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ABSTRACT 

 

This doctoral dissertation is a key point of multidisciplinarity, able to synthesize and 

unite some of the key notions of civil and industrial engineering research.  

The research activities, carried out at the DICAM Department of the University of 

Bologna during a three-year PhD program, have allowed the analysis of the driver assistance 

systems, called Advanced Driver Assistance Systems (ADAS) in relation to road safety. The 

study is structured according to several evaluation steps, related to definite on-site tests that 

have been carried out with different samples of users, according to their driving experience 

with the ACC. The evaluation steps concern: 

 The testing mode and the choice of suitable instrumentation to detect the driver’s 

behaviour in relation to the ACC. 

 The analysis modes and outputs to be obtained, i.e.: 

- Distribution of attention and inattention; 

- Mental workload; 

- The Perception-Reaction Time (PRT), the Time To Collision (TTC) and the 

Time Headway (TH). 

 

The main purpose is to assess the interaction between vehicle drivers and ADAS, highlighting 

the inattention and variation of the workloads they induce regarding the driving task. The 

research project considered the use of highly innovative technologies for data recording and 

analysis, such as a system for monitoring visual behavior (ASL Mobile Eye-XG - ME), a 

powerful GPS that allowed to record the kinematic data of the vehicle (Racelogic Video V-

BOX) and a tool for reading brain activity (Electroencephalographic System - EEG). In 

addition, the use of experimental testing has increased knowledge of the relationship between 

the driver and the surrounding road environment. Just during the analytical phase, a second and 

important research objective was born: the creation of a graphical interface that would allow 

exceeding the frame count limit, making faster and more effective the labeling of the driver’s 

points of view.  

 

The results show the parameters considered suitable for road safety in the road context. 

Through a complete and exhaustive picture of the vehicle-driver interaction, it has been 

possible to highlight the main sources of criticalities related to the user and the vehicle, in order 



to concretely reduce the accident rate. In addition, the use of mathematical-computational 

methodologies for the analysis of experimental data has allowed the optimization and 

verification of analytical processes with neural networks that have made an effective 

comparison between the manual and automatic methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

 

1. INTRODUCTION ........................................................................................... 1 

1.1. Motivation ................................................................................................. 1 

1.2. Original Contribute .................................................................................... 3 

1.3. Thesis approach ......................................................................................... 4 

1.4. Experimental tests ...................................................................................... 5 

1.4.1. The circuit ............................................................................................. 9 

1.4.2. Instruments and aims ............................................................................. 9 

1.5. Objectives of the research ........................................................................ 10 

2. THE FIRST LEVEL OF AUTOMATION .................................................... 11 

2.1. Advanced Driver Assistance Systems ....................................................... 11 

2.1.1. Types of ADAS .................................................................................... 12 

2.1.2. Adaptive Cruise Control ...................................................................... 18 

2.1.3. Data collection..................................................................................... 22 

3. THE IMPACT OF ACC ON VISUAL BEHAVIOUR .................................. 25 

3.1. Introduction.............................................................................................. 25 

3.1.1. Eye Tracking ....................................................................................... 25 

3.2. Methods ................................................................................................... 41 

3.2.1. The Mobile Eye Tracker....................................................................... 41 

3.3. Outcomes ................................................................................................. 54 

3.4. Conclusion ............................................................................................... 56 



4. THE IMPACT OF ACC ON DRIVING BEHAVIOUR ................................ 59 

4.1. Introduction.............................................................................................. 59 

4.1.1. The Highway Code .............................................................................. 60 

4.2. Methods ................................................................................................... 72 

4.2.1. The response time of ACC (VRT) ........................................................ 77 

4.2.2. The Perception-Reaction Time (PRT) ................................................... 78 

4.2.3. Assessment of the influence of circulating traffic ................................. 79 

4.3. Outcomes ................................................................................................. 82 

4.4. Conclusion ............................................................................................... 84 

5. THE IMPACT OF ACC ON DRIVERS’ WORKLOAD .............................. 87 

5.1. Introduction.............................................................................................. 87 

5.1.1. The role of workload ............................................................................ 87 

5.2. Methods ................................................................................................. 112 

5.2.1. Measurement of the driver's workload: the electrode brain helmet (EEG)

 112 

5.2.2. Self-evaluated workload using NASA_TLX questionnaire ................ 118 

5.3. Outcomes ............................................................................................... 122 

5.4. Conclusion ............................................................................................. 124 

6. THE EXPERIMENTAL COMPARISON BETWEEN VISUAL DATA 

ANALYSIS USING THE NEURAL NETWORKS TECHNIQUES ............................. 125 

6.1. Introduction............................................................................................ 125 

6.2. Artificial neural networks ....................................................................... 126 



6.2.1. Architecture of a neural network ........................................................ 127 

6.2.2. Types of Neural Network ................................................................... 130 

6.2.3. Machine Learning .............................................................................. 132 

6.3. Deep Learning ........................................................................................ 135 

6.3.1. Deep learning applied to image classification field ............................ 136 

6.4. Methods ................................................................................................. 137 

6.4.1. Step 1: Code to implement the Network ............................................. 137 

6.4.2. Step 2: Training ................................................................................. 139 

6.4.3. Step 3: Test ........................................................................................ 141 

6.4.4. Graphic Interface ............................................................................... 144 

6.5. Outcomes ............................................................................................... 147 

6.5.1. Analysis of neural network results ..................................................... 147 

6.5.2. Analysis of user behaviour in relation to the ACC system .................. 162 

6.5.3. Analysis of kinematic data ................................................................. 168 

6.6. Conclusion ............................................................................................. 183 

7. CONCLUSIONS .......................................................................................... 187 

8. REFERENCES ............................................................................................ 191 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES 

 

Figure 1.1. Volkswagen Passat SW with ACC. ------------------------------------------------------- 6 

Figure 1.2. Prey vehicles. -------------------------------------------------------------------------------- 6 

Figure 1.3. ACC system control buttons on the left side of the steering wheel. ------------------ 8 

Figure 1.4. Dashboard of the car with ACC On. ------------------------------------------------------ 8 

Figure 1.5. Itinerary of the Experimentation. --------------------------------------------------------- 9 

Figure 2.1.Visual Representation of ADAS. ---------------------------------------------------------- 11 

Figure 2.2. Lane Departure Warning. ------------------------------------------------------------------13 

Figure 2.3. Lane-Keeping Assist. ----------------------------------------------------------------------13 

Figure 2.4. Intelligent Speed Assistance (ISA). ------------------------------------------------------14 

Figure 2.5. Emergency Braking System. --------------------------------------------------------------15 

Figure 2.6. Adaptive Cruise Control. ------------------------------------------------------------------16 

Figure 2.7. Adaptive Headlights. -----------------------------------------------------------------------17 

Figure 2.8. Blind angle warning system. --------------------------------------------------------------18 

Figure 2.9. Parking assistance system. ----------------------------------------------------------------18 

Figure 3.1. The Eye Tracking Technology. -----------------------------------------------------------25 

Figure 3.2. Anatomy of the eye -------------------------------------------------------------------------28 

Figure 3.3. Anatomy of the hear. -----------------------------------------------------------------------29 

Figure 3.4. Visual and Optical Axis. -------------------------------------------------------------------32 

Figure 3.5. The Elecrto - ophthalmology. -------------------------------------------------------------36 

Figure 3.6. The Sleral Search Coils. -------------------------------------------------------------------36 

Figure 3.7. Infrared ophthalmology. -------------------------------------------------------------------37 

Figure 3.8. Video-ophthamology. ----------------------------------------------------------------------37 

Figure 3.9. Mobile Eye Tracker with lenses. ---------------------------------------------------------38 

Figure 3.10. Mobile Eye Tracker without lenses. ----------------------------------------------------38 



Figure 3.11. Image capture steps via eye tracker. ----------------------------------------------------39 

Figure 3.12. The Mobile Eye Tracker. -----------------------------------------------------------------42 

Figure 3.13. Spectrale Mounted Unit (SMU). --------------------------------------------------------43 

Figure 3.14. Display Transmit Unit (DTU). ----------------------------------------------------------43 

Figure 3.15. Software Eye Vision. ---------------------------------------------------------------------45 

Figure 3.16. Spot cluster. --------------------------------------------------------------------------------45 

Figure 3.17. Slow rotation performed during calibration. ------------------------------------------47 

Figure 3.18. Saving Process. ----------------------------------------------------------------------------47 

Figure 3.19. Alignment procedure. --------------------------------------------------------------------48 

Figure 3.20.The three points of corneal reflection (CR). -------------------------------------------48 

Figure 3.21. Pupil identification. -----------------------------------------------------------------------49 

Figure 3.22. Points of Calibration. ---------------------------------------------------------------------50 

Figure 3.23. Cursor - red cross. ------------------------------------------------------------------------51 

Figure 3.24. Points of view - Car, Dashboard, Street. -----------------------------------------------52 

Figure 4.1. Bands of respect and triangles of visibility at the roundabout. ----------------------60 

Figure 4.2. Category D - Urban sliding. --------------------------------------------------------------62 

Figure 4.3. Section of the parking pitch. --------------------------------------------------------------63 

Figure 4.4. Distances of visibility for stopping: vertical axis with visibility distance to stop 

(m); horizontal axis with longitudinal slope (%). ----------------------------------------------------64 

Figure 4.5. Entry lane. -----------------------------------------------------------------------------------65 

Figure 4.6. Diversion lane of parallel type. -----------------------------------------------------------66 

Figure 4.7. Geometry intersection at roundabout. ---------------------------------------------------67 

Figure 4.8. Graphic construction for the determination of β. --------------------------------------68 

Figure 4.9. Fields of visibility at a roundabout. ------------------------------------------------------69 

Figure 4.10. Safety pyramid. ---------------------------------------------------------------------------73 



Figure 4.11. V-Box. --------------------------------------------------------------------------------------74 

Figure 4.12. Posizioning of V-Box cameras. ---------------------------------------------------------75 

Figure 4.13. Positioning of GPS antennas. -----------------------------------------------------------75 

Figure 4.14. V-Box Tool. --------------------------------------------------------------------------------76 

Figure 4.15. Features of Video VBox. -----------------------------------------------------------------77 

Figure 4.16. The position of the Vbox. ----------------------------------------------------------------77 

Figure 4.17. Time of breaking. -------------------------------------------------------------------------78 

Figure 4.18. The red led stop of the prey vehicle. ---------------------------------------------------78 

Figure 4.19. Evaluation of the response time of ACC. ----------------------------------------------79 

Figure 5.1. Yerkes-Dodson Law. -----------------------------------------------------------------------88 

Figure 5.2. Wickens MRT theory. ----------------------------------------------------------------------89 

Figure 5.3. Relationship between workload and accident rate. ------------------------------------93 

Figure 5.4.Workload regions according to Meister (1979). ----------------------------------------93 

Figure 5.5. Change in workload and performance across regions. --------------------------------95 

Figure 5.6. Normal ECG path. --------------------------------------------------------------------------97 

Figure 5.7. Heart rate change in the road environment. --------------------------------------------99 

Figure 5.8. Variation of HRV in the road environment. ---------------------------------------------99 

Figure 5.9. RSME scale. ------------------------------------------------------------------------------- 105 

Figure 5.10. NASA Tlx. ------------------------------------------------------------------------------- 107 

Figure 5.11. International System 10-20. ----------------------------------------------------------- 113 

Figure 5.12. Main EEG rhythms. -------------------------------------------------------------------- 115 

Figure 5.13. Holter.------------------------------------------------------------------------------------- 116 

Figure 5.14. Holter positioning while driving. ----------------------------------------------------- 116 

Figure 5.15. EEG headset positioning. -------------------------------------------------------------- 116 

Figure 5.16. Questionnaire of driving style (1). ---------------------------------------------------- 120 



Figure 5.17. Questionnaire of driving style (2). ---------------------------------------------------- 121 

Figure 6.1. AI, Machine Learning e Deep Learning. ---------------------------------------------- 125 

Figure 6.2. Biological Neuron. ----------------------------------------------------------------------- 126 

Figure 6.3. Artificial Neuron. ------------------------------------------------------------------------- 127 

Figure 6.4. Architecture of an artificial neaural network. ---------------------------------------- 128 

Figure 6.5. Example of application of the kernel. ------------------------------------------------- 129 

Figure 6.6. Max-pooling. ------------------------------------------------------------------------------ 130 

Figure 6.7. Dense layer. ------------------------------------------------------------------------------- 130 

Figure 6.8. Multi-Layer Perceptron. ----------------------------------------------------------------- 131 

Figure 6.9. Stochastic descendent of the gradient. ------------------------------------------------ 133 

Figure 6.10. Dropout Technic. ------------------------------------------------------------------------ 137 

Figure 6.11. Model. ------------------------------------------------------------------------------------ 138 

Figure 6.12. Viewfinder. ------------------------------------------------------------------------------- 138 

Figure 6.13. Model without viewfinder. ------------------------------------------------------------ 139 

Figure 6.14. The training phase. ---------------------------------------------------------------------- 141 

Figure 6.15. Matrix of Confusion. ------------------------------------------------------------------- 142 

Figure 6.16. Tool of Classification. ------------------------------------------------------------------ 144 

Figure 6.17. Phase of the revision. ------------------------------------------------------------------- 146 

Figure 6.18. Synchronization phase of the movie. ------------------------------------------------ 168 

Figure 6.19. User frame change lane. --------------------------------------------------------------- 177 

  

 

 

 

 

 

 



LIST OF GRAPHS 

 

Graph 3.1. Attention and inattention frames for ACC ON and OFF conditions, between ACC 

experienced and no-experienced users. ---------------------------------------------------------------54 

Graph 3.2. Average percentage of frames during the events, considering ACC state and 

drivers’ ACC experience.--------------------------------------------------------------------------------55 

Graph 3.3. Average number of frames on the road and the vehicles, the car dashboard, and the 

lead vehicle during the events, considering ACC state and drivers’ ACC experience. ---------56 

Graph 4.1. LOS (HCM). ---------------------------------------------------------------------------------81 

Graph 4.2. Average reaction time. ---------------------------------------------------------------------83 

Graph 5.1. EEG workload considering ACC state and drivers’ ACC experience. ------------ 122 

Graph 5.2. Results from the NASA-TLX questionnaire (score from 1 to 100). -------------- 123 

Graph 6.1. ANOVA Test. ------------------------------------------------------------------------------ 140 

Graph 6.2. Matrix of confusion of the model C2LCL_all300_9_6c. --------------------------- 142 

Graph 6.3.Matrix of confusion of the model DIC2LCL_all300_8_6c. ------------------------- 143 

Graph 6.4. Distinction between wrong and correct frames in function of the confusion. --- 150 

Graph 6.5. Distribution of correct frames (Percentage). ------------------------------------------ 153 

Graph 6.6. Distribution of correct frames (Frame). ----------------------------------------------- 153 

Graph 6.7. Distribution of wrong frames (Percentage). ------------------------------------------ 154 

Graph 6.8. Distribution of wrong frames (Percentage). ------------------------------------------ 155 

Graph 6.9. Percentage of frames of the total (Frame). -------------------------------------------- 155 

Graph 6.10. Distribution of wrong frames of the 4 main classes (Percentage). --------------- 156 

Graph 6.11. Degree of confidence in classes (Frame). -------------------------------------------- 157 

Graph 6.12. Averages of correct and wrong percentage considering the attention (Percentage).

 ------------------------------------------------------------------------------------------------------------ 158 



Graph 6.13. Average of correct and wrong frames considering the attention (Frame). ------ 159 

Graph 6.14. Average of corrent and wrong frames considering the distraction (Frame). ---- 160 

Graph 6.15. Average of correct and wrong percentage considering the distraction 

(Percentage). -------------------------------------------------------------------------------------------- 160 

Graph 6.16. Suddivision of attention frames. ------------------------------------------------------ 163 

Graph 6.17. Suddivision of distraction frames. ---------------------------------------------------- 163 

Graph 6.18. Suddivision of frames in classes. ----------------------------------------------------- 163 

Graph 6.19. Suddivision of frame of attention with ACC ON. ---------------------------------- 164 

Graph 6.20. Suddivision of frame of distraction with ACC ON. -------------------------------- 164 

Graph 6.21. Suddivision of frame of attention with ACC OFF. --------------------------------- 164 

Graph 6.22. Suddivision of frame of distraction with ACC OFF. ------------------------------- 164 

Graph 6.23. Frame division into classes with ACC ON. ----------------------------------------- 165 

Graph 6.24. Frame division into classes with ACC OFF. ---------------------------------------- 165 

Graph 6.25. Incidence of lost frames on the total for each user and for the total. ------------ 167 

Graph 6.26. Subdivision of frames into macro-classes ------------------------------------------- 167 

Graph 6.27. Percentage of total by classes. --------------------------------------------------------- 181 

Graph 6.28. Percentage for classes with ACC ON ------------------------------------------------ 181 

Graph 6.29. Percentage for classes with ACC OFF ----------------------------------------------- 181 

  

 

 

 

 

 

 

 

 

 



LIST OF TABLES 

 

Table 3.1. The number of frame. -----------------------------------------------------------------------52 

Table 3.2. Number of Frame per Events. -------------------------------------------------------------53 

Table 4.1. Length of the connecting section. ---------------------------------------------------------66 

Table 4.2. Length of operating section. ---------------------------------------------------------------67 

Table 4.3. V-BOX specifications. ----------------------------------------------------------------------75 

Table 4.4. LOS --------------------------------------------------------------------------------------------80 

Table 4.5. Table for the LOS. ---------------------------------------------------------------------------81 

Table 4.6. Time of reaction. -----------------------------------------------------------------------------83 

Table 4.7. Comparison of Velocities, distances, TH and TTC of the two type of drivers. -----84 

Table 5.1. Factors involved with the Workload. -----------------------------------------------------92 

Table 5.2. Results of the DS and Q-ACC questionnaires. ---------------------------------------- 123 

Table 6.1. Example of excel file. --------------------------------------------------------------------- 149 

Table 6.2. Frames divided by confidence intervals. ----------------------------------------------- 149 

Table 6.3. Average frames divided by confidence interval. -------------------------------------- 150 

Table 6.4. Average of frames for confidence with ACC OFF. ----------------------------------- 151 

Table 6.5. Average of frames for confidence with ACC ON. ------------------------------------ 151 

Table 6.6. Frames classified by class according to the confidence. ----------------------------- 152 

Table 6.7. Frames classified by class according to the confidence. ----------------------------- 152 

Table 6.9. Example of user 4, the correct and wrong frames according to the Macro-Classes.

 ------------------------------------------------------------------------------------------------------------ 158 

Table 6.8. Average of correct and wrong frames according to the Macro-Classes. ----------- 158 

Table 6.10. Total average of classification in funcion of macro classes. ----------------------- 161 

Table 6.11. Average of frames with ACC ON. ----------------------------------------------------- 161 



Table 6.12. Average of frames with ACC OFF. ---------------------------------------------------- 161 

Table 6.13. Average of labelized data. --------------------------------------------------------------- 162 

Table 6.14. Average of labellized frame with ACC OFF. ----------------------------------------- 164 

Table 6.15. Average of labellized frame with ACC ON. ------------------------------------------ 164 

Table 6.16. Arithmetic means labelled data in all macro-classes. ------------------------------- 166 

Table 6.17. Arithmetic means labelled data in ACC ON macro-classes. ----------------------- 166 

Table 6.18. Arithmetic means labelled data in ACC OFF macro-classes. ---------------------- 166 

Table 6.19. Output data of V-Box Pro and Time Mobile Eye. ----------------------------------- 169 

Table 6.20. Kinematic data associated with frames.----------------------------------------------- 170 

Table 6.21. Example table user kinematic data 4 Round. ---------------------------------------- 171 

Table 6.22. Weighted averages kinematic data. ---------------------------------------------------- 172 

Table 6.23. Weighted averages kinematic data ACC ON. ---------------------------------------- 172 

Table 6.24. Weighted averages kinematic data ACC OFF. --------------------------------------- 172 

Table 6.25. Average speed with ACC ON. ---------------------------------------------------------- 174 

Table 6.26. Average Speed. --------------------------------------------------------------------------- 174 

Table 6.27. Average speed with ACC OFF. --------------------------------------------------------- 175 

Table 6.28. Maximum and minimum values of speed and longitudinal acceleration. -------- 176 

Table 6.29. Summary table on the event distribution. --------------------------------------------- 178 

Table 6.30. Kinematic data of the generic event --------------------------------------------------- 179 

Table 6.31. Kinematic data for all users. ------------------------------------------------------------ 180 

Table 6.32.Kinematic data ACC ON. ---------------------------------------------------------------- 180 

Table 6.33. Kinematic data ACC OFF. -------------------------------------------------------------- 181 

Table 6.34. Average of PRT and speed. ------------------------------------------------------------- 183 

 

 

 



ACRONYMS  

 

ADAS: Advanced Driver Assistance Systems 

ACC: Adaptive Cruise Control 

PRT: Perception-Reaction Time 

V-BOX: Racelogic Video V-BOX 

ME: ASL Mobile Eye-XG  

EEG: Electroencephalographic System 

DA: Driving Automation 

CG: Common Ground 

SA: Situational Awareness 

TTC: Time To Collision 

LOA: Level of automation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



KEYWORDS 

 

Advanced Driver Assistance Systems 

Adaptive Cruise Control 

Visual Behaviour 

Driving Behaviour 

Road Safety 

Mental Workload 

Human factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 1 

 

1. INTRODUCTION 

 

1.1. Motivation 

The aim of this doctoral thesis is to highlight the impact of new Advanced Driver Assistance 

Systems (ADAS) on road safety. The study, specifically, focuses on the evaluation of the 

interaction between the user, investigating his subjective and objective behavior, and the 

vehicle, equipped with innovative mechanisms, the basis of the emerging development of 

autonomous driving. 

The importance of this research is linked to how automation is changing the usual 

driving style, introducing new tasks and areas of visual interest. Considering these systems as 

the first step towards total automation of the vehicle, it is necessary to evaluate their influence 

on user behavior, in order to avoid possible misunderstandings in the transition from 

autonomous to manual control. 

In the first level of automation, in fact, the role of the driver is still fundamental; the 

vehicle has systems that serve as an aid to driving while assuming the driver’s alert reaction to 

possible accidental maneuvers that the ADAS cannot manage. In this sense, the Situational 

Awareness (SA) of the driver is fundamental as it implies real-time knowledge of driving 

scenarios, considering driving maneuvers in traffic such as directional change, overtaking, lane 

change, reversing and parking. The SA means therefore to realize what happens in the 

surrounding environment also in relation to the presence of certain infrastructural elements 

which are: roundabouts, traffic lights intersections, pedestrian crossings, bicycle crossings, 

interchanges, rectifiers, and curves. Over the years, a theory of situational awareness has been 

developed, describing three levels: 

 Level 1 - Perception of elements in the environment: simple recognition of objects, events, 

people, systems, environmental factors and their states (positions, conditions, methods, 

actions); 

 Level 2 - Understanding the current situation: development of a general framework of the 

environment of interest; 

 Level 3 - Projection of the future state: the ability to understand how stored information 

can affect future conditions of the entire environment. 

 

When driving behaviour does not reflect one of these levels, there is the 'lack of SA'. It is 

considered one of the main causes of road accidents attributed to the human error occurring in 
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the Common Ground (CG) between man and vehicle (Faure et al., 2016). Driving Automation 

(DA) in fact promotes a constant increase of the functionalities related to the CG to make the 

exchange man-machine faster and clearer, avoiding errors (Huber et al., 2010; Vanderhaegen 

et al., 2006). Therefore, the CG allows continuous and timely feedback to the driver to reduce 

cognitive stress and highlight the 'transition moment' (MT) between autonomous and manual 

driving (Eriksson et al., 2017). By increasing the levels of knowledge of the CG, it will be 

possible to outline a framework of optimal driver comfort, in full compliance with road rules 

(Banks et al., 2014). 

These conditions lead to major changes in traffic flow. The driver assistance system that 

highlights this variation is the  Adaptive Cruise Control (ACC). This ADAS represents the 

evolution of Cruise Control; it allows to establish of a precise distance from the previous 

vehicle modulating the cruise speed and decreasing the possibility of collision accidents (Lin 

et al., 2008). The ACC, in fact, by limiting sudden braking, acts on the control of the engine 

and introduces two other important advantages: the reduction of emissions of harmful 

substances and the deterioration of the road surface (Zhang et al., 2018). In addition to the 

environmental impact, the use of ACC has also led to a real change in driving behaviour. 

According to Stanton (2009), about 75% of accidents are related to human error. For this reason, 

manufacturers' cars design the ACC to control maneuvers on the road, establishing a different 

reaction time for humans and machines (Wang et al., 2019). The study of this factor is 

fundamental in relation to the visual behavior of the user and his workload. The term workload 

refers to the mental load to which an individual is subjected, in order to perform an action. It 

is a fundamental parameter in the field of road safety since it allows to estimate how the 

infrastructure engages the human mind. Therefore, depending on the cognitive load it is 

possible to estimate the level of performance of drivers. 

Low workload levels correspond to low-performance levels, where inattention prevails. 

The level of performance increases with the growth of the mental load required, until a 

maximum peak level is reached, then decreases drastically. The probability of error increases 

as the level of performance exhibited decreases. It is necessary, therefore, that the mental load 

is neither too high, not to exceed the reaction-decision ability of the driver, nor too low, not to 

cause inattention. For these reasons, the risk of road accidents is greater in geometric elements 

or specific tasks to which workloads compete or very low or very high (Kantowitz et al., 2000; 

Cuenen et al., 2015; Lyu et al., 2017). 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 3 

 

1.2. Original Contribute 

The research discusses the study of ADAS-driver-road interaction by proposing a highly 

innovative experimentation in terms of samples and tools. Firstly, a high number of users (48 

males), with different knowledge of ADAS, were involved. This allows to analyse the ADAS’s 

effectiveness and diversified impact, connected with the levels of attention and workload, to 

compare the condition of inexperience with wide period of use (Deery et al., 1999; Donmez, 

Boyle e Lee, 2010; Dickie et al., 2009; Rajaonah et al., 2006). Secondly, the three instruments, 

i.e. the Mobile Eye Tracker (ME), the Video V-Box Pro and the electrode brain helmet (EEG), 

highlight the factors of interaction between the ADAS, drivers and street. In addition, the 

administration of questionnaires, provided to analyse deeply the perception of the system both 

before and after using it (Dickie et al., 2009). In this way, it was possible to obtain specific 

information about risks’ driver from a subjective and objective point of view. According to 

Summala (1988), in fact, analysing this dual awareness, it is fundamental to implement the 

‘zero-risk model'. Drivers monitor the subjective and objective risks continuously, to find a 

balance while driving, without the interference of the fear (Rudin-Brown et al., 2014). The 

users, indeed, must have an emotional comfort that reduces the complexities and the 

uncertainties of the system to obtain an optimal ergonomic design (Cahour et al., 2009). 

These aspects are combined with the road test. This choice rises in a panorama where the 

simulator turns out to be more used because it removes the problems connected with the 

boundary conditions, such as traffic, weather and real risks of driving (Ariën et al., 2013, Lin 

et al., 2008). On site, in fact, the interactions between road, vehicle and driver are numerous 

and they allow to extrapolate the real behavior and the workload of drivers (Luo et al., 2010). 

For example, to consider the driver’s attention using ACC, it was possible to analyse the 

movement of the pupil, that is the ‘point of fixation’ of the user in the driving scene, 

extrapolated thanks to the use of the ME (Bucchi et al., 2012; Dondi et al., 2011). These 

different ‘point of fixation’ make a comparison between the two states of the system (on/off). 

When the system is active, in fact, the car accelerates in relation to the relative speed of the 

previous vehicle, creating a traffic wave according to the car following model; consequently, 

the driver focuses his attention on the various traffic components (Chandler et al., 1958). If all 

vehicles were equipped with active ACC, the propagation of these waves would be constant 

and homogeneous, as shown by the data of the Video V-Box. This tool, in fact, allows to 

evaluate the kinematic features of the vehicle, connected with the driving behaviours. In this 

way, the trend of speed and acceleration of the vehicle are commensurate with the workload. 
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According to Brookhuis’ studies (2010), when drivers are subject to high workloads, they tend 

to decrease driving speed (Milleville-Pennel et al., 2015; Engström et al., 2005; Reimer et al., 

2012). These changes arise with also the brain’s activity tracking with the EEG. This technique 

is one of the main methods to follow the workload’s waves. Using special electrodes, placed 

on top of the head, the EEG provides direct access to brain activities. It highlights a limited 

cost and invasiveness and obtains an objective assessment of cognitive phenomena (Aricò et 

al., 2016; Aricò et al., 2018; Di Flumeri et al., 2018; Acerra et al., 2019).   

 

1.3. Thesis approach  

The research analyses user behavior in relation to the use of the Adaptive Cruise Control system 

and evaluates how this instrument influenced the driver's reaction. For the analysis, the user 

and the vehicles were equipped with an innovative instrument suitable for the experiment. A 

combined approach was adopted between the various factors described below and analysed in 

the following order: 

 Visual Behavior Analysis: the elements that drivers observe while driving has been 

identified and categorized, in order to evaluate the attention and inattention percentages 

of each user, both with the system on or off. For this purpose, Eye-tracking technology 

was used i.e. the Mobile Eye Tracker XG tool, which allows tracking of eye movement. 

 Driving Behavior Analysis: the driving behavior was examined through the processing 

of vehicle kinematic data, recorded by the Video V-Box. It also extrapolated the trend 

of speed, acceleration and consequently the Reaction-Perception Time (PRT). This 

factor is based on non-invasive observations because is important to obtain reaction 

time estimates representative of performance in real situations. 

 Workload analysis: the measurement was performed directly on the drivers by 

calculating the mental workload (Workload index) to which they are subjected while 

driving. The data is derived from the records of the brain helmet (EEG) and the analysis 

of the self-assessment questionnaires, completed by each participant in the test. 

 

In the field of level of automation (LOA), the reduction of direct control of the vehicle by the 

driver makes it pass from actor to spectator in driving, even in dangerous situations. However, 

this step should not be interpreted as replacing the role of the driver, but as active cooperation 

between the two entities because the automation is not able to act autonomously yet, especially 

considering all the variables present in the driving environment (Banche et al., 2014). The 
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mechanisms linked to the operation of ADAS are therefore the first elements to be examined 

to verify whether the 'Distributed Cognition' is valid for safety purposes. The ADAS, in fact, 

were born with the intention of mitigating accidents, reducing the overall severity of the 

collisions, injuries and deaths. Seacrist’s studies (2020) have suggested that the use of ADAS 

can prevent up to 57% of accidents and injuries. In addition, considering the level of attention, 

it was possible to highlight a sharp growing of about 80% for distracted drivers (Lee et al., 

2002; Fleming et al., 2019). By increasing the levels of CG, it will be possible to outline a 

framework of optimal comfort of the driver, in full compliance with road rules (Banks et al., 

2014). 

 

1.4. Experimental tests 

The on-site test was carried out with an experimental sample, instructed to drive a not owned 

car. The test was performed from 9 am to 5 pm. Each user remained busy for about 2 hours 

from the start to the end of the test. Fifty-two drivers have been involved in the study: 26 with 

no previous experience of ACC (Mean-age = 40,84 years; Range: 35÷55; SD = 5.57) and 26 

ACC users (Mean-age = 45.81 years; Range: 35÷50; SD = 6.02), who have been using the 

systems at least for 3 months (mean number of hours of experience with ACC = 3.31 hours ± 

1.81, range: 1 ÷ 5). The average driving experience was 22 years (SD = 6.89) for ACC non-

users and 27.81 years (SD = 6.02) for ACC users. They were selected in order to have a 

homogeneous experimental group in terms of age, sex, and driving expertise. Everyone had 

normal vision and none of them wore eyeglasses or lenses, to avoid artifacts in eye-movement 

monitoring. They had a valid driving license and none of them had previous driving experience 

on the road segment considered in this study. Everyone was paid and they did not know 

anything about the aims of the study to avoid any bias in their behaviour.  

The experiment was conducted following the principles outlined in the Declaration of 

Helsinki of 1975, as revised in 2000. The study was approved by the Ethical Committee of the 

University of Bologna. Informed consent and authorization to use the video graphical material 

were obtained from each subject on paper, after the explanation of the study. 

Before carrying out the test, informative material was sent to the participants to make 

them aware of: 

 The test modalities and test purposes; 

 The equipment that they would wear during the test, with a description of their operation 

and on-site calibration methodology; 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 6 

 

 The description of the test track so that they knew the features; 

 The test mode driving, in which it was specified that they could drive freely, respecting the 

Highway Code; 

 The description of the driver assistance systems that they would have tried, with a 

description of the operation, activation/deactivation of the systems, with the enclosed use 

manuals for each vehicle. 

To carry out the test, a vehicle equipped with Adaptive Cruise Control, was hired, namely a 

Volkswagen Passat SW model with a diesel engine, equipped with an automatic transmission 

(Figure 1.1). 

 

 

Figure 1.1. Volkswagen Passat SW with ACC. 

In order to test the operation of the ACC system, a BMW Series 1 model was chosen to 

carry out trials during the test phase, considering them as cars to follow (Figure 1.2). 

 

 

Figure 1.2. Prey vehicles. 
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Each user has completed 2 laps of the route, considering each lap for these purposes: 

 Lap 1: the adaptation to the vehicle and the ACC system; 

 Lap 2: the definite test with system start-up on the outward or return section, randomly 

between users. In the test phase, both with an on and off system, the driver was asked to 

follow the previous vehicle (called ‘prey’). The presence of the latter has the purpose of 

simulating a series of ‘events’ on the course, or sudden braking, in order to obtain the 

activation of the system in the test vehicle (if system ON) or the braking reaction of the 

driver (in case of system OFF). Half experimental sample drove with the ON system on the 

forward section and the other half on the return section, in order to avoid bias experimental. 

The order of ACC ON and OFF conditions had been randomized among the subjects, in 

order to avoid any order effect. 

 

During the first lap, the driver was free to try the ACC system. The data recorded during the 

second lap were considered for the analysis. According to Rudin-Brown et al. (2004), the event 

type was selected as the most probable one coherently with the ACC mode of operation, as 

well as the safest to be acted, without introducing any risk for the actors, for the experimental 

subjects and the traffic in general. Users were in the vehicles with operators checking the 

correct conduct of the test. 

The activation of the ACC, was indicated by the operator on board but managed 

manually by the participant of the test, it was possible through the use of steering wheel controls 

with the following procedure (Figure 1.3): 

a) Press the ‘O/I’ button on the steering wheel to turn on the system; 

b) Press the ‘MODE’ button on the steering wheel to switch the ACC to speed limiter; 

c) Select the "Automatic Distance Controller" option; 

d) Press the distance setting button and adjust the "VERY LONG" distance level (when the 

vehicle is in motion, the ACC ON symbol appears on the panel, white, with or without a 

vehicle depending on the presence of a vehicle in front); 

e) Press the SET button: the green symbol appears on the instrument panel; 

f) Select the + and – to impose the speed(choice of 90 km / h). 
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Figure 1.3. ACC system control buttons on the left side of the steering wheel. 

 

Once the system is switched ON, various indicators are displayed on the dashboard 

according to the reciprocal position with the vehicle in front. While driving, the system is able 

to activate only if the driver of the vehicle does not press either the brake or the accelerator. In 

this case, the vehicle, in a completely autonomous way, keeps the motion at a speed lower, than 

the maximum speed selected and automatically adjusts the distance to the vehicle in front based 

on that indicated. The dashboard interface (Fig 1.4) shows on the top left the green icon that 

shows the activation of the system. In particular, the stylized figure of the vehicle with the 

speedometer confirms the activation of the system; whereas, the three blue lines (7.14 and 21 

m respectively) allow the definition of a distance from the previous vehicle set at 21 km.  

 

Figure 1.4. Dashboard of the car with ACC On. 
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In this way, once the desired cruising speed is reached, it is possible to see speed 

decreases due to an approach to the previous vehicle. 

 

1.4.1. The circuit  

The subjects had to drive along the Tangenziale of Bologna (Italy), a bypass road, 

coplanar with the urban section of the A14 highway. It is a primary road, mainly straight with 

wide radius curves, with two lanes in each direction (excluding the emergency lane); it has a 

speed limit of 90 km/h. This road has been chosen because it has the right requirements for the 

application of the Adaptive Cruise Control as it allows a speed higher than 60 km/h and it has 

a multi-lane carriageway in each direction with horizontal signs in a good maintenance state. 

These characteristics allowed participants to drive as safely as they would normally do in their 

car, with naturalistic behaviour (Figure 1.5). 

 

 

1.4.2. Instruments and aims 

Drivers and vehicles were instructed to use innovative equipment that enabled the 

analysis of: 

 The Visual Behavior of the users, that is the identification of the elements of the 

infrastructure and of the road environment that most attract the attention of drivers. For 

Figure 1.5. Itinerary of the Experimentation. 
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this purpose, Eye Tracking technology was used, in particular the tool the Eye Tracker 

ASL Mobile Eye-XG (ME), which allows the driver's gaze to be continuously observed 

while driving. 

 The Driving Behavior, such as the driving style of the road users along the road layout. To 

this end, the results obtained from the VIDEO V-BOX PRO device are processed, which 

allows continuous monitoring of certain kinematic vehicle parameters. 

 The physical and mental Workload, which can be objective, i.e. perceived by the drivers 

throughout continuous monitoring of the driver's brain activity, evaluated with the brain 

electrode helmet (EEG), or subjective assessed through various questionnaires such as the 

NASA-TLX.  

 

1.5. Objectives of the research 

The objectives of the thesis concern the evaluation of road-vehicle-driver interactions. 

In fact, initially, it was possible to define an actual output of how the driver can respond to the 

demands of the new driver assistance system, considering the various maneuvers he is forced 

to perform on the road. It was then possible to define some important questions: 

- How is the driver’s visual behaviour with the use of ADAS? 

- How do the kinematic parameters of the vehicle change? 

- How is the brain activity described? 

Parameters such as speed and acceleration, allowed to define some important 

parameters such as Time To Collision(TTC), Time Headway (TH), and Perception-Reaction 

Time (PRT). Others, such as eye fixations, evaluated attention and distraction while driving. 

However, having to manually count the frames related to the various categories, a great limit 

for the conduct of analysis in time contexts appropriate has been. For this reason, an innovative 

interface, introduced by neural networks, has been devised to allow frames to be evaluated 

automatically, assigning them to the categories of interest.   
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2. THE FIRST LEVEL OF AUTOMATION  

 

2.1. Advanced Driver Assistance Systems 

Advanced driver assistance systems, commonly called ADAS, are born with the aim of 

supporting the users in the driving process in order to increase road safety and reduce the risks 

deriving from critical situations such as, for example, heavy traffic or queues.   

They detect the environment surrounding throughout various types of sensors such as 

radars, video cameras, and ultrasound devices. Some systems, in addition to alerting the driver, 

can intervene in the driving of the vehicle by considering the longitudinal and transverse 

direction, or by accelerating, braking, and steering independently, within certain limits. In fact, 

the driver must constantly monitor the system and be ready, at all times, to take full control of 

the driving (Figure 2.1). 

 

 

Figure 2.1.Visual Representation of ADAS. 

 

European Parliament in December 2017 approved by a majority the mandatory 

installation of some advanced driver assistance systems on all newly registered cars. Some 

ADAS, therefore, will soon be mandatory on all new cars. Specifically, devices such as 

Automatic Emergency Braking (following the detection of pedestrians), the Lane Keeping 

System, and Adaptive Cruise Control (speed regulator) will be standard. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 12 

 

With the aim of drastically reducing the victims of road accidents, caused by human 

errors in 90% of the cases, these technologies will become indispensable for the homologation 

purposes of the vehicle, just like the ABS, which prevents the wheels from locking while 

braking, and the Control Electronic Stability Program (ESP), which became mandatory starting 

from the 1st of November in 2014. 

 

2.1.1. Types of ADAS  

The main Advanced Driver Assistance Systems can be cataloged according to the Euro 

NCAP 2018 classification in three main categories: 

 Lane control systems; 

 Speed regulation systems; 

 Systems that improve visibility. 

 

2.1.1.1. Lane Control System 

Lane control systems alert the driver if the lane line is approaching or crossed without using 

the direction indicator (arrow). They are very useful for preventing sleep strokes and 

distractions often caused by infotainment systems and smartphones. 

The main variants of this type of system, available on vehicles on the market, are Lane 

Departure Warning (LWD) and Lane-Keeping Assist (LKA). 

Lane Departure Warning (LDW) is a system that warns the driver when the car gets too 

close to the boundary strip of the driving lane (Figure 2.2). Especially in long-distance journeys, 

the driver can unintentionally get too close to the line that defines his lane, remaining unaware 

of the potential danger until it is too late to remedy: the wheels may be on the grass or the 

gravel side of the road or, in extreme cases, the car can move on the trajectory of the arriving 

vehicles. The sudden awareness by the driver could generate a panic response, resulting in a 

loss of control of the car and a subsequent accident. The warning is given through an audible 

signal or vibration of the steering wheel. It is, therefore, a system that requires the driver to 

take corrective action to not cross the road markings. Generally, this system works only at high 

speeds and does not activate if the driver uses the direction indicators. Its operation can be 

compromised by the poor visibility of the horizontal strips in case of heavy rain, fog, mud, 

snow or poor maintenance. In this case, some technologies warn the driver of the impossibility 

of assisting him. 
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Lane-Keeping Assist (LKA) is an alarm system designed to help the vehicle maintain 

the lane without accidents. However, while warning systems require the driver to take 

corrective action, Lane Keep Assist automatically generates a counter-steering that returns the 

car to its lane (Figure 2.3). When the car is close to the lane boundary strip, the system actively 

brings it back to the correct trajectory, by applying a slight braking force on a single wheel or 

direct input on the steering, in the event of electric power steering.  

A video camera mounted on the interior rear-view mirror "reads" the demarcation strips 

in front of the vehicle, combining this information with speed and trajectory to calculate the 

time and distance that precede the crossing of the lane limit. If the value of one or more of these 

parameters is lower than the limit value, Lane-Keeping Assist intervenes by applying a slight 

correction to the steering. The corrective maneuver is intentionally slight and can be easily 

countered, so as not to relieve the driver of the responsibility to consciously drive his car. 

However, since the driver does not have to use Lane Keep Assist as a replacement for driving, 

some systems deactivate if they detect that he is maintaining passive driving. 

 

 

Figure 2.2. Lane Departure Warning. 

 

 

Figure 2.3. Lane-Keeping Assist. 

 

2.1.1.2. Speed Regulation Systems 

Speed regulation systems help the driver to adjust the speed of the vehicle according to 

environmental and traffic conditions. The main variants of this type of system, available on the 

vehicles on the market, are: 

 Speed Alarm Systems or Intelligent Speed Assistance, for compliance with speed 

limits; 

 Autonomous emergency braking systems, to avoid rear-end collisions; 

 Speed regulation system according to the safety distance. 
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Speed Alarm Systems or Intelligent Speed Assistance (ISA) help the driver contain 

speed within the specified limits (Figure 2.4). Excessive speed is one of the main causes of 

accidents. Speed limits are intended to promote the safe use of the road network, keeping traffic 

speeds below the maximum allowed in various circumstances, and protecting both passengers 

and other road users. Excessive speed can be unintentional: if the driver is tired or distracted, 

he can easily exceed the permitted speed without realizing it; in other cases, he may miss the 

reading of a signal that invites you to moderate speed, for example by entering a residential 

area. Some speed alarm systems display the current speed limit so that the driver is always 

aware of the maximum speed allowed on that stretch of road. The speed limit can be determined 

by software that analyzes the images provided by a video camera and recognizes vertical signs, 

or by particularly accurate satellite navigation. Some systems emit an acoustic signal that warns 

the driver of exceeding the permitted speed. Currently, these are systems that can also be 

deactivated and require a response from the driver to the warning. 

 

 

Figure 2.4. Intelligent Speed Assistance (ISA). 

 

Emergency braking systems help the driver to avoid accidents caused by late braking 

or insufficient braking force, with the aim of reducing the collision speed in the event of an 

impact with another vehicle (Figure 2.5).  
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These systems belong to the Autonomous Emergency Braking category (automatic emergency 

braking systems): 

 Autonomous: the system acts independently from the driver to avoid or mitigate the impact;  

 Emergency: the system intervenes only in a critical situation; 

 Braking: the system tries to avoid impact by operating the brakes.  

 

AEB systems improve safety in two ways: firstly, they help to avoid impact by identifying 

critical situations in time and alerting the driver; secondly, they reduce the gravity of 

unavoidable accidents, reducing the speed of the collision and, in some cases, predisposing the 

car and seat belts to impact.  

Their operation is based on optical sensors, cameras, or LIDAR able to identify 

obstacles in front of the vehicle. At first, the AEB generally warns the driver of the possible 

imminent impact and then, if the driver does not react to the warning, the system intervenes 

autonomously applying total or partial braking.  

Figure 2.5. Emergency Braking System. 
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Cruise Control is an electronic system that allows automatic adjustment of the speed of 

a vehicle or another vehicle. The driver selects the desired speed, and it is maintained, 

compatibly with the trim conditions of the car itself. There are two types: Cruise Control and 

Adaptive Cruise Control. The first only maintains the speed set by the driver. The driver can 

choose to increase or decrease the set speed, for example, if he decides to overtake another car, 

press the accelerator and increase the speed that will return to the one previously set only when 

the acceleration stops. Unlike cruise control, the Adaptive Cruise Control (ACC) system 

recognizes previous vehicles along the driving path and their speed and consequently 

intervenes independently in the management of the engine and brakes in order to maintain the 

right safety distance (Figure 2.6). 

 

2.1.1.3. Systems that Improve Visibility 

The systems that improve visibility help the driver in those driving situations that are 

not very visible from the passenger compartment, due to particular traffic or road conditions.  

The main variants of this type of system, available on the vehicles on the market, are: 

 Adaptive headlights, to increase visibility in corners; 

 Blind corner warning systems, for visibility in overtaking maneuvers; 

 Parking assistance systems. 

 

Figure 2.6. Adaptive Cruise Control. 
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Most driving maneuvers are based on what the driver can see. In daylight, in clear weather 

conditions, the visibility of the road ahead is generally adequate. Night driving, on the other 

hand, can be challenging. The adaptive headlights rotate the light beam around the curves of 

the road, giving the driver a better view of the area in front (Figure 2.7). They vary the lighting 

according to the course of the road, the speed of travel, traffic and environmental conditions. 

They guarantee maximum brightness without, however, disturbing the vision of the drivers of 

the vehicles coming from the opposite or preceding direction of travel. 

 

 

Figure 2.7. Adaptive Headlights. 

 

The blind corner is that portion of space behind the moving vehicle that has a particular 

characteristic: when another car is occupying that area at the moment of overtaking, it is not 

visible either with the interior mirror or with the rear-view mirrors (Figure 2.8). 

Systems are now available that can monitor the blind angle, helping the driver to change 

lanes in safe conditions and alerting him through an acoustic or luminous signal in the event 

that a vehicle not visible through the mirrors is arriving. The system is able to recognize static 

objects present along the road such as safety barriers, poles or parked vehicles: in these cases, 

it does not trigger the signal. The system is active from 5 to 180 km/h and assists the driver in 

facilitating driving especially in city traffic and on multi-lane roads. 
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Figure 2.8. Blind angle warning system. 

 

Parking assistance systems use ultrasonic sensors which, by means of acoustic signals, 

warn the driver of the distance between the vehicle and adjacent obstacles during the maneuver 

(Figure 2.9). 

 

Figure 2.9. Parking assistance system. 

 

2.1.2. Adaptive Cruise Control 

Adaptive Cruise Control (ACC) is one of the main technologies of Advanced Driver Assistance 

Systems (ADAS) among the first level of automation, which tried to reproduce human driving. 

This technology allows for establishing a set distance from the previous vehicle, by modulating 

cruising speed and limiting abrupt braking (Lin et al., 2008; Hajek et al., 2013; Piccinini et al., 

2015). The ACC detects the surrounding environment through sensors, radar, cameras and 

ultrasonic devices thus controlling traffic situations and modulating the engine and powertrain 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 19 

 

(Morando et al., 2016). When the chosen distance falls below the safety threshold, the system 

automatically intervenes in the management of the engine and brakes to reduce the speed of 

travel, when the road is free again the ACC returns the vehicle to the set cruising speed. It has 

been calculated that, when combined with an anti-collision warning system, the ACC can 

reduce the number of sudden stops on motorways by 67% and rear-end collisions by 73%. 

The ACC, while maintaining the speed set by the driver, is also able to adapt it to traffic 

conditions, by accelerating or decelerating automatically. In fact, the system records the 

environment in front of the vehicle so that, if the driver gets too close to the vehicle in front, 

the system slightly decelerates to ensure compliance with the safety distance. This distance can 

also be adapted to the driving behavior of the individual. 

With the term "adaptive" the main characteristic of the system is expressed, which is 

able to adapt the speed to traffic conditions, accelerating or decelerating automatically thanks 

to the reception of information on the environment outside the vehicle through frontal RADAR 

or LIDAR sensors, appropriately Weighted. The standard ACC can be activated at speeds 

between approximately 30 km/h and about 200 km/h. 

The ACC Stop & Go variant, in addition to keeping the safety distance from the car in 

front constant, reduces the vehicle speed up to the stop in case of queues. The car then restarts 

automatically thanks to the system or the driver who puts the accelerator pedal into action. 

The first version of the commercial ACC system was presented in 2000 and allowed 

implementation only for sections on the motorway and along the highways, the second version, 

presented in 2004, extended its use also to state roads. The future ACC generation will be 

different from the current one for the even more powerful analysis software. 

Today, the ACC system can be based on LIDAR or RADAR technologies; the first uses 

a laser instrument, while the second uses radio waves to control the environment surrounding 

the vehicle. The RADAR system was preferable because it worked even in adverse weather 

conditions, such as in the presence of fog or of completely dirty frontal vehicle sensors. The 

RADAR system uses a sensor placed on the front of the vehicle that emits a continuous series 

of electromagnetic waves and evaluates the time between the emission of the wave and its 

return; in this way, the on-board electronics can assess the presence and distance of obstacles 

in front of the vehicle. Finally, it should be pointed out that the driver can decide at any time to 

resume manual driving control, by using the brake pedal or pressing the deactivation button on 

the steering wheel while using the ACC. 
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Nowadays, many drivers use the ACC while driving because of its comfortability. In 

particular, they used the system for 95% of off-urban roads and 99% of motorways. These 

percentages fluctuate with the traffic conditions and tend to increase on roads with high-speed 

limits and in case of long journeys (Huber et al., 2010; De Winter et al, 2014). 

Level 1 leads to partial automation in which the system assists the driver by relieving 

the tasks related to the driving process. The application of autonomous taxonomies suggests 

that in this level of automation the users should control the task of driving with the mind, having 

hands and feet free (Stanton et al., 2009; Banks et al., 2014).  This condition should not be 

interpreted as replacing the role of the driver by machine but as active cooperation between the 

two entities (Weyer et al., 2015). In fact, the systems are not able to act autonomously, thus the 

role of the driver is still essential: he can decide to activate the system or take control of the 

vehicle at any time, by pushing on the accelerator or braking button (Biassoni et al., 2016; 

Seacrist et al., 2020).  

Despite the fact that the ACC was born to improve road safety, mitigating accidents and 

reducing the overall severity of collisions, injuries and deaths, it introduces new accidental 

causes. For instance, the system could lose the previous vehicle in curves or not detect small 

vehicles, such as motorcycles; it also presents problems for the identification of stationary 

vehicles, especially in city contexts and low visibility due to rain and fog (Kaber et al., 2001; 

Christoffersen et al., 2002; Inagaki, 2003; Klein et al., 2004; Weick et al., 2005; Harbluk et al., 

2007; Beller et al., 2013). So, the study of the interaction between this system and the driver’s 

behaviour, specifically how this innovative cooperation could influence the attention and the 

mental workload of drivers, is very important.  

Since car driving is a dynamic control activity in a continuously changing environment, 

attention and mental workload are related to driving performance and road safety (Ryu & 

Myung, 2005). They are closely linked to the accident rate for both very high and extremely 

low values. Under extreme mental workload, drivers may exhibit delayed information 

processing, or even not respond at all to incoming information, because the amount of 

information exceeds their capacity to process it. In contrast, when the mental workload is lower 

than the proper level, i.e. drivers feel under-engaged, they become bored, they could even 

experience mind-wandering episodes and thus also tend to make driving mistakes (Engström 

et al., 2005; Brookhuis & De Waard, 2010; Reimer et al., 2012; Milleville-Pennel et al., 2015; 

Aricò et al., 2016; Di Flumeri et al., 2018; Young et al., 2002).   
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Thus, the ability of a mental workload measure to evaluate drivers’ effort correctly and 

continuously might be valuable in strengthening road safety, improving the usability of ACC, 

and designing appropriate adaptive automation strategies (Ryu & Myung, 2005). 

Several research studies about the evaluation of the influence of the ACC on the drivers’ 

mental workload and attention have been carried on, but many of them have been developed 

in a simulator and didn’t include a multimodal approach. 

Nilsson (1996), for example, has investigated the safety effects of ACC in critical traffic 

situations through a simulator study, which has involved twenty drivers. Only performance-

based measures (braking behaviour) and subjective assessments (NASA-TLX) have been used 

in order to evaluate the influence of ACC when the user has been stuck from a braking leading 

vehicle. The obtained results have shown that ACC didn’t change the difficult of the driving 

task, because all the subjects have performed the task relatively well, but has increased the 

reaction times. These results have been confirmed also by Bianchi Piccinini et al. (2012) and 

Takada et al. (2015), that have estimated the subjects’ mental workload by only physiological 

measures (electrocardiograms and respiration). 

Vollrath et al. (2011) have conducted a simulator study to evaluate the ACC influence 

on driving behaviour. The have selected a sample group of twenty-two participants that drove 

on a highway and on a motorway in two different conditions (with and without ACC). Using 

only performance-based measures (maximum velocity, driver reaction time), they have found 

that with ACC delayed driver reactions in critical situations, as a narrow curve or a fog bank, 

have occurred. 

Schakel et al. (2017) have developed a naturalistic driving study consisting of eight 

drivers that have driven their car with ACC for five weeks. They have monitored only 

performance-based measures (spacing, headway, speed, acceleration, lane use, and the number 

of lane changes) and they have found lower reaction times in the ACC ON condition.  These 

results have been confirmed also by the driving simulator study developed by Xiong (2012), 

Fleming et al. (2019), Törnros et al. (2002) and Lee et al. (2002). 

In a driving simulator study, Hoedemaeker et al. (1998) have involved thirty-eight users, 

that drove on a motorway with ACC and manually, and they have found that all went faster in 

the first case because they trusted the performance of the system. 

In different simulator studies, Stanton et al. (1997, 2000, 2005, 2002, 2007) have used 

performance-based measures to study the influence of ACC in terms of drivers’ distraction. 

They have found that the use of ACC has decreased the driver’s situation awareness and 
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attentional resources. Cho et al. (2006), by psychological measures (locus of control, trust, 

workload, stress, etc.), have explained that this decrease was due to the shift of their attention 

away from driving. 

Rudin-Brown et al. (2004) have studied, in test-track research, the behavioral 

adaptation induced by the ACC in drivers. They have considered eighteen drivers that have 

followed a lead vehicle with and without ACC. By performance-based measures, they have 

shown that with ACC the drivers’ behavioral adaptation has increased because they were more 

focused on the secondary task and so the response time to a hazard condition has increased. 

These results have been confirmed also by the driving simulator study developed by Ma et al. 

(2005), Dey et al. (2016), Wang et al. (2022). 

De Winter et al. (2014) have investigated by subjective assessments (NASA_TLX) the 

effects of ACC on drivers’ workload and situation awareness. They have found that this last 

deteriorated using ACC compared to manual driving. 

 

2.1.3. Data collection  

The data collected aims to understand how ADAS influences the behavior of drivers while 

driving. Although the purpose of the ADAS is to have a positive effect on road safety, it was 

found that they can have negative effects on driver behavior. The introduction of such systems, 

in fact, could lead to situations in which the attention of drivers is diverted from traffic as 

induced to perform secondary activities that can distract the attention from driving. As a result, 

a driver may not notice a sudden danger and may not be ready to react promptly. Therefore, the 

impacts on the safety of these technologies often do not meet the expected benefits, because 

drivers change their behavior while driving. This behavior change is called Behavioral 

Adaptation (BA). To analyze in depth the Behavioral Adaptation of drivers towards driver 

assistance systems, it is necessary to take into consideration various factors such as the role of 

secondary driving tasks, Situational Awareness (SA) and their acceptance by users. 

It has been possible to define also a multimodal approach that integrates results coming 

from different techniques: workload subjective assessment (NASA-TLX and personal 

questionnaires), workload physiological measures (brain activity through 

Electroencephalographic Technique and visual behavior through Eye Tracking device), and 

performance-based measures (car parameters through the Video Vbox Pro device mounted on 

the vehicle). 
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Thanks to this multimodal approach, it was possible to: 

 understand the ACC effects on the drivers’ primary task, in order to evaluate how ACC use 

can have an impact on their workload and attention. They have been assessed, in particular, 

for ACC experienced and inexperienced users, to evaluate the influence of the previous 

ACC knowledge. 

 compare the different measures used, in order to provide evidence of the complementarity 

of the obtained results. 
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3. THE IMPACT OF ACC ON VISUAL BEHAVIOUR 

  

3.1. Introduction 

Visual behavior is a useful analysis methodology to identify user areas of interest. In the road 

context, in fact, specific elements can be perceived even at a distance, considering specific 

contexts of brightness or positioning. In addition to infrastructure elements, drivers can also be 

attracted to specific mechanisms within vehicles, especially with the new introduction of the 

Advanced Driver Assistance Systems (ADAS). Many studies, in fact, have reported variations 

in the driver’s gaze in relation to the layout characteristics of the dashboard or, simply, of the 

points of insertion of the controls of the new systems. Visual behaviour, in this way, becomes 

one of the main focuses of road safety analysis, evaluated in relation to the introduction of 

ADAS. In particular, eye tracking allows you to identify the areas of interest of the driver, 

defining them close to attention or inattention (Ghasemi et al., 2022; Acerra et al., 2019; 

Lantieri et al., 2021; Ghasemi et al., 2020; Vignali et al., 2019). 

 

3.1.1. Eye Tracking  

Eye tracking is a process that monitors eye movements to determine where a subject is looking, 

what they are observing, and how long their gaze lingers over a certain point in space. It is a 

technique that records the dilation and contraction of the pupils, thus realizing the eye tracking 

that is the path taken by the eye during vision (Figure 3.1).     

                                                                                                                                                                             

 

Figure 3.1. The Eye Tracking Technology. 
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It was born for clinical purposes, with the aim of understanding how the mechanisms 

of human vision work. The eyes move at least 3 or 4 times per second, when we observe 

something, following a seemingly random order. A displacement lasts a tenth of a second, while 

fixations last from 2 to 4 tenths of a second. 

In 1879, Louis Emile Javal noted that, when reading a text, people focus on some words, 

while others move more quickly. Edmund Huey later created an instrument capable of tracing 

the movement of the eyes in reading. This device consisted of a kind of contact lens, equipped 

with a hole for the pupil, which was connected to an aluminum pointer, capable of moving 

according to the movement of the eyes. With this tool, which can be considered an early eye 

tracker, Huey was able to study what words the reader was dwelling on.  

Later developments in eye tracking came with Charles H. Judd, who developed a non-

intrusive eye tracking device, unlike Huey’s. Judd’s instrument recorded the movements of the 

eyes on the film, allowing a more detailed study of the pupil’s actual position. Guy Thomas 

Buswell, on the other hand, analyzed eye movements in reading, considering the different ages 

and different levels of education of people. Buswell’s studies were fundamental to the 

development of eye tracking in literacy, which is still of great importance today. These theories 

were published in the book "How people look a picture: a study of psychology". 

In 1931, Earl, James, and Carl Taylor created the Ophthalmologist and Metronoscope, 

which were used to record eye movement during reading, helping people read more effectively. 

Through these studies, they were able to understand that reading was not only a regular 

movement of words, as Luis Javal had proposed, but, on the contrary, a reader scans more 

words, stops to better understand them and performs a scan again. Breaks are called fixations 

and scans are called saccharides. 

In 1967, Yarbus used the eye tracker on a group of people, asking them to observe a 

familiar scene for three minutes, and asking them several questions, in order to understand the 

eye tracking strategy.  

In the 1970s and 1980s, there was considerable development of this technology in 

marketing, in order to measure the effectiveness of ads in magazines. This allowed to determine 

which parts of the page are viewed most and for how long (Khan et al., 2019). 

In 1990, the Gallup Applied Science eye tracking system was used by NFL analyst Joe 

Theismann and fans to determine which parts of the game were lost to the observer. 

Since 2001, Tobii Technology has developed eye tracking technology, which allows 

disabled users to control eye trackers using only their eyes.  
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In 2009, Pernice and Nielsen confirmed the use of this technology to analyze what 

people see accurately, what draws their attention or what they ignore, reporting these 

deductions in their book, entitled "Eyetracking Web Usability" (Botero, 2019). The search for 

eye tracking is continuing to study eye movement and the link between the eyes and mind in 

reading and many other fields. 

 

3.1.1.1. Fields of application of eye tracking 

Eye Tracking studies visual behaviour to understand cognitive and emotional processes, 

providing theoretical and conceptual approaches. This is a highly developed technique because 

it is not invasive in obtaining information on vision and brain functions; it is used in different 

fields, such as in neuromarketing, in the processes of literacy and autism spectrum disorder, in 

psychology, in understanding human behaviour, and in medicine. An example is reported by 

Chamorro who in 2012 stated that saccharide movements can be used as biological markers of 

neurological and psychiatric diseases (Botero, 2019). 

The first field, in which eye tracking is used, is represented by the literacy process. This 

research began in the second half of the twentieth century, focusing on the study of fixations 

and saccharides, considering the complex coordination between lexicon, semantics and coding 

of words. 

The second field is related to the study of cognitive processes, such as attention and 

memory.  Attention is the process by which information, both from the environment and from 

the person himself, is filtered and selected. Memory, on the other hand, is a complex process 

through which images are encoded, recorded and retrieved. 

The third field is the diagnosis of neurological and psychiatric pathologies. In this case, 

the use of the eye tracker has the purpose of supporting diagnoses, such as autism spectrum 

disorder, Williams syndrome, schizophrenia and Alzheimer’s. 

The fourth field, finally, is the study of the interaction between person and machine 

(usability), as in the use of mobile phones, computers and TV (Botero, 2019). 

These applications, which are combined with those linked to the subsidy for the control 

of wheelchairs, prostheses and rehabilitation applications, define their high versatility and 

effectiveness. 
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3.1.1.2. The eye movement 

Under normal conditions, the eyes are moved continuously and change direction, about five 

times per second. The ocular movement has a double purpose: to keep the image of the objects 

moving on the fovees and to direct the fovea on the various details of the surrounding 

environment, in order to construct the overall image (Figure 3.2). 

 

 

Figure 3.2. Anatomy of the eye 

 

Eye movements can be distinguished in:  

- Ductions: monocular movements in all directions; 

- Versions: conjugated binocular movements, in which the visual axes maintain their 

reciprocal position, that is, they move in the same direction; 

- Vergences: binocular movements in which eyes move in opposite directions. 

 

In addition, such movements can be distinguished as slow or fast, depending on the speed of 

movement. The system that regulates such eye movements is a neuroanatomical system, which 

is very complex and still hypothetical. The main functions of this system can be attributed to 

six distinct neuronal control systems: physiological nystagmus system, slow motion tracking 

system (Pursuit), vestibule-ocular reflex system, optocyst movement system, Vergence 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 29 

 

movement system and ocular saccharide movement system. All these systems exploit, as 

effectors, the motor neurons of the oculomotor nuclei of the brain stem. 

The physiological nystagmus system is a system that affects the involuntary movement 

of the eyes.  It is a slight tremor, due to the movement of some extra-ocular muscles, which 

involves a continuous change of the image on the retina. 

The system of slow tracking movement (smooth Pursuit) keeps the image of the object 

in the fovee, which moves continuously in the field of gaze.  It intervenes mainly when the 

target moves and the observer remains stationary, so as to keep the image continuously on the 

fovea. This attitude of the motor system is due to the fact that the nervous system calculates 

the direction and speed of the movement of the target image on the retina. These operations are 

controlled by the occipital cortex. The smooth Pursuit system can only operate when the target 

image is on the retina, so it does not act in the dark, unlike the saccharide system. 

The vestibule-ocular reflex system serves to stabilize the eyes when short and sudden 

changes in the head position occur. This system keeps the gaze in the same direction as before 

the movement of the head. The signal that gives rise to this reflection depends on the 

membranous labyrinth of the inner ear. This codifies the movements of the head, in reference 

to the three axes of the space and this happens thanks to the presence of the three semicircular 

channels, each of which is placed in direction of one of the three planes of the space. Each 

semicircular canal contains viscous liquid, called endolymph, which moves inside them, 

depending on the position assumed by the head (Figure 3.3).   

 

 

Figure 3.3. Anatomy of the hear. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 30 

 

 

The end of each semicircular canal has a bulge, inside which there are the receptor 

organs, which are hair cells able to appreciate the displacements of the endolymph by inertia, 

when the head is moved laterally, forward or backward, Either up or down.  These cells transmit 

the signals related to the neurons of the vestibular nuclei, which evaluate the variation of the 

position of the head by integrating the information coming from each channel, then send an 

appropriate corrective signal to the oculomotor nuclei in order to stabilize the eyes. The 

movements that derive from this system are present from birth and are also carried out with 

closed eyes.  

The optocytic system is a system that involves the involuntary movement of the eyes, 

when we make large movements according to the translation speed of the image on the retina. 

It produces a movement of the eyes in the same direction and with the same speed. The 

vergence system, on the other hand, is a voluntary movement system, which allows the gaze to 

converge on the point of fixation. 

In eye tracking, the two eye movement systems mainly observed are the saccharide and 

fixation systems, which will be explained in more detail, since the study of bags and fixations 

allows to understand the attention and distraction of the driver driving on the various objects 

around him. The bags and fixings are the two parameters analyzed by eye tracking, in order to 

obtain information on eye tracking and driver behaviour while driving, to implement road 

safety (Vetturi, et al., 2019). 

 

3.1.1.3. Saccharide system 

The saccharide system presides over the rapid orientation of the fovea towards a target, which 

is in the visual field and on which the observer’s interest is directed; when visual attention is 

transferred between two fixed areas, with the aim of creating an area of interest in the narrow 

field of vision (Khan, et al., 2019). 

This system generates conjugated eye movements, which are termed saccharide. The 

saccharides are rapid eye movements from one fixation point to another, which lasts from 30 

to 80 ms, in which you do not have a vision. The subject does not perceive visual information 

along the trajectory of the movement.  

According to some medical studies, some cognitive functions are temporarily inactive 

during the saccharide; the eye does not follow a straight path but may follow different 

trajectories during this movement (Vitturi, et al., 2019). 
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The saccharide movement lasts fractions of a second, in particular, it starts 0.2 seconds 

(latency) after the target detection and is completed in about 0.05 seconds (execution time). 

They are of a basilistic nature; once the neuronal process, which causes a saccharide movement, 

is initiated, the control system is unable to generate another, before 0.2 seconds, regardless of 

the behavior of the target.  

To perform a saccharic motion, the system must know the position of the object in space 

and the position of the eye in the orbit. These parameters are then analyzed by the control 

system and this provides a certain direction and amplitude. 

 

3.1.1.4. Fixation system 

The fixation system keeps images of motionless objects on the fovee. When the eyes and the 

target are stationary, the fixation can be maintained through a conscious effort, that is, by 

suppressing the voluntary sacs. During fixation, to avoid the phenomenon of local adaptation 

(Troxler effect), there are small continuous and unconscious movements of the eyes, of 10-15 

minutes of arc width. They consist of: drift, which are slowly drifting movements, which make 

the fovea move on the image of the fixed object and flick, which are small saccharide 

movements, which make the fovea return to the target after a drift has removed it too far from 

it. 

A fixation occurs when the eye focuses on a specific area, so the subject perceives only 

a small part of its visual field. During fixation, there is the cognitive processing of the observed 

object and the transfer of attention to it. The duration of the single fixation depends on the 

intensity of the luminance contrast, the complexity of the vision area and the associated 

cognitive load (Vetturi, et al., 2019). Fixations last from 20 to 60 ms and you have vision 

(Botero, 2019).  

Most fixations are directed at the focus of expansion (the point in space where all the 

vectors of the optical flux intersect) with the head, which looks upwards (Costa, et al., 2019). 

 

3.1.1.5. Operation of fixation-saccad system 

Humans and other foveated animals, such as monkeys and birds of prey, visually scan scenes 

with a fixed-saccharide-fixed system: periods of stability (fixations) are interspersed with rapid 

eye shifts (sacs). During fixation, the visual axis (and the high-resolution foveola) is directed 

toward an object or a place of interest. For humans, the duration of the stability period is of the 

order of 0.2-0.3 seconds, depending on the complexity of the task and the stimulus. While the 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 32 

 

bags last between 0.01 and 0.1 seconds, depending on the amplitude of the movement. If the 

scene contains moving objects, or is the same subject in motion, the stabilization of the gaze 

on an object requires a tracking fixation or a smooth Pursuit chase. In the latter, the eye rotates 

to keep the eye fixed on the target.  

When the observer’s head bounces, due to external disturbances or locomotion, the 

stabilization of the eye involves compensatory eye movements, vestibulo-ocular and optocystic. 

These movements cannot be differentiated in terms of oculomotor or neurophysiological 

properties, therefore they must occur simultaneously (Pekkanen, et al., 2017). We then rotate 

the head in a comfortable position and then orient our eyes to see something. In this process, 

the position of the head defines the direction of the gaze on a coarse scale, while the direction 

of the gaze on the fine scale is determined by the orientation of the eyeball (Khan, et al., 2019). 

An important aspect to understand the functioning of fixings and pouches is the 

modeling of the direction of the gaze, which is based on the visual axis or optical axis. The 

visual axis, which forms the Visual Axis (Los) and is considered the effective direction of the 

gaze, is the line that connects the center of the cornea and the fovea. The optical axis, or Optical 

Axis (log), is the line that passes through the centers of the pupil, cornea and eyeball. The center 

of the cornea is known as the nodal point (Figure 3.4). 

 

 

Figure 3.4. Visual and Optical Axis. 

 

Fixations and saccades provide information, which is used for the classification and 

identification of visual, neurological and sleep conditions.  

In the field of medical psychology, fixation data is used to analyze a person’s attention 

and concentration level, while saccharide movements are used in studies of human vision, in 

drowsiness and vision owl and lizard, because of their similarity to the visual behavior of these 

animals (Khan, et al., 2019). 
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In night vision, the lighting values vary from 0.0001 lux, on a night without a moon, to 

1 lux, on a night with a full moon; the low night light results in less stimulation of the eyes, 

which, therefore, tend to adapt. As a result, it is more difficult to assess the data of fixations 

and pouches, which lead to greater distraction by the driver.  

About 95% of retinal photoreceptors are sticks, which are sensitive to light and respond 

to individual photons. In the periphery of the retina, there is a low spatial acuity, which entails, 

together with less color vision at night, an adaptation of vision (Gruner, et al., 2017). 

 

3.1.1.6. The psychology of driving   

Psychology is the science that studies the psychic, conscious and unconscious, cognitive 

(perception, attention, memory) and dynamic processes (personality, motivations, emotions). 

It uses various methods to investigate the personality of individuals, in which, in relation to the 

study of driver psychology. 

Driving behavior is related to emotions, habits and innate or acquired facts. The 

individual is free to make decisions but is conditioned by social forms, which are positive or 

negative conditions. Therefore, the assessment of the driver’s behaviour at the wheel should 

not only be theoretical, but also psychological, by asking the subject a series of questions, 

through interviews or questionnaires. 

The driver’s performance derives from his personality and this can be detected 

behaviours, which cause a reduction in the risk to the driver; we analyze, for example, the 

traffic conditioned by vehicles, therefore we evaluate the different psychologies of drivers, and 

the attention placed on other drivers. 

The first fundamental aspect to investigate about the driver is his perception at the 

wheel, that is the set of information that the brain receives through the senses, which it then 

processes, to grasp reality. To perceive space means to recognize the geometric characteristics 

of an object. Perception is a complex aspect and is linked to optical illusions, which can lead 

the driver to interpret reality incorrectly and make more mistakes as he loses concentration. 

The second fundamental aspect is learning, which is achieved by making experiences, 

in which the behaviour of the driver adapts to the surrounding environment. Driving, for 

example, is learned through experience, but not everyone becomes a safe driver; this leads to 

more accidents and less road safety.  
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Last fundamental aspect is memory, which refers to a dynamic vision of reality, then to 

continuous changes. He uses not only perception and coding, but also past experiences (Bucchi, 

et al.,2012). 

Driving is important in the perception of the environment through the senses, ie sight, 

hearing and smell. In this paper, for the study of eye tracking, of particular interest is the sense 

of sight. The human eye is a camera, which channels light waves through the opening of the 

pupils. It is equipped with a natural lens, which focuses the rays of light and transforms them, 

through the process of adaptation; these rays focus on the retina of the eye. So, when we look 

at an object, the image will be inverted and two-dimensional on the retina, while the depth and 

three-dimensionality of the object will be processed by the brain (Bucchi, et al., 2012). 

 

3.1.1.7. Gaze study 

The study of gaze is an indirect measure of cognitive processes. The development of eye 

tracking technology has allowed an accurate assessment of visual behavior, which consists of 

the behavior of the eye and eye movement. 

Through the gaze we can gather information about what other people are observing or 

we are also able to perceive a multitude of meanings, such as the desire to communicate. 

Active detection is a process that allows our senses to be directed toward the 

environment, to extract relevant information. In fact, the behavior of the gaze can be considered 

a form of active detection, since we decide where to move the eyes in specific places, in order 

to sample the useful information of a visual scene. Peripheral vision, however, is not as reliable 

as central vision, because we can only direct our eyes one place at a time. 

 In the study of the gaze, two parameters are considered, which are attention and 

distraction. These are essential for eye tracking, as they lead to a better understanding of the 

driver’s driving behaviour and can be used as a means of reducing road risks. For example, to 

measure attention and distraction we consider the so-called areas of interest (AOI) related to 

specific areas of the road pavement (Ghasemi, et al., 2019). 

Attention is of fundamental importance for road safety. Drivers must always be aware 

of the environment around them, going to observe the various elements that make up the visual 

scene. The attention is opposed to the probability of committing accidents, that is, due in most 

cases to the development of secondary activities. These are carried out by the driver together 

with the primary driving activity; the need to perform more than one action, at the same time, 

leads to the distribution of attention in several spatial positions simultaneously.  
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Secondary activities induce the driver to a high degree of distraction, leading to a 

decrease in driving performance and producing a potential increase in road accidents. This can 

be interpreted as an inability to divide attention between the different tasks performed. 

One of the most common secondary activities is the use of the telephone; it is 

considered one of the main causes of road accidents and one of the main sources of reduced 

driving performance (Wang, et al., 2017). 

Distractions can be visual, manual or cognitive.  Input signals (inputs), for example, 

can be direct, that is, measured directly by the driver, or indirect, that is, measured by the 

vehicle. The acceleration, steering and braking activities of the vehicle are examples of indirect 

signals, useful for detecting driver distractions.  

There may also be models, which allow drivers to assess distractions, such as 

mathematical models, rules-based models and models based on machine learning algorithms 

(Gjoreski, et al., 2020). 

 

3.1.1.8. The techniques used by eye tracking 

Eye tracking technology involves the study of eye movement, which can determine what we 

are thinking, based on where we place our attention.  

Eye tracking can be defined as the measurement of movement (activity) of the eyes, 

while eye tracking is the analysis of data, compared to the visual scene (Chennamma, et al., 

2013).  The most widely used methods for recording the position and movement of the eyes 

are: ElettroOculography, Sleral Search Coils, Infrared Ophthalmology and Video-

Ophthalmology.  

Electro-ophthalmology consists of sensors attached to the skin, around the eyes, in 

order to measure the electric field, when the eyes rotate. Used for medical purposes, it is easy 

to use, but it is an invasive method. It is mainly used to detect eye movements during sleep 

(Figure 3.5). 
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Sleral Search Coils consists of small coils, embedded in a contact lens, which allows 

you to measure reflected light. It has high resolution and precision, but it is an invasive method 

since it is in contact with the eyes. It is used in medical and psychological research (Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

Infrared ophthalmology measures the intensity of the reflected infrared light. The light 

source and sensors can be placed on spherical glasses. Compared to Electro-ophthalmology, it 

is less noisy but is more sensitive to changes in the external light voltage. It is able to measure 

eye movement for 35 μs along the horizontal axis and for 20 μs along the vertical axis and is 

non-invasive (Figure 3.7). 

 

   Figura 1.5: Elettro-Oculografia 

Figure 3.5. The Elecrto - ophthalmology. 

Figure 3.6. The Sleral Search Coils. 
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Figure 3.7. Infrared ophthalmology. 

 

Video Ophthalmology is based on the video function, which is the most commercially 

used. Use single or multiple cameras to determine eye movement using information from 

recorded images. It can be invasive or non-invasive and visible or infrared light (Chennamma, 

et al., 2013) (Figure 3.8). 

 

 

 

  

Eye detection methods can be further categorized according to the shape, characteristics 

and appearance of the eye. Techniques based on the shape of the eye refer to geometric eye 

patterns, that is, an elliptical or complex eye structure, with the addition of a similarity index. 

Figure 3.8. Video-ophthamology. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 38 

 

The elliptical appearance of the eye can serve in daily work. Despite the simple elliptical-

shaped models of the eye model features, such as the pupil or the iris, under various viewing 

angles, these models fail to capture variations and inter-variations of certain eye characteristics. 

Instead, the complex models, based on the shape of the eye, are based on the thorough 

modeling of the shape of the eye. Function-based techniques identify and use a set of unique 

characteristics of the human eye. These techniques identify the characteristics of the eye and 

face, which have a reduced sensitivity to changes in viewing angles and lighting. 

Techniques based on appearance detect and trace the eyes, using eye photometry, which 

is characterized by filter response or eye color distribution, relative to the surrounding 

environment. This technique can be applied both in a spatial domain and transformed, thus 

reducing the effect of light variations (Khan, et al., 2019). 

 

3.1.1.9. The devices of Eye tracker 

Eye tracking technology uses the so-called Mobile Eye tracker as an eye tracking tool. The 

Mobile Eye tracker is a useful device for measuring the position and movement of the eyes. 

They are used in research in psychology, psycholinguistics, and marketing, as input devices for 

human-computer interaction, and in product design. Applications include web usability, 

advertising, package design and automotive engineering. In general, eye tracking studies, 

which retain commercial purposes, involve the presentation of a target stimulus to a sample of 

consumers, while an eye tracker records their eye movements (Figures 3.9, 3.10). 

  

Examples of target stimuli may include websites, television programs, magazines, 

newspapers, and software. The obtained data can be statistically analyzed and graphically 

reproduced within specific visual models. Fixations, saccharides, pupil dilation, and blink 

Figure 3.9. Mobile Eye Tracker with lenses. Figure 3.10. Mobile Eye Tracker without lenses. 
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oculars are some of the metrics that are sought, in order to determine the degree of effectiveness 

of a product. 

Eye trackers also provide information on driving behaviour, through monitoring of the 

user’s observation point and through eye movements; this makes it possible to assess the 

quality of the road safety infrastructure and how the infrastructure influences the behaviour of 

the various actors in terms of safety performance.  

Studies of eye movement date back to the late nineteenth century, but in the eighties a 

hypothesis was formulated, according to which there is no lag between what is fixed and what 

is processed; during fixation, the subject elaborates cognitively what observes (Carriers, et al., 

2019). In any case, the mechanism involves infrared rays hidden in the monitor so as not to 

disturb the eye and subsequently recorded by a sensor. Consequently, the analyses that can be 

carried out are: 

- Analysis of fixations on the visual display for some time, in order to search for the 

overall message of the area of interest; 

- Saccades analysis and analysis on visual segments. 

The amount of infrared, that is, the illumination received by the eyes, is less than the amount it 

receives outside on a sunny day and ten to a hundred times less than the amount it receives 

from the light, to which the eye is exposed for a long time.  

Eye trackers can also be remote or portable. The first is fixed to desks to perform tests 

on the computer screen; they are equipped with a high sampling rate and visual data accuracy 

and are useful in the data processing.  

They are also equipped with a single or multi-camera camera (Figure 3.11). 

 

 
Figure 3.11. Image capture steps via eye tracker. 
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Portable eye trackers, however, are mounted on the head, using glasses. They are 

equipped with good mobility for field tests and are excellent in video recording, then used for 

data processing (Cheng, 2011). Mobile eye trackers are now widely used in eye tracking, as 

they allow high lightness and mobility. Among the most popular and used are the Mobile Eye 

XG produced by ASL, Pupil Core and Tobii Pro glasses. 

 

3.1.1.10. Equipment limitations 

An essential aspect of eye trackers is the quality of the data, important to verify the validity of 

the results of the search and the interaction of the gaze. Data quality can be defined as the 

spatial and temporal deviation between the direction of the actual and measured gaze and the 

nature of this deviation. The validity of the research results, based on the analysis of eye 

movement, is clearly dependent on the quality of the eye-tracking data. The same is true for 

the performance of the look on communication devices.  Visual data contains noise and errors, 

which need to be taken into account. 

There are currently no standards or standards for what researchers report on data quality 

in publications or what manufacturers report on the typical performance of their eye tracker. 

Methods exist to deal with low data quality and to maximize the validity of results: 

correct or abandon data. However, these methods cannot be taken into account without first 

analyzing the data and identifying noise or errors. Since fixation analysis obscures the quality 

of the original data, most researchers estimate the quality of their records from various graphs 

of samples taken. 

Researchers wonder if the quality of the eye tracker’s data affects the validity of the 

results and to answer these questions they referred to several effects. 

The first effect is the accuracy of the measurements of the residence time. Accuracy 

(sometimes called offset) is one of the most highlighted aspects of data quality; it refers to the 

difference between the direction of true and measured gaze. The time of permanence (duration 

of the look) is the time of observation of an AOI (area of interest), from the entrance to the exit, 

while the time of total permanence is the sum of all the times of permanence for AOI. Often 

the noise in the data can be countered by increasing the amount of data, such as with the effect 

of a low sampling rate on the duration of the tracker fixation (Holmqvist, et al., 2012). 

The second effect is precision in the number and duration of fixations. Inaccuracy is 

not the only problem of data quality that affects the feasibility of research results. Precision 

refers to the consistency of the calculated points of view when the direction of the gaze is 
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constant. Precision measurements are commonly conducted to locate the eye tracker; this 

measurement gives an idea of system noise or error. 

The third effect is data loss, which refers to samples reported as invalid by the eye 

tracker. Data losses arise from periods when critical features of the eye image, often the pupil 

and corneal reflections, cannot be reliably detected and traced. For example, when glasses or 

contact lenses prevent the camera from capturing a sharp image of the eye tracker (Holmqvist, 

et al., 2012). 

The fourth effect highlighted is the position of the screen on the size of the pupil. Pupil 

size reacts primarily to changes in lighting but is often used as a measure of mental workload, 

emotional valence, or as an indication of drug use. A prerequisite for such investigations is that 

changes in pupil size affect the true change in pupil size and therefore that the eye scanner does 

not add some systematic error. Factors that affect the quality of the data are the different eye 

physiology of the participants, the different levels of operator preparation, the recording 

environment, the camera position and the eye tracker design (Holmqvist, et al., 2012). 

The last major limitation of these tools is related to data analysis. In fact, it presupposes 

a considerable amount of time in relation to frame by frame analysis. In fact, this investigation 

requires a manual quantification of the frames related to each category of element viewed, 

without being able to place the least element of output from the program itself. 

 

3.2. Methods  

3.2.1. The Mobile Eye Tracker  

Applied Science Laboratories, whose acronym is ASL, was one of the first companies to 

examine eye movements and pupil dynamics. For over thirty years, this company has 

developed portable eye trackers for eye tracking. These tools are still used in various fields, 

such as sports, medicine, cars and many others. Among the eye trackers produced by ASL is 

the Mobile Eye Tracker XG. 

The Mobile Eye XG is an eye tracker that allows you to continuously detect the driver’s 

gaze while driving, allowing you to determine, in particular, the point of eye fixation. It is 

designed for the monitoring and tracking of the human eye’s gaze and the main requirements 

are lightness and mobility, given the absence of cables to external devices (Figure 3.12). In 

addition, it allows low conditioning of the subject during the test (Mazzotta, et al., 2014). 
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The operation of the Mobile Eye XG follows a series of steps, which must be respected, 

in order to properly adjust the instrument. The Mobile Eye (ME) is an eye tracker designed for 

eye tracking and tracking applications, suitable for use on drivers. In fact, it is a lightweight 

instrument that allows good mobility for the user, avoiding the impediment of particular driving 

maneuvers. This instrument consists of several elements: 

1. The Spectacle Mounted Unit (SMU), composed of two cameras: the first focused on 

the right eye that records all the movements of the papilla, while the second dedicated 

to the shooting of the external environment. The eye camera, in fact, controls the 

activity of the eye through a mirror able to reflect the infrared spectrum but not the 

visible light, so as not to obscure the normal field of view of the subject. The camera 

scene, on the other hand, is facing forward. Both cameras are mounted on supplied 

glasses (Figure 3.13). 

 

Figure 3.12. The Mobile Eye Tracker. 
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        Figure 3.13. Spectrale Mounted Unit (SMU). 

 

2. Display Transmit Unit (DTU): a small display, with transmission unit (Figure 3.14). 

This tool is fundamental for two reasons: 

- activate the test recording; 

- monitor, during the analysis, both the external scene and the eye of the study 

sample. 

 

 

Figure 3.14. Display Transmit Unit (DTU). 

 

3. a laptop, which is useful during calibration. The software necessary for the subsequent 

data processing is installed. 

 

Eye camera and scene camera videos can be recorded simultaneously on an SD card memory 

device, via the DTU, or transmitted directly to the computer via LAN cable or via a wireless 

connection. The computer, using an application called EyeVision, processes the videos of the 
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eye and the external environment in order to compute the point of the eye’s trajectory, on the 

image of the environmental scene. This can be done in real-time if it is connected to the DTU 

with LAN cable or with WiFi connection, or it can do the same off-line processing from data 

recorded on the SD card from the DTU. 

In the pc, the point of focus of the look is visualized like a cursor overdubbed to the 

scene image. It records at a frequency of 30 Hz in a video format "avi" and can also store a 

digital file containing the recording of the diameter of the pupil and the coordinates of the gaze 

with reference to the field of view of the camera scene. The software that Eye Vision is able to 

generate and process are: 

 User file (.evi): system and calibration data for each user. These files can be used, with the 

specific calibration saved, for subsequent uses; 

 Logged data Files (.csv): Eye and scene data generated by the track record tool in Eye 

Vision; 

 Eye and Scene video data (.avm): original eye and scene videos, recorded by the DTU on 

the SD card; 

 Video file (.avi): Video and audio recording with viewing point generated by Video Record 

tool in Eye Vision. 

 

The interface of the software Eye Vision (Figure 3.15) is composed of four main sections: 

 the display, where the eye or external scene can be displayed; 

  the button panel; 

  the side panel; 

 the status bar. 
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Figure 3.15. Software Eye Vision. 

 

3.2.1.1. Calibration phase 

In order to use the Mobile Eye, the corresponding calibration is required. The Mobile Eye uses 

an eye tracking technique known as "Pupil to CR" tracking. This method uses the relationship 

between two eye characteristics that are the black of the pupil and the mirror reflections from 

the frontal surface of the cornea (Corneal Reflections) to compute the gaze within the scene. A 

set of three harmless infrared (IR) lights is projected onto the eye by a set of LEDs located on 

the SMU (Figure 3.16). Near-infrared light is visible from the dedicated eye camera. 

 

 

 

 

 

 

 

 

 

 
Figure 3.16. Spot cluster. 
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However, the user is not distracted by it, as he does not perceive it. The mirror reflection 

of these three lights from the front surface of the cornea appears in the image of the camera as 

a triangle of three points, placed at a fixed distance between them, called spot clusters. When 

the eye rotates in its orbital cavity, the center of the pupil moves relative to the spot cluster. In 

it, the eye motion tracking system can calculate the direction of the eye trajectory, evaluating 

the vector between the pupil and a corneal reflection (CR). The system is then able to relate 

these angles to the image of the second camera that records the external environment, in order 

to compute the point of view with respect to the visual field of the latter. 

Once this has been evaluated, the glasses have been adjusted. This is done by using the 

image displayed on the DTU: 

1. Use the Eye/Scene display button to display the camera image of the eye and then, with the 

help of this image, adjust the camera, together with the monocular lens, to obtain a correct 

image of the eye; 

2. Then you adjust the glasses on the user to align the image of the eye on the monitor: you 

raise the monocular lens, then rotate it until the three points reflected become visible and 

focused (Figure 3.17); 
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3. In addition, the camera that competes with the external scene is adjusted by pressing the 

Eye/Scene display button. 

 

You then open the Eye Vision from the ME PC, choosing to create a new profile for each of 

the evaluated users. This is done by pressing the "Save as' button (Figure 3.18). 

 

 

Figure 3.18. Saving Process. 

 

The calibration result can be saved by generating an "evi" file. By selecting "Display" 

under the heading "Alignment", the procedure of alignment of the image of the eye in the 

monitor can be followed (Figure 3.19). 

Figure 3.17. Slow rotation performed during calibration. 
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For the positioning, the subject must focus his gaze straight ahead. It is important that 

all three CR points are visible and that they are in or very close to the pupil. It is necessary, at 

this point, to move to the phase of recognition of two important parameters: 

 Corneal reflection (CR): three-point recognition, useful for calibration. Proceed by 

selecting "Display" under "Spot" in the right panel of the Eye Vision screen. By clicking 

on "Auto Threshold and Calibrate" the software automatically calibrates the three CR 

points. They are thus visible on a black background (Figure 3.20).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Alignment procedure. 

Figure 3.20.The three points of corneal reflection (CR). 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 49 

 

 The pupil: is located through a dark square with a circumference inside it. To view it, click 

on "Display" under "Pupil" in the right panel of the Eye Vision screen (Figure 3.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

To perform an automatic recognition click "Auto Threshold" under the heading "Pupil". The 

edge of the pupil will be indicated by a white line, formed by many points of different 

thicknesses. When the highlighted object is recognized as the pupil, its perimeter will be drawn 

through a yellow circle, approximately coinciding with the white outline. It will also be 

possible to distinguish a cross of the same color, indicating its center. The top left score in the 

display is a measure of the reliability of the pupil position. It is important to consider that, by 

falling below a certain limit, the pupil position for that frame is discarded. In fact, when this 

happens, a certain amount of lost frames are recorded. 

The last important phase of the calibration is the mapping of the points fixed on the 

scene, correlating the positions of the eye characteristics (pupil and CR cluster) to known 

positions of the external image.  Proceed by selecting the "Scenes" section in the right panel of 

the Eye Vision software. The display will show the image from the camera that takes the scene. 

The calibration procedure of the eye point is necessary for the system to be able to relate the 

eye movements with the direction of the eye. The software requires at least three calibrated 

points (marked with green crosses).  

Figure 3.21. Pupil identification. 
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While the user looks at a certain object, the operator makes use of the computer mouse to go 

and select the corresponding object on the scene image on the monitor. A cursor in the form of 

'+' will appear in the scene image, as in Figure 3.22. It will turn yellow as data is collected. 

 

 

 

During this phase, the user must keep his head still and his gaze fixed toward the 

indicated direction. When the processing is finished, two different points in the monitor can be 

evaluated: 

    the green cursor (positive result); 

    the red slider (negative result). 

 

If the processing fails, it means that, probably, one of the characteristics of the eye has not been 

traced or that the positions of the ocular characteristics were not consistent. If necessary, ask 

the user to move his head or make the initial steps a new time. Usually, when the eyes are 

particularly clear and characterized by a lot of liquid, which increases reflections, there are 

particular problems. You must repeat this process for several calibration points that are 

distributed in the main nodes of the scene (center-right-left-edges). The minimum number of 

points is three, but in the various calibrations about seven/eight points have been traced, so as 

to increase the accuracy of the trajectory displayed. The cursor that led to a positive result 

remains on the screen until the calibration ends. In this way in the image of the external scene, 

a marked red cross appears showing the position of the gaze, called the pointer. At this point, 

the calibration phase can be defined as finished (Figure 3.23). 

Figure 3.22. Points of Calibration. 
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When the system is set and calibrated, Eye Vision can process the image of the eye and 

calculate the position of the gaze in the corresponding field of the scene. The output of the 

direction of the gaze consists of a cross superimposed on the video of the scene and a data file 

in ASCII format (.csv). Once the various instruments have been arranged, the test can begin. 

 

3.2.1.2. Mode Analysis of the Visual Behavior 

In the study the second round was analyzed, the actual test. An Excel spreadsheet has been built 

for each user in which the categories with which the users' points of fixation are cataloged have 

been inserted. Furthermore, a box was inserted in which the lost frames were inserted (due to 

intense light or incorrect calibration of the instrument). The identified categories are (Figure 

3.24): 

 Dashboard: internal part of the vehicle placed in front of the user; 

 Prey: vehicle used during the test for the simulated events; 

 Signboard: vertical sign; 

 Background: all elements outside the driving scene (sky, trees); 

 Road: infrastructure (paving, guard-rail); 

 Mirror: exterior rear-view mirrors, either left or right; 

 Internal Mirror: interior rear-view mirror, to check the situation behind the vehicle 

(Attention); 

 Internal Mirror: internal rear-view mirror, to check the passenger in the back seat 

while talking (Negligence); 

 Car: all the vehicles circulating in the road except the prey vehicle; 

Figure 3.23. Cursor - red cross. 
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 Speaker: operator sitting next to the driver; 

 Interior Car: internal part of the vehicle not part of the dashboard. 

 

 

Figure 3.24. Points of view - Car, Dashboard, Street. 

 

During the analysis of the videos, the number of frames relative to the single category 

was inserted into the file. Table 3.1 shows an example of the file configuration; below each 

category are inserted consecutive frame values in which the user sets the same category.  

The highlighted values refer to a single event, which will be explained in a second sheet 

in order to analyze the time sequence with which the user sets a specific point. 

 

 

Table 3.1. The number of frame. 

In the second "events" sheet (Table 3.2) the number of frames in which the user sets a 

specific category has been entered, within the time interval of the simulated events. Each single 

frame sequence refers to a single line so that the dynamics of the driver's gaze during the event 

can be reconstructed. It is also possible to distinguish the moment in which there is the ignition 

of the stop of the prey vehicle and the moment in which the user brings his gaze to it.  
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This characterization was useful at a later time in order to assess the perception time of 

the user with the system switched on or off. 

 

 

Table 3.2. Number of Frame per Events. 

 

For attention, it has been considered the categories signboard, road, car, prey, mirror, 

and internal mirror (attention); due to inattention, they were considered dashboard, background, 

distraction internal mirror, interlocutor and car interior. An exception is represented by the 

category of external mirrors, which during the events were considered as inattention. In 

particular, we talk about categories of attention when the elements included allow not to be 

distracted from the task of driving; by distraction, instead, we mean all the elements that can 

distract from the primary task. 

Eliminating the total lost frames, the percentages of attention and inattention on the 

total frames were calculated. 

Once the analysis of the single frames has been completed, we have moved on to the 

analysis of fixations (table 4.10), where for the latter we mean the fixed gaze at the same point 

for at least two or more frames. From the literature, in fact, the single frame can be associated 

with a probable eye movement, called saccade. Attention and inattention have also been 

categorized as fixations. Converting the number of frames in time (multiplying them by 33 ms) 

the total time expressed in milliseconds was obtained, and the average durations of attention 

and inattention fixations were calculated. These tables were made for each individual 

participant in the test and the cases in which the percentages of lost frames did not exceed the 

30% threshold were considered valid. User events with percentages of attention / inattention 

equal to 100% / 0% or 0% / 100%, deemed to be unreliable, were also excluded. 
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Once the selection of the data useful for the analysis was completed, the driving 

behavior was compared with the system turned on and off, distinguishing the analysis for single 

trunks and for events.   

 

3.3. Outcomes  

Graph 3.1 shows the influence of ACC on the drivers’ visual behaviour. The performed analysis 

has revealed that the average percentage of the attention frames has decreased using ACC. 

According to Lin et al. (2008), when ACC controls the vehicle, the drivers feel safer and tend 

to distract themselves from the driving scene with secondary tasks. Without the system, instead, 

they more focus on the road ahead. This tendency is independent from the ACC previous 

knowledge, but it is more evident for ACC no-experienced users (-17%, χ2 = 6.05, p = 0.002) 

respect the ACC experienced ones (-10%, χ2 = 3.25, p = 0.002). 

 

 

Graph 3.1. Attention and inattention frames for ACC ON and OFF conditions, between ACC 

experienced and no-experienced users. 

 

These results have been confirmed during the individual events. The average 

percentage of attention frames was higher in the ACC OFF condition, even when the driver 

was engaged in the secondary task (following a braking vehicle and keeping a distance from it 

to include it within the driver field of view) (288 observations (48 participants - 3 events -2 

ACC conditions), F(1, 288) = 88.59, p < 0.001, χ2 = 0.37) (Graph 3.2). For the same event, the 

ACC-experienced users were less distracted from the driving scene respect the ACC no-

experienced users. 
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In the ACC ON condition, the experienced drivers kept almost constant attention during 

the succession of events. The other ones, instead, showed an attention level that decreased 

passing from the first to the third event. Although they realized that the vehicle in front of them 

suddenly brakes, their concentration on the driving scene did not increase. This underlines that 

users tend to use the Adaptive Cruise Control as a replacement for driving and have a good 

degree of confidence in the system and its proper functioning.  

 

 

Graph 3.2. Average percentage of frames during the events, considering ACC state and drivers’ ACC 

experience. 

 

Independently from the previous experience of the system, with ACC the drivers 

focused more attention on the interior of the vehicle, to monitor whether the system was 

functioning properly. The average number of frames on the dashboard using ACC (36 for ACC 

no-users (SD = 12), 23 for ACC users (SD = 17)) was always higher than manually driving (4 

for ACC no-users (SD = 8), 3 for expert (SD = 11)) (Graph 3.3). So, they are less focused on 

the driving scene and vehicles on the road. The average number of frames “road and vehicles” 

with the ACC on (171 for ACC no-users, 161 for ACC users) was always lower than the ACC 
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off (227 for ACC no-users, 296 for expert) (96 observations (48 participants - 2 ACC 

conditions), F(1, 96) = 7.17, p < 0.002, χ2 = 0.12). 

 

  

Graph 3.3. Average number of frames on the road and the vehicles, the car dashboard, and the lead 

vehicle during the events, considering ACC state and drivers’ ACC experience. 

 

For both users, this trend was also evident during the events, in which the function of 

maintaining the correct safety distance was exerted by the ACC. Even in these cases, drivers 

fixed the dashboard by checking the correct functioning of the system, instead of looking at the 

vehicle braking. If the ACC was off, they focused attention on the previous vehicle, monitoring 

its motion and the moment of braking (161 versus 227 frames for ACC user and 171 versus 

296 frames for ACC no-user) (288 observations (48 participants - 3 events -2 ACC conditions), 

F(1, 288) = 3.91, p < 0.002, χ2 = 0.25). 

 

3.4. Conclusion  

The visual behaviour of users is particularly influenced of the Adaptive Cruise Control. 

In the study it was possible, in fact, to find how, both for users ACC users and no-user, the 

percentage of attention is always lower with the system on. This factor is influenced by the 

user’s confidence in the system; however, this situation can turn into a decrease in road safety 

because, with possible malfunctions of the system itself, the user would be in very dangerous 

accident situations. This is confirmed by the evaluation of visual behaviour during the events. 

Even in conditions of imminent danger, in fact, the user does not pay attention to the driving 
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scene, catapulting into a scenario that, in the case of real driving, would lead to a very high 

probability of collision. 
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4. THE IMPACT OF ACC ON DRIVING BEHAVIOUR 

 

4.1. Introduction  

In paragraph 2 of Art. 2 of the Highway Code are classified roads according to their 

construction, technical and functional characteristics in the following types: 

A- Highway; 

B- Main suburban roads; 

C- Suburban secondary roads; 

D- Urban highways; 

E- Urban streets of neighbourhood; 

F- Local roads. 

 

In particular, an urban road (D) is defined as a road with independent or separated carriageways, 

each with at least two lanes, and a possible public transport lane, paved platform on the right 

and sidewalks, with any intersections at right traffic lights; for the stop there are special areas 

or side bands outside the roadway, both with concentrated inputs and outputs. 

Article 18 of the Code and its art. 28 of its regulations define the bands of respect and 

the areas of visibility in residential areas. Distances from the road boundary to be respected in 

residential areas may not be less than: 

 30 m for roads of A type; 

 20 m for roads of D and E type; 

 10 m for roads of F type. 

For the construction or reconstruction of boundary walls on either side of the road, the 

distances from the road boundary shall not be less than 3 m for type A roads; 2 m to the streets 

of type D. 

At clear road intersections, a visibility area identified by a triangle with two sides on 

the alignments delimiting the buffer strips shall be added to the buffer strips indicated above, 

whose length measured from the point of intersection of the alignments themselves is equal to 

twice the distances laid down in the Regulation depending on the type of road concerned, and 

the third side consisting of the segment joining the extreme points (Figure 4.1). 
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Figure 4.1. Bands of respect and triangles of visibility at the roundabout. 

 

The interventions on existing roads must be carried out by adapting the geometrical 

characteristics of the roads to D.M. 5 November 2001, as far as possible, in order to better meet 

the needs of the traffic. The transition between suitable sections and sections where adaptation 

was deemed not possible should be conveniently resolved to avoid the introduction of 

additional hazardous situations. In the event that particular local, environmental, landscape, 

archaeological and economic conditions do not allow full compliance with D.M. 2001, art. 3 

of this decree allows different design solutions to be adopted provided that they are supported 

by specific safety analyses and, as regards urban roads, subject to a favourable opinion of the 

Board of Governors of Public Works. 

 

4.1.1. The Highway Code 

Taking into account art. 3 of the Highway Code some road areas are defined as: 

 Pavement: the art of the road, free from any obstruction (vertical signs, margin markers, 

restraint devices). It is included between the edge of the carriageway and the nearest of 

the following longitudinal elements: platform, traffic divider, embankment, inner edge of 

the wedge, and upper edge of the escarpment in the relieved. It is distinguished in "right 

platform", with the function of the right-sided franc and usually paved, and in "left 

platform", which is the paved part of the inner margin. 

 Roadway: part of the road intended for the movement of vehicles, consisting of one or 

more lanes, paved and bordered by margin strips. 

 Lane: longitudinal part of the road, between road markings, of a width suitable for the 

transit of a single row of vehicles. 
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 Safety barrier: a means of preventing vehicles from escaping from the platform. It shall 

be contained within the divider or outer edge of the platform. 

 Band of respect: a strip of land, outside the road border, on which there are constraints 

on the realization, by the owner of the land, excavations, buildings, fences, plantations, 

deposits and the like. 

 Sidewalk: part of the road, outside the carriageway, raised or otherwise delimited and 

protected, intended for pedestrians. 

 Inner margin: part of the platform which separates the opposite track. 

 Lateral margin: part of the platform that separates roadways traveled in the same 

direction. 

 Outer margin: part of the road seat, outside the platform, in which there are eyelashes, 

bumps, embankments, sidewalks and safety or furniture elements (restraints, railings, 

supports, etc.). 

 Platform: part of the road site comprising one or more coplanar carriageways, the 

platforms on the right and left, any internal and lateral margins, reserved/specialised lanes 

and rest areas. It does not include the outer margin. 

 Traffic divider: a non-drivable part of the internal or lateral margin, intended for the 

physical separation of vehicle currents. It also includes the operating space (permanent 

deformation) of the restraint devices. 

 

4.1.1.1. Geometric and traffic characteristics of sections 

The road section project consists of the organisation of the platform and its margins. The 

number of elements and their size is a function of transport demand and the upper limit of the 

design speed range respectively. For each type of road, It is possible to have different types of 

sections, in relation to the territorial scope and the intended user; moreover the dimensions of 

the road platform must be kept unchanged along the entire route of the road, both natural and 

artificial as for example in underpass and bridge. The width of the lanes is understood as the 

distance between the axes of the stripes that delimit them and its dimensions are indicated in 

special tables in this decree according to the type of road and the territorial scope. In any case, 

minimum width of 3.50 meters is fixed for heavy goods vehicles. As far as the platform is 

concerned, its width is to be considered the net of both grassy strips or trees and of restraint 

devices and cannot be less than 1.50 meters (Figure 4.2). 
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Figure 4.2. Category D - Urban sliding. 

 

4.1.1.2. Marginal and furnishing elements of the road office 

 Internal margin 

The internal margin, as already mentioned, is the part of the platform that separates lanes 

traveling in the opposite direction. In the case of roads with separate carriageways spaced not 

more than 12m apart, impassable restraints shall be placed within the margin. The platforms 

on the left must be paved and have the same slope as the roadway itself. The carriageable 

section of the inner margin must be interrupted, in principle every two kilometers, by a paved 

area suitable for the exchange of carriageways (passage) and in correspondence of aforesaid 

passages must not interrupt the continuity of the devices of restraint, to be realized also of 

inferior class regarding that current (as will be seen previewed from D.M. n the 223 of the 

18/02/1992 and successive integrations and modifications) so they can be easily removed if 

necessary. 

 

 Sidewalk 

For roads with an upper design speed limit of more than 70 km/h, the platform shall be 

protected by restraints. If the intended speed is lower than the above value, the protection may 

be omitted, but the platform shall be bounded by a contoured edge. The body that owns the 

road will consider providing the edge of the pavement with suitable protections to protect 

pedestrians and prevent overtaking of vehicles. 
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 Rest areas 

Extra-urban roads B, C and F must be equipped with parking places located outside the 

platform. These pitches shall have dimensions not less than those indicated in Figure 4.3. They 

shall be spaced from each other at intervals of about 1,000 m along each of the two directions. 

 

 

Figure 4.3. Section of the parking pitch. 

 

4.1.1.3. Geometry of the road axis 

 Distance of visibility 

Clear viewing distance means the length of the road that the driver can see in front of him 

without considering the influence of traffic, weather and road lighting. This distance must be 

compared with some distances between which the most important is the distance of visibility 

for the stop, which is equal to the minimum space necessary for a driver to stop the vehicle in 

a safe condition in front of an unexpected obstacle. It is evaluated by the following expression: 

 

𝐷1 = space covered in time t  

𝐷2 = braking distance 

𝑉0 = vehicle speed at the start of braking, equal to the design speed  

V1 = Final vehicle speed, where V1=0 in case of a stop 

i = longitudinal slope of the track 

t = total reaction time g = gravity acceleration 

Ra = aerodynamic resistance m = vehicle mass 

f1 = limit quota of the coefficient of adhesion 

r0 = unit rolling resistance, negligible 

(𝑚) 

(𝑚) 

(𝑘𝑚/ℎ) (𝑘𝑚/ℎ) 

(%) 

(𝑠) (𝑚/𝑠2) (𝑁) 

(𝑘𝑔) 

(-) 

(𝑁/𝑘𝑔) 
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Figure 4.4 shows an abacus to deduce the distance of visibility for stopping as a function of a 

constant longitudinal slope. In case of the variability of this slope, the average value can be 

assumed. 

 

 

Figure 4.4. Distances of visibility for stopping: vertical axis with visibility distance to stop (m); 
horizontal axis with longitudinal slope (%). 

 

 Distance of visibility for overtaking 

In the presence of vehicles moving in the opposite direction, the distance of complete visibility 

for overtaking shall be assessed with the following expression: 

 

v (m/s) or V(km/h) = design speed and is attributed equally to both the overtaking 

vehicle and the vehicle from the opposite direction. 

 

 Distance of visibility for lane change 

The necessary space for the lane change is evaluated with the following expression; in which 

the 9.5 seconds include the time needed to perceive and recognize the situation and for the 

decision and execution of the maneuver of a single lane change (4 seconds). 

 

v = Vehicle speed in (m/s), or V in (km/h). 
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4.1.1.4. Decree of the Ministry of Public Works of 19 April 2006 

The rules concerning the construction of intersections dictated by the 2006 decree 

"Functional and Geometric Rules for the Construction of Road Intersections" were also taken 

into consideration.  Of these, diversion or entry maneuvers on the left are not allowed on the 

main traffic flow of the roads of type A, B and D, while they are allowed on any service roads. 

As a result of these maneuvers, several characteristic points are created on which the safety 

conditions of the intersection depend. These points are called "points of conflict" between 

trajectories and arise from the possible interference of these. They are divided into points of 

conflict intersection or crossing, diversion and entry. 

The most usual intersections are represented by the intersection of two roads 

(intersections with four arms) or by the grafting of one road on the other (intersections with 

three arms). Straight intersections, defined by the Highway Code, are distinguished into straight 

intersections (when intersection maneuvers are allowed) and roundabout intersections (when 

intersection points are eliminated). 

The main components of an intersection are: 

 Ramps, connecting branches of an intersection at staggered levels; 

 The specialized lanes, intended for right and left turning maneuvers. They can be input, 

diversion (exit) or accumulation for the left turn. 

 The entry lanes consist of the following sections (Figure 4.5): 

o Length acceleration section La,e; 

o Length input section Li,e; 

o Connecting element of length Lv,e. 

 

The diversion lanes consist of the following sections (Figure 4.6): 

 Stroke of length Lm,u; 

 Deceleration section of length Ld,u comprising half the length of section Lm,u. 

Figure 4.5. Entry lane. 
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The following expression shall be used to determine the length of the velocity variation 

sections, both in deceleration and acceleration: 

𝐿 =
𝑣ଵ

ଶ − 𝑣ଶ
ଶ

2𝑎
 

𝐿 = length required for kinematic variation (𝑚) 

𝑣1 = entry velocity in the deceleration or acceleration section (𝑚/𝑠) 

𝑣2 = Exit speed of the deceleration or acceleration section (𝑚/𝑠) 

𝑎 = acceleration, positive or negative, assumed for the maneuver (𝑚/𝑠2) 

 

In the case of deceleration lanes as values of v1 and v2, the design speed of the section 

from which the output vehicles come and the design speed corresponding to the radius of the 

deviation curve to the other road are taken respectively. The value of a is assumed to be 3 m/s2 

for roads of type A and B, 2 m/s2 for all other roads. In case of acceleration lanes for v1, the 

ramp design speed shall be assumed at the starting point of the acceleration section of the entry 

lane, whereas for v2 the value shall be 80% of the design speed of the road on which the lane 

is entered. a is assumed to be 1 m/s2. 

The length of the Lm,u section for diversion lanes is 30 m in the suburbs and 20 m in 

the urban areas. The connecting section Lv,e is determined according to the design speed of the 

road on which the lane is entered (Table 4.1). 

 

Design speed Vp [km/h] Length of the connecting section Lv,e [m] 

Vp >  80 75 

Vp ≤ 80 50 

Table 4.1. Length of the connecting section. 

 

Deceleration Manouver 

Figure 4.6. Diversion lane of parallel type. 
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The section Lm,u in an exit or deceleration lane is determined by the design speed of 

the section of the road from which the lane branches off (Table 4.2). 

 

Design speed Vp [km/h] Length of the connecting section Lm,u [m] 

40 20 

60 40 

80 60 

100 75 

≥ 120 90 

Table 4.2. Length of operating section. 

 

4.1.1.5. Roundabouts: types and geometry 

The D.M. then distinguishes three types of roundabouts according to the diameter of 

the outer circumference: 

 Conventional roundabouts: with an external diameter between 40 and 50 m; 

 Compact roundabouts: with an external diameter between 25 and 40 m; 

 Mini roundabouts: with external diameter between 14 and 25 m. 

The main characteristic to be evaluated in roundabouts is the deviation of the trajectories that 

cross it, in fact the central island must divert the vehicles to prevent crossing the roundabout at 

too high speeds (Figure 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.7. Geometry intersection at roundabout. 
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The main characteristic to evaluate in roundabouts is the deviation of the trajectories 

that cross it, in fact the central island must divert the vehicles to prevent crossing the 

roundabout at too high speeds. The value of the deviation is evaluated by means of the angle β, 

which is determined by the tangent to the edge of the central island after having added to the 

entry radius Re,2 an increment b equal to 3,50 m as can be seen from Figure 4.8. An angle β 

value of at least 45 β per input arm is recommended. 

 

 

             Figure 4.8. Graphic construction for the determination of β. 

 

 Visibility distances at roundabouts 

In order to ensure the smooth functioning of the intersections, it is necessary to hierarchise the 

maneuvers in order to distinguish the main vehicular currents from the secondary ones. 

Therefore, precedence or stop signals are introduced at every point of conflict. For non-priority 

maneuvers, the checks shall be developed according to the criterion of the triangles of visibility 

relating to the intersection conflict points generated by the vehicular currents. The visibility 

triangle shall have the widest side equal to the visibility distance D calculated as follows: 

𝐷 = 𝑣 ∙ 𝑡 

𝑣 = reference speed (m/s), equal to the value of the design speed characteristic of 

the section in question or, in the presence of speed limits, the value prescribed by 

the signs. 

𝑡 = Manoeuvring time equal to 12 s for maneuvers regulated by precedence and 6 

s for maneuvers regulated by stop. This value must be increased by one second 

for each percentage point of the longitudinal slope of the secondary branch above 

2%. 
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The smaller side of the triangle is equal to a distance of 20 m from the side of the main 

road if the intersection is regulated by precedence, while it is equal to 3 m from the stop line in 

case of a stop. There shall be no obstacle within the visibility triangle to the continuous and 

direct mutual vision of the vehicles relevant to the intersection under consideration. Obstacles 

to visibility are objects with a planimetric size greater than 0,8 m. At roundabouts, drivers 

approaching them must be able to see the vehicles running along the central ring in order to 

give way to them. To this end, a completely free view on the left is sufficient for a quarter of 

the development of the entire ring according to the geometric construction of Figure 4.9, 

placing the observer at 15 m from the line that delimits the outer edge of the rotating ring. 

 

 

Figure 4.9. Fields of visibility at a roundabout. 

 

4.1.1.6. Guidelines for Road Infrastructure Safety Management 

 Object and purpose 

The guidelines for the management of road infrastructure safety are issued according to art. 8 

of Legislative Decree No. 35/2011 for the implementation of Directive 2008/96/EC. They shall 

establish criteria and arrangements for carrying out road safety checks on projects, safety 

inspections on existing infrastructure and the implementation of the road safety classification 

process. In addition, these guidelines aim to guide, coordinate and homogenize the activities of 

those involved in the safety process, such as local and regional authorities, competent bodies, 

road owners and managers and road safety experts, This means project controllers and existing 

road inspectors. In order to harmonise and coordinate actions among themselves, these 

guidelines aim to provide a tool that identifies the procedural modalities of road safety analysis 

and activities related to road network classification. 
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The term "road safety analysis" is taken to mean overall safety checks on projects and 

inspections on existing infrastructure. This process is preventive, aimed at identifying 

situations that could potentially cause accidents, the safety check of road projects for new 

infrastructure or upgrading of existing roads and verification of the characteristics of existing 

roads in operation. Controls and inspections should not be understood as autonomous steps 

away from the entire management process but should be part of a cycle of consequential and 

iterative activities aimed at achieving an improvement in safety through optimized 

management from the network road. The road infrastructure safety management process shall 

begin in advance by examining the operation of the road network open to traffic, by analysing 

the geometrical and functional characteristics of the entire network and subdividing it into 

homogeneous road sections. This subdivision allows the whole network to be classified in order 

to identify the inspection program and thus their priority. 

The findings of the inspections and the identification of the potential corrective 

measures lead to a new classification in order to plan the interventions and their priorities for 

implementation. Some interventions can be implemented as part of ordinary maintenance while 

others require the activation of the procedures provided for extraordinary maintenance. 

 

 Road networks 

The scope of D.Lgs. n.35/11 is represented by roads that are part of the TEN (trans-European 

road network) in the planning, design, and construction or already open to traffic, while for all 

other roads not belonging to the TEN, the contents of the legislative decree constitute rules of 

principle until they become binding according to the temporal evolution of the scope. 

Directive 2008/96/EC provided for road safety checks to be carried out at the different 

stages of the project, from the planning stage to the start of the operation of the infrastructure. 

The Legislative Decree provides that road safety checks are carried out both on projects relating 

to the construction of new road infrastructure, both on projects which result in a substantial 

modification of existing road infrastructure with effects on traffic flows, as well as on 

adaptation projects involving changes to the route. The checks must be carried out for each 

level of design (preliminary, final and executive) and therefore the Guidelines are organized 

and structured with specific and distinct contents according to the extraurban and urban 

environment, the type of road (double or single carriageway), and further subdivided by the 

three design levels as well as for the construction phases, pre-opening to traffic and for the first 

year of operation. 
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 Safety inspections on road infrastructure 

The inspection program, at full capacity, must necessarily be prepared on the basis of the 

classification of high accident concentration sections and the security classification of the 

existing network. Safety inspections consist of "diffuse inspections" on the entire homogeneous 

road section and "point inspections", or details, located on individual critical or potentially 

critical sites and on individual points. 

The purpose of security inspections shall be to: 

 identify critical issues related to incidental events; 

 identify potential hazard factors of road infrastructure; 

 identify the priority of corrective actions to reduce the number and severity of accidents; 

 identify the priority of corrective actions to prevent further incidents; 

 keep the safety status of the road network under constant observation. 

 

The preventive analysis of the safety of the roads in operation allows to identify the situations 

that need interventions that can improve or solve a possible safety problem. The road elements 

to be inspected are: 

 homogeneous road sections, including intersections and all other singular points of the 

track; 

 the individual critical sites, where there has already been a concentration of accidents, and 

those potentially critical, falling anyway in homogeneous sections and then inspected at the 

same time; 

 the construction sites. 

 

The inspection must be carried out along the road section in both directions of travel with 

different modes, depending on the type and characteristics of the infrastructure. During the 

inspections can be performed photographic surveys and video footage, which will be of help 

during the drafting of the final report. 

The diffuse inspection shall be conducted along the road section in a motor vehicle, in 

both directions. It shall be divided into: 

 Preliminary inspection: day and night, to understand general issues. 

 General inspection: day and night, to examine more thoroughly the safety problems 

distributed along the road. The road must be traveled at low speed. 
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 Detailed, day-to-day and night-to-night spot inspections shall, where appropriate, be 

associated with diffuse inspections in order to examine security problems located at specific 

sites. 

 

In the final report of the inspector, are described all the problems, concentrated and widespread, 

found along the road. In the face of any criticality, the inspector must identify one or more 

possible solutions, which will then be evaluated and by the managing body in order to identify 

the most appropriate solution. 

 

4.2.  Methods  

One of the main purposes of driving behaviour is the implementation of road safety in 

order to reduce driving accidents due to the loss of respect for the issue of the Highway code. 

Road safety is one of the most important issues for the Ministry of Infrastructure and Transport. 

The aim is to increase the ‘road safety’: not a simple set of rules to be imparted, but the result 

of an ethical maturation, a behavior that puts at the centre the respect for life and for the human 

person. 

The main tools used to achieve this factor are institutional communication campaigns 

and road education projects. Road safety is often considered to be inversely proportional to the 

number of accidents, but this definition has limits: accidents are rare events, which depend on 

chance and systematic factors.  

To overcome these limits, the driver and the driving behaviour at an earlier stage are 

considered, assuming that wrong behaviour is the variable preceding the accidents. To assess 

the level of safety we rely on surrogate safety indicators, which provide a random basis, to 

explain complex interactions of time-dependent vehicles. This approach can be represented by 

means of a safety pyramid, where one goes from undisturbed driving behaviour to accidents. 

It is a model defined as an "iceberg", since it is as if there was a line between accidents and 

near accidents, in fact, the latter is ignored (Imprialou, et al., 2017) (Figure 4.10). 
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Figure 4.10. Safety pyramid. 

 

The most commonly used indicator for surrogate safety measures is the Time To 

Collision (TTC). The TTC is the remaining time, before the accident occurs, keeping course 

and speed. It was found to be an effective parameter for discriminating critical behavior from 

normal behavior in situations where one vehicle follows another. The main defect of the TTC 

is the assumption of constant speeds, during the motion of the vehicle, thus neglecting the 

potentially dangerous situations.  

The relationship that expresses the collision time is: 

TTC(t) =  
∆x

∆v
 

∆x = the distance between the vehicle in front and the vehicle in pursuit; 

∆v = the speed difference between the two vehicles.  

 

TTC is the main criterion in the study of accidents and especially in situations where 

one vehicle follows another. It is a fundamental parameter in the implementation of collision 

prevention systems. 

Another way to assess road safety is to use so-called crash databases, which are one of 

the main resources for the study of safety. The main purpose of these databases is to determine 

the quality of road safety in order to reduce accidents. Crash data often contains errors due to 

transcription or incompleteness errors. 

Accidents are due to a random chain of events and it is often difficult to understand 

their origin. To obtain more information, the local authorities provide forms, in paper or 

electronic form, which must be completed after an accident. The information can be classified 

according to the five "W": 

 “Where?”: crash location; 
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 “When?”: crash time; 

 “What?”: crash severity; 

 “Who?”: involved users (and vehicles); 

 “Why?”: crash contributing factors. 

 

Place and time are the two factors most evaluated in the modules and one must always consider 

the probability of inaccuracy of the information obtained (Imprialou, et al., 2017). 

 

 The Video VBox Pro 

To perform the survey and obtain the kinematic and performance data, the test vehicle was 

equipped with the Video V-Box Pro, which combines a GPS sensor with a pair of high-

definition cameras. The recording frequency of the device is 10 Hz, allowing the acquisition of 

1 data every 0.1 seconds. The main device (Figure 4.11) is placed inside the vehicle, while the 

two cameras, given the high speed during the test, were positioned on the dashboard of each 

car to avoid the risk of loss and/or damage during the circulation (Figure 4.12). The GPS sensor 

was positioned on the car roof in a central position for greater accuracy of the position (Figure 

4.13). 

 

 

Figure 4.11. V-Box. 
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Figure 4.12. Posizioning of V-Box cameras. 

 

 

Figure 4.13. Positioning of GPS antennas. 

 

The specifications relating to the VBox system are listed in Table 4.3. 

 

 Speed Distance 

Accuracy 0.2 km/h Accuracy 0.05 % 

Unit of measure km/h or Mph Unit of measure m or f 

Update Rate 10 Hz Resolution 1 cm 

Max Speed 1600 km/h  

Min Speed 0.1 km/h  

Resolution 0.01 km/h  

Ping <160 ms  

Position Distance 

2D Position  +5m95% CEP Accuracy 0.05 % 

Height +10m95% CEP Max 4g 

 Resolution 0.01 g 

Heading Lap times 

Resolution 0.01 Resolution 0.01s 

Accuracy 0.2 Accuracy 0.01s 

Table 4.3. V-BOX specifications. 

 

The instrument allows recording on external memory (SD card), on which it creates a 

video file obtained from the cameras and a ".vbo" file on which all the data collected by the 

sensors are stored. 

The data analysis is performed using special software called "VBOX Tools" (Figure 

4.14), which allows the information gathered to be processed by examining the parameters of 

interest and simultaneously monitoring the video recorded during the test. The program 
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interface gives back, in addition to the video recorded during the test, also a graph that 

represents the kinematic features, the map of the route and the selection of the available 

parameters. The data can then be exported in Excel format for analysis. 

 

 

Figure 4.14. V-Box Tool. 

 

The software can display in a diagram the trend of a series of variables that we choose 

from a list of possibilities, depending on the time or distance traveled. The data we can extract 

are (Figure 4.15, 4.16): 

 Vehicle speed (km/h); 

 Lateral and longitudinal acceleration (g); 

 Vehicle direction (°); 

 Altitude (m), Latitude (MinutesN) e Longitude (MinutesW); 

 Absolute Time UTC Time; 

 Distance traveled (m) e Time traveled (s); 

 Turning radius (m) and deviation from the central line; 

 Combo G ( ratio between transversal and longitudinal acceleration). 
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Figure 4.15. Features of Video VBox. 

 

 

Figure 4.16. The position of the Vbox. 

The GPS instrumentation was inserted inside the test vehicle, with the two cameras, 

while the antenna is positioned outside the vehicle. The different parameters supplied in output 

from the GPS and emitted with a frequency of 10 Hz are the position along the circuit; the lap 

times; the speed (accuracy of ± 0.1 km/h); the acceleration (1% accuracy), and distance with a 

20 Hz sample rate. 

 

4.2.1. The response time of ACC (VRT) 

For each critical event performed during the test lap (the 2nd one), for both ACC on and off 

conditions, the response time of ACC (VRT) has been calculated. The average value for each 

condition (ACC on and ACC off) was taken into consideration. 

The response time of ACC, thanks to the synchronization of the speed data and the eye-

tracking data obtained by the methodology used by Costa (2018), has been evaluated as the 

difference between two different times: 

 the frame in which the prey vehicle braked, its led stop become red and the driver saw the 

stop, evaluated thanks to the Mobile Eye;  

 the time in which the driver braked, after having looked at the led stop of the prey vehicle. 

This time has been evaluated from the Video Vbox-Pro output video (Figure 4.17). 
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Figure 4.17. Time of breaking. 

 

4.2.2. The Perception-Reaction Time (PRT) 

For the evaluation of the Reaction-Perception time of the driver, a new indicator is introduced. 

This represents the time of the first-fixation of the red led stop belonging to the prey vehicle 

(Figure 4.18). 

 

 

Figure 4.18. The red led stop of the prey vehicle. 

 

In figure 4.19 it was possible to highlight the range, corresponding to the Perception-Reaction 

Time.  
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Figure 4.19. Evaluation of the response time of ACC. 

 

In fact, it is included between the green line indicating the led stop time, in which the 

prey vehicle starts to brake and the user views it and the red one, which is breaking time, in 

which the test vehicle brakes in turn. 

 

4.2.3. Assessment of the influence of circulating traffic 

The traffic count consisted in how many vehicles stood in front of the vehicle during 

the test. Distinctions have been made for: 

 Light vehicles (mass in running order less than 35 quintals); 

 Heavy vehicles (mass in running order greater than 35 quintals); 

 Motorcycles (two-wheeled vehicles of a cylinder capacity exceeding 50cc); 

 

The service level (LOS) of the road was analysed using the Highway Capacity Manual (HCM). 

The LOS is a qualitative measure that describes the operating conditions of the flow on 

a trunk road as the flow varies. In reference to the a definite limit speed of the road, there is a 

free flow speed (SBB), which affects the definition of LOS. The HCM manual provides the 

relationship between SBB, expressed in km/h, and LOS. Each service level corresponds to a 

maximum density, understood as vehicles per kilometre per lane. In table 4.4, there is 5 levels 

of service from LOS A to LOS E in which we have an increase in density and consequently a 

worsening of driving conditions. 
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Table 4.4. LOS 

 

To obtain the LOS of the road the number of cars counted in the single trunk, divided 

on the length of the trunk and on the two lanes of the road were considered.  

These assessments were necessary in order to assess the reference service level (LOS) 

for each road section; LOS is in fact a measure describing the quality of traffic conditions on a 

road section. The HCM (Higway Capacital Manual) provides the table (Graph 4.1) that allows 

to evaluate it according to the following main indicators: 

 the mean or free-flow velocity, which in this study was assumed to be 90 km/h, or the 

limit imposed by the highway code for that stretch of road, is shown on the ordinate 

axis; 

 line lines delimit vehicle density per km per lane; 

 flow rate is indicated on the axis of the x-axes. 
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                   Graph 4.1. LOS (HCM). 

 

 The table in the HCM manual divides the level of a general road section into different 

service segments. 

 A: Flow conditions are free, with no air conditioning between vehicles. 

 B: Runoff conditions are characterized by certain restrictions on freedom of movement, 

while the conditions of physical and psychological comfort are still high. 

 C: Multiple lane changes and frequent overtaking to maintain the desired speed. 

 D: The flow is still stable but the freedom of manoeuvre is greatly reduced; this leads 

to a reduction in the physical and psychological comfort of the drivers. 

 E: The conditioning is almost complete and the comfort level is poor; this level 

represents the flow conditions marked by frequent and sudden power stops, ie with 'stop 

and go' gear. 

 

In order to differentiate the level of service in Table 4.5, different colourations have been 

assigned in preparation for the verification of the road trunks under study. 

 

A B C D E 

Veic/km=<7 7<Veic/km=<11 11<Veic/km=<16 16<Veic/km=<22 22<Veic/km<25 

 

Table 4.5. Table for the LOS. 
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4.3. Outcomes  

Thanks to the VIDEO V-BOX PRO, it has been possible to evaluate the driving behavior in 

terms of average speed during the test and minimum average distance from the lead vehicle 

during the events. The video analysis started by synchronizing the eye-tracking videos from 

the ASL mobile eye tracker with the VBOX videos, which allows for associating the drivers’ 

visual gaze behavior with the driver’s speed. Considering the LOS A recorded, the ACC didn’t 

influence the vehicle speed during the test. The average lap speed was 67 km/h (SD = 12.2) 

and 70 km/h (SD=11,4) for ACC users and 61 km/h (SD=10.8) and 62 km/h (SD= 9.7) for no-

users, respectively for ACC ON and OFF conditions. The minimum average distance from the 

lead vehicle, instead, increased with ACC (18.93 m and 28.3 m for ACC users, and 16.4 m and 

21.7 m for no-users, respectively for ACC OFF and ON conditions), confirming the active 

safety role of the system (288 observations - 48 participants - 3 events - 2 ACC conditions), 

F(1, 288) = 2.21, p = 0.02, χ2 = 0.041). The LOS calculated was A. 

The table 4.6 shows the data regarding the reaction time of all the participants in the 

experiments. From the calculation of the average, it can be seen that the drivers with no 

experience of the system react faster in both test situations. The most important data, 

certainly, concerns the reaction of the drivers when the system is active; the data leads to the 

assumption that the inexperienced user tends not to trust the use of Adaptive Cruise Control, 

confirming what has already emerged in the previous analyzes. 

 
 

ACC no-user ACC user 

User ACC ON ACC OFF ACC ON ACC OFF 

1 5,200 2,600 2,950 1,840 

2 3,025 1,767 5,140 3,967 

3 2,975 2,375 4,000 3,600 

4 4,000 1,675 3,450 3,000 

5 1,733 2,480 3,640 2,525 

6 1,550 3,075 3,950 2,400 

7 3,300 3,200 4,340 2,600 

8 2,275 2,167 3,250 2,700 

9 1,640 2,600 2,900 2,733 

10 1,667 1,583 2,667 2,467 

11 2,200 1,625 4,300 3,000 

12 2,050 1,850 4,520 3,800 

13 2,575 2,100 7,433 4,375 

14 2,767 3,060 3,333 2,567 

15 2,267 2,550 3,025 3,200 

16 2,333 2,750 4,000 2,433 
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17 1,750 0,980 4,150 2,400 

18 2,325 1,400 3,775 3,075 

19 1,500 2,733 2,800 2,600 

20 2,825 2,733 
  

21 2,243 1,600 
  

22 2,075 1,740 
  

23 2,000 1,380 
  

24 1,867 1,533 
  

25 2,350 1,700 
  

26 2,400 1,867 
  

Average 2,419 2,120 3,875 2,910 

Table 4.6. Time of reaction. 

 

Calculating the average of reaction times for experienced and inexperienced users, the trend 

is confirmed according to which the times in the various events are greater when the system 

is switched on (Graph 4.3). 

 

Graph 4.2. Average reaction time. 

 

The results of the analysis, both for experienced and inexperienced users, related to the 

averages of speed, minimum distance and time headway, illustrates similarities in driving 

behavior in system situations ON and OFF for both categories of drivers (Table 4.7). It is 

possible to see the tendency of all the users to maintain a higher speed when the system is 

turned OFF, this highlight a greater confidence in their own capabilities rather than in those 

recognized to the system. Furthermore, with regard to distances, both spatial and temporal, 
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the inexperienced user tends to maintain a lower distance than the prey vehicle unlike the 

expert user who maintains a more appropriate distance.  

 

 ACC no-user ACC user 

Event ACC ON ACC OFF ACC ON ACC OFF 

Average velocity [km/h] 60,21 62,59 67,31 69,40 

Minimum distance [m] 21,71 16,35 28,34 18,86 

Average TH [s] 1,30 0,94 1,82 1,16 

Average TTC [s] 6 6 9 7 

Table 4.7. Comparison of Velocities, distances, TH and TTC of the two type of drivers. 

 

Finally, regarding inexperienced users the data indicate, like the results of the self-report, a 

considerable expectation in the functioning of the system, meanwhile the experience and the 

knowledge of the system will lead on keeping greater distances and consequently to a greater 

road safety. 

 

4.4. Conclusion 

From the driving behavior analysis, it was possible to observe the average speeds 

maintained during the test were lower than the speed limit, although it is necessary to remember 

how they were instrumented and controlled by operators on board. It was also shown that the 

user in the case of system OFF tend to be closer to the prey vehicle; these results mean that the 

Adaptive Cruise Control system can be considered an effective driving aid to maintain the right 

distance between vehicles, especially in high-speed roads, such as the Tangenziale of Bologna. 

The comparison between the two type of user highlights that inexpert driver tends to be 

much closer to the previous vehicle compared to the experienced drivers. 

Moreover, the perception / reaction time of the users was evaluated, for both situation: 

ACC ON and ACC OFF. The data obtained on this time confirm what emerged from the driving 

distraction assessments, regarding driving with an active adaptive speed control system. In fact, 

it turned out that the generic user tends to respond more slowly when the system is in operation, 

than when the guide is autonomous. In conclusion, it can be stated that, according to the data 

obtained, the Adaptive Cruise Control appears as an effective aid considering the to 

maintaining safety distances, both in terms of length and in terms of time. On the other hand, 

driving with this active system determines longer response times, induces distractions, and 
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increase stress which should be avoided in order to increase a safe in driving. To prevent 

distraction and accelerate response times, which are essential for greater driving safety, one 

think could be the introduction of tools that recall driver attention when the ACC detects a 

decrease in the safety. Equipping, for example, the ACC system with an acoustic signal or a 

vibration of the steering wheel, or other warning systems, the performance of ACC users could 

be more efficient and, consequently, improve safety. 
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5. THE IMPACT OF ACC ON DRIVERS’ WORKLOAD  

 

5.1. Introduction  

The term Workload refers to the mental load that an individual is subjected to while performing 

an action. It is a fundamental parameter in the field of road safety since it allows us to estimate 

how the infrastructure engages the human mind. Therefore, depending on the cognitive load, it 

is possible to estimate the level of performance of drivers. 

 

5.1.1. The role of workload 

Low workload levels correspond to low performance levels, where inattention prevails. 

The level of performance increases with the growth of the mental load required, until a 

maximum peak level is reached, then decreases drastically. The probability of error increases 

as the level of performance exhibited decreases. It is necessary, therefore, that the mental load 

is neither too high, not to exceed the reaction-decision ability of the driver, nor too low, not to 

cause inattention in the same. For these reasons, the risk of road accidents is greater in 

geometric elements or specific tasks to which workloads compete or very low or very high 

(Kantowitz et al., 2000; Cuenen et al., 2015; Lyu et al., 2017). 

The term generally indicates the mental workload to which an individual is subjected 

during an action. The determination of its level has been analyzed by scholars of different 

disciplines as it is possible to talk about different types of workloads (physical-motor, 

communicative, etc.). The relationship that links the mental workload and the level of 

performance is represented by the Yerkes-Dodson law, which relates stimulus and performance 

(Figure 5.1). In this way, it is possible to underline how the performance increases with 

increasing mental or psychological stimulation, to the point where the workload becomes too 

high and causes a decrease in performance (Kantowitz et al., 2000). 
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Figure 5.1. Yerkes-Dodson Law. 

 

Generally, the greater the commitment to the task to be performed, the more work users 

must do to complete it. Increasing the mental workload increases the delay with which users 

manage to process information since the amount of information exceeds their processing 

capacity. On the other hand, when the workload is too small, users become less concentrated 

and tend to make mistakes.  

 

5.1.1.1. Definitions and theories related to workload 

A simple workload definition is that it is a request to a subject. However, this definition only 

attributes the workload to an external condition. Actually, the workload is better defined if it 

refer to experience. The workload is not only related to a specific task but also relates to the 

specific person performing that task (Rouse et al., 1993). A definition was proposed by Verwey 

(1999), who states that "the mental workload is related to the amount of attention required for 

making decisions". Young & Stanton (2001) propose the following definition of mental 

workload (MWL): "The mental workload of a task represents the level of attentional resources 

required to meet both objective and subjective performance criteria, which may be mediated 

by task demands, external support, and past experience", and "represents the level of attention 

resources required to understand both objective and subjective performance criteria, which is 

mediated by tasks, external support and past experience." 
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Other more articulated definitions of the concept are, for example, that of Wickens 

(1984): "it is possible to define mental workload as a multidimensional construct that reflects 

the individual level of attentional involvement and mental effort". Hart and Staveland (1988) 

describe workload as "the perceived relationship between the amount of mental processing 

capability or resources and the amount required by the task" that is "the perceived relationship 

between the number of resources (or capacity) of a mental process and the amount required by 

the tasks to be performed". It is from this last definition that one of the most known theories on 

the subject is well understood: the multiple resource theory (MRT) of Wickens in 1984 (Figure 

5.2). 

 

 

Figure 5.2. Wickens MRT theory. 

 

From this theory, it can be inferred that the human operator does not have a single piece 

of information to control, but several wells of resources from which to draw so that the tasks 

to be performed may or may not be controlled simultaneously. Each box in the figure represents 

a cognitive resource. Depending on the nature of the task, these resources may have a sequential 

information process, if the different tasks require the same resource well, or can be performed 

in parallel if they require different resources. Wickens' theory shows the decrease in 

performance as a lack of these different resources because the individual has a limited ability 

to develop information. Citing Dadashi (2013) "the increased demand for resources from which 

to draw can cause an overload of work in the user". In fact, an excess workload is caused by a 
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task that requires you to use the same well of resources and this causes problems, resulting in 

poor or slow performance. Wickens' theory follows organized systems to predict when tasks 

can be performed simultaneously, when they interfere with each other, and when the increase 

in the difficulty of a task results in a loss in the performance of another task. McCracken and 

Aldrich (1984), like Wickens, describe a process that does not have a central resource, but more 

resources: visual, cognitive, auditory, and physico-motor (VCAP). Each task can be broken 

down into these components: the visual and auditory components that are expected external 

stimuli, the cognitive component that describes the level of information required, and the 

physico-motor that describes the physical activity that is required to perform this task. 

McCracken and Aldrich have developed a rating scale for each VCAP component that 

corresponds to the rating of the degree to which each resource is used. The workload has also 

been defined by Senders as a measure of the effort an operator is subjected to while performing 

a task, regardless of the performance of the task itself. Venturino (1990) defines mental 

workload as an expenditure of the mental capacity necessary to perform a task or a combination 

of activities. Another definition of workload was given by Knowles (1963) and consists in the 

answer to two questions: how much attention is needed? How well can the operator perform 

additional tasks? 

 

5.1.1.2. The workload in the road field 

The World Health Organization (WHO) indicates that road accidents are the ninth cause of 

death among young people aged 18 to 29. Often one of the main causes is the onset of mental 

fatigue or drowsiness (Maglione et al., 2014). Driving a vehicle in the 21st century is, 

increasingly, a complex task involving extreme swings in mental workload (Baldwin & Coyne, 

2003). Considering the increasing difficulty of driving tasks and the multitude of information 

that drivers have to process and manage inside and outside the vehicle, there are multiple 

factors potentially triggering the driver’s mental workload. Increased traffic intensity and the 

introduction of new information technologies within the vehicle create increased levels of 

complexity in the driving task (Engström et al, 2005; Jahn et al, 2005; & Makishita Matsunaga, 

2008; Pauzié & Manzano, 2007; Piechulla et al., 2003). The increase in information technology 

in the road sector (RTI: Road Transport Informatics) and in the various systems for driving aids 

(IVIS - in-vehicle information systems) means that the evaluation of workload research 

techniques is of great importance in the road sector. For this reason, Michon (1971, 1985) and 
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Janssen (1979) tried to propose a model of the guiding task according to which the latter is 

described as a complex task with processes comprising three hierarchical levels.  

At the upper level, the strategic level, strategic decisions are made, such as the choice 

of means of transport, the setting of a route to follow and the choices related to the route while 

driving.  

At the intermediate level, the maneuvering level, reactions to instantaneous situations 

occur, including reactions to the behavior of other road users.  

At the lowest level, the control level, the basic control processes of the vehicle take 

place, such as lateral position control. At this level processes are automatic, while at a higher 

level process control is required. The problem can therefore arise that driving aids such as 

collision avoidance, traffic information or navigation systems can individually help motorists, 

But their combined use may cause an overload of their information processing system (Verwey, 

1990). Under certain circumstances it is possible that a new driver aid technology may have 

the opposite effect of "overload" the driver, that is, it may bring monotony into the task. This 

could happen, as Kantowitz (2000) pointed out if the new devices fully control the vehicle. 

Currently, driver deactivation situations are mainly confined to driving on the highway. The 

number of these low stimulus conditions, in which the driver can "deactivate", can increase if 

more functions are taken over by the technology. A list of factors affecting the driver’s 

workload can be summarised (Table 5.1). 
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Table 5.1. Factors involved with the Workload. 

 

Messer (1980) was one of the first to define workload in relation to the road 

environment: "the workload is the time interval in which drivers must perform a certain amount 

of driving activity". In particular, it specifies that the workload is mental (e.g. information 

processing) rather than physical, and increases with increasing geometric complexity. With 

reference to Yerkes-Dodson report (1908) and since, generally, with the decrease in 

performance the probability of error increases, the link with the level of road accidents is 

immediate (Figure 5.3). It can be observed that the accident rate is higher for both very high 

workloads and extremely low workloads. It is therefore evident that a workload too low 

involves less safe driving, due to the low concentration and easy distraction, but also an 

excessive workload decreases performance equally. 
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Figure 5.3. Relationship between workload and accident rate. 

 

There is therefore an optimal level of workload for which the performances are 

maximized, and consequently the accident rate decreases. For the research of this optimal level, 

Meister proposed in 1976 a model of evaluation that predicts the existence of three regions: 

region A, region B and region C (Figure 5.4). In Region A there is a weak demand for tasks, a 

low workload and a high level of performance. If demand increases in this region, performance 

efficiency is not compromised. In Region B the operator’s performance level decreases due to 

increased task demand, resulting in an increased workload. In Region C, there is a drastic 

decrease in performance due to increased task demand levels and high workload levels. 

 

             

Figure 5.4.Workload regions according to Meister (1979). 
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De Waard (1996) sought to complement the Meister model by proposing the 

introduction of an additional region D (disengagement), located before region A and reflecting 

the effects and implications on the performance of monotonous tasks. The latter can increase 

the difficulty of running the same, as you are in a state of boredom that requires more capacity 

to perform the same task, resulting in increased workload and reduced performance capacity. 

In support of this region D inserted by Da Waard there are many recent studies that evaluate 

workload levels in drowsy conditions. For example, in 2014 Maglione showed that sleep 

deprivation adversely affects driving performance, reducing the driver’s ability to react 

effectively in hazardous situations.  

Although the described model can help to understand the process extremes, there is no 

clear specification of where the boundary lies between a high, moderate or low workload, and 

what is the optimal workload level (critical time) defined by De Waard and Kantowitz (2000) 

as a red line. The notion of the red line is associated with the limits of the available resources 

by the operator and reflects the moment when performance is drastically reduced. Given that, 

in recent years, the answer to the question "(...) when the workload is too much?" has received 

particular attention in the context of road research, the concept of a red line for mental workload 

has been suggested by many authors. For example, Reid & Colle (1988) report that the zone 

par excellence where performance decreases (i.e., the positioning of the red line) is in the 

transition from region A to region B. De Waard, By discriminating the exact moment at which 

performance reduction occurs, it proposes a partition of region A into several sub-regions 

(Figure 5.5). Thus, in the central part of region A (called A2), the operator can still easily handle 

a request for tasks to be performed and the performance remains at a stable level even with an 

increase in tasks (that is, there is no increase in mental effort); in sub-region A3, the operator 

fails to maintain the level of performance without increasing the effort, but the evaluation 

measures do not show a drop in performance. In this sub-region performance remains high but 

with increased mental effort; however if peaks of work begin to happen too often or if the effort 

lasts too long to ensure performance, stress states emerge, disability and at this point, a critical 

moment may arise, when the operator may lose control of the situation.  

Considering the critical line depending on the relationship between demand and 

performance, it seems plausible to assume that the critical moment of mental workload is 

placed in the transition from sub-region A2 to A3. In turn, the transition from region D to region 

A1 is associated with monotony suffered by the operator when he undertakes a great effort not 
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to decrease the level of performance. In summary, we can classify several regions as follows 

(Figure 5.5): 

 region D, the operator’s status is affected by a high workload and low performance; 

 region A2, the performance level is considered optimal, and the operator can easily handle 

the task demands; 

 regions A1 and A3, performance does not change, but the operator must use mental effort 

to maintain such performance; 

 in region B, there is a drop in performance, with a start of the increase in workload; 

 in Region C, performance remains at a minimum level and the operator is overworked. 

 

         

Figure 5.5. Change in workload and performance across regions. 

 

Numerous studies also show that different factors influence the total amount of 

workload, among which road geometry undoubtedly plays a key role (Pecchini et al., 2017). 

The workload to which the driver is subjected varies considerably depending on the complexity 

of the route and the frequency with which the user is subjected to the driving activity. It has 

been discovered, in fact, that complex road paths require more attention from the driver than 

straight paths, and these difficulties can be aggravated if you drive a heavy vehicle. Tight radius 

curves associated with sudden gradient changes, as well as compound curves, have been 

identified as a threat to truck and car control, contributing to serious accidents (Sweatman, et 

al., 1990). 
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It follows that the influence of road geometry on drivers' workload is of primary 

importance in terms of road safety. Properly designed roads and intersections allow drivers to 

identify easy and correct trajectories. Moreover, the such workload is strongly influenced also 

by the abilities of the guide of the pilot and from the expectations that the last one has regarding 

the road that is about to cover. The presence of inconsistent elements along the track therefore 

inevitably leads to an increase in the workload on the driver. A more recent study (Lamm et al., 

1999), finally, states that the driver’s workload also increases in relation to the time available 

to process a certain amount of information that decreases, for example, due to increased speed 

and/or reduced visibility distance. 

 

5.1.1.3. Methods of measuring the workload 

In literature, the criteria for measuring the workload are divided into three main categories 

(Brookhuis, 1993; Wierwille & Eggemeier, 1993; Hancock et.al, 2001): 

 performance assessment, where the driver’s ability to drive can be monitored in terms of 

lateral and longitudinal control of the vehicle. Generally, this methodology is examined by 

driving simulator tests (Wickens, 1984; Cantina et al., 2009; Veltman et al., 1996); 

 subjective assessment carried out by examining driving performance on the basis of reports 

by observers and self-reports by drivers. Known examples are the NASA - Task-Load Index 

(NASA-TLX) and the Rating Scale Mental Effort (RMSE) (Ikuma et al., 2014; Harbluk, 

2007); 

 the evaluation of the physiological parameters, considering a workload of "natural" type, 

based on an evident physical response due to the increase of a mental effort. Mental 

workload has an impact on changing cardiac, cerebral, respiratory and visual activity. The 

problem with physiological responses is that they are not affected by a single event while 

driving, but also depend on the subjective experience of the driver. 

According to this consideration, it is necessary to evaluate the elements of the road 

environment that are most fixed by users, in order to increase road safety (Mulder, 1980; 

Mulder, 1986; Mulder, 1988; Jessurun, 1997, Borghini et al., 2014). 

 

 Physiological measures 

Physiological measurements are based on the idea that the body responds with a physical 

reaction to the amount of a mental workload. It would seem that these methods derive the most 

accurate measurements since they are objective and scientific measurements. However, this is 
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not always true, because the human body responds according to the experience of the individual 

and therefore the resulting results may be distorted. For example, a person who is anxious or 

insecure about other non-driving-related problems may have rapid heartbeats. This is why 

every physiological measure should be related to the context of the individual and his physical 

and mental activity. 

Most research in this area considers five physiological areas: heart activity, respiratory 

activity, visual activity, speech measurement, and brain activity. Heart activity is the most 

widely used because it is easy to evaluate and is a clear workload indicator. This type of 

measure is easily applicable to real situations as it is not an invasive examination. The 

evaluation of cardiac activity takes place through the electrocardiogram (ECG), that is, the 

graphic reproduction of the electrical activity of the heart: the onset of impulses in the 

myocardium leads to the generation of potential differences. They vary in space and time and 

can be recorded via electrodes. The characteristic pattern of a healthy person is characterized 

by traits called waves, which are repeated at each cardiac cycle, indicated in figure 5.6. 

 

                                              

Figure 5.6. Normal ECG path. 

 

The peak of each cycle is called the R wave, the distance on the x-axis between two 

successive R waves is the time interval between two beats (IBI). The main measures that can 

be obtained from the ECG for the analysis of the workload are therefore the IBI and the HR 

(heart rate) that is the heart rate or the average number of beats per minute. Generally, for an 

increase in workload the HR increases and therefore the IBI decreases. It’s important to 

remember that heart activity varies from person to person, so when using ECG as a workload 

measure you need to find a basic heart rate measure to compare it to changes due to new events 

and tasks. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 98 

 

Another cardiac measure is HRV, or heart rate variability, which takes into account the 

fact that the time that passes between one beat and the other is not constant. Each of them 

presents a natural variability of heart rate in response to factors such as the rhythm of breath, 

and emotional states. In a healthy individual, the heart rate responds quickly to all these factors, 

changing rapidly depending on the case. A good degree of heart rate variability results in a 

good degree of psychophysical adaptability to the different situations that may arise. 

There is no single method of measuring HRV; the convention is to calculate the IBI 

standard deviation over a given time or a given number of beats. 

An index for HRV can be obtained by spectral analysis. The frequency of the spectrum 

can be divided into 3 parts: the lowest band is that associated with the regulation of body 

temperature (0.02 Hz to 0.06 Hz), the average band is that associated with the regulation of 

blood pressure (0.07 Hz to 0.14 Hz) and the highest band is associated with breathing (0.15 Hz 

to 50 Hz). 

The high-band relationship between breathing and heart rate lies in the fact that during 

breathing in the inspiration phase HR increases, and in the exhalation phase HR decreases. 

The second band is associated with the change in blood pressure (BP) that presents 

fluctuations, that is, peaks and depressions, and to these, the heart responds by varying the heart 

rate; nn fact, if the blood pressure is too high, the heart will regulate the pressure itself by 

decreasing the HR (by pumping less). The frequency related to blood pressure fluctuations is 

0.10 Hz.  

The middle band is one of our greatest interests as it is strongly linked to mental effort. 

An excess of workload, in fact, reduces the sensitivity of the HR-BP adjustment and this 

reduction of adjustment leads to a lower HRV value. 

Some research has found that an increase in workload leads to a decrease in HRV; others 

have found that HRV is not affected by workload. An explanation for this discrepancy could 

be a respiratory activity which, if too excessive, does not allow estimating HRV (Brookings, 

1996). 

IBI (or heart rate) is generally sensitive to both the driver’s attention level and 

computational effort, while the 0.1 Hz component of HRV is not sensitive to compensatory 

effort but solely to the computational effort. 

De Waard, Van der Hulst & Brookhuis (1996) clarified the change in HR during the 

completion of an action (Figure 5.7). 
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Figure 5.7. Heart rate change in the road environment. 

 

An average HR of 22 subjects was reported in this figure. The data was taken from a 

simulator study, in which subjects drove in different road and environmental conditions. The 

change in HR is evident: driving on a roundabout (traffic circle) coincides with an increase in 

heart rate, while on a two-lane highway (2-lane highway) the heart rate is slower. 

Figure 5.8 shows the 0.1 Hz component of the HRV, compared with the rest of the 

measurements when the driver is stationary in the car. Component 0.1 Hz is suppressed when 

the driver is employed in a computational mental effort, you can always notice it by comparing 

the two-lane main road with the roundabout. Standing still at the red light increases HRV, in 

fact, you have minimal mental effort. 

 

                   

Figure 5.8. Variation of HRV in the road environment. 
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The study carried out by Bor-Shong Liu and Yung-Hui Lee analyzed the workload of 

drivers, who proposed a secondary task such as the telephone conversation at the wheel. The 

driving situation also included an urban road and a motorway. The type of physiological 

measurement used was the ECG for heart rate measurement. The results of the study show that 

the use of the mobile phone increases the reduction of safety distance compared to the vehicles 

in front, thus confirming that the use of mobile phones while driving decreases safety and 

increases distraction, with increased heart rate resulting in increased workload. 

The second physiological area is the one related to respiratory activity, for which the 

respiratory rate or the number of breaths in a given time is calculated. The number of breaths 

can be used as an index of emotional stress and is related to the variability of heart rate. The 

most important problem is taking data when breathing is interrupted by speech. The third 

physiological area is a visual activity. Although the gaze is primarily associated with the visual 

workload, it has been shown that it can also predict a mental workload. The measurement is 

associated with the calculation of several factors related to the eye: the horizontal movement 

of the eye (HEM), the blinking (speed and frequency), the closing interval, the fixation of the 

eye and the dilation of the pupil. Blinking generally decreases as the workload increases. 

Workload sensitivity to blinking was studied under three components: the frequency of 

heartbeat, the duration of the heartbeat and the latency of the eye beat. Kramer states that, as 

latency increases, the closure duration decreases with increased task demands. Stern et al. 

(1994) conclude that increased heart rate is a significant indicator of fatigue. 

Pulse rate was analysed in a series of driver workload studies with mixed results. Heger 

et al. and Recarte et al. analyzed the rate of eye beat in a single and a double task (cognitive 

task plus visual research) and found that the rate of pulse increases for all cognitive tasks 

(listening, speaking, and calculating) in comparison to the control condition. They also found 

a decrease in blink frequency for more demanding visual tasks than less demanding visual tasks. 

They concluded, therefore, that "according to the blink of the eye, the visual and mental 

workload produce opposite effects: the inhibition of the beat for a higher visual demand and 

the increase in the frequency of the beat for a greater mental workload". 

Also, the frequency of the beat was investigated in the function of highly automated 

driving, with systems of lateral control of the vehicle and control of the longitudinal direction. 

Systems like these are typically designed to reduce a driver’s mental workload. However, 

several studies have found an increase in heart rate during highly automated driving compared 
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to the normal driving situation (Cha et al., 2003, Merat et al., 2012). It has been shown that the 

duration of the heartbeat decreases with the increasing mental workload. The authors examined 

the effects of information systems in the vehicle (IVIS) on the blinking of the eye while 

performing a task such as a lane change (LCT) while driving. The results showed a blink 

duration inhibition for the dual-task (LCT and IVIS task) compared to the single operation 

condition (LCT). According to the authors, this inhibition can occur to prevent the loss of visual 

information. 

Fixation time is a widely used measure and typically increases with increasing demands 

of the mental task. O'Donnell & Eggemeier (1986) report that an increase in workload is 

accompanied by an increase in fixation time. Backs & Walrath (1992) also determined that the 

fixation time ('dwell time') differs according to the characteristics of the tasks to be performed 

and that it increases by monochrome stimuli rather than by coloured stimuli. May et al. (1990) 

report a significant decrease in the saccharide range (that is, small rapid and involuntary 

movements of the eye) to the increase in a mental workload. 

The fixation of the eyes can be measured by recording the electrooculogram (EOG) or 

by using a video camera that records the corneal reflex, superimposed on a video showing the 

image of the visual field. The equipment that allows the execution of the latter mode is the 

Mobile Eye-Tracker. Both techniques have the disadvantage of requiring intense work, 

especially in terms of time, both for calibration and data analysis. Measuring eye movement in 

subjects with glasses is very difficult. 

Interesting is the evaluation of the number and duration of the eye fixation on the 

instruments inside the car in particular in the mirror, while driving, which provide a good 

indication of the user’s driving strategy. Parkes (1991) refers to the measurement of eye fixation 

as "eye allocation", that is, it summarises parts of the visual field in which the observation point 

is placed according to the boundary situation. Three categories were analysed: 

 Relevant traffic fixations: the driver looks straight forward, into traffic, into a blind spot; 

 irrelevant fixing of traffic: the gaze is turned into the other carriageway (which is irrelevant 

for driving on the highway), or on the road, in the air; 

 mirrors and dashboard ('other focus points'). 

 

If the workload decreases, the opportunity to look at irrelevant stimuli increases. A more 

challenging environmental circumstance requires an increase in the time spent looking at the 
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road, that is to say, more time spent looking at objects, such as other traffic-sharing cars, road 

signs, and road layout, including mirrors. 

If it is not the external environment that requires extra attention but a device inside the 

car, we may have the opposite effect: less time will be spent looking at relevant objects in 

traffic. 

Pupillometry, the pupil diameter evaluation, can also be used as a workload indicator. 

Recarte and Nunes (2000 and 2003) show a significant increase in pupil diameter during 

secondary verbal tasks. Palinko (2010) and Kahneman (1973) concluded that the increased 

need for processing activities was reflected in the increase in pupil diameter. 

Table 2.2 summarizes some ocular parameters useful for the evaluation of the workload 

and its influence on it. It is noted that an increase in workload corresponds to an increase in the 

heartbeat of the eye, an increase in the percentage of closure of the eyelid (PERCLOS), an 

increase in the fixation time, an increase in the diameter of the pupil, a decrease in the duration 

of the heartbeat and the variability of the gaze. 

Di Stasi et al. (2013 and 2015), for example, conducted a study involving 44 users who 

interacted with a PC responding to different tasks within a simulation of a forest fire, with the 

aim of extinguishing the fire as soon as possible. Each user wore a Mobile Eye Tracker. The 

results obtained confirmed the use of gaze-related measures as indices of mental workload in 

complex tasks. In particular, they showed an increase in the fixing time as the workload 

increased and a decrease in the diameter of the pupil at each change of environment at the 

boundary. 

Saeed et al. (2015), on the other hand, have subjected 46 users to a simulator trial within 

a highway and moderate traffic scenario. Using the Mobile Eye Detector have shown that the 

most reliable tool to evaluate mental workload is the change in pupil diameter. 

A very important study using eye movement for workload evaluation is that carried out 

by Strayer et al. in 2013. In this study, driver distraction was analysed due to the secondary 

activities available on board the vehicles. Three experiments designed to systematically 

measure cognitive distraction are described. In the first, participants performed eight different 

tasks without the parallel operation of a motor vehicle. In the second experiment, participants 

equally performed eight tasks while driving a simulator. In the third experiment, participants 

performed the same eight tasks while driving an instrumented vehicle in a residential area of a 

city. In each experiment, the tasks involved are a basic condition of single-task (i.e., without 

concomitant secondary task), simultaneous listening to the car radio, simultaneous listening to 
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a book on tape, conversation with a passenger sitting next to the participant, the conversation 

on a handheld mobile phone, the simultaneous conversation on a mobile phone via Bluetooth, 

sending an email and replying to an email via voice.  

Examination of eye movements was used to evaluate the workload. This measure is 

important because it has direct implications for driver safety. Unlike other measures, look 

coding can be obtained in a fairly non-intrusive way and is sensitive to changes in cognitive 

demand. It has been seen that in general when drivers engage in a cognitive task of secondary 

distraction, they tend to look away from the front road less often. Left and right look up as the 

workload increases. In addition, there is a systematic decrease in scanning for hazards to 

increase workload. 

The fourth physiological area concerns the measurements of speech which, however, 

are rarely used for the impossibility of grasping the different aspects of language. In general, 

there are three measures of the workload: intonation, rhythm and volume, which increase with 

increasing difficulty of the tasks to be performed. Cardiac, respiratory, visual, and speech 

activities are all actually affected by the signals that the brain sends when faced with a workload. 

This is why we prefer to calculate the workload by directly measuring brain activity. The 

biggest problem in this measure is the equipment needed to perform the measurement, which 

is cumbersome and inexpensive, plus it turns out to be an invasive examination for field tests. 

The measurement is carried out by studying the electroencephalogram (EEG). As with the ECG, 

bands can be detected by spectral analysis. For the EEG there are four bands: Delta waves 

(above 4 Hz), Theta waves (4 to 8 Hz), Alpha waves (8 to 13 Hz) and Beta waves (over 13 Hz), 

since 2000 a new band has been introduced, Ultra Beta waves (31 to 42 Hz). The increase in 

mental workload predicts the prevalence of some waves over others. The breakdown into 

frequency bands serves as an indication of the driver’s status with respect to alertness and 

alertness in different driving conditions. In particular, delta waves are present during deep sleep, 

while beta waves are present when the subject is alert. Alpha waves and Theta waves in general 

are associated with alert moments. In various workload studies using EEG frequency analysis, 

a higher sensitivity of alpha and theta waves is generally reported. (Kramer, 1991) and Sirevaag 

et al. (1988) reported a decrease in Alpha activity and an increase in Theta performance during 

multiple tasks compared to individual tasks. The use of EEG frequency analysis is widely used 

in the assessment of operator status, for example, to assess excitation levels during supervisory 

situations (Wilson & Eggemeier, 1991). 
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There are also many other physiological parameters related to workload, such as 

electrothermal activity measurement (EDA), which measures electrical changes on the skin. 

An increase in EDA corresponds to an increase in mental effort, as in the study of Michaels 

(1962) or Zeier (1979). 

 

 Subjective measures 

Subjective methods are individual assessments of driving performance. These assessments can 

be provided either directly by the sample performing the experiment (self-report methods) or 

by external, typically competent personnel. Unlike physiological measurements that are more 

precise, these methods are more practical, as the easiest way to understand if a subject is 

subjected to an excessive workload is to ask directly to the person concerned. Moreover, they 

are definitely the least invasive, the most flexible, the cheapest and require the least execution 

and processing time.  

Unlike physiological tests, these can only be performed before or after the experiment, 

so they do not guarantee a continuum measurement. In addition, a 15-minute delay in carrying 

out this test could lead to a different score, due to the fact that the workload amount is forgotten 

by people over time. De Waard indicates a maximum delay of 30 minutes beyond which the 

tests are no longer reliable. 

Another problem with subjective measurements is the scale of assessment, as the 

context strongly influences the results. In fact, subjective methods can be divided into two 

categories: one-dimensional and multidimensional. One-dimensional assessments have only 

one dimension and are easier to use. An example is the Modified Cooper-Harper Scale (MCH), 

the Overall Workload scale (OW) or the RSME developed by Zijlstra. In the RSME stress 

assessments at once are indicated by a cross on a continuous line. The line goes from 0 to 150 

mm and is marked every 10 mm. Along the line, at several points, statements relating to the 

effort invested are indicated, for example: 'Almost no effort' or 'extreme effort' (Figure 5.9). 

On the RSME should be indicated the amount of effort invested in the task, and not the more 

abstract aspects of mental workload (for example, mental demand, as in TLX). 
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Figure 5.9. RSME scale. 

 

Zijlstra, Van Doorn and Meijman (1989) used the RSME one-dimensional scale in their 

research. The focus of the study was on the assessment of the effects of traffic on the mental 

workload of users, especially when entering and leaving the motorway. The testing mode 

consists in dividing the possible scenario into three traffic conditions: the presence of light 

vehicles, the presence of a mix (light and heavy vehicles), and the stacking of heavy vehicles, 

and in two weather conditions (and visibility) clear skies and fog, which have little influence 

on the results except with the adaptation of user speeds. The results of the RSME have shown 

that of the three traffic conditions, what makes the task of entering and exiting traffic more 

challenging mentally is certainly condition 3, or the queuing of heavy vehicles. Another one-

dimensional assessment is the Activation Scale. The aspect of this scale is comparable to the 

RSME; the activation scale also consists of a single axis with reference points. 

Multidimensional evaluations, on the other hand, are more complex and require a 

longer evaluation time, because they can reach up to six dimensions. As the workload’s 

evaluation complexity increases, the size increases. There are two most widely used 

multidimensional scales that use the self-report methodology: SWAT (Subjective Workload 

Assessment Technique) and NASA Task Load Index (NASA-TLX). SWAT uses three levels, 
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low, medium and high, for three dimensions: time load, mental load and physiological stress 

load. There are three steps to analyzing the workload: the first step is to find all possible 

combinations of three dimensions in 27 cards. The individual arranges the cards in an order 

that reflects their own perceptions of the workload. This order is then used to develop a scale 

with interval properties. The second step is to evaluate the workload. The third step is to convert 

the score into a scale from 0 to 100, using the scale developed in the first step. 

NASA-TLX uses six dimensions for workload evaluation: MD mental request, PD 

physical request, TD temporal request, OP performance, EF effort and FR frustration. The score 

you get for each scale goes from 0 to 20. The operator is required to choose in which dimension 

he claims to have had an excessive workload, in order to attribute a weight to each dimension. 

The final result, ranging from 0 to 100, is obtained for each task by considering the weight 

attributed to each for each scale, summing the scales, and dividing by the total weights (Figure 

5.10).  
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Figure 5.10. NASA Tlx. 

Referring to the road field, the six dimensions were studied in the case of low traffic 

conditions (LTD) and high traffic conditions (HTD), and it was seen that in LTD due to a good 

OP, MD is low. While in HTD, MD and FR increase resulting in increased mental workload. 

Recently from this scale has been developed an equivalent, the NASA Raw Task Load Index 

(NASA-RTLX), obtained by the sum of the TLX and dividing by six. In a driving assignment, 

Park & Cha (1998) noted that the latter is more sensitive to mental demand than the former. 

Between SWAT and NASA-TLX, the latter is generally preferred, as the number of 

evaluation factors is higher in NASA, the data is easier to interpret and the procedure is lighter 

in comparison to SWAT. 

Almost all road context studies investigating workload variations on users report the 

use of subjective questionnaires, especially NASA’s TLX or RTLX. 
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Fairclough et al. (1991), for example, used NASA-RTLX in a study that aimed to 

analyze changes in the workload in performing a dual task (leading and entertaining a 

conversation). They found an increase in the overall workload in the dual-task condition 

compared to the single task, which was guidance only. 

RTLX was used in the study by Vaughan et al. (1994). The experiment, in this case, 

consisted in subjecting users to messages in three forms: auditory message, auditory message 

and continuously visible on a display, auditory message and temporarily (15s) visible on a 

display. The end result of the RTLX showed that a lower mental workload is developed for the 

second condition, namely the auditory signal and continuously reported on a display. Another 

study, more recent, that exploits the subjective measures, was carried out in a simulator (Teh, 

et al., 2013). The purpose of the experiment was to analyze the effects on the driver workload 

as a function of changing two factors: traffic flow and lane change. In this case, several 

subjective measurements were used simultaneously to confirm the validity of each of them: the 

NASA RTLX, the RSME and later also another minor scale called Continous Subjective Rating 

(CSR), which consists in subjective evaluation of the workload also within the experiment itself.  

As shown in previous studies, also in this case the results of the questionnaires 

demonstrate an increase in workload with the increase in traffic flow. Participants assessed a 

larger effort when they are "boxed" by the presence of other vehicles, especially heavy vehicles. 

As regards the lane change factor, drivers reported an increase in workload when changing 

lanes in their front field of view, especially if in the immediate vicinity, which was defined as 

an area "margin of safety": in this area the presence of other vehicles triggers an emergency 

reaction in the driver. Literature also makes available many studies that also use other 

subjective measures (Janssen et al., 1994; Baldauf et al., 2009), a few years later, in their studies 

found that the sum of the SWAT scale feedback was just as sensitive to increases in workload 

as the RSME scale. 

 

 Performance based methods 

The level of performance of the primary task makes it possible to understand whether the driver 

is driving correctly, in accordance, in practical terms, with all the prescriptions indicated in the 

theory, although a range of deviations from the theoretical requirement is allowed, which still 

allows you to remain safe. The problem lies in identifying the deviation beyond which you are 

no longer safe. 
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The principle on which this method is based is the subdivision of the actions in primary 

or secondary tasks, and the decrement of the performance in one or the other tasks is calculated. 

This subdivision reflects MRT theory, as primary tasks require a certain amount of resources, 

and the remaining resources are employed in secondary tasks. 

Performance in primary tasks is a direct, non-invasive measure. The primary task must 

be identified and specified for each type of situation. Parkes (1991) defined the primary task 

of the driver as maintaining safe control of the vehicle. The tasks that allow "vehicle control" 

in the road field are mostly: 

 the measurement of steering movement of the steering wheel, which does not require 

sophisticated equipment and in particular the reversal of steering is more sensitive to 

changes in workload; 

 the lane-keeping, that is the deviation from the central or lateral line of the lane, for 

carrying out this measure is necessary, however, a more specialized equipment; 

 speed control, the speed is in fact more moderate for excessive workloads; 

 time to line crossing (TLC) means the time it takes for a vehicle to reach either the center 

or the lane boundary, without any further steering correction. Typically if the workload 

increases, TLC increases, (Godthelp et al., 1984 - 1988). 

 

The performance of secondary tasks is additional to the previous tasks and is measured 

as the difference between the mental capacity engaged in the main tasks and the total available 

capacity. The advantage of calculating secondary performance over primaries is that they are 

able to determine any mental reserve capacity. Some examples of secondary tasks are: 

following a car, checking the mirror. As for the performance measurements of primary tasks, 

the lane-keeping task is typically used via the Vehicle Lateral Position Standard Deviation 

Parameter (SDLP). The SDLP increases if the concentration of the pilot is not optimal, which 

may also be due to the intake of substances that alter the concentration such as drugs, sedatives 

or alcohol. The secondary tasks, that often come side by side, are additional tasks, such as a 

phone call, this is reflected in the primary task with an increase in the SDLP. In addition, the 

SLDP is often belittled by the driver as the primary task compared to the performance of a 

secondary task like the phone call, the opposite of what you would expect.  

One of the first studies that use the standard deviation as a measure of performance is 

the one developed by Green et al. (1993), which found an increase in the SDLP when the user 

travels wider lanes. The SDLP is often accompanied by the study of steering movements, as in 
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the research of Macdonald & Hoffmann, (1980) and Godthelp et al., (1984). The measurements 

related to steering can be simple, that is, the degrees of rotation of the steering (McLean & 

Hoffmann, 1975), or they can be more complex measures, that involves the analysis of the 

frequency of the reversals of steering direction: "Steering wheel Reversal Rate" (SRR) 

(McLean & Hoffmann, 1971). Both the SDLP and the movements of the steering wheel are the 

most used measures on straight road, as they are the simplest ones. According to Miller (2001), 

however, steering movement is generally preferred to the SDLP to investigate workload levels 

for three reasons: first of all because the vehicle angle is approximately the integral of the 

steering position over time, and the lane position is about the integral of the steering angle over 

time, if you consider a straight track. Secondly, the task of lane-keeping in experienced drivers 

is significantly influenced by the so-called 'control level' process", a kind of automatism that 

requires almost no resource from the user. A more recent study that reports as performance 

measures the movement of the steering wheel is that carried out by Pecchini et al. (2014), 

carried out in Fiorenzuola d'Arda in Emilia Romagna, whose purpose was to investigate 

workload levels in the presence of roundabouts. In this study the presence of GPS devices 

allowed to obtain the real trajectories, the speed and the movements of the vehicle; moreover 

a camera, placed over the driver’s seat, allowed to record the steering angles and the actions of 

the driver. The "Steering wheel Reversal Rate" (SRR) has been calculated, the frequency of 

times the steering wheel direction was reversed and the results of that study show that there is 

a high level of difficulty for roundabout manoeuvres. Considering, moreover, that in the carried 

out study the traffic was absent, the workload of the driver, in real conditions, would have 

reached peaks still taller.  

An additional measure of the performance of the primary task, often used in the 

literature, is TCL (time-to-line crossing) which represents the time required by the vehicle to 

reach the centre line or the edge of the lane, if no further corrective movements of the steering 

wheel are made. This parameter is often used to analyze the effects of sedative drugs as in the 

Riedel study (1991). Sometimes speed measurements are also used in performance evaluation. 

Both Jordan & Johnson (1993) and Fairclough et al. (1991) found that user speeds decreased 

when they were given a secondary task, such as setting up a stereo or having a conversation, 

than normal driving conditions along the same route. 

Brown et al. (1969) found an increase in the time needed (and thus a reduction in speed) 

to finish the circuit as a result of using a phone while driving, while Van Winsum et al. (1989) 
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They found the same effect when users were guided in the path by a navigator (map and voice 

indicator). 

As for the use of secondary tasks in literature, those most commonly used are 

conversation, both telephone and non-telephone, and the pursuit of a vehicle, as in the studies 

done by Brookhuise et al. (1994). According to Janssen, (1979) Michon (1985) lane parameters 

(SDLP, SRR - primary tasks), reflect control performance, while secondary parameters such as 

car-following reflect manoeuvre level performance. The main parameter of performance on the 

car-following is the delay of the response to changes in speed of the leading vehicle. In addition 

to delay, "consistency" or the accuracy of the chase is also calculated, and "the module" is the 

amount of reaction to speed up the changes by the car tracker (Porges et al., 1980). There are 

other secondary tasks, whose performance is often used to evaluate the driver’s workload. 

PDT is the acronym of Peripheral Detection Task and consists in subjecting the user to 

tasks that fit into his side field of view; Most often the task is to turn off a flashing light located 

on the periphery of the user’s field of view and calculate the reaction time of this task. 

Two secondary tasks are frequently used in the Baldauf study (2009): the auditory 

rhythm test (PASAT) and the peripheral detection task (PDT). During driving, short visual 

stimuli were repetitively presented in the periphery of the subject’s visual field (between 11 

and 23 degrees of view) for 1s. If the driver detected the stimulus, he had to respond with a 

push of a button. Typically the increased demands of the workload force the driver to 

concentrate their visual attention in a narrower field and respond more slowly to lateral stimuli. 

Martens and van Winsum (2000) using this technique in a simulator, and Olsson and Burns 

(2000) in a road study, also confirmed that the PDT reflects changes in workload demands 

when the driver encounters obstacles. Patten’s study (2006) which always uses PDT showed 

that drivers with less driving experience have a longer reaction time than those with more 

experience. In general, the PDT is useful for assessing driver distraction, (Tijerina, 2000). This 

secondary task, however, has some disadvantages: Jahn et al. (2005) stressed that performance 

from PDT is often influenced by movements of the head and eyes (Jahn et al., 2005; Tornros 

and Bolling, 2006; Zhang et al., 2015; Martens et al.,2016) 

Finally, other secondary tasks include, for example, checking the mirror: "mirror 

checking". The results of this parameter are mixed, so it is the least used. In Van Winsum’s 

study et al (1989) the frequency of looking inside the machine was traced back to a high 

workload condition. Instead, Brookhuis et al. found fewer looks in the rearview mirror when 
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there is a high mental workload, for example, when driving on busy streets or when handling 

a headset. 

Another approach to the study of the driver’s workload through secondary activities, 

this time related to the geometric characteristics of the road, is that of Kantowitz (1995). He 

used a driving simulator to study three levels of road curvature: narrow curves (radius of 

curvature from 150-550 meters), easy curves (radius of 600-1000 meters) and straights, in 

relation to four secondary activities including reaction time (RT) for reading an odometer and 

the RT for a single letter indicating the geographical direction. The results showed that the 

odometer reading task is a sensitive index of the workload imposed by the geometry of the road. 

The task of perceiving a figure presented orally is an appreciable indicator of the workload 

imposed by traffic density. 

 

5.2. Methods  

5.2.1. Measurement of the driver's workload: the electrode brain helmet (EEG) 

To assess the "physiological" workload of drivers in the experimental test, an electrode brain 

helmet (EEG) was used. The brain electrode helmet (EEG) allows continuous monitoring of 

the driver's brain activity. More precisely, the helmet or cuff is made of elastic textile material 

of a specific size to be chosen from time to time depending on the size of the head of the 

experimental subject, acts as a support to keep the measurement electrodes in specific positions, 

according to a standard defined with the name Sistema Internazionale 10-20 (Figure 5.11). 
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Figure 5.11. International System 10-20. 

 

Brain activity is measured by electroencephalography (EEG), which is the recording of 

the electrical activity of the brain. The technique was invented in 1929 by Hans Berger, who 

discovered that there was a difference in electrical potential between needles driven into the 

scalp, or between two small metal disks when they were placed in contact with the clean skin 

of the leather hair. 

The electrodes consist of a metallic conductor (gold or silver) in contact with theskin 

through a thin layer of gel. The use of a conductive gel promotes contact between the electrode 

and skin, minimizing the movements of the electrode itself. Moreover, the gel allows a 

reduction in the impedance of the biological surface, improving the measure of biopotential. 

The basic parameters of the EEG are the frequency (measured in Hz) and the amplitude 

(measured in μV) of potential oscillations, or EEG rhythms. According to these parameters, 
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waves with different frequencies and amplitudes are distinguished: alpha, beta, gamma, delta 

and theta. The variation of these waves is specifically related to physiological events (activity, 

concentration, sleep, sensory stimulation, etc.) and pathological events (tumors, hematomas, 

epilepsy, etc.). 

The interpretation of an EEG trace is based on the study of the mentioned parameters. 

Five main EEG rhythms can be determined (Figure 5.12): 

Alpha rhythms (α) or of Berger: the basic rhythm or frequency present in an EEG is the 

alpha rhythm. This differs in slow alpha (8-9 Hz), intermediate alpha (9-11 Hz) and fast alpha 

(11.5-13 Hz), with an average amplitude of 30 μV. 

This frequency is recorded in a person awake with closed eyes; when the subject opens 

his eyes, the alpha activity disappears and is replaced by a low voltage one, called the beta type. 

The waves or alpha rhythm are characteristics of waking conditions, so they are not present in 

sleep or in a state of mental rest. When a subject is instead subjected to slightly greater brain 

activity, the presence of a beta rhythm begins to be recorded.  

Beta rhythms (β): the beta rhythm is divided into slow beta (13.5-18 Hz) and rapid beta 

(18.5-30 Hz) and has an average electrical voltage of 19 μV. These also indicate a highly 

activated cortex and are mostly concentrated in the frontal and central parietal areas. Beta 

waves are dominant in a subject with open eyes and engaged in any brain activity. 

Theta rhythms (ϑ): the rhythm of theta waves is dominant in the newborn, present in 

many adult brain diseases, in states of emotional tension and hypnosis. It is distinguished in 

slow theta (4-6 Hz) and rapid theta (6-7.5 Hz), with an average voltage of 75 μV. In normal 

conditions, the theta phase occurs in the first minutes of falling asleep when one is still in a 

state of drowsiness.  

Delta rhythms (δ): at about 20 minutes hypothetical from the beginning of rest, one 

should enter a deeper sleep, also called slow waves, but which is not REM sleep yet and which 

is called N-REM sleep. Here delta waves appear, characterized by a frequency between 0.5 and 

4 Hz and an average electrical voltage of 150 μV, which are not present in physiological 

conditions in the waking state of adulthood.  
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Figure 5.12. Main EEG rhythms. 

 

Initially, this technology was not commonly used for testing and experimentation, due 

to the requirement of the bulk. Recently, there are many smaller, non-invasive items available 

on the market that allow these tools to be used in a wide variety of research fields, even in real 

and non-simulated conditions. 

In this experiment, the Be Microsystem of the EB Neuro Spa (Florence, Italy) was used. 

The advantage of the system lies in the compactness of the amplifier, which allows both the 

recording and the real-time display of the EEG activity on the PC, and, as in our case, the 

recording in holter mode (Figures 5.13 and 5.14), the data are temporarily saved on the internal 

memory so that they can be downloaded later on the PC, so as to minimize the invasiveness 

and the overall dimensions of the system during the experiment.  
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Figure 5.13. Holter. 

 

 

Figure 5.14. Holter positioning while driving. 

 

EEG data were acquired from 12 electrodes (FPz, AF3, AF4, F3, Fz, F4, P3, P7, Pz, P4, and 

P8), so as to include the Frontal and Parietal cortical areas, these being the areas directly 

involved in the workload (Figure 5.15). All the electrodes were acquired with a sampling 

frequency of 256 Hz, referred to the average potential recorded in the lobes of both ears, and 

using the Cz electrode as a ground electrode (ground). The EEG signals of each subject were 

processed in order to obtain a workload index. 

 

 

Figure 5.15. EEG headset positioning. 
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5.2.1.1. The computation of Workload 

During the experiments the EEG data have been recorded without any signal 

conditioning, the whole processing chain has been applied offline. In particular, EEG signal 

has been firstly band-pass filtered with a fourth-order Butterworth filter (high-pass filter cut-

off frequency: 1 Hz, low-pass filter cut-off frequency: 30 Hz). The Fpz channel has been used 

to remove eyes-blink contributions from each channel of the EEG signal by using the 

REBLINCA algorithm. This step is necessary because the eyes-blink contribution could affect 

the frequency bands correlated to the mental workload, in particular the theta EEG band. This 

method allows to correct EEG signal without losing data. For other sources of artifacts (i.e., 

environmental noise, drivers’ movements, etc.), specific procedures of the EEGLAB toolbox 

have been employed. Firstly, the EEG signal is segmented into epochs of 2 s (Epoch length), 

through moving windows shifted of 0.125 s (Shift), thus with an overlap of 0.875 s between 

two contiguous epochs. This windowing has been chosen with the compromise to have both a 

high number of observations, in comparison with the number of variables, and to respect the 

condition of stationarity of the EEG signal. In fact, this is a necessary assumption in order to 

proceed with the spectral analysis of the signal. The EEG epochs with the signal amplitude 

exceeding ±100 µV (Threshold criterion) are marked as “artifact.” Then, each EEG epoch has 

been interpolated in order to check the slope of the trend within the considered epoch (Trend 

estimation). If such a slope is higher than 10 µV/s, the considered epoch is marked as “artifact.” 

Finally, the signal sample-to-sample difference (Sample-to-sample criterion) has been 

analyzed: if such a difference, in terms of absolute amplitude, is higher than 25 µV, i.e., an 

abrupt variation (no-physiological) happened, the EEG epoch is marked as “artifact.” At the 

end, the EEG epochs marked as “artifact” have been removed from the EEG dataset with the 

aim to have a clean EEG signal to perform the analyses. From the clean EEG dataset, the Power 

Spectral Density (PSD) has been calculated for each EEG channel for each epoch using a 

Hanning window of the same length of the considered epoch (2 s length, that means 0.5 Hz of 

frequency resolution). Then, the EEG frequency bands of interest has been defined for each 

subject by the estimation of the Individual Alpha Frequency (IAF) value. In order to have a 

precise estimation of the alpha peak and, hence of the IAF, the subjects were been asked to 

keep the eyes closed for a minute before starting the experimental tasks. Finally, a spectral 

features matrix (EEG channels × Frequency bins) has been obtained in the frequency bands 

directly correlated to the mental workload. In particular, only the theta band [IAF – 6 ÷ IAF – 

2], over the EEG frontal channels, and the alpha band [IAF – 2 ÷ IAF + 2], over the EEG 
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parietal channels, were considered as variables for the mental workload evaluation. At this 

point the automatic-stop-StepWise Linear Discriminant Analysis (asSWLDA), a specific 

Machine-Learning algorithm (basically an upgrade version of the well-known StepWise Linear 

Discriminant Analysis) previously developed, patented and applied in different applications by 

the authors has been employed. On the basis of the calibration dataset, the asSWLDA is able 

to find the most relevant spectral features to discriminate the Mental Workload of the subjects 

during the different experimental conditions (i.e., EASY = 0 and HARD = 1). Once identified 

such spectral features, the asSWLDA assigns to each feature specific weights (wi train), plus a 

bias (btrain), such that an eventual discriminant function computed on the training dataset 

[ytrain(t)] would take the value 1 in the hardest condition and 0 in the easiest one. This step 

represents the calibration, or “Training phase” of the classifier. Later on, the weights and the 

bias determined during the training phase are used to calculate the Linear Discriminant function 

[ytest(t)] over the testing dataset (Testing phase), that should be comprised between 0 (if the 

condition is Easy) and 1 (if the condition is Hard). Finally, a moving average of 8 s (8MA) is 

applied to the ytest(t) function in order to smooth it out by reducing the variance of the measure: 

its output is defined as the EEG-based Workload index (WLSCORE). For the present work, the 

training data consisted in the Easy segment of the 2nd lap during the Normal condition and the 

Hard segment of the 2nd lap during the Rush condition (they have been hypothesized the two 

conditions characterized by respectively the lowest and highest mental workload demand), 

while the testing data consisted of the data of the 3rd lap of both the conditions. Here below 

the training asSWLDA discriminant function (Equation 1, where fi train(t) represents the PSD 

matrix of the training dataset for the data window of the time sample t, and of the i th feature), 

the testing one (Equation 2, where fi test(t) is as fi train(t) but related to the testing dataset) and 

the equation of the EEG-based workload index computed with a time-resolution of 8 s 

(WLSCORE, Equation 3), are reported.  

 

ytrain(t) = Ʃ i wi train · fi train(t) + btrain          (1) 

ytest(t) = Ʃ i wi train · fi test(t) + btrain                        (2) 

WLSCORE = 8MA(ytest(t))                             (3) 

 

5.2.2. Self-evaluated workload using NASA_TLX questionnaire  

At the end of the test, drivers were asked to complete two NASA-TLX questionnaires relating 

to one off and one on the system. 
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The NASA-TLX test consists of 6 questions that allow the driver to calculate the mental load 

index self-assessed. The questions that can be answered with a score on a scale from 0 to 100, 

are: 

 Mental Demand: how do you evaluate mental commitment with the system turned on 

(off)? 

 Physical Demand: how do you evaluate the physical commitment with the system turned 

on (off)? 

 Temporal Demand: how do you evaluate the time commitment and the required rhythms 

with the system on (off)? 

 Performance: how do you rate your performance during the test with system turned on 

(off)? 

 Effort: How do you rate, the overall effort you had to make to complete the test with the 

system turned on (off)? 

 Frustration: Did you felt insecure, discouraged, irritated, stressed during the test with 

system turned on (off)? 

 

A second questionnaire, called DS, drawn up in collaboration with experts from the Department 

of Psychology of the University of Bologna; it was given to the participants in order to find 

other information (general information/attitudes). It was composed of two parts: the first, 

prepared ad hoc for the test, aimed at identifying the subject and the driver's self-assessment of 

his style and driving habits; the second one, destined for the evaluation of the subject towards 

the ACC system. In addition, a driving style self-assessment questionnaire was also given to 

drivers to assess their driving perception (Figure 5.16, 5.17).  
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Figure 5.16. Questionnaire of driving style (1). 
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Figure 5.17. Questionnaire of driving style (2). 
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5.3. Outcomes  

To characterize the mental behaviour, the workload has been evaluated both objectively and 

subjectively. In the first case, the EEG-based neurometric of workload computed from the 

driver’s brain activity was used; in the second case, the subjective workload has been evaluated 

through the NASA-TLX questionnaire.  

Independently from the previous experience of the system, in the ACC ON condition 

the EEG drive workload was higher (96 observations (48 participants - 2 ACC conditions), F(1, 

96) = 3.29, p < 0.02, χ2 = 0.04)  (Graph 5.1). If considering the Eye Tracker analysis outcomes, 

the driver seemed more involved in monitoring the interior car in continuous search of the 

certainty of the correct functioning of the system when the ACC was enabled. In this way, the 

overall mental demand increased, resulting in a more difficult driving task compared to the 

manually condition In this way, monitoring the ACC system actually acted as a sort of 

secondary task, increasing the overall mental workload, but likely decreasing the attentional 

resources allocated on the primary task, i.e. driving the car. 

 

 

Graph 5.1. EEG workload considering ACC state and drivers’ ACC experience. 

 

The analysis of the NASA TLX results showed that for all drivers the experienced 

workload was quite low. The driving task was not particularly difficult, hard and tiring. 

Regardless of the experience of the system, the workload with the ACC off was higher than 

with ACC on, because the use of the system made easier the driving activity (Graph 5.2). 

The expert users felt a greater difference between using or not the system. This result 

is probably related to a habit factor, which affects them when they drive without the system 

that they normally use.  
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Graph 5.2. Results from the NASA-TLX questionnaire (score from 1 to 100). 

 

These results have been confirmed from the DS and Q-ACC answers (Table 5.2). The 

driving test wasn’t difficult and demanding. Independently form the ACC previous experience, 

all the drivers did not realize the inattention connected with the use of the system. They thought 

they have maintained a high level of attention during the test and they have been able to deal 

promptly with sudden and dangerous situations. They were favorable and inclined to the use 

of the Adaptive Cruise Control and they appreciated its utility in terms of traffic safety. The 

non-users appreciated the ACC less than the users because they needed more time to be aware 

of the new system. 

 

 

 

 

 

Questionnaire Question 
ACC NO-USER ACC USER 

Mean SD Mean SD 

DS (rating scale 0-5) 
Exceed the speed limits 2,8 1,4 3,5 1,3 

Danger driving behavior 1,7 0,4 1,8 0,5 

Q-ACC (rating scale 0-6) 

Level of attention 4,6 1,3 4,7 0,9 

Test complexity 3,1 0,9 3,4 0,8 

ACC evaluation 3,4 0,6 4,1 0,5 

Utility of ACC 4,0 1,5 4,8 1,8 

Table 5.2. Results of the DS and Q-ACC questionnaires. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 124

 

5.4. Conclusion  

The results obtained demonstrated the reliability and effectiveness of the proposed 

methodology based on human EEG signals, to objectively measure driver’s mental workload, 

considering also the influence of the Adaptive Cruise Control. 

The proposed approach should allow investigating the relationship between human mental 

behavior, performance and road safety. Results from this study demonstrate that ACC system 

induced behavioral adaptation in drivers, in terms of changes in workload and hazard detection. 

NASA-TLX questionnaire, however, showed there was higher subjective workload in the 

manual condition compared to the ACC condition. These data are even more significant 

considering that subjects wore eye tracking glasses and EEG cap, drove an unfamiliar car and 

knew that their driving behavior was being studied. One may assume that their driving style 

was more careful than under real-life conditions. From a larger point of view, the present study 

also demonstrated how such a multimodal evaluation, integrating traditional measures (e.g. car 

parameters) with innovative methodologies (i.e. neurophysiological measures such as EEG and 

ET), could provide new and more objective insights. Actually, contrarily to the self-perception, 

to drive with ACC ON produced higher workload, probably because the drivers were distracted 

other actions within the car. Therefore, the higher workload could be considered as an indirect 

effect of ADAS systems, since actually the mere action of driving is perceived as easier by the 

drivers. This preliminary study paves the way to the application of these methodologies to 

evaluate in real conditions human behavior related to road safety, also considering the recent 

technological advancements that are making this instrumentation less invasive and easier to 

use. 
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6. THE EXPERIMENTAL COMPARISON BETWEEN VISUAL 

DATA ANALYSIS USING THE NEURAL NETWORKS 

TECHNIQUES  

 

6.1. Introduction  

The birth of Artificial Intelligence (AI) occurred in 1950. John McCarthy, considered one of 

the founding fathers of the subject, in 1955, established the following definition (McCarthy et 

al., 2007): "Artificial intelligence indicates the science and engineering needed to make 

intelligent machines. The term intelligence identifies the computational part of the ability to 

achieve goals in the world". 

In computer science, one of the main themes of AI is the study of "intelligent agents": 

any device perceives the surrounding environment and takes actions whose purpose is to have 

the greatest possible chance of achieving a set goal. In other words, when we talk about AI we 

mean a machine that emulates the cognitive functions that humans associate with other human 

minds. The fields in which this technology is most used are reasoning, knowledge, planning, 

learning, natural language processing (communication), perception and the ability to move and 

manipulate objects (Figure 6.1). 

Figure 6.1. AI, Machine Learning e Deep Learning. 
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Machine learning (ML) is a subfield of artificial intelligence and represents only a part 

of what is needed for a system to become an AI, as it only provides the learning part; deep 

learning (DL)Instead, it is a particular type of machine learning that uses artificial neural 

networks (ANN) as computational models. 

 

 

6.2. Artificial neural networks 

Artificial neural networks are information processing systems that simulate within a computer 

system the functioning of human biological structure in relation to the nervous field, consisting 

of nerve cells (neurons) interconnected in a complex network.  

A definition of artificial neural network (ANN) in the literature is provided by the 

inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen. He defines it as: "A 

computational model consisting of a series of simple and highly interconnected processing 

elements, which process information by their dynamic state response to external inputs." 

In the human nervous system there are about 86 billion neurons connected by more than 

1014 synapses. In the biological network (Figure 6.2), the dendrites carry the signal to the cells 

of the body where they are added and, if the result is higher than a threshold, the neuron is 

activated (shoot), that is, sends an electric impulse (spike) through the axon. 

 

 

 

Figure 6.2. Biological Neuron. 
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Artificial neural networks are also formed by interconnected neurons (called nodes or 

units), of which they are the fundamental element. The neuron receives input signals through 

connections with other units (or external sources) and produces an output. Specifically, it is 

necessary to enter the values of the inputs (xi), their weights (wi) and biases (b), to establish 

the activation threshold of the same neuron (Mueller, et al, 2019) (Figure 6.3).   

 

The objective is to understand the effects of synaptic forces (w weights), to control their 

influence and direction, which can be excitatory (positive weight) or inhibitory (negative 

weight) of one neuron on another.  

In artificial neural networks, only the frequency of activation provides information. 

This frequency is therefore modeled with an activation function (e.g. sigmoid or Softmax), 

which represents the frequency of the electric impulses along the axon. The neural network 

system is capable of processing large amounts of input data and producing a response output 

(Fumo, 2017). 

 

6.2.1. Architecture of a neural network 

The architecture of a neural network is defined by the number of nodes forming a layer, the 

number of hidden (or intermediate) levels, and the connections between nodes (Figure 6.4), in 

particular:     

Figure 6.3. Artificial Neuron. 
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 Input nodes (Input level): they constitute the data source and provide the information to the 

next level (often hidden type). These nodes do not compute because they do not process 

data. 

 Hidden nodes (hidden layer): are the nodes where the process (or computation) takes place, 

in these units (Hidden nodes) act the activation functions that process information and 

transfer signals from the input level to the next, This can be another hidden layer or the 

output layer. These levels are not always present in networks. 

 Output nodes (output level): Within these nodes the activation function is used to get the 

output signals. 

 Connections and weights: it indicates a network resulting from a multitude of neurons 

connected by connections, in which the output of the predecessor neuron (i) becomes the 

input of the successor neuron (j). Each connection is assigned a weight (Wij). 

 Trigger function: defines the output of the given node as a series of inputs. The nonlinear 

activation feature allows networks to calculate nontrivial problems using only a small 

number of nodes. In artificial neural networks this function is also called transfer function. 

 Learning rule: a rule (or algorithm) that modifies the parameters of the neural network 

based on data inputs to produce better output. This learning process often involves changing 

weights and thresholds. 

 

 

To increase the computing capacity, nodes are merged into layers that can be of 

different types (layers): 

Figure 6.4. Architecture of an artificial neaural network. 
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 Fully Connected layers: in which a neuron, with its relative weight, is connected to all 

neurons of the previous level. It is a type of model that does not require particular 

assumptions but which, however, involves a considerable cost in terms of memory because 

of the numerous connections. 

 Convolutional layers: In this type of level, each neuron is connected to a limited number of 

adjacent neurons belonging to the lower level. This configuration is often used for image 

analysis, where features are local. The small number of connections makes convolutional 

levels particularly economical, both in terms of performance and memory. The operation 

is based on the sliding of filters on the input image: in fact, a filter (kernel) of various sizes 

is applied to the input data that produces an output with a certain step (Figure 6.5). 

 

 

If the kernel is smaller than the input size, the output is smaller than the input. To avoid 

this situation, producing images of the same size, we apply padding with as many zeros as 

are necessary to enlarge the mask to the edges of the input (Scala, 2018). 

 Pooling layers: Often used levels together with convolutional ones in order to change the 

spatial dimensions (height and width). This choice brings performance benefits from a 

computational point of view and makes training easier. One of the most commonly used 

pooling levels is max-pooling, which performs a grouping: a window slides over the input 

image and outputs a value equal to the greater of the window. It is important to note that 

the parameters to be established are the layer on which to apply the convolution, the step 

by which to apply the filter and the size of the same (Figure 6.6). 

Figure 6.5. Example of application of the kernel. 
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 Dense layers: They are particular levels fully connected and are the most used in artificial 

neural networks (Figure 6.7). 

 

 

Within these levels you can apply several activation functions, including the Relu. It consists 

in the application of the function f(x)=max(0,x) to each element of a tensor without changing 

its spatial and depth characteristics. Also, consider all output values as follows: 

 if positive, does not change; 

 if the value is negative, it turns it into 0. 

 

6.2.2. Types of Neural Network 

In the vast field of artificial intelligence, it is possible to evaluate different types of neural 

networks, including: 

 Feedforward Neural Network: Connections between nodes do not form a loop or loop. The 

information then moves in only one direction (forward) from the input neurons, through 

Figure 6.6. Max-pooling. 

Figure 6.7. Dense layer. 
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those hidden (if any), to the output neurons. However, it is possible to differentiate this 

type of network into: 

- Single-layer Perceptron: consists of a single layer of output nodes and is free of 

hidden layers. The term "Single" derives from the fact that the level count does not 

include the input, as it does not perform any calculation. 

- Multi-layer perceptron (MLP): consists of several levels of computational units 

interconnected in a feed-forward way that is where each neuron has direct 

connections to the neurons of the next layer (Figure 6.8). In many applications the 

nodes of these networks use a sigmoid function as an activation function. MLP 

networks are widely used because they are able to learn nonlinear representations 

(in most cases the data presented are not linearly separable). 

 

 

 Convolutional neural networks (CNN): they are inspired by the organization of the visual 

cortex as units respond to stimuli in a restricted region of space known as the receptive 

field. These overlap partially, covering the entire field of view. The response of the unit 

can be mathematically approximated by a convolution operation. Their application ranges 

from image and video recognition to natural language processing systems. CNN requires 

large data to train on. 

  Recurrent neural networks (RNN): they have connections between units that can form a 

direct loop, propagating data both forward and backward. This allows dynamic time 

Figure 6.8. Multi-Layer Perceptron. 
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behavior. Unlike feedforward neural networks, rnns can use their internal memory to 

process arbitrary input sequences. They are applicable to activities such as handwriting or 

voice recognition. 

 

Neural networks are usually used in contexts where data can be partially wrong or where there 

are no analytical models that can address the problem. Typical use is in OCR software, facial 

recognition systems and more generally in systems that deal with data subject to errors or noise. 

Neural networks are also used as a predictive means of financial, meteorological or 

bioinformatics analysis. 

 

6.2.3. Machine Learning 

 

Machine learning allows you to evolve and refine the behavior of a system through learning 

information obtained from data. The creation of an artificial neural network can be summarized 

in three phases: Collection, Learning and Validation. The first includes the collection and 

selection of data necessary for the implementation of the network; it is the step that takes the 

most time because often the quantity and quality of data must be high and consistent with the 

goal. In the learning phase (or training set), the aim is to make the neural network learn, based 

on the data collected in the previous phase, the relationships between the input data obtained 

and the output data. Finally, in the validation phase, we evaluate which input data are 

influencing the output result, so as to eliminate the remaining part. 

 

6.2.3.1. Collection phase 

The heart of machine learning is the algorithm, a procedure designed to solve a specific 

problem. The most used algorithm is backpropagation, which can modify the weights 

associated with network connections according to the propagation of the error. Basically, you 

compare the output value obtained with the real result and you get an error; then you proceed 

in the opposite direction going to distribute the error among all the elements of the network. 

This type of algorithm is used in the field of supervised learning, where the real value is 

available.  

In the realization of the algorithm, the first step is to insert an input vector into the 

network; this is propagated forward (feed-forward), it crosses all the layers of the network 

reaching the output one. Following the propagation of the input in the network, the difference 
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between the network output and the expected output is defined as an error (or loss) function 

(Scala, 2018). On the form of the error function two hypotheses are made: 

1.  Definition as an average: 

𝐸 =
1

𝑛
 𝐸



 

n = the sum of the last individual trainings 

Ei = error functions for individual training. 

 

This is necessary to generalize the gradient of the error function, also calculated for a 

single training case. 

2. Definition as a function of the outputs of the network under consideration (Nielsen, 2005). 

 

The objective is to minimize the error function so that the expected result is as close as possible 

to the real one: to do so, the algorithm calculates the errors of the neurons belonging to the 

output layer and, later, propagated in the network in the opposite direction (back, note), to the 

point where each neuron is associated with an error value weighed according to its contribution 

to the final output. At this point, the algorithm proceeds with the calculation of the gradient of 

the loss function, which is used during optimization to update the weights and thus reduce 

errors.  

To get the combination of weights that minimizes the error, the backpropagation uses 

the gradient descent, with which you want to calculate the steepest descent direction (Figure 

6.9). 

 

Figure 6.9. Stochastic descendent of the gradient. 
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The risk, however, is that for deep neural networks (with a large number of hidden 

levels) the gradient decreases until it disappears during propagation in the farthest layers. In 

order to optimize the gradient descent method, you can use variants based on the amount of 

data collected to evaluate the gradient. Among them is the stochastic descent of the gradient 

(SGD), in which the update of the parameters is performed one instance at a time, evaluating 

their variation at each observation. This method, however, takes longer to arrive at convergence 

and can lead to high values of variance in the error rate. A second method is ADAM: this 

evaluates adaptable learning rates for each parameter. This method takes into account the 

weighted average of the gradients obtained at the previous steps: 

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧ 

This method is also able to consider the weighted average of the previous square 

gradients: 

𝑣௧ = 𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ)𝑔௧
ଶ 

mt = is the estimate of the first moment (and mean of the gradients); 

vt = represents the second moment (or non centered gradient variance). 

 

6.2.3.2. Learning phase 

The learning phase consists therefore of the definition of the optimal synaptic weights and can 

be of two modalities: 

 Unsupervised learning: The values of the model of the artificial neural net are modified 

only in function of the data of input, therefore we do not have notions a priori on the 

obtained values in the output. In this method, the algorithm modifies the data, for example 

by determining classes or recombining the data into completely different new values, in 

order to be more useful for the following analyses. The behavior of these algorithms is 

similar to that of human beings when they try to understand if certain objects or events 

belong to the same class, using as an association criterion the degree of similarity between 

two objects (Mueller, et al., 2019). 

 Supervised learning: represents an algorithm capable of acquiring notions from a set of 

input data of which the correct output values are also known. The fields of application range 

from regression (numerical) problems to classification problems in which, for example, 

objects must be distinguished into classes. It’s the most common type of learning. Since 

you know both the input data and the actual output values, the weights are modified 
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according to the difference obtained between the corrected values and the values obtained 

from the output network. One of the most used supervised methods to train the network is 

the one that involves the use of the backpropagation algorithm: at first, the network 

produces output data without varying weights and biases, Then the error between the real 

data and the product of the network is evaluated, through an update process that changes 

weights and biases up to the input level. One of the most delicate aspects of supervised 

learning is to determine which and how many examples to use during training: considering 

an excessively large or small sample could generate overfitting. This is a phenomenon in 

which the model fully adapts to the sample to which it has been subjected, losing its 

effectiveness on external data. 

 Reinforcement Learning: Here too, the algorithm is provided with data without a solution 

(as in the unsupervised case). The algorithm is able to find a solution to which it is possible 

to give a positive or negative assessment. Reinforcement learning is used in situations 

where the system has to make decisions with consequences (therefore the result is 

prescriptive, indicating what should be done, and not just descriptive, as happens in 

unsupervised learning) (Mueller, et al., 2019). 

 

6.2.3.3. Validation phase 

The validation phase aims to evaluate and validate the entire system on a set of data (validation 

set), these must be different from those used in the learning phase. This last step is also called 

generalisation set. If the system response does not match the desired results, a cause search 

process is initiated and the network undergoes a new learning cycle. When the third phase is 

completed, the product and related hardware and software are developed. 

 

6.3. Deep Learning  

Technological innovation and advancement in neural networks have led to the development of 

deep learning. The ANN began to use CPUs and GPUs, making network training accessible to 

those who do not have a super computer. As described above, neural networks learn from a 

dataset and, by increasing the amount and variance, can improve its performance. In some 

cases, however, large networks are needed, with multiple layers and neurons and therefore with 

an increasing degree of complexity. These multilevel networks are the backbone of the concept 

of Deep Learning (Goodfellow, et al).  
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The DL can be defined as a set of machine learning algorithms that aim to learn on 

several levels; on each level information is processed and sent to the next layer, which 

calculates the values based on the data provided to it by the previous level. The goal of the DL 

is to have a structure that can modify the output gradually taking into account the assessments 

made by previous levels of the network and converging toward the solution. The term "deep" 

refers to the multilevel structure of this category of networks. The idea behind deep learning is 

the assumption that data is generated by a composition of factors, divided into a structure at 

many hierarchical levels. 

 

6.3.1. Deep learning applied to image classification field 

Discovered in the eighties, convolutional neural networks are able to offer performing results 

due to the classification of images. In convolutional networks, filters are applied to the image 

matrix that, depending on the type, modifies, highlights or deletes some parts. Convolutional 

filters can be applied to edges or to specific shapes and allow to extrapolate from the image 

details useful for classification. 

Compared to the human case, the individual is able to recognize a car because it has a 

certain shape and certain characteristics, not because they know all kinds of cars. A standard 

neural network is linked to the inputs that are given to it and, if these are represented by a pixel 

matrix, the network recognizes shapes and peculiarities based on their position in the matrix. 

Convolutional neural networks, on the other hand, are more suitable for image processing 

because they specialize, through filters, certain neurons to identify specific shapes. In addition, 

such networks group parts of an image on a single value (pooling), not creating a direct 

relationship between the identified forms and their location. In this way the network is able to 

distinguish the shape in any rotation or distortion, ensuring a high generalization capacity.  
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Among the latest regularization techniques is the 'dropout', very common among deep 

convolutional networks. This approach temporarily and randomly ignores some connections 

between units in the network calculation process (Figure 6.10). This prevents the network from 

being dependent on certain learning links. The dropout allows the network to rely on the 

notions present in many neurons. This information is less subject to dropout because it is part 

of a significant number of connections. 

 

 

6.4. Methods  

6.4.1. Step 1: Code to implement the Network 

The main objective of the study is the classification of images belonging to video recorded by 

the Mobile Eye Tracker tool (See section 3.2.1), considering the same conditions found in the 

experiment illustrated in Chapter 3. To facilitate the task of classification of images, a 

convolutional artificial neural network has been created capable of handling the individual 

frames of the videos recorded during the test and divide them into classes. The code to 

implement the aforementioned network has been written in Python language and is composed 

of two models: one takes into account the viewfinder in the image, the other instead analyzes 

the frame without considering the pointer. In particular: 

 The model with a viewfinder is made with Keras. Two inputs were defined (input-A and 

input-B), each of which was able to add the different layers related to the image analysis: 

Conv2D, MaxPooling2D, Dropout, Flatten for input-A, Dense for input-B (Figure 6.11). 

Figure 6.10. Dropout Technic. 
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Creating the z variable, ie classes, applies a fully connected layer and the softmax activation 

function. The model will then have as input the variables x and y obtained as combinations 

of more layers and, in output, the variable z (Figure 6.12). The model without the 

viewfinder, on the other hand, is cascaded: the layers necessary for the classification of the 

image are added, similar to the previous model (Figure 6.13). 

 

 

 

Figure 6.11. Model. 

Figure 6.12. Viewfinder. 
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Once the models are defined, the activation functions are evaluated: 

1. ReLu: a neuron with Relu activation function accepts all real values as input, but is 

activated only when this input is positive, otherwise it returns null values. 

2. Softmax: in the case of multiclass problems, it allows to calculate for each element of 

the probability of belonging to a specific class. In this function, the probability that a 

given z sample belongs to the i-th class takes into account a normalization term to the 

denominator, given by the sum of all linear functions M, as given in the following 

formula. 

The goal is to realize a model that can generalize without incurring overfitting. 

 

6.4.2. Step 2: Training 

Once you have chosen the model, you proceed with the training of the network, the second step 

of the process of realization of an ANN. It is necessary to divide the sample of available videos 

into two types: those to be used during the training phase and those to be assigned to the actual 

test (validation). 300 frames from each of the six classes were examined: 

1. Interior car; 

2. Car, meaning all vehicles on the road; 

3. Background: vegetation and sky; 

4. Interior mirror (rear view mirror);  

5. Side mirrors; 

6. Road i.e. pavement, and safety barriers.  

 

Figure 6.13. Model without viewfinder. 
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The value 300 was established after several tests as shown in Graph 6.1. It shows the 

ANOVA test, which certifies this value as the compromise between variability and accuracy. 

Note that for values between 250 and 400 the network reaches a plateau in terms of accuracy. 

 

 

In the graph, moreover, on the horizontal axis are represented models that vary the 

number of frames for each class, while on the vertical axis the accuracy is expressed, that is 

the precision, defined like the relationship between correctly classified frames from the net and 

total frames. 

At this point, it is necessary to assign specific weights for each class: through the dict 

function, you create a dictionary (data) in which are collected the classes (keys) mapped in 

their corresponding values, as you can see in the following script. 

 

Graph 6.1. ANOVA Test. 
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The relative weight of a class is inversely proportional to the number of frames present 

in the same class; for example, in this case, the class 'Machine' has a lower weight than the 

class 'Mirrors' as it includes a greater number of images. 

The training at this point focuses on the use of the model.fit function, imposing the 

number of epochs equal to 50, defined as a complete training cycle that includes the whole 

training set. 

An initial internal validation is performed during the training phase, in order to divide 

the images into two groups: 80% training and 20% testing (Figure 6.14). 

 

6.4.3. Step 3: Test 

In the test phase, images are predicted by the network, compared to the classification made by 

the supervisor (labeled images).  

For the validation process to be effective, it must be applied to a portion of data that has 

not been used during the training phase. In fact, the network is turned around and, to obtain the 

performance of the learning algorithm, the confusion matrix is analyzed: this shows the true 

positives, true negatives, false positives and false negatives according to a classifier, as shown 

in Figure 6.15 (Raschka, 2016). 

Figure 6.14. The training phase. 
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Note that the sum of the values belonging to the same row returns the elements 

belonging to a certain class, the analogous operation on the numbers of the same column allows 

to obtain the portion of the sample contained by a class according to the classification of the 

network. We show some confusion matrices (Graphs 6.2 and 6.3) related to different models 

tested during the implementation of the network. 

 

 

 

Figure 6.15. Matrix of Confusion. 

Graph 6.2. Matrix of confusion of the model 
C2LCL_all300_9_6c. 

Interior car 

Car 

Backgroun

Mirrors 

Street 

Internal 
Mirror 
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Graph 6.3 shows the confusion matrix for the C2LCL_all300_9_6c model in which: 

 C2L = the name of the network; 

 CL = Channel Last, that is the way in which the three-dimensional vectors representing the 

image data are presented, in this case the last channel indicates the number of colors (3); 

 All300 = the maximum amount of frame taken for each class; 

 9 = the test number; 

 6c = the number of classes; 

 

Graphs 6.3 and 6.4 show the results obtained from models respectively C2LCL and DIC2LCL: 

in the first model was used without the viewfinder, in the second the dual input model (DI) 

referring to the model with the viewfinder chosen during training. 

There is a good level of precision of the network, standing around 78%; note how, to 

vary the model, the accuracy of the individual classes oscillates in a significant way. In 

particular, the Car Interior and Interior Mirror classes have increased accuracy with the 

DIC2LCL model. 

The use of the network was accompanied by the figure of a human supervisor. In fact, 

he had the task of classifying and correcting pre-processed images from the network. The 

human operator then analyzed the frames processed by the network and modified those 

classified incorrectly, thus providing the correct frames. 

Inside car 

Car 

Backgroun

Mirrors 

Street 

Internal 
Mirror 

Graph 6.3.Matrix of confusion of the model DIC2LCL_all300_8_6c. 
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6.4.4. Graphic Interface 

In order to make the classification program usable, an interface has been created capable of 

providing two different analysis modes: Classification and Revision or Revision (Figure 6.16). 

 

 

6.4.4.1. Classification and revision 

The classification and revision mode allows you to choose the video to be classified, indicating 

the model from a library of models that can be represented in format json, which represents the 

structure of the neural network, or H5 which defines the weights within it. You also need to 

designate an output folder where the images will be saved.  

The interface shows the initial, final frame and the offset, even defining the confidence 

level. The latter is considered as the probability value, between 0 and 1, with which the true 

value of a parameter is considered. The level of confidence is therefore a value that the program 

assigns to each individual image indicating the "security" with which the frame belongs to the 

class assigned to it. 

At the base of the interface, there is a script that takes into account the Python code. 

First of all, a class has been created: it is a tool that allows grouping variable programs and 

functions in a logical and reusable way, facilitating the management of large projects. A class 

is therefore a system used to model reality so that it can build and manage more or less complex 

objects. In our case the classes have been identified as those already used in the manual 

Figure 6.16. Tool of Classification. 
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classification phase: 0-Pers; 1-Inside Car; 2-Car; 3-Background 4-Mirrors; 5-Road; 6-Internal 

mirror. 

Later, the different attributes were associated with the classes: to do this, the command 

inits (initializer) was used, also known as the Builder Method.  When creating methods within 

the Class, consider as the first parameter, the Instance of the class itself, called by convention 

self. The parameter Self is therefore a variable that indicates the current instance of the class, 

which allows access to attributes and methods of the object in question. 

At this point, by clicking on the "Process Video" button, the program proceeds with the 

automatic classification of images. The video classification process consists of several steps 

summarized by the commands shown below. 

 

 

The video is first loaded and the model selected; in this case the 

C2LCL_all300_6c.json. 

You then enter the central phase of the code: frame process and image analysis.  

The software will create a folder in the initially chosen environment with a subdivision 

by classes, then proceed to insert the selected images into the created folders.  

The first step, when processing frames, is to analyze all the pixels to find the red ones 

pointing to the viewfinder.  

The "viewfinder" function allows you to identify the viewfinder: it slides all the pixels 

of the image vertically and horizontally, stopping when it meets an element whose values meet 

the thresholds of red (greater than 170), green and blue (both lower than 85). A pixel with these 

characteristics is identified as a viewfinder (red color "pure") and you proceed by cropping the 

image in an 80x80, size required by the neural network.  

The cropped image is then normalized by dividing all pixels by 255, in such a way as 

to have only values between 0 and 1.  I likewise normalize the x and y coordinates so as to 

obtain only values between 0 and 1. These operations are intended to facilitate the task of the 

neural network since data with an order of magnitude very different can slow the learning phase 
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of the network; As a result, the standardisation process makes it easier to assign weights and 

improves their performance. At this point the prediction of the model takes place: it, in fact, 

creates a vector for each frame whose elements represent the percentage of belonging to each 

class and then be moved to the class with the highest percentage. The program proceeds to the 

realization of the csv inserting a line for every analysed frame (Figure 6.17). 

Finally, there is the revision phase: the operator is subjected to all frames with a 

confidence lower than the established. As shown in figure 6.17, the reviewer simply clicks on 

the class button corresponding to the frame, which will be given a confidence of 1. He changes 

the path of the file by moving it to the new folder, by changing the frame data. 

 

 

 
Figure 6.17. Phase of the revision. 

 0 - Lost Frame 1 – Inside Car 2 – Car 3 – Background 4 – Mirrors 5 – Street 6 – Internal 
Back Exit 
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6.5. Outcomes 

The aim of the research is to assess visual behaviour, in particular the degree of attention paid 

to drivers by means of state-of-the-art techniques that can facilitate the process of classifying 

frames. The results obtained were divided into three macro-areas: 

 Analysis of the results of the neural network: the performance of the network in the 

classification phase of the frames obtained from the videos recorded by the Mobile Eye 

has been evaluated. This operation was performed for each user depending on the 

classification type (class or macro-class), the confidence of the network, and the state of 

the system (On/Off). The impact of the adaptive cruise control on the drivers’ workload 

and attention The visual behaviour of the cyclist: the comparison between simulated and 

real scenario 

 Analysis of the user’s behavior according to the state of the Adaptive Cruise Control: in 

this phase all the frames with their relative distribution within the classes and, later, in the 

macro-classes (Attention and Inattention) were considered also assessing the incidence of 

lost frames. These are characterized by the impossibility of evaluating the driver’s point 

of view due to the lack of the cursor on the monitor. 

 Analysis of kinematic data: in which the tool has been implemented in Python, allowing to 

associate speed and longitudinal acceleration obtained by the V-Box Pro instrumentation to 

the frames analyzed in the previous phases. For these kinematic data averages and standard 

deviations have been calculated. In addition, the timing of perception-reaction and the 

behavior adopted by users in some critical phases of the experiment, called events, were 

considered. 

 

6.5.1. Analysis of neural network results 

The classification operation was performed with the aid of an implemented artificial neural 

network. In input were provided frames of the videos recorded by the Mobile Eye of each user 

and, in output, the network returned the same frames classified according to the following 

regulation: 

0 - Lost: all frames where the displayed element could not be detected; 

1 - Car interior: elements present in the interlace in the car (dashboard etc.); 

2 - Car: vehicles forming part of road traffic; 

3 - Background: everything that is not included in the remaining classes (sky, vegetation, etc.); 

4 – Side mirrors; 
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5 – Road: road paving and safety barriers; 

6 – Internal Mirror. 

 

Later, we considered the Macro-Classes: 

 Attention: includes all frames classified as car, road and interior mirror. Such a choice 

considers a full attention of drivers to the task of driving. 

 Inattention: encloses the classes Interior, Background and Mirrors and, contrary to the 

attention, represents moments of time when the user is distracted. 

The choice to consider the class mirrors as inattention is due to the object of the study: it wants 

to investigate the behavior of drivers in relation to the Adaptive Cruise Control and 

consequently to the longitudinal gear of the vehicle; to drivers, in fact, It has been requested 

not to make lane changes (if not strictly necessary), for this reason the gaze on the mirrors is to 

be considered as not appropriate to the longitudinal gear. 

The analysis of the results focused on the qualitative evaluation of the work carried out 

by the network, focusing on the confidence attributed by the network to images. 

The calculations were carried out on a small sample belonging to the expert test: among 

the 26 participating users 13 subjects were selected whose data were qualitatively the best, ie 

with a small number of frames labelled as lost.  

For each user, the network has output two Excel sheets (round trip) with as many rows 

as frames of the stroke corresponding to the subject. By way of example, Table 6.1 is given in 

which: 

 Frame: The frame number of the video recorded by the Mobile Eye. 

 Class e ClassName: represent the number and name of one of the 7 classes (6 classes plus 

lost frames) to which the frame in the labeling phase has been assigned. 

 X_line e Y_line: indicate the coordinates of the viewfinder in the frame. 

 PredClass e PreClassName: denote the classification performed by the network.  

 Confidence shows network confidence for that given frame. 

 La colonna 0 Errati: has been realized with the command Excel SE and it records if the 

classification carried out from the net coincides with the labellization (1 corrected, 0 

otherwise). 

 In Conf. Err.: Only confidence values corresponding to wrongly classified frames appear. 

 A-D_LAB e A-D_PR: they perceive frame classification according to macro-classes 

attention and inattention. 
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 ACC_TOT returns TRUE or FALSE values if, respectively, the classification as a function 

of the macro-classes has been performed correctly or not. 

 

 

This file was created for each round trip of the 13 experienced test users and was calculated for 

both the model without viewfinder (C2L network) and the one with viewfinder (DI network). 

The classification performed with the Double Input model has slightly better results 

(Accuracy of 0.79) so the following analyses will affect the use only such network. 

To evaluate the performance of the network, it was decided to investigate the 

confidence, or trust, that it attributes to the frames being classified. Since confidence varies 

from 0 to 1, nine intervals have been identified: the first for frames with confidence less than 

0,20 and the following with equal amplitude of 0,10 up to 1 (present in the first column of table 

6.2). With the command CONTA.SE all the frames have been collected according to the 

confidence (column Total Frames), then considered only the correct ones (column Corrected) 

and, consequently, counted the wrong ones (column Frame Errati). Finally, the percentage of 

incorrect frames on the totals per confidence interval was calculated.  

 

 

This operation was repeated for each route carried out by the subjects considered in this 

study; therefore, 26 sheets were made similar to the one shown and, for the final analysis, 

calculated the arithmetic mean (Table 6.3) and the number of corrected frames.   

Column1 FileName Frame Class ClassName X_line Y_line PredClass PredClassName Confidence 0 Errati Conf. Err. A-D_LAB A-D_PR ACC_TOT A-D_LAB _ER A-D_PR_ER ACC_ERRATI
0 4_sb_A_37040.jpg 37040 0 0-Persi 0 0 1
1 4_sb_A_37041.jpg 37041 0 0-Persi 78 415 1
2 4_sb_A_37042.jpg 37042 5 5-Strada 149 370 5 5-Strada 0.71 1 0 0 VERO
3 4_sb_A_37043.jpg 37043 2 2-Macchina 168 373 5 5-Strada 0.73 0 0.73 0 0 VERO 0 0 VERO
4 4_sb_A_37044.jpg 37044 5 5-Strada 172 377 5 5-Strada 0.94 1 0 0 VERO
5 4_sb_A_37045.jpg 37045 5 5-Strada 173 378 5 5-Strada 0.63 1 0 0 VERO
6 4_sb_A_37046.jpg 37046 5 5-Strada 177 368 5 5-Strada 0.99 1 0 0 VERO
7 4_sb_A_37047.jpg 37047 0 0-Persi 0 0 1
8 4_sb_A_37048.jpg 37048 0 0-Persi 0 0 1

Intervallo di confidenza Frame Totali Corretti Corretti Cum. Frame Tot. Cum. Frame Errati Frame Errati Cum. % Errati
c<0,20 0 0 0 0 0 0 0%

0,20<c<0,30 0 0 0 0 0 0 0%
0,30<c<0,40 13 3 3 13 10 10 77%
0,40<c<0,50 67 31 34 80 36 46 54%
0,50<c<0,60 152 68 102 232 84 130 55%
0,60<c<0,70 177 90 192 409 87 217 49%
0,70<c<0,80 236 140 332 645 96 313 41%
0,80<c<0,90 339 218 550 984 121 434 36%
0,90<c<0,99 5049 4775 5325 6033 274 708 5%

Totali 6033 709 12%

Table 6.1. Example of excel file. 

Table 6.2. Frames divided by confidence intervals. 

       Confidence Range                            Tot.                      Correct                Cum. Correct                 Tot. Cum.                       Wrong                       Wrong. Cum         % Wrong         
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It is possible to make some first considerations: the network usually attributes a high 

confidence. Most frames, about 65%, have a value greater than 0.90. The percentage of errors 

decreases as confidence increases; this was predictable. By definition, in fact, as this parameter 

increases the probability that the network will act correctly. For a better understanding of the 

data, graphs were made using the Power BI program. Graph 6.4 shows the trend of the number 

of frames as a function of the confidence interval. 

 

 

 

 

The data used for the purposes of drawing the above graph are average values calculated 

on the 13 users belonging to the expert test, whose videos have been classified with the model 

without a viewfinder, called Double Input (DI). Each column represents the totality of frames 

by confidence ranges, divided into red (wrong) and green (correctly classified). The three lines 

show the cumulative (orange) corrected (green) total (blue) incorrect frames respectively. Note, 

MODELLO DI Frame Totali Frame Tot. Cum. Corretti Corretti Cum. Frame Errati Frame Errati Cum. Percentuale Errati
c<0,20 0 0 0 0 0 0 0%

0,20<c<0,30 1 1 0 0 1 1 100%
0,30<c<0,40 30 31 11 11 19 20 64%
0,40<c<0,50 154 185 67 78 87 107 56%
0,50<c<0,60 324 509 159 237 165 272 51%
0,60<c<0,70 340 849 189 426 151 423 45%
0,70<c<0,80 394 1243 248 674 146 569 37%
0,80<c<0,90 579 1822 422 1096 158 727 27%
0,90<c<0,99 3434 5256 3164 4260 269 996 8%

Totali 5256 996 19%

Table 6.3. Average frames divided by confidence interval. 

Graph 6.4. Distinction between wrong and correct frames in function of the confusion. 

Model DI                   Tot.                                  Tot. Cum                               Correct              Correct Cum.              Wrong                       Wrong Cum.                   % Wrong 

   Correct      Wrong      Wrong Cum.      Correct Cum.      Tot Cum. 

 

Confidence 

F
ra

m
e 
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by observing the gradient variation of the cumulate strokes, how the wrong frames decrease 

with respect to the total as confidence increases. 

The same operation was also performed by differentiating between Adaptive Cruise 

Control system on or off (Tables 6.4 and 6.5).  

 

 

There are no differences in the performance of the network depending on the system on or off: 

this testifies to the effectiveness of the network regardless of the state of the system, confirming 

its strength. 

 

 Analysis of confidence by class 

To increase the degree of accuracy, the confidence of the images was analysed for each stroke 

of each user depending on the outcome of the classification. First, the frames were counted 

according to the predicted class and divided according to the confidence intervals already 

shown (column 1 of Table 6.6); then the predicted and labelled classes were compared and, if 

they were equal, frames were defined as correct. 

 

 

 

ACC ON  - DI Frame Totali Frame Tot. Cum. Corretti Corretti Cum. Frame Errati Frame Errati Cum. Percentuale
c<0,20 0 0 0 0 0 0 0%

0,20<c<0,30 0 0 0 0 0 0 0%
0,30<c<0,40 30 30 10 11 19 19 65%
0,40<c<0,50 153 183 67 77 86 105 56%
0,50<c<0,60 325 508 160 238 165 270 51%
0,60<c<0,70 339 847 188 426 151 421 45%
0,70<c<0,80 412 1259 258 683 154 575 37%
0,80<c<0,90 605 1864 444 1128 161 736 27%
0,90<c<0,99 3468 5332 3200 4327 268 1005 8%

Totali 5332 1005 19%

Table 6.4. Average of frames for confidence with ACC OFF. 

ACC OFF - DI Frame Totali Frame Tot. Cum. Corretti Corretti Cum. Frame Errati Frame Errati Cum. Percentuale
c<0,20 0 0 0 0 0 0 0%

0,20<c<0,30 1 1 0 0 1 1 100%
0,30<c<0,40 31 32 11 12 19 20 63%
0,40<c<0,50 155 187 67 79 88 108 57%
0,50<c<0,60 323 510 157 236 165 273 51%
0,60<c<0,70 341 850 189 426 151 425 44%
0,70<c<0,80 377 1227 239 664 138 563 37%
0,80<c<0,90 553 1780 399 1063 154 717 28%
0,90<c<0,99 3399 5179 3129 4192 270 987 8%

Totali 5179 987 19%

Table 6.5. Average of frames for confidence with ACC ON. 

ACC ON - DI              Tot.                                  Tot. Cum                               Correct               Correct Cum.              Wrong                       Wrong Cum.                      % Wrong 

ACC OFF - DI            Tot.                                  Tot. Cum                               Correct               Correct Cum.              Wrong                       Wrong Cum.                      % Wrong 
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The single box of the above tables encloses the number of frames for a given confidence 

interval (first column) and for the class indicated in the header row, distinguishing whether the 

classification has been successful or not (in the first case inserted in the ending column _C, 

otherwise _E). Also, in this case the averages have been calculated (Table 6.7) considering all 

the traits. 

 

 

It is immediate to see the inhomogeneity between classes: car is the category that 

includes most of the images, followed by background and road, then interior car. The classes 

Mirror and mirrors contain a small number of images and, often, with a high percentage of 

errors due to poor training of the network against these categories. The analyses will mainly 

concern the most represented classes.  

Confidence 
Interior 

car _C 

Interior 

car _E 

Car 

_C 

Car 

_E 

Background 

_C 

Background 

_E 

Internal 

mirror 

_C 

Internal 

mirror _ 

E 

Street 

_C 

Street 

_E 

Mirrors 

_C 

Mirrors 

_E 

c<0.2 0 0 0 0 0 0 0 0 0 0 0 0 

0.2<c<0.3 0 0 0 0 0 0 0 0 0 0 0 0 

0.3<c<0.4 0 0 1 2 2 4 0 0 0 3 0 1 

0.4<c<0.5 0 5 15 7 4 10 1 0 11 14 0 0 

0.5<c<0.6 0 8 22 32 6 15 3 0 37 27 0 2 

0.6<c<0.7 4 8 29 38 7 9 1 0 49 29 0 3 

0.7<c<0.8 6 7 49 35 13 13 3 1 69 38 0 2 

0.8<c<0.9 2 10 97 39 14 12 7 0 98 60 0 0 

0.9<c<0.99 26 25 3946 113 151 35 79 3 573 89 0 9 

Tot 38 63 4159 266 197 98 94 4 837 260 0 17 

Confidence 
Interior 

car _C 

Interior 

car _E 

Car 

_C 

Car 

_E 

Background 

_C 

Background 

_E 

Internal 

mirror 

_C 

Internal 

mirror _ 

E 

Street 

_C 

Street 

_E 

Mirrors 

_C 

Mirrors 

_E 

c<0.2 0 0 0 0 0 0 0 0 0 0 0 0 

0.2<c<0.3 0 0 0 0 0 0 0 0 0 0 0 0 

0.3<c<0.4 1 2 5 4 3 5 0 0 3 6 0 2 

0.4<c<0.5 3 6 33 20 12 25 1 1 17 31 0 4 

0.5<c<0.6 8 10 71 46 30 42 3 2 46 58 0 7 

0.6<c<0.7 9 9 87 42 36 38 3 3 53 53 1 6 

0.7<c<0.8 13 10 114 43 44 38 3 3 74 47 1 7 

0.8<c<0.9 20 10 198 47 78 42 5 3 119 48 1 7 

0.9<c<0.99 182 36 2106 88 493 63 53 16 321 50 10 17 

Tot 237 84 2615 289 696 253 68 28 632 293 12 49 

Table 6.6. Frames classified by class according to the confidence. 

Table 6.7. Frames classified by class according to the confidence. 
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Graphs 6.5 and 6.6 show the distribution of frames correctly classified according to the 

confidence assigned by the network: in the first, you can see the breakdown in percentage of 

the total in the classes as a function of the confidence interval; the second graph is similarly 

structured and allows you to perceive the distribution of frames in quantitative terms. 

 

Graph 6.6. Distribution of correct frames (Frame). 

 

 

 

 

Graph 6.5. Distribution of correct frames (Percentage). 
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In the case of correctly classified frames, the most interesting data is undoubtedly the 

significant increase in terms of quantity of the machine and background frames at high 

confidence (0.9<c<0.99). In this interval, in fact, the network correctly classifies labeled frames 

as machine and background. There is also growth (modest in percentage but remarkable in 

quantitative terms) of images classified as internal to high confidence. Graphs 6.7 and 6.8 

concern erroneously classified data.  

 

 

Different is the case of poorly classified frames: as was to be expected, there is less 

disparity in quantitative terms between classes. These results evaluate how, considering the 

wrong frames, the results of the network do not produce a dominant class; note that, excluding 

the classes mirrors and internal mirror, there is not a significant difference in numerical terms 

in spite of what we have seen for correctly classified images. 

It is important to note, however, that the classes are not homogeneously represented: 

the images belonging to the machine or background category are much more numerous than 

mirrors, internal or internal mirrors. To understand the influence of the data-set on the 

classification quality, look at Graph 6.8 and 6.9, which shows the percentages of incorrect 

frames on the total for each class as a function of confidence. 

 

Graph 6.7. Distribution of wrong frames (Percentage). 
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It should be noted that in graph 6.9 the classes internal mirror and mirrors were 

excluded, the data of which were not considered relevant for the analysis.  

Observe how the percentage of frames wrongly classified decreases with increasing 

confidence. Pay attention to the trend of the percentage of machine and background frames: 

although the number of wrong frames seen in graph 6.10 was the highest for the confidence 

interval 0.9-0.99, the percentage of errors is the lowest in the same range. 

Graph 6.8. Distribution of wrong frames (Percentage). 

Graph 6.9. Percentage of frames of the total (Frame). 
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The percentages of wrong car and road frames decrease as confidence increases. This 

leads to confirmation that, for high confidence, the network greatly improves the quality of the 

classification, especially for classes with a high number of frames. Machine and background 

are the most represented classes (2192 frames for the first, 556 in the background) and, 

considering the case of confidence greater than 0.90, have a very low percentage of wrong 

frames (respectively 4% and 11%) on the total of the analyzed frames. It is immediate to 

assume the existence of a correlation between the amount of data that the network analyzes and 

the quality of classification. The high amount of images car passed to the network has allowed 

this to refine the knowledge of this type of object and thus increase the security in classifying 

it. Keeping the focus on confidence values greater than 0.90 and widening the analysis to all 

classes results that this range includes 65% of total frames and that errors are only 8%: This 

means that if you only analyze the images at high confidence you would have a correct result 

in 92% of cases. 

At the same time, analyses were carried out on the impact of confidence intervals on 

the individual class. In Graph 6.11 we can see the breakdown of confidence intervals in the 

classes: notice how a machine is characterized by frames having very high confidence (about 

84% of which have a value greater than 0.80) and, on the contrary, in the street class there is 

no clear superiority of a confidence interval over others. These considerations lead to 

establishing that the network is generally "safe" when ranking machine frames (or, to a lesser 

extent, background), while it is struggling to predict a frame way. 

Graph 6.10. Distribution of wrong frames of the 4 main classes (Percentage). 
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It is evident, for all classes except street, the dominance of high confidence frames, 

especially greater than 0.90, testifies to the fact that the network is high confidence. 

 

 Attention and inattention analysis 

Subsequent analyses concerned the macro-classes Attention and Inattention. To evaluate the 

attention were added frames belonging to the classes car, road and internal mirror while for the 

macro-class of Inattention are included images of the remaining car interior, background and 

mirrors. The following tables show the macro-class data as a function of confidence and the 

result of classification: corrected C, incorrect E. In Table 6.8 we can observe the data relating 

to a single user; this calculation was performed for all subjects and then calculated the 

arithmetic means (Table 6.9). 

 

 

 

 

 

 

 

 

 

Graph 6.11. Degree of confidence in classes (Frame). 
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Graph 6.12, 6.13 summarizes the values obtained from the averages of the 13 users studied. 

 

 

Graph 6.12. Averages of correct and wrong percentage considering the attention 
(Percentage). 

Confidenza ATTENZIONE_C ATTENZIONE_E DISATTENZIONE_C DISATTENZIONE_E
c<0,20 0 0 0 0

0,20<c<0,30 0 0 0 0
0,30<c<0,40 1 5 2 5
0,40<c<0,50 27 21 4 15
0,50<c<0,60 62 59 6 25
0,60<c<0,70 79 67 11 20
0,70<c<0,80 121 74 19 22
0,80<c<0,90 202 99 16 22
0,90<c<0,99 4598 205 177 69

Totali 5090 530 235 178

Table 6.8. Example of user 4, the correct and wrong frames according to the Macro-
Classes. 

 

Confidenza ATTENZIONE_C ATTENZIONE_E DISATTENZIONE_C DISATTENZIONE_E
c<0,20 0 0 0 0

0,20<c<0,30 0 0 0 0
0,30<c<0,40 8 10 3 9
0,40<c<0,50 51 52 16 35
0,50<c<0,60 120 107 39 58
0,60<c<0,70 143 97 45 54
0,70<c<0,80 191 92 58 54
0,80<c<0,90 322 99 100 59
0,90<c<0,99 2480 153 685 116

Totali 3314 610 945 386

  Confidence             Attention_C                   Attention_E                  Inattention_C                      Inattention_E 

  Confidence             Attention_C                   Attention_E                  Inattention_C                      Inattention_E 
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Attention_C            Attention_E 

Table 6.9. Average of correct and wrong frames according to the Macro-Classes. 
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Notice how, as confidence increases, you also increase the percentage of correct images 

both for attention and inattention. It is important to note that the frames classified as attention 

are on average three times greater than those of inattention: this difference is motivated by the 

predominance of camera frames. 

The value of 84.45% of frames corrected attention acquires greater importance than the 

more modest, but acceptable, 71.05% of images of inattention correctly classified. Focusing 

attention, specifically on images with a confidence greater than 0.90 (two thirds of the total), 

the results are extremely valid: the network correctly classifies frame attention in 94% of cases. 

In the case of inattention, however, the same analysis affects 60% of total frames and correctly 

classifies 85% of images (Graph 6.14 and 6.15). 

Graph 6.13. Average of correct and wrong frames considering the attention 
(Frame). 
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The results just seen refer to the images classified in the 6 classes and then grouped; in 

this situation, although more precise, frames with predicted class other than labelled but 

belonging to the same macro-class are considered incorrect. If, on the other hand, we evaluated 

the performance of the network as a function of a classification performed only on the basis of 

macro-classes, therefore considering wrong only the images that the network attributes to a 

class belonging to the macro-class different from the labelled one, the following results would 

be obtained (Table 6.10,6.11, 6.12). 

Graph 6.14. Average of corrent and wrong frames considering the distraction 
(Frame). 

 

Graph 6.15. Average of correct and wrong percentage considering the 
distraction (Percentage). 
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In these tables have been evaluated, in the confidence intervals present in the first 

column, the arithmetic average calculated on all users of the total images, incorrect and 

corrected. In this analysis, however, only those frames that have been labelled in one of the 

three attention classes but predicted by the network in one of the three classes of Inattention 

(and vice versa) were considered wrong. In this way the performance of the network has been 

established in a classification according to macro-classes. The tables differ by means evaluated 

on all the sections, on the sections with ACC ON and finally on the sections with ACC OFF. 

As has already been specified, high confidence images (greater than 0.90) are about 2/3 of the 

Confidenza Frame Totali A-D Frame Errati A-D % Errati Frame Corretti A-D % Corretti
c<0,20 0 0 0% 0 0%

0,20<c<0,30 1 1 100% 0 0%
0,30<c<0,40 30 12 40% 18 60%
0,40<c<0,50 154 50 33% 104 67%
0,50<c<0,60 324 88 27% 236 73%
0,60<c<0,70 340 80 23% 260 77%
0,70<c<0,80 394 76 19% 318 81%
0,80<c<0,90 579 84 15% 495 85%
0,90<c<0,99 3434 153 4% 3281 96%

Totali 5256 544 10% 4712 90%

c<0,20 0 0 0% 0 0%
0,20<c<0,30 0 0 0% 0 0%
0,30<c<0,40 30 12 40% 18 60%
0,40<c<0,50 153 50 33% 103 67%
0,50<c<0,60 325 87 27% 238 73%
0,60<c<0,70 339 80 24% 259 76%
0,70<c<0,80 412 77 19% 335 81%
0,80<c<0,90 605 82 14% 523 86%
0,90<c<0,99 3468 140 4% 3328 96%

Totali 5332 528 10% 4804 90%

c<0,20 0 0 0% 0 0%
0,20<c<0,30 1 1 100% 0 0%
0,30<c<0,40 31 12 39% 19 61%
0,40<c<0,50 155 50 32% 105 68%
0,50<c<0,60 323 89 27% 234 73%
0,60<c<0,70 341 80 23% 261 77%
0,70<c<0,80 377 75 20% 302 80%
0,80<c<0,90 553 87 16% 466 84%
0,90<c<0,99 3399 166 5% 3233 95%

Totali 5179 559 11% 4620 89%

  Confidence            Tot. Frame A-D         Wrong Frame A-D          %Wrong           Correct Frame A-D     %Correct 

  Confidence            Tot. Frame A-D         Wrong Frame A-D          %Wrong           Correct Frame A-D     %Correct 

  Confidence            Tot. Frame A-D         Wrong Frame A-D          %Wrong           Correct Frame A-D     %Correct 

Table 6.10. Total average of classification in funcion of macro classes. 

Table 6.11. Average of frames with ACC ON. 

Table 6.12. Average of frames with ACC OFF. 
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total and note how the percentage of errors is between 4% and 5%, sign that the network 

attributes a frame to the correct macro-class more than 95% of cases, value still above 92%. 

 

6.5.2. Analysis of user behaviour in relation to the ACC system 

The second phase of the study defined the analysis of the visual behavior of users: using the 

classified frames it was possible to understand the direction of the users' gaze while driving 

and to establish the first conclusions on the degree of attention. The Table 6.13 was first 

produced in which: 

 The first column CLASSI lists the possible classification destinations; 

 The LAB column indicates the average of the frames of all users for each class labeled by 

the supervisor; 

 The third column evaluates the ratio, in percentage terms, between the class placed in the 

first column and the macro-class to which it belongs. 

 

 

 

 

 

 

 

 

 

The following graphs 6.16 and 6.17 show the distribution, within the macro-classes, of 

the arithmetic average calculated on all users of the labelled frames. 

 

  

CLASSES LAB CL/MACL_LAB 

Interior_Car 296 24% 

Background 893 74% 

Mirrors 20 2% 

Lost Frame 1395  

Car 3044 75% 

Street 896 22% 

Internal_Mirror 107 3% 

Table 6.13. Average of labelized data. 
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In both figures we can see the supremacy of one class over the others: machine for 

attention, background for inattention; in both cases they occupy about ¾ of the total of the 

frames of the macro-class of belonging. In contrast, the classes Internal Mirror and Mirrors are 

too small a sample to be analysed. 

 

 

Finally, there is an overview of the incidence of individual classes on the total (Graph 

6.18), where the greatest number of machine images is evident, while road and background are 

equivalent. 

The analysis described above was also performed by differentiating between ACC 

system on and off (Table 6.14 and 6.15 respectively). 

 

 

Graph 6.17. Suddivision of distraction 
frames. 

Graph 6.16. Suddivision of attention 
frames. 

Graph 6.18. Suddivision of frames in classes. 
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CLASSES 

ACC ON 
LAB CL/MACL_LAB 

Interior_Car 314 25% 

Background 918 73% 

Mirrors 22 2% 

Lost Frame 1348  

Car 2974 73% 

Street 975 24% 

Internal_Mirror 128 3% 

 

CLASSES 

ACC OFF 
LAB CL/MACL_LAB 

Interior_Car 278 24% 

Background 868 75% 

Mirrors 18 2% 

Lost Frame 1441  

Car 3114 78% 

Street 816 20% 

Internal_Mirror 86 2% 

In order to facilitate the understanding of the results, the graphs that represent the 

distribution of classes within the macro-classes are shown below both for system on (Graph 

6.19 and 6.20) and for system off (Graph 6.21 and 6.22). 

 

 

  

  

Table 6.14. Average of labellized frame with 
ACC OFF. 

Table 6.15. Average of labellized frame with 
ACC ON. 

 

Graph 6.20. Suddivision of frame of distraction 
with ACC ON. 

Graph 6.21. Suddivision of frame of attention with 
ACC OFF. 

Graph 6.22. Suddivision of frame of distraction 
with ACC OFF. 
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Graph 6.19. Suddivision of frame of 
attention with ACC ON. 
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In the ON/OFF system comparison there is a difference in the machine frames: these 

grow within the macro-class Attention in a not negligible in the case of system turned off (from 

2974 to 3114). This disparity has led to the conclusion that, with the system switched on, 

drivers pay less attention to the vehicle in front and in general to the other components of road 

traffic. Among the images classified as interior cars are also included those in which the user 

focuses his gaze on the dashboard. In addition, there is an increase in the internal frame in the 

case of ACC ON, from 278 to 314 (increase of 13 %), a possible indication of a greater 

propensity to control the operating light of the system in the on-board computer. Note that the 

mirror and mirror classes are poorly represented and, because they do not reproduce a sufficient 

sample, they were excluded from the analysis phase. Graphs 6.23 and 6.24 are used to obtain 

an even more accurate picture of the driver’s visual behaviour. 

 

  

In these graphs the distribution of all classes on the total has been represented: a 

comparison between the two representations shows how, with the system turned on, the 

machine class decreases at the expense of a slight increase in the classes of background and 

internal inattention. These results allow us to assume that the use of the Adaptive Cruise 

Control system leads to a decrease in the level of attention of drivers while driving.  

The subsequent analyses concerned the macro-classes, the data of which are given in 

Table 6.16. 

 

 

 

 

Graph 6.23. Frame division into classes 
with ACC ON. 

Graph 6.24. Frame division into classes with 
ACC OFF. 
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CLASSES Average Frames Average Percetage Frames 

Attention_LAB 4046 77% 

Inattention_LAB 1210 23% 

Total 5256 100% 

 

These values represent the arithmetic means that consider the labeled frames of all the 

users; it is deduced as the percentage of images belonging to the macro-class Attention are the 

triple of Inattention. Again, the data were divided into Adaptive Cruise Control system on 

(Table 6.17) and off (Table 6.18). 

 

 

CLASSES ACC ON Average Frames Average Percetage Frames 

Attention_LAB 4077 76% 

Inattention_LAB 1255 24% 

Total 5332 100% 

  

CLASSES ACC OFF Average Frames Average Percetage Frames 

Attention_LAB 4016 78% 

Inattention_LAB 1164 22% 

Total 5179 100% 

Pay attention to the value of the LAB frames in the ACC ON and OFF tables: notice 

how users tend to decrease the degree of attention with the On system. In fact, the average 

percentage of images attention for ACC ON is 76% against 78% of ACC OFF; these results 

are in line with studies carried out in the past (Cho, et al, 2006; Deng, et al, 2018). 

It is also important to note the incidence of frames classified as lost: at the time of 

labeling, the human operator considered lost all images where the viewfinder was not present 

in full or the image did not allow a clear representation of the driver’s point of view (completely 

Table 6.17. Arithmetic means labelled data in ACC ON macro-classes. 

Table 6.18. Arithmetic means labelled data in ACC OFF macro-classes. 

Table 6.16. Arithmetic means labelled data in all macro-classes. 
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black or white screen). Graph 6.25 shows the incidence of lost frames on the total for each user 

and for the total. 

 

 

Note that the lost frames are on average 21% for each user, which is not negligible. In 

graph 6.26, finally, the subdivision of the images is shown highlighting the macro-classes and 

the lost frames. 

Graph 6.26. Subdivision of frames into macro-classes 

Graph 6.25. Incidence of lost frames on the total for each user and for the total. 

Total Average 

Average One-way    

Average One-way back 

UsersNumber 

Attention 

Inattention 

Lost 
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The above graph confirms the results obtained: the images considered lost are on 

average 21% of the total and the user focuses on attention classes on average three times as 

much as those of inattention.   

It is therefore understood that drivers, on average, are focused on the driving scene. 

 

6.5.3.  Analysis of kinematic data 

Chapters 3 and 4 describe the experiments carried out and the equipment used: among the 

numerous data collected, in this study the longitudinal speeds and accelerations in the section 

covered for each user were extrapolated and analyzed. The V-Box Pro instrumentation allowed 

the collection of kinematic data with a sampling period of 0.1 second; speed and acceleration 

values were associated with each frame: it was necessary to synchronize the videos of the 

Mobile Eye and the V-Box Pro (recorded with a camera on the dashboard).  

During the synchronization phase, each user was asked to look at the operator provided 

with a device made specifically for the test; Using the VLC Media Player software, the time 

and number of the frame were recorded the moment the same images were recorded in the 

video (Figure 6.18). 

 

 

With the software Circuit Tools 2.0 it was possible to extrapolate the kinematic data 

collected by the V-Box Pro, creating an Excel file (white columns in table 4.18) and then adding 

Figure 6.18. Synchronization phase of the movie. 
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a column, named Time ME (yellow background) where the time expressed in seconds has been 

inserted (for the following instants 1/10 of a second has been added). With the data coming 

from the V-Box Pro, an Excel file (Table 6.19) has been produced, in which data such as 

latitude, longitude, speed, distance, acceleration are collected. 

 

 

The next step was to isolate the return routes for each user: note the start and end frames, 

were analyzed videos of the Mobile Eye on VLC and, thanks to the feed frame by frame, The 

exact times relative to the initial and final frames for each round trip have been extrapolated. 

These times have been researched in the Time (ME) column to plot the corresponding velocity 

and acceleration. However, the sampling period of the V-Box Pro is 0.1 second, unlike the 

Mobile Eye which records a frame every 0.03 seconds. To overcome this discrepancy, the same 

speed was assumed every 3 frames, making a negligible error. The operation of association 

given kinematic - frame was realized through a code written in Python that is the one below. 

 

Table 6.19. Output data of V-Box Pro and Time Mobile Eye. 
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To make the output functional, the input files (that of the network output and that of the 

V-Box Pro) have been specified and then provided instructions on the attribution of speed and 

acceleration data to the corresponding frames (Table 6.20). This implementation allows to add 

to the files produced by the network containing the classified images the columns Speed (km/h) 

and Acceleration (m/s2), assuming that these values remain constant for 3 consecutive frames. 

 

Table 6.20. Kinematic data associated with frames. 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 171

 

At this point you have the values of speed and acceleration for each round-trip frame 

of each user; the analysis process continues by calculating the average speed in function of the 

class of the frame creating, for each stroke (Table 6.21). 

 

 

 

In which: 

 Classe refers to the classification performed during labeling; 

 Conteggio considers the image count (function CONTA.SE) calculated on all users for each 

class; 

 Vel_Media (km/h) has been calculated with the Microsoft Excel AVERAGE.SE function 

with which the average of the frame speeds belonging to the same row class has been 

calculated; 

 Dev.St_Vel evaluate the standard deviation of the given speed of the same frames; 

 Acc_Media (m/s^2) performs the same calculation of vel_media with the difference that 

operates with accelerations; same speech with Dev.St_Acc;  

 

After producing this table for each section covered by the 13 expert test drivers, the arithmetic 

mean of the frames and then the weighted average of the speed and acceleration values were 

calculated, first considering all the data (Table 6.22), then only those related to the ACC ON 

system (Table 6.23) and then OFF (Table 6.24). 

 

 

 

 

CLASSES Total 
Average_Speed 

[km/h] 
Dev.St_Speed 

Average_Acceleration 

[m/s^2] 
Dev.St_Acceleration 

1 - Interior_Car 39 57.45 20.99 0.07 0.67 

2 - Car 4447 67.43 13.80 -0.16 0.93 

3 - Background 309 65.91 11.90 0.08 0.91 

4 - Mirrors 2 27.92 0.00 0.20 0.00 

5 - Street 1108 68.28 12.76 0.26 0.70 

6 - Internal_Mirror 129 60.00 16.54 0.23 0.74 

Lost Frame 1860 64.10 2.79 0.29 0.04 

Total 6034 66.56 14.44 0.02 0.90 

Table 6.21. Example table user kinematic data 4 Round. 
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Table 6.22. Weighted averages kinematic data. 

 

Table 6.23. Weighted averages kinematic data ACC ON. 

CLASSES Average 
Average_Speed 

[km/h] 
Dev.St_Speed 

Average_Acceleration 

[m/s^2] 
Dev.St_Acceleration 

1 - Interior_Car 296 64.64 11.01 0.13 0.78 

2 - Car 3044 69.59 13.51 -0.06 0.92 

3 - Background 893 71.26 12.88 0.05 0.84 

4 - Mirrors 20 56.15 8.83 0.35 0.71 

5 - Street 896 70.14 12.50 0.06 0.83 

6 - Internal_Mirror 107 64.43 11.90 -0.12 0.93 

Lost Frame 4982     

Total 5256 69.53 13.04 -0.01 0.88 

Attention 4046 69.57 13.24 -0.04 0.90 

Inattention 1210 69.38 12.35 0.07 0.83 

CLASSES Average 
Average_Speed 

[km/h] 
Dev.St_Speed 

Average_Acceleration 

[m/s^2] 
Dev.St_Acceleration 

1 - Interior_Car 314 64.76 10.46 0.14 0.79 

2 - Car 2974 69.66 12.01 -0.07 0.93 

3 - Background 918 72.10 12.13 0.02 0.91 

4 - Mirrors 22 56.91 5.73 0.37 0.65 

5 - Street 975 69.84 11.55 0.06 0.84 

6 - Internal_Mirror 128 63.64 11.18 -0.23 1.01 

Total 5332 69.93 11.81 -0.02 0.90 

Attention 4077 69.51 11.88 -0.04 0.910.91 

Inattention 1255 69.99 11.60 0.06 0.87 

 

Table 6.24. Weighted averages kinematic data ACC OFF. 

CLASSES Average 
Average_Speed 

[km/h] 
Dev.St_Speed 

Average_Acceleration 

[m/s^2] 
Dev.St_Acceleration 

1 - Interior_Car 278 64.51 11.63 0.12 0.77 

2 - Car 3114 69.52 14.94 -0.05 0.90 

3 - Background 868 70.37 13.66 0.08 0.78 

4 - Mirrors 18 55.23 12.20 0.32 0.79 

5 - Street 816 70.50 13.63 0.05 0.82 

6 - Internal_Mirror 86 65.62 12.98 0.04 0.81 

Total 5180 69.43 14.30 0.00 0.86 

Attention 4016 69.64 14.63 -0.03 0.88 

Inattention 1164 68.73 13.15 0.09 0.77 
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In the following analyses, kinematic values for mirror and mirror classes will be 

omitted, as they are represented marginally. Note how the average acceleration of the car 

frames is negative, a sign that often the driver looks at the car (especially the prey vehicle) 

when braking or is near it. There are, however, no substantial differences in longitudinal 

acceleration between the strokes driven with the system on and off; it is also stressed that the 

standard deviation is high, always close to the unit. As for speeds, when considering both the 

outward and return sections, its average is equal to 69.43 km/h, given in line with the travel 

speeds calculated when users look at the main classes (machine 69,59 km/h, background 71,26 

km/h, road 70,14 km/h); there are no particular differences between the average speed relative 

to macro-class attention and the corresponding data related to inattention.  

The comparison between sections with On and Off system has several hints: average 

speeds with the system on increase slightly for 4 classes out of 6 (except for Road and Mirror 

interior). What varies most is the standard deviation: you notice a decrease in this parameter 

for the strokes traveled with ACC On. This decrease is found in all classes. In the total row, a 

value of 14.30 can be observed with ACC Off and 11.81 for ACC On (a decrease of 17 %). 

This result leads to deduce that the system, during the journey, produces a lower variability of 

the speed and consequently an increase of driving comfort, results in line with past studies 

(Trnros, et al, 2002: Cho, et al, 2006; Hoedemaeker, et al, 1998; Hoedemaeker, 2000). Below 

are the histograms (Table 6.25, 6.26, 6.27) that summarize the values previously shown in the 

table. 
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Table 6.26. Average Speed. 
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Table 6.25. Average speed with ACC ON. 
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In Table 6.28, the maximum and minimum speeds and accelerations during the 

distances traveled by users were also calculated. 

 

User and state of the system Data Speed (km/h) Situation 

 4 – One way Max 86.105  

ACC ON Min 26.622  

4 – Way back Max 101.635 
Overtaking behind the prey vehicle 

ACC OFF Min 30.668 

5 - One way Max 86.494  

ACC ON Min 29.606  

5 - Way back Max 96.998 
Straight section behind the prey vehicle 

ACC OFF Min 40.792 

6 - One way Max 86.22  

ACC ON Min 41.443  

6 - Way back Max 86.67  

ACC OFF Min 41.332  

7 - One way Max 86.209  

ACC ON Min 39.841  

7 - Way back Max 83.279  

ACC OFF Min 32.49  

10 - One way Max 86.209  

ACC ON Min 45.205  

10 - Way back Max 83.761  

ACC OFF Min 43.456  

11 - One way Max 97.232 
Straight section behind the prey vehicle 

ACC OFF Min 1.12 

11 - Way back Max 96.408  

ACC ON Min 41.962  

Table 6.27. Average speed with ACC OFF. 
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13 - One way Max 104.332 
I pass behind the kill vehicle 

ACC OFF Min 30.794 

13 - Way back Max 100.343  

ACC ON Min 40.622  

14 - One way Max 107.914 
I pass behind the kill vehicle 

ACC OFF Min 31.5 

14 - Way back Max 86.627  

ACC ON Min 48.355  

15 - One way Max 95.342  

ACC ON Min 40.126  

15 - Way back Max 92.768  

ACC OFF Min 0.000018  

16 - One way Max 104.609 
I pass behind the kill vehicle 

ACC OFF Min 36.634 

16 - Way back Max 86.54  

ACC ON Min 42.156  

17 - One way Max 90.27  

ACC OFF Min 39.697  

17 - Way back Max 98.849  

ACC ON Min 37.098  

21 - One way Max 91.681  

ACC OFF Min 33.559  

21- Way back Max 90.576  

ACC ON Min 34.178  

22 - One way Max 78.253  

ACC ON Min 33.163  

22 - Way back Max 90.5  

ACC OFF Min 40.759  

Table 6.28. Maximum and minimum values of speed and longitudinal acceleration. 

 

Note that in 9 out of 13 cases the maximum speed is higher in the case of ACC Off 

substantially. Focusing on users 4, 5, 13, 14 and 16, the speed is not only higher than the 

maximum speed sustained by users in the section with the system on, but also greater than that 

allowed by the Road Code on the road path (Vollratha, et al, 2011).  Exceeding the allowed 

speed with the system on is due to the maximum limit set by the driver to the system. 
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More in-depth analysis of the videos of users who have traveled the circuit at high 

speeds (with ACC OFF) showed how, for users 4, 13, 14 and 16, they have followed the vehicle 

prey even during lane change (Figure 6.19), this will require an increase in speed. 

 

Users marked with numbers 5 and 11 reached the maximum speed of 97 km/h during a 

straight stretch in the lane of the Bologna ring road immediately behind the prey vehicle. 

 

 Analysis of kinematic data during events 

The degree of attention and inattention of drivers was also analyzed through the study of 

reaction times during a critical situation, called an event, and of the speeds sustained during 

this period of time. Perception-Reaction time (PRT) is defined as "the time between the sight 

of an obstacle and the application by the driver of a braking action" (Olson, et al, 1986).  The 

present study analysed the speeds during the perception-reaction time measured during the test. 

Dated studies (Törnros, 1995) have observed that reaction times decrease with increasing travel 

speeds, these results are confirmed by (Jurecki, et al, 2014). 

During the experiment, "events" were programmed, situations in which the vehicle was 

suddenly braking: in the sections with the system off, a braking action by the driver was 

necessary,in journeys with the system on, subjects were required not to brake and leave control 

Figure 6.19. User frame change lane. 
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of the vehicle to the system. We studied 100 events distributed among users as per Table 6.29, 

in which in red the events occurred with ACC OFF and in green those with the system on. 

 

User Event – One way Event – Way back Total 

4 6 5 11 

5 6 5 11 

6 5 4 9 

7 4 3 7 

10 2 2 4 

11 5 5 10 

13 4 3 7 

14 3 4 7 

15 5 4 9 

16 4 3 7 

17 3 3 6 

21 4 4 8 

22 2 2 4 

Tot ON 30 22 52 

Tot OFF 23 25 48 

Tot 53 47 100 

 

The perception/reaction times for each event were evaluated and, subsequently, the 

travel speeds in this time interval were evaluated. The reaction times were obtained using the 

Circuit Tools 2.0 software, according to the procedure in Chapter 4. 

In Table 6.30 the averages of all the events for every distinct user for system on and off 

are collected. It is immediate to detect the difference between the perception-reaction times 

obtained in events with the system on and off: the latter are lower on average about 1 second 

and in all 13 cases no PRT detected with ACC Off is higher than the same with ACC ON. 

These results certify that the average driver is more distracted and therefore takes longer to 

react to a dangerous situation when the system is active. The previous analysis on Visual 

Behaviour becomes more relevant: to detect the danger during the event it was necessary to 

focus on the car in front and the driver on average had a greater number of machine frames in 

the case of the system off. 

Table 6.29. Summary table on the event distribution. 
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The further analysis concerned the speed of travel during the above events: tables such 

as 6.30 were extracted for each event of all the sections traveled by 13 experienced users, in 

which velocities and longitudinal acceleration of the frames belonging to the time interval 

defined as PRT and weighted averages and standard deviations have been collected. 

 

 

 

This data processing was carried out for each subject: in Table 6.31 the analyses 

concerned all users, while Tables 6.32 and 6.33 were obtained by considering only the events 

in the ACC On and Off sections respectively; in the first column the sum of the frames of the 

corresponding class has been calculated. Figures 6.27, 6.28 and 6.29 show the distributions of 

the classes in percentage terms by considering respectively all events (Graph 6.27), only ACC 

ON (Graph 6.28) and only ACC OFF (Graph 6.29). 

 

 

 

 

 

 

 

 

 

 

 

CLASSES Tot 
Average_Speed 

[km/h] 

Average_Acceleration 

[m/s^2] 
Dev.St_Speed Dev.St_Acceleration 

1 - Interior_Car 0 0.00 0.00 0.00 0.00 

2 - Car 78 81.91 -0.66 2.07 0.94 

3 - Background 0 0.00 0.00 0.00 0.00 

4 - Mirrors 0 0.00 0.00 0.00 0.00 

5 - Street 0 0.00 0.00 0.00 0.00 

6 - Internal_Mirror 0 0.00 0.00 0.00 0.00 

0 – Lost Frame 24 82.55 0.26 0.22 0.66 

Total 102 82.06 -0.45 1.64 0.88 

Table 6.30. Kinematic data of the generic event 



 1° Level of Automation: the effectiveness of Adaptive Cruise Control on driving and visual behaviour 

 

Acerra E.M. 180

 

 

 

Table 6.31. Kinematic data for all users. 

 

 
 

CLASSES Tot % of Tot 
Average_Speed 

[km/h] 

Average_Acceleration 

[m/s^2] 
Dev.St_Speed Dev.St_Acceleration 

1 - Interior_Car 112 2% 80.40 -0.32 1.38 0.80 

2 - Car 3068 51% 82.36 -0.28 1.29 0.66 

3 - Background 998 17% 82.85 -0.39 1.48 0.74 

4 - Mirrors 16 0% 82.58 0.35 0.16 0.58 

5 - Street 796 13% 81.61 -0.22 1.42 0.68 

6 - Internal_Mirror 48 1% 74.92 -1.31 1.18 0.58 

0 – Lost Frame 998 17%     

Attention 3912 65% 81.13 -0.28 1.40 0.69 

Inattention 1126 19% 82.61 -0.37 1.45 0.74 

Total 6036 100% 82.23 -0.30 1.35 0.68 

 

CLASSES Tot % of Tot 
Average_Speed 

[km/h] 

Average_Acceleration 

[m/s^2] 
Dev.St_Speed Dev.St_Acceleration 

1 - Interior_Car 240 2% 77.30 -0.23 0.98 0.67 

2 - Car 5476 52% 82.07 -0.32 1.47 0.80 

3 - Background 1576 15% 82.35 -0.32 1.24 0.65 

4 - Mirrors 16 0% 82.58 0.35 0.16 0.58 

5 - Street 1275 12% 82.83 -0.28 1.31 0.62 

6 - Internal_Mirror 117 1% 79.91 -0.77 0.70 0.62 

0 – Lost Frame 1831 17%     

Attention 6868 65% 81.81 -0.31 1.22 0.63 

Inattention 1832 17% 81.69 -0.30 1.20 0.66 

Total 10531 100% 82.08 -0.31 1.38 0.74 

Table 6.32.Kinematic data ACC ON. 
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CLASSES Tot % of Tot 
Average_Speed 

[km/h] 

Average_Acceleration 

[m/s^2] 
Dev.St_Speed Dev.St_Acceleration 

1 - Interior_Car 128 3% 74.58 -0.15 0.64 0.57 

2 - Car 2408 54% 81.71 -0.36 1.23 0.72 

3 - Background 578 13% 81.49 -0.14 0.49 0.50 

4 - Mirrors 0 0% 0.00 0.00 0.00 0.00 

5 - Street 479 11% 84.87 -0.38 1.14 0.53 

6 - Internal_Mirror 69 2% 83.38 -0.39 0.36 0.65 

0 – Lost Frame 833 19%     

Attention 2956 66% 82.77 -0.34 0.96 0.55 

Inattention 706 16% 80.24 -0.14 0.52 0.51 

Total 4495 100% 81.87 -0.32 1.06 0.65 

 

    

 

  

 
 

From these analyses it is possible to know the user’s behavior in a situation defined as 

"critical": the analyzed frames are in fact collected in a time interval in which the driver notices 

Graph 6.28. Percentage for classes with ACC ON Graph 6.29. Percentage for classes with ACC 
OFF 

Table 6.33. Kinematic data ACC OFF. 

Graph 6.27. Percentage of total by classes. 
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the sudden braking of the vehicle in front and, therefore, it perceives a situation of danger or 

alarm anyway. Note how, during events, more than half of the frames are ranked machine and 

that about 17% are lost. The results related to macro-classes are in line with those already 

obtained with the totality of the images: attention encloses about three times the frame of 

inattention. 

Note the average speeds distinguished by macro-classes: in the case ACC ON a lower 

average speed during frame attention has been obtained than those of inattention, the latter is 

run at a higher speed even of the analogues with OFF system. 

The accelerations, as was to be expected, are slightly below zero and negative since a 

time interval is being analysed where the system (or the driver) releases the accelerator to 

prepare to act on the brake. However, there is a lower mean acceleration value for the off 

system; this is evidence of the fact that entrusting longitudinal control to the vehicle results in 

an average acceleration closer to zero and therefore also greater comfort for users on board the 

vehicle. 

Finally, there is a summary table (Table 6.34) in which the averages of the perception-

reaction times are calculated considering all the events of each user are collected, the same 

calculation has been performed to obtain the average speeds. 
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The considerations relating to the disparity of PRTs have already been discussed, now 

the focus on average speeds: in only 4 cases out of the 13 total analyzed travel speeds during 

PRTs with the system off are higher than the homologues with the system on. 

 

6.6. Conclusion  

The analyses carried out have led to important results considering neural networks, 

visual behaviour and driving behaviour.  

The performance in the classification phase of the neural network operating with the 

Double Input model was evaluated from the videos recorded by the Mobile Eye Tracker. The 

analysis involved 13 users, the arithmetic average was calculated according to the type of 

classification (class or macro-class), the confidence of the network, and the state of the system 

(On/Off). The network has proven to be highly reliable and robust, as 65% of the images are 

classified with over 0.90 confidence and are not affected by the system (on/off) status. 

Considering only frames with confidence above 0.90, the most represented classes such as 

Machine and Background have a small percentage of wrong frames (4% and 11%) Internal 

mirror and mirrors were excluded from all analysis because they were poorly represented. In 

fact, in neural networks there is a relationship between the amount of data subjected to the 

network and the quality of classification: the high number of frames belonging to the two 

USER 
ON 

[s] 

Average_Speed 

ON [km/h] 
OFF [s] 

Average_Speed 

OFF [km/h] 

4 4 83.96 3.60 81.73 

5 3.45 80.49 3.00 83.23 

6 3.64 82.41 2.53 78.93 

7 3.95 81.24 2.40 74.68 

10 3.25 79.09 2.70 77.84 

11 2.82 87.52 2.78 82.58 

13 2.67 88.75 2.47 85.10 

14 4.30 79.89 3.00 100.40 

15 4.52 86.39 3.80 79.82 

16 7.43 81.87 4.38 77.35 

17 3.33 84.53 2.57 87.44 

21 3.78 76.22 3.08 79.38 

22 2.8 65.00 2.60 75.84 

AVERAGE 3.84 81.33 2.99 81.87 

Table 6.34. Average of PRT and speed. 
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classes mentioned above has allowed to refine the criteria for classification of the network, 

which gives such images a high confidence. 

The analysis carried out on the results of the network has allowed to establish that, if 

we consider only the frames having a confidence greater than 0.90, this set has a corrected 

percentage of 92% and contains 65% of the total frames. By grouping the classes within the 

macro-classes Attention and Inattention it was observed that the network correctly classifies 

the attention frames with a percentage greater than 84% and inattention with a value of 71% 

and that the first ones are on average triple the seconds. Considering only images with a 

confidence greater than 0.90, the results are excellent: attention has a percentage of corrected 

94%, while inattention of 85%. Finally, the performance of the network was determined 

following a different classification based on macro-classes: evaluating wrong only images 

labeled in one of the three attention classes but predicted by the network in one of the three of 

Inattention (and vice versa). In this analysis, considering all frames with confidence greater 

than 0.90, they are corrected in 95% of cases, concluding that the network classifies most of 

the images in the correct macro-class with excellent results. The results then showed that it is 

possible to automate a large part of the image classification procedure, otherwise done 

manually by an operator. 

The second phase of the study was to analyse the influence of the ACC system on the 

visual behaviour of users. By studying the frames classified by the human operator, the 

direction of the gaze was detected, and the degree of attention and possible correlations with 

the driving process were evaluated. The comparison showed that, with ACC ON, the 

percentage of images attention is 76%, against 78% of the ACC OFF case; this confirms the 

classification made by the network, that on average the images attention are triple those of 

inattention. It is concluded that the system affects users by decreasing the degree of attention 

while driving (results confirmed by studies in the literature). 

The third and final phase involved kinematic data (driving behaviour) collected during 

the test with the Video V-Box Pro instrumentation. The weighted averages of travel speed and 

longitudinal acceleration of each user have been calculated by means of a code in Python 

specially developed to associate the values of the V-Box to the frames classified. The standard 

deviation in the case of ACC ON is 17% lower, highlighting how the system reduces the 

variability of the speed and increases the comfort of travel; moreover in 9 cases out of 13 the 

maximum speed is higher in the case of ACC OFF. The analysis of events has affected the 

perception-reaction time (PRT): this has always been lower with the system turned off, 
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confirming that the system decreases the attention of drivers, as already highlighted in previous 

analyses. Finally, the study of kinematic data produced lower mean deceleration values with 

the system running, further test of the difference in driving due to the ACC system. 
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7. CONCLUSIONS 

 

The three years of PhD have led to the realization of research of technological innovation. 

Nowadays, the development of driving automation is becoming impactful on the road 

environment. The vehicle, thanks to the new features became a different entity than in the past. 

The introduction of new mechanisms to assist the driver while driving establishes new criteria 

for vehicle control and management. This, therefore, entails a simultaneous change in the 

principles of road safety. 

By focusing on visual behaviour, it is possible to evaluate how the use of Adaptive 

Cruise Control does not increase attention while driving. On the contrary, the mechanism 

causes the user to be particularly pointed towards the dashboard, as it turns out intrigued. As a 

result, the frame rate related to inattention is high. The main motivation lies in the driver’s 

willingness to check the correct functioning of the system, constantly looking at the dashboard. 

It is no coincidence that he repeatedly observes the indicator lamp on the dashboard to 

determine whether the ACC has detected the vehicle in front and whether, consequently, the 

speed is modulated according to the distance.  

The examination carried out for the Events, in addition to confirming the trend 

evaluated in the entire path for both users ACC user and no-user, highlights how, for the 

attention, the category with the highest frame percentage concerns the led light. In fact, when 

the user is attentive, he looks at the vehicle in front, trying to evaluate the possible future 

maneuvers. The focus on the stop light is high but, decreases when the ACC is on, precisely 

because the user trusts the system to manage the vehicle. 

Considering driving behaviour, the first relevant data was provided by traffic precisely 

to assess the level of service present in the roads under study. According to the data collected, 

it has been possible to consider it as belonging to LOS A. Not surprisingly, the traffic recorded 

in the logs is homogeneous, so it does not lead to significant problems in terms of traffic. In 

fact, it presents free flow conditions with total absence of conditioning between vehicles, also 

because the width of the lanes is always constant. 

The kinematic data obtained from the use of the V-Box allowed the recording of the 

average speed for both experienced and inexperienced users. In both cases, the recorded speeds 

were below the limit amounts from the highway code, both with the system on and off. On the 

other hand, the reaction time was relevant. Although it may be thought that the response times 

of human drivers are longer than those of the ACC system, there has been a reversal of the 
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trend. Not surprisingly, for both experienced and inexperienced users, the reaction times are 

considerably greater when the ACC is switched on. This is a further factor that excludes the 

possibility of an increase in road safety with the use of the driver assistance system. 

The workload, another key parameter in the driving behaviour, considers that the user 

has better performance when the system is on. The evaluation of the mental path has 

emphasized that, in fact, the workload to the system on is greater than that one that is recorded 

to system off. These values, however, have a small gap. The driver, therefore, is more mentally 

engaged with the system on, but not too much precisely because the workload is about equal 

between the two conditions.  The action of the system, therefore, does not produce substantial 

variations in the workload of the driver.  

As a result, the use of the system has led drivers to feel a lower mental workload when 

the system is on, because it does not run into the concern that the system may have 

malfunctions, thus leading to collision with the vehicle it takes. 

The questionnaires, however, showed that the subject considered that the task to be 

performed was not particularly difficult. The system, according to the extrapolated 

assessments, intervened when necessary and at the most appropriate time. The champion 

adapted well to the system and immediately understood the mechanism that distinguished him, 

despite being inexperienced. The guide was simple and the user was able to maintain high 

attention. The sample trusted the system while not always checking its operation. It was also 

found that it worked well in emergency situations. Only 1 user out of 26 total did not feel 

comfortable with the system. 

Thanks to this analysis, however, it was possible to encounter problems related to the 

high post-processing times of data. Frame-by-frame analysis, in fact, defines the most objective 

analysis possible in relation to the driver’s point of view, but at the same time requires long 

periods of data analysis, as you have to manually analyze each frame, and then categorize it 

and attribute it to the context of attention or inattention. For this reason, an automatic tool has 

been devised, output regulated thanks to neural networks. This element made it possible to 

carry out both a check of the manually categorized data and the possibility of interpolating the 

visual data with the kinematic ones. It was in fact possible to consider frames related to 

attention and inattention, in relation to the kinematic parameters of the vehicle. 

Finally, in order to quickly and efficiently manage the large volume of data, an artificial 

neural network has been implemented to classify the images recorded by the Mobile Eye 

Tracker. Artificial intelligence and machine learning represent the new frontier of information 
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processing, able to improve step-by-step learning from the analyzed data. The network used in 

this study has produced excellent results in the automation of the classification process, 

classifying more than two thirds of the total images with a percentage of corrected more than 

90%;  

This study demonstrated the advantages of using artificial neural networks in image 

classification, with the intention of being a starting point for future road safety applications. In 

fact, the analysis methodology, followed by the inclusion of a graphical interface that allows 

users to automatically count the fixing frames, represents a breakthrough in road safety. In 

particular, the possibility to apply this innovation to other road contexts and to widen the field 

of available results is an important milestone in the critical study of automation. 
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