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ABSTRACT

The thesis deals with the problem of Model Selection (MS) motivated

by information and prediction theory. The focus is on parametric time

series models. The main contribution of the thesis is the extension

to the multivariate case of the Misspecification-Resistant Information

Criterion (MRIC), a criterion introduced recently that manages to solve

the original research problem posed by Akaike 50 years ago, which

led to the definition of the well known AIC. Since modern statistics,

MS is a fundamental task, both necessary and challenging in contem-

porary applications and in algorithmic solutions, e.g. big data, high-

dimensionality, nonlinearity, automation, and machine learning. The

importance of MS is witnessed by the huge amount of literature de-

voted to it and published in scientific journals of many different dis-

ciplines. Despite such a widespread treatment, the contributions that

adopt a mathematically rigorous approach are not so numerous and

one of the aim of the present project is to review and assess them.

Chapter 2 discusses methodological aspects of MS from the perspec-

tive of information theory. Common information criteria for the i.i.d.
setting are surveyed along with their main asymptotic properties. The

cases of small samples, misspecification, and further estimators are

examined. Chapter 3 surveys criteria for time series. Information and

prediction criteria for parametric univariate models (AR, ARMA) in

the time and frequency domain are considered. The settings of para-

metric multivariate (VARMA, VAR), nonparametric nonlinear (NAR),

and high-dimensionalMS are also covered. Asmentioned, theMRIC ap-

proach answers to the original question posed by Akaike on efficient

criteria, for possibly-misspecified univariate time series models, man-

agingmulti-step predictionwith high-dimensional data and nonlinear

models. Chapter 4 extends the MRIC to possibly-misspecified multi-

variate time series models for multi-step prediction and introduce the

Vectorial MRIC (VMRIC). We show that the VMRIC is an asymptotically

efficient MS method. To this aim, we prove the asymptotic decompo-

sition of the Mean-Squared Prediction Error (MSPE) matrix, and the

asymptotic consistency of its Method-of-Moments Estimator (MoME),

for the Least Squares (LS) multi-step prediction of multivariate time

series with an univariate regressor, for possibly-misspecified models.

Furthermore, Chapter 5 shows that the VMRIC is valid for the general

case of multiple regressors. To this aim, we prove that the MSPE matrix

decomposition holds, obtain asymptotic consistency for its MoME, and

proofs its asymptotic efficiency. The chapter concludes with a digres-

sion on the conditions for possibly-misspecified vector autoregressive

models with exogenous variables (VARX).
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1
MODEL SELECT ION :

INFORMAT ION AND PRED ICT ION CR ITER IA

1.1 overview

This thesis extends the Misspecification-Resistant Information Crite-

rion (MRIC) proposed in [H.-L. Hsu, C.-K. Ing, H. Tong: On model se-
lection from a finite family of possibly misspecified time series models. The
Annals of Statistics. 47 (2), 1061–1087 (2019)] [153] to possibly- misspec-

ified multivariate time series models for h-step ahead prediction. The

MRIC tackles Akaike’s original research question on efficient Model Se-

lection (MS) for possibly- misspecified models that 50 years ago led to

the popular A Information Criterion (AIC).

The first contribution is a vast survey composed of two chapters.

These are two selective but broad surveys of the last fifty years to Contribution 1
study the impact of information and prediction theory on statistical

MS, and how this connubium can be related to successive developments

in itself and alternative data-oriented strategies. Chapter 2 introduces

the statistical problem ofMS via information and prediction criteria for

independent and identically distributed (i.i.d.) data. Departing from

Akaike’s seminal paper in 1973 [5], we follow his trail on the initial

heuristic derivation of theAIC and study its formalmathematical proof.

The asymptotic properties of criteria are taken into account, detailing

specific definitions connected with the different senses of optimality.

We expand our focus to include information and prediction criteria

from the Bayesian perspective, regression analysis, and resampling

techniques, given their relevance in successive development of the

field and their influence in contemporary solutions. The first survey

concludeswith the study of practical situations thatmodify asymptotic

results: small sample, model misspecification, and alternative estima-

tors.

In Chapter 3, the second survey targets time series models. Depart-

ing from Akaike ’s seminal paper in 1969 [1], we briefly follow his

considerations to obtain the Final Prediction Error (FPE). Derived solu-

tions for MS in autoregressive (AR) models are considered, both in the

time and in the frequency domain, including a short introduction to

theMRIC. Wemove to general autoregressive moving-average (ARMA)

models, with special attention to the formal setting required for the

extension of criteria to these types ofmodels. This led us to view the so-

lutions proposed from Rissanen’s Accumulated Prediction Error (APE)

and its stochastic regression extension with applications to time series.

Furthermore, the problem of MS for multivariate time series models is

3



4 model selection: information and prediction criteria

studied, to better ground our contributions in the successive chapters.

Issues and solutions for vector ARMA (VARMA)models are examined,

together with part of the literature for MS with vector AR (VAR) mod-

els. This survey concludes with the theoretical and methodological

framework behind the Asymptotic FPE (AFPE), i.e. the nonparamet-

ric counterpart of the FPE for nonlinear time series models, and some

notes on algorithmic approaches and modern solutions to MS in high-

dimensional settings.

The second contribution presents the first extension of the MRIC

to multivariate time series with univariate regressor, in the form ofContribution 2
three theorems. Chapter 4 establishes the asymptotic decomposition

of the Mean-Squared Prediction Error (MSPE) matrix for h-steps ahead

least-squares predictor, the asymptotic consistency of the Method-of-

Moments estimator (MoME) for the related quantities, and the asymp-

totic efficiency of the VMRIC as a MS method. We showcase our theo-

retical derivation with an example where the misspecification is also

considered, including simulation studies to assess criterion’s perfor-

mance.

The third contribution shows the first full extension of the MRIC to

possibly-misspecified multivariate time series models with multipleContribution 3
regressor for h-step ahead forecast. Chapter 5 proves three theorems es-

tablishing the asymptotic decomposition of theMSPEmatrix for h-steps

ahead least-squares predictor with multiple regressor, the asymptotic

consistency of VMRIC’s MoMEs, and its asymptotic efficiency as MS cri-

terion. A digression on the technical conditions required for dynamic

simultaneous equations models, also known as VAR model with ex-

ogenous regressor (VARX), to satisfy the assumptions required for the

VMRIC approach is advanced.



Part II

CONTR IBUT IONS

Chapter 2 surveys information and prediction criteria for

independent and identically distributed data. Chapter 3 re-

views common solutions for model selection via informa-

tion and prediction criteria for time dependent data. Chap-

ter 4 presents the first extension of the Misspecification-

Resistant Information Criterion (MRIC) [153], with three

theorems and a technical lemma obtaining: the asymptotic

decomposition of the mean-squared prediction error for

weakly stationary h-step ahead possibly-misspecified mul-

tivariate time series models with univariate regressor, the

derivation of our VMRIC, the asymptotic consistency of the

method-of-moments estimator of the defined VMRIC, the

asymptotic efficiency of the criterion as a model selection

method, and one examplewith simulations. Chapter 5 com-

pletes the first full vectorial extension of the MRIC for the

case of multiple regressors, showing that the asymptotic

properties of the univariate regressor case still hold in the

multiple setting, and advances a digression for possibly-

misspecified vector autoregressive with exogenous regres-

sors (VARX), also known as dynamic simultaneous equa-

tions models.





2
MODEL SELECT ION V IA INFORMAT ION AND

PRED ICT ION CR ITER IA :

A SURVEY FOR THE I . I .D . CASE

abstract

Developments on entropy and information theory encountered fertile

groundwhenmet the likelihood approach,multiple testing, regression

and multivariate analysis. A path is traced starting around 1974 with

Akaike’s AIC’s approach based on the Kullback-Leibler discrimination

information for independently, identically distributed data under cor-

rect specification. Further information criteria are discussed in relation

to both their asymptotic properties and common settings, e.g., small

samples, model misspecification, alternative estimators. This chapter

is intended as an introductory discussion on information criteria for

i.i.d. data, laying the basis for Chapter 3 discussing derived solutions

for time dependent data.

Keywords: model selection, information criteria, parametric models,

consistency, efficiency, misspecification, small sample, functional esti-

mators.

2.1 introduction

Within statistical analysis,model selection (MS) dealswith theproblem

of selecting the best model according to a specified measure. Different

dimensions of the problem arise, since the goal of our analysis will in-

fluence ourmodel selection’s understanding. First, following Schmueli

[279], we can differentiate between explanation, prediction, or descrip-

tion. Second, defining the “best” model will rely upon a particular

measure, which is of interest in itself from the mathematical statistics

standpoint and given its overall consequences. A third dimension of

the problem deals with the actual sample size, since a portion of avail-

able methods are valid asymptotically for large samples. A fourth level

relates to models’ correct specification or misspecification. Initial de-

velopments involved the case where the ‘true’ model is among the set

of candidates models, i.e. correct specification. If the ‘true’ model does

not exists, or if it may not be postulated, we should pursue misspecifi-

cation robust strategies.

Among sundry selection techniques, information and prediction cri-

teria developed during the 1970’s still enjoy popularity after almost

fifty years. Information Criteria (IC) derive from information theory.

One of its pioneers, the Japanese statistician Hirogutu Akaike (1927–

7



8 ms via ic and pc: a survey for i.i.d. case

2009), proposed the popular A Information Criterion (AIC). Prediction

Criteria (PC) refer to selectionmethodsderived from theone-stepahead

prediction error, e.g. Akaike’s Final Prediction Error (FPE). This chap-

ter focusses on the independent and identically distributed (i.i.d.) case.
The time series setting will be the topic discussed in Chapter 3.

The plethora of available information and prediction criteria are

used in vast areas of human knowledge. Studies for empirical and the-

oretical problems includes but are not limited to: high-dimensionality,

geostatistics, ecology, medicine, phylogenetics, robust estimation, ge-

netics, econometrics, demography, epidemiology, biology, sociology,

reaction-diffusion problems in mathematical biology, copula methods,

astrostatistics, astrophysics, regularization parameter selection, model

averaging, bootstrap variants for small sample mixed models, dynam-

ical systems. In a context of continuously increasing computational

capabilities, criteria are employed extensively and also in combination

with other algorithmic or data-oriented procedures. Sometimes the

presence of these criteria in canned software packages1 may illude its ap-

plication is indeed straightforward to the point that no further analysis

is needed. That is not the case.

In Section 2.2we expand on themotivation behind this survey, while

Section 2.4 discusses Akaike’ criterion, including instructions on its

rigorous use and some issues with hypothesis testing that justified its

introduction in the 1970’s. This discussion is continued in Section 2.3

with notes on the original derivation of the AIC and on its connec-

tion with recent research. Definitions of asymptotic consistency and

efficiency are considered in Section 2.5, together with that of point-

wise and uniform convergence. Several refinements over IC for small

sample, model misspecification, and further estimators are given in

Sections 2.6 and 2.7 respectively.

2.2 motivation

Concerns on the use of machine-learning algorithms dedicated to au-

tomated decision-making on individuals and data ethics are present

nowadays [34, 35, 84, 320, 336]. Real-world attempts to tackle the issue

are found, for instance, in the Art. 22 of the United Kingdom General

Data Protection Regulation (UK GDPR) on "Automated individual

decision-making, including profiling", or Art. 29 from the European

Union GDPR (EU GDPR) and related key provisions that reference

general profiling and automated decision-making.

Discussions on MS derive from diverse scientific communities, both

from theoretical and applied areas. The statistical community shares

concerns, as the plenary talk of Professor Candès at the 2020 Bernoulli-

IMS symposium [63] showed, motivating the interest with examples

from sensitive applications such as facial-recognition scans, decision

1 Expression due to Kilian and Lütkepohl [169, p. 56].
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tree algorithms for classification in inmate- and jail-management sys-

tems, the use of artificial intelligence in human-resources activities

including recruiting, or medicine. Contemporary theoretical and em-

pirical considerations are also driven by this interest, aimed at improv-

ing current methods for selection, estimation, and prediction. Given

the increasing levels of complexity in our techniques and the diffi-

culties we face to obtain neutral comparison studies, we attempt to

‘back-to-basics’ while underlining theoretical key-points, in terms of

assumptions and general settings for MS via IC.

We propose a broad selective survey of the last fifty years to study:

(a) the impact of information theory in statistical MS, and (b) how

this connubium can be related to successive developments in itself and

alternative data-oriented strategies. This since algorithmic culture [54]

experienced an important expansion in the last twenty years, thanks

to themore readily availability of vast quantity of data. Also given that

information theory and machine-learning algorithms are two faces of

the same coin [201]. A secondary objective is to give practitioners an

accessible guide of definitions, remarks and algorithms to consider in

empirical applications of MS methods.

MS is intertwined with the estimation process [57] and has strong

effects on inference [188]. We will focus in the necessary work after

obtaining parameters’ estimates with specific properties, although re-

cent methods incorporate the estimation step. As in many other fields,

we see a trend from stronger to weaker sets of assumptions. This, com-

bined with the exponential growth of our processors contributed to

the development of nonparametric and semiparametric literature. Re-

cent developments are scattered along the lines of (i) less restrictions
and more flexibility (e.g. conformal prediction, feature-matching, non-

linear modelling, stochastic regression, robust estimation, Bayesian ap-

proach, mixture models), (ii) ensemble of techniques, and (iii)machine

learning algorithms.

We still have issues in selecting, ordering, or ranking models accord-

ing to a specific sense. The combination of differentmethodologies and

practices makes it relevant to understand the theoretical setting to im-

prove empirical works and develop further solutions. In that sense, we

stress the importance of theoretical andmethodological considerations

to improve both theory and practice altogether.

We drive now the attention to Akaike’s seminal contributions [7, 16],

and we present comments on contemporary issues related to these.

2.3 hirotugu akaike and information theory

The work by Kullback and Leibler [177] generalized the ideas of Shan-

non and Weaver [262, 263]. Let (X,S,µi), i = {1, 2} be a probability

space such that µ1 and µ2 are mutually absolutely continuous. More-

over, define λ to be any linear combination of µ1 and µ2. By the Radon-
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Nikodym theorem [131, pp. 128-129], there exists a positive and finite

probability density functions fi(x), i = 1, 2, unique (a part from a set

of measure zero in λ) and λ-measurable, such that:

µi(E) =
∫
E
fi(x)dλ(x), for all E ∈ S.

Our interest lies in evaluating the hypothesis H1 that x comes from

a population with probability measure µ1 against the hypothesis H2
that x comes from a population with probability measure µ2. For that

matter we define the information in x for discrimination between H1
andH2 as the difference log f1(x)

f2(x)
. At this point, we are ready to define

the Kullback-Leibler Information (KLI),
2 I(1 : 2), that measures the

divergence between two probability distributions. Note that this rela-

tive entropy measure is a pseudo-distance (not a distance) since the

triangle inequality does not hold, i.e. it is not the same quantity from

f to g than from g to f .

Definition 1. The mean information for discriminating betweenH1 andH2
is defined by:

I(1 : 2) = I1:2(X) =
∫
X

log f1(x)

f2(x)
dµ1(x)

=
∫
X
f1(x) log f1(x)

f2(x)
dλ(x).

Properties 1. The KLI I(1 : 2) features, among others, the following basic
properties:

I(1 : 2) ≥ 0,
I(1 : 2) = 0⇔ f1(x) = f2(x),

I1:2(E) ≥ log µ1(E)

µ2(E)
, for λ(E) > 0, E ∈ S,

IAB(1 : 2) = IA(1 : 2) + IB(1 : 2), for events A ⊥⊥ B.

Here and in the following, A ⊥⊥ B reads "event A is independent of
event B". For further details, refer to Kullback [175], and for alternative

measures of divergence, see Konishi and Kitagawa [174, p. 31]).
3
In

Akaike’s work [4, 5, 7] the KLI has been employed to address the prob-

lem ofmodel identification. Let g(x) be the data generating probability

distribution and Fθ = {f(x|θk), k = 1, . . . ,L} be a probabilistic class

2 Kullback [176] preferred the term Discrimination Information.

3 These include, but are not restricted to: theχ2
-statistic, theHellinger distance, theGen-

eralized information, the Divergence, the L1
-norm, the L2

-norm, the Jensen-Shannon

divergence, Jeffreys divergence, Chernoff’s α-divergence, the exponential divergence,

Kagan’s divergence, the (α,β)-product divergence, the Battacharyya divergence. Fur-

ther notions can be found for instance in the field of information geometry. On the

topic, we indicate the recent volume of Rao, Rao, and Plastino on Information Geom-

etry [232]. This is an active and interesting line of research combining many of the

topics here presented in a unified manner.
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of models such that g(x) ∈ Fθ. The problem is defined in the following

terms.

Given the data x ∼ g(x), we want to identify the member of Fθ
that corresponds, or is the closest, to g(x). If θk ∈ Rk

, the identification

problem reduces to select the true order of the model, k ∈ {1, . . . ,L}.
By assuming that g(x) is absolutely continuous with respect to the

Lebesgue measure, the KLI between g(x) and any parametric family

f(x|θ) ∈ Fθ is:

I(g; f(x|θ)) =
∫
g(x)

log g(x)
log f(x|θ)dx. (1)

Akaike’s consideration of theKLI as a separationmeasure between two

probability density functions in the context of the statistical problem

of model identification was novel. By doing so, he combined informa-

tion theory and its own extension of the Maximum Likelihood (ML)

principle. The latter is stated by Akaike [5] in the following manner:

Definition 2. Given a set of estimates θ̂ of the parameters’ vector θ of a
probability distribution with density function f(x|θ) we adopt as our final
estimate the one which will give the maximum of the expected log-likelihood,
i.e.

E
[
log

(
f(X|θ̂)

)]
=
∫
f(x|θ) log

(
f(X|θ̂)

)
dx. (2)

Akaike noticed that the ML principle was equivalent to maximize

minus E[I(f(x|θ); f(x|θ̂))], i.e. minus:

E

[
log

(
f(X|θ̂)
f(X|θ)

)]
=
∫
f(x|θ) log

(
f(X|θ̂)
f(X|θ)

)
dx. (3)

His version of theML principle, together with his definition of the loss

and risk functions (detailed in the following paragraphs), led Akaike

to avoid seeing both the estimation and testing theory as separated, but

rather as a single problem of statistical decision [16, p. 610]. This was

stated byAkaike given the use of both theML principle and the LR test

statistic, connecting the concepts by means of loss and risk functions

from statistical decision theory, through the lenses of information the-

ory. Specifically, this single problem of statistical decision was faced as

a problem of MS: to select f(x|θk), k = {0, 1, 2, . . . ,L}, based on the

observations of the random variable X .
4
Note that the parameter vec-

tor θk is restricted to the spacewhere the {k+ 1, k+ 2, . . . ,L} parameters

are set equal to zero, θk ∈ Θk, with Θk being the set of parameters’

space.

To proceed with the problem at hand of identifying model’s correct

order k, the use of Wald’s log-LR test [319] for composite hypothesis

4 Further details in Akaike [5, Section 4], Bozdogan [52, p. 351], and deLeeuw [361, p.

601].
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testing with hierarchical (nested) models was critically indicated by

Akaike [5] as a possible path for its solution, after some adaptations.

Akaike [5, 7] proposed an heuristic approach in the following terms.

Let {x1, . . . ,xN}be a randomsample of the randomvariableX ,xi ∼ X ,

and let θ̂ be the maximum likelihood estimator (MLE) of θ, i.e.

θ̂ = argmax
θ∈Θ

L(x|θ), (4)

where L(x|θ) is the likelihood function on the random sample x, given

the parameter θ. In the context of statistical decision
5
define the loss

and risk
6
functions between the ‘true’ parameter and the estimated

parameter as stated below. Given that the loss function is minus two

times the KLI between the true parameter and some estimate of it, it

will feature its same properties defined previously after the proper

adaptations. This is stated in the following:

Definition 3. Define the loss function:

W (θ, θ̂) = (−2)
∫
f(x|θ) log

(
f(X|θ̂)
f(X|θ)

)
dx, (5)

and its respective risk function as its expected value:

R(θ, θ̂) = Eθ̂

[
W (θ, θ̂)

]
, (6)

where the expectationEθ̂ [·] is computed with respect to the distribution of θ̂.7

Akaike advocated to estimate the loss function W (θ, θ̂) as minus

two times the sample mean of the log-likelihood ratio since it is the natural
estimator [7], in addition to being well known and extendedly used in

the literature. This is stated formally in the following definition:

Definition 4. Let f(xi|θ̂L) be the density function of the probability model
of reference, i.e. the one with ’true’ set of parameters, and f(xi|θ̂k) ∈ Fθ =

{f(x|θk), k = 1, . . . ,L}. Then the natural estimator of the loss function is:

ωk,L = − 2
N

N∑
i=1

log
(
f(xi|θ̂k)
f(xi|θ̂L)

)
. (7)

If wemultiply this estimator of the loss function byN , we obtain the

usual Log-Likelihood Ratio (LR) test statistic:

ηk,L = N × ωk,L, (8)

which asymptotically behaves as a χ2
L−k distribution when θ ∈ θk.

5 See Cox and Hinkley [86, p. 429].

6 See Grünwald [127, p. 515].

7 See Konishi and Kitagawa [173, p. 877]) for an example of generalization to functional

estimators via the empirical distribution function. See also Kitagawa and Konishi

[171].
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Remark 1 (Akaike [16]). Defining the loss function between both the true
and the reduced parameter vector (to the k-th order) to be the infimun of those
obtained with different values of k, i.e.

W (θ, θk) = inf
θk
W (θ, θk), (9)

then, it is expected that the sample estimate will converge to its population
value (i.e. strongly consistent estimator)

ωk,L →W (θ, θk) a.s. (10)

Akaike considered three situations for the convergence of the LR

statistic to the χ2
distribution (deLeeuw [361, p. 604], Akaike [16, p.

205]). If the true parameter θ belongs to the reduced parameter space

Θk (or the reduced parameter space θk is a fair approximation of the

true parameter space θ), i.e. θ ∈ Θk, then we may see that:

i. If NW (θ, kθ) is much larger than L, the approximation of the

log-likelihood ratio test kηL fails to converge to the χ2
distribution

since it would be larger than the chi-square approximation.

ii. IfNW (θ, kθ) is much smaller than L, the approximation is appro-

priate, and we can proceed with the analysis using the LR statistic

as usual.

iii. IfNW (θ, kθ) is close toL, a more precise analysis of the behaviour

of the LR test statistic is needed.

Given that the first case is not viable, and the second case is within

the LR theory, interest lays on the last one. For this third case, Akaike

considered asymptotic (e.g. Taylor expansion) and nonasymptotic ar-

guments to modify the loss function, by the use of the KLI in the

parametric case [177, p. 81]. This is related to study the discrepancy be-

tween two density functions, where the first is some density function

f(x, θ) computed at θ, while the second is the same density function in

a neighbourhood of its parameter space, f(x, θ + ∆θ). An additional

requirement for the modification of the loss function was the consis-

tency of the MLEs θ̂ and θ̂k for both the full parameter space (θ) and its

reduced version (θk) respectively. In general, it is required the asymp-

totic efficiency of the MLEs [7, p. 718].
8
This will lead us to solve the

MS problem by considering the sample mean log-likelihood to be a proper
measure of fit of the model. Let us follow Akaike’s steps.

If θ and θk are very near to each other, we are allowed to focus on

the second-order variations of W (θ, θ̂).9 In this case, the initial loss

function, which used the KLI, can be modified into:

W2(θ, θ̂k) =
L∑
l=1

L∑
m=1

(θ̂k,l − θl)(θ̂k,m − θm)Cl,m(θ), (11)

8 Akaike used MLE’s asymptotic consistency, efficiency and normality.

9 Kullback and Leibler [177, p. 81]), citing Doob [103, p. 774]), highlight how this argu-

ment depends on suitable assumptions on the density function. See also Sawa [254, p.

1274].
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where Cl,m(θ) is the (l,m)-th element of Fisher’s information matrix,

abbreviated in the following by Cl,m for simplicity. A version of this

modified loss function is:

W2(θ, θ̂k) =
∥∥∥θ̂k − θ∥∥∥2

C
, (12)

where ‖θ‖C is the norm in the space of θ defined as

‖θ‖C =
L∑
l=1

L∑
m=1

θlθmCl,m.

An estimate for the risk function of the modified loss functionE[W2(θ,
θ̂k)], whenN is sufficiently large, and both L and k are relatively large

integers, is:

r(θ̂, θ̂k) = N−1(ηk,L + 2k−L). (13)

For MS through comparison of different models with different orders

k against the true one, note that the L value in the previous estimate of

the risk function is the same since it only depends on the dimension of

the true parameter space. For this reason it can be dropped from the

estimate of the modified risk function without influencing the result.

Before proceeding with the formal definition of the AIC present in

Section 2.4, we shall briefly highlight some points from the arguments

presented until now.

2.3.1 Discussion

This subsection collects brief thought stimulating comments and the re-

lationwith current issues derived fromAkaike’s seminal contributions

introduced in this section.

restricting parameters’ space The strategy of restricting the pa-

rameters’ space was already present in the literature, e.g. subset re-

gression [147, 203, 204]; discriminant analysis [229], and can be seen

as connected with the broad successive developments on MS litera-

ture, e.g. subset selection, regularization, shrinkage [194, pp. 504-505],

stochastic complexity [245, p. 47], or dimension reduction [162, p. 203].

automation of selection procedure In terms of the data vis-à-
vis algorithmic modeling cultures as in Breiman [54], recent develop-

ments were influenced by ideas from data-oriented procedures, which

allow for some type of automation of the selection procedure. Automa-

tion is intended in the sense of the implementation of procedures in

the MS phase which eliminate practitioner’s intervention. This step

is sometimes necessary, i.e. no alternatives given that alternatives

procedures fail. The objective of the analysis is pivotal: description-

identification, or prediction-selection. In this sense, automation is both

a debatable but important goal in contemporary applications.
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information and hypothesis testing An additional early exam-

ple of information-theoretic quantities and hypothesis testing can be

found in Blahut [45]. Teräsvirta and Mellin [293] studied the connec-

tion between the ordinary F test and ICwhen all models are linear and

we have to select the model from nested finite number of candidate

alternatives. Vuong [318] proposed a LR test approach using the KLI to

measure the divergence between non-nested, overlapping, and nested,

also for the case of one, or neither misspecified model.

why ’times two’? The use of the “magic number 2” (Stone [287, p.

32]) is a convention initially criticized as arbitrary, e.g. Rissanen [241],

deLeeuw [361, p. 602]. Theoretical andhistorical clarifications are given

inAkaike [15], Bozdogan [52, p. 356-357]), Burnham andAnderson [59,

p. 64]). Successive developments consider different types of penaliza-

tions as bias correction. For instance, see Kitagawa and Konishi [171]

for bias and variance reduction techniques with a generalization of

the AIC; Yanagihara et al. [345] for bias correction of AIC in logistic

regression models; and Davies et al. [90] for linear regression.

conditions and cases In the literature, relaxing these assump-

tionswill be dealt in successive generalizations of theAIC, e.g. small or

moderate samples, misspecified models, non-i.i.d. observations, alter-
native estimators (viz. conditional, penalized, composite, quasi likeli-

hood, robust, functional), nonparametric statistics, high-dimensionality.

evaluation of the performance of ic The asymptotic perfor-

mance of IC depends on the problem upon which it is being applied. An

argument for this statement is Akaike’s entropy-maximization princi-

ple, which recites: “All statistical activities are directed to maximizing the
expected entropy of the predictive distribution in each particular application”
[15, p. 17]. Changing the problem, asymptotic properties behave dif-

ferently, e.g. under small or moderate samples. We underline it in the

light of broad literature in problem definition, decision theory and

loss functions. For example, on the loss function, Shibata [274, p. 417]

stated: “In our problem, the choice of the loss function is crucial for dis-
cussing the goodness of a selection procedure”. Partially, this perspective

was also present on Ragnar’s Frisch 1970 Nobel prize lecture on econo-

metrics [118]. Given that the goal of statistical analysis often is to obtain

reliable and precise predictions for decision-making, this connection

should guide us to followmethodologies in a precise manner, possibly

in a unified way.

increasing- and fixed-dimensionality settings Akaike’s per-

spective on the study of asymptotic properties enriched the field, i.e.

theoretical considerations of an empirical problem: to assess the prop-

erties of a MS criterion as n grows to infinity but keeping the ‘true’
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order k of the model fixed, i.e. Fixed Dimensionality (FD) setting. This

approach complements the case when k grows to infinity while also n

goes to infinity, i.e. Increasing Dimensionality (ID) setting. See the liter-

ature in Schorfheide [256] for indications on its multi-step (direct) loss

function based estimation. This distinction further modifies asymp-

totic properties of IC. See the discussion in Stone [286, p. 277], Leeb

and Pötscher [187], and the distinction of cases for time series in Hsu

et al. [153, pp. 1061-1065]. Chapters 4 and 5 contribute to the literature

in the FD setting for multivariate time series MS.

2.4 model selection with independent and identically dis-

tributed data

The practicality of Akaike’s idea and its lean computation were two

drivers for its vast diffusion in statistical sciences and beyond. We ob-

serve an i.i.d. sample of dimension n, {x1,x2, . . . ,xn}, taken from some

Data Generating Process (DGP). In general, approximate estimates of

information criteria are of the following form:

IC(k) = −2 l(θ̂k) + Penalty, (14)

where l(·) denotes the log-likelihood of the estimated reduced model

with k parameters and the penalty will depend upon the particular

setting of the problem. Our focus is on mathematically-grounded IC.

A short disclaimer is in order. Supplementary paths for MS include,

among others, theminimumdescription length principle [141, 241, 244,

245]; the Bayesian perspective [83, 167, 234, 258, 321]; mathematical de-

cision theory [46]; sieves and approximation theory [29]; resampling

or data augmentation methods such as Cross-Validation (CV) [20, 24,

87, 264, 285], bootstrap [265] or shrinkage [65]; machine-learning pro-

cedures which also deliver feature selection such as bagging [210],

sparse boosting [58], lasso [357], nonconcave penalized likelihood via

smoothly clipped absolute deviation (SCAD) [109], neural networks

[23, 179], or random forests [92, 281]. Refer to [100, 164, 187, 192, 207,

236, 295, 296] for reviews and surveys.

We start by devoting the rest of this section to understand the theo-

retical framework behind the A Information Criteria (AIC).

2.4.1 A Information Criterion (AIC)

This subsection includes the assumptions, a proposition and formal

derivation of the AIC in Section 2.4.1.1. Previously, in Section 2.3 we

have followed partially the heuristic derivation of Akaike from his two

seminal papers [7, 16]. Here we focus on the formal proof presented

by Bozdogan [52]. This is similar to the steps traced until now, so its



2.4 model selection with i.i.d. data 17

development should be eased. A slight theoretical difference is that

Bozdogan uses the EntropyMaximization Principle (EMP) [10], which

is equivalent to the minimization of the KLI quantity. As we have seen,

the latter is connected to Akaike’s ML principle. Alternative strategies

for the formal proof can be found in [59, 174]. As one reviewer under-

lined, the technique developed by Akaike is simple, but it is seminal

for many of the following contributions. Section 2.4.1.2 presents 15

points to keep in mind for the correct use of the AIC, and then briefly

discusses the connection between the AIC and the LR statistic.

2.4.1.1 Assumptions, definition, and formal derivation

The AIC in Eq. (16) is an estimate of a measure fit of the model [7, p.

716] where the mean log-likelihood is taken as the preferred measure

of fit. First, we present the three assumptions in detail. Then, we follow

[52] in Proposition 1 which defines both the AIC and its natural sample

estimator, and its respective sketch of proof.

Assumptions 1. For Eq. (16) to hold the following assumptions are needed:

(i) {x1,x2, . . . ,xn} are n independent observations of a random variable
with density function g(x).

(ii) The maximum likelihood estimator (MLE) based on n observations, θ̂n,
of the ’true’ parameter vector θ is estimated under regularity condi-
tions that deliver asymptotic efficiency and normality. The expected log-
likelihood is estimated by its natural estimator, i.e. the log-likelihood func-
tion evaluated at its supremum θ̂: n−1l(θ̂n) = n−1∑n

i=1 log f(xi|θ̂n).

(iii) f(x|θ) is a parametric family of density functions of the random variable
X , depending on the parameter vector θ which includes the true model,
i.e. f(x|θ0) = g(x). In other words, the model is correctly specified:
g(x;θ) ∈ Fθ.

Proposition 1 ([52]). Let a set of candidate models {Jk : k = 1, 2, . . . ,K},
with k the index of the competing models. Define the population AIC as twice
the expected KLI, or, equivalently, as minus twice the expected log-likelihood:

AIC (θk) = 2E [I (θ∗, θk)] = −2E [log f (X|θk)] , (15)

which is minimized to choose a model Jk over the set of candidate models.
Then, its natural sample estimator10 is given by:

AIC
(
θ̂k
)
= −2

N∑
i=1

log f(xi| θ̂k) + 2k, (16)

where
∑N
i=1 log f(xi| θ̂k) is the log-likelihood evaluated at the ML estimated

parameter with reduced dimension k.

10 This is an unbiased estimator of its population value.
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Proof. We follow the geometrical derivation of Bozdogan [52, pp. 346-

356] based on [5, 7, 9, 170]. Consider a DGPwith g(x) ≡ f(·|θ), θ ∈ RK
,

from which all candidate models derive. Denote the ’true’ parameter

vector by θ ≡ θ∗ ∈ RK
, with K the total number of parameters of the

’true’ full model.

Our goal is to select the model with probability density function

f(x|θk) based on n observations, with parameter vector θk ∈ Rk
,

where k is the number of free parameters, with k < K. This re-

stricted parameter vector sets θk+1 = θk+2 = · · · = θK = 0. Ob-

tain its MLE, θ̂k, by the usual maximization of the likelihood func-

tion, L (θk|x) =
∏n
i=1 f(xi|θk), with respect to θk. Consider the log-

likelihood function divided byn, i.e. themean log likelihood,n−1l (θk) =
n−1∑n

i=1 log f(xi|θk), which is a natural consistent estimator of the

expected log likelihood, E [log f(X|θk)] =
∫

log f(x|θk)f(x|θk)dx. Fur-
thermore, take the KLI as the loss function:

I
(
θ∗; θ̂

)
=
∫

log
[
f(x|θ∗)
f(x|θ̂)

]
f(x|θ∗)dx,

and its expected value as its associated risk function:

EX
[
I
(
θ∗; θ̂

)]
=
∫
I
(
θ∗; θ̂

)
f(x|θ∗)dx.

Now, the second-order expansion of I (θ∗;θ) around θ∗, delivers:

I (θ∗;θ∗ + ∆θ) ∼=
1
2 ‖∆θ‖

2
J , (17)

where ‖∆θ‖2J = ‖θ− θ∗‖2J = (θ− θ∗)> J (θ− θ∗), with J being the

positive definite (K ×K) Fisher information matrix:

J = E

{[
∂

∂θ
log f(X|θ)

]> [ ∂
∂θ

log f(X|θ)
] ∣∣∣∣
θ=θ∗

}
.

In order to restrict θ∗ ∈ ΘK to the k-dimensional restricted parameter

space, Θk, with k < K, write the projection of θ∗ onto Θk and denote

it by θ∗k, and its MLE by θ̂k. In that case, we can write: 2I (θ∗,θk) ∼=
2I
(
θ∗, θ̂k

)
. Seeing that (17) is similar to our case, by the Pythagorean

theorem:

2I
(
θ∗, θ̂k

)
∼=
∥∥∥θ∗ − θ̂k∥∥∥2

J
∼= ‖θ∗ − θ∗k‖

2
J +

∥∥∥θ∗k − θ̂k∥∥∥2

J
.

Therefore, for large n, the expectation of the KLI is a measure of the

average estimation error:

2nE
[
I
(
θ∗, θ̂k

)]
∼= E

[
n ‖θ∗ − θ∗k‖

2
J + n

∥∥∥θ∗k − θ̂k∥∥∥2

J

]
= n ‖θ∗ − θ∗k‖

2
J +E

[
n
∥∥∥θ∗k − θ̂k∥∥∥2

J

]
. (18)
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Eq. (18) shows that this measure can be decomposed into the bias plus

the variance of

(
θ∗k − θ̂k

)
, first and second term on the right-hand side

respectively. For large n, in the second term we have n
∥∥∥θ∗k − θ̂k∥∥∥2

J
=∥∥∥∥n1/2

(
θ∗k − θ̂k

)2
∥∥∥∥
J
, which distributes asymptotically as a χ2

k. Denot-

ing the non-random first component in the right-hand side with δ ≡
n ‖θ∗ − θ∗k‖

2
J , and computing the expectation of the χ2

k random vari-

able, Eq. (18) becomes, for large n:

2nE
[
I
(
θ∗, θ̂k

)]
∼= δ + k, (19)

The non-random quantity δ needs to be estimated in finite samples.

Since: (i) the mean log likelihood is a consistent estimate of I
(
θ∗, θ̂k

)
;

and (ii) the LR statistic,

LR(x) = ηk,K = −2
n∑
i=1

log
f
(
xi|θ̂k

)
f
(
xi|θ̂K

) , (20)

for the i.i.d. case under regularity conditions is asymptotically dis-

tributed as a noncentral χ2
v(δ) random variable, with v = K − k de-

grees of freedom and noncentrality parameter δ; then the LR statistic

in Eq. (20) is employed to estimate I
(
θ∗, θ̂k

)
.

Given that E
[
χ2
v(δ)

]
= δ+ v and ηk,K ∼= E

[
χ2
v(δ)

]
, we can solve for

δ obtaining δ ∼= ηk,K − v = ηk,K − (K − k). Thus, Eq. (18) becomes:

2nE
[
I
(
θ∗, θ̂k

)]
∼= ηk,K − (K − k) + k

= ηk,K + 2k−K. (21)

From these arguments, if the KLI between the ’true’ and the esti-

mated parameter, I
(
θ∗, θ̂k

)
, is defined as the loss function in the MS

problem, with its associated risk functionE
[
I
(
θ∗, θ̂k

)]
, from Eq. (21)

we can get an estimate of the risk function for large n, and bothK, and

k relatively large integers, which is:

R
[
θ∗, θ̂k

]
= n−1 (ηk,K + 2k−K) . (22)

Given that our goal is to find the θ̂k that minimizes Eq. (22), or equiv-
alently, that minimizes Eq. (21), we can focus on minimizing over

k = {1, 2, . . . ,K} the following quantity:

ξk,K = ηk,K + 2k = −2
n∑
i=1

log
f
(
xi|θ̂k

)
f
(
xi|θ̂K

) + 2k. (23)

For hierchical/nested models, where the constant terms are shared by

every model, the usual approximate estimate of the AIC is obtained:

AIC(k) = −2
n∑
i=1

log f
(
xi|θ̂k

)
+ 2k. (24)
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2.4.1.2 Discussion

correct use of the aic Akaike’s criterion allows to judge a partic-

ular model, or judge ignorance about the structure of the model [52, p.

351]. From Sakamoto, Ishiguro and Kitagawa [253, pp. 83-85] we learn

the following four points:

(i) The number of free parameters estimated from data should be

less than 2
√
n (

n
2 upper bound). Otherwise, if the number of free

parameters is too large, the asymptotic normality of the MLE

might fail.

(ii) The actual values of theAICdonotmatter. Instead, thedifferences

between theAICobtainedbyonemodel versus theAICof another

model matter for MS. If the difference in absolute value is larger

than 1or 2, then it is considered to be informative. If this difference

is much smaller than 1, then the goodness of fits of the model are

almost the same. Even if the AIC of two models are very similar,

if the distributions of the models are quite different, then it is

reasonable to consider that neither of the models is good.

(iii) If the AIC gradually decreases with increasing order and it may

not have a clear minimum, then it usually indicates that the

parametrization is not appropriate.

(iv) AIC is not a criterion to estimate the true order of the model.

Instead, it estimates the best fit model. The concept of true order

is meaningless in the context of estimating the true distribution

from a finite n.

FromBurnhamandAnderson [59, pp. 75, 80–89]we learn the following

eleven points:

(i) AIC is a step in the Minimum A Information Criteria Estimate

(MAICE) procedure [174, p. 69]. Later research considered also

Akaike’s weights and its relation to MS, which moves beyond the

MAICE approach.

(ii) AIC cannot be used to comparemodels of different data sets (data

must be fixed).

(iii) Order is not important in computing AIC values. This highlights

a difference with respect to step-up (forward) and step-down

(backward) hypotheses testing.

(iv) A commonmistake is tomix response variables since all hypothe-

ses have to be modelled using the same response variables.

(v) The AIC requires that error structures of comparing regression

models to be the same.
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(vi) In applied literature it is a commonmistake tomixnull hypothesis

testing with information-theoretic criteria. Its is not adviced to

use words such as ’significant’ or ’rejected’. It is good practice to

complement with evidence ratios, analysis of residuals, adjusted

R2
, and other model diagnostics or descriptive statistics.

(vii) Null hypothesis testing is still important in strict experiments, but

in observational studies it is not clear. Besides, often the hypothe-

ses are naive or trivial.

(viii) Information-theoretic criteria are not a “test”.

(ix) Remember always to perform exploratory data analysis.

(x) Ambivalence of data and multi-model inference. In relation to

this last point, see Burnham and Anderson [60].

(xi) IC can be applied to non-nested models.

For an updated informative review of the AIC, see Cavanaugh and

Neath [67].

the aic and the lr statistic AIC departed from considerations

on the Likelihood Ratio (LR) test statistic when the convergence to

the χ2
-distribution fails, from the Kullback-Leibler Information (KLI)

perspective. With hypothesis testing, a system of composite hypothe-

ses H0 and H1 are considered. Under the null hypothesis, we use the

asymptotic distribution of a test statistic in order to specify a rejection

condition. Commonly used test statistics are Wilk’s LR [337], Wald’s

test [319], and Rao’s Lagrange-Multiplier (LM) test [233]. See Buse [61]

for a clear description of these methods. Issues have been pointed out

in the testing approach [32, 59, 93], which are connected with obser-

vational studies, and the difference between experiments and pseudo-

experiments. For instance, with nested (hierarchical) hypotheses, their

sequential order influences the result. Besides, there are issues with

the distributional convergence as the number of hypotheses to test

approaches sample’s dimension.

The latter becomes relevant when applying hypothesis testing in

the context of high-dimensional data. Benjamini and Hochberg [31]

pointed three issues with the classical approach to multiple testing,

which include that in practice test statistics are notmultivariate normal

and that are not comparisons of multiple treatments. This problem

has been addressed in the literature departing from Bonferroni-types

corrections. They proposed to control for the False Discovery Rate

(FDR), i.e. the rate of type I error, instead of the Family Wise Error Rate

(FWER) in multiple testing. A similar motivation leading to a different

conclusion was advanced by Romano and Wolf [250] with a feasible

computational method to control generalized FWER.
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Discussions and extensions followed on asymptotic properties of

IC, their asymptotically equivalent counterparts, and alternative cri-

teria. We will briefly see two of these asymptotic properties, namely

consistency and efficiency. These concepts are differently defined with

respect to estimators, and play a central role in the study of MS via

IC. Chapters 4 and 5 show that our multivariate extension of the MRIC

displays asymptotic efficiency.

2.5 asymptotic consistency and efficiency of criteria

Consider the set of candidate models Jl, with the generic model l,

l = {1, . . . ,K}, where K is the total number of candidate models.

When the true model is among this candidates set (model’s correct
specification), if the criterion selects the true model with probability

tending to one, then the selection method is weakly consistent. If this
convergence is of the almost sure type, then it is said to be strongly
consistent. If we do not assume that the true model is among the can-

didates (model’s misspecification), then we can be interested in selecting

the model which minimizes a particular measure or divergence. This

leads us towards the concept of efficiency. In theMS literature, these two

asymptotic properties deal with the ability of the criterion to select the

’true model’ (consistency), or, the model that minimizes a particular

measure (efficiency), as the sample size diverges.

Showing that this property is featured requires analytical proofs and

numerical studies. It isworth noticing that importance is given to select

a particular model over a set of candidate models. This is separated

from the asymptotic properties of parameters’ estimators. Confusion

may arise, given that ultimately,MS can bedeployed for both estimation

and identification. The focus in our case is the latter. For an overview

of these points, see Arlot and Celisse [24, pp. 46-48].

Besides, the setting of ID or FD also may deliver contrasting results.

For instance, the AIC is not consistent but it is efficient in the ID case,

while it is neither consistent nor efficient in the FD setting.Additionally,

consider that the Bayesian Information Criterion (BIC) (introduced in

Section 2.5.3.1) is consistent but it is not efficient in both the ID and FD

settings. An additional layer of uncertainty is include when there is no

information concerning the inclusion or exclusion of the ’true’ model

in the set of candidate models. See Hsu et al. [153, Tables 1 and 2] for

a comparison of five criteria (AIC [7], BIC [258], Generalized AIC (GAIC)

[173], Generalized BIC (GBIC) [200], GBICp[200], and their MRIC). The

MRIC and our vectorial extension, the VMRIC, were developed in this

last situation of possibly-misspecifiedmodels, i.e. no prior information

on whether the ’true’ model is included or not in the candidates set.
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2.5.1 Consistency

Shao [266]developedanasymptotic theory for linearMS.Letyn be ann-
dimensional vector of independent responses,Xn be an (n×pn)matrix

of a p-dimensional regressor with n observations, and µn = E [y|Xn]
the mean response. This is estimated by themodel α from classAn, via
the LS estimator (LSE) µ̂n(α). Define α̂n as the selected model by an

information criterion, where the subscript n indicates its dependence

on the sample of n observations. Also, define αLn as the model which

minimizes the following quadratic error loss function:

Ln(α) = n−1 ‖µn − µ̂n(α)‖
2 , (25)

where ‖·‖ is the Euclidean norm. Under i.i.d. observations and mis-

specification, he conveniently defined asymptotic consistency in terms

of the “best fitting” model:

Definition 5. An information criterion is asymptotically consistent if

lim
n→∞

P
{
α̂n = αLn

}
→ 1. (26)

Shao observed that this implied that the probability that both the

quadratic error loss functions are equal converges asymptotically to

one:

lim
n→∞

P
{
Ln(α̂n) = Ln(α

L
n)
}
→ 1. (27)

These two situations are equivalent if Ln(α) has a unique minimum

for all large n.

Criteria’s asymptotic consistency, in some sense, depends on the

type of problem under consideration. In addition, the procedure for

its demonstration will depend on the types of loss and risk functions

[274], and on the sense of asymptotic consistency under consideration.

Now, a generalization of the AIC is introduced to state the regularity

conditions for the asymptotic consistency of a criterion.

Definition 6. A generalization of the approximate estimate of AIC [25, 41]
is given by:

AICα = −2l(θ̂) + αp, (28)

where α refers in this case to the weight applied to the penalty p, the number
of estimated parameters in the model.

Shibata [278] argued that the following conditions are required for

consistencyusing the above initial generalization of theAIC. For strong

consistency he derived these results from the Law of Iterated Loga-

rithms (LIL). See Hannan and Quinn [137].
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Assumptions 2. Under general regularity conditions requested for comput-
ing criteria, necessary and sufficient conditions for strong consistency of IC
are found in setting α = αn in AICα, Eq. (28), such that:

lim infn
αn

2 log logn > 1, lim supn
αn
n

= 0, (29)

while for weak consistency such that:

lim infn αn =∞, lim supn
αn
n

= 0. (30)

These conditions are often seen in the assumptions preceeding the

definition of IC. For instance, [153] requires that the penalty weight

satisfies condition from Eq. (30), while the problem of its empirical

determination is assessed in [154, Section S5]. In Chapters 4 and 5, our

derivation of the vectorial version of the MRIC requests this condition

for asymptotic results, viz. Eq. (242).

2.5.2 Efficiency

If the truemodel is not included in the set of candidatemodels, e.g. the

parameter space has infinite dimension, then the concept of asymptotic

consistency would be misleading. For this reason, asymptotic efficiency
is defined as the convergence of the selected model to the one that

minimizes the KLI or other specified loss function. Occasionally, this

property is also defined as optimality in the efficiency sense,11 e.g. [68,

189, 273–275], i.e. the selected model achieving the minimum value of

the loss function (in probability). According to Claeskens and Hjort

[83], a MS criterion is efficient if the ratio of the expected loss function

computed at the selected model and the expected loss function at

its theoretical minimizer converges in probability to one. Let us give

further details.

As in Section 2.5.1, define α̂n as the selected model by a criterion

with a sample of size n, and αLn the model which minimizes the loss

function Ln(α) from Eq. (25). Shao [266], similarly to the definition of

Li [189, p. 961] and in comparison to consistency, considered a weaker

condition in which the selected model “α̂n is asymptotically as efficient
as αLn in terms of the loss Ln(α)”. In that sense, it can be seen as the

minimum requirement in terms of consistency:

Definition 7. A criterion is asymptotically loss efficient if the ratio between
the losses of models α̂n and αLn converges in probability to 1, i.e.

Ln(α̂n)

Ln(αLn)
p−→ 1. (31)

11 Often appears that the concept of optimality is used locally or considering a very re-

strictive sense, which may appear confusing if we take into consideration its meaning.

It is adviced to check the specific sense of optimality to avoid confusions.
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Shibata proposed both definitions of asymptotic mean efficiency

[273] and approximate efficiency [275, p. 43]. Focus on the former and

consider the L2
Hilbert space of sequences of real numbers. See Def-

inition 32 for details. Denote the inner product < a, b >= a>b, with

a, b ∈ L2
. Let x> = (x1,x2, . . . ), x ∈ L2

, be the infinite dimensional re-

gressors’ vector composed by control variables; and β> = (β1,β2, . . . ),
β ∈ L2

, be the parameters’ vector. The observational equation is

Y =< x,β > +ε, where ε is a Gaussian error with zero mean and

spherical error varianceσ2 > 0. Consider a sample ofn independent ob-

servations for Y , Y = (Y (1), . . . , Y (n)), at (x(1), . . . , x(n)). In this case,

we can estimate at most n parameters. Denote model j = (j1, . . . , jk(j))
having regression function f(x, j) =< x,β(j) >, where:

β(j)> =
(
0, . . . ,βj1 , 0, . . . ,βj2 , 0, . . . ,βk(j), 0, . . .

)
,

is the restricted infinite dimensional parameter vector in the V(j)
subspace, with j1 < j2 < · · · < jk(j), k(j) ≥ 1. Its LSE is β̂(j) ={
β̂j1(j), . . . , β̂jk(j)(j)

}
defined as the solution to the system:

Mn(j)β̂(j) = X(j)>y, where y is an n-dimensional column vector of

observations,

X(j) = {xi,jl , 1 ≥ i ≥ n, 1 ≥ l ≥ k(j)}

is an (n× k(j)) design matrix generated by vectors x(i)> = (xi,1,xi,2,
. . . ), with i = {1, . . . ,n}, andMn(j) = X(j)>X(j) is a (k(j)× k(j))
variance-covariancematrix. The corresponding LS predictor of a future

observation at x(i) is: Ŷi =< x(i), β̂(j) >, with i = {1, . . . ,n}.
Now, write the Residual Sum of Squares (RSS) as:

nσ̂2(j) =
∥∥∥y−X(j)β̂(j)

∥∥∥2
,

where ‖·‖ is the Euclidean norm, and define E

[∑n
i=1

(
Yi − Ŷi

)2 ∣∣∣x(i)
]
,

with i = {1, . . . ,n}, as the expectation of the sum of squared errors of

the prediction conditional on future observations, which is then equal

to:

E

[
n∑
i=1

(
Yi − Ŷi

)2
|x(i)

]
= nσ2 +

∥∥∥β̂(j)− β∥∥∥2

Mn

, (32)

whereMn = (
∑n
i=1 xi,lxi,m, 1 ≥ l,m <∞) is an infinite dimensional

matrix and ‖a‖Mn
=<Mna,a >1/2

is a seminorm for any a ∈ L2
.

Definition 8. AMS criterion is asymptotically optimal in themean efficiency
sense if it attains a lower bound for Eq. (32) when n tends to infinity.

Recently, a definition of efficiency was proposed by Hsu et al. [153]

via sequential data-drivenmethodology in the context of time series.
12

12 We slightly deviate from the strong focus on the i.i.d. case to present an interesting

recent definition on asymptotic efficiency of a model selection criterion. This choice

is motivated by the intertwining of statistical advances in both settings, which traces

back to early statistical analysis.
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Let {yt} and {xt} be two weakly stationary demeaned stochastic pro-

cesses of dimensions 1 and m respectively. Let yt+h = β∗hx∗t + εt+h be

the D.G.P for h-step ahead prediction, n be the sample size with

t = {1, 2, . . . ,N ,N + 1, . . . ,N + h = n}

, an h-step ahead possibly-misspecified forecasting model of the type:

yn+h = βhxn+ ε(h)n , where pseudo-true parameters’ vector is given by

βh = argmin
C∈Rm

E

[(
yt+h − c>xt

)2
]

,

and ε
(h)
n be the possibly-misspecified error for h-step ahead forecasting.

The dependence of xt on h exists, but it is suppressed for notational

convenience, so the consideration of a specific regressor also depends

on the forecast horizon h. The LS estimator delivers ŷn+h = β̂
>
n (h)xn,

where

β̂n =

(
N∑
t=1

xtx>t

)−1 N∑
t=1

xtyt+h

is the LS estimator of βh for h-step ahead regression based on the sam-

ple of n observations. As measure of interest take the h-step ahead

Mean-Squared Prediction Error (MSPE), which is derived from the dif-

ference between the observed and the estimated values, i.e. MSPEh =

E
[
(yt+h − ŷt+h)2

]
. Theorem 2.1 in Hsu et al. [153] allows for the de-

composition of the MSPE in two parts. The first one being the Misspeci-

fication Index (MI), which is linked to the goodness-of-fit of the model

and is equal to the variance of the h-step ahead prediction error, i.e.

MIh = E
[
ε2

1,h

]
. The second component is the Variability Index (VI),

which depends upon the variance of the h-step ahead predictor ŷn+h,

and which is also connected to the estimation error of β̂n(h):

VIh = Lh = tr
{

R−1Ch,0
}
+ 2

h−1∑
s=1

tr
{

R−1Ch,s
}

.

Here, R = E
[
x1x>1

]
is the (non-singular) variance-covariance matrix

of the regressors, whereas Ch,s = E
[
x1x>1+sε1,hε1+s,h

]
represents the

cross-covariance matrix between the regressors and the h-step ahead

prediction error. The approach proposed by Hsu et al. [153] selects

the model that minimises the h-step ahead MSPEh. The minimization

occurs by selecting the model with the smallest VIh among those with

the smallest MIh, sequentially. We introduce here the main statement

of the property. For further details, see Chapter 3 - Section 3.2.2.3, and

Chapters 4 and 5.

Consider the set of candidate models Jk, with generic model k,

k = {1, . . . ,K} and K the total number of candidate models. Define

l̂ to be the selected model by a criterion in a data-driven fashion for

h-step ahead prediction.



2.5 asymptotic consistency and efficiency of criteria 27

Definition 9. If the MS criterion selects model l̂ such that it is the model
with the smallest VI among those with the smallest MI, i.e.

lim
n→+∞

P
(
l̂ ∈M2

)
= 1, (33)

where

M2 =

{
k : k ∈M1, V Ih(k) = min

l∈M1
V Ih(l)

}
, (34)

M1 =

{
k : 1 ≤ k ≤ K, MIh(k) = min

1≤l≤K
MIh(l)

}
, (35)

then it is asymptotically efficient.

2.5.3 BIC, Cp, alternative criteria, and cross-validation

Akaike’s extension of the ML principle in relation to information-

theoretic quantities for the solutionof themodel identificationproblem

brought increasing interest. See Table 8 in Appendix A.1 for a list of

proposed IC. It includes some IC and PC not discussed in detail here.

These are:

i. Allen’s Prediction Sum of Squares (PSS) [19];

ii. Amemiya’s criterion [21];

iii. Bozdogan’s Consistent AIC (CAIC), CAIC with Fisher information

(CAICF), andKashyap’s Criterion (KC) [52] (the latter was originally

proposed in Kashyap [168]);

iv. Rao and Wu’s generalization Dn(k) [235];

v. The Risk Inflation Criterion (RIC) by Foster and George [116];

vi. The Generalized BIC (GBIC) by Konishi and Kitagawa [173];

vii. The criterion proposed by Yang and Barron [349];

viii. The GeneralizedAIC (GAIC) andGeneralizedBIC (GBIC) of Lv and

Liu [200];

ix. The Deviance Information Criterion (DIC) of Spiegelhalter et. al.

[282, 283];

x. The criterion for elliptically symmetric distributions proposed by

Boisbunon et al. [48];

xi. Watanabe’s Widely Applicable Information Criterion (WAIC) and

Widely applicable Bayesian Information Criterion (WBIC) [324–

326].
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Other criteria, such as the Focused Information Criterion (FIC) by

Claeskens and Hjort [82] from the literature of model averaging, were

not included, given that would go beyond the scope of the present

chapter. Brief notes are included in Chapter 3, Section 3.2.4, in the

context of ARMA models. We will give brief details on Schwarz’s BIC,

Mallows’ Cp (Cp), and the general Cross-Validation (CV) procedure,

given their importance in applied literature and their strong connec-

tion with IC here presented. We introduce Nishii’s generalization of

the BIC since it is useful for the discussion in Section 2.5.4 between

point-wise and uniform convergence for MS criteria. Also, we intro-

duce Shao’s Generalized Information Criterion (GIC), since it will be

useful in the discussion related to the CV method.

2.5.3.1 The Bayesian approach

The Bayesian approach to MS includes the seminal works of Kashyap

[167], Akaike [10, 14], and Schwarz [258]. The latter defined the fa-

mous Bayesian Information Criterion (BIC), often named Schwarz’s In-

formation Criterion (SIC) in the econometric literature, asymptotically

equivalent to Wei’s Predictive Least Squares (PLS) [328] criterion.

Definition 10. Schwarz’s BIC(k) [258] approximate estimate is defined as:

BIC(k) = −2l(θ̂k) + k log(n), (36)

where k is model’s dimension and n is the sample size.

The BIC is asymptotically consistent under correct specification in time

series and regression models [214, 235, 328]. Under misspecification,

the BIC is not asymptotically efficient [266, 271]. In the context of time

series, for useful distinctions see Choi [79, pp. 58-66], or de Gooĳer

et al. [125, pp. 318-323]. Pericchi [221] proposed an introduction to

the basics and reviewed different available methodologies. The rest of

Pericchi’s issue on theHandbook of Statistics is devoted to the Bayesian

perspective. Further generalizations of the BIC include Nishii [214],

Konishi and Kitagawa [173], Lv and Liu [200], and Watanabe [325],

among others.

2.5.3.2 Mallows’ Cp

In the context regression analysis with independent observations, Mal-

lows [204] presented the famous Cp. This criterion may be consid-

ered a PC, since it is related to control model’s errors. Let a sample

of n observations on k fixed design variables and a single response

variable, denoted by x0 = 1, x = (x0,x1, . . . ,xk) a (1× k) vector,

y = (y1, . . . , yn)> a (n× 1) vector. Write X = (xu,i) the (n× (k+ 1))
regressor matrix of rank k + 1. Write the observational equation of

the model yu = η(xu) + eu, with u = {1, 2, . . . ,n}, where η(xu) =

β0 +
∑k
i=1 βixu,i = xuβ, and the residuals {eu} being independent
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random variables with zero mean and unknown spherical variance

σ2 > 0. The goal is to estimate β̂ =
(
β̂0, . . . , β̂k

)
in order to obtain a

good estimate of function η evaluated at any point x in a neighbour-

hood of our data, η(x): ŷ (x) = β̂0 +
∑k
i=1 β̂ixi. Specifically, we aim

at a subset LS estimate of β̂ where some of its components are set to

zero, while the rest are estimated via LS. Define the subset P of the full

set of indices K+ = {0, 1, 2, . . . , k}, and Q the subset complementary

to P . Assume the number of elements in each set P ,Q are respetively

|P | = p, |Q| = p, with p+ q = k + 1. Denote by β̂P = X−Py the LS

estimated vector of coefficients in P , while the rest are set to zero,

where X−P is the Moore-Penrose generalized inverse of XP , with XP

is X setting the columns in Q to zeroes. Its associated residual sum of

squares (RSS):

RSSP =
n∑
u=1

(
yu − xuβ̂P

)2
. (37)

Definition 11. Let σ̂2 be an estimate of σ2. The approximate estimate of the
Cp statistic for the selection of regression variables is defined as:

Cp =
(
σ̂2
)−1

(RSSP )− n+ 2p. (38)

In the same article [204, pp. 662-663], Mallows proposed a version

for multivariate response data of dimensionw. Define Σ̂ as an estimate

of the (w ×w) residual covariance matrix. In this case the scalar RSS

becomes the (w×w) matrix

RSSP =
n∑
u=1

(
yu − β̂Pxu

) (
yu − β̂Pxu

)>
, (39)

where yu is a (w × 1) multivariate response vector, xu is an (m× 1)
regressors’ vector, both observed at timesu = {1, 2, . . . ,n}, β̂P the (w×
m)matrix of estimated coefficients inP , and an (w×w) identitymatrix

I . To obtain the size ofCp, the trace operator, its largest eigenvalue, or

any other suitable norm, was suggested.

Definition 12. The approximate estimate of the Cp statistic for the selection
of regression variables with multivariate response data is defined as:

Cp = Σ̂
−1
RSSP − (n− 2p)I. (40)

2.5.3.3 Nishii’s and Shao’s Generalized IC

nihii’s gic Nishii [214] studied the asymptotic distribution of var-

ious IC and PC. Let y be an (n × 1) observed vector, X a (n ×K)

design matrix, β = (β1, . . . ,βK)> a vector of unknown parameters,

and e a (n× 1) error vector assumed i.i.d. Gaussian with zero-vector

mean and spherical error variance σ2IN , N
(
0,σ2IN

)
. Focus on MS

for prediction. We denote a general model j = {j1, . . . , jk}, with
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(1 ≤ j1 < · · · < jk ≤ K) if and only if βj1 6= 0, . . . ,βjk 6= 0 while

the remaining elements of β are set to zero. In this case, there are

k(j) = k + 1 unknown parameters. Define Dj as a (K × k) matrix

of zeros and ones such XDj only includes columns j1, . . . , jk of X.

For model j, the multiple regression model is: y = Xβ(j) + e, where

β(j) = DjD
>
j β = Dj (βj1 , . . . ,βjk)

>
. Nishii assumed:

1. model’s correct specification,

2. invertibility of X>X,

3. and the existence and invertibility ofM = lim
N⇒∞

N−1X>X of the

sample variance-covariance.

In the following definition, if aN = 2, a version of the AIC is recovered,

while if aN = logN , the BIC.

Definition 13. Let aN > 0 is a sequence such that Eq. (30) is satisfied. Then
Nishii’s generalization of the approximate estimate of BIC, the Generalized
Information Criterion (GIC), is defined as:

GIC = N log σ̂2 + aNk. (41)

shao’s gic As in Subsection 2.5.1, let yn ≡ (y1, . . . , yn)> be an n-

dimensional vector of independent responses,Xn ≡
(
x>1 , . . . , x>n

)>
be

an (n× pn) matrix of a pn-dimensional regressor with n observations

(the i-th row, xi, is a pn-dimensional vector of explanatory variables

associated with yi), and µn = E [y|Xn] the mean response. The sub-

script n indicates dependence on the sample of n observations. Let

α indicate a model from class An. Define en = yn − µn as model’s

residual, with en ≡ {e1, . . . , en} assumed i.i.d. with conditional vari-

ance V [en|Xn] = σ2In, with In the n-dimensional identity matrix.

Denote with ‖·‖ the Euclidean norm. Further technical assumptions

are defined in [266, p. 224]. Now, let Sn(α) = ‖yn −µn (α)‖
2
, σ̂2

n be

an estimator of σ2
, and {λn} a sequence of non-random such that

{λn} ≥ 2 and λn/n → 0. Shao [266, p. 226] shows the criteria covered

by the following generalization:
13

Definition 14. The approximate estimate of Shao’s Generalized Information
Criterion (GIC) is given by:

Γn,λn(α) = n−1Sn(α) + n−1σ̂2
npn(α). (42)

2.5.3.4 MS and Cross-validation

CV is an established resampling (or data augmentation) method with

applications to model selection, popular among the algorithmic and

statistical community. Given the centrality of CV in MS, we present

13 See the concluding paragraph of Subsubsection 2.5.3.5.
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its definition and how it relates to IC. For details see [24, 143], and

the references therein. First, we follow [24], given that its framework

allows to "include most statistical frameworks" [24, p. 43]. Then, [143, Ch.
7] is followed to understand the connection between IC and CV on the

use of in-sample errors.

Denote the i.i.d. random variables ξ1, . . . , ξn ∈ Ξ with shared distri-

bution P . Let s ∈ S be a target feature to be estimated of the unknown

distribution P , and denote with t ∈ S its approximation. The loss func-

tion L(t) : S 7→ R is minimal for t = s. As we have seen, many of these

loss functions are defined in the form ofLP (t) = Eξ∼P [γ (t; ξ)], where

the subscript in the expectation operator denotes over the domain of

the random variable ξ, and γ : S× Ξ 7→ [0,∞] is a contrast function.

We can interpret Eξ∼P [γ (t; ξ)] as an average measure of discrepancy

between t and a new observation ξ with distribution P . Given a loss

function LP (t), denote with l(s, t) ≡ LP (t) − LP (s) ≥ 0, and with

Eξ1,...,ξn∼P [l(s, ŝ (ξ1, . . . , ξn))], respectively the excess loss and the risk

of an estimator ŝ (ξ1, . . . , ξn) of the target s.
Now, define a statistical algorithm A as any measurable mapping

A : ∪n∈NΞn 7→ S. If we denote with Dn = (ξi)1≤i≤ ∈ Ξn a sample of

size n, then the output of the statistical algorithm A is an estimator

of s: A (Dn) =
(
ŝA(Dn)

)
∈ S. To asses the quality of the statistical

algorithm A, we use LP
(
ŝA(Dn)

)
and aim at its minimization. De-

note with (ŝλ)λ∈Λ a family of candidate statistical algorithms, so that

the algorithm selection problem can be phrased as choosing algorithm

λ̂(Dn) ∈ Λ using data Dn. The final estimator of s is denoted by

ŝλ̂(Dn)(Dn).

Consider the training set I(t) : {1, . . . ,n}, such that both I(t) and

its complement

(
I(t)

)c
are non-empty. Define L̂HO

(
A;Dn; I(t)

)
as the

hold-out estimator of the risk of A
(
D

(t)
n

)
with training set I(t),

L̂HO
(
A;Dn; I(t)

)
≡ n−1

v

∑
i∈D(v)

n

γ
(
A
(
D(t)
n

)
; ξi
)

, (43)

where D
(t)
n ≡ (ξi)i∈I(t) is the training sample of size nt = Card(I(t)),

D
(v)
n ≡ (ξi)i∈I(v) is the validation sample of size nv = n− nt, and I(v)

the validation set.
Geisser [121] described CV as averaging several hold-out estimators

of the risk for different data splits. Let

{
I
(t)
1 , . . . , I(t)B

}
be a sequence of

subsets of the training set I(t), with B ≥ 1.

Definition 15. The CV estimator of the risk A (Dn), with different training
sets

(
I
(t)
j

)
1≤j≤B

is defined as:

L̂CV
(
A;Dn;

(
I
(t)
j

)
1≤j≤B

)
≡ B−1

B∑
j=1
L̂HO

(
A;Dn; I(t)j

)
(44)
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All common CV estimators are of the same form as Eq. (44), varying

only in the particular definition of the splitting scheme. It is called

"CV with averaging", since the estimates of the risk are averaged. An

alternative definition is called "CVwith voting" [346, 347]. See [143, Ch.

7], or [24, Sections 4-10] for further details.

2.5.3.5 IC, CV and in-sample errors

According to Hastie et al. [143, Ch. 7], the study of the performance of

learning methods (a set of various statistical techniques) is related to

its predictive capabilities. We follow them in the following paragraphs.

Let Y be a target variable , X be a vector of inputs, and f̂ (X) be a

forecasting model estimated from a training set T , i.e. an independent

test sample. Typical loss functions to measure the error between the

observed Y and the predicted f̂ (X) are, for instance:

L
(
Y , f̂ (X)

)
=


(
Y − f̂ (X)

)2
(squared error),∣∣∣Y − f̂ (X)

∣∣∣ (absolute error).

To evaluate model’s performance, Hastie et al. underline that twomea-

sures are usually used, one conditional and the other unconditional:

(a) Test Error:

ErrT = E
[
L
(
Y , f̂ (X)

) ∣∣∣T ] , (45)

where X and Y are randomly drawn from the joint distribution in

the population; T is fixed; and the Test Error refers to the specific

training set T .

(b) Expected Prediction Error (or Expected Test Error):

Err = E
[
L
(
Y , f̂ (X)

)]
= E [ErrT ] , (46)

where the expectation averages over all the randomness.

They indicate that, ideally, the goal is to estimate the Test Error, but
that usually the Expected Prediction Error have efficient estimators. Its

sample analogue, the Training Error, is defined as the average loss over

the training sample:

err = N−1
N∑
i=1

L
(
yi, f̂ (xi)

)
. (47)

The goal is to study the Expected Test Error of the estimated model. As

model’s complexity increases (i.e. the number of parameters), it also

increases the use of the training data and allows for a better fit to more

complicated structures. In other words, it creates a decrease in bias by

increasing the variance. Let us seemore in details this point, given that

it is pivotal in much of the present work, e.g. Section 3.3.1 in Chapter

3; Theorem 1 in Chapter 4; Theorem 4 in Chapter 5.
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Remark2 ([143]). In the context of regression, consider amodelY = f(X)+

ε, where E [ε] = 0, and Var [ε] = σ2
ε . If the squared-error loss is employed,

the Expected Prediction Error of a prediction f̂(X) at X = x0 is:

Err (x0) = E

[(
Y − f̂(x0)

)2 ∣∣∣X = x0

]
(48)

= σ2
ε + Bias2

(
f̂(x0)

)
+ Var

(
f̂(x0)

)
, (49)

where the first is the Irreducible Error, i.e. the variance of the target around its
true mean f(x0); the second is the squared bias:

Bias2
(
f̂(x0)

)
=
(
E
[
f̂(x0)

]
− f(x0)

)2
; (50)

and the third is the variance, i.e. the expected squared deviation of f̂ from the
mean:

Var
(
f̂(x0)

)
= E

[(
f̂ (x0)−E

[
f̂(x0)

])2
]

. (51)

A correct level of complexity should deliver the minimum Expected
Test Error (Err). But there is an issue with the Training Error (err):
it decreases with model’s complexity. The updated goal becomes to

estimated correctly model’s Expected Test Error (Err). Again, the main

goal of the analysis is relevant:

• Model selection: choose the best model by studying the perfor-

mance of different models;

• Model assessment: after selecting a final model, estimate its Pre-
diction Error (Generalization Error) on new data.

In an ideal situation, we would have enough data to split the sample

into:

(i) a Training set (for model fitting);

(ii) a Validation set (to estimated prediction error for MS);

(iii) a Testing set (to study the Generalization Error).

Generally, in a practical situation there is not enough data for this divi-

sion. It is in these practical cases where analytical methods for Model

Validation are deployed, such as information or prediction criteria, or

those derived from the Minimum Description Length (MDL) literature.

Another strategy is to use efficient sample re-use (as CV and bootstrap).

For the first strategy, consider the following quantities:

(i) In-sample error:

Errin = N−1
N∑
i=1

EY 0

[
L
(
Y 0
i , f̂ (xi)

)
|T
]

, (52)

and Y 0
indicating that at each training point xi, i = {1, 2, . . . ,N},

we observe new response values.
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(ii) Optimism:

op ≡ Errin − err. (53)

(iii) Average optimism:

w ≡ Ey(op) (54)

where the expectation Ey is over the training sets.

To estimate in-samplePredictionError, thefirst strategy (information

and prediction criteria) estimates the optimism and adds the training

error err, i.e.

Êrrin = err + ŵ, (55)

with ŵ estimating the average optimism. In particular, the AIC uses the

log likelihood function as loss function.

If we have a set of models fα(x) indexed by α, then denote with

err(α) and d(α) both the training error and the number of parameters

for eachmodel α. Let σ̂2
ε be an estimate of the noise variance computed

from themean-squared error of a low-biasmodel (e.g. LS). Thenwefind

model
ˆalpha by minimization of AIC(α), and select model f ˆalpha(x),

where:

Definition 16. The function AIC(α) estimates the test error curve:

AIC(α) = err(α) + 2d(α)
N

σ̂2
ε . (56)

CV directly estimates the expected out-of-sample error:

Err = E
[
L(Y , f̂(X))

]
, (57)

the average Generalization Error when method f̂(X) is used on an

independent test sample from the joint distribution of (Y , X).

ForK-foldCV, consider a data split intoK parts. For the k-th part, we

estimate the model using the remainingK − 1 parts of data, and com-

pute its prediction error. This procedure is repeated for k = 1, 2, . . . ,K,

and then we combine the K estimates of the prediction error. Let

κ : {1, . . . ,N} 7→ {1, . . . ,K} be an indexing function indicating to

which partition belongs observation i by the randomization, and let

f̂−k(x) be the estimated function computed leaving the k-th part out.

Then:

Definition 17. The K-fold Cross-Validation (CV) estimate of the prediction
error is given by:

CV (f̂) = N−1
N∑
i=1

L
(
yi, f̂−k(i)

)
. (58)
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If we have a set of models f(x),α indexed by α, then denote with

f̂−k(x,α) the α-th model fitted removing the k-th part of the data.

Then we find model
ˆalpha by minimization of CV (f̂ ,α), specified in

the following:

Definition 18. The function CV (f̂ ,α) estimates the test error curve:

CV (f̂ ,α) = N−1
N∑
i=1

L
(
yi, f̂−κ(i)(xi,α)

)
. (59)

Then we select model f(x, ˆalpha), which will be then fitted to the

full data.

FromArlot and Celisse [24], and as it is clear from the previous para-

graphs, resampling-based techniques are a solution for the asymptotic

nature of criteria, e.g. AIC, or for the dependence on data’s assump-

tions, e.g. Cp. However, both strategies aim at a correct estimation

of model’s Expected Test Error. The first via in-sample errors, while

the second generating artificial out-of-sample errors. The trade-off be-

tween these two solutions depends on the specific problem at hand.

CV enjoys quasi-universality if data are effectively i.i.d., but can be less

accurate with respect to procedures with information or prediction

criteria designed to be optimal if the assumptions hold (e.g. AIC, Cp

are efficient and satisfy oracle inequalities), and its computational bur-

den is higher. Furthermore, the connection between CV with both IC

and PC has been studied [105], as well as their asymptotically equiva-

lence, e.g. [264, 278, 286]. In particular, Stone [286] showed asymptotic

equivalence between AIC and leave-one out CV, leading to understand

the minimization of the AIC equivalent to minimize CV values. Shao

[266, Theorem 4] showed the criteria inside each class share the same

asymptotic behaviour:

(i) GIC2, Cp, AIC, leave-one out CV, and generalized CV: useful for

the case when no fixed-dimension correct model exist,

(ii) GICλn with λn → ∞, and leave-d out CV with d/n → 1: useful
for the case when fixed-dimension correct model exist,

(iii) GICλ with fixed λ > 2, and leave-d out CVwith d/n→ τ ∈ (0, 1):
useful compromise between classes (i) and (ii).,

where GIC2, GICλn , GICλ, refer to specific settings of Γn,λn(α).

Appendix A.2.3 summarizes some results of CV and IC for nonlinear

time series models and nonparametric regression. In time series, it is

sometimes called split-sample validation [220]. See [24] for a compre-

hensive survey.
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2.5.4 Discussion

entropy and information Rissanen [241] citing Watanabe [323]

noticed that both KLI and Shannon’s theorem are corollaries of Gibbs’

theorem, and that the AIC derives from those considerations. The BIC

[258], which departed from an asymptotic expansion of the posterior

probability, is a special case of Rissanen’s MDL criterion, which consid-

ered Gibbs’ theorem and coding theory. Josiah W. Gibbs (1839–1903)

was influenced by Rudolf Clausius (1822–1888) ideas [172, p. 128], fact

which positions this line of research as derived from the early thermo-

dynamics and entropy studies. This field is still very active. For recent

developments, see the workshop “Recent Advances in Info-Metrics

Research” [313] and Chen et al. [73].

on consistency versus efficiency While it is logical to find ar-

guments in favour of the central role of obtaining asymptotically con-

sistent estimators of model’s dimension, it is important to remind the

philosophical issue it highlights, i.e. the existence of a ‘true’ model

when ‘all models are wrong’. For early discussions (1989-2007), viz.

[278, p. 229], [52, p. 357], [59], and [245, p. 1-2]. Consistency remains

a desired property in contemporary applications, e.g. Markov models,

BayesianNetworks. For instance see respectively the consistency of the

BIC in Markov order estimation and partition Markov models [88, 89,

120], and the use of BIC and MDL as scoring functions for structure

learning balancing precision and complexity of the model in Bayesian

Networks [289]. Efficient approaches are preferred for empirical data

in biology, social sciences, and medicine, while consistent approaches

are preferred in the physical sciences and engineering [59, 269].

point-wise and uniform convergence Leeb, Pötscher andEwald

[188] discussed on asymptotic issues and implications for inference in

relation to the difference between point-wise and uniform convergence

in MS techniques by post-model-selection. The following definitions

are due to Moise [209, Ch. 9], where further arguments on continu-

ity and integrability of functions are treated. Let f1, f2, . . . and f be

functions f : A→ R, where A ⊂ R.

Definition 19. If for each x ∈ A we have:

lim
n→+∞

fn(x) = f(x), (60)

then the sequence f1, f2, . . . convergences point-wise to f .

Definition 20. If for every ε > 0 there is an nε ∈ Z+ such that

x ∈ A,n ≥ nε ⇒ |fn(x)− f(x)| < ε, (61)

then the sequence f1, f2, . . . convergences uniformly to f .
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point-wise and uniform results in ic To go beyond point-wise

results, study of the asymptotic distribution of IC is needed.Nishi [214]

obtained asymptotic distributions of the selected model by various

criteria including: AIC, FPE [4], Cp [204], PSS [19], BIC [258], and its own

GIC, and their quadratic risk functions, for regression problems. For

further examples, cf. [79, 270, 344, 348]. In particular, Section 2.2 in

Yang [348] for a discussion of point-wise consistency, efficiency, and

the AIC-BIC dilemma. Possible proposed solutions to this quandary

are found in adaptive MS, i.e. combining properties from both sides

as in Wu [341], Hansen and Yu [140], Van Erven et al. [314], Ding et al.

[99], where the former does it under the framework of Rissanen’s MDL

principle while the latter refers to autoregression in time series.

2.6 small samples

The AIC and most IC were developed with the attempt to eliminate

the asymptotic bias of the maximum likelihood for large samples with

related asymptotic arguments.

Sugiura [290] proposed finite sample corrections by considering the

exact bias for different situations. Consider a set of random samples

indexed by i = {1, . . . , k}, with k the total number of samples. The i-th

random sample denoted by

{
x
(i)
1 ,x(i)2 , . . . ,x(i)ni

}
(where x

(i)
1 is the first

observation from the i-th sample, while ni being its sample size) comes

fromaGaussian distributionN
(
µ(i),σ2

)
, whereµ(i) refers to themean

of the i-th sample, and σ2 > 0. Define parameters’ vector as θ =(
µ1, . . . ,µk,σ2)

, and the total sample sizen equals the sumof all sample

sizes: n =
∑k
i=1 ni. In problems of data with different means, we are

interested in testingmultiple null-hypotheses with unknown common

variance σ2
. Define c the total number of means we are interested in

testing, with 1 ≤ c ≤ k, to determine which samples have equal means.

Denote by {j1, . . . , jc} the set of indexes for the test, e.g. µj1 refers to

the first mean we are interested in testing, . . . , µjc to the c-th mean we

want to test, with 1 ≤ j1 < · · · < jc ≤ k, i.e. we can consider testing up

to k means. In this case, we write the general multiple null-hypothesis

as:

H
(j1,...,jc)
0 : µj1 = · · · = µjc ,

for all possible values of c. Following similar mathematical arguments

as in Section 2.3, developed originally by Akaike, Sugiura proposed

the following definition, where the subscript c1 stands for Criterion 1.

Definition 21. The finite- and multi-sample correction for the approximate
estimate of the AIC is:

AICc1(k, c) = −2l(θ̂) + 2n(k− c+ 2)
n− k+ c− 3 . (62)
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Then we compute the AICc1(k, c) for different combinations of hy-

potheses, and select the one with the smallest value.

Sugiura also considered small-sample correction and the exact bias

for regression models with an almost identical result. Let X ∈ Rn
an

n-dimensional Gaussian vector, X ∼ N
(
Aθ,σ2I

)
, with A an (n× k)

known matrix with rank k, θ a (k × 1) parameters’ vector, and I an

(n× n) unitary diagonal matrix. The null hypothesis is

H0 : Bθ = 0,

with B a known (b × k) matrix of rank b, where b is the number

of parameters set to zero (restrictions). The subscript c2a stands for

Criterion 2, case a (univariate).

Definition 22. The small-sample correction for regression models of the
approximate estimate of the AIC is given by:

AICc2a = −2l(θ̂) + 2n(k− b+ 1)
n− k+ b− 2 . (63)

This result can be extended to the multivariate case. Consider an

(n×p)matrixX, with each rowhaving a p-variate independent normal

distribution , and X ∼ N (Aθ, Σ), where the mean has an (n× k)
matrix A of rank k, θ is a (k × p) parameters’ matrix, Σ is a (p× p)
covariance matrix, and the hypothesis to study is again similarlyH0 :
Bθ = 0, with B a known (b× k) matrix of rank b. The subscript c2a
stands for Criterion 2, case b (multivariate).

Definition 23. The small-sample correction for multivariate regression of
the approximate estimate of the AIC is given by:

AICc2b = −2l(θ̂) + 2n(k− b+ (p+ 1)/2)p
n− k+ b− p− 1 . (64)

For the case of normal populations with different variances, con-

sider a sample

{
x
(i)
1 , . . . ,x(i)ni

}
where the generic random variable

X ∼ N
(
µi,σ2

i

)
, with i = {1, . . . , k}, and µi unknown. The hypoth-

esis in this case is defined by:

H0 : σ2
j1 = · · · = σ2

jc ,

where the set of indexes is defined as in the second paragraph of this

section. The subscript c3a stands for Criterion 3, case a (univariate).

Definition 24. The corrected approximate estimate AIC for normal popula-
tions with different variances is:

AICc3a = −2l(θ̂) + 2

 (c+ 1)
∑c
i=1 nji∑c

i=1 nji − c− 2

+

{
2

k∑
i=c+1

nji
nji − 3

}. (65)



2.6 small samples 39

Its extension to the multivariate case considers the sample taken

from a p-variateN (µi, Σi), with µi an (n× p)matrix, and Σi a (p× p)
matrix. Here the hypothesis to consider with unknown µi:

H0 : Σj1 = · · · = Σjc ,

where again the set of indexes is as previously explained. The subscript

in the following approximate criterion, c3a , stands for Criterion 3, case

b (multivariate).

Definition 25. The approximate estimate of the AIC for multivariate response
with normal populations with different variances is:

AICc3b =

− 2l(θ̂) + 2p

(c+ p+ 1
2

) ∑c
i=1 nji∑c

i=1(nji − c− p− 1)

+

{
p+ 3

2

k∑
i=c+1

nji
nji − p− 2

}. (66)

ExtendingSugiura’swork,HurvichandTsai [157]proposeda second-

order bias adjustment for regressionmodels, which includes nonlinear

regression and autoregressive time series models.
14

It is efficient if the

true parameter space is infinite dimensional. In this situation, the con-

cept of approximating family is employed analogously to candidate

models. Consider a DGP y = µ+ ε, with y, µ, and ε of dimension n,

where εi
iid∼ N

(
0,σ2

0
)
. The candidate family of models is y = h(θ) +u,

where θ is an m-dimensional parameter vector, both u and h(θ) are

n-dimensional vectors, h is a twice continuously differentiable func-

tion in θ, and ui
iid∼ N

(
0,σ2)

. In the following definition, the subscript

c stands for "corrected". Further, following [273] it can be shown that

AICc is asymptotically efficient if approximating models are linear.

Definition 26. If the approximating family of models includes the DGP, it
can be shown that:

AICc = n log σ̂2 + n
1 +m/n

1− (m+ 2)/n (67)

is an approximately unbiased estimator of the expected KLI of the fitted model.

Bedrick and Tsai [30] extended this small sample correction to mul-

tiresponse regression models. Consider a collection of p variables with

n observations, Y , an (n × p) matrix. Let X be an (n ×m) known

matrix of regressors, B an (m× p) matrix of unknown parameters,

and U an (n× p) matrix with i.i.d. errors with U i ∼ N (0p, Σ). Con-

sider the multivariate regression model Y = XB +U , and the DGP

14 See also Section 3.2.
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Y = X0B0 +U0, whereX0 is (n×m0), B0 is (m0 × p), and U0 has

U0,i ∼ N (0p, Σ0). To obtain the following definition, the arguments

are similar to Section 2.3. Note that this criterion is an exact unbiased

estimator of the expected value, under correct specification, of the KLI

between the true and fitted models, using the MLE.

Definition 27. The small sample correction for multivariate regression with
correct specification of the approximate estimate of the AIC is equal to:

AICC = n log
∣∣∣Σ̂∣∣∣+ dp(n+m), (68)

where d = n/ (n− (m+ p+ 1)).

Seghouane and Bekara [261] proposed the Corrected Kullback In-

formation Criterion (KICc), a bias corrected version of the Kullback

Information Criterion (KIC) by Cavanaugh [66], which is an asymp-

totically unbiased estimator of Jeffrey’s J-divergence. Following argu-

ments similar to Hurvich and Tsai, their focus was on linear regression

models under correct specification or overfitting. Let

y = Xβ0 + ε, ε ∼ N (0,σ2
0In),

y = Xβk + ε, ε ∼ N (0,σ2
kIn),

be the DGP and the k-th candidate, where y is an n-dimensional vector

of observations, X is an (n× k) design matrix of rank k, β0 and βk are

k-dimensional parameters’ vector, and both ε and ε are n-dimensional

noise vectors. In this case, the full parameters’ vector is denoted by

θk =
[
β>k σ

2
k

]>
.

Definition 28. The approximate estimate of the KICc is given by:

KICc = −2l(θ̂) + 2 (k+ 1)n
n− k− 2 − nψ

(
n− k

2

)
+ n ln n2 , (69)

where ψ(·) is the psi (digamma) function.

Leeb [186] studied the out-of-sample predictive performance of dif-

ferent IC and PC (including AIC and AICc) when the sample size is

small relative to data’s complexity. Two situations were considered on

the latter:

(i) the number of parameter and sample size are of the same order;

and

(ii) the number of candidate models is larger than sample size.

The setting is that of random design regression with an infinite-dimensional
model, and focusses on prediction of new observations given unob-

served regressor. Let y be a scalar response variable, related to a se-

quence of explanatory variables x = (xj)∞j=1 such that:

y =
∞∑
j=1

xjβj + u, (70)
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with the β parameters such that β = (βj)∞j=1, the error term u with

E[u] = 0, E[u2] = σ2 ≥ 0, the random sequence of explanatory mul-

tiple regressor x with E[x] = 0, and variance-covariance net Σ =

[E[xixj ]]i,j≥1 such that (70) converges inL2
. Furthermore, it is assumed

that E [xjku] = 0, for each k ≥ 1, and for integers j1 < j2 < · · · < jk.

Consider a sample (Y ,X) from (70), with Y = (y(1), . . . , y(n))> an n-

dimensional vector,X = (x(1)>, . . . , x(n)>)> an (n×∞)-dimensional

net, and (y(i), x(i)) i.i.d. copies of (y, x). Parameters’ vector β is es-

timated via the restricted least-squares (RLS) estimator considering

submodels of (70). Define β̃(m) the RLS estimator referred to model

m, of dimension |m|. The goal is to select the model with ’best’ out-of-

sample prediction. Consider a new set of observations (y(f ), x(f )) inde-

pendent of the sample (Y ,X). Let modelm of dimension |m| < n− 1,
its RLS estimator β̃(m), and the predictor x(f )>β̃(m). The evaluation

of predictor’s performance is based on the conditional Mean-Squared

Prediction Error (MSPE):

MSPEC(m) = E

[
(y(f ) − x(f )>β̃(m))2

∣∣∣∣Y ,X
]

,

where the expectation depends on n,β,σ, and Σ, and the subscript

C stands for "conditional". Let RSS(m) denote the Residual Sum of

Squares (RSS) for modelm.

Definition 29. As approximate estimates for the MSPEC(m), Leeb consid-
ered the Generalized CV [87], GMV(m), the Sp(m) criterion [312], and an
auxiliary criterion ρ̂2(m). Their approximate estimates are:

GCV(m) =
RSS(m)

n− |m|
n

n− |m|
, (71)

Sp(m) =
RSS(m)

n− |m|
n− 1

n− 1− |m| , (72)

ρ̂2(m) =
RSS(m)

n− |m|
n+ 1

n+ 1− |m| , (73)

Via theoretical and simulation results, Leeb showed that GCV(m),

Sp(m), and ρ̂2(m) perform better than the AIC and AICc in terms of

approximating the MSPEC(m) in this setting.

2.6.1 Discussion

goodness-of-fit in terms of the likelihood function or the

residual sum-of-squares ICweredeveloped considering the con-

nection between entropy and the MLE. Further adaptations included

approximate/conditional [12], penalized [173, 278, 280], or partial /

composite [315] likelihood functions. When the estimation of param-

eters was related to regression problems, the Ordinary least squares

(OLS) method was considered. It is well known in this type of prob-

lems, with Gaussian errors, the OLS estimator and MLE coincide un-

der spherical errors. See Berkson [33] for a discussion. When working



42 ms via ic and pc: a survey for i.i.d. case

directly with the likelihood function, IC are written in terms of the

log-likelihood function, l(·). For regression problems, the RSS is used

instead.

mle, robust estimation, ic and regularization MLEs are a

special case of robust estimation [156], and can be thought as as an L1
or L2 regularization problem where the penalty parameter, λ, is set to

zero. For details, Schmidt [255]. The link between IC and regularization

is explored by Dixon and Ward [102], while it is taken as departing

point in the machine learning literature, e.g. Xu et al. [342], Giraud

[124, Ch. 2].

2.7 misspecification and further estimators

The AIC was developed under model’s correct specification. To obtain

asymptotic consistency, efficiency and normality properties of MLEs

for misspecified probabilistic models, we need to modify the classical

regularity conditions, as in Huber [155] or White [330]. We follow

Konishi and Kitagawa [174, pp. 47-50] for these relaxed conditions.

Assumptions 3. To obtain the asymptotic distribution of parameters under
misspecification, assume the following for the probability density function
f(x

∣∣∣θ):
(i) log f(x

∣∣∣θ) is three times continuously differentiable with respect to the
parameters’ vector θ ≡ (θ1, . . . , θp)>, i.e. these derivatives are continu-
ous functions;

(ii) There exist integrable functions F1(x),F2(x) ∈ R, and functionH(x),
usually referred to as envelope functions, such that:15∫

Ω
H(x)f(x;θ)dx <∞, (74)

i.e. the expected value of function H(x) with respect to the postulated
law f(·) is finite; and∣∣∣∣∂ log f(x;θ)

∂θi

∣∣∣∣ < F1(x), i = {1, . . . , p} , ∀ θ ∈ Θ, (75)∣∣∣∣∂2 log f(x;θ)
∂θi∂θj

∣∣∣∣ < F2(x), i, j = {1, . . . , p} , ∀ θ ∈ Θ, (76)∣∣∣∣∂3 log f(x;θ)
∂θi∂θj∂θk

∣∣∣∣ < H(x), i, j, k = {1, . . . , p} , ∀ θ ∈ Θ; (77)

(iii) For some θ ∈ Θ, i, j = {1, . . . , p}:

0 <
∫ +∞

−∞

∂ log f(x;θ)
∂θi

∂ log f(x;θ)
∂θj

f(x;θ)dx < +∞, (78)

15 This condition may be further relaxed, without the second and higher derivates of the

likelihood function [155].
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i.e. the expected Fisher information on θ of a single generic observation is
assumed to be positive and finite for a p-dimensional parametric model,
0 < I1 (θ) < +∞, where:

I1(θ) =
∫
∂ log f(x;θ)

∂θ

∂ log f(x;θ)
∂θ>

g(x)dx (79)

= EG

[
∂ log f(x;θ)

∂θ

∂ log f(x;θ)
∂θ>

]
; (80)

(iv) Denote dn = {x1, . . . ,xn} an i.i.d. random sample extracted from an
unknown model characterized by a probability density function g(x;θ)
which is not necessarily equal to the probability density function
f(x;θ);

(v) Denote with θ0 the solution to the set of equations:∫
Ω

∂ log f(x;θ)
∂θi

g(x)dx = 0, i = {1, . . . , p} , (81)

where the order of differentiation and integration may be interchanged if
we are in a ’regular estimation problem’, which would allow us to view
the left-hand side as the Expected Value, with respect to the probability
density function g(·), of the first partial derivative of the logarithm of the
probability density function f(·) with respect to the parameters’ vector
θ:

EG

[
∂ log f(x;θ)

∂θ

]
=

∂

∂θ
EG [log f(x;θ)] , (82)

i.e. θ0 ∈ Ω allows to maximize the Expected Log Likelihood, or equiv-
alently, minimize the KLI of the model characterized by f(x;θ), with
respect to the model characterized by g(x;θ).

Let θ0 and θ̂n be a p-dimensional parameters’ vector, and its MLE

computed with a sample of dimension n, respectively, and I (θ0) and

J (θ0) be (p×p)matrices, respectively the squaredgradient andminus

the Hessian, computed at θ = θ0, equal to:

I (θ) =
∫
∂ log f(x|θ)

∂θ

∂ log f(x|θ)
∂θT

g(x)dx,

J (θ) = −
∫
∂2 log f(x|θ)
∂θ∂θT

g(x)dx.

The following proposition states that the theMLE θ̂n, using a sample of

dimension n, is a weakly consistent estimator of θ0, and that the proba-

bility distribution of

(
θ̂n − θ0

)
converges to a p-dimensional Gaussian

distribution with a zero-valued mean vector and (p× p) asymptotic

variance-covariance matrix computed at θ0.

Proposition 2. Under assumptions 3, it can be shown that asymptotically:

θ̂n →p θ0, (83)

√
n
(
θ̂n − θ0

)
→d Np

(
0,
[
J−1 (θ0)

]
I(θ0)

[
J−1 (θ0)

]T)
. (84)
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types of misspecification There are different types of model mis-

specification. For instance, local misspecification as in Schorfheide

[256]. The properties of predictors in misspecified AR time series mod-

els have been studied by Kunitomo and Yamamoto [178], the conse-

quence of misspecified models on parameter estimation in Long [196],

a general definition of model misspecification was considered by Hsu

et al. [153] for parametric time series, and the consequences of mis-

specified models in the quasi ML (QML) estimation framework for

common time series models by Bardet et al. [28].

consequences of misspecification for ic Model’smisspecifica-

tionmodifies IC’s evaluationwith respect to the correctly specified case.

If we are not sure whether the model is correctly nor misspecified (i.e.

possibly-misspecified setting), our conclusions on asymptotic proper-

ties of IC are further modified. Related considerations from statistical

decision theory include the admissibility of the selection procedure

[284, 291] and the unbiasedness of the estimator of the loss function

(e.g. [48]).

2.7.1 TIC and RIC

To the best of our knowledge, the first generalization considering the

bias of the estimation of the expected log likelihood in the possibly-

misspecified case was the Takeuchi Information Criterion (TIC) [292].

This work was written in Japanese, but Shibata [278] latter proposed

an extension of the TIC, Shibata’s Regularized Information Criterion

(SRIC), where he also discussed the TIC with examples. Both criteria

were latter presented in Burnham andAnderson [59], andwere further

extended .

For model comparison and under four regularity assumptions simi-

lar to those above, Shibata [278] writes the expected KLI, between the

unknown g(·) and the f(·) at the estimated parameter:

E
[
I(g; f(x|θ̂k))

]
=∫

g(x) log g(x) dx+E
[
−l(θ̂k)

]
+ tr

{
I(θ0)J(θ0)

−1
}

+ o(1).

Given that the first component does not depend on any model, it is

considered as a constant and omitted. This decomposes the expected

KLI as minus the expected log likelihood at the estimated parameter

plus a bias term. Different estimates of the bias term tr
{
I(θ0)J(θ0)−1}

deliver different criteria. If g(·) is equal to f(·), the AIC is obtained.
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Let yn be a vector of n independent observations, and write the joint

likelihood as:

l(θ) =
n∑
i=1

log fi (yi;θ) , (85)

and define li
(
θ̂
)
≡ log fi

(
yi; θ̂

)
. In the following definition, notice

that the estimator of the bias, tr
{
Î Ĵ−1

}
, coincides with the LM test

statistic [151], where

Î =
n∑
i=1

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ>
, (86)

Ĵ = −H(θ̂) = −
n∑
i=1

∂2li(θ̂)

∂θ∂θ>
, (87)

are consistent estimators of I(θ0) and J(θ0) respectively. Then the

approximate estimate of the TIC is given by minus two times the log

maximum likelihood, plus twice the LM test statistic:

Definition 30. The TIC is defined as a generalization of the AIC robust to
model misspecification:

TIC = 2E
[
I(g; f(x|θ̂k))

]
(88)

= 2
(
E
[
−l(θ̂k)

]
+ tr

{
I(θ0)J(θ0)

−1
})

, (89)

and its approximate estimate is given by:

TIC(k) = −2l(θ̂k) + 2tr
{
Î Ĵ−1

}
. (90)

To obtain SRIC, Shibata considers the Maximum Penalized Likeli-

hood (MPL) function,

lλ(y;θ) = log f(y;θ) + λk(θ),

lλ(yn;θ) =
n∑
i=1
{log f(yi;θ) + λki(θ)} ,

for a single observation and thewhole sample respectively,with k(θ) ≤
0 a twice differentiable penalty function which may depend on n, and

λ ≥ 0 a weight controlling the amount of penalty. The MPL estimate

(MPLE), θ̂(λ), is obtained by maximizing the MPL with respect to θ.

Similarly to Condition v in Assumptions 3, it is assumed here that θ̂(λ)

converges to θ∗(λ) defined as the unique solution to the following set

of equations:

E

[
∂

∂θ
lλ(y;θ)

]
= 0,

i.e. θ∗(λ) is a point in the parameters’ space that allows to maximize

the expected penalized log-likelihood (equivalent to minimized the

KLI).
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Let l(θ̂k(λ)) be the MPL estimator for a model of dimension k, and

Î(λ) =
∑
i=1

{
∂

∂θ
lλ(yi; θ̂(λ)

∂

∂θ>
lλ(yi; θ̂(λ)))

}
,

Ĵ(λ) = − ∂2

∂θ∂θ>
lλ(yn; θ̂(λ)),

be the estimates of both the squared gradient and minus the Hessian

matrix respectively, evaluated at the MPLE in both cases, but avoided

in the notation for simplicity. Extending the TIC as a regularization

criterion, Shibata [278] obtained:

Definition 31. The approximate estimate of SRIC is given by:

RIC = −2l(θ̂k(λ)) + 2tr
{
Î(λ)Ĵ(λ)−1

}
. (91)

In this case, with λ = 0 we obtain again the TIC. The advice is to choose

λ as tominimize SRIC for eachmodel, and then compare theminimized

value SRIC between the models.

2.7.2 GIC and GAIC for functional estimators

The following definitions deliver some preliminary concepts needed to

continue the study of IC under model’s misspecification for functional

estimators.

Definition 32 (Banach space, Hilbert space, and Functional). A normed
vector space V with the property that each Cauchy sequence {vk}∞k=1 in V
converges toward some v ∈ V , is called a Banach space. A vector space with
an inner product 〈·,·〉, which is a Banach space with respect to the norm in
inner product space, i.e.

‖v‖ :=
√
〈v,v〉,v ∈ V ,

is a Hilbert space. Now, letH be a Hilbert space. A linear operator Φ : H → C

is called a functional [81, p. 70].

Definition 33 (Functional estimator [174]). Assume that the parameter θ
is defined as a real-valued function of the distribution G, i.e. the functional
T (G), with T (G) a real-valued function defined on the set of all distributions
on the sample space and does not depend on the sample size n. Then, given
the observations {x1, . . . ,xn}, the estimator θ̂ of θ is a functional estimator:

θ̂ = θ̂(x1, . . . ,xn) = T (Ĝ)

with Ĝ is the Empirical Distribution Function, Ĝ(x) = 1
n

∑n
α=1 I(x;xα),

where I(x;xα) is the indicator function equal to 1 if x ≥ xα, 0 if x < xα.

Definition 34 (Fisher Consistency [156] ). Let (x1, . . . ,xn) be a sample
of n observations, Fn = n−1∑ δxi be the empirical measure with δx = 1 at
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x, Tn(x1, . . . ,xn) = T (Fn) be some functional T defined on the space of
empirical measures,16 and F the true underlying common distribution of the
observations. Then, if the functional T satisfies:

T (F ) = lim
n→∞

T (Fn), (92)

then it is called Fisher consistent at F .

Cox and Hinkley [86] note for instance that with discrete random vari-

ables, Fisher consistency coincides with requiring that, if all sample

proportions are equal to the corresponding probabilities, then the esti-

mate is exactly correct.

Let Xn be a random sample size n from an unknown distribution

G(x) with density function g(x). We estimate using a parametric fam-

ily of density functions, {f(x|θ); θ ∈ Θ)}, possibly misspecified, with

θ a p-dimensional vector of unknown parameters. Konishi and Kita-

gawa [173] considered the bias correction of the log likelihood when θ̂

for functional estimators and misspecified models under the assump-

tion of Fisher consistency. This delivered the Generalized Information

Criterion (GIC). In this case, the expected log likelihood is:

η(Xn;G) ≡
∫
g(z) log f(z|θ̂) dz =

∫
log f(z|θ̂) dG(z)

and its estimator uses the empirical distribution of G, i.e.

η(Xn; Ĝ) ≡ 1
n

n∑
α=1

log f(Xα|θ̂).

Theorem 2.1 [173] shows that if the functional T (·) is second-order

compact differentiable at the distribution G, i.e. suitably defined p-

dimensional regular functional, then the asymptotic bias of the log

likelihood in the estimation of the expected log likelihood can be writ-

ten as:

EG
{
η(Xn; Ĝ)− η(Xn;G)

}
=

1
n
b1(G) + o(

1
n
)

where

b1(G) = tr


∫
T (1)(z;G)∂ log f(z|θ)

∂θ′

∣∣∣∣∣
T (G)

dG(z)

 ,

and

T (1)(z;G) =
(
T
(1)
1 (z;G), . . . ,T (1)

p (z;G)
)>

16 Or over the full space of all probability measures on the sample space.
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is the influence function
17

of a p-dimensional functional T (G) at the

distribution G.

In the following definition, the first part is related to the estimate

of the expected log likelihood and the second part to the bias esti-

mate b1(Ĝ) obtained by replacing the unknown distribution G by its

empirical counterpart Ĝ. Let

T (1)(xi; Ĝ) =
(
T
(1)
1 (xi; Ĝ), . . . ,T (1)

p (xi; Ĝ)
)>

be the p-dimensional empirical influence function, then:

Definition 35. For a functional estimator, the approximate estimate of the
GIC is defined as:

GIC(Xn; Ĝ) = −2
n∑
i=1

log f(xi|θ̂)

+
2
n

n∑
i=1

tr
{
T (1)(xi; Ĝ)

∂ log f(xi|θ)
∂θ>

∣∣∣∣∣
θ̂

}
. (93)

If a nonfunctional estimator is employed (e.g. the MLE), then the

GIC reduces to the TIC as a generalization of the AIC, the Generalized

AIC (GAIC). Let θ̂ML be theMLE, andwrite θ̂ML = TML(Ĝ), withTML

being the p-dimensional functional that solves the "implicit equation":

∫
∂

∂θ
log f(z|θ)

∣∣∣
TML(G)

dG(z) = 0 (94)

In the following definition, the bias estimate is obtained as in Eq. 86,

Definition 30, Section 2.7.1, for the TIC:

I(G) =
∫
∂ log f(z|θ)

∂θ

∂ log f(z|θ)
∂θ>

∣∣∣∣∣
TML(G)

dG(z), (95)

J(G) = −
∫
∂2 log f(z|θ)
∂θ∂θ>

∣∣∣∣∣
TML(G)

dG(z), (96)

but via the empirical distribution function Ĝ.

Definition 36. The approximate estimate of the GAIC is given by :

GAIC
(
Xn; Ĝ

)
≡ −2

n∑
α=1

log f
(
Xα

∣∣∣θ̂ML

)
+ 2tr

{
I(Ĝ)J(Ĝ)−1

}
. (97)

17 In nonparametric regression problems, the influence function is used to approximate

the standard error of a plug-in estimator, and is connectedwith theGâteaux derivative

(i.e. directionally differentiable at a point in the sense of Gâteaux, equivalent to the

definition of weakly directionally differentiable at a point as in Shapiro [268, p. 478]).

See Wasserman [322, p. 18], Konishi and Kitagawa [174], and Huber and Ronchetti

[156, Section 2.5] for further indications.
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Now consider the case of the robust M-estimator as in Huber and

Ronchetti [156], where θ̂M is defined as the solution for the following

implicit equation:

n∑
α=1

ψi
(
Xα, θ̂M

)
= 0, i = {1, . . . , p} ,

with function ψ(X,θ) = ∂
∂θρ(X,θ)|TM (G), defined over the domain

X × Θ, with ρ an arbitrary function (if ρ(X,θ) = − log f(X,θ) the

ordinary ML estimate is obtained - see [156, p. 50] for further assump-

tions on ψ(·)), X the sample space, and Θ ⊂ Rp
, where p is the total

number of equations (parameters). The estimate θ̂M = TM (Ĝ) is such

that: ∫
ψi[z,TM (G)]dG(z) = 0, i = {1, . . . , p} .

In this case, the influence function becomes:

T
(1)
M (z;G) =M (ψ,G)−1ψ[z,TM (G)],

with ψ = (ψ1, . . . ,ψp)>, and M (ψ,G) a nonsingular (p× p) matrix

such that:

M (ψ,G)T = −
∫
∂ψ(z,θ)T

∂θ

∣∣∣∣
TM (G)

dG(z).

For the following definition, let b
(1)
M (Ĝ) be the bias estimate of:

b
(1)
M (G) =

tr
{
M (ψ,G)−1

∫
ψ[z,T (G)]∂ log f(z|θ)

∂θ>

∣∣∣∣
TM (G)

dG(z)
}

.

Definition37. The approximate estimate of theGIC for the robustM-estimator
is given by:

GICR(Xn; Ĝ) = −2
n∑

α=1
log f

(
Xα|θ̂M

)
+ 2b(1)M (Ĝ). (98)

An analogous version of SRIC for functional estimators is defined.

Write:

Îλ(T (Ĝ)) = n−1
n∑

α=1
ψ
(
Xα, θ̂λ

) ∂ log f(Xα|θ)
∂θ>

∣∣∣∣∣
θ̂λ

, (99)

Ĵλ(T (Ĝ)) = n−1
n∑

α=1

∂ψ(Xα|θ)>

∂θ

∣∣∣∣∣
θ̂λ

. (100)

Definition 38. If the M-estimator is employed under the penalized likelihood
procedure, then the approximate estimate of the GIC is given by:

GICλ(Xn; Ĝ) =

− 2
n∑

α=1
log f(Xα|θ̂λ) + 2tr

{
Îλ(T (Ĝ))Ĵ

−1
λ (T (Ĝ))

}
. (101)
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2.7.3 TIC and Composite Maximum Likelihood

Varin and Vidoni [315, p. 523] also generalized the TIC for the Com-

posite Maximum Likelihood Estimator (CMLE). The CMLE is a class

of pseudolikelihood estimators which includes the full likelihood as a

special case.

Let {f(y;θ), y = (y1, . . . , yn) ∈ Y ⊂ Rn,θ ∈ Θ} be a parametric

statistical model, with Y ⊆ Rn
, Θ ⊆ Rd

, n ≥ 1, and d ≥ 1. Consider
a set of events {Ai : Ai ⊆ F , i ∈ I}, where I ⊆ N, and F is some σ-

algebra on Y . Then:

Definition 39. A composite likelihood is defined as:

Lc(θ; y) =
∏
i∈I

f(y ∈ Ai;θ)wi ,

where f(y ∈ Ai;θ) = f({yj ∈ Y : yj ∈ Ai} ;θ), with y = (y1, . . . , yn),
while {wi, i ∈ I} is a set of suitable weights.

Define its associated composite log likelihood as:

lc (θ; y) = logLc (θ; y) , (102)

and its sample counterpart:

lc
(
θ̂CL; y

)
=
∑
i∈I

log f
(
Y ∈ Ai; θ̂CL

)
wi, (103)

i.e. the maximised composite log likelihood.

Let Z = (Z1, . . . ,Zn) be a random variable with probability density

g(z), and denote:

Lc (g; Z) =
∏
i∈I

g(Z ∈ Ai)wi , (104)

Lc (h; Z) =
∏
i∈I

h(Z ∈ Ai)wi . (105)

the composite likelihood functions of g(z) andh(z). Thenwe candefine

the KLI via the CMLE as a linear combination of the KLI in the MLE

case:

Definition 40. The KLI of a probability density h(z) with respect to g(z) is
given by:

IC (g,h) = Eg(z)

[
log

{
Lc (g; Z)
Lc (h; Z)

}]
=
∑
i∈I

Eg(z) [{log g(Z ∈ Ai)− log h(Z ∈ Ai)}wi] (106)

For a first-order unbiased selection criterion, the following regularity

conditions are required for robustness to misspecification:
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Assumptions 4. The regularity conditions for inference and model selection
with composite log likelihood are the following:

(i) Θ is a compact subset of Rd, d ≥ 1, and ∀ y ∈ Y , LC (θ; y) is twice
continuously differentiable with respect to θ;

(ii) The composite likelihood estimator, θ̂CL, solves the composite likelihood
equation and there exists θ∗ ∈ int (Θ):

Eg(y) [5lC (θ∗; Y)] = 0, (107)

exactly or asymptotically for diverging n, where Y ≡ (Y1, . . . ,Yn) is
the sample of size n, and g(y) the true distribution that may or may not
be included in the the family {f(y;θ), y ∈ Y,θ ∈ Θ};

(iii) θ̂CL is a consistent estimator of θ∗ and asymptotically Gaussian.

Varin and Vidoni developed a first-order unbiased selection statis-

tic similarly to Takeuchi [292]. Let Îc and Ĵc be consistent, first-order

unbiased estimators respectively of:

J(θ∗) = Varg(y) [5lc(θ∗; Y)] ,

H(θ∗) = Eg(y)

[
52lc(θ

∗; Y)
]

,

with Eg(y) and Vg(y) respectively the expected value and the variance

with respect to g(y). Then:

Definition 41. The TIC via CML is defined as:

Eg(y)

[
lc
{
θ̂CL (Y)

}]
=

Eg(y) [lc {θ∗; Y}]−
1
2tr

{
J(θ∗) (H∗)−1

}
+ o(1), (108)

and its approximate estimate given by:

TICCL = −2lc
(
θ̂CL; y

)
+ 2tr

{
ÎcĴ
−1
c

}
. (109)
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abstract

For dependent data, information’s perspective met prediction and

stochastic processes theory. We discuss common solutions to lag se-

lection for univariate and multivariate parametric time series models.

A selective overview of nonparametric techniques for nonlinear time

seriesmodels follows, focussing on the nonparametric asymptotic final

prediction error. We indicate recent developments, theoretical works,

and other surveys of methods for high-dimensional settings.

Keywords:model selection, information criteria, time series, paramet-

ric, nonparametric, high-dimensional.

3.1 introduction

Temporal dependence arises when moving from random variables to

stochastic processes and modifies problem’s setting by considering

a nonzero autocovariance function, which modifies assumptions and

strategies for its handling. Another way of seing it is that, if the obser-

vations are taken from a process not displaying the i.i.d. feature, but
instead exhibiting some type of persistence, we position inside time

series analysis.

The formal definition of a stochastic process,
1
requires an abstract

probability space (Ω,A, P), a measurable space (S,B), and any non-

empty set T that will serve to index the process, i.e. the set of times. A

stochastic process {Xt}, t ∈ (−∞,∞), is a family of random variables

Xt := {Xt : t ∈ T}. The random variable Xt is said measurable if

X−1
t (B) ∈ A, ∀B ∈ B, and such that Xt : ω → S, ∀ t ∈ T ,ω ∈ Ω.

The state-space of the process, S, is the arrival space of the random

variable Xt.
2
For instance, S a Polish space with B its Borel σ-algebra,

or the measurable space (S,B) = (R,B(R)). Note that the random

variable Xt is function of the two variables t and ω. For clarity, we

write that: Xt ≡ X(t,ω) ∀ (t,ω) ∈ T ×Ω. We observe the sequence of

random variables indexed by the subscript of time, i.e. the series {xt},
t = {1, 2, . . . ,n}. Our goal is to select the appropriate dimension of the

model. Sometimes it translates into choosing the lag delivering best

prediction in some sense, i.e. under some definition of divergence.

1 See [50, 55, 240].

2 In this sense, Ω can be thought of as a ’departure’ space.

53
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The work is organized as follows. Section 3.2 will introduce MS via

IC and Prediction Criteria (PC) in autoregressive (AR) models. PC refer

to selectionmethods derived from the one-step ahead prediction error,

e.g. Akaike’s Final Prediction Error (FPE). Subsection 3.2.2 focusses on

the FPE forARmodels, Subsection 3.2.3 on criteria for analysis in the fre-

quency domain setting, Subsection 3.2.4 on criteria for ARMAmodels,

and Subsection 3.2.5 on criteria for VARMA and VAR models. Section

3.3 proposes a path for nonparametric analysis of nonlinear time series

models, focusing on the methodology behind the nonparametric ana-

logue of Akaike’s FPE. Brief indications on recent high-dimensional

works discussing MS are included in Section 3.4. One conclusive re-

mark is shared in Section 3.5, and short bibliographic notes are in-

cluded in Appendix A.2.

3.2 time series and model selection

Our goals is to select the appropriate dimension of the model, which

in some applications coincides with the order p. Results on MS for

time series initially assumed some type of mixing conditions or strict

stationarity, followed by results for weak stationarity conditions. See

Brockwell et al. [56,Ch. 1] on stationarity, andDoukhan [104] onmixing

conditions. Since concepts of these conditions are usually employed on

their formal derivations, short notes are presented in Appendix A.2.4

together with further bibliographic notes.

3.2.1 Information criteria in time series

Initial solutions for MS came from the hypothesis testing literature

applied specifically to time series, e.g. Quenouille [229], Wold [339],

Whittle [331], Hannan [132], and from multivariate regression as in

Mallows [203, 204]. Akaike [7] underlined how the AIC and the min-

imum theoretical information criterion estimate (MAICE) procedure

were preceded by the FPE, i.e. a PC based on the MSPE advanced in the

context of AR models of finite order. Since the beginning, the devel-

opment on IC have been associated with those in time series analysis

and control, viz. Akaike [7, p. 717]; Rissanen [241]; the conditions for

asymptotic consistency in Hannan and Quinn [137] from time series;

and Bozdogan [52, p. 347]. See Table 9 in Appendix A.2 for examples

of IC and PC in time series. These include:

i. the FPEα [2] of Akaike;

ii. the FPE
β
[41] of Bhansali and Downham;

iii. the HQ [137] of Hannan and Quinn;

iv. the AICAR [217] of Ogata;
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v. the FPEγ(k) [275] of Shibata;

vi. the APE [243] of Rissanen;

vii. the I(k,Cn) [356] of Zhao et al.;

viii. the AICc [157] of Hurvich and Tsai;

ix. the GICA [227] and GICB [227] of Potscher;

x. the FIC [328] of Wei;

xi. the QAIC [183] and QAICc [183] of Lebreton et al.;

xii. the ODQ [354] of Zhang and Wang;

xiii. the FIC (k) [180] of Lai and Lee;

xiv. the WIC [341] of Wu and Sepulveda;

xv. the RIC [269] of Shi and Tsai;

xvi. the EIC [43] of Billah et al.;

consistency, efficiency, and parsimony Besides asymtotic con-

sistency and efficiency for MS, in time series analysis and control, the

property of parsimony is relevant. Box et al. [51] citing Tukey [311]

defined parsimony as: “the smallest possible number of parameters for
adequate representations”. Bozdogan [53] connects this property with

Occam’s Razor: “the desirability of selecting, among the accurate models
of reality, those which are most parsimonious”. On the subject, see the

counterexamples to parsimony in Findley [114].

Tong [301] pursued the AIC approach to determine the order k of a

Markov chain. Consider the sequence of observationsS = {x1, . . . ,xn}
from an ergodic and stationary Markov chain. Each observation may

assume {1, 2, . . . , t} states. It is necessary to verify for the smallest

integer k > 0 that the conditional probability:

P {xn|xn−1,xn−2, . . . } = P {xn|xn−1,xn−2, . . . xn−k} (110)

for all n, given the sequence of observations S. To proceed, let:

kηL = −2
N∑
i=1

log

 f
(
Xi|θ̂k

)
f
(
Xi|θ̂L

)
 , (111)

be minus two times the logarithm of the LR statistic, where θ̂L is

the unrestricted MLE of θ, and θ̂k is its restricted version. Denote(
5tL+1 −5tk+1

)
as the degrees of freedom of kηL which is asymptot-

ically a chi-squared random variable, with5tj = tj − tj−1, j ≥ 1.
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Definition 42. Following arguments as in Section 2.3, Tong showed that to
satisfy (110) one can minimize the approximate estimate of the AIC forMarkov
chains:

R(k) = kηL − 2
(
5tL+1 −5tk+1

)
. (112)

autoregressive models An autoregressive (AR) model of order

p, AR(p), is defined as:

xt = β0 + β1xt−1 + · · ·+ βpxt−p + εt, (113)

where xt are observations from the Xt process, {εt} are white noise

innovations with Cov (xt, εl) = 0, where l = {1, . . . ,n}.
Results for AR models are numerous. For instance, Shibata [270]

studied the problem of the selection of the order of an AR models by

AIC, obtained the asymptotic distribution of the selected order, and

evaluated the asymptotic risks functions of parameters’ estimates for

the order selected by AIC. This work showed that the AIC is not consis-

tent for finite dimensional models. Findley [113] extended rigorously

results on bias correction also present in Ogata [217] in misspecified

Markov models or AR models, stressing the importance of the bias

correction.Wong and Li [340] studied the AICc for self-exciting thresh-

old autoregressive (SETAR) models via the conditional LSE in small

samples. Ng and Perron [213] studied theoretically and by simulation

the sensitivity of the AIC and the BIC to:

(i) the effective numbers of observations;

(ii) the degrees of freedom adjustment of the estimated variance; and

(iii) the penalty for overfitting in relation to sample size.

They conclude that these are relevant issues for valid model compari-

son.

The next subsection will present Akaike’s FPE [1, 2] for AR models

in detail, focussing in some hints for its computation. Additional PC

derived from the FPE, the Hannan-Quinn Information Criterion (HQ),

and the MRIC are overviewed in Sections 3.2.2.2 and 3.2.2.3.

3.2.2 Akaike’s Final Prediction Error and univariate time series models

The FPE is defined for time series and for general regression problems.

Given that AR is a particular type of regression, there is interest in

studying its residual, ε̂t = x̂t− xt, and to develop a measure from this

quantity. The MSPE , or some transform of it, has been used frequently

as such measure:

MSPE = E
[
(x̂t − xt)2

]
(114)
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TheFPE isnot an IC, in the sense that it doesnotderive from information-

theoretic considerations. Instead, it is a technique based on the MSPE,

a measure depending on the prediction errors. Therefore, a PC.

penalties Transformations of the MSPE include L1, L2 penaliza-

tions, or their combination. See respectively ridge regression as in

Hoerl and Kennard [148], Tibshirani’s lasso [299], elastic net of Zou

and Hastie [359], or Xu et al. [342] with L1/2 penalty. See also different

measures of forecast accuracy for univariate time series forecasts as in

Hyndman and Koehler [159] or in Peña and Sánchez [220].

The following paragraphs present different penalties and their as-

sociated approximate estimates, where distinct settings and sets of

assumptions modify the building and development of IC and PC.

3.2.2.1 The FPE for AR models

A detailed description of the procedure to compute the FPE for an

AR process was later given in Akaike [2], overviewed in the following

paragraphs. It relies on the asymptotic theory from [22, 96].

Let a stationary process {X(n)}, and its predictor X̂(n). Assuming

that the dependence between the past history of X(n), used to ob-

tain X̂(n), and recent values of X(n) is vanishing, we consider that

prediction is made with process {Y (n)}, different from {X(n)}, but
sharing the same statistical properties. Define the FPE as the MSPE of

the one-step ahead predictor X̂(n):

FPE[X̂(n)] ≡ MSPE1[X̂(n)] = E[
(
X(n)− X̂(n)

)2
],

with the subscript highlighting that it refers to the h = 1-step ahead

forecast. When {X(n)} is stationary and the predictor Ŷ (n) of {Y (n)}
is linear, write the predictor Ŷ (n):

Ŷ (n) =
M∑
m=1

âM (m)Y (n−m) + âM (0), (115)

where the estimated parameter âM (m) is a function of the observed

{X(n)}. The FPE of the general predictor will be

FPE[Ŷ (n)] = σ2(M)+
M∑
l=0

M∑
m=0

E [∆aM (l)∆aM (m)] VM+1(l,m), (116)

where

σ2(M) = E

(Y (n)−
M∑
m=1

aM (m)Y (n−m)− aM (0)
)2 (117)

= min
a(m)

E

(Y (n)−
M∑
m=1

a(m)Y (n−m)− a(0)
)2 ,
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i.e. aM (m) delivers the best linear predictor in the mean square sense,

∆aM (l) = âM (l)− aM (l) is the difference between the estimated and

the true parameter referred to the l-lag, and

VM+1(l,m) = E [Y (n− l)(n−m)] , (118)

with l,m = {1, 2, . . . ,M} is the autocovariance of order {l −m} for
the univariate process Y . For MS, we will select the model with the

smallest FPE.

Assume that X(n) is a stationary process with a DGP of the type:

X(n) =
M∑
m=1

a(m)X(n−m) + a(0) + ε(n),

for l,m = {1, 2, . . . ,M}, with ε(n) i.i.d., with zero mean E [ε(n)] = 0,
and positive variance

E
[
(ε(n))2

]
= σ2 > 0. (119)

Let {X(n) : n = −M + 1,−M + 2, . . . ,N} be our sample, and âM (m)

be the LS estimate of a(m). Then, for the AR(M ), the FPE of predictor

Ŷ (n) using the Ordinary least squares (OLS) estimate is given by:

FPE
[
Ŷ (n)

]
= σ2 +

M∑
l=1

M∑
m=1

E [∆aM (m)∆aM (l)]RXX(l−m)

+E

(∆X0 −
M∑
m=1

âM (m)∆Xm

)2 , (120)

where∆X l = X l−E [X(n)] is the difference between the samplemean

and its population counterpart, and

RXX(l−m) = E [X(n− l)X(n−m)]− (E [(X(n))])2
(121)

is the population autocovariance matrix of lag l−m. This is obtained

in the case of correct specification, using the independence property

and variables in deviations from their unconditional means.

For the asymptotic evaluation of the FPE for predictor Ŷ (n), con-

sider the expectation conditioned on X of the squared difference

(Y (n)− Ŷ (n))2
, EX [(Y (n)− Ŷ (n))2], instead of the unconditional ex-

pectation as in Equation (120). The resulting expression is equal to:

EX [(Y (n)− Ŷ (n))2] =

σ2 +
M∑
l=1

M∑
m=1

∆aM (l)∆aM (m)RXX(l−m)

+

(
∆X0 −

M∑
m=1

âM (m)∆Xm

)2

.
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Finally, to give the approximate estimate of the FPE, after the appli-

cation of the results from [22, 96], write a consistent estimate of σ2
as:

S(M) = Cxx(0, 0)−
M∑
l=1

âM (l)Cxx(0, l), (122)

where:

Cxx(m, l) = N−1
M∑
n=1

(
X(n−m)−Xm

) (
X(n− l)−X l

)
, (123)

Cxx(0, 0) = N−1
M∑
n=1

(
X(n)−X0

) (
X(n)−X0

)
, (124)

with

Xm = N−1
N∑
n=1

X(n−m), m = {0, 1, 2, . . . ,M} , (125)

and âM (m) the LS estimate solving:

M∑
m=1

Cxx(m, l)âM (m) = Cxx(0, l), l = {1, 2, . . . ,M} . (126)

The following Definition 43 follows from both Theorem 1 and Lemma

1 in Akaike [2], derived using the asymptotic results in [22, 96], and

delivers both the FPE for the predictor of an AR and its approximate

estimate. Let (1−N−1(M + 1))−1S(M ) be an estimate of σ2
, useful to

estimate the FPE given the ergodicity of X and the OLS estimate of

the parameters, M be the order of the model under consideration, N

the sample size, and S(M) a consistent estimate of σ2
, then:

Definition 43. The definition of (FPE)M as an asymptotic evaluation of the
FPE

[
Ŷ (n)

]
is:

FPEM
[
Ŷ (n)

]
=

(
1 + M + 1

N

)
σ2, (127)

and is estimated by (FPE) (M):

(FPE) (M) = (1 + M + 1
N

)(1−N−1(M + 1))−1S(M). (128)

To summarize, the algorithm’s pseudo-code to compute the FPE

[1] for an AR process is presented in Listing 1. Define L to be the

upper limit large enough to avoid excluding the efficientmodel. Notice

that L can be smaller than the maximum lag usually considered to

estimate the power spectrum in the frequency domain. Define the

sample autocovariances for lags l = {0, 1, . . . ,L}, and denote these

by "S_ACF(l)". Define AR(L) the AR model of order L and estimate

it. Recall that to fit by OLS an AR model of order M , with M =

{1, 2, . . . ,L}, requires to:
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Listing 1: FPE algorithm’s pseudo-code

1 Center variables to their sample means

2 Set L

3 Consider an AR(L) to fit model to data

4 Compute S_ACF(l)

5 Fit AR(M), M= {1,2,...,L}, by OLS

6 Estimate the FPE of order M

7 Compute its relative value wrt FPE(0)

8 Select order M that minimizes FPE

(i) minimize the Mean Square of Residuals with respect to parame-

ters of the restricted regression;

(ii) solve the normal equations; and

(iii) obtain the estimates for each orderM .

Then, denotewith "FPE(M)" the estimate of FPE of orderM,with FPE(0)

the FPE of order 0.

3.2.2.2 Further PC from the FPE

Given that the original FPE is not a consistent estimator of the order,

Akaike in the same article proposed the (FPE)α which allows to

consistently estimateK of a finite AR process. The required quantities

have been already defined for Definition 43.

Definition 44. The approximate estimate of the consistent estimator ofK for
a finire AR process is given by:

(FPE)α(M) = (1+N−α(M + 1))(1−N−1(M + 1))−1S(M), (129)

with α ∈ (0, 1) a penalty weight.

Since (FPE)α(M) adds a tendency to underestimateM0 (too small

values), Bhansali and Downham [41] further generalized the FPE.

Define β as a positive and fixed constant, the sample variance as

σ̂2
k =

1
T

T∑
t=1

(
Xt + âk,1Xt−1 + . . . +âk,kXt−k

)2
, (130)

with âk,u(u = 1, . . . , k) theOLS estimates of the estimatedAR(k)model,

k the lag number under examination, and T the total number of obser-

vations. Then the following definition follows:

Definition 45. The approximate estimate of the FPE to avoid underestimation
is:

FPEβ(k) = σ̂2
k(1 + βk/T ). (131)
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Shibata [273] showed that AIC, FPE, and Mallow’s Cp, are asymptot-

ically mean efficient point-wise. Shibata [275] also proposed a further

generalization of the previous criterion for regression problems, while

suggesting a procedure for the choice of the fixed constant thatweights

the penalty term. Consider a regression model y = Xβ(k) + ε, where

y> = (y1, . . . , yn) is an n-dimensional column vector observations,

X is an (n×K) design matrix, β>(k) = (β1, . . . ,βk, 0, . . . , 0) is the

parameters’ vector, and ε> = (ε1, . . . , εn) is an i.i.d. vector of zero-

mean Gaussian random variables with spherical variance E [εi] =

σ2 > 0. Define β̂
>
(k) =

(
β̂1, . . . , β̂k

)
as the solution to the system:

X>(k)X(k)β̂(k) = X>(k)y, with X(k) is a (n× k) submatrix with

the first k column vectors of X. Let k be the specific dimension being

evaluated, K the maximum dimension considered, the Residual Sum

of Squares (RSS) for model of dimension k:

nσ̂2(k) =
∥∥∥y−Xβ̂(k)∥∥∥2

, (132)

and denote with

σ̃2(K) = [n/ (n−K)] σ̂2(K) (133)

an unbiased estimate of σ2
.

Definition 46. The approximate estimate of the FPE given by [275] is:

FPEγ(k) = nσ̂2(k) + γkσ̃2(K), (134)

with γ the penalty term.

Notice that if we set γ = 2, we obtain the usualAIC; γ = logn Schwarz’s

BIC; or γ = c log logn the HQ criterion of Hannan and Quinn, intro-

duced below.

3.2.2.3 The HQ and the MRIC

Hannan and Quinn [137] proposed a strongly consistent MS criterion,

included in many statistical software, the popular Hannan-Quinn In-

formation Criterion (HQ) criterion. For its development, they used the

Law of Iterated Logarithms (LIL),
3
explaining its resemblance to the

BIC, for finite ergodic stationaryARmodels under correct specification

and estimated via the consistent Yule-Walker estimator in the identi-

cally distributed setting. Consider an AR(k) demeaned model:

k∑
j=0

α(j) {x(n− j)− µ} = ε(n), (135)

with E [x(n)] = µ, α0 = 1, {x(n)} an ergodic stationary sequence with

mean µ and finite variance. The linear innovations ε(n) are such that

3 For the LIL in stationary ergodic martingale difference sequences, see [288].
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∑k
j=0 α(j)z

j 6= 0 , |z| ≤ 1, E [ε(m)ε(n)] = δm,nσ
2
, and to apply the

limit theory is only necessary to assume:

E
[
ε(n)

∣∣∣Fn−1
]
= 0, (136)

E
[
ε2(n)

∣∣∣Fn−1
]
= σ2, (137)

E
[
ε4(n)

]
< +∞, (138)

where theσ-algebra generatedbyx(m) is denotedbyσ {x(m)} ≡ Fn−1,

m ≤ n, (or equivalently, by ε(m),m ≤ n). Let k be the considered order

of the regression, c a positive constant greater than 1, and n the sample

size. Then:

Definition 47. The approximate estimate of the HQ is given by:

HQ(k) = −2l(θ̂k) + 2kc log log(n). (139)

4
Let {yt} and {xt} be two weakly stationary demeaned stochastic

processes of dimensions 1 andm respectively. Let yt+h = β∗hx∗t + εt+h
be the D.G.P for h-step ahead prediction, and consider a sample of

n = {1, 2, . . . ,N ,N + 1, . . . ,N + h = n}

observations, an h-step ahead possibly-misspecified forecastingmodel

of the type: yn+h = βhxn+ ε(h)n , where pseudo-true parameters’ vector

is given by

βh = argmin
C∈Rm

E

[(
yt+h − c>xt

)2
]

,

and ε
(h)
n is the possibly-misspecified error for h-step ahead forecasting.

The dependence of xt on h exists, but it is suppressed for notational

convenience, so the consideration of a specific regressor also depends

on the forecast horizon h. The LS estimator delivers ŷn+h = β̂
>
n (h)xn,

where

β̂n =

(
N∑
t=1

xtx>t

)−1 N∑
t=1

xtyt+h

is the LS estimator of βh for h-step ahead regression based on the sam-

ple of n observations. As measure of interest take the h-step ahead

Mean-Squared Prediction Error (MSPE), which is derived from the dif-

ference between the observed and the estimated values, i.e. MSPEh =

E
[
(yt+h − ŷt+h)2

]
. Theorem 2.1 in Hsu et al. [153] allows for the de-

composition of the MSPE in two parts. The first one being the Misspeci-

fication Index (MI), which is linked to the goodness-of-fit of the model

and is equal to the variance of the h-step ahead prediction error, i.e.

MIh = E
[
ε2

1,h

]
. The second component is the Variability Index (VI),

4 The following paragraphs are similar to those in Section 2.5.2, included for conve-

nience.
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which depends upon the variance of the h-step ahead predictor ŷn+h,

and which is also connected to the estimation error of β̂n(h):

VIh = Lh = tr
{

R−1Ch,0
}
+ 2

h−1∑
s=1

tr
{

R−1Ch,s
}

.

Here, R = E
[
x1x>1

]
is the (non-singular) variance-covariance matrix

of the regressors, whereas Ch,s = E
[
x1x>1+sε1,hε1+s,h

]
represents the

cross-covariance matrix between the regressors and the h-step ahead

prediction error. The approach proposed by Hsu et al. [153] selects

the model that minimises the h-step ahead MSPEh. The minimization

occurs by selecting the model with the smallest VIh among those with

the smallest MIh, sequentially.
The asymptotic decomposition of the MSPE for the h-steps ahead

prediction is derived in the univariate time series case:

MSPEh = MIh + n−1(VIh + o(1)), (140)

and their method of moments estimator
5
for both MIh and VIh are:

M̂Ih = N−1
N∑
t=1

(
ε̂
(h)
t

)2
, (141)

V̂Ih = tr
{
R̂−1Ĉh,0

}
+ 2

h−1∑
s=1

tr
{
R̂−1Ĉh,s

}
, (142)

where

R̂ = N−1
N∑
t=1

xtx>t , (143)

Ĉh,s = (N − s)−1
N−s∑
t=1

xtx>t+sε̂
(h)
t ε̂

(h)
t+s, (144)

ε̂
(h)
t = yt+h − β̂n(h)xt, (145)

with ε̂
(h)
t defined as the estimated forecast error.

Definition 48. Based upon such asymptotic decomposition of the MSPE it
is possible to derive the estimated MRIC as follows:

ˆMRICh = M̂Ih +
αn
n

V̂Ih, (146)

where

αn/n1/2 → +∞, αn/n→ 0. (147)

5 We refer to the method of moments as in [153], sometimes called ’empirical method

of moments’, ’analog method’, or ’empirical method’. Hall [129, p. 5-7] recalled that

Pearson proposed the estimation of parameters’ vector "by the value implied by the
corresponding sample moments" [129, p. 6]. And that he "called this approach the ’Method
of Moments’" [129, p. 7], where to estimate some parameters, it is requested to satisfy

the analogous sample moment condition with specified sample size.
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The asymptotic efficiency of the MRIC is proved in Hsu et al. [153],

Theorem 3.1. TheMRIC approach selects themodel that minimises the

MSPEh by selecting themodelwith the smallestVIh among thosewith

the smallest MIh, sequentially. The MRIC is asymptotically efficient in

the sense of Definition 9, and has interesting applications in combina-

tion to other variable selection and dimension reduction techniques in

the high-dimensional setting. For indication on the determination of

the penalty weight, see Remark 5 in Chapter 4.

3.2.3 The frequency domain

Time series can be studied from both the time and frequency domain.

The Criterion autoregressive transfer function (CAT) [39, 219, 302],

which appeared for the first time in the same 1974 issue of Akaike’s

[7], is a nonparametric criterion developed in the setting of an infi-

nite dimensional AR process for lag selection via transfer function. See

Brockwell and Davis [56, p. 123] or Box et al. [51, p. 8] for time series

analysis by transfer functions.

Following Bhansali [39], consider {xt}, t = {0,±1,±2, . . . }, a zero-

mean stationary process with covariance function:

γ(p) = E [xtxt−p] , (148)

and spectral density function:

f(λ) =
1

2π

∞∑
t=−∞

γ(p) exp−itλ, (149)

which is the Fourier transform of the autocovariance function at fre-

quency λ ∈ (−π,π). Under absolute summability of the covariance func-
tion and non-vanishing spectral density, the AR(∞) representation

of process {xt} exists,

∑∞
j=0 ajxt−j = εt, with a0 = 1, and {εt} a

sequence of random errors with E[εt] = 0, E[ε2
t ] = σ2 < ∞, and

Cov (εt, εt−j) = 0, j 6= t.

Now, let sample {x1, . . . ,xT } from the AR(∞) process be modelled

with an AR(p), where p is the optimal finite order approximation to the

infinite process. Obtain the LSEs âp(j) by minimizing

(T − p)−1
T∑

t=p+1
(xt + c1xt−1 + · · ·+ cpxt−p)

2 ,

with minimum estimated variance σ̂2
p , where the optimization is with

respect to parameters’ vector c = (c1, . . . , cp), and each cj = a(j),

j = {1, . . . , p} are AR(p) parameters.
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Write the transfer functions:

A(λ) =
∞∑
j=1

a(j) exp(−ijλ), (150)

Âp(λ) =
p∑
j=1

âp(j) exp(−ijλ), (151)

of both the AR parameters and its estimates respectively, where λ

denotes the frequency, and i =
√
−1. For lag selection, define the

penalty function as

J(p) =
1

2π

∫ π

−π

∥∥∥Âp(λ)−A(λ)∥∥∥2
‖A(λ)‖−2 dλ.

Focus on estimators of E [J(p)]. Define the nonparametric estimate of

σ2
as:

σ̂2
∞ = 2π exp

{[
N−1

N∑
s=1

log I(T )(λs)
]
+ e

}
, (152)

with N = b1
2 (T − 1)c, b·c the largest integer, e the Euler-Mascheroni

constant, λs = 2π s
T the s-th frequency, and the periodogram function

as:

I(T )(λ) = (2πT )−1
∥∥∥∥∥
T∑
t=1

xt exp(−itλ)
∥∥∥∥∥

2

. (153)

Parzen [219] estimated order p so that Âp(λ) is near A(λ). For that

matter, he introduced the CAT. Write σ2
p the MSPE predicting one-step

ahead with memory p. Since it is unknown, let

σ̃2
p = T (T − p)−1σ̂2

p (154)

be a consistent estimator of σ2
, where σ̂2

p is the sample variance for the

AR(p) model, i.e.

σ̂2
p =

p∑
j=0

âp(j)RT (j), (155)

with RT (j) = T−1∑T−j
t=1 xtxt+j the sample covariance function; or

alternative, its unbiased estimator,

ˆ̂σ2
p =

T

T − p
σ̂2
p. (156)

Definition 49. The CAT was proposed as an estimator of E [J(p)]. Its
approximate estimate is given by:

CAT (p) = 1− σ̂2
∞
σ̃2
p

+
p

T
. (157)



66 ms via ic and pc: a survey for time series

To cope with lacunae while deriving CAT (p), Bhansali [39] pro-

posed to modify the penalty function in a general manner.

Definition 50. The approximate estimate of the modification of the CAT (p)
is given by:

CATα(p) = 1− σ̂2
∞
σ̃2
p

+ α
p

T
, (158)

where α = α′ + 1.

If α = 2, the asymptotic distribution of the estimate of p is equivalent

to that of the FPE and AIC. If α varies, then it is the same of the

FPEβ .

3.2.4 ARMA models

Direct extensions of IC and PC to general ARMAmodels were initially

related to developments in the likelihood approach to time series mod-

els. These included modified likelihood functions or computational

approaches. The detailed survey of MS for ARMA models, proposed

in 1985 by de Gooĳer et al. [125], departed from the theory of statis-

tical hypothesis testing. Then, it was followed by methods from de-

terministic or stochastic realization theory which do not require prior

model fitting, such as those using inverse autocorrelation and partial

autocorrelation functions. They also surveyed techniques based on the

one-step ahead prediction, e.g FPE, CV, CAT, further IC, and Bayesian

methods. These included:

(i) Schwarz’s BIC criterion [258];

(ii) Akaike’s [10, 11, 13] and Rissanen’s [241] BIC criterion; and

(iii) the Bayesian Estimation Criterion of Geweke and Meese [123], or

the HQ criterion [137].

In 1992,Choi [79]publishedamonograph furtherupdating theoverview

of ARMA model identification. In the following, we will introduce IC

and PC for ARMAmodels developed under different settings.

An autoregressive moving-average of order (p,q), ARMA(p,q), is de-

fined as linear combination of an AR(q) with a moving-average MA(q):

xt = β1xt−1 + β2xt−2 + · · ·+ βpxt−p

+ α1εt−1 + α2εt−2 + · · ·+ αqεt−q + εt,

with {εt} awhite noiseprocess, i.e.E [εt] = 0,E
[
ε2
t

]
= σ2

,E [xtxj ] = 0,
for t 6= j, where the zero-mean i.i.d innovations and finite variance is a

special case. Let β(B) and α(B) be the pth
and qth

degree polynomials:

β(B) = 1− β1z − · · · − βpzp,
α(B) = 1 + α1z + · · ·+ αqz

q,
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where B is defined as the backward shift operator: Bjxt = xt−j , with

j = {0,±1,±2, . . . }.

Definition 51 (Causality and invertibility [56]). An ARMA(p, q) process,
with t = {0± 1, . . . },

β(B)xt = α(B)εt

is said to be a causal function of the process {εt} if there exists {φj} such
that

∑∞
j=0 |φj | <∞, and:

xt =
∞∑
j=0

φjεt−j .

The process is said to be invertible if there exists {πj} such that
∑∞
j=0 |πj | <

∞, and:

εt =
∞∑
j=0

πjxt−j .

Equivalently, we say that the process {xt} is causal if it is derived from

the application of a causal linear filter to {εt}. Note that both causality

and invertibility involve both processes {xt} and {εt}.

Following Hannan [135], let the stationary, ergodic, zero-mean with

finite variance σ2 > 0 process {xt} be generated by:

p∑
j=0

βjxt−j =
q∑
j=0

αjεt−j , β0 = α0 = 1, with (159)

g(z) =
∞∑
j=0

βjz
j 6= 0, |z| ≤ 1, (160)

h(z) =
∞∑
j=0

αjz
j 6= 0, |z| ≤ 1; (161)

where g(z) and h(z) are co-prime. Notice that Eq.s (160) and (161)

ensure causality and invertibility of the process. See [56, Theorems

3.1.1 and 3.1.2]. Let σ̂2
p,q be the maximum likelihood estimate of σ2

,

computed when lags p and q are being considered. Then:

Definition 52. The approximate estimate of theAIC for anARMA(p, q)model
is given by:

AIC(p, q) = n log σ̂2 + 2(p+ q). (162)

Note that, since the AIC is inconsistent for AR models, this also trans-

fers to ARMA models. Specifically, it tends to overestimate the true

orders p0 and q0 [135].

In his seminal contribution, Rissanen [241] obtained the BIC for

ARMA (p, q) models following the MDL principle. Following Hannan

[134] and letting σ̂2
p,q be defined as before:
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Definition 53. The approximate estimate of the BIC for ARMA(p,q) models
is given by:

BIC(p, q) = log σ̂2
p,q + (p+ q)

logn
n

. (163)

Fan and Yao [110], building upon the bias correction from Hurvich

and Tsay [157], seen in Section 2.6, considered the Corrected A Infor-

mation Criterion (AICC) for ARMA models with Gaussian likelihood

under correct specification. The AIC tends to overestimate orders p

and q, while the AICC [157] favours parsimony with a larger penalty

for large values. Define β = (β1, . . . ,βp)>, α = (α1, . . . ,αq)>, and
σ2

as the parameters of a causal and invertible Gaussian ARMA(p, q)
process, and obtain its MLE:(

β̂, α̂, σ̂2
)
= argmin

(β,α)∈B,σ2>0
L(β,α,σ2), (164)

where

B = {(β,α) : b(z)a(z) 6= 0 ∀|z| ≤ 1} , (165)

i.e. causal and invertible. Denote with

S(β,α) = r−1
j−1

T∑
j=1

(xj − x̂j)2 , (166)

the sum of squares of the predictive errors (xj − x̂j) regularized by

rj =
vt
σ2 , where {vt} is the variance of the predictive error (which can

be computed recursively). Let σ̂2 = S(β̂,α̂)
T be the MLE estimate of σ2

,

S(β̂, α̂) be the S(β,α) computed at the MLE parameters (β̂, α̂), and
T the sample size. Then, a part from a constant:

Definition54. The approximate estimate for the correctedAIC forARMA(p, q)
model is given by:

AICC(p,q) = −2 log
{
L
(
β̂, α̂,S(β̂, α̂)/T

)}
+

2(p+ q+ 1)T
T − p− q− 2 . (167)

Hannan [134] considered a stationary process {xt} generated by an

ARMA (p, q) such that:

p∑
j=0

βjxt−j =
q∑
j=0

αjεt−j ,

with E[εt] = 0, E[εtεs] = δt,sσ
2
, and β0 = α0 = 1. Stationarity is

implied by the required causality of the process {xt}, i.e. the AR and

MA polynomials are such that g(z) =
∑p
j=0 βjz

j 6= 0, and h(z) =∑q
j=0 αjz

j 6= 0, with |z| ≤ 1, and both g(·), h(·) with no common
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zero. See [56, p. 82-83] for technical details. This delivers the MA(∞)

representation:

xt =
∞∑
j=0

κjεt−j , (168)

with its polynomial k(z) =
∑∞
j=0 κjz

j = g−1(h(z)), where κj geo-

metrically decreases to zero, and εt are linear innovations. The goal is

to estimate the true order (p0, q0). The estimated parameters (β̂j , α̂j)
are obtained via MLE without the normality assumption. Define the

σ-algebra Ft = σ(εj), j ≤ t, and assume the following technical condi-

tions:

(i) E[εt|Ft−1] = 0, E[ε2
t |Ft−1] = σ2

, E[ε4
t ] <∞;

(ii) p0 ≤ P , q0 ≤ Q, with P ,Q known a priori.

Hannan considers the estimates of p0 and q0 based on the maximiza-

tion of the Gaussian likelihood for the conditional error variance σ2
,

namely σ̂2
p,q, without maintaining the Gaussian assumptions and only

requiring conditions (i) and (ii) above. The following result was ob-

tained again by using the Law of Iterated Logarithms (LIL).

Definition 55. To estimate (p0, q0),Hannan [134] proposed theminimization
of the following approximate estimate of the criterion:

φ(p, q) = log σ̂2
p,q + (p+ q)c

1
N

log logN , c > 2. (169)

If the disturbances {εt} are independent, then this criterion is strongly
consistent, while if the last term in φ(p, q) is replaced by (p+ q)CN/N ,

CN → ∞ then it is weakly consistent. Hannan and Rissanen [138] lat-

ter modified this criterion by the substitution of the MLE of σ̂2
p,q by

an alternative estimator from a series of autoregressions proposing a

recursive estimation procedure of (p0, q0) in three steps for efficient

computation. Poskitt [223] further proposed a modification of this pro-

cedure to avoid the bias created by the BIC used in the second step,

by the use of the Model Determination Criterion [224] obtained by

Bayesian arguments.

Stressing the issues of identifiability of ARMA models, Zhang and

Wang [354] proposed the order determination quantity (ODQ). Define

the backwards operator Bkyt = yt−k, and consider the ARMA model:

Φ(B)yt = Ψ(B)εt, with Φ(B) = 1−
∑p0
j=1 φjB

j
, Ψ(B) =

∑q0
j=0 ψjB

j
,

{εt} the unobservable random errors sequence, (p0, q0) the unknown

true order such that bothφp0 andψq0 are not null, and {yt} the sequence
of observations. The following assumptions are required:

(i) Φ(B) and Ψ(B) have no common factor so that both polynomials

are unique;
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(ii) εt is a martingale difference sequence Ft-measurable with:

E [εt|Ft−1] = 0 a.s.,∀ t ≥ 1,

i.e. {εt} is a martingale difference sequence with respect to an

increasing sequence of σ-fields {Ft};

(iii) yt is Ft-measurable for every t ≥ 0 a.s.;

(iv) (p∗, q∗) fixed upper limit known a priori;

(v) there is a random constant an s.t. almost surely we have:

an/n→ 0, an/(logn)β →∞,

e.g. an = nδ, δ ∈ (0, 1), with β = 1 for AR models and β ≥ 1 for

general ARMA models.

Let n be the sample size, σ̂2
n(p, q) be the estimated variance of the er-

ror term εt computed at both (p, q), and σ̂2
n(p
∗, q∗) be the the estimated

variance computed at (p∗, q∗). Then:

Definition 56. To determine the order of an ARMA(p,q), Zhang and Wang
[354] defined the approximate estimate of ODQ as:

ODQn = nσ̂2
n(p, q)− nσ̂2

n(p
∗, q∗)− an. (170)

The ODQ is consistent for unstable autoregressive models, i.e. ARMA

(p,0) where all the roots of the characteristic polynomial are either on

or inside the unit circle.

This area of research proposed further generalizations. For instance,

Peña and Sánchez [220] proposed a validation procedure for h-step

ahead forecast. By the use of a filtered version of the in-sample predic-

tion errors, they showed that the procedure is equivalent to an efficient

MS method. Recently, Diop and Kengne [101] studied inference and

model selection in a general class of causal processes with exogenous

covariates, including ARMA-GARCH, APARCH, ARMAX, GARCH-X

and APARCH-X. By the use of Lipschitz-type conditions, they showed

the existence of a stationary solution, studied consistency of the QML

estimator (QMLE) of the parameters, established its asymptotic distri-

bution, Wald-type tests for significance (also for non-stationary cases),

and proposed a penalized criterion and conditions forweak and strong

consistency, showing that the HQwith a specific regularization param-

eter is strongly consistent in large samples.

The following paragraphs will detail Rissanen’s APE and its exten-

sions in stochastic regression, given its applications to ARMAmodels.
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3.2.4.1 APE in stochastic regression and ARMA models

Rissanen [243] proposed the APE, a one-step ahead prediction-error-

based consistent cumulated measure to estimate the order of ARMA

processes for both large and small samples.
6
This criterion is also called

Predictive Least Squares (PLS) and has theoretical groundings on Ris-

sanen’s Minimum Description Length (MDL) principle [241].

Let x = {x1, . . . ,xn} be an observed sample. At every time t =

{0, 1, . . . , n− 1} we have the past sequence xt = {x0x1 · · ·xt}, setting
x0 = 0. Interest lays on forecastingxt+1 at each instant t, given sequence

xt. Consider to model xt as a zero-mean stationary ARMA(p,q),

xt =
p∑
j=1

ajxt−j +
q∑
s=1

bjεt−s + εt,

where {εt} is a zero-mean uncorrelated process, such that the first

two moments of process {xt} are defined by the k(= p+ q) param-

eters composing θ = (a1, . . . , ap, b1, . . . , bq), and E[ε2
t ] = σ2

. Con-

sider a linear predictor, with prediction error εt+1 = xt+1 − x̂t+1
given by εt+1 = et+1,t determined by both the k parameters θ(t) =

(a1,t, . . . , ap,t, b1,t, . . . , bq,t) and the data in the following manner:

xi =
p∑
j=1

aj,txi−j +
q∑
s=1

bs,tei−s,t + ei,t,

where i = {0, . . . , t+ 1}, setting both xi and ei,t equal to zero for i ≤ 0.
The parameter vector θ(t) is obtained by minimizing:

S2(t) = t−1
t−1∑

0
e2
i+1,t.

Definition 57. Rissanen [243] consistently estimated the order of an ARMA
(p,q) model by minimizing the following criterion:

APE(k,x) = n−1
n−1∑
t=0

(xt+1 − x̂t+1)
2 , (171)

where x̂t+1 is a prediction at time t based on the past sequence xt.

Wei [328] provided an interpretation of theAPE in terms of goodness-

of-fit plus penalization for model’s complexity, as in IC and PC, for

stochastic regression. The latter includes as special cases: multiple re-

gression, time series models, dynamic input-output systems, adaptive

stochastic approximation schemes, and stochastic control. Consider

modelM with design vector xi, defined by:

yi = β>xi + εi,

6 For its strong consistency for finite AR processes, see Hemerly and Davis [146].
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where εi are i.i.d. with εi ∼ N(0,σ2), xi such that it is σ (ε1, . . . , εi−1)-

measurable, and conditional Fisher information matrix for β equal to:

σ−2
n∑
i=1

xix>i ,

so det|σ−2∑n
i=1 xix>i | can be interpreted as the amount of information

about parameters’ vector β. Let σ̂2
n = n−1∑n

i=1 ε̂
2
i , be the estimated

sample variance from the sample of dimension nwith modelM , be σ̃2
n

the estimated sample variance based on the full model. Then:

Definition 58. In the context of stochastic regression,Wei [328] proposed the
Fisher information criterion (FIC), with its approximate estimate given by:

FIC(M) = nσ̂2
n + σ̃2

n log det
∣∣∣∣∣
n∑
i=1
xix

T
i

∣∣∣∣∣ (172)

Eq. (172) is based on the Fisher information matrix and departs

from considerations on the APE for stochastic regression, allowing

the penalty term to be proportional to the logarithm of the statistical

information contained in a model M with design vector xi. The con-

nection between PLS (APE) and FIC(M) can be seen noting that, by

[80], Theorem 2.1 [328, p. 4], and model’s correct specification:

PLS ∼ nσ̂2
n + σ2 log det

∣∣∣∣∣
n∑
i=1
xix

T
i

∣∣∣∣∣ , (173)

thus, if we substitute σ2
with σ̃2

n, we obtain the FIC. Under model’s

misspecification, the PLS has an extra penalty, at a cost of issues re-

garding computation, tendency to select models with fewer variables

for small sample, and dependency on data’s order. Instead, the FIC

is permutation invariant, solves some problems present with the PLS,

and features strong consistency.

Lai and Lee [180] further extended the APE and FIC to consider

general stochastic regression models, a broad class which includes

both ARMA models and nonlinear AR models with exogenous regressors,
and showed their strong consistency regularity conditions. Consider

observation yt andmodel it as yt = gt (θ) + εt, where θ is the unknown

parameters’ vector, and gt (θ) is a twice continuously differentiable

Ft−1-measurable function.

Assumptions 5. To define the asymptotic estimate of the APE, assume the
following:

(i) θ ∈ Θ ⊂ Rκ, with Θ compact set;

(ii) {εt} is a martingale difference sequence with respect to an increasing
sequence of σ-fields Ft such that:

sup
t
E [|εt|r | Ft−1] <∞ a.s., r > 2; (174)
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(iii) the dimension of θ is unknown and a family

{gt,k(λ) : k ≤ κ, t ≥ 1,λ ∈ Θk}

of regression functions such that gt,k(λ) is Ft−1 measurable ∀ λ ∈ Θk,
with Θk not necessarily subvectors of Θk+1 (not nested / hierarchical);

(iv) Θk ∈ Rd(k), 1 ≤ k ≤ κ, with d(k) positive integers;

(v) ∃ κ : θ ∈ Θint
κ such that:

(a) if θ is a subvector of some θ(k) ∈ Θk, then θ(k) ∈ Θint
k and

gt,k(θ
(k)) = gt,κ(θ);

(b) if θ is not a subvector of any λ ∈ Θk, then gt,k(λ) 6= gt,κ(θ), ∀
λ ∈ Θk;

(vi) if d(k) = d(κ), k 6= κ, then θ is not a subvector of any λ ∈ Θk;

(vii) K∗ is a known number such that θ is a subvector of θ(K∗) ∈ ΘK∗ ;

(viii) a prior distribution on σ2 exists, with technical conditions on the density
function.

Also, obtain the not necessarily unique LSE, i.e.

θ̂
(k)
t = argmin

λ∈Θk

k∑
i=1

(yi − gi,k(λ))2 , θ(k) ∈ Θk. (175)

Now, define function Sn(λ) =
∑n
i=1 (yi − gi,k(λ))

2
, with minimum at

λ = θ̂
(k)
n equal to σ̂2

n,k. Its first and second derivative are then equal to

5Sn(λ) = −2
n∑
i=1

(yi − gi,k(λ))5 gi,k (λ) ,

and

52 Sn(λ)/2

=
n∑
i=1

(5gi,k (λ)) (5gi,k (λ))> −
n∑
i=1

(yi − gi,k(λ))52 gi,k (λ) ,

where 5gi,k (λ) and 52gi,k (λ) are the gradient vector and Hessian

matrix of g(·) at parameter λ.

Lai and Lee [180] considered a natural extension of the APE for gen-

eral stochastic regressionmodels. Letm be the fixed initial sample size.

To estimate the correct order κ, minimize over all candidates models

k, i.e. κ̂n = argmin1≤k≤K APE(k), which may not be unique. Fur-

ther regularity conditions are necessary for its uniqueness and strong

consistency. See Theorem 1 and its Corollary in [180].

Definition 59. If θ is a subvector of θ(k), then the APE for model k is:

APE(k) =
n∑

i=m

{
yi − gi,k

(
θ̂
(k)
i−1

)}2
, (176)
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Now, let σ̂2
n,k = n−1

∑n
i=1

[
yi − gi,k

(
θ̂
(k)
n

)]2
be the estimated vari-

ance of εi for model k, σ̂2
n,K∗ be the estimated variance of εi for model

K∗, and notice that the argument of the logarithm is the sum over all

observations of the square of gradient vector of g(·) evaluated at the

LSE, i.e.5gi,k
(
θ̂
(k)
n

)
:

Definition 60. Lai and Lee [180] extended the FIC for general stochastic
regression models:

FIC(k) =

nσ̂2
n,k + σ̂2

n,K∗ log
∣∣∣∣∣
n∑
i=1

(
5gi,k

(
θ̂
(k)
n

))(
5gi,k

(
θ̂
(k)
n

))T ∣∣∣∣∣ . (177)

See Lai and Yuan [181] for a very recent review of stochastic approx-

imation, field that includes many of the developments in stochastic

regression.

3.2.5 Multivariate time series models

Multivariate time series arise naturally when considering multiple si-

multaneous univariate time series, often equally separated in time.

The works of Whittle [332], Hannan [133], Reinsel [238], and Lütke-

pohl [197] are solid grounds for its study. Initial tools derived from

extensions of univariate time series, multivariate regression problems,

and multivariate prediction and probability theory. For instance on

the former, Akaike [3] extended the FPE to multidimensional vector

of input and output variables, in the context of vector AR fitting for

control, which he called the MFPE. For multivariate regression prob-

lems, Mallows [204] considered the Cp also for cases with multiple

responses dependent variable in terms of ridge regression, taking a

suitable norm or trace as measure of the dimension of the matrix. The

first works on the latter trace back toWiener andMasani [206, 334, 335],

and Helson and Lowdenslager [145]. We follow Brockwell et al. [56],

Reinsel [238], Lütkepohl [197], and Tsay [306] in the successive para-

graphs. We introduce these concepts given the example in Chapter 5,

Section 5.4, and the current research work in proximity of the main

topic.

Let {yt} ∈ Rw
be a stochastic column vector process with mean

vector E [yt] = µyt ∈ Rw
, j-th lag cross-covariance matrix:

E

[ (
yt −µyt

) (
yt−j −µyt−j

)> ]
= Σy(j) ∈ Rw×w, (178)

with j = {0, 1, . . . }. If the mean vector and the cross-covariance at lag

j, i.e µy and Σy(j) respectively, are independent of time t, then the

vector process yt is said covariance or weakly stationary.
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a vector autoregressive moving-average model of orders p

and q, denoted VARMA (p, q) or MARMA (p, q), is the multivariate

version of the ARMA(p, q), where the response variable is multivariate.

Its standard representation is:

yt = φ0 +
p∑
j=1

φjyt−j + εt −
q∑
j=1

θjεt−j ,

with p, q non-negative integers, φ0 a w-dimensional constant vector,

φj and θj constant (w × w) matrices, {εt} a sequence of i.i.d zero-

mean random w-dimensional column vectors with positive-definite

covariance matrix Σε. With the backshift operator (Bjyt = yt−j , j =

0, 1, . . . ), its compact form is:

φ (B)yt = φ0 + θ (B) εt,

with φ (B) = Iw −
∑p
j=1φjB

j
, and θ (B) = Iw −

∑q
j=1 θjB

j
, and Iw

a w-dimensional unitary matrix.

Assumptions 6. To obtain the VARMA(p,q) in final equation form, assume
that:

1. {yt} has constant zero-mean, i.e. φ0 = 0;

2. φ (B) and θ (B) are left-coprime (without common factors in matrix
setting); and

3. φ (B) = α(B)Iw, with α(B) = 1−
∑p
j=1 αjB

j ∈ R, αp 6= 0.

The structural form and the echelon form are also considered in the

literature. The former is a generalization of the VARMA model in

compact form, setting φ (B) =
∑p
j=0φjB

j
, and θ (B) =

∑q
j=0 θjB

j
.

The latter is a useful representation of the VARMA in structural form,

sometimes indicated as VARMAE , where both the vector AR and MA

polynomials, φ (B) and θ (B) are such that φ (B) = [φj,i(B)], and

θ (B) = [θj,i(B)], with j, i = 1, . . . ,W are left-coprime and with the

following form:

φj,j(B) = 1−
pj∑
s=1

φjj,sB
s, for j = 1, . . . ,w;

φj,i(B) = −
pj∑

s=pj−pji+1
φji,sB

s, for j 6= i;

θj,i(B) =
pj∑
s=0

θji,sB
s, for j, i = 1, . . . ,w,

with φ0 = θ0, the row degrees (p1, . . . , pw) the Kronecker indices,

and

∑w
j=1 pj the McMillan degree. There is abundant literature also

for integrated or cointegrated VARMA models, e.g. Poskitt [225, 226],

Kascha and Trenkle [166].
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ms in general varma models requires the solution of non-trivial

statistical aspects for inference, e.g. stability/causality, invertibility, identi-
fiability. If yt is a zero-mean stable (or causal) process, i.e. det (|φ (z) |)
6= 0, ∀ z ∈ C : ‖z‖ ≤ 1, then its infinite vector moving-average rep-

resentation follows, VMA(∞), i.e. yt =
∑∞
j=0ψjut−j , where the new

w-dimensional error vector is ut = εt −
∑q
j=1 θjεt−j , and the (w×w)

matrices ψj are such that, for ‖z‖ ≤ 1, ψ(z) = [φ (z)]−1 θ (z). If the

zero-mean process yt is invertible, i.e. det (|θ (z) |) 6= 0, ∀ z ∈ C :
‖z‖ ≤ 1, then its infinite vector AR representation follows, VAR(∞), i.e.

εt =
∑∞
j=0 Λjyt−j , where the (w × w) matrices Λj are such that, for

‖z‖ ≤ 1, Λ(z) = [θ (z)]−1φ (z). For details on multivariate time series

models, cf. Hannan and Deistler [136], Brockwell and Davis [56, Ch.

11], Reinsel [238], Lütkepohl [197], Tsay [306], and Wei [329].

If φ (B) and θ (B) are uniquely identified by the weight matrices

in its VMA(∞) representation, then identifiability of the VARMA(p,q)

model follows. Sufficient conditions for identifiability (i.e block identi-

fiability) [197] require that:

i. φ (B) and θ (B) are left-coprime;

ii. the order q is as small as possible while the p order is as small as

possible for that q; and

iii. rank

([
φp,θq

])
= w, with p, q > 0, where [A,B] refers to the joint

matrix composed by matricesA andB.

For technical details on structural identifiability of the more general

VARMA with exogenous regressors, VARMAX(p, q, r), where r is the

maximum lag of the exogenous part, see Hannan and Deistler [136],

Section 2.7.

estimation of varma To estimate VARMA(p, q) parameters, quasi,

conditional or exact likelihood methods can be employed. The max-

imization of the log likelihood function with respect to parameters’s

vector usually involves approximations or ad-hoc algorithms which are

usually employed given that no closed forms are available (with some

exceptions) or are under development, and that identifiability is an

issue. For this reason it is still a non-trivial problem. Recent interest-

ing results to solve these issues include exact likelihood estimation of

time-dependent models [18] (where the parameters φt (B), and θt (B)
are dependent on time t), estimation of causal and invertible VARMA

models by constrained estimation [251], semiparametric estimation for

VARMA models via R-estimation (therefore expanding further than

QMLE) [130], identification and estimation in large-scale settings with

VARMA [338], and asymptotic properties of quasi MLE for causal, in-

vertible and identifiable for time-dependent models [208].

We will briefly introduce two perspectives for VARMA model spec-

ification and selection, before introducing VAR model selection via IC.
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These sections will serve as an overview previous to Section 5.4 in

Chapter 5.

3.2.5.1 Structural specification and model selection in VARMA models

Structural specification is related to MS particularly for VARMA mod-

els. Drawing from the sedimented literature prior to 2005, Lütkepohl

[197] indicated in his monograph that both the echelon form and the

final form ensure its identifiability (among the class of those represen-

tations), relying on the proofs fromHannan andDeistler contributions,

condensed in their re-published monograph [136]. Numerous proce-

dures for structural specification are indicated in Lütkepohl’swork, not

as widespread as the Box-Jenkins approach [51] for univariate ARMA

models. He divided it into two groups: those using the final form, and

those using the echelon form.

ms in final form varma Zellner and Palm [353] proposed a two-

steps procedure for VARMA models in final form. In the first, a uni-

variate model is specified for each component yi,t, i = 1, . . . ,w. The
suggestion is to employ Box-Jenkins strategy [51], LR tests, Bayesian

posterior odds, or automatic procedures with IC as in Hannan and

Rissanen [138] or its extension by Poskitt [223]. In the second stage, a

common AR polynomial for the vector response has to be selected as

the product of each components’ polynomial. Then, select the corre-

spondingMA polynomial for each of the w components. Finally, select

the order q which is the maximum order obtained over all the compo-

nents. If there are common factor, both for theARandMApolynomials,

the polynomial degree may be further reduced.

ms in echelon form varma This strategy involves the estimation

of large numbers of parameters. For this reason, Lütkepohl argued that

it is not popular in practice even if it is relatively simple. It becomes

a major problem when the dimensionality increases. For these cases,

model specification of VARMA in echelon form are more appealing.

Tsay’s 2013 monograph [306, Ch. 4] coincides with this strategy, indi-

cating two approaches for structural specification of VARMA models.

Both were presented in his 1991’s article [305]. The first draws from

the Kronecker indexes and MacMillan polynomial degrees literature from

control systems in the engineering literature, applied to the model in

echelon form. The second is considered as a refinement over the first,

involving canonical correlation analysis (viz. Hotelling [152], Akaike

[9]), presented in Tsay’s 1989’s article [297].

The recent contribution by Bhansali [40] combined these approaches.

After proposing the first definition of an h-step ahead state-space rep-

resentation (extending the results in Akaike [17] for h = 0, and Cooper

and Wood [85] for h = 1), to estimate the Kronecker indexes, Bhansali
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modified the Difference Information Criterion (DIC) originally pre-

sented by Akaike [9]. For the latter, let vectors u ∈ Rs
and v ∈ Rr

, and

define the model v = Au+w, where A is the regression coefficient

matrix of v on u, with rank(A) = q, and w has null-correlation with

u. The number of free parameters, F (q) is the sum of the free param-

eters within the covariance matrices of u and v, and within matrix A.

Assuming s ≥ r, these are respectively s(s + 1)/2, r(r + 1)/2, and
q(s+ r− q). ConsiderN observations from two Gaussian random vec-

tors v = (v1, v2, . . . , vs)> and u = (u1,u2, . . . ,us)>, and assume that

there are q non-null canonical correlation coefficients.

In the context of canonical correlation analysis, Akaike [9] proposed

the DIC as the difference between the model under consideration with

rank(A) = q and the unconstrained model r (without restrictions on

matrixA).

Definition 61. The approximate estimate of the DIC(q) is given by:

DIC(q) = AIC(q)−AIC(r), (179)

with

AIC(q) = N log
q∏
i=1

(1− ci)2 + 2F (q), (180)

where ci the i-th largest canonical correlation coefficient. Therefore, it is ob-
tained:

DIC(q) = −N log
r∏

i=q+1
(1− ci)2 − 2(r− q)(s− q). (181)

Bhansali [40] proposed a modification of the DIC in the sense of

Bhansali and Downham [41]. Letw be the dimension of the dependent

multivariate response time series, ρh(v+ 1), v ≥ 0be the next canonical
correlation between the vectors of past variables,

ηt(h,M) =
[
y>(t− h), . . . , y>(t−M)

]>
, (182)

and the vector of future variables

θt(h,M ) =
[
y>(t), . . . , y>(t+M − h)

]>
, (183)

truncated up to a large integer M , with h ∈ [−H,H ], where both

M ,H are carefully subjectively selected, and let (M − h+ 1) be the

dimension of the ηt(h,M), and v ∈ {1, . . . ,M}. Then:

Definition 62. The resulting approximate estimate of the DIC(q) is given
by:

DIChα(v) =

− T log
{

1− [ρh(v+ 1)]2
}
− α {(M − h+ 1)w− v} . (184)
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ic and varma models In the last twenty years, the literature has

tackled different issues for VARMAmodels related to IC. For instance

on cointegration, Kapetanios [165] reviewed the formal grounds for

the application of IC to MS for selecting the cointegration rank of coin-

tegrated VARMAmodels. He underlined that necessary and sufficient

conditions for weak consistency of criteria are also valid to determine

the cointegration rank. They derived the asymptotic distribution of the

estimated cointegration rank when selected via the AIC, and showed

that it has an upward bias also for large samples. The advice was for

the use of the BIC or the Posterior Information Criterion by Phillips

[222] instead. This criterion is Bayesian in its spirit and, among other

features, is valid for order selection of cointegrating rank, lag length,

and trend degree in VAR models. Boubacar Mainassara [49] studied

selection of weak VARMAmodels by a modified AIC using the QMLE.

Weak VARMAmodels are cases where the error vector is a weak white

noise, i.e. stationary sequenceof zero-meananduncorrelatedprocesses

with invertible variance matrix, whereas strong VARMA are defined

with strong white noise error vector, i.e. i.i.d.. More recently, Chan

et al. [69] developed a Bayesian approach for inference in VARMAs

ensuring identification and parsimony in the context of an efficient

Markov chain Monte Carlo algorithm, with application to macroeco-

nomics. Fasen and Kimmig [112] proposed a criterion for continuous

time VARMA processes, studying the QMLE in the context of mis-

specification, and deriving regularity conditions for strong and weak

consistency of a general IC, with AIC and BIC as special cases.

3.2.5.2 VAR models

Historically, because of the identifiability problem, VARMA models

not enjoyed vast popularity in applied fields. This paved the way for

models which setted q = 0, obtaining a vector autoregressive model

of order p, VAR(p), which can be written as y>t = z>t β+ ε>t , where the

row vector z>t = (1, y>t−1, . . . , y>t−p) ∈ R(wp+1)
and the ((wp+ 1)×w)

coefficients matrix β = [φ0,φ1, . . . ,φp]>. In this way, and using T − p
observations from a sample of size T , we can rewrite it as

Y = Zβ+E,

with Y ∈ R(T−p)×w
the response matrix observed from time t =

{p+ 1, . . . ,T},Z ∈ R(T−p)×(wp+1)
thedesignmatrix, andE ∈ R(T−p)×w

the error matrix. The generalized least squares estimator (GLSE) of

VAR(p) parameters can be obtained as:

vec(β̂) = vec
[(

Z>Z
)−1 (

Z>Y
)]

, (185)

delivering

β̂ =

 T∑
t=p+1

ztz>t

−1  T∑
t=p+1

zty>t

 , (186)
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which is identical to the Ordinary least squares (OLS) estimator. If we

further assume that the vector error εt is multivariate Gaussian, via the

conditional likelihood function it can be shown that it also coincides

with the MLE. If we further let {xt} ∈ Rm
be a column vector of

exogenous variables or leading indicators, with E [xt] = µx ∈ Rm
,

and V [xt] = Σx ∈ Rm×m
, then a VAR with exogeneous variables of

order (p, s), VARX(p, s) is equal to:

yt = φ0 +
p∑
j=1

φjyt−j +
s∑
j=0

αjxt−j + εt, (187)

where s is a non-negative integer, α a (w×m) constant matrices.

Quinn [230] extended results from scalar (AR) to multivariate (VAR)

models assuming: E [εt|Ft−1] = 0, E
[
εtε
>
t |Ft−1

]
= Σε, E

[
ε4
i,t

]
< ∞,

with i = 1, . . . ,w, whereFt−1 = σ (εt−1, εt−2, . . . ). Let det |Σ̂ε,k| be the
determinant of the MLE of Σε for a VAR(k), i.e.

Σ̂ε,k =
1

T − k
Ê
>
Ê =

1
T − k

T∑
t=k+1

ε̂tε̂
>
t , (188)

where T is the total number of observations, k is the number of lags, w

the dimension of the dependent vector variable, and ε̂t is the residual

vector. Then:

Definition 63. Quinn [230] indicated one version of the AIC and showed
that the HQ with multivariate response is strongly consistent for VAR models:

AIC(k) = log
(
det |Σ̂ε,k|

)
+ 2kw2 1

T
, (189)

φ(k) = log
(
det |Σ̂ε,k|

)
+ 2kw2 1

T
log log T . (190)

Let{y1, . . . , yn}begeneratedbyaw-dimensional zero-meanVAR(p0)

process: y>t =
∑p0
j=1 y>t−jφ>j + ε>t , with t = {1, . . . ,n} and y>t =

(y1,t, . . . , yw,t), φ
>
j is a (w×w) coefficients’ matrix, and εt are zero-

mean Gaussian i.i.d. with covariance matrix Σ0. We write the true

AR(p0) model for the full sample as: Y = X0β0 + ε in matrix terms.

The following representation from Eqs. (7) and (8) in Hurvich and Tsai

[158] highlights the correction obtained by avoiding the first-order Tay-

lor series approximation:

Denote with b = n−1 {n− (pw+w+ 1)} a scale factor for the com-

plexity penalty term, n is the sample size, and

Σ̂ = n−1
(
Y−Xβ̂

)> (
Y−Xβ̂

)
(191)

with

β̂ =
(
X>X

)−1 (
X>Y

)
, (192)

the conditional LSEs of Σ0 and β respectively. Then:
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Definition 64. Hurvich and Tsai [158] proposed the approximate estimates
for both the AIC and its corrected version for VAR model selection:

AIC(p) = n
(
log

(
det

∣∣∣Σ̂∣∣∣)+w
)
+ 2

{
pw2 +w(w+ 1)/2

}
, (193)

AICc(p) = n
(
log

(
det

∣∣∣Σ̂∣∣∣)+w
)
+ 2b

{
pw2 +w(w+ 1)/2

}
. (194)

Also in this case, interest has been sustained lately. Qu and Perron

[228] proposed a modified AIC for Johansen’s cointegration tests and

showed that, if applied, these have the same distribution as when the

order is finite and known. Ren and Zhang [239] proposed a compu-

tationally efficient algorithm, the adaptive lasso, for subset selection

and estimation in VAR models. For tuning parameter’s selection the

consistent BIC was adopted. They also showed that their method sat-

isfies the oracle property, i.e. no prior knowledge is required on the

sparsity to obtain an optimal asymptotic convergence rate.
7
They also

highlighted that the elastic net as in Zou and Zhang [360] might be a

better candidate for subset selection. Bingham [44] reviewedmultivari-

ate prediction theory and matrix orthogonal polynomials on the unit

circle from a probabilistic standpoint. Lütkepohl and Netšunajev [199]

proposed a review of structural VAR models with heteroskedasticity

or conditional heteroskedasticity. They found that for lag selection the

AIC is a common strategy, but indicated how it may be problematic

given that no full likelihood optimization is performed. Recenlty, the

FIC for locally misspecified VARmodels was extended by Lohmeyer et

al. [195].

We now shift our attention to MS in the case of nonparametric re-

gression with nonlinear time series models. Short bibliographic notes

are included in Appendix A.2.4, including a selected sequence of de-

velopments in modelling nonlinear time series.

3.3 nonparametric analysis of nonlinear time series models

Let us consider the 1997’s review of MS methods for nonparametric

time series by Härdle et al. [142]. Let a specific class of mean functions

µ(·), such that, the specified candidate function be obtained fromfinite

and fixed number of parameters. In that case, the parametric method

to estimate the conditional mean function of a time series requires the

formulation of a parametric model for the mean function µ(·).
There are successful cases where there are parsimonious models

capturing linearities and nonlinearities of the process under analysis,

e.g. Tong’s Threshold Autoregressive (TAR) [303], Exponential Autore-

gressive (EXPAR) [128]; Self-Exciting Threshold Autoregressive (SE-

TAR) [70, 126]. See [304] for further details. The nonparametric anal-

ysis of time series instead "leaves data speak for itself ", avoiding the

7 See Fan and Li [109, p. 1353], Theorem 2.
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subjectivity of choosing a specific parametric model before observing

data. But there were costs in terms of the increased complexity of the

mathematical arguments involved, issues with their interpretability,

initial difficulties in practical applications, e.g. bandwidth selection

(i.e. smoothing parameter selection), the curse of dimensionality, and

computational costs. See Breiman [54], Wasserman [322], Hastie et al.

[143], and James et al. [162] for discussions and coverage of these types

of methods.

3.3.1 Asymptotic Final Prediction Error

The ideas introduced in Auestad and Tjøstheim [26] aimed at identi-

fying nonlinear time series with nonparametric estimates of the condi-

tional mean and the conditional variance. They noted that most of non-

linear models satisfy the assumptions necessary to apply the nonpara-

metric asymptotic theory (see also Robinzonov et al. [249]). Through

simulations, they adjusted the conditional quantities, while also using

asymptotic arguments for an AR(1) process. By way of further reason-

ing on the estimates of the conditional mean and conditional variance,

they dealt with the problem of identification, obtaining a MS criterion

heuristically that is able to manage distortion and misspecification.

Continuing along this line, Tjøstheim and Auestad [300] presented

a nonparametric procedure for lag selection of general nonlinear sta-

tionary time series. The original derivation was based on β-mixing

properties with an exponentially decreasingmixing rate
8
, smoothness,

and bandwidth rate assumptions. The objective was to select lags that

give a “good description” of the conditionalmean and conditional vari-

ance structure, where the goodness of approximation was measured

by the MSPE.9 In that sense, it is a nonparametric analogue version of

Akaike’s FPE criterion [1, 2]. Vieu [317] followed a similar path with

a nonparametric approach to estimate autoregression order without

restriction on the parametric class of processes. They proposed a tech-

nique based on the minimization of some prediction error, similar to

the AIC criterion. Under homoskedasticity, they showed consistency

of the CV approach, a similar result which was also obtained by Yao

and Tong [350]. More recently, Manzan [205] studied the finite-sample

performance of MS criteria for local linear regression by simulation,

showing that the AIC and FPE perform very poorly because they tend

to over fit (use too many parameters compared to optimal).

We will follow Tschernig and Yang [310] and Tschernig [309], focus-

ing on the use of the nonparametric FPE in MS to obtain their Asymp-

totic FPE (AFPE). By asymptotic analysis, they showed asymptotic con-

sistency in their nonparametric FPE allowing for heteroskedasticity,

8 See Appendix A.2.4 for details.

9 See Remark 3.2.2.
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and showed that overfitting is more likely than underfitting, suggest-

ing a correction of the nonparametric FPE to reduce overfitting in

favour of correct fitting. This strategy was further explained in Tsch-

ernig [309]. The result is a nonparametric estimation of univariate

nonlinear time series models, covering conditionally heteroskedastic

errors and seasonal features. These two works will be summarized

with a focus on the methodology for obtaining the desired asymptotic

properties. The similarity of their approach to those presented before

should be evident to the reader. It is worth noticing that in the formal

derivation, Tschernig and Yang studied a different and independent

vector of observations than the original, {ỹt} independent of {yt}, but
with the same stochastic properties, a strategy that is common in the lit-

erature. Appendix A.2.5 shares some notes on the two nonparametric

estimators employed.

Consider a nonlinear conditionally heteroskedastic autoregressive

(NAR) model generating a univariate stochastic process {Yt}t≥0:

Yt = µ(Xt) + σ(Xt)ξt. (195)

Assumptions 7. The following technical conditions are required:

(i) Xt = (Yt−i1 ,Yt−i2 , . . . ,Yt−im)>, are all the correct lagged values, with
i1 < · · · < im;

(ii) {ξt} is sequence of i.i.d. random variables, with E[ξt] = 0, E[ξ2
t ] = 1;

(iii) Let t = {im, im + 1, . . . } be the set of times;

(iv) Let µ(·) be the conditional mean function and σ(·) the conditional
volatility.

Assumptions 8. The AFPE is defined under the following assumptions:

(I) All the lags indicated by the indexes {i1, . . . , im} are necessary tomodel
the conditional mean functionµ(·), but these are not the same necessary
to model the conditional volatility function σ(·).

(II) The process XM ,t = (Yt−1, . . . , Yt−M )T is strictly stationary and
β-mixing,10 with β(n) ≤ c0n

−(2+δ)/δ, δ > 0, and c0 > 0. Where
(i) M ≥ im,M integer
(ii) β(n) = E[sup{|P (A|FkM )− P (A)| : A ∈ F∞n+k}]
(iii) F t′t is the σ-algebra generated by XM ,t,XM ,t+1, . . . ,XM ,t′

(III) The stationary distribution of the processXM ,t has continuous density
fM (xM ), xM ∈ RM .

(IV) (a) The conditional mean function µ(·) is twice continuously differen-
tiable; (b) The conditional volatility function σ(·) is continuous and
positive on the support of f(·).

10 See Appendix A.2.4.
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(V) The random variables {ξt}t≥im have a finite fourth momentm4.

(VI) For the weight function w(·), w : RM −→ R, assume that it:
(i) is continuous;
(ii) is nonnegative;
(iii) weights the density f(xM ) > 0, with xM in the support of (w);
(iv) has compact support with nonempty interior.

(VII) The kernel functionK : R1 −→ R1 is a symmetric probability density
(kernel) and h = hT is a positive number (bandwidth), withTh

m −→ +∞,

h −→ 0,
(196)

as T −→∞.

on assumptions Tshernig and Yang refer, to Tweedie’s results in

Doukhan’s lectures’ notes [104] (among others) for technical condi-

tions guaranteeing (I) and (II). Specially, Theorem 7 and Remark 7 [104,

pp. 102–103]. Condition (III) delivers that f(·) denotes both fM (·) and
all of its marginal densities. If the Nadaraya-Watson (NW) estimator is

used, then fM (·) has to be continuously differentiable. In their Monte

Carlo study, linear processes following AR(1), AR(2), AR(3), and non-

linear processesNLAR(1), NLAR(2), NLAR(3) satisfy conditions (I-IV).

Instead, the nonlinear process NLAR(4) with triangular errors violates

smoothness condition (II) (∇f(x) does not exist at some points). Condi-

tion (V) ensures consistency for lag selection. At the same time, under

assumptions (I-V), it is no longer necessary to generate the process

{Ỹt} to compute the FPE. Furthermore, using a single weight func-

tion defined for the largest lag vector XM ,t allows for the treatment

of both bounded and unbounded time series. There are other authors

showing consistency results only for bounded time series. An excep-

tion is Vieu [317], which is a special case in the setting of Tschernig

and Yang [310]. Condition (VI) ensures that the asymptotic distribu-

tion does not: (a) collapses to a point, or (b) have an asympotic bias

increasing infinitely large. Please refer to Appendix A.2.5 for details

on the employed Nadaraya-Watson and Local Linear estimators.

ms algorithm In Tschernig and Yang [310] and Tschernig [309],

the algorithm for MS requires to define a priori a set of possible lag

vectors S, to choose the maximal lag M , and to define the full lag

vector xt,M = (yt−1, yt−2, . . . , yt−M )> (denote by X , but depending

on time t and on lag M ). It is specified in the simple pseudo-code in

Listing 2. As optimality criterion for the elimination of redundant lags,

the authors used the MSPE, i.e FPE.
The following definition requires to consider process

{
Ỹt
}
with ex-

actly the same distribution as {Yt}, but independent of it:
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Listing 2: MS algorithm’s pseudo-code

1 Define S

2 Select M

3 Define X

4 Eliminate redundant lags from X

Definition 65. For a given bandwidthh, and lag vector
{
i+1 , . . . , i+m+

}
, define

the FPE of an estimate µ̂ of µ as the functional:

FPE(h, i+1 , . . . , i+m+) = E
[
{ỹt − µ̂(x̃+t ,h)}2w(x̃t,M)

]
=
∫ [ ∫

{ỹ− µ̂(x̃+,h)}2w(x̃M ) f(ỹ, x̃M ) dỹdx̃M

]
× f(y1, . . . , yT ) dy1 · · · dyT = FPE(µ̂). (197)

The outer integral averages over all possible realizations of the estima-

tor µ̂(x̃+,h), and it depends on a given x̃+, bandwidth h, and sample

realizations {y1, . . . , yT }.

linear and non linear ar processes The FPE measures the

discrepancy between µ̂ and the true functional relation between ỹt and

x̃t, and:

(i) If: (a) the process {ỹt} is a stationary linear AR process, and (b) µ̂
is a linear regressor; then the usual (linear) FPE follows ([1, 2]).

(ii) If the process {ỹt} is a stationary nonlinear AR process and µ̂ is

a nonparametric estimator, then we obtain theNonparametric FPE
(Auestad and Tjøstheim [26], Tjøstheim and Auestad [300]).

If the FPE(h, i+1 , . . . , i+m+) would be observable, then we may se-

lect the lag vector and corresponding bandwidth which minimizes

the FPE across all lag combinations considered. Since usually the

FPE(h, i+1 , . . . , i+m+) is not observable, it is necessary to estimate it.

Possible solutions are given by the CVmethod (as in Vieu [316] or Yao

and Tong [350]), or the one pursued here: to find asymptotic expres-

sions of the FPE(·) as in Auestad and Tjøstheim [26], Tjøstheim and

Auestad [300], and Tschernig and Yang [310]. By Theorem 2.1 [310, p.

461], the definition and decomposition of the nonparametric AFPE is

obtained as in the following definition.

First, write the FPE as in Eq. 197, and let a = {1, 2}, where a = 1 refers

to the NW estimator, and a = 2 refers to the Local Linear Estimator

(LLE). Then:

Definition 66. Under assumptions (I–VI), for a = {1, 2} , as T −→∞,

FPEa(h, i1, . . . , im)
= AFPEa(h, i1, . . . , im) + o(h4 + (T − im)−1h−m), (198)
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in which the Asymptotic FPEs are given by:

AFPEa(h, i1, . . . , im) = A+ b(h)B + c(h)Ca, (199)

To help with the interpretation, write Eq. (199) as:

AFPEa(h, correct lags) = I.V.+ E.V.E.+ S.B.E. (200)

where the initials stand for ’Integrated Variance’, ’Expected Variance

of the Estimator’, and ’Squared Bias of the Estimator’ respectively .

Definition 67. The Integrated Variance is equal to the FPE of the true
function µ(·):

A =
∫
σ2(x) w(xM ) f(xM ) dxm = E [σ2(xt)w(xt,M )]. (201)

Given that b(h)B and c(h)Ca tend to zero as the sample size diverges,

both theFPE andAFPE tend asymptotically to the integrated variance.

The b(h) quantity depends on bandwidth and kernel constants:

b(h) = ||K||2m2 (T − im)−1h−m, (202)

with b(h)B vanishing asymptotically.

Definition 68. The Expected Variance of Estimation is equal to:

B =
∫
σ2(x) w(xM ) f(xM )

1
f(x)

dxm

= E [σ2(xt)
w(xt,M )

f(xt)
]. (203)

Definition 69. The integrated SBE, in the LLE case (a=2) is equal to:

Ca=2 =
∫ (

tr

{
∂2µ(x)

∂x∂x′

})2

w(xM ) f(xM ) dxM (204)

= E

[(
tr

{
∂2µ(x)

∂x∂x′

})2

w(xM )

]
where c(h) depends on the bandwidth and on the kernel constant:

c(h) = σ4
K

h4

4 (205)

with c(h)Ca=2 vanishing asymptotically.

Two cases may be distinguished. In the first, all correct lags are

included, plus some additional ones. In this case, all corresponding

variables can can be indexed with a "+" sign and the modified FPE
expansion can be obtained, delivering Theorem 3.3 in Tschernig and

Yang [310, p. 464]. In the second case, the relevant lag is left out and

we are in an underfitting situation. In this case, the AFPE(·) of the
underfitted and the correct model differ by a contant (independent of

the bandwidth and sample size). Theorem 3.4 in Tschernig and Yang

[310, p. 465] refers to this case.
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3.3.2 Alternative methodologies for nonlinear time series models

Robinzonov et al. [249] presented the use of boosting techniques11 in the

context of time series. By considering a broad class of nonlinear time

series, the class of nonlinear additive autoregressivemodel (NAAR), they

obtained estimates of the lags of the time series as flexible functions to

detect non-monotone relationships between current and past observa-

tions. A component-wise boosting algorithm is applied for simultane-

ous model fitting, variable selection, and model choice, delivering lag

selection and dealing with nonlinearity. Its forecasting potential is ex-

emplified with for German industrial production data with additional

exogenous variables. Their work assesses the issues of high dimen-

sionality in models: using Exogenous NAAR (NAARX) models they

noted how their boosting technique can cope with large models with

the number of explanatory variables much larger than the number of

observations.

In Zhang and Wu [355], for a general class of nonparametric time

series regression model with time-dependent regression function, the

authors established an asymptotic theory for estimates of the time-

varying regression functions. This work also proposed an information

criterion and proved its asymptotic consistency. The empirical part is

an application to the U.S. treasury interest rate data.

To face the problem of dimensionality, an example of recent devel-

opment in this sense is given by Chen et al. [72] with the use of model

averaging, where semiparametric methods (i.e. a combination of both

parametric and nonparametric techniques) for dimensionality reduc-

tion of the possible regressors is proposed, delivering good results in

terms of forecast of the dependent variable, and for:

(a) caseswhen the number of variables ismuch larger than the sample

dimension, k >> n, and

(b) factor models.

For an updated introduction to nonlinear time series analysis, see the

recent monograph of Tsay and Chen on nonlinear time series analysis

[308]. It offers several applications with the open-sourceR software. In

Chapter 3, nonparametric modelling of univariate time series include

methods and techniques such as: kernel smoothing, local polynomial,

B-splines, smoothing splines; wavelets and thresholding; index mod-

els; and sliced inverse regression. All of these, and many others, are in-

cluded to explore nonlinearity in a time series and to introduce NAAR

models. Their work showed how to increase flexibility in modelling

the nonlinearity embedded in the data.

11 For details, see Hastie et al. [143].
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For a recent exploration on the limits of distribution-free conditional

predictive inference and open questions, see Foygel et al. [117].

3.4 high-dimensional and algorithmic approaches

For a recent systematic review of MS in high-dimensional regression

(least squares, logistic, and quantile regression models), see Lee et

al. [184]. For a history of subset selection, see Chen et al. [76]. Two

key moments are worth mentioning. In 1994, Chen and Donoho [74]

defined the goals of Adaptive Representation . These are:

i. speed (computational time in order O(n) or O(n logn));

ii. sparsity (similar to parsimony, fewer coefficients);

iii. perfect separation (clear decomposition of the representation);

iv. stability (resistance to small perturbations).

In 1996, Tibshirani [298] proposed the famous least absolute shrinkage

and selection operator (lasso) for regression and generalized regres-

sions. The idea behind it is to define a shrinking operation to produce

coefficients equal to zero, and it was exemplifiedwhile competingwith

subset selection and ridge regression.

To conclude, we indicate 17 works from 2013 to 2021 of algorithmic

approaches applied to high-dimensional settings:

(i) Lee andBjornstad [185] rephrased the testingproblem in the large-

scale setting as a problem of prediction of latent class indicator

variables. Through the data, parameters, and unobservables, they

extended the likelihood approach to study the unobservable la-

tent indicator. Thismethod delivered oracle tests with an efficient

extended LR test, and efficient FDR-control. They used hierarchi-

cal random-effect models to test the null hypothesis. Three exam-

ples were based in two-sample cases for the analysis of prostate

cancer and leukaemia data.

(ii) Lv and Liu [200] contributed to MS in misspecified models under

the Bayesian and the KLI principle. Via asymptotic expansions

they obtained theGBIC andGBICp, then expanded in [94]. Consider

a situation as for the MRIC approach in Section 3.2.2.3. Let n be

the sample size, k be the cardinality of the assessed model, and

consider the three estimates σ̂−2
h , R̂−1

, Ĉh,0, as defined in Eq.s

(141), (143), and (144). Then approximate estimates of GBIC and

GBICp are obtained as:

GBIC = log σ̂2
h +

k logn
n
− log det(Ĥh)

n
(206)

GBICp = log σ̂2
h +

k logn
n

+
tr
{
Ĥh

}
n

− log det(Ĥh)

n
(207)
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with Ĥh = σ̂−2
h R̂−1Ĉh,0, consistent estimator of σ−2

h R
−1Ch,0, for

generalized linear models. These two criteria offer advantages

for both the correctly and misspecified case. In Hsu et al. [154,

Section S5] is presented a comparison for possibly-misspecified

time series models between these, including the AIC, BIC, Konishi

and Kitagawa’s GAIC [173], and the MRIC. The comparison was

performed for linear, nonlinear, and high-dimensional models.

It showed the superiority of the MRIC in different challenging

settings.

(iii) Bogdan et al. [47] proposed the Sorted L-One Penalized Estima-

tion (SLOPE), a method based on considering the problem as a

convex program with computational complexity similar to that

of procedures such as the lasso [298], dealing also with high-

dimensional cases, in a way similar to Benjamini and Hockberg

[31].

(iv) Candes et al. [64] showed feature selection in high-dimensional

nonlinear models. Considering a general conditional model, for

i.i.d. observations, acceptable in high dimensional applications in

genetics, or client behavioural models, and assuming no knowl-

edge about the conditional distribution. When the distribution

of the covariates is known, they obtained powerful procedures

to control the FDR in finite samples, by extending the results in

Barber and Candès [27].

(v) Owrang and Jansson [218] assessed MS when the number of

measurements is much smaller than dimension of the parameter

space, and proposed the Extended Fisher Information Criterion

(EFIC) for high-dimensional linear regression in the i.i.d. context.
They also showed its consistency with probability one, and built

a computationally affordable algorithm for its implementations.

An additional feature is that it also determines implicitly the

regularization parameter in the lasso estimator.

(vi) Section IV in Ding et al. [100] devoted to an overview of high-

dimensional variable selection techniques.

(vii) Hsu et al. [153] addressed a serious lacuna in realistic applica-

tions: MS in the fixed-dimensionality setting (as n diverges but

keeping the ‘true’ order k of the model fixed), with possibly mis-

specified time series models, for multi-step prediction, and the

high-dimensional setting. They proposed the MRIC used after

sequential procedure. In the first step, the Orthogonal-Greedy-

Algorithm (OGA) of Ing and Lai [161] is employed, which is

a stepwise regression method that performs variable selection

sequentially for regression models where k >> n through Resid-

ual Sum of Squares (RSS) minimization. In the second step, the
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High-Dimensional Criterion (HDIC), which allows to trim even-

tual redundant indices corresponding to parameters that should

be zero. They called this procedure "OGA+HDICh+Trim", and

showed selection consistency in high-dimensional misspecified

time series.

(viii) Xue and Hu [343] proposed an extension of the TIC to the on-

line updating setting, with normal linear regressions models and

the Cumulative Updated Estimating Equation (CUEE). They also

showed that the BIC and their consistent RIC have more stable

performance than the AIC and standard RIC for a fixed block

size.

(ix) In the context of Causal Network Discovery, Runge et al. [252]

considered the use of the AIC for hyperparameter choice in the

condition selection stage. They also indicated that in the Mo-

mentary Conditional Independence test, CV, BIC, or AIC can be

employed for selection of the regularization parameter.

(x) Demirkaya et al. [94] focussedonultra-highdimensionalMS,with

modelmisspecification,where the dimesionality of themodel can

grow nonpolynomially with sample size n. Using generalized

linear models, they followed Lv and Liu [200] and investigated

the asymptotic expansion of the posterior model probability via

QMLE [330].

(xi) Ying et al. [352] proposed an automatedMS solution for anomaly

detection in time series to ensure quality of online service. Their

work proposed an automated selection mechanism for the choice

of the best anomaly detection model and its hyper-parameters,

showing that it can reduce the time-cost of improving unsatisfied

detection.

(xii) Narisetty [212] overviewed Bayesian MS for high-dimensional

data.

(xiii) Liu and Chen [193] formally introduced a threshold factor model

where the dynamic of the time series is assumed to switch be-

tween regimes, depending on the value of the threshold variable.

They proposed the estimation of the loading spaces and of the

number of factor, via eigen-analysis of the crossmomentmatrices.

They also developed an objective function to identify the thresh-

old value, and showed that even in the case of over-estimation of

the number of factors, the estimators kept consistency.

(xiv) Chiou et al. [78] assessed MS in the high-dimensional with het-

eroskedastic and serially correlated errors, also contemporarily.

Via a two-part selection procedure, called Twohit, they proved its

consistency in selection of regression and dispersion variables
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for errors with short-memory, long-memory, or conditionally

heteroskedastic component, and showed its finite sample perfor-

mance.

(xv) Hastie et al. [144], extending Bertsimas et al. [36], studied the rela-

tivemerit ofL0,L1, and forward stepwise selectionwith different

Signal to Noise Ratio (SNR). They found that:

(I) stepwise and best subset perform similarly;

(II) best subset often loses to the LASSO, except if there is high

SNR;

(III) the relaxed LASSO performs as the best method in almost

every scenario.

(xvi) Bertsimas et al. [37] provided a unified perspective for feature

selection, focusing on fivemethods: the NP-hard cardinality- con-

strained formulation, its Boolean relaxation, L1-regularized es-

timators (lasso and elastic-net) and two non-convex penalties

(smoothly clipped absolute deviation (SCAD) and minimax con-

cave penalty (MCP)). The comparison of the methods was in

terms of accuracy and False Discovery Rate (FDR). They high-

lighted how most of the literature has focussed on the accuracy.

They noticed the differences in terms of accuracy between con-

vex and non-convex penalties. According to them, it mimics the

distinction between robustness (i.e. good out-of-sample predic-

tive performance even in noisy settings) and sparsity. Convex

penalties delivers robust estimators, but non-convex regulariza-

tion are theoretically more appealing given their less stringent

assumptions. The best approaches are those combining convex

with non-convex components.

(xvii) Lai and Yuan [181] proposed a review of stochastic approxima-

tion showing the evolution its introduction in 1951, and its con-

nection with developments in time series and sequential analysis.

In relation to our survey, variable selection with the Pure Greedy

Algorithm, the OGA and similar works were discussed.

3.5 conclusive remark

“The better approach will be to isolate for critical discussion the
separate aspects entering into the final decision; what is con-
tributed by the data? what are the assumed utilities and what
is the basis for their calculation? Most importantly, have all the
possible decisions been looked at? The contribution of statistical
ideas to major decision making is more likely to be in the clarifi-
cation of these separate elements than in the provision of a final
optimum decision rule.”
Cox and Hinkley, 1979 [86, p. 416]
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The evolution of methods and techniques of innovative MS brought

us to a current situation were there is increasing interest in: proposing

novel solutions; combining alternative approaches; recovering classi-

cal solutions to be implemented in novel algorithms; or in refining

current methods. See Gelman and Vehtari [122] for a path on the most

important statistical ideas of past 50 years and their connections.

MS is still an open problem, with various potential approaches de-

pending strongly on the objective of the analysis or prediction. We

advice researchers and practitioners to keep in mind this vast multi-

plicity of approaches to select the most suitable for their studies.
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abstract

TheMisspecification-Resistant InformationCriterion (MRIC)proposed

in [H.-L. Hsu, C.-K. Ing, H. Tong: On model selection from a finite fam-
ily of possibly misspecified time series models. The Annals of Statistics. 47

(2), 1061–1087 (2019)] is a model selection criterion for univariate para-

metric time series that enjoys both the property of consistency and

asymptotic efficiency. In this article we extend the MRIC to the case

where the response is a multivariate time series and the predictor is

univariate. The extension requires novel derivations based upon ma-

trix theory. We obtain an asymptotic expression for the mean squared

prediction error matrix, the vectorial MRIC and prove the consistency

of its method-of-moments estimator. Moreover, we prove its asymp-

totic efficiency. Finally, we show with an example that, in presence

of misspecification, the vectorial MRIC identifies the best predictive

model whereas traditional information criteria like AIC or BIC fail to

achieve the task.
1

Keywords:multivariate time series,MSPEmatrix, information criteria,

vectorial MRIC, asymptotic efficiency, model selection.
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4.1 introduction

The appealingproperties of theMRICmake it an ideal tool for omnibus

time series model selection but, to date, only the univariate response

case has been studied [153]. In this work we extend the MRIC to mul-

tivariate time series with a single regressor as to obtain the vectorial

MRIC (hereafter VMRIC). As it will be clear, such an extension does

not easily derive from the univariate case since it requires dealing with

the dependence structure within the components of the vector of fore-

casting error and hence relies upon matrix theory. Such multivariate

extension can be used in all those models where many time series de-

pend upon a single regressor, like for instance, in econometrics, where

many interest rates depend upon a single macroeconomic indicator,

1 This chapter is an updated version of Diaz Rubio, Giannerini andGoracci [98], and the

results from Theorem 1 have been presented in Diaz Rubio, Giannerini and Goracci

[97].
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such as inflation. Other possible applications include dimension re-

duction and hedging, which is intimately connected to the problem of

model selection [38].

The rest of the chapter is organized as follows: in Section 4.2we intro-

duce the notation and in Section 4.2.1 summarize the available results

for the univariate case; in Section 4.3 we extend the MRIC approach

to multivariate time series with a single regressor. In particular, in Sec-

tion 4.3.1weobtain the asymptotic decomposition of theMeanSquared

Prediction Error (hereafterMSPE)matrix into two parts: the first one is

linked to the goodness of fit of the model and the second one depends

upon the prediction variance. In Section 4.3.2 we present the VMRIC
and derive a consistent estimator for it, whereas in Section 4.3.3, we

prove the asymptotic efficiency of the VMRIC. Section 4.4 presents an

example to assess the effect of misspecification in the VMRIC frame-

work. All the proofs are detailed in Section 4.5. Appendix B.1 contains

an auxiliary technical lemma valid for the multivariate regressor set-

ting.

4.2 notation and preliminaries

For each t, let {xt} and {yt}, with xt = (xt,1, . . . ,xt,m)> and yt =

(yt,1, . . . , yt,w)>, be two weakly stationary stochastic processes defined

over the probability space (Ω,F , P).Whenm = 1 (w = 1, respectively)
we write xt (yt). Given a vector v and a matrix M, we use ‖v‖ and ‖M‖
to refer to the L2 vectorial norm and the matrix norm induced by

the Euclidean norm, respectively. We write o(1) (op(1)) to indicate a

sequence that converges (in probability) to zero and O(1) (Op(1)) to
indicate a sequence that is bounded (in probability). Moreover, let {cn}
be a sequence of scalar random variables whereas {vn} and {Mn}
are sequences of random vectors and random matrices, respectively.

We adopt the following notation: vn = op(cn) if ‖vn‖/cn = op(1);
vn = Op(cn), if ‖vn‖/cn = Op(1), Mn = op(cn) if ‖Mn‖/cn = op(1);
Mn = Op(cn) if ‖Mn‖/cn = Op(1). For further details on matrix

algebra see [150, 216, 260], for multivariate time series see [198, 237,

307], and for asymptotic tools for vector and matrices, see [163].

Let {(xt, yt), t ∈ {1, . . . ,n}} be the observed sample, and divide the

interval {1, 2, . . . ,n} into the training set {1, 2, . . . ,N} and the test set
{N + 1, . . . ,N + h}, with h being the forecasting horizon. Note that

xt can contain both endogenous and exogenous variables, therefore,

Model (208) encompasses many different models including, inter alia,

VAR and VARX models. Without loss of generality assume E[xt] =
E[yt] = 0. In order to forecast yn+h, h ≥ 1, we adopt the following

h-step ahead forecasting Model:

yt+h = Bhxt + ε(h)t , (208)
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whereBh is a (w×m)matrixparameters’matrixdefinedas thepseudo-

true parameter for the possibly-misspecified model

Bh = argmin
C∈R(w×m)

E
[
(yt+h −Cxt) (yt+h −Cxt)>

]
, (209)

and ε
(h)
t is the vector containing the w h-step ahead forecast errors; as

before, if w = 1 we write ε
(h)
t .

Remark 3. This general definition of the model includes: (i) the setting of
multi-step forecasting with h < 1; (ii) exogenous and endogenous variables
in x; and (iii) cases where the prediction error vector ε(h)t can be serially
correlated, but also correlated with xs, s 6= t. Moreover, the multivariate
framework differs from [153] in different key aspects. For instance, (a) the
components of the error vector can be cross-correlated, and (b) xtε(h)t and
xkε

(h)
k , for t 6= k, can also be both serially and cross correlated. Besides, as in

the original MRIC, x may vary also with h, but for notational simplicity, it is
avoided.

Define

R̂ = N−1
N∑
t=1

xtx>t and R = E[x1x>1 ]. (210)

Then, the ordinary least squares estimator (hereafterOLS) ofBh results:

B̂n(h) = R̂−1
(
N−1

N∑
t=1

xty>t+h

)
. (211)

When m = 1, R and B become R and β, respectively. The prediction

of yn+h, h ≥ 1, is given by

ŷn+h = B̂n(h)xn (212)

and the corresponding Mean Squared Prediction Error matrix is

MSPEh = E
[
(yn+h − ŷn+h)(yn+h − ŷn+h)>

]
. (213)

4.2.1 The MRIC for parametric univariate time series models

In [153], the authors focused on the case w = 1 and m ≥ 1. Under
appropriate conditions, they obtained the following asymptotic de-

composition of MSPE:

MSPEh = E
[
(yn+h − ŷn+h)2

]
= MIh + n−1(VIh + o(1)), (214)

with

MIh = E
[(
ε(h)n

)2
]

,

VIh = tr
{

R−1Ch,0
}
+ 2

h−1∑
s=1

tr
{

R−1Ch,s
}

,



96 a multivariate extension of the mric

where Ch,s = E
[
x1x>1+sε

(h)
1 ε

(h)
1+s

]
, s ≥ 0, is the cross-covariance matrix

between the regressors and the h-step ahead prediction error at lag s.

Remark 4. The first part of Eq. (214) is the Misspecification Index (MI),
linked to the goodness-of-fit of the model and coincides with the h-step ahead
prediction error variance. The second component is the Variability Index
(VI), which depends upon the variance of the h-step ahead predictor, ŷn+h =

β̂
>
n (h)xn, and is also linked to the bias of the estimator of βh.

Based upon the above decomposition, the MRIC is defined as follows:

MRICh = M̂Ih +
αn
n

V̂Ih, (215)

with M̂Ih and V̂Ih being the estimators of MIh and VIh respectively,

i.e.:

M̂Ih = N−1
N∑
t=1

(
ε̂
(h)
t

)2
, V̂Ih = tr

{
R̂−1Ĉh,0

}
+ 2

h−1∑
s=1

tr
{
R̂−1Ĉh,s

}
,

where Ĉh,s = (N −s)−1∑N−s
t=1 xtx>t+sε̂

(h)
t ε̂

(h)
t+s and ε̂

(h)
t = yt+h− β̂n(h)xt

is the estimated forecast error; αn is a penalization term sequence such

that, as n increases:

αn√
n
→ +∞ and

αn
n
→ 0. (216)

It is shown that M̂Ih and V̂Ih are consistent estimators of MIh and

VIh, moreover the asymptotic efficiency of the MRIC is proved. By

minimizing this criterion, themodel whichminimizes VI among those

with minimum MI is selected. Among other features, the MRIC is

particularly helpful in situations where competing models present the

same goodness-of-fit and the same number of parameters.

Remark5. Hsu et al. [154, Section 6] indicated the required steps to determine
α in the penalty weight of the type αn = nα, which satisfies Eq. (216). Let
{St}, 1 ≤ t ≤ n, be the possibly stationary series of interest; bndc with
d = 0.3 be the latest sample’s portion of {St} retained for model evaluation;
Ŝt+h be the predictor of St+h selected by a criterion and estimated via LS using
observations up to time t; and the empirical MSPE, i.e. EMSPE:

EMSPE =
1
bndc

n−bndc−h∑
t=n−2bndc−h+1

(
St+h − Ŝt+h

)2
. (217)

In a real data analysis, α is chosen as the minimizer of the in-sample empirical
MSPE:

1
bndc

n−bndc−h∑
t=n−2bndc−h+1

(
St+h − Ŝ

(α)
t+h

)2
, (218)
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over α ∈ {0.1, . . . , 0.8}, where Ŝ(α)
t+h is Ŝt+h with order selected by MRIC set-

ting the penalty of αn = nα. Hyndman and Koehler [159] surveyed measures
of forecast accuracy including scale-dependent measures, measures based on
percentage errors, on relative errors, or relative measures. They proposed the
Mean Absolute Scaled Error, useful also for multi-step forecast in univariate
time series and displaying positive features for the comparison of different
methods. The choice of α could benefit from these considerations.

Remark 6. The type of penalty considered in [153] is similar to that used in
[277, p. 230] for the correctly specified case.

4.3 a multivariate extension of the mric framework

In this section we extend the MRIC approach to the case where the

response is a multivariate time series (w ≥ 2) and the predictor is uni-

variate (m = 1), for a generic h-step ahead forecast. Hence,Model (208)

reduces to yt+h = βhxt + ε
(h)
t , namely:

yt+h,1 = βh,1xt + ε
(h)
t,1

yt+h,2 = βh,2xt + ε
(h)
t,2

.

.

.

yt+h,w = βh,wxt + ε
(h)
t,w.

(219)

4.3.1 Asymptotic decomposition of the MSPE matrix

We extend the asymptotic representation of the MSPEh defined in

(214) which is the key step to derive the VMRIC in this multivariate

framework. We rely upon the following assumptions, which are the

natural multivariate extensions of those in [153].
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Assumptions 9.

(C1) ∃ q1 > 5, 0 < K1 <∞ : for any 1 ≤ n1 < n2 ≤ n,

E

∣∣∣∣∣∣(n2 − n1 + 1)−1/2
n2∑
t=n1

x2
t −E

[
x2
t

]∣∣∣∣∣∣
q1 ≤ K1.

(C2) 1. Ch,s = E
[
ε
(h)
t xt

(
ε
(h)
t+sxt+s

)>]
⊥ t,

2. E
[
x1xnε

(h)
1,i ε

(h)
n,j

]
= o(n−1) ∀ i, j ∈ {1, . . . ,w}.

(C3) 1. sup
−∞<t<∞

E
[
|xt|10

]
<∞,

2. sup
−∞<t<∞

E
[∥∥∥ε(h)t

∥∥∥6]
<∞.

(C4) ∃ 0 < K2 <∞ : for 1 ≤ n1 < n2 ≤ n,

E


∥∥∥∥∥∥(n2 − n1 + 1)−

1
2

n2∑
t=n1

ε
(h)
t xt

∥∥∥∥∥∥
5
 < K2.

(C5) For any q > 0, E
[∣∣∣R̂−1

∣∣∣q] = O(1).

(C6) ∃ Ft ⊆ F ,Ft an increasing sequence of σ-fields such that:
1. xt is Ft-measurable,

2. sup
−∞<t<∞

E
[∣∣∣E [x2

t | Ft−k
]
−R

∣∣∣3] = o(1), as k →∞,

3. sup
−∞<t<∞

E
[∥∥∥E [ε(h)t xt | Ft−k

]∥∥∥3]
= o(1), as k →∞.

Theorem 1. Under the regularity conditions (C1) – (C6), the asymptotic
expression of the MSPEh defined in (213) results

N
{

E
[
(yn+h − ŷn+h) (yn+h − ŷn+h)> −E

[
ε(h)n ε(h)

>
n

]]}
(220)

= R−1 E
[(
ε
(h)
1 x1

) (
ε
(h)
1 x1

)>]

+R−1 E
[
h−1∑
s=1

{(
ε
(h)
1 x1

) (
ε
(h)
s+1xs+1

)>
+
(
ε
(h)
s+1xs+1

) (
ε
(h)
1 x1

)>}]
+ o(1).

Remark 7. For interpretations and details on Assumptions 9 and on the
following Assumptions 10, please refer to Remark 14, Remark 16, and Section
5.4 in Chapter 5.

4.3.2 VMRIC and its consistent estimation

In this section we introduce the VMRIC. Let {αn} be the penalization
term sequence defined as in Eq. (216).

VMRICh = ‖MIh‖+
∥∥∥∥αnn VIh

∥∥∥∥ (221)
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where

MIh = E
[(
ε
(h)
t ε

(h)>
t

)]
,

VIh = R−1
(

Ch,0 +
h−1∑
s=1

(
Ch,s + C>h,s

))
,

Ch,s = E
[(
xtε

(h)
t

) (
xtε

(h)
t

)>]
.

The VMRIC can be estimated via the method-of-moments as to

obtain:

ˆVMRICh ≡
∥∥∥M̂Ih

∥∥∥+ ∥∥∥∥αnn V̂Ih
∥∥∥∥ , (222)

where

M̂Ih = N−1
N∑
t=1

(
ε̂tε̂
>
t

)
,

V̂Ih = R̂−1
[
Ĉh,0 +

h−1∑
s=1

(
Ĉh,s + Ĉ>h,s

)]
,

and Ĉh,s = (N − s)−1∑N−s
t=1 xtxt+sε̂tε̂

>
t+s, with ε̂t = yt+h − β̂n(h)xt

the estimated forecast error vector.

In Theorem 2 we prove that M̂Ih and V̂Ih are consistent estimators

of MIh and VIh, respectively. Theorem 2 relies upon the following

assumptions, that are less restrictive with respect to (C1) – (C6). For

further discussions on the assumptions see [153, Remark 1–3, p. 1073].

Assumptions 10. For each 0 ≤ s ≤ h− 1, we assume the following:

(A1) n−1
n∑
t=1

(
ε
(h)
t ε

(h)>
t

)
= E

[
ε
(h)
1 ε

(h)>
1

]
+Op

(
n−1/2

)
(A2) n−1

n∑
t=1

(
xtε

(h)
t

) (
xt+sε

(h)
t+s

)>
= Ch,s + op(1),

(A3) n−1/2
n∑
t=1

xtε
(h)
t = Op(1).

(A4) n−1
n∑
t=1

x2
t = R+ op(1),

(A5) sup
−∞<t<∞

E
[∥∥∥ε(h)t

∥∥∥4]
+ sup
−∞<t<∞

E
[
‖xt‖4

]
<∞.

Theorem 2. If Assumptions (A1) – (A5) hold, then for the case w ≥ 2, and
m = 1 we obtain:

M̂Ih = MIh + Op(n
−1/2),

V̂Ih = VIh + op(1).
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4.3.3 Asymptotic efficiency

In this section we prove the asymptotic efficiency of the VMRIC in

the fixed dimensionality framework. To this end, letM be the set ofK

candidatemodels; eachmodel is indicated either by `orκ, 1 ≤ `,κ ≤ K.

Define the subsetsM1 andM2 as follows:

M1 =

{
κ : 1 ≤ κ ≤ K, ‖MIh(κ)‖ = min

1≤`≤K
‖MIh(`)‖

}
, (223)

M2 =

{
κ : κ ∈M1, ‖VIh(κ)‖ = min

`∈M1
‖VIh(`)‖

}
. (224)

In short, for a given forecast horizon h, M1 contains the models with

the minimum MIh whereas in M2 we are minimizing VIh among

the candidates models in M1. The definition of efficiency used in our

framework is the same as that of [153]:

Definition 70. Given a sample of size n, a model selection criterion is said
to be asymptotically efficient if it selects the model ˆ̀

h such that

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1.

Remark 8. Alternative definitions of asymptotic efficiency for model selection
are available. For instance, in the framework of linear stationary processes,
[272] defines the Mean Efficiency when a criterion attains asymptotically a
lower bound for the sum of squared prediction errors. Also, the notion of
Approximate Efficiency is given in [276]. In [190], a criterion that depends
upon the ratio between loss functions is introduced. This latter definition is
similar to the Loss Efficiency proposed in [267]. See Section 2.5.2 for a detailed
discussion.

The VMRIC selects the model with the smallest variability index

among those that achieve the best goodness of fit. Hence, the selected

model
ˆ̀
h is such that:

VMRICh

(
ˆ̀
h

)
≡ min

1≤`≤K

∥∥∥M̂Ih(`)
∥∥∥+ min

`∈M1

∥∥∥∥αnn V̂Ih(`)
∥∥∥∥ . (225)

In the next Theoremwe show that theVMRIC is an asymptotic efficient

model selection criterion in the sense of Definition 70.

Theorem 3. Assume that for each 1 ≤ ` ≤ K, 0 ≤ s ≤ h− 1, Theorem 2
holds and let ˆ̀

h be the model selected by the VMRIC. Then we have that:

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1,

namely, the VMRIC is asymptotically efficient in the sense of Definition 70.
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4.4 example: a misspecified bivariate ar(2) models

The aim of this section is twofold. First, we assess the goodness of the

theoretical derivations and the finite sample behaviour of the Method-

of-Moments Estimator (MoME) for the VMRIC. Second, we show that

in presence of misspecification the VMRIC leads to selecting the best

predictive model (i.e. is asymptotically efficient) whereas both the AIC
and the BIC fail to do so. In order to achieve the goals we consider a

bivariate AR(2) DGP and use two misspecified predictive models for

it: in Model 1 there is one omitted lagged predictor, whereas Model

2 uses only one non-informative predictor. We derive theoretically

the Mean Square Prediction Error matrix and the VMRIC for both

models and these show that Model 1 is a better predictive model over

Model 2. Based on this, we assess the ability of the VMRIC, and of

the multivariate versions of the AIC and BIC to select the best model

(Model 1) in finite samples and for different parameterizations.

We start by providing the definition of misspecification as in [153,

p. 1084]. Consider an increasing sequence of σ-fields, {Gt} such that

σ (xs, s ≤ t) ⊆ Gt ⊆ F , where {xt} is an m-dimensional weakly sta-

tionary process defined over the probability space (Ω,F , P).

Definition 71. The h-step ahead forecasting model:

yt+h = β>h xt + ε(h)t , (226)

is correctly specified with respect to an increasing sequence of σ-fields, {Gt}
if

E [yt+h | Gt] = β>h xt a.s., ∀ −∞ < t <∞. (227)

Otherwise, it is misspecified.

Remark 9. For correctly specified models we have E
[
ε
(h)
t xt−j

]
= 0, j ≥ 0,

i.e. both simultaneous and lagged correlations are null vectors. A possible
consequence of misspecification is that it may occur that E

[
ε
(h)
t xs

]
6= 0,

for s 6= t, while still have E
[
ε
(h)
t xt

]
= 0, i.e. to have null simultaneous

correlation and non-null cross- serial- correlation between the forecasting
error vector and the regressor, e.g. Remark 12. Null simultaneous correlation
depends on the definition of the pseudo-true parameter βh.

Remark 10. Hansen [139, p. 268] details the consequences for a constrained
estimator β̃ when the constraint is incorrect, indicating that it generalizes
the analysis of ’omitted variable bias’. Estimators’ bias is unavoidable, but the
distributions centred at the pseudo-true projections (instead of being at the true
parameter β) maintain the conventional covariance estimator. An alternative
approach delivering the same explanation is that of local misspecification, i.e.
when the misspecification decreases with sample size n, convenient for other
purposes.
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Remark 11. In the univariate case of [153, p. 1067], references to ’single-
step’ model selection procedures robust to model misspecification are indicated,
some of which partially reviewed in Chapter 2 and Chapter 3: TIC [292], GIC
[173], GBIC, and GBICp [200]. Hsu et al. note that it is difficult to justify
their asymptotic efficiency in the Fixed Dimensionality (FD) setting, as it is
shown in [154, S5]. The MRIC instead achieves this property without the help
of further criteria. In particular, the TIC, from the i.i.d. setting, has a similar
term to V I1 for h = 1 in the univariate case of [153], i.e. the variability index
for one-step ahead forecast. It was obtained as a bias correction as shown in
Section 2.7.1. The focus is on independent observations, excluding the case of
time series. The APE as shown in [328] considers this case, but focusses on the
one-step prediction case, not applicable to the MSPE or multi-step prediction.
A comparison against the TIC remains an interesting empirical task that will
be included in successive works.

Consider the following DGP :

yt+1 = awt + εt+1, (228)

where a 6= 0, {εt} is a sequence of independent and identically dis-

tributed (hereafter i.i.d.) bivariate random vectors with E [ε1] = 0,
E
[
ε1ε
>
1

]
> 0 and wt is the following scalar AR(2) process:

wt = φ1wt−1 + φ2wt−2 + δt, (229)

whereφ1φ2 6= 0 , {δt} a sequenceof i.i.d. randomvariables independent

of {εt} such that

E [δ1] = 0 and E
[
δ2

1

]
= 1− φ2

2 −
{
φ2

1
1 + φ2
1− φ2

}
.

Hence, we obtain E
[
w2
t

]
≡ γw(0) = 1, where γw(j) = E [wtwt+j ] is

the j-th lag autocovariance of w.

We consider the correctly specified 2-step ahead forecasting model:

yt+2 = awt+1 + εt+2, which leads to

yt+2 = aφ1wt + aφ2wt−1 + ε
∗(2)
t , (230)

where ε
∗(2)
t = εt+2 +aδt+1. It can be easily proved thatE

[
ε
∗(2)
t wt−j

]
=

0 for j ≥ 0.
Now, consider the following misspecified model, Model 1:

yt+2 = βwt + ε
(2)
t , with β =

E [yt+2wt]

V [wT ]
= a

(
φ1 +

φ1φ2
1− φ2

)
.

The forecasting error results:

ε
(2)
t = ε

∗(2)
t − aφ2

[
φ1

1− φ2
wt −wt−1

]
. (231)
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Remark 12. We show that in our case, in presence of misspecification we
have E

[
ε
(2)
t wt

]
= 0, whereas E

[
ε
(2)
t wt−j

]
6= 0 for j 6= 0:

E
[
ε
(2)
t wt−j

]
= −a φ2

1− φ2
{φ1E [wtwt−j ]− (1− φ2)E [wt−1wt−j ]}

= −a φ2
1− φ2

{γw(j + 1)− γw(j − 1)} , (232)

which is zero if j = 0, otherwise this is generally not the case.

We compute the theoretical value of the VMRIC by using Eq. (221).

After some routine algebra, we get:

MI = E
[
ε(2)n ε

(2)>
n

]
= σ2

ε + aa
>
[
σ2
δ + φ2

2

(
1− γ2

w(1)
)]

, (233)

which highlights how the variance-covariance matrix of the 2-step
ahead forecast vector is equal to the DGP’s variance-covariance plus a

bias term that depends upon the misspecification considered.

Now we focus on the variability index VI. We get

C2,0 = σ2
ε + aa

>
{
σ2
δ + φ2

2

(
γw(1)2E

[
w4
t

]
(234)

− 2γw(1)E
[
w3
twt−1

]
+E

[
w2
tw

2
t−1

] )}
and

C2,1 = aa>γw(1)
(
b1E

[
w3
t−1wt−2

]
+ b2E

[
wt−1w

3
t−2

]
(235)

+ b3E
[
w2
t−1w

2
t−2

] )
,

where

b1 = 2φ1φ2γw(1)− φ2, b2 = −φ2
2,

b3 = φ2
(
φ2γw(1)− 2φ1 + γw(1)−1

)
.

Following Eq. (221), the results from Eq. (233), (234), and (235), deliver

the VMRIC for this case.

Now we consider a second misspecified model, Model 2:

yt+2 = ρzt + η
(2)
t , (236)

where zt is a weakly stationary linear AR(1) process independent of

wt:

zt = ψ1zt−1 + υt (237)

with ψ1 ∈ (−1, 1), and {υt} is a sequence of i.i.d. random variables

independent of both the error terms {δt} and {εt} such that E[υt] = 0
and E[υ2

t ] = 1− ψ2
1 , delivering E[zt] = 0 and E[z2

t ] = 1. Thus, zt is
uncorrelatedwithbothwt andyt, thereforeρ = 0. The forecasting error
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Table 1: Parameters’ combinations for the DGP of Eq. (228), (229), and (237).

Case φ1 φ2 a1 a2 ψ1

1 0.4 -0.75 1.50 -2.00 0.80

2 -0.4 -0.45 -0.75 1.25 -0.65

3 0.3 -0.80 1.00 0.50 -0.75

in this case results η
(2)
t = awt+1 + εt+2. Following similar arguments

as above we obtain MI and VI for Model 2:

MI = σ2
ε + aa

>
(238)

VI = σ2
ε + aa

>(1 + 2ψ1γw(1)) (239)

As mentioned above, Model 1 is misspecified since it omits the

laggedpredictorwt−1,whileModel 2only includes thenon-informative

predictor zt.

4.4.1 Large and finite sample performance

First, we compare the above theoretical derivations with their sample

counterpart. We consider three different parameterizations, presented

in Table 1. Also, αn = nα with α = 0.85. Note that, in order for

Eq. (216) to hold, αmust range in (0.5, 1). Further experiments showed

that results are fairly robust if reasonable values of α are selected. For

an empirical method to determine it, see [154, Section 5]. We take the

following variance/covariance matrix for the innovations:

E[εtε
>
t ] =

 1 0.5
0.5 1

 .

We compute both theVMRIC forModel 1 andModel 2, and estimate

the ˆVMRIC and ˆVMRICon a large sample ofn = 106
observations. The

results are shown in Table 2 for the two models, where the theoretical

VMRIC (rows 1 and 3) is comparedwith the estimated one (rows 2 and

4). The results seem to confirm the consistency of the estimator shown

in Eq. (222). Clearly, the VMRIC of Model 1 is consistently smaller

than that of Model 2 and indicates its superior predictive capability.

The finite sample behaviour of the method of moments estimator of

the VMRIC can be further appreciated in Table 3 where we show their

bias and Mean Squared Error (MSE), computed as follows:

Bias =

∥∥∥∥E [(M̂I−MI
)
+
nα

n

(
V̂I−VI

)]∥∥∥∥ , (240)

MSE =

∥∥∥∥∥E
[{(

M̂I−MI
)
+
nα

n

(
V̂I−VI

)}2
]∥∥∥∥∥ . (241)



4.4 example: a misspecified bivariate ar(2) models 105

Table 2: Theoretical and estimated VMRIC of Models 1 and 2, for the three

parametrizations of Table 1, computed on a data set of n = 106

observations.

Model 1 Model 2

Case VMRIC ˆVMRIC VMRIC ˆVMRIC

1 6.671 6.636 7.914 7.902

2 2.777 2.768 3.164 3.168

3 2.801 2.784 2.994 2.993

Table 3: Bias and Mean-Squared Error (MSE) for the (method of moments)

estimator of the VMRIC for the three parametrizations, α = 0.85 and

different sample size n. The results are based upon 1000 Monte Carlo

replications.

Case 1 Case 2 Case 3

n Bias MSE Bias MSE Bias MSE

100 0.227 1.137 0.063 0.306 0.030 0.182

250 0.117 0.455 0.022 0.107 0.032 0.076

500 0.061 0.225 0.015 0.048 0.004 0.032

1000 0.019 0.109 0.010 0.023 0.002 0.015

2500 0.008 0.044 0.001 0.009 0.001 0.006

5000 0.009 0.023 0.001 0.004 0.003 0.003

10000 0.001 0.012 0.003 0.002 0.001 0.002

15000 0.004 0.008 0.001 0.001 0.002 0.001

30000 0.002 0.004 0.001 0.001 0.001 0.001

The results are based upon 1000 Monte Carlo replications and seem to

indicate a rate of convergence of the order of n−1
.

In Table 4, we show the percentages of correct model selection by

the VMRIC, compared with the multivariate version of the AIC and

BIC for the three parameterizations of Table 1. For a sample size of

n = 100, both the AIC and BIC select the best predictive model in

about 50% of the cases and relying upon them is tantamount to tossing

a fair coin. In such a case, theVMRIC selects the correctmodel in about

80% of the cases and reaches 100% for n = 1000. On the contrary, for

Case 3, both the AIC and BIC cannot go above 64% for a sample size

as large as n = 10000 observations and this is a general indication of

their lack of asymptotic efficiency. At the end of this chapter, Figure 1

presents the box-plots and empirical distribution of the method of mo-

ments estimators, while Tables 5, 6, and 7 present results for additional

parametrizations.
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Table 4: Percentages of correctly selected models by the three information

criteria for the three parametrizations and varying sample size n.

Case 1 Case 2 Case 3

n VMRIC AIC BIC VMRIC AIC BIC VMRIC AIC BIC

100 85.9 52.5 52.5 84.6 56.2 56.2 72.1 49.0 49.0

1000 99.9 65.6 65.6 99.9 73.7 73.7 97.0 56.8 56.8

10000 100 88.0 88.0 100 97.8 97.8 100 63.8 63.8

4.5 proofs

In this section we detail the proofs of the three theorems. Hereafter all

the derivations hold for any fixed h ≥ 1; for the sake of presentation

we write εt instead of ε
(h)
t . Remember that {ln} indicates an increasing

sequence of positive integers such that:

ln →∞, ln√
n
= o (1) (242)

and define a = n− ln − h and b = n− ln − h+ 1.

4.5.1 Proof of Theorem 1

The proof of Theorem 1 relies upon four propositions.

Proposition 3. Under assumptions of Theorem 1, it holds that:

N(I) = (III) + o(1), (243)

where

(I) = −E
[
xnR̂

−1
(

Σ̂ε>n + εnΣ̂
>)] ,

(III) = −E
[
xnR

−1
(

Σ̂Aε
>
n + εnΣ̂

>
A

)]
,

with Σ̂ =
(
N−1∑N

t=1 xtεt
)
and Σ̂A =

∑N
t=1 εtxt.

Proof. LetA1 =
∑N
t=1 (εtxt) ε

>
n and note that

‖(I)− (III)‖ =
∥∥∥E [xn (R̂−1 −R−1

) (
A1 +A

>
1

)]∥∥∥ . (244)

By using standard properties of the norm, (243) follows upon proving

that ∥∥∥E [xn (R̂−1 −R−1
)
A>1

]∥∥∥ = o(1). (245)

Let

R̃ = (n− ln)−1
n−ln∑
t=1

x2
t . (246)
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By adding and subtracting εnxn

(
R̃−1

[∑N
t=1 (εtxt)

]>)
, we have

E
[
xn
(
R̂−1 −R−1

)
A>1

]
= (247)

E
[
εnxn

(
R̂−1 − R̃−1

) N∑
t=1
ε>t xt

]

+ E
[
εnxn

(
R̃−1 −R−1

) N∑
t=1
ε>t xt

]
which is equal to

E

εnxn (R̂−1 − R̃−1
)( N∑

t=1
εtxt

)> (248)

+E

εnxn (R̃−1 −R−1
)( N∑

t=b

εtxt

)> (249)

+E

εnxn (R̃−1 −R−1
)( a∑

t=1
εtxt

)> . (250)

We show below that the norms of (248), (249) and (250) are asymp-

totically negligible. Focus on the first one: by combining conditions

(C3), (C4), Lemma 1, and Hölder’s inequality, it follows that ‖(248)‖ is
bounded by

E

∥∥∥∥∥∥εnxn
(
R̂−1 − R̃−1

)( N∑
t=1
εtxt

)>∥∥∥∥∥∥
 ≤ E

[
‖εn‖6

] 1
6 E

[
|xn|6

] 1
6

×E
[∣∣∣R̂−1 − R̃−1

∣∣∣3] 1
3

E

∥∥∥∥∥N 1
2N−

1
2

N∑
t=1
εtxt

∥∥∥∥∥
3

1
3

= O

(
ln
n1/2

)
,

which converges to zero due to the definition of ln in (242). Similarly,

we have that ‖(249)‖ is bounded by

E
[
‖εn‖6

] 1
6 E

[
|xn|6

] 1
6 E

[∣∣∣R̃−1 −R−1
∣∣∣3] 1

3

×E


∥∥∥∥∥∥
(
(N − b+ 1)

1
2 (N − b+ 1)−

1
2

N∑
t=b

εtxt

)>∥∥∥∥∥∥
3

1
3

.

which is anO
(
n−1/2ln

)
thereby vanishing asymptotically. Lastly, Con-

dition (C6), Lemma 1, and Hölder’s inequality imply that ‖(249)‖ is
bounded by

E
[
‖E [εtxt | Ft−ln ]‖

3
] 1

3 E
[∣∣∣R̃−1 −R−1

∣∣∣3] 1
3

×E

∥∥∥∥∥a 1
2a−

1
2

a∑
t=1
ε>t xt

∥∥∥∥∥
3
 1

3

= o (1)
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and this completes the proof.

Proposition 4. Under assumptions of Theorem 1, it holds that:

N(II) = (IV) + o(1), (251)

where

(II) = E
[
R̂−1Σ̂xnxnΣ̂

>
R̂−1

]
, (IV) = E

[
Σ̂BR

−1Σ̂
>
B

]
,

with Σ̂ being defined in Proposition 3 and Σ̂B = N−
1
2
∑N
t=1 εtxt.

Proof. LetM1 = xn
(
R̂−1 −R−1

)
Σ̂B andM2 = xnR

−1Σ̂B . Since

N (II) = E
[
(M1 +M2) (M1 +M2)

>
]

= E
[
M1M

>
1

]
+ E

[
M2M

>
2

]
+ E

[
M1M

>
2

]
+ E

[
M2M

>
1

]
the proof of (251) reduces to show that the following conditions hold:∥∥∥E [M1M

>
1

]∥∥∥ = o (1) , (252)∥∥∥E [M1M
>
2

]∥∥∥ = o (1) , (253)∥∥∥E [M2M
>
2

]
− (IV)

∥∥∥ = o (1) . (254)

Conditions (252) and (253) readily follow from Assumptions (C3) and

(C4), Lemma 1, the non singularity of R and Hölder’s inequality:

E
[∥∥∥M1M

>
1

∥∥∥] = E
[∥∥∥∥x2

n

(
R̂−1 −R−1

)2
Σ̂BΣ̂

>
B

∥∥∥∥]
≤
(
E
[
|xn|10

]) 1
5
(

E
[∣∣∣R̂−1 −R−1

∣∣∣5]) 2
5

×
(

E
[∥∥∥Σ̂B

∥∥∥5
]) 2

5
= o (1) ;

E
[∥∥∥M1M

>
2

∥∥∥] = E
[∥∥∥x2

n

(
R̂−1 −R−1

)
R−1Σ̂BΣ̂

>
B

∥∥∥]
≤
(
E
[
|xn|10

]) 1
5
(

E
[∣∣∣R̂−1 −R−1

∣∣∣5]) 1
5

×
(

E
[∣∣∣R−1

∣∣∣5]) 1
5
(

E
[∥∥∥Σ̂B

∥∥∥5
]) 2

5
= o (1) .

As concerns (254), decompose the vector Σ̂B as follows:

Σ̂B = N−
1
2

N∑
t=1
εtxt = u+w,
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withu = N−
1
2
∑a
t=1 εtxt andw = N−

1
2
∑N
t=b εtxt. Hence, we have that

E
[
M2M

>
2

]
− (IV)

= E
[
uR−1xnxnR

−1u>
]
−E

[
uR−1RR−1u>

]
+ E

[
uR−1xnxnR

−1w>
]
−E

[
uR−1RR−1w>

]
+ E

[
wR−1xnxnR

−1u>
]
−E

[
wR−1RR−1u>

]
+ E

[
wR−1xnxnR

−1w>
]
−E

[
wR−1RR−1w>

]
.

The law of iterated expectations implies that:∥∥∥E [M2M
>
2

]
− (IV)

∥∥∥
≤
∥∥∥E [uR−1

(
E
[
x2
n | Fn−ln

]
−R

)
R−1u>

]∥∥∥ (255)

+
∥∥∥E [uR−1

(
E
[
x2
n | Fn−ln

]
−R

)
R−1w>

]∥∥∥ (256)

+
∥∥∥E [wR−1

(
E
[
x2
n | Fn−ln

]
−R

)
R−1u>

]∥∥∥ (257)

+
∥∥∥E [wR−1

(
E
[
x2
n | Fn−ln

]
−R

)
R−1w>

]∥∥∥ . (258)

By using arguments previously developed, it is easy to see that, un-

der Assumptions (C4) and (C6), (255) – (258) asymptotically vanish.

Therefore, conditions (252) – (254) are fulfilled and the proof is com-

pleted.

Proposition 5. Under assumptions of Theorem 1, it holds that:

(III) = −(D) + o (1) , (259)

where

(D) = E

R−1

N−1∑
j=h

{
(ε1x1) (εj+1xj+1)

> + (εj+1xj+1) (ε1x1)
>
}

Proof. The result readily follows upon noting that, under Assumption

(C2) and the weakly stationarity of the process {xt}, it holds that:

(III) = −
N∑
t=1

E
[
R−1

{
(εtxt) (εnxn)

> + (εnxn) (εtxt)
>
}]

= −
n−1∑
j=h

E
[
R−1

{
(ε1x1) (εj+1xj+1)

> + (εj+1xj+1) (ε1x1)
>
}]

= −E

R−1

N−1∑
j=h

{
(ε1x1) (εj+1xj+1)

> + (εj+1xj+1) (ε1x1)
>
}

+ o(1).
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Proposition 6. Under assumptions of Theorem 1, it holds that:

(IV) = (1) + (Q) + (D) + o(1), (260)

where

(1) = N−1 E
[
R−1

{
N∑
t=1

(εtxt) (εtxt)
>
}]

,

(Q) = E
[
R−1

[
h−1∑
s=1

{
(ε1x1) (εs+1xs+1)

> + (εs+1xs+1) (ε1x1)
>
}]]

(D) = E

R−1

N−1∑
j=h

{
(ε1x1) (εj+1xj+1)

> + (εj+1xj+1) (ε1x1)
>
}

Proof. Let

(2) = N−1 E

R−1


N−1∑
j=1

N∑
k=j+1

(εjxj) (εkxk)
>


 ,

and note that (IV)− (1) = (2) + (2)>. Moreover

(2) = N−1 E

R−1


N−1∑
j=1

(N − j) (ε1x1) (εj+1xj+1)
>




= E

R−1


N−1∑
j=1

(ε1x1) (εj+1xj+1)
>


 (261)

−N−1 E

R−1


N−1∑
j=1

j (ε1x1) (εj+1xj+1)
>


 . (262)

Assumptions (C2) implies that (262) is o(1). Since (261) can be written

as

E
[
R−1

{
h−1∑
s=1

(ε1x1) (εs+1xs+1)
>
}]

+ E

R−1


N−1∑
j=h

(ε1x1) (εj+1xj+1)
>


 ,

then (261) + (261)> = (Q) + (D) and this completes the proof.

Proof of Theorem 1

We prove that:

N
{

E
[
(yn+h − ŷn+h) (yn+h − ŷn+h)> −E

[
ε(h)n ε(h)

>
n

]]}
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is equal to

R−1 E
[(
ε
(h)
1 x1

) (
ε
(h)
1 x1

)>]
(263)

+R−1 E
[
h−1∑
s=1

{(
ε
(h)
1 x1

) (
ε
(h)
s+1xs+1

)>
+
(
ε
(h)
s+1xs+1

) (
ε
(h)
1 x1

)>}]
(264)

+ o(1).

Since

(
β̂−β

)
= R̂−1

(
N−1

N∑
t=1

xtyt+h

)
−β = R̂−1

(
N−1

N∑
t=1

xtεt

)
,

routine algebra implies that:

E
[
(yn+h − ŷn+h) (yn+h − ŷn+h)>

]
−E

[
εnε

>
n

]
= (I) + (II). (265)

By applying Propositions 3 – Propositions 6, we have:

N
{

E
[
(yn+h − ŷn+h) (yn+h − ŷn+h)> −E

[
ε(h)n ε(h)

>
n

]]}
= N(I) +N(II) = (III) + (IV) + o(1) = (1) + (Q) + o(1).

The proof is completed upon noting that (1) = (263) and (Q) = (264).

4.5.2 Proof of Theorem 2

We start proving that

M̂Ih = MIh +Op(n
−1/2). (266)

Note that

M̂Ih = N−1
(

N∑
t=1
εtε
>
t

)
−
(
N−1

N∑
t=1

xtεt

)
R̂−1

(
N−1

N∑
s=1

xsεs

)>

hence, it holds that M̂Ih −MIh equals

N−1
{

N∑
t=1

(
εtε
>
t −E

[
ε1ε
>
1

])}
(267)

−
(
N−1

N∑
t=1

xtεt

)
R̂−1

(
N−1

N∑
t=1

xtεt

)>
. (268)

Assumption (A1) implies that (334) = Op(n−1/2) whereas, by com-

bining Assumptions (A3) and (A4) with the non-singularity of R and

Hölder’s inequality, it can be shown that (335) = Op(n−1) and hence

the proof of (266) is complete.
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Next, we prove that

V̂Ih = VIh + op(1).

It suffices to show that

Ĉh,s = Ch,s + op(1). (269)

It holds that Ĉh,s is equal to

(N − s)−1
N−s∑
t=1

(
xtε
>
t

)> (
xt+sε

>
t+s

)
(270)

− (N − s)−1
N−s∑
t=1

x2
txt+s

(
β̂n(h)−βh

)
ε>t+s (271)

− (N − s)−1
N−s∑
t=1

xtx
2
t+sεt

(
β̂n(h)−βh

)>
(272)

+ (N − s)−1
N−s∑
t=1

x2
tx

2
t+s

(
β̂n(h)−βh

) (
β̂n(h)−βh

)>
. (273)

We prove that (271) is op(1) componentwise. To this end consider:

E
[
(N − s)−1 ‖∗‖

N−s∑
t=1

x2
txt+sεt+s,i

]
,

with εt+s,i being the i-th component of the vector εt+s. The triangular

inequality and Hölder’s inequality imply that:

E
[
(N − s)−1 ‖∗‖

N−s∑
t=1

x2
txt+sεt+s,i

]

≤ (N − s)−1
N−s∑
t=1

E
[
‖∗‖x2

txt+sεt+s,i
]

≤ (N − s)−1
N−s∑
t=1

{(
E
[
x4
t

])1/2 (
E
[
‖∗‖xt+sεt+s,i2

])1/2
}

.

Since β̂n(h) − βh = R̂−1
(
N−1∑N

j=1 xjεj,h
)
, by combining Assump-

tions (A3), (A4) and (A5) with Chebyshev’s inequality we obtain that

(271) is op(1). Similarly, we can verify that (272) and (273) are op(1).
Lastly, Condition (A2) implies that (270) = Ch,s + op(1), hence (269)

is verified and the whole proof is complete.

4.5.3 Proof of Theorem 3

By Theorem 2 the VMRICh defined in (225) can be written as:

VMRICh

(
ˆ̀
h

)
=

min
1≤`≤K

∥∥∥MIh +Op(n
−1/2)

∥∥∥+ min
`∈M1

∥∥∥∥αnn VIh + op

(
αn
n

)∥∥∥∥ . (274)
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Therefore,

lim
n→∞

VMRICh

(
ˆ̀
h

)
= min

1≤`≤K
‖MIh‖ (275)

and hence

lim
n→+∞

Pr
(

ˆ̀
h ∈M1

)
= 1. (276)

Now, consider two models `1 and `2 in the candidates set J`1 , J`2 ∈M1
such that VIh(`1) 6= VIh(`2). We show that

lim
n→∞

Pr

sign {VMRICh(`1)−VMRICh(`2)}

= sign {‖VIh(`1)‖ − ‖VIh(`2)‖}

 = 1. (277)

By defining MI∗h to be the minimum value of MIh over the family of

candidate models, we have:

VMRICh(`1) =
∥∥∥MI∗h +Op(n

−1/2)
∥∥∥+ ∥∥∥∥αnn VIh(`1) + op

(
αn
n

)∥∥∥∥ ,

VMRICh(`2) =
∥∥∥MI∗h +Op(n

−1/2)
∥∥∥+ ∥∥∥∥αnn VIh(`2) + op

(
αn
n

)∥∥∥∥ .

Therefore, for sufficiently large n, it holds that:

VMRICh(`1)−VMRICh(`2) =

∥∥∥∥αnn
∥∥∥∥ (‖VIh(`1)‖ − ‖VIh(`2)‖) .

Thus

sign {VMRICh(`1)−VMRICh(`2)} = sign {‖VIh(`1)‖ − ‖VIh(`2)‖} ,

and (352) is verified and implies that

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1. (278)

This completes the proof.
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4.6 figures and tables

(a) Case 1 - Boxplots (b) Case 1 - Densities

(c) Case 2 - Boxplots (d) Case 2 - Densities

(e) Case 3 - Boxplots (f) Case 3 - Densities

Figure 1: Consistency of the ˆVMRIC2 forModel 1 for three different combina-

tions of parameters. The red dot indicates the population VMRIC2.
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Table 5: Additional parameters’ combinations for the DGP of Eq. (228), (229),

and (237).

Case φ1 φ2 a1 a2 ψ1

4 0.4 -0.75 1.5 -2 -0.25

5 -0.4 -0.45 -0.75 -1.25 0.65

6 -0.33 -0.66 1 0.5 -0.8

Table 6: Additional theoretical and estimated VMRIC of Models 1 and 2, for

the three parameterizations of Table 5, computed on a data set of

n = 106
observations.

Model 1 Model 2

Case VMRIC ˆVMRIC VMRIC ˆVMRIC

4 6.671 6.636 7.537 7.530

5 3.682 3.667 3.941 3.935

6 2.814 2.805 3.081 3.084

Table 7: Percentages of correctly selected models by the three information

criteria for the three additional parametrizations and varying sample

size n.

Case 4 Case 5 Case 6

n VMRIC AIC BIC VMRIC AIC BIC VMRIC AIC BIC

100 74.5 51.6 51.6 71.8 58.7 58.7 77.9 51.1 51.1

1000 97.6 65.5 65.5 93.2 69.6 69.6 99.5 59.7 59.7

10000 100 88.0 88.0 100 95.4 95.4 100 72.7 72.7
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THE FULL MULT IVAR IATE EXTENS ION OF THE

MRIC : MULT IVAR IATE RESPONSE AND

MULT IVAR IATE PRED ICTOR

abstract

We extend the Vectorial MRIC (VMRIC) proposed in Chapter 4 to the

case where the response is a multivariate time series with multiple

predictor. We obtain an asymptotic expression for the Mean-Squared

Prediction Error (MSPE) matrix which allows us to define the VMRIC,

derive its Method-of-Moments Estimator (MoME), prove its asymptotic

consistency, and show that the VMRIC is an asymptotically efficient cri-

terion for h-step ahead possibly-misspecified vector time seriesmodels

with multiple regressor. Remarks on the type of models satisfying the

technical conditions are advanced for vector autoregressive models

with exogenous variables (VARX), also known as dynamic simultane-

ous equations models.

Keywords: multivariate time series, multiple regressor, MSPE matrix,

information criteria, vectorial MRIC, VARX

2020 MSC: Primary 62H12, Secondary 62F12

5.1 introduction

The model selection step is a fundamental task in statistical modelling

and its implementation typically depends upon the objective of the

exercise. In the time series framework the focus is on either forecasting

future values or describing/controlling the process that has generated

the data (DGP). A good model selection criterion must feature a good

ability to identify the model with the “best” fit to future values, in a

specified sense. In particular, in the parametric time series framework,

we can identify two main properties. The first one is consistency, i.e.,

the ability to select the true DGP with probability one as the sample

size diverges. This assumes that a truemodel exists and that it is among

the set of candidate models. If either the set of candidate models does

not contain the true DGP, or, for some reason, a true model cannot

be postulated, then a selection criterion should be asymptotically ef-

ficient, for instance, in the mean square sense, i.e. it minimizes the

mean squared prediction error as the sample size diverges. Starting

from the seminal work of Akaike, [6] a plethora of model selection cri-

teria has been proposed. These include Akaike’s AIC [6, 8], Schwarz’s

Bayesian Information Criterion (BIC) [258], and Rissanen’s Minimum

117
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Description Length (MDL) [242]. Such criteria paved the way for var-

ious extensions dealing with different unsolved issues. For instance,

the AIC is efficient but not consistent (i.e. it leads to select overfitting

models), whereas the BIC is consistent but not efficient, see [153] for a

discussion.

A recent development for model selection in possibly misspecified

parametric time series models in the fixed-dimensionality setting is

given by the Misspecification-Resistant Information Criterion (here-

after MRIC) [153]. Fixed-dimensionality means that the number of ob-

servations increases to infinity while the number of ‘true’ parameters

is finite. In this respect, the MRIC provides a solution to the original

research question of Akaike: it enjoys both consistency, in case the true

model is included as a candidate, and asymptotic efficiency when a

true model either cannot be assumed or is not included. Moreover,

when the number of variables in the model grows with the sample

size, the MRIC can achieve asymptotic efficiency, without the need for

additional criteria. Finally, in the high-dimensional setting, the MRIC
can be used together with appropriate model selection criteria to iden-

tify the best predictive models. The MRIC is based upon the additive

decomposition of the mean squared prediction error in a term that

depends upon the misspecification level and a term that measures the

sampling variability of the predictor. The idea is to select the model

with smallest variability among those that minimize the misspecifica-

tion index.

After showing in Chapter 4 that the multivariate extension of the

MRIC with a univariate regressor is viable, the present chapter shows

the first full extension of the MRIC, the VMRIC, to possibly-misspecified

multivariate time models with multiple regressor in h-step ahead pre-

diction. Only a few conditions had to be adapted in order to obtain

the asymptotic decomposition of the MSPE, which follows similarly

the structure as in the univariate case, but displays the presence of

quadratic forms for the Variability Index (VI) matrix. This is detailed

in the proof of Theorem 4, and in the second part of the proof of

Theorem 5 for the asymptotic consistency of the method-of-moments

(MoM) estimator. All the proofs are however reported for readability.

The rest of the chapter is organized as follows: in Section 5.2we recall

and update the notation; in Section 5.3 we extend the MRIC approach

tomultivariate time series withmultiple regressor. In particular, in Sec-

tion 5.3.1 we obtain the general asymptotic decomposition of the MSPE

matrix into two parts, as before: the first one is linked to the goodness

of fit of the model and the second one depends upon the prediction

variance. In Section 5.3.2 we present the VMRIC and derive a consis-

tent estimator for it, whereas in Section 5.3.3, we prove the asymptotic

efficiency of the VMRIC as in the univariate case. Section 5.4 presents

a digression on the conditions for possibly-misspecified vector autore-

gressive models with exogenous variables (VARX), or dynamic simul-
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taneous equations models. All the proofs are detailed in Section 5.5.

Appendix B.1 contains the auxiliary technical lemma.

5.2 notation and preliminaries

Let us consider two weakly stationary stochastic processes {yt} ∈ Rw

and {xt} ∈ Rm
, with w,m ∈ N+

, defined in the probability space

(Ω,F , P). We observe the sample ({y1, . . . , yn} , {x1, . . . , xn}), with

t = {1, 2, . . . ,N ,N + 1, . . . ,N + h = n}. Define the sample means ȳ =

n−1∑n
t=1 yt, and x̄ = n−1∑n

t=1 xt.We replace the unconditional expec-

tations, E [yt+1] and E [xt], with their respective sample counterparts,

considering the complete set of n observations for efficiency. This be-

cause the differences (a) between (yt+1 −E [yt+1]) and (yt+1 − ȳ); and
(b) between (xt −E [xt]) and (xt − x̄), vanish asymptotically. Without

lack of generality, assume E [yt] = 0, and E [xt] = 0. In order to

forecast yn+h, h ≥ 1, we adopt the following h-step ahead forecasting

model:

yt+h = βhxt + ε(h)t , (279)

whereβh is a (w×m)matrix parameters’matrix defined as the pseudo-

true parameter for the possibly-misspecified model

βh = argmin
C∈R(w×m)

E
[
(yt+h −Cxt) (yt+h −Cxt)>

]
, (280)

and ε
(h)
t is the w-length vector containing the h-step ahead forecasting

errors. The prediction error vector ε
(h)
t can be both serially and cross-

correlated, and also correlated with xs, s 6= t.1

Remark 13. This general definition of the model includes: (i) the setting of
multi-step forecasting with h < 1; (ii) exogenous and endogenous variables
in x; and (iii) cases where the prediction error vector ε(h)t can be serially
correlated, but also correlated with xs, s 6= t. Moreover, the multivariate
framework differs from [153] in different key aspects. For instance, (a) the
components of the error vector can be cross-correlated, and (b) xtε(h)t and
xkε

(h)
k , for t 6= k, can also be both serially and cross correlated. Besides, as in

the original MRIC, x may vary also with h, but for notational simplicity, it is
avoided.

Define

R̂ = N−1
N∑
t=1

xtx>t and R = E[x1x>1 ]. (281)

Then, the Ordinary least squares (OLS) estimator of βh results:

β̂n(h) = R̂−1
(
N−1

N∑
t=1

xty>t+h

)
. (282)

1 The following Remark 13 is the same as Remark 3, included here for convenience.
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The prediction of yn+h, h ≥ 1, is given by

ŷn+h = β̂n(h)xn (283)

and the corresponding Mean Squared Prediction Error matrix is

MSPEh = E
[
(yn+h − ŷn+h)(yn+h − ŷn+h)>

]
. (284)

5.3 the full multivariate extension of the mric framework

In this section we extend the MRIC approach to the case where the

response is a multivariate time series (w ≥ 2) and multiple predictor

(m ≥ 1), for a generic h-step ahead forecast, h ≥ 1. Hence, Model (279)

can be written in extensive form as:

yt+h,1 = β
(h)
1,1 xt,1 + β

(h)
1,2 xt,2 + · · ·+ β

(h)
1,mxt,m + ε

(h)
t,1

yt+h,2 = β
(h)
2,1 xt,1 + β

(h)
2,2 xt,2 + · · ·+ β

(h)
2,mxt,m + ε

(h)
t,2

.

.

.

yt+h,w = β
(h)
w,1xt,1 + β

(h)
w,2xt,2 + · · ·+ β

(h)
w,mxt,m + ε

(h)
t,w.

(285)

5.3.1 Asymptotic decomposition of the MSPE matrix

In this section we further extend the asymptotic version of theMSPEh
derived in Eq. (220) which allows us to write the VMRICh for multi-

variate time series responses and multiple regressor. Let

B(h)
t = xtε(h)>t (286)

and consider the following regularity conditions:
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Assumptions 11.

(C1′) ∃ q1 > 5, 0 < C1 <∞ :

for any 1 ≤ n1 < n2 ≤ n, and any 1 ≤ i, j ≤ m,

E

∣∣∣∣∣∣(n2 − n1 + 1)−1/2
n2∑
t=n1

xt,ixt,j −E [xt,ixt,j ]

∣∣∣∣∣∣
q1 ≤ C1.

(C2′) 1. Dh,s = E
[
B(h)>
t B(h)

t+s

]
= E

[(
εtε

(h)>
t+s

)
tr
{

xtx>t
}]
⊥⊥ t,

2. ∀ i, j = {1, 2, . . . ,w} , ∀ k, l = {1, 2, . . . ,m} ,

E
[
ε
(h)
1,i ε

(h)
n,jx1,kxn,l

]
= o(n−1).

(C3′) 1. sup
−∞<t<∞

E
[
‖xt‖10

]
<∞,

2. sup
−∞<t<∞

E

[∥∥∥ε(h)t

∥∥∥6]
<∞.

(C4′) ∃ 0 < C2 <∞ : for 1 ≤ n1 < n2 ≤ n,

E


∣∣∣∣∣∣
∣∣∣∣∣∣(n2 − n1 + 1)−

1
2

n2∑
t=n1

xtε(h)>t

∣∣∣∣∣∣
∣∣∣∣∣∣
5
 < C2.

(C5′) For any q > 0, E
[∥∥∥R̂−1

∥∥∥q] = O(1).

(C6′) ∃ Ft ⊆ F ,Ft an increasing sequence of σ-fields :

(1) xt is Ft-measurable

(2) sup
−∞<t<∞

E

[∥∥∥E [xtx>t |Ft−k]−R∥∥∥3
]
= o(1),

(3) sup
−∞<t<∞

E

[∥∥∥E [B(h)
t |Ft−k

]
− 0

∥∥∥3]
= o(1),

as k diverges.

Remark 14. To aid with the qualitative interpretation of Assumptions 11,
note the following. For further details, see Section 5.4.

(i) Condition (C1′) requires the finiteness of the q1-th moment, with q1 >

5, of the difference between the sample and population second-order
moment of the covariance betweenxt,i andxt,j , i.e. component-wise. This
condition depends on the square-summability of the processes composing
both the dependent multivariate response and the multiple regressor. For
this reason, it appears to be attainable also for vector time series under
general condition. Besides, it also relies on the First Moment Bound
Theorem of Findley and Wei [115], which has been proved for vector
time series. For these reasons, we expect this condition to hold also in
the multivariate setting. We are currently completing the proof.

(ii) The first part ofCondition (C2′) involves the s-lag cross-(auto)covariance
matrix, between the h-steps ahead forecast error and the regressor and
requires it to be independent of time t. Note that the symbol ⊥⊥ reads
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in this case "is independent of". The first part should be ensured for
processes admitting linear vectorial representation, in particular, satis-
fying Wold’s multivariate representation theorem. Given that this is a
fairly general condition, it should not present a major problem, specially
if it is further assumed finite fourth-order moments of the white noise
processes or martingale-difference vector sequences, considering these
type of processes the building blocks of {yt} , {xt} ,

{
ε
(h)
t

}
.

The second part states that this s-lag cross-(auto)covariance matrix
vanishes asymptotically, component-wise, for the maximum lag n, for
sufficiently large sample size. In other words, it suggests that the depen-
dence between xtε>t,h and xsε>s,h vanishes sufficiently quickly as |t− s|
diverges. This condition is fundamental to prove Propositions 1 and 5
in both univariate and multiple regressor scenario.

(iii) Condition (C3′) states uniform integrability of both the regressor and
the h-steps ahead forecast error. This can be easily obtain for instance
for possibly-misspecified VARX models with processes satisfying the
conditions for Wold’s representation theorem in the multivariate case
(i.e. under conditions of convergence of the vector processes) and fourth-
order finiteness of the white noise that compose these. This condition has
been shown in Section 5.4.

(iv) Condition (C4′) requires the sample covariance between the regressor
and the misspecified forecast error to be in the L5 space. In particular,
it states that for a finite costant C2, and for any time index n1 and n2
we have boundedness of the fifth-order moment of the sample covariance
vector between the multiple regressor and the multivariate forecast error.
For the same reasons exposed for Condition (C1′), it is expected to hold.

(v) Condition (C5′) says that for any positive order q, boundedness of q-
moments of the inverse of regressors’ sample variance is satisfied. In
other words, it requires the inverse of the sample variance-covariance
matrix to be in the Lp space, with p > 0. In the scalar case m = 1, it
is shown in view of Theorem 2.1 in Chan and Ing [71] for univariate
(nonlinear) stochastic regression models with applications to time series.
It remains open to show that this is the case for the multivariate case, e.g.
in a VARX(p, q) model where the regressor is composed by both processes
{st−i}, {yt−j}, with i = {1, 2, . . . , q}, j = {0, 1, . . . , p}, as in Section
5.4.

(vi) Condition (C6′) requires:
(I) Ft-measurability of xt, and
(II) uniform convergence of regressors’ conditional variance to their

population values, and
(III) uniform convergence of the conditional covariance between the

h-steps ahead forecast error and the regressor to its population
value.
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In Section 5.4we show that under general assumptions on the underlying
processes, it holds for possibly-misspecified VARX(p,q) model, where we
may have p =∞.

Current research is devoted to complete the proofs connected with

the statements in the previous Remark 14. We are seeing promising

results for a general class of multivariate time series models to satisfy

these conditions. We have shown for the general case that Conditions

(C3′) and (C6′) hold for vector autoregressive with exogenous vari-

ables models with infinite AR part and finite q lags for the exogenous

part, i.e. VARX(∞, q), under very general conditions. Further details

are included in the Section 5.4.

Remark 15. Our natural full vectorial extension only modified conditions
(C2), the second point in (C3), (C4), and the third point in (C6). The rest are
the same as in the VMRICh with univariate regressor.

Theorem 4. Under the regularity conditions (C1’) – (C6’), the asymptotic
expression of the MSPEh defined in (284), for the general case w ≥ 2 and
m ≥ 2, results

N
{
E
[
(yn+h − ŷn+h) (yn+h − ŷn+h)>

]
−E

[
εnε

(h)>
n

]}
=

E
[
B

(h)>
t R−1B

(h)
t

]
+

h−1∑
s=1

{
E
[
B

(h)>
t R−1B

(h)
t+s

]
+E

[(
B

(h)>
t R−1B

(h)
t+s

)>] }
+ o(1) (287)

where E
[
B

(h)>
t R−1B

(h)
t+s

]
= E

[
ε
(h)
1 ε

(h)>
t+s tr

{
x1x

>
1+sR

−1
}]

.

5.3.2 VMRIC and its consistent estimation

In this section we introduce the VMRIC. Let {αn} be the penalization
term sequence defined as in Eq. (311).

VMRICh = ‖MIh‖+
∥∥∥∥αnn VIh

∥∥∥∥ (288)

where

MIh = E
[(
ε
(h)
t ε

(h)>
t

)]
,

VIh = R−1
(

Ch,0 +
h−1∑
s=1

(
Ch,s + C>h,s

))
,

Ch,s = E
[(

xtε(h)>t

) (
xt+sε(h)>t+s

)>]
.

The VMRIC can be estimated via the method of moments as to

obtain:

ˆVMRICh ≡
∥∥∥M̂Ih

∥∥∥+ ∥∥∥∥αnn V̂Ih
∥∥∥∥ , (289)
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where

M̂Ih = N−1
N∑
t=1

(
ε̂tε̂
>
t

)
,

V̂Ih = R̂−1
[
Ĉh,0 +

h−1∑
s=1

(
Ĉh,s + Ĉ>h,s

)]
,

and Ĉh,s = (N − s)−1∑N−s
t=1 xtxt+sε̂tε̂

>
t+s, with ε̂t = yt+h − β̂n(h)xt

the estimated forecast error vector.

In Theorem 5 below we prove that M̂Ih and V̂Ih are consistent estima-

tors ofMIh andVIh, respectively. Theorem 5 relies upon the following

assumptions, that are less restrictive with respect to (C1’) – (C6’). For

further discussions on the assumptions see [153, Remark 1–3, p. 1073].

Assumptions 12. For each 0 ≤ s ≤ h− 1, we assume the following:

(A1′) n−1
n∑
t=1

(
ε
(h)
t ε

(h)>
t

)
= E

[
ε
(h)
1 ε

(h)>
1

]
+Op

(
n−1/2

)
,

(A2′) n−1
n∑
t=1

(
xtε(h)>t

) (
xt+sε(h)>t+s

)>
= Ch,s + op(1),

(A3′) n−1/2
n∑
t=1

xtε(h)>t = Op(1),

(A4′) n−1
n∑
t=1

xtx>t = R + op(1),

(A5′) sup
−∞<t<∞

E
[∥∥∥ε(h)t

∥∥∥4]
+ sup
−∞<t<∞

E
[
‖xt‖8

]
<∞.

Theorem 5. If Assumptions (A1) – (A5) hold, then for the case w ≥ 2, and
m = 1 we obtain:

M̂Ih = MIh + Op(n
−1/2),

V̂Ih = VIh + op(1).

Remark 16. Consider the following for a qualitative aid to interpret Condi-
tions 12:

(i) Assumption (A1’) refers to the convergence in probability of the sample
variance-covariance matrix of the misspecified forecasting error to its
population value, since Op(n−1/2) = Op(o(1)) = op(1).2 In the orig-
inal univariate case in [153], Theorem 4.3, it is required for asymptotic
efficiency across several high-dimensional time series models. Further-
more, from Remark S.2 in [154], we know that it has a similar condition
for the nonlinear regression case. It has consequences on the convergence

2 Themotivation behind this choice, and I conjecture also behind the original derivation

in the scalar case, is because it considers also cases of boundedness in probability with

specific rates, i.e. where the bounding quantity is such that itself converges to zero at

a rate slower than n−1
.
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of M̂Ih to MIh, as shown in Section 5.5.2. In our multivariate setting, it
should follow from the consequences of Assumptions 13 for VARX(p, q)
models, i.e. Wold’s multivariate representation theorem, and from using
the First Moment Bound Theorem of Findley and Wei [115], applicable
to vector time series. See Section 5.4. It is the focus of current research.

(ii) Assumption (A2’) is related to Condition (iii) in Assumptions 13, and
to the consequence of Wold’s representation theorem.

(iii) In [153], the scalar counterparts of Assumptions (A3’), (A4’), and (A5’),
are ensured by Conditions (C4’), (C1’), and (C3’).

Now, we are able to define the approximate estimate of the VMRIC

for h-step ahead prediction. As we can see, it keeps the same general

structure as the case with univariate regressor, but with a different

composition.

Definition 72. By Theorem 4, the ˆVMRICh quantifying the model’s perfor-
mance is estimated using the MoMEs:

ˆVMRICh =
∥∥∥M̂Ih

∥∥∥+ ∥∥∥∥αnn V̂Ih
∥∥∥∥ , (290)

with

M̂Ih = N−1
N∑
t=1
ε̂
(h)
t ε̂

(h)>
t , (291)

V̂Ih = D̂h,0 +
h−1∑
s=1

{
D̂h,s + D̂

>
h,s

}
, (292)

where

D̂h,s = (N − s)−1
N−s∑
t=1

B̂
(h)>
t R̂

−1
B̂

(h)
t+s, (293)

B̂
(h)
t = xtε̂

(h)>
t . (294)

5.3.3 Asymptotic efficiency

In this section we prove the asymptotic efficiency of the VMRIC in

the fixed dimensionality framework. To this end, letM be the set ofK

candidatemodels; eachmodel is indicated either by `orκ, 1 ≤ `,κ ≤ K.

Define the subsetsM1 andM2 as follows:

M1 =

{
κ : 1 ≤ κ ≤ K, ‖MIh(κ)‖ = min

1≤`≤K
‖MIh(`)‖

}
, (295)

M2 =

{
κ : κ ∈M1, ‖VIh(κ)‖ = min

`∈M1
‖VIh(`)‖

}
. (296)
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In short, for a given forecast horizon h, M1 contains the models with

the minimum MIh whereas in M2 we are minimizing VIh among

the candidates models in M1. The definition of efficiency used in our

framework is the same as that of [153]:

Definition 73. Given a sample of size n, a model selection criterion is said
to be asymptotically efficient if it selects the model ˆ̀

h such that

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1.

Remark 17. Please refer to Section 2.5.2 in Chapter 2, and Remark 8 in
Chapter 4 for a detailed discussion.

The VMRIC selects the model with the smallest variability index

among those that achieve the best goodness of fit. Hence, the selected

model
ˆ̀
h is such that:

VMRICh

(
ˆ̀
h

)
≡ min

1≤`≤K

∥∥∥M̂Ih(`)
∥∥∥+ min

`∈M1

∥∥∥∥αnn V̂Ih(`)
∥∥∥∥ . (297)

In the next Theoremwe show that theVMRIC is an asymptotic efficient

model selection criterion in the sense of Definition 73.

Theorem 6. Assume that for each 1 ≤ ` ≤ K, 0 ≤ s ≤ h− 1, Theorem 5
holds and let ˆ̀

h be the model selected by the VMRIC. Then we have that:

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1,

namely, the VMRIC is asymptotically efficient in the sense of Definition 73.

5.4 example: a possibly-misspecified vector autoregressive

with multiple exogenous regressor model, varx(p,q)

We follow Lütkepohl [197], Reinsel [238], and Hansen [139] in the

theoretical structure of this example.

Consider as DGP the general vector autoregressive model of order

p =∞ with exogenous multiple regressor with autoregressive part of

order q, in structural form:

Ayt = A∗1yt−1 + A∗2yt−2 + · · ·+ η∗0st + · · ·+ η∗qst−q + εt, (298)

for a w-dimensional multivariate dependent vector yt of endogenous
variables, an m′-dimensional multiple exogenous regressor vector st
of exogenous variables, with matrix A of dimension (w × w) repre-

senting the instantaneous relation between the endogenous variables,

coefficients’ matrices A∗i ,η∗j of dimensions (w×w) and (w×m′), with

i = {0, 1, . . . } and j = {1, . . . , q} respectively, and a w-dimensional

error vector εt.
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If {εt} is a White Noise vector process, i.e. E [εt] = 0, E
[
εtε
>
t

]
=

Σε nonsingular, and E
[
εtε
>
s

]
= 0 for s 6= t, then it is defined as

a VARX(∞, q) model or dynamic simultaneous equations model. Notice

that st may contain both stochastic and nonstochastic components. Let

A = Iw, and η
∗
0 = 0, sowe canwrite the reduced form version, usually

employed for forecasting, multiplier analysis or control:

yt = A1yt−1 + · · ·+ η0st + η1st−1 + · · ·+ ηqst−q + ut, (299)

where matrices Ai ≡ A−1A∗i , i = {1, 2, . . . }, and ηj ≡ A−1η∗j , j =

{0, 1, . . . q}, are usually nonlinear functions of the reduced parameters,

ut ≡ A−1εt the transformed errors. Notice that the reduced form as-

sumes that A−1
exists, which is guaranteed by A = Iw in this example.

Its reduced form with the lag operator becomes:

A(B)yt = η(B)st + εt, (300)

where A(B) = Iw −A1B −A2B
2 − · · · =

∑∞
j=0 AjB

j
, and η(B) =

η0 +η1B+ · · ·+ηqBq =
∑q
j=0 ηjB

j
, withη0 = 0, the lag polynomials

for the endogenous and exogenous vector variables respectively,where

B is the backshift operator: Byt = yt−1 .

Assume that the exogenous vector variable has VMA(∞) model

representation: st =
∑∞
j=0 Ψjδt−j , with Ψj (m′ ×m′) real matrices,

{δt} =
{
[δ1,t, . . . , δm′,t]>

}
White Noise random vectors, i.e. E [δt] = 0,

and E
[
δtδ
>
t

]
= Σm′ its (m′ ×m′) nonsingular variance-covariance

matrix independent of time t. Further, let {εt} be independent of {δt}.

Remark 18. In order to obtain the vector moving-average of infinite order
representation, VMA(∞), of a stationary vector autoregressive of order p. For
simplicity, let ‖A‖2F ≡ tr

{
A>A

}
be the Frobenious matrix norm. Since

‖A‖ ≤ ‖A‖F , where ‖A‖ denotes the spectral norm as before, this does
not impact any of our results. Consider a purely nondeterministic weakly
stationary process {yt} ∈ Rw , with costant mean E [yt] = µ. Then, it
follows that {yt −µ} is the output of a causal linear filter with white noise
input {εt}, hence, delivering our VMA(∞) representation:

yt = µ+
∞∑
j=0

Φjεt−j , (301)

with Φ0 = Iw, where Φj are such that:

∞∑
j=0
‖Φj‖2F <∞. (302)

Assumptions 13. In order for Conditions (C3’) and (C6’) to hold, consider
the following assumptions:
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(i) Let the DGP be a VARX(∞, q) defined by:

A∗(B)yt = η∗(B)st + εt, (303)

where A−1(z) ≡ θ(z) =
∑∞
j=0 θjz

j and Cj ≡
∑j
k=0 [Ψk ⊗ θj−k]

are:
∞∑
j=0
‖θj‖2F <∞, (304)

∞∑
j=0
‖Cj‖2F <∞. (305)

(ii) There exist two constants c1 > 0, and r > 3/4 such that:

‖θj‖F ≤ c1(j + 1)−r, (306)

‖Ψj‖F + ‖Cj‖F ≤ c1(j + 1)−r. (307)

(iii) The fourth moments of

vt ≡ [ε1,t . . . εw,t δ1,t, . . . , δm′,t]> , (308)

a (m′ × 1)-dimensional error vector, withm = w+m′ and

E
[
vtv>t

]
= E

 Σε 0
0 Σδ

 = Λ, (309)

are independent of t, and that:

sup
−∞<t<∞

E
[
‖v‖θ

]
< +∞, θ > 10. (310)

Theorem 7. If Assumptions 13 hold, then Conditions (C3’) and (C6’) follow.

Remark 19. Assumptions 13 allow for the VMA(∞) representation of the
involved processes, i.e. to write each in its Wold representation version. See
Subsection 5.5.4 for further details.

5.5 proofs

In this section we detail the proofs of the three theorems for the mul-

tiple regressor case, and one of the VARX(∞, q) model example. As in

the previous chapter, hereafter all the derivations hold for any fixed

h ≥ 1; for the sake of presentation we write εt instead of ε
(h)
t . Remem-

ber that {ln} indicates an increasing sequence of positive integers such

that:

ln →∞, ln√
n
= o (1) (311)

and define a = n− ln − h and b = n− ln − h+ 1.
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5.5.1 Proof of Theorem 4

We follow the same structure as in the previous chapter. Hereafter all

the derivations hold for any fixed h ≥ 1; for the sake of presentationwe

willwrite εt instead of ε
(h)
t . Remember that {ln} indicates an increasing

sequence of positive integers such that:

ln →∞, ln√
n
= o (1) (312)

and define a = n− ln − h and b = n− ln − h+ 1.

Proposition 7. Under assumptions of Theorem 4, it holds that

(I) = (III) + o(1), (313)

with

(I) = −
{
E
[
Σ̂
>R̂−1A

]
+E

[
A>R̂−1Σ̂

]}
,

(III) = −
{
E
[
Σ̂
>R−1A

]
+E

[
A>R−1Σ̂

]}
,

whereA = xnε>n and Σ̂ =
∑N
t=1 xtε>t .

Proof. We need to show that:

‖(I)− (III)‖ = o(1). (314)

Note that the left hand side is equal to:∥∥∥{E [Σ̂> (R̂−1 −R−1
)
A
]
+E

[
A>

(
R̂−1 −R−1

)
Σ̂
]}∥∥∥ (315)

By using standard properties of the norm,we show that Eq. 313 follows

after noticing that:

E
[
Σ̂
> (R̂−1 −R−1

)
A
]
= o(1). (316)

Let

R̃−1 = (n− ln)−1
n−ln∑
t=1

xtx>t (317)
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Now, add and substract Σ̂
>R̃−1xnε>n from the left hand side of Eq. 316

to obtain:

E
[
Σ̂
> (R̂−1 −R−1

)
A
]

= E

[
N∑
t=1

(
xtε>t

)> (
R̂−1 − R̃−1

)
xnε>n

]

+E

[
N∑
t=1

(
xtε>t

)> (
R̃−1 −R−1

)
xnε>n

]

= E

[
N∑
t=1

(
xtε
>
t

)> (
R̂
−1 − R̃−1)xnε>n

]
(318)

+E

[
N∑
t=b

(
xtε
>
t

)> (
R̃
−1 −R−1

)
xnε>n

]
(319)

+E

[
a∑
t=1

(
xtε
>
t

)> (
R̃
−1 −R−1

)
xnε>n

]
(320)

We proceed to show that the norms of (318), (319), (320) vanish asymp-

totically. Let us consider the first one. By combining conditions (C3’),

(C4’), Lemma 1, and Hölder’s Inequality, it follows that ‖(318)‖ is

bounded by

E

[∥∥∥∥∥
N∑
t=1

(
xtε
>
t

)> (
R̂
−1 − R̃−1)

xnε
>
n

∥∥∥∥∥
]

≤ E
[∥∥∥(R̂−1 − R̃−1)∥∥∥3

] 1
3
E
[
‖xn‖6

] 1
6 E

[
‖εn‖6

] 1
6

×E

∥∥∥∥∥N 1
2N−

1
2

N∑
t=1

(
xtε
>
t

)>∥∥∥∥∥
3

1
3

= O

(
ln

n
1
2

)
which vanishes asymptotically due to the definition of ln in (312). In

the same manner, we have that ‖(319)‖ is bounded by

E
[
‖εn‖6

] 1
6 E

[
‖xn‖6

] 1
6 E

[∥∥∥(R̃−1 −R−1
)∥∥∥3

] 1
3

×E

∥∥∥∥∥(N − b+ 1)
1
2 (N − b+ 1)−

1
2

N∑
t=b

(
xtε
>
t

)>∥∥∥∥∥
3

1
3

which is an O(n−1/2ln) thus vanishing in the limit. Finally, conditions

(C4’), (C6’), Lemma 1, and Hölder’s Inequality imply that ‖(320)‖ is
bounded by

E

[∥∥∥E [xtεTt |Ft−ln]∥∥∥3
] 1

3
E

[∥∥∥R̃−1 −R−1
∥∥∥3
] 1

3

×E

∥∥∥∥∥(a) 1
2 (a)−

1
2

a∑
t=1

(
xtε

T
t

)T ∥∥∥∥∥
3
 1

3

= o(1)

completing the proof.
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Proposition 8. Under assumptions of Theorem 4, it holds that:

(II) = (IV) + o(1) (321)

where

(II) = E
[
Σ̂
T R̂−1xnxTn R̂−1Σ̂

]
(IV) = E

[
Σ̂
T
BR−1Σ̂B

]
with Σ̂ defined in Proposition 7 and Σ̂B = N−

1
2
∑N
t=1

(
xtεTt

)
.

Proof. LetM1 = Σ̂
T
B

(
R̂
−1 −R−1

)
xn andM2 = Σ̂

T
BR
−1xn. Since

N (II) = E
[
(M1 +M2) (M1 +M2)

>
]

= E
[
M1M

>
1

]
+E

[
M2M

>
2

]
+E

[
M1M

>
2

]
+E

[
M2M

>
1

]
the proof of (321) reduces to show that the following conditions hold:∥∥∥E [M1M

>
1

]∥∥∥ = o (1) , (322)∥∥∥E [M1M
>
2

]∥∥∥ = o (1) , (323)∥∥∥E [M2M
>
2

]
− (IV)

∥∥∥ = o (1) . (324)

Conditions (322) and (323) readily follow from Assumptions (C3’) and

(C4’), Lemma 1, the non singularity of R and Hölder’s Inequality:

E
[∥∥∥M1M

T
1

∥∥∥] = E
[∥∥∥Σ̂

T
B

(
R̂
−1 −R−1

)
xnx

T
n

(
R̂
−1 −R−1

)
Σ̂B

∥∥∥]
≤
(
E
[
‖xn‖10

]) 1
5
(
E

[∥∥∥R̂−1 −R−1
∥∥∥5
]) 2

5

×
(
E

[∥∥∥Σ̂B

∥∥∥5
]) 2

5
= o(1)

E
[∥∥∥M1M

T
2

∥∥∥] = E
[∥∥∥Σ̂

T
B

(
R̂
−1 −R−1

)
xnx

T
nR
−1Σ̂B

∥∥∥]
≤
(
E
[
‖xn‖10

]) 1
5
(
E

[∥∥∥(R̂−1 −R−1
)∥∥∥5

]) 1
5

×
(
E

[∥∥∥R−1
∥∥∥5
]) 1

5
(
E

[∥∥∥Σ̂B

∥∥∥5
]) 2

5
= o(1)

In relation to Eq. (324), partition matrix Σ̂B as:

Σ̂B = N−
1
2

N∑
t=1

(
xtε

T
t

)
= U +W
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with U = N−
1
2
∑a
t=1

(
xtε

T
t

)
andW = N−

1
2
∑N
t=b

(
xtε

T
t

)
. Therefore,

we have that E
[
M2M

>
2

]
− (IV) is equal to:

E
[
UTR−1xnx

T
nR
−1U

]
−E

[
UTR−1RR−1U

]
+E

[
W TR−1xnx

T
nR
−1U

]
−E

[
W TR−1RR−1U

]
+E

[
UTR−1xnx

T
nR
−1W

]
−E

[
UTR−1RR−1W

]
+E

[
W TR−1xnx

T
nR
−1W

]
−E

[
W TR−1RR−1W

]
The law of iterated expectations implies that:∥∥∥E [M2M

>
2

]
− (IV)

∥∥∥
≤
∥∥∥E [UTR−1

(
E
[
xnx

T
n |Fn−ln

]
−R

)
R−1U

]∥∥∥ (325)

+
∥∥∥E [UTR−1

(
E
[
xnx

T
n |Fn−ln

]
−R

)
R−1W

]∥∥∥ (326)

+
∥∥∥E [W TR−1

(
E
[
xnx

T
n |Fn−ln

]
−R

)
R−1U

]∥∥∥ (327)

+
∥∥∥E [W TR−1

(
E
[
xnx

T
n |Fn−ln

]
−R

)
R−1W

]∥∥∥ (328)

By using previously developed arguments, it is easy to see that, under

Assumptions (C4’) and (C6’), (325) – (328) are negligible. Therefore,

conditions (322) – (324) hold completing the proof.

Proposition 9. Under assumptions of Theorem 4, it holds that:

(III) = − (D) + o (1) , (329)

where

(D) = E

N−1∑
j=h

(
ε1x

T
1R
−1x1+jε

T
1+j + ε1+jx

T
1+jR

−1x1ε
T
1

)
Proof. The result readily follows upon noting that, under Assumption

(C2’) and the weakly stationarity of the process {xt}, it holds that (III)
is equal to:

= −
N∑
t=1

E

[(
xtε

T
t

)T
R−1xnε

T
n + εnx

T
nR
−1xtε

T
t

]

= −
n−1∑
j=h

E

[(
x1ε

T
1

)T
R−1

(
x1+jε

T
1+j

)
+
(
x1+jε

T
1+j

)T
R−1

(
x1ε

T
1

)]

= −E

N−1∑
j=h

(
ε1x

T
1R
−1x1+jε

T
1+j + ε1+jx

T
1+jR

−1x1ε
T
1

)+ o(1).
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Proposition 10. Under assumptions of Theorem 4, it holds that:

(IV) = (1) + (Q) + (D) + o(1), (330)

where

(1) = N−1E

[
N∑
t=1

(
xtε

T
t

)T
R−1

(
xtε

T
t

)]
,

(Q) = E

[
h−1∑
s=1

(
ε1x

T
1R
−1x1+sε

T
1+s + ε1+sx

T
1+sR

−1x1ε
T
1

)]
,

(D) = E

N−1∑
j=h

(
ε1x

T
1R
−1x1+jε

T
1+j + ε1+jx

T
1+jR

−1x1ε
T
1

) .

Proof. Let

(2) = N−1E

N−1∑
j=1

N∑
k=j+1

(
xjε

T
j

)T
R−1

(
xkε

T
k

) ,

and note that (IV)− (1) = (2) + (2)>. Moreover

(2) = N−1E

N−1∑
j=1

(N − j)
(
x1ε

T
1

)T
R−1

(
x1+jε

T
1+j

)
= E

N−1∑
j=1

(
x1ε

T
1

)T
R−1

(
x1+jε

T
1+j

) (331)

−N−1E

N−1∑
j=1

j
(
x1ε

T
1

)T
R−1

(
x1+jε

T
1+j

) . (332)

Assumptions (C2’) implies that (332) is o(1). Since (331) can be written

as

E

[
h−1∑
s=1

(
ε1x

T
1R
−1x1+sε

T
1+s + ε1+sx

T
1+sR

−1x1ε
T
1

)]

+E

N−1∑
j=h

(
ε1x

T
1R
−1x1+jε

T
1+j + ε1+jx

T
1+jR

−1x1ε
T
1

) ,

then (331) + (331)> = (Q) + (D) and this completes the proof.

5.5.2 Proof of Theorem 5

We start proving that

M̂Ih = MIh +Op(n
−1/2). (333)

Note that

M̂Ih = N−1
(

N∑
t=1
εtε
>
t

)
−
(
N−1

N∑
t=1

xtε>t

)
R̂−1

(
N−1

N∑
s=1

xsε>s

)>
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hence, it holds that M̂Ih −MIh equals

N−1
{

N∑
t=1

(
εtε
>
t −E

[
ε1ε
>
1

])}
(334)

−
(
N−1

N∑
t=1

xtε>t

)
R̂−1

(
N−1

N∑
t=1

xtε>t

)>
. (335)

Assumption (A1’) implies that (334) = Op(n−1/2) whereas, by com-

bining Assumptions (A3’) and (A4’) with the non-singularity of R and

Hölder’s inequality, it can be shown that (335) = Op(n−1) and hence

the proof of (333) is complete.

Next, we prove that

V̂Ih = VIh + op(1). (336)

Focus on vector vec [VIh] and its MoME:

vec [VIh] =
[
Ah,0 +

h−1∑
s=1
{Hh,s + Ch,s}

]
vec

(
R−1

)
, (337)

vec

[
V̂Ih

]
=

[
Âh,0 +

h−1∑
s=1

{
Ĥh,s + Ĉh,s

}]
vec

(
R̂−1

)
, (338)

where

Ah,0 = E

[(
B(h)
t ⊗B(h)

t

)>]
, (339)

Hh,s = E

[(
B(h)
t+s ⊗B(h)

t

)>]
, (340)

Ch,s = E

[(
B(h)
t ⊗B(h)

t+s

)>]
, (341)

Âh,0 = N−1
N∑
t=1

[
B̂(h)
t ⊗ B̂(h)

t

]>
, (342)

Ĥh,s = (N − s)−1
N−s∑
t=1

[
B̂(h)
t+s ⊗ B̂(h)

t

]>
, (343)

Ĉh,s = (N − s)−1
N−s∑
t=1

[
B̂(h)
t ⊗ B̂(h)

t+s

]>
, (344)

with B̂(h)
t defined as in Eq. (294). It is easy to see for the estimated

matrices Âh,0, Ĥh,s and Ĉh,s that:

B̂(h)
t ⊗ B̂(h)

t =
[
B(h)
t ⊗B(h)

t

]
+α

(1)
1 +α

(1)
2 +α

(1)
3 , (345)

B̂(h)
t+s ⊗ B̂(h)

t =
[
B(h)
t+s ⊗B(h)

t

]
+α

(2)
1 +α

(2)
2 +α

(2)
3 , (346)

B̂(h)
t ⊗ B̂(h)

t+s =
[
B(h)
t ⊗B(h)

t+s

]
+α

(3)
1 +α

(3)
2 +α

(3)
3 , (347)
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where for Âh,0 the αmatrices are:

α
(1)
1 =

[
1(h)
t ⊗ 1(h)

t

]
,

α
(1)
2 = −

[
1(h)
t ⊗B(h)

t

]
,

α
(1)
3 = −

[
B(h)
t ⊗ 1(h)

t

]
;

for Ĥh,s these are:

α
(2)
1 =

[
1(h)
t+s ⊗ 1(h)

t

]
,

α
(2)
2 = −

[
1(h)
t+s ⊗B(h)

t

]
,

α
(2)
3 = −

[
B(h)
t+s ⊗ 1(h)

t

]
;

and for Ĉh,s:

α
(3)
1 =

[
1(h)
t ⊗ 1(h)

t+s

]
,

α
(3)
2 = −

[
1(h)
t ⊗B(h)

t+s

]
,

α
(3)
3 = −

[
B(h)
t ⊗ 1(h)

t+s

]
;

with 1(h)
t = xtx>t

(
β̂h −βh

)
− xtε(h)>t . Hence, we need to prove that:

N−1
N∑
t=1

{
α

(1)
1 +α

(1)
2 +α

(1)
3

}>
= op(1), (348)

(N − s)−1
N−s∑
t=1

{
α

(i)
1 +α

(i)
2 +α

(i)
3

}>
= op(1), (349)

for i = {2, 3}. By usual matrix norm properties, the mixed-product

property for Kronecker product [149, Lemma 4.2.10], Hölder’s inequal-

ity, Theorem 8 in Lancaster and Farahat [182, p. 412], and Conditions

(A4’) and (A5’), Eq. (348) vanishes in probability, since:

E

∥∥∥∥∥N−1
N∑
t=1

{
α

(1)
1

}∥∥∥∥∥
>

≤

E

∥∥∥∥∥∥∥
N−1/2

N∑
j=1

B(h)
j

⊗
N−1/2

N∑
j=1

B(h)
j

>
∥∥∥∥∥∥∥

4


1/4

×
(
E

[∥∥∥∥[R̂−1 ⊗ R̂−1
]>∥∥∥∥4

])1/4

×
(
E

[∥∥∥∥[(xtx>t
)
⊗
(
xtx>t

)]>∥∥∥∥2
])1/2

≤ op(1),
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E

∥∥∥∥∥N−1
N∑
t=1

{
α

(1)
2

}∥∥∥∥∥
> ≤

E

∥∥∥∥∥∥∥
N−1/2

N∑
j=1

B(h)
j

⊗ (Iw)

>
∥∥∥∥∥∥∥

4


1/4

×
(
E

[∥∥∥∥[R̂−1 ⊗B(h)
t

]>∥∥∥∥2
])1/2

×
(
E

[∥∥∥∥[(xtx>t
)
⊗ (Im)

]>∥∥∥∥4
])1/4

≤ op(1),

and given that α
(1)
3 shares the same asymptotic behaviour as α

(1)
2 .

Similarly, we obtain that Eq. (349) with i = 2 vanishes in probability

since:

E

[∥∥∥∥∥(N − s)−1
N−s∑
t=1

[
α

(2)
1

]>∥∥∥∥∥
]

≤

E

∥∥∥∥∥∥∥
N−1/2

N∑
j=1

B(h)
j

⊗
N−1/2

N∑
j=1

B(h)
j

>
∥∥∥∥∥∥∥

4


1/4

×
(
E

[∥∥∥∥[R̂−1 ⊗ R̂−1
]>∥∥∥∥4

])1/4

×
(
E

[∥∥∥∥[(xt+sx>t+s
)
⊗
(
xtx>t

)]>∥∥∥∥2
])1/2

≤ op(1),

E

[∥∥∥∥∥(N − s)−1
N−s∑
t=1

[
α

(2)
2

]>∥∥∥∥∥
]

≤

E

∥∥∥∥∥∥∥
N−1/2

N∑
j=1

B(h)
j

⊗ (Iw)

>
∥∥∥∥∥∥∥

4


1/4

×
(
E

[∥∥∥∥[R̂−1 ⊗B(h)
t

]>∥∥∥∥2
])1/2

×
(
E

[∥∥∥∥[(xt+sx>t+s
)
⊗ (Im)

]>∥∥∥∥4
])1/4

≤ op(1),

and, again, given thatα
(2)
3 shares the same asymptotic behaviour than

α
(2)
2 . The case i = 3 follows since Ĥh,s = Ĉ>h,s. These results plus

Condition (A4’) complete the proof.

5.5.3 Proof of Theorem 6

The proof is the same as in Section 4.5.3. It is reported for completeness.
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Proof. By Theorem 5 the VMRICh defined in (297) can be written as:

VMRICh

(
ˆ̀
h

)
=

min
1≤`≤K

∥∥∥MIh +Op(n
−1/2)

∥∥∥+ min
`∈M1

∥∥∥∥αnn VIh + op

(
αn
n

)∥∥∥∥ .

Therefore,

lim
n→∞

VMRICh

(
ˆ̀
h

)
= min

1≤`≤K
‖MIh‖ (350)

and hence

lim
n→+∞

Pr
(

ˆ̀
h ∈M1

)
= 1. (351)

Now, consider two models `1 and `2 in the candidates set J`1 , J`2 ∈M1
such that VIh(`1) 6= VIh(`2). We show that

lim
n→∞

Pr

sign {VMRICh(`1)−VMRICh(`2)}

= sign {‖VIh(`1)‖ − ‖VIh(`2)‖}

 = 1. (352)

By defining MI∗h to be the minimum value of MIh over the family of

candidate models, we have:

VMRICh(`1) =
∥∥∥MI∗h +Op(n

−1/2)
∥∥∥+ ∥∥∥∥αnn VIh(`1) + op

(
αn
n

)∥∥∥∥ ,

VMRICh(`2) =
∥∥∥MI∗h +Op(n

−1/2)
∥∥∥+ ∥∥∥∥αnn VIh(`2) + op

(
αn
n

)∥∥∥∥ .

Therefore, for sufficiently large n, it holds that:

VMRICh(`1)−VMRICh(`2) =

∥∥∥∥αnn
∥∥∥∥ (‖VIh(`1)‖ − ‖VIh(`2)‖) .

Thus

sign {VMRICh(`1)−VMRICh(`2)} = sign {‖VIh(`1)‖ − ‖VIh(`2)‖} ,

and (352) is verified and implies that

lim
n→∞

Pr
(

ˆ̀
h ∈M2

)
= 1. (353)

This completes the proof.
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5.5.4 Proof of Theorem 7

5.5.4.1 Proof of Condition (C3’)

Proof. Assumptions (i), (ii), (iii) ensure that the processes involved in

a possibly-misspecified h-step ahead forecasting model have VMA(∞)

representation:

yt =
∞∑
j=0

Wj,yvt−j , (354)

st =
∞∑
j=0

Wj,svt−j , (355)

ε
(h)
t =

∞∑
j=0

Wj,0vt+h−j , (356)

with Wj,y, Ws,y, Wj,0 nonrandom matrices such that:

‖Wj,y‖ ≤ c∗ (j + 1)−r , (357)

‖Wj,s‖ ≤ c∗ (j + 1)−r , (358)

‖Wj,0‖ ≤ c∗ (j + 1)−r . (359)

A consequence of Proposition 11, detailed below, is that:

∞∑
k=0

Wk,yΛW>
k+h+a1,0 = 0, a1 = {0, 1, . . . } , (360)

∞∑
k=0

Wk,sΛW>
k+h+a2,0 = 0, a2 = {1, 2, . . . q} . (361)

Thus, since:

E

[(
‖xt‖2

)5
]
= E


 p∑
j=1
‖yt+h−j‖2 +

q∑
k=1
‖st+h−k‖2

5
 , (362)

then it suffices to show that:

sup
−∞<t<∞

E
[
‖yt‖10

]
+ sup
−∞<t<∞

E
[
‖st‖10

]
= O(1), (363)

which holds given Eq. (357), (358), (359), and Assumption (iii). Since

same path can be employed to show the second part of (C3’), the proof

is hence completed.

Proposition 11. Under Assumptions 13 we have:

E
[
yt−a1ε

(h)>
t

]
= 0, a1 = {0, 1, . . . } , and (364)

E
[
st−a2ε

(h)>
t

]
= 0, a2 = {1, 2, . . . , q} . (365)
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Proof. To proof Eq. (364) is the same as showing:

E
[
yt−a1y>t+h

]
= E

[
yt−a1x>t

]
R−1E

[
xty>t+h

]
. (366)

After basic algebraic manipulations, this reduces to show that:

E
[
xt−hε

(h)>
t

]
= E

[
xt−hx>t

]
R−1E

[
xtε(h)>t

]
, (367)

E
[
ε
(h)
t−hε

(h)>
t−h

]
= E

[
ε
(h)
t−hx>t

]
R−1E

[
xtε(h)>t

]
. (368)

Since (a) x>t R−1E
[
xtε(h)>t

]
is the best linear predictor in the projec-

tor’s sense and the conditional expectation function is the best linear

predictor, i.e.

P
(
ε
(h)>
t

∣∣∣xt) = x>t R−1E
[
xtε(h)>t

]
= E

[
ε
(h)>
t

∣∣∣xt] ; (369)

and (b) given that σ (xt−h) ⊆ σ (xt); then by the law of iterated ex-

pectation, we get that Eq. (367) hold. Eq. (368) and Eq. (365) follow

identically. For details, see Hansen [139, Ch. 2-3].

5.5.4.2 Proof of Condition (C6’)

Proof. For the first part, process {xt} has to be adapted to the filtration

σ (xt) ⊂ Ft ∀ t. It holds since in our case Ft = σ (vt, vt−1, . . . ).
Then, the argument inside the matrix norm of

E

[∥∥∥E [xtx>t ∣∣∣Ft−k]−R
∥∥∥3
]

is a (2× 2)-block matrix of the type:

E
[
xtx>t

∣∣∣Ft−k]−R =

 A C
C> B

 , (370)

with A, B and C block Toeplitz matrices:

A =


A0 A1 · · · Al

A>1 A0 · · · Al−1
.
.
.

.

.

.

.
.
.

.

.

.

A>l A>l−1 · · · A0

 , (371)

B =


B0 B1 · · · Bl

B>1 B0 · · · Bl−1
.
.
.

.

.

.

.
.
.

.

.

.

B>l B>l−1 · · · B0

 , (372)

C =


C0 C1 · · · Cl

D>1 C0 · · · Cl−1
.
.
.

.

.

.

.
.
.

.

.

.

D>l D>l−1 · · · C0

 , (373)
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where in this case we set l = p− 1, with:

A0 = E
[
yty>t

∣∣∣Ft−k]−E [yty>t ] , (374)

B0 = E
[
sts>t

∣∣∣Ft−k]−E [sts>t ] , (375)

C0 = E
[
yts>t

∣∣∣Ft−k]−E [yts>t ] , (376)

and

Aj = E
[
yty>t−j

∣∣∣Ft−k]−E [yty>t ] , (377)

Bj = E
[
sts>t−j

∣∣∣Ft−k]−E [sts>t ] , (378)

Cj = E
[
yts>t−j

∣∣∣Ft−k]−E [yts>t ] , (379)

Dj = E
[
sty>t−j

∣∣∣Ft−k]−E [sty>t−j] , (380)

for j = {1, 2, . . . , l}. Since the operator norm ‖·‖ is a Shatten-p norm

with p =∞, we can deploy Theorem 1 of Bhatia and Kittaneh [42] for

partioned operators:∥∥∥∥∥∥
 A C

C> B

∥∥∥∥∥∥
2

≤ ‖A‖2 + ‖B‖2 + 2 ‖C‖2 , (381)

therefore obtaining:

E

[∥∥∥E [xtx>t ∣∣∣Ft−k]−R
∥∥∥3
]
≤ E

[(
‖A‖2 + ‖B‖2 + 2 ‖C‖2

)2
]

≤ E
[
‖A‖4

]
+E

[
‖B‖4

]
+ 4E

[
‖C‖4

]
+ 2E

[
‖A‖2 ‖B‖2

]
+ 4E

[
‖A‖2 ‖C‖2

]
+ 4E

[
‖B‖2 ‖C‖2

]
. (382)

Applying again [42] to each block Toeplitz matrix and the triangle

inequality we get, for instance:

E
[
‖A‖4

]
= E

[(
‖A‖2

)2
]
≤ Γ1 + Γ2 + Γ3, (383)

where:

Γ1 = E

[
p2
∥∥∥E [yty>t ∣∣∣Ft−k]−E [yty>t ]∥∥∥4

]

Γ2 = 4E



l−1∑
i=0

l∑
j=i+1

∥∥∥E [yt−iy>t−j∣∣∣Ft−k]−E [yt−iy>t−j]∥∥∥2


2
 ,

Γ3 = 4pE

∥∥∥E [yty>t ∣∣∣Ft−k]−E [yty>t ]∥∥∥2
,

×
l−1∑
i=0

l∑
j=i+1

∥∥∥E [yt−iy>t−j∣∣∣Ft−k]−E [yt−iy>t−j]∥∥∥2
.
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Focussing on showing that matrices Γ1, Γ2, and Γ3 are o(1), see that:

Γ1 ≤ p2E
[
(‖M1‖+ 2 ‖M2‖)4

]
,

where in this case we define:

M1 =
∞∑
j=k

Wj,y
{

vt−jv>t−j −Λ
}

W>
j,y (384)

M2 =
∞∑
i=k

∞∑
j=i+1

Wi,yvt−iv>t−jW>
j,y. (385)

It suffices to show that E
[
‖M1‖4

]
and E

[
‖M2‖4

]
vanish asymp-

totically. By the properties of the Frobenius norm and the Cauchy-

Schwartz inequality, for the former we obtain:

E
[
‖M1‖4

]
≤ E

[
(tr {M1})4

]
(386)

which by Assumption (iii) and Eq. (357) is a o(1) for k →∞. Likewise,

it can be shown that E
[
‖M2‖4

]
= o(1). The proofs for Γ2 and Γ3,

and also for matrices B and C in Equations ((372), and (373), follow

identically. The third part of Condition (C6’) follows similarly, thus

completing the proof.

Remark 20. To show that (C5′) holds forVARXmodels, a possible path seems
to study the consequences of Wold’s representation and extending Theorem
2.1 in [71] to multivariate time series models.

5.6 current and future research

Current research work focusses in extending Theorem 7 to show that

general possibly-misspecified VARX(p, q) models, with p = ∞, satisfy

the set of conditions (C1’-C6’) and (A1’-A5’). Promising results are

being obtained in this sense, and interesting questions are arising, e.g.

the possible extension of Chan and Ing [71] to multivariate time series

models. Future research will include further simulations for different

candidate models in the multiple regressor case, the extension to other

common possibly-misspecifiedmultivariate time series models, and to

the high-dimensionality setting.
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a.1 chapter 1 - table of ic for the i.i.d. case

Table 8: Examples of sample estimators of criteria in the i.i.d. setting, in chrono-
logical order

Reference IC

[19] PSS = yT {IN −Q(j)} {IN −Λ(j)}−2 {IN −Q(j)} y
[204] Cp = 1

σ̂2RSSP − n+ 2p
[204] CL = 1

σ̂2RSSL − n+ 2 + 2tr {XL}
[5, 7] AIC = −2l(θ̂k) + 2k
[292] TIC = −2l(θ̂k) + 2tr

{
ÎĴ−1

}
[241, 259] BIC = −2l(θ̂k) + k log(n)
[290] AICc1 = −2l(θ̂) + 2n(k−c+2)

n−k+c−3

[290] AICc2a
= −2l(θ̂) + 2n(k−b+1)

n−k+b−2

[290] AICc2b = −2l(θ̂) + 2n(k−b+(p+1)/2)p
n−k+b−p−1

[290] AICc3a = −2l(θ̂) + 2
[
(c+ 1)

∑c

i=1
nji∑c

i=1
nji
−c−2

+

{
2
∑k

i=c+1
nji
nji
−3

}]
[290] AICc3b = −2l(θ̂) + 2p

[(
c+ p+1

2

) ∑c

i=1
nji∑c

i=1
(nji
−c−p−1)

+

{
p+3

2
∑k

i=c+1
nji

nji
−p−2

}]
[21] PC = σ̂2 ∗

(
1 + K1

T

)
[214] GIC = N log σ̂2 + aNk

[52] CAIC = −2l(θ̂k) + k(log(n) + 1)
[52] CAIFC = −2l(θ̂k) + k(log(n) + 2) + log |I(θ̂k)|
[52] KC = −2l(θ̂k)− log f (θ∗k) + k log(n) + log |B(θ̂k)|
[278] RIC = −2l(θ̂k(λ)) + 2tr

{
Î(λ)Ĵ(λ)−1

}
[235] Dn(k) = −2l(θ̂k) + 2Cn
[235] GIC = Sk + kσ̂mCn

[116] RIC = RSSγ + |γ|σ̂2
LS(2 log p)

[173] GIC = −2l(θ̂k) + 2b1(Ĝ)

[173] GICR = −2l(θ̂k) + 2b(1)M (Ĝ)

[173] GAIC = −2l(θ̂k) + 2tr
{
I(Ĝ)J(Ĝ)−1

}
[173] GICλ = −2l(θ̂(λ)) + 2tr

{
Îλ(T (Ĝ))Ĵλ(T (Ĝ))−1

}
[173] GBIC = −2l(h(x,n)) + 2tr

{
T (1)(X; Ĝ) ∂ log f (X|θ)

∂θT

}
[266] GICλn = Sn(α)

n
+
λnσ̂

2
npn(α)
n

[349] IC = −
∑n

i=1 log fk(Xi, θ̂(k)) + λkmk

[283] DIC = D(θ̄) + 2pD
[315] TICCL = −2lCL(θ̂CLk ) + 2tr

{
ÎCLĴ

−1
CL

}
[324, 326] WAIC(n) = BtL(n) +

β
n
V (n)

[200] GAIC = −2ln(y, β̂n) + 2tr
{
Ĥn

}
[200] GBIC = −2ln(y, β̂n) + log(n)|M|+ tr

{
Ĥn

}
− log |Ĥn|

[325] WBIC = nLn(w0) + λ logn

145
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a.2 chapter 3 - bibliographic notes

a.2.1 Table of IC and PC for time series models

Table 9: Examples of approximate estimates of IC and PC in parametric time

series, in chronological order

Reference IC

[2] FPEα = (1 +N−α(M + 1))(1−N−1(M + 1))−1S(M)

[41] FPE
β = σ̂2

k(1 + βk/T )

[137] HQ = −2l(θ̂k) + 2kc log log(n)
[217] AICAR = n log ŝ2

p + 2(p+ 1)
[275] FPEγ (k) = nσ̂2(k) + γkσ̃2(K)

[243] APE = n−1
∑n−1

t=0 (xt+1 − x̂t+1)
2

[356] I(k,Cn) = −2l(θ̂k) + kCn

[157] AICc = n log σ̂2 + n 1+m/n
1−(m+2)/n

[227] GICA = log σ̂2
T (M) + size(M)C(T )/T

[227] GICB = σ̂2
T (M) + size(M)C(T )/T

[328] FIC = nσ̂2
n + σ̃2

n log
∣∣∑n

i=1 xix
T
i

∣∣
[183] QAIC = −2 lθ̂k

ĉ
+ 2K

[183] QAICc = QAIC + 2k(k+1)
n−k−1

[354] ODQ = nσ̂2
n(p, q)− nσ̂2

n(p
∗, q∗)− an

[180] FIC (k) = nσ̂2
n,k + σ̂2

n,K∗ log

∣∣∣∣∑n

i=1

(
5gi,k

(
θ̂
(k)
n

))(
5gi,k

(
θ̂
(k)
n

))T ∣∣∣∣
[341] WIC = n log

(
σ̂2
)
+ (2n(p+1)/(n−p−2))2(p log(n))2

2n(p+1)/(n−p−2)+p log(n)

[269] RIC = (n− k) log(σ̃2) + log |Ŵ |+ k log(n)− k + 4
n−k−2

[43] EIC = −2l(θ̂) + 2kqq
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a.2.2 From parametric to nonparametric regression

If the parameter space is of infinite dimension, then a parametricmodel

considering a finite parameter space would lead to model misspecifi-

cation and further issues. The Generalized Likelihood Ratio (GLR) test

[111] allows to compare a parametric versus a nonparametric speci-

fication, and exhibits the Wilks’ phenomenon, i.e. its distribution is

independent of nuisance parameters, also in nonparametric regres-

sion. It is a generalization of the types of Kolmogorov-Smirnov and

the Cramér-von Mises statistics. See Fan and Jiang [108] for further

details.

the generalized lr test According to Fan and Yao [110, p. 406],

the idea in the GLR test of Fan et al. [111] (developed for independent

observations), can be extended to dependent data, although acknowl-

edging that (at their time) there were very few developments onmodel

validationwith dependent data for nonparametric regression. They ex-

pected that under some mixing conditions
1
the results for dependent

data will hold. See Zhou [358] for an analysis of the GLR for time vary-

ing coefficient models with cross-correlated non-stationary regressors

and errors, and Niu et al. [215] for a bias reduction proposal and an

enhancement including dimension reduction adaptive to the model to

improve power performance.

parametric or nonparametric? The debate between parametric

versus nonparametric has reappearedmany times in literature, without

a definitive result, i.e. it depends on whether the object of study has a

parametric form or not, and on its objective (description-identification;

prediction-selection). As recalled in the introduction, an important fact

is that we continue to experience exponential growth of our processors

[95], which allows us to implement algorithms that five or ten years

before were not feasible in terms of computational times. From the

theoretical and applied works in the involved fields, we can see combi-

nation of methods to solve the specific problems. These solutions are

coherent to principles such as Akaike’s entropy-maximization, Rissa-

nen’s minimum description length, or parsimony. Nevertheless, cau-

tion is advised whenever a new problem is being assessed and MS is

needed. We need to understand the specific application and assump-

tions where the automated criterion is being employed, and need of

critical understanding if a specific criterion needs of adaptations or

even if it fits our practical purpose. This mainly in the light of possible

automated-bias (as in the cases presented in the the previous chapter,

Section 2.1). Further interesting considerations can be found respec-

tively in Wiener [333], Bynum [62], and in the introductory chapter of

Machol and Gray [202].

1 See Appendix A.2.4.
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In his monograph, Wasserman [322] acknowledged that the defini-

tion of nonparametric inference is problematic in itself. He defined that

nonparametric inference is a set of modern statistical methods to solve

real-world statistical problems that aim to keep the number of underly-

ing assumptions as weak as possible. CV is an example of this method

[20, 24, 87, 264, 285]. For instance, to perform bandwidth selection in

nonparametric regression, CV or Mallow’s Cp can be employed.

dimension reduction and variable selection Further exam-

ples include variable selection with decision trees, adaptive band-

width selection (Fan and Gĳbels [107]). Principal Components Anal-

ysis (PCA), independent component analysis, or projection pursuit. It

should be clear that the nonparametric approach offers less constraints

to the researcher. See Fan [106] for a review of nonparametric methods

in financial econometrics, Wasserman [322] for an introduction to non-

parametric statistics, Li [191] for the study of nonparametric methods

in econometrics, Robinson [248] for asymptotic theory of nonparamet-

ric regression with spatial data, and Racine et al. [231] for applied

nonparametric econometrics and statistics.

a.2.3 A sequence of developments in modelling nonlinear time series

The beginning of spectral analysis is sometimes attributed to the work

of Schuster [257], where the periodogram was used to study hidden

periodicities in meteorological phenomena. Almost one hundred year

later, Robinson [247] presented kernel estimators for the multivariate

probability density and for regression, applied to strictly stationary

univariate time series. For MS with nonlinear models, Peña Sánchez

de Rivera [246] proposed a procedure based on Fisher’s Efficient Score

principle [233] for classes of nonlinear models, known in the econo-

metric literature as LM test. The author analysed IBM time series and

discussed operational aspects of their implementation in the context

of diagnostic analysis for an integrated autoregressivemoving-average

(ARIMA) model.

To the best of our knowledge, Cheng and Tong [77] established the

first rigorous work on the theory of nonparametric regression for time

series, where the asymptotic consistency of a CV method as MS tech-

nique is proven. Their approach connected deterministic chaos and

stochastic time series models, starting from the consideration that in

any systematic study of chaos it is natural to determine the embedding

dimension in a noisy environment first. The setting is of stochastic

modelling within the framework of nonlinear regression. They intro-

duced a generalized partial autocorrelation statistic and estimated the

embedding dimension relying on order determination of an unknown

nonlinear regression via CV, and proved its consistency as MSmethod

under global boundedness. At the same time, they showed how this
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method served as theoretical justification of the FPE approach from

Auestad and Tjøsthein [26], an extension of which will be explained in

the following subsection 3.3.1.

Yao and Tong [350] used a CV method based on the kernel estimate

of the conditional mean for subset selection of stochastic regressors

within the framework of nonlinear stochastic regression. The assump-

tions include strict stationarity and absolutely regular processes. They

showed that the CV selectionmethod is asymptotically consistent. Two

kinds of asymptotic efficiency of the selected model are proved, and

the results are illustrated with simulations and real data.

Yao and Tong [351] also studied the determination of bandwidth

in kernel regression through a generalized CV method. They proved

asymptotic optimality under the assumption that observations are

strictly stationary and ρ-mixing (see Appendix A.2.4). Their simula-

tions compared the performance of various CV bandwidth selector for

dependent data. These show that the ordinary CV method is quite

stable in regression estimation with random design, even if data are

highly correlated.

Imoto and Konishi [160] derived IC (a type of GIC) for evaluating

B-spline nonparametric regression models estimated by PMLE, in the

context of misspecification, and for Generalized Linear Models. Their

proposed a criterion that was later applied to select the optimal value

of the smoothing parameter and the number of knots. See Fan and Yao

[110], Gao [119], and Teräsvirta [294] for monographs from 2003-2010

summarizing various results in this area.



A.2 chapter 3 - bibliographic notes 151

a.2.4 Mixing conditions in stochastic processes

Doukhan [104] treatedmeticulously different notions ofmixing related

to underlying measures of dependence between σ-fields of processes,

stronger than ergodicity.

Let (Ω,F , P) be a probability space, andA and C two sub σ-algebras

of F . Then, define the following measures of dependence between A
and C as:

α(A, C) = sup{|P (A)P (C)− P (A∩C)| ,A ∈ A,C ∈ C},
β(A, C) = E [ess sup {|P (C|A)− P (C)| ,C ∈ C}] ,

φ(A, C) = sup
{∣∣∣∣P (C)− P (A∩C)

P (A)

∣∣∣∣ ,A ∈ A,P (A) 6= 0,C ∈ C
}

,

ψ(A, C) = sup
{ ∣∣∣∣1− P (A∩C)

P (A)P (C)

∣∣∣∣ ,A ∈ A,P (A) 6= 0,C ∈ C,

C 6= 0
}

,

ρ(A, C) = sup
{
|Corr(X,Y )| ,X ∈ L2(A),Y ∈ L2(C)A ∈ A,

P (A) 6= 0,C ∈ C,C 6= 0
}

,

In particular, coefficient β(A, C) is called absolute regularity or β-

mixing coefficient, and it may be also written as:

β(A, C) = sup
{

1
2

I∑
i=1

J∑
j=1
|P (Ai)P (Cj)− P (Ai ∩Cj)|

}

The supremum is taken over all the partitions (Ai), (Ci) of Ω, with

Ai ∈ A, Cj ∈ C. A more recent use of the β-mixing definition to study

time dependence is followed by Chen et al. [75], citing Davydov [91]:

Definition 74. The process {xt} is β-mixing if

lim
t→∞

βt = 0 (387)

and β-mixing with exponential decay rate if

βt ≤ γ exp(−δt) (388)

for some δ > 0 and γ > 0.
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a.2.5 Local estimation: linear and polynomial

Let us follow [309, Ch. 7]. Local estimation aims at obtaining an esti-

mate of µ(x) by estimating it separately for each (m× 1) vector. Since
µ(x) is not observable, a first-order Taylor expansion of µ(xt) at x is

considered:

µ(xt) = µ(x) +
∂µ(x)

∂x′
(xt − x) +R(xt,x).

We can substitute in:

Yt = µ(x) · 1 + ∂µ(x)

∂x′
(xt − x) +R(xt,x) + εt,

where εt is the stochastic error term. Note that if R(xt,x) = 0 then the

usual OLS is obtained. In this case the usual estimated function value

µ̂(x) at x, and the estimated vector
∂µ̂(x)
∂x′ of first partial derivatives

at x, follow. But if the conditional mean function, µ(xt), is nonlinear

then R(xt,x) 6= 0, thus the OLS with biased estimates is required. In

nonparametric estimation, kernel estimation requires a kernel function

K(u) such that it is:

(i) symmetric;

(ii) compactly supported;

(iii) nonnegative;

(iv) univariate probability density s.t.

∫
K(u)du = 1.

Furthermore, a bandwidth h has to be defined. This will help to adjust

a neighbourhood around x, and can be thought as a smoothing param-

eter, since higher h is associated with smoother function estimates. For

a scalar x, this would be of the form:
1
hK(xt−xh ). If we are in the vec-

tor setting, with m > 1, and x = (x1, . . . ,xm)>, then we use Product

Kernel, e.g.:

Kh(xt − x) =
m∏
i=1

1
hm

K(
xti − xi

h
). (389)

The particular choice of the kernel function influences the asymptotic

behaviour of the Local Linear Estimator via:

1. the Kernel variance: σ2
K =

∫
u2K(u)du, and

2. the Kernel constant: ||K||22 :=
∫
K(u)2du.

The strategy proposed in [309], is to consider estimation as a weighted

LS problem:

{ĉ, ĉ1, . . . , ĉm} =

argmin
c,c1,...,cm

T∑
t=im+1

{yt − c−
m∑
i=1

ci(xti − xi)}2 ·Kh(xt − x). (390)
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In this way, the Local Linear function estimate at point x is given by

µ̂(x,h) = ĉ.

Summarizing: the local linear estimator uses a first-order Taylor ap-

proximation, useful in the situation of nonparametric analysis. Finally,

note that estimating µ(·) on complete support would imply to perform

infinitely many estimations. For this reason, the estimation is usually

performed on a specified grid or at specific values.

In this context, the NW estimator [211, 327] is a local constant func-

tion estimator:

µ̂NW (x,h) = {Z′NWW (x,h)ZNW }−1Z>NWW(x,h)Y

=

∑T
t=im+1Kh(xt − x)yt∑T
t=im+1Kh(xt − x)

(391)

with ZNW = (1, . . . , 1)>1×(T−im), W(x,h) = diag

{
Kh

(xt−x)
T

}>
t=im+1

,

and Y = (Yim+1 , . . . ,YT )>.
The LLE can be seen as a Generalized LS estimator:

µ̂(x,h) = e{Z>(x)W (x,h)Z(x)}−1Z>(x)W (x,h)Y, (392)

where Y = (Yim+1 , . . . ,YT )>, e = (1, 01×m)>,

Z(x) =
[

1 . . . 1
xim+1 − x . . . xT − x

]>
,

and W (x,h) = diag

{
Kh

(xt−x)
T

}T
t=im+1

. If regularity conditions are

satisfied, then it can be shown that the LLE has asymptotic Gaussian

distribution:

√
Thm{µ̂(x,h)− µ(x)− b(x)h2} d−→ N(0, v(x)), (393)

where the asymptotic bias is defined as:

b(x) =
σ2
K

2 tr
{
∂2µ(x)

∂x∂x>

}
, (394)

and the asymptotic variance is equal to:

v(x) =
σ2(x)||K||2m2

f(x)
. (395)

The LLE is preferred for its asymptotic properties, since as h increases

it can increase the asymptotic bias, while reducing h allows to decrease

the asymptotic variance.
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b.1 technical lemma

The following lemma is a general result that holds for the multivariate

predictor case (i.e., m ≥ 1). It relies upon Assumption (C1) of [153,

p. 1068] when w = 1,m ≥ 1, identical to Assumption (C1’) when

w ≥ 1m ≥ 2, which reduces to Assumption (C1) of Chapter 4.

Lemma 1. LetR and R̂ be defined in (210) and R̃ be the multivariate version
of Eq. (246). Then, for 0 < γ ≤ 5, it holds that:

E
[∥∥∥R̃−1 − R̂−1

∥∥∥γ] = O

[(
ln
n

)γ]
, (396)

E
[∥∥∥R−1 − R̂−1

∥∥∥γ] = O
[
n−γ/2

]
, (397)

E
[∥∥∥R−1 − R̃−1

∥∥∥γ] = O
[
n−γ/2

]
, (398)

with ln being defined in (242).

Proof. Triangle inequality implies that∥∥∥R̃−1 − R̂−1
∥∥∥ ≤ ∥∥∥R̂−1

∥∥∥ ∥∥∥R̂− R̃
∥∥∥ ∥∥∥R̂−1

∥∥∥ ,∥∥∥R−1 − R̂−1
∥∥∥ ≤ ∥∥∥R̂−1

∥∥∥ ∥∥∥R̂−R
∥∥∥ ∥∥∥R−1

∥∥∥ ,∥∥∥R−1 − R̃−1
∥∥∥ ≤ ∥∥∥R̃−1

∥∥∥ ∥∥∥R̂−R
∥∥∥ ∥∥∥R−1

∥∥∥ .

Since R is invertible we have that

∥∥R−1∥∥ = O(1); under Assump-

tion (C5’),

∥∥∥R̂−1
∥∥∥ = O(1). Moreover, it can be easily proved that also∥∥R̃−1∥∥ = O(1). Therefore, by deploying Hölder’s inequality, the re-

sults will be verified if we prove the following three conditions:

E
[∥∥∥R̂− R̃

∥∥∥] = O

(
ln
n

)
, (399)

E
[∥∥∥R̂−R

∥∥∥] = O
(
n−1/2

)
, (400)

E
[∥∥R̃−R

∥∥] = O
(
n−1/2

)
. (401)

Let a = n− ln and b = a+ 1. As for (399) note that

E
[∥∥∥R̂− R̃

∥∥∥] ≤ E
[∥∥∥∥∥
( 1
N
− 1
a

) a∑
t=1

xtx>t

∥∥∥∥∥
]
+ E

[∥∥∥∥∥ 1
N

N∑
t=b

xtx>t

∥∥∥∥∥
]

= O

(
ln
n

)
.

Conditions (400) and (401) readily derive from Assumption (C1) and

hence the proof is completed.
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