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Abstract 
 

Today’s pet food industry is growing rapidly, with pet owners demanding high-quality diets 

for their pets. The primary role of diet is to provide enough nutrients to meet metabolic 

requirements, while giving the consumer a feeling of well-being. Diet nutrient composition and 

digestibility are of crucial importance for health and well being of animals. A recent strategy to 

improve the quality of food is the use of “nutraceuticals” or “Functional foods”. At the moment, 

probiotics and prebiotics are among the most studied and frequently used functional food 

compounds in pet foods. 

The present thesis reported results from three different studies.  

The first study aimed to develop a simple laboratory method to predict pet foods 

digestibility. The developed method was based on the two-step multi-enzymatic incubation assay 

described by Vervaeke et al. (1989), with some modification in order to better represent the 

digestive physiology of dogs. A trial was then conducted to compare in vivo digestibility of pet-

foods and in vitro digestibility using the newly developed method. Correlation coefficients 

showed a close correlation between digestibility data of total dry matter and crude protein 

obtained with in vivo and in vitro methods (0.9976 and 0.9957, respectively). Ether extract 

presented a lower correlation coefficient, although close to 1 (0.9098). Based on the present 

results, the new method could be considered as an alternative system of evaluation of dog foods 

digestibility, reducing the need for using experimental animals in digestibility trials. 

The second parte of the study aimed to isolate from dog faeces a Lactobacillus strain 

capable of exert a probiotic effect on dog intestinal microflora. A L. animalis strain was isolated 

from the faeces of 17 adult healthy dogs..The isolated strain was first studied in vitro when it was 

added to a canine faecal inoculum (at a final concentration of 6 Log CFU/mL) that was incubated 

in anaerobic serum bottles and syringes which simulated the large intestine of dogs. Samples of 

fermentation fluid were collected at 0, 4, 8, and 24 hours for analysis (ammonia, SCFA, pH, 

lactobacilli, enterococci, coliforms, clostridia). Consequently, the L. animalis  strain was fed to 

nine dogs having lactobacilli counts lower than 4.5 Log CFU per g of faeces. The study indicated 

that the L animalis strain was able to survive gastrointestinal passage and transitorily colonize the 

dog intestine. Both in vitro and in vivo results showed that the L. animalis strain positively 

influenced composition and metabolism of the intestinal microflora of dogs. 

The third trail investigated in vitro the effects of several non-digestible oligosaccharides 

(NDO) on dog intestinal microflora composition and metabolism. Substrates were fermented 

using a canine faecal inoculum that was incubated in anaerobic serum bottles and syringes. 



Substrates were added at the final concentration of 1g/L (inulin, FOS, pectin, lactitol, gluconic 

acid) or 4g/L (chicory). Samples of fermentation fluid were collected at 0, 6, and 24 hours for 

analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms). Gas production was 

measured throughout the 24 h of the study. Among the tested NDO lactitol showed the best 

prebiotic properties. In fact, it reduced coliforms and increased lactobacilli counts, enhanced 

microbial fermentation and promoted the production of SCFA while decreasing BCFA. All the 

substrates that were investigated showed one or more positive effects on dog faecal microflora 

metabolism or composition. Further studies (in particular in vivo studies with dogs) will be needed 

to confirm the prebiotic properties of lactitol and evaluate its optimal level of inclusion in the diet. 
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1. Introduction 
 

Today’s pet food industry is growing rapidly, with pet owners demanding high-quality 

diets for their pets. This demand is creating a search for new strategies to improve pet foods 

quality and/or  the health status of the animal through the diet. 

In Italy, more than 3 million dogs are registered in the “Anagrafe Canina Nazionale” 

data bank (Anagrafe Canina Nazionale, march 2008), and the estimated real number of dogs 

present is close to 7 million (Zoomark, 2005). In 2004, 454 million of euro were spent in 

Italy for commercial foods for dogs (Zoomark, 2005). Nowadays, pets are kept as part of the 

family and thus pet owners feel responsible for their quality of life and longevity. 

The primary role of diet is to provide enough nutrients to meet metabolic 

requirements, while giving the consumer a feeling of well-being. Recent knowledge, 

however, supports the hypothesis that, beyond meeting nutritional needs, diet may modulate 

various functions in the body and play detrimental or beneficial roles in some diseases. 

Concepts in nutrition are expanding to include an emphasis on the use of foods to promote a 

state of well-being and better health and to help to reduce the risk of diseases. 

Diet nutrient composition and digestibility are of crucial importance for health and 

well being of animals. Although great attention is paid to nutritional quality in the marketing 

of dog foods there is usually limited information on digestibility. The most highly 

recognized dog food brands claim to have optimum nutritional quality and high digestibility, 

without or with few scientific data and no controlled trial to support their statements and 

claims. The pet food industry traditionally uses a wide range of protein sources, including 

meat and bone meals, poultry meals, poultry by-product meals, and soybean meal. 

Significant variation in the nutritional quality of ingredients directly affects the nutritional 

value of the finished product. Moreover, processing of foods can influence the availability 

of nutrients, either positively or negatively.  

A recent strategy to improve the quality of food is the use of “nutraceuticals” or 

“Functional foods”. Nutraceutical (a term coined by the fusion of nutrition and 

pharmaceutical) refers to extracts of foods claimed to have a medicinal effect, while a 

functional food is a part of an everyday diet which is demonstrated to offer health benefits 

and reduce the risk of chronic disease beyond the widely accepted nutritional effects. The 

term ‘functional foods’ was introduced in Japan in mid 1980s. This type of foods is known 

on the Japanese market as “FOods for Specified Health Use” (FOSHU). The functional 

foods comprise: conventional foods containing naturally occurring bioactive substances 
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(e.g., dietary fiber), foods enriched with bioactive substances (e.g., probiotics, antioxidants), 

and synthesized food ingredients introduced to traditional foods (e.g., prebiotics).  

Among the functional components, probiotics and prebiotics, soluble fiber, omega-3 – 

polyunsaturated fatty acids, conjugated linoleic acid, plant antioxidants, vitamins and 

minerals, some proteins, peptides and amino acids, as well as phospholipids are frequently 

mentioned. At the moment, the most studied and frequently used functional food 

compounds in pet foods are probiotics, prebiotics, plant antioxidants and vitamins. 
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2. The digestive tract of dogs 
 

It is well known that a close relationship exists between gastro-intestinal 

characteristics, natural feral diet and nutrient requirements. The gastro-intestinal 

morphology and physiology are greatly influenced by nature of food consumed, frequency 

of meals, body size, and several other factors. Dogs are omnivorous, derived from 

carnivorous ancestors.  

Compared to herbivorous and “earlier” omnivorous species, dog digestive tract is 

relatively short and simple. The average ratio of body length to intestine length of 

carnivorous is 1:6 and 1:4, for dog and cat respectively, compared to an average ratio of 

1:22 for ruminants and of 1:14 for swine (Stevens, 1977). Table 2.1 shows the principal 

measures that characterise the dog gastro-intestinal tract. 

 

Table 2.1: Organ volumes and length in the dog (Stevens, 1977)  

Figure 2.1: Dog gastro-intestinal tract (Stevens, 1977) 

 

The digestive process begins in the mouth. The first 

step of digestion is the secretion of saliva during 

mastication by four pairs of salivary glands. The amount 

and composition of the saliva secreted depends on the type 

of food ingested (particularly the water content). Saliva 

consists of about 99% water, the remaining 1% is made of 

Region Measures 

 Relative length (%) Average absolute length (m) 

Small intestine 85 4.14 

Cecum 2 0.08 

Colon 13 0.60 

Total 100 4.82 

 Relative volume (%) Average absolute volume (L) 

Stomach 62.3 4.33 

Small intestine 23.3 1.62 

Cecum 1.3 0.09 

Colon 13.1 0.91 

Total 100 6.95 
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mucus, inorganic salts (calcium, chloride, potassium, sodium and bicarbonate) and enzymes 

(Maskell & Johnson, 1993). In dog saliva there isn’t the starch digestive enzyme α-amylase. 

 

2.1 Stomach 

 

The stomach controls the rate of entry of ingesta in the small intestine. This fact is 

very important in dogs who tend to eat large meals. The stomach participates in the initial 

stages of digestion by secreting hydrochloric acid and pepsinogen. Electrolyte 

concentrations in the stomach reported in literature vary widely, ranges of reported values 

are shown in Table 2.2.  

 

Table 2.2: Electrolyte composition of gastric juice in dogs (Altman & Dittmer; 1968). 

Electrolyte Range (mmol/L) 

Bicarbonate 5-33 

Potassium 7-28 

Sodium 22-155 

Chloride 123-173 

Calcium 0.5-4 

Phosphate 0.026-12 

Magnesium 0.021 

 

The major enzymes secreted in the lumen of the stomach are gastric lipase and pepsin. 

Gastric lipase, in contrast to pancreatic lipase, is characterized by his high stability and high 

level of activity under acidic pH condition (Carrière et al., 1991). The secretion of gastric 

lipase is stimulated by food ingestion. During the peak output, which happens during the 

first hour after meal, gastric lipase secretion is three times higher than the basal secretion 

rate, with a total output three hours after meal of about 7 mg (Carrière et al., 1993). Pepsin 

range of secretion vary widely among individuals. Pepsin displays optimal activity at pH 2, 

maintained by gastric secretion of hydrochloric acid; its proteolytic activity decreases along 

the small intestine and is completely inactivated at neutral pH. 

Gastric acid secretion data in dogs are reported in Table 2.3 (Dressman & Yamada, 

1991). In dogs, the gastric acid secretion rate at the basal state is low. Therefore, the 

stomach pH can be as high as the duodenal one in the fasted state. Gastric secretion is 
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influenced by the amount of protein in the meal (Carpentier et al., 1977), hormones and the 

nervous system. 

Table 2.4 lists the pH values of different sections of dog gastro-intestinal tract. In the 

stomach, the cardiac region has a higher pH value then the pyloric region, since the parietal 

cells (which secrete hydrochloric acid) tend to be localized in the lower part of the stomach. 

In the small intestine, pH becomes progressively more alkaline in the distal portions. In the 

large intestine, pH values are more acidic due to microbial fermentation.  

 

Table 2.3: Gastric acid secretion data in dogs (Dressman & Yamada, 1991). 

Parameter   

Basal acid output (BAO)   

volume mL/min 0.3-1.5 

rate mEq/h 0.1 

Peak acid output (PAO)   

rate mEq/h 39 

pH   

fasted  1.5 

fed  2.1 

 

Table 2.4: pH values of different parts of the alimentary tract in dogs (Smith, 1965) 

Stomach Small intestine    

Anterior  Posterior a b c d Cecum Colon Faeces 

5.5 3.4 6.2 6.2 6.6 7.5 6.4 6.5 6.2 

 

Gastric emptying is the process by which food is delivered to the small intestine at a 

rate and in a form that optimizes intestinal absorption of nutrients. Physiological data 

reported in literature about gastric emptying in dogs comprise a wide range of times, 

ranging from 66 minutes to 29 hours (Wyse et al., 2003). Rates of gastric emptying are 

influenced by many factors related both to animal and diet characteristics. Weber et al. 

(2001) reported a significant positive correlation between gastric emptying time and body 

weight, with a lower gastric retention time of foods in giant breeds. Foods can affect ranges 

depending on their volume, energy content, viscosity, density, and particle size (Mizuta et 

al., 1990; Papasouliotis et al., 1993; Chalmers et al., 2005; Xu et al., 2005).  



 6 

2.2 Small intestine 

 

In dogs, the small intestine is the major site for the digestion and absorption of 

nutrients. Transit of acid chyme from the stomach into the small intestine stimulates the 

secretion of pancreatic juice into the duodenum. Bicarbonates present in the pancreatic juice 

and bile neutralise the acidic pH of digesta. In the duodenum, chyme is mixed with enzymes 

secreted by the exocrine pancreas and the duodenal mucosa. Pancreatic enzymes include 

inactive proteases, lipases, and amylases. The average composition of dog pancreatic juice 

is shown in Table 2.5 (Altman & Dittmer; 1968). The range of values is very wide because 

several factors affect electrolytes and enzymes secretion, as, for example, meal composition 

(Fink et al., 1982; Fink et al., 1983).  

 

Table 2.5: Composition of dog pancreatic juice (Altman & Dittmer; 1968). 

  Value 

pH  7.1 - 8.2 

Secretion rate mL/min 0.2 - 1.1 

Water content  % 98 

Ash content g/L 8.4 - 9.7 

Bicarbonate mmol/L 93 - 143 

Total nitrogen mmol/L 71.4 - 671.4 

 

Besides food, hormones can stimulate the exocrine secretion of the pancreas: secretin 

and cholecystochinin, produced by cells of the intestinal mucosa, regulate the output of 

pancreatic juice. Secretin stimulates the pancreas to increase bicarbonate secretion. Secretin 

release is caused by the acidity of small intestinal contents. Cholecystochinin stimulates the 

release of enzyme-rich juices and is stimulated by the presence of partially digested food in 

the small intestine (Maskell & Johnson, 1993).  
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Table 2.6: Composition of bile secreted from the gallbladder and from the liver of dogs. 

Values are express in g/L. (Altman & Dittmer, 1968) 

 Gallbladder Liver 

pH 5.2 - 7.0 7.1 - 8.5 

Dry matter 114 - 246 23 - 45 

Salts 79 - 150 5 - 24 

Cholesterol 0.8 - 1.4 0.04 - 0.15 

 

The importance of bile fluid in the digestion and absorption of dietary lipids has long 

been recognized. Bile is continuously produced in the liver and stored, between meals, in 

the gallbladder in a concentrate form. Bile from the gallbladder differs in concentration 

from bile secreted directly from the liver (Table 2.6). In dogs, more than 99% of bile acids 

are coniugated with taurine (Wildgrube et al., 1986; Washizu et al., 1990). 

The gallbladder contracts in response to food ingestion. Emptying peaks are found at 

30 min after a meal and the emptying decreases 2 hours after food ingestion; gallbladder 

empties only partially after a meal (5-65%). Half-emptying time has been reported to be 

approximately 47 min (Junderko et al., 1994). In Table 2.7, the rate of bile flow and bile 

composition are given. 

 

Table 2.7: Rate of bile flow and bile composition (Ehrlinger, 1987; Kararli, 1995). 

Parameter  Range 

Bile flow mL/die/kg 19-36 
Total bile salts (TBS) 
rate 

mmol/die/kg 1.6-2.9 

TBS mmol/L 40-90 

   
Na mEq/L 141-230 

K mEq/L 4.5-11.9 

Ca mEq/L 3.1-13.8 

Mg mEq/L 2.2-5.5 

Cl mEq/L 31-107 

HCO3 mEq/L 14-61 
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2.3 Large intestine 

 

The last section of the gastrointestinal tract involved in the digestion process is the 

large intestine. The primary role of the large intestine is to absorb electrolytes and water and 

serve as an environment for microbial fermentation of nutrients that escape digestion and 

absorption by the small intestine. The colon represents the majority of the large intestine. 

The large intestine mucosa has no villi and is covered by an alkaline mucus whose function 

is to protect the large intestine mucosa from mechanical and chemical injuries (Maskell & 

Johnson, 1993). Large intestinal transit time in dogs lasts approximately 12 hours (Maskell 

& Johnson, 1993). Weber et al. (2002) studied the influence of body size on intestinal 

transit time in dogs. Despite the relatively lower mass of the gastrointestinal tract found in 

large breed dogs compared to small breed ones (3-4% vs 7-8%; Meyer et al., 1993), Weber 

et al. (2002) found no direct correlation between body size and oro-cecal intestinal transit 

time, while Hernot et al. (2006) demonstrated a positive correlation between large intestinal 

transit time and body size. The efficiency of absorption of salts and water is dependent, to a 

large extent, on colonic motility. Rolfe et al. (2002) demonstrated that a reduction in large 

intestinal transit time decreases the capacity for electrolyte and water absorption and results 

in elimination of watery faeces. On the contrary, longer large intestinal transit time 

promotes colonic fermentation, which has a positive impact on faecal quality (Macfarlane & 

Macfarlane, 2003). 

The large intestine in dogs is responsible for only about 8% of the total digestion of 

food (Drochner & Meyer, 1991), although this percentage is affected by the diet. Meyer & 

Schunemann (1989) reported that colonic digestibility accounted for 1 to 4% of total 

digestibility when dogs were fed highly digestible diets, whereas with diets containing 

certain types of fiber colonic digestibility ranged from 12 to 24% of total digestibility. 

Nutrient digestion in the large intestine is made by colonic bacteria, which ferment dietary 

nutrients and endogenous secretions that escape digestion and absorption in the small 

intestine. 

One of the fundamental properties of mucosal epithelia is their ability to directly 

utilize ‘topical’ nutrients, derived from the diet or the digestion of food, without reliance on 

the blood flow. By the time the digesta reach the colon, however, over 90% of protein and 

carbohydrate has been absorbed, and all that is left is fiber and ‘resistant’ starch and protein. 

Although the gut does not secrete enzymes that are capable of digesting these residues, the 

colonic microbiota does, and in an excellent example of symbiosis, the bacteria metabolize 
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the residues to SCFAs and gases, such as hydrogen and methane, which are chiefly 

absorbed and excreted via the lungs (O’Keefe, 2008). 

The primary end products of bacterial fermentation are SCFAs, lactate, carbon 

dioxide, and hydrogen. Other fermentative end products include hydrogen sulfite, methane, 

ammonia, branched-chain fatty acids, amines, phenols, and indoles. The relative proportion 

of these compounds is influenced by colonic microflora composition, metabolic interactions 

among bacteria, nutrients available for fermentation, intestinal transit time, and a variety of 

host factors including age and immune status (Cummings & Macfarlane, 1991). 

 

2.4 Colonic microbiota 

 

Indigenous intestinal microorganisms play several significant roles in host health 

because they aid in the digestion of food, metabolize drugs and foreign compounds, produce 

essential vitamins, and help prevent pathogens from colonizing the gastrointestinal tract 

(March, 1979; Shanahan, 2002) 

Quantitative and qualitative knowledge of the structure of the bacterial community in 

the intestinal tract is essential to understand the impact on health status of the host. Up to the 

present time, few works exist which describe the intestinal microbiota of dogs (Fujisawa & 

Mitsuoka, 1996; Greetham et al., 2002; Simpson et al., 2002; Mentula et al., 2005; 

Sochodolski et al., 2005; Beasley et al., 2006; Kim & Adachi, 2007). In addition, many of 

these studies are focalized on a restricted number of bacterial species, such as lactic acid 

bacteria.  

The colon contents of dog support at least 400 different species, with numbers as high 

as 1010 and 1011 viable bacteria/g of digesta (Davis et al, 1977). Bacterial counts reported in 

Table XX are extrapolated from data by Simpson et al. (2002). The main cultivable 

bacterial groups in dogs include clostridia, Bacteroides, streptococci, coliforms, enterococci 

and lactobacilli with increasing counts towards the large intestine (Davis et al., 1977; 

Greetham et al., 2002, Buddington, 2003). In their study, Sochodolski et al. (2005) detected 

a wide variability between bacterial microflora counts of dogs housed in an identical 

environment and fed with the same diet and they concluded that individual variability plays 

a major role in the composition of the intestinal microbiota. Mentula et al (2005), in contrast 

with other studies (Greetham et al., 2002; Buddington, 2003) where no bifidobacteria but 

numerous Lactobacillus organisms were reported, found bifidobacteria in 64% but 

lactobacilli only in 32% of the dogs screened. 
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In their study, Simpson et al. (2002) stated that each individual dog harbours a 

characteristic faecal bacterial community which is not influenced by the diet. This statement 

is in opposition to what is reported in others studies in which the authors observed a direct 

influence of diet on bacterial population in the gastrointestinal tract (Zentek, 1995a; Zentek, 

1995b; Vanhoutte et al., 2005; Flickinger et al., 2003). 

 

Table 2.8: Counts of viable bacteria in canine faecal samples (from Simpson et al., 2002). 

Microbial group 
Counts 

Log CFU/g faeces 

Enterococci 6.91 

Streptococci 8.77 

Staphylococci 3.83 

Bacteroides 10.05 

Fusobacteria 8.67 

Clostridia 6.96 

Bifidobacteria 7.80 

Eubacteria 8.11 

Lactobacilli 9.38 

Total anaerobes 10.62 

Total aerobes 9.28 

Yeast and moulds 2.23 
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3. Diet digestibility 
 

Digestibility values provide information on the relative amounts of nutrients in the 

diet that can be really used by the animal and, additionally, serve as an index of overall 

quality of the ingredients of the diet. 

In order to calculate nutrient digestibility, it is important to quantify the exact amount 

of nutrient consumed by the animal and the amount that is excreted in the faeces. The 

difference between these two quantities, divided by the amount consumed, represents the 

quantity that has been digested. The digestibility coefficient that is obtained with this 

method is an “apparent” rather than a “true” value. In fact, faeces contain a variable quantity 

of nutrients of non-dietary origin such as enzymes, pancreatic juice, bile, mucus, sloughed 

intestinal cells, and bacteria (Phillipson, 1971). Several studies have been conducted to 

quantify endogenous secretions using nitrogen-free diets or diets containing only low 

amounts of a highly digestible protein (e.g. casein), or feeding graded levels of a nutrient 

with extrapolation to zero intake (Hendriks et al., 2002; Kendall et al., 1982). 

Average digestibility coefficients in dogs reported in literature are shown in Table 3.1. 

Values are means calculated on the basis of values reported by Vhile et al., 2007; Guevara 

et al., 2008; Kempe et al., 2007; Yamba et al., 2006; Dust et al., 2005. 

 

Table 3.1: Average digestibility coefficients in dogs reported in literature (Vhile et al., 

2007; Guevara et al., 2008; Kempe et al., 2007; Yamba et al., 2006; Dust et al., 2005) 

 
Digestibility coefficients 

Dry matter 82.3 ± 5.17 

Crude protein 82.2 ± 4.50 

Ether extract 92.8 ± 2.60 

Starch 98.6 ± 2.24 
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3.1 Methods to evaluate diet digestibility 

 

Diet digestibility can be evaluated using various methods. The use of metabolic cages, 

which allows a complete collection of excreta, is the oldest technique developed. However, 

housing in cages may influence digestive processes of the animals and the results obtained 

may  be different when animals are kept in a normal environment (Sales & Janssens, 2003). 

The use of indigestible markers is an established method for determining digestibility 

without total collection of faeces. An inert marker must satisfy several criteria; it must be 

indigestible and show only little or no interaction at all with the digestive process. 

Furthermore, homogenous incorporation of the marker in the feed should be possible and 

the marker should be harmless to experimental animals, people who work with the 

substance and the environment (Sales & Janssens, 2003). Indigestible markers that are 

commonly used in digestibility studies include chromic oxide (Cr2O3) (Zuo et al., 1996; 

Hendriks & Sritharan, 2002; Guevara et al., 2008), yttrium oxide (Y2O3) (Vhile et al., 2007) 

or insoluble ash (celite) (Scott & Boldaji, 1997). 

Nowadays, in vitro digestion techniques are gaining interest because in vivo 

determinations are both time consuming (about three weeks are required for the trial and 

analysis of the samples) and expensive (due to the cost of the dogs, the diets, the kennels 

and the labour). Furthermore, in Europe, the use of dogs as experimental animals is a source 

of great concern for most pet owners (and pet-food producers generally avoid to be involved 

in in vivo trials with dogs). Tonglet et al. (2001) tried to correlate in vivo and in vitro protein 

digestibility data obtained using the three-enzymes procedure described by Dufour-Etienne 

et al. (1992). They analyzed seventeen dry complete industrial dog foods and obtained a 

correlation coefficient (r2) of 0.71 between in vitro and in vivo protein digestibility. r2 

represent the fraction of the variance between two parameters that is “shared”, and a value 

close to one describe two parameters that vary together. In this study digestibility 

coefficients determined in vitro explained only a 71% of the variation of  in vivo ones. In a 

recent study, Hervera et al. (2007) tried to develop a simple and reproducible in vitro 

method for predicting the apparent energy digestibility of dry extruded dog foods. Their 

method was based on the two step multy-enzymatic incubation assay described by Boisen 

(1991). They analyzed 54 dry extruded commercial dog foods and obtained a coefficient of 

correlation (r2) of 0.92 between in vitro and in vivo organic matter disappearance. This 

degree of correlation indicates that the proposed method could be effectively used to predict 
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in vivo protein digestibility with an in vitro system; however, other feed components are not 

considered using this technique. 

 

3.2 Factors affecting diet digestibility 

 

Many factors can affect diet digestibility, such as ingredient sources, absolute nutrient 

concentrations, and food processing. In a recent study, Zentek et al. (2004) investigated the 

effect of two different dietary protein sources (beef and poultry), included either in an 

extruded or a canned mixed diet, fed to dogs. Poultry-based and extruded diets were 

associated to higher digestibility coefficients than the beef-based and canned ones. Thermal 

processes are known to improve starch digestibility, in particular extrusion (Perez-Navarrete 

et al., 2007; Murray et al., 2001). In dry extruded pet foods cereal grains are a commonly 

used ingredient because there is a stable supply and are a relatively inexpensive source of 

nutrients. Dogs diets may contain up to 50% starch, derived from cereal grains (almost 60% 

in dry diets). Therefore, the thermal treatment could notably affect diet digestibility. In 

addition, also animal factors must be considered when evaluating digestibility. These 

include breed, age, gender, activity level, and physiological state. With regard to the effects 

of breed, Weber et al. (2003) evaluated the effects of age and body size on the apparent 

digestibility of a dry expanded diet. Four breeds of different body size were used (miniature 

poodles, medium schnauzers, giant schnauzers, great danes) and digestibility experiments 

were conducted at four ages (11, 21, 35 and 60 weeks). Nutrient digestibility was 

significantly higher in large dogs at each age, even though these dogs had lower faecal 

scores and increased faecal moisture concentrations. 

Age too is a factor impacting nutrient digestibility. In the study by Weber et al. 

(2003), macronutrient digestibility increased significantly with age in all four dog breeds. A 

similar finding was reported by Swanson et al. (2004), in a study conducted with senior and 

weanling dogs to determine the effects of age and diet on nutrient digestibility.  

Ahlstrøm et al. (2006) investigated the effect of moderate exercise or low activity on 

nutrient digestibility in trained hunting dogs. Digestibility values were similar in the high 

and low activity periods for all the nutrients. 
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4. Probiotics 
 

A probiotic was defined by Fuller (1989) as a “live microbial food supplement which 

beneficially affects the host by improving the intestinal microbial balance”. The most 

studied probiotics belong to the genera lactobacilli and bifidobacteria, although bacteria 

belonging to other genera (e.g. enterococci) have also been used. Recently, there has been a 

move towards the use of probiotics in the petfood market, where animal wellbeing is a 

major concern. 

Based on the definition of probiotics stated above, it is clear that adequate numbers of 

viable organisms must reach the intestinal tract. For this to happen, probiotic organisms 

must be able to survive transit through the acidic environment of the stomach and resist 

digestion by bile. Potential probiotics must possess a variety of other properties, including 

the ability to adhere to intestinal epithelial cells (or mucus), colonize the intestinal tract, 

produce antimicrobial factors, and inhibit enteric pathogens (Gibson & Fuller, 2000). Other 

properties, such as immunomodulation (Sauter et al., 2006 e 2005) and modulation of 

metabolic activities (Strompfová et al., 2006) are also desirable. An organism can only be 

considered to be a probiotic after these properties have been identified and a positive health 

effect has been documented. 

One important criterion for the selection of a probiotic is host species specificity, 

which is regarded as a prerequisite for showing the beneficial characteristics of the probiotic 

(Fuller, 1989). However, most of the commercial probiotic strains for dogs do not have a 

canine origin. In a recent study, Rinkinen et al. (2003b) utilized an in vitro mucus adhesion 

model to demonstrate that lactic acid bacteria mucus adhesion properties are not host 

specific but rather are characteristic to bacterial specie. A similar finding was reported by 

Lauková et al. (2004), who tested the adhesion properties of two Enterococcus strains to 

human, porcine, and canine mucus.  

Many canine probiotic products contain Enterococcus faecium, whose safety has been 

questioned due to its antibiotic resistance genes and pathogenic characteristics (Strompfová 

et al., 2004; Rinkinen et al., 2003a). Interest in probiotic strains has led to recent cultural 

studies directed towards the isolation of lactobacilli from dog faeces. Perelmuter et al. 

(2008, in press) isolated a Lactobacillus murinus strain from dog faeces and evaluated its 

possible use as probiotic for dogs with in vitro trials. The isolated strain demonstrated 

probiotic properties. In fact, it was able to survive to different pH and bile salts conditions, 

to adhere to intestinal mucus and to inhibit the in vitro growth of E. coli and C. perfringens. 
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In another study, McCoy & Gilliland (2007) compared several Lactobacillus specie in order 

to evaluate their possible use as probiotics. Their study showed that Lactobacillus reuteri 

could be used as a probiotic for dogs. Similar studies were performed by other researchers 

(Manninen et al ., 2006; Beasley et al., 2006; Strompfová et al., 2006; Strompfová et al., 

2004) and led to the identification of various lactic acid bacteria of canine origin that could 

be used as probiotics in dogs. 

 

4.1 Beneficial documented health effects of probiotics in dogs  

 

Appealing properties of probiotics include their ability to reduce antibiotic use, the 

apparently high index of safety, and the public positive perception about “natural” or 

“alternative” therapies. Probiotics are classified, and generally regarded as safe, as opposed 

to antibiotics, which have a number of recognized adverse effects. 

Competitive exclusion of pathogens in the gastrointestinal tract is thought to be one of 

the most important beneficial mechanisms of probiotic bacteria. Competitive exclusion by 

intestinal bacteria is based on bacteria-to-bacteria interaction mediated by competition for 

available nutrients and mucosal adhesion sites. In order to gain a competitive advantage, 

bacteria can also modify their environment to make it less suitable for their competitors. The 

production of antimicrobial substances, such as lactic acid or bacteriocins, is one example of 

this kind of environmental modification (Fooks & Gibson, 2002). 

The possible effects of lactic acid bacteria on dogs’ health have not been extensively 

examined, although some lactic acid bacteria strains have been documented to have 

beneficial effects on the health of dogs. Pasupathy and co-workers (2001) evaluated the 

effect of a Lactobacillus acidophilus strain supplementation on food digestibility and 

growth parameters of puppies. They concluded that the supplementation had a positive 

effect during the active growth phase, although differences between the control group and 

the treated one were not significant. In a later work, Benyacoub et al. (2003) demonstrated 

that dietary supplementation of the diet of puppies with Enterococcus faecium enhanced 

specific immune function. 

Probiotic lactic acid bacteria were also tested to verify their ability to improve health 

status of dogs with gastrointestinal diseases. Sauter et al. (2006) tested the beneficial effect 

of a probiotic cocktail administered to dogs with food responsive diarrhoea. At the end of 

the trial, all the dogs receiving the probiotic supplementation clinically improved. In a 

previous work, Strompfová et al. (2004) detected a reduction in the level of serum 
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cholesterol and alanine aminotranferase after oral administration of a Lactobacillus strain to 

dogs suffering from diseases of the gastrointestinal tract. 

Several researchers investigated the effects of the administration of a probiotic strain 

on the composition of dog intestinal microbiota. The administration of Enterococcus 

faecium significantly decreased Sthaphylococcus spp., Pseudomonas-like bacteria 

(Marcinaková et al., 2006) and Clostridium spp. (Vahjen & Männer, 2003), while it 

increased Salmonella spp. and Campylobacter spp. counts (Vahjen & Männer, 2003) in 

dogs faeces. Sauter et al. (2006) evaluated the effects of a probiotic cocktail containing 

three different Lactobacillus spp. strains on the intestinal microbiota of dogs with food 

responsive diarrhoea. They detected, during the treatment, a decrease in numbers of 

Enterobacteriaceae and an increase in numbers of Lactobacillus spp.. 

 

4.2 Probiotics in pet foods 

 

Nowadays, the pet market offers several probiotic products for use in dogs. They are 

available in tablet, capsule, paste, and liquid form. Some commercial dog foods also claim 

to contain probiotics.  

Biourge et al. (1998) evaluated the feasibility of including a probiotic strain in dry dog 

food during the different phases of the productive process (before and after extrusion) and 

its stability in the final product. A probiotic preparation (spores of Bacillus CIP 5832) was 

added to the meal of a commercial diet before expansion-extrusion or to a powder that was 

coated on the diet after extrusion and drying. As expected, the extrusion process resulted in 

the loss of more than 99% of the bacteria added, while the second technique determined 

losses of about 45% of the added dose. After 12 months of storage, diets prepared with the 

second technique had lost less than 25% of spores. These studies confirmed that the 

addiction of a probiotic strain to a dry dog food is feasible and that it has to be added after 

the extrusion process at a higher concentration than the desired one. 

Rules regarding probiotic supplementation to animals diets are still missing. In a study 

by Weese & Arroyo (2003), who evaluated several commercial foods for dogs that claimed 

to contain probiotics, 26% of the products did not contain any relevant bacterial population 

(among the ones specified in the label), none of the tested products contained all claimed 

strains and 58% of the tested diets contained additional, related bacteria that were not stated 

in the label.  

 



 17 

5. Prebiotics 
 

A prebiotic is "a non digestible food ingredient that beneficially affects the host by 

selectively stimulating the growth and/or activity of one or a limited number of bacteria in 

the colon, and thus improves host health”, as it was first defined by Gibson & Roberfroid 

(1995).  

Since its introduction, the concept of prebiotic has attracted much attention. However, 

many food components have been claimed to exert prebiotic activity without any 

consideration to the criteria required. In fact, not all dietary carbohydrates are prebiotics. To 

be classified as a prebiotic a food component has to respect some criteria, such as: 

1. resistance to digestion  

2. fermentation by intestinal microflora 

3. selective stimulation of the growth and/or activity of those intestinal bacteria 

that contribute to health and well-being. 

Recently, the beneficial effects of prebiotics have gained interest also in companion 

animals. Still, little is known at present about the effect that prebiotics can have in the 

intestine of carnivorous animals. 

Targets for prebiotic effects include the colonic microflora, gastrointestinal 

physiology, immune function, bioavailability of minerals, lipid metabolism and 

gastrointestinal tract health (Roberfroid, 1999).  

The main classes of dietary carbohydrates and their physiological characteristics are 

reported in Table 5.1 and 5.2, respectively. 

Table 5.1: Principal physiological characteristics of dietary carbohydrates (Cummings & 

Stephen, 2007). 

 Provide 
energy  

Increase 
satiety  

Cholesterol 
lowering  

Increase 
calcium 

absorption  

Source 
of 

SCFA  

Alter 
balance of 
microflora 
(prebiotic)  

Increase 
stool 

output  
Immunomodulatory  

Monosaccharides √        
Disaccharides √   √     
Polyols √    √  √  
Maltodextrins √        
Oligosaccharides 
(non-α-glucan) √   √ √ √  √ 
Starch √    √  √  
NSP √ √ √  √  √  
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Table 5.2: Classification of dietary carbohydrates by molecular size (Cummings & 

Stephen, 2007) 

Class (DP a) Subgroup Principal components 

Monosaccharides Glucose, fructose, galactose 

Disaccharides Sucrose, lactose, maltose, trehalose Sugars (1–2) 

Polyols (sugar alcohols) 
Sorbitol, mannitol, lactitol, xylitol, 
erythritol, isomalt, maltitol 

Malto-oligosaccharides 
(α-glucans) 

Maltodextrins 
Oligosaccharides (3–9) 
(short-chain carbohydrates) Non-α-glucan 

oligosaccharides 

Raffinose, stachyose, fructo and 
galacto oligosaccharides, polydextrose, 
inulin 

Starch (α-glucans) 
Amylose, amylopectin, modified 
starches 

Polysaccharides (≥10) 
Non-starch 
polysaccharides (NSPs) 

Cellulose, hemicellulose, pectin, 
arabinoxylans, β-glucan, 
glucomannans, plant gums and 
mucilages, hydrocolloids 

a Degree of polymerization or number of monomeric unit. 

 

Prebiotic carbohydrates are important because of the new concept of a healthy or 

balanced gut flora. A healthy, or ‘balanced’ microbiota is one that is predominantly 

saccharolytic and comprises significant numbers of bifidobacteria and lactobacilli 

(Cummings et al., 2004). This concept is based on a number of observations. The genera 

Bifidobacterium and Lactobacillus do not contain any known pathogens, and they are 

primarily carbohydrate-fermenting bacteria, unlike other groups such as Bacteroides and 

clostridia that are also proteolytic and amino-acid fermenting. The products of carbohydrate 

fermentation, principally SCFAs are beneficial to host health, while those of protein 

breakdown and amino acid fermentation, which include ammonia, phenols, indoles, thiols, 

amines and sulphides, are not (Cummings & Macfarlane, 1991). Furthermore, lactic acid-

producing bacteria such as bifidobacteria and lactobacilli play a significant role in the 

maintenance of colonization resistance, through a variety of mechanisms (Gibson et al., 

2005).  

Almost any carbohydrate that reaches the large bowel will provide a substrate for the 

commensal microbiota, and will affect its growth and metabolic activities. This has been 

shown for non-starch-polysaccharides (Stephen & Cummings, 1980), and will occur with 
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other substrates such as resistant starch, sugar alcohols and lactose. However, stimulation of 

growth by these carbohydrates is a non specific, generalized effect, that probably involves 

many of the major saccharolytic groups in the large bowel (Macfarlane & Cummings, 

1991). The selective properties of prebiotics relate to the growth of bifidobacteria and 

lactobacilli at the expense of other groups of bacteria in the gut, such as Bacteroides, 

clostridia, eubacteria, enterobacteria, enterococci, and so on. 

 

5.1 Effects of prebiotics on the microbial population of small and large 

intestine. 

 

Few studies have been conducted to evaluate the effects of prebiotics on bacteria in 

the small intestine of companion animals. Willard et al. (2000) evaluated the effect of the 

dietary supplementation with fructooligosaccharides (FOS) at a concentration of 1% to 

healthy dogs. In their study, FOS supplementation did not have a significant effect on faecal 

concentration of bacteria. The researchers hypothesized  that the lack of effect of FOS on 

faecal bacterial populations might depend on the wide variation among individual dogs. In a 

study by Swanson et al. (2002b), FOS did not affect dog faecal bacterial counts when 

administered at a concentration of 0.5%, but the same authors reported a significant increase 

in faecal lactobacilli and bifidobacteria after the administration of FOS (1%) plus 

mannanooligosaccharides (MOS; 0.5%) (Swanson et al., 2002c) and FOS alone (1.3%; 

Swanson et al., 2002a). In another study, Flickinger et al. (2003) evaluated the effects in 

dogs of the dietary supplementation with FOS at four concentration levels (0, 0.3, 0.6, and 

0.9%). At these concentrations, FOS did not affect lactobacilli and bifidobacteria counts but 

significantly decreased C. perfringens. In a previous study, supplemental FOS (1%) 

determined a significant increase in the number of faecal bifidobacteria, streptococci 

andclostridia (Beynen et al., 1998). 

Grieshop et al. (2004) evaluated the effects of chicory (a natural source of inulin) at 

1%  , alone or together with MOS, in senior dogs. In their study, chicory determined a 

significant increase in faecal bifidobacteria concentration compared to the control group. In 

another study (Zentek et al., 2003), administration of chicory, supplemented at 3%, did not 

affect bifidobacteria faecal concentration. 
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5.2 Effects of prebiotics on the intestinal mucosa 

 

Prebiotics are fermented in the colon to SCFAs. Short-chain fatty acids (butyrate, 

acetate,  propionate, and lactate) are associated with a trophic effect on the colonic 

epithelium (Blottière et al., 2003). Propst et al. (2003) detected a significant increase of 

faecal acetate, propionate and butyrate in dogs fed inulin and oligofructose at three 

concentrations (0.3, 0.6, and 0.9%). A similar finding was reported by Vickers et al. (2001), 

who detected a higher production of all the SCFAs analyzed in in vitro fermentation 

systems containing inulin and FOS compared to fermentors containing cellulose. When 

fermented in vitro with dog faecal inoculum, several prebiotics (FOS, citrus pectin, 

lactulose, guar gum) rapidly produced an increase of the concentration of SCFAs (Sunvold 

et al., 1995). 

 

5.3 Protein catabolism and production of putrefactive agents 

 

Fermentation of undigested amino acids and endogenous protein determines the 

production of several putrefactive compounds. These compounds include ammonia, 

aliphatic amines, branched-chain fatty acids (BCFA), indoles, phenols, and volatile sulphur-

containing compounds (MacFarlane & Cummings, 1991). 

When administered to dogs at a concentration of 1.3%, FOS determined a significant 

decrease in fecal ammonia, isobutyrate, isovalerate, and total branched-chain fatty acid 

concentrations (Swanson et al., 2002a); when fed at 0.5%, FOS decreased faecal indole and 

phenol concentrations (Swanson et al., 2002b). On the contrary, in the study conducted by 

Flickinger et al. (2003), FOS administered at 0.3, 0.6, and 0.9% did not affect BCFA, 

ammonia, phenols, and indoles concentrations.  

 

5.4 Effects of prebiotics on nutrient digestibility 

 

A few studies investigated the effect of prebiotics on nutrient digestibility. In  a study 

by MIddelbos et al. (2007), the addition of FOS (1.2% and 1.5%) to a dog diet caused a 

significant reduction of protein digestibility. Similar findings were reported by Verlinder et 

al. (2006) after the addition of inulin at 3%, Propst et al. (2003) after the addition of inulin 

and oligofructose at 0.3, 0.6, and 0.9%, and Hesta et al. (2003) after supplementation with 

FOS and isomalto-oligosaccharides (3%). In the study by Hesta et al. (2003),when nitrogen 
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digestibility was corrected for bacterial nitrogen, the differences between the control and 

oligosaccharide-supplemented groups disappeared. This indicates that the lower total tract 

nitrogen digestibility was not a consequence of a lower small intestinal digestibility but the 

result of a higher faecal content of nitrogen originating from bacteria grown in the large 

intestine. 

 

5.4 Effects of prebiotic on mineral methabolism 

 

Prebiotic are known to increase the absorption of several minerals (calcium, 

magnesium, and phosphorus) and trace elements (mainly copper, iron, and zinc). The 

stimulation of absorption seems to be more pronounced in deficient animals. Few data are 

reported in literature about mineral absorption in dogs after prebiotic administration. 

Beynen et al. (2002, 2001) evaluated the effect of the administration of oligofructose (1%) 

and lactulose (1 or 3 grams/MJ metabolizable energy) on mineral absorption in dogs. 

Oligofructose determined a rise of calcium and magnesium absorption, and the same was 

detected with lactulose.  

 

5.5 Systemic effects of prebiotics 

 

Some authors investigated the effects of prebiotics on plasma metabolite 

concentrations of dogs. Diez et al. (1998) measured plasma glucose and insulin 

concentrations in response to supplemental (7%) inulin, guar gum, or sugar beet fiber in dog 

diets. The investigators determined that guar gum induced lower postprandial insulin, alpha-

amino-nitrogen and urea plasma concentrations and fasting cholesterolaemia, while sugar-

beet fibre and inulin showed no metabolic effects. In a previous work, the same authors 

(Diez et al., 1997) detected a significant decrease in postprandial glucose, urea and 

triglyceride concentrations and preprandial glucose, urea and cholesterol after the 

administration of a blend of inulin and sugar beet fiber (4:1) when inulin reached the 

concentration of 4 and 8%. 

Several authors have proved the ability of prebiotics to modulate immune function in 

humans and laboratory animals (Seifert & Watzl, 2007; Vos et al., 2007). Adogony et al. 

(2007) tested the ability of short-chain FOS, administered to female dogs, to enhance the 

mucosal immunoglobulin level in mammary secretions. Results from their study showed 
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that dogs supplemented with scFOS exhibited higher colostrum and milk IgM content 

without concomitant effect on IgG1, IgG2 and IgA. 



 23 

Aim of the thesis 
 

Aims of the present study were: 

• Development of a simple and reproducible in vitro method for predicting the 

digestibility of pet-food. 

• Isolation of a Lactobacillus strain from dogs faeces and examination of its 

potentially probiotic properties . 

• Investigation of the effects of several non-digestible oligosaccharides on dog 

intestinal microflora composition and metabolism.  
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6. Digestibility study: Material and methods 

6.1 Development of the in vitro digestion technique 

 

6.1.1 Feed samples 
 

Nine samples of different commercial pet foods (dry and wet) were used. Analyses of 

the diets (crude protein, crude fibre, ether extract, ash, and starch) were performed according 

to AOAC standard methods (AOAC, 2000). Table 6.1 shows the chemical composition of 

the diets. 

 

Table 6.1: Chemical composition (on dry matter basis) of the diets used during the 

development of the in vitro digestion technique. 

Pet-food Crude protein Ether extract Starch Crude fibre Ash 

1 (dry, cat) 32.91 11.57 42.21 1.77 7.28 

2 (dry, cat) 29.85 12.97 37.92 2.47 7.25 

3 (dry, cat) 37.72 16.96 35.46 1.13 6.96 

4 (wet, cat) 31.75 22.62 29.16 0.79 8.65 

5 (dry, dog) 31.75 16.00 39.06 1.60 6.96 

6 (dry, dog) 30.84 15.49 43.20 1.18 6.57 

7 (dry, dog) 26.72 11.19 39.24 3.43 8.92 

8 (wet, dog) 31.70 23.50  1.56 8.64 

9 (wet, dog) 35.68 30.27 19.26 0.96 11.48 

 

6.1.2 In vitro digestion 
 

Samples of pet foods were first digested using the in vitro digestion technique 

proposed by Vervaeke et al. (1989). The method can be briefly summarized as follows: 

1. Sample preparation: samples of pet food were dried at 65°C overnight and finely 

ground (< 1 mm particle size). 

2. Step 1 (gastric digestion simulation): For each pet food sample, 400 mL of a 0.2% 

pepsin solution (HCl 0.075N; Pepsin from porcine gastric mucosa, 600-1,800 

units/mg, P7125, Sigma-Aldrich) were added in a 1 L bottle to 20 g of pet 

food. Bottles were incubated in a shaking waterbath at 39°C for 4 hours. 

3. Step 2 (small intestinal digestion simulation): pH level was adjusted to 7.5 with 

NaOH (1 N)and 400 mL of a pancreatin solution (1% in phosphate buffer; 
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Pancreatin from porcine pancreas, P1500, Sigma-Aldrich) were added. 

Bottles were incubated in a shaking waterbath at 39°C for 4 hours. 

4. Centrifugation: after the enzymatic digestion, the content of each bottle was 

centrifuged (3,000 x g, 10 min, 4°C), washed twice with distilled water, re-

centrifuged (3,000 x g, 5 min, 4°C), and the residue is dried at 65°C 

overnight. 

 

Phosphate buffer was prepared mixing three solutions: 

• Solution 1 (g/L):  

o 48.44 g of Na2HPO4 

o 49.0 g NaHCO3 

o 2.35 g of NaCl 

o 2.85 g of KCl 

• Solution 2 (g/L):  

o 60 g of MgCl2 

• Solution 3 (g/L):  

o 12.89 g MgCl2•6 H2O 

• 500 mL of solution 1, 5 mL of solution 2 and 5 mL of solution 3 were mixed, and 

the volume was adjusted to 1 L adding distilled water. Final pH was adjusted to 

7.5 with HCl 1 N. 

 

6.2.3 Calculation and data analysis  
 

In order to determine diet digestibility, the residue obtained from each bottle after the 

in vitro digestion was weighed and digestibility was calculated with the following equation: 

 

100 – [ (residue weight x 100) / sample weight ] 

 

The un-digested fraction was then analysed for crude protein, ether extract, crude 

fibre, starch and ash, according to AOAC standard methods (AOAC, 2000). Nutrient 

digestibility was calculated with the following equation: 

 

100 – {[nutrient percentage in residue x (100 – diet digestibility)] / nutrient percentage 

in diet} 
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Digestibility data obtained with the in vitro technique were compared to digestibility 

data from the literature (obtained from in vivo trials). Because digestibility coefficients 

obtained with the in vitro method proposed by Vervaeke et al. (1989) differed from those 

that are reported in the literature, particularly the results regarding digestibility of lipids (see 

Table 3.1, Table 7.1), the method proposed by Vervaeke et al. (1989) was modified, in order 

to develop a new method that could better represent the peculiar digestive physiology of 

dogs and cats. In particular, the following critical points were considered during the study: 

• Food sample and digestive solution ratio; 

• Addition of lipase and/or emulsifiers to the digestive solutions; 

• Pancreatin concentration in the second phase solution; 

• Duration of each digestion phase (gastric and intestinal); 

• Food characteristics (dry, wet, for dog, for cat). 

 

After several in vitro digestion trials, the following new method was developed. 

 

1. Sample preparation: each pet foodsample is dried at 65°C overnight and finely 

ground (< 1 mm particle size). 

2. Step 1 (gastric digestion simulation): 10 g of pet food sample are added with 400 

mL of a 0.2% pepsin solution (HCl 0.075N;) containing 0.1% gastric lipase 

(Rhizopus lipase, F-AP15, Amano Enzyme Inc.). and incubated in a 1 L 

bottle in a shaking waterbath at 39°C for 2 hours. 

3. Step 2 (small intestinal digestion simulation): pH level is adjusted to 7.5 with 

NaOH (1 N). Then, 400 mL of a 1% pancreatin solution in phosphate buffer 

(prepared as described before) are added to each bottle. Immediately prior to 

addition of the pancreatin solution, bile salts (Cholic acid-Deoxycholic acid 

sodium salt mixture, 48305, Fluka) are added to each bottle at the final 

concentration of 2.5%. The bottle is placed again in the shaking waterbath at 

39°C for 4 hours. 

4. Centrifugation: after enzymatic digestion, the preparation is centrifuged (3,000 x g, 

10 min, 4°C), washed twice with distilled water, re-centrifuged (3,000 x g, 5 

min, 4°C), and the residue is dried at 65°C overnight. 
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6.2 Validation of the new in vitro method  

 

In order to validate the new in vitro method, an in vivo digestibility study with dogs 

was performed. Three dry extruded diets for dogs were digested both in vitro and in vivo. 

 

6.2.1 Animals 
 

A total of 18 dogs (different breeds, same environment, with an average body weight 

of 24.9 ± 6.39 kg) were used for the in vivo digestibility trial. Before the beginning of the 

trial, all dogs were screened for intestinal parasites and infected ones were treated 

(DRONTAL, Bayer S.p.A). Dogs were randomly assigned to three different diets (six 

animals for each group) and individually housed in boxes. After a 5-day adaptation period 

(during which dogs were progressively adapted to the experimental diets), dogs received for 

12 days the experimental diets. . During the last 5 days, all faeces excreted by each dog 

were collected, weighed and immediately frozen. Dogs were fed once daily according to 

their maintenance energy requirement, had free access to water and were allowed daily 

exercise outside of their boxes.  

 

6.2.2 Diets 
Three dry extruded diets were evaluated in this study. Celite, a source of acid-

insoluble ash, was used as a digestion marker at 1.5% of the diet. Chemical analysis of the 

dietary treatments are presented in Table 6.2.  
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Table 6.2: Chemical analysis of diets used in in vivo trial (percentage on dry matter basis). 

 T1 T2 T3 

Dry matter 94.50 93.73 94.86 
Crude protein 23.81 24.81 23.97 
Ether extract 16.41 18.35 15.47 
Crude fibre 2.36 1.65 2.57 

NDF 17.59 12.66 18.21 
ADF 9.11 7.85 10.59 
ADL 3.54 3.21 2.83 

Ash 9.67 8.80 9.47 
Insoluble ash 1.78 1.59 1.28 
Starch 29.97 34.57 34.74 

NDF: Neutral Detergent Fibre; ADF: Acid Detergent Fibre; ADL Acid Detergent Lignin 

 

6.2.3 Samples analyses 
 

The frozen faecal samples from every single dog were freeze-dried, finely ground (< 1 

mm particle size), mixed and analysed (crude protein, crude fibre, ether extract, starch, ash 

and insoluble ash) according to AOAC standard methods (AOAC, 2000). All samples were 

analyzed in duplicate.  

 

6.2.4 Calculation and data analysis  
 

Diet and nutrients digestibility was calculated as previously described.  

 

In order to compare in vivo and in vitro digestibility data, the same three diets were 

digested using the new in vitro method (see chapter 6.1.2). Each diet was digested in 

triplicate. Analyses (crude protein, crude fibre, ether extract, starch, ash and insoluble ash) 

of the un-digested residue were performed according to AOAC standard methods (AOAC, 

2000). All samples were analyzed in duplicate. 

Linear regression was used to determine the precision and accuracy of the established 

relationship between in vivo and in vitro data.  
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7. Digestibility study: Results  
 

7.1 Development of the in vitro digestion technique 

 

7.1.1 Method proposed by Vervaeke et al. (1989) 
 

The results obtained with the method proposed by Vervaeke et al. (1989) are shown in 

Table 7.1. The chemical composition of the tested pet-foods is shown in Table 6.1. 

 

Table 7.1: Digestibility (Mean ± SEM) of different dry pet-foods determined with the 

method proposed by Vervaeke et al. (1989)..  

Pet-food  Digestibility 
 N Dry matter Crude protein Ether extract Starch 

1 3 72.9 ± 0.54 87.5 ± 0.63 32.5 ± 4.53 94.7 ± 0.49 

2 3 72.2 ± 0.18 85.1 ± 0.37 41.6 ± 0.75 96.1 ± 0.26 

3 3 73.5 ± 0.40 79.9 ± 0.26 52.3 ± 0.77 95.5 ± 0.21 

5 3 72.4 ± 0.42 84.7 ± 1.00 28.9 ± 1.05 96.3 ± 0.19 

6 3 73.2 ± 0.31 79.2 ± 0.23 45.3 ± 1.32 95.6 ± 0.24 

7 3 65.7 ± 0.39 83.1 ± 0.58 33.8 ± 1.31 96.6 ± 0.16 

Literature a 50 82.3 ± 5.17 82.2 ± 4.50 92.8 ± 2.60 98.6 ± 2.24 
a Means obtained from: Vhile et al., 2007; Guevara et al., 2008; Kempe et al., 2007; Yamba et al., 
2006; Dust et al., 2005. 

 

 

7.1.2 Effect of the food / digestive solution ration food digestibility 
 

The ratio between food and digestive solutions in the method proposed by Vervaeke et 

al. (1989) is 1:40 (see procedure described in chapter 6.1.2). Because this ratio influences 

the quantity of enzymes that are available to digest the substrate, different food / digestive 

solution ratios (1:20, 1:40, and 1:80) were tested (Table 7.2). 
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Table 7.2: Dry matter digestibility (Mean ± SEM) using different food/digestive solutions 

ratios (1:20, 1:40, and 1:80). 

Ratio N Digestibility (%) 

1:20 3 66.5 ± 5.79 

1:40 3 70.9 ± 3.79 

1:80 3 75.3 ± 2.31 

 

It was decided to further use the 1:80 food to solution ratio, because this ratio  lead to 

lipid digestibility values that were closer to those reported in literature. 

 

7.1.3 Addition of lipase and emulsifiers 
 

In order to further improve lipid digestion, gastric lipase and emulsifiers were added 

to the digestive solutions.  

The addition of gastric lipase (Rhizopus lipase, F-AP15, Amano Enzyme Inc., Japan) 

at different concentrations to the pepsin-HCL solution was tested in combination with the 

addition of a non-ionic surfactant (Tween 20, Polyoxyethylene sorbitan monolaurate) or bile 

salts (Cholic acid-Deoxycholic acid sodium salt mixture, 48305 Fluka) to the pancreatin 

solution (Figure 7.1). 

The addition of gastric lipase (0.1 and 0.4%) and bile salts at the final concentration of 

2% improved lipid digestibility and the data that were obtained were more consistent with 

data reported in literature.  
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Figure 7.1: Ether extract digestibility obtained using different digestive solutions compared 

with results reported in literature a (dotted line indicates literature resultsa, solid line 

indicates results obtained with the technique proposed by Vervaeke et al., 1989). 

Legend:  
• Tw20: Tween 20 
• L: Lipase 
• BS: Bile salts 

a Means obtained from: Vhile et al., 2007; Guevara et al., 2008; Kempe et al., 2007; Yamba et al., 
2006; Dust et al., 2005. 

 

 
7.1.4 Pancreatin concentration 
 

We also considered the effects of different pancreatin concentrations in the second 

phase digestive solution.. 

Two different pancreatin concentrations were tested using a wet diet for dogs (pet-

food number 9). This diet was chosen for its high fat content in order to verify the 

effectiveness of the method. Table 7.3 shows the results obtained using pancreatin at 1 and 

1.25%.  
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Table 7.3: Dry matter, crude protein, ether extract and starch digestibility obtained using 

pancreatin at 1 and 1.25%. The pet food used in the trial was 9 (wet, dog). Mean ± SEM. 

Bile salts 
(%) 

Pancreatin 
(%) 

N Digestibility 

   Dry matter Crude protein  Ether extract Starch 

2 1 2 84.8 ± 0.28 85.2 ± 0.28 86.0 ± 0.26 * 

2 1.25 2 84.8 ± 0.40 89.3 ± 0.28 85.2 ± 0.39 * 

2.5 1 2 85.3 ± 0.07 87.1 ± 0.06 90.9 ± 0.05 * 

2.5 1.25 2 84.8 ± 0.20 86.7 ± 0.17 89.4 ± 0.14 * 

* Starch present in traces in undigested residue. 

 
Digestibility data obtained with pancreatin at 1.25% did not significantly differ from 

those obtained with 1% addition. 

 
7.1.5 Duration of each digestive phase 
 

Duration of each digestive phase directly affects the time of substrate exposure to 

digestive enzymes. The method proposed by Vervaeke et al. (1989) consisted of two 

digestive phases of 4 h each.  

In order to better represent the digestive physiology of carnivores, it was decided to 

reduce duration of the gastric phase from four to two hours (Table 7.4).  

 
Table 7.4: Dry matter, crude protein, ether extract, and starch digestibilities obtained with 

different combinations of times. Pet foods used in the trial were 1 (dry cat) and 8 (wet dog), which 

composition is shown in Table XX. Data are expressed as Means ± SEM. 

 Phase 
Duration 

(h) 
N Digestibility 

   Dry matter Crude protein Ether extract Starch 

2 + 4 8 86.4 ± 1.46 91.5 ± 1.10 94.9 ± 3.69 * 

D
ry

 

4 + 4 8 84.2 ± 2.20 91.1 94.5 ± 4.26 * 

       

2 + 4 5 87.5 ± 0.26 89.2 ± 0.20 87.7 ± 0.82 * 
Wet 

4 + 4 3 89.3 ± 0.34 91.7 ± 0.26 88.4 ± 0.36 * 

* Starch present in traces in undigested residue. 
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Comparing the digestibility results obtained with the two different durations of the 

gastric phase, no significant difference was observed..  

 

Figure 7.2: Comparison of digestibility coefficients reported in literature and obtained 

applying the protocol proposed in the present study. 
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7.2 Correlation of in vitro and in vivo digestibility coefficients 

 

A trial was conducted to compare in vivo digestibility of pet-foods and in vitro 

digestibility using the newly developed method. 

The results obtained from the trial are presented in Table 7.5. Table 7.6 and Figures 

7.3, 7.4 and 7.5 show the characteristics of the regression equations calculated. 

 

 

Table 7.5: Digestibility coefficients of three pet-foods evaluated in vivo and  in vitro (Means 

± SD).  

Digestibility T1 T2 T3 

 in vivo in vitro in vivo in vitro in vivo in vitro 

Dry matter 81.55 ± 0.85 80.65 ± 0.30 76.19 ± 1.09 80.00 ± 0.19 79.73 ± 0.48 80.40 ± 0.12 

Crude Protein 82.59 ± 0.92 83.24 ± 0.86 76.49 ± 1.52 85.52 ± 0.60 81.23 ± 0.89 83.95 ± 1.07 

Ether extract 96.52 ± 0.32 94.61 ± 0.42 95.03 ± 0.64 96.35 ± 0.19 96.73 ± 0.25 93.34 ± 0.55 

Crude Fiber 26.87 ± 7.32  16.82 ± 2.22  24.54 ± 0.76  

Starch * * * * *  * 

Crude ash 49.90 ± 3.45  33.60 ± 3.64  52.75 ± 2.14  

* Starch present in traces in undigested residue. 

 

 

Table 7.6: Characteristics of regression equations calculated fro Dry mater, Crude 

protein and Ether extract. 

 y: in vivo digestibility coefficient 
 x: in vitro digestibility coefficient 
 

 Dry matter Crude protein Ether extract 

Equation y = 8.30 x – 588.2 y = - 2.57 x + 295.5 y = - 0.57 x + 149.7 

Correlation 
coefficient 

0.9976 0.9957 0.9098 
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Figure 7.3: Dry matter digestibility coefficients of three pet-foods evaluated in vivo and  in 

vitro.  

 

Figure 7.4: Crude protein digestibility coefficients of three pet-foods evaluated in vivo and 

in vitro.  
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Figure 7.5: Ether extract digestibility coefficients of three pet-foods evaluated in vivo and in 

vitro.  
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8. Digestibility study: Discussion 
 

8.1 Development of the in vitro digestion technique 

 

Mean total digestibility of pet-foods digested with the method proposed by Vervaeke 

et al. (1989) was far below the digestibility values that are reported in the literature (65-73% 

vs 74-80%). In particular, using the method proposed by Vervaeke et al. (1989), lipid 

digestibility was very low (29-52% vs 76-97%) and seemed to be the factor that affected 

total digestibility. It has to be considered that Vervaeke et al. (1989) proposed their method 

to determine the digestibility of diets for pigs which usually contain much lower 

concentrations of lipids than diets for dogs and cats. In particular, the Vervaeke method 

does not imply the utilization of gastric lipase and bile salts, the latter an essential factor in 

the digestion of lipids. Conversely, protein and starch digestibility data were consistent with 

those reported in literature (Table XX). 

The addition of Tween 20 determined a higher lipid digestibility. These results are 

consistent with data reported by Shome et al. (2007) who detected an increase in lipase 

activity, ranging from 26 to 72%, in presence of non ionic surfactants. However, 

digestibility coefficients obtained were lower than those that are reported in literature. After 

the addition of bile salts and gastric lipase lipid digestibility resulted more consistent with 

data reported in literature. It is known,that one characteristic of digestive lipase is its 

specificity to act on a specific emulsion interface (Armand et al., 1999). The emulsion 

interface properties, namely, droplet size and specific surface area, govern the activity of 

lipase on dietary fat emulsion. Therefore, changes in the emulsion droplet size and surface 

area might have an important role in modifying fat digestion and absorption. Emulsification 

of dietary fats in vivo is accelerated greatly as the chime enters the small intestine and is 

mixed with bile and pancreatic secretion. In the gut, bile salts and phospholipids cooperate 

in the emulsification of dietary triglycerides and other fat soluble nutrients improving the 

activity of lipase. Also in dogs, lipid digestion is increased by the concomitant presence of 

bile salts. In fact, Meyer et al. (1994), in a study conducted in vivo, detected a positive linear 

correlation between lipid digestion and taurocholate molar concentration in dog’s intestine.  

Duration of each digestive phase directly affects the time of exposure of substrate to 

digestive enzymes. Physiological data reported in literature about gastric emptying and 

intestinal transit time in dogs comprise a wide range of times (Wyse et al., 2003). Rates of 

gastric emptying and intestinal transit time are influenced by many factors related both to 
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animal and diet characteristics. In the present trial, reducing the duration of the gastric phase 

lead to digestibility coefficients that were coherent with data reported in literature (Table 

XX).  

 

8.2 Correlation of in vitro and in vivo digestibility coefficients 

 

The results obtained in the present study indicate that in vivo digestibility coefficients 

can be predicted quite accurately using the proposed in vitro method. Correlation 

coefficients showed, for dry matter and crude protein, a close similarity between 

digestibility data obtained with in vivo and in vitro methods (0.9976 and 0.9957, 

respectively). Ether extract presented a lower correlation coefficient, although close to 1 

(0.9098).  

It is well known that the microflora of the digestive tract can affect the nutritional 

status of the host, changing the digestibility and absorbability of nutrients (March, 1979). 

Karr-Lilienthal et al. (2004) estimated that approximately 50% (49.6-51.4%) of the dry 

matter of dog faeces is of bacterial origin. This can significantly affect nutrients content in 

faeces creating a discrepancy between in vivo and in vitro data. In fact, chemical analysis 

are not able to discriminate between nutrients of “faecal” or bacterial origin. Several authors 

(Sunvold et al., 1995; Muir et al., 1996; Flickinger et al., 2000) found evidence of an 

apparent inhibition of nitrogen digestion in vivo when diets containing fermentable fibre 

were administrated. They postulated that this finding was due to increased bacterial 

metabolism associated with the production and excretion of greater quantities of nitrogenous 

constituents. Moreover, we have to consider that not all the components that are solubilised 

in vitro and are considered as digested are really digestible and absorbable in vivo. This 

condition creates a tendency to overestimate digestibility coefficients using in vitro 

enzymatic methods. 

Nevertheless, the aim of this study was to assess the existence of a correlation 

between digestibility coefficients obtained in vivo and in vitro, and to obtain equations 

which relate in vivo digestibility coefficients to in vitro ones. On the basis of collected data, 

the proposed in vitro method provided digestibility coefficients which correlated well with 

in vivo ones.  
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9. Probiotic study: Material and methods 

9.1 Isolation of the probiotic strain 

 
Seventeen healthy adult dogs (household dogs, different breeds, fed different 

commercial dry diets and living in different environments; between 1 and 3 years of age), 

that had followed a pre/probiotic-free diet for 1 month and had not been treated with 

antibiotics for at least 3 months, were screened for faecal LAB and bifidobacteria contents. 

Fresh faeces were collected immediately after excretion in sterile vessels and frozen at –

18°C within 20 min. Within 10 days from collection, faeces were homogenized and serially 

diluted in half-strength Wilkins-Chalgren Anaerobe Broth (WCAB 0.5x, Oxoid LTD, 

Basingstoke, Hampshire, UK) added with L-cysteine HCl (0.5 g/L). Dilutions were plated 

on Raffinose Bifidobacterium Agar (RB Agar; Hartemink et al., 1996) and LAMVAB Agar 

(Hartemink et al., 1997), for bifidobacteria and lactobacilli counts, respectively. Plates were 

incubated in an anaerobic cabinet (Anaerobic System, Forma Scientific Co., Marietta, USA) 

under a N2 85%, CO2 10%, H2 5% atmosphere at 37°C for 48 h (results shown in Table 

10.1). 

Attribution to the genus Bifidobacterium of the colonies isolated on RB agar was 

achieved by assaying fructose-6-phosphate phosphoketolase activity, the key enzyme of 

Bifidobacterium carbohydrate metabolism (Scardovi, 1986). In order to confirm that new 

isolates belonged to this genus, colonies were picked for amplification with the 16S rDNA 

primer set Bif164/Bif662 specific for this genus, according to Kok et al. 1996, to 

identificate the proper 523 bp amplicon.  

Attribution to the specie of RB and LAMVAB colonies was obtained by subculturing 

on MRS. Pure MRS coltures were ribotyped for speciation using the automated ribotyping 

device, RiboPrinter Microbial Characterisation System (Qualicon Inc., Wilmington, DE, 

USA). Bacterial colonies were picked from agar plates, suspended in sample buffer, 

inactivated by heat kill step, and treated with lytic enzymes to release the DNA. The DNA 

was cut with EcoRI and the fragments were electrophoretically separated and 

simultaneously transferred to a nylon membrane. A DNA probe for the Escherichia coli 

rrnB operon was then hybridized to the genomic DNA on the membrane. Each clone was 

identified by comparison of the RiboPrint pattern with an identification database of EcoRI 

RiboPrint patterns created by E. I. DuPont de Nemours and Company (Qualicon Inc.). The 

taxonomic attribution was confirmed by rDNA sequence analysis. The proper primer set 

was used to amplify the ribosomal fragments comprising the Internal Transcribed Spacers 
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(ITS) and the flanking 16S and 23S rDNA regions. The amplified products were separated 

by gel electrophoresis, the fragments of ca 550 bp were purified using a QIAquick Gel 

Extraction Kit (QIAGEN, Hilden, Germany), and then subjected to automated sequence 

analysis of both DNA strands. 

9.2 Preparing of the supplement 

 
After speciation, it was decided to use one of the isolated strains belonging to the 

specie Lactobacillus animalis in a feeding trial with adult dogs for its high biomass yield.  

The L. animalis strain was grown on the following complex medium called CM:  

 

• phytone, 10 g/L (Difco Laboratories, Sparks, USA);  

• casein hydrolisate, 10 g/L;  

• sodium acetate, 2.5 g/L;  

• yeast exctract, 10 g/L (Difco Laboratories, Sparks, USA);  

• Tween 80, 1 g/L;  

• L-cysteine HCl, 0.5 g/L;  

• MnSO4 7H2O, 7 mg/L;  

• KH2PO4, 0.15 g/L;  

• MgSO4 7H2O, 0.5 g/L;  

• pH was adjusted to 6.8. The medium was, then, autoclaved for 30 min at 110°C.  

• Glucose was autoclaved separately and added to the sterile basal medium to obtain 

the final concentration of 20 g/L. 

The Lactobacillus strain was subcultured in Lactobacilli MRS broth (Difco 

Laboratories, Sparks, USA) containing 0.5 g/L L-cysteine HCl and anaerobically incubated 

at 37°C for 24 h.  

Cells from the MRS cultures were inoculated (5% v/v) into CM medium and 

incubated anaerobically at 37°C for 48 h. After the incubation time the biomass was 

harvested by centrifugation and resuspended in preservation Suspending Fluid (skim milk 

50 g/L; lactose 30 g/L; yeast exctract 50 g/L; ascorbic acid, 5 g/L) for the lyophilization 

process.  

The freeze-dried probiotic product contained about 109 CFU/g. 
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9.3 In vitro trial 

 
In order to prepare faecal cultures, fresh faecal samples (from two adult healthy dogs) 

were suspended 1% (w/v) in pre-reduced WCAB 0.5x. Faecal suspension was added (1% 

v/v) to 100 mL anaerobic serum bottles containing 80 ml of Faecal Extract Medium. Faecal 

Extract Medium was obtained following the procedure described by Benno and Mitsuoka 

(1992) using fresh faeces collected from 15 adult healthy dogs. Faecal cultures were 

inoculated (1% v/v) with the freeze-dried L. animalis strain resuspended in WCAB medium 

at a concentration of 108 CFU/mL (in order to achieve in the faecal cultures a final L. 

animalis concentration of 106 CFU/mL) or, as a negative control, with the same volume of 

sterile WCAB medium. Each bottle received the addition of 1 g of in vitro digested dry food 

for adult dogs (Table 9.1) suspended in 10 mL of physiological solution. The in vitro 

digested food simulates the undigested fraction of the diet that reaches the hindgut and is 

obtained by in vitro digestion (2 h incubation with HCl + gastric lipase + pepsin followed by 

a 4 h incubation with pancreatin + bile salts) of a commercial dry food for adult dogs 

(Vervaeke et al., 1989; modified method). 

 

Table 9.1: Analyzed chemical composition of the commercial dry dog food used in the 

study before and after enzymatic digestion (%DM)a. 

 Before digestion After digestion 

Crude protein 23.1 12.1 

Ether extract 8.6 2.0 

Starch 41.2 traces 
a Food in vitro total digestibility was 79.7% 

 

Faecal cultures were incubated at 39°C in anaerobiosis and samples were collected for 

chemical and microbiological analyses at 0, 4, 8 and 24 h. All preparations were done in an 

anaerobic cabinet.  

 
9.4 In vivo trial 

 
Nine dogs, belonging to the initial pool, screened during the first phase of the trial, 

having lactobacilli counts lower than 4,5 Log CFU for g of faeces were selected to assess 

the in vivo effect of the L. animalis strain. 
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Selected dogs received for 10 d a single oral daily dose of 0.5 g of the freeze-dried 

probiotic. Faecal samples were collected the day before probiotic administration started 

(Day 0) and again 1 and 5 d after withdrawal of the probiotic administration (Day 11 and 

15, respectively). Faecal samples were collected immediately after excretion and frozen at –

18°C within 20 min. for chemical and microbiological analyses. 

9.5 Chemical and microbiological analyses 

 
Ammonia in faecal cultures and homogenized faeces samples was measured using a 

commercial kit (Urea/BUN – Color, BioSystems S.A., Barcelona, Spain).  

Short-chain fatty acids (SCFA) in faecal cultures and homogenized faeces samples 

were analyzed by gas chromatography (Varian 3400, Varian Analytical Instruments, 

Sunyvale, CA 94089, USA) with Carbopack B-DA/4% CW 2M and 80/120 packed column 

(Supelco, Sigma Aldrich s.r.l., 20151 Milano, Italy). The faeces were homogenized and 

diluted 1:1 with distilled water and centrifuged (3,000 × g, 15 min.) and 1 mL of the 

supernatant was deproteinized with 50 µL perchloric acid (Merck, Darmstadt, Germany). 

Finally, both faecal culture and faeces supernatant samples were centrifuged (14,000 x g, 10 

min.) and added with pivalic acid as an internal standard (Fussel and McCalley, 1987) prior 

to injection. 

Immediately after sampling, faecal cultures samples were serially diluted with 

prereduced half-strength WCAB. From each of the dilutions, 0.1 mL was plated in triplicate 

onto selective media: MacConkey Agar (Merck, Darmstadt, Germany) for coliforms, OPSP 

Agar (Oxoid, Basingstoke, UK) for Clostridium perfringens, LAMVAB Agar (Hartemink et 

al., 1997) for lactobacilli, Azide Maltose Agar (Biolife, Milano Italy) for enterococci, and 

RB Agar (Hartemink et al., 1996) for bifidobacteria. All media were kept ≥ 24 h in the 

anaerobic chamber before use. MacConkey agar plates were incubated aerobically at 37°C 

for 24 h; Azide agar plates in aerobiosis for 48 h; all other media were incubated 

anaerobically at 37°C for 48-72 h. 

Within 10 days from collection, faecal samples were homogenized and plated onto the 

same selective media (with the only exception of RB Agar), following the same procedures 

previously described.  

Representative colonies grown onto LAMVAB plates were identified at genus level 

by standard bacteriological procedures (Gram stain reaction, colonial and cellular 

morphology). After genus identification, rDNA sequence of colonies apparently belonging 

to L. animalis species was determined for strain level identification 
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9.6 Statistical analysis 

 
Data from the in vitro trial were analyzed using the Student-Newman-Keuls test. 

Differences were considered statistically significant at P < 0.05. 

In the in vivo trial, data from measurements at Day 0, 11 and 15 were analyzed by 

one-way ANOVA using the GLM procedure of SAS (SAS Inst., Inc., Cary, N.C.) with time 

as the main factor; the differences among means of groups were analyzed using the Student-

Newman-Keuls test. Differences were considered statistically significant at P < 0.05. 
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10. Probiotic study: Results 
 

10.1 Isolation of the probiotic strain 

 

Lactobacilli and Bifidobacteria counts in faecal cultures are reported in Table 10.1. 

 

Table 10.1: Counts of viable lactobacilli and bifidobacteria (log CFU/ml) in dog faecal 

samples, bold data correspond to subjects selected for the in vivo trial. 

 
Lactobacilli Bifidobacteria 

1 3,30 <3 

2 <3 <3 

3 6,85 6,34 

4 7,40 7,95 

5 <3 3,85 

6 <3 7,20 

7 <3 9,30 

8 3,90 3,00 

9 <3 <3 

10 5,08 5,08 

11 5,08 5,08 

12 <3 <3 

13 5,85 6,96 

14 6,85 6,98 

15 6,90 6,90 

16 4,30 <3 

17 3,72 <3 

 

Among the 17 dogs that were sampled, LAB faecal counts were higher than 105 

CFU/g in three subjects and than 106 CFU/g in four. On the contrary, of the remaining nine 

dogs, four had LAB faecal counts between 103 and 105 CFU/g and six were under the 

detection limit of 103 CFU/g. 
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10.2 In vitro trial 

 

Bacterial counts in faecal cultures are reported in Table 10.2 and Figures 

10.1,10.2,10.3,10.4 and 10.5. Ammonia and SCFA faecal concentrations and pH values are 

reported in Table 10.3 and Figures 10.6 and 10.7. 

 

Table 10.2: Counts (Log CFU/mL) of viable coliforms, enterococci, Clostridium 

perfringens, bifidobacteria, and lactobacilli in dog faecal cultures added (Lac +) or not (Lac 

-) with Lactobacillus animalis LA4. Values are the mean of four replicates ± SD. 

 0 h 4 h 8 h 24 h 
 Lac - Lac + Lac - Lac + Lac - Lac + Lac - Lac + 

Coliforms 6.67  6.67  6.62 ± 0.03 6.65 ± 0.03 6.69 ± 0.07 6.68 ± 0.02 7.27 ± 0.26 7.31 ±0.34 

Enterococci 6.40  6.40  7.71 ± 0.08 7.13 ± 0.17*  7.69 ± 0.07 6.82 ± 0.06*  7.71 ± 0.18 6.62 ± 0.20*  

Bifidobacteria 5.30 5..30 5.35 ± 0.09 5.41 ± 0.08 5.47 ± 0.08 5.76 ± 0.54 6.41 ± 0.28 6.53 ± 0.08 

C. perfringens 6.48  6.48  6.42 ± 0.13 6.33 ± 0.23 6.63 ± 0.27 6.37 ± 0.09 6.82 ± 0.21 6.33 ± 0.11*  

Lactobacilli 5.70 5.70 6.26 ±0.19 8.51 ± 0.16*  7.18 ± 0.21 9.18 ± 0.13*  8.17 ± 0.24 9.61 ± 0.18*  

L. animalis  6.18  8.51 ± 0.16  9.18 ± 0.13  9.59 ± 0.18 

* indicates a significant difference (P < 0.05) from the corresponding Lac- value 

 

Figure 10.1: Counts of viable coliforms (Log CFU/ml) in dog faecal cultures added (Lac +) 

or not (Lac -) with a strain of Lactobacillus animalis. Values are the mean of four replicates 

± SEM. 
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Figure 10.2: Counts of viable enterococci (Log CFU/ml) in dog faecal cultures added (Lac 

+) or not (Lac -) with a strain of Lactobacillus animalis. Values are the mean of four 

replicates ± SEM. 

* indicates significant difference (P < 0.05) 

 

Table 10.3: Counts of viable bifidobacteria (Log CFU/ml) in dog faecal cultures added (Lac 

+) or not (Lac -) with a strain of Lactobacillus animalis. Values are the mean of four 

replicates ± SEM. 
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Figure 10.4: Counts of viable Clostridium perfringens (Log CFU/ml) in dog faecal cultures added 

(Lac +) or not (Lac -) with a strain of Lactobacillus animalis. Values are the mean of four 

replicates ± SEM. 

* indicates significant difference (P < 0.05); 

 

Figure 10.5: Counts of viable lactobacilli (log CFU/ml) in dog faecal cultures added (Lac +) or 

not (Lac -) with a strain of Lactobacillus animalis. Values are the mean of four replicates ± SEM. 

   * indicates significant difference (P < 0.05) 
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Table 10.3: pH values and ammonia and short-chain fatty acids (mmol/l) concentrations in dog 

faecal cultures added (Lac +) or not (Lac -) with a strain of Lactobacillus animalis. Mean ± SEM. 

 
4 h 8 h 24 h 

 
Lac - Lac + Lac - Lac + Lac - Lac + 

pH 6.14 ± 0.01 6.13 ± 0.01 6.12 ± 0.01 6.07 ± 0.02 5.73 ± 0.14 5.59 ± 0.02 

Ammonia 7.74 ± 0.67 8.41 ± 0.59 9.68 ± 0.57 4.10 ±0.40*  6.73 ± 0.84 9.91 ± 1.56 

Acetic acid 16.1 ± 0.47 17.3 ± 1.46 18.6 ± 1.02 18.3 ± 0.98 21.3 ± 0.88 21.5 ± 0.73 

Propionic acid 5.33 ± 0.18 5.58 ± 0.51 5.74 ± 0.31 5.82 ± 0.31 11.3 ± 0.99 11.4 ± 1.62 

isoButyric acid 0.27 ± 0.01 0.28 ± 0.02 0.26 ± 0.01 0.26 ± 0.01 0.27 ± 0.01 0.31 ± 0.02 

n-Butyric acid 1.24 ± 0.04 1.24 ± 0.10 1.22 ± 0.06 1.22 ± 0.07 2.55 ± 0.09 2.25 ± 0.40 

isoValeric acid 0.25 ± 0.01 0.25 ± 0.01 0.22 ±  0.01 0.22 ± 0.01 0.22 ± 0.01 0.25 ± 0.02 

Lactic acid 1.16 ± 0.09 1.44± 0.06*  1.57 ±  0.16 1.67 ± 0.11 0.98 ± 0.09 1.18 ± 0.16 

Total SCFA 24.4 ± 0.77 26.2 ± 2.06 27.7 ± 1.51 27.6 ± 1.41 36.7 ± 1.84 37.0 ± 2.50 

* indicates significant difference (P < 0.05); values are the mean of four replicates 

 

 

Figure 10.6: Ammonia concentration (mmol/L) in dog faecal cultures added (Lac +) or not (Lac -) 

with a strain of L. animalis. Values are the mean of four replicates ± SEM. 

   * indicates significant difference (P < 0.05) 
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Figure 10.7: pH in dog faecal cultures added (Lac +) or not (Lac -) with a strain of L. animalis. 

Values are the mean of four replicates ± SEM. 

 

Enterococci were significantly reduced and lactobacilli increased (P < 0.05) by L. animalis 

addition throughout the study. After 24 h of incubation, C. perfringens counts were significantly 

reduced in the bottles containing the L. animalis strain (P < 0.05). Bifidobacteria and coliforms 

counts were not affected by treatment. 

After 8 h of incubation, ammonia was significantly reduced (4.10 vs 9.68 mmol/L; P < 

0.001) by L. animalis. At 4 h, lactic acid concentration was significantly higher in faecal cultures 

containing the L. animalis strain (1.44 vs 1.16 mmol/L; P < 0.05). 

 

10.3 In vivo trial 

 

All dogs remained in good health during the administration of the L. animalis strain. Faecal 

microbial counts before and after administration of the probiotic strain are shown in Table 10.4 

and Figure 10.8. On Day 11, lactobacilli faecal counts were significantly higher than at trial start 

(6.99 vs. 3.35 Log CFU/g of faeces; P < 0.001). The L. animalis probiotic strain was recovered in 

all faecal samples collected on Day 11 and in faeces of four dogs out of nine at Day 15. Ammonia 

and SCFA faecal concentrations were not influenced by the probiotic strain (Table 10.5). 
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Table 10.4: Counts (Log CFU/mL) of viable coliforms, enterococci, Clostridium perfringens, 

bifidobacteria, and lactobacilli in dog faecal samples of nine dogs before (T0), 1 (T1) and 5 (T2) 

days after a 10 d administration of a strain of L. animalis. 

  
Lactobacilli Coliforms Enterococci C. perfringens 

T0 2,30 5,15 4,60 3,00 

T1 6,20 4,90 < 4 3,00 1 

T2 < 2 5,00 4,81 3,60 

T0 2,48 4,90 7,71 3,00 

T1 7,08 3,79 6,74 2,41 2 

T2 3,78 4,67 5,41 3,38 

T0 3,11 5,00 5,00 3,11 

T1 7,30 5,41 8,08 3,00 5 

T2 3,96 6,51 6,00 3,00 

T0 4,08 6,00 8,24 3,18 

T1 7,73 4,26 5,30 2,00 6 

T2 4,04 6,00 7,00 3,00 

T0 < 2 5,26 5,78 3,60 

T1 5,67 4,61 < 4 3,00 7 

T2 2,30 4,41 4,81 2,36 

T0 3,36 6,70 7,00 5,70 

T1 8,20 6,62 5,90 3,30 8 

T2 4,43 6,04 5,60 2,48 

T0 4,48 5,18 6,30 7,30 

T1 6,95 4,80 6,00 7,26 12 

T2 4,00 3,70 5,12 6,00 

T0 3,54 4,20 5,30 6,30 

T1 7,92 6,85 5,45 6,00 16 

T2 7,00 7,18 5,90 6,38 

T0 4,70 5,30 7,00 4,18 

T1 6,16 4,66 4,00 4,00 17 

T2 5,08 4,68 5,76 4,00 
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Figure 10.8: Counts of viable bacteria in the faeces of nine dogs before (day 0), 1 (day 11) and 5 

days (day 15) after a 10 days administration of L. animalis LA4 (log CFU/g); values are means ± 

S.E.M..  

  * indicates significant difference (P < 0.001) 

 

Table 10.5: Ammonia and short-chain fatty acids concentrations in the faeces of nine dogs before 

(T0), 1 (T1) and 5 (T2) days after a 10 d administration of a strain of L. animalis (mmol/L) 

 
Ammonia Acetic acid Propionic acid iso-Butyric acid n-Butyric acid 

Day 0 43.8 76.3 48.8 2.02 16.2 

Day 11 43.7 71.1 40.3 2.21 17.5 

Day 15 44.7 67.0 37.3 2.15 14.8 

Pooled SEM 7.75 5.32 4.63 0.40 2.04 

Anova P 0.54 0.27 0.95 0.73 0.99 
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11. Probiotic study: Discussion 
 

11.1 In vitro trial 

 

The bacterial faecal counts of the 17 dogs screened for the selection of the animals to be 

used in the probiotic trial confirmed that a very high variability exists in the intestinal bacterial 

concentrations within the canine population. In the present study, dogs were housed in different 

environments and fed different commercial dry diets but it is known from the literature 

(Suchodolski et al., 2005) that the intestinal microflora of dogs shows big differences even among 

dogs similarly housed and fed identical diets. Moreover, while there is some evidence that the diet 

may influence the intestinal microflora composition in dogs (Zentek, 2000), Simpson et al. (2002) 

concluded that individual dogs have their own characteristic faecal bacterial microflora and that 

this is unique and stable, and not influenced by the diet.  

The strain selected for the feeding trial was identificated as L. animalis, a common 

inhabitant of canine gut (Kim & Adachi, 2007; Fujisawa & Mitsuoka, 1996).  

L. animalis was not previously studied for its probiotic properties in dogs. However, 

Ehrmann et al. (2002) tested 112 strains of lactic acid bacteria for their use as a probiotic 

supplement in poultry. Their in vitro and in vivo trials demonstrated the ability of L. animalis to 

grow in presence of bile salts, tolerate acidic pH, and persist in the crop and caecum of ducks for a 

period of 18 days. The ability to survive under low pH conditions and high bile salts 

concentrations are desirable features for a successful passage through the gastrointestinal tract, 

which is a recognized prerequisite for potential probiotics (Dunne et al., 2001). 

In another study, Chen & Yanagida (2006) found a L. animalis strain (C060203) capable of 

producing, in presence of surfactants, a bacteriocin-like inhibitory substance with a wide 

inhibitory spectrum against Gram-positive bacteria. In a study conducted by Gusils et al. (1999) 

with chickens intestinal fragments, L animalis was able to inhibit the adhesion of S. pullorum, S. 

enteritidis, and S. gallinarum to host-specific epithelial fragment. The production of substances 

capable of inhibit growth or adhesion of phatogenic microorganism is a desired characteristic of 

probiotic strains. 

These data, apart from the absence of studies in dogs, suggested a potential use as a 

probiotic for the isolated L. animalis strain. 

In the present study, addition of L. animalis determined a significant decrease of enterococci 

throughout the study and C. perfringens after 24 hours of incubation, while lactobacilli were 

significantly increased throughout the study. C. perfringens is a potential pathogen, naturally 
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harbored in the digestive tract of dogs. Some strains of C. perfringens are able to produce toxins 

which can cause diarrhoea. In the dog, C. perfringens has been associated with 28-34% of 

diarrheic cases, ranging in severity from mild to potentially fatal (Kather et al., 2005). Enterococci 

are commensal bacteria of the gastro-intestinal tract of dogs. However, they are frequently 

isolated in intestinal content of dogs with small intestinal bacterial overgrowth (SIBO) (Rutgers et 

al., 1995), and in case of nosocomial infections. Therefore, reducing the number of clostridia and 

enterococci in the intestine could decrease the risk of intestinal disease in dogs.  

The competitive exclusion of pathogens in humans and animals is a well-known beneficial 

effect of probiotics lactic acid bacteria (Rolfe, 2000; Reid and Burton, 2002). However, effects of 

various lactic acid bacteria species on intestinal pathogen bacteria are different from each other. 

Perelmuter et al. (2008, in press), in a study conducted with a strain of L. murinus isolated from 

the canine intestinal tract, demonstrated its ability to inhibit the growth of two C. perfringens and 

two E. coli strains during an agar spot test. Similarly, several strains of L. reuteri (McCoy & 

Gilliland; 2007), isolated from canine faeces, inhibited the growth of S. typhimurium. However, in 

another study conducted by Swanson et al. (2002a), a L. acidophilus strain administered to dogs 

did not affect C. perfringens and E. coli faecal concentrations. The absence, in environments like 

faecal cultures or the microbial ecosystem of the gastrointestinal tract, of significant effects on 

bacterial counts could be due to the complexity and hostility of the environment, which hardly 

could be influenced by a single bacterial strain. 

Ammonia is a toxic compound which is produced in the hindgut as a result of bacterial 

proteolytic activity and has a negative impact on intestinal mucosa and enterocytes (Blachier et 

al., 2007). In vitro, the probiotic strain reduced ammonia concentration by 58% after 8 h of 

incubation. This finding could be the consequence of the partial inhibition of proteolytic bacteria 

by the probiotic strain, as suggested by the reduction of C. perfringens observed after 24 h of 

incubation. Similarly, during a 24 h in vitro study with swine cecal chyme (Piva et al., 2005), a L. 

brevis strain reduced ammonia concentrations after 8 h of incubation but not after 24 h. Both 

studies suggest that LAB strains can reduce in vitro intestinal proteolysis and ammonia 

concentrations but that this effect disappears when energy sources such as starch and other 

fermentable carbohydrates are depleted (Russel et al., 1983). In the study by Piva et al. (2005), 

the reduction of ammonia concentrations was more effective when the tested LAB strains were 

associated to lactitol, a non-digestible disaccharide. In the present study, the dry food contained 

after enzymatic digestion only traces of starch, thus limiting the energy available to lactic acid 

bacteria. This seems to be confirmed by the fact that the addition of the probiotic did not affect pH 

and increased lactic acid only at 4 h, but not later during the study. 
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11.2 In vivo trial 

 

The faecal recovery of L. animalis LA4 used as a probiotic and the high lactobacilli faecal 

counts on day 11 showed that LA4 survived gastrointestinal passage. In fact, after 10 days of 

probiotic administration, faecal counts of lactobacilli increased by about 4 log units. On day 15, 

lactobacilli counts dropped close to their initial values. In two studies with Lactobacillus sp. 

strains in dogs (Weese and Andersen, 2002; Baillon et al., 2004), the probiotic strains were 

recovered in the faeces during administration but not a few days after. 

When the L. animalis strain was fed to adult dogs, faecal counts of C. perfringens, coliforms 

and enterococci were not significantly influenced by the probiotic. The relative low number of 

animals used in this study and the high individual variability may explain the lack of a significant 

effect of the probiotic on faecal counts of undesired microbes. However, enterococci and C. 

perfringens showed a trend towards a numerical reduction after administration of the probiotic, 

and the reduction of faecal enterococci came close to a significant difference (P of the model = 

0.08). In another study, when a Lactobacillus acidophilus strain was fed to dogs (Baillon et al., 

2004), clostridia faecal counts were significantly reduced during probiotic administration. 

Because enterotoxigenic C. perfringens can be responsible of diarrhoea in dogs (Weese et al., 

2001), lactic acid bacteria probiotics might help reducing the incidence in dogs of C. perfringens 

enteric disease and environmental shedding. The latter might be important for dog-owners, 

because C. perfringens enterotoxin has been associated with diarrhoea and food poisoning in 

humans (Li et al., 2007). 

Changes in the intestinal microflora were not reflected by differences in faecal 

concentrations of ammonia and SCFA. From the literature, it is known that the concentration of 

bacterial metabolites can vary dramatically while digesta move from the colon to the rectum, 

especially for those metabolites, such as ammonia and volatile fatty acids that are able to cross the 

intestinal mucosa and be absorbed. As such, faeces might not reflect the changes in the 

concentration of metabolites that the probiotic might have induced in the hindgut (Stevens & 

Hume, 1998). 
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12. Prebiotic study: Materials and methods 
 
12.1 In vitro fermentation 

 

Fresh faeces from eight healthy adult dogs (household dogs, different breeds, fed different 

commercial dry diets and living in different environments; between 1 and 5 years of age), which 

had not received antibiotic treatment for at least 3 months prior to experimentation, were collected 

immediately after excretion in sterile vessels, homogenized using stomacher for 5 minutes, and 

then suspended 10% (w/v) in half-strength pre-reduced Wilkins Chalgren Anaerobe Broth 

(WCAB 0.5x).  

Faecal suspension was used to inoculate (3,3% v/v) five 30 mL anaerobic serum bottles 

(containing 21 mL of medium prepared according to Sunvold et al., 1995), and five 10 mL glass 

syringes (containing 4,85 mL of medium) per treatment.  

The composition of the medium used to culture the microflora is presented in Table 12.1. 

All medium components, except the vitamin mixes, were added before autoclaving. The vitamin 

mixes were aseptically added after they were filter-sterilized. 

 

Table 12.1: Composition of medium used (Sunvold et al., 1995, modified). 

Component Concentration in medium 

 ml/L 
Solution A (1) 330.0 
Solution B (2) 330.0 
Trace mineral solution (3) 10.0 
Water-soluble vitamin mix (4) 20.0 
Folate:biotin solution (5) 5.0 
Riboflavin solution (6) 5.0 
Hemin solution (7) 2.5 
Distilled water 302.5 
 g/L 
Yeast extract 0.5 
Trypticase 0.5 
Na2CO3 4.0 
Cisteyn HCl H2O 0.5 

(1) Composition g/L: NaCl, 5.4; KH2PO4 2.7; CaCl2 H2O 0.16; MgCl2 6H2O, 0.12; MnCl2 4H2O, 0.06; CoCl2 6H2O, 0.06; 
(NH4)2SO4, 5.4. 
(2) Composition g/L: K2HPO4, 2,7. 
(3) Composition mg/L: EDTA (disodium salt), 500; FeSO4 7H2O, 200; ZnSO4 7 H2O, 10; MnCl2 4 H2O, 3; H3PO4, 30; CoCl2 6 
H2O, 20; CuCl2 2H2O, 1; NiCl2 6H2O, 2; Na2MoO4 2H2O, 3. 
(4) Composition mg/L: thiamin HCl, 100; d-pantothenic acid, 100; niacin, 100; Pyridoxine, 100; p-aminobenzoic acid, 5; vitamin 
B12, 0,25. 
(5) Composition mg/L: folic acid, 10; d-biotin, 2; NH4HCO3, 100. 
(6) Composizione: riboflavin 10 mg/L in 5 mmol/L of HEPES. 
(7) Hemin, 500 mg/L in 10 mmol/L NaOH. 
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Bottles and syringes also contained an in vitro digested commercial dry food for dogs at the 

final concentration of 10 g/L. The in vitro digested food simulates the undigested fraction of the 

diet that reaches the hindgut and is obtained by in vitro digestion (2 h incubation with HCl + 

gastric lipase + pepsin followed by a 4 h incubation with pancreatin + bile salts) of a commercial 

dry food for adult dogs (Vervaeke et al., 1989; modified method) (Table 12.2).  

 

Table 12.2: Analyzed chemical composition of the commercial dry dog food used in the study 

before and after enzymatic digestion (%DM)a. 

 Before digestion After digestion 

Crude protein 20.5 10.3 

Ether extract 11.4 2.4 

Starch 42.2 traces 
a Food in vitro total digestibility was 78.1% 

 

In total, 6 substrates were studied: fructo-oligosaccharides (FOS), inulin, pectins, gluconic 

acid, lactitol, and a fiber rich ingredient (chicory). Substrates were added at the final concentration 

of 1g/L (inulin, FOS, pectin, lactitol, gluconic acid) or 4g/L (chicory). These concentrations 

should reflect the amount of fiber that reaches the hindgut when non-digestible oligosaccharides 

(NDO) and fiber-rich ingredients are included in the feed at a concentration of 1% and 4%, 

respectively. In fact, if we estimate that the average digestibility of a commercial dry food for 

dogs is 90% and assuming that all soluble fiber will reach the large intestine, the ratio between the 

undigested food fraction (in vitro digested diet) and the soluble fiber source in the hindgut will 

approximately be 10:1 for NDO and 10:4 for fiber-rich ingredients. 

Five bottles and five syringes were prepared without any experimental substrate as a 

negative control, while lactitol was used as positive control in all the experiments. 

Faecal cultures (bottles and syringes) were incubated for 24 h at 39°C under anaerobic 

conditions and samples of fermentation fluid were collected from each bottle at 0, 6, and 24 hours 

for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms).  

Gas production was measured as described by Menke et al. (1979) measuring the amount of 

gas produced in the glass syringes throughout the 24 h of the study.  
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12.2 Chemical and microbiological analyses 

 
Ammonia in samples of fermentation fluid was measured using a commercial kit 

(Urea/BUN – Color, BioSystems S.A., Barcelona, Spain).  

Short-chain fatty acids (SCFA) in samples of fermentation fluid were analyzed by gas 

chromatography (Varian 3400, Varian Analytical Instruments, Sunyvale, CA 94089, USA) with 

Carbopack B-DA/4% CW 2M and 80/120 packed column (Supelco, Sigma Aldrich s.r.l., 20151 

Milano, Italy). The samples of fermentation fluid were centrifuged (3,000 × g, 15 min.) and 1 mL 

of the supernatant was deproteinized with 50 µL perchloric acid (Merck, Darmstadt, Germany). 

Finally, samples of fermentation fluid were centrifuged (14,000 x g, 10 min.) and added with 

pivalic acid as an internal standard (Fussel and McCalley, 1987) prior to injection. 

The second sample of fermentation fluid was homogenized and serially diluted with 

prereduced half-strength WCAB 0.5x. From each of the dilutions, 0.1 mL was plated in triplicate 

onto selective media: MacConkey Agar (Merck, Darmstadt, Germany) for coliforms, LAMVAB 

Agar (Hartemink et al. 1997) for lactobacilli, and Azide Maltose Agar (Biolife, Milano Italy) for 

enterococci. MacConkey agar plates were incubated aerobically at 37°C for 24 h; Azide agar 

plates in aerobiosis for 48 h; LAMVAB Agar plates were incubated anaerobically at 37°C for 48 

h. 

 

12.3 Statistical analysis 

 

A modified Gompertz bacterial growth model was used to fit gas production data and obtain 

the following gas production parameters: total gas production (mL, the amount of gas produced 

during the 24 h study), maximum rate of gas production (mL/h, the highest velocity reached by 

gas production), log time (h, the duration of gas production phase), and lag time (h, the time 

between fermentation start and when bacteria start producing gas) 

Gas production parameters, ammonia, pH, and SCFA data, as well as counts of coliforms, 

lactobacilli, and enterococci were analyzed by one-way ANOVA, with the Dunnett test as the post 

test. Each syringe and bottle formed the experimental unit. Differences were considered 

statistically significant at P<0,05. 
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13. Prebiotic Study: Results 
 
Gas production parameters, pH, SCFA concentrations, and ammonia data are reported from 

Figure 13.1 to Figure 13.4. Major SCFAs proportion are reported in Table 13.1. 

Counts of viable coliforms, lactobacilli and enterococci are reported from Figure 13.5 to 

Figure 13.7. 

 

Figure 13.1: Gas production parameters. Values are the means of five replicates ± SEM.  

Legend: 
• a: total gas production 
• b: maximum rate of gas production 
• c: lag time 
• d: log time 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 
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Figure 13.2: : pH in faecal slurry. Values are means of five replicates ± SEM. 
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Legend: 

• a: 6 h 
• b: 24 h 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 

 

FOS, inulin, gluconic acid and lactitol significantly increased total gas production, 

compared with the control diet (+ 45%, + 50%, +68%, and +26%, respectively). While FOS, 

inulin, and gluconic acid increased velocity of gas production (+ 33%,+37%, and +107%, 

respectively), pectin resulted in lower velocity than control (- 30%). Pectin and lactitol determined 

a significant increase in the duration of the Log phase (+ 65%, and + 34%, respectively). 

pH was significantly reduced by FOS throughout the study, while pectin, chicory, and 

lactitol significantly reduced pH after 24 hours of fermentation. 

After 24 hours of fermentation total SCFA were significantly increased by pectin, inulin, 

and lactitol (+ 15%, +17%, and +19%, respectively). Pectin also increased acetic acid (+31%), 

lactic + propionic acid (+63%), and n-butyric acid (+36%) concentrations. Lactitol determined a 

significant increase in acetic acid (+10%), while propionic + lactic acid showed only a tendency to 

increase (P = 0.0537). The addition of inulin resulted in a significant increase in n-butyric acid 

(+34%) and in a tendency to increase of acetic acid (P = 0.0876). FOS and chicory did not affect 

SCFA concentrations. Gluconic acid determined a significant reduction of propionic + lactic acid 

concentration (-40%). 
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Figure 13.3: SCFA in faecal slurry (mmol/L). Values are means of five replicates ± SEM. 

Legend:  
• a: concentration of total SCFA in faecal slurry 
• b: acetic acid concentration; 
• c: lactic + propionic acid concentration; 
• d: iso-butyric acid concentration; 
• e: nor-butyric acid concentration; 
• f: iso-valerianic acid concentration 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 
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Table 13.1: Molar proportion of major SCFA (acetate : propionate+lactate : butyrate). Values are 

means of five replicates ± DS. 

 Acetic Propionic+lactic Butyric 

Control 55.7 ± 2.49 30.5 ± 2.69 13.9 ± 0.91 

FOS 49.4 ± 2.18 * 37.1 ± 2.14 * 13.5 ± 0.90 

Pectin 57.2 ± 1.79 28.0 ± 1.99 14.8 ± 2.28 

Inulin 52.6 ± 0.35 32.0 ±0.28 15.4 ± 0.16 

Chicory 55.8 ± 2.69 30.8 ± 2.94 13.3 ± 0.73 

Gluconic acid 55.8 ± 0.97 26.8 ± 0.81 17.5 ± 0.80 * 

Lactitol 52.1 ± 5.68 * 36.2 ± 6.53 * 11.6 ± 1.40 * 

* indicates significant difference (P < 0.05) 
 

The addition of FOS and lactitol determined a significant decrease in the molar proportion 

of acetic acid, while increased propionate + lactate one; lactitol reduced also butyrate molar 

proportion. Gluconic acid significantly increased butyrate molar proportion. 

 

Figure 13.4: Ammonia concentration in faecal slurry (mmol/L). Values are means of five 

replicates ± SEM. 
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Legend: 

• a: 6 h 
• b: 24 h 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 

 

Ammonia concentration in the faecal slurry wasn’t affected by the addition of any prebiotic 

substance after 6 hours of fermentation, while it was significantly increased by gluconic acid after 

24 hours. 
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Figure 13.5: Counts of viable coliforms (Log CFU/mL).  
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Legend: 

• a: 6 h 
• b: 24 h 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 

 

Figure 13.6: Counts of viable enterococci (Log CFU/mL).  
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Legend: 

• a: 6 h 
• b: 24 h 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 
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Figure 13.7: Counts of viable lactobacilli (Log CFU/mL). 
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Legend: 

• a: 6 h 
• b: 24 h 

* indicates significant difference (P < 0.05) 
** indicates significant difference (P < 0.01) 
 

Addition of FOS, after 6 and 24 h of fermentation, and pectin, after 6 h, significantly 

increased enterococci counts. Lactitol, after 24 h of fermentation, determined a significant 

reduction in coliforms; moreover, at the same time point, lactitol significantly increased 

lactobacilli. After 24 h of fermentation, the addition of inulin, while having no effect on 

enterococci end coliforms counts, significantly decreased lactobacilli counts. Lactobacilli counts 

were higher than control with supplemented chicory and lactitol (P < 0.05) after 24 hours of 

fermentation, and tended to be grater after 6 hours of fermentation with lactitol (P = 0.0701). 
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14. Prebiotic study: Discussion 
 

In in vitro systems, gas production is generally recognized as a product, and an index, of the 

activities of the total microflora present in the fermentors. The amount and composition of gas 

produced could be affected by many variables such as the chemical structure of the carbohydrate 

(chain length, monosaccharide compositions) as well as the composition of the fermentative 

microflora (Spears et al., 2007). In literature few data exist about the gas production properties of 

prebiotic substances, and rarely data are compared to a negative control. In a study by Ghoddusi et 

al. (2007), who evaluated the effects of different carbohydrate sources on gas production by 

human fecal inocula, inulin determined the highest gas production compared to other 

carbohydrates, particularly if compared to FOS, which produced the lower amount of gas. Rycroft 

et al. (2001), comparing the prebiotic properties of several oligosaccharides using human fecal 

microflora, found the highest levels of gas production with inulin, lactulose, FOS and XOS. In a 

previous study by Piva et al. (1996) with swine cecal microflora, lactitol, compared to a negative 

control, determined a significant increase in the amount of gas produced when added to a low-

fiber diet. In our study, inulin, FOS, gluconic acid, and lactitol increased the amount of gas 

produced, while pectins and chicory did not; conversely, in an in vitro trial with a canine fecal 

inoculum conducted by Swanson et al. (2001), pectins, when compared with fruits and vegetables 

fibers, determined the highest amount of gas production.  

The discrepancy of some results obtained in the present trial with those reported from 

previous studies could be explained taking into account two main factors. First of all, we have to 

consider the “bifidogenic nature” of prebiotics which, in fact, selectively stimulate bifidobacteria 

(Gibson et al., 1994). Bifidobacteria are not frequently isolated from dog faeces. Kim & Adaki 

(2007) screened 36 samples of dog faeces for lactic acid bacteria and bifidobacteria counts and 

found bifidobacteria only in 6.8% of the samples. In the study by Greetham et al. (2002) 

bifidobacteria were not detectable at all in the faeces of four dogs. Therefore, the inconstant 

presence of bifidobacteria in the experimental faecal inoculum could explain the different results 

obtained in different studies.  

Moreover, the different chemical structure of each prebiotic could affect the selectivity and 

intensity of fermentation. Roberfroid (2001) compared the fermentation of inulin and FOS by 

different bacterial specie; in his study, FOS were more intensely fermented by all the bacterial 

species tested, resulting in a lower selectivity of fermentation but in a higher intensity. A similar 

comparison, between FOS and inulin, was conducted by van de Wiele et al. (2007), who obtained 

the same results of Roberfroid (2001). Fructans of longer chain length, like inulin, are less (or 
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more slowly) fermentable than compounds of shorter chain length. However, if administered for 

longer periods of time they show a more pronounced beneficial effect than oligofructoses of a 

shorter chain length (van de Wiele et al., 2007). Olano-Martin et al. (2002) investigated the 

prebiotic properties of pectins and pectic-oligosaccharides (obtained from controlled hydrolysis of 

pectins) with different degrees of esterification. In this case, too, molecules with shorter chain 

length (pectic-oligosaccharides) were more intensely fermentable. Moreover, the authors detected 

a clear influence of the degree of esterification on fermentation, with highly methylated carbon 

sources giving lower growth rates than the lower methylated ones.  

Among the substrates tested in the present study, pectin, inulin, and lactitol significantly 

increased total SCFA concentrations after 24 hours of fermentation (Figure XX). It is well 

konown that substrates (dietary fibre) which escape digestion and reach the terminal tract of the 

intestine are broken down by the resident microflora to the SCFA acetate, propionate, butyrate 

and the gases hydrogen and carbon dioxide (Wang & Gibson, 1993). Lactate is an intermediate 

which is also converted to SCFA by the intestinal microflora (Hume et al., 1995). When SCFA 

are produced by bacterial fermentation in the intestine they are rapidly absorbed, with only 5% to 

10% being excreted in the faeces (Ruppin et al., 1980). The role of SCFA comprehends various 

local and systemic effects. Increases in intestinal SCFA results in decreased pH, which influences 

the composition of colonic microflora, increases absorption of minerals (butyrate and propionate 

stimulate fluid absorption of calcium, magnesium, and other cations in the colon; Scholtz-Arhens 

& Schrezenmeir, 2002) and reduces ammonia absorption by the protonic dissociation of ammonia 

and others amines (Cummings, 1981). Of the three major SCFA produced (acetate, propionate, 

and butyrate), butyrate is the major energy source for the colonocytes and exerts an important 

trophic effect increasing colonic crypt depth (Velázquez et al., 1997).  

Published data about the influence on SCFA production of the addition of prebiotic 

substances in dog are contrasting and, above all, few works reported a direct comparison against a 

control (no supplemental prebiotic) on SCFA production. Flickinger and co-workers (2003) and 

Propst and co-workers (2003) studied the effects of the addition of oligofructose in the diet of 

dogs. Propst et al. (2003) detected a significant increase of all the SCFA produced, compared to 

the control group, while Flickinger et al. (2003) reported a significant increase only in propionate 

concentration. The different results could be explained by differences in the intestinal microbial 

population of the dogs that have been used. Other studies (Sunvold et al., 1995; Vickers et al., 

2001; Swanson et al., 2001) reported in literature compare the effects of several prebiotic 

substances without any control group. These results are hardly interpretable because none of the 

studies provide a “no addition effect” to which compare “prebiotic” results.  
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Molar proportion of SCFA can provide additional information about the quality of the 

substrate. In our study, molar proportions of butyric acid were low, compared with average data 

from the literature (60:20:20) (Cummings et al., 1979), for all substrates tested. The carbohydrates 

present in the diet could influence not only the amount but also the molar proportion of the acid 

produced during fermentation. Carbohydrates that are reported in literature to stimulate the 

formation of butyric acid are resistant starch fractions and β-glucans, while pectin and xylan are 

associated with low butyrate-high acetate production (Knudsen et al., 2003). In our study, FOS 

and lactitol determined a significant increase of the molar proportion of propionic + lactic acid, 

accompanied by a proportional reduction of acetic acid. FOS behaviour was in agreement with 

data from the literature. In fact, Vickers et al. (2003) and Liong & Shah (2005) reported a similar 

variation in SCFA molar proportion after the addition of FOS. Conversely, lactitol data are in 

disagreement with the findings of Nilsson & Nyman (2005) who reported different molar 

proportions. Macfarlane & Gibson (1995) demonstrated that environmental and microbial 

variables, particularly carbonium availability and growth rate, could affect SCFA production by 

pure cultures of colonic microorganism. Their results showed that, in different experimental 

conditions, the same bacterial specie can produce different SCFA molar ratios from the same 

substrate..  

After 24 hours of fermentation, BCFA were lowered by the addition of FOS, inulin, 

gluconic acid, and lactitol. Branched SCFAs (iso-butyrate and iso-valerate) are, together with 

ammonia, phenols and amines, the end-products of the fermentation of dietary proteins and amino 

acids by proteolytic bacteria and are responsible for the odour of faeces. At 24 h, FOS, inulin, 

gluconic acid and lactitol significantly reduced iso-butyrate concentrations (P < 0.001) and FOS 

and gluconic acid also reduced iso-valerate concentration (P < 0.001).  

Gluconic acid significantly increased ammonia concentration after 24 h of fermentation, 

while the other treatments did not affect ammonia concentration. Literature data about the 

ammonia concentration during prebiotic trials are contrasting. Propst et al. (2003) detected a 

significant increase in ammonia concentration in the faeces of dogs fed oligofructose and inulin 

enriched diets, while in a study by Flickinger et al. (2003) ammonia concentration tended to 

decrease in the faeces of dogs fed the oligofructose supplemented diet. Ammonia is a product of 

protein catabolism by bacteria. In close systems, like fermentors, energy sources such as starch 

and other fermentable carbohydrate are rapidly depleted in the initial phase of the fermentation, 

and protein becomes an energy source for bacterial metabolism.  

When lactitol was used, lactobacilli tended to increase after 6 hours and significantly 

increased after 24 hours, while, at the same time point, coliforms were significantly decreased. 
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These results are in agreement with some data from literature. Chen et al. (2007) investigated the 

effects of lactitol on intestinal microflora of healthy humans and reported a significant increase in 

lactobacilli and bifidobacteria after three weeks of administration. A similar study was conducted 

by Ballongue et al. (1997), who detected an increase of probiotic bacteria and a decrease of 

putrefactive bacteria after the administration of lactitol. Finney et al. (2007), on the contrary, did 

not find any significant effects of lactitol on lactobacilli and enterobacteriaceae, but only a 

significant increase in bifidobacteria. On the other hand, other studies reported opposite results. 

Probert et al. (2004) investigated the effects of lactitol on human microflora using an in vitro 

model. In their study, lactitol determined a significant decrease of bifidobacteria and bacteroides 

and an increase in clostridia.  

Chicory, apart from the absence of any sign of increased bacterial activity, determined a 

significant increase of lactobacilli after 24 hours of fermentation, while inulin determined a 

significant decrease in lactobacilli at the same time point. The latter is in disagreement with data 

from literature (van de Wiele et al., 2007) which report an increase in lactobacilli counts in 

presence of inulin. FOS significantly increased enterococci after 6 and 24 hours of fermentation. 

These findings could be explained by the lack of selectivity of FOS, as previously reported by 

Robertfroid (2001) and van de Wiele et al. (2007). Also pectin determined a significant increase 

in enterococci counts after 6 hours of fermentation. Langhout et al. (1999) tested the effects of 

two differently methylated citrus pectins on the intestinal microflora of broilers. The effects of 

pectins varied on the basis of the degree of methylation. The high-methylated one determined a 

significant increase in enterococci, bacterioides, clostridia and E. coli; the low-methylated one 

increased only the clostridia number. Gluconic acid determined a significant increase in coliforms 

counts after 24 hours of fermentation. Few data are present in literature about the effects of 

gluconic acid on intestinal microflora. In a previous study, Biagi et al. (2006) evaluated the effects 

of gluconic acid on swine intestinal microflora using an in vitro system. The authors detected no 

significant effect of gluconic acid on microflora at any concentration tested. 

As previously stated, the initial bacterial population plays a major role in determining the 

prebiotic results. In fact, bacterial population composition at the beginning of the study could 

affect the microbial balance reached at the end, particularly in short-time studies, as in vitro ones 

are, which not supply an adequate adaptation period to the microflora.  

On the basis of data collected in the present study lactitol could be considered as a potential 

prebiotic for dogs. Other substrates need to be tested in other trial to confirm the positive results 

obtained in the present study and to further investigate the doubtful results. 

 



 68 

15. Conclusions 
 

Digestibility study 

 

Results from the present study show that the in vitro method developed to predict dog foods 

digestibility can be considered as an affordable alternative to in vivo digestibility trials, thus 

reducing the utilization of dogs as experimental animals. Nevertheless, further studies will be 

needed to confirm the positive results observed in this trial. 

 

Probiotic study 

 

The present study indicates that the isolated Lactobacillus animalis strain (LA4) was able to 

survive gastrointestinal passage and transitorily colonized the dog intestine. In vitro, the L. 

animalis strain positively influenced composition and metabolism of the intestinal microflora of 

dogs. These results suggest that L animalis LA4 can be considered as a potential probiotic for 

dogs. 

 

Prebiotic study 

 

Among the tested substrates, lactitol reduced intestinal coliforms and increased lactobacilli. 

Moreover, lactitol promoted the production of SCFA and decreased the production of BCFA. 

Further studies, in particular in vivo studies with dogs, will be needed to confirm the prebiotic 

properties of lactitol and to evaluate the optimal level of its inclusion in a dog diet. 

Furthermore, more investigation is needed to evaluate the properties of the other substrates 

and achieve a better understanding of their effects on the dog intestinal ecosystem. 



 69 

References 
 

Adagony V., Respondek F., Biourge V., Rudeaux F., Delaval J., Bind J.L., Salmon H. 

(2007) Effects of dietary scFOS on immunoglobulins in colostrums and milk of bitches. J Anim 

Phys Anim Nutr 2007; 91(5-6): 169-174. 

Ahlstrøm Ø., Skrede A., Vhile S.., Hove K. (2006) Effect og exercise on nutrient 

digestibility in trained hunting dogs fed a fixed amount of food. J Nutr 2006; 136: 2066S-2068S. 

Altman P.L., Dittmer D.S. (1968) Digestion and absorption. In: Metabolism. Bethesda, 

Md.: Federation of American Societies for Experimental Biology, pp. 237-306, 1968. 

Anagrafe Canina Nazionale, march 2008 Ministero della salute:: 

http://www.ministerosalute.it/caniGatti/paginaInternaMenuCani.jsp?id=210&menu=anagrafe 

Armand, M.; Pasquier, B.; Andre, M.; Borel, P.; Senft, M.; Peyrot, J.; Salducci, J.; 

Portugal, H.; Jaussan, V.; Larion, D. (1999) Digestion and absorption of two fat emulsions with 

different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 1999, 70: 1096-1106. 

Baillon M.L., Marshall-Jones Z.V., Butterwick R.F. (2004) Effects of probiotic 

Lactobacillus acidophilus strain DSM13241 in healthy adult dogs. Am J Vet Res; 2004; 65(3): 

338-343. 

Ballongue J., Schumann C., Quignon P. (1997) Effects of lactulose and lactitol on colonic 

microflora and enzymatic activity. Scand J Gastroenterol Suppl 1997; 222: 41-44. 

Beasley S.S., Manninen T.J.K., Saris P.E.J. (2006) Lactic acid bacteria isolated from 

canine faeces. J Appl Microbiol 2006; 101: 131-138. 

Bednar G.E., Patil A.R., Murray S.M., Grieshop C.M., Merchen N.R., Fahey G.C. Jr 

(2001) Starch and fiber fractions in selected food and feed ingredients affect their small intestinal 

digestibility and fermentability and their large bowel fermentability in vitro and in a canine 

model. J Nutr 2001; 131(2): 276-286. 

Benno Y., Mitsuoka T. (1992) Evaluation of the anaerobic method for the analysis of fecal 

microflora in Beagle dogs. J Vet Med Sci 1992; 54: 1039-1041. 

Benyacoub J., Czarnecki-Maulden G.L., Cavadini C., Sauthier T., Anderson R.E., 

Schiffrin E.J., von der Weid T. (2003) Supplementation of food with Enterococcus faecium 

(SF68) stimulates immune functions in young dogs. J Nutr 2003; 133(4): 1158-1162. 

Beynen A.C., Kappert H.J., Yu S. (2001) Dietary lactulose decreases apparent nitrogen 

absorption and increases apparent calcium and magnesium absorption in healthy dogs. J Anim 

Phys Anim Nutr 2001; 85(3-4): 67-72. 



 70 

Beynen A.C., Baas J.C., Hoekemeijer P.E., Kapper H.J., Bakker M.H., Koopman J.P., 

Lemmens A.G. (2002) Faecal bacterial profile, nitrogen excretion and mineral absorption in 

healthy dogs fed supplemental oligofructose. J Anim Phys Anim Nutr 2002; 86(9-10): 298-305. 

Biagi G., Piva A., Moschini M., Vezzali E., Roth F.X. (2006) Effect of gluconic acid on 

piglet growth performance, intestinal microflora, and intestinal wall morphology. J Anim Sci 

2006; 84(2): 370-378. 

Biurge V., Vallet C., Levesque A., Sergheraert R., Chevalier S., Roberton J-L (1998) 

The use of probiotic in the diet of dogs. J Nutr 1998; 128(12): 2730S-2732S. 

Blachier  F., Mariotti F., Huneau J.F., Tomé D. (2007) Effects of amino acid-derived 

luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 

2007; 33: 547-562. 

Blottière H.M., Buecher B., Galmiche J.P., Cherbut C. (2003) Molecular analysis of the 

effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 2003; 62(1): 101-

106. 

Boisen, S. (1991) A model for feed evaluation based on in vitro digestible dry matter and 

protein. In: M. F. Fuller (ed.), In Vitro Digestion for Pigs and Poultry. CAB International, 

Wallingford , pp. 135–146, 1991. 

Buddington R.K. (2003) Postnatal changes in bacterial populations in the gastrointestinal 

tract of dogs. Am J Vet Res 2003; 64(5): 646-651. 

Burkhalter T.M., Merchen N. R., Bauer L. L., Murray  S. M., Patil A. R., Brent L., 

Fahey G. C., Jr. (2001) The ratio of insoluble to soluble fiber components in soybean hulls 

affects ileal and total-tract nutrient digestibilities and fecal characteristics of dogs. J Nutr 2001; 

131(7): 1978-1985. 

Carrière F., Laugier R., Barrowman J.A., Douchet I., Priymenko N., Verger R. (1993) 

Gastric and pancreatic lipase levels during a test meal in dogs. Scand J Gastroenterol 1993; 

28(5): 443-454. 

Carrière F., Moreau H., Raphel V., Laugier R., Benicourt C., Junien J., Verger R. 

(1991) Purification and biochemical characterization of dog gastric lipase. Eu J Biochem 1991; 

202: 75-83. 

Chalmers A.F., Kirton R., Wyse C.A., Dickie A., Cumming D., Cooper J.M., Preston 

T., Yam P.S. (2005) Ultrasonographic assessment of the rate of solid-phase gastric emptying in 

dogs. Vet Rec 2005; 157: 649-652. 

Chen C., Li L., Wu Z., Chen H., Fu S. (2007) Effects of lactitol on intestinal microflora 

and plasma endotoxin in patients with chronic viral hepatitis. J Infect 2007; 54(1): 98-102. 



 71 

Chen Y-S., Yanagida F. (2006) Characteristics and effects of temperature and surfactants 

on Bacteriocin-Like Inhibitory Substance production of soil-isolated Lactobacillus animalis 

C060203. Curr Microbiol 2006; 53(5): 384-387. 

Clapper G.M., Grieshop C.M., Merchen N.R., Russett J.C., Brent J.L. Jr, Fahey G.C. 

Jr (2001) Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected 

by soybean protein inclusion in dry, extruded diet. J Anim Sci 2001; 79(6): 1523-1532. 

Cummings J.H. (1981) Short chain fatty acids in the human colon. Gut 1981; 22(9): 763-

779. 

Cummings J.H., Antoine J-M., Azpiroz F., Bourdet-Sicard R., Brandtzaeg P., Calder 

P.C., Gibson G.R., Guarner F., Isolauri E., Pannemans D., Shortt C., Tuijtelaars S., Watzl 

B. (2004) PASSCLAIM1-Gut health and immunity. Eur J Nutr 2004; 43(Suppl 2): II118-II173. 

Cummings J.H., Hill M.J., Bone E.S., Branch W.J., Jekins D.J. (1979) The effect of 

meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in 

feces and urine. Am J Clin Nutr 1979; 32(10): 2094-2101. 

Cummings J.H., Macfarlane G.T. (1991) The control and consequences of bacterial 

fermentation in the human colon: a review. J Appl Bacteriol 1991; 70: 443-459. 

Cummings J.H., Macfarlane G.T., Englyst H.N. (2001) Prebiotic digestion 

andfermentation. Am J Clin Nutr 2001;73:415S–20S. 

Cummings J.H., Stephen A.M. (2007) Charbohydrate terminology and classification. Eur 

J Clin Nutr 2007; 61(Suppl1): S5-S18. 

Davis C.P., Cleven D., Balish E., Yale C.E. (1997) Bacterial association in the 

gastrointestinal tract of beagle dogs. Appl Environ Microbiol 1977; 34(2): 194-206. 

Diez M., Hornick J.L., Baldwin P., Istasse L. (1997) Influence of a blend of fructo-

oligosaccharides and sugar beet fiber on nutrient digestibility and plasma metabolite 

concentrations in healthy beagles. Am J Vet Res 1997; 58(11): 1238-1242. 

Diez M., Hornick J.L., Baldwin P., Van Eenaeme C., Istasse L. (1998) The influence of 

sugar-beet fibre, guar gum and inulin on nutrient digestibility, water consumption and plasma 

metabolites in healthy Beagle dogs. Res Vet Sci 1998; 64(2): 91-96. 

Dressman J.B., Yamada K. (1991) Animal models for oral drug absorption. In: 

Pharmaceutical Bioequivalence. Welling P. and Tse F.L. (Eds.), Dekker, NY, 1991, pp. 235-266. 

Drochner W., Meyer H. (1991) Digestion of organic matter in the large intestine of 

ruminants, horses, pigs, and dogs. J Anim Physiol Anim Nutr 1991; 65: 18-40. 

Dufur-Etienne F., Henry N., Wolter R. (1992)   Rec Med Vet 1992; 168: 789-796. 



 72 

Dunne C., O’Mahony L., Thorton G., Morrissey D., O’Halloran S., Feeney M., Flynn 

S., Fitzgerald G., Daly C., Kiely B., O’Sullivan G.C., Shanahan F., Collins J.K. (2001) In 

vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. 

Am J Clin Nutr 2001; 73(2 Suppl): 386S-392S. 

Ehrlinger S. (1987) Physiology of bile secretion and enterohepatic circulation. In: 

Physiology of the gastrointestinal trac; 2th eds; Johnson L.R. (Ed), Raven Press, NY, 1987, p 

1557. 

Ehrmann M.A., Kurzak P., Bauer J., Vogel R.F. (2002) Characterization of lactobacilli 

towards their use as probiotic adjuncts in poultry. J Appl Microbiol 2002; 92(5): 966-975. 

Fink A.S., Meyer J.D. (1983) Intraduodenal emulsion of oleic acid augment acid-infused 

canine secretion. Am J Physiol (Gastrointest Liver Physiol) 1983; 245: G85-G91. 

Fink A.S., Miller J.C., Jehn D.W., Meyer J.D. (1982) Digests of protein augment acid-

infused canine pancreatic secretion. Am J Physiol (Gastrointest Liver Physiol) 1982; 242: G638-

G641. 

Finney M., Smullen J., Foster H.A., Brokx S., Storey D.M. (2007) Effects of low doses 

of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. 

Eur J Nutr 2007; 46(6): 307-314. 

Flickinger E.A., Schreijen E.M.W.C., Patil A.R., Hussein H.S., Grieshop C.M., 

Merchen N.R., Fahey G.C. Jr (2003) Nutrient digestibilities, microbial populations, and protein 

catabolites as affected by fructan supplementation of dog diets. J Anim Sci 2003; 81: 2008-2018. 

Flickinger E.A., Wolf B.W., Garleb K.A., Chow JM., Leyer G.J., Johns P.W., Fahey 

G.C. Jr (2000) Glucose-based oligosaccharides exhibit different in vitro fermentation patterns 

and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J Nutr 2000; 

130: 1267-1273. 

Fooks L.J., Gibson G.R. (2002) Probiotics as modulators of the gut flora. Br J Nutr 2002; 

88(Suppl 1): S39-S49. 

Fujisawa T., Mitsuoka T. (1996) Homofermentative Lactobacillus species predominantly 

isolated from canine feces. J Vet Med Sci; 1996; 58(6): 591-593. 

Fuller R. (1989) Probiotics in man and animals. J Appl Bacteriol 1989; 66: 365-378. 

Gibson G.R., Fuller R. (2000) Aspects of in vitro and in vivo research approaches directed 

toward identifying probiotics and prebiotics for uman use. J Nutr 2000; 130: 391S-395S. 

Gibson G.R., McCartney A.L., Rastall R.A. (2005) Prebiotic and resistence to 

gastrointestinal infections. Br J Nutr 2005; 93(Suppl 1): S31-S34. 



 73 

Gibson G.R., Roberfroid M.B. (1995) Dietary modulation of the colonic microbiota: 

Introducing the concept of prebiotics. J Nutr 1995, 125: 1401-1412. 

Gibson G.R., Willis C.L., VanLoo J. (1994) Non digestible oligosaccharides and 

bifidobacteria – implications for health. Int Sugar J 1994; 96: 1150-1156. 

Greetham H.L., Giffard C., Hutson R.A., Collins M.D., Gibson G.R. (2002) 

Bacteriology of the Labrador dog gut: a cultural and genotypic approach. J Appl Microbiol 2002; 

93: 640-646. 

Grieshop C.M., Flickinger E.A., Bruce K.J., Patil A.R., Czarnecki-Maulden G.L., 

Fahey G.C. Jr (2004) Gastrointestinal and immunological responses of senior dogs to chicory 

and mannan-oligosaccharides. Arch Anim Nutr 2004; 58(6): 483-493. 

Guevara M.A., Bauer L.L., Abbas C.A., Beery K.E., Holzgraefe D.P., Cecava M.J., 

Fahey G.C. Jr (2008) Chemical composition, in vitro fermentation characteristics, and in vivo 

digestibility responses by dogs to select corn fibers. J Agric Food Chem 2008; 56(5): 1619-1626. 

Gusils C., Gonzales S.N., Oliver G. (1999) Some probiotic properties of chicken 

lactobacilli. Can J Microbiol 1999, 45(12): 981-987. 

Hendriks W.H., Sritharan K. (2002) Apparent ileal and fecal digestibility of dietary 

protein is different in dogs. J Nutr 2002; 132: 1692S-1694S. 

Hendriks W.H., Sritharan K., Hodgkinson S.M. (2002) Comparison of the endogenous 

ileal and faecal amino acid excretion in the dog (Canis familiaris) and the rat (Rattus rattus) 

determined under protein-free feeding and peptide alimentation. J Anim Phys Anim Nutr 2002; 

86(9-10): 333-341. 

Hernot D.C., Dumon H.J., Biourge V.C., Martin L.J., Nguyen P.G. (2006)  Evaluation 

of association between body size and large intestinal transit time in healthy dogs. Am J Vet Res 

2006, 67: 342-347. 

Hervera M., Baucells M.D., Blanch F., Castrillo C. (2007) Prediction of digestible energy 

content of extruded dog food by in vitro analyses. J Anim Phys Anim Nutr 2007; 91(5-6): 205-

209. 

Hesta M., Roosen W., Janssens G.P., Millet S., De Wilde R. (2003) Prebiotics affect 

nutrient digestibility but not faecal ammonia in dogs fed increased dietary protein levels. Br J 

Nutr 2003; 90(6): 1007-1014. 

Hume M.E., Nisbet D.J., Scanlan C.M., Corrier D.E., DeLoach J.R. (1995) 

Fermentation of radiolabelled substrates by batch cultures of caecal microflora maintained in a 

continuous-flow culture. J Appl Bacteriol 1995; 78(6): 677-683. 



 74 

Johnson M.L.; Parsons C.M., Fahey G.C. Jr, Merchen N.R., Aldrich C.G. (1998) 

Effects of species raw material source, ash content, and processing temperature on amino acid 

digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J 

Anim Sci 1998; 76(4): 1112-1122. 

Junderko K., Ferré J.P., Buéno L. (1994) Noninvasive evaluation of kinetics of 

gallbladder emptying and filling in the dog. A real-time ultrasonographic study. Dig Dis Sci 1994; 

39(12): 2624-2633. 

Kararli T.T. (1995) Comparison of the gastrointestinal anatomy, physiology, and 

biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispo 1995; 

16(5): 351-380. 

Karr-Lilienthal L.K., Grieshop C.M., Spears J.K., Patil A.R., Czarnecki-Maulden 

G.L., Merchen N.R., Fahey G.C. Jr (2004) Estimation of the proportion of bacterial nitrogen in 

canine feces using diaminopimelic acid as an internal bacterial marker. J Anim Sci 2004; 82: 

1707-1712. 

Kather E.J., Marks S.L., Foley J.E. (2006) Determination of the prevalence of 

antimicrobial resistance genes in canine Clostridium perfringens isolates. Vet Microbiol 2006; 

113(1-2): 97-101. 

Kendall P.T., Blaza S.E., Holme D.W. (1982) Assessment of endogenous nitrogen output 

in adult dogs of contrasting size using a protein-free diet. J Nutr 1982; 112(7): 1281-1286. 

Kik R.G., de Waal A., Schut F., Welling G.W., Weenk G., Hellingwerf K.J. (1996) 

Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ 

Microbiol 1996; 62: 3668-3672. 

Kim S-Y., Adachi Y. (2007) Biological and genetic classification of canine intestinal lactic 

acid bacteria and bifidobacteria. Microbiol Immunol; 2007; 51(10): 919-928. 

Knudsen K.E.B., Serena A., Canibe N., Juntunen K.S. (2003) New insight into butyrate 

metabolism. Proc Nutr Soc 2003; 62(1): 81-86. 

Krogdahl A. (1985) Digestion and absorption of lipids in poultry J Nutr 1985; 115(5):675-

685. 

Krogdhal A., Ahlstrøm Ø., Skrede A. (2004) Nutrient digestibility of commercial dog 

foods using mink as a model. J Nutr 2004; 134(8 Suppl): 2141S-2144S. 

Langhout D.J., Schutte J.B., Van Leeuwen P., Wiebenga J., Tamminga S. (1999) Effect 

of dietary high- and low-methylated citrus pectin on the activity of the ileal microflora and 

morphology of the small intestinal wall of broiler chicks. Br Poultry Sci 1999; 40(3): 340-347. 



 75 

Lauková A., Strompfová V., Ouwehand A. (2004) Adhesion properties of enterococci to 

intestinal mucus of different hosts. Vet Res Commun 2004; 28(8):647-655. 

Li J., Sayeed S., McClane B.A. (2007) Prevalence of enterotoxigenic Clostridium 

perfringens Isolates in Pittsburgh (Pennsylvania) area soils and home kitchens. Appl Environ 

Microbiol 2007; 73(22): 7218-7224. 

Liong M.T., Shah N.P. (2005) Production of organic acids from fermentation of mannitol, 

fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J 

Appl Microbiol 2005; 99(4): 783-793. 

Macfarlane G.T., Cummings J.H. (1991) The colonic flora, fermentation and large bowel 

digestive function. In: Phillips SF, Pemberton JH, Shorter RG (eds). The Large Intestine: 

Physiology, Pathophysiology and Disease. Raven Press: New York, pp 51–92, 1991. 

Macfarlane S., Macfarlane G.T. (2003) Regulation of short-chain fatty acid production. 

Proc Nutr Soc 2003; 62: 67-72. 

Manninen T.J., Rinkinen M.L., Beasley S.S., Saris P.E. (2006) Alteration of the canine 

small-intestinal lactic acid bacterium microbiota by feeding of potential probiotics. Appl Environ 

Microbiol 2006; 72(10): 6539-6543. 

March B.E. (1979) The host and its microflora: an ecological unit. J Anim Sci 1979; 49(3): 

857-867. 

Marcinaková M., Simonová M., Strompfová V., Lauková A. (2006) Oral application of 

Enterococcus faecium strain EE3 in healthy dogs. Folia Microbiol 2006; 51(3): 239-242. 

Maskell I.E., Johnson J.V. (1993) Digestion and absorption. In: The Waltham Book of 

Companion Animal Nutrition, L.H. Burger (Eds), Oxford, Pergamon Press, pp. 25-44, 1993.  

McCoy S., Gilliland S.E. (2007) Isolation and characterization of Lactobacillus species 

having potential for use as probiotic cultures for dogs. J Food Sci 2007; 72(3): M94-M97. 

Mentula S., Harmoinen J., Heikkilä M., Westermarck E., Rautio M., Huovinen P., 

Könönen E. (2005) Comparison between cultured small-intestinal and fecal microbiotas in beagle 

dogs. Appl Environ Microbiol 2005; 71(8): 4169-4175. 

Meyer H., Kienzle E., Zentek J. (1993) Body size and relative weights of gastrointestinal 

tract and liver in dogs. J Vet Nutr 1993; 2: 31-35. 

Meyer H., Schunemann C. (1989) Rationsgestaltung und praecaecale bzw. Postileale 

Verdaulichkeit der organischen Substanz. In: Beitrage zur Verdauungsphysiologie des hundes. 

Meyer H. ed.; Hamburg and Berlin: Verlag Paul Parey, pp.14-23, 1989. 



 76 

Meyer J.H., Gu Y.G., Jehn D., Doty J.E. (1994) Factors that affect the performance of 

lipase on fat digestion and adsorption in a canine model of pancreatic insufficiency. Pancreas 

1994, 9(5): 613-623. 

Middelbos I.S., Fastinger N.D., Fahey G.C. Jr (2007) Evaluation of fermentable 

oligosaccharides in diets fed to dogs in comparison to fiber standards. J Anim Sci 2007, 85(11): 

3033-3044. 

Mizuta H., Kawazoe Y., Haga K., Ogawa K. (1990) Effects of meals on gastric emptying 

and small intestinal transit times of a sustension in the beagle dog assessed using acetaminophen 

and salicylazosulfapyridine as markers. Chem Pharm Bull 1990; 38(8): 2224-2227.  

Muir H.E., Murray S.M., Fahey G.C. Jr, Merchen N.R., Reinhart G.A. (1996) Nutrient 

digestion by ileal cannulated dogs as affected by dietary fibers with various fermentation 

characteristics. J Anim Sci 1996; 74: 1641-1648 

Murray S.M., Flickinger E.A., Patil A.R., Merchen N.R., Brent J.L. Jr, Fahey G.C. Jr 

(2001) In vitro fermentation characteristics of native and processed cereal grains and potato starch 

using ileal chime from dogs. J Anim Sci 2001; 79: 435-444. 

Murray S.M., Patil A.R., Fahey G.C. Jr, Merchen N.R., Hughes D.M. (1997) Raw and 

rendered by-products as ingredients in dog diets. J Anim Sci 1997; 75(9): 2497-2505. 

Nilsson U., Nyman M. (2005) Short-chain fatty acid formation in the hindgut of rats fed 

oligosaccharides varying in monomeric composition, degree of polymerization and solubility. Br 

J Nutr 2005; 94: 705-713. 

O’Keefe S.J.D. (2008) Nutrition and colonic health: the critical role of the microbiota. Curr 

Opin Gastroenterol 2008; 24: 51-58. 

Olano-Martin E., Gibson G.R., Rastell R.A. (2002) Comparison of the in vitro 

bifidogenic properties of pectins and pectic-oligosaccharides. J Appl Microbiol 2002; 93(3): 505-

511. 

Papasouliotis K., Muir P., Gruffydd-Jones T.J., Cripps P.J., Blaxter A.C. (1993) The 

effect of short-term dietary fibre administration on oro-caecal transit time in dogs. Diabetologia 

1993; 36(3): 207-211.  

Pasuphaty K., Sahoo A., Pathak N.N. (2001) Effect of lactobacillus supplementation on 

growth and nutrient utilization in mongrel pups. Arch Tierernahr 2001; 55(3): 243-253. 

Perelmuter <K., Fraga M., Zunino P. (2008) In vitro activity of potential prebiotico 

Lactobacillus murinus isolated from the dog. J Appl Microbiol 2008 Jan 9, e-pub ahead of print. 



 77 

Perez-Navarrete C., Betancur-Ancona D., Casotto M., Carmona A., Tovar J. (2007) 

Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends. Arch 

Latinoam Nutr 2007, 57(3): 278-286.  

Phillipson A.T. (1971) Endogenous losses of nutrients. Proc Nutr Soc 1971; 30(1): 61-66. 

Piva A., Casadei G., Gatta P.P., Luchansky J.B., Biagi G. (2005) Effect of lactitol, lactic 

acid bacteria, or their combinations (synbiotic) on intestinal proteolysis in vitro, and on feed 

efficiency in weaned pigs. Can J Anim Sci 2005; 85: 345–353. 

Piva A., Panciroli A., Meola E., Formigoni A. (1996) Lactitol enhances short-chain fatty 

acid and gas production by swine cecal microflora to a greater extent when fermenting low rather 

than high fiber diets. J Nutr 1996; 126(1): 280-289. 

Probert H.M., Apajalahti J.H., Rautonen N., Stowell J., Gibson G.R. (2004) 

Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-stage 

continuous culture system. Appl Environ Microbiol 2004; 70(8): 4505-4511. 

Propst E.L., Flickinger E.A., Bauer L.L., Merchen N.R., Fahey G.C. Jr (2003) A dose-

response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, 

stool quality, and fecal protein catabolites in healthy adult dogs. J Anim Sci 2003; 81: 3057-3066. 

Reid G., Burton J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. 

Microbes Infect 2002; 4: 319–324.  

Rinkinen M., Jalava K., Westermarck E., Salminen S., Ouwehand A.C. (2003a) 

Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for 

intestinal Enterococcus faecium colonization? Vet Microbiol 2003a; 92: 111-119. 

Rinkinen M., Westermarck E., Salminen S., Ouwehand A.C. (2003b) Absence of host 

specifity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus. Vet Microbiol 

2003b; 97: 55-61. 

Roberfroid M.B. (1999) Concepts in functional foods: the case of inulin and oligofructose. 

J Nutr 1999; 129: 1398S-1401S.  

Roberfroid M.B. (2001) Prebiotics: preferential substrates for specific germs? Am J Clin 

Nutr 2001; 73(2 Suppl): 406S-409S. 

Rolfe R.D. (2000) The role of probiotic cultures in the control of gastrointestinal health. J. 

Nutr. 2000; 130: 396S–402S. 

Rolfe V.E., Adams C.A., Butterwick R.F., Batt R.M. (2002) Relationship between fecal 

character and intestinal transit time in normal dogs and diet-sensitive dogs. J Small Anim Pract 

2002; 43: 290-294. 



 78 

Ruppin H., Bar-Meir S., Soergel K.H., Wood C.M., Schmitt M.G. Jr (1980) Absorption 

of short-chain fatty acids by the colon. Gastroenterology 1980; 78(6): 1500-1507. 

Russell J.B., Sniffen C.J., Van Soest P.J. (1983) Effect of carbohydrate limitation on 

degradation and utilization of casein by mixed rumen bacteria. J Dairy Sci 1983; 66: 763–775. 

Rutgers H.C., Batt R.M., Elwood C.M., Lamport A. (1995) Small intestinal bacterial 

overgrowth in dogs with chronic intestinal disease. J Am Vet Med Assoc 1995; 206(2): 187-193. 

Sales J., Janssens G.P.J. (2003) Acid-insoluble ash as a marker in digestibility studies: a 

review. J Anim Feed Sci 2003; 12: 383-401. 

Sauter S.N., Allenspach K., Gashen F., Gröne A., Ontsouka E., Blum J.W. (2005) 

Cytokine expression in an ex vivo culture system of duodenal samples from dogs with chronic 

enteropathies: modulation by probiotic bacteria. Domestic Anim Endocrinol 2005; 29(4): 605-

622. 

Sauter S.N., Benyacoub J., Allenspach K., Gaschen F., Ontsouka E., Reuteler G., 

Cavadini C., Knorr R., Blum J.W. (2006) Effects of probiotic bacteria in dogs with food 

responsive diarrhoea treated with an elimination diet. J Anim Physiol Anim Nutr 2006; 90(7-8): 

269-277. 

Scardovi V. (1986) Genus Bifidobacterium. In: Sneath H., Mair N., Sharpe M., Holt J. 

(Eds.) Bergey’s Manual of Systematic Bacteriology, 9th ed., vol. 2 Williams & Wilkins, 

Baltimore, pp. 1418-1434, 1986. 

Scholtz-Arhens K.E., Schrezenmeir J. (2002) Inulin, oligofructose and mineral 

metabolism – Experimental data and mechanism. Br J Nutr 2002; 87(Suppl 2): S179-S186. 

Scott T.A., Boldaji F. (1997) Comparison of inert markers [chromic oxide or insoluble ash 

(Celite)] for determining apparent metabolizable energy of wheat- or barley-based broiler diets 

with or without enzymes. Poult Sci 1997; 76(4): 594-598. 

Seifer S., Watzl B. (2007) Inulin and oligofructose: review of experimental data on immune 

modulation. J Nutr 2007; 137(11 Suppl): 2563S-2567S. 

Shanahan F. (2002) The host-microbe interface within the gut. Best Pract Res 

Gastroenterol 2002; 16: 915-931. 

Shome A., Roy S., Das P.K. (2007) Nonionic surfactants: A key to enhance the enzyme 

activity at cationic reverse micellar interface. Langmuir 2007, 23: 4130-4136. 

Simpson J.M., Martineau B., Jones W.E. Ballam J.M., Mackie R.I. (2002) 

Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. 

Microb Ecol 2002; 44: 186–197. 



 79 

Simpson J.M., Martineau B., Jones W.E., Ballam J.M., Mackie R.I. (2002) 

Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. 

Microb Ecol 2002; 44: 186-197. 

Smith H.W. (1965) Observations of the flora of the alimentary tract of animals and factors 

affecting its composition. J Pathol Bacteriol 1965; 89: 95-122. 

Spears J.K., Fahey G.C. Jr (2004) Resistant starch as related to companion animal 

nutrition. J AOAC Int 2004; 87(3): 787-791. 

Spears J.K., Karr-Lilienthal L.K., Bauer L.L., Murp hy M.R., Fahey G.C. Jr (2007) In 

vitro fermentation characteristics of selected glucose-based polymers by canine and human fecal 

bacteria. Arch Anim Nutr 2007; 61(1): 61-73. 

Stephen A.M., Cummings J.H. (1980) Mechanism of action of dietary fibre in the human 

colon. Nature 1980; 284: 283-284. 

Stevens C.E. (1977) Comparative physiology of the digestive system. In: Dukes physiology 

of domestic animals, 9th edn, Swenson M.J. (Eds), Comstock, Ithaca, NY and London, pp. 216-

232, 1977. 

Stevens C.E., Hume I.D. (1998) Contribution of microbes in vertebrate gastrointestinal 

tract to production and conservation of nutrients. Physiol Rev 1998; 78: 393-427. 

Strompfová V., LaukováA., Ouwehand A.C. (2004) Selection of enterococci for potential 

canine probiotic additives. Vet Microbiol 2004; 100: 107-114. 

Strompfová V., Marcináková M., Simonová M., Bogovic-Matijasi ć B., Lauková A. 

(2006) Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. 

Anaerobe 2006; 12(2): 75-79. 

Suchodolski J.S., Ruaux C.G., Steiner J.M., Fetz K., Williams D.A. (2005) Assessment 

of the qualitative variation in bacterial microflora among compartments of the intestinal tract of 

dogs by use of a molecular fingerprinting technique. Am J Vet Res 2005; 66: 1556–1562. 

Sunvold G.D., Fahey G.C. Jr, Merchen N.R, Titgemeyer E.C., Bourquin L.D., Bauer 

L.L., Reinhart G.A. (1995) Dietary fiber for dogs: IV. In vitro fermentation of selected fiber 

sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. 

J Anim Sci 1995; 73(4): 1099-1109. 

Swanson K.S., Grieshop C.M., Clapper G.M., Shield R.G. Jr, Belay N.R., Merchen 

N.R., Fahey G.C. Jr (2001) Fruit and vegetable fiber fermentation by gut microflora from canine. 

J Anim Sci 2001; 79: 919-926. 

Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Chow JM., Wolf B.W., 

Garleb K.A., Fahey G.C. Jr (2002a) Fructooligosaccharides and Lactobacillus acidophilus 



 80 

modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite 

concentrations in healthy adult dogs. J Nutr 2002; 132: 3721-3731. 

Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Healy H-S., Dawson K.A., 

Merchen N.R., Fahey G.C. Jr  (2002b) Supplemental fructooligosaccharides and 

mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, 

microbial populations and concentrations of protein catabolites in the large bowel of dogs. J Nutr 

2002; 132: 980-989. 

Swanson K.S., Grieshop C.M., Flickinger E.A., Healy H-S., Dawson K.A., Merchen 

N.R., Fahey G.C. Jr (2002c) Effects of supplemental fructooligosaccharides plus 

mannanoligosaccharides on immune function and ileal and fecal microbial populations in adult 

dogs. Arch Tierernahr 2002; 56(4): 309-318. 

Swanson K.S., Kuzmuk K.N., Schook L.B., Fahey G.C. Jr (2004) Diet affect nutrient 

digestibility, hematology, and serum chemistry of senior and weanling dogs. J Anim Sci 2004; 82: 

1713-1724. 

Tonglet C., Jeusette I., Istasse L., Diez M. (2001) Prediction of protein digestibility in dog 

food by a multi-enzymatic method: a usefull technique to develop. J Anim Phys Anim Nutr 2001; 

85(7-8): 189-194. 

Vahjen W., Männer K. (2003) The effect of a probiotic Enterococcus faecium product in 

diets of healthy dogs on bacteriological counts of Salmonella spp., Campylobacter spp. And 

Clostridium spp. In faeces. Arch Tieremahr 2003; 57(3): 229-233. 

Van de Wiele T., Boon N., Possemiers S., Jacobs H., Verstraete W. (2007) Inulin-type 

fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J 

Appl Microbiol 2007; 102(2): 452-460. 

Vanhoutte T., Huys G., DeBrandt E., Fahey G.C. Jr, Swings J. (2005) Molecular 

monitoring and characterization of the faecal microbiota of healty dogs during fructan 

supplementation. FEMS Microbiol Lett 2005; 249: 65-71. 

Velázquez O.C., Lederer H.M., Rombeau J.L. (1997) Butyrate and the colonocyte. 

Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997; 427: 

123-134. 

Verlinder A., Hesta M., Hermas J.M., Janssens G.P. (2006) The effects of inulin 

supplementation of diets with or without hydrolysed protein sources on digestibility, faecal 

characteristics, haematology and immunoglobulins in dogs. Br J Nutr 2006; 96(5): 936-944. 



 81 

Vervaeke I.J., Dierick N.A., Demeyer D.I., Decuypere J.A. (1989) Approach to the 

energetic importance of fibre digestion in pigs. II. An experimental approach to hindgut digestion. 

Anim Feed Sci Tech 1989; 23: 169-194. 

Vhile S.G., Skrede A., Ahlstrøm Ø., Hove K. (2007) Yttrium oxide (Y2O3) as an inert 

marker in digestibility studies with dogs, blue foxes and mink fed diets containing different 

protein sources. J Anim Phys Anim Nutr 2007; 91(9-10): 381-389. 

Vickers R.J., Sunvold G.D., Kelley R.L., Reinhart G.A. (2001) Comparison of 

fermentation of selected fructooligosaccharides and other fiber substrates by canine colonic 

microflora. Am J Vet Res 2001; 62(4): 609-615. 

Vos A.P., M’Rabet L., Stahl B., Boehm G., Garssen J. (2007) Immune-modulatory 

effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev 

Immunol 2007; 27(2): 97-140. 

Wang X., Gibson G.R. (1993) Effects of the in vitro fermentation of oligofructose and 

inulin by bacteria growing in the human large intestine. J Appl Bacteriol 1993; 75(4): 373-380. 

Washizu T., Ikenaga H., Washizu M., Ishida T., Tomoda I., Kaneko J.J. (1990) Bile 

acid composition of dog and cat gallbladder bile. Jpn J Vet Sci 1990; 52: 423-425. 

Weber M., Martin L., Biourge V., Nguyen P., Dumon H. (2003) Influence of age and 

body size on the digestibility of a dry expanded diet in dogs. J Anim Phys Anim Nutr 2003; 87(1-

2): 21-31. 

Weber M., Stambouli F., Martin L., Dumon H., Biorge V., Nguyen P. (2001) 

Gastrointestinal transit of solid radiopaque markers in large and giant breed growing dogs. J Anim 

Physiol a Anim Nutr; 2001; 85: 242-250. 

Weber M.P., Stambouli F., Martin L.J., Dumon H.J., Biourge V.C., Nguyen P.G. 

(2002) Influence of age and body size on gastrointestinal transit time of radiopaque markers in 

healthy dogs. Am J Vet Res 2002; 63: 677-682. 

Weese J.S., Anderson M.E. (2002) Preliminary evaluation of Lactobacillus rhamnosus 

strain GG, a potential probiotic in dogs. Can Vet J; 2002, 43(10): 771-774. 

Weese J.S., Arroyo L. (2003) Bacteriological evaluation of dog and cat diets that claim to 

contain probiotic. Can J Vet 2003; 44(3): 212-215. 

Weese J.S., Staempfli H.R., Prescot J.F., Kruth S.A., Greenwood S.J. Weese H.E. 

(2001) The roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in diarrhea 

in dogs. J Vet Intern Med 2001; 15(4): 37378. 



 82 

Wildrube H.J., Stockhausen H., Petri J., Fussel U., Lauer H. (1986) Naturally occurring 

conjugated bile acids, measured by high-performance liquid chromatography, in human, dog and 

rabbit bile. J Chromatogr 1986; 353: 207-213. 

Willard M.D., Simpson R.B., Cohen N.D., Clancy J.S. (2000) Effects of dietary 

fructooligosaccharide on selected bacterial populations in feces of dogs. Am J Vet Res 2000; 

61(7): 820-825. 

Wyse C.A., McLellan J., Dickie A.M., Sutton D.G.M., Preston T., Yam. (2003) A 

review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898-2002. J 

Vet Intern Med 2003; 17: 609-621. 

Xu X., Brining D., Rafiq A., Hayes J., Chen J.D. (2005) Effects of enhanced viscosity on 

canine gastric and intestinal motility. J Gastroenterol Hepatol 2005; 20(3): 387-394. 

Zentek J. (1995a) Influence of diet composition on the microbial activity in the 

gastrointestinal tract of dogs. I. Effects of varying protein intake on the composition of the ileum 

chyme and the faeces. J Anim Phys Anim Nutr 1995; 74: 43-52. 

Zentek J. (1995b) Influence of diet composition on the microbial activity in the 

gastrointestinal tract of dogs. II. Effects on the microflora of the ileum chyme. J Anim Phys Anim 

Nutr 1995; 74: 53-61 

Zentek, J. (2000) Bakterienflora des caninen Intestinaltrakts. Kleintierprax. 2000; 45: 

523S–534S. 

Zentek, J., Fricke S., Hewicker-Trautwein M., Ehinger B., Amtsberg G., Baums C. 

(2004) Dietary protein source and manufacturing process affect macronutrient digestibility, fecal 

consistency, and presence of fecal Clostridium perfringens in adult dogs. J Nutr 2004; 134: 

2158S-2161S. 

Zentek, J., Marquart B., Pietrzak T., Ballèvre O., Rochat F. (2003) Dietary effects on 

bifidobacteria and Clostridium perfringend in the canine intestinal tract. J Anim Phys Anim Nutr 

2003; 88(11-12): 397-407. 

Zuo Y., Fahey G.C. Jr, Merchen N.R., Bajjalieh N.L. (1996) Digestion responses to low 

oligosaccharide soybean meal by ileally-cannulated dogs. J Anim Sci 1996; 74: 2441-2449. 

 

 

 


