ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

Dottorato di Ricerca in

COMPUTER SCIENCE AND ENGINEERING

Ciclo XXXV

SETTORE CONCORSUALE:
09/H1 - SISTEMI DI ELABOR AZIONE DELLE INFORMAZIONI

SETTORE SCIENTIFICO DISCIPLINARE:
ING-INF/05 SISTEMI DI ELABOR AZIONE DELLE INFORMAZIONI

Edge and Big Data technologies
for Industry 4.0 to create
an integrated pre-sale
and after-sale environment

PRESENTATA DA: LORENZO PATERA

COORDINATORE DOTTORATO: SUPERVISORE:

PRrROF.SsA ILARIA BARTOLINI Pror. ANTONIO CORRADI

ESAME FINALE ANNO 2023

ABSTRACT

The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction
in businesses across Europe and the world, becoming a central theme in small, medium,
and large enterprises alike. This new paradigm shifts the focus from locally-based and
barely automated firms to a globally interconnected industrial sector, stimulating eco-
nomic growth and productivity, and supporting the upskilling and reskilling of employees.
However, despite the maturity and scalability of information and cloud technologies,
the support systems already present in the machine field are often outdated and lack the
necessary security, access control, and advanced communication capabilities.

This dissertation proposes architectures and technologies designed to bridge the gap
between Operational and Information Technology, in a manner that is non-disruptive,
efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures
that make use of the newest I'T and networking technologies to achieve the desired quality
of service and non-functional properties. By harnessing industrial and business data,
processes can be optimized even before product sale, while the integrated environment
enhances data exchange for post-sale support.

The architectures have been tested and have shown encouraging performance results,
providing a promising solution for companies looking to embrace Industry 4.0, enhance
their operational capabilities, and prepare themselves for the upcoming fifth human-

centric revolution.

iii

CONTENTS

1 INTRODUCTION

2 INDUSTRY 4.0

2.1 Thefourindustrial revolutions

211 Sustainability oo oo

2.1.2 Fourth revolution and COVID-19 Pandemic
2.2 Technologywpillars L Lo o
2.3 European servitization program
2.4 Marketshare. L e
2.5 TowardindustryS.0 L Lo

3 CrLouD TECHNOLOGIES
31 Cloudcontinuum
3.1.1 Infrastructure-aaS
3.1.2 Platform-aaS
3.1.3 Software-aaS
314 Function-aaS L oL .
3.2 Middleware Software
3.21 Message-Oriented Middleware

3.3 Contalnerization v v v v e e e e e e e e e e e e e
4 OBJECTIVES

5 RELATED WORKS
5.1 Reference Architecture Model Industrie4.0
5.2 Supervisory Control and Data Acquisition
5.3 Open Platform Communications

5.4 Modbus data communication protocol

12
14
15

Contents

5.5 Profibus data communication protocolo 46

6 ARCHITECTURES FOR [4.0 DATA GATHERING AND MANAGEMENT 49
6.1 ReferenceScenario e 49

6.2 Cloud-enabled Smart Data Collection 53
6.2.1 SIRDAMA4.0 Architecture 53

6.2.2 Platform Implementation 56

6.23 Experiments 61

6.3 QoS-Enabled Semantic Routing 76
6.31 Architecturaldraft L. 78

6.3.2 Experiments 81

6.3.3 Architecture generalization and protocols 86

6.4 Low Latency m2m Communication Support 95
6.4.1 Architecture e 95

6.4.2 Experiments 100

6.5 Serverless ProcessingattheEdge 105
6.5.1 Architecture e 107

6.5.2 Implementation 110

653 Experiments 111

7 KEeY FINDINGS 117
8 CoNcLUsIONS AND FUTURE WORKS 121
AcCRONYMS 123
BIBLIOGRAPHY 127

vi

INTRODUCTION

The implementation of Industry 4.0 in smart factories is currently a focus for both large
corporations and government bodies, driven by the potential for significant changes in
the manufacturing industry. This includes the development of new services, the creation
of new business occasions, and the generation of new employment opportunities. The
integration of mature Information Technologies such as Internet of Things (IoT), Cloud
Computing, and Big Data can enable the digitization of industries. This transformation
process requires companies to develop unified data infrastructures that integrate infor-
mation generated at the operational level, such as data from machines and production
chains, with end-user, third-party, and business data.

A key aspect of Industry 4.0 is the integration of third-party systems and services into
the manufacturing processes. Such integration can be achieved by incorporating external
sensors, devices, or platforms into the factory’s current infrastructure. This enables the
collection and analysis of data from multiple sources, which can be utilized to optimize
production, minimize downtime, and enhance overall efficiency. Additionally, it allows for
the integration of external services such as data analytics, machine learning, and predictive
maintenance. This can lead to cost reduction, efficiency improvement, and increased
adaptability to changes in demand.

Industry 4.0 is not limited to the production and sale of goods but rather encompasses
the entire lifecycle of a product. This includes oftering advanced services to end-users,
such as remote monitoring (post-sale services), as well as providing highly customizable
products at the same cost as mass-produced items. This approach allows companies to
better understand and meet the specific needs of their customers, resulting in increased
customer satisfaction and loyalty. Additionally, it permits greater flexibility in production
and supply chain management, enabling companies to respond quickly to changes in
demand.

Moreover, integration and cooperation will make a large amount of operational data

available at the enterprise level, providing companies with better insights into live pro-

1 Introduction

duction performance and the ability to make accurate short-term and long-term business
decisions. Also, the benefits of in-premise interoperation between Operational Tech-
nology (OT) and Information Technology (IT) improve machine utilization, better-
performing production lines, enhanced safety for workers, and the ability to implement
new and unexplored business models.

There has been a recent increase in interest and hype surrounding the convergence
of OT and IT in the industrial, manufacturing, and academic sectors. According to
research firm Gartner [44], by 2020, half of OT service providers will collaborate with
IT service providers to expand the range of services provided by Industrial Internet of
Things (IloT) devices used in industrial production sites. While the research community
is actively working on the OT/IT convergence topic, currently, there are limited practical
and cost-effective solutions available for small and medium-sized enterprises to achieve
this convergence goal.

This work presents a set of architectures, developed through close collaboration with
companies in the Emilia-Romagna region of Italy, that take advantage of Edge and Big
Data technologies while also adhering to the privacy, safety, and security requirements
of manufacturing firms. The proposed architectures aim to address the main challenges
of OT/IT integration, including the creation of a homogeneous data gathering and
processing architecture, the exploitation of software-defined networks and in-network
processing potentialities, the implementation of serverless scalable processing at the edge,
and the ability to gather data from machinery using low-latency communication protocols.

The remainder of this work is organized as follows: in chapter 2, we provide an overview
of the key features and characteristics of Industry 4.0. In chapter 3, we delve into how
cloud technologies can be leveraged to support the shift towards Industry 4.0. In chapter 4,
we outline the goals and objectives of our research. Chapter 5 presents a review of relevant
literature and existing integration architectures. The core of our work is exposed in
chapter 6, where we present four architectures for data gathering and management in
Industry 4.0, along with experiments and validation tests. The outcomes of our research on
OT/IT convergence in the industrial and manufacturing sector are discussed in chapter 7.

Finally, we summarize our findings and discuss future research directions in chapter 8.

2 INDUSTRY 4.0

We are in the midst of the fourth industrial revolution, which is changing the established
paradigms of manufacturing, logistics, and pre and after-sale assistance. This chapter pro-
vides an overview of the key features of the four industrial revolutions, highlighting their
technological advancements and the impact they had on all industries. It also examines the
technological pillars defined by the European Union for Industry 4.0 and the European
Servitization Program. Additionally, it covers the market share for Industry 4.0 and a brief

look at Industry 5.0 (I5.0), the next industrial revolution, and its characteristics.

2.1 THE FOUR INDUSTRIAL REVOLUTIONS

The industrial revolutions are processes of economic evolution and industrialization of so-
cieties from agricultural-artisan-commercial were transformed into industrial systems [41].
Figure 2.1 represents a timeline with the four main revolutions until nowadays. The
remainder of this section provides more information about each one of them.

The first industrial revolution is traditionally attributed to the radical innovation in the

textile-metallurgical sector with the introduction of the flying shuttle and the steam engine

Mechanization Mass production
! P . ! Computer and Cyber Physical
water power, steam assembly line, .
L automation Systems
power electricity

Figure 2.1: The four industrial revolutions [90].

2 Industry 4.0

in the second half of the 18 century [26]. As happens with many historical processes,
there is no precise date on which it started. Industrialization was pervasive and it changed
the socio-economic order of the whole of Europe impacting demographic, agricultural,
commercial, transport, cotton, and iron industries. The radical changes in society, driven
by the higher quality of products and mass production, transformed Europe from a poor,
underdeveloped, and sparsely populated land in the early Middle Ages into the richest

and most developed area in the world during the 19% century.

After about 120 years, from 1870 to 1914, a new phase of scientific discovery pushed
the world in what is defined as the second industrial revolution [63]. Differently from
the first phase of industrialization, which focused on mechanical and steam technologies
advancements, this revolution was characterized by the introduction of machine tool
industries, sewage systems, electricity, and telegraphs, and by the widespread adoption of
railroad networks. The latter improved the mobility of goods and people across countries,
enabling import, export, and commerce, pushing the world into globalization. The
electrification permits the building of smaller and more efficient engines capable of moving
conveyor belts and speeding up the employees’ work. The premises can now be electrically
lit, and it is possible to work more hours per day without using gas lighting, dangerous
and pollutant. The advancements in research impact all sectors, spreading to chemical,

petroleum, automotive, fertilizers, and business management.

The third industrial revolution (also known as the Digital Revolution) started in 1945
with the end of the Second World War (WW2) [67]. The war shifted the global scientific
leadership from Western Europe to the United States. Pushed by the after WW2 Research
and Development (R&D) investments, the United States was able to innovate in biomed-
ical science and Information and Communication Technologies (ICT), becoming the
leader of the digital revolution. In March 1971 Intel invented the world’s first micropro-
cessor [16] and the third industrial revolution starts spreading across all sectors. All the
processes manually controlled by humans, now are monitored and managed by computers,
System on a Chip (SoC), and automatic systems. Thanks to advanced computation and
control, industries are locally more efficient and can produce high-quality goods in less

time.

Although many industrial routines and machinery are monitored and controlled by SoC,
processors, and computers, in the third industrial era the Machine to Machine (M2M)

communication and Machine-to-Cloud communication are poor and often not existent.

2.1 The four industrial revolutions

Employees are forced to go to company premises to manually (re-)configure the machines,
the goods are produced in series, and customizations have a high cost on a few pieces.

Only with the Fourth industrial revolution, in 2011, the focus shifted from a local to a
global and interconnected perspective [54]. German industry was a pioneer, embracing
Industry 4.0 (I4.0) in order to increase efficiency, flexibility, and innovation in their
operations. The government has also supported the development of 14.0 through funding
and initiatives such as the High-Tech Strategy and the Industry 4.0 Platform. The machines
equipped with several sensors, advanced Human-Machine Interface (HMI), and emerging
ICT technologies now work in a coordinated manner. Enterprises with several plants
can control, supervise, and manage the machines via the internet as a logical and unique
production unit. The application of Artificial Intelligence (AI) technology to industrial
data suggests the best scheduling of work across devices, increasing the overall performance.
The data gathering is pervasive and permits authorized stakeholders to access data and
offer advanced services and pre- or post-sale support on final goods. With servitization
the focus shifts from selling products to selling services, as a way to increase revenue and
competitiveness.

However, although it may seem simple, the transition from Industry 3.0 to 14.0 is rich
in challenges and issues that must be fixed to bring society to a new era. Germany, as a

pioneer in industrial transition, proposed a plan comprised of four main milestones [106]:

1. Building an always-connected network
The network is a core functionality in I4.0. Machine data must be gathered and
collected locally or sent to the cloud capable of powerful and faster computation.
With 5™ Generation (5G) communication technologies and its network slicing,
communications can be granted in Quality of Service (QoS) and site-to-site inter-
connection characteristics. The negotiation of networks’ speed and latency permits
to avoid degradation of the connections and to continue the communication across

devices, smart products, and connected machinery.

2. Researching on major themes
Smart Factory and Intelligent Production themes are crucial for advanced inte-
gration between machinery. Smart Factory focuses on Al-powered networks for
machine data delivery, adaptive processes, and robotic load handling. Intelligent
Production focuses on Advanced HMI, Three Dimensional (3D) object modeling,

hyper-customization of products, and other technologies capable of making goods

2 Industry 4.0

production more flexible, customizations cheaper, and reducing the cost-per-unit of
product. Investments in Research and Development on those themes are enablers

in the industrial revolution.

3. Implement pervasive integration
The fourth industrial revolution requires close cooperation between the so-called
OT and IT. OTs are systems that are used to manage and control physical processes
within an organization. Examples of operational technologies include Industrial
Control System (ICS), Supervisory Control And Data Acquisition (SCADA) sys-
tems, and Manufacturing Execution System (MES). These systems are often used to
monitor and control equipment, machinery, and other physical assets in real-time,
and may also be used to collect data and provide insights into the performance of
the organization’s operations. IT’s are systems used to process, store, and transmit
digital information. These systems are used by organizations to manage and pro-
cess data, communicate with customers and partners, and support a wide range of
business activities. The integration of operational technologies and information
technologies can provide organizations with a range of benefits, including increased
efficiency, improved decision-making, and better control over their operations. By
integrating OT and IT systems, organizations can gain a more comprehensive view
of their operations, which can help them to identify problems and opportunities
for improvement. Moreover, horizontal, vertical, and end-to-end integrations are

crucial for better interoperability and cooperation within companies.

4. Realize technological goals
Asalso in [15], there are eight main measurable objectives that can be used to evaluate

the progress and effectiveness of Industry 4.0 technologies:

* Interoperability: The ability of different systems and devices to communicate

and exchange data with each other.

* Information transparency: The availability of real-time data and information

about all aspects of the production process.

* Technical assistance: The use of advanced technologies such as artificial intelli-
gence and machine learning to assist workers in tasks such as decision-making

and problem-solving.

2.1 The four industrial revolutions

* Decentralized decision-making: The ability of systems and devices to make

decisions and take actions on their own, without the need for central control.

* Virtual commissioning: The use of virtual reality and simulation technologies
to test and optimize production processes before they are implemented in the

real world.

* Real-time optimization: The ability of systems to continuously adjust and

optimize production processes based on real-time data and feedback.

* Modularity: The use of modular, standardized components that can be easily

assembled and reconfigured to meet changing needs.

* Service orientation: The ability of systems to provide ongoing support and

maintenance to ensure that they are always operating at their best.

Industry 4.0 technologies have the potential to improve the sustainability of industrial
processes by reducing waste, energy consumption, and emissions. This makes the inte-
gration of Industry 4.0 technologies into production processes a key aspect of the shift
towards a circular economy, where resources are reused instead of discarded. As such,
companies are increasingly considering not just environmental factors, but also social and
economic aspects in their sustainability strategies. This focus on sustainability will be

further examined in the next subsection 2.1.1.

2.1.1 SUSTAINABILITY

According to data from the United States Environmental Protection Agency, industrial
emissions are responsible for more than 40% of greenhouse gas emissions [33]. Many ex-
perts believe that digitization in manufacturing and the emergence of the fourth industrial
revolution offers numerous opportunities to reduce carbon emissions. For example, the
use of the IoT and Al in production can increase efficiency and flexibility, reduce waste,
and minimize the carbon emissions associated with each product. Additionally, 14.0
may enable the development of new business models that shift from mass production to
mass customization or even individualized production, which can optimize the consumer
market and help to create a low-carbon future [68]. These changes may also contribute to
environmental and social sustainability.

There is a strong connection between the economic and environmental performance of

manufacturing systems, including those using Additive Manufacturing (AM). Currently,

2 Industry 4.0

AM techniques can be economically competitive with traditional processes for small to
medium-batch production of metal parts, but the cost of AM machines and materials
is still relatively high. As AM becomes more widely used, it is expected that the cost of
these materials and machines will decrease, making AM more cost-effective. Additionally,
as larger production volumes become more economically feasible with AM, the overall

cost-effectiveness of the technology is expected to improve.

According to industrial reports, Industry 4.0 has also a high impact on the recruitment
sector [12]. In this environment, automation technologies like industrial robots, automated
vehicles, and intelligent machines are replacing humans in tasks like inventory tracking,
quality control, and product distribution. While it is expected that Industry 4.0 will
eliminate many low to medium-skilled jobs, it is also expected to create new employment
opportunities in fields like informatics, mechatronics, process engineering, and system
integration [42]. The social sustainability implications of Industry 4.0 extend beyond
the creation of digitization-related employment opportunities. The digitization of the
manufacturing industry also contributes to a more sustainable and green economy, creating

millions of sustainable manufacturing-related job opportunities.

2.1.2 FOURTH REVOLUTION AND COVID-19 PANDEMIC

The COVID-19 pandemic has had a significant impact on Industry 4.0, with many orga-
nizations being forced to adapt quickly to the challenges posed by the pandemic. One key
way in which this has happened is through the shift to remote work, as social distancing
measures and business closures have made it necessary for many people to work from
home. This has required organizations to implement new technologies and practices to
support remote collaboration and communication, as well as secure remote access to data
and systems. Thus, the pandemic has led to an increased reliance on digital technologies in
many industries. For example, virtual reality, online collaboration tools, and e-commerce
platforms have become more widely adopted as a way to continue operations and serve

customers remotely.

Figure 2.2 shows a bar graph of 14.0 sectors’ growth from 2015 to an estimation of
2021. As can be seen, during the first phases of the pandemic (2019-2020) all sectors of
industry 4.0 registered increases and no loss in interest and investments. Estimations for

2021 were even more optimistic, estimating increases of more than 10% [84].

2.2 Technology pillars

The growth of Industry 4.0 - Numbers by sector

(million EUR)
B INDUSTRIAL INTERNET W INDUSTRIAL m CLOUD
OF THINGS ANALYTICS PRODUCTION
ADVANCED HUMAN B ADVANCED ADDITIVE
MACHINE INTERFACE AUTOMATION MANUFACTURING
W SERVICES estimation
+12/
15%
5
% | R
+22% 4,1]
: .
sas% | |
3,1 |
3 .
+30%]
2,3
+25%
. I
1,6
1,1
1
o

2015 2016 2017 2018 2019 2020 2021

Figure 2.2: Growth of Industry 4.0 sector during COVID-19 pandemic.

Opverall, the pandemic has had a significant impact on Industry 4.0, leading to the
accelerated adoption of digital technologies and the need for more flexible and resilient
business models. In [91], the pandemic is even seen as a booster, that is pushing the world

into the fifth industrial revolution.

2.2 TECHNOLOGY PILLARS

European Union defined a series of technological pillars that leads the transition to a
new era of research and advancements. The technological pillars are not only a series of
technologies on which all communitarian states are encouraged to invest and to work but
also they are proposed as technological sovereignty for an “interconnected, digitalized,
resilient, and healthier European society” [34].

For I4.0 these technologies comprehend:

1. Cybersecurity
Digital security for Industry 4.0 involves identifying and protecting against po-

tential cyber threats, such as hacking, data breaches, and cyber espionage, and

2 Industry 4.0

10

implementing measures to ensure the confidentiality, integrity, and availability
of digital systems and data. This may include measures such as implementing se-
cure network architecture, using encryption, and regularly updating and patching

systems to address vulnerabilities.

. Augmented Reality

Augmented Reality (AR) is a technology that overlays digital information and
graphics on top of the physical world, providing users with an enhanced view of
their surroundings. In the context of 14.0, AR can be used to provide workers
with real-time information and guidance as they perform tasks on the factory floor,
making it easier for them to access important data and instructions without having
to refer to separate screens or manual instructions. AR can also be used to visualize
complex processes and systems, making it easier for workers to understand and
troubleshoot issues that may arise. Some potential applications of AR in Industry

4.0 include training, maintenance, quality control, and logistics.

. Big Data

Industrial machinery can generate a large amount of data that must be transmitted,
elaborated in real-time, and stored. Industrial data can be structured and well-
known (e.g., temperature of an oven, pressure of components in a thermal plant) or
scattered and sparse (e.g., text, mobile activity, IoT data). Thanks to the usage of big
data technologies, information can enhance product and service quality, bringing

better knowledge of processes, enabling predictive maintenance, and reducing costs.

. Autonomous Robots

Autonomous robots perform precise and repetitive tasks in specific contexts, such
as cleaning, product mobilization, welding, and others. The development of inter-
connected and Al-powered robots and their large-scale production will increase
efficiency, improve safety, and reduce costs. A completely autonomous robot senses
the environment, elaborates the information, works without human intervention,

moves, and is safe for humans.

. Additive Manufacturing

Additive Manufacturing technology permits the building of three-dimensional
objects by melting a strand of material, extruding it through an automated arm,

and depositing it layer upon layer. Also known as 3D printing, this technique can

2.2 Technology pillars

be used to create objects with complex shapes or features that would be difficult or
impossible to produce using traditional manufacturing methods. There are two
main categories of materials used in additive manufacturing: polymers and metals.
Polymers tend to be less expensive to purchase and use in printing technologies, but
metals offer superior performances. In AM, a digital model of an object is created

using Computer-Aided Design (CAD) software.

. Simulation

The digital simulation of industrial processes permits finding design errors in ad-
vance and predicting system performances before production. Training of new
employees can be performed through simulation in specialized and high-risk fields,
avoiding injuries. The best expression of simulation can be reached through Dig-
ital Twin (DT). DT is created to faithfully represent a physical object or process.
The object being researched (e.g., an air conditioner) is equipped with a variety of
sensors that are connected to the key functioning regions. These sensors generate
information about a variety of performance characteristics of the physical device,
including energy input, temperature, environmental conditions, and more. The
processing system then applies this information to the digital copy, updating its

status.

. Horizontal and Vertical Integration

Integration with stakeholders and with the upper or lower industrial processes is
crucial for the development of 14.0. Acquiring or merging with competitors or
partners requires horizontal integration to overcome incompatibilities and make
systems and machinery interoperable with the new ones. Making new partnerships
e.g., with a logistic supplier requires vertical integration for automated shipping of
parcels or replenishment of warehouses. Horizontal integration can bring benefits
to both companies in the partnership, increasing the economy of scale and respecting

the business division principles.

. Cloud Computing

Cloud Computing makes applications and services accessible everywhere is available
an internet connection. Cloud applications can scale up and be distributed and
accessed across many devices and IoT gadgets and wearables. The almost infinite

computing power oftered by cloud computing providers permits analyzing big data

11

2 Industry 4.0

and to extract knowledge from them. Moreover, itacts as an enabler for collaborative

manufacturing, allowing for real-time collaboration and data sharing.

9. Internet of Things
IoT permits to send and receive information from/to devices that traditionally
were not connected to the internet. The availability of those data allows industries
to improve the accuracy of digital twins and to better monitor environmental
conditions inside the production plant. Embedded systems and the miniaturization
of IoT devices allow the creation of wearable devices equipped with a monitor that
can show an augmented reality, enriched in sensor information and instructions.

When IoT is applied to the industrial devices, it takes the name of IToT.

These pillars aim to provide digital security, enhance the physical world with digital
information, process and store large amounts of industrial data, automate tasks with
robots, create complex objects with 3D printing, simulate industrial processes for better
design and training, integrate with partners and stakeholders, access cloud applications

and services, and connect devices to the internet for better monitoring and collaboration.

2.3 EUROPEAN SERVITIZATION PROGRAM

I14.0 has created an incredible opportunity for the industrial ecosystem. However, the
impact is high in terms of upskilling and reskilling of employees, pushed to learn how
to use new technologies and smart instrumentations. For Small and Medium-sized En-
terprises (SMEs) the transition to advanced industrial environments is quite difficult
and requires double effort from Europe and directly from member states with adequate
(infra)structures, benefits, and tax reductions.

The primary objective of the Digitising European Industry plan is to establish a platform
that collects all the information, protocols, experiences, and large-scale tests conducted by
member states, which aims to become the largest database on Industry 4.0, focusing on
standardization in the sector. This platform also aims to reach the necessary scale to attract
private funding and joint investments from major industrial players, governance elements
such as high-level roundtables will be established where representatives of member state
initiatives, industry leaders, and social partners, meet with the European Commission and
other European stakeholders. In April 2017, the European platform of national initia-

tives [38] was established, which focuses on collecting information and experiences from

12

2.3 European servitization program

member states on Industry 4.0. As of May 2021, it has been integrated into Futurium [37],
which is a platform dedicated to EU policy discussions with European citizens.

The second pillar of the strategy is the establishment of European Digital Innovation
Hubs (EDIHs). The main target of these EDIHs are SMEs, start-ups, and mid-caps,
companies that do not have sufficient resources to upgrade and implement European
guidelines independently. The EDIHs will be located in every member state and connected
through an EU-wide network. Member states and regions are encouraged to invest in the
creation or strengthening of EDIHs that align with their national or regional digitalization
strategy, and they should secure the necessary funding through regional development
funds. The European Commission has committed to investing 329.3 million euros per
year from 2021 to 2023 in EDIHs [36].

The European strategy includes Public-Private Partnerships (PPPs) as a means of pro-
moting industrial innovation. The goal of this initiative is to increase competitiveness
in digital technologies in the EU and establish European leadership. To achieve this, the
European Commission has created PPPs and Joint Undertakings in key digital areas such
as 5G, big data, High Performance Computing (HPC), cybersecurity, photonics, robotics,
and electronic components and systems, which are funded through the EU’s Horizon
2020 program.

In order to achieve the objectives of the European digital industry strategy while main-
taining user privacy, the European Commission is working on regulating critical aspects
of the industry. Two main areas of focus are the free flow of non-personal data and cyber-
security. The free flow of non-personal data aims to enable a competitive data economy
within the member states, allowing companies and public administration to store and
process industrial data. This regulation covers several key aspects such as the movement of
data across borders, switching between different cloud service providers, and providing
portability and independence of data flow. The cybersecurity package aims to establish
a certification network for enhanced cyber-resilience and refactor the EU’s cybersecu-
rity agency, ENISA, to provide support to member states, and contribute to operational
cooperation, issuing EU-compliant certificates and crisis management across the EU.

The last and arguably most important pillar of the European digital industry strategy is
to prepare citizens for the digital revolution and the impact it will have on their studies and
careers. This is accomplished through partnerships between member states, companies,
social partners, non-profit organizations, and education providers. These entities collabo-

rate at different levels to address the digital divide among citizens and ensure that everyone

13

2 Industry 4.0

has access to necessary education, regardless of their starting point. The education and

training offered range from high-level training for unemployed individuals to training in

cutting-edge technologies for I'T professionals.

2.4 MARKET SHARE

It is challenging to provide a single market share for Industry 4.0 as it comprehends a

very large number of technologies, each with its own market size and projected growth.

However, it is possible to break it down by specific sub-areas to get an estimate of the

market share for each technology. Here are a few examples of different technology areas

that are part of 4.0, and their estimated market size:

14

Internet of Things: IoT technology is expected to see significant growth in the
coming years. According to research firm MarketsandMarkets, the IoT market is
expected to grow from USD 384.5 billion in 2021 to USD 566.4 billion by 2027,
growing at a Compound Annual Growth Rate (CAGR) of 6.7% [58].

Big Data Analytics: The big data analytics market is also projected to grow ata
significant rate. According to MarketsandMarkets, the big data analytics market is
expected to grow at a CAGR of 11.0% from 2021 to 2026 [56].

Cloud Computing: The market for cloud computing is also projected to reach a
significant size. According to research firm Mordor Intelligence, the cloud-enabling
technology market size is projected to reach USD 46.17 billion by 2026, growing at
a CAGR of 8.26% during the forecast period of 2021 to 2026 [65].

Artificial Intelligence: The Al market is also expanding quickly, Al is expected to
drive innovation and efficiency across industries, and it is expected to have a market
size of USD 407.0 billion by 2027, at a CAGR of 36.2% during the forecast period
2022 t0 2027 [55].

Industrial Robotics: Robotics industry is also expanding in various domains such
as healthcare, manufacturing, and agriculture, the market size of industrial robotics
is expected to grow from USD 15.7 billion in 2022 to 30.8 billion by 2027, at a
CAGR of 14.3% [57].

2.5 Toward industry 5.0

* Cybersecurity: As digitalization increases, so does the risk of cyber-attacks and data
breaches. This is creating a growing demand for cybersecurity solutions. According
to Mordor Intelligence, the global cybersecurity market size is expected to reach
USD 2317.02 billion by 2027, growing at a CAGR of 13.37% during the forecast
period 2022 to 2027 [66].

The above information provides an overview of some of the major technology areas within
14.0 and their estimated market size. It’s important to note that as technology continues to
advance, these forecasts are subject to change and are expected to evolve as new applications
are developed. However, all the technology areas mentioned are showing growth and have

the potential to bring significant benefits to the businesses that adopt them.

2.5 TOWARD INDUSTRY 5.0

Although the goals of the fourth industrial revolution have not yet been achieved, the
fifth industrial revolution is already present in the literature [40, 59, 64, 96]. 15.0 includes
and empowers the Industry 4.0 paradigm by focusing goal of making manufacturability
sustainable from economic, ecologic, and societal perspectives. This integration is expected
to lead to even greater levels of efficiency, flexibility, and intelligence in manufacturing and
other industries. Integrating sustainability and environmental considerations into this
model could involve the use of these technologies to support the development of more
environmentally-friendly production processes, as well as the use of data analytics and
other tools to track and optimize the environmental performance of organizations. In I5.0
machinery and processes will reach new levels of resilience, by incorporating self-healing
and self-diagnosing capabilities into industrial systems, so that they can detect and repair
problems on their own without human intervention.

Human-centric green I5.0 will place emphasis on creating a sustainable and inclusive
environment that promotes quality of life and well-being for all people, while also address-
ing global challenges such as climate change and resource depletion. It will also focus on
creating safer, healthier, and more efficient work environments, integrating them with
smart grids.

This new era of the industry is expected to be driven by the integration of cutting-edge
technologies such as Artificial Intelligence, IoT, Cloud Computing, and Robotics, as well
as new technologies in the field of Energy, such as renewable energy and energy storage, as

well as advanced materials, biotechnology and advanced manufacturing.

15

2 Industry 4.0

The human-centric green I5.0 is expected to promote the use of sustainable resources,
circular economy, 14.0 systems, and technologies to reduce waste and emissions and
create a more sustainable future. Green technologies like IoT, big data, and advanced
manufacturing are expected to play a key role in I5.0, which is designed to protect the

environment and improve the quality of life for all people.

16

3 CrLoup TECHNOLOGIES

This chapter explores the concept of cloud continuum as it relates to Industry 4.0. The
cloud continuum refers to the integration of cloud computing technologies within the
manufacturing industry to enable greater efficiency, flexibility, and scalability. The chapter
will delve into the different types of cloud services, such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS), Function as a Service (FaaS) and
how they are used to support Industry 4.0. Additionally, the chapter will cover other
key technologies within the cloud, including middleware software, message-oriented

middleware and containerization.

3.1 CLOUD CONTINUUM

Distributed systems and the widespread fast internet access pushed the application from
running on a local computer or in-house workstations to servers sparse across the world
and accessible “as a Service (aaS)”. Data storage, applications, computing resources, and
even functions are managed by cloud providers, relieving the burden of management of
hardware and software shifts from companies’ Developers and System Engineers. Costs
of hardware and software are modulated on an as-needed basis. The users can select the
best cloud plan for their businesses or pay for single computations. Scalability is granted
by the providers, which, based on the user’s needs, can add or remove virtual and physical
resources from the pool transparently.

The key features of cloud computing are:

* Remote access: Cloud computing allows users to access resources from anywhere,

on any device, as long as they have an internet connection.

* On-demand resources: Cloud computing allows users to only pay for the resources
they use, which can be scaled up or down as needed, without the need to invest in

additional hardware or software.

17

3 Cloud Technologies

* Reliability: Cloud providers typically have multiple data centers and employ
redundancy and backup systems to ensure that resources are available even if one or

more data centers fail.

* Managed services: The service provider is responsible for monitoring, maintaining,
and troubleshooting these systems, and for ensuring that they are running smoothly
and efficiently. This can include tasks such as patch management, software updates,
security, and backups. Additionally, Managed Services providers typically offer
a Service Level Agreement (SLA) to ensure the quality and availability of their

services.

* Pay-per-use: Customers are charged for the specific services they use, such as
storage, computing power, or data transfer. The charges are typically based on
usage metrics, such as the amount of data stored or the number of CPU hours
used, granting benefits for both customer and service providers, as it allows them

to optimize their usage of resources and manage costs more efficiently.

Cloud computing, while providing many advantages, also has some potential drawbacks.
Starting from security risks, since the servers are remote and accessible via the internet
24/7, there is the possibility of attacks and data breaches. Cloud providers try to putin
place all the measures for controlling unauthorized access, but breaches can still occur.
An attack on a data center or the network can cause inaccessibility of the cloud and in
industrial scenarios even the stop of some production lines. Moreover, since the cloud
is accessible only via the internet, a reliable and fast internet connection is required to
access it and that can be challenging in rural and isolated areas. Also, control over data can
be risky, since cloud providers tend to consider clients’ data as part of their business and
often deny the possibility of downloading from customers. The control of data can also
be crucial in some industrial systems since can contain reserved information and industrial
secrecies. The limited customization offered by cloud providers can make it difficult to
tailor the service to unique requirements. Costs of per-customer customization can be
high and non-convenient. Lastly, maybe the major downside of a cloud approach is the
so-called vendor lock-in which refers to the difficulty of moving data, applications, or
other resources from one cloud provider to another. A cloud provider can ofter many
custom Application Programming Interfaces (APIs) and services that other competitors
have not, so a switch to another cloud provider can require major changes in the software

that, in some cases, could even be impossible.

18

3.1 Cloud continuum

On-premise TaaS Paa$ FaaS SaaS
Applicacions [Applications [Applications Applications ‘ Applications ‘
Data [Data Data Data ‘ Data ‘
Runtime \ Runtime Runtime Runtime ‘ Runtime ‘
Middleware \ Middleware | Middleware | Middleware ‘ Middleware ‘
Operating system ’ Operating system Operating system Operating system ‘ Operating system ‘
Virtualization [Virtualization Virtualization Virtualization ‘ Virtualization ‘
Servers [Seryers Servers Servers ‘ Servers ‘
Storage { Storage Storage Storage ‘ Storage ‘
Networking { Nerworking [Netwotking [Networking ‘ Networking ‘

j You manage [— Service provider manage

Figure 3.1: Cloud service models.

Cloud computing is generally categorized into four main service models: IaaS, PaaS,
Faa$, and Saa$ represented in Figure 3.1 that highlights what is managed by the developer or
the final user (pink) and what is managed by the cloud provider (light blue). Amazon Web
Services, Microsoft Azure, IBM, and Google Cloud Platform are among the top providers

of cloud services, offering flexible and scalable solutions for various cloud needs [30].

Before discussing service models, it is important to understand the concept of on-
premise systems. These systems are installed and run on a company’s own data center, with
the company taking responsibility for all related tasks. This can include finding a suitable
space to house the servers, negotiating internet connections with providers, and managing
the installation of cables, hardware, routers, servers, uninterruptible power supply, and
backup systems. Additionally, virtualization services are often necessary to manage the
underlying hardware and an operating system is needed to support business-oriented
application development. At this level of abstraction, developers can then make informed
decisions about the appropriate application middleware, runtime, data storage, and user-
facing applications for their specific needs. The following subsections will describe the key
characteristics of each Cloud Continuum service model, along with examples of popular

open-source implementations.

19

3 Cloud Technologies

3.1.1 INFRASTRUCTURE-AAS

In the IaaS model, the service provider manages all levels of infrastructure, including
physical, networking, storage, servers, and virtualization. IaaS providers offer customers the
ability to rent, on a pay-as-you-go basis, the infrastructure required to run their applications
and services. The key advantage of this model is its high flexibility, as customers can easily
scale up and down the infrastructure they need, including Virtual Machines (VMs) and
virtualized network elements (such as switches and routers). These VMs, also known as
instances, can be selected from a pool and customized to meet the customer’s specific
needs, with varying levels of CPU, memory, and storage. Operative Systems (OSs) can
also be installed and configured via the provider’s admin panel, or selected from a catalog
of pre-configured options. Custom or specialized OSs can be installed via admin panels

and virtualized Secure Shell (SSH) accesses.

Storage services are one of the key components of TaaS. Typically, IaaS providers ofter
block and object storage. Block storage is suitable for applications that need quick read-
and-write operations and immediate access to data. It allows for high performance with
databases and transactional data storage and offers control over the location of the storage,
providing proximity to application servers. However, block storage has limited scalability
options due to its traditional management of data and metadata, making it considered an
"old-fashioned" storage option. Object storage is considered the future building block for
highly-scalable storage systems. They permit the storage of a large amount of data across
multiple regions, scale infinitely to a petabyte or even more, and are often equipped with
analytics capabilities. The latter permit organizing and retrieving data easily, providing
redundancy and increasing data availability, replicating information across multiple data
centers. In conclusion, object storage is typically less expensive than block storage, as it
does not require specialized hardware or software. This makes it a more cost-effective

solution for big data applications.

Network virtualization lays the further foundation for IaaS. Network virtualization
refers to the use of virtualization technology to create virtual networks that emulate the
functionality of physical networks. The IaaS admin panel permits to create, configure,
manage and destroy customized virtual networks within the underlying shared infrastruc-
ture. Several techniques permit to achieve network segregation and virtualization, the

most used are [17]:

20

3.1 Cloud continuum

* Virtual Local Area Networks (VLANs): A VLAN is a network build upon a
Local Area Network (LAN) on witch the hosts communicate by using tags (called
VLAN IDs). The advantages of this technology comprehend flexibility in terms of
network administration and management since all the needed configurations are
set via software. Moreover, several VLANSs can be logically connected and hosts

sparse on different local networks can communicate as if they were local.

* Virtual Private Networks (VPNs): A VPN allows for the connection of geo-
graphically dispersed entities or regional sites into a secure, single network. The
purpose of a VPN is to establish a private network using public or mixed private-
public infrastructures and utilizing Internet Protocol address (IP) routing. VPNs
can be used on various operating systems and typically have secure access through

the use of login credentials, passwords, certificates, or even biometric features.

* Software-Defined Networking (SDN): In SDN control and data planes are split
into two logically separated entities that can be pure software or a mix of software
and ad-hoc hardware. This separation allows improved control over data paths, as
well as more flexibility and programmability of the network. The control plane can
make specialized decisions over data flows that can be prioritized based on policies,
destination, source, contained data, or channel congestion. In Iaa$ can be used to

dynamically manage and provision network resources.

OPENSTACK

CLIENT TOOLS O wesFRoNTEND == APIPROXIES
. Horizon EC2API ‘
OPERATIONS TOOLING
OpenStackClient)
L4 WORKLOAD PROVISIONING 3 APPLICATION LIFECYCLE $4f orcHesTRATION © vouronma seavices
Magnum Trove Murano Freezer Heat Mistral Aodh
& sDKs Ceilometer
Sahara Solum Masakari Senlin Zaqar Blazar
Python SDK (| Monasca Venus
== compute S sTorace (@ RESOURCE OPTIMIZATION
| virTuAL Machimes | == | siocx | [e]
e Watcher Vitrage
Nova Zun Swift Cinder Manila
INTEGRATION ENABLERS
" (il BILLING / BUSINESS LOGIC
¥l CONTAINER SERVICES e NETWORKING] HARDWARE LiFECYCLE Adiutant CloudKitty
Kuryr |_sor I orosaavciv | | oxs | [aremeraL) | AcceLearons |
Neutron Octavia Designate Ironic Cyborg g TESTING / BENCHMARK
18INFY
¢ Tempest ~ Patrole
Tacker & SHARED SERVICES Rally
| ety | | screouunc | | imaces | | secrers |

Keystone Placement Glance Barbican

LIFECYCLE MANAGEMENT
| DEPLOYMENT / LIFECYCLE ToOLS 4 PACKAGING RECIPES FOR.

Kolla-Ansible OpenStack-Charms TripleO Bifrost Kayobe Puppet
OpenStack-Helm OpenStack-Ansible OpenStack-Chef Containers (LOCI, Kolla)

Version 20221001

Figure 3.2: OpenStack components map [81].

21

3 Cloud Technologies

OpenStack [80] is an open-source cloud computing platform that provides IaaS and

it is composed of multiple individual components, or "services”, that can be deployed

and configured independently based on the user’s needs. The latest version of OpenStack

"OpenStack Zed" released in October 2022, includes 29 different core services and many

additional services for configuration, management, and integration and it is represented in

Figure 3.2. However, a minimal installation of OpenStack can be made with only 6 main

services (Keystone, Glance, Placement, Nova, and Neutron) plus a couple of suggested

commodity and dashboard services (Horizon and Cinder).

Here is a summary of the key components and their functions in a minimal OpenStack

installation:

22

* Keystone: Keystone is the authorization and authentication service. It provides a

centralized, uniform, and coherent way to securely connect to all other services
through its identity services. It also offers a service catalog that allows users to
discover all the services available in the OpenStack cluster. Keystone attaches meta
information to each service, indicating if it is an admin, internal, or public service,

and the port it is available on.

Glance: Glance is the image service for OpenStack. It allows for the discovery,
registration, and retrieval of virtual machine images through its Representational
state transfer (REST) APIs, which permit querying the service and retrieving an
image. With Glance, images are cached in order to decrease latency and increase the

availability of images throughout the cluster.

Placement: The Placement service allows for the scheduling and planning of com-
puting resources like virtual machines and containers. It offers a centralized REST
APIs for users to query and request resources. Additionally, it maintains an in-
ventory of available resources in the OpenStack cluster and enables the setting of

quotas for users in terms of CPU, memory, and storage.

Nova: It is the compute service in OpenStack that enables the creation and man-
agement of virtual machines and other compute resources. It interacts with other
services such as Keystone and Glance for service discovery and image retrieval.
Moreover, it includes a scheduler that is responsible for identifying the appropriate
compute node with sufficient resources to host new instances. The APIs permit

other components to interact with Nova and to manage VMs.

3.1 Cloud continuum

* Neutron: Neutron is the component responsible for the networking of compute
instances. It allows users to create and manage virtual networks, including routers,
switches, and other networking components. It offers a variety of network options,
ranging from basic virtual bridges to advanced virtual networks (e.g., VLAN, VPN,
SDN, and others).

* Horizon: It is the web-based dashboard service that enables the management of
all OpenStack components. It can be accessed over public or private networks
and features automatic updates through its interaction with Keystone for service

discovery, making new components and capabilities available as they are installed.

* Cinder: Last of suggested minimum installation components, Cinder is the block
storage service for OpenStack. It provides a way to create and manage block storage

devices, such as hard drives, and manage their attachments to compute instances.

OpenStack is an example of a widely used and component-based Iaa$S platform. Other
cloud infrastructure providers offer similar services to OpenStack, some of the most
popular include Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform
(GCP), Alibaba Cloud, VMware vSphere, OpenNebula, and CloudStack.

3.1.2 PLATFORM-AAS

Paa$ allows developers to run, develop, execute and monitor applications without having
to worry about the underlying infrastructure. The service provider, along with the IaaS-
covered layers, abstracts the architecture even more, installing and hiding from the final user
the OS, the middleware, and the runtime. This allows developers to focus on writing code
and building features, rather than managing servers and other infrastructure components.
It also allows for faster and more efficient deployment of applications, as well as automatic
updates and upgrades. Key features of PaaS comprehend the total abstraction from the
underlying architecture, making the developed application more portable and platform-
independent. Scalability functions and replication mechanisms permit to scale-up and
down of the application without requiring manual intervention from developers. Develop
production times decrease, thanks to tight integrations between offered services. The
same multi-tenant infrastructure can be used by many developers in an isolated and safe

way, providing each one a dedicated view. Finally, a Paa$ infrastructure is kept updated

23

3 Cloud Technologies

without the intervention of application developers who can benefit from security patches

and other fixes.

As with IaaS, Paa$ also has some drawbacks. In this service model, flexibility or cus-
tomization are limited, since service providers cover only widespread use cases which can
guarantee many paying users with contained costs. Given the platform abstraction from
the underlying layers, troubleshooting and precise control of the execution environment
is difficult or even impossible, causing inability in optimizing application performances.
As with all other cloud continuum technologies, PaaS$ also has the potential for vendor
lock-in, dependence on an internet connection, and costs that must be taken into account
during the evaluation phase.

Cloud Foundry [18] is a widely used open-source Paa$ platform that allows developers
to build, scale, and deploy multi-language applications, including Java, Ruby, Python,
Go, and .NET, and distribute them on microservice architectures or container-based
deployments. It has a large user base and an active community, and commercial options

are available for professional users.

‘ Router ROUTING
{ OAuth2 Server ‘ ‘ Login Server AUTHENTICATION
C(g}?rlcl)cliler ‘ nsynch ‘ ‘ gii%? ’ ‘ Cell Reps APP LIFECYCLE
App Execu(t;igc.)rr:1 érll)iego Cell) ’ ‘ Blob Store 1211;11’) Sg)?lx?fl()N
Service Brokers SERVICES
BBS (HTTP/S) ’ ‘ Consul ‘ Mels\lngesBus MESSAGING
Metrics Collector ‘ ‘ App Log Aggregator i/[OEggIIISZAND

Figure 3.3: Cloud Foundry architecture schematic.

Figure 3.3 represents an overview of Cloud Foundry architectural components. It is

composed of 7 different layers:

24

3.1 Cloud continuum

* Routing: This layer is responsible for directing incoming traffic to the appropriate
component. The router updates its routing tables by regularly querying the Diego

Bulletin Board System (BBS) to determine the current location of a component.

* Authentication: The authentication layer allows users to log in and applications to
authenticate through a token-based system provided by the OAuth2 server. This
ensures that only authorized users and applications have access to the platform and
its resources. This layer is crucial for maintaining the security and integrity of the
platform by validating the identity of the users and applications that are accessing
it.

* App Lifecycle: The app lifecycle layer is responsible for managing the registration
and updates of applications, as well as controlling the replication of components.
This layer ensures that the applications are running in an updated and consistent
state by monitoring their health and making necessary adjustments. This includes
tasks such as starting and stopping applications, scaling them up or down, and

performing maintenance or updates.

* App Storage and Execution: The app storage and execution layer are responsible
for storing and managing the files, code packages, buildpacks, droplets, and other
elements necessary for the functioning of an application. It is the foundation for
the execution of the applications on the platform, and it allows for the storage and

retrieval of large binary files, application code, and other components.

* Services: The services layer is responsible for integrating with third-party databases
and Saa$ providers. The Service Broker is the main component of this layer and it
enables the platform to connect to external services and resources. It allows develop-
ers to consume external services and resources, such as databases, messaging systems,
and other types of services. The Service Broker also manages the provisioning and
binding of services to applications, which means that it is responsible for creating

new instances of services and making them available to applications.

* Messaging: Cloud Foundry utilizes messaging to facilitate communication between
different components within the platform. The internal HT'TPs layer allows com-
munication with the Diego Cell to start, stop, and scale applications. The BBS

provides a message queue implementation to establish communication between

25

3 Cloud Technologies

Diego components. Additionally, the NATS Message Bus is used to communicate

with the router, thereby propagating the latest routing table.

* Metrics and logging: The Metrics and Logging layer of Cloud Foundry infras-
tructure allows developers to have real-time metrics and a centralized location for
gathering all application logs, which is essential for debugging and troubleshoot-
ing. This layer provides valuable insights into the performance and behavior of
the deployed applications, helping developers to optimize their code, detect and fix
errors, and identify potential bottlenecks. Additionally, the metrics and logging
layer allows monitoring of the underlying infrastructure of the platform, enabling

the detection of potential issues and maintenance.

Overall, PaaS$ is a valuable tool for developers looking to build and deploy web and
mobile applications quickly and easily. Cloud Foundry is a popular open-source Paa$S plat-
form that provides a comprehensive set of tools and services for building, deploying, and
scaling applications. It abstracts away the underlying infrastructure, allowing developers
to focus on writing code and building features. However, as with any Paa$S solution, it’s
important to weigh the benefits against the potential drawbacks, such as vendor lock-in

and costs.

3.1.3 SOFTWARE-AAS

With Saa$, all management and development of the application are handled by a third-
party provider, and the application is made available to customers over the internet. This
service level is the last step in the cloud continuum, where customers pay on a pay-per-use
or subscription basis to directly use the final application. The main advantage of this
technology is that the end-user does not have to pay for infrastructure, and can access
the software from any location, browser, and OS. Data is fully managed by the service
provider, and the user has access to an integrated view of the application through a reserved
area. Examples of Saa$ include Customer Relationship Management (CRM) software
like Salesforce, human resources management software like ADP, and office productivity
software like Microsoft Office 365, G Suite, and Overleaf.

Saa$ is often offered for free, as service providers can collect personal information and
preferences that they can sell to third-party companies or monetize through targeted

advertising. Some software is offered in freemium versions, where the user can try out

26

3.1 Cloud continuum

the platform before paying for advanced features or continue using it after a trial period.
However, since the provider has complete control over the application, data, and usage
information of customers, there can be privacy concerns. Other disadvantages are discussed
in the previous sections and overlap with other cloud continuum technologies: vendor

lock-in, limited customization, limited control, and limited data ownership.

3.1.4 FuncTIiON-AAS

One of the most recent advancements in Cloud Continuum is represented by FaaS. The
term Faa$ was first introduced by Amazon Web Services (AWS) in 2014 with the release
of their serverless computing platform, AWS Lambda. FaaS$, in addition to the features
provided by Faa$, offers a high level of support for application development by managing
the entire lifecycle of the functions developed. FaaS$ eliminates the need for developers
to manage servers, scaling, or availability, allowing them to focus solely on writing and
deploying business functions. That can lead to cost savings as developers only pay for the
resources they use on a fine-grained scale, and increased agility as they can quickly and

easily deploy new functions.

Faa$ is often paired with managed services such as storage, databases, and messaging
queues to achieve a Serverless architecture. Since functions are activated by the framework
only when there is a request, the usage of resources on the Faa$ server is minimal when

there are no requests, providing cost savings for the users.

The underlying mechanisms of Faa$ involve several components that work together to
create and respond to requests. When a function is first invoked, resources such as memory
and CPU may need to be allocated and the function’s code and dependencies loaded.
This process, known as a cold start, can cause a delay in the execution of the function.
Alternatively, they can be managed through a pool of resources that are kept in memory
and ready to respond to requests after a few more instantiations (warm start) or they can
be completely pre-allocated and ready to go (hot start). These different start types can
impact the performance of the functions and it’s important to understand how they will

affect the application and the resource usage in the node.

There are multiple open-source distributed Faa$ platforms available such as Open-
FaaS$ [79], KNative [52], OpenWhisk [101], Nuclio [70], OpenLambda [100], and Iron-

Functions [49]. For the purpose of this paragraph and to better illustrate the concepts

27

3 Cloud Technologies

discussed, Apache OpenWhisk is selected as an example, owing to its clean architecture

and ease of understanding.

Target Namespace

1
1
'

Rule 1 /

Figure 3.4: OpenWhisk programming model schematic.

The OpenWhisk programming model is based on the schematic in Figure 3.4. Events
can originate from various sources such as databases, message queues, chatbots, timers,
etc., and trigger the execution of a specific action. An action is a stateless piece of code
that runs on the platform and can be written in multiple programming languages, giving
developers the flexibility to use their preferred one. Actions can also be combined to
form a sequence of actions that execute one after the other. Triggers are implemented
through the use of channels and can be connected to a specific action or sequence through
rules. Once a rule is set, any event that enters the trigger will initiate the execution of the
corresponding action. The final output is in JavaScript Object Notation (JSON) format.

OpenWhisk utilizes several internal technologies such as Docker containers [27] and
Apache Kafka broker [98] to abstract the complexity of underlying systems and enables
seamless scalability across a cluster of machines.

Like other technologies, also FaaS has some disadvantages. One of the main disad-
vantages is the cold start problem, which can significantly impact system performance.
Additionally, the nature of the technology limits flexibility, as functions are stateless, and
maintaining state across multiple function invocations may not perform well, as accessing
databases and other sources can be expensive in terms of latency and bandwidth. As with
other cloud continuum technologies, Faa$S also has the potential for vendor lock-in and

security concerns, as functions must be exposed over the internet to be accessed by users.

3.2 MIDDLEWARE SOFTWARE

Cloud technologies intertwine with a more general concept of Middleware Software.
Middleware acts as a bridge between the operating system or physical hardware, and the

applications, allowing them to interact and work together even if they were not designed

28

3.2 Middleware Software

to do so. Middleware software provides additional functionalities such as caching and
multiple communication capabilities. Using middleware also speeds up the development
process and reduces the time it takes for a product to be brought to market.

Middleware grant both functional and non-functional properties to the applications.
From a functional perspective, they enable communication between different applications
and systems, allowing them to share data and work together. This can include support
for various communication protocols, such as Hypertext Transfer Protocol (HT'TP),
Simple Object Access Protocol (SOAP), and REST, security, integration, many-to-many
communication models, and data management. Functional properties are mandatory and
can be achieved also with a different kind of software.

On the other hand, the non-functional properties, that grant a high QoS, are challenging
to be achieved without the usage of middleware. Principal non-functional properties of

middleware comprehend:

* Performance: Middleware should be designed to provide good performance in
terms of response time, throughput, latency, and scalability under any kind of

workload.

* Reliability: Middleware engineers should design and develop the middleware to
be reliable and have high availability, in order to ensure that it provides consistent

and dependable services.

* Scalability: Middleware should be designed to be scalable so that it can handle

increasing loads and support more users.

* Security: Middleware should be engineered to ensure a high level of security so

that it can protect data and restrict access to only authorized users.

* Manageability: Middleware should be designed to be easy to manage and maintain

so that it can be updated and modified as needed.

* Interoperability: Middleware should be designed to be interoperable with other

systems and applications so that it can work with a wide range of technologies.

* Extensibility: Middleware should be designed to be extensible so that new features
and capabilities can be added as needed.

29

3 Cloud Technologies

* Flexibility: Middleware should be designed to be flexible and adaptable so that it

can be used in different environments and situations.

‘ MIDDLEWARE ’
mtegration j [_ Applicationj
| Object- Procedure- | | . |
Oriented Oriented | | DAM Desktop Specialty |
| MOM (S G | | Real-Time Web-based |
Oriented
| i i |

| [e-Commerce] V [Multimedia] |

Mobile or Wireless

| [Pub/Sub] [Passing&Queuing] |

Figure 3.5: Categories of Application Middleware.

As outlined in the taxonomy established by [9], and reported in Figure 3.5, there are a
variety of different types of middleware that can be broadly categorized into two main
groups: integration and application middleware. Integration middleware enables com-
munication and data sharing between different systems. It provides mechanisms to help
different systems interact and work together in a coordinated and uniform manner. The
main examples of this category are Object, Procedure, Message, and Component -oriented.

Object-oriented technology utilizes the creation of an object to facilitate the sharing of
information and behavior between entities connected to an Object Request Broker (ORB).
ORBs convert application language and format data, taking into account the endianness,
by utilizing the Stub and Skeleton approach, which converts local data into ORB objects.
The middleware then calls one or more services and returns the response to the caller, always
passing through local converters. The interaction can be synchronous, asynchronous, or
deferred asynchronous. A noticeable example of ORB implementation is the Common
Object Request Broker Architecture (CORBA) [103].

Procedure-oriented middleware establishes a specific communication channel between
the client and server, which is used to transmit data through marshaling and unmar-

shalling processes. Unlike object-oriented middleware, the communication is exclusively

30

3.2 Middleware Software

synchronous and demands that both nodes are active and prepared to answer requests. In
the event of exceptions, errors, or connectivity issues, these are propagated to the applica-
tion layer through local Stubs and Skeletons. Examples of Procedure-oriented middleware
are Remote Procedure Calls (RPCs).

Component-oriented middleware, also known as Reflective middleware, is a flexible
architecture that allows for the creation of distributed systems through the use of software
components. These components can be reused and combined to build complex systems.
Reflective middleware has the ability to automatically assess the state of the system, identify
the appropriate services and components to handle specific requests, and dynamically
connect the service request to the appropriate service provider. This feature enables the
system to adapt to changing needs, optimize resource utilization, and incorporate new
functionality. An example of this type of middleware is the Enterprise JavaBeans (E]B)

standard.

A Message-Oriented Middleware (MOM) is a type of software application that acts as
an intermediary for message communication between senders and receivers. MOMs can
be classified into two categories: Passing & Queuing and Publish-Subscribe. Passing &
Queuing acts as a router for messages in the system without modifying or interpreting the
message or its content. The client of Passing & Queuing sends the message, which is read
by a server and then delivered to the correct receiver in a First-in-first-out (FIFO) or other
type of order. The characteristics and usage of Publish-Subscribe (Pub/Sub) middleware
will be thoroughly examined in the next section 3.2.1, as it is a key focus of this dissertation

and will be extensively utilized in the research projects outlined in 6.

Application middleware is a widely-used technology that enables the resolution of
specific types of interaction schemes between different software entities. Some examples
of this broad category include Data Access Middleware (DAM), Web-based Middleware,
Real-Time Middleware, Desktop Middleware, and Specialty Middleware. DAM is used to
interact with databases and external resources, providing features such as protection, access
control, and Atomicity, Consistency, Isolation, and Durability (ACID) properties. Web-
based middleware is designed to make it easy for developers to build websites, e-commerce
platforms, or other web-exposed services. Examples of web-based middleware include web
application frameworks such as Ruby on Rails, Angular]S, React]S, Express]S, and Spring
Boot. Desktop middleware allows for communication and interaction between local
and remote computers, examples include SSH, terminal emulation, and printing services.

Real-time middleware specializes in delivering communications with specific latency and

31

3 Cloud Technologies

QoS characteristics. They are often used in low-level M2M communications, automotive
systems, and IoT systems. Specialty middleware is developed to address specific, unique
problems and does not fit into any of the aforementioned categories.

Additionally, an emerging class of middleware uses container technology to assist devel-

opers in connecting to resources across multiple clouds.

3.2.1 MESSAGE-ORIENTED MIDDLEWARE

Remote procedure calls and remote object invocations help to conceal communication in
distributed systems, thus enhancing access transparency. However, this mechanism is not
always appropriate. In particular, when it cannot be assumed that the receiver is active
at the time a request is made, alternative communication services are required. Similarly,
the inherent synchronous nature of RPCs, which causes a client to be blocked until its
request is processed, may need to be replaced by a different approach such as messaging.
For these purposes, MOM systems, also called message-queuing systems, provide mech-
anisms to support asynchronous, many-to-many reliable communications [25]. The
communication paradigm goes from sender to receiver through a third-party message
exchange system that is responsible for collecting, potentially storing, and delivering the
message to the final destination. Sender and receiver can be connected to the message-
queuing system at different times, and messages can be stored with different Quality of

Service (QoS) and retention policies.

MESSAGE-ORIENTED MIDDLEWARE
=Y =Y
=
X
D—* Receivers
< =Y
Sender
& -
Transform
QoS
policies

Figure 3.6: Message Oriented Middleware logical architecture overview.

32

3.2 Middleware Software

Figure 3.6 illustrates the flow of messages from a sender to receivers. A set of routers
and queues ensure that messages are delivered to the correct receiver who has expressed
their desire to receive messages (Subscribe) from that channel (Topic). The sender leaves
their message in an input queue (Publish) that is managed by the MOM.

There are several semantic delivery policies that can be applied to the messages. The two
most commonly used are az-least-once and at-most-once. At-least-once policy guarantees
that the message will be delivered to the receiver at least once, even if the delivery process is
interrupted. This means that if the message does not reach the receiver, the MOM system
will attempt to resend the message. On the other hand, az-most-once policy ensures that
the message will not be delivered more than once, even if the delivery process fails. This
means that if the message does not reach the receiver, the MOM system will not attempt
to resend the message. Another semantic policy that can be applied to messages ina MOM
system is exactly-once delivery. This policy guarantees that the message will be delivered
to the receiver exactly once, and no more or less. This means that if the message does not
reach the receiver, the MOM system will attempt to resend the message. The latter is
particularly useful in cases where data consistency is crucial.

QoS policies are applied to messages to ensure their proper handling and delivery. These
policies can include transactional messaging, which ensures ACID properties; durability
policies, which control the time a message is retained before it is discarded; presentation
and data-processing properties, which dictate how messages are presented and potentially
pre-processed before delivery; and resource limits properties, which manage the resources
the service can consume [73].

Some examples of MOM include:

Apache Kafka [98]: an open-source, distributed streaming platform that can

handle high volumes of data and supports real-time processing of data streams.

RabbitMQ [104]: an open-source message broker software that implements the
Advanced Message Queuing Protocol (AMQP) standard.

Amazon Simple Queue Service (SQS) [2]: a fully managed message queuing
service provided by AWS that enables you to decouple and scale microservices,

distributed systems, and serverless applications.

Microsoft Azure Service Bus [61]: a messaging service provided by Microsoft

Azure that enables you to build messaging solutions for applications and services.

33

3 Cloud Technologies

¢ IBM MQ [48]: a family of messaging products developed by IBM that provides

messaging capabilities for enterprise applications and services.

These are just a few examples, there are many more MOM:s available in the market, each

with its own set of features and capabilities.

3.3 CONTAINERIZATION

Containers are a way to package software in a consistent and portable way, allowing it
to run on any platform, including desktops, traditional I'T environments, and the cloud.
They use OS virtualization to isolate and control the processes and resources that the
software has access. Containers are lightweight, fast, and portable, as they don’t require
a separate guest OS for each instance, instead they utilize the host OS’s features and
resources.

Containerization makes it possible to package the developed application and all its
dependencies in a single bundle, avoiding environment misconfigurations and missing
dependencies. Containers run on top of a container engine (also called container runtime)
software that manages the entire lifecycle of hosted containers and isolates them from
each other and from the underlying guest OS. The container engine is responsible for
configuring all the resources to meet the needs of the application, creating volumes and
binding them with the underlying filesystem, creating bridges, VLANS, overlay networks,
opening ports on the OS, and connecting them to the correct container that is exposing
the service.

Although the concept of containers has existed for decades, the modern era of containers
began in 2013 with the introduction of the Docker [27] container engine, which made it
more accessible for developers.

Docker is an open-source container engine that enables fast and lightweight container-
ization capabilities. It is organized as a client-server application, with the core daemon
(dockerd) acting as a long-running server and a Command Line Interface (CLI) (docker)
acting as a client. From the CLI, it is possible to pull, run, stop, list, and manage images,
templates of applications, and dependencies, similar to a snapshot in a VM environment.

The increasing growth of container-managed software and the wide-spreading of
Docker and other container engines pushed the development of Container Orchestra-

tors, software dedicated to maintaining the consistency and the desired QoS in a pool of

34

3.3 Containerization

managed container engines. Container orchestration tools like Kubernetes [53], Docker
Swarm [28], and Mesos [99] come into play, providing a way to manage and automate the
deployment, scaling, and management of containerized applications at scale.

Overall, containers are an essential aspect of modern software development and deploy-
ment, and their use is likely to continue to grow in popularity. Practical usages in 14.0 of

containers and container orchestrators will be explored in Chapter 6.

35

4 OBJECTIVES

Both I4.0 and I5.0 aim to establish value chains spanning heterogeneous industrial do-
mains, enhancing reuse, increasing production flexibility, and exhibiting resiliency in times

of disruption.

Sensing technology, big data, and AT have proven viable for automating, managing, and
optimizing a wide range of non-industrial processes. Recently, this practice is expanding
in the industrial domain [46]. The current manufacturing landscape comprises hetero-
geneous machines and production facilities capable of autonomous message exchange,
generating data at an ever-increasing speed, and all data could provide useful information
and could be used proactively for optimized control and business-related purposes [97].
This capability could bring fundamental improvements to the industrial processes in

manufacturing, engineering, supply chain, and life cycle management [105].

However, a big obstacle in achieving this goal, especially for SMEs, is the obsolete and
rigid separation between technologies that characterize departments involved in product
manufacturing (working machines and production lines) and departments committed
to managerial tasks [93]. The nature of SMEs frequently suggests that, in contrast to
larger businesses, they run with a small staft or a single owner. As many other companies,
also SMEs have to decide between creating custom in-house software applications or
selecting third-party software solutions. Many times, SMEs are forced to choose the latter
due to limited resources. Even though ready-made solutions may be efficient, utilizing
them frequently comes with limitations, like the inability to customize or integrate them
into the company model and workflow. Third-party solutions might also need tweaks
and adjustments, which could raise prices and present new, unexpected difficulties, and

fragmentation in protocols and tools.

Moreover, industrial automation has taken a conservative approach, opting for rigid
separation between the Operation and Information Technology domains. However, it is

becoming obvious that 4.0 and even more I5.0 will have a very significant impact only

37

4 Objectives

with a full convergence of OT/IT that will push for the deep joint exploitation of most
recent computing and communication technologies.

Zooming in on the OT layer, a wide range of protocols co-exist which are incompatible
with one another, leading to fragmentation that makes it difficult to provide a coherent
and consolidated view of the assets and processes.

This work proposes solutions to a set of common OT/IT convergence issues, exploiting
the edge computing paradigm to enable fast, customizable, and reliable data sharing on
the OT/IT boundary. Our infrastructures rely on a layered middleware approach, where
each layer aims to best face and comply with the different requirements of the OT and IT
layer, respectively, and is also capable to provide a better synergy of the two layers.

Moreover, in this work, we propose a framework coupled with a protocol suite for QoS-
enabled semantic routing in industrial networks. Such a framework fits the characteristics
of modern manufacturing environments and permits overcoming the necessity of flexible
computation and data aggregation in industrial domains. In particular, the presented
solution relies on overlay networking to provide a semantic routing substrate that operates
both at the application and network layers. The application layer consists of a MOM and
several Application Gateways (AGWs), whereas the network layer combines SDN and
In-Network Processing (INP). The overarching ambition is to enable i) loosely coupled,
asynchronous communications, ii) fine-grained traffic management, and iii) in-network
traffic optimization.

To provide context for these works within the realm of OT/IT integration, this section
will outline key objectives that serve as the foundation for all the proposed solutions.

The blurring of the OT/IT strict boundary would open the door to the next-generation
I5.0 industrial applications, allowing for fine-grained monitoring and control of individ-
ual assets and processes via Digital Twin technology [13, 39]. In the IIoT context, in
particular, in production manufacturing plants, cloud/edge computing is considered a
relevant opportunity that can significantly contribute to blurring the current separation of
OT&IT domains through the design of edge nodes where compute/storage/networking
functionalities could converge.

As shown in Figure 4.1, several hierarchical layers of edge nodes with different capabili-
ties can be deployed, distributing the resources along to support the execution of industrial
applications and their data storage, thus giving rise to a more fluid model identified by
the aforementioned Cloud-to-Thing Continuum. The Automation Pyramid is solely

responsible for controlling and monitoring production processes in the machine locale.

38

Automation Pyramid Cloud Continuum

Management level /\ /\ Cloud layer
//

\
/ C Business planning and logistics
A\

A\

o
(Manufacturing operations management) m\ :

AN 7 Edge layer 1

\ /

(Monitoring and supervising J\J

Control level / Machine layer

\ yA
A /
Sensing and manipulating J \
A\
/ < Production processes > \

Planning level

Edge layer N

Supervisory level

Field level

Figure 4.1: Automation pyramid remapped on Cloud continuum representation.

As we move from control to supervisory levels, we aim to gather knowledge and enable
remote monitoring, supervision, and predictive maintenance by distributing computation
across multiple edge layers close to the production floor. The planning layer can take
advantage of data collected from various industrial operations and, in collaboration with

management, can be dispersed across edge nodes and cloud layers.

It is clear, however, that just introducing support for the execution of industrial ap-
plications at the edge nodes is not sufficient. Seamless integration at all levels of the

infrastructure (cloud and edge) is needed to ensure the application QoS specifications.

In this context, edge computing and cloud-continuum play a crucial role in enabling
the design and implementation of novel distributed control functions with parts that
are hosted on the edge nodes located in the production plant premises and close to the

controlled sensors/actuators, primarily to increase reliability and decrease latency [83].

These edge-enhanced cloud architectures provide several benefits compared to a pure
data center-based approach: application latency is reduced because of vicinity to end-
points; inter-domain traffic is diminished because, for example, Multi-access Edge Com-
puting (MEC) nodes stay in the telco operator network; sensitive information/processing
(e.g., of monitoring data related to the manufacturing process that can reveal competitive
advantages) can be maintained at industrial edge gateways in the premises of end-points,
while global status visibility can be employed, e.g., when needed for global machine learn-

ing optimization, by interacting with pure data center-based cloud resources [1].

39

4 Objectives

The following chapter provides an overview of the key technologies currently utilized

in the industrial sector to gather, monitor, control, and export data from machinery.

40

S RELATED WORKS

In this section, we provide a view of the main existent platforms and standards concerning
14.0 machine integration and data management. Without any pretense of being exhaustive,
the goal of the section is to facilitate the identification of the critical aspects and stress the
differences with respect to the solutions that we will propose in the next Chapter 6.

We present three emerging standards. The first one is the Reference Architectural
Model Industrie 4.0 (RAMI 4.0) [8¢], a three-dimensional spaced model defining how to
approach I4.0 issues in a structured manner. Thus, we explore SCADA [95], a technology
widely is being used in industrial and in manufacturing plants for over 30 years. Then,
we investigate the Open Platform Communications (OPC) protocols [76], which focuses
on secure and real-time M2M interoperable communications. Finally, we expose two

examples of low-level protocols used in 14.0: Modbus and Profibus.

S.1 REFERENCE ARCHITECTURE MODEL INDUSTRIE 4.0

In Figure 5.1, RAMI 4.0 is depicted. The model ensures that all the entities involved in
the platforms can communicate in a uniform and standardized within a service-oriented
architecture. It makes wide use of the divide and conquer principle, splitting the complexity
into several packages, including data privacy and I'T security. The model develops in three

distinct yet complimentary dimensions:

* Hierarchy Levels (IEC62264/IEC61512): This axis models the environment sur-
rounding the industry. It spans from the product to the perspective of a connected
world, opening the system to other external enterprises, devices, and smart things in
general. It is compliant with the 62264 and 61512 IEC standards. The former is an
enterprise standard for system integration having its roots in the ANSI/ISA-95 [50]
international standard: it helps to define boundaries between the enterprise systems

and the control systems. The latter defines reference models for batch control (as it

41

S Related Works

42

Layers

=

Business

Mﬂinten

Deveyg,
usﬂge e/
Type Producgiy,
UsagaCe/

lna\a“ee

Figure 5.1: Reference Architectural Model Industrie 4.0.

is used in the process industries) and the terminology explaining the relationships

between these models and the terms.

Life Cycle & Value Stream (IEC62890): This axis identifies two main phases.
The first one (Tjpe) defines the entry of design, development, and test orders carried
out up to the first sample and the production of the following prototypes. At
this stage, therefore, the type of product, machine, etc. is represented. Only at
the end of all tests and the corresponding validations, the type is certified and
released for series production. The second phase (/nstance) identifies the products
manufactured according to the general type described in the previous phase. Each
product represents an instance of a specific type and has a unique serial number.
Then the requests are transferred and delivered to customers. On the customer side,
the products are initially just types. They become instances when they are installed

in a specific aggregate system.

Layers: This axis models the classical partition of Cyber-Physical Systems (CPS).
At the bottom, the physical things in the real world are represented (sensors, actu-
ators, etc.). The physical object interfaces directly with its digital representation
(Integration layer). The digital representation is then shared with the surrounding
entities through the Communication layer. From the data, it is now important to

extract information, depending on the nature of the asset. Then the systems can be

5.2 Supervisory Control and Data Acquisition

integrated into a unique Functional layer, providing input for the top Business layer
which enables the development of new business processes and better organization

of the plants.

5.2 SUPERVISORY CONTROL AND DATA ACQUISITION

SCADA [95] systems are centralized entities devoted to controlling sensors, actuators, and
assets, and to triggering corrective actions over them. SCADA systems are often equipped
with advanced Graphical User Interface (GUI) that helps operators monitor the plant.
The control actions over the plant can either be done by the system or manually driven
by an operator. In SCADA systems the controlled plant can be highly sparse in space
and the assets need to guarantee a connection with the SCADA servers in order to be
monitored and controlled. The assets are often called fzeld devices since they act directly on
the plant with operations such as opening and closing valves and breakers. The manners
in which SCADA applications interact and control the assets are several. Usually, every
SCADA-compliant component has to expose an access protocol, such as MODBUS [22]
or a carrier such as the MQT'T [72] or the AMQP [71] protocols, through which the asset
state can be monitored. Moreover, SCADA usually hides the complexity of the underlying

protocols, giving the illusion of a unique interface of interactions.

5.3 OPEN PLATFORM COMMUNICATIONS

Ethernet technology has seen steady growth in adoption in the industrial automation
sector, leading to overcoming the well-known Fieldbus family of the technology, becoming
ade facto standard in the OT domain. A multitude of Ethernet variants has been developed
and deployed over the years: PROFINET, EtherCAT, Modbus-TCP [105]. However, these
technologies are incompatible with one another, leading to fragmentation at the OT layer,
making it difficult to provide a coherent and consolidated view of assets and processes.
OPC operates in the context of device inter-communication in a client-server manner.
Its main purpose is a unique and standardized way to easily and securely exchange data
between different industrial platforms from multiple vendors. The OPC products are
more than 35.000 and the specifications help to overcome interoperability issues and
to eliminate the need for post-production standardization efforts [77]. Also, there are

several OPC specifications. The Classic one [76] derives from the Microsoft Distributed

43

S Related Works

Component Object Model (COM/DCOM) [60]. The whole set of protocols is broken
down into three main categories, according to the type of data that can be accessed: Data
Access (DA), Alarms and Events (AE), and Historical Data Access (HDA).

With the advent of the Service-oriented Architecture (SOA) approach [3],in 2008 OPC
specifications too evolve into a more complex and powerful architecture: the OPC Unified
Architecture (OPC-UA) [75], proposed as a platform-independent standard facilitating
interoperability among vendors. Similarly to RAMI 4.0, OPC-UA adopts a multi-layered
approach that targets the 14.0 emerging problems.

At first, the standard adhered to a Client/Server paradigm: an OPC UA server pro-
vides access to data and functionality structured in an object-oriented information model,
while clients interact with the information model via a set of standardized services. Com-
munication takes place in this setting, by following the classical request-response model.
This interaction does not suit our application needs as: (i) it introduces strong coupling
between different system parts, and (ii) this communication model impedes is not suited
to meet the performance required by a hard real-time system.

For this reason, Part 14 of the OPC UA specification defines an extension of OPC UA
based on the Publish/Subscribe (Pub/Sub) communication paradigm. In this communi-
cation model, an application can play the role of either publisher or subscriber (even both
sometimes), where the former is the source of data, while the latter consumes that data.

The communication between publishers and subscribers is message-based: the publisher
sends the messages to a message-oriented middleware, without taking into account the
possible number of subscribers. Likewise, subscribers show interest in one or more types
of data without having any specific information about the publishers. The Pub/Sub model
is best suited for applications where location independence and scalability are required.

The MOM is a well-known infrastructure used to send and receive messages in dis-

tributed systems, pursued by OPC UA, suited to many use cases in the industrial domain.
More specifically, OPC UA Pub/Sub supports two different MOM architectures:

1. Broker-based: the core component of the MOM infrastructure is a message bro-
ker. Subscribers and publishers use standard messaging protocols like AMQP or
MQTT to communicate with the broker [69], with messages being published to
specific queues (e.g., topics, nodes) exposed by the broker. The broker is tasked
with translating messages from the messaging protocol of the publishers to the

messaging protocol of the subscribers.

44

5.4 Modbus data communication protocol

2. Broker-less: in this form the MOM is the network infrastructure, capable of
routing datagram-based messages, and subscribers and publishers use a datagram-
oriented protocol like User Datagram Protocol (UDP). The broker-less model is
intuitively the one embodying the best performance, and therefore best suited to
tulfill our system requirements. Addressing the needs of this deployment model,
the specification defines a custom UDP-based protocol, called UADP [77] which

relies on a multicast scheme for communication among parties.

Focusing on the implementation of the brokerless, a subscriber entity registers to a
multicast group represented by an IP address in a special range. Data sent to this address
are forwarded to all members of the group. This delegates a large part of the publisher’s
complexity to the existing IP network infrastructure (router, switches, and so on).

While OPC UA is the most significant IoT protocol proposed to address the fragmen-
tation and communication needs at the OT layer, it does not fully address the needs of
the IT layer. In this context, we require solutions and frameworks capable of handling
high-throughput data transfer in a reliable and secure manner, while these features are not

the primary concerns of OPC UA.

5.4 MODBUS DATA COMMUNICATION PROTOCOL

Modbus [22] is an open-source and royalty-free serial communication protocol that was
first developed by Modicon in the late 1970s. It allows industrial devices to communicate
in a master-slave configuration, enabling the reading and modification of machine registers.
The process of reading and writing registers is straightforward, with the master able to
connect to multiple slaves and request values or modifications to registers at specific
addresses.

In Modbus RTU, data is transmitted through Universal Asynchronous Receiver-
Transmitter (UART) technology in a series of bytes at baud rates ranging from 1200
to 115200 bits per second. In a Modbus RTU network, there is only one master and each
slave is identified by a unique 8-bit address, responding only if it recognizes its address
in the request. Modbus requests consist of various components such as device address,
function code, register number, register count, data, and a checksum. The function code
can be of read or write type and includes identifiers for the type of register being accessed

(e.g. read coil, write multiple holding registers, write multiple coils, etc.).

45

S Related Works

Modbus TCP allows for the transmission of requests and responses using data packets
encapsulated in the Transmission Control Protocol (TCP) protocol. This enables connec-
tivity to machinery via widely used Ethernet networks, eliminating the need for outdated
serial cables.

While both Modbus RTU and Modbus TCP allow for easy access to machine registers,
they do not provide any access control mechanisms or cryptographic protections for
transmitted data. This makes the machinery vulnerable to security risks and unauthorized
access.

Given the lack of built-in security features in the Modbus protocol, it is typically used
in physically or technologically isolated networks in the OT domain, with access restricted
to only devices that have been granted permission. However, this approach can limit the
widespread adoption of 14.0, as many machines still rely on the Modbus protocol and

companies may not be willing to replace them with newer, more secure equipment.

5.5 PROFIBUS DATA COMMUNICATION PROTOCOL

Profibus is a widely used fieldbus protocol that has gained significant popularity over the
past 20 years, with an estimated 66 million devices installed by 2021. It is commonly used
to connect Programmable logic controllers (PLCs), sensors, actuators, and other industrial
equipment. Profibus is robust and can handle a large amount of data exchanges, including
high-speed and real-time control messages. It also offers a more flexible and modular
solution compared to other protocols like Modbus, allowing for proactive management
of industrial machinery without service disruption.

Profibus is divided into two main categories: Profibus-DP (Decentralized Peripherals)
and Profibus-PA (Process Automation).

Profibus-DP is a communication technology that allows for the unification of different
transmission technologies, such as wired, optical, and wireless, and presents a consistent
view of devices and underlying protocols to the upper layers of the system. It is the core
of the Profibus solution and enables the use of the same communication protocol across
different devices and machinery that can all be connected to a single cable. Data rates from
9.6 Kbps to 12 Mbps are supported.

Profibus-PA is used for communication between devices in critical process control
systems, it allows for the use of the same two cables for both power and communication,

making it suitable for use in hazardous environments. It also has explosion protection

46

5.5 Profibus data communication protocol

capabilities and special hardware for specific applications. However, the protocol and data
management remain the same but the bandwidth is limited to 31.25 kbps.

Lastly, PROFIBUS Security Suite is a comprehensive set of security features that are
designed to protect PROFIBUS networks from cyber threats and unauthorized access.
The suite aims to ensure the availability, robustness, integrity, authenticity, authorization,
and confidentiality of data. It can be used in three main security classes, each of which
focuses on a specific subset of properties. Class 1 covers only robustness, Class 2 covers

integrity and authenticity, and Class 3 includes all mechanisms to ensure all the properties.

47

6 ARCHITECTURES FOR 14.0 DATA

GATHERING AND MANAGEMENT

In this chapter, we present a comprehensive overview of four architectures that we have
developed for data gathering and management in Industry 4.0 environments. We will cover
different aspects of data gathering and management: cloud-enabled smart data collection,
QoS-enabled semantic routing, low-latency m2m communication support, and serverless
processing at the edge. Additionally, we will present infrastructures and practical examples
that demonstrate how these architectures can be functional in real-world Industry 4.0
scenarios. This will include experiments that test the effectiveness and functionality of
the proposed solutions. The architectures will be evaluated based on collected metrics

generated with the usage of simulated physical assets and when meaningful, fault tests.

6.1 REFERENCE SCENARIO

The present work proposes advancements to a research line undertaken in collaboration
with many manufacturing companies based in the "Packaging Valley" district located
in Emilia Romagna, Italy [23]. Grounding on requirements elicited from the district
manufacturing companies, we aim to develop tools to concretely support manufacturing
companies in the transition to Industry 4.0.

During the first steps of collaboration, we drafted a guideline for the implementation
of the convergence of the factory OT and the IT layers as a way to enable the Industry 4.0
transition[5]. In the following scientific contributions, we discussed the main technological
requirements on the basis of a smart factory scenario and a first draft architectural view of
a data gathering and integration platform (SIRDAM4.0) [10, 11, 24]. The platform aims
to address some of the challenges raised by IIR A and OPC-UA. At the current stage, the
platform provisions data gathering and structuring at the OT layer, and transmission of

such data to upper layers. In particular, it implements a communication pattern between

49

6 Architectures for 14.0 data gathering and management

the company departments that is based on asynchronous messages exchange carried out by
a MOM that adopts the publish-subscribe model. The MOM enforces I'T/OT integration
at the data level that acts as a data conveyor from bottom to top layers, but at the moment
inhibits the flow of control commands from top layers downwards, so to avoid by design

the possible threats due to exposing the OT to the direct control of an external entity.

‘ ERP ‘ ‘ ANALY“CS‘ ERP = Enterprise Resource Planning

‘ MIS ‘ ‘ MES ‘ MES = Manufacturing Execution Systemn

-7/ [wavrcs |

MIS = Manufacturing Information Systam

LEGEND — rl'\
) (' __y Legacy communication protocols

‘ Data Gathering ‘ Leglacv (SCADA, MODBUS, etc.)

CPS (J\ {L fclp" __y IoT communication profocols
? ? Icer (AMQP, MQTT)
Legacy loT -
i i “ ¥ Machinery

Workers

Figure 6.1: Technological layers in a manufacturing industry.

In Figure 6.1, we have depicted a typical representation of the technological layers of a
manufacturing factory. At the bottom layer, machines and workers strictly interact for
production purposes. Production data generated by machines are used by workers to
correctly operate the production line. Here, relevant data streams are characterized by
great speed and variety, since a high volume of data is generated by the many working
machines. Furthermore, a strict data access mechanism is required to prevent malicious
intruders from stealing confidential information or injecting data that could eventually
bring the operational layer to an unsafe state.

Data Gathering in the OT layer represents the process of real-time collecting data pro-
duced by machines at the CPS layer. The OT layer consumes data gathered for operational
purposes transferring them to upper layers for business purposes. Data flows generated
by this function are usually filtered before reaching the I'T layer (not all production data
are useful at upper layers). Once here, they feed a number of I'T tools to help business
experts to control production and coordinate other managerial tasks. The Data Gathering

system shall act as a separation layer for the underlying layer so as not to expose machine-

50

6.1 Reference Scenario

production data but, at the same time, to shield the shop floor from any attempt to make
direct access to machines.

Let us now consider a typical industrial scenario involving many actors in the manu-
facturing sector, and focus our attention on the data gathering and management issues
that this scenario will raise. In the prospected scenario, two competing manufacturing
companies Company A and Company B run production lines in Imola and Milan respec-
tively. Both company production lines are operated by machinery manufactured by a
Machine Manufacturer Company (MMC). Let us also assume that Company A needs
to increase production in order to catch a new business opportunity, so as to establish a
new production line in Bologna. Due to this expansion, both Company A premises will
deploy a LOCAL IT layer equipped with some data filtering and aggregation tools, while
only Imola premise will also deploy a CENTR AL IT layer responsible for aggregating
data coming from the two LOCAL IT layers before feeding them to business-level ERP
software. Finally, we can assume that other companies deploying MMC machinery may
join the scenario (e.g., Company N).

To defend and grow its market share, MM C aims at continuously improving its product
s0 as to take advantage of gaining information on production data of machines running
at customer premises: such data, if timely analyzed and processed, will help MMC to
spot machine misbehavior and detect potential causes (to cite a few: misconfiguration of
machine parameters, machine design defects, assembly defects). Unfortunately, disclosing
customers’ production data to MMC poses a huge security problem. Customers, for
obvious reasons, refrain from disclosing anyone (not even the machine manufacturer) their
data. Yet, with the opportunity of receiving by MMC a timed and more effective technical
support, customers may be willing to disclose agreed portions of their production data.
MMC by accessing these data could promptly detect and diagnose run-time anomalies,
suggest more effective machine parameters’ configuration/setting, advise machine part
replacement, etc.

This research aims to enable advanced data gathering scenarios, capable of transferring
data from the machine level to the cloud, respecting secrecy, confidentiality, and QoS
requirements. Technologies such as MOM, SDN, Containerization, Time-Sensitive
Networking (TSN), INP, and FaaS must cooperate to achieve the desired results with the
right degree of elasticity, both for OT and IT requirements.

To enforce the described scenario and meet the need of all stakeholders in terms of

availability and accessibility to relevant data, we considered the following requirements:

51

6 Architectures for 14.0 data gathering and management

R1.

R2.

R3.

R4.

Timely access to data. At the shop floor level, data must be made timely available and
accessible. The purpose is twofold: complying with the near-real-time constraints
of the targeted production process and promptly undertaking countermeasures in

case of potential hazards.

Handling of heavy workloads. Depending on the market demand, to deal with
requests for increasing production, new machines might have to be added to pro-
duction lines. The data gathering system must be able to absorb spikes in data

generation and guarantee a timely data delivery also in case of heavy workloads.

Controlled access to data. Access to data needs to be regulated. Data must be carefully
partitioned and made available to the intended recipient (be it the shop floor, the

company business department, or the machine manufacturer) only for specific use.

Tolerance to faunlts. In order to maximize the company profit, close to 100% machines
operational continuity has to be granted. Faults occurring at any level, and in
particular, at the OT layer, have to be solved at a time that is compatible with the

criticality of the data that could potentially get compromised by a shutdown.

The definition of frameworks for gathering data at the OT layer and making them safely

accessible to stakeholders is an important step that poses the basis for OT/IT convergence

in industrial settings.

In the following Subsection 6.2, we will present the design and implementation of a

platform that collects OT data and ensures real-time access to data consumers, addressing

proposed requirements. In Subsection 6.3, we will delve deeper into how SDN and

semantic routing can improve performance and reduce the workload on the nodes of

the architecture. Additionally, in Subsection 6.4 we will a case study, which focuses on

low-latency M2M communication support. Finally, in Subsection 6.5, we will examine

how serverless processing can make a difference by saving resources on the nodes involved

in the data analysis and transfer.

52

6.2 Cloud-enabled Smart Data Collection

6.2 CLOUD-ENABLED SMART DATA COLLECTION

This section presents an architectural model for collecting and analyzing data from man-
ufacturing machines. The experience in the field allows us to identify and address the
challenges associated with handling large amounts of data from complex machines. The
proposed platform aims to be an approach that is independent of the underlying physical
level, enabling SMEs with legacy machines to embrace the fourth industrial revolution.
The architecture is designed to meet the specific needs of a single enterprise while also
being adaptable to the needs of many companies undergoing I4.0 transformation. The
resulting platform is able to process data in near real-time while maintaining efficiency and
security, avoiding the need to transmit all data over external networks for scalability and
data protection. The design is modular and independent of most technologies used, a key
feature for I4.0 given the wide diversity of technologies used such as network protocols,
storage and search platforms, and providers. Additionally, the architecture includes several

layers to ensure security and reliability throughout the system.

6.2.1 SIRDAM4.0 ARCHITECTURE

We report the first architectural model, also presented in [10, 11] that addresses the IT/OT
convergence issues. Furthermore, we discuss some relevant details of the software proto-
type of the data gathering platform we implemented and employed during the tests.
Experience gained in past collaborations with important manufacturing enterprises
and corroborated by an in-depth study of the main revolutionary industrial specifica-
tions, helped us draft some guidelines [5] that have driven the design and implementation
of Support Infrastructure for Reliable Data Acquisition and Management in Industry

4.0 (SIRDAM4.0).

The platform supplies the following services:
* gathering of data produced by manufacturing machines;

* long-term storage, fast processing, and user-friendly presentation of such data at

the OT layer;
* secure mirroring of operational data flows for use by I'T departments;

* secure and selective provision of operational data to third party stakeholders.

53

6 Architectures for 14.0 data gathering and management

SIRDAM4.0 design principles inspire mainstream I4.0 standardization activities such as
RAMI 4.0, IIR A, and OPC UA. A feature SIRDAM4.0 borrowed from all specifications
is secure and selective access to information guaranteed to both the stakeholders acting

inside a modern 14.0 manufacturing company and those operating outside (e.g., the

machine vendor).

!
3
Cloud Layer SForage a.nd E 2
Visualization EfD
Y]
z
l
Message
Information Processing | | Oriented .| Storage and
Technology Layer Components Middleware "| Visualization
(MOM)
Mirroring 1 (g
Layer One-way data g
mirroring o
| | g
[| S
. Message E
. Data Extract i 3
Operational ata Extraction Oriented Storageand | 3
and . . - -
Technology Layer . Middleware Visualization
Transformation
(MOM)
*
" L |
Machine |polling . Industrial
Layer Requests Machinery

Figure 6.2: SIRDAM4.0 overall architecture schema.

SIRDAM4.0 architecture depicted in Figure 6.2 reflects the physical separation of OT
and IT layers enforced in most production sites and addresses their integration at data
level.

Despite SIRDAM4.0 does not exhibit strict compliance for what concerns the imple-
mentation of entities and classes, its architecture largely adheres to OPC UA specifications.
Indeed, SIRDAM4.0 follows the interoperability principle reiterated in part 1 and in part
14 of the OPC UA specification, which advises the use of Pub/Sub communication pat-
tern. Along with that goal, we placed a message-oriented middleware (MOM) between
machines and the tools charged with data elaboration and storage tasks. We also decou-
pled the data type of the machine registers from the specific communication protocol
by "flattening” the data type according to a unifying scheme, following the prescription
reported in part 14 of the OPC UA specification.

54

6.2 Cloud-enabled Smart Data Collection

Stemming from the fact that most SMEs have little or no economic resources to under-
take the 14.0 transformation, SIRDAM4.0 also supports the gathering of data produced
by existing legacy assets and its integration with modern MOMs and IoT protocols. Specif-
ically, protocols from the SCADA family, still widely used in manufacturing realities [45,
62, 89], are fully supported by the platform.

The data streams generated at Machine layer are characterized by high speed, large
varieties, and big volumes, due to the number of different machines operating on the shop
floor. As often reiterated in both IIR A and RAMI 4.0 standards, companies need proper
solutions to manage data in a secure and reliable way, avoiding damages to surrounding
people and to the machines themselves during remote operations. We take the OPC UA
advice (part 2) to restrict access to this layer in order to achieve the right level of security
and safety. As a mandatory practice of 14.0 specifications, the OT layer needs to provision
very low data latency, good bandwidth, enhanced security mechanisms, and resilience.
In this layer, we placed a component to collect data from sources (Data Extraction and
Transformation) and a MOM capable of delivering such data to consumers in a Pub-Sub
fashion, and of guaranteeing a data latency compatible with near-real-time constraints.
Keeping latency low allows the software of this layer (Storage and Visualization) to align

with the update frequencies of the machines and carry out fast data processing.

On top of the OT layer, the Mirror layer offers support to implement a fine-grained
control of the convergence. In line with the vision of the Chinese IMSA standard that
recommends flexibility of management policy in relation to the requirements of the
considered industrial application domain, different data storing policies (what, when, and
how data have to be exchanged between OT and IT layers) can be enforced at this layer.
The Mirror layer may also serve as a backup of OT-generated data, thus ensuring the whole

platform a good degree of robustness with respect to potential faults of the Machine layer.

Technical and maintenance departments, as well as management and logistics, are
consumers of information: the formers consume raw information, while the latter are
interested in aggregated information. AtI'T Layer, multiple stakeholders need to consume
different portions of the available data set that is fed with data coming from underlying
layers. Then, we decided to replicate here the OT layer component scheme, which provides
for a MOM distributing data according to Pub-Sub, and a set of tools (to be used by data
consumers) devoted to the processing, storage, and visualization of data. The actual

distinction between OT and IT at the design level lies in the relaxation of the requirements

55

6 Architectures for 14.0 data gathering and management

at the IT level, where no work machines operate and the risk of jeopardizing workers’
safety is much lower.

Finally, SIRDAM4.0 opens to the involvement of third-party stakeholders (TPS), i.e.,
potential partners, sharing common goals with the company, that could generate value
from production data. Being TPS outside of the manufacturing establishment, in the
architectural view we collocated them in the Cloud Layer. This tier collects selected data
coming from production sites and runs analytics over it. As a data consumer, the Srorage
and Visualization component is allowed to subscribe only to specific topics published by the
IT layer MOM. This mechanism aims at avoiding any leakage of private and confidential
company data that does not serve TPS purposes.

To conclude the discussion on architectural aspects, we would like to remark some of
the platform features that are also strongly accounted for in the 14.0 vision of RAMI 4.0
standard:

* Isolation of the Machine layer;
* High availability of production data and real-time data processing at OT layer;

* Secure and selective access to production data by process stakeholders, be they

company IT departments or external partners.

6.2.2 PLATFORM IMPLEMENTATION

This section provides some implementation details of the software prototype of the
SIRDAMA4.0 platform. Our prototype makes use of state-of-art and open software tools
with the goal not to build an enterprise commercial product, but of implementing a
proof-of-concept for all our claims and proving that the first step towards I4.0 transition
can also be taken by SMEs while keeping the transition cost low.

After surveying a list of candidate software tools that might fit our needs, we decided to
use Apache Kafka Broker to implement the MOM component of our architecture and
some event streaming tools offered by the Confluent suite [32]. A Kafka Broker instance
can handle a data ingestion rate as high as 420K messages/second [47] while guaranteeing
an almost constant performance in terms of end-to-end message delay. Should the user
need to handle a higher throughput, multiple Kafka Broker instances can be clustered

and run as a more powerful broker. Clustered brokers also implement a data replication

56

6.2 Cloud-enabled Smart Data Collection

scheme that provides the system with high system resiliency against sudden and unexpected

software faults.

MacHINE AND OT LAYER

Figure 6.3 depicts a schematic view of machinery populating the Machine layer and the
software components implementing the functionality of the OT layer discussed in the
previous section. Since the fourth industrial revolution encompasses the interconnection
of the machines, achieved during the third industrial revolution, the transition requires
incorporating all legacy patterns and communication protocols. We made the choice of
supporting SCADA protocols, which in most cases are hard-coded in the firmware of
manufacturing machines. Although we tested MODBUS TCP, other protocols such as
Profibus, CANOpen, and DeviceNet must be supported as well. Of course, modern IloT
protocols like Message Queue Telemetry Transport (MQTT) and Advanced Message
Queuing Protocol (AMQP) should be supported too, as explicitly advised in part 14 of
OPC UA.

OT layer interfaces with the underlying work machines. In the following, we pro-
vide a description of the software tools implementing the functionality offered by each

architecture component that populates this layer.

Schema- | Apache Kafka
Registry > Zookeeper °
Wi 'r;SChema Read Schema Bro ker i
i “""“““""“““E r g
o
hd 3
o SCARFs SINK ES 8
g_ i Kafka Connect Connector 2
0
3 SOURCE SOURCE %
- <
@ marr Amap Elasticsearch Y
= Connector/ i \Connector, Kib
= r Y Y 1Dana
=g
3
(1]
<— mart ‘ AMQP 5
R M| Broker Broker | W |:> %"
00000 E
SCADA-powered MQTT-powered AMQP-powered s
Production Line Production Line Production Line

Figure 6.3: Operation Technology Layer schematic.

57

6 Architectures for 14.0 data gathering and management

Data EXTRACTION AND TRANSFORMATION

Software components devoted to provisioning the service of data extraction and transfor-

mation are listed below:

58

* SchemaRegistry. OPC UA specification, in parts 3 and 5, addresses the standard-

ization of components (objects and servers) and registries inside shop floors via
"AddressSpace” and "Information Model". In compliance with the OPC UA spec-
ification, SchemaRegistry implements the repository of the schema describing
the format of production data, useful for carrying out operations on production
data. As suggested in Figure 6.3, schema can be uploaded to or retrieved from

SchemaRegistry through simple read and write operations.

SCADA Reader and Forwarder (SCARF). As mentioned before, many machines
are powered with SCADA capabilities, i.e., can interoperate via a protocol of the
SCADA family. The SCARF component, implemented on top of the pymodbus
tool v2.1.0, interfaces with SCADA-powered machines and carries out the following
tasks: data retrieval, data validation, data serialization, and data forwarding to Kafka
Broker. Most SCADA protocols do not provide spontaneous sending of their
production data; SCARF can poll machine registry at predefined and configurable
time intervals. As a general principle, a SCARF instance is instructed to read from a
machine registry. In a production chain, usually populated by many work machines
producing a non-negligible load of big data, we carefully adopted and tailored
a lightweight format for data compression, namely AVRO, a data serialization
framework arranging information in a compact binary format. SchemaRegistry
stores the AVR O schemes for serialization and deserialization purposes. Eventually,
SCARF instances send serialized data to the Kafka broker.

IoT connectors. Different than the SCADA-powered machines, which require a
polling mechanism to implement data gathering, IoT-powered machines interface to
message brokers that implement the Pub-Sub mechanism. To gather data produced
by such machines, a potential consumer just subscribes to machine topics and gets
data while they are published by machines. We decided to support the interaction
and communication with machines powered by MQTT and AMQP messaging
protocols. Specifically, in the Machine layer, MQTT and AMQP messages are
managed by Eclipse Mosquito [31] and RabbitMQ [104] message brokers respectively.

6.2 Cloud-enabled Smart Data Collection

In the OT layer, MQTT connector and AMQP connector of the Confluent suite act
as subscribers of messages published by production machines. The Kafka Connect
components are open-source Kafka plugins containing converters and connectors

to interface the Kafka broker with external platforms, both source and destination

of data.

MESSAGE ORIENTED MIDDLEWARE

The Apache Kafka Broker implements the MOM component of the architecture. Itis a
typical message broker that supports the Pub-Sub mechanism for distributing messages
among participants. In this layer, data producers (i.e., the publishers) are SCARFs, MQT'T,
and AMQP Brokers via the respective connectors, while Elasticsearch is the only data
consumer (subscriber). We would like to stress that Kafka Broker represents the software
component that physically "shields” the OT layer from the overlying layers, but at the same
time, it is where the first step of I'T/OT convergence is taken. It represents a gate through
which production data can flow upwards to reach stakeholders (both internal and TPS).
To enforce security, no message originated by the IT layer is allowed to transit to the OT

layer: all stakeholders of overlying layers can just act as subscribers of OT layer topics.

Finally, Kafka Broker calls upon Zookeeper as a coordinating central point for retrieving

services such as naming and distributed synchronization.

STORAGE AND VISUALIZATION

We selected Elasticsearch as a long-standing storage tool and K7bana for presenting data to
the customers. We chose the document-oriented Elasticsearch storage tool for its speed,
scalability, and search options features. Kibana guarantees a high customization level,
which allowed us to define a dashboard for each plant (and a view for every machine inside
it), for its capabilities of defining users, roles, access to data, and for the nice rendering
of interactive graphs, tables, and pie charts. The Sink ES connector is a subscriber of
Katka Broker topics that consumes the data, deserializes them via a schema retrieved from
Schema Registry, applies any required transformation, and delivers them to Elasticsearch

for storage.

59

6 Architectures for 14.0 data gathering and management

MIRROR, IT, AND CLOUD LAYER

The company can deploy resources for mirroring wherever there is hardware availability.
Therefore, the Mirroring layer could potentially collapse inside either IT or OT. With
the conceptual division proposed in our architecture, we want to remark that the logic
of mirroring is customizable and under the control of the company. This feature allows
fine-grained control of the company, in defining policies for configuration of the system
and in data protection. The Kafka MirrorMaker is a stand-alone component that copies a
subset of topics from OT to IT layer (see Figure 6.4). In practice, MirrorMaker places a
consumer at the source broker (the OT layer) and a producer at the destination broker (the
IT layer). The company can also choose a specific distribution and replication level for the
MirrorMaker component. By mirroring the OT Kafka broker, we make the whole system
gain availability, avoiding a single point of failure, and enforce the separation principle
between OT and IT layers.

3 Schema-Regist Rl SINKES
I gistry Connect Connector -
ToCloud 3
Q Read Schema SINKES Layer éh
2 Connector 3
3 [_| Elasticsearch =
= Kibana S
By -
g Processors - Apache ;
= Filtering and Aggregation 5
z Kafka Broker Zookeeper H
Q
3 L
2 Synch Schema ﬁOne way P
Mirroring "fn
from OT =

Figure 6.4: Information Technology Layer schematic.

The IT layer is populated with the same software modules as the OT layer, with the
exception of SCARFs, given that the IT layer does not have a connection with physical
machines. As mentioned in previous sections, data in the I'T layer are a full copy or a
subset of data in the OT, depending on the MirrorMaker configuration policy. Due to
the absence of humans in contact with production machines, the time constraints are
more relaxed with respect to the OT layer: the topics update frequency is lower and it is
possible to deploy specific data analytic logic and advanced software modules. As shown
in Figure 6.4, we added data processing modules using Kafka Processors, components able
to aggregate and transform data before sending information to the Katka Broker. The

company can add custom business logic (such as lambda functions) for data manipulation.

60

6.2 Cloud-enabled Smart Data Collection

We have placed two connectors consuming messages from the Kafka Broker: one brings
data to Elasticsearch storage, the other forwards information to the Cloud layer.

The main objective of the Cloud layer is the aggregation and presentation of data
coming from production sites. In order to reach this layer, data forwarded by the I'T
layer will have to use a secure communication channel, as they have to traverse the public
Internet. State of art solutions guaranteeing integrity and confidentiality (SSL/TLS) will
be used to enforce data security. In this layer, TPS will use software that fits their business
needs. Recalling the example scenario described in Section 6.1, machine vendors can

deploy diagnostic, predictive maintenance, and other after-sales software.

6.2.3 EXPERIMENTS

In this section, we report the result of a thorough assessment of the platform with respect
to the performance indicators previously discussed in Section 6.1: functionality, timely
access, scalability, controlled data access, and resilience. We made use of virtualization
techniques to implement the platform software prototype: specifically, virtual machines
(VM) realized the physical separation between all layers (OT, I'T, View). To achieve
system scalability and resilience, as well as flexibility when adding new platform features,
we adopted the microservices programming paradigm. The microservice-based approach
allowed us to develop a horizontally scalable and robust system to easily adapt to the
dynamics of the input workload and to tolerate potential run-time faults.

For the message latency tests, we address a typical manufacturing scenario with near-
real-time constraints for what concerns the availability at the IT layer of information
collected by the work machines, which is the most common use case in medium and small
manufacturing realities. In such contexts, as shown by experiments, the message delay shall
never overcome 100ms, which is compatible with the classical timing of near-real-time
systems [19, 92].

We consider the case of a typical SME owning two production sites (plants) located in
two different cities, say Imola and Bologna, that belong to the same productive district.
The SME intends to implement scalable and robust data gathering on both premises. We
will prove that this goal is easily achieved by means of our platform.

We arranged a VPN service to connect the two sites and isolate the machines from
each other inside each site. We used the OpenStack infrastructure manager to deploy

VM instances. We containerized all the components discussed in Section 6.2.2 using the

61

6 Architectures for 14.0 data gathering and management

Docker tool and called upon Kubernetes and Rancher to orchestrate and control the

services. Docker containers run inside VM instances in their turn.

Bologna Plant Imola Plant Remote Cloud

Central IT layer VM | | View Layer VM
- Zookeeper
- Schema-registry
- Kafka Broker - Elasticsearch
- Processors Kibana
- Kafka Connect
- Elasticsearch
-Kibana

Local IT layer VM || Local IT layer VM

- Zookeeper - Zookeeper

- Schema-registry - Schema-registry

- Kafka Broker - Kafka Broker

- Processors - Processors

- Kafka Connect - Kafka Connect

Local OT layer VM| | Local OT layer VM
-MODBUS Server ||- MODBUS Server

-SCARF -SCARF

- Zookeeper - Zookeeper

- Schema-registry - Schema-registry
- Kafka Broker - Kafka Broker

- Kaftka Connect - Kafka Connect
- Elasticsearch - Elasticsearch

- Kibana - Kibana

- MirrorMaker - MirrorMaker

Table 6.1: Testbed deployment: Locations, VMs, and Kubernetes Pods

Table 6.1 depicts all VM instances, microservices running within each VM, and the
physical location of VMs.

Each production site implements OT, Mirroring, and Local I'T layers. We collapsed OT
and Mirroring layers in one VM for the sake of simplicity and because usually, in a real
deployment, these entities are on the same local network. In the case of Imola, the Central
IT Layer is also deployed. Central IT gathers and aggregates data coming from Imola and

Bologna Local IT layers, emulating a real-world deployment where the headquarters also

62

6.2 Cloud-enabled Smart Data Collection

act as data collection points. As mentioned in Section 6.1, this layer includes I'T software

serving all company departments, such as those for managing staff or project cycles.

Almost all VMs are equipped with Ubuntu 18.04, 16 GB of RAM, 100 GB of HD, 8
logical cores, and a connection of up to 1GBps. Only the VMs emulating the I'T layer are

provided with the same operating system, HD size, and connection rate, but are assigned
8 GB of RAM and 6 logical CPUs.

For the simulation of the physical asset, we used ad-hoc MODBUS servers to set the
values of the machine registers. The snippet of code in Listing 6.1 shows the mapping,
used by the SCAREF, to extract data from the machines, before sending their serialization
to the Message Broker.

1{

2 "LOCK_VALV_1" : {

3 "register_type" : "single_register",
4 "register_index" : 4,

5 "unit" : "seconds"

61,

7 "INJECTOR_LVL_1" : {

8 "register_type" : "single_register",
9 "register_index" : 17,

10 "unit" : "mm"

1},

12

13 }

Listing 6.1: JSON mapping SCARF example.

We want to show an example of our mapping between the physical register from MOD-
BUS to a higher-level value, such as a float. The serialization follows the AVRO key-value

schema presented in the next Listing 6.2.

Finally, we remark that for each test discussed below, we reported statistical values

obtained from multiple reiterations of the experiment.

63

6 Architectures for 14.0 data gathering and management

14

2 "name" : "INJECTOR_LVL_1",
3 "type" : {

4 "type" : "record",

S "name" : "lvl_injector_1i_oil",
6 "fields" : [

7 {

8 "name" : "value",
9 "type" : "float"
10 1,

11 {

12 "name" : "unit",
13 "type" : "string"
14 1,

15 {

16 "name" : "description",
17 "type" : "string"
18 }

19]

20 }

21},

Listing 6.2: AVR O key-value schema example.

DELAY ASSESSMENT TESTS

In our initial test suite, we implemented SCARFs to add a timestamp to each message
read from MODBUS, and Elasticsearch performs the same function for the documents
coming from the connector. Thus, each message includes a creation timestamp from the
first element of the chain and a storage-inserted timestamp from the last one. In addition
to the vast amount of useful data for queries, tracking multiple timestamps enables us to

model the delay across the entire infrastructure.

We conducted experiments using 1, 5, 10, and 12 simulated physical assets, each one
associated with 7 SCARFs (one for each simulated functional unit). Based on our experi-
ence, the number of simulated machines is representative of what is typically found in a
medium-sized company’s assembly line (10-12 machines that update 6 pools of registers

every 10 seconds and one pool every 5 seconds). As a result, each simulated machine

64

6.2 Cloud-enabled Smart Data Collection

L) L) L) L) T J
Message Count
250
(%2}
(]
2 @
a 200 £
£ &
‘5 o
= 150 ©
8 o
£ Z
p=}
=4 100
50
0 L L L I L L L 0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00
Time [min]

Figure 6.5: Delay test using 1-5-10-12 simulated physical assets.

generates 24 messages every 30 seconds. Figure 6.5 illustrates the delays in the View layer

with respect to the gathering of messages in the OT Layer.

The graph is intended to demonstrate how the number of messages increases as the
number of machines attached to the system increases, while the delay remains constant,
thereby proving the scalability of the system in the face of a growing data volume. The right
vertical axis shows the increasing number of messages exchanged, corresponding to an
adaptation of the architecture to more resources. Each step of the green line corresponds
to a test with an increasing number of simulated machines and the subsequent reading of
many messages: starting with 24 messages and one machine, then with 120 messages and 5
machines, then with 240 messages and 10 machines and finally with 288 messages and 12
machines. The left vertical axis and the corresponding red line indicate the packet delay in
tracing the most critical and long path inside the platform, from the production machine
to their effective storing in the view layer. We take measurements by reading the number
of messages from Kibana every 30 seconds. The horizontal axis shows a time period of 15

minutes.

In a second test, we further stress the platform by performing the same increase in the
number of messages and containers used to collect them, but this time with 2, 10, 20, and
24 simulated physical assets, so in the last step, the platform was processing 600 messages,

as seen in Figure 6.6.

65

6 Architectures for 14.0 data gathering and management

700 T T T T T 700

T J
Message Count

Average Delay = = =

600 [
500
400

300

Number of messages
Avg. Delay [ms]

200

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00
Time [min]

Figure 6.6: Delay test using 2-10-20-24 simulated physical assets.

The results from these tests demonstrate the feasibility of the platform for scenarios
requiring near real-time requirements. The average delay is 70 milliseconds to make the
data available from the machines to the last View layer. We can see small delay peaks during
an increase in message throughput due to the settling of components, but the platform
results in general are scalable, showing almost constant delays up to about 1200 messages

per minute processed.

OT LAYER STRESS TEST

The stress test aims at assessing the impact of a sudden increase in message load on the
platform performance. In real situations, the number of messages to handle can raise due
to an increase in the rate at which machine registries are polled or when new machines
are deployed on the shop floor. We will show that, in spite of a substantial increase
in the number of messages, the delivery of messages is not aftected, thus guaranteeing
the message consumer good performances in terms of delivery time, so as to comply
with the manufacturing sector requirements. Results show that the platform meets the
requirements /21 and R2 set out in Section 6.1.

The target of the first test is the machine/OT stack. We considered scenarios involving
both legacy equipment (SCADA-powered machines) and modern ones (IloT-powered
machines). This specific test addresses just the OT layer of one stack, so we arbitrarily

decided to carry it out on the Bologna plant. For tests on SCADA-powered machines,

66

6.2 Cloud-enabled Smart Data Collection

we used ad-hoc MODBUS servers emulating the machine registers as data generators, so
as to have the possibility to arbitrarily introduce load spikes and sudden increases. It is
worth mentioning that the SCARF component deployed at the OT layer supports several
communication protocols of the MODBUS family (TCP, UDP, Serial ASCII, Serial RTU,
Serial Binary). For the purpose of the experiment, the TCP one is used since machines
are equipped with an ethernet interface. This choice will not affect the generality of the
experiment outcome because the SCARF component behaves as an adapter or a separation
layer between the underlying protocols and the data format our platform deals with. In
case of changing the communication protocol used by pymodbus, we just need to change
the MODBUS client communication type in the SCARF component. Furthermore, in
our tests all the virtualized components are running on machines connected via ethernet
TCP/IP protocols, so changing the communication protocol of pymodbus actually does

not affect the "real” underlying communication substrate.

SCADA Box and Whisker Chart

100
80
60
40
20

Delay [ms]

0700120 @190 8240 @320 [msg/30s] © Outliers X Average
Figure 6.7: SCADA OT delay test.

We define message delay as the time lapse between the time when a data sample is read
from a machine register and the time when the same data is stored to the Katka broker
deployed at the OT layer, i.e., when it becomes available to consumers. We were able to
track the delay trend by adding metadata to this sample, a creation timestamp, and a storage
timestamp respectively. We then investigated the capability of the platform to handle the
message loads produced by different numbers of machines on the shop floor. We assume
that every emulated machine is equipped with 7 functional units, each exhibiting exactly
one register. Each machine is configured to produce 24 messages every 30 seconds. We
observed the performance of the platform handling messages produced by 3, S, 8, 10,
and 13 machines, which corresponds to loads of 70, 120, 190, 240, and 320 msg/30secs
respectively. Each experiment assessing the performance of a given load lasted 30 minutes

and was repeated 10 times. Figure 6.7 reports the statistics of each experiment results

67

6 Architectures for 14.0 data gathering and management

in the form of Box and whisker plots. By looking at the plots, it appears very clear that,
despite the increase in load, the average message delay is stably set around 20ms. Also, data
is very much condensed as evidenced by the short distance between the first and the third
quartile, and by the narrow extension of the whiskers. We can conclude that the system is
fairly capable of absorbing load fluctuations by providing a constant performance that fits

the real-time requirements of OT environments.

MQTT Box and Whisker Chart

180
160
140

7 120
E 100 T
80
60

40
20 1

070 2120 @190 @240 320 [msg/30s] © Outliers X Average

Delay

Figure 6.8: MQT'T delay test.

AMQP Box and Whisker Chart

Delay [ms]
N
o

00 00 0
000000 o000

10 %%;

070 0120 @190 @240 W320 [msg/30s] ©° Outliers X Average

’r
‘r

Figure 6.9: AMQP delay test.

The same experiment on data delay was conducted on IoT-powered machines equipped
with MQTT and AMQP brokers respectively. We remind that, in this case, we used ad-
hoc Kafka connectors to extract data from MQTT/AMQP brokers and send it to the
Kafka broker, which will eventually publish it. We will focus on the time span from
when a data sample is produced by the machine sensor to when it is available to the Katka
broker consumers. We tested the system tolerance with respect to the same increase of

message loads employed in the SCADA experiment. As shown in Figure 6.8, in the case of

68

6.2 Cloud-enabled Smart Data Collection

Mosquitto the message delay is around 70 ms, while for RabbitMQ, depicted in Figure 6.9,
itis about 4ms. In both cases, the increase in load did not impact the performance, thus

confirming the good scalability of the proposed solution in realistic industrial settings.

IT LAYER STRESS TEST

The IT-level scalability test aims at assessing the performance of the Central I'T Kafka
broker when it is loaded with messages coming from multiple Local I'T plants. To measure
that, we set up a test bed reproducing the scenario of a company running seven production
plants, located in different places geographically distant from each other, that send data
to the Central IT layer. The data transfer dynamics vary from plant to plant and are
not predictable: to such uncertainty, many indicators contribute the switch oft/on of
machines determined by the production schedule, the different rates at which machine
registries produce data, and the variability of the network bandwidth available during the
data transfer. Each plant is emulated via a software message producer with the message
rate randomly changed over time throughout the test. This configuration produced an
overall message load on the Central I'T layer that is variable in time: the objective of the
test was to assess the performance of the Central I'T broker in response to such variations

of the input load.

Each Producer produces messages within a time frame of 35 minutes, split into S inter-
vals of 7 minutes each, with increasing message throughput. Each interval is characterized
by an average message rate plus (or minus) a random delay with a 60% bound of the specific
message rate of the interval. The producers wake up at a different time, thus emulating
with effectiveness a real scenario in which some production machines are operating, while
others are off. Moreover, the highest peak (2 240 msg/30s) is reached when all producers

are active and generate messages at a rate of 320 msg/30s.

In Figure 6.10, we report both the overall message load trend and the observed average
and standard deviation of the message delay (discrete points curves). Each point represents
the average (standard deviation, respectively) delay of messages arriving in a 30s time
window. From time 0 to T1 the producers gradually increase the overall system load,
sending concurrently up to 2 240 msg/30s. At T1, the load suddenly decreases to 1235
msg/30s due to the disconnection of 3 plants. From T1 to T2 the message rate continues
to grow, reaching a new local maximum of 1780 msg/30s. At T2, two producers gradually

stop production.

69

6 Architectures for 14.0 data gathering and management

2500 T1 T2 50
— P 45
v
S 2000 LT S = 40
= /
= - | -~ 35
g - | -7/ \ g
& 1500 -/ - 30 &
@ — N~ \ 25 &
Q - °
£ —_ \ 3
E 1000 A - 20
° _/ 15
8
€ 500 . ey 10
2 .'.'...".‘Q-..'v.l..'..,...".‘ eay"r'."o'"."'.'s.~"-,"‘."" 5 ."'."-.‘:"'"'0"' 5

0 0 —
O A NN FTWLOMNVNDOAANNMTNNONONOANMNMST W OMNOWWONDO dNMS N £
OO0 00000000 H ™™™ o v e AN AN AN ANANANANNANANOOMOOOHOM ‘:

— -Number of messages —e—Average delay --«--Standard deviation
Figure 6.10: Central I'T Kafka broker stress test.

18

16

14
R 1
[
aplo
S 8
2
& 6

4

2

0 E

O A N N T N OMNVDADOANMTN ONOWOWNO A NMST N OMNOWONDO d NS N~
O 0O 00000000 d™EHdH ™o dd dcdcdcd N NANNNNNNNNOOMOOHOOMOM -

600
— 500
s
5 400
oo
©
3 300
z
g 200
Q
E100

0 E

O A N MM ONOWAAOANMTIN ONOGKODO—ANMNMTLLONOOGONOHNMT N =
O 000000000 d-ddHddddddddNANANNNNNNNNOOOOOH®OM®O®M =

700
@ 600
2
X 500
F=
=
T 400
3
< 300
m©
E-3
o 200
=

100

0 E
O A AN NN WONRDNDOANMTETONONWODOCEANMNMSSTLWONOWONDOANMSS W =
O 000000000 HHHHeAdHAdAAdANNNNNNNNNNOOOOOOOM =

Figure 6.11: Central IT Kafka broker resources usage.

The reader will note that the average delay curve is almost steady (hitting a value of

around 1.65ms) independently of the message load fluctuation, while the standard de-

70

6.2 Cloud-enabled Smart Data Collection

viation keeps below 10ms. Figure 6.11 shows the resource consumption of the Docker
container that runs the Central I'T Kafka broker during the test. We ran the experiment
20 times with different random seeds and changed the start instant of the plants. All ex-
periments showed quite comparable performances in terms of message delay and resource

consumption.

CONTROLLED DATA ACCESS TEST

In Section 6.1, we thoroughly discussed the advantages of deploying a data gathering and
sharing system in a typical industrial manufacturing setting. We then implemented a
message broker-based support to gather data from the OT layer and move it to the IT
department where it is eventually consumed. Currently, the platform allows data to flow
only from OT to I'T layers. Should malicious actors gain access to the message brokers, they
could steal precious data or convey tampered information to the management department.
To accomplish a full IT/OT integration, in the future we will allow data to flow from the
IT downwards to the OT, thus exposing the shop floor to further security and safety issues.
In fact, in that case, malicious intruders could exploit the system to inject control data that
will eventually cause damage to machines or put the workers’ safety at serious risk. In order
to face these and future security issues, we have provided the platform with support to
prevent malicious or unauthorized access to production data. In the following, we disclose

the details of the experiment run to test the implemented access control mechanisms.

First of all, in our testbed, we leverage a VPN to secure communication among VMs
(layers) within a plant, as well as inter-plant communication (in our case, communication
between the Local IT of Bologna and Central IT of Imola). SSL/TLS is used to guarantee
data integrity and confidentiality of communication with TPS premises. In order to
reinforce security at the OT layer, we exploited the Katka Access Control List (ACL)
feature to manage access (both in reading and writing mode) to the topics of the OT layer

Katka broker. ACLs can be defined for each topic with a very fine-grained policy.

According to Table 6.1, the Imola Central IT layer consumes data coming from the
underlying OT layer and data coming from the Bologna OT layer. We assume that an
intruder managed to gain access to the environment and steal the identity of a producer
(e.g. Cooler) that is allowed to post messages only to the "bologna_capper-1-cooling” topic.
When the tampered publisher Cooler tries to push data to the "bologna_capper-1-data-

cycle” topic, which it is not granted to write, the producer is notified about the denial of

71

6 Architectures for 14.0 data gathering and management

authorization, while the Kafka authenticator log reports what has happened: timestamp
of the failed attempt, the host from which the attempt originated, and the involved topic.

What has been shown is a very simple rule, but through the ACL mechanism, the
platform can enforce more complex access control rules at any layer (OT, Local I'T, Central
IT). That allows for preventing the execution of malicious or accidental read/writes
operations on topics. In fact, this tool guarantees that all stakeholders, both internal and
external to the company, are granted access just to information of which they are the
intended recipient. Let us conclude by noting that this test demonstrates that the platform

meets the requirement /23 mentioned in Section 6.1.

FAULT-TOLERANCE TEST

The objective of our last experiment is to test the platform’s capability to react to potential
faults. In the implemented data gathering system, we aim to guarantee continuous support
to the data ingestion and migration towards the upper layer. Unexpected and sudden
interruptions of the mentioned support may cause data blackouts that can severely impact
the efficiency and efficacy of processes that need to consume operational data. When a
fault occurs, a plan needs to be promptly enforced to recover as quickly as possible and
restore the previously provided quality of the service.

Once again, we focus on the OT layer as it represents the data entry point of the platform.
Particularly, we intend to preserve the service continuity of the message broker, since faults
at this layer may in turn compromise the service continuity of upper-layer brokers. We
remind that Kafka brokers are implemented as containerized services running inside VMs.
Faults can be of many different types (a crash of the container/VM, a hardware failure of
the hosting PC). Whatever can go wrong at runtime is a fault the system will have to deal
with.

To face faults, we exploit Kafka replication by deploying a redundant number of Kafka
brokers in the OT layer. Each topic replication factor is set to 2, meaning that a topic
is configured to have 2 replicas (one is the Master, the other one is the Slave) residing
in two of the available brokers respectively. Slave replicas will function as a backup of
their respective Masters. Kafka takes care of distributing topic replicas among the brokers,
managing the faults of brokers, and keeping topics in sync among all replicas.

For the test purpose, we deployed three brokers (B0, BI and B2) and created three
topics (bologna_capper_data_cycle, bologna_capper_plasticizer_data, and bologna_capper. -

absolute_totalizers respectively). Then, we configured producers to send messages on the

72

6.2 Cloud-enabled Smart Data Collection

| Active Brokers | Replica Brokers | Replicas In Synch |

TOPIC bologna_capper_data_cycle
T1-[B0,B1,B2] [BO,B1*] [BO,B1]
T2 - [BO,BI] [B0,B1*] [BO,B1]
T3 - [BO,BL,B2] [BO,BI*] [B0,B1]

TOPIC bologna_capper_plasticizer_data
T1- [BO,B1,B2] [BL,B2"] [BL,B2]
T2 -[B0,B1] [B1*,B2] [B1]
T3 -[B0,B1,B2] [B1,B2*] [B1,B2]

TOPIC bologna_capper_absolute_totalizers

T1- [B0,B1,B2] [B1*,B2] [BL,B2]
T2 -[B0,B1] [B1*,B2] [B1]
T3 - [B0,B1,B2] [B1*,B2] [B1,B2]

Table 6.2: Resilience test: brokers per topic. Brokers denoted with an asterisk hold a Master replica.

three topics at an overall rate of 192/sec. The experiment consists of getting the whole
system up to work at time 771, tearing down B2 at time 7'2 (we simulate the broker fault
by killing the broker instance), and getting B2 back to work at time 7'3. The blackout of

B2 lasts for about S minutes.

Table 6.2 shows the dynamics of the system in the course of the experiment. In the
"Replica Brokers" column we reported the brokers holding the replica of the considered
topic (the one denoted with an asterisk is the broker holding the Master replica). The reader
may note that topic bologna_capper_data_cycle is not affected by B2 blackout because
none of its replicas are held by B2. Topic bologna_capper_plasticizer_data has a Master
replica in B2 and a Slave replica in B1. At time T2, being the Master replica unreachable
due to B2 fault, prosumers are redirected to the Bl Slave replica. At time T3, when B2
will be again up and working, the B2 Master replica is synchronized with the Slave, and
prosumers are redirected back to it. For what concerns bologna_capper_absolute_totalizers,
no action is taken at time T2 since B2 is holding a Slave replica. Prosumers will keep using
the Master replica held by B1. When B2 recovers, the Slave replica is synchronized with
the Master. Of course, with the two replicas configuration, service continuity of a topic is
guaranteed as long as at least one replica is available. For highly unstable or overloaded
systems, it is advisable to increase the redundancy of the number of brokers and/or topic

replicas.

73

6 Architectures for 14.0 data gathering and management

180
% B2 Failure x B2 Recovery
160
N
140 A A
N
— 120
= 100 ry N N A a4 a R
> A At
© 80 At A a R A A 4 A A
= a A a 7Y A AA
3 A oA ? 4 N N
o A FEEE A A e Laa 4 a
60 A a|s ‘. N A o |5
oo o PO »,
H .. R . P el ey
40o-....-0._'.:.‘...".‘.,.‘..-.,.-,.. :......"..' .~ e NUPRLPN SRC PP Lt G T
20 -—
P00 4000000000000 00000%000000000%0000004%00000400000%00%00000

0

O d AN OO < 1D O™ 0V NH O d AN M T 1N O 0O O d N MM T N O 0 D O
O O O O O 0O 0O 0O 00 d ™ ™o o o o o o o =& N N AN N NN NN NN,

——Average delay in OT --e--Standard deviation + Fastest message 4 Slowest message

T[m]

Figure 6.12: Resilience test: average and standard deviation of message delay.

In Figure 6.12 we depicted the average and standard deviation of message delay recorded
during the experiment. For each observation, maximum and minimum delay values are
also reported. The reader may notice that no message is lost both at time T2 and time T3:
small glitches of both the average and the standard deviation curves at the two instants of
time prove the robustness of the system, which then is proved to meet the requirement
R4 set out in Section 6.1.

We also monitored the trends of CPU usage, memory occupancy, and I/O throughput
of the docker containers running the three brokers reported in Figure 6.13. B2 recovery
at T2 causes a glitch in CPU usage and peaks in I/O throughput trends. B2 CPU usage
irregular transient (small consecutive peaks) is due to the progressive reactivation of the
Docker container’s modules. I/O throughput peaks observed at T2, where B2 is the
highest, are due to the synchronization of topics among the brokers. As far as Bl and
B3 are concerned, except for the I/O throughput, almost no significant resource usage
change was observed throughout the experiment. Test results show that thanks to proper
management of the underlying message brokering, SIRDAM4.0 is able to absorb sudden
and long-lasting faults, guaranteeing the reliability and service continuity of the system

with no decrease in the performance level.

74

6.2 Cloud-enabled Smart Data Collection

25 s@ §
2]
® o
& &
20 E 2
X
o 15
Q0
©
3
510
a
(]
5
0
O d NN S W WONOWONO = NMSFT WM ONONWODOLANMT N ONVNO T
S OO0 0000000 A dddddddddNNNNNNNN-CNGACNO® E
--BO Bl —B2 L
500
B2 Failure B2 Recovery
475 §g §€

Memory usage [MB]
w
~
(%2}

W N O " N M T 1N O N 0
O O d ™ = = A A A A

T[m]

--B0 Bl —B2

550 §g B2 Failure

SR
SBy gy B)
“-'l-z' ‘)...' RS

O N~ o
— o

--B0 Bl —B2

TIm]

Figure 6.13: Resource usage of the Docker containers running the three brokers.

75

6 Architectures for 14.0 data gathering and management

6.3 QOS-ENABLED SEMANTIC ROUTING

Future industrial networks will be characterized by an unprecedented degree of hetero-
geneity and complexity. Traditional solutions, mainly based on the direct interconnection
of machines one to each other and machines towards the control room, cannot provide
the required degree of flexibility. Therefore, there is the need to adopt novel solutions able
not only to manage the deluge of data generated by the underlying industrial machinery
layer, but also to allow the dynamic and flexible reconfiguration of the topology driven
by QoS requirements. By considering the momentum of MOM as an enabler of the 14.0

vision, we believe it will become a pillar of future industrial ecosystems.

However, let us note that even if the adoption of MOM enables critical features to
facilitate message dispatching by making it independent on actual machine location, it
does not provide features allowing to control how packets flow through middle network
devices along the data routing path. In fact, once a message is sent from a broker to a
receiver (or vice versa), the path the message traverses and the QoS network elements
provide cannot be managed, since out of the visibility and control scope of the MOM.
While this approach allows to abstract from low-level networking details, the ability to
dictate the behavior of underlying network devices is essential in industrial networks that

typically require satisty of stringent QoS requirements.

To address the above open issues, we claim the importance of adding an SDN control
plane so to ease the management and dynamic reconfiguration of network elements that
act as the (distributed) communication substrate between the machines and the MOM. In
addition, the SDN controller could provide network-wide abstractions to define and en-
force fine-grained network policies. Accordingly, we propose to integrate MOM and SDN
paradigms in a joint solution that allows the QoS-enabled dispatching of MOM-based
messages by also limiting the management burden on network operators and machine
technicians. At the top level, the MOM infrastructure is in charge of identifying the set
and (abstract) location of destination nodes a message should be dispatched to. At the bot-
tom level, application gateways, deployed close to machines, act as intermediaries among
machines (and their proprietary industrial protocols) and the MOM (based on widely
adopted standard protocols) by allowing to specify the required QoS in a semantically
enriched manner. In the middle level, the SDN controller exploits its centralized point of

view to (re)configure the communication substrate, and the network elements therein,

76

6.3 QoS-Enabled Semantic Routing

in relation to the current state of the network as well as QoS requirements identified by

application gateways.

Based on the collaboration among the MOM infrastructure and the SDN controller,
network elements can be properly configured to i) select the best route towards the destina-
tion and forward messages accordingly, if) manage competing traffic flows in a coordinated
manner, e.g., to ensure prompt dispatching of mission-critical messages even if at the ex-
pense of less critical messages, and iii) enforce in-network processing to reduce the network
utilization, e.g., by merging consecutive packets in only one. To this purpose, we enhance
packets by adding custom tags to specify how network devices should manage them in
terms of QoS and processing. Based on such tags, network devices exploit dynamically
deployed traffic rules and ad-hoc software modules to enable proper rerouting, per-traffic
flow prioritization, and in-network processing with the goal of significantly improving

networking performance and reducing the overall network overhead.

For example, by considering two traffic flows between the MOM broker and a machine,
proper routing table management allows to forward traffic flows tagged as "mission-critical”
via a large-bandwidth low-latency path (if available). In addition, a QoS software module
can selectively delay packets of traffic flows tagged as "not-urgent”, where the magnitude
of the imposed delay can also depend on the current level of network saturation. Finally,
an in-network processing module can exploit the knowledge about the carried data model
to manage packet content. In particular, let us note that the knowledge of packet semantic
allows the adoption of a wide range of highly expressive traffic flow management mech-
anisms. For instance, it is possible to forward packets only if they satisfy a given rule,
e.g., if they carry temperature values greater than a threshold, or to apply functions to
send pre-processed values, e.g., sending only one packet with the average temperature
resulting from a series of received temperature values. From a functional point of view,
the in-network processing layer sits atop the data forwarding layer. As in the case of SDN
deployment, we do not argue that all the network devices should provide the in-network
processing capability. Instead, we promote a pragmatic approach where legacy and novel
solutions cooperate effectively. Since the SDN controller holds a network-wide view,
it knows which network devices offer in-network processing functions and which not.
Therefore, traffic can be optimally handled by maximizing the in-network processing (e.g.,
routing of packets carrying values that can be averaged towards network devices providing

that aggregation function) while ensuring QoS requirements.

77

6 Architectures for 14.0 data gathering and management

To support the dynamic and semantic-driven management of routing, QoS, and in-
network processing, we propose to enrich packet semantic with the following five tags:

source ID, destination ID, QoS, in-network processing, and data model:

* source ID and destination ID are logical names that decouple the "who" and "where."
In fact, the overload of semantic aftecting traditional IP addresses intrinsically pre-
vents seamless mobility. Moreover, since messages are actually sent to the broker by
application gateways, it is not possible to exploit the sender IP address to discrimi-

nate among different machines;

* the QoS tag allows to specify if a traffic flow should be considered either as mission-
critical or non-critical, possibly defining multiple levels. Of course, this tag can be
enriched with other priority levels in case it is required to support finer-grained

management of traffic flows, such as gold/silver/bronze trafhic types [6];

* the in-network processing tag provides information about the possibility to process
the packet directly on network devices. When in-network processing is allowed,

such a tag also specifies the function to apply and the target field(s);

* the data model tag identifies the syntax of the payload. Both the SDN controller and
the in-network processing modules deployed on network devices take advantage of
that tag. The former exploits the information provided by the data model tag to
decide where to route the packets (perhaps not all the network devices can process
all the data models), whereas the latter takes advantage of it to understand how to

process the packet.

6.3.1 ARCHITECTURAL DRAFT

The second proposed architecture [7, 8], mostly working at the application layer, adopts
the typical SDN approach by identifying two main areas: Control Plane and Data Plane.
In the Control Plane area we deploy: the MOM controller, interacting with the MOM
broker; the SDN controller, controlling network elements; and the Gateway controller,
managing the many application gateways deployed in the environment. In the Data Plane
area takes place the implementation of: the MOM, the Gateway components, and, in the
middle, network elements equipped with in-network processing modules running atop
them and managed by the SDN controller.

Each component has different duties and responsibilities:

78

6.3 QoS-Enabled Semantic Routing

Control Plane Data Plane

SDN
Controller

—————g————-

GATEWAY
Controller

Figure 6.14: Functional/layered view of the SDN-MOM distributed architecture.

The MOM Controller is demanded to sniffing and re-routing the traffic flowing
into the MOM topics. It subscribes to several MOM topics to receive messages
and to analyze the traffic. It consumes part of the header and can return back
onto the MOM the message, performing decisions based on the header and on the
information received from the SDN Controller and the Gateway Controller. The
messages can be forwarded to a specific topic, duplicated among different topics, or
consumed and pulled out from the flow. At the same time, the MOM Controller
issues information that will be used from the SDN controller to correctly configure

the SDN devices for achieving the desired level of QoS on the specific flow.

The Message-Oriented Middleware-MOM is one of the core pieces of our in-
frastructure. It is the logical single point of communication between several firm
sectors. It contains topics written by the Gateways and can be read by multiple
other Gateways, based on the plant communication requirements. The MOM is
responsible for guaranteeing differentiated QoS policies with different semantics.
Typically, the at-most-once semantic can be used for best-effort machinery traffic.

Otherwise, at-least-once semantic can be used for monitoring mission-critical assets

79

6 Architectures for 14.0 data gathering and management

80

and for control traffic. Moreover, some messages can be sent with high priority,

guarantying differentiated traffic management and avoiding congestion.

The SDN Controller centralizes network intelligence in a separate component,
disassociating the packet forwarding process from the routing processes. The SDN
Control Plane consists of one or more controllers that are considered the brain of the
network, where all intelligence is embedded. The SDN Controller configures the
network resources. In our infrastructure, the SDN Controller has full knowledge
of the network and the paths, guarantying a fine-grained ruling of the traffic coming
from the Gateways. Differentiated policies can be applied based on the content of
the messages, following the MOM Controller rules. The traffic can be duplicated,
aggregated, blocked, and re-routed on different data paths. The SDN Controller
role is dual: on the one hand, it has to gather and make accessible to the MOM
Controller information about machinery position, router congestion, and gateway
policies. On the other hand, it has to translate the MOM Controller policies to

actual configurations on network entities.

The Gateway Controller emits control messages directed to the Gateway of the
infrastructure. It works in strict coordination with the MOM Controller and SDN
Controller, to avoid congestions and to maintain topic abstractions coherent with
the real machine distribution. Its management duties comprehend: checking of the
state of all the gateways, which must be configured coherently with the machine
on which are acting; synchronization with SDN and MOM controllers, that can
send re-configuration messages to avoid congestion. Practically, it can manage the
header that is applied from the Gateways to each packet, modify the priority of the
messages, and define levels of QoS applied directly to the data-extraction phase.

The Gateway duties comprehend the data gathering, the data transformation to an
internal MOM-specific representation, the header addition, and the interconnec-
tion between the industrial machinery world and the MOM topic-centric world. In
industrial scenarios, it is common to have machines that use different languages and
protocols for data exporting and representation (e.g. Modbus, Profibus, OPC UA,
OMG DDS, EtherCAT [29]). For this purpose, the Gateways can be specialized
with ad-hoc libraries and push or pull strategies based on the specific machinery

from which to gather information. Moreover, the QoS can be managed directly at

6.3 QoS-Enabled Semantic Routing

this level, avoiding high useless throughput when the plant is working in a normal

condition.

Figure 6.14 depicts a schematic of the entire infrastructure. Dashed paths between
controller entities in the control plane, and between control and data planes represent
the management/configuration data exchanges that are logically separate from data flows.
Continuous line paths represent data flows between machines and our architecture. Finally,
dotted paths represent network data paths dynamically (re)configured according to the
SDN Controller policies.

6.3.2 EXPERIMENTS

To demonstrate the feasibility and efficiency of the proposed solution, the section outlines
primary performance results achieved based on our proof-of-concept prototype. On the
one hand, we want to demonstrate how the adoption of our gateways allows to enrich
packets with meaningful tags, sent by a plethora of gateways to a (logically) centralized
MOM broker. On the other hand, we focus on the computational overhead imposed on
intermediate nodes performing in-network processing, with the primary goal of demon-
strating its scalability in terms of packet rate on nodes with relatively limited hardware
capabilities.

The testbed comprises 4 Amazon EC2 VMs based on Ubuntu Server 20.04 LTS and
equipped with 1 vCPU and 1 GB of RAM. The first VM acts as industrial machinery
simulator, simulating an arbitrary number of machines transmitting messages based on
pre-defined templates. The second VM acts as Gateway, collecting packets from the
machines, enriching packets with proposed tags, and routing them to the MOM broker.
The third VM hosted between the Gateway and the MOM broker runs the in-network
processing module. Lastly, the fourth VM acts as a MOM broker.

INTEGRATED SDN-MOM SEMANTIC ROUTING

The SDN Controller and in-network processing modules act as core functional services
in our architecture. As the reader may know, the main SDN implementations (e.g.,
Openflow [74]) work by forwarding to the SDN controller the packets of the flow not
having a configured compatible rule for the delivery. The SDN Controller, thanks to its
complete knowledge of the monitored locality, can make different routing decisions based

on information about packet source or destination addresses, current network topology,

81

6 Architectures for 14.0 data gathering and management

and trafic, and also taking into account information arriving from external sources, in

our case the MOM and Gateway Controllers.

Our implementation configures the networking rules based on application-specific
header information to perform semantic routing on the network devices and on top of the
MOM. In order to have in each moment the correct header associated with the payload,
we decided to enrich the messages directly at the Gateway level of the infrastructure, so
that only complete messages traverse the platform. The gateways are configured to set
for each machine the specified header, containing information about QoS, but also addi-
tional information about machine geo_position, and innet_processing. In the following
Listing 6.3, there is an example of the header added to each message ingested in the data
platform.

1"machine_id":"mooocooo1",
2 "machine_serial":"123456789",
3"source_id":"mooo0o0001",
4"destination_id":"rabbitmq",

s "geo_position":{

6 "continent_name":"EU",

7 "city_name":"Bologna",

8 "country_iso_code":"IT",

9 "region_name":"Emilia-Romagna",
10 "location":{

11 "lat":"44.493690",

12 "lon":"11.343080"

13 }

14},

15 "innet_processing":{

16 "func":"sum",

17 "field":"TEMP_1.value"

181},

19 "payload_description":"sensor_temp",
20 "QoS":5,

21 "message_rate'":100

Listing 6.3: JSON header example

82

6.3 QoS-Enabled Semantic Routing

Going further from pure application-level additional information, message_rate and
the Qos tags need in-depth analysis. The Qos tag contains an integer from 1 to 10 that
commands the desired quality in the entire platform. The SDN Controller exploits that
tag to guarantee a correct path for reaching the quality expected and, where appropri-
ate, for reducing the data quantity using the innet_processing additional details. The
message_rate tag is expressed in milliseconds and represents the time interval between a

data gathering and another.

Since the data volume traversing the platform can be managed by both Gateways and in-
networking modules, we have conducted some tests to demonstrate how those techniques
can be used in a conjunct profitable manner. In our first test, we exploit the Gateway
capabilities of modulating the traffic entering the platform based on the message_rate
tag. For this experiment, we defined three message_rate levels: bronze (110 ms), silver
(60 ms), and gold (30 ms). During the execution, we change the levels by communi-
cating the machine_id and the new message_rate values to the Gateway Controller that
will re-configure the correct Gateway. On the MOM VM, we run the AMQP broker
implementation (the open-source RabbitMQ [104]).

40
30

20

Message Rate [msg/s]

10 | A AL -y

0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00

Time [mm:ss]

Figure 6.15: Bronze, gold and silver levels managed on Gateway.

Figure 6.15 shows the three levels of data gathering modified dynamically during one
execution of about 20 minutes. At time 6:56 the message_rate changes from bronze to
gold to supply the higher detail of the processes running on machinery. At time 12:16 the

message_rate is set to silver quality.

83

6 Architectures for 14.0 data gathering and management

IN-NETWORK PROCESSING

This section presents the experiments conducted to investigate the overhead introduced
while performing in-network packet processing tasks to aggregate packets being part of
the same flow. For the sake of simplicity, the Gateway directly sends all generated traffic
to the VM running the in-network processing module. We implemented an in-network
processing module that sorts the incoming traffic in queues and performs an average
function on fields representing temperature values when a queue grows to 10 elements.
Such a module takes advantage of the tags we introduced to enrich the packet semantic and
identifying packets of difterent flows. In particular, a flow is identified by the logical names
of sender and receiver (source ID and destination ID, respectively) and the aggregation
function. Using that information, the in-network processing module inspects packet

headers and sorts packets in different queues according to their tags.

As soon as a queue reaches a certain threshold, i.e., 10 packets, the in-network processing
module applies the aggregation function on the target payload fields and sends out a single
packet containing the computed result, i.e., the average value. The primary outcome is
a sharp decrease of packets sent to the following node, since the in-network processing
module lowers the overall network usage by in-situ processing of packets in relation to the

in-network processing configuration, 90% in the case above.

However, such a network traffic reduction entails the following (at least) two important
consequences. First, since packets are inspected, queued, and processed, they reach their
destinations with an additional delay, due not only to packet queuing, but also to packet
processing. Therefore, packets with strict QoS requirements may not be eligible to flow
through in-network processing modules (the SDN controller must dictate alternative paths
for them accordingly). Second, the in-network processing task itself may require more
computational resources than those available when overwhelmed by high network traffic
volumes. Through the experiments described in the following, we seek to evaluate how the
incoming packet rate, namely, number of packets per (s)econd, affects the performance of
in-network processing. In other words, we aim to outline the relationship between the

incoming packet rate, the CPU load, and the outgoing packet rate.

The experiments vary along two dimensions. The first dimension is the percentage of
CPU exploitable by the in-network processing module. Since the in-network processing
module can be deployed on nodes already performing other activities, we assume that it

cannot take advantage of all the available processing capabilities, since reserved for other

84

6.3 QoS-Enabled Semantic Routing

functions. To this end, we limit the CPU usage of the in-network processing module
to 25% and 50% of the overall processing availability using cpulimit [82]. The second
dimension is the packet rate sent by the application gateway to the in-network processing
module. We generate increasing packet rates ranging from 2K to 16K in step of 2K
packets/s.

To make the experiments reproducible in an automated manner, we developed a test
framework based on Ansible [88], a configuration management tool, and several shell
scripts. The choice of Ansible over other configuration management tools available on the
market is mainly due to its intrinsic simplicity. In fact, Ansible does not require anything
else except an SSH connection between the control node (where Ansible is installed) and
managed nodes. We use tcpdump to capture the network traffic and a Python package

called psrecord [4] to monitor the CPU activity of the in-network processing module.

@ Processed Packets M CPU Usage

100 100 100 100 100 100
100 O @ L L 2

75

50

25

Processed Packets and CPU Usage (%)

15.8
0K 2K 4K 6K 8K 10K 12K 14K 16K

Packet Rate (packets/s)

Figure 6.16: CPU usage limited to 50% of the total.

As Figure 6.16 shows, the in-network processing module can successfully handle the
totality of the incoming packets with 50% of the CPU and incoming packet rates up to
12K packets/s. The CPU usage grows up to nearly 100% of the total when the incoming
packet rate is 16K packets/s. Interestingly, in that circumstance, the in-network processing
module can handle roughly 80% percent of the incoming packets (by losing the remaining
20%). In the light of those results, the SDN controller may decide to redirect up to
12K packets/s towards the in-network processing module to make possible the 100% of
processed packets while not overloading the CPU. As the CPU maximum availability

85

6 Architectures for 14.0 data gathering and management

@ Processed Packets M CPU Usage

100 100 100 100

94.8

100

75

50

25

Processed Packets and CPU Usage (%)

0K 2K 4K 6K 8K 10K 12K 14K 16K

Packet Rate (packets/s)

Figure 6.17: CPU usage limited to 25% of the total.

decreases to 25% of the total, the in-network processing module cannot handle more than
around 6K packets/s. However, it is interesting to note how the performance dramatically
decreases as the incoming packet rate grows. As Figure 6.17 shows, with an incoming
packet rate equals to 16K packets/s, the in-network processing module cannot even handle
50% of packets. On the one hand, in-network processing can lower the number of packets
traversing the network and reduce network utilization consequently. On the other hand,
without detailed knowledge on the limits of the in-network processing modules deployed

on the field, they can quickly become bottlenecks for the whole network.

6.3.3 ARCHITECTURE GENERALIZATION AND PROTOCOLS

As mentioned above, the solution we propose operates at both the application and network
layers. The architecture design follows the SDN approach, clearly distinguishing the
control plane from the data plane and identifying the interfaces (i.e., protocols) between
such planes. In this regard, Figure 6.18a provides a layered architecture overview. The
architecture can be seen as a generalization of the one presented in Figure 6.14 and adds
an INP (In-Network Processing) Controller so that all controlling units are represented.

The control plane comprises AGW, MOM, SDN, and INP controllers to monitor
and configure AGWs, MOM, and SDN/INP-enabled network devices, respectively. The
rationale behind the architectural components is the following. AGWs sit close to shop

floor components that cannot support our protocols. For example, some legacy industrial

86

6.3 QoS-Enabled Semantic Routing

Protocol E
Northbound 1
___________________ A

AGW SDN INP MOM
Controller Controller Controller Controller MOM

Interface

MOM l . (| J

Controller l l Controller Controller N
Control Plane . Control Room Subnet Subnet GW

L o) H P |

AGW ‘

Industrial Backbone

Southbound
Interface | Protocol A Protocol B Protocol C Protocol D [

L R M-Sy Rl fddl) Shop Floor | Subnet GW/ Shop Floor | Subnet GW
: Data Plane : Subhe 1 o Suibnet N o
AGWs MOM
[SDNINP-Ensbied Network Devices l pes s =N
S S
(a) Functional/layered view. (b) Network topology.

Figure 6.18: Architecture overview.

machines may not support IP-based communications and, at the same time, cannot
even be updated due to restrictive manufacturer policies. Then, the MOM decouples
senders and receivers, sorts messages in topics of interest, and provides delivery semantics.
Although the MOM enables critical features in message dispatching, it does not control
how packets traverse the network. This is where SDN and INP come in. Specifically,
SDN-enabled network devices put into action fine-grained traffic management (flow
steering and prioritization), whereas INP-enabled network devices perform in-network

traffic optimization (data filtering and aggregation).

Figure 6.18b places control and data plane components within the industrial domain, as
described above. Specifically, the controllers and the MOM are in the control room subnet
(plant/enterprise level). SDN/INP-enabled network devices are both subnet gateways and
industrial backbone elements. Lastly, AGWs are in the shop floor subnets, close to the
shop floor entities not compliant with the architecture interfaces. Note that each shop
floor subnet may be provided with one or more AGWs, and a single AGW may serve one

or more shop floor entities.

The protocols used by the links and the interaction flows between the architectural com-
ponents are the following. Starting from the lowest layer, in the data plane we find machine
data packets enriched by the respective AGWs with the Data Header, adopted to identify
the data flow and the generating machine in a unique way. Protocols A to D implement
the southbound interfaces of our architecture and command AGWs, SDN/INP-enabled
network devices, and MOM. Lastly, Protocol E commands the infrastructure and config-
ures the control plane, synchronizing all components on a unique shared state. For the
sake of clearness, in the final subsection, we report the sequence diagram in case of new

topic subscription.

87

6 Architectures for 14.0 data gathering and management

DaTta HEADER

The Data Header is attached to every packet traversing the system by the AGWs of our
architecture. Each component that receives a new unforeseen Data Header in the packet

forwards it to its controller and waits for routing/processing/flow rules to be set.

Field Type
flowld intl6
machineld intl6

machineSerial = String

Table 6.3: Structure of Data Header

Table 6.3 shows an implementation of the Data Header, which keeps track of three
fields:

* flowID: 16-bit user-defined integer that identifies the flow in a unique way in the

Sys tem.

* machineld: 16-bit machine identifier. It can be logically set based on user necessi-

ties.

* machineSerial: String displaying the machine serial number. It can be dynamically

read from machine registers or manually set on the AGWs.

ProTOCOL A

Protocol A is adopted between the AGW controller and AGWs. Its purpose is to pass
information and configurations about which machine to connect for gathering data and
with which frequency. Moreover, it contains the header field, to be put as header of every
message gathered by the specific AGW.

Table 6.4 details Protocol A:

* header: the Data Header, applied to each packet outgoing from the AGW.

* crud: 2 bit flags for identifying Create, Read, Update and Delete of a new or existent

configuration.

¢ ttl:time to live [ms] of the configuration. After that time the AGW stops sending

out new messages. If set to 0 the configuration is permanent.

88

6.3 QoS-Enabled Semantic Routing

Field Type

header Data Header
crud 2bit

tel uint32
ipFrom ipAddr
ipTo ipAddr
destTopic String
semanticDelivery ~ 3bit
machineProtocol ~ String
machineUrl String
pollingInterval int8
geoPosition geoURI [94]
applicationType String

Table 6.4: Protocol A: AGW controller to AGWs

ipFrom: IP address of the AGW interface on which send out messages through the
platform.

ipTo: IP address of the destination MOM.
destTopic: destination topic of the messages.

semanticDelivery: 3 bits identifying the semantic of the flow in the MOM. Typ-
ically, it can be at-most-once, at-least-once, and exactly-once, but others can be

defined based on the specific implementation of the MOM.

machineProtocol: protocol for extracting data from the machine. Examples can
be MODBUS [22], Profibus [87], EtherCAT [35], and OPC-UA [75].

machineUrl: Url address of the machine supervised by the AGW.
pollinglnterval: interval in [ms] for polling data extraction.

geoPosition: position in space of the machine supervised by the AGW expressed
in compliance to RFC 5870 [94].

applicationType: application type header attached to the message body by the
AGW. Examples can be ’application/json’ or application/xml’.

89

6 Architectures for 14.0 data gathering and management

ProTOCOLB

Open Networking Foundation - "OpenFlow Switch Specification” [78] is adopted as
Protocol B to enable the interaction between SDN controller and the SDN-enabled
network devices. The SDN approach decouples data from control plane access, making
the introduction of new network functionalities simple and well structured on SDN-
compliant hardware. A custom SDN controller uses the data shared with the Protocol E
to control switches and to forward the data to the correct INP-enabled network device for

processing and, lastly, to the MOM.

ProToCoL C

We have selected the P4 [102] language to define data structures of this level. Unlike a
generic language like C or Python, P4 is a domain-specific language with a set of constructs
optimized for network data forwarding.

In our architecture, the P4 language is used to administrate the INP-enabled network
devices and to create processing pipelines that digest the messages in the AGW-MOM
path.

ProTOCOLD

Protocol D is in charge of configuring and exchanging information between MOM con-
troller and MOM. Protocol D is further split into two sub-protocols (i.e. D’ and D”) as
follows.

Protocol D’ configures the MOM to forward on a list of topics the data with the
specified header and to exchange the semantic delivery QoS settings. The D’ message is
triggered every time that the MOM receives a new unforeseen flow in input and requires
the MOM controller flow information.

Protocol D” is used to communicate the topic subscribers to the control plane to
correctly set the network paths with the specified priority. The D” message is sent by the
MOM to the controller every time there is a new subscription to the managed topics. It
is necessary for guaranteeing the QoS also between the MOM and the subscribers and
triggers an update on the SDN controller via the Protocol E.

Table 6.5 reports Protocol D’:

* header: the Data Header, applied to each configuration for identifying the traffic
on which to apply the rule.

920

6.3 QoS-Enabled Semantic Routing

Field Type

header Data Header
crud 2bit

tel uint32

semanticDelivery ~ 3bit
forwardOnTopics ~ List<String>

Table 6.5: Protocol D’: MOM controller to MOM
* crud: 2 bit flags for identifying Create, Read, Update and Delete of a new or existent
configuration.

* ttl: time to live [ms] of the configuration. After that time the MOM stops forward-

ing/prioritizing the flow. If set to 0 the configuration is permanent.

* semanticDelivery: 3 bits identifying the semantic of the flow in the MOM. Typ-
ically, it can be at-most-once, at-least-once, and exactly-once, but others can be

defined based on the specific implementation of the MOM.

* forwardOnTopics: the topics on which to forward the specified flow.

Field Type

header Data Header
crud 2bit
ipFromMom ipAddr
topic String
priority 3bit

subscribers List<ipAddr>

Table 6.6: Protocol D”: MOM to MOM controller

Table 6.6 reports Protocol D”:

* header: the Data Header, applied to each configuration for identifying the traffic
on which to apply the rule.

* crud: 2 bit flags for identifying Create, Read, Update and Delete of a new or existent

configuration.

* ipFromMom: IP address of the MOM interface on which send out messages
through the platform.

91

6 Architectures for 14.0 data gathering and management

topic: starting topic of the messages.
priority: SDN priority of the flow outcoming the MOM.

subscribers: a list of IP addresses subscribed to the specified topic. They are
necessary for updating the SDN rules.

ProT1OCOLE

The northbound interface is managed in a uniform way between all entities by sharing

information via Protocol E. Protocol E is configures the system and shares the state of

the incoming data transmissions between all the controllers. It contains all the fields

that we defined in the previous subsections together with the crud flags marking and

differentiating new configurations from updates.
Table 6.7 describes Protocol E:

92

header: the Data Header, applied to each configuration for identifying the traffic
on which to apply the rule.

crud: 2 bit flags for identifying Create, Read, Update and Delete of a new or existent

configuration.

ttl: time to live [ms] of the configuration.

semanticDelivery: 3 bits identifying the semantic of the flow in the MOM.
priority: SDN priority of the flow outcoming the MOM.

ipFrom: IP address of the AGW interface on which send out messages through the

platform.

ipFromMom: IP address of the MOM interface on which send out messages
through the platform.

ipTo: IP address of the destination MOM.
destTopic: destination topic of the messages.
forwardOnTopics: the topics on which to forward the specified flow.

subscribers: a list of IP addresses subscribed to the specified topic.

6.3 QoS-Enabled Semantic Routing

* inp: alist of field coupled with the specific INP function to apply on.

* applicationType: application type header attached to the message body by the
AGW.

* geoPosition: position in space of the machine supervised by the AGW expressed
in compliance to RFC 5870 [94].

* machineProtocol: protocol used by AGWs for extracting data from the machine.
* machineUrl: Url address of the machine supervised by the AGW.

* pollingInterval: interval in [ms] for polling data extraction.

Field Type

header Data Header
crud 2bit

tel uint32
semanticDelivery ~ 3bit

priority 3bit

ipFrom ipAddr
ipFromMom ipAddr

ipTo ipAddr
destTopic String
forwardOnTopics List<String>
subscribers List<ipAddr>
inp List<(field: String, func: String)>
applicationType String
geoPosition geoURI [94]
machineProtocol ~ String
machineUrl String
pollingInterval int8

Table 6.7: Protocol E: Controller to controller

NEew Torics SUBSCRIPTION SEQUENCE DIAGRAM

Figure 6.19 presents the sequence diagram in case of new topic subscription. By delving

into finer details, the subscription of a new data consumer to the MOM triggers an inter-

93

6 Architectures for 14.0 data gathering and management

action with Protocol D” (Table 6.6). Such interaction is handled by the MOM controller,
which triggers a proper reconfiguration of the underlying SDN-enabled network devices.

MOM
Controller

SDN

MOM Controller

New i !
Subscriber ! |
' I
Protocol D" :

»
'

Protocol E
»r Protocol B

OpenFlow)

P rN—

uoneIn3yuoddx
SA0MIIN

<—J
Ack T

Figure 6.19: New topics subscription sequence diagram.

Figure 6.19 details the sequence diagram showing the interactions triggered by the
addition of a new subscriber to a MOM topic. The MOM communicates the updated
list of subscriber IPs to the MOM controller via Protocol D”. MOM controller unleashes
a synchronization phase (Protocol E) within the northbound interface to the SDN con-
troller.

The SDN controller has complete knowledge of the network components and thus
chooses the best path to achieve the desired priority based on provided priority bits. Once
the best path is calculated, the SDN controller configures the network equipment with
Protocol B (OpenFlow) to route the packets accordingly from the MOM to the new

subscriber, guaranteeing the correct QoS to the final data consumer.

94

6.4 Low Latency m2m Communication Support

6.4 Low LATENCY M2M COMMUNICATION SUPPORT

In our previous work in section 6.2 we proposed SIRDAM4.0, a multi-layer architecture
to monitor legacy industrial equipment during their operations inside customer plants.
The last proposed architecture provides near-real-time data gathering powered by two
Apache Kafka installations, in OT and IT, respectively. In the proposal, several SCARF,
dedicated software components acting as both adapter and gateway interface directly with
Modbus-TCP machinery and export data in the OT Kafka instance. From here on, the
data is then forwarded to the specific Kafka topic at the IT layer.

Collected results were encouraging: the components of the platform maintain a con-
stant delay at the increase of the number of messages in transit in the system, thus con-
firming the scalability of the architecture. However, the latency assessed in the upper layer

is about 70 ms, completely inadequate for M2M communication and incompatible with

OT needs.

This last work [85] improves our prior proposal in several difterent directions. First,
it splits the functions of the SCARF components into two distinct ones: adapters and
gateways. This decoupling allows for a pluggable machine layer that can be enriched
and support additional languages on the shop floor. That also allows the Gateway to be
deployed on an edge computing layer, so decoupling OT- and IT-related functionalities.
At the same time, we intend to define a support capable of enabling and expressing the
necessary different convergence requirements of I'T and OT layers. In addition, we state
that the proposed solution is going to be assessed in a real testbed scenario, by using real

machine data.

6.4.1 ARCHITECTURE

Herein, we describe the approach taken to effectively blur the OT/IT boundary, so enabling
fast, reliable, and secure operational OT data exchange towards the I'T layer. As anticipated,
the approach relies on a Gateway component that resides on the OT/IT boundary and
a two-layered middleware solution aimed at fulfilling both the functional and the non-

functional requirements of each layer.

95

6 Architectures for 14.0 data gathering and management

SYSTEM COMPONENTS AND INTEGRATION

Our proposal relies on the OPC UA Pub/Sub for M2M communication at the OT layer
and uses Apache Kafka, a high-throughput, low-latency Message-oriented Middleware
(MoM), for data gathering from multiple OT sites towards the I'T domain. Though in
principle, the OPC UA standard allows to reach and convey data above the OT layer to
the upper layers SCADA, IT, Cloud, it is mainly a low-level interoperability protocol
allowing fast transmission of data. At the IT layer, it is the Kafka MoM that permits the
handling of large volumes of data in a secure and reliable manner, while at the same time,
presents an extensible framework with a rich ecosystem of tools for I'T.

Figure 6.20 shows a schematic representation of the main components of the architec-
ture. The dotted line denotes the separation of the OT, I'T, and Machine areas. In the
Machine layer, the assets use several low-level and heterogeneous protocols some of which
adhere to standard specifications with open-source implementation (e.g., OPC UA over
TSN), meanwhile the majority do not generally interoperate, are closed source, and, most
times, proprietary. In our proposal, the area on top of the assets, namely the OT, acts as
a homogenization layer, by abstracting away from the upper layers the technical details
of the specific protocols. The OT layer has a pluggable architecture, so to allow specific

adapter components to be added dynamically into the infrastructure.

= =
g 5| 4= s Bl &=
Z H H 2 H '
""""""" %ba -m- """""""""'%mg -m- TTTTT oo
e o
i = il =
© © GATEWAY

GATEWAY

< <
? Ehercm“- T;) % ;%%%gg PubSub R O=8 l3°°
Machine jal € E M E over TSN jQl & I‘t@

Figure 6.20: Architecture overview diagram.

After configuration, the adapter initiates the data collection according to the machine-
specific language, exposing the machine information model via the common OPC UA
standard. As anticipated, the rationale of that choice is to have a representation of the

information common among the machine and the upper layers. We point out that our

926

6.4 Low Latency m2m Communication Support

architecture can support different adapter deployment strategies, depending also on the
computational resources available on the specific industrial asset: if the machine has
enough resources, the adapter can be directly deployed on it; otherwise, the adapter can
be deployed elsewhere and is connected to the machine via the network fabric.

On top of the OPC UA protocol, we use the OPC UA Pub/Sub specification for
message exchange inside the single shop floor. In the figure, the shop floor is depicted as
an arrow above the machinery. Herein, heterogeneous traffic needs to co-exist and can
vary from safety-critical control traffic to best-effort ones. In practice, data are gathered
via a Gateway component which listens on OPC UA Pub/Sub endpoints and sends data
to the Katka MOM. Gateways are customized via configuration files that specify machine
addresses and registers that must be manipulated and re-exposed on Kafka topics. In next
subsection we report an example of the configuration file.

One goal of the Gateway is to differentiate between heterogeneous flows, namely raw
sensor data and data deriving from monitoring processes on the shop floor. The former
represents the information exposed by the industrial machine, containing data regarding
its internal state. Additionally, the monitoring flow comprises the data and metrics related
to networks, industrial processes, etc., supported by Kafka, by providing mechanisms and
engineering options.

More specifically, on the producer side, we need to prioritize monitoring and control
data traffic. To achieve that, we use different topics and different partitioning levels per
data type, where the monitoring and control topics are configured to have a single partition
and a higher degree of replication of that partition. This engineering option guarantees
a total ordering of sent messages and an enhanced fault tolerance. Concerning the raw
sensor data, the topics are configured to have multiple partitions and a lower degree of
replication, guaranteeing higher input/throughput rates and lower memory usage.

At the consumer side, we use Apache Kafka differentiated semantics: At-Most-Once,
At-Least-Once, and Exactly-Once for the commit management setting [21]; for monitoring
and control data we exploit an Exactly-Once semantic; while for the data traffic, we use an
At-Least-Once semantic, for faster reading.

Concluding, Apache Kafka supports Access Control Lists [20] via the so-called ACL
Authorizers. This feature can be used in industrial settings since data confidentiality is of
paramount importance.

Access control allows us to apply fine-grained access policies on the topics, by defin-

ing groups of authorized readers and writers and improving the security of the entire

97

6 Architectures for 14.0 data gathering and management

infrastructure. On the other side, considering the stringent latency requirements at the
OT layer, we assume it is not directly exposed to the external world, hence no particular
security mechanisms are in place and the software running in this domain is certified and
guaranteed not to pose any threat. These aspects deserve further investigation, and we are

currently looking into the adoption of lightweight security mechanisms into our solution.

BOOTSTRAPPING THE SYSTEM

To bootstrap the system, one needs to provide some essential configuration parameters,
binding the components together and initiating a structured information exchange to-

wards the IT layer. The steps involved are as follows:

* Configuration: the Gateway component is issued a structured configuration
file, containing the addresses of OPC UA enabled assets, such as IP addresses
and multicast network groups on which to register the industrial asset internal
state. Other configuration parameters contain information regarding the Kafka
endpoints and topics on which to publish messages, QoS level mappings, and
their publication frequency. For the sake of clarity, an example configuration file is

reported in Listing 6.4.

* Discovery: the Gateway queries the OPC UA server(s) to verify the representation
of the data. In this phase, the Gateway also checks if the OPC UA reported registers

are coherent to what has been reported in the configuration file.

* Operations: once the discovery phase completes with success, the Gateway sub-
scribes to the multicast network groups, starting the flow of messages, which upon
reception in a specific protocol dialect, are un/marshaled to a (configurable) JSON
representation. Depending on the data type, the messages can be sent on different
channels. For instance, the level can be set on high-quality and ordered for “control”
flows, guaranteeing fast and reliable delivery, while sensor messages, can be sent

with a non-ordered semantic, depending on customer-specific policies.

From this point onwards, we consider that the data are available and can be fetched
from the Kafka topics, and that data can be read by multiple consumers, depending on
specific access policies.

It is noteworthy to point out that the decoupling of the OT and IT layer, through the

use of a lightweight configurable Gateway, enables us to implement advanced control

928

6.4 Low Latency m2m Communication Support

features addressing reliability and scalability in scenarios of high ingress traffic. To this aim,
we are currently investigating the design and implementation of a lightweight control and
management plane, allowing for the run time deployment of customized coordination

and synchronization schemes among the Gateway components.

1{

2 "machines": [

3 {

4 "name" :"MACHINE_1",

5 "ip_address":"192.168.0.3",

6 "transport_profile":"http://opcfoundation.org/UA-Profile/Transport/
pubsub-udp-uadp",

7 "network_address_url":"224.0.0.18:4840"

8 }

9 1,

10 "kafka":{

11 "cluster_ip_addresses": [

12 "192.168.1.2"

13 1,

14 "topic":"myTopic"

15 1,

16 "publishers":[

17 {

18 "data_group_name'":"datagroup-1",

19 "writer_group_id":"1",

20 "registers": [

21 "PRESSURE_1",

22 "OVEN_TEMPERATURE_1"

23 1,

24 "interval":"100",

25 "QoS":"data"

26 }

27]

28 }

Listing 6.4: Example of JSON configuration file used by the Gateway.

99

6 Architectures for 14.0 data gathering and management

6.4.2 EXPERIMENTS

The goal of the experiment is to validate our architecture so as to show its capacity to work
while suiting different constraints in an effective way. We intend to show the capacity to
support QoS specifications of low-latency flows at the OT layer, while at the same time
assessing the capability of providing high-throughput and quality data to the IT layer. To
this end, we have developed a testbed depicted in Figure 6.20.

To fully assess the functional capabilities of our proposal, we have deployed a real
testbed of five nodes, hosting different functionalities related to the OT and IT layer and
where nodes are connected via a dedicated network consisting of a 1 GB switch. While this
network setting may not be as rich as a real deployment scenario, it suffices the purpose of
this work, aimed at testing and assessing the functional components of our architecture in

an operational environment. For completeness, Table 6.8 reports the characteristics of the

deployed nodes.
Name Component Operating System CPU RAM Network
Machine
Node1 Simulator 1
Machi
Node 2 Simiclatl(r)lf) Ubuntu Intel Core i5-2400 S GB L Gob
20.04.3 LTS CPU @ 3.10GHz pbs
Node 3 Gateway
Node 4 Kafka
Consumer
Apache Ubuntu Intel Core i5-3470
Nodess Kafka 20.04.3 LTS CPU@320GH, 1¢CB 1Gpbs

Table 6.8: Testbed deployment: components, OS, and hardware characteristics.

Two nodes of the infrastructure are dedicated to traffic simulation. For this part, we
rely on some software packages emulating realistic industrial machine traffic, build and
developed from scratch starting from actual industrial machinery specifications, as seen in
6.2.

More specifically, the first simulator (Node 1) simulates an industrial asset, by exposing
its internal operational state via the Modbus/TCP protocol. A Modbus adapter at the
machine layer can read and extract the information in a protocol-agnostic format, suc-

cessively exposing and structuring the machine information by using the OPC UA data

100

6.4 Low Latency m2m Communication Support

model. Finally, the data is transmitted by using the OPC UA Pub/Sub protocol. Let us
note that the adapter acts both as a subscriber to and publisher of data depending on the
configuration and purpose. Then, the information is available to be received by all other
entities present in the network (machines and gateways). A consumer, receiving the data
emitted by the first simulator, is deployed at Node 2, where the software implemented
represents an OPC UA Subscriber. That subscribes to the first simulator and begins
receiving the messages published by the first machine. This behavior simulates a typical
sensors-to-controller scenario.

Next, Node 3 hosts the Gateway component where it subscribes to the messages sent by
the simulator present in Node 1. These are the same messages received by the simulator in
Node 2. Node 4 is a Docker-based Kafka deployment that receives messages produced by
the Gateway that acts as a producer. Finally, Node S hosts a Kafka consumer, consisting
of a custom program that receives messages from specific Kafka topics. The consumer
allows us to estimate the transit time that takes a message from Node 1 to a consumer in
the I'T department of the factory or directly to the Cloud.

In order to accurately measure time, nodes are synchronized by using the Precision
Time Protocol (PTP) to extract fine-grained metrics in the time domain. Toward that
goal, the node hosting the Gateway is configured as the controller, providing a reference
clock for all other entities that participate in the PTP domain, whereas the others act as
responders. For additional details on the implementation front, we refer the reader to the

public repository containing the source code of the project [43].

PERFORMANCE ASSESSMENT

To assess the proposal, we measure the message latency from the OT-to-IT layer, under
varying traffic regimes.

Figure 6.21 shows the latency in the OT level (Node 1 — Node 2), whereas Figure 6.22
measures the end-to-end latency, that is from the OT layer to the Kafka consumer in the
IT layer (Node 5). In both cases, the latency is computed as the time period between the
receiving and sending time at the application layer, by sending messages with a different
rate, from 400 to 1500 messages per second.

Figure 6.21 shows that the latency between the two simulated machines remains stable
while increasing in the number of messages/second up to 1500 per second. Most impor-
tantly, we always observe a sub-millisecond latency, which is the required latency expected

at the OT layer, in particular for the communication between different machines or PLCs.

101

6 Architectures for 14.0 data gathering and management

100

100

0. 15 T I I T
400 msg/s —>— 1200 msg/s - -® -
0.14 - 800 msg/s — M 1500 msg/s a
0.13 + |
g 0.12 - -
ot A
5 . [J "-_';4'1_,__ _,:_ _-' ° *“/.‘*
g 0.09 + .
3 0.08 | .
29
0.07 + |
0.06 |
0.05 1 1 1 1
0 20 40 60 80
Time (s)
Figure 6.21: Machine-to-machine communication latency under varying message load of the OT
layer.
100, 000 . : : : 5
400 msg/s —>— 1200 msg/s - -®- |]
800 msg/s — M- 1500 msg/s
10,000 g
g
é 1000 3
[}
.S
*é 100 3
=
ST 1
i .-—-.*- T — .'.- T _—_.‘-. T — .‘; I '_-.._-. .-—_..: 0 — &_. ._—_'—-.T—- ’-— o -—"
1 1 1 1 1
0 20 40 60 80
Time (s)

Figure 6.22: Machine-to-consumer communication latency under varying message load of the IT

layer.

Figure 6.22 shows the end-to-end latency measured at the I'T level for the same message

rate above, by exhibiting a latency that is an order of magnitude higher than the one sensed

in the OT level. That increase is expected when considering both the number of software

102

6.4 Low Latency m2m Communication Support

components the message must traverse, and the latency introduced by the Katka MOM
features. The latter has been configured to manage the forwarding of the messages to
the consumer by imposing a total ordering and ensuring exactly one semantics (single
topic/single partition) which is particularly important when conveying safety-critical
information from the OT. The effects of the above-mentioned semantics are clearly visible
in the 1500 message/second configuration, causing up to an exponential growth in latency.
In fact, in this setting, the rate mismatch of servicing input data, marshaling of messages
to IT-layer compliant format, and their emission to the respective output queue, creates
an increasing backlog of messages over time. This trend gives evidence that not all data
and information exchanged in the OT could be sent to I'T whenever low latency and no
data loss are requirements. To solve that mismatch, the OT layer can be equipped with
selective pre-processing capability, specifically using filtering and aggregation, to better
coordinate the different layers and to alleviate the burden at the OT/IT bridging point.
That line is also confirmed by data shown in Figure 6.23, showing the Gateway CPU
usage, evidencing an increase in CPU usage trend, augmenting together with the increase
of message arrival rate, while still having plenty of resources that could be devoted to other

computational tasks.

20 I I I
| 400 msg/s —%— 1200 msg/s - ®
800 msg/s — M 1500 msg/s
2\515 - . .
@ - - - - @ o
& [e : bl | PR e N | i S :.>< _:
=
&
=
O S5¢F i
O | | | |
0 20 40 60 80 100
Time (s)

Figure 6.23: Gateway CPU usage under varying message loads.

In conclusion, this work presented a set of architectures that aim to tackle the main

integration issues in the IT/OT convergence in the industrial and manufacturing sector.

103

6 Architectures for 14.0 data gathering and management

By leveraging the potentialities of Edge and Big Data technologies, we proposed architec-
tures that respect the privacy, safety, and security constraints imposed by manufacturing
companies. The experimental results confirm the effectiveness of our approach, showing
sub-millisecond latencies at the OT layer and greater flexibility at the IT layer. Additionally,
it’s worth mentioning that container orchestration is an important aspect to consider
when managing a large number of containers sparse in several production environments,
and it is something that could be further explored in the next work that hides container

management issues exploiting the capabilities of Serverless processing.

104

6.5 Serverless Processing at the Edge

6.5 SERVERLESS PROCESSING AT THE EDGE

Motivated by a data sharing scenario, extending SIRDAM4.0 conceptual architecture,
we present the design of an OT/IT convergence solution equipped with edge processing
capabilities [14]. The edge computing capability could alleviate the risks, providing an e.g.,
cloud-free, integration of the plant floor data (OT) with the enterprise resource planning
system(s) (I'T). This resulting integration layer is fed with data through an event-driven
architecture, acting as a data conveyor from bottom to top layers, inhibiting direct exposure
of the OT layer by design e.g., malicious access to machines. To cope with potential traffic
spikes and adhering to an event-centric architecture, the edge processing layer embraces a
serverless approach exploiting the FaaS paradigm, capable of elastic data processing in the
upstream path. In principle, these processing capabilities could be extended and deployed
beyond the OT/IT boundary allowing for a fine grained and contextual transformation

of data.

Few
CLO U D important
data
IT = = E) =1 = E)
Lots of

M ACH I N E RY S — . itered
data

<4——Data quantity—————>»

Figure 6.24: Single site OT/IT integration approach.
In Figure 6.24 is depicted the integration approach that we used for this work. Starting

from the bottom layer, we find the machines and workers interacting for production

purposes. Of paramount importance is the correct configuration of the machines e.g.,

105

6 Architectures for 14.0 data gathering and management

duty cycling regimes, aimed at maximizing the production rate while keeping the plant
floor as safe as possible. At this layer, relevant data streams are heterogeneous in terms of
type and size, potentially amounting to huge data quantities being generated. Furthermore,
a strict data access mechanism is required to prevent data theft and intrusions that could

lead to the alteration of the application logic.

Moving upwards, we find the OT layer where the real time data collection generated
by CPS actors occurs. Here the data are consumed and gathered for operational con-
siderations, in turn, synthesized and fed to the IT layer for decision making purposes.
Concerning the edge processing capabilities, conceptually this functionality resides in the
OT/IT boundary but in general, can be distributed virtually anywhere in an upward path,
viewed as a vertical stream processing fabric acting on specific data flows. It is important
to point out that the data gathering system(s) at the OT layer shall act as a DMZ for the
Machine layer so as to shield the plant floor from any attempt to make direct access to

machines.

COMPANY A COMPANY B
A - . ITB -
EDGE/FO
PLANT 1 PLANT 2 PLANT
o ot
F
=
(cgooo & =
..... (80000

Figure 6.25: A distributed, hierarchical integration approach exploiting an edge/fog compute
fabric.

106

6.5 Serverless Processing at the Edge

Zooming out from the layered perspective, we can envision a generalized, geographically
distributed industrial scenario accounting for different stakeholders as depicted in Fig-
ure 6.25. To explain the rationale of the scenario, let us assume that Company A decides
to further extend its production line footprint in a different geographical location. In this
case, both production lines are run by the same company each with a local deployment of
the layered architectural components described above. To gain intelligence, Company A
could deploy a central I'T office tapping into data sources originating from the different
plants. This higher level integration could be achieved through the deployment of an
edge/fog node physically collocated with either plant or residing elsewhere. This exercise
could be opened to additional competing companies giving rise to an extended ecosystem.
The reason for doing so is to allow other market players e.g., machine manufacturing
companies, to gain access to machine and/or assembly line operational data generated on
their customers (companies) premises. This horizontal integration could pave the road to
productive cooperation between different stakeholders, contributing to further better the
products and harmonize production lines. However, one needs to acknowledge potential
security and privacy risks associated with data disclosure phenomena, valid arguments that
refrain companies from disclosing sensitive production data. Enabling the above scenario
while meeting the needs of all stakeholders in terms of data confidentiality and quality of

service, we propose a technological solution discussed in the next section.

The contribution of this work is three-fold: (i) we present a practical edge computing
approach for the OT/IT convergence problem, generalized to contemplate for different
stakeholders in the industrial landscape (ii) present the implementation details of a server-
less processing solution exploiting the Faa$S paradigm (iii) validate the proposal under
realistic settings. The remainder of this section is structured as follows: in Architecture
Subsection we discuss the implementation details, presenting various system components
and how they are glued together, while Section Experiments presents an assessment of the

proposal.

6.5.1 ARCHITECTURE

Relevant technological details concerning the available machine protocols and OT analyt-
ics are discussed in Section 6.1. Overall, the functionalities offered by the platform can be

summarized as follows:

107

6 Architectures for 14.0 data gathering and management

* Gathering of data produced by manufacturing machines with support for a variety

of protocols and dialects.

* Long-term storage, fast processing and user-friendly presentation of such data at

OT layer.

* A serverless edge processing layer servicing operational data flows for use to I'T

department(s).

* Offline/online processing and selective provisioning of machine data in the upstream

path.

The third architecture, depicted in Figure 6.26, reflects the physical separation of OT
and IT layers enforced in most production sites and addresses their integration at the data
level. Our design follows the interoperability principle reiterated in part 1 and in part 14 of
the OPC UA specification, which advises the use of a publish-subscribe communication
pattern, allowing for flexible management policies and very low communication latency
at the layer boundaries.

The data streams generated at the Machine layer are characterized by high speed, large
varieties, and big volumes, due to the number of different machines operating in the plant
floor.

Without loss of generality, currently our proposal embodies a best-effort processing
capability e.g., of diagnostic data produced by machines, while it also strives to achieve
horizontal scalability so that new machines connected to the platform can be properly
managed. As often reiterated in RAMI 4.0 standards, companies need proper solutions
to manage data in a secure and reliable way, avoiding damages to surrounding people and
to the machines themselves during remote operations. We take the OPC UA advice (part
2) to restrict access to this layer in order to achieve a proper level of security and safety
achieved by configuring a set of policies enforced by a Message Oriented Middleware
(MOM) solution.

As a mandatory practice of 14.0 specifications, the OT layer needs to provision very
low data latency, good bandwidth, enhanced security mechanisms, and resilience. In this
layer, we find a component aimed at collecting data in (near) real-time (Data Extraction
and Transformation) and the MOM capable of delivering data to consumers in a publish-

subscribe fashion, and of guaranteeing low latency and security. Keeping latency low

108

6.5 Serverless Processing at the Edge

L

Storage and

Vendor L . o
endor Layer Visualization

Vendor
Establishment

A

i R Storage and
. Processing ¢ Oriented y Oloraseal
Information Components Middleware Visualization
Technology Layer
PN
| serverless |
> X
Processing
Convergence One-way
Layer irrori
y Serverless data mirroring
_ Processing
\ 4

Operational Data Extraction Message Storage and
Technology Layer and —> Oriented &

. . Visualization
Transformation Middleware

Machine Layer .
Industrial
Machinery

Figure 6.26: Functional components of the platform.

e———Customer Establishment—— e o

allows the software of this layer (Storage and Visualization) to align with the update

frequencies of the machines.

On top of the OT layer, the Convergence layer supports the implementation of fine-
grained access and control of the simple operations performed on the various data streams.
In line with company policies, at this layer one can configure and enforce different data
storing and processing functions, that is specify what transformations e.g., windowed
min/max, averages, random sampling, etc., can be applied to the data, and when and how
data the data can be exchanged between OT and IT layers. The processing capability at
this layer can be dynamically turned on and off allowing for a dynamic zoom-in and out
of specific data streams originating from the plant floor. At a very basic level, the layer
could also serve as a backup of OT generated data, thus ensuring the whole platform a

good degree of robustness with respect to potential faults of the Machine layer.

The serverless model adheres to an event-driven approach and allows for a fine-grained
scaling and usage of resources with a one-to-one mapping between events (data flows) and
processing functions. It consists of a software layer made up of configurable connectors fed
with data by external events, triggering the execution of functions either pre-configured

or attached dynamically at run-time (later on). Depending on the configuration and type

109

6 Architectures for 14.0 data gathering and management

of processing, the layer can be hosted on commercial of the shelf (COTS) edge nodes or
more capable ones exploiting HPC grade resources.

Moving upwards, at the IT layer, multiple stakeholders need to consume different
portions of the available data. Data streams might be fetched from persistence support
or streamed directly from the lower layer(s). In particular, in the latter scenario, the data
are further processed in a serverless fashion applying more advanced operations such as
map-reduce ones. Resources at this layer are dedicated to more complex offline/online
analytics.

In specific, the layer is equipped with a MOM component, distributing data according
to a publish-subscribe model, and a set of tools and APIs (to be used by data consumers)
devoted to the processing, storage, and visualization of data. An additional distinction
between OT and IT at a design level lies in the relaxation of the requirements at the I'T
layer, where no machinery operates and risk concerns are not an issue.

Finally, the platform opens to the involvement of third-party stakeholders, i.e., potential
ecosystem partners, that could generate value from production data. In the architectural
view, this entity can be collocated at a higher level edge/fog node or in the cloud. This
tier collects selected data coming from production sites and runs analytics over it. As a
data consumer, the Storage and Visualization component is allowed to subscribe only to
specific topics published by the I'T layer MOM. This mechanism aims at avoiding any

leakage of private and confidential company data that do not serve the purposes.

6.5.2 IMPLEMENTATION

We highlight the implementation choices made in our proof of concept implementation
of the platform. The OT Data Extraction and Transformation components have been
discussed and analyzed in the previous Section 6.1. In a nutshell, these components are
responsible for extracting and transforming data from a machine-specific implementation
to a MOM standard representation.

Concerning the data flow from the bottom to upper layers, we rely on a MOM solu-
tion implementing a many-to-many, publish-subscribe communication paradigm. This
component consists of an Apache Kafka [98] instance granting potential low latency and
high throughput. The MOM is sized to collect all the data coming from machinery and,
depending on the layer it operates and configuration, keeps a raw backup copy of the data.

The MOM solution deployed on the OT-Convergence layer boundary and the one deployed

110

6.5 Serverless Processing at the Edge

on the Convergence-IT layer boundary could be the same instance or separate instances
running on different systems. The flow of data is guided by the use of pre-configured
topics and specific policies.

As a Storage and Visualization solution we adopt the Elasticsearch-Logstash-Kibana
(ELK) stack [32] allowing for a fine-grained visualization of the data via dashboards. In
the current version, the serverless processing is implemented with an all-in-one node de-
ployment of Apache Openwhisk [101] optimized to operate on a limited resource scenario
i.e., COTS edge/fog node, with short living incoming tasks at a high rate. Openwhisk
uses container management technology to dynamically scale up/down resources, creating
ephemeral environments in which to execute the functions.

The I'T MOM component is specialized to scale depending on the traffic generated
from the connected OT layer(s). Again, thanks to the advanced clustering capabilities,
enhanced performances, and a wide active community, our choice is Kafka. The IT
serverless processing component is provisioned as a clustered full-featured installation of
Apache Openwhisk configured to operate on HPC hardware, exploited for computational
intensive on-line and batch operations on a huge quantity of data e.g., map-reduce like
tasks.

The integration between Openwhisk and Kafka is achieved through the use of adapter
components configured as back-end services in the Openwhisk platform, able to ingest
data from the Kafka middleware, trigger the processing of containerized functions. The
output of this processing can be resent on the same or in a different Kafka topic. The
quality, the frequency of ingestion, and the delivery of those messages are customizable
and adaptable to the different scenarios of IT and OT.

On a last note, the Kafka ACL mechanism can be defined per stream through fine-

grained policies, granting a desired security of the system.

6.5.3 EXPERIMENTS

The main objective of our evaluation is to assess the feasibility of our platform and, in
particular, of the serverless processing component at the Convergence layer. In the follow-
ing, we provide first some details about the experimental testbed, then we show collected
results and we conclude with a discussion of the experimentation results.

We have set up a testbed comprised of three virtual nodes equipped, respectively, with
24,16, 12 GB of memory and 8, 8, 4 virtual CPUs to emulate the OT, Convergence,

111

6 Architectures for 14.0 data gathering and management

and IT layers. The Convergence layer hosts an instance of the OpenWhisk Faa$S software
module configured in standalone mode. The machine traffic is generated by an emulator
obtained through a collaboration with a company situated in the Packaging Valley district
in the region of Emilia Romagna, Italy. In this analysis, the amount of traffic generated
mimics that of several machines and the objective is to evidence some characteristics and
dynamics of the layered architecture.

The assessment is structured in two experiments, each aimed to validate the edge pro-
cessing capabilities under different conditions. In both experiments, the Faa$S layer is
equipped with a random sampling function that filters out only a fraction (1/10) of the
messages to traverse the Convergence-IT boundary. This operator allows the IT layer to
receive a steady amount of traffic for the desired topic(s).

The first experiment simulates a real use case scenario where a hypothetical IT analyst
needs to acquire more information on a particular phenomenon and decides to remotely
zoom-in into a specific set of data. In this experiment, the zoom-in operation employs a
simple identity operator, merely acting as a forwarder of the data towards the I'T layer, but
other more complex operators are available. On a technical level, the zoom-in operation
comprises many steps among which is the deactivation of the random sampling function
from a specific data stream (i.e., Kafka topic) and the activation of the new one. The
(de)activation process presents itself in different forms depending on the actual conditions
of the containerized Faa$S environment. In particular, if a container running a prior
function is available and not involved in actual processing, the code of the new function
can be injected and activated to process incoming traffic, otherwise, a new container image
is prepared and activated from scratch. The latter phenomenon is referred to as cold start
and is more time consuming when compared to the former one.

In the second experiment, only a random sampling strategy is enabled, but we simulate
a variable traffic behavior by turning the machines on and off. In this case, we validate the
proposal by showing the difference between the traffic generated at the OT and traffic
going through the Convergence-IT layer boundary.

PERFORMANCE ASSESSMENT

Starting from the first experiment, Figure 6.27 shows the evolution of the traffic quantity
and message delay as measured at the IT layer. Up until time T1 only a fraction of the
overall messages traverses the Convergence-IT boundary due to the random sampling

strategy applied at the processing layer. At time T1, we simulate a zoom-in request to a

112

6.5 Serverless Processing at the Edge

particular topic and this corresponds to a reconfiguration of the support, through the
injection of the new function, and eventually an associated increase in the number of
messages at time T2.

At time T3 the zoom-in operation is interrupted and the traffic load entering the IT
layer returns to the default configured system behavior.

Referring to the delivery delay, one can observe a spike at time T1 attributed to the
modus operands of the FaaS module and in specific to the cold start phenomena. Initially,
the Faa$ environment needs to scale-out to grant the appropriate amount of resources
needed to cope with the incoming traffic, reaching a peak in terms of message delay at
time T1. At this point forward, a sufficient number of containers are available and the
new zoom-in function is injected, recycling available containers. At time T3, the ingress
traffic starts a steady decrease and as a consequence the FaaS environment scales-in the
resources needed to process the data, leading to the observed additional peak delay at time
T4. Itis important to note, that in a production-ready environment, several optimizations
addressing the cold start phenomena can be put in place in order to reduce the delay

variations [51].

5000 bl L] L] L] LIL) L] L] L] Ll 5000
P : : i : 1 Message Count
. . 1 Avt?rape Qelay -:- -
1 1 ! N N 1
4000 [. v o 4 4000
" 1 1 ' o
(9] B 1 or
2 ' . . S ,
@ 3000 fr Ty L ; coglop : 4 3000 &
g R TS e : S LIEEN : £
! NN 1 1: 'S \ —
‘6 | AR y ' : : -
5 : ML v: d : Ve PAZEN v
& 2000 F Nyl Y. 4 2000 O
E ' :
2 1
"
1000 |T1: <4 1000
1
1
o = . 1 r r 0
00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00

Time [min]

Figure 6.27: Traffic and message delay evolution in time. At time T1 a zoom-in operation is
triggered feeding a steady flow of raw process data at the I'T layer.

Figure 6.28 shows a complementary view onto the experiment. Initially, only a fraction

of the generated data is forwarded to the IT layer until the zoom-in function is enacted.

This corresponds to an increase in traffic load entering the IT layer. Similarly, when the

113

6 Architectures for 14.0 data gathering and management

100 L) L) L) L) L) L] L) L]
: : : Ingress traffic at the IT Layer = = =
Traffic produced by the Machine Layer

‘o
Q.
S : : : : E
L
E
©
b=
<
<) 40 F
2
2
[}
=z

20 -

0 i i i i i i i i i

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00
Time [min]

Figure 6.28: Comparison of network traffic at the I'T and Machine layer.

default operator is restored, the load at the I'T layer gradually decreases until it reaches a

steady regime.
300 L] L] L] L] L] L] Ll T L] 12
: : Ingress traffic at the IT Layer = = =
Traffic produced by the Machine Layer
250 b ... Number of active containers ::::::t 1 g

— 3
& 200 8 @
2 2
v ‘©
% 2
g 150 6 8
¥ bS]
o -
= [
& 100 4 £
= =
=

50 2

—----7—--7\a— : 7—"7---:~~"-7~_
0 i i i i i i i i i 0
00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00

Time [min]

Figure 6.29: Comparison of network traffic at the I'T and Machine layer.

In the second experiment, the machines generating the data are randomly turned on/off
to emulate a variable traffic behavior. Figure 6.29 shows the network load at different
layers of the platform along with the number of containers active in the FaaS environment

(Convergence layer). The traffic at the Machine layer fluctuates over time while this

114

6.5 Serverless Processing at the Edge

difference is less felt at the I'T layer due to the adopted random sampling strategy. In
correspondence, the Faa$S environment scales-in accordingly in order to cope with the

incoming traffic, anticipating the traffic spikes, gradually scaling out the resources.

115

7 KEY FINDINGS

To address the challenges at both the OT and IT levels, we propose novel and general mod-
els for collecting, ingesting, processing, and displaying data from production machines.
Through our experience working closely with manufacturing companies, we have gained

insights and developed a general platform, as outlined in the following.

First, the platform must have high performance to handle the fast and varied streams
of 14.0 information. Industrial production sites generate a high volume of big data that
express the current operating parameters of the machines on the shop floor. Therefore,
advanced tools are needed to build an I4.0 platform that can handle large data volumes.
The proposed architectures, detailed in Chapter 6, use cutting-edge technologies such as
Apache Kafka, Rancher, Kubernetes, OpenFlow, P4, and OpenWhisk to ensure efficient
data ingestion, service orchestration, network flows management, in-network processing,

and serverless processing capabilities.

Second, security and safety are essential in any shop floor environment. By ensuring
high performance at the machine level, we can locally perform actuation actions while
maintaining the safety of workers and machines. Separating the machine level from higher
layers also improves security and safety, as well as reduces costs and resource consumption.
Additionally, information security must protect proprietary data extracted from machines
that vendors want to keep private. Strict access mechanisms in this layer prevent mali-
cious intrusions and theft or alteration of application logic that could lead to dangerous

situations or information leaks.
Third, the platform should facilitate the transition to I4.0 by allowing manufactur-
ing companies to keep their old equipment in operation without a complete replacement.

The neat layer separation allows for customized data extractors for higher layers without

replacing the existing ecosystem.

Fourth, the platform must divide duties and information by reporting only a subset

of OT data in the upper layers. The OT layer must store all data from machines, creat-

117

7 Key Findings

ing a detailed historical database of all machine operating parameters. This division of
information reflects the different needs of technical and managerial departments.

Finally, the platform should replicate information and business logic at different
layers to increase scalability and flexibility, while also reducing costs and resource consump-
tion. This allows for the efficient use of resources and the ability to adapt to changing
business needs.

The architectures shown in Sections 6.2, 6.3, 6.4, and 6.5 demonstrate how it is possible
to create software architectures capable of responding to the requirements imposed by
the 14.0 and upcoming I5.0 revolutions.

We presented the design and implementation of SIRDAM4.0 in 6.2, a platform that
supports large-scale data gathering for industrial operations. The platform is designed to
be fast, scalable, controlled, and robust in providing access to information. We created
a geographically distributed test bed that mimics a scenario of small and medium-sized
enterprises owning production plants in different locations. These plants use a combina-
tion of modern (IIOT-based) and legacy (SCADA-based) communication protocols. Our
tests have shown that the platform can handle the constraints imposed by the convergence
of these technologies, including timely access to data, secure and selective access to infor-
mation, and tolerance to unexpected faults. Additionally, we used open-source tools to
build the software prototype of the platform, which not only keeps costs low for adopters
but also makes the platform easily extensible and reusable.

The QoS semantic routing platform in 6.3 presented a new solution using SDN, MOM,
and INP to manage traffic flow in an Industry 4.0 environment. It uses gateways near
industrial equipment to add semantic information to packets sent to the MOM broker,
including location, desired QoS, and content. SDN modules on network elements then
use these tags to perform detailed management of each traffic flow. The architecture and
protocol suite were designed to meet demanding QoS requirements and are suitable for
modern manufacturing environments, offering an overlay networking solution that works
at both the application and network layers.

We then presented a practical solution for addressing the issue of OT/IT convergence
that respects strict M2M latency requirements in 6.4. The solution utilizes a two-layered
MOM approach that acts as an interoperability layer for OT and enables the efficient
transfer of large amounts of data to I'T, exploiting the best features of OPC-UA Pub/Sub
and Apache Kafka. The proposal was tested in a real-world environment using actual

machine data and was shown to effectively handle increasing data volume.

118

The last work presented a solution to the problem of integrating OT and IT by using a
conceptual edge/fog node as a Convergence layer with storage and processing capabilities
in 6.5. A general approach was proposed for extending the data-sharing ecosystem to
other industry stakeholders, using a hierarchical edge/node structure with processing
capabilities. The platform is based on a MOM component that acts as a conveyor belt for
data, which can be processed and refined at different layers of the architecture using an
event-centric serverless processing model that can scale dynamically and autonomously.
This last proposal was also tested in a real-world environment using real data, and the

results showed its feasibility in a manufacturing scenario.

119

8 CONCLUSIONS AND FUTURE

WORKS

Industry 4.0 represents a significant shift in the manufacturing industry, with the po-
tential to revolutionize the way companies operate. By leveraging mature Information
Technologies such as IoT, Cloud Computing, SDN, and Big Data, companies can digitize
their operations and achieve a new level of efficiency, adaptability, and customer satisfac-
tion. The COVID-19 pandemic has accelerated the adoption of Industry 4.0 technologies
and practices, as companies aim to increase their resilience and adapt to changing market
conditions. The integration of digital technologies has allowed for remote monitoring and
control of production processes, reduced the dependence on manual labor, and improved
supply chain visibility. The resulting increased adaptation and agility have proved crucial in
enabling companies to quickly respond to shifts in demand and supply chain disruptions
caused by the pandemic. By exploiting the capabilities of Industry 4.0, companies can not
only improve their operations in the short term but also enhance their competitiveness
and ability to respond to future challenges in the long term.

Industry 4.0 encompasses the entire lifecycle of a product, from production to sale
and beyond, allowing for advanced services and highly customizable products. Thanks to
the integration of product usage analytics, and third-party systems and services into the
manufacturing process companies can reduce costs, improve quality and foresee changes
in goods demand. The development of novel decentralized data gathering, analytics,
and processing platforms grants support to advanced pre-sale and after-sale services that
increase the overall product value and service revenue.

This dissertation addressed the main challenges of OT/IT integration, by proposing a set
of architectures that take advantage of Edge and Big Data technologies while also adhering
to the privacy, safety, and security requirements of manufacturing firms. Nowadays,
manufacturing plants not only produce a deluge of non-mission-critical traffic but also

include mobile equipment. This leads to a challenging domain, where computing and

121

8 Conclusions and Future Works

networking resources within and among control and shop floor subnets are no longer as
abundant as in the past and potentially adopt different (even proprietary) protocols.

The proposed platforms aim to create a homogeneous data gathering and processing en-
vironment by using software-defined networks, in-network processing elements, serverless
processing at the edge, and gathering data from machinery using low-latency communi-
cation protocols. The shown technologies can be selected based on the specific industry
needs or in conjunction to maximize the configurability and flexibility of the architecture.
Thanks to a close collaboration with companies in the Emilia-Romagna region of Italy,
we demonstrate that these architectures adhere to the requirements, and can provide
significant benefits and competitiveness to small and medium-sized enterprises.

The conclusions of this dissertation suggest that while the research presented represents
progress towards the goal of Industry 4.0, there is still much work to be done to fully
realize the potential of the fourth industrial revolution. Future studies should aim to
boost the security and dependability of Industry 4.0 architectural proposals, while also
seeking innovative ways to utilize generated data for business expansion and new prospects.
The European Union’s NextGenerationEU digital plan targets to raise the digitalization
level, introduce faster and more trustworthy 5G connections and enhance healthcare,
transportation, and education. The industrial sector must not fall behind and seize this
one-of-a-kind chance by integrating these advancements.

In particular, it is crucial to explore the usage of federated approaches, allowing for the
efficient dispatching of MOM-based messages between different Industry 4.0 domains.
The experimental testbeds should be extended to include wider and more complex topolo-
gies, encompassing globally distributed firms and allowing for dynamic deployment and
adoption of new industrial machines and control room components, as well as supporting
federation among different manufacturing plants.

Although 4.0 may seem like an arrival point, it is one of the starting and integration
points towards Industry 5.0. The latter focuses on the integration of human-centered,
resilience, self-management, and ethical values with industrial technologies, allowing
advanced scenarios and paving the way to an ecosystem of interconnected, sustainable,
and green services. Overall, this thesis highlights the potential of Industry 4.0 to transform
the manufacturing industry, anticipating the upcoming Industry 5.0, and emphasizing

the importance of continued research and development in this field.

122

ACRONYMS

3D
5G
aaS
ACID
AGW
Al
AM
AMQP
API
AR
AWS
CAD
CLI
CRM
DT
EDIH
FaaS
FIFO
HMI
HPC
HTTP
14.0
15.0
TaaS
ICS
ICT

Three Dimensional

5% Generation

as a Service

Atomicity, Consistency, Isolation, and Durability
Application Gateway

Artificial Intelligence

Additive Manufacturing

Advanced Message Queuing Protocol
Application Programming Interface
Augmented Reality

Amazon Web Services
Computer-Aided Design

Command Line Interface

Customer Relationship Management
Digital Twin

European Digital Innovation Hub
Function as a Service
First-in-first-out

Human-Machine Interface

High Performance Computing
Hypertext Transfer Protocol
Industry 4.0

Industry 5.0

Infrastructure as a Service

Industrial Control System

Information and Communication Technologies

123

Acronyms

124

[IoT
INP
IoT

1P

IT
JSON
LAN
M2M
MES
MMC
MOM
MQTT
OPC
ORB
(ON

oT
PaaS
PLC
PPP
QoS
R&D
RAMI 4.0
REST
RPC
SaaS
SCADA
SCARF
SDN
SIRDAM4.0

SLA
SME
SOA
SOAP

Industrial Internet of Things
In-Network Processing

Internet of Things

Internet Protocol address
Information Technology

JavaScript Object Notation

Local Area Network

Machine to Machine
Manufacturing Execution System
Machine Manufacturer Company
Message-Oriented Middleware
Message Queue Telemetry Transport
Open Platform Communications
Object Request Broker

Operative System

Operational Technology

Platform as a Service

Programmable logic controller
Public-Private Partnership

Quality of Service

Research and Development
Reference Architectural Model Industrie 4.0
Representational state transfer
Remote Procedure Call

Software as a Service

Supervisory Control And Data Acquisition
SCADA Reader and Forwarder
Software-Defined Networking
Support Infrastructure for Reliable Data Acquisition and Man-
agement in Industry 4.0

Service Level Agreement

Small and Medium-sized Enterprise
Service-oriented Architecture

Simple Object Access Protocol

SoC
SSH
TCP
TSN
UART
UDP
VLAN
VM
VPN
Ww2

System on a Chip

Secure Shell

Transmission Control Protocol
Time-Sensitive Networking

Universal Asynchronous Receiver-Transmitter
User Datagram Protocol

Virtual Local Area Network

Virtual Machine

Virtual Private Network

Second World War

Acronyms

125

BIBLIOGRAPHY

1. L Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. “Network Slicing and
Softwarization: A Survey on Principles, Enabling Technologies, and Solutions”.
IEEE Commaunications Surveys Tutorials 20:3, 2018, pp. 2429-2453. DOI: 10.
1109/COMST.2018.2815638.

2. Amazon Web Services Inc. Fully managed message quening for microservices. Last
visited in Jan. 2023. URL: https://aws.amazon.com/sqs/.

3. A. Arsanjani. “Service-oriented modeling and architecture”. IBM developer works
1, 2004, p- 15.

4. astrofrog - GitHub. Record the CPU and Memory Activity of a Process. Last visited
in Jan. 2023. URL: https://github.com/astrofrog/psrecord.

S. P.Bellavista, F. Bosi, A. Corradi, L. Foschini, S. Monti, L. Patera, L. Poli, D. Scotece,
and M. Solimando. “Design Guidelines for Big Data Gathering in Industry 4.0
Environments”. In: 2019 IEEE 20th International Symposium on "A World of
Wireless, Mobile and Multimedia Networks” (WoWMoM). 2019, pp. 1-6. DOT: 10.
1109/WoWMoM.2019.8793033.

6. P.Bellavista, A. Dolci, and C. Giannelli. “MANET-oriented SDN: Motivations,
Challenges, and a Solution Prototype”. In: 2018 IEEE 19th International Sympo-
sium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).
2018, pp. 14-22. DOTI: 10.1109/WoWMoM.2018.8449805.

7. D. Bellavista, M. Fogli, L. Foschini, C. Giannelli, L. Patera, and C. Stefanelli. “A
Framework for QoS-Enabled Semantic Routing in Industrial Networks: Over-
all Architecture and Primary Protocols”. In: 2022 IEEE Future Networks World
Forum. 2022, pp. 1-6.

8. D. Bellavista, M. Fogli, L. Foschini, C. Giannelli, L. Patera, and C. Stefanelli. “QoS-
Enabled Semantic Routing for Industry 4.0 based on SDN and MOM Integration”.
In: 2021 IEEE 22nd International Conference on High Performance Switching and
Routing (HPSR). 2021, pp. 1-6. DOI: 10.1109/HPSR52026.2021.9481869.

9. T.A.BishopandR. K. Karne. “A Survey of Middleware.” In: CATA. 2003, pp. 254
258.

127

http://dx.doi.org/10.1109/COMST.2018.2815638
http://dx.doi.org/10.1109/COMST.2018.2815638
https://aws.amazon.com/sqs/
https://github.com/astrofrog/psrecord
http://dx.doi.org/10.1109/WoWMoM.2019.8793033
http://dx.doi.org/10.1109/WoWMoM.2019.8793033
http://dx.doi.org/10.1109/WoWMoM.2018.8449805
http://dx.doi.org/10.1109/HPSR52026.2021.9481869

Bibliography

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

128

F. Bosi, A. Corradi, G. Di Modica, L. Foschini, R. Montanari, L. Patera, and M.
Solimando. “Enabling Smart Manufacturing by Empowering Data Integration
with Industrial IoT Support”. In: 2020 International Conference on Technology and
Entrepreneurship (ICTE). 2020, pp. 1-8. DOI: 16.1109/ICTE47868.2020.9215538.

F. Bosi, A. Corradi, L. Foschini, S. Monti, L. Patera, L. Poli, and M. Solimando.
“Cloud-enabled Smart Data Collection in Shop Floor Environments for Indus-
try 4.0”. In: 2019 15th IEEE International Workshop on Factory Communication
Systems (WFCS). 2019, pp. 1-8. DOI: 10.1109/WFCS.2019.8757952.

D. Brougham and J. Haar. “Smart Technology, Artificial Intelligence, Robotics, and
Algorithms (STAR A): Employees’ perceptions of our future workplace”. Journal
of Management @Orgam‘zatz'on 24:2,2018, pp. 239-257.DOI: 10.1017/jmo.2016.
55.

A. Bujari, A. Calvio, L. Foschini, A. Sabbioni, and A. Corradi. “IPPODAMO: A
Digital Twin Support for Smart Cities Facility Management”. In: Proceedings of the
Conference on Information Technology for Social Good. GoodIT *21. Association
for Computing Machinery, Roma, Italy, 2021, pp. 49-54. 1sBN: 9781450384780.

A. Bujari, A. Corradi, L. Foschini, L. Patera, and A. Sabbioni. “Enhancing the
Performance of Industry 4.0 Scenarios via Serverless Processing at the Edge”. In:
1CC 2021 - IEEE International Conference on Communications. 2021, pp. 1-6.
DOI: 10.1109/ICC42927.2021.9500286.

H. Canas, J. Mula, M. Diaz-Madrofero, and F. Campuzano-Bolarin. “Imple-
menting Industry 4.0 principles”. Computers € Industrial Engineering 158, 2021,
p-107379. 1ssN: 0360-8352. DOI: https://doi.org/10.1016/j.cie.2021.107379.
URL: https://www.sciencedirect.com/science/article/pii/S0360835221002837.

S. Cass. “Chip Hall of Fame: Intel 4004 Microprocessor”. IEEE Spectrum, 2018.

N. M. K. Chowdhury and R. Boutaba. “A survey of network virtualization”. Com-
puz‘erNetwor/es 54:5, 2010, pp. 862—-876. 1sSN: 1389-1286. DOTI: https://doi.org/
10.1016/j.comnet.2009.10.017. URL: https://www.sciencedirect.com/science/
article/pii/S1389128609003387.

Cloud Foundry. Open Source Cloud Native Application Delivery. Last visited in
Jan. 2023. URL: https://www.cloudfoundry.org/.

Cloudera. Architectural Patterns for Near Real-Time Data Processing with Apache
Hddoo]). Lastvisited in Jan. 2023. URL: https://blog.cloudera.com/architectural-

patterns-for-near-real-time-data-processing-with-apache-hadoop/.

Confluent Inc. Authorization using ACLs. Last visited in Jan. 2023. URL: https:
//docs.confluent.io/platform/current/kafka/authorization.html.

http://dx.doi.org/10.1109/ICTE47868.2020.9215538
http://dx.doi.org/10.1109/WFCS.2019.8757952
http://dx.doi.org/10.1017/jmo.2016.55
http://dx.doi.org/10.1017/jmo.2016.55
http://dx.doi.org/10.1109/ICC42927.2021.9500286
http://dx.doi.org/https://doi.org/10.1016/j.cie.2021.107379
https://www.sciencedirect.com/science/article/pii/S0360835221002837
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2009.10.017
https://www.sciencedirect.com/science/article/pii/S1389128609003387
https://www.sciencedirect.com/science/article/pii/S1389128609003387
https://www.cloudfoundry.org/
https://blog.cloudera.com/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
https://blog.cloudera.com/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
https://docs.confluent.io/platform/current/kafka/authorization.html
https://docs.confluent.io/platform/current/kafka/authorization.html

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

3s.

Bibliography

Confluent Inc. Kafka Consumer - Offset Management. Last visited in Jan. 2023.
URL: https://docs.confluent.io/platform/current/clients/consumer.html#

offset-management.

Control Solutions Minnesota. Modbus 101 - Introduction to Modbus. Last visited
in]an. 2023. URL: https://www.csimn. com/CSI_pages/Modbus101.html.

Convergence Consulting Stl. The Packaging Valley. Last visited in Jan. 2023. URL:
https://thepackagingvalley.com/.

A. Corradi, G. Di Modica, L. Foschini, L. Patera, and M. Solimando. “SIRDAMA4.0:
A Support Infrastructure for Reliable Data Acquisition and Management in Indus-
try 4.0”. IEEE Transactions on Emerging Topics in Computing 10:3,2022, pp. 1605-
1620. DOI: 16.1109/TETC.2621.3111974.

E. Curry. “Message-oriented middleware”. Middleware for communications, 2004,
pp- 1-28.

P. M. Deane. The first industrial revolution. Cambridge University Press, 1979.

Docker Inc. Docker - Develop faster. Run anywhere. Last visited in Jan. 2023. URL:
https://www.docker.com/.

Docker Inc. Swarm mode overview. Last visited in Jan. 2023. URL: https://docs.

docker.com/engine/swarm/.

P. Drahos, E. Kudera, O. Haffner, and I. Klimo. “Trends in industrial communi-
cation and OPC UA”. In: 2018 Cybernetics € Informatics (K€I). IEEE. 2018,
pp- 1-5.

P. Dutta and P. Dutta. “Comparative study of cloud services offered by Amazon,
Microsoft & Google”. International Journal of Trend in Scientific Research and
Development 3:3, 2019, pp. 981-985.

Eclipse. Mosquitto, an open source MQTT broker. Last visited in Jan. 2023. URL:
https://mosquitto.org/.

Elasticsearch B.V. What is the ELK Stack? Last visited in Jan. 2023. URL: https:

//www.elastic.co/what-1is/elk-stack.

EPA - United States Environmental Protection Agency. Global Greenhouse Gas
Emissions Data. Last visited in Jan. 2023. 2019. URL: https : / /www . epa . gov /

ghgemissions/global-greenhouse-gas—-emissions-data.

G. Erboz. “How to define industry 4.0: main pillars of industry 4.0”. Managerial
trends in the development of enterprises in globalization era 761, 2017, p. 767.

EtherCAT Technology Group. EtherCAT - the Ethernet Fieldbus. Last visited in
Jan. 2023. URL: https://www.ethercat.org/en/technology.html.

129

https://docs.confluent.io/platform/current/clients/consumer.html#offset-management
https://docs.confluent.io/platform/current/clients/consumer.html#offset-management
https://www.csimn.com/CSI_pages/Modbus101.html
https://thepackagingvalley.com/
http://dx.doi.org/10.1109/TETC.2021.3111974
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://mosquitto.org/
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.ethercat.org/en/technology.html

Bibliography

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

130

European Union. ANNEX - European Digital Innovation Hubs for 2021 - 2023,
Brussels, 10.11.2021 C(2021) 7911 final.

European Union. Futurium, Your voices, your fumre. Last visited in Jan. 2023. URL:

https://futurium.ec.europa.eu/en.

European Union. Implementing the Digitising European Industry actions. Last
visited in]an. 2023. URL: https://ec.europa.eu/digital-single-market/en/

digitising-european-industry-digital-day.

M. Fera, A. Greco, M. Caterino, S. Gerbino, F. Caputo, R. Macchiaroli, and E.
D’Amato. “Towards Digital Twin Implementation for Assessing Production Line
Performance and Balancing”. Sensors 20:1, 2020. 1sSN: 1424-8220. DOI: 10.3390/
$20010097. URL: https://www.mdpi.com/1424-8220/206/1/97.

P. Fraga-Lamas, J. Varela-Barbeito, and T. M. Ferndndez-Caramés. “Next Gen-
eration Auto-Identification and Traceability Technologies for Industry 5.0: A
Methodology and Practical Use Case for the Shipbuilding Industry”. JEEE Access
9, 2021, pp. 140700-140730. DOI: 10.1109/ACCESS.2021.3119775.

C. Freeman and F. Lougi. As time goes by: from the industrial revolutions to the
information revolution. Oxford University Press, 2001.

C.B. Frey and M. A. Osborne. “The future of employment: How susceptible are
jobs to computerisation?” Technological Forecasting and Social Change 114, 2017,
Pp- 254-280. 1ssN: 0040-1625. por: https://doi.org/10.1016/7j . techfore.
2016 . 08 .019. URL: https:/ /www. sciencedirect.com/science/article/pii/
S0040162516302244.

A. Garbugli and L. Patera. Source code - PoC IT/OT Convergence Middleware. Last
visited in Jan. 2023. URL: https://github.com/MMw-Unibo/poc-1itot-convergence-

mw.git.

Gartner Inc. When IT and Operational Technology Converge. Last visited in Jan.
2023. URL: https : / /www . gartner . com / smarterwithgartner / when - it - and -

operational-technology-converge/.

S. Ghosh and S. Sampalli. “A Survey of Security in SCADA Networks: Current
Issues and Future Challenges”. JEEE Access 7, 2019, pp. 135812-135831.

M. Haseeb, H.I. Hussain, B. Slusarczyk, and K. Jermsittiparsert. “Industry 4.0: A
Solution towards Technology Challenges of Sustainable Business Performance”.
Social Sciences 8:5, 2019. 1ssN: 2076-0760. DOI: 10 . 3390 / socsci8050154. URL:
https://www.mdpi.com/2076-0760/8/5/154.

https://futurium.ec.europa.eu/en
https://ec.europa.eu/digital-single-market/en/digitising-european-industry-digital-day
https://ec.europa.eu/digital-single-market/en/digitising-european-industry-digital-day
http://dx.doi.org/10.3390/s20010097
http://dx.doi.org/10.3390/s20010097
https://www.mdpi.com/1424-8220/20/1/97
http://dx.doi.org/10.1109/ACCESS.2021.3119775
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2016.08.019
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2016.08.019
https://www.sciencedirect.com/science/article/pii/S0040162516302244
https://www.sciencedirect.com/science/article/pii/S0040162516302244
https://github.com/MMw-Unibo/poc-itot-convergence-mw.git
https://github.com/MMw-Unibo/poc-itot-convergence-mw.git
https://www.gartner.com/smarterwithgartner/when-it-and-operational-technology-converge/
https://www.gartner.com/smarterwithgartner/when-it-and-operational-technology-converge/
http://dx.doi.org/10.3390/socsci8050154
https://www.mdpi.com/2076-0760/8/5/154

47.

48.

49.

50.

S1.

52.

53.

S4.

55.

56.

57.

58.

59.

Bibliography

G. Hesse, C. Matthies, and M. Uflacker. “How Fast Can We Insert? An Empirical
Performance Evaluation of Apache Kafka”. In: 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS). 2020, pp. 641-648.
DOI: 160.1109/ICPADS51040.2020.00089.

IBM Inc. IBM MQ. Last visited in Jan. 2023. URL: https : / / www . ibm . com /
products/mq.

Iron.io. Open Source Serverless Computing. Last visited in Jan. 2023. URL: https:

//open.iron.io/.

A.ISA. “ISA-95.00. 03-2005 Enterprise Control System Integration Part 3: Activ-
ity Models of Manufacturing Operations Management, ISA-The Instrumentation”.
System, and Automation Society, 2005.

E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V.
Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al. “Cloud programming simpli-
fied: A berkeley view on serverless computing”. arXiv preprint arXiv:1902.03383,
2019.

Knative Authors. Serverless Containers in Kubernetes environments. Last visited in
]an. 2023. URL: https://knative.dev/docs/.

Kubernetes. Production-Grade Container Orchestration. Last visited in Jan. 2023.
URL: https://kubernetes.qio/.

Y. Liao, F. Deschamps, E. d. F. R. Loures, and L. F. P. Ramos. “Past, present and
tuture of Industry 4.0-a systematic literature review and research agenda proposal”.
International journal of production research 55:12, 2017, pp. 3609-3629.

MarketsandMarkets. Artificial Intelligence Market - Report Code: TC 7894. Last
visited in Jan. 2023. 2022. URL: https: //www.marketsandmarkets . com/Market -
Reports/artificial-intelligence-market-74851580.html.

MarketsandMarkets. Big Data Market - Report Code: TC 1521. Last visited in Jan.
2023. 2022. URL: https: //www.marketsandmarkets . com/Market-Reports/ big-
data-market-1068.html.

MarketsandMarkets. Industrial Robotics Market - Report Code: SE 2733. Last vis-
ited in]an. 2023.2022. URL: https://www.marketsandmarkets.com/PressReleases/

industrial-robotics.asp.

MarketsandMarkets. loT Technology Market - Report Code: SE 2509. Last visited in
Jan. 2023. 2021. URL: https://www.marketsandmarkets.com/Market-Reports/jot-
application-technology-market-258239167.html.

A. Massaro. “Information Technology Infrastructures Supporting Industry 5.0
Facilities”. In: Electronics in Advanced Research Industries: Industry 4.0 to Industry
5.0 Advances. 2022, pp. 51-101. DOI: 16.1002/9781119716907 . ch2.

131

http://dx.doi.org/10.1109/ICPADS51040.2020.00089
https://www.ibm.com/products/mq
https://www.ibm.com/products/mq
https://open.iron.io/
https://open.iron.io/
https://knative.dev/docs/
https://kubernetes.io/
https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-market-74851580.html
https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-market-74851580.html
https://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html
https://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html
https://www.marketsandmarkets.com/PressReleases/industrial-robotics.asp
https://www.marketsandmarkets.com/PressReleases/industrial-robotics.asp
https://www.marketsandmarkets.com/Market-Reports/iot-application-technology-market-258239167.html
https://www.marketsandmarkets.com/Market-Reports/iot-application-technology-market-258239167.html
http://dx.doi.org/10.1002/9781119716907.ch2

Bibliography

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

132

Microsoft. [MS-DCOM]: Distributed Component Object Model (DCOM) Re-
mote Protocol. Last visited in]an. 2023. URL: https://learn.microsoft.com/
en - us / openspecs /windows _protocols /ms - dcom/ 4a893f3d - bd29 - 48cd - 943 -
d9777a4415b0.

Microsoft. Azure Service Bus. Last visited in Jan. 2023. URL: https : / / azure .

microsoft.com/en-us/products/service-bus/.

L.I. Minchala, S. Ochoa, E. Velecela, D. F. Astudillo, and J. Gonzalez. “An open
source SCADA system to implement advanced computer integrated manufactur-
ing”. IEEE Latin America Transactions 14:12, 2016, pp. 4657—-4662.

J. Mokyr and R. H. Strotz. “The second industrial revolution, 1870-1914”. Storia
dell’economia Mondiale 21945:1,1998.

D. P. F. Méller, H. Vakilzadian, and R. E. Haas. “From Industry 4.0 towards Indus-
try 5.0”. In: 2022 IEEE International Conference on Electro Information Technology
(eIT). 2022, pp. 61-68. DOI: 16.1169/eIT53891.2022.9813831.

Mordor Intelligence. Cloud enterprise management market - growth, trends, covid-
19 impact, and forecasts (2023 - 2028). Last visited in Jan. 2023. URL: https: //
www . mordorintelligence . com/industry - reports/cloud-enterprise-content-

management-market.

Mordor Intelligence. Cybersecurity market - growth, trends, covid-19 impact, and
fbeCﬂ.fl‘J. Last visited in Jan. 2023. URL: https://www.mordorintelligence.com/

industry-reports/cyber-security-market.

D. C. Mowery. “Plus ca change: Industrial R&D in the “third industrial revolu-
tion””. Industrial and corporate change 18:1, 2009, pp. 1-50.

J. M. Miiller, D. Kiel, and K.-I. Voigt. “What Drives the Implementation of Industry
4.0? The Role of Opportunities and Challenges in the Context of Sustainability”.
Sustainability 10:1, 2018. 1sSN: 2071-1050. DOI: 16.3390/5u10016247. URL: https:
//www.mdpi.com/2071-1050/10/1/247.

N. Naik. “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP”. In: 2017 IEEE international systems engineering symposium
(ISSE).IEEE. 2017, pp. 1-7.

nuclio. Automate the Data Science Pipeline with Serverless Functions. Last visited in
]an. 2023. URL: https://nuclio.qio/.

OASIS. Advanced Message Quening Protocol. Last visited in Jan. 2023. URL: https:
//www.amgp.org/.

OASIS. MQTT: The Standard for IoT Messaging. Last visited in Jan. 2023. URL:
https://mgtt.org/.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0
https://azure.microsoft.com/en-us/products/service-bus/
https://azure.microsoft.com/en-us/products/service-bus/
http://dx.doi.org/10.1109/eIT53891.2022.9813831
https://www.mordorintelligence.com/industry-reports/cloud-enterprise-content-management-market
https://www.mordorintelligence.com/industry-reports/cloud-enterprise-content-management-market
https://www.mordorintelligence.com/industry-reports/cloud-enterprise-content-management-market
https://www.mordorintelligence.com/industry-reports/cyber-security-market
https://www.mordorintelligence.com/industry-reports/cyber-security-market
http://dx.doi.org/10.3390/su10010247
https://www.mdpi.com/2071-1050/10/1/247
https://www.mdpi.com/2071-1050/10/1/247
https://nuclio.io/
https://www.amqp.org/
https://www.amqp.org/
https://mqtt.org/

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Bibliography

OMG - Object Management Group. OMG Data Distribution Service (DDS). Last
visited in]an. 2023. URL: https://www.omg.org/spec/DDS/1.4/PDF.

ONF SDN Evolution. ONF TR-535. Version 1.0. Open Networking Foundation.
2016. URL: https:/ /opennetworking.org/wp-content /uploads /2013 /05/TR-
535%5C_ONF%5C_SDN%5C_Evolution.pdf.

OPC Foundation. OPC Unified Architecture. Last visited in Jan. 2023. URL: https:

//opcfoundation.org/developer-tools/specifications-unified-architecture.

OPC Foundation. Open Platform Communications Classic. Last visited in Jan.
2023. URL: https://opcfoundation.org/about/opc-technologies/opc-classic/.

OPC Foundation. The Industrial Interoperability Standard. Last visited in Jan.
2023. URL: https://opcfoundation.org/.

Open Networking Foundation. OpenFlow Switch Specification. Last visited in Jan.
2023. URL: https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1i.5.1.pdf.

OpenFaa$ Ltd. Serverless Functions, Made Simple. Last visited in Jan. 2023. URL:

https://www.openfaas.com/.

OpenStack. Open Source Cloud Computing Infrastructure. Last visited in Jan. 2023.
URL: https://www.openstack.org/.

OpenStack. OpenStack Components Map - v20221001. [Image]. 2022. URL: https:

//www.openstack.org/openstack-map.

opsengine - GitHub. CPU Usage Limiter for Linux. Last visited in Jan. 2023. URL:
https://github.com/opsengine/cpulimit.

J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J.]J. Ramos-Munoz, J. Lorca, and
J. Folgueira. “Network Slicing for SG with SDN/NFV: Concepts, Architectures,
and Challenges”. IEEE Communications Magazine 55:5, 2017, pp. 80-87. DOLI: 10.
1109/MCOM.2017.1600935.

L. Orlando. 17 Covid non ferma ’bi tech. Nuovo record per Industria 4.0. Last visited
in]an. 2023.2021. URL: https://www.ilsole24ore.com/art/il-covid-non-ferma-

1-hi-tech-nuovo-record-industria-40-AEU2E7o.

L. Patera, A. Garbugli, A. Bujari, D. Scotece, and A. Corradi. “A Layered Mid-
dleware for OT/IT Convergence to Empower Industry 5.0 Applications”. Sensors
22:1,2022. 1sSN: 1424-8220. DOI: 16.3390/522010190. URL: https://www.mdp1 .
com/1424-8220/22/1/196.

Plattform Industrie 4.0. Alignment Report for Reference Architectural Model for
Industrie 4.0. Last visited in Jan. 2023. URL: https: //www.plattform-i40.de/IP/
Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html.

133

https://www.omg.org/spec/DDS/1.4/PDF
https://opennetworking.org/wp-content/uploads/2013/05/TR-535%5C_ONF%5C_SDN%5C_Evolution.pdf
https://opennetworking.org/wp-content/uploads/2013/05/TR-535%5C_ONF%5C_SDN%5C_Evolution.pdf
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/about/opc-technologies/opc-classic/
https://opcfoundation.org/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.openfaas.com/
https://www.openstack.org/
https://www.openstack.org/openstack-map
https://www.openstack.org/openstack-map
https://github.com/opsengine/cpulimit
http://dx.doi.org/10.1109/MCOM.2017.1600935
http://dx.doi.org/10.1109/MCOM.2017.1600935
https://www.ilsole24ore.com/art/il-covid-non-ferma-l-hi-tech-nuovo-record-industria-40-AEU2E7o
https://www.ilsole24ore.com/art/il-covid-non-ferma-l-hi-tech-nuovo-record-industria-40-AEU2E7o
http://dx.doi.org/10.3390/s22010190
https://www.mdpi.com/1424-8220/22/1/190
https://www.mdpi.com/1424-8220/22/1/190
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html

Bibliography

87.

88.
89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

134

Profibus - Profinet. Profibus. Last visited in Jan. 2023. URL: https: //www.profibus.
com/technology/profibus.

RedHat. Ansible. Last visited in Jan. 2023. URL: https://www.ansible.com/.

J. Reeser, T. Jankowski, and G. M. Kemper. “Maintaining HMI and SCADA
Systems Through Computer Virtualization”. IEEE Transactions on Industry Ap-
plications S1:3, 2015, pp. 2558-2564.

C.Roser. Industry 4.0 revolutions. [Image]. 2015. URL: https: //commons.wikimedia.
org/wiki/File:Industry_4.0.png

Z. Sarfraz, A. Sarfraz, H. M. Iftikar, and R. Akhund. “Is COVID-19 pushing us to
the fifth industrial revolution (society 5.0)?” Pakistan journal of medical sciences
37:2,2021, p. S9L.

S.Saxenaand S. Gupta. Practical real-time data processing and analytics: distributed
computing and event proc event processing using Apache Spark, Flink, Storm, and
Kafka. Packt Publishing, 2017.

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. “Industrial Internet
of Things: Challenges, Opportunities, and Directions”. IEEE Transactions on
Industrial Informatics 14:11, 2018, pp. 4724-4734. DOI: 10 . 1109 / TII . 2018 .
2852491.

C. Spanring and A. Mayrhofer. 4 Uniform Resource Identifier for Geographic
Locations ("geo’ URI). RFC 5870. 2010. DOI: 10 . 17487 / RFC5870. URL: https :
//www.rfc-editor.org/info/rfcs870.

K. Stoufter and J. Falco. Guide to supervisory control and data acquisition (SCADA)
and industrial control systems security. 2006.

M. Sverko, T. G. Grbac, and M. Mikuc. “SCADA Systems With Focus on Con-
tinuous Manufacturing and Steel Industry: A Survey on Architectures, Standards,
Challenges and Industry 5.0”. JEEE Access 10, 2022, pp. 109395-109430. DOTI: 10.
1109/ACCESS.2022.3211288.

N. Tapoglou, J. Mehnen, and . Butans. “Energy Efficient Machining Through Evo-
lutionary Real-Time Optimization of Cutting Conditions on CNC-Milling Con-
trollers”. In: Experiments and Simulations in Advanced Manufacturing. Springer,
2021, pp. 1-18.

The Apache Software Foundation. Apache Kafka. Last visited in Jan. 2023. URL:
https://kafka.apache.org/.

The Apache Software Foundation. Apache Mesos. Last visited in Jan. 2023. URL:
https://mesos.apache.org/.

The Apache Software Foundation. OpenLambda. Last visited in Jan. 2023. URL:
https://github.com/open-lambda/open-lambda

https://www.profibus.com/technology/profibus
https://www.profibus.com/technology/profibus
https://www.ansible.com/
https://commons.wikimedia.org/wiki/File:Industry_4.0.png
https://commons.wikimedia.org/wiki/File:Industry_4.0.png
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.17487/RFC5870
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc5870
http://dx.doi.org/10.1109/ACCESS.2022.3211288
http://dx.doi.org/10.1109/ACCESS.2022.3211288
https://kafka.apache.org/
https://mesos.apache.org/
https://github.com/open-lambda/open-lambda

101.

102.

103.

104.

10S.

106.

Bibliography

The Apache Software Foundation. Open Whisk - Open Source Serverless Cloud
Platform. Last visited in]an. 2023. URL: https://openwhisk.apache.org/.

The P4 Language Consortium. P4 Language Specification. Last visited in Jan. 2023.
URL: https://p4.org/p4-spec/docs/P4-16-v1i.2.1.html.

S. Vinoski. “CORBA: Integrating diverse applications within distributed heteroge-
neous environments”. I[EEE Communications magazine 35:2,1997, pp. 46-55.

VMware, Inc. RabbitMQ. Last visited in Jan. 2023. URL: https://www. rabbitmg.

com/.

M. Wollschlaeger, T. Sauter, and J. Jasperneite. “The Future of Industrial Commu-
nication: Automation Networks in the Era of the Internet of Things and Industry

4.0”. IEEE Industrial Electronics Magazine 11:1, 2017, pp. 17-27. DOI: 10.1109/
MIE.2017.2649104.

K. Zhou, T. Liu, and L. Zhou. “Industry 4.0: Towards future industrial opportu-
nities and challenges”. In: 2015 12th International conference on fuzzy systems and
knowledge discovery (FSKD). IEEE. 2015, pp. 2147-2152.

135

https://openwhisk.apache.org/
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/
http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1109/MIE.2017.2649104

	Introduction
	Industry 4.0
	The four industrial revolutions
	Sustainability
	Fourth revolution and COVID-19 Pandemic

	Technology pillars
	European servitization program
	Market share
	Toward industry 5.0

	Cloud Technologies
	Cloud continuum
	Infrastructure-aaS
	Platform-aaS
	Software-aaS
	Function-aaS

	Middleware Software
	Message-Oriented Middleware

	Containerization

	Objectives
	Related Works
	Reference Architecture Model Industrie 4.0
	Supervisory Control and Data Acquisition
	Open Platform Communications
	Modbus data communication protocol
	Profibus data communication protocol

	Architectures for I4.0 data gathering and management
	Reference Scenario
	Cloud-enabled Smart Data Collection
	SIRDAM4.0 Architecture
	Platform Implementation
	Experiments

	QoS-Enabled Semantic Routing
	Architectural draft
	Experiments
	Architecture generalization and protocols

	Low Latency m2m Communication Support
	Architecture
	Experiments

	Serverless Processing at the Edge
	Architecture
	Implementation
	Experiments

	Key Findings
	Conclusions and Future Works
	Acronyms
	Bibliography

