝑠,0,𝑖 ·
(
𝜖𝑡
𝜖𝑠

− 𝜖𝑡

)
1 + 𝜖𝑡

𝜖𝑠
− 𝜖𝑡

(7.10)

The heat exchanged by external convection ¤𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡,𝑖

between the solid material of the brick and
the surrounding environment for each simulation time-step is evaluated as follows:

¤𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡,𝑖 = ℎ𝑒𝑥𝑡 · 𝐴𝑒𝑥𝑡 ·

(
𝑇𝑎𝑚𝑏 − �̄�𝑠,𝑖

)
(7.11)

where ℎ𝑒𝑥𝑡 and𝐴𝑒𝑥𝑡 represent the convective HTC and the heat transfer area respectively, while
𝑇𝑎𝑚𝑏 is the ambient temperature.

The contribution of radiation for the single brick ¤𝑄𝑟𝑎𝑑
𝑖

is calculated as:

¤𝑄𝑟𝑎𝑑
𝑖 = 𝜎 · 𝜖 · 𝐴𝑒𝑥𝑡 ·

(
𝑇4
𝑎𝑚𝑏

− �̄�4
𝑠,𝑖

)
(7.12)

where 𝜎 is the Stefan-Boltzmann constant and 𝜖 is the emissivity. The heat transferred by
conduction ¤𝑄𝑐𝑜𝑛𝑑

𝑖
through the bricks is obtained through the following equation:

¤𝑄𝑐𝑜𝑛𝑑
𝑖 =

𝜆𝑠 · 𝐴𝑐𝑜𝑛𝑑
𝑙

·
(
�̄�𝑠,𝑖−1 − 2�̄�𝑠,𝑖 + �̄�𝑠,𝑖+1

)
(7.13)

where 𝜆𝑠 is the thermal conductivity of the solid material of the brick, 𝐴𝑐𝑜𝑛𝑑 is the contact area
between the bricks and 𝑙 represents the length of the considered brick. Once all the contributions
are calculated, the total heat flow ¤𝑄𝑡𝑜𝑡

𝑖
for the 𝑖-th brick for one simulation time-step is defined as:

¤𝑄𝑡𝑜𝑡
𝑖 = ¤𝑄𝑐𝑜𝑛𝑣

𝑖𝑛𝑡,𝑖 + ¤𝑄𝑐𝑜𝑛𝑣
𝑒𝑥𝑡,𝑖 + ¤𝑄𝑟𝑎𝑑

𝑖 + ¤𝑄𝑐𝑜𝑛𝑑
𝑖 (7.14)

which allows calculating the final temperature 𝑇𝑠, 𝑓 𝑖𝑛,𝑖 of the solid material of the brick at the
end of the simulation time-step:

𝑇𝑠, 𝑓 𝑖𝑛,𝑖 = 𝑇𝑠,0,𝑖 +
¤𝑄𝑡𝑜𝑡
𝑖

𝑚𝑠 · 𝑐𝑝
(7.15)

being 𝑚𝑠 the mass of the considered solid material and 𝑐𝑝 the corresponding specific heat
capacity. The base architecture of the heat transfer model is the same for each component of the
exhaust line (close-coupled and under-flow pipes included), adjusting all the coefficients for each
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7 – Simulation environment

specific component and taking into consideration also the contribution of the exothermic chemical
processes that may happen due to the conversion of pollutant species.

Since the attention of this activity is focused on NOx emissions estimation, HC, CO, and soot
emissions have been not taken into consideration for this analysis. Therefore, the exothermal re-
actions linked to the oxidation of these pollutant species, which would increase the exhaust gas
temperature and thus improve the conversion efficiency of the SCR catalysts, are also conserva-
tively neglected. Consequently, a conservative approach is adopted, and the worst case in terms
of NOx emission is considered. Focusing on NOx reduction, the three main reactions which take
place in the two SCR catalysts and in the SDPF are described by Eq. (1.21), Eq. (1.22), and Eq. (1.23)
in Section 1.3.1. The "fast SCR reaction", expressed by Eq. (1.23) becomes very relevant for high
values of NO2/NOx ratio, which happens if an oxidation catalyst is installed upstream of the
SCR catalyst (as for this specific application). The overall heat generated from NOx reduction is
evaluated by considering the specific enthalpy related to each of the previous chemical reactions
and the moles of reduced NOx. More in detail, being 𝛽 the ratio between NO2 and the total NOx

mass and 𝑀𝑁𝑂𝑥 the molar mass of the considered species, the moles of converted NO and NO2

are obtained from the following equations:

𝑛𝑁𝑂 = (1 − 𝛽) ·
𝑚 𝑖𝑛
𝑁𝑂𝑥

− 𝑚𝑜𝑢𝑡
𝑁𝑂𝑥

𝑀𝑁𝑂
(7.16)

𝑛𝑁𝑂2 = 𝛽 ·
𝑚 𝑖𝑛
𝑁𝑂𝑥

− 𝑚𝑜𝑢𝑡
𝑁𝑂𝑥

𝑀𝑁𝑂2

(7.17)

Then, the moles of NO and NO2 involved in the “fast SCR” reaction are calculated as:

𝑚𝑖𝑛 (𝑛𝑁𝑂 ,𝑛𝑁𝑂2) = 𝑛
𝑓 𝑎𝑠𝑡

𝑁𝑂
= 𝑛

𝑓 𝑎𝑠𝑡

𝑁𝑂2
=

1
2𝑛

𝑓 𝑎𝑠𝑡

𝑁𝐻3
= 𝑛 𝑓 𝑎𝑠𝑡 (7.18)

while the remaining moles of NO and NO2 reacting in the “standard SCR” and “slow SCR”
are:

𝑛𝑁𝑂 − 𝑛 𝑓 𝑎𝑠𝑡
𝑁𝑂

= 𝑛𝑠𝑡𝑑𝑁𝑂 = 𝑛𝑠𝑡𝑑𝑁𝐻3
= 𝑛𝑠𝑡𝑑 (7.19)

Finally, knowing the enthalpy of reaction ℎ [J/mol] associated with each mole of reacting NO
or NO2, the overall heat resulting from NOx reduction can be calculated as:

¤𝑄𝑒𝑥𝑜 =
(
ℎ 𝑓 𝑎𝑠𝑡 · 𝑛 𝑓 𝑎𝑠𝑡 + ℎ𝑠𝑡𝑑 · 𝑛𝑠𝑡𝑑 + ℎ𝑠𝑙𝑜𝑤 · 𝑛𝑠𝑙𝑜𝑤

) 1
𝑑𝑡

(7.20)

which is added to the total heat flow expressed by Eq. (7.14) for the mentioned EATS compo-
nents.

Focusing on the heating contribution provided by the current flowing in high-resistance circuits
of the EHC, located upstream of the DOC, the exhaust gas flow is rapidly heated up before
proceeding along the exhaust line, allowing fast heating that is independent of engine operation
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and extremely focused on the target devices. In this case, the electrical heater is modeled as one
single brick, following the same equations already discussed above to calculate the temperature
of the exhaust gas flow at the outlet. In this case, an additional contribution to the power balance
is given by the electric power employed to heat the device and then transferred to the exhaust gas
flow through internal convection.

7.4 Model validation

In order to have a robust and reliable simulation tool, providing results in terms of fuel
consumption and pollutant emissions that are comparable to real values, the most significant
quantities involved in a hybrid electric powertrain, such as EM and ICE torque, battery current,
and SoC must be simulated and compared with experimental results. Since the described model
is not representing an actual existing vehicle, a comprehensive vehicle model validation would
not be possible. However, the adopted models for vehicle dynamics, electric power unit, internal
combustion engine, and after-treatment system have been individually validated as part of pre-
vious research activities. Accordingly, a comparison between simulated and experimental results
of the most significant quantities involving ICE and EATS operation is shown in the following
paragraphs.

7.4.1 Powertrain

As fully described in [151], vehicle dynamics, EM, and HV battery models were validated for an
existing P2 PHEV on a WLTC performed in charge-depleting conditions, meaning that the vehicle
performs the driving cycle starting with fully charged battery, which allows completing the whole
test in pure electric driving mode with no engine intervention. In this regard, Fig. 7.9 shows the
model’s capability to accurately follow the given speed profile, validating the vehicle dynamics.
Then, focusing on plot Fig. 7.10, it can be seen that the model is capable of accurately calculating
EM torque and speed both in traction and generator mode, showing very good agreement with
the experimental data apart from a small overestimation of the regenerative contribution which
can be noticed for negative torque values. Concerning the HV battery, even though a quasi-
static model is not able to fully simulate fast transient phases, current and power are simulated
with good accuracy, showing an acceptable match with the measurements both for negative and
positive current values. As a consequence, the simulated battery SoC trend properly reflects the
experimental one, both during the charging and discharging phases.
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Figure 7.9: Vehicle model validation: experimental (black dashed) and simulated (red solid) results over a
WLTC CD cycle

7.4.2 Exhaust after-treatment system

The map-based ICE and EATS models have been calibrated and validated by the industrial
partner, comparing simulation results with measured data collected during steady-state and dy-
namic tests on the chassis dynamometer. Fig. 7.11a shows a good match between the simulated
and the experimental trend of both ICE brake mean effective pressure (BMEP) and rotational
speed. Moreover, according to the instantaneous and cumulated CO2 profiles, even if some peaks
are not perfectly captured, the transient behavior is balanced over the whole driving cycle so that
the total estimated CO2 emissions are in good agreement with the experimental values. The same
applies also to raw NOx emissions estimation Fig. 7.11b.

Concerning the EATS model, experimental data, and thus direct validation, are only available
for some specific tested layouts different from the one adopted in this activity. However, a modular
modeling approach was adopted, so that the same modeled blocks representing each component
can be eventually combined to build several different EATS layouts depending on the specific
application. This allows deriving the validation of each component as part of a specific EATS
layout that has actually been tested and directly validated. For this purpose, the comparison
between simulated and experimental data related to two different EATS layouts are provided
in Fig. 7.12. Given the targets of this activity, the attention has been mainly focused on NOx

emission estimation and related quantities. The same considerations already made about engine-
out emissions are also valid for tailpipe NOx emissions, showing a good matching between
simulated and experimental data in terms of cumulated emission, despite some inaccuracies
concerning instantaneous quantities.

Focusing on the electrical heater, since experimental data were not available, a different type
of validation has been proposed: output data coming from an electrical-heater validated model
already available from GT-Power® libraries have been used as a reference and compared with the
ones provided by the considered Simulink® model. The same input data in terms of air mass flow,
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(a)

(b)

Figure 7.10: EM and HV battery model validation: experimental (black dashed) and simulated (red solid)
results over a WLTC CD cycle

electrical power, and inlet temperature are supplied to both simulation platforms and exhaust gas
temperature values at e-heater outlet are then compared in Fig. 7.13. Although some inaccuracies
can be noticed especially during fast transients, the two sets of data follow the same general trend,
which is considered acceptable within this implementation.
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(a)

(b)

Figure 7.11: ICE model validation: experimental (black) and simulated (red) results over a WLTC
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(a)

(b)

Figure 7.12: EATS components model validation: experimental (black) and simulated (red) results over a
WLTC. A schematic representation of the specific tested layout and measurement location is
also provided

115



7 – Simulation environment

(a)

(b)

(c)

Figure 7.13: E-heater model validation: exhaust gas temperature at e-heater outlet from GT-power® (black
dashed) and Simulink® (red solid) given the same input data
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Chapter 8

Predictive control strategies

The development and calibration of a robust and effective control strategy is a preliminary step
for the development of additional control functions involving EATS thermal management,

taking advantage of the flexible hybrid architecture to reach the targets in terms of CO2 and
NOx emissions, introduced in Section 1.2. So in this chapter, as a first step, the rule-based control
strategies for the management of both hybrid powertrain and exhaust after-treatment systems
are explained. In particular, the control strategy managing the driving mode and the torque split
between EM and ICE is firstly investigated, followed by the description of the adopted rule-based
strategy for the EHC thermal management. Then, an improved RBS has been developed and
calibrated to fulfill the upcoming Euro 7 regulation by introducing model-based maps of Brake
Specific Fuel Consumption (BSFC), Brake Specific NOx (BSNOx), and exhaust gas temperature.

Finally, the predictive control functions introduced in Section 4.1 have been adapted for the
specific application, with a focus on the Backward Vehicle Model, in order to estimate the first
engine start and consequently activate the EHC to perform a pre-heating, preventing low-efficiency
operation of the EATS.

8.1 Conventional rule-based strategy

The HCU is responsible for the selection of the driving mode between full electric drive (e-
drive) and hybrid drive. Thus it manages the torque split between the EM and the ICE, taking into
account several parameters that will be introduced in the next paragraphs.

The selection of the driving mode relies on a set of logical conditions enabling the switch from
e-drive to hybrid drive and vice-versa:

- Vehicle speed: E-drive is possible until actual vehicle speed is below a constant threshold
which has been set to 140 km/h in compliance with EM technical specifications, allowing
to perform a complete WLTC in pure electric mode. A minimum hysteresis interval of 10
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km/h has been introduced to avoid instability;

- HV battery SoC: A constant threshold and related hysteresis have been set through a Design
of Experiments (DoE) approach in order to achieve the highest reduction of CO2 emissions.
The lower limit, below which ICE is switched on, and the upper limit, above which ICE is
turned off, have been varied in the interval 18-26% considering all the possible combinations,
that were tested over a complete standard WLTP to evaluate equivalent CO2 emissions.
According to the results of the described analysis, graphically represented in Fig. 8.1, the
selected more convenient lower and upper thresholds are 18 and 20% respectively;

- ICE operating time: Minimum hybrid and e-drive mode time intervals have been set to 10
and 2 seconds respectively, in order to prevent too frequent ICE and EM starts and stops that
would affect vehicle drivability;

- EM torque request A variable torque threshold, above which e-drive is no more possible,
is calculated based on available EM continuous torque, which is a function of actual motor
speed. This allows to use the electric motor as much as possible keeping a minimum torque
reserve for engine start phases, corresponding to the additionally available torque during
motor peak operation;

- DOC temperature: The switch from hybrid drive to e-drive is not possible until the DOC has
reached its light-off temperature, corresponding to 180°C, above which conversion efficiency
reaches its maximum value. This condition has been set to promote EATS heating up after
the engine cold start.

Figure 8.1: DoE analysis for SoC thresholds definition: resulting weighted CO2 emission
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8.1 – Conventional rule-based strategy

8.1.1 Torque split strategy

Focusing on the hybrid mode, the conventional hybrid strategy originally developed for this
powertrain manages the torque requested by the driver favoring the usage of the internal com-
bustion engine. In fact, as described by Eq. (8.1), the engine is responsible for the traction and the
battery charging as long as the request respects the engine’s limitations. Thus, the electric machine
is commonly used as a generator, if these limits are satisfied, or as a motor, if some boosting is
necessary. 

𝑇𝑡𝑟𝑚,𝑖𝑛 =
𝑇𝑤

𝜏
𝑇𝐼𝐶𝐸 = 𝑚𝑎𝑥 (𝑇𝐿𝑃𝑆 + 𝑇𝑡𝑟𝑚,𝑖𝑛 ,𝑇𝐼𝐶𝐸,𝑚𝑎𝑥)
𝑇𝐸𝑀 = 𝑇𝑡𝑟𝑚,𝑖𝑛 − 𝑇𝐼𝐶𝐸

(8.1)

where:

- 𝑇𝐼𝐶𝐸 is the torque requested to the internal combustion engine;

- 𝑇𝐿𝑃𝑆 is the amount of torque required for the load-point shift;

- 𝑇𝑡𝑟𝑚,𝑖𝑛 is the total requested torque upstream of the transmission, calculated as the ratio
between the torque requested at the wheels and the actual total gear ratio 𝜏, considering the
transmission and the differential;

- 𝑇𝐸𝑀 is the torque requested to the electric machine. In particular, if the engine is able to fulfill
the driver request, the EM works as a generator and 𝑇𝐸𝑀 = −𝑇𝐿𝑃𝑆.

Moreover, the value of torque reserved for LPS, 𝑇𝐿𝑃𝑆, depends on the actual coolant temper-
ature. In fact, if the catalyst heating mode is active, the LPS is limited to 16 Nm, otherwise, it is
increased to 33 Nm. For a matter of completeness, both these values come from the sensibility
of experienced technicians and the several activities performed by the industrial partner during
the last years on the topic. However, in Section 8.1.3 the strategy proves to be compliant with the
actual regulation, so it can be used as a reference.

8.1.2 Standard EHC strategy

The EHC control strategy is based on the following conditions, according to which the electrical-
heater (hereafter shorten as e-heater) is activated if:

- the engine is running, meaning that the exhaust gas flow through the heating disc is not
zero;

- the HV battery SoC is higher than the minimum safety threshold, which has been set to 18%;

- the exhaust gas temperature at the DOC outlet is lower than a fixed threshold equal to 200°C,
which is slightly above DOC light-off temperature.
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Once the e-heater is activated, the requested power is calculated based on previously calibrated
maps that take into account:

- actual engine load, which is directly connected to exhaust gas temperature;

- actual engine speed, which together with engine load allows to define the actual exhaust gas
flow rate;

- actual exhaust gas temperature at e-heater outlet.

More in detail, electrical power is actually provided to the e-heater if engine BMEP is lower than 12
bar and if the engine speed is lower than 2500 rpm, namely if engine-out exhaust gas temperature
is below a certain threshold. Electrical power request is then calculated according to gas flow
temperature at the e-heater outlet, following the trend shown in Fig. 8.2.

Figure 8.2: EHC power request as a function of exhaust gas temperature at the e-heater outlet

8.1.3 Performance assessment

The performance of the conventional RBS has been consequently tested following the WLTP
[10], in terms of CO2 and NOx. The details of the procedure have been already introduced in
Section 1.2.1 so will be omitted here, while only the final results are reported and summarized in
Tab. 8.1.

8.2 Improved model-based strategy

Conventional rule-based strategies used to be calibrated for specific driving cycles leading to
significant differences during real driving [157]. To overcome the problem, in this dissertation, a
model-based torque split strategy has been developed and calibrated. In particular, the load point
shift (LPS) maps have been generated with three different targets depending on ICE operating
conditions:

- Moving engine operating points to higher efficiency areas;
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Table 8.1: Conventional RBS performance tested with R1151 [10]

EAER [km]
AER [km]
CO2 CD [g/km]
CO2 CS [g/km]
CO2 Comb. [g/km]
FC CD [l/100km]
FC CS [l/100km]
FC Comb. [l/100km]
NOx [mg/km]

1.3
7.2
2.3
23

WLTC R1151 Final Results

35.64
40.18
35.1
188.1
60.1

- Ensuring a minimum exhaust gas temperature in order to speed up the warm-up phases
and keep a high EATS conversion efficiency during standard operation;

- Limiting NOx emission during EATS warm-up when conversion efficiency is low.

8.2.1 Torque split strategy

Since different calibrations of the LPS strategy can be adopted depending on the set targets
in terms of engine efficiency and pollutant emissions, a preliminary step has been to define
the targets in terms of BSFC, BSNOx, and engine-out exhaust gas temperature optimal lines.
Considering the opposite trends of BSFC and BSNOx with engine load variation, the respective
targets must be set following a reasonable trade-off between the two trends, without focusing on
a global minimization of one of the two that at the same time would strongly penalize the other.
On the other hand, engine-out exhaust gas temperature target must be set to a value that allows
to heat up and keep the EATS within a temperature range that ensures high conversion efficiency,
without significantly affecting the BSFC.

Therefore, a DoE approach was used to calibrate the hybrid strategy by testing several con-
figurations providing different results in terms of NOx and CO2 emissions. The WLTP standard
test procedure [10] has been simulated to set BSNOx and exhaust temperature targets, evaluating
average NOx emission on the charge-sustaining reference cycle. This last procedure could not be
used to set the BSFC target as well, since the corresponding LPS map is actually used only for the
higher values of battery SoC, thus being irrelevant on a charge-sustaining cycle, as will be clarified
in the next paragraphs. For this reason, an RDE cycle performed in charge-depleting mode has
been considered to set the BSFC target separately from the other parameters, according to the best
result achieved in terms of cumulative NOx emission along the whole cycle. DoE parameters and
resulting best configuration are listed in Tab. 8.2. In addition, Fig. 8.3 gives a graphical representa-
tion of the results obtained in terms of average NOx and weighted CO2 emission according to the
WLTP. As expected, the lowest average NOx emission is obtained with a low BSNOx target and a
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high exhaust temperature target, but still ensuring limited CO2 emission at the same time.

Table 8.2: Definition of DoE parameters range of variation.

Parameter Query points Definition Best
BSFC target [1 1.03 1.05 1.08 1.1] Relative increase with respect 1.05(𝑘𝐹𝐶) to minimum BSFC [-]
BSNOx target [0 0.2 0.5 1 1.2 1.5 1.8 2] Specific engine out NOx 0.2(𝑘𝑁𝑂𝑥) emission [g/kWh]
Texh target [230 250 270 300 320 350 370 400] Engine-out exhaust gas 370(𝑘𝑇3) temperature [°C]

Figure 8.3: Results of DoE analysis for the definition of BSNOx and engine-out gas temperature targets:
average NOx emission (left), weighted CO2 emission (right), and final selected configuration (red
dot)

The resulting reference lines, obtained by following the mentioned targets for each engine
operating condition, are shown in Fig. 8.4 and are the base for the definition of three different load
point shift maps implemented in the model (Fig. 8.5):

- Normal mode shift-down In this situation the electric motor provides part of the driving
torque request, so that the engine works at lower load. The amount of torque requested to
the electric motor is calculated in order to reach the BSFC target for each given engine speed.
The aim is to reduce fuel consumption by using the electric motor;

- Cat-heating mode shift-down Similar to the previous one, but in this case, the amount of
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(a) (b) (c)

Figure 8.4: BSFC, BSNOx, and exhaust gas temperature maps with corresponding defined targets

torque requested to the electric motor is calculated in order to reach the BSNOx target for
each engine speed. The aim is to reduce NOx engine-out emissions while the EATS is cold
and conversion efficiency is low;

- Normal/Cat-heating mode shift-up Additional torque is requested to the engine with re-
spect to driving torque request and it is used to charge the battery. The additional torque
value is calculated in order to follow the exhaust gas temperature target. The aim is to have
a fast EATS heating and to keep it warm after the heating phase. In this case, the load shift
map is the same for both normal and cat-heating modes.

The torque value evaluated with the LPS maps is then corrected through a multiplying factor
depending on the actual battery SoC. The correction coefficients are defined together with each
LPS map in order to decrease EM torque request if battery SoC is low or, on the other hand, to
reduce the additional torque request to the engine if the battery is already charged (Fig. 8.5). As it
can be noticed, the correction factors for cat-heating mode are defined in order to make the engine
operate at higher loads with respect to normal mode, leading to a faster warm-up phase.

8.2.2 Improved EHC strategy

The standard on-board strategy for the EHC is robust, simple, and effective as demonstrated
by the results obtained by the procedure and summarized in Tab. 8.1. However, it leads to un-
desired oscillating behavior of DOC temperature that in demanding conditions can damage the
components, if not properly controlled. With this regard, a PI controller has been calibrated with a
target DOC temperature of 220°C, which results in a reduction of DOC and LTM-SCR temperature
oscillations while not significantly affecting the EHC energy consumption, as shown in Fig. 8.6.
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(a) (b) (c)

Figure 8.5: Load point shift maps for normal and cat-heating modes with the related SoC-based correction
factors

Figure 8.6: EATS temperature and energy consumption comparison between standard and improved EHC
strategy

124



8.3 – Predictive strategy

8.2.3 Performance assessment and comparison

The improved RB and EHC strategies have been tested on the WLTP as described in Sec-
tion 8.1.3, obtaining the results shown in Tab. 8.3.

Table 8.3: Improved RBS performance tested with R1151 [10]

EAER [km]
AER [km]
CO2 CD [g/km]
CO2 CS [g/km]
CO2 Comb. [g/km]
FC CD [l/100km]
FC CS [l/100km]
FC Comb. [l/100km]
NOx [mg/km]

0.6
7.0

8.0

WLTC R1151 Final Results

2.3

37.64
40.01
15.7
183.9
60.4

The procedure’s results show how the improved strategy reduces the NOx emissions of 65%
on the WLTC with only an increase in fuel consumption of 0.4%.

8.3 Predictive strategy

As already introduced in Chapter 1, the availability of real-time navigation data, sent to the
vehicle by a map-service provider, allows the reconstruction of the future driving scenario, thus
enabling the development of predictive control strategies aimed at the best results in terms of
energy management and pollutant emission reduction. In particular, the knowledge of future
driving conditions can be used to predict the ICE first start along the traveled route, which is a key
enabler for the predictive thermal management of the EATS, allowing to perform a pre-heating
phase that can be actually planned to avoid NOx related to cold start emissions, which give a
significant contribution to the total emission along the considered driving cycle.

8.3.1 Pre-heating strategy definition

A preliminary step for the development of an effective EHC control strategy is to determine the
heating power needed to heat up the EATS for achieving the desired conversion efficiency. In this
regard, several simulations have been performed to evaluate the effects related to different values of
provided electrical power and air flow rate on DOC, LTM-SCR, SDPF, and SCR light-off time. More
in detail, constant heating power, and secondary air flow rate have been provided with the engine
turned off to evaluate the only effect of EHC on EATS heating dynamics. Then, the time needed to
reach the light-off temperature, considered as the threshold above which the pollutants conversion
efficiency of each after-treatment device reaches its maximum asymptotic value (180°C for the
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DOC and 220°C for the SCR catalysts, according to the respective pollutant conversion efficiencies
maps), has been evaluated for the mentioned devices. The results, graphically represented in
Fig. 8.7, clearly point out that the light-off time of all the devices decreases with increasing power
and air flow rate so that the same result can be achieved with different combinations of the
considered parameters. It can be also noticed that the light-off temperature cannot be reached at
all below a minimum threshold of secondary air flow rate and heating power, especially referring
to the SCR catalyst (Fig. 8.7d). Starting from these considerations, different pre-heating strategies
providing increasing heating power and secondary air flow rate have been tested to find the most
convenient pre-heating strategy in terms of resulting NOx emissions and energy consumption.
As pointed out by the previous results, the light-off of the DOC (Fig. 8.7a) and especially of the
LTM-SCR (Fig. 8.7b) cannot be achieved in a reasonable time for values below 2 kW and 20 kg/h
of EHC power and secondary air flow rate respectively. Therefore, according to the technical
specifications of secondary air pumps and EHCs available on the market for Diesel applications,
a range between 2 and 4 kW for the heating power and between 20 and 55 kg/h for the secondary
air flow rate has been considered for the following analysis, as summarized in Tab. 8.4.

Table 8.4: Pre-heating strategy definition: tested and final configurations

Parameter Tested range Final configuration
EHC power [kW] 2 - 4 4
Secondary air flow [kg/s] 20 - 55 55
Pre-heating time [s] 0 - 200 60

Each different configuration has been tested on a real-diving emissions (RDE) cycle with
increasing pre-heating time. The initial state of charge (SoC) has been set to 22% arbitrarily to force
ICE start along the considered driving cycle. As expected, the best results in terms of absolute NOx

cumulative emissions are achieved with the highest heating power and air flow rate. Based on this
consideration, from this point on the analysis has been focused on the configurations adopting the
maximum air flow rate and heating power that can be actually provided. Relative emissions are
calculated as the ratio between the absolute cumulative emissions resulting from the considered
pre-heating strategy and the one obtained with no pre-heating along the same driving cycle. As
it can be noticed in Fig. 8.8a, the trend of NOx reduction gets less steep as the pre-heating time
increases, until reaching an asymptotic value, which is significantly higher for the lower value
of EHC power due to the limited temperatures that can be reached in these conditions. On the
other hand, the CO2 trend, shown in Fig. 8.8b, is increasing with the pre-heating time, due to
the higher energy consumption that is compensated by increased use of the ICE to keep the SoC
above the lower threshold. In addition, a CO2 emission reduction is observed for a limited range of
pre-heating duration with respect to the base strategy with no pre-heating, despite the additional
energy consumption requested in the first case. This is because, after the first start the ICE can be
switched off again only when the DOC light-off is achieved, as explained in Section 8.1.
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(a) (b)

(c) (d)

Figure 8.7: DOC (a), LTM-SCR (b), SDPF (c), and SCR (d) light-off time as a function of secondary air flow
rate and EHC power. The green area highlights the feasible range of power and secondary air
flow taken into consideration for the pre-heating strategy definition

Thus, the engine is forced to run for a longer time if no pre-heating is planned, due to the lower
temperature of the EATS, and this completely deletes the advantage in terms of CO2 reduction
related to the energy saved if no pre-heating takes place. Beyond this additional consideration,
according to the purpose of this activity, the pre-heating duration has been set to 60 seconds, to
provide a result in terms of NOx reduction that is close to the asymptotic one but that at the same
time leads to a limited CO2 increase. In fact, for a longer pre-heating duration the gain in terms of
NOx reduction becomes less attractive considering the related cost in terms of CO2 emission.

127



8 – Predictive control strategies

(a) (b)

Figure 8.8: Relative tailpipe NOx (a) and CO2 (b) emission for variable EHC power and pre-heating time for
fixed air flow rate of 55 kg/h

8.3.2 Adaptation of the Backward Vehicle Model

Since the chosen application is a PHEV, it is reasonable to assume that in standard conditions
the vehicle will start each driving cycle in full electric mode. Then, the vehicle Hybrid Control Unit
(HCU) demands hybrid or pure electric drive, managing the torque split according to the calibrated
rule-based strategy presented in Section 8.2. Starting from this assumption, the prediction of the
engine first start is the key enabler for the development of the described EHC predictive control
strategy. In this regard, the Backward Vehicle Model (BVM) introduced in Section 4.1.2 has been
adapted to this specific application and implemented in the HCU to estimate the traces of all the
relevant quantities, with a particular focus on the EM torque request and the HV battery SoC.
Since this activity is focused on quantifying the benefits introduced by an EHC predictive function
on NOx emissions reduction, navigation data, such as vehicle speed and road slope profile, which
are the inputs to the BVM, are assumed to be known a priori. Due to the different powertrain
layout with respect to the one described in Part I, a simplified transmission model has been added,
which calculates the gear profile based on the same rule-based shifting strategy implemented in
the HCU subsystem responsible for the gear shifting. Since the aim is to predict the engine first
start, pure electric drive is the only driving mode considered within the prediction, so that once
known the selected gear, the EM torque request can be easily derived from the total torque request,
as already explained in Section 4.1.2. Starting from the power request, a simplified HV battery
model allows calculating the SoC trend.

The implementation of the gearshift strategy within the BVM requires further validation of the
prediction itself. To do so, a WLTC, whose speed profile is known a priori, has been used as input
for the BVM for-loop algorithm. The results of the prediction are shown in Fig. 8.9.
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Figure 8.9: BVM validation on WLTC for the P2 architecture, with a focus on the gearshift prediction

In this case, the predicted gearshift profile accurately replicates the simulated one with some
isolated exceptions that however do not significantly affect the quantities under test.

Then, the prediction of vehicle speed profile, engine torque request, and SoC trend, computed
by the BVM, is the input for a dedicated function that has been developed and implemented in the
HCU model to predict the engine first start, which can be derived based on the same conditions
for e-drive or hybrid drive selection already implemented in the HCU and described in Section 8.1.
More in detail, the output of this function is the time instant in which the engine start is expected
to be requested, namely when at least one of the following conditions is true:

- predicted vehicle speed above 140 km/h;

- predicted EM torque request beyond the continuous torque available from motor specifica-
tion at the considered speed;

- predicted SoC lower than 18 %.
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8.3.2.1 Energy prediction and compensation

However, the so-obtained engine start prediction instant does not consider the additional
energy consumption coming from the EHC and secondary air pump during the EATS pre-heating
phase. This is because the pre-heating phase is planned subsequently and it is based on the ICE
start prediction itself. Due to this, a significant error is introduced in the SoC trend prediction,
which becomes an issue if ICE start is driven by the condition related to low SoC, leading to
an inaccuracy in the engine start prediction that cannot be neglected for the purposes of this
activity. For this reason, a correction has been applied to the prediction to take into account this
contribution. The additional energy Δ𝐸𝑝𝑟𝑒 needed to perform the pre-heating phase is calculated
based on the requested power 𝑃𝑝𝑟𝑒 and heating time Δ𝑡𝑝𝑟𝑒 that have been previously set:

Δ𝐸𝑝𝑟𝑒 = 𝑃𝑝𝑟𝑒 · Δ𝑡𝑝𝑟𝑒 (8.2)

This amount of energy is then subtracted from the energy available in the HV battery to identify
the correct time instant in which the SoC will drop below the selected threshold determining the
ICE start request. For the sake of clarity, the top plot of Fig. 8.10 shows a comparison between the
predicted SoC trajectory (not corrected) and the simulated one (resulting from the application of
the predictive strategy) along the first part of an RDE urban cycle starting with very low SoC. As
it can be seen, in the first 500 seconds of the cycle the two traces are almost coincident except for
a slight offset due to natural inaccuracies of the predictive backward model. Then, a significant
deviation between the two trends can be noticed when the pre-heating phase starts, based on the
prediction itself. The additional energy request leads to a faster decrease of the actual SoC, thus
causing the actual ICE start to happen in advance with respect to the prediction. Therefore, if a
correction is not applied, this would lead to a shorter heating phase with respect to the planned
one. Therefore, the focus is shifted to the prediction of the energy absorbed by the HV battery,
shown at the bottom of Fig. 8.10: starting from the time instant corresponding to the predicted
engine start (1), the amount of energy Δ𝐸𝑝𝑟𝑒 absorbed during the pre-heating (2) is subtracted to
the prediction of the total energy provided by the battery until that moment (3); finally the time
instant related to the so obtained energy value corresponds to the actual ICE start if the pre-heating
energy had been taken into consideration, referred to as corrected ICE start (4).

The effectiveness of the performed correction is tested over different driving cycles starting
with different initial SoC values. The results, summarized in Tab. 8.5, prove that in most cases
the introduced correction allows to significantly reduce the gap between predicted and actual
engine start, which was the main target, even if a residual error is still present due to inevitable
inaccuracies of the simplified backward model implemented in the HCU. Finally, the evaluated
time instant corresponding to the predicted engine start, which is calculated by the HCU in the first
few seconds of driving, is sent to the engine controller, which is responsible for the management of
the EHC and the secondary air pump. Based on this information, the pre-heating phase is planned
using a timer, according to the required time that has been defined in Section 8.3.1. The pre-heating
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Figure 8.10: Predicted and actual HV battery state of charge (top) and corresponding adsorbed energy
(bottom) along an RDE urban cycle with 25% initial SoC

phase automatically stops when the engine is switched on and from that moment the rule-based
strategy manages the EHC power request by means of the PI controller, introduced in Section 8.2.2,
to ensure a minimum target temperature of the exhaust gases providing the maximum conversion
efficiency of the DOC and LTM-SCR.

Table 8.5: ICE start prediction testing over different driving cycles and initial HV battery SoC

Cycle Initial Predicted Corrected Actual
SoC [%] ICE start [s] ICE start [s] ICE start [s]

WLTC
22 502 452 453
25 617 672 675
30 1416 1347 1350

RDE 1*
22 279 251 256
25 636 599 608
30 855 839 847

RDE 3*
22 1003 916 917
25 1401 1341 1324
30 2024 1956 1958

* These driving cycles will be introduced and fully described in Chapter 9.

Looking at an undesirable but still possible situation in which reliable eHorizon data were
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temporarily unavailable, EATS pre-heating is managed following a rule-based approach. Accord-
ing to this fallback strategy, the pre-heating starts when the SoC falls below 20%, assuming that in
a short time it will decrease even more reaching the lower threshold of 18%, so that the HCU will
request the engine start. However, unlike what happens considering the predictive strategy, in this
case, the period between EHC activation and the engine start can significantly vary depending
on the specific driving conditions; so, once the target EATS temperature is reached, then the EHC
power is managed by the same PI controller that has been previously introduced, in order to keep
the EATS temperature around the target until the engine start. Of course, most of the time, this
strategy is far from the optimum and shows many drawbacks if compared to the predictive one:
in fact, it may happen that the pre-heating gets shorter than the planned one if the SoC drops very
quickly below the lower threshold, leading to higher pollutant emissions if the EATS temperature
has not yet reached the target value when the engine is turned on. On the other hand, it may
happen that the pre-heating gets much longer than the planned one if the power requested to the
EM is low and the SoC decreases slowly, leading to significant energy waste due to the extended
EHC power supply. Moreover, as a further limitation, the fallback strategy does not take into ac-
count ICE starts due to high torque request or high vehicle speed, being characterized by much
faster dynamics that are hard to be controlled through a simple rule-based strategy that does not
rely on predictive information. For the sake of brevity, and since it goes out of the scope of this
dissertation, the results related to this fallback strategy are not included in the next sections.
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Chapter 9

Application of the predictive strategy

In this chapter, the significant gain achieved is presented in terms of NOx emissions reduction
by considering an EHC predictive control strategy (PS), which differs from the reference RBS

by the introduction of a pre-heating phase. The results have been obtained on different urban
RDE cycles with different initial conditions and then analyzed in terms of emissions reduction.
Moreover, considering a less demanding scenario for Euro 7, a cost analysis has been conducted
to analyze the feasibility of removing a component resulting in a less complex and cheaper layout.

9.1 Test case scenarios

Table 9.1: Simulated driving cycles specifications

RDE 1 RDE RDE 3
Duration [s] 2070 1770 2310
Distance [m] 10510 12219 8467
Perc. stop [%] 27 17.1 31.7
Max. speed [km/h] 47.2 48.6 51.2
Avg. speed [km/h] 25.0 30.0 19.3
Max. acc. [m/s2] 3.50 3.16 3.42
* The calculated average speed does not consider vehicle stops.

Different real driving scenarios have been considered to test the proposed EHC control strategy
and highlight its benefits in terms of NOx emissions reduction. In particular, three urban driving
cycles, listed in Tab. 9.1, have been selected in order to provide challenging conditions from the
point of view of NOx emission, being characterized by frequent start and stop phases and, on
average, by engine low load operation, which results in lower temperatures of the EATS. The
vehicle speed profile and road slope of the considered driving cycles are shown in Fig. 9.1. The
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initial battery SoC for each simulation has been varied between 22% and 30% to force ICE start
within the driving cycle. The improvement achieved thanks to the introduction of an EATS pre-
heating phase based on ICE start prediction will be evaluated considering EATS components
temperature profile over time and the resulting average NOx emissions along each considered
cycle. This type of test is in line with the expected Euro 7 regulations, which will consider nearly
any possible driving scenario, as already introduced in Section 1.2. In this context, a comparison
with the Euro 7 NOx estimated emission limits will be provided. In particular, according to [27],
two possible scenarios are considered: a less demanding “Scenario A”, which would set the NOx

emissions limit to 30 mg/km, and a more demanding “Scenario B”, which would lower this limit
to 10 mg/km. The same ambient temperature, set to 25°C, has been considered for all the test cases,
since the effect of variable environmental conditions on the resulting CO2 and NOx emissions has
not been investigated in this work.

9.2 Results and discussion

The results in terms of tailpipe NOx and CO2 emissions along the three considered urban
driving cycles are summarized in Fig. 9.2.

In particular, the comparison between the rule-based EHC control strategy (“EHC RBS” pre-
sented in Section 8.2.2) and the proposed predictive control strategy (“EHC PS”) highlights that
a significant additional reduction of average NOx emission along the considered driving cycles is
achieved thanks to the introduction of an EATS pre-heating phase. The results related to the same
application with no EHC usage (“w/o EHC”) are included for completeness. Focusing on Fig. 9.2c,
it can be noticed that the data referred to the cases “w/o EHC” and “EHC RBS” with 28% initial
SoC show an unexpected behavior, with significantly higher NOx emissions if compared to the
general trend. This is due to a very high peak in the engine-out emissions which is well managed
by the PS strategy thanks to the pre-heating phase and the earlier ICE start with respect to the
other two cases, in which the ICE start occurs much closer to the mentioned peak of engine-out
NOx emissions and no pre-heating takes place, thus resulting in very low EATS temperatures and
conversion efficiencies.

As expected, the overall CO2 trend is significantly increasing with decreasing initial SoC, due to
a shorter e-drive range, and slightly increasing switching from the “EHC RBS” to the predictive one,
which includes an EATS pre-heating phase and thus significant additional energy consumption,
which is compensated by greater use of the engine to recharge the battery. On the other hand,
comparing the cases without EHC and the “EHC RBS”, as for the previous comparison, it would
be expected higher CO2 emissions for the “EHC RBS” due to the EHC electric consumption.
However, the CO2 trend is not the same for all the cases, which can be explained by considering
the different factors that come into play. In some cases, this behavior can be simply explained by
considering that the final SoC could be slightly different from one case to the other, thus leading
to a higher final CO2 emission if a higher final SoC is reached, meaning that more power has
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(a) RDE 1

(b) RDE 2

(c) RDE 3

Figure 9.1: Vehicle speed (black) and slope (magenta) profiles of the simulated urban driving cycles

been provided by the ICE, either for traction or to recharge the battery. In parallel, as described in
Section 8.2, the hybrid strategy is strongly affected by EATS temperature: the ICE is forced to run
until a minimum temperature of the DOC is reached, which takes a longer time if the contribution
of the EHC is not considered, thus delaying the switch to the e-drive mode even if the upper SoC
threshold has been already reached. Depending on the driving cycle, this could force the engine
to run at inefficient operating points in which in normal conditions, namely when the cat-heating
phase has been completed, it would have been switched off, leading to higher fuel consumption.
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(a) (b) (c)

Figure 9.2: Comparison between the proposed predictive EHC strategy, the EHC rule-based strategy, and
the same strategy with no EHC usage: resulting average NOx and corresponding CO2 emissions
for different urban driving cycles with variable initial SoC (SoCinit)

Moreover, the EATS temperature has an impact on the choice of the LPS maps to be used as well
as shown in Fig. 8.5: when the EATS temperature is above the lower threshold, the LPS map used
for the torque split during EM boosting is set to operate the engine following the target BSFC;
during cat-heating, a different LPS map is used, with the aim of limiting engine-out NOx emission
by reducing the engine load, which, on the other hand, results in higher BSFC due to lower engine
efficiency. These considerations, combined with the previous ones related to the final SoC values
and the presence of some specific maneuvers reflecting the randomness of the cycle, fully explain
the different behaviors of the considered cases in terms of CO2 emissions. For the sake of brevity,
and since it goes outside the scope of this dissertation, the values of the final SoC and average
BSFC for all the cases have not been included in this work. To highlight the benefits in terms of
NOx emissions reduction given by the introduction of an EATS pre-heating phase based on engine
start prediction, the attention is now focused on the comparison between the RBS and PS. Three
cases among those simulated are deeper analyzed in the following section as representative of
possible different situations that can be encountered, based on all the observed cases:

- Case 1: RDE 1 urban cycle with 25% initial SoC;

- Case 3: RDE 3 urban cycle with 25% initial SoC;

- Case 3: RDE 3 urban cycle with 30% initial SoC.
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9.2.1 Case 1

In this case, the first ICE start is determined by the minimum SoC condition, and it is correctly
predicted by the HCU (Fig. 9.3 and Fig. 9.4), allowing to perform the planned pre-heating phase.
The exhaust gas temperature profiles at LTM-SCR, SDPF, and SCR outlet obtained with the two
different strategies are shown in Fig. 9.5, together with EHC requested power and the resulting
tailpipe NOx emissions. It can be noticed that almost 60% of the total NOx is emitted within
200 seconds after the first ICE start. Therefore, the gain obtained with the introduction of a pre-
heating phase is significant, allowing to heat up in advance the SCR catalysts and reduce the
average tailpipe NOx emissions along the driving cycle by more than 50%, from 15.1 mg/km to
5.9 mg/km, although engine-out emissions are almost the same.

Figure 9.3: Case 1: comparison of SoC traces for rule-based (black) and predictive (red) EHC control strategies;
cyan dashed line shows the SoC trace prediction. Lower and upper SoC thresholds below and
above which ICE is turned on or off respectively are shown as well

9.2.2 Case 2

As for case 1, the first ICE start is determined by the SoC-related condition and it is correctly
predicted by the HCU, as shown in Fig. 9.6 and Fig. 9.7. However, despite the pre-heating phase,
a higher NOx emission is observed for the predictive strategy during the first ICE start, as pointed
out by Fig. 9.8: in this case, immediately after the ICE start, there is accidentally a peak in the
driver torque request (Fig. 9.7). This results in a peak of engine-out NOx emissions and therefore
higher tailpipe emissions with respect to the case in which the rule-based strategy is applied,
despite the higher EATS temperature and conversion efficiency provided by the EHC predictive
strategy. Anyway, the pre-heating phase, thanks to the higher temperature reached by the SDPF
and the SCR catalyst, in particular, allows to limit NOx tailpipe emission for the last part of the
cycle, thus compensating for the higher emission resulting from the first ICE start. Consequently,
the average NOx emission along the whole driving cycle results still 47% lower for the predictive
approach (9.7 mg/km with respect to 18.5 mg/km resulting from the “EHC RBS”), showing
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Figure 9.4: Case 1: comparison of ICE speed and torque for rule-based (black) and predictive (red) EHC
control strategies

Figure 9.5: Case 1: exhaust temperatures at LTM-SCR, SDPF, and SCR outlet for rule-based (black) and
predictive (red) EHC control strategies and corresponding EHC adsorbed power; on the bottom,
tailpipe NOx emission for the two considered EHC control strategies; EO: engine out, TO: tailpipe
out
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the effectiveness of this strategy in limiting the final tailpipe emissions, despite the much more
demanding situations that may be realistically encountered and thus higher engine-out emissions.
The same considerations can justify the similar trend of NOx reduction shown by the test case
performed on the same driving cycle but with 22% initial SoC.

Figure 9.6: Case 2: comparison of SoC traces for rule-based (black) and predictive (red) EHC control strategies;
cyan dashed line shows the SoC trace prediction. Lower and upper SoC thresholds below and
above which ICE is turned on or off respectively are shown as well

Figure 9.7: Case 2: comparison of ICE speed and torque for rule-based (black) and predictive (red) EHC
control strategies

9.2.3 Case 3

In this case, the first ICE start is determined by the condition related to the EM torque limit
and it is correctly predicted by the HCU, as proven by Fig. 9.9, which compares the actual and
predicted trend of EM torque request together with the corresponding EM torque limits in the
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Figure 9.8: Case 2: exhaust temperatures at LTM-SCR, SDPF, and SCR outlet for rule-based (black) and
predictive (red) EHC control strategies and corresponding EHC adsorbed power; on the bottom,
tailpipe NOx emission for the two considered EHC control strategies; EO: engine out, TO: tailpipe
out

last 500 seconds of the considered driving cycle. As for the other cases, the higher temperature
reached by the EATS thanks to the planned pre-heating phase allows to strongly reduce NOx

emissions due to ICE first start (Fig. 9.11), which in this case are responsible for almost 70% of the
final tailpipe emissions. Therefore, due to the high impact of ICE first start on the total emissions, a
very significant percentage reduction, which is close to 80%, in the average tailpipe NOx emission
is observed, moving from 20.4 mg/km for the “EHC RBS” to 4.3 mg/km for the “EHC PS”.

9.3 Vehicle decontenting

Considering the less demanding Euro 7 scenario, referred to as “Scenario A” [27], the signifi-
cant margin between the very low NOx emissions obtained by implementing an EHC predictive
function and the limit imposed by the regulation (30 mg/km), paves the way to a simplification of
the EATS layout to limit the related costs: part of the gain in terms of NOx emission reduction can
be converted into a cost saving that results from a vehicle decontenting process. In this respect, the
same rule-based and predictive control strategies have been applied to a simplified EATS layout
without LTM-SCR. This layout modification is consistent with the implementation of an improved
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Figure 9.9: Case 3: EM torque for rule-based (black) and predictive (red) EHC control strategies in the last
500 seconds of the considered driving cycle; cyan dashed line shows EM torque prediction

Figure 9.10: Case 3: ICE speed and torque for rule-based (black) and predictive (red) EHC control strategies

EATS thermal management strategy: the introduction of an electrical heater and especially of a
pre-heating phase based on engine start prediction, allows to significantly speed up the heating
of all EATS devices, thus making the installation of an additional SCR with reduced thermal
inertia (LTM-SCR) less incisive from the point of view of limiting cold start tailpipe emissions.
Moreover, the LTM-SCR removal results in a faster light-off of the SDPF and SCR catalyst, which
will be installed closer to the DOC. The results, represented in Fig. 9.12, show that the average
NOx emissions, obtained performing the same simulations over RDE 1 (Fig. 9.12a) and RDE 3
(Fig. 9.12b) urban cycles, are still below the considered limit for all the test cases if the predictive
EHC control strategy is applied. The removal of the LTM-SCR has a positive impact on the total
cost of the EATS, which has been quantified by estimating the likely cost of each after-treatment
device included in the exhaust line, according to the analysis carried out in [158]. As a final result,
the implementation of the proposed predictive EHC control strategy allows to save approximately

141



9 – Application of the predictive strategy

Figure 9.11: Case 3: exhaust temperature at LTM-SCR, SDPF, and SCR outlet for rule-based (black) and
predictive (red) EHC control strategies and corresponding EHC adsorbed power in the last
500 seconds of the considered driving cycle; on the bottom, tailpipe NOx emission for the two
considered EHC control strategies; EO: engine out, TO: tailpipe out

between the 12% and 13% of the EATS total manufacturing cost.

(a) (b)

Figure 9.12: Average tailpipe NOx emission on RDE 1 cycle (a) and RDE 3 cycle (b) resulting from the
rule-based strategy applied to the complete EATS layout, including LTM-SCR, and from the
predictive strategy applied to a simplified EATS layout with no LTM-SCR
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Part II - Conclusions

The present activity has been focused on the development of a predictive EHC control func-
tion for a Diesel PHEV equipped with a state-of-the-art EATS. For this purpose, a comprehensive
Simulink® model representative of the vehicle under study has been considered. As a first step,
several simulations have been performed to evaluate the effect of EHC heating power and sec-
ondary air flow rate on the light-off time of the considered EATS components. Based on this
analysis, the most convenient EATS heating strategy has been defined, aimed to minimize tailpipe
NOx emissions with limited additional energy consumption. In particular, constant power of 4 kW
has been provided to the EHC with a constant secondary air flow rate of 55 kg/h for the whole
duration of the pre-heating phase, which has been set to 60 seconds. A dedicated EHC control
function has been implemented in the vehicle HCU to manage the planned EATS pre-heating
phase based on ICE first start prediction. The proposed predictive control strategy has been tested
on different urban driving scenarios, and the results discussed in Section 9.2, highlight that:

- the introduction of a pre-heating phase allows to speed-up EATS warm-up and improve NOx

conversion efficiency of LTM-SCR, SDPF, and SCR catalysts during engine cold start, always
reducing the average NOx emission over all the considered driving cycles with respect to the
base EHC strategy, despite random events that may occur;

- the average NOx emission achieved with the proposed predictive control strategy is reduced
by more than 50% if compared to the base EHC strategy, except for a few cases that have
been commented in Section 9.2.2. Depending on the considered driving conditions, the NOx

emission reduction can reach values around 70% for some of the considered cases;

- the EATS pre-heating phase requires additional energy to be provided to EHC, which is
compensated by greater use of the engine to recharge the battery, thus resulting in increased
CO2 emissions, which range from 1% to 10% with a single case that exceeds the 30%. This
percentage increase is related to the specific driving conditions since the impact of the
pre-heating strongly depends on the total amount of emitted CO2 and also on the engine
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operating conditions along the considered cycle, that could be influenced by a different SoC
trend and EATS temperature, as highlighted in Section 9.2. Further research should be done
to limit this significant cycle dependence;

- considering the foreseen future limits introduced by the Euro 7 proposal [27], the described
EATS equipped with an EHC would be able to meet the NOx emission target for LCVs
even without the introduction of a predictive strategy if the less demanding “Scenario A” is
considered, which will set the actual limit to 30 mg/km. Nevertheless, the improvement in
NOx emissions control enabled by the implementation of a predictive EHC control function
would allow being compliant with the regulation in most of the considered cases even if
this limit were lowered to 10 mg/km, according to the most stringent situation referred to
as “Scenario B”;

- thanks to the implementation of the proposed EHC predictive control strategy, the average
tailpipe NOx emissions can still be kept below the limit imposed by the less demanding Euro
7 scenario even considering a simplified EATS layout without LTM-SCR, thus allowing to
reduce the corresponding EATS manufacturing cost.

10.1 Future works

Besides these promising results, which show the potential of including an EATS pre-heating
based on ICE start prediction, the tests described in Section 9 highlight that the final result may
be strongly affected by the randomness of the occurring driving conditions. This issue must be
solved in order to reach the robustness required in view of a real-world application of the proposed
control strategy. Based on all these considerations, the developed predictive control strategy can
be definitely considered a successful proof of concept to be used as a starting point for further im-
provements. In this respect, future research will be focused on developing a probabilistic approach
that would evaluate ICE start probability within each road segment composing the complete driv-
ing cycle, rather than the exact time instant in which it should happen. This would help to solve
the problem related to inevitable prediction inaccuracies and resulting random errors that may
affect the final result, thus improving the robustness of the developed control strategy in view of
HiL (Hardware-in-the-Loop) simulation and real-world application. In addition, further analysis
could be performed by extending the temperature range of the considered test cases to evaluate
the gain introduced by the predictive control strategy when very low ambient temperatures are
considered. Finally, an important step would be to integrate the developed control function with
additional predictive control strategies focused on energy management, in order to achieve the
best results in terms of efficiency and pollutant emissions at the same time.
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Chapter 11

Conclusions

In a global context where pollutant emissions and urban mobility lead to stringent regula-
tions, hybrid electric vehicles became a well-established technology to face the problems of the
transportation sector. At the same time, the spreading of novel technologies, such as advanced
driving assistance systems (ADAS), and the availability of data from the surrounding environ-
ment (vehicle-to-everything) are paving the way to the concept of smart mobility. In fact, it can
be intended as a new way of organizing mobility, with important social and cultural implications
especially in urban contexts, while creating a connected ecosystem, where data sharing between
vehicles and infrastructures can help improving the quality of the urban environment. An example
of that is the introduction of Zero-Emissions Zones by the local administration to forbid the use of
conventional engines within an urban area. However, the more the systems become complex the
more their testing and validation require advanced testing facilities to comply with the shortening
of the time-to-market.

In this challenging surrounding, the objective of this dissertation is to highlight the additional
contribution brought by vehicular connectivity, in terms of CO2 and pollutant emissions reduc-
tion, especially within an urban center.

With this aim, an innovative validation platform has been developed to test predictive con-
trol functions bridging the gap between the simulation and the on-road tests. The simulation
environment consists of a Hardware-in-the-Loop enhanced with a Telecommunication Control
Unit (TeCU) specifically developed to enable long- and short-horizon data exchange, using the
same technologies usually available on the vehicles. Moreover, a Human-Machine Interface (HMI),
based on a tablet running an Android-based Navigator App, has been introduced to allow the
driver to set the desired destination and to see the suggested route based on actual traffic condi-
tions. As additional feature, the Navigator App can update the navigation data if a re-routing or
changes in traffic conditions are detected, as it would be in a real vehicle.
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Then, Part I of the dissertation is focused on the development and testing of a supervisory con-
troller for a high-performance PHEV based on predicted functions and an Adaptive-ECMS. This
has been proposed to handle a Zero-Emission Zone using navigation data retrieved in real-time
from the map service provider. With this information, a Speed Profile Prediction is performed to
evaluate an energetically equivalent driving profile that is then fed to the BVM. The latter calculates
the amount of energy necessary to drive the ZEZ in pure electric mode and forward that target
SoC to the control policy. The A-ECMS is finally tested on a real driving scenario measured on
the road and compared to an adapted rule-based strategy at the C-HiL. Since the navigation data
from the MSP are real and referred to the current traffic situation, the proposed route can differ
from the driven one, leading to re-routing and consequent adaptation of the target SoC, reflecting
a common situation during everyday driving. The testing campaign shows how the supervisory
controller not only grants the fully electric drive in an urban event, preventing the payment of fees,
but also optimizes the fuel consumption while driving outside the ZEZ. Moreover, the strategy
has been deployed into the real HCU and tested with real vehicular connectivity, proving the
real-time capability and robustness of the predictive functions under different and unpredictable
conditions. This has accelerated the function development laying the ground for future on-road
tests. The main quantitative results of this part of the Ph.D. activity have been presented and
discussed in detail in Chapter 6, at the end of Part I.

On the other hand, Part II of the dissertation concentrates on the plausible benefits of naviga-
tion data to reduce localized pollutant emissions, acting especially on cold-start maneuvers whose
weight will increase with the introduction of Euro 7 real-driving emissions procedure. In this
case, the vehicle under test is a Light Commercial Diesel PHEV equipped with a state-of-the-art
exhaust after-treatment system (EATS) that has been modeled and validated.

More in detail, thanks to the knowledge of future driving scenarios provided by vehicular
connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be
planned using an Electrically Heated Catalyst. In this regard, the model has been consequently
adapted by means of a secondary air pump, and then the ideal combination of electrical power
and air mass flow has been defined finding the best trade-off between energy consumption and
time to reach the light-off temperature. In addition, an improved Rule-Based Strategy, developed
with a model-based approach, has been introduced and tested on the WLTP resulting in a cycle-
independent strategy calibration. Consequently, the predictive thermal management strategy has
been tested on different urban cycles representative of the Euro 7 testing procedure. Although
the pre-heating introduction implies an additional energy request which results in increased fuel
consumption, the results show that the final NOx emission over a complete driving cycle can be
significantly reduced compared to the base EHC strategy. Moreover, this would allow to comply
with the scenarios introduced by the Euro 7 regulation proposal, while enabling the adoption of
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a simplified EATS architecture resulting in reduced manufacturing costs. Also in this case, for the
sake of clarity, the main results related to this part of the Ph.D. activity have been analyzed in
detail in Chapter 10, at the end of Part II.

In conclusion, it can be asserted that the Ph.D. course has been translated into a significant
experience in control function development and testing with a specific focus on the advantages of
using vehicular connectivity to answer the market demand for more sustainable and intelligent
mobility.
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