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Abstract

Machine Learning makes computers capable of performing tasks typically requiring

human intelligence. A domain where it is having a considerable impact is the life

sciences, allowing to devise new biological analysis protocols, develop patients’ treat-

ments e�ciently and faster, and reduce healthcare costs. This Thesis work presents

new Machine Learning methods and pipelines for the life sciences focusing on the

unsupervised field.

At a methodological level, two methods are presented. The first is an “Ab Initio Local

Principal Path” and it is a revised and improved version of a pre-existing algorithm

in the manifold learning realm. The second contribution is an improvement over the

Import Vector Domain Description (one-class learning) through the Kullback-Leibler

divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable

solution, an improved probabilistic model, and state-of-the-art performances. Both

methods are tested through several experiments, with a central focus on their rele-

vance in life sciences. Results show that they improve the performances achieved by

their previous versions.

At the applicative level, two pipelines are presented. The first one is for the analysis

of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at

identifying genes that may be involved in biological processes (e.g., the transition of

tissues from normal to cancer). In this project, an R package is released on CRAN to

make the pipeline accessible to the bioinformatic Community through high-level APIs.

The second pipeline is in the drug discovery domain and is useful for identifying

druggable pockets, namely regions of a protein with a high probability of accepting

a small molecule (a drug). Both these pipelines achieve remarkable results.

Lastly, a detour application is developed to identify the strengths/limitations of the



“Principal Path” algorithm by analyzing Convolutional Neural Networks induced

vector spaces. This application is conducted in the music and visual arts domains.

Keywords: Machine Learning, Unsupervised Learning, Life Sciences, Manifold Learn-

ing, One-class Learning, Self-Supervised Learning.
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Chapter 1

Introduction

Artificial Intelligence (AI) is a relatively young field in science and engineering,

with the first ideas dating back to Turing, and comprises all the theories and the

development of computer systems able to perform tasks typically requiring human

intelligence (1).

The most successful AI applications are based on Machine Learning (ML) technologies,

which include all the algorithms capable of learning from experience (2). ML is

inherently a multidisciplinary field and is highly interconnected in many areas,

including Data Mining (3), Statistical Learning (4), Pattern Recognition (5), and

Mathematics (6) (see Figure 1.1). Topics like natural language (text and speech)

processing (7), translation between languages (8), genetic sequence analysis (9),

robotics (10), customer (financial risk) evaluation (11), terrorist threat detection

(12), compiler optimization (13), semantic web (14), computer security (15), computer

vision (CV) (16), visual perception (17), object detection (18), decision-making (19),

recommendation systems (20) are just examples of the possible application domains

of ML.

In ML, experience exists in the form of input data. Therefore the learning from

experience concept involves finding a learning algorithm that builds models from

these data. A ML model is a compact representation of the data (usually a function)

parameterized by learnable parameters, often termed weights. On the other hand,

data are collections of records (or instances or samples). Each record is a description

of an event/object that, in turn, is a set of attributes (or features) of the event/object
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Figure 1.1: A multi-domain view of ML and closely related fields

(e.g., color, shape) (21). More generally, a dataset composed of n instances is a set:

D = {x1, ...,xn}, (1.1)

and each of its entries can be described by d attributes:

xi = (xi1, ..., xid) 2 X . (1.2)

Hence each instance of a dataset is a vector in the d-dimensional sample space X

(21). The subset of the dataset that is used by the learning algorithm for creating

the model is called training set. In addition, the learning algorithm involves some

hyper-parameters that control the learning process and determine the values of the

model parameters. Di↵erent hyper-parameters may result in other models. For this

reason, a second subset, called validation set, is used during the training phase to

identify the best model. This second independent set is used to avoid the so-called

over-fitting, preventing memorization in favor of abstraction. The ability to work on

unseen samples is called generalization ability, and a well-generalizing model should

work well on the whole sample space. Finally, the portion of the dataset used for

making predictions through a learned model is called test set (21). When the model

2



produces an explicit output value, this is called label. More generally, the ith sample

of the dataset D is (xi, yi), where yi 2 Y is the label of the sample xi and Y is the

set of all labels, also called label space or output space (21) which is provided at

training time. For measuring how well the learning algorithm models the dataset,

a loss function is needed, which is an error measure. This loss function is often

enriched with further terms that do not measure the error but consider numerical

stability issues or a priori expectations on the model.

In summary, a ML problem is characterized by a well-specified task. During the

training phase, the training examples are fed into the model, and the prediction

error made by the model is estimated through the loss function. The model then

modifies its internal adjustable parameters to reduce this error often through a

gradient descent procedure which brings the loss to a local minimum (see Figure

1.2). The parameters, w, are updated as per:

wt+1 = wt � ⌘rwC, (1.3)

where wt+1 is the parameters vector at step t+ 1, wt is the set of parameters at step

t, ⌘ is called learning rate and rules the descent speed, and rwC is the gradient of

the cost function C. After the training procedure is completed, and hence the loss is

minimized, the model’s performance is measured on the validation set to select the

best model. Finally, the test set is used to evaluate the generalization ability of the

machine (22). Figure 1.3 graphically summarizes this procedure.

Figure 1.2: Gradient descent: a schematic representation.
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Figure 1.3: A typical ML pipeline

Depending on the available information on the training examples, ML methods

can be subdivided into two main categories: supervised methods and unsupervised

methods. The first class includes systems and algorithms that learn a predictive

model using samples with known labels. On the other hand, unsupervised learning

deals with unlabelled data and aims at studying the intrinsic and hidden structure of

the data to get meaningful insights. Examples of unsupervised learning tasks include

but are not limited to clustering (23), manifold learning (24), and anomaly detection

(25). Purely supervised learning algorithms have been successfully applied in various

application areas. However, they require expensive, possibly manual, labeling to

produce large training datasets. For this reason, more and more researchers have

focused on developing unsupervised learning algorithms. This class of methods

bears several challenges and is definitely more complex than supervised learning. In

addition, natural learning, in general, is mainly unsupervised: humans and animals

discover the structure of the world by observing, sensing, and modifying it, not by

being told the name of every entity (22).

This Thesis work is focused on unsupervised learning strategies, aiming at developing,

customizing, and improving methods. The e↵ectiveness of the proposed methods

4



and approaches is proven by performing several experiments in diverse Data Science

domains. A central focus of this work is the use and relevance of the proposed

methods in the Life Science domain (e.g., drug discovery, omics data) through

chemical and biological datasets analysis. It is widely known that the development,

maturation, and advancement of AI techniques have a considerable impact on the

life science industry (26), allowing companies to develop treatments e�ciently and

faster, reducing the cost of health care, and making it more accessible to patients.

In the drug discovery domain, ML methods can be deployed to design the proper

structure for drugs (27). They can also be used for making predictions around

bioactivity, toxicity, and physicochemical properties (28; 29). This computational

strategy speeds up the drug development process and helps ensure that the drugs

deliver the optimal therapeutic response when administered to patients. AI and ML

are also e↵ective at identifying characteristics in images and data that can be di�cult

to detect by a human operator (30) in the clinical domain. ML strategies can improve

cervical and prostate cancer screening and identify specific gene mutations from

tumor pathology images or genome sequences (31; 32). AI may also be employed

to diagnose other conditions, including heart diseases and diabetic retinopathy (33).

ML techniques can help people enjoy longer, healthier lives by enabling the early

detection of life-threatening diseases.

In this Thesis work, Chapter 2 introduces the unsupervised learning domains which

are covered in subsequent Chapters. In particular, Section 2.1 describes some of

the most important methods in the dimensionality reduction and manifold learning

realms. Among others, the Principal Curve concept (34) and the Principal Path (PP)

algorithm (35) are also presented. Section 2.2 describes the most relevant and recent

algorithms for one-class classification and discusses some of the open problems in this

field. Finally, section 2.3 describes the representation learning domain together with

some of the methods adopted for the learning strategy: Artificial Neural Networks

(ANNs), Autoencoders (AEs) and self-supervised learning (SSL) approaches.

Chapter 3 describes original methodological contributions to the manifold learning

field and their application to omics data analysis. In particular: Section 3.1 describes

the PP algorithm presented in (35). Sections 3.2.1 and 3.2.2 present two applications

5



of the PP. The first one is in the life science domain. It consists of a pipeline, for

the analysis of RNA-Seq datasets, both transcriptomic and single-cell, and aims at

identifying genes that may be involved in biological processes (e.g., the transition

of tissues from normal to cancer). The second one is a detour application which

aims to highlight the strengths and identify the limitations of the PP algorithm by

analyzing the complex Convolutional Neural Network (CNN) induced vector space.

This application is conducted in the music and visual arts domains. Finally, Section

3.3 presents a revised version of the PP algorithm, dubbed Ab Initio Local PP, which

solves some of the drawbacks and limitations of the original method.

Chapter 4 is devoted to the development of one-class learning methods and their

application to drug discovery. In particular, Section 4.1 describes the Import Vector

Domain Description (IVDD) method and its variants (36; 37). Section 4.2, instead,

presents an application in the drug discovery domain. It involves the IVDD method

and is devoted to the development of a pipeline for identifying druggable pockets.

Finally, Section 4.3 presents an enhanced version of the IVDD method, dubbed

Import Vector Domain Description Kullback-Leibler (IVDD-KL), which hybridizes

kernel methods to Deep Learning (DL) approaches so as to obtain a scalable solution

together with an improved probabilistic model. To close the Thesis, Chapter 5

presents some final remarks and conclusions.
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Chapter 2

Unsupervised learning

Unsupervised learning is a sub-field of ML in which, as anticipated, the learning

algorithm discovers patterns and regularities that are not easily detectable by human

inspection. It eventually studies the intrinsic and hidden structure of the data (38).

In unsupervised learning, only unlabelled data is available.

Figure 2.1 shows some of the subcategories of unsupervised learning. Association

rules are one of the most important and well-researched techniques of data mining and

are used to extract interesting correlations, frequent patterns, associations, or casual

structures among sets of items in transaction databases or other data repositories

Association 
rules

Anomaly 
detection

Representation 
learning

One-class 
learning

Manifold 
learning

Clustering

Unsupervised Learning

Figure 2.1: Unsupervised learning and its subcategories
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(39). Anomaly detection refers to the problem of finding patterns in data that do

not conform to expected behavior (25). Manifold learning is a popular approach

that allows to get insights into complex data spaces; non-linear dimensionality

reduction represents a typical application (24). One-class classification algorithms

aim at building classification models when the negative class is either absent, poorly

sampled, or not well defined (40). Clustering techniques allow grouping data in

a certain number of sets where the elements within each set should be as similar

as possible to each other and simultaneously dissimilar from those of other sets

(41). Finally, representation learning strategies include pre-processing pipelines and

data transformations that allow the extraction and organization of discriminant

information from the data (42). This Thesis work deals with manifold and one-class

learning.

2.1 Dimensionality reduction and manifold learning

Dimensionality reduction comprises all the methodologies and strategies for reducing

the number of attributes/features in a dataset while preserving the structure in the

original dataset as much as possible. The meaning of structure heavily depends on the

employed methods, which may have di↵erent aims and underlying topological/metric

hypotheses. Dimensionality reduction methods can be divided into two groups (see

Dimensionality 
reduction

Keep the most 
important 
features

Find a 
combination of 
new features

Linear 
manifold learning 

methods

Non-linear 
manifold learning

methods

Figure 2.2: Manifold learning as part of the dimensionality reduction domain.
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Figure 2.2). The first group comprises the methodologies which keep the most

important features in a dataset and remove the redundant ones (e.g., variance

threshold (43), recursive feature elimination (44), select from model (45)). In this

group, any transformation is applied to the features. The other group comprises

methods that define new features as, possibly non-linear, transformations of the

original ones. All these methods are based on the so-called manifold hypothesis (46),

which states that the data spans a sub-manifold of the ambient space and whose

intrinsic dimensionality is far smaller than this ambient space (i.e., Rn). This group

can be further divided into two subcategories: linear manifold learning methods and

non-linear manifold learning methods.

Manifold learning algorithms identify a low-dimensional manifold from data located

on that manifold, which is embedded within a higher dimensional ambient space

(48); in addition, they capture global, holistic aspects within the analyzed data

set. Particularly, they can identify the possibly non-linear low-dimensional manifold

underlying a given data set, thus extracting relevant topological information (see

Figure 2.3: Examples of manifold learning algorithms (47).
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Figure 2.3). Within manifold learning methods, the Principal Curve concept and

algorithm (34) is particularly interesting as it is a non-linear 1d projection method.

Principal Curves are smooth one-dimensional curves that pass through the middle of

a p-dimensional dataset, providing a summary of the data. They are non-parametric,

and their shape is suggested by the data. More formally, given a random variable

X = (x1, ..., xd) 2 Rd with known distribution, a smooth (infinitely di↵erentiable)

parametrized curve f(t) = (f1(t), ..., fd(t)) is a Principal Curve for X if f does not

intersect itself, if it has finite length inside any bounded subset of Rd, and if it is

self-consistent. This last requirement means that

f(t) = E[X|tf (X) = t], (2.1)

where the projection index tf (x) of x is the largest value t for which f(t) is closest

to x:

tf (x) = sup
t
{t : ||x� f(t)|| = inf

t0
||X � f(t0)||}. (2.2)

The self-consistency property is like saying that each point of the curve f is the

mean of the observations projecting on f around this point (49). In (34), an iterative

algorithm is presented, alternating between a projection and a conditional expectation

step, which yields an approximate Principal Curve. A visual representation of the

Principal Curve concept is depicted in Figures 2.4 and 2.5.

Recently, a local version of the Principal Curve has been presented in (35), dubbed PP

algorithm, which will be described in more detail in Chapter 3. The term local means

Data points
Principal Curve

Principal Curve

Figure 2.4: Principal Curve: an example.
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Figure 2.5: Principal Curve: the projection index tf . For all i, ti stands for tf (xi) (49).

that it is not required that the solution is influenced by all the data points but just

a subset (see Figure 2.6). The strictness of this constraint is a parameter-dependent

aspect that intuitively reminds one of a regularization concept (50). The PP method

was introduced to infer relevant transitions through a smooth morphing path starting

and ending in two samples belonging to data space. Part of this Thesis is devoted to

applying the PP method to diverse contexts also proving the algorithm’s generality.

These domains include life sciences data, particularly omic ones. In addition, a more

robust and stabler version of the PP is introduced here. The devised methods and

the results are discussed in Chapter 3.

Principal Path

Figure 2.6: Local Principal Curve: the PP algorithm.
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2.2 One-class learning

A widely important topic in the unsupervised learning realm is one-class learning.

The objective of one-class learning is to learn a representation of a single class (one

implicit label) such that one can distinguish this class from others that are unknown

and not available at training time. One-class learning strategies can be adopted in the

anomaly detection domain, aiming to detect unusual data samples for the expected

behavior (25) (see Figure 2.7). When one-class learning strategies are adopted in

the anomaly detection domain, the training process is performed only on normal

samples (the ones respecting the expected behavior), and no a priori knowledge is

given about the other (or unusual) samples (51). Typical domains where one-class

classification methods are used include but are not limited to: network security (52),

fraud detection (53), medical diagnosis (54) and in general, the monitoring of the

correct functioning of facilities, plants, and devices (55).

Several algorithms have been proposed to address the one-class classification problem.

Among others, kernel-based one-class classification methods include the One-Class

Support Vector Machine (56) (OC-SVM) and the Support Vector Domain Description

(57) (SVDD) methods. The OC-SVM method aims at finding a maximum margin

hyper-plane in feature space that best separates the mapped data from the origin.

Particularly, given a dataset Dn = {x1, ...,xn} with xi 2 X ✓ Rd, OC-SVM solves

∎ ∎∎
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Figure 2.7: One-class learning: a schematic representation.
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the primal problem:

min
w ,⇢,⇠

1

2
||w ||2 � ⇢+

1

⌫n

nX

i=1

⇠i

s.t.(w · �(xi)) � ⇢� ⇠i, ⇠i � 0, 8i,
(2.3)

where ⇢ is the distance from the origin to hyper-plane w, ⇠ = (⇠1, ..., ⇠n)> are

non-negative slack variables, ||w||2 is a regularizer of the hyper-plane w, the hyper-

parameter ⌫ 2 (0, 1] controls the trade-o↵ between the loss and the margin and �(xi)

is a, possibly non-linear, map for xi. At the optimum, w and ⇢ solve the problem in

Equation 2.3 and the decision function f(x) = sgn((w ·�(x))�⇢) separates the data

from the origin: it identifies points lying outside the half-space, i.e. (w · �(x)) < ⇢,

as anomalous. Through a dual Lagrangian derivation, the solution admits a Support

Vectors (SVs) expansion:

f(x) = sgn

 
X

i

↵iK(xi,x)� ⇢

!
, (2.4)

where the coe�cients are found as the solution of the dual problem:

min
↵

1

2

X

ij

↵i↵jK(xi,xj)

s.t.0  ↵i 
1

⌫n
,
X

i

↵i = 1.
(2.5)

Patterns xi with nonzero ↵i are called SVs, while K is a kernel matrix:

K(x,y) =

2

6664

K(x1, y1) K(x2, y1) · · ·

K(x1, y2)
. . .

...

3

7775
= (�(x) · �(y))F , (2.6)

where � : X ! F is a feature map (58). The equivalence in Equation 2.6 is possible

if and only if K(x,y) is positive semidefinite (Mercer’s Theorem), i.e.:

NX

i,j

aiajK(xi, yj) � 0, 8ai, aj. (2.7)
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Di↵erently from OC-SVM, SVDD uses a hypersphere to separate the data instead of

a hyper-plane. This time, the smallest hypersphere with center c and radius R > 0

that encloses most of the data in feature space is learned. Formally, SVDD solves

the following problem:

min
R,c,⇠

R2 +
1

⌫n

X

i

⇠i

s.t.||�(xi)� c||2 6 R2 + ⇠i, ⇠i � 0, 8i,
(2.8)

where slack variables ⇠i � 0 allow a soft boundary, and the hyper-parameter ⌫ 2 (0, 1]

controls the trade-o↵ between penalties ⇠i and the volume of the hypersphere. Here,

the data outside the hypersphere, i.e. ||�k(x)�c||2 > R2, are identified as anomalous.

SVDD is a kernel method and admits a dual representation; interestingly, if the

kernel function admits a unitary self-similarity, then OC-SVM and SVDD give

the same solution. Another kernel approach has been proposed in (36), dubbed

IVDD. Similarly to SVDD, it uses a hypersphere to separate the data. It also has

the advantage of delivering the probability estimate for each sample (based on the

distance to a hypersphere that encloses the data). This method is formally presented

in Chapter 4.

Two problems arise, however, when using unmodified kernel-based approaches: they

do not e�ciently scale (in memory and computing time) to big data problems and,

being shallow, they do not learn features representations, o✏oading this task to the

design of the input features and the kernel function. To cope with the scaling issue,

the Nyström method can represent a valid solution, also endowing regularization

properties (59; 60). In particular, the Nyström approximation of a symmetric positive

semidefinite (SPSD) matrix K is based on a sample of m ⌧ n columns of K (61; 62).

Let C denote the n⇥m matrix formed by these columns and W the m⇥m matrix

consisting of the intersection of these m columns with the corresponding m rows of

K. The columns and rows of K can be rearranged based on this sampling so that K
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and C be written as follows:

K =

2

4W K>
21

K21 K22

3

5 ,C =

2

4W

K21

3

5 . (2.9)

Note that W is also a SPSD since K is SPSD. For a uniform sampling of the columns,

the Nyström method generates a rank-k approximation eK of K for k 6 m defined

by:

eK = CW+
k C

> ⇡ K, (2.10)

where Wk is the best k -rank approximation of W for the Frobenius norm, that is

Wk = argminrank(V)=k ||W�V||F and W+
k denotes the pseudo-inverse of Wk (63).

W+
k can be derived from the singular value decomposition (SVD) of W, W = U⌃U>,

where U is orthonormal and ⌃ = diag(�1, ..., �m) is a real diagonal matrix with

�1 � ... � �m � 0. For k 6 rank(W), it is given by W+
k =

Pk
i=1 �

�1
i UiU

>
i , where

Ui denotes the ith column of U. Since the running time complexity of SVD is

O(m3) and O(nmk) is required for the multiplication with C, the total complexity

of the Nyström approximation computation is O(m3 + nmk) (64). A Nyström-like

approximation was applied to IVDD in (37), where a fast and memory-e�cient

version was presented. Further details are provided in Chapter 4.

Despite this significant computational improvement, coping with high-dimensional

datasets still requires a feature and/or a kernel engineering e↵ort. For this reason,

DL can be a suitable alternative for the kernel layer. Indeed, DL approaches directly

provide learned representations of data with multiple levels of abstraction (22). In

particular, DL methods can be used to learn a low-dimensional feature representation

which is then used in a disjoint and independent anomaly scoring step (65; 66). The

idea behind several proposed approaches (65; 66) is that, after the training step, they

have learned how to reconstruct normal input samples or represent normal samples

in the latent feature space; therefore, they will fail in reconstructing anomalous

samples or in generating them. In this case, the anomaly score is computed on the

reconstruction error. Another option is to couple feature learning with anomaly

scoring. Typical architectures used for this purpose are AEs (67), Denoising AEs
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(DAEs) (68; 69), Generative Adversarial Networks (GANs) (70) or Variational AEs

(VAEs) (71), which aim to learn a low-dimensional feature representation space

in which normal and anomalous samples can be easily distinguished. Emergent

and e↵ective methods belonging to this category are, among others, AnoGAN (72),

ADGAN (73), P-KDGAN (74), OCGAN (75), ICS (76), DROCC (77), and HRN

(78). Particularly interesting is the DeepSVDD method presented in (79), which

is a hybrid approach between the kernel-based and the DL methods. Similarly to

SVDD, DeepSVDD proposes to build a hypersphere to enclose all the given class

data. Still, it also uses a neural network to learn a good feature representation of the

data with the one-class classification objective, simplifying the boundary creation.

More formally, given a dataset, Dn = {x1, ...,xn} with xi 2 X ✓ Rd and a neural

network �(·;W) : X ! F that maps the input into the output space F ✓ Rp with

L 2 N hidden layers and the set of weights W = {W1, ...,WL} where W` are the

weights of layer ` 2 {1, ...L}, the soft-boundary DeepSVDD objective is defined as:

min
R,W

R2 +
1

⌫n

nX

i=1

max{0, ||�(xi;W)� c||2 �R2}+ �

2

LX

`=1

||W`||2F , (2.11)

where �(x;W) 2 F is the feature representation of x 2 X given by the network �

with parametersW . Here, the network parametersW are learned simultaneously with

the hypersphere created in the output space F . The first term allows to minimize the

volume of the hypersphere, the second term is a penalty term for points lying outside

the hypersphere, and the last term is a weight decay term for the network parameters

W with � > 0 and || · || the Frobenius norm. The hyper-parameter ⌫ 2 (0, 1] controls

the trade-o↵ between the volume of the hypersphere and violations of the boundary.

Authors (79) also propose an alternate cost function dubbed One-Class Deep SVDD:

min
W

1

n

nX

i=1

||�(xi;W)� c||2 + �

2

LX

`=1

||W`||2F . (2.12)

Here, the hypersphere is contracted by minimizing the mean distance of all data

representations to the center. Even if the method is very e↵ective compared to

competing ones, it has some weaknesses. As the Authors discuss, the training process
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without proper management can degenerate into trivial uninformative solutions. This

is a structural problem; hence a change in the functional form would be desirable. A

possible solution to this drawback is presented in (80), while in (81) a solution based

on VAEs is proposed.

In this Thesis, the one-class learning domain is investigated, and a new method is

presented and discussed in Chapter 4. In addition, an application of the original

IVDD in the life science context is presented, showing the e↵ectiveness and usefulness

of the one-class learning strategies in this area.

2.3 Representation learning

Data representation and its learning is an important topic in the field of ML, being

its role crucial for the e↵ectiveness of any ML method. Natural language (text and

speech) processing (7) and object detection (18) are just a few examples of the

possible application areas of data representation learning and engineering strategies.

Traditional feature engineering methodologies do not learn the representation, as

this one is managed via feature and kernel engineering. These techniques are

labor-intensive, possibly biased, and often limited in their representation ability.

Representation learning is instead particularly e↵ective for transfer learning processes,

where the learning algorithm exploits commonalities between di↵erent learning tasks

to share statistical strength and transfer knowledge across them (42). In the last

years, the ML community has therefore focused on designing learned pre-processing

neural layers and data transformations able to output good representations of the

data to support subsequent, often supervised, learning methods (42). Among the

various techniques of representations learning, DL methods allow to derive abstract

representations through multiple non-linear transformations. The learning strategy

can be either supervised or unsupervised and takes place, among others, employing

ANNs (22), AEs (67), and SSL approaches (82). These strategies have been used in

this Thesis, and the following Sections describe them in detail.
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2.3.1 Artificial Neural Networks

ANNs are function approximators whose hierarchical architecture resembles brain

neural connectivity. They have a high representation power, and often find and

recognize patterns which are complex even for humans (22). ANNs generally comprise

an input layer, an output layer, and some hidden layers which transform the input

data (as vectors or structured data such as graphs) for the final processing, typically

a linear combination (see Figure 2.8).

Input layer Hidden layer Hidden layer Output layer
Figure 2.8: ANN: graphical representation.

In a standard feed-forward neural network, each layer is composed of nodes, called

neurons, which perform the weighted sum of their input and feed it to a non-linear

activation function (usually a sigmoid or a rectifying linear unit (ReLU)) (see Figure

2.9). Given the input {a1, ..., an}, the output of the j th node of the layer ` is:

z`j =
mX

k=1

w`
jkf(a

`�1
k ) + b`j, (2.13)

where m is the number of neurons of the `� 1 th layer, wj is the weights vector,

bj is the bias, and the function f is the activation function. Possible activation
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Figure 2.9: Schematic representation of a computational unit: a neuron.

functions are depicted in Figure 2.10. The training phase of a ANN modifies the

network parameters (weights and bias) associated with all the edges to minimize

a prescribed cost function. For training, the network parameters are randomly

initialized; then, the input data are fed into the ANN (foreword step), and the

resulting output is compared with the target to compute the error. Finally, each

parameter’s contribution to the error is calculated, and the parameters are adjusted

accordingly using gradient descent along the network (back-propagation step (84)).

Figure 2.10: ANN: activation functions (83).
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Given a dataset Dn = x1, ...,xn with xi 2 X ✓ Rd and a neural network �(·; (W , b)) :

X ! F that maps the input into the output space F ✓ Rp with L 2 N hidden layers

and set of weights W = {W1, ...,WL} where W` are the weights of layer ` 2 {1, ...L},

the total cost C is the sum a loss function L plus an optional regularization term:

C = L(�(x; (W , b)), y) + �R((W , b))), (2.14)

where �(x; (W , b)) is the output of the network, y is the target, and L is the loss

function (e.g., mean squared error, cross-entropy) R((W , b))) is a regularization

operator, and � is a positive weighting factor. To minimize C by gradient descent, it

is necessary to compute the partial derivative of C with respect to each weight in

the network. In particular, for a single weight, the gradient is:

@C

@wl
jk

=
@C

@zlj

@zlj
@wl

jk

. (2.15)

Di↵erentiating, one obtains:
@zlj
@wl

jk

= al�1
k , (2.16)

therefore:
@C

@wl
jk

=
@C

@zlj
al�1
k . (2.17)

Similarly, for a single bias term the gradient is:

@C

@blj
=

@C

@zlj

@zlj
@blj

. (2.18)

Di↵erentiating, one obtains:
@zlj
@blj

= 1, (2.19)

therefore:
@C

@blj
=

@C

@zlj
(2.20)
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The common part in Equations 2.15 and 2.18 is called local gradient. It can be easily

determined using the chain rule (85), and it is expressed as follows:

�ll =
@C

@zlj
. (2.21)

Finally, the network parameters are updated as per:

w`
k(t+ 1) = w`(t)� ⌘

@C

@w`
k

b`(t+ 1) = b`(t)� ⌘
@C

@b`
,

(2.22)

where ⌘ is the learning rate and determines the gradient descent speed. The forward

step and the backpropagation steps are iterated (in the neural jargon, these steps

are called epochs) to reduce at each step the loss until the convergence is reached

(which is often assessed by checking the gradient norm).

Feed-forward neural networks of the just described kind are called Multi-Layer

Perceptrons (MLP) (86) and are one of the possible architectures. CNNs are another

type of ANNs, particularly e↵ective in large-scale image recognition, with layers of

convolving filters applied to local features (87). Convolutional layers are followed by

pooling layers, forming modules. These are followed by fully connected layers (MLP),

as in the standard feed-forward neural networks (see Figure 2.11). Convolutional

layers comprise neurons arranged in feature maps. Each neuron has a receptive field

connected to a neighborhood of neurons in the previous layer by a set of trainable

weights (kernel/filter). Input images are convolved with the kernel to create a

Figure 2.11: CNN: graphical representation (88).
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Figure 2.12: CNN: convolution graphically explained. The kernel window is shifted along the
input image pixel by pixel. For each window position, one convolution of the kernel with the
corresponding portion of the input image is computed and the result populates the feature map
(see Equation 2.22).

new feature map (see Figure 2.12). The convolved results are then sent through a

non-linear activation function (89). Subsequent feature map values are computed as:

G[m,n] = f ((W ⇤ x)[m,n]) = f

 
J�1X

j=0

K�1X

k=0

W [j, k]x[m+ j, n+ k]

!
, (2.23)

where x denotes the input image, W denotes the kernel (which is a J ⇥K matrix),

⇤ denotes the convolution, and f(·) the non-linear activation function (89). Rows

and columns indices of the result matrix are m and n respectively. Pooling layers

reduce the spatial resolution of the feature maps; max pooling aggregation layers

are typically used. They propagate the maximum value to the next layer within the

receptive field (89). Finally, fully connected layers flatten the intermediate maps

to get the feature representation. The softmax operator is usually used for the

classification task as the very last neuron for each class (89):

�(z) =
eziP

j=1 Kezj
, (2.24)

where z is the output vector. In this way, a vector z of K real values can be

transformed into a vector of K real values 2 [0, 1] that sum to 1 and can be

interpreted as probabilities. The label predicted by the model can be easily obtained

as the index of the output vector with the maximum probability.
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Figure 2.13: Residual block: graphical representation.

Residual CNNs (e.g., ResNet-50 (90)) are a type of CNNs that introduce the deep

residual learning framework blocks. In particular, if one denotes by H(x) the desired

underlying mapping of a few stacked layers (with x being the input to the first

of these layers) and hypothesizes that multiple non-linear layers can approximate

any function, one can then assume that the residual functions H(x) � x can be

learned correctly. The stacked layers can thus approximate a residual function

F (x) = H(x)� x and the original function becomes F (x) + x. CNNs can realize the

latter formulation with shortcut connections, which perform identity mapping. Their

output is then added to the output of the stacked layers (see Figure 2.13). This type

of CNNs produces substantially better prediction results than previous networks, is

deeper, and can deal better with the vanishing gradient issue (90; 91).

In this Thesis, ANNs, particularly CNNs, are used for learning a low-dimensional

feature representation of the input, which is used, in a second step, for manifold

learning experiments. Full details on these experiments are described in Chapter 3.

2.3.2 Autoencoders

AEs (67) are a specific type of ANNs, where the output is imposed to be equal to

the input via an ad-hoc loss function. They are a deep solution to the dimensionality

reduction problem and are capable to learn a data’s compressed representation (latent-

space representation). From this compressed representation, they can approximately

reconstruct the input .

An AE consists of 3 components: an encoder, a bottleneck, and a decoder layer. The

encoder compresses the input and produces the bottleneck; the decoder reconstructs

the input only using the bottleneck features (see Figure 2.14). Both the encoder and

decoder are ANNs, and the loss used during the training phase is the reconstruction
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Figure 2.14: AE: graphical representation.

error (e.g., mean squared error):

LAE = Lrec(xi, x̂i), (2.25)

where xi is the input sample and x̂i is the output of the architecture.

Variational AEs (VAEs) are a particular type of AEs proposed in (71). They

formalize the learning process in probabilistic terms. In particular, given a dataset,

Dn = {x1, ...,xn}, the encoder (or recognition model) q�(z|x) with parameters �,

maps the data x into a probability distribution (e.g., Gaussian) over the possible

values of the latent representation z. It approximates the intractable true posterior

p✓(z|x). The decoder, p✓(x|z), with parameters ✓, is a generative model that, given

the latent representation z, produces a distribution over the possible corresponding

values of x (see Figure 2.15). The marginal likelihood is composed by a sum over

the marginal likelihoods of individual datapoints:

log p✓(x1, ...,xn) =
nX

i=1

log p✓(xi), (2.26)
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Figure 2.15: VAE: graphical representation.

and can be rewritten as:

log p✓(x) = Eq�(z|xi) [log p✓(x)]

= Eq�(z|x)


log


p✓(x, z)

p✓(z|x)

��

= Eq�(z|x)


log


p✓(x, z)

q�(z|x)
q�(z|x)
p✓(z|x)

��

= Eq�(z|x)


log


p✓(x, z)

q�(z|x)

��
+ Eq�(z|x)


log


q�(z|x)
p✓(z|x)

��

= L(✓,�,x) +DKL(q�(z|x)||p✓(z|x)).

(2.27)

The term DKL is the KL divergence, and measures the distance between the ap-

proximated probability distributions q�(z|x) and the true posterior p✓(z|x), while

the term L(✓,�,x) is the variational lower bound, also called evidence lower bound

(ELBO):

L(✓,�,x) = Eq�(z|xi)[log p✓(x, z)� log q�(z|x)]. (2.28)

Since the KL divergence is non-negative, the ELBO is a lower bound on the log-

likelihood of the data:

L(✓,�,x) = log p✓(x)�DKL(q�(z|x)||p✓(z|x))

= Eq�(z|x) [log p✓(x)]�DKL(q�(z|x)||p✓(z|x))  log p✓(x).
(2.29)
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Di↵erentiating L(✓,�,x) thrugh the usual Monte Carlo gradient estimator is imprac-

tical in this case, for this reason the reparametrizion trick is used. More generally,

for an approximate posterior q�(z|x), the random variable ez s q�(z|x) can be

reparametrized using a di↵erentiable transformation g�(✏,x) of an auxiliary noise

variable ✏:

ez = g�(✏,x), (2.30)

with ✏ s p(✏). The Monte Carlo approximation of the expectation of some function

f(z) w.r.t. q�(z|x) can be estimated as:

Eq�(z|x) [f(z)] = Ep(✏) [f(g�(✏,x))] '
1

L

LX

l=1

f(g�(✏l,x)), (2.31)

where ✏l s p(✏). Applying this technique to the variational lower bound in Equation

2.29, a first Stochastic Gradient Variational Bayes (SGVB) can be obtained as:

eLA(✓,�,x) ' L(✓,�,x)

eLA(✓,�,x) =
1

L

LX

l=1

log p✓(x, zl)� log q�(zl|x),
(2.32)

where zl = g�(✏l,x) and ✏l s p(✏). The KL divergence can be integrated analytically

and can be interpreted as a regularizer, since it encourages the approximate posterior

to be close to the prior p✓(z). Therefore, another SGVB can be obtained as:

eLB(✓,�,x) =
1

L

LX

l=1

(log p✓(x, zl))�DKL(q�(z|x)||p✓(z|x)), (2.33)

where zl = g�(✏l,x) and ✏l s p(✏). Equation 2.33 is clearly connected with auto-

encoders: the first term is a negative reconstruction error and the second one is a

regularizer. Typically, the probability distributions p✓(z) and q�(z|x) are assumed

to be multivariate Gaussian:

p✓(z) = N (z, 0, I)

q�(z|x) = N (z, µ, �2),
(2.34)
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where the mean and the standard deviation µ and � are output of the encoder

network. Further details can be found in (92; 93).

In this Thesis, VAEs are used for learning a low-dimensional representation e↵ective

for one-class learning. Since the prior distribution p✓(z) is assumed to follow a Gaus-

sian distribution, the representation obtained with VAEs should make distinguishing

normal and anomalous samples easier when a hypersphere is learned. Further details

on this topic are presented in Chapter 4.

2.3.3 Self-supervised learning strategies

SSL strategies provide an appealing solution to the representation learning problem.

They are particularly e↵ective in the field of natural language processing (NLP), and

examples of their e↵ectiveness are, among others, the Collobert-Weston 2008 model

(94), Word2Vec (95), GloVE (96), fastText (97), and, more recently, BERT (98),

RoBERTa (99), XLM-R (100). Systems pretrained with self-supervised techniques

yield considerably higher performance than when solely trained in a supervised

manner. This progress has also led to using SSL strategies in complex real-world

settings CV problems (101).

Self-supervised can be imagined as an energy-based modeling attempt (EBM) (see

Figure 2.16). A trainable system is given by two input, x and y, and it learns their

level of incompatibility (energy). Low energy values mean that the two input are

compatible, whereas high energy values indicate that the two input are incompatible.

x

y
f(x,y)

Energy 
function

Figure 2.16: SSL: an EBM. Given two di↵erent versions, x and y, of an image, an energy function
is computed (e.g., similarity) in order to estimate the level of compatibility of the two input.
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x

y
c(h,h’)

Minimize
similarityEnc(x)

Enc(y)

h

h’
w

Figure 2.17: SSL: Siamese architecture.

During the training phase, the system considers only compatible samples and is

trained to produce low energy for compatible samples and high energy for incompat-

ible ones. This last aspect is the most challenging part of the training procedure.

For image recognition problems, the input images are generally distorted to obtain

two di↵erent versions, x and y, from which the model can be trained.

A well-suited DL architecture to implement this mechanism is called Siamese network

or joint embedding architecture, initially introduced in the literature in the early

1990s and mid-2000s (102; 103; 104; 105; 68) (see Figure 2.17). It is composed of

two identical networks that output two di↵erent representations (embeddings) given

as input x and y (two di↵erent versions of the same image). In this case, the energy

is computed as the distance between the two embedding vectors. At the same time,

the weights are adjusted during the training phase so as to minimize the energy and

produce similar representations for the two input.

This type of architectures have attracted the SSL community in the last years since

they do not require labels during the learning phase and take advantage of all the

pros of unsupervised learning approaches. The main challenge when the Siamese

architecture is trained is making the network capable of outputting high energy

values when incompatible samples are used as input, and impeding the network from

producing an undesired trivial solution in which all output collapse to a constant.

Collapse happens when the network is not capable of distinguishing di↵erent samples.

Some recent results seem promising, even if the domain remains largely unexplored.

Among others, the most interesting solutions include DeeperCluster (106), ClusterFit

(107), MoCo-v2 (108), SwAV (109), SimSiam (110), Barlow Twins (111), and BYOL
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Figure 2.18: SSL: a Siamese solution (110).

(112). These solutions propose di↵erent strategies and tricks (e.g., computing virtual

target embedding) to prevent the network from collapsing. Particularly interesting is

the solution presented in (110). As in a standard Siamese approach, the network takes

as input two randomly augmented views, x1 and x2, from an image. The network

comprises an encoder f (a backbone architecture concatenated to a projection MLP)

and a prediction MLP h. The two output vectors of the architecture can be defined

as p1 = h(f(x1)) and z2 = f(x2) (see Figure 2.18 for further details on the structure

of the network), and the problem to minimize is defined as follows:

H(p1, z2) = � p1
||p1||2

· z2
||z2||2

, (2.35)

where || · ||2 is `2-norm, and H is the negative cosine similarity. The symmetrized

loss can be therefore defined as:

L =
1

2
H(p1, z2) +

1

2
H(p2, z1). (2.36)

This loss is defined for each image and averaged. The minimum value is -1. To

prevent the network from collapsing, the Authors of the method proposed in (110) a
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Figure 2.19: SSL: contrastive architecture.

stop-gradient strategy, which consists in considering z as a constant:

L =
1

2
H(p1, stopgrad(z2)) +

1

2
H(p2, stopgrad(z1)). (2.37)

In addition to Siamese architectures, contrastive (see Figure 2.19) and regularization

methods have also been devised to prevent collapse. Contrastive learning methods

are self-supervised strategies that allow learning a high-level feature representation

considering similarities and dissimilarities among data points. They are supervised

approaches for learning representations. Particularly, given an image, one can

compute two augmented combinations (e.g., cropping, resizing, and recoloring)

and train a model to maximize the similarity of the two corresponding vector

representations (one for each augmented image). When, at training time, a dataset

composed of di↵erent classes is used (e.g., images of cats and dogs), the model will

learn that images belonging to the same category should have an equal representation

that is di↵erent when images belong to another category. More generally, let

�(x) = normalize(g(x)), i.e. ||�(x)|| = 1,

Lclr = �Ex,xisPX ,A,A0

"
log

sim(A(x),A0(x))

sim(A(x),A0(x)) +
PM�1

i=1 diff(A(x),A(xi))

#
, (2.38)

where A and A0 are identical but independently augmented versions of the image x,

sim(A(x),A0(x)) is:

exp

✓
1

⌧
�(A(x))>�(A0(x))

◆
, (2.39)
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and diff(A(x),A(xi)) is:

exp

✓
1

⌧
�(A(x))>�(A(xi))

◆
. (2.40)

Lclr regularizes representations of the same instance with di↵erent views (A(x),A0(x))

to be similar, while those of other instances (A(x),A(xi)) to be unlike.

Contrastive approaches have proven e↵ective for multi-class classification (114; 115).

However they require labels during training. Recently, they have been adopted

for solving unsupervised problems, particularly one-class learning problems, by

introducing the distribution augmentation concept (113). In more detail, instead

of modeling the training data distribution PX , the union of augmented training

distribution is considered, that is PS
a a(X ) where a(X ) = {a(x)|x 2 X}. The

augmented training distribution is obtained by using augmentation strategies to the

training set, which di↵er from those used for generating di↵erent views of the same

image A. Images augmented with these strategies are considered negative samples

and are encouraged to be distant from a positive sample in the representation space.

An example of this approach is depicted in Figure 2.20.

In this Thesis, the solutions presented in (110) and (113) have been adopted as

representation learning strategies for the one-class learning domain. Further details

are discussed in Chapter 4.

Figure 2.20: SSL: distribution augmentation concept (113).
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Chapter 3

Principal Path algorithm:

applications and variants

This Chapter introduces the PP algorithm (35), its applications and the improvements

of the method developed in this Thesis. Particularly, two di↵erent experiments are

described, aiming to prove its usefulness in the life science context, and its flexibility.

These works have been published respectively in (116) and (117). Finally, this

Chapter presents an improved version of the PP, which modifies some key steps of

the algorithm and makes the method more robust, stabler, and ab-initio local by

removing some drawbacks of the original version. This version of the PP algorithm

has been published in (118).

The following notations will be used throughout the Chapter:

• Vectors are underlined, e.g., v, while matrices are bold and capitalized, e.g.,

M.

• N is the number of samples.

• Nc is the number of waypoints.

• A dot · is used as column or row index to represent the entire set of columns

or rows, respectively, e.g., Mi,· = mi is a vector representing the i-th row of

the matrix M.

• X is the N⇥d matrix of samples xi arranged in a rowwise fashion, i.e. Xi,· = xi.
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• W is the Nc ⇥ d0 matrix of waypoints wi arranged in a rowwise fashion.

• w0 and wNc+1 represent the starting and ending points of the path.

• �(·) : Rd ! Rd0 is the, possibly non-linear, transformation mapping the d-

dimensional input space into a d0-dimensional transformed one. Underlining of

the �(·) symbol is omitted for simplicity.

• |wi| represents the number of samples associated with the ith waypoints (i.e.,

cardinality of the ith cluster).

• ui 2 [1, Nc] \ N is the label associated with the ith sample xi.

• �(ui, j) is the Kronecker delta.

3.1 Principal Path algorithm: the method

The PP algorithm (35; 119) is a one-dimensional manifold learning algorithm, which is

particularly well suited to capture time-dependent trends in data (e.g., for dynamical

systems, genomic data, cancer evolution, ...). It is a local version of the Principal

Curve (34). The term local means that the PP does not necessarily consider all

the data points for its solution. Unlike the Dijkstra shortest path (120) and more

similarly to the minimum free-energy path in statistical mechanics, the PP is smooth.

The smoothness is achieved through a regularized loss function (50). Formally, the

PP is implemented as an extension of k-means clustering (121; 122), where the first

and last clusters are constrained (i.e., w0 and wNC+1) and the other clusters are

evolved according to the regular k-means cost function plus a regularization term,

which induces a string topology. All the clusters are waypoints for the path and are

topologically connected by a chain of springs. The PP cost function is:

min
W,u

NX

i=1

NcX

j=1

k�(xi)� wjk2�(ui, j) + s
NcX

i=0

kwi+1 � wik2, (3.1)

where the first term represents the k-means objective (with the cluster corresponding

to the starting and the ending points kept fixed) and the second term is the regu-

larization part. The regularization parameter s regulates the trade-o↵ between the
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The Principal Path algorithm

Figure 3.1: The PP algorithm: pictorial description of s tradeo↵. If s = 0 (blue), the resulting
path is irregular, showing an overfitting e↵ect, if s ⇠ 1 (green), the resulting path is a straight line
connecting the boundary points. Meaningful paths are obtained with intermediate values of s.

data fitting and the smoothness of the inferred path (see Figure 3.1), while � is a

possibly non-linear map.

The PP algorithm is based on the following steps:

1. Set the boundary condition: the starting and the ending points, w0 and wNc+1,

are chosen among the samples.

2. Prefilter the data (optional, see Figure 3.2): to stabilize the method, the

algorithm can consider just a subset of samples, which can be computed as

follows:

• Medoids extraction: a set of Nf medoids M = mi ⇢ X is selected via the

k-means++ algorithm (123), where Nf is a user-defined parameter.
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Principal Path – prefilter the data

Figure 3.2: PP algorithm: prefilter the data. (a) Set the boundary condition. (b) Medoids
extraction. (c) Build a penalized graph. (d) Find the shortest path. (e) Medoids selection. (f)
Filter the samples. Image from (35).

• Build a penalized graph: first, the distance matrix is computed among the

medoids M. In this case, the squared Euclidean distances are considered.

Then, the distance matrix is penalized according to the neighborhood of

each medoid M with a penalty factor of p. For each medoid, the first k

nearest points are considered as its neighborhood, where k is a user-defined

parameter. The final distance matrix can be summarized as follows:

d2p(mi,mj) =

8
><

>:

d2(mi,mj), mi 2 nnk(mj)

pd2(mi,mj), otherwise.

Note that the weight dp represents the weight of the edge connecting the

nodes mi and mj in the final penalized graph.

• Find the shortest path: the Dijkstra algorithm (120) is used to find

the shortest path connecting the boundaries w0 and wNc+1 and walking
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through an ordered subset of medoids S ⇢ M.

• Medoids selection: the medoids M too close to S, according to a user-

defined threshold T , are removed (here identified as Q). A final subset of

medoids Sfinal = S [ (M�Q) is obtained.

• Filter the samples : each sample of the input data matrix X is labeled ac-

cording to the nearest medoids Sfinal, and the subset of data Nk associated

with the medoids in S is kept.

3. Init the medoids : a set of Nc medoids are selected via the k-means++ algorithm

(123), representing the waypoints’ initial configuration.

4. Optimize the cost function: the cost function is optimized via an Expectation

Maximization (EM) algorithm (124), which can be summarized with the

following steps:

• E-step: for each iteration t of the optimization process, it computes the

labels (or memberships) as in the standard k-means algorithm:

ui,t+1 = argmin
j

kxi � wj,tk2. (3.2)

• M-step: based on the newly computed ui,t+1, it updates the waypoints

matrix W as follows:

Wt+1 = (AX(ut) + sAW )�1(C +
s

2
B), (3.3)

where:
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– Bi,· is the Nc ⇥ d0 boundary conditions matrix:

Bi,· =

8
>>>><

>>>>:

w0 if i = 1

wNc+1 if i = Nc

0 otherwise

(3.4)

– Ci,· is the Nc ⇥ d0 centroid matrix:

Ci,· =
NX

j=1

xj�(ui, j) (3.5)

– AW is the Toeplitz matrix representing the hessian of the regulariza-

tion term in the cost function:

AW =

2

6666666664

1 �1
2 0 . . . 0

�1
2 1 �1

2

. . .
...

0
. . . . . . . . . 0

...
. . . �1

2 1 �1
2

0 . . . 0 �1
2 1

3

7777777775

(3.6)

– AXi,j is the Nc ⇥ Nc hessian matrix of the standard k-means cost

function:

AXi,j =

8
<

:
|wi| if i = j

0 otherwise
(3.7)

– s is the regularization parameter.

These steps are repeated until the convergence condition (ui,t = ui,t�1) is satis-

fied for every i. The optimization is repeated, giving as input di↵erent values

of the regularization parameter s. For this reason, di↵erent final configurations

of the waypoints are obtained in this step, one for each value of s, and a

model selection strategy is required. Among others, a fast and straightforward

model selection strategy can be devised as it follows. Given a path W , let

li,i+1 = Dst(wi, wi+1) be the length of the segment connecting two subsequent

waypoints wi, wi+1, and let � be the variance of such quantity along the path.

37



For large values of s, � is expected to be equal to 0, since the algorithm

asymptotically finds the trivial path connecting w0 to wNc+1 with an evenly

sampled straight line. Instead, for a small value of s, the algorithm finds an

arbitrarily tortuous path, usually leading to high values of � and boiling down

to a classical k-means result. For each experiment, the best path Wbest can be

therefore selected with the elbow criterion (125) on the plot of � vs. log(s) (see

Figure 3.3). This simple heuristic can select non-trivial paths with similarly

spaced waypoints which seamlessly translate into evenly sampled morphing

processes. Another model selection strategy can be performed via Bayesian

Evidence Maximization. Further details on this model selection strategy can

be found in (35). Note that when the prefiltering procedure is used, the cost

function to optimize becomes:

min
W,u

NkX

i=1

NcX

j=1

k�(xi)� wjk2�(ui, j) + s
NcX

i=0

kwi+1 � wik2, (3.8)

since just the subset of Nk samples (not filtered out) is considered.

Figure 3.3: PP algorithm: model selection with elbow criterion. For each value of log(s) one can
obtain a PP and the corresponding variance (�) on waypoints interdistance for that path. The
elbow is the furthest point from the line which connects the first and the last points.
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3.2 Principal Path algorithm: applications

In this Section two applications are presented, which involve the just discussed PP

method. The first one shows how the PP can be used in the life science domain

and describes a package that makes the PP available to users through high-level

APIs. The second application aims to challenge the PP to measure its strengths and

limitations in a context where the ground truth is known.

3.2.1 Principal Path applied to Life Sciences

In the previous Section, the PP has been presented as a general method that can

be adopted in any context where it makes sense to reason in terms of evolutionary

connections between data points or a pseudo-time that connects them in succession.

One interesting application domain for this method is omic/biological datasets (e.g.,

transcriptomics or metabolomics). In fact, they can be used for analyzing time-

dependent phenomena, such as tumor evolution, cell cycle, cell di↵erentiation, and

organogenesis. The recent advent of next-generation sequencing (NGS) techniques

has produced a massive amount of high-throughput data for quantitative biology,

especially in the field of transcriptomics. This allows to obtain increased depth and

sample size of transcript measurements making possible the usage of ML algorithms

for analyzing these highly complex datasets and increasing the understanding of

biological phenomena (126). Examples of these complex transcriptomic datasets are

those generated by the TCGA (127) and GTEX (128) consortia, which collect tens of

thousands of human RNA-Seq samples from tumor and physiological tissues, respec-

tively. In the past few years, the development of single-cell sequencing technologies

has further increased the sample size of RNA-Seq datasets, albeit at at the cost of

transcript coverage (129). RNA-Seq analyses to understand changes in gene expres-

sion have built on the previous generation of technological platforms (microarrays),

and have focused on characterizing the quantitative di↵erences between two or more

groups of samples, a process known as di↵erential gene expression analysis (DGEA).

As the sample sizes increase, so does the ability to detect and study the natural het-

erogeneity of living systems, whether they are bulk tissues (e.g., interpatient variance
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in cancer) or single cells (e.g., di↵erent cells and cell states in a microenvironment).

Moreover, large datasets allow to measure biological transition processes such as cell

di↵erentiation and tumor progression (130). The literature contains several studies

on defining cell trajectories (131) (i.e., Monocle (132; 133; 134)); however, there

are not so many general and flexible algorithms/packages for modeling continuous

processes and extracting the associated features (i.e., genes or transcripts).

This Section introduces a novel R package, dubbed spathial (117). Spathial is an

easy-to-use implementation of the PP algorithm. It allows the analysis of progressions

in large-scale transcriptomic datasets, such as those arising from bulk and single-cell

RNA-Seq.

Software package

The package spathial1,2 allows to run the PP algorithm using very high-level functions.

In particular:

• spathialBoundaryIds: allows the selection of the boundaries (start and end

points). spathial provides three options: a visual selection by the user, classes

centroids, or selection of the samples using their row-name.

• spathialPrefiltering (optional): allows obtaining a local solution, which does

not involve the entire dataset. This procedure removes some data points and

forces the PP algorithm to go through a restricted number of samples. This

can create smoother paths but, at the same time, can prune some available

data;

• spathialWay : run the PP algorithm with the boundaries selected during the

first step and with the input data (filtered or not filtered).

The function spathialWay is the core of the package spathial. It runs the PP algorithm

several times (according to the s domain) given the boundaries, performs the model

selection, and returns the best PP.

The choice in spathial to automatically perform model selection allows to obtain

1https://cran.r-project.org/web/packages/spathial/index.htm
2https://github.com/erikagardini/spathial
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the best performing PP in few simple steps and also increases reproducibility. This,

however, reduces the performance and increases the execution time, as picking one

single s value would be faster yet more user-dependent.

The PP algorithm has two main computational steps: the centroid matrix C calcula-

tion, where one needs to compute the mean of the points in each cluster (each point

has to be considered once, which implies that this step has complexity O(Nd0)) and

the E-step, where one computes the distances between all points and waypoints to

find the closest one in each iteration. The latter is of complexity O(Nd0Nc), and if

the input matrix X is large, it prevents the algorithm from being scalable to large

datasets and high dimensions. For this reason, the spathial package is optimized

considering that:

kxi � wjk2 = x2
i � 2xiwj + w2

j , (3.9)

where xi is a row (a sample) of the input matrix X and wj is a row (a waypoint) of

the waypoints matrix W . In this way, the distance matrix D between all points and

waypoints with N rows and Nc columns can be computed as:

D = S � 2(XW T ) + V, (3.10)

where S is the N ⇥Nc matrix where the vector:

si =
d0X

k=1

x2
i,k (3.11)

of length N is repeated Nc times along the columns, and V is the N ⇥Nc matrix

where the vector:

vj =
d0X

k=1

w2
i,k (3.12)

of length Nc is repeated N times along the rows. This optimization allows to

pre-compute the S matrix speeding up the execution time. Figure 3.4 shows the

performances of the method spathialWay varying the dimension of the input matrix

and the number of waypoints. As the total execution time is proportional to the

41



Figure 3.4: Spathial: execution time analysis. The input matrix X dimension varies from
1000⇥ 20000 to 10000⇥ 20000 with step 1000. The number of waypoints varies from 10 to 50 with
step 10. The x axis is the number of waypoints, the y axis is the time in seconds. The highest
execution time is around 25 minutes. Experiments were performed with a laptop equipped with a
2,4 GHz Intel Core i5 and 8 GB RAM.

number of s values tested (Ns), then:

execT ime(spathialWay) = Ns ⇥ execT ime(PPalgorithm). (3.13)

The following experiments were performed with a laptop equipped with a 2,4 GHz

Intel Core i5 and 8 GB RAM.

When the function spathiaWay is run, users obtain the coordinate of the waypoints

(new interpolating samples). Spathial provides some utility functions for the analysis

of the output. In particular, users can compute the labels of the waypoints (assigned

as the label of the nearest point) using the function spathialLabels. Additionally,

they can plot the 2D visual representation of the datapoints together with the path

waypoints running the function spathialPlot. This utility function takes as input the

path’s data points and waypoints. If those are in 2D, the function directly plots

them. If not, it first performs a dimensionality reduction using t-SNE (t-Distributed

Stochastic Neighbour Embedding) (135). Users can always adopt their preferred
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dimensionality reduction strategy and directly give 2D coordinates to the function.

Finally, spathial allows the user to compute some statistical information about the

waypoints through the function spathialStatistics. It allows to obtain the Pearson’s

correlation of the waypoint features with the path progression. Path progression

is defined as the ordered sequence of waypoint indices from 0 (the start point) to

Nc + 1 (the end point). In this way, users can obtain the features that are correlated

with the progression (features involved in the transition between the start point

and the end point), and can perform a feature selection according to the Pearson’s

correlation scores. The function also provides the associated p (136) and q (adjusted

p) values (137). They can help finding genes that show abundance di↵erences between

experiment groups, thereby, genes that may be involved in the process.

Results

Some experiments were performed to compare spathial with other existing tools and

to demonstrate its flexibility. They were run with a laptop equipped with a 2,4 GHz

Intel Core i5 and 8 GB RAM.

A first experiment was conducted on the TCGA lung adenocarcinoma RNA-Seq

dataset3, comprising 562 gene expression profiles RPM-normalized (19637 genes

each) where each sample is labeled as tumor or normal according to the TCGA

barcode (138). The experiment aims to navigate the space from normal samples to

tumor samples. In this case, the start point was the most distant normal sample

from the tumor centroid, and the end point was the most distant tumor sample

from the normal centroid. These start and end points were selected to obtain the

extremes, conceptually the most normal and diseased samples. As ground truth,

the oncogenes and tumor suppressor genes (TSG) listed in the Cancer Gene Census

(139) were considered. The prefiltering was not executed since the search was for

a global solution. Finally, the PP algorithm was run with 50 intermediate points

(waypoints) plus the boundaries. Figure 3.5 shows the samples (colored according to

the labels) and the path. Then, a comparison between the first 1000 best q-value

ranked genes for spathial with the relevant genes extracted by a commonly used

3https://gdac.broadinstitute.org
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Figure 3.5: Spathial: PP through the TCGA Lung Adenocarcinoma dataset. 2D visualization
of the PP together with the data points. The x and the y coordinates are the output of the
dimensionality reduction performed with tSNE (135). The start point and the end point of the
PP are the most distant points from the centroid of the tumor samples and the centroid of the
normal samples, respectively. The PP is composed of 50 intermediate points (waypoints) plus the
boundaries.

tool for DGEA, edgeR (140) (again, the first 1000 best q-values genes), is performed.

Tables 3.1 and 3.2 show the details for this comparison. Some genes that spathial

identified as being involved in the progression were not identified by edgeR (and vice

versa). To further highlight the genes found by spathial and missed by edgeR, the

most correlated genes for spathial were selected using the quantiles and setting two

thresholds such that 70% of values fell below the first threshold and 30% fell above

the second threshold, representing the most positively and negatively correlated

Table 3.1: Spathial vs. edgeR: TCGA Lung Adenocarcinoma dataset. Common genes are those
found by both the methods in the subset of 1000 best q-value ranked genes.

Common genes Discordant genes
N. genes 11 989
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Table 3.2: Spathial vs. edgeR - oncogenes and TSG: TCGA Lung Adenocarcinoma dataset.
Common genes are the oncogenes and the TSG found by both the methods in the subset of 1000
best q-value ranked genes. spathial and edgerR genes are the oncogenes and TSG found respectively
only by spathial and edgeR in the subset of 1000 best q-value ranked genes.

Common genes spathial edgeR
N. Oncogenes 0 10 17

N. TSG 0 16 10

genes. Among the positively correlated genes for spathial, the oncogenes were selected

and compared with the edgeR results. In particular, the analysis was focused on how

these oncogenes are placed by the edgeR and spathial ranking, respectively, according

to their statistical significance and their Pearson’s correlation scores. The statistical

significance was estimated as:

� log10(pvalue) ⇤ (FoldChange). (3.14)

Finally, the first 30 genes for which spathial disagreed the most strongly with edgeR

and for which the spathial rank was better than edgeR were selected. The same

comparison can be performed by choosing the TSG from the most negatively corre-

lated genes for spathial. Figure 3.6 shows the subset of 60 genes selected as described

above. The x and y coordinates are the positions in the rank for edgeR and spathial,

respectively. Oncogenes and TSG should be placed at the end and the beginning of

the rank, respectively (the rank is with a sign and ascending), because they should

be highly positively and highly negatively correlated in the transition from normal

to tumor. Therefore, the red genes on the left (oncogenes) and the blue genes (TSG)

on the right are those that spathial (but not edgeR) identified as involved in the

transition from normal to tumor.

An equivalent analysis was also performed on the TCGA liver hepatocellular carci-

noma RNA-Seq dataset4, composed of 343 gene expression profiles RPM-normalized

(18761 genes each), and the breast invasive carcinoma RNA-Seq datasets5, consisting

of 1092 gene expression profiles RPM-normalized (19733 genes each) (138). Figures

4https://gdac.broadinstitute.org
5https://gdac.broadinstitute.org
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Figure 3.6: Spathial vs. edgeR: TCGA Lung Adenocarcinoma dataset. Comparison of spathial and
edgeR. The x and y coordinates are the position in the rank for edgeR and spathial , respectively.
The ranks are the statistical significance (see Equation 3.14) for edgeR and the Pearson’s correlation
score for spathial . Colored genes are the 60 oncogenes and TSG (from the Cancer Gene Census list
(v86 - (139)) for which spathial disagreed the most strongly with edgeR and for which the spathial
rank was better than edgeR.

3.7 and 3.8 and Tables 3.3, 3.4, 3.5, 3.6 show the resulting path and the comparison

with edgeR.

A second experiment was performed to test the spathial performances on a single-cell

RNA-Seq dataset. In this case, the dataset used for the experiments is presented

in (141)6. This dataset comprises 96 human myxoid liposarcoma cells, and each is

described with a gene expression profile (23928 genes each). Cells are labeled as

G1, S, G2/M according to their experimentally determined cell cycle phase. The

experiment aimed to navigate the space from the G1 samples to the G2/M samples.

The start point was the G1 centroid, and the end point was the G2/M centroid.

There was no prefiltering because the search was for a global solution. Finally, the

6https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-614
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Figure 3.7: Spathial: results on the TCGA Liver Hepatocellular Carcinoma dataset. (A) 2D
visualization of the PP together with the data points. The x and the y coordinates are the output
of the dimensionality reduction performed with tSNE ((135)). The start point and the end point
are the most distant normal and tumor points respectively from the centroid of the tumor samples
and the centroid of the normal samples. The PP is composed of 50 intermediate points (waypoints)
plus the boundaries. (B) Comparison of spathial and edgeR. The x and y coordinates are the
position in the rank for edgeR and spathial respectively. The ranks are the statistical significance
(see Equation 3.14) for edgeR and the Pearson’s correlation score for spathial . Colored genes are
the 60 oncogenes and TSG (from the Cancer Gene Census list (v86 - (139)) for which spathial
disagreed the most strongly with edgeR and for which the spathial rank was better than edgeR.

Figure 3.8: Spathial: results on the TCGA Breast Invasive Carcinoma dataset. (A) 2D visualization
of the PP together with the data points. The x and the y coordinates are the output of the
dimensionality reduction performed with tSNE ((135)). The start point and the end point are the
most distant normal and tumor points respectively from the centroid of the tumor samples and the
centroid of the normal samples. The PP is composed of 50 intermediate points (waypoints) plus
the boundaries. (B) Comparison of spathial and edgeR. The x and y coordinates are the position
in the rank for edgeR and spathial respectively. The ranks are the statistical significance (see
Equation 3.14) for edgeR and the Pearson’s correlation score for spathial . Colored genes are the 60
oncogenes and TSG (from the Cancer Gene Census list (v86 - (139)) for which spathial disagreed
the most strongly with edgeR and for which the spathial rank was better than edgeR.
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Table 3.3: Spathial vs. edgeR: TCGA Liver Hepatocellular Carcinoma dataset. Common genes
are those found by both the methods in the subset of 1000 best q-value ranked genes.

Common genes Discordant genes
N. genes 92 908

Table 3.4: Spathial vs. edgeR - oncogenes and TSG: TCGA Liver Hepatocellular Carcinoma
dataset. Common genes are the oncogenes and the TSG found by both the methods in the subset
of 1000 best q-value ranked genes. spathial and edgerR genes are the oncogenes and the TSG found
respectively only by spathial and edgeR in the subset of 1000 best q-value ranked genes.

Common genes spathial edgeR
N. Oncogenes 1 12 6

N. TSG 0 13 20

Table 3.5: Spathial vs. edgeR: TCGA Breast Invasive Carcinoma dataset. Common genes are
those found by both the methods in the subset of 1000 best q-value ranked genes.

Common genes Discordant genes
N. genes 1 999

Table 3.6: Spathial vs. edgeR - oncogenes and TSG: TCGA Breast Invasive Carcinoma dataset.
Common genes are the oncogenes and the TSG found by both the methods in the subset of 1000 best
q-value ranked genes. spathial and edgerR genes are the oncogenes and the TSG found respectively
only by spathial and edgeR in the subset of 1000 best q-value ranked genes.

Common genes spathial edgeR
N. Oncogenes 0 9 11

N. TSG 0 10 12

PP algorithm was run with 50 intermediate points (waypoints) and the boundaries.

Figure 3.9 shows the samples (colored according to the labels) and the path. The

q-value for each gene was computed, then the genes with high statistical significance

(the first 1000 best q-value ranked genes) were selected. Finally, they were compared

with the statistical information extracted by monocle3, a package for single-cell

trajectory analysis (132; 133; 134). In particular, one can use monocle3 to learn the

graph and find genes that are di↵erentially expressed across a single-cell trajectory by

computing the Moran’s I test. Here too, the first 1000 best q-value ranked genes were
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Figure 3.9: Spathial: results on the Karlsson dataset. (A) 2D visualization of the PP created
with spathial together with the data points. The x and the y coordinates are the output of the
dimensionality reduction performed with tSNE ((135)). The start point and the end point are
respectively the centroid of the G1 samples and the G2/M samples. The PP is composed of 50
intermediate points (waypoints) plus the boundaries. (B) 2D visualization (with UMAP) of the
trajectories learned with monocle3.

selected (this q-value is computed on the Moran’s I scores and adjusted according

to the Benjamini-Hochberg method). A significant overlap between monocle3 and

spathial gene predictions was detected (see Tables 3.7 and 3.8). However, some genes

identified by spathial as being involved in the progression were not identified by

monocle3 (and vice versa). Some of these genes belong to Group2 and Group3 of

Table 3.7: Spathial vs. Monocle: Karlsson dataset. Common genes are those found by both the
methods in the subset of 1000 best q-value ranked genes.

Common genes Discordant genes
N. genes 206 794

Table 3.8: Spathial vs. Monocle - Group2 and Group3: Karlsson dataset. Common genes are
those belonging to Group2 and Group3 found by both the methods in the subset of 1000 best
q-value ranked genes. spathial and monocle3 genes are those belonging to Group2 and and Group3
found respectively only by spathial and monocle3 in the subset of 1000 best q-value ranked genes.

Common genes spathial monocle3
N. Group2 26 9 7
N. Group3 42 23 17
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the (141) experiment and are known to decrease and increase in expression from

G1 toward mitosis respectively; the decrease/increase information is used as ground

truth.

Reproducibility

The R package spathial is available respectively on the Comprehensive R Archive

Network (CRAN) and GitHub:

• https://cran.r-project.org/web/packages/spathial/index.html

• https://github.com/erikagardini/spathial.

The datasets can be retrieved from:

• TCGA dataset:

https://gdac.broadinstitute.org.

• Karlsson dataset:

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6142/

Additional files are also available as supplementary data:

• https://academic.oup.com/bioinformatics/article/36/17/4664/5841659.

The edgeR (140) analysis can be reproduced using the R script edger spathial.R. The

TCGA datasets (* tcga.rda, where * is the tumor type) and the Cancer Gene Census

list (v86 - (139)) used as ground truth (cgc genelists.rda) are provided. The first

variable inside the script is tumor type. Users can change its content to repeat the

same analysis with a di↵erent dataset.

Similarly to the steps for the edgeR experiments, the R script monocle3 spathial.R,

the Karlsson dataset (karlsson rawcounts.rda) and the list of genes in Group2 and

Group3 (karlsson genelists.rda) are provided to reproduce the analysis with monocle3

(132; 133; 134). The list of genes is from the Supplementary Materials of the Karlsson

experiment (141). Finally, the R script spathial speed test.R is provided to reproduce

the experiments for the execution time analysis. The obtained results are saved in

spathial time table.rda.

50



All the experiments were run on a laptop equipped with a 2,4 GHz Intel Core i5 and

8 GB RAM.

Final remarks

In this Chapter, the PP algorithm has been used to analyze transcriptomic and

single-cell RNA-Seq datasets proving its e↵ectiveness and flexibility in coping with

di↵erent problems. The transcriptomic and the single-cell RNA-Seq dataset are

examples of the application of the PP path, which can be more in general used for

the analysis of any omics. Results obtained in these experiments show that the tool

can retrieve information missed from other packages and vice versa, which could be

further investigated in the future and could have important clinical implications for

the early detection of tumors or staging in general.

In addition, an R implementation of the PP algorithm, dubbed spathial, is presented.

It provides various high-level functions to the final users, making the algorithm

accessible to the R-user Community and simplifying its systematic application.

3.2.2 Challenging the Principal Path in CNN-induced spaces

Creative and innovative applications have recently attracted the attention of the

Computational Intelligence (CI) community, including cognitive tasks such as senti-

ment analysis (142; 143; 144), neural style transfer (145), artistic style recognition

(146; 147; 148), and musical genre identification (149). CNNs (150; 151), presented

in Chapter 2, are particularly e↵ective for recognizing, analyzing, and classifying

images and videos (22; 89; 152; 153), hence are suitable candidates for the above

mentioned tasks.

In sentiment analysis, works like (154; 143; 144) and many others have tried trans-

forming abstract concepts like emotions into images and sounds. Neural-style transfer

applications use CNNs to recombine one image’s content with another’s style, like

in (145). In terms of recognizing styles of visual art, some of the most interesting

solutions have been proposed by Lecoutre et al. (146), Karayev et al. (147), and

Tan et al. (148). They achieved promising results using two publicly available CNN

architectures (AlexNet (152) and ResNet (90)) with the same dataset (Wikipainting).
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Recently, (155) and (156) addressed the problem of how learning systems perceive

visual art aspects, such as stylistic properties, when compared to human-derived

artistic principles. Regarding the classification of musical genres, Bahuleyan recently

proposed a particularly interesting solution using CNNs (149). This approach uses

spectrograms (visual representations of an audio signal’s time and frequency infor-

mation) generated from a subset of songs in Audio Set (157).

This Section introduces a protocol for analyzing the historical evolution of events in

music and art (116). Music and visual art share a fundamental trait: their historical

evolutionary nature. Cultural and historical events influence changes in visual art

movements and musical genres, they can thus be considered in evolutionary terms.

This work aims at challenging the PP in such an environment by checking its capa-

bility to reconstruct the historical evolution of styles by analyzing the input data

manifold. The capabilities and limits of the PP are hence measured in a context in

which the evolution of the events (ground truth) is known.

The starting observation technically supporting this approach is that visual arts and

music can be represented as images. The visual representation and hence featurization

of music can be obtained by extracting the mel-spectrograms from raw audio data.

Consequently, one can represent an audio file as a point in a high-dimensional space.

Using the PP directly for navigating the high-dimensional space can be challenging,

considering the curse of dimensionality problem (158). A possible solution involves

ANNs, particularly CNNs, to learn a reasonable, low-dimensional, representation.

Then, the manifolds induced by the CNNs can be navigated using the PP and focus-

ing on the historical evolutionary changes from one song/visual artwork to another.

Additionally, the resulting waypoints, which are newly generated samples obtained as

output of the PP algorithm, can be classified using their neighbor samples and can be

visually represented in a 2-dimensional space through the t-SNE projection method

(135). This way, the insights extracted through the PP can be easily inspected and

discussed.
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Figure 3.10: PP in music and visual art spaces: protocol. Step 1: featurization with CNNs. Step
2: PP on the induced vector space with di↵erent s values and model selection with the elbow
criterion. Step 3: visualization of the best PP.
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Analysis protocol

The approach mentioned above (visually represented in Figure 3.10) can be summa-

rized in three main steps:

1. Embedding space generation through CNNs.

2. Running of the PP algorithm in the induced space.

3. Visualization of the results (via the t-SNE method), quantitative and qualitative

comparison to the true historical style evolution.

The first step of the proposed protocol involves CNN architectures to learn a feasible

representation of the input samples. This representation is extracted from the

penultimate layer of the CNN. Here, two existing and widely used CNN architectures

have been considered, namely ResNet-50 (90) and VGG-16 (159). The VGG-16

architecture di↵ers from the original ConvNet architecture (152) because it has

more layers (sixteen) but small (3x3) convolution filters. As a result, the network

has better performance and accuracy. However, increasing the network depth is

not always beneficial. Beyond a certain point, degradation issues arise, and the

number of training errors grows larger. Such a problem is successfully addressed by

the ResNet-50 architecture introducing deep residual learning framework blocks, as

previously mentioned in Section 2.3.1. Table 3.9 shows the original configurations

for VGG-16 (159) and ResNet-50 (90). Here, the original ResNet-50 architecture is

used for the visual art space experiments (146). The architecture proposed in (149)

is used for the music space experiments, with the original VGG-16 core connected to

a new feedforward neural network. In both cases, the predicted labels of the CNNs

are ignored. Instead, the output from the last pooling layer is used as feature vector

for the subsequent steps.

The second step of the proposed protocol consists in navigating the CNN-induced

space with the PP algorithm, aiming at extracting relevant information about the

data topology. In this work, the PP algorithm is run several times with decreasing

values of the regularization parameter s on an evenly spaced log scale from 105 to

10�5, without changing start and end points. In this way, several PPs can be obtained
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Table 3.9: VGG-16 and ResNet-50 standard architectures.

VGG-16 ResNet50

16 weight layers 50 weight layers
Input 224x224 RGB image Input 224x224 RGB image

Conv3-64
Conv3-64

Conv7-64

Maxpool Maxpool

Conv3-128
Conv3-128

Conv1-64
Conv3-64
Conv1-256

X3

Maxpool
Conv1-128
Conv3-128
Conv1-512

X4
Conv3-256
Conv3-256
Conv3-256
Maxpool

Conv1-256
Conv3-256
Conv1-1024

X6
Conv3-512
Conv3-512
Conv3-512
Maxpool

Conv1-512
Conv3-512
Conv1-2048

X3
Conv3-512
Conv3-512
Conv3-512
Maxpool Avgpool
FC-4096

FC-1000FC-4096
FC-1000
Soft-max Soft-max

(one for each s value), and the best path, Wbest, is selected using the previously

introduced elbow criterion as model selection strategy (see Figure 3.3).

The last step of the proposed protocol consists in qualitatively and quantitatively

comparing with the ground truth. To achieve this aim, two di↵erent techniques are

explored. The first technique uses t-SNE (135) to provide a 2D data visualization of

the data points, the waypoints of the PP, and the points of a trivial path. A trivial

path is defined here as a mere linear connection of the end points and it is used as a

null hypothesis to prove that results are not obvious. To improve the t-SNE e�ciency,

the Principal Component Analysis (PCA) (160) algorithm is used to reduce the

dimensionality before t-SNE itself. The second check detects the sample songs and
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visual artworks nearest to the waypoints of the PP and the points of the trivial path.

Results

Several experiments have been performed in both the visual art and music spaces to

validate the proposed protocol.

In terms of the visual art space, the manifold induced by the network defined in

(146) was analyzed without performing any retraining procedure. The network

implementation is the one in (161) because it was explicitly trained to recognize

visual art styles and because the present analysis aimed to understand their rela-

tions. The Wikipainting dataset7 is used, which is an extensive and widely used

dataset collection from the WikiArt website (162). It comprises 80,000 images, each

tagged with one of the following 25 styles: Abstract Art, Abstract Expressionism,

Art Informel, Art Nouveau (Modern), Baroque, Color Field Painting, Cubism, Early

Renaissance, Expressionism, High Renaissance, Impressionism, Magic Realism, Man-

nerism (Late Renaissance), Minimalism, Naive Art (Primitivism), Neoclassicism,

Northern Renaissance, Pop Art, Post-Impressionism, Realism, Rococo, Romanticism,

Surrealism, Symbolism, and Ukiyo-e. The featurization led to 2048 variables from the

penultimate layer of the network. The space was navigated through the PP, selecting

three or four classes at a time with a reasonable historical distance to simplify the

analysis and using the most recent and the oldest visual artworks as start/end points.

A path comprising 50 waypoints plus the start and end points was generated. To

understand the transitions, the nearest picture for each waypoint was retrieved. To

check the significance of the results and for comparison, a trivial path was generated

by connecting the start and end points with a straight line and splitting it into 50

equally distributed points. Figure 3.11a shows the class (the true style label) of

the retrieved nearest pictures for the PP and the trivial path, considering di↵erent

styles. To visualize the points together with the paths, the dimension was reduced via

PCA (sklearn implementation with n components = 50 and random state = 5) (160)

followed by t-SNE (sklearn implementation with n components=2, random state=20,

perplexity=50 and learning rate=300) (135). PCA reduced the number of features

7www.lamsade.dauphine.fr/ bnegrevergne/webpage/software/rasta/wikipaintingsfull.tgz
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Figure 3.11: PP in music and visual art spaces: labeling and 2D visualization. (a) Labels
of the nearest artwork for each waypoint of the PP (top) and the trivial path (bottom). On
the left, results for the following classes: Baroque, Neoclassicism, Realism, Expressionism. On
the right, results for the following classes: Early Renaissance, Baroque, Romanticism, Abstract
Art. (b) 2D representation of the PP and the trivial path through four di↵erent styles: Baroque,
Neoclassicism, Realism, Expressionism (on the left); Early Renaissance, Baroque, Romanticism,
Abstract Art (on the right). The x and the y coordinates are the output of the dimensionality
reduction performed with tSNE (135). The start point and the end point are the most recent and
the oldest visual artworks, respectively. The PP is composed of 50 intermediate points (waypoints)
plus the boundaries.

from 2048 to 50, improving the t-SNE algorithm’s e�ciency (Figure 3.11b). Within

this simplified and class-reduced setting, the PP correctly recovered the historical

evolution of the artistic style and the content of the visual artworks. This indi-

cates that the employed CNN-induced spaces at least partially reflect the historical

evolution of the styles. In contrast, the trivial path moved blindly and jumped

from the start class to the end class without any interesting intermediate. These

aspects are emphasized when the start and end points are the historically oldest

and newest visual artworks, respectively. In addition to this analysis, other paths

were generated by perturbing the start/end points (e.g., using the second/third most
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recent and the second/third oldest visual artworks as start/end points). Results are

available in the GitHub repository8 (folders /results/images/mode=2 1-22-18-25 and

/results/images/mode=2 22-14-17-3) and show that the PP is robust to perturbations.

The PP’s ability to capture the historical evolution of visual art is highlighted when

one selects and plots the nearest visual artworks to the points of the two paths, as

shown in Figure 3.12 (repeated consecutive artworks along the path were not shown

in this, and all the subsequent figures for clarity of representation). In Figure 3.12a,

the PP finds visual artworks that depict people and then landscapes. The style varies

from black and white to color, gradually changing from dark, cool colors to light

warm ones. Except for some noisy visual artworks, the evolution of the classes reflects

the historical evolution of the art (i.e., Baroque ⇠17th-18th century, Neoclassicism

⇠18th-19th century, Realism ⇠19th century, Expressionism ⇠20th century). In

contrast, the trivial path passes through two visual artworks with di↵erent styles

and content and belonging to the first and last class, respectively. The same gradual

morphing can be observed in Figure 3.12b. The evolution of the pictures reflects the

historical evolution of the art (i.e., Early Renaissance ⇠14th-16th century, Baroque

⇠17th-18th century, Romanticism ⇠18th-19th century, Abstract Art ⇠20th century),

with the colors and content gradually changing from one artwork to the next. There

is an interesting jump from romanticism to abstract art, with a strong similarity in

shape: the man and the sculpture are both in the center of the image, and the top of

the sculpture resembles the man’s hat in the portrait. Once again, the trivial path

passes through two visual artworks with di↵erent styles and content belonging to

the first and last classes, respectively. The historical evolution is not always found

by the PP solution, as shown in Figure 3.13. In this case, among a subset of five

classes (Early Renaissance, Mannerism, Baroque, Neoclassicism and Impressionism),

the PP retrieved only visual artworks belonging to the Early Renaissance and the

Impressionism, with a little deviation to the Baroque. Even if the historical evolution

is not respected, the PP can perform a gradual morphing from the start to the end

points. This is particularly clear when compared to the performance of the trivial

8https://github.com/erikagardini/Using-PP-to-walk-through-music-and-visual-art-style-spaces-
induced-by-CNN
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Figure 3.12: PP in music and visual art spaces: visual artworks results. Nearest visual artworks
to the waypoints of the PP and the trivial path, removing consecutive repeated artworks and
considering four classes: (a) Baroque (blue), Neoclassicism (orange), Realism (green), Expressionism
(red); (b) Early Renaissance (blue), Baroque (orange), Romanticism (green), Abstract Art (red).
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Figure 3.13: PP in music and visual art spaces: failure. (a) On the left, labels of the nearest
artworks for each waypoint of the PP (top) and the trivial path (bottom). On the right, 2D
representation of the PP and the trivial path through four di↵erent styles: Early Renaissance, Man-
nerism, Baroque, Impressionism. The x and the y coordinates are the output of the dimensionality
reduction performed with tSNE (135). The start point and the end point are the most recent and
the oldest visual artworks, respectively. The PP comprises 50 intermediate points (waypoints) plus
the boundaries. (b) Nearest visual artworks to the waypoints of the PP, removing consecutive
repeated artworks and considering four classes: Early Renaissance (blue), Mannerism (orange),
Baroque (green), Impressionism (purple).

path, which once again passes through two visual artworks with di↵erent styles and

content belonging to the first and last class, respectively. Further results for the

visual art space are freely available in the GitHub repository9, where the results

9https://github.com/erikagardini/Using-PP-to-walk-through-music-and-visual-art-style-spaces-
induced-by-CNN
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for di↵erent subsets of classes and di↵erent starting/ending points selections are

collected.

In the music space, the above experiments were repeated, analyzing the manifold

induced by the network defined in (149) and available at (163). This time, the

network is trained to recognize music genres. In contrast to the visual art context,

the literature contains music experiments that used datasets with very di↵erent traits.

The best-known datasets with audio tracks include RWC (465 entries) (164; 165), GZ-

TAN genre (1000 entries) (166), Magnatagatune (25863 entries) (167), and AudioSet

(40540) (157). Here, the experiments are performed considering the Magnatagatune

dataset10 (167), instead of the AudioSet (157) mentioned in (149). This is because the

Magnatagatune dataset is one of the largest with available audio tracks; additionally,

it is enriched with tag annotation files that assign a list of genres and instruments to

each song. Specifically, a subset of songs is selected considering the following genres:

Baroque, Classical, Jazz, Medieval, Opera, and Rock. A univocal class is established

for each song by choosing the most specific genre (e.g., a song labeled as Baroque and

Classical becomes Baroque). In this case, the featurization led to 512 features from

the penultimate layer of the network. The dataset was randomly split into training

(80%) and test (20%) sets. The validation set was 10% of the training set. The

training phase was run for no more than 20 epochs using the same batch size (100)

and using the Adam optimizer (default learning rate = 0.001)(92). Figure 3.14 shows

the learning curves of the model. The best model was the one obtained at the sixth

epoch. This model had the highest accuracy and the lowest loss on the validation

set. Finally, the best model was tested on the test set for accuracy, F1-score, Area

Under the Curve (AUC), and Matthews Correlation Coe�cient (MCC), obtaining

0.86, 0.55, 0.9, and 0.77, respectively. Again, the induced spaces from the CNN

were navigated using the PP and the trivial path, considering three or four classes

at a time with a reasonable historical distance, with the start/end points selected

visually and generating 50 intermediate waypoints. Figure 3.15a compares the class

variation for the nearest song to each waypoint (as a class, the true style label of

each nearest song is considered). Figure 3.15b shows the 2D visual representation

10http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
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Figure 3.14: PP in music and visual art spaces: music CNN learning curves for model selection.
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Figure 3.15: PP in music and visual art spaces: music results. (a) Labels of the nearest songs for
each waypoint of the PP (top) and the trivial path (bottom). On the left, results for the following
classes: Baroque, Classical, Opera, Jazz, Rock. On the right, results for the following classes:
Medieval, Baroque, Jazz, Rock. (b) 2D representation of the PP and the trivial path through
three di↵erent styles: Baroque, Classical, Opera, Jazz, Rock (on the left); Medieval, Baroque, Jazz,
Rock (on the right). The x and the y coordinates are the output of the dimensionality reduction
performed with tSNE (135). The start point and the end points are selected visually. The PP
comprises 50 intermediate points (waypoints) plus the boundaries.
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of the two paths. This was obtained by reducing the number of features from 512

to 50 with the PCA algorithm (sklearn implementation with n components=50 and

random state=5) (160), then reducing the number of features from 50 to 2 with the

t-SNE algorithm (sklearn implementation with n components=2, random state=20,

perplexity=50 and learning rate=300) (135). Here, the resulting spectrograms are

omitted because they are di�cult to interpret. The corresponding songs are listed in

the GitHub repository11, and Table 3.10 shows a summary. Figure 3.15a highlights

the PP’s ability to navigate the space, considering the evolution of the musical genres,

despite the complexity of the problem. The trivial path seems to find intermediate

genres between the start and end classes. However, by analyzing Table 3.10, one can

observe that the PP performs a smooth transition finding di↵erent songs along its

way. In contrast, the trivial path finds few songs, and the transition from the start

point to the end point is not gradual. Other examples using di↵erent classes and

start/end points are freely available in the GitHub repository of the project12.

11https://github.com/erikagardini/Using-PP-to-walk-through-music-and-visual-art-style-spaces-
induced-by-CNN

12https://github.com/erikagardini/Using-PP-to-walk-through-music-and-visual-art-style-spaces-
induced-by-CNN

Table 3.10: PP in music and visual art spaces: music results. Number of songs found by the PP
and the trivial path along their way (without duplicated samples and grouped by classes). Baroque,
Opera, Classical, Jazz, Rock (on the top), Medieval, Baroque, Jazz, Rock (on the bottom).

Principal Path Trivial Path

Baroque 3 1
Opera 3 1

Classical 8 3
Jazz 2 -
Rock 11 1

Total 27 6

Principal Path Trivial Path

Medieval 4 1
Baroque 6 0

Jazz 6 1
Rock 16 5

Total 28 7
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Reproducibility

The implementation was written in the Python/Keras (168) framework with Ten-

sorflow (169) as backend. The code to reproduce all the experiments is available on

GitHub: the code to perform the featurization is at links:

• https://github.com/erikagardini/ImageFeaturization;

• https://github.com/erikagardini/MusicFeaturization.

The code to reproduce the results at:

• https://github.com/erikagardini/Using-PP-to-walk-through-music-and-visual-

art-style-spaces-induced-by-CNN.

All the experiments were run on a High Performance Computing (HPC) cluster node

equipped with a nVidia P100 GPU and 2 Intel Xeon E5-2650 v4 CPUs.

Final remarks

In this work, the PP algorithm was combined with CNN-induced vector spaces to

analyze the historical evolution of the events in visual art and music. Based on the

obtained results, the PP found reasonable connections between visual artworks and

songs from very di↵erent genres, partially respecting their historical evolution in a

simplified setting. Albeit far from perfect results, also due to the sub-optimal CNN

input manifold, the findings might suggest that many evolutionary processes could be

studied by approaching them as a minimum free-energy path-finding problem (170).

The waypoints along the PP make the presented model implicitly generative, even

though a probability density function is not available. In the future, with further

development, the explicit creation of new objects could be achieved via generative

models (e.g., VAEs (71)).

3.3 An ab initio local Principal Path algorithm

Despite the promising results described in previous Sections, the algorithmic steps of

the PP proposed in (35) present some drawbacks. The main one is that, because it is
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based on the k-means clustering algorithm, the original PP algorithm is intrinsically

global and could lie on a global manifold (involving the entire data set). This a↵ects

and can distort the final solution, especially when the manifold is not continuous and

samples are gathered in clusters instead. To address this, in (35) Authors proposed

to apply a prefiltering procedure before the PP algorithm is run. The prefiltering

method selects a subset of datapoints and removes others. The PP thus considers a

restricted number of samples, producing a local solution. Although the prefiltering

procedure partially solved the problem, it introduced some additional drawbacks.

First and foremost, the prefiltering procedure is optional. This means that it is a

user-dependent choice. The use of the prefiltering is strictly related to the distribution

of the input data X and also to the final solution itself. The prefiltering, indeed,

should be avoided when one can assume that the solution spans the whole data set,

while it becomes crucial when the solution lies in a submanifold; this last situation

holds true in naturally clustered data sets. While this discrimination is visual in

low-dimensional data sets, it becomes more di�cult for high-dimensional ones.

Additionally, at a technical level, the prefiltering procedure depends on three di↵erent

user-defined parameters: the number of the initial medoids Nf , the value of the

threshold T , and the size of the neighborhood k, respectively. Of these, the parameters

Nf and T control the strength of the prefiltering, which will be more relaxed for

high values, and stricter otherwise. On the other side, the value of k defines the

resulting Dijkstra shortest path algorithm, which will comprise close intermediate

nodes for low values and loosely spaced nodes otherwise. The number of filtered

samples, and consequently the number of samples kept Nk, is not known a priori,

but it is strictly correlated to the initial configuration of the input parameters. This

is particularly true also for the parameter T . This means that a good configuration

of this parameter is crucial for the goodness of the prefiltering step. However, tuning

this parameter is not trivial and the wrong configuration may lead the prefiltering

to choose an extremely small number of samples to keep, which hinders the correct

finding of the PP when Nk < Nc.

Another weakness caused by the prefiltering, but more in general, present in the

algorithm pipeline, is that the k-means++ (123) algorithm is used for the medoid
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initializations (steps 2.1 and 3 in Section 3.1). This adds some degree of randomness

to the solution. If the algorithm is repeated multiple times with the same input

samples X, it may result in di↵erent filtered samples and initial configurations of

the waypoints Nc. This a↵ects the final solution when the initialization leads to sub-

optimally distributed waypoints. In fact, the cost function of the PP is not convex and

heavily depends on the path initialization. For this reason, an annealing procedure

was used in the algorithm’s original version to solve the problem partially. This

procedure involves training several models with decreasing values of the regularization

parameters s. The first time the optimization step is performed (with the highest

value of s), it takes as input the initial configuration of the waypoints from step 3.

In contrast, for all other values of s, the optimization step is performed by using as

initialization the resulting path at the previous iteration.

For these reasons, this Section presents a revised version of the PP, based on more

robust prefiltering and initialization steps. This way, the method is almost parameter-

free and results in an always intrinsically local final solution, which is the very aim

of the algorithm di↵erently from the Principal Curve. In the revised algorithm, the

prefiltering step is no longer a pre-processing step but an integral, mandatory part

of the method. This enhancement was published in (118).

Method

Assuming that choosing the boundaries remains unaltered as in the original algorithm

(see Section 3.1), the core steps can be summarized as follows:

1. Path initialization: given the starting and the ending points w0 and wNc+1, the

Dijkstra algorithm (120) is run over a penalized graph obtained by computing

the penalized distance matrix among all the samples xi in X defined by:

d2p(xi, xj) =

8
><

>:

d2(xi, xj), xi 2 nnk(xj)

pd2(xi, xj), otherwise.

In this way, the shortest path connecting w0 to wNc+1 is found. Note that

the squared Euclidean distance is used because it amplifies long distances and

66



Figure 3.16: Ab-initio local PP: waypoints positioning. (a) Hypothetical shortest path after the
Dijkstra algorithm with some intermediate nodes not equally distributed. The total length of the
path is supposed to be 10. (b) New distribution of the waypoints, considering Nc = 1.

reduces small ones. Also, note that this shortest path does not operate on

the original distance matrix but in a penalized one that allows it to avoid

shortcuts that may stay outside the manifold. This is crucial to obtaining

valuable results.

2. Waypoints positioning: the Dijkstra shortest path algorithm gives as output

a path, which moves from the starting point to the ending point and walks

through some intermediate nodes (existing samples in X). The number of

intermediate nodes and their distribution is not known a priori. Therefore

an adjustment step has been proposed, as summarized in Figure 3.16. This

step allows one to obtain the desired number of intermediate waypoints Nc,

positioning them equally distributed along the initial path. In particular,

given the desired number of intermediate waypoints Nc, one can compute the

distance among them as � = l
Nc+1 , where l is the distance along the path.

Each waypoint will therefore be positioned at a distance � from the previous

point along the path. Note that intermediate nodes are existing samples, while

the final waypoints are newly generated samples.

3. Optimization of the cost function: as for the original algorithm, the cost

function is optimized via the EM algorithm; here, the original feature space

is considered. In contrast to the original version, the waypoint configuration

Winit from the previous step is used as waypoint initialization and as input
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matrix X (Winit = X). This means that the cost function can be rewritten as:

min
W,u

NcX

i=1

NcX

j=1

k�(xi)� wjk2�(ui, j) + s
NcX

i=0

kwi+1 � wik2. (3.15)

The proposed method allows to obtain a more robust initialization step, which is

fully deterministic and generative. The initialization is thus a reparameterization of

the Dijkstra shortest path. Provided that the metric underlying the graph correctly

captures the density (and hence probability) variations, the Dijkstra algorithm can

extract the key elements in the transition from the starting to the ending points.

However, since it provides an in-sample solution, it may result in an irregular path,

with intermediate points gathered only in dense space areas. For this reason, an

adjustment of the Dijkstra shortest path is needed, allowing one to obtain equally

distributed points that morph more gradually from the starting to the ending points.

In this way, the optimization step only involves a refinement to smooth out the initial

path and gain an even smoother transition.

Notably, by setting N = Nc, the solution for s = 0 is completely di↵erent from the

previous one. Indeed, the previous algorithm solution would have been the k-means

waypoint distribution, which is largely distant from a path. Here, instead, the s = 0

solution is represented by the re-parameterized shortest path, which is already very

close to the final solution. Thus, while the previous algorithm has a regularization

path that spans from the straight line to the k-means solution, the solutions space

here is much more reduced because its spans from the straight line to the shortest

path. This dramatically increases the solution’s stability. Additionally, the annealing

procedure is not strictly required here because the basin of attraction is much more

well-defined. Figure 3.17 shows a schematic representation of the two algorithms,

the original and the revised one.

Results

This Section presents some experiments to compare the proposed method with the

original version of the PP algorithm.
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Step 1: set the boundary condition Step 2: prefiltering (optional) Step 3: init medoids

Step 4: waypoints optimization via EM

Step 1: set the boundary condition Step 2: path initialization Step 3: waypoints positioning

Step 4: waypoints optimization via EM
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Figure 3.17: Ab-initio local PP: comparison with the original PP. (a) Original PP workflow. Step
1: boundary selection. Step 2: prefiltering. Step 3: waypoints initialization. Step 4: waypoints
optimization. (b) The proposed workflow. Step 1: boundary selection. Step 2: Dijkstra shortest
path. Step 3: waypoints positioning. Step 4: waypoint optimization.
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Figure 3.18: Ab-initio local PP: morphing paths on 2D toy data sets. Comparison of the results
obtained with the revised method (top) and the original method with and without prefiltering
(center and bottom, respectively) on two di↵erent 2D data sets. The s value selected via the
max-evidence model selection is written at the bottom of each figure. The starting point is the
green star, the ending point is the magenta star. The samples kept after the prefiltering are in blue.
The samples removed are in grey. The final path (red line) and the intermediate waypoints (orange
points) are depicted in each figure.
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First, experiments with 2D toy datasets13 have been performed to validate the

algorithm steps in a fully controlled environment. Here, the starting and ending

waypoints were selected by visual inspection. All the experiments were executed with

the following parameters: Nc = 50, Nf = 200, T = 0.1, k = 5. Figure 3.18 shows one

of the results obtained with the proposed method, compared to the result obtained

with the original method with and without prefiltering. In this case, the best s

parameter in the domain Ds = {1000000, 100000, 10000, 1000, 100, 10, 0} is selected,

using as model selection the Bayesian Evidence Maximization approach proposed

in (35). Other experiments are available in the GitHub repository of the project14.

All the experiments clearly show that searching for a global solution can lead to

wrong paths, which try to walk through all the data even if samples are clustered. To

make the solution local, the prefiltering step proposed in (35) removes some samples.

However, the solution quality heavily depends on the goodness of the filtering (as

depicted in Figure 3.18b on the left). Additionally, the prefiltering output is not

predictable a priori. There are some cases in which it does not produce any e↵ect (as

depicted in Figure 3.18b on the right). This means the path goes through the global

manifold even if the prefiltering procedure has been performed. In contrast, the

revised method is stabler and more controlled (no decision on global/local solution

needed) because it is always intrinsically local, and the solution is known when

s = 1 or s = 0.

Additionally, some experiments on high-dimensional data sets are presented, which

include the standard handwritten digits data set of the Modified National Institute

of Standard and Technology database (MNIST)15 (171), and the Olivetti faces data

set16 (172), highlighting the strengths of the proposed method. For this experiment,

the following parameters were used: Nc = 20, k = 10. Figure 3.19 shows the results

obtained with the revised method compared to those obtained with the original

PP algorithm for di↵erent values of the regularization parameter s. In this case,

the prefiltering procedure is always used. However, results obtained without the

13https://github.com/erikagardini/pp2/tree/master/datasets
14https://github.com/erikagardini/pp2
15http://yann.lecun.com/exdb/mnist/
16https://scikit-learn.org/0.19/datasets/olivettifaces.html
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Figure 3.19: Ab-initio local PP: morphing paths on Olivetti and MNIST data sets. Comparison
between the revised method and the original PP algorithm in high-dimensional data space. Each
set of images reports the results for s = 10000, 1000, 100, 10, 0. (a) Original version of the PP
algorithm on the Olivetti data set. (b) Revised version of the PP algorithm on the Olivetti data
set. (c) Original version of the PP algorithm on MNIST data set. (d) Revised version of the PP
algorithm on MNIST data set. When s = 0, the standard k-means algorithm is obtained in (a) and
(c). The black figures represents the k-means centroids without any assigned samples.

prefiltering can be found in the GitHub repository of the project17 together with

other experiments with di↵erent starting and ending points. In all the experiments,

the path runs outside the manifolds for s = 1, when the it is equal to the straight

line. This is clear when one moves from one digit to another. In fact, no intermediate

digits are found; the intermediate waypoints are just an overlapping of the starting

and the ending picture. A similar e↵ect can be observed in the face experiment. In

contrast, when s assumes low values, the stability of the new proposed path can

be clearly seen. In fact, while the original path visits many di↵erent submanifolds,

17https://github.com/erikagardini/pp2
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Figure 3.20: Ab-initio local PP: quantitative and qualitative results analysis. Comparison of
the results from the original method with respect to the revised one. Two pairs of faces (two
experiments) are considered, the first in a) and the second in b). For each experiment the generated
images and the nearest neighbors are reported for both the the original algorithm and the revised
method. The results are obtained with s = 100. Secondly, each generated face along the paths (the
revised and the original ones) is quantitatively compared to the nearest one in data space in terms
of distance and similarity (first two plots from left). Finally, the Laplacian variance and the average
gradient magnitude are computed for each generated image in order to estimate the blur and the
sharpness respectively (third and fourth plot from left).

becoming global, the revised method allows one to obtain the reparameterized

Dijkstra path as a reference solution. Note that the original path solution is linked

to the goodness of the prefiltering threshold, which can be challenging to guess

for high-dimensional data. The smoothing e↵ect is clearly visible for the solutions

with intermediate values of the s parameter. However, when the original PP is

used, a clear over-smoothing e↵ect is visible, which produces blurred intermediate

pictures. However, the solution seems more realistic when the revised method is

used. This is because the intermediate waypoints are placed much closer to the

existing samples with respect to the original method, thus more locally and through

dense areas of the data space. This is numerically confirmed in Figures 3.20a and

3.20b (bottom left). As the proposed method allows one to obtain waypoints closer
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to the original input samples, its generative capability is increased. This can be

qualitatively evinced from Figures 3.20a and 3.20b (top), which show the nearest

sample to each generated waypoint for the revised and the original path, respectively.

In particular, in both examples, the newly generated pictures/people are not in the

input data set. However, the proposed method is more powerful in generating more

realistic facial expressions. This is particularly evident in Figure 3.20b (top), in

which the proposed path moves from a smiling person to a serious-looking person by

gradually closing the mouth, removing the tooth, and changing the expression of

the eyes. The direction of the face is also gradually modified, rotating from left to

right. A similar e↵ect is obtained with the original PP, but the pixel area around

the mouth is blurred in all the intermediate pictures, making the results less realistic

visually.

To quantitatively compare the generated images with both methods, a commonly

used metric for evaluating generative models is used, the SSIM (Structural Similarity

Index) (173; 174), which compares two images in terms of luminance, contrast, and

structure. In this case, each generated image is compared to the nearest sample in

the data space. Additionally, the quantity of blur in the image can be measured

by considering the Laplacian variance and the sharpness. Figures 3.20a and 3.20b

(bottom) show that in all the experiments the images generated with the proposed

method have a more similar structure to the existing samples in the data space.

Additionally, they have a higher Laplacian variance meaning that they have clear

edges, representing a normal in-focus image. Finally, the images generated with

the proposed method have a higher sharpness (estimated by the average gradient

magnitude), meaning that the details are clearer and are more realistic than those

generated with the original method. All these measures confirmed the results obtained

with the previous qualitative analysis. Similar results have also been obtained for

the other experiments and can be found in the GitHub repository of the project 18.

18https://github.com/erikagardini/pp2
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Reproducibility

The experiments’ implementation was written in Python, modifying the original PP

code available at:

• https://github.com/mjf-89/PrincipalPath.

All the experiments can be reproduced using the code available on GitHub:

• https://github.com/erikagardini/pp2.

They were run on a laptop equipped with a 2,6 GHz Intel Core i7 and 16 GB RAM.

Final remarks

In this Section, a revised version of the PP has been presented, more robust and

capable of providing more controlled and stabler solutions. In all the experiments,

visually pleasant results are obtained, gaining interesting insights into how to morph

two concepts in space. This aspect is particularly evident for the Olivetti and the

MNIST data sets where, as for the experiments proposed in (35), the new algorithm

morphed one figure into another along the transition path with meaningful and

realistic intermediates.

The revised method, like the original one, is implicitly generative due to the presence

of waypoints, even though a probability density function is unavailable. However, the

generative potential of the PP is improved, with the suggested solution lying more on

the space between a geodetic and a straight line. In this way, the waypoints are not

attracted by nonlocal submanifolds that may corrupt the solution. For a particular

value of s, one can find solutions that visually resemble those obtainable from GANs

(70) and VAEs (71; 175). Indeed, one could argue that higher s values resemble

the classical over-smoothing e↵ect of VAEs, whereas small s values correspond to

the GANs, which stay closer to the data manifold and thus deliver more realistic

samples.

In terms of computational e�ciency, the new method reduces the optimization

cost because it is based on a very restricted set of samples, always equal to Nc.

However, the initialization step requires computing a penalized distance matrix
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among all the samples in the data sets. This is not scalable when the input matrix

is high-dimensional and comprises several samples. In the future, techniques like the

Nyström approximation can be used to improve the e�ciency of this step.
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Chapter 4

Import Vector Domain Description:

applications and variants

This Chapter introduces and discusses the IVDD (36; 37). An application in the

life science domain is presented, particularly in the drug discovery domain (176). In

addition, a deep version of the IVDD algorithm is proposed to combine the kernel

methods’ advantages and DL strengths.

The following notation will be used throughout the Chapter:

• X is the n⇥ d matrix of samples, where n is the number of samples and d is

the dimension of the input space.

• �(·) : Rd ! Rd0 is the, possibly non-linear, transformation mapping the d-

dimensional input space into a d0-dimensional transformed one.

• K is the kernel matrix.

• r is the radius of the embedding hypersphere, and � = r2.

• a is the center of the embedding hypersphere.

• fi is the decision function, i.e. the function that tells if a sample is inside or

outside the hypersphere. If fi > 0, the ith pattern is outside the hypersphere,

otherwise is inside.
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• pi is the probability of the i-th sample being inside the hypersphere.

• C � 0 is an inverse regularization coe�cient, and Ĉ = C/n.

• x̂i = g(h(xi;Wh);Wg) is the reconstructed sample in a VAE (or AE) and h

and g are respectively the coder and decoder functions parameterized by their

respective weights.

4.1 Import Vector Domain Description: the method

IVDD is a one-class classification kernel method (36) inspired by the OC-SVM (56)

and the SVDD methods (177). IVDD not only performs one-class classification using

a hypersphere but also provides a probability estimation. It solves the following

minimization problem:

min
�,a

�2 � Ĉ
nX

i=1

log(pi), (4.1)

where � is the square of the radius of the hypersphere, the constant Ĉ represents the

trade-o↵ between the radius size and the error minimization and pi is the probability

defined by a logistic model:

pi =
1

1 + exp(�fi)
, (4.2)

where fi is the decision function defined as:

fi = ||�(xi)� a||2 � �, (4.3)

and � is a fixed coe�cient. If the center a in the cost (Equation 4.1) is expressed as

a linear combination of the input patterns:

a =
nX

i=1

↵i�(xi), (4.4)

than it is easy to show that the method can be set in the framework of kernel

methods as only dot products involving �(xi) are needed (36). In a reproducing

kernel Hilbert space the dot product �(xi) · �(xj) can be implicitly computed by

a single function evaluation k(xi,xj) where k is a positive definite kernel function;
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hence the knowledge of �(·) is not required. Thanks to this property one can expand

the distance between the samples and the center as:

d(xi, a) =

�����

������(xi)�
nX

k=1

↵k�(xk)

�����

�����

2

= ↵↵↵tK↵↵↵� 2Ki,(·)↵↵↵ + kii, (4.5)

where K is the kernel matrix of size n ⇥ n, Ki,(·) is the i-th row of the kernel

matrix K of size n ⇥ n, and kii is the self-similarity of the i-th sample. Figure

4.1 shows a schematic representation of the IVDD method. In (37), an e�cient

optimization algorithm is described that can be ascribed to the class of Sequential

Minimal Optimization (SMO) methods (178). It combines with SMO features typical

of EM algorithms (179) as the sub-minimization problem is solved via self-consistent

iterations. The method has shown to be very e↵ective; however, it su↵ers from the

usual limits of kernel methods namely the scalability problem, as the expansion is

carried over all the samples n. To improve the scaling, the Nyström approximation

can be used (37), as anticipated in Chapter 2. In particular, a restricted number of

samples can be selected a-priori from the original samples as landmarks. Then, one

can assume that the decision function lives in the space spanned by these landmarks

Figure 4.1: IVDD method. Each sample (druggable pocket) is a single point in a n dimensional
space. The hypersphere is created in a kernel space. The mapping between the feature space and
the kernel space is given by the function �.

79



instead of the whole set of samples in the training set. As a consequence, the center

a can be expanded in the landmarks subset as:

a =
nlX

k=1

↵k�(xk), (4.6)

where nl is the number of landmarks. The cost to be minimized in this case is

therefore the following:

�2 � Ĉ
nX

i=1

log

0

@1 + exp

0

@�

0

@
�����

������(xi)�
nlX

k=1

↵k�(xk)

�����

�����

2

� �

1

A

1

A

1

A . (4.7)

Again kernel properties lead to:

d(xi, a) =

�����

������(xi)�
nlX

k=1

↵k�(xk)

�����

�����

2

= ↵↵↵tK̂r↵↵↵� 2K̂i,(·)↵↵↵ + kii, (4.8)

where K̂r is the kernel matrix of size nl⇥nl, K̂i,(·) is the i-th row of the kernel matrix

K̂ of size n ⇥ nl, and kii is the self-similarity of the i-th sample. This version is

much faster, bears a limited memory footprint and shows interesting regularization

properties (37) confirming the findings in (60) for the unsupervised scenario. Yet it

assumes an already engineered input representation; this point will be addressed in

the methodological section of this Chapter.

4.2 Import Vector Domain Description for Drug Discovery

Drug discovery is a time-consuming and complex task (180). It requires a multistep

pipeline from biological understanding to the finetuning of the lead candidate (for

small molecules), often via computational means (181; 182). In the past 20 years,

computation has significantly contributed to many drug discovery steps via physics-

based simulation, ML modeling, and a combination of the two (183; 184). In

particular, computational modeling can help find a putatively druggable target and

hence a pocket that may accept a small molecule. A protein of interest is considered

druggable when a drug has been found to inhibit it. However, some Authors consider
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ligandability to be a more appropriate term for the propensity of the target/protein

to accept drug-like molecules, irrespective of the more complex pharmacokinetic and

pharmacodynamic mechanisms implied by the term druggability (185).

Hereafter, the term druggable pocket indicates a protein region with a high probability

of accepting a small molecule. The reliable in silico identification of potentially

druggable pockets is important for drug discovery. Finding new druggable hot spots

can be particularly relevant when searching for an allosteric binder and to boost

selectivity. Selectivity, in turn, is particularly important when designing chemical

entities like PROTACs (186; 187), even more important than optimizing the a�nity

of the warhead itself. While researchers often know about the orthosteric pocket

of a specific protein, it requires geometric and chemical insight to detect alternate

druggable pockets, making it a much more complex task. Therefore, e↵ective tools

are required to support the computational medicinal chemist in detecting and ranking

new pockets to design highly selective drugs.

The literature contains many reports on the computational estimation of druggability

(188). The available tools for this task include standalone software (e.g., P2Rank

(189)) and webservers (e.g., PockDrug (190)). Prediction often involves defining

geometric and chemical features to support ML techniques (191) (e.g., DrugPred

(192)). Alternatively, more recent DL methodologies often use 3D grids (voxels)

of physico-chemical fields. Indeed, there are several methods for predicting the

probability of a pocket’s druggability. DoGSiteScorer (193) is an algorithm that

detects pockets and estimates druggability by considering global and local pocket

proprieties. It uses the SVM method to build a predictive model. PRANK (194)

uses Decision Trees and Random Forests to re-rank/re-score the pockets predicted

by other software, such as ConCavity (195) and Fpocket (196). PRANK could help

improve the performance of existing prediction methods; PRANK aims to predict the

ligandability of a specific point near the surface of the pocket. TRAPP is a powerful

method for analyzing molecular dynamics trajectories. It was recently endowed with

druggability assessment capabilities, extending its analysis to entire ensembles of

structures (197). Druggability can also be assessed with pharmacophores (198) by

using either straightforward geometric considerations (e.g., Cavity (199)) or fully
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fledged DL approaches. There are many such DL approaches, which often leverage

CNNs coupled to 3D grids. In (200), the Authors use both the pocket and the

ligand with the DenseNet architecture. In contrast, (201) uses CNNs specialized

for nucleotide and heme binding sites, again starting from 3D grids. InDeep (202)

is another contribution based on convolutional architectures. Here, the focus is on

characterizing protein-protein interfaces (PPI) to allow the design of PPI disruptors.

The capabilities of CNNs were boosted by pocket segmentation in (203). This work

and others (e.g., (204)) demonstrate that both prediction and other activities, like

segmentation, are beneficial, so that one can devise a more complex framework than

a pure predictor. Along these lines, PUResNet (205) uses an interesting deep residual

(skip connections) decoder/encoder architecture derived from the U-net concept.

This work presented both an architecture and a clean-up procedure for the training

set. This class of deep methods is very accurate but lacks native interpretability.

From the protein dataset perspective, some datasets used in published papers are

suitable benchmarks. They are often used to train and test ML protocols, thus

creating a shared base. For instance, in (206), the Authors created an online dataset

containing 72 unique protein binding sites. The Authors in (207) published two

datasets: a large but redundant dataset (DD, with 1070 structures) and a non-

redundant subset (70 binding sites).

In the following, the work published in (176) is presented. It introduces a protocol that

employs the IVDD method to learn a hypersphere capable of enclosing druggable

pockets. Here, the druggability estimation problem is addressed as a one-class

unsupervised learning task and not a classification one. In this way, only a definition

of a druggable pocket is required at training time, avoiding the induction of any bias

due to the definition of the not-druggable class.

Method

The training phase of the protocol allows one to estimate (learn) the model and

comprises three main steps (see Figure 4.2):

1. Computation of the descriptors for the proteins of the training set. In particular,

for each protein:
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(a) the protein part is filtered from the input PDB and the radii of the

Amber99SB-ildn force field are assigned to it;

(b) the PDB is thus converted to a .xyzr file, then passed to NanoShaper to

detect all the pockets;

(c) a main druggable pocket is identified (one for each training protein);

(d) the geometric-chemical descriptors of the pocket are computed.

2. All the information from the previous step is aggregated to form the training

dataset, which is therefore composed of the descriptors of each main druggable

pocket of the training targets.

3. Finally, the training dataset is used to train the IVDD ML method. In this

phase, a hypersphere is learned and allows to assign a probability value to

each pocket and consequently distinguishing druggable (probability � 0.5) and

nondruggable pockets (probability < 0.5 ).

Figure 4.2: Druggability prediction: training workflow. From the creation of the training dataset
to the training phase of the IVDD method.
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On the other hand, the testing/operative protocol, that is when the model is used

for predictions only, comprises three main steps (see Figure 4.3):

1. Computation of the descriptors for the current target protein. In particular:

(a) the protein part is filtered from the input PDB and the radii of the

Amber99SB-ildn force field are assigned to it;

(b) the PDB is thus converted to a .xyzr file, then passed to NanoShaper to

detect all the pockets;

(d) the geometric-chemical descriptors of the pockets are computed.

2. All the information from the previous step is aggregated, obtaining a single file

composed of the descriptors of each pocket of the current target.

3. Finally, the previously estimated hypersphere is used to predict the probability

for each of the newly detected pockets. The pockets with the highest probability

are most likely to be druggable.

Figure 4.3: Druggability prediction: testing workflow. From the protein PDB file to the druggability
prediction with the trained IVDD.
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Detecting all the available pockets is instrumental in estimating the druggability

of each pocket in the protein of interest. For this step, the NanoShaper tool is

used (208) to deliver the set of pockets on a protein e�ciently. NanoShaper was

chosen as it accurately estimates the molecular surface (209); the detected pockets

are triangulated with the same technique used for molecular surface triangulation,

hence providing smooth triangulated meshes.

The detected pockets are saved as mesh files in MSMS or .o↵ format, and can be

easily parsed to support the subsequent descriptor building step. NanoShaper also

provides the volume, surface area, and a list of constituting atoms for all the internal

cavities and pockets identified for the given molecular system. These are identified

and computed via an intuitive approach, which involves the volumetric di↵erence

of the regions of space between the system’s solvent excluded surfaces (SESs), with

two probe radii, dubbed large probe (with radius R) and small probe (with radius r)

(208). The probe sizes encode the expectation onto the shape of the pockets. High R

values allow the identification of shallow pockets, whereas high r values will smooth

inner surface gaps. Default values are 3.0 Å and 1.4 Å for the large and small probes,

respectively. The large radius is based on empirical evidence and the small radius

mimics the water molecule. In this work, the default value of the small radius is used,

but the large radius is fine-tuned to a value of 3.5 Å. With respect to the default

value of 3.0 Å, the new one allows a better detection of slightly more shallow pockets

(larger surface size of pocket entrance).

To create the training dataset, an automated method is needed to detect the or-

thosteric/main pocket (where the ligand is located) and discriminate it among the

others delivered by NanoShaper. Because the orthosteric pocket is well-identified

in the analyzed PDB, the surrounding atoms of the ligand are used. In detail, the

Jaccard index on the atom indices is computed to detect the orthosteric pocket easily;

the Jaccard index of atoms is an accurate proxy of Discretized Volume Overlap,

often found in druggability predictors. The orthosteric pocket is defined as the

pocket detected by NanoShaper with the maximal Jaccard index with respect to the

reference indices. This is easily obtainable by localizing the atom indices around the
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target’s natural substrate (or drug). The Jaccard index is defined by:

J(O,Pi) =
|O \ Pi|
|O [ Pi|

(4.9)

where O is the indices set for the orthosteric site and Pi is the set of detected atom

indices in the i-th pocket. The Jaccard index is hence a natural measure of the

quality of the detected pocket with respect to the ligand’s envelope.

The Jaccard index can be decomposed into two components, which account for

the degree of overimposition of the pocket and the reference ligand volume in two

di↵erent ways. The first component is the normalized intersection component Jint:

Jint(O,Pi) =
|O \ Pi|

|O| (4.10)

and the second component is the normalized union component Jor:

Jor(O,Pi) =
|O|

|O [ Pi|
(4.11)

They both belong to the interval [0, 1]. They account, respectively, for the ability to

detect all the reference atoms (Jint) and for the tightness of the detection (Jor). Both

properties are desirable and consistently lead to the Jaccard index upon multiplication.

To characterize each pocket identified by NanoShaper, the descriptors defined by (192)

can be used, together with the entrance area provided by NanoShaper (Table 4.1).

Binding site properties describing size, shape, polarity, and amino acid composition

were calculated using NanoShaper output files as input to the descriptors builder. In

particular, to compute the volume (vol), total surface area (area b), and entrance

area (area e) (which describe the area of the pocket mouth), the estimations provided

by NanoShaper are directly used. The other descriptors are computed starting from

the NanoShaper output files, which describe the atoms and meshes of each pocket.

The hydrogen-bond donor and acceptor properties of each pocket were calculated by

considering the surface area surrounding all the polar atoms (dsa t, asa t). Based on

these descriptors, the hydrophobic surface area (hsa t) is defined as the di↵erence

between the total surface area and the sum of the hydrogen-bond donor and acceptor
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Table 4.1: Druggability prediction: descriptors of the datasets. The incidence is calculated for
every amino acid X.

Descriptor Abbr.

Binding site volume vol

Total surface area area b

Entrance area area e

Binding site compactness cness

Relative hydrogen bond donor surface area dsa r

Hydrogen bond donor surface area dsa t

Relative hydrogen bond acceptor surface area asa r

Hydrogen bond acceptor surface area asa t

Relative hydrophobic surface area hsa r

Hydrophobic surface area hsa t

Relative occurrence of polar amino acids paa

Relative occurrence of apolar amino acids haa

Relative occurrence of multifunctional amino acids maa

Relative occurrence of charged amino acids caa

Relative polar surface area (dsa r+asa r) psa r

Incidence of X amino acid in binding site relative to surface in X

surface areas. Moreover, the relative amplitude of the hydrogen-bond donor and

acceptor surface areas (dsa r, asa r) and the hydrophobic surface area (hsa r) were

computed by dividing each descriptor by the total surface area of the binding site.

Finally, the relative polar surface area (psa r) is defined as the sum between the

relative hydrogen-bond donor and acceptor surface areas. To characterize the shape

of the di↵erent cavities, the compactness descriptor can be used and it is defined by

(192) as:

cness =

4⇡

✓
3

q
vol
4
3⇡

◆2

area b
(4.12)

According to this equation, the closer the compactness is to 1, the more spherical is

the pocket. The remaining descriptors, relating to the amino acid composition, were
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calculated by considering the occurrence of di↵erent classes of amino acids grouped

by their overall physico-chemical properties. In particular, all the amino acids were

grouped into the following classes:

• Apolar: Ala, Gly, Val, Ile, Leu, Met, Phe, Pro

• Polar: Thr, Lys, Arg, Glu, Asp, Gln, Asn, Ser

• Charged : Lys, Arg, His, Asp, Glu

• Multifunctional : Trp, Tyr, His, Cys

To define the relative occurrence of hydrophobic amino acids (haa), polar amino

acids (paa), charged amino acids (caa), and multifunctional amino acids (maa), the

fraction of each group of amino acids with respect to the total number of amino

acids comprising each cavity is computed. Finally, the incidence of each amino acid

of type (in X), defined as the sum of all the surface areas surrounding the X amino

acids, is also considered as a descriptor.

When the descriptors are extracted, they can be used as input for IVDD algorithm.

As anticipated, only the samples (pockets) that are known be to druggable are

considered during the training phase, and the method tries to create an enclosing

surface that contains all the training samples. The enclosing surface is endowed

with a probabilistic model, which assigns the probability of belonging (or not) to the

enclosing hypersphere.

When the training procedure is concluded, the hypersphere configuration (center

position and radius size) that best minimizes the IVDD cost function (see Equation

4.1) is found, meaning that as many samples as possible are kept inside the hyper-

sphere controlling at the same time the radius size. The range of acceptance of the

fraction of training examples inside the hypersphere is called [⇡low, ⇡high]. It can be

shown that the optimal hypersphere (the solution to the minimization problem) is

unique, as the problem is convex.

Once the final hypersphere configuration is found, it determines the predictions

during the operative phase. The non-druggable nature of a pocket is just an interpre-

tation of the probability values; strictly speaking, one-class learning just describes
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the adherence of a sample (a pocket) to a concept (druggability). If a crisp classi-

fication is needed, the probability threshold of 0.5 can be used. Samples outside

the hypersphere (decision boundary) are predicted as non-druggable (with a corre-

sponding probability lower than 0.5). In contrast, samples inside the hypersphere are

predicted as druggable (with a corresponding probability higher than 0.5). Clearly,

the inner and most central pockets are estimated to have the highest probabilities of

being druggable. Indeed, this probability is high at the core of the hypersphere and

decreases towards the edges.

Datasets

Two di↵erent datasets were considered for all the experiments, and two di↵erent

versions are generated: with and without hydrogens atoms. The first dataset

is the NRDLD dataset, presented in (192). It is the largest publicly accessible

non-redundant dataset for model building and the validation of structure-based

druggability methods. The dataset comprises 115 structures (protein binding sites),

including 71 druggable and 44 less druggable (which becomes 42 after the analysis in

(192)). Following the aforementioned strategy, 35 di↵erent descriptors are calculated

for each binding site (see Table 4.1). In addition to the NRDLD set, another dataset

was created comprising the binding sites of 100 di↵erent proteins. Those targets

are taken from the PDTD (Potential Drug Target Database) (210), a free online

collection of 1100 3D structures of proteins. The targets in the 100-protein dataset

include enzymes, receptors, antibodies, signaling proteins, and lipid binding proteins,

obtaining 5692 and 4807 binding sites without and with hydrogens, respectively.

Of these, 100 are orthosteric (one for each target). For each structure, the pocket

that hosts the drug or substrate is selected and defined as orthosteric (or main)

(because the drug is often co-crystallized in the orthosteric site). As for the NRDLD,

35 di↵erent descriptors are obtained (see Table 4.1). See Appendix A for more

information on the targets of the NRDLD and the PDTD datasets.
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Results

This Section describes the experiments performed with the IVDD on the above

mentioned datasets. The descriptors were computed on a HPC cluster equipped

with a nVidia Tesla V100 32Gb GPU and 2 Intel(R) Xeon(R) Gold 6240 @ 2.60GHz

Cascade Lake CPUs. IVDD was run on a laptop equipped with a 2,6 GHz Intel Core

i7 and 16 GB RAM. The implementation was written in Matlab and Python.

First, the IVDD objective (see Equations 4.1, 4.2, 4.3, and 4.4) was trained consid-

ering the descriptors of n = 70 druggable structures in the NRDLD set. The 1nvj

(PDB code) structure was excluded since it is a small oligonucleotide, while this

work considers only proteins. The following parameters were adopted: the kernel

used is the RBF with � = maxij(dij)/ log(n) (where dij is the distance between i

and j samples), the value of C is initialized at the value 0.5, the value of � is set as

25, while the range of accepted inner samples is set to [⇡low, ⇡high] = [0.8, 0.9]. The

values of [⇡low, ⇡high] may vary according to the reliability of the training dataset. In

this case, a conservative approach was preferred, with 80-90% of samples included

inside the hypersphere and the remaining peripheral 20-10% as outliers, in order to

avoid overfitting. The learning phase is stopped when the range of inner samples is

hit. Each time the training is repeated, the C is increased/reduced by 0.01 (increased

if the percentage of samples inside the hypersphere is lower than the desired range,

reduced otherwise). In this experiment, the training procedure ended with 90% of

samples inside the hypersphere and a final C value of 0.1 for the solution without

hydrogens, with 90% of samples inside the hypersphere and a final C value of 0.12

for the solution with hydrogens. Figure 4.4 shows a 2D representation of the training

set obtained by reducing the dimensionality via PCA (160). For some samples, the

corresponding 3D structure is also provided. In both cases, most of the training

samples coherently obtained a high probability of druggability (dark red points in

Figure 4.4). This outcome is obtained because the solution is forced to include at

least 80% of the training samples inside the hypersphere.

Considering the solution without hydrogens (Figure 4.4a), the sample 1udt has the

highest probability and is the sample nearest to the center of the hypersphere. In

this structure, the pocket identified by NanoShaper is very compact and well-defined.
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Figure 4.4: Druggability prediction: 2D representation of the training samples via PCA dimen-
sionality reduction. Each point corresponds to a training sample (protein binding site). The color
of each point corresponds to the probability assigned by IVDD (graded according to the color map
on the right). For some training samples, the corresponding 3D structure is shown. Panel a) is
without hydrogens whereas in b) hydrogens were added.
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IVDD performs the best in cases where the pocket closely surrounds the ligand

bound in it. The samples outside the hypersphere (corresponding to 10% of the

samples) obtained low probability scores. These scores are explainable by looking at

the pocket shape. Structures like 1kvo, 4cox, and 1k7f do not look like well-defined

pockets, but rather like a fusion of more than one pocket. This leads to descriptors

that are quite distant from those that the algorithm is learning as the druggable

reference. As a consequence, those structures are scored as outliers. This highlights

that the ex post segmentation can be a powerful pre-processing tool before the ML

step. Nevertheless, IVDD can cope with this situation by excluding or marginalizing

percolating pockets. It is possible to identify another case where NanoShaper did

not correctly identify the orthosteric pocket (e.g., 2aa2 ). Here, the pocket is very

shallow and the bound ligand is not deeply buried. The identified pocket is much

smaller than it should be, leading to a low probability. This e↵ect is expected because

NanoShaper can only detect shallow pockets via a proper tuning of the big probe,

whereas the selected value is expected to work mainly for deep buried prototypical,

pockets.

The solution with hydrogens (Figure 4.4b) identifies the sample 1xm6 as having the

highest probability. In contrast to the solution without hydrogens, its structure is

now more compact around the ligand with a greater Jint. Since the presence of the

hydrogens better defined the orthosteric pocket, NanoShaper improved its accuracy,

leading to a high IVDD probability. This happens similarly for 1k7f, where the

channel that led to a big pocket was closed by the presence of the hydrogens. In

this specific case, NanoShaper identified the orthosteric pocket with a Jaccard index

three times better than the solution without hydrogens. Although the solution with

hydrogens solves some NanoShaper errors (wide percolation), pockets such as 1kvo,

4cox, and 2aa2 remain more or less unchanged, with very big or shallow structures.

The option to use hydrogen atoms (or not) is partially data-dependent and is further

studied in the NRDLD and the new dataset.

After this training phase, a testing phase follows. The first experiment is performed

considering the 42 less druggable structures described in (192). Figures 4.5 and

4.6 show the probability assigned to each structure by the IVDD method for the
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Figure 4.5: Druggability prediction: experiment on the less druggable subset of NRDLD without
adding hydrogens. For each protein binding site (x axis), the druggability probability is predicted
(y axis and color of the bar).

solutions without and with hydrogens, respectively.

Generally speaking, the two results are relatively similar. The resulting trend shows

that IVDD predicts a probability greater than 0.8 for around half of the less drug-

gable set. This points to a possible bias in the less druggable set. Indeed, a purely

unsupervised approach like this one, in which no a priori dichotomy is created, shows

that several of the pockets are not judged to be less druggable. On the contrary,

more than half are scored with high probability values. The less druggable nature

can be ascribed partially to the shallow nature of this set; however, thanks to the

large probe set to 3.5 Angstroms, NanoShaper can still detect them.

This result hence partially contrasts with the less druggable labeling of this dataset.

One should consider the principles behind this previous classification. Authors (192)

postulate that a protein (not just the pocket) can be ascribed to the less druggable

realm if none of the two conditions are met: 1) at least one ligand is orally available

as judged by the Lipinski’s rule-of-five 2) the ligands must have a clogP � �2. Addi-
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Figure 4.6: Druggability prediction: experiment on the less druggable subset of NRDLD with
the addition of hydrogens. For each protein binding site (x axis), the druggability probability is
predicted (y axis and color of the bar).

tionally, the ligand e�ciency of at least one of the ligands fulfilling criteria 1) and 2)

must be � 0.3 kcal mol�1 per heavy atom. To correctly fulfill the requirements, one

should be able to test all the chemical space before making any conclusion. Indeed,

ideally, and more correctly, one could define the true druggability of a pocket as

the value of the activity of the best possible ligand for that pocket in the chemical

space. As the sampling of the chemical space is limited, and further biases are

due to the drug discovery Community’s interest and e↵orts for a specific protein,

this classification is questionable and not necessarily reliable. The problem of a

druggability classification of a pocket, or a protein, that is ligand-dependent hence

is that it would require the true sampling of the chemical space. In the proposed

method, instead, the labels are not defined a-priori and the attention was focused on

the only reliable information that is, druggable pockets. The final result of this is that

some pockets previously labeled as less druggable instead obtain high druggability

probability values.
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It is interesting to analyze the probability shift from lower to upper values, system-

atically. Figure 4.7 shows the orthosteric pockets found by NanoShaper for the less

druggable proteins, the structures set was sub-sampled with a ratio of 1 every 5

complexes. The pockets tend to become deeper and more compact, moving from the

lesser probability to the higher. The shift is particularly evident comparing the 1onz

and the 1cg0, where the first case is a very shallow pocket, in which a ligand can be

found, but it is neither a prototypical nor ideal pocket; as such, its probability value

is 0.46. In contrast, the 1cg0 shows a much better defined and large enough pocket

that would host a potential ligand well; as such, IVDD classifies it as druggable with

a probability value of 0.97. Except for 1qxo (a pocket detected by NanoShaper that

is too large), one observes that the lower the score, the smaller and more shallow the

pocket will be. This is also evident looking at the portion of solvent exposed surface

of the ligands, where the low probability pockets tend to have more solvent floating

ligands.

There are some particularly interesting cases in this less druggable set, also con-

sidering the ligands found in the crystal structures. In 1kts, 1gpu,1ucn,1cg0 the

ligands are small molecules or small molecules-like ligands. Missing these pockets

would be quite negative in a drug discovery campaign. All these pockets score

Figure 4.7: Druggability prediction: main pockets (computed without hydrogens) of 1onz, 1bmq,
1m0n, 1mai, 1nnc, 3jdw, 1f9g and 1cg0. The pocket surface is in blue and the complexed ligand in
the pdb file is in VdW style. The number is the estimated druggability probability value.
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Figure 4.8: Druggability prediction: main pocket shift for 1icj together with the co-crystallized
ligand. A) Main pocket detected when adding hydrogens. B) Main pocket without adding hydrogens.
The pocket is semantically the same orthosteric pocket but changes from one monomer to another.
The three structures of ligands bound in the pdb structure are also reported

quite high with the proposed method. One should also consider other than the

pure small molecule paradigm; in the case one is concerned with the design of a

molecular glue or a PROTAC even a warhead that is relatively not too active could

be su�cient to degrade the protein. Hence the proposed method, which is agnostic to

ligand-induced labeling, avoids missing or undervaluing these pockets. At a technical

level, it is interesting to compare the pocket probabilities with and without hydrogen

addition and to consider NanoShaper’s behavior. As anticipated, adding or not

adding hydrogens does not change the detection of the main pocket by NanoShaper

(highest Jaccard index). However, the shape and the relative probability ranking

both change. A first observation is that, in some peculiar cases, the percolating

behavior of NanoShaper pockets cannot be solved by adding hydrogen atoms. Indeed,

1qxo is still ranked last, and coherently, this pocket is percolating widely inside

the protein crevices. This global invariance is confirmed by analyzing 1icj (see

Figure 4.8). In this case, the detection of the main pocket is geometrically but not
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semantically changed by changing from a structure with hydrogens to a structure

without hydrogens. That is, the main detected pocket is the same but in another

monomer of the homotrimeric unit. Despite this finding, its druggability probability

changes when adding hydrogens. This demonstrates that the same pocket in two

di↵erent conformations (monomers) is well-detected and always ranked as druggable.

Indeed without hydrogens, the orthosteric pocket is identified in monomer A. Upon

addition of the hydrogens, the orthosteric pocket is instead identified in monomer

B. In this last case, the Jaccard index is higher with improved pocket quality (the

pocket is more compact and located at the interface). However, the probability

value changes as the corresponding geometry (and presence or absence of hydrogens)

changes, leading to a higher value for pocket B. Therefore, from one side, what is

judged druggable remains druggable. However, inside the druggable set, conforma-

tional changes of the same pocket have a nontrivial role in shifting the probability

value. This confirms that it is crucial to consider dynamical aspects, particularly the

probability of a given site conformation (and hence its free energy), in order to obtain

a complete picture of the overall druggability of a site, which may be dealt with as

a physical observable. Overall, this analysis shows that the dataset definition can

create nontrivial biases, including biases due to labeling and the presence or absence

of hydrogens, which can induce local changes. One-class learning can mitigate the

first bias because it only uses the druggable class during training.

The second experiment is performed using the 100-protein dataset, which is a curated

subset of the PDTD dataset. This time, the accuracy of classification is evaluated,

but also other possible sources of biases are investigated.

It is well-known that the volume value has a crucial role in determining the drugga-

bility of a site. However, just looking at the volume value may create further biases,

some intrinsic, some operational, and some technical. An overly large volume could

be erroneously ascribed to the main site just because a small fraction contains the

true binding site. This can happen dependng on the pocket detection engine (e.g., for

the percolation e↵ect). Fortunately, this can be evaluated well via overlapping volume

metrics or the Jaccard index. Here, the results obtained with the proposed method

are compared to the ones obtained by considering a simple descending ranking of the
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Figure 4.9: Druggability prediction: enrichment analysis on the 100-protein experiment. a)
Solution without hydrogens. For the 10% of pockets (for each protein) with the highest probability
(on average 5.28 pockets), the orthosteric site is found in 90% of cases with IVDD and in 97% of
cases with the descending ranking of the pocket volumes. b) Solution with hydrogens. For the
10% of the pockets (for each protein) with the highest probability (on average 4.43 pockets), the
orthosteric site is found in 87% of cases with IVDD and in 86% of cases with the descending ranking
of the pocket volumes.

pocket volumes. Figure 4.9 and Table 4.2 show the results for the situations with

and without hydrogens.

Using a simple ranking of the volume, a better performance at top5 can be obtained,

with an accuracy of 97%. This decreases to 89% when hydrogens atoms are added.

In contrast, IVDD identifies 90% of the orthosteric pockets in the top5 highest

probability pockets, which increases to 92% when hydrogen atoms are added. This

shows that IVDD is more stable, although lower in accuracy in absolute terms.

It is important to consider the quality of the pockets identified in both cases. The

Table 4.2: Druggability prediction: results obtained on the PDTD dataset (with and without
hydrogens) with the IVDD method and by a simple descending ranking of the pocket volumes. All
results are referred to the orthosteric/main sites.

Description IVDD Volume IVDD+H Volume+H

Top 1 50 60 50 50

Top 2 67 76 69 65

Top 3 81 87 81 79

Top 5 89 97 92 89

Top 10% 90 97 87 86
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Figure 4.10: Druggability prediction: NanoShaper scores distribution with and without hydrogens.

presence of hydrogens sometimes allows the fragmentation of some of the overly

large pockets. This increases the accuracy in terms of the main pocket druggability

estimation but also a↵ects the overall shape, which often becomes too tight. This is a

NanoShaper-dependent e↵ect, documented in Figure (4.10). This e↵ect is combined

with the volume and the IVDD classifier. Figure 4.11 shows the cumulative scores,

namely J, Jint, Jor, for the volume and the IVDD ranking for the top1 pockets, ordered

respectively by volume and probability. The trend shows a systematically higher

value for all three scores for IVDD without hydrogens and almost indistinguishable

scores with hydrogens.

Interestingly, without hydrogens, IVDD has a lower accuracy than the simple volume.

This is unsurprising since an overly percolating volume allows an easier main pocket

detection. However, when quality is considered, even if some pockets are lost with

IVDD, the remaining pockets have significantly higher scores. Again, with the

proposed method a bias can be mitigated by not overfitting the volume-induced
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Figure 4.11: Druggability prediction: cumulative scores (J, Jor and Jint) for IVDD and volume
ranking. Here, the orthosteric sites identified by IVDD and the volume ranking in top1 are considered
and ranked according to the probability score and the volume respectively. Both the rankings are
in descending order. Inset a) is results without hydrogens and inset b) is with hydrogens.

ranking. In the paradoxical case where one has a volume percolating throughout the

protein, one would get a completely useless top1 with 100 % accuracy by using a

pure volume ranking.

Within the IVDD results, it is also relevant to compare what happens with and

without hydrogens. Examining the structures that did not land in the top5 positions

with and without hydrogens, one can conclude that most (e.g., 1vkg, 1qpb, 1ht8 ) are

large pockets with low or intermediate Jaccard index or with very low Jor value. In

some cases, there are shallow pockets (e.g., 1gp6 and 1i7g) characterized by very

high values of Jor. Some of those structures improve in the presence of hydrogens,

reducing the number of targets that fall outside the top 5 from 11 to 8. Some shared

structures (e.g., 1ht8, 1h9u, and 1v8b) do not change the shape of the orthosteric

pocket, leading to no significant changes in the probability.

Avoiding some of the possible biases (chiefly the labels) and considering the model

without hydrogens, 81% detection accuracy in top3 and 89% in top5 can be obtained

with the proposed solution. Additionally, a non-negligible fraction of the missed

detections in top5 can be ascribed to NanoShaper’s behavior. In comparison, the

Authors of (211) obtained 88% accuracy in correctly assigning to the druggable

or nondruggable class in the NRDLD with the software DoGSiteScorer, where the

SVM method is used as ML backend. In contrast, DrugPred (192) obtains 91%

accuracy for NRDLD. A widely used method is fpocket from Guilloux et al. (196),
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which correctly identified 83% of ligandable pockets in top3 of all analyzed proteins.

Overall, the accuracy obtained with the proposed method is similar to that of several

existing methods, but with some ab inito safeguards such as avoiding biases due to

labels and volume.

To further interpret the IVDD results, it is interesting to investigate how much each

single feature a↵ects the IVDD prediction. IVDD does not embed a feature selection

method, so an ex post labeling strategy has to be used. First, one can estimate the

probability obtained, on average, for each orthosteric site in the dataset, obtaining

0.852 and 0.877, respectively, without and with hydrogens. These values represent

two thresholds and allow a labeling for each binding site, which is 0 when its probabil-

ity is lower than the threshold value, and otherwise 1. This ex post labeling allows to

fit a classifier and to estimate the feature importance. Here, tree-based classifiers are

adopted since they can provide features’ importance without requiring any feature

normalization step (regression based methods require normalization before usage).

In particular, the Random Forest (212) (with 100 estimators and the Gini index as

criteria for the split), the Decision Tree (default parameters in scikit-learn (213))

and the AdaBoost (default parameters in scikit-learn (213)) classifiers are adopted

and the results are depicted in Figure 4.12. In all cases, the volume (Vol) is a

major impacting feature, followed by the area of the pocket surface (Area b), the

hydrophobic surface area (hsa t), the hydrogen bond acceptor surface area (asa t),

the hydrogen bond donor surface area (dsa t), the binding site compactness (cness),

and the entrance (mouth) surface area (Area e). This means that IVDD is influenced

by the volume, but it also considers other chemical aspects in predicting probability.

Of less relevance is the fact that hydrophobic residues (LEU, PHE, MET, GLY) and

some charged residues (HIS, GLU) rank slightly higher. The presence of hydrophobic

residues and volume as key factors is largely consistent with chemical intuition.

The correlation between the IVDD prediction and the volume can be seen in Figure

4.13, in which each binding site is depicted as a point in a 2D space, where the

coordinates are the probability predicted by IVDD and the volume itself. In the

presence (see Figure 4.13) and absence (data not shown) of hydrogens, the samples

with the highest probability have a volume between 500 and 2000 Angstroms. The
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Figure 4.12: Druggability prediction: features importance by assigning ex post labels to the IVDD
predictions. Results shown are without hydrogens; similar results are obtained with hydrogens.

orthosteric sites and the training samples are condensed on the right side of the figure,

meaning that they obtained high probability scores in most cases. Not orthosteric

binding sites are condensed in the bottom left of the figure since they are mostly

small pockets and obtain low probability scores. However, both figures contain some

not orthosteric pockets with a volume between 1000 and 2000 and lower probability

scores. In such cases, the IVDD decision has been influenced by factors other than

volume.

Final remarks

In this Section, an unsupervised one-class approach is presented to build a druggability

estimation model. A pipeline is defined to obtain all the pockets of a protein

(NanoShaper), their corresponding descriptors, and the druggability prediction. The

method achieved 89% accuracy in top5, in line with other methods. Although the

method was less accurate than a trivial volume-based ranking by NanoShaper, it
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Figure 4.13: Druggability prediction: IVDD probability scores vs volumes. Each sample represents
a pocket (colored according to the corresponding dataset). The x-axis represents the probability
that a pocket is druggable, while the y-axis represents the volume of each pocket. The plot is
referred to the solution with hydrogens. Similar results are obtained without hydrogens.

favors well-shaped pockets with higher J , Jor and Jint scores. This has practical

relevance since a relatively tight and well-shaped pocket reduces the ambiguity and

di�culty of the subsequent virtual screening and docking campaigns.

Crucially, the proposed method does not aim to distinguish between druggable and

less druggable pockets (binary classification). Instead, a probability estimation for

each pocket is given, which is easily interpretable and comparable across di↵erent

proteins. In contrast to a score, the probability estimation does not need a posteriori

calibration. Instead, the logistic model of the hypersphere naturally delivers this

information. Again, a probability allows the computational medicinal chemist to

easily identify the most eligible pocket for subsequent drug discovery steps, without

wondering if the score value is high or low in absolute terms. This is because any

probability very close to 1 is inevitably a strong indicator. Most importantly, this

approach does not need to define a less druggable or nondruggable class. This
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potentially ambiguous concept is bypassed by the one-class approach. The results

show that druggability prediction is best considered as a concept learning problem,

rather than a distinction learning problem. This approach allows debiasing from the

start of the learning process, which is clear in the results from the less druggable

dataset. The presence or absence of hydrogens can change the overall modeling

attempt in ways that are not always obvious. This is because the e↵ects of NanoShaper

are overimposed onto the IVDD learning model.

The proposal to mitigate and reduce various biases, even at the cost of lower accuracy,

is indebted to the fair ML field (214). While fairness concepts are usually applied

to social aspects (e.g., demographic parity), here this way of thinking is introduced

focusing on only certain label information. Together with explicit structural biases,

technical aspects also have an important role. Here, several di↵erent values for the

small and large NanoShaper probes are tested to identify the pockets. The small

probe was easy because there was no reason not to choose the water-molecule-like

size of 1.4 Å. For the large probe, there is no immediate physically driven quantity,

with the convex hull being the extreme solution. A value of 3.5 Å performed better

than 3 Å in detecting relatively shallow pockets together with the more prototypical

buried ones. Larger values generally led to poorer results in terms of shape, with a

systematic decrease in Jaccard index values.

In terms of future developments, several improvements can be envisioned for this

methodology. A volume segmentation ad hoc algorithm could improve the accuracy,

particularly when selecting the value of the large probe. Such a tool could provide

more freedom of choice for this parameter. The work of (203), among others, has

shown that many software for pocket identification tend to identify large pockets

without segmentation techniques. Segmentation could be used to find subpockets

that are better suited to virtual screening and docking. Another development would

be a webserver to access the tool easily. Finally, the method can be combined with

the Pocketron method (215) to not only track the pocket volume and residues over

time, but also to provide a dynamic druggability score that explicitly considers

the probability of the conformation ultimately delivering a Boltzmann weighted

estimator.
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4.3 Deep Import Vector Domain Description

Section 2.2 described some of the most significant and recently proposed methods

developed in the one-class learning domain. In particular, it highlighted the crucial

role that ANNs have had in the improvement of the performances in this domain.

This improvement is because ANNs allow learning a hidden representation where

it is generally easier to close o↵ the normal samples. The most interesting state-of-

the-art methods are OCGAN (75), TQM (216), ICS (76), Deep SVDD (79), Deep

Vae SVDD (81), HRN (78), P-KDGAN (74) and the recently proposed contrastive

distribution augmentation method (113) (discussed in Section 2.3.3 and hereafter

mentioned as ContrDA). Typically one-class learning methods are compared in terms

of performances through well-known datasets (e.g., MINIST1 (171), f-MNIST2 (217),

and CIFAR-103 (218)) (see Figure 4.14). Even if these datasets have been devised

to address classification problems, they can be used for one-class experiments by

considering one class at a time for training and all the test set for testing. This

way, di↵erent experiments can be run for each dataset, one for each class (MNIST,

f-MNIST, and CIFAR-10 contain ten classes each). To evaluate the model’s general-

ization ability, each experiment is usually repeated more than once, with di↵erent

seeds, and results are averaged accordingly. The results are, in general, quantitatively

evaluated through the AUC by using the ground truth labels in testing.

MNIST dataset f-MNIST dataset CIFAR-10 dataset

Figure 4.14: Typical dataset for one-class learning experiments.

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/ kriz/cifar.html
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While for some simple datasets, i.e. MNIST and f-MNIST, all of the methods

mentioned above are capable of achieving good and similar performances, this only

sometimes happens for some complex and variegated datasets, i.e. CIFAR-10. This

is clearly visible in Table 4.3 (for compactness, class names are substituted by digits:

0 - Airplane, 1 - Autobomile, 2 - Bird, 3 - Cat, 4 - Deer, 5 - Dog, 6 - Frog, 7

- Horse, 8 - Ship, 9 - Truck) where state-of-the-art methods are compared with

the performances obtained by the OC-SVM method (219) on the input space. In

particular, Table 4.3 shows that the usage of complex and deep strategies does

not necessarily correspond to a performance improvement (e.g., for Deep-SVDD,

Deep-VAE-SVDD and OCGAN). The method that has made one-class learning

strategies extremely powerful also in complex tasks is ContrDA (113). As mentioned

in Section 2.3.3, this method adopted an unsupervised contrastive approach for

learning a good representation of the normal samples. Then, a one-class learning

method is used for making predictions, i.e. OC-SVM as the network’s last layer.

The ContrDA method proves that hidden representations have a crucial role in the

e↵ectiveness of one-class learning methods.

Authors of ContrDA adapted the representation learning strategy to one-class learn-

ing, yet they did not propose any new last layer but took advantage of existing ones

(e.g., OC-SVM). In this Section, a solution, which combines the ContrDA approach

with the IVDD method, is proposed and dubbed Deep-IVDD. This strategy combines

the pros of having good representations with the pros of obtaining a probability

estimation for each sample, which is preferable in some application areas, like the

life sciences (176).

Table 4.3: AUCs scores per-class and averaged on CIFAR-10.

CIFAR-10 0 1 2 3 4 5 6 7 8 9 Mean

OC-SVM (56) 61.6 63.8 50.0 55.9 66.0 62.4 74.7 62.6 74.9 75.9 64.78

OCGAN (75) 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.66

TQM (216) 40.7 53.1 41.7 58.2 39.2 62.6 55.1 63.1 48.6 58.7 52.10

ICS (76) 76.8 71.3 63.0 60.1 74.9 66.0 71.6 64.1 78.9 66.0 69.27

Deep-SVDD (79) 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.81

Deep-VAE-SVDD (81) 64.4 65.3 57.5 60.3 61.6 64.3 66.3 64.0 76.5 74.8 65.5

HRN (78) 77.3 69.9 60.6 64.4 71.5 67.4 77.4 64.9 82.5 77.3 71.32

P-KDGAN (74) 82.5 74.4 70.3 60.5 76.5 65.2 79.7 72.3 82.7 73.5 73.76

ContrDA (113) 89.7 97.3 86.9 82.5 84.4 88.9 90.1 91.3 76.6 93.5 84.6
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In a further development, a revised version of the IVDD method is introduced,

dubbed IVDD-KL, that approximates the IVDD method (36) through the Nyström

method (37) rendering it scalable and easily interpretable as a last layer of a neural

architecture. The method aims to combine the advantages of DL with the ones of

the kernel-based approaches (radial basis functions locality control), obtaining a

scalable and non-degenerate one-class method. As the original IVDD method, the

proposed version provides the probability estimation for each sample to be normal

and, additionally to (37), it has faster training time and an improved probability

model.

Method

Deep-IVDD combines the ContrDA approach presented in (113) with the IVDD

method (36). In particular, a two-step framework is proposed as in (113). In the first

step, SSL strategies are adopted for learning the hidden representation. In the second

step, the IVDD method is trained on the learned representations. A schematic view

of the Deep-IVDD method is depicted in Figure 4.15.

IVDD-KL is a modified version of the IVDD method (with the Nyström optimization

presented in (37) and described in Section 4.1). In particular, the proposed objective

function is:

min
�,a

DKL(q||p̂)� Ĉ
nX

i=1

log(p̂i). (4.13)

Here, p̂i is a modification of the original probability definition defined in Equation

4.2; it is still a logistic model but the decision function is now scaled with respect to

the distance of a sample from the center:

f̂i =
||�(h(xi;W))�

Pnl
k=1 ↵k�(xk)||2 � �

||�(h(xi;W))�
Pnl

k=1 ↵k�(xk))||
=

↵↵↵tK̂r↵↵↵� 2K̂i,(·)↵↵↵ + kii � �q
↵↵↵tK̂r↵↵↵� 2K̂i,(·)↵↵↵ + kii

. (4.14)

This modification grants that at the center of the hypersphere, the probability always

reaches the maximum value of 1 as f̂i = �1 (assuming a not null � value). In the

original IVDD formulation, the value of the probability at the center depended on

107



!! ≈ #!!

!$ "!$#% $%#(!;')

&'()*+, -+()*+,

.'/01 201/01

3)114+'+(5

!

6+710,+ 8/7(+

9+,'+4 8/7(+

"
,7*$08

#$%&'()*$%
Input

g∘f g

Step 2

Step 1

Deep-IVDD

Figure 4.15: Deep-IVDD: a schematic representation of the method.

the specific � value. Here this dependence is no more present, and the probability

ranges from 1 at the center to 0 for an infinitely distant sample from the center. In

addition, instead of controlling the radius directly, as in the SVDD approach, the

adherence of the probability distribution p̂ to a reference probability distribution q

is controlled via the KL divergence. This still allows controlling the radius, albeit

indirectly. In this way, IVDD-KL endows a probability model as IVDD. Additionally

the regularization takes place through a probability control mechanism.

Instead of using the optimization algorithm described in (36), this cost function is

optimized via the Batch Stochastic Gradient Descent (SGD) and its variants (e.g.,

Adam (92)). Training by SGD, with a proper initialization and a su�ciently big C

(C = 1 proves always to be su�cient), the size of the hypersphere is monotonically

increasing with respect to the epochs. A range [⇡low, ⇡high] can be fixed a priori,

representing the percentage of accepted inner samples, and the training epochs can

be repeated until this range is hit for the first time. If the range is skipped as the

hypersphere grows too fast, one can step back to the previous epoch parameters and
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Algorithm 1 Deep-IVDD-KL: optimization algorithm

Require: X, �, ⌘
Ensure: ↵↵↵,W,�
1: ⌘ = ⌘0,↵↵↵ = 1/nl, ⇡ = 0.0
2: while ⇡ 62 [⇡low, ⇡high] do . until ⇡ is not in range
3: ⇡, ↵̂̂↵̂↵, �̂ = takestep(X,W, ⌘,�,↵↵↵) . do an epoch
4: if ⇡ > ⇡high then . if ⇡ is too high
5: ↵̂̂↵̂↵ = ↵↵↵ . step back to the previous ↵↵↵
6: �̂ = � . step back to the previous �
7: ⌘ = ⌘/10.0 . reduce the learning rate
8: end if
9: ↵↵↵ = ↵̂̂↵̂↵

10: � = �̂
11: end while

decrease the learning rate. This procedure is similar to what was done for IVDD,

where the prescribed range was reached by bisection on C (37). The IVDD-KL

training procedure hence overcomes the IVDD sensitivity problem to the C value, as

it is never changed and takes advantage of the epochs to reach the desired range;

this strategy proved to be very fast and always hits the desired range. Algorithm 1

shows the pseudo-code of the proposed approach, where ⌘ indicates the learning rate,

takestep is a gradient update step, and ⇡ is the fraction of inner samples. When this

variant is combined with an a-priori learned representation, the method is dubbed

Deep-IVDD-KL.

Results

Here, some experiments are presented, aiming at comparing the performances of the

aforementioned state-of-the-art methods with the Deep-IVDD and Deep-IVDD-KL

presented above. The code is available in the GitHub repository of the project4. For

Deep-IVDD, and Deep-IVDD-KL the hidden representation was firstly learned and

then their respective cost functions were optimized on the mapped samples. For the

first activity, the code available in (220) was used without modifying any parameter.

The SSL network was trained on a HPC cluster equipped with a nVidia Tesla V100

32Gb GPU and 2 Intel(R) Xeon(R) Gold 6240 @ 2.60GHz Cascade Lake CPUs.

4https://github.com/erikagardini/DeepIVDD
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In particular, the IVDD objective function (see Equations 4.1, 4.2, 4.3, and 4.4)

was optimized with � = 25 and Ĉ automatically updated and tuned for including

inside the hypersphere [80% � 90%] of the training samples. The parameters ↵k

were initialized at 1/n where n is the number of training samples. All the samples

were normalized using `2 normalization, the kernel used was the RBF, and � was

set to � = 10.0
var(X)⇤d where X is the matrix containing all the input samples, var(X)

is the variance of all the values in the input matrix X, and d is the feature space

dimension. This approach is equivalent to the one proposed in (113). For IVDD-KL,

instead, the number of landmarks (see Equation 4.14) was set to nl =⇠ 10% of

the training samples, following a less is more approach (60) that allows to reduce

memory/time requirements while preserving good generalization performances. The

landmarks were initialized through the k-means algorithm with k = nl. This is more

computationally expensive than a random selection, but it should help the method

to preside over the space more correctly (see Figure 4.16).

The range [⇡low, ⇡high] was set to [80%, 90%]; this means that the training was stopped

when the hypersphere was large enough to include between 80% and 90% of the

training samples inside. The prior q in Equation 4.13 was a Laplace distribution

q = 1
2b exp

⇣
� |x�µ|

b

⌘
. This choice is motivated by the prior expectation that at the

end of the training, one could expect that the majority of normal samples have

high probability values, hence the norm-one induced sharp peak. This distribution

may be preferable in principle to a Gaussian distribution, for instance, as one can

Figure 4.16: Deep-IVDD-KL: landmark initialization.
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Figure 4.17: Deep-IVDD-KL: Laplace distribution vs. Gaussian distribution.

expect that the confidence reduction with respect to the distance from the center

is a monotone function, and there is no reason to have a convexity change in this

probability shift process (see Figure 4.17). The parameters of the distribution were

set to: µ = 1 and b = 0.2. Finally, the value of Ĉ in Equation 4.13 was set at the

value 1 and never changed, while the batch size was set to 32, and the value of beta

was kept to � = 25 (see Equation 4.2), as proposed in (36; 37). Crucial is the value

of � of the RBF kernel. While in (113) the value was set to � = 10.0
var(X)⇤d , which is

e↵ective also for Deep-IVDD, for Deep-IVDD-KL the choice of this parameter is not

trivial as it also depends on the number of landmarks used during the training and

may cause a degradation of the performances when it is not properly selected. For

all the experiments, the adopted � was � = 1.0
var(Xnl)⇤d

, where Xnl are the landmarks

matrix, var(Xnl) is the variance of all the values in the landmarks matrix Xnl and d

is the feature space dimension. This formula was e↵ective in most of the experiments;

however, further experiments are underway for improving and automatizing the

choice of �.
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Table 4.4: Comparison of di↵erent one-class classification methods. Average AUCs scores in %
for each experiment and learning the hidden representations as described in (113).

CIFAR-10 0 1 2 3 4 5 6 7 8 9 Mean

ContrDA+OC-SVM 89.7 97.3 86.9 82.5 84.4 88.9 90.1 95.6 86.0 90.6 89.2

Deep-IVDD 89.8 97.3 86.8 82.6 84.3 88.9 90.1 95.6 85.8 90.6 89.2

Deep-IVDD-KL 80.8 95.1 73.5 80.5 79.2 87.9 91.1 91.3 76.6 93.5 84.6

Considering the results in Table 4.4, the Deep-IVDD method can rival the perfor-

mances obtained with the ContrDa+OC-SVM method, with the additional advantage

of being probabilistic. On the other hand, the performances obtained with Deep-

IVDD-KL are worse than the others. However, there may be more suitable metrics

for measuring the performances of a one-class learning method than the AUC score.

In fact, AUC only considers the scores distribution of the test set (see Figure 4.18).

In particular, in the one-class learning domain, a high AUC score means that the

normal samples (true positives) obtain higher scores than the ones assigned to the

anomalies (true negatives). When the AUC is computed on scores in a known domain,

i.e. probabilities, and the thresholds are set a priori to comprise the minimum and

the maximum values, the metric can also be interpreted in absolute terms. On the

contrary, when the AUC is computed on scores that are not in a known bounded

Figure 4.18: AUC metric visually explained (221).
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ContrDA+OC-SVM Deep-IVDD Deep-IVDD-KL

Comparison of the probability distributions

Figure 4.19: Distributions of the scores (CIFAR dataset, class 1).

domain, then it is just a relative metric, and it is not capable of measuring the

goodness of the testing scores with respect to the training scores and a prescribed

threshold. This aspect might lead to a wrong interpretation of the AUC results.

To further investigate this aspect, the distributions of the scores have been analyzed

(see Figure 4.19). The picture shows that the OC-SVM method’s testing scores

are much lower than the training scores. In this case, all the testing samples are

identified as anomalies (the distance from the separating hyper-plane is negative).

Despite this, the AUC score is high. This is because the normal samples in the test

set (true positives) are getting higher scores than the real anomalies (true negatives).

In fact, in the OC-SVM situation, the domain of the scores is not known a priori;

therefore, the AUC is just measuring the goodness of the testing scores, that is, the

capability to discriminate among di↵erent testing samples, but it cannot be used

as a metric for evaluating the classification performances in absence of a threshold

coming from the training set.

At this stage, a word of wisdom is needed; indeed, one should distinguish between

one-class learning and one-class classification. In one-class learning, given a testset,

one is interested in getting the right ranking of the samples with respect to a central

concept. AUC measures well this aspect as only the relative ranking counts. In the

one-class classification case, one needs an explicit threshold that should be devised

at training time. Hence, methods that do not deliver a threshold should be endowed

with a threshold-delivering method and the typical classification metrics should be

used to assess the goodness of the results.
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Broadly used scores are the F1-score, the balanced accuracy (BA), the precision, and

the recall metrics have been considered. They can be computed as:

precision =
tp

tp+ fp
(4.15)

recall =
tp

tp+ fn
(4.16)

F1� score = 2 · precision · recall
precision+ recall

(4.17)

BA =
tpr + tnr

2
(4.18)

tpr =
tp

tp+ fn
(4.19)

tnr =
tn

tn+ fp
, (4.20)

where tp means true positives (normal samples predicted as normal), fp means false

positives (anomalous samples predicted as normal), fn means false negatives (normal

samples predicted as anomalous), and tn means true negatives (anomalous samples

predicted as anomalous).

While for Deep-IVDD and Deep-IVDD-KL the classification threshold was naturally

set to 0.5 (p̂i < 0.5 are anomalous), for the ContrDA+OC-SVM (as for OC-SVM) the

threshold was set to 0.0 (samples with a negative distance from the hyper-plane are

anomalous). The results of this additional analysis are summarized in Table 4.5. The

missing values mean that the denominator is zero, and therefore the value cannot

be computed. In particular, here, it is numerically and quantitatively confirmed

what was evinced by the visual analysis of the probability distributions. In all

these experiments, the performances obtained with Deep-IVDD-KL are higher. The

precision and recall values show that the Deep-IVDD-KL method is less conservative

and includes some outliers inside the hypersphere (low precision values); at the same

time it can correctly identify most of the correct samples and place them inside

the hypersphere (high recall values). On the other hand, the ContrDA+OC-SVM

solution is completely overfitted and it cannot distinguish the di↵erence between

normal and anomalous testing samples. These aspects are further confirmed by the

F1 and the BA scores, which show, once again, that the Deep-IVDD-KL method can
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Table 4.5: Classification performances. Metrics obtained by the OC-SVM, IVDD and IVDD-KL
methods classifying the testing samples of the CIFAR-10 dataset.

F1-Score 0 1 2 3 4 5 6 7 8 9 Mean

OC-SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IVDD 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

IVDD-KL 0.2 0.6 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.4 0.3

Precision 0 1 2 3 4 5 6 7 8 9 Mean

OC-SVM 1.0 1.0 - - 1.0 - - - - 1.0 1.0

IVDD 0.97 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99

IVDD-KL 0.12 0.40 0.11 0.13 0.13 0.19 0.24 0.28 0.12 0.22 0.20

Recall 0 1 2 3 4 5 6 7 8 9 Mean

OC-SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IVDD 0.04 0.04 0.01 0.02 0.02 0.02 0.02 0.04 0.01 0.02 0.02

IVDD-KL 0.97 0.92 0.96 0.94 0.94 0.94 0.92 0.89 0.97 0.97 0.94

BA 0 1 2 3 4 5 6 7 8 9 Mean

OC-SVM 50.2 50.8 50.0 50.0 50.0 50.0 50.0 50.0 0.5 0.5 50.1

IVDD 52.2 51.9 50.4 51.1 50.8 50.9 51.0 52.1 50.3 51.2 51.2

IVDD-KL 60.2 88.5 53.7 63.5 63.2 74.7 80.2 81.9 58.4 79.1 70.3

obtain a better performance in terms of classification. These observations confirm

the Deep-IVDD-KL method’s potential but also highlight that there is still room

for improvement in most cases and that the AUC metric could be misleading in the

one-class classification realm (which, we repeat, it is a di↵erent concept than pure

one-class learning).

Another aspect to consider is that for Deep-IVDD-KL, as well as for Deep-IVDD,

Ex-post probability recalibration

! = #$ ! = %&&&

Figure 4.20: Deep-IVDD-KL: ex-post recalibration (CIFAR dataset, class 1).
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Table 4.6: Deep-IVDD-KL: classification performances with di↵erent thresholds. The results are
the average of metrics obtained for each class of the CIFAR-10 dataset.

Threshold 0.5 0.6 0.7 0.8 0.9

F1-Score 0.31 0.33 0.36 0.39 0.44

Precision 0.20 0.21 0.23 0.26 0.32

Recall 0.94 0.92 0.90 0.86 0.78

BA 70.3 72.1 74.0 75.6 76.9

it is possible to ex-post recalibrate the distributions given the decision function

by simply varying the value of �. This does not change the results but improves

the distributions and scores’ interpretability (see Figure 4.20). When � = 1000 a

better and more spread probability distribution can be obtained for all the CIFAR-10

classes.

Finally, in a one-class classification problem, sometimes a more conservative approach

might be preferable, and the main attention can be given to the samples obtaining

a higher probability score, as in (176). For this reason, Table 4.6 reports the

metrics obtained by recalibrating the probabilities (with � = 1000) and varying the

classification thresholds (from 0.5 to 0.9 with a step of 0.1). The results show that

some anomalous samples are included inside the sphere (obtaining a probability score

> 0.5), but their probability score is lower than those assigned to the normal samples.

In fact, increasing the value of the threshold corresponds to an improvement in terms

of BA.

For completeness, Appendix B shows the top-64 samples, which are the samples

with the highest probability score, for each class. These images confirm what was

quantitatively shown by Table 4.5: for some categories (e.g., car, frog, horse), the

method can correctly distinguish normal and anomalous samples, while for other

classes, there is still room for improvement.

Ablation study

Next, additional experiments to illustrate the impact of the di↵erent components of

the pipeline. In particular, di↵erent strategies for learning hidden representations have
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Table 4.7: Details of the VAE encoder architecture.

Architecture

32⇥ (5⇥ 5⇥ 3)-filters + Batch Normalization + Leaky ReLU

64⇥ (5⇥ 5⇥ 3)-filters + Batch Normalization + Leaky ReLU

128⇥ (5⇥ 5⇥ 3)-filters + Batch Normalization + Leaky ReLU

Dense layer of 128 units

been adopted (e.g., VAEs) to explore how much the hidden representation impacts

the final performance. Additionally, further experiments have been performed to

understand better the importance of the `2 normalization. To this aim, the OC-SVM

and the IVDD methods have also been run using representations from di↵erent

models and on data that are not `2 normalized.

In particular, a VAE has been used for learning an alternative hidden representation.

Its structure is equivalent to the one presented for the Deep-VAE-SVDD method

(81), which is an adaptation of the network used in the Deep-SVDD method (79).

The encoder structure is summarized in Table 4.7, while the decoder mirrors the

architecture of the encoder. The parameters have been set following the Deep-SVDD

and Deep-VAE-SVDD experiments, and in particular, ↵ = 0.1 for the Leaky ReLU

activation function, learning rate lr = 0.001 with Adam optimization (92), number

of epochs nepochs = 150, and batch size bs = 200.

In addition, another approach has been considered as a representation learning

method. The architecture was inspired by the work presented in (110), dubbed

SimSiam, and described in Section 4.8. In particular, the architecture is a Siamese

network composed of two di↵erent blocks: an encoder, which comprises a backbone

and a projection MLP, and a prediction MLP. As backbone a CIFAR variant of the

ResNet-18 architecture has been adopted (90), while the details of the projection

MLP and the prediction MLP are summarized in Table 4.8. The architecture is

optimized with the following parameters: number of epochs nepochs = 100, learning

rate lr = 0.1 and a batch size bs = 256. Further details on the implementation can

be found in (222). Here, instead of using a multi-class learning approach, just one

class at a time has been considered, as in a standard one-class learning experiment.
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Table 4.8: Details of the SimSiam architecture.

Backbone Projection MLP Prediction MLP

CIFAR version of ResNet-18 Dense layer of 128 units Dense layer of 32 units

Batch Normalization Batch Normalization

ReLU ReLU

Dense layer of 128 units Dense layer of 128 units

Batch Normalization

Table 4.9 shows the results of all these experiments. In particular, it clearly shows

that learning a good representation is key to solving a one-class learning problem.

In fact, the performances achieved with the ContrDA approach are, in most cases,

higher than those obtained with the VAE and the SimSiam architectures. However,

more than high-quality hidden representations are required. In fact, the a-posteriori

`2 normalization of the samples has a high contribution to the final performance

of the ContrDA method. This is not the first time `2 normalization has had a

significant impact; in fact, it has been used by the recent HRN method (78) (as a

normalization technique for the input) and allowed a significant improvement of the

final performances.

Table 4.9: Experiments with di↵erent hidden representations and with/without a-posteriori `2
normalization. Average AUCs scores in % of the OC-SVM and the IVDD methods.

OC-SVM l2 0 1 2 3 4 5 6 7 8 9 Mean

ContrDA 3 89.7 97.3 86.9 82.5 84.4 88.9 90.1 95.6 86.0 90.6 89.2

ContrDA 7 64.2 81.4 53.6 50.7 67.9 61.8 76.8 75.4 61.9 74.5 66.8

VAE 3 67.6 62.5 62.1 51.8 63.9 53.1 66.2 61.8 61.1 57.7 60.8

VAE 7 68.4 41.9 66.2 49.5 73.5 49.4 70.6 52.2 67.6 43.0 58.2

SimSiam 3 59.2 60.1 53.1 60.5 56.1 62.2 64.3 63.2 72.5 57.7 60.9

SimSiam 7 62.6 56.3 48.8 53.5 59.1 62.9 58.8 62.0 67.9 58.9 59.1

IVDD l2 0 1 2 3 4 5 6 7 8 9 Mean

ContrDA 3 89.8 97.3 86.8 82.6 84.3 88.9 90.1 95.6 85.8 90.6 89.2

ContrDA 7 65.7 80.5 54.2 51.0 68.1 62.0 76.8 75.4 61.9 75.0 67.1

VAE 3 67.6 62.4 62.1 51.8 63.9 53.1 66.2 61.8 61.1 57.7 60.8

VAE 7 68.3 41.8 66.2 49.5 73.5 49.4 70.5 52.1 67.6 43.0 58.2

SimSiam 3 58.4 60.6 52.8 60.4 56.1 62.3 63.8 63.0 72.2 58.3 60.8

SimSiam 7 62.7 56.7 49.4 53.5 59.3 63.0 59.1 61.9 67.8 59.2 59.3
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Reproducibility

The implementation was written in Python, and all the experiments can be reproduced

using the code available in the GitHub repository:

• https://github.com/erikagardini/DeepIVDD.

The representations were learned on a HPC cluster equipped with a nVidia Tesla

V100 32Gb GPU and 2 Intel(R) Xeon(R) Gold 6240 @ 2.60GHz Cascade Lake CPUs.

All the other experiments were run on a laptop equipped with a 2,6 GHz Intel Core

i7 and 16 GB RAM.

Final remarks

This Section presented the Deep-IVDD method. It combines deep representations

with the probabilistic one-class learning method IVDD. In addition, the Deep-IVDD-

KL method is proposed, which is a scalable version of the Deep-IVDD method based

on the SGD optimization and the Nyström approximation and endows an enhanced

probability model.

The main advantage of both the Deep-IVDD and the Deep-IVDD-KL methods is

that they combine deep approaches for learning a good hidden representation with a

probabilistic one-class classification method. In this way, not only the classification

is easier to perform, with a classification threshold naturally set as 0.5, but also a

more interpretable result (with a known domain) is obtained. This is preferable in

some applications, especially for experiments in life science (176).

Challenging for this type of methods, and more in general for unsupervised learning

techniques, is learning the intrinsic structure of the data and identifying the relevant

features. In particular, the lack of samples belonging to the anomalous class, makes

the training and the identification of the decision boundary hard, as only the data

belonging to one class delivers information. Here, di↵erent strategies for learning

hidden representations have been adopted to distinguish the normal samples more

easily from the anomalous samples. A comparison of these strategies is presented,

together with the e↵ect of the a-posteriori `2 normalization. The analysis results

show that the ContrDA approach presented in (113), combined with the a-posteriori
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`2 normalization, allows to obtain extremely powerful representations, which help

the subsequent one-class learning method. However, good AUC performance does

not necessarily correspond to good classification metrics. In fact, the AUC computed

on general scores is only a relative measure, and allows to compare the goodness of a

testing sample with respect to the others. These aspects have been widely discussed,

and some additional metrics for evaluating the classification performances have been

proposed. The eventual outcome of this analysis is that the Deep-IVDD-KL method

can obtain better classification performances than those of the Deep-IVDD and the

OC-SVM methods.

In the future, it would be interesting to investigate in more detail the usage of other

deep architectures for learning hidden representations, knowing that SSL techniques

are a good starting point. In addition, the IVDD-KL solution can be improved by

reducing the number of parameters or simplifying their selection. One possible option

could be to adopt an automatized method for selecting � (e.g., the trace-criterion

method (223)) or to improve the selection of the landmarks by using other clustering

techniques. In fact, the k-means algorithm adopted in this work may lead to select

landmarks in sparsely populated areas of the space, which may correspond to a

degradation of the performances of the proposed method.
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Chapter 5

Conclusions

This Thesis has been focused on unsupervised learning methods and their applications

to the life science domain. At methodological stage, two new unsupervised ML

methods have been presented, aiming to improve existing ones in the one-class and

manifold learning realms. The first one, dubbed Ab Initio Local PP (118), is a revised

version of the PP algorithm (35) and solves some of the drawbacks and limitations of

the original method. The second one, dubbed IVDD-KL, is an enhanced version of

the IVDD method (36), which hybridizes kernel methods to DL approaches to obtain

a scalable solution together with an improved probabilistic model. According to the

results presented in Sections 3.3 and 4.3, both methods improved the performances

achieved by their previous versions. For the newly introduced IVDD version, state-of-

the-art performances have been reached within a coherent probabilistic model, and

some systematic deficiencies in the literature in the evaluation of one-class learning

methods have been found, particularly in the role of the AUC metric.

At applicative stage, particular attention has been devoted to the life science/health

domain, where it is widely known there is still ample space for the deployment of

AI. The first application consisted of a pipeline, based on the PP method, for the

analysis of RNA-Seq datasets, both transcriptomic and single-cell, and aimed at

identifying genes that may be involved in biological processes (e.g., the transition

of tissues from normal to cancer (117)). In this project, an R package has been

released and published on CRAN to make the pipeline accessible to the bioinformatic

community through high-level APIs.
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The second application was about the drug discovery domain. It has been devoted

to the development of a pipeline for identifying druggable pockets, namely regions of

a protein with a high probability of accepting a small molecule (176) (a drug). Both

these pipelines achieved remarkable results (see Sections 3.2.1 and 4.2). Lastly, a

detour application has been developed in Section 3.2.2 (116). It involved the PP

algorithm and aimed to highlight its strengths and identify its limitations by analyzing

the complex CNN-induced vector space. This application has been conducted in

music and visual arts domains. The aim was to automatically recover the historical

evolution of styles just by looking at the samples. Hence, here, the PP has been

evaluated at a cognitive point of view and used to indirectly verify the goodness of

the manifolds learned by the employed CNN.

Regarding the PP algorithm, its application was based on euclidean distances so

far. In the future, it would be interesting to investigate its application in more

complex spaces, like the ones induced by optimal transport (224). In this case, the

Wasserstein distance may be adopted (225). Alternatively, spaces induced by deep

architectures may be considered. An analysis of the PP applied to CNN-induced

spaces has been proposed, perhaps more suitable architectures (e.g., VAEs or self-

supervised architectures) may be considered to improve hidden spaces. One more

interesting aspect that may deserve deepening is the implicit generative nature of the

PP method. In fact, even though a probability density function is not available, the

waypoints obtained throughout the algorithm are newly generated samples missing

in the initial dataset. In the future, it could be interesting to analyze more deeply

those generated samples, especially when they are computed in an embedding space

(e.g., VAE). In terms of computational e�ciency, the Ab Initio Local PP presented

in this Thesis reduces the optimization cost because it is based on a very restricted

set of samples. However, the initialization step requires one to compute a penalized

distance matrix among all the samples in the dataset. This is not scalable when

the input matrix is high-dimensional and comprises several samples. In the future,

techniques like the Nyström approximation can be used to improve the e�ciency of

this step. Finally, the most intriguing future work connected to the PP could be to

investigate its behavior from the point of view of human cognition. The question is
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whether minimum free energy paths, which are the inspiring concept behind PPs, are

how humans connect ideas. In doing this, one implicitly assumes that start and end

points are ideal objects, literally ideas. One could hence wonder if the way humans

think can be formalized as an attempt to move from an idea to another via maximal

probability moves (namely minimum free energy regions or regions which bear many

ideas, as the probability is linked to the number of points/ideas in the space). The

conjecture is that maximal probability paths (resulting from the PP algorithm) can

describe many phenomena, including ideas morphing (which is ultimately a creative

cognitive process). It would be interesting to understand how general this principle

is and what it can retrieve when applied to DL-induced hidden spaces.

Regarding the IVDD-KL method, in the future it could be interesting to investigate

other solutions that are less parameters dependent. Alternatively, automatic or

improved strategies could be adopted for their selection. Examples of these strategies

are the trace-criterion method for the selection of gamma (223) and other clustering

techniques for the landmarks selection (e.g., Kernel Density Estimation (226)). In

addition, the choice of the prior distribution could be further investigated. In

this work, the idea of using a probability distribution as a regularization term was

inspired by the VAEs approach, and the Laplace distribution was just a possible,

albeit justified, choice. In the future, other distributions and regularization terms

may be further investigated. From a technological standpoint, being the IVDD-KL

method scalable, it could be adopted on low-cost devices (e.g., mobile phones and

embedded devices). In this case, knowledge distillation techniques may be adopted

to make this application even more feasible in terms of computational complexity

and storage requirements (227).

Regarding applications, particularly the life sciences realm, in order to extend the

usage of the proposed methods to clinical scenarios, one ought to consider other

important aspects, which overall can be ascribed to the so-called trustworthy AI

(228; 229). These aspects include the safety, privacy, security, fairness, and robustness

of the ML methodologies and also concern data access, usage, and co-modification.

For instance, for the privacy concern federated learning (230), Di↵erential Privacy

Stochastic Gradient Descent (DPSGD) (231), and Secure Multiparty Computation
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(232) are possible solutions. Other crucial aspects concern the explainability, causality,

and accountability of the ML techniques used. In particular, it is extremely important

to understand how a prediction of a DL method can be explained (233; 234; 235). This

aspect is not trivial, as ML methods are typically complex and black-box (236). In the

future, additional experiments can be performed to interpret the proposed methods’

internal mechanisms and explain the reasons behind their decision/predictions.

Lastly, the methods developed in this Thesis can find many other applications in

domains that are possibly very distant from what has been discussed here. For

example, the Ab Initio Local PP could work as a playlist creator in the music context.

In fact, it could provide a list of songs that gradually morphs from one initial song

to another, working as a recommendation system (237). Such kinds of projects

could be further investigated in the future along the lines of other already published

applications (119; 238).
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A Proteins description

Table A.1 describes all the proteins included in the druggable (training) and the

less druggable datasets. Druggable proteins are marked with d (training set), less

druggable proteins are marked with n.

PDB

code

Name Category

1pwm Aldose reductase d

1lox 15-lipoxygenase d

3etr Xanthine oxidase d

3f1q Dihydroorotate dehydrogenase d

3ia4 Dihydrofolate reductase d

2cl5 Catechol-O-methyltransferase d

1uou Human thymidine phosphorylase d

1t46 c-Kit kinase d

1unl cyclin-dependent kinase5 d

1q41 Glycogen synthase kinase 3 d

2i1m FMS kinase d

1pmn c-Jun kinases d

1fk9 HIV reverse transcriptase (nonnu-

cleoside reverse transcriptase in-

hibitor binding site)

d

1e66 Acetylcholinesterase d
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1xoz Phosphodiesterase 5A d

1owe Urokinase plasminogen activator d

1r55 A disintegrin and metalloprotease d

3f0r Histone Deacetylase 8 d

1oq5 Carbonic anhydrase II d

1kzn DNA gyrase d

2aa2 Mineralocorticoid receptor d

3b68 Androgen receptor d

1sqn Progesterone receptor d

1v16 Branched-chain alpha-keto acid

dehydrogenase

n

3jdw Arginine:glycine amidinotrans-

ferase

n

1ajs Aspartate aminotransferase n

1wvc CDP-D-glucose synthase n

1kc7 Pyruvate phosphate dikinase n

1mai Phospholipase C n

1px4 Beta-galactosidase n

1od8 Xylanase n

1bmq Interleukin-1 beta-converting en-

zyme 1

n

151



1bls Beta-lactamase n

1m0n Dialkylglycine Decarboxylase n

1ec9 D-glucarate dehydratase n

1b74 Glutamate racemase n

1g98 Phosphoglucose isomerase n

1e9x Cytochrome P450 14alpha -sterol

demethylase

d

1hw8 3-hydroxy-3-methylglutaryl-CoA d

1sqi 4-hydroxyphenylpyruvate dioxyge-

nase

d

1r9o Cytochrome P450 2C9 d

4cox Cyclooxygenase 2 d

1c14 Enoyl reductase d

2bxr Monoamine oxidase A d

2gh5 Glutathione reductase d

1hvy Thymidylate synthase d

1rsz Purine nucleoside phosphorylase d

1n2v tRNA-guanine transglycosylase d

1v4s Hexokinase d

1u4d ACK1 kinase d
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1m17 Epidermal growth factor receptor

kinase

d

2dq7 Fyn kinase d

1qpe Lck kinase d

1qhi Thymidine kinase d

2fb8 B-Raf kinase d

1ke6 cyclin-dependent kinase2 d

2br1 Chk1 kinase d

1ywr p38 Mitogen-activated protein ki-

nases

d

2ivu RET kinase d

2hiw Abl tyrosin kinase d

2i0e Protein kinase C d

1ywn Vascular endothelial growth factor

receptor-2

d

1ig3 Thiamin pyrophosphokinase d

1yvf Hepatitis C virus polymerase

NS5B

d

1k8q Gastric lipase d

1kvo Phospholipase A 2 d

1xm6 Phosphodiesterase 4B d

1udt Phosphodiesterase 5 d
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1u30 Amylase d

1r58 Methionine aminopeptidase-2 d

1rwq Dipeptidyl peptidase-IV d

1lpz Factor Xa d

2g24 Renin d

1hvr HIV protease d

1gkc Matrix metalloproteinase-9 d

1yqy Lethal factor d

1o5r Adenosine deaminase d

1js3 DOPA decarboxylase d

1k7f Tryptophan synthase d

1j4i FKBP13 d

1vbm Tyrosyl-tRNA synthetase d

1rv1 Ubiquitin-protein ligase E3 Mdm2 d

1gwr Estrogen receptor d

1m2z Glucocorticoid receptor d

3d4s Beta-2-adrenergic receptor d

1ai2 Isocitrate dehydrogenase n

3pcm 3,4-dioxygenas n

1d09 Aspartate transcarbamoylase n
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1c9y Ornithine carbamoyltransferase n

1gpu Transketolase n

1qmf Penicillin binding protein-2X n

1moq Glucosamine 6-phosphate synthas n

1ucn Nucleoside diphosphate kinase n

1t03 HIV reverse transcriptase (nucleo-

side binding site)

n

1qs4 HIV integrase n

1fth Acyl carrier protein synthase n

1rnt Ribonuclease T2 n

1onz Protein-tyrosine phosphatase 1B n

1x9d Mannosidase n

1nnc Neuraminidase n

1olq Endo-beta-1,4-glucanase n

1jak Beta-N-Acetylhexosaminidases n

1kts Thrombin n

1nlj Cathepsin K n

1icj Peptide deformylase n

1hqg Arginase n

2gsu Phosphodiesterase-nucleotide Py-

rophosphatase

n
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1g7v 3-deoxy-D-manno-2-

octulosonate-8-phosphate

synthase

n

1f9g Hyaluronate lyase n

1qxo Chorismate synthase n

2gyi D-xylose isomerase n

1o8b Ribose-5-phosphate isomerase n

1cg0 Adenylosuccinate synthetase n

Table A.1: Druggability prediction: proteins description of the NRDLD dataset.

Table A.2 describes all the proteins included in the PDTD (100-proteins) dataset.

PDB

code

Name Category

1a28 Progesterone receptor d

1acj Acetylcholine esterase d

1aco Aconite with transaconitate

bound

d

1adc NAD analogues bound to alcohol

dehydrogenase

d

1coy Cholesterol oxidases d

1cqe Prostaglandin H2 synthase-1 d

1d3g Dihydroorotate dehydrogenase d
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1d6u E. Coli amine oxidase d

1db1 Nuclear receptor for vitamin D d

1dht Estrogenic 17-beta hydroxysteroid

dehydrogenase

d

1diy Cyclooxygenase active site of

PGHS-1

d

1dkf Heterodimeric complex of RAR

and RXR

d

1e1f Beta-glucosidase d

1e3g Androgen receptor d

1e3k Progesteron receptor d

1e55 Mutant Monocut beta-glucosidase d

1eet HIV-1 reverse transcriptase d

1efh Hydroxysteroid sulfotransferase d

1f2a Cruzain hydrolase d

1fm6 Heterodimer of the RXR-↵ and

PPAR-�

d

1gii Cyclin dependent kinase d

1gos Monoamine oxidase B d

1gp6 Anthocyanidin synthase d

1gpk Acetylcholinesterase d
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1gqs Acetylcholinesterase complexed

with NAP

d

1gs4 Androgen receptor ARccr d

1h5u Glycogen phosphorylase B d

1h9u Retinoid X receptor beta d

1hb2 Isopenicillin N synthase d

1hdy Alcohol dehydrogenase variant d

1hfc Fibroblast collagenase d

1hj1 Estrogen receptor beta d

1hld Liver alcohol dehydrogenase d

1ho4 Pyridoxine 5-phosphate d

1ht8 Oxidoreductase COX-1 d

1hy3 Estrogen sulfotransferase V269E d

1hzx Bovine Rhodopsin d

1i7g Human PPAR-↵ d

1ie9 Nuclear receptor for vitamin D d

1iiu Plasma retinol-binding protein d

1j90 Deoxyribonuclease kinase d

1jbp Catalytic subunit of c-AMP de-

pendent protein kinase

d

1jkh HIV-1 reverse transcriptase d
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1js3 Dopa decarboxylase d

1k3u Tryptophan synthase d

1k4w Nuclear receptor ROR- d

1k74 Heterodimer of PPAR- and RXR- d

1k7l Human PPAR- d

1lde Liver alcohol dehydrogenase d

1ldy Liver alcohol dehydrogenase com-

plexed to NADH and cyclohexyl

formamide

d

1mup Pheromone binding to two urinary

proteins

d

1n7i Phenylethanolamine N-

metyltransferase

d

1nwk Monomeric actin in the ATP state d

1og5 Human cytochrome P450

CYP2C9

d

1oi9 Human thr160-phospho

CDK2/cyclin A

d

1p1n GluR2 ligand binding core (S1S2J)

mutant

d

1p2d Glycogen phosphorylase B d
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1p4g Glycogen phosphorylase B in

complex with C-(1-azido-alpha-D-

glucopyranosyl) formamide

d

1p93 Glucocorticoid receptor d

1pcg Helix-stabilized cyclic peptides d

1pha Cytochrome P450-CAM d

1pig Pancreatic alpha-amylase d

1ppl Aspartyl proteinases d

1qab Retinol binding protein d

1kvo Phospholipase A 2 d

1qkm Estrogen receptor � d

1qkt Mutant estrogen nuclear receptor d

1qpb Pyruvate decarboxylase d

1r18 Isoaspartyl methyltransferase d

1r1k Heterodimer EcR/USP bound to

ponasterone A

d

1rbp Serum retinol binding protein d

1rlb Retinol binding protein com-

plexed with transthyretin

d

1rt6 HIV-1 reverse transcriptase d

1tvr HIV-1 RT/9-CL TIBO d

1uhl LXR↵-RXR� LBD heterodimer d
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1ulb Purine nucleoside phosphorylase d

1uom Estrogen receptor complexed with

Tetrahydroisochiolin

d

1upv Liver X receptor � d

1v8b Hydrolase d

1vkg HDAC8 d

1vlb Aldehyde oxidoreductase d

1vot Acetylcholine esterase d

1w6k Human OSC d

1x07 Undecaprenyl pyrophosphate syn-

thase

d

1xnx Androstane receptor d

1y0s PPAR-� d

1zhy Oxysterol binding protein Osh4 d

2a3i Mineralocorticoid receptor d

2a3l Adenosine 5’-Monophosphate

deaminase

d

2ack Acetylcholinesterase d

2ae2 Tropinone reductase-II d

2bx8 Human serum albumin d

2dln D-alanine ligase d
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2mas Purine nucleoside hydrolase d

3bto Liver alcohol dehydrogenase d

3ert Estrogen receptor-↵ d

3hvt Human immunodeficiency virus

type 1 reverse transcriptase het-

erodimer

d

4thi Thiaminase I d

6cox Cyclooxygenase-2 d

8cat Liver catalase d

Table A.2: Druggability prediction: proteins description of the PDTD dataset.

B Deep-IVDD-KL additional experiments

The 64 testing samples with the highest and the lowest scores are reported below for

each class of the CIFAR-10 dataset.

Testing samples with the highest probability scores
Class: Airplane

Testing samples with the lowest probability scores
Class: Airplane

Figure B.1: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Airplane).
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Testing samples with the highest probability scores
Class: Automobile

Testing samples with the lowest probability scores
Class: Automobile

Figure B.2: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Automobile).

Testing samples with the highest probability scores
Class: Bird

Testing samples with the lowest probability scores
Class: Bird

Figure B.3: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Bird).
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Testing samples with the highest probability scores
Class: Cat

Testing samples with the lowest probability scores
Class: Cat

Figure B.4: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Cat).

Testing samples with the highest probability scores
Class: Deer

Testing samples with the lowest probability scores
Class: Deer

Figure B.5: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Deer).
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Testing samples with the highest probability scores
Class: Dog

Testing samples with the lowest probability scores
Class: Dog

Figure B.6: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Dog).

Testing samples with the highest probability scores
Class: Frog

Testing samples with the lowest probability scores
Class: Frog

Figure B.7: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Frog).
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Testing samples with the highest probability scores
Class: Horse

Testing samples with the lowest probability scores
Class: Horse

Figure B.8: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Horse).

Testing samples with the highest probability scores
Class: Ship

Testing samples with the lowest probability scores
Class: Ship

Figure B.9: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Ship).
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Testing samples with the highest probability scores
Class: Truck

Testing samples with the lowest probability scores
Class: Truck

Figure B.10: Deep-IVDD-KL: test samples with the highest/lowest scores (class: Truck).
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