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Glossary 
 

Term Definition 

AUTOSOME/AUTOSOMAL 
Any numbered chromosome – sex 

chromosomes excluded. 

BAM FILE 
Binary compressed file containing tab-

delimited sequence alignment data. 

BREAKPOINTS 
Junctions of structurally variable genomic 

segments. 

CANONICAL TRANSCRIPT 

Most conserved transcript, highly expressed 

and with the longest coding sequence, chosen 

to represent a gene. 

GC CONTENT 

Percentage of G and C nucleotides in a given 

region or the whole  genome. While AT pairs 

are bound by 2 hydrogen bonds, GC pairs have 

3 bonds and are more thermostable. Thus, 

GC-rich regions are difficult to anneal and 

amplify during WES enrichment. 

COVERAGE/MEAN COVERAGE 

Number of unique reads aligned to a 

reference nucleotide. Mean Coverage is given 

by the average number of reads aligned to the 

genome or targeted regions. 

GOLD STANDARD/TRUTH SET (genetics) 

Set of curated, validated and high-quality SVs 

called in an individual. It’s assumed that all 

calls reported in this set are true variations. 

MAPPABILITY 

Measure of a region complexity. High 

complexity sequences map in unique regions; 

low complexity sequences can map in other 

genomic regions. 

NEXT GENERATION SEQUENCING 

High throughput massively parallel sequencing 

technology. Used to ascertain the order of 

nucleotides in whole genomes or specific 

regions. Apply to both DNA and RNA. 

RESOLUTION (SVs) 

Minimum SV size that can be reliably detected 

by the technology used. The higher the 

resolution, the better the capability of also 

defining the real breakpoints. 

SEGMENTAL DUPLICATIONS 

Long DNA sequences (> 1kb) that are repeated 

in the genome and share >90% sequence 

identity. 

SOFT CLIPPING 
Part of the read (start or end) that doesn’t 

perfectly match the reference genome. These 



 

 

reads are usually flagged and ignored if not 

used for SV discovery workflows. 

SV DISCOVERY APPROACH: ASSEMBLY (AS) 

SV are detected with de novo alignment of the 

contigs to the reference genome. It also uses 

unmapped sequencing reads. 

SV DISCOVERY APPROACH: READ DEPTH (RD) 
The divergence of read depth distribution 

across the genome is used to detect CNVs. 

SV DISCOVERY APPROACH: READ PAIR (RP) 

Paired-end reads having inconsistent span and 

orientation are collected and used to derive 

information about SVs. 

SV DISCOVERY APPROACH: SPLIT READS (SR) 
Single- or paired-end soft-clipped reads 

spanning the breakpoints of an SV are used. 
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Introduction 
 

Next generation sequencing and the challenge to identify 

Copy Number Variants in the clinical context 

Whole Exome Sequencing as a first-tier genetic test: advantages and 

limitations 

All along the last decade, Next-Generation Sequencing (NGS) technologies has 

enormously increased our capability to diagnose genetic diseases in clinical 

laboratories. The key of this success largely resides in Whole-Exome Sequencing (WES), 

and on its focus on mutations directly altering protein-coding regions (Chong et al., 

2015). WES is a type of targeted short-read NGS that enriches only the protein-coding 

(1-2%) regions of the genome (Balachandran et al., 2020). As approximatively 85% of 

Mendelian disorders are explained by variants in protein-coding regions, WES is a cost-

effective and highly parallelizable technique widely used for detection of small variants 

(Gordeeva et al., 2021; Gilissen et al., 2012). Moreover, over the last 10 years, a set of 

alignment, variant-calling and prioritization best practice workflows for Single-

Nucleotide Variants (SNVs) and short insertion/deletions (InDels) has been established, 

making the process reproducible worldwide while also giving the maximum obtainable 

sensitivity and validation rate (>99%) (Gilissen et al., 2012; Koboldt et al., 2020). The 

constantly declining costs, accompanied by the automatized and streamlined clinical 

interpretation of most coding variants enabled by modern bioinformatics pipelines 

(Lassman et al., 2020) has made WES the strategy of choice in the hands of geneticists 

facing a suspected genetic disease. WES is thus rapidly becoming a first-tier test for 

routine care in many countries and for different diseases (Arts et al., 2019; Klau et al., 

2021; Mergnac et al., 2021).  

However, WES has also limitations that prevent its use to accurately detect the entire 

range of clinical variant types. While indeed WES is best at identifying small variants, in 

particular coding SNVs, other clinically relevant classes of variations can be refractory 

to be captured by WES. One of the most important examples regards the Structural 
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Variants (SVs), a set of structural and quantitative chromosomal rearrangements 

widely studied for their increasingly recognized role in human evolution, adaptation, 

phenotypic variation and disease (Hastings et al., 2009, Le Scouarnec et al., 2012). SVs 

include classes of variants that differ both in size and type. By size they range from a 

minimal size of 50 bp to entire chromosomes (Ho et al., 2020). By type, SVs can be sub-

grouped in two main classes: balanced and imbalanced rearrangements. Balanced 

rearrangements include SVs that do not result in a loss or gain of genetical material, 

such as inversions, reciprocal translocations and copy-number neutral insertions; 

whereas unbalanced rearrangements, also known as copy number variations (CNVs), 

includes deletions, duplications and insertions that alter the diploid status of the DNA 

by changing the copy number of chromosomes or chromosomal regions (Ho et al., 

2020, Spielmann et al., 2018, Zarrei et al., 2015).   

 

Figure 1 Example of several balanced and unbalanced SV events: the reference 

panel show 3 genes (boxes 1, 2 and 3) with the correct copy number and position; 

when this is not true, an SV occurs. 

Thus far, there are several possible molecular mechanisms identified that link these 

rearrangements to clinical phenotypes, of which the most common are ‘gene dosage’ 

(Lupski et al., 1992) and ‘position effects’ (Biederman and Bowen, 1976). While the 

latter changes gene expression by moving a gene from its normal non-coding cis-
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regulatory environment (Spielmann et al., 2018), gene dosage is due to the change in 

the number of copies of a gene or in its regulatory elements (Stankiewicz et al., 2010). 

More than 17% of protein-coding genes have >90% probability of being intolerant to 

deletions or duplications changing the wild-type number of copies (Lek et al., 2016; 

Stankiewicz et al., 2010). In general, genomic rearrangements are at least 1000 to 

10.000 folds more frequent than single nucleotide variants – with mutation rates 

ranging between 10-4 and 10-5 (Lupski, 2007) and genomic disorders arising with similar 

frequencies (Stankiewicz et al., 2010).  

In spite of their importance as source of clinical variations, most types of SVs are not 

detectable by WES analysis, as most of these balanced events have breakpoints 

outside the exonic sequences. Nonetheless, as better explained below, WES can be 

exploited to detect at least CNVs, the most frequent SV type with renowned clinical 

consequences. Although possible, however, CNV identification from WES data is not 

exempt from problems and pitfalls that prevent its implementation as part of the 

clinical routine (Marchuk et al., 2018). The necessity of accurate CNV detection 

methods in genetic testing is proven by considering the prevalence of intragenic CNVs 

in different disease groups, such as neurological disorders (  3̴5%), cancer syndromes ( 

 ̴8.3%) and pediatric and rare disorders (  ̴7.7%) encompassing single exons, several 

exons or, mostly with duplications, entire genes (Truty et al., 2019; Fig. 2). 

 

Figure 2 Pathogenic CNVs from a large cohort (from Truty et al., 2019). a. Percentage of positive cases with 

pathogenic CNVs in different disease groups, showing the highest percentage within the Neurology group. b.  Bar 

plots showing the length distribution of deletions and duplications, from single/several exons (mostly deletions) to 

entire genes or regions of several Mb (higher for duplications). 
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Considering these percentages of prevalence, some of the negative cases in WES could 

be explained by a deletion or duplication of a dosage-sensitive gene. 

Although sequencing whole genomes in place of WES is suggested as a more 

comprehensive way to detect CNVs – as it is able to supplant WES, microarray and 

karyotyping - there are still several obstacles that make this a difficult transfer, the 

most important being the requirement of a powerful computational infrastructure and 

the overwhelming amount of results produced, that have to be interpreted and 

reported (Marshall et al., 2020; Stranneheim et al., 2021). Therefore, methods that 

maximize the use of WES data beyond small variants to CNVs are important in the 

clinics in order to make WES a comprehensive and efficient first-tier genetic test. 

Genome-wide methods for the identification of SVs  

The prevalence of SVs in the human genome has been calculated, over the past 

decades, based on the detection capability and resolution of the available 

technologies. By improving technologies, the estimated number and size of SVs has 

been progressively and hugely changed. (Ho et al., 2020). Starting from the early 

1970s, the invention of two cytogenetic methods, chromosome banding and 

karyotyping, made possible the detection of numerical chromosomal aberrations and 

very large (several Mb) microscopic SVs (Le Scouarnec et al., 2012). Even if these 

techniques have a very low resolution, they are still widely used as first-tier tests in 

clinical diagnostics (Speicher et al., 2005). The advent of new molecular cytogenetic 

approaches, collectively referred as FISH-based techniques, made possible the 

detection of sub-microscopic SVs, increasing the detection’s resolution. New 

alternative targeted molecular approaches, real-time qPCR and MLPA, simplified the 

detection of large-scale CNVs, even if the real improvement in SVs detection came with 

the introduction of array-based techniques. The main advantage of these techniques 

are the specificity, sensitivity and throughput in comparison with the previous 

methods, generating data for thousands of genomic regions in a single experiment. 

However, even if the resolution is high, array-based techniques mostly detect 

unbalanced rearrangements. With the advent of NGS in 2005, millions of DNA 

molecules can be sequenced in parallel, generating sequences of base pairs called 
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reads. Based on read length, NGS is divided in short-read (30-400bp) and long-read 

NGS (few kilobases). In both approaches, sequence reads are aligned using 

bioinformatics tools to the reference genome and all differences between the 

reference and the aligned sequences, ranging from SNVs to SVs, can be detected (Le 

Scouarnec et al., 2012). Considering all the techniques developed in the last 50 years, 

NGS technology is superior in terms of sensitivity (it can theoretically detect all types 

and sizes of rearrangements) and resolution (to the base pair level) reaching with long-

read NGS 2.000-8.000 SVs detected per human genome (Ho et al., 2020; Le Scouarnec 

et al., 2012; Sudmant et al., 2015; Hehir-Kwa et al., 2016). The base-pair resolution 

implies that the breakpoints of a rearrangement can be easily mapped, making also 

possible the characterization of complex rearrangements with multiple breakpoints (Le 

Scouarnec et al., 2012).   

 
Figure 3 Methods for SV identification (adapted from Balachandran et al., 2020 and Pös et al., 2021). CNV: copy 

number variation, TRA: translocation, CGR: complex genomic rearrangement, LOH: loss of heterozygosity, CCS: 

circular consensus sequencing, CLR: continuous long read. 

There are four approaches that can be used, both independently and combined, to 

detect SVs using short- and long-read NGS: read pairs (RP), read depth (RD), split read 

(SR) and assembly (AS) (Kosugi et al., 2019).  
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Figure 4 Example of how deletions and tandem duplications are discovered using each NGS approach. 

RP and RD collect evidence of an SV based on paired-end reads spanning the entire SV 

and/or the breakpoints. Since, as already mentioned,  exome sequencing targets 1% of 

non-contiguous genomic regions, the majority of breakpoints will not be part of the 

experiment; moreover, most target regions cover on average 100-300 bp, making the 

possibility of spanning an SV more challenging (Fromer et al., 2012, Tan et al., 2014). 

Even if theoretically these approaches could be used with WES, they would miss most 

SVs. As for the AS approach, generating reference genomes de novo requires reads to 

be contiguous to obtain a continuous information, automatically discarding WES as 

potential data input (Zhang et al., 2019). RD, instead, relies on the number of reads 

mapped to a target region, without making assumptions on read-pairs distance or soft-

clipping, making this the only successfully consolidated approach for CNV calling using 

WES (Tan et al., 2014).   

 

CNV detection using Whole-Exome Sequencing 

Read Depth approach and its limitations 

As already mentioned, WES can be used to detect CNVs exploiting the Read Depth 

approach. This approach is usually divided in 4 main steps; firstly, all reads mapping to 

bins or windows of fixed sizes are counted and then the resulting read counts (RC) are 

normalized by taking into account the local GC content and mappability. The 

normalized RC signal is then split into segments having the same number of copies of 

DNA using algorithms like the circular binary segmentation (CBS) or those based on 

Hidden Markov models (HMM). Finally, for each segment the actual number of copies 
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is estimated by considering that the number of reads mapping to a region should be 

proportional to the number of times the region is present in the DNA (Tattini et al., 

2015).  

However, the accurate detection of CNVs using WES is hampered by intrinsic biases of 

the technique that cannot be completely removed within the normalization step of the 

RD approach (Gordeeva et al., 2021); some of these biases will be discussed in the 

following paragraph. While WES offers greater coverage than WGS, its distribution 

cannot be assumed to be gaussian as it varies significantly across the enriched regions. 

This variability is mainly caused by an unbalanced capture efficiency across the 

genomic regions, due to several factors that are intrinsic to the nature of the enriched 

regions (such as an extreme GC-content, high homology with other regions or poor 

mappability) or due to technical errors in the library preparation, capture and 

sequencing. Specifically, regions with a very high (>70%) or very low (<30%) GC-

content are not easily hybridized to capture probes and poorly amplified using PCR 

during library preparation, producing a lower number of targeted sequences than 

expected (Roca et al., 2019). Highly homologous regions are characterized by similar or 

identical sequences that can be contiguous (repetitive regions) or interspersed in the 

genome and results in sequenced reads difficult to align correctly to the reference. 

Regions with poor mappability are prone to be aligned incorrectly to the reference 

genome, and this could be caused by either the presence of repetitive regions, 

mutations or sequencing errors (Roca et al., 2019; Gordeeva et al., 2021). Finally, 

another source of variability can be pinned to technical bias arising during sample 

processing and sequencing. Since these sources of error are usually batch-specific, 

most RD strategies can mitigate them by normalizing the signal of the case against a 

set of controls that are part of the same batch (i.e. sequenced with the same target 

capture kit, library preparation reagents and platform) (Kadalayil et al., 2015).  

Taken all together, these factors cause coverage fluctuations that can be mistakenly 

interpreted as CNVs or false negatives, since the RD approach heavily relies on the 

assumption that coverage and number of copies of every targeted region are positively 

correlated (Roca et al., 2019; Gordeeva et al., 2021; Rajagopalan et al., 2020). 
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Another significant disadvantage of CNV calling using WES is its resolution in detecting 

breakpoints. Since most breakpoints lie outside the targeted sequenced regions, CNV 

boundaries could be missed or only partially resolved, meaning that the resolution of 

clinically relevant CNVs could be limited (Kadalayil et al., 2015). 

Benchmark of CNV calling tools  

To date, several CNV calling tools using WES data have been published, all varying at 

least in one of the main steps required for the analysis when using the RD approach 

and having different performances in the detection of CNV types and sizes (Gordeeva 

et al., 2021) (Table 1).  

 

Table 1 Table from Gordeeva et al., 2021 showing some of the tools published with their specific algorithms and 

features 

In one of the last and most extensive benchmarks, Gordeeva et al. compared 16 CNV 

callers (Table 1) finding good concordance between some tools, but in general only 

when comparing no more than 3 or 4 (Fig. 5), differences in the range of lengths 

detected and an overall predisposition of these tools in detecting deletions over 

duplications.  
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Figure 5 Figure created from Supplementary Table 4 of Gordeeva et al., 2021. Concordance between tested callers; 

we restricted the plot to intersections between up to 3 tools. Unique CNVs called by each caller are on brackets. 

In terms of performance, none of these tools showed a high F1-score (Fig. 6) and the 

same pattern have been seen in other benchmarks (D’Aurizio et al., 2016; Roca et al., 

2019; Zhao et al., 2020).  

 

 

Figure 6 Plot from Gordeeva et al., 2021: overall performance of several CNV callers using WES data 
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The low performance is not only caused by a poor capture efficiency in specific regions 

of the genome, increasing both false positives and false negatives, but also by the lack 

of a well-defined true set covering the entire landscape of CNVs that could be used for 

the evaluation of these tools, potentially causing the mislabelling of calls as false 

positives (Gordeeva et al., 2021; Kosugi et al., 2019). Moreover, there are still not 

extensive benchmarks that stratify the performance on CNV type; thus, the capability 

of these tools in detecting both deletions and duplications with similar recalls is still 

unknown.  

Also, since most benchmarks use as positive sets variants detected with microarrays, 

where the minimum size detected is around 1kb (Le Scouarnec et al., 2012), very little 

has been published regarding the capability of these tools of detecting CNVs including 

1-2 exons in WES. One of the few examples is given by the work published by 

Gordeeva et al., where – without distinguishing between deletions and duplications, 

they show that a very small number of tools out of the 16 evaluated can detect CNVs 

encompassing 1 to 3 exons with good sensitivity (Gordeeva et al., 2021). In another 

recent paper, Rajagopalan et al. evaluated the performance of a single tool 

(ExomeDepth) in the detection of CNVs < 4 exons, showing a sensitivity of 86% for 

deletions and 87% for duplications (Rajagopalan et al., 2020). A final example is given 

by Moreno-Cabrera et al., where the authors indeed evaluate the performance of 5 

tools in calling correctly both single target regions and genes. However, performances 

are related to CNV calling using NGS panels, where a small set of genes of interest is 

targeted and sequenced with very high coverage. Thus, results from this work cannot 

be easily translated to a WES setting. 

Several new studies have shown that adding CNV discovery to WES analysis could 

increase the overall diagnostic yield (around 22-28% considering only SNVs and InDels) 

of about 1.6-4.7% (Marchuk et al., 2018; Truty et al., 2019; Retterer et al., 2016). 

Moreover, WES could potentially reach a resolution of 200 bp (i.e., the average size of 

a single exon) while the current gold standard for CNV detection in clinics, microarrays, 

reach a minimum size of   ̴40kb, missing almost completely the smallest CNVs. Taking 

into account the capability of WES of also detecting chromosome aneuploidies, having 

a validated approach for CNV calling would make WES the compelling first-tier, stand-
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alone diagnostic test for a broad spectrum of conditions, especially neurological 

diseases and cancers (Marchuk et al., 2018).   
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Aims 

Whole-Exome Sequencing is nowadays one of the first-tier tests used in clinics to find 

mutations in Mendelian diseases; this is due both to its decreasing cost and easiness in 

processing thanks to a set of well-defined best-practice workflows for SNV and small 

InDels detections (Chong et al., 2015; Gilissen et al., 2012; Koboldt et al., 2020). 

However, we still know very little on how CNV detection using WES data could increase 

WES diagnostic yield. The lack of best practices and reliable gold standard references 

make this type of analysis still difficult to perform, leaving a great amount of WES data 

in a “grey area”. A plethora of exome CNV callers have been published over the years, 

however there are very few benchmarks evaluating the minimum resolution 

obtainable and their capability in detecting 1- and 3-copy imbalances, and no 

publications at all taking into consideration the minimum target regions required. 

Nonetheless, it is apparent that the performance of most popular tools is biased 

towards a certain CNV class (deletions versus duplications) and size range (small versus 

large), suggesting that the combination of multiple tools is needed to obtain an overall 

good detection performance. However, such an operation is laborious as it means to 

choose, tune and maintain a composite set of bioinformatic tools over the years. 

Considering that clinical CNVs extend from large genomic rearrangements to single 

gene alterations (Truty et al., 2019), it is quite important to evaluate how accurate 

WES CNV callers are throughout the entire range of the events to the purpose of being 

robustly used in the diagnostic setting. 

Starting from these considerations, we imagined that Machine Learning could be used 

to construct a CNV caller able to learn from real data and that it could be at the same 

time a more flexible and robust solution towards the detection of exonic CNVs 

differing in class and size. We then reasoned that such a caller could base its 

functioning on a measure, Normalized Read Counts (NRC), that we could easily retrieve 

using our previously developed tools EXCAVATOR/EXCAVATOR2 (Magi et al., 2013; 

D’Aurizio et al., 2016). Furthermore, we exploited the naturally occurring presence in 

one or two copies of the non pseudo-autosomal X chromosome WES sequences in 

males and females, respectively. This difference, which is unique among human 
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chromosomes, can be therefore used to mimic a contrast between a normal-copy 

status versus a deletion status when taking sequences from females versus males. 

Similarly, to mimic a duplication status, we merged sequences derived from males and 

females. We decided to simply merge sequences instead of simulating duplications to 

preserve the natural data noise occurring in WES sequencing, that is partially lost with 

simulations. Another advantage of using an almost entire chromosome, selected from 

either affected or healthy individuals, is the amount of samples available for training a 

Machine Learning model; this make the approach entirely new, as most ML 

approaches that works with NGS sequences use for training medium/small positive 

datasets derived from specific set of mutations and/or cohorts (Smedley et al., 2016; 

Pellegrino et al., 2021; Zhang et al., 2021). 

Here, we developed and tested our caller against a set of the most recent and 

maintained CNV callers, varying for the method of detection used. We benchmarked 

all methods using 1000 Genomes Project samples and evaluated their performance in 

detecting deletions and duplications with selected target regions sizes. Since this type 

of benchmark has still not been done, we were also interested in understanding how 

well these tools performed in each different setting. Finally, we exploited a cohort of 

251 Italian-derived WES and SNP-array data, part of the Epi25 consortium - a 

collaborative effort in collecting epilepsy cases worldwide. This valuable set was used 

to test the robustness of our method.  
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Overview 
 

This paragraph will briefly introduce all steps described in ‘Materials and Methods’ 

section to give a comprehensive idea of the workflow we built.  

 

Figure 7  TrainX workflow: in a first pre-processing step, ML datasets with Read Counts and additional features  are 

created starting from samples’ BAM files and their targets. No-PseudoAutosomal (PAR) chrX regions are extracted 

from the datasets and used  to create the training set (XLR: X-Linked Recessive, SD: Segmental Duplications, NSD: No 

Segmental Duplications). Trained  SVC and Autoencoder (AE) are used to make predictions on the whole ML dataset. 

Finally, predictions are used to estimate HMM parameters and call deletions and duplications. 
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1. Pre-processing 

The pre-processing step is required to create the read count datasets needed for 

Machine Learning algorithms. The workflow starts from a list of BAM files (WES) and 

their bed file, containing the coordinates of the enriched regions. At the end of this 

step, a new dataset will be generated for each BAM file containing the following 

features: 

 

Dataset column Explanation 

Chr Target region chromosome (not used for ML). 

Start Start position of target region (not used for ML). 

End End position of target region (not used for ML). 

GC_content Target region average GC content. 

Length Target region length. 

Dist3 
Distance (in bp) between current Start position and End 

position of previous target region. 

MeanCvg Processed sample autosomal mean coverage. 

NRC_poolNorm 

Processed sample NRC (computed with EXCAVATOR2), 

normalized against the average NRC derived from a 

pool of 10 control female samples and log2. 

ID Processed sample ID. 

Table 2 Description of all features inside the datasets created for all samples to call. Number of lanes will be 

equal to the number of target regions inside the bed file. See ‘Dataset construction’ in the Material and 

Methods sections for more details 

 

2. Training and testing 

If, for a specific target, there are enough BAM files (we choose to pick 20 males and 20 

females but could be lower, as long as the merged training dataset has around 200 



16 

 

samples as seen in the Results, Fig. 16), these samples can be used for training and 

therefore added to the training dataset as detailed in the following workflow. 

For each of the 40 samples chosen for training, the dataset is sliced to keep only data 

for non-pseudoautosomal regions of chromosome X. A new feature with the class to 

predict will be added to the dataset: 0 for females to represent a neutral number of 

copies and -1 for males, corresponding to 1-copy deletions.  

Since having 3 copies of  chromosome X is not a natural occurring, we recreated this 

setting by merging male-derived and female-derived chromosome X alignments. As we 

had data from 20 males and 20 females, by merging data from each couple we 

obtained 20 new alignment files. Datasets containing read counts and all other 

features were created in the same way as for males and females, with the exception of 

MeanCvg, that contains the autosomal mean coverage of the female used during the 

merging step since it corresponds to the normal number of copies. Finally, these 

samples are labelled with class “1” to represent 1-copy duplications.  

Then, for each of the 60 samples, data on chromosome X is grouped into 3 regions of 

interest: target regions intersecting X-Linked Recessive genes, segmental duplications 

or all the remaining regions. These 3 types of target regions are added respectively to 

the XLR, SD and NSD datasets. At this point, these 3 datasets contain only regions from 

the batch of 60 samples processed. Before starting to train models, target regions are 

randomly sampled for all IDs from each batch of target-specific datasets that have 

been created up to that point. These regions are added to a general training (Merged 

XLR) and test sets (Merged SD and NSD). 
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Figure 8 Training datasets data structure. For each target, 3 datasets containing all individuals will be created. The 

final Merged datasets contain sampled regions from each target and for all individuals.  

 

Thus, when there are enough new samples for training, training and test sets are 

additively updated with them. Otherwise, the idea behind trainX is that predictions can 

still be made on the new processed samples using the pre-trained model (i.e., using 

the algorithm trained on the merged training set without those samples). As for now, 

the Merged dataset always include RC data from 5 enrichment kits:  BGI, MedExome, 

Nextera, SureSelect V6 and Twist (detailed in Methods).  

A fraction of the training set is then used to select the best SVM model while 

performance is tested on the hold out and the two test sets. As a way of filtering 

outlier target regions, we used the same training fraction to train an autoencoder (AE). 

The mean reconstruction error and its standard deviation (over all the reconstructed 

target regions) for the XLR training fraction is then recorded to be used in the following 

step. 
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3. Calling 

For all samples selected for CNV calling, their datasets with read counts and 

annotation for the whole target are used for prediction using the trained SVM. 

Meanwhile, the trained AE is used to compute the reconstruction error for all target 

regions; if a target region has a reconstruction error that is higher than the mean XLR 

reconstruction error, that region is reclassified as neutral copy (class 0).  

SVM predictions are used to estimate, for each sample, HMM transition and emission 

matrices. Viterbi algorithm is used to decode the HMM and add to each target region 

the most probable state (deletion or duplication). Regions having the same state are 

merged in single windows, originating the final file with CNV calls. 

4. Benchmark 

Rationale. We evaluated our method performance by comparing it against a set of 

well-known CNV callers, and its robustness by running the method on a large set of 

WES; for all samples used we had a set of gold standard CNVs. All metrics in this 

benchmark were computed focusing on called target regions instead of considering 

the entire called window. The reason behind this choice is that our method is focused 

on using EXCAVATOR2 Read Counts generated for all target regions. Thus, we wanted 

to evaluate how good our method was, compared to other CNV callers, in classifying 

correctly small events (encompassing from 1 to 5 target regions). 

Real data. We used two sets of real WES data: NA12878 and the epi25 dataset. 

NA12878 is a well-studied individual derived from 1000 genome project. For this 

sample there are several gold standard sets of CNVs discovered using different 

technologies. We selected the gold standard sets built using arrays (array CGH and SNP 

array) or short read NGS and evaluated how many of these variations were called in 

NA12878 using TrainX or other CNV callers. Whereas epi25 is a consortium collecting 

and studying data derived from epilepsy patients. Having access to the Italian WES 

cohort and the matching SNP-arrays, we could use these data to evaluate the 

robustness of TrainX performance.  
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Synthetic data. Due to the lack of universally accepted gold standards for 

benchmarking CNVs and knowing how unreliable results can be when using existing 

truth sets to evaluate a caller performance on NA12878, we also evaluated all callers 

capability of detecting synthetic CNVs. We selected a set of known clinically 

pathogenic CNVs, ranging from small variations encompassing single target regions to 

very large ones, and artificially introduced them in NA12878 alignment file.  

TrainX model selection. Finally, these datasets were also a precious resource to better 

understand the best model to use when translating from the X chromosome to the 

autosomes. As already mentioned in the introduction, read depth across target regions 

in never uniform. Thus, when we initially tested several models and had to choose the 

best to use, apart from computing performance in the test sets we also found 

extremely important to evaluate performance in the autosomes by using metrics 

obtained for NA12878 real CNVs. When passing from the good set of regions chosen 

for training to the entire target, we saw that models that showed best performance in 

the X chromosome during model selection had a drop in performance (with an high 

increase in number of false positives) in the autosomes. However, out of all models 

tested, we obtained good results with the SVM Classifier, observing a good 

generalization property. Thus, we choose SVM as the final model to use with TrainX. 

 

In Material and Methods, all these steps will be described sequentially in 2 main 

paragraphs, based on what process in needed first to proceed to the next one. Thus, 

“TrainX” paragraph will describe pre-processing and training steps using the 5 kits we 

included in the pre-trained model, while the “Benchmark” paragraph will contain 

information about model re-training, calling and method validation using the 

benchmark datasets. 
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Materials and Methods 

TrainX 

Dataset construction 

Sample selection.  

We selected 5 groups of WES data differing for the experimental design of the 

enrichment kit, reference build and sequencing provider: 

 

Capture Technology 
Bait Size 

(Mb) 

Reference 

Build 

Library 

Preparation 
Platform 

Sequencing 

Provider 

MGIEasy Exome Capture V4 

(BGI Genomics, CHN) 
58.97 hg19 

Hybridization 

capture 
Illumina BGI 

SeqCap EZ MedExome 

(Roche NimbleGen Inc, USA) 
46.58 hg19 

Hybridization 

capture 
Illumina In-House 

Nextera Rapid Capture Exome V1.2 

(Illumina Inc, USA) 
45.33 GRCh37 

Hybridization 

capture 
Illumina 

Broad 

Institute 

SureSelect Human All Exon V6 

(Agilent Technologies, USA) 
60.46 hg19 

Hybridization 

capture 
Illumina In-Service 

Twist Human Core Exome 

(Twist Bioscience, USA) 
36.71 GRCh38 

Hybridization 

capture 
Illumina In-Service 

Table 3 List of target enrichment groups chosen for dataset construction. Each group contains 20 Males and 30 

Females. 

For each group, we selected WES data of 20 females and 20 males to use for the 

creation of the training set and 10 additional females to use as controls (i.e., controls 

for EXCAVATOR2, see “EXCAVATOR2 Normalized Read Count” section in “Pre-

processing and feature construction”).  

Pre-processing and feature construction. 

Autosomes mean coverage. In-target mean coverage (MeanCvg) was computed using 

mosdepth (Pedersen and Quinlan, 2018) giving to option -b the target without chrX 

and chrY. MeanCvg was computed for the 20 females and 20 males of each group and 

used as a sample-specific feature.  

Duplicated samples. To mimic 3 copies duplications, for each enrichment group we 

used the SAMtools (Li et al., 2019) command “merge” to merge females and males 

BAM files having the most similar autosome MeanCvg, creating 20 new alignment files. 
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For each duplicated sample, we used the matching female autosomes MeanCvg as 

feature as it is considered the wild-type reference in our model.  

Class. The categorical feature we want to predict depends on the sample’s gender and 

was added following these criteria: 

Gender Class Copy Number  Status 

Male -1 1  DEL 

Female 0 2  WT 

Merged sample 1 3  DUP 

Table 4 Target variable was created considering Males as 1-copy deleted, Females as wild-type 

and Merged samples as 1-copy duplicated. 

EXCAVATOR2 Normalized Read Count. Our sets of 20 females, 20 males, 20 merged 

samples and the remaining 10 female control samples were processed using 

EXCAVATOR2 (D'Aurizio et al., 2016). We first run the TargetPerla.pl module to process 

each enrichment target file, setting a 50kb window. We then run the second module, 

EXCAVATORDataPrepare.pl, for all bam files to obtain the Normalized Read Counts 

(NRC) and filtered the RData files keeping only in-target regions (corresponding to our 

enrichment target file positions).  

To normalize the NRC values against the set of female controls, we used the 

EXCAVATORDataAnalysis.pl module with option “-e pooling” to create data for the 

pool of females, extracted the in-target NRC values from the Pooling Control RData 

file, and calculated the ratio: 

�
�

�

 

where WMRCi corresponds to EXCAVATOR2 Window Mean Read Count of sample s 

and the control pool c for region i of the target file. We then applied the log2 function 

to the ratio. 

Target-specific features and filtering. As target-specific features, we added the region’ 

GC-content, mean mappability, length and distance to the next 3’ region. GC-content 

percentage was added using pybedtools (Dale et al., 2011) command “nuc” with the 

genome fasta file used for alignment. To compute the mean region mappability we 

intersected each target file with the mappability file, specific for hg19/GRCh37 or 
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GRCh38 depending on the WES group and available within EXCAVATOR2, using 

pybedtools command “intersect” and computed the interval mean value using 

pybedtools “merge” with option -o “mean”.  

Finally, we filtered each enrichment target removing centromeres, telomeres, scaffolds 

or other problematic or heterocromatin-rich regions included in the UCSC Gap file 

provided by EXCAVATOR2 for the two reference builds using pybedtools intersect with 

option “-v”.  

Training datasets. 

For each sample of the enrichment groups, we took for training the final target with its 

annotations limited to chrX and without pseudo-autosomal regions (PAR). PAR are 

regions of homology between chromosome X and Y located at the end of each arm 

needed for recombination during meiosis. These are the only regions of the sex 

chromosomes having an autosomal inheritance, thus we removed them since in males 

appear as normal copy. Finally, we divided chrX regions into a training dataset and two 

test sets. 

XLR dataset. The training set contains target regions encompassing X-Linked Recessive 

(XLR) genes. Genes having an XLR transmission are rarely found imbalanced in 

apparently healthy males and females, making them a conserved group of genes that 

could be taken as reference for control copy number 1 and 2, respectively. An initial 

list of XLR genes was drawn by selecting all genes having only a XLR inheritance in our 

OMIM genemap2 database (2017-10-24 download version). For each of these genes, 

we selected the chromosomal coordinates corresponding in the GENCODE database 

(release 19 for hg19/GRCh37 and release 37 for GRCh38) to the canonical transcripts. 

To be as stringent as possible and avoid selecting regions that could potentially have 

common CNVs, this list was re-evaluated by checking for the presence of variations  

encompassing our selected genes in gnomAD, a database containing a collection of 

variations in the general population. From gnomAD SV v2.1 dataset, we manually 

selected all CNVs overlapping the CDS regions of our list of genes and their Allele 

Frequencies (AF) in the population and computed the overall cumulative AF using the R 

function cumsum. Cumulative frequencies were generated separately for deletions and 

duplications. For both CNV types, we set a cumulative AF threshold < 0.01 and if the 
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condition was not already met, we removed one by one genes with the most frequent 

events and re-computed each time the cumulative AF for the new subset. 

SD dataset. The “SegDup” test set contains regions of the chrX not overlapping the XLR 

dataset and intersecting regions with segmental duplications. A bed file with all the 

chromosomic coordinates of regions with segmental duplications was downloaded 

from UCSC for all the genomic builds tested and intersected with each target using 

pybedtools “intersect”. For this set, we wanted to evaluate trained models’ ability in 

labelling difficult regions of the genome, expecting a drop in the performance. 

NSD dataset. The “NotSegDup” test set include the remaining chrX target regions not 

overlapping the training set and the SD test set. This set contains the largest number of 

regions, and was created to evaluate the models’ ability to generalize in regions similar 

to the XLR dataset, but more likely error-prone in the labelling assignment.  

Merged datasets. 

XLR, SD and NSD datasets from each target enrichment were merged to create 1 single 

final training set and 2 test sets, respectively. We choose randomly a number of target 

regions derived from all samples equal to the dimensionality of the smallest target.  

Feature importance and selection. 

Although the feature vector describing our training dataset is small and does not 

require any dimensionality reduction, we used feature selection primarily to evaluate 

which of our features were more informative and to what extent. We used scikit-learn 

Permutation Feature Importance (PFI) and the python implementation of the Boruta 

algorithm (Kursa and Rudnicki, 2010) to evaluate feature importance when using 

Random Forest models trained on the merged XLR dataset.  

PFI is described as the decrease in a model performance when a single feature is 

randomly shuffled. By doing this, the relationship between feature and outcome 

variable is broken, and changes in model scores suggests how much the model relies 

on it. Being a model-agnostic method, it can be computed multiple times using 

different feature permutations. Scikit-learn Random Forest Classifier was set with 20 

estimators, a maximum depth of 10, 10 minimum samples for splits and 10 minimum 

samples in leaves. PFI was then computed on 50% training dataset held-out, evaluating 
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changes in accuracy score when randomly shuffling each feature 100 times and 

obtaining an average value. 

Boruta is another algorithm designed as a wrapper method, so after training a Random 

Forest Classifier on the dataset it returns each feature classified as confirmed, rejected 

or tentative instead of giving a value representing their importance. this algorithm first 

add randomness to the training set by including shuffled copies of all features, the so 

called “shadow” features. If the original feature performs better than the best 

randomized feature, that feature is classified as confirmed. Furthermore, to obtain 

statistically robust results, this process is iterated n times and the significance of a 

feature is estimated using a two-tailed binomial test. We used the BorutaPy package 

together with scikit-learn Random Forest Classifier having the same hyperparameters 

used for the PFI analysis and performing 100 trials. While training the Random Forest, 

we also computed the Gini feature importance, or Mean Decrease in Impurity (MDI), 

defined as the total decrease in node impurity, weighted by the probability of reaching 

a particular node and approximated by the proportion of samples reaching it, averaged 

across all trees of the forest. 

Minimum number of samples and target regions. 

To estimate the minimum number of target regions and samples needed to train our 

models, we performed a grid-search with a 10-fold cross-validation over a set of 

parameters using scikit-learn GridSearchCV function, to select the best Random Forest 

Classifier on increasingly large subsets of our original merged dataset (using fractions: 

0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1). We held-

out 20% of the merged XLR dataset and subsampled the remaining 80% both in terms 

of number of individuals and number of target regions. Cross-validated Random Forest 

trained on each subset was then tested for accuracy on the hold-out. The procedure is 

iterated 10 times to take into account also the randomness of the subsampling. 

Algorithm implementation 

Training set preparation.  

The XLR dataset was split into 20:80 fractions for training and test respectively; we 

selected a smaller fraction for training to avoid overfitting. We then added Gaussian 
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noise to our training fraction. Adding noise means creating new samples that are close 

to the training samples, smoothing the distribution of the input space and increasing 

its randomness but also expanding the size of the dataset. Thus, a model is less prone 

to learn training samples and start to learn more general features, increasing 

generalization. We added white noise to all XLR samples using numpy random.normal 

function, with µ = 0, σ = 0.05 and size equal to the dataset’s shape, then selected 

randomly 20% of the noisy data and added it to the training fraction. Finally, we 

applied feature scaling to our datasets. Since outliers are a frequent occurrence when 

using WES data, mostly arising from the MeanCvg feature, we used scikit-learn 

RobustScaler(), as it use statistics that are robust to outliers. This scaler works 

independently on each feature of the training set, centring samples by subtracting the 

median and scaling according to the Interquartile Range. 

Model selection. 

We selected several models to train using our dataset. For each model, the best 

combination of hyperparameters, configuration variables that cannot be estimated 

during training, were selected through a grid search. Scikit-learn GridSearchCV() 

implementation was used for model selection, selecting F1 score as metric on which 

the models must be evaluated to balance between Precision, Recall and uneven class 

distribution, and a stratified 10-fold cross-validation to maintain the distribution of the 

samples’ labels in each split equal to the one of the full dataset. Due to computational 

and time costs of the entire workflow, only a small set of hyperparameters has been 

tested. 

Model Hyperparameters tested  

  DecisionTreeClassifier() 

   criterion :  [“gini”, “entropy”] 

   max_depth :  [2,5,8,10] 

   min_samples_split :  [50,100,150,200] 

   min_samples_leaf :  [50,100,150,200] 

  RandomForestClassifier() 

   criterion :  ["entropy", "gini"]  

   n_estimators :   [10,20,50,100] 

   max_depth :   [5,10] 

   max_features :   ["auto", 3] 

   min_samples_leaf :   [100,150,200] 

   min_samples_split :   [100,150,200] 
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  SVC() 

   C :   [10,20] 

   kernel :   ["rbf"] 

   cache_size  :   [1000] 

  KNeighborsClassifier() 
   n_neighbors :  [2,5,10] 

   weights :   ["uniform", "distance"] 

  MLPClassifier() 

   hidden_layer_units :   [4,6,8] 

   hidden_layers :   [1,2,3,4] 

   activation :   ["tanh", "logistic", "relu"] 

   solver :   ["sgd"] 

   learning_rate :   ["constant","adaptive"] 

   learning_rate_init :   [1e-4, 1e-5] 

   early_stopping :   ["false"] 

   n_iter_no_change :   [10] 

   tool :   [35e-4] 

   max_iter :   [200] 

Table 5 List of ML models tested and the set of hyperparameters evaluated. 

Testing.  

The resulting best models were evaluated against the 80% test fraction of the XLR 

dataset and in the NSD and SD test sets. For each sample of the datasets, class was 

assigned to the label with the higher prediction’s probability.  

Autoencoder. 

An autoencoder is an unsupervised feed-forward neural network trained to predict the 

input itself. This model is composed by an encoder that compresses the input data 

deleting unnecessary information, and a decoder that attempts to reconstruct the 

input starting from the encoder compressed version. The training is repeated until the  

reconstruction error (RE), the distance between the original input and the 

reconstructed data, is minimized. We used an autoencoder to detect and filter outliers, 

defined in this case as target regions having a high RE. This workflow follows the pre-

processing steps used for the supervised training, using the same Gaussian noise and 

splitting fractions for the XLR dataset. We than scaled the samples using scikit-learn 

MinMaxScaler() and trained scikit-learn’s MLPRegressor(), setting a first compressing 

layer of size NF – 1 (NF = number of features), one encoding layer of size NF – 2 and a 

decoding layer of size NF – 1; we also changed two hyperparameters from their default 

values: learning_rate_init = 0.0001 and max_iter = 10. REs were computed as the 
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Euclidean distance between the original sample and the decoded one, and from the 

resulting vectors we computed the Mean AE. The trained model was then tested on 

the test fraction of the XLR dataset, the NSD and SD dataset. Predicted target regions 

having a RE > Mean AEXLR + 2 σ  were reclassified as WT. 

Hidden Markov Model calling using models’ predictions.  

After training and testing our models, we made predictions on the autosome regions 

of our use cases. Since the models we trained do not take into account the 

sequentiality of the target regions across the genome and we wanted to filter out 

classified events occurring spuriously, we  thought of using an HMM  algorithm to add 

a spatial dimension to our set of predictions. Taking into consideration that it is more 

probable to see normal copy regions than imbalances, we tried to model this 

behaviour and extracted the most probable sequence of states to obtain the real signal 

the model tried to measure. We started by defining these initial settings: 

Settings Parameters 

States { ‘WT’,  ‘DEL’ ,  ‘DUP’ } 

Observations TrainX predictions 

Start probability 

{ 

‘WT’   :   0.95 , 

‘DEL’  :   0.025, 

‘DUP’ :   0.025 

} 

Start Transition probability 

{ 

‘WT’   :   { ‘WT’ :  0.9 , ‘DEL’  : 0.05 ,  ‘DUP’ :  0.05 }, 

‘DEL’   :  { ‘WT’ :  0.05 , ‘DEL’ :  0.9 ,  ‘DUP’ :  0.05 }, 

‘DUP’  :  { ‘WT’ :  0.05 , ‘DEL’ : 0.05 ,  ‘DUP’ :  0.9 } 

} 

Start Emission probability 

{ 

‘WT’   :  { ‘0’  :  0.9 ,   ‘-1’  :  0.05 ,   ‘1’ :  0.05 }, 

‘DEL’   :  { ‘0’  :  0.05 ,  ‘-1’  :  0.9 ,    ‘1’ :  0.05 }, 

‘DUP’  :  { ‘0’  :  0.05 ,  ‘-1’  :  0.05 ,  ‘1’ :  0.9 } 

} 

Table 6 Initial HMM settings 

Baum-Welch algorithm from R HMM package was used to estimate, for each sample in 

analysis, transition and emission matrices starting by an interrupted sequence of 



28 

 

observations (a single chromosome) and its states, and iterating the process 20 times. 

As sequence of observation, we decided to use chr1 as it is the longest autosome. 

Viterbi algorithm was used to identify, for each chromosome independently, the 

succession of hidden states with the highest probability of generating the sequence of 

observations. For each state, posterior probabilities were computed using the 

posterior() function from the R package. Finally, we defined windows containing target 

regions with constant HMM state and selected those classified as deleted and 

duplicated to create our set of calls; To each call, we added its posterior probability, 

given by the average probability of each single state of its window. 

 

Benchmark 

To evaluate TrainX performance we used 2 set of data collections, WES data from 1000 

Genomes Project and Epi25 consortium, for which we had specific sets of gold 

standard CNVs. Since TrainX is a method based on the classification of single target 

regions, we decided to measure performances for all tools used in the benchmark 

(listed in the following paragraph) for each target region independently. For both data 

collections, we were as stringent as possible in defining a positive and negative space 

in which to look for called CNVs. The positive set (PS) was defined as a group of target 

regions encompassing our gold standard (>50% overlap), whereas the negative set (NS) 

contains target regions that with good probability are present in normal copy. Starting 

by this target separation, we defined the 4 possible outcomes as follow:  

True positives (TP). Number of PS regions overlapping calls (min 50% overlap). 

False negatives (FN). Number of PS regions not called or called with a discordant CNV 

type. 

False positives (FP). Number of NS regions called (min 50% overlap). 

True negatives (TN). Number of NS regions not called or with <50% overlap with calls. 
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Then, we derived the following metrics: 

Accuracy F1-score TPR TNR FPR FNR Balanced accuracy 
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1000 Genomes Project 

Samples selection. 

We downloaded 56 WES individual data from 1000 Genomes Project Data Portal 

selecting the “1000 Genomes on GRCh38” data collection. We restricted our selection 

to samples from Broad Institute as the main project center (thus, as described in the 

portal, all samples from this center were enriched with Agilent SureSelect All Exon V2), 

sequenced in an Illumina Platform and having more than 80% of bases covered more 

than 20X. We then selected from different populations a balanced set of males and 

females (25 F, 25 M), 5 additional F to use as controls for TrainX and NA12878 as the 

use case. 

Index Sample ID Population Gender Main Project 

Exome Center 
Main Project 

Exome Platform 
% Target 

Covered >20x 

1 HG00731 PUR M Broad Institute ILLUMINA 0.96 

2 HG00734 PUR F Broad Institute ILLUMINA 0.93 

3 NA11920 CEU F Broad Institute ILLUMINA 0.94 

4 NA12842 CEU M Broad Institute ILLUMINA 0.93 

5 NA18853 YRI M Broad Institute ILLUMINA 0.93 

6 NA18867 YRI F Broad Institute ILLUMINA 0.95 

7 NA18964 JPT F Broad Institute ILLUMINA 0.94 

8 NA19000 JPT M Broad Institute ILLUMINA 0.93 

9 NA19347 LWK M Broad Institute ILLUMINA 0.94 

10 NA19474 LWK F Broad Institute ILLUMINA 0.93 

11 HG00551 PUR F Broad Institute ILLUMINA 0.92 

12 HG00739 PUR M Broad Institute ILLUMINA 0.92 

13 HG01054 PUR M Broad Institute ILLUMINA 0.94 

14 HG01067 PUR F Broad Institute ILLUMINA 0.91 

15 HG00737 PUR F Broad Institute ILLUMINA 0.95 

16 NA06986 CEU M Broad Institute ILLUMINA 0.93 

17 NA07048 CEU M Broad Institute ILLUMINA 0.92 

18 NA11918 CEU F Broad Institute ILLUMINA 0.92 

19 NA12890 CEU F Broad Institute ILLUMINA 0.93 
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20 NA18499 YRI F Broad Institute ILLUMINA 0.93 

21 NA18516 YRI M Broad Institute ILLUMINA 0.93 

22 NA18870 YRI F Broad Institute ILLUMINA 0.93 

23 NA18910 YRI M Broad Institute ILLUMINA 0.92 

24 NA18986 JPT M Broad Institute ILLUMINA 0.93 

25 NA18999 JPT F Broad Institute ILLUMINA 0.93 

26 NA19055 JPT M Broad Institute ILLUMINA 0.91 

27 NA19065 JPT F Broad Institute ILLUMINA 0.93 

28 NA19334 LWK M Broad Institute ILLUMINA 0.94 

29 NA19346 LWK M Broad Institute ILLUMINA 0.93 

30 NA19471 LWK F Broad Institute ILLUMINA 0.92 

31 HG00641 PUR F Broad Institute ILLUMINA 0.92 

32 HG00736 PUR M Broad Institute ILLUMINA 0.91 

33 HG01048 PUR M Broad Institute ILLUMINA 0.93 

34 HG01080 PUR F Broad Institute ILLUMINA 0.91 

35 HG01110 PUR M Broad Institute ILLUMINA 0.93 

36 HG01168 PUR F Broad Institute ILLUMINA 0.92 

37 NA12399 CEU M Broad Institute ILLUMINA 0.92 

38 NA18501 YRI M Broad Institute ILLUMINA 0.93 

39 NA18520 YRI F Broad Institute ILLUMINA 0.91 

40 NA18873 YRI F Broad Institute ILLUMINA 0.92 

41 NA18912 YRI F Broad Institute ILLUMINA 0.93 

42 NA18982 JPT M Broad Institute ILLUMINA 0.93 

43 NA19003 JPT F Broad Institute ILLUMINA 0.92 

44 NA19058 JPT M Broad Institute ILLUMINA 0.93 

45 NA19092 YRI M Broad Institute ILLUMINA 0.92 

46 NA19116 YRI F Broad Institute ILLUMINA 0.92 

47 NA19130 YRI M Broad Institute ILLUMINA 0.92 

48 NA19213 YRI M Broad Institute ILLUMINA 0.90 

49 NA19235 YRI F Broad Institute ILLUMINA 0.94 

50 NA19338 LWK F Broad Institute ILLUMINA 0.91 

51 HG00732 PUR F Broad Institute ILLUMINA 0.96 

52 NA19093 YRI F Broad Institute ILLUMINA 0.93 

53 NA06989 CEU F Broad Institute ILLUMINA 0.89 

54 NA12058 CEU F Broad Institute ILLUMINA 0.88 

55 NA19064 JPT F Broad Institute ILLUMINA 0.89 

56 NA12878 CEU F Broad Institute ILLUMINA 0.88 
Table 7 List of BAM files downloaded from 1000 Genomes Data Portal with their characteristics. Index column is 

color-coded to show how we separated samples in subsets of 10, 30 and 50. In grey: additional samples used to 

create EXCAVATOR2  pooling control for  TrainX. Purple: sample used for benchmarking all callers. 

Target reference dataset construction. 

Since originally Agilent SureSelect All Exon V2 target was designed using hg19 

coordinates, we had first to lift all positions over the GRCh38 assembly using UCSC 

LiftOver. New contiguous target regions were merged using pybedtools merge. We 



31 

 

then filtered out all the alternative contigs, chrX and chrY and created our target 

reference dataset.  

NA12878 negative space. 

We constructed NA12878 NS restricting to the genomic regions with the lowest 

probability of being CNVs. Thus, we downloaded from DGV the most recent “DGV 

variants” database mapped to the GRCh38 assembly (GRCh38_hg38_variants_2020-

02-25.txt) and selected all variants found in NA12878. We then removed all regions of 

the target reference dataset with any overlap with this database using pybedtools 

intersect and option “-v”. Finally, we computed NA12878 MeanCvg for each region of 

this final target using mosdepth and filtered out all target intervals <50X. 

NA12878 positive space. 

DGV. To create our sets of real NA12878’s CNVs we selected from NA12878 DGV’s 

variants 2 subsets based on the discovery technology used (array-based and short-

reads). We then intersected each subset with our target reference dataset using 

pybedtools intersect with option “-wo” and computed for each overlapping region the 

ratio between the number of shared bases and the length of the target region, 

selecting only regions with >50% overlap with the variants. Finally, we carefully 

evaluated the studies to include in our sets when needed. 

1. arrays. From the set of array-based studies (SNP-array, Oligo aCGH and BAC 

aCGH) we decided to remove CNVs from Redon et al., 2006 detected using BAC 

aCGH (leaving those detected with SNP-array), variants from Kidd et al., 2010 

because they were classified as novel sequence insertion without distinction 

between deletions and duplications and, for studies with more than one 

reference, we removed all precedent studies. After this filtering, we retained 

CNVs detected with SNP-array from Altshuler et al., 2010, Cooper et al., 2008, 

McCarroll et al ., 2008, Redon et al., 2006, Wang et al., 2007 and variants 

detected with Oligo aCGH from Campbell et al., 2011 and Conrad et al., 2009.  

To evaluate the number of target regions in common between these studies, we 

used pybedtools multiinter.  
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2. short-read sequencing. For our short-read sequencing set we selected 1000 

Genomes Consortium Phase 3 study from DGV and excluded all previous studies 

since they were done with different combinations of technologies. 

Synthetic Variants. From dbVar, we downloaded the most recent GRCh38 datasets for 

pathogenic non-redundant deletions and duplications. We first removed all variants 

overlapping NA12878’s DGV dataset using pybedtools intersect with option “-v” and  

intersected the remaining CNVs with the target reference dataset, excluding those 

having at least one target region with less than 50% overlap. Afterwards, we computed 

NA12878’s MeanCvg in these target regions using mosdepth and removed all CNVs 

having more than 20% of target regions with <50X depth. Finally, we created 5 lists 

containing CNVs of different sizes (1, 2 to 5, 6 to 10, 11 to 50 and >50 target regions) 

and separated by at least 10 target regions. We used these final set of files as 

templates to add in-silico variants in NA12878 BAM file using XomeBlender (Semeraro 

et al., 2018), recreating germline single copy deletions and duplications and generating 

5 BAM files.  

Variant Callers used. 

NA12878 original BAM file and those containing synthetic CNVs were analysed with a 

set out of the most up-to-date germline CNV callers published: GATK4 gCNV, 

ExomeDepth, DECoN, CNVkit and EXCAVATOR2. As all these tools apply normalization 

against a set of controls, we tested their performance pooling 10, 30 or 50 samples, 

always balancing the number of males and females included (Table 6).  

 

CNV Caller Methods applied Suggested number 

of control samples 

Suggested CNVs 

detected 

Modifications from 

default options 

GATK gCNV 

v4.1.2  

(Babadi et al., 

2019)  

Negative-binomial factor 

analysis to remove 

sequencing biases and 

hierarchical HMM to 

detected sample CNVs 

and global regions of 

CNV activity 

>30 

Detect common 

and rare CNVs; 

size with best 

accuracy not 

specified 

GermlineCNVCaller with 

options 

 --cnv-coherence-length 

10000.0 and  

--class-coherence-length 

10000.0  
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ExomeDepth 

 v1.1.15  

(Plagnol et 

al., 2012) 

Beta-binomial model 

considering region GC 

content and read-count 

variance, HMM to 

combine likelihood 

across multiple exons. 

5-10 

Detect CNVs 

not present in 

the controls; 

best for 1-50 kb 

size CNVs 

Each case run separately 

against the controls; 

select.reference.set 

options 

n.bins.reduced  = 10000 

and 

bin.length = (Target end 

- Target start)/1000);  

CallCNV 

expected.CNV.length = 

10000 

DECoN 

 v1.0.2 

(Fowler et al., 

2016) 

Modification of 

ExomeDepth with 

transition probabilities 

of HMM depending on 

exons’ distance 

1 or more 

Optimized for 

target panels; 

best for small 

rare CNVs (1 or 

few exons) 

Each case run separately 

against the controls 

CNVkit 

v0.9.7 

(Talevich et 

al., 2016) 

Use both In- and off-

target regions, rolling 

median to estimate GC-

content, sequence 

repeats and target 

density correction bias 

trend; signal 

segmentation using CBS 

1 or more 

Doesn’t detect 

small common 

CNVs; higher 

accuracy with 

size >1 Mb 

No modifications 

EXCAVATOR2 

(D'Aurizio et 

al., 2016)  

Use both In- and off-

target regions, GC-

content, mappability 

and exon size bias 

correction; 

segmentation and CNV 

call using HSLM and 

FastCall algorithms 

1 or more 

Detect common 

and rare CNVs; 

CNVs up to few 

Mb (panels or 

genes) 

TargetPerla.pl windows’ 

size tested: 

Window: 10000 

Window: 20000 

Window: 50000 

Table 8 Set of CNV callers tested in the 1000Genomes benchmark, together with the method applied and options 

that we modified from default. 

For TrainX, we picked 20 males and 30 females (10 of these to use as controls) from 

the list of BAM files, generated the XLR, NSD and SD datasets as detailed before and 

added them to the merged datasets. The algorithm was then re-trained and used to 

make predictions on NA12878 dataset, the latter created separately with features 

annotated for all target regions.    
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Epi25 

Samples selection. 

Epi25 Consortium Year 1 and Year 2 exomes for the Italian Cohort of epilepsy patients 

were downloaded from Terra (https://anvilproject.org/data/studies/phs001489). This 

dataset consists of 291 patient’s human peripheral blood-derived samples. All samples 

were sequenced at the Broad Institute, using an Illumina platform and Illumina 

Nextera Rapid Capture Exomes for target enrichment. BAM files were aligned to the 

GRCh38 reference build. 

For the same set of patients, we also had the relative SNP-array data. All samples were 

genotyped using a GSA-MD v1.0 array (Illumina, San Diego) with 688032 total markers. 

SNP-array files were filtered following a genotype-specific QC step and CNVs where 

then called using PennCNV (Wang et al., 2007); further QC steps were described and 

applied to produce a high-quality call-set in the study publication (Niestroj et al., 2020). 

We were given access by the authors to this high-quality dataset, restricted to the 

Italian cohort.   

TrainX calls. 

We picked 30 females and 20 males out of 291 exomes to construct the training 

dataset. Samples were selected excluding those having “high quality” CNVs in the SNP-

array and having none or not clinically relevant CNVs in the raw SNP-array dataset. We 

re-trained the merged XLR dataset after including Epi25 samples and made predictions 

and calls in 281 samples (pool of 10 females controls excluded).   

Target reference dataset construction. 

We first used UCSC LiftOver to convert Nextera Rapid Capture Exomes target from 

hg19 to GRCh38. As for 1000 Genomes, we removed all alternative contigs and sex 

chromosomes to create the target reference dataset.   

Epi25 negative space. 

The negative space was created dynamically for each sample using the original raw 

CNV call-set derived from the SNP-array data. For each sample, we selected the 

specific set of CNV calls and removed them from the target reference dataset using 

pybedtools intersect with option “-v”. 
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Epi25 positive space. 

To evaluate TrainX performance, we used 3 sets of calls derived from the SNP-array 

data.  We followed some of the steps used by Niestroj et al., 2020, which in turn were 

mostly derived from  Marshall et al., 2017.  

As a first step, we removed outlier and not comparable samples from both SNP-array 

data and TrainX calls. From the raw SNP-array set, we selected patients having >100 

CNVs called (as done in Niestroj et al., 2020), and patients for which we did not have 

the corresponding WES data. From TrainX we selected all patients used for the pooling 

control and samples having an average autoencoder RE above the 90th quantile of the 

overall samples’ RE distribution. The resulting list of samples was filtered out from 

both datasets.  

This first step was required to precisely evaluate the number of recurrent CNVs in the 

analysed cohort. We used BEDOPS (Neph et al., 2012) command bedmap with options 

“--fraction-map 0.5” and  “--echo-map-range” to compute the number of CNVs having 

>50% overlap with each other; a new column describing the number of times a specific 

CNV was seen has been added to each call using python. The resulting dataset was 

then annotated using AnnotSV  (Geoffroy et al., 2018) using 50% non-reciprocal 

overlap as option. We proceeded removing CNVs recurrent in >1% of individuals as 

they were probably array-specific artifacts, and Copy Number Polymorphisms (CNPs) 

with >1% frequency in DGV, gnomAD or 1000 genomes databases. Following Marshall 

et al., 2017 analysis workflow, we removed all CNVs encompassing centromeres and 

telomeres or having ≥50% overlap with repeated sequences, segmental duplications 

and chromosomal segments containing immunoglobulins, T-cell receptors and MHC 

genes. All required bed files were downloaded from UCSC TableBrowser, with the 

exception of the immune response genes segments, that were manually selected from 

IMGT database for build GRCh38. Finally, we selected all CNVs intersecting with >50% 

overlap the target reference dataset, excluded calls if they encompassed < 3 target 

regions and constructed the 3 positive sets (PS). 

High quality PS. This is the call-set used by Niestroj et al., 2020 but we further filtered 

it excluding outliers/not-comparable samples, recurrent variants/CNPs and variants 

with >50% intersection with problematic regions, as described above. This set contains 
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CNVs including ≥ 20 SNPs, having ≥ 20kb of length and ≥ 0.0001 SNP density (defined 

as SNPs/length). If a call was ≥ 1Mb and spanned more than 20 SNP it was included 

regardless of density.  

Medium quality PS. This set includes CNVs containing between ≥10 and <20 SNPs, 

having ≥10 and <20Kb length and >0.0001 density.  

Low quality PS. This final set contains CNVs with <10 SNPs, length <10Kb and >0.0001 

density. 

TrainX performance evaluation. 

TrainX calls filtering. We filtered TrainX call-sets in the same way done for the positive 

sets except for the density filter; all calls were concatenated in a single file to evaluate 

recurrent CNVs. To obtain a value similar to the array SNP density, we computed the 

ratio between the overall number of bases of the target regions included in the call 

and the length of the call and removed calls having density falling below the 5th 

quantile of the density distribution.  

Metrics and validation. Since we were analysing a consistent number of samples and 

the positive sets were very small in comparison, we also added as metrics macro-

averaged precision and recall using the scikit-learn metrics module. Finally, a variant 

was considered validated if it was seen by both SNP-array and TrainX.  
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Results 

Feature space evaluation 

Mean coverage and NRC evaluation on SureSelect 

For MeanCvg and NRC, we did some prior evaluations on samples enriched using 

SureSelect. Since we expected a slight difference in MeanCvg between males and 

females due to a 1:2 ratio in chrX sequences, we computed the MeanCvg considering 

both sex and autosomal chromosomes and exclusively the autosomes.  

 

Figure 9 Comparison between Mean Coverage computed using all chromosomes and autosomes 

only in SureSelect XLR dataset. 

Looking at the dot plot, the slight decrease in males’ MeanCvg when considering also 

chrX and chrY was confirmed. As we did not want to influence the training by adding 

this dependency, we restricted MeanCvg computation to the autosomes. 

To find the best set of NRC values to use for training, we tested several conditions: our 

set of NRC values straight out of EXCAVATOR2 DataPrepare.pl step (i.e., without 

further normalizations), after normalizing using 1, 5 or 10 females control samples and 

after normalizing with 10 females control samples and log2. For all conditions, we then 

proceeded to create the XLR dataset and evaluated how the NRC was distributed on 

each class. 
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Figure 10 NRC density distribution using different settings in SureSelect XLR dataset. 

 

Type of analysis 
Pct overlap 

(DEL ∩ WT) 

Pct overlap 

(WT ∩ DUP) 

Pct overlap 

(DEL ∩ DUP) 

No Normalization 0.5 0.66 0.26 

1F Normalization 0.36 0.55 0.11 

5F Normalization 0.32 0.52 0.08 

10F Normalization 0.29 0.5 0.05 

10F Normalization – L2R 0.29 0.5 0.05 

Table 9 NRC density distribution using different settings in SureSelect XLR dataset: percentage of overlap between 

each class 

 

Type of analysis 

DEL WT DUP 

Mean SD Mean SD Mean SD 

No Normalization 0.35 0.18 0.69 0.36 1.03 0.5 

1F Normalization 0.8 0.32 1.58 0.62 2.38 0.83 

5F Normalization 0.58 0.2 1.13 0.4 1.7 0.5 

10F Normalization 0.5 0.2 1 0.3 1.5 0.4 

10F Normalization – L2R -1.06 0.5 -0.1 0.5 0.5 0.4 

Table 10 NRC density distribution using different settings in SureSelect XLR dataset: distribution mean value and 

standard deviation for each class 

From this preliminary evaluation, an additional normalization step using a females’ 

control set is required. Furthermore, adding more female samples to the pool 
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increasingly reduced the distributions’ standard deviation and centered the data 

towards the expected CNV signal (Table 10: with 10 females the average signal for 

deletions is 0.5, 1 for wt and 1.5 for duplications, as you would expect, for example, 

when using array CGH).  When using a pool of 10 female samples, we also saw a better 

classes’ separation (Table 9). Since a minimum of 10 female samples seems an 

acceptable requirement to use TrainX, (many WES CNV callers need a higher number 

of control samples; i.e., see Table 8), we proceeded using this final setting (ratio 

between the NRC of the sample and the average NRC of 10 female samples) for all 

samples and enrichment kits. Moreover, we decided to use the log2 ratios as 

normalized measures.  

All features distribution 

After finalizing the two sample-specific features, we evaluated all features in the XLR 

dataset. This was done for each kit separately and the resulting Merged dataset. 

 
Figure 11 NRC_PoolNorm distribution for all classes in the 3 datasets and for all enrichment kits. 

In the XLR dataset, NRC_PoolNorm distribution appears to be different for each target. 

For BGI especially, the 3 peaks describing each class are narrow and almost perfectly 
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separated. MedExome, the only set containing a collection of samples sequenced in-

house and in different batches (as an example of a situation users could find in their 

real-world cohorts), shows the worst separation. Altogether, the Merged dataset takes 

values from all target groups and shows a good NRC distribution. We also evaluated 

NRC distribution in the 2 test datasets; for all target groups class separation in the NSD 

dataset is similar to our goldset, while it is slightly worse using the SD dataset, as 

expected.     

 

Figure 12 All features distribution in XLR datasets. 

We then considered the distribution of all the features in the XLR dataset. For target-

specific features, GC-content and Length show the highest variability between 

enrichment groups. Whereas MeanCvg has specific ranges for each enrichment group 

based on the theoretical coverage and flowcell chosen for that batch. Since MedExome 

includes samples from different batches of sequencing, this is the group having the 

highest variability in terms of distribution. For all features, the Merged dataset embeds 

most of the differences arising in each enrichment group.  
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Figure 13 Relationship between NRC_PoolNorm and MeanCvg using all enrichment kits. 2D density plots for all 

enrichment kits are color-filled, Merged dataset is overlayed on top colouring only level lines. 

Finally, we evaluated the relationship between NRC_PoolNorm and MeanCvg with a 

2D density plot. For our Merged dataset, the plot shows the highest density in the 

range of 50-150X for MeanCvg, with NRC_PoolNorm values going on average from -1 

to 1. Samples having a higher MeanCvg show NRC_PoolNorm ranges shifted towards 

the right side of the distribution; these behaviour in our case represents few outliers 

and shows that predictions could potentially go wrong with samples having depths 

higher than those mostly represented in our Merged dataset. 

XLR genes selection 

To construct the training set, we selected a list of 82 XLR-only genes from OMIM 

database and hand-picked from gnomAD SV v2.1 all CNVs encompassing these genes’ 

CDS.  
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OMIM 

XLR gene 

gnomAD SVs 

Variant ID 

gnomAD 

AF 
 

OMIM 

XLR gene 

gnomAD SVs 

Variant ID 

gnomAD 

AF 

ABCD1, BCAP31 DUP_X_54633 7.58E-03  OCRL DUP_X_54242 6.21E-05 

AFF2 

 

DEL_X_190491 6.20E-05  OGT DEL_X_187138 6.20E-05 

DUP_X_54535 1.26E-04  PAK3 DUP_X_54030 6.32E-05 

AVPR2 DUP_X_54637 2.59E-03  PGK1 DUP_X_53627 6.32E-05 

BRWD3 

DEL_X_187516 6.28E-05  PGK1, ATP7A DUP_X_53626 6.20E-05 

DUP_X_53649 1.26E-03  PHF8 DUP_X_53235 2.53E-04 

DUP_X_53648 3.16E-04  PHKA1 DUP_X_53547 6.20E-05 

DUP_X_53650 6.32E-05  

PHKA2 

DUP_X_52716 1.24E-04 

DUP_X_53652 6.32E-05  DUP_X_52723 2.17E-03 

BTK DEL_X_188496 3.72E-04  DUP_X_52720 6.20E-05 

CYBB DUP_X_52971 6.96E-04  POF1B DEL_X_187764 2.56E-04 

DKC1 DUP_X_54645 1.24E-04  
POLA1 

DUP_X_52803 1.26E-04 

DLG3 
DUP_X_53514 6.22E-05  DUP_X_52807 6.32E-05 

DUP_X_53512 6.32E-04  
SLC6A8 

DEL_X_190712 6.20E-05 

F8 

DEL_X_190808 1.24E-04  DEL_X_190710 6.21E-05 

DUP_X_54658 3.16E-04  SSR4 DUP_X_54635 2.09E-02 

DUP_X_54657 6.20E-05  

STS 

DEL_X_184530 3.10E-04 

IDS 

DEL_X_190503 2.48E-04  DUP_X_52541 1.24E-04 

DUP_X_54543 6.20E-05  DUP_X_52538 2.28E-03 

DUP_X_54546 6.21E-05  DUP_X_52545 6.20E-05 

IGSF1 DUP_X_54261 4.43E-04  

TEX11 

DEL_X_187098 6.27E-05 

IL1RAPL1 
DUP_X_52855 1.24E-04  DEL_X_187104 6.33E-05 

DUP_X_52854 6.20E-05  DUP_X_53516 1.08E-03 

LAS1L 
DUP_X_53436 3.16E-04  TEX11, DLG3 DUP_X_53513 6.32E-05 

DUP_X_53442 6.20E-05  TRAPPC2 DUP_X_52644 1.26E-04 

MAMLD1 DEL_X_190538 6.43E-05  
TSPAN7 

DEL_X_185734 6.20E-05 

MID1 

DEL_X_184671 8.53E-04  DUP_X_52986 8.22E-04 

DUP_X_52617 1.90E-04  WAS DUP_X_53132 3.16E-04 

DUP_X_52621 6.21E-05  

ZC4H2 

DUP_X_53432 1.24E-04 

DUP_X_52622 6.21E-05  DUP_X_53420 1.26E-04 

DUP_X_52615 8.85E-04  DUP_X_53434 6.32E-05 

Table 11 List of OMIM selected genes having CNVs in gnomAD SV v2.1. Database ID for each variant and the 

related allele frequency are reported. 

From this list, containing genes out of the 82 selected having a variant in gnomAD, we 

computed the overall cumulative allele frequency separately for deletions and 

duplications. 
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Figure 14 Cumulative gnomAD deletions and duplications allele frequencies. Threshold set at 1% AF. 

After plotting the cumulative AF, we could evaluate visually which genes carried the 

most frequent CNVs.  

For deletions, the cumulative AF was lower than the 1% threshold we set, and no 

further analysis was required.  

For duplications, we dropped sequentially genes having CNVs with the highest AF until 

we reached the threshold. Thus, we removed SSR4, ABCD1 and BCAP31 (encompassing 

the same frequent CNV), AVPR2, STS and PHKA2, obtaining a final list of 75 genes. 

Feature Importance, minimum number of samples and target regions 

For all features in the XLR dataset, we evaluated their importance using the 

Permutation Feature Importance approach and Boruta algorithm.  

 

Figure 15 Permutation Feature Importance distribution for all iterations. Results for the training set on the left and 

on XLR test fraction on the right. 
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Using the Permutation Feature importance, the highest accuracy loss was obtained 

when removing NRC_poolNorm (Fig. 14). This feature, together with Length and 

MeanCvg, are the most important features for the model. The other 3 features 

(Mappability, Dist3 and GC content) were not considered informative by the 

procedure. Moreover, the value of importance remained almost constant for all 

training iterations of the Random Forest. 

 

Figure 16 Boruta feature selection with MDI feature importance bar plots. On green, all features accepted by 

Boruta. No features were considered indecisive. 

Results obtained using Boruta and Random Forest MDI are also consistent with PFI 

(Fig. 15). Using the Boruta method, all features were accepted without being 

indecisive, apart for Mappability, that was rejected. Moreover, Random Forest 

importance values agrees with PFI, giving the highest importance to NRC_poolNorm, 

followed by MeanCvg and Length.  

Given these results, we removed Mappability from the feature space. This result was 

expected, as we saw in the boxplot distribution for all kits a mappability score almost 

always equal to 1. Since the XLR dataset contains a pruned set of disease-causing 

genes, it is quite rare to find these genes in low-complexity regions of the genome; 

thus, using this feature could be deleterious for our model, as the genome contains 

lots of regions with low mappability.  
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Finally, we evaluated, using the Merged dataset, the minimum number of samples and 

target regions required to get a good prediction accuracy.  

 

Figure 17 Random Forest accuracy for each subset of individuals, repeated 10 times. 

As shown in the plot (Fig. 16), a low number of samples gives a high variability in 

accuracy for each iteration. This is mostly due to the fact that, by randomly sampling a 

small fraction of individuals, it is easier to obtain unbalanced datasets. Sampling 

fraction and accuracy show a positive correlation, increasing at the same time the 

robustness of the model.  

 

Figure 18 Random Forest accuracy for each subset of target regions, considering all individuals.  Test 

repeated 10 times. 
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When using the Merged XLR dataset with all its individuals, sampling the number of 

target regions from a minimum fraction to the entire set does not have the same 

impact seen for the number of samples. By these results, it is plausible that a very 

small fraction of target regions is required for training, as long as they come from a 

large cohort of individuals. 

Training results 

Selected models and hyperparameters 

After 10-fold cross-validation, we obtained for each model tested the best set of 

hyperparameters. 

Model Best hyperparameters  

  DecisionTreeClassifier() 

   criterion :  gini 

   max_depth :  10 

   min_samples_split :  50 

   min_samples_leaf :  50 

  RandomForestClassifier() 

   criterion :  gini 

   n_estimators :   100 

   max_depth :   10 

   max_features :   3 

   min_samples_leaf :   100 

   min_samples_split :   100 

  SVC() 

   C :   20 

   kernel :   rbf 

   cache_size  :   1000 

  KNeighborsClassifier() 
   n_neighbors :  10 

   weights :   distance 

  MLPClassifier() 

   hidden_layer_sizes :   8, 8, 8 

   activation :   tanh 

   solver :   sgd 

   learning_rate :   adaptive 

   learning_rate_init :   1e-4 

   early_stopping :   false 

   n_iter_no_change :   10 

   tool :   0.0035 

   max_iter :   200 

Table 12 Set of best hyperparameters for each models using GridSearch selection. 
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When training the autoencoder, we obtained 1.84 mean reconstruction error. Mean 

AEXLR + 2σ  value was used as threshold in our test datasets, to remove all target 

regions with an AE exceeding this  value (Fig. 18). 

 
Figure 19 Histogram distribution of the Reconstruction error obtained when training an Autoencoder 

using the XLR dataset. 

Results on the XLR test fraction 

Model Accuracy Precision Recall F1 Score 

Decision Tree 84.78 85.63 84.78 84.95 

Random Forest 82.35 84.18 82.34 82.66 

Support Vector Machine 76.31 80.42 76.30 76.88 

K-NN 73.97 78.43 73.95 74.59 

Multi-Layer Perceptron 72.91 77.88 72.89 73.55 

Table 13 Macro-averaged metrics for XLR test fraction. 

All trained models obtained a good accuracy and F1 score in making predictions on the 

XLR test fraction, with Decision Tree obtaining the best scores. 
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Results on NSD dataset 

Model Accuracy Precision Recall F1 Score 

Decision Tree 83.44 84.43 83.44 83.63 

Random Forest 81.07 82.99 81.07 81.39 

Support Vector Machine 74.68 79.15 71.68 75.29 

K-NN 70.73 75.85 70.73 71.39 

Multi-Layer Perceptron 70.75 76.45 70.75 71.41 

Table 14 Macro-averaged metrics for noSegDup test set. 

For the NSD dataset we obtained scores similar to the ones obtained in the XLR 

dataset. Since the training set contains very clean regions compared to this set, the 

very slightly decrease in performance can be expected. 

Results on SD dataset 

Model Accuracy Precision Recall F1 Score 

Decision Tree 78.53 79.49 78.53 78.74 

Random Forest 76.52 78.60 76.52 76.90 

Support Vector Machine 70.72 75.44 70.72 71.37 

K-NN 65.62 71.14 65.62 66.31 

Multi-Layer Perceptron 66.03 72.52 66.03 66.66 

Table 15 Macro-averaged metrics for SegDup test set. 

This is the set containing more problematic regions. As shown in the table, all models 

have a drop in performance.  

Results on the 5 enrichment kits separately 

Finally, we tested the trained models on each kit test set separately.  
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Model DT RF SVM K-NN MLP 

N
S

D
 

BGI 93.46 92.92 89.06 81.84 83.74 

MedExome 81.17 74.92 63.00 63.96 60.77 

Nextera 84.78 85.85 79.27 74.66 72.82 

SureSelect 77.00 74.90 72.13 66.47 69.36 

Twist 81.46 77.15 68.40 68.42 67.44 

S
D

 

BGI 87.76 87.68 82.56 75.70 75.71 

MedExome 76.07 70.19 61.65 59.29 59.16 

Nextera 83.61 84.65 76.87 71.67 69.18 

SureSelect 70.02 68.92 66.86 61.07 64.78 

Twist 76.19 72.32 64.39 61.98 61.47 

Table 16 Macro-averaged F1 scores obtained using the erged dataset on each kit-specific SD and NSD dataset. 

Benchmark 

1000 Genomes: NS and PS 

SureSelect v2 target was first lifted to GRCh38 coordinates, losing 0.15% regions. We 

proceeded with the workflow obtaining our target reference dataset and NS. 

Target  Bait Size (Mb) Reference Build 
Number of 

regions 

Agilent SureSelect All Exon V2 46 hg19 194680 

Agilent SureSelect All Exon V2 – after liftover 45.9 GRCh38 193873 

Target reference dataset 44 GRCh38 186200 

NS 36.5 GRCh38 150634 

Table 17 Description of the number of target regions lost at each passage of the workflow 

To construct the PS, we first had to make some evaluations for variants derived from 

DGV’s array studies. After intersecting the selected studies, we found a higher 

intersection between studies with the highest resolution (Campbell et al., 2011, 

Conrad et al., 2009 and McCarroll et al., 2008).  



50 

 

 

Figure 20 Distribution of target regions containing DGV's CNV shared between all studies. 

We removed Cambpell et al., 2011 since it was a custom study and did not target all 

the genome and Cooper et al., 2008 due to the method of validation (a variant was 

considered validated if seen from other studies). At the end, we selected the target 

regions in common between Conrad et al., 2009 and McCarroll et al., 2008 to have a 

selection of the two main technologies used (Oligo aCGH and SNP-array) with the best 

resolution, validation method and number of shared regions.   

For real CNVs evaluation, we used the native NA12878 BAM file. Meanwhile, for 

synthetic variants we selected and split dbVar’s pathogenic CNVS in 5 lists, obtaining 

these size-separated number of variants: 

dbVar CNVs 1 region 2 – 5 regions 6 – 10 regions 11 – 50 regions >50 regions 

List 1 265/265 229/700 78/593 60/1248 4/281 

List 2 45/45 47/144 43/339 24/522 5/492 

List 3 25/25 27/81 14/104 15/260 4/291 

List 4 15/15 17/63 9/71 9/164 1/65 

List 5 47/47 41/114 3/18 1/35 5/430 

Table 18 Number of dbVar CNVs for each list. Values reported as: “number of CNVs”/”number of targeted 

regions within the CNVs” 
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Each list of variants was added synthetically to NA12878 original file, generating 5 new 

BAM files. The overall number of variants for each PS is reported below. 

NA12878 PS N Total N Deletions N Duplications 

Array based dataset 24/232 10/64 14/168 

Short reads based dataset 142/1001 77/353 65/648 

In Silico dataset – 1 regions 397/397 360/360 37/37 

In Silico dataset – 2 to 5 regions 361/1102 312/944 49/158 

In Silico dataset – 6 to 10 regions 147/1125 133/1017 14/108 

In Silico dataset – 11 to 50 regions 109/2229 93/1869 16/360 

In Silico dataset – >50 regions 19/1559 15/1239 4/320 

Table 19 Number of CNVs for each dataset - total and stratified for deletions and duplications. Values reported 

as: “number of CNVs”/”number of targeted regions within the CNVs” 

  

1000 Genomes: TrainX XLR dataset and model selection on autosomes 

1000 Genomes samples were added to the merged dataset, affecting mostly coverage 

and NRC_poolNorm ranges. 

 
Figure 21 Box-plot distribution of all features in the XLR dataset – initial Merged dataset and Merged dataset 

with 1000 Genomes samples included. 
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To select the model to use for CNV calling using HMM, we picked the subset showing 

good scores on X chromosome test sets (RF, SVC and MLP), tested them on NA12878, 

and evaluated their performance using NA12878 real PS, computing the overall 

number of target regions called wild-type and altered, without CNV type separation. 

Experiment Accuracy BA TPR TNR FPR FNR 

RF 
Arrays 87.51 65.98 44.40 87.57 12.43 55.60 

Short Reads 87.28 58.79 29.97 87.61 12.39 70.03 

MLP 
Arrays 65.40 52.11 38.79 65.43 34.57 61.21 

Short Reads 65.37 51.00 36.46 65.53 34.47 63.54 

SVC 
Arrays 94.50 67.97 41.38 94.57 5.43 58.62 

Short Reads 94.20 60.48 26.37 94.59 5.41 73.63 

Table 20 Performance metrics for RF, MLP and SVC models, trained on the Merged dataset and used to 

make predictions on NA12878. 

We found that, when testing the models on the autosomes, SVC is the one that gets 

less false positive calls and is better in generalizing on new data. Considering these 

results, we decided to only use our trained SVC model to make predictions on the 

autosomes. Despite having obtained best results with RF and DT during training, the 

number of false positive calls obtained in this test make it clear that those models 

were partially overfitting the data.    

1000 Genomes: Benchmark results 

Performance with size separation. 

We first considered callers’ performance on subsets of our PS, grouped by ranges of 

target regions included in each CNV. For the synthetic set, results were averaged for 

the 5 lists created. When using EXCAVATOR2, since in the original paper it is suggested 

to try different window sizes and choose calls from windows giving the most similar 

variability between in- and off-target signals, we selected calls made using a 10kb 

window size. Whereas for TrainX, we tested the performance with and without the 

autoencoder and filtering calls having an HMM posterior alt probability <70%. 
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Figure 22 F1- scores heatmap showing CNV callers performance in calling single target regions of the positive sets; 

stratified by deletions and duplications for each range of sizes. Grey boxes: size ranges that do not contain positive 

CNVs. 

 

Overall performance. 

After considering each caller performance based on specific ranges of sizes, we further 

evaluated the overall performance of each tool without size distinction. 
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Figure 23 Precision-Recall plot for NA12878 array PS. 

 

 

 

 
Figure 24 Precision-Recall plot for NA12878 short-reads PS. 
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Figure 25 Precision-Recall plot for NA12878 synthetic PS. Results averaged on the 5 lists created. 

 

All callers showed best performances with the short-reads and synthetic datasets; 

considering that both sets are based on detection on short-reads data, this could 

explain the better results. Moreover, while for the synthetic dataset we precisely know 

which CNV is a deletion or a duplication, this is not always true for the DGV datasets, 

as we saw that some CNVs have discordant CNV types between each study for the 

same sample, making these results less reliable in terms of recall.  

Regarding the number of samples used to create the pool of controls, mostly all callers 

showed an improvement in performance when using a bigger cohort. ExomeDepth and 

DECoN however did not follow the same trend, confirming the maximum number of 10 

controls suggested in their documentation. With TrainX, a probability threshold helps 

increasing the precision, removing a part of FP calls. Also, duplications do not seem to 

benefit the use of an autoencoder to filter outliers, probably because duplications are 

in general more difficult to model. 
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Epi25: NS and PS 

Nextera Rapid Capture Exomes target was first lifted to GRCh38 coordinates, losing 

0.13% regions. As for 1000 genomes, we removed chrX, chrY and alternative contigs to 

obtain our target reference dataset. 

Target Bait Size (Mb) Reference Build Number of regions 

Nextera Rapid Capture Exomes V1.2 45.33 hg19 214035 

Nextera Rapid Capture Exomes V1.2 – after liftover 45.2 GRCh38 213378 

Target reference dataset 43.3 GRCh38 205388 

Table 21 Overall number of target regions included at each step 

After filtering the outlier samples (N=51) from both SNP-array datasets and TrainX call 

sets, we obtained a final number of  251 samples analysed. 

Epi25 NS and PS are different for all samples, but a general overview of the PS 

dimensionality is given below. 

PS N patients N CNVs N Deletions N Duplications 

High quality set 40 46/1244 25/379 21/865 

Medium quality set 10 10/111 8/74 2/37 

Low quality set 30 34/137 16/70 17/67 

Table 22 Number of samples and variants for each SNP-array derived PS; CNVs reported as: “number of CNVs” / 

”number of targeted regions within the CNVs”.   

Epi25: TrainX XLR dataset 

Epi25 training samples were added to the merged dataset.The merged dataset 

contained samples from the 5 enrichment kits and 1000 Genomes samples used before 

(see Methods: 1000 Genomes: TrainX XLR dataset) . 
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Figure 26 Box-plot distribution of all features in the XLR dataset – Merged dataset with 1000 

Genomes samples and Merged dataset with 1000 Genomes and Epi25 samples included. 

Adding these samples to the merged dataset mostly affects the distribution of the 

MeanCvg and NRC_poolNorm, as expected. We then proceeded in training the SVC 

model and calling CNVs in our samples. 

Epi25: Results and validation 

For Epi25 samples, we evaluated how many of the High Quality PS CNVs were detected 

using TrainX. We computed each performance metric for all 251 samples and 

evaluated the macro-average Precision and Recall resulting after summing all positives, 

negatives, TP, TN, FP and FN target regions. 
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Figure 27 Precision and Recall for the high-quality positive set (N=251). First plot: showing macro averaged results 

for each filtered/not-filtered dataset tested. Bar plot on bottom left: Precision and Recall obtained for each sample 

when using Autoencoder and probability threshold at 70%. Table on bottom right: scikit Classification Report for 

results with Autoencoder and probability threshold at 70%, showing how the macro average results have been 

obtained (stratified for CNV type).  

As shown in the barplot (Fig. 26), most of the samples showed zero precision and 

recall, since they did not have any variants in the High Quality PS.  

From the original high-quality SNP-array data (Niestroj et al., 2020) we previously 

identified 2 clinical CNVs (1 deletion and 1 duplication) that were included in the High 

Quality set used. We confirmed with our method both clinical CNVs (1 1.5MB deletion 

and 1 10.2Mb duplication). Regarding the medium and low quality set, we confirmed 8 

CNVs: 2 deletions and 1 duplication in the medium quality set and 5 deletions in the 

low quality set. Out of these 8 CNVs, we identified a deletion derived from the low 

 
Report Precision Recall F1 N + P TN + TP 

D
E

L 

WT 1 1 1 51533978 51514773 

DEL 0.02 0.79 0.03 379 298 

Macro 

average 
0.51 0.89 0.51 51534357 51513883 

D
U

P
 

WT 1 1 1 51533978 51488441 

DUP 0.01 0.63 0.02 865 549 

Macro 

average 
0.51 0.82 0.51 51534843 51488857 



59 

 

quality set containing 9 SNPs that encompassed PKD1 and TSC2 and perfectly 

correlated with the clinical phenotype of the patient, consisting in the coexistence of  

tuberous sclerosis and cystic kidney disorders which was compatible with a contiguous 

PKD1/TSC2 deletion syndrome. Notably, in the SNP-array data, this deletion belonged 

to the low-quality dataset and as such could have been missed, while it was identified 

with TrainX at a high call probability (0.99).  

 

Figure 28  Signal distribution for patient with TSC2-PKD1 deletion. Log2 ratio signal across the region where we 

detected the deletion for both SNP-array and TrainX. Dashed boxes point to the breakpoints detected by each 

technique. As shown, SNP-array have a noisy log2ratio signal for this deletion.  

We validated and confirmed this heterozygous deletion using MLPA as orthogonal 

technique, finding the breakpoints at Exon 31 of TSC2 and Exon 31 of PKD1. When 

looking at the breakpoints of the deletion detected by TrainX, we found the exact 

extension detected using MLPA. 
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Figure 29 MLPA validation of TSC2-PKD1 deletion. The deletion breakpoints start at exon 31 of TSC2 (Forward 

Strand) and end at exon 31 of PKD1 (Reverse Strand). On top of the ratios, labels refer to the analysed gene’s exon 

number and length (base pairs). On the right, a zoomed version of Fig. 27, showing the same deleted exons.
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Discussion 
 

In this thesis we introduced TrainX, an original machine learning (ML) method for CNV 

calling in WES data. The most distinctive feature of TrainX is that it exploits the 

naturally occurring hemizygous and disomic non-pseudoautosomal X chromosome 

sequences in males and females, respectively, in order to train its underlying model to 

recognize deletion and duplication states of exonic chromosomal regions. TrainX 

derives an indicator of genome copy number from in target WES data using 

Normalized Read Counts (NRC) computed with EXCAVATOR2, our previously 

developed tool. Apart from using NRC, TrainX methodology is completely new and is 

the only one that solely relies on a ML classifier to detect genomic imbalances in WES. 

Although there are few publications that use ML classification methods in NGS data, 

the majority refers to WGS and mostly rely on integrating results from several variant 

callers to re-classify CNVs as real or false (Pounraja et al., 2019; Zhuang et al., 2020). 

The only single comparable tool published to date that use machine learning directly to 

raw WES data is CNV-RF (Onsongo et al., 2016). This caller however is based on a Read 

Depth and segmentation approach and use a trained Random Forest classifier as a final 

step, to predict false positives from the final set of calls obtained. Moreover, what 

makes TrainX different from other ML tools is the amount of training data available, as 

the non pseudo-autosomal X chromosomes from either affected or healthy individuals 

can be used, sidestepping the unbalanced dataset problem that usually affects 

supervised machine learning trainings when using genomic data. 

To create TrainX feature space, we could select only a small number of features, since 

the XLR dataset contains a good set of regions that have usually high intolerance to 

biological variability. However, we found out that 2 of the selected features, namely 

NRC_poolNorm and MeanCvg are sufficiently strong predictors. When plotting the 

relationship between these 2 features, it is evident that there is no clear linear 

separation between the 3 classes. Given the complexity of the data, we tried to reduce 

overfitting  by selecting a smaller training fraction and adding gaussian noise to the 

dataset. Moreover, we also trained to the same training fraction an autoencoder to 

remove from the test sets predicted target regions gauged as outliers. Taking all these 
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improvements together, we obtained good performance in both chromosome X and 

autosomes when using a Support Vector Machine Classifier. The reduced number of 

false positives could be explained by the use of the RBF kernel, that probably finds a 

more regular separating hyperplane compared to the other models tested.  

To evaluate TrainX ability of calling regions really affected by a CNV and compare its 

performance to that of other tools, we carried out an extensive benchmark focused on 

the minimum number of target regions required by each tool to correctly identify true 

heterozygous deletions and duplications. What we observed, when evaluating the 

synthetic CNVs, is that each tool has different behaviours when considering the two 

CNV types separately. For 1 copy deletions >1 target region, GATK4 gCNV obtained the 

best F1 scores. A similar performance was also seen in a recent publication (Testard et 

al., 2021), where they run GATK4 in a retrospective cohort and detected all the clinical 

CNVs previously identified with CMA, including 1 single exon deletion and 1 exon 

duplication (CN=0 and CN=3 respectively). However, in this study the authors did not 

consider precision and recall, nor any other quantitative measure, as metrics to 

evaluate performance of the chosen tools and did not operate any distinction between 

CNV types, making the present benchmark a helpful addition to what has been already 

published for whoever is in search of studies that compare WES-focused CNV callers.  

Among the tested tools, DECoN is the only caller able to consistently detect single 

target region deletions, confirming the purpose of its development. However, it still 

shows very low recall and precision, and it is important to underscore that this very 

low performance may be related to the fact that this caller was primarily focused on 

gene panel analysis, which is usually limited in the target extent, and therefore is less 

impacted by a poor precision performance.  

When considering 3-copies duplications, all tools that showed an overall good 

performance in detecting deletions demonstrate a considerably drop in performance, 

while EXCAVATOR2, which did not outstand in detection of 1-copy deletions, showed 

the best scores for duplications, especially for those larger than 11 target regions.  

Comparing TrainX performance against all these tools, there is an evident difference in 

terms of stability across CNV types. TrainX is the only tool showing similar accuracy and 
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score stability for all calls including >1 target region, making the evaluation of the 

entire spectrum of CNV types and sizes more feasible using a single approach. 

Considering that diagnostic CNVs range from intragenic to large chromosomal events, 

this property of TrainX could prove to be really valuable in the clinical setting, where 

having a single tool instead of being forced to combine different solutions is an 

important practical advance. Moreover, all callers having good scores with deletions 

and a drastic drop for duplication (i.e., GATK4, DECoN and ExomeDepth) rely mostly on 

statistical models for CNV detection, suggesting that it is more difficult to statistically 

model duplications compared to deletions. Using a ML approach seems to consistently 

overcome this problem. When also taking into account the overall performance while 

benchmarking against the array and short reads positive sets, TrainX always show the 

best scores. In general, none of these tools could detect single target regions events, 

suggesting that 2-3 target regions could  be a reasonable limit for CNV detection using 

any of the tested tools. 

TrainX performance stability across CNV types have been confirmed using the Epi25 

dataset. With an average recall of 80%, we were able to identify all previously detected 

diagnostic CNVs, and we were also able to identify a previously unnoticed pathogenic 

deletion in one of the patients; following best practices adopted for microarrays, this 

CNV was not previously considered since it included very few SNPs and was filtered out 

in the first steps of QC.  

Nevertheless, from the results we collected several considerations on fixes and 

improvements that need to be tested. 

The main limitation of TrainX rely on its inner nature, namely the fact we build our 

algorithm around the X chromosome sequences. Since we use male samples as model 

for deletions, it is not possible to call on X chromosome for them, as it would be 

automatically classified all as deleted except for pseudo-autosomal regions. Thus, 

further evaluations need to be done to try weighting the results when considering X 

chromosome in male samples. Also, since duplications are modelled less efficiently  

than deletions as, for example, for 1000Genomes benchmark we saw a better 

performance without the autoencoder, a good idea could be to create merged samples 

with a collection of merged BAM files from both males + females and females + 



64 

 

females, in order to enhance the distribution of the duplication events modelled for 

training. 

When re-evaluating the feature distribution of our merged datasets, taking also in 

consideration the results, we highlighted two main aspects that need to be 

reconsidered. First of all, when creating the merged datasets we select, for all 

individuals considered, a random number of samples. Even if the number of samples 

for individuals should be more or less similar, a new weighted sampling approach 

would be considered. Secondly, we observed that individuals having a MeanCvg falling 

outside the whiskers of the merged distribution show an elevated number of false 

positive calls. Looking at Figure 12, samples with high MeanCvg have a different  

NRC_poolNorm distribution, more shifted to the right side of the tail, compared to the 

other set of samples. Since, as for now, the merged datasets include few samples with 

a very high coverage, these samples are just outliers and do not add value to help the 

model to learn their characteristics. Considering this limitation, we are planning to use  

an additional autoencoder to detect and remove individuals added to the analysis that 

have features too divergent from those included in the merged datasets. As the idea 

behind the merged dataset is to include new samples for each new batch to analyse, 

this behaviour should be limited over time; considering that WES cost is constantly 

dropping, high coverage sequencing is becoming the standard procedure in every 

clinical and research setting. 

Finally, we recognize that calling and/or post-calling steps should be improved still to 

increase accuracy and in particular to mitigate the presence of false positive signals. As 

an example, we observed that some of the calls made are very large (even up to 1-2 

Mb) but contain few sparse target regions; We are currently testing a way of filtering 

these regions out, based on the low density of observation points within the call, as 

this is the likely mark of a false positive. The approach used in the Epi25 benchmark, 

filtering out calls having a very low density, does not seem to give a huge improvement 

in terms of performance. An alternative to this method could be using an HMM 

algorithm that also considers the distance between target regions, as for now we have 

assumed equal distance between exons. As a general next goal, we are seeking all the 

potential improvements to the method that could further raise its precision and 
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therefore make it an asset for the clinical context, representing a more reliable and 

wide-scope CNV detection method than current tools. 

In conclusion, WES is going to be adopted as first-tier genetic test in a vast range of 

clinics. CNVs represent one of the most important sources of clinical genomic 

variation. Providing the genomic diagnostic environment with a CNV detection 

approach that proves to be reliable to the entire range of coding CNV types and sizes is 

essential, but currently available tools still suffer from evident biases that prevent their 

ready use along the clinical practice. Our TrainX method, introducing an original ML 

solution in this field, establishes itself as a way to reduce this gap towards higher 

accuracy and wider applicability. 
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