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Abstract

Astrocytes are the most numerous glial cell type in the mammalian brain and
permeate the entire CNS interacting with neurons, vasculature, and other glial cells.
Astrocytes display intracellular calcium signals that encode information about local
synaptic function, distributed network activity, and high-level cognitive functions.

Several studies have investigated the calcium dynamics of astrocytes in sensory
areas and have shown that these cells can encode sensory stimuli. Nevertheless,
only recently the neuro-scientific community has focused its attention on the role
and functions of astrocytes in associative areas such as the hippocampus. In our
first study, we used the information theory formalism to show that astrocytes in
the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy
during spatial navigation encode spatial information that is complementary and
synergistic to information encoded by nearby ”place cell” neurons.

In our second study, we investigated various computational aspects of applying
the information theory formalism to astrocytic calcium data. For this reason, we
generated realistic simulations of calcium signals in astrocytes to determine optimal
hyperparameters and procedures of information measures and applied them to real
astrocytic calcium imaging data.

Calcium signals of astrocytes are characterized by complex spatiotemporal dy-
namics occurring in subcellular parcels of the astrocytic domain which makes study-
ing these cells in 2-photon calcium imaging recordings difficult. However, current
analytical tools which identify the astrocytic subcellular regions are time consuming
and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic
calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm
for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings
of astrocytes which operates without human intervention. We found that RASTA
provided fast and accurate identification of astrocytic cell somata, processes, and
cellular domains, extracting calcium signals from identified regions of interest across
individual cells and populations of hundreds of astrocytes recorded in awake mice.
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Chapter 1

Introduction

1.1 Astrocytes

Glia, also called glial cells or neuroglia1, are electrically non-excitable non-neuronal
cells in the central nervous system (CNS, brain and spinal cord) and peripheral
nervous system. Glia were first discovered in 1856 by the pathologist Rudolf Virchow
and then better described and made known to a wider public several decades later
by Santiago Ramón y Cajal and Ṕıo del Ŕıo Hortega. Thanks to electrophysiological
characterizations and physiological studies of glial cells in the second half of the 20th
century, significant progress was made in understanding the multiple vital functions
of glial cells [1–6].

Glia are an abundant cell type in the CNS and are essential for the brain to
function as an organ and as a computational structure [7]. In mammals, glia can
be divided into 2 macrogroups resembling their embryonic origin: microglia and
macroglia.

Microglia cells originate from yolk sac progenitor cells that populate the brain
only during development [reviewed in [8, 9]], a feature that distinguishes this group
from other glial cells. Microglia represent the major immunocompetent and phago-
cytic cells of the CNS [10] and cover much of the adult brain in discrete, non-
overlapping domains. Microglia sense the environment through the movement of
their filopodia and respond rapidly to abnormalities or damage [11]. In addition to
their role in the immune system, microglia have recently been ascribed an active
role in the healthy brain, although opinions on this are controversial[12–17].

Macroglia, the other macrogroup of glial cells, originate from neuroectoderm
and can be further divided into 3 categories: oligodendrocytes, their progenitors
NG2-glia, and astrocytes.

Oligodendrocytes form the myelin sheath that surrounds and insulates neuronal
axons, resulting in increased conduction velocity of the action potential (AP)[18].
However, high numbers of nonmyelinating oligodendrocytes have also been found

1The term originates from Greek term for ”glue”
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2 CHAPTER 1. INTRODUCTION

in sparsely myelinated brain regions, and presumably these oligodendrocytes have
other overlooked functions.

The recently discovered NG2-positive cells are precursors of oligodendrocytes
[19]. NG2 glia are part of the oligodendrocyte lineage and form mature myelinating
oligodendrocytes throughout their life [20–23]. NG2 glia have been observed to
form a tight homeostatic network in the adult rodent brain in which cell numbers
are maintained stable under physiological conditions. The gap produced by cells
differentiations or death is immediately replaced by a neighboring cell [24]. One
particular aspect of NG2 glial cells, originally discovered in the hippocampus [25]
but also observed in other parts of the brain (reviewed in [26]), is the ability to form
functional synapses with neurons. Although the function of these synapses is not yet
fully understood, a distinctive aspect of these synapses is their directionality. NG2
glia can receive neuronal signals but cannot generate and transmit action potentials
themselves [27].

The final major group of macroglial cells in the brain is astrocytes. The anatomy
of astrocytes and the function of their intracellular signals are highly relevant aspects
for this work. For this reason, in the next sections we will briefly review their
anatomy, function, signalling, and their known relationships with neuronal activity.

Astrocytes anatomy

Astrocytes are the most abundant glial cell type in the mammalian brain [28]. Even
though astrocytes were discovered about 150 years ago, our understanding of their
role in brain function is far from complete.

Astrocytes are a heterogeneous group of cells, showing differences in morphology,
molecular profile, and function [29]. From a morphological point of view, astrocytes
can be broadly divided into two types: fibrous and protoplasmic. Fibrous astro-
cytes are star-shaped cells with regular contours. They are mainly found in the
white matter of the brain, spinal cord, optic nerve, and retinal fiber layer. These as-
trocytes are characterized by an elongated morphology in which their long processes
make extensive contact with blood vessels, form a gap junction between the distal
processes of adjacent astrocytes, and form nodes of Ranvier 2. The processes of
fibrous astrocytes are characterized by spatial overlap in the cell domain; moreover,
the processes extend to perivascular, subpial, and axonal endfeet [30].

Protoplasmic astrocytes are characterised by a ”bushy” and irregular morphol-
ogy. The small round cell body, called soma, is about 10 µm in diameter (Fig.
1.1). A protoplasmic astrocyte has 5 to 10 primary processes that further branch
into thousands of branches, forming dense arborizations that contact synapses (Fig.
1.1) [31]. In addition, astrocytic processes contact the vasculature via the so-called
processes endfeet [32, 33]. This class of astrocytes mainly populates the grey matter
in the brain with well-defined domains that have minimal overlap [31]. A single

2Nodes of Ranvier are the small, interspersed, non-myelinated interruptions along the length
of an axon that help conduct nerve impulses
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Figure 1.1: Astrocyte main sub-
structures. Soma: main cell body.
Proximal processes: biggest sub-
structures that grow from soma. As-
trocyte domain: territory compris-
ing all branches and branchlets of
astrocyte

astrocyte domain can cover an area of 20,000 to 80,000 µm3 (Fig. 1.1) and be in
contact with 300 to 600 dendrites and potentially 100,000 individual synapses [31,
34]. This dense connectivity allows astrocytes to control multiple functions, includ-
ing ion homeostasis, neurotransmitter clearance, trophic support of neurons, and
neuromodulation.

In the further course of this thesis, the term astrocytes is used for protoplasmic
astrocytes.

Astrocytes functions

The complex morphology of astrocytes, especially their numerous contacts with
synapses and blood vessels, makes this cell type a very influential cell in the brain.
Therefore, understanding the main functions of astrocytes in the brain is a funda-
mental question that needs to be answered.

This is still an active area of research, even though many functions of astrocytes
have already been discovered and characterized (Fig. 1.2). Some of the most im-
portant functions are enumerated below, including contributions to the blood-brain
barrier, regulation of blood flow, energetic support, regulation of synaptic activity,
buffering of neurotransmitters, and secretion of neuroactive substances (reviewed in
[35]).

The blood-brain barrier (BBB) is an cerebral vasculature feature where astro-
cytes are involved, that consists of preventing the influx of certain molecules into
the brain parenchyma depending on their polarity and size [36, 37]. BBB is consti-
tuted by astrocytes endfeets, perivascular pericytes3, basal lamina4, and capillary
endothelial cells. Capillary endothelial cells are surrounded by the other BBB con-

3Pericytes are cells present at intervals along the walls of capillaries.
4The basal lamina is a layer of extracellular matrix secreted by epithelial cells on which the

epithelium sits.
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stituents forming tight junctions with them. Although both pericytes and astrocytes
endfeets are involved in the BBB mechanism, their role in the BBB has not been
fully elucidated [36–41]. For this reason, further studies are needed to elucidate the
initial molecular mediators that may cause BBB properties in cerebral endothelia
and how astrocyte endfeets and pericytes are involved in BBB functions.

The large number of contacts of astrocytes with blood vessels in the CNS allows
astrocytes to have basic bidirectional interactions with blood vessels, where, for
example, blood flow in the CNS is regulated. Through the production of molecular
mediators (such as prostaglandins, nitric oxide, and arachidonic acid), astrocytes
can increase or decrease the diameter of CNS blood vessels and blood flow [42, 43].
In addition, changes in neuronal activity can cause local changes in CNS blood
flow thanks to the mediating role of astrocytes [44]; processes that contact both
blood vessels and synapses can control blood flow depending on the level of synaptic
activity [45]. This phenomenon has been observed in visual cortex, where fMRI-
detected changes in blood flow in response to visual stimuli were dependent on
astrocyte function [46, 47].

In addition, astrocytes contribute to CNS metabolism through their processes
which are in contact with neuronal perikarya, axons (at the nodes of Ranvier),synapses
and blood vessels. This position allows astrocytes to take up glucose from blood
vessels and provide energy metabolites to several neuronal elements in the CNS. Fur-
thermore, astrocytes are the major storage sites of glycogen granules in the CNS,
with the greatest glycogen accumulation occurring where synaptic density is high
[48–50]. These storage sites are essential for maintaining neuronal activity during
hypoglycemia and during periods of high neuronal activity [50, 51].

The release of various active molecules during synaptic activity (such as glu-
tamate, purines, GABA 5, and D-serine) is sensed by G protein-coupled receptors
(GPCRs) in astrocytes. These (GPCRs) enable astrocytes to respond to neuro-
transmitters or neuromodulators [52, 53]. Following activation of GPCRs, a Ca2+

increase occurs in astrocytes. Importantly, these Ca2+ increases have been observed
in-vivo in both astrocytic processes and their somata [54–59]. Moreover, GPCRs
are able to stimulate the release of gliotransmitters that can interact with synaptic
elements. This direct and interactive role of astrocytes in synaptic activity has given
rise to the ”tripartite synapse” hypothesis, according to which astrocytes, together
with neurons, are fundamental players in information processing in the neuronal
circuit [34, 60, 61].

Moreover, gliotransmission has been observed to contribute to the modulation of
all major forms of synaptic plasticity [62]. In several brain regions, astrocytes have
been observed to modulate short-term synaptic excitation or depression on time
scales ranging from seconds to minutes. Long-lasting synaptic changes lasting tens
of minutes, such as long-term potentiation (LTP) and long-term depression (LTD)
of synaptic transmission, have also been modulated by astrocytes [52].

5Gamma-Aminobutyric Acid
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Figure 1.2: A schematic summary of the diverse roles performed by astrocytes
in the functioning brain. Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor; BEST, bestrophin; Ca2+, calcium ion; Cx, connexin;
EAAT, excitatory amino acid transporter; GABA, γ-aminobutyric acid; GAT, GABA
transporter; GluT1, glucose transporter 1; IL, interleukin; IP3, inositol triphosphate; K+,
potassium ion; MCT1/2, monocarboxylate transporter 1/2; mGluRs, metabotropic gluta-
mate receptors; NMDAR, N-methyl-d-aspartate receptor; Nrxn1α, Neurexin 1α; THBS,
thrombospondin. From [63]
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In addition to the above functions, astrocytes are involved in ion [64, 65], water
[66, 67], and neurotransmitter homeostasis [68, 69]. Finally, important aspects of
astrocyte physiology are how their excitability functions based on intracellular Ca2+

concentration work, relate and interact with neuronal functions in the brain. These
aspects will be discussed in the following two sections.

Calcium signaling

In the early 1990s, a seminal work by Cornell-Bell [4] showed that astrocytes re-
sponded to the release of glutamate with intracellular increases in Ca2+. These and
other findings [70–72]suggested a possible role of astrocytic Ca2+ dynamics in brain
circuitry communication. In fact, it has been observed that the Ca2+ concentration
in astrocytes changes not only spontaneously but also in response to various stim-
uli. Therefore, monitoring the Ca2+ concentration has become a standard method
to study the physiological responses of astrocytes in single cells and to compare
them between different brain regions [73–77]. The Ca2+ dynamics can be monitored
using molecular indicators that change their properties ( such as brightness during
imaging experiment) as a function of the Ca2+ concentration. These indicators can
either be synthetic ([4], review in [78]) or generated through genetic engineering (i.e.
recombinant proteins such as GCaMPs [79]). The observation of Ca2+ indicators is
performed with optical setups that are used to detect fluorescence signals generated
either with 1-photon excitation or exploiting the 2-photon effect.

2-photon calcium imaging 2-photon calcium imaging is an experimental tech-
nique that allows to measure Ca2+ concentration in astrocytes and neurons [80, 81].
This technique records fluorescence signals from a fluorophore indicator triggered
by the absorption of photons transmitted by a laser beam [81, 82]. The 2-photon
imaging technique is based on the absorption of two photons that promote the tran-
sition of an electron of the fluorophore from the ground state energy level to an
excited state. The excited-state electron then decays and a photon with a shorter
wavelength than that of the exciting laser beam is emitted. This emitted light is
then recorded from each excited sample region (Fig. 1.3).

Two-photon excitation microscopy typically uses excitation light in the near-
infrared range, which minimizes scattering in tissue and thus background signals; it
reduces photobleaching and increases tissue penetration depth and light detection
efficiency [81]. A key feature of this technique is the lack of crosstalk between
adjacent zones in the imaged brain tissue as the sample is sequentially excited [83].

Over the past 30 years, 2-photon calcium imaging technology has been improved
by increasing the signal-to-noise ratio, temporal resolution, field-of-view size, pen-
etration depth, and accessible volume for in-vivo imaging ( reviewed in [84]). The
combination of 2-photon calcium imaging with synthetic or genetically engineered
indicators represents one of the most powerful experimental methods for studying
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Figure 1.3: Schematics of 2-
photons Ca2+ imaging experimen-
tal setup for a mice running on a
wheel. The optical setup is charac-
terized by an excitating laser beam
of 920 nm of wavelength which is
sent through the optical path to
the selected brain region. Fluo-
rescence signals are than collected
throgh objective lenses (OBJ) and
a photomultiplier (PMT) and finally
recorded.

astrocytic networks in the CNS in-vivo at the subcellular level for several µm2 of
brain area.

Calcium signal in astrocytres. Thanks to this imaging technique, astrocyte
Ca2+ signaling has been shown to be diverse in its properties, it can occur in different
compartments, and it has different underlying mechanisms and variable dependence
on neuronal activity (reviewed in [63]).

Spontaneous Ca2+ signals in astrocytes have been observed in highly localized
subregions in branches and branchlets of astrocytes which are often referred as mi-
crodomains [57, 58, 85–89]. These signals were observed without external stimula-
tion of astrocytes or brain tissue and without triggering by firing action potentials of
nearby neurons, and only some of them are mediated by Ca2+ release from IP3R26-
dependent intracellular Ca2+ stores [85]. Another spontaneous signal observed in the
main branches and occasionally in the somata of the astrocytes are ”local waves”.
These display characteristic spatial and temporal features spreading over few tens
of microns of astrocytic processes over 2-3 seconds [85, 90].

Neuronal activity may also mediate Ca2+ signaling in astrocytes. In the CA1
and dentate gyrus regions of the hippocampus [91–93], a highly localized type of
Ca2+ signaling was observed in the microdomain of astrocytes mediated by nearby
neurons. Another type of Ca2+ signaling triggered by intense AP bursts in mossy
fiber axons has been observed in CA3 in the hippocampus [85]; in this case, calcium
concentration is not highly localized and may involve entire astrocytes, including
their somata. For this reason, the literature refers to it as a ”global wave.” Another
important phenomenon involving neurons and astrocytes is neurovascular copling.
Indeed, during vasodilation, Ca2+ release from IP3R2-dependent stores [94] and
Ca2+ entry via TRPV4 channels [95] have been observed to mediate Ca2+ signaling
in endfeets of astrocytes in response to neuronal activation.

Another type of Ca2+ signaling, extremely broad and covering essentially all
astrocytes imaged, was observed in-vivo during locomotion and startle responses.

6inositol 1,4,5-trisphosphate receptor type 2
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Figure 1.4: Somata and processes
in astrocytes present complex cal-
cium transients. Astrocytes in layer
2/3 SSCx from an adult ChR2-
SSTGCaMP6f mouse that under-
went SST interneuron optogenetic
stimulation. ROIs are: soma (yel-
low), proximal processes (red) and
microdomains (blue); scale bar is
20 µm. Different region of the as-
trocyte display different Ca2+ tran-
sients, scale bars are 50 s and 20 (f-
f0)/f0, where f is the Ca2+ fluores-
cence trace and f0 the baseline fluo-
rescence value. Adapted from [59].

Volumetric release of neuromodulators that mobilize intracellular IP3R2-dependent
stores controls this type of signaling [86, 96–98]. It has been suggested that these
modulators act via the astrocytes themselves, but other cells may also be involved
in this process.

Finally, an important aspect of astrocyte signaling involves basal Ca2+ levels,
through which basal arteriole diameter can be altered [99]. The basal level of Ca2+

has been observed to vary between different compartments of astrocytes [99, 100]
and is regulated by age and prior activity [101].

Astrocytes and Behaviour

Although the role of astrocytes in the action of neuromodulators has not been fully
elucidated, the last two decades have shown how astrocyte responses to neuromod-
ulators affect sensory and motor processes.

In [102], it is shown how astrocytes are fundamental in the cholinergic-induced
modulation of visual processing through the release of the neuromodulator acetyl-
choline. Another important study [46] showed how astrocytes in ferret primary vi-
sual cortex respond to visual stimuli with limited spatial receptive fields and sharp
tuning to visual stimulus features. Another important study of the primary vi-
sual cortex showed how sensory processing is affected by astrocytes heterogeneously
modulating the excitability of different neuron subtypes [103].

Motor processes are also influenced by the activity of astrocytes within neuronal
circuits. For example, in the dorsal striatum, a brain nucleus important for motor
function, astrocytes are involved in its function. In [104] chemogenetic activation of
astrocytes in the dorsal striatum was shown to disrupt attention in mice and cause
the animals to exhibit hyperactive behaviour. Indeed, activation of astrocytes by
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the release of thrombospondin-1 causes an enhancement of the activity of medium-
sized spiny neurons. Another important study [105] on motor behaviour showed
how conditional deletion of IP3R2 in astrocytes impairs motor skill learning in mice
during forelimb grasping task.

Astrocytes are involved not only in sensory-motor processes but also in decision
making. A recent study [106] showed how astrocytes in the brainstem of zebrafish
act as signal integrators to perform computations critical for controlling behaviour
during a decision-making task. In this task, the animals were exposed to a virtual
reality environment in which visual feedback was decoupled from motor actions,
so that swimming behaviour did not elicit the expected visual flow. This resulted
in the animals entering a passive behavioural state after becoming aware of the
futility of their efforts. The large-scale optical imaging of astrocytes used in this
study showed that the passive behavioural state of the zebrafish was triggered by
astrocytes. During swimming episodes that do not trigger perceptual movement,
the astrocytic network shows cumulative Ca2+ responses triggered by noradrenergic
neurons that detect swimming failures. Once the number of swimming failures
reaches a threshold, the GABAergic neuronal network is activated by the astrocytic
network to suppress swimming.

Similarly in the CA1 area of the mouse hippocampus, the astrocytic network also
influences the spatiotemporal dynamics of neuronal networks. First, the astrocytic
network integrates neuronal activity and then triggers the barrage firing in some
populations of inhibitory interneurons [107].

1.2 Mathematical methods to analyze and

interpret calcium signals of astrocytes

As described in the previous sections, astrocytes are not electrically excitable but
show excitability depending on their complex dynamics of intracellular Ca2+ con-
centration. The dynamics of astrocytic Ca2+ concentration can be studied in-vivo
using functional two-photon microscopy [108]. This experimental technique allows
to distinguish between somata and proximal processes thanks to its high spatial
subcellular resolution.

Several studies [46, 55, 58, 98, 109] investigated the Ca2+ dynamics of astrocytes
in sensory areas and showed that these cells can encode sensory stimuli. Recently,
several laboratories [110–112] have started to investigate how astrocytes encode
information about external variables. For example, in our work [111], using the
information theory formalism [113, 114], we showed that astrocytes in hippocampal
CA1 recorded during spatial navigation in a virtual environment encode spatial in-
formation that is complementary and synergistic to information encoded by nearby
”place cell” neurons (Sec. 1.2). Moreover, in another recent paper [115], we have
shown how to optimally apply the information theory formalism to astrocytic cal-
cium imaging data (Sec. 1.2).
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However, the available methods for extracting recordings and analyzing astro-
cytic calcium data are highly dependent on a large number of user-defined parame-
ters. This limits the analytical workflow, scalability, and reproducibility of astrocyte
calcium measurements. For this reason, we have developed a novel algorithm called
Rapid Astrocytic Spatio-Temporal Analysis (RASTA) that enables rapid, accurate,
and fully automated segmentation and signal extraction of astrocytic Ca2+ dynamics
( Sec. 1.2).

Complementary encoding of spatial information in
hippocampal astrocytes [111]

Neuronal place cells in the hippocampus encode information about the spatial po-
sition of the animal by modulating their firing rate as a function of space. This
mechanism forms the cellular substrate for spatial cognition. Is this spatial infor-
mation encoded only in neuronal circuits or beyond?

Therefore, using the two-photon calcium technique, we simultaneously imaged
astrocytes and neurons in the CA1 hippocampus of mice navigating in a virtual envi-
ronment and showed that astrocytes encode spatial information about the animal’s
position in virtual space in their Ca2+ signals. We observed that spatial informative
Ca2+ dynamics in astrocytes occur in topologically bounded and topographically
organized regions that include both somata and processes. The spatial fields of
astrocytes were larger and centered at different positions compared with neuronal
place fields. Moreover, the spatial information encoded in astrocytes was comple-
mentary and synergistic to that carried by nearby ”place cell” neurons, resulting
in an increase in decoding performance when astrocytic and neuronal signals were
considered together.

These results show for the first time how spatial information encoded in the spike
outputs of projecting CA1 neurons in the hippocampus is locally complemented by
non-neural CA1 elements. This additional reservoir of spatial information expands
the population-coding capacity of the hippocampal network and reveals a new level
of organization for encoding spatial information in the hippocampus.

Optimizing measures of information encoding in astrocytic
calcium signals[115]

According to recent studies [110–112], the calcium dynamics of astrocytes, the most
abundant glial cell type in the mammalian brain, contain information about impor-
tant cognitive variables but also provide information not contained in the activity
of nearby neurons. Understanding the role and contribution of astrocytes in infor-
mation processing is fundamental to describe the functioning of the CNS. For this
reason, analytical tools that allow the description of this contribution are needed.
We simulated realistic astrocytic activities that depended on external variables to
optimally set the parameters of the information-theoretic analysis of astrocytic ac-
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tivity. Finally, we applied information analyses to both simulated and real astrocytic
data to obtain conservative and reliable estimates of astrocytic calcium contribution
to circuit-level information processing in the brain.

Rapid spatiotemporal analysis of astrocytic calcium
dynamics using deep learning

In section 1.1 it has been described how astrocytic signals are characterized by
complex spatiotemporal dynamics occurring in subcellular regions of the astrocytic
cell. Current analytical tools for astrocytic calcium signals are time consuming
and extensively rely on user-defined parameters. These pitfalls limit reproducibility
and scalability of the workflow and prevent closed-loop experimental approaches.
Therefore, the development of a method to obtain rapid, precise, and fully auto-
mated segmentation and signal extraction from 2-photon (2P) calcium recording
from astrocytes is of utmost importance.

For this reason we developed a novel software for spatiotemporal semantic seg-
mentation of 2P-calcium imaging recordings of astrocytes, called Rapid Astrocytic
Spatio-Temporal Analysis (RASTA). RASTA combines deep learning algorithms
with feature engineering of calcium data and operates without human intervention.
RASTA provides rapid and accurate identification of astrocytic cell somata and pro-
cesses and it extracts calcium signals from identified astrocytes regions of interest
(ROIs).

RASTA combines supervised and unsupervised techniques to provide a fully au-
tomatic algorithm for the analysis of spatiotemporal information of astrocytic cal-
cium signals. RASTA’s workflow comprises three main blocks: i) pre-processing; ii)
semantic segmentation; iii) subcellular cross-correlation analysis. These steps result
in an end-to-end characterization of the complex morphological and dynamical prop-
erties of astrocytic calcium signals. Pre-processing block computes a bi-dimensional
reconstruction of the recorded field-of-view (FOV), compressing spatial and tempo-
ral features into spatiotemporal projection. The outputs of the pre-processing block
are used as inputs for the second block of the pipeline. The semantic segmentation
employs a U-Net [116] based deep neural network (DNN) to perform subcellular
semantic segmentation of astrocytic cellular structures, identifying somata and pro-
cesses. Subcellular cross-correlation analysis identifies regions of the astrocytic cell
showing calcium dynamics which are statistically correlated to the morphological
structures outlined by the segmentation block

We validated RASTA on in-vivo two-photon calcium imaging data against hu-
man manual annotation, obtaining near-human performance in astrocyte detection
and segmentation. RASTA outperformed state-of-the-art algorithms for the anal-
ysis of astrocytic and neuronal calcium imaging data in detecting and segmenting
astrocytic ROIs. Overall, RASTA is an end-to-end analytical tool, which provides
fast, automated, and accurate semantic segmentation of two-photon imaging data
of astrocytes. RASTA will facilitate the analysis of astrocytic calcium signals and
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will enable new closed-loop experimental approaches.



Chapter 2

Complementary encoding of
spatial information in
hippocampal astrocytes

2.1 Introduction

Astrocytes, the most abundant class of glial cells in the brain, exhibit complex dy-
namics in intracellular calcium concentration [76]. Intracellular calcium signals can
be spatially restricted to individual subcellular domains (e.g., cellular processes vs
somata) and be coordinated across astrocytic cells [58, 59, 92, 93, 98, 117, 118]. In
the intact brain, astrocytic calcium dynamics can be spontaneous [119] or triggered
by the presentation of external physical stimuli [46, 55, 58, 98, 109]. Interestingly,
previous reports suggest that astrocytic calcium signals triggered by external sen-
sory stimuli largely mirror the activity of local neuronal cells [46, 109]. Such findings
have led current models of sensory information coding in the brain to overlook the
contribution of astrocytes, under the implicit or explicit assumption that astrocytic
cells only provide information already encoded in neurons [120, 121]. Here, we chal-
lenged this assumption and tested the hypothesis that astrocytes encode information
in their intracellular calcium dynamics that is not present in the activity of nearby
neurons. As a model, we used spatial information encoding in the hippocampus,
where neural place cells encode navigational information by modulating their firing
rate as a function of the animal’s spatial location [122–124]. We demonstrate that
astrocytic calcium signals encode information about the animal’s position in virtual
space, and that, according to the statistical analysis we performed, this information
is complementary to that carried by hippocampal neurons.

2.2 Results

We combined two-photon functional imaging in head-fixed mice navigating in virtual
reality [123, 124] (Fig 2.1A) with astrocyte-specific expression of the genetically en-
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coded calcium indicator GCaMP6f (Fig 2.1B, D, Fig. A.1) [57, 79, 85]. To control for
potential reactivity of astrocytes, we stained against the glial fibrillary acidic protein
(GFAP) sections of fixed tissue from animals implanted with the chronic hippocam-
pal window (Fig. A.1). As internal controls, we used the contralateral non-implanted
hemisphere from the same experimental animals. We quantified GFAP signals in im-
planted and control hemispheres in three regions: the Stratum Oriens, the Stratum
Pyramidale, and the Stratum Radiatum. We found similar GFAP immunoreactivity
in the Stratum Pyramidale and Radiatum in implanted hemispheres compared to
controls (Fig. A.1 E, F). In contrast, we observed increased GFAP immunoreactivity
in the Stratum Oriens in implanted hemispheres compared to controls (Fig. A.1 E,
F). These results are in line with previous publications [125, 126], which reported no
astrocyte reactivity in the Stratum Pyramidale, where imaging was performed, and
some astrocyte reactivity in a small region in the Stratum Oriens close to the glass
coverslip of the implant. We measured subcellular calcium dynamics of hippocampal
CA1 astrocytes during spatial navigation in a virtual monodirectional corridor (Fig
2.1C) [127]. Using the intersection of two stringent criteria (significance of mutual
information about spatial location carried by the cell’s activity, and reliability of
calcium activity across running trials; Methods, Fig. A.2), we found that a large
fraction of astrocytic regions of interest (ROIs) had calcium signals that were reli-
ably modulated by the spatial position of the animal in the virtual track (44 ± 21
%, 155 out of 356 ROIs, from 7 imaging sessions on 3 animals, Fig 2.1E, App. A
S1 Table, Fig. A.3). We defined the spatial response field of an astrocytic ROI as
the portion of virtual corridor at which that ROI showed, on average across trials,
increased GCaMP6f fluorescence (Methods). The distribution of astrocytic spatial
response field positions covered the entire length of the virtual corridor (Fig 2.1F,
G, N = 155 ROIs from 7 imaging sessions on 3 animals). The median width of the
astrocytic spatial field was 56 ± 22 cm (N = 155 ROIs from 7 imaging sessions in
3 animals, Fig 2.1H). ROIs with reliable spatial information had reproducible esti-
mates of spatial response profiles (Fig. A.3 B, C). Splitting the dataset in odd and
even trials resulted in a similar distribution of astrocytic field position compared to
the entire dataset (Fig 2.1F center and rightmost panels, Fig 2.1I). We computed
spatial precision as in [128] and found that calcium responses in astrocytic ROIs
encoding reliable spatial information were moderately more precise than their un-
modulated counterpart (Fig. A.3 D; spatial precision, median ± m.a.d. 3.2E-2 ±
0.6E-2, N = 155 out of 356 total ROIs, for ROIs with reliable spatial information;
3.0E-2 ± 0.5E-2 cm-1, N = 201 out of 356 total ROIs, for not-modulated ROIs: p =
3.8E-2, Kolmogorov-Smirnov test; 7 imaging sessions on 3 animals). We computed
response fields using running trials recorded either during the first or the second half
of each experimental session. As in [128], we considered as stable those response
fields showing an absolute difference in the estimated response field centers < 15
cm. We found that a fraction of astrocytic ROIs (10 ± 10 %, 35 out of 356 ROIs,
from 7 sessions in 3 animals) encoded reliable spatial information and had stable
response field. Moreover, we found that astrocytic calcium events were smaller when
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the mouse was still vs. when the mouse was locomoting [86, 129], and, for spatially
modulated ROIs, in the absence vs. presence of virtual reality (Fig. A.4 A, B).

Experiments performed with mice trained in a bidirectional virtual corridor (Fig.
A.5) [123, 124] confirmed the results obtained in the monodirectional virtual corri-
dor: a significant fraction of astrocytic ROIs carried significant information about
the spatial position of the animal in the virtual corridor and the distribution of po-
sition of the astrocytic spatial field covered the whole virtual corridor (29 ± 13 %,
N = 192 out of 648 ROIs in the forward direction; 20 ± 13 %, N = 133 out of 648
ROIs in the backward direction, p = 0.09 Wilcoxon signed rank test for comparison
between forward and backward directions, from 18 imaging sessions in 4 animals;
Fig. A.5 E, F). The median width of the spatial response field was 44 ± 20 cm, N
= 192 out of 648 ROIs in the forward direction and 44 ± 29 cm, N = 133 out of 648
ROIs in the backward direction (p = 0.34 Wilcoxon rank-sums test for comparison
between forward and backward directions, Fig. A.5 G). In the bidirectional virtual
corridor, astrocytic ROIs showed significant direction-selective spatial modulation
in their response field (Fig. A.5 H). Thus, hippocampal astrocytic calcium signaling
encoded spatial information.

Astrocytic calcium signaling has been shown to be organized at the subcellu-
lar level; the calcium dynamics of astrocytic cellular processes can be distinct from
those occurring in the astrocytic cell body [58, 59, 92, 93, 118]. We thus categorized
astrocytic ROIs (among the set of 356 described above) according to whether they
were located within main processes (process-ROIs) or cell bodies (soma-ROIs, Fig
2.2). Signals from both soma-ROIs and process-ROIs encoded spatial information
(Fig 2.2A). Moreover, a similar fraction of soma-ROIs and process-ROIs were mod-
ulated by the spatial position of the animal (42 ± 34 %, 19 out of 46 soma-ROIs vs
44 ± 21 %, 136 out of 310 process-ROIs, p = 0.61 Wilcoxon signed-rank test, from 7
imaging sessions on 3 animals). The distribution of field position of soma-ROIs and
process-ROIs similarly covered the entire length of the virtual corridor (Fig 2.2B,
Fig. A.6 A, App. A S1 Table). The average width of the astrocytic spatial field
did not differ between process-ROIs and soma-ROIs (Fig. A.6 B). Within individ-
ual astrocytes, the difference between the field position of a process-ROI and the
corresponding soma-ROI (both containing reliable spatial information) increased as
a function of the distance between the two ROIs (Fig 2.2C, Fig. A.6). Thus, spatial
information was differentially encoded in topographically distinct locations of the
same astrocyte.The difference between the field position of a process-ROI and the
corresponding soma-ROI did not depend on the angular position of the process with
respect to the soma (Fig. A.6). When comparing calcium activity across pairs of
ROIs with reliable spatial information (belonging to processes or somas across astro-
cytes), correlation decreased as a function of the pair distance (τdecay = 14 ± 2 µm,
R2 = 0.98) in the 0-50µm range, and then substantially plateaued for pair distances
between 50 µm and 160 µm (Fig 2.2F). This indicates that calcium signals encoding
reliable spatial information were coordinated across distant ROIs, even those puta-
tively belonging to different cells. In agreement with this observation, the difference
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in field position among pairs of ROIs with reliable spatial information increased as
a function of pair distance within 0-40 µm and then plateaued to a constant value
(τrise = 13 ± 7 µm, R2 = 0.79) for pair distances between 40-160 µm (Fig 2.2G).
Event-triggered averages of astrocytic responses representing temporal relationships
between calcium signals at different subcellular regions are shown in Fig. A.7.

Since calcium dynamics of individual astrocytic ROIs encodes significant spatial
information, it should be possible to decode the animal’s position in the virtual
corridor from single-trial calcium dynamics of populations of astrocytic ROIs. We
trained a Support Vector Machine (SVM) to classify the mouse’s position accord-
ing to a set of discrete spatial locations using a single-trial population vector made
combining calcium signals of all individual astrocytic ROIs within the FOV. We
computed the population decoding accuracy and the decoded spatial information
[114] as a function of spatial granularity, i.e., the number of discrete locations avail-
able to the SVM decoder (4, 8, 12, 16, 20, or 24 locations). We found that the SVM
predicted the animal’s spatial location across granularities (Fig 2.3A, App. A S1 Ta-
ble). Cross-validated decoding accuracy (Fig. A.8) and decoded spatial information
were significantly above chance (Fig 2.3B) across the entire range of spatial gran-
ularities (chance level was estimated by decoding position after randomly shuffling
spatial locations in the data while preserving the temporal structure of the popu-
lation calcium signals, see Methods). Disrupting the within-trial temporal coupling
within astrocytic population vectors while preserving single-ROI activity patterns
[130, 131] consistently decreased decoded spatial information (Fig 2.3B) and de-
coding accuracy (Fig. A.8). This suggests that within-trial interactions among
astrocytic ROIs encode spatial information not present in their individual activi-
ties. Misclassifications were more likely to happen among nearby locations across
all granularity conditions (Fig 2.3C), consistent with the idea that astrocytic activ-
ity allows localization of the animal’s position. Experiments performed with mice
trained in a bidirectional virtual environment (Fig. A.9) largely confirmed these
decoding results.
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Figure 2.1: Astrocytic calcium signals in the CA1 hippocampal area encode spatial in-
formation during virtual navigation. (A) Two-photon fluorescence imaging was performed
in head-fixed mice running along a monodirectional virtual track. (B) GCaMP6f was ex-
pressed in CA1 astrocytes and imaging was performed through a chronic optical window.
(C) Mice navigated in a virtual linear corridor in one direction, receiving a water reward
in the second half of the virtual corridor. (D) Median projection of GCaMP6f-labeled
astrocytes in the CA1 pyramidal layer. Scale bar: 20 µm. (E) Calcium signals for five
representative astrocytic ROIs encoding spatial information across the corridor length.
Solid black lines indicate the average astrocytic calcium response across trials as a func-
tion of spatial position. Dashed grey lines and filled grey areas indicate Gaussian fitting
function and response field width (see Methods), respectively (see also Fig. A.3). (F)
Normalized astrocytic calcium responses as a function of position for astrocytic ROIs that
contain significant spatial information (n = 155 ROIs with reliable spatial information out
of 356 total ROIs, 7 imaging sessions from 3 animals). Responses are ordered according to
the position of the center of the response field (from minimum to maximum). Left panel,
astrocytic calcium responses from all trials. Center and right panels, astrocytic calcium
responses from odd (center) or even (right) trials. Yellow dots indicate the center posi-
tion of the response field, magenta dots indicate the extension of the field response (see
Methods, vertical scale: 50 ROIs). (G) Distribution of response field position. (H) Distri-
bution of field width. (I) Distribution of the differences between the center position of the
response fields in cross-validated trials and odd trials (black) or cross-validated and even
trails (grey). Deviations for odd and even trials are centered at 0 cm: median deviation for
odd trials 2 ± 13 cm; median deviation for even trials -1 ± 17 cm, neither is significantly
different from zero (p = 0.07 and p = 0.69, respectively, Wilcoxon signed-rank test with
Bonferroni correction. N = 155 ROIs from 7 imaging sessions on 3 animals). The data
presented in this figure can be found in the S1 Data archive.
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Our virtual corridor was characterized by the alternation of three different pat-
terns (grid, vertical lines, and circles) similarly to [123, 124, 128]. The three patterns
covered the whole length of the virtual corridor (180 cm) and each pattern was pre-
sented for 60 cm of the corridor. Within each of these 60 cm-long visual cues, the
visual stimuli associated with each pattern were periodically repeated (Fig 2.1C).
Can the different visual cues account for the modulation of spatial information that
we observed in astrocytes? We reasoned that if astrocytes responses in the virtual
reality corridor were only modulated by visual cues regardless of the position in
which the visual stimulus was provided, then astrocytes calcium responses should
not have the power to discriminate between spatial locations within the 60 cm-long
spatial interval in which a single visual cue was presented. In such case, the as-
trocytic responses would not carry spatial information above and beyond the one
that is inherited from the information they carry about the identity of the visual
cue. To test whether astrocytic signals carried spatial information that cannot be
possibly attributed to visual cue modulation, we randomly shuffled the relationship
between position and astrocytic signals within each visual cue. This data shuffling
procedure preserves cue information carried by the astrocytes but destroys all the
genuine spatial information they carry above and beyond visual cue information.
The difference between the information carried by the real, unshuffled, responses
and the information carried by the shuffled responses quantifies the amount of spa-
tial position information carried by the astrocytes that cannot be possibly attributed
to spatial cue tuning. Analyzing individual astrocytic ROIs (Fig 2.4A), we found
that a large fraction (∼ 50 to 60 %) of spatially modulated ROIs carried signifi-
cantly more information than what could be solely explained by visual cue identity.
Moreover, when decoding the animals’ position from astrocytic population vectors
(Fig 2.4B, C, Fig. A.10), we found that the majority (∼ 55 to 65 %) of the decoded
information was genuinely information about position. We performed both analyses
dividing each visual cue in a number of spatial bins that was systematically varied
from 3 to 6, leading to an overall spatial granularity varying from 9 to 18, and
obtaining qualitatively similar results across granularities.

How does the astrocytic representation of spatial information relate to that of
neuronal cells? We combined astrocyte-specific expression of GCaMP6f with neu-
ronal expression of jRCaMP1a (Dana, Mohar et al. 2016) and performed simulta-
neous dual color hippocampal imaging with two-photon microscopy (Fig 2.5A, B,
Fig. A.11) during virtual navigation. We found that a sizable fraction of astrocytic
and neuronal ROIs (astrocytes, 22 ± 19 %, 76 out of 341 ROIs; neurons, 38 ± 13
%, 335 out of 870 ROIs, from 11 imaging sessions on 7 animals) reliably encoded
information about the spatial position of the animal in the virtual corridor. For both
astrocytes and neurons, the distribution of field position covered the entire length of
the virtual corridor (Fig 2.5C, D). The median width of the astrocytic spatial field
was statistically larger than that of neurons (Fig 2.5E, App. A S1 Table). Event
triggered averages of astrocytic ROIs signals triggered by neuronal signals are shown
in Fig. A.12. Both, neuronal and astrocytic calcium events were bigger when the



2.2. RESULTS 19

0 20 40
Distance from soma ( m)μ

0

45

90

R
es

po
ns

e 
fie

ld
 c

en
te

r
ab

s.
 d

iff
er

en
ce

 (
cm

)

0 40 80 120 160
Pairwise distance ( m)μ

0

75

150

R
es

po
ns

e 
fie

ld
 c

en
te

r
ab

s.
 d

iff
er

en
ce

 (
cm

)

0 40 80 120 160
Pairwise distance ( m)μ

0.0

0.5

1.0

Pe
ar

so
n

co
rr

el
at

io
n

0 90.0 180
Response field
center (cm)

Distance 
from soma

di

d0, d1, ..., dn
Pairwise 
distance 

A

B

CA

D

E

F

G

***

Figure 2.2: Topographic organization of
spatial information encoding in astrocytes:
somas vs processes. (A) Astrocytic ROIs in
a representative FOV are color-coded accord-
ing to response field position along the vir-
tual corridor. Scale 20 µm. (B) Normal-
ized astrocytic calcium responses as a func-
tion of position for astrocytic ROIs with reli-
able spatial information corresponding to so-
mas (top) and processes (bottom) (somas:
19 ROIs with reliable spatial information out
of 46 total ROIs; processes: 136 ROIs with
reliable spatial information out of 310 total
ROIs; data from 7 imaging sessions in 3 ani-
mals). Vertical scale: 10 ROIs. (C) Distance
between the center of a process-ROI and cor-
responding soma-ROI computed for each as-
trocyte. (D) Absolute difference in response
field position of a process-ROI with respect to
the field position of the corresponding soma-
ROI as a function of the distance between
the two (R2 = 0.21, p = 3.2E-6, Wald test,
data from 19 cells in which there was sig-
nificant spatial modulation in the soma and
at least one process; 7 imaging sessions on
3 animals). (E) The distance between the
centers of pairs of ROIs (d0, d1, dn) is com-
puted across recorded astrocytic ROIs. (F,
G) Difference between response field position
(G) and Pearson’s correlation (F) for pairs
of astrocytic ROIs containing reliable spatial
information across the whole FOV as a func-
tion of pairwise ROI distance. Grey lines in-
dicate single experiments, black line and the
grey shade indicate mean ± s.e.m, respec-
tively. Data from 41 cells in which there was
significant spatial modulation in at least one
ROI; 7 imaging sessions in 3 animals. In this
as well as in other figures: *, p ¡ 0.05; **,
p≤ 0.01; ***, p≤ 0.001. The data presented
in this figure can be found in the S1 Data
archive.
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mouse was engaged in locomotion (Fig. A.13 A), and for spatially modulated ROIs
in the presence vs. the absence of virtual reality (Fig. A.13 B). We then investi-
gated the organization of astrocytic and neuronal spatial representations across the
FOV. We found that calcium dynamics among mixed pairs of ROIs (one astrocytic
ROI with reliable spatial information and one neuronal ROI with reliable spatial
information) were significantly correlated (Fig. A.14), independent of pair distance
(0-160 µm; Fig 2.5F).

Figure 2.3: Efficient decoding of the animal’s spatial location from astrocytic calcium
signals. (A) Confusion matrices of a SVM classifier for different decoding granularities
(G = 4, 8, 12, 16, 20, 24). The actual position of the animal is shown on the x-axis,
decoded position is on the y-axis. The grey scale indicates the number of events in each
matrix element. (B) Decoded information as a function of decoding granularity on real
(white), chance (dark gray), and trial-shuffled (grey) data (see Methods). Trial-shuffling
disrupts temporal coupling within astrocytic population vectors while preserving single-
ROI activity patterns. Data are shown as mean ± s.e.m. See also App. A S2 Table. (C)
Decoding error as a function of the error position within the confusion matrix. The color
code indicates decoding granularity. Data in all panels were obtained from 7 imaging
sessions in 3 animals. The data presented in this figure can be found in the S1 Data
archive.

Correlation among pairs of astrocytic ROIs was generally higher than correlation
among pairs of neuronal ROIs (Fig. A.14 2.14, Fig. A.15), even when we strati-
fied the calculation of pairwise correlation for pairs of ROIs belonging to the same
astrocyte and for pairs of ROIs belonging to different astrocytes (Fig. A.14). The
difference in spatial field position of an astrocytic ROI with reliable spatial infor-
mation and a neuronal ROI with reliable spatial information was also largely inde-
pendent of pair distance (Fig 2.5G). We compared the spatial precision (Sheffield
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and Dombeck 2015) of astrocytic responses with that of neuronal responses. We
found that the responses of position-encoding neurons were more precise than the
responses of simultaneously recorded position-encoding astrocytic ROIs (mean ±
s.e.m.; neuronal responses 7.5E-2 ± 1.6E-2; astrocytic responses 4.1E-2 ± 0.2E-2;
p = 4.6E-2 Wilcoxon signed-rank test; 11 imaging sessions on 7 animals, Fig. A.16
A). We also compared astrocytic response field stability with neuronal place field
stability. We found that similar fractions of astrocytic ROIs and neuronal cells en-
coded reliable spatial information and had stable response field (astrocytes, 8 ± 7
%, 29 out of 341 ROIs; neurons, 16 ± 9 %, 139 out of 870 ROIs; p = 0.29, Wilcoxon
Rank-sum test; from 11 imaging sessions on 7 animals, Fig. A.16 B). Importantly,
we also found that a large fraction of astrocytic and neuronal ROIs showing spatial
modulation carried a significant amount of spatial information that could not be
explained by visual cue tuning (Fig. A.17 A, B). Moreover, when analyzing popu-
lation vectors using a support vector machine decoder, the majority (∼ 60 to 80 %,
Fig. A.18) of the total spatial information carried by either astrocytic or neuronal
ROIs could not be possibly explained by visual cue modulation. Thus, the majority
of spatial information in astrocytes and neurons is genuine spatial information that
cannot be explained by tuning to visual cues.

We then quantitatively tested whether calcium dynamics in astrocytes and neu-
rons carry the same or complementary information about space. We did so at the
pairwise level using mutual information analysis (Quian Quiroga and Panzeri 2009)
on all pairs of ROIs (either astrocytic, neuronal, or mixed pairs). Regardless of
pair identity, we found that information carried by pairs of ROIs was greater than
information carried by either ROI individually (Fig 2.6A, Fig. A.19). Moreover,
information carried by pairs of ROIs was higher than the sum of the information
carried by each of two ROIs, regardless of pair identity (Fig 2.6A, Fig. A.19, and
App. A S1 Table). Thus, information carried by the pairs was also synergistic.
To understand how correlations between ROIs leads to synergistic coding, we used
mutual information breakdown analysis of ROI pairs [132, 133]. This revealed two
notable results. First, the “signal-similarity” component of information (ISS), which
quantifies the reduction of ROI pair information, or redundancy, due to the simi-
larity of the trial-averaged response profiles of the individual ROIs (see Methods
and Fig. A.20), was close to zero. Thus, the diversity of spatial profiles allowed
ROIs to sum up their information with essentially no redundancy. Second, synergy
between elements of pairs was based on a positive stimulus-dependent correlation
component (ICD, see Methods and Fig. A.20), which contributed to increase the
joint information. Mathematically, ICD can be non-zero if and only if within-trial
correlations between ROIs are modulated by the animal’s position and they carry
information complementary to that given by position modulation of each individual
ROI [132]. Correlation enhancement of spatial information was found in a sizeable
fraction of pairs across all pair identities, including mixed pairs (Fig 2.6B). This was
because the strength of correlations between neurons and astrocytes marked the po-
sition in virtual corridor: for pairs of one neuronal ROI and one astrocytic ROI, the
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absolute magnitude of correlations showed a position-dependent modulation (Fig.
A.21), with stronger correlations inside the spatial fields.

Figure 2.4: The majority of spatial information in astrocytes is genuine spatial informa-
tion that cannot be explained by tuning to visual cues. (A) Fraction of astrocytic ROIs
encoding reliable spatial information showing a significant decrease in their information
content when position is shuffled within the same visual cue (see Methods). Shuffling po-
sition within the same visual cue decouples spatial information encoded in the astrocytic
response from the information related to visual cues identity (see Methods). The fraction
of ROIs showing significant information loss is shown as function of the number of position
bins used to compute mutual information. p = 3.5E-168, p = 3.2E-138, p = 5.0E-133,
and p = 5.2E-85 for 9, 12, 15, and 18 position bins, respectively; N = 155, Binomial test.
(B) Decoded information as a function of decoding granularity on real data (I, white) and
for data in which position is shuffled within the same visual cue (IV, grey). p = 1.6E-2,
p = 1.6E-2, p = 1.6E-2, and p = 1.6E-2 for decoding granularity of 9, 12, 15, and 18,
respectively. N = 7 imaging sessions, Wilcoxon Signed rank test. See also Fig. A.10. (C)
Fraction of genuine spatial information in astrocytic population vectors computed shuf-
fling position within individual visual cues. Results are shown as a function of decoding
granularity. In all panels, data are shown as mean ± s.e.m. and were obtained from 7
imaging sessions in 3 animals. The data presented in this figure can be found in the S1
Data archive.

Complementary and synergistic spatial information encoding in mixed pairs sug-
gested that the network of astrocytes that we imaged carried spatial information that
was not found in the imaged neurons and in their interactions. To directly address
this hypothesis, we computed the spatial information gained by decoding the ani-
mals’ position from an SVM operating on population vectors comprising either all
neuronal, all astrocytic, or all ROIs of both types. We found that neuronal, astro-
cytic, and mixed population vectors allowed to classify the animal’s position across
granularity conditions (Fig 2.6C-E and Fig. A.22). However, decoding population
vectors comprising both astrocytic and neuronal ROIs led to a greater amount of
spatial information than decoding either neuronal or astrocytic population vectors
separately (Fig 2.6D). This result supports the hypothesis that the population of
astrocytic ROIs encodes information not found in neurons or their interactions. In
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agreement with what we found in the pair analysis, information decoded from all
types of population vectors decreased when within-trial temporal correlations be-
tween cells were disrupted by trial shuffling (Fig 2.6E, Fig. A.22) (Pola, Thiele et al.
2003, Runyan, Piasini et al. 2017). Within-trial correlations were thus an important
factor for the complementary and synergistic contribution of astrocytes to spatial
information encoding at the population level.

Figure 2.5: Astrocytes have broader response field width and a different distribution of
field position compared to neurons. (A, B) ROIs corresponding to simultaneously recorded
GCaMP6f-labeled astrocytes (A) and jRCaMP1a-labeled neurons (B) in the CA1 pyra-
midal layer. ROIs are color-coded according to response field and place field center along
the virtual corridor, respectively. Scale bar, 20 µm. (C) Normalized calcium responses as
a function of position for astrocytic ROIs (left) and neuronal ROIs (right) that contain
a significant amount of spatial information (astrocytic ROIs, N = 76 ROIs with reliable
spatial information out of 341 total ROIs; neuronal ROIs, N = 335 ROIs with reliable
spatial information out of 870 total ROIs, data from 11 imaging sessions in 7 animals).
Responses are ordered according to the position of the center of the response field for
astrocytes and place field for neurons. Vertical scale bar, 20 ROIs. (D) Distribution of
astrocytic response field position (black line) and neuronal place field position (grey line,
p = 5E-4, Kolmogorov-Smirnov test for comparison between astrocytic and neuronal dis-
tribution). (E) Distribution of astrocytic response field width (black line) and neuronal
place field width (grey line, median width of astrocytic response field: 42 ± 22 cm, N
= 76; median width of neuronal place field: 37 ± 10 cm, N = 335, p = 2E-5, Wilcoxon
Rank-sum test for comparison between astrocytic and neuronal distribution). (F, G) The
inset shows astrocytic ROIs (green) and neuronal ROIs (pink). For all pairs, the distance
(d0, d1, dn) between the center of an astrocytic ROI and the center of a neuronal ROI,
both containing reliable spatial information, is computed. Pairwise Pearson’s correlation
(F) and difference between response field position for astrocyte-neuron ROI pairs (G) as
a function of pair distance. Data are from 11 imaging sessions in 7 animals (see also Fig.
A.15). The data presented in this figure can be found in the S1 Data archive.
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Figure 2.6: Spatial information encoding in astrocytes is complementary and synergistic
to spatial information encoding in neurons. (A) Information about position carried by
pairs of ROIs (I) compared to the sum (ILIN) or the maximum (IMAX) of the information
separately encoded by each member of the pair. A-A, pair composed of two astrocytic
ROIs; N-N, pair composed of two neuronal ROIs; A-N, mixed pair composed of one
astrocytic and one neuronal ROI (I vs. ILIN: A-A: p = 1E-3, N-N: p = 5E-3, A-N: p
= 1E-3; I vs. IMAX: A-A: p = 1E-3, N-N: p = 1E-3, A-N: p = 1E-3, Wilcoxon signed-
rank test, see also Fig. A.19 and App. A S3 Table). (B) Fraction of pairs encoding
spatial information encoding by correlations (A-A: p = 3E-2, N-N: p = 1E-3, A-N: p =
1E-3, Wilcoxon signed rank-test with respect to the null hypothesis that a pair could be
either synergistic or non-synergistic with equal probability set at 0.5). (C) Representative
confusion matrices of a SVM classifier decoding mouse position using population vectors
comprising neuronal (left) or astrocytic and neuronal ROIs (right), for different decoding
granularities (G = 12, 20, see also Fig. A.21). (D) Decoded information for population
vectors of different compositions (A, astrocytic ROIs only; N, neuronal ROIs only; A-N,
population vector considering all ROIs) as a function of decoding granularity (see App.
A S4 Table). (E) Same as in (D) but adding comparison with trial-shuffled data (lighter
bars) (see App. A S5 Table). In panels A-B, D-E data are represented as mean ± s.e.m.
In all panels, data are obtained from 11 imaging sessions in 7 animals. The data presented
in this figure can be found in the S1 Data archive.

2.3 Discussion

Our findings demonstrate, for the first time, that information-encoding cellular sig-
nals during virtual spatial cognition extend beyond neuronal circuits to include the
nearby astrocytic network. This information was expressed in spatially-restricted
subcellular regions, including cellular processes and somas, in agreement with pre-
vious work describing the complexity and compartmentalization of calcium signals
in these glial cells [59, 75, 92, 93, 98, 118]. Importantly, individual astrocytes could
encode multiple spatial fields across different subcellular compartments, suggest-
ing that a single astrocyte may integrate multiple neuronal spatial representations.
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Interestingly, the spatial representations in individual astrocytes displayed a con-
centric organization: the difference between the place field position of a subcellular
process and the place field position of the corresponding soma increases as a function
of distance. Most importantly, combining astrocytic and neuronal signals generated
significantly greater information about the animal’s position, suggesting the sig-
nals are both complementary and synergistic. The complementary and synergistic
information of astrocytes relied both on the diversity of position tuning and on
position-dependent correlations among astrocytic and neuronal ROIs similarly to
what observed on neuronal ROIs by (Stefanini, Kushnir et al. 2020). It should also
be considered that astrocytic signals may convey complementary information by si-
multaneously integrating the activity of several different neuronal inputs encoding
distinct stimulus-related variables (McNaughton, Barnes et al. 1983, Gauthier and
Tank 2018, Gois and Tort 2018).

Since the seminal observations of Cornell-Bell et al. [4] and Charles et al. [70],
it has been shown that astrocytic calcium signaling can be activated by the extra-
cellular increase in the concentration of neuroactive molecules [76, 134]. The source
of the observed calcium signaling has long been investigated and there is evidence
of both release from intracellular organelles (e.g., endoplasmic reticulum and mi-
tochondria, [6, 117] and direct calcium influx through the astrocytic plasma mem-
brane [135]. Moreover, while neuronal activity induces membrane depolarization
in astrocytes, these depolarizations are small (a few millivolts in maximal ampli-
tude), at least at the level of the astrocytic somata [93, 136, 137]. Pharmacological
studies demonstrated that these membrane potential depolarizations are mediated
mostly by K+ conductances and transporters-mediated currents [138]. For neu-
ronal activity-induced calcium signals, a largely accepted model [134, 139] is thus
that spillover of neurotransmitter release at the synaptic cleft activates receptors in
the plasma membrane of astrocytic processes, which enwrap the pre- and the post-
synaptic terminals. Activation of astrocytic receptors then causes the mobilization of
intracellular calcium signaling. Within this framework, it is interesting to note that
previous studies in vivo showed that calcium dynamics into astrocytes largely mirror
the activity of nearby neurons [46, 58, 109]. The information theoretic approach we
used in the present study instead shows that spatial information encoded in astro-
cytes is complementary to that encoded by nearby neurons. This observation raises
a series of questions about the molecular, anatomical, and network mechanisms that
may generate the observed information complementarity. Can complementarity be
generated by differences in the diffusion of pre-synaptically released neurotrans-
mitter that reaches postsynaptic neuronal terminals in the synaptic cleft vs. thin
astrocytic processes outside the cleft? Are the different molecular mechanisms regu-
lating intracellular signaling in neurons and astrocytes accountable for the observed
information complementarity? Additionally, can information complementarity stem
from astrocytes integrating spatial information from different sets (or different com-
binations) of pre-synaptic terminals compared to post-synaptic neurons? Our work
does not directly address the questions raised above and future studies combining
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experimental and modeling work will be fundamental to tackle these questions. It
is important to note that demonstrating by statistical analysis of cell activity, as we
did here, that astrocytes carry complementary spatial information is not sufficient
to demonstrate that this information is causal to circuit function or behavior. Ex-
perimental manipulations targeted to either astrocytes or neurons must be used to
establish causality [140]. To this aim, it will thus be necessary to perturb hippocam-
pal astrocytic and neuronal networks with high spatial and temporal resolution [141–
143] while monitoring downstream effects on circuit functions and behavior.

Models of hippocampal function posit that information about variables of the
external environment, which are key to spatial navigation and memory, is exclusively
encoded in population of neurons [144–147]. Our results challenge this established
view by revealing a fundamental new level of organization for information encoding
in the hippocampus during virtual navigation: spatial information, which accord-
ing to the information theoretical analysis used in this study is not available in
the activity of CA1 projecting neuron or in their interactions, is encoded in the
calcium dynamics of local non-neuronal elements and in their position-dependent
interaction with neurons. The presence of this additional non-neural reservoir of
information and the dependence of the interaction between neuron and astrocytes
on key cognitive variables suggest the possible presence of novel and unexpected
cellular mechanisms underlying how brain circuits encode information.

Can complementary spatial information encoded in astrocytic calcium dynamics
contribute to neuronal computation? If so, how? Although our data do not ad-
dress these questions, previous work in other brain regions reported that astrocytic
calcium dynamics largely mirror the activity of nearby neurons [46, 58, 109] and
that astrocytic signals translate into changes in neuronal excitability and synap-
tic transmission through various mechanisms (reviewed in [53, 76, 148, 149]). In
this scenario, changes in synaptic transmission and neuronal excitability induced by
astrocytic calcium dynamics that simply mirror neuronal information would only
modulate neural activity without providing further information, as all the activity-
dependent information is already encoded in the neuronal activity. For example,
if the neuronal tuning curve and the astrocytic-induced change in neural function
are similarly modulated by the animal’s position, no additional dependence of neu-
ronal function by position would be introduced by astrocyte-neuron interactions.
Conversely, our findings suggest that astrocytic calcium dynamics carrying comple-
mentary information to that of neurons enable modulations of synaptic transmis-
sion and neuronal gain which could increase the computational capability of neural
circuits [150, 151]. For example, changing the gain of neurons with a coordinate sys-
tem complementary to that regulating its tuning function has been shown to endow
neural networks with richer computations [150, 152]. Moreover, targeted dynamic
control of neural excitability (e.g., changing the gain of a subset of neurons in the
network rather than the whole network) can greatly increase the dynamic reper-
toire and coding capabilities of circuits, for example by making it possible to reach
different attractors from a similar set of initial conditions [153]. We thus propose
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that the complementary place-dependence of the astrocytic calcium dynamics and
the place-dependence of astrocytic-neuron interactions reported here facilitate the
emergence of dynamic, context-dependent changes in population coding of CA1 neu-
rons. Within this scenario, local neuromodulation of the space-encoding properties
of projecting CA1 neurons by astrocytes could affect hippocampal output. Future
experiments involving selective perturbation (e.g., activation or inactivation) of as-
trocytic calcium signaling will be needed to test this hypothesis. Our work calls for
a re-examination of the theory of place coding and of brain population codes in light
of the opportunities offered by the suggested complementary astrocytic information
coding. We propose that the complementary regulation of astrocytic calcium activ-
ity and of its interaction with neurons may reflect a general principle of how the
brain encodes information. This conclusion may extend beyond the hippocampus
and spatial navigation to other brain regions and cognitive tasks and it will need to
be included in the conceptualization of brain function.

2.4 Methods

Data analysis

Motion correction, image segmentation, and trace extraction Analysis
was performed using Python 3.6 (python.org) and custom code. t-series were pre-
processed to correct motion artifacts using an open-source implementation of up-
sampled phase cross-correlation [154, 155]. Each t-series was motion corrected using
its median projection as reference frame. Corrected t-series were then concatenated
in a single movie and, to compensate small x-y drifts across t-series, motion corrected
using its median projection image as the reference frame. Regions (typically at the
edges of the field of view) within which artifacts could not be corrected were not
considered for analysis.

For astrocytic recordings, ROI segmentation was performed on median projec-
tions after motion correction using manual annotation. Astrocytic ROIs were clas-
sified as soma or process according to visible anatomic features. For each ROI,
fluorescence signals were computed as:

∆F

F0

=
F (t)− F0(t)

F0(t)
(2.1)

where F(t) is the average fluorescence signal of a given ROI at time t, and F0(t) is the
baseline fluorescence, computed as the 20th percentile of the average fluorescence
intensity in a 30 s-long rolling window centered in t.

For neuronal recordings, cell identification was performed on the median tem-
poral projection of each t-series, after motion correction, by identifying rectangular
boxes containing the neuronal soma of the identified neuron, as in [156]. Within
the rectangular box, pixels were ranked according to the pixel signal-to-noise (SNR)
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using the following formula:

SNRi,j =
maxi,jFi,j(t)

noisei,j
(2.2)

where maxFi,j(t) is the maximum fluorescence intensity of the pixel i,j, at time t
and noisei,j was computed as the standard deviation across all fluorescence values
of the t-series below the 25th percentile of the fluorescence distribution of the pixel
i,j [156]. Only pixels with SNR value greater than the 80th percentile of the SNR
distribution were considered as part of the ROI corresponding to the considered
rectangular box. The neuropil signal was computed as the average trace of all pixels
in the time series not belonging to bounding boxes. This value was multiplied by a
factor r = 0.7 [79] and then subtracted from each fluorescence trace. ∆F/F0 traces
were computed as:

∆F

F0

=
F (t)− F0(t)

F0(t)
(2.3)

where F (t) is the neuropil-subtracted fluorescence trace signal at time t, and F0(t)
is the baseline trace computed as 20th percentile of the average intensities in a 10 s
rolling window centered in t.

Identification of calcium events For both astrocytic and neuronal fluorescence
traces, extraction of statistically significant calcium events was performed on ∆F/F0

traces via modified implementation of the algorithm described in [129]). In brief,
for each trace, a first parameter (σ1) was computed as the standard deviation of
the whole signal. Values crossing the threshold set at ± σ1 were removed from the
trace and a second parameter (σ2) was computed as the standard deviation of the
thresholded trace. This procedure avoided biases induced by large signal transients
on the estimation of the signal standard deviation in the absence of transients and
provided a better estimation of signal baseline fluctuations (σ2). For astrocytic
traces, fluorescence transients were identified on the original trace (thus considering
all data) as events that: i) crossed the threshold of ± 2σ2; ii) returned within ±
σ2 in more than 0.5 [129]). For both astrocytic and neuronal signals, these criteria
were selected to obtain a false discovery rate ¡ 5%, according to the following:

FDR =
NEn

NEp +NEn

(2.4)

where NEp and NEn are the numbers of identified positive and negative deflections
of the ∆F/F0 trace, respectively. For all subsequent analysis, an event trace was
obtained from the ∆F/F0 trace by setting all fluorescence values outside of those
belonging to positive events to 0.

Identification of reliable spatial modulation of calcium signals To evaluate
if and how position in the virtual corridor modulated calcium signals, we applied
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two basic requirements: that activity carried significant information about position,
and that the spatial modulation properties were reliably reproducible across subsets
of trials. We restricted the analysis to running-trials, defined as consecutive frames
of forward locomotion in which mouse speed was greater than 1 cm/s. Running-
trials separated by less than 1 s were merged. The average number of running-trials
per experimental session was 32 ± 3 trials/session (N = 18 experimental sessions)
for monodirectional experiments and 30 ± 3 trials/session (N = 18 experimental
sessions) for bidirectional experiments. Monodirectional running-trials were on av-
erage longer than bidirectional ones (mean running-trial length for monodirectional
virtual navigation, 140 ± 3 cm, N = 18; mean running-trial length for bidirectional
virtual navigation: 49 ± 4 cm, N = 18). Calcium responses were considered with re-
liable spatial information if they matched both of the following criteria: i) response
field reliability was greater than 0 (see Spatial reliability of calcium responses); and
ii) mutual information between position and calcium event trace was significant (see
Spatial information in calcium signals). The same criteria were applied to astrocytic
ROIs and neuronal ROIs.

Analysis of calcium responses during virtual navigation Analysis was per-
formed on all running-trials, binning the length of the virtual corridor (number of
spatial bins, 80; bin width, 2.25 cm). For each ROI, the occupancy map was built
by computing the total amount of time spent in each spatial bin. The activity map
was computed as the average fluorescence value in each spatial bin. Both the ac-
tivity map and the occupancy map were normalized to sum 1 and convolved with
a Gaussian kernel (width of the Gaussian, σ, was equal to 3 spatial bins, which
corresponded to 6.75 cm). The response profile of an ROI, RP, was defined as the
ratio of the activity map over the occupancy map for that ROI. For each RP, we
identified a response field, RF , as follows: i) the array of local maxima greater
than the 25th percentile of the response profile values was selected, C = (c0, c1,
... , cn) ; ii) the elements of C were used to initialize the fitting of the sum of a
set of n parametrized Gaussian functions, with mean at one of the elements of C,
amplitude (a) at 0 ≤ a ≤ 1, and standard deviation (σ) at 0 ≤ σ ≤ 90 cm; iii) this
set of Gaussian functions was fitted to the response profile to solve a non-linear least
squares problem (curve-fit function from (Virtanen, Gommers et al. 2020)); and iv)
the response field was defined as the Gaussian with the highest amplitude and the
response field width was defined as 2σi. Thus:

RP ≃
∑
ci∈C

aie
− (x−ci)

2

2σ2
i with


0 ≤ ci ≤ 180cm ∀ci ∈ C

0 ≤ ai ≤ 1 ∀ai ∈ A
0 ≤ σi ≤ 90cm ∀σi ∈ S

(2.5)

RF = aie
− (x−ci)

2

2σ2
i with i = argmax(A) (2.6)

Reliability and stability of calcium spatial responses To quantify spatial
reliability of response fields, we computed response profiles subsampling either odd
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or even running-trials. For either fraction of running-trials we estimated response
field center (codd, ceven) and response field half-width (σodd, σeven). We quantified
spatial reliability of calcium responses as a similarity index, where the absolute
difference of response field centers, obtained with either fractions of the running-
trials, was inversely weighted by the most conservative estimate of response field
width:

Reliability − 1− |codd − ceven|
2min(σodd, σeven)

(2.7)

ROIs with reliability greater than 0 were considered reliable (Fig. A.2). To classify
response field stability, we computed response profiles subsampling running trials
recorded either in the first (h1) or the second (h2) half of the experimental session.
For either half of the trials, we computed response field center (ch1, ch2). ROIs with
an absolute difference in response field centers smaller than 15 cm were considered
stable (Sheffield and Dombeck 2015).

Spatial information in calcium signals We used information theory to quan-
tify our information gain (or reduction of uncertainty) about position obtained by
knowing the calcium response [113, 114]. We computed the mutual information,
I(S;R), between position in the linear track, stimulus (S), and the calcium event
trace, response (R), as follows:

I(R;S) =
∑
s

p(r)
∑
r

p(r|s) log2
P (r|s)
P (s)

(2.8)

with S and R representing the arrays of all possible discrete values of stimulus or
response, p(s) the probability of the stimulus s, p(r) the probability of the response
r across all trials to any stimulus, and p(r—s) the conditional probability of the
responses r given presentation of stimulus s. We characterized the effects of dis-
cretization on the estimates of mutual information, computing mutual information
while changing the number of discrete states (N) for both S (NS = 4, 8, 12, 16,
20, 24, 40, 60, 80, 100, 160) and R (NR = 2, 3, 4, 5, 8, 10, 20). For the stimulus
we used a uniform count binning procedure and for the response we used equally
spaced bins. Statistical significance of mutual information was tested using a non-
parametric permutation test. We randomly permuted the calcium event trace 104
times, removing any relationship between R and S. We used shuffled traces to com-
pute a null distribution of mutual information values. A mutual information value
was considered significant if greater than the 95th percentile of the null distribution.
Mutual information values were conservatively corrected for limited-sampling bias
subtracting the mean value of the null distribution [157, 158]. The results of this
analysis for astrocytic ROIs are reported in Fig. A.2. To allow robust estimates of
mutual information values while preserving adequately fine discretization of posi-
tion, we used Ns = 12 throughout the manuscript. For single ROIs analysis reported
in figures Fig 2.1, Fig 2.2, and Fig 2.5, we used NR = 4 to discretize astrocytic cal-
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cium event traces and NR = 2 for binarized neuronal event traces (setting to 1 all
the non-zero values as in (Ziv, Burns et al. 2013)).

Response profile standard error A Jackknife estimator [159, 160] of the as-
trocytic response profile - RP - was computed as the average of n-Jackknife samples
obtained by iteratively omitting one running-trial from the computation. We used
this deterministic approach to compute Jackknife standard error (SE) as a function
of ROIs spatial modulation (Fig. A.3).

RP =
1

n

n∑
i=1

RPi with i = 1, ..., n (2.9)

and

SE =

√√√√n− 1

n

1

n

n∑
i=1

(RPi −RP )2 (2.10)

For each ROI, we measured the difference between the response field center computed
using the Jackknife estimator of the RP and the response profiles computed using
either odd or even running-trials (Fig 2.1I).

Spatial precision of calcium responses During monodirectional virtual navi-
gation, we measured the spatial precision of calcium responses (SP) with the method
reported in (Sheffield and Dombeck 2015). For each ROI reliably encoding spatial
information, we binned the length of the virtual corridor in m bins (m = 40; bin
width, 4.5 cm) and for each running trial (n) we calculated the center of mass
(COMn) of the calcium response (Eq. 11), where DFi is the value of the event trace
observed in the i-th bin and xi is the center of the i-th bin. For each ROI, we then
computed the average center of mass across N trials (COMw, Eq. 12), weighting
each COMn by the peak amplitude of the event trace during the n-th running trial
(An). Spatial precision was computed as the inverse of the trial-by-trial squared
difference between COMn and COMw weighed by peak amplitude (Eq. 13).

COMn =

∑i
m DFixi∑i
m DFi

(2.11)

COMw =

∑n
N COMnAn∑n
N COMn

(2.12)

SP = (

√∑n
N(COMn − COMw)2∑n

N An

)−1 (2.13)

When comparing spatial precision of astrocytic and neuronal responses (Fig.
A.16), we corrected for the different dynamic range (DR) of the two genetically
encoded calcium indicators. For each imaging session, we estimated DRA and DRN
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as the mean DR for astrocytic and neuronal event traces, respectively (mean ±
s.e.m; DRA = 0.95 ± 0.13 for 76 astrocytic ROIs expressing GCaMP6f; DRN =
0.54 ± 0.06 for 335 neuronal ROIs expressing jRCaMP1a; data from 11 imaging
sessions from 7 animals). We corrected spatial precision of neuronal responses in
each imaging session by the factor DRA /DRN.

Directionality of astrocytic spatial responses In experiments where the mouse
performed bidirectional navigation, astrocytic ROIs could be spatially-modulated in
either running direction. To quantify whether responses were direction selective, we
computed the directionality index (DI) as:

DI =
Fd − Fo

Fd − Fo

(2.14)

where Fd was the average of ∆F/F0 inside the response field, and Fo was the average
of ∆F/F0 at the same response field while running in the opposite direction. DI
¿ 0 indicated that average response at the response field was direction-selective.
We compared the distribution of DI values for all spatially-modulated ROIs with
surrogate data. To this end, we randomly selected one of the informative ROIs and
computed DI after applying a random shift of response field position along the linear
track while preserving its width. We repeated this operation 105 times, obtaining
a distribution of DI values representing the occurrence of DI values at any spatial
location as wide as a response field.

Population analysis using Mutual Information For experiments in which
we simultaneously recorded astrocytic and neuronal calcium activity, we used all
running-trials to compute the mutual information about animals’ position obtained
by observing the calcium signals of a pair of simultaneously recorded ROIs. Results
are reported as a function of pair composition, with pairs containing either two as-
trocytic ROIs, two neuronal ROIs, or one element of each type. Mutual information
between the spatial position, S, and the array of joint responses for a pair of ROIs,
R = (R1,R2), was computed as (Pola, Thiele et al. 2003):

I(R;S) =
∑
s

p(r1, r2)
∑
r

P (r1, r2|s) log2
P (r1, r2|s)

P (s)
(2.15)

where p(s) is the probability stimulus s, p(r1, r2) is the probability of joint responses
r1 and r2 across all trials to any stimulus, and p(r1, r2|s) is the conditional probabil-
ity of the joint responses r1 and r2 given presentation of stimulus s. For consistency
with single-ROI analysis, spatial position was discretized with Ns = 12. To allow
consistent scaling of probability spaces and comparable information values, the as-
trocytic calcium event trace was binned with NR = 2 (we verified that the main
conclusions were maintained when using NR = 3 and NR = 4), and NR = 2 for
neuronal calcium event trace discretization, as described for single neuron analysis.
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To correct mutual information bias caused by limited sampling of astrocytic or neu-
ronal responses, we performed quadratic extrapolation correction [133, 161] using
100 iterations. To quantify whether the within-trial correlations of a given ROI
pair enhanced the amount of position information carried by the pair, we used trial-
shuffling to disrupt the within-trial correlations between ROIs while keeping intact
the spatial position information of individual ROIs. Within subsets of trials with
the same position bin, we generated pseudo-population responses by independently
combining shuffled identities of trials for each ROI. Thus, responses of individual
ROIs to the spatial position were maintained while within-trial correlations between
ROIs were disrupted. We computed 100 trial-shuffling estimates of mutual infor-
mation, I(S;R)trial-shuffled , for calcium responses at fixed position. A pair was
classified as having information enhanced by correlations, if I(S;R) was greater than
the 95th percentile of the corresponding I(S;R)trial-shuffled distribution.

Information Breakdown We performed information breakdown analysis [132,
133]. We decomposed spatial information carried by a pair of ROIs, I(S;R), into 4
terms. Each term expressed a different contribution carried by correlations to the
information between the ROIs. The decomposition is as follows:

I(R;S) = ILIN + ISS + ICI + ICD (2.16)

ILIN, the mutual information linear term, is the sum of the information provided
by each ROI. ISS (signal similarity term) is a non-positive term quantifying the
decrease of information (amount of redundancy) due to signals correlation caused
by correlations between the trial-averaged spatial position profiles of the calcium
signals of the two ROIs. ICI (stimulus independent correlation) is a term that can
be either positive, null, or negative and that quantifies the contribution of stimulus-
independent correlations. ICI is negative if noise and signal correlations have the
same signs and positive otherwise. ICD (stimulus-dependent correlational term) is
a non-negative term that quantifies the amount of information, above and beyond
that carried by the responses of individual ROIs carried by stimulus modulation of
noise correlation strength. Although ICD is strictly non-negative, ICD values could
occasionally become slightly negative due to quadratic extrapolation bias correction.
The above calculations of I(S;R) were conducted with a bias correction procedure
that, with the typical number of trials per spatial location represented in our data
(mean ± s.e.m. 72 ± 7 trials/location), was shown to be accurate for removing
the limited sampling bias [162]. However, it was also shown to leave on average, a
small residual positive overestimation that tended to slightly over-estimate synergy
[162]. To make sure that our results of prevalent synergy could not be explained
by a residual positive bias, we repeated the calculation with the bias correction
procedure described and termed “shuffled” in [162]. The shuffling correction has
a higher variance but overcorrects the bias and leaves overall a smaller residual
underestimation of I(S;R). We found that this alternative bias correction procedure
generated results similar to the ones presented in the paper (Fig. A.19 and App.
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A S3 Table). The fact that our findings are stable using two methods biased in
opposite directions, shows that our information estimations are accurate and that
the results are solid and conservative.

Position-dependent correlation To measure whether correlation between pairs
of neuronal and astrocytic ROIs was position-dependent, we computed pairwise
Pearson’s correlations between calcium signals sampled inside and outside the re-
sponse fields. On average, response fields were smaller than half the linear track,
thus either set of observations, inside or outside the response field, could contain
uneven amounts of datapoints. To compensate for the unbalanced numerosity, we
resampled the same number of points found in the smaller set, while preserving
temporal ordering. We then computed Pearson’s correlation between the two vec-
tors. For each pair of ROIs, we computed the average Pearson’s correlation with
100 iterations of this procedure. We repeated this procedure inside both astrocytic
fields and neuronal response fields.

Population analysis using SVM decoder of spatial position To decode an-
imals’ position from a population of ROIs, we trained an SVM classifier with Gaus-
sian kernel (Bishop 2006, Pedregosa, Varoquaux et al. 2011, Bzdok, Krzywinski et
al. 2018). We performed decoding analysis on three datasets: i) astrocytic signals
during monodirectional virtual navigation; ii) astrocytic signals during bidirectional
virtual navigation; iii) simultaneous recording of astrocytic and neuronal signals
during monodirectional virtual navigation. Experimental sessions were considered
independently. We evaluated decoding performance as a function of decoding gran-
ularity, G, i.e., the number of spatial bins we used to discretize the linear track.
For monodirectional virtual navigation, we used G = (4, 8, 12, 16, 20, 24), and for
bidirectional virtual navigation, for which there was a limited number of running
trials, we used G = (4, 8, 12, 16). All experimental sessions with at least three
observations in each spatial bin were included in the analysis. For experiments in
which we recorded astrocytic and neuronal calcium activity simultaneously, we mea-
sured decoding performance for multiple population settings, using both astrocytic
and neuronal signals, or excluding either one. We used experimental session as
the n-dimensional array of calcium event traces (n = number of ROIs) to decode
discretized positions along the virtual linear track at each time point. Each experi-
mental session was composed of a set of Texp observations (Xi,yi), where Xi is the
n-dimensional array of the calcium activity of the n ROIs, whereas yi corresponds
to the discretized spatial position. For each granularity, we trained and tested the
SVM using 10-fold cross-validation procedure on each experimental session inde-
pendently. During each iteration of the cross-validation, the SVM was trained and
optimal hyperparameters were selected performing 5-fold cross-validation on each
fold training-set. Predictions of the decoder for each of the 10-folds used as test
were then collected to compute the overall performance of the decoder.
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For each granularity, we measured decoding performance computing decoded
information, as the mutual information between predicted and real spatial position
[114]:

I(S;Sp) =
∑
s,sp

p(s, sp) log2
p(s, sp)

p(s)p(sp)
(2.17)

where sp denotes the decoded spatial position (with the SVM method described
above) from the population response vector in each trial, s is the actual spatial
position of the animal, and p(s;sp) is the decoder’s confusion matrix obtained from
the predictions of the 10-folds cross-validation test-set. We corrected mutual in-
formation measures for the limited sampling bias using the conservative bootstrap
correction method described in [157, 158, 162].

Decoding performance was also computed as decoding accuracy (fraction of cor-
rect predictions):

Accuracy =
number of correct predictions

total number of predictions
(2.18)

To assess the statistical significance of decoding results, we trained and tested the de-
coder on each experimental session after randomly permuting position and responses.
This procedure removed all information about position carried in the responses. We
performed 103 random permutations for each granularity and population type. We
then used the distribution of information values on permuted data as the null hy-
pothesis distribution for the one-tailed non-parametric permutation test of whether
information was significantly larger than zero. We repeated this procedure sepa-
rately for each granularity.

To assess if the correlations among neurons and/or astrocytes increased the
amount of spatial information, we disrupted across-neuron correlations by randomly
shuffling, separately for each ROI, the order of trials with the same position cat-
egory. We performed 500-trial shuffling for each granularity and population type.
We then used the trial-shuffled distribution as the null hypothesis distribution for
the one-tailed non-parametric permutation test of whether the information in the
real population vector (which includes correlations) is significantly higher than that
obtained when correlations are removed.

Decoding error analysis We investigated classification errors made by the de-
coder for each decoding granularity. We considered only misclassified samples in
the test set and we measured the distance between the position predicted by the
decoder and the ground truth position. We computed the frequency histogram of
these deviations from the ground truth, and fitted a Gaussian curve [163] using
non-linear least squares. For each histogram, we computed R2 score to quantify the
fitting performance.
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Computing genuine spatial information that cannot be possibly attributed
to visual cue information To assess whether spatial information encoded in a
calcium response could be attributed to visual cues, we leveraged on the structure of
the visual patterns of the virtual linear track. Three distinct visual cues covered the
whole length of the corridor each in 60 cm long segments. Within each segment, the
visual stimuli were periodically repeated (Fig 2.1C). We reasoned that, if responses
in the virtual reality corridor were only modulated by visual cues, regardless of the
position in which the visual stimulus was provided, then it would not be possible
to discriminate between positions within the spatial extent of each visual cue (60
cm). In such case, the responses would not carry any spatial information above and
beyond the one that is inherited from the information they carry about the iden-
tity of the visual cue. To quantitatively test this hypothesis, we computed mutual
information using (Eq. 8), while randomly shuffling positions of calcium responses
observed within the spatial extent of each visual cue (IV). This spatially targeted
permutation procedure preserved the information about visual cues identity, while
it destroyed all the genuine spatial information carried by the response beyond vi-
sual cue information. We repeated this spatially targeted permutation procedure
generating a distribution of IV values for each ROI (100 permutations). Information
values were corrected for the limited sampling bias using the Panzeri-Treves proce-
dure [158]. Responses were considered as carrying information beyond visual cue
identity if the real information, I, was greater than 95th percentile of the distribu-
tion of IV. Positions and responses were discretized using uniform-width bins. We
systematically characterized the effect of position discretization on the estimates of
I and IV repeating binning spatial positions into different number of spatial bins
NS (NS = 9, 12, 15 18). We used numbers of bins that were multiple integers of
3 to ensure that each spatial bin fell within an individual 60 cm-long visual cue
zone. The number of response bins NR for astrocytic and neuronal responses were 4
and 2, respectively. We extended this analysis measuring information on population
response vectors. We trained and tested the SVM decoder to decode discretized
positions along the virtual linear track from the n-dimensional array of calcium
event traces on each experimental session, while performing the spatially targeted
permutation procedure described above. We repeated the permutation procedure
500 times to build a distribution of decoded information (Eq. 17) to estimate IV.
For each experimental session, we computed the mean value of decoded information
as the average of IV distribution. We repeated this procedure systematically vary-
ing the value of decoding granularity G (again using multiple integers of 3 for the
number of spatial bins, thus leading to use G = 9, 12, 15, 18).

Statistics Significance threshold for statistical testing was always set at 0.05. No
statistical methods were used to pre-determine sample size, but sample size was
chosen based on previous studies [124, 127, 128]. Statistical analysis was performed
using Python (SciPy 0.24, NumPy 1.19, statsmodels 0.9), or the InfoToolbox li-
brary [133] available for Matlab (MathWorks R2019b). A Python 3 [164] (version
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3.6) front-end was used for execution. To test for normality, either a Shapiro-Wilks
(for N ≤ 30) or a D’Agostino K-squared test (for N ¿ 30) was run on each experi-
mental sample. When comparing two paired populations of data, a paired t-test or
Wilcoxon signed-rank test were used to calculate statistical significance (for normal
and non-normal distributions, respectively). Independent samples t-test and two-
sample Kolmogorov-Smirnov test or Wilcoxon rank-sum test were used for unpaired
comparisons of normally and non-normally distributed data, respectively. A bino-
mial test was used to test if the fraction of successes at the population level in a
number of statistical test performed at p = 0.05 could be due to chance. Bonferroni
correction was applied to correct for the multiple testing problem when appropriate.
Surrogate data testing was performed as described in the specific methods sections.
All tests were two-sided, unless otherwise stated. When reporting descriptive statis-
tics of data distributions, we used either the mean ± standard deviation (mean ±
s.d.) for normal data or the median ± median absolute deviation (median ± m.a.d.)
for non-normal data. Datasets reporting average values across experimental sessions
were presented as mean ± standard error of the mean (mean ± s.e.m.). Bootstrap
estimation was performed to identify 95% confidence intervals for mean values and
for mean differences (Dekking, Kraaikamp et al. 2005), where appropriate [165].
Effect size was quantified as Cohen’s d coefficient (Cohen 1988).

Experimental procedures

Animals All experiments involving animals were approved by the National Coun-
cil on Animal Care of the Italian Ministry of Health (authorization 61/2019-PR) and
carried out in accordance with the guidelines established by the European Commu-
nities Council Directive. From postnatal day 30, animals were separated from the
original cage and housed in groups of up to five littermates per cage with ad libitum
access to food and water in a 12-hour light-dark cycle. Experimental procedures
were conducted on animals older than 10 weeks. The number of animals used for
each experimental data set is specified in the text or in the figure legends.

AAV injection and chronic hippocampal window surgery Astrocytic-specific
GCaMP6f expression was obtained using pZac2.1 gfaABC1D-cyto-GCaMP6f (Ad-
dgene viral prep # 52925-AAV5 a gift from Dr. Khakh, [85, 98]). Neuronal-specific
jRCaMP1a expression was obtained using pAAV-CAMKII-jRCaMP1a (kindly pro-
vided by Dr. O. Yizhar) which was then packaged as AAV serotype 1-2 viral particles
[166].

Male C57Bl6/j mice were anesthetized with 2% isoflurane/0.8% oxygen, placed
into a stereotaxic apparatus (Stoelting Co, Wood Dale, IL), and maintained on a
warm platform at 37 °C for the whole duration of the anesthesia. Before surgery,
a bolus of Dexamethasone (4 mg/kg, Dexadreson, MSD Animal Health, Milan,
Italy) was provided with an intramuscular injection. After scalp incision, a 0.5 mm
craniotomy was drilled on the right hemisphere (1.75 mm posterior, 1.35 mm lateral
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to bregma) and the AAV-loaded micropipette was lowered into the hippocampal
CA1 region (1.40 mm deep to bregma). 800 nL of AAV solution was injected at
100 nL/min by means of a hydraulic injection apparatus driven by a syringe pump
(UltraMicroPump, WPI, Sarasota, FL). Following the viral injection, a stainless-
steel screw was implanted on the cranium of the left hemisphere and a chronic
hippocampal window was implanted similarly to [124, 128]. A drill was used to
open a 3 mm craniotomy centered at coordinates 2.00 mm posterior and 1.80 mm
lateral to bregma. The dura was removed using fine forceps, and the cortical tissue
overlaying the hippocampus was carefully aspirated using a blunt needle coupled to
a vacuum pump. During aspiration, the exposed tissue was continuously irrigated
with HEPES-buffered artificial cerebrospinal fluid (ACSF). Aspiration was stopped
once the thin fibers of the external capsule were visible. A cylindrical cannula-based
optical window was fitted to the craniotomy in contact to the external capsule and
a thin layer of silicone elastomer (Kwik-Sil, World Precision Instruments, Sarasota,
FL) was used to surround the interface between the brain tissue and the steel surface
of the optical window. A custom stainless-steel headplate was attached to the skull
using epoxy glue. All the components were secured in place using black dental
cement and the scalp incision was sutured to adhere to the implant. Animals received
an intraperitoneal bolus of antibiotic (BAYTRIL, Bayer, Germany) at the end of
the surgery.

Optical windows were composed of a thin-walled stainless-steel cannula segment
(OD, 3 mm; ID, 2.77 mm; height, 1.50 - 1.60 mm). A 3.00 mm diameter round
coverslip was attached to one end of the cannula using UV curable optical epoxy
(Norland optical adhesive 63, Norland, Cranbury, NJ). Sharp edges and bonding
residues were smoothed using a diamond-coated cutter.

Virtual reality A custom virtual reality setup was implemented using the open-
source 3D creation suite Blender (blender.org, version 2.78c). Virtual environment
rendering was performed using the Blender Game Engine and displayed at video
rate (60 Hz). The virtual environment was a linear corridor with the proximal walls
characterized by three different white textures (vertical lines, mesh, and circles) on
a black background. Distal walls were colored in green and labeled with a black
cross. The corridor was 180 cm long and 9 cm wide. The character avatar was a
sphere of radius 2 cm with a rectangular cuboid protruding at the equator parallel
to the corridor floor (cuboid dimension: x = 5 cm, y = 1 cm, z = 1 cm). The cuboid
acted as a virtual touch sensor with the environment. The character point of view
(220° horizontal, 80° vertical) was rendered through a composite tiling of five thin
bezel-led screens. The virtual corridor implementation described above was used
for both monodirectional and bidirectional navigation. In monodirectional virtual
navigation, mice navigated the environment running on a custom 3D printed wheel
(radius 8 cm, width 9 cm). An optical rotary encoder (Avago AEDB-9140-A14,
Broadcom Inc., San Jose, CA) captured motion and a single board microcontroller
(Arduino Uno R3, Arduino, Ivrea, Italy) performed USB-HID-compliant conversion
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to a serial mouse input. In bidirectional virtual navigation, mice navigated the en-
vironment using an air-suspended Styrofoam ball (radius, 10 cm) and a Bluetooth
optical mouse (M170, Logitech, Lausanne, Switzerland) was used to read the vertical
and horizontal displacement. In both monodirectional and bidirectional navigation,
physical motion of the input devices was mapped 1:1 to the virtual environment.
To motivate corridor navigation, mice received 4 µl water rewards upon reaching
specific locations. Rewards were delivered through a custom steel lick-port con-
trolled by a solenoid valve (00431960, Christian Bürkert GmbH & Co., Ingelfingen,
Germany) and licks were monitored using a capacitive sensor (MTCH102, Microchip
Technology Inc., Chandler, AZ). In monodirectional virtual navigation, rewards were
delivered at 115 cm and the mouse was teleported to the beginning of the corridor
after reaching the end of the track (inter trial timeout interval 5 s). If the mouse
didn’t reach the end of the corridor within 120 s, the trial was automatically ter-
minated and the mouse was teleported to the beginning of the corridor after an
inter-trial timeout. For bidirectional navigation, rewards were delivered at opposite
ends of the track. After getting a reward, the mouse had to reach the opposite
end of the virtual corridor to receive the next reward. Virtual reality rendering and
two-photon imaging acquisition ran on asynchronous clocks while the command sig-
nal of the slow galvanometer was used to synchronize the imaging acquisitions with
behavior.

Two-photon imaging during virtual navigation Two-photon calcium imag-
ing was performed using an Ultima Investigator or an Ultima II scanheads (Bruker
Corporation, Milan, Italy) equipped with raster scanning galvanometers (6 mm or
3 mm), a 16x/0.8 NA objective (Nikon, Milan, Italy), and multi-alkali photomulti-
plier tubes. For GCaMP6f imaging, the excitation source was a Chameleon Ultra
pulsed laser tuned at 920 nm (80 MHz repetition rate, Coherent, Milan, Italy).
Simultaneous GCaMP6f and jRCaMP1a imaging was performed with a two-beam
path configuration in which two laser beams of different wavelength simultaneously
illuminated the sample. On the Ultima Investigator, two pulsed laser sources were
combined through a dichroic mirror (zt98rdc-UF1, Chroma Technology Co., Bel-
low Falls, VT; λ1= 920 nm, Alcor 920 fiber laser - 80 MHz repetition rate, Spark
Lasers, Martillac, France; λ2= 1060 nm, Chameleon Ultra II - 80 MHz repetition
rate, Coherent, Milan, Italy). On the Ultima II, two orthogonally polarized pulsed
laser sources were combined through a polarizing beam splitter (05FC16PB.5, New-
port; λ1= 920 nm, Chameleon Ultra II; λ2= 1100 nm, Chameleon Discovery - 80
MHz repetition rate, Coherent, Milan, Italy). Laser beam intensity was adjusted
using Pockel cells (Conoptics Inc, Danbury, USA). Imaging average power at the
objective outlet was 80 - 110 mW. Fluorescence emission was collected by multi-
alkali PMT detectors downstream of appropriate emission filters (525/70 nm for
GCaMP6f, 595/50 nm for jRCaMP1a). Detector signals were digitalized at 12 bits.
Imaging sessions were conducted in raster scanning mode at 3 Hz using 5x op-
tical zooming factor. Images contained 256 pixels x 256 pixels field of view (pixel
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dwell-time, 4 µs; Investigator: pixel size, 0.63 µm; Ultima II: pixel size, 0.51 µm).

One or two weeks after surgery the animals were set on a water restricted sched-
ule, receiving approximately 1 ml of water per day. Weight was monitored daily, and
remained between 80 - 90 % of the starting weight throughout all procedures. Mouse
habituation to the experimenter (handling) started two days after water scheduling
and lasted for a minimum of two sessions. Following handling, mice were habituated
to the virtual reality setup in successive training sessions. Starting from the second
habituation session, the animals were head-tethered for a progressively increasing
amount of time, reaching 1 hour in approximately one week. During virtual reality
training sessions, mice were exposed to the noise generated by the two-photon imag-
ing setup (e.g., galvanometer scanning noise, shutter noise). Training in the virtual
environment lasted until animals routinely ran along the linear track. On experi-
mental days, mice were head-tethered, and the virtual reality session started after a
suitable field of view was identified. Three to six temporal series (750 frames/series;
t-series duration, 250 s), interleaved by 5 minutes breaks, were acquired during
a 1 hour virtual navigation session. Astrocytes and neurons were simultaneously
recorded form the same focal plane. At the end of each imaging session, animals
were returned to their home cage.

Histology Histology preparations were obtained similarly to [141, 167]. In brief,
animals were deeply anesthetized with urethane and transcardially perfused with
0.01 M PBS, pH 7.4, and then 4% paraformaldehyde (PFA) in phosphate buffer
(PB; pH 7.4). Brains were post-fixed overnight (ON) at 4°C and subsequently
cut to obtain coronal slices of 40-50 µm thickness. Sections were incubated ON,
or for 48 h, at 4°C in primary antibody diluted in a PBS solution containing 5%
NGS, 0.3% Triton X-100. Sections were then incubated for 24 h at 4°C in the
appropriate secondary antibody solution. Cell nuclei were counterstained incubating
the sections with Hoechst 33342 (1: 300) for 20 min at RT, mounted on glass slides
using Fluoromount (Sigma Aldrich, Saint Louis, MO) and coverslipped. Primary
antibodies were Anti-GFAP (1:300 rabbit, Abcam Ab16997, Cambridge, UK), Anti-
NeuN (1:250 mouse, Millipore MAB377, Billerica, MA), Anti-GFP (1:500, chicken,
Abcam Ab13970, Cambridge, UK). Alexa-conjugated (Invitrogen, Carlsbad, CA)
secondary antibodies were used.

Fluorescence images were acquired with either a Leica SP5 inverted confocal
microscope (40x/1.25 NA immersion objective, Leica, Milan, Italy) or with a Nikon
A1 inverted confocal microscope (20x/0.8 NA objective, Nikon, Milan, Italy). Hip-
pocampal regions and layers were identified using the anatomical hallmarks provided
by cell nuclei counterstaining (Fig. A.1 A, B, Fig. A.11 A, B).

To quantify the extent of astrocytic reactivity in the hippocampus of implanted
animals, we bilaterally acquired image-series of the hippocampal formations (3 x 3
tiles, 1024 x 1024 pixels/tile, 154 pixels overlap, pixel size 0.62 µm/pixel, 8 planes,
1.5 µm/step; Fig. A.1 A-B top). To avoid biases, image-series of both hemispheres
(the implanted one and the control one) were acquired with the same parameters



2.4. METHODS 41

(e.g., excitation laser power and photodetectors gain). We estimated the fraction of
tissue immunoreactive for GFAP on maximum intensity projections. For each pair of
projections (one for the implanted hemisphere and one for the non-implanted one),
we selected three similar ROIs extending along the mediolateral axis of the hip-
pocampal formation and spanning the dorsoventral extent of either stratum oriens,
stratum pyramidale, or stratum radiatum (Fig. A.1 A-D). ROIs selected on each
hemisphere were identical. We performed image thresholding on pairs of ROIs (one
from the implanted and one from the control hemisphere) from matching hippocam-
pal strata, selecting as cutoff-value the maximum of the threshold values computed
on either ROI with the triangle method [168]. Thresholded ROIs were used to
compute the fraction of GFAP immunolabeled pixels and their average fluorescence
intensity value. Selectivity of GECI expression was assessed on confocal z-image
series (9 planes, 2 µm/step) using ImageJ (imagej.nih.gov/ij, [169]) and the Cell-
Counter plugin, counting cells immunolabeled for either GFAP or NeuN among
GECI-expressing cells.





Chapter 3

Optimizing measures of
information encoding in astrocytic
calcium signals

3.1 Introduction

Established models of how populations of brain cells encode information consider
exclusively the encoding at the level of population of neurons [144–147]. However,
this view has been recently challenged by studies of the activity of astrocytes [111].
Astrocytes, the most abundant glial cell type in the mammalian brain, are not
electrically excitable but display excitability based on complex dynamics of intra-
cellular calcium (Ca2+) concentration. Astrocytic Ca2+ dynamics can be recorded
in vivo with high spatial resolution using functional two-photon microscopy [108].
Recordings of astrocytes in sensory areas have shown that these cells can encode
sensory stimuli [46, 55, 58, 98, 109]. Recently, several laboratories [110–112] begun
to investigate how astrocytes encode information about external variables. As an
example, our work [111] has shown that astrocytes in hippocampal CA1 recorded
during spatial navigation in a virtual environment encode spatial information that
is complementary and synergistic to that carried by nearby ”place cell” neurons.
This additional non-neural reservoir of information suggests the possible presence
of novel cellular mechanisms underlying how brain circuits encode information, and
invites the inclusion of astrocytes in the models of brain information processing.

To improve our understanding of how astrocytes participate in information en-
coding it is important to have statistical tools that can be used to clarify whether
astrocytes genuinely carry information about specific cognitive variables. Because
little is known about how astrocytes encode information, non-parametric analyses
that make little assumptions (e.g. linearity) about how information is encoded are
particularly desirable at this stage. It has been recently proposed [111] that infor-
mation theory [113, 114] may be an ideal candidate to this aim. However, the use
of information theory with limited size datasets and noisy biological cells is made
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difficult by statistical issues [162, 170]. The neural literature has studied, using
computer simulations, how to set optimally procedures and parameters of the anal-
ysis given the levels of information encoded by neurons and the size of the dataset
available [170]. However, such studies have not been performed for astrocytes.

Here, we performed simulations of astrocytic Ca2+ dynamics matching the statis-
tical properties of signals recorded from real subcellular regions of interest (ROIs) of
hippocampal astrocytes during virtual spatial navigation. We used these simulations
to investigate how to optimally apply information theoretic methods to determine
the presence and amounts of genuine information encoding by astrocytes. Last, we
validated results and predictions of simulations by applying this methodology to in
vivo recordings of hippocampal astrocytic subcellular Ca2+ signals during spatial
navigation.

3.2 Computing amount and significance of

information in astrocytic calcium activity

Here we introduce the measures of information about external variables carried by
astrocytic activity, and we define the parameters of its computation from real data.
Suppose we have a two-photon microscopy calcium imaging experiment where a
mouse is performing a task or is shown a certain set of sensory stimuli. In this
scenario we can record Ca2+ signals from astrocytic cellular compartments (for ex-
ample, a soma or a process) defined as ROIs in a given field of view (FOV). We
are interested in quantifying whether the Ca2+ response r of the astrocytic ROI,
measured at given imaging time frame, encodes information about an external vari-
able s that varies during the task or a stimulus variable that is varied across the
experiment. In the experimental dataset that we will use [111], the Ca2+ dynamics
of hippocampal CA1 astrocytes were recorded while a mouse was navigating in a
linear track in a virtual reality environment. With this dataset we were interested
in determining whether the astrocytic Ca2+ response encoded the position of the
mouse along the linear track, similarly to how neurons called place cells do in hip-
pocampus [122]. How selective is an astrocytic ROI with respect to an external
variables s can be computed by using the mutual information I(R;S) between the
set of astrocytic responses R and the set of external variables S, defined as follows
[113]:

I(R;S) =
∑
s

P (s)
∑
r

P (r|s) log2
P (r|s)
P (r)

(3.1)

where P (s) is the probability of the external variable taking the value s, P (r) is the
probability of measuring an astrocytic response r across all data points, and P (r|s) is
the probability of observing a responses r given a value s observed for the external
variable. We assume that both astrocytic activity and the external variable take
continuous values, and that we have discretized them into a number of bins R and
S, respectively. These probabilities can be estimated as normalized histograms of
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occurrences of discretized stimulus-response values. Such probabilities are computed
from the finite number N of experimentally available datapoints (denoted ”trials”
hereafter) measuring simultaneously s and r. I(R;S) measures, in units of bits,
how well we can infer the value of s from a single trial observation of the astrocytic
response r. Zero bits indicate that no information can be gained from observing
r, whereas positive values of information indicate that it is possible to reconstruct
with some precision the value of s from the value of r. One bit means a reduction
of uncertainty about s of a factor of 2 from a single-trial observation of r.

A first important question that can be addressed with mutual information analy-
sis of astrocytes regards individuating how many and which ROIs carry information
about external variables. An information value can be greater than zero even when
the considered ROI actually has no information. This can happen because of ran-
dom fluctuations in probability values generated by the limited number of trials that
were sampled [162]. The statistical significance of each mutual information value
can be determined by creating a null-hypothesis distribution obtained from surro-
gate datasets in which the relationship between s and r is destroyed by randomly
shuffling the values of s and r across trials. A second important question regards
quantifying precisely how much information each ROI carries. This is made difficult
by the fact that, because of the limited number of trials available, the ”plugin” in-
formation measure obtained simply by plugging the experimental probabilities into
Eq. 3.1 is affected by a systematic upward bias [158]. Several bias correction pro-
cedures can be used to obtain an unbiased estimate mutual information [161, 162,
171–173]. Two widely used methods are Panzeri-Treves bias correction (PT) method
[158], which analytically estimates the bias, and the quadratic extrapolation (QE)
method [161], which estimates bias through extrapolating the information values
obtained with data subsampling.

Thus, free parameters and algorithmic choices of the information analysis in-
clude the number of bins S and R, used to discretize the external variable s and
the astrocytic Ca2+ activity, and the bias correction method used to compute in-
formation. Studies considering other types of brain signals have shown that com-
puter simulations, characterized by realistic levels of information content and nu-
merosity of trials, can be used to optimally set the information analysis parame-
ters [162, 170]. However, no such work has been performed for astrocytes. Here,
we implemented data-driven simulations to identify optimal parameters to perform
mutual information analysis of astrocytic data. To understand how to optimally
set information estimation parameters, we simulated set of astrocytic Ca2+ re-
sponses (n = 20) that realistically captured the dependency of astrocytic activity
on the position of mouse during spatial navigation in virtual reality. (Astrocytic
Ca2+ signals simulation software and mutual information software can be found
at github.com/jbonato1/AstroSimulation). Ca2+ responses were modeled matching
statistical parameters (mean and standard deviation) of Ca2+ responses of real as-
trocytic ROIs recorded in vivo from the hippocampal CA1 area of mice navigating
in a virtual environment [111]. Responses for each spatial position were drawn from

https://github.com/jbonato1/AstroSimulation.git
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a Gaussian distribution with the parameters found in the data. We evaluated the
effects of trial numerosity, number of bins used to discretized the data, and informa-
tion levels, by systematically modulating these parameters across simulations. The
information level in the simulated responses was controlled by a parameter α [170]
linearly rescaling the modulation of r by s. α = 1 (no rescaling) yields simulated re-
sponses with the same response properties and thus information levels as real data,
whereas 0 < α < 1 corresponds to modeling responses with reduced information
content, and α = 0 (modulation of r by s completely rescaled away) corresponds to
no information. We report results of simulations for α = 1 (full-information, Fig.
3.1A), α = 0.5 (Fig. 3.1B) and α = 0 (no-information, Fig. 3.1C).

We first evaluated the performance of the non-parametric shuffling in classifying
simulated responses as carrying significant information. We performed these numer-
ical experiments as function of the number of trial per stimulus numerosity (Ns),
and information content (Fig. 3.1D-F). For this first study, simulated astrocytic re-
sponses were discretized into R = 4 equally spaced bins and space in the linear track
was discretized into S = 12 spatial bins. For each simulated response we computed
a null-hypothesis distribution generating 100 shuffles and we set a significance level
of p<0.05. When using the plugin estimate of mutual information, we found that
for the full-information model (α = 1) the shuffling procedure classified correctly
significance down to Ns = 64 (log2(Ns/R) = 4). When reducing the information
content (α = 0.5) the shuffling test required more samples to perform correct de-
tection. Finally when the model had no-information we found that false positive
rate was stable at the level of 5% set by our statistical threshold. The use of PT
bias correction procedure did not affect the statistical power of the non-parametric
shuffling test, while QE method resulted in reduced statistical power.

Astrocytic Ca2+ signals and position recorded during spatial navigation are con-
tinuous variables, and the number of bins into which they are discretized is one of
the most delicate parameters of the analysis. A too coarse discretization may wash
out all information, and a too fine discretization may make the measures too noisy
especially when data are scarce. Thus, S must be chosen to obtain to optimally
trade off these two competing effects.
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Figure 3.1: Sensitivity of information content measures for realistic simulations of po-
sition encoding astrocytic Ca2+ signals. (A-C) Mean Ca2+ responses across trials as a
function of position for simulated astrocytic ROIs (n = 20 ROIs) for α = (1, 0.5, 1) models,
respectively. The number of trials per spatial positions (Section 3.2, here 64) was varied
across simulations. (D-F) Percentage of significant realizations detected using different
methods (plugin, PT, and QE) as a function of Ns/R ratio for α = 1, 0.5, 1 models. For
each bias correction method, PT (red lines) and QE (green lines) information value was
compared to the shuffled distribution of the corresponding values. 20 iterations of the
simulation were generated for each number of trials used.



48
CHAPTER 3. OPTIMIZING MEASURES OF INFORMATION ENCODING IN

ASTROCYTIC CALCIUM SIGNALS

A B

C D

Figure 3.2: Characterization of information theoretic methods applied on simulations
of astrocytic Ca2+ responses. (A) Average information estimate over 20 simulations as a
function of the number of position bins. Simulations were repeated with fixed response
discretization (R = 4), number of trials resembled experimental data sampling conditions.
(B) Percentage of realizations classified as significant as a function of the number of po-
sition bins. (C) Average information estimate over 20 simulations as a function of the
number of response bins. Simulations were repeated with fixed stimulus discretization
(S=12) and constant number of trials per stimulus Ns = 68. In (A-C) information com-
putations were performed without bias correction (plugin, black line), PT (red line) or QE
(green line) bias corrections. (D) Percentage of significant realizations as a function of Ns

for different values of number of response bins (no bias correction). The corresponding
values of information for each R value are indicated by corresponding colored marks in
panel (C). Data is shown as (mean ± std).

We performed simulations using the full-information model (α = 1) to gener-
ate data with a number of trials per stimulus resembling in vivo experimental data
[111]. In these simulations we investigated the effect of position discretization while
we kept the discretization of the response fixed at (R = 4). We found that (Fig.
3.2A) bias-corrected information measures (both PT and QE methods) plateaued
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for values of S in the range (4 − 16). Conversely, plugin estimates monotonically
increased with S, as their value contained an uncorrected upward bias component.
For plugin estimates, we found that the fraction of realizations correctly detected
as significantly informative (100 random shuffles, p<0.05) decreased for S values
greater than 16 (Fig. 3.2B), thus indicating insufficient sampling. The PT bias cor-
rection procedure did not affect the statistical power of the non-parametric shuffling
test, while the QE method resulted in reduced statistical power. Thus, for further
statistical tests we used uncorrected plugin estimators.

We characterized the effect of response discretization performing numerical ex-
periments in which we simulated a realistic number of trials per stimulus (Ns = 68,
equal to the average number of trials per stimulus in real data, see Section 3.4), while
the position discretization was set within the information estimate plateau identified
before (S = 12). We found that (Fig. 3.2C) bias-corrected information measures
(both PT and QE methods) plateaued over a large range of R, whereas plugin esti-
mates were strongly affected by bias. Statistical power was strongly dependent on
the selection of discretization parameters (Fig. 3.2D) showing, in these sampling
conditions, adequate power up to R = 8. Further increasing R would be possi-
ble only with much larger number of trials to avoid underestimation of significant
astrocytes ROIs.

3.3 Measuring conditional mutual information

to evaluate genuine information encoding

In many cases, cognitive tasks rely on several correlated external variables. An
important question is how to determine whether astrocytic activity is genuinely
informative about each such correlated variable. For example, in the mentioned
spatial navigation experiments different parts of the track have different visual cues
to aid navigation[111, 123, 124], thus there is a correlation between position s and
visual cue identity v (Fig 3.3A). How do we determine for example if the astrocyte
encodes genuinely spatial information above and beyond what can be explained by
its possible tuning to the visual cue v? One way to address this issue it to compute
the conditional mutual information (CMI)[170] of an astrocytic response r about
a stimulus s conditioned on the value of a visual stimulus v. This quantifies the
amount of information encoded in responses R about positions S that cannot be
explained by the tuning to a set of visual stimuli V and it is defined as:

I(R;S|V) =
∑
v

P (v)
∑
r,s

P (r, s|v) log2
P (r, s|v)

P (r|v)P (s|v)
(3.2)

where P (r, s|v) is the joint probability of observing response r and stimulus s at
fixed visual stimulus v. A non-zero value of CMI denotes genuine tuning of the
astrocyte to s. The statistical significance of a CMI value can be assessed against
a null-hypothesis distribution obtained shuffling the relationship between r and s
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within each specific v. We evaluated the performances of CMI statistical testing

Visual cues

Spatial position (cm)

A B C

Figure 3.3: Determining the significance of conditional mutual information. (A)
Schematic of a virtual track containing three distinct visual patterns [111, 123, 124]. (B-
C) Percentage of significant realizations classified with the shuffling test and without bias
correction (plugin) for models with genuine spatial information (B) and without spatial
information (C). Data is shown as (mean ± std).

in classifying simulated responses as bearing genuine spatial information. We used
numerical experiments leveraging on the full information model (α = 1), simulating
astrocytic Ca2+ signals bearing spatial information. We found that, to achieve
robust CMI significance detection, it is required to sample approximately 256 trials
per stimulus (Fig. 3.3B). Then, we quantified the extent of false positives reported
by the CMI statistical testing. We performed numerical experiments generating
astrocytic Ca2+ signals devoid of spatial information (α = 0). We found that the
false positive rate was stable at 5% set by our statistical threshold (Fig. 3.3C).

3.4 Spatial information in CA1 astrocytes

during spatial navigation

Here we apply the information theoretical formalism presented in Sections 3.2 and
3.3 to investigate information encoding in astrocytic Ca2+ dynamics using real two-
photon functional imaging data. We used the dataset of [111], in which subcellular
Ca2+ dynamics of hippocampal CA1 astrocytes (specifically labeled with the genet-
ically encoded Ca2+ indicator GCaMP6f [57, 79, 85]) were recorded from head-fixed
mice navigating in a monodirectional virtual corridor (Fig. 3.4A-B).

First, we investigated the influence of stimulus-response discretization on mutual
information estimation and statistical significance detection on real data. We esti-
mated the underlying probabilities for a grid of discretization parameters S (8, 12,
16, 20, 40, 60, 80) and R (2, 4, 6, 8, 10). We used a uniform-count binning procedure
for positions and an equally-spaced binning procedure for responses. We found that
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correcting the information measures for the limited sampling bias with PT method
yield stable results over a wide range of discretization parameter S (4 − 16) (Fig.
3.4C), confirming the efficacy of the the PT method in accurately estimating the
information value.

Significant realizations were affected by both S and R parameters. We found
consistent results for R > 2 (∼ 90% of significant realizations) over the range of S
(4− 16) (Fig. 3.4D). This suggests that trial numerosity in this dataset limited the
statistical power at more granular discretization conditions. These results are stable
in the range (4− 16) for S and in (4− 10) for R confirming that performing mutual
information measures within these parameters represents an optimal choice.

The virtual corridor used in the generation of this dataset [111] had three dis-
tinct visual cues extending 60 cm each (Fig. 3.4A). Thus, to test for genuine spatial
information encoding, we applied the formalism described in Section 3.3. We per-
formed the CMI significance test, for a set of position discretization conditions (S
= (9, 12, 15, 18, 30, 60)) while responses were discretized with R = 4. For both dis-
cretization procedures we used equally spaced bins. We found that a large fraction
(∼ 40 to 55%) of astrocytic ROIs carried significantly genuine spatial information
over a range (9− 18) of position discretization conditions (Fig. 3.4E).

3.5 Conclusions

We created simulations of astrocytic responses with realistic dependencies of activity
on external variables to investigate how to optimally set parameters and analyses
procedures for a given experiment. While we do not wish to claim that such param-
eters will be always optimal, our results and simulation software provides a mean to
set such parameters given certain easily measurable primary features of astrocytic
data. Our results show that simple discretization and use of direct estimates, ob-
tained from plugging in the empirical probabilities into the information equations,
work well with reasonably high statistical power and with a rate of false positives
that never exceeds the set p-value selection threshold.

Applications of these procedures to in vivo astrocytic functional imaging data
demonstrated that a large fraction of astrocytic subcellular compartments in the
CA1 region of the hippocampus carries genuine information about the spatial po-
sition, giving support to the emerging concept of astrocytic place cells as a part of
the network computations performed in the hippocampus.

Future technical work includes investigating how to combine our information
computations and selection criteria with other conservative criteria used for ruling
out effects of data non-stationarities, such as reliability of Ca2+ activity across trial
blocks [111].
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Figure 3.4: Spatial information encoding in CA1 astrocytes during virtual navigation.
(A) 2-photon Ca2+ imaging was performed in head-fixed mice running along a 180 cm
virtual track [111]. (B) Normalized astrocytic Ca2+ responses as a function of position
for ROIs with significant spatial information computed with R=4 and S=12 (n = 311
ROIs out of 356 total ROIs, 7 imaging sessions from 3 animals). Responses are ordered
according to the position of the maximum of the Ca2+ responses. Vertical scale: 50 ROIs.
(C) Mutual information values with PT bias correction as a function of the number of
position bins. (D) Percentage of ROIs classified significant as a function of the number
of bins for the stimulus. (E) Fraction of astrocytic ROIs showing a significant decrease in
their information content when position is shuffled within the same visual cue (Binomial
test with 0.05 probability of success; *, p<0.05; **, p≤0.01; ***, p≤0.001). Data are mean
± s.e.m. from 7 imaging sessions in 3 animals.



Chapter 4

Rapid spatiotemporal analysis of
astrocytic calcium dynamics using
deep learning

4.1 Introduction

Astrocytes tile the entire central nervous system in non-overlapping domains [31]
interacting with neurons, vasculature, and other glial cells. Astrocytes exhibit a
form of excitability based on changes in the intracellular concentration of calcium
(Ca2+) [52, 75]. These calcium signals are tightly related to synaptic activity [5, 76,
134], are boosted by sensory inputs [46, 58, 109], and are instrumental for cognitive
performance enhancement [174]. More recently, astrocytic Ca2+ signals have been
shown to encode information about external, behavioral relevant, variables [110–
112].

Astrocytic Ca2+ signals can be monitored with high spatial resolution in the in-
tact brain of awake animals using two-photon microscopy and chemical or genetically
encoded calcium (GECI) indicators [58, 98, 129, 175]. The spatial features of as-
trocytic Ca2+ signals are intrinsically related to the elaborated morphology of these
cells, which is characterized by a highly ramified structure of thin processes stem-
ming from the soma and covering a tissue volume of ∼ 70-100 µm diameter. Within
this tissue volume, astrocytic processes contact few neural cell bodies, hundreds of
dendrites, and thousands of synapses [34]. Astrocytic Ca2+ dynamics that can be
localized to specific subcellular compartments including the cell body and portions
of processes [92, 93] and can have different spatial and temporal characteristics [59,
93, 118].

Available methods to measure astrocytic Ca2+ dynamics at subcellular level in
individual astrocytes such as GECI-Quant [98] and CHIPS [58]1 provide seman-
tic segmentation of astrocytes, but heavily depend on data acquisition conditions,
require several user-defined parameters, and need significant computational time.

1CHIPS identifies only processes of astrocytes whereas somata have to be segmented manually

53
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Alternative approaches (e.g., AQuA) identify Ca2+ events within and across as-
trocytes as coherent, spatially-confined activity regions, based on pixel-wise fluores-
cence dynamics [176]. Event-based approaches are computationally demanding, still
require a posteriori segmentation to relate identified events to astrocytic morphol-
ogy, and have not been validated on large fields-of-view comprising large networks
of astrocytes. Altogether, currently available approaches limit reproducibility, gen-
eralization, and scalability of the analysis of astrocytic Ca2+ signals both within
individual cells and across populations. Therefore, developing fast, automatic, and
reliable image segmentation methods for analyzing astrocytic Ca2+ signals within
individual cells and across large population of astrocytes is of utmost importance
for the field.
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Figure 4.1: RASTA: a machine learning algorithm for fast and automatic semantic seg-
mentation of astrocytes. A-B) Flow-charts of RASTA segmentation pipelines for training
(A) and inference (B). At the end of the training pipeline, pre-processing hyperparameters
and DNN weights are saved. At the end of the inference pipeline spatial coordinates cor-
responding to somata, processes, and cross-correlated regions are saved. C) Two-photon
Ca2+ imaging of hippocampal and cortical astrocytes was performed in head-fixed mice
running on a wheel. D) Four datasets were initially used for RASTA training and testing.
Details of each dataset are listed in the figure. Each dataset was manually segmented by
3 expert annotators. White bars on the top-right of each image represents the scale bars.
Dataset-1 40 µm, Dataset-2 50 µm Dataset-3 40 µm, and Dataset-4 40 µm.
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Similar challenges are faced in neuronal Ca2+ imaging, where most advanced
segmentation methods include both unsupervised and supervised machine learn-
ing approaches [177–182]. Unsupervised methods like principal component analysis
(PCA), independent component analysis (ICA), clustering based methods (Suite2p),
and constrained nonnegative matrix factorization (CNMF, CaImAn Batch, CaImAn
Online) focus on detecting and de-mixing active neuronal signal sources. Recently,
supervised deep learning approaches based on 2-dimensional (2D) CNNs (UNet2DS)
or 3-dimensional (3D) CNNs (STNeuroNet), have been applied for neuronal seg-
mentation [180, 182]. UNet2DS learns spatial footprints of neurons from datasets
directly labelled on the mean temporal projection of the recorded t-series. Although
computationally convenient, the mean temporal projection of the t-series lacks tem-
poral information about the dynamics of calcium signals. This issue was addressed
adopting 3D-CNNs which learn spatiotemporal informative features of neurons [182].
However, it unlikely that approaches specifically developed for segmentation of neu-
ronal calcium imaging t-series can be readily applied to the analysis of astrocytic
Ca2+ signals, because the spatial and temporal features of astrocytic Ca2+ signals
are intrinsically different from those of neurons.

Here we present RASTA, Rapid Astrocytic calcium Spatio-Temporal Analysis,
a novel machine learning-based software to perform fast, reliable, precise, and au-
tomatic semantic segmentation of astrocytic two-photon imaging t-series. RASTA
combines feature engineering and a deep learning algorithm to enable scalable and
repeatable analysis. RASTA performs cell detection (identification of visible so-
mata of astrocytes) and semantic segmentation (labeling of cell soma and proxi-
mal processes) with near-human performance. RASTA outperforms state-of-the-art
software for the analysis of astrocytic and neuronal signals, can be combined with
event-based analytical approaches for a posteriori anatomical identification, and
generalizes across indicators and acquisition conditions. RASTA has been validated
on four new datasets recorded in awake head-fixed animals and labeled by 3 expert
annotators. These datasets and their annotation are share to establish the first
astrocytic annotation challenge (Neurofinder challenge), with the aim to promote
future improvements of astrocytes detection and segmentation algorithms. RASTA
source-code is available at https://github.com/jbonato1/RASTA2.

4.2 Results

RASTA: structure and analysis workflow

RASTA combines supervised and unsupervised techniques to provide a fully auto-
matic segmentation of spatiotemporal information in astrocytes imaged in t-series
using two-photon fluorescence microscopy. RASTA includes a training pipeline and
an inference pipeline (Fig. 4.1 A-B). Each pipeline analyzes a dedicated dataset

2The repository is not public yet. Send an email to bonato.jimi@gmail.com with your github
username to request the access.

https://github.com/codeneuro/neurofinder
https://github.com/jbonato1/RASTA
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called training set or inference set. The training set is a subset of the FOVs in the
dataset that is used to optimize the algorithm. The inference set is the subset of
FOVs in the dataset that is used to evaluate algorithm performance. The training
pipeline (see Methods for details) optimizes RASTA hyper-parameters and the deep
neural network. This optimization procedure removes human supervision from the
RASTA inference pipeline. The inference pipeline comprises three main steps: i)
pre-processing; ii) semantic segmentation; iii) subcellular cross-correlation analy-
sis. The pre-processing step (Methods) computes a bi-dimensional reconstruction
of the recorded field-of-view (FOV), compressing spatial and temporal features into
a highly informative spatiotemporal projection. The outputs of the pre-processing
step feed the second step, semantic segmentation, which employs a deep neural net-
work (DNN) to perform subcellular semantic segmentation of astrocytic somata and
processes. To this aim, we developed a U-Net-based [116] DNN architecture (Meth-
ods), which semantically segments astrocytes identifying and distinguishing somata
from processes. Conventional two-photon imaging datasets have too small of the size
to lead proper optimization of any deep learning-based method. Thus to optimally
tune the DNN, we opted for efficient feature-engineering during the pre-processing
and transfer-learning step using a DNN encoder pretrained [183–185] on ImagNet
dataset [186] (see Methods for details). Finally, subcellular cross-correlation analy-
sis, identifies regions of the astrocytic domain showing fluorescence signals that are
statistically correlated to the one present in the semantically segmented regions of
the astrocyte (see Methods for details). The output of the inference pipeline consists
of three classes of ROIs: somata, processes, and cross-correlated regions (Fig. 4.1
B). RASTA is thus an end-to-end algorithm for the analysis of morphological and
dynamical properties of astrocytes in two-photon fluorescence imaging t-series.

Generation of the consensus annotation

We evaluated RASTA performance against manual consensus annotation of the
whole dataset. Three expert annotators detected and segmented astrocytes, la-
belling somata and individual processes. Annotators had access to both the raw
t-series and the bi-dimensional projections of the t-series obtained during the pre-
processing step (see above and Methods). Annotators detected astrocytes on the
t-series, while segmenting subcellular structures on bi-dimensional projections. Man-
ual annotation was executed on four datasets of two-photon fluorescence hippocam-
pal imaging in awake head-fixed mice running on a wheel (Fig. 4.1C). The four
datasets differed for the type of fluorophore which was expressed in astrocytes (e.g.,
GCaMP6f, Td-Tomato), imaged area (from 26.3 x 103 µm2 to 26.2 x 104 µm2),
and acquisition conditions (galvanometric mirror-based imaging vs resonant scan-
ning imaging and pixel resolution from 0.63 µm/ pixel to 1.06 µm/ pixel, Fig. 4.1
D).

To generate an appropriate ground truth, we first identified the variability of
human manual annotations, an inherent characteristic of manual data curation [181].
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Annotators were then asked to reach a consensus resolving each single annotation
discrepancy (see Methods for details). This procedure generated the “consensus
annotation”, which was used as ground truth to quantify the performance of RASTA
and of each annotator (Fig. B.2). The four datasets and their annotation by graders
provides, to the best of our knowledge, the first systematically annotated dataset
which will be shared to the astrocyte community.

Somata detection performance of human annotators was highly accurate (high
F1-score), demonstrating an overall agreement on astrocyte somata detection. Con-
versely, segmentation performance of human annotators showed lower F1-scores.
This was especially true for processes, confirming that annotation by single human
grader can be unreliable for benchmarking purposes (App. B Tab. S1, Tab. S4,
Tab. S5, and Tab. S6). We thus used the consensus annotation as a more reliable
comparative standard [182].

RASTA achieves human performance

To test RASTA performance we used dataset-1, which comprises a set of 24 two-
photon calcium imaging recordings of the CA1 hippocampal region recorded in head-
tethered awake mice, which were spontaneously walking on a wheel (Fig. 4.1C). In
the hippocampal CA1 region, astrocytes expressed the genetically encoded calcium
indicator GCaMP6f after adeno-associate viral transduction. GCaMP6f signals were
collected from a FOV of area 26 x 103 µm2 with a spatial sampling of 0.634 µm/pixel
(Fig. 4.1D, see also Methods for details).

We tested RASTA on dataset-1 using the leave-one-out cross-validation method,
which consists of iteratively removing one FOV from the dataset, training the algo-
rithm on the N-1 FOVs, and testing the algorithm on the removed FOV. Fig. 4.2A
and 2B show an example of annotations obtained by RASTA on a representative
FOV compared to the consensus ground truth. Importantly, Precision, Recall, and
F1-score of RASTA detection was high and not significantly different from that of
annotators (Fig. 4.2C, App. B Tab. S1). Segmentation F1-score was high for
somata and similar to the one of two of the three annotators (Fig. 4.2D, Fig. B.3
A-B, App. B Tab. S2). Segmentation F1-score was lower for processes but similar
to the one of all annotators (Fig. 4.2D, Fig. S5 A-B, App. B Tab. S2). Overall,
these results indicate that RASTA detection and segmentation accuracy levels are
comparable to those of human annotators.

RASTA outperforms state-of-the-art algorithms for the
analysis of astrocytic and neuronal signals

We benchmarked RASTA against most of the available methods for analysis of two-
photon fluorescence recordings of astrocytes and neurons (Fig. B.4): GECI-Quant
[98] , AQuA [176], STNeuroNet [182], UNet2DS [180], and CaImAn [181].



58
CHAPTER 4. RAPID SPATIOTEMPORAL ANALYSIS OF ASTROCYTIC

CALCIUM DYNAMICS USING DEEP LEARNING

We first compared RASTA performance with that of GECI-Quant, a threshold-
based user-supervised software [98] used for the analysis of astrocyte fluorescence
images. For each FOVs, one annotator manually identified astrocytic somata and
astrocytic domain, and defined the thresholds to segment somata and processes ac-
cording to GECI-Quant documentation [98] (Fig. B.5 A). Given that one annotator
manually identified the regions of analysis and given that the detection performance
of RASTA were not significantly different from that of all annotators (Fig. 4.2C),
the detection F1-score of GECI-Quant was not significantly different from that of
RASTA (two-sided Wilcoxon rank sum test N=24, Fig. B.5 B). In contrast, seg-
mentation performances of GECI-Quant were lower than those of RASTA for both
somata and processes (Fig. 4.2E and Fig. B.5 C-D, App. B Tab. S2, two-sided
Wilcoxon rank sum test N= 24).

We then compared the performance of RASTA to that of AQuA [176], a recent
event-based algorithm for the analysis of astrocytic Ca2+ signals. AQuA focuses on
the identification of calcium events, defined as spatially coherent signal dynamics
across pixels. Although AQuA definition of events does not consider morphological
constraints, we reasoned that a subset of the group of pixels classified as one event
must belong to astrocytic somata and processes. We thus reconstructed astrocytic
morphology from the spatio-temporal map of Ca2+ events identified by AQuA, and
we compared it to astrocyte segmentation obtained by RASTA (see Methods for
details). We found that precision, recall and F1-score for identified astrocytic mor-
phology was higher for RASTA compared to AQuA (Fig. 4.2F, App. B Tab. S3,
two-sided Wilcoxon rank sum test, N= 24). Taken together, these results demon-
strate that RASTA outperforms state-of-the-art methods used for the analysis of
astrocytes data in identifying astrocytic somata and processes.

We finally compared RASTA performance with STNeuroNet, UNet2DS, and
CaImAn, three state-of-the-art algorithms for neuron segmentation, which perform
binary classification (foreground vs background) of pixels in FOVs identifying neu-
ronal ROIs. Since in most applications these algorithms are used to detect neuronal
cell somata, we used them for astrocyte somata detection (Fig. 4.2G, App. B Tab.
S2). Since in both pre-processing and post-processing STNeuroNet constrains source
detection using parameters based on neuronal calcium imaging signal dynamics, we
adjusted these steps to account for astrocytes signal dynamics and morphology (see
App. B). We found that somata detection performance (quantified as the F1-score)
of UNet2DS (mean ± sem, 0.65 ± 0.04, N = 24 was significantly higher than that
of CaImAn (mean ± sem, 0.20 ± 0.04, N = 24) and STNeuroNet (mean ± sem 0.27
± 0.05, N = 24, two-sided Wilcoxon rank sum test). Importantly, somata detection
performance of STNeuroNet, UNet2DS, and CaImAn was significantly smaller than
that of RASTA (Fig. 4.2G, two-sided Wilcoxon rank sum test, N = 24, indicating
that our approach outperforms available analysis methods specifically developed for
neuronal datasets.
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Figure 4.2: Evaluation and benchmarking of RASTA on dataset-1. A) Representative
comparison of consensus annotations (left, FOV id: 2) and RASTA semantic segmentation
(right). On the top of right image are reported somata detection precision, recall and F1-
score for FOV id:2. B) Representative example of the comparison of somata and processes
segmentations between RASTA and the consensus annotations. True positive pixels (red),
false negative pixels (green), and false positive (cyan) are shown. C) Performance of the
three annotators A-1, A-2, and A-3 against RASTA. Precision (P), recall (R), and F1-score
(F1) are shown. Two-sided Wilcoxon rank sum test N= 24; leave-one-out cross validation
(LOOCV) results. In this as well as in following figures: n.s., not significant, *P < 0.05,
**P < 0.005 and ***P < 0.0005. D) F1-score for somata and processes segmentation for
annotators and RASTA. Two-sided Wilcoxon rank sum test N= 24, LOOCV results. E)
F1-score for somata and processes segmentation of GECI-Quant and RASTA. Two-sided
Wilcoxon rank sum test N= 24; LOOCV results. F) Astrocytic morphology reconstructed
using RASTA segmentations and AQuA event detection. Two-sided Wilcoxon rank sum
test N= 24; LOOCV results. G) Soma detection performance of STNeuronet, CaImAn,
UNet2DS, and RASTA. Two-sided Wilcoxon rank sum test N= 24; LOOCV results. See
also table S1 and S2.
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Identification of functional domains of individual astrocytes
using RASTA

Thin (diameter < 1 µm) astrocytic processes display information-rich Ca2+ dynam-
ics [59, 98, 117]. However, the identification of these thin structures is challenging,
because of the lack of an anatomical reference due to the subresolved dimension of
these small cellular compartments. Here we propose to use a statistical correlation
measure to reliably and reproducibly identify the extent of an astrocytic functional
domain, including somata, main processes, subresolved cellular compartments. We
named this analytical step within RASTA “subcellular cross-correlation analysis”
and it automatically selects pixels within the extent of a domain of an individual as-
trocyte (see Methods for details) whose fluorescence dynamics are correlated to the
pixels belonging to the semantically segmented ROIs (either somata or processes) of
that same astrocyte (Fig. 4.3A).The output of this analytical procedure is a ROI of
correlated pixels (Fig. 4.3A), which includes cell somata and processes and which
resembles anatomically defined astrocytic domains [31].

A CB

Figure 4.3: Identification of correlated calcium signals in astrocytic domains using
RASTA. A) Two representative examples of statistically correlated regions in the astro-
cytic domain identified with the cross-correlation module (FOV (Id:2)). ROIs correspond-
ing to somata and processes are colored in red and pink, respectively. ROIs extracted
using cross correlation are shown in green. B) Ratio of ROI area extracted using the
cross-correlation module and ROIs area obtained by summing soma and processes ROIs
together as a function of the cross-correlation threshold. C) Cross correlation error distri-
bution. The cross-correlation error was estimated as the mean percentage of false-positive
pixels selected in each FOV sampling 1000 pixels outside astrocytes domains, which were
not used to tune the cross-correlation threshold. Two-sided Wilcoxon rank sum test N=24.

We investigated how the area of the identified astrocytic domain depended on
the value of the cross-correlation threshold (Fig. 4.3B). In the low threshold values
regime more pixels were selected, including those belonging to neuronal structures
(i.e., neuronal cell somata [31, 34]. Conversely, in the high threshold values regime
the number of selected pixels decreased, neglecting potentially meaningful astro-
cytic structures. To set an appropriate threshold value, we programmed RASTA
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to dynamically auto-tune the cross-correlation threshold for each FOV, in order to
minimize the false positive selection. To this aim, a set of pixels sampled outside the
astrocytic domains, whose intensities fluctuations were assumed to be independent
from the ones of the ROIs pixels, was used as proxy to evaluating the percentage of
false positive pixels selected given a threshold. The auto-tuning strategy identified
the minimum threshold with false positive percentage error < 5% (see Methods for
details). To benchmark the cross-correlation module, we estimated the fraction of
selected pixels in the region outside putative astrocyte domains (false positive) of
each FOVs using the consensus annotations as reference ROIs (see also Methods).
We observed that the cross-correlation module selected false positive pixels with an
average percentage error of 2.0 ± 0.2 % (mean± sem, two-sided Wilcoxon rank sum
test N=24, Fig. 4.3C).

Finally, we reasoned that the functional domains of individual astrocytes identi-
fied RASTA could be used to seed the event-based analysis performed by AQuA. In
(Fig. B.6), we show examples of astrocytic domain identified by RASTA that are
used as priors instruct cell-specific AQuA analysis. Taken together these findings
demonstrate that RASTA can be used to identify functional domains of individ-
ual astrocytes encompassing the cell somata, main processes, and thin astrocytic
structures. Moreover, combining RASTA with event-based analysis software (e.g.,
AQuA) allows overlaying anatomical with functional analysis of astrocytic domains,
enabling the extraction of previously hidden morpho-functional information from
individual astrocytes two-photon GCaMP imaging experiments.

RASTA performance across signal-to-noise ratio conditions

To investigate RASTA performance as a function of the quality of two-photon im-
ages, we performed a set comparative RASTA analyses in t-series in which we artifi-
cially modified the peak signal-to-noise ratio (PSNR) of fluorescent signals. Specifi-
cally, we manipulated dataset-1 increasing or decreasing noise levels, thus generating
six simulated datasets (Fig. 4.4A, see also Methods for more details). RASTA de-
tection F1-score significantly decreased when the PSNR was strongly reduced (Fig.
4.4B, two-sided Wilcoxon rank sum test N = 24). However, the F1-score for the seg-
mentation of somata and processes remained unaltered (Fig. 4.4C, Fig. B.7 A-B).
These results that RASTA semantic segmentations was not affected by decreased
PSNR. In contrast, an increase of the PSNR resulted in an improvement of the
F1-score for detection (Fig. 4.4B, two-sided Wilcoxon rank sum test N = 24) and
of the F1-score for segmentation of processes (Fig. 4.4C, Fig. B.7 A-B; two-sided
Wilcoxon rank sum test N = 24), with no significant change of the F1-score for
somata segmentation.

We also evaluated the state-of-the-art detection and segmentation methods de-
scribed before on artificial datasets with different PSNR. We first tested GECI-
Quant detection and segmentation performance under high PSNR conditions (1.81
of PSNR, Fig. B.8 A-D). To this aim, each FOVs one annotator manually defined
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astrocytes soma region and astrocyte domain (Fig. B.8E). We found that the de-
tection F1-score of GECI-Quant was significantly lower than that of RASTA (Fig.
B.8A, two-sided Wilcoxon rank sum test N = 24). GECI-Quant F1-scores for process
segmentation was also lower than that of RASTA (Fig. B.8D, two-sided Wilcoxon
rank sum test N = 24). We then tested algorithm developed for the analysis of
neuronal datasets. We found that STNeuroNet and CaImAn showed lower perfor-
mance across all PSNR conditions when compared with RASTA (Fig. B.8 F-G,
two-sided Wilcoxon rank sum test on all artificial datasets, N = 24, compared with
real data). UNet2DS showed lower F1-score compared to RASTA, but this decrease
was significant only for PSNR = 0.88 (Fig. B.8H, two-sided Wilcoxon rank sum
test N = 24). However, since UNet2DS use only the mean projection in time of the
recorded videos the injected gaussian noise does not affect this projection. Hence,
the network performances remain stable across all noise conditions.

Overall, these results show that RASTA performance remains stable under low
PSNR conditions and superior compared to the performance of state-of-the-art
methods for the analysis of astrocytic and neuronal functional signals.

Data preprocessing contributes to increase RASTA
performance

RASTA retrieves spatial and temporal information about fluorescence signals from
the spatiotemporal projection of the t-series, which is performed in the preprocessing
step. Here, we sought to investigate the impact of the spatial and temporal pre-
processing step on RASTA segmentation performance (Fig. B.9 A-B). To this aim,
we first tested RASTA directly on the raw median projection of the t-series, hence
removing all the pre-processing steps (RASTA-Naive in Fig. 4.4D-E and Fig. B.9 C-
D). We observed that the detection and segmentation performance of RASTA-Naive
decreased when compared to RASTA (Fig. 4.4D-E, two-sided Wilcoxon rank sum
test N = 24). We then investigated how the enhancing of temporal information,
which is performed in the preprocessing step contributes to perform to RASTA
performance. We removed the temporal pre-processing steps and we observed a
significant decrease in processes segmentation F1-score results (RASTA-Spatial in
Fig. 4.4 D-E and Fig. B.9 C-D, two-sided Wilcoxon rank sum test N = 24).
These results highlight the importance of the preprocessing step and of spatial and
temporal information in RASTA performance.

Duration of t-series: RASTA operative range

The length of the recordings is a fundamental parameter which can vary from one
experiment to another. Since this parameter can impact the effectiveness of the pre-
processing step, we investigated RASTA performance as a function of the number
of frames in the t-series (Fig. B.10), shortening acquired t-series to movies con-
taining 400, 300, 200, 100, and 50 frames, respectively. RASTA performance was
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largely resistant to frame decimation. However, we observed a significant decrease
of RASTA detection F1-score for t-series shorter than or equal to 100 frames (Fig.
B.10A, two-sided Wilcoxon rank sum test N = 24) and a decrease of the F1-score
for process segmentation for t-series of 50 frames length (Fig. B.10D, two-sided
Wilcoxon rank sum test N = 24). These results identify the lower bound of 50-100
frame duration for RASTA to achieve optimal performance.

Average PSNR

A

B C D E

Figure 4.4: Impact of image noise and pre-processing on RASTA performance. A)
Representative image (single cell in FOV id 2) under various simulated noise regimes.
Values of peak signal-to-noise ratio (PSNR) for each noise regime are reported above the
images. B) Precision, recall, and F1-score for soma detection performance for different
PSNRs. Two-sided Wilcoxon rank sum test N = 24; LOOCV results. C) F1-score for
segmentation of somata and processes across different PSNRs. Two-sided Wilcoxon rank
sum test N = 24; LOOCV results. D-E) RASTA detection and segmentation performance
as a function of the omission of RASTA pre-processing steps. We omitted either the
temporal pre-processing step (RASTA-Spatial) or all the pre-processing steps (RASTA-
Naive). Soma detection precision, recall, and F1 are reported in D. Two-sided Wilcoxon
rank sum test N = 24; LOOCV results. The segmentation F1-score for somata and
processes are shown in E. Two-sided Wilcoxon rank sum test N = 24; LOOCV results.

RASTA generalizes across indicators and acquisition
parameters

To investigate whether RASTA generalizes across experimental preparations, acqui-
sition parameters, and never-before-seen data, we tested it on datasets 2-4. Dataset-
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2 comprises a set of eight two-photon imaging recordings collected in either resonant-
or galvanometric mirror-based scanning in the hippocampus of head-fixed awake an-
imals, which were spontaneously walking on a wheel (Fig. 4.1A). In this dataset,
hippocampal astrocytes specifically expressed TdTomato and fluorescence signals
were collected from a FOV of area 26.2 x 104 µm2 with pixel size of 1.06 µm/pixel
(Fig. 4.1B, see also Methods for details). Dataset-3 is composed of a set of seven two-
photon imaging recordings collected in resonant scanning mode in the hippocampus
of head-tethered awake animals spontaneously walking on a wheel (Fig. 4.1A). Hip-
pocampal astrocytes specifically expressed TdTomato and fluorescence signals were
collected from a FOV of area 16.4 x 103 µm2 with a pixel size of 0.79 µm/pixel (Fig.
4.1B). Dataset-4 includes a set of ten two-photon calcium imaging t-seris collected in
the resonant scanning modality in head-fixed awake animals free to run on a wheel
(Fig. 4.1A). Hippocampal astrocytes specifically expressed GCaMP6f and fluores-
cence signals were collected from a FOV of area 16.4 x 103 µm2 with a pixel size
of 0.79 µm/pixel (Fig. 4.1B). We tested RASTA on dataset-2 using leave-one-out
cross-validation method (Fig. B.11) whereas for dataset-3 (Fig. B.12) and dataset-4
(Fig. 4.5, App. B Tab. S6) the training of the algorithm was performed on dataset-
1. In all cases, the detection F1-score of RASTA was comparable to the annotators’
ones (Fig. B.11C, Fig. B.12C, Fig. 4.5C, and App. B Tab. S4, S5, S6). Similarly,
the F1-score for somata and process segmentation achieved the accuracy level of
human annotators (Fig. B.11F, Fig. B.12F, Fig. 4.5D, and App. B Tab. S4, S5,
S6). Overall, these results demonstrate that RASTA detections and segmentation
performance remains comparable to that of human annotators on never-before-seen
datasets, regardless of the indicator and of the acquisition parameters used.

A B C D

Figure 4.5: RASTA performance on never-before-seen data. A) Consensus annotation of
FOV (Id: 1, dataset-4). B) RASTA segmentation on the same FOV shown in A. C) Soma
detection performance is reported as precision (P), recall (R), and F1-score (F1) for the
three human annotators (A-1, A-2, and A-3) and for RASTA. Two-sided Wilcoxon rank
sum test N=10; LOOCV results. D) F1-score for segmentation of somata and processes
for the three human annotators (blue, yellow, and green) and RASTA (red). Two-sided
Wilcoxon rank sum test N=10; LOOCV results. See also table S5.
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4.3 Methods

RASTA

RASTA is a semantic segmentation algorithm for astrocytic imaging data, its anal-
ysis workflow is characterized by two phases: training and inference. These two
phases are organized in two analytic pipelines (Fig. 4.6 A-B). Each pipeline an-
alyzes a dedicated dataset called training set and inference set, respectively. The
training set is a subset of FOVs in the dataset used to optimize the algorithm. The
inference set is the fraction of FOVs in the dataset used to evaluate the algorithm
performance. The 2-photon time series recordings of astrocytes in the training set
undergo a pre-processing procedure (Fig. 4.7 A); preprocessed data are used to op-
timize the DNN weights. Similarly, inference-phase starts with pre-processing where
data are denoised and enhanced (Fig. 4.7 A). Then, the algorithm proceeds detect-
ing putative cells which are segmented by the DNN. Following a detailed description
of the modules that compose RASTA, and the two analytic pipelines.

Spatial Sharpening Module. This module consists in spatial sharpening and
pixel intensity standardization of the median projection in time-series recording.
First, the module subtracts from each frame the 10th percentile of the pixel inten-
sities [58], then it computes the median projection on the entire stack. The median
projection is useful to remove the residual motion artifacts that remain after mo-
tion correction and it enhances all the pixels that have localized activity during the
entire time series. In order to standardize the images pixel values in the dataset,
pixel intensity values have been rescaled as a 16-bit integer (i.e. within the interval
[0; 216]). Image contrast has been improved by using clipping limited adaptive his-
togram equalization (CLAHE). To further improve the resolution of cell substructure
this technique is combined with a sharpening kernel convolution (App. B Algorithm
details: Spatial Sharpening Module). Overall, spatial sharpening module condenses
information about the spatial location of astrocytic signals collected over time into
a single, highly informative, spatial map.

Activity Map Generation Module. This module detects regions in FOVs char-
acterized by spatially-localized high fluorescence intensity (see below), generating a
putative “activity map”. To start, the input FOV is subsampled in overlapping
patches (Fig. 4.7 B), each subject to independent statistical analysis. Each patch is
a 3D tensor in time and space in which the intensity value of each 3D voxel is con-
sidered an independent sample. For each time t, Voxels- vi,j[t] where i,j are indexes
over the patch dimension- are binarized setting their value to 1 if their fluorescence
intensity value is greater than the N-th percentile of the voxels intensity distribution
within the patch or to 0 otherwise. The N-th percentile is selected by optimization of
the activity map generator performances on the training set (see below). Finally, a
bi-dimensional (spatial) average projection of the binarized 3D tensors is generated



66
CHAPTER 4. RAPID SPATIOTEMPORAL ANALYSIS OF ASTROCYTIC

CALCIUM DYNAMICS USING DEEP LEARNING

reporting the fraction of time in which the voxels vi,j were classified to 1. In the
areas of patch overlap in the a bi-dimensional average projection, for each pixel the
spatial average has been computed as the average value across patches. To provide
biologically relevant constraints to this statistical filter, the number of astrocytes
in each FOVs can be estimated as the ratio of the FOVs surface with respect to
the area of an astrocytic domain. Here, each astrocytic domain is approximated as
a circle of surface π(d/2)2, where d is the characteristic diameter of an astrocytic
domain (approx. 40µum; [31]. The estimated number of astrocytes represents a
lower bound for the number of active zones; in fact, the number of identified clus-
ters can be greater than the estimated number of astrocytes because of portions
of astrocytic bodies visible in the FOV or blood vessels appearing as active areas.
Last, the algorithm identifies all the spatially contiguous active clusters of pixels on
the bi-dimensional (spatial) average projection of the binarized 3D tensors, selecting
clusters with surface greater or equal than a putative somata (approx. 40 µm2). As
a conservative initialization, pixels are considered active if their average projection
value is greater than 0.6 (i.e. being classified to 1 on 60% of time frames). If the
number of clusters identified is smaller than the estimated number of astrocytes
the algorithm decreases by 0.03 the threshold for selecting active pixels. For each
new threshold the putative somata surface area is decreased iteratively by 4 µm2

starting from 40 µm2 to 20 µm2. This tuning process stops when the number of
identified clusters is equal or greater than the estimated number of astrocytes the
algorithm. This procedure aims to minimize the difference between the number of
detected active regions and the theoretical astrocyte number.

The N-th percentile used to binarize the 3D tensor is tuned optimizing the per-
formances of the activity map generator module on the training set. Performances of
this module are evaluated computing the F1-score value between consensus somata
annotations (see Manual Dataset Annotation section) and active zones identified in
each FOV of the training-set. The performances are computed for a set of percentiles
(30,40,50,60,70,80,90) and the one which maximize the F1-score is selected.

To sum up, this approach implements statistically auto-tuned local thresholds
which detect regions in FOVs characterized by spatially localized high intensity of
fluorescence. Moreover, it makes use of biological constraints providing a robust
end-to-end strategy which does not require any manual parameter to set beyond
pixel size.

Putative Bounding Boxes Extraction Module. This module computes cen-
troids of high intensity of fluorescence zones detected by the activity map generation
module and generates bounding boxes (BBs) surrounding them. BBs are ≈ 55µm
high and wide with center in the coordinates of the centroids. These BBs are used to
extract from t-series and spatial sharpened maps respectively (putative) single-cell
recordings and (putative) single-cell spatial map.



4.3. METHODS 67

Local Activity Filtering Module. This module performs a fine local time fil-
tering. The first step, is to select the most active parts in the putative single-cell
fluorescence recordings considering each pixel value in time in the 3D tensor an in-
dependent sample. It uses as threshold the 90th percentile of the pixels intensity
distribution and binarizes the tensor. Then it selects pixels that are active for at least
the α1% of the frames. Then the procedure is repeated setting to zero the previously
selected pixels from the starting distribution and identifying pixels that are active
for at least α2% of the frames. The binary mask obtained from the summation of
the two previous set of pixels is used to generate a map (1 active 0 non-active pixels)
to filter background regions from spatial single cell images. The filtering procedures
were based on percentage of frames rather than absolute number of frames. This
compensates for differences in frame numbers when considering different FOVs. α1%
and α2% thresholds on activity are used to remove the background and eventually
artifacts generated by spatial sharpening. The thresholds used in this module are
tuned on the training set. The module explores a series of α1% and α2% couples in
order to limit the number of removed consensus pixel under the 5% for both soma
and processes (i.e. α1=25 and α2=10 for dataset-1). It is important to notice that
concatenating 2 filters allows greater flexibility in the identification of background
pixels and limits the bias to remove active regions characterized by low intensity of
fluorescence (App. B Algorithm details: Local Activity Filtering Module).

Deep Neural Network Module. Astrocytes have a complex and articulated
morphology composed by heterogeneous spatial patterns. Somata are compact
structures with a simple geometric shape resembling an ellipsoid. Astrocyte ar-
borizations conversely have extremely ramified structure that extends around the
soma in a variety of shapes and directions. To segment these different structures,
here we propose a new U-net [116] shape deep neural network (DNN) with new
encoder building-blocks and new up sampling layers. Our design of this new DNN
begun from a U-net [116] architecture with an encoder part (the descending part
of the U shape in Fig. 4.7 C) that analyses the input image and a decoder (the
ascending part of the U shape in Fig. 4.7 C)) that takes the information from the
encoder and up-samples it to classify the pixels of the input image. The first two
blocks of the encoder (L1 and L2 of the left part in Fig. 4.7 C) are two basic U-net
blocks that analyze input image using convolutional filters. We then nested three
pretrained Inception-Resnet-v2 modules [187] in our network (L3 to L5 levels in the
left part in Fig. 4.7 C) changing its encoder backbone[188, 189]. This allows the
encoder to incorporate a wider range of spatial dimensions simultaneously.

The decoder part of the U-Net (right part of Fig. 4.7 C) implements in 5 levels
(L5 to L1), an up-sampling strategy that is a fundamental transformation operation
to obtain a pixel-level prediction of the class with which each pixel should be labeled.
In the Decoder part, we adopted Dense Up-sampling Convolution (DUC) to reduce
the decoder number of weights [190].

To train all layers of both the encoder and decoder parts, we made use of a strong
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data augmentation to limit algorithm overfitting problems caused by the relatively
small size of the dataset. During training we used standard transformations [191]
of input images: rotation by 90◦, 180◦, 270◦, gaussian blurring with a 3x3 pixels
kernel and σ=3, gaussian noise sampling values from a Gaussian distribution with
µ = 0 and σ = 0.3, salt and pepper noise on 4% of pixels, scaling of image size by
factor 0.8 and 1.4, horizontal and vertical flipping, pixels intensity scaling by factors
3 and 0.5. Moreover we used morphological transformations, that alter the spatial
structure of input images: elastic [116], barrel and pincushion transformations. This
approach helps the net generalization process during training, since we are gener-
ating morphological new samples with realistic transformations (App. B Algorithm
details: Data Augmentation). We combined a Binary-Cross-Entropy (BCE) loss
with soft Dice loss [192]; BCE was applied to all the three classes soma, process,
and background. Soft Dice has been applied only on soma and processes:

L(X, X̂) = − 1

Nb

Nb∑
i=1

{( 3∑
c=1

Xic log X̂ic

)
+

[ 2∑
c=1

(
1− 2 ∗Xic ∗ X̂ic + ϵ

Xic + X̂ic + ϵ

)]}
(4.1)

where X and X̂ represent user defined mask tensor and prediction mask tensor,
ϵ = 0.5 is constant that preserve the numerical stability, Nb is the batch size and
c=1,2,3 is the class index for: processes, soma and background. The role of DNN
is to assign small region to the correct class, hence, the soft dice loss represents a
proper metric to measure area overlapping accuracy. We trained the DNN using
Adam Optimizer [193] and learning rate ( lr, see App. B Tab. S7 ) using the
30% of the training set as validation set to monitor the the loss of the DNN. The
number of training epochs is N = N1+N2. In the first N1 epochs of training the
weights of pretrained blocks (Reduction Blocks and IncecptionResNet Blocks) are
not updated. During the remaining N2 epochs we performed a fine tuning of the
entire net weights. All the filters that are trained since the first epochs are initialized
as described in [188]. Training parameters are reported in App. B Tab. S7. N1 and
N2 were chosen because the validation loss within these epochs always converged to
a plateau within these epochs.

Cross Correlation Module. This module analyzes fluorescence intensity dynam-
ics of pixels within the putative domain surrounding the semantically segmented
astrocytic soma and processes ROIs (i.e. a circular region of radius approx. 38 µm).
We refer to the intensity fluctuations in time of each pixel as slI [t]. This module is
composed by two blocks - cross-correlation computation and threshold optimization-
that are called iteratively. The cross-correlation computation block classifies a set
of input slI [t] for l =1, . . . , L as correlated to a set of reference skR[t] for k =1, . . . ,
K given a threshold thcc; where L is the number of inputs and K is the number of
references. The block computes the normalized cross correlation between each (l,k)
pair (Eq. 4.2) and selects its maximum value (Eq.4.3). Then, the cross-correlation
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matrix Mcc is defined as follow:

cclk[n] =
1

σl
Iσ

k
R

(slI [t]− µl
I) · (skR[t+ n]− µl

I) for n ∈ [−5, 5] (4.2)

where µl
I and σl

I are respectively mean and standard deviation of slI [t] and µk
R and

σk
R are respectively mean and standard deviation of skR[t].

mlk = max
n

cclk[n] (4.3)

and Mcc is defined as follow:

Mcc =

m11 . . . mK1
...

. . .
...

m1L . . . mKL


Mcc is then binarized selecting only values greater than threshold thcc. slI [t] is
classified cross-correlated if at least one element in the lth-row of Mcc is equal to
one.

The threshold optimization block selects an optimal threshold using an iterative
approach. A set of 250 pixels is sampled outside astrocyte domains in each FOV and
their s[t] are collected. This set represents a proxy over which we can compute the
number of false positive selections obtained from the cross-correlation computation
block using as a reference set the s[t] extracted from ROIs pixels. Since pixels are
sampled outside astrocytes domains these cannot belong to any subcellular region of
astrocytes detected in the FOV. For this reason, we assume that the sampled pixels
s[t] are independent from the ones of the semantically segmented ROIs pixels. In
the threshold optimization block the sampling-selection strategy is repeated 5 times
for each threshold value in the range 0.60 to 0.95 with minimum spacing between
values of 0.05. Finally, for each threshold the mean number of false positive pixels
is computed. Then, this block selects as optimum threshold thOp as the smallest
threshold value with average false positive percentage error less than %5. Finally,
for each detected cell the cross-correlation module collects all the pixel s[t] in the
circular region that surround it and all the ROIs pixels s[t]; then it applies the
cross-correlation computation block on these two s[t] sets using thOp as threshold.

Training Pipeline. The training-phase is organized as a series of steps that end
with the DNN training as shown in Fig. 4.6 A. First of all, the spatial sharpening
module applied to the training FOVs generates spatial sharpened maps. Since cells
in the training set are already mapped in the consensus segmentation the Putative
Bounding Boxes Extraction module generates the BBs using the somata annotated
in the consensus segmentation as input. In the BBs extracted from these maps
there are no false positive cell so the DNN can be trained on unbiased samples. The
Putative Bounding Box Extraction module generates a set of single cell spatial maps
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and a set of single-cell recordings. The Local Activity Filtering module analyzes
the single-cell recordings obtaining binary masks of foreground/background pixels.
Finally, single cell images extracted from the spatial maps are filtered with these
binary masks. This filter further denoise and enhance the so-obtained single cell
spatial maps. Putative Bounding Boxes Extraction and Local Activity filtering
modules are useful to take advantage of the temporal information of all the astrocyte
calcium fluctuations, which had been compressed using the median projection. This
pipeline ends after the training of the DNN with the so obtained single cell filtered
spatial map images.

Inference Pipeline. The inference-phase starts with a pre-processing which gen-
erates of a set of putative filtered single-cell map from the inference set, as shown
in Fig. 4.6 B. The pre-processing is organized in several steps where Spatial Sharp-
ening, Activity Map Generation, Putative Bounding Boxes Extraction and Activity
Filtering modules are applied. For each FOV, the spatial map and the activity map
are generated by the Spatial Sharpening module and by the Activity Map Generation
module, respectively (Fig. B.1 A). Then, the Putative Bounding Boxes Extraction
module extracts the putative single-cell spatial maps and the putative single-cell
recordings. Finally, the Activity Filtering module analyzes single-cell recordings
and identifies non-informative zones. These zones are filtered from the single-cell
spatial map (Fig. B.1 B). Subsequently, the filtered single-cell spatial maps are used
to reconstruct a filtered spatial map of the entire FOV.

The DNN analyses the filtered single-cell spatial maps and, for each FOV these
results are collected in as segmentation results. Then, the DNN analyses the FOV
filtered spatial map providing for each cell the probability of being a true- or a false-
positive. Cell probability is computed as the mean probability of pixels inside somata
ROIs of being classified as soma-type pixels by the DNN. Cells with probability
smaller than 0.9 are filtered from the FOV segmentation results (App. B Algorithm
details: Cell-wise probability map). Finally, the segmented regions obtained are
spatially filtered including only cells with identified soma area greater than 0.9*Amin
and smaller than 1.1*Amax, where Amin is the smallest somata area measured in
the training dataset whereas Amax is the greatest somata area measured. Finally,
identified processes are filtered if not spatially connected to an identified soma (App.
B Algorithm details: Removal of DNN artifacts).

The last optional step consists in the refinement of the ROIs so obtained using
the cross-correlation module. In fact, it identifies regions where calcium signals are
cross-correlated with the semantically segmented ROIs signals in the FOV.
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Figure 4.6: RASTA pipelines. A-B) Flowcharts of the training (A) and inference (B)
pipeline.

Detection and Segmentation Metrics

We evaluated the detection performances of our algorithm by comparing RASTA
somata segmentations with the manual consensus labels, as described in [181, 182].
We quantified three somata detection metrics: recall, precision, and F1 score, defined
as follows:

Precision =
NTP

Ndetected

(4.4)

Recall =
NTP

NC

(4.5)

F1 = 2 · Precision ·Recall

Precision+Recall
(4.6)

We defined these quantities as follows: number of manually labelled somata
(consensus somata, NC ), number of true positive somata (NTP ) and number of
somata detected (Ndetected) [181, 182]. We matched masks between the consensus
labels and the detected masks using the Intersection-over-Union (IoU) metric along
with the Hungarian algorithm [194]. We computed the IoU metrics for 2 binary
masks M1 and M2 as follows:

IoU(M1,M2) =
|M1 ∩M2|
|M1 ∪M2|

(4.7)

Then we computed the distance matrix between any pair of masks in GT manual
annotations set and in RASTA annotations set as described in [181, 182]. Each
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element of this matrix has been computed as follows:

d(M
GT,Mj

i ) =

 1− IoU(M
GT,Mj

i ) if IoU(M
GT,Mj

i ) ≥ 0.5
0 if MGT

i ⊆ Mj or MGT
i ⊇ Mj

∞ if otherwise

(4.8)

A distance of infinity corresponds to non-matching masks due to their small IoU
score. Finally, we solved the matching problem applying the Hungarian algorithm
to the distance matrix. The number of matched masks correspond to NTP . Seg-
mentation scores have been computed at the pixel level to quantify how complex
structures like processes are segmented by RASTA. For each FOV we computed the
segmentation score considering only the detected cell; when no detected cells were
available in a FOV the segmentation score was discarded. The segmentation score
was quantified by three metrics: recall, precision, and F1 score, defined in eq.4.4,
eq.4.5, eq.4.6. We defined NC number of manually labelled pixels, NTP number of
true positive pixels in the RASTA segmentation and Ndetected the number of pixels
segmented by RASTA. We compute the F1-score for both somata and processes
pixel-classes.

Cross-Correlation Error evaluation

Error estimation for the cross-correlation module has been performed computing
the number of pixels outside astrocyte domains that are cross-correlated with the
consensus ROIs pixels in each FOV. For each cell in the FOVs we sampled 1000 pixels
outside the domain of the astrocytes avoiding pixels which were used to tune the
cross-correlation threshold. This set is fundamental to compute the number of false
positive selections for each astrocyte. Domains are estimated as a circular region of
radius 38 µm surrounding each cell in FOVs. Then, we compute the number of false
positive pixel per FOVi as:

FP (FOVi) =

∑
j=num.
of cells

fp(cellj)

NC

(4.9)

Where fp is the number of false positive pixels selected for cellj and NC is the
number of cells in FOVi. We repeated this analysis for 100 iterations for each FOV.
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Figure 4.7: Schematic representation of RASTA modules. A) Flowchart of the pre-
processing steps: i) generation of the spatial sharpening map (Spatial Sharpening); ii)
extraction of putative bounding boxes (PBB Extraction); and iii) local activity filtering
(LA Filtering) of single-cell images. Please note that extraction of single-cell images
during pre-processing of the training set relies on ground-truth segmentation. Extraction
of single-cell images during pre-processing of the inference set relies on the activity map
generator (Activity Map Generation). B) Schematic representation of RASTA activity
map generator: i) patch extraction; ii) patch parallel analysis; iii) clustering of active
pixels. C) RASTA DNN architecture. In each level Li with i = (1, 2, 3, 4, 5), height (H) and
width (W) of the input image is reduced by a factor 2i−1. Conv2D+BN+ReLu: this block
is composed of two consecutive sequences of 3 x 3 convolutional filters (Conv2D) followed
by batchnorm normalization (BN) and rectified linear unit (Relu). Caption continues on
the next page.
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Figure 4.7: Max Pooling: we used a kernel-size of (2,2), the size of the sliding window
where the maximum value of the input tensor is taken, resulting in input tensor of di-
mensions H and W reduced to H/2 and W/2. Mixed-i: in L3 we used Mixed-5a, in L4
we used Mixed-6a and in L5 we used Mixed-7a from Inception-ResNetv2 implementation
in [187]. Inception-ResNet Block: in L3 the block is composed as (Inception-ResNet-A,
Block35)x10, in L4 the block is composed by (Inception-ResNet-B, Block 17)x20 and in
L5 the block is composed by (Inception-ResNet-C, Block8)x10 from Inception-ResNetv2
implementation in [187]. Upsampling: we adopted dense upsampling convolution (DUC,
[190]) to perform the upsampling on the input tensor. The input tensor dimensions are
H x W x D and they are transformed to (2H) x (2W) x (D/4). Conv2D+Softmax: this
block is composed by a 3x3 convolutional filter and a Softmax transformation.

Reconstruction of astrocytic morphology from
spatio-temporal map of AQuA

Starting from the spatio-temporal map of Ca2+ events resulted from AQuA [176]
we reconstructed astrocytic morphology since a subset of pixels classified as events
should in principle belong to astrocytic somata and processes. For each astrocyte
detected in the consensus annotation, we run AQuA in circular regions of radius 38
um surrounding these cells, thus limiting the analysis to the putative astrocytic do-
main. Using putative Ca2+ events detected by AQuA we select the pixels belonging
to a minimum number of events. For each astrocyte the minimum number of events
was tuned as the value that maximize F1-score between the selected set of pixels
and the consensus annotation (soma+processes). Hence, we computed precision,
recall and F1-score between the best reconstruction and the consensus annotation.
This strategy provides the F1-score upper bound for the reconstruction astrocytic
morphology using AQuA.

Time Analysis

We measured RASTA processing time for the whole inference pipeline, repeating the
analysis over 10 iterations. We used the following computing architecture, a Linux
based workstation (Ubuntu 18.04.3 LTS distribution) equipped with 20 Intel(R)
Core (TM) i9-9900X CPU clocked @ 3.50GHz, 130 GB of RAM, and 3 INVIDIA
GeForce RTX 2080 Ti GPUs. To allow for performance comparison across differ-
ent configurations of hardware resources, we used a 26.3*103 µm2 FOV, changing
artificially the t-series length from 300 to 700 frames. We compared three compu-
tational resource configurations: 4 CPUs, 20 CPUs, and 20 CPUs + 1 GPU (Fig.
B.14 A). These configurations were chosen to investigate RASTA performance across
hardware settings, from laptop-like performance (i.e., 4 CPUs) to high-performance
workstation equipped with computing accelerators (i.e., 20 CPUs and 20 CPUs + 1
GPU).

We found, as expected, that for detecting and semantically segment somata
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and processes of astrocytes the 4 CPUs configuration was the slowest configuration
(mean±std 12.33±0.08 s for 700 frames), whereas on the 20 CPUs configuration the
usage of a GPU accelerator reduces the processing time of RASTA (mean±std with
GPU 7.27±0.03 s, without GPU 10.80±0.09s for 700 frames).

The cross-correlation module is a very time-consuming block in the inference
pipeline, as pixels in astrocyte domains are classified as correlated or uncorrelated
with the semantically segmented astrocyte pixels ROIs. We found that GPU com-
putational power can be used to sensibly reduce the execution time (mean±std
0.919±0.004 s for 90s t-series) if compared to 20 CPUs implementations (mean±std
19.23±0.09 s for 90s t-series) and 4 CPUs implementation (mean±std 26.39±0.04 s
for 90s t-series; Fig. B.14 B ).

We also measured the processing time for detecting and semantically segment
somata and processes of astrocytes for large scale and high sampling rate record-
ings using the 20 CPUs + 1 GPU computational resources configuration. These
recordings are challenging data due to either the large number of astrocytes in the
mesoscopic FOV or the number of frames obtained with resonant-galvo scanning.
We measured processing time of the inference pipeline for 10 iterations on 0.16 mm2
and 0.26mm2 changing artificially the t-series length from 1000 to 5000 frames (Fig.
B.14 C). We found that RASTA can analyze fast these large scale and high sam-
pling rate recordings (mean±std 22.1±0.3 s for 0.16 mm2 FOV and 25.7±0.1s for
0.16 mm2 FOV both composed by 5000 frames).

Overall, RASTA enables rapid semantic segmentation of astrocytes in two-photon
t-series, facilitating the analysis of astrocytic calcium signals in vivo and enabling
new experimental approaches on mesoscopic FOVs. Clearly, more computational
resources, such as those available in High Performance Computing clusters, can fur-
ther reduce the computation time of RASTA (Fig. B.14 D), however RASTA can
already analyze t-series faster than the duration of t-series without requiring large
amount of computational resources.

DATASET

Mice. All experiments involving living animals were approved by the National
Council on Animal Care of the Italian Ministry of Health and carried out in ac-
cordance with the guidelines established by the European Communities Council
Directive authorization (61/2019-PR). All data were collected from male C57BL/6J
mice (Charles River, Calco, Italy). From postnatal days 30, animals were separated
from the original cage and housed in groups of up to five littermates per cage with ad
libitum access to food and water in a 12-hours light-dark cycle. All the preparative
and experimental procedures were conducted on animals older than 10 weeks.

AAV injection and chronic hippocampal window surgery. Animals were
anesthetized with 2% isoflurane 0.8 % oxygen, placed into a stereotaxic apparatus
(Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37◦C for the
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whole duration of the anesthesia. Before surgery, a bolus of Dexamethasone (Dex-
adreson, 4 gr/kg) was injected in the animal’s hamstring. After scalp incision, a 0.5
mm craniotomy was drilled on the right hemisphere (1.75 mm posterior, 1.35 mm
lateral to bregma), the AAV-loaded micropipette was lowered into the hippocampal
CA1 region (1.40 mm deep to bregma). 0.8 µl of AAV solution containing pZac2.1
gfaABC1D-cyto-GCaMP6f (Addgene viral prep - 52925-AAV5) was injected at 100
nL/min by means of a hydraulic injection apparatus driven by a syringe pump (Ul-
traMicroPump, WPI, Sarasota, FL) . Following the viral injection, a stainless-steel
screw was implanted on the cranium of the left hemisphere and a chronic hippocam-
pal window was implanted on the controlateral hemisphere similarly to [124, 128]. In
brief, a trephine drill was used to open a 3 mm craniotomy centered at coordinates
2.00 mm posterior and 1.80 mm lateral to bregma. The dura was removed using
fine forceps, and the cortical tissue overlaying the hippocampus slowly aspirated
using a blunt needle coupled to a vacuum pump. During aspiration the exposed tis-
sue was continuously irrigated with normal HEPES-buffered artificial cerebrospinal
fluid (ACSF). Aspiration was stopped once the thin fibers of the external capsule
were exposed. An optical window was fitted to the craniotomy in contact to the
external capsule and a thin layer of silicone elastomer (Kwik-Sil, World Precision
Instruments) was used to surround the interface between the brain tissue and the
steel surface of the optical window. A custom stainless-steel head-plate was attached
to the skull using epoxy glue. All the components were finally fixed in place using
black dental cement and the scalp incision was sutured to adhere to the implant.
All the animals received an intraperitoneal bolus of antibiotic (BAYTRIL, Bayer,
Germany) to prevent postsurgical infections.

Optical windows. Optical windows were composed of a thin-walled stainless-steel
cannula segment (OD, 3 mm; ID, 2.77 mm; height, 1.50 - 1.60 mm). A 3.00 mm
diameter round coverslip was attached to one end of the cannula using UV curable
optical epoxy. Sharp edges and bonding residues were smoothed using a diamond
coated burr.

2-photon imaging in awake head-restrained mice. The optical setup for 2-
photon imaging was composed of a pulsed laser source (Chameleon Ultra, 80 MHz
repetition rate tuned at 920 nm, Coherent) and Bruker Ultima Investigator equipped
with 6 mm raster scanning galvanometers, movable objective mount, 16x/0.8 NA ob-
jective (CFI75 LWD 16X W, Nikon, Milan), and multi-alkali photomultiplier tubes.
Laser beam intensity was adjusted using a Pockel cell (Conoptics Inc, Danbury).
Laser beam power at the objective outlet was 90-110 mW. GCaMP6f or TdTomato
emission signal was collected by the PMT detector after band-pass filtering (525/70
nm) and digitalized in 12 bits. Imaging sessions have been conducted in raster
scanning mode. One or two weeks after surgery the animals were handled by the
operator for a minimum of two days and then were habituated to the imaging setup.
Starting from the second session, the animals were head-restrained for a progres-
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sively increasing amount of time reaching 1 hour in approximately one week. Mice
were free to run on a custom 3D printed ABS wheel. Experimental sessions lasted
approximately one hour. After each session, animals were returned to their home
cages.

Motion correction . t-series were motion corrected using a customized imple-
mentation of the open-source up-sampled phase cross-correlation algorithm [154,
155]. We used the t-series median projection as reference frame.

Dataset-1. The first 2-photon calcium imaging dataset used to test our algorithm
is composed by 24 FOVs of hippocampal astrocytes expressing GCamp6f indicator
recorded in awake mice with galvo miscroscope. The dataset was recorded from
head-fixed mice running on a wheel. It is composed by 15 FOVs with 550 frames
and 9 FOVs with 750 frames each 256x256 pixels resolution (0.634 µm/pixel). The
temporal sampling rate of t-series in this dataset is 3.0 frames/s.

Dataset-2. The second 2-photon calcium imaging dataset used to test our al-
gorithm is composed by 8 FOVs of hippocampal astrocytes expressing TdTomato
indicator recorded in awake mice. The dataset was recorded from head-fixed mice
running on a wheel. It is composed by 4 FOVs recorded with galvo miscroscope
and 4 FOVs recorded with resonant microscope. FOVs dimensions are 512x512 pix-
els with 1.057 µm/pixel of resolution. FOVs recorded with galvo miscroscope are
composed by 250 frames. In the 4 FOVs recorded with resonant microscope sub-
set there are 2 FOVs with 5500 frames, a FOV with 1200 frames and a FOV with
9000 frames. The temporal resolution of t-series recorded with galvo microscope is
0.8±0.1 frames/s whereas the temporal resolution of t-series recorded with resonant
microscope is 30.2±0.2 frames/s.

Dataset-3. The third 2-photon calcium imaging dataset used to test our algorithm
is composed by 7 FOVs of hippocampal astrocytes expressing TdTomato indicator
recorded in awake mice with resonant microscope. The dataset was recorded from
head-fixed mice running on a wheel. It is composed by 5 FOVs with 5500 frames, a
FOV with 4500 frames and a FOV with 9000 frames each 512x512 pixels resolution
(0.793 µm/pixel). The temporal resolution of t-series in this dataset is 29.9 frames/s.

Dataset-4. The fourth 2-photon calcium imaging dataset used to test our algo-
rithm is composed by FOVs of hippocampal astrocytes expressing GCamp6f indi-
cator recorded in awake mice with resonant microscope. The dataset was recorded
from head-fixed mice running on a wheel. It is composed by 10 FOVs with 9000
frames each 512x512 pixels resolution (0.793 µm/pixel). The temporal resolution of
t-series in this dataset is 29.9 frame/s.
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Simulated datasets. We performed a set comparative analyses manipulating the
noise levels into FOV t-series. Specifically, starting from dataset-1 we generated 4
artificial datasets with increased noise levels. We started estimating the standard
deviation σ for each pixel in the FOVs, then we computed a novel temporal intensity
trace adding zero mean gaussian noise with β ·α standard deviation to the observed
raw trace. Each artificial dataset was characterized by a different β noise scaling
factor (0.5, 1, 1.5, 2). Then, we generated 2 datasets with reduced background
pixels intensity. For each FOV we defined as background all the pixels outside the
consensus annotations. We scaled background pixel intensity by a factor λ, exploring
two λ values (0.75 and 0.5).

PSNR evaluation. We evaluated the peak signal to noise ratio (PSNR) of a FOV
with N astrocytes as follow:

PSNR(FOVi) =
1

N

N∑
j=0

maxtyj[t]

σbaseline
j

(4.10)

Where yj[t] is the mean fluorescence signal in astrocyte ROIs and σbaseline
j is the

standard deviation of the baseline distribution of fluorescence values of the astrocyte.
To compute the baseline distribution of each astrocytes we considered only pixels
inside the astrocyte domain (circular area of radius approx. 38 µm). The values of
these pixels across time form the full fluorescence distribution. Then the baseline
distribution consists in all the fluorescence value smaller than the 80-percentile of
the full fluorescence distribution.

Manual dataset annotation. Motion corrected t-series were pre-processed with
the spatial sharpening module. The consensus generation process is composed by 2
steps. As a preliminary step 3 expert annotator independently labeled the dataset
using the freehand and ROI Manager tools of Fiji [195] following these rules: first,
annotators used the recordings to detect visible astrocytic somata. Then the spatial
maps have been used to select and label region of interests (ROIs) identifying visible
astrocytic somata and processes; last, annotators sequentially added ROIs defining
the contours of the optically resolved proximal processes showing active calcium dy-
namics and presumably belonging to the same astrocyte. Hence, as second step they
solved the inconsistencies between their annotations reaching a final consensus [181]
as follows. The annotations of the 3 annotators have been combined in overlapping
masks (Fig. B.2), highlighting annotators discrepancies. Each soma or process iden-
tified by less than 3 annotators has been added or removed from final consensus after
an ad-hoc review where the annotators observed both the preprocessed spatial maps
and motion corrected t-series. Finally, consensus ROIs have been generated ex-novo
starting from the somata and processes ROIs accepted consensually by annotators.
Consensus ROIs have been reviewed and accepted by all the annotators during the
generation.
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Algorithm Open-source implementation and Datasets
availability

RASTA has been developed in Pyhton3.6[164] and PyTorch 1.2[196], the code is
publicly available at (https://github.com/jbonato1/RASTA). The repository con-
tains documentations, Docker [197] image for fast installation, jupyter notebook
tutorials, bindings for widely used software (Fiji[195] and MATLAB (MathWorks)),
visualization and analysis tools, and a message/discussion board. DNN weights are
available for all the datasets used in this study, allowing novel users to run analysis
on new small datasets. RASTA uses several open-source libraries like OpenCV [198],
scikit-learn [199], scikit-image [155] and Scipy [200].

Quantification and Statistical Analysis

For all the statistical test of detection and segmentation performances, we performed
two-sided Wilcoxon rank test; n.s., not significant, *P < 0.05, **P < 0.005 and ***P
< 0.0005. When we performed multiple statistical comparisons between detection
and segmentation performances between annotators and RASTA we corrected the
statistical test results using Holm–Bonferroni method [201]. We did not remove any
data from statistical analyses as outliers.





Chapter 5

Conclusions

5.1 Complementary encoding of spatial

information in hippocampal astrocytes

We have shown for the first time that information encoding during virtual spatial
cognition is not a phenomenon restricted to neural circuits, but also involves the
nearby astrocytic network. We observed that spatial information was encoded in
both somata and processes of astrocytes, consistent with the complexity and com-
partmentalization of calcium signals in astrocytes [59, 75, 92, 93, 98, 118]. Interest-
ingly, individual astrocytes can encode multiple place fields through their different
subcellular compartments. This phenomenon suggests how multiple neuronal spa-
tial representations can be integrated by astrocytes. Moreover, we observed that
astrocytic and neuronal signals are both complementary and synergistic, and their
combination significantly increases the amount of information about the animal’s po-
sition. The diversity of position tuning and position-dependent correlations between
astrocytic and neuronal ROIs represents the mechanism by which it is possible to
observe complementary and synergistic information, as previously observed by [131]
on neuronal ROIs. Another source of complementarity may be the integration of
several different neuronal inputs encoding different stimuli [202–204].

A widely accepted model of tripartite synapses [134, 139] describes how neu-
ronal neurotransmitter release at the synaptic cleft can activate receptors in the
plasma membrane of astrocytic processes. Astrocytic receptors, which enwrap both
the presynaptic and postsynaptic terminals, can cause the release of intracellular
calcium ions after activation. Consistent with this model, previous in- vivo stud-
ies of astrocytic calcium signaling described that astrocyte activity reflects nearby
neuron activity [46, 58, 109]. However, our study [111] has used an information-
theoretic approach to show that spatial information in astrocytes is complementary
to that encoded by nearby neurons. This fundamental finding opens up a number
of important questions about molecular, anatomical, and functional aspects of as-
trocytic networks and how these networks relate to neuronal networks in the CNS.
For example, the different molecular mechanisms regulating intracellular calcium
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signaling in astrocytes and neurons may be involved in information complementar-
ity. In fact, presynaptically released neurotransmitters reach postsynaptic neuronal
terminals in the synaptic cleft and also thin astrocytic processes outside the cleft.
Could these two distinct channels of signal transduction be involved in generating
information complementarity? These open questions need to be addressed in future
studies combining both experimental and modeling work.

Our information-theoretic approach has revealed some statistical properties such
as complementarity and synergy of neuronal and astrocytic networks, but it is not
sufficient to reveal any causal relationships between information encoded in astro-
cytes and circuit function or behavior. For this reason, it is critical to investigate
how perturbation of astrocyte activity affects the neural network and its spatial
representation to elucidate how both networks function [140]. One possible experi-
ment is to manipulate astrocytic calcium dynamics with high spatial and temporal
resolution [141–143] using the pharmacogenetics[174, 205] technique while imaging
pyramidal neurons in the CA1 hippocampal region of head-fixed mice walking in
a virtual corridor. If perturbation of astrocytic calcium dynamics affects the neu-
ronal representation of space, the complementary/synergistic place dependence of
astrocytic calcium dynamics may play a crucial role in the emergence of dynamic,
context-dependent changes in the population coding of CA1 neurons. For these rea-
sons, manipulation experiments and a comprehensive analysis of information pro-
cessing in the neuronal network are essential for clarifying the relationships between
neuronal and astrocytic networks in the hippocampus.

Recent models describing hippocampal functions consider only populations of
neurons [144–147]. These populations encode information about the external en-
vironment which are essential for spatial navigation or memory formation. This
representation of the hippocampus, in which only neurons play a fundamental role
in encoding spatial information during spatial navigation tasks, needs to be updated
to include astrocytic activity. Indeed, using an information-theoretic analysis, we
found that spatial information is also encoded in the calcium dynamics of astrocytes
(nonneuronal elements) and in their position-dependent interaction with neurons.
Moreover, this information is not available in CA1 neuron activity or in their inter-
actions. This nonneuronal information reservoir and the information-coding interac-
tion between neurons and astrocytes represent two novel and unanticipated cellular
mechanisms in hippocampal circuitry.

A key aspect concerning neuronal place cells in the hippocampus is the change
in their firing patterns in response to seemingly minor changes in sensory or cog-
nitive input, termed ”remapping” by Muller and colleagues (see [206]), as place
cells remapped their representation of space (see [207] for a review). Depending on
changes in sensory or cognitive input, place fields may appear, disappear, or move to
unpredictable locations [206]. It has been observed the place cells remapping when
animals are placed in a new environment. A random set of ≈ 25 % of neurons in the
entire population encodes the new environment [208–214], these new place cells can-
not be predicted based on the place cells of the familiar environment. Remapping
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has also been observed in the same environment but under light and dark conditions
[215]. In general, the occurrence of remapping depends on several factors, including
the extent of differences between environments [210], the prior training experience
of the animals [215, 216], and also task switching in the same environment [217]. In
addition, the motivational state of the animal and the behavioural context also play
a role when remapping was observed in hippocampal place cells [218].

This phenomenon, which occurs in response to changes in behavioural context,
suggests that the animal is able to create alternative representations of space in
terms of different consequences associated with similar stimuli. However, Does this
phenomenon occur also in astrocytes? If so, how does remapping take place in
astrocytes and how is it related to nearby neurons? Investigating and characterising
these aspects in relation to astrocytes exhibiting spatial encoding is essential to
clarify how space is encoded in the hippocampus between the neuronal and astrocytic
networks.

These aspects are also closely related to the mechanism of place cell formation in
the hippocampus (review [219]). The cellular and circuit mechanisms that contribute
to the formation of new place fields in the CA1 hippocampal area when animals are
exposed to novel environments are an active area of research in neuroscience [208–
214]. 3 functional neuron types were observed to occur in a novel environment [213,
220–222]. The instant place cells fire somatic action potentials (AP) during the
first animal crossings of the place field. The delayed place cells fire somatic AP only
after the animal has crossed the field several times. Finally, there are silent cells that
rarely fire somatic APs even after multiple crossings of the place field. Are these
3 classes of neurons present in astrocytic networks? The mechanism of formation
of spatial position encoding in astrocytes is a fundamental aspect that has to be
investigated together with the neuronal one. In fact, astrocytes can modulate the
activity of surrounding synapses and neurons and this may play an important role
during place cells formation.

5.2 Optimizing measures of information

encoding in astrocytic calcium signals

In [115] we generated astrocytic Ca2+ responses with realistic dependences of activity
on external variables. Thanks to these simulations, we investigated how to use
information theory to optimally tune hyperparameters and analysis procedures for
a given experiment.

The direct estimates of mutual information obtained by plugging the empirical
probabilities into the information equations and using a simple discretization of
either the Ca2+ signals or the behavioural data work well. In fact, we measured
quite high statistical power with a false positive detection rate that never exceeds
the specified selection threshold for the p-value.

Application of these techniques to astrocytic functional imaging data in vivo [111]
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reliably demonstrated how a number of subcellular astrocytic compartments in the
CA1 hippocampus carry information about spatial position that is also genuine and
unrelated to visual stimuli. These results support the emerging new view of the
computational network in the hippocampus, in which not only neurons are involved
in information processing, but also astrocytes form an additional network involved
in these computations.

The effects of data non-stationarity, such as changes in the spatial alignment of
ROIs over time, can be explored in future technical work by combining our informa-
tion calculations and selection criteria with conservative criteria that rule out these
effects. For example, the ”reliability” criteria of Ca2+ activity across trial blocks
(used in [111]) measures the stability of the spatial field of ROIs and classifies them
as reliable or not.

Theoretical work has shown that correlations between neurons significantly affect
the amount of information encoded in a population of neurons. A fundamental
technical work that can be explored to expand this study is the effect of correlations
between pairs of astrocytic ROIs and how to optimally set the hyperparameters of
the information theoretic measurements for this scenario. In the simulations used in
this work, it is possible to include pairwise correlations between Ca2+ signals from
two simulated ROIs.

In neuronal literature, the role of pairwise correlation has been extensively stud-
ied, and two types of pairwise correlations have been formalized [223]. The first are
signal correlations, which measure the similarity of stimulus tuning between neu-
rons. Neurons tuned to the same stimuli, for example, have high signal correlations.
The second is noise correlations, which quantify the neurons’ correlation in single
trial responses for a given stimulus (see review [224]).

Noise correlations capture correlations that go beyond the stimulus tuning shared
by neurons. For example, if two neurons exhibit a positive noise correlation, on a
single trial one neuron typically responds more strongly than usual to a given stim-
ulus if the other neuron also responds more strongly than usual, and similarly if
the response of both neurons is less strong than usual [132, 225–228]. Importantly
the relationship between signal and noise correlations is a crucial factor that deter-
mine the amount of information encoded in a population. When signal and noise
correlations are both positive or negative, signal and noise have similar response dis-
tributions, so the overlap between the response distributions will increase compared
to a scenario without noise correlations. If, on the other hand, signal and noise
correlations have opposite signs, such as in a pair of neurons that respond more
strongly to different stimuli (negative signal correlation) but have a positive noise
correlation, then the overlap between the response distributions to different stimuli
will decrease thanks to the noise correlation. In this case, the amount of encoded
information increases. Moreover, if noise correlations are stimulus-dependent, they
can act as a complementary coding mechanism in addition to the firing rates of
individual neurons [132, 225, 229, 230], which increases the information encoded in
the population activity.
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Thus, a first important open problem is to generate astrocitic simulations in
which the signal and noise correlations are realistic and can be varied covering all
the possible combination of signs. These types of simulations are fundamental to
the study of the sufficient amount of data and optimal discretization strategy that
must be used to investigate information processing in astrocyte populations in order
to obtain reliable results.

5.3 Rapid spatiotemporal analysis of astrocytic

calcium dynamics using deep learning

Thanks to advances in calcium imaging technology, this experimental imaging method
has become one of the most important approaches for studying astrocyte calcium
dynamics. RASTA provides experimenters with a scalable, machine learning-based,
and reproducible tool to study circuital components of astrocytes. The main pur-
pose of chapter 4 is to present a detailed description of the RASTA method and its
performances on various datasets.

RASTA is organized into fast training and inference pipelines combining effi-
cient preprocessing, deep neural network (DNN), and numerical approaches. Over-
all, RASTA provides a valuable tool for rapid segmentation of astrocytes, allowing
precise identification of somata, processes, and regions temporally correlated with
them.

RASTA preprocessing performs efficient feature engineering on 2-photon images
of astrocytes and extracts spatial and temporal features of astrocytes in the FOVs.
Thanks to this preprocessing and transfer learning optimization strategy, the DNN
embedded in RASTA can be optimized on a relatively small training set when com-
pared to the standard state-of-the-art datasets used in computer vision [186, 231–
233]. The performance of RASTA strongly depends on the efficient extraction of
spatial and temporal information from the 2-photon images. Indeed, we found a
significant drop in performance when the preprocessing steps were systematically
excluded from the RASTA pipelines. Moreover, this configuration of RASTA al-
lows for high robustness to noise, which is extremely important for in vivo record-
ings. When simulating different signal-to-noise regimes, we observed a significant
decrease in recognition performance only in dataset with high noise. Nevertheless,
we measured an increase in the detection and processes segmentation performance
of RASTA when the signal-to-noise ratio was artificially increased.

Finally, RASTA is a fast and scalable end-to-end analysis tool. Its pipeline blocks
have been massively parallelized on GPUs, which significantly reduces computation
time for both training and inference.

To evaluate the performance of RASTA under different conditions, we used 4
datasets that differ in spatial magnification, scanning mode, and fluorophore types.
These 4 datasets are provided to aid in the development of future tools for analysing
astrocyte calcium dynamics.



86 CHAPTER 5. CONCLUSIONS

We also used 3 different annotators to identify and segment somata and processes
in these datasets. We combined these annotations into a consensus annotation
that represents the best approximation to ground truth segmentation of astrocytes.
Clearly the identification of the consensus ground truth is a fundamental step to
optimize RASTA output, which ideally requires a community based effort.

Compared to the consensus annotation, the annotator results show a comparable
level of disagreement in all the datasets used. This highlights two fundamental
problems with human annotation: the difficulty of the manual annotation process
and the non-reproducibility of this laborious task. Clearly, the analysis of astrocyte
dynamics should not be hindered by these problems, and the development of scalable
and reproducible software for the identification and segmentation of astrocyte circuit
components is of paramount importance. Once trained on an accepted ground truth,
RASTA provided reliable and reproducible segmentation, avoiding human operator-
dependent variability.

RASTA achieved near-human performance in both detection and segmentation
tasks in each of the 4 datasets used, regardless of spatial magnification, scanning
mode, and fluorophore types. These results demonstrate flexibility of RASTA in
detecting and segmenting astrocytes under different experimental conditions. More-
over, detaset- 3 and 4 results in both detection and segmenation tasks show the
generalization capabilities of RASTA to new experiments, characterized by differ-
ent spatial magnification and scanning mode, without any further optimization. In
fact in these two cases, the optimization of RASTA hyper-parameters and DNN has
been performed on dataset-1. However, when data features change drastically from
the dataset for which RASTA was originally optimized (e.g., spatial magnification
in dataset-2 or astrocytes are imaged from a cortical area instead of the hippocam-
pus), further training is essential to achieve approximately human performance. In
addition, it is fast, reproducible, and free of user-defined parameters, which can
consequently improve both the scalability and reproducibility of astrocyte dynamics
analysis pipelines. Furthermore, we have shown that RASTA outperforms state-of-
the-art neuron detection software [177–182]. The failure of these models on these
datasets can be attributed to 2 main differences between neurons and astrocytes,
the extremely complex spatial morphology of astrocytes and the completely different
dynamics of calcium signals between neurons and astrocytes. Similarly, RASTA out-
performs state-of-the-art astrocyte segmentation software [98], which relies heavily
on user-defined parameters.

Studies on the relationship between Ca2+ signals from astrocytes in their circuit
components and surrounding neural circuits can benefit from RASTA outputs. In
fact, identification of somata, processes, and correlated regions is the first step after
which circuit components can be isolated from astrocytes. On the other hand, a
recent algorihm, Astrocyte Quantitative Analysis (AQuA [176]), allows to identify
and characterize spatio-temporal patterns of Ca2+ signaling in astrocytes through
the detection of local increase-decrease of Ca2+. However, these local fluorescence
fluctuations cannot be readily related to morphological dynamics analysis unless the
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circuit components of astrocytes have already been classified. Therefore, RASTA
and Ca2+ event detection methods such as AQuA offer complementary approaches
for the analysis of calcium signals in astrocytes. In fact, RASTA results are fully
compatible with Aqua, where identified ROIs and correlated regions can be used as
a morphological map where Ca2+ events detection can be performed.

Increasing evidence shows that activity-dependent astrocytic calcium signals are
very information-rich and involved in high-level network responses [46, 86, 109, 175].
Therefore, semantic segmentation with RASTA is a valuable tool to study how
different astrocytic subregions encode information [111, 112]. In addition, the rapid
and automated workflow of RASTA enables rapid analysis of extensive recordings
of astrocytic calcium signals, allowing for time-critical experimental approaches.
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Question Approach Results Controls Figures 
Do astrocytes 
encode spatial 
information in 
their intracellular 
Ca2+ dynamics?  

• Combination of functional two-
photon microscopy and virtual spatial 
navigation in head-fixed mice.  
• Test spatial information content and 
spatial tuning properties of CA1 astrocytic 
Ca2+ signals during monodirectional virtual 
navigation.  
• Test spatial information content and 
spatial tuning properties of CA1 astrocytic 
Ca2+ signals during bidirectional virtual 
navigation. 

● In the mouse 
hippocampus, astrocytic Ca2+ 
signals encode information 
about position in space during 
virtual navigation. 
● Astrocytic spatial 
response profiles are reliable. 
● Astrocytic spatial 
response profiles tile the 
whole virtual corridor. 
● Astrocytic calcium 
dynamics convey information 
about position beyond 
proximal visual cues location. 

• Quantification of 
information content is 
performed across a grid of 77 
binning parameter 
combinations. 
• Non-parametric 
permutation testing is used to 
assess statistical significance. 
• Astrocytic spatial 
responses are robust to 
resampling approaches. 
• Non-parametric 
testing is used to assess 
statistical difference between 
decoding results before and 
after disruption of position 
within single visual cues. 

Fig. 1, 4  
Extended 
data Fig: 
2, 5, 10 

Is spatial 
information 
encoded in 
astrocytic Ca2+ 
signals organized 
at the subcellular 
level? 

• Classification of astrocytic 
subcellular ROIs according to their anatomical 
identity (somata vs. processes) to 
quantitatively compare spatial tuning 
properties at the subcellular level. 

● Astrocytic somata 
and processes show significant 
spatial information encoding 
in their responses. 
● Single astrocytes can 
have different place fields in 
distinct topographically 
organized subcellular 
locations. 

• Quantification of 
information content is 
performed across a grid of 77 
binning parameter 
combinations. 
• Non-parametric 
permutation testing is used to 
assess statistical significance. 

Fig. 2 
Extended 
data Fig: 
4, 6  

Can spatial 
information 
encoded in 
astrocytic Ca2+ 
signals be used 
to decode 
animals’ 
position? 

• Deployment of a support vector 
machine (SVM) model to perform 
classification of animals’ position given a set 
of astrocytic Ca2+ signals:  
1. during monodirectional virtual 
navigation. 
2. during bidirectional virtual 
navigation. 
• Quantification of the impact of 
astrocytic Ca2+ signal correlations on the 
decoding of animals’ position. 

● Animals’ position is 
efficiently decoded from 
astrocytic calcium signals.  
● Disruption of signal 
correlations of astrocytic 
population vectors reduce 
information content.  

• Decoding analysis is 
performed across multiple 
classification granularities. 
• Decoding results are 
systematically above chance 
level estimates using non-
parametric permutation testing 
for all granularities. 
• Non-parametric 
testing is used to assess 
statistical difference between 
decoding results before and 
after disruption of signal 
correlations. 

Fig. 3 
Extended 
data. Fig: 
8, 9 
Tables: 2, 
6 

How does 
astrocytic 
representation of 
spatial 
information 
relate to that of 
neuronal cells? 

• Combination of dual color 
functional two-photon microscopy and virtual 
spatial navigation in head fixed mice to 
simultaneously image astrocytic and neuronal 
activity. 
• Quantitative comparison of 
astrocytic and neuronal spatial tuning 
properties during monodirectional virtual 
navigation. 

● Astrocytic and 
neuronal response profiles 
cover the virtual corridor 
● The majority of 
spatial information in 
astrocytes and neurons is 
genuine spatial information 
that cannot be explained by 
tuning to visual cues  

• Quantification of 
information content is 
performed across a grid of 77 
binning parameters 
combinations. 
• Non-parametric 
permutation testing is used to 
assess statistical significance. 
• Non-parametric 
testing is used to assess 
statistical difference between 
decoding results before and 
after disruption of position 
within single visual cues. 

Fig.5  
Extended 
data Fig: 
12, 14, 15, 
17, 18. 
Table: 7, 
8, 9 

Is the 
information 
encoded in 
astrocytic 
calcium signals a 
redundant 
representation of 
space-encoding 
neuronal 
activity?  

• Pairwise investigation of 
information encoding comparing astrocytic, 
neuronal, and mixed ROI pairs. 
• Information Breakdown analysis 
• Deployment of a support vector 
machine (SVM) model to perform 
classification of animals’ position given 
different sets of Ca2+ signals during 
monodirectional virtual navigation:  
1. Using astrocytic signals. 
2. Using neuronal signals. 

● Astrocytic and 
neuronal responses 
encode information 
sharing, a position-
dependent 
correlation 
component. 

● Astrocytic and 
neuronal spatial 
responses provide 
synergistic and 

• Decoding analysis is 
performed across multiple 
classification granularities. 
• Decoding results are 
systematically above chance 
level estimates using non-
parametric permutation testing 
for all granularities. 
• Non-parametric 
testing is used to assess 
statistical difference between 

Fig.5  
Extended 
data Fig: 
19, 20, 21 
Tables: 3, 
4, 5, 7, 10 



 

3. Using both astrocytic and neuronal 
signals. 
• Quantification of the impact of Ca2+ 
signal correlations on position decoding. 

complementary 
spatial information. 

● Astrocytes carry 
information about 
space that is not 
available in any of 
the nearby neurons.  

decoding results before and 
after disruption of signal 
correlations. 

Table 1. Outline and summary of experiments.  



 

  
 Permutation 

type 
p 

G = 4 

p 

G = 8 

p 

G = 12 

p 

G = 16 

p 

G = 20 

p 

G = 24 

Decoded 

Information 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Trial-shuff. 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 

Decoding  
Accuracy 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Trial-shuff. 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 

 
Table 2. Hypothesis testing: decoding performance about animal’s spatial location from 
astrocytic calcium signals during monodirectional virtual navigation. p-values for one-tailed 
non-parametric permutation tests as a function of decoding granularity for decoded information 
(see Fig. 3B) and decoding accuracy (Extended data Fig. 6). For each imaging session and each 
granularity, null distributions were obtained with 1000 and 500 iterations to estimate chance level 
and trial-shuffling, respectively (see Methods). Data from 7 imaging sessions from 3 animals.  



 

Pair type Comparison Mean lower-bound 
(bits) 

Upper-bound 
(bits) 

Cohen’s 
d 

p 

A-A I-ILIN 0.0036 0.0023 0.0049 1.847 1E-3 

N-N I-ILIN 0.0029 0.0014 0.0044 1.327 5E-3 

A-N I-ILIN 0.0052 0.0035 0.0069 2.032 1E-3 

A-A I-IMAX 0.0067 0.0039 0.0096 1.579 1E-3 

N-N I-IMAX 0.0182 0.0128 0.0235 2.280 1E-3 

A-N I-IMAX 0.0114 0.0079 0.0150 2.171 1E-3 

 
 
Table 3: Complementary and synergistic spatial information encoding in astrocytic and 
neuronal calcium signals. Information about position carried by pairs of ROIs (I) is compared to 
the sum (ILIN) or to the maximum (IMAX) of the information separately encoded by each member 
of the pair. A-A, pair composed of two astrocytic ROIs; N-N, pair composed of two neuronal 
ROIs; A-N, mixed pair composed of one astrocytic and one neuronal ROI. We summarize, mean 
difference between groups, confidence interval limits, Cohen’s d effect size estimate, and p value 
for Wilcoxon signed-rank test. Data are from 11 imaging sessions on 7 animals.  



 

 p 

G = 4 

p 

G = 8 

p 

G = 12 

p 

G = 16 

p 

G = 20 

p 

G = 24 

Astrocytes vs. 

Astrocytes + Neurons 

6E-7 6E-7 4E-7 6E-7 6E-7 1E-6 

Neurons vs. 

Astrocytes + Neurons 

3E-4 5E-4 2E-3 1E-3 1E-3 2E-3 

 
Table 4. Comparison of decoding information about animal’s spatial location from neuronal 
and astrocytic population vectors. p-values for two-tailed paired t-tests with Bonferroni-
correction for decoded information of animal’s spatial location from population vectors 
comprising all astrocytic ROIs vs all ROIs of both types (top row) and all neuronal ROIs vs all 
ROIs of both types (bottom row) during monodirectional virtual navigation shown in Fig. 5. Data 
from 11 imaging sessions from 7 animals.  



 

 
 Permutation 

type 
p 

G = 4 

p 

G = 8 

p 

G = 12 

p 

G = 16 

p 

G = 20 

p 

G = 24 

Astrocytes 

(A) 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Trial-shuff. 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 

Neurons 

(N) 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Trial-shuff. 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 

Astrocytes 

+ 

Neurons 
(A-N) 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Trial-shuff. 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 

 
Table 5. Hypothesis testing: decoding information about animal’s spatial location from 
neuronal and astrocytic population vectors. p-values for one-tailed non-parametric permutation 
tests for decoding information from population vectors comprising either all astrocytic (top row), 
all neuronal (middle row), or ROIs of both types (bottom row) during monodirectional virtual 
navigation (see Fig. 5 and Extended data Fig. 13). Significance levels are reported as a function of 
decoding granularity. For each imaging session and each granularity, null distributions were 
obtained with 1000 and 500 iterations to estimate chance level and trial shuffling, respectively 
(Methods). Data from 11 imaging sessions from 7 animals.  



 

 
 Direction p 

G = 4 

p 

G = 8 

p 

G = 12 

p 

G = 16 

Decoded 
information 

Forward 1E-3 1E-3 1E-3 1E-3 

Backward 1E-3 1E-3 1E-3 1E-3 

Decoding 
accuracy 

Forward 1E-3 1E-3 1E-3 1E-3 

Backward 1E-3 1E-3 1E-3 1E-3 

 
Table 6. Hypothesis testing: decoding performances about animal’s spatial location from 
astrocytic calcium signals during bidirectional virtual navigation. p-values for one-tailed non-
parametric permutation tests as a function of decoding granularity for decoded information (see 
Extended data Fig. 7B, F) and decoding accuracy (see Extended data Fig. 7C, G). Decoding 
performance is reported for forward- and backward-running directions (see Extended data Fig. 7). 
For each imaging session and each granularity, null distributions were obtained with 1000 
iterations to estimate chance level (Methods). Data from 15 imaging sessions in 4 animals for 
forward-running direction. Data from 17 imaging sessions in 4 animals for backward-running 
direction.  



 

Pair type Class Mean 

pairwise 
correlation 

s.e.m. Lower-
bound 

Upper-
bound 

p 

 

Astrocytic ROIs 
from same cell (A-

Asame) 

Reliably 
encoding 

spatial 
information 

0.68 0.08 0.55 0.80 2E-4 

Astrocytic ROIs 
from different cells 

(A-Aother) 

Reliably 
encoding 

spatial 
information 

0.31 0.06 0.18 0.44 3E-3 

Neurons 

(N) 

Reliably 
encoding 

spatial 
information 

0.10 0.01 0.07 0.12 7E-5 

Astrocytes 

+ 

Neurons 

(A-N) 

Reliably 
encoding 

spatial 
information 

0.05 0.02 0.01 0.09 3E-3 

Astrocytic ROIs 
from same cell (A-

Asame) 
All 0.52 0.03 0.46 0.58 7E-5 

Astrocytic ROIs 
from different cells 

(A-Aother) 
All 0.28 0.03 0.35 0.21 2E-4 

Neurons 

(N) 
All 0.07 0.01 0.04 0.09 7E-5 

Astrocytes 

+ 

Neurons 

(A-N) 

All 0.04 0.01 0.01 0.06 1E-3 

 

Table 7. Pairwise correlations of calcium signals during virtual navigation Descriptive 

statistics and confidence intervals estimation for pairwise Pearson correlation. Mean, s.e.m, 95% 

confidence interval limits, and p value for Wilcoxon Rank sums test for H0 = 0 are shown. Pairs 

were composed either of two astrocytic ROIs belonging to the same astrocyte (A-Asame), two 



 

astrocytic ROIs belonging to the different astrocytes (A-Aother), two neuronal ROIs (N-N), or one 

astrocytic and one neuronal ROI (A-N). Correlation was measured for ROI pairs with reliable 

spatial information or for all possible pairs. Data are from 11 imaging sessions on 7 animals.  



 

 p 

NS = 9 

p 

NS = 12 

p 

NS = 15 

p 

NS = 18 

Astrocytes 

(A) 
2E-17 2E-13 1E-11 2E-14 

Neurons 

(N) 
5E-270 4E-259 5E-245 3E-243 

 
Table 8. Hypothesis testing: visual cues identity does not explain neither astrocytic nor 

neuronal spatial tuning during virtual navigation. p-values for Binomial tests for astrocytic 

(top row) or neuronal (bottom row) ROIs encoding reliable spatial information showing a 

significant decrease in their information content when position is shuffled within individual visual 

cues (see also Extended data Fig. 14). Significance levels are reported as a function of the number 

of position bins (NS). For each imaging session and each NS, IV distributions were obtained with 

100 iterations in which position was shuffled within visual cues to estimate average IV (see also 

Methods). Data from 11 imaging sessions from 7 animals.  



 

 Permutation 
type 

p 

G = 9 

p 

G = 12 

p 

G = 15 

p 

G = 18 

Astrocytes 

(A) 

Position 
within visual 

cues 
9.8E-04 9.8E-04 9.8E-04 9.8E-04 

Neurons 

(N) 

Position 
within visual 

cues 
9.8E-04 9.8E-04 9.8E-04 9.8E-04 

 
Table 9. Hypothesis testing: animals’ position is decoded beyond visual cues identity from 

both astrocytic and neuronal calcium signals. p-values for Wilcoxon Signed rank tests for 

decoding information from population vectors comprising either all astrocytic (top row) or all 

neuronal (bottom row) during monodirectional virtual navigation (see Extended data Fig. 21). 

Significance levels are reported as a function of decoding granularity. For each imaging session 

and each granularity, IV distributions were obtained with 500 iterations in which position was 

shuffled within visual cues to estimate average IV (see Methods). Data from 11 imaging sessions 

from 7 animals.  



 

 Permutation 
type 

p 

G = 4 

p 

G = 8 

p 

G = 12 

p 

G = 16 

p 

G = 20 

p 

G = 24 

Astrocytes 

(A) 
Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Neurons 

(N) 
Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

Astrocytes 

+ 

Neurons 

(A-N) 

Chance 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 

 
Table 10. Hypothesis testing: decoding accuracy about animal’s spatial location from 

neuronal and astrocytic population vectors. p-values for one-tailed non-parametric permutation 

tests for decoding accuracy from population vectors comprising either all astrocytic (top row), all 

neuronal (middle row), or all ROIs of both types (bottom row) during monodirectional virtual 

navigation (see Extended data Fig. 13). Significance levels are reported as a function of decoding 

granularity. For each imaging session and each granularity, null distributions were obtained with 

1000 iterations to estimate chance level (Methods). Data from 11 imaging sessions from 7 animals. 
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Figure A.1: Chronic CA1 window to monitor astrocytic calcium dynamics in head re-
strained mice. (A, B) Representative images of hippocampal brain slices from animals
injected with AAV5 pZac2.1 gfaABC1D-cyto-GCaMP6f and implanted with a chronic op-
tical window. Images are maximum intensity projection of confocal z-stacks (8 planes,
1.5 µm/step) from hemispheres contralateral (A) and ipsilateral (B) to the injection and
implant site. Brain slices were stained with anti-GFAP and anti-GFP primary antibodies,
which were counterstained with Alexa-546 and Alexa-488 conjugated secondary antibod-
ies, respectively. Cell nuclei were labeled with Hoechst. (C, D) Zoom-in of the ROIs
(white rectangles in A and B) used for quantification of GFAP-staining in stratum Oriens,
stratum Pyramidale, and stratum Radiatum. (E) Fraction of ROI area immunolabeled
for GFAP. (F) Average fluorescence intensity of GFAP-positive pixels in the 3 hippocam-
pal regions under the different experimental conditions. Data are presented as mean ±
SD from 13 slices in 3 animals. In E: p = 1.4E-2, p = 1.3E-1, and p = 8.2E-1 for stra-
tum Oriens, Pyramidale, and Radiatum, respectively. Paired t test. In F: p = 8.8E-2, p
= 9.5E-1, and p = 2.0E-1 for stratum Oriens, Pyramidale, and Radiatum, respectively.
Paired t test. (G) Fraction of GCaMP6f cells immunolabeled for GFAP (95 ± 7%, out of
a total of 45 GCaMP6f-expressing cells from N = 6 sections from 3 mice). Scale bars: 200
µm and 50 µm for A and B and C and D, respectively. The data presented in this figure
can be found in S2 Data. GFAP, glial fibrillary acidic protein; GFP, green fluorescent
protein; ROI, region of interest.
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Figure A.2: Identification of reliable spatial modulation of astrocytic calcium signals.
(A) Minimum response field width between even and odd trials as a function of the differ-
ence in place field position. The pseudocolor scale indicates reliability of the response (see
Methods). (B, C) Mutual information values (B) and fraction of ROIs showing significant
spatial information (C) as a function of the number of bins for the stimulus (animals’
position in the linear track). Colors indicate different binning of the response (calcium
event trace). Mutual information values were bias-corrected using bootstrap method (104
iterations). Significance level for information content was set at p ¡ 0.05. (D) Fraction of
ROIs with reliable spatial information as a function of the number of bins for the stimulus.
Colors indicate different binning of the response. Data in (B, D) are presented as mean ±
SEM from 7 imaging sessions in 3 animals. The data presented in this figure can be found
in S2 Data. ROI, region of interest; SEM, standard error of the mean.
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Figure A.3: Reliable spatial modulation of astrocytic calcium signals. (A) Representative
traces showing calcium signals for 5 astrocytic ROIs encoding spatial information shown in
Fig 1E. Top: Solid black lines indicate the average astrocytic calcium response across runs
as a function of spatial position, and the dashed gray lines indicate response field Gaussian
fitting function. Bottom: Solid gray lines indicate normalized calcium event traces as a
function of position in the virtual corridor for individual runs. Filled gray areas indicate
response field width. (B) Cumulative distribution of the mean SE of the response profile
in astrocytic ROIs (median ± MAD 1.3E-2 ± 1.2E-2 cm−1, N = 155 out of 356 total
ROIs, for ROIs with reliable spatial information, black; 1.8E-2 ± 2.0E-2, N = 201 out of
356 total ROIs, for not modulated ROIs, gray: p =1E-5, Kolmogorov Smirnov test). (C)
Cumulative distribution of Pearson correlation values between astrocytic response profiles
in even and odd trials (median ± MAD 0.63 ± 0.24, N = 155 out of 356 total ROIs for
ROIs with reliable spatial information, black; 0.19 ± 0.37, N = 201 out of 356 total ROIs,
for not modulated ROIs, gray; p = 5E-14, Kolmogorov Smirnov test). (D) Cumulative
distribution of the spatial precision index of the response field of astrocytic ROIs (black:
median ± MAD 3.2E-2 ± 0.6E-2, N = 155 out of 356 total ROIs, for ROIs with reliable
spatial information; gray: 3.0E-2 ± 0.5E-2 cm−1, N = 201 out of 356 total ROIs, for
not modulated ROIs: p = 3.8E-2, Kolmogorov–Smirnov test). In all panels, data from 7
imaging sessions in 3 animals. The data presented in this figure can be found in S2 Data.
MAD, median absolute deviation; ROI, region of interest; SE, standard error.
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Figure A.4: Modulation of astrocytic calcium responses during locomotion and virtual
navigation. (A) Scatterplot of the average ∆F/F0 of astrocytic ROIs during baseline
(mouse speed≤1 cm/s) versus during locomotion (mouse speed ¿ 1cm/s). Under both
conditions, the mouse was immersed in the virtual reality. Black open dots represent
averages of each imaging session. The red cross shows the mean ± SEM of plotted data
(mean ∆F/F0 during baseline 0.14 ± 0.01; mean ∆F/F0 during locomotion 0.25 ± 0.03;
N = 356 ROIs; p = 0.016 Wilcoxon signed rank test). (B) Same as in (A) but for ∆F/F0

values measured in astrocytic ROIs encoding reliable spatial information when the mouse
was not exposed to the visual stimulation of the virtual reality (during intertrial intervals)
versus when the mouse was passing through each ROIs’ response fields (mean ∆F/F0

during without visual stimulation 0.21 ± 0.03; mean ∆F/F0 inside the response field 0.37
± 0.04; N = 155 out of 356 total ROIs; p = 0.016 Wilcoxon signed rank test). Data in (A,
B) from 7 imaging sessions in 3 animals. The data presented in this figure can be found
in S2 Data. ROI, region of interest; SEM, standard error of the mean.
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Figure A.5: Calcium signals of CA1 astrocytes encode direction selective spatial infor-
mation during virtual bidirectional navigation. (A) Two-photon functional imaging of
CA1 astrocytes is performed during bidirectional virtual navigation. (B) Head-restrained
mice run on an air-suspended spherical treadmill in a linear virtual track in both for-
ward and backward directions. Water rewards are delivered at either end of the virtual
corridor. (C) Median projection of GCaMP6f-labeled astrocytes in the CA1 pyramidal
layer. White lines indicate segmented ROIs. Scale bar: 20 µm. (D) Calcium signals for
5 representative astrocytic ROIs reliably encoding spatial information across the corridor
length. Solid black lines indicate the average astrocytic calcium response across trials as a
function of spatial position. Dashed gray lines and filled gray areas indicate the Gaussian
fitting function and the response field width (see Methods), respectively. (E) Normalized
astrocytic calcium responses as a function of position for astrocytic ROIs with reliable
spatial information. Trials are divided according to running direction (forward and back-
ward). For forward trials, informative ROIs are N = 192 out of 648 total ROIs, mean ±
SD: 29 ± 13%; for backward trials, informative ROIs are N = 133 out of 648 ROIs, mean
± SD: 20 ± 13%, p = 0.09, Wilcoxon signed rank test. Scale bar: 20 ROIs. Yellow dots
indicate the center position of the response field, and the magenta dots indicate the width
of the field response. (F) Distributions of astrocytic response field position for forward and
backward running direction. Median ± MAD 93 ± 66 cm, N = 192 out of 648 total ROIs
for the forward direction; 138 ± 47 cm N = 133 out of 648 total ROIs for the backward
direction; p = 9E-7, Kolmogorov–Smirnov test). (G) Distributions of response field width
for the forward and backward running direction (response field width, 44 ± 19 cm, N =
192 out of 648 total ROIs for the for forward direction; response field width, 44 ± 28 cm,
N = 133 out of 648 total ROIs for the backward direction; p = 0.34, Wilcoxon rank sums
test). (H) DI for forward and backward running directions (DI, 0.18 ± 0.16, N = 192 out
of 648 total ROIs for forward trials; DI, 0.16 ± 0.16, N = 133 out of 648 total ROIs for
backward trials; p = 8E-19 and p = 2E-8, respectively, Kolmogorov–Smirnov test versus
shuffled distribution). In all panels, data from 18 imaging sessions in 4 animals. The data
presented in this figure can be found in S2 Data. DI, directionality index; MAD, median
absolute deviation; ROI, region of interest; SD, standard deviation; SEM, standard error
of the mean.
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Figure A.6: Anatomical organization of subcellularly localized astrocytic calcium sig-
nals. (A) Distribution of field position for soma ROIs and process ROIs (p = 0.36, Kol-
mogorov–Smirnov test). (B) Distribution of response field width for astrocytic soma ROIs
and process ROIs (median width for soma ROIs: 60 ± 19 cm; median width for process
ROIs: 56 ± 22 cm, p = 0.36, Wilcoxon rank sums test). (C) For each pair of ROIs within a
given astrocyte, the distance (d) between the centers of 2 ROIs and the angle between the
line connecting the 2 ROI centers and the x-axis are calculated. Only astrocytes showing
significant spatial modulation in the soma and at least 1 process were used for this anal-
ysis. (D, E) Difference in field position of a process with respect to the field position of
its corresponding soma, expressed as function of Cartesian (D) and polar (E) coordinates
of the ROI centers. (F) Difference in response field position of a process with respect to
the field position of its corresponding soma as a function of the process distance from cell
soma (R2 = 0.01, p = 3.3E-1, Wald test, data from 19 cells from 7 imaging sessions on 3
animals). (G, H) Absolute value (G) or signed (H) difference in response field position of
a process ROI with respect to the field position of its corresponding soma as a function of
the process angular coordinate (absolute value of difference in response field R2 = 0.01,
p = 4.8E-1, Wald test; signed value of difference in response field R2 = 0.01, p = 4.1E-1,
Wald test, data from 19 cells from 7 imaging sessions on 3 animals). The data presented
in this figure can be found in S2 Data. ROI, region of interest.
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Figure A.7: Temporal relationships among subcellularly localized astrocytic calcium
signals. (A) Event triggered average of astrocytic calcium responses. Calcium responses
of putative receiver (R) ROIs are aligned to calcium events of putative source (S) ROIs
according to anatomic identities of ROIs (e.g., somatic receiver ROIs and somatic source
ROIs). Data from 7 imaging sessions in 3 animals. Black line indicates the mean, and
shaded area the standard deviation. (B–D) Same as in (A) for pairs of process receiver
and somatic source (B), somatic receiver and process source (C), and process receiver and
process source (D). (E–G) Same as in (B-D) but for pairs of ROIs belonging to the same
astrocyte (N = 46 astrocytes from 7 imaging sessions in 3 animals). (H) Response time
(see Methods) for signals shown in (A-D). p = 6E-4, Friedman test with Nemenyi post
hoc correction. (I) Response time for signals shown in (E-G). p = 7E-3, Friedman test
with Nemenyi post hoc correction. The data presented in this figure can be found in S2
Data. ROI, region of interest.

Figure A.8: Decoding animal’s position from astrocytic calcium signals in the unidirec-
tional virtual navigation task. (A) Decoding accuracy as a function of spatial granularity
on real (white), chance (dark gray), and trial-shuffled (gray) data (see Methods). Data
are presented as mean ± SEM from 7 imaging sessions on 3 animals; see also S2 Table.
The data presented in this figure can be found in S2 Data. SEM, standard error of the
mean.
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Figure A.9: Decoding animal’s position from astrocytic calcium signals in the bidirec-
tional virtual navigation task. (A) Confusion matrices of an SVM classifier for different
spatial granularities (G = 4, 8, 12, 16) for trials in which the mouse was running in the
forward direction (forward). The actual position of the animal is shown on the x-axis, the
decoded position on the y-axis. Gray scale indicates the number of events in each matrix
element. (B) Decoded information as a function of spatial granularity on real (white)
and chance (gray) data for forward trials. (C) Decoding accuracy as a function of spatial
granularity. (D) Decoding error as a function of the error position within the confusion
matrix for forward trials. The color code indicates spatial granularity. In panels (A–D),
data from 15 imaging sessions in 4 animals. (E–H) Same as in (A–D) for trials in the
backward direction. Data from 17 imaging sessions in 4 animals. In (B, C, F, G), data
are presented as mean ± SEM. See also S6 Table. The data presented in this figure can
be found in S3 Data. SEM, standard error of the mean; SVM, support vector machine.
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Figure A.10: Visual cues identities do not explain animal’s position decoding from astro-
cytic calcium signals. (A) Confusion matrices of an SVM classifier decoding the mouse’s
position using population vectors data comprising astrocytic ROIs in which position was
shuffled within visual cues. Shuffling position within visual cues decoupled spatial in-
formation encoded in the population vector from the information related to visual cues
identity (see Methods). The true position of the animal is shown on the x-axis and the
decoded position on the y-axis. Gray scale indicates the percentage of occurrence of each
matrix element (Decoding). Results are shown for various spatial granularities (G = 9,
12, 15, 18). In all panels, data from 500 permutations on 7 imaging sessions in 3 animals
are shown. The data presented in this figure can be found in S3 Data. ROI, region of
interest; SVM, support vector machine.
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Figure A.11: Chronic CA1 window to simultaneously monitor astrocytic and neuronal
calcium signals in head restrained mice.(A, B) Representative images of hippocampal
CA1 areas from animals transduced with AAV5 pZac2.1 gfaABC1D-cyto-GCaMP6f and
AAV1/2 pAAV CAMKII-jRCaMP1a implanted with a chronic optical window. Images
are maximum intensity projection of confocal z-stacks (9 planes, 2 µm/step) from brain
slices stained either with anti-GFAP (A) or an anti-NeuN primary antibody (B). In both
cases, counterstaining was performed with an Alexa-647 conjugated secondary antibody.
(C) Related to (A): Fraction of GCaMP6f-expressing cells immunolabeled for GFAP (100
± 0%, out of a total of 71 GCaMP6f-expressing cells from N = 6 sections from 3 mice).
(D) Related to (B): fraction of jRCaMP1a-expressing cells immunolabeled for NeuN (93 ±
8%, out of a total of 985 jRCaMP1a-expressing cells from N = 6 sections from 3 mice). (E)
Same as in (D) but for GCaMP6f-expressing cells (0 ± 0%, out of a total of 50 GCaMP6f-
expressing cells, from N = 6 sections from 3 mice). Scale bars in A and B: 50 µm. The
data presented in this figure can be found in S3 Data. GFAP, glial fibrillary acidic protein.
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Figure A.12: Temporal relationships between astrocytic and neuronal signals. (A–D)
Event triggered average of astrocytic calcium responses. Calcium responses of putative
receiver (R) ROIs are aligned to calcium events of neuronal PCs. Astrocytic receiver ROIs
could be in the soma (s) or processes (p). Neuronal cells were classified as being close (≤15
µm) or far (¿15 µm) from astrocytic receiver ROIs. Data from 11 imaging sessions in 7
animals. The black line indicates the mean, the shaded area the standard deviation. (E,
F) Same as in (A–D) but for receiver ROIs belonging to the same astrocyte (N = 23 cells
from 11 imaging sessions in 7 animals). (I–L) Same as in (A–D) but calcium responses
of putative receiver (R) ROIs are aligned to calcium events of nonspatially informative
cells (non-PC). Data from 11 imaging sessions in 7 animals. (M–P) Same as in (I–L) but
for receiver ROIs belonging to the same astrocyte (N = 48 astrocytes from 11 imaging
sessions in 7 animals). The data presented in this figure can be found in S3 Data. PC,
place cell; ROI, region of interest.
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Figure A.13: Modulation of astrocytic and neuronal calcium responses during locomo-
tion and virtual navigation. (A) Scatterplot of the average ∆F/F0 of astrocytic ROIs
during baseline (mouse speed≤1 cm/s) versus during locomotion (mouse speed ¿ 1 cm/s).
Under both conditions, the mouse was immersed in the virtual reality. Black open dots
show averages of each imaging session. The red cross shows the mean ± SEM of plotted
data. Average ∆F/F0 values were measured in astrocytic ROIs (left; mean ∆F/F0 dur-
ing baseline 0.06 ± 0.01; mean ∆F/F0 during locomotion 0.10 ± 0.01, N = 341 ROIs;
p = 9.8E-4 Wilcoxon signed rank test) and neuronal ROIs (right; mean ∆F/F0 during
baseline 0.017 ± 0.003; mean ∆F/F0 during locomotion 0.03 ± 0.01, N = 870 ROIs; p
= 9.8E-4 Wilcoxon signed rank test) recorded from mice co-injected with AAV5 pZac2.1
gfaABC1D-cyto-GCaMP6f and AAV1/2 pAAV-CAMKII-jRCaMP1a. (B) Same as in (A)
but for ∆F/F0 values measured in ROIs encoding reliable spatial information when the
mouse was not exposed to the visual stimulation of the virtual reality versus when the
mouse was passing through each ROIs’ response fields. Astrocytic ROIs, left, (mean
∆F/F0 without visual stimulation 0.07 ± 0.01; mean ∆F/F0 inside the response field
0.13 ± 0.02; p = 0.016 Wilcoxon signed rank test), neuronal ROIs, right, (mean ∆F/F0

without visual stimulation 0.020 ± 0.002; mean ∆F/F0 inside the response field 0.07 ±
0.01; p = 0.016 Wilcoxon signed rank test). Data in (A, B) are presented as mean ± SEM
and come from 11 imaging sessions in 7 animals. The data presented in this figure can be
found in S3 Data. ROI, region of interest; SEM, standard error of the mean.
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Figure A.14: Pairwise correlations of calcium signals during virtual navigation. (A, B)
Pearson correlation for different pairs of ROIs. Pairs were composed either of two astro-
cytic ROIs belonging to the same astrocyte (A-Asame), two astrocytic ROIs belonging to
the different astrocytes (A-Aother), two neuronal ROIs (N-N), or one astrocytic and one
neuronal ROI (A-N). Red line indicates the zero correlation level. In (A), only results
for ROI pairs with reliable spatial information are reported (p = 5.2E-3, p = 6.5E-4, p =
9.4E-4, p = 1.5E-2, p = 1.5E-2, p = 9.9E-2 for A-Asame versus A-Aother, A-Asame versus
N-N, A-Asame versus A-N, A-Aother versus N-N, A-Aother versus A-N, N-N versus A-N,
respectively. Wilcoxon rank sums test with Bonferroni post hoc correction). In (B), results
for all possible pairs are displayed (p = 2.6E-3, p = 4.3E-4, p = 4.3E-4, p = 8.6E-4, p =
8.6E-4, p = 1.4E-1 for A-Asame versus A-Aother, A-Asame versus N-N, A-Asame versus
A-N, A-Aother versus N-N, A-Aother versus A-N, N-N versus A-N, respectively. Wilcoxon
rank sums test with Bonferroni post hoc correction). Data are presented as mean ± SEM
from 11 imaging sessions on 7 animals. Data from astrocytic recording comprises 36 cells
in which there was significant spatial modulation in at least 1 ROI. The data presented in
this figure can be found in S4 Data. ROI, region of interest; SEM, standard error of the
mean.
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Figure A.15: Pairwise correlation of calcium signals and difference in field position as a
function of pairwise distance. (A) The distance (d) between the centers 2 ROIs comprising
a pair is computed for all astrocytic (top) and neuronal (bottom) ROIs. (B, C) Pearson
correlation (B) and difference between response field position (C) as a function of pairwise
distance for pairs of astrocytic ROIs with reliable spatial information (cyan) and pairs
of neuronal ROIs with reliable spatial information (purple). Data are expressed as mean
± SEM from 11 imaging sessions on 7 animals. (A) p = 8E-4, p = 8E-4, p = 1E-4,
p = 1E-3, p = 1E-3, p = 1E-3, p = 8E-4, and p = 2E-1 for 10, 30, 70, 90, 110, 130,
and 150 µm pairwise distances, respectively. Two-sample Kolmogorov–Smirnov test with
Bonferroni post hoc correction. (B) p = 1, p = 1, p = 0.7, p = 1, p = 1, p = 1, p =
0.2, and p = 0.2 for 10, 30, 70, 90, 110, 130, and 150 µm pairwise distances, respectively.
Two-sample Kolmogorov–Smirnov test with Bonferroni post hoc correction. Data from
astrocytic recording comprises 36 cells in which there was significant spatial modulation
in at least 1 ROI. The data presented in this figure can be found in S5 Data. ROI, region
of interest; SEM, standard error of the mean.
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Figure A.16: Precision and stability of neuronal and astrocytic spatial responses. (A)
Spatial precision index for simultaneously recorded neuronal and astrocytic response fields
(mean ± SEM; neuronal responses 7.5E-2 ± 1.6E-2; astrocytic responses 4.1E-2 ± 0.2E-2;
p = 4.6E-2 Wilcoxon signed rank test; data from 11 imaging sessions on 7 animals). (B)
Fraction of neuronal and astrocytic ROIs showing reliable spatial information and stable
response field (mean ± SD; neurons 0.16 ± 0.09; astrocytic responses 0.08 ± 0.07; p =
2.9E-1 Wilcoxon signed rank test; data from 11 imaging sessions on 7 animals). The data
presented in this figure can be found in S5 Data. ROI, region of interest; SD, standard
deviation; SEM, standard error of the mean.

Figure A.17: The majority of spatial information in astrocytes and neurons is genuine
spatial information that cannot be explained by tuning to visual cues. (A, B) Fraction
of astrocytic (A) and neuronal (B) ROIs encoding reliable spatial information showing a
significant decrease in their information content when position is shuffled within visual
cues. Shuffling position within individual visual cues decoupled spatial information en-
coded in the astrocytic response from the information related to visual cues identity (see
Methods). The fraction of ROIs showing significant information loss is shown as function
of the number of position bins used to compute mutual information. Data are presented
as mean ± SEM from 11 experimental sessions in 7 animals, (N = 76 for astrocytic ROIs,
N = 335 for neuronal ROIs, binomial test, see S8 Table). The data presented in this figure
can be found in S5 Data. ROI, region of interest; SEM, standard error of the mean.
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Figure A.18: Visual cues identity does not explain animal’s position decoding from nei-
ther astrocytic nor neuronal calcium signals. (A) Confusion matrices of an SVM classifier
decoding the mouse’s position using population vectors comprising either astrocytic (top)
or neuronal (bottom) ROIs in which position was shuffled within visual cues. Shuffling
position within visual cues decoupled spatial information encoded in the population vector
from the information related to visual cues identity (see Methods). The true position of
the animal is shown on the x-axis and the decoded position on the y-axis. Gray scale indi-
cates the percentage of occurrence of each matrix element. Results are shown for various
spatial granularities (G = 9, 12, 15, 18). (B) Decoded information from astrocytic popu-
lation vectors as a function of decoding granularity on real data (white) and for data in
which position is shuffled within visual cues (gray, see Methods). (C) Fraction of genuine
spatial information in astrocytic population vectors computed shuffling position within
individual visual cues. Results are shown as a function of decoding granularity. (D, E)
Same as in (B, C) but from population vectors comprising neuronal ROIs. In all panels,
data are shown as mean ± SEM and were obtained from 11 imaging sessions in 7 animals
(see also S9 Table). The data presented in this figure can be found in S5 Data. ROI,
region of interest; SEM, standard error of the mean; SVM, support vector machine.
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Figure A.19: Astrocytes and neurons encode complementary and synergistic spatial
information. (A) Mutual information about position encoded by pairs of ROIs (I) is
shown in comparison to the sum (ILIN) and to the maximum (IMAX) of the information
separately encoded by each component of the pair. A-A, pair composed of 2 astrocytic
ROIs; N-N, pair composed of 2 neuronal ROIs; A-N, mixed pair composed of one astrocytic
and one neuronal ROI. For this analysis, the values of information were computed using the
“shuffled” bias correction procedure (see methods) which overcorrects the bias inducing
an underestimation of I (I versus ILIN: A-A: p = 1E-2, N-N: p = 7E-3, A-N: p = 1E-3;
I versus IMAX: A-A: p = 5E-3, N-N: p = 1E-3, A-N: p = 1E-3, Wilcoxon signed rank
test, see also S3 Table). Data are represented as mean ± SEM from 11 imaging sessions
in 7 animals. The data presented in this figure can be found in S5 Data. ROI, region of
interest, SEM, standard error of the mean.
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Figure A.20: Position-dependent correlations contribute to synergistic information en-
coding. (A, B) Information breakdown for the different types of ROI pairs: 2 astrocytic
ROIs (A-A), 2 neuronal ROIs (N-N), or one astrocytic and one neuronal ROI (A-N). Pairs
were classified as synergistic (B) based on the value of ∆I (see Methods). I (white) is the
mutual information about position encoded by the pair. ILIN (gray) is the sum of the mu-
tual information about position independently encoded in the response of each member of
the pair. ISS (red) is the redundant information component quantifying similarity in the
responses of the members of the pair. ICI (green) and ICD (blue) quantify the informa-
tion contribution of correlation independent or dependent on position, respectively. Data
are represented as mean ± SEM and were collected in 11 imaging sessions on 7 animals.
The data presented in this figure can be found in S5 Data. ROI, region of interest; SEM,
standard error of the mean.



138 APPENDIX A. CHAPTER 2: SUPPLEMENTARY MATERIAL

Figure A.21: Correlation between astrocytes and neurons is animal’s position-dependent.
(A–D) Scatterplot of the absolute value of Pearson correlation outside the response field
against the absolute value of Pearson correlation inside the response field for pairs compris-
ing one astrocytic and one neuronal ROI. Black open dots show averages of each imaging
session, the red cross shows the mean ± SEM (A, B) Correlations were measured for all
possible pairs. In (A), correlations are computed with respect to astrocytic response field
(mean correlation inside the response field 0.11 ± 0.01; mean correlation outside the re-
sponse field 0.07 ± 0.01, p = 6.4E-3 Wilcoxon rank sums test). In (B), correlations are
computed with respect to neuronal response field (mean correlation inside the response
field 0.12 ± 0.01; mean correlation outside the response field 0.07 ± 0.01, p = 1.1E-3
Wilcoxon rank sums test). (C, D) Same as (A, B) but correlations were computed only on
synergistic pairs based on the value of ∆I (see Methods, Fig 6, and S11 Fig). In (C), cor-
relations are computed with respect to astrocytic response field (mean correlation inside
the response field 0.12 ± 0.01; mean correlation outside the response field 0.09 ± 0.01,
p = 7.8E-3 Wilcoxon rank sums test). In (D), correlations are computed with respect
to neuronal response field (mean correlation inside the response field 0.13 ± 0.01; mean
correlation outside the response field 0.08 ± 0.01, p = 1.8E-3 Wilcoxon rank sums test).
For each pair of ROIs, correlations were computed averaging 100 resampling to compen-
sate unbalanced observations inside and outside the response field. Data from 11 imaging
sessions on 7 animals. The data presented in this figure can be found in S5 Data. ROI,
region of interest; SEM, standard error of the mean.
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Figure A.22: Decoding the animal’s position from neuronal and astrocytic population
vectors. (A) Confusion matrices of an SVM classifier decoding the mouse’s position us-
ing population vectors comprising neuronal (top), astrocytic (middle), and neuronal +
astrocytic ROIs (bottom) for various spatial granularities (G = 4, 8, 12, 16, 20, 24). The
true position of the animal is shown on the x-axis and the decoded position on the y-axis.
Gray scale indicates the percentage of occurrence of each matrix element. (B) Decoded
mutual information between predicted and real position in the linear track and (C) de-
coding accuracy for the different population vectors as a function of spatial granularity.
In B and C, asterisks indicate significance against chance level (S5 and S10 Tables). Data
are displayed as mean ± SEM and were collected in 11 imaging sessions from 7 animals.
The data presented in this figure can be found in S5 Data. ROI, region of interest; SEM,
standard error of the mean; SVM, support vector machine.





Appendix B

Chapter 4: Supplementary
material

B.1 Neuronal and astrocityc algorithms

STNeuroNet implementation We segmented dataset-1 with STNeuronet [182]
software validating its performances using leave-one-out cross validation strategy.
We preprocessed our data as described in [182] and we adapted the consensus anno-
tation (see consensus annotation) to identify active somata of astrocyte in each frame
of our data ( github.com/soltanianzadeh/STNeuroNet, prepareTemporalMask.m).
In the training dataset, somata were classified as active/inactive analyzing df/f0
traces extracted using the procedure described in [111] to detect statistically sig-
nificant calcium events. For each FOV we generated the training set cropping
120x144x144 voxels surrounding each somata in the consensus annotation. Then, we
trained the net for 5000 epochs with leaning rate 0.5*E-4 and batch size of 3. The
loss function always converged to a plateau within 5000 epochs with these training
parameters. Then, we used the same training procedure outlined by [182].

Caiman implementation We segmented dataset-1 with CaImAn [181] software
validating its performances against the consensus annotations. CaImAn hyperpa-
rameters were set according to astrocytic somata morphology [31] and signal dynam-
ics. We used patch-size = [80,80] and overlap = [20,20] for dataset-1. Components
to be found is set to K = 1 since in these patches there is at least 1 astrocytic
somata. Decay time is 1.5 s and we set merging threshold equal to 0.6 in each test.
Other parameters were set to default settings.

UNet2DS implementation We segmented dataset-1 with UNet2DS software
(https://github.com/alexklibisz/deep-calcium) validating its performances using leave-
one-out cross validation strategy. For dataset-1 we used the same training procedure
outlined in [180], we used 50 epochs with 100 training iterations in each epoch using
sixteen randomly cropped 128×128 pixels regions from the mean image, utilizing
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the dice-loss and the Adam optimizer. We monitored the F1 score on a validation
set, selected from the training set (5% of the training set) to ensure the network was
not overfitting.

GECI-Quant To perform semantic segmentation with GECI-Quant annotator-1
followed the procedure described in [98]. Briefly, for each FOV in dataset-1 and
dataset-2, the annotator selected for two regions of interest for every astrocyte cor-
responding to soma and astrocytic domain, respectively. Then the annotator-1
manually selected an intensity threshold for each region of interest following the
procedure outlined in [98]. GECI-Quant segmentations were used to compute the
performances.

B.2 Algorithm details

Spatial sharpening Module. In the Spatial sharpening module, we used CLAHE
Algorithm and Sharpening Kernel Convolution to enhance the median projection of
the filtered FOV recordings. We used the OpenCV-python [198] = 4.1.0.25 imple-
mentation of CLAHE algorithm with tile-Size equal to 8x8. For the sharpening
kernel convolution, we used K as kernel to convolve with the input image.

K =

−1 −1 −1
−1 9 −1
−1 −1 −1

 (B.1)

Local Activity Filtering Module. The local time filter module removes back-
ground pixel from the single-cell sharpened spatial map. If we define pixels seg-
mented in consensus annotations as true positive, the thresholds in local time filter
module have to be tuned on the training dataset limiting the average number of
true positive pixels removed by the module. We generated a set of 4 couples (α1,α2)
of thresholds: (0.3,0.15), (0.25,0.1), (0.2,0.07), (0.15,0.05) on which the local time
filtering module can be tuned. The module selects the couple (α1,α2) with the high-
est threshold values resulting in an average number of removed true positive pixels
smaller than 5%.

Data Augmentation. For data augmentation during training we used 20 trans-
formation of input images: rotation by 90◦, 180◦, 270◦, gaussian blurring with a 3x3
kernel and σ=3, gaussian noise sampling values from a Gaussian distribution with
µ = 0 and σ = 0.3, salt and pepper noise, scaling of image size by factor 0.8 and
1.4, 4 Perspective transformation, horizontal and vertical flipping, pixels intensity
scaling by factors 3 and 0.5, pincushion transformation, barrel transformation, 2
Elastic transformation.
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Cell-wise probability map. The DNN outputs consists in a 3D tensor whose
dimensions are: input height, input width and 3 channels corresponding to the prob-
ability of the pixel to belong to somata, processes, or background classes. We find
the maximum probability channel for each pixel and set to 0 the other 2 channels.
Then for the somata class we binarize the somata-channel and set to 1 the pixel
with probability greater than 0. Then we find all the clusters of connected pixels
in the map (connected-Components function in OpenCV, [198]). For each cluster
we computed the average probability across its pixels. We removed a cluster if the
average probability is less than 905%. RASTA compares this filtered binary map
with the somata FOV segmentation results removing somata that don’t overlap with
any cluster. A cluster and a soma overlap when the common area between the two
cluster is greater than 0.1*max(Areasoma,Areacluster).

Removal of DNN artifacts. Processes artifacts in FOV are removed from FOV
if not connected spatially to a soma. For each FOV, a binary mask is generated
merging processes and somata ROIs. Then, all the connected components (CCs,
clusters of pixels which are connected to each other through 8-pixel connectivity) in
the binary mask are computed. Each CC which does not include any soma ROI is
neglected. Then, we use these filtered CCs to remove processes ROIs which do not
belong to them.



Table S1. Results of each annotator against consensus annotation of dataset-1. Detection and Segmentation 
results are given using F1-score (Precision, Recall) metrics (mean±sem) 
 
 Detection 

 
Segmentation 
 
Somata Processes 

Annotator-1 0.88±0.02 
(0.91±0.02,0.89±0.03) 

0.845±0.009 
(0.78±0.02,0.939±0.005) 

0.62±0.02 
(0.56±0.02,0.74±0.01) 

Annotator -2 0.88±0.02 
(0.87±0.03,0.91±0.02) 

0.84±0.01 
(0.85±0.01,0.852±0.006) 

0.56±0.01 
(0.55±0.02,0.62±0.02) 

Annotator -3 0.90±0.02 
(0.89±0.03,0.92±0.02) 

0.882±0.007 
(0.923±0.008,0.86±0.01) 

0.64±0.02 
(0.75±0.02,0.59±0.02) 

 
 
Table S2. Results of RASTA, STNeuronet, Caiman and GECI-Quant against consensus annotation of dataset-
1. Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean±sem) 
 
 Detection 

 
Segmentation 
 
Somata Processes 

RASTA 0.81±0.04 
(0.79±0.04,0.87±0.03) 

0.822±0.008 
(0.78±0.02,0.89±0.01) 

0.59±0.01 
(0.62±0.02,0.60±0.01) 

STNeuronet 0.27±0.05 
(0.26±0.05,0.32±0.06) 

- - 

Caiman 0.20±0.04 
(0.25±0.04,0.17±0.03) 

- - 

UNet2DS 
 

0.65±0.04 
(0.67±0.06,0.67±0.05 

- - 

GECI-Quant 0.74±0.04 
(0.72±0.04,0.76±0.04) 

0.775±0.008 
(0.72±0.01,0.88±0.01) 

0.33±0.02 
(0.25±0.02,0.65±0.03) 

 
Table S3. Results of RASTA, and AQuA in reconstructing astrocytic morphology. Results are F1-score 
(Precision, Recall) metrics (mean±sem) 
 
 F1-score 

(Precision, Recall) 
 

RASTA 0.62±0.03 
(0.61±0.03,0.65±0.03) 

AQuA 0.23±0.02 
(0.12±0.02,0.53±0.2) 

 
Table S4.  Results of each annotator and RASTA against consensus annotation of dataset-2. Detection and 
Segmentation results are given using F1-score (Precision, Recall) metrics (mean±sem) 
 
 Detection 

 
Segmentation 
 
Somata Processes 

Annotator -1 0.859±0.008 
(0.88±0.01, 0.83±0.01) 

0.86±0.004 
(0.90±0.01,0.84±0.02) 

0.63±0.02 
(0.65±0.01,0.67±0.03) 

Annotator -2 0.84±0.02 
(0.89±0.01, 0.80±0.03) 

0.836±0.006 
(0.918±0.003,0.78±0.01) 

0.58±0.02 
(0.58±0.02,0.64±0.03) 

Annotator -3 0.85±0.02 
(0.83±0.02, 0.88±0.02) 

0.834±0.005 
(0.935±0.006,0.76±0.01) 

0.53±0.02 
(0.60±0.02,0.52±0.02) 

RASTA 0.81±0.02 
(0.76±0.02,0.86±0.01) 

0.822±0.004 
(0.805±0.009,0.910±0.008) 

0.57±0.02 
(0.68±0.02,0.55±0.02) 

 
 



 
 
 
 
Table S5.  Results of each annotator and RASTA against consensus annotation of dataset-3. Detection and 
Segmentation results are given using F1-score (Precision, Recall) metrics (mean±sem) 
 
 Detection 

 
Segmentation 
 
Somata Processes 

Annotator -1 0.84±0.01 
(0.91±0.01, 0.78±0.02) 

0.853±0.006 
(0.878±0.008,0.85±0.01) 

0.62±0.01 
(0.69±0.02,0.61±0.02) 

Annotator -2 0.83±0.02 
(0.81±0.02, 0.85±0.03) 

0.856±0.003 
(0.904±0.005,0.825±0.005) 

0.55±0.02 
(0.58±0.01,0.60±0.02) 

Annotator -3 0.81±0.03 
(0.78±0.03, 0.85±0.03) 

0.815±0.009 
(0.962±0.005,0.717±0.02) 

0.55±0.01 
(0.66±0.01,0.51±0.01) 

RASTA 0.78±0.02 
(0.76±0.04,0.82±0.03) 

0.835±0.002 
(0.780±0.008,0.92±0.01) 

0.57±0.01 
(0.57±0.02,0.63±0.01) 

 
 
Table S6.  Results of each annotator and RASTA against consensus annotation of dataset-4. Detection and 
Segmentation results are given using F1-score (Precision, Recall) metrics (mean±sem) 
 
 Detection 

 
Segmentation 
 
Somata Processes 

Annotator -1 0.81±0.01 
(0.90±0.01, 0.75±0.02) 

0.835±0.006 
(0.84±0.01,0.852±0.007) 

0.55±0.02 
(0.69±0.02,0.52±0.03) 

Annotator -2 0.72±0.02 
(0.73±0.03, 0.73±0.03) 

0.827±0.007 
(0.897±0.007,0.78±0.01) 

0.50±0.02 
(0.63±0.01,0.47±0.02) 

Annotator -3 0.74±0.03 
(0.70±0.06, 0.80±0.01) 

0.834±0.004 
(0.898±0.008,0.79±0.01) 

0.50±0.02 
(0.65±0.03,0.46±0.02) 

RASTA 0.80±0.02 
(0.78±0.03,0.82±0.02) 

0.813±0.006 
(0.755±0.007,0.904±0.006) 

0.53±0.01 
(0.50±0.02,0.66±0.02) 

 
 
Table S7. RASTA DNN training parameters  
 
  Epochs  Optimizer lr Batch size Input 

image size 
  N1 N2     
Dataset-1  12 3 Adam 10-4 35 96x96 
Dataset-2  12 3 Adam 10-4 35 48x48 
Dataset-3 Training. on  

Dataset-1 
- - - - - - 

Dataset-4 Training on  
Dataset-1 

- - - - - - 
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A

B

Figure B.1: RASTA pre-processing. A) Left: median projection of a representative
FOV (Id:2) overlaid with putative bounding boxes computed by activity map generation.
Right: spatial sharpening of the same FOV shown on the left panel. B) Top: zoom in
showing sharpened images of four cells (cell 1-4) extracted from the putative bounding
boxes shown in the left panel of A. Bottom: for each image the result of local activity
filtering is shown.
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Figure B.2: Generation of the consensus annotation. Top: individual manual annota-
tions (colored contours) for FOV (Id:2) by three graders (annotator-1, annotator-2, and
annotator-3). Manual annotations are plotted on top of the median projection of the two-
photon t-series. The numbers in parenthesis in the top label report detection precision,
recall, and F1 score. Bottom: intersection of somata annotations (left), intersection of
process annotations (middle), and result of the consensus annotation (right).
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A B

Figure B.3: Precision and Recall of RASTA semantic segmentation against human anno-
tators on dataset-1. A-B) Precision (A) and Recall (B) of somata and process segmentation
for the three annotators and RASTA (two-sided Wilcoxon rank sum test N = 24; LOOCV
results). See also table S1. In this as well as other figures: n.s., not significant, * p ¡ 0.05,
** p ¡ 0.005, and *** p ¡ 0.0005.

A B C

D E F

Figure B.4: Representative example of segmentations of somata and processes (dataset-
1 Id:5) for: A) the consensus annotation, somata (white), processes (light purple); B)
RASTA, somata (red), processes (pink); C) STNeuroNet, somata (blue); D) CaImAn,
somata (light green); E) UNet2DS, somata (orange); F) GECI-Quant, somata (light blue),
processes (green).
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Figure B.5: RASTA semantic segmentation against GECI-quant segmentation. A)
GECI-Quant thresholds distributions for dataset-1. Box charts show the median val-
ues (red line) and the interquartile range (IQR, black top and bottom limit of the box).
The whiskers extend to 1.5 times the IQR. B) Geci-Quant soma detection vs. RASTA in
dataset-1. Precision, recall, and F1-score are shown (two-sided Wilcoxon signed rank sum
test N = 24; LOOCV results). C-D) Precision (C) and recall (D) for somata and process
segmentation (two-sided Wilcoxon rank sum test N = 24; LOOCV results). See also table
S2.
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Figure B.6: RASTA seeding of event-based segmentation. Example of a spatiotemporal
Ca2+ events (red to white colors) detected with AQuA when seeded with the astrocytic
domain (green line) identified by RASTA. Each image represents a single frame of a
representative t-series (id: 2, dataset-1). Colors superimposed to each frame represent a
detected event in the astrocyte. Frame acquisition time is reported on the top of each
image.
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Figure B.7: RASTA performance under various signal-to-noise ratio regimes. A-B)
Precision (A) and Recall (B) for RASTA segmentation of somata and processes under
the different simulated conditions of PSNR (two-sided Wilcoxon rank sum test N = 24;
LOOCV results).
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Figure B.8: Performance of RASTA and other algorithms under various signal-to-noise
ratio regimes. A) Precision, Recall, and F1-score for soma detection for GECI-Quant
(white) and Rasta (red) in the 0.54 PSNR dataset (two-sided Wilcoxon signed rank sum
test N = 24; LOOCV results). B-D) Segmentation Precision (B), Recall (C), and F1-score
(D) GECI-Quant (white) and RASTA (red) on the 0.54 PSNR dataset (two-sidedWilcoxon
rank sum test N = 24; LOOCV results). E) Distribution of GECI-Quant thresholds
distributions in the 0.54 PSNR dataset for somata (Som.) and processes (Proc.). Box
charts show the median values (red line) and the interquartile range (IQR, black top and
bottom limit of the box). The whiskers extend to 1.5 times the IQR. F-H) Effect of
artificial noise on soma detection performances. Detection Precision, Recall and F1-score
for RASTA (grey bars), STNeuronet (F), CaIman (G), and UNet2DS (H) on the same
dataset but with different level of PSNR (two-sided Wilcoxon rank sum test N = 24;
LOOCV results).
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Figure B.9: Impact of pre-processing on RASTA performance. A) Flow-chart describing
the pre-processing block in the training pipeline for RASTA-Näıve and RASTA-Spatial
(see main results). In RASTA-Naive, the DNN is trained with the single cell images
extracted from the median projection of the FOVs. In RASTA-Spatial, the DNN is trained
with the single cell images extracted from the spatial map of the FOVs. B) Flow-chart
of pre-processing block in the inference pipeline for RASTA-Naive and RASTA-Spatial.
In RASTA-Naive, the DNN directly evaluates median projection of the whole FOV. In
RASTA-Spatial, the DNN evaluates the spatial map of the whole FOV. C-D) Segmentation
Precision (C) and Recall (D) for RASTA-Naive, RASTA-Spatial, and RASTA on dataset-
1 (two-sided Wilcoxon rank sum test N = 24; LOOCV results).
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Figure B.10: RASTA performance as a function of recordings length. A) RASTA de-
tection Precision, Recall, and F1-score for t-series of different length (two-sided Wilcoxon
rank sum test N = 24; LOOCV results). B-D) RASTA segmentation Precision (B), Recall
(C), and F1-score (D) for t-series of different length (two-sided Wilcoxon rank sum test N
= 24; LOOCV results).
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Figure B.11: RASTA detection and segmentation performance on dataset-2. A) Con-
sensus annotation of one representative FOV (Id: 3) showing Td-Tomato-expressing as-
trocytes. B) RASTA segmentation result for the same FOV shown in (A). C) Detection
precision, Recall, and F1-score for RASTA and the three annotators (two-sided Wilcoxon
rank sum test N = 8; LOOCV results). D-F) Segmentation Precision, Recall, and F1-score
of RASTA and the three annotators for somata (Som.) and processes (Proc.) (two-sided
Wilcoxon rank sum test N = 8; LOOCV results). See also Table S3.
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Figure B.12: RASTA detection and segmentation performance on dataset-3. A) Con-
sensus annotation of one representative FOV (Id: 5) showing Td-Tomato-expressing as-
trocytes. B) RASTA segmentation result for the same FOV shown in (A). C) Detection
precision, Recall, and F1-score for RASTA and the three annotators (two-sided Wilcoxon
rank sum test N = 7; LOOCV results). D-F) Segmentation Precision, Recall, and F1-score
of RASTA and the three annotators for somata (Som.) and processes (Proc.) (two-sided
Wilcoxon rank sum test N=7; LOOCV results). See also Table S4.



156 APPENDIX B. CHAPTER 4: SUPPLEMENTARY MATERIAL

A B

Figure B.13: RASTA detection and segmentation performance on dataset-4. A-B)
Segmentation Precision (A) and Recall (B) of RASTA and the three annotators for somata
(Som.) and processes (Proc.) (two-sided Wilcoxon rank sum test N=10; LOOCV results).
See also Table S5.
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Figure B.14: Execution time of the RASTA inference pipeline. A) Execution time of
RASTA inference pipeline without the cross-correlation analysis as a function of the size
of the input t-series in dataset-1. The different colors indicate the execution time for
three different hardware configurations: 4 CPUs, 20 CPUs, and 20 CPUs + GPU. B)
Execution time for the cross-correlation module as a function of the size of the input t-
series in dataset-1. Color code same as in (A). Please note that the GPU configuration
is faster than the multi-processing CPU configuration. This is because the computation
of cross-correlation value between pixels can be massively parallelizable with GPUs. C)
Execution time for the inference pipeline without cross-correlation analysis as a function
of the size of the input t-series for dataset-2 (black, area 0.26 mm2) and dataset-3 (red,
area of FOV 0.16 mm2). D) Execution time of RASTA inference pipeline on a 700 frames
t-series of dataset-1 without the cross-correlation analysis as a function of the number of
cores used (black line). The red line represents the execution time of RASTA with the 20
CPUs + GPU hardware configuration.
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