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Abstract

In this thesis I show a triple new connection we found between quantum integra-
bility, N' = 2 supersymmetric gauge theories and black holes perturbation theory.
I use the approach of the ODE/IM correspondence between Ordinary Differential
Equations (ODE) and Integrable Models (IM), first to connect basic integrability
functions - the Baxter’s @), T and Y functions - to the gauge theory periods. This
fundamental identification allows several new results for both theories, for exam-
ple: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA)
for the gauge periods; an interpretation of the integrability functional relations
as new exact R-symmetry relations for the periods; new formulas for the local
integrals of motion in terms of gauge periods. This I develop in all details at least
for the SU(2) gauge theory with Ny = 0, 1,2 matter flavours. Still through to
the ODE/IM correspondence, I connect the mathematically precise definition of
quasinormal modes of black holes (having an important role in gravitational waves’
obervations) with quantization conditions on the @, Y functions. In this way I also
give a mathematical explanation of the recently found connection between quasi-
normal modes and N' = 2 supersymmetric gauge theories. Moreover, it follows a
new simple and effective method to numerically compute the quasinormal modes
- the TBA - which I compare with other standard methods. The spacetimes for
which I show these in all details are in the simplest Ny = 0 case the D3 brane in the
Ny = 1,2 case a generalization of extremal Reissner-Nordstrém (charged) black
holes. Then I begin treating also the Ny = 3,4 theories and argue on how our
integrability-gauge-gravity correspondence can generalize to other types of black
holes in either asymptotically flat (N; = 3) or Anti-de-Sitter (N; = 4) space-
time. Finally I begin to show the extension to a 4-fold correspondence with also
Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.
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“Questions posed by nature are vastly deeper and more fruitful than ones we humans
would tend to pose for ourselves.”

sals S5 lag

(Strings 2021)

“La storia della scienza puo servire a renderci consapevoli del fatto che la razionalita, il
rigore logico, la controllabilita delle asserzioni, la pubblicita dei risultati e dei metodi, la
stessa struttura del sapere scientifico come qualcosa che é capace di crescere su se stesso,
non sono categorie perenni dello spirito né dati eterni della storia umana, ma conquiste
storiche, che, come tutte le conquiste, sono, per definizione, suscettibili di andare per-
dute.”

Paolo Rossi

(La nascita della scienza moderna in Europa)
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1. Summary

In our work [1], [ and my supervisor Prof. D. Fioravanti found a novel kind of correspon-
dence between N = 2 supersymmetric deformed gauge theory (or super Yang-Mills, SYM)
and integrable models (IM). Our basic result was that the gauge periods a, ap (from which
one computes the prepotential) are directly connected to the Baxter’s @ and 7 functions.
Such functions can be expanded in the integrals of motion of some two dimensional inte-
grable model and satisfy certain exact functional relations among them. This connection
allowed several new results for both theories, for example: an exact non linear integral
equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of
the integrability functional relations as new exact R symmetry relations for the periods;
new formulas for the local integrals of motion in terms of gauge periods. The general
method we used is the ODE/IM correspondence [2, 3, 4] between Ordinary Differential
Equations (ODEs) and Integrable Models. It allows to derive the characteristic structures
of integrable models by studying the connection coefficients of the solutions of ordinary
differential equations.

All this we showed to hold for pure (N; = 0) SU(2) SYM in the Nekrasov-Shatashvili
(NS) limit of the Q-background (a deformation of spacetime used to compute instanton
contributions to the partition function) and self-dual Liouville integrable model. These
may seem a very particular choice of SYM and IM, but already back then it was intuitively
clear to us that our correspondence should hold much more generally. Thus about two
years ago we begun a long and meticulous generalization and extension work, with the
new collaborator Dr. Hongfei Shu, to the Ny = 1 and N; = 2 SU(2) NS-deformed gauge
theories, in correspondence with more general IMs, which ended up in the paper [5].

As interesting as this new kind of gauge-integrability correspondence may be regarded,
arguably much more interesting developments followed. In fact, the very same NS de-
formed N' = 2 SU(2) gauge theories were found to be useful to compute quasinormal
modes (QNMs) of black holes (BHs) and black branes [6, 7, 8, 9]. This constitutes an un-
expected application of supersymmetric gauge theory, specifically to already experimen-
tally observable/testable physics in the form of astrophysical black holes as modelled by
either General Relativity (GR) or String Theory (ST) or modified theories of gravity, which
seem to vastly increase the general interest and trust to the whole subject [10].

To our wonder, as soon as I began doing research on this new line, under inspiration
from also my PhD abroad visit’s supervisor Prof. Konstantin Zarembo, I immediately
found a new fundamental connection between QNMs and other BH observables to also
the integrable models we were involved connecting to ' = 2 NS-deformed SU(2) gauge
theories. Our other work [11] rapidly followed, were we showed that QNMs are nothing
but the zeros (Bethe roots) of the Baxter’s ) function - as defined in the ODE/IM corre-
spondence approach - and can be computed very efficiently with a new method tipical
of integrability: the TBA. This there we sketched for the N; = 0 and N; = 2 SU(2) gauge
theories, in correspondence with the D3 brane and the intersection of four stacks of D3
branes, respectively. The latter can be regarded as a mathematical generalization of the
extremal (maximally charged) Reissner-Nordstrom (RN) BH.

In the subsequent work [5], beyond showing the extension of the integrability-gauge
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correspondence to the SU(2) N; = 1,2 theory, we have shown the generalization of the
integrability-gravity correspondence to also N; = 1 theory. It corresponds physically to
just the null entropy limit in the system of intersection of four stacks of D3 branes.

Moreover here I begin setting up the same triple gauge-integrability-gravity correspon-
dence for the Ny = (0,2) and N; = 3 SU(2) theory. In this case the gravity counterpart
are asymptotically flat (non-extremal) general relatity (GR) black holes or various string
theory black holes (for instance, fuzzballs). The integrability counterpart is less clear for
the moment, though.

Finally, I begin extending the triple correspondence to 4-fold correspondence, by study-
ing asymptotically AdS black holes (exploiting AdS/CFT correspondence). In particular I
connect BTZ (AdS;) black hole and its CFT, counterpart, to class S gauge theory and the
integrable XXZ spin chain at the supersymmetric point, gaining among other things a new
understanding of the poles skipping phenomenon for the retarded correlator in the CF'T5.

1.1. Acknowledgments

Among the various collaborators I have been fortunate enough to have, I especially thank
my supervisor at INFN and Bologna U. Prof. Davide Fioravanti, as well as my hosts in
NORDITA Prof. Konstantin Zarembo and Dr. Hongfei Shu (now BIMSA). An exceptional
thank I would like to give to also Prof. Alba Grassi (CERN, Genéve U.), for connecting for
the first time our theoretical research field to astrophysical black holes [6].

Daniele Gregori
BRESCIA, Italy
May 2, 2022

(Rev. Sept. 29, 2022)
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2. Introduction to quantum Seiberg-Witten theory

2.1. General \V =2 Supersymmetry
2.1.1. General Supersymmetry algebra

Supersymmetry (SUSY) is broadly speaking a conjectured symmetry between matter and
radiation [12]. It is thought to be a correspondence between fermion (matter) and boson
(force or radiation) particle, by which for every known elementary particle of one kind
there exists another particle of the other kind and viceversa. Supersymmetry helps ex-
plaining several theoretical short- comings of the Standard Model, but observations de-
mand that supersymmetry, if present at all, be broken at the observed energy scales [13].
Mathematically, such correspondence can be expressed in terms of the action super-
symmetric charges Q;,, with i = 1,2,..., N, which indeed exchange boson and fermion
particles. Q;, (i = 1,2, ..., N) are Majorana fermions. The (graded) algebra they satisfy is

{Qia; Qjﬂ} = Zégagﬁpu

[Qiou ] =0

Qia, Pl = (2.1)
[Qzaa MW/] (U#U)/BQM

@5 3] = ()30

and it is by construction an extension of Poincaré algebra. Different pairing in the anti-
commutators gives the central charges Z;;

{Qia, Qjﬁ} = €apZij
{Q%, Q/Jg} = Edg(Zij)* .
It holds Z;; = —Z;;. On the SUSY generators @, it can act at most an U(N) internal sym-
metry (called R-symmetry) group, with generators B,

[Qzaa r] = (br)ngoz‘
Qs Br] = —(b7);Q% -

(2.2)

(2.3)

2.1.2. Superfields

An N = 1 chiral superﬁeld ¢ (0, 3) is made of a scalar z, fermion ¢ and auxiliary field f. Itis
denoted in terms of spin components (0,1). Using the superspace coordinate y* = z*+ifo"6
it can be expressed as

3y, 0) = =(y) + V200 (y) — 00 (y). 2.4)
Under SUSY transormations the A/ = 1 chiral superfield’s components vary as
6z =V 2e1)
0 = \/2i0,20"€ — /2 fe (2.5)

5f = V/2i0,po"e.

12



A N = 1vector superfield V is defined to have spin components (1, 1) and it is endowed
of a gauge symmetry
Vo V4otol. (2.6)

In the so-called Wess-Zumino gauge it can be expanded in terms of components fields as
V = 60"Gu, (x) + 068 (x) — iBON(x) + %eee‘ép@) | @.7)

The N = 2 vector superfield is defined to have spin components (0,1, 1, 1) and thus it is the
sum of N = 1 chiraland N = 1 vector superfield. All fields are in the adjoint representation
of the gauge group. N = 2 hypermultiplet has spin components (—3,0,0, 1) is composed
of 2 complex scalar fields and 1 Dirac fermion, with 2 complex auxiliary fields and thus
it describes matter. In terms of A/ = 1 superfields it is the composition of a chiral and

antichiral V' = 1 superfields.

2.1.3. N = 2 supersymmetric microscopic Lagrangian

The exact or so-called microscopic Lagrangian for N' = 2 SUSY is

1 _
LY = ﬁ% (T/dQGTr WaW“) + /dzedzeTr oIV ¢ (2.8)

1 _ . _ 0 S|
=Tr (—ZFWF’“’ — A" DA — it Db + (Dy2) D2 + 2332 G F, " + 5D2 + f1f
iv3ge (A} — iVEg (i A}z + gDl zw) | (2.9)
The kinetic term for the vector field

W, = —iDDDaV, (2.10)

is constructed through the covariant derivative

_ 0 g
Da = % + ZU&BQ 8“ (211)
and it reads explicitly
Wa(y) = —ida(y) + 0aD(y) + i(0"0)a Fiu(y) + 00(c" DuA(Y))a (2.12)

with £, = 0,v, — 0,v, — %[vu, vy
The microscopic action is invariant under the U(1) R-symmetry acting as

b — X Wa— W, 60— e, (2.13)

Instanton corrections break the continuous U(1) symmetry group to the discrete symme-
try group Zs.

13



The auxiliary fields equations of motion are

=0 (2.14)
D* = —gz, 21 (2.15)

and when inserted in £{;7? produce a term called scalar potential

V(z, 2 = %g2Tr ([z,21])2. (2.16)

2.1.4. Supersymmetry breaking
Unbroken SUSY requires V = 0. For SU(2) gauge group V(z) = 0 requires classically that
z = 1a%g;3, or including quantum fluctuations

(z) = —a0g, . (2.17)

Gauge transformations can take o — —a(® and therefore
u = (tr 2?) (2.18)

labels gauge inequivalent vacua: the moduli space M. v and —u correspond to physically
equivalent vacua related by the Zg R-symmetry. The gauge symmetry is broken as SU(2) —
U(l).

2.2. Classical pure Seiberg-Witten theory

The Wilsonian effective action Sy, is defined as the generating function of the vertex func-
tions I" except that all loop momenta are integrated down to an infrared cut-off . In
particular, the low energy Wilsonian effective action Sy, for U(1) is

%% / d*x [% / d*0F" (@)W W, + / d29d29¢*}“’(¢)] : (2.19)
m
where F is the prepotential, a holomorphic function.

One can define the dual field and dual prepotential as

_OF(e)  0Fplon)
¢p = 96 2op 0, (2.20)

or
o OF  0Fp

9D T 5, a0

— 4O (2.21)

Similarly for vectors, W§ is defined relative to Vj, which is a lagrange multiplier in the
functional integral for the Bianchi identity &(D,W®) = 0. The effective action is duality
invariant.

14



The coupling constant

" 0(al® 4mi
7_(a(o)> — F (a(0)> _ (27T ) + g2<a(0)> (2.22)
enjoys a weak-strong coupling duality
©y_ 1
(ep) = ~Trmy (2.23)

The duality symmetry

(di) - ((1) _01) (52) (2.24)
((;f;) - (é ?) (gf;) (2.25)

generate Si(2,Z) group of duality symmetries.
All fields (n., n,,) satisfy the BPS condition

and the symmetry

m? =2|Z|?, Z = nmag)(u) + nea % (u). (2.26)

These states are collective excitations - solitons. For example, the magnetic monopole (0, 1)
is described by a N = 2 hypermultiplet # which couples locally to the dual fields ¢, and
Wp. Also, the electron (1,0) is described by A which couples locally to ¢ and . Roughly in
the circle |u| < A* we have only the monopole +(0,1) and the dyon +(+1, 1), while outside
the circle we have also all other dyons +(n, 1) and the W bosons (0, +1).

We remark that we are considering here only the pure (with zero number of fundamen-
tal matter flavours N; = 0) Seiberg-Witten (SW) theory. For this theory, the Seiberg-Witten
cycles or Seiberg-Witten periods are

(0)(u A) / V2u — 2A2 cos z dz (2.27)

= AV2(u/AZ + 1) o Fi(— 2 (2.28)

2’2’ ’1+u/A2) ’

0 1 arccos(u/A?)—i0
alD(u, Ay = — / V2u — 2A2 cos zdz (2.29)

2m ) arccos(u/A2)—i0
(T —u/A?) 11 _1—u/A
= A 5 F1(2 3% ), (2.30)
We notice that they are given by the well-known Gauss Hypergeometric function ,F;. They
are integrals of the SW differential

A= vV2u—2A2cosz. (2.31)

Inverting a(” (u) as u(a®), substituting 'Y (a®) = 2% and integrating one can obtain pre-
potential 7 (o). This is, in a nutshell, classical Seiberg-Witten (SW) theory [14, 15, 16].

15



2.3. ) background

Quantum Seiberg-Witten (qSW) theory is essentially the effective /' = 2 supersymmetric
gauge theory in the spacetime deformation called 2 background. The latter deformation
is amere an artifact, but it is very useful to compute instanton corrections to the partition
function, called Nekrasov partition function.

The  background is introduced formally as follows. Some differential geometry (or
topology)’s preliminaries to understand it are given in appendix A. Given the 4D N/ = 2
theory 7}, one can find a 6D N = 1 theory 7; whose dimensional reduction gives 7,. Then
one should compactify 7; on a manifold X° which is an R* vector bundle over the two-
torus T? of area r?, with a flat Spin(4) = SU(2), x SU(2)_ connection, whose holonomies
around the two non-contractible cycles are

(6%%(61+62)O’37 e%ﬂ%(quQ)Ug) , (6%3(61+62)037 6%5(61762)03> ) (2-32)
Then one should embed also the SU(2), part of the flat connection into the R-symmetry
SU(2) of Tg. Finally, one should take the limit » — 0 while keeping the complex numbers
€1, €2 finite and obtain thus the Q2 background. We remark that the © background is needed
to compute instanton contributions to the partition function [17].

2.4. Nekrasov-Shatashvili limit and pure quantum Seiberg-Witten
theory

In this work, we will need to consider only the Nekrasov-Shatashvili (NS) limit of the Q
background e; — 0, ¢; # 0 [18].
For the pure qSW theory in the NS limit, the expectation value for scalar field is

(2) = %a(el,u, Ao (2.33)

where a is the quantum SW period. This latter corresponds also to the Floquet exponent
for the Mathieu equation:
€2 d?

EEPPE) (2) + [A%cos z — u]yp(2) = 0. (2.34)

that is the quasi-periodicity index of the quasiperiodic solution (or wave function)
Y(z+2m) = e%aw(z) (2.35)

One can obtain in a similar way from the quasiperiodic wave function the quantum SW
dual period [19]

27i

¥ (arccos %) = e n “Pih(— arccos %) : (2.36)

Itis common to call the differential equation whose The logarithmic derivative of the wave
function P(z) = —i-Ly(z) is called also quantum SW differentiall.
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2.5. Quantum Seiberg-Witten theory with fundamental matter

The Seiberg-Witten (SW) curve for ' = 2 SU(2) with N; fundamental matter flavour hy-
permultiplets is given by

K(p) ~ 3 (Ko (p)e” + K_(p)e~™) = 0 237)
where
A2 Ny =0
A2 Np=1
A=1{ A} Ny=2 (2.38)
A Np=3
Vi  Ny=4.
(p? —u Ny=0
p? —u Ny =1
Kp)=3p*—u+2 Ny =2 (2.39)
p2—u+%(p+ m1+n;z+m3> Nf:3
(L8P —ut gp S mi+ § 5 mimy Ny =
Ny Ny
Eip)=][p+m), K@= [] w+m). (2.40)
j=1 J=Ny+1

u is the Coulomb moduli parameter and m; are the masses 1 < N, < N;. By introducing
ysw = MK (p)e™ — K (p) we get the SW curve in standard form

yiw = K(p)* — MK, (p)K_(p) (2.41)
The SW differential is then defined to be

K_
A=pdln — — 27ipdx (2.42)
Ky

and defines a symplectic form d\ = dp A dz, which doubly integrated gives the SW peri-
ods [20]

a :j{p(x) dx ap = 7{ p(z)dx. (2.43)
A B

The quantum SW curve is obtained by letting p become the differential operator —iz-L[20]:
(K(—max)) — %(eimm(—max)em/? + e”/QK(—iﬁ@;)ei‘”/z) () =0. (2.44)
Let N; = 0 and z = —iy. We get

d2
—ﬁQd—gﬂw + (A§ coshy + u)p = 0 (2.45)
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Let Ny = 1 and z = —iy. We get

¢+ [ A3e® 2A3/2 eV + 2A3/2mley+u] V=0 (2.46)

Let Ny =1land z = —iy, y — y — 3 In Ay + In2. We get
1
—ﬁz—@b + {ZAf(er +eY)+ Aymye? + u} =0 (2.47)
Let Ny =2, N, = 1 and =z = —iy. We get

1 1
¢ + |: ( 2y + €72y) + §A2m1€y + §A2m267y + u:| w =0 (248)

162
Let Ny =2, N, = 2and z = —iy. We get

d? N e A3 (my — mg)2 + e¥ (A% — 2Aoh2 + 8Agmyms — 8A2u) + 16u — 6A2 + 8AgeY

—h— =0
d 2 4 (Agey — 2)2 ¢
(2.49)
Let Ny =3, N; =2 and =z = —iy. We get
2 4e2Y A\ 4e¥/Ns (—2R* + 8 A -8
B ﬁZd—Q N e Az (my — ) + 4e ( + 8mimsz + Azme U) " (2.50)
dy 16 (y/Agev — 2)°
2 — ~v/A — 2y
16 (v/Azev — 2)
Let Ny =4, N, =2and z = —iy.
- 2d—2¢ —|— L [462yq(m1 —my) + 4e"Hq(ms — my)? (2.52)
dy? 16 (—2,/g cosh(y) + ¢ + 2)2

+ e (—4m2q3/2 + 12mymag®? + 32myman/q — 4m§q3/2 + dmgmaq®? — 4¢°?R2 — 32\/qu — 8\/6712)

(2.53)
+eY (4m1mgqg/2 — 4m§q3/2 + 12mamag®? + 32mamun/q — 4miq3/2 — 4¢°?°R% — 32\/qu — 8\/§h2)
(2.54)
+ 32qu + 16gh* + 64u + m2q* — 2mymag® — 24mimaq — 2mymsq® — 2mimyq® + maq’ (2.55)
— 2momsq® — 2mamyq® + maq® — 2mamyq® — 24msmaq + mi(f]w =0 (2.56)

2.6. A comment on phenomenology

The missed discovery of supersymmetry at the electro-weak scale after the first run of
LHC in 2013 generated a lot of skepticism towards such paradigm, especially among ex-
perimentalists. However, testing SUSY in general, independently from each particular
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model, “is an extremely challenging task”, so the LHC results do not exclude some partic-
ular realizations of supersymmetry which remain untested [21]. Still, the observed Higgs
mass is compatible with supersymmetry only if the superpartners are quite heavy (tens of
TeV) and beyond the current reach of LHC. Moreover, extended supersymmetry models
(that is, N = 2 and N = 4 supersymmetry) are very interesting for their mathematical
richness which allow to apply them beyond particle physics [22, 23].
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3. Introduction to quasinormal modes of black holes

3.1. General context

Very recently, on 14th September 2015, the LIGO experiment has revealed the first grav-
itation wave signal of the history of humankind [24]. The enormous gravitational field
variations which produce such oscillations of spacetime itself are most tipically realized
in events of black holes merging. Thus these revelations (which now counts in more than
one-hundred [25]) are first of all very effective means for studying black holes which, in
the words of the great astrophysicist S. Chandrasekhar:

“are the most perfect macroscopic objects there are in the universe: the only
elements in their construction are our concepts of space and time. And since
the general theory of relativity provides only a single unique family of solutions
for their descriptions, they are the simplest objects as well.” [26]

Black holes merging events can be naturally divided in three phases:

1. inspiral, in which the two original black holes approach each other increasingly
closely;

2. merging, in which the chaotic behaviour is not easy to understand by analytical
means;

3. ringdown, when the final merged black hole is formed and spacetime oscillates in a
damped way swiflty down to zero.

Perturbation theory can be used to study this third and last ringdown phase. The charac-
teristic frequencies of oscillations of spacetime in it are called Quasinormal Modes (QNMs).
The term ”quasinormal”, rather than normal”, is used because perturbed BH spacetimes
are instrinsically dissipative due to the presence of an event horizon (the system is not
time-symmetric). Indeed, in general, the QNMs w, have an imaginary part Sw, < 0, SO
that the perturbation they describe is damped to zero as ¢t — oo [27].

QNMs provide informations on the manner in which gravitational waves, incident on
the black-hole, are scattered and absorbed. Thus on the astrophysical side, they can be
used to prove that the compact objects observed are indeed rotating BHs, that is, QNMs
can be used to infer mass and angular momentum of BHs and to test the no-hair theorem
of general relativity [27]. Also on the theoretical side, such information from QNMs

“has a more trascendent interest: it provides insight, in its simplest and purest
context, into the deeper aspects of space time as conceived in general relativity;
and it reveals the analytical richness of the theory.” [26]

Moreover, nowadays the importance of QNMs is not confined to a better understanding
of General Relativity. Indeed, since many decades, a pressing issue in theoretical physics
is to reconcile this theory with the other pillar of modern physics, namely Quantum Me-
chanics. Hence the astrophysical dark compact objects we name “black holes” could be
far better modeled by means of, for instance String Theory, rather than General Relativity.
Thus argues for instance S. D. Mathur:
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“The black hole information paradox is probably the most important issue for
fundamental physics today. If we cannot understand its resolution, then we
cannot understand how quantum theory and gravity work together. [...] I con-
clude with a brief outline of how the paradox is resolved in string theory: quan-
tum gravity effects are not confined to a bounded length [...], and the informa-
tion of the hole is spread thorughout its interior, creating a ’fuzzball’.” [28]

Thus with gravitational wave astronomy it has become possible to make progress in
also fundamental physics, testing General Relativity (GR) in extreme regimes and in par-
ticular to discriminate between GR Black Holes (BHs) and Exotic Compact Objects (ECOs)
or Fuzzballs appearing in Modified Theories of Gravity or String Theory. This is possible
importantly again by analysing the Quasinormal Modes. At later ringdown stages, ECOs
and fuzzballs produce a peculiar train of echoes, probing their internal cavity and not
only their external walls, with significant deviations from GR. The crucial role played by
QNMs in discriminating BHs from fuzzballs or other ECOs motivated renewed effort in
their determination with higher and higher accuracy [7, 9, 29].

3.2. Black hole perturbation theory

The Einstein-Hilbert action for a d-dimensional spacetime with cosmological constant A is

B 1
167G

where g = detg,,, R is the Ricci scalar and £,, is the Lagrangian for the matter fields cou-
pled to gravity. It gives rise to the Einstein equations

G+ Agy = 87GT), (3.2)

dz/—g(R—2A+ L,,) (3.1)

and must be supplemented by the equation of motion for the matter fields ¢. In general
these equations form a complicated system of non-linear partial differential equations
(PDEs). However, they can be greatly simplified into linear equations in the approxi-
mation of small perturbations 4, ¢ of the background fields gff, PBC: g, = gff + hys
D = ®BY 1 ¢ [27].

Maximally symmetric vacuum solutions are Minkovski, de Sitter (dS) and anti-de Sitter
(AdS) spacetimes. AdS spacetimes arise also as natural groundstates of supergravity the-
ories and as near-horizon geometry of extremal BHs and p-branes in string theory. The
non-rotating, uncharged, Schwarschild AdS (SAdS) BH has the line element [27]

ds? = —fdt? + f~rdr? + r2dQ2_, 3.3)
where dQ? , is the metric of the (d — 2) sphere, f(r) is

2 d—3
r )

where L is the AdS curvature radius related to the cosmological constant as
2 (d=2)d-1)
L? = A (3.5)
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and the parameter r, is related to the mass M as

(d — Q)Ad,QTgig 27‘((d_1)/2

M: A_:—
167 R V=

(3.6)

3.2.1. Scalar perturbations

To obtain the physical quasinormal associated to gravitational waves, it is necessary to
study tensor perturbations of Einstein’s field equations. In that way, after linearization
and choice of gauge, one reduces Einstein’s 10 coupled non-linear PDEs to just 2 linear
ODEs: the Regge-Wheeler and Zerilli equation [30]. However, for more purely theoretical
investigations it is often considered the simplified though completely analogous problem
with scalar perturbations, in which the physical equation of interest is the Klein-Gordon
equation in curved spacetime [7].
The Lagrangian for a complex scalar field with conformal comping ~ is

d—2

_ T
L, (0,2)"0ud =1

YRO'® — m?PTP (3.7)

For v = 1,m = 0 the action is invariant under the conformal transformations g,, — Q%g,..,
d — Q1~%29, Consider a massless scalar m = 0. The equations of motion are

2
d YyR®, G+ Agu =87GT,, (3.8)

hp — _
ViV 4(d—1)

The equations for the linear perturbations #,, and ¢ decouple. The scalar fluctuation sat-
isfies

1 _ d(d4_ 2>7¢ (3.9)

———0, (V=gmadhednd) = =
—9BG
With a stationary and spherically symmetric metric the perturbation decomposes in spher-

ical harmonics Y},

U,
o(t,r,0) = e T(d_(;gj;) Yim (0) (3.10)
Im

where we have omited the integral over frequency in the Fourier transform. The equation
for the radial part ¥,_(r) is

>, dV,_
2 s=0 / s=0 2 _
gt =+ (W = Vieg) Wsmp = 0 (3.11)
with potential
il +d=3) d=2((d-4)f 2f  dy

Vico=f = +— ( STt )| (3.12)

By introducing the “tortoise” coordinate r,
d’f’* - %d'f’ (3.13)
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such that the horizon » — r, is at ., -+ —oo and infinity at »* — oo or »* — const. for
respectively flat or SAdS spacetime, we can reduce the equation to canonical form [27]

d*U,_g
dr?

4+ (W? = Vieg) W = 0 (3.14)

3.3. Mathematical definition of quasinormal modes

We recall the definition of quasinormal modes following [30]. A linear perturbation of a
BH is a solution @(¢,z) of some linear PDE derived from the equations for the fields and
metric. It has the form

62 82
{+@ _Z U(w)} D(t,w) = 0. (3.15)

ow?

where w here is a coordinate (the “tortoise” coordinate) such that the BH horizon is put at
w — —oo and spacetime infinity at w — +oo. If we take the Laplace transform of ¢

A

U(s,w) :/ e SOt w)dt, (3.16)
0
then f satisfies the non-homogeneous ODE:

{ O L Uw)+ 52} U(s,w) = ~Z(s,w), (3.17)

- ow?

with the non-homogeneous term given by the initial time values of the perturbation as

OV (t, w)
ot

Z(s,w) = —sU(t,w) (3.18)

t=0 t=0

The corresponding homogeneous equation is exactly the ODE we are going to study in the
next sections

0? )
{—%—I—U(w)—i—s }\I/(s,w) =0. (3.19)
Its solutions bounded at w — +oo, for s > 0, are
U, (s,w) ~ e *, w — 400 (3.20)
U_(s,w) ~ e, w— —00.

The solution of the homogenous equation is then found to be given by the Green function
G as
. o0 1
\Ij — !/ I / / / —
o) = [ Gl )T Glsw) = e

—00

U_(s,wo)¥y(s,ws), (3.21)

with
we =min(w’,w), w.=max(w,w). (3.22)
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Then taking the antiplace transform of ¥

€+100 R
O(t,w) = L/ e* W (s, w)ds, (3.23)

21 Je_ino

we get the original perturbation as

e+100
O(t,w) / / (s,w, w)Z(s,w") dw'ds
2m .

=5 e e )T ) s (3.2

= zq: e*t'Res (W(s))

The crucial point for us is that the perturbation is a sum over the residues of the inverse
wronskian of the regular solutions (3.20):

[ s w0 ) Ty )

—00
q

W(s,) = W[W,, ¥ ]=0. (3.25)

Besides, condition (3.25) means that at these special points the two solutions (3.20) (in
general independent) become linearly dependent. By setting s = iw we recover the usual
intuitive definition of QNMs as the frequencies of plane wave solutions both incoming at
the horizon and outgoing at infinity. However, as well explained in [30], this last defini-
tion is not mathematically rigorous, since it would lead to diverging boundary conditions.
Instead, the QNMs w,, have an imaginary part Sw, < 0, so that the perturbation they de-
scribe is damped to zero as ¢t — oc.

3.4. Methods of computation of quasinormal modes

We report here two of the main methods of computation of QNMs. The first is approxi-
mate, the second is exact.

3.4.1. The WKB approximation

As is typical of normal modes of vibration of any object, also quasinormal modes of black
holes can be thought of as waves travelling around the BH. More precisely, QNMs can be
interpreted as waves rapped at the unstable null circular geodesic (called ”light-ring”) and
slowly leaking out [27].

This intuitive idea is related to the more rigorous WKB approximation procedure for
computing QNMs. Indeed in that approach one expands the coefficient Q = w? — V of the
ODE for the perturbation

d>v
dr?

+QV =0 (3.26)

24



around the extremum of the potential r,, which also defines the light ring. In this approx-
imation one gets the ODE

d*v

2
dr?

1
+ | Qo+ 5Q(re —10)*| ¥ =0 (3.27)
where @, stands for Q(r). (3.27) has the parabolic cylinder form
—— vtz —=2)w=0 (3.28)

So the exact solution of (3.27) is in terms of the parabolic cylinder functions D,, D_,

U =AD,(z)+ BD_,_1(iz) (3.29)
with .
z=+/—2Q4(r« — o) V= —i Qo — (3.30)

V207 2

Asymptotically expanding for z — oo we get
U~ Ae e - z'\/%A[F(—l/)]’le‘:’”/‘lz’”’le% (3.31)

QNMs boundary conditions imply that the term proportional to e% corresponding to out-
going waves at infinity, should be absent. So

- (iy) ~0 (3.32)
that is
%zi(ﬂ—%%) neN (3.33)
0

This relation defines the QNMs in the WKB approximation. We notice that it appears like
a “Bohr-Sommerfeld quantization rule” in the old quantum theory [27]. In particular the
QNMs turn out to be given by

w~wy—i(2n+ 1)Ag (3.34)
where wy is the root together with r, of the system
Qwo,m0) =0 9,Q(wo,70) =0 (3.35)
and )\, is the term corresponding to the quantization condition (3.33)
Ao = (3.36)

It turns out )\, is the Lyapunov exponent governing the chaotic behaviour of nearly critical
geodesics around it [7].

The WKB approximation works best for low overtones »n (with small imaginary part w;)
and in the limit of large / (which corresponds to large wg/w;). This method also assumes
that the potential has a single extremum [27].
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3.4.2. The continued fraction (Leaver) method

The continued fraction method by Leaver has been regarded the most successful algo-
rithm to compute QNMs. It is based on the observation that the Teukolsky equation for
the perturbation of Kerr BHs is a special case of the spheroidal wave equations that ap-
pear in the calculation of the electronic spectra of the hydrogen molecule ion. These equa-
tions are characterized by the fact that their solution near the horizon can be expanded
in power series with coefficients that satisfy a three-term recursion relation. The bound-
ary condition at infinity which defines QNMs is also satisfied when the series is absolutely
convergent and that imposes a particular continued fraction condition on the terms of the
recursion which gives the QNMs [27].

Let us consider for illustration the Schwarshild BH (with 2A = 1) . The perturbation
equation is the Regge-Wheeler equation

2 C()QTB

d S
R e (SR (337
The boundary conditions for QNMs are
b= (P17 Y e (3.38)

The solution which has the desired behaviour at the event horizon can be expanded in
power series as

o > r—1\"
b= (r — 1)~y giotr—D) ;0 . ( - ) (3.39)
The coefficients a, satisfy the three term recursion relation
Qplpi1 + Bnty + Yntn_1 =0 n=12,.. (3.40)
with initial condition
apar + Boag = 0. (3.41)

and where we defined
an = n? + (—2iw + 2)n — 2iw + 1
By = —[2n* + (—=8iw + 2)n — 8w? — diw + I(I + 1) — §] (3.42)
Yo = n? — diwn — dw? — s — 1

The boundary condition at spatial infinity will be satisfied by those values of w for which

the series for the solution is absolutely convergent. It can be proven that happens if the
ration of successive a, is given by the infinite continued fraction

- Qn+1Yn+2 :
a’TL /8n+1 - ﬂn+ _ %n+427n+43

Brts—

This equation can be though as an ”n = oo boundary condition” for the sequence «,, and
we obtain a characteristic equation for QNMs by evaluating it also at n = 0 (so an ”n = 0
boundary condition”). In particular for n = 0 we get by (3.41)

Qo1
0= 50 T a a1y (344)
/81 ﬂ?*BOQjS
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which determines the basic overtone w,. Higher overtones are obtained by inversion
of (3.44) n times

5” - Oé”*ilz’MA = a"7§7111’y7l+2 (345)
ﬁnfl - W ﬁn+1 - W
For every n > 0 are equivalent in the sense that every solution of (3.44) is also a solution
of (3.45) and viceversa. So either one may be taken as defining w,,. The problem is reduced
to solving albegraic equation and ssually w, is found to be the most stable root of the n-th
inversion [31].

We notice that this method assumes that the ODE for the perturbation has two regu-
lar and one irregular singularities. This happens in particular for the Confluent Heun
equation (CHE) (see appendix D). If the ODE has two irregular singularities and no reg-
ular singularities as the Doubly Confluent Heun equation (DCHE) which will be the case
for most of the model we are going to study, then it should be first mapped in the CHE as
explained in [7, 9].

3.5. Quasinormal modes in AdS/CFT and holography

The AdS/CFT correspondence was originally formulated between type IIB string theory
on the product space AdS; x S5 and A = 4 supersymmetric gauge theory (which is a Con-
formal Field Theory, CFT) [32]. Later it has been extended much further, so that is called
more generically holographic correspondence. In particular, it provides a method for an
effective description of a non-perturbative, strongly coupled regime of certain gauge the-
ories in terms of higher dimensional classical gravity.

Quasinormal spectra of the dual gravitational backgrounds give the location (in momen-
tum space) of the poles of the retarded correlators in the gauge theory. This is a standard
tool to study the near-equilibrium behavior of gauge theory plasmas with a dual gravity
description [27].

3.6. From gauge to gravity and back

In the last two years, a surprising connection between N = 2 SU(2) gauge theories NS de-
formed and black holes (BHs) perturbation theory has emerged [6]. It was found first that
(Bohr-Sommerfeld like) quantisations conditions on quantum gauge periods ap, a provide
a new analytic exact characterisation of quasinormal modes (QNMs)! and could be prac-
tically used to also compute them [6]. Thank to this and exploting the AGT duality [33, 34]
between four dimensional N' = 2 gauge theories and two dimensional Conformal Field
Theories (CFTs), also the latter kind of theories found applications to BHs [3]?. For in-
stance thus were made new computations of other BHs observables such the greybody

LQNMs are the characteristic frequencies of the gravitational wave signal in ringdown (after merging)
phase.

2These CFTs are different from ours. In fact, we relate to N; = 0 gauge theory the ¢ = 25 self-dual Liouville,
rather then the ¢ — +oo Liouville as AGT does for the NS limit [33]. Further investigations on the relation
between such two Liouville models would be interesting.
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factor and Love numbers?, sometimes also more accurate [8, 35, 36]. From these many
other applications and new results followed, like for instance

 an isospectral simpler equation to the perturbation ODE [37];
» improved theoretical proofs of BHs stability [38];

» asimplerinterpretation of Chandrasekhar transformation as exchange of gauge mass
parameters [39];

* precise determination of the conditions of invariance under (Couch-Torrence) trans-
formations which exchange inner horizon and null infinity [40];

 an exact formula for the thermal scalar two-point function in four-dimensional holo-
graphic conformal field theories [41].

Moreover, we emphasise that the BHs which can be studied through this approaches are
also very 'real’ (for instance, the Schwarschild and Kerr BHs) and enter astrophysics and
gravitation phenomenology [6, 29]. For instance, if real BHs possesed horizon-scale struc-
ture, forbidden by General Relativity (GR) but allowed by modified theories of gravity or
String Theory, it would manifest itself as echoes in the gravitational wave signal in the
later ringdown phase and would be accessible to future higher precision detectors [42, 7].
An explanation of this correspondence has been constructed in a rather general case [3]
by exploiting another correspondence between A/ = 2 gauge theory and Conformal Field
Theory [33]. However, we are going to show that it is possible to explain this so-called SW-
QNM correspondence [9] by analysing closely the Ordinary Differential Equations (ODESs)
describing the perturbations in gravitational physics. We are able to do this on the basis of
our previous works [1, 43], where we have connected the V' = 2 gauge theories to quantum
integrable theories, in particular the gauge periods to the Baxter’s @ and 7" functions. To
this aim we have started from the ODEs characterizing the periods and developed further
the elegant ODE/IM correspondence between ODEs and Integrable Models (IM) [2, 3, 4, 44].

3The greybody factor, or absorption coefficient, is associated to Hawking radiation, while Love numbers
describe tidal deformations of BHs.
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4. SU(2) Ny =0 gauge theory, Liouville model, D3 brane

4.1. Liouville ODE/IM

The original ODE/IM correspondence establishes an exact parallel between a particular
Schrodinger equation (ODE) and ground state of the Minimal Conformal models IM) [2,

], without masses (cf. also [45], and see [46, 47] for the correspondence with the excited
states). In particular, the equation used is the following:

dz? 2

{ & + W+ +x2M—E}¢(x) =0, 4.1)

where M > 0 is related to the central charge c as

M=p%-1 c=1-6(8—p1)? (4.2)
and [ is related to the conformal dimension A as
o 2+1 (b > -1
p_4M+4 A_(6> + o1 (43)

Let ¢, denote the solution which has the subdominant asymptotic at the irregular singular
point z — oo

Goo(T) ~ ™M/ exp <—M;+1xM+1) T — 00 4.4)

and let ¢, denote the solution which has the power law behaviour at the regular singular
point z — 0
po(x) ~ 27! r—0. (4.5)

Then, the Baxter’s @ function for the minimal models can be defined as the wronksian

Q— = W[¢007 ¢0} ) (4-6)
or, alternatively, as the limit [2]
Q- = lim (20 + 1)2' oo ()] - 4.7)

Later, the ODE/IM correspondence was extended to the massive ground state [48].
Although there was already a bold suggestion already in [4], the conjecture for the
(conformal) Liouville field theory (M < —1) came only in a brilliant draft paper [49] by the
late scholar Al. B. Zamolodchikov and takes the form of the Generalized Mathieu equation
(GME): ,
_ 4 e ) 4 p2 _
{ dy2—|—€ +e + P (y) =0. (4.8)
The parameters v and P are respectively the Liouville coupling and momentum and express
the central charge
c=1+6(b+0b")? (4.9)
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and the conformal weight
A= (c—1)/24 - P?. (4.10)

Liouville field theory enjoys a duality symmetry for b — 1/b (self~dual point b = 1). Fol-
lowing [4], we may immagine that this equation could be obtained heuristically from the
ODE/IM equation (4.1) for the minimal models, through some continuation in g = ib and
some transformation on the independent variable (crucially, the Langer transform).
However, we found the form (4.8) not adequate for the large rapidity expansion, as e
appears with two different powers. We have solved this problem by the shifty — y+a 2"

b+1/b°
after which the GME acquires the modified Schrodinger form:

2
{_j_g/? + eQe(ey/b + e_yb) + P2}¢(y) —0 (4.11)
with the rapidity 6 defined as = o/(b + b7!).

4.1.1. Heuristic derivation of Generalized Mathieu equation

In particular, we apply a succession of transformations, the first of which is the Langer
transform: = = 7, ¢(z) = e¥/%y()), so that the equation becomes

2
{ jz. + WP _Be? (14 %)Q}zp(g) =0. (4.12)

Now, we continue to transform, passing to the variables j = 2

ﬁ2 y/ﬁ 5 By 52 N\
{ ap T e+ 2) }w(y) = (4.13)
and also y = iy
2 1
{—i-ﬁ 4+ = s /B _ i EePy + = ﬁ (l + 2) }w(gj) =0. (4.14)

Now we send § = ib, with b > 0, that is, give imaginary values to 5. The ODE/IM equation
for the minimal models is thus transformed into the equation for the Liouville model. We
also define a new parameter

P+ 3

pPP="= 2 4.15
E 1 (4.15)
Then the equation becomes
2 b .
—— Wb Be ™ 4 P2Lyp(7) = 0. 4.16
{@*4 4e+}¢(y)0 (4.16)
A final change of variable y = § — a + bIn % and of parametrization o = 202 4 Bl &

delivers now the Generalized Mathieu Equation (4.8). The parameter « is related to the
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TBA rapidity, as we explain below. We observe also that the initial variable = can be con-
veniently expressed in terms of the final variable y as

T = exp —%b — %b b;ln 1—2] 4.17)
% = (y) (4.18)

This shows that + — 0 corresponds to Ry — +oo, while z — +oco corresponds to Ry — —oo.

4.1.2. Functional relations

In the rest of this Section we will summarise our understanding of draft paper [49] by
using the GME (4.11). It has the subdominant asymptotic solutions: for Ry — +oo, within
1S(0 + £4)| < 37 and for Ry — —oo, within |3(0 — &)| < 2r, respectively

Uo(y) =~ % exp{—6/2 — y/4b} exp{—2bee+y/%} Ry — 400 ; (4.19)
1 2
Vo(y) ~ E exp{—@/? + yb/4} exp{—gee_ybﬂ} Ry — —o0 . (4.20)

Other solutions can be generated applying on these the following discrete symmetries of
the GME (4.11)

b i | i
My:6= 04 im y—>y+% Oy y%y—% .21)

where ¢ = b + 1/b: concisely U, = AfU, and V, = QFV,, with Uy, invariant under €, and V;,
under A,. We may interpret this phenomenon as a spontaneous symmetry breaking for
the differential equation (vacua are the solutions). Now we apply these (broken) symme-
tries to derive interesting functional and integral equations for the gauge theory. On the
other hand, the symmetry IT : § — 6 + iw would not do the same job in the present case
with two irregular singularities as it transforms simultaneously U, — U; and V, — V4 (dif-
ferently from [50] and [51] with only one irregular singularity, see also [52] for a detailed
examination of the two kinds of symmetries).
In fact, we will prove correct (as conjectured by [49]) to define the Baxter’s @ function
as the wronskian
Q0, P*) = WUy, V| . (4.22)

We can say that the dependence of @ is on the square of P, because equation (4.11) is
invariant inverting the sign of P and also the boundary conditions (4.19) and (4.20) are
invariant. Notice, however, that in all the functional relations below P2 is fixed. Definition
(4.22) gives rise to Q(0 + inp) = WUy, V() upon action of A,: these are equivalent to the
linear dependence

iVo(y) = Q0 +imp)Us(y) — Q(O)U1(y) (4.23)
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where p = b/q (from the asymptotic calculation WU, Uy] = i). Which is transformed by ¢,
into
iViy) = Q0 +im)Uop(y) — QO + im(1 — p))Ui(y) (4.24)

namely Q(6 + in(1 — p)) = W[Uy, V1](0) and Q(6 + iw) = WUy, V1](0). The basilar functional
relation (anticipated for the massive theory by other means in [53]), the QQ relation is
obtained by taking the wronskian W{[V;, V4] (= i from asymptotics) between the right hand
sides

1+ Q0 +in(1l —p))Q(O+ inmp) = QO +im)Q(0) . (4.25)
If we define the two (dual) 7 functions as

T(0)=Q6 —irp)Q(O +im) — Q0 + imp)Q(0 + in(1 — 2p)), T(0) =T(0) o1/ (4.26)
(also T = i W[U_,, U] and T = —i W[V_1,V4]) by using the QQ relation (4.25), these two
Baxter’s T relations follow

T(0)Q(0) = Q(6 +imp) + Q0 —imp)  T(H)Q(H) = QO +in(L —p)) + Q6 —in(1—p)). (4.27)
as well as the periodicity of 7" [49]
TO+in(1—p)=T(0)  T(0+irp) =T(0) . (4.28)

We make now some comparison between the functional relations of the Liouville model
and those of the minimal models. For the minimal models )_ is the wronskian between
the eigenfunctions defined by the asymptotic at 0 and +oo in z, as in (4.6). This property
is kept for the Liouville model, in (4.22), since by (4.17) 2 = 0 corresponds to y = +oo and
x = 4oo corresponds to y = —oco. Besides, for the minimal models there is only one 7Q
system, while for the Liouville model there are two different 7Q) systems. This is because,
essentially, in the Langer variable y, +oo and —oco are symmetrical, that is, the eigenfunc-
tions have analogous form. Accordingly, for the minimal models there is only one 7" func-
tion, while for the Liouville model there are two 7" functions. However, for the Liouville
model there only one @ function, while for the minimal models there are actually two Q.
functions, which are obtained through the action of the symmetry A,,,, [3] which sends
p — —p. The two symmetries used in the ODE/IM construction for the range 3% > 0 (mini-
mal models) are very different: Q,,,, [3] acts on the solutions at x — +oo only through z;
while A,y [3] acts on the solutions at z — 0 only through /. Now, the the two symmetries
used for the range 5* < 0 (Liouville model) are very similar: both A, and Q, act on the
solutions at y — +oc through y and 6. In the Liouville model, P? — P? under the minimal
models symmetry A, (cf. (4.15)).

4.1.3. Perturbative limit

In the limits y — +o0o0 and y — —oo, the GME (4.11) reduces to the approximate equations,
respectively:

d2
{—d—:g2+€29+y/b—|—P2}Uo(y) ~0 Y — +00, (429)
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2
{_j_y? + 207ty P2} Voly) =0 Yy — —00. (4.30)

By the changes of variables u = 2be’*%/?> and v = 2/be’ /2, we see that these equations are
Modified Bessel equations:

2
{zﬂ% + u% — (2bP)* — u2} Up(u) ~ 0 u — +00, (4.31)
d? d
{&w +vs = (2P/b)* — v2} Vo(v) 0 v— +oo. (4.32)

From the asymptotics (4.19) and (4.20), it follows that the basic solutions U, and V; corre-
spond the modified bessel functions as

2b

Up(u) ~ \/?Kgbp(u) u — 400, (4.33)
2

Vo(v) ~ \/%Kgp/b(v) v — 400. (4.34)

In the perturbative limit § — —oo, the approximate equations become the same:
d? 9
{—d—y2—|—P }Uo(y) ~( 9—)—00, (435)
d? 9

and then we are justified in combining the solutions of both equations for each y € R. The
modified-Bessel function K,(z) behaves, as z — 0 as

I(—
ST ™"+ 2(1+5>(EV + 0 (2%) (4.37)

therefore the U, and 1} solutions are approximately equal to

Uy ~ % [V**PT(2bP)e 2P e P 4 b= 2P D (—20P) e F et ] (4.38)
m
1

Vo =~ N [b2P/°T (2P /b)e 207 /belv 4 p2PIT (—2P /b) e P /b= ] (4.39)
m

and their wronskian (4.22), the @ function, is approximately equal to

(4.40)

1 {F(1+2P/b)F(2Pb) qu9+F(1—2bP)F(—2P/b)62qP9}

2 [ —
Q(ea b: P ) — ot b_1+2bP_2P/b bl—QbP+2P/b
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4.1.4. Thermodynamic Bethe Ansatz

Also the Liouville Y-system can be obtained from the Q@Q-system, by defining Y () = Q(0+
ira/2)Q(0 — ima/2), wherea =1 —2p

Y (6 +in/2)Y (6 — in)2) = (1 FY(0+ m/2)> (1 LY(0 - m/Q)). (4.41)

This functional equation can be inverted into the Thermodynamic Bethe Ansatz (TBA)
equation for the logarithm £(6) = —InY'(0), the pseudoenergy, in the integral form

00 1 1 e
“0) =t )¢ T /_Oo Losh(& — 0 +iar/2) i cosh(6 — 0" — iaﬂ/Z)] {1 exp{—=(0)}] or

(4.42)

where the coefficient of the forcing term (zero-mode) is fixed by the leading order of @
below, (4.96). This TBA equation goes into that in [49, 53, 54] upon a real shift on 6:

_ 8Vmg (4.43)

6 — 60+ 1n )
T(3)T (55)

The Liouville TBA can be derived as a massless limit of the one concerning Sinh-Gordon [

£(f) = mRcosh @ — / do’ (6 — 0 In[1 + =] (4.44)
where
0) = - ! + ! (4.45)
P = 5r | cosh (0 +ira/2)  cosh (0 —ima/2) ]|’ '

Here, though, we wish to show its arising from the Stokes relations of the Schrodinger
equation: the @ system (4.25) or the equivalent Y system (4.41). Boundary conditions
must also be fixed in order for the TBA to be uniquely determined. We begin by making a
shift of —iw/2 on the @ system (4.25).

Q0 — in/2)Q(0 + in/2) = 1+ Q(0 + ima/2)Q(0 — ima)2). (4.46)

Now define Y (9) as
QO +im/2)Q(0 —ir/2) =1+ Y () (4.47)

and note that such a definition of Y (#) implies the relation
Y (0) = Q0 + iar/2)Q(0 — ian/2) . (4.48)

We now use a theorem of [55], which we report here. Let ¢ be a function such that its
Fourier transform ¢ belongs to L'. If we define another function y as

_ Lo g(l) :
x(0) = 27 /Oo cosh (0 — 9’)d9 ’ (4.49)
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then x is bounded, analytic in the strip |3¢| < 7 and satisfies
X0 +im/2) + x(0 —iw/2) = £(6), (4.50)

for real 6. Conversely if ¢ is bounded and analytic in the strip 36| < 5 and if (4.50) holds,
then so does (4.49) [55]. We observe that (4.50) leaves the freedom to add to £ a ”zero-mode
function” ¢, solution of the homogeneous equation

G0 +im/2) + ¢ — im/2) = 0. (4.51)

A possible zero mode function is cosh 6 or exp §. Thus, the most general expression for ¢ is

_ L= &0) :

Using this theorem, we can write the expression for (¢) in terms of Y (6), starting from
the definition (4.47), whose logarithm reads

Q0+ in/2) + Q0 — in/2) = In[1+ Y (6)], (4.53)

which is an example of relation (4.50), if we set x(6) = InQ(f) and £(0) = In[1 + Y (0)].
Taking ¢(9) = —ce? as zero mode, or boundary condition for # — oo, by (4.52) we get

< db’ 1

00 27 cosh 0—6 1 +Y(®) (59

InQ(0) = —ce’ +/

Considering ¢(¢) = —InY'(#) and applying formula (4.48) we get

—6(6) — _Cee{eifra/Q + efiﬂ'a/Q]
(4.55)

o In[1+Y(6))d6'.
+/_oo 2m {COSh (0 +imra/2 —0") * cosh (0 —ima/2 — ") n {1+ Y(6)]do

Choosing ¢ such that the coefficient of the forcing term is ¢, = 8v/#3 q/F(%)F(ﬁ) and rec-
ognizing the Sinh-Gordon kernel (4.45) we can write finally the Liouville TBA:

8V q S >
T(z)0 (35) /

2bq

e(9) = 00— @) In[1+Y(0))d0 . (4.56)

2_(1 o)

Notice also that ) can be written as

nQ(0) =

8vrg ) 0 / A In[l+Y(¢). (4.57)

2sin7pl(5)T (55, . oo 2m cosh (0 — 0)
Q is an entire function, free of zeroes inside the strip |36| < /2 + ¢, for some finite
e > 0 [53], [56]. Zamolodchikov conjectured that the same expression could be obtained
by taking the wronskian (4.22) of the solutions of the ODE. We have already proven his
conjecture partially, the remaining part of the proof will be given below by fixing the
boundary coefficient ¢ directly from the equation (4.8).
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In the Liouville TBA, P does not appear explicitly, but (numerically) in the asymptotic
linear behaviour of £(0, P?) at § — —oo[49], which matches the analytic computation of the
wronskian (4.22) via 1 + Y (0) = Q(6 + iw/2)Q(0 — iw/2). In fact, from expression (4.40), we
derive the asymptotic § — —oc behaviour of the pseudoenergy:

£(6,b, P) ~ 4qP0 — 2C(b,P) 0 — —o0, (4.58)
with the constant

(1 + 2P/b)T(2Pb)
Qrb—1+20P—2P/b

C(b,P)=1In (4.59)
On the other hand from (4.41) we only know that Y must diverge.

1 D(1+2P/b)L2PH)\° _, pp
Y (0) ~ (% [ LrZP-2Pb e~ 44l (4.60)

As a consequence L = In[l + e~¢] tends to

L(6, P) ~ —4qP0 + 2C(b, P) 0 — —o0. (4.61)

Since the Liouville TBA (4.42) does not depend explicitly on P, in order to solve it numer-
ically, we must add the P dependent boundary condition (4.58) in the forcing term and
subtract it in the convolution. To this end, define the functions L, and L; which reproduce
for 4 € R the asymptotic (4.61) as:

Lo =2gPIn [1 + 6_20] , (4.62)
Ly =C(b,P)(1 —tanh#). (4.63)

In order to compute the convolutions f;, = ¢ x L,of this terms with the kernel, set

Li(0) = (0 +im/2) + 1(0 — im/2) (4.64)
which specifically means
lo(0) =2gPIn [1+ e (4.65)
C 7

The convolutions are in general

@ * L = (0 +iarm/2) + (0 — iam/2) (4.67)
and in particular
fo=¢*Lo=2qP{In[l+ 67(9”‘”/2)] +In[1+4 67(9*”“”/2)]} , (4.68)
1 0 ima 1 0 ima
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Then the numerically solvable TBA reads
€(9,P):Coeg—fo—fl—@*(L—LU—Ll). (4.70)

Until now we considered real positive P > 0. We observe that for imaginary or complex
P the asymptotic of the pseudoenergy is much more complex (cf. (4.71)). In fact letting
P? — —P?%in (4.40) we get

Q(0,b, —P?) ~ K ¥ - K,e=21l0 4.71)
where we defined the complex constants

(1 — 2ibP)I(—2iP/b)
Ky = 9 rbl—2ibP+2iP/b ) Ky =

(14 2iP/b)I'(2ibP)
b~ 1+2ibP—2iP /b

(4.72)

However, it is easy to verify the Y system Q@Q-system even in the case of imaginary P or
complex P. The LHS of @ system reads

1+Q(0+iar/2,b, P)Q(O —ian/2,b, P) = 1+ K27 1 9K K, cosh(2mqPa) + Kze %% (4.73)
while the RHS reads
Q0 + im/2,b, P)Q(H — in/2,b, P) = K2e' P! 4 K2e~1PY 4 9K\ K, cosh(2mqP) . (4.74)

In order for the @ system to hold, it must hold that

cosh 2wqPa +

= cosh 2mqP 4.7
Ve cosh 2wqP , (4.75)

which is in fact true
['(1 — 2ibP)T(2ibP)T(1 + 2iP/b)T'(—2iP/b)

272
1 1

~ 2sinh(27bP) sinh(2rP/b)  cosh 27 (b + 1/b)P — cosh 27(b — 1/b) P
1
cosh 2mqP — cosh 2rqPa

2K Ky =

(4.76)

For complex P itis not clear how to do the procedure to set up the TBA as in (4.70). How-
ever, the gauge/integrability correspondence we are going to state permits to overcome
this difficulty (see below (4.307)).

4.1.5. Self-dual case

The self-dual GME (b = 1 in (4.11)) is known in literature as modified Mathieu equation:

2
{_j_gﬂ + 2¢% coshy + PQ}w(y) =0, “4.77)
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and is the non-compact version of equation (2.34), so establishing a contact with gauge
theory (which importantly exhibits two irregular singularities). In particular, the discrete
symmetry (4.21) is an enhanced (by the covering y = In z) version of the original Z, spon-
taneously broken symmetry (in the x variable) of SW [57]. Because a = 0, the @ system
simplifies into

QO +im/2)Q(0 —im/2) = 1+ Q*(0), (4.78)
while, since 7'(9) = 7(9), the two T'Q systems reduce to a single one
T(0)Q(0) = QO+ ir/2) + Q0 — in/2) (4.79)
and the 7T periodicity reads
TO+in/2) =T(0). (4.80)
In the self dual case (4.40) becomes
Q(6, P?) ~ 2i T(1 + 2P)T(2P)e % + T(1 — 2P)T(~2P)e'""] (4.81)
m

and the 7 function is approximately equal to
T(H, P*) ~ 2cos2nP. (4.82)
In the gauge variables (see below (4.223)) these expressions become

4¥2u " u —4Y2u
Q(@,Wﬂnm@)p@@ () 22 (1) ](4.83)

and
2u

T(0,u) ~ 2cos 27?7 . (4.84)
We observe that the limit # —+ —oo with P finite in the integrability variables corresponds
to the limit A — 0 with # and « finite in the gauge variables. Since b = 1, the Y function is
just the square of the Q function

Y (6, P?) = Q*(, P?) (4.85)
and the Y system reads
2
Y (0 +in/2)Y (0 — in)2) = (1 + Y(e)) . (4.86)
Its inversion, the TBA equation simplifies as
16v/73 . .
€= F2(%1) 66—2<p*1n(1+e ), (4.87)

with a new simplified kernel which (because « = 0 at b = 1) is half of the former ker-

nel (4.45) -

" Oncoshf (4.88)

()
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Since ¢ = 0 then Q> = Y = exp[—¢| and the TBA becomes an integral equation for the
Baxter’s @ function [49]

lnQ(F) =

8\/_ +/°° In[1 4 Q*(¢")] o’ (4.89)

I‘Q( ) o cosh(0—0) 27

4.2. Local integrals of motion

We wish here to compute the Baxter’s @ function and then the Liouville Local Integrals
of Motion (LIM). About @, (4.23) says that it can regarded as the regularised value of the
solution 1, (4.20) at y — +oo:

Vo(y; 0) Y _obe T35 ,
Q) zyL&noo 01(y.0) = V/2e? yEIJPooe Vo(y; 0) . (4.90)
We can write 1} (4.20) in terms of IT(w) = —i dIn({/cy(y)Vo(w))/dw in a convergent form of
(B.5)
g 2 g by 0+ 2 Y 0 by’ Y’
: - 2 2% / /. _ -5 o !
Voly; 0) = \/_\/_ exp{ e + 2be” "2 + /_OO [\/cb(y MI(y';0) —e’(e” 2 +e )} dy }

(4.91)

where ¢,(y) = —¢(y) = e¥/* + e and dw = \/é(y)dy = —i\/c,(y)dy. Hence, we write an
integral expression for the @ function (4.90) and its asymptotic series (denoted again by
=) for § — +o0, by using formula (B.26) (integrating on R, the decaying derivatives do not
contribute):

InQ(h) = /_ :O [MH(y) — e ¥ %)}dy (4.92)

(1-2n)

iee/:[m_efb_e—?]dy nf:lzn_l/ Vo) Ra(y) dy . (4.93)

Notice for the future developments that In @ is given i times the integral of the regularised
momentum

Pregl —iv/eo()II(y) + i’ (e -7 4 e3) =Py) +ie’(e” 7 +en) — -2 (4.94)
thanks to (B.6): this fact is valid for any b and connects @ to SW-NS periods (cf. below the

development for the pure gauge case b = 1). Moreover, upon identification of the n-th local
integral of motion 75, ; up to an arbitrary normalisation B,

1 [ee]
o — 1 /_oo Ver(y)Bnly) dy (4.95)

BnIQn,fl =
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they are given by the large # asymptotic expansion of the Baxter’s ¢ function (4.93):

For instance, we can use the normalisation constants:

F( (2n—1)b>r< (2n—1) )

B,(b) = — 2 g~ 4.97
n(0) 2y/mnlq (4.97)
This expansion matches the numerical results from TBA (4.42), by the formula
Tl (an-1e —(6)
Bnlsp 1 = (—1)" —e' " In [1 +e° } (4.98)
o0 T

Now, we can make explicit the one-step recusion procedure (B.16) for the R, in this par-
ticular case (4.11). We will give the details elsewhere and just give the final formula for
the LIMs

Iyn1(b, P?) = (b, P?) (4.99)

(2n)! i P(n—1/2) TEE2+m—n)
(

2n -1 = D(n—1/24+m—n) p(nbtlz/Z)

with the recursion for the coefficients a,, ,,

3n+3 ml F( (n+1)b + k4 ) 3
Gnitme1 == 3 T ST Fn k= 1) ane (4.100)
L Mar (- +1+m+2)l:O

from the initial condition ay, = 1 and where the F, functions are defined as

1 1 3 1 1 3 1 1 1 1
Fo(n,m) = 2 (m + 5)3q3 =gt 5)m+ 5)2925’ + o+ 5)2(7" + 5)6152 — 7+ 5)353
_pe [(m . %)q ~(n+ %)b] (4.101)
3 1 13 3 1 1 3 1 1
Fi(n,m) = —Z(m + 2)(m +2m + 12)q3 + §(n + 5)(m + 5)(m +1)¢°b — Z(m + 5)(71 + 5)2qb2
+ P2(m + %)q (4.102)
3 1 3 3 1 1 3
Fy(n,m) = Z(m + 5)(m + 5)2(]3 - Z(n + 5)(771 + 5)(771 + §)bq2 (4.103)
Fy(n,m) = —}l(m + %)(m + ;)(m + g)q?’ | (4.104)

Since the recursion for the Gelfand-Dikii coefficients is one-step, using formula (4.99) and (4.100)
is a very efficient way of computing the I, ;, which have also been checked numerically
by exploiting TBA equation (4.42). Besides, we have repeated the calculations in the case of
the minimal models and have found the same formulae in terms of ¢ and A (as expected).
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4.3. Deformed SW cycles

According to Seiberg-Witten theory [57], the low energy effective Lagrangian of 4d A/ = 2
SUSY SU(2) pure gauge theory is expressed through an holomorphic function Fsw(a®)
called prepotential. It may be thought of as constructed from the Seiberg-Witten one-cycle
period «(?, such that the v.ev. of the scalar field (®) = 0¥ o3, and its (Legendre) dual ag) —
OFsw/0a?), as expressed by (2.28),(2.30): which are functions of the modulus u = (tr ®2)
(for fixed parameter A*) upon eliminating « to obtain ag) (a®) (and finally integrating). The
N =2 SYM classical action enjoys a U(1)r R-symmetry, which is broken to Zs by one-loop
anomaly and instanton contributions. Eventually it is broken down to Z, by the vacuum,
so that the (spontaneously) broken part, which is a Z,, i.e. © — —u, connects two equivalent
vacua [57]: we will see that somehow this broken symmetry plays an important role also
in the deformed theory.

The exact partition function for /' = 2 SYM theories, with all instanton corrections, has
been obtained through equivariant localisation techniques in [58, 59]: two super-gravity
parameters, ¢; and e,, the Omega background deform space-time. When both ¢, , e; — 0, the
logarithm of the partition function reproduces the Seiberg-Witten prepotential Fsw [59].
The latter can also be thought of as a successive limit of the Nekrasov-Shatashvili (NS)
limiting theory [60], defined by the quantisation/deformation (of SW) ¢; = &, e, — 0.

More specifically, having in mind the AGT corresponding Liouville field theory [33, 34]
and precisely its level 2 degenerate field equation [61], we may think of it as a quantisa-
tion/deformation® of the quadratic SW differential which takes up the form of the Mathieu
equation (2.34)® The Seiberg-Witten cycles (2.28)-(2.30) are the leading order asymptotic
representations, as 7 — 0, of the two exact deformed cycle period

a(h,u,\) = %/ P(z; h,u, A) dz (4.105)

(in gauge theory o = 2(®)), as well as the exact deformed dual cycle period

ap(h,u,A) =ih Y " ResP(z,;h,u,A)dz (4.106)

zn€B

(the set of poles B will be shown below, c¢f. figure 4.7.4) of the quantum SW differential
P(z) = —i Iny(z). Also, we may expand asymptotically, around 2 = 0, P(z) = Yo7 | A"P,(2),
and then the NS-deformed periods (modes) are

1 T 1 arccos (u/A2)—i0
a™ (u, A) = —/ Pon—1(z;u, A) dz ag) (u,A) = —/ Pon—1(z;u, ) dz.
2m - 27 — arccos (u/A2)—i0
(4.107)

4We may calculate the first integral for «» > A2 while the second one for « < A? along a continuous (without
jumps, and hence changing sheet) path in > and then analytically continue in «; we will analyse better
the complex structure below, in Section 4.7.

SWe shall prefer this latter denotation as the former generates sometimes confusion with gauge theory
quantisation.

8In this section on the SU(2) N; = 0 gauge theory we use a different convention on 7. To get the conventions
we use for the higher N, theories we need to let & — +/2F.

41



The asymptotic expansion of the deformed prepotential Fys (logarithm of the partition
function) may be derived as above by eliminating « between the two deformed cycle pe-
riods [19]. Alternatively, we can use Matone’s formula connecting Fys, a, and u [62], still
valid upon deformation [63] asymptotically. However, we have found that the exact dual
deformed cycle period ap differs by the a-derivative A, of the deformed prepotential Fys

by i non-perturbative terms.
8st

ap — A, (4.108)

Similarly, ap is not connected to the Matone s formula, exactly in 4. The precise relation
between ap and Ap is given below in (4.321).

4.3.1. Gelfand-Dikii recursion

Exploiting the mathematical result of appendix B, we proceed now to systematically calcu-
late the Nekrasov-Shatashvili deformed integrals (4.107). The equation to be considered
is the Mathieu equation (2.34), the asymptotic expansion is for small 7 as in subsection
B.2. Hence we can apply formula (B.45) with

$(2) = 2u — 2A*cos z . (4.109)

By direct inspection of the first Gelfand-Dikii polynomials (cf. (B.18)-(B.21)), we see that
they can be expanded in the basis of the inverse powers of ¢(z)~™ and conjecture the
general form

U (1, A)
a(23u, A) Z¢mzuA (4.110)

which will be proved by the structure of the recursion.

The coefficients a,, ., (u, A) will clearly satisfy some one-step recursion relation, which we
now find by using the Gelfand Dikii recursion equation (B.45). Inserting the ansatz (4.110)
in this recursion, on the »n + 1 side we find

3n+3 &)
> animw)|-m o (Z)} , (4.111)
m=n+1

while on the » side we find

3n /11
> aungar [5G

3 3 ¢/¢// 3 9 ¢ '3
+ L—lm(m—i— 1)+ 7t 16] po le(m—l— 1)(m+2) + gm(m—l— 1) + Em—i— 32] 5 }
(4.112)
We collect useful expressions for the derivatives of ¢ with respect to z:
¢ P, n iy P>

42



Using these expressions, (4.112) becomes

3n+3 1 3n 1 1 1
ZH man—l—l,mw = Z a'n,m{ |:+4_l(m + 5)3] ¢m+2
1 3 1 1 3 5) 1
— [u(m + 5)(m +1)(m + 5)} pr + (u? — A |(m + 5)(m + 5)(m + 5)} pr,

(4.114)

We finally find the one-step recursion for the Gelfand Dikii coefficients a,, ,, of the small 7
expansion of the Mathieu equation (2.34)

1(m+3)° (m — g)m(m + 3)
Ap+1,m+1 :Z_lm—_|_21an,m —Uu 727l 1 : Qp,m—1 + (U2 - A4) Qpm—2

with the initial condition a, = 1. We verified the correctness of this recursion by direct
computation of R;, R, and Rs;. We report here the coefficients of these tested first polyno-
mials: for R,

1 3 5
a11 = 3—2 12 = —gu ar 3 = §<u2 — A4) s (4116)
for Ry
27 145 1085u2  455A%
A2 9 = —— 23 = ——-U ag 4 = -
272048 : 256 : 256 256 4.117)
ay5 = —@u (u® — A Ay = 1155 (u® — A4)2
2,5 — 64 2,6 — 128 )
for Rs
1125 26285u 435015u®  134379A%
33 = ——== azqg = — aszs = —
33 65536 34 16384 38 16384 16384
4 3 2 A4 4 2
te - 2455534 349503u - | 429 (u? — A') (1235A% — 4943u?) 4.118)
: 2048 2048 : 4096
765765u (u2 — A*)° 425425 (u? — A%)°
a = — a = .
38 1024 39 1024
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4.3.2. Cycles integrals

Considering the ansatz (4.110) and equivalence formula (B.46), we have the basic integrals

A, = / [2u — 2A2% cos z} g (4.119)
1
= 2/ (2u + 2A% — 4N%) Y2 V2(1 )72 gt (4.120)
0
A1—2m23/2—mﬂ. 11 9
- [('U,/AQ + 1)]m—1/2 2F1(m - 57 57 17 m) (4121)
arccos u/A%—i0
B,, = / [2u — 2A% cos z] mElz g 4.122)
—arccos u/A2—i0
1—112/A2
= 2i(—-1)™ (—2u 4 2A% — 4A%s) "2 12(1 — 5)7H2 (s (4.123)
0
2 ()AL g (Lo w/A2 N

= 1 wjAn /0 r—/e(1—r) (1 — Tr) dr (4.124)

o (=pmA a3 -m) 1] 1—u/A?
T omI(1 —y/A2)m T T(2—m) g 2-m——p—) (4.125)

—iA=2m /70 (m - 3) 1 I 1—u/A?
= T Tam) himogmogmi ) (4.126)
Finally, the deformed cycles (4.107) can be expressed as
1 3n
) - =
a Tr o D) W; i A (4.127)
- 1 3n

m=n

The basic integrals have been regularized by the use of the exponential parameter m.
Yet, another way to regularize the integral is to define them through some differential
operators which act on the SW (regular) cycles:

a™(u,A)\ il o™ (aO(u, )
( ™)y, ) = m(u,A)5— (ag)(u’ A>) : (4.129)

with new coefficients
(=)™ ap m(u, A)

Qo (U, A) = 2n =1 2m -3 (4.130)
Formula (4.129) can be immediately proven observing that
_1\m+1 m
L _ )™ 0" e 4.131)

=172 ~ (2m — 3)1l um
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The coefficients (4.130) satisfy the one-step recursion (simply obtained from (4.115) and
(4.130)).

N n—1 s(m+3)? N im(m+ Lu N 1+%(m+%)(u2—A4)a 2
n+1m+1 — — n,m - n,m— n,m—
n+s | (m+1)(m—3) (m+1)(m—3) +1)(m — 3)
(4.132)
with initial condition oo = 1. For example, the first two differential operators are
2 2 4 3
10, ) = — £ 03w O Bl = A) O 4133
el ) = =555, 75 ou? YRR (4.133)
and
. 2 6
- (2) 9 9 M@ TBWA-13AH 0t 11, 000 11 -AY) 0
Hreal: N = 50155 F 000w~ mor aw 320 TN aE T T s g

(4.134)

He and Miao [64] conjectured the existence of slightly simpler operators. In the next
subsection, we will derive those operators from ours and rigorously proven their con-
jecture. However, we have found no simple recursion formulas for such operators. Our
operators have instead the advantage of being given by the very efficient one-step recur-
sion (4.132).

We have now two methods to compute the deformed cycles, both exploiting the effi-
ciency of one-step recursions. Using the software Wolfram Mathematica we find that the
most efficient formulee are (4.127)-(4.128), since the computation of high order derivatives
in (4.129) is rather slow.

4.3.3. Homogeneous operators

He and Miao [65] conjectured the existence of simple differential operators in « which
give the Seiberg-Witten deformed cycles:

an+k

a® (u, A) (4.135)

a™ (u, A) = H™ (w)a® (u, A) = Z B ¥ Sk
k=0
wheren =0, 1,2...and the ,,, (k = 0, 1, ..., n) are numerical coefficients (rational numbers).
For example, the first homogeneous operator acting on the SW cycles is
. 10 u 0
W(y) = —— 4 — 2 4.136
W) = R ae T 2uae (4.136)
while the second homogeneous operator is
- 5 02 u 0 Tu? o
D) = —==+ — : 4.137
P = 155690 19200 5760 0w (137
In this section, we give a rigorous proof of the existence and uniqueness of the homoge-
neous differential operators by giving a general algorithm for calculating them. A first step
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for the proof was already made in the previous subsection, with formula (4.131). How-
ever the "redundant operator” (4.129) was not exactly that homogeneous of He-Miao [65],
but more complex. In fact, the number of derivatives involved was double and they mul-
tiplied polynomials of v and A, rather than simple powers of «. The coefficients of the first
10 of the these operators are given in appendix B.3.

4.4. Quantum Picard Fuchs in moduli parameter

The Seiberg-Witten cycles (2.28) and (2.30) are both constrained by the Picard-Fuchs equa-
tion [66]

{(u _anZ 1} ©) (u, A) = 0 (4.138)
- , | .

{(u a2 +1}a (u, A) = 0 (4.139)
ou? 4P ) '

In this section we derive an explicit formula for computing the coefficients of all the
quantum Picard-Fuchs equations (constraining both periods ag‘)(u, A) and a™ (u, A)), e.g.:

2
{(u —A4)%+4 aa i}ag)(u,A)—O (4.140)
o2 vl gy 689
{(u —A4)%+6 A +325au+13_2+& a2 (u,A) =0, (4.141)
A4 32 A4 32

In the last equation, as in higher order equations, these coefficients show additional sin-
gularities which have been checked also numerically to be apparent ones (not of the so-
lution). Eventually, from the knowledge of the periods we can determine the partition
function by different means as explained in Section 4.3.

4.4.1. General derivation of quantum Picard-Fuchs

The action of the classical Picard-Fuchs operator on the n-th cycle can be expressed through
a commutator with the homogeneous operator as

Foa™ = (u? — A4)aa—;a( )+ lea = [fo,Zhn kU 8(9”;;] a® . (4.142)

Using the basic commutators
o 7 ] = ke I o S (4.143)
[ 288—;, uk%} = [—nQ —n(2k — 1)] u® aa:;:n — 2nuk+l% (4.144)

46



we obtain

n+l akJrn
Foa™ = ZCM (1, A) 5 ra® (4.145)
with
Chp(u, N) = hy [(—n2 —2nk + n)uk — Ak(k — l)uk_z} + P g1 [—2nuk —2A*(k — 1)uk_2} )
(4.146)
Differentiating the classical Picard-Fuchs (4.139) we get the formula
oN w N7t 1 1 oN2
= 40— _ _ 0 _ _ _ Z (0)
50 2(N 2)u2 i 51l (N —2)(N —3) + 1 g2t (4.147)

which if used repeatedly, allows to reduce the number of derivatives in expression (4.145)

to only two:
an—i—l

- o
Foal™ = xno(u, A)a—a ot X, ) 5y a® (4.148)

where x, 0 and x,; are rational expressions of « and A. If n > 2 we can write another
expression:

. ntl n+k
[.7:0 + (n? — n)] a™ = Z [Cre + (n° — n)uFhy, ] %a(o) , (4.149)
k=1

which similarly can be simplified with the aid of rational functions ¢, , and &, ;

n—+1

Yt G ) g (4.150)

[]}0 + (n* — n)] al™) = Eno(u, A)aa ~a

(4.148) and (4.150) constitute a system of equations for the n — 1-th and n-th derivative of
(), which we can solve as:

aun Xn,0£H,1 - Xn,lgn,o ou? 4 ’
(4.151)
ot 1 0? 1
0) — _ — A4 a™ + Zqm 2 _ (n)
a n n U + —-a 4+ (n ) Xn.oQ .
aun—i-l Xn,Ogn,l - Xn,lgn,o {(X o g ’0) |:( )a 4 :| ( )X o }
(4.152)

Now, differentiating the expression for the n-th derivative and subtracting to the expres-
sion for the n + 1-th we obtain a third order equation for only (™

3 _ / Ly, — & 2
0= (U _A4>aau3 (n) + {( A4) |:_ (Xn,Ogn,l Xn,lgn,O) + Xn,l gn,l Xn,0 g ,0:| +2U} 0 ( )

Xn,Ogn,l - Xn,lgn,() Xn,1 — gn,l 8U2
2 — n 1 0 1 n,06n,1 — Xn,1Sn ' ;’L B 7/7, + Xn,0 — &n
N {+(n 1) Xn,1 +—}—a(")+ {_ {_(X 061 = Xn1&n0) + Xng — &na T Xno — & ,o}
Xn,1 — gn,l au 4 Xn,Ofn,l - Xn,lgn,o Xn,1 — gn,l
,n2 - n n,06n,1 — Xn,1Sn !
+ {— 060t = X1 ) X1+ Xn1 + Xn,o] }a(”),
Xn,l - gn,l Xn,Ogn,l - Xn,l’fn,()

(4.153)
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where’ = 2. Since for each n there are only two quantum cycles, we expect the quantum
Picard-Fuchs equation to be of second order, hence we need to eliminate the third deriva-
tive. In order to do this, we do for the derivative Picard Fuchs equation the same passages
as before

0 [+ ok 02 10
- (n)) — 4 a™ a™ 4 Z =2 4 —
-~ (foa ) (w? = M) 5—a™ + 2uz—a™ + S =-a (4.154)
n+2
o ak—i—n
= Z{ -1 + cnk}a —a¥ (4.155)
1) anJrl
= Tn, 0<U A)a © + Tn, 1<U A)a »,H_la’(O) (4-156)
with rational functions v, o(u, A) and v, 1 (u, A). We obtain the expression
03 10 0? o ontt
(u® — A4)%a(n) = —Z%a(”) - QUwa(") + Yn,0(u) Bun © 4 'yn,l(u)Wa(O) : (4.157)

which inserted in (4.153) give the general second order Picard-Fuchs equation for the n-th
deformed cycle:

2
{(u _ Aﬂ% +an(u, A)% + Bu(u, A)} o =0, (4.158)
with coefficients
t, = %A 1 (4.159)
n,l
1 9 Xn,0Yn,1 — Xn,1Vn,0 — (Xn,()gn,l - Xn,l&n,(])lx ?12 1 X;L 1T Xn,o0 _1
n=—+(n"—n e —| A,

6 4 ( ) Xn,Oé'n,l - Xn,lgn,O Xn,1 — gn,l

(4.160)

where

A — (Xn,O - §n,0)7n,1 - (Xn,l - fn,l)%,o - (Xn,ofn,l - Xn,lé-n,o)/ n X;LJ - 5;1 + Xn,o0 — gn,O

Xn,Ofn,l - Xn,lfn,O Xn,l - gn,l
(4.161)

4.4.2. Examples

n =1 Forn = 1the passage (4.150) fails and the coefficients (4.159) and (4.160) are singu-
lar. However, the general procedure of section 4.4.1 can be slightly modified and we can
still obtain a quantum Picard-Fuchs equation.

The Picard Fuchs operator for the Seiberg-Witten order commuted with the first homo-
geneous operator gives

2 4 93 2
~ ~ —U —A (9 Uu a a(o)

12 Oud  80u? ’ (4.162)

48



which using (4.147) becomes

. 0 0?
]:oa(l) = Xl,o(u)a—ua(o) + X1,1(U)@a(0) ) (4.163)
with
_A4 — u2 u <7A4 + 'U,Q)
XNOZ U8z — AY) AT 24 (w2 — A (4.164)

Using now the homogeneous operator identities

o2

=~ ,0) _ 1) _ 9, 2 (0

8ua 48a 2u 8u2a (4.165)
0? 24 1 0

I (0) B O § B (V)|

8u2a ” a 5 8ua (4.166)

we can write two equations for the first quantum cycle oY, but still involving also a(%:

2 2 4 4 2
{(u2 B A4>288u2 _3u Z5A }a(l)(u) _ %%aw) () (4.167)
2 2 4 4

Such equations are the analogue of (4.151) and (4.152). In fact, multiplying on the left the
second equation by 2u-2 and adding it to the first we get a third order equation for only
the first quantum cycle:

o O (u? — AN (u? = AY) 0% w(3u?+29A1) 0 (AT + 3u?)

2 _ a4 _ O W SUT) ),y
{u(u A) ou? N 2 ou? 4 ou 8 @ (u) =0.
(4.169)

We need to eliminate the third derivative, because even a quantum Picard-Fuchs has only
two independent solutions: «() and a!)). Hence, expliticing o' and using (4.147) we obtain

ou

u(u2 - 4)2 83

9 417
1800 21002 8 ut M ow (4.170)

[ But +102uA + 21A8u 9w’ (5u® +27TAY) 0 N0
B 64(u? — A4) ou? 128 (u2 — A%) Ou '
(4.171)

1 0 u 82 :| (0) _ |:7U(U2 — A4)2 84 i 'LLZ(UQ — A4)2 85 :| a(o)

Using equations (4.168) and (4.167) we finally get the Picard-Fuchs equation for first quan-
tum Seiberg-Witten cycle

{(u2 — /\4)8—2 + I + §} aV(u,A) =0 (4.172)
ou? ou 4 T )
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n >2 Forn > 2 we can apply the general procedure of section 4.4.1.
We begin with n = 2. The commutator of the second homogeneous operator with the
classical Picard-Fuchs equation gives

Tu(A*+u?) 85 (3TA*+95u?) 9 1Tu & 5 O
2 ) _ _ _ _ 2 2 L ()
Foa { 1440 0w 2830  Out  3840u3 76802 )" (4.173)
and can be simplified to
o P o
Foa? = X2’08 3 a® + X21a 3 a® (4.174)

with
—17A8 — 47A*? 4+ ut
= (4.175)
20 480 (A — 2)?

u (—363A8 — 313A%2 + 4u?)

= 4.176
e 2880 (A1 — u2)? *176)

The other auxiliary functions in (4.150) and (4.156) are

— 8 __ 4,2 4
£ = 37A° — 135A%u —;—4u 4.177)
1280 (A% — u2)
—111A8 — 115A%? + 2u?
by = U SA% + 2uT) (4.178)
960 (A* — u?)

—T795A% — 553A%? + 4u*

-l u ) (4.179)

1280 (A* — u2)?
155A12 + 1220A%02 + 419A%* — 2ub
Y21 = — 3 (4180)
960 (A* — u2)

Putting these expressions in (4.159) and (4.160) we get the second quantum Picard-Fuchs

equation
2 W | 111 u? 689
{(u _ A4) 0 4 6u A + ] Q L 21 A4 + } (2)(u A) =0. (4181)

2 w? | 325 4 u® 325
Ou AT Ou a5

We now consider n» = 3. The auxiliary rational functions of (4.148), (4.150) and (4.156)
are

11469A12 + 72268 A%u? + 15367A*u* + 96u°

- (4.182)
X3,0 516096 (A4 — u2)?
_ u(70535A" + 148050A%u” 4 19399A u* + 96u°) (4.183)
X3.1 1290240 (u2 — A4)? '
by 0 (1851A'2 4 14360A8u2 + 3597 A*u* + 32uf) (4.184)
3,0 516096 (A* — u2)? .
2273A12 + 152734A8u2 + 22913A%u* + 160u’
gy, = L(02273A% + 159734A% + 22913A%u" + 160u°) (4.185)

1290240 (u? — A%)?
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5u (155875A12 + 288266A%u2 + 31923A%u* 4 96us)
1032192 (A4 — u2)*
39683A16 + 548813A 1212 + 514877Au? + 39315A%u° + 96u8

_ (4.187)
T3 516096 (A* — u2)"

Va0 = — (4.186)

and put in (4.159) and (4.160) produce the third quantum Picard-Fuchs equation

617u | 731043 ut | 251w | 675177
(u2 —A4) 0 4 8u A8 T GiaT T To0as 2 + 4_5F + Jsat T Tom a(3)(u A) =0 (4.188)
8u2 u‘; 4 L7u? | 242433 5y 4 u_‘; 4 Li7u? | 242433 YT :
A A

16A4 1024 16A4 + 021 1024

We report also the quantum Picard-Fuchs equation for n = 4

2 40960 "1 7291392 61637640“ 721916729
(O AT Wi s A® AT 0 (4.189)
o 65536 {5+ OGSO — TIRLIBE + TOI0GS145 ou
776553645 + 13694976 192704448“ + 2338851605
el 4 A 40— (4.190)
4 655361 1 0680088YL _ 73211328% + 731068145

and write the coefficients of the quantum Picard-Fuchs equation for n =5

62914560 /&6 + 35696148480A12 + 2044215361536 — 20435136246144“ + 93217274165643

af = 2
° 20971520;‘56 + 10186915840A12 + 507233746944 “4 — 4653859998464 17 + 19108840832975
(4.191)
117 (20971520 Xw + 13311672320A12 + 912813637632 12830541348608“ + 66392092574911)
Ps = 4 (20971520 X‘i + 10186915840+ A12 -+ 507233746944 — 4653859998464 13 o 19108840832975)
(4.192)
We expect, in general perturbation theory
2 7}*1 (n) u 25 n—1 _(n) u 2l
2 s ol Ge) 0, Zion” () a™ (u, A) =0 (4.193)
ou? n—1 (n) (1)% Ou oL ) (i)
k=0 4k~ \ Az m=0Sm" (32

where p("), q,i"), " ) and 5! are rational numbers.

4.4.3. Alternative derivation

The Picard-Fuchs may be found also from the series which are resummation of the LIMs,
as explained below in section 4.7.3. We report here the first two of such series:

DA G+ D]y
orial (u, A) = —A~! [ FNCE ](F) (4.194)
3 +3)(Tn+ P)L2G + D] u e
2mial? (u, A) = +A Z[ oo }(p) . (4.195)
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These formula are valid for |u| < A%
From (4.193), we get the following ansatz for the first quantum Picard-Fuchs equation
0? 0

(u® = A 55 + fouz -+ go a(u)=0. (4.196)

Applying this ansatz to the series (4.194) we get the following relation for n € N

go + fon —4n — Z =0, 4.197)

which is solved immediately as

5
fo=4 Jo=7- (4.198)

Again from the general form (4.193), we get the following ansatz for the second quantum
Picard-Fuchs equation

0? f[A +u? D G At +u? (2)
Zopg s —0
ou? tfo faA* + w2 o goggA4 | P ()

(u? — AY) (4.199)

Applying this ansatz to the series (4.195) we get the following relations, for the first powers
(u/A2)"

gogr 1113
=0 — = 4.2
n=0 5 100 (4.200)
fofi 2664
=1: — = oo 4.201
! fa 325 ( )
nego. (ol 1) 4704 (4.202)
g2 91 92 8125
fofil1l 1] 22848
= 7| =- 4.203
ne=s fa Lfi  fol ~ 105625 (4.203)
h—d oo [1 1 <_l) _ 150528 (4.204)
g2 |91 g2 g2 2640625
fofi[l 1] 1 731136
= —— |l =555 4.2
neo fa Ui fol fo 34328125 (4.205)

These equations can be solved without any algebraic problem to give the already known
coefficients

111 325
fo=6 fl—? f2—3—2 (4.206)
21 689 325
go = T g1 = ED) go = vl (4.207)
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4.5. Quantum Picard-Fuchs in the cut-off scale
4.5.1. SW order

Set v = A%, By combining the already known Picard-Fuchs equation [66] [19]

[(UQ_ )82 N 1] ) _ 0 (4.208)
Y a 2 ap” = :
0> 0 1 o _

Vo Mg | o =0 (4209

and the relation (which we have derived from the formula below (4.282))

0 o_1 o 719 o
— 4.210
ou' T o0 T u@va ( )

We find another Picard-Fuchs equation

1o 1] o p0,0_ (4.211)
02 40y 4u2—~2)] P A D :
4.5.2. Quantum orders
We find as differential operator in v = A? which gives the first cycle
2 2
_gw.0_ |29 7 9] © 4.212
Ty a [24u 0?2 + 48u Oy ¢ (4.212)
For the second
vt ot o3 1142 92 v o0
(2) — — | a 4.213
5760u2 04 + 144u? 03 + 1536u? 0v? + 1536u? 0y ¢ ( )

(and of course the same operators for the dual cycles). We have derived these expression
by setting an ansatz for the differential operator in v and finding its coefficients by com-
parison with the higher cycles calculated through differential operators in u, simplified to
the elliptic integrals of the first and second kind.

We find a Picard-Fuchs equation in A for the first quantum cycle (and dual cycle):

0 By +u) 0 3 1) _
ot oy T im0 7Y (4.214)

The details of the derivation are as follows. We calculate the commutating of the operator

7" (4.212) with the operator P\” associated to equation (4.211) and simplify the result by
using equation (4.211)

4 2,,2 4 4 2,,2 4 2
»(0) A(l)]a(O): (37 + 577u _u)ga(0)+(12’7 — 11v*u +7U) 0 4

Y o (0)
+ —— 4.215
2Uyu (u? —42)* O 2Uu (u2 — 42> 02 6u o3 ( )
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Then by using the expression for (! we write this result in two ways in a mixed form with
(0)
a

2 3 2 22 4 2,2 4
PO FW0 = 1B w) 0 g A=) O gy (22 =9 30 ) (4 996)

! 16(y* —yu2)’ 07 (= ut)” 9 (7% = yu2)”
PO AV — 7u (u® — 3+%) a0’ (y) & it )’ o S 2= =9t 43t
8(vP —yu2)® O (P —qu?)® Oy (7% = yu?)?
(4.217)
Exploiting the fact that
2
PO, A DV]® = pORD0 = | 10 ! aV (4.218)

T )

and differentiating on of the two mixed equations (4.216) (4.217), we arrive at a third order
equation in only oV

03 ) (37t + 16~%u? — 3u*) 02 o (1175 — 65v%u* + 67*u® + 6u’) O )
—aQa a —-—Qa
GaE 27 (374 — 47202 + u) 02 A2 (02 — 42) (3% — 4722 + ud) Oy

4 2.2 | .4
3 (279* — 207 u® 4 u*) 4D — 0 (4.220)
87 (u? —7?) (3v* — dy?u? + u?)

(4.219)

We can simplify the third derivative of ") by writing the derivatives of «(" in terms of
derivatives of «(”) through (4.212) and simplifying higher order derivatives using the dif-
ferentiation of (4.211). We end up with the second order equation (4.214).

4.6. Baxter’s 7 function at self-dual point as Seiberg-Witten period

This section is devoted to the b = 1 case, where we first analyse an important connexion
between thr unique Baxter’s 7 function 7'(d) = 7'(9) and the Floquet exponent, as proven
numerically by [49]. Then, we give both 7" and @) two peculiar SW theory interpretations.
As anticipated, in the self-dual GME (4.77), we shall rotate the real into the imaginary axis,

z = —iy — 7, and obtain the Mathieu equation
d2
e (2,0) + [2620 COS 2 — P2]¢(z, 0)=0. (4.221)

According to Floquet theorem, there exist two linearly independent (quasi-periodic) solu-
tions of the Mathieu equation (4.221) of the form ¢, (2) = €”*p(z) and ¥_(z) = e “*p(—=z),
with periodic p(z) = p(z + 27) and monodromy exponent v = v(f, P), the Floquet index. As
anticipated, already [49] conjectures this identification

T(0,P*) = 2cosh{2771/(9, PQ)} ) 4.222)

We will prove this formula in the next subsection. This identity has a very relevant inter-
pretation in gauge theory once we add the other important ingredient, namely the coinci-
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dence of the quantum SW period (4.105) a/# = —iv with the Floquet exponent’. More pre-
cisely, the Mathieu ODE/IM equation (4.221) coincides with the Seiberg-Witten one (2.34),
provided we set the change of variables

J P?
_:6_6, u:_

5= 5 (4.223)

Thus, the above (4.222) can be interpreted as a direct connexion between the Baxter’s T
function and the quantum SW period (4.105):

T(h,u,\) =T(, P*) = 2cos {%a(ﬁ, u, A)} : (4.224)

4.6.1. Exact analytic proof

Define the periodicity operator
Mip(y) = ¢(y + 2mi) (4.225)

We can express it in terms of the A, 2; symmetry operators

M= AQ7 (4.226)
Then we write
_ 2m) =
Yy a(y+ 7”) Y0 (4.227)
Vyoly +2mi) =1 =~y 1 +T(0) 0
Or in matrix form, defining ¢ = (¢, 1,1, )"
My =T 9, (4.228)
with
r,=(% 1 (4.229)
T\ T(0) ‘

Now we can say that v is a characteristic exponent of the Doubly confluent Heun equa-
tion (4.77) if and only if e*?™" are eigenvalues of T . It then follows that v is determined
from

2cos2my =tr Y, (4.230)

or more explicitly
2cos2mv =T(0) (4.231)

"We have carried preliminary successful comparisons with the few instanton Nekrasov partition function
in terms of Young diagrams upon using Matone’s relation, as in [43].
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4.6.2. Numerical exact proof

In order to compute numerically 7'(¢, P?), we use the T'Q relation (4.27)

QO +im/2, P*) | QO —ir/2,P?)
Q(O, P2) Q(O, P2)

The analytic continuation of the TBA (4.70) gives (6 +in /2, P?) = —2In Q(0 + 7 /2, P?) with
the real part given by the contribution of (half) the residue at ¢ = 6 +ix/2 of the integrand

T(0,P*) = (4.232)

Re (0 + i /2, P?) = —In[1 + Q*(0, P?)] (4.233)

and the imaginary part [49]

Se(0+im/2, P7) = coe”+8P arctan|e ]+cosh9 sinh(6 — 6")
(4.234)

Considering that for real ¥ and P> we have Q(6+ir/2, P?) = Q(0—in /2, P?)* the TQ simplifies

as
15(222](392’)]32) cos {lgg(e + ¢W/2,P2)} , (4.235)

2y _
T, P?) =2 5
Asymptotically for § — —oo, we find easily

T(0, P) ~ 2cos2mP 0 — —o0, (4.236)

which is consistent with 7'(0, P) ~ 2cosh 27v(0, P) since v ~ iP. At finite # we must com-
pute v through the Hill determinant (see below and for instance [67]) and find confirmed
Zamolodchikov’s conjecture [49]:

T(0, P) = 2cosh2mv(0, P). (4.237)

Another check of this relation was given by H. Poghosyan in [68].

Hill determinant Here we give the details of the computation of the Hill determinant.
Let us consider the modified Mathieu ODE (4.77) written as:

2
—j—yﬂ)(y) + [e¥e? + e + P?ip(y) = 0, (4.238)

Noticing that the potential is periodic under y — y + 2mi, the Floquet index is defined
through

Uily) = e By),  Uely+2mi) = P (y), (4.239)
where p(y) is a 27i periodic function, which expanded in Fourier modes gives

Yi(y)=e™ Y bue™. (4.240)

n=—oo
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0 T(0, P) TBA | 2cosh2nrvy,, Mathematica | 2 cosh 27y Hill
—10. 0.617594 0.618034 0.618034
—8. 0.61583 0.618034 0.618034
—6. 0.598208 0.618034 0.618034
—4. 0.479008 0.618026 0.618026
—2. —0.176943 0.594172 0.594172

0 —50.9945 —47.0357 —47.0357

1 —16061.2 —18715.7 —18715.7

2. 1.4194 - 101 1.46531 - 10! 1.46531 - 10!

3. 3.19213 - 10%° 3.67017 - 10%° 3.65387 - 10%

4 —4.23969 - 10%° N.R. —4.2823 - 10%°

D 5.14167 - 10%18 N.C. 5.13 - 10%8

Table 4.1: Here we make a table, with P = 0.2 and several ¢ in the lines, of three quan-
tities: 7'(0, P) from the TBA, 2 cosh 27v);, were v, is Mathematica’s Floquet and
2 cosh 2y were vy, is Hill’s Floquet. N.C. stays for not computable, N.R. for not

reliable (because a little beyond it becomes uncomputable).
Substituting this expression in the Modified Mathieu ODE, we obtain

Z {—(n B Z-V)an + [62%”71 + ezean + Pan}} (e(n—iu)y) -0

n=—oo

(4.241)

In order to have a nontrivial solution, we need to impose the following condition on the

Fourier modes b,,:

_ _s)\2 PQ
bn1+[ (n—iv) + 1bn+bn+1:0
e
or
629
nbn_ by, nbnt1 =0 with &, =
g 1+ +§ +1 5 PQ_(n_Z-V)Q

In the matrix form, we have

gn 1 gn O e bn—l

0 fn+1 1 §n+1 e bn

0 0 &2 1 - bny1 | =0.

0 0 0 £n+3 T bn+2

Let the determinant of the matrix at the left hand side be A(v), we thus have

A(v) = 0.
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We also introduce a (2n + 1) x (2n + 1) matrix

1 . 0 0
1 o n41 0
§_n42 1 §-nt2

0 En—1 1 En—1
1

0 0 &n
(4.246)
Let A(v) = 0, we find by the ordinary Floquet theory
2 cosh 2mv = 2 [1 — 2A(0) sin® 7 P] (4.247)
where
A(0) = lim det.A,(0) (4.248)
In this way, we can check (4.237) for all §, as Zamolodchikov did [49].
4.6.3. Identification with instanton period
The gauge a period is defined through the relation
A afinst A4
_ 2 _ 0YSNs 2, Ho 8
2u=a 1 on, + 2 — 77) + O(Ay) (4.249)
where the instanton prepotential F is given by
vt =Y ATV (4.250)
n=0
with 5
(1) _
Frs = 42 — B2
@ _ 20a? 4 Th?
NS = T i — ) (da® — )P (4.251)
@ _ A(l4da’ 4 232a°R7 + 20R")
NS 3(4a2 — h2)5(4a* — 13a2h2 + 9h4)
In table 4.2 we check the equality to this order of approximation
% — (4.252)
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Ao | u a v Ao | u a v

5 | £10.6321918255 | 0.6321918255 - | £10.8164231121 | 0.8164231121
L 1110.6281906897 | 0.6281906283 L 1210.8153248650 | 0.8153248652
% % 0.6096988347 | 0.6096495640 1% % 0.8106453170 | 0.8106454455
2 | £]0.5463504374 | 0.5303270313 2 | £10.7986254589 | 0.7986371992

Table 4.2: Comparison of « for Ny = 0 as computed by instanton series and the built-in
Mathematica Floquet exponent v (with # = 1).

4.7. Baxter’s Q function at self-dual point as Seiberg-Witten dual
period

Now we find an analogous link for the Q-function, Q(¢, P?), upon writing (4.77) in the
gauge variables (4.223)

(y) + [A*coshy + uly(y) =0, (4.253)
which is the same as equation (2.34) upon substitution ¢ (y) = ¥(z) with y = iz + iw. Equa-
tion (4.253) gives rise for P(y) = —i% In(y) to the Riccati equation

202

dP(y,h,u)  2u

Py, h,u) — i i = _(ﬁ + oy cosh y), (4.254)
while P(z) = —i-L Iny(z) (so that P(y)dy = P(z)dz) verifies
dP(z,h,u)  2u  2A?
7)2(2, ﬁ, U) — ZT = ? — F COS 2. (4.255)

4.7.1. Seiberg-Witten order proof

Let us consider the integral for In ) at the leading # (Seiberg-Witten) order. For the modi-
fied Mathieu equation (4.253), ¢ = —2A% coshy — 2u (cf. (B.43)). Then, the leading order of
the quantum momentum is

u

P = —iA\/Q coshy’ + 2A2 .

(4.256)

Since, in the limits y — 400, we have P_; = —i2e*¥/? + O(e7¥/?), it follows that the Seiberg-
Witten regularized momentum is

/

Preg—1(y) = P_1(y) + 2iA cosh% = —iA [\/2 coshy’ + 2% -2 cosh% : (4.257)
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Figure 4.1: A region of the y complex plane, where in yellow we show the contour of in-
tegration of SW differential for the SU(2) N; = 0 theory we use for the proof

equality of the dual SW period ag) and the leading 7 — 0 order of the logarithm
of the Baxter’s  function In Q. In red are shown the branch cuts of the SW
differential.

From (4.94) and (4.92), the leading order of In Q is

an(O) (U, A) = / ipreg,—l(iy) dy - A/

—0o0 —00

o [e.e]

[\/2 coshy + 2% — 2 cosh %] dy . (4.258)
We assume u < A?. Let us consider the integral of iP,., _1(y) on the (oriented) closed curve
which runs along the real axis, slightly below the cut and closes laterally. Mathematically,
itis y = 71 U ar,r Uy2 Uy3 UyaUvys Uiar 1, With 1 = (=00, +00), 72 = (00 +im —i0, 0" +im —1i0)
, v3 = (07 +dm —40,0" + im — darccos(u/A?), 74 = (07 + im — iarccos(u/A?),0” + im — i0),
v = (07 4 im — 10, —oo + im — i0), and . Y,z are the lateral contours which close the
curve (see figure 4.1).

We expect the integral of P,.,_:(y) on v to be zero, since the branch cuts are avoided
and no singularities are inside the curve. By expanding the square root for Ry — +oo,
|Sy| < m, we get the asymptotic behaviour:

h U
N Prga ) = (o

A

h . U

szreg,fl(y) = _(P
from which, we deduce that the integrals on the lateral contours v, 1,z are exponentially
suppressed. For ~, and ~;, we consider P,., (¢t + iw — i0) for ¢ € R:

+ 1)e %2 4+ o(e7¥/?) Ry — +oo (4.259)

+ 1)e¥% 4 o(e¥/?) Ry — —o0, (4.260)

h . . . u 7
K@Preg,_l(t +im —i0) = \/—2 cosht + 2P — 2isinh 7" (4.261)
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Since for ¢ = 0 it is necessary to cross a cut, we find the oddness property P_; (¢t + im —i0) =
—P_1(—t + im — i0). Besides also the regularizing part is odd and therefore, for ¢t € R we
have

Prog—1(t + i1 —i0) = —Preg_1(—t + im — i0) (4.262)
As a consequence, the integrals on +, and +; cancel each other. The integrals on v; and 4,
around the cut, can be better taken into account in the variable z = —iy — 7. There is no

contribution from the regularizing part, which has no cut. Instead P_,, which is

P_1(z —i0) = A\/—Z cos (z —10) + 2% : (4.263)
has the oddness property
P_l(—Z + ZO) = —P_1<Z — ZO) zeR (4264)
It follows that the integrals on 73 and ~, add to each other
0 — arccos(u/A?) +arccos(u/A2)—i0
— arccos(u/A?) 0 — arccos(u/A?)—i0
In conclusion, we find a relation between the integrals on 7; and on 3 and ~,:
+o0 +arccos(u/A2)—i0
/ iPreg—1(y) dy = / iP_1(z)dz, (4.266)
—00 — arccos(u/A2)—i0
which in terms of physical quantities is
In Q) (u, A) = 2mia'y (u, A). (4.267)

4.7.2. Higher orders asymptotic proof

We now give an asymptotic proof for also all higher orders in the 2 — 0 expansion of Q:

mQ=> r""'hQ"™  h-0. (4.268)

n=0

The small #» asymptotic expansion of (4.92) is analogous but different from the large 6
expansion (4.93), since for the former « is finite while for the latter P is finite. If we expand
the Gelfand-Dikii polynomials in the basis (2u + 2A? cosh y)™, we obtain the same Gelfand-
Dikii coefficients a,,,, of (4.115) and basic integrals Z,, given by

Ly = / [2A% coshy + 2u] /2 dy , (4.269)

(e 9]

(regular for m > 1). Then In Q™ is given by

QM = - 4y Z,. (4.270)
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We compute the basic integral as follows

A / [2A2 coshy + 2u] —mt1/2 dy 4.271)
00 _ 2\ —m+1/2
— 2(24) "2+ / (cosh2 g - #) dy (4.272)
0
00 _ 2\ —m+1/2
= 2(2A)72m / (t — %) (t—1)" V22 qt (4.273)
1
1 _ 2 —m+1/2
= 2(2A)_2m+1/ <1 — %s) (1—s)"12sm=3/2 s (4.274)
0
[(m— )7 1 1 1 —u/A?
_ o—2m+2 A —2m+1 2 e S m—om.
=2 A T0m) o Fi(m 5 M= 5 M, 5 ). (4.275)

Comparing with formula (4.126) for the deformed dual cycles, we get Z,, = iB,, and there-
fore

In Q™ (u, A) = 2mwial? (u, ) . (4.276)
The full asymptotic expansion of In () reads:
I Q(h,u, A) =Y " '2mial) (u, A)  h—0, (4.277)
n=0

by which we prove asymptotically the equality

InQ(h,u, A) = 2—22@(@ w,A) 0. (4.278)

4.7.3. Resummed formula for the cycles

In consideration of the one to one relation between 6 and # (4.223) we can use the first in
place of the latter. Thus, these two asymptotic expansions hold in the strip (30| < 7 + ¢,
e > 0 for RO — +o0o (small )

T,P*)=T(0,u) =2 cos{27r Z U2 \2n=14(0) (4 A)} (4.279)
n=0

Q0,P?) =Q0,u) = exp{2m' Z 69(1_2”)/\2"_1@%)(% A)} : (4.280)
n=0

We now find a new way to compute the NS-deformed Seiberg Witten periods modes,
which will also reveal itself to be an asymptotic check of the identification (4.280). Con-
sidering the large energy asymptotic expansion (4.96) of @ in terms of the LIM, we ob-
serve that, since in Seiberg-Witten theory v is finite as 6 — +oo, it is necessary that also
P2(0) = 2%&9 — +o00. In this double limit, an infinite number of LIMs I, (b = 1) are
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re-summed into an NS-deformed dual period mode (a sort of charge in its turn). Then the
n-th mode of the @ function in the small # expansion (4.280) is a series which gives the
n-th dual period

k
oria'™ (u, A) = —A'~ 2n22k’ n+an+m(Auz) . (4.281)
k=0

From here, closed formulae can be obtained through the previous powerful method for
determining the LIM through the one-step Gelfand-Dikii recursion explained in [1]; they
are very simple series (cf. (4.129)) convergent in the circle |u| < A%

w205 = 3) |
27rzaD u, A) —AZ{ 4\/_n' (F> (4.282)
1 - n n )FQ( 4) u\"
omial) (u, A) = A~ Z{ 2 48 N (F) (4.283)
n=0
- )+ PTE+ D] (v
2 (2) A —A~ 3 n2n 2 2 2 4 . 4.284
miap (u, ;{ 5760+/7n! ](AQ) (4.284)
0 5 2 2 (n 5
. nnn+§)(124n + 7400 +1107) T2 (5 4+ §) 7 u \n
2miald) (u, A) = A~ ; 2 1935360 /= (+3) (4.285)
o . +7) [0 (5080 + 64060 + 27021) + 7] T2 (5 4 7) / w\»
2miap (v, A) Z 154828800+ /77! (A?)
(4.286)

We obtained (4.282)-(4.284) directly from the resummation of the LIMs, as in [1]. For
higher orders, however, we found easier to use homogeneous operators. In general if

27rmD Z P ™ 27rza( )( ) (4.287)
then
o = | < k+n)! e w o\
2miay) (u) = > {Z Ry (<k m))|} (—1)k+nok+ne (P) (4.288)
k=0 \m=0 ’
and thus .
B ek n!
Toni = (—=1)"2 Zoh,mm (4.289)
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The first leading terms are, for the natural number n

(=)™ 1 14n — 3 1
Yon=(—1)" Ton-1= — = Tono=(—1)" —1 - =
(4.290)
. 124n? —4n + 3 1
Typns=(—1) 133840 (n—2)(n—1)n(n — 5) (4.291)
. 1016n> + 620n? 4 314n — 55 1
Tpna=(—1) = 414400 (n—3)(n—2)(n—1)n(n — 5) (4.292)
,40880n" + 7113613 + 71656n> + 18648n — 7965 1
Toics = (1) e (n = 4)(n = 3)(n = 2)(n — Dl — )
(4.293)

We have found explicit formulese until T, , o and all has been tested with the already
known charges I; — I7.

From the alternative derivation of the quantum Picard-Fuchs presented in section 4.4.3
we learn how to interpret in integrability such equations. Since the analytic series (4.281)
are essentially the P? coefficients of the LIMs, we can interpret in integrability the quan-
tum Picard-Fuchs as fixing the LIMs for b = 1. Therefore, thanks to the quantum Picard-
Fuchs equations (4.139-4.141), we can express explicitly the LIM themselves at all orders.

Conversely, we can invert (4.281) and expresses the LIMs in terms of the the deformed
periods.

(=12t 1 "y
Tk = =B 200, n) dw? O @299

We emphasize that formulee similar to (4.281) hold also for the (™ cycles, by taking
linear combinations as follows trivially from the formula (4.311) below.

4.7.4. Exact analytic proof

We can also imagine here an #-exact analytic proof of the relation between the Baxter’s Q
function and ap period.

0(60. P) = exp 2 aD(:, u, Ao)
following on the lines of the 7 — 0 (classical SW) proof, by using Cauchy theorem to relate
the exact integral for the Baxter’s @) function and ap period. Since In @) is i times the integral
over (—oo, +00) of the regularised NS momentum (as b = 1) (as in (5.49), but see also [1])

(4.295)

Preg(y) = P(y) + 2ie? cosh% - itanhy , (4.296)

let us consider the integral of iP,.,(y) on the (oriented) closed curve with the actual nu-
merically computed poles in figure 4.7.4. We can define the exact dual periods as the
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Figure 4.2: Poles for the quantum SW differental P(%, u, Ao) for the SU(2) N; = 0 theory.
The set of poles in the periodicity strip |Sy| < = we denote by B.

exact integrals of P(y) = —z’d% In¢(y) written as sum over residues at the poles which as
h — 0 reduce to the classical cycles (branch cuts), as shown in figure 4.7.4.

%aD(ﬁ, u, Ag) = f (4.297)

Py, h,u, No) dy = 2mi Z ResP(y)
B n

B
Yn

One may argue that the choice of poles for the two cycles is not well defined. However,
on one hand we numerically find that the period « is given precisely as the integral from
—i7 to im as required by the equality « = v. On the other hand the choice of poles for the
period ap is unambiguous because it includes all of them. Along this lines we should be
able to prove analytically precisely (4.295). However, another exact, precise and unam-
biguous proof, though perhaps less illuminating since numerical, will be given in the next
subsection.

4.7.5. Gauge TBA

Aswe have a gauge interpretation (4.224) and (4.295) of the self-dual Liouville integrability
Baxter’s T and @ functions, respectively, we can search for a gauge interpretation of the
integrability functional relations (the Q@ system, the 7'Q) relation, the periodicity relation,
cf. Section 4.1 with b = 1). First, we write the QQ relation (4.25) at b = 1, and then the same
in the gauge variables (4.223)

14+Q%(0, P?) = Q(0—im/2, P*)Q(0+im /2, P?), 14+Q%*(0,u) = Q0 —in/2, —u)Q(0+im/2, —u),

(4.298)
where we have considered that § — 6 F in/2 means v — —u (as P? is fixed). The latter
equation, the gauge Q@ system, has been verified by using the expansion (4.280) in several
complex regions of u, in particular in the circle |u| < A% In the present case it is a ’square
root’ of the Y system and then gives us the gauge TBA equations. In fact, we can take
the logarithm of both members and invert to obtain an explicit expression for In Q(6, u).
As usual, this inversion possesses zero-modes and so does not fix completely the forcing
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term. For it we need to consider the asymptotic expansion (4.280) as 6 — +o0, In Q (6, u) ~
27m'a(D0) (u, A)e?/A. In this way we find a TBA integral equation for the deformed dual period
—2InQ(0,u) = ¢(8,u) = —4miap(h(f), ) and then we close the system by writing the same
for modulus v — —u

e(@,u,\) = —47Tiag)(u, A)

e’ B 2/00 In[1+ exp{—e(@,—u,A\)}| d¢'
A _ cosh (60 — 6") 27

0 00 ! /
_ 0, e In[1+4 exp{—c(&,u,\)}] db
e(0, —u, \) = —4miay’ ( u,A)A 2/_ cosh (0 —0) o

oo

(4.299)

[e.9]

In contrast with Liouville TBA (where was no P), the forcing terms have non-trivial -
dependences, the SW periods indeed, which can be interpreted (as in [50]) as the mass of
a BPS state of a monopole and dyon (via Bilal-Ferrari [69] formulee, i.e. (4.310) for n = 0),
respectively. Actually, the quantum period

(4.300)

0 0 : / /
, B e O e’ In [1 + exp {4miap(A(0'),u,A)}] db’
2miap(h(0), —u, A) = 2miap’ ( u,A)A —i—/_oo cosh (0 — 0) 5
can take the place of the first period a(#,«) (linked to 7' in any case) as the latter can be
expressed in terms of the former two via (4.308). From the large # asymptotic expansion
of the integral part, we find all the quantum dual periods modes (m > 1), as well

- @

2mi agn)(u, A) = —Al_Qm(—l)m/ e m=11p [1 + exp{—¢(¢', —u, A))}] (4.301)

—00

By solving with numerical iterations the two coupled equations of gauge TBA (4.299), we
tested these expressions with the analytic WKB recursive periods (4.129,4.132) for a re-
gion of the complex plane slightly larger than |u| < A?( see for example table 4.3). The
u = 0 unique equation from (4.299) was conjectured numerically in [70]. In order to get
more precise result, it is convenient to add the boundary condition and subtract it within
the convolution, as done in [71]:

2 2
e(0,u) ~ —2In (——9) ~ —2In [1 + ZIn(1 + e 6 — —oc0 (4.302)
™ ™
However, even if the procedure is the same that leads to the integrability TBA (4.70), it
differs by it because in that case the boundary condition is strictly necessary to solve the
TBA (not just to improve the precision), because only in the boundary condition is present
the parameter P (while in the gauge TBA is is present also in the leading order).

When « is complex, an alternative way to write the TBA can be given. Adding to the real
6 the phase

o(u) = — arg{—ial) (u)} (4.303)
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o e R a7 g g

WKB | —0.04455231 | 4+0.01416471 | —0.0272573¢ | +0.1326564¢ | —1.23083: | +18.6813:
TBA | —0.04455351 | +0.01416491 | —0.0272576i | +0.132657: | —1.230847 | +18.6814:

Table 4.3: A table of comparison between the WKB (4.129) and TBA (4.301) results for the
higher cycle modes. Here v = 1/40, A = 1/4. They match rather well, at around
1 part in 10° for higher cycles beyond the first, slightly less precise at 1 part in
10° for the first higher cycle. Here we use about 2000 iterations of the succes-
sive approximations method for solving the TBA (in details, within the interval
6 € (—200,200) divided in 2'? discrete parts). Of course, for other values of the
parameters, similar matches hold.

we get the TBA

0+ ()10 = o o 2 [~ L el S,
* In[1 + exp {—e(¢,u)}] do’

0
£(0+ip(—u), —u) = dn| = mg)(_u”X a 2/ cosh(f + ip(—u) - 0) 2r

(4.304)

or (defining A¢(u) = ¢(u) — ¢(—u))

. B 0 6_9 B co—ig(=u) | 1+ exp{—e(@ +ip(—u), —u)}| d_@’
(0 +ip(u),u) = 4r| —iap’ (u)| A Z/Oom(u) cosh(0 + iAg(u) — 0) 5y

S O 6_9 B oo=ip(u) 1p 1+ exp{—c(@ + iod(u),u)}] d_@’
e(0 +ip(—u), —u) = 4n| —iap’ (—u)| K 2/_00_i¢(u) cosh(0 - iAo(—0) —0)  om
(4.305)

Applying Cauchy theorem, we can relate the integral on the shifted real axis to the integral
on the real axis. If A¢(u) < 7/2, we have no poles inside the contour and find that the two
integrals are equal. Therefore, the analytic continuation in 6 of the TBA is:

0 % 151 (¢ v o do'
e(0 +ig(u), u) = 4r| — ia(DO)(u)\% — 2/_ n| +C€(’j;i({9 j(z'A:;(Zi(— 1;2)7 u)}] ”

of S exp{—e(0 +id(u),u '
e(0 +ip(—u), —u) = 4m| - ia%”(—wx —2 /_ 1 [1co+sh(ep i Z-Z(<f<—+u>¢5 g;) . % '

(4.306)

The range A¢(u) < 7/2 corresponds to the strong coupling region of Seiberg-Witten spec-
trum. The formulation (4.306) can be useful as a starting point for the extension of the TBA
to the weak coupling region. Since different particles are present in the two regions?, we
do expect some fundamental change in our relations to take place. Also, the @, Y function
in integrability are defined to be entire in 6, while the gauge periods not.

8The particles at strong coupling being only the magnetic monopole associated to ap(u) and the dyon as-
sociated to ap(—u) [69, 1]. At weak coupling there are infinite dyonic BPS particles differing by units of
electric charge, associated to a [69, 71].
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Figure 4.3: Comparison of gauge (blue) ¢(6,u) (4.299) and integrability (light orange)
(6, P?) (4.70) pseudoenergies for v = 1/40, A = 1/4 and P = +/2ue® /A, with
0y = 0. At § = 6, they match very well, up to 1 part in 105, with about 2000 itera-
tions of the successive approximations method for solving the TBA (in details,
within the interval 6 € (—200, 200) divided in 2'? discrete parts). The horizontal
lines (dark orange visible, superimposed to an another green not visible) cor-
responds to the values of (6, u) = 2.30509 and (6, P?) = 2.30508. Of course,
for other values of the parameters, similar matches hold.

We compared numerically the solution (6, u) of the gauge TBA (4.299) and that (0, P?)
of the integrability TBA (4.70) and we found that

e(0,u) = £(6, P?) when P? = 2ue? /A? (4.307)
that is, we verified numerically the relation (4.295) between the Baxter function and the
dual cycle. See for example the plots in figure 4.7.5.

4.7.6. Functional relations and Z, symmetry

Consider now the 7'Q relation (4.27) at b = 1, which we also write in the gauge variables
(4.223)

Q0 — im/2, P?) + Q(0 + ir /2, P?)
Q(0, P?) ’

QO —im/2,—u) + Q0 +im/2, —u)
Q(0,u)

T(97 P2) = T(97u) =

(4.308)
For the asymptotic # — 0 analysis of the latter relation, we keep only the dominant expo-
nents (fixed by SW order (4.282))

exp{— sgn (Su)2mi Z f=2n) g () (—{—u)} = exp{—27r Z =2 [sgn (%u)(—l)"ag)(—u)jtiag) (u)] }
n=0

n=0
(4.309)
Thus, the T'Q relation entails

o (—u) = i(—1)" [— sgn (Su) a (u) + a™ (u)] . (4.310)
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These relations are, in fact, the extension of the Z, symmetry relation in SW (n = 0) [69]
to the NS-deformed theory [72]. In a nutshell, the 7Q relation encodes these Z, relations
among the asymptotic modes as a unique exact equation. Besides, relation (4.310) — as
well as the TQ relation — allows one to express the NS-periods completely in terms of the
NS-dual periods in the form:

a™ (u) = sgn (Su) ag)(u) — i(—l)”ag)(—u) : (4.311)

into which we can use the new formulas (4.281) (4.301) for ag‘) (u).
We finally consider the (integrability)7 periodicity relation at b =1 (4.28):

TO,P) =T —ir/2,P*)  T(0,u)=T(0—ir/2, —u) (4.312)
To interpret this relation through the asymptotic identification (4.279). Thus, the (4.312)
relation truncates to

exp{ — sgn (Su)2mi Z f=2n) g () (u)} = exp{+27r Z f0=2n) (_1)ngm) (—u)} (4.313)
n=0 n=0

from which, we deduce the Z, symmetry relation for the other period [69] extended to the
NS-deformed theory [72]

a™(—u) = —i(=1)"sgn (Su) a™ (u). (4.314)

We conclude that, thanks to the identifications (4.224) (4.295) between the integrability
and gauge quantities, we can interpret the Baxter’s 7@ relation (4.308) and 7" periodicity
relation (4.312) as non-perturbative 7Z, symmetry relations.

4.7.7. Relation with other gauge period

It was found in [71] a relation between the @ function and the gauge periods Ap,a (in our

conventions)
_sinh %AD (h,a, Ao)

Q(h,a,No) =1 (4.315)

sinh %a
Actually, we could easily check numerically this relation by computing the Lh.s. by the
Liouville TBA (4.87) for b = 1 and the r.h.s. relies on the expansion of the prepotential 7
in Ay (number of instantons) [73, 74]: the period « is related to the moduli parameter u
(or P) through the Matone’s relation [62, 63] and the dual one is given by Ap = 0F/0a. In
this respect we noticed that only the first instanton contributions are easily accessible and
summing them up (naively) is accurate as long as |Aq|/h < 1. The gauge period is defined
as’
' [(1+2
@:4—a1nﬂ+ln (1+%) 1 Sa

+ —
R R Ay T(1—2) " fi(4a? — R2)?

AL+ 0(AY) (4.316)

9Beware that for the N; = 0 theory with respect to the N; = 1,2 theories we rescale /i — #i/+/2. This explains
the differences with the formulas in subsection 5.3.2.
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{Ao,]% h} —2€(6,p) | Inisinh Ap/ sinh(27ia/h)
(= v 2,—i} | 9.27325 9.273204
{16% 3,—i} | 18.7522 18.752173
{e—lfG(ﬂ, 2,—i} | 17.2829 17.282910
{er b f,z —i} | 1.04849 1.04235

Table 4.4: Numerical check of formula (4.315). We used only two instanton contribution
and so to have a good match we have to restrict to small A,.

Ao OF Al
2u = a2 — IO(‘?_AO = a2 + 2(4&2—0—152) -+ O(Ag) (4317)

The instanton prepotential is given by

Fig = Z A F (4.318)
n=0
with ,

1) _
Fns = 4 — B2

@ _ 20a” + Th?
Fs = 4(a2 — 12)(4a? — K2)3 (4.319)
6 _ 4(144a* + 232a*h* + 29h*)

NS

3(4a? — h?)5(4a* — 13a?h? + 9h*)
Ap(h,u) is very different from our dual cycle ap (5, w): it is not a cycle integral at all and is

defined as the derivative of the prepotential (logarithm of the partition function) coming

from instanton counting:
0FnNs

da

Thus, thanks to (4.295), relation (4.315) of Grassi, Gu and Marino becomes a relation be-
tween the two definition of dual cycles

(4.320)

AD(h,, U) =

b iAp(h o o) - 2miap(fu) (4.321)

sinh =& 27” h

This relation means that the two cycles ap and Ap differ by non-perturbative terms in
h. From the gauge theory point of view, they are precisely respectively the dyon and
monopole period in the strong coupling region [71].

4.8. D3 brane’s quasinormal modes
The D3 brane is described by the line element

ds? = H(r) 2 (—dt? + dx?) + H(r)2 (dr® + r2dQ2) , (4.322)
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where x are the longitudinal coordinates, H(r) = 1+ L*/r*and d)2 denotes the metric of the
transverse round S°-sphere [7]. The ODE which describes the scalar field perturbation of
the D3 brane is [7, 75]

ZQTZSJF w2<1+ﬁ>—W]¢:0. (4.323)
Upon the change of variables
r=_Le? wL=-2i P= %(l +2), (4.324)
the equation reduces to the generalized Mathieu equation
—j—;@/} + [629(6y +e )+ PQ] Y =0. (4.325)
Crucially, the QNMs condition (3.25) translates into

Q) =0, (4.326)

namely the zeros of the Baxter’s @ function which are the Bethe roots [76].

We prove now that the Bethe roots condition (4.326) recovers the QNMs characterisation
of [6], namely as quantization condition on the gauge period ap. Indeed, it was found
in [71] relation (4.315) between the @ function, as obtained from TBA (4.87), and the gauge
periods ap, a.

Now, (4.326) is the same as the quantization of the Ap period, as originally stated in [6]

1

[
Nevertheless, we found it very difficult to reach, by summing instantons, the QNMs values
|Aon|/h > 1.

On the contrary we found very easy using Thermodynamic Bethe Ansatz (TBA) integral
equation for the pseudoenergy ¢(¢) = —InY(6). Eventually, the Q@ system (4.78) charac-
terizes the QNMs as Y (6,, — in/2) = —1, i.e. the TBA quantization condition

g0, —im/2) = —in(2n' + 1), n ez (4.328)

Ap(a, Aoy, h) =imn, nez. (4.327)

which can be easily implemented by using the TBA (4.87) as table 4.5 shows. These values
match very well with those of obtained by the standard method of continued fractions by
Leaver [31, 7] and is consistent with the (I — oo) WKB approximation (geodetic method).

We note that the physical condition Sw < 0 becomes by (4.324) —7/2 + 27mn < S0 <
/2 4+ 2mn, for n € Z. However, the TBA (4.87) is valid only for the fundamental strip
|S6| < /2. Infact, in thisregion we find directly the QNMs for overtone numbern = 0 = n/.
We expect that analytically continuing the TBA by using the Y-system (4.86) in the other
strips |3(6 — 2min)| < 7/2, we would obtain the other overtone numbers. We leave more
details on this for future work.

Within our set-up of functional and integral equations for entire functions in ¢ (integra-
bility), we can find other quantization conditions on the roots 4,, (QNMs). For instance, the
TQ relation [1]

TO)QO) = QO —im/2) + QO + ir/2). (4.329)
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n|l TBA Leaver WKB

00| 1.36912 — 0.504048: | 1.36972 — 0.5043117 | 1.41421 — 0.5¢
0] 1] 209118 —0.501788% | 2.09176 — 0.501811% | 2.12132 — 0.5¢
0|2 2.8057 —0.501009¢ | 2.80629 — 0.5010007 | 2.82843 — 0.5i
0|3 |3.51723 — 0.5006497 | 3.51783 — 0.5006347 | 3.53553 — 0.5¢
0|4 |4.22728 — 0.5004537 | 4.22790 — 0.5004387 | 4.24264 — 0.51

Table 4.5: Comparison of QNMs of the D3 brane from TBA (4.87) (through (4.328) with
n’ = 0), Leaver (continued fractions) method and WKB (geodetic) approxima-
tion (L = 1).

means Q(0,, —in/2) + Q(0, + iw/2) = 0. This and the Q@ relation (4.78) actually fixes Q(0,, +
ir/2)Q(0, —ir/2) = 1 and then
Q(0, +im/2) = +i (4.330)

are fixed, too. Again (4.78) around 6,, forces Q(0 +in/2) =i+ Q(A) + ... and Q(A — in/2) =
—i£Q(0) + ... up to smaller corrections (dots). Therefore, (4.329) imposes
T(6,) ==+2. (4.331)

Now, in [1] we have identified the 7 function through the a period (or Floquet index v) as

T(0) = 2cos (2%@) : (4.332)
In conclusion, condition (4.326) means that also the period « is quantized
1 n

This is exactly the condition used by [7]. Yet, here we have fixed the general limits of its va-
lidity as relying on specific forms of the 7Q and QQ systems (4.329) and (4.78) respectively:
it does not work in general, but we will see in the next section the specific conditions for
its validity.

4.9. On D3 brane’s greybody factor

Eventually, we note that much of the BH theory seems to go in parallel to the ODE/IM cor-
respondence construction and its 2D statistical field theory interpretation, beyond the de-
termination of QNMs: as an example, the absorption coefficient or greybody factor seems
a ration of @s. We aim to give more details about this statement in the future.

4.10. General conclusions

We have shown how quantum integrability, in the approach of the ODE/IM correspon-
dence, can be applied to the SU(2) N; = 0 NS-deformed SW theory, as well as to the D3

72



brane gravitational perturbation theory, to obtain both new mathematical physics results
and improve the general understanding of such theories and their interrelation.

In the next section, we will show a direct albeit technical complex generalization of the
same triple correspondence to the SU(2) Ny =1 and Ny = 2 = (1, 1) theories. In the subse-
quent sections, we will begin showing something similar for also the Ny = 2 = (0,2) and
N; = 3, though in a much less complete way. In the final section, we will continue doing
so for the N; = 4 theory and its simplified version (a certain class S gauge theory) and
further extend our triple correspondence to a 4-fold correspondence, thanks to AdS/CFT.
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5. SU(2) Ny = 1,2 gauge theory, Hairpin model, extremal
black holes

5.1. ODE/IM correspondence for gauge theory
5.1.1. Gauge/Integrability dictionary

The quantum Seiberg-Witten curves for SU(2) Ny = 1,2 N = 2 gauge theory, deformed in
the Nekrasov Shatashvili limit e, — 0, ¢ = # # 0 can be derived from the classical one as
explained in section 2.5 and they are the following ODESs. For N; = 1

2 A2
—ﬁQj—yQ (y) + {Zl(e% +e )+ Ayme? + u} Y(y) =0, (5.1)
for Ny = 2 (with the first realization N, = 1, see section 2.5):
, d° A3 1 NE U )
—h a7 (y) + gcosh(Qy) + §A2m16 + 5 Aamae +u|Y(y) =0, (5.2)

where « is the moduli parameter, A;, A, are the instanton coupling parameters, m, mq, ms
are masses of the flavour hypermultiplets [20]. We notice that both equations are of the
Doubly Confluent Heun equations [77], with two irregular singularities at y — oo, as
shown in appendix D.

The first physical observation we can make is that they can be mapped into the ODEs
for the Integrable Perturbed Hairpin model IPHM) in the ODE/IM correspondence ap-
proach [78] and its generalization:

2
_c;d_yﬁw(w +[*(e® + e7V) + 2¢°qe? + Pl (y) = 0, (5.3)

d2

dy?

where ¢ is the TBA rapidity, p, ¢ parametrizes the Fock vacuum of the IPHM and ¢, ¢» their

generalization. For ¢ = 0, equation (5.3) can be related to the ODE (Generalized Mathieu

equation) associated to the Integrable Liouville model with Liouville coupling b = v/2 [79,
, 49]. In particular, the gauge/integrability parameter dictionary is the following

() + [2€* cosh(2y) + 2e%qre¥ + 2e%que™ + p?|Y(y) =0, (5.4)

[ (N P! m 1
A 2° A2l e A 2% (5:5)
h 1 0 u 1 2 _99 mio 1 _p
Lz _ b 5.6
A, 4° A2 160 € A, af2e (5.6)
or also " m
i P’ = (5.7)
u 2 ma Mo

In [78], P and ¢ were considered fixed, on the other hand, in the gauge theory, it is nat-
ural to keep A, v and m fixed. The mixed dependence on ¢ gives then a nontrivial map,
producing for instance different integrable structures in different parameters.
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5.1.2. Integrability functional relations

The integrability equations are invariant under the following discrete symmetries. For

Ny =1
Qpry—y+2m/3  0=0+in/3  q——q, (5.9)
Q. y—y—2mi/3 0 — 0+ 2mi/3 94,
for Ny =2
Qr:y—y+in/2, 0 =0+in/2, ¢t = —q1, G2 — +¢2, (5.10)

Q:ry—-y—in/2, 0 -0+in/2, ¢t > q1, G2 — —qa2.

This symmetry is spontaneously broken by the regular solutions for ®y — +oo, defined by
the asymptotics, for Ny = 1:

Ui oly) > 9-3-4p~ (300 (5+a)y—e"* Yy — +o0,
w ( ~ _1 _l@+ly_269—y/2 _ (5.11)
—,oy)_22€2 1 Y — —00
and for N; = 2:
Yoly) = 272 mem Grmi=Grraue=e™ s oo (5.12)
32— (510)0+(5+a2)y ,—e Y Ry — —00. :

V_o(y) =27
The solutions (v, o, 19— o) of course form a basis. However, we can generate other indepen-
dent solutions by using the symmetries as

brp =N, =0 kel (5.13)

For k # 0 such solutions are in general diverging for y — +oco. A basis of solutinos is then
given also, for instance, by (¢, o, ¢, 1). Importantly, the solutions ¢, are invariant under
the symmetry Q- respectively:

Qi =v- QY =04k (5.14)

The normalization so that we have the following wronskians for next neighbour k- + 1
solutions. For Ny =1

Wty g1, yp] = 1€V Wy ] = —i (5.15)

for Ny =2
W[¢+,k+1, ¢+,k] = i@(_l)kimh W[@/)—,kﬂ,lb—,k] = —ie(_l)km@ (5-16)

As is usual in ODE/IM correspondence, we can define the integrability Baxter’s Q func-
tion as the wronskian of the regular solutions at different singular points y — +oco

Q =Wy, ] (5.17)

Mathematically this quantity is called also the central connection coefficient, since it ap-
pears in the connection relations for solutions at different singular points y — +oco. To
write such relations it is convenient to introduce the notation, for N, = 1:

Q+(0) = Wby 0,9_0](0,p, £q) (5.18)
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and for N, = 2:

Qi,i(e) == W[’l/}+,07 w*,O] (97 D, :l:qh ng) Qi $( ) [’l/}+ 05 w ](97 D, :l:qh :FCI2) (5-19)

We have to expand the solutions (¢_,v_ 1) in terms of (¢, o, 1) with coefficients ob-
tained very simply by taking the wronskians of both sides of the relations and using the
symmetries €2, to change the parameters of (). Thus we obtain, for N; =1

e = Q- (0+@ Y10 — Q1 (04 (5.20)
™ = Q_(0+im)hy o — Q4 (0 + i2§)¢+,1 (5.21)
and for N; =2
€™M = Q- (0 + i )m — Q++(0)h4
€™My = Q- (0 + i) — Qs (0 + i )m 1

By taking the wronskian of the first line with the second line (and also shifting 6 and flip-
ping the sign of ¢), we obtain the first integrability structure, that is the Q@ system. For
Ny=1

(5.22)

Q.0+ ig)Q,(e - ig) — e QL (0 - i%)@,(e + i%) . (5.23)
and for Ny =2
Q-0+ %T)Q,AH - %T) — e im0 L O (0)Q, 4 (0). (5.24)

For this particular ODEs with two irregular singularities it is possible to define also an in-
tegrability Y function and obtain a Y system relation starting directly from the @ function
and QQ system relation, rather than from the 7" functions and 7" system. So we define a
function as, for Ny =1

Yi(0) = e mQL (0 — Z%)Qqc(e n %) : (5.25)
and for N; =2
Yii(0) =™ mTHQ, L (0)Q () Y. .(0) = TTNTRIQ_ L (0)Qy £(0). (5.26)

We notice that for N; = 1 in the Y function the @ functions appear with different ¢ argu-
ments and this will lead to several technical complications for this case, albeit correspond-
ing to one hypermultiplet less. Equivalent definitions are obtained by the Q@ systems as,
for Ny = 1:

QL (0 + is )Qﬂ 7;) =1+Y.(0) (5.27)
and for Ny = 2:
im(q1—q2) im in _
e Q- (0 + E)Q—,Jr(e - 3) =14+Y,.(6). (5.28)
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The Y systems can be now obtained by taking a product of the Q@ system with itself with
suitable parameters so to obtain a close relation in terms of Y functions. For Ny = 1

Ya(6 + @g)y;(e - ig) - [1 FYL(0+ %)} {1 FYL(0— z%)] (5.29)
and for Ny =2 . .
Vi (04 SV (6= ) = L+ Ve (O))[1+ Y- (9)]. (5.30)

Now, the presence of the irregular singularities of ODEs (5.3)-(5.4) at y — +oo (Stokes
phenomenon) plays a role for defining the 7" functions, for Ny = 1

Ty (0) = —iW Y- 1,0 ], T+(9) = Wi 1,¢41]. (5.31)
and for N; =2
Ty (0) = =W - 1,9 4], T+,+(9) = Wy 1, ¢41]. (5.32)

(with of course 7_ 7=, defined with the flipped masses as in (5.18) (5.19).) By expanding
1 in terms of ¢y o, ¢4y, fOor Ny =1

Yy = —€2mq¢+,—1 + equJr,Jr(@)l/hr,o Yo1=—Y_ 1+ T4 +(0)Y_p (5.33)

or for Ny =2
Yy = —T M, 4 eTNTL L (0)y 0 Yog ==Y+ Ty (0)e™2y_ (5.34)

we obtain the 7'Q) relations, for N; =1

T (0)Q4(0) = Qu(0 — i) + Q=0+ i)
~ 4 T - T (5.35)
Te0)Q(0) = 0G0~ T) 4 Qo0+ )
or for Ny =2 . .
Ti 1 (0)Q4.+(0) = €™Q4 (6 — %) +eTRQ, (0 + %)
~ - T - T (5.36)
Ty (0)Q44(0) = ™ Q1 (0 — 5) +e Q- (0 + ?) :

By applying the Q, and Q_ symmetries to the 7" and 7 functions it is immediate to obtain
also the periodicity relations, for N; = 1

- 2 N
Ty (0 + i%) =To(0)  Tu(0+ i%) — T..(6) (5.37)

and for Ny =2
T .0+ ig) =T, .(0) Te_(0+ zg) =T, .(0). (5.38)
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5.1.3. @ function’s exact expressions and asymptotic expansion

From the ODE/IM analysis, cf. equations (5.20)-(5.22), we find a limit formula Baxter’s @
function as, for Ny =1
- g . 7?7 0(y7 9)
0) = —ie™ lim ——"—-% (5.39)
Q+(8) y=+oo Py 1(y, 0)
or for Ny =2
. 4 . 77Z)— 0(y7 0)
0) = —ie™ lim ——=——=. (5.40)
Qr(0) y=+oo ¥y 1(y, 0)
From this formula we can obtain another which concretely allows to compute @ as an
integral. However, to do that, it is convenient first to transform the second order linear
ODEs (5.3)-(5.4) for v into their equivalent first order nonlinear Riccati equations for the
logarithmic derivative of ¢). Besides, since we will need later to asymptotically expand
the solution for y — +o0o and § — oo, it is convenient to change variable so to single out
the leading order behaviour in y, § and simplify higher orders calculations. So we change
variable as

—e? —e7Y Ny =1
dw = d = . 5.41
w=ody ¢ {—2 cosh(2y) Ny=2 ( )

To keep the ODE in normal form we have to let v — /¢1. Then we take the logarithmic
derivative of ¢ in the new variable w

d
M= i In(/o0) (5.42)
w
and we get for it the Riccati equation
1 d
I(y)* —i—=—1l(y) = ¥ = 'V(y) = Uly), (5.43)
(v) iy (y) (y) = Uly)
with
— 2 Ny =1
e Y+4esY f
Viy) = { q1e?"tqz2ef_y Ny=2
~ cosh(2y) =4
(5.44)
_ p? + e¥—40e*V 447V N, =1
Uly) = {_6_1y+62y 16(e3v+1)° 2 !
2 cosh(2y) [_p2 — 1+ %tanh (2y)} Nf = 2.

The first asymptotic expansion we make is the one for y — +oo, in the formal parameter
et¥. The Riccati equation gets approximated, at the leading and subleading order as

1 d 20 4 2e95., ge™Y Ny=1
M(y)? — iy ~ 4 ¢ 0¥ f Y — 400 (5.45)
Vo dy e? + 2e%qy 56TV Ny =2

where for Ny =10, = 1fory — 400, 04 = 0 for y — —oo. Then the solution is asymptotic
to

R Ny=1
(y) ~ 69 T Orge / y — oo (5.46)
e’ + qme” Nf =2
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This leading expansion for y — +oo allows us to fix the regularization in the integrals
formulas we now write for the (logarithm) of ¢/_ o, for Ny =1

27%67%0 0
_ = = " expd—e?(2e7V/2 — e¥) £ 2¢In(1 + ¥/} x
teolt) = gy 0 { ' ) +20n(1 4 7)) 5
y 1 )
/ 2y’ — / _ 0 Y —y’/z —_ ) —
eXp{/_oody { e +eVIl(y,0,p,q) — e (6 +e ) q1+€y//2”
and for N; =2

2*%*qze*(%+lh)9

_ 0.y Ly y/2y _ —y/2
v_o(y) = T exp {—€’(e e’) + 2¢1 In(1 + €*?) — 2go In(1 + 7 ¥/?)]} x
Y / / 1 1
/ e 0 -
exp{/oody/ |: e +e QyH(y,707p7q1aq2)_e (ey +e y)_q11+€y//2_q21+6y//2:|} :
(5.48)
Then from the limit formula for @ we get also an integral expression for it, for Ny =1
InQ(0) = / dy {V e + e vIl(y,0,q,p) — e’e? — eV — QW] —(0+In2)q.
o e
(5.49)
and for N, =2
Q4 0) = [ dy| VIO 0. 01,02.0) ~ 2 coshy — (125 + 175 ) | - 04 mD a1+ )

(5.50)

To get the vacuum eigenvalues of the local integrals of motion (LIMs) we make instead the
0 — +oo asymptotic expansion, at all orders

(y,0) = e’ + ) M(y)e™ 60— to0. (5.51)
n=0

Its coefficients II, satisfy the recursion relation

1( i d -
= | =211, — > :
Moy = ( S W;Hmnn_m) n>1 (5.52)
with initial conditions .
HO = —§V
17 i d ) (5.53)
-3 (G )
The expansion of In @) in terms of the LIMs is, for Ny =1
4+/373 1 -
InQ.,(0) = —%ee —(0+-In2)q — Z e 0L, 0 — +oo (5.54)
INCANE) 3 =t
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and for N, =2

4/ 1 S
InQ4+(0) = —T\/fr_)zee — (6 + 5 In2)(q1 + q2) — Z e 0L, 0 — +oo, (5.55)
1 n=1

with the local integrals of motion I, times some normalization constants C,, given by the
integrals

Colln(p, q) = —i/ dy /o) (y,p,q) n>1. (5.56)

L.(p,q) are in geneal polynomials in p, ¢, where ¢ of course here stands for either ¢ for
Ny =1o0r (q,q) for Ny = 2. We have checked the first ones for N; = 1 to match with those
of IPHM given in [78].

1
L(p,a) = 35 (49> — 12p* — 1)

1 20 (5.57)
L(p, q) = 673" (qu —12p* — 3>

For N; = 2 they were never given in the literature to our knowledge and they have the
peculiar feature that the mixed ¢y, ¢» terms have trascendental coefficients (Gamma func-
tions). We notice also that the one step recursion very effective method of computation of
LIMs explained in [1] does not directly generalize to this case where all e~/ are present in
the asymptotic expansion. Further investigations on such LIMs issues could be pursued.

5.1.4. Integrability TBA

Define as usual the pseudoenergy () = —InY(f) and L = In[1 + exp(—¢)] (with suitable
subscripts omitted of course). Using the analytic properties of pseudoenergy ¢, we can
transform the Y system (5.29) into the following ’integrability TBAS’. For N; = 1 [78]

12v/ 73

4
E.,.(Q) = I (l) T (l) 69 o §i7rq o (SO-H- * L+)(9) o (90-&-— * L—)(e)
6 3
12V, 4 ©:38)
e-(0) = WB + 3t (P4 L)(0) — (01— x Ly )(0),
6 3
and for Ny =2
8 3
e(0) = - (f) ¢ —im(q —q2) — ¢ (Ly— +L_y)
1
3
€4, (0) = FS\/f_zee —im(¢1+ ) —p* (Lap + L)
1 (5.59)

3 ‘
- ®) =7 ¢’ +im(q + @) — g (L + Lyy)

4

3 ‘
e (0) = ——=¢’ +in(a1 — @) = (Ly + Ly).
(1)
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The leading (driving) term follows directly from the expansions (5.54)-(5.55) under the
definitions for Y = exp —¢ (5.25)-(5.26). The symbol x stands for the (—oo, +00) convolution,
which for general functions f, g

> d o
e = [ 5 16-09) (5.60)
The kernel for N; = 2 is the simple usual hyperbolic secant [80]
1
o) = coshd’ (5.61)

while the one for N, = 1 is slightly more involved because of the shifts in ¢ also on the
RHS of the Y system (5.29) but can be obtained by taking Fourier transform as explained

in [81]
V3
- 2coshf+1°
We notice that ¢, ¢1, ¢» enter the integrability TBAs as chemical potentials [82]. In these
TBAs the parameter p does not appear, but it enters in the boundary condition for the
solution ¢ at § — —oo, for Ny =1

p+=(0) (5.62)

e+(0,p) ~ 6ph Firqg + 2C(p,q) 0 — —o0, (5.63)
and for N; =2
e+ +(0,p) ~4pf —im(q1 — q2) + 2C(p, q1, q2) 0 — —oc0 (5.64)
with
In 2—1’11(2p)F(1+21p) :| Nf =1
C(p) _ \/ﬂ\/r(§+P+Q)F(§+p—Q) (565)
2172;7 1‘\(2 )2
In E E Nf =2.
\/F(P+%—Q1)F(p+%+q1)1“(17+%—q2)F(P+%—q2)

This asymptotic behaviour follows of course from the § — —oc perturbative expansion
of the ODE (shifting y by +6 in the ODE so to eliminate the leading terms at y — Foo
and get the solution as confluent hypergeometric function, expanding it in ¢’ and taking
the wronskian, see also [78] for Ny = 1). We can solve therefore this TBA by adding
and subtracting outside and inside the convolutions the boundary condition for § — —oo
which depends on p. For example, for N; = 1 the numerically solvable integrability TBA
reads

e(0) = %69 - gmq — fo(0) = f1(0) = (44 * (L — Lo — L1))(0) — (04— * (L — Lo — L1))(0)
12V, 4
e_(0) = me +gimg - fo(0) = f1(0) = (piq % (Lo — Lo — L1))(0) — (p4— * (Lt — Lo — L1))(0),

(5.66)
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where the explicit terms can be derived in analogue way to [49] as

Lo(6) =3pln [1+¢7*]

Li(0) = C(p)(1 — tanh 9)

fo(0) =% Lo =3p{In[1+ 67(9””/6)} +1In[1+4 67(97“’/6)} | (5.67)
(6) =

1 0 T 1 0 T
f1(0) = o * Ly = C(p) [1—§tanh(§+ﬁ)—§tanh(§—ﬁ)] '

We notice that the constant term i7q in (5.63) is automatically produced by the contri-
bution of the the complex convolution. We notice also that boundary condition (5.63)
requires strictly p > 0, which in gauge theory will correspond to /A7, > 0 by (5.5). How-
ever, we shall see that we can solve the TBA in gauge variables for u/A7, € C (small),
thus providing an analytic continuation of the integrability TBA. For N; = 2 instead the
corresponding auxiliary functions are

Lo(0) =2pIn [1 + 6_29] ,

L1(6) = C(p)(1 — tanh 0)

fol0) = ¢ * Lo =4pln [1+ 7] (5.68)
(0) =

)= 51t [1 - (2)].

We notice that (5.59) generalizes the TBA found in [78] for the Perturbed Hairpin IM and
therefore we call the IM involved (with no much creativity admittedly) Generalized Per-
turbed Hairpin IM.

Now from the TBA solution we can obtain also @ as follows. Writing from the Q@ system
for Ny =1(5.27)

[Q1(0 +im/2)Q_(0 + im/2)][Q4(0 — im/2)Q_(0 — im/2)] = [L+ Yy (0)][1 + Y_(0)]

{Q+(9 + m/Q)] {Q+(‘9 - i”/Q)] - _ —omig L T Y4 (0) (5.69)
O_(0+in/2)| |Q_(0—ix/2)] —° 1+Y.(9)
we easily deduce the following integral expression for @ for Ny = 1
InQ+(0) = T ?ﬁ )ee T (0 + ; In2)q
6 3
1 [~ do (In[l+exp{—c (0} +exp{—c_(0)}] = " 1+ exp{—e.(0")}
+§/OO§{ cosh(f — ¢) $Zcosh(&—@’) i l1+exp{—5_(9’)}}} '

(5.70)
Similarly for N, = 2 it follows

4w,

)
49 (Infl+ expf—cp N +epl—c @))] _ . 0 [1+ep{-cp.(8))
/ or { cosh(6 — 6) + Zcos.h((9 —0) n {1 - exp{é?,((599i’)] } '

InQi+(0) = ¢’ F(0+ 5 111 2)(q1 — ¢)

2/
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5.2. Integrability Y function and dual gauge period
5.2.1. Gauge TBA

To establish a connection between integrability and gauge theory, we need first of all to
express all integrability definitions and relations in gauge variables through the param-
eter dictionaries (5.5)-(5.6). Thus for N; = 1 we can introduce 6 gauge @ and Y functions
defined, for £ = 0,1, 2, as

Qi,k(e) = Q(ea —Ug, :l:mka Al) ) Yi,k(e) = Y(ea U, Zi:ka, Al) . (5-72)
where for simplicity we denote

— e27rzk/3u

Upe my = e 2" 3, k=0,1,2 (5.73)

The explicit relation between @ and Y is for example, for £ = 0 (from (5.25) and (5.5))
Yio(0) = Y(0,u, £im, A) = e8¢ Quo(0 — i /6)Qur (6 + i /6) . (5.74)
For N; = 2 instead we have 8 @ and Y functions
Yi(0) =Y (0,u,+my, +ma, Ay) Yii(0) =Y (0, —u, Fimy, imy, Ay) (5.75)
It is convenient to write the gauge Y system (5.29) explicitly as, for N; =1

Yio(0+im/2)Yeo(0 —im/2) = 1+ Yy 1(0 +im/6)] [1 + Vi 2(0 — im/6)]
Yi1(0+im/2)Ye (0 —im/2) = [1+ Yio(0 +im/6)] [1 + Yio(0 —im/6)] (5.76)
Yio(0+im/2)Yaeo(0 —im/2) = [1 + Yio(0 +im/6)] [1 + Yi1(0 —im/6)]

and for N; =2
Via(0+in/2)Yeo(0 —in/2) =1+ {&,i(e)][l + }_&7;(6)] 5.77)
Via(0+im/2)Ye (0 —im/2) = [1 4+ Vi +(0)][1 + Yz (0)] '

Notice that with respect to what happens in the integrability variables, in the gauge vari-
ables the number of ), Y functions increases (triples for N; = 1, doubles for N; = 2), as it
happens for the SU(2) N; = 0 theory (where it doubles) [1]. Besides the @ and Y systems
in gauge variables simplify their dependence on the flipped masses.
Again, as explained in [81], it straightforward to invert the Y-systems into the following
’gauge TBAS’. For N; = 1:
ex0(6) = efhe’ = (P4 % L) (6) = (p- * L) (0)
ean(0) = ee’ — (04 % Lis) (8) — (9 * Lig) () (5.78)
exa(8) = Phe” — (o4 ¥ Li) (6) = (9o L) (9),

and for N; =2

(5.79)
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The new kernels for N; =1 ¢, are defined as

1

px(0) = cosh(0 £+ im/6) (5.80)

The leading order coeffient for N, = 1, for example for k£ = 0 writes explicitly as

Smk

3" Ay
(5.81)

g(iO)k — —wr/6 an ( 27rz/3u j:e%’/?’mk A ) 6z'7r/6 In Q(O)( 27rz/3u :|:€ 27rz/3mk7A1)

where In Q (u, m, A;) is given by the integral

o 4m 4u m 1
(0) _ 2 _ -y/2 _
In Q"™ (u,m, Ay) _/ [\/ey—f—e v+ A1€ +A1 eV — eV 2A11—|—6_y/2 dy. (5.82)

—00

For Ny =2 also

471
€(O)i =—In Q(O)(U’v my, ma, Az) —In Q(O)(% —my, —My, Az) + A—(ml mz)
2 A (5.83)
= —1In Q(O)(—u, —iml, img, Ag) —In Q(O)(—U, z'ml, —img, Ag) + A—(m1 -+ m2)
2
and
ln Q(O) (u7 my,ma, A2> (5.84)
* 8my 8Mma 16w 4my 1 4ms 1
= 2 cosh(2 Y -y — 2coshy — — dy .
/OO[\/ cosh(2y) + A2€+A26 +A§ coshy A, 1+euo Ay 1+ e Y

(5.85)

We can simply compute concretely In Q©) by expanding the square root integrand in mul-
tiple binomial series for small parameters and then getting simple Beta function integrals.
In particular, for Ny = 1 we get

=53 () (e () ()
I Q© (u, m, Ay) = 0(n e (3) (5 (5.86)

n=0 |=
with

(1 (20 + 4n — 1), (2l—|—n—1)) (n,1) # (1,0)
26 "3 (5.87)

By(1,0) =

and for N; = 2 we obtain

° 1 1_ _] _ 1 n m l
In Q) (u, mi,ma, Ag) = Y (?> (2m l) ( l ;”JF Q)BZ(l’m’n) (%> (1/?_;> (%>
= 2 2 2

(5.88)
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with
I(3(314+2m+n—1))T (314 2m+3n—1))

BQ(Z7 m, n) =

1 1
By(1,0,0) = S(In2 — 1) By(0,0,1) = ; In2.

Of course, when u, m,A; (u,mi,ms, Ay) are such that the leading order (5.81) computed
through (5.82) has a negative real part, the TBA (5.78) no longer converges. In general, we
find the convergence region to correspond to u, m (u, my, ms) finite but small with respect
to A, (Ay). Forinstance in the Ny = 1 massless case, this region corresponds on the real axis
of u precisely to the strong coupling region —3A2%/2%3 < u < 3A%/2%3. For N; = 2 instead it
corresponds to the region —3A2/8 < u < 3A3/8 [83].

Following [49, 71], it is easy to find the boundary condition at § —+ —oc for the gauge TBA

e h(6) ~ —21n <—%9> ~ F(0), 60— —oo, (5.90)

e o) =—m(1+ (1t e F)) —m (14 1+ ). (5.91)
m 7r

Numerically, this condition is imposed by modified the TBA equations to be

e i(0) = ehe’ + £(0) - <90+ # (Lt (k41) mods + L)> (0) — (90— # (Lt b2y mods + L)) (0),
(5.92)
where Lisfixed by f = (o, +¢_)*L. Under this boundary condition (5.90), the dilogarithm
trick leads to the “effective central charge” associated with the TBA equations (5.78)

2
6
Cesr = / 103 0 Lo (0) =3, (5.93)
7=0

which coincides the numeric test and thus tests the validity of our boundary condition.
We notice that even if we had not added the boundary condition at § — —oo, the solution
of the gauge TBA (5.78) would have been fixed anyway, just giving a less precise numerical
solution. We remark that the same thing would have not been true for the integrability
TBA (5.58), since the boundary condition is strictly necessary to fix p, which does not enter
the forcing term [49].

Similarly for N; = 2 the effective central charge of N; = 2 case is found to be

Ceff = —5 /d@ee Z 6 Li +(0) + é(i()’)iii,i(@)) =4, (5.94)

and we find the consistent boundary condition at § — —oo:

€1 +(0) ~—21In ( 2:) ~ —2In [1 + %ln(l + 6_9):| 0 — —oc0 (5.95)
and so 5
f0) = =2l (1+ Zln (14+¢7)). (5.96)
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5.2.2. Seiberg-Witten gauge/integrability identification

We can now begin to find, first at the leading 7 — 0 (¢ — +o0) order, a relation between
the integrability quantity £(® and the gauge periods. It is just a more complex version of
the proof reported in section 4.7.1 for the simpler SU(2) N; = 0 gauge theory. We do now
the proof for Ny = 1. In (5.81) for £ = 0 we have the following integral contributions

e~ /6 1n Q(O)(_e—zm'/:au’ €2m/3m> _ (5.97)
co—2mi/3 dm A . .
= 2y T 4 Yy sy —e: om L
/—oo—2m/3 {\/ “ Ay e A% e e e Z2A1 1+ ey/2m‘/3} dy (5.98)
and
/6 1n Q(O)(_e27ri/3u’ 6—27ri/3m) _ (5.99)
co+2mi/3 Am 1 . .
= — _p2y o+ R N T _y/2 om L
/oo+2m’/3 |: \/ e A1 e A% eV te Le + Z2A1 14+ 6—y/2+7ri/3:| dy . (5100)

We notice that the integrands in (5.97) and (5.99) are equal except for the mass regularizing
term, which gives an integral difference!?

1 + ev/2+mi/3 1+ ¢—y/2-7i/3 — - (5.101)

im [T/ 1 1 2 4mm
YTA 3

A1 —oo+27i/3

We can then consider only the integrand of In Q) (—e=27/3y, ¢2™/3m). We observe that such
integrand is nothing but the Seiberg-Witten differential ), up to a total derivative

e*iﬂ'/6 In Q(O)(_6727ri/3u7€27ri/3m> (5.102)
+oo—2mi/3 e 4 eV 4 dmey — d 4 4
= dy MM e ey 2l S0 reg. (5.103)
, _ 4 4 d A A2
—oco—2m1/3 \/629 +e Y4 ey — 4 Yy 1 1
As A2
+o00—2mi/3 Se v plmey  u NG +o0—2mi/3
= 4z‘/ dy i 2 M reg.| = — Vo / My, —u,m, Ay) dy
—co0—2mi/3 \/6211 +e Y+ ‘j&_mey — Ay —c0—2mi/3
1 A3
(5.104)
where the SW differential )\ [84] is defined as usual in the variable » = —Aée—y as
3 . 30—y 1m y _ u
1 —u— g Am iy s¢ 7T oA T a2
Az, —u)dr = 2 8 « dr = — 2 —— dy = Ay, —u) dy
2mV/2 \/xg fug? 4 MmN 2my/2 \/e2y +ev o+ ey — 4

(5.105)
Now we consider for —i\(y) the countour of integration as in figure 5.2.2. We have hori-
zontal branch cuts for Sy = 7, Ry < Ry, and other two curved branch cuts b, from the

10We notice that the integrand of (5.101) has poles only at y = +4i/3 with periodicity of 4ri.
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Figure 5.1: A strip of the y complex plane, where in yellow we show the contour of in-
tegration of SW differential for the SU(2) N; = 1 theory we use for the proof

equality of the (alternative) SW period a§°) and the leading # — 0 order of the
(minus the logarithm of the) integrability Y function ¢ = —InY©, In red are
shown the branch cuts of the SW differential.

branch points y,,y; to their asymptotics at Sy = +% for Ry — +oo. (This can be shown
easily by considering the asymptotics of ¢?¥ +e7¥ + % - %2 atfy — oo and Sy = £7, £,
which are negative real). Now, the integral from the complex-conjugate branch points y,
and y; is defined as the alternative gauge period «'” (see for the definition appendix C)

Y2
al® (—u,m, Ay) =2 / Ay, —u,m, Ay) dy (5.106)
Y3

We now find some symmetry properties of A\(y) for y € C. Since for y € Rand m,A > 0 and
u > 0 not large we have
iNy) eR yeR (5.107)

the analytic continuation is such that
iNy*) = (IA(y))* yeC (5.108)

From this it follows that along the branch cuts upper v and lower b edge of the curved
branch cuts b, where i\ € iR we have the properties

iAy) iR (5.109)

= —M(y)’ = —i\(y)

bZ

= +iA(y) o

+
bf by +

where of course the change of sign between 5% and b3 is due to the fact these are branch
cuts for a square root. Thus by considering the integration contour Cy = (ys,y3) U b, U b
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closed also at infinity (where thanks to the regularization there is no contribution) we
have

0 :]{ iNy) dy = _%agm + 2/ iy) dy, (5.110)
Co b:r

that means we can express the gauge period also as an integral along the branch cut b7

a§°) = 4/ AMy)dy . (5.111)

by
On the other hand by considering the integration contour C; = (—oo+ 27i/3, 00+ 27i/3) U
b Uby UbT UbZ U (0o — 27i/3, —oo — 27i/3) closed also at infinity we have

1
0:74 iXy)dy = + O (u,im —4/ iXy) d (5.112)
a (y) dy S/omh ( ) . (y) dy

Hence

4\/?”@9”(—% m, Ar) (5.113)
1

This result is also confirmed numerically. The change of basis of the periods is, at least for
u > 0 (see for the derivation appendix C)

e (u,im, Ay) =

(0)

a®(—u,m) = —a\” (—u,m) + a (—u, m) +

SIE

(5.114)

ap (—'Ll,, m) = _QCLEO)(_UH m) + Clg))(—u, m) +

| W
Sk

Hence, we can write the gauge-integrability relation for all 3 gauge TBA’s forcing terms
as 11

O (. i) — 205 | @ (g ) — D¢ 1m]2v2
eO(u,im) = 27v2 _a (—u,m) —ap ( u,m)—f—2\/§ A,
A A i A . . , —27i/3,, ] 91/9
5(0)(e2m/3u,z’e_2m/3m) —21V/2 a(O)(_e2m/3% e—27rz/3m) _ ag)(—e%”?’u, e—27r7,/3m) + € m | 2v2
V2 Ay
, . . . . ) 1 2mi/3 2\/9
5(0)(6—27rz/3u7 z'eZ’”/?’m) =212 —2a(0)(—e_27”/3u, 627rz/3m) + a%))(—e—?m/%, 627rz/3m) n le m \f.
2 V2 Aq
(5.115)

We notice that for all three pseudoenergies of the gauge TBA we find that the forcing
term (leading order) is of the form of a central charge for the SW theory for SU(2) with
Nf =1 [ ]:

7 = nmag) — nea® + s (5.116)

\/5 ’
so that the mass of the BPS state is Mzps = v2|Z| [84]. We find a perfect match between
the expected electric and magnetic charges n,, n,, which multiply the periods «® and ag)

1We have checked this expression also numerically through the use of elliptic integrals of appendix C [84,
] for the periods and the hypergeometric integral (5.86) to calculate 53&-
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Figure 5.2: A strip of the y complex plane, where in yellow we show the contour of inte-
gration of SW differential for the SU(2) N; = 2 = (1,1) theory we use for the

proof equality of the (alternative) SW period «” and the leading /i — 0 order
of the (minus the logarithm of the) integrability Y function ¢ = —InY©, In
red are shown the branch cuts of the SW differential.

respectively (precisely, (—1,0), (1,—1) and (0,1) [83])'?!3. We notice that with this obser-
vation on the spectrum the same TBA equations can be derived formally by taking the
conformal limit of the integral equations in the framework of Gaiotto, Moore and Neitzke
in[87, 50, 88, 70, 71]. However, we remark that though their framework is used very gen-
erally, it is for that very reason arguably more conjectural than our bottom-up approach
from the precise four dimensional gauge theory ODEs.

Similarly for Ny = 2 we find At the 2 — 0 leading SW order we have the relations, for

12The mass constant term (physical flavour charge [$6]) is ambiguous, but that it is just because the periods
themselves are defined up to the well-known SW monodromy of exactly an integer multiple of %% [15,

, 84]. We emphasize that that the central charge and mass of BPS states have no ambiguity. We notice
also that, in integrability, there is no ambiguity since the wave functions and therefore the @ function
in (5.39) cannot change. In other words, we are fixing through integrability what is in gauge theory is in
general ambiguous.

13The periods (a(?, a§§>) are discontinuous on the moduli space, due to the singularities, and can be ana-
lytically continued to (a(®, &([(,))) by using the monodromy matrix around the singularity on the moduli
space. Correspondingly, the charges (n., n,,) will also be transformed by the inverse of the monodromy
matrix, because one needs to keep the physical mass and central charge invariant. Since the driving
terms of TBA equations are given by the central charge, more precisely the BPS mass, the TBA equations
are invariant under the monodromy transformation.
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8v/2
5(0) (—U, my, —1Mma, A?) \/<_7T a([?) (U,, my,ma, A2)
2
8v2 8
5(0)(—u, —imy,ima, As) \/(_Wa(DO)(u, my, ma, Ag) + A—W(ml + ms)
2 2 (5.117)
(0) 8\/§7T (0) . . 47TZ
€ (u7 my, ma, AQ) = A aD (—U, —1my, 1Ma, AZ) - A_<m1 - m2)
2 2
8v2 A7i
8(0)(u, —my, —ma, Ny) = \/(Wag)(—u, —imy, ima, Ag) + %(ml — mg)
2 2

We give an analytic proof also of this result. The leading order of ¢ as # — 0 (thatis, § — o0)
is

e(0,u, my,ma, Ag) =~ 695(0)(U>m1,m2, As)
i
=¢f {— In Q) (u, my, ma, Ag) — In QO (u, —my, —my, Ag) + %(ml —mg)
2
(5.118)
with
> 8m 8m 16u
In Q) (u, m1, ma, As) = /_oo [\/er e Azl “ A22 T A2
4m1 1 4m2 1
— 2coshy — = | d
T N e trerl™ o
> 8m 8m 16u '
In Q) (u, —my, —my, As) = /oo |:\/€2y et A21 “- A22 T A2
4m1 1 4m2 1
— 2cosh |
o8 y+ A2 1—|—6_y/2+ A2 1_|_€y/2 y
Now we can trade the change of sign in the masses as a shift in y by iw
potim 8 8 16
th(O) (u7 —my, =My, A2) - / [\/e2y + e_Qy * %ey + %e_y + A_zu
—ootim 2 2 (5.120)

4m1 1 4m2 1
- + .
A2 1+ ie—y/2 A2 1 — jev/?

We can use the same integrand and integrate it in the countour of figure 5.2 if we separate
and add outside the term coming from the regularizing part

Now the SW differential as defined in section 2.5 from the quartic SW curve (2.41) gives

8 8 16
/)‘(xv —u, —imy, img, Ay) dv = /[\/629 +e 2+ Zl ey + Zz ey + AQU

4m1 1 4m2 1 d
A2 14+ev A2 14 ev dy

+ 2coshy + dy

4 (miev? +my) 4 (maev? +imy)

Ay (e¥/24+1) Ay (e¥/2 4 1)

dir(m, —
dy = —m(mAIQ ma) (5.121)

(5.122)

— 2coshy — ]dy
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Therefore

i
O (u, my, mg, Ay) = j{/\(y) dy — Aiz(ml — ma) (5.123)
2
We notice that for y = ¢ + is along the (almost) horizontal branch cuts we have
RPO (y) =0
) (5.124)
SPO(t +is) = —SIPO(—t +is)
so that the only contribution is from the vertical branch cuts. That is
2 47
O (u,my, my, Ay) = S(Waéo)(—u, —imy,img, Ay) — Aiz(ml — my) (5.125)
2 2

Foru — oo, A, we have aéo)(—u, mi, Mg, No) ~ ap(—u, my,ma, Noy) ~ i\/Qu In {7 and then (5.117)
2

follows. In this way TBA (5.79) constitute a generalization of that found in [89] N; = 2
gauge theory with equal masses m; = m, respectively (see a numerical test for different
masses below in table 5.2).

5.2.3. Exact quantum gauge/integrability identification for Y

We can use the following differential operators [20] to get higher # — 0 (f — +o00) orders

of either the periods a;, or In Q

ar(0,u,m,A;) = Ze’%ea,(:)(u,m, A) 0= +o0
" (5.126)
InQ0,u,m,\y) = Z /172 10 QM) (u, m, Ay) 0 — 400
n=0

For Ny =1 they are

AN 10 0 0 0>
(1) A = 1 (0)
ay’ (u, m,\y) ( 5 ) 3 LM + 2m8m 5 + ZuauQ} a,’(w,m, \y)

A1
2 1
a,(f)(u,m,Al): (7) FZLO 2

0? 3
+ 81— + 124u—] a,go)(u, m, A\y)

282 2 4 2 3

d 0 0 0 0
28u* — + 132m—— — g 9
o amE "t su ot + s " ouz om +56muau3 am (6.127)

ou? ou’
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and for N, =2

A\ 1 3 o 0 o 0 )
(1) 12 v v v v v Y
ay,” (u, my, mg, Ay) = ( 1 ) 3 [2u8u2 + = <m1am1 7 +m28m2 8u) + au} a,’ (u,my, ma, Ag)

Ay 1 ot o? 0? o & 9 o
(2)
e e A2) = (z) 360[82W+120“a3 T 42 (g )

4 ! 2 Oms Ou? 4 Lom? ou? 20m3 Ou?

126 o 0 82] -

— Ay).
Tomme *Omy Oms Ou? ai (1, ma, o)

(5.128)
The same operators can be used also to obtain In Q™ of course.
Remarkably, we find the same higher orders of «,. to be given by the asymptotic expan-
sion of the gauge TBA. For N; = 1

W) = __/ o ° { 1)L, 1(0) + 2(—1)1/6L+,z(9’)}

_ _€z7r/6 an(l)( e 27rz/3 27ri/3m’A1) . efiﬂ'/G In Q(l)(_€2m’/3u7 6727Ti/3m’ Al)

A2
= “Af o (~um, Ay)
1 (5.129)
1 00
el = 5| d9 eSH{QiL+,1(9') - 2@'L+72(9’)}
_ z7r/2 an ( —271'2/3 27ri/37n7 Al) . e—iTr/Q In Q(2)(—€2m/3u, e—27ri/3m’ Al)
_ 47T\/_ 2)

1, ag (—u,m,Ay).

The numerical check is shown in table 5.1. Thus we have the asymptotic expansion, for
Ny=1

= 4
e(f,u,im, \y) = 269(1_2”)5(” (u,im, \y) = \/—W Z 61=2n)(_ ngm )( u,m, Ay) 0 — 400

(5.130)
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k=1 k=2

e —0.143902 0.00285479

dpAln QW] o —0.143905 0.00285481

(= 1)k epal™ (—ug, mo) —0.143905 0.00285481
e®) —0.140549 + 0.00193600¢ | —0.00142739 + 0.00311155i
drAlln Q™) 4 —0.140552 + 0.00193603i | —0.00142740 + 0.00311157:
(—1)*cral™ (—u1, ms) || —0.140552 + 0.00193603: | —0.00142740 + 0.00311157
e —0.140549 — 0.001936004 | —0.00142739 — 0.00311155i
dpA[In QW] 5 —0.140552 — 0.001936034 | —0.00142740 — 0.00311157i

<_1)k0ka§k)(—u2,m1)

—0.140552 — 0.00193603:

—0.00142740 — 0.00311157%

Table 5.1: Comparison between the higher # — 0 asymptotic expansion modes for the
N; =1 gauge theory and Perturbed Hairpin IM. The first line is the result from
the # — oo expansion of the gauge TBA (5.78). The second line is the result from
the differential operators (5.127) acting on the leading order In Q(*> computed
through hypergeometric functions (5.81), (5.86). The third line are the higher
periods computed through the same differential operators acting on the elliptic

k
integral of the SW order, as in appendix C, with ¢, = %5 (A—%> and d,

8

- (4"

Here the parameters are v = 0.1, Ay = 1., m = ﬁ and of course u, = e*™*/3y,
my = e 2/ 3,
E=1,mi=mo | k=2,mi=mo | k=1, mi #mg | k=2, m1; # mgy
£®) (u, my, my, Ay) —0.2395247 0.0158881 —0.2379413 0.01513637
(=1 *eral? (—u, —imy, ima, Ao) | —0.2395130 0.0158902 —0.2379297 0.01513580
e® (u,imy, —ima, Ag) —0.5025004 0.3120101 —0.5000211 0.29418949
cwas® (u, my, ma, As) —0.5024841 0.3120003 —0.5000048 0.29418016

Table 5.2: Comparison of higher orders *) from gauge TBA (5.79) and o} from elliptic

integrals (through differential operators (5.128), with ¢, =

STY2AZ1). In the

second and third column m; = m, = §, A, = 4, v = 1. In the fourth and fifth

columnm; = 55, my = 5, Ay =4, u = 1.
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For N; = 2 we have similarly

n 1 OO n— T / T /
R / o e’V [Ly (8" +L__(8)]

[e.e]

= —In Q(n)(% miy,ma, A2) —In Q(n)(% —my, =My, Az)

n 87T\/§ (n)

=(-1) A ay ' (—u, —imq, img, Ag)
2

| (5.131)
== [ @)+ L)

7T o
=—In Q(")(—u, —imy,ima, Ay) — In Q(”)(—u, imy, —ima, Ng)

n 87T\/§ (n)

=(-1) 1, ay ’(u,my, ma, Ag) .

The numerical check is shown in table 5.2. Thus we have the asymptotic expansion, for
Ny =2

e(0,u, £my, £ma, Ao) = Z e?1=2n) () (u, £mq, £mo, A2)
n=0

8v/2 1 - n
= \Afﬂ eeago)(—u, —im, +img, No) F —=(imq — ima) + Z 69(1_2”)aé )(—u, —im, +img, Ag) 0 — 400
2

2v2

n=1

(5.132)
Therefore we can identify the exact gauge pseudoenergy ¢ as defining the exact periods
ax. Moreover, we can numerically prove that the exact gauge pseudoenergy is equivalent,
under change of variable, to the exact integrability pseudoenergy.

1 1
e(0,p,q) = e(6,u,m, ) % = —pPe ¥, m_ 2 ge %
u 1 . 1 (5.133)
e(0,p,q1,q2) = (0, u, m1, M3, Ag) A_g = 1—61726729 A_; = Zqz@*a

This check is shown in tables 5.3-5.4 and figure 5.3.

We have defined the exact gauge periods as cycle integrals of the solution of the Riccati
equation P(y), the Seiberg-Witten quantum differential (see section 4.7.4). However, in
gauge theory they are properly defined from the instanton expansion (around A; = 0),
which is, for also small #, for Ny =1

3, (1\3/2 6 (11\5/2
a(@,u,m, A1) = u_Aym () + 3AY (3) 4

2 24\/5 210\/§

5/2 7/2 9/2
26\/5 212\/5 211@ :
g (_AIm ()™ 6308 ()" 2m3agm? ()"
+ h(0)* | — /2 + s YW + .+
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€(6,P,iq) 5.2205 -

€(6,u,im)

5.2200

2195
4

5.2190
-0.00005

€(6,P,iq)

€(6,u,im)

Y ~02 02 0.4 ~0.00010 0.00005  0.00010

Figure 5.3: Plots (atlow and high magnification) of the matching between the N, = 1 gauge
and Perturbed Hairpin IM pseudoenergies (6, u,im) and (0, P, iq) for u = 0.1,
g=0.1,A=1,for 4, =0.

(007U,m7 Al) ‘ (O, 110, 2071)
(0o, u,im) 5.21968
£(0y, P, iq) 5.21968

e(0o, u, im)Riccart | 5.21933

Table 5.3: Table which shows the very good match between N, = 1 gauge and integrability
pseudoenergies at § = §, = 0 with parametersu = 0.1, m = 5, A; = 1. In the third
line we show also a match with the result from direct numerical integration of
the Riccati equation (5.43).

(807g17g27p) (O’éaé71) (0’ 116’8’1)
eXG 1.428378 1.416945047 £ 0.196349541
gﬁf“iUGE 1.428383 1.416939137 + 0.19634954i
6?2? 1.4133849 F 0.78539816¢ | 1.40946127 F 0.58904862:
eg“:‘FUGE 1.4133714 7 0.78539816¢ | 1.40944721 F 0.5890486%

Table 5.4: Comparison of N; = 2 gauge and generalized Perturbed Hairpin IM TBA for
different values of parameters.

2 2 m* 143
_ ¢ 2k (k) 16u m & — pAim
ap(@,u,m,\1) = ﬁ [\/5 Lg_o h(0)%a'\™ (u,m, A1) ( 31n 6/ + ﬁ + 3/ + ..
1 m? 9 A3m mt
2| _ _ 12
+A(6) ( INCISTTEE ozt )
1 m2 Tmd  127A3m
4 96 2560
+ () (160u3/2 * 250wt u7/2 L R

(5.135)

The results are shown in table 5.5. Notice that through formulas (5.134) and (5.135) we

can reach even the non-perturbative (non-WKB) large # regime, the important thing to be
necessarily small being the ratio A?/u.

Hence we find a first identification between an integrability quantity, the Y function,
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{6, A1, p.q} {-5,0.1,5,0.1} {—2.5,0.1,10,0.1} {0,0.1,5,0.1}
2
{hyu,m, 2} |~ {5,10%,0.5,1076} | ~ {0.5,10%,10"1,10*} | ~ {1072,10"},107%,10~"}

e(0,p, iq) —267.1186026 —381.1795517 —54.9818090
a—a 1m
212 ;’;2 2 —267.1186297 —381.1797573 —54.9949700

Table 5.5: A table which shows the match between the integrability pseudoenergy for pos-
itive mass i¢g in the -non-perturbative region and the instanton expansion for
the right combination of the N; = 1 gauge periods which we have analytically
proven to be equal to it.

and the exact gauge periods. For N; = 1, for u,m,A; > 0

212
h(0)

1
e(0,p,iq) = a(@ —in/2, —u,m) —ap(0 —in/2, —u,m) + 5% u,m,A; >0 (5.136)

or more generally for u,m € C, with argu = —argm

22 2mV/21
) = Y200 — i /2, — — /2 — __ A
e(0,p,iq) H0) a1 (0 — i /2, —u,m) ﬁ( 177/2) a (0 —im /2, —u,m) argu argm 1
(5.137)
Similarly for N; = 2 and u, m, A, > 0.
.. . 2/ 27
6<072p7 q1, _@(J2) - %GD(HalL?mlamQuAQ)
) L 2¢/27 [ 1
e(0,ip, —iqy,iq2) = \/—W ap(0,u,my,ma, No) + —(my + m?):|
ho) | V2
- , (5.138)
00000 = 0 L0, i ) = o = )
Dy q1,G2) = ——— |ap(0, —u, —imy, ims, — ——(my—m
P, q1,q2 ﬁ(@)_D 1 2, 1\2 2\/5 1 2
e0,p,—q1,—q2) = 2};{2)% ap(0, —u, —imy,imq, Ag) + ;ﬁ(ml — 7712)}

Relations (5.136)-(5.138) show a new connection between the SU(2) N; = 1, 2 gauge periods
and the Y function (Generalized) Perturbed Hairpin integrable model. This generalizes
to the case of massive hypermultiplets matter the integrability-gauge correspondence al-
ready developed for the SU(2) Ny = 0 and the self-dual Liouville model (cf. (4.295), with
Q = VY) [1]. (5.136) and (5.138) are in some sense expressions for a N; = 1,2 SW exact
central charge. As explained in section 4.7.5 by considering different particles in the spec-
trum or definition of gauge periods other than the integral one, different relations could
be found like those for the N; = 0 and N; = 1 theory in [71, 79].

Besides, we remark that these gauge-integrability identifications holds as they are writ-
ten only in a restricted strip of of the complex ¢ plane: 3¢ < 7/3 and 36 < «/2 for the

4We remark that the first two relation with imaginary p parameters are not directly implemented in the in-
tegrability variables (since the integrability TBA does not converge), but they will in the gravity variables
in section 5.6 (in (5.220) precisely this range of parameters is involved).
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N; =1 and N; = 2 theory. Beyond such strips the gauge TBAs (5.78) (5.79) needs analytic
continuation (of its solution) since poles of the kernels are found on the ¢’ integrating axis.
A modification of TBAs equation as usually done in integrability by adding the residue is
possible, but then the Y's no longer identifies with the gauge periods: in fact the former
are entire functions while the latter are not [90, 91, 51]. This is a manifestation of the
so-called wall-crossing phenomenon, whereby the spectrum of SW theory changes and
therefore a fundamental change in its relation to integrability is to be expected. We hope
to investigate further and write more on this issue in the future.

5.3. Integrability 7' function and gauge period
5.3.1. T function and Floquet exponent

In this subsection we follow and adapt the monograph on Doubly Confluent Heun equa-
tion in [77]. Define the periodicity operator

Tip(y) = o(y + 2mi) (5.139)
We can express T in terms of the 2, symmetry operators, for Ny =1 as
T=020" (5.140)

and for Ny =2 as
T =007 (5.141)

Then we write, for Ny =1

Vi -1(y +2mi) = 41 = —627“%/4,71 + ie”qir(@)?/hr,o

, . , e . . (5.142)
b0y +2mi) = by o = —e™T (0 +im/3)py y + [=e ™™+ T (0 +im/3) T (0)] 111
and for Ny =2

Uiy +2mi) = P = =Ty i€ T ()0
Ui o(y +2mi) = ¢y o = =T (0 +im/2)y 1+ [—e PN 4 T (0 +im/2) Ty ()]t 1.

(5.143)
We can write these relations also in matrix form
Ty =Ty (5.144)
where we defined ¢ = (¢; 1,1, ) and, for Ny =1
= —eir ()
T = (eiWQT_ (0 +im/3) [_6*27riq +T (6 + Z7T/3)T+(0)] (5.145)
and for Ny =2
B _627riq1 eiﬂ'ql T+’+ (9)
T (e”qlf,w +im/2) [—e 20 4 T (0+in/2)T 1 (0)]) (5.146)
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T(6,p,0) TBA, TQ

exp [—2mv(0 +im/3,p,0)] + exp [2mv (0 — iw/3,p,0)] Hill

—0.409791
—0.409791
—0.40979
—0.409786
—0.412355
—1.44334
—371.911
—3.99263 - 106
—1.02835 - 107
1.00886 - 10%®
—2.63656 - 1030
6.00739 - 103%3

—0.409791
—0.409791
—0.409791
—0.409791
—0.412353
—1.44332
—371.912
—3.99263 - 10°
—1.02835 - 10'7
1.00886 - 10®
—2.63656 - 10130
6.00739 - 10353

Table 5.6: Here we make a table, with p = 0.2 and several ¢ in the lines, of three quantities:
T(6,p,q = 0) from the TBA and TQ system (@ function), exp [-27v(0 + i7 /3, p,0)] +
exp [2mv(0 — iw/3,p,0)], were v is Hill’s Floquet (see appendix F). (Here in 6 we
discretize the interval (—50, 50) in 2® parts, which is no big effort, but we go up
to 2% iterations for the TBA or 2! as the Hill matrix’s width.)

Now we can say that v is a characteristic exponent of the Doubly confluent Heun equa-
tion (5.4) if and only if e*** are eigenvalues of T,. It then follows that v is determined

from

or more explicitly, for Ny =1

2cos 27y 4+ 2cos 2mq = dcosm(q + v) cosm(q — v) = T (0)T_ (0 + zz)

and for Ny =2

2 cos 2mv + 2cos 2wy = 4cosm(q + v) cosm(qr — v) = Ty ()T (6 + iz)

2cos2my =tr7,

3

]

2

Similarly we can prove relations for 7', for Ny =1

2
2cos 21y = 4cos® v = T, (0) T, (6 + zg) =T2(0)

and for Ny =2

2cos2mv + 2cos2mqy = 4cosm(qa +v) cosm(qe —v) =T +(0)T4 (0 + @'Z)

2

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)

These relations between 7" and v generalize both what found numerically by Zamolod-

chikov and us [

and R. Poghossian and H. Poghosyan for SU(3) Ny = 0 [43].
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For N; = 1, from the T periodicity 7' (¢ + iw/3) = T_(¢) it follows the Floquet (anti)-
periodicity
v(0+ ig, —q) =v(0,q) = +v(0 — ig, —q) mod(n) € Z (5.152)

Thus for N; = 1 we prove the following conjecture by Fateev and Lukyanov [78].
T..(0) = T(0,p,q) = exp{—imv(0 +ir/3,p, —q)} + exp{imv(0 — in/3,p, —q)}, (5.153)

which follows immediately from (5.150) and (5.152). We show also its numerical proof in
the massless case in table 5.6, where v is computed in practice through the well-known
method of the Hill determinant [92] (see appendix F).

5.3.2. Exact quantum gauge/integrability identification for T

The gauge a period is defined from the A, (A,) derivative of the instanton part of the gauge
prepotential Fys through the Matone’s relation, for Ny =1

. AN OFRS

2u=a"— — 154
u=a 3 OA, (5.154)
and for Ny =2
A2 afinst
u=a’> - =N 5.155
u=at— oy ( )
where the instanton prepotential 73’ is given by, for N; =1
vt =Y AP (5.156)
n=0
with first terms
2m
1 _ _ 1
Frs = 4(4a? — 2h2)
o 4m3(20a% + 14R7) — 3 (4a2 — 21%)”
FNs =~ > 3 (5.157)
256 (a? — 20°%) (40 — 21?) '
o) __Am} (14a’ + 464020 + 1161") — my (280 + 347°) (4a” — 212)”
e 192 (4a2 — 212)” (4a* — 26a2h% + 361°)
and for N, =2
we =Y AP F (5.158)
n=0
with
(1 _1 1 _ dmims
FNs =g T |3 8(4a2 — 2h2)
]:J(\?:); _ 764(12(&4 + 3a?(m? +m32) + 5m2m3) — 8hS + 48h2(a? + m?2 + m2) — 32R%[3a* + 6a%(m? + m3) — Tm3m?2] ‘

1024 (a2 — 202) (4a2 — 20%)°
(5.159)
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a

a

Ay u | m v i Ay w | m v 7

0.04 | 1.1 | 0 | 0.0488088 | 1 +0.0488088 0.04 | 1.1 | 0.3 | 0.0488075 | 1+ 0.0488085
0.08 | 1.1 | 0 | 0.0488089 | 1+ 0.0488088 0.08 | 1.1 | 0.3 | 0.0487981 | 1 + 0.0488062
0.12 | 1.1 | 0 | 0.0488089 | 1 +0.0488089 0.12 | 1.1 | 0.3 | 0.047726 | 1+ 0.0487998
0.16 | 1.1 | 0 | 0.0488094 | 1+ 0.0488089 0.16 | 1.1 | 0.3 | 0.0487231 | 1+ 0.0487874

Table 5.7: Comparison of » as computed by the Hill determinant and « for N; = 1 as com-
puted from the instanton series (with z = 1).

Ay

u my

ma

14

a

0.04
0.08
0.12
0.16
As

1.1 0
1.1 0
1.1 0
1.1 0

u my

0
0
0
0

mao

0.0488088
0.0488085
0.0488069
0.0488027

14

1+ 0.0ﬁ488088
1+ 0.0488088
1+ 0.0488084
1+ 0.0488073

a

0.04
0.08
0.12
0.16

1.1 0.2
1.1 0.2
1.1 0.2
1.1 0.2

0.2
0.2
0.2
0.2

0.0488043
0.0487906
0.048767
0.0487325

1+ 0.02188077
1 4 0.0488043
14 0.0487982
1+ 0.0487892

Table 5.8: Comparison of » as computed by the Hill determinant and « for N; = 2 as com-
puted from the instanton series (with # = 1).

In tables 5.7 and 5.8 we check the equality to this order of approximation

,_Llea
V2h

We notice that (for Ny = 2) the first instanton series coeffient match the general math-
ematical analytical result (from continued fractions tecnique) for the expansion of the
eigenvalue of Doubly Confluent Heun equation in A given in [77] in terms of ;4 = v mod(n)
with the identification (5.160), as shown in (D.24) of appendix D. This provides a very
strong analytical check of our gauge period-Floquet identification.

In conclusion, from the « period-Floquet identification (5.160) and the Floquet-7" func-
tion identifications (5.148)-(5.151) follow new gauge-integrability basic connection formu-
las for the 7" function and « period. For N; =1

mod(n), neZ (5.160)

2
T7(0) = 2cos V2ma
\/g , (5.161)
T (0)T_(0 + iﬁ) = 2c08 Yo 4 2 cos
3 h h
and for N; =2
2 2
T, ()T, _(0+ iz) = 2cos V2ra +2c0s 212
2 \/i; , f (5.162)
T, (T, (0 + zg) = 2cos hﬂa + 2 cos Wi;nl
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5.4. Applications of gauge-integrability correspondence

We now show some applications of the gauge-integrability correspondence as new results
on both sides. In particular, for gauge theory we find a gauge interpretation of integra-
bility’s functional relations, namely as exact R-symmetry relations never found before to
our knowledge. For integrability instead we find new formulas for the local integrals of
motions in terms of the asymptotic gauge periods, which may sometimes be convenient.

5.4.1. Applications to gauge theory

Consider first Ny = 2. We have the relation (5.151) which considering that a = v (cf. (5.160))
becomes
T, ()T, (0 +in/2) = 4cos(a — q2) cos(a + go) (5.163)

Now using the 7" periodicity relation (5.38) and the 7'Q relation (5.36) becomes

1
T QL 0)Q—_(0)
+ QL (0 +im/2)Q—4 (0 — im/2) + e Q4 (0 — im/2)Q—4 (0 + Z'7T/2)]
(5.164)
Now we claim that thanks to our connection of 7" function and @/Y function to gauge

periods a and ap, this TQ relation becomes an Z, R-symmetry relation for the exact gauge
periods a,ap. Indeed, such relations where already known in the SU(2) Ny = 0 case for

the 7 — 0 asymptotic expansion modes a™, a%‘) [72]. For the massless SU(2) Ny = 2 case
the periods are the same, up to a factor 2 [83]. If u > 0 they are

Ty (0)T- () Q- (0+im/2)Q (0 +im/2) + Qo (0 — in/2)Q4(6 — im/2)

a9(—=u,0,0) = —ia(u,0,0)

(5.165)
a([()])(_u7 07 O) = _Z[a’g) (U, 07 O) - a(O) (U, 07 O)]

Indeed, expressing (5.164) in terms of gauge periods through (5.163) and (5.117) we get
) (=u,0,0) = —afy) (—u) — ia) (u) (5.166)

which is consistent with the same relations (5.165). Actually, relations (5.165) can be
considered to be derived from the 7'Q) relation when coupled with the 7 periodicity re-
lation (5.38)

T . (0+in/2)=T,.(0) (5.167)

which inside (5.163) reads

and is then another Z, R-symmetry relation for the exact gauge periods a. Indeed, in the
massless N; = 2 case reduces precisely to the first of (5.165). Thus we conclude that Z
R-symmetry for exact gauge theory periods is encoded in the integrability 7Q and T peri-
odicity functional relations.
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Similarly for N; = 1 case the T periodicity is easily shown to be interpreted in gauge
theory in the same way. If © > 0 and m = 0 the other exact relation from the 7" periodicity
(5.37) reduces to the Z3; symmetry in the asymptotic 7 — 0 (cf. (C.9))

a® (e 23y, 0) = —e2™/2a9 (u, 0) (5.169)

a™ (e72m/3y, 0) = —?™/31=n) () (4, () (5.170)

We avoid though for the moment considering the N; = 1 TQ relation since it requires
some non-trivial analytic continuation of gauge-integrabiliy relations beyond the complex
strip 36 < /3 in which the TBA holds without analytic continuation.

We see that the new exact relations following from the integrability functional relations
are a Z,, Z3 Ny = 2,1 R-symmetry relations. They were never found previously in the
literature, to our knowledge. We knew only the 2 — 0 perturbative relations, also in the
massless case in [83].

5.4.2. Applications to integrability

We now find a new ways to compute either the local integrals of motions for the Perturbed
Hairpin IM or the asymptotic expansion modes of the N; = 1 quantum gauge periods.

Consider the large energy asymptotic expansion (5.54) of @ in terms of the LIMs. We set
first ¢ = 0 so to recover the LIMs of Liouville b = /2. For this particular case the expansion
simplifies as

InQ(0,p) = —Cye’ — Z 00200 Ty, 60— +oo, p finite. (5.171)

The normalization constants are given (cf. [1] with b = v/2)

ry-DrE-g)

Cp=—2 3\3/%1!3 s (5.172)
We can also expand the LIMs I, _;, as polynomials in p? with coefficients T,
Iy = i T, 0> (5.173)
The leading and subleading coefficients are found to be [1]
T = (=1)", T = i(—l)"n(Zn _). (5.174)

Now, since in Seiberg-Witten theory v is finite as # — +oo, to connect the IM § — +o0
asymptotic expansion, it is necessary to take the further limit

P2(0) = 4%89 oo, (5.175)
1
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In this double limit, an infinite number of LIMs I,,_,(b = v/2), through their coefficients
T, arere-summed into a an quantum gauge period asymptotic mode (a sort of LIM on its
way). For instance the leading order is obtained from the resummation ofall Y, ,, = (—1)"
terms as

SO PTG —3) (du)”
(0) _ 3 3 3 6 _
In QY (u,0,Ay) 7; o ( A%) (5.176)

and from it we can derive the higher orders as usual through differential operators (5.127).
In particular, in the massless case the first simplify as

AN’ ud® 10
(1 Y = (0)
In Q" (u,0,A) ( ) 6002 + — 15 90 } In Q™ (u,0,A;)

2
AN'TT7 ,00 31 & 9 &
@ (M o 8L 9”9 9 h0
I Q7 w, 0. 44) (2) 360 “aui * 360"558 T T600u }IDQ (1,0, A1)

AN [ 316 85  443u® &5 43u &' 557 0P
In Q@ (u,0,A;) = [ =
n Q7w 0, A1) 15120006 | 18144005 | 576 0ut | 10368 93

] In QY (u,0,A).

2
(5.177)
Indeed these expression match with the resummation of LIMs at higher orders:
A n 1702+ (24+13) 4u\"
(1) _ ! S 3 3 3 "6 _ =
In QW (u,0,A;) ( 5 ) Z {12 + 24] Worm < A%) (5.178)
4 2n n 1 n
(4n +27)2n+3)] T (2 +1)T (2 +13) ( 4u)
In Q¥ (u,0,A) 3 32 —— (5.179)
@ ( ) ;0 { 5760 } 3v/2mn! A2
6 (22 +2\r (242 n
1n 0P (. 0.A,) A1 Z 1 [4n(93n 4 596) +3899](2n +5)1 U (F + )T (5 +3) [ 4u
|8 362880 3v/2mn! A2
(5.180)
So in general we find the relation
n 2(k+n) 1
A& F(%_%)F<T_§) du\"
In Q™ (u,0,A;) = (—1)F! (—1) Toikon (—) . (5.181
R0 M) = DT ;% e 3v2r(k +n)! A3 (5181

Thus this procedure can actually be a convenient way to compute the LIMs coefficients
T,.+rn fOr general n at each successive k order. Alternatively and equivalently, we can use
it to compute the k-th mode of the (alternative dual) quantum period a,

k4n 1 2(k+n) _ 1
4\/‘7 o (__E)F< 3 —5) (1 duyn
(u,0,A;) ZTn+kn 3 an (e )l 2 sin (yr(k#—n—i—l)) <A_%> )

(5.182)

103



5.5. Limit to lower flavours gauge theories
5.5.1. Limit from N, =1to Ny =0

The Seiberg-Witten curve for N; =1

2 = 22— o _
Yswa = 22 —u) + —Fmw — o (5.183)
in the limit
flows to the Seiberg-Witten curve for Ny =0
A4
Yswo = (& —u) + P (5.185)

Similarly the Ny = 1 quantum Seiberg-Witten curve:

d? 1 1 _ 1
—th—y%w + |:EA?€2yl -+ 5/\?/26 u + §A:13/2m1€y1 + u:| w =0. (5186)
if we let ]
Y1 = Yo — §1nm1 — —00 (5.187)
becomes
_ﬁQd_Qw + iA_?e2yo + 1A3/2m1/2efyo 4 1A3/2m1/26yo tul =0 (5.188)
dy? 16 m; 2t PR '

that is precisely reduce to the N; = 0 equation:
2 d2 2
—h d—y21/) + (Agcoshyg +u)p =0. (5.189)
0

We can also consider the limit on the integrability equation as follows. The Perturbed
Hairpin IM ODE/IM equation is

d2

—@1/}(91) + [ (e + V) + 2ge e + pil(n) = 0. (5.190)

and it must reduce to the ODE/IM equation for the Liouville model studied in [1]
d2
_WW%) +{e*P[e" + 7] + pi}(yo) =0, (5.191)
0
In order for (5.190) to go into (5.191) we need to impose

6291 +2 =0

e201—y1 — ,200—yo 2q€91+y1 — e200+yo P = Do

(5.192)
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or
1 6490

1= 5 s (5.193)
Y1 = Yo — 200 + 20,

Now the limit requires 6, + y; — —o0, that is
0, — —o0 (5.194)

and as a consequence
g~ e 5 o 0, — —o0 (5.195)

We now consider also the limit on gauge periods. We numerically find, for u,m,, A; > 0,
A1 — O,m1 — oo,A:fml = Aé

al) (u,my, Ay) — —al)(u, Ag) (5.196)
o) (—u,ma, Ar) = =) (—u, Ag) + al® (—u + i0, Ag) (5.197)
—iag ) (u, Ao) (5.198)
1
o\ (u,ma, Ay) + E = 5aq” (21, Ao) (5.199)
a0 (e, €T oy ) — = \/§ml = 5ay (u,e77/0A) (5.200)
. . —27i/3 ' 1
al) (=2 By, e B Ay) — % — e 2 3[al") (—u, Ag) — §aéo)(—u +1i0,Ao)] (5.201)
) » 2mi/3 ' 1
0] (—e2milSy, 2l A — & ﬂml — P al) (—u+ 10, Ay)] (5.202)

5.5.2. Limit from N; =2to N; =1

Staring from the N; = 2 quantum Seiberg Witten curve

d? 1 1 1
_ﬁ2d_y%¢ + EA%(BQZ!Q + 6—2y2) + EAleeyQ + §A2m26_y2 +u ¢ =0, (5.203)
since we have
we can set 1
Yo =y + B Inmy — +o0 (5.205)

so the equation becomes

1 1
Q@D + { A2 (m262y1 + — p- _27’1) + Ag«/ amye”? + AQ\/ mee Y2 +ul =0 (5.206)
2
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which in the limit reduces to the N; = 1 quantum Seiberg-Witten curve equation:
—fﬂd—Qw + iAfe% + 1/\3/%—% + lAi’/ “mie” +u| Y =0. (5.207)
dy? 16 2 2

In integrability variables, we impose the conditions that allow the limit of the differen-
tial equations

e20+2y2 _ 20142y 7 692+yqu — 01ty a 2692—3;2(]2 — 201—m 7 e202=2u2 0, pg _ p% ‘
(5.208)
from which we deduce that we have to take the limit
1
Yo = —by + 01 + 11 0y — —00 Go = 56391_292 — 00 (5.209)

5.6. Gravitational correspondence and applications
5.6.1. Gravitational correspondence N; =2

Our two-fold integrability-gauge correspondence actually is three-fold method as black
hole’s perturbation theory involves the same ODEs we use. In particular the Doubly Con-
fluent Heun equation (see appendix D) we have for the SU(2) N; = 0, 1,2 gauge theory and
Generalized Perturbed Hairpin integrable model is typically associated to extremal black
holes. In particular, for the N; = 2 we consider now the gravitational background given
by the intersection of four stacks of D3-branes in type IIB supergravity. This geometry is
characterised by four different charges Q; which, if all equal, lead to an extremal RN BH,
that is maximally charged. In isotropic coordinates the line element writes [93, 9]

ds® = —f(r)dt> + f(r) " [dr? + r?(d6? + sin® 0d¢?)] , (5.210)

with f(r) = []_, (1 + Qi/r)*% . The ODE describing the scalar perturbation is, with ¥, =
Z?1<...<ik Qil e Qlk

4

d2¢ U+ ) Y
el R kz_: = (5.211)
Changing variables as r = v/>,¢¥ and
1 X 1
4/ _ - 0 2] 1 0 2 2 2
w 24 = —je q] 2 L E 2] 1 p = (l + 5) — W 22, (5212)

(j = 1,2) the ODE takes precisely the form of the Generalized Perturbed Hairpin IM (5.4).

Setting up ODE/IM in gravity variables (5.212), we notice that the discrete symmetries (5.10)
are consistent with the brane dictionary (5.212), as the brane parameters vary as >; —
+i¥, 2 — —3y, 83 — FiXy, Ny — 341, So in gravity variables the Y system reads

Y(0+ % —iY, — 5, i53)Y (6 — % Y, =D, i5) = [1+ Y (6,51, 50, S)][L + Y (6, =51, 5, —35)]
(5.213)

15This observation does not mean that a dictionary not consistent with the discrete symmetry would im-
ply ODE/IM cannot be used: in that case we should just do ODE/IM in the suitable variables and then
afterwards change to the variables of interest.
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(with ¥, omitted since it is fixed). We remark we shall pay particular attention to the
change of variables from gravity or gauge to integrability: this results in different TBA
equations as first noted in [1]. Indeed, Y system (5.213) can be inverted into the TBA in
gravitational variables

oY by - _
e+ +(0) = [for F 5(—1}4 - 3?4)]69 — ¢ (Lex + Lz=£)(0)
24 24
) I > (5.214)
Ex+(0) = [for & §<§;T}4 + ETZ)]J — @ (Lt + Ly5)(0)
4 4

where we defined () = —InY (6, %1, 39, X3, 54), £(0) = (6,121, =39, —iX3,%4), L = In[l +
exp{—¢}], p(#) = (cosh(h))tand

fo+ =cot+ +Co— 7 Co++ = Co(X1, X0, £X3, 3y) (5.215)
with
oo El E3 22 1 21 1 1 23 1
= 2 cosh(2 v 3 ey — 9coshy — = -
CO() /OO [\/ COs ( y) + 4/—246 + " 236 + _24 coshy 9 4/241+€—y/2 2 4/Eil+ey/2
(5.216)

which in turn can be expressed either through a triple power series for small parameters
or as an elliptic integral as

0= £ O s (5 () (3)

l,m,n=0
I(3(3142m+n—1))T (314 2m+ 3n — 1))
AP (l+m+n—3)

By(l,m,n) =

1 1
By(1,0,0) = 5(In2—1), By(0,0,1) = S In2

(5.217)
We have to numerically input / in the TBA with the boundary condition at § — —oc:
ep4(0) ~4P0 ~4(1+1/2)+2C(p)0 0 — —oc0, (5.218)
1—2p 2
C(p) = In (%) (5.219)
C'(p+3)

also following from the asymptotic of the ODE (5.4) (the precision improves by adding also
the constant at the subleading order, as explained in [78]). Through this TBA we find again
the QNMs to be given by the Bethe roots condition

Ep (0 —im/2) = —im(2n' + 1), Q++(0,)=0 n' €Z (5.220)

and we show in tables 5.10 their agreement with continued fraction (Leaver) method and
WKB approximation (I — oo) [31]. We notice that for ; # 33 and X, # 1 the Leaver method
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TBA

Leaver

WKB

o o O Ol3

B W N |~

0.869623 — 0.372022:
1.477990 — 0.3681444
2.080200 — 0.3670762

0.868932 — 0.372859:
1.477888 — 0.3682401
2.080168 — 0.367097:

2.680363 — 0.3666377

2.680350 — 0.3666427

0.89642 — 0.365961
1.4940 — 0.36596¢
2.0916 — 0.36596¢
2.6893 — 0.36596¢

Table 5.9: Comparison of QNMs obtained from TBA (5.214), Leaver method
(through (5.220) with »” = 0) and WKB approximation (3; = X3 = 0.2,
22 == 04, 24 = 1.)

n|l TBA Leaver WKB

0(1]0.896681 —0.40069: | N.A. | 0.93069 — 0.39458:
02| 1.5308 —0.396767 N.A. 1.5511 — 0.39458:
0| 3]2.15708 —0.395689: | N.A. 2.1716 — 0.39458:¢
04| 2.78077 — 0.395257 N.A. 2.7921 — 0.39458i

Table 5.10: Comparison of QNMs obtained from TBA (5.214), (through (5.220) with »n’ = 0)
and WKB approximation (X; = 0.1, ¥, = 0.2, ¥3 = 0.3, ¥, = 1). Since ¥; # Y3 the
Leaver method seems not applicable, at least in its original version (N.A.).

is not applicable, at least in its original version since the recursion produced by the ODE
involves more than 3 terms (compare [7, 31]) and thus also for this reason the TBA method
may be regarded as convenient. However, we point out that there exists a development
of the Leaver method, the so-called matrix Leaver method which is still applicable [94,

]. Thinking to gauge theory, it is clear from the black hole physical requirement in
ODE/IM language (5.220) and our gauge-integrability identication (5.138), it follows that
the integral gauge period ap must be quantized.

2271

70) (5.221)

ap(0,u,my,ma, Ag) = —im(2n' + 1)

This constitutes a (mathematical?) proof of the essential finding of [6] and the following
literature (see the introduction).

A note of caution, though. Literature following [6] uses another definition of gauge
period which we denote by A, which derives from the instanton expansion of the prepo-
tential. As we explain in section 4.8 the two definitions can be actually related by formulas
like (4.315) for the N, = 0 theory. Generalizations of formula (4.315), already exist for the
subcase of the N; = 1 gauge theory [79] (see next subsection) and so we expect them to
exist also for the whole N, = 2 theory and even more generally. In this way we expect that
in general the integrable Bethe roots condition, which we have shown to follow straight-
forwardly from BHs physics, in gauge theory indeed corresponds to the quantization of
the gauge Ap period as stated in [6].

By making considerations on these 7Q) systems and the Q@ system (5.24) like donein [11]
and reported in section 4.8, we are not in general able to conclude any quantization con-
dition on the 7 function, except in the case of equal masses ¢; = ¢ = ¢ where we find

T (0.)T-_(6,) = 4. (5.222)
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that generalizes (4.331) for Ny = 0. We now prove (5.222). From the QQ system (5.24) we
can write, for general ¢;, ¢

QL (0 — in/2) = ¢ [1 + e \/Q+,+(9)Q_,_(9)] (5.223)
=m0, (0 4 i /2) = Cl {1 i 5 \/Q+,+(9)Q_,_(9)} (5.224)
GO (0 — in2) = 0—10 {1 T \/Q+7+(9)Q_7_(9)} (5.225)
eTmNQ_ (0 +ir/2) = ¢ {1 Fie T \/Q+ +( } . (5.226)
From the 2 TQ system (5.36) at the Bethe roots we get the same relation

co(—aq1,32) = —co(—q1, ¢2) - (5.227)

We can also exchange the masses in (5.223) and (5.225) to obtain the relation
co(—q1, q2)co(—q2, 1) = —1. (5.228)

In addition, considering real parameters, we have
co=—Cp. (5.229)
However, we cannot fix ¢, completely in general, only when ¢; = ¢ = ¢ we can say
co(q1,q2 = q1) = %i. (5.230)

We notice also that
Qi-=Q_1 G =q=q. (5.231)

We can generalize the N; = 0 procedure by considering the Y system instead of the @
system.

T (O (0)Y14(0) = [€™Q. (0 — im/2) + Q. (0 + im/2)][™Q_ (0 — im/2) + e Q_,

= Y+7_( — Z7T/2) "‘ Y_7+(0 + 7/7T/2) + 2 + 2Y+7+(0) .
(5.232)
Notice that we can write shifted Y as

Yy (0 —im/2) = e™Qy (0 — im/2)Q—1(0 — im/2)
= 15 2/Q . (0)Q-_(0) + Q1. ()Q—(0) (5.233)

= —1F2iy /Y, 4(0) + Y, . (0)

and
Y (0 +im/2) = =1+ 2i /Y, (0) + Y, . (0). (5.234)
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Inserting these shifted-Y” expressions in what we could call the 7Y relation (5.232) we find
Ty (0)T- —(0)Y5 4 (0) = +4Y, 1.(0) (5.235)

that is nothing but quantization relation on 7" (5.222). )

Now, on plugging the 7" periodicity relations (5.38) 7, _(0 + %) = T .(0), T_ (0 +i%) =
T, () in the relations between 7, 7 and v (5.151), (5.149) we get the simplification to only
one T

++/2 cos 27v + 2 cos 2mqy = Ty 4 (6)
++/2cos 2mv + 2 cos 2mqy = Ty 4 (0)
Now we notice from the v = @ instanton series terms (5.159) that

v(q1, ¢2) = v(—q1, —q2) (5.237)

so we can write the same relations for also opposite masses

(5.236)

++/2cos2mv + 2cos2mqy = T _(6)

+1/2cos 2mv + 2cos 2mqy = T _(6) . (5:238)
Now from 7' quantization for ¢; = ¢ = ¢ (5.222)
T, (0)T_ _(0) = £[2cos2mv + 2 cos 2mq] = 4 (5.239)
it follows a quantization condition on the combination of v and ¢
[cos 271 + cos 2mqlg—g, = £2. (5.240)

In conclusion, from this derivation we do not expect that the alternative QNMs quantiza-
tion condition on the gauge « period found in [7] for N; = 0 generalizes to other gauge
theories, both because the integrabilty 7" function is not quantized generally (for differ-
ent masses mq, ms q1, g2) and because even when it is, it implies a quantization on only the
combination of « v period and masses.

Now we can find also an integrability interpretation of the symmetry under Couch-
Torrence transformation found for this gravitational background in [96], thanks to iden-
tifications of certain scattering angles with the SW « period. It refers to the symmetry
that exchange infinity (y — +o0) and the (analogue) horizon (y — —o0), leaving the pho-
ton sphere (y = 0) fixed. In our ODE approach, it correspondence to the following wave
function properties

VoY) =v-o(-y), (@1 =) (5.241)
which we notice holds only for equal masses. In this respect, under (5.241) we have the T
and T identity )

Toi(0) =T () (01=a). (5.242)

as can be understood by looking to their very definitions (5.32).
All the considerations of this subsection show how integrability structures give valuable
insights in several gauge-gravity correspondence mathematical physics issues.
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5.6.2. Gravitational correspondence N, =1

Now, to get a gravitation counterpart of the N; = 1 gauge theory, we can simply take the
limit from the N; = 2 theory, as explained in section 5.5. In gravity variables such limit
corresponds to

and in terms of charges can be realised for instance with Q, — 0. Upon this limit, get the
following gravity-integrability parameters dictionary

5 1
w5y = —ie? \/—21_ —2qe?,  pP=(+ §)2 — W%, (5.244)
3

The Ny = 1Y system in gravitational variables reads

Y(Q + ’L.’7T/2, —1'21, _ZQ)Y(Q - i7T/2, —iZl, —22) (5 245)
= [14Y (0 +in/6, —ie 2™/3%,, —e?BE)|[1 4+ Y (0 — in /6, —ie>™ /3%, —e 2™/3%,)],
from which it appears convenient to define

You(0) =Y(0,i%1, %) Y1 (0) =Y (0,ie®™/3%, e 2™35) Yo (0) = Y(0,ie”2™/3%, —e2/35,)

Yo (0) =Y (0, —i%1,—%2) Yi_(0) =Y (0, —ie®™/3%), —e725%) Yo _(0) = Y (0, —ie 2™/3%,, —?™/3%,).
The Y system can be inverted in a TBA made of 6 coupled equations as o410
c0+(0) = (for =+ ngl)ee —(p_* L1 +)(0) — (pr * Lo1)(0) (5.247)
e1+(0) = (fix £ %W@QWi/3El)e‘9 — (p_ % Ly2)(0) — (91 * Lo+)(6) (5.248)
era(0) = (fos + gﬂe%i/ng)ee (o # Los)(0) — (pr % L1s)(0) (5.249)
with of course L, ;. = In[1 + exp{—e; + }] and the kernels
P=(0) = 57 cosh(; + i7/6) (5.250)

Under change to gravity variables ¢(f) = 1 ¢’ and so the leading order is given by

X3

ﬁ

27i(1+k) _ 2mi(1+k) 27i(—1+k) _ 2mi(—=1+k)

fk7i:—e_"”/6co($ie 5 Y, —¢€ 3 22)—ei”/ﬁco($z’e 3 Y, —¢€ 5 Yo) (5.251)

o b b _ 13 1
Y15, X5) = W4 eV ——e¥ + —eV eV | dy.
Co(X1; X, Xs) /_m[\/e € 5 /32 “mc 251 +ew| Y
(5.252)

We can compute this integral analytically as usual by expanding it in double binomial
series for small ¥, >,

1
_ _ = 2\ %, 1/2) <1/2 - z> z 5 953
60(21,22,23) <2 ( 3 23) <—3 2§> ( I n B(n, ) ( . )

n=
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{TL, l, 21, 22, 23} TBA WKB
{0,1,0.1,0.2,1.} | 0.996031 — 0.308972: | 1.018635 — 0.317055¢
{0,2,0.1,0.2,1.} | 1.6945 — 0.3014447 | 1.69772 — 0.31706i
{0,3,0.1,0.2,1.} | 2.39612 — 0.294969: | 2.37681 — 0.31706¢
{0,1,0.2,0.4,1.} | 0.943852 — 0.263758: | 0.959219 — 0.281322¢
{0,2,0.2,0.4,1.} | 1.59951 — 0.250208; | 1.59870 — 0.28132¢
{0,3,0.2,0.4,1.} | 2.25939 —0.237859¢ | 2.23818 — 0.28132i
{0,1,0.4,0.1,1.} | 0.966828 — 0.337457i | 0.990202 — 0.300483:
{0,2,0.4,0.1,1.} | 1.64269 — 0.357236¢ | 1.65034 — 0.30048i
{0,3,04,0.1,1.} | 2.32242 —0.37745i | 2.31047 — 0.30048i

Table 5.11: QNMs for N; = 1. Since the Leaver method is not applicable to this case, at
least in its original version, we were able to compare only with the WKB ap-
proximation, by which however the match is necessarily very rough.

B(n,1) = %B (é(zz +dn—1), %(21 +n— 1)) (n,1) # (1,0)

2log(2) (5.254)

3

As in the Liouville model, also in the Hairpin model the TBA does not contain explicitly p,
so that is has to be solved through the boundary condition

B(1,0) =

e4(0) ~ 6pf ~ 6(1 + %)91 +2C(p), 0 — — (5.255)
C(p) = log <2ﬂp L (ﬂ:) L(2v2p )> (5.256)

From the general analysis of [11] we can safely affirm that the QNMs are given by zeros
of @

Q+(0,) =0. (5.257)
or the equivalent condition on Y
Yo (0, —im/2) = —1. (5.258)
or ¢
g0+ (0n —im/2) = —im(2n' + 1) n' ez (5.259)

With the last relation we can actually compute the QNMs as usual'®. We report their val-
ues obtained in table 5.6.2. Again, we find the Leaver method is not applicable to this
case, at least in its original version [31], so we are able to compare only with the WKB
approximation, which gives however necessarily a very rough match. Now from our

16We notice that to implement this condition through TBA it is NOT necessary to analytically continue (since
Y functions are analytic) beyond the poles of the kernels (5.250) at the points § — 6" = i% by adding their
residue.
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gauge-integrability identification (5.137) we can prove a quantization on the (alternative)
gauge period a;
27?\/§

h

and as discussed in the previous subsection we surely expect a similar quantization con-
dition on the other differently defined A, period actually used in the literature on the
new gauge-gravity correspondence following [6]. In particular, we can now compare di-
rectly with the work [79] in which eq. 8.12 (in the first arXiv version) shows that zeros of
@ correspond to quantization conditions on the gauge periods, thus again recovering the
characterization of QNMs of [6].

Applying the N; = 1 T'Q system (5.35) to also this background, we find the same limita-
tions as for N; = 2 in finding quantization conditions for 7"and « as in (5.222) and (5.240).

a1 (0 —in/2,u,m) = —ir(2n’ + 1) n' ez (5.260)
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6. SU(2) Ny = (0,2),3 gauge theory, asymptotically flat
black holes and fuzzballs

6.1. N; = (0,2) ODE/IM

The quantum Seiberg-Witten curve for Ny = (0,2) SU(2) gauge theory is, shifting y —
y — In A, 1n (2.49).

o & N e2(my —ma)? + e¥ (A3 — 21° + 8myms — 8u) + 16u — 6A3 + 8AZe ™V
dy? 4(ev —2)°

Defining the integrability variables as

K =0 (6.1)

% V2e = p (6.2)
we transform the equation as

d? (g — ) +¢e¥ (2629 —2+8q1q2 — 8p2) + 16p% — 12?0 + 16e*0ev

-+ =0 (6.3)
dy® 4(ev —2)? v
Equation (6.3) enjoys the symmetries:
Qy y—u, 0 —0, q1 — —q1, G2 — —q2
Q- y—uy, 0 =0 +im, Q1 — qu, q2 — g2, (6.4)
T : y_>y+27-mv 6_)67 qr — g1, q2 — g2, .
B y—=y, 0 —0, Q= 2, G = -
The fundamental regular solutions are given by the asymptotics:
Yo~ e O/ exp {—ee’%} Yy — —00
1 1 — g2 }
0 —F———exps — — 400
Vi = { 5 Y Yy (6.5)
1 1+4q1+92
Yoo~ ——==(e—2) 2 y—1n2.
2(q1 + q2)
We can generate new solutions by action of the symmetries as
op =08,
Yia = Qutbig 65
7/10,1 = Q+w0,0 ¢0,2 = wo,o .
Vg = Ep
and have the invariance properties
QJrz/}*,O = zﬁ*,(]7
O hyo =10, QF o0 = oo, (6.7)

Ep_o=v-0,  Ethpo,  EQuihyo=14p
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The solutions are normalized so that the wronskians among nearby &,k + 1 solutions
around the same singular point are

W[ k+17 } -
Wiy 1,¢40] =
W ltho 1, to] = (©68)
W)Jr 1 Y4 0} =
We can define apparently 3 @ functions
= Wlro, o], QP =W o,v0], QY =Wl o, o) (6.9)

but that they are indeed different @ functions and not merely differently defined wron-
skians should be shown. Define also the shorthand notation

QY (0) = QUW(, 241, %02, p)

QL(6) = P10, a1, 442, ) (6.10)
Qf)(e) = Q¥ (0, %q1, £, p) .
Qf(@) = Q(g) («9, +qo, iCILP)

We have the connection relations between y — +oco and y — —oo

Vo= —iQW (0 +im)_o + QY (O)y_,
by = —iQW (0 + im)_o+iQW (O .

As usual, taking the wronskian of the first with the second line we get the QQ system

(6.11)

1=QY QM0 +ir) — QWM (6 + im) Q™ (0) (6.12)
or, shifting ¢
W —ir/2)QM (6 + in/2) — QW (6 — in/2)Q' (0 + in/2) = 1 (6.13)
Similarly
Yoo = —z’@@)( 0)o0 + QY (0)t,
oy = —iQP (0 + im oo + iQY (0 + im)io
Q20 —in/2)QP (0 + ir/2) — QP (6 — ir/2)QP (6 + in/2) = 1 (6.15)

We notice the QQ relations for @ and Q) have the same form of those of the minimal mod-
els [2]. Also

(6.14)

U0 = —iQP (0)1ho0 + QP (0)¢04

_ () (3 (6.16)
Vg = —1Q(0)oo + 1QY (0)oa

from this we obtain the constraint
QP00 0) - QP 00" (0) =1 6.17)
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Let’s build then a Y system from the Q@ system (6.12).

QY O)QW (0 +im) =1+ QP (0 +imQV(8)
)

QYOQV O —im) =1+ QV0)QM (6 — in (6.18)
QY0 +im) V@V O)QV (0 — in) = 1 + QL0 + i) QP @)L + QL O)QV (0 — in)]
Define a Y function as
Y(0) = QW (6 — in/2)QM (0 + ir/2) (6.19)
We get a possible Y system as
YO +in/2)Y (0 —in)2) = [1+ Y0+ in/2)][1 + Y (0 — im/2)] (6.20)

6.2. Gravity dictionary of N, = (2,0) to D1DS5 circular fuzzball

We report here the dictionary with gravity given in [9]. Le’ts consider a D1D5 circular
fuzzball with radius a; and equal charges Q; = Q5 = L?. The smooth horizonless metric is
given by [97]

ds? = H' [(dv + wy di)? — (dt + wy do)?] +

(6.21)
+ Hy |d¢?sin®0(p® + a}) + e + 5 [dp® + (0 + a})df?] + p*dyp® cos® §
ay
with
L*a;sin® 6 L%a; cos? 0 L? o 5 o
Wp=—"—", Wy=—=-"—, Hy=14+—=—, 3¥;=p +ajcos b (6.22)
2y 2y 2y !
Setting - '
P = e witihtimedtimey R 5) S () (6.23)

the wave equation can be separated into two ODEs, which can be matched to that of SU(2)
gauge theory with N; = (0,2) fundamentals.

& (a3 = p*)" +4[02L3 = (a3 +p?) (L3 + p* (1 + K2 = 2L* + p*) )]
—Rolp) + 5 Ro(p) =0
dp? 4p? (a?—i—p2)
(6.24)
pe 2+12_4 2m2 4 (1 —v2) (m2 — x2 (1 + K2 + &2a2y2
£ 500+ O +1)" =4 [Pmg + ( 2x)( v X ( )] o) =0 (6.25)
dx? A (1=x%)
where y = cos# and we defined
Ly=army—Lw , Ly=aymy,—L*P, , & =w’— P (6.26)
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The gauge/gravity dictionary for the radial equation reads

[

a _ a?aﬂ u 14+ K2+ Q2 (a%—ZLQ) M2 _ ‘C¢:F['w, _ P (6.27)
o4 R 4 C R 2a; a?

while for the angular equation one finds
h? 4 7 R 4 T h 2 ’

In the BH limit a; = 0 the gauge coupling goes to zero while both masses diverge (¢sn =
mymy g is finite), the resulting theory is N, = (0, 0) with radial dictionary
4p*

w2LA

B2 gy = (6.29)

g (Lo w1+ K?—20°L%
at\ 2 ©ORt 4 ’
The Q. symmetries are compatible with the dictionary of the D1D5 fuzzball’s angular
equation:
2~2 2 ~2 2

A _ W w IHE S iy meEmy (6.30)

h? 4 h? 4 h 2
where K is the original PDE separation constant, m, and m,, are the projections of the total
angular momentum along two orthogonal 2-planes. Indeed:

Q. w— w, ay — —as, My — —Myg , My —> =My (6.31)
Q_ w— —w, ar —ay , My — My, My —> My - '

However, we expect that also for the radial problem where the symmetries do not di-
rectly apply, ODE/IM still can be applied, by changing to radial gravity parameters after
the ODE/IM derivation.

The authors [9] give dictionaries for both angular and radial problems of other geome-
tries, namely CCLP five-dimensional BHs, JMaRT and GMS geometries.

6.3. N; = 3 ODE/IM

Now shifty — y — 3 In As.

d? v+ {€2y (4(my — my)?) N ey (—87%2 + 32mymeo + 4A3msz — 32u)

o g " (6.32)
6.32
(A2 — 24A3m3 + 64u) eV (32A3mz — 4A3)  4AZe% 1
=0
+ 7,—L2 + 7:L2 + hZ 16 (€y . 2)2¢
Change the variables as
% L (6.33)
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d? 1 1
— d_y2¢ + {Z€2y(Q1 — @)+ € (_5 +2q1q2 + g3 — 2p2>
(6.34)
1
+ (€% = 6c"gs +4p%) + 7V (8e"qs — 4e™) + 462%—2@/}W¢ =0
oy
We have the discrete symmetries
Q. O0—0+im, y—y, Q= q, G2 qo, 3 — —q3
Q- 0—0, y—uy, Q1 — —q1, QG2 — —Qq2, qs — g3 (6.35)
T: 0—0, y—y+2m, G —>q, 92— 42, a3 — q3 .
E: 0—0, y—y, Q= q, G2—q, q3 — q3
Vo~ e 0/2+y/2+yas exp {_eﬁ—y} Ry — —o0
1 q1 — q2
i~ \/ﬁ exp {— 5 Z/} Ry = 400, Rq > Ng2) (6.36)
Yo,0 = . (e¥ — 2)%(1+q1+q2) y —In2
2(q1 + q2)
We can generate new solutions by
Yop ="y,
=0
¢+,1 +,¢)+,0 (637)
¢0,1 - Q—&-wO,O ¢0,2 - 77b0,0
Yy =Eig
and have the invariance properties
Q+¢—,0 = d}—,O )
Q" o=, Q" 00 = Y00, (6.38)
wa,o = 2/17,0 ) E¢o,o = zﬂO,O ) EQ+¢+,O = er,O
The wronskians are ‘
W g1, V— ] = —2i
Wt 1, =
e, ] = 639
W[?/Jo,la %,0] =1
WW+,1>¢+,0] =1l
Define
QULO) = W0t o] QP (0) = Wtoo b o] QP () = Wiy o,th00]  (6.40)
with ) 0
QYL(0) = QU 0, £q1, £, £a3) QYL (0) = QW(0, £q1, 242, Fa3) (6.40)

QP (0) = QP(0, +q1, g2, +¢5)  QPL(8) = QP (9, +q1, +4s, Fgs)
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and
QP (0) = Q¥ (0, g1, g2, +¢5) QYL (8) = QP (9, 41, +4s, Fgs)

A(3) (3) A(3) (3) (6.42)
Q:I:,:I:<9> = Q (67 i‘h; igh ig3) Q:I:,:F(e) = Q (97 :i:Q2; iglu :FQ3) .
We have the linear relations
Yoo =iQW, (O)er o — Q') (B)vs 6.43)
Yoy =iQW (0 +im)ro — iQY (0 +im)ihy s
and the QQ system is then (taking wronskians of both sides and shifting 0)
QY. (0 —in/2)QM_(0 + in/2) — QW (6 — in/2)QV_(0 + im/2) = 2. (6.44)
Similarly for Q®
Y_o= iQ(E,)Jr(@)%,o - iQf,)+(9)¢o,1 (6.45)
Yoy = iQP (0 + im)pop — iQP_ (0 + im)ib,
QY (0 —im/2)QP (0 + im/2) — QP (6 — in/2)QT (6 + im/2) = 2. (6.46)
Also for Q®
Vo= —Z'Q(E’,)Jr(e)%,o + Z'Qf,)Jr(@)%J (6.47)
77Z~)+,1 = —i@gﬁ(@)@/}m + Z'Q(j,)Jr(e)@Z)O,l
QY(0)QY.(0) - QL (0)Q%, (9) = 1. (6.48)

6.4. Gravity dictionaries for N; = 3
6.4.1. Schwarshild black holes

The ODE which governs the perturbation of Schwarschild BHs is the Regge-Wheeler equa-
tion

d, . d ) B
F) - Fr)2-6(r) + [w? = V()o(r) = 0 (6.49)
with I(l+1 2M
V(r)= f(r) (:; )+(1—52)F leN [ >|s] (6.50)
Changing variable as
4Me™Y
r=— (6.51)
VA3
the Regge-Wheeler equation (6.49) becomes the SU(2) N; = 3 quantum SW curve.
The dictionary of parameters to Schwarzschild asymptotically flat BHs is [6]
h=1 Ay =—-16tMw
W= —I(l+1) + 8M%? — % (6.52)
my=8—2iMw, mo=-—-s—2tMw, mg=-—-2iMw

The condition m; > Rm, means just Rs > 0.
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6.4.2. Kerr black holes
The angular Teukolsy equation for Kerr BHs reads

d o d 9 (m + sx)?
%(1—1')%4'(@75) _chx—i_sAlm—i_S_ﬁ s

Sim(7) =0, (6.53)

where 2 = cos 6 and s is the (minus of) spin of a perturbing field. Moreover
[=0,1,2---, with |m| <], (6.54)

where m € Z for integer spins and m € ; + Z for half integer spins. In the black hole
perturbation, the parameter c is related to the angular momentum « and the frequency w
by
C = OoW.

The eigenfunction S, () is called the spin-weighted spheroidal harmonics in the litera-
ture. Its eigenvalue ,A,, is determined by the regularity condition of ,S;,,(x) at x = +1.
For general s, I, m and ¢, no closed form of ;A4;,, is known so far. However, for ¢ = 0 the
spheroidal harmonics ,5;,,(x) reduces to the spin-weighted spherical harmonics .Y}, and
one has

sAm(c=0)=1(l+1) —s(s+1). (6.55)

The radial Teukolsky equation for Kerr BHs is
A(r)R"(r) + (s + D)A'(r)R'(r) + Vo (r)R(r) = 0, (6.56)
where A(r) = r* — 2Mr + o*. The potential is

K(r)? —2is(r — M)K(r)

vt = AW

— A, + diswr 4+ 2amw — o*w?, (6.57)

where K (r) = (r*+a*)w—am. The radial differential equation (6.56) has (regular) singular
points at r = ry := M + v/ M? — o2 corresponding to the Cauchy and event horizons. In
addition, (6.56) is supplied by the following boundary conditions

(7’+ _ r_)—l—s+iw+io+ eiwr+ (T _ r+)—s—io+ ].f r—ry,
R(r) ~ (6.58)
A(w)r—l—Qs-l-iweiwr if r—= oo ,
where .
o, = 2 %o (6.59)
- 5

Both the angular and the radial parts of the Teukolsky equation have the same singu-
larity structure as the confluent Heun equation.

For the angular part, we change the variable >z = (1+x)/2, and define y(z) := V1 — 22,S),,,(z) /2.
Then we obtain

y'(2) + Q(2)y(z) =0, (6.60)
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where Q(z) takes the form
1

The coefficients in @(z) are computed straightforwardly. Similarly, defining » = (r —
r_)/(ry —r_) and y(z) := A(r)*V/2R(r) for the radial part, we obtain the same form as
(6.60) and (6.61) with different coefficients.

For the angular part, we find [6]

1
R [ _ — 2 - —
A3 =16¢, u=—Amm —s(s+1)—c 7 (6.62)
m; = —m, Mo = M3y = —S.
For the radial part of asymptotically flat Kerr BHs, we have [6]

A3 = —16iwvV M? — a2,

1
U= —Ap, —s(s+ 1)+ (B8M?* - a*)w? — =,

4
my = s—2iMw, ms = —s—2iMuw, (6.63)
i(—2M%*w — am) , M ‘ 1
my = T = —22Mw—M2 — — zam—m.

When o = 0, it reproduces the identification in the Schwarzschild case by exchanging
ms <> m3. This relabelling comes from the fact that the Teukolsky equation at a = 0 does
not take the form of the Regge-Wheeler equation.
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7. SU(2) Ny = 4 or class S gauge theory, spin chains and
asymptotically AdS black holes

7.1. BTZ black hole

The rotating BTZ (Bafiados-Teitelboim-Zanelli) is the black hole of standard 2+1 Einstein-
Maxwell theory with a negative cosmological constant A [98]. In particular, the rotating
BTZ BH has line element: [99]

d2
dsQZ—thQ—i—%—f—TQ (dm—

TT_ 2
=) (7.1)

T
with

(r* —r})(r* —r?)

r2 '

For simplicity we have set the AdS radius to L = 1. For the BTZ BH =z is angular compact
coordinate such that » ~ z + 27. However, following [99] we will consider it as a noncom-
pact coordinate. The BTZ BH temperature 7', mass M, angular momentum .J and angular
momentum potential €2 are given by

F =

(7.2)

2 .2
T ="t 1= M=y24s2
T+ . (7.3)
J=2ryr_, Q=—.
r+
(We use the standard convention 8G' = 1). A two-dimensional CFT has two independent
modes, left-movers and right-movers, and one can introduce temperatures for each sec-

tors:

2nT
27T = = —r_
iy, 1—|—Q 7"+ T
27T
27TTR:17TQ:7‘+—|—T_
2 1 . 1 (7.4)
T T, Tg’
_Tr—Ti
C Tp+TL

In the standard convention, 77, — 0 corresponds to the extreme limit in the BTZ BH.
The authors [99] consider a scalar field perturbation of the form ¢(r)e~*“!*4=, The per-
turbation behaves as

1\ A- 1\ A+
¢~ A (—) + B (—) (r — o0) (7.5)
r r
with
AL =1=4v v=+v1+m2 (7.6)

where m is the mass of the scalar field ¢. According to the AdS/CFT dictionary the retarded
Green function is given by
B

G = —(2v) . (7.7)
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7.2. Naive ODE/IM construction

The equation for a minimally coupled scalar field ¢ in the background is

(w=9Qg2° - (w—g*1-2 -1)(1-2)

(1—2)0,((1 —2)0,) + (T e o=0 (7.8)
where we introduced the variable
r2 — 2
2= (7.9)

for which asymptotic infinity is located at = = 0 and the outer horizon is located at z = 1.
Asymptotically for » — 0 (spacetime infinity)

The solution with A, =1+ v is regular.
At
p_o~ 22 (7.11)
Near the outer horizon for > — 1
, —Qq
~ (1 — 2)E Y , 7.12
R e (7.12)
The solution with +i) is regular, since Sw < 0.
Pro~ (1—2)"™ (7.13)
Near z — o© 0
 oEiu _q-w
O~z i T (7.14)
the regular solution is ‘
Gy~ 2 (7.15)
The ODE (7.8) has symmetries
Q_ 2=z, w—ow, Q—=Q qg—q, T—>T, v—>—v, A=A, pu—pu
Q 2=z, w—=eTw, Q=e ™, qg—=q, T—=T, v=v A==\, p—p
Q. 2=z, w—=eTw, Qoe ™, qg—=q, T—-T, vov A=)\, [——u
(7.16)
We have N
Q—GL,O = ¢7,1 ~zT
Q_¢10 =10 (7.17)
Qf¢+,0 = ¢+,O
Ql¢7,0 = ¢—,0
Mpr1o=¢11~ (1— Z)_i/\ (7.18)
Ql(bJr,O = ¢+,O
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Qo_o=0¢_p
Qi1 = P10 (7.19)

Qo= g1~z

By transforming the dependent variable as ¢y = v/z — 1¢ we get the canonical equation

4e?mPT?(z — 1) + 2 [¢* (2 + 2 — 1) — 2qwQz + 472722 + w? + w?Q?(z — 1)]

O (=) + 167272 (2 — 1)222 ¥(z) =0
(7.20)
Define the normalized solutions
Y ! vz lei+ Y ! z IZA; z—0
_70 ~ 4 — 2 _71 ~ ’ _ 5
Va-2)0-5,) Va-2)0-5,)
1 1 ,
~ Vz—1(1 - 2)» ~ Vz—1(1—z)7% 1
Y10 T z—1(1-2) (O = z—1(1—2) z—
1 , 1 ,
~——\z— 1" ~——\z—1z7"
Yy o z—1z Yy =0 z—1z Z— 00
(7.21)
Wi 1,90l =i
A . .
W[wl,17 wl,O] = Zﬁ =1 (ConventlonaHY) (7.22)
Wty 1,140 = i—— = —i (conventionally)

NI

We can define the wronskians of the regular solutions as

Q*,l(wa q, Q? T7 V) = W[w*,(b 1/}1,0}
Q—,-‘r(w? q, Q? T7 V) = W[¢—,07 ¢+,0] (723)
Q1+ (w,q,Q,T,v) = W1 0,94 0]

By expanding ¢_ o and «_ ; in terms of ¢, o and ¢ ;

1/}—,0 - iQ—J(eiﬂwa 6i7rQa T7 V)wl,() - iQ—,1<w7 QJ T7 V)¢1,1

: im, | im . (7.24)
77Z}—,1 - ZQ—,I(e w, e Qa T7 _V)¢1,O - ZQ—,I (w7 Q7 T7 _V)¢1,1

and taking wronskians we obtain the Q@ relation with the @_ ; (by also suitably normal-
izing the wave functions):

Q_1(w, T, v)Q_1(e"w, ™A, T, —v) =14+ Q_1(e"w,e™ 0T, v)Q_1(w,Q, T, —v) (7.25)
By expanding ¢, and ¢_; in terms of ¢, , and ¢, ;

0= —Z'Qi#(eiﬂ'w’ emQ’ _Ta I/)er,O + Z‘Q77+(W, Qa T: V)¢+,1

_ZQer(e w, e Q7 _T7 _V)w+,0 + ZQ*,Jr(w’ Q7 TJ _V)er,l

1

V-,
V-
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and taking wronskians we obtain the Q@ relation with the @_ , (by also suitably normal-
izing the wave functions):

Q4+ (w0, QT )Q_(e"w, ™ ~T,—v) =1+ Q_ ("w,e™Q, -T,v)Q_ + (w,Q, T, —v) (7.27)
By expanding ;o and ¢, ; in terms of ¢, o and ¢, ;

Yro=—iQ14(e"w, ™ —T, V), o +iQ1 1 (w, Q, T, V)b 4
Y11 = _in,Jr(eQﬂ-in €2mQ, =T, V>?/f+,0 + Z'Q1,+(emwa eiﬂﬂa T, V)?/f+,1

and taking wronskians we obtain the Q@ relation with the @, . (by also suitably normal-
izing the wave functions):

(7.28)

Q14 (w, T, 0)Q; (2™ w, ™™, —T,v) =14+ Q1 1 (e"w, ™, —T,v)Q1 4 (e"w, ™, T, v) (7.29)

7.3. Exact expressions for () functions

For this simple theory we can actually get exact expressions for the @ functions as the ODE
in other variables reduces to a hypergeometric ODE, for which connection coefficients are
known to be rational combinations of Euler Gamma functions.
To see that, set the ansatz
¢ =221 — 2)P f(2). (7.30)

Then the field equation becomes the hypergeometric differential equation
2(1=2)0%f+[c— (1 +a+0b)2]0.f —abf =0 (7.31)

with

cm)=1+v=1+V1+m?

_cm) (14 Q) Ay w—gq

a(w7 g, Q? T7 m) - 9 + ArT (w - q) - 2 T 47TTL (732)
~c(m) | i(1-9Q) AL wHg

b(w7 q, Q7 Tu m) - 2 + AT (w + q) - D) + Z47TTR

with a + b = ¢+ 2.
We consider now the standard Kummer solutions w,,. Around 2z = 0 we have the regular
and irregular fundamental solutions given respectively by

wl(Z) - QFl(a7 ba & Z) )

7.33
wy(2) = 2SR (1+a—c,1+b—c2—cz2). (7.33)

Around > = 1 we have the regular and irregular fundamental solutions given respectively

by
ws(z) = 2F1(a,b,1+a+b—c;1—2),

c—a—b (734)
wy(z) = (1—2) oFi(c—a,c—bc—a—b+1;1—2).

We assume
R(ig) <0 (7.35)
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Around > = co we have the regular and irregular fundamental solutions given respectively
by
. 1
ws(z) = ez %Fi(a,1+a—c1+a—b; —) :
1 (7.36)
we(2) = €™ 2F1(b1+b—cl—|—b—a;)

It is easy to see that the normalized solutions we used for the ODE/IM construction of the
previous section are related to the Kummer solutions wy, ws, ws as follows

1 - 1
A (A
— A )l —=Ay - )\l =484
1 . 1
wl,O — m‘/z _ 1Z(1+V)/2(1 . Z)Mw3<2) _ mp(’z>w3( )
1 gl g—Qu . 1 . 14v  q—Quw
Yyo= me T 121 - )P (2) = ﬁe_mg_ T p(z)ws(2)
(7.37)
with
. 1—c¢ a+b-—rc
— L(+v)/201 _ \iA+L/2 —
p(z) =z (1—2) \/W[wl,wg] Wos i (7.38)
The @ functions are then defined as
1
Q—,l(quaﬁaﬂm) W 0,1/110] \/—\/ 1 1 A ) 2(2)W[1U1,’LU3](Z)
- - +
_WHTU_L]4¥W
Q- (w,q, 0T m) = W g, ] = ﬂ_¢ == W) (739)
- - +
7“1_1451/ q4¥w

Q14 (w,q, Q2 T,m) = Wi o,¥4 0] = e\/m—\/mp?(z)W[wg,%](z)

By Kummer’s connection relations we can eventually get the following exact expression
for the Baxter’s Q functions:

B 1 Fle=DI'(a+b—c+1)
Q*,l(wa q, Qa T> m) - \/ﬂ{i/(l N )(1 — A+) F(a)F(b) (1 C)
** e Dle=Da—bt1)
R e s M O R
_ € 1+V q4¥w (c—b)TriF(a —b + 1)F(a + b— C) _
Q14+ (w,q,2,T,m) = —21'#\/% e T(aT(a—ct 1) (a+b—c)

7.4. Poles skipping

The so called ”poles skipping” phenomenon can be summarized as follows [100, 101, 102].
At certain imaginary values of the frequency and momentum there is no unique ingoing
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solution at the BH horizon. As a consequence, near these points in Fourier space the holo-
graphic retarded Green’s function is no longer uniquely defined. Its values depend on
the direction in which we approach the special point. Such behaviour has been dubbed
“pole-skipping” as a line of poles intersects a line of zeros for the Green’s function.

The incoming wave is written as

Flc—Dl(a—c+1)T(b—c+1) Q1" "T(b—c+1)T(a—b+1)

Ws Ot [(—c+ D)I(a)T(b) w2 I'(a) T

B I'v)'a—v)I'(b—v)

~ T T T re)

(7.41)
The asymptotic behaviour at infinity is
A Ay
z 2 z 2

The Green’s function is then given by
JLw)IMNa—v)I'(b—v)

R = —204r°T,T 7.4
G S S IR (7.43)
We have the following poles and zeroes for the Green function. Left poles:
_ _ A W—q 2
a—v=a—c+1= 5 +Z47TTL__nL (7.44)
wr = q—i(2rTL)(A_2nY) (7.45)
Right poles:
B AL wtg
b—v=b—c+1= 5 +Z47TTR_ nh, (7.46)
wr = —q —i1(2nTR)(A_2n%,) (7.47)
Left zeros: A
s SR L S
a=— +i T, n; (7.48)
wr =q — Z(QWTL)(A+ + 271?) (7.49)
Right zeros:
b= — + Z47rTR = —ng (7.50)
wr = —q —i(27TR)(A4 + 2n%) (7.51)

I'(a) and I'(a — v) do not diverge simultaneously. Similarly also I'() and I'(b — v) do not
diverge simultaneously. Therefore poles skipping is given by combination of left poles
and right zeros

A A_

| A, ) A , (7.52)
zq:27rTR T+nR —27TTL 7+71L
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or right poles and left zeros

A A
w = 27TTR (7 +TL%> + 27TTL (7—"_ + ni)

| A A, (7.53)
1q =271TgR 7+n3 — 27Ty, 7+nL
This is exactly the result of [99], except that poles and zeros are exchanged.
Through the exact expressions for the @ functions, we can give an interpretation of
poles skipping in integrability as follows:

I'(b) ~ o0, and I'(a—c+1)~o0 (7.54)
mean
Q_J =0, and QL_,_ =0. (755)
Alternatively:
['(a) ~ 0, and I'b—c+1)~oco, (I'(c—b)=0) (7.56)
mean again
Q,,l - O, and Q]_’Jr =0 (757)

We see then that poles skipping in integrability corresponds to simultaneous zeros for two
@ functions. This is to compare with the general characterization of quasinormal modes
as zeros of a single @ function.

We seek now an alternative characterization of poles skipping which might be used
even when there is no exact analytic expression for the @ function. In particular in that
case poles skipping is expected to corresponds to simultaneous zeros of two @ functions,
but with different arguments. We check now the consistency of such characterizations.

The action of the symmetries on the hypergeometric parameters is

Qra=0b, Qb=a, Qc=c
Qa=a—c+1, Qb=b—c+1, Q.c=2-c¢ (7.58)
Qa=c—b, Whb=c—a, Qc=c

We notice that the poles skipping condition is invariant under the action of the sym-
metries 2, and Q_, but the action of the symmetry Q; makes poles of Gamma functions
become zero.

We have also

ws ~ Q_Q_ 1wy + Q_ 1wy (7.59)

and we find indeed

I'2—cl'(3—=3c+a+1b) 1

Qo= Tlat1l—cl(b+1-c) Ta+1l—cl(b+1—c)

(7.60)
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from which we notice that Q_@_; has the same poles-skipping zeros as @, . (poles of
I'(a+1—c)). We notice also that simultaneous zeros of @_; and Q_@_ ; seem at first sight in-
compatible with the Q@ system. However, in the Q@ system we have actually also Q,Q_ ;

which multiplies Q@ _; and cancels its poles-skipping zeros

el (c—a—0b+1)

AR VP

~T(a+1—-c)'(b+1-c¢)

while
'2—cl3—c—a-0») 1

Q0_Q_ ;1 ox — (1 —0b)I(1—a) - Q-1

7.5. Relation to gauge theory

We can relate (7.20) to Gaiotto’s opers for the three-punctured sphere [70]

—A—A+E +e/4 A—€2/4 E -4

_ 22 _
€OV (z—1)z * 22 (z —1)2 p=0
by
1 ie(w — ¢f2) ie(q — w)
=+-—vm? =4~ 7 =4 T
Co :i:2 m? + le, c == T Coo = £ T

However, such gauge theory is a non-Lagrangian...
By the change of variable » — 1/x we get the equation

eQd—21/J(x) N —4ct(x — V) — 4ctr — 42 (v — 1) + 22e® — xe® + egw(m) 0
dx? Az — 1)222

and make contact with the SW curve in the conventions of [103]
2 2 2
2 M my m3

Ysw () = (x — 1)x? i (x —1)%x * (x — 1)z
with

my = tice me = ¢ ms = %cg

The gauge periods are defined as integrals of the SW differential
A= \/ Yéw
among the branch points given by the roots

2*(z = 1) "y (x) = 0

which are oo and

2
—\/(—m% +m3 —m2)" —4dm2m32 +m? — m3 + m3

T =
2m?

2
\/(—m% +m3 —m2)” —dm?m?2 +m? — m3 +m2

Tog =
2m}
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(7.62)

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)
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SO we can write

A =y VA= )@ = ) (7.71)
x(z —1)
For example
/w 12 dz \ = 7mms (_\/x1 TIVI =@y — in/T1/T2 + ¢:sz:2) (7.72)

Eventually, one expects to be able relate the SW periods of this differential to the leading
order of the @ function

an(,Ol _ /0°° [\/(x—xl)(:c—xg) VT V(1 —m)(1 —xg)] d (7.73)

x(z—1) x? r—1

We not yet completed developing the details, though.

7.6. XXZ spin chain at the supersymmetric point and poles skipping

Following [44] we can construct a more proper ODE/IM construction by mapping the equa-
tion with only regular singularities to one with an irregular singularity, so that there is
indeed the Stokes phenomenon and we also can define a 7 function. For that ODE the
authors have a proper QQ and 7'Q system, from which they actually derive the ODE:
82

W@(w’, W'|A) + Ny (W', W' A) = U (w'; @)oo (w', @'|\) (7.74)
Then they transform its energy parameter ) into the independent variable « of an another
ODE with only regular singularities in that variable.

A =e2 (7.75)

They end up with the following ODEs (one for each independent solution ¢, of the original
ODE)

d? d
fe _ 61 cot (3u + 2¢)£ + (1 =9 fy =0
& f- df- 3 '
Tz 6n cot(3u + 2¢)% +(4—-9n7)f- =0
where ¢ = argw’ = —argw’. If n is an integer and ¢ = 0, these equations coincide with

those found by Stroganov for the XXZ spin chain with an odd 2n + 1 number of sites at
the supersymmetric point (anisotropy A = —1) [104]. Then by the procedure of [44] they
can associate with their solutions f, some proper @.(u) = @+(A) functions for the ground
state of such spin chain.

Now, we can transform easily ODEs (7.76) to the hypergeometric equation. Set

u = —éln(—z) (7.77)
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k a b c a—c+1|b—c+1
1 §+n 1+n | 2+2n —%—n -n

1 —%—n -n —2n §+n 1+n
1 -n %—n —2n 14+n %+n
1| 14+n §+n 24 2n -n %—n
1] 24n 1+n | 2+2n %—n -n

1 g—n -n —2n §+n 1+n
1 -n —%—n —2n 14+n %—1—71
1| 14+n | 24n |2+2n -n —5—n
k a b c a—c+1|b—c+1
4 %+n 1+n | 24+2n —%—n -n
42— —n —2n s+n 1+n
4 -n %—n —2n 14+n g—l—n
41 14n §+n 2+ 2n -n %—n
41 24n 14+4n |[24+2n %—n -n
4 g—n -n —2n §+n 1+n
4 -n —%—n —2n 14+n %+n
4] 1+4n | 34n |2+2n -n —2—n

Table 7.1: Values of the hypergeometric parameters for the XXZ spin chain with 2n + 1
number of sites at the supersymmetric point. We notice that for £ = 1, 4 there is
no poles skipping.
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and £ = 1,4. We get

d? kz? +2kz + k — 36n°z — 36nz — 922 — 182 — 9
427 3622%(z + 1)2

g=0 (7.78)

On the other hand, we can transform the hypergeometric equation in standard form in
normal form
d? 2cz(a+b—1)+ 1]+ z[—z(a — b)? — dab + z] — ¢*

- = 7.7
27 * 4(z — 1)222 g9="0 (7.79)

Sending also = — z + 1 we get the values of hypergeometric parameters in table 7.1. We
notice that we never get poles skipping points, as right zeros b = —n% and left poles a —
c+ 1 = —nf or left zeros « = —nj and right poles b — ¢ + 1 = —n/, never simultaneously
appear.’

7.7. SU(2) Ny = 4 gauge theory and its gravity counterpart
The quantum SW curve for SU(2) Ny =41s

d2
_ ﬁ2d_y2¢ - {— exp(2y) (q (¢ (m7 +m3 + mj +m3) — 24(myms + mamy)) + 16(q + 4)u) (7.80)
+ 4y/qexp(3y) (miq — mims(q + 8) + m3q — mamaq + 8u) (7.81)
+ 4y/gexp(y) (—mimag + miq — mama(q + 8) + miq + 8u) — (7.82)
—2
— 4qexp(4y)(m1 — my)? — 4q(ms — my)? exp(=2y) s+ (7.83)
4 (—4\/qcosh(y) + q + 4)

1 (Vaexp(—y) (gexp(2y) — 8y/gexp(y) +4exp(2y) + ¢ +4))
2 (—4/gcosh(y) + q + 4)2

+ Y =0 (7.84)

Viceversa, by letting ¢ — 4¢and y — In (\%) equation (7.80) becomes a Heun equation in
canonical form

2

— ﬁ2@ + 12— 1)z — g [—1-24 (mf — 2mymg +m3 — hQ) + mgq2 — 2mgmyq® + mig? — ¢*h?

(7.85)
+ 22 (m%q2 — 6mymaq + maq® +miq® — 6mamyq + mig® + (—q2 — 1) h? + 4qu + 4u) (7.86)
+ 23 (—2m%q + 2mymaq + 4mymy — 2m2q + 2mamyq + (g + 1)R* — 4u) (7.87)
+ 2 (2mimag® — 2m3q* 4 2mamag” + Amamaq — 2miq* — dqu + (¢ + 1)q52)] =0 (7.88)

17This at least holds for k£ = 1, 4, which is Stroganov’s case, but if  could be £ = 9 there would be some poles
skipping forn=0:a+n,b—c+1=Fnorb+mn,a—c+1=Fn.
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7.7.1. Naive ODE/IM
We have the symmetries

Q_: 7=74+1 =Y — 1T My —> My Mo —> Mo M3y —> —Ms3 My —> —M
Yy Yy 1 1 2 2 3 3 4 4 (7.89)

Q,: 7=74+1 y—y+imr my—>—mg Mg — —My Mg —> Mg My — My

The asymptotic solutions at y — Foo are

ho(ms — my ms — my . 8m2 + 8m?2 — 2mgmuq + 2mimaq — 16u — (4 + ¢)h?
o ST o [ Sy i) {1 L
(7.90)
N hf(my — m3) exp {m4 —m3 (y — Z,m_)} {1 L (8m3 + 8m? — 2mgmaq + 2mimaq — 16u — (4 + q)h?) }
Vg —mg 2h (8y/qh(my — m3 + h))
(7.91)
Ry - —0 (7.92)

hO(my — mg) mip — ma , _, (8m2 + 8m2 — 2mymaq + 2mamaq — 16u — (4 + q)h?)
DAL T T2) T 1 y
exp 57 (y +imT) +e Bah(mi —mz + 7))

(7.93)
hO(mg —my) mg—my ) —y (8m? + 8m3 — 2mymaq + 2mamaq — 16u — (4 + q)?)
+ /1Mo — M7 exp{ 2h (y+Z7TT)} {1+6 (Sﬂﬁ(mg — ma —I—ﬁ))
(7.94)
Ry — 400 (7.95)
The symmetries act on them as
1 =09 Qo =1_
(e} Yoo, +h_0=1v_p (7.96)
w+,1 = Q+¢+,oa Q*w+,0 = ¢+,0
The solution are normalized so that
W1, 9] = —i (7.97)
Wi 1, ¥y 0] =1 (7.98)
We can try to define a kind of @ function as usual as
Q1) = W4 0, ¥ 0] (7.99)

We notice there is no Stokes behaviour with an equation with only regular singularities.
That implies that the kind of @ function obtained through this ”naive” ODE/IM has 7 in
the parameter range (7' — 7) < 2. Besides we cannot define a 7" function. We have the
connection relations

V_ = —iQ(T + 1, =my, —mg, m3, my) 4 o + 1Q4(T, M1, Mo, M3, ma)thy

,l/}*,l == _ZQ(T + 27 —mqy, —Mo, —M3, _m4)w+,0 + ZQ(T + 17 my, Mo, —Mg3, _m4)¢+,1

(7.100)
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taking their wronskian we get s kind of QQ system

Q(7,my, ma, mg, ma)Q(T + 2, —my, — Mg, —M3, —1My)

(7.101)
- Q(T + 17 —Mmy, —Mao, M3, m4)Q<T + 17 mqy, Mo, —M3, _m4) - +1
One could try to define a Y function as
Y(T7 my,mo,Mms, m4) = Q(Ta —my, —Mg, —M3, _m4)Q(7—7 miy, ma,Mms, m4) (7-102)
so the Y system would be
[]' + Y(T + 17 —my, =g, M3, m4)][]‘ + Y(T + 17 my, M2, —Mg, _m4)]
(7.103)
- Y<7-7 my,mso,Ms, m4)Y(T + 27 —mqi, —M2, —Mg, _m4>
The @ function can be concretely computed as the limit
Q(Ta miy, Mo, MmMs, m4) = _Z hm M (7.104)
y=+oo by

7.7.2. Gravity realization

The Regge-Wheeler equation for the gravitational perturbation (with spin s) of the four
dimensional asymptotically AdS, (with cosmological constant A < 0) Schwarschild black
holes is

[f (T)d%f (r)d% +w -V (r)} o(r) =0 (7.105)
with o A
fr)=1-==~ grz (7.106)
and 1141 OM 4 — &2
Vi(r)=f(r) [ ( ; ) +(1—s?) (r—g — _65 A)] . (7.107)

After the redefinition ¢(r) = ®(r)//f(r) the ODE becomes in normal form as

W)+ U =0, Ul =g L - 2

(7.108)

which the potential which explicitly reads
1

_ 6 (A2 (2 (2 _E) _ AA2 4 2 2/(.2 2
U0) = S a5 A [0 (A2 (=52) (57 = 5) = 4A%) + 74 (I8A + 6AL® + 6AL + 3As? (7 — 5) + 18%)
(7.109)
— 6AM7r? (s* — 35% +8) + (—181% — 181) r* + 36 Mr (I> + 1 + s*) + M* (18 — 7232)} (7.110)

We want to map this equation into a Heun equation, which we can relate to the gauge
theory one (7.85). We start by changing variable as v = 1/r and we get
d2

b+ Q)d =0 (7.111)
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- 1

_ 201 A2\ 6 4 5 2 2 12 4

Q) = S A T or T 1802 (1= 45%) o + 0 (36°M + 361M + 36Ms%) + (~181% — 180) v
(7.112)

— 6AM (5" — 357 + 8) v + 02 (GAI2 4+ 6AL + 3A (5" = 55" + 6) + 18%) + A? (— (5" = 557 + 4))
(7.113)

We notice that for s = 1,2 the constant term in the denominator is zero and the v? in the
denominator simplifies, so for s = 1,2 v = 0, that is » = oo is not a singular point and the
equation has only 4 regular singularities, so it is a indeed a Heun equation like (7.85). For

s = 0 instead it has 5 regular singularities.
The 4 regular singularities for s = 1,2 are

Voo = OO

§/—972AM2 + \/(54 — 972AM?)? — 2916 + 54 1 1

vo = 3 + + —
18vaM 22/3 01 §/7972AM2 + \/(54 —972AM?2)% — 2916 + 54 M
(1-iv3) :\3/7972AMQ +1/(54 — 972AM2)? — 2916 + 54 L4iv3 L
v = — 3 — + —
36V2M 222/3 )\ f/—Q?QAM2 + \/(54 —972AM?2)? — 2916 4 54
(1 + ,\/g) f/—972AM2 + \/(54 — 972AM?2)% — 2916 + 54 i3 1
e 36 /2M s > "o
292/30f \/7972AM2 + /(54 — 972AM2)> — 2916 + 54
. (7.114)
So that the denominator of Q(v) is proportional to
U3—LU2+A 2:[(1)—1))(@—@)(1)—1))]2 (7.115)
oM 6M ° ' ? '
and we can write it as
1 4
Q) = Cpv" (7.116)
) = = =P 2
We can now change variable as v" = v — vy, so that the potential becomes
A / 1 - A
Q:1(v) = DI (7.117)

[V (v + vy — v1) (V' + vg — vg)]

n=0
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with coefficients

(7.118)
Cy = Z Ckvg ?
Z “k(k —1)(k — 2)&vh 3
Now we can change again variable as v” = UIUTUD so that the potential becomes
. 1 1 .
m o_ AT 7.119
Q2(v") [ (v = 1)(v" — a)]? (v — vg)* nz: Cpv ( )
with
é;; = é;(?)l — Uo)n (7120)
and B
o= 2" % (7.121)
V1 — Vo

Comparing with (7.85) we have v” = z and a = ¢q. We give the dictionary implicitly, without
making explicit the gravity parameters, since they would be otherwise very cumbersome
expressions.

o = —q*(vo — v1)* (M3 — 2mgmy +mj — h?), (7.122)
' = q(vg — v1)* (—2m1m2q + 2m2q — 2mamyq — dmamy + 2miq — qh* + du — hz) , (7.123)
'y = —(vo —v1)* (miq® — 6mimag + maq® +miq® — 6mamag + miq> — ¢*h* + dqu + 4u — h?)
(7.124)
'y = (vo — v1)* (2771361 — 2mymaq — 4mymy + 2miq — 2mamaq — qh* + du — hz) , (7.125)
"y = —(vo —v1)* (m} — 2mima + m3 — h?) (7.126)

7.7.3. Poles skipping

The Green function is contructed from the » — oo asymptotic, for which we can the exact
expression

—i—= = Q(7,m1, ma, mz,my) — Q(7 + 1, —my, —my, ms, m4)L’O (7.127)

(LN
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with ¢, o — 0 as r — oo. So the Green function is proportional to

Q(T + ]-7 —My, —My, M3, m4)

GRr x
f Q(T7m17m27m37m4)

(7.128)

We recover thus the interpretation of poles skipping as simultaneous zeros of @ functions.
However, now we have @ functions with different parameters, as for the Heun equation
connection coefficients are not known explicitly as for the hypergeometric equation. The
consistency of this characterization with the other is explained in section 7.4.
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A. Fibre bundles and connections in gauge theory

In this appendix we show how some differential geometry and differential topology no-
tions are applied to gauge theories in physics. We follow mainly [105], [106].

Usually, one thinks at a field as map ¢ : M — V from space-time to a vector space V; or,
as in the non-linear o-model, to a quotient group: ¢ : M — G/H. However, a more general
kind of situation is when the space in which the field takes its values varies form point
to point of spacetime: then we have a family (bundle) of target spaces NV, and ¢(x) € N,.
In Yang-Mills theory we have a bundle of copies of the internal symmetry group, one for
each point in spacetime.

A.1. Fibre bundles in general

Definition 1 A bundle is a triple (E,n, M) where E and M are topological spaces and r :
E — M is a continuous map.

The space E is called total space, bundle space or, loosely speaking, bundle; M is the base
space; 7 is the projection and we can assume it to be surjective. We often denote the triple
with a greek letter ¢ or . The inverse image n~!(x) is the fibre over x € M.

In all existing applications in physics the bundles that arise have the property that all
the fibres 7! (x) are homeomorphic to a common space F, called fibre of the bundle. This
kind of bundles are called fibre bundles.

A bundle ¢ = (E, 7, M) with fibre F it is often written as F — E - M or

F— F

|7

M

Definition 2 A cross section of a bundle (E,7; M) isamap s : M — E such that the image
of each point x € M lies in the fibre n~'(x) over z:

mTOoSsS = ldM (Al)

Definition 3 A bundle map between a pair of bundles (E, 7w, M) and (E', 7', M’) is a pair of
maps (u, f), withu : E — E', f : M — M’ such that following diagram is commutative:

E ——> F

Lok

M%M’

The pair of maps (u, ) maps fibres into fibres:

Ve e M u(r H(x)) C 71 (f(z)) (A.2)
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Since 7 is surjective, the map f is completely determined by the map w.

An isomorphism between a pair of bundles (£, 7, M) and (E’, 7', M’) is bundle map (u, f)
from (E, 7, M) to (E’, n', M’) for which there is another bundle map (v, ') from (E’, n', M’)
to (E, 7, M) such that:

vou=1idy v ou=idg
flfof=idy  fof=ida

Two bundles ¢ and n with the same base space M are said to be locally isomorphic if,
for each » € M, there exists an open neighborhood U of = such that ¢|; and 7|, are U-
isomorphic. The relation of being locally isomorphic is an equivalence relation on the set
of all bundles over the topological space M.

Definition 4 A fibre bundle (E,n, M) is trivial if it is M-isomorphic to the product bundle
(M x F,pr,, M). It is locally trivial if it is locally isomorphic to the product bundle.

We can now give an alternative definition of fibre bundle. A triple (F, 7, M) is a fibre
bundle with fibre F if and only if for each = € M, there exists an open neighborhood
U c M of x and a homeomorphism % : U x F — == }(U), called trivialization, such that

7(h(z,y) =2 zelUyelF (A.3)

The idea in fibre bundle theory is to study spaces which are not globally products but
only locally products.

An example of bundle i the tangent bundle. The base space M is a generic differentiable
manifold, the total space is given by the union of all tangent spaces 7,,(M) to all points p
of M:

T(M) = | J T,(M) (A.4)
pEM
the fibre at any point p € M is the tangent space 7,(M), the projection = : T(M) — M
associates to each tangent space 7,,(M) the point p to which it is attached.

A.2. Principal bundles and fundamental gauge bundles

Definition 5 A bundle (E,n, M) is a G-bundle if E is a right G-space and if (E,n, M) is iso-
morphic to the bundle (E, p, E/G):

E— 5 F

|7 p

ML BiG

Ifthe action of G is free, the G-bundle is said to be a principal G-bundle. G is called structure
group of the bundle.
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The fibres of the G-bundle (the orbits of the G-action) in general are not homeomorphic
to each other, but when the action is free they are: a principal G-bundle is a fibre bundle
with fibre G.

For example, let H be a closed Lie subgroup of a Lie group G. H acts on the right on
G with a free action; the orbit space is the space G/H of cosets. Thus we get a principal
H-bundle (G, r,G/H) whose fibre is H.

In Yang-Mills theory with internal symmetry group SU(2) the bundle (at least at instan-
ton number one) is a principal SU(2) bundle whose base space is S%, the one-point com-
pactification of Euclidean spacetime: S — S7 — S%. It is not a product bundle since S is
not isomorphic to S3 x S4.

Consider an m-dimensional differentiable manifold M. A linear frame at a point x € M
is an ordered set (by, bo, ..., b,,) Of basis vectors for the tangent space 7, M. The bundle of
frames B(M) of M is the principal bundle with M as base space, the set of all frames at
all points of M as total space, the function = : B(M) — M that takes a frame into the point
in M to which it is attached as projection map. The free right action of GL(m,R) on B(M)
is defined by:

(b1,b2, s bm)g = (D bjngi1s Y binGinzs e Y bjuiGjm) (A.5)

J1=1 Jj2=1 Jm=1

for all g € GL(m,R).

Definition 6 A bundle map (u, ) between a pair of principal G-bundles (P, 7, M) and (P', ', M’)
is a principal bundle map if u is G-equivariant in the sense that:

u(pg) =u(p)g pe€P,ged (A.6)

The set of all principal bundle maps from a principal G-bundle to itself form a group. It is
called the automorphism group of the bundle.

If A is the set of all Yang-Mills potentials of the theory, the gauge group ¢ is the group
of automorphisms of the bundle. The physical configurations of the theory are identified
with the orbits of the action of the gauge group, that is, they are elements of the quotient
space A/ M. It can be shown that this action is free and therefore .4 is a principal G-bundle
with base space A/ M.

Theorem 1 If¢ is the product bundle (M x G, pr,, M), then the automorphisms u : M xG —
M x G are in one-to-one correspondence with the maps xy : M — G such that u(x,g) =

(z, x(7)g)-

In other words, if the bundle is trivial Aut(¢) is isomorphic to the group C*>°(M, G) of the
usual smooth gauge transformations.

Theorem 2 A principal G-bundle (P, w, M) is trivial if and only if it possesses a continuous
cross-section

In Yang-Mills theory, choosing a cross-section of the bundle G — A — A/G corresponds
physically to choosing a gauge. This principal bundle is not trivial and hence no smooth
cross-sections exist. This is responsible for the Gribov effect: there is an intrinsic obstruc-
tion to choosing a gauge that works for all physical configurations.
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A.3. Connections and Yang Mills field

Let G be a Lie group that has a right action ¢ — ¢, on a differentiable manifold M. Then
the vector field X“ on M induced by the action of the one-parameter subgroup ¢ — exp ¢4,
A € T.G is defined as:
d
XMf) = d—f(p exptA) (A.7)
t t=0
where f € C*(M), and §,(p) has been abbreviated to pg.
The map i : A — X*, which associated to each A € T,G the induced vector field X4
on M, is a homomorphism of group of left invariant vector fields L(G) ~ T.G into the
infinite-dimensional Lie algebra of all vector fields on M VFlds M:

(X4, XP] = xAB (A.8)

forall A, B € T.G ~ L(QG).

Consider a principal bundle P with fibre G. Both the Lie group G and the base space
M are differentiable manifolds, so P also is differentiable manifold. Therefore we can
consider the tangent and cotangent bundles 7P, T*P. We decompose each tangent space
T,P (a point of TP) into vertical and horizontal subspaces:

T,P~V,P&HP YpeP (A.9)
V,P ={r € T,P|m.m1 =0} (A.10)

Thus any 7 € T,P can be decomposed uniquely into a sum of vertical and horizontal
components ver(r) and hor(r).

Definition 7 A connection in a principal bundle G — P — M is a smooth assignment to
each point p € P of a subspace H,P of T,P such that

T,P~V,P® H,P VpecP (A.11)
dp«(HyP) = H,yP YgeG,peP (A.12)
A connection can be equivalently characterized as a T.G-valued one-form w on P defined as
wy(7) =i (ver(r)). (A.13)
and with the following properties
w(T) (XM =A Vpe P AcT.G (A.14)
(0gew)p(T) = Ady—1 (wy(7)) , VT € T,P (A.15)
T € H,P <= wy(r)=0 (A.16)

Leto : U ¢ M — P be alocal section of a principal bundle G — P — M which is
equipped with a connection one-form w. The local o-representative of w is the 7.G valued
one form on the open set U ¢ M given by o*w. o*w corresponds to the Yang Mills field:

m dimG
(C*w), = A(z) =Y Y Al(2)E,(dat), (A.17)
p=1 a=1
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where {Fy, Fs, ..., Eqim ¢} 1S @ basis set for 7,.G. In particular:
A, (z) = (0"w).(0,) (A.18)

Theorem 3 Let h : U x G — 7 '(U) C P be the local trivialisation of P induced by o:
h(z,g) = o(z)g. Let (o, ) € T (U x G) ~ T,U @ T,G, the local representative h*w of w on
U x G can be written in terms of the local Yang Mills field o*w as:

(W'w)(ag) (e, B) = g7 (07 wa) () g + Z,4(B) (A.19)

where = is the Cartan-Maurer T,.G-valued one form on G.

Thus the connection one-form w can be decomposed locally as the sum of a Yang-Mills
field on M plus a fixed T.G-valued one-form on G. Hence, at least locally, specifying a
connection is equivalent to giving a Yang-Mills field.

There are two ways of interpreting a gauge transformation: the active view and the pas-
sive view. According to the active view, a gauge transformation in the principal bundle
G — P — M is any principal automorphism of the bundle. In fact,let¢ : P — P,¢ €
Aut (P) and let w be a connection on P, then ¢*(w) is a connection. ¢*(w) is the gauge trans-
form of w under the gauge transformation ¢. On the other hand, in the passive view, a
gauge transformation is simply a change of coordinates of the fibre, as the following the-
orem describes.

Theorem 4 Let o, : U, — P and o, : Uy, — P be two local trivialisations with U, N U, # (),
thus AY = otw and A = ojw. IfQ : Uy N Us — G is the unique local gauge function defined
by:

oo(x) = 01(x)Q(z) (A.20)

the local representatives are related on U, N U, by:

AD(z) = Q) AD (2) Qz) + (°E) . (2) (A.21)

i v

If G is a group of matrices, Q*= = Q~1dQ, therefore:
AP (2) = Q(z) AV (2) Q) + Q(2)10,(2) (A.22)

The previous equation relates two Yang-Mills fields, whose regions of definitions may
be different. One can recover the usual equation of the gauge transform by considering
an active gauge transformation ¢ : P — P, which induces a transformation A — o*(¢*w) =
(¢ o 0)*w. There exists some 2 : U — G such that, for all z € U, o(z) = ¢ o o(x)Q2(x), then it
follows that:

Au(z) = Q) A () (z) + Q(2)0,Q(x) 7! (A.23)

Only if the bundle is trivial (A.23) refers to a globally defined 7.G valued one form on
M. If the bundle is not trivial, one must cover M with local trivializing charts, then local
Yang-Mills fields associated with any pair of overlapping charts U;, U; will be related on
U; N U; by (A.22), with corresponding gauge function w;;(x) such that o;(z) = 0,(2)Q;;(x).
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A.4. Associated bundles and matter fields

Let X and Y be a pair of right G-spaces (they can also be both left G-spaces or one right
and one left). The G-product of X and Y is the space of orbits of the G-action on X x Y.
Thus we define an equivalence relation on X x Y: (z,y) ~ (2/,7/) if there exists g € G such
that 2/ = xg and ¢y = yg. The G-product is denoted X x Y and the equivalence class of
(x,y) € X XY [x.9].

Definition 8 Let ¢ = (P, m, M) be a principal G-bundle and let F be a left G-space. Define
Prp = P x¢ F where (p,v)g = (pg, g~ 'v) and define a map «r : Pr — M by 7r([p,v]) = 7(p).
Then ¢[F] = (Pp,7r, M) is a fibre bundle over M with fibre F that is said to be associated
with the principal bundle £ via the action of the group G on F.

In fact, it can be proven that for each » € M, the space 7' ({x})is isomorphic to F.

LetV=R"®QR"® ---@R"® (R")*® (R™")*® - ® (R™)* where the first tensor product
is taken £ times and the second [ times, let a € GL(m, R) act on v € V by a representation
p: GL(m,R) — AutV as follows:

(p(a)v)ﬁ::?k = (deta)” Z Z a'l, ilkl ]11. aj:kvﬁ:::lzlk (A.24)

E1..ki=1hy.. h=1

The associated bundle to the bundle of frames B[V]| = B(M) Xgrmr) V is the bundle of
tensors densities of weight w, contravariant rank k and covariant rank [. A particular case
is tangent bundle (A.4) illustrated above.

A vector bundle is an associated bundle in which the fibre is a vector space. All ten-
sor bundles are vector bundles. The space I'(E) of all cross-sections of a vector bundle
(E,m, M) is equipped with a natural module structure over the ring C(M) of continuous,
real-valued functions on M, that is:

(V1 + o) () = th1(x) + o) Vo€ M, ¢,y € I'(E) (A.25)
(f)(x) = f(@)p(z) VeeM,fel(M)yel(E) (A.26)

In Yang-Mills theory, matter fields (that is, all fields with the exception of the Yang-Mills
field) have the property that they belong to some vector space V which is acted on by the
group G via a representation p. Matter fields are identified with cross sections of various
vector (tensor) bundles associated with Yang-Mills principal fibre bundle.

Let (u, ) be a principal bundle map between a pair of principal G-bundles ¢ = (P, w, M)
and ¢’ = (P, «', M'). An associated bundle map between the associated bundles P x; F' and
P' x ¢ F can be defined by ur([p, v]) = [u(p), v]. A vector bundle map is a bundle map (u, f) in
which the restriction of v : £ — E’ to each fibre is a linear map. An automorphism of an
associated bundle ¢[F] is a bundle map ur defined by ur([p,v]) = [u(p),v] where u € Auté
is an automorphism of the principal bundle.

Theorem 5 If (Pr,7r, M) is an associated fibre bundle then its cross sections are in bijective
correspondence with maps ¢ : P(§) — F that satisfy ¢(pg) = g '¢(p) Vp € P(§),g9 € G. Let
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i, : I — 7' ({z}) be defined by i,(v) = [p,v], then cross sections i) and maps ¢ are related by:

Vy(x) = [p, 9(p)] (A.27)
%(P) iy ((x)) (A.28)

with p € 7= '({z}).

An associated fibre bundle ¢[F] is trivial if its underlying principal bundle ¢ is trivial.
Ifo:U c M — P( is alocal trivializing cross section of the principal bundle ¢, the
local representative ¢, : U — P of a section ¢ of P is defined by:

Yu(z) = dy(o(x)) (A.29)

With these definitions, we can understand how gauge transformations act on the matter
fields of the system. If o; : U; — P and o, — P, are two local sections of P with U; N U, # 0,
then there exists some local gauge function Q) : U; N U — G such that oy(x) = o1(2)Q(x) for
all z € Uy N Us. Then

() = 6y (02(2) = du(01(2)22)) = Q7 (@) dy (o1 (2)) (A.30)
Then the local representatives are related by the gauge transformation:
Yo, (2) = z)¢u, (z) (A.31)

A.5. Parallel transport and covariant differentiation

Let us consider again a principal bundle P. =, : H,P — Ty(,)M is an isomorphism, there-
fore:

Definition 9 To each vector vector field X on M there exists a unique vector field X" on P
, the horizontal lift of X such that, for all p € P,

7T*<X;) = Xﬂ(p) (ASZ)
ver(X;) =0 (A.33)

Horizontal lifting is G-equivariant:
8q. (X)) = X, (A.34)

Let o be a smooth curve that maps a closed interval [¢,b] C R into M. A horizontal lift
of ais a curve o' : [a,b] — P which is horizontal (ver|[a'] = 0) and such that 7(a'(t)) = a(t)
for all ¢ € [a,b]. For each point p € 7~!'{«a(a)} there exists a unique horizontal lift of « such
that o' (a) = p.

Definition 10 Let « : [a,b] — M be a curve. The parallel translation along « is the map

7 {a(a )}) 7~ '({a(b)}) obtained by associating with each point p € 7~*({a(a)}) the
point o' (b) € ({a(b)}) where o (a) = p.
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Given the associated bundle ¢[F] = (Pr, 7, M), the vertical subspace of the tangent space
T,(Pr), is defined as:
V;/(PF) = {T c Ty(PF) | Tp«T = 0} (A35)

Letk,: P — Pr, v € F be defined by £,(p) = [p,v]. Then the horizontal subspace of T,
is defined as:

Hipo)(Pp) = ko (H,P) (A.36)
Leta: [a,b] = M, [p,v] € 7z ({a(a)}), o' such that a'(a) = p, then the curve
ap(t) = kuo(a'(t) = [a' (1), v] (A.37)

is the horizontal lift of o to Pr that passes through [p,v] at t = a. The parallel translation in
the associated bundle is the map 7 : 7' ({a(a)}) — 7' ({a(b)}).

Definition 11 Let P, be a vector bundle, ) : M — Py, be a cross section, « : [0,¢] — M be a
curve in M such that «(0) = xo. The covariant derivative of ¢ in the direction « at x is:

Vot = lim, g (TW(O‘“)? - wm)) e ' ({zo}) (A.38)
In a local bundle chart, it can be shown that:
d “ dat
(Vat) = (o) (o)) = D @olan) + Ayl ) (439

t=0 p=1 t=0

If v € T, M the covariant derivative of the section along v is defined by V,u = V1,
Va € [v]. Analogously, if X is a vector field on M the covariant derivative along X is the
linear operator Vy : I'(P/) — I'(Py) defined by:

(Vxv)(z) = Vx, ¢ (A.40)
A particular case is when V, = V,,:
(Vu) (@) = Ouip(x) + Ap(x) () (A.41)
The linear operator Vy : I'(Py) — I'(Py) possesses also the following properties:
Vx(fy) = fVx¥) + X(f)Y (A.42)
Vxiyy = Vx(¥) + Vy () (A.43)
Vix(¥) = fVxi (A.44)

A.6. The curvature two-form or gauge field

Definition 12 If w is a k-form on a principal bundle space P(¢), the exterior covariant
derivative of w is the horizontal (k + 1)-form Dw defined by:

Dw = dw o hor (A.45)

If w is a connection one-form on P(¢), the curvature two-form of w is defined as G = Dw.
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Theorem 6 If X Y are arbitrary vector fields on P(¢) we have, for all p € P(¢) the Cartan
structural equation:
Gp(X,Y) = dwp(X,Y) + [wp(X), w,(Y)] (A.46)

If{E\, ..., Egimc} 1S a basis for the Lie algebra T.G, w = w*FE, then the equation becomes:

dlmG
@ — duw® + = Z Clwb AWt (A.47)

bcl

If o : U — Pisalocal section of the principal bundle, the local representative A = o*w is
supplemented with the local representative F' = ¢*G. Then F* = dA® + zg‘lj“f Ce AP A° or

be tptty
dimG@
Fo = 5 — AL+ ) CLAb AL (A.48)
b,c=1
The Bianchi identity holds
DF =0 (A.49)

Ifo, : Uy — Pand o, : U; — P are a pair of local sections with U; N U, # (), there exists
some local gauge function Q : U; N U, — G such that oy(z) = o1(2)Q(x). If FY = 071G and
F® = 3G it can be shown that:

Ff) () = Q(x)_lFﬁ) (2)Q(x) (A.50)

Introducing the dual gauge field

1
*Fw/ = 56;11/(1617&/8 (A51)

we can express the pure Yang-Mills action as

S— / %ltr(FWF“”) _ / tr(F A* F) (A.52)
M M
form which the Euler Lagrange equations follow:
D*F =0 (A.53)

Thanks to the Bianchi identities If one can find a connection A such that F' is propor-
tional to xF":
F=XF (A.54)

then the Euler Lagrange equations are automatically satisfied. Instantons are such solu-
tions with A = +1 in Euclidean space, A = +i in Minkowski space. The so called istanton
number is the integer k& which labels the forth cohomology group

ke HY(M,m3(S?) ~Z (A.55)

where 73(5%) = Z is the third homotopy group of the three-sphere.
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B. One-step large energy/WKB recursion

This Section contains a general two-fold result concerning the (modified) Schrodinger
equation: an efficient technique of one-step-recursion for computing the asymptotic ex-
pansion of the wave function/periods, for high energy and small Planck constant. In the
Section 4.3, we will apply this result for efficiently compute the NS-deformed periods
modes (4.107), while in section 4.2 we will apply to the computation of the local integrals
of motion.

B.1. Large energy expansion

Let us first start by the large energy expansion of the wave function which we will apply
for computing the local integrals of motion for Liouville theory in section 4.2. Consider a
general modified Schridinger equation, with energy 2 which multiplies the modification
¢(z) and potential v(z)

[+ vt () bota) = 0 (B.1)

By the transformation dw = /édz, x = /¢, the modified Schrédinger equation can be
transformed into an ordinary Schrodinger equation

d? 14" 5 2
{—W+U(w)—e29}x(w) =0, U:%+Z%_1_62_3 : (B.2)

Asusual, we define II(w) = —i-L In y(w) = Y7 | e "II,(z) (the last equality is asymptotical
for large energy, R0 — +o0o) satisfying the usual Riccati equation
JdI(w)

I (w) — i T = e? —U(w) (B.3)

which is solved by IT_; = 1, I, = 0, IT; = —%U and the recursion relation for the high
energy modes'®

1 1 dl,
Hn+1 = +§ {ZW dx — ZHmHn—m} n = 1,2, e (B4)

m=1

Eventually the wave function ¢ = (¢)~'/*y can be written and then expanded at large
energy R0 — +oo

W(z;0) = ! exp{i/x Mﬂ(x’)dx’} .1 exp{i :i e /w \/Mﬂn(x')dx'},

V() V()
(B.5)
18Equation (B.3) is solved also by the other solution generated by IT_; = —1, Iy = 0, Il; = %U, with a

recursion given by (B.4) with a relative minus sign.
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from which we can read off the quantum momentum of the (modified) Schrodinger equa-
tion (B.1):

o0

Plx) = —zi In o (x + Vol = e P(a) . (B.6)

n=—1

Then, we split I1(z) = [T,44(z) + epen () into odd and even n powers. In terms of even and
odd part, the Riccati equation becomes splitted in two equations

dHeven

dw
dIToaq

dw

From the latter equation emerges that Ileyen 1S a total derivative

Hgven( ) + Hodd( ) i = — U(w) (B.7)

2I1eyen (33) IToaq (w) —1

=0 (B.8)

1 d
Ileyen = §d_ In Iloqq , (B.9)

which becomes irrelevant when integrating under special circumstances, for example on
the real axis with suitable asymptotic conditions or on a period. Forgetting about the even
modes II,, (total derivatives), an important fact happens for the large energy expansion
of (B.2), i.e. the arising of the Gelfand-Dikii (differential) polynomials, R,,[U] [107].

B.1.1. Gelfand-Dikii polynomials

To see how this happens, we substitute I1even in equation (B.7), obtaining (we use the prime
’to indicate the w derivative)

We define the function R as the algebraic inverse of I,4q

1
R(x) = (B.11)
(=) Hogqa ()
such function R(z) expands asymptotically for # — 0 in terms with some modes R,, defined

by

Z Ry, (x)e et (B.12)

with Ry, = 1. Continuing the previous calculations, by (B.10) we obtain the function R(z)
satisfies the equivalent equation
—2R'"R+R?*=4(* —~U)R* — 4 (B.13)
We apply the w-derivative and find
R"=—-4(e* —U)R +2U'R (B.14)
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In terms of the modes R,, this equation means a one-step recursion relation (we restore
I d

T dw

dR, 1 1 &3 dR, 1dU
- -2 R +U ——R, B.15
dw 4 dw3 + dw + 2 dw ( )
or, in terms of the z variable (now ' = 1)
dR, 11 & 3¢ d? 3¢ 9 ¢*7d
+1:____ n+_£_Rn+[E+_¢___¢_]_ n
dz 4 ¢ da’ 8 2 dx? ¢ 8¢* 16 p3ldx (B.16)
[10/_ 1U§Z5/ 1¢///_ 9 ¢//¢/ 15¢’3i|R '
2¢ 2¢2 8¢2 16 ¢3 3241 "
with initial condition R, = 1.
The first Gelfand-Dikii polynomial are [107]
Ro[U] =1 (B.17)
1
R[U] = =U (B.18)
2
3 1
RﬂUyngQ—gU” (B.19)
3, 11 a2 1 1dod
e (o ——— — B.2
8U 8¢d$2U+16¢2d$d9&U (B-20)
R [U] — EUS—EUQ—EUHU—I—LUW (B 21)
K 16 32 16 32 '
1 /dU\? 1 > 9 g
:3 3_3_ _U _3_ _U+id_xU_U (B.22)
16 32¢ \ dz 16¢ dz2 ' 32¢% dx
1 1 d4 dé 3 1 29 19 (92y2 42
QLAY SEAUr LEE 1 (¢ (8.23)
3292 dat 32 ¢ da? 16 ¢ 128 o' lda?
+ __dL3_|_ 3 dx dx? _l(dz) i|_U (B24)
64 ¢* 128 ¢* 64 ¢° ldx
_ﬁ 4_% ’2_§ 277N 2 "2 E 1T 1 (4)
RifU) = 25U = —UU? = U0 + U + U0 + S UU
1
——y® B.2
128U (B-25)

It can be proven (see for instance [108]) that the Geldand-Dikii polynomials R,, are pro-
portional to the modes /¢(x)II,, ; up to a x-total derivative:

-1

ena(?) = 205

R,(x) + %(local fields). (B.26)

The advantage of using the equivalent R, integrands (which are equivalent under in-
tegration, if one can neglect total derivatives) is that their recursion (B.16) is far simpler
than that (B.4) for the original integrands P,,_;. In fact, in (B.16), to compute the n + 1-th
term, it is sufficient to know only the first preceding n-th term, not all the preceding, as
in (B.4).
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B.1.2. Equivalence proof for the energy-WKB integrands

In this paragraph we report the proof of (B.26) which is in [108]. Define k& = ¢ for simplic-
ity of notation. By definition II,4,; is expanded as

Iy,
Moaa(w) = k + Z — 1_1 , (B.27)
while R = ;7 is expanded as
Z n+1 . (B.28)

Now derive T1,4q With respect to

81—[0 (w) - IIs,,— (w)
% =1-) (2n—1)—2 (B.29)

and define a new quantity o as

o(w) = %aﬂ%z(w) = % - i(?n - 1)1_[271——1(@1]) (B.30)

With the aid of heuristic examples, we can conjecture
o(w) = R(w) + t.d. (B.31)

where t.d. is a total w derivative. Now we prove (B.31). We rewrite in the new notation
the Riccati equation (B.10) for the odd part of I1

20 oqal1lgq — 3T e + 4lTkgq — 4(k* — U)24q = 0 (B.32)

We differentiate (B.32) with respect to &

Olloaq oIl O0lloaq Olloaq O0llo4q
161344 8(1)@ — 61lo4q a%dd +2 82 odd T 2Hodd< 82 > — 8kIlgqq — 8(K* — U)Hodda—z =0
(B.33)
then divide by 2kHodd
]:[/ H//
8l154q0 — 3=2000" + 04 + 0" — 4llogq — 4(k* — U)o = 0 (B.34)
IToaa IToaa
Now, since
g / 1" I\ 9 1
Hogg _ I lodd _ 2(5) 7 (B.35)
Hoaa R oad R R
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we can replace IT,qq by R to obtain

1 R R R’ 1 )
8Ra+3ﬁa—l—20<R> — o404 — 4k = U)o =0 (B.36)
80 +3R'Ro’ + 2R%0 — RR"0 + R*¢" — 4R — 4(k* — U)R*s = 0 (B.37)
4(k* —=U)R%*0 4+ 4R = 80 + 3RR'0' + 2R?0 — RR"0 + R%0" (B.38)

Recalling also equation (B.13) for R
—2R"R+ R?*+4=4(k*-U)R? (B.39)
we can write

AR =40 + 3RR'¢' + R?0 + RR"o + R%"
40 — 4R = —3RR'0' — R?0 — RR"s — R*0" (B.40)
We note that the r.h.s. is a total derivative
3RR'¢' + R%0 + RR"0 + R*" = (6R?)" — (6RR')' (B.41)
We have proven the conjecture (B.31), which, in terms of the modes is

1

on-1(w) = =57—3

R (w) + t.d. (B.42)

We have thus proved that, under integration over a period or over the entire dominion,
integrating the standard mode II,, ; is equivalent to integrating the Gelfand-Dikii polyno-
mial R,, up to a simple numerical » dependent factor.

B.2. Small & recursion

We show now that these results can be adapted for the usual small # WKB asymptotic
expansion of a generic Schrodinger equation

¢(z)

—0  with ¢(z)=2m(E - V(z)). (B.43)

In fact, the usual WKB analysis envisages the exact quantum momentum P(z) = —i-- In¢(z) =
> WP, (z) verifying the Riccati equation and modes recursion relation, respectlvely

n=-—1

P?(x) —z‘dzg”) ~ ¢g) » Papr = \/_< =P, ZP Po m) , (B.44)

with initial condition the classical momentum P_;, = /¢ . As above, we split P(z) =
Podd(1) + Pepen(x): then P, = —%(ln P.qaa) and P,, are total derivatives, which, under

19As above there is also the solution with P_; = —/4.
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specific circumstances, can be forgetten about. Now we wish to think of (B.43) as the
particular case, v = 0, of the previous modified Schrédinger equation (B.1) with energy
= 1/h%. Thus, we obtain the usual Schrodinger equation (B.2) with potential U = lﬁ—'—i‘ﬁ:

in this manner small 7 is interpreted as large energy. And we can make us of the Gelfand-
Dikii polynomials [107], with recursion relation (B.16) with v = 0

;o w39 p ¢"  9¢°\ ., (l¢"  9¢"¢ 15¢°
Hne = __¢R 8 ¢? +<8E_EE>RH+<§E_1—6 PR ¢4>R (B.45)

and initial condition R, = 1. In fact, we have seen above P,, ; = \/¢(x)Il,_; which, in its
turn, is expressible by \/¢(x)R,, up to a z-total derivative:

Pon( — Vo(x)Ra( local fields) . (B.46)

The advantage of using the R, integrands (which are equivalent as they give the same
integral, under suitable boundary conditions) is that their recursion (B.45) is far simpler
than that (B.44) for the original integrands P,,,_;. In fact, using recusion (B.45) to compute
the n + 1-th term, requires to know only the first preceding n-th term, not all the preceding,
as in recursion (B.44).

B.3. homogeneous operators

We give the first homogeneous operators in table B.3.
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C. Ny = 1,2 Seiberg-Witten periods

In this appendix we define and give some relations for the Seiberg-Witten periods for the
SU(2) Ny = 1,2 theories, that is, the leading 2 — 0 of the quantum (or deformed) exact
periods which we prove are connected to integrability exact Y and 7 functions.

C.1. Massless N; = 1 SW periods

The massless N; = 2 gauge periods are just the N; = 0 gauge periods already dealt with
in [1]. Hence we treat here the (much more complex) N; = 1 massless m = 0 case, fol-
lowing and extending [83]. In that case the low energy effective action has three finite Zj;
symmetric singularities, corresponding to dyon BPS particles becoming massless. If we

set A; = A with
. /256

those singularities are situated at

uy = —1 uy = —e2™/3 Uy = —e 23 (C.2)
The massless m =0 Ny =1 SW curve is
A6
yaw (u, M) =2 —ua® — =, (C.3)

and it gives the SW periods through the integrals

O) (u. A 9 2 —
<a(0)(u, 1)) _ £ d u— 3x ‘ C.4)
ap (u,Nr)) 8t Jap [a 0 A
64
It can be shown then that I = ¢ ¢!9 satisfy the SW Picard-Fuchs equation
27AS L\ PTIO(w)  w
- el S/ (V) —
(256 +u) S+ 1O (w) = 0, (C.5)
with boundary condition as v — oo as
a®(u, Ay) ~ \/g U — 00
. T 5 (C.6)
. . u u
ag) (u,Ay) ~ —i l%a(o) (u,0,A) <—Z7T —3In A_%) + - 5} U — 00.
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The massless SW Picard-Fuchs equation can be mapped into an hypergeometric equation

and then explicit formulas for o, a!? follow:

11 27A9
O (A= JE (-2 2.1 — 1
(u, A1) \/;2 1( 66 256u°

—a(o)(u A1)+e—iﬂ/3fD(u7 Ay) 0 < arg(u) < %ﬁ
So(u, Ay) — 200 (u, Ay) Z <arg(u) <7

a® (u, Al') — fp(u, Ay) — 7 <arg(u) < —%
exp (—4) fp(u, A1) — 2 <arg(u) <0

¥ (u, Ay) =

(sectors given assuming A; > 0) where

256w 256u3
Al <27A6 + ]-> 2F1 (6’ 672’ 27A6 + 1)

folu. Ar) = a3

(C.7)

(C.8)

So defined, «(® has a branch cut for « < 0 (due to the square root and three other cuts
from the origin « = 0 to ug, u; and u, (due to the hypergeometric function). Instead, ag) SO

defined has a branch cut for © < 0 and from « = 0 to u,.

C.1.1. Z; R-symmetry
We find the following Z; R-symmetry relations

a0 (¥ 3y) = —e23¢0) (y) — < argu < 7/3
(627rz/3 ) 27rz/3 (0 (u) 7T/3 < argu <7
a(0)<€_2m/3 ) = —2™3a0) (y) —r/3 <argu <
a(o)(e_2m/3 ) = e2m/3q(0) (u) —r <argu < —m/3
al) )(627”/311) —e /3 [ag) (u) — a(o)(u)} —m <argu < 7/3
ag)(e_%”/3 ) = —e2m/3 [ag)(u) + a0 (u)] —nm/3 <argu <T

C.2. Massive N; = 1,2 SW periods

The massive Ny = 1 SW curve is [84]

The SW differential is
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The SW periods \”, ¢\” are given by the integrals

V2 o A e u
A= [ - 315" — ZLmi (‘g)] (C.12)

Define ¢, as the roots of the Seiberg-Witten curve in canonical form

V(@ = €+ 5) = (€ = e)(€ — e2) (€ — e2)

AS N 2 , . 2P (C.13)
= 6_4+§<4 3>—|— Amu+§—2—7
Basic integrals over the cycle +,
e ¢ 2
W =2 / = =" K
! e3 n (61 - 63)1/2 (k)
() _g [P _ 2 _
= 2/63 n (er—e3)l? ler K (k) + (€5 = en) E(R)]
e ¢ 2 1 Ak’ 1 1— K
1 _ _
Iy = 2/83 NE—c)  (e1— e3)32 [1 RO e <”(C)’ 1+ K
(C.14)
2278 g2
aTe (C.15)
o TG L—c+k\° (1-K\? '
T T \i-emw) U+
Elliptic integrals of the first, second and third kind:
! dx
K pu—
= | T
1 1 — k242 1/2
E(k) = (C.16)
k) /0 dx( — )

1 dx
) = | e

The corresponding integrals 7® over the cycle v, are obtained by exchaning in 7" ¢; and
€3.
The massive N; = 1 SW periods also satisfy the Picard-Fuchs equation [109]

0*1O (u, m) N S81AY — 2048m*u — 384A3m? + 3840m%u? — 1536u® 9?11 (u, m)
du? (4m? — 3u) (27AS + 256u? (u — m?2) + 32A3m (8m?2 — Ju)) Ju? C17)
8 (32m?* — 72m?u + 9A3m + 24u?) OO (u, m)

 (4m? — 3u) (27TAS + 25602 (u — m?) + 32A3m (8m2 — 9u))  du
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with boundary conditions

u m
a(O)(u,m,Al) ~ |:\/g — WA?} u — o0
m~ mAB
6

[\/_a (u,m,A1)<—z7r—31n1f )—1—6\/_—1—\/_ T] U — 00
(C.18)

Notice however that the periods o and ¢\ so defined are in principle different from
the periods ¢! and «{” defined as integrals. They are in fact linear combinations of each
other, which also possible separate mass term contribution.

For N; = 2 we have similarly (in the cubic SW curve conventions [84])

ag) (U,, m, Al)

7r\/_

2 3 s A3 A3 A5
yow = 2° —ux® = 2w —u) + PEmmer — 2 (m +m3). (C.19)
)\:_Qd_x w_u_A_%(ml—mz)2+&(m1+m2)2
AT ysw 16, _ A3 16 5, A3
® : (C.20)
_ \/_ ysw dx
s 72 — 2:
\/— A2 A2 U A2 A2 U
A\ = - [311]1 — 215 + g(ﬂh M2)213 <§2 — g) — g(ﬂ’u + m2)2]3 <—§2 — g)} . (C.21)

C.3. Relations between alternatively defined periods

We show now the relation between a(®, ag) and a§°>, ag‘” in the massless case. Assuming
u > 0 and with small || we have

a(u) = ago) (u) Ra'® (u) >0
ap (u) = —ay’(w)  Rap)(u) <0
a(())(€27ri/3u) _ ago)(eQm'/su) . aéo)(e%i/?’u) 22
ag)(em/?’u) _ —ago)(e%”'/gu) + 2a§0)(62”/3u) :
a(O)(€—2m’/3u) ago)(e—Qm'/Su) B ago)(e_%i/?’u)
ag)<€—2m/3u) _agﬂ)(e—zm/su)
with their inverses
al )(u) = a(u) Ra” (u) >0
ago) (u) = —a(DO) (u) §Ra§0) (u) >0
ago)(eZWi/3u) _ ag)(ezm/‘gu) + 2a(0)(62m‘/3u) 3?62”/%50)(62”/311) <0 €23)
ago)(ezm'/?,u) _ ag)(ezm/‘gu) _ a(o)(e%i/gu) %e2m/3ag0)(62m/3u) >0 )
al? (e By = a0 (723 — ag)(e’%i/?’u) Re2m3\0) (=23 < 0
ago)(e’%”/?’ )= —ag)(e’%i/?’u) %e’2ﬂi/3a§0)(e’2”i/3u) >0
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Also

O(—u) = —al” (—u) + a (—u)
b (= >—3a1 (—u) — 203" (~u)
(0)< 27”/3u) ( 27rz/3 )
(0)( 2m/3u) ( (27i/3 )+a(0)< 2m/3u) (C.24)
u) =

CL(O)( 7271'2/3
ag)(_e 2772/3u) — a§0)<_672m/3u> _ 2ago)<_672m'/3u>

In the massive case, similar relations can be found by looking at the large « asymp-
totics (C.18) and, if the small « region is of interest, also to the continuous behaviour of the
functions involved.

( e 2 u)

D. Connection to Heun equations

D.1. Doubly confluent Heun equation

Let us now show that the equations for N; = 0, 1,2 are just particular cases of the doubly
confluent Heun equation?’:

P 5 \d -
2+(%+;+e> D =0 (D.1)

dz dz 22
It’s general solution is given by Mathematica as
w = c;HeunDlq, a, v, 0, €, z] + 0222‘563‘“HeunD[6 +q—2,a—2¢,—7,4—0,—¢€, 2] (D.2)

It is enough to just change variable as z = e?

2

dw
Y S+ ye+eve— 1D 4 (ae¥ — uw =0 D.3
dy2+( +ve ¥ + eYe )dy—l—(ae q)w (D.3)

and transforming the solution as

1
Y(y) = exp {5 (’ye’y +(1—=90)y— eey) } w(y) (D.4)
to get
¢y 1 2,2y —-y y 2 2
a1 (Ve ™ +2y(0 — 2)e ™V + (2ye + (6 — 1)* + 4q) + €¥(20e — 4a) + 2] (y) =0 (D.5)

By comparing with the quantum SW curve for Ny = 2

d? A2 A A A2
2

20in the Mathematica’s notation, let § <> v and set e = 1
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we get the parameter dictionary

Ay A
o T
5 20Ems)
h
o = 2’17:2 (Agﬁ mlAg + mgAg)
1
q= 8ﬁ2[ 2h* + 8u — 8mj F 8moh F AJ]
or A A
2 2
TEER Ty
5 21Ems)
h
1
o = 2ﬁ2( Agﬁ m1A2 F m2A2>
1
0= 552K + 8u— 8m3 F Smuh £ AJ

By comparing with the quantum SW curve for Ny = 1 withy — —y,
d? A2 A2
_ﬁZd_y%d) + (Zle—yl + Almlezﬂ + I1€2y1 + u) w =0

we get the parameter dictionary

(D.7)

(D.8)

(D.9)

(D.10)

4
T
e=0
h
A
=7
1
0= 5 —H* + du — 4m? F 4mai
By comparing with the quantum SW curve for Ny = 0, after also change of variable y —
y0/221
d? A2 A2
_R2 220 50 4 210 ,—yo —
ﬁdy8w+(2€ + 5 ¢ +u)1/) 0

2v/2A, 2v/2A, 2v/2A,

q= —h? F 16A3 + 161 §=2

el

(D.11)

(D.12)

2INotice though that as for the N; = 1,2 theories in this paper, with respect to N; = 0 in [1] we use make the

rescaling # — /2h.
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or

2\/§A0 2\/§A0 2v/2A,
h

v==+ €= — a=—
1
4ﬁ2[

(D.13)

q= h2:|:16A2+16u] §=2

D.1.1. Alternative form

In the book on Heun equations [77] it is given another form for the doubly confluent Heun
equation, namely

(81 + )az + (O‘—Q - ’y) (81— 1)%} w=0 (D.14)

d d ( 1) d
z—z—w+alz+—- | z—w+
z 2

dz

Transforming in normal form, then changing variable as z = ¢¥ and transforming again
into normal form we get

d? 1 1
——— Y+ [y + P+ 2ot —af eV —aBiel | =0 (D.15)
dy? 4 4
We have )
w(z) = e 3 Hy(y) (D.16)
We get the parameters map for N; = 2
As Mo U 2
a= i% =42 B = ¢7 =FM fa=F5 =FM  y=5=P (D17
The authors [77] in particolar have solutinos corresponding to the lower sign convention
Woo1(y) = (=267H9)=GHMY v o™V eminGH M)y, () Yy oo (D.18)
Woop(y) = (=2 )M TE ~ ey Y oo (D.19)
with
W[woo72,woo71] =1 (DZO)
Define
A=v—a?/2 (D.21)

The DCHE has a countable number of eigenvalues, denoted ), («, 3) with
weEVv+7Z (D.22)

where v is the Floquet characteristic exponent. The eigenvalues have expansion

Ml B) = 12+ Num(B)a™™ (D.23)
The first coefficient is [77] L 984
_ = —1M1

Aua(B) = =35 e 1 (D.24)
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D.2. Confluent Heun equation

We also connect the equation for Ny = 3 to confluent Heun equation and Ny = 4 (s = 1,2)
to Heun equation...

Let us now show that the equations for Ny = 0, 1, 2 are just particular cases of the doubly
confluent Heun equation??:

d*w v ) dw  az—q
AT — 4+ = ~w=0 D.25
d22+(z+z—1+6) dz+z(z—1)w ( )

It’s general solution is given by Mathematica as
w = c;HeunClg, o, 7, 6, €, 2] + co2' "HeunC[(1 — v)(e — &) + ¢, a + (1 — 7)€, 2 — 7, 6,¢,2] (D.26)
It is enough to just change variable as z = ¢¥

W' (y) + (—7+ey(7+5;—(_691—1)6—1)+1)w,(y)+

w(y) =0 (D.27)
and transform the solution as
_s 1
vl = (=) Fep {310 = = e} uly) 0.28)

The equation becomes

d_2¢( ) — (’Y—1)24—@21/(404—26(2’7—1-5)+(’y+5—1)2+4Q+€2)_26y(7(7+5_6_2)+2q+1)¢( |
dy2 4(€y_1)2 Y
269 (90— e(y +8) + ) + e

- 4(ev — 1)2 Y(y) =0

(D.29)
Send y - —y and then y — y — In2 + {InA; then we obtain the quantum SW curve for

vy=1+ml—m2

5:\/m%+2m1m2+m§—h2—|—1+1

As

= (D.30)
1

a = §A3(5+m1 —m2—2m3+1)
1

=3 (=46 + Ay — 4m3 — 40my + Agmy — 4mj + 40my — Agma — Asms + 8u + 2h%)

22in the Mathematica’s notation, let § <> v and set e = 1
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E. Numerical wave functions

—gt @ e + Py =0 (E.1)
0
its general solution is given in terms of even C and odd S Mathieu functions as
wO = ClC [4P27 _46297 %:| - CQS |:4P27 —4620, %] (EZ)
The solutions v . o are defined as
lim 4, o(y) =0,  lim do—oly) _
Yy——0o0 Yy—>—00 dy (E 3)
; _ o dibotoly) )
yginoo 7vDO,—&-,O (y) =0, ygrfoo T =0
So they are given by
wOHFaO = Cl(e? P) |iZC <4P27 _46207 %) + S (4P2, —46297 %)1
: , (E.4)
1/10,7,0 = 01(97 P) |:ZO <4P27 _46297 %) - S (4P2, _46297 %>:|

We see the behaviour (E.3) confirmed numerically. In particular we find that ¢, . o is many
orders of magnitude smaller at y, — +oo than at y, — Foo. However, the values we nu-
merically get are always large because the Mathieu functions C' and S are defined to be
divergent at infinity and so subtracting them even when they asymptotic to each other
gives a large difference because of the finite number of digits used.

We notice however that the normalization is not fixed. Even computing the wronskian
gives just a functional relation for the normalization

W ltho,—1, to—0] = —i = —ico(6, P)co(6 + im/2, P){W[C (4132, —4e® %) S (4P2, 4e% M)]

- Ww[C (4132 4% M) S (4132 —4e% @>]}
) ) 2 ) ) Y 2
(E.5)
This normalization problem is avoided by taking the logarithmic derivative of ;) and study-
ing the solution of the Riccati equation P as we do in the main text.
For instance we get the Floquet exponent as

2miv = In Yoroly + 2mi) =—1In Yooy + 2mi) (E.6)
Yo,+,0(Y) Yo,-0(y)
so we can identify the solution ¢ ;. o with the positive (negative) Floquet solution
Yo,+0(y + 2mi) = g 1 o(y) (E.7)

If we used instead the doubly confluent Heun function given by Mathematica we would
not see this y — y+2mi Floquet monodromy since those functions are defined for » = ¢¥ € C
rather than on the Riemann surface.
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F. Floquet exponent through Hill determinant

Consider the more general N; = 2 equation and change variable as z = iy. We get

d2 . ‘ ‘ ‘
@?/J + [00 + 02€*% + 0_ge™ %% + 017 + 0_1e ]t = 0 (E.1)
with
90 = P2 Qig = 629 Q:I:I = 269(]1’2 (FZ)
We search for Floquet solutions, such that
Uiz 42m) = ™ (z) (2 +20) = e (2) (E3)
that implies they can be expanded in Fourier series as
W(z) =€ Z b, ™ (F4)

From the equation we get the recursion

2
(v +in)*bp + Y Ombpm =0 (E5)

m=—2

Dividing by 6, — n* we get the matrix with convergent determinant

é.n,nfl 1 gn,nqtl gn,n+2 0 T bnfl
§n+1,n—1 §n+1,n 1 §n+1,n+2 §n+1,n+3 e bn
0 £n+2,n gn—i—?,n—l—l 1 £n+2,n+3 e bn+1 = 0. (FG)
0 0 &usmt1r Sntsmt2 1 e b2
with o

(m —iv)? — 6
Defining A, as the finite 2n + 1 x 2n + 1 submatrix We also introduce a (2n + 1) x (2n + 1)
matrix

€1,-1 €10 1 1,2 €13
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and
A(iv) = lim det A,

n—oo

by ordinary methods [92] we arrive a this relation

sin?(miv)
sin® mv/0,

The Floquet exponent is then given by the roots of the equation

sin®(miv) = A(0) sin® 7+/0y

or
cosh(27v) = 1 — 2A(0) sin® 7P

In particular for Ny = 2¢,,,, are given by

(o e (o 2¢%qy 2
m,m¥2 (m —iv)? — P2 m,m¥1 (m —iv)? — P?
while for Ny =1
20 20
1 € 1 (& 1
57(n,)m—2 = - gﬁn,)m—}—l = - 57(n,)m—1 =

(m —iv)? — P?
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(F.9)

(F.10)

(F.11)

(F.12)

(F.13)




G. Renormalization flow from higher to lower ;

From the quantum SW curve for N, =4

d2
— ﬁQd_wa + {— exp(2y4) (q (g (m +m3 + mji + m3) — 24(mymg + mamy)) + 16(¢ + 4)u) (G.1)
4
+ 4y/q exp(3ys) (miq — mima(q + 8) + miq — mamaq + 8u) (G.2)
+ 4y/qexp(ya) (—mimagq + miq — mama(q + 8) + miq + 8u) — (G.3)

exp(=2y4) it (G.4)
4 (—4,/qcosh(ys) + g +4)
h? (\/Gexp(—y4) (q exp(2ys) — 8y/qexp(ys) +4exp(2ys) + q + 4))

— dqexp(4yy)(my — my)® — 4q(ms — m4)2}

+ 5 Y =0 (G.5)
2 (—4,/gcosh(ys) + ¢ +4)
Since we have
gmy = A3 My — 00 qg—0 (G.6)
we can set 1 1 1
y4:y3+§1nA3—§lnq:y3—|—§lnm4—>+oo (G.7)

and exchanging the masses m3 <> mo, We arrive to

d? 4623 Ny (my — m3)® + 4e¥ /A3 (—2R% + 8myms + Ayma — Su
_ﬁ2_2¢+ 3 (my 3) 3( i 1ms3 312 )1/} (G.8)
dys 16 (\/A36y3 — 2)
A2 4u — 24N\ 4e U3/ — A 4N 523
N 5+ 64u 3my + de Y34/ 3(8732 3) + 4Aze b=0 (G.9)
16 (v/Azes — 2)
which is the qSW curve for N; = 3.
Since we have
A3m3 = Ag ms — OO A3 — 0 (G].O)
we can set 1
Ys = Y2 — B Inmsz — —oo (G.11)
we get
m2 3/2m u
o e (A0 — 8Agmy + dhgmg) + e (—8%%2 + 32/ Rgma /i3 + 42012 32%)
— ﬁQFw + 5 (0
Y 16 (%ew - 2)
(G.12)
A% + 64u — 24A3m2 + e ¥ <32\/ Agy/mgmg — 4A§/2\/m3> + 4A3m3€72y2
+ =0 (G.13)

Vs

16 (meyi’ _ 2)2
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which in the limit precisely reduce to

_ﬁQ 2¢+ A2( 2y2+ef2y2)+ 2A2m16y2+ 2A2m2€ y2+u 2/) 0 (G.14)

which is the quantum SW curve for SU(2) Ny =2 = (1,1).
Alternatively, exchange
ms <= My (G15)

and let | .
ygzyé—§lnA3+lnA2=y§+§lnm3—>+oo (G.16)

d? 22 A2 (my — ma)” + €2 Ay (—2R% + 8mymg + A3 — 8u) + 16u — 6A2 + 8Aqe ¥

—h—1 + Y =0
dy22 4 (A/\Qeyé - 2)2
(G.17)
which is the quantum SW curve for SU(2) Ny =2 = (0,2).
Since we have
we can set 1
Yo =Y1 + B Inmy — +o0 (G.19)

then the equation becomes

d? 1 1
—h2d—y2w+ {EAS (m262y1 o ‘le) + 5 Aay/mama e’ + AQ\/ N +u] =0 (G.20)
1

which in the limit reduces to the N; = 1 equation:

2
dd2w+ [16A3 4 Ad/2 T A3/2m eVt +u} P =0. (G.21)
Since we have
Let
1
Y1 = Yo — §lnm1 — —00 (G.23)
then we get
LAY o20 1 32 /2 1 32,12
A Yo A Yo '24
d2¢+ 16m1 +2 +2 e +ulp=0 (G.24)

that precisely reduce to the N; = 0 equation:

d?
—h2d 2¢ + (A§ coshyo +u)y = 0. (G.25)
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