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Abstract

The study of random probability measures is a lively research topic that has
attracted interest from different fields in recent years. In this thesis, we con-
sider random probability measures in the context of Bayesian nonparametrics,
where the law of a random probability measure is used as prior distribution,
and in the context of distributional data analysis, where, in the simplest set-
ting, the goal is to perform inference given an independent and identically
distributed sample from the law of a random probability measure.

The contributions contained in this thesis can be subdivided according to three
different topics: (i) the use of almost surely discrete repulsive random mea-
sures (i.e., whose support points are well separated) for Bayesian model based
clustering, (ii) the proposal of new laws for a collection of random probability
measures to be used for Bayesian density estimation in the context of par-
tially exchangeable data subdivided into different groups, and (iii) the study
of principal component analysis and regression models for probability distri-
butions seen as elements of the 2-Wasserstein space. Specifically, for point
(i) above we propose an efficient Markov chain Monte Carlo algorithm for
posterior inference, which sidesteps the need of split-merge reversible jump
moves typically associated with poor performance, we propose a model for
clustering high-dimensional data by introducing a novel class of anisotropic
determinantal point processes, and study the distributional properties of the
repulsive measures, shedding light on important theoretical results which en-
able more principled prior elicitation and more efficient posterior simulation
algorithms. For point (ii) above, we consider several models suitable for clus-
tering homogeneous populations, inducing spatial dependence across groups of
data, extracting the characteristic traits common to all the data-groups, and
propose a novel vector autoregressive model tailored to the study of growth
curves of Singaporean kids. Finally, for point (iii), we propose a novel class of
“projected” statistical methods for distributional data analysis for measures
on the real line and on the unit-circle respectively.
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Summary

This thesis is concerned with the study of random probability measures (RPMs) from a
statistical point of view. To give a concise definition, consider a complete and separable
metric space (X, d); as the name suggests, an RPM is a random variable taking values on
(PX,PX), that is, the space of probability measures over X, endowed with its Borel σ-field
PX.

RPMs appear in several fields, such as Bayesian nonparametrics, distributional data
analysis, and stochastic geometry (Keeler and B laszczyszyn, 2014; Caron and Fox, 2017).
For example, in Bayesian nonparametrics (Müller et al., 2015), under the assumption
of exchangeability, it is common to consider models for data Xi, i = 1, . . . , n like the
following:

X1, . . . Xn | p̃ iid∼ p̃

p̃ ∼ Q
(1)

where p̃ represents the population distribution of the data. See Chapter 1 for further details
and justification. We can think of the random measure p̃ in (1) as an “infinite-dimensional”
parameter, for which, under the Bayesian paradigm, a prior must be selected. Therefore,
the measure Q over (PX,PX) (that is, is the law of a random probability measure) acts
as the prior distribution. In more complex settings, extensions of model (1) have been
considered to account for the dependence on covariates. For example, when each datum
is associated with a categorical covariate acting as a group indicator, we can divide the
observations into those groups and write the sample as (Xj,i, j = 1, . . . , g, i = 1, . . . , nj).
Under the assumption of partial exchangeability, a nonparametric Bayesian model is:

Xj,1, . . . Xj,nj | p̃j
iid∼ p̃j , j = 1, . . . , g

(p̃1, . . . , p̃g) ∼ Q
(2)

where Q is a probability measure over the product space (PX)g. See Chapter 5 for details
on partial exchangeability and several examples of the measure Q.

In the Bayesian setting, “statistical learning” is obtained by computing the posterior
distribution of p̃ (or of the vector (p̃1, . . . , p̃g)), that is, the conditional of p̃ law given
observations. Usually, it is impossible to derive an analytical expression in closed form for
such a posterior distribution, so that an approximation must be constructed, for instance,
by means of Markov chain Monte Carlo simulation.

Distributional data analysis is a recent field that is concerned with extracting informa-
tion from a set of probability distributions. In distributional data analysis, observations
themselves are probability measures. Considering the observations as random variables
makes them RPMs. Several challenges must be faced when approaching this problem: for
example, the space of distributions PX is not linear. Hence, classical statistical techniques
cannot be adapted to the analysis of distributional data.

This thesis is divided into three main parts and a total of 13 self-contained chapters.
Its content is summarized below. The first part considers models such as (1) and focuses
on the specification of nonparametric priors in connection with Bayesian model-based
clustering.
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CONTENTS

Chapter 1 provides an introduction to Bayesian nonparametrics in the exchangeable setting
and sets the stage for the study of “repulsive” measures Q.

Chapter 2 sets a general framework for repulsive mixture models and proposes a novel MCMC
algorithm for posterior inference. In particular, our algorithm avoids complex split-
merge birth-death reversible jumps MCMC moves, making it easier to extend it
to models we have not considered there. Furthermore, we demonstrate superior
performance compared to alternative algorithms and argue for the usefulness of a
“repulsive” measure Q in misspecified mixture models. This chapter is based on a
recently published paper; for more details, see Mario Beraha, Raffaele Argiento, Jes-
per Møller, and Alessandra Guglielmi (2022). “MCMC computations for Bayesian
mixture models using repulsive point processes.” In: Journal of Computational and
Graphical Statistics.

Chapter 3 studies the distributional properties of repulsive measures and their use in Bayesian
mixtures. It sheds light on important theoretical results that characterize the prior
and posterior of p̃. These results can be used for prior elicitation and to derive new
MCMC algorithms.

Chapter 4 extends Chapter 2 to the setting of clustering of high-dimensional data. Inference
for high-dimensional data is notoriously complex because of the large number of
parameters involved. We propose a latent factor model similar to Chandra et al.
(2020), where instead of a Dirichlet process mixture, we propose a repulsive mix-
ture to cluster the latent factors. The main contribution is the definition of an
anisotropic determinantal point process, which, used in combination with the latent
factor model, leads to well-separated clusters of data.

In the second part of the thesis, we consider models that induce dependence on a collection
of RPMs through covariates.

Chapter 5 consists of an introduction to dependent random probability measures.

Chapter 6 proposes a prior Q as in (2) for a collection of RPMs such that, with positive
probability p̃i = p̃j , while avoiding the degeneracy issue of nested processes dis-
cussed in Camerlenghi et al. (2019). We propose an efficient MCMC algorithm
and apply our model to detect homogeneous groups of data. Several theoretical
properties of the model are investigated. This chapter is based on the published
article: Mario Beraha, Alessandra Guglielmi, and Fernando A. Quintana (2021).
“The semi-hierarchical Dirichlet Process and its application to clustering homoge-
neous distributions”. In: Bayesian Analysis

Chapter 7 considers the case in which each group of data is associated with a spatial location. It
proposes a prior Q that favors similar distributions in nearby locations. The model is
applied to the analysis of Airbnb properties in the city of Amsterdam. A published
version of the paper can be found in Mario Beraha, Matteo Pegoraro, Riccardo
Peli, and Alessandra Guglielmi (2021). “Spatially dependent mixture models via
the logistic multivariate CAR prior”. In Spatial Statistics.

Chapter 8 deals again with grouped data but considers specifically the setting where the num-
ber of groups g is large (possibly much larger than the number of observations in
each group). Instead of proposing a very flexible model, we focus on obtaining inter-
pretable posterior summaries that can be used to explore and explain the difference
in distributions across different groups, considering a “latent factor” model for a col-
lection of random probability measures. This chapter is based on the preprint Mario
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CONTENTS

Beraha and Jim E. Griffin (2022). “Normalized latent measure factor models.” In:
arXiv:2205.15654.

Chapter 9 presents an application to clustering growth curves of kids in Singapore. To this end,
we propose a vector autoregressive model in which the patient-specific autoregres-
sion matrix is given a logit stick-breaking prior. This allows us to group patients ac-
cording to their autoregression matrix while inducing dependence on subject-specific
covariates. See the preprint Mario Beraha, Alessandra Guglielmi, Fernando A. Quin-
tana, Maria de Iorio, Johan Eriksson, and Fabian Yap (2022). “’Bayesian nonpara-
metric vector autoregressive models via a logit stickbreaking prior: an application
to child obesity”. In: arXiv:2203.12280.

The third part of the thesis deals with distributional data analysis.

Chapter 10 gives an introduction to the analysis of distributions, focusing in particular on the
challenges faced by the nature of PX.

Chapter 11 considers distributions on R and proposes a projected framework for PCA and linear
regression when considering distributions in the Wasserstein space. Our approach
exploits the particular structure of the Wasserstein space of one-dimensional distri-
bution to derive a fast implementation. This chapter is based on the paper Matteo
Pegoraro and Mario Beraha (2022). “Projected Statistical Methods for Distribu-
tional Data on the Real Line with the Wasserstein Metric”. In: Journal of Machine
Learning Research.

Chapter 12 is an extension of the previous one to the simplest “nontrivial” setting outside R,
that is, the circumference. After establishing some new results for the optimal
transport maps for measures on the circumference, we propose a framework for
PCA, motivated by the study of a dataset of the optical nerve width.

Finally, Chapter 13 presents BayesMix: a C++ library which implements efficient and ex-
tensible algorithms for posterior inference in Bayesian mixture models. See the preprint Be-
raha Mario, Bruno Guindani, Matteo Gianella, and Alessandra Guglielmi (2022). “BayesMix:
Bayesian Mixture Models in C++”. In arXiv:2205.08144.
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1. Beyond CRMs: normalized random measures with atoms’
interaction for Bayesian mixture models

The first part of this thesis is dedicated to the study of exchangeable data, with the
main objective being to obtain cluster estimates of data points in a model-based Bayesian
nonparametric framework. This chapter gives a broad and informal overview of Bayesian
nonparametrics. Then, we will argue for the use of repulsive normalized random measures,
that is, discrete random probability measures with well-separated support points, as priors
for Bayesian models for clustering.

Three contributions will be presented in the following chapters. Chapter 2, based
on Beraha et al. (2022), joint work with Raffaele Argiento, Jesper Møller and Alessandra
Guglielmi, presents a Markov chain Monte Carlo algorithm for posterior inference. Chapter
3, based on a joint work with Raffaele Argiento, Federico Camerlenghi, and Alessandra
Guglielmi, discusses results regarding the distributional theory for normalized random
measures based on marked point processes in Bayesian models. Finally, in Chapter 4, based
on a joint work with Lorenzo Ghilotti and Alessandra Guglielmi, an extension of repulsive
mixture models to high-dimensional settings by means of anisotropic determinantal point
processes is presented.

1.1 Background

Exchangeability is an assumption on the data-generating process, stating that the order
in which observations are recorded is not relevant, i.e. the distribution function of the
joint law of the sample is symmetric in its arguments. Formally, we say that a sequence
X1, X2, . . . (finite or infinite) of random variables is exchangeable if for any finite permu-
tation σ of the indices, we have the following-

L(X1, X2, . . .) = L(Xσ(1), Xσ(2), . . .),

where we use L to generically represent the law of a (sequence of) random variable(s) and
assume that the Xi’s take value in a polish space.

When the sequence X1, X2, . . . is infinite, then, by de Finetti’s theorem (de Finetti,
1938), exchangeability is equivalent to assuming the existence of a probability distribution
Q such that the joint density of X1, . . . , Xn equals

P(X1 ∈ dx1, . . . , Xn ∈ dxn) =

∫ n∏

i=1

P(Xi ∈ dxi | ν)Q(dν). (1.1)

The de Finetti representation theorem can be regarded as one of the main motivations for
the Bayesian approach since it ensures the existence of a likelihood P(Xi ∈ dxi | ν) and
a prior distribution Q. In particular, we can advocate the use of nonparametric models
following (1.1) where ν ∼ Q is a random probability measure and P(Xi ∈ dxi | ν) = ν(dxi).

1



Chapter 1. Beyond CRMs

1.1.1 The Dirichlet Process

The most notable example of nonparametric prior distribution Q is the celebrated Dirichlet
process (DP, Ferguson, 1973). To define the Dirichlet process, let α > 0 and G0 be a
probability distribution over a complete and separable metric space (X, d) endowed with
the usual Borel sigma algebra. Then we say that a random probability measure p̃ is
distributed as the Dirichlet process with total mass parameter α and base measure G0, if,
for any measurable partition {A1, . . . , An} of X we have:

(p̃(A1), . . . , p̃(An)) ∼ Dirichletn (αG0(A1), . . . , αG0(An)) , (1.2)

where Dirichletn denotes the Dirichlet distribution on the n − 1 dimensional simplex. If
(1.2) holds, we write p̃ ∼ DP (α,G0), see Ferguson (1973).

From the finite-dimensional characterization (1.2), it might not be clear how to use
p̃ ∼ DP (α,G0) in a Bayesian model. The stick-breaking representation in Sethuraman
(1994) provides a more intuitive characterization. In fact, p̃ ∼ DP (α,G0) if and only if

p̃(·) d
=
∑

h≥1

whδτh

τ1, τ2, . . .
iid∼ G0, w1, w2, . . . ∼ SB(α).

(1.3)

Here, SB(α) denotes the stick-breaking or GEM distribution, that is,

w1 = ν1, wj = νj
∏

`<j

(1− ν`), j = 2, 3, . . .

ν1, ν2, . . .
iid∼ Beta(1, α)

Yet another characterization of the DP is through the marginal distribution of a sample

X1, . . . , Xn | p̃ iid∼ p̃. From (1.3), it is clear that the realizations ω 7→ p̃(ω) from a DP are
almost surely discrete. Therefore, with a positive probability, there will be ties among the
Xi’s. Let X∗1 , . . . , X

∗
k be the unique values in (X1, . . . , Xn) and nh = #{i : Xi = X∗h},

then

P(X1 ∈ dx1, . . . , Xn ∈ dxn) = P(n1, . . . , nk, X
∗
1 ∈ dx∗1, . . . , X

∗
k ∈ dx∗k) =

αk

(α)n

k∏

h=1

(nh − 1)!

k∏

h=1

G0(dx∗h) (1.4)

where (α)n = α(α+ 1) · · · (α+ n− 1), see, for instance, Antoniak (1974).
Note that the marginal distribution of the sample (X1, . . . , Xn) can be factored in two

parts: one that depends exclusively on the unique values displayed (that is,
∏k
h=1G0(dx∗h))

and one that depends on the partition of the indices {1, . . . , n} in clusters C1, . . . , Ck defined

by Cj = {i : Xi = X∗j }. In (1.4) this second term corresponds to αk/(α)n
∏k
h=1(nh −

1)! and depends specifically on the partition only through the sample size n and the
cardinalities n1, . . . , nk. More generally, the marginal law of a sample from an almost
surely discrete random probability measure with independent and identically distributed
(i.i.d.) atoms from a diffuse measure G0 can be factored into

∏k
i=1G0(d∗k) times the prior

distribution induced on the partition, usually termed exchangeable partition probability
function (EPPF, Pitman, 1995) which can be understood as

EPPF(n1, . . . , nk) =

∫

Θk

E [p̃n1(dx∗1) · · · p̃nk(dx∗k)] .

2



Chapter 1. Beyond CRMs

As shown in Blackwell and MacQueen (1973), (1.4) can be interpreted in terms of a
generalized Pólya urn, also referred to as the Chinese restaurant process (CRP Pitman,
2006) metaphor or Ewens’ sampling formula (Ewens, 1972). In this metaphor, we imagine
a Chinese restaurant with infinite tables, where customers enter one by one. At each table,
only one dish τj is associated. Then, the first customer sits at the first table eating dish
τ1 ∼ G0. The second customer sits at the first table with probability proportional to 1
and at the second (“new”) table with probability proportional to α. If the second table is
chosen, dish τ2 ∼ G0 is assigned to the table, independently of τ1. After n customers have
entered the restaurants, suppose that k tables have been selected with nh, h = 1, . . . , k
customers sitting at each table. Of course,

∑
h nh = n. Then, the n + 1-th customer sits

at table h with probability proportional to nh, h = 1, . . . , k or at a “new” table k+ 1 with
probability proportional to α.

1.1.2 Gibbs type priors

The interpretation of the marginal law of a sample from a random probability measures
as a generalized Pólya urn is not specific to the Dirichlet process. Indeed, Pitman (1996)
proved that these predictive distributions characterize the large class of species sampling
models. We review this fundamental result hereafter.

Let (wh)h≥1 be a sequence of nonnegative random variables such that
∑

h≥1wh ≤ 1
almost surely. Let (τh)h≥1 be a sequence of i.i.d. random variables from a non-atomic
probability measure P0. Then the random probability measure

p̃(·) =
∑

h≥1

whδτh +


1−

∑

h≥1

wh


P0 (1.5)

is called a species sampling model. A sequence of random variables (Xi)i≥1 such that

Xi | p̃ iid∼ p̃ is called a species sampling sequence. As proven by Pitman (1996), species
sampling sequences can be equivalently characterized in terms of the predictive distribution
of Xn+1 given X1, . . . , Xn. Indeed (Xi)i≥1 is a species sampling sequence if and only if
there exists a sequence of i.i.d. random variables (τh)h≥1 from a nonatomic probability
measure P0 and a collection of weights {ph,n(n1, . . . , nk) : 1 ≤ h ≤ k, 1 ≤ k ≤ n, n ≥ 1}
such that X1 = τ1 and

Xn+1 |X1, . . . , Xn =

{
τn+1, with prob. pkn+1,n(n1, . . . , nkn , 1)

X∗h,n, with prob. pkn,n(n1, . . . , nh + 1, . . . , nkn)
(1.6)

where X∗1,n, . . . X
∗
kn,n

denote the distinct values in X1, . . . , Xn, each appearing with fre-
quency nh, h = 1, . . . , kn, and kn is their cardinality.

It is trivial to interpret the CRP in the form of (1.6) where pkn+1,n(n1, . . . , nkn , 1) =
α/(α + n) and pkn,n(n1, . . . , nh + 1, . . . , nkn) = nh/(α + n). In particular, Zabell (2005)
proved that the Dirichlet process is the only species sampling model for which the prob-
ability of observing a “new” value for Xn+1, i.e., different from X1, . . . , Xn, depends only
on the previously observed sample through its cardinality. See also Bacallado et al. (2017).
This lack of flexibility has been previously criticized. On the other hand, the functions
{ph,n} are in general impossible to compute analytically when starting from the definition
(1.5), which makes general species sampling models cumbersome for Bayesian inference.

Gibbs type priors (Gnedin and Pitman, 2005; Lijoi et al., 2008; De Blasi et al., 2013)
provide a convenient trade-off between analytical tractability and flexibility. We say that
a species sampling sequence (Xi)i≥1 of Gibbs type if there exists a parameter σ < 1 and
a triangular array of positive weights {Vn,h, 1 ≤ h ≤ n, n ≥ 1} satisfying the recursive
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relation
Vn,h = (n− σh)Vn+1,h + Vn+1,h+1, h = 1, . . . , n n = 1, 2, . . .

with V1,1 = 1, such that the probabilities in (1.6) are equal to

pkn+1,n(n1, . . . , nkn , 1) =
Vn+1,kn+1

Vn,kn

pkn,n(n1, . . . , nh + 1, . . . , nkn) =
Vn+1,kn+1

Vn,kn
(nh − σ)

Apart from the DP, one of the most notable Gibbs type priors is the two-parameter
Poisson-Dirichlet distribution or Pitman-Yor process (PYP Pitman and Yor, 1997), where

pkn+1,n(n1, . . . , nkn , 1) =
θ + knσ

θ + n
, pkn,n(n1, . . . , nh + 1, . . . , nkn) =

nj − σ
θ + n

the parameter σ ∈ (0, 1) can be interpreted as a “discount” parameter, controlling the
reinforcement. Also the PYP admits a stick-breaking representation as in (1.3) (Ishwaran
and James, 2001), where the random variables νj are independent and distributed as
Beta(1− σ, α+ σj).

1.1.3 Completely Random Measures and their normalization

A very fruitful approach to defining random probability measures has been through the
normalization of random measures. This idea, introduced in Regazzini et al. (2003) for
random probabilities on the real line with the name of normalized random measures with
independent increments (NRMIs), has been extensively studied in the last two decades.
See Lijoi and Prünster (2010) for an overview.

Before stating this construction, technical preliminaries are needed. The first building
block is the Poisson process. See Kingman (1993); Daley and Vere-Jones (2003, 2008) for
a detailed account. Let (Θ, d) denote a measurable space endowed with the Borel sigma
algebra, and let λ be a non-null measure on Θ. We denote by N the Poisson random
measure on Θ and write N ∼ P(λ) to denote the law of a Poisson random measure with
intensity λ. That is, N ∼ P(λ) is a random counting measure such that for any collection
of pairwise disjoint measurable sets A1, . . . , Ak

P(N(A1) = n1, . . . , N(Ak) = nk) =

k∏

j=1

(Λ(Aj))
nj

nj !
e−Λ(Aj)

where Λ(A) :=
∫
A λ(θ)dθ.

The Poisson process is an example of completely random measure (CRM, Kingman,
1967), that is a random measure ν such that the random variables N(A1), . . . , N(Ak) are
independent for pairwise disjoint measurable sets Aj . Moreover, the Poisson process is
also the fundamental building block for other kinds of completely random measures, as
shown in Kingman (1967). Indeed, if a random measure µ on Θ has no fixed atoms (i.e.,
P(ν({x}) > 0) = 0 for any x), it holds that

µ(A) =

∫

R+×A
sN(dsdθ)

where N is a Poisson random measures on the extended space R+ ×Θ. Hence, to build a
completely random measure on Θ, it is sufficient to consider the Poisson random measure
on R×Θ. With a slight abuse of notation, we denote with λ(dsdθ) the intensity measure
of µ. When λ(dsdθ) = ρ(ds)α(dx), where ρ is a measure on R+ and α is a finite measure
on Θ, the random measure is said to be homogeneous.
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Given a random measure µ on Θ, it is natural to consider a random probability measure
by setting, for measurable sets A

p̃(A) =
µ(A)

µ(Θ)
.

However, some care must be taken to ensure that p̃ is well defined. Sufficient conditions
that ensure P(µ(Θ) = 0) = 0 and P(µ(Θ) < +∞) = 1 are

∫

R+

ρ(ds) = +∞,
∫

R+

min{1, s}ρ(ds) < +∞;

see Regazzini et al. (2003) for further details. Observe that the number of atoms in p̃ is
unbounded thanks to the condition

∫
ρ(ds) = +∞. From the Poisson process represen-

tation, we can further see that the atoms of p̃ are i.i.d. from a probability distribution
G0(dθ) = α(dθ)/α(Θ).

Notable examples of NRMIs are the Dirichlet process, which obtained by normalizing
a Gamma random measure, for which λ(dsdθ) = s−1e−sdsγG0(dθ) where γ > 0 and
G0 is a probability measure over Θ; the normalized stable process, where λ(dsdθ) =
σs−1−σ/Γ(1− σ)dsγG0(dθ) for σ ∈ (0, 1); the normalized inverse Gaussian process (Lijoi
et al., 2005); the normalized generalized Gamma process (Brix, 1999; Lijoi et al., 2007).
Specifically, the normalize generalized Gamma process corresponds to setting

λ(dsdθ) =
e−θs

Γ(1− σ)s1+σ
ds cG0(dθ)

and includes as special cases the Dirichlet process (θ = 1, σ = 0), the normalized inverse
Gaussian process (σ = θ = 1/2, c = b1/2/

√
2), and the normalized stable process (θ = 0,

c = γσ). As shown in Pitman and Yor (1997), the Pitman-Yor random probability measure
cannot be obtained via normalization of a CRM, but rather via the normalization of a
suitable transformation of the stable CRM.

1.1.4 Inference with Nonparametric Mixtures

The almost sure discreteness of p̃, makes it cumbersome to assume the DP, PYP or any
NRMI as the prior distribution Q in (1.1) when observations X1, . . . , Xn are assumed to be
continuous. Nonparametric mixtures have been first introduced in Ferguson (1983) and Lo
(1984). It was Escobar and West (1995), where a simulation algorithm to approximate the
posterior algorithm was developed, that made it become common practice to use the DP
(and other almost surely discrete random probability measures) as the prior distribution
for the mixing measure in a mixture model. That is, the model for observations Y1, . . . , Yn
is

Y1, . . . , Yn | p̃ iid∼
∫

Θ
f(· | θ)p̃(dθ)

p̃ ∼ Q
(1.7)

where {f(· | θ)}θ∈Θ is a parametric family of densities (with respect to Lebesgue measure
on Rq or counting measure on a countable subset of Rq), and the specification of the
parameter space Θ is depends on the application. We refer to this parametric family as
the kernel (of the mixture model). The most popular example consists in letting θ = (µ, σ2)
and f(· | θ) = N (· |µ, σ2), where, with an abuse of notation, we use N (· |µ, σ2) to represent
the probability density function of a Gaussian random variable with mean µ and variance
σ2.

Given the extensive literature on Bayesian nonparametric mixture models, we limit
ourselves to cite two fundamental papers: Neal (2000), where several efficient algorithms
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for Dirichlet process mixtures have been introduced, and James et al. (2009), where the
authors extended the class of BNP mixutres to NRMIs mixing distributions, through the
study of the EPPF induced by NRMIs and their posterior representation.

From (1.7), it is clear that one can estimate the data generating density by the posterior
predictive distribution:

p(y | y1, . . . , yn) =

∫ (∫

Θ
f(y | θ)p̃(dθ)

)
Π(dp̃ | y1, . . . , yn),

where Π(dp̃ | y1, . . . , yn) is the posterior distribution of p̃ given the data. Since this posterior
is not available in closed form, we can employ a Monte Carlo approximation to the integral.
That is, given samples p̃(1), . . . , p̃(M) from Π(dp̃ | y1, . . . , yn), obtained, for instance, via a
Markov chain Monte Carlo algorithm, we have

p(y | y1, . . . , yn) ≈ p̂(y) =
1

M

M∑

m=1

∫

Θ
f(y | θ)p̃(m)(dθ),

where M is large.
Mixture models are also a popular framework for model-based clustering. Indeed, we

can reformulate (1.7) as the following hierarchical model

Yi | θi ind∼ f(· | θi), i = 1, . . . , n

θi | p̃ iid∼ p̃ i = 1, . . . , n

p̃ ∼ Q

The almost-sure discreteness of p̃ entails that P(θi = θj) > 0. Therefore, we can partition
observations into clusters based on the latent θj ’s.

1.2 Why atoms’ interaction?

In this section, we will argue in favor (i) finite mixture models and (ii) introducing a
dependence across the support points in p̃.

A finite mixture model has the form (1.7) where p̃ =
∑m

h=1whδθ∗h , with m < +∞ almost
surely. The random elements defining p̃ are then {θ∗h}h, w = (w1, . . . , wm) and possibly
m.

Historically, infinite mixture models have been preferred to the finite ones thanks to the
availability of efficient Markov chain Monte Carlo (MCMC) algorithms to perform poste-
rior inference. Indeed, starting from the seminal work of Neal (2000) several algorithms
have been proposed to fit nonparametric mixture models. Most importantly, these algo-
rithms are suitable for all choices of mixture kernel f(· | θ) and base measure G0. Instead,
traditional approaches to deal with a random number of components m have been based
on reversible jump MCMC (Green, 1995). In this case, the algorithm must be tailored to
the choices of f and G0 and efficiency of the algorithm is usually a concern.

The inconsistency of the Pitman-Yor mixture model for the number of clusters, proven
in Miller and Harrison (2014a), led to reconsidering finite mixture models with m random
as a suitable alternative to infinite mixtures for model-based clustering. Informally, Miller
and Harrison (2014a) proved that, if the true data generating process consists of a mixture
of k0 components f(· | θ∗1), . . . , f(· | θ∗k0

), then the posterior distribution of the number of
clusters k in a Pitman-Yor mixture model does not converge to δk0

when the number of
observations grows to infinity. At the same time, the recent works Miller and Harrison
(2018), Argiento and De Iorio (2022), and Frühwirth-Schnatter et al. (2021) established
several connections between finite mixture models with m random and mixture models
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Figure 1.1: Left: true data generating density (red), Bayesian density estimate (blue),
estimated cluster centres (blue dots). Right: posterior distribution of the number of
clusters, for different sample sizes n.

where m = +∞, developing efficient and general algorithms inspired by Neal (2000) for
finite mixture models.

It has been known since Nobile (1994) that finite mixture models consistently estimate
m (in turn, this guarantees the consistency of the estimated number of clusters), provided
that the model is well-specified. The main assumption, which cannot be verified in practice,
is that the mixture kernel f(· | ·) agrees with the true data generating process. If this is
not the case, then finite mixture models cannot be expected to be consistent for m. In
particular, one can easily imagine that if the mixture kernel does not agree with the true
data generating process, the mixture model will estimate a large number of components
m to faithfully approximate the data generating density. This point has been theoretically
addressed in Cai et al. (2021) in the limit of the sample size growing to infinity.

Let us give a practical example of this behavior, showing that the inconsistency occurs
even with modest sample sizes. We generated n observations from a mixture of two Laplace
distributions, located respectively in −5 and +5. Figure 1.1 shows the true data generating
density (left plot, red) and the density estimate obtained with a location-scale mixture of
Gaussians. Note that the density estimate is extremely precise, especially near the centers
of the two components. However, in order to obtain such a good estimate, the number of
clusters estimated is almost always greater than the “true” number of clusters, that is two
(right plot).

This simple example shows an imbalance. Mixture models are used routinely for density
estimation and clustering, but they clearly tend to favor density estimation accuracy over
clustering. In practice, especially when the data dimension is greater than two, it is almost
impossible to recognize that a mixture model is misspecified since posterior summaries such
as the density estimate cannot be easily visualized.

In the next chapters, we set out to pursue the opposite trade-off: favoring interpretable
clustering over density estimation. The approach is based on forcing separation among the
components’ densities. Specifically, by assuming a (repulsive) point process distribution
as prior for the cluster centers and the number of components m.

1.3 Previous work on repulsive mixture models

Repulsive mixtures have been previously considered in Petralia et al. (2012), Xu et al.
(2016), Fúquene et al. (2019), Quinlan et al. (2020), Bianchini et al. (2020), and Xie
and Xu (2019). In these papers, the mixture kernel f(· | ·) in (1.7) is assumed to be the
Gaussian density with parameters (µ, γ), which represent the cluster-specific mean and
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variance (if data are univariate) or covariance matrix (if data are multivariate). Then,
a joint prior p(µ), where µ = {µ1, . . . , µm}, is assumed for the cluster-specific means,
including possibly the cardinality m.

In particular, in Petralia et al. (2012), Fúquene et al. (2019), and Quinlan et al. (2020),
m is finite and fixed, but this cannot guarantee the posterior consistency of the number
of components. However, Xu et al. (2016), Bianchini et al. (2020), and Xie and Xu (2019)
assume m to be finite and random. In particular, Xu et al. (2016) and Bianchini et al.
(2020) deal with determinantal point process (DPP) priors for µ. A DPP density has to be
approximated as described in Lavancier et al. (2015) where the computational complexity
will increase exponentially fast as the dimension q increases, or as described in Bardenet
and Titsias (2015) (but at the price that the model parameters are hard to interpret). Xie
and Xu (2019) assume a tempered repulsive pairwise interaction point process density as
prior for µ conditioned on m:

p(µ1, . . . , µm |m) =
1

Zm

[
m∏

i=1

φ1(µi)

]
 ∏

1≤i<j≤m
φ2(‖µi − µj‖)1/m




with respect to m-fold Lebesgue measure on Rq. Here, ‖ · ‖ denotes usual distance, φ1 is a
non-negative function, 0 ≤ φ2 ≤ 1 is a non-decreasing function (this implies repulsiveness),
and Zm is the normalizing constant. Note that if φ2(·) = 1, then µ1, . . . , µm are iid and
independent of m. Apart from this case, Zm is intractable and has to be approximated
by numerical methods, a non-trivial task which limits both efficiency and feasibility as the
dimension q increases.

As far as posterior simulation is concerned, Xu et al. (2016) and Bianchini et al. (2020)
proposed to simulate (w, τ ) using a reversible jump MCMC algorithm, cf. Green (1995).
At every iteration of this algorithm, either a split move (in which one component is killed
and two new ones are created, hence increasing the dimension by one), or a combine move
(in which two components are merged into a single one, hence decreasing the dimension
by one) is proposed. As discussed in Green (2010), Richardson and Green (1997), and
Dellaportas and Papageorgiou (2006), in order to obtain good mixing properties of the
reversible jump MCMC algorithm, it is crucial to define appropriate proposal distributions
that generate the new values in the split move. In general, this is a complex task that
depends heavily on the kernel under consideration.

Similarly to how Miller and Harrison (2018) studied a classical mixture model, Xie and
Xu (2019) consider in the observation model (1.7) to marginalize with respect to a prior
of (w, τ ) and derive a ‘marginal MCMC algorithm’. However, although this algorithm
compared with the reversible jump MCMC algorithm has smaller auto-correlations for the
number of clusters, it requires the calculation of the normalizing constants Z1, Z2, . . . up
to some truncation, and inference is limited to the number of clusters and the posterior
mean of the mixture density.
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2. MCMC computations for Bayesian mixture models us-
ing repulsive point processes

In this chapter, based on Beraha et al. (2022), we consider mixture models of the kind
(1.7), where m is finite and random. The focus here is to extend the approach in Argiento
and De Iorio (2022), considering in particular prior specification and Bayesian MCMC
computations when the aim is cluster detection. Our objective is partly to present a
general framework for mixture models based on repulsive point process priors for ‘cluster
centers’, arguing why this is useful, and partly to derive a MCMC algorithm which avoids
the well-known difficulties associated with reversible jump MCMC computation. In several
simulation studies and an application on sociological data, we illustrate the advantage of
our new methodology over existing methods, and we compare the use of the different
repulsive point process priors. Moreover, when introducing a hyperparameter in such
priors, we demonstrate that perfect simulation is fast in connection to a useful ancillary
variable method.

2.1 Setting

For specificity, assume each yi ∈ Rq with q ≥ 1. It will always be obvious from the context
whether we consider yi (and other variables considered later on) as a random variable, a
realization, or an argument of a function. In this chapter, we specialize (1.7) as

yi |w, τ iid∼
m∑

h=1

whf(· | τh), i = 1, . . . , n. (2.1)

The densities f(· | τh), h = 1, . . . ,m are usually referred to as the ‘components’ of the
mixture. In this context, cluster detection means estimating the allocation parameters
c = (c1, . . . , cn) ∈ {1, . . . ,m}n where the sets {yi : ci = h}, h = 1, . . . ,m are the clusters.
The number of clusters in the mixture model is the number of allocated components in
(2.1), i.e., the number of unique values in (c1, . . . , cn).

We make prior assumptions as follows. To control the number of clusters, m is random
and finite; the case m = +∞ would be relevant for nonparametric inference (Müller and
Mitra, 2013), but this context is not addressed in this chapter. Only when m < +∞ is not
fixed, it can be consistently estimated, cf. Argiento and De Iorio (2022) and Miller and
Harrison (2018). We let τh = (µh, γh), thinking of µh as a continuous random parameter
in Rq that specifies a ‘cluster center’ of cluster h, and of γh as a positive random parameter
(q = 1) or a continuous covariance matrix (q ≥ 2) (or, in simple settings, a fixed positive
number) which specifies the amount of dispersion of the data points in cluster h (for
example, f(· | τh) could be a normal density with mean µh and variance γh). To make
posterior inference more robust, we add a hyperparameter ξ to the prior distribution of
(µ1, . . . , µm). Furthermore, since the mixture density in (2.1) does not depend on the
order of the components, we can assume that

(a) the conditional marginal prior density p(µ1, . . . , µm | ξ,m) is exchangeable,
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that is, for any fixed integer m ≥ 1, it is invariant under permutations of µ1, . . . , µm.
Note that µ = {µ1, . . . , µm} is then a finite point process, specifying both the random
number m of components and the locations of the cluster centers. Finally, a priori we
make conditional independence assumptions: Conditioned on (ξ,m), we have that

(b) (w1, . . . , wm), (µ1, . . . , µm), and (γ1, . . . , γm) are a priori independent,

(c) given m, the conditional marginal prior distribution of (w1, . . . , wm) does not depend
on ξ,

(d) the γh’s are iid, with a prior distribution which does not depend on (ξ,m),

and conditioned on (ξ,m,w1, . . . , wm, µ1, . . . , µm, γ1, . . . , γm), we have that

(e) the ci’s are iid with a prior distribution given by P (ci = h |w) = wh.

Hence, the random parameter here consists of (ξ, {µ1, . . . , µm}, w1, . . . , wm, γ1, . . . , γm,
c1, . . . , cn). By Bayes’ theorem, using the generic notation p(·) for a density and p(· | ·) for
a conditional density, the posterior density becomes

p(ξ, {µ1, . . . , µm},w1, . . . , wm, γ1, . . . , γm, c1, . . . , cn | y1, . . . , yn) ∝
p(ξ)p(m | ξ)p(µ1, . . . , µm | ξ,m)p(w1, . . . , wm |m)[

m∏

h=1

p(γh)

][
n∏

i=1

wcif(yi | (µci , γci))
]
.

(2.2)

The dominating measure for (2.2) is given in Section 2.5 which contains measure theoretical
details; see Section 2.3 for further prior specifications. In brief, the prior specification of
µ and w requires particular attention, whilst for the prior specification of the remaining
parameters we use a standard setting, following Fraley and Raftery (2007).

Note that we impose the hyperprior on ξ, the parameter in the repulsive point process
prior controlling the intensity of the point process, to make posterior inference more robust,
cf. Section 2.1, unlike previous literature (apart from Bianchini et al., 2020). When making
posterior updates of ξ in our MCMC algorithm, if the prior density for µ conditioned on ξ
has an intractable normalizing constant Zξ, we get rid of Zξ by using the single exchange
algorithm in Murray et al. (2006) coming from the ancillary variable algorithm in Møller
et al. (2006). These algorithms require perfect simulation of an auxiliary variable following
the same distribution as µ conditioned on ξ. Interestingly, perfect simulation is feasible
in our context because m will typically be small (in our examples, it is effectively always
less than 10).

2.2 Our Contribution and Outline

We discuss a general framework for mixture models based on repulsive point process
priors for ‘cluster centers’ µ and derive a new MCMC algorithm avoiding the problem
with reversible jump MCMC computation.

Our first contribution is the proposal of the prior of µ conditioned on ξ, cf. item (a)
in Section 2.1: We consider a general setting with a repulsive finite point process density,
including the case of a DPP (any DPP except the special case of a Poisson process is
repulsive) or a density specified by an unnormalized density, e.g. a pairwise interaction
point process density, which involves a normalizing constant Zξ which in general (except
the special case of a Poisson process) is intractable. As a particular simple example
of a pairwise interaction point process, we assume a Strauss process (defined later in
Section 2.3.1). Note that the prior distributions for µ in all the papers cited in Section 1.3
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can all be considered as special cases of our prior for µ. Also note that Zξ will never
appear in our posterior simulation algorithm.

The second contribution is the algorithm for posterior simulation from our model.
This contribution builds upon Argiento and De Iorio (2022) and is mainly based on two
assumptions, namely w and µ are chosen a priori independent and the mixture weights w
are defined by normalization of iid infinitely divisible random variables, i.e. w follows a
normalized infinitely divisible distribution (Favaro et al., 2011). In fact, Argiento and De
Iorio (2022) introduced the class of normalized independent point processes mixture models
and showed that this class can be framed in the nonparametric Bayesian context. In this
way, several ideas and algorithms developed in the nonparametric literature for normalized
random measures with independent increments (NRMI – see Regazzini et al., 2003) can
be adapted to the finite-dimensional case. Here we extend Argiento and De Iorio (2022)
building a Metropolis-within Gibbs sampler, referred to as conditional Gibbs sampler in the
Bayesian nonparametric literature; see Papaspiliopoulos and Roberts (2008). In particular,
we relax the usual assumption of µ1, . . . , µm being iid and independent of m, still being able
to propose a transformation of µ into allocated cluster centers µ(a) = {µci : i = 1, . . . , n}
and non-allocated cluster centres µ(na) = µ\µ(na). This allows us to simulate from the full
conditional of µ without resorting to the split and combine moves of the reversible jump
MCMC algorithm as used in Xu et al. (2016) and Bianchini et al. (2020). In fact, posterior
updates of µ(a) become easy and when updating µ(na) we use the Metropolis-Hasting
birth-death algorithm in Geyer and Møller (1994). The Metropolis-Hasting birth-death
algorithm has the advantage that the choice of the kernel does not impact the acceptance
rate of the algorithm.

The remainder of this chapter is organized as follows. Sections 2.3 and 2.4 specify our
further prior assumptions on the cluster centers µ and the mixture weights w, respectively.
Section 2.5 derives the posterior density, using the useful superposition of µ mentioned
above, and provides the technical details needed when dealing with point process densities
(we aim at keeping this as simple as possible). Section 2.6 details our Metropolis-within-
Gibbs sampler for posterior simulation. Sections 2.7.1 and 2.7.2 discuss prior elicitation
when the prior for µ is the Strauss process and the DPP (conditioned on {m ≥ 1}, see
Section 2.3). Section 2.8 presents various simulation studies comparing posterior inference
and MCMC mixing obtained using reversible jump or our Metropolis-within-Gibbs sam-
pler, and using a DPP, a Strauss process, or a non-repulsive prior for µ. Furthermore,
an application to a sociological data set is discussed in Section 2.9. The article concludes
with a discussion in Section 2.10. In the Appendix we provide practical details on our
Metropolis-within-Gibbs sampler, collect additional simulation studies, including an illus-
tration on the advantages of using a Strauss process over a DPP as prior for µ, and discuss
possible extensions.

2.3 Prior specification of the cluster centers

For the prior specification of µ, introduced in item (a) in Section 2.1, which is the first
original contribution of our work, a few technical details are needed to start. Let Ω =
∪∞m=0Ωm denote the space of all finite subsets (point configurations) of Rq, where Ωm

denotes the space of all finite subsets of cardinality m, with Ω0 = {∅}, where ∅ denotes
the empty point configuration; although we cannot have 0 groups, it becomes convenient
in Section 2.5 to include Ω0 into the definition of Ω. We equip each Ωm with the smallest
σ-algebra making the mapping of pairwise distinct (µ1, . . . , µm) ∈ Rqm into {µ1, . . . , µm} ∈
Ωm measurable. The σ-algebra on Ω is the smallest σ-algebra that contains the union of
the σ-algebras on each Ωm. Then µ is absolutely continuous with respect to a measure
on Ω which, with an abuse of notation, is denoted dµ and defined as follows. For sets
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B = ∪∞m=0Bm with Bm ⊆ Ωm,

∫

B
dµ =

∞∑

m=0

1

m!

∫

Bm

dµm,

where the notation means the following. For m = 0, we interpret the term in the sum as
[∅ ∈ A]. We set µm = {µ1, . . . , µm} and, with an abuse of notation, write dµm for Lebesgue
measure dµ1 · · · dµm on Rqm. Further, we write

∫
Bm

dµm for
∫
Rqm I[µ ∈ Bm] dµm, where

I[·] denotes the indicator function. Then, conditioned on ξ, the density of µ with respect
to dµ is given by

p(µ | ξ) = p(m | ξ)p(µ1, . . . , µm | ξ,m), µ = {µ1, . . . , µm} ∈ Ω, m ≥ 1,

setting p(µ1, . . . , µm | ξ,m) = 0 if m = 0. This means that we consider the prior process
prior restricted to the event that µ is non-empty.

2.3.1 Repulsive pairwise-interaction point process priors

When incorporating repulsiveness in the prior density p(µ | ξ), we suggest a repulsive
pairwise-interaction point process. This is a popular class of models in statistical physics
and spatial statistics; see Møller and Waagepetersen (2004) and the references therein.
The repulsive pairwise-interaction density is of the form

p(µ | ξ) =
1

Zξ

[
m∏

h=1

φ1(µh | ξ)
]
 ∏

1≤i<j≤m
φ2(‖µi − µj‖ | ξ)


 , (2.3)

where φ1(· | ξ) ≥ 0 is an integrable function, 0 ≤ φ2(· | ξ) ≤ 1 is a non-decreasing function,
and Zξ is a normalizing constant. Note that Zξ < +∞, but in general Zξ is intractable.
An exception is the special case φ2(· | ξ) = 1 (a Poisson process with intensity function
φ1(· | ξ) and conditioned on not being empty), where Zξ = 1− exp(−

∫
φ1(µh | ξ) dµh).

For simplicity and specificity, in Sections 2.8-2.9, we follow Bianchini et al. (2020) in
letting ξ be a positive random variable and using an empirical Bayesian approach with

φ1(µh | ξ) = ξ I[µh ∈ R], (2.4)

where R ⊂ Rq is the smallest rectangular region containing the data y and with sides
parallel to the usual axes in Rq (they advocate the use of this choice over other more
complicated situations).

The simplest non-trivial case is a Strauss prior,

φ2(r | ξ) = αI[r≤δ], (2.5)

so that ξ enters only in the expression of φ1. Here, δ > 0 is a fixed parameter, specifying
the range of interaction, and 0 ≤ α ≤ 1 is a fixed interaction parameter. Note that, if
α = 0, we set 00 = 1 and obtain a so-called hard core point process. If α = 1, we obtain
a model with no interaction which is like a Poisson process except that we condition on
that µ is non-empty.

2.3.2 Repulsive priors specified by an unnormalized density

In the following we consider a general prior model given by

p(µ | ξ) =
1

Zξ
g(µ | ξ), (2.6)

12



Chapter 2. MCMC for Repulsive Mixtures

where g(· | ξ) is a so-called unnormalized density, meaning that g(· | ξ) is a non-negative
measurable function such that the normalizing constant Zξ is finite. Note that by assump-
tion g(∅µ | ξ) = 0. Specific examples of (2.6) can be found in Møller and Waagepetersen
(2004) and the references therein. In our simulation study and application example (Sec-
tions 2.8-2.9) we focus on the Strauss prior and a specific DPP prior given below, but
considering (2.6) is useful in order to give a general exposition of our methodology.

To describe interaction in the general model (2.6), one possibility is to assume that for
any µ ∈ Ω and µ∗ ∈ Rq \ µ we have g(µ ∪ {µ∗} | ξ) > 0⇒ g(µ | ξ) > 0, and then consider
the so-called Papangelou conditional intensity defined by

λ(µ∗,µ | ξ) := g(µ ∪ {µ∗} | ξ)/g(µ | ξ)

(taking 0/0 := 0). Then we have repulsiveness if λ(µ∗,µ |ψ) is a non-increasing function
of µ, that is, λ(µ∗,µ |ψ) ≥ λ(µ∗,µ∪ {µ′} |ψ) for any µ′ ∈ Rq \µ∪ {µ∗}, where inequality
can not be replaced by an identity. Clearly, this is true for (2.3) when φ2(· | ξ) 6= 1.

2.3.3 Determinantal point process priors

A DPP density (conditioned on that the DPP is non-empty) is a special case of (2.6) but
with repulsion characterized in another way than above (Hough et al., 2009; Lavancier
et al., 2015; Biscio et al., 2016; Møller and O’Reilly, 2021). To work with a DPP density,
we consider a compact region R ⊂ Rq with

∫
R dx > 0, and a complex covariance function

C : R×R 7→ C with a spectral representation

C(x, x′ | ξ) =

∞∑

i=1

λiϕi(x)ϕi(x′), x, x′ ∈ R, (2.7)

where the ϕi’s form an orthonormal basis for the L2(R)-space of complex functions defined
on R, each λi ≥ 0, and

∑∞
i=1 λi < +∞. Then the existence of the DPP is equivalent to that

all λi ≤ 1, cf. Macchi (1975). Note that we suppress in the notation that the eigenvalues
λi’s and the eigenfunctions ϕi’s may depend on ξ.

A special case of a DPP occurs when C is a projection of finite rank m, let us say

C(x, x′ | ξ) =

m∑

i=1

ϕi(x)ϕi(x′), x, x′ ∈ R.

From (2.7) we obtain a density

p(µ1, . . . , µm | ξ) = det{C(µh, µ
′
h)}h,h′=1,...,m for µ1, . . . , µm ∈ R, (2.8)

where det{C(µh, µ
′
h)}h,h′=1,...,m is the determinant of the m×m matrix

{C(µh, µ
′
h)}h,h′=1,...,m. A point process with density (2.8) is called a projection DPP with

kernel C. Note that it consists of exactly m points in R.
The general construction of a DPP is given by introducing a random projection

K(x, x′ | ξ) =

∞∑

i=1

Biϕi(x)ϕi(x′), (2.9)

where B1, B2, . . . are independent Bernoulli variables with means λ1, λ2, . . ., respectively.
Then a DPP with kernel C is a finite point process on R which conditioned on B1, B2, . . .
is a projection DPP with kernel K; it can be shown that the distribution of this DPP
depends only on C, cf. Hough et al. (2006). Note that

∑∞
i=1Bi is the random number of

13
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points. In particular, assuming all λi < 1 and defining C ′ as C in (2.7) but with each λi
replaced by λ′i = λi/(1− λi), the DPP has unnormalized density

g(µ | ξ) = det{C ′(µh, µh′)}h,h′=1,...,m

for pairwise distinct µ = {µ1, . . . , µm} ⊂ R,m ≥ 1. (2.10)

Most DPP densities are specified as in (2.10) with the kernel coming from a parametric
family of (often real) covariance functions with all eigenvalues < 1, see Lavancier et al.
(2015). The advantage of using such models is that we can avoid including the Bernoulli
variables as ancillary variables in the posterior, whilst the problem is to find a spectral rep-
resentation. Note that when we condition on that the DPP is non-empty, the normalizing
constant is given by

Zξ =

∞∏

i=1

(1− λi)−1 − 1. (2.11)

For our purpose it is easiest to let R be rectangular and use a spectral approach with
Fourier basis functions for the eigenfunctions, cf. Lavancier et al. (2015). In Sections 2.8-
2.9, we follow Bianchini et al. (2020) in making this choice of eigenfunctions and letting
R = [−1

2 ,
1
2 ]q and

C(x, x′ | ξ) =
∑

j∈Zq
λj cos(2πj · (x− x′)), (2.12)

where Z is the set of integers, · denotes the usual inner product on Rq, and λj = χ(j) is
specified by the spectral density χ of the power exponential spectral model from Lavancier
et al. (2015). Specifically,

λj = ξ
αqΓ(q/2 + 1)

πq/2Γ(q/β + 1)
exp(−‖αj‖ν), (2.13)

where Γ(·) is the gamma function, α and β are fixed positive parameters, and λj depends
on the parameter ξ > 0 so that λj ≤ 1 and

∑
j∈Zq λj <∞. For details, see Lavancier et al.

(2015), noting that ξ is the intensity of the DPP if we do not condition on that the DPP
is non-empty.

When dealing with computations, in the sum of (2.12) and in the corresponding product∏
j∈Zq · · · for the normalizing constant, cf. (2.11), we may replace the infinite lattice Zq

with a finite set, which is most naturally given by {−N,−N + 1, . . . , 0, . . . , N − 1, N}q,
where N > 0 is an integer. Then m ≤ (2N + 1)q; in Bianchini et al. (2020), N = 50
for q = 1, 2. Bardenet and Titsias (2015) suggested an alternative approach, which does
not require the spectral approach used above but specifies the DPP density directly by
(2.10) and exploits certain bounds for the product in (2.11). However, it is then harder to
interpret the parameters, and in particular to work with an intensity parameter.

To fix the values of α and β, we could follow Lavancier et al. (2015) who proposed to
approximate some summaries such as the pair correlation function which depends only
on (α, β). Instead, in Section 2.7, we discuss an empirical Bayesian approach to select
hyperparameters and hyperpriors for both the Strauss process given by (2.3)-(2.5) and the
DPP given by (2.12)-(2.13).

2.4 Normalized infinite divisible prior for the weights

When deriving full conditional distributions for our Metropolis-within-Gibbs sampler given
in Section 2.6, it becomes convenient to introduce ancillary variables t and u as specified
below.
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Conditioned on m, let s = (s1, . . . , sm) consists of iid positive continuous random
variables, with the distribution of each sh not depending on m, and with s independent
of (ξ,µ,γ). Set t =

∑m
h=1 sh and w = (s1/t, . . . , sm/t), so s and (w, t) are in a one-to-

one correspondence. In particular, in Sections 2.8-2.9, we assume that each sh follows
a gamma distribution, in which case our model can be referred to as a finite Dirichlet
mixture model with repulsive locations. We point out that the idea of building the weights
w by normalization not only has computational advantages – as previously discussed –
but it also allows us to embed the model into the large class of mixtures obtained by
normalization of finite point processes (Argiento and De Iorio, 2022). This latter class,
to be defined, requires only the distribution of sh’s to be infinitely divisible, and it is
the finite-dimensional counterpart of the normalized random measures with independent
increments, which has been thoroughly investigated in the last two decades in the Bayesian
nonparametric literature (see, for instance, Regazzini et al., 2003; James et al., 2009; Lijoi
and Prünster, 2010). The weights w resulting from a finite normalization have distribution
on the simplex that is denominated as normalized infinite divisible following Favaro et al.
(2011). See also Lijoi et al. (2020a). It is worth underlining that our Metropolis-within-
Gibbs sampler, cf. Section 2.6, works also for normalized infinite divisible priors different
from the Dirichlet distribution, such as those introduced in Argiento and De Iorio (2022).

One of the advantages of building the distribution of the weights w by normalization
is that computations are easier. The main idea is to consider a gamma random variable
v with scale parameter one and shape parameter n, which is independent of (ξ,µ,γ, s, c).
Then, we set the ancillary variable u := v/t. It is immediate to show that u is well defined,
i.e., it has a density with respect to the Lebesgue measure given by

p(u) =
un−1

Γ(n)

∫ ∞

0
tne−utp(t)dt

where p(·) in the integral is the density function of t. We show below (see (2.18)) that,
conditioned on u, the full conditional of the unnormalized weights sh’s factorize (i.e., the
weights are conditionally independent), so that simulation will be drastically simplified.
We notice that the trick of introducing the ancillary variable u is familiar in the context
of normalized completely random measure as mixing measures for mixture models. It was
studied in James et al. (2009) in the infinite dimensional case and largely exploited by
Argiento and De Iorio (2022) and Argiento et al. (2016) in the finite dimensional setting.

2.5 Posterior distribution and a useful decomposition of the clus-
ter centers

To specify the posterior obtained by considering all parameters introduced so far, including
(s, t, u), we first notice that the dominating measure implicitly used in (2.2) leads to a new
dominating measure ν given as follows. Let Ξ and Γ denote the spaces where ξ and each
γh take values, respectively, equipped with some appropriate σ-algebras and measures
dξ and dγh (typically Borel σ-algebras and Lebesgue measures). For m = 1, 2, . . ., set
sm = (s1, . . . , sm) and γm = (γ1, . . . , γm), let dsm denote the Lebesgue measure on Rm+ ,
let dγm denote the product measure

∏m
h=1 dγh, and consider arbitrary measurable subsets

A ⊆ Ξ, Bm ⊆ Ωm, Cm ⊆ Rm+ , Dm ⊆ Γm, Em ⊆ {1, . . . ,m}n, and F ⊆ R+ (we still
let the σ-algebra of Ωm be induced by the Borel σ-algebra of Rqm and the mapping
Rqm 3 (µ1, . . . , µm) 7→ {µ1, . . . , µm} ∈ Ωm with µ1, . . . , µm pairwise distinct). Then the
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measure dµ together with the other reference measures leads to

ν(A× {∪∞m=0Bm × Cm ×Dm × Em} × F )

=

∫

A
dξ

∞∑

m=0

1

m!

∫

Bm

dµm

∫

Cm

dsm

∫

Dm

dγm

m∑

c1,...,cn=1

I[c ∈ Em]

∫

F
du. (2.14)

The posterior density of the new parameter (ξ,µ, s,γ, c, u) with respect to ν is then

p(ξ,µ, s,γ, c, u |y) ∝ p(ξ)p(µ | ξ)×[
m∏

h=1

p(γh)p(sh)

]
p(u | t) 1

tn

[
n∏

i=1

scif(yi | (µci , γci))
]
. (2.15)

In the algorithm for posterior simulation presented in Section 2.6, we find it useful to
split µ into those cluster centres which are used to allocate the data, and those which
are not, that is, µ(a) = {µc1 , . . . , µcn} and µ(na) = µ \ µ(a). For the points of these

processes we use the notation µ(a) = {µ(a)
1 , . . . , µ

(a)
k } = and µ(na) = {µ(na)

1 , . . . , µ
(na)
` }.

Note that 1 ≤ k ≤ m, ` ≥ 0, and the product measure dµ × dµ on Ω × Ω lifted by the
map (x, z) 7→ x ∪ z results in the measure dµ. Hence, (µ(a),µ(na)) conditioned on ξ has
density

p(µ(a),µ(na) | ξ) = p(µ(a) ∪ µ(na) | ξ)
with respect to the product measure dµ(a)×dµ(na) (thinking of the measures dµ, dµ(a),dµ(na)

as being identical but of course not thinking of µ,µ(a),µ(na) as being identical).
Obviously, (µ, s,γ, c) and (µ(a), s(a),γ(a),µ(na), s(na),γ(na), c) are in a one-to-one cor-

respondence, and the cardinalities of the point processes µ(a) and µ(na) satisfy 1 ≤ k < +∞
and 0 ≤ ` < +∞. Finally, setting nh = #{i : ci = h}, we obtain from (2.14) and (2.15)
the posterior density

p(ξ,µ(a), s(a),γ(a), c,µ(na), s(na),γ(na), u |y) ∝

p(ξ)p(µ(a) ∪ µ(na) | ξ)
[

k∏

h=1

p(γ
(a)
h )p(s

(a)
h )(s

(a)
h )nh

∏

i:ci=h

f(yi | (µ(a)
h , γ

(a)
h ))

]

×
[∏̀

h=1

p(γ
(na)
h )p(s

(na)
h )

]
p(u | t) 1

tn

(2.16)

with respect to a new dominating measure defined by (using an obvious notation)

ν ′(A×
{
∪∞k=1B

(a)
k × C

(a)
k ×D

(a)
k × E

(a)
k

}
×
{
∪∞`=0B

(na)
` × C(na)

` ×D(na)
`

}
× F )

=

∫

A
dξ

∞∑

k=1

1

k!

∫

B
(a)
k

dµ
(a)
k

∫

C
(a)
k

ds
(a)
k

∫

D
(a)
k

dγ
(a)
k

k∑

c1,...,cn=1:
#{c1,...,cn}=k

I[c ∈ E(a)
k ]×

∞∑

`=0

1

`!

∫

B
(na)
`

dµ
(na)
`

∫

C
(na)
`

ds
(na)
`

∫

D
(na)
`

dγ
(na)
`

∫

F
du.

(2.17)
Without introducing the ancillary variable u, that is, when leaving out the term p(u | t)

in (2.16)), it becomes difficult to derive the full conditionals for the allocated and non-
allocated variables µ(a), s(a),γ(a),µ(na), s(na),γ(na). This is due to the term 1/tn in (2.16),
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noting that t =
∑k

h=1 s
(a)
h +

∑`
h=1 s

(na)
h , which makes it impossible to factorize according

to the allocated and non-allocated variables. When including u, we obtain

p(u | t) 1

tn
=

un−1

(n− 1)!
exp(−ut)tn 1

tn
=

un−1

(n− 1)!

[
k∏

h=1

exp(−us(a)
h )

][∏̀

h=1

exp(−us(na)
h )

]
, (2.18)

which does not depend on t. Using (2.16) and (2.18), a factorization is obtained, which is
useful for the Metropolis-within-Gibbs sampler described in the following section.

2.6 Algorithm for posterior simulation

2.6.1 Metropolis-within-Gibbs sampler

In our Metropolis-within-Gibbs sampler for simulating from the posterior (2.16), a single
iteration is given by updating from full conditionals for five blocks of variables as specified
by the first line in the following steps (A)-(E). Note that we use the notation p(·| · · · )
to indicate that we consider a variable or collection of variables · given the remaining
variables · · · (including the data y).

(A) Update the non-allocated variables (µ(na), s(na),γ(na)) from their full conditional
as given by the following steps (i)-(iii), noting the following. Since the cardinality
of each of the vectors s(na) and γ(na) agrees with the cardinality of µ(na), it is of
paramount importance to resort to a collapsed Gibbs sampler. Therefore, in (i) we
sample µ(na) from the conditional density obtained by integrating out (s(na),γ(na)),
and then in (ii)-(iii) we sample s(na) and γ(na) from their respective full conditionals,
hence knowing the cardinality ` of µ(na).

(i) Sample from the conditional density obtained by integrating out (s(na),γ(na))
and given by

p(µ(na) | ξ,µ(a), s(a),γ(a), c, u,y) ∝ p(µ(a) ∪ µ(na) | ξ)ψ(u)` (2.19)

with respect to dµ(na). Here, ψ(u) denotes the Laplace transform of the density
p(sh), and we can got rid of the last term ψ(u)`, since ` is the cardinality of
µ(na). In Section 2.6.2 we verify (2.19) and give details for simulation from
(2.19). If, after this update, ` = 0, the following two items (ii) and (iii) are
skipped.

(ii) Sample s(na) from its full conditional,

p(s(na) | · · · ) ∝
∏̀

h=1

p(s
(na)
h ) exp(−us(na)

h ).

That is, sample independently ` values from the exponential tilting of the prior

density. Depending on the specific choice of p(s
(na)
h ), this can be done exactly

or requires a Metropolis-Hastings step.

(iii) Sample γ(na) from its full conditional,

p(γ(na) | · · · ) ∝
∏̀

h=1

p(γ
(na)
h ).

That is, sample independently ` values from the prior density p(γ
(na)
h ).
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(B) Update the allocated variables (µ(a), s(a),γ(na)):

(i) Sample µ(a) from its full conditional,

p(µ(a) | · · · ) ∝ p(µ(a) ∪ µ(na) | ξ)
k∏

h=1

[ ∏

i:ci=h

f(yi | (µ(a)
h , γ

(a)
h ))

]
,

where by (2.6) we can replace p(µ(a) ∪ µ(na) | ξ) by g(µ(a) ∪ µ(na) | ξ). We do

this by updating each of µ
(a)
h from

p(µ
(a)
h | · · · ) ∝ g(µ

(a)
h ∪ {µ(a) \ {µ(a)

h }} ∪ µ(na))
∏

i:ci=h

f(yi | (µ(a)
h , γ

(a)
h )).

Appendix Section 2.A.1 discusses how to construct a proposal density for sam-

pling from p(µ
(a)
h | · · · ) using a Metropolis-Hastings step.

(ii) Sample s(a) from its full conditional,

p(s(a) | · · · ) ∝
k∏

h=1

(s
(a)
h )nhe−us

(a)
h p(s

(a)
h ).

Here, the s
(a)
h ’s are independent conditional to everything else, so they can be

updated individually using a Metropolis-Hastings step.

(iii) Sample γ(a) from its full conditional,

p(γ(a) | · · · ) ∝
k∏

h=1

p(γ
(a)
h )

∏

i:ci=h

f(yi | (µ(a)
h , γ

(a)
h )).

Unless p(γ
(a)
h ) and f(yi | (µ(a)

h , γ
(a)
h )) are conjugate, we apply a Metropolis step

for the γ
(a)
h ’s.

Since in this step we have conditioned with respect to c too, k denotes the number
of clusters and is fixed.

(C) Sample each ci from its full conditional, which is a discrete distribution over 1, . . . , k + `
given by

p(ci = h | · · · ) ∝ s(a)
h f(yi | (µ(a)

h , γ
(a)
h )), h = 1, . . . , k,

p(ci = k + h | · · · ) ∝ s(na)
h f(yi | (µ(na)

h , γ
(na)
h )), h = 1, . . . , `.

After this, with a positive probability it may happen that ci > k for some i’s, so that
some non-allocated components have become allocated, and some allocated compo-
nents have become non-allocated. Then a simple relabelling of (µ(a), s(a),γ(a),µ(na), s(na),γ(na))
and c is needed, so that c takes values in {1, . . . , k}n.

(D) Sample ξ from its full conditional,

p(ξ | · · · ) ∝ p(ξ)p(µ(a) ∪ µ(na) | ξ).
This requires a Metropolis-Hastings step, which is not straightforward when Zξ in
(2.6) is not expressible in closed form, e.g. in the case of a repulsive pairwise interac-
tion point process. Details on how this issue is overcome are given in Section 2.6.3.

(E) Sample u from its full conditional, which is just a gamma distribution with shape
parameter n and inverse scale t.
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2.6.2 Updating the non-allocated variables

This section provides the remaining details of step (A)(i). By (2.16),

p(µ(na) | ξ,µ(a),S(a),γ(a), c, u,y)

=

∫ ∫
p(µ(na), s(na),γ(na) | ξ,µ(a),S(a),γ(a), c, u,y) ds(na) dγ(na)

∝
∫ ∫

p(µ(a) ∪ µ(na) | ξ)
[∏̀

h=1

p(γ
(na)
h )p(s

(na)
h )

]
p(u | t) 1

tn
ds(na) dγ(na)

∝
∫
p(µ(a) ∪ µ(na) | ξ)

[∏̀

h=1

exp(−us(na)
h )p(s

(na)
h )

]
ds(na) (2.20)

= p(µ(a) ∪ µ(na) | ξ)ψ(u)` (2.21)

where (2.20) follows by integrating over γ
(na)
h and using (2.18), and (2.21) by applying the

definition of ψ(u). This verifies (2.19).
Note that (2.19) identifies an unnormalized density for µ(na) with respect to dµ(na).

In our examples, the unnormalized density in (2.21) will be hereditary, that is, p(µ(a) ∪
µ(na) | ξ) > 0 implies p(µ(a) ∪ µ′(na) | ξ) > 0 whenever µ′(na) consists of one more point
than µ(na). Moreover, in our examples, this density is defined on a compact set, and so
we can easily employ the birth-death Metropolis-Hastings algorithm in Geyer and Møller
(1994). Specifically, we use Algorithm 11.3 in Møller and Waagepetersen (2004).

2.6.3 Sampling the hyperparameter

When the density p(µ | ξ) is expressible in close form, a standard Metropolis-Hastings move
can be employed to update ξ from its full conditional. However, when Zξ is intractable, it
is a doubly-intractable problem, since a ratio of unknown normalizing constants appears in
the Hastings ratio. In fact, if p(ξ′; ξ | · · · ) is a proposal density for the Metropolis-Hastings
step for the full conditional of ξ, then the acceptance ratio amounts to

α(ξ′; ξ | · · · ) =
p(ξ′)g(µ | ξ′)p(ξ; ξ′)
p(ξ)g(µ | ξ)p(ξ′; ξ)

Zξ
Zξ′

, (2.22)

which is intractable due to the term Zξ/Zξ′ . To overcome this issue, we can use the
exchange algorithm described in Murray et al. (2006) and inspired by the single auxiliary
variable method proposed by Møller et al. (2006). For further details, see Appendix 2.A.2.
This algorithm requires generating an ancillary variable following the same distribution of
µ given ξ′. To this end, we employ the dominated coupling from the past algorithm in
Kendall and Møller (2000).

In previous literature, the use of the ancillary variable algorithms in Møller et al.
(2006) and Murray et al. (2006) has been limited because of the high computational cost
associated to perfect simulation. In contrast, in our examples perfect simulation is fast.
As an example, approximating the density of a DPP with N = 50 in dimension q = 2, as
done in Bianchini et al. (2020), is around 25 times more expensive than running a perfect
simulation from a Strauss process with parameters and prior for ξ chosen as in Section 2.7.1;
for further comparisons, see Appendix 2.B.2. The perfect simulation step is very fast since
m (the number of components in the mixture model) is typically small (in our examples it
is always less than 10). However, when dealing with applications with a very large number
of clusters, such as topic modeling, where the number of clusters is usually between 50 and
100, cf. Blei et al. (2003), we expect perfect simulation to be potentially a bottleneck and
limit the use of the exchange algorithm. Although not investigated here, in such cases we
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could avoid perfect simulation by replacing the exact exchange algorithm of Murray et al.
(2006) with asymptotically exact algorithms that should offer smaller computational cost;
see for instance Lyne et al. (2015) and Liang et al. (2016).

2.7 Prior elicitation

In this section, we discuss prior elicitation and how to set hyperparameters when the prior
for µ is the Strauss process or the DPP with power exponential spectral density.

2.7.1 Prior elicitation for the Strauss process

Consider the Strauss process prior given by (2.3)-(2.5). In addition to the parameter
ξ which controls the intensity, the process depends on two parameters α ∈ [0, 1] and
δ > 0 which control repulsiveness and the range of interaction, respectively. Initially we
investigated cases where α and δ were random, but then our simulated datasets yielded a
large number of clusters a posteriori. Moreover, when fitting mixtures of Gaussian densities
to data generated from heavy-tailed distributions, as also discussed at the beginning of
Section 2.8, in general better density estimates were obtained when using a larger (i.e.,
larger than the true value) number of components in the mixture model. For this reason,
we obtained a posteriori values of α and δ that induced less repulsive behaviors than
desired. Therefore, we suggest below to fix α and δ via an empirical Bayes procedure, and
let only ξ be random.

We propose to estimate α and δ as follows. Denote by p(r) the kernel density esti-
mate of the empirical distribution of the pairwise distances between observations; in all
the examples, we have obtained such an estimate using the default bandwith selection
procedure in Python’s scipy package. Since δ should be large enough to induce repul-
sion of redundant clusters, but not too large to affect density estimation severely, we
suggest to fix δ as the smallest local minimum point of p(r), that is, δ = minr>0{r :
r is a local minimum for p(r)}. Further, α should be small enough to encourage sepa-
ration between the allocated means. Consider, for example, the case with two clusters
{yi : ci = h′} and {yi : ci = h′′} where 0 < ‖µh′ − µh′′‖ ≤ δ but the distances from µh′
and µh′′ to all the other µh’s are greater than δ. Then, by (2.15), the full conditional of
µh′ has density

p(µh′ | · · · ) ∝ α
∏

i: ci=h′

f(yi |µh′ , γh′).

Now, the point of using a repulsive prior is that if the cardinality of cluster h′, that is #{i :
ci = h′}, is small, the repulsiveness should prevail on the within-cluster likelihood: That is,
regardless of how well the value of parameter µh′ ‘fits’ data in cluster h′, the full conditional
density associated to that value should be small because µh′ is near to the cluster center
µh′′ . A rough estimate of α can be obtained by assuming α = exp(−n∗ log(ks)). Here, n∗

represents the minimum cluster size needed to balance the repulsive behavior induced by
the prior, while ks represents a ‘guess’ of f(· | ·) in a small cluster. In our experiments, we
assumed that clusters with less than 5% of the data should be considered small and thus
we fixed n∗ = n/20. Further, we fixed log(ks) = 1 so that this term did not affect the
definition of α. In addition, preliminary sensitivity analysis on α led us to conclude that
posterior inference is robust.

Finally, we assume that ξ is random. An upper bound for the expected number of points
in µ is ξ|R|, and given an upper bound Mmax on the expected number of components,
we assume the prior for ξ to be uniform over the interval

(
|R|−1,Mmax|R|−1

)
. Since the

number of clusters is smaller than the number of components, Mmax is an upper bound
for both, to be fixed in each application according to prior belief.

20



Chapter 2. MCMC for Repulsive Mixtures

2.7.2 Prior elicitation for the power exponential spectral DPP model

For the DPP defined on Rq by the spectral density χ used in (2.13), existence is ensured
if 0 < α ≤ αmax, where

(αmax)q =
πq/2Γ(q/β + 1)

ξΓ(q/2 + 1)
,

cf. Lavancier et al. (2015). So we let α = s αmax with 0 < s < 1 (as specified below), which
implies existence of the DPP restricted to any compact subset of Rq. Note that the DPP
density given by (2.12)-(2.13) refers to the case R = [−1/2, 1/2]q, and a simple rescaling
is needed in the density expression when we fix R to be the smallest rectangle containing
all the observations, cf. Lavancier et al. (2015).

Recall that ξ is the expected number of points in µ. We let a priori ξ be uniformly
distributed over [1,Mmax], where Mmax is fixed (as in the case of the Strauss process, cf.
Section 2.7.1). As noted in Lavancier et al. (2015), the parameters (s, β) are harder to
interpret via (2.13). In our examples, we fix s = 0.5 and perform sensitivity analysis on
β, concluding that inference is robust.

2.8 Simulation studies

In this section, we compare the reversible jump algorithm in Bianchini et al. (2020) to
our Metropolis-within-Gibbs sampler presented in Section 2.6, and show the advantages of
repulsive mixtures over non-repulsive ones. We refer to our Metropolis-within-Gibbs sam-
pler as the ‘M-w-G sampler’ and the reversible jump algorithm as ‘RJ’. In Appendix 2.B,
we illustrate the advantages of using a Strauss process over a DPP as prior for µ and pro-
vide further simulations when the dimension q or the number of components m increase.
In particular, we conclude that the computational cost of posterior inference under the
DPP grows exponentially with data dimension q, whilst the computational cost associated
to the Strauss process is almost constant as data dimension increases, and that poste-
rior summaries obtained under the DPP and Strauss process are almost identical. This
motivates the use of the Strauss process as a prior for µ.

In this section, we study posterior inference in misspecified settings, i.e., when the
generating process does not coincide with the model used to fit data; for a formal definition
of misspecification, see Kleijn et al. (2006). In misspecified settings, there is a trade-off
between the accuracy of the density and number of clusters estimation recovered by the
mixture model, cf. Guha et al. (2021). This indicates that more accurate density estimates
correspond to overestimated number of clusters and vice-versa. In fact, to recover the
shape of non-Gaussian data, several Gaussian components (with similar values of the
mean parameters) are needed. We expect that the repulsiveness induced by the prior for
µ favours cluster over density estimation.

We consider two simulation scenarios, the first one is as in Miller and Dunson (2019),
where the authors generated iid data y1, . . . , yn using a two-step procedure as follows.
First, a mixture density f0 with m0 components is selected. Second, a random density f̃
is drawn from a Dirichlet process mixture, with base measure given by f0. Specifically,

y1, . . . , yn |P iid∼ f̃(·) =

∫
N (· | θ, 0.252)P (dθ),

P ∼ DP (af0), f0 =

m0∑

h=1

w0hN (µ0h, σ
2
0h),

(2.23)

where DP (af0) denotes the Dirichlet process with total mass parameter a and centering
probability measure induced by f0. We fix a = 500, m0 = 4, w0 = (0.25, 0.25, 0.3, 0.2),
µ0 = (−3.5, 3, 0, 6), and σ0 = (0.8, 0.5, 0.4, 0.5). Following Miller and Dunson (2019), we
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Params. RJ M-w-G sampler
ξ β ESS E[m | data] ESS E[m |data] E[k |data]
4 10 90.63 4.33 8201.41 4.01 4.00
4 2.5 62.46 4.402 3735.80 4.01 4.00
4 25 83.32 4.44 2971.05 4.02 4.00

Table 2.1: Summary of the MCMC simulations for the reversible jump algorithm (RJ) in
Bianchini et al. (2020) and our Metropolis-within-Gibbs sampler (M-w-G sampler). ESS
denotes the effective sample size out of the 10, 000 MCMC samples.

interpret the data generating density f̃ as a perturbation of the ‘true’ density f0, so the
goal is to recover f0 and m0.

The second simulation scenario considers draws from the following mixture of two
components:

y1, . . . yn
iid∼ 0.5 tq(1,µ0,Σ0) + 0.5MSNq(ω, µ1, σ1). (2.24)

Here tq(1,µ0,Σ0) denotes the density of a q-dimensional Student distribution with one de-
gree of freedom, location µ0, and scale matrix Σ0. Furthermore, MSNd(ω, µ1, σ1) denotes
the density of a q-dimensional random vector, where each entry is drawn independently
from a skew normal distribution with mean µ1 + ωσ1

√
2/π, being µ1 the location param-

eter and ω the scale parameter of the skew normal distribution. The dimension q and the
other parameters in (2.24) will be specified later.

For both scenarios, the kernel f(· | ·) in (2.1) In addition to the prior assumptions (a)-
(e) in Section 2.1, we let a priori (w1, . . . , wm) = (s1/t, . . . , sm/t), with s as in Section 2.4,
where each sh follows a gamma distribution with shape and scale equal to one, Finally,
unless otherwise stated, parameters of the Strauss point process or the DPP are chosen as
discussed in Sections 2.7.1-2.7.2. In particular, we fix Mmax = 30.

2.8.1 Monitoring MCMC mixing

In this section, data are given by 500 observations simulated in accordance to (2.23). The
marginal prior for µ is the DPP specified in Section 2.7.2, where in order to identify the
effect of the algorithm on posterior inference, we keep the intensity parameter ξ fixed.
Furthermore, we consider three possible values for the hyperparameters ξ and β in the
DPP prior, cf. Table 2.1. For each choice of hyperparameter values, we ran both MCMC
algorithms (M-w-G sampler and RJ) for 20, 000 iterations, discarding the first 10, 000 as
burn-in and without thinning the chain. In order to compare the results, we consider
the effective sample size (ESS) of the number of components in the mixture (m in our
notation) as well as its autocorrelation.

Table 2.1 reports, for different combination of hyperparameters, the posterior expected
value of m as well as the effective sample sizes for m obtained by the two algorithms.
Since in our M-w-G sampler the number of clusters can be smaller than m, the table also
shows the posterior expected value of k (the number of allocated components/clusters).
Figure 2.1 shows for both algorithms trace plots and autocorrelation plots for m when
ξ = 4 and β = 10 (first row of Table 2.1). Note that both algorithms offer good estimates
of the number of components in the mixture. However, the performance of our M-w-G
sampler is superior to the RJ algorithm in all the settings of hyperparameters we tested:
Our M-w-G sampler generally produces a (much) higher effective sample size and overall
better mixing of the chains.
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Figure 2.1: Trace plots (top) and autocorrelations (bottom) of m when ξ = 4 and β = 10.
Left: RJ. Right: M-w-G sampler.

2.8.2 Comparison with DPM and FM

We focus on the differences between repulsive and non-repulsive mixtures using two further
simulations. For the class of non-repulsive mixtures, we consider (i) the finite mixture
models (FM) of Gaussian densities in Argiento and De Iorio (2022) and Miller and Harrison
(2018), and (ii) the Dirichlet Process Mixture (DPM) of Gaussian densities.

Both FM and DPM require the choice of a base measure P0 that we fix as the normal-
inverse-Wishart distribution (or the normal-inverse-gamma distribution in the univariate
case). Hyperparameters are fixed according to Fraley and Raftery (2007) to provide a
weakly informative prior. Moreover, the concentration parameter in the Dirichlet process
is fixed to one, and for the FM model we consider as prior for m the shifted Poisson
distribution (with support {1, 2, . . .}) so that the prior mean of the components is equal
to four if the data generating process is (2.23) and to two if the data generating process
is (2.24). Finally, for our model, we assume the Strauss process prior for µ.

Posterior simulation from the FM model was carried out using the R package AntMAN1,
while for the DPM we used the R package BNPMix (Corradin et al., 2020). For all three
models, we ran the MCMC algorithm for 100, 000 iterations, discarding the first 50, 000
as a burn-in and keeping one of every ten iterations, so that in each case the final sample
size is 5, 000.

In the first simulation study, data are given by 400 simulated observations from (2.23).
Figure 2.2 shows the true data generating density, together with Bayesian mixture density
estimates obtained by our model and the DPM (left), as well as the distribution of the
number of clusters under the three models (right). Here, by Bayesian density estimate we
always mean the posterior expectation of the mixture density evaluated on a fixed grid
of points. As expected, under this misspecified setting, the use of non-repulsive mixture
models overestimate the number of clusters. For instance, to recover the shape of the

1available at https://github.com/bbodin/AntMAN
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Figure 2.2: Posterior inference based on data simulated from (2.23). To the left, Bayesian
mixture density estimates under the Strauss process and the DPM priors for µ, together
with the true mixture density which has four components. To the right, posterior distri-
butions of the number of allocated components under the Strauss process, FM, and DPM
priors for µ.
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Figure 2.3: Posterior inference based on data simulated from (2.24). To the left, when
q = 1, Bayesian mixture density estimates under the Strauss process and the DPM priors
for µ, together with the true mixture density which has two components. To the right,
when q = 1, 5, posterior distributions of the number of allocated components under the
Strauss process, FM, and DPM priors for µ.

leftmost bell of the data generating density in Figure 2.2, several Gaussian components
(with close cluster centers) are needed. Our model instead, due to the repulsiveness
induced by the prior on µ, ‘correctly’ identifies four clusters.

For the second simulation study, we simulated 500 observations from (2.24) in each of
the cases q = 1 and q = 5, where we fixed µ0 = (−5, . . . ,−5) , Σ0 = Iq, ω = 2, µ1 = 5,
and σ1 = 1. Figure 2.3 reports density estimates when q = 1 (left) and the posterior
distribution of the number of clusters for the three models (right) when q = 1, 5. Note
that, among the three models, our is the one that gives highest posterior probability to
the true value k = 2. When q = 5, DPM assigns the highest probability to three clusters.
Appendix 2.B.3 contains a comparison of the cluster estimates under the three models
considered when q = 1, and we conclude that the repulsive mixture model is the one that
better recovers the true clustering of the data in this example.

2.9 Teenager problematic behavior dataset

In this section, we apply our model, with the Strauss process prior for µ, to a dataset
consisting of n = 6504 observations coming from the Wave 1 data of the National Longitu-
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dinal Study of Adolescent to Adult Health, which is available at http://www.icpsr.umich.
edu/icpsrweb/ICPSR/studies/21600. The data were also considered in Collins and Lanza
(2009) and Li et al. (2018).

The dataset corresponds to six survey items pertaining problematic behaviors in teenagers,
so that for the i’th teenager, yi = (yi1, . . . , yi6) ∈ {0, 1}6 is a binary vector, where yij = 1
means a positive answer to entry j. The six entries correspond to (i) ‘lied to parents’,
(ii) ‘loud/rowdy/unruly in a public place’, (iii) ‘damaged property’, (iv) ‘stolen from a
store’, (v) ‘stolen something worth less than 50 dollars’, and (vi) ‘taken part in a group
fight’.

We let the kernel in (2.1) be given by

f(y |µh) =

6∏

j=1

µ
yj
hj (1− µhj)1−yj , y = (y1, . . . , y6) ∈ {0, 1}6, (2.25)

so that the six entries in yi = (yi1, . . . , yi6) are conditionally independent binary random
variables with success probability vector µh = (µh1, . . . , µh6). Note that there is no pa-
rameter γ, and the probability vector (µ1, . . . , µm) belongs to R = [0, 1]6. The mixture
model with kernel (2.25) is known as a latent class model.

As the prior for µ, we assume the Strauss process on R with parameters δ = 0.4,
α = e−n

∗
(with n∗ = 50), and a uniform prior on ξ with Mmax = 30, cf. Section 2.7.1. In

this context, we may consider the µh’s as cluster centres/locations, where repulsion among
the µh’s is meant to favor identification of the clusters.

We ran our posterior simulation algorithm for 20, 000 iterations, after discarding other
20, 000 iterations as burn-in and saving one of every ten iterations. So the final sample is
of size M = 2, 000, and we denote µjh the value of µh at iteration j = 1, . . . ,M . Below we
summarize our findings for the cluster centres and compare to what was obtained in Li
et al. (2018), where the authors used a finite mixture model with the same kernel (2.25)
as ours, but fixed the number of clusters to be equal to four.

We obtained P (k = 5 | data) ≈ 1. As usually done in Bayesian mixture modelling, we
computed a point estimate of the latent partition of the data (as given by the unknown
ci’s) by selecting, among the partitions visited during the MCMC iterations, the minimum
point of the Binder loss function with equal misclassification cost, cf. Binder (1978). Then,

we evaluated the weights in each cluster by ŵh = #Ĉh/n, h = 1, . . . , 5, where Ĉh is the
estimated index set of data in cluster h. Furthermore, as in Molitor et al. (2010), we
estimated the cluster centres by

µ̂
(a)
h =

1

M

M∑

j=1

1

#Ĉh

∑

i∈Ĉh

µjci , h = 1, . . . , 5.

Figure 2.4 shows these estimates, together with the empirical frequencies in each cluster
as given by

µemp
h =

1

#Ĉh

∑

i∈Ĉh

yi, h = 1, . . . , 5.

Note that in Figure 2.4, the estimated clusters are labeled (1), . . . , (5) and ordered by the
estimated weights.

The following interpretation of the clusters is consistent with the one given in Li et al.
(2018): Figure 2.4 shows that cluster (1) accounts for 59% of the data and groups teenagers
with few problematic behaviours, since all estimated and empirical cluster centers in the
leftmost panel in Figure 2.4 are small. Further, cluster (2) groups 18% of the subjects and
describes minor problematic behaviours (relating to the first and second survey items).
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ŵ=0.10

1 2 3 4 5 6

(4)

0.0

0.2

0.4

0.6

0.8

1.0
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ŵ=0.03

Figure 2.4: Estimated cluster centres µ̂
(a)
h (in blue) and empirical estimates µemp

h (in
orange) when the clusters are sorted according to cluster sizes as given by the estimated
weights ŵh, h = 1, . . . , 5 (specified at the top of each plot). The clusters are also labelled
as (1), . . . , (5) (specified at the bottom of each plot).
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Figure 2.5: Pairwise distances between the estimated µ̂
(a)
h , h = 1, . . . , 5.

Finally, clusters (3), (4), and (5) represent smaller groups of teenagers who are truly
problematic, as their tendency to commit small crimes (cluster 4) or fights (clusters 3 and
5) is very high.

In Figure 2.4, there are discrepancies between the empirical frequencies and our esti-
mates, see for instance the estimates of µh1 and µh2 in cluster (2) and of µh3 and µh6 in
cluster (5). These discrepancies can be explained by the use of the repulsive prior, which
encourages separation among clusters.

Moreover, Figure 2.5 shows the pairwise Euclidean distances among the estimated µ̂
(a)
h ,

h = 1, . . . , 5. Here, the smallest distance is around 0.41, which is close to the value of δ

(which we fixed to be equal to 0.4). Note that µ̂
(a)
5 is very close to both µ̂

(a)
2 and µ̂

(a)
3 ; and

µ̂
(a)
1 and µ̂

(a)
2 are close as well.

Finally, we performed posterior inference with δ = 0.5 and n∗ = 100 to induce more
separation. In this case, our inference gave four estimated clusters, in agreement with Li

et al. (2018). However, compared to Figure 2.4, the estimated cluster centres µ̂
(a)
h were

then further more different from the empirical frequencies µemp
h . As noticed in Section 2.8,

this trade-off between density versus cluster estimation accuracy is not surprising.
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2.10 Discussion

In this work we have contributed to the fast-growing literature on repulsive mixture mod-
els. A main contribution is the introduction of a unifying framework which encompasses
previously proposed repulsive mixtures as special cases. In our setting, a repulsive point
process is assumed as prior for ‘cluster centres’ of the parametric kernel densities, thus
making it more likely having a small number of well separated clusters in the mixture
model. In particular, we have showed the usefulness of the Strauss process prior, which is
a simple example of a repulsive pairwise interaction point process.

By studying posterior characterization of the repulsive point process, we were able to de-
rive a Metropolis-within-Gibbs sampler that avoids the arduous choice of problem-specific
reversible jump proposals (Xu et al., 2016; Bianchini et al., 2020) and the computationally
expensive evaluation of infinite summations and integrals over the parameters space (Xie
and Xu, 2019) as seen in previous work. When deriving the posterior distribution of the
repulsive point process prior, we extended the approach in Argiento and De Iorio (2022)
but framing our model within the class of normalized point processes mixture models.

Our MCMC algorithm can also handle cases when the point process density involves an
intractable normalizing constant, which has not been considered in the previous literature.
In particular, we used an ancillary variable method which eliminates the problem of having
a ratio of normalizing constants in the Hastings ratio when making posterior simulations
for full conditional of the hyperparameter. Since our mixture model is parsimonious (i.e.,
the number of components is typically small), the ancillary variable method relying on a
perfect simulation algorithm is fast.

We tested our approach by extensive simulation studies, comparing it to the reversible
jump approach of Xu et al. (2016) and Bianchini et al. (2020), where we concluded that
our Metropolis-within-Gibbs (M-w-G) sampler has better mixing. Our M-w-G sampler
scales well with data dimension and this feature was particularly evident when we as-
sumed the Strauss process as a prior for the cluster centers. Furthermore, since repulsive
mixture models encourage a small number of well separated components, thus controlling
the computational cost, our algorithm was shown to scale well with sample size too.

Finally, we illustrated the advantages of repulsive mixtures against the popular Dirichlet
process mixtures and finite mixtures. We concluded that repulsive mixtures are especially
useful when the model is misspecified.

Several further extensions are possible. Beyond mixture models for cluster detection,
feature allocation problems and regression settings could be considered. Further, adapting
our approach to hierarchical and nested settings, where multiple groups of data are present,
could be of interest. Finally, extensions of our model to handle extremely high dimension
data are also of interest, for instance in the field of genomics, where a repulsive prior would
help in deriving interpretable results characterized by few and well separated clusters.
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Appendix

2.A Further details on the Metropolis-within-Gibbs sampler used
for posterior simulation

This section provides additional details for the Metropolis-within-Gibbs (M-w-G) sampler
in Section 2.6.

2.A.1 The choice of the proposal distribution

For most choices of the point process density p(µ | ξ) and the mixture kernel f(· | ·), the

update of the allocated means µ
(a)
h requires sampling from an unnormalized distribution,

which we do via a Metropolis-Hastings step. As proposal distribution we use a mixture of

two normal distributions with means equal to the current value of µ
(a)
h but with different

variances so that

p(µ′;µ
(a)
h ) = κN (µ′ |µ(a)

h , σ2I) + (1− κ)N (µ′ |µ(a)
h , σ2I), (2.26)

where κ = 0.9, σ = 0.1, and σ = 1.5 when q = 1, 2 and σ = 1.5q when q > 2. The intuition
that led us to consider such a proposal is as follows, where for ease of notation we drop the

superscript (a) when considering a current value of µ
(a)
h , denoted µ1, and another cluster

centre µ2. Suppose that µ1 and µ2 are close and far from the remaining points in µ. If the
number of observations allocated to µ1 is small, we want a proposal distribution p(µ′1;µ1)
that gives significant mass to values that are far from µ2, so that, given the repulsiveness
of the point process, this proposal is likely to be accepted. This is the case when we sample
from the second component of (2.26) (in fact, if µ′1 is far from µ1, with sufficiently large
probability it is far from µ2 as well). On the other hand, if the number of observations
allocated to µ1 is large, we want a proposal that gives significant mass to a neighborhood
of of the current value of µ1, to get a precise fit of the data. This is what happens if we
sample from the first component of (2.26).

For the second component in (2.26), instead of fixing σ as we do, an alternative is
to exploit the properties of g(· | ξ) as follows. Suppose we condition on sampling from
N (µ′1 |µ1, σ

2I) in (2.26). Then ‖µ′1 − µ1‖2/σ2 ∼ χ2(q), the chi-squared distribution with
q degrees of freedom. Considering the Strauss density, a possibility is to fix σ to give
sufficiently high mass to values of µ′1 that are outside the range of interaction of µ1,
i.e., such that P (‖µ′1 − µ1‖2 > δ) > p0 for some fixed p0, with the intuition that this
gives a positive probability to µ′1 being distant at least δ also from µ2. Considering
the DPP density instead, the same argument holds but replacing δ with the range of
correlation r0, cf. Lavancier et al. (2015). That is, (2.12) implies that C is of the form
C(µ1, µ2) = C0(r) with r = ‖µ1−µ2‖, and defining the corresponding correlation function
R(r) = C0(r)/C0(0), r0 is chosen such that R(r) is effectively zero.

2.A.2 The exchange algorithm and perfect simulation

With the same notation as Section 2.6.3, the exchange algorithm (Murray et al., 2006)
consists of the following steps:
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Figure 2.B.1: Posterior distribution for the number of clusters for the univariate dataset in
Figure 2.B.1, under the PY prior and DPM prior with random concentration parameter.

1. Propose ξ′ ∼ p(ξ′; ξ).

2. Generate an auxiliary variable µaux ∼ g(µ | ξ′)/Zξ′ ∝ g(µ | ξ′).

3. Accept ξ′ with probability min{1, α∗} where

α∗ ≡ α∗(ξ; ξ′ | · · · ) =
p(ξ′)g(µ | ξ′)p(ξ; ξ′)
p(ξ)g(µ | ξ)p(ξ′; ξ) ×

g(µaux | ξ)
g(µaux | ξ′) .

Comparing α∗ to the acceptance ratio in (2.22), note that the ratio Zξ/Zξ′ has been
replaced by a ratio of unnormalized densities, evaluated in the auxiliary variable µaux.
The main difficulty is sampling µaux, which must follow the distribution of µ given ξ′.
To this end, we employ the stochastic dominated coupling from the past algorithm in
Kendall and Møller (2000), which extends the coupling from the past algorithm in Propp
and Wilson (1996) to uncountable partially ordered spaces. Specifically, we employed in
our code Algorithm 11.7 in Møller and Waagepetersen (2004).

2.B Additional simulation studies

In addition to the simulation studies in Section 2.8, below we discuss different aspects of
the M-w-G sampler and posterior inference.

2.B.1 Other competitors for Section 2.8.2

We consider here two further competitors for the simulation study in Section 2.8.2. Specifi-
cally, a Pitman-Yor process mixture with parameters (1.0, 0.1) and a Dirichlet process mix-
ture where the concentration parameter is random and, a priori, Gamma(2, 2) distributed.
Posterior inference for the number of clusters is reported in Figure 2.B.1.

2.B.2 Comparison of run-times and posterior inference when using DPP
and Strauss process priors

For q = 1, 2, . . . , 5, we simulated n = 200 observations from (2.24) with µ0 = (−5, . . . ,−5),
Σ0 = Iq, ω = 1, µ1 = 5, and σ1 = 1. Then we applied our M-w-G sampler when the
marginal prior for µ is either the DPP or the Strauss process, with hyperparameters as in
Section 2.7. Here, we considered two truncation levels for the approximation of the DPP

29



Chapter 2. MCMC for Repulsive Mixtures

1 2 3 4 5
2

0

2

4

6

8

10

ex
ec

ut
io

n 
tim

es
 (s

)

Strauss
DPP, N:5
DPP, N:10

Figure 2.B.2: Per-iteration run-times as a function of data dimension q in case of DPP
(with truncation levels N = 5 or 10) and Strauss process priors for µ.

density in (2.12), namely N = 5 and N = 10 (for comparison, Bianchini et al. (2020)
suggested N = 50 when q = 1).

Figure 2.B.2 shows the per-iteration run-times of the M-w-G sampler as a function of
the dimension q under either the DPP or Strauss process prior for µ. For each value of N ,
the computational cost associated to the DPP grows exponentially fast as the dimension
q increases, unlike in the case of the Strauss process. In fact, the unnormalized density
of the Strauss process is almost immediate to compute, and since the Strauss prior is
quite informative on the number of components, cf. Section 2.7.1, the perfect simulation
algorithm (see Section 2.6.3) does not impact significantly on the computational cost.
Although not appreciable from Figure 2.B.2, the computational cost of our algorithm
increases significantly with data dimension q also when we consider the Strauss process;
in this case, the per-iteration computational cost goes from 0.0016 sec when q = 1 to 0.07
sec when q = 5, i.e., it increases by a factor of roughly 50.

As a further comparison, we simulated 500 univariate observations from model (2.23)
and made again posterior computations under the Strauss process or the DPP prior for µ,
where for the DPP density we fixed β = 10 (corresponding to the highest ESS in Table 2.1).
For both cases of prior models, we ran the M-w-G sampler for 100, 000 iterations discarding
the first 50, 000 as a burn-in and keeping one every ten iterations, for a final sample size
of 5, 000. Figure 2.B.3 shows the true data generating density, together with Bayesian
mixture density estimates and posterior distributions of the number of clusters under the
two point process priors. Note that the two density estimates, as well as the two posterior
distributions of the number of clusters, overlap almost perfectly. The Strauss process
seems a good choice to model the prior of µ since it, for a much smaller computational
cost, provides same posterior summaries as the DPP.

2.B.3 Accuracy of cluster estimates

Figure 2.B.4 shows the posterior similarity matrices and the Adjusted Rand Index (ARI)
scores for the univariate mixture of t and skew-normal distribution discussed in Sec-
tion 2.8.2. The ARI is computed from the cluster labels c at each iteration of the MCMC
chain as a measure of similarity between the estimated clusters and the true cluster. It is
bounded by 1 and the larger value it assumes, the more similar is the estimated cluster to
the true one. We report the posterior mean of the ARI ± one standard deviation on top of
each posterior similarity matrix in Figure 2.B.4. The difference in the posterior similarity
matrices is not so pronounced, but our repulsive mixture model gives the best ARI.
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Figure 2.B.3: Bayesian mixture density estimates (left) and posterior distributions of the
number of clusters (right) under the Strauss process (blue lines) and DPP (orange lines)
priors for µ, together with the true mixture density which has four components. The
orange lines overlap almost perfectly with the blue lines so that they are hardly visible.
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Figure 2.B.4: Posterior similarity matrices and ARI scores under the three models for the
mixture of the univariate t and skew-normal distributions discussed in Section 2.8.2. The
colors are on a logit scale to highlight differences around one.

2.B.4 The effect of the number of clusters

We consider how the number of clusters affects the performance of our M-w-G sampler.
When µ is distributed as the Strauss process, at every step of the MCMC algorithm a
perfect simulation of µ is required. The perfect simulation algorithm we use has a finite
but random computational cost and, as argued in Section 2.6.3, it might become infeasible
for a large number of clusters. On the other hand, when µ is a DPP, the approximation
of its density requires computing the determinant of the matrix C ′ in (2.10), which scales
cubically with m. Furthermore, for the specific DPP considered in (2.12) computing C ′

requires the evaluation of O(N qm2) inner products.
We generated n = 500 observations from a mixture of m = 5, 9, 17, 25 bivariate Gaus-

sian densities, with locations given in Figure 2.B.5 (left), equal covariance matrices given
by 0.5I2, and with equal mixture weights. We compared the run-times (in seconds) re-
quired to complete 200 iterations with our M-w-G sampler when µ is distributed either
as the Strauss or the determinantal point process. Prior hyperparameters are fixed as in
Section 2.7 (with Mmax = 5m) and Section 2.8. For the DPP, we considered two trun-
cation levels of the spectral density, N = 10, 50. For each choice of m we generated 50
independent datasets and for the 200 M-w-G sampler iterations we used fixed and different
independent random seeds.

In Figure 2.B.5 (right) for each m the run-times over the 50 independent datasets are
denoted by dots, the median times by diamonds, and the median times are connected by
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Figure 2.B.5: Locations of the true data generating process (left) and run-time comparison
(right). The plot of the locations should be intended as follows: for m = 5 only the points
labelled accordingly are considered, for m = 9 the points labeled as m = 5 and m = 9
are considered and so on. The run-times (in seconds) over 50 independently simulated
datasets for each value of m are denoted by dots, we also report the median times as
diamonds with a dashed line connecting them.

a dashed line. We see that the DPP with N = 50 is the most computationally demanding
model for all values of m. When m = 5, 9, the Strauss process is significantly faster (up to
10 times faster) than the DPP with N = 10; instead, when m = 17, they have comparable
computational costs. When m = 25, the perfect simulation algorithm starts to become
more demanding; for example, the computational cost for the Strauss process is almost
twice the one for the DPP with N = 10.

2.B.5 The effect of the data dimension

Below we compare our repulsive mixture model, the finite mixture model (FM) in Argiento
and De Iorio (2022), and the Dirichlet process mixture model (DPM). See Section 2.8.2
for further details on how posterior inference is performed under the different models. In
particular, we fix the hyper-parameters according to Sections 2.7 and 2.8.

f( Further, the curse of dimensionality, common to all clustering problems (Kriegel et al.,
2009), implies a poor mixing of the algorithms. In addition to that, when considering a
repulsive mixture model, things might be further complicated by either the need of perfect
simulation to update possible hyperparameters ξ (when µ follows the Strauss process)
or the computation of the spectral density (when µ follows the DPP given by (2.12))
which becomes prohibitive even for moderate values of q, as shown in Figure 2.B.2. f(
q = 2, 5, 10, 15, 20, 25, 30 increases. Moreover, we simulated n = 200 observations from

yi
iid∼ 0.5N (−5/

√
q1q, Iq) + 0.5N (5/

√
q1q, Iq)

where 1q denotes the vector in Rq with elements all equal to one.
Table 2.B.1 reports posterior summaries as q increases for the three models. MCMC

chains were run for 11, 000 iterations discarding the first 10, 000 as burn-in, so that the
effective sample size must be referred to a total number of MCMC iterations equal to
1, 000. It is clear from Table 2.B.1 that as q increases, the mixing of the chains becomes
progressively worse for all the models. In particular, the table shows the effective sample
size (ESS) for the three cases: For our repulsive mixture model, the number of clusters k
is constant for all the MCMC iterations when q ≥ 15, and so ESS is zero; for FM, the ESS
is zero when q ≥ 10; and for DPM the ESS is zero for all values of q. The difference in the
ARI scores is simply explained by the different strategy of initialization of the different
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q = 5 q = 10 q = 15 q = 20 q = 25 q = 30

Strauss
ARI 1.0 1.0 1.0 1.0 1.0 1.0
ESS 240.3 250.1 0.0 0.0 0.0 0.0

E[k | data] 2.01 2.005 2.0 2.0 2.0 2.0

FM
ARI 1.0 1.0 1.0 1.0 1.0 1.0
ESS 7.4 0.0 0.0 0.0 0.0 0.0

E[k | data] 2.01 2.0 2.0 2.0 2.0 2.0

DPM
ARI 1.0 0.0 0.0 0.0 0.0 0.0
ESS 0.0 0.0 0.0 0.0 0.0 0.0

E[k | data] 2.00 1.0 1.0 1.0 1.0 1.0

Table 2.B.1: Adjusted Rand Index (ARI), effective sample size for the chain of the number
of clusters k and posterior mean of k under the repulsive mixture model (Strauss), the non
repulsive finite mixture model (FM) and the Dirichlet process mixture model (DPM).

software we ran: In our code for the M-w-G sampler, observations are initially randomly
subdivided into 10 clusters; in the package AntMAN, which we used to fit the FM model,
one cluster per observation is created; in the package BNPMix, used to fit the DPM model,
all observations are initially allocated to one single cluster. In the latter case, the proposal
of a new cluster is never accepted. Using our software or the package AntMAN instead, after
a few MCMC iterations the observations are (correctly) partitioned into k = 2 clusters
and no additional cluster is ever created.

Considering the effective sample size of k, Table 2.B.1 shows that repulsive mixture
models might offer an advantage over non-repulsive mixture models when q ≤ 10.

Perfect simulation is not a bottleneck here, as the number of points in the Strauss
process is small. However, in one of several independent simulations, an unlucky initial-
ization led to a large value of m in the first few iterations. As a consequence, the perfect
simulation algorithm took longer to coalesce and indeed caused an out-of-memory problem
on a 32 GB laptop.

2.C Removing the rectangular support assumption

Often we have assumed that the points of µ have support given by a rectangular set
R: For the theory in Sections 2.3–2.6, we made that assumption only for specificity and
simplicity; in Section 2.8, we considered Gaussian mixture models and determined the
rectangle R from the observations; while in Section 2.9, we considered the multivariate
Bernoulli kernel and R = [0, 1]q. Apart from the case of a DPP prior, it is often easy to
modify everything without assuming R is rectangular and even compactness of R may be
not be needed, In fact, the birth-death Metropolis-Hastings algorithm, which we always
use to simulate the non-allocated process µ(na), can be specified in a very general setting,
see Geyer and Møller (1994). On the other hand, for a DPP prior, compactness of R is
needed when specifying a DPP density with respect to dµ, and R needs to be a rectangle
in order to use the spectral approach discussed in Lavancier et al. (2015). Recently, Poinas
and Lavancier (2021) proposed a novel approximation of a general DPP density that does
not require R to be rectangular (but still requires R is bounded).
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3. Marked Point Processes for Bayesian Nonparametric
Modelling

In this chapter, we study the distributional properties of the repulsive mixture model
introduced in Chapter 2. To do so, we consider a simpler model, where we assume that we
observe directly the latent process which generates the observation-specific parameters of
the mixture. The study of this simpler model is carried out by means of Palm calculus and,
in particular, we establish in this chapter several a priori properties of the model as well
as a complete characterization of the marginal, posterior and predictive distributions. We
then show that these quantities can be used either for prior elicitation, or as building
blocks of two novel MCMC algorithms for posterior simulation. In this chapter, the
treatment is more general than in Chapter 2. Specifically, we do not require that the
process is absolutely continuous with respect to the unit-rate Poisson point process, which
in turn allows us to extend our methodology to mixture models where the atoms exhibit a
random clustering structure. We highlight the potential of this new class of mixtures via
a simulation study.

3.1 Introduction

Random measures provide one of the main building blocks of Bayesian nonparametric
inference, where they are used to directly model the observational process, e.g., in species
sampling or feature sampling problems, or a latent unobserved process, e.g., in mixture
models. They have also been adopted ass prior distribution for the hazard function in
survival models.

In this chapter, we restrict our attention to random measures whose total mass is
almost surely one. That is, we focus on random probability measures (RPMs). From
the seminal work of Ferguson (Ferguson, 1973), where the celebrated Dirichlet process is
introduced, a variety of approaches for the construction of RPMs have been introduced. A
rather fruitful approach is based on the normalization of completely random measures with
infinite activity, i.e., whose number of support points is countably infinite. To this end,
recall that in Ferguson (1973) it is shown how the Dirichlet process can be constructed via
the normalization of a Gamma random measure. This idea, systematically introduced in
Regazzini et al. (2003) for measures on R with the name of normalized random measures
with independent increments (NRMI), has been extended later to more general spaces.
See, e.g., James et al. (2009) and the references therein. More recently, Argiento and De
Iorio (2022) have exploited the same ideas to construct random probability measures with
a random number of support points.

Starting from Petralia et al. (2012), several works have questioned the use of normalized
completely random measures as prior distributions in mixture models, and, in particular,
showing how assuming the atoms of the random measures to be independent (and typi-
cally identically distributed) leads to poor performance in model-based clustering. This
behavior is not surprising. In fact, the consistency of mixture models for density estima-
tion under very general data generating processes has been established, e.g., in Ghosal
et al. (1999); Lijoi et al. (2005) for infinite mixture models and in Guha et al. (2021) for
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finite mixture models. Consider now the (very common) setting where one tries to fit a
mixture of Gaussian densities to a dataset that has been generated from a mixture of k0

non-Gaussian densities such as Student’s t densities. Then, the posterior consistency for
density estimation means that the mixture model will need k � k0 Gaussian components
to suitably approximate the true data generating density. Therefore, the posterior will
find more than k clusters when the sample size is large enough.

In Beraha et al. (2022); Bianchini et al. (2020); Quinlan et al. (2020); Xie and Xu
(2019); Xu et al. (2016), the authors assume a repulsive point process as joint prior for the
support points of the random probability measures and their cardinality. In particular,
in Beraha et al. (2022) it is empirically shown how such “repulsive mixtures” are more
robust to misspecification compared to traditional non-repulsive mixtures.

3.1.1 Overview and Outline

Despite the recent popularity of repulsive mixtures, the statistical and probabilistic prop-
erties of random measures based on point processes other than the Poisson one have not
been investigated. In this chapter, we propose a general construction for almost surely dis-
crete random probability measures based on the normalization of marked point processes.
Through the law of the point process, it is possible to encourage different behaviors among
the support points of the random probability measure, such as independence (when the
point process is Poisson or the class of IFPPs in Argiento and De Iorio (2022)), separa-
tion (i.e., the support points are well separated, when the point process is repulsive, such
as Gibbs point processes or determinantal point processes), and also random aggregation
(i.e., the support points are clustered together, when the point process is of Cox type).
Our framework encompasses the priors previously proposed for repulsive mixture models,
the models in Argiento and De Iorio (2022), and also the mixture of mixtures prior in
Malsiner-Walli et al. (2017).

In this chapter, we establish distributional results for random probability measures
built by normalizing marked point processes with general laws. These results are the
counterpart of well-known results for NRMIs. Although our construction is general, we
specialize our results to the case of Poisson, Gibbs, and Determinantal point processes
throughout the discussion. The rest of the chapter is structured as follows. Section
3.2 introduces the statistical model and the general construction for normalized random
measures based on marked point processes, and gives preliminaries on Palm calculus, a
basic tool needed for all our proofs. In Section 3.3 we analyze the finite-dimensional
distributions of our random measures. The posterior distribution of the random measure,
the marginal distribution of the data, the distribution of the distinct values in the sample,
and the predictive distribution of a new observation are discussed in Section 3.4. In Section
3.5 we show how to construct Bayesian mixture models based on our class of random
probability measures, which act as the prior for the mixing measure of the mixture model.
We discuss two computational algorithms to approximate the posterior distribution by
simulation. Section 3.6 focuses on the class of shot-noise Cox process (Møller, 2003) and
their use in mixture models. This class of point processes exhibits a random aggregation
structure, and we suggest that this might be useful in the context of mixture models to
perform clustering when the model is misspecified. The Appendix contains the proofs of
our results and detailed calculations for all of the examples in the main text.

3.2 Model definition and preliminaries

Let us consider a sequence of random variables (Yi)i≥1 defined on the probability space
(Ω,A,P) and taking values in the Polish space (X,X ), endowed with its Borel σ-algebra.
We also indicate by Y := (Y1, . . . , Yn) the observed sample of size n, with n ≥ 1. Inferential
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conclusions are typically based on a kind of symmetry or analogy across data, for this
reason we suppose that the sequence (Yi)i≥1 is exchangeable. Due to the de Finetti’s
representation theorem (de Finetti, 1937), exchangeability is equivalent to assuming that

P

(
n⋂

i=1

{Yi ∈ Bi}
)

=

∫

P(X)

n∏

i=1

p(Bi)Q(dp) (3.1)

for arbitrary Borel sets B1, . . . , Bn and n ≥ 1. In (3.1), P(X) denotes the space of proba-
bility measures over X, which is supposed to be endowed with its σ-algebra P(X). Finally,
Q is a distribution over (P(X),P(X)), that is, the law of a random probability measure p̃.
We may equivalently write (3.1) in a hierarchical fashion as follows:

Yi | p̃ iid∼ p̃ i ≥ 1

p̃ ∼ Q.
(3.2)

The de Finetti’s theorem is important not only from a mathematical standpoint but also
from a philosophical point of view, since it justifies the Bayesian approach to statistical
inference. Indeed, Q in (3.1) plays the role of a prior distribution in the Bayesian setting.
The choice of the prior Q has been the focus of several papers, starting from the seminal
contribution of Ferguson (1973), who introduced the Dirichlet process (DP). Various gen-
eralizations of the DP have been proposed. A prominent class is the one of normalized
random measures with independent increments (NRMIs, Regazzini et al., 2003), of which
the DP is a special case. To recall the definition of NRMIs, consider the positive jumps of
a subordinator (Sj)j≥1 with Lévy intensity ν(s)ds, and mark each jump with a random
variable Xi, defined on the space (X,X ). The Xi’s are here assumed to be i.i.d. from
a diffuse distribution G0. Hence, Ñ :=

∑
j≥1 δ(Sj ,Xj) is Poisson random measure with

intensity ν(s)dsG0(dx) so that the measure

µ̃(B) :=

∫

R+×A
sÑ(ds dx), B ∈ X

is completely random according to the definition of Kingman (1967). Then, p̃ := µ̃/µ̃(X)
is a NRMI, provided that P(0 < µ(X) < +∞) = 1. See (Regazzini et al., 2003) for details.

Despite its generality, the class of NRMIs is limited to random measures based on the
Poisson process. This may represent a limitation in some settings, as shown for instance
in Cai et al. (2021) in the context of clustering in misspecified Bayesian mixture models.

In this chapter, we consider model (3.2) and propose a general construction for the
random probability measure p̃, termed normalized random measure (nRM) that is based
on general point processes other than the Poisson case. To construct a nRM, let Φ be
a point process with points in X having distribution PΦ. That is, Φ =

∑
j≥1 δXj is a

random counting measure over (X,X ). Throughout the chapter, we will assume that Φ is
simple, that is to say Xi 6= Xj for i 6= j almost surely. We refer to Daley and Vere-Jones
(2003, 2008) for a thorough exposition of point processes and random measures. Then, we
consider the marked point process Ψ on X×R+, Ψ =

∑
j δ(Xj ,Sj), constructed by assigning

to the points in Φ independent and identically distributed (i.i.d.) marks with law H on
the postive real line. Now define a random measure µ̃ from Ψ as follows

µ̃(B) =

∫

B×R+

sΨ(dx ds) =
∑

j≥1

Sj1B(Xj), B ∈ X . (3.3)

Note that, when Φ is a Poisson point process, µ̃ is completely random, i.e., for pairwise
disjoint B1, . . . , Bn ∈ X , the random variables µ̃(B1), . . . µ̃(Bn) are mutually independent
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for any n ≥ 1. In order to construct a random probability measure from µ̃ in (3.3) we
have to ensure P(0 < µ̃(X) < +∞) = 1. On the one hand, in order to have µ̃(X) < +∞, it
suffices to assume that Φ is a finite point process, which we will always do in the following,
so that Φ(X) < +∞ almost surely. See, e.g., Chapter 5 of Daley and Vere-Jones (2003)
for an account of finite point processes. On the other hand, to ensure µ̃(X) > 0, we can
condition on Φ(X) ≥ 1. From a statistical point of view, we do not believe that it is essential
to require µ̃(X) > 0. Indeed, the law of µ̃ acts as a prior distribution in model (3.2) and we
could set p̃ ≡ 0 if µ̃(X) = 0, with the understanding that this improper likelihood means
that the model does not generate any observations. As shown in Theorem 3.1 below,
we have P(µ̃(X) = 0 |Y1, . . . , Yn) = 0 almost surely, so that the posterior distribution is
always well behaved in this sense. Thus, µ̃ can be employed to define a random probability
measure by normalization p̃ := µ̃/µ̃(X), in particular we will write p̃ ∼ nRM(PΦ;H) to
denote the distribution of the normalized random measure µ̃, and µ̃ ∼ RM(PΦ;H) for the
distribution of the associated non-normalized random measure.

Here we discuss some important examples of point processes Φ, which will be widely
used in the sequel to showcase the applicability of our results. In particular, besides
Poisson processes, we also focus on Gibbs and Determinantal point processes.

Example 3.1 (Gibbs point processes). Following Baccelli et al. (2020), the probability
distribution of a Gibbs-type point process has a density with respect to the law of a Poisson
point process. More formally, let Ñ be a Poisson process on (X,X ) with law PN , and let
f : X→ R+ be a measurable function with the additional requirement E[f(Ñ)] = 1. Then
we say that a point process Φ with distribution

PΦ(dν) = fΦ(ν)PN (dν)

is a Gibbs point process with density f with respect to Ñ . In the following, we will always
consider densities with respect to the unit-rate Poisson point process on a compact subset
R, that is Ñ has intensity measure ν(x) = 1R(x).
In practice, constructing a density f is complex because of the constraint E[fΦ(Ñ)] = 1.
In particular, the expected value cannot be computed in closed form even for very simple
densities. Therefore, usually one considers an unnormalized density g such that E[g(Ñ)] <
+∞ and sets fΦ(ν) = gΦ/Z where Z := E[gΦ(Ñ)] is an intractable normalizing constant.
See Møller and Waagepetersen (2004) for several examples of Gibbs point processes and
associated unnormalized densities.

We will assume that Φ is hereditary, meaning that for any ν =
∑m

j=1 δXj and X∗ ∈
X \ {X1, . . . Xm}, g(ν + δX∗) > 0 implies g(ν) > 0. Then we can introduce the so-called
Papangelou conditional intensity defined as

λΦ(ν;X∗) =
fΦ

(
ν +

∑k
j=1 δX∗j

)

fΦ

(∑k
j=1 δX∗j

) =
gΦ

(
ν +

∑k
j=1 δX∗j

)

gΦ

(∑k
j=1 δX∗j

) (3.4)

where X∗ = {X∗1 , . . . , X∗k}. The Papangelou conditional intensity can be heuristically
understood as the conditional “density” of Φ having atoms ν given that the rest of Φ is
X∗. If λΦ(ν;X∗) is a non-increasing function of X∗, that is, λΦ(ν;X∗) ≥ λΦ(ν;X∗∪X ′)
for any X ′ ∈ X \ (X∗ ∪X ′), the point process Φ has a repulsive behavior.

The normalizing constant defining fΦ is not relevant for Bayesian analyses if the (hy-
per)parameters appearing in the density gΦ are fixed. If, instead, a hyperprior is assumed
on them, updating those parameters is a so-called “doubly-intractable” problem. See, e.g.,
Beraha et al. (2022) for how to deal with hyperpriors in the context of repulsive Bayesian
mixture models. We will consider hyperparameters fixed.
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Example 3.2 (Determinantal point processes). Determinantal point processes (DPPs
Macchi, 1975; Hough et al., 2006; Lavancier et al., 2015) are a class of repulsive point pro-
cesses. We will restrict our focus to finite DPPs defined on a compact region R ⊂ X =: Rq.
Consider a complex-valued covariance function K : R×R→ C with spectral representation

K(x, y) =
∑

h≥1

λhϕh(x)ϕh(y), x, y ∈ R (3.5)

where (ϕh)h≥1 for an orthonormal basis for L2(R), λh ≥ 0 with
∑

h≥1 λh < +∞. The
general construction of a DPP is given by introducing Bernoulli variables Bh ∼ Bern(λh)

and considering K ′(x, y) =
∑

h≥1Bhϕh(x)ϕh(y). Then, conditional on (Bh)h≥1, a DPP
Φ with kernel K has density with respect to the unit-rate Poisson point process on R given
by

fΦ | (Bh)h(ν) ∝ det
{
K ′(x, y)

}
x,y∈ν .

We remark that Φ consists of exactly
∑

h≥1Bh points almost surely. The existence of a
DPP with kernel K is equivalent to λh ≤ 1 for any h ≥ 1, see Macchi (1975).

If one specializes the construction above to the case λh < 1, it can be shown (cf.
Lavancier et al. (2015)) that a DPP has density fΦ with respect to the unit-rate Poisson
process given by

fΦ(ν) = e|R|−D det {C(x, y)}x,y∈ν .
where | · | denotes the Lebesgue measure, D := −∑h≥1 log(1− λh), and

C(x, y) =
∑

h≥1

λh
1− λh

ϕh(x)ϕh(y), x, y ∈ R.

We conclude the section with some elements of Palm calculus which is a fundamental
tool to understand Bayesian analysis of nRM.

3.2.1 Palm distributions

Palm calculus is a basic tool in the study of point processes. For the analysis of random
measures, the fundamental result needed from Palm theory is the Campbell-Little-Mecke
formula, an extension of Fubini’s theorem, which allows to exchange expectation and
integral when considering expressions involving integrals of functionals of a point process
Φ, where the integral is also with respect to the measure Φ. We provide background
on Palm calculus in Appendix 3.A and refer the interested reader to Kallenberg (1984);
Coeurjolly et al. (2017); Baccelli et al. (2020) for a detailed account. In the following,
we limit ourselves to introduce the Palm measure of a point process and provide some
intuition around it.

Let M(X) the space of boundedly finite measures on X and denote with M(X) its
Borel σ-algebra. For a point process Φ on X, let us introduce the mean measure MΦ as
MΦ(B) := E[Φ(B)] for all B ∈ X . We define the Campbell measure Cφ on X×M(X) as

CΦ(B × L) = E [Φ(B)1L(Φ)] , B ∈ X , L ∈M(X).

Then, as a consequence of the Radon-Nikodym theorem, there exists a MΦ-a.e. unique
disintegration probability kernel {Px

Φ(·)}x∈X of Cφ with respect to MΦ, i.e.

CΦ(B × L) =

∫

B
Px

Φ(L)MΦ(dx) B ∈ X , L ∈M(X)

Note that, for any x ∈ X, Px
Φ is the distribution of a random measure (specifically, a point

process) on X. Therefore, Px
Φ can be identified with the distribution of point process Φx
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such that Px
Φ(L) = P(Φx ∈ L). In particular, Px

Φ can be understood as the law of the
point process Φ, conditional to Φ having an atom at x. Following Baccelli et al. (2020)
we call Φx the Palm version of Φ at x. Since δx is a trivial atom of Φx, we can subtract it
from Φx and obtain the reduced Palm kernel, denoted by Px

Φ! , that is the law of the point
process

Φ!
x := Φx − δx.

The argument outlined above can be extended to the case of multiple points x = (x1, . . . , xk),
leading to the k-th Palm distribution {PxΦ}x∈Xn . Again, Φx can be understood as the law
of Φ conditional to Φ having atoms at {x1, . . . , xk} and removing the trivial atoms yields
the reduced Palm distribution that is the law of

Φ!
x := Φx −

k∑

j=1

δxj .

It is easy to show that, for a marked point process Ψ, with independent marks, the Palm
distribution Ψx,s, with x = (x1, . . . , xk) and s = (s1, . . . , sk), does not depend on s.
Moreover, Ψ!

x,s has the same law of the point process obtained by considering Φ!
x and

marking it with i.i.d. marks. See Lemma 3.2 in the Appendix. Hence, we can write Ψ!
x in

place of Ψ!
x,s and define

µ̃!
x(A) :=

∫

A×R+

sΨ!
x(dx ds) ∼ PxΨ! (3.6)

See Appendix 3.A for further details on Palm calculus. For our analyses, Palm calculus is
essential because, thanks to the Campbell-Little-Mecke formula, it allows us to manipulate
the expected values of integrals with respect to µ̃, where both the integral and the expected
value are with respect to µ̃.

3.3 Prior analysis

In this section and in the remainder of the chapter, we focus on the model (3.2), by
choosing a general nRM, that is, p̃ ∼ nRM(PΦ;H) and p̃ is obtained by the normalization
of a random measure µ̃. Before moving to the posterior analysis, it is often useful to
investigate finite dimensional statistics induced by the law of µ̃ for prior elicitation. Here,
we provide some results along these lines, namely, characterizing expectations E[µ̃(A)] and
E[p̃(A)], the covariance Cov(µ̃(A), µ̃(B)) and the correlation between p̃(A) and p̃(B).

Proposition 3.1. Let µ̃ ∼ RM(PΦ;H). Let us denote by E[S] :=
∫
R+
sH(ds) the expected

value of a random variable S ∼ H. Then, we have:

(i) for any measurable set A, E[µ̃(A)] = MΦ(A)E[S], and

E[p̃(A)] =

∫

R+

ψ(u)

∫

A
E
[
e−uµ̃

!
x(X)
]
MΦ(dx)du

where ψ(u) := E[e−uS ];

(ii) the covariance equals

Cov(µ̃(A), µ̃(B)) = (MΦ2(A×B)−MΦ(A)MΦ(B))E[S]2,

for arbitrary measurable sets A,B ∈ X .

We now specialize the previous proposition in some examples of interest.
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Example 3.3 (Poisson process). If Φ is a Poisson point process with intensity ν(dx),
MΦ(A) = ν(A) and MΦ2(A×B) = ν(A)ν(B) + ν(A ∩B). Hence

E[µ̃(A)] = E[S]ν(A), Cov(µ̃(A), µ̃(B)) = E[S]2ν(A ∩B)

In particular, if A ∩ B = ∅, Cov(µ̃(A), µ̃(B)) is zero (in fact, the random variables are
independent).

Example 3.4 (Gibbs point process). If Φ is a Gibbs point process with density fΦ:

MΦk(dx1 · · · dxk) = EÑ


fΦ


Ñ +

k∑

j=1

δxj




 .

In this case, the moment measure cannot be usually be computed in closed form. However,
the expected value can be efficiently approximated numerically via Monte Carlo simulations.

Example 3.5 (Determinantal point process). If Φ is a DPP, MΦ(A) =
∫
AK(x, x)dx.

Moreover, exploiting the relation between the moment and factorial moment measures,

MΦ2(A×B) =

∫

A×B
det{K(xi, xj)}2i,j=1dx1dx2 +MΦ(A ∩B)

When K(x, y) = ρ exp−‖x−y‖
2/α we recover the so-called Gaussian-DPP. In this case

MΦ(A) = ρ|A|, where | · | is the Lebesgue measure of a set, and

MΦ2(A×B) = ρ2

∫

A×B
1− e−2‖x−y‖2/αdxdy + ρ|A ∩B|.

3.4 Bayesian analysis of nRMs

This section contains the most relevant results of the chapter: posterior, marginal and pre-
dictive distributions for the statistical model (3.2), when p̃ ∼ nRM(PΦ;H). All the results
are available in closed form and they constitute the backbone to develop computational
procedures in presence of the new class of priors.

All the proofs of these important theoretical achievements are based on the Laplace
functional of the random measure µ̃, defined as

Lµ̃(f) = E
[
exp

(
−
∫

X
f(x)µ̃(dx)

)]

for any bounded non-negative function f : X→ R+ of bounded support. We now introduce
some useful notations and an additional variable Un which helps us to describe the Bayesian
analysis of the model in (3.2). Denote by PΨ the distribution induced on µ̃ by the law of
the marked point process Ψ, the joint distribution of (Y , µ̃) is

P(Y ∈ dy, µ̃ ∈ dµ) =
1

Tn

n∏

i=1

µ(dyj)PΨ(dµ) (3.7)

where T = µ(X). As in James et al. (2009), we introduce an auxiliary variable Un |T ∼
Gamma(n, T ) and, by a suitable augmentation of the underlying probability space, we
now consider the joint distribution of (Y , Un, µ̃)

P(Y ∈ dy, Un ∈ du, µ̃ ∈ dµ) =
un−1

Γ(n)
e−Tudu

n∏

i=1

µ(dyj)PΨ(dµ).
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Since µ̃ is almost surely discrete, with positive probability there will be ties within the
sample Y = (Y1, . . . , Yn). For this reason Y is equivalently characterized by the couple
(Y ∗, π̃), where Y ∗ = (Y ∗1 , . . . , Y

∗
k ) is the vector of distinct values and π̃ is a random

partition of [n] := {1, . . . , n} of size Kn, which contains the observations within the sample
that are equal. Given Kn = k, we indicate by n = (n1, . . . , nk) the vector of counts, i.e.,
nj is the cardinality of the set {i ∈ [n] : Yi = Y ∗j }, , as j = 1, . . . , k. As a consequence we
may write:

P(Y ∈ dy, Un ∈ du, µ̃ ∈ dµ) =
un−1

Γ(n)
e−Tu

k∏

j=1

µ(dy∗j )
njPΨ(dµ).

3.4.1 Posterior characterization

We first characterize the posterior distribution of p̃ ∼ nRM(PΦ;H), when this is employed
in (3.2). Since p̃ is obtained by the normalization of the random measure µ̃, it is sufficient
to describe the posterior distribution of µ̃, which is provided by the following.

Theorem 3.1. Assume that (Yi)i≥1 is an exchangeable sequence of observations as in
(3.2), where p̃ ∼ nRM(PΦ;H) and it arises as the normalization of the random measure
µ̃. Assume that H(ds) = h(s)ds where ds is the Lebesgue measure. The distribution of µ̃
conditionally on Y = y and Un coincides with the one of the random measure

k∑

j=1

S∗j δY ∗j + µ̃′ (3.8)

where:

(i) S∗ := (S∗1 , . . . , S
∗
k) is a vector of independent random variables, and the density of

S∗j equals

fS∗j (s) ∝ e−Unssnjh(s), as j = 1, . . . , k;

(ii) µ̃′ is a random measure with Laplace functional

E
[
exp

∫

X
−f(z)µ̃′(dz)

]
=

E
[
exp

{
−
∫
X(f(z) + Un)µ̃!

y∗(dz)
}]

E
[
exp

{
−
∫
X Unµ̃

!
y∗(dz)

}] , (3.9)

where µ̃!
y∗ is as in (3.6) for x = y∗.

Finally, the conditional distribution of Un given Y = y has a density with respect to the
Lebesgue measure proportional to

fUn |Y (u) ∝ un−1E
[
e−

∫
uµ̃!

y∗ (dz)
] k∏

j=1

κ(u, nj)1R+
(u) (3.10)

with κ(u, n) :=
∫
R+
e−ussnH(ds).

The expression in (3.9) is obtained without any specific assumption on the law of the
point process Φ. More intuitive expressions for the posterior distribution of µ̃ are obtained
specializing the expression to particular classes of point processes. In the following, we de-
note by ψ(u) := E[e−uS ] the Laplace transform of S ∼ H evaluated at u ∈ R+. Moreover,
we define

fuS′(s) :=
e−suh(s)∫

R+ e−suh(s)(ds)
. (3.11)

to be the density of the exponential tilting of S.
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Example 3.6 (Poisson point process). If Φ is a Poisson point process with intensity
ν(x)dx, the random measure µ̃′ in Theorem 3.1 equals the distribution of

∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is a Poisson process with intensity given by ψ(u)ν(dx) and the marks S′j are

i.i.d. with distribution (3.11). Hence µ̃′ is a completely random measure. Moreover, by
Lemma 3.3 in the Appendix,

E[e−
∫
uµ̃!

y∗ (dz)] = E[exp(logψ(u)Φ!(X))] = eν(X)(ψ(u)−1)

where the last equality follows from the fact that Φ!(X) is a Poisson random variable with
parameter ν(X). We conclude by noting that, in this case, µ̃′, given Un, does not depend
on the observed sample.

Example 3.6 can be generalized to a broader class of point processes Φ where the atoms,
conditionally to the number of points in the process, are independent random variables.
Random measures obtained by marking and normalizing this kind of processes have been
studied in Argiento and De Iorio (2022) under the name of normalized independent finite
point processes (Norm-IFPP). We can consider this class of measures as a special case
of the ones under investigation here. Now we discuss other examples, whose posterior
representation is still not available in the Bayesian nonparametric literature.

Example 3.7 (Gibbs point process). If Φ is a Gibbs point process with density fΦ, the
random measure µ̃′ equals the distribution of

∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is of Gibbs type with density with respect to the Poisson process Ñ given by

fΦ′(ν) :=
exp

{∫
X log

( ∫
R+
e−sUnH(ds)

)
ν(dx)

}
fΦ(ν +

∑k
j=1 δY ∗j )

EN
[
exp

{∫
X log

( ∫
R+
e−sUnH(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δY ∗j )

] ,

and the marks S̃′j are i.i.d. with distribution (3.11). The denominator in the last expression
seems rather daunting to compute. This is usually the case for Gibbs point process, so it
should come as no surprise. Considering the unnormalized density

fΦ′(ν) ∝ qΦ′(ν) = exp

{∫

X
log
(∫

R+

e−sUnH(ds)
)
ν(dx)

}
fΦ(ν +

k∑

j=1

δY ∗j )

and denoting with nν the cardinality of ν, the exponential can be written as

exp

{∫

X
log
(∫

R+

e−sUnH(ds)
)
ν(dx)

}
= ψnν (Un),

Finally, recalling the definition of Papangelou conditional intensity in (3.4), the unnor-
malized density qΦ′ can be then expressed as

qΦ′(ν) = ψnν (Un)λΦ(ν;Y ∗)
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which does not depend on the intractable normalizing constant in fΦ, see (3.4). This is
particular useful for posterior simulation (cf. Section 3.5.1) since several algorithms for
simulation from unnormalized point process densities are available. Although it is not
explicitly stated, an equivalent result to the one above (albeit obtained in a different way)
is at the core of the MCMC sampling scheme proposed in Beraha et al. (2022).

Example 3.8 (Determinantal point process). Assume that Φ is a DPP with kernel K.
Moreover assume that its eigenvalues λj in (3.5) are all strictly smaller than one. Then,
the random measure µ̃′ equals the distribution of

∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is a DPP with density with respect to the unit rate Poisson process on R ⊂ X =:

Rq given by fΦ′(ν) ∝ det[C ′(xi, xj)](xi,xj)∈ν , where, conditionally on Y ∗ = y∗, we have

C ′(x, y) = ψ(u)


C(x, y)−

k∑

i,j=1

(
C−1
y∗
)
i,j
C(x, y∗i )C(y, y∗j )


 ,

and the marks S̃′j are i.i.d. with distribution (3.11). Note that for simulation purposes, it

is useful to know or approximate the eigendecomposition of the kernel K ′ associated to the
DPP Φ′ (i.e., the kernel C ′ is to K ′ as the kernel C is to K in Section 3.2). K ′ of Φ′ can
be deduced from the eigendecomposition of C ′. Writing

C ′(x, y) =
∑

j

γjϕ
′
j(x)ϕ′j(y),

we have that
K ′(x, y) =

∑

j

λ′jϕ
′
j(x)ϕ′j(y),

where λ′j = γj/(1 + γj) and the γj’s and ϕ′j’s can be approximated numerically using the
Nyström method (Sun et al., 2015)

3.4.2 Marginal and predictive distributions

In the present section we describe the marginal and predictive distributions. We start with
the first one.

Theorem 3.2. Assume that (Yi)i≥1 is an exchangeable sequence of observations as in
(3.2), where p̃ ∼ nRM(PΦ;H). The marginal distribution of a sample Y exhibiting Kn = k
distinct values Y ∗ with respective counts n1, . . . , nk equals

P(Y ∈ dy) =

∫

R+

un−1

Γ(n)
E
[
e−

∫
X uµ̃

!
y∗ (dz)

] k∏

j=1

κ(u, nj)duMΦk(dy
∗),

where µ̃!
y∗ is defined in (3.6) and MΦk is the k-th moment measure of Φ.

We now specialize Theorem 3.2 in some important examples.

Example 3.9 (Poisson point process, cont’d). First, note that, since the values y∗1, . . . , y
∗
k

are pairwise distinct, one has MΦk(dy
∗) =

∏k
i=1 ν(dy∗i ). Hence, conditionally to Un = u,

the marginal law in Theorem 3.2 is proportional to the following quantity

eν(X)(ψ(u)−1)
k∏

j=1

κ(u, nj)

k∏

j=1

ν(dy∗i ).
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Example 3.10 (Gibbs point process, cont’d). Let Φ the Gibbs point process defined in
Example 3.7, denote with λ the intensity measure of Ñ (the Poisson point process with
respect to which the density is specified)

MΦk(B) = EÑ


fΦ


Ñ +

k∑

j=1

δxj




λk(B), B ∈ X k (3.12)

and, in particular, conditionally to Un = u the marginal distribution of data is proportional
to

k∏

j=1

κ(u, nj)E


exp

(∫

X
logψ(u)Ñ(dx)

)
fΦ(Ñ +

k∑

j=1

δy∗j )


 .

Example 3.11 (Determinantal point process, cont’d). If Φ is a DPP, for all x1, . . . , xn
such that K(xj , xj) > 0, Φ!

x is a DPP with kernel as in Example 3.8. Then, E[e−
∫
X uµ̃

!
y∗ (dz)] =

ψ(u)
∑
j≥1 λ

′
j . Moreover, since y∗1, . . . , y

∗
k are pairwise different, we have that the moment

measure MΦk equals to the factorial moment measure MΦ(k), which in the case of a DPP
has explicit expression

MΦ(k)(dy∗) = det{K(y∗i , y
∗
j )}ki,j=1dy∗

where dy∗ denotes the k-fold Lebesgue measure.

We now focus on the derivation of the predictive distribution, i.e., the distribuion of
Yn+1, conditionally on the observable sample Y . Let us first define the probability of a
latent variable Un, given a data point Y = y,

fUn(u|y) :=
un−1E

[
e−

∫
uµ̃!

y∗ (dz)
]∏k

j=1 κ(u, nj)

∫
R+
un−1E

[
e−

∫
uµ̃!

y∗ (dz)
]∏k

j=1 κ(u, nj)du
(3.13)

which is a density on R+. We further assume that there exists a non-atomic probability
probability measure on (X,X ) such that the measure MΦk( · ) is absolutely continuous with
respect to the product measure P k0 ( · ). The Radon-Nikodym derivative of MΦk is denoted
by mΦk .

Theorem 3.3. Assume that (Yi)i≥1 is an exchangeable sequence of observations as in
(3.2), where p̃ ∼ nRM(PΦ;H). Moreover, suppose that MΦk � P k0 , for some probability
measure P0, with Radon-Nikodym derivative mΦk . Then, the distribution of Yn+1, condi-
tionally on Y = y and Un with density (3.13), equals

P(Yn+1 ∈ A |Y = y, Un) ∝
k∑

j=1

κ(Un, nj + 1)

κ(Un, nj)
δY ∗j (A)

+

∫

A
κ(Un, 1)

E
[
e−

∫
X Unµ̃

!
(y∗,y)(dz)

]

E
[
e−

∫
X Unµ̃

!
y∗ (dz)

] mΦk+1(y∗, y)

mΦk(y∗)
P0(dy),

where A ∈ X .

The predictive distribution from Theorem 3.3 can be interpreted using a generalized
Chinese restaurant process metaphor. The first customer arrives at the restaurant and
sits at the first table, eating dish Y1 = Y ∗1 such that P(Y ∗1 ∈ dy) ∝ MΦ(dy). The second
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customer sits at the same table of the first customer with probability proportional to
κ(U1, 2)/κ(U1, 1), or sits at a new table and eats a new dish with probability proportional
to

P(Y2 ∈ X \ {y∗1} |Y ∗1 = y∗1)

∝ κ(U1, 1)

E
[
e
−
∫
X U1µ̃!

y∗
1

(dz)
]
mΦ(y∗1)

∫

X
E
[
e
−
∫
X U1µ̃!

(y∗
1
,y)

(dz)
]
mΦ2(y∗1, y)P0(dy),

where U1 ∼ fU1 | y1
defined in (3.10). The distribution of the new dish is proportional to

P(Y2 ∈ dy|Y ∗1 = y∗1) ∝ E
[
e
−
∫
X uµ̃

!
(y∗

1
,y)

(dz)
]
mΦ2(y∗1, y)P0(dy).

The metaphor proceeds as usual for new customers entering the restaurant at time n. As
in the traditional Chinese Restaurant process, customers sitting at the same table eat the
same dish, whereas the same dish cannot be served at different tables. We now specialize
the predictive distribution in some examples of interest.

Example 3.12 (Poisson point process, cont’d). It is clear that

mΦk+1(y∗, y)

mΦk(y∗)
P0(dy) = ν(dy)

since in the Poisson process case the k-th moment measure, when evaluated at disjoint
sets, factorizes. Moreover, by the properties of the Poisson point process, we have that
µ!

(y∗,y) and µ!
(y∗) have the same distribution, so that the ratio of expectations in Theorem

3.3 disappears. We remark that, in general, this is no longer the case for the more general
Norm-IFFP processes in Argiento and De Iorio (2022) and more care has to be taken in
deriving the distribution of the number of points in µ!

(y∗,y) and µ!
y∗.

Example 3.13 (Gibbs point process, cont’d). Using notation from Example 3.10, it is
clear that MΦk � P k0 , where P0 is obtained by normalizing some measure λ. In most
applications, λ is taken to be the Lebesgue measure on a compact set, as a consequence P0

is the probability density function of a uniform random variable. The predictive distribution
in Theorem 3.3 boils down to

P(Yn+1 ∈ A |Y = y, Un) ∝
k∑

j=1

κ(Un, nj + 1)

κ(Un, nj)
δy∗j (A)

+

∫

A
κ(Un, 1)

E
[
ψÑ(X)(Un)λΦ(Ñ ;

∑k
j=1 δy∗j + δy)

]

E
[
ψÑ(X)(Un)λΦ(Ñ ;

∑k
j=1 δy∗j )

] λ(dy).

(3.14)
where the last term involves two expected values with respect to the Poisson process Ñ ,
which can be easily approximated via Monte Carlo integration, since it is generally straight-
forward to sample from the law of Ñ .

Example 3.14 (Determinantal point process, cont’d). Let C ′, K ′ be defined as in Example
3.8, with associated eigenvalues (γ′j)j≥1, (λ′j)j≥1. Similarly, define C ′′y , K ′′y by replacing

y∗ with (y∗, y). We make explicit the dependence on y by writing (λ′′j (y))j≥1. Following
Example 3.11, the ratio of expected values in Theorem 3.3 equals

exp



logψ(u)


∑

j≥1

λ′′j (y)− λ′j





 .
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Moreover, by the Schur determinant identity, denoting by Ky,y := K(y, y), Ky∗,y :=
(K(y∗1, y), . . . ,K(y∗k, y))>, and by Ky∗,y∗ the k × k matrix with entries (K(y∗i , y

∗
j ))

k
i,j=1

we have
mΦk+1(y∗, y)

mΦk(y∗)
P0(dy) =

(
Ky,y −K>y∗,yK−1

y∗,y∗Ky∗,y

)
dy

3.4.3 Distribution of the distinct values

From the marginal characterization in Theorem 3.2, it is easy to derive the joint distribu-
tion of (Kn,Y

∗
n ), that is, the joint distribution of the number of the distinct values and

their position in a sample of size n.

Proposition 3.2. Given a set of distinct points y∗ = (y∗1, . . . , y
∗
k), let (qr)r≥0 be the

probability mass function of the number of points in Φ!
y∗, i.e., qr := P

(
Φ!
y∗(X) = r

)
.

Define

V (n1, . . . , nk; r) :=

∫

R+

un−1

Γ(n)
ψ(u)r

k∏

j=1

κ(u, nj)du,

then the joint distribution of Kn and Y ∗ equals

P(Kn = k,Y ∗ ∈ dy∗) =
1

k!

∞∑

r=0

( ∑

n1+···+nk=n

(
n

n1 · · ·nk

)
V (n1, . . . , nk; r)

)
qr MΦk(dy

∗).

It is interesting to specialize Proposition 3.2 for a special choice of the distribution of
the jumps Sj .

Corollary 3.1. Under the same assumptions of Proposition 3.2 and by assuming that the
Sj’s are Gamma(α, 1) distributed,

P(Kn = k,Y ∗ ∈ dy∗) =
1

Γ(n)
αkS−1,k

n,k


∑

r≥0

qr
Γ (k + r)α)

Γ ((k + r)α+ n)


MΦk(dy

∗) (3.15)

where Γ(·) is the gamma function and S−1,k
n,k denotes the generalized Stirling number.

Using Corollary 3.1, we consider now a concrete example highlighting the difference
between a repulsive and a non-repulsive point process to show the great flexibility of our
prior with respect to traditional ones based on Poisson processes. To this end, we computed
P(Kn = k,Y ∗ ∈ dy∗) for n = 5 and Gamma(1, 1) distributed weights under two possible
priors for Φ: a Poisson process and a DDP. In particular, the Poisson process prior has
intensity ν(dx) = 1R(dx) where R = (−1/2, 1/2). The DPP prior is defined on R as well
and is characterized by a Gaussian covariance function K(x, y) = 5 exp(−(x − y)2/0.3).
We consider different settings: in the first (I) y∗ = (−x, x), in the second one (II) y∗ =
(−0.3,−0.3+2x) and in the third (III) y∗ = (−x, 0, x). Moreover, we assume that x varies
in the interval (0, 0.4). Figure 3.4.1 shows the joint probability of Kn and y∗ under the
different scenarios. Note that under the Poisson process prior (solid line, left plot), the
probability does not depend on y∗. Instead, under the DPP prior, the probability increases
when the points in y∗ are well separated. Note that the values of the different probabilities
P(Kn = k,Y ∗ ∈ dy∗) in Figure 3.4.1 are immaterial, but their behaviors highlight the
flexibility of the new class of priors which allow to create well-separated clusters.
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Figure 3.4.1: P(Kn = k,Y ∗ ∈ dy∗) when n = 5, α = 1, under different settings. Left plot,
setting (I) under the Poisson process ( ) and DPP ( ) prior. Middle plot: setting (I)
( ) and setting (II) ( ) under the DPP prior. Right plot setting (I) ( ) and setting
(III) ( ) under the DPP prior.

3.5 Bayesian Hierarchical Mixture Models

Discrete random probability measures are commonly employed as prior for mixing mea-
sures in Bayesian model-based clustering. In a mixture model, instead of modeling observa-
tions through (3.2), we use it as a prior for latent variables Y1, . . . , Yn. Then, for Z-valued

observations Z1, . . . , Zn, we assume that Zi |Yi = y
ind∼ f(· | y) where f is a parametric

density kernel.
To recover traditionally employed location-scale mixtures, it is convenient to consider

random measures on an extended space X×W so that

µ̃(·) =
∑

j

Sjδ(Xj ,Wj) (3.16)

obtained by marking the points in the point process Ψ with i.i.d. marks (Wj)j≥1 from an
absolutely continuous probability distribution over W, whose density we will denote by
fW (·).

To formalize the mixture model, consider observations Z1, . . . , Zn ∈ Z and a probability
kernel f : Z × X ×W → R+, such that z 7→ f(z | y, v) is a probability density over Z for
any y, v ∈ X×W. We assume

Zi |Yi, Vi ind∼ f(· |Yi, Vi), i = 1, . . . , n

Yi, Vi | µ̃ iid∼ µ̃

µ̃(X×W)

µ̃ ∼ Pµ

(3.17)

Usually, the kernel f(· |Yi, Vi) is the Gaussian distribution with mean Yi and variance (if
data are univariate) or covariance matrix (if data are multivariate) Vi. Hence, the points
Xj are the component-specific means and the points Wj the component-specific variances
in a Gaussian mixture model.

For posterior simulation, it is convenient to introduce auxiliary cluster indicator vari-
ables Ci, i = 1, . . . , n such that Ci | µ̃ is a discrete random variable with support {1, . . . ,m}
such that P(Ci = h | µ̃) ∝ Sh. Then, observe that (Yi, Vi)i≥1 = (XCi ,WCi)i≥1 so that (3.17)
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is equivalent to

Zi | µ̃, Ci ind∼ f(· |XCi ,WCi), i = 1, . . . , n

Ci | µ̃ iid∼ Categorical(S1/T, . . . , Sm/T )

µ̃ ∼ Pµ

(3.18)

where T :=
∑

j≥1 Sj . Therefore, the “distinct values” (Y ∗1 , V
∗

1 ) . . . (Y ∗Kn , V
∗
Kn

) in the sam-

ple are now represented by the distinct values in (XCi ,WCi)i≥1. Following the standard
terminology in Bayesian mixture analysis (Argiento and De Iorio, 2022; Griffin and Walker,

2011), we define S(a), S(a) = (S
(a)
1 , . . . , S

(a)
Kn

) as the distinct values in (SCi)i≥1 and refer to

them as active jumps. Moreover, we set the non-active jumps S(na) := {S1, . . . , Sm}\S(a).
In an analogous way, we define X(a),X(na) and W (a),W (na) and refer to them as the ac-
tive and non-active atoms, respectively.

The posterior distribution of µ̃ |Z1, . . . , Zn is not available in closed form. In the
rest of this section, we describe two Markov chain Monte Carlo algorithms for posterior
inference in model (3.17). Following Papaspiliopoulos and Roberts (2008) we term them
conditional and marginal respectively. In the conditional one, the random measure µ̃ is
part of the state of the algorithm, while in the marginal one, it is integrated out. We will
assume that, conditionally to the number of points and other eventual hyperparameters,
the distribution ordered points (X1, . . . , XM ) |M = m in Φ admits a density with respect
to a m-fold product measure defined on Xm, usually the Lebesgue one. With abuse of
notation, we denote this density with fΦ (observe that, indeed, fΦ is proportional to the
point process density with respect to the unit rate Poisson point process).

3.5.1 A conditional MCMC algorithm

Theorem 3.1 can be used to derive the full-conditional of µ̃ given C1, . . . , Cn,X
(a),W (a)

and U . This needs a trivial extension to encompass for i.i.d. marks (Wj)j≥1 defining the
support of µ̃.

Corollary 3.2. Consider model (3.18). Let nh =
∑n

i=1 1h(Ci). Then, conditionally

C1, . . . , Cn,X
(a) = x(a),W (a) = w(a) and U = u, µ̃ is distributed as

k∑

h=1

S
(a)
h δ(x

(a)
h ,w

(a)
h ) + µ̃′

where S
(a)
h ∼ fS(a)

h
(s) ∝ snhe−usH(ds), and µ̃′ :=

∑
h≥1 S

(na)
h δ(X

(na)
h ,W

(na)
h ) is obtained by

considering the random measure at point (ii) in Theorem 3.1 and adding i.i.d. marks

W
(na)
h ∼ fW to the support points.

This suggests the following algorithm, where we denote by “· | rest” conditioning with
respect all the variables not appearing on the left hand side of the conditioning symbol.

1. Sample U | rest ∼ Gamma(n, T ), where T :=
∑m

j=1 Sj

2. Sample each Ci independently from a discrete distribution over {1, . . . ,m} such that

P(Ci = h | rest) ∝ Shf(Zi |Xh,Wh)

Set k equal to the cardinality of the unique values in Xa := {XCi , i = 1, . . . , n}.
Define W a and Sa analogously Then, relabel S, X and W so that X1, . . . , Xk

equals Xa and analogously for S, W with respect to Sa, W a.
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3. Sample µ̃ using the distribution in Corollary 3.2. That is, sample Sah from a distri-
bution on R+ with density

fSh(s) ∝ e−UssnhH(ds)

and µ̃′ :=
∑

j≥1 S
na
j δ(Xna

j ,Wna
j ) the law of the random measure with Laplace trans-

form (3.9).

4. Sample Xa from

P(Xa ∈ dxa | rest) ∝ fΦ(xa,Xna)

k∏

h=1

∏

i:Ci=h

f(Yi |xah,Wh)

5. Sample each entry in W a independently from

P(W a
h ∈ dw) ∝ fW (w)

∏

i:Ci=h

f(Yi |Xa
h , w)

6. Set X = (Xa, Xna), W = (W a,Wna) S = (Sa, Sna) and m equal to the length of
these vectors.

Of the above steps, the most complex one is surely sampling µ̃′. In fact, all the remain-
ing ones can be handled either by closed form full-conditionals (depending for instance on
the law of the jumps H(ds) and the prior fW ) or by simple Metropolis-Hastings steps.
When Φ is a Gibbs point process with a density, we recover the same algorithm in Beraha
et al. (2022), where the update of µ̃′ was performed by sampling X(na) from the law of a
point process via a birth-and-death Metropolis-Hastings algorithm. Our understanding of
the posterior distribution in Theorem 3.1 allows for tailored algorithms to specific cases
where the distribution of X(na) is known. This is for instance the case of a DPP prior. In
this case, instead of employing a Metropolis-Hastings step forX(na), we can use Algorithm
1 in Lavancier et al. (2015) to obtain a perfect sample from the law of X(na). We expect
this choice to yield superior performance in terms of mixing.

3.5.2 A marginal MCMC algorithm

When integrating (3.17) with respect to µ̃, we can exploit Theorem 3.3 to devise a marginal
MCMC strategy. Using the generalized restaurant Chinese restaurant metaphor, at every
iteration of the MCMC algorithm, each customer is removed from the restaurant and re-
enters following the conditional distribution in Theorem 3.3. The plain application of this
result yields the following MCMC algorithm

1. Sample U | rest from the full conditional distribution in (3.10)

2. For each observation, sample (Yi, Vi) from

P(Yi, Vi ∈ dy dv | rest) ∝
k∑

j=1

κ(u, n
(−i)
j + 1)

κ(u, n
(−i)
j )

f(Zi |Y ∗j , V ∗j )δ(Y ∗j ,V
∗
j )(dy dv)+

κ(u, 1)
E
[
e−

∫
X uµ̃

!
k+1](dz)

]

E
[
e−

∫
X uµ̃

!
k(dz)

]
∫

X×W

mΦk+1(y∗(−i), y)

mΦk(y∗(−i))
f(Zi | y, v)P0(dy)fW (v)dv.

where the superscript (−i) means that the i-th observation is removed from the state
for the computations. Here, Y ∗ is the unique values in (Y 1, . . . , Yn) and similarly
for V ∗.
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3. Sample the unique values Y ∗ from a joint distribution proportional to

fΦ(y)

k∏

h=1

∏

i:Yi=Y ∗h

f(Zi | yh, V ∗h )

4. Sample each of unique values V ∗ independently from

P(V ∗h ∈ dv) ∝ fW (v)
∏

i:Ci=h

f(Yi |Y ∗h , v)

Step (2) of the algorithm above requires the computation of

∫

X×W

mΦk+1(y∗(−i), y)

mΦk(y∗(−i))
f(Zi | y, v)P0(dy)fW (v)dv

which might be challenging is situations where data are multidimensional. Note that an
analogous challenge is faced by the algorithm proposed by Xie and Xu (2019), where the
authors use numerical quadrature techniques to evaluate a similar integral. Our approach
has the advantage that is more general (they focus only on a specific class of Gibbs point
processes, namely pairwise interaction point processes) and does not require the numerical
evaluation of the normalizing constant of the point process density. Moreover, in higher
dimensional setting we can adapt the strategy devised by Neal in his Algorithm 8, where
we introduce L auxiliary variables and replace step (2) with

2’.a for ` = 1, . . . , L, sample Y ∗k+` from

P(Y ∗k+` ∈ dy | rest) ∝ mΦk+1(y∗(−i), y)

mΦk(y∗(−i))
P0(dy)

and V ∗k+`
iid∼ fW .

2’.b Set (Yi, Vi) equal to (Y ∗h , V
∗
h ) with probability proportional to

κ(u, n
(−i)
j + 1)

κ(u, n
(−i)
j )

f(Zi |Y ∗h , V ∗h ), h = 1, . . . , k

1

L
κ(u, 1)

E
[
e−

∫
X uµ̃

!
k+1(dz)

]

E
[
e−

∫
X uµ̃

!
k(dz)

] f(Zi |Y ∗h , V ∗h ), h = k + 1, . . . , k + L.

3.6 Shot-Noise Cox Process Mixtures

Cox processes (Cox, 1955), also known as doubly stochastic Poisson processes, can be
defined via the hierarchical model

Φ |Λ ∼ PRM(νΛ)

Λ ∼ PΛ
(3.19)

where PRM(νΛ) denotes the law of a Poisson random measure with intensity νΛ(x)dx.
We consider here a special case of (3.19) termed the shot-noise Cox process, introduced in
Møller (2003), for which Λ ∼ PRM(ρ), for some nonatomic sigma-finite measure ν(x)dx
on X and

νΛ(x) := γ

∫

X
kα(x− v)Λ(dv).
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where kα is a probability density and γ > 0. In particular, by assuming that x 7→ kα(x−v)
is continuous for any v, we get that the point process Φ is simple.

We will refer to ρ as the base intensity of the process Φ. It is easy to see that MΦ(A) =∫
AmΦ(x)dx = γ

∫
A

∫
X kα(x− v)ν(dv)dx. See Lemma 3.6 and Lemma 3.4 in the appendix

for the n-th moment measure and the Palm version of shot noise cox processes respectively
The following result specializes Theorem 3.1 in the case of shot-noise Cox processes.

Theorem 3.4. Assume that Φ is a shot-noise Cox process with base intensity ν(dx).
Then, the random measure µ̃′ in (3.8) can be decomposed as

µ̃′ = µ̃0 +

k∑

h=1

µ̃ζh ,

where µ̃0 =
∑

j≥1 S̃jδX̃j and µ̃ζh =
∑

j≥1 S̃h,jδX̃h,j . The unnmarked point processes Φ0 =∑
j≥1 δX̃j is a shot-noise Cox process with base intensity

ρ′(dx) = e−γ(1−ψ(u))ν(dx),

each Φζh =
∑

j≥1 δX̃h,j is a Point process with random intensity

νζh = e−γ(1−ψ(u))kα(ζh − x)dx,

and the random variables ζh are as in Proposition 3.4. Finally, all the weights of µ̃0 and
the µ̃ζh’s are i.i.d. with distribution

H ′(ds) :=
e−suH(ds)∫

R+ e−suH(ds)
.

For simplicity, hereafter we assume that both the base measure ν(dx) and the kernel
kα integrate to 1. The following results are trivial to extend to other settings.

Proposition 3.3. Define η(x1, . . . , xl) =
∫ ∏l

i=1 kα(xi − v)ν(dv). The marginal distribu-
tion of Y under model (3.2) when PΦ is the shot-noise Cox process is

P(Y ∈ dy) =

∫

R+

un−1

Γ(n)
exp

{
λ
(
eγ(ψ(u)−1−1) − 1

)
+ kγ(ψ(u)−1 − 1)

} k∏

j=1

k(u, nj)du

× γk
k∑

j=1

∑

C1,...Cj∈(∗)

j∏

l=1

η(xCl)dx1 · · · dxk.

where (∗) denotes all the partition of k elements in j groups.

From Corollary 3.1 and Proposition 3.3 it is trivial to derive the marginal distribu-
tion of the distinct values. Indeed, from Proposition 3.4 in the Appendix, we have that
Φ!
y(X) |Λ ∼ Poi(γ(k + Λ(X)) and Λ(X) ∼ Poi(λ). Hence, qr =: P(Φ!

y(X) = r) does not
depend on the values in y∗, but only on the cardinality. Hence, we can marginalize with
respect to y∗ in Corollary 3.1 observing that the moment measure of Φ is

Mk
Φ(dx) = γk

k∑

j=1

∑

C1,...Cj∈(∗)

j∏

l=1

η(xCl)dx1 · · · dxk.

51



Chapter 3. Marked Point Processes for Bayesian Nonparametric Modelling

See Lemma 3.6 in the Appendix for a proof. Hence, in the case of Gamma(α, 1) distributed
jumps

P(Kn = k) =
1

Γ(n)
αkγkS−1,k

n,k Bk
∑

r≥0

qr
Γ(k + r)α

Γ((k + r)α+ n)
.

where Bk is the k-th Bell number
Finally, the predictive distribution under the shot-noise Cox process model equals

P(Yn+1 ∈ A |Y = y, Un) ∝
k∑

j=1

κ(Un, nj + 1)

κ(Un, nj)
δY ∗j (A)

+

∫

A
κ(Un, 1) exp

{
γ(ψ(u)−1 − 1)

} mΦk+1(y∗, y)

mΦk(y∗)
P0(dy).

3.6.1 SNCP mixtures as mixtures of mixtures

By the coloring theorem for Poisson point processes (Kingman, 1992), Φ |Λ =
∑

λj∈Λ Φj ,

where Φj |Λ is a Poisson point process with intensity γkα(x−λj). This shows that SNCPs
are cluster processes, since for appropriate choices of kα, the points in a cluster Φj will be
closer than points belonging to different clusters, say Φj , Φj . When we embed a random
probability measure built from (3.19) in a Bayesian mixture model as done in Section 3.5,
we obtain that the atoms of the mixture are randomly clustered together. Hence, we can
rewrite the mixture density as follows

f(z) =
1

T

∑

h≥1

S̃hf(z | X̃h, W̃h) ≡ 1

T

n(Λ)∑

j=1

∑

h≥1

S̃j,hf(z | X̃j,h, W̃j,h)

where, on the right hand side, we first sum over the atoms of Λ and then in the atoms of
each of the Φj ’s. With an abuse of notation, we introduced a second subscript to S̃h, X̃h,

and W̃h to represent that each point of X̃h (and its marks) can be assigned to a point in
Λ. Let now

F̃j(z) =
1

Pj

∑

h≥1

S̃j,hf(z | X̃j,h, W̃j,h), Pj :=
∑

h≥1

S̃j,h (3.20)

which is a (random) probability density function on X. We clearly have f(z) = T−1
∑n(Λ)

j=1 PjF̃j(z).
Therefore, an SNCP mixture model can be written as a mixture of mixtures, where each
component F̃j(z) is expressed as a mixture model itself. We can thus regard the SNCP
mixture model as a nonparametric generalization of the model in Malsiner-Walli et al.
(2017). In the frequentist setting, identifiability and estimation of the mixture of mixtures
model have recently been studied in Aragam et al. (2020).

3.6.2 Numerical Illustration

We consider a simulated scenario where 100 datapoints are generated from a two-component
mixture of Student’s t distribution with 3 degrees of freedom, centered respectively in −5
and +5. We fit to the dataset a mixture of Gaussian distributions, so that f(· | ·) in (3.17)
is the Gaussian density with parameters (yi, τi) representing mean and variance, respec-
tively. As prior for the γj ’s we assume an inverse-Gamma distribution with shape and
scale parameter equal to two. The prior for Φ is the shot-noise Cox process where we set
α = 1 and γ = 1. Finally, the unnormalized weights sj are given a Gamma prior with
shape and scale equal to two.

We compare the SNCP mixture to the finite mixture model in Argiento and De Iorio
(2022), where the mixing measure µ is as in Equation (3.16). The number of support
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Figure 3.6.1: From left to right: posterior similarity matrix of the cluster labels under MFM
and SNCP mixture, posterior distribution of the number of clusters, density estimate.

points K is given a shifted Poisson distribution, so that K − 1 ∼ Poi(2). Given K,
the support points (xj , γj) are assumed i.i.d. from a normal-inverse-gamma distribution.
The unnormalized weights sj are given the same prior as for the SNCP mixture model.
Posterior inference is computed via the BayesMix library.

To fit the SNCP mixture, we use the conditional algorithm in Section 3.5.1, where we
further add to the MCMC state the points of Λ, see Section 3.G.4 for further details

The SNCP mixture allocates between 25 and 40 Gaussian components to represent the
mixture of Student t’s distribution, while the MFM model between 3 and 8. To cluster
data under the SNCP model, we do not consider directly the ci’s as cluster indicator labels,
but refer each cluster to the associated atom in the directing Poisson process Λ. That is,
using notation as in Section 3.G.4, we partition data according to the labels tci . Posterior
inference is summarized in Figure 3.6.1. It is clear that the SNCP mixutre does a better
job in dividing data into two clusters. In particular, the posterior probability of having
two clusters under MFM is zero.

3.7 Discussion

In this work, we have provided a general construction for random probability measures
with interaction across support points. Our approach is similar in spirit to the construc-
tion of NRMIs (Regazzini et al., 2003), but we use general point processes other than the
Poisson one to induce the desired dependence. We establish several distributional results,
which are useful for prior elicitation as well as for posterior simulation in Bayesian hierar-
chical mixture models. Our general theory is illustrated through the examples of Poisson,
Gibbs, and determinantal point processes. Furthermore, we discuss the use of shot-noise
Cox processes, which were not considered previously in connection with Bayesian mixture
models.

We plan to investigate several extensions. First, we could consider a version of shot-
noise Cox processes where Λ is not Poisson. For instance, we could assume the determi-
nantal shot-noise Cox process introduced in Møller and Vihrs (2022), which, in principle,
would favor well separated random components F̃j (see (3.20)). Moreover, we could relax
the assumption that Φ is simple (i.e., its atoms are pairwise different with probability
one), and consider hierarchical models such as Φ |Φ0 ∼ PRM(Φ0) and Φ0 ∼ P, where P
is a general law for a point process. This construction could be extended to the partially
exchangeable by considering a counterpart of the hierarchical processes in Camerlenghi

et al. (2019). For instance, we could assume Φi |Φ0
iid∼ PRM(Φ0), i = 1, . . . , g where each

random measure Φi is used to model a different collection of observations and the hier-
archical model for the Φi’s yields a “borrowing of strength” that is typical of Bayesian
inference. Along these lines, it would also be interesting to consider an extension of the
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(determinantal) shot-noise Cox process mixture to the partially exchangeable case, by
letting

Φi |Λ iid∼ PRM

(
γ

∫
kα(· − v)Λ(dv)

)
, i = 1, . . . , g.

Then, we could cluster observations (both within and across groups) based on the atoms
of Λ, which could result in a more flexible cluster detection. Finally, we could consider
more general classes of models such as feature sampling models or trait allocation models.

Another important aspect we plan to work on, is proposing more efficient MCMC
algorithms, for instance similar to the split-merge algorithm in Jain and Neal (2004) or
based on variational inference (Blei and Jordan, 2006) to handle moderately-dimensional
observations and parametric spaces.
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Appendix

3.A Background on Palm calculus

The basic tool used in our computations is a disintegration of the Campbell measure of
a point process Φ with respect to its mean measure MΦ, usually called Palm kernel or
family of Palm distributions of Φ. Below, we recall the main results needed later in this
chapter. For further details about Palm distributions and Palm calculus see, e.g., the
papers Kallenberg (1984); Coeurjolly et al. (2017) or the monographs Kallenberg (2017)
(Chapter 6), Daley and Vere-Jones (2008) (Chapter 13). Here, we adapt the notation from
the recent monograph Baccelli et al. (2020) (Chapter 3).

Let M(X) the space of bounded measures on X and denote with M(X) its σ-algebra.
For a point process Φ on X, let the mean measure MΦ: MΦ(B) := E[Φ(B)] for all B ∈ X .
We define the Campbell measure Cφ on X×M(X) as

CΦ(B × L) = E [Φ(B)1[Φ ∈ L]] , B ∈ X , L ∈M(X).

Then, there exists a MΦ-a.e. unique disintegration probability kernel {Px
Φ(·)}x∈X of Cφ

with respect to MΦ, i.e.

CΦ(B × L) =

∫

B
Px

Φ(L)MΦ(dx) B ∈ X , L ∈M(X)

Note that, for any x ∈ X, Px
Φ is the distribution of a random measure (specifically, a point

process) on X. Therefore, Px
Φ can be identified with the distribution of point process Φx

such that Px
Φ(L) = P(Φx ∈ L). Following Baccelli et al. (2020) we call Φx the Palm version

of Φ at x.

Theorem 3.5 (Campbell-Little-Mecke formula. Theorem 3.1.9 in Baccelli et al. (2020)).
Let Φ a point process on X such that MΦ is σ-finite. Denote with PΦ(·) its law. Let
{Px

Φ(·)}x∈X a family of Palm distributions of Φ. Then, for all measurable g : X×M(X)→
R+

E
[∫

X
g(x,Φ)Φ(dx)

]
=

∫

M(X)×X
g(x, ν)ν(dx)PΦ(dν) =

∫

X×M(X)
g(x, ν)Px

Φ(dν)MΦ(dx)

(3.21)

In many applications in spatial statistics, the Campbell-Little-Mecke formula is stated
in terms of the reduced Palm kernel Px

Φ!

E
[∫

X
g(x,Φ− δx)Φ(dx)

]
=

∫

X×M(X)
g(x, ν)Px

Φ!(dν)MΦ(dx)

where Φ − δx is obtained by removing the point x from Φ and Px
Φ! is the distribution of

the point process
Φ!
x := Φx − δx.
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Hence, given a reduced Palm kernel, we can construct the nonreduced one by considering
the distribution of Φ!

x + δx.
Given a point process Φ define the n-th Campbell measure

CnΦ(B × L) = E
[∫

B
1[Φ ∈ L]Φn(dx)

]
, B ∈ X⊗n, L ∈M(X)

where dx = dx1 · · · dxn and Φn(dx) =
∏n
i=1 Φ(dxi). Let Mn

Φ be the mean measure of Φn,
i.e. MΦn(B) = CN (B ×M(X)), then the n–th Palm distribution {PxΦ}x∈Xn is defined as
the disintegration kernel of Cn with respect to MΦn , that is

CnΦ(B × L) =

∫

B
PxΦ(L)MΦn(dx), B ∈ X⊗n, L ∈M(X)

The following is a multivariate extension to Theorem 3.5 that will be useful for later
computations

Theorem 3.6 (Higher order CLM formula.). Let Φ a point process on X such that MΦn

is σ-finite. Let {Px
Φ(·)}x∈Xn a family of n–th Palm distributions of Φ. Then, for all

measurable g : Xn ×M(X)→ R+

E
[∫

Xn
g(x,Φ)Φn(dx)

]
=

∫

Xn×M(X)
g(x, ν)Px

Φ(dν)MΦn(dx) (3.22)

3.B Preparatory Lemmas

We now state some results relating to independently marked point processes

Lemma 3.1. Let Ψ be an independently marked point process on X×S obtained by marking
a point process Φ on X with i.i.d marks {sj}j from a probability measure H, that does not
depend on the value of the associated atom xj. Then, the mean measure MΨ(dx, ds) is

MΨ(dx, ds) = H(ds)MΦ(dx)

Analogously, defining Ψn(dx, ds) =
∏n
i=1 Ψ(dxi, dsi), the n–th mean measure of Ψ

equals
MΨn(dx, ds) = Hn(ds)MΦn(dx)

Proof. Let C = A×B, A ∈ X B ∈ S

E[Ψ(C)] = E
[∑

1[xi ∈ A, si ∈ B]
]

= E
[∑

1[xi ∈ A]1[si ∈ B]
]

=
∑

E [1[xi ∈ A]1[si ∈ B]] =
∑

H(B)E [1[xi ∈ A]]

= H(B)E
[∑

1[xi ∈ A]
]

= H(B)MΦ(B)

The proof for the n–th mean measure is achieved following the same steps with A ∈ X⊗n
and B ∈ S⊗n.

Lemma 3.2. Let Ψ as in Proposition 3.1, then the Palm distribution {Px,s
Ψ }x,s∈X×S is

the distribution of the point process δ(x,s) + Ψ!
x,s, where Ψ!

x,s is an independently marked

point process obtained by marking Φ!
x ∼ Px

Φ! with i.i.d marks from H. Similarly, let
(x, s) = (x1, . . . , xn, s1, . . . , sn), the Palm distribution {Px,s

Ψ }x,s∈Xn×Sn is the distribution
of the point process

∑
δ(xi,si) + Ψ!

x,s, where Ψ!
x,s is an independently marked point process

obtained by marking Φ!
x ∼ Px

Φ with i.i.d. marks from H.
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Proof. By the CLM formula for the reduced Palm kernel, we know that Ψ!
x,s satisfies

E
[∫

X×S
g(x, s,Ψ− δ(x,s))Ψ(dx, ds)

]
=

∫

X×S
E
[
g(x, s,Ψ!

x,s)
]
MΨ(dx,ds) (3.23)

Consider now the point process Ψ′x,s obtained by marking Φ!
x with i.i.d marks from H, if

∫

X×S
E
[
g(x, s,Ψ′x,s)

]
MΨ(dx,ds) =

∫

X×S
E
[
g(x, s,Ψ!

x,s)
]
MΨ(dx,ds), (3.24)

for any g, we can conclude that Ψ′x,s and Ψ!
x,s are equal in distribution. To prove (3.24),

we will show that
∫

X×S
E
[
g(x, s,Ψ′x,s)

]
MΨ(dx,ds) = E

[∫

X×S
g(x, s,Ψ− δx,s)Ψ(dx, ds)

]

In the following, we indicate with Ex[f(x, z)] that the expectation is taken with respect
to the random variable x. Write Ψ′ = (Φ!,m) where m is the collection of marks. With
a slight abuse of notation, we write g(x, s,Ψ′x,s) = g(x, s,Φ!

x,m). Then

∫

X×S
EΨ

[
g(x, s,Ψ′x,s)

]
MΨ(dx,ds) =

∫

X×S
EΦ!

x,m

[
g(x, s,Φ!

x,m)
]
MΨ(dx,ds)

=

∫

X×S
EΦ!

x

[
Em

[
g(x, s,Φ!

x,m) |Φ!
x

]]
MΨ(dx,ds)

=

∫

X×S
EΦ!

x



∫

Sn!
g(x, s,Φ!

x,m)
∏

i:xi∈Φ!
x

H(dmi) |Φ!
x


MΦ(dx)H(ds)

where n! denotes the cardinality of Φ!
x. Denoting the cardinality of Φ with n, n! = n− 1,

By Fubini’s theorem, we can interchange the outher most integral over S with EΦ!
x
. Then,

we apply the CLM formula (in reverse order) with respect to Φ!
x obtaining

∫

X×S
EΨ

[
g(x, s,Ψ′x,s)

]
MΨ(dx, ds)

= EΦ

[∫

X

∫

Sn−1+1

g(x, s,Φx − δx,m)
∏

i:xi∈Φx−δx

H(dmi)H(ds)Φ(dx)

]

Now, observe that (Φ− δx,m) = Ψ− δx,s and Ψ(dx,ds) = H(ds)Φ(dx) so that the RHS
above equals

EΦ

[∫

X

∫

Sn−1

g(x, s,Ψ− δx,s)
∏

i:xi∈Φx−δx

H(dmi)Ψ(dx,ds)

]

= EΦ

[∫

Sn−1

∫

X
g(x, s,Ψ− δx,s)

∏

i:xi∈Φx−δx

H(dmi)Ψ(dx,ds)

]

= EΨ

[∫

X
g(x, s,Ψ− δx,s)Ψ(dx, ds)

]

which proves (3.24) and the results follows.
The proof for the n-th Palm distribution is obtained following the same lines construct-

ing Ψ′x,s from Φ!
x in an analogous way.
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Lemma 3.3. Let µ̃(A) =
∫
A×R+

sΨ(dxds) where Ψ =
∑

j≥1 δ(Xj ,Sj) is a marked point

process obtained by marking Φ =
∑

j δXj with i.i.d. marks Sj from a distribution H on
R+, then for any measurable f ≥ 0:

E
[
e−

∫
X
f(x)µ̃(dx)

]
= E

[
exp

(∫

X
logψ(f(x))Φ(dx)

)]

where ψ(f(x)) :=
∫
R+
e−sf(x)H(ds) is the Laplace transform of H evaluated at f(x).

Proof. By the tower property of the expected value, conditioning of Φ and taking the
expectation we obtain

E
[
exp

{
−
∫

X
f(x)µ̃(dx)

}]
= E


exp



−

∑

j≥1

Sjf(Xj)








= E


E


exp



−

∑

j≥1

Sjf(Xj))




∣∣∣Φ






= E


∏

j≥1

E
[
exp {−Sjf(Xj)}

∣∣∣Φ
]



= E


∏

j≥1

∫

R+

e−sf(Xj)H(ds)




= E


exp




∑

j≥1

log

(∫

R+

e−sf(Xj)H(ds)

)





= E
[
exp

(∫

X
logψ(f(x))Φ(dx)

)]

3.C Proofs

3.C.1 Proof of Proposition 3.1

Proof.

E[µ̃(A)] = E
[∫

A×R+

sΨ(dx,ds)

]

=

∫

A×R+

∫

M(A×R+)
sPx,s

Ψ (dν)MΨ(dx,ds)

=

∫

A×R+

sH(ds)Mφ(dx)

where the second equality follows from Theorem 3.5 with g(x, s,Ψ) = s while the third
follows from Proposition 3.1.

By the identity x−1 =
∫
R+
e−uxdu we have

E[p̃(A)] = E
[
µ̃(A)

µ̃(X)

]
=

E
[∫

R+

du

∫

A×R+

exp

(
−
∫

X×R+

utΨ(dz, dt)

)
sΨ(dx,ds)

]
.

58



Chapter 3. Marked Point Processes for Bayesian Nonparametric Modelling

We can further exchange the outermost expectation with the integral with respect to du

by Fubini theorem and apply Theorem 3.5 with g(x, s,Ψ) = exp
(
−
∫
X×R+

utΨ(dz, dt)
)
s,

leading to

E[p̃(A)] =

∫

R+

∫

A×R+

e−ussH(ds)E
[
e
−
∫
X×R+

uvΨ!
x,s(dz dv)

]
duMΦ(dx)

where Ψ!
x,s is the reduced Palm kernel of Ψ.

Cov(µ̃(A), µ̃(B)) = E[µ̃(A)µ̃(B)]− E[µ̃(A)]E[µ̃(B)].

Focusing on the first term we get

E[µ̃(A)µ̃(B)] = E
[∫

A×R+

∫

B×R+

stΨ(dx, ds)Ψ(dz, dt)

]

Let s = (s, t) and x = (x, s)

E[µ̃(A)µ̃(B)] = E

[∫

(X×R+)2

1A×B(x)stΨ(dx,ds)

]

an application of Theorem 3.6 with g(x, s,Ψ) = 1A×B(x)st yields the proof.

3.C.2 Proof of Theorem 3.1

Proof. The focus of our study is the characteristic functional of µ̃ given Y = y and Un = u:

E
[
e−

∫
X f(z)µ̃(dz)

∣∣∣Y = y, Un = u
]

=
E
[
e−

∫
X f(z)µ(dz)P(Y ∈ dy, U ∈ du | µ̃)

]

E [P(Y ∈ dy, U ∈ du | µ̃)]

First, observe that the expression in the denominator is obtained as a special case of the
expression of the numerator by letting f(x) = 0. Focusing on the numerator

E
[
e−

∫
X f(z)µ̃(dz)P(Y ∈ dy, U ∈ du | µ̃)

]

= E


e−

∫
X f(z)µ̃(dz)u

n−1

Γ(n)

k∏

j=1

µ̃(dy∗j )
nje−Tu




=
un−1

Γ(n)
E


e−

∫
X(f(z)+u)µ̃(dz)

k∏

j=1

µ̃(dy∗j )
nj




=
un−1

Γ(n)
E



∫

(X×R+)k
e−

∫
X(f(z)+u)µ̃(dz)

k∏

j=1

s
nj
j δy∗j (xj)Ψ(dxj ,dsj)




We are now in place to apply Theorem 3.6 on the marked point process Ψ. Defining

g(x, s,Ψ) = e−
∫
X(f(z)+u)µ̃(dz)

k∏

j=1

s
nj
j δy∗j (xj),

we obtain that

E
[
e−

∫
X f(z)µ̃(dz)P(Y ∈ dy, U ∈ du | µ̃)

]
=

un−1

Γ(n)

∫

(X×R+)k
EΨ∼Px,s

Ψ
[g(x, s,Ψ)]MΦk(dx)Hk(ds)
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where we have used MΨk(dx, ds) = MΦk(dx)Hk(ds) as in Proposition 3.1.

By the properties of the Palm distribution, Ψ ∼ Px,s
Ψ has the same law of

∑k
j=1 δxj ,sj +

Ψ!
x,s. Moreover, following Proposition 3.2, Ψ!

x,s =
∑

j δX̃j ,S̃j where Φ!
x :=

∑
δX̃ ∼ Px

Φ!

and the S̃j ’s are iid from H. Hence

EΨ∼Px,s
Ψ

[g(x, s,Ψ)] = E


g


x, s,

k∑

j=1

δ(xj ,sj) + Ψ!
x,s






where the expected value on the right hand side is taken with respect to Ψ!
x,s. Let

µ̃!
y∗(A) :=

∫
A×R+

sΨ!
x,s(dx,ds), then we have

g


x, s,

k∑

j=1

δxj ,sj + Ψ!
x,s


 =

exp


−

∫

X
(f(z) + u)




k∑

j=1

sjδxj (dz) + µ̃!(dz)






k∏

j=1

s
nj
j δy∗j (xj)

Hence,

E
[
e−

∫
X f(z)µ̃(dz)P(Y ∈ dy, U ∈ du | µ̃)

]
=

=
un−1

Γ(n)

∫

(X×R+)k
E


exp


−

∫

X
(f(z) + u)




k∑

j=1

sjδxj (dz) + µ̃!
y∗(dz)






k∏

j=1

s
nj
j δy∗j (xj)




×MΦk(dx)Hk(ds)

=
un−1

Γ(n)

∫

(X×R+)k
E
[
e−

∫
X(f(z)+u)µ̃!

y∗ (dz)
]

exp


−

∫

X
(f(z) + u)




k∑

j=1

sjδxj (dz)






×
k∏

j=1

s
nj
j δy∗j (xj)MΦk(dx)Hk(ds)

=
un−1

Γ(n)
E
[
e−

∫
X(f(z)+u)µ̃!

y∗ (dz)
]
MΦk(dy

∗)

k∏

j=1

∫

R+

e−(f(y∗k)+u)sjs
nj
j H(dsj)

Setting f = 0 yields the denominator

E [P(Y ∈ dy, U ∈ du | µ̃)] =

un−1

Γ(n)
E
[
e−

∫
X uµ̃

!
y∗ (dz)

]
MΦk(dy

∗)

k∏

j=1

∫

R+

e−usjs
nj
j H(dsj) (3.25)

Defining κ(u, nj) =
∫
R+
e−usjs

nj
j H(dsj), we obtain

E
[
exp

∫

X
−f(z)µ̃(dz)

∣∣∣∣Y = y, Un = u

]
=

E
[
e−

∫
X(f(z)+u)µ̃!

y∗ (dz)
]

E
[
e−

∫
X uµ̃

!
y∗ (dz)

]
k∏

j=1

e−f(y∗j )sje−usjs
nj
j

κ(u, nj)
H(dsj). (3.26)

60



Chapter 3. Marked Point Processes for Bayesian Nonparametric Modelling

The first term corresponds to the Laplace transform of µ̃, while in the second term we
recongize the Laplace transform of

∑k
j=1 S

∗
j δY ∗j where S∗j ∼ fS∗j (s) ∝ e−usjsnjj H(dsj).

The conditional distribution of u follows easily from (3.25) conditioning on y.

3.C.3 Proof of Theorem 3.2

The proof follows by integrating (3.25) with respect to u.

3.C.4 Proof of Theorem 3.3

Proof. In order to prove the theorem consider a sufficiently small ε > 0, so that the balls
Bε(y

∗
1), . . . , Bε(y

∗
k) are all disjoint and observe that

P(Yn+1 ∈ A |Y = y) = lim
ε→0

P(yn+1 ∈ A,Y ∈ ×kj=1B
nj
ε (y∗j ))

P(Y ∈ ×kj=1B
nj
ε (y∗j ))

. (3.27)

Now set A∗ := A \ ∪kj=1Bε(y
∗
j ), we then obtain that the ratio in the previous limit equals

P(Yn+1 ∈ A,Y ∈ ×kj=1B
nj
ε (y∗j ))

P(Y ∈ ×kj=1B
nj
ε (y∗j ))

=
P(Yn+1 ∈ A∗,Y ∈ ×kj=1B

nj
ε (y∗j ))

P(Y ∈ ×kj=1B
nj
ε (y∗j ))

+

k∑

j=1

P(Yn+1 ∈ Bε(y∗j ) ∩A,Y ∈ ×kj=1B
nj
ε (y∗j ))

P(Y ∈ ×kj=1B
nj
ε (y∗j ))

.

Now we exploit Theorem 3.2 to evaluate the previous expressions, in particular for the
first one we get

P(Yn+1 ∈ A∗,Y ∈ ×kj=1B
nj
ε (y∗j ))

P (Y ∈ ×kj=1B
nj
ε (y∗j ))

=

∫

A∗

∫

R+

u

n

E
[
e−

∫
X uµ̃

!
(y∗,y)(dz)

]

E
[
e−

∫
X uµ̃

!
y∗ (dz)

] mΦk+1(dy∗, y)

mΦk(dy∗)
κ(u, 1)fUn(u|y)duP0(dy)

+ o
( k∏

j=1

P0(Bε(y
∗
j ))
)

analogously, for any j = 1, . . . , k, one has

P(Yn+1 ∈ Bε(y∗j ) ∩A,Y ∈ ×kj=1B
nj
ε (y∗j ))

P(Y ∈ ×kj=1B
nj
ε (y∗j ))

=
1

P0(Bε(y∗j ))

∫

A∗∩Bε(y∗j )

∫

R+

u

n

κ(u, nj + 1)

κ(u, nj)
fUn(u|y)duP0(dy)

+ o
( k∏

j=1

P0(Bε(y
∗
j ))
)
.

By letting ε→ 0, we obtain the following result:

P(Yn+1 ∈ A |Y = y) =

∫

R+

u

n

k∑

j=1

κ(u, nj + 1)

κ(u, nj)
δy∗j (A)fUn(u |y)du+

∫

A

∫

R+

u

n
κ(u, 1)

E
[
e−

∫
X uµ

!
(y∗,y)(dz)

]

E
[
e−

∫
X uµ

!
y∗ (dz)

] MΦk+1(dy∗, y)

MΦk(dy∗)
fUn(u |y)dudy.

(3.28)
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where we used the Lebesgue Theorem and the fact that P0 is non-atomic. We can now ex-
ploit (Kallenberg, 2021, Lemma 8.16) to augment the probability space with the inclusion
of a random variable Un, such that the joint distribution of Yn+1 and Un, conditionally
given Y = y, is

P(Yn+1 ∈ A,Un ∈ B|Y = y) =

∫

B

u

n

k∑

j=1

κ(u, nj + 1)

κ(u, nj)
δy∗j (A)fUn(u |y)du

+

∫

A

∫

B

u

n
κ(u, 1)

E
[
e−

∫
X uµ

!
(y∗,y)(dz)

]

E
[
e−

∫
X uµ

!
y∗ (dz)

] MΦk+1(dy∗, y)

MΦk(dy∗)
fUn(u |y)dydu,

(3.29)

now the result follows thanks to the Bayes Theorem.

3.C.5 Proof of Proposition 3.2

Proof. First, observe that µ̃!
y∗(A) =

∑
j≥1 SjδXj (A) =

∫
A×R+

sΨ!
y∗ , where Ψ!

y∗ is obtained

by marking Φ!
y∗ (the reduced Palm version of Φ) with i.i.d. marks from H. So that,

denoting with n! the number of points in Φ!
y∗ we have

E
[
e−

∫
X
uµ̃!

y∗ (dx)
]

= E


E


exp


−

∑

j≥1

UnSjδXj (X)


 |Φ!

y∗






= E



n!∏

j=1

∫

R+

e−UnsH(ds)




= E[ψ(Un)n
!

]

Let qr = P (n! = r), r = 0, 1, . . . the probability mass faction of the number of points

in Φ!
y∗ , so that E[ψ(u)n

!

] =
∑

r≥0 ψ(u)rqr, then we can write the marginal as

P(Y ∗ ∈ dy∗,N = n) =

∫

R+

un−1

Γ(n)
E
[
e−

∫
X uµ̃

!
y∗ (dz)

] k∏

j=1

κ(u, nj)duMΦk(dy
∗)

=

∫

R+

un−1

Γ(n)

∑

r≥0

ψ(u)rqr

k∏

j=1

κ(u, nj)duMΦk(dy
∗)

=
∑

r≥0

qr

∫

R+

un−1

Γ(n)
ψ(u)r

k∏

j=1

κ(u, nj)duMΦk(dy
∗)

where the third equality follows from Fubini’s theorem.
Then, by the definition of V (n1, . . . , nk; r) we have

P(Kn = k,Y ∗ ∈ dy∗) =
1

k!

∞∑

r=0

( ∑

n1+···+nk=n

(
n

n1 · · ·nk

)
V (n1, . . . , nk; r)

)
qr MΦk(dy

∗)
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3.C.6 Proof of Corollary 3.1

We have that ψ(u) = (u + 1)−α and κ(u, n) = (α)n(u + 1)−(n+α), where (α)n := Γ(α +
n)/Γ(α) denotes the rising factorial or Pochhammer symbol. Moreover,

V (n1, . . . , nk; r) =

∫

R+

un−1

Γ(n)
ψ(u)r

k∏

j=1

κ(u, nj)du

=
1

Γ(n)

k∏

j=1

(α)nj

∫
un−1

(u+ 1)n+αk+αr
du

=
1

Γ(n)

k∏

j=1

(α)nj
Γ ((k + r)α)

Γ ((k + r)α+ n)

Hence

P(Y ∗ ∈ dy∗,N = n) =
1

Γ(n)

k∏

j=1

(α)nj


∑

r≥0

qr
Γ (k + r)α)

Γ ((k + r)α+ n)


 MΦk(dy

∗),

and

P(Kn = k,Y ∗ ∈ dy∗) =
1

Γ(n)


∑

r≥0

qr
Γ (k + r)α)

Γ ((k + r)α+ n)


MΦk(dy

∗)

× 1

k!

∑

n1+···+nk=n

(
n

n1 · · ·nk

) k∏

j=1

(α)nj

=
1

Γ(n)
αkS−1,k

n,k


∑

r≥0

qr
Γ (k + r)α)

Γ ((k + r)α+ n)


MΦk(dy

∗)

where S−1,k
n,k denotes the generalized Stirling number.

3.D Details about the Poisson point process Examples

Theorem 3.7. Let Φ be a Poisson point process with intensity ν(x)dx. Then the random
measure µ̃ equals the distribution of

∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is a Poisson process with intensity given by Ψ(u)λ(dx) and the marks S′j are

i.i.d. with distribution

H ′(ds) :=
e−suH(ds)∫

R+ e−suH(ds)
.

Proof. The random measure µ̃′ in Theorem 3.1 has Laplace functional (3.9). By Lemma
3.3, we have that the numerator can be expressed as

E
[
exp

{
−
∫

X
(f(z) + u)µ̃!

y∗(dz)

}]
= E

[
exp

(∫

X

∫

R+

e−s(f(z)+u)H(ds)Φ!
y∗(dx)

)]
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Where Φ!
y∗ is the reduced Palm version of Φ at y∗. Thanks to the properties of the

Poisson process, we have that Φ!
y∗ equals to Φ in distribution. Hence, the expectation can

be evaluated using the Lévy-Khintchine representation:

E
[
exp

{
−
∫

X
(f(z) + u)µ̃!

y∗(dz)

}]
= exp

(
−
∫

X

∫

R+

1− e−s(f(z)+u)H(ds)ν(x)dx

)
.

The same expression can be derived for the denominator setting f = 0. Combining
numerator and denominator we have that

E
[
exp

∫

X
−f(z)µ̃′(dz)

]

= exp

(
−
∫

X

∫

R+

−e−s(f(z)+u) + e−suH(ds)ν(x)dx

)

= exp

(
−
∫

X

∫

R+

(
1− e−sf(z)

)
e−suH(ds)ν(x)dx

)

multiplying and dividing by ψ(u) :=
∫
R+
e−suH(ds) we can recognize the Laplace trans-

form of the random measure
µ̃′ =

∑

j≥1

S′jδX′j

where the S′j ’s are i.i.d. random variables with density ψ(u)−1e−suH(ds) and
∑

j δX′j is a

Poisson process with intensity ψ(u)ν(x)dx.

3.E Details about the Gibbs point process Examples

Proposition 3.4. The k-th moment measure of a Gibbs point process with density fΦ with
respect to a Poisson point process with intensity λ is

MΦk(B) = EN


fΦ


N +

k∑

j=1

δxj






Proof. Let B = B1 × · · · ×Bk, Bj ∈ X , then

MΦk(B) =

∫

M(X)

k∏

j=1

ν(Bj)PΦ(dν) =

∫

M(X)

k∏

j=1

ν(Bj)fΦ(ν)PN (dν)

= EN



∫

Xk

k∏

j=1

I[xj ∈ Bj ]fΦ(N)Nk(dx1, . . . ,dxk)




=

∫

Xk
EN


fΦ


N +

k∑

j=1

δxj




λ(dx1) · · ·λ(dxk)

Where the last equation follows from applying the CLM formula to the Poisson process
N , for which N !

x ∼ N and the fact that Mk
N = λk.

Proposition 3.5. The k-th reduced Palm distribution of a Gibbs point process with density
fΦ with respect to a Poisson point process with intensity λ is the distribution of another
Gibbs point process Φ!

x with density

fΦ!
x
(ν) =

fΦ(ν +
∑k

j=1 δxj )

EN
[
fΦ(N +

∑k
j=1 δxj )

]
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with respect to N .

Theorem 3.8. If Φ is a Gibbs point process with density fΦ, the random measure µ̃′ equals
the distribution of ∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is of Gibbs type with density with respect to the Poisson process N given by

fΦ′(ν) :=
exp

{∫
X log

( ∫
R+
e−suH(ds)

)
ν(dx)

}
fΦ(ν +

∑k
j=1 δy∗j )

EN
[
exp

{∫
X log

( ∫
R+
e−suH(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δy∗j )

] ,

and the marks S′j are i.i.d. with distribution

H ′(ds) :=
e−suH(ds)∫

R+ e−suH(ds)
.

Proof. The random measure µ̃′ in Theorem 3.1 has Laplace functional (3.9), in order to
characterize its distribution we first evaluate the numerator in (3.9). From Lemma 3.3,
we have

E
[
exp

{
−
∫

X
(f(z) + u)µ̃!

y∗(dz)

}]
= E


∏

j≥1

∫

R+

e−s(f(Xj)+u)H(ds)




where the Xj ’s are the support points of µ̃!
y∗ . We now exploit Proposition 3.5 to evaluate

the last expected value. Indeed, by virtue of this proposition, Φ!
y∗ is again a Gibbs point

process with density with respect to the Poisson process N given by

fΦ!
y∗

(ν) =
fΦ(ν +

∑k
j=1 δy∗j )

EN
[
fΦ(N +

∑k
j=1 δy∗j )

] , ν ∈M(X).

As a consequence one has:

E
[
exp

{
−
∫

X
(f(z) + u)µ̃!

y∗(dz)

}]
= E


exp




∑

j≥1

log
(∫

R+

e−s(f(Xj)+u)H(ds)
)







= E
[
exp

{∫

X
log
(∫

R+

e−s(f(x)+u)H(ds)
)

Φ!
y∗(dx)

}]

=
EN
[
exp

{∫
X log

( ∫
R+
e−s(f(x)+u)H(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δy∗j )

]

EN
[
fΦ(N +

∑k
j=1 δy∗j )

] .

The previous expression corresponds to the numerator in (3.9), while the denominator
follows by considering the function f = 0, thus one has

E
[
exp

∫

X
−f(z)µ̃′(dz)

]

=
EN
[
exp

{∫
X log

( ∫
R+
e−s(f(x)+u)H(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δy∗j )

]

EN
[
exp

{∫
X log

( ∫
R+
e−suH(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δy∗j )

]
. (3.30)
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The last expression in (3.30) may be rearranged as follows

EN
[
exp

{∫

X
log
(∫

R+

e−sf(x)H ′(ds)
)
N(dx)

}
fΦ′(N)

]

where fΦ′ is a density with respect to a Poisson process N defined as

fΦ′(ν) :=
exp

{∫
X log

( ∫
R+
e−suH(ds)

)
ν(dx)

}
fΦ(ν +

∑k
j=1 δy∗j )

EN
[
exp

{∫
X log

( ∫
R+
e−suH(ds)

)
N(dx)

}
fΦ(N +

∑k
j=1 δy∗j )

]

and H ′ is a new measure on the positive real line R+ defined as

H ′(ds) :=
e−suH(ds)∫

R+ e−suH(ds)

which is an exponential tilting of H. As a consequence we can conclude that µ̃′ is a random
measure that can be represented as follows

µ̃′
d
=

∫

A×R+

sΨ′(dx,ds), Ψ′ :=
∑

j≥1

δ(X′j ,S
′
j)

and Ψ′ is obtained by marking Φ!
y∗ with i.i.d. marks having distribution H ′.

3.E.1 Marginal distribution under a Gibbs point process

Consider now the marginal distribution in Theorem 3.2. By propositions 3.4 and 3.5, we
have that

P(Y ∈ dy |Un) ∝
k∏

j=1

κ(Un, nj)E
[
e−

∫
X Unµ̃

!
y∗ (dx)

]
MΦk(dy

∗)

=

k∏

j=1

κ(u, nj)E
[
exp

(∫

X
logψ(u)N(dx)

)
fΦ!

y∗
(N)

]
E
[
fΦ!

y∗
(N)

]

=

k∏

j=1

κ(u, nj)E


exp

(∫

X
logψ(u)N(dx)

)
fΦ(N +

k∑

j=1

δy∗j )




3.F Details about the DPP Examples

Theorem 3.9. Assume that Φ is a DPP with kernel K. Moreover assume that its eigen-
values λj in (3.5) are all strictly smaller than one. Then, the random measure µ̃ equals
the distribution of ∑

j≥1

S′jδX′j

where Ψ′ :=
∑

j≥1 δ(X′j ,S
′
j)

is a marked point process whose unmarked point process Φ′ :=∑
j≥1 δX′j is a DPP with density with respect to the unit rate Poisson process on S given

by fφ(ν) ∝ det[C ′(xi, xj)](xi,xj)∈ν , where

C ′(x, y) = ψ(u)


C(x, y)−

k∑

i,j=1

(
C−1
y∗
)
i,j
C(x, y∗i )C(y, y∗j )


 ,
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and the marks S′j are i.i.d. with distribution

H ′(ds) :=
e−suH(ds)∫

R+ e−suH(ds)
.

Proof. Since by hypothesis the DPP Φ has density with respect to the Poisson process,
it is possible to apply Theorem 3.8 also in this case, so that the point process Φ′ has
unnormalized density

qΦ′(ν) = ψ(u)nνfΦ


ν +

k∑

j=1

δy∗j




Let ν :=
∑nν

j δxj , then the density fΦ equals to the determinant of the matrix




C(y∗1, y
∗
1) · · · C(y∗1, y

∗
k) C(y∗1, x1) · · · C(y∗1, xnν )

...
...

...
...

C(y∗k, y
∗
1) · · · C(y∗k, y

∗
k) C(y∗k, x1) · · · C(y∗k, xnν )

C(x1, y
∗
1) · · · C(x1, y

∗
k) C(x1, x1) · · · C(x1, xnν )

...
...

...
...

C(xnν , y
∗
1) · · · C(xnν , y

∗
k) C(xnν , x1) · · · C(xnν , xnν )




Let Cy∗ denote the upper left block, Cxy the bottom left one and Cxx the bottom right
one. Then, thanks to Schur’s determinant identity, and ignoring the terms that do not
depend on ν we have

qΦ′(ν) = ψ(u)nν det(Cxx − CxyC−1
y∗ C

T
xy).

Let

C ′(x, y) = ψ(u)


C(x, y)−

k∑

i,j=1

(
C−1
y∗
)
i,j
C(x, y∗i )C(y, y∗j )


 ,

then it is easy to see that qΦ′(ν) = det[C ′(xi, xj)](xi,xj)∈ν . Therefore, we can conclude that
Φ′ is a DPP

3.G Details about the shot-noise Cox process example

3.G.1 Auxiliary Results

Lemma 3.4. Let Φ be a shot-noise Cox process. Then the reduced Palm distribution of
Φ at x = (x1, . . . , xk) equals the law of the point process Φ′ +

∑k
j=1 Φζj , where: Φ′ is

distributed as Φ, conditional to ζ = (ζ1, . . . , ζk), each Φζj is a Poisson point process with
intensity νζj (dx) = γkα(ζj − x)dx, and

ζj ∼ pζ(v) =
γkα(xj − v)ν(dv)

mΦ(dxj)

When k = 1, an equivalent result, stated in terms of spatial point patterns, is found in
Møller (2003).
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Proof. Let x = (x1, . . . , xk), then

E



∫

Xk
g(x,Φ−

k∑

j=1

δxj )Φ
k(dx)


 = EΛ

[
EΦ|Λ

[∫

Xk
g(x,Φ)Φk(dx) |Λ

]]

= EΛ



∫

Xk
EΦ|Λ [g (x,Φ) |Λ]

k∏

j=1

νΛ(dxj)




= EΛ

[∫

X
g′(y,Λ)Λk(dy)

]

where y = (y1, . . . , yk) and

g′(y,Λ) =

∫

Xk
EΦ|Λ [g (x,Φ) |Λ]

k∏

j=1

γkα(xj − yj)dxj

while the second equation follows from the Slyvniak-Mecke theorem. Again by Slyvniak-
Mecke theorem, we have that

E



∫

Xk
g(x,Φ−

k∑

j=1

δxj )Φ
k(dx)


 =

∫

Xk
EΛ

[
g′(y,Λ)

] k∏

j=1

λ(dyj)

=

∫

Xk
EΛ



∫

Xk
EΦ|Λ+

∑k
j=1 δyj

[g (x,Φ) |Λ]

k∏

j=1

γkα(xj − yj)dxj




k∏

j=1

λ(dyj)

=

∫

Xk
EΛ



∫

Xk
EΦ|Λ+

∑k
j=1 δyj

[g (x,Φ) |Λ]

k∏

j=1

γkα(xj − yj)λ(dyj)




k∏

j=1

dxj

where Φ|Λ +
∑k

j=1 δyj is a Poisson process with intensity νΛ(x)dx+
∑k

j=1 γkα(x− yj)dx
and the last equality follows from Fubini’s theorem. Focusing on the innermost integral,
by multiplying and dividing by

∏k
j=1mΦ(xj) = γk

∫
Xk
∏k
j=1 kα(xj − zj)λ(dzj), we have

that we can introduce k auxiliary variables ζ := (ζ1, . . . , ζk) independently distributed as

ζj ∼ pζ(y) =
γkα(xj − yj)λ(dyj)

mΦ(dxj)

such that

∫

Xk
EΦ|Λ+

∑k
j=1 δyj

[g (x,Φ) |Λ]

k∏

j=1

γkα(xj − yj)λ(dyj) =

Eζ
[
EΦ|Λ+

∑k
j=1 δζj

[g(x,Φ + δx) |Λ]
]
Mk

Φ(dx).

Hence, we can recognize in the term EΛ

[
Eζ
[
EΦ|Λ+

∑k
j=1 δxj

[g(x,Φ + δx) |Λ]
]]

the law of a

Cox process with random intensity νΛ,ζ(dx) = γ
∫
X kα(x− y)

(
Λ +

∑k
j=1 δζj

)
(dy) dx.

The proof follows by writing Φ|Λ +
∑k

j=1 δζj as the sum of k + 1 independent Poisson

processes, the first one with random intensity νΛ(x)dx =
∫
X γkα(x − y)Λ(dy)dx and the

remaining ones with random intensity νζj = γkα(x− ζj), j = 1, . . . , k.
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Lemma 3.5. Let Ψ′ =
∑

j≥1 δX′j ,S′j where S′
iid∼ H ′ and Φ′ =

∑
j≥1 δX′j is a shot-noise

Cox point process with base intensity ρ′. Let

µ′(A) =

∫

A×R+

sΨ′(dxds)

Then for any f ≥ 0

E
[
e−

∫
X f(x)µ′(dx)

]
= exp

{
−
∫

X
1− exp

(
−
∫

X
γkα(x− y)

∫

R+

1− e−sf(x)H ′(ds)dx

)
ρ′(dy)

}

Proof. By Lemma 3.3 we have that

E
[
e−

∫
X f(x)µ′(dx)

]
= E

[
exp

{∫

X
log

(∫

R+

e−sf(x)H ′(ds)

)
Φ′(dx)

}]

Then by the tower property of the expected value and exploiting the Lévy-Kintchine
representation and Fubini’s theorem, we have

E
[
e−

∫
X f(x)µ′(dx)

]
= E

[
E
[
exp

{∫

X
log

(∫

R+

e−sf(x)H ′(ds)

)
Φ′(dx)

}
|Λ
]]

= E
[
exp

{
−
∫

X

(
1−

∫

R+

e−sf(x)H ′(ds)

)
γ

∫

X
kα(x− y)Λ(dy)dx

}]

= E
[
exp

{
−
∫

X

∫

X
γkα(x− y)

∫

R+

(
1− e−sf(x)H ′(ds)

)
dxΛ(dy)

}]

= exp

{
−
∫

X
1− exp

(
−
∫

X
γkα(x− y)

∫

R+

1− e−sf(x)H ′(ds)dx

)
ρ′(dy)

}

Lemma 3.6. Let Φ be a shot-noise Cox process with kernel kα and base intensity ρ. Define
η(x1, . . . , xl) :=

∫ ∏l
i=1 kα(xi − v)ν(dv). Then

Mk
Φ(dx1 · · · dxk) = γk

k∑

j=1

∑

C1,...Cj∈(∗)

j∏

l=1

η(xCl)dx1 · · · dxk.

where (∗) denotes all the partition of k elements in j groups.

Proof. By Campbell’s theorem:

Mk
Φ(dx) = E

[
k∏

i=1

E [Φ(dxi) |Λ]

]
= γkE

[∫

Xk

k∏

i=1

kα(xi − vi)Λ(dv1) · · ·Λ(dvk)

]
dx1 · · · dxk

= γk
∫

Xk

k∏

i=1

kα(xi − vi)MΛk(dv1 · · · dvk)dx1 · · · dxk

where MΛk is the k-th moment measure of the Poisson point process Λ, which can be
expressed as

MΛk(dv1 · · · dvk) =

k∑

j=1

∑

C1,...Cj∈(∗)

j∏

l=1

[
ν(dvCl1)

∏

m∈Cl

δvCl1 (vClm)

]
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where (∗) denotes all the partition of k elements in j groups. Then

Mk
Φ(dx) = γk

k∑

j=1

∑

C1,...Cj∈(∗)

∫

Xk

k∏

i=1

kα(xi − vi)
j∏

l=1

[
ν(dvCl1)

∏

m∈Cl

δvCl1 (vClm)

]
dx1 · · · dxk

observe that the integral over Xk has a nice interpretation of product of marginals of

models of the kind xCl := (xi : i ∈ Cl) | vCl1
iid∼ kα(· | vCl1), vCl1 ∼ ρ. Denoting with η(xCl)

the marginal distribution for the model, the integral can be expressed as
∏j
l=1 η(xCl)

leading to

Mk
Φ(dx) = γk

k∑

j=1

∑

C1,...Cj∈(∗)

j∏

l=1

η(xCl)dx1 · · · dxk.

3.G.2 Proof of Theorem 3.4

We are now ready to prove Theorem 3.4

Proof. Consider first the numerator in (3.9) as

E
[
e−

∫
X

(f(x)+u)µ!(dx)
]

= E
[
exp

{∫

X
log

(∫

R+

e−(f(x)+u)H(ds)

)
Φ!
y∗(dx)

}]
.

Recall now that, from Proposition 3.4

Φ!
y∗(dx) = Φ′ +

k∑

j=1

Φζj

so that

E
[
e−

∫
X

(f(x)+u)µ!(dx)
]

=

k∏

j=1

E
[
e
∫
X log

(∫
R+

e−(f(x)+u)sH(ds)
)

Φζj (dx)
]
×

E
[
e
∫
X log

(∫
R+

e−(f(x)+u)sH(ds)
)

Φ′(dx)
]

The denominator in (3.9) can be recovered in the previous expressions setting f ≡ 0.
Therefore, we can evaluate a product of ratio of expectations. Let us consider the term
involving Φ′ first. Proceeding along the same lines of Lemma 3.5, we have

E
[
e
∫
X log

(∫
R+

e−(f(x)+u)sH(ds)
)

Φ′(dx)
]

=

= EΛ

[
E
[
e
∫
X log

(∫
R+

e−(f(x)+u)H(ds)
)

Φ′(dx) |Λ
]]

= EΛ

[
exp

{
−
∫

X
1−

(∫

R+

e−(f(x)+u)sH(ds)

)
γ

∫

X
kα(x− y)Λ(dy)dx

}]

= EΛ

[
exp

{
−
∫

X

∫

X
1−

(∫

R+

e−(f(x)+u)sH(ds)

)
γkα(x− y)dxΛ(dy)

}]

= exp

{
−
∫

X
1− exp

[
−
∫

X
1−

(∫

R+

e−(f(x)+u)sH(ds)

)
γkα(x− y)dx

]
ν(dy)

}
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where the second equality follows from the Lévy-Khintchine representation for Φ′ |Λ, the
third one by Fubini’s theorem and the last one from the Lévy-Khintchine representation
for Λ. When f ≡ 0 the expression reduces to

E
[
e
∫
X log

(∫
R+

e−usH(ds)
)

Φ′(dx)
]

=

= exp

{
−
∫

X
1− exp

[
−γ
∫

R+

1− e−usH(ds)

]
ν(dy)

}

Taking the ratio of the two yields

E
[
e
∫
X log

(∫
R+

e−(f(x)+u)sH(ds)
)

Φ′(dx)
]

E
[
e
∫
X log

(∫
R+

e−usH(ds)
)

Φ′(dx)
]

= exp

{
−
∫

X
exp

[
−γ
∫

R+

1− e−usH(ds)

]
−

exp

[
−
∫

X
γkα(x− y)

∫

R+

1− e−(f(x)+u)sH(ds)dx

]
ν(dy)

}

= exp

{
−
∫

X

[
1− exp

(
−
∫

X
γkα(x− y)

∫

R
e−sf(x)e−usH(ds)dx

)]

× e−γ
∫
R+

1−e−usH(ds)
ν(dy)

}

where we recognize the same expression in Lemma 3.5 by setting

H ′(ds) :=
e−usH(ds)∫

R+
e−usH(ds)

and ρ′(dy) = e
−γ
∫
R+

1−e−usH(ds)
ν(dy).

Regarding the ratio involving one of the Φζj , using the same techniques as above it is
easy to show that

E
[
e
∫
X log

(∫
R+

e−(f(x)+u)sH(ds)
)

Φζj (dx)
]

E
[
e
∫
X log

(∫
R+

e−usH(ds)
)

Φζj (dx)
] =

Eζj
[
exp

(
−
∫

X
1−

∫

R+

e−f(x)sH ′(ds)e
−γ
∫
R+

1−e−usH(ds)
λζj (dx)

)]

where we recognize on the right hand side the Laplace transform of the random mea-

sure µ̃ζj =
∑

j≥1 S
′
jδX′j where S′j

iid∼ H ′(ds) (defined above) and the point process Φζj =
∑

j≥1 δX′j is a Poisson point process with random intensity λζj (dx) = γe
−γ
∫
R+

1−e−usH(ds)
kα(ζj−

x)dx and

ζj ∼ pζ(y) =
γkα(xj − y)λ(dy)

mΦ(dxj)
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3.G.3 Marginal and Predictive distribution

We can take advantage of the hierarchical structure of the shot noise cox process to eval-
uate the predictive distribution in Theorem 3.3. In the following, we assume that kα(x)
integrates to one for simplicity. From Lemma 3.3

E
[
e−

∫
X uµ

!
y∗ (dx)

]
= E

[
exp

{
− logψ(u)Φ!(X)

}]

= E [exp {− logψ(u)Φ0(X)}]
k∏

j=1

E
[
exp

{
− logψ(u)Φζj (X)

}]

Observe that Φζj (X), conditionally to ζj is a Poisson random variable with parameter
γ
∫
X kα(x− ζj)dx = γ, so that its law is independent of ζj . Hence

E
[
exp

{
− logψ(u)Φζj (X)

}]
= exp

{
γ(ψ(u)−1 − 1)

}
(3.31)

Φ0(X) is distributed as a shot-noise cox process, so that conditionally to Λ ∼ PRM(ρ) we
have Φ0(X) |Λ ∼ Poi(γΛ(X)). Letting λ ≡

∫
X ν(x)dx:

E [exp {− logψ(u)Φ0(X)}] = exp
{
λ
(
eγ(ψ(u)−1−1) − 1

)}
(3.32)

Combining Equations (3.32) and (3.31) accounts for the exponential term in Corollary 3.3,
while the moment measure is as in Lemma 3.6.

Finally, observe that the ratio of expected values in Theorem 3.3 reduces to

E
[
e−

∫
X uµ

!
(y∗,y)(dz)

]

E
[
e−

∫
X uµ

!
y∗ (dz)

] = exp
{
γ(ψ(u)−1 − 1)

}
.

3.G.4 Details about the MCMC algorithm

Let Λ =
∑

m δvm be the directing Poisson process. We introduce auxiliary latent variables
th, one for each atom of the measure µ so that xh |Λ, th = k ∼ kα(x− vk).

1. Sample u ∼ Γ(n, T ),

2. Consider the concatenation of all the atoms in the measure µ, i.e.,
y∗1, . . . , y

∗
k, x1,1, . . . , x1,n1

, . . . , xk,1, . . . , xk,nk , x
′
1, . . . , x

′
n′ , where the first k correspond

to the allocated points of support, the following n1 correspond to the measure µζ1
and so on, the last n′ correspond to the measure µ′ in Theorem 3.4. Denote them
with x1, . . . , xK and analogously for γ1, . . . , γK and s1, . . . , sK . Sample the cluster
allocations from a categorical distribution with weights

P (ci = h | rest) ∝ shf(yi |xh, γh)

Relabel cluster allocation labels so that the ka unique values in c are {1, . . . ,m} and
the mixture components analogously.

3. Sample the active part

(a) Sample sh ∼ p(s) ∝ snhe−ush(s), h = 1, . . . , ka

(b) Sample xh ∼ p(x) ∝∏i:ci=h
f(yi |x, γh)kα(x− vth) h = 1, . . . , ka

(c) Sample γh ∼ p(γ) ∝∏i:ci=h
f(yi |xh, γ)π(γ)
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4. Sample the non-active part

(a) For h = 1, . . . , k

i. sample ζh ∼ pζh(v) ∝ kα(xh − v)λ(v)

ii. sample xh,1, . . . , xh,nh from a Poisson process with intensity λ′ζh as in The-
orem 3.4, set the corresponding variables th,1, . . . , th,nh equal to k + h

iii. sample x′1, . . . , x
′
nh from a shot-noise Cox process with base intensity ρ′

as in as in Theorem 3.4, set the corresponding variables t′1, . . . , t
′
n′ by the

generative process.

(b) For all the xh’s simulated above, sample sh ∼ p(s) ∝ e−ush(s), h = ka + 1, . . .

(c) For all the xh’s simulated above, sample γh ∼ π(γ)

5. Sample the latent Poisson process

(a) Sample the latent variables th from a categorical distribution over all the atoms
of Λ with weights P (th = k | rest) ∝ kα(xh−vh). Relabel the th’s and the atoms
of Λ so that the unique values in the th’s are the first ones.

(b) Sample the latent centers vk from p(v) ∝∏h:th=k kα(xh − v)λ(v)
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4. Clustering high dimensional data via latent repulsive
mixtures

In this chapter, we extend the construction of repulsive mixture models in Chapter 2 to the
high-dimensional setting, that is, when the data are p dimensional and p is large compared
to the sample size. We extend the Lamb model proposed in Chandra et al. (2020), by
assuming an anisotropic repulsive mixture for the prior of the cluster centers, which is
essential to obtain well separated clusters of observations. In particular, we propose a
general construction for anisotropic determinantal point processes, which generalizes the
construction in Lavancier et al. (2015), providing easy-to-check conditions for the existence
of the process as well as explicit formulas for its spectral density, which is essential for
simulations.

4.1 Introduction

High-dimensional data are routinely collected in a vast number of applicative fields, such
as genomics (see Kiselev et al., 2019, for a review on single-cell data), text mining (Blei
et al., 2003), and ecology (Dunstan et al., 2013). In this chapter, we consider observations
y1, . . . , yn ∈ Rp, where p is large compared to n. Cluster analysis might be particularly
useful for such high-dimensional datasets, as it provides a straightforward procedure for
exploring the data by exploiting the latent structure arising from similar observations.
Moreover, it can be an important preprocessing step for subsequent analyses.

Bayesian model-based clustering is appealing in the large p setting, as it implicitly
quantifies uncertainty. Although a variety of models have been proposed in the literature
(Neal, 2003; Teh et al., 2007; Duan and Dunson, 2021; Natarajan et al., 2021) Bayesian
mixtures are the most direct model for model-based clustering; see Fruhwirth-Schnatter
et al. (2019) for a recent review. In mixture models, it is assumed that data are generated
from m (either random or fixed) homogeneous populations. Typically, each population is
assumed to be suitably modelled via a parametric density fθ(·) for some parameter θ ∈ Θ.
Weights w = (w1, . . . , wm) (wh ≥ 0,

∑m
h=1wh = 1) specify the relative frequency of each

population. Summing up, the conditional distribution of data, given parameters, under
the mixture model takes the form

y1, . . . , yn |w,θ iid∼ p(·) =

m∑

h=1

whfθh(·) (4.1)

Under the Bayesian approach, suitable priors are assumed for w, θ = (θ1, . . . , θm), and m.
The poor performance of Bayesian mixtures in the large-p setting is well-known. The

issue is not only due to the poor scalability of the algorithms for posterior inference (see,
e.g., Malsiner-Walli et al., 2016; Celeux et al., 2019), but, as shown in Chandra et al.
(2020) has its roots in the choice of the mixture kernel fθ in (4.1). Specifically, Theorem
1 together with Corollaries 1 and 2 in Chandra et al. (2020) entail that the popular
Gaussian distribution leads to inconsistent clustering when p → ∞: if the covariance
matrix is cluster-specific, then with probability one all the observations will be clustered
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into a different singleton cluster, while if the covariance matrix is shared through all the
clusters, only one cluster is detected.

To overcome such limitations, Chandra et al. (2020) propose to use LAMB, a class of
factor analytic models (see Section 4.2 below) where clustering is performed at a latent
level, on d � p dimensional latent parameters. Essentially, LAMB assumes that data
yi ∈ Rp lie close to a hyperplane of dimension d, with the addition of a Gaussian error.
Such a hypothesis, although probably unrealistic, is common to all factor analytic models.
Despite possible misspecification, due to the high degree of interpretability inherited by
the linear structure (in fact, it is possible to interpret the matrix of factor loadings as well
as the scores), factor models enjoy a large popularity in several fields such as genomics
(Lucas et al., 2006; Carvalho et al., 2008), econometrics (Geweke and Zhou, 1996) and
ecology (Schiavon et al., 2022).

Although LAMB models overcome the cluster inconsistency commonly caused by in-
appropriate choices of fθ in the large-p setting, we still may expect the clustering to be
inconsistent for two reasons. First, the LAMB model in Chandra et al. (2020) assumes a
Dirichlet process (DP) prior for the latent variables and cluster inconsistency under the
broader class of Pitman–Yor processes has been established in Miller and Harrison (2014b).
The second reason has to deal with the impact of misspecification in mixture models, as
recently investigated in Cai et al. (2021). Indeed, they show that, even if one replaced
the inconsistent DP with a finite mixture model with a random number of components
(see Miller and Harrison, 2018, and the references therein) or with an overfitted mixture
(Rousseau and Mengersen, 2011), the model would tend to overestimate the number of
clusters. In fact, in case of misspecified likelihoods, the number of components would need
to be larger than the number of populations in the data in order to well approximate the
data-generating density.

In general, when a mixture model is not well specified, we can identify a trade-off
between the accuracy of cluster detection and density estimate: better density estimates
necessarily yield poorer cluster estimates. As shown in Cai et al. (2021), traditional
mixture models tend to favor density over cluster estimates. Repulsive mixture models
(Beraha et al., 2022, and the references therein) are an attempt to reverse the trade-off
in favor of better cluster estimates: by encouraging well-separated components, repulsive
mixtures usually have poorer density estimates, but do not overestimate the number of
clusters.

In the present chapter, we propose APPLAM: Anisotropic (repulsive) Point Process
LAtent Mixture. We combine the idea behind LAMB with repulsive mixture models,
where a repulsive point process is assumed as prior for the cluster-specific parameters.
We argue that in order to have well separated clusters of data, it is not sufficient to have
well separated clusters at the latent level, but the repulsion should take into account
also the factor analytic model that links the latent variables to the observations. To this
end, we propose to employ an anisotropic determinantal point process (DPP) as the prior
distribution for the cluster specific parameters, where the anisotropy is driven by the
matrix of factor loadings. We derive a general construction of anisotropic DPPs inducing
the desired repulsion. We show existence conditions for our class of DPPs that resemble the
ones in Lavancier et al. (2015) and further provide an explicit expression for the spectral
density of the DPP, which is essential for simulation purposes. Moreover, we design an
efficient block Gibbs sampler for posterior simulations.

The rest of the chapter is organized as follows. Section 4.2 contains a concise introduc-
tion to repulsive mixture models and the main results concerning the general construction
of anisotropic DPPs. Section 4.3 gives details of the MCMC sampling, with particular
emphasis on the update of the matrix of factor loadings. In Section 4.4 we provide two
simulation studies comparing our model and the Lamb model of Chandra et al. (2020),
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showing how, under model misspecification, our model results in more robust as well as
more accurate posterior inference. The Appendix contains the proofs for our theoretical
results, measure theoretic details, and further plots and tables about the simulations.

4.2 Methodology

4.2.1 Bayesian clustering via latent mixtures

Let y1, . . . , yn ∈ Rp, Λ ∈ Rp×d be the matrix of factor loadings, η1, . . . , ηn ∈ Rd be a set of
latent factors, and Σ = diag(σ2

1, . . . , σ
2
p) (σj > 0) be a diagonal covariance matrix. Let Np

denote the p–dimensional Gaussian distribution. As in Chandra et al. (2020), we assume
the following LAMB model

yi | ηi,Λ,Σ ind∼ Np(Ληi,Σ), i = 1, . . . , n

ηi |w,θ iid∼ p(z) =

m∑

h=1

whfθh(z), i = 1, . . . , n,
(4.2)

where fθh is a generic probability density function on Rd. The prior for w = (w1, . . . , wm),
θ = (θ1, . . . , θm), m, Λ and the σj ’s will be specified in Section 4.2.3 below.

Introducing a set of latent cluster indicator variables ci such that P (ci = h |w) = wh,
we can equivalently state the prior for the ηi’s in (4.2) as

ηi | ci = h,θ
ind∼ fθh , i = 1, . . . , n. (4.3)

Therefore, a cluster model is induced among the yi’s through the latent variables ηi’s. In
particular, yi and yj belong to the same cluster if ηi and ηj do, that is, if ci = cj .

A meaningful and interpretable clustering is obtained (a posteriori) if the observations
belonging to different clusters are well separated. Repulsive mixture models encourage
well separated clusters by assuming a prior for the cluster centers that favors regular (i.e.,
well separated) point configurations. For instance, if the θh’s in (4.2) were cluster centers,
we could easily force that P (‖θh − θk‖ > δ) = 1 for any user-defined δ by assuming that
{θ1, . . . , θm} is distributed as an hardcore point process (Møller and Waagepetersen, 2004).
Alternatively, as in Quinlan et al. (2020); Xie and Xu (2019); Beraha et al. (2022) we could
have a “softer” control over the distance by assuming a pairwise interaction point process.
This means that, the point pattern θ := {θ1, . . . , θm} has a density with respect to the
unit-rate Poisson point process (defined on a suitable space) given by

p({θ1, . . . , θm}) =
1

Z

m∏

j=1

φ1(θj)
∏

1≤h<k≤m
φ2(‖θh − θk‖) (4.4)

where φ1 is bounded, φ2 is nondecreasing, and Z is a normalization constant that is usually
intractable. See Daley and Vere-Jones (2008) and Møller and Waagepetersen (2004) for
the definition of density with respect to a Poisson point process.

In the LAMB setting, this prior choice would ensure that different clusters are asso-
ciated with well-separated latent scores ηi’ s, but is this enough to ensure well-separated
clusters of data yi’s? Let us now consider the case where fθ is the d–dimensional Gaussian
distribution and θh = (µh,∆h) where µh ∈ Rd is the mean vector and ∆h is a d × d
symmetric and positive definite covariance matrix. By the properties of the Gaussian
distribution, we have that

{yi : ci = h} | c,µ,∆,Λ
iid∼ Np(Λµh,Λ∆hΛ>).
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Hence, it is clear that it is not sufficient to encourage a priori that ‖µh − µk‖ is large
to obtain well separated clusters of datapoints, as the distance between cluster centers is
‖Λµh − Λµh‖. To this end, we could easily modify (4.4) as

p({µ1, . . . , µm} |Λ) =
1

Z

m∏

j=1

φ1(µj)
∏

1≤h<k≤m
φ2(‖Λµh − Λµk‖), (4.5)

where the normalizing constant Z depends on φ1, φ2 and, most importantly, on Λ. Note
that ‖Λµh − Λµk‖2 = (µh − µk)>(Λ>Λ)(µh − µk) := ‖µh − µk‖2Λ>Λ. Therefore, we are

essentially considering (4.4) under a different metric on Rd, that is, a weighted Euclidean
metric.

Beraha et al. (2022) discuss how to sample the parameters in any specific choice of φ1

and φ2 by means of the exchange algorithm (Møller et al., 2006; Murray et al., 2006). This
requires sampling from the distribution of µ (via a perfect simulation algorithm), and it
is shown that this is actually feasible when the number of components in the mixture is
small. Essentially, the exchange algorithm uses a random-walk proposal in a Metropolis-
Hastings move on an extended parameter space, where an auxiliary variable is introduced
to get rid of the ratio of intractable normalizing constants in the acceptance rate.

Note that, in Beraha et al. (2022), only a single one-dimensional parameter (appearing
in the expression of φ1) needs to be updated via the exchange algorithm. In our case,
instead, (4.5) depends on the high-dimensional parameter Λ. Our preliminary investigation
showed that updating Λ using the exchange algorithm results in extremely poor mixing
due to the high-dimensionality of the matrix Λ. Unfortunately, the normalizing constant
Z in the density of µ makes it impossible to employ gradient-based sampling algorithms.

In the rest of the chapter, as a prior for {µ1, . . . , µh}, we propose an anisotropic deter-
minantal point process (DPP), defined in the next section, where an analytical expression
of the normalizing constant Z is found. This allows us to employ the popular Metropolis-
adjusted Langevin algorithm when sampling from the full conditional of Λ, leading to
better MCMC chains even when p is large. Furthermore, we provide an analytical ex-
pression for the gradient of (the logarithm of) the DPP density with respect to Λ and
show that it is numerically cheap to compute, especially when compared to the gradients
computed via automatic differentiation algorithms.

4.2.2 A general construction for anisotropic DPPs

Let Φ be a point process on (Rd,B(Rd)). We will consider Φ as a random point configura-
tion Φ ≡ {µ1, . . . , µm} ⊂ Rd or as a random counting measure Φ(B) =

∑
µj∈Φ 1[µj ∈ B]

depending on the convenience.
Determinantal point processes (DPPs) are usually defined in terms of their m-th facto-

rial moment measures (Macchi, 1975; Lavancier et al., 2015; Baccelli et al., 2020). Briefly,
the m-th factorial measure of Φ is defined as

Φ(m)(B1 × · · · ×Bm) =

6=∑

µ1,...,µm∈Φ

1[µ1 ∈ B1] · · ·1[µm ∈ Bm]

for measurable B1, . . . , Bm ⊂ Rd. The summation is intended over all m-tuples of pairwise
different points in Φ. The m-th factorial moment measure simply defined as MΦ(m)(B1 ×
· · · ×Bm) = E

[
Φ(m)(B1 × · · · ×Bm)

]
, where the expectation is with respect to Φ.

In order to define a DPP, let K : Rd × Rd → C be a continuous covariance kernel.
Then Φ is a DPP on Rd if, for all m = 1, 2, . . ., its m-th factorial moment measure has
a density (with respect to the m-folded product of the d-dimensional Lebesgue measure)
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which equals

ρm(µ1, . . . , µm) = det{K(µh, µk)}h,k=1,...,m, µ1, . . . , µm ∈ Rd.

By Mercer’s theorem K(x, y) =
∑

j≥1 γjξj(x)ξj(y) where the ξj ’s form an orthonormal

basis for L2(Rd;C) of complex-valued functions and the γj ’s are a summable nonnegative
sequence. Then, existence of a DPP with kernel K is equivalent to γj ≤ 1 for all j, see
Macchi (1975). When restricted to a compact S ⊂ Rd, Φ is still a DPP with kernel K
(but restricted to S ×S). In particular, if γj < 1 for all j, Φ has a density with respect to
the unit rate Poisson point process on S given by

p({µ1, . . . , µm}) = e|S|−D det{C(µh, µk)}h,k=1,...,m, µ1, . . . , µm ∈ S.

where C(x, y) =
∑

j≥1 γj/(1 − γj)ξj(x)ξj(y), |S| =
∫
S dx, and D = −∑j≥1 log(1 − γj).

See Lavancier et al. (2015) for a proof of such results.
It is clear that analytic expressions for γj are crucial for inferential purposes. Following

the so-called “spectral approach” by Lavancier et al. (2015), Bianchini et al. (2020) and
Beraha et al. (2022) assume K(x, y) = K0(x−y). Instead of modelling K, they fix the ξj ’s
as the Fourier basis and assume a parametric model for the γj ’s. This approach ensures the
positive-definitiness of K and the existence of the DPP density, but is somewhat limited.
In fact, in Bianchini et al. (2020) and Beraha et al. (2022), K is a stationary and isotropic
function, i.e., K(x, y) = K0(‖x−y‖). In particular, isotropy is in opposition with our goal
of forcing repulsion across the Λµh’s. Here below, we provide a general construction for
stationary anisotropic DPPs, providing explicit expression for the Fourier transform of its
kernel K0, and easy-to-check conditions that guarantee the existence of the DPP.

Theorem 4.1. Let Λ be a (fixed) p × d real matrix with full rank. Let W be a strictly
positive random variable and let h(y) be the marginal density of the random variable Y
defined as

Y |W ∼ Nd(0,W (ΛTΛ)−1) (4.6)

Let K0(x) = ρh(x)/h(0) for x ∈ Rd and ρ > 0. Then there exists a DPP Φ on Rd with
kernel K(x, y) = K0(x− y) for ρ ≤ ρmax defined as

ρmax =
|ΛTΛ| 12
(2π)

d

2

E
[
W−

d

2

]
, (4.7)

and

K0(x) =
ρ

E
[
W−

d

2

] E
[
W−

d

2 exp

(
−||Λx||

2

2W

)]
, x ∈ Rd. (4.8)

If ϕ(x) = F(K0)(x) denotes the Fourier transform of K0, we have that

ϕ(x) =
ρ

h(0)
E
[
exp
(
−2π2WxT (ΛTΛ)−1x

)]
, x ∈ Rd (4.9)

Moreover, for any compact S ⊂ Rd, the restriction of Φ to S admits a density with respect
to the unit rate Poisson point process on S if ρ < ρmax.

The parameter ρ in Theorem 4.1 is the intensity of the process, i.e., it controls the
distribution of the number of points in the process. In particular, the expected number
of points is equal to ρ. The condition ρ < ρmax translates into a well-known trade-
off between the intensity of the process and the repulsiveness (Lavancier et al., 2015).
Observe that the DPP defined in Theorem 4.1 matches our desiderata of introducing
repulsion among {Λx1, . . . ,Λxm} instead of among {x1, . . . , xm}. The specific shape of
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the described repulsion is determined by the appropriate choice of the random variable
W ∼ p(w) as described below. Let us remark that explicit knowledge of the Fourier
transform is essential for simulation purposes, as one typically approximates the density
of the DPP using ϕ as described in Section 4.3.1.

In the rest of the chapter, we consider two specific choices for the random variable W
in Theorem 4.1, leading to anisotropic counterparts of the Gaussian and Whittle-Matern
DPPs discussed in Lavancier et al. (2015), referred to as Gaussian-like and Whittle-Matern-
like DPPs in the following. Other choices of W are possible, but may lead to expressions
for ϕ(x) that are not available in closed form. In this case, ϕ(x) could be approximated
via Monte Carlo integration.

Corollary 4.1. Using the same notation as in Theorem 4.1, let W be a degenerate random
variable defined as

W = |ΛTΛ| 1d c− 2

d , c > 0,

where Λ is fixed. Then the kernel K0, its Fourier transform ϕ = F(K0) and ρmax equal
respectively

K0(x) = ρ exp

(
− ||Λx||2

2|ΛTΛ| 1d c− 2

d

)
, x ∈ Rd

ϕ(x) = ρ
(2π)

d

2

c
exp

(
−2π2|ΛTΛ| 1d c− 2

dxT (ΛTΛ)−1x

)
, x ∈ Rd (4.10)

ρmax =
c

(2π)d/2

To show the effect of Λ, we consider the pair correlation function (PCF, Lavancier
et al., 2015)

g(µ1, µ2) = 1− K0(µ1, µ2)K0(µ2, µ1)

K0(µ1, µ1)K0(µ2, µ2)
= 1− exp

(
− ||Λx||2

2|ΛTΛ| 1d c− 2

d

)2

, µ1, µ2 ∈ Rd

and set p = d = 2 for visual purposes. Figure 4.2.1 shows the PCFs of two Gaussian-
like DPPs with different Λ ∈ R2×2. In the left panel, Λ has eigenvectors e1 = (1, 0)T ,
e2 = (0, 1)T and eigenvalues λ1 = 1, λ2 = λ, which induces stronger repulsion along the
horizontal axis than along the vertical one. In the right panel, Λ has eigenvectors e1 =√

2/2 · (1, 1)T , e2 =
√

2/2 · (−1, 1)T and eigenvalues λ1 = 1, λ2 = λ, which induces stronger
repulsion along the bisector of the first quadrant than along the orthogonal direction.

Corollary 4.2. Using the same notation of Theorem 4.1, let

W ∼ Gamma

(
ν +

d

2
,

1

2|ΛTΛ| 1dα2

)
, ν, α > 0,

where Λ is fixed. Then the kernel K0, its Fourier transform ϕ = F(K0) and ρmax equal
respectively

K0(x) = ρ
21−ν

Γ(ν)

∥∥∥∥∥
Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

ν

Kν

(∥∥∥∥∥
Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

)
, x ∈ Rd

ϕ(x) = ρ
Γ(ν + d

2)

Γ(ν)

(2
√
πα)d

(
1 + 4π2α2|ΛTΛ| 1d xT (ΛTΛ)−1x

)ν+ d

2

, x ∈ Rd (4.11)

ρmax =
Γ(ν)

Γ(ν + d
2) (2
√
πα)d

where Kν is the modified Bessel function of the second kind.
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Figure 4.2.1: Pair correlation function of two Gaussian-like DPPs, one showing strong
repulsion along the horizontal direction (left plot) and one showing strong repulsion along
the bisector of the first quadrant (right plot).

In the following, we will use notation Φ ∼ DPP(ρ,Λ,K0;S) to denote the law of a DPP
on S with intensity ρ, kernel K0 and anisotropy driven by Λ. Although the intensity and
Λ are implicitly appearing inside the definition of K0, we make it explicit in our notation
to stress the importance of the parameters ρ and Λ.

4.2.3 APPLAM

The APPLAM model assumes likelihood (4.2), where fθ is the d-dimensional Gaussian
distribution with parameters θ = (µ,∆). We complete prior specification as follows. First,
we assume an anisotropic DPP prior for the cluster centers of the latent mixture, that is

{µ1, . . . , µm} |Λ ∼ DPP(ρ,Λ,K0;S)

where K0 is either the Gaussian-like or the Whittle-Matérn-like kernel as defined in Corol-
laries 4.1 and 4.2. The choice of the compact set S is discussed in Section 4.3.1. The
number of components m in the mixture (4.2) is random as well. In particular, note that
P (m = 0) > 0 under the DPP prior. This may not be a concern in practice since a poste-
riori we always get P (m = 0 |y) = 0. However, to have a well defined model we condition
on m > 0. For a DPP, P (m = 0) = 1 − e−D so that we can assume the point process
density

p({µ1, . . . , µm} |Λ) = fDPP(µ | ρ,Λ,K0;S)

=
e|S|−D

1− e−D det{C(µh, µk)}h,k=1,...,m, m ≥ 1, µ1, . . . , µm ∈ S (4.12)

and p(∅ |Λ) = 0. Conditional to {µ1, . . . , µm} (and in particular only to m) we assume

w1, . . . , wm |m ∼ Dirichlet(α, . . . , α)

∆1, . . . ,∆m |m iid∼ IWd(ν0,Ψ0)
(4.13)

where IWd(ν0,Ψ0) denotes the d-dimensional inverse Wishart distribution, with ν0 > d−1
degrees of freedom and mean Ψ0/(ν0 − d− 1).

As in Chandra et al. (2020) we assume that the diagonal elements σ2
j of Σ are inde-

pendent and

σ2
j

iid∼ inv-Ga(aσ, bσ), j = 1, . . . , p (4.14)
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Finally, a Dirichlet-Laplace prior with parameter a is assumed for Λ, that is, denoting
with λjh the elements of Λ,

λjh |φ, τ, ψ ind∼ N (0, ψjhφ
2
jhτ

2), j = 1, . . . , p h = 1, . . . , d

vec(φ) ∼ Dir(a, . . . , a), ψjh
iid∼ Exp(1/2), τ ∼ Gamma(pda, 1/2)

(4.15)

where, for any p× d real matrix A, vec(A) denotes the real vector of dimension p× d such
that vec(A)p(h−1)+j = (A)j,h.

4.3 Posterior Simulation

4.3.1 Approximation of the DPP density

The DPP density in (4.12) cannot be evaluated in closed form due to the infinite series
appearing in the expression of D and C. We follow Lavancier et al. (2015) and approximate
it as follows. First, consider the case S = [−1/2, 1/2]d. Let ZN = {−N, . . . , N} for N > 0,
for m ≥ 1, µ1, . . . , µm ∈ S, we define

fapp
DPP(µ | ρ,Λ,K0;S) =

e|S|−D
app

1− e−Dapp det{Capp(µh, µk)}h,k=1,...,m

Capp(x, y) =
∑

k∈ZdN

ϕ(k)

1− ϕ(k)
exp (2πi〈k, x− y〉) , x, y ∈ S

Dapp = −
∑

k∈ZdN

log(1− ϕ(k)).

(4.16)

The truncation level N controls both the quality of the approximation and the upper
bound of Nd for the total number of points m in the DPP (see Equation (2.10) in Lavancier
et al., 2015). We found that for Bayesian mixture modelling, small levels of truncation
like N = 3, 5 produce satisfactory results. This is likely because the use of repulsive priors
favors small values of m.

Finally, to approximate the density of DPPs defined on a hyperrectangular region R
different from [−1/2, 1/2]d, it is sufficient to consider an affine transformation T : R→ S
and perform a change of variable. In Beraha et al. (2022), R is fixed as the smallest
hyperrectangle containing all the observations in an empirical Bayes fashion. Note that
this procedure implicitly introduces anisotropy on the resulting point process if R is not
a hypersquare. Therefore, we argue that R should be a hypersquare so that

fapp
DPP(µ | ρ,Λ,K0;R) =

|R|−m e|S|−D
app

1− e−Dapp det{Capp(Tµh, Tµk)}h,k=1,...,m, m ≥ 1, µ1, . . . , µm ∈ R

In the rest of the chapter, we always fix R = [−50, 50]d. Note that marginally, each µj is
uniformly distributed on R. Numerical simulations show that posterior inference is robust
with respect to R.

4.3.2 Gibbs sampling algorithm

Prior formulation in (4.13) is not amenable for posterior inference, as the sum-to-one
constraint on w leads to complex split-merge reversible jump moves with poor mixing of
the chain. As in Beraha et al. (2022) we consider the prior for w as the normalization of
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independent Gamma-distributed random variables, i.e.

w =

(
S1

T
, . . . ,

Sm
T

)
, T =

m∑

h=1

Sh, Sh
iid∼ Ga(α, β) (4.17)

Conditional to c we consider µ = µ(a) ∪ µ(na), S = [S(a),S(na)] and ∆ = [∆(a),∆(na)]
into allocated and non-allocated components (denoted with the (a) and (na) superscript,
respectively). Combining the likelihood (4.2) with prior assumptions (4.12)-(4.15), we can
see that the joint distribution of data and parameters has a density, whose expression
is reported in Appendix 4.B together with the dominating measure. The normalization

of the weights leads to a term T−n =
(∑

S
(a)
h +

∑
S

(na)
`

)−n
in the expression of the

joint density, which makes it impossible to factorize the density according to the allocated
and non-allocated components. As in Beraha et al. (2022), to overcome this issue, we
introduce an auxiliary random variable u |T ∼ Gamma(n, T ). The joint density of data
and parameters is then

p(y, c,η,µ(a),µ(na),S(a),S(na)∆(a),∆(na),Σ,Λ,ψ,φ, τ, u) =

un−1

Γ(n)

[
n∏

i=1

Np(yi |Ληi,Σ)

][
k∏

h=1

e−uS
(a)
h (S

(a)
h )nhGa(S

(a)
h |α, 1)IW(∆

(a)
h | ν0,Ψ0)

×
∏

i:ci=h

Nd(ηi |µ(a)
h ,∆

(a)
h )

][∏̀

h=1

e−uS
(na)
h Ga(S

(na)
h |α, 1)IW(∆

(na)
h | ν0,Ψ0)

]

fapp
DPP(µ(a) ∪ µ(na) | ρ,Λ,K0;R)

p∏

j=1

[
inv-Ga(σ2

j | aσ, bσ)

d∏

h=1

N (λjh | 0, ψjhφ2
jhτ)

×
d∏

h=1

Exp(Ψjd | 1/2)

]
Dir(vec(φ) | a)Ga(τ | pda, 1/2)

Then, a Metropolis-within-Gibbs algorithm can be summarized in the following steps.

1. Update of (ψ, τ, φ). Following Bhattacharya et al. (2015) sample

ψjh |λjh, φjh, τ ind∼ giG

(
1

2
, 1,

λ2
jh

φ2
jhτ

2

)

τ |φ,Λ ∼ giG

(
p · d · (a− 1), 1, 2

∑

j=1:p
h=1:d

|λjh|
φjh

)

φjh =
Tjh
T
, Tjh

ind∼ giG( a− 1, 1, 2|λjh| ), T :=
∑

j,h

Tjh,

for j = 1, . . . , p, h = 1, . . . , d, where giG denotes the generalized inverse-Gaussian
distribution.

2. Update of Λ. Sample from the full conditional density

p(Λ | · · · ) ∝ p(y |Λ,η,Σ)p(Λ |φ, τ, ψ)fapp
DPP(µ | ρ,Λ,K0;R)

using Metropolis-Hastings step, see Section 4.3.3 for further details.
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3. Update of Σ. Sample each σ2
j independently from

σ2
j | y(j),η, λ(j) ind∼ inv −Ga

(
n

2
+ aσ,

1

2

n∑

i=1

(
y

(j)
i − λ(j)T ηi

)2

+ bσ

)

where λ(j)> is the j-th row of Λ and y(j) = (y1j , . . . , ynj)
>.

4. Update of the non-allocated variables (µ(na), s(na),∆(na)). Following Beraha et al.
(2022) we disintegrate the joint full conditional of the non-allocated variables as

p(µ(na), s(na),∆(na) | rest) = p(µ(na) | rest)p(s(na) |µ(na), rest)p(∆(na) |µ(na), rest),

where “rest” identifies all the variables except for (µ(na), s(na),∆(na)). Then µ(na) | rest
is a Gibbs point process with density

p({µ(na)
1 , . . . , µ

(na)
` } | rest) ∝ fapp

DPP({µ(na)
1 , . . . , µ

(na)
` } ∪ µ(a) | ρ,Λ,K0;R)ψ(u)`

where ψ(u) = E[e−uS ]. We employ the birth-death Metropolis-Hastings algorithm
in Geyer and Møller (1994) to sample from this point process density. Given µ(na)

it is straightforward to show

∆
(na)
1 , . . . ,∆

(na)
` | · · · iid∼ IWd(Ψ0, ν)

S
(na)
1 , . . . , S

(na)
` | · · · iid∼ Gamma(α, 1 + u)

5. Update of the allocated variables (µ(a), s(a),∆(a)). Let k be the number of unique
values in c and assume that the active components are the first k. We can sample
the allocated variables using a Gibbs scan. It is trivial to show that

S
(a)
h | · · ·

ind∼ Gamma(α+ nh, 1 + u)

∆
(a)
h | · · ·

ind∼ IWd

(
Ψ0 +

∑

i:ci=h

(ηi − µ(a)
h )(ηi − µ(a)

h )> , ν + nh

)
.

The full conditional of µ(a) is proportional to

p(µ(a) | · · · ) ∝ fapp
DPP(µ(a) ∪ µ(na) | ρ,Λ,K0;R)

k∏

h=1

∏

i:ci=h

Nd(ηi |µ(a)
h ,∆

(a)
h )

and we use a Metropolis-Hastings step to sample from it.

6. Update of the latent allocation variables c. We found it useful to marginalize over
the ηi’s to get better mixing chains. Hence, we can sample each ci independently
from a discrete distribution over {1, . . . , k + `} with weights ωih:

ωih ∝ S(a)
h Np(yi |Λµ

(a)
h ,Σ + Λ∆

(a)
h Λ>), h = 1, . . . , k

ωik+h ∝ S(na)
h Np(yi |Λµ(na)

h ,Σ + Λ∆
(na)
h Λ>), h = 1, . . . , `

Each evaluation of the p-dimensional Gaussian density would require O(p3) oper-
ations if some care is not taken. However, we take advantage from the special
structure of the covariance matrix. Using Woodbury’s matrix identity we have that

(
Σ + Λ∆Λ>

)−1
= Σ−1 − Σ−1Λ

(
∆−1 + Λ>Σ−1Λ

)−1
Λ>Σ−1,
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where the inversion is now required for a d × d matrix. Therefore, evaluating the
quadratic form in the exponential can be done in a linear time with respect to p.
Moreover, the determinant of the covariance matrix can be computed using the
matrix determinant lemma as

det(Σ + Λ∆Λ>) = det(∆−1 + Λ>Σ−1Λ) det(∆) det(Σ).

This is computed without additional cost by caching operations from the previous
matrix inversion.

7. Update of the ancillary variable u ∼ Gamma(n, T )

8. Update of the latent scores η. For i = 1, . . . , n, sample each ηi independently from

ηi | · · · ind∼ Nd(mi , Si)

where

Si =

(
ΛTΣ−1Λ + (∆(a)

ci )−1

)−1

, mi = Si

(
ΛTΣ−1yi + (∆(a)

ci )−1µ(a)
ci

)

4.3.3 Updating Λ using gradient-based MCMC algorithms

As mentioned in Section 4.2.1, sampling from Λ’s full conditional is non-trivial. In par-
ticular, we found that random-walk Metropolis-Hastings led to very poor mixing of the
MCMC chain, while the adaptive Metropolis-Hastings algorithm in Haario et al. (2001)
is not feasible here due to the high dimensionality of Λ. Gradient-based MCMC algo-
rithms such as the Metropolis adjusted Langevin Algorithm (Roberts and Tweedie, 1996)
or Hamiltonian Monte Carlo (Neal et al., 2011) are thus the preferred solution here. The
target full-conditional density is

p(Λ | · · · ) ∝ p(y |Λ,η,Σ)

× |R|−n e1−Dapp

1− e−Dapp det[Capp](Tµ1, . . . , Tµn)

× p(Λ |φ, τ, ψ)

(4.18)

Although not explicitly stated, Dapp and Capp both depend on Λ. Automatic differen-
tiation (AD, Griewank et al., 1989) provides an easy way to get gradients of functions.
In a nutshell, AD exploits the chain rule of derivatives to obtain an analytically exact
evaluation of the gradient of a function implemented in a software program. Therefore,
we can get ∇ log(p(Λ | · · · )) simply by writing a function that evaluates log(p(Λ | · · · )).
However, AD introduces a large number of additional parameters to the software execution
to track all the computations involved. We found that in our particular case, computing
∇ log(p(Λ | · · · )) by means of AD is feasible only in trivial scenarios, i.e. up to p = 50 and
d = 3 due to RAM memory requirements. See Figure 4.C.1. This is likely due to the large
number of computations involving Λ needed to evaluate (4.18).

The next theorem provides the analytical expressions for ∇ log(p(Λ | · · · )) when the
DPP involved is Gaussian-like and Whittle-Matern-like.

Theorem 4.2. Under the Gaussian-like DPP prior, the gradient of the log-full conditional
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density of Λ equals

∇ log p(Λ | · · · ) = Σ−1
n∑

i=1

(yi − Ληi)η
>
i +

+ (2π2c−
2
d )
∑

k∈ZdN

g(k) ϕ(k)

(1− ϕ(k))2

[ 1− ϕ(k)

1− e−Dapp − vTk (Capp)−1 uk

]
+

− 1

(ψ � φ2)τ2
� Λ

where ϕ(k) refers to (4.10), � denotes the elementwise (Hadamard) product,

g(k) = 2|ΛTΛ|
1
dΛ(ΛTΛ)−1

[1

d
kT (ΛTΛ)−1k1d − k((ΛTΛ)−1k)T

]
,

uk and vk are m-dimensional column vectors for each k ∈ Zd with entries

(uk)j = e2πikTTµj , (vk)j = e−2πikTTµj , j = 1, . . . ,m

and Capp := Capp(Tµ1, . . . , Tµn).
Similarly, under the Whittle-Matern-like DPP prior, the gradient of the log-full condi-

tional density of Λ equals

∇ log p(Λ | · · · ) = Σ−1
n∑

i=1

(yi − Ληi)η
>
i +

+ 4π2α2

(
ν +

d

2

) ∑

k∈ZdN

g(k)

a(k)

ϕ(k)

(1− ϕ(k))2

[ 1− ϕ(k)

1− e−Dapp − vTk (Capp)−1 uk

]
+

− 1

(ψ � φ2)τ2
� Λ

where ϕ(k) refers to (4.11) and

a(k) = 1 + 4π2α2|ΛTΛ| 1dkT (ΛTΛ)−1k

Figure 4.C.1 in the Appendix reports a comparison of the memory requirements and
the runtime execution for completing one iteration of our MCMC algorithm with n = 100
samples as p and d vary using the AD gradients or our analytical expressions. While
memory requirement increases exponentially in d in both cases (this is to be expected
given the sum over ZdN in the DPP density, see (4.16)), using the AD gradients requires
roughly two orders of magnitude more memory, which makes a significant difference in
practice. The runtimes are of one order of magnitude larger when using AD as well.

In our code, we use the MALA algorithm to update Λ, where the stepsize parameter
is tuned running short preliminary chains to get an acceptance rate around 20%. In
particular, we found that values between 10−8 and 10−10 usually give satisfactory results.

4.4 Simulation Studies

We illustrate the comparison between the APPLAM model with Gaussian-like DPP (4.10)
and the Lamb model of Chandra et al. (2020) on two different sets of simulated datasets,
referred to as simulation studies A and B. Let tp(m,Σ, ν) denote the multivariate Student
distribution with location m, scale matrix Σ and degrees of freedom ν, with density

f(x) =
Γ((ν + p)/2)

Γ(ν/2)νp/2πp/2|Σ|1/2
[
1 +

1

ν
(x−m)TΣ−1(x−m)

]−(ν+p)/2

, x ∈ Rp
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In simulation study A, data are generated from the latent factor model (4.2) mis-
specified by replacing the Gaussian likelihood with the multivariate Student distribution
tp(m,Σ, ν), specifically

yi | ηi,Λ,Σ ind∼ tp(yi |Ληi, Σ, 3) i = 1, . . . , n

where Σ = 0.5 · Ip and Λ is fixed. Moreover, 50 samples of ηi ∈ Rd are drawn from each
of M = 4 Gaussian kernels with means µh, h = 1, . . . ,M = 4, and identity covariance
matrices. Differently from scenario A, the simulation study B introduces the misspecifica-
tion of the generating mechanism at the latent factors level rather than on the likelihood.
Specifically, data are generated from the likelihood in (4.2), with Σ = 0.5 · Ip and Λ fixed.
Moreover, 50 samples of ηi ∈ Rd are drawn from each of M = 4 multivariate Student
kernels td(µh, Id, 3), h = 1, . . . ,M = 4. Moreover, for both the simulation studies A and
B, we consider p = {100, 200, 400} and d = {2, 5, 8} and the data are standardized for the
analysis.

4.4.1 Hyperparameters elicitation and MCMC details

The elicitation for the common hyperparameters in APPLAM and Lamb follows the default
choices of Chandra et al. (2020). Specifically, we set aσ = 1, bσ = 0.3 in (4.14) and a = 0.5
in (4.15). Moreover, Lamb assumes a Dirichlet process location-scale mixture of Gaussian
densities for the latent factors. In particular, the Normal inverse Wishart distribution is
taken as base measure, with location µ0, scale k, covariance matrix Ψ0 and degrees of
freedom ν0. The default choice sets µ0 as the null vector, k = 0.001, Ψ0 = δ · Id, with
δ = 20 and ν0 = d+50. Coherently, for APPLAM we set Ψ0 = δ ·Id, δ = 20 and ν0 = d+50
in (4.13). Finally, we set α = 1, β = 3 in (4.17).

It is not straightforward to match the prior knowledge expressed by the concentration
parameter of the Dirichlet process αDP in Lamb and the pair (ρ, c) (see (4.10)), in AP-
PLAM. Indeed, αDP controls the prior distribution of the number of clusters (i.e., allocated
components) under the Dirichlet Process prior, while the pair (ρ, c) controls the repulsive-
ness of the DPP and its intensity, that is the distribution of the number of components m
in the mixture.

Therefore, we limit ourselves to evaluate empirically the robustness to the choice of
these parameters in our simulations. In particular, we consider αDP = {0.1, 0.5, 1}, which
correspond to an a priori expected number of clusters of 1.57, 3.63, and 5.88 respectively.
For our model instead, we set cρ such that ρ = ρmax/2 as in Bianchini et al. (2020) and
Beraha et al. (2022), and consider ρ = {5, 10, 20}. In particular, ρ equals to the expected
number of components a priori.

For each run of the APPLAM model, we perform 2 · 103 burn-in iterations and 4 · 103

iterations with thinning equal to 5. For each run of the Lamb model, we perform 106

burn-in iterations and 5 · 104 iterations with thinning equal to 10. The poor mixing of the
Lamb algorithm in our simulations (see Figure 4.C.2) demands a very long burn-in phase.

4.4.2 Comparison between the two models

Figures 4.4.1 and 4.4.2 show the posterior distribution of the number of clusters for our
model and for LAMB in the two simulation settings. Moreover, in the Appendix, we report
posterior summary statistics of the clustering such as the mode and mean of the number
of clusters, the credible interval for the adjusted rand index (ARI) between the estimated
and true clustering, and the ARI between the best partition (obtained by minimizing the
Binder loss function) and the true one. See Tables 4.C.1 -4.C.3, and Tables 4.C.4) - 4.C.6
for simulations A and B, respectively.
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Figure 4.4.1: Posterior distribution of the number of clusters in simulation A, for APPLAM
(top row) and LAMB (bottom row). Each panel corresponds to a different value of d and
reports the posterior number of clusters as the dimension p and the model parameters
vary.

For both data generation processes, all the analyzed datasets (that differ for the values
of p, d) agree on the fact that Lamb is sensitive to αDP . In general, we can see that Lamb
tends to estimate a large number of clusters. On the other hand, APPLAM appears rather
robust to the choice of ρ: not only the detected number of clusters is always reasonable
(hardly more than 9, but most of the time the MCMC finds the correct number of clusters.

When looking at the ARI between the best clustering and the true one, as well as
the credible intervals of the ARI of the clustering, we see that for 24 out of 27 datasets
simulated according to scenario A, APPLAM provides a better clustering than Lamb.
In particular, in several settings the ARI between the best clustering and the true one
for APPLAM is equal or close to 1.0 (i.e., perfect cluster detection) while for LAMB it
is smaller than 0.1 (i.e., almost random guessing). For scenario B instead, APPLAM
provides a better clustering than Lamb 17 times out of 27.

4.5 Discussion

Motivated by the problem of clustering high-dimensional data, in this chapter we intro-
duced a new class of anisotropic determinantal point processes, which induce repulsiveness
within the Λ-weighted Euclidean metric ‖x− y‖Λ>Λ = (x− y)>Λ>Λ(x− y). In particular,
we extend the general construction in Lavancier et al. (2015) and obtain easy-to-check
conditions that guarantee the existence of the DPP, the existence of a density with respect
to the unit rate Poisson process and its spectral density.

In our clustering framework, the DPP is assumed as prior for latent d-dimensional pa-
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Figure 4.4.2: Posterior distribution of the number of clusters in simulation B, for APPLAM
(top row) and LAMB (bottom row). Each panel corresponds to a different value of d and
reports the posterior number of clusters as the dimension p and the model parameters
vary.

rameters µ1, . . . , µm whereas p � d dimensional observations are associated with cluster
centers Λµ1, . . . ,Λµm. Therefore, repelling the µh’ s with the Λ-weighted metric ensures
that our prior forces well-separated clusters at the observational level. Throughout several
simulations, we empirically validate our model and show that assuming a repulsive prior
yields more robust clustering and overall better performance when the model is misspeci-
fied.

Several questions are open for future discussion. First, the approximation of the DPP
density has a cost that scales exponentially in the latent dimension d. While for several
applications where p is moderate (i.e., less than 1, 000) one would expect that a sufficiently
small d (that is, d ≤ 10) provides reasonable results, when p is extremely large, such
as in the case of single-cell data, it is likely that a larger latent dimension d would be
needed. In this case, other approximations of the DPP density not based on the spectral
representation might be worth considering, such as the one in Poinas and Lavancier (2021)
or the one in Bardenet and Titsias (2015). Second, the MCMC move that updates the
non-allocated components is based on a birth-death move which either adds or deletes
one point of µ1, . . . , µm at every iteration. Moreover, the new point is sampled from a
uniform distribution over the support of the DPP. We might want to consider alternatives
to this update, where one can add or remove multiple points and where the new points are
sampled by taking into account the datapoints as well. Finally, it would also be interesting
to consider more general (repulsive) models to tackle feature sampling and trait allocation
models.
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Appendix

4.A Proofs

4.A.1 Proof of Theorem 4.1

Proof. Since Λ is full rank, the conditional distribution (4.6) for the random variable Y is
well-posed. In fact, ΛTΛ is positive definite, thus it is invertible. Denoting with |ΛTΛ| the
determinant of ΛTΛ, we explicitly compute the density h(x) from model (4.6). We have:

h(x) =

∫ ∞

0
p(x |w) · p(w)dw =

∫ ∞

0

|ΛTΛ| 12
(2π)

d

2w
d

2

exp

(
−x

TΛTΛx

2w

)
· p(w)dw

Therefore, we derive

h(x) =
|ΛTΛ| 12
(2π)

d

2

E
[
W−

d

2 exp

(
−||Λx||

2

2W

)]
, x ∈ Rd (4.19)

Consequently, since K0(x) = ρh(x)/h(0), we have

K0(x) =
ρ

E
[
W−

d

2

] E
[
W−

d

2 exp

(
−||Λx||

2

2W

)]
, x ∈ Rd

and, since ϕ = F(K0), we compute

ϕ(x) =

∫

Rd
e−2πixT yK0(y)dy =

=
ρ

h(0)

∫

Rd
e−2πixT y |ΛTΛ| 12

(2π)
d

2

E
[
W−

d

2 exp

(
−||Λy||

2

2W

)]
dy =

=
ρ |ΛTΛ| 12
h(0) (2π)

d

2

∫

Rd
e−2πixT y

∫ ∞

0
w−

d

2 exp

(
−||Λy||

2

2w

)
p(w)dw dy =

=
ρ |ΛTΛ| 12
h(0) (2π)

d

2

∫ ∞

0

∫

Rd
w−

d

2 exp

(
−2πixT y − yTΛTΛy

2w

)
dy p(w)dw =

=
ρ |ΛTΛ| 12
h(0) (2π)

d

2

∫ ∞

0

∫

Rd
w−

d

2 exp

(
−1

2

[
yT

ΛTΛ

w
y + 4πixT y

])
dy p(w)dw

The term in brackets can be handled as follows

[
...
]

=
(
y − (−2πiw(ΛTΛ)−1x)

)T ΛTΛ

w

(
y − (−2πiw(ΛTΛ)−1x)

)

+ 4π2xTw(ΛTΛ)−1x
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Plugging in the previous computation, it results in

ϕ(x) =
ρ

h(0)

∫ ∞

0
exp(−2π2wxT (ΛTΛ)−1x) p(w)dw

Summing up, we derive

ϕ(x) =
ρ

h(0)
E
[
exp
(
−2π2WxT (ΛTΛ)−1x

)]
, x ∈ Rd

Observe that, since h(x) is the density of a real random variable and using Fourier trans-
form properties, then

K0(x) = ρ
h(x)

h(0)
∈ L1(Rd), ϕ = F(K0) ∈ L1(Rd)

Therefore, to guarantee the existence of the anisotropic determinantal point process with
kernel K0 and spectral density ϕ = F(K0), we refer to Corollary (3.3) of Lavancier et al.
(2015): since K0 ∈ L1(Rd), ϕ = F(K0) and ϕ ∈ L1(Rd), we just need to ensure

ϕ(x) ≤ 1, ∀x ∈ Rd

So, we need to require

maxϕ(x) = ϕ(0) =
ρ

h(0)
≤ 1

Finally, the existence condition expresses as

ρ ≤ ρmax
with

ρmax = h(0) =
|ΛTΛ| 12
(2π)

d

2

E
[
W−

d

2

]

4.A.2 Proof of Corollary 4.1

Proof. Let c > 0. In Theorem 4.1, set

W = |ΛTΛ| 1d · c− 2

d

Consequently, W−
d

2 = |ΛTΛ|− 1

2 · c, and from Equation (4.19), we derive

h(x) =
c

(2π)
d

2

· exp

(
− ||Λx||2

2|ΛTΛ| 1d c− 2

d

)
, x ∈ Rd

From Equations (4.8) and (4.9),

K0(x) = ρ · exp

(
− ||Λx||2

2|ΛTΛ| 1d c− 2

d

)
, x ∈ Rd

ϕ(x) = ρ
(2π)

d

2

c
· exp

(
−2π2|ΛTΛ| 1d c− 2

dxT (ΛTΛ)−1x

)
, x ∈ Rd

From (4.7), the existence condition requires ρ ≤ ρmax, with

ρmax =
c

(2π)d/2

90



Chapter 4. APPLAM

4.A.3 Proof of Corollary 4.2

Proof. Let ν > 0 and α > 0. In Theorem 4.1, set

W ∼ Gamma

(
ν +

d

2
,

1

2|ΛTΛ| 1dα2

)

Applying Equation (4.19), we explicitly compute h(x) as

h(x) =
|ΛTΛ| 12
(2π)

d

2

∫ ∞

0

[
w−

d

2 exp

(
−||Λx||

2

2w

)(
1

2|ΛTΛ| 1dα2

)ν+ d

2
wν+ d

2
−1

Γ
(
ν + d

2

) ·

· exp

(
− w

2|ΛTΛ| 1dα2

)]
dw =

=
|ΛTΛ|− νd

(2π)
d

2 (2α2)ν+ d

2 Γ
(
ν + d

2

)
∫ ∞

0
wν−1 exp

[
−1

2

(
1

|ΛTΛ| 1dα2
w +

||Λx||2
w

)]
dw

We need to recall the generalized inverse Gaussian distribution (GIG) on [0,∞) and its
common parametrization. Let p ∈ R, a > 0 and b > 0; then the generalized inverse
Gaussian distribution with parameters (p, a, b) has probability density function

f(x) =
(a/b)

p

2

2Kp(
√
ab )

xp−1 exp

(
−1

2

[
ax+

b

x

])
, x > 0 (4.20)

where Kp is the modified Bessel function of the second kind. We indicate such a distribu-
tion with giG(p, a, b).

Resuming the computation of h(x), we can identify the density of a generalized inverse
Gaussian distribution with parameters

p = ν, a =
1

|ΛTΛ| 1dα2
, b = ||Λx||2

Therefore, carrying on the computation

h(x) =
|ΛTΛ|− νd

(2π)
d

2 (2α2)ν+ d

2 Γ
(
ν + d

2

) ·
(
|ΛTΛ| 1dα2 ||Λx||2

) ν

2

· 2Kν

(
||Λx||
|ΛTΛ| 1

2d α

)

Summing up the result of the computation

h(x) =
1

(
√
π α)d 2ν+d−1 Γ

(
ν + d

2

) ·
∥∥∥∥∥

Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

ν

·Kν

(∥∥∥∥∥
Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

)

Note that, as x→ 0, then xνKν(x)→ 2ν−1Γ(ν). Consequently, the kernel K0 is

K0(x) = ρ
21−ν

Γ(ν)
·
∥∥∥∥∥

Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

ν

·Kν

(∥∥∥∥∥
Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

)

To derive the spectral density ϕ = F(K0), some additional computations are needed
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starting from Equation (4.9):

ϕ(x) =
ρ

h(0)

∫ ∞

0
exp
(
−2π2wxT (ΛTΛ)−1x

)( 1

2|ΛTΛ| 1dα2

)ν+ d

2 wν+ d

2
−1

Γ
(
ν + d

2

) exp

(
− w

2|ΛTΛ| 1dα2

)
dw

=
ρ

h(0)
(
2|ΛTΛ| 1dα2

)ν+ d

2

∫ ∞

0

wν+ d

2
−1

Γ
(
ν + d

2

) exp

[
−
(

2π2xT (ΛTΛ)−1x+
1

2|ΛTΛ| 1dα2

)
w

]
dw

=
ρ

h(0)
(
2|ΛTΛ| 1dα2

)ν+ d

2

· 1
(

2π2xT (ΛTΛ)−1x+ 1
2|ΛTΛ|1/d α2

)ν+ d

2

=
ρ

h(0)
· 1
(
1 + 4π2α2|ΛTΛ| 1d xT (ΛTΛ)−1x

)ν+ d

2

Finally, the spectral density ϕ = F(K0) is

ϕ(x) = ρ
Γ
(
ν + d

2

)

Γ(ν)

(2
√
πα)d

(
1 + 4π2α2|ΛTΛ| 1d xT (ΛTΛ)−1x

)ν+ d

2

To sum up, we report the kernel K0 and the spectral density ϕ of this model

K0(x) = ρ
21−ν

Γ(ν)
·
∥∥∥∥∥

Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

ν

·Kν

(∥∥∥∥∥
Λx

α |ΛTΛ| 1

2d

∥∥∥∥∥

)

ϕ(x) = ρ
Γ
(
ν + d

2

)

Γ(ν)

(2
√
πα)d

(
1 + 4π2α2|ΛTΛ| 1d xT (ΛTΛ)−1x

)ν+ d

2

The existence condition, from Equation (4.7), requires ρ ≤ ρmax, with

ρmax =
Γ(ν)

Γ
(
ν + d

2

)
(2
√
πα)d

4.A.4 Proof of Theorem 4.2

Proof. Consider

log p(Λ | · · · ) ∝ log p(y |Λ,η,Σ) + log fapp
DPP(µ |Λ) + log p(Λ |φ, τ, ψ) (4.21)

The only term depending on the selected anisotropic DPP is the second one. Since it is
the most complex term, we derive it using the two lemmas below. For the first term of
(4.21),

∇ log p(y |Λ,η,Σ) = ∇
(
−1

2

n∑

i=1

(yi − Ληi)
>Σ−1(yi − Ληi)

)

= Σ−1 ·
n∑

i=1

(yi − Ληi)η
T
i
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While for the last term

∇ log p(Λ |φ, τ, ψ) = − 1

(ψ � φ2)τ2
� Λ

For the second term of (4.21),

∇ log fapp
DPP(µ |Λ) = ∇

[
−Dapp − log(1− e−Dapp

) + log det[Capp](Tµ1, . . . , Tµn)
]

= −∇Dapp −∇ log(1− e−Dapp

) +∇ log det[Capp](Tµ1, . . . , Tµn)

= − 1

1− e−Dapp∇Dapp +∇ log det[Capp](Tµ1, . . . , Tµn) (4.22)

To handle equation (4.22), the terms ∇Dapp and ∇ log det[Capp](Tµ1, . . . , Tµn) are to be
computed.

Lemma 4.1. For the Gaussian-like DPP prior,

∇Dapp =
∑

k∈ZdN

ϕ(k)

1− ϕ(k)
(−2π2c−

2
d )g(k) (4.23)

where ϕ(k) refers to (4.10). For the Whittle-Matern-like DPP prior,

∇Dapp =
∑

k∈ZdN

ϕ(k)

1− ϕ(k)
4π2α2

(
−ν − d

2

)
g(k)

a(k)
(4.24)

where ϕ(k) refers to (4.11).

Proof. Write

∇Dapp = −
∑

k∈ZdN

∇ log(1− ϕ(k)) =
∑

k∈ZdN

1

1− ϕ(k)
∇ϕ(k).

For the Gaussian-like DPP prior, from (4.10), observe that, for k ∈ Zd

∇ϕ(k) =
ρ

c
(2π)

d

2 ∇ exp
(
−2π2|ΛTΛ| 1d c− 2

dkT (ΛTΛ)−1k
)

= ϕ(k)
(
−2π2c−

2

d

)
∇
(
|ΛTΛ| 1dkT (ΛTΛ)−1k

)

For the Whittle-Matern-like DPP prior, from (4.11), observe that, for k ∈ Zd

∇ϕ(k) = ρ
Γ(ν + d

2)

Γ(ν)
(2
√
πα)d∇

((
1 + 4π2α2|ΛTΛ| 1d kT (ΛTΛ)

−1
k
)−ν− d

2

)

=
ϕ(k)

a(k)
4π2α2

(
−ν − d

2

)
∇
(
|ΛTΛ| 1dkT (ΛTΛ)−1k

)

Note that

∇
(
|ΛTΛ| 1dkT (ΛTΛ)−1k

)
=∇

(
|ΛTΛ| 1d

)
kT (ΛTΛ)−1k+

+ |ΛTΛ| 1d∇
(
kT (ΛTΛ)−1k

)
=

=
1

d
|ΛTΛ| 1d−12|ΛTΛ|Λ(ΛTΛ)−1kT (ΛTΛ)−1k+

+ |ΛTΛ| 1d∇
(
kT (ΛTΛ)−1k

)
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where, in the last step, formula (53) of Petersen and Pedersen (2012) is used. Then,

∇
(
kT (ΛTΛ)−1k

)
= ∇tr

(
kT (ΛTΛ)−1k

)
=

= ∇tr
(
(ΛTΛ)−1kkT

)
= −Λ(ΛTΛ)−1(2kkT )(ΛTΛ)−1

where, in the last step, formula (125) of Petersen and Pedersen (2012) is used. For the
Gaussian-like DPP prior, this leads to

∇ϕ(k) = ϕ(k)(−4π2c−
2
d )|ΛTΛ|

1
dΛ(ΛTΛ)−1

[1

d
kT (ΛTΛ)−1k1d − kkT (ΛTΛ)−1

]
(4.25)

where 1d is d× d matrix of 1’s. For the Whittle-Matern-like DPP prior, it follows

∇ϕ(k) =
ϕ(k)

a(k)
8π2α2

(
−ν − d

2

)
|ΛTΛ|

1
dΛ(ΛTΛ)−1

[1

d
kT (ΛTΛ)−1k1d − kkT (ΛTΛ)−1

]

This concludes the proof.

Lemma 4.2. For the Gaussian-like DPP prior,

∇ log det[Capp] = (−2π2c−
2
d )
∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
g(k)vTk (Capp)−1uk (4.26)

where ϕ(k) refers to (4.10). For the Whittle-Matern-like DPP prior,

∇ log det[Capp] = 4π2α2

(
−ν − d

2

) ∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2

g(k)

a(k)
vTk (Capp)−1uk (4.27)

where ϕ(k) refers to (4.11).

Proof.

∂

∂Λij
log det[Capp] = tr

((
∂

∂U
log detU

) ∣∣∣
U=Capp

· ∂

∂Λij
Capp

)
(4.28)

= tr

(
1

det[Capp]

(
∂

∂U
detU

) ∣∣∣
U=Capp

· ∂

∂Λij
Capp

)

= tr

(
(Capp)−1 · ∂

∂Λij
Capp

)
(4.29)

where formula (137) of Petersen and Pedersen (2012) is used to get equation (4.28) and
formula (49) of Petersen and Pedersen (2012) for equation (4.29). Now, note that

Capp =
∑

k∈ZdN

ϕ(k)

1− ϕ(k)
ukv

T
k (4.30)

where uk, vk are defined in the statement. It follows that, for the Gaussian-like DPP prior,

∂

∂Λij
Capp =

∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
(−2π2c−

2
d )g

(k)
ij ukv

T
k

where g
(k)
ij = (g(k))ij , while for the Whittle-Matern-like DPP prior,

∂

∂Λij
Capp =

∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
4π2α2

(
−ν − d

2

)
g

(k)
ij

a(k)
ukv

T
k
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Then, back to equation (4.29), for the Gaussian-like DPP prior,

∂

∂Λij
log det[Capp] = tr

(
(Capp)−1 · ∂

∂Λij
Capp

)

= tr


∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
(−2π2c−

2
d )g

(k)
ij (Capp)−1ukv

T
k




=
∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
(−2π2c−

2
d )g

(k)
ij tr

(
(Capp)−1ukv

T
k

)

= (−2π2c−
2
d )
∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2
g

(k)
ij v

T
k (Capp)−1uk

Similarly, for the Whittle-Matern-like DPP prior,

∂

∂Λij
log det[Capp] = 4π2α2

(
−ν − d

2

) ∑

k∈ZdN

ϕ(k)

(1− ϕ(k))2

g
(k)
ij

a(k)
vTk (Capp)−1uk

which yields the result.

For the Gaussian-like DPP prior, from equations (4.23) and (4.26), equation (4.22)
results

∇ log fapp
DPP(µ |Λ) = (2π2c−

2
d )
∑

k∈ZdN

g(k) ϕ(k)

(1− ϕ(k))2

[ 1− ϕ(k)

1− e−Dapp − vTk (Capp)−1uk

]

Similarly, for the Whittle-Matern-like DPP prior, from equations (4.24) and (4.27), equa-
tion (4.22) results

∇ log fapp
DPP(µ |Λ) = 4π2α2

(
ν +

d

2

) ∑

k∈ZdN

g(k)

a(k)

ϕ(k)

(1− ϕ(k))2

[ 1− ϕ(k)

1− e−Dapp − vTk (Capp)−1uk

]

which concludes the proof

4.B Measure-Theoretic Details

From the discussion in the main text, we have that y ∈ Rp×n, η ∈ Rd×n, Σ ∈ Rp+,

Λ ∈ Rp×d, ψ ∈ Rp×d+ , φ ∈ Sp×d−1 (the pd−1 dimensional simplex), and τ ∈ R+. Moreover,
we consider µ as a random point configuration, which takes values in Ω = ∪∞m=0Ωm where
Ωm denotes the space of (pairwise distinct) m-uples of Rd. We endow each Ωm with the
smallest σ-algebra which makes the following mapping measurable

(µ1, . . . , µm) 7→ {µ1, . . . , µm}.

where on the left hand side we see µ1, . . . , µm as an ordered vector in Rm and on the
right hand side as an unordered collection of points in R, where R ⊂ Rd is the hyper-
square where µ is defined. The σ-algebra on Ω is then the smallest σ-algebra contain-
ing the union of all the σ-algebras on each Ωm. Then, it follows that (µ, s,∆, c) ∈
∪∞m=0

{
Ωm × Rm+ × SPmd × {1, . . . ,m}n

}
, where SPd denotes the space of d×d symmetric

and positive matrices.
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Consider now sets Y ⊂ Rp×n, N ⊂ Rd×n, Ξ ⊂ Rp+, Λ ⊂ Rp×d, Ψ ⊂ Rp×d+ , Φ ⊂ Sp×d−1

T ⊂ R+, Om ⊂ Ωm, Sm ⊂ Rm+ , Dm ⊂ SPmd , Cm ⊂ {1, . . . ,m}n. The dominating measure
for the joint distribution of data and parameters is

ν (Y×N××Ξ×Λ× Ψ×Φ× T× ∪m≥0 {Om ×Sm ×Dm × Cm}) =∫

Y

dy ×
∫

n

dη ×
∫

Ξ
dΣ×

∫

Λ

dΛ×
∫

Ψ

dψ ×
∫

Φ

dφ×
∫

T

dτ ×

×
∞∑

m=0

e−|R|

m!

∫

Om

dµm ×
∫

Sm

dsm ×
∫

Dm

d∆m ×
M∑

c1,...,cn=1

1[c ∈ Cm]

The density of data and parameters with respect to ν is:

p(y, c,η,µ,S,∆,Σ,Λ,ψ,φ, τ) =

1

Tn

[
n∏

i=1

Np(yi |Ληi,Σ)

][
k∏

h=1

(S
(a)
h )nhGa(S

(a)
h |α, 1)IW(∆

(a)
h | ν0,Ψ0)

∏

i:ci=h

Nd(ηi |µ(a)
h ,∆

(a)
h )

]

[∏̀

h=1

Ga(S
(na)
h |α, 1)IW(∆

(na)
h | ν0,Ψ0)

]
fapp

DPP(µ(a) ∪ µ(na) | ρ,Λ,K0;R)




p∏

j=1

inv-Ga(σ2
j | aσ, bσ)

d∏

h=1

N (λjh | 0, ψjhφ2
jhτ)Exp(Ψjw | 1/2)


Dir(vec(φ) | a)Ga(τ | pda, 1/2)

We now introduce the auxiliary variable u such that u |T ∼ Ga(n, t) and consider
the extended parameter space including u ∈ R+. Moreover, conditional to c we split
µ = µ(a) ∪ µ(na), S = [S(a),S(na)] and ∆ = [∆(a),∆(na)] into allocated and non-allocated
components (denoted with the (a) and (na) superscript respectively). The dominating
measure ν ′ on the extended space can be straightforwardly derived. See, for instance,
Equation (17) in Beraha et al. (2022).

4.C Additional simulations

In figure 4.C.1, we report the comparison, in terms of memory usage (measured in Bytes)
and execution time per iteration (measured in seconds), between the AD approach and the
analytical approach in sampling the high-dimensional matrix of loadings Λ. Fixing all the
other model parameters, we set N = 4 and 6 component centers µh’s (this choice impacts
on both the memory usage and the execution time) and we compare the performance
in sampling only the matrix Λ. We use 100 data points simulated from a p-dimensional
Gaussian distribution, for p = 100, 200.

In figure 4.C.2, we report the chain of the number of clusters produced by the Lamb
algorithm along the iterations. We perform 105 iterations and we plot one every ten
iterations. We use the data of simulation study B, with p = 100, d = 5 and set αDP = 0.5.
Note that the chain has not reached convergence yet after 105 iterations, demanding a
very long burn-in phase. The poor efficiency of the Lamb algorithm is common in all the
settings analyzed in our simulation studies.

Tables 4.C.1 - 4.C.6 report the summary statistics for the clustering in the two simu-
lations discussed in Section 4.4.
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MODE NCLUS MEAN NCLUS ARI BEST CI ARI
d Model Parameter

2 Lamb 0.1 5 4.76 0.94 [0.953, 0.955]
0.5 5 5.26 0.94 [0.932, 0.934]
1.0 28 27.61 0.22 [0.268, 0.27]

APPLAM 5.0 6 6.64 0.83 [0.824, 0.829]
10.0 9 9.02 0.72 [0.717, 0.725]
20.0 6 6.07 0.91 [0.883, 0.889]

5 Lamb 0.1 54 54.27 0.09 [0.099, 0.1]
0.5 62 62.65 0.08 [0.081, 0.081]
1.0 41 39.70 0.34 [0.354, 0.355]

APPLAM 5.0 4 4.01 1.00 [1.0, 1.0]
10.0 4 4.02 1.00 [1.0, 1.0]
20.0 4 4.00 1.00 [1.0, 1.0]

8 Lamb 0.1 38 39.17 0.73 [0.734, 0.735]
0.5 30 30.42 0.68 [0.67, 0.67]
1.0 31 31.00 0.75 [0.751, 0.751]

APPLAM 5.0 4 4.02 1.00 [1.0, 1.0]
10.0 4 4.00 1.00 [1.0, 1.0]
20.0 4 4.00 1.00 [1.0, 1.0]

Table 4.C.1: Simulation study A, p = 100: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.

MODE NCLUS MEAN NCLUS ARI BEST CI ARI
d Model Parameter

2 Lamb 0.1 6 5.85 0.92 [0.901, 0.905]
0.5 27 27.20 0.27 [0.254, 0.256]
1.0 30 29.79 0.24 [0.238, 0.239]

APPLAM 5.0 6 6.28 0.86 [0.822, 0.825]
10.0 6 6.41 0.84 [0.837, 0.84]
20.0 7 6.92 0.85 [0.837, 0.841]

5 Lamb 0.1 66 68.96 0.06 [0.068, 0.068]
0.5 69 70.11 0.06 [0.068, 0.069]
1.0 65 68.00 0.06 [0.072, 0.072]

APPLAM 5.0 4 4.01 1.00 [1.0, 1.0]
10.0 4 4.01 1.00 [1.0, 1.0]
20.0 4 4.00 1.00 [1.0, 1.0]

8 Lamb 0.1 39 39.93 0.23 [0.228, 0.229]
0.5 38 40.82 0.23 [0.238, 0.239]
1.0 62 61.84 0.11 [0.108, 0.109]

APPLAM 5.0 4 4.00 1.00 [1.0, 1.0]
10.0 4 4.00 1.00 [1.0, 1.0]
20.0 4 4.00 1.00 [1.0, 1.0]

Table 4.C.2: Simulation study A, p = 200: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.
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Figure 4.C.1: Memory requirement (top row) and run-time execution per iteration of
MCMC with n = 100 samples when the data-dimension is p = 100 (left plot) and p = 200
(right plot) as the latent dimension d varies.
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Figure 4.C.2: Chain of the number of clusters produced by the Lamb algorithm along
105 iterations. Data come from the simulation study B, with p = 100, d = 5 and we set
αDP = 0.5

MODE NCLUS MEAN NCLUS ARI BEST CI ARI
d Model Parameter

2 Lamb 0.1 10 9.97 0.72 [0.716, 0.72]
0.5 37 37.02 0.19 [0.194, 0.195]
1.0 39 38.98 0.20 [0.185, 0.186]

APPLAM 5.0 6 5.67 0.60 [0.596, 0.599]
10.0 8 7.86 0.79 [0.795, 0.799]
20.0 6 5.99 0.80 [0.709, 0.721]

5 Lamb 0.1 84 83.43 0.05 [0.051, 0.051]
0.5 85 85.25 0.05 [0.051, 0.051]
1.0 86 86.09 0.05 [0.05, 0.051]

APPLAM 5.0 4 3.77 1.00 [0.852, 0.873]
10.0 4 4.36 1.00 [0.99, 0.992]
20.0 4 4.12 1.00 [0.989, 0.991]

8 Lamb 0.1 75 74.37 0.07 [0.075, 0.075]
0.5 73 72.34 0.08 [0.079, 0.079]
1.0 76 76.51 0.08 [0.083, 0.083]

APPLAM 5.0 4 4.00 1.00 [1.0, 1.0]
10.0 4 4.00 1.00 [1.0, 1.0]
20.0 4 4.00 1.00 [1.0, 1.0]

Table 4.C.3: Simulation study A, p = 400: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.
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mode nclus avg nclus ari best clus CI aris
Latent dim Model Parameter

2 Lamb 0.1 7 7.29 0.87 [0.857, 0.858]
0.5 8 7.90 0.87 [0.858, 0.859]
1.0 8 8.29 0.88 [0.86, 0.861]

APPLAM 5.0 8 8.53 0.68 [0.657, 0.662]
10.0 11 11.12 0.50 [0.513, 0.518]
20.0 9 9.50 0.66 [0.633, 0.639]

5 Lamb 0.1 65 63.71 0.08 [0.083, 0.083]
0.5 68 68.18 0.08 [0.08, 0.08]
1.0 69 68.98 0.07 [0.079, 0.079]

APPLAM 5.0 6 6.02 0.95 [0.948, 0.949]
10.0 4 4.35 0.95 [0.946, 0.946]
20.0 5 4.88 0.97 [0.964, 0.965]

8 Lamb 0.1 30 29.59 0.76 [0.764, 0.764]
0.5 40 40.00 0.68 [1.0, 1.0]
1.0 34 34.45 0.74 [0.738, 0.738]

APPLAM 5.0 3 3.48 0.67 [0.658, 0.661]
10.0 4 4.38 1.00 [0.993, 0.994]
20.0 5 5.00 0.97 [0.972, 0.973]

Table 4.C.4: Simulation study B, p = 100: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.

mode nclus avg nclus ari best clus CI aris
Latent dim Model Parameter

2 Lamb 0.1 9 8.45 0.88 [0.86, 0.861]
0.5 9 9.03 0.88 [0.859, 0.86]
1.0 9 9.44 0.88 [0.855, 0.856]

APPLAM 5.0 8 7.90 0.69 [0.64, 0.647]
10.0 7 6.87 0.61 [0.589, 0.594]
20.0 7 7.23 0.69 [0.682, 0.684]

5 Lamb 0.1 8 8.22 0.97 [0.947, 0.949]
0.5 75 75.26 0.06 [0.071, 0.071]
1.0 76 76.42 0.07 [0.069, 0.069]

APPLAM 5.0 4 4.47 0.95 [0.946, 0.947]
10.0 6 5.90 0.91 [0.893, 0.897]
20.0 5 4.73 0.93 [0.935, 0.936]

8 Lamb 0.1 61 60.44 0.16 [0.155, 0.155]
0.5 62 61.59 0.13 [0.133, 0.133]
1.0 61 60.54 0.16 [0.155, 0.155]

APPLAM 5.0 4 4.07 0.96 [0.957, 0.958]
10.0 4 4.00 0.97 [0.97, 0.971]
20.0 4 4.00 0.99 [0.987, 0.987]

Table 4.C.5: Simulation study B, p = 200: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.
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mode nclus avg nclus ari best clus CI aris
Latent dim Model Parameter

2 Lamb 0.1 9 9.72 0.87 [0.849, 0.851]
0.5 11 10.81 0.85 [0.832, 0.834]
1.0 11 11.29 0.84 [0.823, 0.825]

APPLAM 5.0 6 6.52 0.46 [0.462, 0.464]
10.0 12 13.04 0.63 [0.63, 0.633]
20.0 7 6.91 0.46 [0.463, 0.465]

5 Lamb 0.1 8 8.17 0.97 [0.95, 0.951]
0.5 8 8.32 0.97 [0.948, 0.95]
1.0 91 91.02 0.05 [0.055, 0.055]

APPLAM 5.0 6 6.35 0.92 [0.91, 0.911]
10.0 6 5.82 0.91 [0.911, 0.913]
20.0 5 5.15 0.91 [0.918, 0.919]

8 Lamb 0.1 77 78.12 0.09 [0.093, 0.094]
0.5 75 75.02 0.11 [0.106, 0.106]
1.0 84 83.47 0.08 [0.083, 0.083]

APPLAM 5.0 4 4.01 0.97 [0.973, 0.973]
10.0 5 4.73 0.95 [0.96, 0.961]
20.0 4 4.07 0.97 [0.974, 0.975]

Table 4.C.6: Simulation study B, p = 400: comparison on the posterior number of clusters
and on the quality of the inferred clusterings.
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5. Dependent Random Probability Measures for Bayesian
inference

The second part of this thesis is dedicated to the study of dependent random probability
measures and their applications in Bayesian nonparametric statistics. In particular, we
consider the setting in which observations yi’s are associated with covariates. When the
covariates take only a finite number of values, the unique values in the covariates identify
groups of observations, that is, subpopulations of data that share the same value of co-
variates. Within this scenario, Chapter 6, based on Beraha et al. (2021), joint work with
Alessandra Guglielmi and Fernando A. Quintana is concerned with detecting homogeneity
of distributions and identifying clusters of homogeneous populations. Chapter 7, based
on Beraha et al. (2021), joint work with Matteo Pegoraro, Riccardo Peli, and Alessan-
dra Guglielmi, deals with spatially referenced data, where each group is associated with
a specific geographical area, with the aim of estimating the data-genarating density in
each group taking into account for spatial dependence. In Chapter 8, based on Beraha
and Griffin (2022), joint work with Jim. E. Griffin, we consider a different problem: in
addition to modeling the data in each group, we also want to explore and represent the dif-
ference in distribution across subpopulations, obtaining low-dimensional and interpretable
summaries. In Chapter 9 we consider a more general setting, where vector-valued covari-
ates are recorded and, typically, each observation is associated with a different covariate
value. Chapter 9, based on Beraha et al. (2022), joint work with Alessandra Guglielmi,
Fernando A. Quintana, Maria de Iorio, Johan Gunnar Eriksson, and Fabian Yap presents
an application to growth curves of kids in Singapore, whose height and weight is recorded
from birth to the age of 7 years.

5.1 Departures from exchangeability

In Chapter 1, exchangeability has been a key motivation for the development of Bayesian
nonparametric approaches for clustering and density modeling. In fact, for observations
y1, . . . , yn, de Finetti’s representation theorem ensures the existence of a “likelihood func-
tion” P(yi ∈ dxi | ν), such that, given a parameter ν, data are conditionally i.i.d. from
the likelihood, and of a “prior distribution” Q(dν) for the parameter ν, therefore fully
motivating the Bayesian approach.

Given the strength of this result, it should not come as a surprise that exchangeability
holds only in a few cases. For example, if yi represents the average daily temperature
of the i-th day, it is natural to exclude the possibility that the distribution of y1, . . . , yn
might be invariant with respect to permutations. Similarly, the same applies if y1, . . . , yn1

measures a clinical quantity of a control group of patients and yn1+1, . . . , yn measures the
same quantity in a response group. More generally, whenever covariates are associated
with observations, we must be wary of the exchangeability assumption.

This section introduces weaker definitions of exchangeability that we might expect to
hold in different practical situations and with the associated de Finetti-type representation
results.
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5.1.1 Partial exchangeability

Start by assuming that a single covariate gi ∈ {1, . . . , I} is associated with each observa-
tion. That is, we can consider observations {yi,j}i,j for i = 1, . . . , I and j = 1, . . . , ni to
be divided into subpopulations or groups.

To be mathematically accurate, let us introduce partial exchangeability for a sequence
of random variables. Let Y denote a complete and separable metric space (i.e., a Polish
space) with the corresponding metric d. Let Y denote the Borel σ-algebra of Y, and PY
denote the space of all probability measures on (Y,Y), with Borel σ-algebra PY. We will
often skip reference to σ-algebras. A double sequence (y11, y12, y13, . . . , y21, y22, y23, . . .)
of Y-valued random variables, defined on a probability space (Ω,F ,P) is called partially
exchangeable if for all n,m ≥ 1 and all permutations (i(1), . . . , i(n)) and (j(1), . . . , j(m))
of (1, . . . , n) and (1, . . . ,m), respectively, we have

L(y11, . . . , y1n, y21, . . . , y2m) = L(y1i(1), . . . , y1i(n), y2j(1), . . . , y2j(m)).

Thus, partial exchangeability can be conceptualized as invariance of the joint law above
under the class of all permutations acting on the indices within each of the samples. Here
and from now on, the distribution of a random element y is denoted by L(y).

The previous setting can be immediately extended to the case of I different populations
or groups. By de Finetti’s representation theorem (see the proof in Regazzini, 1991), partial
exchangeability for the array of I sequences of random variables (y11, y12, . . . , y21, y22, . . .,
yI1, yI2, . . .) is equivalent to

P(yij ∈ Aij , j = 1, . . . , Ni, i = 1, . . . , I) =

∫

PIY

I∏

i=1

Ni∏

j=1

pi(Aij)Q(dp1, . . . , dpI),

for any N1, . . . , NI ≥ 1 and Borel sets {Aij} for j = 1, . . . , Ni and i = 1, . . . , I. In this case,
the de Finetti measure Q is defined on the I-fold product space PIY = PY × PY × · · · × PY,
and (p1, p2, . . . , pI) ∼ Q. The entire joint sequence of random variables is exchangeable if
and only if Q gives probability 1 to the measurable set S = {(p1, p2, . . . , pI) ∈ PIY : p1 =
p2 = · · · = pI}.

5.1.2 Separate exchangeability

Consider now a 2-array yij , (i, j) ∈ N × N. We say that {yij}ij is separately (or jointly)
exchangeable if for any finite permutations σ, π of N, we have

L((yij)ij) = L((yσ(i)π(j))ij),

that is, the distribution of the yij ’s is invariant under separate permutations σ and π of
rows and columns respectively.

In Bayesian nonparametrics, separate exchangeability has been discussed in the context
of network data, where yij represents a binary adjacency matrix, in Caron and Fox (2017),
Orbanz and Roy (2014) and several later works. More recently, Lin et al. (2021) proposed
to replace the partial exchangeability assumption with the separate exchangeability one
also when considering grouped data, to account for the possibility of observations referring
to the same individual appearing in different groups. That is the case, for instance, where
observations are patients and groups are hospitals, and some patients have been treated
in more than one hospital.

The Aldous-Hoover theorem (see Theorem 28.2 in Kallenberg, 2021) entails the exis-
tence of a random measurable function f : [0, 1]4 → R and uniformly distributed variables
α, ξi and ζij = ζji such that

yij = f(α, ξi, ξj , ζij).
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5.1.3 Local exchangeability

The definitions of partial and separate exchangeability allow only for data clearly divided
into groups, i.e., when a single categorical covariate is considered. In real applications, it
is often the case that data are associated with (vector-valued) covariates xi taking values
in a possibly uncountable set X, and that xi 6= xj for i 6= j.

Local exchangeability (Campbell et al., 2019) interpolates between classical exchange-
ability and partial exchangeability by prescribing that permuting observations yi associated
with similar values of covariates produces a small deviation in the joint law of the data.
Formally, let d be a premetric over X (i.e., a function d : X×X→ R+ such that d(x, y) ≥ 0
and d(x, x) = 0 for all x, y ∈ X), and denode with dTV the total variation metric. Then
(yi)i≥1 with associated covariates (xi)i≥1 is locally exchangeable if

dTV
(
L(y1, y2, . . .),L(yσ(1), yσ(1), . . .)

)
≤
∑

i≥1

d(xi,xσ(i))

for any finite permutation σ. Setting d ≡ 0 recovers the usual notion of exchangeability,
while d(x,x′) = I[x 6= x′] yields partial exchangeability where the groups are identified
by the unique values in x1,x2, . . ..

Under some conditions on (X, d), Campbell et al. (2019) show that a de Finetti repre-
sentation holds; see their Theorem 5.

5.2 Priors for dependent random probability measures

Vectors of dependent random distributions appeared first in Cifarelli and Regazzini (1978),
but it was in MacEachern (1999) where a large class of dependent Dirichlet processes was
introduced. We give a succinct overview of some constructions next. To this end, it is
useful to recall here the basic Dirichlet process model, see Chapter 1 for further details.

yi | p̃ iid∼ p̃, i = 1, . . . , n

p̃ =
∑

h≥1

whδθh ∼ DP (α,G0) (5.1)

where G0 is a diffuse probability measure on the space Y endowed with its Borel σ-field.
Dependent random distributions have been active areas of research in the last 20 years, so
that a comprehensive review is beyond the scope of this thesis, and we just limit ourselves to
giving the basic definitions and providing background material for the following chapters.
We refer to Quintana et al. (2022) for a detailed review.

5.2.1 The dependent Dirichlet process

We start by considering the most general setting, where each observation yi is associated
with a (vector-valued) covariate xi ∈ X. The natural extension to (5.1) is to assume

yi | p̃xi
ind∼ p̃xi , i = 1, . . . , n. (5.2)

Therefore, instead of a single probability measure p̃, the task now is to model a collection
of probability measures {p̃x} indexed by x ∈ X. A flexible class of models, termed the
dependent Dirichlet process (DDP), was introduced in MacEachern (1999).

The key idea is to define a stochastic process over PY (the space of probability measure
over Y) indexed by x ∈ X such that marginally the random measure p̃x is distributed as
a Dirichlet process. This can be achieved by setting

p̃x(·) =
∑

h≥1

wh(x)δθh(x)(·)

104



Chapter 5. Dependent RPMs

where wj(x) = νj(x)
∏
`<j(1 − ν`(x)) and for each j ≥ 1, {νj(x)}x∈X is stochastic pro-

cesses with Beta(1, α) marginals, independent of {θj(x)}x∈X, a stochastic process with G0

marginals. Moreover, and the processes {νj(x)}x∈X, {θj(x)}x∈X are independent across
different values of j ≥ 1. Optionally α and G0 could depend on x as well.

Theoretical properties of the DDP have been investigated in Barrientos et al. (2012).
Campbell et al. (2019) showed that under suitable assumptions on the stochastic processes
νj(x) and θj(x), local exchangeability holds under the DDP.

The general construction of MacEachern’s DDP has been specialized and extended
in several papers. One of the first ones is De Iorio et al. (2004), where the weights are
assumed independent of x and the dependence on the covariates is assumed only through
the atoms, in an ANOVA fashion for grouped data. The “single weight” construction
was later replaced by several “single atoms” models. As noted in Quintana et al. (2022),
assuming covariate-dependent weights leads to better predictive performances especially
for non-observed values of the covariates. Moreover, it is usually easy to extend the model
to encompass covariate-dependent atoms. See Quintana et al. (2022) for several examples
of DDP models.

5.3 Priors for partially exchangeable data

Let us consider more in detail the case of partially exchangeable data. Several papers have
investigated the choice of prior Q for a vector of dependent random probability measures.

5.3.1 Hierarchical Processes

A traditional (and fruitful) approach for modeling data arising from a collection of groups
or related studies involves the construction of hierarchical random prior probability mea-
sures. One of the first such examples in the BNP literature, is the well-known hierarchical
DP introduced in Teh et al. (2006). The HDP assumes that

yi,1, . . . , yi,ni | p̃i
iid∼ p̃i, i = 1, . . . I

p̃1, . . . , p̃I | p̃0
iid∼ DP (αp̃0)

p̃0 ∼ DP (γG0)

(5.3)

where α, γ > 0 and G0 is a (usually diffuse) probability measure. The stick-breaking
representation of the DP entails

p̃0 =
∑

h≥1

πhδτh , p̃i =
∑

h≥1

wihδθih (5.4)

where the weights (πh)h≥1 and (wih)h≥1 come from a stick-breaking process with param-

eters γ and α, respectively, the atoms (τh)h≥1 are i.i.d. from G0 and θih | p̃0
iid∼ p̃0 for all

i, h. Therefore, the set of atoms {θih}h≥1 coincides with {τh}h≥1 for all i’s, meaning that
all random measures p̃i have the same support points. The marginal law of observations
under the HDP can be interpreted by means of a generalizations of the Chinese restaurant
process to multiple restaurants, where each group of data is associated with a restaurant,
termed “Chinese restaurant franchise” in Teh et al. (2006).

5.3.2 Dependent Normalized Random Measures

Vectors of completely random measures (also called completely random vectors, CRVs
for short) can be constructed to yield dependence between the different measures. Their
normalization has been used as nonparametric prior in different works. We say that a
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vector of random measures (µ̃1, . . . , µ̃I) on the Polish space (Θ, d) with Borel σ-algebra
B(Θ) is completely random if for any n and pairwise disjoint A1, . . . , An, the vectors
{(µ̃1(Aj), . . . , µ̃I(Aj))}nj=1 ∈ R+

I are independent. Usually (see, e.g., Leisen et al., 2013),
it is assumed that

(µ̃1(A), . . . , µ̃I(A)) =
∑

k≥1

(s1k, . . . , sIK)I[xk ∈ A], A ∈ B(Θ),

so that, marginally, µ̃j(·) =
∑

k≥1 sjkδxk(·) is a CRM. The support points are shared across
all the random measures. Moreover, a Poisson process representation holds: {(s1k, . . . , sIk, xk)}k≥1

are the points of a Poisson point process over RI+ ×Θ with intensity measure ν(dsdx) =
ρ(s)dsα(dx) where s = (s1, . . . , sI) and ds = ds1 · · · dsI denotes the I-fold product mea-
sure. A CRV is uniquely determined by its Laplace transform, for measurable fi : Θ→ R+,
i = 1, . . . , I

E

[
exp

{
−

I∑

i=1

∫

Θ
fi(z)µ̃i(dz)

}]
= exp

{
−
∫

RI+×Θ
1− e−

∑I
i=1 sifi(x)ν(dsdx)

}
.

The marginal intensity of µ̃i is νi(dsidx) is defined as

νi(B ×A) = ν(Ri−1
+ ×B × RI−i+ ×A), B ⊂ R+, A ∈ B(Θ).

To ensure that the CRV can be normalized, the Lévy intensity must satisfy
∫

RI+×B
‖s‖2ν(dsdx) < +∞, B ∈ B(Θ).

Then (p̃1, . . . , p̃I), p̃i := µ̃i/µ̃(Θ), is a vector of random probability measures.
Several construction for a vector of random measures have been proposed. Working

directly on the definition of intensity ν, Leisen and Lijoi (2011) proposed the use of Lévy
copulas to induce dependence between random measures with fixed margins, while Leisen
et al. (2013) propose a multivariate Lévy intensity yielding Gamma process marginals.
Other approaches have been focused on modelling the µ̃i’s directly, for instance by using
additive processes, such as Lijoi et al. (2014b) and Griffin et al. (2013), where each µ̃i is
obtained by superimposing two or more completely random measures, namely by setting

µ̃i =

H∑

h=1

γihµ
∗
h

where γih is a binary indicator which may be random. Yet another possibility is based on
hierarchical constructions generalizing the hierarchical DP; which has been investigated in
Camerlenghi et al. (2019), Argiento et al. (2019) and Bassetti et al. (2020).

Compound random measures (CoRMs, Griffin and Leisen, 2017) have been recently
proposed as a flexible and simple construction for dependent random measures. To define
a CoRM, consider a CRM ν =

∑
k≥1 Jkδθk and set

µ̃i =
∑

k≥1

mikJkδθk

where mk = (m1k, . . . ,mIk) ∈ RI+ are i.i.d. vectors for k = 1, 2, . . .. Depending on
the Lévy intensity of ν and the distribution of the mhk’s, a large number of well-known
marginal processes can be recovered.
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5.3.3 Other approaches

Several approaches based on Pólya trees have been proposed to model dependent random
probability measures, especially in the case of two groups of data. For instance, Ma and
Wong (2011) and Soriano and Ma (2017) propose the coupling optional Pólya tree prior,
which jointly generates two dependent random distributions through a random-partition-
and-assignment procedure similar to Pólya trees. The former paper consider both testing
hypotheses from a global point of view, while the latter takes a local perspective on the
two-sample hypothesis, detecting high resolution local differences. Also Chen and Hanson
(2014) and Holmes et al. (2015) consider the two-sample testing problem, using a Pólya
tree prior for the common distribution in the null, while the model for the alternative
hypothesis assumes that the two population distributions are independent draws from the
same Pólya tree prior. Their approaches differ in the way they specify the Pólya tree prior.
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6. The semi-hierarchical Dirichlet process and its appli-
cation to clustering homogeneous distributions

Assessing homogeneity of distributions is an old problem that has received considerable at-
tention, especially in the nonparametric Bayesian literature. To this effect, in this chapter,
based on Beraha et al. (2021), we propose the semi-hierarchical Dirichlet process, a novel
hierarchical prior that extends the hierarchical Dirichlet process of Teh et al. (2006) and
that avoids the degeneracy issues of nested processes recently described by Camerlenghi
et al. (2019). We go beyond the simple yes/no answer to the homogeneity question and
embed the proposed prior in a random partition model; this procedure allows us to give a
more comprehensive response to the above question and in fact find groups of populations
that are internally homogeneous when I ≥ 2 such populations are considered. We study
theoretical properties of the semi-hierarchical Dirichlet process and of the Bayes factor
for the homogeneity test when I = 2. Extensive simulation studies and applications to
educational data are also discussed.

6.1 Introduction

Our first contribution is the introduction of a novel class of nonparametric priors that,
just as discussed in Camerlenghi et al. (2019), avoids the degeneracy issue of the nested
Dirichlet process (NDP) of Rodriguez et al. (2008) that arises from the presence of shared
atoms across populations. Indeed, Camerlenghi et al. (2019) showed that under the NDP,
if two populations share at least one common latent variable in the mixture model, then
the model identifies the corresponding distributions as completely equal. To overcome
the degeneracy issue, they resort to a latent nested construction in terms of normalized
random measures that adds a shared random measure to draws from the NDP. Instead, we
use a variation of the hierarchical DP (HDP Teh et al., 2006), that we term the semi-HDP,
but where the baseline distribution is itself a mixture of a DP and a non-atomic measure.
We will show that this procedure solves the degeneracy problem as well. While relying on
a different model, Lijoi et al. (2020) also propose to build on the HDP, combining it with
the NDP, to overcome the degeneracy issue of nested processes.

Our second contribution is that the proposed model overcomes some of the practical and
applied limitations of the latent nested approach by Camerlenghi et al. (2019). As pointed
out in Beraha and Guglielmi (2019), the latent nested approach becomes computationally
burdensome in the case of I > 2 populations. In contrast, implementing posterior inference
for the semi-HDP prior does not require restrictions on I. We discuss in detail how to
carry out posterior inference in the context of hierarchical models based on the semi-HDP.

A third contribution of this article is that we combine the proposed semi-HDP prior
with a random partition model that allows different populations to be grouped in clusters
that are internally homogeneous, i.e. arising from the same distribution. See an early
discussion of this idea in the context of contingency tables in Quintana (1998). The far
more general extension we aim for here is also useful from the applied viewpoint of finding
out which, if any, of the I populations are internally homogeneous when homogeneity
of the whole set does not hold. For the purpose of assessing global exchangeability, one
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may resort to discrepancy measures (Gelman et al., 1996); see also Catalano et al. (2021).
In our approach, homogeneity corresponds to a point-null hypothesis about a discrete
vector parameter, as we adopt a ‘larger’ model for the alternative hypothesis within which
homogeneity is nested. We discuss the specific case of adopting Bayes factors for the
proposed test within the partial exchangeability framework. We show that the Bayes
factor for this test is immediately available, and derive some of its theoretical properties.

The rest of this chapter is organized as follows. Section 6.2 gives some additional back-
ground that is relevant for later developments, presents the semi-HDP prior (Section 6.2.2)
and, in particular, it describes a food court of Chinese restaurants with private and shared
areas metaphor (Section 6.2.3). Section 6.3 studies several theoretical properties of the
semi-HDP such as support, moments, the corresponding partially exchangeable partition
probability function (in a particular case) and specially how the degeneracy issue is over-
come under this setting. Section 6.3.3 specializes the discussion to the related issue of
testing homogeneity when I = 2 populations are present, and we study properties of the
Bayes Factor for this test. Section 6.4 describes a computational strategy to implement
posterior inference for the class of hierarchical models based on our proposed semi-HDP
prior. Extensive simulations, with I = 2, 4 and 100 populations are presented in Sec-
tion 6.5. An application to an educational data set is discussed in Section 6.6. The article
concludes with a discussion in Section 6.7. A The appendix collects the proofs for the
theoretical results, together with additional formulas and figures, and a discussion on con-
sistency for the Bayes Factor in the case of I = 2 homogeneous populations. Code for
posterior inference has been implemented in C++ and is available as part of the BayesMix
library at https://github.com/bayesmix-dev/bayesmix.

6.2 Assessing Exchangeability within a
Partially Exchangeable Framework

While exchangeability can be explored in more generality, for clarity of exposition we set
up our discussion in the context of continuous univariate responses, but extensions to, e.g.
multivariate responses, can be straightforwardly accommodated in our framework.

6.2.1 A common home for exchangeability and partial exchangeability

A flexible nonparametric model for each group can be constructed by assuming a mixture,
where the mixing group-specific distribution p̃i is a random discrete probability measure
(r.p.m.), i.e.

yij | p̃i iid∼ pi(·) =

∫

Θ
k(· | θ) p̃i(dθ), j = 1, . . . , Ni, (6.1)

where k(· | θ) is a density in Y for any θ ∈ Θ, and p̃i is, for example, a DP on Θ. Note
that, with a little abuse of notation, pi in (6.1) and in the rest of the chapter denotes
the conditional population density of group i (before pi represented the population distri-
bution of group i in de Finetti’s theorem). In what follows, we will always assume that
the parametric space is contained in Rp for some positive integer p, and we will always
assume the Borel σ–field B(Θ) of Θ. Using the well-known alternative representation of
the mixture in terms of latent variables, the previous expression is equivalent to assuming
that for any i,

yij | θij ind∼ k(· | θij), θij | p̃i iid∼ p̃i, j = 1, . . . , Ni. (6.2)

In this case, partial exchangeability of observations (yij)ij is equivalent to partial ex-
changeability of the latent variables (θij)ij . Hence exchangeability of observations (yij)ij
is equivalent to the statement p̃1 = p̃2 = · · · = p̃I with probability one.
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In the next subsection we develop one of the main contributions of this chapter, namely,
the construction of a prior distribution π(p̃1, . . . , p̃I) such that there is positive prior proba-
bility that p̃1 = p̃2 = · · · = p̃I , but avoiding the degeneracy issues discussed in Camerlenghi
et al. (2019) and that would arise if we assumed that (p̃1, . . . , p̃I) were distributed as the
NDP by Rodriguez et al. (2008). Briefly, (p̃1, . . . , p̃I) is distributed as the NDP if

p̃i | p̃0
iid∼ p̃0 =

∞∑

`=1

π`δp̃∗` , i = 1, . . . , I and p̃∗`
iid∼ DP (γ,G0),

i.e., the independent atoms in p̃0 are all drawn from a DP on Θ, specifically p̃∗` =∑∞
h=1wh`δθh` , with θh`

iid∼ G0, a probability measure on Θ, and α, γ > 0. The weights
(πj)j and (wh`)h, ` = 1, 2, . . ., are independently obtained from the usual stick-breaking
construction, with parameters α and γ, respectively. Here DγG0

denotes the Dirichlet
measure, i.e. the distribution of a r.p.m. that is a DP with measure parameter γG0.
However, nesting discrete random probability measures produces degeneracy to the ex-
changeable case. As mentioned in Section 6.1, Camerlenghi et al. (2019) showed that the
posterior distribution degenerates to the exchangeable case whenever a shared component
is detected, i.e., the NDP does not allow for sharing clusters among non-homogeneous
populations. The problem is shown to affect any construction that uses nesting, and not
just the NDP.

To overcome the degeneracy issue, while retaining flexibility, Camerlenghi et al. (2019)
proposed the so-called Latent Nested Nonparametric priors. These models involve a shared
random measure that is added to the draws from a Nested Random Measure, hence accom-
modating for shared atoms. See also the discussion by Beraha and Guglielmi (2019). There
are two key ideas in their model: (i) nesting discrete random probability measures as in the
case of the NDP, and (ii) contaminating the population distributions with a common com-
ponent as in Müller et al. (2004) and also, Lijoi et al. (2014a). The contamination aspect
of the model yields dependence among population-specific random probability measures,
and avoids the degeneracy issue pointed out by the authors, while the former accounts
for testing homogeneity in multiple-sample problems. Their approach, however, becomes
computationally burdensome in the case of I > 2 populations, and it is not clear how to
extend their construction to allow for the desired additional analysis, i.e. assessing which,
if any, of the I populations are internally homogeneous when homogeneity of the whole
set does not hold.

6.2.2 The Model

We present now a hierarchical model that allows us to assess homogeneity, while avoiding
the undesired degeneracy issues and which further enables us to construct a grouping of
populations that are internally homogeneous. To do so we create a hierarchical represen-
tation of distributions that emulates the behavior arising from an exchangeable partition
probability function (EPPF; Pitman, 2006) such as the Pólya urn. But the main differ-
ence with previous proposals to overcome degeneracy is that we now allow for different
populations to arise from the same distribution, while simultaneously incorporating an
additional mechanism for populations to explicitly differ from each other.

Denote [I] = {1, . . . , I}. A partition S1, . . . , Sk of [I] can be described by cluster
assignment indicators c = (c1, . . . , cI) with ci = ` iff i ∈ S`. Assume this partition arises
from a given EPPF. We introduce the following model for the latent variables in a mixture
model such as (6.2). Let yi := (yi1, . . . , yiNi), for i = 1, . . . , I. We assume that y1, . . . ,yI ,
given all the population distributions p̃1, . . . , p̃I are independent, and furthermore arising
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from

yij | q̃1, . . . , q̃I , c
iid∼
∫

Θ
k(· | θ) q̃ci(dθ), j = 1, . . . , Ni, for all i (6.3)

c ∼ πc(c1, . . . , cI) (6.4)

q̃1, . . . q̃I | p̃ iid∼ DP (α, p̃) (6.5)

p̃ = κG0 + (1− κ)q̃0 (6.6)

q̃0 ∼ DP (γ,G00) (6.7)

κ ∼ Beta(aκ, bκ), (6.8)

where α, γ > 0. Thus the role of the population mixing distribution p̃i in (6.1) – or,
equivalently, in (6.2) – is now played by q̃ci . Observe that q̃1, . . . , q̃I in (6.5) play a role
similar to the cluster specific parameters in more standard mixture models. Consider for
example a case where I = 4 and c = (1, 2, 3, 1). Under the above setting, q̃1, q̃2, q̃3 define a
model for three different distributions, so that populations 1 and 4 share a common mixing
distribution, and q̃4 is never employed.

Equation (6.5) means that conditionally on p̃ each q̃k is an independent draw from
a DP prior with mean parameter p̃ (and total mass α), i.e. q̃k is a discrete r.p.m. on
Θ ⊂ Rp for some positive integer p, with q̃k =

∑
h≥1wkhδθ∗kh where for any k the weights

are independently generated from a stick-breaking process, {wkh}h iid∼ SB(α), i.e.

wk1 = βk1, wkh = βih

h−1∏

j=1

(1− βkj) for h = 2, 3, . . ., βij
iid∼ Beta(1, α),

and {θ∗kh}h, {βkh}h are independent, with θ∗kh | p̃
iid∼ p̃. We assume the centering measure p̃

in (6.6) to be a contaminated draw q̃0 from a DP prior, with centering measure G00, with a
fixed probability measure G0. Both G0 and G00 are assumed to be absolutely continuous
(and hence non-atomic) probability measures defined on (Θ,B(Θ)).

By (6.7), q̃0 =
∑

h≥1 phδτh , where {ph}h ∼ SB(γ), τh
iid∼ G00 are independent weights

and location points. The model definition is completed by specifying πc(c1, . . . , cI). We
assume that the ci’s are (conditionally) i.i.d. draws from a categorical distribution on

[I] with weights ω = (ω1, . . . , ωI), i.e. ci |ω iid∼ Cat([I]; ω), where the elements of ω
are non-negative and constrained to add up to 1. A convenient prior for ω is a finite
dimensional Dirichlet distribution with parameter η = (η1, . . . ηI). Observe that distribu-
tions q̃c1 , . . . , q̃cI allow us to cluster populations, so that there are at most I clusters and
consequently q̃1, . . . , q̃I are all of the cluster distributions that ever need to be considered.

We say that a vector of random probability measures (q̃1, . . . , q̃I) has the semi-hierarchi-
cal Dirichlet process (semi-HDP) distribution if (6.5)-(6.7) hold, and we write (q̃1, . . . , q̃I) ∼
semiHDP (α, γ, κ,G0, G00). It is straightforward to prove that, conditional on κ and even-
tual hyperparameters in G0 and G00, the expectation of any q̃i is κG0 + (1− κ)G00 which
further reduces to G00 if G0 = G00. Note that (q̃1, . . . , q̃I) ∼ semiHDP (α, γ, κ,G0, G00)
defines an exchangeable prior over a vector of random probability measures.

We note several immediate yet interesting properties of the model. First, note that if
κ = 1 in (6.6), then all the atoms and weights in the representation of the q̃i’s are indepen-
dent and different with probability one, since the beta distribution and G0 are absolutely
continuous. If κ = 0, then our prior (6.5)-(6.7) coincides with the Hierarchical Dirichlet
Process in Teh et al. (2006). Since q̃0 =

∑
h≥1 phδτh , then, with positive probability, we

have θ∗kh = θ∗k′m = τ` for k 6= k′, i.e. all the q̃k’s share the same atoms in the stick-breaking
representation of q̃0. However, even when κ = 0, q̃k 6= q̃j with probability one, as the
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weights {wkh}h and {wjh}h are different, since they are built from (conditionally) inde-
pendent stick-breaking priors. This is precisely the feature that allows us to circumvent
the degeneracy problem.

Second, our model introduces a vector parameter c, which assists selecting each popula-
tion distribution from the finite set q̃1, . . . , q̃I , in turn assumed to arise from the semi-HDP
prior (6.5)-(6.7). The former allows two different populations to have the same distribu-
tion (or mixing measure) with positive probability, while the latter allows to overcome the
degeneracy issue while retaining exchangeability. Indeed, as noted above, q̃i and q̃j may
share atoms. The atoms in common arise from the atomicity of the base measure and we
let the atomic component of the base measure to be a draw from a DP. The result is a very
flexible model, that on one hand is particularly well-suited for problems such as density
estimation, and on the other, can be used to construct clusters of the I populations, as
desired.

6.2.3 A restaurant representation

To better understand the cluster allocation under model (6.3)-(6.7), we rewrite (6.3) in-
troducing the latent variables {θij} as follows

yij | q̃1, . . . q̃I , c, θij
ind∼ k(· | θij) (6.9)

θi1, . . . θiNi | q̃1, . . . q̃I , c
iid∼ q̃ci (6.10)

and {θi`}` ⊥ {θjm}m for i 6= j, conditionally on q̃1, . . . , q̃I .
We first derive the conditional law of the θij ’s under (6.9) - (6.10), and (6.4)-(6.6),

given q̃0. All customers of group i enter restaurant r (such that ci = r). If group i is the
first group entering restaurant r, then the usual Chinese Restaurant metaphor applies.
Instead, let us imagine that group i is the last group entering restaurant r among those
such that cm = r. Upon entering the restaurant, the customer is presented with the usual
Chinese Restaurant Process (CRP), so that

θij | c, {θmk, ∀m : cm = ci = r}, θi1, . . . , θij−1, q̃0 ∼
Hr∑

`=1

nr`
α+ nr·

δθ∗r` +
α

α+ nr·
p̃, (6.11)

that is the CRP when considering all the groups entering restaurant r as a single group.
Here Hr denotes the number of tables in restaurant r, and nr` is the number of customers

who entered from restaurant r and are seating at table `. Moreover, note that θ∗r` | q̃0
iid∼ p̃,

so that, as in the HDP, there might be ties among the θ∗r` also when keeping r fixed. This
is an important observation as the fact that there might be ties for different values of
r 6= r′ instead, is exactly what let us avoid the degeneracy to the exchangeable case. Note
that (6.11) holds also for θi1, i.e. the first customer in group i. In the following, we will
use clusters or tables interchangeably. However, note that, unlike traditional CRPs, the
number of clusters does not coincide with the number of unique values in a sample. This
point is clarified in Argiento et al. (2019), who introduce the notion of `–cluster, which is
essentially the table in our restaurant metaphor.

Observe from (6.11) that when a new cluster is created, its label is sampled from p̃.
In practice, we augment the parameter space with a new binary latent variable for each

cluster, namely hr`, with hr`
iid∼ Bernoulli(κ), so that

θ∗r` |hr` = 1 ∼ G0 and θ∗r` |hr` = 0, q̃0 ∼ q̃0.

Upon conditioning on {hr`} it is straightforward to integrate out q̃0. Indeed, we can write
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Figure 6.2.1: Restaurant representation of the semi-HDP allocation. In the image, c =
(1, 4, 1, 4) so that groups one and three enter in restaurant R1 while groups two and
four enter in restaurant R4. In the ‘common area’ two tables are represented, τ1 and
τ2. ‘Zooming’ into τ2 shows that there are three different θ∗’s associated to the value τ2,
namely θ∗12, θ

∗
13 and θ∗43. The first two originate from R1, showing that it is possible to

have ties among the θ∗’s even inside the same restaurant, while the table labeled θ∗43 shows
that it is possible to have ties across different restaurants.

the joint distribution of {θ∗r`, ∀r ∀`}, conditional on {hr`} as

{θ∗r`} | {hr`}, q̃0 ∼
∏

r,`

G0(dθ∗r`)
hr`

∏

r,`

q̃0(dθ∗r`)
1−hr` .

Hence we see that {θ∗r`, ∀r ∀` : hr` = 0} is a conditionally i.i.d sample from q̃0 (given all
the hrl’s and q̃0), so that we can write:

θ∗r` |hr` = 0, {θ∗ij : hij = 0} ∼
H0∑

k=1

m·k
m·· + γ

δτk +
γ

m·· + γ
G00 (6.12)

and τk
iid∼ G00, where H0 denotes the number of tables in the common area in Figure 6.2.1,

and mrk denotes the cardinality of the set {θ∗r` : θ∗r` = τk}. The dot subindex denotes
summation over the corresponding subindex values. Hence, conditioning on all the (r, `)
such that hr` = 0, with r corresponding to a non-empty restaurant, we recover the Chinese
Restaurant Franchise (CRF) that describes the HDP.

We can describe the previously discussed clustering structure in terms of a restaurant
metaphor as the ‘food court of Chinese restaurants with private and shared areas’. Here,
the θ∗r` correspond to the tables and θij to the customers. Moreover, a dish is associated
to each table. Dishes are represented by the various θ∗r`’s . There is one big common
area where tables are shared among all the restaurants and I additional “private” small
rooms, one per restaurant, as seen in Figure 6.2.1. The common area accommodates tables

arising from the HDP, i.e. those tables such that τk
iid∼ G00, while the small rooms host

those tables associated to non empty restaurants, such that θ∗r` |hr` = 1
iid∼ G0. All the

customers of group i enter restaurant r (such that ci = r). Upon entering the restaurant, a
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customer is presented with a menu. The Hr dishes in the menu are the θ∗r`’s, and because

θ∗r`
iid∼ p̃, there might be repeated dishes; see (6.11). The customer either chooses one of

the dishes in the menu, with probability proportional to the number of customers who
entered the same restaurant and chose that dish, or a new dish (that is not included in
the menu yet) with probability proportional to α; again, see (6.11). If the latter option
is chosen, with probability κ a new table is created in the restaurant-specific area, Hr is
incremented by one and a new dish θ∗rHr+1 is drawn from G0. With probability 1 − κ
instead, the customer is directed to the shared area, where (s)he chooses to seat in one of
the occupied tables with a probability proportional to m·k, i.e. the number of items in the
menus (from all the restaurants) that are equal to dish τk, or seats at a new table with a
probability proportional to γ, as seen from (6.12). We point out that the choice of table
in this case is made without any knowledge of which restaurant the dishes came from.
Moreover, if the customer chooses to sit at a new table, we increment H0 by one and draw
τH0+1 ∼ G00; we also increment Hr by one and set θ∗rHr+1 = τH0+1. Observe that in the
original CRF metaphor, it is not the tables that are shared across restaurants, but rather
the dishes. In our metaphor instead, we group together all the tables corresponding to the
same τh and place them in the shared area. This is somewhat reminiscent of the direct
sampler scheme for the HDP. Nevertheless, observe that the bookkeeping of the mrk’s is
still needed. To exemplify this, in Figure 6.2.1 we report a ‘zoom’ on a particular shared
table τ , showing that the θ∗’s associated to that table are still present in our metaphor,
but can be collapsed into a single shared table when it is convenient.

6.3 Theoretical properties of the semi-HDP prior

Here we develop additional properties of the proposed prior model. In particular, we study
the topological support of the semi-HDP and show how exactly the degeneracy issue is
resolved by studying the induced joint random partition model on the I populations.

6.3.1 Support and moments

An essential requirement of nonparametric priors is that they should have large topological
support; see Ferguson (1973). Let us denote by πp̃ the probability measure on PIΘ corre-
sponding to the prior distribution π(p̃1, . . . , p̃I) of the random vector (p̃1, . . . , p̃I) specified
in (6.4)–(6.7), with p̃i = q̃ci ; see (6.1). We show here that the prior probability measure
πp̃ has full weak support, i.e. given any point g = (g1, . . . , gI) in PIΘ, πp̃ gives positive
mass to any weak neighborhood U(g; ε) of g, of diameter ε.

Proposition 6.1 (Full Weak Support). Let πp̃(g1 . . . , gI) be the prior probability measure
on PIΘ defined by (6.4)–(6.7).

(a) If G0 in (6.6) has full support on Θ and 0 < κ ≤ 1, then πp̃(g1 . . . , gI) has full weak
support.

(b) If κ = 0 and G00 in (6.7) has full support, then πp̃(g1 . . . , gI) has full weak support.

It is straightforward to show that in case where πc(c1, . . . , cI) is exchangeable and
P (ci = `) = ω` for ` = 1, . . . , I then (6.3)–(6.7) becomes, after marginalizing with respect
to c,

yij | q̃1, . . . , q̃I
iid∼
∑

c

∫

Θ
k(· | θ) q̃ci(dθ)πc(c1, . . . , cI) =

I∑

`=1

ω`

∫

Θ
k(· | θ) q̃`(dθ).
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In this case, the conditional marginal distribution of each observation can be expressed
as a finite mixture of mixtures of the density k(· | θ) with respect to each of the random
measures q̃1, . . . , q̃I , i.e. a finite mixture of Bayesian nonparametric mixtures.

We have mentioned above that in the case in which G00 = G0 in Equations (6.6) -
(6.7), the marginal law of q̃i is G0, and equivalently, for each A ∈ B(Θ), E[q̃i(A)] = G0(A)
for any i. In this case, the covariance between q̃1 and q̃2 is given by

cov (q̃1(A), q̃2(B)) =
(1− κ)2

1 + γ
(G0(A ∩B)−G0(A)G0(B)) .

See Appendix 6.A, for the proof of these formulas. Note that, in the case of Hierarchical
Normalized Completely Random Measures, and hence in the HDP, the covariance between
q̃1 and q̃2 depends exclusively on the intensity of the random measure governing q̃0 (in the
case of the DP the dependence is on γ). For instance, see Argiento et al. (2019), Equation
(5) in the Supplementary Material. Instead, in the Semi-HDP, an additional parameter
can be used to tune such covariance: the weight κ. Indeed, as κ approaches 1, the two
measures become more and more uncorrelated, the limiting case being full independence
as discussed at the end of Section 6.2.2. In Appendix 6.A, we also report an expression
for the higher moments of q̃i(A) for any i.

6.3.2 Degeneracy and marginal law

We now formalize the intuition given in Section 6.2.3 and show that our model, as de-
fined in (6.3)-(6.7), does not incur in the degeneracy issue described by Camerlenghi et al.
(2019). The degeneracy of a nested nonparametric model refers to the following situa-
tion: if there are shared values (or atoms in the corresponding mixture model) across any
two populations, then the posterior of these population/random probabilities degenerates,
forcing homogeneity across the corresponding samples. See also the discussion in Beraha
and Guglielmi (2019).

From the food court metaphor described above, it is straightforward to see that degen-
eracy is avoided if two customers sit in the same table (of the common area) with positive
probability, conditioning on the event that they entered from two different restaurants.

To see that this is so for the proposed model, let us consider the case I = 2 and
θi1 | q̃1, q̃2, c = (1, 2) ∼ q̃i, for i = 1, 2. Marginalizing out (q̃1, q̃2), this is equivalent to

θ11, θ21 | q̃0, c = (1, 2)
iid∼ wG0 + (1 − w)q̃0. Now, since G0 is absolutely continuous,

{θ11 = θ21} if and only if (i) θ11 and θ21 are sampled i.i.d. from q̃0; and (ii) we have a
tie (which arises from the Pólya-urn scheme), i.e. θ21 = τ1 = θ11 and τ1 ∼ G00. This
means that θ11, the first customer, sits in a table of the common area, an event that
happens with probability 1 − κ since she is the first one in the whole system, and θ21

decides to sit in the common area (with probability 1−κ) and subsequently decides to sit
at the same table of θ11 (which happens with probability 1

γ+1). Summing up we have that

p(θ11 = θ21 | c = (1, 2)) = (1 − κ)2/(1 + γ) which is strictly positive if κ < 1. Hence, by
Bayes’ rule, we have that

P (c1 6= c2 | θ11 = θ21) =
P (θ11 = θ21 | c1 6= c2)P (c1 6= c2)∑

i,j P (θ11 = θ21 | c = (i, j))P (c = (i, j))
> 0.

Moreover, when κ = 1 we find the same degeneracy issue described in Camerlenghi et al.
(2019), as proved in Proposition 6.2 below.

To get a more in-depth look at these issues, we follow Camerlenghi et al. (2019) and
study properties of the partially exchangeable partition probability function (pEPPF)
induced by our model, which we define in the special case of I = 2. Consider a sample
θ = (θ1,θ2) of size N = N1 + N2 from model (6.10), together with (6.4)-(6.7) for I = 2
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populations; let k = k1 + k2 + k0 the number of unique values in the samples, with k1

(k2) unique values specific to group 1 (2) and k0 shared between the groups. Call ni the
frequencies of the ki unique values in group i and qi the frequencies of the k0 shared values
in group i; this is the same notation as in Camerlenghi et al. (2019), Section 2.2. The
pEPPF is defined as

ΠN
k (n1,n2, q1, q2 | c = (`,m)) =

∫

Θk

E



k1∏

j=1

q̃
n1j

` (dθ∗1j)

k2∏

j=1

q̃n2j
m (dθ∗2j)

k0∏

j=1

q̃
q1j
` (dτj)q̃

q2j
m (dτj)




Proposition 6.2. Let κ in (6.6) be equal to 1, let π1 = P (c1 = c2), then the pEPPF

Π
(N)
k (n1,n2, q1, q2) can be expressed as:

Π
(N)
k (n1,n2, q1, q2) = π1Φ

(N)
k (n1,n2, q1 + q2)

+ (1− π1)Φ
(N1)
k0+k1

(n1, q1)Φ
(N2)
k0+k1

(n2, q2)I(k0 = 0) (6.13)

where

Φ
(N)
k (n1,n2, q1 + q2) =

αk1+k2+k0Γ(α)

Γ(α+N)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

k0∏

j=1

Γ(q1j + q2j)

is the EPPF of the fully exchangeable case, and

Φ
(Ni)
k0+ki

(ni, qi) =
αki+k0Γ(α)

Γ(α+Ni)

ki∏

j=1

Γ(nij)

k0∏

j=1

Γ(qij), i = 1, 2

is the marginal EPPF for the individual group i.

This result shows that a suitable prior for κ requires assigning zero probability to the
event κ = 1. The assumption in (6.8) trivially satisfies this requirement.

Finally, we consider the marginal law of a sequence of vectors (θ1, . . . ,θI), θ` =
(θ`1, . . . θ`Nl) from model (6.3)-(6.7). Let us first derive the marginal law conditioning
on c, as the full marginal law will be the mixture of these conditional laws over all the
possible values of c.

Proposition 6.3. The marginal law of a sequence of vectors (θ1, . . . ,θI), θ` = (θ`1, . . . θ`N`)
from model (6.3)-(6.7), conditional to c is

R(c)∏

i=1

eppf(nri ;α)
∑

h∈{0,1}L
p(h)

L∏

`=1

G0(dθ∗` )
h` × eppf(mri |h; γ)

M∏

k=1

G00(dθ∗∗k ). (6.14)

Here, {θ∗`}L`=1 = {θ∗11, . . . , θ
∗
IHI
} is a sequence representing all the tables in the process,

obtained by concatenating the tables in each restaurant. Moreover, R(c) is the number of
unique values in c, i.e. the number of non-empty restaurants, nri is the vector of `-cluster
sizes for restaurant ri, mri is the vector of the cluster sizes of the θ∗` such that h` = 0 and
θ∗∗k are the unique values among such θ∗` , where ‘eppf ’ denotes the the distribution of the
partition induced by the table assignment procedure in the food court of Chinese restaurants
described in Section 6.2.3.
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The marginal law of (θ1, . . . ,θI) is then

L(dθ1, . . . , dθI) =
∑

c

L(dθ1, . . . , dθI | c)π(c)

where L(dθ1, . . . , dθI | c) is given in (6.14).
Observe that in Proposition 6.2 we denoted by Φ the EPPF, while in (6.14) we use

notation ‘eppf ’. This is to remark that these objects are inherently different: Φ is the
EPPF of the partition of unique values in the sample, while eppf here is the EPPF of the
tables, or `–clusters, induced by the table assignment procedure described in Section 6.2.3.
Hence, from a sample θ one can recover n1,n2, q1, q2 in (6.13) but not nri in (6.14).

6.3.3 Some results on the Bayes factor for testing homogeneity

We consider now testing for homogeneity within the proposed partial exchangeability
framework. As a byproduct of the assumed model, the corresponding Bayes factor is
immediately available. For example, if one wanted to test whether populations i and j
were homogeneous, it would suffice to compute the Bayes factor for the test

H0 : ci = cj vs. H1 : ci 6= cj (6.15)

which can be straightforwardly estimated from the output of the posterior simulation
algorithm that will be presented later on. Note that these ‘pairwise’ homogeneity tests
are not the only object of interest that we can tackle within our framework. Indeed it is
possible to test any possible combination of c against an alternative.

These tests admit an equivalent representation in terms of a model selection problem;
for example in the case of I = 2 populations, we can rewrite (6.15), for i = 1 and j = 2,
as a model selection test for M1 against M2, where

M1 : y11, . . . , y1N1
, y21, . . . , y2N2

| q̃1
iid∼
∫

Θ
k(· | θ)q̃1(dθ)

q̃1 ∼ semiHDP (α, γ, κ,G0, G00)

and

M2 : yi1, . . . , yiNi , | q̃i
iid∼
∫

Θ
k(· | θ)q̃i(dθ), i = 1, 2

q̃1, q̃2 ∼ semiHDP (α, γ, κ,G0, G00).

In this case

BF12 := BF12(y11, . . . , y1N1
, y21, . . . , y2N2

) =
mM1

(y11, . . . , y1N1
, y21, . . . , y2N2

)

mM2
(y11, . . . , y1N1

, y21, . . . , y2N2
)
,

where mMi
denotes the marginal law of the data under model Mi, i = 1, 2, defined above.

Asymptotic properties of Bayes factors have been discussed by several authors. We refer
to Walker et al. (2004), Ghosal et al. (2008) for a more detailed discussion and to Chib
and Kuffner (2016) for a recent survey on the topic. Chatterjee et al. (2020) is a recent
and solid contribution to the almost sure convergence of Bayes factor in the general set-up
that includes dependent data, i.e. beyond the usual i.i.d. context.

In words, our approach can be described as follows. When the data are assumed to
be exchangeable, we assume that both samples are generated i.i.d from a distribution P0

with density p0. If the data are instead assumed to be partially exchangeable, then we
consider the first population to be generated i.i.d from a certain P0 with density p0, while
the second one is generated from Q0 with density q0, with P0 6= Q0 and independence holds

117



Chapter 6. The semi-HDP

across populations. The Bayes factor for comparing M1 against M2 is thus consistent if:
(i) BF12 → +∞ P∞0 –a.s. when N1, N2 → +∞ if the groups are truly homogeneous, and
(ii) BF12 → 0 (P0 ⊗Q0)∞–a.s. when N1, N2 → +∞ if the groups are not homogeneous.

The two scenarios must be checked separately. In the latter case, consistency of the
Bayes factor can be proved by arguing that only model M2 satisfies the so-called Kullback-
Leibler property, so that consistency is ensured by the theory in Walker et al. (2004). We
summarize this result in the following proposition.

Proposition 6.4. Assume that y11, . . . , y1N1

iid∼ P0, y21, . . . , y2N2

iid∼ Q0, P0 6= Q0, and
that {y1i} and {y2j} are independent. Assume that P0 and Q0 are absolutely continuous
measures with probability density functions p0 and q0 respectively. Then, under conditions
B1-B9 in Wu and Ghosal (2008), BF12 → 0 as N1, N2 → +∞.

Observe that, out of the nine conditions B1-B9, we have that B1 − B3, B7 and B9
involve regularity conditions of the kernel k(·|θ). These are satisfied if the kernel is, for
example, univariate Gaussian with parameters θ = (µ, σ2). Conditions B4 − B6 involve
regularity of the true data generating density, which are usually satisfied in practice.
Condition B8 requires that the mixing measure has full weak support, already proved in
Proposition 6.1.

On the other hand, when p0 = q0, consistency of the Bayes factor would require BF12 →
+∞. This is a result we have not been able to prove so far. Appendix 6.B discusses the
relevant issues arising when trying to prove the consistency in this setting; we just report
here that the key missing condition is an upper bound of the prior mass of M2. The lack
of such bounds for general nonparametric models is well known in the literature, and not
specific to our case, as it is shared, for instance, by Bhattacharya and Dunson (2012) and
Tokdar and Martin (2019). In both cases, the authors were able to prove the consistency
under the alternative hypothesis but not under the null. For a discussion on the ‘necessity’
of these bounds in nonparametric models, see Tokdar and Martin (2019).

In light of the previous consistency result for the non-homogeneous case, our recom-
mendation to carry out the homogeneity test is to decide in favor of H0 whenever the
posterior of ci, cj does not strongly concentrate on ci 6= cj . As Section 6.5 shows, in
our simulated data experiments this choice consistently identifies the right structure of
homogeneity among populations. See also the discussion later in Section 6.7.

6.4 Posterior Simulation

We illustrate an MCMC sampler based on the restaurant representation derived in Sec-
tion 6.2.3. The random measures {q̃i}i and q̃0 are marginalized out for all the updates
except for the case of c, for which we use a result from Pitman (1996) to sample from the
full conditional of each q̃i, truncating the infinite stick-breaking sum adaptively; see below.
We refer to this algorithm as marginal. We also note that, by a prior truncation of all the
stick-breaking infinite sums to a fixed number of atoms, we can derive a blocked Gibbs
sampler as in Ishwaran and James (2001). However, in our applications the blocked Gibbs
sampler was significantly slower both in reaching convergence to the stationary distribu-
tion and to complete one single iteration of the MCMC update. Hence, we will describe
and use only the marginal algorithm.

We follow the notation introduced in Section 6.2.3. The state of our MCMC sampler
consists of the restaurant tables {θ∗rh}, the tables in the common area {τh}, a set of binary
variables {hrj}, indicating if each table is ‘located’ in the restaurant-specific or in the
common area, a set of discrete shared table allocation variables tr`, one for each θ∗r` such
that θ∗r` = τk iff tr` = k and hr` = 0, the categorical variables ci, indicating the restaurant
for each population, κ ∈ (0, 1), and the table allocation variable sij : for each observation
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such that θij = θ∗rh iff ci = r and sij = h. We also denote by H0 and Hr the number
of tables occupied in the shared area and in restaurant r respectively, mrk indicates the
number of customers in the common area entered from restaurant r seating at table k.

We use the dot notation for marginal counts, for example nr· indicates all the customers
entered in restaurant r. We summarize the Gibbs sampling scheme next.

• Sample the cluster allocation variables using the Chinese Restaurant Process,

p(sij = s | ci = r, rest) ∝
{
n−ijr` k(yij | θ∗rh) if s previously used

αp(yij | s−ij , rest) if s = snew
(6.16)

where

p(yij | s−ij , rest) = κ

∫
k(yij | θ)G0(dθ)+

+ (1− κ)

(
H0∑

k=1

m−ij·k
m−ij·· + γ

k(yij | τk) +
γ

m−ij·· + γ

∫
k(yij | θ)G00(dθ)

)
, (6.17)

and where the notation x−ij means that observation yij is removed from the calcu-
lations involving the variable x.

If s = snew, a new table is created. The associated value θ∗rsnew is sampled from G0

with probability κ or from q̃0 with probability 1 − κ, as described in Section 6.2.3.
The corresponding latent variables hrsnew and trsnew are set accordingly. When
sampling from (6.12) a new table in the shared area might be created. In that case,
trsnew is set to H0 + 1.

• Sample the table allocation variables tr` as in the HDP:

p(tr` = k | rest) ∝





m−r`·k

∏

(i,j):ci=r,si,j=`

k(yij | τk) if k previously used

γ

∫ ∏

(i,j):ci=r,si,j=`

k(yij | τ)G00(dτ) if k = knew,
(6.18)

where the notation x−r` means that table θ∗r`, including all the associated observa-
tions, is entirely removed from the calculations involving variable x. If k = knew

a new table is created in the shared area, the allocation variables sij are left un-
changed.

• Sample the cluster values from

L(θ∗r` |hr` = 1, rest) ∝ G0(θ∗r`)
∏

(i,j):ci=r,si,j=`

k(yij | θ∗r`)

and
L(τk | rest) ∝ G00(τk)

∏

(i,j)∈(∗)

k(yij | τk)

where the product (∗) is over all the index couples such that ci = r, sij = `, hr` = 0
and θ∗r` = τk. Observe that, when hr` = 0, it means that θ∗r` = τk for some k. Hence,
in this case, θ∗r` is purely symbolic and we do not need to sample a value for it.
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• Sample each hr` independently from

p(hr` = 1|rest) ∝ κG0(θ∗r`)

p(hr` = 0|rest) ∝ (1− κ)

(
H0∑

k=1

m−r`·k
m−r`·· + γ

δτk(θ
∗
r`) +

γ

m−r`·· + γ
G00(θ∗r`)

)
,

where, as in (6.18), the notation x−r` means that table θ∗r`, including all its associated
observations, is removed from the calculations involving variable x. Observe that,
while in the update of the cluster values all the θ∗r` referring to the same τk were
updated at once, here we move the tables one by one.

• Sample κ from L(κ | rest) ∼ Beta
(
aκ +

∑
i,j hij , bκ +

∑
i,j(1− hij)

)
.

• Sample ω from

ω | rest ∼ Dirichlet
(
η1 +

I∑

i=1

I[ci = 1], . . . , ηI +

I∑

i=1

I[ci = I]
)

where I[·] denotes the indicator function.

• Sample each ci in c = (c1, . . . , cI) independently from

P (ci = r | q̃1, . . . , q̃I ,ω,yi) ∝ ωr
Ni∏

j=1

∫
k(yij | θ)q̃r(dθ). (6.19)

If the new value of ci differs from the previous one, then following (6.16), all the
observations yi1, . . . , yiNi are reallocated to the new restaurant.

Note that the update in (6.19) involves the previously marginalized random probability
measures q̃1, . . . , q̃I . Thus, before performing this update, we need to draw the q̃i’s from
their corresponding full conditional distributions. It follows from Corollary 20 in Pitman
(1996) that the conditional distribution of q̃r given c, nr, θ

∗
r , κ, and q̃0 coincides with the

distribution of πr0q̃
′
r+
∑Hr

h=1 πrhδθ∗rh , where (πr0, πr1, . . . , πrHr) ∼ Dirichlet(α, nr1, . . . , nrHr)
and q̃′r | q̃0 ∼ DP (α, p̃). This result was employed in Taddy et al. (2012) to quantify pos-
terior uncertainty of functionals of a Dirichlet process, and also in Canale et al. (2019) to
derive an alternative MCMC scheme for mixture models. It follows from the usual stick
breaking representation that q̃′r =

∑∞
h=1w

′
rhδθ′rh with {w′rh}h ∼ SB(α) and θ′rh |κ, q̃0

iid∼
κG0 +(1−κ)q̃0. Similarly, the conditional distribution of q̃0 given τ and m coincides with

the distribution of v0q̃
′
0+
∑H0

k=1 vkδτk , where (v0, v1, . . . , vH0
) ∼ Dirichlet(γ,m·1, . . . ,m·H0

)
and q̃′0 ∼ DP (γ,G00).

In practice, we draw each q̃′r by truncating the infinite sum. Note that we do not need
to set a priori the truncation level. Instead, we can specify an upper bound for the error
introduced by the truncation and set the level adaptively. In fact, as a straightforward
consequence of Theorem 1 in Ishwaran and James (2002) we have that the total variation
distance between q̃′r and its approximation with M atoms, say q̃M ′r , is bounded by εM =

1 −∑M
h=1w

′
rh (see also Theorem 2 in Lijoi et al., 2020c). The error induced on q̃r is

then bounded by πr0εM . Note that simulation of the atoms θ′rh involves the discrete
measure q̃′0. However, we only need to draw a finite number of samples from it, and not
its full trajectory, so that no truncation is necessary for q̃′0 . For ease of bookkeeping,
we employ retrospective sampling (Papaspiliopoulos and Roberts, 2008) to simulate the
atoms. Alternatively, the classical CRP representation can be used. In our experiments,
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because
∑Hr

h=1 nrh � α we have πr0 �
∑Hr

h=1 πrh ≈ 1. Thus, choosing a truncation level
M = 10 always produces an error on q̃i lower than 10−4 (henceforth fixed as the truncation
error threshold). Furthermore, we are often not even required to draw samples from q̃′0.

Of the aforementioned steps, the bottleneck is the update of c because for each ci we
are required to evaluate the densities of Ni points in I mixtures. If Ni = N for all i, the
computational cost of this step is O(NI2), which can be extremely demanding for large
values of I. We can mitigate the computational burden by replacing this Gibbs step with
a Metropolis-within-Gibbs step, in the same spirit of the Metropolised Carlin and Chib
algorithm proposed in Dellaportas et al. (2002). At each step we propose a move from

c
(`)
i = r to c

(`+1)
i = m with a certain probability pi(m | r). The transition is then accepted

with the usual Metropolis-Hastings rule, i.e. the new update becomes:

• Propose a candidate m by sampling pi(m | r)

• Accept the move with probability q, where

q = min

[
1,
P (ci = m)

∏Ni
j=1

∫
k(yij | θ)q̃m(dθ)

P (ci = r)
∏Ni
j=1

∫
k(yij | θ)q̃r(dθ)

pi(r |m)

pi(m | r)

]

We call this alternative sampling scheme the Metropolised sampler. The key point is that
if evaluating the proposal pi(·|·) has a negligible cost, the computational cost of this step
will be O(2NI) as for each data point we need to evaluate only two mixtures: the one
corresponding to the current state q̃r and the one corresponding to the proposed state q̃m.
Of course, the efficiency and mixing of the Markov chain will depend on a suitable choice of
the transition probabilities pi(·|·); some possible alternatives are discussed in Section 6.5.

When, at the end of an iteration, a cluster is left unallocated (or empty), the probability
of assigning an observation to that cluster will be zero for all subsequent steps. As in
standard literature, we employ a relabeling step that gets rid of all the unused clusters.
However, this relabeling step is slightly more complicated since there are two different
types of clusters: one arising from G0 and ones arising from q̃0. Details of the relabeling
procedure are discussed in the Appendix 6.C.

6.4.1 Use of pseudopriors

The above mentioned sampling scheme presents a major issue that could severely impact
the mixing. Consider as an example the case when I = 2; if, at iteration k, the state
jumps to c1 = c2 = 1, then all the tables of the second restaurant would be erased from
the state, because no observation is assigned to them anymore. Switching back to c1 6= c2

would then require that the approximation of q̃2 sampled from its prior distribution gives
sufficiently high likelihood to either y1 or y2, an extremely unlikely event in practice.

To overcome this issue, we make use of pseudopriors as in Carlin and Chib (1995),
that is, whenever a random measure q̃r in (q̃1, . . . , q̃I) is not associated with any group, we
sample the part of the state corresponding to that measure (the atoms {θ∗r`} and number
of customers {nr`} in each restaurant) from its pseudoprior. From the computational point
of view, this is accomplished by running first a preliminary MCMC simulation where the
ci’s are fixed as ci = i, and collecting the samples. Then, in the actual MCMC simulation,
whenever restaurant r is empty we change the state by choosing at random one of the
previous samples obtained with fixed ci’s. Note that this use of pseudopriors does not
alter the stationary distribution of the MCMC chain. Furthermore, the way pseudopriors
are collected and sampled from is completely arbitrary, and our proposed solution works
well in practice. Other valid options include approximations based on preliminary chain
runs, as discussed in Carlin and Chib (1995).
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(µ1, σ1) (µ2, σ2) (µ3, σ3) (µ4, σ4) w1 w2

Scenario I (0.0, 1.0) (5.0, 1.0) (0.0, 1.0) (5.0, 1.0) 0.5 0.5
Scenario II (5.0, 0.6) (10.0, 0.6) (5.0, 0.6) (0.0, 0.6) 0.9 0.1
Scenario III (0.0, 1.0) (5.0, 1.0) (0.0, 1.0) (5.0, 1.0) 0.8 0.2

Table 6.5.1: Parameters of the simulated datasets

Section 6.5 below contains extensive simulation studies that show that the proposed
model can be used to efficiently estimate densities for each population. We also tried
the case of a large number of populations, e.g. I = 100 without any significant loss of
performance.

6.5 Simulation Study

In this section we investigate the ability of our model to estimate dependent random
densities. We fix the kernel k(·|θ) in (6.2) to be the univariate Gaussian density with
parameter θ = (µ, σ2) (mean and variance, respectively). Both base measures G0 and G00

are chosen to be
N (µ | 0, 10σ2)× inv − gamma(σ2 | 1, 1),

and unless otherwise stated, with hyperparameters α, γ fixed to 1, aκ = bκ = 2, and
η = (1/I, . . . , 1/I). Chains were run for 100, 000 iterations after discarding the first
10, 000 iterations as burn-in, keeping one every ten iterations, resulting in a final sample
size of 10, 000 MCMC draws.

6.5.1 Two populations

We first focus on the special case of I = 2 populations. Consider generating data as follows

y1j
iid∼ w1N (µ1, σ1) + (1− w1)N (µ2, σ2) j = 1, . . . N1

y2j
iid∼ w2N (µ3, σ3) + (1− w2)N (µ4, σ4) j = 1, . . . N2,

(6.20)

that is each population is a mixture of two normal components. This is the same example
considered in Camerlenghi et al. (2019). Table 6.5.1 summarizes the parameters used to
generate the data. Note that these three scenarios cover either the full exchangeability
case across both populations (Scenario I), as well as the partial exchangeability between
the two populations (scenarios II and III). For each case, we simulated N1 = N2 = 100
observations for each group (independently).

Table 6.5.2 reports the posterior probabilities of the two population being identified
as equal for the three scenarios. We can see that our model recovers the ground truth.
Moreover Figure 6.D.2 in the Appendix file shows the density estimates, i.e. the posterior
mean of the density evaluated on a fixed grid of points, together with pointwise 95%
posterior credible intervals at each point x in the grid, obtained by our MCMC for scenarios
I and III. Here, densities are estimated from the corresponding posterior mean evaluated
on a fixed grid of points, while credible intervals are obtained by approximating the q̃i’s
as discussed in Section 6.4. We can see that in both the cases, locations and scales of
the populations are recovered perfectly, while it seems that the weights of the mixture
components are slightly more precise in Scenario I than in Scenario III.

Comparing the Bayes Factors shown in Table 6.5.2 with the ones in Camerlenghi et al.
(2019) (5.86, 0.0 and 0.54 for the three scenarios, respectively), we see that both models
are able to correctly assess homogeneity. However, the Bayes Factors obtained under our
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P (c1 = c2 | data) BF01

Scenario I 0.99 98.9
Scenario II 0.0 0.0
Scenario III 0.0 0.0

Table 6.5.2: Posterior inference
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Figure 6.5.1: Posterior distribution of the number of shared unique values and unique
values specific to first and second group in Scenario II.

model tend to assume more extreme than those from Camerlenghi et al. (2019). Fig-
ure 6.5.1 shows the posterior distribution of the number of shared and private unique
values (reconstructed from the cluster allocation variables sij and the table allocation
variables tr`) in Scenario II, when either κ ∼ Beta(2, 2) or κ = 1. Also in the he latter
case P (c1 = c2 | data) = 0, but the shared component between groups one and two is not
recovered, due to the degeneracy issue described in Proposition 6.2.

As the central point of our model is to allow for different random measures to share
at least one atom, we test more in detail this scenario. To do so, we simulate 50 different

datasets from (6.20), by selecting µ1, µ2, µ4
iid∼ N (0, 10) and σ2

1, σ
2
2, σ

2
4

iid∼ inv−gamma(2, 2),
w1 ∼ Beta(1, 1) and setting µ3 = µ1, σ

2
3 = σ2

1, w2 = w1. In this way we create 50
independent scenarios where the two population share exactly one component and give
the same weight to this component. Figure 6.D.1 in the Appendix file reports the scatter
plot of the estimated posterior probabilities of c1 = c2 obtained from the MCMC samples.
It is clear that our model recovers the right scenario most of the times. Out of 50 examples,
only in four of them P (c1 = c2 | data) is greater than 0.5, by a visual analysis we see from
the plot of the true densities that in those cases the two populations were really similar.

6.5.2 More than two populations

We extend now the simulation study to scenarios with more than two populations. We
consider three simulated datasets with four populations each and different clustering struc-
tures at the population level. In particular, we use the same scenarios as in Gutiérrez et al.
(2019), and simulate Ni = 100 points for each population i = 1, 2, 3, 4 as follows

• Scenario IV

y1j , y2k, y3`
iid∼ N (0, 1) y4n

iid∼ SN(0, 1, 1) j, k, `, n = 1, . . . , 100

• Scenario V

y1j , y4n
iid∼ N (0, 1) y2k

iid∼ N (0, 2.25) y3`
iid∼ N (0, 0.25) j, k, `, n = 1, . . . , 100
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• Scenario VI

y1j , y2k
iid∼ 0.5N (0, 1) + 0.5N (5, 1) j, k = 1, . . . , 100

y3`
iid∼ 0.5N (0, 1) + 0.5N (−5, 1) ` = 1, . . . , 100

y4n
iid∼ 0.5N (−5, 1) + 0.5N (5, 1) n = 1, . . . , 100

Hence, the true clusters of the label set of the populations, {1, 2, 3, 4}, are: ρtrue4 =
{{1, 2, 3}, {4}}, ρtrue5 = {{1, 4}, {2}, {3}} and ρtrue6 = {{1, 2}, {3}, {4}} for the three
scenarios under investigation respectively. By SN(ξ, ω, α) in Scenario IV we mean the
skew-normal distribution with location ξ, scale ω and shape α; in this case, the mean of
the distribution is equal to

ξ + ω
α

1 + α2

√
2

π
.

Note that we focus on a different problem than what Gutiérrez et al. (2019) discussed,
as they considered testing for multiple treatments against a control. In particular they were
concerned about testing the hypothesis of equality in distribution between data coming
from different treatments yj (j = 2, 3, 4 in these scenarios), and data coming from a control
group y1. Instead our goal is to cluster these populations based on their distributions.

Observe how the prior chosen for c does not translate directly into a distribution on the
partition ρ, as it is affected by the so called label switching. Thus, in order to summarize
our inference, we post-process our chains and transform the samples c(1), . . . , c(M) from
c to samples ρ(1), . . . ,ρ(M) from ρ. For example we have that c(i) = (1, 1, 1, 3) and
c(j) = (2, 2, 2, 4) both get transformed into ρ(i) = ρ(j) = {{1, 2, 3}, {4}}.

The posterior probabilities of the true clusters P (ρi = ρtruei | data) are estimated using
the transformed (as described above) MCMC samples and equal 0.75, 0.95 and 0.99 for
the three scenarios respectively. Figure 6.5.2 shows the posterior distribution of ρ, and
Figure 6.5.3 reports the density estimation of each group, for Scenario IV. Observe how the
posterior mode is in ρtrue4 but significant mass is given also to the case {{1}, {2, 3}, {4}}.
We believe that this behavior is mainly due to our use of pseudopriors, as it makes the
transition between these three states fairly smooth. On the other hand, in Scenario V,
where the posterior mass on the true cluster is close to 1, it is clear that such transitions
happen very rarely, as the posterior distribution, not shown here, is completely concen-
trated on ρtrue5 . Our insight is that the pseudopriors make a transition between two states,
say c(j) = (1, 1, 3, 4) and c(j+1) = (1, 2, 3, 4) (or viceversa), more likely when the mixing
distributions of population one and two are the same.

We compared the performance of the Metropolised algorithm against the full Gibbs
move for the update of c, computing the effective sample size (ESS) of the number of
population level clusters (i.e. the number of unique values in c) over CPU time. We
consider two choices for the proposal distribution pi(r |m), namely, the discrete uniform
over {1, . . . , I} and another discrete alternative, with weights given by

pi(r |m) ∝ 1 +
(
1 + d2(q̃r, q̃m)

)−1
(6.21)

where d2(q̃r, q̃m) is the squared L2 distance between the Gaussian mixture represented
by q̃r and that represented by q̃m, which are sampled as discussed in Section 6.4. This
distance is available in closed form and the formula is reported in Appendix 6.D,

Results for data as in Scenario IV show that the best efficiency is obtained using the full
Gibbs update, with an ESS per second of 57.1. The Metropolised sampler with proposal as
in (6.21) comes second, yielding an ESS per second of 34.1 while the Metropolised sampler
with uniform proposal is the worst performer with an ESS per second of 12.8. Hence, even
when the number of groups is not enormous, the good performance of the Metropolised
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Figure 6.5.2: Posterior probability of ρ for Scenario IV.
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Figure 6.5.3: Density estimates and pointwise 95% posterior credible intervals for Scenario
IV.

sampler is clear. Preliminary analysis showed how the Metropolised sampler outperforms
the full Gibbs one as the number of groups increases.

Finally, we test how our algorithm performs when the number of populations increases
significantly. We do so by generating 100 populations in Scenario VII as follows:

yij
iid∼ 0.5N (−5, 1) + 0.5N (5, 1) i = 1, . . . , 20

yij
iid∼ 0.5N (−5, 1) + 0.5N (0, 1) i = 21, . . . , 40

yij
iid∼ 0.5N (0, 1) + 0.5N (5, 0.1) i = 41, . . . , 60

yij
iid∼ 0.5N (−10, 1) + 0.5N (0, 1) i = 61, . . . , 80

yij
iid∼ 0.1N (−10, 1) + 0.9N (0, 1) i = 81, . . . , 100.

Thus, full exchangeability holds within populations {1, . . . , 20}, {21, . . . , 40}, {41, . . . , 60},
{61, . . . , 80} and {81, . . . , 100} but not between these five groups. For each population i,
100 datapoints were sampled independently.

To compute posterior inference, we run the Metropolised sampler with proposal (6.21).
To get a rough idea of the computational costs associated to this large simulated dataset,
we report that running the full Gibbs sampler would have required more than 24 hours on a
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32-core machine (having parallelized all the computations which can be safely parallelized),
while the Metropolised sampler ran in less than 3 hours on a 6-core laptop.

As a summary of the posterior distribution of the random partition ρ100, we compute
the posterior similarity matrix [P (ci = cj | data)]Ii,j=1. Estimates of these probabilities are
straightforward to obtain using the output of the MCMC algorithm. Figure 6.5.4 shows
the posterior similarity matrix as well as the density estimates of five different populations.
It is clear that the clustering structure of the populations is recovered perfectly and that
the density estimates are coherent with the true ones.
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Figure 6.5.4: Density estimates (orange line), pointwise 95% posterior credible intervals
(orange bands), true data generating densities (blue line) for groups 10, 30, 50, 70 and 90
and posterior similarity matrix (bottom right, white corresponds to 0.0 and dark blue to
1.0) in Scenario VII.

6.6 Chilean grades dataset

The School of Mathematics at Pontificia Universidad Católica de Chile teaches many
undergraduate courses to students from virtually all fields. When the number of students
exceeds a certain maximum pre-established quota, several sections are formed, and courses
are taught in parallel. There is a high degree of preparation in such cases, so as to guarantee
that courses cover the same material and are coordinated to function as virtual copies of
each other. In such cases, only the instructor changes across sections, but all materials
related to the courses are the same, including exams, homework, assignments, projects,
etc., and there is a shared team of graders that are common to all the parallel sections.
According to the rules, every student gets a final grade on a scale from 1.0 to 7.0, using
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Figure 6.6.1: Density estimates and pointwise 95% posterior credible intervals for the three
groups (left); posterior distribution of the clusters (right).

one decimal place, where 4.0 is the minimum passing grade. We consider here the specific
case of a version of Calculus II, taught in parallel to three different sections (A, B and
C) in a recent semester. Our main goal here is to examine the instructor effectiveness, by
comparing the distributions of the final grades obtained by each of the three populations
(sections). The sample sizes of these populations are 76, 65 and 50 respectively.

A possible way to model these data could be to employ a truncated normal distribution
as the kernel in (6.2). However since our primary interest is to investigate the homogeneity
of the underlying distributions and not to perform density estimates, we decided to first add
a small amount of zero-mean Gaussian noise, with variance 0.1 to the data (i.e. ‘jittering’)
and then proceeded to standardize the whole dataset, by letting ynewij = (yij− ȳ)/sy, where

ȳ = (
∑

ij yij)/(
∑

iNi) and s2
y = (

∑
ij(yij − ȳ)2)/(

∑
iNi − 1) are the global sample mean

and variance, respectively. In the sequel, index i = 1, 2, 3 denotes sections A, B and C,
respectively, as described above.

Figure 6.6.1 reports density estimates in all groups (i.e. posterior density means evalu-
ated on a fixed grid of points and pointwise 95% posterior credible intervals at each point
x in the grid), as well as the posterior distribution of the random partition ρ, obtained
from the posterior distribution of c, getting rid of the label switching in a post-processing
step (see also Section 6.5.2). From Figure 6.6.1 we see that the posterior distribution of ρ
gives high probability to the case of the three groups being all different as well as to the
case when the first and third groups are homogeneous but different from the second one.
This is in accordance with a visual analysis of the observed and estimated densities.

We considered several functionals of the random population distribution q̃ci (see (6.3))
for i = 1, 2, 3. Recall that, according to notation in (6.1), q̃ci = p̃i. First of all, we con-
sider the mean and variance functionals of the random density pi(y) =

∫
Θ k(y|θ)q̃ci(dθ) =∫

Θ k(y|θ)p̃i(dθ), for each i = 1, 2, 3. Observe how they are functionals of the random
probability q̃ci = p̃i. Moreover, since Figure 6.6.1 seems to suggest that the three groups
differ mainly due to their different asymmetries, we considered two more functionals of
p̃i, i.e. two indicators of skewness: Pearson’s moment coefficient of skewness sk and the
measure of skewness with respect to the mode γM proposed by Arnold and Groeneveld
(1995). Pearson’s moment coefficient of skewness of the random variable T is defined

as sk = E[((T − E(T ))/
√

Var(T ))3], while the measure of skewness with respect to the
mode as γM = 1 − 2FT (MT ), where MT is the mode of T and FT denotes its distribu-
tion function. The last functional of p̃i we consider is the probability, under the density
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Section µi σ2
i ski γMi P4i

A -0.264 0.671 120.84 -0.01 0.53
B 0.438 1.428 -64.86 0.292 0.71
C -0.171 0.943 55.60 -0.01 0.56

Table 6.6.1: Posterior means of functionals µi, . . . , P4i of the population density pi for
each Section A (i = 1), B (i = 2) and C (i = 3) in the Chilean grades dataset. All the
functionals refer to standardized data {ynewij = (yij − ȳ)/sy}.
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Figure 6.6.2: Posterior means of (pi, p`), i 6= `, i, ` = A,B,C, evaluated on a fixed grid in
R2 for the Chilean grades dataset.

pi(y) =
∫

Θ k(y|θ)p̃i(dθ) of getting a passing grade (≥ 4.0 before normalization), that is

P4i =

∫ +∞

(4−ȳ)/sy

pi(y)dy.

Table 6.6.1 shows the posterior mean of the functionals µi, σ
2
i (mean and variance

functionals), ski, γMi and P4i of pi, for i = 1, 2, 3. To be clear, the posterior mean of the
mean functional µ1 is computed as

1

M

M∑

`=1

µ
(`)
1 =

1

M

M∑

`=1

E[y | p̃(`)
1 ] =

1

M

M∑

`=1

(∫

R
yp

(`)
1 (y)dy

)
,

where M is the MCMC sample size, and the superscript (`) attached to a random variable
denotes its value at the `–th MCMC iteration.

In agreement with the posterior distribution of the partition ρ, for all the functionals
considered we observed close values for sections A and C, while both differ significantly
from the values for section B. In summary, we conclude that section B presents a heavier
right tail than sections A and C, hence it is characterized by a higher mean (positive) and
also more spread across the range. Section B shows a larger (estimated) value for P4, i.e.
students in section B are more likely to pass the exam than their colleagues from the other
sections. This seems to suggest that a higher concentration of good students (with high
grades) was present in Section B, compared to A and C, possibly combined with a higher
effectiveness of the instructor in this Section.

We also computed the pairwise L1 distances between the estimated densities in the
populations. If p̄i denotes the estimated density (posterior mean of pi evaluated in a
grid of points) for each population, we found d(p̄A, p̄B) = 0.56, d(p̄A, p̄C) = 0.15 and
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d(p̄B, p̃C) = 0.44. This confirms once again that the estimated densities for section A and
C are closer than when comparing sections A and B and sections B and C.

To end the analysis, we show in Figure 6.6.2 estimated couples of densities (pi, p`),
i 6= `, i, ` = 1, 2, 3, i.e. the posterior mean of (pi, p`), evaluated on a fixed grid in R2.
While sections A and C look independent (central panel in Figure 6.6.2), the (posterior)
propensity of section B to get higher grades is confirmed in the left and right panels in
Figure 6.6.2.

6.7 Discussion

Motivated by the traditional problem of testing homogeneity across I different groups or
populations, we have presented a model that is able to not only address the problem but
also to perform a cluster analysis of the groups. The model is built on a prior for the
population distributions that we termed the semi-hierarchical Dirichlet process, and it
was shown to have good properties and also to perform well in synthetic and real data
examples, also in case of I = 100 groups. One of the driving features of our proposal
was to solve the degeneracy limitation of nested constructions that has been pointed out
by Camerlenghi et al. (2019). The crucial aspect of the semi-HDP that solves this problem
was described using the metaphor of a food court of Chinese restaurants with common and
private dining area. The hierarchical construction introduces a random partition at the
population level, which allows for identifying possible clusters of internally homogeneous
groups.

Our examples focus on unidimensional data, though extensions to multivariate re-
sponses can be straightforwardly accommodated in our framework. However, scaling with
respect to data dimension is not a property we claim to have. In fact, this is a situation
shared with any type of hierarchical mixture models.

We studied support properties of the semi-HDP and also the posterior asymptotic be-
havior of the Bayes factor for the homogeneity test when I = 2, as posed within the
proposed hierarchical construction. We showed that the Bayes factor has the appropriate
asymptotic behavior under the alternative hypothesis of partial exchangeability, but a fi-
nal answer under the assumption of truly exchangeable data is still pending. The lack of
asymptotic guarantees is not at all specific to our case. In fact, this situation is rather
common to all model selection problems when the hypothesis are not well separated and
at least one of the two models under comparison is ‘truly’ nonparametric, as, for instance,
in Bhattacharya and Dunson (2012) and Tokdar and Martin (2019). Indeed, as discussed
in Tokdar and Martin (2019), it is not even clear if in such cases the need for an upper
bound on the prior mass under the more complex model is a natural requirement or rather
a technical one. More generally, intuition about BFs (at least in parametric cases) is that
they tend to favor the more parsimonious model. In the particular context described in
Section 6.3.3, model M1 can be regarded as a degenerate case of model M2, even though
they are ‘equally complicated’. In this case, the above intuition evaporates, since techni-
cally, embedding one model in the other is still one infinite-dimensional model contained
in another infinite-dimensional model, and it is probably meaningless to ask which model
is ‘simpler’. Under this scenario exploratory use of discrepancy measures, such as those
discussed in Gelman et al. (1996), may offer some guidance.

In the simulation studies presented, our model always recovers the true latent clus-
tering among groups, thus providing empirical evidence in favor of our model to perform
homogeneity tests. We provide some practical suggestions when the actual interest is on
making this decision. Our insight is that in order to prove asymptotic consistency of the
Bayes factor, one should introduce explicit separation between the competing hypotheses.
One possible way to accomplish this goal is, for example, by introducing some kind of
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repulsion among the mixing measures q̃i’s in the model. This point will be focus of further
study.
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Appendix

6.A Proofs

Proof of Proposition 6.1.
Consider I = 2 for ease of exposition. We aim at showing that under suitable choices of
G0 and G00, the vector of random probability measures (p̃1, p̃2), where p̃i = q̃ci has full
support on NΘ ×NΘ.

This means that for every couple of distributions (g1, g2) ∈ NΘ × NΘ, every weak
neighborhood W1 ×W2 of (g1, g2) receives non null probability. In short, this condition
entails πp̃(W1 ×W2) > 0. Since p̃i = q̃ci , we have that

πp̃(W1 ×W2) =

2∑

l,m=1

πq̃l,q̃m(W1 ×W2)πc(l,m) > πq̃1,q̃2(W1 ×W2)πc(1, 2).

Hence, since we are assuming that πc(l,m) > 0 for all l,m, it is sufficient to show that
πq̃1,q̃2 , that is the measure associated to the SemiHDP prior with I = 2, has full weak
support.

In the following, with a slight abuse of notation we denote by πq̃1,q̃2 | q̃0(W1 ×W2) the
measure associated to the SemiHDP prior, conditional to a particular value of q̃0. We
distinguish three cases: κ = 1, 0 < κ < 1 and κ = 0. The case κ = 1 is trivial, since
q̃1 and q̃2 are marginally independently distributed with Dirichlet process prior, so that
πq̃1,q̃2(W1 ×W2) = DαG0

(W1)DαG0
(W2) > 0 as long as G0 has full support in Θ (see, for

example, Ghosal and Van der Vaart, 2017).
Secondly consider 0 < κ < 1, we show that as long as G0 has full support, then also

πG will have full support, regardless of the properties of G00. We have

πq̃1,q̃2(W1×W2) =

∫

NΘ

πq̃1,q̃2 | q̃0(W1×W2)L(dq̃0) =

∫

NΘ

Dαp̃(W1)Dαp̃(W2)L(dq̃0). (6.22)

Now observe that if G0 has full support, also p̃ = κG0 +(1−κ)q̃0 will have full support, for
any value of q̃0. Hence by the properties of the Dirichlet Process, we get that πq̃1,q̃2(W1 ×
W2) > 0 since the integrand in (6.22) is bounded away from zero.

The case κ = 0 is more delicate and requires additional work. We follow the path
outlined in De Blasi et al. (2013), extending it to our hierarchical case. In the following,
let Sm denote the m− 1 dimensional simplex, i.e.

Sm := {(z1, . . . , zm) ∈ Rm : 0 ≤ zh ≤ 1, h = 1, . . . ,m,

m∑

h=1

zh = 1}

Let dw denote the Prokhorov metric on NΘ, which, as it is well known, metrizes the topol-
ogy of the weak convergence on NΘ. Moreover, being Θ separable, (NΘ, dw) is separable
as well and the set of discrete measures with a finite number of point masses is dense in
NΘ.
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Hence, for any (g1, g2) and any ε > 0, there exist two discrete measures with weights
p(i) ∈ Ski and points x(i) ∈ Θki for i = 1, 2 such that dw(q̃p(i),x(i) , gi) < ε, where q̃p(i),x(i) =∑

k p
(i)
k δx(i)

k
. The difficulty when κ = 0 is that conditionally on q̃0, the measure Dαq̃0 does

not have full weak support. Indeed, its support is concentrated on the measures that
have the same atoms of q̃0. The proof will proceed as follows: start by defining weak
neighborhoods Wi of q̃p(i),x(i) by looking at neighborhoods of their weights p(i) (Ui) and

atoms x(i) (Vi). Secondly, we join these neighborhoods. If q̃0(ω) belongs to this union
(and this occurs with positive probability), we guarantee that the atoms of both of q̃1 and
q̃2, that are shared with q̃0, are suited to approximate both q̃p(i),x(i) , i = 1, 2. Hence, by
the properties of the Dirichlet Process one gets the support property.

More in detail, define the sets

Vi(δ) = {xi ∈ Θki s.t. |xij − x(i)
j | < δ}, i = 1, 2

and let V = V1 ∪ V2. Then we operate a change of index by concatenating x(1) and x(2),
and call it x∗, i.e. x∗ = [x(1),x(2)]. Hence we characterize the set V as

V (δ) = {x ∈ Θk1+k2 s.t |xj − x∗j | < δ}.

Secondly, define p∗ by concatenating p(1) and and p(2): p∗ = [p(1),p(2)] and let

U1(η) = {p ∈ Sk1+k2 s.t. |pj − p∗j | < η for j = 1, . . . , k1, |pj − 0| < η elsewhere}
U2(η) = {p ∈ Sk1+k2 s.t. |pj − p∗j | < η for j = k1 + 1, . . . , k1 + k2, |pj − 0| < η elsewhere}

Finally, define the following neighborhoods

Wi := {
k1+k2∑

j=1

pjδxj for any p ∈ Ui, and any x ∈ V }, i = 1, 2

W0 := {
k1+k2∑

j=1

pjδxj for any p ∈ Sk1+k2 , and any x ∈ V }.

This means that the Vi sets are the neighborhoods of the atoms xi that are well suited to
approximate q̃p(i),x(i) and V is their union. The sets Ui, i = 1, 2, instead, are related to
the weights of q̃p(i),x(i) . In particular, each Ui is constructed in such a way to approximate

well p(i) (a vector in Ski) with a vector of weights in Sk1+k2 . This is necessary because if q̃0

has support points in V , so will do the draws q̃1 and q̃2 from Dαq̃0 . However, by assigning

a negligible weight in U1 to the atoms x(2) and vice-versa for the atoms x(1) in U2, we
guarantee that the probability measures in Wi constitute a weak neighborhood of q̃p(i),x(i)

for each i = 1, 2.
From De Blasi et al. (2013), it is sufficient to show that πq̃1,q̃2(W1 ×W2) > 0 since for

appropriate choices of η and δ one has that dw(F1, g1) + dw(F2, g2) < ε for all choices of
F1 ∈W1 and F2 ∈W2. Hence

πq̃1,q̃2(W1 ×W2) =

∫

NΘ

πq̃1,q̃2 | q̃0(W1 ×W2)L(dq̃0) ≥
∫

W0

πq̃1,q̃2 | q̃0(W1,W2)L(dq̃0)

=

∫

W0

Dαq̃0(W1)Dαq̃0(W2)L(dq̃0)

Now observe that for any q̃0 ∈ W0, we have that Dαq̃0(Wi) > 0. This follows again from
the properties of the Dirichlet process, since for any value of q̃0(ω), there exists a non-

empty set W̃i ⊂Wi, W̃i = {F̃i ∈Wi : supp(F̃i) ⊂ supp(q̃0)}. Hence πF1,F2 | q̃0(W1×W2) ≥
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πF1,F2 | q̃0(W̃1 × W̃2) > 0, since the Dirichlet process gives positive probability to the weak
neighborhoods of measures whose support is contained in the support of its base measure,
i.e. q̃0.

Proof of Covariance of the semi-HDP.
If (q̃1, q̃2) ∼ semiHDP (α, γ, κ,G0, G0), then

cov(q̃1(A)q̃2(B)) = E [q̃1(A)q̃2(B)]− E [q̃1(A)]E [q̃2(B)]

= E [E [q̃1(A)q̃2(B) | q̃]]− E [E [q̃1(A) | q̃0]]E [E [q̃2(B) | q̃0]]

= E [E [q̃1(A) | q̃0]E [q̃2(B) | q̃0]]−G0(A)G0(B)

= E [p̃(A)p̃(B)]−G0(A)G0(B)

= κ2G0(A)G0(B) + κ(1− κ)G0(A)E [q̃0(B)] + κ(1− κ)G0(B)E [q̃0(A)]

+ (1− κ)2E [q̃0(A)q̃0(B)]−G0(A)G0(B)

= (1− κ)2E [q̃0(A)q̃0(B)]− (1− κ)2G0(A)G0(B)

= (1− κ)2cov(q̃0(A), q̃0(B)) =
(1− κ)2

1 + γ
(G0(A ∩B)−G0(A)G0(B)) .

The last equality follows because q̃0 is a Dirichlet process.
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Higher order moments.
To compute higher order moments, we make use of a result from Argiento et al. (2019).
Let q̃1 | p̃ ∼ Dαp̃ as in (6.5) - (6.7); then one has, for any set A ∈ B(Θ):

E[q̃1(A)n | q̃0] =

n∑

t=1

p̃(A)tP (Kn = t),

where Kn is the random variable representing the number of clusters in a sample of size
n; see (15) in Argiento et al. (2019). If, as in our case, the base measure is not absolutely
continuous, the term clusters might be misleading as they do not coincide with the unique
values in the sample, but rather with the number of the tables in the Chinese restaurant
process. In the following we refer to cluster or table interchangeably. Hence, we have:

E[q̃1(A)n] = E[E[q̃1(A)n | q̃0]] = E

[
n∑

t=1

p̃(A)tP (Kn = t)

]

= E

[
n∑

t=1

P (Kn = t)

t∑

h=0

(
t

h

)
(κG0(A))t−h × ((1− κ)q̃0(A))h

]

=

n∑

t=1

P (Kn = t)

t∑

h=0

(
t

h

)
(κG0(A))t−h(1− κ)hE[q̃0(A)h]

=

n∑

t=1

P (Kn = t)

t∑

h=0

(
t

h

)
(κG0(A))t−h(1− κ)h

h∑

m=1

G00(A)P (K̃h = m),

where K̃h is the number of clusters from a sample of size h from the DP q̃0. Moreover, if
we assume G0 = G00 we get

E[q̃1(A)n] =

n∑

t=1

P (Kn = t)

t∑

h=0

(
t

h

)
κt−h(1− κ)h

h∑

m=1

G0(A)t−h+mP (Kh = m).

Figure 6.A.1 shows the effect of the parameter κ over E[q̃1(A)3] for various values of
G0(A). The limiting cases of the standard Dirichlet process and the Hierarchical Dirichlet
Process are recovered when κ = 1 and κ = 0 respectively.

Proof of Proposition 6.2.
Indicating with τj the shared unique values between θ1 and θ2, and with θ∗ij the unique
values in sample θi that are specific to group i, i.e. not shared, the pEPPF, given c, can
be written as:

Π
(N)
k (n1,n2, q1, q2|c) =

∫

Θk

E



k1∏

j=1

q̃n1j
c1 (dθ∗1j)

k2∏

j=1

q̃n2j
c2 (dθ∗2j)

k0∏

j=1

q̃q1jc1 (dτj)q̃
q2j
c2 (dτj)


 .

See (23) in Camerlenghi et al. (2019). Marginalizing out c we obtain that:

Π
(N)
k (n1,n2, q1, q2) =

2∑

l,m=1

πc(c = (l,m))Π
(N)
k (n1,n2, q1, q2|c = (l,m)).

The cases c = (1, 1) and c = (2, 2) can be easily managed as it corresponds to full
exchangeability and the EPPF corresponding to those cases is already available. Hence,
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Figure 6.A.1: 3-rd moment of q̃1(A) for increasing values of κ and various values of G0(A).

let us consider the case when c = (1, 2), as the case c = (2, 1) will be identical because the
q̃i’s are iid.

Π
(N)
k (n1,n2, q1, q2|c = (1, 2)) =

∫

Θk

E



k1∏

j=1

q̃
n1j

1 (dθ∗1j)

k2∏

j=1

q̃
n2j

2 (dθ∗2j)

k0∏

j=1

q̃
q1j
1 (dτj)q̃

q2j
2 (dτj)




=

∫

Θk

E



k1∏

j=1

q̃
n1j

1 (dθ∗1j)

k0∏

j=1

q̃
q1j
1 (dτj)


E



k2∏

j=1

q̃
n2j

2 (dθ∗2j)

k0∏

j=1

(dτj)q̃
q2j
2 (dτj)




since q̃1 and q̃2 are independent. The first expected value is the joint probability of ΠN1

k1+k0

(the EPPF of a partition of N1 objects into k1 + k0 groups with vectors of frequencies
n1, q1) and the set of unique values is denoted by (x11, . . . , x1k1

, τ1, . . . τk0
). Similarly for

the second expected value. Because q̃1 ∼ DαG0
, we can rewrite the expected value as:

E



k1∏

j=1

q̃
n1j

1 (dθ∗1j)

k0∏

j=1

q̃
q1j(dτj)
1




=
αk1+k0

1 Γ(α1)

Γ(α1 +N1)

k1∏

j=1

Γ(n1j)

k0∏

j=1

Γ(q1j)

k1∏

j=1

G0(dθ∗1j)

k0∏

j=1

G0(dτj).
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Hence, we have that

Π
(N)
k (n1,n2, q1, q2|c = (1, 2)) =

=

∫

Θk

E



k1∏

j=1

q̃
n1j

1 (dθ∗1j)

k0∏

j=1

q̃
q1j
1 (dτj)


E



k2∏

j=1

q̃
n2j

2 (dθ∗2j)

k0∏

j=1

(dτj)q̃
q2j
2 (dτj)




=
αk1+k0

1 Γ(α1)

Γ(α1 +N1)

αk2+k0

2 Γ(α2)

Γ(α2 +N2)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

k0∏

j=1

Γ(q1j)Γ(q2j)

×
∫

Θk

k1∏

j=1

G0(dθ∗1j)

k2∏

j=1

G0(dθ∗2j)

k0∏

j=1

G0(dτj)G0(dτj).

Looking at the last integral, we can see that this is clearly 0 unless k0 = 0, in fact,
consider k0 = 1:

∫

Θk−1

k1∏

j=1

G0(dθ∗1j)

k2∏

j=1

G0(dθ∗2j)

∫

Θ
G0(dz)G0(dz)

and observe that the last integral is integrating the product measure G0 × G0 on the
straight line y = x, resulting thus in 0.

Summing up, if k0 = 0 we get:

Π
(N)
k (n1,n2, q1, q2) =π1

αk1+k2Γ(α)

Γ(α+N)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

+ (1− π1)
αk1+k2Γ(α)2

Γ(α+N1)Γ(α+N2)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

else, if k0 > 0:

Π
(N)
k (n1,n2, q1, q2) =

(1− π1)
αk1+k2+k0Γ(α)

Γ(α+N)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

k0∏

j=1

Γ(q1j + q2j)

which can be rewritten down as in Camerlenghi et al. (2019); call

Φ
(N)
k (n1,n2, q1 + q2) =

αk1+k2+k0Γ(α)

Γ(α+N)

k1∏

j=1

Γ(n1j)

k2∏

j=1

Γ(n2j)

k0∏

j=1

Γ(q1j + q2j)

the EPPF of the fully exchangeable case, and

Φ
(Ni)
k0+ki

(ni, qi) =
αki+k0Γ(α)

Γ(α+Ni)

ki∏

j=1

Γ(nij)

k0∏

j=1

Γ(qij)

the marginal EPPF for the individual groups i = 1, 2. We have that:

Π
(N)
k (n1,n2, q1, q2) = π1Φ

(N)
k (n1,n2, q1+q2)+(1−π1)Φ

(N1)
k0+k1

(n1, q1)Φ
(N2)
k0+k1

(n2, q2)I(k0 = 0)

which is (6.13).
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Proof of Proposition 6.3.
Of course, the marginal law of (θ1, . . . ,θI), conditional to c, can be computed as

L(dθ1, . . . dθI | c) =

∫

NΘ

. . .

∫

NΘ

L(dθ1, . . . dθI | q̃1, . . . q̃I , c)L(dq̃1, . . . dq̃I).

Now we operate a change of indices and call θr = {θi = (θi1, . . . θiNi) : ci = r}, so that
(θ1, . . .θI) = (θr1 , . . .θrR) where R is the number of unique values in c, i.e. the number
of non-empty restaurants. We get

L(dθ1, . . . dθI | c) =

∫

NΘ

∫

NΘ

. . .

∫

NΘ

L(dθr1 , . . . dθrR | q̃1, . . . q̃I , c)L(dq̃1, . . . dq̃I | q̃0)L(dq̃0)

=

∫

NΘ

(
R∏

i=1

∫

NΘ

L(dθri | q̃ri)L(dq̃ri | q̃0)

)
L(dq̃0).

Observe that ∫

NΘ

L(dθri | q̃ri)L(dq̃ri | q̃0) = L(ρri)

Hri∏

j=1

P̃ (dθ∗rij),

where ρri is the partition induced by the `-clusters in the ri restaurant. We use the same
definition of `-cluster as in Argiento et al. (2019). We underline that {θ∗rij , j = 1, . . . ,Hri}
are not the unique values in the sample, since the base measure is atomic. Hence we have

∫

NΘ

(
R∏

i=1

∫

NΘ

L(dθri | q̃ri)L(dq̃ri | q̃0)

)
L(dq̃0)

=

(
R∏

i=1

L(ρri)

)∫

NΘ

R∏

i=1

Hri∏

j=1

p̃(dθ∗rij)L(dq̃0).

Now observe how the values {θ∗rj : r = 1, . . . R, j = 1, . . . Hri} are all iid from p̃. So, there
is no need for the division into restaurants anymore. We can thus stack all the vectors θ∗ri
together, apply a change of indices (ri, j) → l so that now these {θ∗ri} are represented by
(θ∗1, . . . , θ

∗
L) and

L(dθ1, . . . dθI | c) =

R∏

i=1

L(ρri)

∫

NΘ

L∏

l=1

p̃(dθ∗l )L(dq̃0)

=

R∏

i=1

L(ρri)

∫

NΘ

L∏

l=1

(κG0(dθ∗l ) + (1− κ)p̃(dθ∗l ))L(dq̃0).

Now, as done in Section 6.2.2, we introduce a set of latent variables h = (h1, . . . , hL),

hl
iid∼ Bernoulli(κ), that gives

L(dθ1, . . . dθI | c) =

R∏

i=1

L(ρri)
∑

h∈{0,1}L
p(h)

∫

P

L∏

l=1

G0(dθ∗l )
hl × q̃0(dθ∗l )

1−hlL(dq̃0)

=

R∏

i=1

L(ρri)
∑

h∈{0,1}L
p(h)

L∏

l=1

G0(dθ∗l )
hl

∫

P

L∏

l=1

q̃0(dθ∗l )
1−hlL(dq̃0)

=

R∏

i=1

L(ρri)
∑

h∈{0,1}L
p(h)

L∏

l=1

G0(dθ∗l )
hl × L(η |h)

M(η)∏

k=1

G00(dθ∗∗k ),
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where η is the partition of the {θ∗l : l = 1, . . . , L and hl = 0}, i.e. the partition of∑L
l=1(1 − hl) objects arising form the Dirichlet process q̃0, while {θ∗∗k } are the unique

values among {θ∗l : l = 1, . . . , L and hl = 0} and p(h) =
∏L
l=1 κ

hl(1 − κ)1−hl is the joint
distribution of h.

Proof of Proposition 6.4.
Model M2 defines a prior Π2 on the space of densities (p, q) ∈ NY × NY. On the other
hand, model M1 defines a prior on NY. However, by embedding NY in the product space
NY ×NY via the mapping p 7→ (p, p), we can also consider the prior Π1 induced by model
M1 as a measure on (a subset of) NY ×NY.

Now, showing that Π2 satisfies the Kullback-Leibler property is a straightforward ap-
plication of Theorem 3 in Wu and Ghosal (2008), under the same set of assumptions on the
kernel k(·|θ), and on p0 and q0, that we do not report here. Notice that these assumptions
are satisfied when k(·|θ) is the univariate Gaussian kernel with parameters given by the
mean and the scale, and under standard regularity conditions on p0 and q0.

Now we turn our attention to Π1. It is obvious to argue that Π1 does not have the
Kullback-Leibler property in the larger space NY × NY, since it gives positive mass only
to sets {(p, q) ∈ NY×NY : p = q}. Consequently, if p0 6= q0, one will have that for a small
enough δ:

Π1 ((p, q) : DKL((p, q), (p0, q0) < δ) = 0,

thus proving that Π1 does not have the Kullback-Leibler property.
In summary, under the same assumptions on p0, q0 and the kernel k(· | θ) as in Ghosal

et al. (2008), and assuming p0 6= q0, we are comparing a model (M2) with the Kullback-
Leibler property against one (M1) that does not have it. Theorem 1 in Walker et al. (2004)
implies that the Bayes factor consistency is ensured.

6.B Discussion of Bayes Factor consistency in the homogeneous case

When p0 = q0, consistency of the Bayes factor would require BF12 → +∞. This is a
result we have not been able to prove so far, but it is worth pointing out the following
relevant issues. To begin with, note that both models M1 and M2 have the Kullback-
Leibler property. Several papers discuss this case, for example Corollary 3.1 in Ghosal
et al. (2008), Section 5 in Chib and Kuffner (2016) and Corollary 3 in Chatterjee et al.
(2020) in the general setting of dependent data. For more specific applications, refer also
to Tokdar and Martin (2019) where the focus is on testing Gaussianity of the data under
a Dirichlet process mixture alternative, Mcvinish et al. (2009) for goodness of fit tests
using mixtures of triangular distribution and Bhattacharya and Dunson (2012) for data
distributed over non-euclidean manifolds.

As pointed out in Tokdar and Martin (2019), the hypotheses in Corollary 3.1 by Ghosal
et al. (2008) are usually difficult to prove, since they require a lower bound on the prior
mass Π2 around neighborhoods of (p0, p0) ∈ PY × PY. To the best of our knowledge, this
kind of bounds have been derived only for the very special kind of mixtures in Mcvin-
ish et al. (2009). Similarly, the approach by Chib and Kuffner (2016) would require a
knowledge of such lower bounds too (see for instance their Assumption 3). Corollary 3 in
Chatterjee et al. (2020) does not apply in our case as well, because one of their main as-
sumptions presumes that both models specify a population distribution (i.e. a likelihood)
with density w.r.t some common σ–finite measure, together with the true distribution of
the data. In our case M1 specifies random probability measures that are absolutely con-
tinuous w.r.t the Lebesgue measure on R, while under model M2 the random probability
measures have density under the Lebesgue measure on R2.
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6.C Relabeling step

In the following, we adopt a slightly different notation to simplify the pseudocode notation.
Figure 6.C.1 depicts the state at a particular iteration. We denote by ψrh the atoms in
restaurant r arising from G0 and with τh the atoms arising from G00. Observe how in
restaurant 1 the value τ2 appears more than once.

τ2

y13
y14

θ∗11

τ1

θ∗12

ψ1
1

y12
y15

θ∗13

τ2

θ∗14

ψ1
3

y11
y16

y17

θ∗15

ψ1
2

θ∗16

ψ2
1

y21
y24

θ∗21

τ1

θ∗22

ψ2
3

y22
y25

θ∗23

ψ2
2

y23

θ∗24

τ2

θ∗25

τ3

θ∗26

Figure 6.C.1: The state at one particular iteration

In our implementation, the state composed by ψr, τ (i.e. all the unique values of the
atoms) and the indicator variables {trl} and {hrl} that let us reconstruct the value of θ∗rl.
In particular if θrl = ψrk if hrl = 1 and trl = k. Instead θrl = τm if hrl = 0 and trl = m.
Moreover we also have the latent variables sij as described in Equation (6.16).

For the example in Figure 6.C.1, the latent variables assume the following values for
the first restaurant

s1 = [5, 3, 1, 1, 3, 5, 5] h1 = [0, 0, 1, 1, 0, 0] t1 = [2, 1, 1, 3, 3, 3]

while for the second restaurant

s2 = [1, 3, 4, 1, 3] h2 = [1, 0, 1, 1, 0, 0] t2 = [1, 1, 3, 2, 2, 3]

During the relabeling step, we look at the number of customers in each table and find
out that θ∗12, θ

∗
14, θ

∗
16, θ

∗
22, θ

∗
25 and θ∗26 are not used. Moreover also τ1, τ3 and ψ1

2 are not
used.

This leads to the following relabel

snew1 = [3, 2, 1, 1, 2, 3, 3] hnew1 = [0, 1, 1] tnew1 = [1, 1, 2]

and

snew2 = [1, 2, 3, 1, 2] hnew2 = [1, 1, 1] tnew2 = [1, 3, 2]

In the code, the transformation si → snewi is straightforward. Moreover hnewi is computed
from hi by selecting only the elements corresponding to the sorted unique values in si.
For example the unique values in si are [1, 3, 5] and hnewi = [hi[1],hi[3],hi[5]].
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The only complicated step is the one concerning t. To update this last set of indicator
variables we build two maps: τmap and ψmap that associate to the old labels the new ones.
For example, we have that

τmap = {2→ 1}
ψmap = {(1, 3)→ (1, 2)}

meaning that all the τ2’s will be relabeled τ1 and that ψ1
3 will be relabeled ψ1

2.

6.D Additional details on the simulation studies

6.D.1 A note on the mixing

One aspect of the inference presented so far that is clear from all the simulated scenarios,
is that the posterior simulation of c, and hence of the partition ρ, usually stabilizes around
one particular value and then very rarely moves. This could be interpreted as a mixing
issue of the MCMC chain. However, notice that once the ‘true’ partition of the population
is identified, it is extremely unlikely to move from that state, which can be seen directly
from Equation (6.19). Indeed, moving from one state to another modifies the likelihood of
an entire population. In particular, moving from a state where ci = cj for two populations
i and j that are actually homogeneous, to a state where ci 6= cj is an extremely unlikely
move.

To further illustrate the point, consider for ease of explanation the case of Simulation
Scenario I where both populations are the same, and suppose that at a certain MCMC
iteration we impute c1 = c2 = 1. In order for the chain to jump to c2 = 2, the ‘empty’
mixing distribution q̃2 must be sampled in such a way to give a reasonably high likelihood
to all the data from the second population y21, . . . y2N2

; again, see (6.19). If one did not
make use of pseudopriors, this would mean that q̃2 would be sampled from the prior, thus
making this transition virtually impossible. But even using pseudopriors, the transition
remains quite unlikely. Indeed, once c1 = c2 = 1, we get an estimate of q̃1 using data from
the two homogeneous groups, hence getting a much better estimate that one would get
when c1 6= c2.

Nevertheless, in all simulation scenarios we tried this problem has not prevented the
posterior simulation algorithm from identifying the correct partition of populations, as
defined in these scenarios. In particular, we found that P (ρtrue4 |data) = 0.75 only in
scenario IV , while in all the other cases we tried, the values of P (ρtrue4 |data) was greater
than 0.9. We also computed the cluster estimate of the posterior of ρ that minimizes the
posterior expectation of Binder’s loss (Binder, 1978) under equal misclassification costs
and of the variation of information loss (Wade et al., 2018). In all the examples proposed,
the ‘true’ partition was correctly detected by both estimates.

6.D.2 Additional Formulas and Plots

• Figure 6.D.2 reports the density estimates for Scenario I and Scenario III of the
simulation study.

• Figure 6.D.1 reports the scatterplot of P (c1 = c2 | data) (estimated through the
MCMC samples) for the last simulation with 2 populations

• Expression of Equation (6.21).

Let pr =
∑Hr

i=1wriN (µri, σ
2
ri) and pm =

∑Hm
j=1wmjN (µmj , σ

2
mj) be the mixture

densities associated to the mixing measures q̃r and q̃m respectively. Observe that
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both Hm and Hr are finite here as q̃r and q̃m have been approximated as shown in
the description of the Gibbs sampler in Section 6.4. Then

d2(q̃r, q̃m) = L2
2(pr, pm) =

∫
(pr(y)− pm(y))2dy

=

∫ 


Hr∑

i=1

wriN (y;µri, σ
2
ri)−

Hm∑

j=1

wmjN (y;µmj , σ
2
mj)




2

dy

For any value of y the above integrand reduces to

(
Hr∑

i=1

wriN (y;µri, σ
2
ri)

)2

+

(
Hm∑

j=1

wmjN (y;µmj , σ
2
mj)

)2

+

− 2

(
Hr∑

i=1

wriN (y;µri, σ
2
ri)

)(
Hm∑

j=1

wmjN (y;µmj , σ
2
mj)

)

Each term in the right hand side can be expressed as a product of two summations,
say (

∑
i ai)(

∑
j bj) =

∑
i,j aibj . When {ai} and {bj} are equal, this further reduces

to
∑

i,i′ aiai′ .

Hence, exchanging summations and integrals, d2(q̃r, q̃m) equals

d2(q̃r, q̃m) =

Hr∑

i,i′=1

wri, wri′

∫
N (y;µri, σ

2
ri)N (y;µri′ , σ

2
ri′)dy

+

Hm∑

j,j′=1

wmj , wmj′

∫
N (y;µmj , σ

2
mj)N (y;µmj′ , σ

2
mj′)dy

− 2

Hr∑

i=1

Hm∑

j=1

wriwmj

∫
N (y;µri, σ

2
ri)N (y;µmj , σ

2
mj)dy.

As an immediate consequence of Equation (371) in Petersen and Pedersen (2012),
we also have that all the integrals involved have a nice closed-form expression

∫
N (y;µ, σ2)N (y;µ′, (σ′)2)dy = N (µ;µ′, σ2 + (σ′)2).

Hence, d2(q̃r, q̃m) can be easily computed analytically.
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Figure 6.D.1: Plot of the posterior probabilities P (c1 = c2|data) for all of the 50 simulated
datasets.
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Figure 6.D.2: Density estimates and pointwise 95% posterior credible intervals for the two
populations of Scenario I (top) and Scenario III (bottom).
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7. Spatially dependent mixture models via the LogisticM-
CAR distribution

In this chapter, based on Beraha et al. (2021), we consider the problem of spatially depen-
dent areal data, where for each area independent observations are available, and propose
to model the density of each area through a finite mixture of Gaussian distributions. The
spatial dependence is introduced via a novel joint distribution for a collection of vectors
in the simplex, that we term logisticMCAR. We show that salient features of the logis-
ticMCAR distribution can be described analytically, and that a suitable augmentation
scheme based on the Pólya-Gamma identity allows to derive an efficient Markov Chain
Monte Carlo algorithm. When compared to competitors, our model has proved to bet-
ter estimate densities in different (disconnected) areal locations when they have different
characteristics. We discuss an application on a real dataset of Airbnb listings in the city
of Amsterdam, also showing how to easily incorporate for additional covariate information
in the model.

7.1 Introduction

In spatial statistics, it is often assumed that data in neighboring locations are likely to be-
have more similarly than those that are far away. Thus, inference and prediction methods
have been developed to take into account spatial dependence. Spatial data are classified
into three main categories, according to Cressie (1992): geostatistical data, for which an
exact location is known for each observation, areal (or lattice) data, when each observation
is associated to a specific area or node in a lattice, and point patterns, where the object
of the inference is the event location. Examples of the first are environmental applications
(see Webster and Oliver, 2007) and geological reservoir characterization for oil and gas re-
covery (see Pyrcz and Deutsch, 2014, for examples). A recent review paper on statistical
models for areal data is Banerjee (2016), which focuses on disease mapping and spatial
survival analysis. Point patterns are often employed in ecology, as described in Velázquez
et al. (2016). See also the textbook by Banerjee et al. (2014) for data classification, appli-
cations and statistical models and techniques for spatially dependent data.

7.1.1 Setup

We focus on areal data, and, in particular, we consider the problem of modeling data
from I different groups, where each group corresponds to a specific areal location. More
in detail, we assume that the spatial domain Ω is divided into I areas and, for each area,
there is a vector of observations yi = (yi1, . . . , yiNi) from the same variable, each value
yij corresponding to a different subject j in area i. The goal of this manuscript is the
proposal of a statistical model, for data {yi, i = 1, . . . , I}, accounting for dependence
arising from spatial proximity while being flexible enough to model data that do not fit
standard parametric distributions. We further assume that data, within each areal unit
i, are independent and identically distributed (i.i.d.) from an area-specific density fi;
the problem we address is the joint estimation of spatially dependent densities f1, . . . , fI .
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We take the Bayesian viewpoint and we specify a prior for dependent densities (f1, . . . , fI)
that encourages distributions associated to areas that are spatially close to be more similar
than those associated to areas that are far away. Relaxing the assumption of identically
distributed observations within each area is straightforward in the regression context, i.e.
when covariates for each subject are available.

As motivating application, we consider publicly available data on Airbnb listings in
the city of Amsterdam (NL). Airbnb is the largest vacation rental marketplace. In recent
years it has been debated that Airbnb has deeply transformed the social structure of major
touristic cities, as Amsterdam (Van Der Zee, 2016), Barcelona (Garcia-Ayllon, 2018) and
several US cities (Wachsmuth and Weisler, 2018), driving up property prices and disrupting
communities. The application dataset consists of more than 17, 000 listings spread over
neighborhoods in Amsterdam. Our goal is to predict the nightly price of a new listing,
with information given by covariates, taking into account the spatial dependence. Such a
model can be of interest to a ‘new’ lessor wishing to rent their house or flat on Airbnb. The
area-specific estimate of the density might allow the lessor to understand the full market of
renting apartments in his/her neighborhood, unlike a simple point estimate of the average
price. The lessor might also understand if it is worth making home improvements in order
to get a higher rent or assessing, for instance, the posterior predictive probability of the
rent being above some threshold.

A peculiar feature of the municipality of Amsterdam is that three neighborhoods are
not connected to the rest of the city but among themselves (see, for instance, Figure 7.7.1),
i.e. there are two different connected components in the adjacency graph of neighborhoods.
It is likely that the nightly prices exhibit substantially different behavior when comparing
one component to the other. Hence, we want to build a model that encourages sharing of
information across neighboring areas, but does not force densities belonging to different
components to be similar a priori.

Compared to more traditional spatial regression techniques such as eigenvector spa-
tial filtering (see Griffith et al., 2019, for a review), geographically weighted regression
(Brunsdon et al., 1998) or the models in the R package CARBayes (Lee, 2013a), our ap-
proach does not make distributional assumptions (such as assuming Gaussian-distributed
responses) and our focus here is on density modeling and estimation and density regression
via mixture models.

7.1.2 Previous work on Bayesian spatial density modeling

To model our distributions we resort to the well established class of mixture models
(Fruhwirth-Schnatter et al., 2019), that are a classical tool for density estimation. In
the Bayesian nonparametric setting, since MacEachern (2000), a great effort has been
dedicated to modeling a set of related, though not identical, distributions. Dealing with
spatial processes, Gelfand et al. (2005) and Duan et al. (2007) developed a spatial depen-
dent Dirichlet process as random-effects distribution in the context of point-reference data.
The stick-breaking representation of the Dirichlet process allows all the models built from
it to be considered as infinite mixture models. Starting from the stick-breaking represen-
tation of the dependent Dirichlet process in the particular case of single atoms (atoms
not indexed by covariates), Dunson and Park (2008) proposed the kernel stick-breaking
process mixtures; spatial extensions of these type of mixtures have been developed to
accommodate for general covariates and spatial locations for geostatistical data, such as,
e.g., Rodŕıguez and Dunson (2011) and Ren et al. (2011). Jo et al. (2017) considered mix-
ture models based on species sampling priors where the spatial dependence is introduced
through a Gaussian multivariate conditional autoregressive (CAR, Besag, 1974) model on
a suitable transformation of the weights. Despite their focus being on point-referenced
data, their model can be easily extended to areal data, as we do in Sections 7.4.3 and 7.6
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for a comparison with our approach. The idea of building spatial dependence in mixture
models through a CAR distribution on latent variables is also shared by Li et al. (2015),
where the authors propose an area-dependent Dirichlet process that can also formally iden-
tify boundaries between areas, and Zhou et al. (2015), that use the trick of normalization
of CAR distributions to time-varying weights in a rather complex application with focus
on estimation of ambulance demand.

Despite the theoretical properties of Bayesian nonparametric mixtures, computing the
posterior inference in this setting may yield computational issues. In fact, typical MCMC
algorithms here would need to marginalize out the infinite dimensional distribution from
the joint distribution of data and parameters, which might not be possible for models
exhibiting a complicate dependence structure such as those mentioned above. As an
alternative, finite-dimensional approximations of the infinite mixture representation are
typically used in the MCMC algorithms. However, as recently pointed out by Lijoi et al.
(2020b), the truncation procedure, for some models, might yield unwanted assumptions
on the prior distribution of the number of clusters.

7.1.3 Our contribution and outline

In this chapter, we consider a finite mixture model, where the number H of components
is fixed. Finite mixtures are particularly suited for the problem of modeling areal den-
sities because (i) they adapt capturing the spatial dependence more than nonparametric
mixtures, mainly because the weights of the finite mixtures are not forced to decrease
exponentially fast to 0 as in many Bayesian nonparametric mixture models, and (ii) pos-
terior inference under finite mixtures is extremely simple and admits efficient parallel code
(unlike nonparametric models), thus helping our model scaling up as the size of the dataset
increases. See Frühwirth-Schnatter (2006) and Celeux et al. (2019) for more insights on
finite mixtures.

The first contribution of this work is the introduction of a joint distribution for a collec-
tion w1, . . . ,wI of I vectors in the simplex SH , reflecting the areal proximity structure in
the distribution, through a logistic transformation of Gaussian multivariate CAR models.
This distribution has been termed here the logistic MCAR distribution. Other authors
have considered similar tricks, e.g. Jo et al. (2017), who build on the CAR model by
Clayton and Kaldor (1987).

A second contribution of this work is the proposal of a finite Gaussian mixture model for
each of the I area-related densities, keeping in mind the flexibility of the Gaussian mixtures
to accurately approximate smooth densities. We let all the mixtures share the same set
of atoms, while introducing similarity between the different mixtures through the logistic
MCAR distribution, that we use as a prior for the weights of the mixtures. Through
simulated data examples and the Airbnb application we show how specific features of
the proposed model include (i) a sparse mixture specification as meant in Malsiner-Walli
et al. (2016) and (ii) densities corresponding to areal units which belong to two different
connected components in the proximity graph may behave differently. We discuss this last
particular point in our data illustrations.

A third contribution of this chapter is that we show how the full conditionals of the
mixture weights can be sampled using a Gibbs sampler based on the Pólya-Gamma distri-
bution, without resorting to Metropolis-Hastings steps, by exploiting a data augmentation
scheme. As discussed in Polson et al. (2013), this update can lead to major improvements
in the mixing of the chain. Our examples focus on continuous responses and the Gaussian
kernel, though extensions to different kernels can be straightforwardly accommodated in
our framework.

The rest of this article is organized as follows. Section 7.2 gives background on finite
mixture models and the geometry on the finite-dimensional simplex. Section 7.3 illustrates
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the definition and properties of the joint distribution of a collection of I vectors in the
simplex, taking into account the underlying spatial proximity matrix. Our area-dependent
mixture model is illustrated in Section 7.4.1, and the sparse mixture specification is detailed
in Section 7.4.2; Section 7.4.3 discusses on the differences between our spatial prior and
that in Jo et al. (2017). Section 7.5 sketches the Gibbs sampler to compute the posterior
and Section 7.6 presents results from two simulation studies with comparison with com-
petitor models. The application to Airbnb Amsterdam is discussed in Section 7.7, where
we propose two generalizations of our area-dependent mixture model to include subject-
specific covariates and relaxing the identity in distribution assumption within each area.
We conclude in Section 7.8 with final comments and discussion. The Appendix collects
the proofs for the theoretical results, Monte Carlo simulations from the joint distribution
of the I vectors in the simplex, full description of the Gibbs sampler, as well as additional
plots and tables for the examples. Codes of our MCMC algorithm for simulated data and
Airbnb Amsterdam application has been implemented C++ and Python and is available at
https://github.com/mberaha/spatial mixtures.

7.2 Preliminaries

7.2.1 Mixture Models

For any areal unit i = 1, . . . , I and subject j = 1, . . . , Ni, we assume observation yij ∈
Y ⊂ Rp. In this chapter, we fix p = 1, but multivariate responses can be straightforwardly
accommodated in our context. A flexible model for the density in each area can be
constructed by assuming a finite mixture, specifically

yij |wi, τi
iid∼ fi(·) =

H∑

h=1

wihk(· | τih) j = 1, . . . , Ni (7.1)

where k(· | τ) is a density on Y for any τ ∈ Θ, and Θ is the parameter space. Each vector
wi = (wi1, . . . , wiH)T , the weights of the mixture (7.1), belongs to the H − 1 dimensional
simplex SH , where

SH := {(z1, . . . , zH) ∈ RH : 0 ≤ zh ≤ 1, h = 1, . . . ,H,

H∑

h=1

zh = 1} (7.2)

and τi = (τi1, . . . , τiH)T are parameters in ΘH . In this chapter, we refer to τi and wi as
the atoms and the weights of the mixture fi.

Our goal is to introduce dependence between mixtures such that data in neighboring
areas are more likely to be modeled with similar distributions than data in far areal units.
A general mixture model like (7.1) would require to model jointly both the atoms and
the weights of all the mixtures, in order to obtain a dependence structure suitable for
spatial applications, which can be a challenging task in general, unless we consider a
very specific application. In our approach instead, borrowing ideas from the single atom
dependent Dirichlet processes, we constrain all the atoms across the different areas to be
equal, i.e. τ1 = τ2, . . . = τI = τ , and focus only on the weights of the mixtures. In
this way, a sufficient condition for two different mixtures to be similar is to have similar
weights. In general, it is more difficult to define mixtures with area-dependent weights
than generalizing to area-dependent weights and atoms, since simulation algorithms for
models based on standard mixture models can usually be adapted with few modifications
to dependent atoms.

When the goal of the inference is cluster estimation, the choice of H might become
crucial. An alternative consists in assuming H random, including it in the state space
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of the MCMC algorithm; see, for instance, Nobile (1994). However, inference in this
setting can be computationally intensive as it needs to rely either on specifically designed
trans-dimensional MCMC moves (see Green, 1995; Richardson and Green, 1997), or to
numerically evaluate infinite series, as in Miller and Harrison (2018) and in the marginal
sampler in Argiento and De Iorio (2022). On the other hand, sparse mixture models, as
meant in Malsiner-Walli et al. (2016), assume a large value for H, larger than needed,
and a prior assigning large mass to configurations where the weights of the superfluous
components assume values close to zero. This implies that the prior number of non-empty
components (i.e. components where at least one observation is allocated to) is significantly
smaller than H.

In Section 7.3 we propose a prior distribution for (w1, . . . ,wI), in such a way that
weights associated to close areas are more similar than weights associated to areas farther
away, by constructing a Markov random field for random vectors with bounded sum.
Moreover, by assuming a prior on the hyperparameters, we also show that this prior can
induce sparsity in the mixture (see Section 7.4.2) as in Malsiner-Walli et al. (2016).

7.2.2 Geometry on the simplex SH

The simplex SH ⊂ RH defined in (7.2) is not a vector subspace of RH . However, SH

is a vector space when equipped with the so-called Aitchison geometry, that defines the
operation of perturbation (analogous of addition), powering (analogous of multiplication
by scalar) and inner product. If w,w1,w2 ∈ SH , α ∈ R we have

w1 ⊕w2 = C(w11w21, . . . , w1Hw2H) :=

(
w11w21∑H
i=1w1iw2i

. . .
w1Hw2H∑H
i=1w1iw2i

)

α�w = C(wα1 , . . . , wαH) 〈w1,w2〉 =
1

2H

H∑

i,j=1

log
w1i

w1j
log

w2i

w2j

where C denotes the closure, or normalization (i.e. dividing each element by the sum of
all the elements) of a vector in RH . The symbols ⊕, � and 〈·, ·〉 denote perturbation,
powering and inner product, respectively.

Many maps from SH to RH−1 are available in the literature. For our purpose we focus
on the bijective additive log-ratio transformation (alr), defined by alr : w 7→ w̃:

w̃j = log
wj
wH

, j = 1, . . . ,H − 1

and its inverse, w = alr−1(w̃) := C(ew̃1 , . . . , ew̃H−1 , 1), that is

wj =
ew̃j

1 +
∑H−1

h=1 ew̃h
, j = 1, . . . ,H − 1, wH = 1−

H−1∑

h=1

wh =
1

1 +
∑H−1

h=1 ew̃h
. (7.3)

Observe that both maps are linear, i.e., for any w1,w2 ∈ SH , w̃1, w̃2 ∈ RH−1, α ∈ R,

alr(w1 ⊕w2) = alr(w1) + alr(w2), alr(α�w1) = α alr(w1)

alr−1(w̃1 + w̃2) = alr−1(w̃1) + alr−1(w̃2), alr−1(αw̃1) = α� alr−1(w̃1).

The alr transformation is often applied in the context of compositional data analysis, where
statistical inference for data in the simplex has been pioneered by Aitchison (1986). In
particular, this map was used in Aitchison and Shen (1980) to define a new distribution on
the simplex, the logistic-normal distribution. Formally, we say that w = (w1, . . . , wH−1,
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wH := 1 −∑H−1
h=1 wh)T ∈ SH follows the logistic-normal distribution of parameters µ,Σ

for µ ∈ RH−1, and Σ a positive definite (H − 1)× (H − 1) matrix if

w̃ = alr(w) =

(
log

w1

wH
, . . . , log

wH−1

wH

)T
∼ NH−1(µ,Σ)

where NH−1(µ,Σ) denotes the (H − 1)-dimensional Gaussian distribution with mean µ
and covariance matrix Σ. The logistic-normal distribution offers a rich way to model
data embedded on the simplex and is particularly suited for our application. Although
moments of this distribution exist, their expression is not available analytically. However,
when modeling data in the simplex, one is usually more interested in the pairwise ratios of
the components than on the values of the components themselves. In turn, these expected
values and covariances are available analytically and given by

E
[
log

wi
wj

]
= µi − µj , Cov

(
log

wi
wj
, log

wl
wk

)
= Σil + Σjk − Σik − Σjl

where Σil denotes the (i, l)-element of the matrix Σ.

7.3 The logistic MCAR distribution

In this section, we introduce and describe a joint distribution for a collection of vectors in
the simplex w1, . . . ,wI ∈ SH , reflecting the areal proximity structure in the distribution.
For each pair of areas i and j, gij ∈ [0, 1] indicates the amount of spatial proximity between
them. In the rest of the chapter we assume gij = 1 if i and j are neighbors, i.e. the areas
share at least a border, and gij = 0 otherwise, but we could consider more general settings.
By definition, gii = 0 for all i. The matrix G = [gij ]

I
i,j=1 is called the proximity matrix

and we assume it known. It will be useful, for our analyses, to identify the matrix G with
a graph, whose nodes are denoted by indexes 1, . . . , I and the links are given by the gij ’s,
i.e. there is a link between nodes i and j if, and only if, gij = 1. We define the joint
distribution of w1, . . . ,wI introducing the transformed vectors w̃i := alr(wi), i = 1, . . . , I
and assuming a joint Gaussian conditional autoregressive distribution for (w̃1, . . . , w̃I).

Conditionally autoregressive (CAR) models are a special case of Markov random fields.
In general, if {X1, . . . , Xn}, with Xi ∈ R, is a set of random variables, to define a CAR
model over X1, . . . , Xn, one usually starts by assigning the conditional distribution of
each Xi given all the others X−i := {X1, . . . , Xi−1, Xi+1, . . . Xn}. The set of conditional
distributions, under assumptions, identifies the unique joint distribution of (X1, . . . , Xn).
The class of CAR models is large; see further detail in Besag (1974), Cressie (1992), Cressie
(1993), Kaiser and Cressie (2000), Cressie and Wikle (2015) and references therein, just
to include a few papers.

We generalize the univariate CAR model in Leroux et al. (2000) assuming the following
multivariate conditionally autoregressive (MCAR) model:

w̃i | w̃−i,Σ, ρ ∼ NH−1

(
ρ
∑I

j=1 gijw̃j + (1− ρ)m̃i

ρ
∑I

j=1 gij + 1− ρ
,

Σ

ρ
∑I

j=1 gij + 1− ρ

)
, (7.4)

where i = 1, . . . , I,, Σ is a definite positive (H − 1)× (H − 1) matrix and m̃i ∈ RH−1 for
all i. When H − 1 = 1, (7.4) gives the prior proposed in Leroux et al. (2000).

Denoting with A⊗B the Kronecker product between the m×n matrix A and the p×q
matrix B , i.e., A ⊗ B is the pm × qn matrix with entries (A ⊗ B)pr+v,qs+w = Ar,sBv,w,
the following proposition guarantees that the joint distribution of w̃ = vec(w̃1, . . . , w̃I),
the vectorization of the weights, is well defined and unique.
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Proposition 7.1. Assume that ρ ∈ (−1, 1) and m̃i = m̃j if areas i and j belong to the
same connected component of the graph G. Then the set of full conditionals in (7.4) defines
a unique joint probability distribution for w̃ = vec(w̃1, . . . , w̃I), given by

w̃ ∼ NI(H−1)

(
m̃,
(
(F − ρG)⊗ Σ−1

)−1
)

(7.5)

where m̃ = vec(m̃1, . . . , m̃I) and F = diag(ρ
∑

j g1j + 1− ρ, . . . , ρ∑j gIj + 1− ρ).

Proof: see 7.A.

The matrix A−1(G, ρ) := (F − ρG) = ρ (diag(G1I)−G) + (1 − ρ)II in (7.5), where
1I ∈ RI denotes the vector of ones and II denotes the I × I identity matrix, has a key
role here. When ρ = 1, (7.4) reduces to the intrinsic CAR model, and the joint density
of (w̃1, . . . , w̃I) is improper. If ρ = 0, the w̃i’s are independent. See below for further
properties of A(G, ρ).

We say that the sequence of vectors w1, . . . ,wI follows a logistic multivariate CAR
distribution of parameters ρ and Σ on a graph G if the transformed variables (w̃1, . . . , w̃I),
w̃i = alr(wi), follow the MCAR model in (7.4) (or (7.5)). We write (w1, . . . ,wI) ∼
logisticMCAR(m̃, ρ,Σ;G).

One key aspect is the relation that (7.4) induces over the vectors on the simplex rather
than on their alr-transformation. This is made clear by the following proposition.

Proposition 7.2. If (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G), then, for any i = 1, . . . , I,

E
[
log

wil
wik
|w−i

]
= log



(
mil

mik

)1−ρ ∏

j∈Ui

(
wjl
wjk

)ρ



(ρ|Ui|+1−ρ)−1

l, k = 1, . . . ,H (7.6)

where Ui = {j : gij > 0}, |Ui| =
∑

j gij and mi = (mi1, . . . ,miH), with mi = alr−1(m̃i).

Proof: see 7.A.

There are several immediate but interesting properties of (7.6). First of all, if ρ = 1,
(7.6) means that the expected value of (the logarithm of) the ratios between the compo-
nents of wi is equal to (the logarithm of) the geometric mean of the corresponding ratios
of the components of the vectors wj nearby. If ρ = 0, the right hand side of (7.6) reduces
to log(mil/mik), which is to be expected since, in this case, the wi’s would not be spa-
tially correlated. Instead, in case 0 < ρ < 1, which we assume throughout the chapter (see
Section 7.4.1), we can interpret the right hand side of (7.6) as a weighted mean on the sim-
plex, according to Aitchison geometry, of two components: the first component mil/mik

corresponding to the mean m and the second
∏
j∈Ui (wjl/wjk) taking into account the

spatial dependence. In other words, Proposition 7.2 provides the same interpretation of
(7.4) but for ratios between components of the anti-transformed vectors in the simplex, if
we look at them through the Aitchison geometry.

Starting from the joint distribution in (7.5), we can also study the marginal covariance
of wi,wj in (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G) for i 6= j. We point out that the
matrix A(G, ρ)−1, introduced above, is a strictly diagonal dominant matrix (i.e. for each
row, the absolute value of the diagonal entry is larger than or equal to the sum of the
absolute values of the off-diagonal entries in that row) with negative off-diagonal entries,
and, hence, its inverse A(G, ρ) has elements which are all positive.

Proposition 7.3. If (w1, . . . ,wI) ∼ logisticMCAR(m̃, ρ,Σ;G), then

Cov

(
log

wil
wim

, log
wjl
wjm

)
= Aij (Σll − 2Σlm + Σmm) ∀i, j, l,m = 1, . . . ,H − 1

Cov

(
log

wil
wiH

, log
wjl
wjH

)
= AijΣll i, j = 1, . . . , I l = 1, . . . ,H − 1
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In particular, if areas i and j belong to different connected graph components of the graph

G, Cov
(

log wil
wim

, log wjl
wim

)
= 0 and w̃i, w̃j are independent, conditioning to parameters

m̃, ρ,Σ.

Proof: see 7.A.

Observe that the logisticMCAR distribution of (w1, . . . ,wI) is not exchangeable, i.e. it
is not true that L(w1, . . . ,wI) and L(wπ({1}), . . . ,wπ({I})) are equal for any (π({1}), . . . , π({I}))
permutation of (1, . . . , I). Here, as in the rest of the chapter, the distribution of a ran-
dom element y is denoted by L(y). Nonetheless, the logisticMCAR distribution induces
exchangeable priors on all the fully connected components of the graph G.

The logisticMCAR distribution shares the same limitation as the logistic-normal one,
i.e. moments are not available in closed-form expressions. In 7.B we report an extensive
Monte Carlo (MC) simulation where we compute the covariance between different compo-
nents of the vectors of weights and we draw a comparison between the logisticMCAR and
the Dirichlet distributions.

7.4 Spatially dependent mixture models

We return to the problem of formalizing a Bayesian model for I groups of data (y1, . . . ,yI),
yi = (yi1, . . . , yiNi), i = 1, . . . , I. As mentioned at the beginning of Section 7.3, we assume
that each vector yi is associated to an area i and that for each pair of areas i and j, gij = 1
if i and j are neighbors and gij = 0 otherwise.

7.4.1 The finite mixture model with spatially dependent weights

Let the proximity matrix G = [gij ]
I
i,j=1 be fixed. We assume that y1, . . . ,yI , conditioning

to w1, . . . ,wI and τ , are independent and that, for each i = 1, . . . , I,

yij |wi, τ
iid∼

H∑

h=1

wihN (· | τh) j = 1, . . . , Ni, (7.7)

τh
iid∼ P0 h = 1, . . . ,H (7.8)

(w1, . . . ,wI) | ρ,Σ ∼ logisticMCAR(m̃, ρ,Σ;G) (7.9)

Σ ∼ Inv-Wishart(ν, V ) (7.10)

ρ ∼ π(ρ) (7.11)

where notation
iid∼ denotes independent and identically distributed random variables, wi =

(wi1, . . . , wiH)T ∈ SH−1 (see (7.2)) and m̃ = vec(m̃1, . . . , m̃I) ∈ RI(H−1). As often
considered, we study the case where the kernel in the mixture (7.7) is the Gaussian density
with mean µh and variance σ2

h, so that τh = (µh, σ
2
h) and P0 is a probability distribution

over Θ = R × R+. Specific choices of P0 are discussed in Sections 7.6 and 7.7. We
consider independent marginal priors for ρ and Σ. Moreover, the support of the prior of
ρ is typically assumed to be (0, 1) to induce the similarity of spatial neighbors (see, for
instance, Gelfand and Vounatsou, 2003, Section 4).

Model (7.7) - (7.11) assumes that each group of data yi is modeled as a (finite) mixture
of Gaussian kernels. Specifically, observations within each group are i.i.d given the weights
and the atoms of the mixtures, while conditionally to all the mixture weights w1, . . . ,wI ,
observations in different groups are independent. All the I mixtures share the same set
of atoms τ1, . . . , τH , which are assumed i.i.d from the base measure P0, a continuous
distribution on Θ = R × R+. The dependence between mixtures in different areal units
is induced only by the prior on the mixture weights. In order to derive a Gibbs sampler
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for our model, we introduce the latent variables sij , one for each observation, indicating
to which component of the mixture observations are allocated to, and rewrite (7.7) as

yij | sij = h, τh
ind∼ N (· | τh) j = 1, . . . , Ni, i = 1, . . . , I (7.12)

p(sij = h |wi) = wih h = 1, . . . ,H (7.13)

where notation
ind∼ is used to represent independent random variables (from different dis-

tributions). A component in the mixture is said empty if it has not been allocated to any
observation. Here, and in the whole chapter, cluster denotes any allocated component and
the number of clusters is the number of allocated components. It is clear from (7.12)-(7.13)
that the allocated and empty components, as well as the number of clusters, are random
variables, with marginal prior distributions induced by our model.

We complete the specification of our model by adopting a marginal prior on m̃ that en-
courages sparsity in the mixtures. We discuss this choice in detail in the next Section 7.4.2.

7.4.2 Sparse mixtures via a prior on m̃

Generally, a sparse mixture is obtained when the number of clusters is smaller than the
total number of components H. There are two well-known strategies to obtain sparse
mixtures in the Bayesian context. The first one assigns a prior on the weights that forces
them to be stochastically decreasing, so that the ‘last’ weights are very small and the
corresponding mixture components are seldom allocated. The alternative strategy consists
in assigning a prior for the weights that concentrates its mass around the edges of the
simplex in a symmetric way, as it is the case of the sparse Dirichlet distribution, i.e. a
Dirichlet distribution with all the parameters equal to α, with 0 < α < 1. In the latter
case, there is no preferential ordering of the weights and any mixture component could be
allocated. We think that the first approach might not fit spatial applications, in particular
when the proximity graph G has disconnected components, since assuming decreasing
weights for all the mixtures would force data from two disconnected components to be
always sampled from the few components with larger weights, and hence to behave always
similarly.

Here, we show how we can mimic the sparse Dirichlet distribution for the weights,
by assuming a suitable prior on parameters m̃i’s in our model. We start by observing
that in the mixture model (7.7) for the i-th area, if coordinate values in the vector m̃i in
(7.9) are very different among each other, this would force some components h in (7.7)
to be more often allocated than others, being their weights larger than the others (in
mean). Hence, we induce ‘symmetric’ sparsity in our marginal prior for the weights by
assuming m̃i ∼ NH−1(0, η2I). Observe that, since the distribution of m̃i is centered in 0
and isotropic, we are not forcing, marginally, any specific ordering on the weights.

To understand the role of η2, let us consider an illustrative example when H = 3 and
I = 1. Let m1 = alr−1m̃1 and consider d12 = (log(m11/m1H) − log(m12/m1H))2, which
corresponds to the distance between m11 and m12 in the Aitchison geometry. We may
consider d12 as a plug-in estimator of the distance between w11 and w12. The largest
values of d12 are obtained when one between m11, m12 and m1H is approximately 1 and
the others are close to zero. Moreover, from m̃1 ∼ N2(0, η2I), we have that d12/(2η

2) has
chi-squared distribution with one degree of freedom. Hence the random variable d12 is
stochastically increasing with η2.

This feature holds also for larger values of H as shown in Figure 7.4.2, where the
behavior of wi, for different values of η2, is illustrated. We conclude that η2 is a sparsity
tuning parameter and sparsity of the wi’s is obtained for larger values of η2. Note that
this is the opposite behavior of other sparsity priors, such as the double exponential or
the horseshoe (Bhadra et al., 2019), where a distribution with significant mass near zero
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is assumed. Because our parameters are transformed through the logistic map (7.3),
assuming a prior concentrated in zero for m̃ would result in a prior concentrated on
(1/H, . . . , 1/H) for w, of course this being far from sparsity.

Moreover, observe that Proposition 7.1 requires

{m̃i = m̃j = m̃Cm if i, j ∈ Cm for some m} (7.14)

where C1, . . . , Ck denote the connected components of graph G, i.e. all the parameters m̃is
are assumed common within each connected component. This condition is obviously met
if all the m̃i’s are equal. However, this seems overly restrictive, since we would loose the
property that two connected graph components in (w̃1, . . . , w̃I) are independent under
CAR distributions when marginalizing out the only shared parameter m̃1. Hence, we
propose to extend the logisticMCAR(m̃, ρ,Σ;G) in (7.9) assuming

m̃C1
, . . . m̃Ck

iid∼ NH−1(0, η2I). (7.15)

7.4.3 Comparison with competitor models

As mentioned in the Introduction, we have defined a prior for (w1, . . . ,wI), allowing
weights associated to close areas to be more similar than weights associated to areas
farther away, through the logistic transformation of a Gaussian CAR model. The idea is
not new in the literature, and the prior for the mixture weights of area-dependent densities
in Jo et al. (2017) is closely related to our prior. We discuss the differences between the
two priors in this section and we further compare their features by fitting simulated data
to the two models in Section 7.6.1.

We briefly introduce the class of spatially dependent species sampling mixtures in Jo
et al. (2017), who define the weights in the mixtures to be spatially dependent, modeling
them from a Gaussian CAR distribution, as we do. Their focus is on geo-referenced data
(with multiple observations in each geographic location), and they propose two different
CAR specifications, namely the Mercer CAR and the Clayton-Kaldor CAR (Clayton and
Kaldor, 1987) priors. Since it is not straightforward to extend the Mercer CAR formulation
to areal data as it requires the computation of a geographical distance rather than defining
a proximity matrix, we only consider the Clayton-Kaldor CAR species sampling model in
Jo et al. (2017) for comparison. We have shown in Section 7.4.2 that our marginal prior can
mimic the sparse Dirichlet distribution by assuming m̃ in the logisticMCAR(m̃, ρ,Σ;G)
to be random. Below, we discuss how sparsity is obtained also in the spatially dependent
species sampling model in Jo et al. (2017), but only in some sort of ‘asymmetric’ manner,
and how this impacts the modeling of different connected components in the graph G.

In the following, we refer to the prior in Jo et al. (2017) as CK-SSM. Instead of jointly
modeling the transformed weights in each location, Jo et al. (2017) assume independent
univariate CAR model for (a transformation of) the weights associated to each component
of the mixture in the different areas. Recall that they assume a mixture with infinite
components, i.e., h = 1, 2, . . .. With our notation, let νh = (w1h, . . . , wIh), then the
CK-SSM prior for νh is

ν̃h
ind∼ NI(θ̃h, τ2(I − ρG)) h = 1, 2 . . . , νih = wih =

eν̃hi∑
j eν̃ji

i = 1, . . . , I (7.16)

In order to guarantee that the denominator of the fraction in (7.16) is finite, Jo et al. (2017)

assume that θ̃h is a vector with all components equal to log{1−(1+eb−ah)−1}, a and b being
positive hyperparameters. In force of that, the weights ν̃hi are stochastically decreasing
with h for each area i. This ordering is preserved by the exponential and normalization
transformations, so that wih will be stochastically decreasing with h as well, for each i.
Note also that (7.16) makes w non-identifiable.
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Figure 7.4.1: Scatterplots of N = 100, 000 MC draws (in blue) from the marginal priors of
the weights in one single area with H = 3, under our logisticMCAR prior (left) and (7.16)
in Jo et al. (2017) (right). White/gray areas represents low-density zones and dark blue
zones high-density ones.

We start by considering I = 1 area and drop the subscript i. As in Jo et al. (2017),
we truncate (7.16) to the first H terms for computation. Figure 7.4.1 shows a com-
parison of the marginal priors of the weights in the mixture (7.7) with H = 3, under
our logisticMCAR prior and (7.16) introduced in Jo et al. (2017). In particular, for our
logisticMCAR(m̃, ρ,Σ;G) prior we have assumed m̃ ∼ N2(0, 9I), w̃ ∼ N2(m̃, I), that is

(7.5) with Σ = I, while we fix θ̃h = log{1− (1 + e1−h)−1}, h = 1, . . . ,H, in (7.16) as in Jo
et al. (2017) (a = b = 1) and τ2 = 1.

We compare the priors via N = 100, 000 MC draws. Figure 7.4.1 shows the scatterplots
of the draws of the two marginal priors. In particular, the draws from our prior (left panel)
recover the ‘sparse’ symmetric Dirichlet prior with all parameters equal to α < 1; the draws
are symmetrically concentrated around the edges of the simplex, and give significant mass
to locations near the vertexes. On the other hand, the draws from the CK-SSM prior
clearly show asymmetry in favor of the first component, also giving negligible mass to
neighborhoods of the vertices. When the number H of components in the mixture (7.7)
is larger, we can compare the priors via two functionals by computing (i) the number of
active components (H(a)), that we define as the components associated to weights greater
than 0.01, i.e. the cardinality of the set {h : wh > 0.01}, and (ii) the probability for
each component of the vector w ∈ SH to be greater than the threshold 0.05. We fix
H = 30 and, simulating N = 10, 000 MC draws as before, we plot the marginal prior
distributions of these functionals under our logisticMCAR prior (Figure (7.4.2a)) and
(7.16) in Jo et al. (2017) (Figure (7.4.2b)), for different values of the hyperparameters in
the priors. From both left panels, displaying the marginal priors of H(a) (as continuous
lines to help seeing the differences), it is clear that the two models may induce different
types of prior behaviors. However, when considering the right panels, displaying, for each
index h = 1, . . . ,H, the probability that wh > 0.05, it is clear that, while under our prior,
for each degree of sparsity η2, the probability of inclusion of a single component does not
show a preferential ordering, this probability decreases with h under the CK-SSM prior.
Going back to the prior in (7.15), observe how this model specification gives a major
difference with the mixture model in Jo et al. (2017).

This is particularly relevant if we aim at considering the context where areal units are
connected through the graph G, but there are at least two different connected components,
as we will have in the application in Section 7.7. Intuitively from the discussion above,
CK-SSM would still force the different connected components in the graph to behave
similarly, because of the parameter θ̃ shared by all the mixtures; see (7.16). We tested
this scenario more in detail by considering a spatial domain subdivided in four areas with
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Figure 7.4.2: Prior distribution of the number of active components (left) and the proba-
bility for wh to be greater than 0.05 (right) under our prior (top row) and prior (7.16) in
Jo et al. (2017) (bottom row). Here H = 30.

two connected components {1, 2}, {3, 4}. Figure 7.D.1 shows the total variation distance
for (w1,w2) and (w1,w4) under the logisticMCAR and CK-SSM priors, having fixed
hyperparameters as above and ρ = 0.95. It is clear that, as sparsity increases, the distance
between w1 and w4 increases under the logisticMCAR but decreases under the CK-SSM,
showing how imposing a sparse behavior in the CK-SSM prior forces similar distributions
in disconnected components of the graph. See also Figure 7.D.2 for a visual representation
of draws from the prior distributions. This effect becomes more and more evident as the
sparsity in each mixture is increased, as shown in Figure 7.4.2b. On the other hand, our
model allows for the required level of sparsity in each mixture without forcing the different
connected components in the graph to behave similarly. For this reason, we believe we
have introduced a more flexible model for jointly estimate spatially dependent densities
than Jo et al. (2017), at least for applications where different connected components in
the graph should exhibit different behaviors.

We will provide comparison also with the Hierarchical Dirichlet Process (HDP) mixture
model in Teh et al. (2006) in Section 7.6. To keep the chapter self-contained as much as
possible, we report the HDP mixture model as follows

yij |Fi iid∼
∫

Θ
k(yij | τ)Fi(dτ), {Fi}Ii=1 |G

iid∼ DαG G ∼ DβP0
(7.17)

where DβP0
denotes the Dirichlet measure, i.e. the distribution of a random probability

measure that is the Dirichlet process with measure parameter βP0. We assume the kernel
k(· | τ) as the Gaussian density on Y for τ = (µ, σ2) as in (7.7). Thanks to the stick-
breaking representation of the Dirichlet process, it is possible to rewrite the likelihood in
(7.17) as

yij | {wih}∞h=1, {φ∗ih}∞h=1
iid∼
∞∑

h=1

wihk(yij |φ∗ih)
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where φ∗ih |G
iid∼ G in (7.17) and {wih} for each i are a sequence of non-negative weights

summing to 1. Moreover, since each Fi, conditionally to G, is an independent draw from
the Dirichlet process prior with discrete base measure G, this yields that all the atoms are
shared across all populations. This means that the set of the unique values in {φ∗ih}∞h=1 is
equal to the set of unique values in {φ∗jh}∞h=1 for j 6= i and coincides with the set of atoms

in G. Hence, denoting by {τh}∞h=1 the atoms in G, the HDP mixture model defines a joint
probability distribution for random probability measures with the same support points, as
in our model. This is the motivation to consider the HDP mixture model as the ‘natural
competitor’ of ours.

7.5 The Gibbs Sampler

We illustrate a MCMC algorithm to sample from the posterior distribution of our model
(7.7)-(7.11) and (7.14) - (7.15). The state is described by parameters τ = (τ1, . . . , τH),
(w̃1, . . . , w̃I), where w̃i = alr(wi), i = 1, . . . , I, {sij}ij (j = 1, . . . , Ni) in (7.12)-(7.13) and
m̃C1

, . . . m̃Ck in (7.15).
We use the following notation: given the sequence of vectors w1, . . . ,wI , we denote by

w−i the same sequence where the i–th vector has been removed. Given a single vector wi,
we denote by wi,−h the same vector where the h-component as been removed. Finally, for
the matrix Σ, let Σij denote the (i, j)-element; moreover, Σi denotes its i–th row (as a
vector) so that Σi,−j denotes the i–th row where the j–th element has been removed and
Σ−h,−k denotes the (H − 2) × (H − 2) matrix there the h–th row and k–th column have
been removed.

There are two ‘non-standard’ steps in the Gibbs sampler: the update of the transformed
weights w̃i and the update of their means m̃C1

, . . . m̃Ck . Here, we only describe the full
conditionals of each w̃i. The full conditional of m̃Ci is a multivariate Gaussian distribution.
See 7.C for more detail on it, together with the other standard full conditionals.

We begin by writing the full conditional for w̃ih, for each i and h, as

L(w̃ih | w̃−i, w̃i,−h, rest) ∝ π(w̃ih | w̃−i, w̃i,−h, ρ,Σ)L(w̃ih | si, w̃i,−h) (7.18)

where si = (si1, . . . , siH)T . The conditional prior π(w̃ih | w̃−i, w̃i,−h, ρ,Σ) can be derived
from (7.5) conditioning with respect to the other components of the vector w̃i; we find

π(w̃ih | w̃−i, w̃i,−h, ρ,Σ) = N (µ∗ih,Σ
∗
ih),

where µ∗ih = µih + Σh,−hΣ−1
−h,−h(w̃i,−h − µi,−h) and Σ∗ih = (ρ

∑I
j=1 gij + 1 − ρ)−1 (Σh,h

−Σh,−hΣ−1
−h,−hΣ−h,h

)
by standard properties of the normal distribution, with µi = (ρ

∑I
j=1 gij+

1− ρ)−1(ρ
∑I

j=1 gijw̃j + (1− ρ)m̃i). Moreover, using the same data augmentation scheme

proposed in Holmes and Held (2006), we write the term L(w̃ih | si, w̃i,−h) as

L(w̃ih | si, w̃i,−h) =

(
eηih

1 + eηih

)Nih ( 1

1 + eηih

)Ni−Nih

where ηih = w̃ih − Cih, Cih = log
∑

k 6=h ew̃ik (with w̃iH := 0) and Nih is the number of
observations in area i assigned to component h.

To be able to sample from the full conditional of w̃ih, we express L(w̃ih | si, w̃i,−h)
using an augmentation technique, based on the Pólya-Gamma distribution. The trick is
analogous to that in Polson et al. (2013), in this case without covariates. We describe it
in detail in the next paragraphs.
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We denote by ω ∼ PG(b, c) a random variable with a Pólya-Gamma distribution with
parameters b and c, i.e.

ω =
1

2π2

+∞∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

(7.19)

where gk
iid∼ Gamma(b, 1) and b, c > 0. The data-augmentation technique based on the

Pólya-Gamma distribution relies on the following integral identity:

(eη)a

(1 + eη)b
= 2−be(a−b/2)η

∫ +∞

0
e−ωη

2/2p(ω)dω

where p(ω) is the density of the PG(b, 0) random variable.
Taking advantage from the above equality, when introducing the latent variable ωih ∼

PG(Ni, 0), we can derive the following full conditional for w̃ih:

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) = N(µ̂ih, Σ̂ih) (7.20)

where

µ̂ih =

(
µ∗ih
Σ∗h

+Nih −Ni/2 + ωihCih

)(
1

Σ∗ih
+ ωih

)−1

Σ̂ih =

(
1

Σ∗ih
+ ωih

)−1

.

Moreover, the full conditional of ωih can be expressed as

L(ωih | w̃i) = PG
(
Ni, w̃ih − log

∑

k 6=h
ew̃ik

)
. (7.21)

See 7.C for the proof of Equations (7.20)-(7.21).
These equations give a two steps Gibbs update for the variable w̃ih. Indeed, one can

first sample ωih from (7.21) (which depends on w̃ih) and secondly update w̃ih from (7.20)
(which depends on ωih). In this way, we are able to make two Gibbs steps in an augmented
state space instead of a single Metropolis Hastings step. There are two reasons why one
should prefer the former algorithm to the latter. First, the two-Gibbs-steps simulation
avoids the choice of a proposal density for the update, that can be difficult due to the
shape of the logistic transformation applied to the weights. Moreover, using the Pólya
Gamma augmentation trick can be helpful in settings where the number of observations
in a single area is not significantly greater than the number of components in the mixture,
as we consider in Section 7.6.1, scenario II; see Section S6.3 of the supplementary material
in Polson et al. (2013) for an explanation of this statement.

7.6 Simulated data

We consider two simulation studies to illustrate the flexibility of our model; in particular
we will see that the model is able to exploit spatial dependence between densities corre-
sponding to close areas. In the first example, we compare our model (SPMIX) with the
Clayton-Kaldor Species Sampling Model of Jo et al. (2017) (CK-SSM) and the HDP mix-
ture model (see (7.17)), that we use as a sort of black-box model for density estimation of
grouped data. In the second example we generate data from spatially dependent densities
and we check if our model is flexible enough to recover such dependence.

We run the Gibbs sampler for our model (7.7)-(7.11) together with the prior specifica-
tion (7.14) - (7.15) (see Section 7.5 and 7.C), and the direct sampler for the HDP-mixture
model in Teh et al. (2006). Both algorithms were coded in C++. In addition, we have

157



Chapter 7. Spatial Mixtures

Area 1 2 3 4 5 6
Scenario I Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) χ2(3, 0, 1) χ2(3, 0, 1)

Ni 1000 1000 1000 1000 1000 1000
Scenario II Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) χ2(3, 0, 1) χ2(3, 0, 1)

Ni 1000 10 1000 10 1000 10
Scenario III Density t(6,−4, 1) t(6,−4, 1) SN(4, 4, 1) SN(4, 4, 1) Ca(0, 1) Ca(0, 1)

Ni 100 100 100 100 100 100

Table 7.6.1: Non-Gaussian simulated data: true densities and sample sizes for each area
under all scenarios

also implemented the CK-SSM model in Stan (Stan Development Team, 2018) with the
prior (7.16). All the MCMC chains were run for 10,000 iterations after discarding the first
10,000 iterations as burn-in, keeping one every five iterations, resulting in a final sample
size of 2,000, unless otherwise specified. In all cases, convergence was checked using both
visual inspection of the chains and standard diagnostics available in the CODA package.

The base measures for our model, for the HDP-mixture and for the CK-SSM mixture
are assumed all equal (and denoted by P0) to match the models under comparison. Unless
otherwise stated, we assume P0 equal to the Normal-inverse-gamma distribution with
parameters µ0 = 0, a = b = 2, λ = 0.1, i.e. µ |σ2 ∼ N

(
µ0, λ

−1σ2
)
, σ2 ∼ IG(a, b) and the

prior in (7.11) as ρ ∼ Beta(1, 1). For the HDP, the total mass parameters α and β are
fixed and equal to 1. For our model, we set the prior hyperparameters for the marginal
prior (7.10) of Σ as ν = 100 and V = I for all the simulated examples. For the CK-SSM,
we followed the hyperparameter tuning outlined in their paper, except for the parameters
a and b that we fix to a = 0.1 and b = 0.5.

As metrics to compare the density estimates, i.e. the posterior mean of the density
evaluated on a fixed grid, we use the Kullback-Leibler divergence and the Hellinger distance
between the estimated density and the true one.

7.6.1 Non-Gaussian simulated data

We consider three scenarios. In each scenario we generate, for I = 6 different areas, an
i.i.d. sample from a density that is not Gaussian: namely t-student (t), skew-normal (SN),
chi-squared (χ2) and Cauchy (Ca). The matrix G is fixed and represents a graph with only
three connected components {1, 2}, {3, 4}, {5, 6}. The three scenarios differ in the number
of data in each area and in the data generating densities, as reported in Table 7.6.1:
t(ν, µ, σ) denotes the Student’s t distribution with ν degrees of freedom, centered in µ
and scaled by a factor σ; SN(ξ, ω, α) denotes the Skew normal distribution with mean

ξ + ωα/
√

1 + α2
√

2/π, χ2(k, 0, 1) denotes the standard chi-squared distribution with k
degrees of freedom and Ca(0, 1) the Cauchy distribution. They cover extremely different
cases: in Scenario I a large number of data is available in each area, so that borrowing
strength from nearby areas would be superfluous; we actually expect our model to perform
worse than the HDP-mixture, being the latter fully nonparametric. On the other hand, in
Scenario II there are three areas (2, 4 and 6) with few data points (only 10). In this case,
we expect our model to express its strength and give a better density estimate than the
HDP-mixture, especially in those areas where few data are present. Finally, Scenario III
is an in-between condition, where not so many observations as in Scenario I are available
in each area. We also compare the results obtained with the CK-SSM mixture.

In order to make a fair comparison between our model, CK-SSM and the HDP models,
we fixed the number of components H in our mixtures and in the CK-SSM to 10. This
choice was made by looking at the posterior distribution of the number of components
under the HDP-mixture in the different scenarios; we found that the number of clusters
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Model 1 2 3 4 5 6
Scenario I SPMIX 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.01 0.02± 0.01

HDP 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.01 0.02± 0.01
CK-SSM 0.92± 0.46 0.92± 0.46 0.97± 0.16 0.98± 0.16 1.10± 0.31 1.10± 0.31

Scenario II SPMIX 0.02± 0.00 0.04± 0.04 0.02± 0.01 0.02± 0.07 0.03± 0.01 0.03± 0.10
HDP 0.01± 0.00 0.13± 0.04 0.03± 0.01 0.21± 0.07 0.03± 0.01 0.32± 0.10

CK-SSM 0.91± 0.40 0.90± 0.40 0.97± 0.17 0.97± 0.17 1.22± 0.45 1.23± 0.44
Scenario III SPMIX 0.15± 0.19 0.15± 0.18 0.09± 0.25 0.09± 0.25 0.06± 0.12 0.06± 0.12

HDP 0.16± 0.19 0.16± 0.18 0.26± 0.25 0.26± 0.25 0.13± 0.12 0.13± 0.12
CK-SSM 0.86± 0.33 0.86± 0.34 1.25± 0.29 1.25± 0.29 0.86± 0.41 0.86± 0.42

Table 7.6.2: Kullback-Leibler divergences between the true densities and the estimated
ones, aggregated over 100 simulated datasets with ± one standard deviation
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Figure 7.6.1: Non-Gaussian simulated data, Scenario I: true densities for areas 2, 4 and 6
and the corresponding density estimates under the three different models.

ranges between 3 and 10. For each scenario we repeatedly simulated 100 independent
datasets. Table 7.6.2 shows the KL-divergence between the true density and the estimate
under the three models. We average those values over the 100 simulated datasets, also
considering ± one empirical standard deviation of the 100 values obtained. Table 7.D.1
in 7.D, reports the same values for the Hellinger distance. From both tables, we can
see that in all the three scenarios, the CK-SSM has the worst performance in recovering
the true data generating density. This reflects what we discussed in Section 7.4.3: the
prior of such model forces mixture weights to be too similar across different connected
components in the graph. We can clearly see this for example from Figure 7.6.1, where
the density estimates for areas 4 and 6 (not connected in G) are close under the CK-SSM
but not under our model. The HDP-mixture gives overall better estimates than those
under our model in Scenario I. In this case, both density estimates are close enough to the
true densities; see Figure 7.6.1. As we expect, under Scenario II, our model gives a better
density estimate (than the HDP-mixture) in areas 2, 4 and 6, where only 10 data points are
available; see Figure 7.6.2. Indeed, our model retrieves information from the neighboring
areas, overcoming the lack of data in some of the areas. Interestingly, our model performs
better in areas 3-6, and similarly in areas 1 and 2, under Scenario III, probably because of
‘extreme’ data in areas 5 and 6, where we generate data from a Cauchy distribution. This
behavior is evident from Figure 7.6.2, being the 95% point-wise credible interval of the
posterior distribution of the density much wider in HDP than in our approach. Finally, it
is clear that our model fits data well also when the true density is highly non-symmetric,
such as in locations 3-6 in Scenarios I and II.
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Figure 7.6.2: Non-Gaussian simulated data, Scenario II and III: estimated and true den-
sities for areas 4 and 6 under our (top row) and HDP mixture (bottom row) models.

7.6.2 Simulation from spatially dependent weights

In the second simulation example we apply our model to estimate spatially dependent
densities in contiguous areas, placed in a squared grid with a total number I of areas, in
a unit area squared domain; we study three different scenarios, choosing I = 16, 64, 256.
In the i-th area, we simulate observations as follows:

yij
iid∼ wi1N (−5, 1) + wi2N (0, 1) + wi3N (5, 1) j = 1, . . . , 25 (7.22)

where the weights are chosen as alr−1(w̃i) and the transformed weights w̃i are given by

w̃i1 = 3(xi − x̄) + 3(yi − ȳ) w̃i2 = −3(xi − x̄)− 3(yi − ȳ) (7.23)

where (xi, yi) are the coordinates of the center of area i and (x̄, ȳ) the coordinates of the
grid center. In this way, we introduce strong spatial dependence, induced by (7.23), among
the weights of different areas, as we observe in Figures 7.6.3a and 7.6.3b, where we plot
the weights of the first two components {wi1} and {wi2}, for the scenario I = 64; of course
wi3 = 1− wi1 − wi2.

In our model, we consider areas i and j to be neighbors if they share an edge, setting
gij = 1 in (7.9) in this case, and gij = 0 otherwise. For each scenario, we simulated
10 independent datasets, sampling 25 observations per area, and then we compare the
posterior estimates of the densities with the true ones via Kullback-Leibler divergence. We
compare our model with the HDP-mixture model and CK-SSM, reporting in Figure 7.6.3c
the errors, averaged over all areas, for the ten repetitions. Though when I = 16 HPD
gives much better estimates, our model outperforms the HDP-mixture, when the number
of areas is sufficiently large, with consistent results using the Hellinger distance to measure
the errors, as shown in Figure 7.D.3 in 7.D. On the other hand, CK-SSM shows the worst
posterior estimates for I = 16, 64, whereas we do not present the case I = 256 for its high
computational cost.

Concerning our model (spmix) and the HDP-mixtures, the median execution times,
over the 10 datasets, of the code corresponding to spmix was 25.28, 118.14 and 616.41
seconds for I = 16, 64, 256, respectively, whereas, for fitting data for the HPD-mixtures
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(a) (b) (c)

Figure 7.6.3: Simulation from spatially dependent weights in Sect. 7.6.2: plots of {wi1}
(a), {wi2} (b) when I = 64; boxplots (c) of the Kullback-Leibler divergence between true
density (7.22) and estimated one under our model (spmix), the HDP-mixture model (hdp)
and the CK-SSM

for each simulation, averaged over the areas, for I = 16, 64, 256, in logarithmic scale.

was 18.39, 72.59, 207.46 seconds. Based on our implementation, HDP is slightly faster,
but our model still exhibits competitive computational times, paired with lower errors
when the number of areas is large. Simulations were performed on a machine equipped
with a 4x Xeon E5-2640 v4 @2.4GHz processor and 64 GB of RAM. In order to provide a
fair comparison, the implementation for our model ran on a single core since the sampler
for the HDP is inherently sequential. However, the Gibbs sampler we proposed can be
straightforwardly parallelized and this could greatly decrease the runtimes of our model.

7.7 Airbnb Amsterdam

We consider the Airbnb listings dataset for the city of Amsterdam (The Netherlands),
publicly available at
http://insideairbnb.com/get-the-data.html. The dataset consists of more than 20, 000
listings spread over Amsterdam, grouped by the neighborhood. Our main goal is the
prediction of the nightly price of a new listing, with information given by covariates, and
taking into account the spatial dependence. As mentioned in the Introduction, (joint)
density modeling and estimation, in this case, can give insight to landlords who need to
take decision on where their flats should be positioned in the flat rental market. In fact,
in this application, uncertainty quantification associated to the prediction, which can be
easily derived from the full posterior density estimate, can lead to better informed decisions
about the market strategy. We consider two generalizations of model (7.7) to account for
covariates as follows. Denote responses as yij (i.e. the nightly price of accommodation j
in neighborhood i) and covariates as xij = (xij1, . . . , xijd)

T . In the first model, denoted
here M1, we assume τh in (7.7) such that τh = (µh+βTxij , σ

2
h), h = 1, . . . ,H. M1 can be

understood as a linear regression model with component-specific intercept and variance.
We further generalize M1 by assuming that all the regression coefficients are component-
specific, i.e. τh = (µh + βThxij , σ

2
h), h = 1, . . . ,H, and denote it by M2. While model M1

assumes that the effect of the covariates on the pricing is shared across all neighborhoods,
and the spatial effect can be represented by the only intercept, model M2 assumes that
all the covariates have different effect on the pricing depending on the neighborhood.

7.7.1 Data description

We consider as predictors characteristics of the house such as: (i) accommodates, the num-
ber of guests that can be hosted, (ii) bathrooms, the number of bathrooms, (iii) bedrooms,
the number of bedrooms; together with two indicators of popularity of the listing: (iv) number of reviews,
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the number of reviews present for that listing, and (v) review scores rating the average
rating of the reviews. Finally, we complete the set of covariates with two binary variables:
(vi) instant bookable which equals 1 if the listing can be booked instantly from the user
and 0 if, instead, the request must go through an acceptance procedure from the host;
(vii) host is superhost that is 1 if the host is classified as a superhost by Airbnb and
0 otherwise. The superhost badge can be obtained once a host has a sufficient number
of reviews with a rating above a certain threshold. These binary variables were included
since the user, while searching for an accommodation, can reduce her/his search only to
instant bookable listings and/or only to superhosts.

As preprocessing, we used the following steps: we removed the listings for which at
least one predictor is missing, as well as listings whose nightly price is below two euros or
above one thousand euros; then we transformed number of reviews by taking the natural

logarithm and review scores rating by the Box-Cox transformation x
(λ)
i = (xλi − 1)/λ

(Box and Cox, 1964) with λ = 12, being this value automatically chosen by the Python
package scipy.

Each listing is assigned to one of the twenty-two Amsterdam neighborhoods provided
at the dataset web page, so that I = 22. The total number of observations considered
for our analysis is N1 + · · · + NI = 17, 201. Figure 7.7.1(a) shows sample sizes in the
log-scale for each neighborhood; of course, city center is the area with the largest number
of observations. Furthermore, in Figure 7.7.1, panels (b) and (c), we report sample means
and standard deviations of the nightly price in euros in each neighborhood; the plots
motivate the modeling of the spatial dependence, as close neighborhoods tend to have
similar distributions, at least in terms of mean and standard deviation. Figure 7.7.1
shows that there are two distinct graph connected components, one made only by three
areal units; this agrees with official neighborhood maps of the city of Amsterdam. As
far as covariates are concerned, Figure 7.D.4 in 7.D shows empirical correlations among
the predictors and between predictors and the response. Figure 7.D.5 in 7.D displays
scatterplots of the response price versus numerical predictors and boxplots for categorical
predictors. We note that only accommodates, bathrooms, bedrooms exhibit a significant
linear correlation with the price, which is confirmed by the scatter plots, while sample linear
correlation between accommodates and bathrooms is 0.362, 0.730 between accommodates

and bedrooms, 0.430 between bathrooms and bedrooms. However, when computing the
variance inflation factor, we found 2.197, 1.243 and 2.334, respectively, values that suggest
very mild multicollinearity. On the other hand, there is no evident empirical effect of
instant bookable and host is superhost on the nightly price as Figure 7.D.5 in 7.D
shows. In the next subsection, we consider both models M1 and M2 for the dataset,
including all the covariates above described, i.e. d = 7. We standardized all numerical
predictors, subtracting the sample mean and dividing by the sample standard deviation
of each predictor; we also centered the response on the overall sample mean.

7.7.2 Posterior inference

We complete the prior for model M1 assuming

(µh, σ
2
h)

iid∼ N (µh | 0, 2σ2
h)× IG(σ2

h | 2, 2), h = 1, . . . ,H

and β ∼ Nd(0, σ2
βId). For the prior of model M2 we assume

((µh,βh), σ2
h)

iid∼ N ((µh,βh) |0, 10Id+1)× IG(σ2
h | 2, 2), h = 1, . . . ,H.

We need to change the Gibbs sampler in Section 7.5, adding two further steps to sample
from the full conditional of β for model M1 or from the full conditional of (µh, βh) for
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(a) No. of listings in the log-scale (b) Sample mean (c) Sample standard deviation

Figure 7.7.1: Number of listings (in the log-scale), sample means and standard deviations of
the nightly price in euros for each neighborhood in the Airbnb dataset, after preprocessing.

model M2. Both steps are standard updates in Bayesian linear regression models; see 7.C
for further details.

Posterior inference is robust to the choice of all the hyper-parameters in the prior
distribution, but for the number H of components in the mixture, that is a key parameter
for mixture models. For this reason, we compare M1 and M2 via predictive goodness-of-
fit indexes such as the log-pseudo marginal likelihood (LPML, Geisser and Eddy, 1979)
and the widely applicable information criterion (WAIC, Watanabe, 2013), when H varies
in {5, 10, 15}. Better predictive performances are associated to higher LPML and lower
WAIC. In this comparison, we also consider a generalization of the CK-SSM model in Jo
et al. (2017) along the lines of model M1. Table 7.7.1 shows that the best model is M1,
across all values of H and that CK-SSM does a worse job than M1 and M2. Given its
superior predictive performance, in the following we consider only M1.

In particular, M1 with H = 15 gives slightly better values of LPML and WAIC, but
the difference across all values of H seems negligible so that, to fix H, we consider also the
predictive mean squared error computed through a 10-fold cross-validation. The cross-
validation is stratified according to the areas, so that, each time, approximately 10% of
the data is missing from each neighborhood. More in detail, each time we select 90%
of the dataset as ‘training set’ (to simulate from the relative posterior) and compute the
mean of the predictive distribution corresponding to data in the ‘testing set’. Observe
that the same datapoints are shared across all values of H, both for training and for
testing. Then we compute the predictive mean squared error (pMSE) on the testing set,
i.e.

∑m
i=1(yi − ŷi)2/m, where m is the size of the testing set and ŷi is the mean of the

posterior predictive density of the response corresponding to covariate xi. The average
cross validation error ± one standard deviation is equal to 5468 ± 952, 5474 ± 850 and
5477 ± 956 for H = 5, 10, 15 respectively.

We have also considered the case H = 1, i.e., when all M1, M2 and CK-SSM models are
equivalent to a standard Gaussian linear regression In this case, the predictive performance
is much worse (LMPL and WAIC are approximately equal to −1.3 × 105 and 2.6 × 105

respectively), hence showing that a richer model with explicit modeling of the spatial
dependence structure is needed to obtain better predictive performances.

Lastly, removing covariates bathrooms and bedrooms, correlated with accommodates,
resulted in slightly worse predictive performance for all models tested; for instance, M1
showed a decrease in LMPL of 2.5%, while for M2 the decrease was around 1% across all
values of H. Summing up, for the reasons above, including parsimony of the model, in the
rest of the section, we consider only model M1 when H = 5.

Further comparisons are discussed in 7.E. We first analyze this dataset by modeling
connected components separately. Then we compare also with the fit given by geograph-
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M1 M2 CK-SSM
H 5 10 15 5 10 15 5 10 15

LPML -92619 -92444 -92441 -97998 -97836 -97828 -98751 -98752 -98755
WAIC 185238 184888 184882 195996 195672 195656 197502 197504 197505

Table 7.7.1: LPML and WAIC for various choices of H under M1, M2 and CK-SSM.

ically weighted regression. In both cases, the predictive performances are worse than the
ones obtained with our model.

Figure 7.7.2(b) reports 95% posterior credibility intervals for the regression parameters.
All the covariates, except for host is superhost, seem to be significant, if we assume
hard shrinkage as a criterion for significance, i.e. the marginal credibility interval does not
include 0. It is interesting to observe how the coefficients associated to number of reviews

and instant bookable are negative. This might indicate that hosts that receive many
reviews and many reservations tend to lower their prices in order be more attractive. On
the other hand, as one would expect, all the other coefficients are positive, the one furthest
right being associated to accommodates, i.e. the number of guests that can be hosted. In

(a)

0 10 20

instant_bookable

review_scores_rating

number_of_reviews

bedrooms

bathrooms

accommodates

host_is_superhost

95.0% Credible
Interval

(b)

0 200 400

q0.95

q0.5

q0.05

0 200 400

q0.95

q0.5

q0.05

0 200 400

q0.95

q0.5

q0.05

0 200 400

q0.95

q0.5

q0.05

(c)
Figure 7.7.2: (a): Map of the city of Amsterdam with neighborhoods Bijlmer-Centrum
in blue, Gaasperdam - Driemond in orange, Oostelijk Havengebied - Indische Buurt in
green and Watergraafsmeer in red. (b): 95% credibility intervals of the marginal posterior
of the regression parameter β. (c): Predictive densities for different neighborhoods, the
colors match the ones of the map. In each plot, three lines represent three different values
of the covariates accommodates, number of bedrooms, number of bathrooms), equal to
their 5%, 50% and 95% sample quantiles, while the other numerical covariates are fixed
to the empirical median.

Figure 7.7.2(c) we show the density estimates in the four neighborhoods highlighted in
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Bijlmer
Centrum

Gaasperdam
Driemond

Oostelijk Havengebied
Indische Buurt

Watergraafsmeer

q0.05 q0.50 q0.95 q0.05 q0.50 q0.95 q0.05 q0.50 q0.95 q0.05 q0.50 q0.95

mean 71.5 84.23 149.5 69.38 82.18 147.8 99.49 112.1 176.5 100.0 112.6 177.0
median 66.53 79.35 145.9 64.92 77.75 145.1 92.18 105.0 172.33 92.98 105.8 173.1

sd 40.73 40.38 39.93 37.59 37.30 36.86 52.85 52.67 53.30 52.89 52.711 53.37
P200 0.02 0.02 0.06 0.01 0.01 0.05 0.05 0.06 0.26 0.05 0.06 0.27

Table 7.7.2: Summary statistics (mean, median, standard deviation and probability of
exceeding 200 euros) of the posterior predictive distributions for the same neighborhoods
and covariate choices as in Figure 7.7.2.

Figure 7.7.2(a). Each plot shows three density estimates, corresponding to different values
of the covariates. In this case, the covariates were set to the empirical median except for
accommodates, number of bedrooms, number of bathrooms. Since the marginal sample
correlation between these three covariates is not negligible as mentioned in Section 7.7.1,
we have fixed all their values simultaneously equal to 5%, 50% and 95% empirical quantiles,
respectively. For instance, in each panel of Figure 7.7.2(c), the top lines correspond to
density estimates for a vector of covariates in which accommodates, number of bedrooms,
number of bathrooms are fixed to their 5% sample quantile, respectively. It is clear from
Figure 7.7.2(c) that the predictive densities in blue (first panel from the left) and in yellow
are similar, as well as the lines in green and in red. However there are evident differences
when comparing for instance the yellow densities (second panel from the left) with the
green ones (third panel from the left); indeed the green densities give substantial mass to
the right tail, especially to values greater than 200 euros, while the yellow densities do
not. This behavior agrees with the marginal posterior of ρ, that is strongly concentrated
near 1 (E(ρ|data) = 0.993): in fact, the blue and yellow neighborhoods, as well as the
red and green ones, are connected in the graph. However, blue and yellow predictive
densities are different from the green and red estimates, since the neighborhoods belong to
different connected components in the graph. As expected, in all the neighborhoods the
listings price increases as the accommodates, number of bedrooms, number of bathrooms

increase as well.
To improve understanding of the posterior predictive densities evaluated on a grid of

points as in Figure 7.7.2(c), which are, by definition, the posterior means of the likelihood
function, we focus on different summary statistics of these distributions. In particular, for
any of the selected areas as in Figure 7.7.2, we focus on the posterior predictive mean,
median, standard deviation of the nightly price and on the posterior predictive proba-
bility P (y? > 200 |x?, i) that the nightly price exceeds 200 euros, conditioning on the
covariates selected above. Numerical values for the summary statistics are reported in
Table 7.7.2, where for each of the four selected neighborhoods we consider three different
values of the covariates x?, denoted by q0.05, q0.5 and q0.95 (see the discussion above and
the caption of Figure 7.7.2 for their definition). It is clear that for each of the neighbor-
hoods, the mean and median of the price increase as accommodates, number of bedrooms,
number of bathrooms increase as well. Interestingly, P (y? > 200 |x?, i) increases only
slightly when the covariates go from q0.05 to q0.50 but increases significantly when covari-
ates are q0.95. As expected from Figure 7.7.2(c), for each value of covariates, summary
statistics in Bijlmer Centrum and Gaasperdam Driemond assume close values. A simi-
lar comment applies to summary statistics in Oostelijk Havengebied Indische Buurt and
Watergraafsmeer. Instead, larger differences are observed in Table 7.7.2 when comparing
Bijlmer Centrum and Watergraafsmeer (corresponding to the blue and red densities in
Figure 7.7.2(c)).

To conclude, we believe that a new lessor could benefit from our analysis because Airbnb
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makes available only a handful of covariates which might not be suited to fully characterize
the ‘right’ nightly price for a listing. For instance, we expect that the presence of a balcony
or garden might lead to higher prices. Hence, when deciding the price for a listing, the
lessor could look at the predictive distribution from our model given the covariates and
neighborhood of their house, and choose to place the listing in the right or left tail of the
predictive distribution considering additional information not included in our model.

7.8 Discussion

In this work, we have considered the problem of the joint estimation of spatially dependent
densities in the context of repeated areal measurements. We have presented a finite mix-
ture model to represent the density in each area; assuming that all the mixtures share the
same set of atoms, the spatial dependency has been introduced through a novel joint dis-
tribution for I vectors in the simplex as a prior for the mixture weights. This distribution,
that we termed logisticMCAR, was built as a logistic transformation of a specification of
the multivariate CAR model. When compared to alternatives proposed in the literature,
the logisticMCAR distribution showed to have a higher degree of interpretability, as we
were able to derive the analytic expression for the expected values of ratios of compo-
nents and their covariances, via the Aitchison geometry. Moreover, we also showed as the
logisticMCAR can be used to accurately model sparse mixtures.

Posterior simulation has been carried out by means of a Gibbs sampler scheme. In
particular the update of the mixture weights was performed by introducing a data aug-
mentation scheme based on the Pólya-Gamma identity, which avoids the tedious tuning
of the proposal distribution.

In the simulation studies and the real application included in this chapter, our model
has shown to be able to represent a wide range of different behaviors. In particular, we
argue that when different connected graph components are present, and heterogeneous
behavior is observed across these components, our model should be preferred as it does
not force the densities in different graph component to behave too similarly. Moreover,
as in the case of the Airbnb Amsterdam application, our model can be easily extended to
include additional covariate information. Although not our target here, a sub-product of
the approach is the prior induced on the partition of the subjects in the sample, which in
this case, has a spatial connotation; relations with spatial product partition models (Page
and Quintana, 2016) could be further investigated.

Another point that we did not address here, and will be focus of future study, is an
extension to models where the graph G is not fixed, and should be learned by the data (and
the prior). In particular, we aim at considering boundary detection problems, i.e. when the
proximity matrix G is unknown, but its elements depend on dissimilarity metrics available
for each pair of neighboring areas. This is an extremely interesting problem, widely studied
in the context of one single response per area; see, for instance Lu et al. (2007) and Lee
and Mitchell (2012). However preliminary investigation showed how the non-identifiability
of overfitted mixtures might produce erroneous results. Possible extensions of our model
to account for boundary detection might then include either a prior on the number of
components or a repulsive prior distribution on the atoms, or both, to reduce the impact
of non-identifiability.
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Appendix

7.A Proofs

Proof of Proposition 7.1

The proof proceeds along the lines of Section 2 in Mardia (1988) where a similar
MCAR model is proposed. Briefly, we need only to show that the conditional distributions
of w̃i | w̃−i derived from the joint distribution (7.5) coincide with the one given by (7.4),
since by the Hammersley–Clifford theorem the set of full conditionals will uniquely identify
the joint distribution in our setting; see also Theorem 2.1 in Mardia (1988). We start by
assuming that only one connected component is present in G and that, without loss of
generality, m̃i = m̃j = 0 for each i, j = 1, . . . , I. The more general case, i.e., when m̃i is
not zero (but m̃i = m̃j if i and j belong to the same connected component), follows from
the same calculations below replacing w̃i with w̃i − m̃i. For ease of notation we focus
here on the full conditional of w̃1 but the other distributions can be derived in a similar
manner.

From (7.5), the joint density of w̃ is proportional to:

exp

(
−1

2
w̃T

(
(F − ρG)⊗ Σ−1

)
w̃

)
.

We rewrite the quadratic form above to highlight only what depends on w̃1:

(w̃1 · · · w̃I)




(F − ρG)11Σ−1 · · · · · · (F − ρG)1IΣ
−1

...
...

(F − ρG)I1Σ−1 · · · · · · (F − ρG)IIΣ
−1






w̃1
...
w̃I




where (w̃1 · · · w̃I) corresponds to the vectorization of the w̃i’s. Thanks to this block
structure we obtain

exp

(
−1

2
w̃T

(
(F − ρG)⊗ Σ−1

)
w̃

)

= exp
{
− 1

2

(
w̃T

1 (F − ρG)11Σ−1w̃1+

+ 2w̃T
1 [(F − ρG)12 · · · (F − ρG)1I ])⊗ Σ−1[w̃2 · · · w̃I ]

T

+ [w̃2 · · · w̃I ]K[w̃2 · · · w̃I ]
)}

(7.24)

for some matrix K, which is irrelevant for our purposes since it does not interact with w̃1

so that the term depending on K can be discarded. Hence, we are able to identify in (7.24)
the quadratic form of a Gaussian distribution and conclude that the full conditional of w̃1

is Gaussian. In particular, the first addend in the right hand-side of (7.24) is the only term
that is quadratic in w̃1, so that it must be equal to w̃1S

−1w̃ where S is the covariance
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matrix of the full conditional of w̃1. Similarly, the second addend can be expressed as
−2w̃1S

−1µ where µ is the mean of the Gaussian distribution. Some linear algebra yields

Var[w̃1 | w̃−1] = S =
(
(F − ρG)11Σ−1

)−1
=

Σ

ρ
∑I

j=1 gij + 1− ρ

E[w̃1 | w̃−1] = µ =
ρ
∑I

j=1 gijw̃j

ρ
∑I

j=1 gij + 1− ρ
.

When there are at least two connected components in the graph, we note that full in-
dependence holds across each pair of w̃i’s as long as the two vectors belong to different
connected components. Hence, the same argument above can be carried out on each sin-
gle connected component. The joint density still takes the same form because the matrix
(F − ρG)⊗Σ−1 is block diagonal in this case with each block corresponding to one of the
connected components.

Proof of Proposition 7.2
From equation (7.4) we have that

E [w̃i | w̃−i] =
ρ
∑

j∈Ui w̃j + (1− ρ)m̃i

ρ|Ui|+ 1− ρ =
ρ
∑

j∈Ui alr(wj) + (1− ρ)alr(mi)

ρ|Ui|+ 1− ρ

=
1

ρ|Ui|+ 1− ρ

(
log

∏
j∈Ui w

ρ
j1m

1−ρ
i1∏

j∈Ui w
ρ
jHm

1−ρ
iH

, . . . , log

∏
j∈Ui w

ρ
jH−1m

1−ρ
iH−1∏

j∈Ui w
ρ
jHm

1−ρ
iH

)

=
1

ρ|Ui|+ 1− ρ


∑

j∈Ui

log(wρj1m
1−ρ
i1 ), . . . ,

∑

j∈Ui

log(wρjH−1m
1−ρ
iH−1)




−
∑

j∈Ui

log(wρjHm
1−ρ
iH )

where the last subtraction is meant elementwise. Hence we have that

E
[
log

wil
wik
|w−i

]
= E [w̃il − w̃ik |w−i]

=
1

ρ |Ui|+ 1− ρ


∑

j∈Ui

log(wρjlm
1−ρ
il )−

∑

j∈Ui

log(wρjkm
1−ρ
ik )




= log



(
mil

mik

)1−ρ ∏

j∈Ui

(
wjl
wjk

)ρ



1

ρ|Ui|+1−ρ

which proves the proposition.

Proof of Proposition 7.3
The (marginal) joint distribution of two different components of w̃i, w̃j , with i, j = 1, . . . , I,
i 6= j can be easily derived from (7.5):

(
w̃il
w̃jm

)
∼ N2

(
0,

[
AiiΣll AijΣlm

AjiΣml AjjΣmm

])
l,m = 1, . . . ,H − 1
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Hence, we compute the covariance of the log ratios of different components as

Cov

(
log

wil
wim

, log
wjl
wjm

)
= Cov (w̃il − w̃im, w̃jl − w̃jm)

= Cov (w̃il, w̃jl) + Cov (w̃il, w̃jm) + +Cov (w̃im, w̃jl) + Cov (w̃im, w̃jm)

= Aij (Σll − 2Σlm + Σmm)

whereas, for the last component,

Cov

(
log

wil
wiH

, log
wjl
wjH

)
= Cov (w̃il, w̃jl) = AijΣll

which proves the formula in the proposition.
It is possible to rearrange the indices 1, . . . , I in order for (F−ρG) to be a block diagonal

matrix, where each block corresponds to a connected graph component according to the
neighboring structure; this will not affect the joint law. By the properties of strictly
diagonally dominated matrices, the same pattern of blocks is preserved in the inverse
matrix A. Hence Aij = 0 if i and j belong to two non-connected graph components,
proving the proposition thanks to equivalence between uncorrelation and independence of
Gaussian random variables.

7.B MC simulations from the logisticMCAR distribution

In Section 7.3 we have pointed out that the theoretical analysis of the logisticMCAR
distribution is limited by its analytic intractability. Here we compute covariances between
different components of the vectors of weights and Euclidean distances between the vectors
themselves through Monte Carlo simulation. Specifically, we simulate from (7.5) and then
obtain draws from the logisticMCAR distribution through the transformation alr−1.

In particular, we fix I = 5, H = 3, m̃i = 0 for all i and the covariance matrix Σ

Σ =

[
1 Σ12

Σ12 1

]

where Σ12 denotes the covariance, but also the correlation since Σ11 = Σ22 = 1, between
w̃i1 and w̃i2. We fix the proximity matrix G such that g12 = g13 = g23 = 1 and g45 = 1.
This corresponds assuming that areal units/nodes 1, 2 and 3 are connected to each other,
and 4 and 5 are connected to each other, though separated from the others.
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Figure 7.B.1: Pairwise covariance values of the components of w2 = (w21, w22, w23) as a
function of the correlation parameter Σ12. The horizontal red line indicates the value 0.
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Figure 7.B.1 shows the covariance between the three components ofw2 = (w21, w22, w23)
as a function of the correlation parameter Σ12 in the matrix Σ in (7.5), having simulated
N = 10, 000 MC draws. Note that, unlike the finite-dimensional Dirichlet distribution,
the logistic-normal distribution may have positive covariance among the components.
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Figure 7.B.2: Pairwise covariance values between components of w1 and w3, as a function
of the correlation parameter Σ12, for different values of ρ, when (w1, . . . ,w5) has the
logisticMCAR distribution. The horizontal red line indicates the value 0.

Figure 7.B.2 instead shows the covariance between all the possible pairs (w1j , w3m)
for j,m = 1, 2, 3, for different values of the parameter ρ. The covariances between corre-
sponding entries, i.e. (w1j , w2j j = 1, 2, 3) is always positive, as expected since the spatial
correlation parameter ρ is always fixed to a positive value. The marginal prior for w1,w3

is exchangeable, since nodes 1 and 3 belong to the same connected component in G. This
explains the symmetries in Figure 7.B.2.

In order to measure the association induced by our logisticMCAR prior, we simulate the
distances (Euclidean) of two vectors drawn from the joint distribution. In particular, we
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Figure 7.B.3: Histogram of MC draws from the marginal distributions of d12 (orange) and
d15 (light blue) on the left and from the marginal distribution of dγ on the right.

min q0.25 q0.5 q0.75 max
d12 4× 10−4 0.10 0.18 0.27 0.86
d15 0.01 0.33 0.55 0.77 1.36
dγ 0.007 0.31 0.52 0.71 1.36

Table 7.B.1: Summary statistics of the marginal distributions of the distances d12, d15, dγ ,
estimated from the MC samples; qα denotes the α-quantile.

simulated N = 10, 000 draws from the full joint logisticMCAR distribution of (w1, . . . ,w5)
with parameters as above, fixing Σ12 = 0.5, and computed the Euclidean distances d12 =
||w1 − w2|| and d15 = ||w1 − w5||. As w1 and w2 belong to the same connected graph
component while w5 belongs to another component, we expect w1 and w2 to be more
similar than w1 and w5 belonging to separate components. Hence the distance d12 should
be smaller than d15. Moreover, for comparison, we also simulated N = 10, 000 draws from
the joint distribution of two independent finite-dimensional Dirichlet random variables,
i.e.

(γ1,γ2)i
iid∼ Dir(1)×Dir(1) i = 1, . . . N

and computed their Euclidean distance as well, that we denote by dγ . Figure 7.B.3 reports
the histograms of the marginal distributions of d12, d15 on the left and dγ on the right. It
is clear that d12 is substantially smaller than d15, as expected. Moreover, by comparing
d15 and dγ , we see that their marginal distributions are very similar. See also the summary
statistics of these marginal distributions in Table 7.B.1.

For more insight, we report a subsample of size N = 20 of the MC simulated values
from the marginal distributions of (w1,w2) and (γ1,γ2), plotted on the two dimensional
projection of the simplex S3 in Figure 7.B.4. Each pair is denoted by two points inside
the triangle and a line connecting them. It is clear that simulated values from L(w1,w2)i
are much closer each other than those from L(γ1,γ2).
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Figure 7.B.4: Plots of N = 20 MC draws from the logisticMCAR distribution (left) and
of N = 20 MC draws from Dir(1) × Dir(1) (right). Each draws is represented with two
dots (the values of the two random vectors) together with a colored line connecting them
for visual purposes. Different colors correspond to independent draws.

7.C The Gibbs sampler

Proof of Equations (7.20) - (7.21)

We start by writing the full conditional distribution (7.18) as follows:

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ) ∝ N (w̃ih |µ∗ih,Σ∗ih)

(
eηih

1 + eηih

)Nih ( 1

1 + eηih

)Ni−Nih

∝ N (w̃ih |µ∗ih,Σ∗ih)
(eηih)Nih

(1 + eηih)Ni

∝ N (w̃ih |µ∗ih,Σ∗ih) e(Nih−Ni/2)ηih

∫ ∞

0
e−ωihη

2
ih/2p(ωih)dωih

where ωih ∼ PG(Ni, 0). We now include the latent variable ωih and derive the conditional
distribution of w̃ih, conditioning also to ωih. We have

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) ∝ N (w̃ih |µ∗ih,Σ∗ih) e(Nih−Ni/2)ηihe−ωihη
2
ih/2

∝ e−
E

2

where

E =
(w̃ih − µ∗ih)2

Σ∗ih
− (2Nih −Ni)(w̃ih − Cih) + ωih(w̃ih − Cih)2

∝ w̃2
ih

(
1

Σ∗ih
+ ωih

)
− 2w̃ih

(
µ∗ih
Σ∗ih

+Nih −Ni/2 + ωihCih

)

∝
(

1

Σ∗ih
+ ωih

)(
w̃2
ih − 2w̃ih

(
µ∗ih
Σ∗ih

+Nih −Ni/2 + ωihCih

)(
1

Σ∗ih
+ ωih

)−1
)

Thus
L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) ∼ N (µ̂ih, Σ̂ih)

172



Chapter 7. Spatial Mixtures

where

µ̂ih =

(
µ∗ih
Σ∗h

+Nih −Ni/2 + ωihCih

)(
1

Σ∗h
+ ωih

)−1

Σ̂ih =

(
1

Σ∗h
+ ωih

)−1

For the full conditional of ωih instead, it is sufficient to apply Theorem 1 in Polson
et al. (2013) with ψ = ηih to obtain that the law of ωih, conditional to w̃i is a Pólya-
Gamma distribution, i.e. the density of ωih can be expressed as in Equation (7.19), with
parameters b = Ni, c = w̃ih − log

∑
k 6=h exp(w̃ik).

Detailed description of the Gibbs sampler
The state of the MCMC sampler is made of τ = (τ1, . . . , τH), (w̃1, . . . , w̃I), where w̃i =
alr(wi), {sij}ij and m̃C1

, . . . m̃Ck . The Gibbs sampler is obtained repeatedly sampling
from the following conditional distributions:

• For any i = 1, . . . , I and j = 1, . . . , Ni, independently update the cluster allocation
variables from

p(sij = h | rest) ∝ alr−1(w̃ih) k(yij | τh) h = 1, . . . ,H

• Independently update the atoms of the mixture from

L(τh | rest) ∝ P0(τh)
∏

ij:sij=h

k(yij | τh) h = 1, . . . ,H

• Sample Σ from
L(Σ | rest) ∝ L(w̃ | rest)L(Σ)

We show that the full conditional of Σ is still an inverse-Wishart distribution. To
see this, write the right hand side as follows

L(Σ | rest) ∝ |(F − ρG)−1 ⊗ Σ|−1/2 exp

(
−1

2
(w̃ − m̃)T

(
(F − ρG)⊗ Σ−1

)
(w̃ − m̃)

)

× |Σ|−(ν+(H−1)+1)/2 exp

(
−1

2
tr(V Σ−1)

)

Now |(F − ρG)−1 ⊗Σ| = |(F − ρG)−1|H−1 × |Σ|I , so that the degrees of freedom in
the full conditional are νp = ν + I. Working on the exponent, write the quadratic
form involving the Kronecker product as follows

(w̃ − m̃)T
(
(F − ρG)⊗ Σ−1

)
(w̃ − m̃) =

I∑

i,j=1

(F − ρG)ij(w̃i − m̃i)
TΣ−1(w̃j − m̃j)

By exploiting multiple times the linearity of the trace operator and its cyclic prop-
erty, the scale matrix Vp can be seen to equal

Vp =

I∑

i,j=1

(F − ρG)ij(w̃j − m̃j)(w̃i − m̃i)
T + V

and we conclude that Σ | rest ∼ Inv-Wishart(νp, Vp)
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• Sample ρ from its full conditional:

L(ρ | rest) ∝ π(ρ)N (vec(w̃1, . . . , w̃I) |0, (F − ρG)−1 ⊗ Σ)

This distribution does not have a closed form analytic expression because the support
of ρ is (0, 1) and hence we resort to a Metropolis Hastings step. The proposal
distribution is a truncated normal (with support on (0, 1)) centered in the current
value of ρ with standard deviation 0.1. Sampling from the truncated normal is
performed by rejection sampling, whereas the computation of the acceptance rate
for the Metropolis Hastings step is obtained by exploiting the law of the matrix
normal distribution, which does not require to factorize the matrix (F −ρG)−1⊗Σ.
To improve the mixing of the chain, we resort to an Adaptive Metropolis Hastings
move as in Roberts and Rosenthal (2009) to automatically tune variance of the
normal proposal distribution.

• For each i = 1, . . . , I and each h = 1, . . . H, independently sample w̃ih as follows:

– Sample the latent variable ωih from

L(ωih | w̃i) = PG(Ni, ηih) = PG


Ni, w̃ih − log

∑

k 6=h
ew̃ik




– Sample the transformed weight w̃ih from

L(w̃ih | w̃−i, w̃i,−h, si, ρ,Σ, ωih) = N(µ̂ih, Σ̂ih).

• for each connected component m of the graph we sample from

L(m̃Cm | rest) = N (mCm ,ΛCm)

For ease of notation, we show how to obtain expression of mCm and ΛCm in the case
where is only one connected component in the graph. However the general update
can be straightforwardly recovered since m̃C1

, . . . m̃Ck corresponding to connected
components in the graph are conditionally independent a priori. In case of one single
connected component in the graph, we rewrite (7.5), letting all the m̃is to be equal
to m̃1, as

w̃ ∼ NI(H−1)

(
1I ⊗ IH−1m̃1,

(
(F − ρG)⊗ Σ−1

)−1
)

where 1I is the vector of ones of length I and IH−1 is the (H − 1) × (H − 1)
identity matrix. Then if Λ := diag(σ2, . . . , σ2) and writing I∗ = 1I ⊗ IH−1, Q =
(F − ρG)⊗ Σ−1, we can write the full conditional of m̃1 as follows:

L(m̃1 | rest) ∝ exp

(
− 0.5

(
w̃ − I∗m̃1)TQ(w̃ − I∗m̃1)T + m̃T

1 Λ−1m̃1

))

∝ exp

(
− 0.5m̃T

1

(
I∗TQI∗

)
m̃+ m̃T

1 Λ−1m̃1 +−2m̃T
1

(
I∗TQw̃

))

This is the kernel of a multivariate normal distribution with covariance matrix ΛC =(
I∗TQI∗ + Λ−1

)−1
and mean mC = ΛC

(
I∗TQw̃

)
.

• If there are covariates in the model M1 as in Section 7.7, the full-conditional of the
regression coefficients β is given by

L(β | rest) = Nd
(
(Σ−1 +XTV X)−1(XTV (y − µ)), (Σ−1 +XTV X)−1

)
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where V is an N×N diagonal matrix and N =
∑
Ni. Denoting by c = (c1, . . . , cN ),

the vectorization of the sequence of latent vectors s1, . . . , sI in (7.12)-(7.13), then
one has Vk,k = σ2

ck . The formula above can be derived by standard posterior updates
in the Bayesian linear regression, when the mixture model (7.7)-(7.11) is the model
for the ‘regression error’.

In case of model M2, as in Section 7.7, the full-conditional of each regression coef-
ficients

(
(µh,βh), σ2

h

)
is straightforwardly computed from standard Bayesian linear

regression, considering only observations that are allocated to component h. In par-
ticular, if we denote by yh the vector of {yij : sij = h}, by Xh the matrix with rows
{xij : sij = h}, and by nh the size of yh, then we have

σ2
h | rest ∼ IG(aph, bph)

(µh, βh) |σ2
h, rest ∼ N (µph,∆ph)

where
∆ph = XT

hXh + 10Id+1

µph = ∆−1
phX

T
h yh

aph = 2 + nh/2

bph = 2 +
1

2
(yTh yh − µTph∆phµph)

7.D Additional plots and tables

• Figure 7.D.1 shows the total variation distance for (w1,w2) and (w1,w4) under the
logisticMCAR and the prior in Jo et al. (2017) with parameters as in Section 7.4.3.
Observe how the distance between (w1,w2) decreases as the sparsity increases un-
der both priors. This is expected since areas 1 and 2 are neighbors. However,
the distance between (w1,w4) increases with sparsity under the logisticMCAR but
decreases under CK-SSM. Hence, under CK-SSM, forcing sparsity in the mixture
model results in imposing similar behaviors to different connected components.

• Figure 7.D.2 shows draws from the prior mixture density corresponding to param-
eters sampled from the prior under the logisticMCAR and CK-SSM, having fixed
the atoms to have means µ1 = −5, µ2 = −3.33, . . . , µ6 = 5 and equal variances
0.252 and remaining hyperparameters as in Section 7.4.3. It is clear that the lo-
gisticMCAR prior allows great variety among disconnected components as well as
across different independent samples. Instead, CK-SSM shows that only the first
2/3 components have a nonzero weight, so that the densities across different areas
and coming from independent samples are also similar.

• Table 7.D.1 shows the Hellinger distance between the true density and the estimate
under the three models under comparison in Section 7.6.1 for the three simulated
scenarios in Table 7.6.1 for 100 repeatedly simulated datasets. We average these val-
ues over the simulated datasets, also considering ± one empirical standard deviation
of the 100 values obtained.

• Figure 7.D.3 shows errors, measured with the Hellinger distance, under our model
(spmix) and the HDP-mixture model (hdp) for each simulation, averaged over the
areas, for I = 4, 64, 256, in Section 7.6.2.

• Figure 7.D.4 displays empirical correlations among the predictors and, in the last
column, between predictors and the response for the Airbnb Amsterdam dataset in
Section 7.7.
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• Figure 7.D.5 shows the scatterplots of the response price versus numerical predic-
tors and boxplots for categorical predictors for the Airbnb Amsterdam dataset in
Section 7.7.

• Figure 7.D.6 shows the predictive densities in area Bijlmer-Centrum, corresponding
to different covariate specifications: all the covariates are fixed to their empirical
median except for reviews scores rating, which assumes values equal to the em-
pirical quartiles q0.05, q0.5, q0.95. It is clear that the three densities overlap almost
perfectly. There are two reasons for this. First, the the empirical distribution of
this covariate is it is highly concentrated around high values, as people tend to give
mostly positive reviews. Second, the coefficient associated to this covariate, despite
significant, has a very small absolute value.

• Table 7.7.2 shows the posterior predictive probability P (y? > 200 |x?, i) for the same
neighborhoods and values of x? considered in Figure 7.7.2 (c).
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Figure 7.D.1: Total variation distances between the vectors (w1,w2) and (w1,w4) under
the logisticMCAR distribution (first row) and the CK-SSM(second row). Each plot shows
the boxplots of 1,000 independents simulations, for different values of the sparsity-tuning
parameters (sparsity is increasing from left to right in each plot). The remaining hyper-
parameters and the adjacency matrix are as discussed in Section 7.4.3.
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Figure 7.D.2: Samples from the prior distribution with H = 6 under the logisticMCAR
(first row, with η = 5.0) and CK-SSM in Jo et al. (2017) (second row, with b = 0.5, a = 1.0).
The remaining hyperparameters and the adjacency matrix are as discussed in Section 7.4.3.
Each plot shows the mixture density in one particular area and different line types / colors
represent independent draws from the prior. Here the means of the mixture model are
fixed as µ1 = −5, µ2 = −3.33, . . . , µ6 = 5 and the variances are all equal to 0.252.

Model 1 2 3 4 5 6
Scenario I SPMIX 0.06± 0.01 0.06± 0.01 0.06± 0.01 0.06± 0.01 0.09± 0.01 0.09± 0.01

HDP 0.03± 0.01 0.03± 0.01 0.06± 0.01 0.06± 0.01 0.09± 0.01 0.09± 0.01
CK-SSM 0.44± 0.06 0.44± 0.06 0.53± 0.03 0.53± 0.03 0.44± 0.03 0.44± 0.03

Scenario II SPMIX 0.08± 0.01 0.11± 0.02 0.07± 0.01 0.08± 0.03 0.11± 0.00 0.11± 0.03
HDP 0.04± 0.01 0.19± 0.02 0.09± 0.01 0.24± 0.03 0.10± 0.00 0.27± 0.03

CK-SSM 0.44± 0.06 0.43± 0.06 0.53± 0.03 0.53± 0.03 0.45± 0.05 0.45± 0.05
Scenario III SPMIX 0.20± 0.07 0.20± 0.07 0.16± 0.06 0.16± 0.06 0.11± 0.05 0.11± 0.05

HDP 0.12± 0.07 0.12± 0.07 0.21± 0.06 0.21± 0.06 0.13± 0.05 0.13± 0.05
CK-SSM 0.42± 0.06 0.42± 0.06 0.59± 0.03 0.59± 0.03 0.38± 0.07 0.38± 0.07

Table 7.D.1: Hellinger distances between the true densities and the estimated ones, aggre-
gated over 100 simulated datasets with ± one standard deviation for the simulated data
in Section 7.6.1

Figure 7.D.3: Boxplots of the Hellinger distance between true density (7.22) and esti-
mated one under our model (spmix), the HDP-mixture model (hdp) and the CK-SSM
for each simulation, averaged over the areas, for I = 16, 64, 256, , in logarithmic scale, in
Section 7.6.2.
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Figure 7.D.4: Correlation matrix between numerical predictors and response for Airbnb
Amsterdam

Figure 7.D.5: Scatterplots and boxplots of the nightly price versus predictors for Airbnb
Amsterdam. Numerical predictors have been standardized.

178



Chapter 7. Spatial Mixtures

0 250

q0.75

q0.5

q0.25

Figure 7.D.6: Predictive density for a new listing in Bijlmer-Centrum with all numerical
covariates fixed to the empirical median of the dataset except reviews scores rating

that ranges in the values q0.25, q0.5, q0.75, where qα denotes the empirical quantile of order
α. Each line corresponds to one of these values, from top to bottom.
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7.E Further Comparisons on the Airbnb Amsterdam Dataset

Below, we fit two additional models on the Airbnb dataset, and compare them with our
proposal.

7.E.1 Modeling disconnected components separately

As pointed out by one of the reviewers, modeling disconnected components jointly might
result in a less flexible model since the parameters ρ and Σ are shared across the spatial
components. On the other hand, modeling different connected components independently
might result in an overparametrized model with poorer predictive performance.

We compare model M1 in Section 7.7 with another model obtained by applying M1
separately to the two connected components. By computing LPML and WAIC, we observe
that this second model results in a worse predictive error (with a decrease of LMPL and
an increase of WAIC of about 0.1 %, for all the values of H considered), showing that the
joint estimation of the shared parameters across the disjoint connected components, such
as ρ, Σ and τh, is beneficial in this scenario.

7.E.2 Geographically Weighted Regression

Another comparison was performed by fitting geographically weighted regression (GWR,
Brunsdon et al., 1998) to this dataset. Observe that while our model estimates an entire
predictive distribution for each observation, from which different point estimates can be
easily derived as discussed in Section 7.7, GWR is a frequentist model that can only provide
a point estimate for the mean of the response.

GWR considers observations {(yj ,xj)}Jj=1 associated to spatial locations sj . In our

case, the observations are the nightly price (yj) and the covaraites (xj ∈ Rd ) of an Airbnb
listing, while the spatial locations are the neighborhoods. The GWR model is then

yj = βtsjxj + εj

We can assume that the εj ’s are independent and have mean equal to zero. The coefficients
βsj (observe that in our case there is one for each neighborhood), are estimated by solving
a weighted least-squares optimization problem so that:

βsj =
(
XTWs(yj)X

)−1 (
XTWsjY

)

where X is the J × d matrix with rows xj , Y is the vector with entries yj and Wsj is a
diagonal matrix whose elements are a function of the distance between location sj and the
location associated to observation yi. With an abuse of notation, denote with s(yi) the
neighborhood observation yi belongs to, then (Wsj )ii = g(d(sj , s(yi))).

As in Brunsdon et al. (1998), we let the weights g(d(sj , s(yi))) = exp(−γd(sj , s(yi))).
For two neighborhoods si and sj we let d(si, sj) be the the shortest path distance on the
graph G between neighborhood i and the neighborhood which observation j belongs to.

Performance is measured by means of pMSE through a 10-fold cross-validation. In each
fold, γ is chosen among the values {0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0} via another (nested)
cross-validation.

The resulting pMSE is much higher (roughly five times) than the one from M1, for all
values of H. While GWR results to be not competitive with our model in this case, we
expect that it might yield better performances in other scenarios with a finer spatial scale
(e.g., geolocation of each observation). In such cases, GWR could be preferred to provide
a point estimate.
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8. Normalized latent factor measure models

In this chapter, based on Beraha and Griffin (2022), we propose a methodology for model-
ing and comparing probability distributions within a Bayesian nonparametric framework.
Building on dependent normalized random measures, we consider a prior distribution for
a collection of discrete random measures where each measure is a linear combination of
a set of latent measures, interpretable as characteristic traits shared by different distri-
butions, with positive random weights. The model is non-identified and a method for
post-processing posterior samples to achieve identified inference is developed. This uses
Riemannian optimization to solve a non-trivial optimization problem over a Lie group of
matrices. The effectiveness of our approach is validated on simulated data and in two
applications to two real-world data sets: school student test scores and personal incomes
in California. Our approach leads to interesting insights for populations and easily inter-
pretable posterior inference.

8.1 Introduction

Modeling a set of related probability measures is a common task in Bayesian statistics,
the most common example being when covariates are associated with each observation.
In this work, we consider the case of a single discrete-valued covariate, which might be
regarded as a group indicator, that is, when data are naturally divided into subpopulations
or groups. One of the main motivations for these kinds of analyses is combining data from
different sources or experiments, where, for each source, a set of observations is collected:
pooling together all the data could ignore important differences across populations while
modeling each group separately might result in poor performance especially if the number
of observations in each group is small. Applications range from population genetics (Elliott
et al., 2019) to healthcare (Müller et al., 2004; Rodriguez et al., 2008) and text mining
(Teh et al., 2006).

Within this setting, our goal is to propose a flexible model that, in addition to com-
bining heterogeneous sources of data, gives an efficient way of representing the difference
in distribution across populations. Consider for example Figure 8.1.1, which displays the
distribution of the personal annual income (on the log scale) in four different geographic
areas of California: two in Los Angeles and two in San Francisco. In this case, similarities
and differences between the distributions can be easily spotted by eye: the two areas in
Los Angeles are associated with (much) lower incomes than the areas in San Francisco.
When the number of groups increases, it is not possible to carry out these comparisons by
eye. Our model provides a way to decompose the area-specific densities into a linear com-
bination of “common traits”, which are themselves probability measures. In Section 8.6.2,
we provide a thorough analysis of the Californian income data, finding four common traits,
associated with an average distribution of income, and a prevalence of low, medium, and
high incomes respectively. By looking at the weights (of the linear combination of common
traits) associated with the four groups in Figure 8.1.1, we easily spot differences between
the Los Angeles and San Francisco areas: the weight associated to the low-income trait is
large in the first areas and low in the second two; vice versa for the weight associated to
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Figure 8.1.1: Kernel density estimates of the (log) personal incomes in four areas in Cali-
fornia (left plot): two in Los Angeles (middle plot) and two in San Francisco (right plot).

the high-income trait. See Figure 8.6.3 for more details.
To formalize the discussion above, let (y1, . . . ,yg), yj = (yj1, . . . , yjnj ) denote a sample

of observations divided into g groups. A common assumption is that data are exchangeable
in each group, but exchangeability might not hold across different groups. In particular,
by de Finetti’s theorem, this is tantamount to assuming that there is a vector of random

probability measures (p1, . . . , pg) ∼ Q such that, in each group, yj1, . . . , yjnj
iid∼ pj and that

independence, conditionally on p1, . . . , pg, holds across groups. We focus here on mixture
models of the kind pj(y) =

∫
Θ f(y | θ)p̃j(dθ).

The construction of a flexible prior Q that can suitably model heterogeneity while
borrowing information across different groups has been thoroughly studied in Bayesian
nonparametrics. Previously proposed approaches consider constructing p̃1, . . . , p̃g in a
hierarchical model fashion (Teh et al., 2006; Camerlenghi et al., 2019; Bassetti et al., 2020;
Argiento et al., 2019; Beraha et al., 2021), considering convex combinations of shared
and group-specific random measures (Müller et al., 2004), starting from additive processes
(Griffin et al., 2013; Lijoi et al., 2014a) and nested processes (Rodriguez et al., 2008;
Camerlenghi et al., 2019). See Quintana et al. (2022) for a recent review.

As previously mentioned, the focus of the present chapter is slightly different. First of
all, we are interested in the situation when the number of groups g is large relative to the
sample size in each group nj . Then, it is likely that the dataset cannot inform the huge
number of parameters that are associated with extremely flexible models and we advocate
for a more parsimonious model where substantial sharing of information is encouraged
across different groups of data. Moreover, in addition to modeling the densities p̃1, . . . , p̃g,
we also want to identify the main differences in distribution of the data across groups.
To the best of our knowledge, this question has not been addressed systematically in the
Bayesian nonparametric literature. In the frequentist one, several approaches to princi-
pal component analysis for probability distribution have been proposed, see for instance
Pegoraro and Beraha (2022) and the references therein.

The setting “large g, small nj” is somewhat reminiscent of high-dimensional data anal-
ysis, where the dimension of each observation is large relative to the sample size. In this
case, latent factor models (see, e.g., Arminger and Muthén, 1998) provide a powerful tool.
In a latent factor model, it is assumed that each observation xi ∈ Rp is a linear combina-
tion of a set of H d-dimensional latent factors weighted by observation-specific scores, plus
an isotropic error term. We follow this analogy and propose normalized latent measure
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factor models, a class of prior distributions for a vector of random probability measures
p̃1, . . . , p̃g. Informally, our model amounts to considering p̃j as a convex combination of a
set of latent random probability measures, see Section 8.8.

Our construction shares similarities with Griffin et al. (2013) and Lijoi et al. (2014a).
There, the authors assume each p̃j as the normalization of a random measure obtained
by superposing several completely random measures. Essentially, this is analogous to our
approach if we let all the scores (before some normalization step, see Section 8.8) be zero
or one. The main difference is that, since their scores are binary, they usually assume
that the number of latent factors H is larger than the number of groups g. This leads to
posterior simulation algorithms that can scale and/or mix poorly with g. Moreover, they
do not consider the problem of decomposing the populations’ distribution into interpretable
common traits, which necessarily requires H to be much smaller than g.

As is usually the case for latent factor models, our model is not identifiable. To tackle
this issue, we propose post-processing the MCMC chains o find an “optimal representative”
for both the latent factor loadings matrix and the latent random measures which leads to
a non-trivial optimization problem. Indeed, taking into account the invariance to scaling
of normalized random measures leads to formulating the optimization over a Riemannian
manifold of matrices, specifically the special linear group (matrices whose determinant is
equal to one). Moreover, additional constraints must be taken into account to ensure the
positiveness of the loadings matrix and latent random measures. We propose an iterative
algorithm based on gradient descent. The first constraint (determinant equal to one) can
be tackled by means of differential geometric tools: leveraging the differential structure of
the special linear group, we use a variant of Riemannian gradient descent which ensures
that all the intermediate points of the algorithm lie inside the special linear group. To
take into account the positivity constraints, we propose to use the augmented Lagrangian
multiplier method within the previously discussed Riemannian framework, leading to a
Riemannian augmented Lagrangian multiplier method.

We consider two motivating applications. The first one is the scores on a mathematics
test of approximately 40, 000 students in 1048 Italian high schools from the invalsi dataset.
The median number of students taking the test in each high school is as little as 37, the
minimum being 4 and the maximum 131. The second one comes from the US income
survey. Here, the groups are represented by geographical units called PUMAs, which
correspond to areas with roughly 100, 000 inhabitants. We show how our model can be
adapted to induce correlation between PUMAs that are geographically close, by assuming
that the scores are distributed as a log Gaussian Markov random field. Compared to
traditional spatial factor models, we introduce the spatial dependence in the loadings
matrix instead of the latent factors.

The rest of the chapter is organized as follows. Section 8.8 formalizes our model and
discusses its statistical properties. Section 8.3 describes the MCMC algorithm for pos-
terior inference and we present our post-processing algorithm in Section 8.4. Section
8.5 and Section 8.6 present numerical illustration on simulated data and real data, re-
spectively. Finally, we discuss possible extensions of the proposed approach in Section
8.7. The Appendix collects background material on Riemannian optimization and com-
pletely random measures, proofs of the theoretical results, and additional simulations.
Python code implementing the MCMC and the post-processing algorithms is available at
github.com/mberaha/nrmifactors.

8.2 The Model

For simplicity and specifity, we assume that each yji ∈ Rd and that Θ ⊂ Rq for some d, q.
The results can be easily extended to the case when yji are elements of a complete and
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separable (i.e., Polish) metric space and Θ is Polish as well.
To keep the discussion light, we defer all technical details and the proofs of the results

to the Appendix.

8.2.1 Preliminaries

Before presenting our model in detail, we give some background material on completely
random measure and their normalization. This will constitute the backbone of our ap-
proach.

Let (Θ,B(Θ)) be a complete and separable metric space endowed with its Borel σ-
algebra. A random measure is a random element µ taking values in the space of probability
measures over Θ, such that µ(B) < +∞ almost surely for all B ∈ B(Θ). Such a measure is
termed completely random by Kingman (1967) if, for pairwise disjoint B1, . . . , Bn ∈ B(Θ),
the random variables µ(Bj), j = 1, . . . , n, are independent. For our purposes, it is sufficient
to consider completely random measures of the kind µ(A) =

∫
R+×A sN(ds dx), where N

is a Poisson point process on Θ× R+ with base (intensity) measure ρ(ds dx). We further
assume ρ(dsdx) = ν(ds)α(dx) where ν is a Lévy measure on the positive reals, α is a
Borel measure on Θ. See, e.g., Kingman (1993) for a detailed account of random measures.

A fruitful approach to constructing random probability measures is by normalization
of completely random measures, i.e., by setting p(·) = µ(·)/µ(Θ), which was originally
introduced in Regazzini et al. (2003). For the random measure p to be well defined, one
must ensure that µ(Θ) > 0 and µ(Θ) < +∞ almost surely. As shown in Regazzini et al.
(2003), sufficient conditions are

∫
R+
ν(ds) = +∞ and

∫
R+

min{1, s} ν(ds) < +∞.

8.2.2 Normalized Latent Measure Factor Models

As already mentioned in the Introduction, we assume

yj1, . . . , yjnj | p̃j
iid∼ pj :=

∫

Θ
f(· | θ)p̃j(dθ)

and that each p̃j is a normalized random measure, that is

p̃j(·) =
µ̃j(·)
µ̃(Θ)

, j = 1, . . . , g.

Then, the model is specified by a choice of the mixture kernel f(· | ·) and a prior distri-
bution for (µ̃1, . . . , µ̃g). Let µ∗1, . . . , µ

∗
H be a completely random vector (i.e., a vector of

completely random measures). Let λjh, j = 1, . . . , g, h = 1, . . . ,H be a double sequence
of almost surely positive random variables (specific choices of the distribution of the λjh’s
are discussed later). We assume

µ̃j(·) =

H∑

h=1

λjh µ
∗
h(·). (8.1)

We could choose (µ∗1, . . . , µ
∗
H) to be independent and identically distributed random

measures, i.e.

µ∗h(·) =
∑

k≥1

Whk δθ∗hk(·)

where {Whk, θ
∗
hk}∞k=1 are the points of a Poisson point process on [0,+∞) × Θ with, for

instance, intensity νh(dsh dxh) = ρ(sh)dsh α(dxh), i.e., all the intensities are equal. This
choice leads to a particularly tractable model for (µ̃1, . . . , µ̃g) as we have that marginally,
each µ̃j is a completely random measure as specified in the following proposition.
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Proposition 8.1. Let µ̃j =
∑H

h=1 λjhµ
∗
h where the µ∗h’s are completely random measures

with associated Lévy intensity ν∗h(dsh,dxh) = ρ∗h(sh)dsh α
∗
h(dxh). Further, assume that

the µ∗h’s are independent. Then µ̃j is a completely random measure with Lévy intensity

νj(ds, dx) =

H∑

h=1

1

λjh
ρ∗h(s/λjh)α∗h(dx)

We find that a more suitable model for our applications arises when µ∗1, . . . , µ
∗
H share

their support points. In particular, we will assume that µ∗1, . . . , µ
∗
H is a compound random

measure (CoRM, Griffin and Leisen, 2017). That is,

µ∗h(·) =
∑

k≥1

mhkJkδθ∗k(·),

where mhk are positive random variables such that mk = (m1k, . . . ,mHk), k ≥ 1, are inde-
pendent and identically distributed from a probability measure on RH+ , and η =

∑
k≥1 Jkδθ∗k

is a completely random measure with Lévy intensity ν∗(dz)α(dx). We argue that a CoRM-
based construction should be preferred to an independent CRMs-based one since (i) shar-
ing atoms across all measures is linked to better predictive performance (Quintana et al.,
2022), (ii) the number of parameters involved is much smaller, which ultimately leads to
the possibility of fitting this model to large datasets, and (iii) each latent factor µ∗h can be
interpreted separately (through the post-processing algorithm presented in Section 8.4).
The effectiveness of this model comes with a tradeoff in analytical tractability, since, as
shown in the Appendix, the random measure (8.2) is not completely random.

In this case we can write

µ̃j(·) =
∑

k≥1

(ΛM)jkJkδθ∗k(·), (8.2)

where Λ is the J ×H matrix with entries λjh, M is a H ×∞ matrix, so that Γ = ΛM is
a g ×∞ matrix with entries γjk, j = 1, . . . , g, k ≥ 1. Note that, in analogy to CoRMs,
also our model includes shared weights Jk for all the measures µ̃j . We find that the
additional borrowing of strength obtained through the Jk’s is useful in practice since, in
our applications, the µ̃j ’s are usually similar.

Equations (8.1) and (8.2) share analogies to latent factor models, where the observed

variable is X ∈ Rp and its `-th entry is modeled as X` ≈
∑H

h=1 ω`hZh, for Z = (Z1, . . . , ZH)
an H-dimensional random variable. In particular, we could consider µ∗1, . . . , µ

∗
H to be

measure-valued factor loadings and the λjh’s to be factor scores. This yields an interpre-
tation similar to functional factor models (Montagna et al., 2012). On the other hand, we
could consider the measure-valued vector (µ̃1, . . . , µ̃g) as a single high-dimensional obser-
vation, and model it as a linear combination of measure-valued factors with loadings λjh’s.
Both interpretations make sense and lead to interesting analogies. We use the latter one
and call Λ the loadings matrix and the µ∗h’s the latent measures.

Prior elicitation is required to set the Lévy intensity ν∗ of the CoRM, the distribution of
the scores mhk, and the distribution of Λ. Following Griffin and Leisen (2017), we assume

that mhk
iid∼ Ga(φ), where Ga(φ) denotes the law of a gamma random variable with shape

parameter φ and rate parameter 1(we will also use Ga(φ, β) to denote a gamma random
variable with rate parameter β 6= 1). Therefore, the dependence across the µ̃j ’s depends
on H, ν∗, and Λ.

The prior for Λ allows us to address several interesting modeling questions. When
no additional group-specific information is available, such as comparing the distribution
of test results in different schools, a natural choice would be to assume the λij ’s i.i.d.
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from some probability distribution with support on R+, such as the gamma distribution.
We find it more convenient to specify a shrinkage prior on Λ, to automatically select the
number of latent factors H. This approach has received considerable attention in Gaussian
latent factor models, see, for instance, Bhattacharya and Dunson (2011); Legramanti et al.
(2020); Schiavon et al. (2022). In our example, we consider Λ distributed as a multiplicative
gamma process (Bhattacharya and Dunson, 2011),

λjh = (φjhτh)−1, τh =

h∏

j=1

θj , θ1 ∼ Ga(a1), θ2, . . .
iid∼ Ga(a2), φjh

iid∼ Ga(ν/2, ν/2). (8.3)

In Section 8.3 we propose a variant of the adaptive Gibbs sampler of Bhattacharya and
Dunson (2011) to automatically select H in the first iterations of the MCMC algorithm.

If group-specific information, such as covariates, is available, we can model the finite-
dimensional matrix Λ. For example, the PUMAs in the Californian income data are
indexed by a specific areal location. This can be modelled using a g × g spatial proximity
matrix denoted by W , where Wj` = 1 if areas j and ` share an edge and Wj` = 0 otherwise,
but more general choices of proximity could be considered in other examples. Then, we
can encourage spatial dependence between the µ̃j ’s by assuming

logλh
iid∼ NH

(
µ, (τ(F − ρW ))−1

)
, h = 1, . . . ,H (8.4)

where λh = (λ1h, . . . , λgh) is the h–th column of the matrix Λ, F is a diagonal matrix with
entries Fii =

∑
jWij , and ρ ∈ (0, 1). We suggest setting µ = log(1/H, . . . , 1/H) in (8.4)

to encourage a priori each µ̃j to be a convex combination of the µ∗h’s with equal weights.
The model could also be applied to geo-referenced data using a log Gaussian process,

logλh
iid∼ GP(µ,K), h = 1, . . . ,H

where λh = (λ1h, . . . , λgh) is the h–th column of the matrix Λ.

8.2.3 Some Statistical Properties

In this section, we discuss some distributional properties of the measures µ̃j ’s in light of
the prior assumption above. We assume that the λjh’s are independent of µ∗1, . . . , µ

∗
H .

Firstly, it is clear that

E[µ̃(A)] =

H∑

h=1

E[λjh]E[µ∗h(A)].

When we consider the normalized measures, the expression of the expected value is more
complex.

Theorem 8.1. Let (µ∗1, . . . , µ
∗
H) be a CoRM with i.i.d. scores. Denote the Laplace trans-

form of the scores’ distribution by Lm(u) := E[e−um] and let κm(u, n) := E[e−ummn].
Then for all measurable A ⊂ Θ

E[p̃j(A)] =

α(A)

H∑

h=1

∫
E


λjhψρ(uλj1, . . . , uλjH)

∫

R+

z
∏

k 6=h
Lm(uλjkz)κm(uλjhz, 1)ν∗(dz)


du

where ψρ is the Laplace functional of (µ∗1, . . . , µ
∗
H) (evaluated at the constant functions

uλj1, . . . , uλjH).
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Although it is not possible to evaluate the quantity in Theorem 8.1 analytically, a priori
Monte Carlo simulation can be used to numerically estimate the expected value of p̃j(A).

To characterize the dependence induced by the latent measure factor model, an intuitive
measure is the covariance between two random measures.

Proposition 8.2. The following expression holds.

Cov [µ̃j(A), µ̃`(B)] =
∑

h,k

E[λjhλ`k]Cov(µ∗h(A), µ∗k(B)) + Cov(λjh, λ`k)E[µ∗h(A)µ∗k(B)] (8.5)

If the λjh’s have the same marginal distribution, the µ∗h’s have the same marginal distri-
bution, λj = (λj1, . . . , λjH) and λ` (defined analogously) are independent, E[λjhλ`h] = κ,
Cov(λjh, λ`h) = ρ for all j, `, h, then:

Cov [µ̃j(A), µ̃`(B)] =

Cov(µ∗1(A), µ∗1(B))κH +m∗1(A)m∗1(B)ρH +
∑

h6=q
λ̄2

11Cov(µ∗h(A), µ∗k(B))

where λ̄jh := E[λjh] and m∗h(A) = E[µ∗h(A)].
Finally, if in addition the µ∗h’s are independent, the latter sum disappears

From (8.5), it is clear that Cov [µ̃j(A), µ̃`(B)] increases with: (i) the correlation of the
measures at the latent lavel (Cov(µ∗h(A), µ∗k(B)) large), (ii) the correlation of the scores
(Cov(λjh, λ`k) large), (iii) large values in the scores (E[λjhλ`k] large), (iv) random measures
with large masses (E[µ∗h(A), µ∗k(B)] large), and (v) large values of H (more terms in the
summation).

The correlation between µ̃j(A) and µ̃`(B) can be formally derived from (8.5) but its
expression is not easily interpretable in general. To get a nicer expression, assume A = B,
Cov(µ∗h(A), µ∗k(A)) = Cov(µ∗m(A), µ∗n(A)) = cA, E[µ∗h(A)] = E[µ∗k(A)] = mA. Then

Cov [µ̃j(A), µ̃`(A)] = E[µ∗1(A)2]

(
H∑

h=1

E[λjhλ`h]

)
+

(cA +m2
A)


∑

h6=k
E[λjhλ`k]


−m2

A


∑

h,k

λ̄jhλ̄`k




Let us specialize the above expression further. Consider first the case of independent scores

λjh
iid∼ Ga(ψ, 1). The correlation between µ̃j(A) and µ̃`(A) amounts to

(
1 +

mA

(Var[µ∗1(A)] + cA(H − 1))ψ

)−1

(8.6)

which is an increasing function of H and ψ as expected. See Appendix 8.B for a proof.
To evaluate mA, and cA we use the following result.

Proposition 8.3. Consider a CoRM with Ga(φ) distributed scores and gamma process
marginals (i.e., each µ∗h is distributed as a gamma process). Then for any measurable A:

1. E[µ∗h(A)] = α(A),

2. E[µ∗h(A)µ∗k(A)] = (α(A) + α(A)2)φ2(B(1, φ))23/2, where B(a, b) denotes the Beta
function.
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Figure 8.2.1: Correlation between µ̃j(A) and µ̃`(A) for a set A such that α(A) = 0.5, under
the multiplicative gamma process prior. a1 = 2.5, φ = 2. From left to right H = 4, 8, 16.
The values of a2 vary across the x-axis in each plot, the values of ν across the y-axis.

Consider now the case when Λ is distributed as a multiplicative gamma process intro-
duced in Bhattacharya and Dunson (2011). In this case, we don’t have an interpretable
expression for the correlation between µ̃j(A) and µ̃`(A). In the Appendix 8.B we report
the expressions for Cov [µ̃j(A), µ̃`(A)] and Var[µ̃j(A)] which might be used to numerically
compute the desired correlation. Figure 8.2.1 displays the correlation between µ̃j(A) and
µ̃`(A) for a set A such that α(A) = 0.5. We notice that when the CoRM has gamma
process marginals, the parameter φ has little effect on the correlation between the µ̃j ’s.
On the contrary, there is a strong interaction between a2, ν, and H. For smaller values of
ν, larger values of H imply a higher correlation. When ν is sufficiently large (e.g. larger
than 6), the effect of H is less evident. Moreover, larger values of a2 imply a weaker cor-
relation. This is expected as it essentially reduces the number of active latent measures.
In Figure 8.E.1 in the Appendix, we show the correlation between µ̃j(A) and µ̃`(A) under
prior (8.4) for different choices of areas j and `, as a function fo τ and ρ.

Since the atoms are shared across all the measures µ̃j ’s, another possible way of charac-
terizing the dependence between two measures is to consider the ratio of weights associated
to the k–th atom in µ̃j and µ̃`,

rkj` :=
(ΛM)jk
(ΛM)`k

=

∑H
h=1 λjhmhk∑H
h=1 λ`hmhk

(8.7)

A trivial upper bound is

rkj` ≤
H∑

h=1

λjh
λ`h

Multiplying and dividing by H in (8.7) and taking the logarithm yields

log rkj` = log

(
1

H

H∑

h=1

λjhmhk

)
− log

(
1

H

H∑

h=1

λ`hmhk

)
.

By the strong law of large numbers, we have that log rkj` → 0 as H →∞ if, for instance, λjh
and λ`h are independent and identically distributed across the values of h. Moreover, it is
clear that the variance of rkj` increases with the variance of the λjh’s. In Appendix 8.E we
report an a prior Monte Carlo simulation comparing rj` as a function of H under different
priors for Λ, namely and i.i.d. prior with Ga(ψ) distributed λjh’s, the multiplicative
gamma process in (8.3) and the the cumulative shrinkage prior Legramanti et al. (2020).
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It is clear that under the two latter shrinkage priors, the choice of H has a smaller impact
on the prior. For the sake of computational efficiency, we will adopt the multiplicative
gamma process prior in our simulations, when no additional group-specific covariates are
present. Instead, when we consider the case of area-referenced groups, we consider H to
be a hyperparameter and perform model selection based on predictive performance

8.3 Posterior Inference

Let α be a measure on Θ, ν∗ a Lévy intensity on R+, and φ > 0. We denote with
CoRM(φ, ν∗, α) the law of a compound random measure with i.i.d. Ga(φ)-distributed
scores with directing random measure with intensity ν∗(z)dz α(dθ). Our model can be
compactly summarized as

yji | θji ind∼ k(· | θji), i = 1, . . . , ni

θji | µ̃j iid∼ µ̃j/µ̃j(Θ), i = 1, . . . , ni

µ̃j :=

H∑

h=1

λjhµ
∗
h

(µ∗1, . . . , µ
∗
h) ∼CoRM(φ, ν∗, α), Λ ∼ π(Λ)

(8.8)

In this section, we describe a simple MCMC scheme based on a truncation of the
random measures. In particular, let K > 0 denote a fixed number of atoms, we set

µ∗h =

K∑

k=1

mhkJkδθ∗k

where Jk
iid∼ pJ , with pJ being a probability distribution, and θ∗k

iid∼ G0 := α/α(Θ).
Campbell et al. (2019) provide a thorough review of truncation methods for completely
random measures including the choice of pJ for different random measures. We use
pJ = Beta(φ/K, φ) so that

∑K
k=1 Jkδθ∗k converges to a Beta process as K → +∞. This

combined with gamma-distributed mhk imply that marginally µ∗h follows a gamma pro-
cess (see Griffin and Leisen, 2017). Although this simple truncation might result in an
approximation error that is large a priori, as shown in Nguyen et al. (2020), posterior
inference is usually robust and no significant difference is detected. The choice of fixing
K also allows for (much) faster code since the number of parameters is now fixed, and
our implementation can thus take advantage of modern parallelization and vectorization
algorithms. This is in line with our ultimate goal of fitting very large datasets with our
model. In Appendix 8.C we also describe a slice sampling algorithm based on Griffin and
Walker (2011) that does not require truncating the random measure.

8.3.1 MCMC Algorithm for the Truncated Model

Observe that in (8.8), θji = θ∗k with positive probability. Therefore an alternative repre-
sentation is achieved by introducing latent cluster indicator variables cji such that cji are
independent categorical variables with support {1, . . . ,K} and

P (cji = k | {λjh}, {mhk}, {Jk}) ∝ (ΛM)jkJk.
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Let Tj :=
∑

k(ΛM)jkJk. Writing p(· | ·) for a generic conditional density, the joint distri-
bution of data and parameters under (8.8) is then

p({yj,i}, {cj,i}, {λj,h}, {mh,k}, {J`}, {θ∗`}) =

g∏

j=1

T
−nj
j

nj∏

i=1

f(yj,i | θ∗cj,i)(ΛM)j,cj,iJcj,i ×
K∏

h=1

[
G0(θ∗h)pJ(Jk)

K∏

k=1

Ga(mhk |φ)

]
π(Λ)

To facilitate posterior inference, we introduce a set of auxiliary variables uj , which are
gamma distributed with shape parameter Tj and rate parameter nj . Then

p({yj,i}, {cj,i}, {λj,h}, {mh,k}, {J`}, {θ∗`}, {uj}) =

g∏

j=1

1

Γ(nj)
u
nj−1
j

nj∏

i=1

f(yj,i | θ∗cj,i)(ΛM)j,cj,iJcj,i × exp


−

g∑

j=1

uj

K∑

`=1

(ΛM)j,`J`




K∏

h=1

[
G0(θ∗h)pJ(Jk)

K∏

k=1

Ga(mhk |φ)

]
π(Λ)

It is then possible to sample from the posterior distribution via a Gibbs sampler:

1. Update the atoms from

p(θ∗h | · · · ) ∝
g∏

j=1

∏

i:cj,i=h

f(yj,i | θ∗h)G0(θ∗h)

2. Update the J ’s from

p(J` | · · · ) ∝ Jq`` exp


−

g∑

j=1

uj(ΛM)j,`J`


 pJ(J`)

where q` =
∑g

j=1

∑nj
i=1 I[cj,i = h].

3. Update the m’s from

p(M | · · · ) ∝
g∏

j=1

K∏

`=1

(ΛM)q`j,` × exp


−

g∑

j=1

uj(ΛM)j,`J`


×

H∏

h=1

K∏

k=1

Ga(mhk |φ)

The update of M can be done in a single block via Hamiltonian Monte Carlo.

4. Update the λ’s from

p(Λ | · · · ) ∝
g∏

j=1

K∏

`=1

(ΛM)q`j,` × exp


−

g∑

j=1

uj(ΛM)j,`J`


π(Λ)

Again, we can update Λ using a single step of Hamiltonian Monte Carlo.

5. Update the cluster indicators from a categorical distribution over {1, . . . ,K} with
weights

P (cj,i = h | · · · ) ∝ f(yj,i | θ∗h)(ΛM)j,hJh

6. update the u’s from uj | · · · ∼ Gamma(nj , Tj)
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Finally, when the prior for Λ is the multiplicative gamma process (8.3) we propose to
gain computational efficiency by selecting H through an adaptive Gibbs sampling scheme
as in Bhattacharya and Dunson (2011). In particular, when adaptation occurs, we look at
the “empty columns” of Λ. We define a column h of Λ to be empty if

g∑

j=1

λjh∑H
k=1 λjk

< ελ̄

where λ̄ = H−1
∑H

h=1

∑g
j=1

λjh∑H
k=1 λjk

. In our experience ε = 0.05 provides satisfactory

results. If there are no empty columns, we add a column sampled from the prior to Λ and
a row sampled from the prior to M . Instead, if empty columns are found, we drop them
from Λ and the corresponding rows from M .

Bhattacharya and Dunson (2011) propose to adapt Λ at each iteration ` with a proba-
bility p` that decreases exponentially fast. This choice is possible also within our algorithm
but, in our experience, it significantly impacts run-time. This is due to the choice of using
HMC to sample Λ and M and, in particular, to the use of the tensorflow-probability

Python package, in combination with LAX compilation. For technical reasons, every time
the size of Λ and M change, big chunks of the code must be recompiled, so that it’s not effi-
cient to adapt every few iterations. Instead, we propose to have a fixed adaptation window
of 1, 000 iterations, where the adaptation occurs every 50 iterations. In our experience,
this simple modification reduces the overall runtime by at least one order of magnitude.

8.4 Resolving the non-identifiability via post-processing

As already mentioned in the introduction, our model is not identifiable due to the mul-
tiplicative relation between Λ and (µ∗1, . . . , µ

∗
h). This is not surprising, as the same holds

for common latent factor models (Geweke and Singleton, 1980), where the likelihood is
invariant to the action of orthogonal matrices. In that context, a common practice to re-
cover identifiability is to constrain the matrix Λ to be lower triangular with positive entries
on the diagonal (Geweke and Zhou, 2015). More recently, it has been proposed to ignore
the identifiability issue and obtain a point-estimate of the posterior distribution either by
post-processing the MCMC chains (see Papastamoulis and Ntzoufras, 2022; Poworoznek
et al., 2021, and the references therein) or by choosing the maximum a posteriori (Schi-
avon et al., 2022). In particular, Poworoznek et al. (2021) propose to orthogonalize each
posterior sample of Λ and then solve the sign ambiguity and label switching via a greedy
matching algorithm.

The non-identifiability in our model is more severe than the one of common latent
factor models. In fact, for any Q s.t. Q−1 is well defined, the likelihood is invariant
when considering Λ′ = ΛQ−1 and M ′ = QM . Nonetheless, the constraints that Λ′ ≥ 0
(element-wise) and M ′ ≥ 0 greatly reduce the number of matrices Q that can cause non-
identifiability. In particular, we don’t need to worry about sign ambiguity.

8.4.1 The Objective Function

Consider equation (8.2). Factorizations of the kind Γ = ΛM where all the three matrices
have nonnegative entries are common in blind source separation (BSS) problems, where
the goal is to estimate “source components” M and “mixing proportions” Λ such that the
observed signal Γ is approximately ΛM . Two well-established approaches to BSS are non-
negative matrix factorization (NMF, Sra and Dhillon, 2005) and independent component
analysis (ICA, Hyvärinen, 2013). The main difference between the two consists in the loss
function optimized. In NMF it is usually the norm of the approximation error, while, in
ICA, the mutual information between the source components is minimized alongside the
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approximation error. This takes into account the goal of separating the components. Since
in our analogy the sample size of the latent factor model is just one (i.e., in our model
there is one single vector µ̃1, . . . , µ̃p instead of multiple realizations), it is not possible to
use the same criteria of ICA to define what we mean by “separated components”. Hence,
we propose to optimize with respect to the following interpretability criterion:

L(Q;M,J, θ) =
∑

i<j

(∫

Y

[∫

Θ
f(y | θ)µ′i(dθ)

] [∫

Θ
f(y | θ)µ′j(dθ)

]
dy

)2

. (8.9)

where

µ′j =

K∑

k=1

(QM)jkJkδθ∗k

Intuitively, low values of L(Q;M,J, θ) in (8.9) are attained when the transformed random
measures µ′h, mixed with the mixture kernel f , result in well separated densities.

Defining gi(y) :=
∫

Θ f(y | θ)µ′i(dθ) it is clear that (8.9) can be interpreted as the sum
of the squared inner products (in the L2 sense) between gi and gj . The L2 distance is not
commonly used to measure the discrepancy of densities. A more familiar option would
be to consider

∫ √
gi(y)

√
gj(y)dy, that is 1 − dH(gi, gj) where dH denotes the Hellinger

distance. However, this choice of loss function leads to a more complex optimization
problem, that cannot be solved with our approach. Indeed, as discussed later in Section
8.4.3, the positivity of the density gi might not be preserved by the intermediate steps of
the algorithm. Therefore, we need a loss function that continues to make sense for negative
densities.

8.4.2 The Optimization Space

Consider now the space over which one should minimize (8.9). First of all, we must require
the existence of Q−1 to interpet Λ′ = ΛQ−1. Moreover, for the model to make sense we
need to ensure the positivity of the coefficients involved, i.e. Λ′ = ΛQ−1 ≥ 0 and M ′ =
QM ≥ 0. Finally, we observe that (i) given an “optimal” Q such that L(Q;M,J, θ) = 0,
L(γQ;M,J, θ) = 0 for any γ > 0, and (ii) L(Q;M,J, θ) attains lower values when the
entries in Q are small. Despite the preference for small Q in the optimization problem,
the resulting model is invariant to such rescalings since it involves the normalization of the
underlying random measures. Hence, to overcome both issues we propose to add a further
constraint in the optimization problem, namely detQ = 1, which prevents having several
optimal solutions differing by a constant and does not allow for matrices with entries too
close to 0.

In conclusion, we propose to optimize (8.9) over the special linear group SL(H) =
{Q ∈ RH×H : detQ = 1}, with the additional positivity constraints, i.e. our optimization
problem becomes

min
Q∈SL(H)

H∑

h,k=1

L(Q;M,J, θ) s.t. ΛQ−1 ≥ 0, QM ≥ 0. (8.10)

The special linear group is not a linear space, therefore common gradient-based optimiza-
tion techniques cannot be used to solve (8.10). However, we can take advantage of the
differential structure of SL(H). In fact, it is a Lie group (hence, a smooth differentiable
Manifold) with associated Lie algebra sl(H) = {A ∈ RH×H : trA = 0}. See Appendix
8.A.2 for some basic details regarding Riemannian manifolds and Lie groups.
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Algorithm 1. Augmented Lagrangian Multiplier Method

[1] input Starting point Q, initial values ρ, γj , target threshold ε∗, initial threshold ε.
[2] repeat
[3] Q = Q′

[4] solve Q′ = arg minQ Lρ(Q, γ) for fixed ρ, γ with theshold ε using Algorithm 2
[5] γj = γj + ρcj(Q

′)
[6] ρ = 0.9ρ ε = max{ε∗, 0.9ε}
[7] until ε ≤ ε∗; ‖Q−Q′‖ ≤ ε
[8] end

Algorithm 2. Lie RATTLE Optimization

[1] input Starting point Q,P , momentum τ , stepsize s, threshold ε.
[2] repeat
[3] P = τ

(
P − sΠsl(H)(∂QLρ(Q, γ), Q)

)

[4] Q = Q expm(χP ), χ = cosh(− log τ)

[5] P = τ
(
P − sΠsl(H)(∂QLρ(Q, γ), Q)

)

[6] until ‖Q−Q′‖ ≤ ε
[7] end

8.4.3 A Riemannian Augmented Lagrangian Method

We are now in place to state the algorithm. For notational convenience, define the func-
tions c1

jh(Q) = −(ΛQ−1)jh and c2
hk = −(QM)hk. Denote with cj the collection of all such

functions. The positivity constraints are equivalent to cj ≤ 0 for all j’s. Following the
augmented Lagrangian method (Birgin and Martinez, 2014), we can deal with the con-
straints ΛQ−1 ≥ 0 and QM ≥ 0 by introducing auxiliary parameters ρ, γj and define the
augmented loss function

Lρ(Q, γ) = L(Q;M,J, θ) +
ρ

2

∑

j

max

{
0,
γj
ρ
cj(Q)

}
(8.11)

Then, we can solve (8.10) by alternating between minimizing (8.11) for fixed values of ρ,
γj and updating ρ, γj as in Algorithm 1. As in the usual augmented Lagrangian method,
the constraints might be violated in the intermediate steps. Intuitively, the fact that the
penalty term γj is increased at every iteration if the constraint is violated should force
the solution of the problem inside the feasible region. See Birgin and Martinez (2014) for
convergence results of the augmented Lagrangian method.

It is now left to discuss how to solve (8.11) for fixed ρ and γj . We propose to tackle
this problem with the Riemannian dissipative RATTLE algorithm in França et al. (2021),
reported for the special case of optimization over SL(H) in Algorithm 2. In particular,
Πsl(H) is the projection over the Lie algebra sl(H) while expm denotes the matrix expo-
nential, which is a map sl(H)→ SL(H). Informally, Algorithm 2 resembles an accelerated
gradient method, where a momentum term is introduced to speed up the convergence. We
further have

∂QLρ(Q, γ)ij =
∂QLρ(Q, γ)

∂Qji

(note the index flip ij → ji, in other words ∂Qf(Q) = ∇Qf(Q)> where ∇ stands for the
usual Euclidean gradient). Moreover, the following proposition gives a computationally
convenient way of evaluating Πsl(H).
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Proposition 8.4. Let X an H ×H real valued matrix. Then

Πsl(H)(X) = (X − diag(X))T +

H−1∑

`=1

X∗`

where diag(X) is the diagonal matrix with entries equal to the diagonal of X and X∗` is a
diagonal matrix whose only nonzero entries are the (`, `)-th and the (`+ 1, `+ 1)-th ones,
which equal to Xi,i −Xi+1,i+1 and −Xi,i −Xi+1,i+1 respectively.

The parameters involved in the optimization problem are: the stepsize s and momentum
factor τ in Algorithm 2 as well as the initial values ρ, γj and the target and thresholds
ε∗, ε in Algorithm 1. We suggest as defaults s = 10−6, τ = 0.9, ρ = γj = 10, ε∗ = 10−6,
ε = 10−2. Finally, to set the starting point Q we we solve the unconstrained optimization
problem (equivalent to setting γj = 0 in (8.11)) using Algorithm 2 and use that solution
as starting point for the constrained optimization. The initial momentum term P in
Algorithm 2 is always the zero matrix.

8.4.4 The Label-Switching Problem

Observe that another source of non-identifiability comes from the labeling of µ∗1, . . . , µ
∗
H .

Namely, the likelihood and the loss function (8.9) are invariant under permutation of the
indices{1, . . . ,H}, provided that the columns of Λ are permuted as well. This prevents the
possibility of computing reliable posterior summaries of the µ∗h’s and Λ from the MCMC
chains.

We propose to post-process the output of our sampling algorithm to get rid of this
problem. In particular, as in Poworoznek et al. (2021), we propose to align the latent
measures at each iteration to a given template. Let µ̂1, . . . , µ̂H denote the template. For
instance,

µ̂h =

K∑

k=1

(Q(`)M (`))jkJ
(`)
k δθ(`)

k

where we denote with the superscript ` the index of the MCMC sample. We choose `
to approximate the maximum a posteriori. Q(`) denotes the associated optimal transfor-
mation matrix obtained as outlined above. Let d(µ̂h, µ

′
j) denote a dissimilarity between

two measures. Two specific choices are discussed later. We align each (µ
′(j)
1 , . . . , µ

′(j)
H ) :=

Q(j)(µ
∗(j)
1 , . . . , µ

∗(j)
H ) to µ̂1, . . . , µ̂H by learning an optimal permutation σ of {1, . . . ,H},

associated to a permutation matrix Pσ that minimizes
∑

h d(µ̂h, µ
(j)′
σ(h)) by solving

inf
P∈PermH

H∑

h,k=1

d(µ̂h, µ
(j)′
k )Phk

where PermH denotes the space ofH×H permutation matrices. Naively, this would require
H! computations. Instead, we solve the relaxed optimization problem by looking for the P
stochastic matrix (i.e., rows and columns sum to one) that minimizes the objective above.
That is, we solve for the Wasserstein distance between the empirical measures ν1 and ν2

defined as

ν1 =
1

H

H∑

h=1

δµ̂h , ν2 =
1

H

H∑

k=1

δµ(j)′
k

where νi is a probability measure on the space of positive measures over Θ. Birkhoff’s
theorem ensures that the solution to the relaxed optimization problem is a permutation
matrix.
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As far as the dissimilarity d(µ̂h, µ
′
j) is concerned, in our examples we considered

d(µ̂h, µ
′
j) =

∥∥∥µ̂h(Θ)−1

∫

Θ
f(y | θ)µ̂h(dθ)− µ′j(Θ)−1

∫

Θ
f(y | θ)µ′j(dθ)

∥∥∥

where ‖ · ‖ stands for the L2 norm. This distance requires the numerical evaluation of a
mixture density on a fixed grid, to compute the associated L2 distance. This is easy when
the dimension of the data space is small, typically when data are uni or bi-dimensional.
See Appendix 8.D for a more efficient alternative in higher dimensions.

8.5 Simulation Study

We present two simulations to assess the performance of our model. In all the examples,
we consider Gaussian mixture models, i.e., θ∗h = (µh, σ

2
h) and f(· | θ) = N (· |µ, σ2). The

scores mhk in the CoRM are gamma distributed and each µ∗h is marginally a gamma
process (before the truncation) with total mass equal to 1 and base measure equal to the
Normal-inverse-Gamma distribution, i.e. G0(µ, σ2) = N (µ |µ0, σ

2/λ)IG(σ2 | a, b). We set
µ0 equal to the empirical mean of the observations, λ = 0.01, a = b = 2. We truncate the
CoRM to K = 20 jumps to perform posterior inference. Specific choices of the prior for Λ
are discussed case-by-case.

8.5.1 Interpretation of the posterior distribution

Before giving details on the numerical illustration, we discuss how to obtain interpretable
summaries of the posterior distribution, after post-processing. This also allows us to set
some notation used in the next sections.

Interpreting the unnormalized latent factor densities
∫

Θ f(· | θ)µ∗h(dθ) is difficult be-
cause of the lack of a common scale to which the densities should be referred. In fact, note
that these are not probability densities. Let pj be the j-th group-specific density. We can
write

pj =

∫

Θ
f(· | θ)¯̃p(dθ) +

H∑

h=1

sjh

∫

Θ
f(· | θ)εh(dθ)

where ¯̃p(dθ) is the average of p̃1, . . . , p̃g, p
′
h = µ′h/µ

′
h(Θ), εh = p′h − ¯̃p(dθ) and the scores

sjh’s are defined as

sjh =
λ′jhµ

′
h(Θ)

∑H
k=1 λ

′
jkµ
′
k(Θ)

(8.12)

Note that εh is a signed measure. Instead of comparing the latent factor densities, we find
it considering the residual factor densities

∫
Θ f(· | θ)εh(dθ) leads to easier interpretations.

Moreover, we can associated to each µ′h an importance score Ih defined as Ih =
∑g

j=1 sjh
The rationale comes from writing µ′h = µ′h(Θ)p′h so that

pj =

∫

Θ
f(· | θ)

H∑

h=1

λ′jhµ
′
h(Θ)

∑H
k=1 λjkµ

′
k(Θ)

p′h(dθ) =

H∑

h=1

sjh

∫

Θ
f(· | θ)p′h(dθ)

that is, we express each p̃j as a convex combination of probability measures and with
weight sjh.

With an abuse of notation, we will denote by µ′h the posterior mean of (µ∗1, . . . , µ
∗
h) and

with Λ′ the posterior mean of Λ, obtained after the post-processing of the MCMC chains,
that is

µ′h =
1

M

M∑

`=1

∑

k≥1

(
P (`)Q(`)M (`)

)
hk
J

(`)
k δθ∗(`)k

, Λ′ =
1

M

M∑

`=1

(
Λ(`)(Q(`))−1

)
(P (`))> (8.13)
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where the superscript `, ` = 1, . . . ,M is used to denote the iteration of the MCMC
algorithm, Q(`) is the matrix found with Algorithm 1, and P (`) is the permutation matrix
found as in Section 8.4.4.

8.5.2 Only Group Information

We consider here a simulated example with g = 100 groups of data, where each nj =
25. We consider the situation where we tend to observe only small differences across
populations by considering the following data generation process

yj,i
iid∼ wj1N (−2, 2) + wj2N (0, 2) + wj1N (2, 2), i = 1, . . . , nj

and for each group we simulate wj = (wj1, wj2, wj3)
iid∼ Dirichlet(1, 1, 1). In most of the

groups, the data generating density is unimodal and they differ mainly because of different
levels of skewness.

As prior for Λ, we assume the multiplicative gamma process (8.3) setting H = 20.
We run the MCMC chains for a total of 11, 000 of which the first 1, 000 are used for the
adaptation and the following 5, 000 are discarded as burn-in. The adaptation phase quickly
finds between 3 and 5 latent measures, 4 being the final value. We post-process the chains
as in Section 8.4.

Figure 8.5.1 shows the inferred latent factors before and after the post-processing. It
is clear that solving the label switching is essential. Although not particularly evident
from the plot, the matrices Q(j) found by the optimization algorithm were significantly
different from the identity, hence showing the usefulness of the post-processing. Our
approach identifies the main common traits in the data. Factors 1 and 3 peak around −2
and 2 respectively, while the second and fourth factors are both more concentrated around
the origin, with the second one presenting a light skewness and heavier right tail. The
residual factor densities can be used to infer the same description of the latent measures.

8.5.3 Area-Referenced Data

We consider data over a regular lattice on 0, 1, . . . , q × 0, 1, . . . , q ⊂ Z2. We consider
q = 4, 8, 16 so that the number of groups is g = 16, 64, 256 respectively. Following the
simulation study in Beraha et al. (2021), we generate data at each location from a three-
component Gaussian mixture with means −5, 0, 5 respectively and variances equal to one.
Let xj , yj denote the x and y coordinate of location j on the lattice. The location-specific
weights are

(wj1, wj2, wj3) =
(
ew̃j1 , ew̃j2 , 1

)/(
1 + ew̃j1 + ew̃j2

)

where
w̃j1 = 3(xj − x̄) + 3(yj − ȳ), w̃j2 = −3(xj − x̄)− 3(yj − ȳ)

and (x̄, ȳ) denote the center of the lattice. For each location, 25 observations are simulated.
We compare our model with prior (8.4) for H = 1, 2, 3, 5, 10 with the spatially depen-

dent mixture model (SPMIX, Beraha et al., 2021) and the Hierarchical Dirichlet Process
(HDP, Teh et al., 2006). Although the latter does not take into account the spatial depen-
dence, it is shown in Beraha et al. (2021) that the HDP performs well when the number
of groups g is small.

We truncate the CoRM to K = 20 jumps and set the number of components in SPMIX
to 20 as well. Prior distributions can be assumed for τ and ρ in (8.4). However, since
the likelihood is invariant with respect to rescalings of Λ, we found that having a prior
on τ led to non-convergent MCMC chains for Λ. In particular, after a few thousand
iterations, the values of the entries in Λ were in the order of 10100. Hence, we suggest
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Figure 8.5.1: Posterior summaries for the simulation in Section 8.5.2. Top row: draws
from the posterior distribution of the latent factor densities. Middle row: draws after
post-processing and normalization, the red density denotes the template. Bottom row:
posterior draws of the residual factor densities.

fixing τ so a sufficiently large value. In our simulations, we always set τ ≡ 2.5. Assuming
a prior for ρ does not have such an impact on posterior inference. However, it would
require re-computing the determinant of Σ−1 at every MCMC iteration, which requires
O(g3) operations. Hence, we fix ρ to 0.95 to encourage strong spatial dependence in our
examples. Another possibility would be to fix a grid of values in (0, 1) and assume a
discrete prior for rho over it, allowing to compute all the required matrix determinants
beforehand.

All the MCMC chains are run for 10, 000 iterations, discarding the first 5, 000 as burn-
in. It is clear from Figure 8.5.2 (top row) that our model outperforms the competitors when
g = 16, 64 and performs slightly better than the spatial mixture model when g = 256. In
all the settings, the best performance is associated with H = 3 latent measures. Posterior
samples of the latent factor densities are reported in Figure 8.5.2 (bottom row) for the
setting with g = 64 and H = 3. In this case, the latent densities are already well separated
so that there is no need to post-process the MCMC chains using the algorithm described
in Section 8.4. The three latent densities give mass to one of the three modes in the data
each.

8.6 Real Data Illustrations

In this section, we illustrate our methodology on two real datasets. In both cases, data are
univariate and we let f(· | θ) be the Gaussian density with parameters θ = (µ, σ2). The
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Figure 8.5.2: Top row: Average Kullback–Leibler divergence between the true data gen-
erating density and the Bayesian estimate, as a function of the number of latent measures
H. From left to right g = 16, 64, 256. Bottom row: Posterior samples for the latent factor
densities when g = 64 and H = 3

base measure G0 is the Normal-inverse-Gamma distribution, whose parameters are set as
in Section 8.5. Moreover, we always truncate to K = 20 points the support of the random
measures.

8.6.1 The Invalsi Dataset

We consider the Invalsi dataset1 that collects the evaluation of a unified math test un-
dertaken by all Italian high-school students. Grades vary from 1 to 10 with 6 being the
passing grade. We pre-process the data by adding a small Gaussian noise with zero mean
and standard deviation equal to 0.25. The dataset contains the scores of 39377 students,
subdivided into 1048 schools. The number of students per school varies from 4 to 131,
with 37 students per school on average with a standard deviation of 12 approximately.

We assume the multiplicative gamma process prior for Λ as in (8.4) with H = 20. The
initial adaptation phase identifies 5 latent factors. Draws from the latent factor densities
are displayed in Figure 8.6.1. It is clear that some label switching is happening between the
fourth and fifth factors. After the post-processing, for ease of visualization, we discretized
the estimated normalized latent factor densities to the original grades i = 1, . . . , 10 by

evaluating
∫ i+0.5
i−0.5 f(y | θ)µ′h(dθ)/µ′h(Θ). The estimated factors are displayed in the first

two rows of Figure 8.6.1. They represent a wide range of behaviors: the first one is
concentrated on negative grades below the passing threshold, the second one is centered
on the passing grade, and the third one on grades way above the passing grade. The
fourth and the fifth represent more complex distributions: the former one covering the
range of “just below the passing grade and just above it”, the latter one instead represents
a distribution peaked at 5 with a heavy right tail.

1available for research purposes at https://invalsi-serviziostatistico.cineca.it
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Figure 8.6.1: Summary of posterior inference on the Invalsi dataset. Top row: draws
from the posterior distribution of the latent factor densities. Middle row: estimates of the
discretized normalized latent factor densities after post-processing. Bottom row: average
density in each cluster discredized on the intervals [i− 0.5, i+ 0.5), i = 1, . . . , 10.

The importance scores Ih are approximately 331, 184, 351, 165, 16. Hence, we can in-
terpret that the two most relevant common traits are the ones represented by µ′1 (that
combines a sharp peak in 4, with a heavy right tail), and by µ′3, which gives mass to grades
above the passing threshold.

Finally, we look at the scores λjh’s after the post-processing. We can understand the
similarities between schools by clustering the scores for each school from the corresponding
row of the matrix Λ′. Using a hierarchical clustering algorithm yields four clusters (the
dendrogram is shown in Figure 8.E.4 in the Appendix). We then compute the average

value λ̂` = (λ̂`1, . . . , λ̂`H) for each of the four clusters, to which a probability measure p̃` ∝∑H
h=1 λ̂`hµ

′
h and report the associated mixture density in the bottom row Figure 8.6.1.We

define a cluster-specific mean distributions p̃` ∝
∑H

h=1 λ̂`hµ
′
h by taking the average value

λ̂` = (λ̂`1, . . . , λ̂`H) for each of the four cluster. the associated mixture densities are
shown in the bottom row Figure 8.6.1. The clusters are easily interpretable and the mean
distributions p̃1, . . . p̃4 are substantially different.

8.6.2 Californian Income Data

We consider the 2021 ACS census data publicly available at https://www.census.gov/
programs-surveys/acs/data/experimental-data/2020-1-year-pums.html. Specifically, we
consider the PINCP variable that represents the personal income of the survey respon-
ders and restrict to the citizens of the state of California. For privacy reasons, data are
grouped into geographical units denoted as PUMAs, roughly corresponding to 100, 000
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Figure 8.6.2: Summary of posterior inference on the Californian income dataset. Top row:
draws from the posterior distribution of the latent factor densities. Bottom row: average
of the residual factor densities after post-processing.

inhabitants. There are 265 PUMAs in California. We consider yj,i to be the logarithm of
the income of the i-th person in the j-th PUMA. The total number of responders is 43380,
with the median number of observations per PUMA being 164.

As shown in Figure 8.E.5 in the Appendix, the distributions of the income in different
PUMAs are quite varied with clear spatial dependence. This is also confirmed by the
analysis of Moran’s I index for the average log-incomes, which is approximately 0.55.
A permutation test confirmed that the spatial correlation is not-negligible. We assume
independent log Gaussian Markov random fields priors for each column of Λ as in (8.4),
where we fix τ = 2.5 and ρ = 0.95. We choose H by evaluating the predictive goodness of
fit for H = 1, . . . , 10 using the widely applicable information criterion (WAIC, Watanabe,
2013). The best performance is associated with H = 4, therefore we comment on the
posterior inference obtained under this model.

Figures 8.6.2 and 8.6.3 summarize the posterior findings. The draws from the latent
measures (top row) show some evidence of label-switching in the third and fourth factors.
Post-processing the chains with our algorithm estimates the four latent factors in Figure
8.E.6 in the Appendix. However, it is easier to interpret the residual factor densities dis-
played in the bottom row of Figure 8.6.2. The second and the fourth factors are associated
with the largest variations. In particular, the second one gives mass to higher incomes
while the fourth one gives mass to lower incomes. The first one is more representative of
the average population since the variations are small. The third factor instead corresponds
to average incomes and gives less mass (compared to the average population) to both low
and high incomes. To visualize the spatial effect of the latent factors, we plot the scores
sjh for each factor. Note that the third latent factor is predominant in several areas, where
sj3 is larger than 0.8. Instead, sj2 is small in all of California except for a few PUMAs
in San Francisco, Long Beach, and San Diego, where the highest incomes are observed.
In particular, zooming on San Francisco (middle row of Figure 8.6.3), we note that the
second factor is highly represented in Palo Alto, home to several tech tycoons, and San
Rafael, home to entertainers. Finally, note that the fourth factor (associated with the
lowest incomes) has a high weight in the two PUMAs neighboring Mexico as well in some
areas in Los Angeles. Notably, the PUMA around the port and the one corresponding to
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Figure 8.6.3: Spatial distribution of the scores in the Californian income dataset. Top row:
the scores sjh for h = 1, . . . , 4 from left to right. Middle row: zoom on the San Francisco
area. Bottom row: zoom on the Los Angeles area

the “south LA” neighborhoods going from University Park to Green Meadows. This is in
accordance with the 2008 Concentrated Poverty in Los Angeles report (Flaming and Mat-
sunaga, 2008), which estimates that the percentage of households in poverty is typically
above 40% in those areas.

8.7 Discussion

Modeling a collection of random probability measures is an old problem that has received
considerable attention in the Bayesian nonparametric literature, see, e.g. Quintana et al.
(2022) for a recent review. In this article, we have considered specifically the case when
data are naturally divided into groups or subpopulations, and data are partially exchange-
able. Taking a nonparametric Bayesian approach, we assumed that observations in each
group can be suitably modeled by a mixture density, and proposed normalized latent mea-
sure factor models as a prior for the collection of mixing measures in each group. Similar
to the Gaussian latent factor model, our model assumes that each group-specific directing
measure is a linear combination of a set of latent random measures. We can interpret the
latent random measures as the latent common traits shared by the subpopulations. More-
over, the prior for the linear combination weights can include additional group-specific
information such as geographical location.

To account for the non-identifiability of our model, we developed an ad-hoc post-
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processing algorithm leading to a constrained optimization algorithm over the special
linear group, that is the group of matrices whose determinant is equal to one. To solve the
optimization problem, we leveraged recent work on optimization on manifolds, proposing a
Riemannian augmented Lagrangian method. Through simulations and illustrations on two
real datasets, we validate our approach and show its usefulness, focusing in particular on
the interpretation of the latent measures and the associated weights. The model opens up
many direction for future research which we discuss below and whic we aim to investigate
thoroughly in the future.

The structure of our factor model approach allows it to be extended to a wide-range
of dependence structures between the groups. For example, including observation-specific
covariates in the model or time-dependent data. We can also build models which allow
for the discovery of latent structure in the groups by further modelling the factor loadings
matrix Λ. For instance, Rodriguez et al. (2008), Camerlenghi et al. (2019), and Beraha
et al. (2021) build models which cluster groups according to the similarity of their dis-
tributions. We could this by assuming that each of the group-specific directing measures
is equal to one of the latent measures, i.e. only one of λj1, . . . , λjH are non-zero, which
would be similar to exploratory factor analysis (Conti et al., 2014). Alternatively, we can
achieve a “soft clustering” of the group-specific distributions by assuming a mixture model
for the rows of the matrix Λ. More generally, Λ could be expressed in terms of further
low-rank matrix to find similarities between the group-specific factor loadings.

The post-processing identification scheme leads to estimated latent factor densities
which are maximally separated according to the interpretability criterion. This allows
us to interpret the factor loadings as an H-dimensional summary of the group-specific
distribution where the each element of the summary measures different parts of the distri-
bution. In a similar way to scores from dimension reduction techniques, such as Principal
Components Analysis, or embeddings in machine learning, these estimates can then be
used as inputs into other statistical analysis. We effectively use this idea in the analysis
of the Invalsi data-set where the estimated factor loadings are clustered to find groups of
schools with similar distributions. This approach could have much wider applications. For
example, the analysis of the Californian income data leads to estimated factor loadings
for each PUMA which could be used in a regression model in place of other summaries
such as median income, or the percentage of incomes below/above a threshold. These
estimated factor loadings should provide more information and a single measure and be a
more efficient representation than a large number of measures (for example, using a large
number of thresholds). It would be particularly interesting to investigate this approach for
multivariate observations where it’s difficult to find efficient low-dimensional summaries
of distributions.
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Appendix

8.A Technical Preliminaries

8.A.1 Completely Random Measures

Let MΘ be the space of boundedly finite (positive) measures over the space (Θ,B(Θ)),
where B(Θ) is the Borel σ-algebra. We endow MΘ with the corresponding Borel σ-alebra
M. Then, a random measure is a measurable function from a base probability space
(Ω,F ,P) to (MΘ,M).

Following Kingman (1967), we say that a random measure µ is completely random if,
for any {A1, . . . , Am} ⊂ B(Θ), Ai ∩ Aj = ∅ (i 6= j), we have that the random variables
µ(Ai), i = 1, . . . , n are independent.

For our purposes, it is sufficient to consider completely random measures of the kind

µ(A) =

∫

R+×A
sN(dsdx)

where N is a Poisson point process on Θ × R+ with base (intensity) measure. We will
assume that the intensity measure factorizes as ν(ds)G0(dx) where ν is a Borel measure
on the positive reals and G0 is a probability measure on Θ. Then, the random measure
µ(A) is uniquely characterized by its Laplace transform, for any measurable f , f(x) ≥ 0:

E
[
e−

∫
Θ
f(x)µ(dx)

]
= exp

(
−
∫

R+×Θ

(
1− e−sf(x)

)
ν(ds)G0(dx)

)
,

where the equality follows from the Lévy-Khintchine representation of the underlying
Poisson process.

A key result that will be used later, is the Cambell-Little-Mecke formula (also referred
to as the Palm formula) which allows the interchange of expectation and integral when
the integrand measure is a point process. We report here the result for Poisson point
processes, the most general case can be found in Baccelli et al. (2020).

Theorem 8.2. [ Campbell-Little-Mecke]
Let N be a Poisson point process over a complete and separable metric space X with

intensity measure ν(dx). Denote by MX the space of boundedly σ-finite measures on X.
Then, for any measurable g : X×MX → R+ we have

E
[∫

g(x,N)N(dx)

]
=

∫
E[g(xN + δx)]ν(dx) (8.14)

where both expectations are with respect to the law of the Poisson process N .

8.A.2 Riemannian Manifolds and Lie Groups

A group G is a set equipped with a binary operation: G × G → G with the additional
properties that the operation is associative, there exists an identity element and every
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element has its inverse. A Lie group arises if the set is a differentiable manifold and the
binary and inverse operations are smooth differentiable functions. A classic example of a
Lie group is the set of 2×2 real-valued invertible matrix, endowed with the group operation
(A,B) 7→ AB, that is the standard matrix multiplication. This group is usually referred
to as the general linear group of dimension two and is denoted by GL(2,R).

For our purposes, it is sufficient to consider matrix Lie groups, i.e., the case when G is a
set of matrices, so that G ⊂ Rn×n for some n. We can thus endow G with the Riemannian
metric induced by the Euclidean metric in Rn2

Then G is a Riemannian manifold (it locally
resembles a Euclidean space), and we can define at each point g ∈ G a tangent space TgG
together with the maps expg : TgG→ G and logg : G→ TgG.

The tangent spaces in Lie groups admit a particularly simple representation. Thanks
to the fact that left multiplication by an element g ∈ G, that is the map Lg(x) = gx, is a
diffeomorphism whose inverse is (Lg)

−1 = Lg−1 , we have that the tangent space TgG at g is
isomorphic to TIG, where I is the identity element. The differential of Lg is an isomorphism
between TI and Tg. In particular, given v ∈ TIG, we have that g exp(v) ∈ TgG. Therefore,
it is sufficient to study only one tangent space, namely TIG that is the tangent space at
the identity element. This space is usually referred to as the Lie algebra, since it can be
endowed with an additional operation (the Lie bracket) which makes it indeed an algebra.
When we consider Lie groups of matrices, the Lie algebra is again a set of matrices and
the map exp(v) is simply the matrix exponential, i.e.

exp(v) = expm(v) =

∞∑

n=0

vn

n!

which is easily approximated by a variety of numerical algorithms.

8.B Proofs

8.B.1 Proof of Proposition 8.1

Proof. Let H = 1, then the Lévy-Khintchine representation entails

E
[
exp

(
−
∫

Θ
f(x)µ̃j(dx)

)]
= E

[
exp

(
−
∫

Θ
f(x)λj1µ

∗
h(dx)

)]
=

exp

(
−
∫

R+×Θ
(1− exp(−sλj1f(x))) ρ∗h(s)ds α∗h(dx)

)
=

exp

(
−
∫

R+×Θ

(
1− exp(−s′f(x))

)
ρ∗h(s′/λj1)λ−1

j1 ds′ α∗h(dx)

)

where the last equality follows from the change of variables s′ = λj1s. This proves the
claim when H = 1.

In the more general case H > 1, we have that µ̃j is the superposition of the random
measures λj1µ

∗
1, . . . , λjHµ

∗
H , which are independent since the µ∗h’s are. Hence, the Lévy

intensity of µ̃j is the sum of the intensities of the λjhµ
∗
h’s.

8.B.2 The latent factor model is not completely random

From representation (8.2) it is easy to see that µ̃1, . . . , µ̃g is not a vector of completely
random measures. Indeed, for any two disjoint measurable sets A,B the random variables
defined as

µ̃j(A) =
∑

k≥1

γjkJkI[θ∗k ∈ A]
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are not independent. This is due to the the scores γjk = (ΛM)jk, k = 1, . . . , which are not
a collection of independent random variables.

8.B.3 Proof of Theorem 8.1

We first state a technical lemma providing an alternative characterization of compound
random measures.

Lemma 8.1. Let πh : RH → R be the canonical projection along the h-th coordinate,
i.e. πh(x) = xh for all x = (x1, . . . , xH). Let N be a Poisson point process on Ω :=
(0,+∞)H × (0,+∞)×Θ such that

N =
∑

k≥1

δmk,zk,xk

with intensity

λN (dmdzdx) =

H∏

h=1

f(mh)dmhν
∗(dz)α(dx). (8.15)

Then, the collection of random measures µ∗1, . . . , µ
∗
H defined aw

µ∗h(A) =

∫

Ω
πh(m)zI[x ∈ A]N(dmdzdx) (8.16)

for all measurable A is a compound random measures

Proof. The proof easily follows by writing explicitly (8.16) as

µ∗h(A) =
∑

k≥1

mhkJkδx(A),

observing that the points (Jk, xk) form a Poisson point process with intensity ν∗(dx)α(dx).

Finally, from (8.15) it is clear that mhk
iid∼ f .

We are now ready to prove Theorem 8.1

Proof. Write

E[p̃j(A)] = E
[
µ̃j(A)

µ̃j(X)

]
=

∫

R+

H∑

h=1

E
[
λjhe

−u
∑H
k=1 λjkµ

∗
k(X)µ∗h(A)

]
du

where the second equality follows from writing µ̃j(·) =
∑

h λjhµ
∗(·), the equality t−1 =∫

R+
e−utdu and an application of Fubini’s theorem. By the tower property of the expected

value, we further have

E[p̃j(A)] =

∫

R+

H∑

h=1

E
[
λjhE

[
e−u

∑H
k=1 λjkµ

∗
k(X)µ∗h(A) |Λ

]]
.

Let us consider the inner expected value. Using (8.16) we can write

E
[
e−u

∑H
k=1 λjkµ

∗
k(X)µ∗h(A) |Λ

]
= E

[∫

Ω
g(m, z, x,N)N(dmdzdx)

]

where
g(m, z, x,N) = e−u

∑H
k=1 λjkµ

∗
k(X)πh(m)zI[x ∈ A].
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Observe further that, although not explicitly written, µ∗k(X) is of course a function of N .
By the Campbell-Little-Mecke formula,

E
[
e−u

∑H
k=1 λjkµ

∗
k(X)µ∗h(A) |Λ

]
=

∫

Ω
g(m, z, x,N + δ(m,z,x))λN (dmdzdx)

where λN is as in (8.16). Focusing on the integrand, we have

g(m, z, x,N + δ(m,z,x)) = e−u
∑H
k=1 λjk(µ∗k+πk(m)zδx)(X)πh(m)zI[x ∈ A].

With an abuse of notation, let us denote with f the probability density of the m′hks, so
that

E
[
e−u

∑H
k=1 λjkµ

∗
k(X)µ∗h(A) |Λ

]

=

∫

Ω
E
[
e−u

∑H
k=1 λjkµ

∗
k(X) |Λ

] H∏

k=1

e−uλjkmkzmhzI[x ∈ A]

H∏

k=1

f(mk)dmkν
∗(dz)α(dx)

= α(A)E
[
e−u

∑H
k=1 λjkµ

∗
k(X) |Λ

] ∫

R+

z
∏

k 6=h

∫

R+

e−uλjkmkzf(mk)dmk

×
∫

R+

e−uλjhmhzmhf(mh)dmhν
∗(dz)

= α(A)E
[
e−u

∑H
k=1 λjkµ

∗
k(X) |Λ

] ∫

R+

z
∏

k 6=h
L(uλjkz)κ(uλjhz, 1)ν∗(dz)

= α(A)ψρ(uλj1, . . . , uλjH)

∫

R+

z
∏

k 6=h
Lf (uλjkz)κf (uλjhz, 1)ν∗(dz)

where ψρ is the Laplace transform of (µ∗1, . . . , µ
∗
H) evaluated at the constant functions

uλj1, . . . , uλjH , Lf denotes the Laplace transform of the density f and κf (x, n) :=
∫
e−xmnf(m)dm.

Hence,

E[p̃j(A)] = α(A)

H∑

h=1

∫
E


λjhψρ(uλj1, . . . , uλjH)

∫

R+

z
∏

k 6=h
Lf (uλjkz)κf (uλjhz, 1)ν∗(dz)


du

8.B.4 Proof of Proposition 8.2

Cov [µ̃j(A), µ̃`(B)] = Cov

[
H∑

h=1

λj,hµ
∗
h(A),

H∑

k=1

λ`,kµ
∗
k(B)

]

= E


∑

h,k

(
λjhµ

∗
h(A)− λ̄jhm∗h(A)

) (
λ`kµ

∗
k(B)− λ̄`km∗k(B)

)



=
∑

h,k

E [λjhλ`kµ
∗
h(A)µ∗k(B)]− E[λjhµ

∗
h(A)]λ̄`km

∗
k(B)+

− λ̄jhm∗k(A)E[λ`kµ
∗
k(B)] + λ̄jhλ̄`km

∗
k(A)m∗k(B)

=
∑

h,k

E[λjhλ`k]E[µ∗h(A)µ∗k(B)]− λ̄jhλ̄`km∗k(A)m∗k(B)
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In the most general case, we thus have that

Cov [µ̃j(A), µ̃`(B)] =
∑

h

E[λjhλ`h]E[µ∗h(A)µ∗h(B)]− λ̄jhλ̄`hm∗k(A)m∗h(B)+

∑

h6=k
E[λjhλ`k]E[µ∗h(A)µ∗k(B)]− λ̄jhλ̄`km∗k(A)m∗k(B)

=
∑

h

E[λjhλ`h]Cov(µ∗h(A), µ∗h(B)) + Cov(λjh, λ`h)m∗h(A)m∗h(B)+

∑

h6=k
E[λjhλ`k]Cov(µ∗h(A), µ∗k(B)) + Cov(λjh, λ`k)m

∗
h(A)m∗k(B)

8.B.5 Covariances and Correlations

The case of Gamma(Ψ, 1) scores. Specializing Proposition 8.2 we have

Cov [µ̃j(A), µ̃`(A)] = E[µ∗1(A)2]Hψ2 + (cA +m2
A)H(H − 1)ψ2 −m2

AH
2ψ2

= (Var[µ∗1(A)]H + cAH(H − 1))ψ2

Moreover,

Var[µ̃j(A)] = E[µ∗1(A)2]Hψ(ψ + 1) + (cA +m2
A)H(H − 1)ψ2 −m2

AH
2ψ2

= (Var[µ∗1(A)]H + cAH(H − 1))ψ2 + E[µ∗1(A)2]Hψ

Simple algebra leads to Equation (8.6)

The multiplicative gamma process case. Using standard properties of inverse-gamma
distributed random variables, we get

Cov [µ̃j(A), µ̃`(A)] =

E[µ∗1(A)2]

(
H∑

h=1

(a2 − 1)−h+1(a2 − 2)−h+1

)
(a1 − 1)−1(a1 − 2)−1

(
ν

ν − 2

)2

+ (cA +m2
A)

(
2
∑

h<k

(a2 − 1)−k+1(a2 − 2)−h+1

)
(a1 − 1)−1(a1 − 2)−1

(
ν

ν − 2

)2

−m2
A


∑

h,k

(a2 − 1)−h−k+1


 (a1 − 1)−2

(
ν

ν − 2

)2

and

Var[µ̃j(A)] =

E[µ∗1(A)2]

(
H∑

h=1

(a2 − 1)−h+1(a2 − 2)−h+1

)
(a1 − 1)−1(a1 − 2)−1 ν2

(ν − 2)(ν − 4)

+ (cA +m2
A)

(
2
∑

h<k

(a2 − 1)−k+1(a2 − 2)−h+1

)
(a1 − 1)−1(a1 − 2)−1

(
ν

ν − 2

)2

−m2
A


∑

h,k

(a2 − 1)−h−k+1


 (a1 − 1)−2

(
ν

ν − 2

)2

Note that the only term differing in the expressions of Cov [µ̃j(A), µ̃`(A)] and Var[µ̃j(A)]
is the last factor in the first row.
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8.B.6 Proof of Propsition 8.3

The first point follows directly from the definition of the gamma process. Regarding the
second one, we recall a general expression given in Griffin and Leisen (2017).

Theorem 8.3. [ Mixed moments of CoRMs, (Theorem 6, Griffin and Leisen, 2017)] Let
qh ≥ 0, i = h, . . . ,H such that

∑
h qh = k. Then

E

[
H∏

h=1

(µ∗h(A)qh)

]
=
∏

h

qh!




k∑

j=1

α(A)`




×
k∑

j=1

∑

η,s1,...,sj∈pj(k)

j∏

i=1

1

ηi!

[
H∏

h=1

(φ)shi
shi!

∫
zs1i+···+sHiν∗(dz)

]ηj
(8.17)

where pj(k) is the set of vectors (η, s1, . . . , sj), η = (η1, . . . , ηj), si = (si1, . . . , siH), such

that ηi is positive,
∑
ηi = k, 0 ≺ s1 ≺ · · · ≺ sj and

∑j
i=1 ηi(si1 + · · ·+ cHi) = k.

It suffices to consider the case q = (1, 1, 0, . . . , 0). Then, the problem consists in
understanding how the sets pj(2) are made for j = 1, 2. The only possible vector η in
p1(2) is η = (2). Therefore the only possible s1 is s1 = (1, 0, . . . , 0). Hence the sum over
η, s1, . . . , sj ∈ pj(k) when j = 1 equals to

1

2

[
φ

∫
zν∗(dz)

]2

When j = 2, we have that the possible η’s are (0, 2), (1, 1), (2, 0). Note that the first and

last candidate cannot satisfy
∑j

i=1 ηi(si1 + · · · + cHi) = k for any choice of s. Therefore,
we can consider η = (1, 1), leading to s1 = (0, 1, 0, . . . , 0) and s2 = (1, 0, . . . , 0). Hence
the sum over η, s1, . . . , sj ∈ pj(k) when j = 2 equals to

φ2

[∫
zν∗(dz)

] [∫
zν∗(dz)

]

Finally, observe that when the CoRM has gamma marginals,
∫
zν∗(dz) = B(1, φ), where

B is the Beta function. This concludes the proof.

8.B.7 Proof of Proposition 8.4

Let {En}n be the generators for sl(H). Then

Πsl(H) =
∑

n

tr(XEn)En

It is easy to see that such a set of generators is given by:



⋃

6̀=m
A : Aij = δ`,m(i, j)



 ∪

{
H−1⋃

`=1

A : Ai,i = 1, Ai+1,i+1 = −1

}

which consists of H(H − 1) (first term) plus H − 1 (second term) elements. We call the
two sets above A∗1 and A∗2 respectively.

For numerical purposes, we don’t need to compute the inner product and sum with all
the H2 − 1 elements in the basis. In fact note that when En ∈ A∗1, say En is nonzero only
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in element i, j, tr(XEn)En is a matrix whose only nonzero entry is the j, i-th with value
Xi,j . Therefore ∑

En∈A∗1

tr(XEn)En = (X − diag(X))T ,

where diag(X) is the diagonal matrix with entries equal to the diagonal of X. Similarly,
when En ∈ A∗2, tr(XEn)En is a diagonal matrix whose nonzero entries are the (i, i)-th and
(i+ 1, i+ 1)-th and are equal to ±Xi,i −Xi+1,i+1 respectively.

8.C Slice Sampling Algorithm

Let Tj =
∑

`≥1(ΛM)j`J` and introduce auxiliary cluster allocation variables cj,i (one
for each observation yj,i) as well as auxiliary latent variables Uj such that Uj |Tj ∼
Gamma(nj , Tj). Standard computations lead to the extended likelihood

p({yj,i}, {cj,i}, {uj} | · · · ) =




g∏

j=1

1

Γ(nj)
u
nj−1
j


×

g∏

j=1

nj∏

i=1

f(yj,i | θcj,i)(ΛM)j,cj,iJcj,i × exp


−

g∑

j=1

uj

∞∑

`=1

(ΛM)j,`J`




We further introduces auxiliary slice variables sj,i so that

p({yj,i}, {cj,i}, {uj} | · · · ) =




g∏

j=1

1

Γ(nj)
u
nj−1
j


×

g∏

j=1

nj∏

i=1

f(yj,i | θcj,i)(ΛM)j,cj,iI(sj,i < Jcj,i)× exp


−

g∑

j=1

uj

∞∑

`=1

(ΛM)j,`J`




where I(·) denotes the indicator function. Then, we can devide between active and non-
active components: let L = min sj,i, J

a = {J` s.t. J` > L} and Jna = J \ Ja, we further
denote with k the cardinality of Ja, observe that k is finite almost suerly. Analogously
define Ma the H × k matrix with columns {m` s.t. J` > L} and Mna in a similar fashion.
The likelihood can be rewritten as

p({yj,i}, {cj,i}, {uj} | · · · ) =




g∏

j=1

1

Γ(nj)
u
nj−1
j


×

g∏

j=1

nj∏

i=1

f(yj,i | θcj,i)(ΛM)j,cj,iI(sj,i < Jcj,i)× exp


−

g∑

j=1

uj

k∑

`=1

(ΛMa)j,`J
a
`




exp


−

g∑

j=1

uj

∞∑

`=1

(ΛMna)j,`J
na
`




To compute posterior inference, we need to be able to marginalize over Mna and Jna,
and compute

E


exp


−

g∑

j=1

uj

∞∑

`=1

(ΛMna)j,`J
na
`



∣∣∣Λ


 (8.18)

209



Chapter 8. Normalized latent factor measure models

We manipulate the sum in the exponential to get

exp


−

g∑

j=1

uj

∞∑

`=1

(ΛMna)j,`J
na
`


 = exp


−

g∑

j=1

uj

∞∑

`=1

H∑

h=1

λj,hm
na
h,`J

na
`




= exp


−

H∑

h=1

g∑

j=1

ujλj,h

∞∑

`=1

mna
h,`J

(na)
`




= exp


−

H∑

h=1






g∑

j=1

ujλj,h



( ∞∑

`=1

mna
h,`J

(na)
`

)




So that (8.18) can be computed by virtue of Theorem 1 in Griffin and Leisen (2017),
replacing vj (in their notation) with

∑g
j=1 ujλj,h.

Then, the MCMC algorithm follows the same lines of the slice sampling algorithm in
Griffin and Leisen (2017).

8.D Aligning densities in higher-dimension

Computing the L2 distance between functions is easy when the dimension of the data
space is small, which is always the case in our simulations. In higher dimensional settings,
we suggest instead the following dissimilarity function

d(µ̂, µ′)2 = inf
T∈Γ(µ̂,µ′)

K∑

h,k=1

W 2
2 (f(· | θ̂∗h), f(· | θ′k))Thk

where {θ̂∗h}h and {θ′k}k are the atoms in µ̂ and µ′ respectively, Γ(µ̂, µ′) denotes all the K×K
matrices whose row-sums are equal to the normalized weights in µ̂ and the column-sums
are equal to the normalized weights in µ′.

That is, the distance corresponds to the Wasserstein distance between two atomic
probability measures. The associated ground cost is W 2

2 (f(· | θ̂∗h), f(· | θ′k)) that is the

squared Wasserstein distance between the probability measure with density f(· | θ̂∗h) and
the one with density f(· | θ′k). This choice of ground cost ensures that the specific choice
of the kernel density f is taken into account.

In particular, W 2
2 (f(· | θ̂∗h), f(· | θ′k)) can be easily computed for location-scatter families

of probability densities. Let L denote a generic law of a random variable, and X0 a d-
dimensional random vector with law P0 such that E[‖X‖2] < +∞ and P0 is absolutely
continuous with respect to the d-dimensional Lebesgue measure. Then a location-scatter
family is the set of random variables

{L(Σ1/2X0 + µ), such that Σ is symmetric and positive definite, µ ∈ Rd}

This definition obviously encompasses the popular Gaussian density but also the Student-t,
Laplace, and discrete and continuous uniform distributions among others.

Let f(· |µi,Σi), i = 1, 2 denote the densities of two random variables in the location-

scatter family under consideration. Theorem 2.1 and Corollary 3.12 in Álvarez-Esteban
et al. (2018) entail that

W 2
2 (f(· |µ1,Σ1), f(· |µ2,Σ2)) = ‖µ1 − µ2‖2 + trace

(
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
.

Hence, the proposed distance can be computed exactly. The main computational bot-
tleneck is the computation of the matrix square root. Its exact computation requires
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Figure 8.E.1: Correlation between neighboring µ̃i(A) and µ̃j(A) (top row) and between
disconnected µ̃i(A) and µ̃`(A) for a set A such that α(A) = 0.5 under prior (8.4). From
left to right H = 4, 8, 16. The values of ρ vary across the x-axis in each plot, the values of
τ across the y-axis.

computing the eigendecomposition of the matrix, whose computational cost scales cubi-
cally with the dimension. Otherwise, several approximate iterative algorithms have been
proposed.

8.E Additional Simulations and Plots

Figure 8.E.1 shows the correlation between µ̃j(A) and µ̃`(A) under prior (8.4) above. We
consider a simple setting with three areas i, j, ` such that areas i and j are neighboring
while area ` is not connected to either i and j.

Figure 8.E.2 shows the variance of the ratio rkj` defined in Equation (8.7) under different
priors for Λ. As expected, the variance quickly drops to zero when the λjh’s are i.i.d. as
H increases. The same happens when we assume that Λ follows a shrinkage prior, but the
decay is slower.

Figure 8.E.3 shows the effect of the a priori variance of the λjh’s on the variance of rkj`.

Figure 8.E.4 shows the dendrogram of the hierarchical clustering on the rows of Λ′ on
the Invalsi dataset.

Figure 8.E.5 shows some exploratory data analysis for the US income dataset analyzed
in Section 8.6.2.

Figure 8.E.6 shows the estimates of the latent factor measures for the US income dataset
after the post-processing.
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Figure 8.E.2: Monte Carlo estimate of log rj` as a function of H under different priors:

from left to right, λjh
iid∼ Ga(1, 1), λj = (λj1, . . . , λjH)

iid∼ MGP(2, 1), λj
iid∼ CUSP. The

solid line represents the Monte Carlo average over 1, 000 simulations. The shaded area are
95% confidence intervals.
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Figure 8.E.3: Monte Carlo estimate of log rj` when λjh are i.i.d gamma variables with
mean equal to 1 and increasing variance (x-axis).
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Figure 8.E.4: Dendrogram for the hierarchical clustering with complete linkage on the
rows of Λ′ on the Invalsi dataset.
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Figure 8.E.5: From left to right: histogram of the (log) incomes in five randomly sampled
PUMAs, histogram of the average (log) income across all the PUMAs, average (log) income
displayed in a map
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Figure 8.E.6: Estimates of
∫

Θ f(y | θ)µ′h(dθ)/µ′h(Θ) after post-processing in the US Income
example.
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9. Bayesian Nonparametric Vector Autoregressive Mod-
els via a Logit Stick-breaking Prior an Application to
Child Obesity

In this chapter, based on Beraha et al. (2022), we discuss an application of nonparametric
Bayesian modelling for time series of child growth curves. It is well known that overweight
and obesity in adults are known to be associated with risks of metabolic and cardiovascular
diseases. Because obesity is an epidemic, increasingly affecting children, it is important to
understand if this condition persists from early life to childhood and if different patterns of
obesity growth can be detected. Our motivation starts from a study of obesity over time in
children from South Eastern Asia. Our main focus is on clustering obesity patterns after
adjusting for the effect of baseline information. Specifically, we consider a joint model
for height and weight patterns taken every 6 months from birth. We propose a novel
model that facilitates clustering by combining a vector autoregressive sampling model
with a dependent logit stick-breaking prior. Simulation studies show the superiority of
the model to capture patterns, compared to other alternatives. We apply the model to
the motivating dataset, and discuss the main features of the detected clusters. We also
compare alternative models with ours in terms of predictive performances.

9.1 Introduction

Overweight and obesity are defined as abnormal or excessive fat accumulation that may
impair health (WHO, 2022). It is well-known that overweight and obesity in adults are
associated with risks of metabolic and cardiovascular diseases; see, for instance, Després
et al. (2008), Fox et al. (2007) and Pi-Sunyer (2009). Furthermore, individuals who are
obese and contracted COVID-19 have an increased likelihood to experience a more severe
course of illness (Gao et al., 2020).

Obesity is an epidemic, increasingly affecting children. In 2018, 18% of children in the
United States were obese and approximately 6% were severely obese (Hales et al., 2018).
Prevalence of obesity in children has increased from 4% in 1975 to over 18% in 2016
among children and adolescents aged 5-19 years [WHO, Accessed: 01-06-2021]; see also
Cremaschi et al. (2021). Overweight or obesity in childhood is critical as it often persists
into adulthood due to both physiological and behavioural factors, e.g. (i) adults diet based
on energy-dense foods that are high in fat and sugars and (ii) adult physical inactivity due
to the sedentary nature of many forms of work, changing modes of transportation, and
increasing urbanization. Also for childhood obesity, dietary composition and sedentary
lifestyle have often been cited as main contributors. Evidence also exists for a significant
role of parents’ socioeconomic status and maternal prenatal health factors; see, again,
Cremaschi et al. (2021).

Research on the origins of health and disease suggests that susceptibility to metabolic
disease may originate early in life. Different conditions in maternal uteruses seem to
influence metabolic health by altering glucose metabolism and body composition (Symonds
et al., 2013; Godfrey et al., 2012). Moreover, increased adiposity have been observed in
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school-age children and infants (Nightingale et al., 2010; Whincup et al., 2005; Yajnik
et al., 2002, 2003).

It is therefore important to understand whether obesity persists from early life to
childhood and if different types of obesity growth can be detected. For instance, Zhang
et al. (2019) show that rates of change in Body Mass Index (BMI) at different childhood
ages are differentially associated with adult obesity. Our motivating application is the
study of obesity over time in a dataset of children in South Eastern Asia (see Soh et al.,
2014), taken every 6 months from birth. In particular, we consider jointly their height
and weight. It is known that obesity might increase the risk of metabolic diseases, and
that this risk is higher in Asian populations than in White Caucasian population (Misra
and Khurana, 2011). The aim of this work is first to provide a model that is flexible
enough to represent longitudinal vector responses such as the height and the weight of the
children of the study. Moreover, in this application, it is also crucial to cluster children
according to their obesity patterns, i.e. the longitudinal trajectories. Indeed, uncovering
different types of children obesity growth patterns would identify risk subgroups, which is
a desired byproduct of the analysis, and in case, largely increase the ability of developing
treatments targeted for various population segments. Our approach combines modeling
the obesity growth curves with the flexibility provided by the adoption of a covariate-
dependent Bayesian nonparametric (BNP) mixture prior. The key idea is that model-
based clustering achieved through discrete subject-specific allocation variables should be
driven by prior weights depending on subject-specific covariates, to obtain more similar
clusters. Specifically, we assume a vector autoregressive (VAR) model to represent obesity
growth, including subject-specific VAR parameters, after adjusting for covariates (of both
fixed and time-varying types) available on children as well as mothers. Thus, clustering
the sample of obesity growth curves is equivalent to cluster the VAR parameters. As
mentioned before, the prior that we assume for these parameters is a covariate-dependent
Bayesian nonparametric prior. A preliminary analysis shows that the lag 1 autoregression
assumption is a reasonable approximation, with higher order lags implying no substantial
gain. This is also a simpler and more parsimonious representation than alternatives such
as a mixture of multivariate Gaussian distributions. The model also includes a time-
dependent mean function, or, equivalently, a time-varying covariate which does not vary
with the subject.

In more detail, we assume the children-specific VAR coefficients to be independently
distributed according to a truncated stick-breaking prior with weights that depend on
baseline covariates. This construction induces a prior on the partition of the children in
the sample. Moreover, it allows for potentially empty clusters, in which case the number
of clusters is interpreted as the number of non-empty components in the stick-breaking
representation, i.e. components to which at least one observation is assigned. A BNP
approach is particularly appealing for our application, since comparison with alternative
models shows that a parametric dependence structure is unable to fully capture the data
complexity. Among competitors, we have also included a popular covariate-dependent
prior, the linear dependent Dirichlet process (Linear-DDP); in this case, our prior will be
shown to have a superior performance in terms of standard model metrics.

The dependent stick-breaking prior adopted here can be seen as a finite-dimensional ver-
sion of the logistic stick-breaking process described in Ren et al. (2011). Covariate depen-
dent random probability constructions include the probit stick-breaking process (Chung
and Dunson, 2009; Rodŕıguez and Dunson, 2011). These Bayesian nonparametric random
probability measures stem out from the seminal work by MacEachern (2000) on dependent
Dirichlet processes. See a review of this and related models in Quintana et al. (2022). Co-
variate dependent priors for random partition were first proposed in Müller et al. (2011)
and Park and Dunson (2010).
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VAR models may provide a flexible and powerful representation of longitudinal data,
since they allow a straightforward representation of the covariance matrix of the data
themselves; see, for instance, Canova and Ciccarelli (2004) and Daniels and Pourahmadi
(2002). Bayesian nonparametric methods have been successfully applied to VAR models
in recent years. See Kalli and Griffin (2018) for such a model applied to single subject
data, and Billio et al. (2019) and Kundu and Lukemire (2021) for multiple subject data. In
Billio et al. (2019) the authors propose a Dirichlet process mixture of normal-Gamma priors
on the VAR autocovariance elements, as a Bayesian-Lasso prior. Kundu and Lukemire
(2021) focus on matrix-variate data, providing a class of nonparametric Bayesian VAR
models, based on heterogeneous multi-subject data, that enables separate clustering at
multiple scales, and result in partially overlapping clusters. The temporal trend that we
have imposed in our model derives from the combination of the VAR model, the time-
dependent covariates and/or the mean function of time.

We note that a valid alternative to our VAR approach consists of longitudinal data
models including random and/or fixed functions in time, random effects or latent stochas-
tic processes, or through a combination of functions and robust methods accommodating
without modeling covariance structure. BNP models following this approach include, e.g.
Li et al. (2010), and Quintana et al. (2016); see references therein. Daniels and Pourah-
madi (2002) illustrate the general context of dynamic models representation of longitudinal
data with priors for the associated covariance matrices, for which the class of VAR mod-
els constitutes a particular case. Instead Quintana et al. (2016) present a BNP model
for longitudinal data that includes flexible mean functions and autoregressive covariance
structures. Similarly to our proposal, their clustering is imposed on the autocorrelation
structure across subjects, though cluster estimates are not part of their main inferential
targets.

Our first contribution is the introduction of a Bayesian model that is able to clus-
ter obesity growth patterns combining several characteristics such as a VAR model, a
covariate-dependent BNP prior for the VAR parameters driving the clustering, and the
inclusion of fixed-time and time-varying covariates in the likelihood. Our second contribu-
tion is the design of an efficient Gibbs sampling algorithm to perform posterior inference,
that exploits the recent results on logit stick-breaking priors by Rigon and Durante (2021).
We note that this random probability measure is represented as a finite mixture with H
support points, but unlike the sparse mixture in Frühwirth-Schnatter and Malsiner-Walli
(2019), (i) the weights depend on covariates and (ii) come from a stick-breaking con-
struction, thus implying stochastic dominance of the sequence itself (for a fixed value of
the covariates). As mentioned earlier, our proposal results in a flexible model, for which
posterior simulation is relatively cheap to implement.

Finally, Cremaschi et al. (2021) consider a more complex model in a similar framework,
i.e. they provide a joint model for multiple growth markers and metabolic associations,
which allows for data-driven clustering of the children and highlights metabolic pathways
involved in child obesity. Unlike our approach, they assume a joint Bayesian nonparametric
random effect distribution on the parameters characterizing the longitudinal trajectories
of obesity and the graph capturing the association between metabolites.

The remainder of this paper is structured as follows. Section 9.2 describes the moti-
vating application and introduces a preliminary exploratory analysis to help building the
model. In Section 9.3 we present the finite mixture of VAR models and discuss its main
features. Section 9.4 summarizes the results of three simulation studies carried out to test
and compare posterior inference under possible alternative model formulations. Section 9.5
presents the results from the main application; we also include predictive goodness of fit
to compare with alternative models. Section 9.6 concludes the paper with a discussion.
The Appendix provides further plots (Appendix 9.A) and details on the Gibbs sampler
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algorithm for posterior simulation (Appendix 9.B).

9.2 Child growth dataset

We focus on the analysis of obesity in children from Singapore, particularly on its evolution
over time. As mentioned in the Introduction, it is relevant to understand whether obesity
persists from early life to childhood. Such information is of particular relevance when
designing intervention policy. Section 9.2.1 introduces the data and explains the main
research questions, while Section 9.2.2 contains a short summary of the exploratory analysis
carried out to highlight the main data characteristics. The exploratory analysis is crucial
to drive the choice of covariates and interactions in the linear term and also to inform the
modeling choices adopted later in Section 9.5.

9.2.1 Description of the dataset

We consider data from the Growing Up in Singapore Towards healthy Outcomes (GUSTO)
study, which comprises one of the most carefully phenotyped parent-offspring cohorts with
a particular focus on epigenetic observations; see Soh et al. (2014) for description of the
recruited women and objectives of the cohort study. The data consist of measurements of
child height (or length, depending on the child’s age) in centimeters and weight in kilograms
from periodic visits of 1139 children from birth to the age of seven. We consider only visits
occurred every 6 months, though during the first year of life, infants were visited every 3
months. More specifically, the response vector yit ∈ R2 is given by the measurements of
(length, weight) up to the 12th month of age (t = 3) and (height, weight) from the 18th
month onwards (t = 4, . . . , 14). Besides sex of the child, information is available on the
mother. However, the original sample includes missing observations. More in details, 77
subjects are discarded from the analysis, because only information on the first visit (i.e.
right after birth) is available. Moreover, we discard children with less than two consecutive
visits, and with missing baseline covariates. This leads to a final sample size of N = 766.
Note that we keep children with missing responses, since in our Bayesian framework it is
straightforward to impute these as part of the MCMC. To this end, we simulate the missing
responses from their full conditional distribution at every iteration of the algorithm. See
the MCMC algorithm in Appendix 9.B.

The available baseline covariates in the dataset are:

• age, mother’s age: it ranges from 18 to 46 years.

• parity : number of previous pregnancies carried to a viable gestation by the mother,
ranging from 0 to 5. If parity equals to 0, the child is the first born.

• OGTT fasting Pw26 : oral glucose tolerance test (OGTT) at 24th-26th week of
pregnancy; it varies from 2.9 to 8.7 mg/dL. Mothers are tested after fasting for at
least eight hours.

• OGTT 2hour Pw26 : oral glucose tolerance test at 24th-26th week of pregnancy; it
ranges from 2.9 to 15.1 mg/dL. Mothers are tested two hours after having assumed
a glucose solution containing a dose of sugar.

• ppBMI : pre-pregnancy body mass index of the mother; values in the sample range
from 14.6 to 41.3 Kg/m2.

• GA: gestational age in weeks, i.e. the length of the pregnancy (from 28 to 41.4 in
the dataset).
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• sex : sex of the child.

• Mother’s ethnicity : Chinese, Malay or Indian with proportions reflecting those char-
acterising the Singaporean population.

• Mother’s highest education: it is a categorical variable with three ordered levels.
Level 1 corresponds to no education or primary school, level 2 corresponds either
to primary school, GCE (Singapore-Cambridge general certificate of education (O-
level)) or ITE NTC (institute of technical education, national technical certificate)
and level 3 corresponds to university degree.

The main goal of the analysis is to understand differences in obesity growth patterns
among ethnic groups via the construction of clusters of individuals exhibiting different
profiles. At the same time we are also interested in assessing the effect of sex, parity and
gestational age of the children on the development of obesity (Tint et al., 2016). Sex, age
and parity have been reported in the medical literature as associated to neonatal adiposity.
Girls are known to have greater adiposity than boys even at birth (Simon et al., 2013;
Fields et al., 2009; Rodŕıguez et al., 2004). Increasing parity is associated with increasing
neonatal adiposity in Asians as well as in Western populations (Joshi et al., 2005; Catalano
et al., 1995). Gestational age and postnatal age have also been shown to be associated
with increasing weight and adiposity (Simon et al., 2013; Catalano et al., 1995). Other
important factors relating to the mother are the results of the glucose tolerance test and
pre-pregnacy body mass index, since metabolic diseases are heritable, though they do
not necessarily lead to obesity (CDS, 2018); see also, for instance, Qasim et al. (2018).
Since obesity might also be related to family nutritional habits, we include in the model
education as proxy for the family socioeconomic status.

In the next subsection we present an exploratory data analysis, which will drive the
choice of interactions between the covariates described above.

9.2.2 Exploratory data analysis

The three main ethnic groups in Singapore are Chinese, Malay and Indian. Their sample
frequencies in the dataset, 56%, 26% and 18%, respectively, are consistent with the overall
population distribution.

In Figure 9.2.1 we plot the sample correlation of the numerical covariates. We find that
the largest correlation (equal to 0.42) is between OGTT fasting and OGTT 2h.

To understand the relationship between categorical and continuous covariates, Fig-
ure 9.2.2 shows histograms of each continuous covariate, stratified by each categorical
covariate level. There appears to be a linear trend between parity and age, which is to be
expected, and also between parity and ppBMI. Additionally, the distribution of mother’s
age is concentrated on smaller values for Malay and Indian ethnicity, compared to Chinese
women. No other association is detectable between categorical and continuous covariates.

In Appendix 9.A we show the unidimensional scatterplots of the responses (height
and weight) at time t = 0, 1, 2 versus the continuous covariates, with the goal of iden-
tifying effect of these covariates, which are time-homogeneous (recorded at baseline), on
the responses (time-varying). For categorical covariates we plot by boxplots of the re-
sponses stratified by level. See Figure 9.A.1-9.A.2 (in the Appendix), which display a
time-increasing response patterns, though there does not seem to be a clear dependence
of weight and height on the covariates.

Figure 9.2.3 shows the scatterplots of the children’s height (left) and weight (right) at
lag 1, i.e. we plot sample points (yit, yit+1) for all t and all subject i for both responses
y. We identify two sub-groups in both plots, corresponding to newborns and infants
(the group of datapoints on the left bottom corner) and older children. For the latter
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Figure 9.2.1: Sample correlation between numerical covariates in Section 9.2.1

the autoregressive assumption is very clear, while for the infant group, as expected, the
linearity assumption is not strong, though it could be used as first approximation.

As such, we propose a VAR model with lag 1 for the responses. Moreover, we include in
the analysis the time-homogeneous covariates zi and a function of time, xit =

√
t, as time-

varying covariate in the model, to account for a global growth trend over time. No other
time-varying covariate is available in the dataset. Other alternative mean functions of time
could be considered, but this one is enough to explain the trend of weight and height in the
empirical age range. We also consider interaction terms between (i) the mother’s highest
education and age, and (ii) ethnicity and sex of the child. Finally, denoting by X : Y
the interaction term between X and Y , we include the following covariates in the model:
(1) an intercept, (2) age, (3) parity, (4) OGTT fasting Pw26 (in what follows referred to
as OGTT fasting), (5) OGTT 2h Pw26 (in what follows referred to as OGTT 2h), (6)
ppBMI, (7) GA, (8) education1:age (9) education2:age,(10) education3:age, (11) parity:age,
(12) Indian, an indicator variable, equal to if the mother is Indian and zero otherwise, (13)
Malay an indicator variable, equal to 1 if the mother is Malay and zero otherwise, (14)
Male:Chinese indicator variable equal to 1 for a male child born to a Chinese mother, (15)
Male:Indian indicator variable equal to 1 for a male child born to an Indian mother and
(16) Male:Malay indicator variable equal to 1 for a male child born to a Malay mother.

The baseline category for the categorical covariates corresponds to a female child born to
a Chinese mother. As final pre-processing step, we standardize each numerical covariate at
baseline by subtracting their sample mean and dividing by the sample standard deviation.

In summary, the Child Growth dataset contains information on N = 766 children, k = 2
responses, p = 1 time-dependent covariate (that is

√
t) and a q = 14-dimensional design

matrix for time-homogeneous covariates (including intercepts, interactions and dummy
variables to represent categorical covariates).
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Figure 9.2.2: Boxplots of numerical variables (by column) for each level of the categorical
variables (by row).

9.3 The VAR model and the logit stick-breaking prior for the VAR
parameters

Our motivating application requires the development of statistical methodology able to
describe the evolution of a k-dimensional response vector Yit for individuals i, i = 1, . . . , N
recorded at discrete time points t, t = 1, . . . , Ti, accounting for time-varying covariates
xit and time-homogeneous covariates zi, measured at the baseline. Motivated by the
exploratory analysis in Section 9.2, we assume:

yit = Φiyit−1 +Bxit + Γzi + εit, εit
iid∼ N (0,Σ), t = 1, . . . , Ti, i = 1, . . . , N, (9.1)

where Φi = [Φijl] is a k × k matrix of autoregression coefficients, xit is a p−dimensional
vector of time-varying covariates, zi is a q−dimensional vector of time-homogeneous co-
variates, B = [bjl] and Γ = [γjl] are k × p and k × q matrices of regression coefficients,
respectively. For ease of explanation, we vectorize matrices Φi, B and Γ. Specifically,
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Figure 9.2.3: Scatterplots of Singapore children’s height (left) and weight (right) at lag 1,
i.e. of the sample points (yit, yit+1), for t = 1, . . . , Ti − 1 and i = 1, . . . , N for response y;
color corresponds to the age in the colorbar

denoting with (·)T the transpose of a column vector, we introduce the following notation

ϕi = (Φi11, . . . ,Φi1k,Φi21, . . . ,Φi2k, . . . ,Φik1, . . . ,Φikk)
T

b = (b11, . . . , b1p, b21, . . . , b2p, . . . , bk1, . . . , bkp)
T

γ = (γ11, . . . , γ1q, γ21, . . . , γ2q, . . . , γk1, . . . , γkq)
T ,

so that ϕi, b and γ are vectors with k2, k × p and k × q elements (vectorization of the
matrices Φi, B,Γ, respectively). We assume yi0 = 0, that is, conditionally to the remaining
parameters, yi1 has a Gaussian distribution with mean Bxi1+Γzi. Alternatively, we could
consider the responses at baseline as exogenous. Moreover, different initial distribution
could be specified. We assume that a priori (Φ1, . . . ,ΦN ), b, γ and Σ are independent. As
random effect distribution we assume a Bayesian nonparametric prior which depends on
the baseline covariates. Specifically, we assume that

Φi | zi ind∼
H∑

h=1

wh(zi)δΦ0h
i = 1, . . . , N. (9.2)

and we impose a stick-breaking construction on the weights wh. As such, equation (9.2)
defines a truncated stick-breaking prior with H support points {Φ0h} and covariate-
dependent weights summing to 1. Similarly to Rigon and Durante (2021), we assume that
the weights are generated via a logit stick-breaking construction, that is, w1(zi) = ν1(zi),

and wh(zi) = νh(zi)
∏h−1
l=1 (1− νl(zi)) for h = 1, . . . ,H − 1, and νH(zi) = 1. The depen-

dence on the covariates zi is introduced by assuming a logistic model for νh(zi):

logit(νh(zi)) = zTi αh, h = 1, . . . ,H − 1

αh
iid∼ Nq(µα,Σα), h = 1, . . . H − 1

(9.3)

An equivalent formulation of (9.2) can be obtained by introducing auxiliary variables ci’s
(usually referred to as cluster allocation indicators) such that

ci | zi,α ∼ Categorical ({1, . . . ,H};w(zi)) ,

and letting Φi = Φ0ci . The introduction of the ci’s allows us to make a fundamental
distinction between mixture components and clusters. In the following, we refer to any
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of the Φ0h’s as a component, while we call a cluster of observations a (nonempty) set
{i : ci = h}; see, for instance, Argiento and De Iorio (2022). The marginal prior (9.2) -
(9.3) is represented by a finite, though large number of parameters, and can be regarded
as the truncation of a dependent Bayesian nonparametric prior.

We complete the prior specification with the marginal parametric prior distributions of
b, γ and Σ:

b ∼ Nkp(0,ΣB), γ ∼ Nkq(0,ΣΓ), Σ−1 ∼ W(Σ0, ν), (9.4)

where W(Σ0, ν) denotes the Wishart distribution with expectation equal to νΣ0 for ν >
p− 1.

To obtain more robust inference, we assume a hierarchical prior for the ϕ0h’s:

ϕ0h|ϕ00, V0
iid∼ Nk2(ϕ00, V0), h = 1, . . . ,H (9.5)

ϕ00, V0|ϕ000, λ, V00, τ0 ∼ NIW(ϕ000, λ, V00, τ0). (9.6)

In (9.6), NIW(ϕ000, λ, V00, τ0) denotes the normal-Inverse Wishart distribution, i.e. V0 ∼
IW(τ0, V00) and ϕ00 |V0 ∼ N (ϕ000, λ

−1V0), where IW(τ0, V00) denotes the inverse-Wishart
distribution defined over the space of k2×k2 symmetric and positive definite matrices with
mean V0/(τ0 − k2 − 1).

Posterior inference is performed through a Gibbs sampler algorithm, as detailed in Ap-
pendix 9.B. However, it is worth noting that the full-conditional of the weights parameters
{αh} in Equation (9.3) can be derived in closed-form with the introduction of auxiliary
variables, using results in Polson et al. (2013) and Rigon and Durante (2021). The full
conditional distributions of b and γ are derived as in a standard multivariate Bayesian
linear regression models. The full conditionals of the atoms {Φ0h} in the stick-breaking
prior (9.2) are given in the blocked Gibbs sampling of Ishwaran and James (2001).

The code has been implemented in C++ and linked to Python via pybind11 (Jakob
et al., 2017).

9.4 Simulation study

We now present a simulation study to compare the performance of the proposed approach
in (9.2)-(9.3) versus a similar model but assuming the Φi’s to be generated as independent
and identically distributed from a Dirichlet Process (DP, Ferguson, 1973) which is arguably
the most popular Bayesian nonparametric prior (see, e.g. Müller et al., 2015).

We consider three different simulation scenarios. In scenarios (I) and (II) the responses
are simulated from (9.1), while in scenario (III) we simulate each εitj in εit = (εit1, . . . , εitk)
from a student-t distribution with mean 0 and 5 degrees of freedom, so that our model is
then misspecified. Of course, other kind of misspecifications are possible, for instance, we
could generate data from an autoregressive process with a larger lag, but this would lead
to much poorer results for any model with our likelihood. Summing up, though scenario
(I) and (II) simulate points from the same conditional distribution we assume for our
model, they differ (see below) by the true number of clusters and the simulated covariates
(well separated only in scenario (I)). Scenarios (I) and (II) were designed to (i) check the
algorithm and the code, (ii) check the ability of the model to detect the right number
of clusters, while scenario (III) tests the ability of the models (ours and the competitor)
when the model is misspecified. The two models are tested computing out-of-sample and
in-sample prediction errors, as well as adjusted Rand Index between the estimated and
true partition of the sample.

For all scenarios, we simulateN = 300 independent trajectories, namely yi = (yi1, . . . ,yiTi),
with Ti = 10 for all i, assuming each yit to be a three-dimensional vector (i.e., k = 3).
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Figure 9.4.1: Fixed time covariates for scenario (II)

Moreover, we always set B = 0, Γ = 0 in the data generating process. In all the scenar-

ios, for each item i, we simulate Φi from a discrete mixture, Φi
iid∼ ∑3

j=1 πjδφ̄j , where the

φ̄j ’s are given in (9.7) (see here below). Then, conditionally to Φi we generate the time-
homogeneous covariate vector zi. In scenarios (I) and (III) the weights (π1, π2, π3) are set
equal to (0.5, 0.5, 0), zi |Φi = φ̄1 ∼ N2((−3,−3), I2) and zi |Φi = φ̄2 ∼ N2((3, 3), I2)

φ̄1 =




1.1, 0.0, 0.0
0.0, 1.1, 0.0
0.0, 0.0, 1.0


 , φ̄2 =




1.1,−0, 1, 0.0
−0.1, 1.1,−0.1

0.0, 0.0, 0.9


 , φ̄3 =




0.9,−0, 1, 0.0
−0.1, 1.1,−0.1
−0.1, 0.0, 1.5


 , (9.7)

while in scenario (II) the weights are (0.25, 0.25, 0.5) and the simulated time-homogeneous
covariates are reported in Figure 9.4.1. Observe that while in scenario (I) and (III) the
covariates in the different clusters are clearly separable, this is no longer the case in scenario
(II). Finally, in scenarios (I) and (II) we fix Σ = 0.25I in (9.1), while in scenario (III) the
error terms are generated from a student-t distribution as previously explained.

In the simulations, we set the hyperparameters in (9.6) as follows: Φ000 = 0, λ = 0.1,
V00 = I9, τ0 = 11. Moreover, we fix Σ0 = I3/ν and ν = 5 (see (9.4)), so that Σ−1 has
prior mean equal to I3. For our model, we further assume µα = 0, Σα = I9, ΣB = I2

and ΣΓ = I18; see (9.3)-(9.4). For the alternative Dirichlet process prior on the Φi’s, we
consider the truncated stick-breaking approximation (Ishwaran and James, 2001), with
total mass parameter equal to 1. For both priors the number of atoms H is set equal to
25.

We assess predictive performance of both models through out-of-sample prediction and
l-steps ahead in-sample prediction for observed samples. In the first case (later referred to
as OOS), for all scenarios, we generate a new test set of size 300 following the same data
generating process outlined above, while in the second experiment (INS) we randomly pick
100 of the 300 trajectories generated and ‘truncate’ them at T = 5. In the first setting,
the goal is to predict the whole time trajectory given responses at time 1.

We expect our model under prior (9.2)-(9.3) to perform much better than when Φi are
iid from the Dirichlet process, since our model can assign data to clusters based on their
time-homogeneous covariates, while the DP prior cannot. In the second setting, the goal
is to predict l = 5 steps in the future, i.e. predict yi6, . . . ,yi10, for the 100 truncated
trajectories. Observe that in this case, we condition on the cluster membership inferred
through the MCMC simulation, so that the fixed time covariates are not used to assign
trajectories to clusters. As such, we expect the DP prior to have better predictive perfor-
mance than our model since the number of parameters is considerably smaller compared
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Scenario (I) Scenario (II) Scenario (III)
LSB DP LSB DP LSB DP

OOS 7.5± 6.6 65.41± 58.8 5.8± 3.3 41.9± 23.5 91± 141 623± 1604
INS 3.45± 3.12 3.43± 3.02 3.9± 8.4 4.0± 8.5 60.7± 114 60.4± 113
ARI 1.0 1.0 0.98 0.9 1.0 1.0

Table 9.4.1: Simulated dataset: out-of-sample (OOS) and in sample (INS) mean squared
prediction errors and Adjusted Rand Index (ARI) for our model (LSB) and the Dirichlet
Process prior for Φi’s parameters (DP).

to our model. Finally, we also consider the quality of the estimated random partition
of the subjects/datapoints, by computing the Adjusted Rand Index (Hubert and Arabie,
1985) between the point estimate of the partition, obtained by minimizing the Binder loss
function with equal missclassification cost (see, e.g., Lau and Green, 2007), based on the
MCMC samples and the true partition given by the data generating process.

Goodness-of-fit indices shown in Table 9.4.1 confirm our expectations for the out-of-
sample testing setting(OOS), that is the proposed approach (denoted in the table as LSB,
logit stick-breaking) outperforms the DP prior in terms of mean squared prediction. It is
clear that for the in-sample predictions both models performs similarly. Note that our
model has a slightly better accuracy in terms of clustering for setting (II). This is likely
due to the fact that clustering estimation is based also on covariate information and not
only on response patterns. The posterior distribution from the DP model favours a larger
number of clusters to better approximate the heavy tails of the error’s distribution.

Figure 9.4.2 shows posterior predictive distributions for both priors under comparison,
considering both out-of-sample and in-sample predictions for scenario (I). We can see that
in the OOS case the credible bands for the DP prior are very wide, while those under our
model are much narrower. Further, in the INS case, both models display better predictive
performance and narrower credible bands.

Finally, we simulate a new dataset under scenario (I), but fixing φ̄2 = 0 so that the
corresponding trajectories are well separated; we note that there is no substantial difference
in posterior inference. Figure 9.4.3 reports kernel density estimates from the MCMC
sample of the predictive distribution of Φi for scenario (I), for three new observations with
time-homogeneous covariates equal to (−3, 0), (3, 0) (which coincide with the means of
the first and the second group of simulated data) and (0, 0) respectively. Note that the
predictive distribution associated to covariate vector equal to (0, 0) (reported in green in
Figure 9.4.3) is bimodal, giving almost equal mass to values near φ̄1 and φ̄2.

This simulation study shows that the proposed models based on a covariate dependent
prior outperforms non-dependent alternative prior in terms of prediction. Moreover, also in
terms of clustering structure recovery, the covariate dependent prior gives better estimates
in case of heavy tail data.

9.5 Child Growth data

In this section we present posterior results for the Child Growth dataset, detailing prior
specification (Section 9.5.1) and inference (Section 9.5.2). In the latter case we include
a comparison between our prior and the linear-DDP prior, and also with a parametric
counterpart of our model. As a reminder, the dataset contains information on N = 766
children with k = 2 responses, height and weight of the children over time; see Section 9.2.1
for more details.
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Figure 9.4.2: Posterior predictive distributions for both priors under comparison, consid-
ering both out-of-sample and in-sample predictions for scenario (I). We show predictive
density estimates and credible intervals using our model (top row) and the DP prior (bot-
tom row) for a new subject i. In each panel, the solid blue lines denote the observed
trajectory. The OOS prediction (i.e. given zi and yi1) is shown in orange, while the INS
prediction (i.e. given yi5 and the cluster label ci) is shown in green. Solid lines correspond
to the median for each time while dashed lines correspond to 95% credible bands of the
predictive distributions.

9.5.1 Prior elicitation

Given the complexity of the model and the high-dimensionality of the dataset, prior elicita-
tion needs to be carefully considered. Preliminary analysis shows that when the variances
of the αh’s (see (9.3)) or of the atoms Φ0h’s (see (9.5)) in the logit stick-breaking are large,
then all the observations tend to be assigned to the same component. Moreover, the miss-
ing data simulation step has a strong impact on posterior inference. In particular, when
using the vague prior described above, in the initial iterations of the MCMC algorithm,
typically large missing values were imputed (e.g. 105) since both Σ and {Φ0h} would take
on unusually large values. Consequently, sampled values for all the other parameters are
affected, leading to a poor fit. Hence the use of an uninformative prior is not advisable,
causing poor mixing and slow convergence of the chain. Moreover, this is a common sit-
uation in complex hierarchical models when non-informative priors are adopted in lower
levels.

As such, we opt for informative priors. To set the hyperparameters in the hierarchical
marginal prior in (9.5)-(9.6), we first obtain the maximum likelihood estimator from a
vector autoregressive model:

yit |yit−1 ∼ N (Φyit−1,Σ), t = 1, . . . T − 1, i = 1, . . . , N (9.8)

which corresponds to (9.1) when B and Γ are set to zero (their prior expected value) and

H = 1. We fit (9.8) using only subjects with no missing responses. Let Φ̂, Σ̂ denote the

maximum likelihood estimator for Φ and Σ respectively. We fix Φ000 = Φ̂, λ = 1, and
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Figure 9.4.3: Predictive distributions of Φnew
i corresponding to three subjects with fixed-

time covariates equal to (−3, 0) (blue) (3, 0) (orange) and (0, 0) (green), respectively.

select (V00, τ) in (9.6) so that E[V0] = I and Var[{V0}ii] = 1.5. Similarly, we fix Σ0 and ν

in (9.4) so that E[Σ] = Σ̂ and Var[{Σii}] = 10.
The variance hyperparameter Σα in (9.3) also has an important effect on posterior

inference. To set this quantity, we look at the prior distribution of the number of clusters
(i.e. occupied components) and of the size of the largest cluster. To this end, we perform
Monte Carlo simulations. Specifically, we fix the number of components H in the stick-
breaking prior equal to 50, set Σα = σ2

αI, and simulate α1, . . . , αH−1 from (9.3) with
µα = 0. Then, for each of the N = 766 subjects, we compute the associated weights
w(zi) from the logit stick-breaking process, using observed covariates zi, and allocate each
subject to one of the H components with probability given by the weights w(zi). The
above procedure is repeated independently for M = 10, 000 iterations and we record the
number of clusters and the size of the largest cluster. Figure 9.5.1 shows the distributions
obtained from the Monte Carlo simulation. As σ2

α increases, the number of clusters shrinks
to 1 and the size of the largest cluster increases accordingly. Hence, we fix σ2

α = 5 so that a
priori we should expect approximately 4− 7 clusters. Finally, we assume µα = 0, ΣB = I2

and ΣΓ = I18 (see (9.4)); recall that all continuous covariates are standardized.

9.5.2 Posterior inference results

We apply the model described in Section 9.3 to the Child growth dataset with hyperpa-
rameters set as in Section 9.5.1. Recall (Section 9.2.2) that the model includes p = 1
time-dependent covariate (that is

√
t) and a q = 14-dimensional design matrix for time-

homogeneous covariates (including intercepts, interactions and dummy variables to repre-
sent categorical covariates). We run the MCMC algorithm for 100, 000 iterations, discard-
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Figure 9.5.1: Prior distribution of the number of clusters (left panel) and of the size of the
largest cluster as percentage of the whole dataset (right panel), for different values of σα.

ing the first 50,000 as burn-in and thinning every 10 iterations, obtaining a final sample
size of 5,000 iterations.
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Figure 9.5.2: Child Growth dataset: posterior distribution of the number of clusters.

Figure 9.5.2 shows the posterior distribution of the number of clusters, i.e. of occupied
parametric components, that is clearly centered around 10-12 clusters. However, inter-
preting these as the ‘number of distinct profiles’ in the y’s may be misleading. Recall
that we have specified a covariate-dependent prior for the random partition of patients.
Indeed, some clusters can be essentially identical when looking at the response trajectories
but different when looking at the covariates. As a point estimate of the latent partition,
we choose the one that minimises the Binder loss function under equal misspecification
costs (Binder, 1978). The estimated partition consists of seven clusters, of which only
four contain at least 15 observations. In Figure 9.5.3 we display the response trajectories
clustered according to the estimated partition. Note that the fourth cluster (bottom row)
consists of subjects with at most three visits, except for one single subject with four visits.
For this reason, we do not discuss this cluster. Figure 9.5.3 shows the time trajectories
for patients’ height (first column), weight (second column) and BMI. The third row in
Figure 9.5.3 shows that this cluster contains children with lower weight, and consequently
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lower BMI than the other two clusters.
As already mentioned, the main three clusters could differ either in the responses or

in the covariates (or both). To better understand what discriminates the three main
clusters, we perform homogeneity tests for the equality in distribution of both responses
and covariates in the different clusters. The results should be considered as a descriptive
tool. In particular, for the responses we consider the data on both height and weight at each
visit separately and test the equality of the distributions for each pair of clusters. For each
of the covariates, we test the equality of their distributions in each possible pair of clusters.
For the response variables and continuous covariates, we employ the Kolmogorov-Smirnov
(KS) test for equality in distribution and the Pearson’s chi- squared test of homogeneity
for the categorical covariates. Table 9.5.1 reports the p-values associated to the KS test
for the responses, while Figure 9.5.4 shows the cluster specific empirical distribution of the
covariates. From Table 9.5.1 and Figure 9.5.4, it is clear that clusters 2 and 3 (second and
third rows in Figure 9.5.3, respectively) are similar in terms of both responses at each time
point. However, Figure 9.5.4 (bottom row) suggests that the three main clusters cannot
be explained only in terms of ethnicity, even though cluster 3 contains almost exclusively
Chinese children.

Height Weight
Clusters (1, 2) (1, 3) (2, 3) (1, 2) (1, 3) (2, 3)

t = 1 0.023 0.000 0.025 0.002 0.296 0.606
t = 2 0.000 0.023 0.999 0.000 0.000 0.785
t = 3 0.000 0.003 0.797 0.000 0.013 0.815
t = 4 0.000 0.000 0.000 0.000 0.253 0.620
t = 5 0.046 0.004 0.044 0.000 0.197 0.386
t = 6 0.000 0.051 0.701 0.000 0.241 0.254
t = 7 0.003 0.113 0.878 0.000 0.431 0.375
t = 8 0.000 0.072 0.733 0.000 0.210 0.718
t = 9 0.000 0.106 0.984 0.000 0.196 0.715
t = 10 0.000 0.112 0.869 0.000 0.341 0.717
t = 11 0.000 0.213 0.726 0.000 0.244 0.854
t = 12 0.000 0.165 0.877 0.000 0.125 0.932
t = 13 0.000 0.179 0.993 0.000 0.042 0.811

Table 9.5.1: P-values of the homogeneity tests for the equality in distribution at every
visit for each pair of clusters, considering height and weight. Bold numbers correspond to
p-values lower than 5%

Next we consider the two parameters in B, i.e. the regression parameters for the
square root of time t for the two responses; see (9.1). The posterior means are 5.55, 0.96,
respectively, with marginal standard deviations 0.02, 0.01, thus indicating a non-negligible
growth trend for both height and weight, as expected. Figure 9.5.5 displays posterior cred-
ible intervals for all the parameters in Γ defined in (9.1), that is the regression coefficients
corresponding to the time-homogeneous covariates. The reference group for the categorical
covariates has been set such that the baseline level is for a Chinese female child; see Sec-
tion 9.2.2. Covariates such as OGTT 2h, ppBMI, the interaction between education and
age, ethnicity (Malay) and the interaction between sex and ethnicity have the strongest
effects on height. On the other hand, parity, OGTT 2h, ppBMI, the interaction between
education and age (but only the second level of education) and the interaction between
sex and ethnicity have a strong association with weight. It is clear from Figure 9.5.5 that
most of the posterior mass for the marginal distribution of ethnicity is concentrated on

228



Chapter 9. BNP-VAR

0 5 10

50

75

100

125

Height

0 5 10
0

20

40

Weight

0 5 10
10

15

20

25

BMI

0 5 10

50

75

100

125

0 5 10
0

20

40

0 5 10
10

15

20

25

0 5 10

50

75

100

125

0 5 10
0

20

40

0 5 10
10

15

20

25

0 1 2 3

50

75

100

125

0 1 2 3
0

20

40

0 1 2 3

10

15

20

Figure 9.5.3: Subject trajectories of height (first column), weight (second column) and
BMI (third column) by estimated cluster (by row). The figure reports only the four
largest clusters out of the seven estimated.

positive values. Correcting for the autoregressive effect, we see that ethnicity might im-
pact obesity as Indian and Malay children are characterised by a larger posterior expected
weight, combined in some cases with a lower posterior expected height. Moreover, also
correcting for the autoregressive effect, our analysis shows that the posterior expected
height of a Chinese male child is larger than the reference (Chinese female child). Similar
comments can be made, for instance, regarding Indian male children being smaller than
Indian female children, and so on.

Mother’s age and gestational age do not have a strong effect on the child’s height
and weight, though this might be due to the fact that these variables are associated
with ethnicity; see Figure 9.2.2. It is known from the literature that increasing parity is
associated with increasing neonatal adiposity in Asian and Western populations (see Tint
et al., 2016); this is confirmed by the marginal posterior distribution of the parameter
corresponding to the effect of parity on weight in Figure 9.5.5.

The zi covariates play also a key role in defining the stick-breaking prior as seen from
(9.3). To assess if the proposed covariate-driven stick-breaking prior provides significant
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Figure 9.5.4: Empirical distribution of the covariates in each cluster. The three numbers
below each plot represent the p-values for the homogeneity tests for covariates in clusters
(1, 2), (1, 3) and (2, 3), respectively.

advantages over more standard models, we compare it with three possible competitors. The
first one is the parametric version of our model obtained by setting H = 1. The second
model assumes a truncated Dirichlet process as a prior for Φi’s, with H = 50, similarly to
what is done in Section 9.4. Moreover, as third competitor prior, we assume that the Φi’s
take into account information from the time-homogeneous covariates through the atoms
Φ0h’s. Specifically, the prior for Φ is specified as in (9.2), but for each h = 1, . . . ,H we
define a matrix Ωh ∈ Rk2×q and we let vec(Φ0h(zi)) =: ϕ0h(zi) = Ωhzi. The weights w in
(9.2) do not depend on the value of zi (i.e., wh(zi) = wh) and follow a truncated Dirichlet
process prior with H = 50. This model can be seen as a finite dimensional approximation
of the Linear-DPP in De Iorio et al. (2004).

For all the models, we match the prior for B, Γ, Σ and, when possible also H and the
marginal prior distribution of Φ0h. For the Linear-DPP we assume that the vectorization
of the Ωh’s are independent and identically distributed multivariate Gaussian random vari-
ables with mean zero and identity covariance matrix. Since the full conditional distribution
of the Ωh’s in the case of the Linear-DPP prior does not belong to a known parametric
family, we update them via an adaptive Metropolis Hastings (Andrieu and Thoms, 2008)
step.

The different models are compared using widely applicable information criterion (WAIC,
Watanabe, 2013). Higher values of WAIC correspond to better predictive performances.
We marginalize the missing values from the predictive distribution of the response trajec-
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Figure 9.5.5: Posterior credible intervals of the regression coefficients in Γ for the height
(left plot) and weight of the children (right plot). Thin lines correspond to 95% credible
intervals, while thick lines to 80% credible intervals.

tory and consider just the marginal predictive distribution for the non-missing values. We
found that WAIC is equal to −3.4× 106 for the Linear-DDP, −6.7× 105 for the paramet-
ric model, −3.9 × 105 for the DP model and −3.4 × 105 for our model, confirming that
our model performs better than the competitors. Moreover, we report that the MCMC
algorithm for the Linear-DDP requires a much larger number of burn-in iterations (105

vs. 104) than the other models to reach satisfactory convergence, and that the expected
number of cluster a posteriori in the Linear-DPP is around 42. It is then clear that (i)
assuming linear dependence of the fixed-time covariates in the autoregressive parameters
matrices Φi does not give good predictive fit (or at least not better than our model), and
that (ii) adding covariate information in the stick-breaking prior improves the prediction
performance.

9.6 Summary

The aim of this manuscript is to cluster children according to obesity growth patterns.
Obesity is an epidemic, increasingly affecting children. Overweight or obesity in child-
hood may be critical as they often persist into adulthood due to both physiological and
behavioral factors.

Motivation for our study stems from a child growth dataset. To analyze these data we
developed a Bayesian nonparametric VAR joint model for height and weight profiles for
these children. One key aspect behind the modeling choice was to cluster the corresponding
joint time-evolving profiles using the available covariate information. The model features
a logit stick-breaking construction that can accommodate covariate dependence in the
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mixture weights. This allows us to relate certain baseline conditions of these children,
such as sex or ethnicity, to obesity patterns. Ethnic differences in obesity are of interest
as they could be due to genetic factors, dietary intake, cultural or socioeconomic factors.
The analysis allowed us to identify important clusters of children that are characterized
by differences in the trajectories or in the covariates or both.

Posterior inference was carried out by means of an efficient posterior simulation that
exploits recently developed results on logit stick-breaking priors, which facilitates postulat-
ing covariate dependence in the mixture weights. For this implementation we chose to fix
a sufficiently large number of components from which we focused on the number of these
that were actually occupied (we referred to these as clusters). The results obtained were
compared against competitor models, and we found that our approach provides superior
performance as measured by standard quantities such as the WAIC.

An interesting characteristic of our model is that, though it clusters the obesity patterns
of the children in the study, when we aim at interpreting the estimated clusters in terms
of ‘number of distinct profiles’ in the responses, we should also take into account that the
prior we assume for the random partition of the sample subjects is covariate-dependent. In
fact, some of the estimated clusters are similar when looking at the response trajectories
but different in terms of the associated covariates. We consider this aspect as an advantage
of our model (and all models with covariate-dependent prior for the random partition),
that allows for greater flexibility for clustering, rather then an inadequacy.

Given the goal of clustering the children obesity patterns using extra information on
children and their mothers, we have made specific choices for the different parts of the
models, i.e., AR structure in the likelihood, the mean temporal trend, the interactions
in the linear regression term, the BNP prior for clustering. In particular, the logit stick-
breaking Bayesian nonparametric prior exploits the potential and interpretability of logistic
regression (wrt linear dependent Dirichlet process or probit stick-breaking priors) combined
with recent computational schemes by Rigon and Durante (2021).

Finally, we mention that in building the proposed model, several sensible alternative
options could have been adopted. Some of them were discussed throughout the manuscript.
Nevertheless, the preliminary and exploratory analysis, together with the predictive checks
carried out confirm that our modeling choices are reasonable for the data under consider-
ation.
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Appendix

9.A Further plots

We show the scatterplots of the responses (height and weight) at time t = 0, 1, 2 versus all
continuous covariates at the baseline of the dataset on obesity for Children in Singapore.
When the covariate we consider is discrete, scatterplots are replaced by boxplots. The
left column of Figure 9.A.1 reports scatterplots or boxplots of the height at time t = 0,
while the left column of Figure 9.A.2 reports similar plots for the weight at time t = 0.
The central and right columns of Figures 9.A.1 and 9.A.2 display the same plots of the
responses at time t = 1 and 2.

9.B Details on the Gibbs sampler

Posterior inference for our logit stick-breaking model (9.1)-(9.6) is carried out using a
Gibbs sampler algorithm, with full conditionals outlined below. The joint distribution of
data and parameters is described here

L(Y1, . . . ,YN , B,Γ,Σ,Φ1, . . . ,ΦN ) =

N∏

i=1

L(Yi1, . . . , YiTi |b,γ,Σ,Φ1, . . . ,Φn)

× π(b)× π(γ)× π(Σ)× π(Φ1, . . . ,ΦN |z1, . . . ,zN )

In what follows, ‘rest’ refers to to the data and all parameters except for the one to the
left of ‘ | ’. Moreover we adopt the matrix notation or the vector one for all parameters
interchangeably.

As in Ishwaran and James (2001), to sample from the stick-breaking prior on Φi, as it
is standard, we use cluster indicator latent variables, that will be indicated by Gi.

1. The full-conditional for the parameters b = vec(B) can be obtained by noticing that
using the following change of variable

yit − Φiyit−1 − Γzi = Bxit + εit

we recover the standard expression of Bayesian multivariate linear regression, let
wit = yit − Φiyit−1 − Γzi. We have:

wit = xTitB
T + εit.

Using standard techniques, calling

W =




w1,1
...

wi,T1

...
wN,1

...
wN,TN




X =




x1,1
...

x1,T1

...
xN,1

...
xN,TN
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Figure 9.A.1: Scatterplots of covariates against the height at birth (left column), at six
months of age (center) and at one year of age (right column).

We can write the system in vector form as:

W = XBT +E,

where W,E are [
∑N

i=1 Ti × k] matrices and X is [
∑N

i=1 Ti × p]. By standard multi-
variate regression theory we have that

b|X,W,Σ ∼ N
(
µ̃b, Σ̃b

)

µb = (Σ−1 ⊗XTX + Σ−1
b )−1

(
(Σ−1 ⊗XTX)β̂ + Σ−1

b β̃0

)

Σ̃b = Σ−1 ⊗XTX + Σ−1
b ,
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Figure 9.A.2: Scatterplots of covariates against the weight at birth (left column), at six
months of age (center) and at one year of age (right column).

where β̂ is the standard frequentist estimate:

β̂ = (XTX)−1XTW .

We thus obtain:
L(b|rest) = N (µ̃b, Σ̃b)

2. Analogously to what we did in the previous step, the law of γ can be deducted from
standard Bayesian multivariate regression theory after a suitable change of variable:

yit − Φiyit−1 −Bxit = Γzi + εit

We thus recover the same equations as in the previous section.
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3. To sample from L(Σ|rest) we analyze the full conditional (to simplify the notation
we impose yi0 = 0 for all i’s):

L(Σ−1|−) ∝
N∏

i=1

Ti∏

t=1

1

det2πΣ
1

2

exp

(
−1

2
ηTitΣ

−1ηit

)

× detΣ0
τ

2

2
τk

2 Γk
(
τ
2

)detΣ−
τ+k+1

2 exp

(
−1

2
tr(Σ0Σ−1)

)

∝ detΣ−
τ+k+1

2

det2πΣ+ 1

2

∑N
i=1 Ti

exp

(
−1

2
E

)
.

where
ηit = yit − Φiyit−1 −Bxit − Γzi

By using the trace trick, circularity of the trace and linearity of the trace operator
we get that

E = tr

((
N∑

i=1

Ti∑

t=1

ηitη
T
it + Σ0

)
Σ−1

)
.

We can deduce that L(Σ | rest) = IW (ν̃, Σ̃0) with parameters

ν̃ = ν +

N∑

i=1

Ti

Σ̃0 =

N∑

i=1

Ti∑

t=1

ηitη
T
it + Σ0.

4. The component indicator variables are sampled considering the usual change of
variables

wit = Φi(zi)yit−1 + εit,

where wit = yit −Bxit − Γzi. We have that:

P (Gi = h|rest) ∝ P (Gi = h)f(wi1, . . . ,wiTi |Gi = h) (9.9)

∝ P (Gi = h× f(wi1|Gi = h, rest)

Ti∏

t=2

f(wit|yit−1, rest)

∝ νh(zi)

h−1∏

l=1

(1− νl(zi))×N (wi1;Bxi1 + Γzi,Σ)

×
Ti∏

t=2

N (wit; Φ0hyit−1Bxit + Γzi,Σ).

Thus the conditional distribution of Gi is a discrete distribution with weights as in
(9.9).

5. For each cluster-specific Φ0h we have that, for the i’s such that Gi = h:

yit = Φ0hyit−1 +Bxit + Γzi + εit.
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Defining:

Y =




y11 −Bx11 − Γz1
...

y1T1
−Bx1T1

− Γz1
...

yNi1 −BxNi1 − ΓzNi
...

yNiTNi −BxNiTNi − ΓzNi




X =




y10
...

y1T1−1
...

yNi1
...

yNiTi−1




where the yis have been selected such that they belong to cluster h, we have the
following Seemingly Unrelated Representation:

Y = XΦT
0h + E.

Thus, we can recover the full conditional for ϕ0h := vec (Φ0h) using standard
Bayesian multivariate regression theory. In particular we have that:

ϕ0h|Y,X,Σ ∼ N (µ0h,Σ0h)

Σ0h = Σ−1 ⊗XTX + V −1
0

µ0h = Σ−1
0h

(
(Σ−1 ⊗XTX)ϕ̂0h + V −1

0 ϕ00

)
,

where ϕ̂0h = (XTX)−1XTY is the frequentist estimation.

6. Since the update of αh is independent of the AR model, we can simply refer to Rigon
and Durante (2021) where a latent variable ωih is introduced. Defining ρih|zi ∼
B(νh(zi)), the couple (ωih, ρih) is updated as in Polson et al. (2013) from a Pólya-
Gamma distribution.

7. As the joint law does not depend from the parameters Φ00, V0 except for the prior
specification of Φ0h, we can update them using a Normal-Normal-inverse-Wishart
scheme as follows:

ϕ0h|ϕ00, V0
iid∼ N (ϕ00, V0)

ϕ00|ϕ000, V0, λ0 ∼ N
(
ϕ000,

1

λ0
V0

)

V0|V00, τ0 ∼ IW(V00, ν0),

From this we have that:

ϕ00|V0, ϕ01, . . . ϕ0H ∼ N
(
Hϕ0 + λϕ000

H + λ
,

1

H + λ
V0

)

V0|ϕ01, . . . ϕ0H ∼ IW (VP , H + ν0)

VP = V00 +HS +
Hλ

H + λ
(ϕ0 − ϕ000)(ϕ0 − ϕ000)T

ϕ0 =
1

H

H∑

h=1

ϕ0h

S =
1

H

H∑

h=1

(ϕ0h − ϕ0)(Φ0h − ϕ0)T
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An iteration of our Gibbs samples consists in sampling from the full conditionals de-
scribed in steps 1. through 7. above, iteratively. Moreover, if there are missing responses
as in the case of the application, at each iteration, before step 1., we sample the missing
responses from their full conditional as described below.

9.B.1 Sampling missing responses

We start by deriving the joint law of the vector yi = (yi1, . . . ,yiTi), given Φi, B,Γ and Σ.
Consider the simplified VAR model, for a single patient (we drop the index i).

y1 = ε1, yt|Xt−1 = Φyt−1 + εt. (9.10)

By expressing the joint law as L(y1, . . . ,yT ) = L(y1)L(y2|y1) . . .L(yT |yT−1) and through
some basic linear algebra, we can derive that the vectorization of (y1, . . . ,yT ) is a jointly

normal random vector with zero mean. The precision matrix Σ̃−1 of the normal distribu-
tion has a blocked structure made of T × T blocks, each of which is an r × r matrix. The
(i, j)-th block equals to:

Σ̃−1
i,j =





(I + Φ)TΣ−1(I + Φ), if i = j < T

Σ−1, if i = j = T

ΦTΣ−1, if |i− j| = 1

0 if |i− j| > 1

(9.11)

Going back to the full model, it is easy to see that with a change of variable yit 7→
yi,t − Bxi,t − Γzi we recover the same VAR system in (9.10). Hence, the vectorization of
yi follows a multivariate normal with precision matrix given by (9.11) and mean µ given
by the vectorization of (Bxi1 + Γzi, . . . , BxiTi + Γzi).

To simulate missing values in yi, we exploit the joint law derived above and the fact
that the conditional distributions of entries in a Gaussian random vector are available in
close form. In particular, if there are k missing values in yi, we first apply a permutation
matrix P to the vectorization of yi so that the missing entries are the first k (this will in

turn change the mean µ to Pµ and the covariance matrix to P T Σ̃P ). Then, using notation
x:k and xk: for the first k elements of vector x and the elements k + 1, . . . respectively,
and notation A:k,`: for a matrix A analogously, where the first index denotes the rows and
the second index denotes the columns, we have that:

(Pyi)
:k | (Pyi)k: ∼ Nk(µ,Σ),

where

µ = [P (Bxi + Γzi)]
:k + [P T Σ̃P ]k:,:k

(
[P T Σ̃P )]:k,:k

)−1
(Pyk:

i − P (Bxi + Γzi)]
k:)

and

Σ = [P T Σ̃P ]k:,:k
(

[P T Σ̃P )]:k,:k
)−1

[P T Σ̃P ]:k,k:

See Proposition 3.13 in Eaton (1983) for a proof.
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10. Distributional data analysis with the Wasserstein
metric

The last part of this thesis is dedicated to statistical data analysis when observations
are themselves probability measures. This scenario is commonly faced in several impor-
tant practical applications. For example, when one considers the problem of aggregating
(probabilistic) expert forecasts: here µ1, . . . , µn are n probability measure representing
the forecasters’ opinions (or probabilistic prediction if the expert is a statistical model).
Another interesting setting is when data are released in an aggregated form due to privacy
concerns (i.e., a data agency does not release microdata but just summaries in the form
of unnormalized histograms).

The first challenge to face when approaching distributional data analysis (that is, anal-
ysis of data that are probability measures) is where to set the analysis: what is the space
of which µ1, . . . , µn are points? Surely, if the µi’s are probabilities over a space X (with
σ-field X ), they must belong to PX, the space of all probability measures over X. We can
endow (subsets of) PX with several metrics d, such as Hellinger distance:

2d2
H(µ, ν) =

∫

X

(√
dµ

dλ
−
√
dν

dλ

)2

dλ

where dµ
dλ denotes the Radon-Nykodym derivative; integral probability metrics

dF(µ, ν) = sup
f∈F
|
∫
fdµ−

∫
fdν|

where F denotes an appropriate class of functions from X to the reals; the Lévy-Prokhorov
metric

dLP (µ, ν) = inf
ε>0
{µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ X}

where Aε is the ε-neighborhood of A. See, for instance, Gibbs and Su (2002) for a survey
on probability metrics and their relations.

Then, upon considering µ1, . . . , µn as points in (PX, d), we can compute basic estimates
such as the (Frechét) mean

µ̄ = inf
µ∈PX

n∑

i=1

d2(µ, µi)

with the understanding that d2(µ, µi) = +∞ if the distance is not defined for the couple
(µ, µi) (i.e., the case of d ≡ dH , µi an absolutely continuous measure and µ a discrete one).
It is clear that the choice of d highly impacts the output of the analysis: see Figure 10.0.1
for a comparison of the L2 Frechét mean and the Wasserstein one (see Equation (10.1)
below). Thus, the choice of d must reflect what one considers as the “mean” between
to distributions. Consider for instance the case in Figure 10.0.1, and let us pretend that
the blue and orange densities represent the heights of two populations. The L2 mean
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Figure 10.0.1: Frechét mean (green line) of two probability measures whose densities are
depicted in blue and orange respectively, when d is the L2 norm between the probability
density functions (left plot) and when d is the Wasserstein metric (right).

corresponds to the distribution height of a third population obtained by mixing the blue
and orange one. On the other hand, the Wasserstein distance is more similar to the
law of a third population whose heights are “in between” the ones of the blue and orange
populations. There is no overall “better” definition of barycenter and the choice of distance
should be problem-specific.

Another important aspect to consider is the geometric structure of (PX, d). Indeed, a
richer structure (such as a manifold structure or a linear one) naturally opens the door
to more complex analyses. For example, principal component analysis (PCA) can be
defined using the concept of geodesic. On the other hand, richer structures require more
assumptions about the measures. As two opposite cases, consider (PX, dLP ) and the Bayes
space B2([a, b]) of distributions with support [a, b] ⊂ R (Egozcue et al., 2006), with the
inner product

〈µ, ν〉 :=
1

2(b− a)

∫ b

a

∫ b

a
log

fµ(x)

fµ(y)
log

fν(x)

fν(y)
dxdy

where fµ (fν) denotes the probability density function of µ (ν). This definition of inner
product further makes B2([a, b]) a Hilbert space.

It is well known that if (X, dX) is a separable metric space, (PX, dLP ) is also, and that
dLP metrizes the weak convergence topology. Hence, we can argue that dLP is a very
convenient distance to compare probability distributions: for instance, we can compare
any two measures, even an absolutely continuous measure and an atomic one, which is
often useful to establish certain limit theorems. However, numerical computation of dLP
is prohibitive, and thus it is not suited as a distance for distributional data analysis.
On the other hand, the Hilbert structure of B2([a, b]) makes it convenient to carry out
computations and statistical analyses: the mean is trivially computed. Moreover, it is
possible to define the covariance operator so that PCA can be computed via its singular
values decomposition. However, the Bayes space encompasses only absolutely continuous
probability distributions supported on the same interval, which is very restrictive.

In the next two chapters, we argue in favor of considering probability distributions
as points of the Wasserstein space, endowed with the Wasserstein metric Wp (see, e.g.,
Ambrosio et al., 2008):

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

∫

X×X
d(x, y)pγ(dx dy), (10.1)

where Γ(µ, ν) is the set of probability distributions over X × X with marginals µ and ν.
Unlike the Lévy-Prokhorov metric, the p-th Wasserstein distance Wp is defined only on
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a subset of probability measures. However, this subset is quite large: it consists of the
probability measures with finite “p-th moment”, that is there exists x0 ∈ X such that

∫

X
d(x, x0)pµ(dx).

In particular, it is possible to compare probability distributions with different supports
and (10.1) does not require that the measures have densities. Moreover, the Wasserstein
distance is a reasonably “weak” one as convergence in Wp is equivalent to weak convergence
plus convergence of the p-th moment (Ambrosio et al., 2008).

The Wasserstein space is not Hilbert. Hence, classical statistical methods developed
for multivariate data, such as linear regression and PCA, cannot be applied directly to
distributions in the Wasserstein space. However, by exploiting its weak Riemannian struc-
ture, we can define meaningful statistical methods merging techniques developed for data
living on Riemannian manifolds and for functional data. In particular, in Chapter 11 we
consider the case of probability measures on the real line. By using a geometric structure
closely related to the weak Riemannian structure of the 2-Wasserstein space, we propose
a novel formulation of projected PCA and linear regression models. In Chapter 12 we con-
sider probability measures on the circumference, inspired by a real dataset on eye nerve
width’s measurements. After establishing some results about optimal transport maps for
measures on the circumference, we propose a framework for PCA.

241



11. Projected Statistical Methods for Distributional Data
on the Real Line with the Wasserstein Metric

In this chapter, based on Pegoraro and Beraha (2022), we present a novel class of projected
methods to perform statistical analysis on a data set of probability distributions on the
real line, with the 2-Wasserstein metric. We focus in particular on Principal Component
Analysis (PCA) and regression. To define these models, we exploit a representation of
the Wasserstein space closely related to its weak Riemannian structure by mapping the
data to a suitable linear space and using a metric projection operator to constrain the
results in the Wasserstein space. By carefully choosing the tangent point, we are able
to derive fast empirical methods, exploiting a constrained B-spline approximation. As a
byproduct of our approach, we are also able to derive faster routines for previous work
on PCA for distributions. By means of simulation studies, we compare our approaches to
previously proposed methods, showing that our projected PCA has similar performance for
a fraction of the computational cost and that the projected regression is extremely flexible
even under misspecification. Several theoretical properties of the models are investigated,
and asymptotic consistency is proven. Two real world applications to Covid-19 mortality
in the US and wind speed forecasting are discussed.

11.1 Introduction

In many fields of machine learning and statistics, performing inference on a set of distri-
butions is an ubiquitous but arduous task. The Wasserstein distance provides a powerful
tool to compare distributions, as it requires very little assumptions on them and is at the
same time reasonably easy to compute numerically. In fact, many other distances for dis-
tributions either require the existence of a probability density function or are impossible
to evaluate, cf. Cuturi (2013), Peyré et al. (2019), Panaretos and Zemel (2020).

The Wasserstein distance recently gained popularity both in the statistics and machine
learning community. See for instance Bassetti et al. (2006), Bernton et al. (2019), Catalano
et al. (2021) for statistical properties of the Wasserstein distance, Cao et al. (2019), Cuturi
et al. (2019) and Cuturi and Doucet (2014) for applications in the field of machine and deep
learning, Bernton et al. (2019) and Srivastava et al. (2015a) for applications in Bayesian
computation.

In this work, we focus on the situation in which the single observation itself can be
seen as a distribution, as in the analysis of images (Cuturi and Doucet, 2014; Banerjee
et al., 2015), census data (Cazelles et al., 2018), econometric surveys Potter et al. (2017)
and process monitoring (Hron et al., 2014). In particular, we consider observations to be
distributions on the real line. There exist several possible ways to represent distributions,
such as histograms, probability density functions (pdfs) and cumulative density functions
(cdfs), each characterized by different constraints. For instance, histograms sum to one,
pdfs integrate to one, and the limits for cdfs are 0 and 1, moreover all of these functions
are nonnegative. These constraints translate into complex geometrical structures that
characterize the underlying spaces in which these objects live.
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11.1.1 Previous work on distributional data analysis

One of the first works defining PCA for a data set of distributions is Kneip and Utikal
(2001), where the authors apply tools from functional data analysis (FDA) directly to a
collection of probability density functions. This approach, however, completely ignores
the constrained nature of probability density functions, leading to poor interpretability of
the results.

Based on theoretical results in Egozcue et al. (2006), who defines a Hilbert structure
on a space of probability density functions on a compact interval (called a Bayes space),
Delicado (2011) and Hron et al. (2014), propose a more reasonable approach to the problem
of PCA for density functions. In particular, in Hron et al. (2014), the authors use the
geometric properties of the Bayes space, coupled with a suitable transformation from the
Bayes space to an L2 space, to perform PCA on a set of pdfs using FDA tools, and then
map back the results to the Bayes space.

Another, perhaps less widely used, approach focuses on borrowing tools from symbolic
data analysis (SDA) in the context of histogram data (Nagabhushan and Pradeep Kumar,
2007; Rodŕıguez et al., 2000; Le-Rademacher and Billard, 2017). Moreover, in Verde et al.
(2015) some of these attempts are extended to generic distributional data using Wasserstein
metrics.

Finally, Bigot et al. (2017) and Cazelles et al. (2018) propose two PCA formulations
based on the geometric structure of the Wasserstein space: a geodesic PCA and a log
PCA. In a similar fashion, the recent works of Chen et al. (2021), Ghodrati and Panaretos
(2021), and Zhang et al. (2020) propose regression and autoregressive models, respectively,
for distributional data using the Wasserstein geometry.

We now highlight some key aspects of the aforementioned approaches. Hron et al.
(2014) assumes that all the probability measures have the same support. This is hardly
verified in practice, so that to apply their techniques one needs either to truncate the
support of some of the probability density functions, or to extend others (for instance,
by adding a small constant value and renormalizing), leading to numerical instability as
discussed in Sections 11.7 and 11.8.

The SDA-based methods in Nagabhushan and Pradeep Kumar (2007); Rodŕıguez et al.
(2000); Le-Rademacher and Billard (2017) and Verde et al. (2015) share the poor inter-
pretability of SDA.

The methods in Bigot et al. (2017), Cazelles et al. (2018), Chen et al. (2021) and Zhang
et al. (2020) are based on the weak Riemannian structure of the Wasserstein space, cf.
Section 11.2.2. Such structure enables the authors to borrow ideas and terminologies from
statistical frameworks defined on Riemannian manifolds (see Bhattacharya et al., 2012;
Pennec, 2006, 2008; Huckemann et al., 2010; Patrangenaru and Ellingson, 2015; Fletcher,
2013; Banerjee et al., 2015). We can roughly distinguish those frameworks in two main
approaches: the intrinsic/geodesic one and extrinsic/log one.

Briefly, intrinsic methods are defined using the metric structure of the Wasserstein
space, working with geodesic curves and geodesic subsets, so that they faithfully respect
the metric of the underlying space. However, in general, intrinsic methods present many
practical difficulties in that the optimization problems they lead to are usually nontrivial,
as we discuss in Section 11.5.3. Instances of intrinsic methods for distributional data are
the geodesic PCA in Bigot et al. (2017) and, under some rather restrictive assumptions,
the linear models in Chen et al. (2021) and the autoregressive models in Zhang et al.
(2020), see Sections 11.3.3 and 11.3.4.

On the other hand, extrinsic methods resort to the linear structure of suitably defined
tangent spaces, by mapping data from the Wasserstein space to the tangent (through the
so-called log map) and then mapping back the results to the Wasserstein space (through
the exp map). Of course, this approach is less respectful of the underlying geometry than
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the intrinsic one, but usually presents several numerical advantages. An example of such
extrinsic methods defined in the Wasserstein space is the log PCA in Cazelles et al. (2018).

The main issue with this log PCA is that the image of the log map inside the tangent of
the Wasserstein space is not a linear space, but rather a convex cone embedded in a linear
space (see Section 11.2.2). Hence, while exploiting the linear structure of the tangent, it is
possible that the projection of some points onto the principal components end up outside
the cone. For these points, the exp map from the tangent to the Wasserstein space used
in Cazelles et al. (2018) is not a metric projection, which in general is not available, so
that the results in this setting are hardly interpretable.

11.1.2 Our contribution and outline

The contribution of this work is three folded. First, we propose alternative PCA and
regression models for distributional data in the Wasserstein space. We term these models
projected, in opposition to the log PCA in Cazelles et al. (2018). Second, by exploiting
a geometric characterization of Wasserstein space closely related to its weak Riemannian
structure, we build a novel approximation of the Wasserstein space using monotone B-
spline. This allows us to represent the space of probability measures as a convex polytope
in RJ . Lastly, we obtain faster optimization routines for the geodesic PCAs defined in
Bigot et al. (2017), exploiting the aforementioned B-spline representation.

Our projected framework lies in between the log one and the geodesic one, since we
use an analogous to the log map to transform our data, as for extrinsic methods, but do
not resort to the exp map to return to the Wasserstein space, using instead the metric
projection operator. Thanks to this, our projected methods are more respectful of the
underlying geometry than the log ones, while at the same time retaining the same reduced
computational complexity. Thus, the projected methods expand the range of situations
where extrinsic methods are an effective and efficient alternative to intrinsic tools: in our
examples, the performance loss in general is marginal (see Section 11.7).

By centering the analysis in appropriate points of the Wasserstein space, one can iden-
tify the space of probability measures (with finite second moment) with the space of
square-integrable monotonically non-decreasing functions on a compact set. We use a suit-
able quadratic B-spline expansion to get a very handy representation of such functions.
Through such B-spline expansion, it is possible to approximate the metric projection onto
the Wasserstein space as a constrained quadratic optimization problem over a convex poly-
tope, that is a well-established problem, cf. Potra and Wright (2000). This allows us to
exploit the underlying linear structure of an L2 space, so that all the machinery developed
for functional data analysis can be directly applied to this setting. We address the issue
of interpretability of the results, tackling a number of diverse applications and developing
different ways to measure the loss of information caused by the extrinsic nature of our
methods.

We observe that the idea of representing nondecreasing functions through B-splines for
statistical purposes has been proposed also by Das and Ghosal (2017), in the context of
Bayesian quantile regression, where the authors use B-splines with (random) monotonic
coefficients as a generative model for random quantile functions. However, their focus
is on defining a generative model, and not on developing a statistical setting exploiting
the geometry given by the constrained representation. Along this direction, they do not
restrict their attention to quadratic splines and consider cubic ones.

As already mentioned, a further contribution of this work is the derivation of alternative
numerical optimization schemes for the geodesic PCA in Bigot et al. (2017) and Cazelles
et al. (2018), based on the proposed quadratic B-spline expansion.

The remaining of the chapter is organized as follows. Section 11.2 covers the basic
concepts of Wasserstein distance and the weak Riemannian structure of the Wasserstein
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space, along with a brief discussion on a suitable way to exploit such structure for our
purposes. Section 11.3 defines the projected PCA and projected regression in a general
setting. In Section 11.4 we discuss the choice of the base point in which we center our
analysis and how to efficiently approximate the metric projection through B-splines; in
Section 11.5 we present the numerical algorithms needed to compute our projected meth-
ods and an alternative optimization routine for the geodesic PCA in Cazelles et al. (2018).
Section 11.6 discusses the asymptotic properties of the spline approximation and of the
projected models, establishing consistency of the estimators under some assumptions. Nu-
merical illustrations on real and simulated data sets are shown in Sections 11.7 and 11.8.
In particular, we apply our projected methods to two real world problems: we perform
PCA on the US data on Covid-19 mortality by age and sex and perform a distribution
regression to forecast the wind speed near a wind farm. Finally, the article concludes in
Section 11.9. The Appendix collects all the proofs of the theoretical results, additional de-
tails on the simplicial PCA and regression, and further simulations. Code for reproducing
the numerical results is available at https://github.com/mberaha/ProjectedWasserstein.

11.2 Preliminaries

In the following, we will consider probability measures on the real line R endowed with
the usual Borel σ-field, we will skip references to the σ-field whenever it is obvious.

Given a measure µ on R define its cumulative distribution function Fµ(x) = µ((−∞, x])
for x ∈ R and the associated quantile function F−µ (t) = inf{x ∈ R : t ≤ Fµ(x)}. When

Fµ is continuous and strictly monotonically increasing, F−µ = (Fµ)−1.

11.2.1 Wasserstein metric and Wasserstein spaces

We start by recalling the definition of the 2-Wasserstein distance between two probability
measures µ, ν on R:

W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

∫

R×R
|x− y|2dγ(x, y), (11.1)

where Γ(µ, ν) is the collection of all probability measures on R × R with marginals µ
and ν. Closely related to the definition of Wasserstein distance lies the one of Optimal
Transport (OT). In particular, (11.1) identifies the Wasserstein distance with the minimal
total transportation cost between µ and ν in the Kantorovich problem with quadratic cost
(Ambrosio et al., 2008).

For our purposes, it is convenient to consider another formulation of the OT problem,
originally introduced by Monge (1781). Given two measures µ, ν as before, the optimal
transport map from µ to ν is the solution of the problem

inf
T :T#µ=ν

∫

Ω
|x− T (x)|2dµ(x), (11.2)

where # denotes the pushfoward operator, that is for any measurable set B and measurable
function

f : R→ R, (f#µ)(B) = µ(f−1(B)). (11.3)

Note that any solution of (11.2) induces one and only one solution of (11.1); moreover if
the OT problem has a unique solution, then also the Wasserstein distance problem has
only one solution. However not all Wasserstein distance problems can be solved through
Monge’s formulation (Ambrosio et al., 2008).
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The unidimensional setting is a remarkable exception in that there exist explicit for-
mulas for both problems. In particular, the Wasserstein distance can be computed as

W 2
2 (µ, ν) =

∫ 1

0
|F−µ (s)− F−ν (s)|2ds, (11.4)

and, if the measure µ has no atoms, then there exists a unique solution to Monge’s problem
given by T νµ = F−ν ◦ Fµ. For a proof of these results, see Chapter 6 of Ambrosio et al.
(2008).

It is clear that, in general, the Wasserstein distance between two probability measures
can be unbounded (for instance when in (11.4) F−µ is not square-integrable on [0, 1]).
Nonetheless, when restricting the focus on the set of probability measures with finite
second moment, then it holds that W2 defines a metric (see, for instance, Chapter 7 of
Villani, 2008). Formally, let the Wasserstein space:

W2(R) =
{
µ ∈ P(R) :

∫

R
x2dµ < +∞

}
,

then (W2(R),W2) is a separable complete metric space.

11.2.2 Weak Riemannian structure of the Wasserstein Space

Thanks to the uniqueness of the transport maps, by fixing an absolutely continuous (a.c.)
probability measure µ ∈ W2(R), we can associate to any ν ∈ W2(R) the optimal transport
map T νµ . Since

∫
R |T νµ (x)|2dµ =

∫
R x

2dν we can define the following map ϕµ : W2(R) →
Lµ2 (R) with the rule: ϕµ(ν) = T νµ .

We note several immediate but interesting properties of the map ϕµ. First, it is an
isometry (and so a homeomorphism onto its image) since

∫

R
|T νµ (x)− T ηµ (x)|2dµ =

∫

[0,1]
|F−ν (s)− F−η (s)|2ds = W 2

2 (ν, η).

Second, the image of ϕµ is a closed convex cone in Lµ2 (R): a set closed under addition and
positive scalar multiplication. In fact, for any λ ≥ 0, λT νµ is still a transport map from

µ to another measure whose quantile is λF−µ ; and similarly T νµ + T ηµ = (F−ν + F−η ) ◦ Fµ.

Being W2(R) complete, ϕµ(W2(R)) is closed in Lµ2 (R). Third, ϕµ(µ) = idR (where idC
denotes the identity map of the set C). Finally, as shown in Panaretos and Zemel (2020),
ϕµ is not surjective and ϕµ(W2(R)) is the set of µ-a.e. non decreasing functions in Lµ2 (R).

The inverse of the map of ϕµ is the measure pushforward (see Equation 11.3) and it is
defined on the whole Lµ2 (R): given f ∈ Lµ2 (R), then ν = f#µ is a measure in W2(R). In
fact: ∫

|x|2dν =

∫
|f(x)|2dµ = ‖f‖2µ.

A natural way to define a tangent structure forW2(R) is therefore to take advantage of
the cone structure given by ϕµ. In fact, for closed convex cones, there are already notions
of tangent cones. Similarly to Rockafellar and Wets (1998), Theorem 6.9, we can define:

Tanµ(W2(R)) := TanidR(Lµ2 (R)) = {f ∈ Lµ2 (R)|∃h > 0 : id+ hf ∈ ϕµ(W2(R))}L
µ
2 (R)

.
(11.5)

We remark that Theorem 6.9 in Rockafellar and Wets (1998) is stated in Rn, but it
holds also more generally, for instance in an Hilbert space (see Aubin and Frankowska
(2009), Chapter 4).

A geometric interpretation of (11.5) is the following. The tangent space consists of all
the vectors f that move the base point inside the cone ϕµ(W2(R)), when considered up
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to a scale factor h. Hence, f plays the role of direction of a tangent vector going out from
the tangent point. Furthermore, since for every f ∈ ϕµ(W2(R)) then f + id ∈ ϕµ(W2(R))
we have that ϕµ(W2(R)) is included in the tangent space. As shown later in this Section,
the inclusion is strict and the tangent space is much larger than ϕµ(W2(R)).

Note that we can recover the definition of tangent space given by Ambrosio et al. (2008)
and Panaretos and Zemel (2020) by a simple ‘change of variable’: calling g = id+hf then
substituting (g − id)/h in (11.5) gives the following definition of tangent

Tanµ(W2(R)) = {λ(f − id)|f ∈ ϕµ(W2(R));λ > 0}L
µ
2 (R)

,

which is the one given in Ambrosio et al. (2008) and Panaretos and Zemel (2020). As
shown in Panaretos and Zemel (2020) the tangent cone Tanµ(W2(R)) is indeed a linear
space. For this reason we refer to it as tangent space, instead of cone.

In analogy to Riemannian geometry, following Ambrosio et al. (2008) and Panaretos
and Zemel (2020), we define the logµ and expµ maps. Having fixed µ absolutely continuous:

logµ :W2(R)→ Tanµ(W2(R))

ν 7→ T νµ − id
expµ : Tanµ(W2(R))→W2(R)

f 7→ (id+ f)#µ
(11.6)

We briefly highlight some properties of these maps, which immediately follow from the
discussion above.

Remark 11.1. The map logµ is defined on the whole space W2(R). Moreover, it is clearly
an isometry: W2(η, ν) = ‖ logµ(η) − logµ(ν)‖Lµ2 (R) (Panaretos and Zemel, 2020). This
shows that there is no local-approximation issue when working in the tangent space, in
contrast with the usual Riemannian manifold setting. There, the tangent space usually
provides good approximation only in a neighborhood of the tangent point.

Remark 11.2. The map logµ is not surjective on Tanµ, indeed its image Im(logµ) is a
closed convex subset of Lµ2 (R) given by all the maps f such that f + id ∈ ϕµ(W2(R)),
that is, f + id is µ-a.e. increasing. The restriction of expµ on Im(logµ), henceforth
denoted by expµ| logµ(W2(R)), is an isometric homeomorphism and its inverse is logµ. In

particular, we observe that logµ ◦ expµ is not a metric projection in Lµ2 . That is, in general
logµ ◦ expµ(f) 6= arg ming∈Im(logµ) ||f − g||Lµ2 .

11.2.3 Intrinsic and extrinsic methods in the Wasserstein space

As mentioned in Section 11.1.1, borrowing ideas from Riemannian geometry leads to dis-
cerning statistical methods on the Wasserstein space in the classes of intrinsic and extrinsic
methods.

The Weak Riemannian structure presented in Section 11.2.2 provides a suitable envi-
ronment for developing intrinsic methods. In fact, the geodesic structure of W2(R) can be
recovered through the linear structure of any Lµ2 (R) space through the isometry ϕµ. Point-
wise interpolation of the transport maps coincide with the geodesic between measures. In
other words, given µ a.c., the geodesic between ν and η is given by:

γ(t) = ((1− t) · T νµ + t · T ηµ )#µ. (11.7)

Thus, such geodesic structure can be recovered in many different (but equivalent) ways,
depending on µ.

On the other hand, Remark 11.1 motivates the development of extrinsic tools, since
working in the image of logµ inside the tangent space Tanµ is exactly like working inW2(R).
This is not common in Riemannian manifold framework, since usually the tangent space
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provides a good approximation only near the tangent point. As a consequence, if in the
general Riemannian manifold framework the choice of the tangent point µ is crucial (since
results for extrinsic methods might be significantly altered for different choices of µ) when
working with W2(R) this is not the case.

To further motivate this key point, consider µ and ν a.c. measures; the maps
logν ◦(expµ|logµ(W2(R))) and ϕν ◦ ϕ−1

µ are isometric homeomorphisms (as composition of

isometries and homeomorphisms). In other words, they preserve distances and send bor-
der elements of logµ(W2(R)) or ϕµ(W2(R)) into border elements of logν(W2(R)) and
ϕν(W2(R)), respectively, and the same with internal points (and so in particular, they
preserve distances from any point to the border). In Chen et al. (2021), Bigot et al.
(2017) and Zhang et al. (2020) µ is chosen as the barycentric measure x̄ of the observa-
tions xi ∈ W2(R). The discussion above implies that considering the tangent space at
the Wasserstein barycenter x̄ and working on logx̄(xi) = logx̄(xi)− logx̄(x̄) is exactly the
same as considering the tangent space at any µ a.c. and working on logµ(xi)− logµ(x̄) for
our statistical purposes. So the choice of the tangent space from the theoretical point of
view is completely arbitrary. Moreover, centering the analysis in the barycenter presents
a drawback when studying asymptotic properties of the models under consideration, since
x̄ changes as the sample size grows.

In Section 11.4.1 we propose to fix µ as the uniform measure on [0, 1]. This choice not
only allows us to derive empirical methods that are extremely simple to implement, cf. Sec-
tion 11.5, but also allows us to study asymptotic properties of the models in Section 11.6.2
without resorting to parallel transport, as done for instance in Chen et al. (2021).

11.2.4 Tangent vs. Lµ2

Lastly, we briefly discuss the major differences between using a tangent space representa-
tion of W2(R) and using the representation given by some ϕµ.

We recall that, for a fixed µ a.c., the two representations are indeed quite similar
ϕµ(ν) = T νµ , logµ(ν) = T νµ − id; a priori one may prefer the tangent representation,
because it already expresses data as vectors coming out of a point. Therefore, for instance,
it might result practically more convenient to center the analysis in the barycenter and
work on vectors, taking away any ‘data centering’ issues. At the same time, also notational
coherence with already existing methods might benefit from this choice.

However, especially when dealing with extrinsic techniques, we found slightly more
practical to use the ϕµ representation in that it is more straightforward to represent
ϕµ(W2(R)) compared to logµ(W2(R)): the first one can in fact be represented directly as
the cone of the µ-a.e non-decreasing functions.

11.3 Projected Models in the Wasserstein Space

In this section, exploiting the embeddings given by ϕµ, we define a class of projected
statistical methods to perform extrinsic analysis for data in the Wasserstein space.

To give a general framework, we do not restrict our attention to a particular ϕµ yet,
even though in Section 11.4 we argue that a natural choice which allows for an easier
implementation of the empirical methods is letting µ be the uniform distribution on [0, 1].
Hence, for the sake of notation, we consider a generic case of data lying in a closed
convex cone X inside a separable Hilbert space H. In our setting, H would be Lµ2 (R) and
X = ϕµ(W2(R)), for some µ ∈ W2(R) absolutely continuous.
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11.3.1 Principal component analysis

We start by defining one of the main contributions of our work: the projected PCA. We
recall that for an H-valued random variable X , PCA is a well established technique and
amounts to finding the eigenfunctions of the Karhunen-Loéve expansion of the covariance
operator of X , see Ramsay (2004). Observe that any X-valued random variable can be
considered as an H-valued one (by the inclusion map), so that a notion of PCA is already
available.

When defining principal components, a key notion is the one of dimension of the prin-
cipal component (PC). In this work, principal components will be closed convex subsets
of H, and we will always define the dimension of a subset of H as the dimension of the
smallest affine subset of H containing it. For a generic closed convex set C ⊂ H, let ΠC

denote the metric projection onto C: ΠC(x) := arg minc∈C ||x−c|| and, for a set of vectors
U , denote with Sp(U) its linear span.

In what follows, we denote by x0 the ‘center’ of the PCA. For us, x0 = E[X ], or its
empirical counterpart. To have a well defined PCA, we always assume that x0 belongs
to the relative interior of the convex hull of the support of X , see Appendix 11.A for the
definition of relative interior and further details. This is a rather technical hypothesis but
it is not a restrictive one. For instance, it is always verified for empirical measures and
when X ⊆ Rd and hence for our empirical methods, cf. Section 11.5.1.

Definition 1. (Projected PCA). Given X a random variable with values in X ⊂ H,
let Uk = {w1, ..., wk} be its first k H-principal components centered in x0 = E[X ]. A

(k, x0)−projected principal component of X is the biggest closed convex subset Ux0,k
X of X

such that: (i) x0 ∈ Ux0,k
X , (ii) dim(Ux0,k

X ) = k, and (iii) Ux0,k
X ⊆ ΠX(Sp(Uk)).

In other words, the projected principal component is obtained by approximating the
span of the principal components found in H, with convex subsets in X. Note that the
principal components in H might ‘capture’ some variability which is not present when
measuring distances inside X. In fact, the projection of a point belonging to X onto a
direction wj might end up being outside X, see Section 11.3.3. However, as we will show
in Section 11.7, in our examples the projected PCA behaves well and this issue does not
seem to affect significantly the performance.

Remark 11.3. Convex sets are essential in our analysis since, thanks to (11.7), convex
sets in X are precisely the subsets of W2(R) which are geodesically complete: the geodesic
connecting any pair of points in the subset is contained in the subset. Geodesic subsets are
a natural generalization of linear spaces.

Remark 11.4. The metric projection of a linear subspace onto a convex subset can end
up being a nonconvex set. In addition to that, while losing convexity, the dimension of the
metric projection of a convex subset can be bigger than the dimension of the original subset.
A simple example where both cases happen is the projection of y = −x onto x, y ≥ 0 in
R2.

We observe that inside a projected principal component, we have a preferential or-
thonormal basis given by the principal components in H; for this reason, we call Uk =
{w1, ..., wk} principal directions.

Although it might seem impractical to find the projected component, the following
lemma provides a more convenient alternative characterization.

Lemma 11.1. Let x0 and Ux0,k
X be as in Definition 1, then Ux0,k

X = (x0 + Sp(Uk)) ∩X.
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Natural alternatives to Definition 1 would be, for instance, to let the projected prin-
cipal directions (component) be the metric projection of w1, . . . , wk (the linear span of
{w1, . . . , wk}) onto X, respectively. In the former case, the projection would not guar-
antee the orthogonality of the projected directions, which is instead essential to properly
explore the variability. Moreover, since the ‘tip’ of the projected unit vectors would likely
lie on the border of X, the projection of a new observations on a direction would still lie
outside of X as soon as the score associated to that direction is larger than 1. The latter
case, instead, presents the drawbacks pointed out in Remark 11.4.

We argue that, despite its simplicity, Definition 1 is indeed very well suited for statistical
analysis in the Wasserstein Space. For instance, we are guaranteed that, as the dimension
grows up, the k projected components provide a monotonically better fit to the data.
This is easily verified because ΠX is a strictly non-expansive operator, being X closed and
convex (see Deutsch (2012)), which implies the following proposition.

Proposition 11.1. With the same notation as Definition 1, for any x ∈ X we have:

‖ΠU
x0,k

X
(x)− x‖ ≥ ‖ΠU

x0,k+1

X
(x)− x‖ → 0 with k → +∞.

Once a principal component is found, a classical task that one may want to perform is

to project a new ‘observation’ x∗ ∈ X onto Ux0,k
X , for instance, for dimensionality reduction

purposes. In general, the metric projection on generic convex subsets might be arduous
to find, we will deal with this issue in Section 11.4. Nevertheless, we can use the following
proposition to reduce in advance the dimension of the parameters involved in the problem;
turning it into a projection problem inside the principal projected component, which allows
for faster computations (see Equation 11.13).

Proposition 11.2. Let x∗ ∈ X and let Πk be the orthogonal projection on Span(Uk). The

projection of x∗ onto Ux0,k
X is given by

arg min
v′∈Ux0,k

X

‖x∗ − v′‖ = ΠSp(Uk)∩(X−x0)(Πk(x
∗ − x0)) + x0. (11.8)

Lastly, we observe that, since projected principal components are not linear subspaces,
the scores of some points on a principal direction can vary as we increase the dimension
of the principal component.

11.3.2 Regression

Broadly speaking, a regression model between two variables with values in two different
spaces is given by an operator between such spaces, which for every input value of the
independent variable returns a predicted value for the dependent variable. In the following,
let us denote with Z the independent variable and with Y the dependent one. A regression
model is usually understood as an operator Γ specifying the conditional value of Y given
Z, that is, E[Y|Z] = Γ(Z).

If the spaces where Z and Y take values possess a linear structure, this linearity is
usually exploited by means of a (kernel) linear operator, with possibly an ‘intercept’ term.
To define our projected regression model, we want to exploit the cone structure of X in a
similar fashion. In fact, such linear kernel operators combine good optimization properties
and interpretability since their kernels can provide insights into the analysis, much like
coefficients in multivariate linear regression.

We treat separately the cases where the X-valued variable is the independent or the
dependent one. The case when both variables are X-valued follows naturally. To keep the
notation light, in what follows, we will not distinguish between ‘proper’ linear operators
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and linear operators with an added intercept term, which could as well be employed in all
the incoming definitions to gain flexibility.

Consider the case in which we have an independent X-valued random variable and
denote with V the space where the dependent variable takes values. Despite the fact
that X is not a linear space, with an abuse of notation, we call ‘linear’ an operator which
respect sum and positive scalar multiplication for elements in X. Such operators are indeed
obtained by restricting on X linear operators defined on H. Following this idea, in order
to define linear regression for an X-valued independent random variable, we consider such
variable as H-valued, obtain the regression operator and then take the restriction of the
operator on X. In this way, when H = Lµ2 (R) and X = ϕµ(W2(R)), it is possible to exploit
the classical FDA framework to perform all kinds of distribution on scalar/vector/etc...
regression. For brevity, we report only the definition with V = R.

Definition 2. Let Z an X-valued random variable, and Y a real valued one. Let Γβ :
H → R be a functional linear regression model for such variables, with Z considered as
H-valued and Γβ(v) = 〈β, v〉. A projected linear regression model for (Z,Y) is given by
(Γβ)|X .

Now we turn to the cases which feature an X valued dependent variable and a Z
valued independent one, for Z a generic Hilbert space. Through the inclusion X ↪→ H,
we can consider a regression problem with X-valued dependent variable as a problem
with H-valued dependent variable. Comparing this situation with the previous one, it
is clear that we now face a ‘dual’ problem. Indeed, while before we needed to restrict
the domain from H to X, we now need to force the codomain of Γ to lie inside X. We
would like to retain the same properties that make linear kernel operators appealing as
regression operators between Hilbert spaces. A possibility could be considering a linear
kernel operator Γ with values in H and restricting it to Γ−1(X). However, this would
imply that for any z 6∈ Γ−1(X) no prediction would be available.

We argue that a more reasonable approach consists in finding an operator ΓP : Z → X
as close as possible (in some sense that will be clear later) to the linear kernel operator Γ
aforementioned. Hence, we relax the linearity assumption in favor of Lipschitzianity and
take as regression operator ΠX ◦ Γ, whose image always lies in X. Note that ΓP inherits
the interpretability of the kernel of Γ.

To motivate such a choice, we give the following notion of a projected operator.

Definition 3. Let Z be a normed space and consider Z a Z-valued random variable. Let
Γ : Z → H a generic Lipschitz operator between Z and H. A (Z, X)-projection of Γ is an
operator ΓP : Z → X such that:

ΓP = arg min
T :Z→X

EZ [‖Γ(v)− T (v)‖2].

In other words, ΓP provides the best pointwise approximation of the H-valued operator
Γ, averaged w.r.t. the measure induced by Z. Hence, given Z, a Z-valued random variable,
Y, an X-valued random variable, and a linear regression model Γ : Z → H for (Z,Y), the
projected regression model induced by Γ is ΓP.

Proposition 11.3. With the same notation as above, if E
[
‖Z‖2

]
<∞, then ΓP = ΠX ◦Γ.

Proof. For any T : Z → X, it holds: ‖Γ(z) − ΠX(Γ(z))‖ ≤ ‖Γ(v) − T (v)‖. Moreover,
Γ and ΠX ◦ Γ are Lipschitz, and being ΠX non-expansive, they share the same constant
L > 0:

‖Γ(v)−ΠX ◦ Γ(v)‖2 ≤ 2L‖v‖2

and thus EZ [‖Γ(z)−ΠX ◦ Γ(z)‖2] is bounded iff Z has finite second moment.
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Figure 11.3.1: Comparison of projected and geodesic PCA when H = R2 and X is the
shaded rectangle. The projected principal direction is rather different from the geodesic
one because most of the observations (blue dots) are concentrated around the borders

The only case left out from the treatment above is when both the independent and the
dependent variables are X-valued. This case, however, follows naturally by combining the
two approaches and we report the definition below.

Definition 4. Let Z and Y two X-valued random variables. Let Γ : H → H be a
functional linear regression model for the variables considered as H-valued. A projected
linear regression model for (Z,Y) is given by (ΠX ◦ Γ)|X .

Remark 11.5. When considering a regression with X-valued independent variable, one
may want to relax the restriction on X in Definition 2 for various reasons; for instance, one
may have measurement errors, or, by design, the test set may consider points also outside
X. In such cases, it is worth considering the problem of how many continuous linear
extensions of Γ|X are possible on the whole H. A sufficient condition for the uniqueness
of such extension is the following: there exist a sequence of linear subspaces of H, say
{HJ}J≥1, such that

⋃
J HJ is dense in H and XJ := HJ ∩X contains a basis of HJ for

every J .

Remark 11.6. When H = Lµ2 (R) and X = ϕµ(W2(R)) the condition in Remark 11.5
is verified, for instance, by Remark 11.8 in Section 11.4.3. Moreover, observe that the
uniqueness of the extension can also be proven thanks to Jordan’s representation of func-
tions f : R → R with bounded variation (BV). In fact, any f with BV can be written as
the difference of monotone functions and thus Γ(f) is fixed. Then by the density of BV
functions in H, we define Γ on the remaining elements of H.

11.3.3 Comparison with intrinsic methods

We now compare the projected methods defined earlier in this Section and the intrinsic
counterparts. In particular, we focus on the geodesic PCA defined in Bigot et al. (2017)
and Cazelles et al. (2018) and on the distribution on distribution regression model in Chen
et al. (2021).

Bigot et al. (2017) and Cazelles et al. (2018) define two different PCA, namely a global
and a nested one; in particular the nested approach presents analogies with other PCAs de-
veloped for manifold valued random variables (Jung et al., 2012; Huckemann and Eltzner,
2018; Pennec, 2018); we report the two definitions below.

Definition 5. (Global geodesic PCA) Let X a random variable with values in X with
E[X ] = x0. A (k, x0)-global geodesic PC is a set C∗ minimizing E

[
d(X , C)2

]
over the

closed convex sets C ⊂ X such that x0 ∈ C and dim(C) ≤ k.
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Definition 6. (Nested geodesic PCA) Let X a random variable with values in X with
E[X ] = x0. For k = 1, a (k, x0)-nested geodesic PC is a set C∗k such that C∗k is a minimizer
of E

[
d(X , C)2

]
over the closed convex sets C ⊂ X such that x0 ∈ C and dim(C) ≤ k; for

k ≥ 1, a (k, x0)-nested geodesic PC is a set C∗k such that C∗k is a minimizer of E
[
d(X , C)2

]

over the closed convex sets C ⊂ X such that: x0 ∈ C, dim(C) ≤ k, and C ⊃ C∗k−1, where
C∗k−1 is a (k − 1, x0)-nested geodesic PC.

The first key difference between the global and the nested geodesic PCA is that the
latter provides a notion of preferential directions in the principal component, while the
first one does not. In fact, the first nested principal component corresponds to the first
principal direction, and it is possible to find the remaining principal directions by imposing
orthogonality constraints as we obtain nested PCs of higher dimensions. Thus, the nested
geodesic PCA is more suitable to explore and visualize the variability in a data set, see
also Section 11.7. On the other hand, exactly because of the lack of such constraints, the
global PCA is, in general, more flexible and provides superior performance in terms of
reconstruction error, cf. Section 11.7.

Comparing these definitions with the one of our projected PCA, the key difference is
that geodesic PCAs do not exploit the Hilbert structure of H. Thus, as we discuss in
Section 11.5.3, the numerical routines needed to find such principal components rely on
nonlinear constrained optimization, which can be extremely demanding and nontrivial to
implement. This is in sharp contrast with our projected PCA in Definition 1, that, thanks
to Lemma 11.1 can be straightforwardly computed. However, as a result, the projected
PCA is in general less respectful of the underlying metric structure. By investigating
this issue in simpler settings, for instance, when H = Rd and X is a convex polytope
in Rd, we noticed that the differences between the projected principal directions and the
nested geodesic ones become appreciable only if the random variable X gives significant
probability to values near the borders of X. See for instance Figure 11.3.1.

Note that the interpretability of the projected PCA is determined by the level of dis-
crepancy between the projected and nested principal directions, as in Figure 11.3.1, which
depends on how much variability it is correctly captured by the component, that is, how
much of the variability captured by the projected component lies in X. This intuition is
formalized in Section 11.7.2 where two measures of ‘reliability’ of the projected PCA are
proposed.

Turning to the regression context, Chen et al. (2021) define a distribution on distri-
bution linear regression model in the Wasserstein space. Their approach considers two
different tangent spaces of W2(R) (the first one centered in the barycenter of the indepen-
dent variable and the second one centered in the barycenter of the dependent variable)
and map the observations to the corresponding tangent spaces. They then use FDA tools
to estimate a functional linear model Γ̂ between those two spaces. When the image of
the regression operator Γ lies inside the image of the log map centered in the depen-
dent variable’s barycenter, their distribution on distribution regression can be considered
a properly intrinsic method. This assumption is used to prove asymptotic properties of
their methodology, but as the authors in Chen et al. (2021) notice, is hardly verified in
practice, so that whenever the output of the regression operator is not a distribution, they
resort to squeezing such a value with some scalar multiplication, namely ‘boundary pro-
jection’, which in general is not a metric projection. The boundary projection step gives
an extrinsic nature to their model and we provide further comparisons with our methods
in Section 11.3.4.
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Figure 11.3.2: Comparison between different projections onto X for a point x ∈ H\X (blue
line) in the tangent space (left panel) and the associated cumulative distribution functions
(right panel) when the base point µ is the uniform measure on [0, 1]. The orange, green
and red curves are obtained with metric projection, boundary projection and logµ ◦ expµ
respectively.

11.3.4 Comparison with other extrinsic methods

In this section, we offer a comparison of our projected methods with other extrinsic meth-
ods, namely the log PCA in Cazelles et al. (2018) and the distribution on distribution
regression in Chen et al. (2021), which, as outlined in the previous section, may behave as
an extrinsic method. Let us start with the former.

Cazelles et al. (2018) propose the definition of a log PCA as an alternative to the
geodesic PCAs in Bigot et al. (2017). Both the log and the projected PCA are extrinsic
methods: they proceed by carrying out the PCA in a linear space H and then map back the
results to the Wasserstein space, following an approach which had already been proposed
by Fletcher et al. (2004).

For the log PCA, H is the tangent space at µ, for the projected H is Lµ2 (R). Given Uk =
{w1, . . . , wk} the first k H-principal components, the log principal component in W2(R)
is expµ(Sp(Uk)) . Analogously, by considering the convex cone X =: logµ(W2(R)) ⊆ H,

the principal component in X is logµ
(
expµ(Sp(Uk))

)
.

We note two key differences between the log and projected PCA. First, as pointed out
in Remark 11.2, logµ◦expµ is not a metric projection in Lµ2 so that given a point x ∈ H\X,
logµ(expµ(x)) might end up being quite different from x. See for instance Figure 11.3.2
where for a point x (blue line) that is close (in the Lµ2 norm) to X, logµ(expµ(x)) turns out
to be rather far from x. In the context of PCA, this means that as soon as the projection
onto Sp(Uk) of observation lies outside of X the log PCA quickly loses its interpretability.
Second, as discussed in Remark 11.4, there is no guarantee that logµ

(
expµ(Sp(Uk))

)
is

contained in Sp(Uk), its dimension might increase and it might not even be convex. For this
same reason, in general, log PCA cannot define a set of (orthogonal) principal directions
which span the principal component. Hence, it is not possible to work directly on the
scores of the PCA.

Combined, we believe that the above-mentioned issues present a major drawback of
the log PCA when compared to the projected PCA, as they prevent the possibility of
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performing proper dimensionality reduction and working on the scores of data points on
the principal components. Finally, we also point out that approximating the expµ map
is a nontrivial task, involving computing numerically the preimages of an arbitrary large
number of sets and numerical differentiation, that can lead to numerical instability of the
log PCA.

We end this discussion with a comparison between the boundary projection in Chen
et al. (2021) and the metric projection. Their difference, for a possible regression output
x ∈ H\X is depicted in Figure 11.3.2. Note that, by construction, such a procedure shrinks
the tails of the output. Even when the regression output is slightly outside the image of
the log map, the boundary projection result can be extremely far from the regression
output and from the metric projection in terms of Wasserstein distance. For example, in
Figure 11.3.2, the regression output and the projected method assign positive probability
to values in the range [−45, 45], while the output of the boundary projection assigns zero
probability to values outside [−17, 17]. This underrepresentation of the variability might
be a crucial issue depending on the application considered.

11.4 Computing the metric projection through B-spline approxima-
tion

The projected methods defined in Section 11.3 depend heavily on the availability of pro-
jection operators on the closed convex cone X = ϕµ(W2(R)). Being X a cone inside a
linear space, such operators are always well defined, but their implementation might be
nontrivial. In this section, we present a possible solution to this problem, based on choos-
ing a particular µ as base point and constructing a B-spline representation of the cone
X.

11.4.1 Choosing µ as the uniform distribution on [0, 1]

As already mentioned, our projected methods can be carried out by choosing µ arbitrarily
and there is no theoretical difference between different choices of µ, cf. Section 11.2.2.
Nonetheless, in practice, a clever choice of µ can lead to substantially easier and more
numerically stable algorithms. For instance, by choosing a measure µ with compact sup-
port C in R, then the ambient space becomes Lµ2 (C) since we work up to zero-measure
sets. This greatly simplifies any numerical procedure since we could work with grids over
bounded sets and do not need to resort to any truncation procedure, which would be
mandatory in case the support of µ was unbounded. Moreover, note that evaluating the
maps ϕµ in a certain measure ν amounts to computing the transport map T νµ = F−ν ◦ Fµ,
hence it is clear that the choice of Fµ numerically influences the results.

For the aforementioned reasons, we argue that a reasonable choice is to center our
analysis in µ = U([0, 1]). In fact, in this case, Lµ2 (R) = L2([0, 1]), and Fµ = id[0,1] (the
transport maps are simply given by quantile functions).

11.4.2 Metric Projection

Having chosen µ as Section 11.4.1 leads to an explicit characterization of the image of ϕµ
as the set of square-integrable a.e. non-decreasing functions on [0, 1]. Hence, the operator
ΠX in Section 11.3 is the metric projection onto the cone of a.e. non-decreasing functions
in L2([0, 1]).

Projection onto monotone functions has been widely studied in the field of order re-
stricted inference, (Anevski et al., 2006; Dykstra et al., 2012). For instance, in Anevski
and Soulier (2011) an explicit characterization of such a projection is given, which, how-
ever, does not lead to a closed-form solution, while in Ayer et al. (1955) several numerical
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algorithms to approximate the projection operator are proposed. Those algorithms are
based on approximating the function to be projected with a step function defined on n
intervals and can be shown to have a computational complexity that is linear in n (Best
and Chakravarti, 1990).

Despite the numerical convenience of the aforementioned approximations, we believe
that they are not suited for distributional data analysis. First and foremost, suppose that
observations are given as probability density functions, so that one may want to interpret
the results of a PCA, for instance, in terms of pdfs and not of quantile functions. If one
were to estimate discontinuous principal directions through any of the algorithms in Ayer
et al. (1955), it would not be possible to do so, as the corresponding cdfs would not be
differentiable. In addition to that, the choice of the number of intervals n is not obvious
when quantile functions are not directly observed but obtained with transformation. If n
needs to be big to faithfully approximate the true quantile functions, this projection can
be quite slow.

For these reasons, we propose a B-spline expansion through which we can derive an
alternative approximation of the projection operator ΠX , without incurring in the issues
of the algorithms in Ayer et al. (1955). Moreover, we will also show in Section 11.5.3 that
the proposed B-spline expansion also leads us to a simpler and faster reformulation of the
geodesic PCA in Bigot et al. (2017).

11.4.3 Monotone B-splines representation

In what follows, let µ = U([0, 1]). Moreover, denote with x = [x1, . . . , xk]
′ ∈ Rk a generic

vector.
As already said, through the ϕµ map, we can identify W2(R) with the space

L2([0, 1])↑ := {F− ∈ L2([0, 1]) s.t. F− is monotonically nondecreasing}

This leads us to consider a suitable B-spline basis for the space to efficiently evaluate
all the computations needed in our algorithms and for a convenient way to express the
constraints which define L2([0, 1])↑. In particular, we consider the basis of quadratic splines
with equispaced knots in [0, 1]. The reason for this particular choice is two-folded. First
of all, splines of degree greater than one enjoy the nice property of uniform approximation
of all continuous functions as the maximum distance between knots goes to zero. In turn,
this means that the closure of the linear space generated by the spline basis w.r.t the L2

norm coincides with L2([0, 1]). Secondly, quadratic splines are particularly well suited to
characterize monotonic functions by looking at the coefficients of the (quadratic) B-spline
expansion, as shown in the next proposition.

Proposition 11.4. Let {ψkj }Jj=1 be a basis of B-splines of order k defined over the knots

x1, . . . , xJ+k+2. Let f(x) =
∑J

j=1 ajψ
k
j (x), then:

1. If the coefficients {aj} are monotonically increasing (decreasing) f is monotonically
increasing (decreasing).

2. If k = 2, then 1. holds with an ‘if and only if ’.

Before proceeding, let us fix some notation. From now on, we omit the dimension index
‘k’ for the spline basis, writing ψj for ψ2

j , moreover we will let {ψj}Jj=1 with fixed J > 0
denote a B-spline basis in L2([0, 1]).

Remark 11.7. Let RJ↑ be the set of vectors v ∈ RJ with nondecreasing coefficients. That
is, letting G = {gij} be the J × J binary matrix such that

∑
j gijvj = vi − vi−1, for any
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element v ∈ RJ it holds that Gv ≥ 0. Using Proposition 11.4, through the coordinates
operator, the set L2([0, 1])↑ ∩Span{ψj}Jj=1 is fully identifiable with RJ↑, endowed with the
metric given by the symmetric positive definite matrix E with entries

Eij = 〈ψi, ψj〉L2([0,1]). (11.9)

The norm induced is therefore ‖x‖2E = xTEx.

Remark 11.8. It is possible to find a basis for RJ with vectors lying in RJ↑ (and so in
XJ), namely the vectors (0, . . . , 0, 1), (0, . . . , 0, 1, 1) etc. In other words, Span(L2([0, 1])↑∩
Span{ψj}Jj=1) = Span{ψj}Jj=1 for every J > 0. This tells us that the convex cone of
monotone splines is indeed quite big inside the spline space, and this a priori is beneficial
for extrinsic methods, especially for PCA.

From now on, to lighten the notation, we deliberately confuse the coefficients of the
splines, living in RJ or RJ↑ (with the metric given by E), with the corresponding spline
functions living in the subsets of L2([0, 1]) given by L2([0, 1])↑∩Span{ψj}Jj=1 and Span{ψj}Jj=1.

Remark 11.9. Lastly, we point out that RJ↑ has the structure of a convex polytope, since
the constraints given by Gv ≥ 0 (guaranteeing that v ∈ RJ↑) are linear. Such geometric
property makes optimization on RJ↑ handy and is key for the empirical methods developed
in the remaining of the chapter.

As a consequence of Remark 11.9, the optimization problem given by the projection of
a vector v ∈ RJ onto RJ↑ can be formulated as follows:

ΠRJ↑(v) = arg min
Gw≥0

‖v − w‖E . (11.10)

The computational complexity required to solve (11.10) is at most cubic in the number of
basis elements J (Potra and Wright, 2000).

Preliminary analysis showed that solving the optimization problem in (11.10) compares
favorably with the Pool Adjacent Violators Algorithm (PAVA) in Ayer et al. (1955). In
particular, computing PAVA with n = 100 approximation intervals is roughly eight times
slower than (11.10) with J = 20 (a reasonable choice, leading to negligible approximation
error, in our examples, with a quadratic spline basis). Increasing n = 1000 for PAVA
makes it 700 times slower than (11.10).

In addition to that, resorting to a discretized approximation of quantiles would also
increase the cost of the projected PCA, due to the need of using some functional PCA
implementation, as opposed to the low-dimensional multivariate model we are able to
implement with the B-spline basis functions.

11.5 Empirical Models with B-splines

In this section, we present the empirical counterparts of the projected PCA defined in
Section 11.3 and provide an illustrative example of projected linear regression, namely
when both the dependent and independent variables are distributions.

Let {ψj}Jj=1 be a fixed quadratic B-spline basis. Upon approximating the observed
quantile functions with their spline expansion, thanks to Remark 11.7, we can develop
our methodology in RJ , considering the metric induced by E instead of the usual one.
Indeed, given a vector w ∈ RJ , we can identify the corresponding function in L2 by the
map w 7→∑J

j=wjψj .
For the projected PCA in Section 11.5.1 and for the geodesic PCA in Section 11.5.3 we

consider observations F−1 , . . . , F
−
n and let F−0 be the centering point of the PCA. In our
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examples, F−0 will always be the barycenter of the observations. As a preprocessing step,
we approximate each of these quantile functions through a B-spline expansion and denote
by ai = {aij}j and a0 = {a0j}j the coefficients of the spline representation associated

to F−i and F−0 respectively, that is, F−i ≈
∑J

j= aijψj . For the projected regression in

Section 11.5.2, let observations {(F−z , F−y )i}ni=1, where the F−zi ’s are realizations of the

independent variable Z and the F−yi ’s are realizations of the dependent variable Y. We

apply the same preprocessing step and let a
(z)
i and a

(y)
i denote the coefficient of the spline

approximation of F−zi and F−yi respectively.

11.5.1 Empirical PCA

As in standard PCA, the first principal component centered in a0 is found by solving the
optimization problem:

w∗1 = arg max
w:‖w‖E=1

∑

i

|〈ai − a0,w〉E |2 = arg max
w:‖w‖E=1

‖AEw‖2, (11.11)

where A is the n × J matrix whose i–th row is given by ai − a0. The optimization
problem (11.11) can be solved similarly to a Rayleigh quotient: using Lagrange multipliers,
(11.11) is equivalent to

L(w) := wT (A E)T A E w − λ(wT E w − 1). (11.12)

Deriving (11.12) w.r.t w and equating the derivative to zero shows that the solutions to
dL(w)/dw = 0 are the eigenvectors of the matrix ATAE. Hence, ordering the eigenvalues
of ATAE in decreasing order, the first principal component w∗1 corresponds to the first
eigenvector. Using similar arguments, it can be shown that w∗2, . . .w

∗
J correspond to the

remaining eigenvectors.
Once the first k principal directionsw∗1, . . . ,w

∗
k are found, the projection of a new obser-

vation x∗ =
∑J

j=1 a
∗
jψj onto Uk,x0

X (see Definition 1) is found exploiting Proposition 11.2.
In particular, the following optimization problem is to be solved:

arg min
λj∈R

‖(〈a∗ − a0,w
∗
i 〉E − λi)ki=1‖,

s.t. G
( k∑

i=1

λiw
∗
i + a0

)
≥ 0.

(11.13)

which is equivalent to the minimization of a norm inside a polytope, that is a well-studied
problem in RJ (see Sekitani and Yamamoto, 1993) and there exist a variety of fast numer-
ical routines to solve it.

11.5.2 Empirical Regression

In this section, we provide the details of the estimation procedure for a projected regression
model where both the independent and the dependent variables are distribution-valued.
It is straightforward to extend our methodology to cases when only one of these variables
is distribution-valued and the other one takes values in Rq.

First, we outline how to obtain an estimator for the linear operator Γ in Definition 4.
Following Section 11.3.2 we first embed both Y and Z in L2([0, 1]) through the inclusion
operator L2([0, 1])↑ ↪→ L2([0, 1]), and assume the functional linear model presented in
Ramsay (2004) and Prchal and Sarda (2007)

Y(t) = α(t) +

∫ 1

0
β(t, s)Z(s)ds+ ε(t), t ∈ [0, 1], (11.14)
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so that Γ = Γα,β is the operator Γα,β(v)(t) = α(t) +
∫ 1

0 β(t, s)v(s)ds. The goal is then

to estimate α ∈ L2([0, 1]) and β ∈ L2([0, 1]2). Further, we assume that ε and Z are
uncorrelated: E[Z(s)ε(t)] = 0 for every t, s ∈ [0, 1].

Consider now observations {(F−z , F−y )i}ni=1 and the corresponding spline coefficients.

Further, we project α(t) on the same spline basis, so that α ≈∑J
j=1 θαjψ(j) and β(t, s) on

the basis on [0, 1]2 with J×J elements, so that β(t, s) ≈∑J
i,j′=1 Θβijψi(t)ψj(s). Neglecting

the spline approximation error, model (11.14) entails

a
(y)
i = θα + ΘβEa

(z)
i + a

(ε)
i , i = 1, . . . , n, (11.15)

where a
(ε)
i denotes the spline expansion coefficients of the unobserved error εi(t).

We propose to estimate (11.15) using the same approach of Prchal and Sarda (2007),
but extending it to account for spline approximations for both dependent and independent
variables. We focus only on the estimate Θ̂β of Θβ since once such estimate is obtained,
the estimate for aα can be straightforwardly derived (see Cai and Hall, 2006) as:

θ̂α = a(y) − Θ̂βEa(z),

where a(y) and a(z) are the means of a(y) and a(z) respectively.
The estimator Θ̂β is found by penalized least square minimization:

Θ̂β = arg min
Θ

1

n

n∑

i=1

‖
(
a

(y)
i − a(y)

)
−ΘE

(
a

(z)
i − a(z)

)
‖2 + ρPen(1,Θ), (11.16)

where ρ > 0 is a penalization parameter to be fixed (usually through cross-validation) and
Pen(1,Θ) is a penalization term defined in Prchal and Sarda (2007).

Briefly, the term Pen(1,Θ) in (11.16) penalizes both the norm of β(t, s) and its deriva-
tives, thus favoring smoother solutions. As shown in Prchal and Sarda (2007), (11.16) has
a closed form solution. Nonetheless, the form of our solution differs from the one presented
in Prchal and Sarda (2007), since they work directly on discretized functions while we pro-
pose to estimate spline coefficients and some care must be taken since they can use (up
to scaling) the usual inner product in the Euclidean space of discretized functions, while
we must consider the inner product induced by E. However, the procedure for obtaining
our result is identical to the one in Prchal and Sarda (2007). Hence, we only report the
expression for the estimate.

Let Ĉ be the matrix with entries

Ĉks =
〈 1

n

n∑

i=1

〈a(z)
i , bk〉E a(z)

i , bs

〉
E
,

where bk and bs are the k-th and s-th elements of the standard Euclidean basis in RJ .
Further, let D̂ the matrix with entries

D̂ks =
〈 1

n

n∑

i=1

〈a(z)
i , bk〉E a(y)

i , bs

〉
E
.

Finally, let E′ denote the matrix with entries E′ij =< ψ′i, ψ
′
j > (where ψ′i denotes the first

derivative of the B-spline basis function ψi), Cρ = ET ⊗ (Ĉ + ρE′), and P = E′T ⊗ E +
ET ⊗ E′, where ⊗ denotes the Kronecker product. Then the solution of (11.16) can be
expressed as

vec(Θ̂β) = (Cρ + ρP )−1vec(D̂),
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where vec(·) denotes the vectorization of the matrix.
Finally, our projected regression model is the composition of the operator induced by

(θ̂α, Θ̂β) with the projection on R↑J :

E[a
(y)
i |a

(z)
i ] = ΓP(a

(z)
i ) = ΠRJ↑

(
θ̂α + Θ̂βEa

(z)
i

)
.

11.5.3 An alternative optimization routine for the geodesic PCA and a
comment on the computational costs

We now show how the framework in Section 11.4 can be employed also to derive faster
numerical algorithms to find the global and nested geodesic PCA as of Definition 5 and
Definition 6.

Proposition 11.5. (Global geodesic PCA) A k dimensional global geodesic PC centered
in a0 is the subset of RJ↑ spanned by {w1, · · · ,wk}, linearly independent, which solve:

arg min
{λi}n1 ,{wj}k1

n∑

i=1

||ai − a0 −
k∑

j=1

λij ·wj ||2E ,

s.t. G
(∑

j

λijwj + a0

)
≥ 0.

(11.17)

Proposition 11.6. (Nested geodesic PCA) With the same notation as above, a k dimen-
sional nested geodesic PC, centered in a0 is the set spanned by {w1, · · · ,wk} in RJ↑, where
the wis are found recursively from w1 to wk, such that wh is a solution, for every h, of:

arg min
{λi}ni=1,w

n∑

i=1

‖ai − a0 − λiw‖2E ,

s.t. 〈wj ,w〉E = 0, j = 1, . . . , h− 1,

G
(
λiw + a0

)
≥ 0, ‖w‖E = 1.

(11.18)

To solve (11.17) and (11.18) we employ an interior point method using the solver
Ipopt (Waechter and Biegler, 2006). When comparing our implementation with J = 20
spline basis and the one in Cazelles et al. (2018), we notice a substantial performance
improvement, by a factor of 35 for a data set of n = 100 distributions, due to the fact
that working with spline approximations greatly reduces the number of parameters in the
optimization problem.

Further, note that (11.17) and (11.8) seem extremely similar. However, in (11.8) the
optimization is carried out having fixed w∗1, . . . ,w

∗
k and for a single observation, while

in (11.17) the optimization is done over a much larger set of parameters. In fact, the
number of parameters in (11.17) is (n+ k)J , hence the computational complexity needed
to solve (11.17) is cubic in both the number of bases and the number of observations. On
the other hand, the projected PCA requires a linear time in the number of observations
(computation of ATAE) and cubic time in the number of basis J (eigendecomposition and
projections of new observations).

11.6 Asymptotic Properties

In this section, we study the convergence of the proposed projected empirical methods.
First of all, we show that as the number of spline basis J increases, the error due to the
spline approximation vanishes if the data is sufficiently regular. Further, under a suitable
set of assumptions, we establish consistency results for the projected PCA and for the
projected distribution on distribution regression.
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11.6.1 Convergence of Quadratic B-splines

In the following, denote with W r
k ([0, 1]) the Sobolev space of functions whose weak deriva-

tives up to order k belong to Lr([0, 1]), further denote with D the (weak) derivative
operator, so that Df = f ′, D2f = f ′′ and so on,

Proposition 11.7. Let µ a probability measure on R, F−µ its quantile function such that

F−µ ∈ W∞3 . For each J let {ψj}Jj=1 denote a quadratic B-spline basis on J equispaced

knots in [0, 1]. Then there exist a sequence of spline functions SJ =
∑J

j=1 λ
(J)ψ

(J)
j , with

λ
(J)
j monotonically non-decreasing in j for every J , such that:

‖SJ − F−µ ‖∞ ≤ C‖D2f−µ ‖∞J−2,

with f−µ = DF−µ and C > 0 constant.

Let us remark two important facts.

Remark 11.10. Since the inclusion L∞([0, 1]) ⊂ L2([0, 1]) is continuous, thanks to Hölder
inequality, the convergence rates hold also for the L2 norm. By default we will use the L2

norm if not stated differently.

Remark 11.11. By Poincaré inequality, if ‖D3f‖∞ < C then f belongs to a sphere in
W∞3 ([0, 1]) whose radius depends on C and on the Poincaré constant of [0, 1]; viceversa,
all the elements in the sphere of radius C in W∞3 ([0, 1]) clearly have (weak) derivatives
bounded by C.

11.6.2 Consistency

In this section we prove the consistency of the projected methods under some assumptions
on the data-generating process. In particular, we show that that there exists a number of
basis functions J > 0 and a sample size n such that the error committed by the empirical
models in Section 11.5 is smaller than ε > 0, for any fixed ε.

11.6.2.1 PCA

The consistency of spline-based PCA for functional data has been addressed, among the
first, by Silverman et al. (1996) and Qi and Zhao (2011). As one of the main building
blocks of our projected PCA is the PCA in the ambient space, that is L2([0, 1]), it is
natural to follow Qi and Zhao (2011) in making the following assumptions. Consider data
µ1, . . . , µn, F−1 , . . . , F

−
n the corresponding quantile functions, then:

(P1) The data generating process satisfies F−1 , . . . , F
−
n ∼ F with the F−i independent and

E[F ] = 0.

(P2) F−1 , . . . , F
−
n can be approximated by functions in W∞3 with uniformly bounded third

derivative.

(P3) E[‖F−i (t)‖4] <∞, i = 1, . . . , n.

(P4) The eigenvalues of the covariance operator of F have multiplicity 1.

(P5) The eigenfunctions of the covariance operator of F belong to some bounded set in
W∞3 ([0, 1]) ⊂W 2

3 ([0, 1]).
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Before stating the main results, let us comment on assumptions (P1)-(P5). First of
all, (P2) is essential in order to apply Proposition 11.7 and get uniform errors on the
data set. Moreover, (P2) is satisfied, for instance, if the F−i ’s lie in the L2-closure of
a ball of radius M > 0 in W∞3 . (P4) is a rather standard condition and is satisfied if
µ1, . . . , µn ∈ W4(R). (P4) and (P5) imply the assumptions that in Qi and Zhao (2011)
are used for the consistency results. In particular, (P5) is stronger than the corresponding
assumption in Qi and Zhao (2011), where the eigenfunctions are assumed to belong to
W 2

2 ([a, b]). Similarly, in such work, there is no counterpart of assumption (P2); in fact, we
need these stronger regularity conditions to get uniform errors when using B-splines. Still,
some of the examples Qi and Zhao (2011) provide of situations satisfying their assumptions
meet also our requirements. Finally, the zero-mean assumption in (P1) might seem a little
odd, since we know that the quantile functions are monotonically nondecreasing. However,
observe that it is always possible to subtract the empirical mean from the observations to
satisfy (asymptotically) this assumption.

Let J denote the dimension of a quadratic B-spline basis on [0, 1] and let aJi the
coefficients of the B-spline approximation of F−i . In what follows, to lighten the notation,
we refer to a set of spline coefficients both as elements of RJ with the E-norm, or as
functions in L2, without making explicit reference to the coordinate operator and its
inverse.

Proposition 11.8. Under assumptions (P1)-(P5), for any ε > 0 there exists a sample
size n > 0 and a number of basis functions J > 0 such that:

∣∣∣ max
‖w‖L2

=1

1

n

∑

i

〈F−i , w〉2L2
− max
‖w‖E=1

1

n

∑

i

〈aJi ,w〉2E
∣∣∣ < Kε,

for some constant K > 0.

Proposition 11.8 ensures the consistency of the B-spline approximation of the PCA for
monotone functional data in H, which is equivalent to the consistent estimation of the
projected principal directions.

Suppose now to have computed UJk = {wJ∗
h }kh=1, that is the approximations of the

principal directions Uk = {w∗h}kh=1 found with J basis functions. We observe that Sp(UJk )∩
L2([0, 1])↑ = Sp(UJk ) ∩ RJ↑. Since for any set of coefficients λh we have the convergence∑
λhw

J∗
h →

∑
λhw

∗
h, we obtain that the projection of a point onto Sp(UJk ) ∩ L2([0, 1])↑

converges to the projection onto Sp(Uk) ∩ L2([0, 1])↑. Thus we also have convergence of
the projection onto the principal components.

11.6.2.2 Regression

We consider model (11.14) given samples {(F−z , F−y )i}ni=1. We make the following assump-
tions:

(R1) The data generating process satisfies (11.14) and E[Z(s)ε(t)] = 0 for every t, s ∈
[0, 1].

(R2) α ∈ L2([0, 1]) and β ∈ L2([0, 1]× [0, 1]).

(R3) With probability 1, each quantile function in the samples {(F−z , F−y )i}ni=1 lies inside

a sphere of radius K > 0 in W 3
∞([0, 1]).

Without loss of generality, suppose that both the dependent and the independent vari-
ables have been centered by subtracting their mean so that E[Z] = E[Y] = 0 and α = 0.
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The strategy to prove the consistency of the projected linear regression is the following.
First of all, we prove that the estimator Θ̂J converges to the estimator Θ̂PS, defined in
Prchal and Sarda (2007), for large enough n and J . Second, we exploit the consistency of
the estimator in Prchal and Sarda (2007) combined with the approximation results of the
metric projection to establish consistency in terms of the prediction error of our projected
regression operator.

Briefly Θ̂PS is obtained by minimizing an objective function similar to the one in (11.16),
but where the spline approximation is used only for Θ, while the F−zi ’s and the F−yi ’s are
assumed fully observed and not approximated through splines. Calling B the vector of
functions with entries ψ1, . . . , ψJ , Θ̂PS is defined as:

Θ̂PS = arg min
Θ

1

n

∑

i

‖F−yi − 〈F−zi , BTΘB〉‖2 + ρPen(1,Θ).

Convergence of Θ̂J to Θ̂PS is shown in the next proposition

Proposition 11.9. Under assumptions (R1)-(R3), if the number of samples is big enough,

Θ̂ and Θ̂J exist with probability close to 1 and there is J > 0 such that ‖Θ̂PS−Θ̂J‖E⊗E < ε.

Let β̂PS and β̂J be the kernels β̂PS = BT Θ̂PSB and β̂J = BT Θ̂JB. Since ‖β̂PS(s, t) −
β̂J(s, t)‖L2([0,1]2) = ‖Θ̂PS − Θ̂J‖E⊗E , we established strong convergence of our kernel to
the estimator of Prchal and Sarda (2007). This implies that the consistency results for the

estimator Θ̂PS holds also for Θ̂J , with respect to the seminorm induced by the covariance
operator of Z. Specifically, given Z, H-valued random variable, and its covariance operator
CZ , for any ϕ ∈ L2([0, 1]2), we consider the semi-norm on L2([0, 1]2) given by:

‖ϕ‖ΓZ =

∫

[0,1]
〈CZϕ(·, t), ϕ(·, t)〉dt.

Thus, the following result is immediately implied since strong convergence implies semi-
norm convergence (see Appendix 11.A).

Corollary 11.1. For J > 0 big enough E[‖β − β̂J‖CZ ] < ε.

Proof. We use the seminorm triangle inequality:

‖β − β̂J‖CZ ≤ ‖β − β̂‖CZ + ‖β̂ − β̂J‖CZ .
The first term on the right-hand side converges to zero thanks to Theorem 2 in Prchal and
Sarda (2007), while the second term converges to zero thanks to Proposition 11.9 and the
previous observations.

Lastly, we need to take into account the projection step. First, we notice that ‖β−β̂‖ΓZ
corresponds to the expected prediction error, in fact, as in Prchal and Sarda (2007):

‖β − β̂J‖CZ =

∫

[0,1]
E
[
〈Z, β(·, t)− β̂J(·, t)〉2 | β̂J

]
dt,

further, by Hölder’s inequality E
[
|〈Z, β − β̂J〉|

∣∣ β̂J
]
→ 0, which straightforwardly yields

E
[
‖Γβ(z)− Γ

β̂J
(z)‖

∣∣ β̂J
]
→ 0.

Thus, the following simple lemma ensures the consistency of the spline approximation
of the projection on X and leads to the consistency of the projected regression in terms
of prediction error. Again, following Remark 11.7, we can identify the space monotone
B-splines with J basis functions with RJ↑. Hence, to lighten the notation, we denote
ΠRJ↑ the metric projection operator onto the space of monotone B-splines with J basis
functions.
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Lemma 11.2. Given bn → b in H, for any ε > 0 there exists n, J > 0 such that
‖ΠRJ↑(bn)−ΠL2([0,1])↑(b)‖ ≤ ε.

11.7 Numerical Illustrations for the PCA

In this section, we perform PCA on different simulated data sets and on a real data
set of Covid-19 mortality data in the US. In particular, on the simulated data sets, we
compare the performance of our projected PCA (in terms of approximation error and
interpretability of the directions) with the ones of intrinsic methods, showing that the
projected PCA is a valid competitor in a diverse set of situations. For the Covid-19 data
set, we compare inference obtained using the projected, nested and log PCA, highlighting
the practical benefits of the projected PCA over the log one.

For the projected, nested, and global PCAs we need to fix a B-spline basis to express
the quantile functions. In particular, we fix an equispaced quadratic B-spline basis with J
interior knots on [0, 1]. Here, the number of basis J is always fixed to 20, which provided
a negligible approximation error of the quantile functions. We did not observe any appre-
ciable change when increasing it. In Appendix 11.C we show further simulations where
we perform sensitivity analysis as the number of basis increases for a fixed sample size, we
provide empirical confirmation of the consistency results in Section 11.6 and give practical
guidance on how to choose J .

11.7.1 Simulation studies

We consider three different simulations to compare both the interpretability and the ability
to compress information of different PCAs.

We compare our projected PCA with the nested and global geodesic PCAs (Bigot et al.,
2017; Cazelles et al., 2018) and the simplicial PCA (Hron et al., 2014).

Briefly, the simplicial PCA applies a transformation that maps densities defined on the
same compact interval I into functions in L2(I), called centered log ratio. Then, a standard
L2 PCA is performed on the transformed pdfs and, by the inverse of the centered log ratio
transform, the results are mapped back to the space of densities, called Bayes space (for
a more accurate definition, see Egozcue et al., 2006). In particular, we remark that, in
order to be well defined, the simplicial PCA requires that all the pdfs have support equal
to I, which is a strong assumption in practice. Further details about simplicial PCA are
given in Appendix 11.B.

As for the projected PCA, to compute the simplicial PCA, we resort to a B-spline
approximation, but this time of the transformed pdfs. Hence, we need to select a B-
spline basis on the support of the pdfs I. In this case, we fix a cubic B-spline basis with
J ′ = J = 20 interior knots on I, as this choice yielded a negligible approximation error for
the transformed pdfs.

In the first scenario, we simulate data from

pi(x) ∝ 1

σi
exp

(
(x− µi)2

/
(2σ2

i )
)
I(x ∈ [−10, 10]), i = 1, . . . 100,

µi ∼ 0.5N (−3, (0.2)2) + 0.5N (3, (0.2)2),

σi ∼ Uniform([0.5, 2.0]).

(11.19)

Where ‘proportional to’ stands for the fact that we confine the density to the support
[−10, 10] and renormalize it so that it integrates to 1.

Observe that there are two sources of variability across the pdfs from the data gener-
ating process (11.19). The first one is the location of the peak µi and the second one is
the width of the distribution around the peak, controlled by σi. See Figure 11.7.1.
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Figure 11.7.1: Data set of pdfs generated from (11.19)

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1s
t P

D

SIMPLICIAL

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30
WASS - PROJECTED

5 0 5
0.0

0.1

0.2

0.3

0.4

WASS - GLOBAL

5 0 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30
WASS - NESTED

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

2n
d 

PD

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 11.7.2: Top row: first principal direction. Bottom row: second principal direction.
Each line represents the pdf associated to λwi where wi is the i–th principal direction
(i = 1, 2) and λ is a score ranging from −2 (darkest blue) to +2 (darkest red).

265



Chapter 11. Projected Wasserstein

Figure 11.7.2 shows the first two principal directions obtained using the different meth-
ods. We can notice several differences between them. Focusing on the first principal
direction, we can see that the simplicial, projected, and nested PCAs detect a change in
the location of the peak of the pdf. In particular, the first direction for the Wasserstein
PCAs represents a shift from left to right of this peak, while, for the simplicial PCA, the
first direction is associated to a peak in 3 (blue lines, negative values of the scores) or to
a peak in −3 (red lines, positive value of the scores). This also highlights the difference
in the geometries underlying the Wasserstein and Bayes spaces. Looking at the second
principal direction instead, we can see how in the Wasserstein PCAs it clearly represents
a change in the width of the distribution, while for the simplicial PCA the interpretation
is somewhat obscure.

The global geodesic PCA deserves a separate discussion. Indeed, from Definition 5 it is
clear that a global principal component is a convex set without any notion of preferential
directions, so that it is not possible to interpret separately the variation along the first
and second direction found by the global PCA.

Now we present two additional simulations that quantify the amount of information
that is ‘lost’ by performing the PCA. As a metric, we consider the reconstruction error,
that is, the quantity

REk =
1

n

n∑

i=1

W2(F−i , F̃
−
i ), (11.20)

where the F−i ’s are the observed probability measures, F̃−i are the reconstructed ones

and k is the dimension of the principal component. More in detail, F̃−i is found by first
projecting (F−i −F−0 ) into Rk using the PCA and then applying the inverse transformation.
Informally, the reconstruction error is a measure of the quantity of information lost by
applying the PCA as a black-box dimensionality reduction.

As evident in Equation (11.20), we measure the performance of PCAs just in terms of
Wasserstein metric. This is likely to favor the performance of the Wasserstein PCAs over
the simplicial one. Thus, the interesting performance comparison is the one between the
geodesic PCAs and the projected PCA. Nevertheless, we think that is worth reporting
also the results for the simplicial PCA, which is an intrinsic method in the Bayes space,
to show that the underlying metric structures are extremely different. This also helps
to appreciate the results in Section 11.8. Given the difference in the metric structure
between Wasserstein and Bayes spaces, we believe that the choice between simplicial and
Wasserstein frameworks is not trivial and should be application-driven.

To measure raw performance differences between geodesic and projected PCAs, we
simulate data so that there is little recognizable structure in them, unlike in the previous
example. The data generating process is as follows:

pi(x) ∝
K∑

j=1

wij
1

σij
exp

(
(x− µij)2

/
(2σ2

ij)
)
I(x ∈ [−10, 10]) + 10−5, i = 1, . . . 100,

wi ∼ DirichletK(1/K), (11.21)

(µij , σij) ∼ N (dµij ; 0, 22)Uniform(dσij , 0.5, 2.0).

Observe that (11.21) is a finite dimensional approximation of the Dirichlet Process mixture
model, a popular workhorse in Bayesian nonparametric statistics, that is well known to
be dense in the space of densities on R, see for instance Ferguson (1983). An example of
the kind of pdfs generated from (11.21) is shown in Figure 11.7.3(a).

To separate the effect of the B-spline smoothing procedure, in this scenario we eval-
uate the reconstruction error in (11.20) considering µ̃i to be the reconstructed quantile
functions (for the Wasserstein PCAs) or pdfs (for the simplicial PCA) and µi to be the
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Figure 11.7.3: Left panel: example of simulated data set for Scenario 2. Right panel:
reconstruction error as a function of the dimension of the principal component employed
for the different methods. The solid lines represent the mean of 10 independent runs
on independent data sets from (11.21) and the shaded area represents ± one standard
deviation.

probability measure represented by the B-spline approximation of the quantile function or
the (centered log ratio of) the pdf respectively.

Figure 11.7.3(b) shows the reconstruction error as a function of the dimension of the
principal component, that is, REk as a function of k. We can see how the three Wasserstein
PCAs consistently outperform the simplicial one. Moreover, as to be expected, the global
geodesic PCA obtains the lowest reconstruction error for all the choices of dimension k,
with the nested geodesic PCA being a close runner-up. However, the computational cost of
finding the nested or global geodesic PCA can become prohibitive as the sample size or the
number of bases in the B-spline expansion or the dimension k increases. For comparison,
finding the 10-dimensional projected PCA is around 1,000 times quicker than finding the
corresponding global geodesic PCA and 200 times quicker than finding the nested geodesic
one.

As an additional simulation, in Appendix 11.C we investigate the effect of the number of
B-spline basis J . In particular, we conclude that, for a fixed dimension k the reconstruction
error (11.20) increases with the number of basis functions, both for the projected and
the simplicial PCA. Furthermore, we also observe that the reconstruction error for the
simplicial PCA exhibits a larger variance than the reconstruction error for the projected
PCA. Our insight is that this is due to the different degree of smoothness of the pdfs and
the quantile functions. Since the quantile functions are in general smoother than the pdfs,
their B-spline expansion should have lower variance.

11.7.2 Assessing the reliability of the projected PCA

A classical measure of performance of the standard Euclidean PCA, also useful to deter-
mine the dimension of the principal component to use, is the proportion of the explained
variance. For a k-dimensional Euclidean principal component, this quantity is easily com-
puted as a ratio of eigenvalues:

∑k
j=1 λj

/∑
j≥1 λj . Upon truncating the series at the

denominator, the same quantity can also be computed for PCA in infinite dimensional
Hilbert spaces.

Due to the projection step involved in our definition of PCA, we argue that the pro-
portion of explained variance might not be a reliable indicator of performance, nor should
it be used to guide the choice of the dimension k. Instead, we propose a fast alternative
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based on the Wasserstein distance that we believe better represents the properties of the
projected PCA, that is, the normalized reconstruction error:

NREk =
1
n

∑n
i=1W2(F−i , F̃

−
i )

1
n

∑n
i=1W2(F−i , F

−
0 )
,

where the numerator corresponds to the reconstruction error in (11.20) and the denomina-
tor is the average distance between the observed measures and their barycenter. Observe
that in Euclidean spaces, this quantity is closely related to the proportion of explained
variance, since, in Euclidean spaces, maximizing variance in a subspace amounts to mini-
mizing the average distance from the subspace to data points.

Given its extrinsic nature, for a fixed dimension, the projected PCA might sometimes
fail to capture the variability of some particular data set and, in those situations, an intrin-
sic approach should be preferred. However, given the high computational cost associated
to geodesic PCAs, one would carry out such analysis only knowing that the results would
be significantly better than the ones obtained by projected PCA. This calls for discerning
whether the poor performance of projected PCA is due to its extrinsic nature or rather
to the scarceness of structure in the data set under consideration: in the former situation
it is likely that a geodesic approach would yield better results, in the latter instead, it is
likely that results remain the same.

We propose now two empirical indicators of the ‘reliability’ of the empirical projected
PCA. The first one measures, once a k-dimensional principal component is found, how
reliable are the projected principal directions and the second one gives an idea of how
different the projected PCA and the L2 PCA are. To assess the interpretability of the
principal directions and the scores obtained with the projected PCA, we first compute for
every principal direction w∗h the quantities ηmin

h and ηmax
h such that

ηmin
h = min

η∈R
{a0 + ηw∗h ∈ RJ↑},

where a0 is the spline coefficient vector associated with the barycenter F−0 . The scalar ηmax
h

is found analogously. Hence (ηmin
h w∗h, η

max
h w∗h) is the segment spanned by the principal

direction living inside the convex cone RJ↑. If the scores of all observations along this
direction lie within the range (ηmin

h , ηmax
h ), then the variability captured by (empirical)

projected PCA can be decomposed along the principal directions, whose scores are then
highly interpretable. Contrary, the PCA scores outside (ηmin

h , ηmax
h ) will be associated with

functions that are not quantiles, and thus limiting the interpretability of the direction.
Hence, we propose the following interpretability score

ISh = 1− 1

n

n∑

i=1

d
(
sih, [η

min
h , ηmax

h ]
) /
|sih|, (11.22)

where sih is the score of observation i along direction h according to the projected PCA.
A value of ISh equal to one corresponds to perfect interpretability, that is, projected PCA
behaves like a standard Euclidean PCA along direction h. On the other hand, values
of ISh closer to zero indicate that the decomposition of the variance along the principal
directions lies outside RJ↑ for direction h. The interpretability score can be fruitfully used
also to evaluate the directions found with the nested PCA, upon replacing the sih’s in
(11.22) with the scores given by the nested PCA.

Note that the ISh score is useful to interpret the directions one at a time. However, it
can be the case that some scores along one direction h′ lie outside the (ηmin

h′ , η
max
h′ ) range but

that the L2 projection on the h ≥ h′ component still lies within the projected component.
For instance, this could imply that a projected PC could be similar to a nested one

268



Chapter 11. Projected Wasserstein

despite having very different directions. A discrepancy between the two can appear when
the projections of some data points on the L2 PCA lie outside RJ↑. Using the terminology
of Proposition 11.2 this can be measured in terms of difference between the projections
Πk(F

−∗ − F−0 ) and ΠSp(Uk)∩(X−x0)(F
−∗ − F−0 ) = ΠSp(Uk)∩(X−x0)(Πk(F

−∗ − F−0 )), for a

given observation F−∗. To quantify the loss of information at the level of the component
(instead of direction), we propose to measure the ‘ghost variance’ captured by the L2 PCA:

GVk =
1

n

n∑

i=1

‖Πk(F
−
i − F−0 )−Π

U
F
−
0
,k

X

(Πk(F
−
i − F−0 ))‖2

/
‖F−i − F−0 ‖2,

that is, theGVk score measures the quantity of information that is lost due to the projection
step or, in other words, the information that we trained our PCA on, but that does not
appear in the Wasserstein Space. If GVk = 0 then all the information captured by the L2

PCA is inside the Wasserstein Space, then the projected PCA coincides with the nested
one by definition.

Finally, although this situation never occurred in our experience, it might happen that
GVk is small but some IS′k (k′ ≤ k) is large. This means that the subspace identified by
the projected PCA is suitable for representing the data, but the single principal directions
are not interpretable. In this case, we suggest taking a hybrid approach: use the projected
PCA as a fast black-box dimensionality reduction step, thus reducing the dimensionality of
each observation from J to k, and then use the nested PCA, in dimension k, to estimate the
directions, the main advantage being the reduction in the computational cost to estimate
the nested PCA in this lower dimensional space.

11.7.3 Analysis of the Covid-19 mortality data set

We perform PCA analysis on the Covid-19 mortality data publicly available at data.cdc.gov
as of the first December 2020. The data set collects the total number of deaths due to
Covid 19 in the US from January 1st, 2020 to the current date, data are subdivided
by state, sex, and age. In particular, the ages of the deceased are grouped in eleven
bins: [0, 1), [1, 5), [5, 15), [15, 25), [25, 35), [35, 45), [45, 55), [55, 65), [75, 85), [85,+∞) but we
truncate the last bin to 95 years for numerical convenience. Further, we remove Puerto
Rico from the analysis because it presented too many missing values. Our final data
set, shown in Figure 11.7.4(a), consists of 106 samples of the distribution of the ages of
patients deceased due to Covid-19, divided by sex and pertaining 53 between US states
and inhabited territories.

We apply our usual B-spline approximation with J = 20 basis to the quantile functions
obtained starting from the histograms in Figure 11.7.4. This choice of J yields an average
approximation error, in terms of Wasserstein distance, of 0.02. An error this low is to
be expected since the quantile functions are piecewise linear functions defined on eleven
intervals.

We use this real data set to make a hands-on comparison of the inference that can be
obtained employing the projected, nested and log PCA.

We start by comparing the projected and nested PCAs. The first direction found by
the nested PCA is identical to the one found by the projected while the second is extremely
close: the cosine between the two principal directions is approximately 0.99. In line with
this, the interpretability scores equal IS1 = 1 and IS2 ≈ 0.89, whileGV2 = 0.05. Moreover,
the two-dimensional projected principal component explains more than 90% of the L2

variability and NRE2 ≈ 0.05 for both projected and nested PCA. Given the reconstruction
error and the GV2 score, we can conclude that the two-dimensional projected principal
component provides a very good fit to the data, and that both selected principal directions
are well behaved with respect to their scores, guaranteeing interpretable results.
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Figure 11.7.4: Left panel: distributions of age at the time of death for Covid-19 patients
divided by sex: orange corresponds to females and blue to males. Different lines corre-
spond to different US states / inhabited territories. Right panel: reconstruction error
as a function of the dimension of the component for different PCAs. The 0-th principal
component is the empirical mean.

Considering the discussion above and the fact that both the projected and nested PCA
employ metric projection to map data points to the k-dimensional principal component,
inference obtained with the nested PCA and with the projected one is almost identical
in this case. We show results only for the projected PCA in Figure 11.7.5. In particular,
the first principal direction shows that the greatest variability is due to the elders: low
negative values along this direction correspond to most of the mortality being concentrated
among in the 80+ range. The red and the green distributions displayed in the rightmost
panel show two antithetic behaviors which correspond to scores along the first principal
direction of roughly −8.5 and 7 as shown in the third panel of Figure 11.7.5. In fact, the
red distribution is concentrated almost exclusively on the last two bins of the histogram,
with the 85+ bin weighting for more of 60% of the deaths. On the opposite, the green
distribution gives more weight to lower age values. The second direction instead shows
variability in the 40−80 range. The purple distribution, characterized by the highest score
along this direction, shows that a significant percentage of deaths occurred in the age range
60 − 75. Finally, the third panel of Figure 11.7.5 reports the scores along the first two
principal directions for the whole data set, blue dots representing males and orange dots
women. We can appreciate how women tend to have lower scores on both directions. This
is in line with our understanding that Covid-19 is more severe among the male population
(see for instance Mandavilli, 2020), which explains why males are more susceptible to
death even at younger ages, while deaths among women are more concentrated in the 70+
age range, being the elders more fragile in general.

The comparison with log PCA requires more attention. First of all, note that the
directions obtained with the projected and log PCA are the same by definition since they
are both obtained performing PCA in L2([0, 1]), but the principal components may differ
because different projection operators are employed when the orthogonal projection of
a point onto the principal component lies outside of the image of ϕµ, as discussed in
Section 11.3.4. As expected from the comparison between the metric projection and the
pushforward operator in Figure 11.3.2, the fit to the data of the projected and log PCAs
will be different. In particular, in this case, we observe that the log PCA does a worse job
in terms of NRE, as shown in Figure 11.7.4(b), especially when the dimension increases.
This behavior can be also partly explained by the complexity of the numerical routines
needed to approximate the pushforward operator (required by the log PCA), where it is
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Figure 11.7.5: The first two panels show the variability along the first two principal direc-
tions (first and second panel), using the same visualization technique as in Figure 11.7.2.
The third panel reports the scores of the projections on the two dimensional principal
component (orange for women and blue for men) and the fourth panel shows three partic-
ular distributions, also highlighted in the third panel. In particular, the red distribution
is the one of women in Vermont, the green one are males in Alaska and the purple one are
women in West Virginia.

natural to expect some numerical errors.
More in general, as also discussed in Cazelles et al. (2018), we can conclude that the

log PCA is not suited to study this particular data set because the L2 PCA is different
from the nested geodesic PCA (as testified by the GV2 score). In fact, apart from the
visual inspection of the L2 principal directions – which are not guaranteed to span the
log-principal components – not much can be obtained from the log PCA in this case since
it does not provide a consistent way of projecting data points on the principal component
as pointed out in Section 11.3.4.

11.8 Numerical Illustrations for the Distribution on Distribution
Regression

In this section, we propose a comparison between the Wasserstein projected and simplicial
(see Appendix 11.B) approaches when the task at hand is distribution on distribution
regression and show an application of the Wasserstein projected regression framework to
a problem of wind speed forecasting.

11.8.1 Simulation Study

We consider two data generating processes as follows. In the first setting, data are
generating from the Wasserstein regression: independent variables z1, . . . , zn are gener-

ated by considering quantile functions F−z1, . . . , F
−
zn such that Fzi =

∑30
h=1 a

(z)
ih ψ

(3)
j where

ψ
(3)
1 , . . . , ψ

(3)
30 is a cubic spline basis over equispaced knots in [0, 1] and a

(z)
i1 = 0, a

(z)
i2 = δi1,

a
(z)
ij = a

(z)
ij−1 + δij−1, and (δi2, . . . , δi30) ∼ Dirichlet(1, . . . , 1). This data generating proce-

dure ensures the F−zi (0) = 0, F−zi (1) = 1 and F−zi is monotonically increasing, cf. Propo-
sition 11.4. The dependent variables F−y1, . . . , F

−
yn are generated using the same spline

expansion of the dependent variables and letting a
(y)
i = Ba

(z)
i . B is a randomly generated

matrix with rows b1, . . . , b30, and each bi is generated as follows: bi1 ∼ Uniform(0, 0.5)

bij = bij−1 + b̃ij and b̃ij ∼ Uniform(0, 0.5), so that the coefficients a
(y)
ij are monotonically
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First scenario Second scenario
Wasserstein (4× 10−7, 7× 10−8) (5× 10−3, 6× 10−3)
Simplicial (0.9, 2.66) (4× 10−4, 5× 10−4)

Table 11.8.1: Cross validation (leave one out) errors and standard deviations for the
Wasserstein and Simplicial regression under the two simulated examples

non decreasing for each i and thus the F−yi ’s can be considered quantile functions.
We compute the pushforward of the uniform distribution via numerical inversion and

differentiation and obtain the pdf associated to each quantile function. Observe that this
task is easier than approximating the pushforward of a generic µ through a generic f (as
Cazelles et al. (2018) do) since the quantile functions are monotonic and we have simple
expressions for all the quantities related to µ. Since the simplicial regression takes as
input (a transformation of) the pdfs while the Wasserstein regression works directly on
the quantile functions, and also due to the fact that numerical errors can be introduced
in the data set during the inversion and differentiation, we consider as ground truth the
pdfs and, for the Wasserstein approach, re-compute numerically the quantile functions.

In the second setting, instead, we generate data from the simplicial regression model:
independent variables z1, . . . , zn are generated by applying the inverse of the centered log

ratio to a random spline expansion as follows. For each i = 1, . . . , n let p̃zi =
∑30

j=1 a
(z)
ij ψ

(3)
j

where the ψ
(3)
j ’s are the same B-spline basis as in the previous setting. Here, the a

(z)
ij ’s are

generated iid from a Gaussian distribution with mean 0 and standard deviation 0.2. The

dependent variables are generated by letting p̃yi =
∑30

j=1 a
(y)
ij ψ

(3)
j and a

(y)
i = Ba

(z)
i , where

B is a randomly generated 30× 30 matrix with entries drawn iid from a standard normal
distribution. Finally the pdfs pzi (respectively pyi) are recovered by applying the inverse
of the centered log ratio to p̃zi (respectively p̃yi), see Appendix 11.B for more details.

Note that under the second data generating process, both the dependent and inde-
pendent distributions have support in [0, 1] by construction, whereas, under the first data
generating process, the independent variables might have a larger support. Thus, to fit
the simplicial regression in the first scenario, as common practice (cf. Appendix 11.B),
we extend the support of all the distributions (both dependent and independent) to the
smallest interval of the real line containing all the supports. This is done by adding a
small term to the pdfs (in our example, 10−12) and then renormalizing them.

For both examples, we simulated 100 observations and compared the projected Wasser-
stein and simplicial regression using leave-one-out cross-validation. In particular, for both
approaches, we use J = 20 quadratic spline basis and choose the penalty term ρ in (11.16)
through grid search. Table 11.8.1 shows the pairs of mean squared error and standard de-
viation of the cross validation, the metric to compare the ground truth and the prediction
is the 2-Wasserstein distance. As one might expect, the Wasserstein regression performs
better in the first scenario, while the simplicial regression performs better in the second
scenario. However, it is surprising how the Wasserstein geometry can capture (in terms of
Wasserstein metric) dependence generated by a linear structure which we have shown to
be very different from the Wasserstein one, making the projected regression a promising
tool for such inferential problems

11.8.2 Wind speed distribution forecasting from a set of experts

We consider the problem of forecasting the distribution of the wind speed nearby a wind
farm from a set of experts. The data set is publicly available at www.kaggle.com/
theforcecoder/wind-power-forecasting. In particular, data consists of measurements of
the wind speed collected every ten minutes for a period of 821 days starting from the 31st
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Figure 11.8.1: Daily average wind speed

December 2017. The daily average wind speed is shown in Figure 11.8.1.
We assume to have access to a set of experts, that is a set of trained models that

provide a probabilistic one-day-ahead forecast for the average wind speed. Here, our goal
is to combine this set of experts and provide a point estimate of the wind speed distribution
for the whole day, which can be helpful when planning the maintenance of the wind mills,
for instance.

Formally, let K denote the number of experts considered, F−zij is the quantile function
associated with the probabilistic forecast of the average wind speed for day i given by
expert j = 1, . . . ,K; F−yi is the empirical quantile function of the wind speed for day i. In

particular, we consider K = 4 experts built from the Prophet model by Facebook (Taylor
and Letham, 2018) as follows: model M1 is the classical Prophet, without additional
covariates or seasonality trends; model M2 includes the ambient temperature as covariate
but not seasonality; model M3 includes a yearly seasonality and no covariates, and model
M4 includes both yearly seasonality and ambient temperature as covariate. The models are
estimated using variational inference on rolling samples of 365 days and produce one day
ahead probabilistic forecasts for the average wind speed. The final sample size corresponds
to n = 456.

We consider a trivial extension of the distribution on distribution regression model in
Section 11.5.2 as follows:

E[F−yi |F−zi1, . . . , F−ziK ] = ΠL2([0,1])↑

(
α+

K∑

j=1

∫ 1

0
βj(t, s)F

−
zij(t) dt

)
. (11.23)

Having approximated all the functions through a B-spline expansion, the model reads

E[a
(y)
i |a

(z)
i1 , . . . ,a

(z)
iJ ] = ΠRJ↑

(
θα +

K∑

j=1

ΘβjEa
(z)
ij

)
.

The procedure for estimating θα and Θβ1
, . . .ΘβK is analogous to the one outlined in

Section 11.5.2.
We compare the prediction performance of five distribution on distribution regression

models. Models R1 to R4 are obtained by fitting model (11.23) using only one of the four
experts, M1 to M4, while the fifth model (RF ) is the ‘full’ model in (11.23) considering
all the four experts. For this comparison, we perform a train-test split of the 456 days for
which the experts produced the prediction, considering the last 100 days as test. We select
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R1 R2 R3 R2 RF
MSE (1.22± 1.32) (1.19± 1.26) (1.15± 1.07) (1.24± 1.23) (0.86± 0.82)

Table 11.8.2: Mean square prediction error ± one standard deviation on the held-out test
set.
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Figure 11.8.2: Estimates of the βi(t, s)’s evaluated on [0, 1]2. The variable t runs across
columns, and variable s across rows

hyperparameters (namely, the penalty coefficient ρ in (11.16) and whether to include or
not the intercept term α) by a grid search cross validation on the training set, and compare
the mean square error on the held-out test set. Results of the comparison are reported in
Table 11.8.2. As expected, the model with the four predictors (RF ) is the best performer.
Interestingly, all the other models R1-R4 perform similarly and present a much higher
mean square error when compared to RF , thus suggesting that the best performance is
achieved by combining the different experts together and no expert alone can be a good
predictor. This is possibly explained by some experts being able to better forecast one
scenario (for instance, light winds) and other experts being able to better forecast other
scenarios.

We conclude with some descriptive analysis. Figure 11.8.2 shows the point estimates
for the coefficients βj . We can interpret as highly influential for the regression the areas
of the βj ’s with high absolute value and as negligible areas with values close to zero.

We can highlight some differences among the coefficients in Figure 11.8.2. In particular,
model M1, seems influent when predicting the tails of the distribution, in particular with
negative weights for the left tail and positive weights for the right tail. Model M2 seems
to be affecting all the steps of the prediction and, in particular, to be the model affecting
the most the median of the distribution. Model M3 appears to be, with M2, the most
important model for the prediction: the absolute value in the corresponding regressor β3

is often very high and with noticeable peaks corresponding to areas predicting the left tail
and towards the right tail. Finally, the regressor corresponding to M4 has very low values,
thus resulting in minor importance in terms of regression influence.

Interestingly, the experts providing the most precious inputs to our regression model
are M2 and M3, that incorporate only the seasonality effect and the temperature covariate
respectively, while M4, which incorporates both, seems to be less important. Hence, the
regression model in (11.23) finds more effective combining experts trained on different
covariates than correcting an expert already trained on all the covariates. In particular,
our insight is that M2 is responsible for centering the median of the output distribution.
The tails of the distribution seem to need also the contribution of seasonality data, given
by M3. Finally, we also observe that the left tail of the wind distribution seems the most
difficult to be predicted, needing very high positive and negative weights across different
models to be obtained.
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Figure 11.8.3: Estimate of α (left) and prediction of one F−y of the test set (right). In the
right panel, the blue line corresponds to the empirical quantile function, the orange one
to the prediction from RF and the green ones to the average wind predictions obtained
from the experts M1-M4.

11.9 Discussion

In this chapter, we propose a novel class of projected statistical methods for distributional
data on the real line, focusing in particular on the definition of a projected PCA and
a projected linear regression. By investigating the weak Riemannian structure of the
Wasserstein space and the transport maps between probability measures, we represent the
Wasserstein space as a closed convex cone inside an Hilbert space.

Similar to log methods, our models exploit the possibility to map data into a linear
space to perform statistics in an extrinsic fashion. However, instead of using operators
like the exp map or some kind of boundary projection to return to the Wasserstein space,
we rely on a metric projection operator that is more respectful of the underlying metric.

By choosing as base point the uniform measure on [0, 1], we are able to efficiently
approximate the metric projection operator so that our models combine the ease of im-
plementation of extrinsic methods while retaining a performance similar to the one of
intrinsic methods. Further, through a quadratic B-spline approximation, we can greatly
reduce the dimensionality of the optimization problems involved, resulting in fast empir-
ical methods. As a byproduct of this approach, we also derive faster numerical routines
for the geodesic PCA in Bigot et al. (2017).

We study asymptotic properties of the proposed methods, concluding that, under rea-
sonable regularity assumptions, our projected models provide consistent estimates and that
the B-spline approximation error becomes negligible. We showcase our approach in several
simulation studies and using two real world data sets, comparing our models to intrinsic
and extrinsic ones and to the simplicial approach in Hron et al. (2014), concluding that
the projected PCA and regression constitute a valid candidate for performing inference on
a data set of distributions.

Although our projected framework was proven to be viable in many practical situations,
some care must be taken when adopting it, especially when performing PCA. In fact, the
extrinsic nature of our method might not fit every data set, in which case a more compu-
tationally demanding intrinsic PCA might be preferred, see for instance Appendix 11.D.1
for an example where the projected principal directions are not interpretable. On top of
that, performing PCA in the Wasserstein space requires more attention than performing
the usual Euclidean PCA: as pointed out in Appendix 11.D.2, since principal components
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are not linear subspaces, decomposing the variance along the directions (i.e., looking at
the scores) must be done carefully, and making sure that the directions are indeed inter-
pretable. To assist practitioners, in Section 11.7.2 we have also proposed two scores that
quantify the interpretability of the principal directions and the discrepancy between the
nested and projected principal components.

Several extensions and modifications of our approach are possible. One possibility is to
extend our framework to encompass more models, such as generalized linear models and
independent component analysis. Although this should be straightforward in theory, the
numerical computations could become more burdensome. Furthermore, as an alternative
to our approach based on B-splines approximation, one could use such B-spline expansion
only to approximate the metric projection operator. Another interesting line of research
would consist in building hybrid approaches (as anticipated in Section 11.7.2) to analyze
distributions in the Wasserstein space, using both extrinsic and intrinsic methods to
exploit the advantages of both worlds while mitigating the disadvantages. We also think
that a deeper comparison between the Wasserstein and the simplicial geometries could
help practitioners in choosing between them.

Finally, as pointed out by an anonymous referee, extensions to encompass measures
supported on Rd, d > 1, are of great interest. This is surely a very challenging problem
due to the geometric structure of W2(Rd). We identify three main obstacles in this sense.
First, the map onto the tangent space is not an isometry because the Wasserstein space is
curved. Second, we lose the nice characterization of the tangent space and of the image
of logµ, so that the metric projection operator becomes harder to derive. Third, the
computational cost would greatly increase due to the need of approximating numerically
the transport maps needed to compute the distances.
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Appendix

11.A Proofs

Assumptions on x0.

Let Bε(x0) = {x ∈ H
∣∣ ||x − x0|| < ε}, a ball of radius ε in H. Given a set C, we refer

to aff(C) as the smallest affine subset containing C, found as the intersection of all affine
subspaces containing C. Similarly H(C) is the convex hull of C, the smallest convex subset
of H containing it. The relative interior of a set C is defined as its interior considering as
ambient space aff(C): relint(C) = {x ∈ C

∣∣ ∃Bε(x0) such that Bε(x0) ∩ aff(C) ⊂ C}.
Throughout our chapter we assume that the random variable X is such that (i) there

exists x0 = E[X ] and (ii) x0 ∈ relint(H(supp(X ))) where supp(X ) is the support of X .
These assumptions are indeed quite natural and require that the distribution of X has a
well defined barycenter, which is not in a ‘degenerate’ position with respect to the convex
hull of its support, which may happen in infinite dimensional Hilbert Spaces. See, for
instance, Berezin and Miftakhov (2019) for an example of distributions not verifying this
second assumption.

Proof of Lemma 11.1.

The proof is divided in two steps. First, we prove that (x0 + Sp(Uk)) ∩X has dimension

k. Then, we show that Ux0,k
X = (x0 + Sp(Uk)) ∩X. Without loss of generality, for ease of

notation, we perform an affine change of variable so that x0 = 0, but, with a slight abuse
of notation, we keep denoting with X and X the transformed random variable and the
convex cone respectively.

To prove the first part, letH(X ) be the convex hull of the support of X and aff(H(X )) =
K be the smallest affine subset of H containing H(X ). We know by assumption that there
is an open ball in K which contains x0 = 0 and is contained in H(X ). Moreover, for every
k ≤ dim(K), Sp(Uk) ⊂ K. Note that we can clearly suppose k ≤ dim(K), otherwise
principal components analysis is useless. With this assumption, since x0 = 0 is in the
relative intern of H(X ), we have k = dim(Sp(Uk) ∩H(X )) ≤ dim(Sp(Uk) ∩X) ≤ k.

Now we prove that a (k, 0)-projected principal component is given by Sp(Uk) ∩X. To
prove this, let C∗ be a (k, 0)-projected principal component and A∗ = A ∩X, with A =
Sp(Uk): we know (i) x0 = 0 ∈ A∗, (ii) dim(A∗) = k by definition and (iii) A∗ ⊆ ΠX(A),
so we have A∗ ⊂ C∗.

Since dim(C∗) = k there is C linear subspace of dimension k such that C∗ ⊂ C.
Consider C ′ = C ∩ X: clearly C∗ ⊂ C ′, so that A∗ ⊂ C∗ ⊂ C ′. Moreover, A∗ ⊂ C ′,
which implies A ∩X ⊂ C ∩X and thus Sp(A ∩X) ⊂ Sp(C ∩X). The proof is concluded
if dim(Sp(A ∩ X)) = dim(Sp(C ∩ X)) = k. In fact, in this case A = Sp(A ∩ X) and
C = Sp(C ∩ X) which means that A ⊂ C and since dim(A) = dim(C) = k, A and C
coincide, proving A∗ = C∗.

To prove this final claim, observe that dim(Sp(A ∩X)) < k implies dim(A ∩X) < k,
which contradicts the proof of the first part of this Lemma. Similarly, dim(Sp(C∩X)) = k
since dim(C∗) = k by hypothesis.
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Proof of Proposition 11.1.

The fact that ‖ΠU
x0,k

X
(x)− x‖ ≥ ‖ΠU

x0,k+1

X
(x)− x‖ follows easily by noticing that Ux0,k

X ⊂
Ux0,k+1
X .

To prove that ‖ΠU
x0,k

X
(x)− x‖ → 0 as k increases, we notice that, by the properties of

the principal components in H, we have ΠSp(Uk)(x− x0)
k−→ x− x0 for every x ∈ X, which

implies ‖ΠSp(Uk)+x0
(x) − x‖ → 0. Denote x1 = ΠU

x0,1

X
(x) and let rk be the line between

x1 and x. Let:
xk = arg min

x′∈rk∩Sp(Uk)+x0

‖x′ − x‖.

We clearly have have xk → x. Finally, by convexity we know xk ∈ Ux0,k
X , which implies

‖ΠU
x0,k

X
(x)− x‖ ≤ ‖xk − x‖ → 0.

Proof of Proposition 11.2.

Without loss of generality, for ease of notation, we perform an affine change of variable
so that x0 = 0, but, with a slight abuse of notation, we keep denoting with X and X the
transformed random variable and convex cone respectively.

We note that being Πk the orthogonal projection onto a subspace, x−Πk(x)⊥Span(Uk)
and thus for v ∈ Span(Uk):

‖x∗ − v‖2 = ‖x∗ −Πk(x
∗)‖2 + ‖Πk(x

∗)− v‖2.

Then
arg min
v∈U0,k

X

‖x∗ − v‖ = arg min
v∈Sp(Uk)∩X

‖Πk(x
∗)− v‖

and the result follows.

Proof of Proposition 11.4.

1. As shown in the supplementary of Pya and Wood (2015) by standard B-spline for-

mulas we obtain that given f(x) =
∑J

j=1 ajψ
k
j (x), then f ′(x) =

∑J
j=1(aj − aj−1) ·

ψk−1
j (x). Being the B-spline basis function nonnegative by definition, we obtain the

result.

2. With k = 2, f ′(x) on the interval [xj+1, xj ] has the following expression:

x− xj
xj+1 − xj

· (αj − αj−1) +
xj+1 − x
xj+1 − xj

· (αj−1 − αj−2),

so:
limx→x−j+1

f ′(x) = αj − αj−1

and the result follows.

Proof of Proposition 11.5 and 11.6.

We report here Propositions 3.3 and 3.4 of Bigot et al. (2017), with the notation adapted
to our manuscript. In the following, H is a separable Hilbert space, X is a closed convex
subset of H, X is an X-valued square-integrable random variable, x0 a point in X and
k ≥ 1 an integer.

Proposition 11.10. Let U∗ = {u∗1, .., u∗k} be a minimizer over orthonormal sets U of H
of cardinality k, of Dx0

X (X , U) := Ed2(X , (x0 +Sp(U))∩X), then Ux0

X := (x0 +Sp(U))∩X
is a (k, x0)−global principal component of X .
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Proposition 11.11. Let U∗ = {u∗1, .., u∗k} be an orthonormal set such that U∗i = {u∗1, .., u∗i }
is a minimimizer of Dx0

X (X , U) over the orthonormal sets of cardinality ‘i’ such that U ⊃
U∗i−1; then U∗x0

X is a (k, x0)−nested principal convex component of X .

Applying Propositions 11.10 and 11.11 we can obtain equivalent definitions of geodesic
and nested PCA as optimization problems in L2([0, 1]). If we fix J ∈ N > 0 and a quadratic
B-spline basis {ψj}Jj=1, we can use Propositions 11.10 and 11.11 with X = L2([0, 1])J↑ and

H = L2([0, 1])J . Thanks to Remark 11.7 we obtain the results.

Proof of Proposition 11.7.

Let SJ =
∑J

j=1 λ
(J)
j ψ

(J)
j and its derivative sJ =

∑
j(λ

(J)
j − λ(J)

j−1)ψ̃
(J)
j where ψ̃

(J)
j denotes

the linear spline basis on the same equispaced grid in [0, 1].
Let f−µ = (F−µ )′. Of course, it can be seen that f−µ is non-negative. Moreover, it is

obvious that f−µ ∈ W∞2 ([0, 1]). Then, from De Boor and Daniel (1974) we get that there

exist sJ such that ‖sJ −f−µ ‖∞ ≤ C‖D2f−µ ‖∞J−2, where C is a constant depending on the
interval [0, 1] but not on n.

Hence, we can determine the coefficients {λ(J)
j }, starting from the spline sJ , up to a

translation factor.
We fix a particular set of coefficients by letting SJ(0) = λ

(J)
1 = F−µ (0) for each J . So

that:

SJ(x)− F−µ (x) =

∫ x

0
sJ(t)dt−

∫ x

0
f−µ (t)dt− SJ(0) + F−µ (0) =

∫ x

0
sJ(t)− f−µ (t)dt.

By using the previous result, the integral we have that SJ(x) − F−µ (x) ≤ CJ−2 for all x
which proves the proposition.

Proof of Proposition 11.8.

By the Assumptions in Section 11.6.2.1 and Remark 11.10 there exists a ball BK in
W∞3 ([0, 1]) of radius K for some K > 0, such that each F−i can be ε-approximated by

F̃−i ∈W∞3 ([0, 1]) with F̃− ∈ BK . We can suppose that also the eigenvectors of the covari-
ance operator of the generating process belong to such sphere, otherwise we just increase
its radius of some finite amount.

By Proposition 11.7 we can choose a spline basis (that is, a number of elements J > 0),
such that we get a ε-uniformly good approximation of BK (and thus we can 2ε-approximate
its L2 closure). To lighten notation, thanks to Remark 11.7 we deliberately confuse RJ↑ and
the space monotone B-splines with J basis functions, the inner product we are referring
to will always be clear by looking at its entries.

Now consider the following inequalities, with aJi obtained as 2ε approximations of F−i ,
wJ ∈ RJ, w ∈ L2([0, 1]):

∣∣∣ 1
n

∑

i

〈F−i , w〉2 −
1

n

∑

i

〈aJi ,wJ〉2
∣∣∣ ≤

1

n

∣∣∣
∑

i

〈F−i , w〉2 −
∑

i

〈aJi , w〉2 +
∑

i

〈aJi , w〉2 −
∑

i

〈aJi ,w〉2
∣∣∣,

where the inner product 〈aJi , w〉 is to be intended as the L2 inner product between the
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spline function with coefficients aJi and the L2 function w. Consider now:

1

n

∑

i

(〈F−i , w〉2 − 〈aJi , w〉2) =

1

n

∑

i

(〈F−i , w〉 − 〈aJi , w〉)(〈F−i , w〉+ 〈aJi , w〉) =

1

n

∑

i

〈F−i − aJi , w〉〈F−i + aJi , w〉 ≤

1

n

∑

i

∣∣∣〈F−i − aJi , w〉
∣∣∣ ·
∣∣∣〈F−i + aJi , w〉

∣∣∣ ≤

1

n

∑

i

2ε‖w‖22K = 4εK‖w‖2.

Similarly:

∣∣∣ 1
n

∑

i

(〈aJi , w〉2 − 〈aJi ,wJ〉2)
∣∣∣ ≤ ‖aJi ‖2 · ‖w −wJ‖ · (‖w‖+ ‖wJ‖).xx

We know that a solution to the problem max‖w‖L2=1
1
n

∑
i〈F−i , w〉2 is given by the first

eigenfunction ŵ of the covariance operator of the empirical process. Now we are in the
condition to apply results in Dauxois et al. (1982), or in Qi and Zhao (2011) (with α→ 0)
to conclude that ŵ converges to the first eigenfunction w̄ of the covariance operator of
the process that generates F−i . By hypothesis, such eigenfunction w̄ lies in BK and thus
can be approximated with our fixed spline basis. Thus for high enough n, also ŵ can be
approximated up to 2ε.

Let aŵ be the coefficients of the spline expansion of ŵ spline approximation, that is,

‖w − aw‖ ≤ 2ε. Observe that
∣∣∣‖ŵ‖2 − ‖aŵ‖E

∣∣∣ ≤ 2ε, just as ‖aiJ‖ ≤ K + 2ε. Thus, up to

adding another ε to the approximation error ‖ŵ−aŵ‖, we can suppose ‖aŵ‖2 = 1. Hence:

∣∣∣ 1
n

∑

i

(〈aJi , ŵ〉2 − 〈aJi ,aŵ〉2)
∣∣∣ ≤ (K + 2ε) · 3ε · 2,

which leads to:
∣∣∣ max
‖w‖L2

=1

∑

i

〈aJi , w〉2 − max
‖wJ‖E=1

∑

i

〈aJi ,wJ〉2
∣∣∣ ≤ (K + 2ε) · 3ε · 2.

Finally, combining the above results and the fact that |max f −max g| ≤ max |f − g| for
any pair of real valued functions f and g, we obtain:

∣∣∣ max
‖w‖L2=1

1

n

∑

i

〈fi, w〉2 − max
‖wJ‖E=1

1

n

∑

i

〈aJi ,wJ〉2
∣∣∣ ≤

max
‖w‖L2

=1
4εK‖w‖+ (K + 2ε) · 6ε ≤ 6εK(1 + 2ε).

Thus for instance if we ask that ε < 1, we obtain the desired result with D = 18 · K.
Consistency follows since ‖aŵ − w̄‖ ≤ ‖aŵ − ŵ‖+ ‖ŵ − w̄‖.
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Proof of Lemma 11.2.

Since for any x ∈ X we have ΠRJ↑(x)→ x, for any v ∈ H:

‖v −ΠRJ↑(v)‖ ≤ ‖v −ΠRJ↑(ΠX(v))‖ ≤ ‖v −ΠX(v)‖+ ‖ΠX(v)−ΠRJ↑(ΠX(v))‖

which implies ΠRJ↑(v)→ ΠX(v). Consider now bn → b in H; we have the inequality:

‖ΠRJ↑(bn)−Π(b)‖ ≤ ‖ΠRJ↑(bn)−ΠX(bn)‖+ ‖ΠX(bn)−ΠX(b)‖

the first term of the right-hand side of the inequality can be sent to 0 by increasing J , the
other by increasing n.

Proof of Proposition 11.9.

We call ai the spline coefficients associated to xi and bi the ones associated to yi. Again
we deliberately confuse the spaces where the coefficients and the spline functions live to
lighten the notation. Since the penalty term does not depend on the data, we have:

1

n

∣∣∣
∑

i

‖yi − 〈xi, BTAB〉‖2 −
∑

i

‖bi − 〈ai, BTAB〉L2([0,1])‖2| =

1

n
|
∑

i

(‖yi − 〈xi, BTAB〉‖2 − ‖bi − 〈ai, BTAB〉L2([0,1])‖2)| ≤

1

n

∑

i

‖yi − 〈xi, BTAB〉‖2 − ‖bi − 〈ai, BTAB〉L2([0,1])‖2|.

Now, since
∣∣∣‖yi − 〈xi, BTAB〉‖2 − ‖bi − 〈ai, BTAB〉L2([0,1])‖2

∣∣∣ =
∣∣∣(‖yi − 〈xi, BTAB〉‖ − ‖bi − 〈ai, BTAB〉‖)×

(‖yi − 〈xi, BTAB〉‖+ ‖bi − 〈ai, BTAB〉‖)
∣∣∣.

Then for some constant K depending on the bounds in the Assumptions, we get:
∣∣∣‖yi − 〈xi, BTAB〉‖2 − ‖bi − 〈ai, BTAB〉L2([0,1])‖2

∣∣∣ ≤
‖yi − 〈xi, BTAB〉 − bi + 〈ai, BTAB〉‖2K =
(
‖yi − bi‖+ 〈ai − xi, BTAB〉

)
2K.

Thus, if J is such that we have ε-approximations of the data, by Cauchy-Schwartz we
obtain:

1

n

∣∣∣
∑

i

‖yi − 〈xi, BTAB〉‖2 −
∑

i

‖bi − 〈ai, BTAB〉L2([0,1])‖2
∣∣∣ ≤ K ′ · ε,

for some K ′ constant.
Thanks to the results in Prchal and Sarda (2007), for any ε > 0, if the number of

samples is big, Θ̂ and Θ̂J exist with probability 1 − ε and are unique. Since the value of
the minimization problem the solve are arbitrarily close, then the minimizers converge in
RJ×J with the metric given by the spline basis.

Strong convergence implies semi-norm convergence.
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Let Z be an H-valued random variable and CZ the covariance operator associated to Z,
that is:

(CZf)(s) =

∫

[0,1]
cov(x(s),x(t))f(t)dt.

In the following, we denote with ‖ · ‖L2
the L2([0, 1]2) norm. Further, recall that

‖cov(Z(s),Z(t))‖L2([0,1]2) = E[‖Z‖2]. We want to look at the behavior of ‖β̂PS − β̂J‖CZ .

∫

[0,1]
〈CZ(β̂PS(s, t)− β̂J(s, t)), β̂PS(s, t)− β̂J(s, t)〉dt ≤

‖CZ(β̂PS(s, t)− β̂J(s, t))‖L2
· ‖β̂PS(s, t)− β̂J(s, t)‖L2

≤
E[‖x‖2] · ‖β̂PS(s, t)− β̂J(s, t)‖L2

· ‖β̂PS(s, t)− β̂J(s, t)‖L2
.

So ‖β̂PS − β̂J‖CZ ≤ M · ‖β̂PS − β̂J‖2L2
for some constant M . Thus ‖ · ‖L2

convergence
implies ‖ · ‖CZ convergence.

11.B The simplicial approach

The simplicial approach to distributional data analysis is based on the definition of Bayes
space B2(I) (Egozcue et al., 2006). Formally, let I ⊂ R a closed interval, the Bayes spaces
B2(I) is defined the equivalence class of probability densities p(x) on I (that is p(x) ≥ 0
and

∫
I p(x)dx = 1) with square integrable logarithm.

The Bayes space is endowed with a linear space starting from the definition of the
perturbation and powering operators, that are analogous to the sum and multiplication
times a scalar, and inner product. Moreover Menafoglio et al. (2014) defines an isometric
isomorphism between B2(I) and L2([0, 1]) through the so-called centered log ratio (clr)
map defined as

p̃(x) := clr(p)(x) = log(p(x))− 1

b− a

∫ b

a
log p(t)dt, (11.24)

for every p ∈ B2(I). The inverse map is defined as

p(x) = clr−1(p̃)(x) =
exp(p̃(x))∫

I exp(p̃(x))dx
.

Thus, it is possible to define a simplicial PCA and simplicial regression on the Bayes
space starting from the clr map. In particular, let p1, . . . , pn be observed densities on the
interval I and let p̃i = clr(pi). Denote with w̃1, . . . , w̃k the first k principal directions
estimated from the p̃i’s, then a k dimensional simplicial principal component is the span
of {wi = clr−1(w̃i)}ki=1 in B2(I).

Similarly, for pdfs {(pz, py)i}ni=1 a simplicial regression model is defined starting from

the clr transformed variables. Let Γ̃ denote a functional regression model in L2 for variables
{(p̃z, p̃y)i}ni=1, then the simplicial regression states:

E[pyi | pzi] = clr−1
(

Γ̃(p̃zi)
)
.

Apart from the different geometries of the Wasserstein and Bayes space, which are
discussed in Sections 11.7 and 11.8, we can highlight one particular drawback from the
simplicial approach, which we believe poses a significant limit to its usefulness. In fact,
the main assumption is that all the pdfs pi share the same support, which might not be
the case (for instance, it is not the case for our example in Section 11.8.2). In practice,
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Figure 11.C.1: Example of data set from (11.26)

one may circumvent this need by either ‘padding’ all the pdfs to the same support, i.e
considering

pi(x) ∝ pi(x) + εI[x ∈ I], (11.25)

where I[·] denotes the indicator function, and the proportionality is due to the need of
re-normalizing the pi’s so that they integrate to 1. Another approach could consist in
considering I as the intersection of all the supports of the different pi’s let truncate all the
pdfs to the shared interval I.

Both approaches present undesired side effects that can greatly alter the results. The
second approach might end up with a very small interval I, so that a lot of information is
lost due to this pre-processing step. The drawback of the first approach instead is due to
numerical instability. In fact, one would like ε in (11.25) to be small in order not to corrupt
the true signal, given by pi. However, considering the transformation in (11.24) having a
small ε would cause the p̃i to present some extreme values (negative) in correspondence
to ε. Performing PCA on a data set processed in this way would greatly alter the results,
as most of the variability of the p̃i’s would be masked by a difference in their support.

11.C Additional Simulations

11.C.1 Sensitivity Analysis to the Number of Basis Functions

In this simulation, we show how the number of B-spline basis functions affects the inference
in our projected PCA and in the simplicial one. In this scenario, the probability measures
are simulated as mixture of beta densities, also known as Bernstein polynomials, as follows:

pi(x) =

K∑

j=1

wijβ(x; j,K − j),

wi ∼ DirichletK(0.01).

(11.26)

Where β(x; a, b) denotes the density of a beta distributed random variable with parameters
(a, b) evaluated in x. By definition, the pis generated from (11.26) have a fixed support
I = [0, 1]. See Figure 11.C.1.

In this setting instead, we let µi in (11.20) be the probability measure associated to pi
and not its smoothed version. Hence, in addition to the amount of information lost during
the PCA another factor comes into play: the amount of information that is lost due to
the B-spline representation.

Figure 11.C.2 shows the results. We can see that the reconstruction errors decrease
when the dimension of the principal component increases both for the simplicial and
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Figure 11.C.2: Results for the third scenario. All the panels show the reconstruction error
as a function of the number of the spline basis functions. From left to right the results are
obtained using the 2, 5 and 10 dimensional PCA. The solid lines represent the mean of 10
independent runs on independent data sets from (11.26) and the shaded area represent ±
one standard deviation.

projected PCA. Moreover, as the number of B-spline basis increase, the performance tends
to get a little bit worse for both the approaches. We believe that this is due to an
increased variance in the B-spline estimation of the quantile functions and (clr of) pdfs.
In fact, computing the spline approximation for a single function amounts to solving a
linear regression problem and increasing the dimension of the B-spline basis corresponds to
increasing the number of regressors. Hence, letting B the matrix with columns ψ1, . . . , ψJ
(evaluated on a grid), the variance of the OLS estimate of the coefficients a is proportional
to (BTB)−1. When increasing the number of B-splines, the entries in BTB become closer
to zero, since the support of each of the spline basis becomes smaller. This leads to smaller
precision (and higher variance) in the estimator for a.

Another interesting thing to notice is that the simplicial PCA exhibits a much larger
variance in the reconstruction error. This is possibly due to the different degree of smooth-
ness of the quantile functions and of the pdfs. As the quantile functions are smoother than
the pdfs, their B-spline basis expansion should have lower variance and be more similar to
the true quantiles.

11.C.2 Empirical Verification of Consistency Results and Choosing J

In this section, we provide additional simulations to verify the consistency results estab-
lished in Section 11.6.

For the PCA, we consider the two data generating processes in equations (11.19) (Gaus-
sian) and (11.21) (DPM). First, first we fix J = 20 spline basis (as we do throughout Sec-
tion 11.7) and let n increase. Then, we also let J increase linearly with n. We estimate the
‘true’ principal directions by simulating 105 observations and using 2500 elements in the
B-spline basis. Then, for any choice of n and J we generate another data set and compute
the corresponding first two principal directions via the projected PCA and compute the
L2 norm between the ‘true’ directions and the estimated ones.

Figure 11.C.3 shows the case of fixed J for both data generation strategies. It is clear
that in both cases the error quickly decreases to zero (observe that both the x and y axes
are in log scale), but the convergence speed is surely sub-exponential when looking, for
instance, at the second principal direction.
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Figure 11.C.3: L2 distance between estimated and true principal directions when J = 20 as
a function of n. Solid line represents the median and the shaded area to a 90% confidence
interval estimated from 100 independent repetition.

When increasing the number of basis elements with n, we consider three strategies let-
ting J = n/10, n/2 and 9/10n respectively (rounded to the closest integer). Figure 11.C.4
shows the errors between the true and estimated principal directions in this case. Note
that the convergence rate looks exponential for both data generating processes for every
choice of J = J(n) (increasing with n). In the case of Gaussian data, we observe smaller
errors (as low as 10−5 for the first direction and 10−4 for the second direction) than in
the case of the more challenging DPM data set, see Figure 11.C.4. For the former data
set, using a large number of basis functions such as 9/10n or n/2 provides a much better
fit than using n/10 basis functions on the second principal direction. For DPM data, the
errors are in general two orders of magnitude higher than with Gaussian data. This is
likely due to the different data generating process, which results in a more challenging
problem. Interestingly, the errors are almost equal for all values of J (when fixing n).

Let us now analyze the projected regression. The independent variable are generated
similarly to Section 11.8, by discretizing the interval [0, 1] in 1,000 equispaced intervals, the

value of the quantile function F−zi in the j-th interval equals
∑j

k=1 δik and (δi1, . . . , δi1000) ∼
Dirichlet(0.01, . . . , 0.01)+U([0, 5]). We fix the kernel β?(t, s) (details are given below) and
let quantile functions F yi = ΠL2([0,1]↑) ◦ Γβ?(F

−
zi ) +N (0, (0.1)2).

We consider two different choices of β?: a smooth function β?1(t, s) = (t− 1/2)3 + (s−
1/2)3, for which we expect that a small number of spline basis will give a low error, and
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Figure 11.C.4: L2 distance between estimated and true principal directions as a function
of n for different choices of J . Solid line represents the median and the shaded area to a
90% confidence interval estimated from 100 independent repetition.

a rougher function β?2(t, s) defined as

β?2(t, s) =

10∑

k,h=1

β?1(0.1k, 0.1h)I[(t, s) ∈ [0.1(k − 1), 0.1k)× [0.1(h− 1), 0.1h)]

that is, β?2 corresponds to an approximation of β?1 on a 10×10 grid. As in the case of PCA,
we present two simulations for each choice of β?i , i=1,2, where we first fix the number of
spline basis J = 20 while increasing the sample size n and second compare the performance
for various values of J . We do not adopt the same strategy of setting J as a fraction of
the number of n since the number of parameters to estimates grows quadratically with
J which makes the computational cost substantial when J ≥ 100. We measure both the
seminorm error ‖β̂ − β?‖CZ and the mean square prediction error on an unseen ‘test’ set
of 1, 000 samples.

Figure 11.C.5 shows the seminorm error and the prediction error when J = 20 as
n increases, while in Figure 11.C.6 various values of J are also considered. When data
are generated from β?1 , J = 20 spline basis is more than enough (and actually J = 10
would suffice) and the seminorm error in Figure 11.C.5(a) and Figure 11.C.6(a) decays
exponentially while the prediction error reaches the irreducible error with n = 103 samples.
When data are generated from β?2 the seminorm error does not show the same exponential
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Figure 11.C.5: Seminorm error (left) and mean square prediction error (right) for different
choices of the kernel used to generate data, when J = 20 as a function of n. Solid line
represents the median and the shaded area to a 90% confidence interval estimated from
100 independent repetition.

decay when J = 20 (see Figure 11.C.5(b)), but it does for larger values of J , in particular
it seems that the error obtained with J = 50 is the same obtained when J = 100, see
Figure 11.C.6(b). Hence, it is clear that the choice of J is crucial to obtain a fast decay
of the error: when the kernel to be approximated is not very smooth, a larger values of
spline basis elements are needed, as one would expect.

We conclude this discussion by giving a practical advice on how to select J for a given
data set. Our suggestion is to let J to be the smallest value that allows for a reconstruction
error smaller than a given threshold, which may depend on the specific inferential task.
For instance, if the problem is PCA and the goal is to provide a descriptive analysis of
the variability, a (relative) approximation error below 0.05 will typically give satisfactory
results. If instead the goal is only to perform dimensionality reduction and working on
the scores of a PCA as Euclidean data, one should aim for a lower approximation error,
possibly of the order of 10−4. A similar reasoning can be applied to the regression: if the
goal is mainly to interpret the estimate β̂ a larger reconstruction error can be allowed. If
instead one is interested in obtaining very accurate predictions, a lower error is preferred.
For instance, when β?1 is used to generate the data, the reconstruction error for both
dependent and independent variables is below 10−4 for J ≥ 20, while to get to the same
error when β?2 is used one must use J = 100 basis.
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Figure 11.C.6: Seminorm error (left) and mean square prediction error (right) for different
choices of the kernel used to generate data, as a function of n for different values of J . Solid
line represents the median and the shaded area to a 90% confidence interval estimated from
100 independent repetition.

11.D Limitations of the projected framework

11.D.1 When the projected PCA performs poorly

Here, we show an example to highlight the limitations of the proposed framework, specif-
ically of the projected PCA. The main idea behind this example is that the projected
principal directions will be different from the nested geodesic ones when data are concen-
trated around the ‘borders’ of X, as in the trivial example shown in Figure 11.3.1. In
the Wasserstein case, X is the space of quantile functions so that the border composed of
functions that are constant on a subset of [0, 1].

Hence, we consider the following data generating process, modeling directly the quantile
functions

F−i (t) =

{
vi1, if t < 0.5

vi1 + vi2, if t > 0.5

where vij ∼ max{0,N (0, 1)} independently. See Figure 11.D.1 for a random sample from
this data generating process.

In this case, computing the projected PCA results in an interpretability score ISk
equal to one for k = 1, 2 and equal to zero for k = 3, 4, . . .. Hence, from the third
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Figure 11.D.1: Five quantile functions from the data generating process considered in
Appendix 11.D.1

principal direction onward, the projected PCA does not give any reliable information and,
if those directions are needed, in this case a nested PCA could be preferred. Despite the
poor interpretability scores from the third direction onward, the reconstruction errors are
always good as NRE1 = 0.26 and NREk ≈ 10−6 for k ≥ 2. Moreover, the ghost variances
GVk are smaller than 10−10 for all values of k, so that this particular data set would be a
good candidate for the hybrid methods mentioned in Section 11.7.2.

In summary, in our experience, the performance of the projected PCA can suffer when
considering the interpretability of the directions associated to lower variability, but usually
(at least always in our examples) gives a reasonable reconstruction error and ghost variance.

11.D.2 Inconsistent scores when increasing dimensions

Here, we highlight a feature which is shared by both projected and nested PCA, that is,
the scores of the projection onto a projected principal component are dependent on the
dimension of the principal component, as already noted in Section 11.3.1.

This can be considered a limitation to those frameworks because it contributes to the
complexity of the analysis: one has always to fix the dimension of the chosen principal
component and use the scores accordingly obtained. For instance, the scores, both for
nested and projected PCAs, coincide with the L2 scores when the dimension of the princi-
pal components is equal to the cardinality of the spline basis J . This happens because the
principal components are not linear subspaces. As a consequence also the interpretability
score of a direction is dimension-dependent.

Hence, the choice of the dimension k must be carried out balancing (i) a parsimonious
representation, (ii) a low reconstruction error, so that the projections on the principal
components yield good approximations of the data, and (iii) the intepretability score of
the directions.

Thus, opposed to standard Euclidean PCA, where the k+1-th direction does not change
the behavior of the data along the previous k directions (i.e., the scores), when doing (any)
PCA in Wasserstein space the whole picture must always be taken into account, both for
nested and projected PCA to assess the interpretability of the results.

Finally, note that such interpretability might be low for both intrinsic and extrinsic
methods, but this means that the Wasserstein metric may not be the most adequate to
capture and explain the variability of the data set.
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12. Circular Wasserstein PCA

In this chapter, we extend the Wasserstein PCA in Chapter 11 to measures supported on
S1 := {(x, y) ∈ R2 : x2 +y2 = 1}. To this end, we provide a detailed characterization of the
Wasserstein space for measures on S1, giving explicit formulas for the optimal transport
maps as well as several characterizations related to the weak Riemannian structure of the
Wasserstein space. We propose a convex-log PCA where we first map all the data to the
tangent space at the barycenter and then solve a PCA problem in a convex cone. We
discuss a numerical algorithm to approximate the Wasserstein barycenter and validate
it empirically. A theoretical proof of its convergence remains an open and interesting
problem, which motivates the study of differential calculus in the Wasserstein space.

12.1 Introduction

The development and progression of optic neuropathies, such as glaucoma, are often as-
sociated with a neuroretinal rim (NRR) thinning of the optic nerve head. In Ali et al.
(2021) a data set of high resolution circular measurements based on optical coherence
tomography (OCT) on NRR phenotypes is presented, arguing that baseline structural
heterogeneity in the eyes can play a key role in the progression of optic neuropathies. The
OCT produces a circular scan of the eye measuring NRR thickness. Therefore, each OCT
can be considered as a function f : S1 → R+, where S1 denotes the unit circle in R2,
S1 := {(x, y) ∈ R2 : x2 + y2 = 1}. Since the clinical interest is in the shape of the OCT
rather than in the magnitude, it is standard practice to normalize the functions so that
they can be seen as probability density functions. Therefore, comparing different OCTs is
a problem of distributional data analysis.

The Wasserstein distance offers a natural framework for comparing probability mea-
sures, as witnessed by its popularity in very different fields. See, for instance, Bassetti
et al. (2006), Bernton et al. (2019), Catalano et al. (2021) for statistical properties of
the Wasserstein distance, Cao et al. (2019), Cuturi et al. (2019) and Cuturi and Doucet
(2014) for applications in the field of machine and deep learning, Bernton et al. (2019) and
Srivastava et al. (2015a) for applications in Bayesian computation. Different definitions of
PCA (and related algorithms) for distributions under the Wasserstein metric have been
proposed in Bigot et al. (2017), Cazelles et al. (2018) and Pegoraro and Beraha (2022).
In these works, the space of square-integrable probability measures, endowed with the
2-Wasserstein metric (also called the Wasserstein space), is considered as a “Riemannian”
manifold, and the characterization of the tangent space at an absolutely continuous prob-
ability measure (Ambrosio et al., 2008) is exploited to perform statistical analysis in a
subset of a suitably defined subset of an L2 space.

In particular, the geodesic-PCA in Bigot et al. (2017) and projected one in Pegoraro
and Beraha (2022) are based on the explicit knowledge of optimal transport maps from
an absolutely continuous measure to any other measure on R. These maps can be con-
structed by composing the cumulative distribution function of the starting measure with
the quantile function of the target measure. The log-PCA in Cazelles et al. (2018) can be,
in principle, applied to distributions over more complex domains. However, as discussed
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Figure 12.1.1: Two OCT samples on S1 (left) and when unrolled on [0, 2π] (left) starting
from 0 (top) or from π/2 (bottom) and the associated Wasserstein distances computed
between the probability measures on [0, 2π].

in Pegoraro and Beraha (2022), the log-PCA results in poor interpretability of the com-
ponents and does not allow for a real dimensionality reduction, since it is not possible to
work on the scores.

The main difficulty in extending the previously proposed approaches to measures on
S1 is that the circle does not possess a natural ordering, unlike R. Therefore, the concepts
of the cumulative distribution function and the quantile function are not well defined.
Starting from any point θ on the circle, we can “unroll” it and consider a bijection between
S1 and [0, 2π] (or [0, 1]) so that it might be tempting to treat the distributions on S1 as
distributions on an interval of the real line. However, the Wasserstein metric is then
dependent on the chosen θ, as shown, for example, in Figure 12.1.1. This is clearly
understood since this approach does not consider the natural Riemannian metric on S1.

Optimal transport for measures on manifolds is an active area of research. The charac-
terization of optimal transport maps between probability measures on manifolds has been
established in McCann (2001) and exploited in Gigli (2011) to define the tangent space
of the Wasserstein space at any measure. The definition of the tangent in Gigli (2011) is
extremely general but abstract, as it involves the notion of c-concavity (see, e.g., Gigli,
2011) which does not translate in a handy representation of the functions in the tangent.

In this paper, we first build an alternative definition of the tangent space, specific to
measures on S1. This might be considered to be of independent interest. Then we build
on our definition of tangent space to define a suitable PCA for probability measures on S1

using the Wasserstein distance.

12.2 Background on Optimal Transport

In this section, we provide a brief account of optimal transport and the Wasserstein dis-
tance for measures on compact manifolds. See, e.g., Ambrosio et al. (2008) for a detailed
treatment. The technical details are deferred to Appendix 12.A.

Riemannian Manifolds. Informally, one can think of an n-dimensional smooth mani-
fold M as a set which locally behaves like a Euclidean space: it can be covered with a col-
lection of open sets (Ui)i≥1 for which there exist homeomorphisms ϕ : Ui → ϕ(Ui) ⊂ Rn,
called coordinate chart, which satisfy some compatibility conditions. We may refer to
(Ui, ϕ(Ui)) as a local parametrization of the manifold. A Riemannian manifold (M, g) of
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dimension n is a smooth manifold M endowed with an inner product g = (gx)x∈M on the
tangent space TxM at each point x ∈M . Its tangent bundle TM is defined as

TM :=
∐

x∈M
TxM =

⋃

x∈M
{x} × TxM. (12.1)

Each TxM is a vector space of dimension n. The tangent bundle is itself a smooth manifold
of dimension 2n with a standard smooth structure. See Lee (2013b) for an introduction
to Riemannian manifolds.

The exponential map at z ∈M denoted by expz : TM →M allows us to map a tangent
vector v ∈ TxM onto the manifold itself. Informally, expz(v) is the arrival point of the
geodesic starting at z with the direction v traveling for a unit of time. The logarithmic
map logz : M → TM , where it is defined, satisfies expz ◦ logz(x) = x. The inner product
g induces the volume measure ω, which is locally (i.e., on a chart (U,ϕ)) given by

LM (A) =

∫

ϕ(A)
|det(g(ϕ−1(x))) | 1/2dL(x) (12.2)

for any measurable A ⊂ U . See Appendix 12.A for measure-theoretical details.

Wasserstein space. To define the Wasserstein metric, denote by P(M) the space of
probability measures on M and let c : M×M → R+ be a cost function. The p-Wasserstein
distance between two probability measures on M , say µ and ν, is

Wp(µ, ν)p = min
γ∈Γ(µ,ν)

∫

M×M
c(x, y)pdγ(x, y), µ, ν ∈ P(M) (12.3)

where Γ(µ, ν) is the set of all probability measures on M×M with marginals µ and ν. The
existence of (at least one) optimal plan γo that attains the minimum in (12.3) is ensured if
c is lower semicontinuous (Ambrosio et al., 2008). Definition (12.3) is due to Kantorovich
and can be seen as the weak formulation of Monge’s optimal transportation problem, i.e.

Wp(µ, ν)p = inf
T :T#µ=ν

∫

M
c(x, T (x))pdµ(x)

where # denotes the pushforward operator: T#µ(A) = µ(T−1(A)) for all measurable A.
It can be proven that when an optimal map exists, then this induces an optimal transport
plan γo = (IdM , T )#µ and the two formulations are equivalent. However, there are several
situations in which Monge’s problem has no solution.

In the following, we will always consider the Riemannian distance dR(·, ·) as cost func-
tion and set p = 2. We restrict our focus on measures in the 2-Wasserstein space, that is
the subset of probability measures

W2(M) =
{
µ ∈ P(M) :

∫

M
dR(x, x0)2dµ(x) <∞ for every x0 ∈M

}
.

This ensures that Wasserstein distance is always finite.

Geometry of the Wasserstein space. The Wasserstein space (W2,W2) can be en-
dowed with a weak Riemannian structure induced by the tangent spaces of W2 at any
absolutely continuous measure with respect to the volume measure (12.2). As in the case
of measures supported in Rn, the tangent spaces are subset of L2 spaces of vector-valued
functions defined on the ground space (in this case, M). Their definition needs some
further background.
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Consider a vector field v : M → TM such that for every z ∈M , vz := v(z) ∈ TzM . To
be more precise, denote by π the canonical projection map π : TM → M , i.e. π(z, v) =
z ∈M , then v must be such that

π ◦ v = IdM

where IdM is the identity map on M . Let S(M) be the collection of all such vector fields.
Then, for a measure µ ∈ P(M) we can define L2

µ as

L2
µ(M) =

{
v ∈ S(M) :

∫
g(vz, vz)

2dµ(z) <∞
}
. (12.4)

See Appendix 12.A for further details. For v ∈ S(M) we can define the map exp(v) :
M → M such that exp(v)(z) := expz(vz) for z ∈ M . With this notation, we can state a
fundamental theorem in optimal transportation due to McCann (2001).

Theorem 12.1 (Characterization of optimal transport plans). Let µ, ν ∈ W2(M). If µ
is absolutely continuous with respect to the volume measure (12.2), there exists a unique
optimal transport plan γo that has the form γo = (IdM , T )#µ, where T : M → M .
Moreover, there exists a d2

R-concave function φ such that T = exp(−∇φ).

The d2
R-concavity condition is rather technical and not needed in the following, for this

reason we report it only in Section 12.A, see Gigli (2011) for further details. To make
explicit the dependence of the transport map on the source and target measures, we will
use notation T νµ to refer to the optimal transport map (OTM) from µ to ν.

The existence and uniqueness of optimal transport maps suggest the following definition
of tangent spaces (Corollary 6.4 of Gigli, 2011)

Tanµ(W2(M)) = {v ∈ L2
µ(M) | ∃ε > 0 : (IdM , exp(tv))#µ is optimal for t ≤ ε}L

2
µ (12.5)

As in the case of Riemannian manifolds, we can define the exponential and logarithmic
maps that allow to move from the tangent space Tanµ(W2(M)) to the Wasserstein space
and vice versa.

expµ : L2
µ(M)→W2(M), expµ(v) = exp(v)#µ

logµ :W2(M)→ L2
µ(M), logµ(ν) = v s.t. exp(v) = T νµ

(12.6)

This structure is usually referred to as the weak Riemannian structure of W2(M).

12.3 Optimal Transport on the Circumference

In this section, we specialize the general theory outlined in Section 12.2 to the case of
measures supported on the unit-radius circumference.

12.3.1 Geometry of S1

For our purposes, it is convenient to define the unit-radius circumference as S1 := {z ∈
C : | z | = 1}, where | · | denotes the module of a complex number. We first present the
smooth (group) structure of S1 and then describe its Riemannian structure.

To endow S1 with a group structure, we start by considering the map expc : R → S1

defined as expc(x) = e2πix, and the map logc : S1 → R defined as logc(z) = x ∈ [0, 1)
such that z = e2πix. Note that logc is right inverse of expc, i.e., expc ◦ logc = IdS1

. The
exponential map expc is usually referred to as universal covering of S1 (Munkres, 2000).
Then, define the operation · : S1 × S1 → S1 as z · w = expc(logc(z) + logc(w)). Informally
speaking, logc(z) is the “angle” associated with the polar representation of z and · is the
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sum of the angles. It can be trivially seen that (S1, ·) is a group and expc : (R,+)→ (S1, ·)
is a group morphism.

Through expc and logc we can define the smooth structure of S1 by considering at
each z ∈ S1 the map expz(x) := expc(x + logc(z)), that is the shifted version of the
exponential map, and logz(w) = y such that y ∈ [−1/2, 1/2) and expz(logz(w)) = w.
Letting Vz := S1 \ {−z}, we have that for each z ∈ S1 the couple (Vz, logz) is a coordinate
chart. With this differential structure S1 is a Lie group and its tangent bundle is TS1 =
{(x, v) |x ∈ S1 and v ∈ TxS1} ' S1 × R. We call 1 the point (1, 0) that gives the neutral
element in S1.

We consider the Riemannian metric g is induced by the embedding S1 ↪→ C ' R2, that
is gz(x, y) = xy for x, y ∈ TzS1 ' R. This induces the arc-length distance dR(z, w) =
| logc(z) − logc(w) | . Note that det(g) ≡ 1, so that LS1

= expc #L or, equivalenty,
logc #LS1

= L. Thus, for any f : S1 → R
∫

S1

f(z)dLS1
(z) =

∫

[−1/2,1/2)
f(expc(x))dL(x) (12.7)

For further details, see Appendix 12.A.

12.3.2 Optimal transport maps

With the notation introduced in the previous section, we now focus on the optimal trans-
portation problem on M = S1 endowed with its Riemannian distance dR.

The fundamental observation is that a measure µ on S1 can be equivalently represented
by a periodic measure on R defined as µ̃(A) := µ(expc(A)) for measurable A, which entails
µ̃(A) = µ̃(A+ p) for any p ∈ Z, where A+ p amounts to shifting all the points in A by the
amount p. Then we define the “periodic cumulative distribution function” associated with
µ̃ as Fµ̃(x) = µ̃([0, x)) for x ∈ [0, 1] and extend it over R via the rule Fµ̃(x+1) = Fµ̃(x)+1.

For θ ∈ R, let F θµ̃(x) = Fµ̃(x) + θ denote a vertical shift of the cumulative distribution

function. Note that the measure induced by F θµ̃ is independent from θ and is always µ̃.

This easily follows from, for instance, µ̃([a, b]) = F θµ̃(b)− F θµ̃(a) = Fµ̃(b)− Fµ̃(a).

Denote with F−µ̃ the associated quantile function, i.e., the (generalized) inverse of Fµ̃.

We have that (F θµ̃)−(x) = F−µ̃ (x − θ). If we restrict the quantiles on [0, 1) = logc(S1),

then θ acts as a rotation of the quantiles around the circle, by a factor of z−1
θ = expc(−θ).

Hence, the 0-th quantile (F θµ̃)−(0) is not 0 but z−1
θ . Equivalently, F θµ̃(y) = µ̃([z−1

θ , y)).
The following theorem provides an explicit characterization for the optimal transport

maps between two measures on S1.

Theorem 12.2. Define θ∗ as the solution of the following minimization problem:

θ∗ = arg min
θ∈R

∫ 1

0

(
F−µ̃ (u)− (F θν̃ )−(u)

)2
du (12.8)

Then the optimal transport map between µ and ν is

T νµ := expc ◦
(

(F θ
∗

ν̃ )− ◦ Fµ̃
)
◦ logc . (12.9)

Note that (12.9) is essentially identical to the expression of optimal transport maps
for measures on R. In that case, setting expc = logc = Id and θ∗ = 0 we recover the
classical formulation of OTMs for measures on the real line. In the following, we will write
T̃ ν̃µ̃ := (F θ

∗

ν̃ )− ◦ Fµ̃ to denote the map between µ̃ and ν̃ associated with the optimal θ∗

in (12.8). Although T̃ ν̃µ̃ is not “optimal” (since the cost associated to the transport of
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periodic measures is either zero or unbounded), we will refer to it as the optimal transport
map between µ̃ and ν̃ in light with its connection with T νµ .

Let us give some intuition behind the optimal transport map T νµ . Observe that pre-

composing (F θ
∗

ν̃ )− with
(
Fµ̃
)
| [0,1]

, obtaining T̃ ν̃µ̃ , means transporting quantiles identified

by F−µ̃ onto the corresponding shifted quantiles of (F θ
∗

ν̃ )−| [0,1], in an anti-clockwise order

(due to the definition of expc). Note that T ν̃µ̃ ((Fµ̃)−(0)) = T ν̃µ̃ (0) = F−ν̃ (−θ∗) =: x−θ∗ and

T µ̃ν̃ ((Fµ̃)−(1)) ≤ T µ̃ν̃ (1) = F−ν̃ (1− θ∗) = 1 + F−ν̃ (−θ∗) = 1 + x−θ∗ ,

which means that the optimal transport maps sends [0, 1) into [x−θ∗ , 1 + x−θ∗). As a
consequence we can think at this situation as ‘unrolling’ the circle in two different points,
namely z−1

θ∗ = expc(−θ∗) for ν and 1 = expc(0) for µ, and then matching the measures
induced on R. For instance, suppose µ and ν have densities fµ and fν with respect to the
Lebesgue measure on S1, LS1

, then (F θν̃ )−| [0,1] is the quantile function associated with the

density fν(expc(x)) supported on [x−θ, 1 + x−θ]. Clearly no action is taken on µ and thus
we transport fµ(expc(x)) supported on [0, 1] onto fν(expc(x)) supported on [x−θ, 1 +x−θ].
The parameter θ∗ then selects the optimal point from which to start unrolling the circle
for ν.

In later sections, we will develop statistical tools to analyze distributions on S1 based on
the optimal transport maps Ti from a reference distribution to the i-th datapoint. Thus,
it is essential to characterize the optimal transport maps on S1 in light of the associated
maps T̃ between periodic measures on R.

Theorem 12.3. Given µ a.c. measure and ν ∈ W2(S1), T̃ := (F θ
∗

ν̃ )− ◦ Fµ̃ is an optimal
transport map if and only if: ∫ 1

0
T̃ (u)− udu = 0. (12.10)

12.3.3 Weak Riemannian structure

We now specialize the definition of Tanµ(W2(M)) and the associated exponential and
logarithmic maps when M ≡ S1. Furthermore, we establish properties of the logarithmic
map that will be fundamental to develop a coherent statistical framework for analyzing
probability measures in W2(S1).

For our purposes, it is convenient to define L2
µ(S1) as

L2
µ(S1) : =

{
v : S1 → R such that

∫

S1

v2(x)dµ(x) < +∞
}

=
{
v : [0, 1)→ R such that

∫ 1

0
v2(x)dµ̃(x) < +∞

}

where the second equality follows, with a slight abuse of notation, by considering v 7→
v ◦ logc. Observe that we recover the space in (12.4) by identifying v(x) as an element of
TxS1. Then, if µ is an absolutely continuous measure, we have

Tanµ(W2(S1)) = {v : L2
µ(S1) | ∃ε > 0 : (IdS1

, exp(tv))#µ is optimal for t ≤ ε}L
2
µ (12.11)

where we can interpret v as a function defined on S1 or [0, 1) according to our needs.
Note that the optimality condition in (12.11) is equivalent to saying that there exist ν

such that exp(tv) is an optimal transport map between µ and ν. Then, by Theorem 12.2
and the fact that expz(vz) = expc(logc(z) + vz), the vector field v in (12.11) can be

written as tv(logc(x)) = T̃ (x) − x, where T̃ is as in Theorem 12.2, so that the OTM is
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expc(x+ (T̃ (x)− x)) ≡ expc(T̃ (x)). Hence, we can restate the definition of tangent space

in terms of the maps T̃ as:

Tanµ(W2(S1)) = {T̃ : L2
µ̃([0, 1]) | ∃ε > 0 : expc(Id + t(T̃ − Id)) is OTM for t ≤ ε}

L2
µ

(12.12)
The definition of exponential and logarithmic map comes quite naturally:

expµ : L2
µ(S1)→W2(S1), expµ(T̃ ) = expc ◦T̃ ◦ logc #µ

logµ :W2(S1)→ L2
µ(S1), logµ(ν) = T̃ s.t. T̃ (x) = F−ν̃ (Fµ̃(x)− θ∗)

(12.13)

where θ∗ in the definition of the logµ map is as in Theorem 12.2. Observe that then

expc ◦T̃ ◦ logc is an OTM between µ and ν. Furthermore, from Theorem 12.3 we note

that the vector field v : [0, 1) → R induced by an optimal transport map T̃ (v(u) =

T̃ (u)− u) satisfying (12.10) has zero mean when integrated along S1 with respect to LS1
.

In particular, note that this condition does not depend on µ and gives a purely geometric
characterization of optimal transport maps. This is in accordance to other typically used
optimality conditions such as cyclical monotonicity of the support of the transport plan
and Brenier’s characterization of OTMs for measures on Rn (Ambrosio et al., 2008).

We now provide some further characterizations of the optimal transport maps. These
will be useful to investigate the map logµ and implementation of numerical algorithms.

Theorem 12.4. Given µ a.c. measure, T̃ : R → R induces an optimal transport map
between µ and ν := expc ◦T̃ ◦ logc #µ if and only if

• T̃ is monotonically nondecreasing with T̃ (x+ p) = T̃ (x) + p for all p ∈ Z

• T̃ satisfies (12.10)

• |T̃ (x)− x| < 1/2 µ-a.e.

From the previous result, it is immediate to prove

Corollary 12.1. Let µ be an a.c. measure on S1. Then the image of logµ defined in
(12.13) is a convex set.

Moreover, the following proposition establishes the continuity of both expµ and logµ

Theorem 12.5. Let µ be an a.c. measure on S1. Then

1. for any ν1, ν2 ∈ W(S1)

W 2
2 (ν1, ν2) ≤

∫

S1

d2
R(T ν1

µ , T
ν2
µ )dµ ≤‖ logµ(ν1)− logµ(ν2) ‖2L2

µ
.

In particular, the expµ map is continuous.

2. If W2(ν, νn)→ 0 in W2(S1) then

‖ logµ(νn)− logµ(ν) ‖L2
µ
→ 0

3. Let σ be an a.c. measure and {µt}t be a sequence of a.c. measures such that µt → µ0

(in the Wasserstein metric) as t → 0. Further assume that the support of σ and
µt is convex and their density is bounded from above and strictly greater than zero.
Then there exists K > 0

‖T̃µtσ − T̃µ0
σ ‖ ≤ KW2(µ0, µt)
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12.4 PCA for Measures on S1

In this section, we demonstrate how the results obtained in Section 12.3 can be leveraged
to develop a principal component analysis framework for measures on S1, by considering
µ1, . . . , µn ∈ W2(S1) as points of a “Riemannian manifold”, cf. Section 12.3.3. This
parallelism was first exploited to perform inference on the Wasserstein space in Bigot
et al. (2017); Cazelles et al. (2018) to develop a PCA for probability measures on the real
line, and later in Chen et al. (2021) and Zhang et al. (2020) who propose linear regression
and autoregressive models for measures on R respectively.

The statistical techniques developed for manifold-valued data are typically in divided
in extrisinc and intrinsic ones. The extrinsic approach consists of finding a linear space
that approximates the manifold (or the region of the manifold where data are located),
and perform inference on the projection of data onto the linear space, applying standard
techniques developed for multivariate data in Euclidean spaces. Usually, such a linear
space is the tangent space at the barycentric (mean) point. In the intrinsic case instead,
the geodesic structure of the manifold is exploited to define a PCA based on the distance
between datapoints and convex subsets of the manifold, whereby one considers convex
subsets as the natural generalization of linear subspaces. Extrinsic techniques introduce
an approximation that might significantly impact the results if the manifold is not well ap-
proximated. On the other hand, intrinsic techniques are usually computationally intensive
and not suitable to analyze large datasets.

The weak Riemannian structure of the Wasserstein space allows us to define both
intrinsic and extrinsic techniques as done in Bigot et al. (2017); Cazelles et al. (2018);
Chen et al. (2021); Zhang et al. (2020); Pegoraro and Beraha (2022) for measures on the
real line. In the previous papers, the intrinsic methods exploited the well-know isometry
betweenW2(R) and the “space of quantiles”, that is the subset of L2 made of monotonically
non decreasing functions, so that W2(R) can be seen as a convex cone inside a Hilbert
space. Thus, intrinsic methods simply need to take into account the “cone constraints”
(Pegoraro and Beraha, 2022). In the case of W(S1), there is no such isometry. Therefore,
developing intrinsic methods would require to work with curves of probability measures.
While we believe that the results established in Section 12.3 could be a first building block
of such intrinsic methods. However, the continuity result in item (3.) of Theorem 12.5
suggests that the approximation we make when mapping data to the tangent space is not
too coarse. The numerical illustrations presented in Section 12.5 seem to validate this
claim. Thus, it might be the case that intrinsic methods, at least for PCA, would be
essentially identical to extrinsic ones.

12.4.1 Log Convex PCA on W2(S1)

In the following, we will describe an extrinsic PCA for probability measures on S1. As
shown in Corollary 6.6 of Gigli (2011), the tangent space at absolutely continuous measures
is Hilbert so that we could apply standard PCA techniques to logµ̄(µ1), . . . , logµ̄(µn), for
some fixed measure µ̄. We call this approach “naive” log-PCA. However, as argued in
Pegoraro and Beraha (2022), disregarding the fact that the image of the logµ̄ map is not the
whole Tanµ̄(W2(S1)) tangent space, but only a convex subset, might produce misleading
results. In particular, when two elements of the tangent space lie outside the image of
logµ̄, returning to the Wasserstein space and then back to the tangent via logµ̄ ◦ expµ̄
in general does not preserve distances or angles. This fact undermines, for instance,
the interpretability of scores and principal directions when they lie outside logµ̄(W2(S1)):
directions may not the orthogonal and variance inside W2(S1) may not be decomposed
appropriately.

To avoid the problems with the “naive” log-PCA, we propose the following definition
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Figure 12.4.1: First principal direction found by the naive L2 and the convex PCA when
the space H = R2 and X is the yellow rectangle. The blue dots denote observations.

of log convex PCA, which amounts to performing a convex PCA (Bigot et al., 2017), thus
taking into account the image of the log map, in the tangent space. Let us introduce
some notation first. Let X := logµ̄(W2(S1)), H := Tanµ̄(W2(S1)). For a closed convex set
C ⊂ X and a point x ∈ X let d(x,C) = arg miny∈C ‖x− y‖L2

µ̄
Let Sp denote the span of

a set of vectors and Cx0
(U) := (x0 + Sp(U)) ∩X for x0 ∈ X and U ⊂ H.

Definition 1. Consider a collection of probability measures µ̄, µ0, µ1, . . . , µn ∈ W(S1).

Let T̃i = logµ̄(µi) = T̃µiµ̄ , i = 0, . . . , n. A (k, µ̄, µ0) log convex principal component for
µ1, . . . , µn is the subset Ck := CT̃0

({w∗1, . . . , w∗k}) such that

1. for k = 1,

w∗1 = arg min
w∈H,‖w‖=1

n∑

i=1

d
(
T̃i, CT̃0

({w})
)

2. for k > 1,

w∗k = arg min
w∈H,‖w‖=1,w⊥Sp({w∗1 ,...,w∗k−1}

n∑

i=1

d
(
T̃i, CT̃0

({w})
)

Figure 12.4.1 exemplifies the difference between the naive L2 and the convex one in
a simpler example when H = R2 and X is a convex subset. When data are close to
the border of X, the L2 metric between data and the principal components captures a
variability that lies outside of the convex set. See also Pegoraro and Beraha (2022) for
some indexes that quantify the loss of information of the L2 PCA opposed to the convex
one.

12.4.2 Computation of the Log Convex PCA via B-Spline approximation

The definition of convex PCA translates into a constrained optimization problem to find
the directions {w∗1, . . . , w∗k}. In Cazelles et al. (2018), the authors discretize the transport
maps and solve the optimization problem via a forward-backward algorithm. As discussed
in Pegoraro and Beraha (2022), a more efficient approach consists in approximating the
transport maps via quadratic B-splines and solving a constrained optimization problem
via an interior-point method. Here, we follow the second approach.

Let {ψ1, . . . , ψJ} a B-spline basis on equispaced knots in [0, 1]. We let T̃i(x) ≈∑J
j=1 aijψj(x).

Note that if the spline is quadratic then (i) the function
∑J

j=1 ajψj(x) is monotonically
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nondecreasing if an only if the coefficients a1, . . . , aJ are (see, e.g., Proposition 4 in Pego-
raro and Beraha, 2022). Hence, from now on, we consider the ψj ’s to be quadratic spline
basis functions on [0, 1]. The spline basis expansion also allows for faster computations

of L2 inner products: let E be a J × J matrix with entries Ei,j =
∫ 1

0 ψi(x)ψj(x)dx and

ai = (ai,1, . . . , ai,J), we have 〈T̃i, T̃j〉 = 〈ai,aj〉E := aTi Eaj . We denote by ‖ · ‖E the
associated norm.

Similarly to Proposition 6 in Pegoraro and Beraha (2022), we obtain that the k-th
direction wk and the associated scores λk1:n = λ1, . . . , λn (of the observations the k-th
direction) of the log-convex PCA can be computed by solving a constrained optimization
problem. The objective function is clearly

λk1:n,wk = arg min
λ1:n,w

n∑

i=1

‖ai − a0 −
k∑

j=1

λkiwk‖ (12.14)

where λi ∈ R is the of score for the i-th datum along the k-th direction. Moreover, the
usual orthogonality and unit-norm constraints must be satisfied:

‖w‖E = 1, 〈wh,w〉E = 0, h = 1, . . . , k − 1.

In addition to those, we must also require that
∑
wjψj belongs to H := Tanµ̄(W2(S1)).

The monotonicity constraint is equivalent to

λiwj + a0,j − λiwj−1 − a0,j−1 ≥ 0, j = 2 . . . J

that is the monotonicity of the spline coefficients since the splines are quadratics. Moreover,
the “periodicity” constraint is satisfied by design. To impose (12.10), let Mj =

∫
ψj(u)du,

then (12.10) is equivalent to ∑
wjMj = 1.

Finally, thanks to (12.10) it is sufficient to control the value of the function w at the initial
point, i.e. w0 ∈ (−1/2, 1/2).

We implement the resulting constrained optimization problem using the Python package
pyomo and approximate the solution using an interior point method using the Ipopt solver.

12.4.3 Wasserstein Barycenter

We are left to discuss the choice of the base point µ0 of the PCA as well as the measure
µ̄ at which the tangent space is considered. A natural candidate for both µ0 and µ̄ is
the (Wasserestein) barycenter, that is the Fréchet mean, which minimizes the Fréchet
functional

F (ν;µ1, . . . , µn) =
1

2n

n∑

i=1

W 2
2 (ν, µi). (12.15)

Uniqueness of the Wasserstein barycenter has been studied in Agueh and Carlier (2011) in
the case of measures supported on Rd and extended by Kim and Pass (2017) for measures
on compact Riemannian manifolds. In particular, Theorem 3.1 in Kim and Pass (2017)
establishes the uniqueness of the Wasserstein barycenter if at least one of the measures µj
is absolutely continuous.

Numerical algorithms for computing the solution of (12.15) have been developed in
Carlier et al. (2015); Srivastava et al. (2015b) for the case of atomic measures, whereby
the optimization can be reduced to a linear program. Zemel and Panaretos (2019) instead
propose an algorithm based on gradient descent which works for general measures on Rd
(of which one must be absolutely continuous). In a nutshell, the gradient descent algorithm
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Algorithm 3. Procrustes Barycenter

[1] input Measures µ1, . . . , µn, starting point ν, threshold ε.
[2] repeat

[3] Compute the optimal transport maps T̃µiν as in Theorem 12.2.
[4] Set

ν̃ ′ :=

(
1

n

n∑

i=1

T̃µiµ̄

)
#ν̃

[5] until W2(ν, ν ′) < ε
[6] Output µ̄ = expc ◦(ν̃ ′).
[7] end

in Zemel and Panaretos (2019) starts from an initial guess of the barycenter and updates
it by pushing forward the current guess νr of the barycenter the average of the transport
maps between νr and all the measures. This procedure is guaranteed to converge to the
barycenter under some technical conditions on the measures µi’s. In particular, it converges
in one iteration if the measures are compatible (see Section 2.3.2 in Panaretos and Zemel,
2020). As a drawback, this approach requires solving n optimal transportation problems
at each iteration, which might be challenging outside the case of measures supported on
R or location-scatter families, for which explicit solutions exist (Álvarez-Esteban et al.,
2018). Taking a different approach, Cuturi and Doucet (2014) propose an approximate
solution to the Fréchet mean by introducing in (12.15) an “entropic regularization” term,
which makes optimization easier.

Here, we propose to use the gradient descent algorithm developed in Zemel and Panare-
tos (2019). Indeed, our Theorem 12.2 allows for explicit solutions to the optimal trans-
portation problem. Moreover, as shown in Delon et al. (2010), the optimization problem
in (12.8) is convex in θ so that finding θ∗ is simple. We report the pseudocode for finding
the barycenter in Algorithm 3.

We want to remark that we have not been able (yet) to prove the convergence of the
algorithm to the barycenter. Note that this does not invalidate the results of the PCA.
However, embedding the PCA in the tangent at the barycenter is to be preferred since,
intuitively, this should result in the distance in the tangent space (at the barycenter) to be
more similar to the distance in the Wasserstein space. In the following section we provide
empirical evidence of its convergence, by comparing the output of Algorithm 3 to the one
of the Sinkhorn algorithm proposed in Cuturi and Doucet (2014). From the technical
point of view, the proofs in Zemel and Panaretos (2019) do not hold in our case, since
they are based on sub-differentiability and super-differentiability results of the Wasserstein
distance as provided in Theorems 10.2.2 and 10.2.6 in Ambrosio et al. (2008) which are
stated for measures on separable Hilbert spaces.

12.5 Numerical Illustrations

12.5.1 Simulations for the Barycenter

Let us give an illustrative example of the peculiarities that may arise when considering
distributions on S1. Consider the two measures on the leftmost panel in Figure 12.5.1.
When the transport cost is the Euclidean one, the resulting barycenter is the one displayed
in the rightmost panel: it has unimodal density with the same scale of the two measures
and is centered exactly in the middle of them. When the cost instead is computed on
S1, the barycenter becomes bimodal as shown in the middle panel of Figure 12.5.1. In
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Figure 12.5.1: From left to right: two measures on S1 (unrolled on [0, 1]), the barycenter on
S1 (red) and its transport to the leftmost measure, the barycenter on R and its transport
to the leftmost measure
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Figure 12.5.2: Top row: densities of the µ̃j ’s on [0, 1], and of the Wasserstein and Sinkhorn
barycenters (red and green line respectively). Bottom row: Wasserstein distance vs dlog

for every possible couple of measures.
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this specific example, the cost (on S1) of transporting the “correct” barycenter on the two
measures is 30% lower than the cost of transporting the “Euclidean” one.

We now give some examples of barycenters. In what follows, we use µ̄ to represent the
measure on S1 returned from Algorithm 3 and ˜̄µ the associated periodic measure on R. In
some cases, it is intuitive what should be the barycenter and we show that our algorithm
correctly converges to it. In other ones, intuition fails but we still might get an idea of the
goodness of the approximation of the barycenter by comparing the Wasserstein distances
W2(µi, µj) and dlog(µi, µj) := ‖T̃i−T̃j‖L2(˜̄µ|[0,1])

. Intuitively if W2(µi, µj) ≈ dlog(µi, µj), the

tangent plane at ˜̄µ has (very) low curvature, so that the problem of finding the Wasserstein
barycenter reduces to averaging the quantiles. Therefore, the output of Algorithm 3 should
be accurate. Moreover, we also compare the output of Algorithm 3 with the so-called
Sinkhorn barycenter (Cuturi and Doucet, 2014; Janati et al., 2020) as implemented in
the Python package ott-jax (Cuturi et al., 2022). To compute the Sinkhorn barycenter,
we approximate each measure with an atomic measure with 1, 000 equispaced support
points on [0, 1) giving to each point xi a weight proportional to µ(dxi). Informally, we
should expect the Wasserstein and Sinkhorn barycenters to be similar, but the Sinkhorn
barycenter should be smoother due to the regularization term involved in the Sinkhorn
divergence.

We consider three simulated datasets as follows. Let U(c, w) denote the uniform mea-
sure centered in c and with width w, i.e. the uniform measure over (c−w/2, c+w/2). In
the first example, the measures are

µ̃i = U (0.25, 0.1 + 0.05i) , i = 1, . . . , 5

µ̃i = U (0.75, 0.1 + 0.05(i− 5)) , i = 5, . . . , 10

and extended periodically over the whole R. In the second one instead

µ̃i = U (0, 0.05 + 0.015i) , i = 1, . . . , 10

µ̃i = U (1/3, 0.05 + 0.015(i− 10)) , i = 11, . . . , 20

µ̃i = U (2/3, 0.05 + 0.015(i− 20)) , i = 21, . . . , 30

In the third case instead, we generate the µ̃i’s by first considering Beta distributions on
(0, 1) with parameters (ai, 2) and then taking their periodic extension. Specifically, ai ∼
U(1.3, 0.2) for i = 1, . . . , 10 and ai ∼ U(2.6, 0.4) for i = 11, . . . , 20. Figure 12.5.2 reports
the Wasserstein barycenters as found by Algorithm 3 and the Sinkhorn ones for three
different simulated datasets. We can see that the Wasserestein ans Sinkhorn barycenters
agree and that the Sinkhorn ones are generally smoother. Moreover, in the first and
third example the log and Wasserstein distances are indistinguishable which suggests the
convergence of Algorithm 3, while in the second example there are some discrepancies.

12.5.2 Eye Dataset

We now present a preliminary investigation on the OCT measurements of NRR thick-
ness. We report a graphical illustration of the measures in the dataset in Figure 12.1.1.
Moreover, we also show the barycenter as computed by Algorithm 3. Looking at the
Wasserstein and L2 distances in the tangent plane, we see that these quantities agree for
almost all the couples of datapoints, thereby validating the use of the red measure in Fig-
ure 12.1.1 as centering point for our PCA. The first two principal directions are reported
in Figure 12.5.4. We see that these decouple the variability along the x and y axes.
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Figure 12.5.3: From left to right: cdfs of the eye’s dataset measures (red line denotes
the barycenter), pdfs of the eye’s dataset measures (red line denotes the barycenter),
Wasserstein distance against dlog in the tangent space at the barycenter.
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barycenter.
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12.6 Discussion

In this chapter we tackled the problem of analyzing distributional data supported on the
circumference. Following recent trends in statistics and machine learning, we set out
to use the Wasserstein distance to compare probability distributions. To this end, we
studied the optimal transportation problem on S1 and established several new theoretical
results, which could also be of independent interest. In particular, we provide an explicit
characterization of the optimal transport maps. This result is rather surprising given that
optimal transport on Riemannian manifolds us not well established and that the only case
where such explicit formulas exist is for measures on the real line. We further explored
the weak Riemannian structure of the Wasserstein space and established strong continuity
results for the exponential and logarithmic maps, as well as an explicit characterization of
the image of the logarithmic map.

Building on our theoretical findings, we proposed a counterpart of the convex PCA in
Bigot et al. (2017) for measures on S1. Following the approach in Pegoraro and Beraha
(2022), we propose a numerical method to compute the principal directions by means of
a B-spline expansion, which leads to an easily implementable numerical algorithm.

Our definition of PCA requires a “central point”, which is usually set equal to the
barycenter. We used the algorithm in Zemel and Panaretos (2019) to approximate the
Wasserestein barycenter. However, we have not been able to prove the convergence of this
algorithm in our setting. Despite numerical simulations do seem to validate the use of
Algorithm 3, the theoretical analysis is still an open problem.
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Appendix

12.A Technical Preliminaries

12.A.1 Measure Theoretic Preliminaries

Let (M, g) be a Riemannian manifold of dimension n, with TM being its tangent bundle
and TM∗ its cotangent bundle. We know by definition that g is a section g : M → (TM ⊗
TM)∗ and the volume form ω : M → ∧n(TM)∗ is defined locally by ω = |det(g) | 1/2dx1∧
. . . ∧ xn.

Let L be the Lebesgue measure on Rn, we consider the σ-algebra generate by all sets
A such that ϕ(A ∪ U) is in the Lebesgue σ-algebra of Rn for some chart (U,ϕ). Then we
indicate with LM Riemann-Lebesgue volume measure, i.e. the measure on M such that
for every chart (U,ϕ) and A ⊂ U contained in the σ-algebra just define:

LM (A) =

∫

ϕ(A)
|det(g(ϕ−1)) | 1/2dL (12.16)

Note that, in general, ϕ#LM 6= L.
Consider h : M → R such that supp(h) ⊂ U , with (U,ϕ) being a chart, we can integrate

h as follows:
∫

M
hdµ =

∫

U
hdµ =

∫

U
hfµdLM =

∫

z(U)
| det(g(ϕ−1)) | 1/2h(ϕ−1)fµ(z−1)dL. (12.17)

The general case is defined in a natural way through a partition of unity.
Now we can consider a measure µ on M , with density function fµ wrt LM , that is:

µ(A) =

∫

A
fµd(Lm) =

∫

ϕ(A)
|det(g(ϕ−1)) | 1/2fµ(ϕ−1)dL. (12.18)

Lastly, if µ doesn’t have a density function wrt LM , to integrate some function against
µ we pick a weak converging sequence µn ⇀ µ such that µn has a density function and
extend the definition taking the limit of the integrals.

12.A.2 McCan’s Result

Let us recall the definition of c-concavity. Let c : M ×M → R ∪ +∞. For a function
ψ : M → R ∪ {−∞} define its c-transform ψc+ : M → R ∪ {−∞} as

ψc+(x) = inf
y∈M

c(x, y)− ψ(y).

Note that this generalizes the Legendre transform, which is recovered when M = Rd and
c(x, y) = 〈x, y〉.
Definition 2. A function φ : M → R ∪ {−∞} is c-concave if its not identically −∞ and
there exists ψ : M → R ∪ {−∞} such that

φ = ψc+
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Given µ ∈ W2(M) and U ⊂M open we define S(U) = {v : U → TM |π ◦ v = IdU} be
the sheaf of local sections of the tangent bundle of M , that is the vector space of tangent
vector fields on U . Whenever U is a local trivialization of the tangent bundle, we may use
the notation vz := v(z) ∈ TzM for v ∈ S(U). Now we can define the following sheaf of
functions:

L2
µ(U) = {v ∈ S(U) |

∫
‖vz‖2dµ(z) <∞}, (12.19)

where ‖vz‖2 stands for g(vz, vz).
For any v ∈ L2

µ(U) we can consider the map exp(v) defined as exp(v)(z) := expz(vz),
z ∈ U . McCann (2001) proved that if µ is absolutely continuous with respect to the volume
measure on M , the unique optimal plan γo between µ and ν is induced by a map, i.e. we
have T : M → M , inducing (Id, T ) : M → M ×M , such that γo = (Id, T )#ν. Moreover,
the map T has the form T = exp(−∇φ) where φ is a d2-concave function (Gigli, 2011).

12.B Proofs

Let us define
dZ(x, y)2 := inf

p∈Z
(x− y − p)2 ≤ (x− y)2

Note that dR(z, z′) = dZ(logc(z), logc(z
′))

12.B.1 Proof of Theorem 12.2

Proof. The proof follows from the notion of locally optimal plans in Delon et al. (2010).
Let γθ be the transport plan that takes an element of mass from position F−ν̃ (u) to position

(F θµ̃)−(u). Then γθ is locally optimal and the associated cost is

C[µ,ν](θ) =

∫ 1

0

(
F−µ̃ (u)− (F θν̃ )−(u)

)2
du

The (global) optimal plan is associated to θ∗ = arg minC(θ) = W 2
2 (µ, ν). To recover the

optimal transport map we operate the change of variables x = F−µ̃ (u), which yields:

W 2
2 (µ, ν) =

∫ 1

0

(
T ν̃µ̃ (x)− x

)2
dµ̃(x) ≥ (12.20)

∫ 1

0
d2
Z(T ν̃µ̃ (x), x)dµ̃(x) = (12.21)

∫

S1

d2
R(expc(T

ν̃
µ̃ (logc(z))), z)

2dµ(z) ≥W 2
2 (µ, ν) (12.22)

where the first equality follows by defining T ν̃µ̃ := (F θ
∗

ν̃ )− ◦ Fµ̃, while the last equality is

obtained with z = expc(x) and the properties of dZ.

12.B.2 Proof of Theorem 12.3

Proof. First we observe that:

(F θ
∗

ν̃ )−
(
Fµ̃(u+ p)

)
= (F θ

∗

ν̃ )−
(
Fµ̃(u) + p

)
= (Fν̃)−

(
Fµ̃(u) + p− θ∗

)
= (F θ

∗

ν̃ )−
(
Fµ̃(u)

)
+ p

which means that T̃ (u+ p) = T̃ (u) + p for every integer p.
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By Theorem 12.2 we know that T̃ is an optimal transport map if and only if θ = θ∗ as
in Equation (12.8). Define:

C[µ,ν](θ) =

∫ 1

0

(
F−µ̃ (u)− (F θν̃ )−(u)

)2
du

Delon et al. (2010) prove that the map θ 7→ C[µ,ν](θ) is strictly convex if µ is a.c.. Thus θ∗

is the unique stationary point of the function. For this reason we compute the derivative
of C[µ,ν] in θ, knowing that θ∗ is the only value such that (C[µ,ν])

′ = 0. Thanks to Leibniz
rule we can write:

d

dθ
C[µ,ν](θ) =

∫ 1

0

d

dθ

(
F−µ̃ (u)− (Fν̃)−(u− θ)

)2
du

=

∫ 1

0

d

dθ

(
F−µ̃ (u+ θ)− (Fν̃)−(u)

)2
du

=

∫ 1

0
2
(
F−µ̃ (u+ θ)− (Fν̃)−(u)

) 1

fµ̃(F−µ̃ (u+ θ))
du

with the change of variables v = F−µ̃ (u+θ), which entails Fµ̃(v)−θ = u and du = dµ̃(v) =

fµ̃(v)dv we obtain

=

∫ 1+v0

v0

2
(
v − T̃ (v)

) fµ̃(v)

fµ̃(v)
dv

with v0 = F−µ̃ (θ). Optimality follows if and only if such quantity is equal to zero and thus:

0 =

∫ 1+v0

v0

(
T̃ (v)− v

)
dv =

∫ 1

v0

(
T̃ (v)− v

)
dv +

∫ 1+v0

1

(
T̃ (v)− v

)
dv

Via the change of variables u = v − 1 we have:

−2

∫ v0

0

(
T̃ (u)− 1− (u− 1)

)
dv

and thus:

−2

∫ 1

0

(
T̃ (u)− u

)
du

12.B.3 Proof of Theorem 12.4

Proof. Observe that T is an optimal transport map, then defining

T̃ (x) := logc ◦T ◦ expc, x ∈ (0, 1), T̃ (x+ p) = T̃ (x) + p, p ∈ Z

clearly satisfies the monotonicity and “periodicity” requirements. Moreover, (12.10) is

satisfied by Theorem 12.3. To prove that |T̃ (x)− x| < 1/2 note that this is equivalent to

infp∈Z | T̃ (x)−x− p | = | T̃ (x)−x | . Since T : S1 → S1 is an optimal transport map from
µ to ν we have:

W2(µ, ν) =

∫

S1

dR(T (z), z)2dµ

=

∫

[0,1]
dR(T (expc(x)), expc(x))2d(logc #µ)(x)

=

∫

[0,1]
dZ(T̃ (x), x)2dµ̃(x)
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where the first equality is obtained via the definition of optimal transport map, the second
through the change of variables z = expc | [0,1](x), and in the last one we use the definition

of T̃ , µ̃ and the properties of dZ. As already noted, we have infp∈Z | T̃ (x) − x − p | ≤
| T̃ (x)− x | . If the strict inequality holds for some A ⊂ [0, 1] with µ̃(A) > 0 then also the
integrals on [0, 1] must be different, and the thesis follows.

To prove the reverse statement, it suffices to prove that T̃ (v) can be written as F−ν̃ (Fµ̃(v)+
θ), which is equivalent to saying that

F−ν̃ (v) = T̃
(
(Fµ̃(·) + θ)−1(v)

)
= T̃ (F−µ̃ (v − θ)).

Define Gν̃ := T̃ ◦ F−µ̃ , then of course T̃ = Gν̃ ◦ Fµ̃. We show that Gν̃(u) ≡ F−ν̃ (u+ θ). We

have that, for x ∈ [0, 1)

Fν̃(x) = ν̃([0, x]) = µ̃(T̃−1([0, x])) = µ̃([T̃−1(0), T̃−1(x)]) = Fµ̃(T̃−1(x))− Fµ̃(T̃−1(0))

and observe that Fν̃(x) ≤ 1 thanks to |T̃ (x) − x| < 1/2. Hence, the pushforward of µ̃ on
S1 gives a valid probability measure. Taking the inverse of Fν̃

F−ν̃ (u) =
(
Fµ̃(T̃−1(·))− Fµ̃(T̃−1(0))

)−
(u) = T̃ ◦ F−µ̃ (u+ Fµ̃(T̃−1(0)))

and setting −θ = Fµ̃(T̃−1(0)) yields the result.

12.B.4 Proof of Theorem 12.5

To prove item (ii), we will need the two following preliminary lemmas.

Lemma 12.1. Suppose we have W2(ν, νn) → 0 in W2(S1) with ν, νn being a.c. wrt LS1

(for every n). Then W2(logc #ν, logc #νn)→ 0 in W2(R).

Proof. From Theorem 7.12 in Villani (2003), convergence in the Wasserstein metric is
equivalent to weak convergence plus the tightness condition: there exist x0 such that

lim
R→+∞

lim sup
k→+∞

∫

d(x,x0)>R
d(x, x0)pd logc #νk(x)

Observe that each measure logc #νk is supported on [0, 1] so that the condition is always
met. Hence, we just need to show that the sequence logc #νk converges weakly. For mea-
sures on the real line, weak convergence is equivalent of pointwise convergence of the asso-
ciated distribution functions at continuity points. That is, letting Fk(x) := logc #νk([0, x))
and F (x) := logc #ν([0, x)), it must hold that

Fk(x)→ F (x), all x such that F (x) is continuous (12.23)

Observe that Fk(x) = νk(expc([0, x))) by definition. By Portmanteau’s theorem, for any x
such that ν({expc(x)}) = 0 we have that νk(expc([0, x))) → νk(expc([0, x))) which easily
implies (12.23)

Lemma 12.2. Suppose we have W2(ν, νn)→ 0 with µ, ν, νn being a.c. wrt LS1
(for every

n). Then ‖ logµ(νn)− logµ(ν) ‖L2
µ
→ 0.

Proof. By Lemma 12.1 we have Fν̃n(x)→ Fν̃(x) and the same for the quantile functions.
As a consequence C[νn,µ](θ)→ C[ν,µ](θ).
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Thus consider θn = arg minK C[νn,µ]. Since {θn} ⊂ K compact, we can consider a
converging subsequence which we still call {θn} with an abuse of notation. Let θn → θ∗.
As shown in Delon et al. (2010) C[νn,µ] is strictly convex. Thus, by standard arguments,
we conclude that θ∗ = arg minC[ν,µ].

Now consider:

|
(
Fµ̃(F−ν̃n(u+ θn))

)
−
(
Fµ̃(F−ν̃ (u+ θ∗))

)
| ≤ (12.24)

|
(
Fµ̃(F−ν̃n(u+ θn))

)
−
(
Fµ̃(F−ν̃ (u+ θn))

)
| + |

(
Fµ̃(F−ν̃ (u+ θn))

)
−
(
Fµ̃(F−ν̃ (u+ θ∗))

)
|

(12.25)

Which implies the pointwise convergence T µ̃ν̃n(u) → T µ̃ν̃ (u): both addends in the last
sum go to 0. Since these maps are continuous and bounded on [0, 1] we have uniform
convergence and strong convergence. The strong convergence in the image of logµ then
follows.

We are now ready to prove Theorem 12.5

Proof. • To check the continuity of expµ, consider T ν1
µ ×T ν2

µ : S1 → S1×S1 and induce
the transport plan γ = (T ν1

µ , T
ν2
µ )#µ. Then we have:

W 2
2 (ν1, ν2) ≤

∫

S1×S1

dR(z, w)2dγ(dzdw)

=

∫

S1

dR(T ν1
µ (z), T ν2

µ (z))2dµ(dz)

≤
∫

[0,1]
dZ(T ν̃1

µ̃ (x), T ν̃2

µ̃ (x))2dµ̃(dx)

≤‖ T ν̃1

µ̃ − T ν̃2

µ̃ ‖2L2
µ̃

([0,1])=‖ logµ(ν1)− logµ(ν2) ‖2L2
µ
.

where the last identity is obtained thanks to logc #µ = µ̃ on [0, 1].

• To check the continuity of logµ instead,

By an approximation argument we obtain sequential continuity of logµ at any mea-
sure ν ∈ W2(S1): consider νn → ν, with νn a.c. measures. Then {logµ(νn)} is a

Cauchy sequence in L2
µ, which is a complete metric space, and so it converges to a

vector field v. Consider expµ(v). By the continuity of expµ we have νn → expµ(v)
which then entails expµ(v) = ν.

Lastly, sequential continuity in metric spaces implies continuity.
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13. BayesMix: Bayesian Mixture Models in C++

We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian
mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform
inference for mixture models to computer scientists, statisticians and practitioners. The
key idea of this library is extensibility, as we wish the users to easily adapt our software
to their specific Bayesian mixture models. In addition to the several models and MCMC
algorithms for posterior inference included in the library, new users with little familiarity
on mixture models and the related MCMC algorithms can extend our library with minimal
coding effort. Our library is computationally very efficient when compared to competitor
software. Examples show that the typical code runtimes are from two to 25 times faster
than competitors for data dimension from one to ten. Our library is publicly available on
Github at https://github.com/bayesmix-dev/bayesmix/.

13.1 Introduction

Mixture models are a popular framework in Bayesian inference, being particularly useful
for density estimation and cluster detection; see Fruhwirth-Schnatter et al. (2019) for a
recent review. Mixture models are convenient as they allow to decompose complex data-
generating processes into simpler pieces, for which inference is easier. Moreover, they are
able to capture heterogeneity and to group data together into homogeneous clusters. The
usefulness of mixture models, either finite or infinite, is evident from the huge literature
developed around this topic, with applications in genomics (Elliott et al., 2019), healthcare
(Beraha et al., 2022), text mining (Blei et al., 2003) and image analysis (Lü et al., 2020), to
cite a few. See also Mitra and Müller (2015) for Bayesian nonparametric mixture models
in biostatistical applications and the last five chapters in Fruhwirth-Schnatter et al. (2019)
for applications of mixture models to different contexts, including industry, finance, and
astronomy.

In a mixture model, each observation is assumed to be generated from one of m groups
or populations, with m finite or infinite, and each group suitably modelled by a density,
typically from a parametric family. We consider data y1, . . . , yn ∈ Y ⊂ Rd, d ≥ 1. To define
a mixture model we take weights w = (w1, . . . , wm) such that wh ≥ 0 for all h = 1, . . . ,m,∑

hwh = 1, component-specific parameters τ = (τ1, . . . , τm) ∈ Θm, with m < +∞ or
m = +∞, and a parametric kernel f(· | ·) such that f(· | τ) is a density on Y for each τ in
Θ Specifically, we assume

yi |w, τ iid∼ p(y) :=

m∑

h=1

whf(y | τh), i = 1, . . . , n . (13.1)

In this chapter we consider mixture models under the Bayesian approach, so that the
model is completed with a prior for (w, τ ) and m, i.e.

w, τ ,m ∼ π(w, τ ,m) . (13.2)

Posterior simulation for (w, τ ,m) under model (13.1)-(13.2) is extremely challenging.
First of all, the posterior is multimodal due to the well-known label switching problem.
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Second, the number of parameters is typically huge and possibly infinite. Several Markov
chain Monte Carlo algorithms, specific for Bayesian mixture models, have been proposed
since the early 2000s for posterior simulation, as, e.g., Neal (2000) and Ishwaran and
James (2001). Nonetheless, as we discuss more in detail in Section 13.2, only a handful
of packages are available to practitioners nowadays as, for instance, the recent BNPmix
R package (Corradin et al., 2020) and the popular DPpackage (Jara et al., 2011). This
type of packages often provides either an R or a Python interface to some C++ code, hence
being usually efficient in fitting the associated model.

Given the generality of (13.1)-(13.2), it is unrealistic to expect that a single package can
be used to fit any mixture model. In particular, the choice of the parametric kernel f(· | ·)
is prescribed by the type of data (e.g. unidimensional vs multidimensional, continuous,
categorical, counts) of the study. Many packages are built only for some type of data, and
hence some kernels and priors, so that, it is likely that statisticians need to consider dif-
ferent models from the ones already available in potentially interesting software packages.
In addition, the C++ core code is usually not written in order to be extended, with poor
documentation, thus resulting in a code that is hard to make use for extensions.

To overcome these limitations, we describe here BayesMix, a C++ library for Markov
chain Monte Carlo (MCMC) simulation in Bayesian nonparametric (BNP) mixture models.
The ultimate goal of BayesMix is to provide statisticians a self-contained ecosystem to
perform inference for mixture models. In particular, the driving idea behind this library
is extensibility, as we wish statisticians to easily adapt our software to their needs. For
instance, changing the parametric kernel f in (13.1) can be accomplished by defining a
class specific to that kernel, which usually requires less than 30 lines of C++ code. This new
class can be seamlessly integrated in the BayesMix library and, used in combination with
prior distributions for the rest of the parameters and algorithms for posterior inference
which are already present. Similarly, defining a new prior for w requires only to implement
a class for that prior, and so on. Therefore, new users with little familiarity on mixture
models and the related MCMC algorithms can easily extend our library with minimal
coding effort.

The extensibility of BayesMix does not come with a compromise on the efficiency. For
instance, compared to BNPmix package, when running the same MCMC algorithm, our
code runtimes are typically two times faster when yi is univariate and approximately 25
times faster when yi is four-dimensional. Typical indicators of the efficiency of MCMC
algorithms such as autocorrelation and effective sample size confirm that the performance
obtained with our library is superior not only from the runtime point of view, but also in
terms of the overall quality of the MCMC samples. Moreover, we show that our imple-
mentation is able to scale to moderate and high dimensional settings and that BNPmix
fails to recover the underlying signal when yi is ten-dimensional, unlike our library.

As far as software is concerned, we achieve the desired customizability, modularity
and extensibility through an object-oriented approach, making extensive use of static and
runtime polymorphism through class templates and inheritance. This may constitute a
barrier for new users wishing to extend our library, as knowledge of those C++ program-
ming techniques is undoubtedly required. In Section 13.7 we give an example on how to
implement a completely new mixture model in the library, which requires less than 130
lines of code. Then, new users can exploit this example and adapt it to their needs.

We point out that at this stage, BayesMix is not R package, but a very powerful and
flexible C++ library. Although we provide a Python interface (see Section 13.5), this is
simply a wrapper around the C++ executable. A more sophisticated Python package is
currently under development and available at https://github.com/bayesmix-dev/pybmix,
but its description is beyond the scope of this chapter.

The rest of this article is organized as follows. Section 13.2 reviews software to fit
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Bayesian mixture models. Section 13.3 gives background on two of the algorithms we have
included in the library, to better understand the description of the different modules of
the BayesMix library in Section 13.4. Section 13.5 shows how to install and use the library
by examples. Benchmark datasets are fitted to our library and the competitor R package
BNPmix in Section 13.6. Section 13.7 contains material for more advanced users, i.e., we
show how new developers could extend the library. The article concludes with a discussion
in Section 13.8.

13.2 Review of available software

One of the main drawbacks of Bayesian inference is that MCMC methods can be extremely
demanding from the computational point of view. Moreover, the design of efficient MCMC
algorithms and their practical implementation is not a trivial task, and thus might preclude
the use of these methods to non-specialists. Nonetheless, Bayesian statistics has greatly
increased in popularity in recent years, thanks to the growth of computational power of
computers and the development of several dedicated software products.

In this section, we review in particular two packages for Bayesian mixture models,
namely the DPpackage and the BNPmix R packages. They do not exhaust all the possi-
bilities, but they are, among all software, the packages which implement the same models
as in BayesMix via the same algorithms. Other choices include using probabilistic pro-
gramming languages such as JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017),
though their review is beyond the scope of this chapter. We limit ourselves to note that
Stan simulates from the posterior through Hamiltonian Monte Carlo while JAGS uses
Gibbs sampling. BayesMix uses part of the Stan math library for evaluating distribu-
tions, random sampling and automatic differentiation. Observe that it is straightforward
to compute the posterior of finite mixture models via JAGS or Stan. However, since those
probabilistic programming languages work for a large class of Bayesian models, they can
be less computationally efficient and fast than software purposely designed for Bayesian
mixture models.

In addition to the DPpackage and BNPmix, other R packages are available to fit mix-
ture models. We report here BNPdensity (Arbel et al., 2020; Barrios et al., 2013) and
dirichletprocess (Ross and Markwick, 2020). The former focuses on nonparametric mix-
ture models based on normalized completely random measures, using the Ferguson-Klass
algorithm. The latter focuses on Dirichlet process mixture models. Both the packages are
very flexible and implement several models and algorithms. However, they are written
entirely in the R language, which comes as a serious drawback as far as performance is
concerned. We cite here also NIMBLE (de Valpine et al., 2017), which is a hybrid between
a probabilistic programming language and an R package, and allows to fit Dirichlet process
mixture models.

We also mention the Python bnpy package (Hughes and Sudderth, 2014), released in
2017. The package exploits BNP models based on the Dirichlet process and finite variations
of it, but forgoes traditional MCMC methods in favor of variational inference techniques
such as stochastic and memoized variational inference.

The most complete software that fits BNP models is arguably the R library DPpackage
(Jara et al., 2011). Its most important design goal is the efficient implementation of
some popular model-specific MCMC algorithms. For this reason, it exploits embedded
C, C++, and Fortran code for posterior sampling. DPpackage boasts a large number
of features, including, but not limited to, density estimation through both marginal and
conditional algorithms, ROC curve analysis, inference for censored data, binary regression,
generalized additive models, and longitudinal and clustered data using generalized linear
mixed models. The Bayesian models in DPpackage are focused on the Dirichlet Process
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and its variations, e.g. DP mixtures with normal kernels, Linear Dependent DP (LDDP),
Linear Dependent Poisson-Dirichlet (i.e., the Pitman-Yor mixture), weight-dependent DP,
and Pólya trees models. Unfortunately, this package was orphaned in 2018 by its authors,
and has been archived from the Comprehensive R Archive Network (CRAN) database of
R packages in 2019.

BNPmix is a recently published R package for Bayesian nonparametric multivariate in-
ference (Corradin et al., 2020). Its focus is on Pitman-Yor mixtures with Gaussian kernels,
thus including the Dirichlet process mixture. This package performs density estimation
and clustering through several state-of-the-art MCMC methods, namely marginal sam-
pling, slice sampling, and the recent importance conditional sampling, introduced by the
same authors (Canale et al., 2019). It also allows regression with categorical covariates, by
using the partially exchangeable Griffiths-Milne dependent Dirichlet process (GM-DDP)
model as defined in Lijoi et al. (2014b).

The goal of BNPmix is to provide a readily usable set of functions for density estimation
and clustering under a number of different BNP Gaussian mixture models, while at the
same time being highly customizable in the specification of prior information. It also
allows for different hyperpriors for the Gaussian mixture models of interest. The underlying
structure of the package is written in C++, using Armadillo as the linear algebra library of
choice, and it is integrated to R through the packages Rcpp and RcppArmadillo. Inspecting
the source code of BNPmix, it is clear that the package lacks in modularity since, for
every choice of f(·|τ) and prior distribution π(w, τ ), an MCMC algorithm is implemented
with little sharing of code. As a consequence, new users aiming at extending the library
to other mixture models (for instance, to non-Gaussian kernels) face a tough challenge.
Since BNPmix is a recent R package and it considers some of the mixtures our BayesMix
considers as well, we extensively compare the two libraries in Section 13.6. However, the
scopes and, probably, the end-users of BNPmix are different from those of our library
as, in our opinion, BNPmix is an R package providing a collection of a sort of black-box
(i.e. not extensible) methods for density estimation and clustering. The C++ functions
are not documented, therefore making it difficult to extend the library to new models for
new users. However, for statisticians or practitioners who only intend to fit the models in
BNPmix to their data, this R package does a very good job.

Key characteristics of good software for Bayesian mixture models thus include flexibil-
ity and the ability of providing efficient implementations of popular models. Flexibility
also comes from modularity and extensibility, as they allow re-usability of existing code,
as well as combination and implementation of brand-new models and algorithms without
re-writing the entire environment from scratch. In programming terms, this often trans-
lates into the object-oriented paradigm. These are exactly the features we have aimed at
implementing into BayesMix.

13.3 Bayesian Mixture Models

Throughout this chapter, we consider Bayesian mixture models as in (13.1)-(13.2). For
inferential purposes, it is often useful to introduce a set of latent variables c = (c1, . . . , cn),
ci ∈ {1, . . . ,m} and rewrite (13.1) as:

yi | c, τ ind∼ f(· | τci), i = 1, . . . , n

ci |w iid∼ Categorical({1, . . . ,m},w), i = 1, . . . , n
(13.3)

The ci’s are usually referred to as cluster allocation variables, and the clustering of the
observations is the partition of {1, . . . , n} induced by the ci’s into mutually disjoint sets
Cj = {i : ci = h}. We refer to m as the number of components in the model, and to the
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cardinality of the set {Cj}j such that Cj is non-empty as the number of clusters. Note
that the number of clusters might be strictly less then the number of components.

In the Bayesian framework, the likelihood is complemented with prior (13.2) on param-
eters w, τ and possibly m. In particular, we distinguish three cases: (i) m is finite and
fixed, (ii) m is finite almost surely but random and (iii) m = +∞. Since m can be ‘large’,
these mixtures are considered as belonging to the (Bayesian) nonparametric framework.
A popular choice for f(· | τ) is the Gaussian density (unidimensional or multidimensional)
with τ given by the mean and the variance (matrix). As an alternative, Student’s t,
skew-normal, location–scale or gamma densities (in case of positive data points) might be
considered. In general, the marginal prior for w is the finite-dimensional Dirichlet dis-
tribution when m < +∞ or the stick–breaking distribution when m = +∞. Parameters
τi’s are typically assumed independent and identically distributed (iid) from a suitable
distribution. The goal of the analysis is then estimating the posterior distribution of the
parameters, i.e., the conditional law of (w, τ ,m) given observations y (when m is fixed we
can consider the distribution of m as a degenerate point-mass distribution). Such posterior
distribution is not available in closed form and Markov chain Monte Carlo algorithms are
commonly employed to sample from it.

Of course, the algorithms for posterior inference will be different depending on the
value of m (see above). Case (i) is the easiest, as a careful choice of the marginal priors
for w and τ leads to closed-form expression for the full conditionals, so that inference can
be carried out through a simple Gibbs sampler. In case (iii), the whole set of parameters
cannot be physically stored in a computer, and algorithms need to rely on marginaliza-
tion techniques (see, e.g. Neal, 2000; Walker, 2007; Papaspiliopoulos and Roberts, 2008;
Kalli et al., 2011; Griffin and Walker, 2011; Canale et al., 2019). Case (ii) requires a
transdimensional MCMC sampler (Green, 1995), examples of which are the split-merge
reversible jump MCMC (Richardson and Green, 1997) and the birth-death Metropolis-
Hastings (Stephens, 2000) algorithm. In the context of our work, we distinguish between
marginal and conditional algorithms. The former marginalize out the m−k non-allocated
components from the state space, dealing only with the cluster allocations; examples are
the celebrated algorithms by Neal (Neal, 2000). The latter instead store the whole param-
eters state (or an approximation of it if m = +∞); examples include the Blocked-Gibbs
sampler in Ishwaran and James (2001), the retrospective sampler in Papaspiliopoulos and
Roberts (2008) and the slice sampler in Walker (2007).

In the remainder of this section, we present two well-known algorithms for posterior
inference in detail. This will be useful in Section 13.4 to understand the modules of the
BayesMix library. For observations y1, . . . , yn we assume the likelihood as in (13.1) (or

equivalently as in (13.3)) and assume that w ∼ π(w) and τh
iid∼ G0, h = 1, . . . ,m, where

G0 denotes a distribution over Θ ⊂ Rp, for some positive integer p.

13.3.1 A marginal algorithm: Neal’s Algorithm 2

Neal (2000) proposes several algorithms for posterior inference for Dirichlet process mixture
models. These algorithms have been later extended to work with more general models,
such as Normalized Completely Random Measures mixture models (see Favaro and Teh,
2013) and finite mixture models with a random number m of components (see Miller and
Harrison, 2018).

The state of the Markov chain consists of c = (c1, . . . , cn) and τ = (τ1, . . . , τk), k
denoting the number of clusters, k ≤ m. The key mathematical object for this algorithm
is the so-called Exchangeable Partition Probability Function (EPPF, Pitman, 1995), that
is the prior on the clusters configurations {C1, . . . , Ck} induced by the prior on the weights
w, when w is marginalized out. Following Pitman (1995), the probability of realization
C1, . . . , Ck depends only on their sizes, i.e., Φ(n1, . . . , nk), where nh denotes the cardinality
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of Ch.
Neal’s algorithm 2 can be summarized as follows:

1. Sample each cluster allocation variable ci independently from

p(ci = h | · · · ) ∝
{

Φ(n−i1 , . . . , n−ih + 1, . . . n−ik )f(yi | τh) for h = 1, . . . , k

Φ(n−i1 , . . . , n−ih , . . . n
−i
k , 1)m(yi) for h = k + 1

where n−ih denotes the cardinality of the h-th cluster when observation i is removed
from the state and m(yi) =

∫
Θ f(yi | θ)G0(dθ).

2. Sample the cluster-specific values independently from p(τh | · · · ) ∝
∏
i:ci=h

f(yi | τh)g0(τh).

Observe that in Step 1., since the m− k non-allocated components and the weights w
are integrated out when updating each cluster label ci, the algorithm either assigns the
i-th observation to one of the already existing clusters, or to a new one.

BayesMix allows only for the so-called Gibbs type priors (De Blasi et al., 2013), for
which the probability of a new cluster is

Φ(n1, . . . , nh, . . . nk, 1) = f1(k, n, θ) and Φ(n1, . . . , nh+ 1, . . . nk) = f2(nh, n, θ), (13.4)

where θ is a (possibly multidimensional) parameter governing the EPPF, n is the total
number of observations, and k is the number of clusters. The expression of f1 and f2 is
specific of each EPPF.

13.3.2 A conditional algorithm: the Blocked Gibbs sampler by Ishwaran
and James (2001)

In Neal’s Algorithm 2 described in Section 13.3.1 we can assume m to be either finite or
infinite, random or fixed, as long as the EPPF is available. For the blocked Gibbs sampler,
instead, we need to assume a finite and fixed m.

The state of the algorithm consists of c,w, τ . The algorithm can be summarized as
follows:

1. sample the cluster allocations from the discrete distribution over {1, . . . ,m} such
that p(ci = h | · · · ) ∝ whf(yi | τh) for any i (independently).

2. Sample the weights from p(w | · · · ) ∝ π(w)
∏n
i=1wci .

3. Sample the cluster-specific parameters independently from

p(τh | · · · ) ∝ G0(τh)
∏

i:ci=h

f(yi | τh), for any h.

13.4 The BayesMix paradigm: extensibility through modularity

In this section, we give a general overview of the main building blocks in BayesMix. This
is enough for users to understand what is happening behind the curtains. A more detailed
explanation of the software, including the class hierarchy and the application programming
interfaces (API) for each class can be found in Section 13.7, where we also give a practical
example on how to extend the existing code to a new model. The complete documentation
of all the functions and classes in our library can be found at https://bayesmix.readthedocs.
io.

Let us examine the algorithms in Sections 13.3.1 and 13.3.2. Step 3 in the Blocked Gibbs
sampler (Section 13.3.2) and step 2 in Neal’s algorithm 2 (Section 13.3.1) are identical.
This step depends only on: (i) the prior G0, (ii) the likelihood f(· | ·), and (iii) the
observations {yi : ci = h}. In the rest of the chapter, by likelihood f(· | ·) we mean the
parametric component kernel in (13.1).
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The Hierarchy module Observe that the update of τh is cluster-specific, and it can be
performed in parallel over different clusters. This suggests that one of the main build-
ing blocks of the code must be able to represent this update. We call these classes
Hierarchies, since they depend both on the prior g0 and the likelihood f(· | ·). In
BayesMix, each choice of G0 is implemented in a different PriorModel object and each
choice of f(· | ·) in a Likelihood object, so that it is straightforward to create a new
Hierarchy using one of the already implemented priors or likelihoods. The sampling from
the full conditional of τh is performed in an Updater class. When the Likelihood and
PriorModel are conjugate or semi-conjugate, model-specific updaters can be used to sam-
ple from the full conditional, either by computing it in closed form or through a Gibbs
sampling step. Alternatively, we also provide two off-the-shelf Updaters that can be used
with any combination of Likelihood and PriorModel, namely the RandomWalkUpdater

and the MalaUpdater. The former samples from the full conditional of τh via a random-
walk Metropolis Hastings, while the latter via the Metropolis-adjusted Langevin algorithm.
To improve modularity and performance, each Hierarchy stores the ‘unique’ value τh and
the observations yh := {yi : ci = h} or, as it is often the case, the sufficient statistics of
yh needed to sample from the full conditional of τh. The implemented hierarchies at the
time of writing are reported in Table 13.4.1.

The Mixing module Step 2 in Section 13.3.2 depends only on the prior on w and
on the cluster allocations, while Step 1 in both Sections 13.3.1 and 13.3.2 requires an
interaction between the weights (or the EPPF) and the hierarchies. Since the steps of the
two algorithms are invariant to the choice of the prior for w, we argue that this should
be a further building block of the code. In our code, we represent a prior on w and the
induced EPPF in a class called Mixing.

The following Mixing classes are currently available in the library:

1. DirichletMixing: it represents the EPPF of a Dirihclet Process (Ferguson, 1973),

2. PitYorMixing: it represents the EPPF of a Pitman-Yor Process (Pitman and Yor,
1997),

3. TruncatedSBMixing: the prior on w given by a truncated stick breaking process
(Ishwaran and James, 2001),

4. LogitSBMixing: the dependent prior on w(xi), xi being a given covariate vector, as
in Rigon and Durante (2021).

5. MixtureFiniteMixing: it represents the EPPF of a finite mixture with Dirichlet-
distributed weights as in Miller and Harrison (2018).

The Algorithm module Finally, Algorithm classes are in charge of running the MCMC
simulations. An Algorithm operates on a Mixing and several Hierarchies (or clusters),
calling their appropriate update methods (and passing the appropriate data as input).

Of course, not every choice of Mixing and Hierarchy can be used in combination with
all the choices of Algorithm. For instance, Neal’s Algorithm 2 requires that the Hierarchy
is conjugate, while the blocked Gibbs sampler requires m to be finite and fixed. Moreover,
the EPPF might not be available analytically for all choices of Mixing. Nonetheless, we
argue that these are consistent building blocks that allow us to exploit the structure shared
by the algorithms without introducing redundant copy-pasted code.
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Class Name f(· | τ) G0(·) conjugate

NNIGHierarchy N (· |µ, σ2) N (µ |µ0, σ
2/λ)IG(σ2 | a, b) true

NNxIGHierarchy N (· |µ, σ2) N (µ |µ0, σ
2
0)IG(σ2 | a, b) false

LapNIGHierarchy Laplace(· |µ, λ) N (µ |µ0, σ
2
0)IG(λ | a, b) false

NNWHierarchy Nd(· |µ,Σ) Nd(µ |µ0,Σ/λ)IW (Σ | ν, ψ) true
LinRegUniHierarchy N (· |xtβ, σ2) Np(β |β0, σ

2Λ−1)IG(σ2 | a, b) true

FAHierarchy Np(· |µ,Σ + ΛΛ>)
Np(µ |µ0, ψI)DL(Λ | a)∏p

j=1 IG(σ2
j |a, b)

false

Table 13.4.1: The hierarchies implemented in BayesMix. IG stands for the Inverse-Gamma
distribution while DL for the Dirichlet-Laplace distribution (Bhattacharya et al., 2015).

Class Name Reference non-conjugate marginal

Neal2Algorithm Neal (2000) false true
Neal3Algorithm Neal (2000) false true
Neal8Algorithm Neal (2000) true true

BlockedGibbsAlgorithm Ishwaran and James (2001) true false
SplitAndMergeAlgorithm Jain and Neal (2004) false true

Table 13.4.2: The algorithms coded in BayesMix. From left to right: name of the class,
bibliographic reference, indicator for accepting non-conjugate hierarchies, if the mixing
must implement the marginal methods (true) or the conditional ones (false).

13.5 Hands on examples

Here we show how to install and use the BayesMix library. The section is meant for users
who are not expert C++ programmers and only need to use what is already included in
the library. See Section 13.7 for material aimed at more advanced users.

13.5.1 Installing the BayesMix library

We provide a handy cmake installation that automatically handles all the dependencies.
After downloading the repository from Github, it is sufficient to build the executables
using cmake. We provide detailed instructions below.

Unix-like machines On Unix-like machines (including those featuring macOS) it is
sufficient to open the terminal and navigate to the bayesmix folder. Then the following
commands

mkdir build

cd build

cmake ..

make run_mcmc

make plot_mcmc

create the executables run_mcmc and plot_mcmc inside the build directory.

Windows machines At this stage of development, Windows machines are supported
only via Windows Subsystem for Linux (WSL). Hence, in order to build BayesMix on
Windows, you simply need to follow the instructions for Unix-like machines from the
Linux terminal.
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13.5.2 Using the BayesMix library

There are two ways to interact with BayesMix. C++ users can create an executable linking
against BayesMix or use (a possibly customized version of) the run_mcmc executable, which
receives a list of command line arguments defining the model and the path to the data,
runs the MCMC algorithm and writes the chains to a file. We give an example below.
Alternatively, Python users can interact with BayesMix via the bayesmixpy interface. In
both cases, we consider a Dirichlet process mixture of univariate normals, i.e.

y1, . . . , yn |w, τ iid∼
∞∑

h=1

whN (µh, σ
2
h)

w1 = ν1, wj = νj
∏

`<j

(1− νj), j > 1

νj
iid∼ Beta(1, α)

τh := (µh, σ
2
h)

iid∼ N (µh |µ0, σ
2
h/λ) IG(σ2

h | a, b)

(13.5)

13.5.2.1 An example via the command line

In our code, model (13.5) can be declared assuming that the mixing is the DirichletMixing
class and the hierarchy is the NNIGHierarchy class. We will use algorithm Neal2 for pos-
terior simulation. We declare the model using three text files. In dp_param.asciipb we
fix the “total mass” parameter of the Dirichlet process (i.e., α in (13.5)) to be equal to
1.0.

fixed_value {

totalmass: 1.0

}

In g0_param.asciipb we set the parameters of the Normal-Inverse-Gamma prior G0 as
(µ0, λ, a, b) = (0.0, 0.1, 2.0, 2.0):

fixed_values {

mean: 0.0

var_scaling: 0.1

shape: 2.0

scale: 2.0

}

Finally, in algo_param.asciipb we specify the algorithm, the number of iterations (and
burn-in), and the random seed as follows:

algo_id: "Neal2"

rng_seed: 20201124

iterations: 1500

burnin: 500

init_num_clusters: 3

To run the executable, we call the build/run_mcmc executable with the appropriate pa-
rameters:

build/run_mcmc \

--algo -params -file algo_param.asciipb \

--hier -type NNIG --hier -args g0_param.asciipb \

--mix -type DP --mix -args dp_param.asciipb \

--coll -name chains.recordio \
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Figure 13.5.1: Plots from plot_mcmc executable: density estimate (left), histogram
(center) and traceplot (right) of the number of clusters. The example refers to the
DirichletMixing module described in Section 13.5.2.

--data -file data.csv \

--grid -file grid.csv \

--dens -file eval_dens.csv \

--n-cl -file numclust_chain.csv \

--clus -file clustering_chain.csv \

--best -clus -file best_clustering.csv

where the first command line arguments are used to specify the model and algorithm.
In particular, the argument ---coll-name specifies which collector to use. If it is not
“memory”, then the FileCollector (see Section 13.7.4) will be used and chains stored in
the corresponding file. The remaining arguments consist of the path to the files contain-
ing the observations (---data-file), the grid where to evaluate the predictive density
(---grid-file), and the files where to store the predictive (log) density (---dens-file),
the MCMC chain of the number of clusters (---n-cl-file), the MCMC chain of the clus-
ter allocation variables (---clus-file) and the best clustering obtained by minimizing
the posterior expectation of Binder’s loss function (---best-clus-file). If any of the ar-
guments from ---grid-file to ---best-clus-file is empty, the computations required
to get the associated quantities are skipped.

After the MCMC algorithm has finished to run and all the quantities of interest have
been saved to csv files, it is easy to load them into another software program to summarize
posterior inference through plots. For basic uses, we provide a self-contained executable
named plot_mcmc which plots and saves the posterior predictive density (Figure 13.5.1, left
panel), the posterior distribution of the number of clusters (Figure 13.5.1 (center panel))
and the traceplot of the number of clusters (Figure 13.5.1, right panel).

13.5.2.2 An example through the Python interface

As mentioned before, we also provide (bayesmixpy), a Python interface that does not
require users to use the terminal. To install the bayesmixpy package, navigate to the
python sub-folder and execute in the terminal “python3 -m pip install -e .”. Once
it is installed, the package provides the build_bayesmix() and run_mcmc() functions.
The former installs the executable while the latter is used to run the MCMC chains.
Below, we provide a hands-on example.

First, we build BayesMix:

from bayesmixpy import build_bayesmix , run_mcmc

build_bayesmix(nproc =4)

>>> ...

>>> export the environment variable

BAYESMIX_EXE=<BAYESMIX_PATH >/ build/run_mcmc
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Observe that the last output line specifies the location of the executable and asks users
to export the environmental variable BAYESMIX_EXE. We can do it directly in Python as
follows

import os

os.environ [" BAYESMIX_EXE "] = "<BAYESMIX_PATH >/ build/run_mcmc"

where <BAYESMIX_PATH>/build/run_mcmc is the path printed by build_bayesmix.
We are now ready to declare our model. We assume a DirichletMixing as mixing and

a NNIGHierarchy as hierarchy. The following code snippet specifies that the “total mass”
parameter of the Dirichlet process is fixed to 1.0, the parameters of the Normal-Inverse-
Gamma prior are fixed to (µ0, λ, a, b) = (0.0, 0.1, 2.0, 2.0) and we will run Neal2Algorithm

for 1,500 iterations, discarding the first 500 as burn-in.

dp_params = """

fixed_value {

totalmass: 1.0

}

"""

g0_params = """

fixed_values {

mean: 0.0

var_scaling: 0.1

shape: 2.0

scale: 2.0

}

"""

algo_params = """

algo_id: "Neal2"

rng_seed: 20201124

iterations: 1500

burnin: 500

init_num_clusters: 3

"""

Finally, we run the MCMC algorithm on some simulated data, as simply as:

import numpy as np

data = np.concatenate ([np.random.normal(size =100) - 3,

np.random.normal(size =100) + 3])

dens_grid = np.linspace(-6, 6, 1000)

log_dens , numcluschain , cluschain , bestclus = run_mcmc(

"NNIG", "DP", data , go_params , dp_params , algo_params ,

dens_grid=dens_grid , return_clusters=True ,

return_num_clusters=True , return_best_clus=True)

which returns the log of the predictive density evaluated at dens_grid for each iteration
of the MCMC sampling, the chain of the number of clusters, the chain of the cluster
allocations, and the best clustering obtained by minimizing the posterior expectation of
Binder’s loss function. We summarize the inference in a plot as follows:

import matplotlib.pyplot as plt
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Figure 13.5.2: Output plot for the Python example: density estimate (left), histogram
(center) and traceplot (right) of the number of clusters. The example refers to model
(13.5) described in Section 13.5.2.

fig , axes = plt.subplots(nrows=1, ncols=3, figsize =(20, 5))

axes [0]. hist(data , alpha =0.2, density=True)

for c in np.unique(bestclus ):

data_in_clus = data[bestclus == c]

axes [0]. scatter(

data_in_clus , np.zeros_like(data_in_clus) + 0.01,

label =" Cluster {0}". format(int(c) + 1))

axes [0]. plot(

dens_grid , np.exp(np.mean(log_dens , axis =0)),

color ="red", lw=3)

axes [0]. legend(fontsize =16, ncol=2, loc =1)

axes [0]. set_ylim(0, 0.3)

x, y = np.unique(numcluschain , return_counts=True)

axes [1]. bar(x, y / y.sum ())

axes [1]. set_xticks(x)

axes [2]. vlines(np.arange(len(numcluschain )),

numcluschain -0.3, numcluschain +0.3)

plt.show()

The output of the above code is displayed in Figure 13.5.2.
We also consider an example with bivariate datapoints, the faithful dataset, a well-

known benchmark dataset for Bayesian density estimation and cluster detection. In this
case, we assume that f(· | τ) is the bivariate Gaussian density, with parameters τ = (µ,Ψ =
Σ−1) being the mean and precision matrix, respectively. A suitable prior for µ,Ψ is
the Normal-Wishart distribution, i.e. µ |Ψ ∼ N2(µ0, (λΨ)−1), Ψ ∼ IW (ν0,Ψ0), with
E(Ψ) = Ψ0/(ν−2−1). To declare the model and run the MCMC algorithm, we can reuse
most of the code of the univariate example, replacing the defintion of g0_params with:

g0_params = """

fixed_values {

mean {

size: 2
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Figure 13.5.3: density estimate (left), histogram (center) and traceplot (right) of the
number of clusters. The example refers to the faithful dataset in Section 13.5.2.

data: [3.484 , 3.487]

}

var_scaling: 0.01

deg_free: 5

scale {

rows: 2

cols: 2

data: [1.0, 0.0, 0.0, 1.0]

rowmajor: false

}

}

"""

Posterior inference is summarized in Figure 13.5.3.

13.6 Performance benchmarking and comparisons

Here we compare the library BayesMix and the recently published BNPmix R package,
which we have reviewed in Section 13.2, in terms of clustering quality and computational
efficiency. All simulations were run on a Ubuntu 21.10 16 GB laptop machine. We consider
three benchmark datasets for the comparison. The first two are the popular univariate
galaxy and bivariate faithful datasets, both available in R. The third example is a
simulated four-dimensional dataset, which we will refer to as highdim. It includes 10,000
points sampled from a Gaussian mixture with two equally weighted components, with
mean µ4 = [2, 2, 2, 2] and −µ4 respectively, and both covariance matrices equal to the
identity matrix.

Since BNPmix focuses on Pitman-Yor processes and does not implement the Gamma
prior for the total mass of the Dirichlet process, comparison is made using only Pitman-
Yor mixtures with the same hyperparameter values for both libraries, including Pitman-
Yor parameters and hierarchy hyperprior values. We test BayesMix using four different
marginal algorithms – Neal2, Neal3, Neal8, and SplitMerge. The package BNPmix uses
its own implementation of Neal2, which is referred to as mar, and the authors’ newly
implemented importance conditional sampler, or ics for short. Each algorithm has been
run for 5,000 iterations, with 1,000 iterations as burn-in period.

Autocorrelation plots for the number of clusters for all runs are displayed in Fig-
ure 13.6.1. BayesMix algorithms show better mixing properties of the MCMC chain,
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particularly in the bivariate galaxy case, where BNPmix struggles to reduce to zero the
autocorrelation for large lags.

As far as computational efficiency is concerned, we report Effective Sample Size (ESS),
running times, and ESS-over-time ratio of the MCMC simulations for the above tests
in Tables 13.6.1, 13.6.2, and 13.6.3. ESS measures the quality of a chain in terms of
equivalent, hypothetical sample size of independent observations. All BayesMix algorithms
perform much better than BNPmix ones in terms of ESS while achieving comparable or
lower running times. Neal2, i.e. the same algorithm as BNPmix’s mar, and Neal3 stand
out as being particularly efficient as quantified by the three metrics, especially as the
datapoint dimension grows larger (faithful and highdim).

As a final example for this comparison, we have simulated ten-dimensional datapoints
from a Gaussian mixture with two well- separated components (with equal weights). As
for highdim, the sample size is 10,000. All algorithms in BayesMix but Neal2 have been
able to correctly distinguish the two clusters, whereas BNPmix failed to do so, identifying
only one. The four- and ten-dimensional examples show that BayesMix has a scalable
approach that works even with large, high-dimensional datasets.

13.7 Topics for expert users

The goal of this section is to give an example on how new users can extend the library
by implementing a new Mixing or Hierarchy. To do so, the C++ code structure and the
APIs of each base class must be explained in greater detail.

We give more details on the main building blocks in BayesMix. We follow an object-
oriented approach and we adopt a combination of runtime and compile-time polymorphism
based on inheritance and templates, using the so called curiously recurring template pat-
tern (CRTP), as explained in Sections 13.7.1 and 13.7.2.

13.7.1 The Mixing module

As previously mentioned, a Mixing represents the prior distribution over the weights w
and the associated EPPF. The AbstractMixing class defines the following API:

class AbstractMixing {

public:

virtual void initialize () = 0;

virtual double get_mass_existing_cluster(

const unsigned int n, const bool log , const bool propto ,

std:: shared_ptr <AbstractHierarchy > hier ,

const Eigen:: RowVectorXd &covariate=

Eigen :: RowVectorXd (0));

virtual double get_mass_new_cluster(

const unsigned int n, const bool log , const bool propto ,

const unsigned int n_clust ,

const Eigen:: RowVectorXd &covariate=

Eigen :: RowVectorXd (0));

virtual Eigen:: VectorXd get_mixing_weights(

const bool log , const bool propto ,

const Eigen:: RowVectorXd &covariate=

Eigen :: RowVectorXd (0));
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Figure 13.6.1: Comparison between autocorrelation plots on the number of clusters of the
galaxy (top two rows), faithful (middle two rows), and highdim (bottom two rows)
datasets
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algorithm ESS time ESS/time

BNPmix
mar 338.562 0.827 409.469

ics 162.128 0.842 192.438

BayesMix

Neal2 337.467 0.370 912.073

Neal3 340.332 0.611 557.009

Neal8 191.580 0.589 325.263

SplitMerge 400.551 1.218 328.860

Table 13.6.1: Comparison of metrics for the galaxy dataset

algorithm ESS time ESS/time

BNPmix
mar 36.288 3.733 9.721

ics 15.499 1.949 7.954

BayesMix

Neal2 80.648 1.823 44.239

Neal3 394.709 4.796 82.300

Neal8 139.419 5.746 24.264

SplitMerge 217.788 12.278 17.738

Table 13.6.2: Comparison of metrics for the faithful dataset

algorithm ESS time ESS/time

BNPmix
mar 978.471 1063.740 0.920

ics 426.749 47.084 9.064

BayesMix

Neal2 1578.956 44.866 35.193

Neal3 1861.819 166.151 11.206

Neal8 1617.569 296.635 5.453

SplitMerge 1865.773 870.494 2.143

Table 13.6.3: Comparison of metrics for the highdim dataset
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virtual void update_state(

const std::vector <std::shared_ptr <AbstractHierarchy >>

&unique_values ,

const std::vector <unsigned int > &allocations) = 0;

};

In addition to these methods, AbstractMixing defines input-output functionalities dis-
cussed in Section 13.7.4.

The get_mass_existing_cluster() and get_mass_new_cluster() methods evalu-
ate the EPPF Φ. Specifically, get_mass_existing_cluster() evaluates Φ(n1, . . . , nh +
1, . . . , nk) = f1(nh + 1, n, θ) for a given h, while get_mass_new_cluster() evaluates
Φ(n1, . . . , nh, . . . , nk+1) = f2(k, n, θ) as defined in (13.4). Instead, get_mixing_weights()
returns the vector of weights w. Both methods used to evaluate the EPPF take as input
the number n of observations in the model, as well as two boolean flags (propto, log)
specifying if the result must be returned up to a proportionality constant and in log-scale.
The get_mass_existing_cluster() method also receives a pointer to the Hierarchy

the cluster represents. Note that the three methods take as input a vector of covariates,
which is the empty vector by default and can be used to define dependent mixture mod-
els, for instance, by assuming the dependency logit stick breaking prior implemented in
LogitSBMixing.

The update_state() method allows the child classes to assume hyperpriors on all
the parameters. The update_state() method is used to sample parameters w,m and
additional hyperparameters from their full conditional.

Child classes do not inherit directly from AbstractMixing, but rather from a template
class which in turn inherits from AbstractMixing, in the following way:

template <class Derived , typename State , typename Prior >

class BaseMixing : public AbstractMixing {

...

}

The BaseMixing class allows for more flexible code since it is templated over two objects
representing the State and the Prior. For instance, in the case of a Pitman-Yor process,
the state is defined as:

namespace PitYor {

struct State {

double strength , discount;

};

};

but more complex objects can be used as well. Moreover, BaseMixing implements several
virtual methods from the AbstractMixing class, so that end users only need to focus
on the code that is specific to a given model. For instance, a marginal mixing such as
DirichletProcess only needs to implement the following methods:

void update_state(

const std::vector <std::shared_ptr <AbstractHierarchy >>

&unique_values ,

const std::vector <unsigned int > &allocations) override;

double mass_existing_cluster(

const unsigned int n, const bool log , const bool propto ,

std:: shared_ptr <AbstractHierarchy > hier) const override;
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double mass_new_cluster(

const unsigned int n, const bool log , const bool propto ,

const unsigned int n_clust) const override;

and some input-output functionalities. Instead, a conditional mixing such as
TruncatedSBMixing implements the following functions:

void update_state(

const std::vector <std:: shared_ptr <AbstractHierarchy >>

&unique_values ,

const std::vector <unsigned int > &allocations) override;

Eigen :: VectorXd get_weights(

const bool log , const bool propto) const override;

13.7.2 The Hierarchy module

The Hierarchy module represents the Bayesian model

yj | τ iid∼ f(· | τ), j = 1, . . . , l

τ ∼ G0

(13.6)

Where f(· | ·) is the mixture component and G0 the base measure. Given the model
(13.6), we are interested in: (i) evaluating the (log) likelihood function f(x | τ) for a
given x, (ii) sampling from the prior model τ ∼ G0, and (iii) sampling from the full
conditional of τ | y1, . . . , y`. Each of these goals is delegated to a different class, namely
the Likelihood, the PriorModel, and the Updater. Then a Hierarchy class is in charge of
making Likelihood, PriorModel, and Updater communicate with each other and provides
a common API for all possible models.

The choice of separating Likelihood, PriorModel, and Updater allows for great flexi-
bility. In fact, we could have different Hierarchy classes that employ the same Likelihood
but a different PriorModel. Moreover, different Updaters can be used. If the model is
conjugate or semi-conjugate, a specific SemiConjugateUpdater is usually preferred. If
this is not the case, we provide off-the-shelf RandomWalkUpdater and MALAUpdater that
implement a random-walk Metropolis-Hastings move or a Metropolis-adjusted Langevin
algorithm move, which can be used for any combination of Likelihood and PriorModel.
As a consequence, users do not need to code an Updater if they want to implement a new
model.

Throughout this section, we consider the illustrative example where τ = (µ, σ2),
f(· | τ) = N (· |µ, σ2) is the univariate Gaussian density andG0(µ, σ2) = N (µ |µ0, σ

2/λ)IG(σ2 | a, b)
is the Normal-inverse-Gamma distribution.

The Hierarchy module and all its sub-modules (Likelihood, PriorModel, State and
Updater) achieve runtime polymorphism through an abstract interface (which establishes
which operations can be performed by the end user) and employing the Curiously Recur-
ring Template Pattern (CRTP Coplien, 1995).

Let us explain the structure in more detail, starting with the Hierarchy module. First,
an AbstractHierarchy defines the following API:

class AbstractHierarchy {

public:

double get_like_lpdf(

const Eigen:: RowVectorXd &datum ,

const Eigen:: RowVectorXd &covariate) const;
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virtual void sample_prior () = 0;

virtual void sample_full_cond(bool update_params) = 0;

virtual void add_datum(

const int id, const Eigen :: VectorXd &datum ,

const bool update_params ,

const Eigen :: VectorXd &covariate) = 0;

virtual void remove_datum(

const int id, const Eigen :: VectorXd &datum ,

const bool update_params ,

const Eigen :: VectorXd &covariate )) = 0;

};

In the code above, get_like_lpdf() evaluates the likelihood function f(y | τ) for a
given datapoint, sample_prior() samples from G0, and add_datum() (remove_datum())
are called when allocating (removing) a datum from the current cluster.

As in the case of Mixings, child classes inherit from a template class with respect to the
Likelihood and the PriorModel from the BaseHierarchy class. Most of the methods in
the API are implemented in this class. Thus, coding a new hierarchy is extremely simple
within this framework, since only very few methods need to be implemented from scratch.
All the hierarchies available so far inherit from this class and are reported in Table 13.4.1.

13.7.2.1 The Likelihood sub-module

The Likelihood sub-module represents the likelihood we have assumed for the data in a
given cluster. Each Likelihood class represents the sampling model

y1, . . . , yk | τ iid∼ f(· | τ )

for a specific choice of the probability density function f .
In principle, the Likelihood classes are responsible only of evaluating the log-likelihood

function given a specific choice of parameters τ . Therefore, a simple inheritance structure
would seem appropriate. However, the nature of the parameters τ can be very different
across different models (think for instance of the difference between the univariate normal
and the multivariate normal paramters). As such, we again employ CRTP to manage the
polymorphic nature of Likelihood classes.

The AbstractLikelihood class provides the following common API:

class AbstractLikelihood {

public:

double lpdf(

const Eigen :: RowVectorXd &datum ,

const Eigen :: RowVectorXd &covariate =

Eigen :: RowVectorXd (0)) const;

virtual Eigen:: VectorXd lpdf_grid(

const Eigen :: MatrixXd &data ,

const Eigen :: MatrixXd &covariates =

Eigen :: MatrixXd(0, 0)) const = 0;

virtual double cluster_lpdf_from_unconstrained(
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Eigen:: VectorXd unconstrained_params) const;

virtual stan::math::var cluster_lpdf_from_unconstrained(

Eigen::Matrix <stan::math::var , Eigen ::Dynamic , 1>

unconstrained_params) const;

virtual bool is_multivariate () const = 0;

virtual bool is_dependent () const = 0;

virtual void add_datum(

const int id , const Eigen:: RowVectorXd &datum ,

const Eigen:: RowVectorXd &covariate =

Eigen :: RowVectorXd (0)) = 0;

virtual void remove_datum(

const int id , const Eigen:: RowVectorXd &datum ,

const Eigen:: RowVectorXd &covariate =

Eigen :: RowVectorXd (0)) = 0;

void update_summary_statistics(

const Eigen:: RowVectorXd &datum ,

const Eigen:: RowVectorXd &covariate , bool add);

virtual void clear_summary_statistics () = 0;

};

First of all, we require the implementation of the lpdf() and lpdf_grid() methods,
which simply evaluate the loglikelihood in a given point or in a grid of points (also in
case of a dependent likelihood, i.e., in which covariates are associated to each observa-
tion). The cluster_lpdf_from_unconstrained() method allows the evaluation of the
likelihood of the whole cluster starting from the vector of unconstrained parameters. This
is a key method which is only needed if a Metropolis-like updater is used. Observe that the
AbstractLikelihood class provides two such methods, one returning a double and one
returning a stan::math::var. The latter is used to automatically compute the gradient of
the likelihood via Stan’s automatic differentiation, if needed. In practice, users do not need
to implement both methods separately, and can implement only one templated method; see
the UniNormLikelihood example below. The add_datum() and remove_datum() methods
manage the insertion and deletion of a data point in the given cluster, and update the sum-
mary statistics associated with the likelihood using the update_summary_statistics()

method. Summary statistics (when available) are used to evaluate the likelihood function
on the whole cluster, as well as to perform the posterior updates of τ . This usually gives
a substantial speed-up.

Given this API, we define the BaseLikelihood class, which is a template class with
respect to itself (thus enabling CRTP) and a State. The latter is a class which stores the
parameters τ and eventually manages the transformation in its unconstrained form (for
Metropolis updaters), if any. The BaseLikelihood class is declared as follows:

template <class Derived , typename State >

class BaseLikelihood : public AbstractLikelihood

This class implements methods that are common to all the likelihoods, in order to minimize

329



Chapter 13. BayesMix: Bayesian Mixture Models in C++

the code that end users need to implement. Note that every concrete implementation of
a likelihood model inherits from such a class. The following likelihoods are currently
implemented in BayesMix:

1. UniNormLikelihood, that is y |µ, σ2 ∼ N (µ, σ2), µ ∈ R, σ2 > 0.

2. MultiNormLikelihood, that is y |µ,Σ ∼ Nd(µ,Σ), µ ∈ Rd, Σ a symmetric and
positive definite covariance matrix.

3. FALikelihood, that is y |µ,Σ ∼ Nd(µ,Σ + ΛΛ>), µ ∈ Rd, Σ = diag(σ2
1, . . . , σ

2
d),

σ2
j > 0, Λ a d×p matrix (usually p� d, hence the name factor-analyzer likelihood).

4. LinRegUniLikelihood, that is y |β, σ2 ∼ N (x>β, σ2), β ∈ Rd, σ > 0. Here x is a
vector of covariates, meaning that this hierarchy is dependent.

5. UniLapLikelihood, that is y |µ, λ ∼ Laplace(µ, λ), µ ∈ R, λ > 0.

We report the code for UniNormLikelihood as an illustrative example:

class UniNormLikelihood

: public BaseLikelihood <UniNormLikelihood , State ::UniLS > {

public:

UniNormLikelihood () = default;

~UniNormLikelihood () = default;

bool is_multivariate () const override { return false; };

bool is_dependent () const override { return false; };

void clear_summary_statistics () override;

template <typename T>

T cluster_lpdf_from_unconstrained(

const Eigen::Matrix <T, Eigen ::Dynamic , 1>

&unconstrained_params) const;

protected:

double compute_lpdf(

const Eigen:: RowVectorXd &datum) const override;

void update_sum_stats(

const Eigen:: RowVectorXd &datum , bool add) override;

double data_sum = 0;

double data_sum_squares = 0;

};

13.7.2.2 The PriorModel sub-module

This sub-module represents the prior for the parameters in the likelihood, i.e.

τ ∼ G0
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with G0 being a suitable prior on the parameters space. We also allow for more flexible
priors adding further level of randomness (i.e. the hyperprior) on the parameter char-
acterizing G0. Similarly to the case of Likelihood sub-module, we need to rely on a
design pattern that can manage a wide variety of specifications. We rely once more on
the CRTP approach, thus defining an API via a pure virtual class: AbstractPriorModel,
which collects the methods each class should implement. This class is defined as follows:

class AbstractPriorModel {

public:

virtual double lpdf(

const google :: protobuf :: Message &state_) = 0;

virtual double lpdf_from_unconstrained(

Eigen:: VectorXd unconstrained_params) const;

virtual stan::math::var lpdf_from_unconstrained(

Eigen::Matrix <stan::math::var ,Eigen ::Dynamic ,1>

unconstrained_params) const;

virtual std:: shared_ptr <google :: protobuf ::Message > sample(

ProtoHypersPtr hier_hypers = nullptr) = 0;

virtual void update_hypers(

const std::vector <bayesmix :: AlgorithmState :: ClusterState >

&states) = 0;

};

The lpdf() and lpdf_from_unconstrained() methods evaluate the log-prior density
function at the current state τ or its unconstrained representation. In particular, lpdf_from_unconstrained()
is needed by Metropolis-like updaters; see below for further details. The sample() method
generates a draw from the prior distribution. If hier_hypers is nullptr, the prior hy-
perparameter values are used. To allow sampling from the full conditional distribution
in case of semi-congugate hierarchies, we introduce the hier_hypers parameter, which
is a pointer to a Protobuf message storing the hierarchy hyperaprameters to use for the
sampling. The update_hypers() method updates the prior hyperparameters, given the
vector of all cluster states.

Given the API, we define the BasePriorModel class, which is declared as:

template <class Derived , class State ,

typename HyperParams , typename Prior >

class BasePriorModel : public AbstractPriorModel

Such a class is derived from AbstractPriorModel. It is a template class with respect to
itself (for CRTP), a State class (which represents the parameters over which the prior
is assumed) an HyperParams type (which is a simple struct that codes the parameters
characterizing G0) and a Prior (which codes hierarchical priors for the G0 parameters for
more flexible and robust prior models). Like in previous sub-modules, this class manages
code exceptions and implements general methods. Every concrete implementation of a
prior model must be defined as an inherited class of BasePriorModel. The library currently
supports the following priors:

1. NIGPriorModel µ |σ2 ∼ N (µ0, σ
2/λ), σ2 ∼ IG(a, b).

2. NxIGPriorModel µ ∼ N (µ0, σ
2
0), σ2 ∼ IG(a, b).
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3. NWPriorModel µ |Σ ∼ N (µ0,Σ/λ), Σ ∼ IW (ν0,Ψ0).

4. MNIGPriorModel β |σ2 ∼ Np(µ, σ
2Λ−1), σ2 ∼ IG(a, b)

5. FAPriorModel µ ∼ Np(µ̃, ψI), Λ ∼ DL(α), Σ = diag(σ1, . . . , σp), σj
iid∼ IG(a, b),

j = 1, . . . , p, where DL is the Dirichlet-Laplace distribution in Bhattacharya et al.
(2015).

As an example, we report the implementation of the NIGPriorModel here below:

class NIGPriorModel : public BasePriorModel <

NIGPriorModel , State::UniLS , Hyperparams ::NIG ,

bayesmix ::NNIGPrior > {

public:

using AbstractPriorModel :: ProtoHypers;

using AbstractPriorModel :: ProtoHypersPtr;

NIGPriorModel () = default;

~NIGPriorModel () = default;

double lpdf(const google :: protobuf :: Message &state_) override;

template <typename T>

T lpdf_from_unconstrained(

const Eigen ::Matrix <T, Eigen ::Dynamic , 1>

&unconstrained_params) const;

State ::UniLS sample(ProtoHypersPtr hier_hypers=nullptr );

void update_hypers(

const std::vector <bayesmix :: AlgorithmState :: ClusterState >

&states) override;

void set_hypers_from_proto(

const google :: protobuf :: Message &hypers_) override;

std:: shared_ptr <bayesmix :: AlgorithmState :: HierarchyHypers >

get_hypers_proto () const override;

protected:

void initialize_hypers () override;

};

13.7.2.3 The Updater sub-module

The Updater module implements the machinery to provide a sampling from the full con-
ditional distribution of a given hierarchy. Again, we rely on CRTP and define the API in
the AbstractUpdater class as follows:

class AbstractUpdater {

public:
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virtual bool is_conjugate () const;

virtual void draw(

AbstractLikelihood &like , AbstractPriorModel &prior ,

bool update_params) = 0;s

};

Here is_conjugate() declares whether the updater is meant to be used for a semi-
conjugate hierarchy. The draw method is the key method of every updater: it receives like
and prior as input, and updates the State (which is stored inside the Likelihood) by
sampling it from conditional distribution τ | y1, . . . , yh, where the yj ’s are the data associ-
ated to one specific cluster. As already mentioned, when (13.6) is semi-conjugate, problem-
specific updaters can be easily implemented by inheriting from the SemiConjugateUpdater;
see, for instance, the code below.

class NNIGUpdater: public

SemiConjugateUpdater <UniNormLikelihood , NIGPriorModel > {

public:

NNIGUpdater () = default;

~NNIGUpdater () = default;

bool is_conjugate () const override { return true; };

ProtoHypers compute_posterior_hypers(

AbstractLikelihood &like ,

AbstractPriorModel &prior) override;

};

In particular, note that this class does not implement any draw() method. In fact, since
the model is semi-conjugate, we exploit the PriorModel draw function but using updated
parameters, which are computed by the compute_posterior_hypers() method.

If the model is not semi-conjugate, we suggest using RandomWalkUpdater or MALAUpdater,
which sample from the full conditional distribution of τ using a Metropolis-Hastings move.
In this case, the following methods must be implemented in the Likelihood class:

template <typename T>

T cluster_lpdf_from_unconstrained(

const Eigen ::Matrix <T, Eigen ::Dynamic , 1>

&unconstrained_params) const;

while the prior should implement the following:

template <typename T>

T lpdf_from_unconstrained(

const Eigen ::Matrix <T, Eigen ::Dynamic , 1>

&unconstrained_params) const;

For instance, when f is the univariate Gaussian density, the unconstrained parameters
are (µ, log(σ2)). To evaluate the likelihood, it is sufficient to transform log(σ2) using the
exponential function. Instead, to evaluate the prior, one should take care of the correction
in the density function due to the change of variables.

13.7.2.4 The State sub-module

States are classes used to store parameters τh’s of every mixture component. Their main
purpose is to handle serialization and de-serialization of the state; see also Section 13.7.4.
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Moreover, they allow to go from the constrained to the unconstrained representation of
the parameters (and viceversa) and compute the associated determinant of the Jacobian
appearing in the change of density formula. All states inherit from a BaseState:

class BaseState {

public:

int card;

using ProtoState = bayesmix :: AlgorithmState :: ClusterState;

virtual Eigen:: VectorXd get_unconstrained () {

throw std:: runtime_error ("...");

}

virtual void set_from_unconstrained(const Eigen:: VectorXd &in) {

throw std:: runtime_error ("..."); }

virtual double log_det_jac () { throw std:: runtime_error ("..."); }

virtual void set_from_proto(

const ProtoState &state_ , bool update_card) = 0;

virtual ProtoState get_as_proto () const = 0;

std:: shared_ptr <ProtoState > to_proto () const {

return std:: make_shared <ProtoState >( get_as_proto ());

}

};

Depending on the chosen Updater, the methods get_unconstrained(), set_from_unconstrained()
and log_det_jac() might never be called. Therefore, we do not force users to implement
them. Instead, the set_from_proto() and get_as_proto() are fundamental as they al-
low the interaction with Google’s Protocol Buffers library; see Section 13.7.4 for more
detail.

13.7.3 The Algorithm module

Mixing and Hierarchy classes are combined together by an Algorithm. Algorithms are
direct implementation of MCMC samplers, such as Neal’s Algorithm 2/3/8 and the blocked
Gibbs sampler from Ishwaran and James (2001). All algorithms must inherit from the
BaseAlgorithm class:

class BaseAlgorithm {

protected:

Eigen :: MatrixXd data;

Eigen :: MatrixXd hier_covariates;

Eigen :: MatrixXd mix_covariates;

std::vector <unsigned int > allocations;

std::vector <std:: shared_ptr <AbstractHierarchy >> unique_values;

std:: shared_ptr <BaseMixing > mixing;

virtual void sample_allocations () = 0;

virtual void sample_unique_values () = 0;

virtual void step() {}

public:

void run(BaseCollector *collector );
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virtual Eigen:: MatrixXd eval_lpdf(

BaseCollector *const collector ,

const Eigen:: MatrixXd &grid ,

const Eigen:: MatrixXd &hier_covariates ,

const Eigen:: MatrixXd &mix_covariates) = 0;

};

The Algorithm class saves the data and (optionally) two set of covariates: hier_covariates
and mix_covariates. Therefore, it is trivial to extend the code to more general mod-
els to accommodate for covariate-dependent likelihoods and/or mixings. Moreover, the
Algorithm also stores the cluster allocation variables (allocations), the hierachies rep-
resenting the mixture components (unique_values) and the mixing (mixing). The last
two objects are stored through pointers to the corresponding base class, to achieve runtime
polymorphism.

The basic method from Algorithm is step() which performs a Gibbs sampling step
calling the appropriate update methods for all the blocks of the model. A run() method
is used to run the MCMC chain, i.e. run() calls step() for a user-specified number of
iterations, possibly discarding an initial burn-in phase. The goal of MCMC simulations
is to collect samples from the posterior distribution, which must be stored for later use.
Hence, the run() receives as input an instance of BaseCollector which is indeed in
charge of storing the visited states either in memory (RAM) or by saving in a file; see
Section 13.7.4 for further details.

Since one of the main goals of mixture analysis is density estimation, an Algorithm

must be also able to evaluate the mixture density on a fixed grid, given the visited samples.
This is achieved by the eval_lpdf() method.

All the algorithms implemented in BayesMix are listed in Table 13.4.2.

13.7.4 I/O and cross-language functionalities

There is a final building block of BayesMix, that is the management of input / output
(I/O). Most of C++ based packages for Bayesian inference, such as Stan (Stan Develop-
ment Team, 2019) and JAGS (Plummer, 2017), rely on tabular formats to save the chains.
Specifically, the output of an MCMC algorithm is collected in an array where each pa-
rameter is saved in a different column and the resulting object is then serialized in a text
format (such as csv). This approach is simple but rather restrictive, since it requires a
fixed number of parameters, which is usually not our case. Moreover, in case of non-scalar
parameters (such as covariance matrices), these parameters need to be first flattened to be
stored in a matrix and then they need to be re-built from this flattened version to compute
posterior inference.

Instead, we rely on the powerful serialization library Protocol Buffers (https://developers.
google.com/protocol-buffers/) to handle I/O operations. Specifically, this requires defin-
ing so-called messages in a .proto file. Semantically, the declaration of a message is alike
the declaration of a C++ struct. For instance the following code:

message UniLSState {

double mean = 1;

double var = 2;

}

defines a message named UniLSState whose fields are two doubles, mean and var. In
more complex settings, other Protobuf messages can act as types for these variables. The
protoc compiler operates on these messages and transpiles them into files implementing
associated classes (one per message) in a given programming language (for us, it is of
course C++). Then, the runtime library google/protobuf can be used to serialize and
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deserialize these messages very efficiently. All messages are declared in files placed in the
proto folder. The transpilation into the corresponding C++ classes occurs automatically
when installing the BayesMix library.

The state of the Markov chain can be stored in the following message:

message AlgorithmState {

repeated ClusterState cluster_states = 1;

repeated int32 cluster_allocs = 2 [packed = true];

MixingState mixing_state = 3;

int32 iteration_num = 4;

HierarchyHypers hierarchy_hypers = 5;

}

where ClusterState, MixingState and HierarchyHypers are other messages defined in
the proto folder.

In our code, there are classes that are exclusively dedicated to storing the samples from
the MCMC, either in memory or on file. These are called Collectors and inherit from
BaseCollector that defines the API:

class BaseCollector {

public:

virtual void start_collecting () = 0;

virtual void finish_collecting () = 0;

bool get_next_state(google :: protobuf :: Message *out);

virtual void collect(

const google :: protobuf :: Message &state) = 0;

virtual void reset() = 0;

unsigned int get_size () const;

A collector stores the entire MCMC chain in a data structure that resembles a linked list,
that is, the collector knows the beginning of the chain and the current state. The function
get_next_state() can be used to advance to the next state, while writing its values to
a pointer. Instead, the algorithm calls the collect() method when a MCMC iteration
must be saved.

13.7.5 Extending the BayesMix library

In this section, we show a concrete example of an extension of BayesMix. We consider a
mixture model with Gamma(· |α, β) kernel, where α is a fixed parameter, and the mixing
measure over β is a Dirichlet process with conjugate Gamma(α0, β0) base measure. We
can use any of the algorithms in BayesMix to sample from the posterior of this model, but
we need to implement additional code in our library.

Three or four classes are needed: (i) a GammaLikelihood class representing a Gamma
likelihood, (ii) a GammaPriorModel class representing a Gamma prior over the τh’s, and
(iii) a GammaHierarchy that combines GammaLikelihood and GammaPriorModel. As far
as the updater is concerned, we could either use a MetropolisUpdater or implement a
(iv) GammaGammaUpdater class that takes advantage of the conjugacy. In this example, we
opt for the latter.
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We will not cover in full detail the implementation of all the required functions, but
just the core ones. The full code for this example is available at https://github.com/
bayesmix-dev/bayesmix/tree/master/examples.

Since the state of each component is just (α, βh), where α is fixed in our case, we can use
the Protobuf message bayesmix::AlgorithmState::ClusterState::general_state to
save it. That is, we save each (α, βh) in a Vector of length two. This is done in the
geta_as_proto() function implemented below. For more complex hierarchies, we suggest
users to create their own Protobuf messages and add them to the bayesmix::AlgorithmState::ClusterState
field.

We report the code for the State and GammaLikleihood classes below:

namespace State { class Gamma: public BaseState {

public:

double shape , rate;

using ProtoState = bayesmix :: AlgorithmState :: ClusterState;

ProtoState get_as_proto () const override {

ProtoState out;

out.mutable_general_state ()->set_size (2);

out.mutable_general_state ()->mutable_data()->Add(shape);

out.mutable_general_state ()->mutable_data()->Add(rate);

return out;

}

void set_from_proto(

const ProtoState &state_ , bool update_card) override {

if (update_card) { card = state_.cardinality (); }

shape = state_.general_state (). data ()[0];

rate = state_.general_state (). data ()[1];

}

};}

class GammaLikelihood:

public BaseLikelihood <GammaLikelihood , State::Gamma > {

public:

...

void clear_summary_statistics () override;

protected:

double compute_lpdf(

const Eigen :: RowVectorXd &datum) const override;

void update_sum_stats(

const Eigen :: RowVectorXd &datum , bool add) override;

double data_sum = 0;

int ndata = 0;

};

void GammaLikelihood :: clear_summary_statistics () {

data_sum = 0;

ndata = 0;

}
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double GammaLikelihood :: compute_lpdf(

const Eigen:: RowVectorXd &datum) const {

return stan::math:: gamma_lpdf(datum(0), state.shape , state.rate);

}

void GammaLikelihood :: update_sum_stats(

const Eigen:: RowVectorXd &datum , bool add) {

if (add) {

data_sum += datum (0);

ndata += 1;

} else {

data_sum -= datum (0);

ndata -= 1;

}

}

Next, we report the code for the GammaPriorModel class. As we did for the GammaLikelihood,
we do not need to write any additional Protobuf messages. Instead, we rely on the
HierarchyHypers::general_state field which saves the hyperparameters α0 and β0 in a
Vector.

namespace Hyperparams {

struct Gamma {

double rate_alpha , rate_beta;

};

}

class GammaPriorModel: public BasePriorModel <

GammaPriorModel , State::Gamma , Hyperparams ::Gamma ,

bayesmix ::EmptyPrior > {

public:

using AbstractPriorModel :: ProtoHypers;

using AbstractPriorModel :: ProtoHypersPtr;

GammaPriorModel(double shape_=-1, double rate_alpha_=-1,

double rate_beta_ =-1);

~GammaPriorModel () = default;

double lpdf(

const google :: protobuf :: Message &state_) override;

State ::Gamma sample(

ProtoHypersPtr hier_hypers=nullptr) override;

void update_hypers(

const std::vector <bayesmix :: AlgorithmState :: ClusterState >

&states) override {

return;

};

void set_hypers_from_proto(

const google :: protobuf :: Message &hypers_) override;
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ProtoHypersPtr get_hypers_proto () const override;

double get_shape () const { return shape; };

protected:

double shape , rate_alpha , rate_beta;

void initialize_hypers () override;

};

/* DEFINITIONS */

....

Finally, we implement a dedicated Updater as follows.

class GammaGammaUpdater: public

SemiConjugateUpdater <GammaLikelihood , GammaPriorModel > {

public:

GammaGammaUpdater () = default;

~GammaGammaUpdater () = default;

bool is_conjugate () const override { return true; };

ProtoHypersPtr compute_posterior_hypers(

AbstractLikelihood& like ,

AbstractPriorModel& prior) override {

// Likelihood and Prior downcast

auto& likecast = downcast_likelihood(like);

auto& priorcast = downcast_prior(prior);

// Getting required quantities from likelihood and prior

int card = likecast.get_card ();

double data_sum = likecast.get_data_sum ();

double ndata = likecast.get_ndata ();

double shape = priorcast.get_shape ();

auto hypers = priorcast.get_hypers ();

// No update possible

if (card == 0) {

return priorcast.get_hypers_proto ();

}

// Compute posterior hyperparameters

double rate_alpha_new = hypers.rate_alpha + shape * ndata;

double rate_beta_new = hypers.rate_beta + data_sum;

// Proto conversion

ProtoHypers out;

out.mutable_general_state ()->

mutable_data()->Add(rate_alpha_new );

out.mutable_general_state ()->

mutable_data()->Add(rate_beta_new );

return std:: make_shared <ProtoHypers >(out);

}

};
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Note that implementing this new model has required only less than 130 lines of code.
In particular, the coding effort could be substantially reduced by using, for instance, the
RandomWalkUpdater instead of writing a custom GammaGammaUpdater.

13.8 Summary and Future Developments

In this chapter, we have presented BayesMix, a C++ library for posterior inference in
Bayesian (nonparametric) mixture models. Compared to previously available software,
our library features greater flexibility and extensibility, as shown by the modularity of
our code, which makes it easy to extend our library to other mixture models. Therefore,
BayesMix provides an ideal software ecosystem for computer scientists, statisticians and
practitioners who need to consider complex models. As shown by the examples, our library
compares favourably to the competitor package in terms of computational efficiency and
of overall quality of the output MCMC samples.

The main limitation of BayesMix is also its point of strength, that is being a C++
library. As such, C++ programmers can benefit from the rich language and the efficiency
of the C++ code to easily extend our library to their needs. However, knowledge of C++
might represent a barrier for new users.

To this end, we are currently developing the Python package pybmix (https://github.
com/bayesmix-dev/pybmix), whose ultimate goal will be to allow the same degree of
extensibility without knowledge of C++; users will be able to extend our library writing
code solely in Python. Of course, this causes a loss in efficiency, since Python is slower
than C++ and there issubstantial overhead in calling Python code from C++. However,
compared to pure Python implementations, we expect our approach to be faster in terms of
both runtime and development time (i.e., the time required to code an MCMC algorithm).
We could certainly achieve the same goal within an R package, but at the moment this is
not being considered.

The latest version of our library can be found at the official Github repository at https:
//github.com/bayesmix-dev/bayesmix. At the moment, our project has 14 contributors.
Any interested user or developer can easily get in touch with us through our Github
repository by opening an issue or requesting new features. We welcome any contribution
to BayesMix and the Python package pybmix. Moreover, we would be happy to provide
support to developers aiming at building an R package interface.
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Álvarez-Esteban, P. C., E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán (2018). Wide
consensus aggregation in the Wasserstein space. Application to location-scatter families.
Bernoulli 24 (4A), 3147 – 3179.
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Rodŕıguez, G., M. P. Samper, P. Ventura, L. A. Moreno, J. L. Olivares, and J. M. Pérez-
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